\

Groups with tame cuts
Bat-Od Battseren

» To cite this version:

Bat-Od Battseren. Groups with tame cuts. Functional Analysis [math.FA]. Université Cote d’Azur,
2021. English. NNT': 2021COAZ4041 . tel-03382768

HAL Id: tel-03382768
https://theses.hal.science/tel-03382768

Submitted on 18 Oct 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-03382768
https://hal.archives-ouvertes.fr

. ECOLE DOCTORALE

UNIVERSITE :: SCIENCES
COTED'AZUR - ET APPLIQUEES |

Groupes aux coupures modérées

Presentée par
BAT-OD BATTSEREN

Présentée en vue de I'obtention du grade de

Docteur en Mathématiques de I’Université Cote d’Azur

These dirigée par
INDIRA CHATTERJI
Soutenue le 30 juin 2021

Devant le jury composé de

CLAIRE ANANTHARAMAN-DELAROCHE UNIVERSITE D’ORLEANS
INDIRA CHATTERJI UNIVERSITE COTE D’AZUR
MIKAEL DE LA SALLE ENS DE Lyon

FRANGOIS GAUTERO UNIVERSITE COTE D’AZUR
MARIA PAuLA GOMEZ APARICIO UNIVERSITE PARIS SACLAY
LAURENT SALOFF-COSTE UNIVERSITE DE CORNELL

EXAMINATRICE
DIRECTRICE
RAPPORTEUR
EXAMINATEUR
EXAMINATRICE
RAPPORTEUR







Groupes aux coupures modérées

Groups with tame cuts

These de doctorat
Soutenue le 30 juin 2021
par BAT-OD BATTSEREN

Directrice de these:

INDIRA CHATTERJI

Devant le jury composé de
Rapporteurs

MIKAEL DE LA SALLE, Chargé de recherche CNRS HDR a I’ENS de Lyon.

LAURENT SALOFF-COSTE, Professeur a I'Université de Cornell.
Examinateurs

CLAIRE ANANTHARAMAN-DELAROCHE, Professeur émérite a I’Université d’Orléans.
FRANGOIS GAUTERO, Professeur a 1'Université Cote d’Azur.

MARIA PAULA GOMEZ APARICIO, Maitre de Conférences a I'’Université Paris
Saclay.

Directrice de these

INDIRA CHATTERJI, Professeur a I'Université Cote d’Azur.



Résumé

Dans cette these, nous étudierons quatre types de suites de fonctions continues a
support compact sur un groupe localement compact, a savoir les coupures modérées
[caractéristiques| (completement bornées), et leurs croissances dans 1’algebre de Ba-
nach des multiplicateurs de Fourier (compléetement bornés). Cette nouvelle notion
étend la moyennabilité faible et la propriété de décroissance rapide. L’objectif prin-
cipal est de fournir des exemples de groupes admettant ou pas ce type de suites, a
I’aide d’outils analytiques, algébriques et géométriques.

Nous démontrons que les groupes de Baumslag-Solitar BS(p, ¢) pour p,q € N et
certains groupes métabélians de type fini, dont Z[piq] Xz Z pour p,q € N premiers
entre eux, Z% x4 Z pour d € N, et le groupe de allumeur de réverberes Z, ! Z, admet-
tent des coupures modérées caractéristiques completement bornées. Ceci est réalisé
en montrant que I'existence de coupures modérées [caractéristiques| (completement
bornées) est stables par extension par un groupe a croissance polynomiale. Nous
proposerons également une méthode pour construire un groupe de type fini sans
coupures modérées en utilisant la propriété (Tsepur, G, K).

De plus, nous proposerons deux résultats comme applications de coupures modérées.
Le premier résultat montre que tout réseau uniforme dans SL3(R) admet un multi-
plicateur de Fourier qui n’est pas completement borné. Ceci fournit un exemple a
I’appui de la question ouverte: “La moyennabilité d’'un groupe discret I' est-elle car-
actérisée par le fait que tous les multiplicateurs de Fourier de I' sont completement
bornés?” Le deuxieme résultat est lié¢ a 'application d’induction MyA(I') — MyA(G)
qui est contractante pour tout groupe localement compact G et son réseau I'. En
particulier, lorsque G (ou I') est moyennable, I'application d’induction M A(T") —
M A(G) est contractante. Nous démontrerons que la moyennabilité de G est essen-

tielle pour la continuité de cette derniere application.

Mots-clefs: Groupes localement compacts, algebres de groupe, multiplicateurs de

Fourier, moyennabilité faible, propriété de décroissance rapide, coupures modérées.
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Abstract

In this thesis, we will study four types of sequences of compactly supported contin-
uous functions on a locally compact group, namely (completely bounded) [charac-
teristic] tame cuts, and their growth in the Banach algebra of (completely bounded)
Fourier multipliers. This new notion extends weak amenability and Rapid Decay
property. The main goal is to provide examples of groups admitting or not-admitting
such kind of sequences using analytic, algebraic, and geometric tools.

We will prove in particular that the Baumslag-Solitar groups BS(p, ¢) for p,q € N
and some finitely generated metabelian groups, including Z[piq] X Z for coprime
p,qg €N, Z%4Z for d € N, and the Lamplighter group Z,1Z, admit completely
bounded characteristic tame cuts. This is achieved by showing that the existence
of (completely bounded) [characteristic] tame cuts is stable under extension by a
group with polynomial growth. We will also propose a method to construct a finitely
generated group without tame cuts using property (Tschur, G, K).

In addition, we will propose two results as an application of tame cuts. The first
one states that any uniform lattice in SL3(R) admits a Fourier multiplier that is
not completely bounded. This provides a supporting example to the following open
question: “Is amenability of a discrete group I' characterized by the fact that all
Fourier multipliers of I are completely bounded?” The second application is related
to the induction mapping MyA(I') — MyA(G) which is known to be norm decreasing
for any locally compact group G and any of its lattice I'. In particular, when G (or
I') is amenable, the induction mapping MA(I') - MA(G) is continuous. We will

show that the amenability of G is essential for the continuity of the latter mapping.

Key words: Locally compact groups, group algebras, Fourier multipliers, weak

amenability, Rapid Decay property, tame cuts.
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Introduction en francais

Dans cette these, nous étudions quatre types de suites de fonctions continues a sup-
port compact sur un groupe localement compact, a savoir les coupures modérées
[caractéristiques| (complétement bornées), et leur croissance dans 1’algebre des mul-
tiplicateurs de Fourier (completement bornés). Les définitions précises sont données
dans le Chapitre 3. Dans ce qui suit, nous décrirons comment les coupures modérées

sont liées a certaines propriétés bien connues et exposerons nos principaux résultats.

Analyse harmonique

Rappelons un peu d’analyse harmonique classique. Pour chaque fonction intégrable

f € LY(T), on lui associe des polynomes trigonométriques

S0 = 3 Fime™, o Fin) = [ ey

On peut aussi écrire Sy|[f] = Dy * f en utilisant le produit de convolution ot

— - pint _ sin((N +1/2)x)
D= Z sin(z/2)

n=—N

est le noyau de Dirichlet. La suite (Sy[f])ven ne converge pas nécessairement vers
f pour tout f € L*(T) dans la topologie de la norme L' (ou de maniere équivalente,
pour tout f € C(T) dans la topologie de convergence uniforme) [Kol23]. En ef-
fet, si ||[Dy * f — f|l1 — 0 pour tout f € L'(T), la norme ||Dyl|; de 'operateur
de convolution doit étre uniformement bornée pour tout N € N, mais nous avons
|Dn|l1 = %log(N) + O(1), qui sont appelées les constantes de Lebesgue. Plus tard,
il a été prouvé dans [MPS81] que lestimation O(log(NN)) est asymptotiquement

minimale, dans le sens que pour toute suite de noyaux caractéristiques (ky,)en telle



que pour chaque n € N le spectre de k, contient ’ensemble {—n,—n + 1,...,n},
on a ||k,|l1 > Clog(N) pour tout n € N. En étudiant les coupures modérées
caractéristiques (complétement bornées), nous obtiendrons des informations asymp-
totiques pour un groupe discret et dénombrable. Pour cela, nous utilisons 1’algebre
de Fourier A(G) et les algebres des multiplicateurs de Fourier, M A(G) et MyA(G).
On note que lorsque G est abélien, 1’algebre de Fourier A(G) est isomorphe a Ll(CAJ),
et les algtbres MA(G) et MyA(G) sont isomorphes & I'algebre des mesures M(G)
via la transformation de Fourier.

L’idée de généraliser des propriétés d’analyse harmonique classique n’est pas
nouvelle. La plus connue est la moyennabilité de John von Neumann. Rappelons
qu'un groupe G localement compact est moyennable s’il existe une approximation
de I'unité dans l'algebre de Fourier A(G) constituée de fonctions définies positives,
c’est-a-dire une suite généralisée (@, )ner de fonctions définies positives dans A(G)
telles que ||¢n f — f]la — 0 pour tout f € A(G). Dans le cas de G = Z, cela équivaut
a lexistence d'une suite (¢, )nen de polynomes trigonométriques normalisés positifs
sur T telle que ||, * f — f|li = 0 pour tout f € L'(T). Un exemple d'une telle

suite est donné par les noyaux de Fejér définis par

e ()

Dans la définition de moyennabilité, si on remplace la condition de positivité definie
par sup,, ||¢nllma < 00, on obtient la définition de moyennabilité faible. Si G
est faiblement moyennable, la valeur minimale possible A(G) de sup,, ||¢n|lpa €x-
iste et s’appelle la constante de Cowling-Haagerup. Si G n’est pas faiblement
moyennable, pour toute suite (¢,)nen dans A(G) avec ¢, — 1 uniformément sur
les compacts, la norme |[¢,|/a,a tend vers Uinfini. Dans cette these, nous pro-
posons d’étudier la croissance de ||, a4 €t [|¢nllara, qui est Iessence des coupures
modérées (complétement bornées). Remarquons qu’en répétant les mémes fonctions
dans la suite, nous pouvons rendre la croissance de ||, ||a,4 arbitrairement lente.
Afin de remédier a cet inconvénient, nous utilisons une fonction de longueur propre
¢ : G — Ry, et nous ajoutons la condition que ¢, prend la valeur 1 sur la boule
B, = {x € G : {(x) < n}. Maintenant, il est possible de parler de croissance
asymptotiquement minimale de ||¢,||a,4 qui serait une information dépendant du
groupe G et de la fonction de longueur ¢. Lorsque G est faiblement moyennable,

une telle croissance est O(1) pour toute fonction de longueur propre, donc la con-



stante de Cowling-Haagerup est une information plus fine que les coupures modérées

completement bornées.

Algebres de groupe

Parmi les groupes topologiques, les groupes localement compacts sont particulierement
intéressants car ils admettent une mesure de Haar. Cette mesure est I'un des princi-
paux outils pour étudier le groupe de maniere analytique, méme si le groupe n’est ini-
tialement équipé que d’une structure topologique et algébrique. Les premiers espaces
que nous pouvons construire en utilisant la mesure de Haar sont les espaces clas-
siques LP(G). C’est une amélioration par rapport aux espaces C(G), C.(G) et Cp(G)
qui peuvent étre construits pour n’importe quel groupe topologique. L’espace de Ba-
nach L!'(G) a une structure *-algebre avec le produit de convolution et I'involution.
Une structure de C*-algebre offre une théorie plus riche et mieux comprise. Mal-
heureusement, L'(G) ne peut pas étre une C*-algebre a 'exception du groupe trivial.
Nous considérons les *-représentations de L'(G) pour extraire une C*-algebre. La
plus naturelle est la représentation réguliere (X, L*(G)) ou A(f) pour f € L'(G)
agit sur lespace de Hilbert L?*(G) par convolution: A(f)g = f*g, g € L*(G).
La complétion C5(G) (resp. L(G)) de A(L'(G)) dans la topologie de norme (resp.
topologie d’opérateur fort) est appelée C*-algebre réduite (resp. algebre de von
Neumann) du groupe. De nombreuses propriétés de groupe importantes telles que
moyennabilité, propriété de Haagerup, moyennabilité faible, propriété A et propriété
(T) de Kazhdan sont formulées en termes de ces algebres. L’unique prédual Banach
A(G) de L(G) est appelé 'algebre de Fourier de G. 11 coincide avec 'espace de tous
les coefficients matriciels associés a la représentation réguliere, equipé de la norme
@ — mf{[|g]l2lInll2 : & € L*(G), o = (A(-)&, ) }. Avec la multiplication ponctuelle,
A(G) devient une algebre de Banach commutative. Nous renvoyons les lecteurs a
[Eym64] pour les principales propriétés de ces algebres.

Une autre algebre importante provenant du groupe localement compact est
donnée par les multiplicateurs de Fourier M A(G), constituée des fonctions con-
tinues bornées qui laisse 'algebre de Fourier A(G) invariante par multiplication
ponctuelle. Par le théoreme du graphe fermé, chaque fonction dans M A(G) définit
une application linéaire continue sur A(G), et avec la norme d’opérateur corre-
spondante, M A(G) devient une algebre de Banach. Dans [DCHS85], cet espace a

été caractérisé comme des multiplicateurs de C5(G) et L(G). Nous pouvons donc



considérer des multiplicateurs de Fourier compleétement bornés, MyA(G). Cet es-
pace a de meilleures caractérisations que les multiplicateurs de Fourier habituels,
et bénéficie en outre de quelques propriétés de stabilité de base [CH89, DCHS85].
Nous voulons étudier la croissance des coupures modérées dans ces deux espaces.
Si GG est moyennable, ces deux espaces coincident isométriquement, et 'inclusion
A(G) — MA(G) est isométrique, donc les calculs sont facilités. Dans le cas ou
@ est abélien, on a méme A(G) = LY(G) et MA(G) = MyA(G) = M(G) comme
algebres de Banach commutatives.

Dans le Chapitre 1, nous discuterons de ces algebres et leur relation avec les

représentations du groupe plus en détail.

Opérateur de troncature

Les comportements de la C5(G)-norme sont notoirement difficiles & comprendre.
Par exemple, la conjecture de Valette sur la décroissance rapide pour les réseaux
uniformes dans les groupes de Lie de rang supérieur est toujours ouverte [Val02].
Différentes approches pour comprendre les normes d’opérateurs sont étudiées dans
des cas particuliers: lorsque G est moyennable, on a ||[A(f)|| = ||f]|1 pour toute
fonction non négative f € C.(G), et lorsque G est un groupe de Lie simple connexe,
la fonction sphérique de Harish-Chandra ¢ satisfait || A(f)|| = [ ¢o(z) f(x)dz pour
tout f € C.(G);. D’autre part, lorsquun groupe discret I' admet des coupures
modérées caractéristiques (¢, )nen, nous obtenons des informations asymptotiques
sur la fagon dont la norme ||\(f)|| change aprés avoir tronqué (ou coupé) la fonction
f € C.(G) par le support de ¢,. Dans de nombreux espaces, le processus de
troncature définit un opérateur contractant. Par exemple, les espace #(G), 1 <
p < oo ou plus généralement 'espace C.(I') équipé d’une norme inconditionnelle
N, a savoir N(f) < N(g) si |f| < |g|- La situation est tres différente pour C}(I).
Par exemple, la norme du multiplicateur de Fourier de la fonction caractéristique

¢n = lzn[—nn € (*(Z) est donnée par la constante de Lebesgue
* * 4
1M, = CX(Z) = CX(Z)| = llenllara = |[Dnlls = —logn + O(), (1)

et elle n’est pas borné. Les coupures modérées caractéristiques (completement
bornées) nous indiquent & quel point la norme C}(I') est loin d’étre incondition-

nelle.



La propriété de Décroissance Rapide

La propriété de Décroissance Rapide a été initialement observée dans [Haa79] pour
le groupe libre Fy a deux générateurs et développée dans [Jol90], qui lui a donné
son nom. En établissant la propriété de Décroissance Rapide pour Fj, Haagerup a
prouvé qu’il y a une approximation n-positive de I'unité dans l'algebre de Fourier
A(F3). Cela montre que C5(F3) a la propriété d’approximation n-positive pour toute
n € N mais pas la propriété d’approximation completement positive.

Une autre contribution importante de la propriété de Décroissance Rapide est
son application dans la théorie-K. Le calcul des groupes K,.(C5(G)) peut étre
tres difficile, mais lorsque le group G a la propriété de Décroissance Rapide, pour
un parametre suffisamment grand s € R, l'espace s-Sobolev H;(G) devient une
sous-algebre dense de C}(G) avec les mémes K-groupes. Par rapport a la norme
d’opérateur compliquée de C5(G), la norme d’espace s-Sobolev a une formule ex-
plicite, ce qui fait de H;(G) une cible plus facile a étudier. En utilisant cette idée,
Lafforgue a montré dans [Laf98] que la conjecture de Baum-Connes a une réponse
affirmative pour tout réseau uniforme dans SL3(R). Ce fut le premier groupe discret
et infinit satisfaisant la conjecture de Baum-Connes et la propriété (T) de Kazhdan.

Dans cette these, la propriété de Décroissance Rapide joue un role important
pour fournir les premiers exemples de groupes discrets avec des coupures modérées
caractéristiques: la discreture assure que C5(T')-norme domine toujours ¢(T")-norme,
et la propriété de Décroissance Rapide fournit 'inégalité inverse avec un facteur
polynomial. Certains résultats de stabilité de la propriété de Décroissance Rapide
(par exemple [Jol90, Garl15]) sont partiellement adaptables aux coupures modérées.
Nous utiliserons également le résultat de Lafforgue sur les réseaux uniformes de

SL3(R) pour fournir deux applications de coupures modérées.

La moyennabilité faible

Comme mentionné précédemment, la notion de coupures modérées (completement
bornées) est un analogue de la moyennabilité faible. Cette similitudé nous permet
d’adapter certaines idées et techniques issues du développement de moyennabilite
faible. Par exemple, les inégalités de [LDIS11], [dL13] et [dLdIS18] impliquent di-
rectement qu’aucun groupe de Lie simple de rang supérieur avec un centre fini ne

peut admettre de coupures modérées, et aucun de ses réseaux uniformes n’admet



coupures modérées completement bornées.

La constante de Cowling Haagerup est un invariant d’équivalence mesuré (EM),
illustré dans [Ozal2]. Ceci a été réalisé en considerant 'application d’induction
O : ((I") — £>°(A) dont les restrictions MyA(I') — MyA(A) et A(I') — A(A) sont
décroissantes. On pourrait penser que le taux de croissance ou le degré des coupures
modérées (completement bornées) est invariant par EM. Cependant, cela ne semble
pas evident car I’équivalence n’a pas grand-chose a voir avec la croissance du groupe.
En effet, tous les groupes discrets, dénombrables et moyennables sont dans la méme
classe d’EM, et leur croissance peut étre de tout type. Un autre probleme est que
I’application d’induction ne préserve pas le support fini. Nous avons néeanmoins

prouvé le résultat suivant.

Théoréme 1. Soit A et I' deuzx groupes dénombrables, (X,d) un espace métrique
et u une mesure de Borel sur X. Supposons qu’il existe deux actions A ~ X ~A T
commutantes, libres et propres qui preservent la mesure et la distance et tel que
l'action T admette un domaine fondamental compact. Fizons un point base vg € X
et définissons les fonctions de longueur lp : 6 € T' +— d(vg.0,v9) et £y : s € A —
d(s.vo,v9). Si (I',lr) a des coupures modérées complétement bornées, il en va de

méme pour (A, €y).

En utilisant I'application d’induction contractante MyA(I') — MyA(G), Haagerup
a montré qu'un réseau I' dans un groupe localement compact G est faiblement
moyennable si et seulement si G' 'est [Haal6]. En particulier, si G ou I' est
moyennable, nous avons MA(I') — M A(G) continue. Le théoréme ci-dessous mon-
tre que moyennabilité est essentielle pour que cette derniere application soit con-

tinue. La preuve utilise des coupures modérées et sera donnée dans la Section 3.6.

Théoréme 2. Soit I' un réseau uniforme dans G = SL3(R). Alors Uapplication
®: MAT) = MA(G), ¢+ =Tax(pur)=1g

n’est pas continue.

Considérez la question ouverte suivante.

Conjecture. Soit I' un groupe discret. Si tous les multiplicateurs de Fourier de I’

sont complétement bornés, c’est-a-dire MyA(I') = M A(T), alors I' est moyennable.

La réciproque est démontrée dans [Neb82, Los84] dans le cas des groupes lo-

calement compacts. Dans [HSS10], un multiplicateur de Fourier non complétement
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borné explicite du groupe libre F;, a générateurs a été construit. Le méme résultat a
été fait dans [Boz82] en utilisant des ensembles lacunaires infinis. Il s’ensuit que la
conjecture a une réponse positive pour tout groupe discret contenant une copie de
F; (par exemple, des groupes linéaires discrets finis sur un corps). Nous montrerons
le théoreme suivant. L’idée de la preuve est tres proche de celle du Théoreme 2, et

nous n’utiliserons pas le fait que I' contient F, comme un sous-groupe.

Théoréme 3. Soit I' un réseau uniforme dans G = SL3(R). Alors, il existe un

multiplicateur de Fourier de I' qui n’est pas completement borné. En d’autres termes,
MyA(T") # MA(T).

Propriété (Ts.pur, G, K)

La propriété (Tsehur, G, K) a été introduite dans [Lial6] comme un analogue de la
propriété (Tsenur). Supposons que G est un groupe réductif sur un corp local, K est
son sous-groupe compact maximal, et " est un réseau de G satisfaisant la propriété
(Tsenur, G, K). Alors, toutes les méthodes connues pour prouver la conjecture de
Baum-Connes échouent pour I'. Dans notre contexte, la propriété Tsepur, G, K)

s’oppose a l'existence de coupures modérées de la maniere suivante.

Théoreme 4. Soit H un sous-groupe fermé d’un groupe G localement compact non-
borné. Supposons que H satisfait la propriété (Tsepur, G, K, {) pour un sous-groupe
compact K de G et une fonction de longueur propre ¢ de G. Alors (H,{|y) n'admet

pas de coupures modérées K -bi-invariantes.

Corollaire 1. Si G est non-borné et a la propriété (Tsepur, G, K, ), alors (G,£) n'a

pas de coupures modérées.

Corollaire 2. Supposons que G soit un groupe infini de type fini et que H soit
un sous-groupe de type fini de G. Supposons que H soit au plus polynomialement
déformé dans G, c’est-a-dire qu’il existe k > 0 tel que (g (z) < klg(x)* +k pour tout
x € H, ouly et by sont les fonctions de longueur de mot de G et H, respectivement.

Si H a la propriété (Tsenr, G, {e}, la), alors (H,ly) n'a pas de coupures modérées.

Il est a noter que le seul exemple connu satisfaisant la propriété (Tsepur, G, K) est
le groupe H (ou tout sous-groupe discret de Sp,(F,((7))) contenant H) des matrices
triangulaires supérieures dans Spy(F,((7))) dont les entrées sont dans F,[r '], et 1

sur la diagonale.



Plus d’exemples

Les groupes hyperboliques [Oza08], les groupes CAT(0) cubiques de dimension finie
[Miz08], les groupes de Coxeter [Fen(02], et les groupes agissant proprement sur un
produit des graphes hyperboliques & géométrie bornée [Ver19] ont tous des coupures
modérées caractéristiques completement bornées. En outre, les groupes discrets
satisfaisants la propriété de Décroissance Rapide ont des coupures modérées car-

actéristiques. Nous fournirons en plus les exemples suivants.

Théoreme 5. Les groupes suivants ont des coupures modérées caractéristiques

complétement bornées.
(i) Ty = Z* x4 Z pour tout d € N et A € SLy(Z).
(1)) Tpy = Z[piq] Xz Z pour tout p,q € N premiers entre eux.
(11i) Groupe d’allumeur de réverbéres Z,Z pour tout p € N.
(iv) Groupe de Baumslag-Solitar BS(p,q) = {(a,t | taPt=* = a?) pour tout p,q € N.

Les exemples (i) — (i77) sont obtenus en utilisant Proposition 3.3.9 qui dit que
coupures modérées [caractéristiques| (complétement bornés) sont stables sous ex-

tension par un groupe a croissance polynomiale, et (i7) est utilisé pour montrer

(1v).

Organisation du manuscrit

Dans le Chapitre 1, nous rapellons les notions, telles que les représentations de
groupe et les algebres de groupe. Dans le Chapitre 2, nous discuterons plus en détail
de la moyennabilité faible et de la propriété de Décroissance Rapide. Le Chapitre
3 est entierement dédié aux coupures modérées [caractéristiques| (completement
bornées). Dans la Section 3.1, nous donnerons les définitions des coupures modérées
et fournirons les premiers exemples en explorant les connexions a la moyennabilité
faible et a la propriété de Décroissance Rapide. Dans la Section 3.2, nous pro-
poserons une condition suffisante pour admettre des coupures modérées qui étend la
propriété de Décroissance Rapide. Dans la Section 3.3, nous étudierons les propriétés
de stabilité des coupures modérées. Dans la Section 3.4 et 3.5 nous prouverons les

Théoreme 4 et 5. Dans la Section 3.6, nous prouverons les Théoreme 2 et 3.



Introduction

In this thesis, we will study four types of sequences of compactly supported contin-
uous functions on a locally compact group, namely (completely bounded) [charac-
teristic|] tame cuts, and their growth in the algebra of (completely bounded) Fourier
multipliers. The precise definitions are given in Chapter 3. In what follows, we will
describe how tame cuts relate to some well-known properties and state our main

results.

Harmonic analysis

Let us recall some facts from classical harmonic analysis. For each integrable func-

tion f € L'(T), we associate the trigonometric polynomials

N 27
SnlfI(t) = Z f(n)e™  where f(n)= / F(t)e~ ™.
n=—N 0
One can also write Sy[f] = Dy * f using the convolution product, where

a e SIn((V+1/2)x
S~ g SN £ 1/2)0)

Dw = sin(x/2)

n=—N

is the Dirichlet kernel. It is a well-known fact that the sequence (Sy[f]) yen does not
necessarily converge to f for any f € L'(T) in the L*(T)-topology (or equivalently
in the topology of uniform convergence) [Kol23|. Indeed, should ||[Dy * f — f|ls — 0
for all f € L'(T), the convolution operator norms || Dy||1, N € N must be bounded,
yet we have ||[Dylly = 2log(N) + O(1) which are called the Lebesgue constants.
Later, it was proved in [MPS81] that such estimation O(log(/N)) is asymptotically
minimal in the sense that for any sequence of characteristic kernels (k,),en such

that for each n € N the spectrum of k, contains the set {—n, —n+1,...,n}, we have



|knlls > C'log(N) for all n € N. In our study of (completely bounded) characteristic
tame cuts, we aim to understand such asymptotic information for any discrete,
countable group. For that, we use the Fourier algebra A(G) and Fourier multiplier
algebras M A(G) and MyA(G). We note that when G is abelian, the Fourier algebra
A(G) is isomorphic to L'(G), and the algebras M A(G) and MyA(G) are isomorphic
to the measure group algebra M (CAJ) via Fourier transform.

This idea to generalize properties of harmonic analysis on T is not new. The most
important one is John von Neumann’s amenability. Recall that a locally compact
group G is amenable if there is an approximate unit in the Fourier algebra A(G),
consisting of positive definite functions, that is a net (¢, )e; of positive definite
functions in A(G) such that ||, f— f]la — 0 for all f € A(G). In the case of G = Z,
this is equivalent to the existence of a sequence (¢,)nen of normalized, positive,
trigonometric polynomials on T such that |[1), * f — f|l1 — 0 for all f € L'(T). An

example of such sequence is given by the Fejér kernels, defined by

P S0 (ai)

In the definition of amenability, if we replace positive definite with sup,, ||on||ama <
oo, we get the definition of weak amenability. The smallest possible value A(G) of
sup,, ||¥nllapa exists and is called the Cowling Haagerup constant. Not all groups
are weakly amenable. If G is not weakly amenable, for any sequence (¢,)nen of
A(G)-functions with ¢, — 1 uniformly on compact sets, the norm |[¢,||a,a goes
to infinity. In this thesis, we propose to study the growth of ||¢on|lapa and ||@nllara
which is the essence of (completely bounded) tame cuts. Note that by repeating
the same functions in the sequence, we can make the growth of ||, a4 arbitrarily
slow, so we need an additional condition to control for that. To this end, we use a
proper length function ¢ : G — R, , and we require that ¢, takes value 1 on the
ball B, = {x € G : ¢(x) < n}. Now, it is possible to talk about asymptotically
minimal growth of ||¢,||a,4 which depends on the group G and the length function
¢. When G is weakly amenable, such growth is O(1) for any proper length function,
so the Cowling-Haagerup constant is finer information than completely bounded

tame cuts.
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Group algebras

Among topological groups, locally compact groups admit a unique (up to a constant
factor) left invariant, regular, Borel measure, called Haar measure. This measure is
one of the main tools to study the group via analysis, even though the group was
initially endowed only with a topological and algebraic structure. The first things
that we can construct using the Haar measure are the classical LP(G) spaces. This
is an improvement compared to the spaces C(G), C.(G), and Cy(G) of continuous
functions because the latter spaces can be constructed for any topological groups
regardless of the condition of local compactness. The Banach space L'(G) has a
*_algebra structure with the convolution product that comes from the group law.
We want to have C*-algebras because the theory is richer on these particular *-
algebras. Unfortunately, L'(G) fails to be C*-algebra with an exception for the
trivial group. We consider the *-representations of L!'(G) to extract a C*-algebra.
The most natural one is the (left) regular representation (A, L*(G)), where A(f) for
f € LY(G) acts on the Hilbert space L*(G) by left convolution: A(f)g = f * g,
g € L*(@). The completion C5(G) (resp. L(GQ)) of A(L'(G)) in the norm topology
(resp. strong operator topology) is called the reduced group C*-algebra (resp. group
von Neumann algebra). Many important group properties such as amenability, a-
T-menability, weak amenability, Yu’s property A, and Kazhdan’s property (T) are
formulated in terms of these algebras. The unique Banach predual A(G) of L(G) is
called the Fourier algebra of G. It coincides with the space of all matrix coefficients
associated to the regular representation, endowed with the norm ¢ — inf{||€||2|n]2 :
&n € LAG), o = (A\()¢,n)}. With the pointwise multiplication, A(G) becomes a
commutative Banach algebra. We refer readers to [Eym64] for the main properties
of these algebras.

Another important algebra coming from the group is the Fourier multipliers
M A(G) consisting of the bounded continuous functions that leave the Fourier alge-
bra A(G) invariant under pointwise multiplication. By the closed graph theorem,
each function in M A(G) defines a continuous linear map on A(G), and with the
corresponding operator norm, MA(G) becomes a Banach algebra. In [DCHS85],
this space was characterized as multipliers of C5(G) and L(G), so we can consider
completely bounded Fourier multipliers, MyA(G). This space has better characteri-
zations than the usual Fourier multipliers and enjoys some basic stability properties

(see [CH89, DCHS85]). We want to see how tame cuts grow in these two spaces.

11



When G is amenable, these two spaces are isometrically isomorphic, and the inclu-
sion map A(G) — M A(G) is isometric as well, so the calculations are slightly eased.
When G is abelian, we even have A(G) = LY(G) and MA(G) = MyA(G) = M(G)
as commutative Banach algebras. We will discuss these algebras and their relation

to group representations more in Chapter 1, .

Truncation operator

The behaviors of the operator norm in the reduced group C*-algebra are notoriously
difficult to understand. For instance, Valette’s conjecture on Rapid Decay for uni-
form lattices in higher rank Lie groups is still open [Val02]. Different approaches
to understand the operator norm are studied for some particular cases: when G is
amenable, we have ||A(f)|| = ||f]|1 for all non-negative functions f € C.(G), and
when G is a connected simple Lie group, the Harish-Chandra spherical function ¢,
satisfies |A(f)|| = [ ¢o(x)f(z)dz for non-negative f € C.(G). On the other hand,
when a discrete group I' admits characteristic tame cuts (¢n)nen, We get asymp-
totic information of how the operator norm ||A(f)|| is changed after truncating (or
cutting off) the function f € C5(I') to the support of ¢,. In many spaces, the
truncation process defines a norm decreasing operators. For instance, ¢7(G) for
1 < p < oo and more generally the space C.(I') endowed with an unconditional
norm N, that is N(f) < N(g) whenever |f| < |g|. However, the situation is very
different in C5(I"). For instance, the Fourier multiplier norm of the characteristic

function ¢, = Izn_nn € (*°(Z) is given by the Lebesgue constant
* * 4
1M, = CX(Z) = CX(Z)| = llenllara = [ Dnlls = —logn + O(), (2)

and it is not bounded. From this, one can see that the (completely bounded)

characteristic tame cuts tell how far the C5(I')-norm is from being unconditional.

Rapid Decay property

The Rapid Decay property was initially observed in [Haa79] for the free group F; of
two generators and developed in [Jol90] where a proper name was given by Jolissaint.
Haagerup, by establishing the Rapid Decay property for F,, proved that there are
n-positive approximate units in the Fourier algebra A(F3). This shows that C§(F3)

12



has the n-positive approximation property for all n € N but does not have the
completely positive approximation property.

An important application of the Rapid Decay property is in K-theory. Calcu-
lating the groups K.(C;(G)) of a given group G can be very difficult, but when
a group has the Rapid Decay property, for a sufficiently large parameter s € R,
the s-Sobolev space H{(G) becomes a dense subalgebra of C5(G) with the same
K-groups. Compared to the complicated operator norm of C5(G), s-Sobolev space
norm has an explicit formula, which makes H}(G) an easier target to study. Using
this idea, Lafforgue proved in [Laf98] that the Baum-Connes conjecture has an affir-
mative answer for any uniform lattices in SL3(R). This was a breakthrough result
for discovering the first discrete infinite group satisfying Baum-Connes conjecture
and Kazhdan’s property (T).

In this thesis, the Rapid Decay property plays an important role for providing
the first examples of discrete groups with characteristic tame cuts: discreteness
assures that the C5(T')-norm always dominates the ¢*(T')-norm, and the Rapid Decay
property provides the converse inequality with polynomial factor. Some stability
results of the Rapid Decay property (e.g. [Jol90, Garl5]) are partially adaptable to
tame cuts. In addition, we will use Lafforgue’s result of uniform lattices in SL3(R)

to provide two applications of tame cuts.

Weak amenability

As previously mentioned, the notion of (completely bounded) tame cuts is an ana-
logue of weak amenability. Such similarity allows us to adapt ideas and techniques
from weak amenability. For example, the inequalities of [LDIS11], [dL13], and
[dLdIS18] directly imply that any higher rank simple Lie group with finite cen-
ter does not admit tame cuts, and none of its uniform lattices admits completely
bounded tame cuts.

The Cowling Haagerup constant is a Measure Equivalence (ME) invariant, shown
in [Ozal2|. This was achieved by constructing an induction map @ : £>°(I") — (>°(A)
whose restrictions MyA(I') — MyA(A) and A(I') — A(A) are norm decreasing. One
could think that the growth rate or degree of (completely bounded) tame cuts might
be ME-invariant. However, it seems not to be the case basically because the ME
has not much to do with group growth. Indeed, all discrete, countable, amenable

groups are in the same ME-class, and their growth can be quite arbitrary. Another
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issue is that the induction map does not preserve finite support. Nevertheless, we

managed to show the following result.

Theorem 1. Let A and T" be two countable groups, (X,d) a metric space, and p
a Borel measure on X. Suppose that there exist commuting, measure preserving,
distance preserving, proper, free actions A ~ X T such that the I' action admits
a precompact fundamental domain. Fiz a base point vg € X and define the length
functions bp = § € T' — d(vg.0,v9) and ly : s € A — d(s.vg,v). If (I',lr) has

completely bounded tame cuts, so does (A, {y).

A lattice I' of a locally compact group G is weakly amenable if and only if G
is weakly amenable [Haal6]. This result is achieved by using a norm decreasing
induction map MyA(I') — MyA(G). In particular, if G or I' is amenable, we have
MA(T') - MA(G) continuous. The theorem below shows that amenability is es-
sential for the latter map to be continuous. The proof uses tame cuts and will be

given in Section 3.6.

Theorem 2. Let I be a lattice in G = SL3(R) with a compact fundamental domain
Q. Then the map

O : MA(T) - MA(G), ¢+ = Lg=*(pur) * ig

is not bounded (possibly not well defined).

Consider the following open question.

Congecture. Let T" be a discrete group. If all Fourier multipliers of I" are completely

bounded, that is MyA(T") = M A(T"), then I' is amenable.

The converse is already known by [Neb82, Los84] even for locally compact groups.
In [HSS10], an explicit non-completely bounded Fourier multiplier of the free group
F5 of two generators was constructed. The same result was made in [Boz82] using
infinite lacunary sets. It follows that the conjecture has a positive answer for any
discrete group containing a copy of F» (e.g. finitely generated discrete linear groups
over a field). We will show the following theorem. The idea of the proof is very close

to that of Theorem 2, and we will not use the fact that [ contains F3 as a subgroup.

Theorem 3. Let I' be a uniform lattice in G = SL3(R). Then there is a Fourier
multiplier of T which is not completely bounded. In other words, MyA(I") # MA(T).

14



Property (TSchur7 G7 K)

Property (Tschur, G, K) was introduced in [Lial6] as an analogue of property (Tschur)-
Suppose that G is a reductive group over a local field, K is its maximal compact
subgroup, and I is a lattice of G satisfying property (Tschur, G, K). Then, all known
methods to prove the Baum-Connes conjecture fail for I'. In our context, property

(T'senur, G, K) opposes the existence of tame cuts as follows.

Theorem 4. Let H be a closed subgroup of an unbounded locally compact group G.
Suppose that H satisfies property (Tschur, G, K, ) for some compact subgroup K and
a proper length function ¢ of G. Then (H,{|y) does not admit K -bi-invariant tame

cuts.

Corollary 0.0.1. If G is unbounded and has property (Tschur, G, K, €), then (G, ¥)

does not have tame cuts.

Corollary 0.0.2. Suppose that G is a finitely generated infinite group and H is a
finitely generated subgroup of G. Suppose that H is at most polynomially distorted
in G. Recall that H is polynomially distorted in G there exists k > 0 such that
lg(z) < klg(x)* + k for all x € H, where g and Ly are the word length functions
of G and H, respectively. If H has property (Tschur, G,{€},lc), then (H,ly) does

not have tame cuts.

It is worth noting that the only known example satisfying property (Tschur, G K)
is the group H (or any discrete subgroup of Sps(F,((7))) containing H) of upper

triangular matrices in Spy(F,((7))) whose entries are in F,[7~!] and 1 on diagonal.

More examples

Hyperbolic groups [Oza08], finite dimensional cubical groups [Miz08], Coxeter groups
[Fen02], and groups acting properly on a product of finitely many hyperbolic graphs
with bounded geometry [Ver19], all have completely bounded characteristic tame
cuts. Also, the discrete groups satisfying Rapid Decay property have characteristic

tame cuts. We will provide the following examples.
Theorem 5. The following groups have completely bounded characteristic tame cuts.

(i) Ty = Z3 x4 Z for any d € N and A € SLy(Z).
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(1)) T'py = Z[piq] e 2 for any coprime p,q € N.
(11i) Lamplighter groups Z, Z for any p € N.
(iv) Baumslag-Solitar groups BS(p,q) = {(a,t | ta’t~' = a?) for any p,q € N.

The examples (i) — (iii) are achieved by proving Proposition 3.3.9 which states
(completely bounded) [characteristic] tame cuts are stable under extension by a

group with polynomial growth, and (i7) is used to prove (iv).

Organization of the manuscript

In Chapter 1, we will recall basic notions such as group representations and group
algebras. In Chapter 2, we will discuss weak amenability and Rapid Decay property
more. Chapter 3 is dedicated to (completely bounded) [characteristic] tame cuts. In
Section 3.1, we give the definitions of tame cuts and provide the first examples by
exploring connections to weak amenability and Rapid Decay property. In Section
3.2, we will propose a sufficient condition to admit tame cuts that extends the Rapid
Decay property. In Section 3.3, we will investigate the stability properties of tame
cuts. In Section 3.4 and 3.5, we will prove Theorem 4 and 5. In Section 3.6, we will

prove Theorem 2 and 3.
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Chapter 1
Preliminaries

Throughout the paper, G denotes a locally compact group and I' denotes a discrete
countable group. We also denote by dx a left invariant Haar measure of G. Let f

be a measurable function on G. The LP-norm of f is given by

1/p
1l = ( / |f|”d:v>

if 1 <p< oo, and

| fllco = esssupg | f| = inf{t € R, : /1{|f|>t} =0}

if p = oco. Denote by LP(G) the space of all measurable functions on G with finite
LP-norm. We say two measurable functions are almost everywhere (a.e) equivalent
if their difference is 0 except on a null set. The Banach space LP(G) is the quotient

of LP(G) by a.e-equivalence endowed with the induced LP-norm.

1.1 Group representations

Representations play an important role in the study of group theory. There are
many different kind of representations. The most popular ones are the unitary
representations. Some other representations, such as uniformly bounded or even
unbounded representations, can be used for certain problems. We give a short
introduction to these representations.

In general, by a representation of a group G, we understand a group homo-

morphism 7© : G — GL(V), where V is a vector space and GL(V) is the group

17



1.1. GROUP REPRESENTATIONS CHAPTER 1. PRELIMINARIES

of linear automorphisms of V. As far as this paper is concerned, we only consider
representations on Hilbert spaces over the complex field. When (#, (,)) is a Hilbert
space, we denote by B(H) the space of all bounded operators, by GL(H) the group
of invertible operators, and by U(H) the group of all unitary operators on H. To
make use of the topological structure of the group, we usually consider continuous
representations. The space B(H) has its natural topology given by the operator

norm
1T = sup{||Tw[| : v € H,[Jv|| =1}, (VT € B(H)).

In some situations, the norm topology could be not convenient to work with. For
example, the left regular representation (), L?(G)), one of the most natural rep-
resentations, is usually not continuous when U(L?*(G)) is endowed with the norm
topology. On the other hand, it is always continuous when U(L?(G)) is endowed
with the strong operator topology (SOT). Recall that SOT on B(H) is the topology

induced by the seminorms
N,:TeBH)— |Tv||, veH,

and the weak operator topology (WOT) on B(H) is the topology induced by the

seminorms
Npw:T € B(H) = [(Tv,w)|, v,weH.

Definition 1.1.1. Let (#, (,)) be a Hilbert space, and 7 a group homomorphism
from a locally compact group G into GL(H). We say that the couple (m,H) is a
continuous representation of G if m is continuous when GL(H) is endowed with the

SOT, equivalently if the maps
reG—mxveH

are continuous for all v € H. If (7, H) is a continuous representation of G, and v, w

are two vectors in H, the function
Cow - T € G (m(x)v,w)
is continuous. This function is called the matrix coefficient of 7 associated to the
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CHAPTER 1. PRELIMINARIES 1.1. GROUP REPRESENTATIONS

vectors v, w € H.
Throughout the paper, all representations are continuous unless otherwise stated.

Definition 1.1.2. Two representations (m;, H;), i = 1,2 of a group G are similar if

there is an invertible bounded operator 1" : H; — Hs such that
T 'my(2)T = m(x), (Vzeq).

Furthermore, if T" is unitary, we say that the two representations are unitarily equiv-

alent and write m; >~ m,.

Definition 1.1.3. Suppose that (7, H) is a representation of a group G. A closed
subspace IC of H is said G-invariant if the set {m(z)v:x € G,v € K} sits inside K.
The representation (m,H) is irreducible if there is no closed G-invariant subspace
different from {0} and H.

1.1.1 Unitary representations

Definition 1.1.4. A representation (7, H) of a group G is called unitary represen-

tation if it takes image in the unitary group U (H).

Example 1.1.5. The simplest example of a unitary representation is the trivial

representation:
reGw—idy eU(H), (Vzeq).
Example 1.1.6. The left reqular representation defined as
A G = ULAG)), M) f(y) = flaty)

can be obtained for any locally compact group. Similarly, we can define the right

regular representation as

p:G = ULHG)), Ma)f(y) = flyz)A)"?,

where A : G — R.( is the modular function of G. It is worth noting that the left

and right regular representations are unitarily equivalent.
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1.1. GROUP REPRESENTATIONS CHAPTER 1. PRELIMINARIES

The left regular representation is a particular case of the classical way to induce

a unitary representation from a group action.

Proposition 1.1.7 (Proposition A.6.1 of [BAIHV08]). Let G be a o-compact locally
compact group, let (Y, p) be a o-finite measurable space such that L*(Y, j1) is separa-
ble, and let G X Y — 'Y be a measurable action such that p is quasi-invariant, that
is, for each measurable set A CY, we have u(A) = 0 if and only if u(xA) =0 for
all v € G. Then the group homomorphism Ay : G — B(L*(Y, i) defined by

dz
dp

1/2
[Ay<x>f1<y>=f<x—1.y>( ) (), (Vf € LAY, 1),V € G,y € Y)

1S a unitary representation.

The representation (\y, L2(Y, 1)) is called the Koopman representation associ-
ated to the measurable action G ~ (Y, ). When G is discrete, we can omit the

o-compactness, o-finiteness, and separability conditions.

Lemma 1.1.8. Suppose that a discrete countable group I acts freely on a measure
space (X, u) by measure preserving transformations. Suppose that the action T ~ X
has a measurable fundamental domain, that is a measurable set Q0 C X such that
{s.Q: s € T'} is a partition of X. Then the Koopman representation (Ax, L*(X, i)

of I' is unitarily equivalent to A\r ® id2(q,u)-

Proof. By hypothesis, each element z € X can be written as z = y(z).w(z) for
a unique y(z) € I' and w(z) € Q. With this notation, the action I' ~ (£, p),
(s,w) — w(s.w) is measure preserving and free. Let ur be the counting measure
on I Then the action I' ~ (X, ) can be seen as the measure preserving action
L'~ (I'x Qur ® p) defined by s.(t,w) = (y(st.w),w(st.w)) for all s,t € T" and
w € Q. We have unitary operator V : (»(T) @ L*(Q) — L*(X), f ® g — Fyg,
where Fy (t.w) = f(t)g(w) for all t € I'w € Q, and via this map, the Koopman
representation (Ax, L?(X)) is unitarily equivalent to the representation o on ¢?(I') ®
L*(2) defined by

o(s)[f ® g] = V' Ax(s)VFry = [Me(s)fl@g, (Vf € (), g € L*(Q)),

which is nothing but Ar ® idz2(q). O

Definition 1.1.9. We denote by ¥ = 3(G) all unitary representations of G up to

unitary equivalence and by G the irreducible ones.
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The family G for a locally compact abelian group G, in which case G is called
the Pontryagin dual of G, is special for having a structure of locally compact abelian
group. Indeed, by Schur’s lemma, all irreducible representations of G' are one di-
mensional, so the family G is identified with Hom(G, T), where T 22 #/(C) is the unit
sphere in the complex plane, and the Hom(G, T) is a locally compact group equipped
with the pointwise multiplication and the topology of uniform convergence on com-
pact sets. For example, when G = Z, the Pontryagin dual is G Hom/gZ, T) = T.
One of the nicest facts of the Pontryagin duality is that it is reflexive: G is isomor-
phic to G as locally compact groups. Another important fact is that the Fourier

transform

F: LX(G,dx) — L*(G,dy), [F(H(x) = / fa)x(@)de, (Vf € L*(G),¥x € G)
G

gives a Hilbert space isomorphism for a suitable choice of Haar measure dy on G.

1.1.2 Uniformly bounded representations

Definition 1.1.10. A representation (7, H) is said uniformly bounded if the image
of 7 is bounded in B(H), that is the quantity ||7|| = sup,c¢ ||7(x)]| is finite.

It is clear that any unitary representation is uniformly bounded by 1. More-
over, unitary representations can be used to construct many non-trivial uniformly

bounded representations.

Proposition 1.1.11. Any representation similar to a unitary representation is uni-
formly bounded. More precisely, if (w,H) is a unitary representation of a locally

compact group G, and iof T is an invertible operator on H, then the map
mr: G — GL(H), 7p(r) =T 'x(2)T, (Vre€q)

defines a uniformly bounded representation with |7z || < [|TIT Y.

Proof. Since the map © € G — mp(z)v € H is a composition of the two continuous

maps

r€G—n@)TveH and T ':H—>H,
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it follows that 77 is continuous. The calculation
mr(zy) = T n(ay)T = T n(2)TT 7 (y)T = mp(z)mr(y)
shows that 7 is a representation. Since
7z (@)l = 1T~ m ()T < 1717,

mr is uniformly bounded. [

It is interesting to know if any uniformly bounded representation is similar to a
unitary representation. In that direction, a positive answer was given for amenable
groups in [Dix50, Day50]. However, this fails for some non-amenable groups. For
example, any discrete group containing a copy of the free group of two generators
admits a uniformly bounded representation which is not similar to any unitary

representation. We refer to [Pis01] where the problem is exclusively interpreted.

1.1.3 Positive definite functions

Definition 1.1.12. Let X be a set. A function of the form k£ : X x X — C is called
a kernel on X. A kernel k : X x X — C is positive definite if for any elements
1, ..., Tn of X, the matrix (k(z;,7;));; € Ma(C) defines a positive matrix: for any

ai, ..., a, € C, we have

Z CLZ'CL_J‘]{?(Z'Z‘,CCJ') Z 0.

1<i,j<n

A function ¢ : G — C on a group G is positive definite if the kernel k, : G x G — C
defined by k,(z,y) = p(y~'z) is positive definite.

Example 1.1.13. Let H be a Hilbert space, X a set, and f: X — H a map. The

map

BiX x X o H, kay) = (f(2), f(y)) (L1)
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defines a positive definite kernel. Indeed, if z1,...,z, € X and aq,...,a, € C, then

2
> 0.

Z ala_]k(:vz, l’j) =

1<ij<n

Z Cbif(ilfi)

Example 1.1.14. Let (m,H) be a unitary representation of G. The matrix coef-
ficient ¢,(z) = (m(x)v,v) defines a positive definite function on G for all vectors
v € H. To see that, we could apply the function f(x) = n(z)v on (1.1):

co(y~'x) = (r(z)v, 7(y)v).

This function is called the positive definite function associated to the unitary rep-

resentation (7, H).

Theorem 1.1.15. (GNS construction) Every positive definite kernel comes from
a function as in (1.1). Moreover, if ¢ : G — C is a continuous positive definite

function, then there is a unitary representation (7w, H) and a vector v € H such that

o(x) = (n(z)v,v) for all z € G.

Remark 1.1.1. A positive definite function ¢ is uniformly bounded by ¢(e). Indeed,
lo(@)] = [(m(z)v,v)] < [lw(@)lll[v]]* = (w(e)v,v) = @(e) by the theorem above.

Furthermore, if ¢ is continuous, it is also uniformly continuous because we have

o(z) = (y)] = [((m(z) = 7(y))v,v)]
= [((n(e) = m(y™"x))v, 7(y)v)]
< o= w(y~"z)oll|lv]
for all x,y € G.
Definition 1.1.16. A kernel k£ : X x X — R is conditionally negative definite if
(i) k(x,z) =0 and k(x,y) = k(y,z) for all z,y € X,

(ii) > aajk(xi,z;) <O0forala € R, z; € G, and n € N with > a; =0.

1<i,j<n

A function ¢ : G — C on a group G is conditionally negative definite if the kernel
k, : G x G — C is conditionally negative definite.
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Example 1.1.17. Let H be a Hilbert space and f : X — H a map. The map

p: X x X >H, k(z,y)=|f(=)— f)l (1.2)

defines a conditionally negative definite kernel. Indeed, if x4, ...,z, € X and a4, ..., a, €
R such that """  a; = 0, then

2
Z aiajk:(xi,xj) =-2 S 0.

1<ij<n

Z a; f(z;)

Theorem 1.1.18 (GNS construction). Every conditionally negative definite kernel

comes from a function as in (1.2).

Theorem 1.1.19 (Schoenberg’s theorem). A kernel k: X x X — R, is condition-
ally negative definite if and only if the kernel exp(—tk) : X x X — C is positive
definite for all t € R,.

Example 1.1.20 (Lemma 1.2 of [Haa79]). The combinatorial distance d of a tree
T = (V,E) is conditionally negative definite. Consequently, the kernel (v,w) €
V X V = exp(—td(v,w)) is positive definite for any ¢ > 0.

Proof. Fix a base point vy € V. We equip the set E of edges with directions so that
each edge points toward vy. For any vertex v € V', denote v, : {0, 1,...,d(v,v9)} =V
the geodesic from v to vg. Define the map f: V — (?(E) by

d(v,v0)—1
F)= D ey, (WEV).

=0

Then we have

d(v,w) = [If(v) = f(w) ), (Yo,w e V).

Now, the statement directly follows from Example 1.1.17 and Schoenberg’s theorem.
[
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1.2 Group algebras

In this section, we will recall group C*-algebras, group von Neumann algebra, Fourier

and Fourier-Stieltjes algebras, and Fourier multiplier algebras.

1.2.1 Group measure algebra, M(G)

Definition 1.2.1. Let X be a locally compact Hausdorff space. Denote by B the
Borel space of X, that is the o-algebra generated by the topology of X. A (complez)

measure is a map p : B — C such that

M (U E) = u(E)

€N 1€N

for any disjoint measurable subsets F; € B, ¢+ € N. A measure is positive if it takes
non-negative values. Given a complex measure p, its total variation |p| is a positive

measure defined as

[l (E) = sup > lu(F), (VE € B),

FeF
where the supremum is taken over all measurable partitions F of E. A positive
measure v is inner reqular if
v(E) =sup{v(K): K C E,K compact}, (VE € B),
outer reqular if

v(E) =inf{v(U): E CUU open}, (VE € B),

and regular if v is both inner and outer regular. A complex measure pu is reqular
(resp. finite) if its total variation |u| is regular (resp. |u|(X) is finite). We denote
by M(X) the Banach space of all complex regular finite measures on X endowed

with the total variation norm p +— |u|(X).

By Riesz representation theorem, M (X)) is isometrically isomorphic to the dual
Banach space (Co(X))* via p — [, dp (cf. [Rud87, Theorem 6.19]). The Dirac
measures d,,z € X are typical elements of M(G). When X is a locally compact
group, say X = G, the Haar measure dz is in M(G) if and only if dz is finite if and
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only if G is compact. Nonetheless, fdz is finite and regular for any f € L'(G). This
gives an isometric identification of L'(G) with a closed subspace of M(G). Recall
that a *-algebra is an algebra A endowed with an involution operator z — z*, x € A.
In the following, we use the group law to make M (G) a *-algebra. Moreover, L' (G)
becomes a closed two-sided ideal in M(G).

Definition 1.2.2. The measure algebra of a locally compact group G is the Banach
space M(G) of complex regular finite measures on G. It has a Banach *-algebra

structure with
e Total variation norm: |u|(G) =sup{D_, |u(E;)| : (Ei)ies is a partition of G}
e Convolution product: (u*v)(E) = [, [, 1e(zy)du(z)dv(y)
e Involution: u*(E) = u(E-1)

for all y,v € M(G) and F € B.

Theorem 1.2.3. Let G be a locally compact group. The map ¢ = f € LYG) —
fdx € M(G) is well defined and identifies L*(G) with a two-sided symmetric closed
ideal of M(G).

Proof. To see that ¢ is well defined, we only need to check that ¢ € Cy(G) —
/. o fgdzr defines a continuous functional for any f € LY(G), which is obviously true.
Moreover, one easily checks that ¢ is isometric, and thus +(L'(G)) is closed in M (G)
since L'(G) is complete.

Take any p € M(G), f € L'(G)4 and E € B with [, lgdx = 0. By Radon-

Nikodym’s theorem, since

(u* fdz)(E //JLE vy) f(y)dp(z)dy
(Fubini + left invariance) = /G 1r(y) ( /G f(x_ly)d,u(x)> dy

(conventionally 0-co =0 ) =0,

and

(fde)* () = (fdz)(E / F(o) Lo = / T DA 1p(r)de =0,

we deduce that ((L'(G@)) is a two-sided symmetric ideal of M(G). O
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Remark 1.2.1. We do not distinguish f € L'(G) and «(f) = fdx € M(G). From the

proof above, we can extract the convolution product and the involution on L'(G):

(f % g)(x) = / fely )y and  f* (@) = fz)AE)

for all f,g € L'(G) and 2 € G. Two more notations will be useful:

f(x)=f(z™") and f(z)= f(z71).

1.2.2 Full and reduced group C*-algebras, C*(G) and C}(G)

A C*-algebra is a Banach *-algebra A such that the C*-condition ||z*x|| = ||z||? is
satisfied for all x € A. If H is a Hilbert space, the space B(#) of bounded operators
has a natural C*-algebra structure. It follows that any closed *-subalgebra A of B(H)
inherits the C*-algebra structure. The converse statement is known as Gelfand-
Neimark’s theorem: any C*-algebra can be identified as a closed *-subalgebra of
B(H) for some Hilbert space H.

The space Cy(G) of continuous functions vanishing at infinity becomes a C*-
algebra with pointwise multiplication and complex conjugation. The same is true
for the space Cy(G) of bounded continuous functions. However, these C*-algebras
have nothing to do with the group law. This downside is not the case for L'(G)
thanks to the convolution product. However, L'(G) is a C*-algebra if and only if

G = {e}.

Proposition 1.2.4. Let G be a locally compact group. The *-algebra L'(G) is a
C*-algebra if and only if G is a trivial group.

Proof. We will construct an integrable function g € L*(G) that does not satisfy the
C*-condition. When G = Z, we can choose g = dy + 01 + 0y € *(Z). Our proof for
general locally compact groups is an extension of this idea.

Take any element x € G different from the identity e. As we assume that all
topological groups are Hausdorff, there exist disjoint compact neighborhoods U and

V of e and x, respectively. The neighborhood

W=Unaz'V)nWUNz V)™
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of the identity is compact and symmetric and satisfies
W naW =W nz*W = 0.

The function f = xw + X}y = xw(1+ A™') defines a self-adjoint integrable positive

function on GG. We claim that the function
g=f+ 02 *xf+id,*xf

does not satisfy the C*-condition. Since the supports W U 22W and W of the
functions f + d,2 * f and id, * f are disjoint, and since the function f + 6,2 * f is

positive, we can calculate

lglls = I1f + Goz % f + 105 % fls
(disjoint supports) = || f + 042 * f|1 + [|40 * f||1
(positivity) = [[flls + [[0z2 * fllx + [0z * fllx

(left invariance) = 3|| f||1

On the other hand, we have

g™ * gllv = (1(f —if % 0pm1 + [ 5 6p=2)(f + 105 % f + 002 % f)ll1
= Hgf*f"i_f*(sac?*f"i_f*(sz*z*f”l
<5[IF1T < Mgl

where the “<” inequality is valid because the Banach algebra norm is submultiplica-
tive and the Haar measure is left invariant. This shows that ¢ € L'(G) does not
satisfy the C*-condition. [

To obtain a C*-algebra from L'(G), we use unitary representations of G.

Proposition 1.2.5. Let (m,H) be a unitary representation of a locally compact

group G. Then there is a unique *~homomorphism 7 : LY(G) — B(H) satisfying

F(f)o, w) = /G £ (@) (@), w)dz

for all f € LYG) and v,w € H.
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Proof. Note that the expression (7(f f G x)v, w)dr makes sense for

any f € L'(G) and v,w € H since the matrlx coefﬁments are bounded and contin-

uous. Also, we have

[T () = sup [(7(f)v, w)| < Sup/ | (@) (m (@), w)lde <[ 1,

where the supremums are taken over v,w € H with ||v]| = |Jw|| = 1. It is left to
prove that 7 is a *-homomorphism. Linearity is obvious. Take any f,g € L(G).

Involution preservation:
7w = [ TG e w)ds
= [ )@, e = G v, 0)

Multiplicativity:
F + g} = [ (7 g)(@)rla)o,w)ds

- /G /G F@)9lyw) (w(w)o, w)dyda
(Fubini) = [ ) ( / g(y—1m><w<x>v,w>dx) dy

(left invariance) / fly ( / glx)(m (y:p)v,w)dw) dy

) e

HT(g)v, w).

By abuse of notation, we will use 7 for both 7 and 7.

Example 1.2.6. Consider the regular representation (A, L*(G)). The operator A(f)
for f € L'(G) is nothing but a left convolution operator: A(f)§ = f * £ for all
¢ e LA(G).

Definition 1.2.7. Let (7w, ) be a unitary representation of G. The norm closure
C*(G) of m(L'(G)) in B(H) is called the group C*-algebra of G associated to the
representation (m,H). The group C*-algebra C5(G) associated to the (left) regular
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representation (A, L?(G)) is called the (left) reduced group C*-algebra. The group
C*-algebra C*(G) associated to the representation (Tpax, ®res Hr) defined by

Tmax(f) [Bresta] = Bresm(fvr, (Vf € LYG), Vv, € Hy, V1 € X)

is called the full group C*-algebra of G.
These C*-algebras are extensively used to study the group G.

Definition 1.2.8. Let (m;, H;), i = 1,2 be two unitary representations of a locally
compact group G. We say that m; is weakly contained in w5 and denote m; < my if

we have

lm (A < Im(HI, - (Vf € LHG)).

If 7y < m and my < 7, we say that m and 7y are weakly equivalent and write

T ~ T,

In other words, we say that m; is weakly contained in 7, if the identity map on
L'(G) gives rise to a norm decreasing surjection C7 (G) — C% (G). In particular, we
always have the surjection C*(G) — C5(G). The injectivity of this map characterizes
the amenability of G, which is known as Hulanicki’s theorem [Hul64].

Let us end this subsection by illustrating the reduced group C*-algebra of abelian

groups, which is also the full group C*-algebra since all abelian groups are amenable.

Proposition 1.2.9. If G is a locally compact abelian group, we have the *-isomorphism

~

CX(G) = Go(G),  A(f) = F(f), (Vf € C(G)),

where F is the Fourier transform.

Proof. Since the Fourier transform gives an isomorphism between the Hilbert spaces
L%(G) and L2(G), we have a *-isomorphism

G : B(L*(G)) — B(L*(G)), T+~ FTF "
The algebra Co(G) can be seen as a concrete C*-subalgebra of B(L%(G)), where

¢ € Cg(é) acts on L2(@) by pointwise multiplication: M,f = ¢f, f € L*(G). A
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routine calculation shows that

GON)E = FAH)F e = F(f)E,  (Vf € C(G),¥¢ € L*(G)),

so G(A(f)) is a pointwise multiplication operator on L2(G). To see that F(f) is
continuous, take any net (x;) in G converging to y € G. Since f is compactly

supported,

F () xa) = X)| =

Xi(@) = x(@)dz| < || fllLlxi = xllz=(supp(ry = 0.

Therefore, we have F(C,(G)) C L2(G) N C(G) C Cy(G) and thus the map
Gi(G) = ColG), Af) = F(f), (Vf €C(G))

is well defined. The surjectivity follows from Stone-Weierstrass’ theorem. O

1.2.3 Group von Neumann Algebra, L(G)

In [vN30], John von Neumann introduced a special kind of C*-algebras under the
name ‘“rings of operators” that today we call von Neumann algebras. Originally, a
von Neumann algebra is defined as a WOT-closed #-subalgebra of B(H) for some
Hilbert space H, and, in the same article, von Neumann algebras were character-
ized by being equal to their bicommutant. Another characterization was given in
[Sak71], namely a C*-algebra admits a (unique) Banach predual if and only if it is
a von Neumann algebra. For that spirit, von Neumann algebras are also called W *-
algebras. This characterization proves that the first two definitions do not depend

on the faithful *-representation.

Definition 1.2.10. Let G be a locally compact group. The group von Neumann
algebra L(G) is the smallest von Neumann subalgebra of B(L*(G)) that contains
the left translation operators A(G) = {\(x) : x € G}.

By von Neumann’s bicommutant theorem, the group von Neumann algebra also
can be defined as L(G) = A\(G)”. Any operator T' € B(L?(G)) commuting with the
left translations also commute with A(f) for any f € L'(G) because

(TA(F)Em) = /f £T*M—/f (2)T¢, n)dz = (A(F)TE, 1),
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Therefore, L(G) is also WOT-completion of A\(L*(G)). The density argument shows
that L(G) = M(G)" = MLYG))" = MC.(G))" = C;(GQ)".

Proposition 1.2.11. When G s a locally compact abelian group, the Fourier trans-

form identifies L(G) = L*(G) as Banach *-algebras.

Proof. We have seen that the reduced group C*-algebra of G can be identified with
the pointwise multiplication operators M(Cy(G)) = {M, € B(LA(G)) : ¢ € C’o(@)}.
The multiplication operators M(L>(G)) = {M, € B(LX(G)) : ¢ € L®(G)} com-

~

mute with M (Cy(G)). Taking into account that the commutant A’ of a commutative

~ ~

subalgebra A contains A, we deduce that M(Cy(G))"” contains M (L>*(G)). Since

~ ~

M(L>*(@G)) is maximal abelian in B(L*(G)), we have L(G) = LOO(@). O

Interestingly, the group von Neumann algebra L(G) is not sufficient to restore
the group GG. The following theorem shows that there are many different groups

whose von Neumann algebras are isomorphic.

Theorem 1.2.12 ([Con76)). Let ' be a countable amenable group with infinite
conjugacy classes except for the trivial one. Then the group von Neumann algebra

L(T) is isomorphic to the hyperfinite 11, factor.

1.2.4 Fourier and Fourier-Stieltjes algebras, A(G) and B(G)

In this subsection, we will describe the Fourier algebra A(G) — the unique Banach
predual of L(G). We will see its connection to the dual space B(G) of the full group

C*-algebra, also known as the Fourier-Stieltjes algebra.

Definition 1.2.13. Let G be a locally compact group and let (7,7) be a uni-
tary representation of G. We denote by B,(G) the space of all matrix coefficients

associated to a representation that is weakly contained in 7:
B.(G) = {{(7'(")v,w) € Cp(Q) : (x', H') < (m,H) and v,w € H'}.
We endow B, (G) with the norm
1F 1|5, = mt{[[oll[[w] : (=", 1) < (7, H),v,w € H', and f = (7'(-)v, w)}.

For example, the space of all matrix coefficients of the unitary representations of

G is exactly By, .. (G). This space is called the Fourier-Stieltjes algebra of G, and
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we simply write B(G) instead of B, (G). The Fourier-Stieltjes algebra is indeed
an algebra under the pointwise multiplication because a product of two matrix

coefficients is again a matrix coefficient:

(m1(-) 1, w1, (ma()va, wa)a, = (M1 @ m2) ()1 @ V2, W1 & Wa)ayy @ Hs-

The Banach space B)(G) is isometrically identified as a closed ideal of Fourier-
Stieltjes algebra, which follows from the Fell’s absorption principle. We, however,

note that not all spaces B,(G) are closed under the pointwise multiplication.

Theorem 1.2.14 ([Eym64]). Let G be a locally compact group and let (w,H) be
a unitary representation of G. The space B,(G) is isometrically isomorphic to the
dual space of C*(G). The duality is given by

(Cow, T) = (Tv,w), (Vv,we HNVT € CLHQG)).

When T is of the form w(f) for some f € L'(G), the duality formula is simplified

(om0 = () = [ (o) fla)de

Here, the functions c, ., are the matriz coefficients defined in Definition (1.1.1).

Definition 1.2.15. The Fourier algebra A(G) is the subspace of B(G) consisting

of the matrix coefficients of the left regular representation.

In the following theorem, we collect the main properties of the Fourier algebra.
We refer to [Eym64] for the proof.

Theorem 1.2.16. Let G be a locally compact group.

(1) A(G) is a closed ideal of B(G).

(i) The space C.(G) N B(G) is a dense subspace of A(G).
(iii) We have isometric embeddings A(G) C BA\(G) C B(G).

(iv) For ¢ € A(G), we have ||p|la = inf{[[¢]l2]Inll2 - ¢ = Ex7,§,m € L*(G)}
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(v) A(G) is the unique predual of the group von Neumann algebra L(G). The
duality is given by

(e A1) = [ efda. (o€ AV € 1X(G)
or equivalently

((AC)Em), T) = (T¢&m), (V&0 € L*(G),¥T € L(G)).

Proposition 1.2.17. If G s a locally compact abelian group, the Fourier algebra
A(G) (resp. B(G)) is isometrically isomorphic to L'(G) (resp. M(G)) as Banach

algebras.

Proof. Since L*(G) is the unique Banach predual of L*(G) = L(G), the Fourier

algebra A(G) is indeed isometrically isomorphic to Ll(@) as Banach spaces, so we

~Y

only need to show the multiplication correspondence. The identification A(G) =

LY(G) is given by the transpose of the Fourier transform
g*|L1(é) : Ll(G) — A(G)

which coincides with the Fourier transform of G. Moreover, for any ¢, ¢y € Ll(@)
and f € L'(G), we have

(G"(f1 % d2), A(f)) = (1 * ¢2, F(f)

/ b1 % P2)(X /f x(x)dzdy

(Fubini) / e / (6n + 62) (X (@) dxda
/ F()F (% 60) ()

/ fla ) F () () dx
G*(62). Mf)).

~

The assertion B(G) = M (G) is proven similarly. O

The following lemma shows that the Fourier algebra contains sufficiently many

functions to separate the points of G.
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Lemma 1.2.18 (Eymard’s trick). Let G be a locally compact group, K a compact
subset, and U an open subset containing K. Then there exists a positive function

f € A(G) such that f|lx =1 and f|o\w = 0.

Proof. For each point k € K, we can find a precompact symmetric open neighbor-
hood V}, of the identity such that kV;> C U by considering the continuity of the mul-
tiplication. Since K is compact, there exist finite number of elements ki, ..., k, € K
such that K C |J_, k;Vi,. Note that the set V' =, V4, is precompact and open.
It follows that

Kv?c| Vi cu

=1

Now, the normalized matrix coefficient

1 |lzV N KV|
f reG— —<)\([L') ﬂv,ﬂKv> =
V] V]
satisfies all the necessary conditions. O]

1.2.5 Fourier multipliers, M A(G) and MyA(G)

This subsection is prepared essentially from [DCH85] and [CHS89].

Proposition 1.2.19 ([DCHS85]). Let G be a locally compact group and let ¢ be a

continuous function on G. Then the following statements are equivalent:
(1) The map m, : A(G) = A(G),m,(f) = ¢f is a well defined (bounded) operator.

(i1) The map M, : ANz) — p(x)\(z), Vo € G extends to a (unique) weak*

continuous bounded operator on L(G).

(iii) The map M, : C.(G) = C.(G), M (f) = ¢f extends to a (unique) bounded
operator on C5(G).

(iv) The map M; : BA(G) — B\(G), M;(f) = of is a well defined (bounded)
operator.

Moreover, if these conditions are satisfied, we have
—_— —
[mell = [[My]| = [[Myl]| = |1M]-
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The duality argument on A(G)* = L(G) and C5(G)* = B,(G) shows the equiv-
alences (i) < (ii) and (iii) < (iv). To show (i7) = (i77) and (iv) = (i), we can use
the density argument on A\(C.(G)) C C5(G) and B(G) N C.(G) C A(G).

Definition 1.2.20. We say that a bounded continuous function ¢ on a locally
compact group G defines a multiplier of the Fourier algebra (or simply ¢ is a Fourier
multiplier of G) if one of the equivalent statements in Proposition 1.2.19 is satisfied.
Denote by M A(G) the space of all Fourier multipliers of G endowed with the norm
llellara = [[My||. A Fourier multiplier ¢ € M A(G) is said completely bounded if M,
defines a completely bounded operator on L(G), that is

|Myl|ep = sup || M, ®1id,, : L(G) ® M, = L(G) ® M,|| < co.
neN
Denote by MyA(G) the space of all completely bounded Fourier multipliers of G
endowed with the norm ||¢||aa = || M|l -

One can show that M A(G) and MyA(G) are commutative Banach algebras. In
general, calculating a completely bounded norm can be very difficult. However, we
have the following various characterizations from [Gil74], [DCHS85], [BF84], [Haal6],

and [Jol92] which give a way of estimating completely bounded multiplier norms.

Theorem 1.2.21. Let ¢ be a bounded continuous function on a locally compact

group G. The following statements are equivalent:
(i) ¢ € MoA(G).
(1) p ®id € MA(G x SU(2)).
(111) p ®id € MA(G x H) for any locally compact group H.

(iv) There is a Hilbert space H and bounded continuous maps &,m : G — H such
that p(y~'x) = (§(x),n(y)) for allz,y € G.

(v) @ defines a multiplier on the projective tensor product space L*(G) @, L*(GQ)
in the sense that for all u,v € L*(Q), there exist h;,k; € L*(G) such that
2 lhillal[illz < oo and

plyx) Zh i(y), (Vo,y € G).
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(vi) There is a constant C' > 0 such that for any n € N, A = (a;;);; € M,(C), and

distinct elements x4, ..., x, € G, we have
(o i) ai;)an, < Cll(ai)|la, -

(vii) There exist a Hilbert space H and bounded operators P,Q : L'(G) — H such
that

/G /G oy ) f(@)g(y)dady = (P(1),Q(9)),  (Vf.g € I(G)).

Moreover, we have

el aa =@l raexsve) = sup ol ara@xay = inf [|€]ls |7 oo

=ll¢ll2e, L2120, 02 = Inf € = inf | PI[[|Q].

So, for example, if ¢ € Cy(G) is positive definite, or equivalently if there is a
unitary representation (7, H) and a vector v € H such that p(y~'z) = (7(z)v, 7(y)v)
for all z,y € G, then the MyA-norm is bounded by ||v]|? = ¢(e). Conversely, M A-

norm is never less than the uniform norm, hence

lellara = llellana = @(e). (1.3)

Similarly, any matrix coefficient = +— (m(z)&,n) of a uniformly bounded represen-
tation 7 is a completely bounded Fourier multiplier whose norm is bounded by
7 [|€]l[In]] and by sup, eq l7(2)E||[|7(y~")*n]l. The space of such coefficients is
usually denoted by UB(G) or |, B:(G), where B.(G) is the Banach space of ma-
trix coefficients of the representagions uniformly bounded by c. All these algebras

in one picture, we have the inclusions

A(G) € B\(G)

N
=
Q
N
-
=
Q
N
=
=
Q
N
S
=
Q
=

of which the first two inclusions are isometric. The equality B(G) = M A(G) char-
acterizes the amenability of G [Neb82, Los84, Boz85], so estimating M A-norm is

eased for amenable groups. We also have the following theorem for groups that
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differ from being amenable by a compact subgroup.

Theorem 1.2.22 ([CH89]). Let G' be a locally compact group and K a compact
subgroup of G. Then the K x K double averaging map

o=, o) = /K/Kga(k:xk/)dkdk:', (Vo € G)

defines norm decreasing maps A(G) — A(G), MA(G) - MA(G), and MyA(G) —
MyA(G). Moreover, suppose that S is an amenable closed subgroup of G such that
G = SK set theoretically. Then for any K-bi-invariant function ¢ € Co(G), we

have

lellaac) = lellvae = llelsllses-

Another important Fourier multipliers are positive Fourier multipliers. Recall
that an element a of a C*-algebra A is positive if a = b*b for some b € A. A linear
map T : A — B between C*-algebras is positive if it maps positive elements to
positive elements, n-positive if the map 7' ® id,, : A ® M,(C) — B ® M,(C) is
positive, and completely positive if T is n-positive for any n € N. One of the nicest
feature of a positive linear map 7' : A — B is that its norm is equal to ||T(14)]|
provided A is unital. Thus, for example, when M, : L(G) — L(G) is positive, the
Fourier multiplier norm is simply ||¢||ama = [[My| = [[¢(e)A(e)|| = ¢(e), and when

M, is completely positive, we have
lellatoa = sup [l(e) idrem, | = ©le). (1.5)

It is a fact that a bounded continuous function on a locally compact group is positive
definite if and only if it is a completely bounded Fourier multiplier [DCH85, Propo-
sition 4.2]. This means that the norm calculations in (1.3) and (1.5) are actually

the same result, yet the obtaining methods are different.
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Chapter 2

Two group properties

2.1 Weak-amenability

Amenable groups play an important role in group theory. As amenability is charac-
terized in many different ways, many problems tend to soften for amenable groups.
The most commonly used definition would be the very first one given in [Neu29]:
a discrete group I' is amenable if there exists a non-trivial I'-invariant positive lin-
ear functional on ¢>°(I"). This definition can easily be extended to locally compact
groups by replacing the space (>(I") with L>°(G). For our use, the following defini-

tion is more suitable.

Definition 2.1.1. Let G be a locally compact group. An approximate unit in the
Fourier algebra A(G) is a net (;);er of functions in A(G) such that || — 9|4 — 0
for all v € A(G). We say that G is amenable if there is an approximate unit in

A(G) consisting of positive definite functions.

Some interesting weaker versions of this definition are studied. For example,
Haagerup property (also known as a-T-menability), weak amenability, and property

A. In this section, we treat some view points of weak amenability.

Theorem 2.1.2 (Lemma 2.2 of [Haal6]). Let G be a locally compact group and let

k > 1. The following statements are equivalent:

(i) There ezists a net (¢;) in A(G) such that sup; ||¢i||lpea < k and p; — 1 in
a(L>, LY)-topology.

(i) There exists a net (¢;) in A(G) such that sup; ||@i||lpea < k and ¢; — 1

uniformly on compact sets.
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(i1i) There exists an approzimate unit (@;) in A(G) such that sup; ||¢:l|lpea < k.

Definition 2.1.3. We say that a locally compact group G is weakly amenable if one
of the equivalent statements in Theorem 2.1.2 is true for some k£ > 1. The minimum
possible value of k is called the Cowling-Haagerup constant and denoted by A(G).

If no such k exists, we conventionally write A(G) = oco.

For some technical purpose, we sometimes want the functions ¢; to be compactly
supported. Thanks to [CH89, Proposition 1.1}, if G is weakly amenable, we can
assume that all ¢; are compactly supported after replacing k by k + ¢, where € > 0

can be chosen arbitrarily small.

2.1.1 Groups acting on a tree

Amenable groups are trivial examples of weakly amenable groups. The first non-
trivial weakly amenable group is the free group Fy of two generators, or more gen-
erally, any group acting properly on a tree by isometries [Szw91, PS86, BP93]. The
idea of the proof is very important because it extends to Gromov’s hyperbolic groups
[0za08] and finite dimensional CAT(0) cubical groups [Miz08, GH10], so here we
illustrate the proof. We will also use it to prove that Baumslag-Solitar groups have

completely bounded characteristic tame cuts.

Theorem 2.1.4. Suppose that a discrete group T' acts on an infinite tree T = (V, E)
by isometries, where T is endowed with its combinatorial distance d. Fix a base point
vo € V. Forn € N, define the function ¢, : x € T'— Lo, ny(d(vo, 2v0)). We have
the following:

(i) |onllarga < 2n+ 1.

(i) The length function € : x € T' — d(vy, zvg) is conditionally negative definite.

t=) on T is positive definite.

(i1i) For anyt > 0, the function p; : x — e~
(iv) If the action T' ~ T is proper, I is weakly amenable with A(G) = 1.

Proof. To prove (i), we fix an infinite geodesic ray v : Ny — V in T. Each v € V
admits a unique geodesic ray 7, beginning from v that eventually merges with ~,
that is 7,(0) = v and there are constants a,b € Ny with 7,(a +t) = (b +t) for all
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t € Ny. Note that being d(v,w) € {n,n — 2,...} NNy is equivalent to the existence
of k € {0,1,...,n} with v,(k) = v,(n — k). It follows that

n

Linn—2,..3nN, (y o) = Z<5’ym0(k)> Orpyug (n—k) ) £2(V')
k=0

- <EBZ=05’YQ¢UO (k') ) @2205"/31110 (n—k) > @2:052 (V)

for all z,y € T, and || 145 —2,.30m, |[a04 < 7+ 1 by Theorem 1.2.21. Thus, we have
Pnllmoa < || Linn—2,. 300 1Moa + || Lin—1,n-3,..30m0 |14 < 20+ 1.

Next two assertions are dealt in Example 1.1.20. Let us prove the last assertion.
The normalized positive definite functions p, are bounded in MyA(T") and goes to 1
uniformly on compact sets as ¢t goes to 0, but we do not know if p; is in A(G). We
will approximate p; by a compactly supported function in the space MyA(T"). As

the action is proper, the functions ¢ are compactly supported as well as
Pnt = ¢0 + Z eitk(gbk — Qﬁkfl), (Vn € N,\V/t > O)
k=1

Moreover, we have
o
lpe = Pnillanoa < D e *lgr — drillaea >0 as n— oo
k=n+1

This completes the proof. O

2.1.2 Induction map

The methods to establish weak amenability for discrete groups and for continuous
groups vary. In [Haal6], Haagerup proposed a method that allows one to work
on a lattice instead of the ambient group. More precisely, if a lattice I' in a locally
compact group G is weakly amenable, then so is G with the same Cowling-Haagerup
constants. The main tool used to prove this result is the induction map ¢ : />°(I") —
Cy(G) that sends a bounded function ¢ on I' to the function

O(p) = P = Lo x(opr) * Ig (2.1)
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on G, where 2 is a Borel fundamental domain for I and pur is the measure on G that
counts the elements of I'. We assume that the Haar measure dz on G is normalized

so that fQ dx = 1. Then we have the following result.

Proposition 2.1.5 ([Haal6]).
(1) If o € MoA(T), then @ € MyA(G) with |[@]layac) < lellanam)-
(i) If ¢ € A(L), then © € A(G) with [[]la) < llellam-

Corollary 2.1.6 ([Haal6]). A lattice T in G is weakly amenable if and only if the
ambient group G is weakly amenable. In this case, A(I') = A(G).

Remark 2.1.1. The induction map can be used to prove that some other properties
such as amenability, a-T-menability, Kazhdan’s property (T), and Yu’s property A

are inherited by lattices.

The induction map ¢ : MyA(I') — MyA(G) is always continuous. In particular,
if G (equivalently I') is amenable, we have ® : MA(I') — MA(G) continuous. In
Section 3.6, we will show that amenability is essential for the latter map to be
continuous.

Corollary 2.1.6 gives the choice to work on the ambient group G or on a lattice
when calculating the Cowling-Haagerup constant. Working on discrete groups has

its advantage of characterizations in terms of the group algebras, C5(I') and L(G).

Definition 2.1.7. A C*-algebra A has the completely bounded approximation prop-
erty (CBAP) if there is a net (7});e; of continuous finite rank operators on A such
that

sup |Tille < 0o and |[Tiz —zf| -0 forall z€ A.

The minimum value (when it exists) of sup; ||T; || while the net (7;);c; runs through

all possible nets satisfying the above conditions is denoted by A(A).

Definition 2.1.8. A von Neumann algebra M has the weak* completely bounded
approzimation property (w*-CBAP) if there is a net (T;);c; of w*-continuous finite

rank operators on M such that

sup |Tifl < 0o and (Tiz,v) =0 forall x€ M,ve€ M.
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The minimum value (when it exists) of sup; ||7; || while the net (7});c; runs through

all possible nets satisfying the above conditions is denoted by A*(M).

From the characterizations of Fourier multipliers in Proposition 1.2.19, if I" is a

weakly amenable discrete group, then the multipliers (M., );e; and (M., );er satisty
the above conditions, and consequently C}(I') has CBAP and L(I") has w*-CBAP.

The converse statement happens to be true.

Theorem 2.1.9 ([CH89]). Let I" be a discrete group. Then the following statements

are equivalent:

(i) T is weakly amenable.
(i) Cx(I") has CBAP.
(i1i) L(T") has w*-CBAP.
In this case, we have A(I') = A(C5(I")) = A*(L(T)).

2.1.3 Non-examples

The linear groups S L, (R) and SL, (Z) for n > 3 are known to satisfy a property that
opposes amenability in a very strong way, namely these groups satisfy Kazhdan’s
property (T). Therefore, it is naturally interesting to know if these groups are weakly
amenable. There are three different approaches giving a negative answer to this
question. Chronologically, the first proof is in [Haal6] where Haagerup constructed
a distribution D € L(SLy(R) x R?) that has a simplified formulation for SO(2)-bi-

invariant functions.

Theorem 2.1.10 ([Haal6]). Suppose that ¢ € CZ(SLy(R) x R?) is a SO(2)-bi-

invariant compactly supported smooth function on SLy(R) X R%. Then we have

~ | 1 =z 0
D = / —_— 01 0|dx| <A4nm ) 2.2
’ (90)| e \/m(p 001 H()OHMoA ( )

In [Haal6], the inequality (2.2) was written for the norm ||¢|m, || a(m,), where

b
H; = c|:abceR
1

o O =
S = 2
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is the Heisenberg group, but this is equal to ||¢|/apa by Theorem 1.2.22. When
@ is positive and takes value 1 on the ball B, with respect to the length function
z + log ||z|| + log ||x |, the inequality (2.2) gives

2’ﬂ
1
n < ——dz < A4n . 2.3
< |, Tt < Al (2.3

This shows that SLy(R) x R? is not weakly amenable since the lower bound goes to
infinity. The same idea works to prove that Sps(R) is not weakly amenable. These
two results imply that any simple Lie group G of real rank at least 2 with finite
center is not weakly amenable.

The second proof is due to Lafforgue-de la Salle. They came up with even

stronger lower bound than (2.2) for SO(3)-bi-invariant functions on SL3(R).
Theorem 2.1.11 ([LDIS11)). For any SO(3)-bi-invariant function ¢ € Co(SLs(R)),

and any t > 0, we have

o O

< 100e2 |||l ap A5 L5 (R)) -

o = O

6t
vl 0
0

In their original statement, the inequality above was given for multipliers of
Schatten p-class, and Theorem 2.1.11 is exactly the case when p = co. We will use
this inequality in Section 3.6. Similar inequalities are made for the groups Sp(4, R)
and SLs,_3(R), n > 3 in [dL13] and [dLdIS18]. This lower bound of course proves
again that SL3(R) is not weakly amenable, but it is not applicable to prove that
SLy(R) x R? is not weakly amenable.

These two proofs both rely on Theorem 1.2.22. On the contrary, the third known
proof given in [Ozal2] works on the discrete group SLo(Z) x Z? and its action on T>.
This discrete group can not be written as a set theoretic product of an amenable
subgroup and a compact subgroup, thus no use of Theorem 1.2.22. Rather, the proof
relies on the fact that there is no SLy(Z) x Z*-invariant measure on T?, equivalently

the action SLy(Z) x Z* ~ Z* is not amenable.

2.1.4 ME-subgroup

Closed subgroups inherit the weak amenability and the Cowling-Haagerup constant

becomes smaller. This is also observed for ME-subgroups and Measure Equivalent
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groups. We recall the definition from [Sak09].
Definition 2.1.12. Let I' and A be two countable groups. We say that A is MFE-

subgroup of I' and write A MSE [ if there exist commuting, measure preserving, free
actions of I and A on a Lebesgue measure space (X, u) such that each of A and T’
actions admits a Borel fundamental domain and the induced measure of Xt = X/T°
is finite. Furthermore, if the induced measure of X, = A\ X is finite, we say that I'
and A are Measure Equivalent (ME) and write I’ M A

Lattices in a locally compact second countable group are ME to each other.
Another interesting example is that the ME-class containing the infinite cyclic group
is exactly the family of all countable amenable groups.

Let us go back to the fact stating that weak amenability passes to ME-subgroups.
We explain in detail the proof given in [Ozal2]. The main tool is the induction map
constructed as follows. Suppose that the actions A ~ (X, u) v T' establish A
as a ME-subgroup of I'. Denote by € a Borel fundamental domain of the right
action X v\ I' and normalize the measure p so that p(€2) = 1. The disjoint union

X =] r Qv yields well defined measurable maps
w: X—>0Q, ~:X->T (2.4)

satisfying ¢ = w(x).y(x) for all x € X. From the identity (ts).z = t.(s.x) =

(t.w(s.x)).v(s.z), we can extract the formula
v(ts.x) = y(t.w(s.x))y(s.x), (Vt,s € A,Vr e X),
or equivalently, by the change of variables (s,t) — (t7!s,t),
Yt sx) Tt = y(s.2) T y(tw(t T sx)), (Vi s € A Ve e X). (2.5)

The induction map is defined as
Bipe (M) P ), B = [ pllse) duw).  (26)

Lemma 2.1.13 ([Ozal2]). Suppose that A is a ME-subgroup of T.
(i) If ¢ € MoA(L), then & € MoA(A) and [|@]lara < [l¢llaa-

(i) If p € A(I), then p € A(A) and ||@]la < ||¢]|a.
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Proof. Suppose that there are some bounded maps P, () from I'" to a Hilbert space
H such that o(y~'z) = (P(z),Q(y))x for all z,y € T'. Then by (2.5)

219 = [ o () (e s0)) duw)
= [ o (lsasts o) (bl ) )
= [P (et 0)) @ (050057 0) bdn(w)

= (P'(t),Q'(5)) L2@m.p0)

where the maps

szépwmwfw»wm>wd@@zlpwwmwwmmm

have uniform norms at most ||P|| and ||@||, respectively. Now, (i) follows from
Theorem 1.2.21 (iv).

To prove the second assertion, take a matrix coefficient p = (Ar(-)¢,n) € A(T).
Recall that the Koopman representation (Ax, L?(X)) associated to the action A ~
(X, p) is unitarily equivalent to Ay ® id by Lemma 1.1.8. Therefore, to prove ¢ €
A(A), it is enough to prove that é is a matrix coefficient of Ay. Choose the vectors
¢ n' € L*(X) such that &(z) = £(y(z)) and 7/(x) = n(y(x)) for all z € X. Observe
that

for all x = w.0 € X with w € Q2 and § € I'. The following calculation concludes the

proof.

X
= (Ax ()€, 7") L2 x)-
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Lemma 2.1.14. Suppose that A is a ME-subgroup of I". The induction map in (2.6)
is the transpose of the norm decreasing map ) € (*(A) — ¢* € (Y(T) defined by

UH(8) = d(s)u(weQ:y(sw)t =6), (WeT).
sEA
Proof. The continuity of ¢ — ¥* follows from

ol <D ) Y (we Q:y(saw)™ = 6) < ¢l

sEA oer

J/

-~

<1

The last assertion follows from

(@)= Bls)(s) =) /Q p(y(s.w) ) (s)dp(w)

=> (0D () (w e Q:y(sw) " =96)
oer seA
= 3 G (6) = ()
ser
for all ¢ € (*°(T") and ¥ € (*(A). O

Corollary 2.1.15. Suppose that A is a ME-subgroup of T' and that (p;)icr s a
net in (*(T) such that ¢; — lr in the o({>,()-topology. Then p; — 1 in the
a (>, £Y)-topology.

Proof. By Lemma 2.1.14, (@, 1) = {@;,¢*) — 1 for all 1 € £1(A). O
The following theorem is now straightforward.

Theorem 2.1.16 ([Ozal2]). ME-subgroups inherit weak amenability. Moreover, if
A is a ME-subgroup of T', then A(A) < A(T).

Remark 2.1.2. When the groups A and I' are two lattices in a group, the map in
(2.6) is more or less the induction map in (2.1). Beware that ¢ might be not finitely

supported even if ¢ is.

2.2 Rapid Decay property

In this section, we give a short introduction to the Rapid Decay property. Our first

example of groups with characteristic tame cuts came from this property.

47



2.2. RAPID DECAY PROPERTY CHAPTER 2. TWO GROUP PROPERTIES

2.2.1 Length function

Definition 2.2.1. Let G be a group. A function ¢ : G — R, is a length function of

G if the following conditions are satisfied:
(i) L(e) = 0.
(ii) ((x™1) = L(x) for all z € G.

(111) (zy) < l(x) 4+ L(y) for all z,y € G.

The ball of radius n € N with respect to ¢ is the set B,, = {z € G : {(z) < n}.
When there is no confusion, we just write B,, instead of B, ,. When G is a locally
compact group and the length function ¢ is Borel measurable, the corresponding

growth function is given by

Ye(n) : G = Ry, y(n) = /G]an(x)d:L‘.

Remark 2.2.1. Recall that a map f : X — Y between two topological spaces is
proper if the preimage of every compact set in Y is compact in X. We usually
consider proper length functions. Note that any proper function ¢ : G — R is auto-
matically Borel measurable. Also, note that a locally compact group G admitting a

=1([0, n)).

proper length function is o-compact as G = J,,cy

Example 2.2.2. The most classical example of proper length functions comes from
a compact generating set. Suppose that G is generated by a compact symmetric
subset S, that is S = S and G =, .y S™. Then the function

neN

ls:x€G@—min{neN:z e S"}

is a locally finite, proper length function of G. We call g the word length function

associated to the generating set S.

Example 2.2.3. Let GG be a connected Lie group. Endow G with a left-invariant
Riemannian structure and denote d the associated distance. The distance topology
on G agrees with the manifold topology on G. The function ¢(z) = d(1,x) is
a continuous (hence locally bounded), proper length function of G (see [Roe03,
Theorem 1.5] for properness). Indeed, the compact ball of radius 1 generates G, and

¢ is Lipschitz-equivalent to the word length function.
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Example 2.2.4. Let I" be a finitely generated lattice in GG. If I is a uniform lattice,
then the word length function of I' is equivalent to the restriction of the word
length function of G' by quasi-isometry. This is in general not true for non-uniform
lattices, but we know when G is a semisimple Lie group of rank at least 2 and I’
is an irreducible lattice, the restriction of ¢ onto I' is Lipschitz-equivalent to /r
[LMR93, LMRO00]. The condition on the rank is essential. For example, the length

1
of the element u,, = (1 T) in SLy(Z) is O(n) while it is O(logn) in SLy(R).

Example 2.2.5. When G acts on a metric space (Y, d) by isometries, for any base
point yp € Y, one can associate a length function (4,, : © € G — d(z.y0, %)
Conversely, every length function is obtained in this way. Suppose that ¢ is a length
function of G. We want to construct a metric space (Y, d) and a base point y, such
that £ = £4,,. To this end, define the equivalence relation ~ on G by x ~ y if and
only if £(y~'z) = 0. The quotient space Y = G/ ~= {[z] : € G} is a metric space
with the distance d([z],[y]) = ¢(y'x), and G naturally acts on Y by isometries.

Now, it is enough to choose yo = [e] to have ¢ = {4, .

Definition 2.2.6. Let f,g : X — R, be two functions. We say that f dominates
g if there is a constant k > 0 such that

g(x) <kf(x)+k, (VreX).

We say that f and g are equivalent if they dominate each other.

It turns out that all measurable length functions are locally finite (see [Sch93,

Theorem 1.2.11]), hence the following proposition.

Proposition 2.2.7. The word length function associated to a compact generating

set (when it exists) dominates all measurable length functions.

Proof. Suppose that G is generated by a compact subset S = S~!. Let £ be a
measurable length function of G. Put k = sup{{(s) : s € S}. Then for any element

xr € G with lg(x) =n and = = s1...8, for some sy, ..., s, € S, we have

l(x) < Zﬁ(si) < nk = klg(x).

=1
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The proposition implies that all length functions associated to a compact gener-

ating set are equivalent. That is why we say the word length function.

Proposition 2.2.8. Let K be a compact subgroup of G, and ¢ a length function of G.
Then there exists an integral valued length function ¢ equivalent to {. Furthermore,

if £ is Borel measurable, we can assume that ¢ satisfies the following properties:
(1) U (kixks) = () for all x € G and ky, ks € K.
(1) K ={x € G:{'(x) =0}.

Proof. Jolissaint gave a proof for discrete groups in [Jol90]. His proof still works for
the general case, and we provide it here for completeness. Define the functions L,

Ly, L, and Ly on G as follows:

(o) = { 0, if ¢(z) =0

|¢(x)] + 1, otherwise
Ly(z) = /K Ly (kxk™)dk

Lg(l‘) = min{Lg(klxkg) . kﬁl, k’g € K}

0, fee K
L4(37):{

1, otherwise.

For the first part, it is enough to take ¢/ = L;. For the second part, it is enough to
take ¢/ = L3 + L4. ]

In the sequel, all length functions are proper unless otherwise stated.

2.2.2 s-Sobolev completion

Definition 2.2.9. Let G be a locally compact group and let ¢ be a length function
of G. For s € R, we consider the following weighted-L?%-norm of f € C.(G):

1£lle = ( /G F@)P(+ g(x))%dx) -

50



CHAPTER 2. TWO GROUP PROPERTIES 2.2. RAPID DECAY PROPERTY

The s-Sobolev completion Hj(G) is the completion of C.(G) with respect to the
norm || - ||se. The functions of Rapid Decay are given by

HFZ(G) = () Hi(G).

seR4

Remark 2.2.2. The isometry f € (C.(G), | - |ls0) — f(1 +£)* € L*(G) extends to
the isometry H(G) — L*(G). This allows us to see Hi(G) as a space of functions.
Observe that for any s € R, f € H;(G), and g € H,*(G), by Cauchy-Schwarz

inequality, we have
’ / fgdx
€’

which gives rise to the duality between H;(G) and H, *(G) given by

< [ lsellgll—s.e

<f,g>s=/Gfgdx. (2.7)

Proposition 2.2.10. Let s € R. The duality (2.7) isometrically identifies the space
H,;*(G) with the dual space H;(G)*.

Proof. Take any continuous linear functional w € H;(G)*. We only need to prove
that w can be represented as (-, g), for some g € H,*(G). Since Hj(G) isometri-
cally embeds in L?(G), by Hahn-Banach extension theorem and Riesz representation

theorem, there is a square integrable function &, € L*(G) such that

w(f) = (L +0)8) = (f,&(1+0)), (Vf € H}(G)).

Note that g = &,(1+¢)* € H,;*(G) and w = (-, g)s. This completes the proof. [

2.2.3 Equivalent definitions of the Rapid Decay property

Definition 2.2.11. A locally compact group G endowed with a length function ¢
has the Rapid Decay property if the identity map on C.(G) extends to a continuous
map H;(G) — C5(G) for some s € R,.

Theorem 2.2.12 ([Jol90]). Let G be a locally compact group, and ¢ a measurable

length function. The following statements are equivalent:

(i) (G, ) has the Rapid Decay property.
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(1t) The identity map on C.(G) extends to a continuous map By\(G) — H,*(G)

for some s € Ry

(11i) The identity map on C.(G) extends to a continuous map A(G) — H,*(G) for

some s € R,.

(iv) There are constants C,s > 0 such that for all £,n € L*(G),

([ 1) <l

(v) There are constants C,s > 0 such that || A(f)|| < Cn®||fll2 for all f € C.(G)
with supp(f) C B,.

Proof. The equivalence (i) < (i7) is trivial from the dualities B\(G) = C}(G)* and
H,;*(G) = H;(G)*. Also (i) = (iii) since A(G) isometrically embeds in B)(G).
(1v) is just a verbatim of (i7i). Let us prove (iv) = (i). Assume (iv). For any
f € C.(G), we have

N = sup 1A ) < ol = 1)
—sup{ ¢ mda| - lells = Inlls = 1}

< sup {[|f (@) [ls.elAOEM N =sie €l = lInll2 = 1}
(apply (iv)) < C|flls.e;

hence (). At this point, we have equivalence between the first four statements. Let
us prove (i) = (v). Take any f € C.(G) with supp(f) C B,. By (i), we have

IACOI® < CEIFIE, = /B [f(@) (1 + () da < C*(1L+n)*||£]3

for some constants C,s > 0, hence (v). Conversely, assume that (v) is satisfied for

some constants C, s > 0. Take any f € C.(G). The following calculation completes
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the proof:

INOI< D IMS 1)) < YO lIf s, llo < - CA+n) (1 +n0)" f 1s, ||z

00 12 / 1/2
1 s ™
<C (Z n-) (Z |1+ )"+ f 15, H%) = Ol s
n=0

]

Many Lie groups, including the semisimple ones with a finite center, have the
Rapid Decay property (see [CPSC07] and [Boy13]). Non-uniform lattices in higher
rank Lie groups tend not to satisfy the Rapid Decay property for having a cyclic sub-
group with exponential relative growth. For uniform lattices, we have the following

conjecture which is one of the main problems in this area.

Conjecture 2.2.1 ([Val02]). Uniform lattices in a semisimple Lie group have the
Rapid Decay property.

The conjecture is supported by the following important result.

Theorem 2.2.13 ([Laf00, RRS98, Cha03]). Uniform lattices in SL3(R), SL3(C),
SLs(H), SL3(Qy), Ee(—26), or a direct product of these Lie groups satisfy the Rapid
Decay property.

To name more discrete groups with Rapid Decay property, we have groups of
polynomial growth, Gromov’s hyperbolic groups, cocompact cubical CAT(0) groups,
mapping class groups, 3-manifold groups not containing Sol, large type Artin groups,
Wise non-Hopfian group, and some small cancellation groups. See the survey [Chal7]

for more.

2.2.4 Obstruction to the Rapid Decay property

The following theorem gives the main obstruction to the Rapid Decay property.

Theorem 2.2.14 ([Jol90]). Let I' be a discrete amenable group endowed with a
proper length function £. Then (I', ) has the Rapid Decay property if and only if T

has polynomial growth with respect to L.

Taking into account that the Rapid Decay property is inherited to open sub-

groups for the restricted length function, one can easily deduce that if (I", £) contains
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an amenable subgroup with superpolynomial relative growth, then (I',¢) does not
satisfy Rapid Decay property. As far as we know, all known discrete non-examples
are explained using this obstruction. In what follows, we use this obstruction to

illustrate some non-examples.

Example 2.2.15. For A € SLy(Z), the group I' 4 = Z% x4 Z has exponential growth
(hence, does not satisfy the Rapid Decay property) if the matrix A admits an eigen-
value with an absolute value greater than 1. Here, we sketch the proof given in
[dIHO00, Proposition 5, p. 189] (see also [S55]). Suppose that the matrix A has an
eigenvalue A € C such that |A| # 1. Since det(A) = 1, we can assume that |A| > 1.
Also, since I'4 contains I" 4x as a subgroup for all k£ € N, we can assume that |[A\| > 2.
Let u € C? be a M-eigenvector of A* and let P € My(C) be the projection onto
Cu. Note that PA* = X\FP for all k € N. Since P is a non-zero operator, there is
a non-zero vector v € Z% such that Pv # 0. We choose the word length function
associated to some finite generating set containing the elements (0, 1) and (v, 1). Fix
n € N. Let us show that the ball B, contains at least 2™ distinct elements. This

can be achieved considering the following elements
E. = (g1v,1)(g2v,1)...(g00, 1) = (e14Av + £24%0 + ... + 6,40, n) €4
where € = (¢4, ..., &,,) runs through {0,1}". Indeed, since
P(e1Av + g2 A% + ... 4+ 6,A™0) = (1A + €207 + ... + €, A" P(v)

are all distinct, so are the elements E, for ¢ € {0,1}".

2
A concrete example of such matrix is Ag = L1 as its eigenvalues are ;o =

(3£+/5)/2. It follows that the groups SL,(Z), n > 3 do not satisfy the Rapid Decay

property since these groups contain I'4,:

T, = { (‘3 7;) € SLs(Z) : A € SLy(Z),v € ZQ} < SLs(Z) < SL.(Z).

Being virtually free, the group SLs(Z) has Rapid Decay property.

Example 2.2.16. Let P be a finitely generated infinite group, and F' a non-trivial
finite group. The wreath product FQ P = (©scpF’) X P (e.g. the Lamplighter group
Z27) has exponential growth and thus it does not have the Rapid Decay property.

o4



CHAPTER 2. TWO GROUP PROPERTIES 2.2. RAPID DECAY PROPERTY

To see that, fix a finite generating subset Sp of P. Then the finite subset
S =A{E; = (sp,ep) - f € F} U ({der} x Sp)

generates F'{ P, where s; is identified with the element of @,cpF that takes f on
the place indexed with the identity ep, and takes identity ep elsewhere. Fix n € N
and a geodesic C,, = {e = xg,r1,...,x,} on the Cayley graph of F'? P. Note that
the subset

An = {(v7€P) RS @sEPFa Supp(v) g Cn}

contains exactly |F[I®l > 2" distinct elements, so it is enough to prove that By,
contains A,. That is true because any element (v,ep) € A, can be written as a

product of at most 3n + 1 many elements of S:

(v,ep) = [Eg] [(er,21)Ep (ep, 27 1)] . [(ep, 1) By, (ep, 27™)] -

Example 2.2.17. Let p,q € N. The action

0 ZxZ/ ) 2 L), np="C (\mez,vpez[i])

pq pq q pq

defines the semidirect product I',, = Z[piq] e Z.. We suppose that p and ¢ are
coprime so that I', ; is finitely generated. The finite subset

S ={a™ = (£1,0),t"" = (0,£1)}.

generates I', ;. The simplest case p = ¢ = 1 gives I';; & Z?. which has quadratic
growth. We claim the other cases have exponential growth. We can assume that

q < p. Fix a constant r € N such that 2¢" < p". Fix n € N. The elements

E. = (i: € (g)”,O) el e=(e1,...,en) € {0,1}" (2.8)

i=1

are all distinct. It is enough to show that these 2" elements are in the ball By,
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where the length function is £ = ¢g. To see that, observe

(((1+ Pk)) = £((1,0)(P,k)) < 1+ €(P,k) (2.9)
U(((p/q)" P, k) = £((0,7)(P,k)(0, —1)) < 2r + (P, k)) (2.10)

for any (P, k) € I',,. Since

Zez (p/0)" =D (p/a)"™" = (p/a)™ [+ (/)™ [ [1+ (p/0)™™] . ],

by applying (2.9) on E. multiple times, we get ((E.) < 2rn for all ¢ € {0,1}".
This shows that I', ; has exponential growth. Therefore, being amenable group with
exponential growth, I', , does not satisfy the Rapid Decay property for any coprime
p,q € Nwith p#1orq#1.

Example 2.2.18. Let p, g € N be distinct integers. We claim the Baumslag-Solitar
group defined by the presentation

BS(p,q) = (a,t | ta’t™" = af)

does not satisfy the Rapid Decay property. The automorphism a + a, t — t~! of
BS(p,q) allows us to assume that p < ¢. When p = 1, we have BS(1,q) =I'1, so
this case falls to the previous example. When p > 1, the set {a"'ta,t} generates a
free subgroup and BS(p, q) is not amenable, so we should find an amenable proper
subgroup with superpolynomial relative growth. From the case of p = 1, one gets
an intuition to check the cyclic subgroup (a). Fix n € N and take any integer
ke{l,...|(g/p)*] +1}. Write k = dq + r for some d,r € Ny and r < q. We have

((a*) = £((a)Na") = (¢ aPt) ) = £ (1 a™ta”) < (q+ 1) + ¢ (aka/qJ) ‘

Repeat the same inequality on the last terms until its power becomes 1. This will

be done in at most n steps, thus we have
((d*) < (g +D)n+1,

which shows the ball B(g;1),41 contains at least (g/r)" elements. Therefore, the

cyclic subgroup (a) has exponential relative growth, and BS(p,q) does not satisfy
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the Rapid Decay property.
For p = ¢ € N, the group BS(p,p) contains a finite index subgroup isomorphic
to F, x Z. This shows that BS(p,p) has the Rapid Decay property.
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Chapter 3
Tame cuts

In this chapter, we will introduce (completely bounded) [characteristic] tame cuts
for locally compact groups.

In Section 3.1, we will provide the first examples admitting (completely bounded)
[characteristic] tame cuts using weakly amenable groups, groups with Rapid Decay
property, and the estimation of Lebesgue constants. Asymptotically minimal prop-
erty of the Lebesgue constants provides the first example without characteristic tame
cuts: (Z,log(1+log(1+|-1)))-

In Section 3.2, we will introduce groups with RD, where 1 < p < oo. These
groups extend the Rapid Decay property and admit characteristic tame cuts. In-
terestingly, for 1 < p < ¢ < 2, the groups with both RD, and RD, are exactly the
groups with polynomial growth.

In Section 3.3, some stability properties are studied. Recall that ME-subgroups
inherit weak amenability. We will formulate a similar result for completely bounded
tame cuts. Also, inheritance from polynomial co-growth subgroup is studied. This
will be used in Section 3.4 to construct groups with completely bounded charac-
teristic tame cuts and without Rapid Decay property: some semidirect products,
7% x4 7 and Z[piq] e Z, Lamplighter groups Z,!Z, and Baumslag-Solitar groups
BS(p,q).

In Section 3.5, we will see that property (Tschur, G, K) is an obstruction to the
existence of K-bi-invariant tame cuts.

In Section 3.6, we will provide two applications of tame cuts.
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3.1 Definition and the first examples

Definition 3.1.1. Let G be a locally compact group equipped with a proper length
function ¢. A sequence (¢, )nen in Co(G) is called

(i) tame cuts for (G, 0) if there are constants C,a > 0 such that

lonllia < Cn® and ¢,lp, =1 forall neN.

(ii) completely bounded tame cuts for (G, () if there are constants C,a > 0 such
that

lonllia < Cn® and ¢,|p, =1 forall neN.

As it connects to the Rapid Decay property, when G is discrete, we also consider
(completely bounded) tame cuts composed of characteristic functions. We define the
intervals I(G, (), I (G, (), 14(G, (), and 1" (G, ¢) in R, containing all possible
degrees a occurring in the definition above. For example, a € I (G, ) if and
only if there exists a sequence of characteristic functions (¢, )nen in C.(G) such that
B, C supp(¢n) and ||@n|lpea < Cn® for some constant C' > 0 and for all n € N,
and we call the sequence (¢,)nen completely bounded characteristic tame cuts for
(G, ). These intervals might be either (ag, o), [ag,00), or empty. When there is
no ambiguity, we just write I, I, "7 and 1", We have the following obvious

inclusions
19" C I, CI and I C I C1,
and when G is amenable, we have
I =14 and [ =[5

One can see that the property of having tame cuts is an analogue of weak amenabil-
ity. Indeed, we replaced the condition of boundedness by polynomial growth and the
condition of uniform convergence on compact sets by fixed values on the balls. The
main difference is that the tame cuts strongly depend on the chosen length functions
while weak amenability does not. The following proposition shows a direct relation

between these two properties.
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Proposition 3.1.2. A locally compact group (G, ) endowed with a proper length
function has completely bounded tame cuts with Iy, = [0,00) if and only if G is
weakly amenable. Similarly, (G, ¢) has tame cuts with I = [0, 00) if and only if there

is an approzimate unit (pp)nen in A(G) with sup,cy ||@nllma < co.

154

Proof. The “only if” parts are obvious from the definitions. For the “if” part, see
[CH89, Proposition 1.1]. Although the last part is not much different from the first
part, we provide the proof for convenience.
Suppose that we have an approximate unit (¢, )nen in A(G) with sup,,cy [|¢nllma <

0o. Choose non-negative functions f,, € C.(G) N A(G) with f,|g, = 1. This is
doable using Lemma 1.2.18. Since A(G) N C.(G) is dense in A(G), we can assume
that ¢, is compactly supported. By passing to a subsequence, we can assume that
lonfu— fulla < 1 for all n € N. Now, the functions defined by v, = ¢, — @nfn + [

are compactly supported and takes value 1 on the ball B,,. Moreover, we have

|Vnllara < llonllara + llonfn — falla = O(1).

This proves the statement. [

Another point of view for tame cuts, especially the characteristic ones, comes
from classical harmonic analysis. For any integrable function f : [0,27] — R, one

can associate a trigonometric series

S =D F(f)k)e™.

keN

Under some regularity conditions, the series S|f] pointwise converges to f. Would
the partial sums S, [f](¢t) = Y._  F(f)(k)e** converge uniformly to f for all f €
C(T)? To answer this question, firstly we need to verify if the Dirichlet kernels
D,, : [0,27] — R defined by

4 sin((n+1/2)t
Duft)= 3 = (s(in(—it_/2§ =

k=—n

are uniformly bounded in the space L'(T). However, we have the following well-

known estimation (see e.g. [Zyg02]).

Lemma 3.1.3. Dirichlet kernels D,,, n € N satisfy || Dy || 1102+ = 2 logn + O(1).
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Even though the sequence of Dirichlet kernels fails to be bounded, the growth
rate still keeps some information about the underlying groups, T and Z = T. The
notion of (completely bounded) characteristic tame cuts then can be seen as a non-
commutative version of the Dirichlet kernels. Observe that since L'(T) is iden-
tified with A(Z) by Fourier transform, the estimation in Lemma 3.1.3 just says
|F(Dy)|laz) = 2logn + O(1) where F(D,) = >p__ 6 = Li_pnnz € A(Z). In
other words, the sequence (F(D,,))nen forms tame cuts for Z with respect to the
logarithmic length function k € Z — log(1 + |k|). On the other hand, we have the

following result.

Theorem 3.1.4 ([MPS81]). For any trigonometric polynomial p(t) = chvzl cpemt

on T where the ny are distinct integers and |cx| > 1 for all k € N, we have

> Klog N
LY(T)

N

gt
E Cre
k=1

where K > 0 is a constant independent from N.
The following result is now straightforward.

Proposition 3.1.5. The infinite cyclic group I' = 7Z has characteristic tame cuts
with respect to the logarithmic length function log(1+ |- |) but does not with respect
to the double logarithmic length function log(1 4 log(1l + | -|)). More precisely, we

have
I (Z,Jog(1 4| - |)) = [1,00) and I?""(Z,log(1+log(1+|-))) = 0.

Proof. Lemma 3.1.3 shows that the sequence (Dsn)nen of Dirichlet kernels forms
characteristic tame cuts for (Z,log(1 + | - |)). Theorem 3.1.4 shows that the linear
growth of characteristic tame cuts is optimal. For the second part, assume that
there exists characteristic tame cuts (¢, )nen. Then the support of ¢,, would contain

at least " ~ |B,| elements, and Theorem 3.1.4 implies

l@nllaoa = llenlla = [IF(en)llrm = Ce”,

which contradicts the assumption. O

Remark 3.1.1. We have I(Z, ) = [0, 00) for any proper length function ¢ since Z is
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amenable, and 1" (Z,| - |) = (0, 00) since the logarithmic function is slower than

any polynomial.

The following example is the very first class of discrete groups with characteristic

tame cuts.

Proposition 3.1.6. Let I' be a discrete group satisfying the Rapid Decay property
with respect to a proper length function ¢. Then (I',€) has characteristic tame cuts
and I¢""(T') contains all Rapid Decay degrees in Theorem 2.2.12 (v).

Proof. To show that, first note that for any non-zero function f € C.(I"), we have

(A(f)de, f)
/12

Thus, if we put ¢, = 1p,, by Rapid Decay property, we have

IAAI = = [[fl2-

||)‘(90nf)H < Cna|’90nf“2
< Cnf|| fl2
< Cn® AU,

for all f € C.(I"), hence ||@n|aa < Cn®. O

Second proof for the first part. Suppose that there are constants C, s > 0 satisfying
IAII < C||flls.e for all f € C.(T). The function ¢, = 1g, +[C?(2+ n)**2]4, sat-
isfies all conditions of Lemma 3.1.7 below. Thus, v, is a positive Fourier multiplier
and ||ty |4 = ¥n(e) = 1+ [C?*(2 4+ n)***?]. Now, the inequality

118, [Iaa < [[Unllara + [1TC*(2+n)**2]6. |
S 1 + [02(2 +n)23+2“ =+ 02(2 +n)25+2
< C/n2s+2

proves the statement. O

Lemma 3.1.7 ([JVI1]). Let T be a discrete countable group, ¢ a proper length
function of T with £(z) > 0 for any x € T'\ {e}, and n € N. Assume that there are
constants C;s > 0 such that

AN < Clifllse, (VF € Ce(I)).
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Suppose that 1 : I' — C is a function such that ) = Y* and
nC2p(x)(2 + £(2))* 72 < 9le), (Vo €T\ {e}).

Then 1 defines a n-positive Fourier multiplier.

3.2 (-comparable norms

Here we state a sufficient condition for a group to admit characteristic tame cuts.

Definition 3.2.1. We say that a norm N on C.(G) is unconditional if for any
f,9 € Co(G) with | f] < |g|, we have N(f) < N(g).

Example 3.2.2. (Any weighted) LP-norm is unconditional for 1 < p < oo.

Definition 3.2.3. Let ¢ be a proper length function of a locally compact group G.
Two norms N; and Ny on C.(G) are {-comparable if there are constants C,a > 0

such that the inequalities
Ni(f) < CnoNy(f) and No(f) < Cn“Ny(f)

hold for all f € C.(G) and n € N with supp(f) C B,.

Example 3.2.4. Suppose that ¢ is a proper length function of G. For s € R, and
1 < p < o0, define LP*-norm on C.(G) by

1/p
||f||p,s,e=(/G |f(w)|p(1+€(x))8pd:r> (W eCU@)).

Observe that if supp(f) C B, then

/G (@) P < /G F@) P+ @) Pdz < (1+n)” /G (@) P

Thus, LP*-norm is ¢-comparable with LP-norm. It is also true for s < 0.

Example 3.2.5. For a discrete group I', the ¢*-norm is /-comparable with the
C5(I")-norm if and only if (I', ¢) has the Rapid Decay property. Note that it is not
always true for general locally compact groups. For example, consider the group

G = T. Being compact, this group has Rapid Decay property for any proper length
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function. Take the length function ¢ : T +— {0}. The L?(T)-norm is {-comparable
with the C5(T)-norm if and only if they are Lipschitz equivalent, which would imply
that the Banach spaces L?(T) C LY(T) C C}(T) coincide. This is false since the

function f(z) = 2~? on [0, 1] is integrable but not square integrable.

Proposition 3.2.6. Assume that G is a locally compact group, ¢ is a proper length
function of G, and N is an unconditional norm on C.(G) that is £-comparable with
the C5(G)-norm (or with the A(G)-norm). Then G has tame cuts. Moreover, if G

18 discrete, then G has characteristic tame cuts.

Proof. The main point is that if N is unconditional, any pointwise multiplier of
(C.(G), N) corresponding to a function ¢ € C.(G) with |p| < 1 is contracting.
Take a large enough r € N such that B, has positive measure (equivalently
the interior B of the ball B, is non-empty). We can find a non-negative function
f € A(G) with [, fdz = 1 and supp(f) € Bs,. For example, apply K = B,
and U = B, B? on Proposition 1.2.18 and normalize the resulting function. If G is
€ A(G). Note that ¢,|p, = 1,
0 < ¢, <1, supp(en) € Bpisr, and ¢, is continuous. Using the ¢-comparison

discrete, we choose f = d.. Put ¢, = fx1p

n+3r
condition, we get
[A@ng)ll < C(n+57r)*N(png) < C(n+5r)*"N(g) < C(n+5r)*(|A(9)]],

for all g € C.(G) and for some constants C,a > 0. This proves that the sequence
(pn)nen forms tame cuts for (G, £). O

Inspired by the Rapid Decay property, the following classes of discrete groups

are also interesting.

Definition 3.2.7. Let 1 < p < oo. A discrete group (T, ¢) endowed with a length
function has RD, if the P-norm on C,(I') is f-comparable with the C}(I')-norm. In
particular, RD, coincides with the Rapid Decay property.

Proposition 3.2.8. Let (I',{) be a discrete group endowed with a proper length

function.

(i) If (T',¢) has RD, for some 1 < p < oo, then (I',¢) has characteristic tame

cuts.
(i1) If (', €) has polynomial growth, then it has RD, for all 1 < p < oc.
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(i1i) If (I',¢) has RD, and RD, for some 1 < p < q < 2, then it has polynomial
growth.

Proof.

(i) Clearly, f"-norm is unconditional, and since ¢P-norm is ¢-comparable with the
C5(I")-norm by assumption, it follows from Proposition 3.2.6 that (I',¢) has

characteristic tame cuts.

(i1) Take any f € C.(I") with supp(f) C B,. Observe that

1/p
1l = <Z If(iﬂ)l”) < B || fll2 < [Bal T IS

x€B),

where the first inequality is Holder’s inequality, and the second one is because

INCH| > A0, f) = || f|l2- Similarly, we have

e
MO < 1l < 1Bl 11f -

(#i) By transitivity of (-comparison, (P-norm is (-comparable to ¢?-norm, so there
exist constants C,a > 0 such that [|f]|, < Cn®||f||, for all f € C.(I') with
supp(f) € B,. In particular, if we put f = 1p,, we get

|B,|'P < Cn?|B,|"1.

Thus, the growth of (I, ¢) is bounded by (Cn“)%.
]

The point (4i7) asserts that the classes RD, for 1 < p < 2 give a priory very
different classes of groups admitting tame cuts. We do not know any example of

RD; groups besides those with polynomial growth.

3.3 Stability properties

3.3.1 Subgroups

Proposition 3.3.1. Let G be a locally compact group, H a closed subgroup of
G, and U a proper length function of G. If (pn)nen forms (completely bounded)
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[characteristic] tame cuts for (G,0), then (¢n|m)nen forms (completely bounded)
[characteristic] tame cuts for (H,l|y). Moreover, we have I(G,¢) C I(H,!|n),
[ehar (G 0) C I (H ), Ia(G,0) C Iy(H, l|g), and 1597 (G, 0) C Iher (H (| y).

This proposition is a direct consequence of the following lemma.

Lemma 3.3.2 (Proposition 1.12 of [DCHS5]). Let H be a closed subgroup of a locally

compact group G.
(i) If ¢ € MA(G), then |y € MA(H) and |[|ml[va) < llellmae)-
(ii) If o € MyA(G), then o|p € MoA(H) and |[o|ullanacm) < lellaoa)-

Proof. By the characterization (iiz) in Theorem 1.2.21, the restriction map from
MyA(G) to MyA(H) is clearly norm decreasing. For the restriction map from
MA(G) to MA(H), we provide an elementary proof for the case when H is an
open subgroup of G. For the general case, see [DCH85, Proposition 1.12].

Suppose that ¢ € MA(G). Equivalently, ¢ € Cy(G) and there is a constant
C' < oo such that

Ae(@NIl < Clra(DIL  (Vf € Ce(G))- (3.1)

Since H is open in G, any function f € C.(H) can be seen as a function on G

supported on H. Using (3.1) and Lemma 3.3.3 below, we get

A (@Il = xa(@h)l < CllIAcHI = CllAa (DI, (Vf € Ce(H)).

This proves [|¢|g||mam) < C. O

Lemma 3.3.3. Let G be a locally compact group, H an open subgroup of G, and
v €G. If fe CG) and supp(f) C H, then f acts on L*(Hz) by (left) convolution

and the norm

| flls2cmey) = sup{||f =7l | n € L*(Hz), |0l 2z = 1}

is equal to ||Aa(f)||. In particular, | Mg (fla)| = [|Aa(f)]]-

Proof. Suppose that f € C.(G) is as in the statement. Let us first prove that the
norm || f||(r2(mz)) does not depend on z. Consider the map U : L*(H) — L*(Hz),
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n > n(-z~). Tt is clearly a surjective isometry. Moreover, we have U (f*n) = f+U(n)
for all n € L?(H). Indeed, for all hx € Hx, we have

U+ mltha) = (Fxm)0) = [ Fshats s = [ fls)als e s
- /H F()(Un) (s~ har)ds = [f + (Un)](ha).

It fOHOWS that ||f||B(L2(H)) = ||f||B(L2(H;v))-
Let us prove |[Ag(fl#)|l = | Ac(f)|. Take any & € L*(H). We identify ¢ with
the element of L?(G) that coincides with & on H and takes value 0 on H. From the

calculation

16+ €l = / \/ Ry

k)dx

2

dk = dk

'k)dw

dk’ = || f = §||%2(H)

it is clear that || Ac(f)|| > | u(f|m)||. Now, we will prove the converse inequality.
Let {Hz; | i € I} be the right cosets and take any £ € L*(G). For each i € I, let &;
be the orthogonal projection of & onto L?(Hx;). Then we have

152y =3 /

k)dzx dk D IF * Eille gz

i€l i€l
<> ”fHB(LQ(HmZ-)) &l 22 a1y = A (FLEDIEN T2
iel
and we conclude. O

3.3.2 From a uniform lattice

The following result is almost direct from Proposition 2.1.5, but we provide the

proof for completeness.

Proposition 3.3.4. Suppose that I' is a uniform lattice in a locally compact group
G. Let ¢ be a proper length function of G. Then (I',l|r) has completely bounded
tame cuts if and only if so does (G, ?).

Proof. The “if” part is dealt in the previous subsection. Let us prove the “only

if” part. Take a large enough number » € N such that B, contains a compact
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fundamental domain  of I'. Take any function ¢ € C.(I') with ¢|p,,, =1 for
some n € N. We will use the induction map ® : MyA(I') — MyA(G) defined in
(2.1). For each z € G, we can write z = 7y(z)w(x) for a unique y(x) € I' and
w(z) € Q. With this notation, if ¢ is in MyA(I"), then we can write

(6)(z) = dx) = / b((zw))dw, (¥ € G).

Since the induction map is norm decreasing, to prove the statement, it is enough
to check that @ is compactly supported and takes 1 on the ball B,. Since ¢ is
compactly supported, there exists a large enough R > 0 such that supp(p) C Bg.
If x € G is such that ¢(z) > R + 2r, then

((y(zw)) = lw(zw) row) > €(z) — l(w(zw)) — {(w) > R,

and ¢(y(zw)) = 0 for all w € 2. This shows that ¢ is supported on the compact
ball Brio,. Now, take any x € B,,. Since

((y(2w)) = lw(zw) row) < €(z) + lw(zw)) + L(w) <n+2r,  (Yw € Q),

we have ¢(z) = [, ¢(v(zw))dw = [, 1dw = 1. This completes the proof. O

We have seen that ME-subgroups inherit the weak amenability. It is quite intu-
itive that completely bounded tame cuts are transferred to ME-subgroups via the
induction map defined in (2.6). However, the problem occurs as the induction map

might not preserve the compact support. We can avoid this inconvenience as follows.

Theorem 3.3.5. Let A and ' be two countable groups, (X,d) a metric space, and
i a Borel measure on X. Suppose that there exist commuting, measure preserving,
distance preserving, proper, free actions A ~ X T such that the I' action admits
a precompact fundamental domain Q. Fiz a base point vg € X and define the length
functions lp : 6 € T' — d(vg.0,v9) and €y : s € A — d(s.wvg,vg). If (U',lr) has

completely bounded tame cuts, so does (A, ly).

Proof. We use the notations v : X — I' and w : X — Q from (2.4). Recall the
induction map sends ¢ € C,.(I") to @ : A — C defined by

B(s) = / o(y(sw0) )dpu(w), (Vs € A).

68



CHAPTER 3. TAME CUTS 3.3. STABILITY PROPERTIES

Let us prove that @ is finitely supported. Choose a large enough R > 0 and R’ > 0
such that Q@ C Bgr(vy) and supp(y) € Br. If s € A is such that l4(s) > 2R+ R/,
then by the triangle inequality

lr(y(s.w)) = d(vo, vo-y(s.w))
d(vo, s.v9) — d(s.vg, s.w) — d(w(s.w).y(s.w), vo.y(s.w))
lr(s)—2R > R/,

v

v

and p(y(s.w)™1) = 0 for all w € Q. This shows that @ is supported on the finite set

Bapirr-
Suppose that ¢|p,,,, = 1 for some n € N. Let us prove that @|p, = 1. Take
any s € A such that ¢5(s) < n. Then we have

lr(vy(saw)) = d(vo, vo.y(s.w))
< d(vg, 8.v9) + d(s.v9, s.w) + d(w(s.w).y(s.w),ve.Y(s.W))

<n+2R
for all w € Q, hence @(s) = [, e(v(s.w) Ndu(w) = [, 1du(w) = 1. Now, the
statement follows from Lemma 2.1.13. O

Remark 3.3.1. As you can see, we do not require the A-action to have a Borel
fundamental domain. This condition was used only in Lemma 2.1.13 to prove that

the map A(I") — A(A) is norm decreasing.

Corollary 3.3.6. Suppose that I' is a uniform lattice in G, and A is a discrete
subgroup of G. If ' has completely bounded tame cuts, so does A.

Remark 3.3.2. The corollary also follows from Proposition 3.3.4.

3.3.3 Polynomial co-growth

The main result of this subsection is Proposition 3.3.9 which states that the property
of admitting (completely bounded) [characteristic] tame cuts is inherited by a normal
open subgroup with polynomial co-growth. This result is used to construct groups
with completely bounded characteristic tame cuts that do not satisfy the Rapid
Decay property. The proof is inspired by [Jol90] where the stability of Rapid Decay

property under certain extensions was studied.
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Definition 3.3.7. Let (G, ¢) be a locally compact group endowed with an integral
valued length function and let H be a normal open subgroup of G. Let 7 : G — H\G
be the natural projection. Choose a cross-section o : ) — G (a map such that
moo =idg and o(H) = eq) in a way that ¢(o(q)) = min{l(ho(q)) : h € H} for
all ¢ € Q). In other words, we want o(q) to be inside the smallest ball intersecting
with the corresponding coset. We call this cross section £-optimal. It is not difficult
to see that the function ¢y : ¢ € Q — £(o(q)) is a length function of Q. If @ has
polynomial growth with respect to ¢, we say H has polynomial (-co-growth in G.

Example 3.3.8. If G is generated by a compact subset S, then the quotient group
(@ is generated by the compact subset m(.S). Moreover, the word length function £, (s)
of @ is equivalent to {¢ for any f-optimal cross section. Let us prove it. We already
know that the word length function dominates . For the converse, take any ¢ € @
and suppose £g(q) = n. It follows that there exist h € H and sy, ..., s, € S such that
ho(q) = s1...s,. By applying 7 on both side, we get ¢ = 7(s1...8,) = 7(s1)...7(8p)-
In other words, ((5)(q) <n = {lg(q) for all ¢ € Q.

Proposition 3.3.9. Let G be a unimodular locally compact group, ¢ a proper length
function of G, and H a normal open subgroup of G with polynomial £-co-growth.
The group (H, | g) has (completely bounded) tame cuts if and only if so does (G, 1).
Moreover, the statement is valid for (completely bounded) characteristic tame cuts

when G is discrete.

Corollary 3.3.10. Let I" be a finitely generated group, ¢ the word length function of
I, and H a normal subgroup of I'. Assume I'/H has polynomial growth. If (H,{|x)
has (completely bounded) [characteristic] tame cuts, then so does (I',£).

We need some preparation before the proof. Every element x € G can be written
as z = ho(q) for a unique h € H and ¢ € Q. For f € C.(G), £ € L*(G), h € H,
and ¢,r € Q, we write f,(h) = f(ho(q)) and &,,.(h) = £(o(q)"*ha(r)). Note that
f, € C.(H) and &, € L*(H). Indeed, for a fixed ¢ € Q, we have

€172 :/G|§(x)|2d$=/Glf(a(q)_lxﬂ?dx
=Y | &) ha(r)Pdh =Y " el zoay-

reQ H reqQ

We need the following two lemmas.
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Lemma 3.3.11. Assume the notations above. The linear map C5(G) — CX(H),
f = fq is norm decreasing for all ¢ € Q). Moreover, if f € C.(G) is supported on
Ho(q), then we have [ Ac(f)Il = [[Au(fo)ll

Proof. For every n € L*(H) with ||n||2¢) = 1, we choose £ € L*(G) to be

n(o(q)"'ha(q)), p=H

§(ha(p)) = { 0 DL H

for all h € H and p € Q. Note that ||£| 2 = |1]lz2(my = 1 and supp(§) € H.

Further, we have

PelnI? > 178l =2 / > | Ha@)ee) i ot ai| an
(T‘ZQ)Z/H%/]"IM o(p) "'k ho(q))dk| dh
uvp(©) € 1) = [ | lho(a)etola) oty | an
:/H /fq k~'h) dedh
) fy s

It follows that || Ag(f)|l < [[Aa(f)l-
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Suppose supp(f) C Ho(q). Take any & € L*(G). We have

2

1 %€l =3 / 3 /H F ko)) "k ho(r)dk| dh

reQ 7 H |peq

2

suwplf) € Hola) =3 [ | [ fkota)stota) k hotr)dr| an

_ -1
=3 [ | ftbg (-
:Z 1 fq fq,r||2L2(H)

reQ

I (FOIP D a2

reQ
=X ()N 72 )

2
dh

where the last equality is from (3.2). Thus, ||Ac(/)|l = [IAa(f)ll- O

Lemma 3.3.12. Assume the notations above. Suppose that H has polynomial £-co-

growth. Then the map
N: f € Cu(G) — max | Au(f,)l
qeQ

defines a norm on C.(QG) that is {-comparable with the C5(G)-norm.

Proof. Thanks to Lemma 3.3.11, we have N(f) = max,eq [|[Au(fy)]] < [|Aa(f)]] for
all f € C.(G), so N is well defined. It is routine to check that N is a norm on
C.(G). Take any function f € C.(G) with supp(f) C B,. Noting that supp(f) C
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Ho(m(B,)) implies f, =0 for all ¢ € 7(B,,)¢, we have

2
dh

1 el =Y / 3 / F (ko (9)€(o (g) &~ hor(r))dk

re@ qeq@

—Z/Eﬂﬁ e Gi-tr3ct]

reqQ qeqQ

> [ |(Shme) o

reqQ qeQ

dh

2

2

:Z Z fq *qu,r

reqQ qETr(Bn) LQ(H)

By the triangle inequality, we have

If *€llZeey < D | D WMok &arllizan

r€Q \ g€ (Bn)

< N(f)2z Z 1€, [l 222y

r€Q \qg€m(Bn)

P ImBIl D MearllZegan

reqQ qen(Bn)

SNEHmB D D Nl

gen(Br) reQ

(Apply (3.2)) = N(f)?|7(Ba)PlI&]I7 ),

2

and it follows that N is ¢-comparable with the C5(G)-norm since the growth of

|7(By)| is polynomial. O

Proof of Proposition 3.3.9. Let us prove first the non-completely bounded case. The
“only if” part is due to Proposition 3.3.1. For the converse, assume that there exists

tame cuts (U, )nen for (H, /| g). By assumption, we have

[nllaracn < Cn%, Yulp,amr =1, and  |7(B,)| < Dn’
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for some constants C, D, a,b > 0 and for all n € N. Define ¢, : G — C as

Yan(h), q € m(By)

0, otherwise

n(ho(q)) = { , (VheH,qeQ).

Notice that ¢, € C.(G) since it is a sum of finitely many compactly supported con-
tinuous functions whose supports are in disjoint open subsets of G. Conventionally,
we chose the cross-section o such that (o (q)) < ¢(ho(q)) for any h € H. Now, it is
easy to see ¢,|p, = 1. Indeed, if ho(q) € B, then q € (B,,) and

((h) < U(ha(q)) +€(a(q)) < 2((ha(q)) < 2n,

hence ¢, (ho(q)) = ¥2,(h) = 1 by construction. Note also that if 9, is a character-
istic function, then so is ¢,. Since supp(y,) € Ho(m(B,)), by Lemma 3.3.12,

A(end)ll < Du'N (g, )
= Dn max (A (e sy

qEﬂ'(Bn

= Dn? max) [ Am (2 fo)

q€7r(Bn

< Dn®|[1)o,, A
< D[4y ||MA<H>qg;?é) [ A (o)l

< Dn|[vhanlaracny N (f)
< CDn" A (f)

for all f € C.(G). This shows that (¢, )nen forms tame cuts for (G, ¢).
The completely bounded case can be seen by considering the open subgroup
H x SO(3) of G x SO(3). O

We end this subsection by proposing another sufficient condition for an extension

to have (characteristic) tame cuts.

Proposition 3.3.13. Let I' be a finitely generated group, £ the word length function
of I', H a normal subgroup of I', and o : Q = H\I' = I" an (-optimal cross section.
Define the map f € C.(I') = f' € C(Q), f'(q) = [[Aa(f)ll, where f, € C.(H) is
defined by f,(h) = f(ho(q)) forallq € Q and h € H. If (H,l|x) has (characteristic)
tame cuts and ||[Aq(f)|| < | Ac(f)|| for all f € C.(T'), then (I',¢) has (characteristic)

tame cuts.
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Proof. Take any function ¢ € C.(H) with ¢|p, g = 1. Define ¢ € C.(I") as

o(ho(q)) = { w(h),  U(hol(g)) <n

0, otherwise.

Since o is f-optimal, we have ¢|g, = 1. Also, note that ¢ is characteristic if so is
Y. To prove the statement, it is enough to see that ||¢|[ara < ||¢]lara. Recall the

notations

Epr(h) = &(o(p) " ha(r))
f(0) = [IAu ()l
1/2
= (Z |§(hU(Q))!2> = &l
heH
forall h € H, p,q,r € Q, and f,£ € C.(I'). It is easily seen that

1€ llzery = &1 (p7"7) (3.3)

1€llery = &1l (3.4)

It follows that

2

Z Ppfp *H Epor

PeEQ

o f *r &llEem =

reqQ

2(H)

2
(triangle inequality) < Z Z | fp *1 §p,rHé2(H)>

reQ \peQ

2
(operator norms) < H¢H?\M(H) Z (Z H/\H(fp)|||’§p,r||122(H)>

reQ \peQ
(apply (3.3)) = 1¢13racm 1/ %@ &illeg)

(operator norms) < [[4]340n) | Aa(/)” Hanm)

. 2
(apply the hypothesis and (3.4)) < ”Q/JHMA H)\p ”2H€Hz2(r)‘

This proves ||¢|lpma < [|¥]ara- -
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3.3.4 Quasi-direct product

It seems the stability of admitting (characteristic) tame cuts under the direct product
is not clear. The completely bounded case, on the other hand, is not difficult to see.
In this subsection, we will discuss the stability of completely bounded tame cuts

under a version of the direct product, namely quasi-direct product.

Definition 3.3.14. Let G be a locally compact group, {Hq, ..., H;} a collection of
some normal closed subgroups of G. We say that G is a quasi-direct product of
{Hj, ..., Hy}, or the collection is quasi-orthogonal, if the intersection ﬂle KH; is

compact for any compact subset K C G.

For example, if GG is equal to the direct product Hy X ... X Hy, then the collection
{Hj, ..., Hy} is quasi-orthogonal. Indeed, suppose that K C G is a compact subset.
Note that

KHZ - pl(K) X ... X p,_l(K) X Hz X pz—i—l(K) X ... X pk(K),

where p; : G — H; are the canonical projections. Thus,

k k
(EH; C [[pi(K).
i=1 i=1

The right hand side is compact, and the left hand side is closed, hence also compact.

Lemma 3.3.15. Let H be a normal closed subgroup of a locally compact group G.
If ¥ is a completely bounded Fourier multiplier on QQ = G/H, then the periodic

extension
0:G@—C, ¢)=y@H), G

of 1 defines a completely bounded Fourier multiplier on G with ||¢||amyacy < |9l moacq)-

Proof. By hypothesis, there is a Hilbert space H and two bounded continuous maps
&,m:Q — H such that

w(p~'q) = (€(a).n(p)), (Vp,q € Q)

and |[¢][ara = [|€llsclllloe. Define &7 - G — C as §'(x) = &(xH) and 7/(y) =
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n(yH) for all z,y € G. Then we have

ply~e) =y~ al) = Y((yH) " aH) = ((xH),n(yH)) = (€' (2),7' (),
which follows that ¢ € MoA(G) and ||¢||aea < I€llsollMloe = %]l 010 a- L

Proposition 3.3.16. Let G be a locally compact group that is a quasi-direct prod-
uct of subgroups {Hi, ..., Hy}, and ¢ a proper length function of G. For each i €
{1,...,k}, denote by 0; : Q; = G/H; — G an L-optimal cross section. If each quo-
tient group (Q; = G/H;, 0 o 0;) admits completely bounded tame cuts, then so does
G. If G is discrete and each quotient group (Q; = G/H;, 0 o 0;) admits completely

bounded characteristic tame cuts, then so does G.

Proof. Let (¢ : Qi = C)pen be tame cuts for (Q;, ¢ o 0;). Put ¢, = Hle i,

where each ¢;,, is the periodic extension of v;,. We have

k
lenllama < ] leinllana

i=1

since MyA(G) is Banach algebra with pointwise multiplication. Also, note that the
right hand side is at most a polynomial of n.
The functions ¢, have compact support. Indeed, since Hqy, ..., Hy are quasi-

orthogonal, the support

supp(¢n) = [ |supp(in) €[ ) (U supp(soi,n)> H;

=1 i=1 \i=1
[ J/
~~

compact

is compact. It remains to show that ¢, take 1 on the ball B, of radius n. By
assumption, the periodic extension ¢;,, takes value 1 on ([0, n]) H;. Tt follows that
¢, takes value 1 on the intersection ﬂle ¢71([0, n]) H;, which obviously contains the

ball B,,. ]

Corollary 3.3.17. Admitting completely bounded (characteristic) tame cuts is stable

under direct products.

Corollary 3.3.18. Suppose that H is a compact normal subgroup of a locally com-
pact group G. If the quotient group QQ = G/H has completely bounded tame cuts,
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then so does G. If G is discrete and QQ = G/H has completely bounded (character-

istic) tame cuts, then so does G.

Proof. Use the proposition for the quasi-orthogonal collection {G, H}. O

3.3.5 Quotients by a normal compact subgroup

Let G be a locally compact group, H a normal compact subgroup of G. Denote
by m: G — G/H = @ the natural quotient map. If G is generated by a compact
subset S with S = S™1 and such that H C S, then Q is compactly generated by
7(S). Denote by fg and {¢ the corresponding word length functions. By [Garlb,
Remark 4.2], we can choose a Borel measurable cross-section o : () — G such that
lo(q) = lg(o(q)) for all ¢ € Q. We write elements z € G in its unique form
r = ho(q), h € H, ¢ € Q. We normalize the Haar measures of G and @ so that
the Haar measure dh of H corresponding to the formula (cf. [BAIHV08, Theorem

B.1.4))
/G f(w)dz = /Q /H F(ho(q))dhdq

Proposition 3.3.19. Under the assumptions above, if (G,lg) has tame cuts, so
does (Q,Lg).
The proof is inspired by [Jol90]. We need the following lemma.

is probability.

Lemma 3.3.20. The linear map C5(Q) — C5(G), f — f' = fom is norm decreas-

mg.

Proof. For ¢ € L*(G), k,h € H, and p,q € Q, denote &*(p) = £(ko(p)). Noting
ho(q)o(p)*k™*H = o(qp~')H, we have

I+ lEer= [ |, | [ [ reaem) i ewotoyanas
_ /Q /H /Q /H F ()" (p)dkdp
e (fear)], . <mowe ([ iethcar)

§|MQ(f)H2/H 165122y = IAQ(AIPNIENL> )

2

dhdg

2
dhdq
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for all f € C.(Q) and £ € C.(G). O

Proof of Proposition 3.3.19. Suppose that i» € C.(G) N MA(G) takes value 1 on
B 41. By [BAIHVO08, Lemma B.1.2], the function ¢ : @ — C defined by

_ /H b(ho(q))dh (3.5)

is compactly supported and continuous. We claim ¢|g, = 1. Indeed, if {5(q) < n,
we have g(ho(q)) < 1+ n for all h € H since H C S and {;(0(q)) < n by the
choice of o. Recall that dh is probability on H and ¢|g,,, = 1. It follows that
©nlp, =1 from its definition in (3.5).

It is enough to prove ||¢|lara < |[¢||ara. Let us observe two useful formulas in

advance. For any f,¢ € C.(Q), we have

1 %6 €22 = /Q / ' /Q | o) )k o @)ty
-1/,

2

dhdg

2
£(p~'q)dkdp| dhdg

2
dq

Epq)dp

= ||f *q €ll72(q)

and

(of) *¢ € (holq)) = / o) f (D)€" q)dp

/(/w/w dk)f()f( 0)dp

= [ xc {'(ha(q)).

It follows that

lof *q Elliz) = 1@ f) *a € ll 2
= [0f *¢ €120
<9134 A (IIPNE 72y
< 1D13rae M (HIZIEN72 @)

79



3.4. MORE EXAMPLES CHAPTER 3. TAME CUTS

The last inequality follows from Lemma 3.3.20. This completes the proof. O]

3.4 More examples

In this section, we will provide examples of groups with completely bounded charac-
teristic tame cuts. Some geometric groups are already known to have this property.
For example, hyperbolic groups [0za08], groups acting properly by isometries on £'-
product of geometrically finite hyperbolic graphs [Ver19], Coxeter groups [Fen02],
and finite dimensional CAT(0) cubical groups [Miz08]. These examples are all based
on the groups acting on a tree that we illustrated in Theorem 2.1.4. Our examples
will be less geometric, and we will use the stability properties from the previous

section and the following lemma.

Lemma 3.4.1. Let G be a locally compact group, H an open subgroup. Then
lella) = ll@lallagy for every ¢ € A(G) with supp(p) C H.

Proof. As H is open, the space of square integrable functions on G' with support on

H can be identified with L?(H), and when f,g € L*(G) are supported on H, we
have fly *g glg = (f *¢ 9)|u. It follows that

lella) =int{||flallgllz: f.9 € L*(G), o = [ *g}
<inf{[|fll2llgll2 : f.g € L*(G), o = [ * g,supp(f) Usupp(g) C H}
=inf{|| fll2llgll : f.9 € L*(H),¢|lu = [ *u g}

=le|allac-

To show the converse inequality, take any ¢ € A(H) and f,g € L*(G) such that
¢ = f*r g and ||@|lacy = || fll2]lg]l2- Then their trivial extensions on G satisfy

o = f*a g and |[Y|lac) = [ fll2llgll2- O

Proposition 3.4.2. Let P be a finitely generated group with polynomial growth and
let F' be a finite group. Then the wreath product I' = F'{ P has characteristic tame

cuts. In particular, the Lamplighter group Zol7Z has characteristic tame cuts.

Proof. By definition, I" is an extension of H = @
group P. According to Proposition 3.3.9, it is enough to prove that H has charac-

scp I’ by the polynomial growth

teristic tame cuts with respect to the restriction of the word length function of T.

Suppose that S C P is a finite generating set of P. For t € F, denote by t : P — F
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the map taking value ¢t on ep, and identity er elsewhere. Then I' is generated by
the finite set

T ={(i,ep) |t € FYU{(ér,5)|s € 8.

Endow I' with the word length function ¢ = ¢7. For n € N, denote

G, = @ F and H, = @ F

z€Pl(z)<n zEPl(z)>n

so that H = G,,® H,,. Notice that (G,, is finite and contains the relative ball B, N H.
Put ¢, = 1g,, the characteristic function of GG,. We want to estimate the norm
| @nllamracmy- Recall that [|¢n||ara) = [|¢nlla) because H is amenable and ¢, is
finitely supported. Since the Fourier multiplier 14, acts on A(G,,) trivially, and
since supp(p,) = G, by Lemma 3.4.1, we have

lenllarac) = lenllacn = llenla.lla@, = | La, Ima@.) = 1.

This completes the proof. O

Proposition 3.4.3. For any coprime integers p,q € N, the group I'p , = Z[piq] Xp 7,
q

has characteristic tame cuts.

Proof. Recall that T' = Z[-—] x» Z is isomorphic to the subgroup of GLs(R)

L
Pq

generated by the finite set

+1 +1
gt 0 = 11
0 1 01

Let ¢ = {5 be the word length function of I". According to Proposition 3.3.9, we

I3

only need to prove that the subgroup

H:{(l P) ;Pez[i]}gZ[i]
0 1 bgq bq
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has characteristic tame cuts with respect to the restricted length function ¢|y. Sup-

pose that x = 01 € H and ¢(z) < n. Then we can write x = s;...s,, for some

p . 5
s; = <<q) 1) €8S, ¢e,0, € {-1,0,1}, 1 <i < n with Y &, = 0. Moreover, we
0 1

€1 e1te2 €1t+...+en—1
P =6 +0 (9) + 6 (1—’> bt b (9)
q q q

n i—1 i—1
3 §ipn+2}:1 &j qn—2§=1 &j
=1

have

q'p"
From this, it is easy to see that the cyclic subgroup H, of H generated by the

element

contains the relative ball B, N H = {& € H | {(x) < n}, and for any element
r € B, N H, its absolute power |z| with respect to the element z,, has an upper
bound

2n, 2n

=1

x| =

Denote by A, the subset of H, containing the elements with absolute power less
than ng*"p?". Note that A, is finite set containing B, N H. Combining the facts that

H is amenable, Lemma 3.4.1, and the estimation of L'-norms of Dirichlet kernels,

we get
12 a, Natoacy = 11 La, Nacery = || La, [lac,)
4 2n, 2n (36)
= | F(La)llrrm) = ;bg(”q p") +O(1).
This completes the proof since (3.6) is at most polynomial. ]

Proposition 3.4.4. Let d € N and let P < SLy4(Z) be a finitely generated group
with polynomial growth. Then the semidirect product T = Z% X\ P has characteristic

tame cuts.
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Proof. Tt is practical to use the following unique canonical form
r=(v,p), veEZipeP

for every element x € I'. In this form, the group law is given by
(v,p)(w, q) = (v + pw, pq).

Suppose that T is a finite generating set of P with T = T~'. Let {ey,...,eq} C Z*
be the usual bases. Then the finite set

S={(fe;,t):1<i<d,teT}
generates I'. We endow I" with the word length function ¢ associated to S. Denote
H={ep,...eq) = {(v,0) €T :v € Z%} <T.

Since P has polynomial growth, by Proposition 3.3.9, it is enough to show that

(H,?|g) has characteristic tame cuts. Suppose ¢(v,0) < n. Then we can write
(v,0) = $1...5,
for some s; = (g;,t;) € S, 1 <i <n with t;...t,, = I; and
v=c¢c1+liea+ ... +t1..th_16n-
Notice that
[vlloe < flvllz < T+ [[tall + - flE2 o]l < m (max {[e]] - £ € T})".

This can be bounded by C"™ for some constant C' € N depending only on the set 7.
Thus, the finite set A, = {(v,0) € H | v € Z%, ||v||sc < C™} contains the relative ball

B,, N H of radius n. Moreover, by the estimation of L!'-norms of Dirichlet kernels

14, aoa@) = IF(La)llpiirey = [|1Den @ .. @ Donl| 1 (e

nlo d (3.7)
~ [Der s = (2L o))
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Since (3.7) is a polynomial, we conclude. ]

Our next example is the Baumslag-Solitar groups. The idea is based on the
work [GJ03]. The proof also works for N-BS groups, which generalizes the classical
Baumslag-Solitar groups. Let us explain what N-BS group is.

Definition 3.4.5. Let N be a locally compact group, G a closed subgroup of N,
and H; and H, two closed subgroups of G such that there is an automorphism
a € Aut(N) with a(H;) = Hj. If the subgroups H; and H, have finite indices in
G, the group N-BS(G, Hy, Hy, «) is defined by the presentation

HNN(G, Hy, Hy, ) = (G, t | R,tht " = a(h),Vh € H,),

where G = (G | R). There is a unique translation invariant topology on N-
BS(G, Hy, Hy, o) such that the obvious homomorphism G — N-BS(G, Hy, Hs, ) is
an embedding onto an open subset. With this topology, the group N-BS(G, Hy, Hs, )

becomes a locally compact group.

Example 3.4.6. Let p,qg € N. Put d = ged(p,q), p' = p/d, and ¢ = q/d.
The Baumslag-Solitar group BS(p,q) = {(a,t | taPt™' = a%) is exactly the group
Z|-%]-BS (Z,pZ,qZ,a DT %) )

rq

Proposition 3.4.7. Let N be a discrete group. Consider a group of the form ' = N-
BS(G, Hy, Hy, o). If the group N X, Z has completely bounded characteristic tame

cuts, then I' has completely bounded characteristic tame cuts.

Before giving the proof, we prepare some ingredients. Recall that the group
I' = HNN(G, Hy, Hy, ) acts by isometries on the Bass-Serre tree 7', that is a
(IG : Hi] + |G : Hj])-regular tree (cf. [Ser03, Section 5.1 ]). This gives rise to a
continuous homomorphism jz : I' = Aut(T'), where the group Aut(T') of isometries
on T is endowed with the compact-open topology. Since each of H; and Hj has
a finite index in G, the Bass-Serre tree T' is locally finite, and Aut(T) is locally
compact and acts properly on T (cf. [CGKO1]). Let vy € T be the vertex fixed
by G-action. Endow Auwt(T) with the proper length function ¢r(z) = d(z.vo, v),
where d is the combinatorial distance on T'. We also have another homomorphism
jn : T' = N %, Z such that jy|g = idg and jy(t) = (en,1). Let us denote
Gr = Aut(T) and Gy = N %, Z. The following theorem is crucial to the proof.
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Theorem 3.4.8 ([GJ03]). Let N, G, Hy, Hs, and « be as in Definition 3.4.5. Let
G = N-BS(G, Hy, Hy,«), and let jp and jy be the homomorphisms defined above.

Then the homomorphism
J=0r,jn): G = Gr x Gy

15 an embedding onto a closed subgroup.
We also need the following lemma.

Lemma 3.4.9 (Lemma 1.4 of [CH89]). Suppose that Gy and Go are locally compact
groups. If ¢ € MyA(G1) and ) € MyA(G,), then the function o @1 : G1 X Gy — C,
(p@U)(x,y) = (x)(y) is in MyA(Gy x G2) and || @ P|laea = [[@llanallPllrsa-

Proof of Proposition 3.4.11. Theorem 3.4.8 allows us to see I' as a discrete subgroup
of Gr x G. By hypothesis, there are characteristic tame cuts (g, )nen for (G, {y),
where ( a proper length function of G. The function ¢ : (z,y) € Gy x G +—
max{lr(x),ln(y)} gives a proper length function of Gy x Gx. Denote by f, :
Gr — C the characteristic function of the ball {x € Gr : {r(x) < n}. Beware
that f, might be not in MyA(G) as the continuity is not guaranteed, but we have
fn € MoA((Gr)a) and || fullmoaccryy < 2n + 1 by Theorem 2.1.4. Here, (Gr)q
is the discrete realization of Gp. The new function ¢, = f, ® g, on Gy x Gy
defined by ¢, (z,y) = f.(x)g.(y) is a compactly supported, characteristic function
and obviously takes value 1 on the ball B, = {(x,y) € Gr x Gy : {(z,y) < n}. By
Lemma 3.3.2 and 3.4.9, we have

lenlrllanary < lenllmoaceryixay) = I fallmoacr)ollgnllmeacy)

which is bounded by a polynomial. This proves that the sequence (¢, |r)nen gives

completely bounded characteristic tame cuts for (I', £|r). O

Corollary 3.4.10. The Baumslag-Solitar group BS(p,q) has completely bounded

characteristic tame cuts for any p,q € N.

Proof. Let p' = p/ged(p,q) and ¢ = q/ged(p,q). We note that that BS(p,q) is
a Z|-]-BS group and that Gy = Z[p,iq,] Xy Z = T'y y has completely bounded

r'q
characteristic tame cuts. OJ
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Proposition 3.4.11. Let N, GG, Hi, Hy, and « be as in Definition 3./.5 and let
G = N-BS(G, Hy, Hy, ). If the group N X, Z has completely bounded tame cuts,

then G has completely bounded tame cuts.

Proof. The proof is essentially the same as Proposition 3.4.7. The only problem is
that f,, might be not continuous. To regulate that, we repeat the same technique
used to prove Proposition 3.2.6. Find a large enough number » € R, such that the
ball {z € Gr : {p(x) < r} has a non-empty interior. Find a non-negative function
f € A(G) with supp(f) C Bs, and fGT f = 1. Now the functions (f * f,12.) ® gy

give completely bounded tame cuts for G. m

3.5 Property (Tscpur, G, K)

Concerning non-examples, the rigidity inequality of Theorem 2.1.11 shows that
higher rank simple Lie groups with finite center do not have tame cuts, and their
uniform lattices do not have completely bounded tame cuts. On the other hand, so
far we have only (Z,log(1 +log(1+|-]))) as an example of discrete group without
characteristic tame cuts, but this length function is not as natural as the word length
function. We do not know any finitely generated group without tame cuts with re-
spect to the word length function. As far as we investigated, property (Tscpur, G, K)

is the closest to be an obstruction for the existence of tame cuts.

Definition 3.5.1. Let GG be a locally compact group, K a compact subgroup, H a
closed subgroup of GG, and ¢ a proper length function of G. For n € Nand f € C(G),
define the quantity

1fllaracreeny = sup {Au (Flup)ll - ¢ € C(H),supp(p) € By, [|Au(p)[| < 1}

When G and ¢ are already fixed, we also write || f||pracmcen) = | fllmacany. We say
that H has property (Tschur, G, K, €) if there exist a positive constant s > 0 and a
function ¢ € Cy(G) vanishing at infinity such that for any D > 0 and K-bi-invariant
function ¢ € C(G) with the following condition

lellaracny < De™,  (Vn € N),
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there exists a limit ¢, € C to which ¢ tends uniformly rapidly
p(2) = o] < Do(x), (V& € G).

Lemma 3.5.2. Let G be an unbounded locally compact group endowed with a proper
length function 0. Sup K and H are compact subgroups of G. Then H does not have
pmp@rty (TSchum G7 K7 g)

Proof. Assume, by contradiction, that H has property (Tschur, G, K, ¢) and let s > 0
and ¢ € Cy(G) be as in Definition 3.5.1. By Proposition 2.2.8, we can assume ¢ takes
0 on K so that the balls are K-bi-invariant. Choose a large enough r € N such that
B, has a non-empty interior and contains H. For each m > r, construct the function
fm by applying U = B and K = B,, on Lemma 1.2.18. Then ¥,, = fim — fm
is a non-negative compactly supported function in A(G) such that ¢,,|p = 0 and
Ym(x) # 0 for some xz € G with ¢(x) > m. We use K x K double averaging and
normalization on v, in order to have a K-bi-invariant function ¢,, € C.(G) such
that ¢,|p = 0 and p,(x) = 1 for some z € G with ¢(x) > m. Now, we have
lemllmacany =0 < e for all n € N and m > r. It follows that |¢,,(x)| < ¢(x) for

all x € G and m > r. Taking lim, SUp,,>., we get a desired contradiction. O

Definition 3.5.3. With the above notations, a function ¢ € C(H) is said K-bi-
inwvariant if there is a K-bi-invariant continuous function on G whose restriction on

H is exactly ¢.

In [Lial6, Proposition 2.3], it was proved that if a discrete subgroup I' of G has
property (Tschur, G, K, £), then (I',£) does not have Rapid Decay property. We give

its analogue for tame cuts in the following theorem.

Theorem 3.5.4. Let H be closed subgroup of an unbounded locally compact group
G. Suppose that H satisfies property (Tschur, G, K, €) for a compact subgroup K and
a proper length function ¢ of G. Then (H,{|y) does not admit any K-bi-invariant

tame cuts.

Proof. We prove by contradiction. Assume that there exists K-bi-invariant tame

cuts (@m)men for (H,£|y). There are constants C,a > 0 such that

lemllaragm < Cm® (3.8)
Pm|B, =1 (3.9)
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for all m € N. Take any f € C.(H) with supp(f) C B,,. If m > n, the multiplier
My, acts trivially on f, so [[Ag (¢mf) || = | Au(f)]|. If m < n, then we have

A (o f) | < Cm® A (A < Cn®[[Au(f)]

by (3.8). Unifying these two cases, if we denote by ¢! € C(G) a K-bi-invariant
extension of ¢,,, we get the inequality ||¢],|[rraany < Cn® for all n,m € N. Let
s > 0 and ¢ € Cy(G) be from property (Tschur, G, K, ¢). Put D = sup,,cy Cne "
so that we get

&5 laracny < De™,  (¥m,n € N).
By property (Tschur, G, K, £), we get
[om ()| = [0, (2)] < Do(x), (Yo € H,Vm € N). (3.10)

Now, if we take the sequential limits lim,_,, lim,, o on (3.10), the left hand side
goes to 1 whereas the right hand side goes to 0. This gives a desired contradiction.

]

Corollary 3.5.5. If G is unbounded and has property (Tschur, G, K, {), then (G, )

does not have tame cuts.

Corollary 3.5.6. Suppose that G is a finitely generated infinite group and H is a
finitely generated subgroup of G. Suppose that H is at most polynomially distorted
m G. Recall that H is polynomially distorted in G there exists k > 0 such that
lg(x) < klg(x)* + k for all x € H, where {g and g are the word length functions
of G and H, respectively. If H has property (Tschur, G,{€},lc), then (H,ly) does

not have tame cuts.

Let F, be a finite field of characteristic different from 2 with cardinality q.
Let G be the symplectic group Sp4(F,((m))) over the local field F ((7)) and K =
Spa(F,[[x]]) the maximal compact subgroup of G. Let I' be the non-uniform lattice
Sps(F,[m7']) in G. Let H < T be the subgroup consisting of the elements of the
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form

—
*
*
*

—_
*
*

el

—_
=%

For i,j € Ny, denote D(i,j) = diag(n~*, 77 77, 7"). By Cartan’s decomposition
theorem, every element = € G can be written as x = kD(i, j)k’ for some k, k' € K
and a unique (i,7) € N2 with 4 > j. Moreover the length function ¢ : kD(i, j)k'
1 + j is equivalent to the word length function of G, and even its restriction to
the lattice T' is equivalent to the word length function of I'. In [Lial6, Theorem
3.1], it was proved that H and I" have property (Tschur, G, K, £), hence the following

corollary.

Corollary 3.5.7. The lattice Spy(F,[7 1)) of Spa(F,((m))) does not have Spy(F,[[7]])-

bi-invariant tame cuts.

3.6 Application of tame cuts

In this section, we provide two applications of tame cuts. The first application
is related to the norm decreasing induction map ® : MyA(I') — MyA(G), where
I' is a lattice of a locally compact group G. When G or I' is amenable, we also
have & : MA(I') - M A(G) norm decreasing. The following result shows that the

amenability is essential for the latter map to be continuous.

Theorem 3.6.1. Let I' be a lattice in G = SL3(R) with a compact fundamental

domain 2. Then the induction map
®: MA(L) = MA(G), ¢+ &= 1Lgx(pur)* Lo

is not continuous (possibly not well defined).

Proof. Recall that the word length function £g of ', the restriction ¢¢|r of the word
length function /¢ of G, and the restriction L|r of the length function L : x € G —
log ||z|| + log ||z ~!|| are all equivalent on T' (cf. Example 2.2.4). We choose L as the
main length function of both I' and G.
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Let us prove by contradiction. Suppose that the map ® : MA(I') — MA(G)
is bounded. By Theorem 2.2.13, " has the Rapid Decay property, and a fortiori
characteristic tame cuts, so there is a finitely supported characteristic functions ¢,,
such that

|onllmramy < Cn* and ¢ulp, =1 (Vn € N)

for some constants C,a > 0. By continuity of ®, there is a constant C’ > 0 such
that

|1Bnllvraey < C'n®,  (Vn eN).

By Theorem 1.2.22; the K x K double averaging @n of ¢, is a K-bi-invariant Fourier
multiplier of G with

1@nllaca) < 1@nllara < C'n?, (Vo € N).
Applying the rigidity inequality of Theorem 2.1.11 on g?n, we get

0
0 || <1@ulla <Cn® (WneNVEeR,).  (3.11)

—t

et
et /3 @n 0
0 e

o = O

Put ¢ = max{L(w) : w € Q} and choose t = n/4 — ¢ so that L(diag(e',1,e7")) =

2t < n — 2c. By construction, we have

o, (x) = /K /K /Q On(Y(k1zkow) ) dwdky dks.

Note that
L(y(kizkow)) = L(w'kyxkow) < L(kyxks) + L(w') + L(w) < 2¢+ L(x).

Thus, if L(z) < n — 2¢, we have $, (z) = 1. Therefore, the left hand side of (3.11)
grows exponentially while the right hand side grows polynomially, which gives a

desired contradiction. O

Remark 3.6.1. There is no difficulty to extend the theorem to uniform lattices of
SLg(C), SLg(H), SLg(Qp), and E6(726)-
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We mentioned in subsection 1.2.5 that all Fourier multipliers of an amenable
group are completely bounded. The following theorem provides a non-amenable

group admitting a non-completely bounded Fourier multiplier.

Theorem 3.6.2. Let I' be a uniform lattice in G = SL3(R). Then there is a Fourier
multiplier of I' which is not completely bounded. In other words, MyA(T") # MA(T).

Proof. Suppose by contradiction MyA(I') = M A(T"). Since the inclusion MyA(I') —
M A(T) is a contraction between two Banach spaces, the norms || - |74 and || - || a4
are equivalent by the closed graph theorem applied to the inverse map.

Let us use the functions ¢, ©,, and {5” from the proof of the previous theorem.

By equivalence of two norms, we have
[enllarga < Cn?, (Vn € N)

for some constants C',a > 0. By Theorem 1.2.22, we have |3, |laa < |Bnllana <
Cn®. Again, the rigidity inequality on @n gives a desired contradiction for the same
choice of t as in Theorem 3.6.1. O

Remark 3.6.2. Proposition 3.6.2 is also a direct consequence of [HSS10, Boz82,
where it is proved MyA(Fy) # M A(F,). More precisely, by Tits alternative theorem,

I' contains a copy of Fs, and the trivial extension gives isometric maps
MA(FQ) — MA(F) and M()A(FQ) — M()A(F),

so the trivial extension of any function ¢ € M A(Fy)\ MoA(F3) isin MA(T)\MyA(T).

3.7 Summary

To summarize the examples:
(1) Groups with completely bounded characteristic tame cuts:

(a) Polynomial growth discrete groups.

(b) Groups acting properly by isometries on a fine hyperbolic graph, on a
product of geometrically finite hyperbolic graphs, or on a finite dimensional
CAT(0) cube complex.

(¢) (Z,log(1+]-1)).
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(d) Semidirect product Z* x P, where P < SL4(7Z) is a finitely generated group

with polynomial growth.

(e) Semidirect product Z[piq] Xz Z, where p,q € N are coprime.

(f) Wreath product F'? P, where F' is a finite group and P is a group with
polynomial growth. In particular, the Lamplighter group ZsZ.

(g) Baumslag-Solitar group BS(p,q) for p,q € N.
(2) Groups with completely bounded tame cuts:

(a) Groups in (1).

(b) Weakly amenable groups.
(3) Groups with characteristic tame cuts:

(a) Groups in (1).

(b) Groups satisfying Rapid Decay property or RD,, for some 1 < p < oco.
(4) Groups with tame cuts:

(a) Groups in (1), (2), and (3).

(b) Groups admitting M A-bounded approximation property.
(5) Groups without tame cuts.

(a) Simple Lie groups with finite center and rank at least 2.
(6) Groups without completely bounded tame cuts:

(a) Groups in (5) and their uniform lattices.
(7) Groups without (completely bounded) characteristic tame cuts:

(a) (Z,log(1 +log(1+]-1))).
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