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Résumé

Dans cette thèse, nous étudierons quatre types de suites de fonctions continues à

support compact sur un groupe localement compact, à savoir les coupures modérées

[caractéristiques] (complètement bornées), et leurs croissances dans l’algèbre de Ba-

nach des multiplicateurs de Fourier (complètement bornés). Cette nouvelle notion

étend la moyennabilité faible et la propriété de décroissance rapide. L’objectif prin-

cipal est de fournir des exemples de groupes admettant ou pas ce type de suites, à

l’aide d’outils analytiques, algébriques et géométriques.

Nous démontrons que les groupes de Baumslag-Solitar BS(p, q) pour p, q ∈ N et

certains groupes métabélians de type fini, dont Z[ 1
pq

] o p
q
Z pour p, q ∈ N premiers

entre eux, ZdoA Z pour d ∈ N, et le groupe de l’allumeur de réverbères Z2 oZ, admet-

tent des coupures modérées caractéristiques complètement bornées. Ceci est réalisé

en montrant que l’existence de coupures modérées [caractéristiques] (complètement

bornées) est stables par extension par un groupe à croissance polynomiale. Nous

proposerons également une méthode pour construire un groupe de type fini sans

coupures modérées en utilisant la propriété (TSchur, G,K).

De plus, nous proposerons deux résultats comme applications de coupures modérées.

Le premier résultat montre que tout réseau uniforme dans SL3(R) admet un multi-

plicateur de Fourier qui n’est pas complètement borné. Ceci fournit un exemple à

l’appui de la question ouverte: “La moyennabilité d’un groupe discret Γ est-elle car-

actérisée par le fait que tous les multiplicateurs de Fourier de Γ sont complètement

bornés?” Le deuxième résultat est lié à l’application d’induction M0A(Γ)→M0A(G)

qui est contractante pour tout groupe localement compact G et son réseau Γ. En

particulier, lorsque G (ou Γ) est moyennable, l’application d’induction MA(Γ) →
MA(G) est contractante. Nous démontrerons que la moyennabilité de G est essen-

tielle pour la continuité de cette dernière application.

Mots-clefs: Groupes localement compacts, algèbres de groupe, multiplicateurs de

Fourier, moyennabilité faible, propriété de décroissance rapide, coupures modérées.

ii



Abstract

In this thesis, we will study four types of sequences of compactly supported contin-

uous functions on a locally compact group, namely (completely bounded) [charac-

teristic] tame cuts, and their growth in the Banach algebra of (completely bounded)

Fourier multipliers. This new notion extends weak amenability and Rapid Decay

property. The main goal is to provide examples of groups admitting or not-admitting

such kind of sequences using analytic, algebraic, and geometric tools.

We will prove in particular that the Baumslag-Solitar groupsBS(p, q) for p, q ∈ N
and some finitely generated metabelian groups, including Z[ 1

pq
] o p

q
Z for coprime

p, q ∈ N, ZdoA Z for d ∈ N, and the Lamplighter group Z2 oZ, admit completely

bounded characteristic tame cuts. This is achieved by showing that the existence

of (completely bounded) [characteristic] tame cuts is stable under extension by a

group with polynomial growth. We will also propose a method to construct a finitely

generated group without tame cuts using property (TSchur, G,K).

In addition, we will propose two results as an application of tame cuts. The first

one states that any uniform lattice in SL3(R) admits a Fourier multiplier that is

not completely bounded. This provides a supporting example to the following open

question: “Is amenability of a discrete group Γ characterized by the fact that all

Fourier multipliers of Γ are completely bounded?” The second application is related

to the induction mapping M0A(Γ)→M0A(G) which is known to be norm decreasing

for any locally compact group G and any of its lattice Γ. In particular, when G (or

Γ) is amenable, the induction mapping MA(Γ) → MA(G) is continuous. We will

show that the amenability of G is essential for the continuity of the latter mapping.

Key words: Locally compact groups, group algebras, Fourier multipliers, weak

amenability, Rapid Decay property, tame cuts.
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Introduction en français

Dans cette thèse, nous étudions quatre types de suites de fonctions continues à sup-

port compact sur un groupe localement compact, à savoir les coupures modérées

[caractéristiques] (complètement bornées), et leur croissance dans l’algèbre des mul-

tiplicateurs de Fourier (complètement bornés). Les définitions précises sont données

dans le Chapitre 3. Dans ce qui suit, nous décrirons comment les coupures modérées

sont liées à certaines propriétés bien connues et exposerons nos principaux résultats.

Analyse harmonique

Rappelons un peu d’analyse harmonique classique. Pour chaque fonction intégrable

f ∈ L1(T), on lui associe des polynômes trigonométriques

SN [f ](t) =
N∑

n=−N

f̂(n)eint, où f̂(n) =

∫ 2π

0

f(t)e−intdt.

On peut aussi écrire SN [f ] = DN ∗ f en utilisant le produit de convolution où

DN =
N∑

n=−N

eint =
sin((N + 1/2)x)

sin(x/2)

est le noyau de Dirichlet. La suite (SN [f ])N∈N ne converge pas nécessairement vers

f pour tout f ∈ L1(T) dans la topologie de la norme L1 (ou de manière équivalente,

pour tout f ∈ C(T) dans la topologie de convergence uniforme) [Kol23]. En ef-

fet, si ‖DN ∗ f − f‖1 → 0 pour tout f ∈ L1(T), la norme ‖DN‖1 de l’operateur

de convolution doit être uniformement bornée pour tout N ∈ N, mais nous avons

‖DN‖1 = 4
π

log(N) +O(1), qui sont appelées les constantes de Lebesgue. Plus tard,

il a été prouvé dans [MPS81] que l’estimation O(log(N)) est asymptotiquement

minimale, dans le sens que pour toute suite de noyaux caractéristiques (kn)n∈N telle
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que pour chaque n ∈ N le spectre de kn contient l’ensemble {−n,−n + 1, ..., n},
on a ‖kn‖1 ≥ C log(N) pour tout n ∈ N. En étudiant les coupures modérées

caractéristiques (complètement bornées), nous obtiendrons des informations asymp-

totiques pour un groupe discret et dénombrable. Pour cela, nous utilisons l’algèbre

de Fourier A(G) et les algèbres des multiplicateurs de Fourier, MA(G) et M0A(G).

On note que lorsque G est abélien, l’algèbre de Fourier A(G) est isomorphe à L1(Ĝ),

et les algèbres MA(G) et M0A(G) sont isomorphes à l’algèbre des mesures M(Ĝ)

via la transformation de Fourier.

L’idée de généraliser des propriétés d’analyse harmonique classique n’est pas

nouvelle. La plus connue est la moyennabilité de John von Neumann. Rappelons

qu’un groupe G localement compact est moyennable s’il existe une approximation

de l’unité dans l’algèbre de Fourier A(G) constituée de fonctions définies positives,

c’est-à-dire une suite généralisée (ϕn)n∈I de fonctions définies positives dans A(G)

telles que ‖ϕnf−f‖A → 0 pour tout f ∈ A(G). Dans le cas de G = Z, cela équivaut

à l’existence d’une suite (ψn)n∈N de polynômes trigonométriques normalisés positifs

sur T telle que ‖ψn ∗ f − f‖1 → 0 pour tout f ∈ L1(T). Un exemple d’une telle

suite est donné par les noyaux de Fejér définis par

FN =
1

N

N−1∑
n=0

Dn =
1

N

(
sin(Nx/2)

sin(x/2)

)2

.

Dans la définition de moyennabilité, si on remplace la condition de positivité definie

par supn ‖ϕn‖M0A < ∞, on obtient la définition de moyennabilité faible. Si G

est faiblement moyennable, la valeur minimale possible Λ(G) de supn ‖ϕn‖M0A ex-

iste et s’appelle la constante de Cowling-Haagerup. Si G n’est pas faiblement

moyennable, pour toute suite (ϕn)n∈N dans A(G) avec ϕn → 1 uniformément sur

les compacts, la norme ‖ϕn‖M0A tend vers l’infini. Dans cette thèse, nous pro-

posons d’étudier la croissance de ‖ϕn‖M0A et ‖ϕn‖MA, qui est l’essence des coupures

modérées (complètement bornées). Remarquons qu’en répétant les mêmes fonctions

dans la suite, nous pouvons rendre la croissance de ‖ϕn‖M0A arbitrairement lente.

Afin de remédier à cet inconvénient, nous utilisons une fonction de longueur propre

` : G → R+, et nous ajoutons la condition que ϕn prend la valeur 1 sur la boule

Bn = {x ∈ G : `(x) ≤ n}. Maintenant, il est possible de parler de croissance

asymptotiquement minimale de ‖ϕn‖M0A qui serait une information dépendant du

groupe G et de la fonction de longueur `. Lorsque G est faiblement moyennable,

une telle croissance est O(1) pour toute fonction de longueur propre, donc la con-

2



stante de Cowling-Haagerup est une information plus fine que les coupures modérées

complètement bornées.

Algèbres de groupe

Parmi les groupes topologiques, les groupes localement compacts sont particulièrement

intéressants car ils admettent une mesure de Haar. Cette mesure est l’un des princi-

paux outils pour étudier le groupe de manière analytique, même si le groupe n’est ini-

tialement équipé que d’une structure topologique et algébrique. Les premiers espaces

que nous pouvons construire en utilisant la mesure de Haar sont les espaces clas-

siques Lp(G). C’est une amélioration par rapport aux espaces C(G), Cc(G) et Cb(G)

qui peuvent être construits pour n’importe quel groupe topologique. L’espace de Ba-

nach L1(G) a une structure *-algèbre avec le produit de convolution et l’involution.

Une structure de C∗-algèbre offre une théorie plus riche et mieux comprise. Mal-

heureusement, L1(G) ne peut pas être une C∗-algèbre à l’exception du groupe trivial.

Nous considérons les *-représentations de L1(G) pour extraire une C∗-algèbre. La

plus naturelle est la représentation régulière (λ, L2(G)) où λ(f) pour f ∈ L1(G)

agit sur l’espace de Hilbert L2(G) par convolution: λ(f)g = f ∗ g, g ∈ L2(G).

La complétion C∗λ(G) (resp. L(G)) de λ(L1(G)) dans la topologie de norme (resp.

topologie d’opérateur fort) est appelée C∗-algèbre réduite (resp. algèbre de von

Neumann) du groupe. De nombreuses propriétés de groupe importantes telles que

moyennabilité, propriété de Haagerup, moyennabilité faible, propriété A et propriété

(T) de Kazhdan sont formulées en termes de ces algèbres. L’unique prédual Banach

A(G) de L(G) est appelé l’algèbre de Fourier de G. Il cöıncide avec l’espace de tous

les coefficients matriciels associés à la représentation régulière, equipé de la norme

ϕ 7→ inf{‖ξ‖2‖η‖2 : ξ, η ∈ L2(G), ϕ = 〈λ(·)ξ, η〉}. Avec la multiplication ponctuelle,

A(G) devient une algèbre de Banach commutative. Nous renvoyons les lecteurs à

[Eym64] pour les principales propriétés de ces algèbres.

Une autre algèbre importante provenant du groupe localement compact est

donnée par les multiplicateurs de Fourier MA(G), constituée des fonctions con-

tinues bornées qui laisse l’algèbre de Fourier A(G) invariante par multiplication

ponctuelle. Par le théorème du graphe fermé, chaque fonction dans MA(G) définit

une application linéaire continue sur A(G), et avec la norme d’opérateur corre-

spondante, MA(G) devient une algèbre de Banach. Dans [DCH85], cet espace a

été caractérisé comme des multiplicateurs de C∗λ(G) et L(G). Nous pouvons donc
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considérer des multiplicateurs de Fourier complètement bornés, M0A(G). Cet es-

pace a de meilleures caractérisations que les multiplicateurs de Fourier habituels,

et bénéficie en outre de quelques propriétés de stabilité de base [CH89, DCH85].

Nous voulons étudier la croissance des coupures modérées dans ces deux espaces.

Si G est moyennable, ces deux espaces cöıncident isométriquement, et l’inclusion

A(G) → MA(G) est isométrique, donc les calculs sont facilités. Dans le cas où

G est abélien, on a même A(G) ∼= L1(Ĝ) et MA(G) = M0A(G) ∼= M(Ĝ) comme

algèbres de Banach commutatives.

Dans le Chapitre 1, nous discuterons de ces algèbres et leur relation avec les

représentations du groupe plus en détail.

Opérateur de troncature

Les comportements de la C∗λ(G)-norme sont notoirement difficiles à comprendre.

Par exemple, la conjecture de Valette sur la décroissance rapide pour les réseaux

uniformes dans les groupes de Lie de rang supérieur est toujours ouverte [Val02].

Différentes approches pour comprendre les normes d’opérateurs sont étudiées dans

des cas particuliers: lorsque G est moyennable, on a ‖λ(f)‖ = ‖f‖1 pour toute

fonction non négative f ∈ Cc(G), et lorsque G est un groupe de Lie simple connexe,

la fonction sphérique de Harish-Chandra φ0 satisfait ‖λ(f)‖ =
∫
G
φ0(x)f(x)dx pour

tout f ∈ Cc(G)+. D’autre part, lorsqu’un groupe discret Γ admet des coupures

modérées caractéristiques (ϕn)n∈N, nous obtenons des informations asymptotiques

sur la façon dont la norme ‖λ(f)‖ change après avoir tronqué (ou coupé) la fonction

f ∈ Cc(G) par le support de ϕn. Dans de nombreux espaces, le processus de

troncature définit un opérateur contractant. Par exemple, les espace `p(G), 1 ≤
p ≤ ∞ ou plus généralement l’espace Cc(Γ) équipé d’une norme inconditionnelle

N , à savoir N(f) ≤ N(g) si |f | ≤ |g|. La situation est très différente pour C∗λ(Γ).

Par exemple, la norme du multiplicateur de Fourier de la fonction caractéristique

ϕn = 1Z∩[−n,n] ∈ `∞(Z) est donnée par la constante de Lebesgue

‖Mϕn : C∗λ(Z)→ C∗λ(Z)‖ = ‖ϕn‖MA = ‖Dn‖1 =
4

π
log n+O(1), (1)

et elle n’est pas borné. Les coupures modérées caractéristiques (complètement

bornées) nous indiquent à quel point la norme C∗λ(Γ) est loin d’être incondition-

nelle.

4



La propriété de Décroissance Rapide

La propriété de Décroissance Rapide a été initialement observée dans [Haa79] pour

le groupe libre F2 à deux générateurs et développée dans [Jol90], qui lui a donné

son nom. En établissant la propriété de Décroissance Rapide pour F2, Haagerup a

prouvé qu’il y a une approximation n-positive de l’unité dans l’algèbre de Fourier

A(F2). Cela montre que C∗λ(F2) a la propriété d’approximation n-positive pour toute

n ∈ N mais pas la propriété d’approximation complètement positive.

Une autre contribution importante de la propriété de Décroissance Rapide est

son application dans la théorie-K. Le calcul des groupes K∗(C
∗
λ(G)) peut être

très difficile, mais lorsque le group G a la propriété de Décroissance Rapide, pour

un paramètre suffisamment grand s ∈ R+, l’espace s-Sobolev Hs
` (G) devient une

sous-algèbre dense de C∗λ(G) avec les mêmes K-groupes. Par rapport à la norme

d’opérateur compliquée de C∗λ(G), la norme d’espace s-Sobolev a une formule ex-

plicite, ce qui fait de Hs
` (G) une cible plus facile à étudier. En utilisant cette idée,

Lafforgue a montré dans [Laf98] que la conjecture de Baum-Connes a une réponse

affirmative pour tout réseau uniforme dans SL3(R). Ce fut le premier groupe discret

et infinit satisfaisant la conjecture de Baum-Connes et la propriété (T) de Kazhdan.

Dans cette thèse, la propriété de Décroissance Rapide joue un rôle important

pour fournir les premiers exemples de groupes discrets avec des coupures modérées

caractéristiques: la discreture assure que C∗λ(Γ)-norme domine toujours `2(Γ)-norme,

et la propriété de Décroissance Rapide fournit l’inégalité inverse avec un facteur

polynomial. Certains résultats de stabilité de la propriété de Décroissance Rapide

(par exemple [Jol90, Gar15]) sont partiellement adaptables aux coupures modérées.

Nous utiliserons également le résultat de Lafforgue sur les réseaux uniformes de

SL3(R) pour fournir deux applications de coupures modérées.

La moyennabilité faible

Comme mentionné précédemment, la notion de coupures modérées (complètement

bornées) est un analogue de la moyennabilité faible. Cette similitudé nous permet

d’adapter certaines idées et techniques issues du développement de moyennabilite

faible. Par exemple, les inégalités de [LDlS11], [dL13] et [dLdlS18] impliquent di-

rectement qu’aucun groupe de Lie simple de rang supérieur avec un centre fini ne

peut admettre de coupures modérées, et aucun de ses réseaux uniformes n’admet
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coupures modérées complètement bornées.

La constante de Cowling Haagerup est un invariant d’équivalence mesuré (EM),

illustré dans [Oza12]. Ceci a été réalisé en considerant l’application d’induction

Φ : `∞(Γ) → `∞(Λ) dont les restrictions M0A(Γ) → M0A(Λ) et A(Γ) → A(Λ) sont

décroissantes. On pourrait penser que le taux de croissance ou le degré des coupures

modérées (complètement bornées) est invariant par EM. Cependant, cela ne semble

pas evident car l’équivalence n’a pas grand-chose à voir avec la croissance du groupe.

En effet, tous les groupes discrets, dénombrables et moyennables sont dans la même

classe d’EM, et leur croissance peut être de tout type. Un autre problème est que

l’application d’induction ne préserve pas le support fini. Nous avons néeanmoins

prouvé le résultat suivant.

Théorème 1. Soit Λ et Γ deux groupes dénombrables, (X, d) un espace métrique

et µ une mesure de Borel sur X. Supposons qu’il existe deux actions Λ y X x Γ

commutantes, libres et propres qui preservent la mesure et la distance et tel que

l’action Γ admette un domaine fondamental compact. Fixons un point base v0 ∈ X
et définissons les fonctions de longueur `Γ : δ ∈ Γ 7→ d(v0.δ, v0) et `Λ : s ∈ Λ 7→
d(s.v0, v0). Si (Γ, `Γ) a des coupures modérées complètement bornées, il en va de

même pour (Λ, `Λ).

En utilisant l’application d’induction contractanteM0A(Γ)→M0A(G), Haagerup

a montré qu’un réseau Γ dans un groupe localement compact G est faiblement

moyennable si et seulement si G l’est [Haa16]. En particulier, si G ou Γ est

moyennable, nous avons MA(Γ)→MA(G) continue. Le théorème ci-dessous mon-

tre que moyennabilité est essentielle pour que cette dernière application soit con-

tinue. La preuve utilise des coupures modérées et sera donnée dans la Section 3.6.

Théorème 2. Soit Γ un réseau uniforme dans G = SL3(R). Alors l’application

Φ : MA(Γ)→MA(G), ϕ 7→ ϕ̂ = 1Ω ∗(ϕµΓ) ∗ 1̃Ω

n’est pas continue.

Considérez la question ouverte suivante.

Conjecture. Soit Γ un groupe discret. Si tous les multiplicateurs de Fourier de Γ

sont complètement bornés, c’est-à-dire M0A(Γ) = MA(Γ), alors Γ est moyennable.

La réciproque est démontrée dans [Neb82, Los84] dans le cas des groupes lo-

calement compacts. Dans [HSS10], un multiplicateur de Fourier non complètement
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borné explicite du groupe libre F2 à générateurs a été construit. Le même résultat a

été fait dans [Boż82] en utilisant des ensembles lacunaires infinis. Il s’ensuit que la

conjecture a une réponse positive pour tout groupe discret contenant une copie de

F2 (par exemple, des groupes linéaires discrets finis sur un corps). Nous montrerons

le théorème suivant. L’idée de la preuve est très proche de celle du Théorème 2, et

nous n’utiliserons pas le fait que Γ contient F2 comme un sous-groupe.

Théorème 3. Soit Γ un réseau uniforme dans G = SL3(R). Alors, il existe un

multiplicateur de Fourier de Γ qui n’est pas complètement borné. En d’autres termes,

M0A(Γ) 6= MA(Γ).

Propriété (TSchur, G,K)

La propriété (TSchur, G,K) a été introduite dans [Lia16] comme un analogue de la

propriété (TSchur). Supposons que G est un groupe réductif sur un corp local, K est

son sous-groupe compact maximal, et Γ est un réseau de G satisfaisant la propriété

(TSchur, G,K). Alors, toutes les méthodes connues pour prouver la conjecture de

Baum-Connes échouent pour Γ. Dans notre contexte, la propriété TSchur, G,K)

s’oppose à l’existence de coupures modérées de la manière suivante.

Théorème 4. Soit H un sous-groupe fermé d’un groupe G localement compact non-

borné. Supposons que H satisfait la propriété (TSchur, G,K, `) pour un sous-groupe

compact K de G et une fonction de longueur propre ` de G. Alors (H, `|H) n’admet

pas de coupures modérées K-bi-invariantes.

Corollaire 1. Si G est non-borné et a la propriété (TSchur, G,K, `), alors (G, `) n’a

pas de coupures modérées.

Corollaire 2. Supposons que G soit un groupe infini de type fini et que H soit

un sous-groupe de type fini de G. Supposons que H soit au plus polynomialement

déformé dans G, c’est-à-dire qu’il existe k ≥ 0 tel que `H(x) ≤ k`G(x)k+k pour tout

x ∈ H, où `G et `H sont les fonctions de longueur de mot de G et H, respectivement.

Si H a la propriété (TSchur, G, {e}, `G), alors (H, `H) n’a pas de coupures modérées.

Il est à noter que le seul exemple connu satisfaisant la propriété (TSchur, G,K) est

le groupe H (ou tout sous-groupe discret de Sp4(Fq((π))) contenant H) des matrices

triangulaires supérieures dans Sp4(Fq((π))) dont les entrées sont dans Fq[π−1], et 1

sur la diagonale.
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Plus d’exemples

Les groupes hyperboliques [Oza08], les groupes CAT(0) cubiques de dimension finie

[Miz08], les groupes de Coxeter [Fen02], et les groupes agissant proprement sur un

produit des graphes hyperboliques à géométrie bornée [Ver19] ont tous des coupures

modérées caractéristiques complètement bornées. En outre, les groupes discrets

satisfaisants la propriété de Décroissance Rapide ont des coupures modérées car-

actéristiques. Nous fournirons en plus les exemples suivants.

Théorème 5. Les groupes suivants ont des coupures modérées caractéristiques

complètement bornées.

(i) ΓA = ZdoA Z pour tout d ∈ N et A ∈ SLd(Z).

(ii) Γp,q = Z[ 1
pq

] o p
q
Z pour tout p, q ∈ N premiers entre eux.

(iii) Groupe d’allumeur de réverbères Zp oZ pour tout p ∈ N.

(iv) Groupe de Baumslag-Solitar BS(p, q) = 〈a, t | tapt−1 = aq〉 pour tout p, q ∈ N.

Les exemples (i) − (iii) sont obtenus en utilisant Proposition 3.3.9 qui dit que

coupures modérées [caractéristiques] (complètement bornés) sont stables sous ex-

tension par un groupe à croissance polynomiale, et (ii) est utilisé pour montrer

(iv).

Organisation du manuscrit

Dans le Chapitre 1, nous rapellons les notions, telles que les représentations de

groupe et les algèbres de groupe. Dans le Chapitre 2, nous discuterons plus en détail

de la moyennabilité faible et de la propriété de Décroissance Rapide. Le Chapitre

3 est entièrement dédié aux coupures modérées [caractéristiques] (complètement

bornées). Dans la Section 3.1, nous donnerons les définitions des coupures modérées

et fournirons les premiers exemples en explorant les connexions à la moyennabilité

faible et à la propriété de Décroissance Rapide. Dans la Section 3.2, nous pro-

poserons une condition suffisante pour admettre des coupures modérées qui étend la

propriété de Décroissance Rapide. Dans la Section 3.3, nous étudierons les propriétés

de stabilité des coupures modérées. Dans la Section 3.4 et 3.5 nous prouverons les

Théorème 4 et 5. Dans la Section 3.6, nous prouverons les Théorème 2 et 3.
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Introduction

In this thesis, we will study four types of sequences of compactly supported contin-

uous functions on a locally compact group, namely (completely bounded) [charac-

teristic] tame cuts, and their growth in the algebra of (completely bounded) Fourier

multipliers. The precise definitions are given in Chapter 3. In what follows, we will

describe how tame cuts relate to some well-known properties and state our main

results.

Harmonic analysis

Let us recall some facts from classical harmonic analysis. For each integrable func-

tion f ∈ L1(T), we associate the trigonometric polynomials

SN [f ](t) =
N∑

n=−N

f̂(n)eint, where f̂(n) =

∫ 2π

0

f(t)e−intdt.

One can also write SN [f ] = DN ∗ f using the convolution product, where

DN =
N∑

n=−N

eint =
sin((N + 1/2)x)

sin(x/2)

is the Dirichlet kernel. It is a well-known fact that the sequence (SN [f ])N∈N does not

necessarily converge to f for any f ∈ L1(T) in the L1(T)-topology (or equivalently

in the topology of uniform convergence) [Kol23]. Indeed, should ‖DN ∗ f − f‖1 → 0

for all f ∈ L1(T), the convolution operator norms ‖DN‖1, N ∈ N must be bounded,

yet we have ‖DN‖1 = 4
π

log(N) + O(1) which are called the Lebesgue constants.

Later, it was proved in [MPS81] that such estimation O(log(N)) is asymptotically

minimal in the sense that for any sequence of characteristic kernels (kn)n∈N such

that for each n ∈ N the spectrum of kn contains the set {−n,−n+ 1, ..., n}, we have
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‖kn‖1 ≥ C log(N) for all n ∈ N. In our study of (completely bounded) characteristic

tame cuts, we aim to understand such asymptotic information for any discrete,

countable group. For that, we use the Fourier algebra A(G) and Fourier multiplier

algebras MA(G) and M0A(G). We note that when G is abelian, the Fourier algebra

A(G) is isomorphic to L1(Ĝ), and the algebras MA(G) and M0A(G) are isomorphic

to the measure group algebra M(Ĝ) via Fourier transform.

This idea to generalize properties of harmonic analysis on T is not new. The most

important one is John von Neumann’s amenability. Recall that a locally compact

group G is amenable if there is an approximate unit in the Fourier algebra A(G),

consisting of positive definite functions, that is a net (ϕn)n∈I of positive definite

functions in A(G) such that ‖ϕnf−f‖A → 0 for all f ∈ A(G). In the case of G = Z,

this is equivalent to the existence of a sequence (ψn)n∈N of normalized, positive,

trigonometric polynomials on T such that ‖ψn ∗ f − f‖1 → 0 for all f ∈ L1(T). An

example of such sequence is given by the Fejér kernels, defined by

FN =
1

N

N−1∑
n=0

Dn =
1

N

(
sin(Nx/2)

sin(x/2)

)2

.

In the definition of amenability, if we replace positive definite with supn ‖ϕn‖M0A <

∞, we get the definition of weak amenability. The smallest possible value Λ(G) of

supn ‖ϕn‖M0A exists and is called the Cowling Haagerup constant. Not all groups

are weakly amenable. If G is not weakly amenable, for any sequence (ϕn)n∈N of

A(G)-functions with ϕn → 1 uniformly on compact sets, the norm ‖ϕn‖M0A goes

to infinity. In this thesis, we propose to study the growth of ‖ϕn‖M0A and ‖ϕn‖MA

which is the essence of (completely bounded) tame cuts. Note that by repeating

the same functions in the sequence, we can make the growth of ‖ϕn‖M0A arbitrarily

slow, so we need an additional condition to control for that. To this end, we use a

proper length function ` : G → R+, and we require that ϕn takes value 1 on the

ball Bn = {x ∈ G : `(x) ≤ n}. Now, it is possible to talk about asymptotically

minimal growth of ‖ϕn‖M0A which depends on the group G and the length function

`. When G is weakly amenable, such growth is O(1) for any proper length function,

so the Cowling-Haagerup constant is finer information than completely bounded

tame cuts.
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Group algebras

Among topological groups, locally compact groups admit a unique (up to a constant

factor) left invariant, regular, Borel measure, called Haar measure. This measure is

one of the main tools to study the group via analysis, even though the group was

initially endowed only with a topological and algebraic structure. The first things

that we can construct using the Haar measure are the classical Lp(G) spaces. This

is an improvement compared to the spaces C(G), Cc(G), and Cb(G) of continuous

functions because the latter spaces can be constructed for any topological groups

regardless of the condition of local compactness. The Banach space L1(G) has a

*-algebra structure with the convolution product that comes from the group law.

We want to have C∗-algebras because the theory is richer on these particular *-

algebras. Unfortunately, L1(G) fails to be C∗-algebra with an exception for the

trivial group. We consider the *-representations of L1(G) to extract a C∗-algebra.

The most natural one is the (left) regular representation (λ, L2(G)), where λ(f) for

f ∈ L1(G) acts on the Hilbert space L2(G) by left convolution: λ(f)g = f ∗ g,

g ∈ L2(G). The completion C∗λ(G) (resp. L(G)) of λ(L1(G)) in the norm topology

(resp. strong operator topology) is called the reduced group C∗-algebra (resp. group

von Neumann algebra). Many important group properties such as amenability, a-

T-menability, weak amenability, Yu’s property A, and Kazhdan’s property (T) are

formulated in terms of these algebras. The unique Banach predual A(G) of L(G) is

called the Fourier algebra of G. It coincides with the space of all matrix coefficients

associated to the regular representation, endowed with the norm ϕ 7→ inf{‖ξ‖2‖η‖2 :

ξ, η ∈ L2(G), ϕ = 〈λ(·)ξ, η〉}. With the pointwise multiplication, A(G) becomes a

commutative Banach algebra. We refer readers to [Eym64] for the main properties

of these algebras.

Another important algebra coming from the group is the Fourier multipliers

MA(G) consisting of the bounded continuous functions that leave the Fourier alge-

bra A(G) invariant under pointwise multiplication. By the closed graph theorem,

each function in MA(G) defines a continuous linear map on A(G), and with the

corresponding operator norm, MA(G) becomes a Banach algebra. In [DCH85],

this space was characterized as multipliers of C∗λ(G) and L(G), so we can consider

completely bounded Fourier multipliers, M0A(G). This space has better characteri-

zations than the usual Fourier multipliers and enjoys some basic stability properties

(see [CH89, DCH85]). We want to see how tame cuts grow in these two spaces.
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When G is amenable, these two spaces are isometrically isomorphic, and the inclu-

sion map A(G)→MA(G) is isometric as well, so the calculations are slightly eased.

When G is abelian, we even have A(G) ∼= L1(Ĝ) and MA(G) = M0A(G) ∼= M(Ĝ)

as commutative Banach algebras. We will discuss these algebras and their relation

to group representations more in Chapter 1, .

Truncation operator

The behaviors of the operator norm in the reduced group C∗-algebra are notoriously

difficult to understand. For instance, Valette’s conjecture on Rapid Decay for uni-

form lattices in higher rank Lie groups is still open [Val02]. Different approaches

to understand the operator norm are studied for some particular cases: when G is

amenable, we have ‖λ(f)‖ = ‖f‖1 for all non-negative functions f ∈ Cc(G), and

when G is a connected simple Lie group, the Harish-Chandra spherical function φ0

satisfies ‖λ(f)‖ =
∫
G
φ0(x)f(x)dx for non-negative f ∈ Cc(G). On the other hand,

when a discrete group Γ admits characteristic tame cuts (ϕn)n∈N, we get asymp-

totic information of how the operator norm ‖λ(f)‖ is changed after truncating (or

cutting off) the function f ∈ C∗λ(Γ) to the support of ϕn. In many spaces, the

truncation process defines a norm decreasing operators. For instance, `p(G) for

1 ≤ p ≤ ∞ and more generally the space Cc(Γ) endowed with an unconditional

norm N , that is N(f) ≤ N(g) whenever |f | ≤ |g|. However, the situation is very

different in C∗λ(Γ). For instance, the Fourier multiplier norm of the characteristic

function ϕn = 1Z∩[−n,n] ∈ `∞(Z) is given by the Lebesgue constant

‖Mϕn : C∗λ(Z)→ C∗λ(Z)‖ = ‖ϕn‖MA = ‖Dn‖1 =
4

π
log n+O(1), (2)

and it is not bounded. From this, one can see that the (completely bounded)

characteristic tame cuts tell how far the C∗λ(Γ)-norm is from being unconditional.

Rapid Decay property

The Rapid Decay property was initially observed in [Haa79] for the free group F2 of

two generators and developed in [Jol90] where a proper name was given by Jolissaint.

Haagerup, by establishing the Rapid Decay property for F2, proved that there are

n-positive approximate units in the Fourier algebra A(F2). This shows that C∗λ(F2)
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has the n-positive approximation property for all n ∈ N but does not have the

completely positive approximation property.

An important application of the Rapid Decay property is in K-theory. Calcu-

lating the groups K∗(C
∗
λ(G)) of a given group G can be very difficult, but when

a group has the Rapid Decay property, for a sufficiently large parameter s ∈ R+,

the s-Sobolev space Hs
` (G) becomes a dense subalgebra of C∗λ(G) with the same

K-groups. Compared to the complicated operator norm of C∗λ(G), s-Sobolev space

norm has an explicit formula, which makes Hs
` (G) an easier target to study. Using

this idea, Lafforgue proved in [Laf98] that the Baum-Connes conjecture has an affir-

mative answer for any uniform lattices in SL3(R). This was a breakthrough result

for discovering the first discrete infinite group satisfying Baum-Connes conjecture

and Kazhdan’s property (T).

In this thesis, the Rapid Decay property plays an important role for providing

the first examples of discrete groups with characteristic tame cuts: discreteness

assures that the C∗λ(Γ)-norm always dominates the `2(Γ)-norm, and the Rapid Decay

property provides the converse inequality with polynomial factor. Some stability

results of the Rapid Decay property (e.g. [Jol90, Gar15]) are partially adaptable to

tame cuts. In addition, we will use Lafforgue’s result of uniform lattices in SL3(R)

to provide two applications of tame cuts.

Weak amenability

As previously mentioned, the notion of (completely bounded) tame cuts is an ana-

logue of weak amenability. Such similarity allows us to adapt ideas and techniques

from weak amenability. For example, the inequalities of [LDlS11], [dL13], and

[dLdlS18] directly imply that any higher rank simple Lie group with finite cen-

ter does not admit tame cuts, and none of its uniform lattices admits completely

bounded tame cuts.

The Cowling Haagerup constant is a Measure Equivalence (ME) invariant, shown

in [Oza12]. This was achieved by constructing an induction map Φ : `∞(Γ)→ `∞(Λ)

whose restrictions M0A(Γ)→M0A(Λ) and A(Γ)→ A(Λ) are norm decreasing. One

could think that the growth rate or degree of (completely bounded) tame cuts might

be ME-invariant. However, it seems not to be the case basically because the ME

has not much to do with group growth. Indeed, all discrete, countable, amenable

groups are in the same ME-class, and their growth can be quite arbitrary. Another
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issue is that the induction map does not preserve finite support. Nevertheless, we

managed to show the following result.

Theorem 1. Let Λ and Γ be two countable groups, (X, d) a metric space, and µ

a Borel measure on X. Suppose that there exist commuting, measure preserving,

distance preserving, proper, free actions Λ y X x Γ such that the Γ action admits

a precompact fundamental domain. Fix a base point v0 ∈ X and define the length

functions `Γ : δ ∈ Γ 7→ d(v0.δ, v0) and `Λ : s ∈ Λ 7→ d(s.v0, v0). If (Γ, `Γ) has

completely bounded tame cuts, so does (Λ, `Λ).

A lattice Γ of a locally compact group G is weakly amenable if and only if G

is weakly amenable [Haa16]. This result is achieved by using a norm decreasing

induction map M0A(Γ) → M0A(G). In particular, if G or Γ is amenable, we have

MA(Γ) → MA(G) continuous. The theorem below shows that amenability is es-

sential for the latter map to be continuous. The proof uses tame cuts and will be

given in Section 3.6.

Theorem 2. Let Γ be a lattice in G = SL3(R) with a compact fundamental domain

Ω. Then the map

Φ : MA(Γ)→MA(G), ϕ 7→ ϕ̂ = 1Ω ∗(ϕµΓ) ∗ 1̃Ω

is not bounded (possibly not well defined).

Consider the following open question.

Conjecture. Let Γ be a discrete group. If all Fourier multipliers of Γ are completely

bounded, that is M0A(Γ) = MA(Γ), then Γ is amenable.

The converse is already known by [Neb82, Los84] even for locally compact groups.

In [HSS10], an explicit non-completely bounded Fourier multiplier of the free group

F2 of two generators was constructed. The same result was made in [Boż82] using

infinite lacunary sets. It follows that the conjecture has a positive answer for any

discrete group containing a copy of F2 (e.g. finitely generated discrete linear groups

over a field). We will show the following theorem. The idea of the proof is very close

to that of Theorem 2, and we will not use the fact that Γ contains F2 as a subgroup.

Theorem 3. Let Γ be a uniform lattice in G = SL3(R). Then there is a Fourier

multiplier of Γ which is not completely bounded. In other words, M0A(Γ) 6= MA(Γ).
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Property (TSchur, G,K)

Property (TSchur, G,K) was introduced in [Lia16] as an analogue of property (TSchur).

Suppose that G is a reductive group over a local field, K is its maximal compact

subgroup, and Γ is a lattice of G satisfying property (TSchur, G,K). Then, all known

methods to prove the Baum-Connes conjecture fail for Γ. In our context, property

(TSchur, G,K) opposes the existence of tame cuts as follows.

Theorem 4. Let H be a closed subgroup of an unbounded locally compact group G.

Suppose that H satisfies property (TSchur, G,K, `) for some compact subgroup K and

a proper length function ` of G. Then (H, `|H) does not admit K-bi-invariant tame

cuts.

Corollary 0.0.1. If G is unbounded and has property (TSchur, G,K, `), then (G, `)

does not have tame cuts.

Corollary 0.0.2. Suppose that G is a finitely generated infinite group and H is a

finitely generated subgroup of G. Suppose that H is at most polynomially distorted

in G. Recall that H is polynomially distorted in G there exists k ≥ 0 such that

`H(x) ≤ k`G(x)k + k for all x ∈ H, where `G and `H are the word length functions

of G and H, respectively. If H has property (TSchur, G, {e}, `G), then (H, `H) does

not have tame cuts.

It is worth noting that the only known example satisfying property (TSchur, G,K)

is the group H (or any discrete subgroup of Sp4(Fq((π))) containing H) of upper

triangular matrices in Sp4(Fq((π))) whose entries are in Fq[π−1] and 1 on diagonal.

More examples

Hyperbolic groups [Oza08], finite dimensional cubical groups [Miz08], Coxeter groups

[Fen02], and groups acting properly on a product of finitely many hyperbolic graphs

with bounded geometry [Ver19], all have completely bounded characteristic tame

cuts. Also, the discrete groups satisfying Rapid Decay property have characteristic

tame cuts. We will provide the following examples.

Theorem 5. The following groups have completely bounded characteristic tame cuts.

(i) ΓA = ZdoA Z for any d ∈ N and A ∈ SLd(Z).
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(ii) Γp,q = Z[ 1
pq

] o p
q
Z for any coprime p, q ∈ N.

(iii) Lamplighter groups Zp oZ for any p ∈ N.

(iv) Baumslag-Solitar groups BS(p, q) = 〈a, t | tapt−1 = aq〉 for any p, q ∈ N.

The examples (i)− (iii) are achieved by proving Proposition 3.3.9 which states

(completely bounded) [characteristic] tame cuts are stable under extension by a

group with polynomial growth, and (ii) is used to prove (iv).

Organization of the manuscript

In Chapter 1, we will recall basic notions such as group representations and group

algebras. In Chapter 2, we will discuss weak amenability and Rapid Decay property

more. Chapter 3 is dedicated to (completely bounded) [characteristic] tame cuts. In

Section 3.1, we give the definitions of tame cuts and provide the first examples by

exploring connections to weak amenability and Rapid Decay property. In Section

3.2, we will propose a sufficient condition to admit tame cuts that extends the Rapid

Decay property. In Section 3.3, we will investigate the stability properties of tame

cuts. In Section 3.4 and 3.5, we will prove Theorem 4 and 5. In Section 3.6, we will

prove Theorem 2 and 3.
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Chapter 1

Preliminaries

Throughout the paper, G denotes a locally compact group and Γ denotes a discrete

countable group. We also denote by dx a left invariant Haar measure of G. Let f

be a measurable function on G. The Lp-norm of f is given by

‖f‖p =

(∫
G

|f |pdx
)1/p

if 1 ≤ p <∞, and

‖f‖∞ = ess supG |f | = inf{t ∈ R+ :

∫
1{|f |>t} = 0}

if p = ∞. Denote by Lp(G) the space of all measurable functions on G with finite

Lp-norm. We say two measurable functions are almost everywhere (a.e) equivalent

if their difference is 0 except on a null set. The Banach space Lp(G) is the quotient

of Lp(G) by a.e-equivalence endowed with the induced Lp-norm.

1.1 Group representations

Representations play an important role in the study of group theory. There are

many different kind of representations. The most popular ones are the unitary

representations. Some other representations, such as uniformly bounded or even

unbounded representations, can be used for certain problems. We give a short

introduction to these representations.

In general, by a representation of a group G, we understand a group homo-

morphism π : G → GL(V ), where V is a vector space and GL(V ) is the group
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1.1. GROUP REPRESENTATIONS CHAPTER 1. PRELIMINARIES

of linear automorphisms of V . As far as this paper is concerned, we only consider

representations on Hilbert spaces over the complex field. When (H, 〈, 〉) is a Hilbert

space, we denote by B(H) the space of all bounded operators, by GL(H) the group

of invertible operators, and by U(H) the group of all unitary operators on H. To

make use of the topological structure of the group, we usually consider continuous

representations. The space B(H) has its natural topology given by the operator

norm

‖T‖ = sup{‖Tv‖ : v ∈ H, ‖v‖ = 1}, (∀T ∈ B(H)).

In some situations, the norm topology could be not convenient to work with. For

example, the left regular representation (λ, L2(G)), one of the most natural rep-

resentations, is usually not continuous when U(L2(G)) is endowed with the norm

topology. On the other hand, it is always continuous when U(L2(G)) is endowed

with the strong operator topology (SOT). Recall that SOT on B(H) is the topology

induced by the seminorms

Nv : T ∈ B(H) 7→ ‖Tv‖, v ∈ H,

and the weak operator topology (WOT) on B(H) is the topology induced by the

seminorms

Nv,w : T ∈ B(H) 7→ |〈Tv, w〉|, v, w ∈ H .

Definition 1.1.1. Let (H, 〈, 〉) be a Hilbert space, and π a group homomorphism

from a locally compact group G into GL(H). We say that the couple (π,H) is a

continuous representation of G if π is continuous when GL(H) is endowed with the

SOT, equivalently if the maps

x ∈ G 7→ π(x)v ∈ H

are continuous for all v ∈ H. If (π,H) is a continuous representation of G, and v, w

are two vectors in H, the function

cv,w : x ∈ G 7→ 〈π(x)v, w〉

is continuous. This function is called the matrix coefficient of π associated to the
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vectors v, w ∈ H.

Throughout the paper, all representations are continuous unless otherwise stated.

Definition 1.1.2. Two representations (πi,Hi), i = 1, 2 of a group G are similar if

there is an invertible bounded operator T : H1 → H2 such that

T−1π2(x)T = π1(x), (∀x ∈ G).

Furthermore, if T is unitary, we say that the two representations are unitarily equiv-

alent and write π1 ' π2.

Definition 1.1.3. Suppose that (π,H) is a representation of a group G. A closed

subspace K of H is said G-invariant if the set {π(x)v : x ∈ G, v ∈ K} sits inside K.

The representation (π,H) is irreducible if there is no closed G-invariant subspace

different from {0} and H.

1.1.1 Unitary representations

Definition 1.1.4. A representation (π,H) of a group G is called unitary represen-

tation if it takes image in the unitary group U(H).

Example 1.1.5. The simplest example of a unitary representation is the trivial

representation:

x ∈ G 7→ idH ∈ U(H), (∀x ∈ G).

Example 1.1.6. The left regular representation defined as

λ : G→ U(L2(G)), λ(x)f(y) = f(x−1y)

can be obtained for any locally compact group. Similarly, we can define the right

regular representation as

ρ : G→ U(L2(G)), λ(x)f(y) = f(yx)∆(x)1/2,

where ∆ : G → R>0 is the modular function of G. It is worth noting that the left

and right regular representations are unitarily equivalent.
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The left regular representation is a particular case of the classical way to induce

a unitary representation from a group action.

Proposition 1.1.7 (Proposition A.6.1 of [BdlHV08]). Let G be a σ-compact locally

compact group, let (Y, µ) be a σ-finite measurable space such that L2(Y, µ) is separa-

ble, and let G× Y → Y be a measurable action such that µ is quasi-invariant, that

is, for each measurable set A ⊆ Y , we have µ(A) = 0 if and only if µ(xA) = 0 for

all x ∈ G. Then the group homomorphism λY : G→ B(L2(Y, µ)) defined by

[λY (x)f ] (y) = f(x−1.y)

(
dx∗µ

dµ

)1/2

(y), (∀f ∈ L2(Y, µ), ∀x ∈ G,∀y ∈ Y )

is a unitary representation.

The representation (λY , L
2(Y, µ)) is called the Koopman representation associ-

ated to the measurable action G y (Y, µ). When G is discrete, we can omit the

σ-compactness, σ-finiteness, and separability conditions.

Lemma 1.1.8. Suppose that a discrete countable group Γ acts freely on a measure

space (X,µ) by measure preserving transformations. Suppose that the action Γ y X

has a measurable fundamental domain, that is a measurable set Ω ⊆ X such that

{s.Ω : s ∈ Γ} is a partition of X. Then the Koopman representation (λX , L
2(X,µ))

of Γ is unitarily equivalent to λΓ ⊗ idL2(Ω,µ).

Proof. By hypothesis, each element x ∈ X can be written as x = γ(x).ω(x) for

a unique γ(x) ∈ Γ and ω(x) ∈ Ω. With this notation, the action Γ y (Ω, µ),

(s, w) 7→ ω(s.w) is measure preserving and free. Let µΓ be the counting measure

on Γ. Then the action Γ y (X,µ) can be seen as the measure preserving action

Γ y (Γ × Ω, µΓ ⊗ µ) defined by s.(t, w) = (γ(st.w), ω(st.w)) for all s, t ∈ Γ and

w ∈ Ω. We have unitary operator V : `2(Γ) ⊗ L2(Ω) → L2(X), f ⊗ g 7→ Ff,g,

where Ff,g(t.w) = f(t)g(w) for all t ∈ Γ, w ∈ Ω, and via this map, the Koopman

representation (λX , L
2(X)) is unitarily equivalent to the representation σ on `2(Γ)⊗

L2(Ω) defined by

σ(s)[f ⊗ g] = V ∗λX(s)V Ff,g = [λΓ(s)f ]⊗ g, (∀f ∈ `2(Γ), g ∈ L2(Ω)),

which is nothing but λΓ ⊗ idL2(Ω).

Definition 1.1.9. We denote by Σ = Σ(G) all unitary representations of G up to

unitary equivalence and by Ĝ the irreducible ones.
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The family Ĝ for a locally compact abelian group G, in which case Ĝ is called

the Pontryagin dual of G, is special for having a structure of locally compact abelian

group. Indeed, by Schur’s lemma, all irreducible representations of G are one di-

mensional, so the family Ĝ is identified with Hom(G,T), where T ∼= U(C) is the unit

sphere in the complex plane, and the Hom(G,T) is a locally compact group equipped

with the pointwise multiplication and the topology of uniform convergence on com-

pact sets. For example, when G = Z, the Pontryagin dual is Ĝ ∼= Hom(Z,T) ∼= T.

One of the nicest facts of the Pontryagin duality is that it is reflexive:
̂̂
G is isomor-

phic to G as locally compact groups. Another important fact is that the Fourier

transform

F : L2(G, dx)→ L2(Ĝ, dχ), [F(f)] (χ) =

∫
G

f(x)χ(x)dx, (∀f ∈ L2(G), ∀χ ∈ Ĝ)

gives a Hilbert space isomorphism for a suitable choice of Haar measure dχ on Ĝ.

1.1.2 Uniformly bounded representations

Definition 1.1.10. A representation (π,H) is said uniformly bounded if the image

of π is bounded in B(H), that is the quantity ‖π‖ = supx∈G ‖π(x)‖ is finite.

It is clear that any unitary representation is uniformly bounded by 1. More-

over, unitary representations can be used to construct many non-trivial uniformly

bounded representations.

Proposition 1.1.11. Any representation similar to a unitary representation is uni-

formly bounded. More precisely, if (π,H) is a unitary representation of a locally

compact group G, and if T is an invertible operator on H, then the map

πT : G→ GL(H), πT (x) = T−1π(x)T, (∀x ∈ G)

defines a uniformly bounded representation with ‖πT‖ ≤ ‖T‖‖T−1‖.

Proof. Since the map x ∈ G 7→ πT (x)v ∈ H is a composition of the two continuous

maps

x ∈ G 7→ π(x)Tv ∈ H and T−1 : H → H,
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it follows that πT is continuous. The calculation

πT (xy) = T−1π(xy)T = T−1π(x)TT−1π(y)T = πT (x)πT (y)

shows that πT is a representation. Since

‖πT (x)‖ = ‖T−1π(x)T‖ ≤ ‖T−1‖‖T‖,

πT is uniformly bounded.

It is interesting to know if any uniformly bounded representation is similar to a

unitary representation. In that direction, a positive answer was given for amenable

groups in [Dix50, Day50]. However, this fails for some non-amenable groups. For

example, any discrete group containing a copy of the free group of two generators

admits a uniformly bounded representation which is not similar to any unitary

representation. We refer to [Pis01] where the problem is exclusively interpreted.

1.1.3 Positive definite functions

Definition 1.1.12. Let X be a set. A function of the form k : X×X → C is called

a kernel on X. A kernel k : X × X → C is positive definite if for any elements

x1, ..., xn of X, the matrix (k(xi, xj))i,j ∈ Mn(C) defines a positive matrix: for any

a1, ..., an ∈ C, we have ∑
1≤i,j≤n

aiajk(xi, xj) ≥ 0.

A function ϕ : G→ C on a group G is positive definite if the kernel kϕ : G×G→ C
defined by kϕ(x, y) = ϕ(y−1x) is positive definite.

Example 1.1.13. Let H be a Hilbert space, X a set, and f : X → H a map. The

map

k : X ×X → H, k(x, y) = 〈f(x), f(y)〉 (1.1)
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defines a positive definite kernel. Indeed, if x1, ..., xn ∈ X and a1, ..., an ∈ C, then

∑
1≤i,j≤n

aiajk(xi, xj) =

∥∥∥∥∥
n∑
i=1

aif(xi)

∥∥∥∥∥
2

≥ 0.

Example 1.1.14. Let (π,H) be a unitary representation of G. The matrix coef-

ficient cv(x) = 〈π(x)v, v〉 defines a positive definite function on G for all vectors

v ∈ H. To see that, we could apply the function f(x) = π(x)v on (1.1):

cv(y
−1x) = 〈π(x)v, π(y)v〉.

This function is called the positive definite function associated to the unitary rep-

resentation (π,H).

Theorem 1.1.15. (GNS construction) Every positive definite kernel comes from

a function as in (1.1). Moreover, if ϕ : G → C is a continuous positive definite

function, then there is a unitary representation (π,H) and a vector v ∈ H such that

ϕ(x) = 〈π(x)v, v〉 for all x ∈ G.

Remark 1.1.1. A positive definite function ϕ is uniformly bounded by ϕ(e). Indeed,

|ϕ(x)| = |〈π(x)v, v〉| ≤ ‖π(x)‖‖v‖2 = 〈π(e)v, v〉 = ϕ(e) by the theorem above.

Furthermore, if ϕ is continuous, it is also uniformly continuous because we have

|ϕ(x)− ϕ(y)| = |〈(π(x)− π(y))v, v〉|

= |〈(π(e)− π(y−1x))v, π(y)v〉|

≤ ‖v − π(y−1x)v‖‖v‖

for all x, y ∈ G.

Definition 1.1.16. A kernel k : X ×X → R is conditionally negative definite if

(i) k(x, x) = 0 and k(x, y) = k(y, x) for all x, y ∈ X,

(ii)
∑

1≤i,j≤n
aiajk(xi, xj) ≤ 0 for all ai ∈ R, xi ∈ G, and n ∈ N with

∑n
i=1 ai = 0.

A function ϕ : G → C on a group G is conditionally negative definite if the kernel

kϕ : G×G→ C is conditionally negative definite.
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Example 1.1.17. Let H be a Hilbert space and f : X → H a map. The map

ϕ : X ×X → H, k(x, y) = ‖f(x)− f(y)‖2 (1.2)

defines a conditionally negative definite kernel. Indeed, if x1, ..., xn ∈ X and a1, ..., an ∈
R such that

∑n
i=1 ai = 0, then

∑
1≤i,j≤n

aiajk(xi, xj) = −2

∥∥∥∥∥
n∑
i=1

aif(xi)

∥∥∥∥∥
2

≤ 0.

Theorem 1.1.18 (GNS construction). Every conditionally negative definite kernel

comes from a function as in (1.2).

Theorem 1.1.19 (Schoenberg’s theorem). A kernel k : X ×X → R+ is condition-

ally negative definite if and only if the kernel exp(−tk) : X × X → C is positive

definite for all t ∈ R+.

Example 1.1.20 (Lemma 1.2 of [Haa79]). The combinatorial distance d of a tree

T = (V,E) is conditionally negative definite. Consequently, the kernel (v, w) ∈
V × V 7→ exp(−td(v, w)) is positive definite for any t > 0.

Proof. Fix a base point v0 ∈ V . We equip the set E of edges with directions so that

each edge points toward v0. For any vertex v ∈ V , denote γv : {0, 1, ..., d(v, v0)} → V

the geodesic from v to v0. Define the map f : V → `2(E) by

f(v) =

d(v,v0)−1∑
i=0

δ(γv(i),γv(i+1)), (∀v ∈ V ).

Then we have

d(v, w) = ‖f(v)− f(w)‖2
`2(E), (∀v, w ∈ V ).

Now, the statement directly follows from Example 1.1.17 and Schoenberg’s theorem.
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1.2 Group algebras

In this section, we will recall group C∗-algebras, group von Neumann algebra, Fourier

and Fourier-Stieltjes algebras, and Fourier multiplier algebras.

1.2.1 Group measure algebra, M(G)

Definition 1.2.1. Let X be a locally compact Hausdorff space. Denote by B the

Borel space of X, that is the σ-algebra generated by the topology of X. A (complex)

measure is a map µ : B → C such that

µ

(⋃
i∈N

Ei

)
=
∑
i∈N

µ(Ei)

for any disjoint measurable subsets Ei ∈ B, i ∈ N. A measure is positive if it takes

non-negative values. Given a complex measure µ, its total variation |µ| is a positive

measure defined as

|µ|(E) = sup
F

∑
F∈F

|µ(F )|, (∀E ∈ B),

where the supremum is taken over all measurable partitions F of E. A positive

measure ν is inner regular if

ν(E) = sup {ν(K) : K ⊆ E,K compact} , (∀E ∈ B),

outer regular if

ν(E) = inf {ν(U) : E ⊆ U,U open} , (∀E ∈ B),

and regular if ν is both inner and outer regular. A complex measure µ is regular

(resp. finite) if its total variation |µ| is regular (resp. |µ|(X) is finite). We denote

by M(X) the Banach space of all complex regular finite measures on X endowed

with the total variation norm µ 7→ |µ|(X).

By Riesz representation theorem, M(X) is isometrically isomorphic to the dual

Banach space (C0(X))∗ via µ 7→
∫
G
dµ (cf. [Rud87, Theorem 6.19]). The Dirac

measures δx, x ∈ X are typical elements of M(G). When X is a locally compact

group, say X = G, the Haar measure dx is in M(G) if and only if dx is finite if and
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only if G is compact. Nonetheless, fdx is finite and regular for any f ∈ L1(G). This

gives an isometric identification of L1(G) with a closed subspace of M(G). Recall

that a *-algebra is an algebra A endowed with an involution operator x 7→ x∗, x ∈ A.

In the following, we use the group law to make M(G) a *-algebra. Moreover, L1(G)

becomes a closed two-sided ideal in M(G).

Definition 1.2.2. The measure algebra of a locally compact group G is the Banach

space M(G) of complex regular finite measures on G. It has a Banach *-algebra

structure with

� Total variation norm: |µ|(G) = sup {
∑

i |µ(Ei)| : (Ei)i∈I is a partition of G}

� Convolution product: (µ ∗ ν)(E) =
∫
G

∫
G
1E(xy)dµ(x)dν(y)

� Involution: µ∗(E) = µ(E−1)

for all µ, ν ∈M(G) and E ∈ B.

Theorem 1.2.3. Let G be a locally compact group. The map ι : f ∈ L1(G) 7→
fdx ∈M(G) is well defined and identifies L1(G) with a two-sided symmetric closed

ideal of M(G).

Proof. To see that ι is well defined, we only need to check that g ∈ C0(G) 7→∫
G
fgdx defines a continuous functional for any f ∈ L1(G), which is obviously true.

Moreover, one easily checks that ι is isometric, and thus ι(L1(G)) is closed in M(G)

since L1(G) is complete.

Take any µ ∈ M(G), f ∈ L1(G)+ and E ∈ B with
∫
G
1E dx = 0. By Radon-

Nikodym’s theorem, since

(µ ∗ fdx)(E) =

∫
G

∫
G

1E(xy)f(y)dµ(x)dy

(Fubini + left invariance) =

∫
G

1E(y)

(∫
G

f(x−1y)dµ(x)

)
dy

(conventionally 0 · ∞ = 0 ) = 0,

and

(fdx)∗(E) = (fdx)(E−1) =

∫
G

f(x)1E(x−1)dx =

∫
G

f(x−1)∆(x−1)1E(x)dx = 0,

we deduce that ι(L1(G)) is a two-sided symmetric ideal of M(G).
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Remark 1.2.1. We do not distinguish f ∈ L1(G) and ι(f) = fdx ∈M(G). From the

proof above, we can extract the convolution product and the involution on L1(G):

(f ∗ g)(x) =

∫
G

f(y)g(y−1x)dy and f ∗(x) = f(x−1)∆(x−1)

for all f, g ∈ L1(G) and x ∈ G. Two more notations will be useful:

f̌(x) = f(x−1) and f̃(x) = f(x−1).

1.2.2 Full and reduced group C∗-algebras, C∗(G) and C∗λ(G)

A C*-algebra is a Banach *-algebra A such that the C∗-condition ‖x∗x‖ = ‖x‖2 is

satisfied for all x ∈ A. If H is a Hilbert space, the space B(H) of bounded operators

has a natural C∗-algebra structure. It follows that any closed *-subalgebra A of B(H)

inherits the C∗-algebra structure. The converse statement is known as Gelfand-

Neimark’s theorem: any C∗-algebra can be identified as a closed *-subalgebra of

B(H) for some Hilbert space H.

The space C0(G) of continuous functions vanishing at infinity becomes a C∗-

algebra with pointwise multiplication and complex conjugation. The same is true

for the space Cb(G) of bounded continuous functions. However, these C∗-algebras

have nothing to do with the group law. This downside is not the case for L1(G)

thanks to the convolution product. However, L1(G) is a C∗-algebra if and only if

G = {e}.

Proposition 1.2.4. Let G be a locally compact group. The *-algebra L1(G) is a

C∗-algebra if and only if G is a trivial group.

Proof. We will construct an integrable function g ∈ L1(G) that does not satisfy the

C∗-condition. When G = Z, we can choose g = δ0 + iδ1 + δ2 ∈ `1(Z). Our proof for

general locally compact groups is an extension of this idea.

Take any element x ∈ G different from the identity e. As we assume that all

topological groups are Hausdorff, there exist disjoint compact neighborhoods U and

V of e and x, respectively. The neighborhood

W = (U ∩ x−1V ) ∩ (U ∩ x−1V )−1
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of the identity is compact and symmetric and satisfies

W ∩ xW = xW ∩ x2W = ∅.

The function f = χW +χ∗W = χW (1 + ∆−1) defines a self-adjoint integrable positive

function on G. We claim that the function

g = f + δx2 ∗ f + iδx ∗ f

does not satisfy the C∗-condition. Since the supports W ∪ x2W and W of the

functions f + δx2 ∗ f and iδx ∗ f are disjoint, and since the function f + δx2 ∗ f is

positive, we can calculate

‖g‖1 = ‖f + δx2 ∗ f + iδx ∗ f‖1

(disjoint supports) = ‖f + δx2 ∗ f‖1 + ‖iδx ∗ f‖1

(positivity) = ‖f‖1 + ‖δx2 ∗ f‖1 + ‖iδx ∗ f‖1

(left invariance) = 3‖f‖1

On the other hand, we have

‖g∗ ∗ g‖1 = ‖(f − if ∗ δx−1 + f ∗ δx−2)(f + iδx ∗ f + δx2 ∗ f)‖1

= ‖3f ∗ f + f ∗ δx2 ∗ f + f ∗ δx−2 ∗ f‖1

≤ 5‖f‖2
1 < ‖g‖2

1,

where the “≤” inequality is valid because the Banach algebra norm is submultiplica-

tive and the Haar measure is left invariant. This shows that g ∈ L1(G) does not

satisfy the C∗-condition.

To obtain a C∗-algebra from L1(G), we use unitary representations of G.

Proposition 1.2.5. Let (π,H) be a unitary representation of a locally compact

group G. Then there is a unique *-homomorphism π̃ : L1(G)→ B(H) satisfying

〈π̃(f)v, w〉 =

∫
G

f(x)〈π(x)v, w〉dx

for all f ∈ L1(G) and v, w ∈ H.
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Proof. Note that the expression 〈π̃(f)v, w〉 =
∫
G
f(x)〈π(x)v, w〉dx makes sense for

any f ∈ L1(G) and v, w ∈ H since the matrix coefficients are bounded and contin-

uous. Also, we have

‖π̃(f)‖ = sup |〈π̃(f)v, w〉| ≤ sup

∫
G

|f(x)〈π(x)v, w〉|dx ≤ ‖f‖1,

where the supremums are taken over v, w ∈ H with ‖v‖ = ‖w‖ = 1. It is left to

prove that π̃ is a *-homomorphism. Linearity is obvious. Take any f, g ∈ L1(G).

Involution preservation:

〈π̃(f ∗)v, w〉 =

∫
G

f(x−1)∆(x−1)〈π(x)v, w〉dx

=

∫
G

f(x)〈π(x)w, v〉dx = 〈π̃(f)∗v, w〉.

Multiplicativity:

〈π̃(f ∗ g)v, w〉 =

∫
G

(f ∗ g)(x)〈π(x)v, w〉dx

=

∫
G

∫
G

f(y)g(y−1x)〈π(x)v, w〉dydx

(Fubini) =

∫
G

f(y)

(∫
G

g(y−1x)〈π(x)v, w〉dx
)
dy

(left invariance) =

∫
G

f(y)

(∫
G

g(x)〈π(yx)v, w〉dx
)
dy

=

∫
G

f(y)〈π(y)π̃(g)v, w〉dy

= 〈π̃(f)π̃(g)v, w〉.

By abuse of notation, we will use π for both π and π̃.

Example 1.2.6. Consider the regular representation (λ, L2(G)). The operator λ(f)

for f ∈ L1(G) is nothing but a left convolution operator: λ(f)ξ = f ∗ ξ for all

ξ ∈ L2(G).

Definition 1.2.7. Let (π,H) be a unitary representation of G. The norm closure

C∗π(G) of π(L1(G)) in B(H) is called the group C*-algebra of G associated to the

representation (π,H). The group C*-algebra C∗λ(G) associated to the (left) regular
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representation (λ, L2(G)) is called the (left) reduced group C*-algebra. The group

C*-algebra C∗(G) associated to the representation (πmax,⊕π∈ΣHπ) defined by

πmax(f) [⊕π∈Σvπ] = ⊕π∈Σπ(f)vπ, (∀f ∈ L1(G),∀vπ ∈ Hπ, ∀π ∈ Σ)

is called the full group C*-algebra of G.

These C∗-algebras are extensively used to study the group G.

Definition 1.2.8. Let (πi,Hi), i = 1, 2 be two unitary representations of a locally

compact group G. We say that π1 is weakly contained in π2 and denote π1 ≺ π2 if

we have

‖π1(f)‖ ≤ ‖π2(f)‖, (∀f ∈ L1(G)).

If π1 ≺ π2 and π2 ≺ π1, we say that π1 and π2 are weakly equivalent and write

π1 ∼ π2.

In other words, we say that π1 is weakly contained in π2 if the identity map on

L1(G) gives rise to a norm decreasing surjection C∗π2(G) � C∗π1(G). In particular, we

always have the surjection C∗(G) � C∗λ(G). The injectivity of this map characterizes

the amenability of G, which is known as Hulanicki’s theorem [Hul64].

Let us end this subsection by illustrating the reduced group C∗-algebra of abelian

groups, which is also the full group C∗-algebra since all abelian groups are amenable.

Proposition 1.2.9. If G is a locally compact abelian group, we have the *-isomorphism

C∗λ(G)→ C0(Ĝ), λ(f) 7→ F(f), (∀f ∈ Cc(G)),

where F is the Fourier transform.

Proof. Since the Fourier transform gives an isomorphism between the Hilbert spaces

L2(G) and L2(Ĝ), we have a *-isomorphism

G : B(L2(G))→ B(L2(Ĝ)), T 7→ FTF−1.

The algebra C0(Ĝ) can be seen as a concrete C∗-subalgebra of B(L2(Ĝ)), where

φ ∈ C0(Ĝ) acts on L2(Ĝ) by pointwise multiplication: Mφf = φf , f ∈ L2(G). A
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routine calculation shows that

G(λ(f))ξ = Fλ(f)F−1ξ = F(f)ξ, (∀f ∈ Cc(G),∀ξ ∈ L2(Ĝ)),

so G(λ(f)) is a pointwise multiplication operator on L2(Ĝ). To see that F(f) is

continuous, take any net (χi) in Ĝ converging to χ ∈ Ĝ. Since f is compactly

supported,

|F(f)(χi)−F(f)(χ)| =
∣∣∣∣∫
G

f(x)χi(x)− χ(x)dx

∣∣∣∣ ≤ ‖f‖1‖χi − χ‖L∞(supp(f)) → 0.

Therefore, we have F(Cc(G)) ⊆ L2(Ĝ) ∩ C(Ĝ) ⊆ C0(Ĝ) and thus the map

C∗λ(G)→ C0(Ĝ), λ(f) 7→ F(f), (∀f ∈ Cc(G))

is well defined. The surjectivity follows from Stone–Weierstrass’ theorem.

1.2.3 Group von Neumann Algebra, L(G)

In [vN30], John von Neumann introduced a special kind of C∗-algebras under the

name “rings of operators” that today we call von Neumann algebras. Originally, a

von Neumann algebra is defined as a WOT-closed ∗-subalgebra of B(H) for some

Hilbert space H, and, in the same article, von Neumann algebras were character-

ized by being equal to their bicommutant. Another characterization was given in

[Sak71], namely a C∗-algebra admits a (unique) Banach predual if and only if it is

a von Neumann algebra. For that spirit, von Neumann algebras are also called W ∗-

algebras. This characterization proves that the first two definitions do not depend

on the faithful *-representation.

Definition 1.2.10. Let G be a locally compact group. The group von Neumann

algebra L(G) is the smallest von Neumann subalgebra of B(L2(G)) that contains

the left translation operators λ(G) = {λ(x) : x ∈ G}.

By von Neumann’s bicommutant theorem, the group von Neumann algebra also

can be defined as L(G) = λ(G)′′. Any operator T ∈ B(L2(G)) commuting with the

left translations also commute with λ(f) for any f ∈ L1(G) because

〈Tλ(f)ξ, η〉 =

∫
G

f(x)〈λ(x)ξ, T ∗η〉dx =

∫
G

f(x)〈λ(x)Tξ, η〉dx = 〈λ(f)Tξ, η〉.
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Therefore, L(G) is also WOT-completion of λ(L1(G)). The density argument shows

that L(G) = λ(G)′′ = λ(L1(G))′′ = λ(Cc(G))′′ = C∗λ(G)′′.

Proposition 1.2.11. When G is a locally compact abelian group, the Fourier trans-

form identifies L(G) ∼= L∞(Ĝ) as Banach *-algebras.

Proof. We have seen that the reduced group C∗-algebra of G can be identified with

the pointwise multiplication operators M(C0(Ĝ)) = {Mφ ∈ B(L2(Ĝ)) : φ ∈ C0(Ĝ)}.
The multiplication operators M(L∞(Ĝ)) = {Mφ ∈ B(L2(Ĝ)) : φ ∈ L∞(Ĝ)} com-

mute with M(C0(Ĝ)). Taking into account that the commutant A′ of a commutative

subalgebra A contains A, we deduce that M(C0(Ĝ))′′ contains M(L∞(Ĝ)). Since

M(L∞(Ĝ)) is maximal abelian in B(L2(Ĝ)), we have L(G) ∼= L∞(Ĝ).

Interestingly, the group von Neumann algebra L(G) is not sufficient to restore

the group G. The following theorem shows that there are many different groups

whose von Neumann algebras are isomorphic.

Theorem 1.2.12 ([Con76]). Let Γ be a countable amenable group with infinite

conjugacy classes except for the trivial one. Then the group von Neumann algebra

L(Γ) is isomorphic to the hyperfinite II1 factor.

1.2.4 Fourier and Fourier-Stieltjes algebras, A(G) and B(G)

In this subsection, we will describe the Fourier algebra A(G) – the unique Banach

predual of L(G). We will see its connection to the dual space B(G) of the full group

C∗-algebra, also known as the Fourier-Stieltjes algebra.

Definition 1.2.13. Let G be a locally compact group and let (π,H) be a uni-

tary representation of G. We denote by Bπ(G) the space of all matrix coefficients

associated to a representation that is weakly contained in π:

Bπ(G) = {〈π′(·)v, w〉 ∈ Cb(G) : (π′,H′) ≺ (π,H) and v, w ∈ H′}.

We endow Bπ(G) with the norm

‖f‖Bπ = inf{‖v‖‖w‖ : (π′,H′) ≺ (π,H), v, w ∈ H′, and f = 〈π′(·)v, w〉}.

For example, the space of all matrix coefficients of the unitary representations of

G is exactly Bπmax(G). This space is called the Fourier-Stieltjes algebra of G, and
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we simply write B(G) instead of Bπmax(G). The Fourier-Stieltjes algebra is indeed

an algebra under the pointwise multiplication because a product of two matrix

coefficients is again a matrix coefficient:

〈π1(·)v1, w1〉H1〈π2(·)v2, w2〉H2 = 〈(π1 ⊗ π2)(·)v1 ⊗ v2, w1 ⊗ w2〉H1⊗H2 .

The Banach space Bλ(G) is isometrically identified as a closed ideal of Fourier-

Stieltjes algebra, which follows from the Fell’s absorption principle. We, however,

note that not all spaces Bπ(G) are closed under the pointwise multiplication.

Theorem 1.2.14 ([Eym64]). Let G be a locally compact group and let (π,H) be

a unitary representation of G. The space Bπ(G) is isometrically isomorphic to the

dual space of C∗π(G). The duality is given by

〈cv,w, T 〉 = 〈Tv, w〉, (∀v, w ∈ H,∀T ∈ C∗π(G)).

When T is of the form π(f) for some f ∈ L1(G), the duality formula is simplified

as

〈cv,w, π(f)〉 = 〈π(f)v, w〉 =

∫
G

cv,w(x)f(x)dx.

Here, the functions cv,w are the matrix coefficients defined in Definition (1.1.1).

Definition 1.2.15. The Fourier algebra A(G) is the subspace of B(G) consisting

of the matrix coefficients of the left regular representation.

In the following theorem, we collect the main properties of the Fourier algebra.

We refer to [Eym64] for the proof.

Theorem 1.2.16. Let G be a locally compact group.

(i) A(G) is a closed ideal of B(G).

(ii) The space Cc(G) ∩B(G) is a dense subspace of A(G).

(iii) We have isometric embeddings A(G) ⊆ Bλ(G) ⊆ B(G).

(iv) For ϕ ∈ A(G), we have ‖ϕ‖A = inf{‖ξ‖2‖η‖2 : ϕ = ξ ∗ η̃, ξ, η ∈ L2(G)}
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(v) A(G) is the unique predual of the group von Neumann algebra L(G). The

duality is given by

〈ϕ, λ(f)〉 =

∫
G

ϕfdx, (∀ϕ ∈ A(G),∀f ∈ L1(G))

or equivalently

〈〈λ(·)ξ, η〉, T 〉 = 〈Tξ, η〉, (∀ξ, η ∈ L2(G),∀T ∈ L(G)).

Proposition 1.2.17. If G is a locally compact abelian group, the Fourier algebra

A(G) (resp. B(G)) is isometrically isomorphic to L1(Ĝ) (resp. M(Ĝ)) as Banach

algebras.

Proof. Since L1(Ĝ) is the unique Banach predual of L∞(Ĝ) ∼= L(G), the Fourier

algebra A(G) is indeed isometrically isomorphic to L1(Ĝ) as Banach spaces, so we

only need to show the multiplication correspondence. The identification A(G) ∼=
L1(Ĝ) is given by the transpose of the Fourier transform

G∗|L1(Ĝ) : L1(Ĝ)→ A(G)

which coincides with the Fourier transform of Ĝ. Moreover, for any φ1, φ2 ∈ L1(Ĝ)

and f ∈ L1(G), we have

〈G∗(φ1 ∗ φ2), λ(f)〉 = 〈φ1 ∗ φ2,F(f)〉

=

∫
Ĝ

(φ1 ∗ φ2)(χ)

∫
G

f(x)χ(x)dxdχ

(Fubini) =

∫
G

f(x)

∫
Ĝ

(φ1 ∗ φ2)(χ)χ(x)dχdx

=

∫
G

f(x)F(φ1 ∗ φ2)(x)dx

=

∫
G

f(x)F(φ1)(x)F(φ2)(x)dx

= 〈G∗(φ1)G∗(φ2), λ(f)〉.

The assertion B(G) ∼= M(Ĝ) is proven similarly.

The following lemma shows that the Fourier algebra contains sufficiently many

functions to separate the points of G.
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Lemma 1.2.18 (Eymard’s trick). Let G be a locally compact group, K a compact

subset, and U an open subset containing K. Then there exists a positive function

f ∈ A(G) such that f |K = 1 and f |G\U = 0.

Proof. For each point k ∈ K, we can find a precompact symmetric open neighbor-

hood Vk of the identity such that kV 3
k ⊆ U by considering the continuity of the mul-

tiplication. Since K is compact, there exist finite number of elements k1, ..., kn ∈ K
such that K ⊆

⋃n
i=1 kiVki . Note that the set V =

⋂n
i=1 Vki is precompact and open.

It follows that

KV 2 ⊆
n⋃
i=1

kiV
3
ki
⊆ U.

Now, the normalized matrix coefficient

f : x ∈ G 7→ 1

|V |
〈λ(x)1V ,1KV 〉 =

|xV ∩KV |
|V |

satisfies all the necessary conditions.

1.2.5 Fourier multipliers, MA(G) and M0A(G)

This subsection is prepared essentially from [DCH85] and [CH89].

Proposition 1.2.19 ([DCH85]). Let G be a locally compact group and let ϕ be a

continuous function on G. Then the following statements are equivalent:

(i) The map mϕ : A(G)→ A(G),mϕ(f) = ϕf is a well defined (bounded) operator.

(ii) The map Mϕ : λ(x) 7→ ϕ(x)λ(x), ∀x ∈ G extends to a (unique) weak*-

continuous bounded operator on L(G).

(iii) The map Mϕ : Cc(G) → Cc(G), Mϕ(f) = ϕf extends to a (unique) bounded

operator on C∗λ(G).

(iv) The map M
∗
ϕ : Bλ(G) → Bλ(G), M

∗
ϕ(f) = ϕf is a well defined (bounded)

operator.

Moreover, if these conditions are satisfied, we have

‖mϕ‖ = ‖Mϕ‖ = ‖Mϕ‖ = ‖M∗
ϕ‖.
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The duality argument on A(G)∗ = L(G) and C∗λ(G)∗ = Bλ(G) shows the equiv-

alences (i)⇔ (ii) and (iii)⇔ (iv). To show (ii)⇒ (iii) and (iv)⇒ (i), we can use

the density argument on λ(Cc(G)) ⊆ C∗λ(G) and B(G) ∩ Cc(G) ⊆ A(G).

Definition 1.2.20. We say that a bounded continuous function ϕ on a locally

compact group G defines a multiplier of the Fourier algebra (or simply ϕ is a Fourier

multiplier of G) if one of the equivalent statements in Proposition 1.2.19 is satisfied.

Denote by MA(G) the space of all Fourier multipliers of G endowed with the norm

‖ϕ‖MA = ‖Mϕ‖. A Fourier multiplier ϕ ∈MA(G) is said completely bounded if Mϕ

defines a completely bounded operator on L(G), that is

‖Mϕ‖cb = sup
n∈N
‖Mϕ ⊗ idn : L(G)⊗Mn → L(G)⊗Mn‖ <∞.

Denote by M0A(G) the space of all completely bounded Fourier multipliers of G

endowed with the norm ‖ϕ‖M0A = ‖Mϕ‖cb.

One can show that MA(G) and M0A(G) are commutative Banach algebras. In

general, calculating a completely bounded norm can be very difficult. However, we

have the following various characterizations from [Gil74], [DCH85], [BF84], [Haa16],

and [Jol92] which give a way of estimating completely bounded multiplier norms.

Theorem 1.2.21. Let ϕ be a bounded continuous function on a locally compact

group G. The following statements are equivalent:

(i) ϕ ∈M0A(G).

(ii) ϕ⊗ id ∈MA(G× SU(2)).

(iii) ϕ⊗ id ∈MA(G×H) for any locally compact group H.

(iv) There is a Hilbert space H and bounded continuous maps ξ, η : G → H such

that ϕ(y−1x) = 〈ξ(x), η(y)〉 for all x, y ∈ G.

(v) ϕ defines a multiplier on the projective tensor product space L2(G) ⊗γ L2(G)

in the sense that for all u, v ∈ L2(G), there exist hi, ki ∈ L2(G) such that∑
i ‖hi‖2‖ki‖2 <∞ and

ϕ(y−1x)u(x)v(y) =
∑
i

hi(x)ki(y), (∀x, y ∈ G).
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(vi) There is a constant C > 0 such that for any n ∈ N, A = (aij)i,j ∈Mn(C), and

distinct elements x1, ..., xn ∈ G, we have

‖(ϕ(x−1
j xi)aij)‖Mn ≤ C‖(aij)‖Mn .

(vii) There exist a Hilbert space H and bounded operators P,Q : L1(G) → H such

that ∫
G

∫
G

ϕ(y−1x)f(x)g(y)dxdy = 〈P (f), Q(g)〉, (∀f, g ∈ L1(G)).

Moreover, we have

‖ϕ‖M0A =‖ϕ‖MA(G×SU(2)) = sup
H
‖ϕ‖MA(G×H) = inf ‖ξ‖∞‖η‖∞

=‖ϕ‖L2⊗γL2→L2⊗γL2 = inf C = inf ‖P‖‖Q‖.

So, for example, if ϕ ∈ Cb(G) is positive definite, or equivalently if there is a

unitary representation (π,H) and a vector v ∈ H such that ϕ(y−1x) = 〈π(x)v, π(y)v〉
for all x, y ∈ G, then the M0A-norm is bounded by ‖v‖2 = ϕ(e). Conversely, MA-

norm is never less than the uniform norm, hence

‖ϕ‖MA = ‖ϕ‖M0A = ϕ(e). (1.3)

Similarly, any matrix coefficient x 7→ 〈π(x)ξ, η〉 of a uniformly bounded represen-

tation π is a completely bounded Fourier multiplier whose norm is bounded by

‖π‖2‖ξ‖‖η‖ and by supx,y∈G ‖π(x)ξ‖‖π(y−1)∗η‖. The space of such coefficients is

usually denoted by UB(G) or
⋃
c≥1Bc(G), where Bc(G) is the Banach space of ma-

trix coefficients of the representations uniformly bounded by c. All these algebras

in one picture, we have the inclusions

A(G)
q

L(G)∗

⊆ Bλ(G)
q

C∗λ(G)∗

⊆ B(G)
q

C∗(G)∗

⊆ UB(G) ⊆M0A(G) ⊆MA(G) (1.4)

of which the first two inclusions are isometric. The equality B(G) = MA(G) char-

acterizes the amenability of G [Neb82, Los84, Boż85], so estimating MA-norm is

eased for amenable groups. We also have the following theorem for groups that
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differ from being amenable by a compact subgroup.

Theorem 1.2.22 ([CH89]). Let G be a locally compact group and K a compact

subgroup of G. Then the K ×K double averaging map

ϕ 7→ ϕ̇, ϕ̇(x) =

∫
K

∫
K

ϕ(kxk′)dkdk′, (∀x ∈ G)

defines norm decreasing maps A(G)→ A(G), MA(G)→ MA(G), and M0A(G)→
M0A(G). Moreover, suppose that S is an amenable closed subgroup of G such that

G = SK set theoretically. Then for any K-bi-invariant function ϕ ∈ C0(G), we

have

‖ϕ‖M0A(G) = ‖ϕ‖MA(G) = ‖ϕ|S‖B(S).

Another important Fourier multipliers are positive Fourier multipliers. Recall

that an element a of a C∗-algebra A is positive if a = b∗b for some b ∈ A. A linear

map T : A → B between C∗-algebras is positive if it maps positive elements to

positive elements, n-positive if the map T ⊗ idn : A ⊗ Mn(C) → B ⊗ Mn(C) is

positive, and completely positive if T is n-positive for any n ∈ N. One of the nicest

feature of a positive linear map T : A → B is that its norm is equal to ‖T (1A)‖
provided A is unital. Thus, for example, when Mϕ : L(G) → L(G) is positive, the

Fourier multiplier norm is simply ‖ϕ‖MA = ‖Mϕ‖ = ‖ϕ(e)λ(e)‖ = ϕ(e), and when

Mϕ is completely positive, we have

‖ϕ‖M0A = sup
n
‖ϕ(e) idL(G)⊗Mn ‖ = ϕ(e). (1.5)

It is a fact that a bounded continuous function on a locally compact group is positive

definite if and only if it is a completely bounded Fourier multiplier [DCH85, Propo-

sition 4.2]. This means that the norm calculations in (1.3) and (1.5) are actually

the same result, yet the obtaining methods are different.
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Two group properties

2.1 Weak-amenability

Amenable groups play an important role in group theory. As amenability is charac-

terized in many different ways, many problems tend to soften for amenable groups.

The most commonly used definition would be the very first one given in [Neu29]:

a discrete group Γ is amenable if there exists a non-trivial Γ-invariant positive lin-

ear functional on `∞(Γ). This definition can easily be extended to locally compact

groups by replacing the space `∞(Γ) with L∞(G). For our use, the following defini-

tion is more suitable.

Definition 2.1.1. Let G be a locally compact group. An approximate unit in the

Fourier algebra A(G) is a net (ϕi)i∈I of functions in A(G) such that ‖ϕiψ−ψ‖A → 0

for all ψ ∈ A(G). We say that G is amenable if there is an approximate unit in

A(G) consisting of positive definite functions.

Some interesting weaker versions of this definition are studied. For example,

Haagerup property (also known as a-T-menability), weak amenability, and property

A. In this section, we treat some view points of weak amenability.

Theorem 2.1.2 (Lemma 2.2 of [Haa16]). Let G be a locally compact group and let

k ≥ 1. The following statements are equivalent:

(i) There exists a net (ϕi) in A(G) such that supi ‖ϕi‖M0A ≤ k and ϕi → 1 in

σ(L∞, L1)-topology.

(ii) There exists a net (ϕi) in A(G) such that supi ‖ϕi‖M0A ≤ k and ϕi → 1

uniformly on compact sets.
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(iii) There exists an approximate unit (ϕi) in A(G) such that supi ‖ϕi‖M0A ≤ k.

Definition 2.1.3. We say that a locally compact group G is weakly amenable if one

of the equivalent statements in Theorem 2.1.2 is true for some k ≥ 1. The minimum

possible value of k is called the Cowling-Haagerup constant and denoted by Λ(G).

If no such k exists, we conventionally write Λ(G) =∞.

For some technical purpose, we sometimes want the functions ϕi to be compactly

supported. Thanks to [CH89, Proposition 1.1], if G is weakly amenable, we can

assume that all ϕi are compactly supported after replacing k by k + ε, where ε > 0

can be chosen arbitrarily small.

2.1.1 Groups acting on a tree

Amenable groups are trivial examples of weakly amenable groups. The first non-

trivial weakly amenable group is the free group F2 of two generators, or more gen-

erally, any group acting properly on a tree by isometries [Szw91, PS86, BP93]. The

idea of the proof is very important because it extends to Gromov’s hyperbolic groups

[Oza08] and finite dimensional CAT(0) cubical groups [Miz08, GH10], so here we

illustrate the proof. We will also use it to prove that Baumslag-Solitar groups have

completely bounded characteristic tame cuts.

Theorem 2.1.4. Suppose that a discrete group Γ acts on an infinite tree T = (V,E)

by isometries, where T is endowed with its combinatorial distance d. Fix a base point

v0 ∈ V . For n ∈ N, define the function φn : x ∈ Γ 7→ 1{0,1,...,n}(d(v0, xv0)). We have

the following:

(i) ‖φn‖M0A ≤ 2n+ 1.

(ii) The length function ` : x ∈ Γ 7→ d(v0, xv0) is conditionally negative definite.

(iii) For any t > 0, the function ρt : x 7→ e−t`(x) on Γ is positive definite.

(iv) If the action Γ y T is proper, Γ is weakly amenable with Λ(G) = 1.

Proof. To prove (i), we fix an infinite geodesic ray γ : N0 → V in T . Each v ∈ V
admits a unique geodesic ray γv beginning from v that eventually merges with γ,

that is γv(0) = v and there are constants a, b ∈ N0 with γv(a + t) = γ(b + t) for all
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t ∈ N0. Note that being d(v, w) ∈ {n, n − 2, ...} ∩ N0 is equivalent to the existence

of k ∈ {0, 1, ..., n} with γv(k) = γw(n− k). It follows that

1{n,n−2,...}∩N0(y
−1x) =

n∑
k=0

〈δγxv0 (k), δγyv0 (n−k)〉`2(V )

= 〈⊕nk=0δγxv0 (k),⊕nk=0δγyv0 (n−k)〉⊕nk=0`
2(V ),

for all x, y ∈ Γ, and ‖1{n,n−2,...}∩N0 ‖M0A ≤ n+ 1 by Theorem 1.2.21. Thus, we have

‖φn‖M0A ≤ ‖1{n,n−2,...}∩N0 ‖M0A + ‖1{n−1,n−3,...}∩N0 ‖M0A ≤ 2n+ 1.

Next two assertions are dealt in Example 1.1.20. Let us prove the last assertion.

The normalized positive definite functions ρt are bounded in M0A(Γ) and goes to 1

uniformly on compact sets as t goes to 0, but we do not know if ρt is in A(G). We

will approximate ρt by a compactly supported function in the space M0A(Γ). As

the action is proper, the functions φk are compactly supported as well as

ϕn,t = φ0 +
n∑
k=1

e−tk(φk − φk−1), (∀n ∈ N,∀t > 0).

Moreover, we have

‖ρt − ϕn,t‖M0A ≤
∞∑

k=n+1

e−tk‖φk − φk−1‖M0A → 0 as n→∞.

This completes the proof.

2.1.2 Induction map

The methods to establish weak amenability for discrete groups and for continuous

groups vary. In [Haa16], Haagerup proposed a method that allows one to work

on a lattice instead of the ambient group. More precisely, if a lattice Γ in a locally

compact group G is weakly amenable, then so is G with the same Cowling-Haagerup

constants. The main tool used to prove this result is the induction map Φ : `∞(Γ)→
Cb(G) that sends a bounded function ϕ on Γ to the function

Φ(ϕ) = ϕ̂ = 1Ω ∗(ϕµΓ) ∗ 1̃Ω (2.1)
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on G, where Ω is a Borel fundamental domain for Γ and µΓ is the measure on G that

counts the elements of Γ. We assume that the Haar measure dx on G is normalized

so that
∫

Ω
dx = 1. Then we have the following result.

Proposition 2.1.5 ([Haa16]).

(i) If ϕ ∈M0A(Γ), then ϕ̂ ∈M0A(G) with ‖ϕ̂‖M0A(G) ≤ ‖ϕ‖M0A(Γ).

(ii) If ϕ ∈ A(Γ), then ϕ̂ ∈ A(G) with ‖ϕ̂‖A(G) ≤ ‖ϕ‖A(Γ).

Corollary 2.1.6 ([Haa16]). A lattice Γ in G is weakly amenable if and only if the

ambient group G is weakly amenable. In this case, Λ(Γ) = Λ(G).

Remark 2.1.1. The induction map can be used to prove that some other properties

such as amenability, a-T-menability, Kazhdan’s property (T), and Yu’s property A

are inherited by lattices.

The induction map Φ : M0A(Γ)→M0A(G) is always continuous. In particular,

if G (equivalently Γ) is amenable, we have Φ : MA(Γ) → MA(G) continuous. In

Section 3.6, we will show that amenability is essential for the latter map to be

continuous.

Corollary 2.1.6 gives the choice to work on the ambient group G or on a lattice

when calculating the Cowling-Haagerup constant. Working on discrete groups has

its advantage of characterizations in terms of the group algebras, C∗λ(Γ) and L(G).

Definition 2.1.7. A C∗-algebra A has the completely bounded approximation prop-

erty (CBAP) if there is a net (Ti)i∈I of continuous finite rank operators on A such

that

sup
i
‖Ti‖cb <∞ and ‖Tix− x‖ → 0 for all x ∈ A.

The minimum value (when it exists) of supi ‖Ti‖cb while the net (Ti)i∈I runs through

all possible nets satisfying the above conditions is denoted by Λ(A).

Definition 2.1.8. A von Neumann algebra M has the weak* completely bounded

approximation property (w*-CBAP) if there is a net (Ti)i∈I of w*-continuous finite

rank operators on M such that

sup
i
‖Ti‖cb <∞ and 〈Tix, v〉 → 0 for all x ∈M, v ∈M∗.
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The minimum value (when it exists) of supi ‖Ti‖cb while the net (Ti)i∈I runs through

all possible nets satisfying the above conditions is denoted by Λ∗(M).

From the characterizations of Fourier multipliers in Proposition 1.2.19, if Γ is a

weakly amenable discrete group, then the multipliers (Mϕi)i∈I and (Mϕi)i∈I satisfy

the above conditions, and consequently C∗λ(Γ) has CBAP and L(Γ) has w*-CBAP.

The converse statement happens to be true.

Theorem 2.1.9 ([CH89]). Let Γ be a discrete group. Then the following statements

are equivalent:

(i) Γ is weakly amenable.

(ii) C∗λ(Γ) has CBAP.

(iii) L(Γ) has w*-CBAP.

In this case, we have Λ(Γ) = Λ(C∗λ(Γ)) = Λ∗(L(Γ)).

2.1.3 Non-examples

The linear groups SLn(R) and SLn(Z) for n ≥ 3 are known to satisfy a property that

opposes amenability in a very strong way, namely these groups satisfy Kazhdan’s

property (T). Therefore, it is naturally interesting to know if these groups are weakly

amenable. There are three different approaches giving a negative answer to this

question. Chronologically, the first proof is in [Haa16] where Haagerup constructed

a distribution D ∈ L(SL2(R) nR2) that has a simplified formulation for SO(2)-bi-

invariant functions.

Theorem 2.1.10 ([Haa16]). Suppose that ϕ ∈ C∞c (SL2(R) n R2) is a SO(2)-bi-

invariant compactly supported smooth function on SL2(R) nR2. Then we have

|D(ϕ)| =

∣∣∣∣∣∣∣
∫ ∞
−∞

1√
1 + x2/4

ϕ

1 x 0

0 1 0

0 0 1

 dx

∣∣∣∣∣∣∣ ≤ 4π‖ϕ‖M0A. (2.2)

In [Haa16], the inequality (2.2) was written for the norm ‖ϕ|H3‖A(H3), where

H3 =


1 a b

0 1 c

0 0 1

 : a, b, c ∈ R
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is the Heisenberg group, but this is equal to ‖ϕ‖M0A by Theorem 1.2.22. When

ϕ is positive and takes value 1 on the ball Bn with respect to the length function

x 7→ log ‖x‖+ log ‖x−1‖, the inequality (2.2) gives

n ≤
∫ 2n

−2n

1√
1 + x2/4

dx ≤ 4π‖ϕ‖M0A. (2.3)

This shows that SL2(R)nR2 is not weakly amenable since the lower bound goes to

infinity. The same idea works to prove that Sp4(R) is not weakly amenable. These

two results imply that any simple Lie group G of real rank at least 2 with finite

center is not weakly amenable.

The second proof is due to Lafforgue-de la Salle. They came up with even

stronger lower bound than (2.2) for SO(3)-bi-invariant functions on SL3(R).

Theorem 2.1.11 ([LDlS11]). For any SO(3)-bi-invariant function ϕ ∈ C0(SL3(R)),

and any t > 0, we have∣∣∣∣∣∣∣ϕ
e

t 0 0

0 1 0

0 0 e−t


∣∣∣∣∣∣∣ ≤ 100e−t/2‖ϕ‖M0A(SL3(R)).

In their original statement, the inequality above was given for multipliers of

Schatten p-class, and Theorem 2.1.11 is exactly the case when p =∞. We will use

this inequality in Section 3.6. Similar inequalities are made for the groups Sp(4,R)

and SL2n−3(R), n ≥ 3 in [dL13] and [dLdlS18]. This lower bound of course proves

again that SL3(R) is not weakly amenable, but it is not applicable to prove that

SL2(R) nR2 is not weakly amenable.

These two proofs both rely on Theorem 1.2.22. On the contrary, the third known

proof given in [Oza12] works on the discrete group SL2(Z)nZ2 and its action on T2.

This discrete group can not be written as a set theoretic product of an amenable

subgroup and a compact subgroup, thus no use of Theorem 1.2.22. Rather, the proof

relies on the fact that there is no SL2(Z)nZ2-invariant measure on T2, equivalently

the action SL2(Z) n Z2 y Z2 is not amenable.

2.1.4 ME-subgroup

Closed subgroups inherit the weak amenability and the Cowling-Haagerup constant

becomes smaller. This is also observed for ME-subgroups and Measure Equivalent
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groups. We recall the definition from [Sak09].

Definition 2.1.12. Let Γ and Λ be two countable groups. We say that Λ is ME-

subgroup of Γ and write Λ
ME

≤ Γ if there exist commuting, measure preserving, free

actions of Γ and Λ on a Lebesgue measure space (X,µ) such that each of Λ and Γ

actions admits a Borel fundamental domain and the induced measure of XΓ = X/Γ

is finite. Furthermore, if the induced measure of XΛ = Λ\X is finite, we say that Γ

and Λ are Measure Equivalent (ME) and write Γ
ME∼ Λ.

Lattices in a locally compact second countable group are ME to each other.

Another interesting example is that the ME-class containing the infinite cyclic group

is exactly the family of all countable amenable groups.

Let us go back to the fact stating that weak amenability passes to ME-subgroups.

We explain in detail the proof given in [Oza12]. The main tool is the induction map

constructed as follows. Suppose that the actions Λ y (X,µ) x Γ establish Λ

as a ME-subgroup of Γ. Denote by Ω a Borel fundamental domain of the right

action X x Γ and normalize the measure µ so that µ(Ω) = 1. The disjoint union

X =
⊔
γ∈Γ Ωγ yields well defined measurable maps

ω : X → Ω, γ : X → Γ (2.4)

satisfying x = ω(x).γ(x) for all x ∈ X. From the identity (ts).x = t.(s.x) =

(t.ω(s.x)).γ(s.x), we can extract the formula

γ(ts.x) = γ(t.ω(s.x))γ(s.x), (∀t, s ∈ Λ, ∀x ∈ X),

or equivalently, by the change of variables (s, t) 7→ (t−1s, t),

γ(t−1s.x)−1 = γ(s.x)−1γ(t.ω(t−1s.x)), (∀t, s ∈ Λ,∀x ∈ X). (2.5)

The induction map is defined as

Φ : ϕ ∈ `∞(Γ) 7→ ϕ̂ ∈ `∞(Λ), ϕ̂(s) =

∫
Ω

ϕ(γ(s.ω)−1)dµ(ω). (2.6)

Lemma 2.1.13 ([Oza12]). Suppose that Λ is a ME-subgroup of Γ.

(i) If ϕ ∈M0A(Γ), then ϕ̂ ∈M0A(Λ) and ‖ϕ̂‖M0A ≤ ‖ϕ‖M0A.

(ii) If ϕ ∈ A(Γ), then ϕ̂ ∈ A(Λ) and ‖ϕ̂‖A ≤ ‖ϕ‖A.
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Proof. Suppose that there are some bounded maps P,Q from Γ to a Hilbert space

H such that ϕ(y−1x) = 〈P (x), Q(y)〉H for all x, y ∈ Γ. Then by (2.5)

ϕ̂(t−1s) =

∫
Ω

ϕ
(
γ(s.w)−1γ(t.ω(t−1s.w))

)
dµ(w)

=

∫
Ω

ϕ
(
γ(s.ω(s−1.w))−1γ(t.ω(t−1.w))

)
dµ(w)

=

∫
Ω

〈P
(
γ(t.ω(t−1.w))

)
, Q
(
γ(s.ω(s−1.w))

)
〉Hdµ(w)

= 〈P ′(t), Q′(s)〉L2(Ω,H,µ)

where the maps

P ′(t) =

∫
Ω

P
(
γ(t.ω(t−1.w))

)
dµ(w) and Q′(s) =

∫
Ω

Q
(
γ(s.ω(s−1.w))

)
µ(w)

have uniform norms at most ‖P‖∞ and ‖Q‖∞, respectively. Now, (i) follows from

Theorem 1.2.21 (iv).

To prove the second assertion, take a matrix coefficient ϕ = 〈λΓ(·)ξ, η〉 ∈ A(Γ).

Recall that the Koopman representation (λX , L
2(X)) associated to the action Λ y

(X,µ) is unitarily equivalent to λΛ ⊗ id by Lemma 1.1.8. Therefore, to prove ϕ̂ ∈
A(Λ), it is enough to prove that ˜̂ϕ is a matrix coefficient of λX . Choose the vectors

ξ′, η′ ∈ L2(X) such that ξ′(x) = ξ(γ(x)) and η′(x) = η(γ(x)) for all x ∈ X. Observe

that

λX(s)ξ′(x) = ξ′(s−1.x) = ξ(γ(s−1.x)) = ξ(γ(s−1.w)δ)

for all x = w.δ ∈ X with w ∈ Ω and δ ∈ Γ. The following calculation concludes the

proof.

˜̂ϕ(s) =

∫
Ω

〈λΓ(γ(s−1.w)−1)ξ, η〉dµ(w)

=
∑
δ∈Γ

∫
Ω

ξ(γ(s−1.w))δ)η(δ)dµ(w)

=

∫
X

ξ(γ(s−1.w)δ)η(δ)dµ(x)

= 〈λX(s)ξ′, η′〉L2(X).
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Lemma 2.1.14. Suppose that Λ is a ME-subgroup of Γ. The induction map in (2.6)

is the transpose of the norm decreasing map ψ ∈ `1(Λ) 7→ ψ? ∈ `1(Γ) defined by

ψ?(δ) =
∑
s∈Λ

ψ(s)µ
(
w ∈ Ω : γ(s.w)−1 = δ

)
, (∀δ ∈ Γ).

Proof. The continuity of ψ 7→ ψ? follows from

‖ψ?‖1 ≤
∑
s∈Λ

|ψ(s)|
∑
δ∈Γ

µ
(
w ∈ Ω : γ(s.w)−1 = δ

)
︸ ︷︷ ︸

≤1

≤ ‖ψ‖1.

The last assertion follows from

〈ϕ̂, ψ〉 =
∑
s∈Λ

ϕ̂(s)ψ(s) =
∑
s∈Λ

∫
Ω

ϕ(γ(s.w)−1)ψ(s)dµ(w)

=
∑
δ∈Γ

ϕ(δ)
∑
s∈Λ

ψ(s)µ
(
w ∈ Ω : γ(s.w)−1 = δ

)
=
∑
δ∈Γ

ϕ(δ)ψ?(δ) = 〈ϕ, ψ?〉

for all ϕ ∈ `∞(Γ) and ψ ∈ `1(Λ).

Corollary 2.1.15. Suppose that Λ is a ME-subgroup of Γ and that (ϕi)i∈I is a

net in `∞(Γ) such that ϕi → 1Γ in the σ(`∞, `1)-topology. Then ϕ̂i → 1Λ in the

σ(`∞, `1)-topology.

Proof. By Lemma 2.1.14, 〈ϕ̂i, ψ〉 = 〈ϕi, ψ?〉 → 1 for all ψ ∈ `1(Λ).

The following theorem is now straightforward.

Theorem 2.1.16 ([Oza12]). ME-subgroups inherit weak amenability. Moreover, if

Λ is a ME-subgroup of Γ, then Λ(Λ) ≤ Λ(Γ).

Remark 2.1.2. When the groups Λ and Γ are two lattices in a group, the map in

(2.6) is more or less the induction map in (2.1). Beware that ϕ̂ might be not finitely

supported even if ϕ is.

2.2 Rapid Decay property

In this section, we give a short introduction to the Rapid Decay property. Our first

example of groups with characteristic tame cuts came from this property.
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2.2.1 Length function

Definition 2.2.1. Let G be a group. A function ` : G→ R+ is a length function of

G if the following conditions are satisfied:

(i) `(e) = 0.

(ii) `(x−1) = `(x) for all x ∈ G.

(iii) `(xy) ≤ `(x) + `(y) for all x, y ∈ G.

The ball of radius n ∈ N with respect to ` is the set Bn,` = {x ∈ G : `(x) ≤ n}.
When there is no confusion, we just write Bn instead of Bn,`. When G is a locally

compact group and the length function ` is Borel measurable, the corresponding

growth function is given by

γ`(n) : G→ R+, γ`(n) =

∫
G

1Bn(x)dx.

Remark 2.2.1. Recall that a map f : X → Y between two topological spaces is

proper if the preimage of every compact set in Y is compact in X. We usually

consider proper length functions. Note that any proper function ` : G→ R is auto-

matically Borel measurable. Also, note that a locally compact group G admitting a

proper length function is σ-compact as G =
⋃
n∈N `

−1([0, n]).

Example 2.2.2. The most classical example of proper length functions comes from

a compact generating set. Suppose that G is generated by a compact symmetric

subset S, that is S = S−1 and G =
⋃
n∈N S

n. Then the function

`S : x ∈ G 7→ min{n ∈ N : x ∈ Sn}

is a locally finite, proper length function of G. We call `S the word length function

associated to the generating set S.

Example 2.2.3. Let G be a connected Lie group. Endow G with a left-invariant

Riemannian structure and denote d the associated distance. The distance topology

on G agrees with the manifold topology on G. The function `(x) = d(1, x) is

a continuous (hence locally bounded), proper length function of G (see [Roe03,

Theorem 1.5] for properness). Indeed, the compact ball of radius 1 generates G, and

` is Lipschitz-equivalent to the word length function.
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Example 2.2.4. Let Γ be a finitely generated lattice in G. If Γ is a uniform lattice,

then the word length function of Γ is equivalent to the restriction of the word

length function of G by quasi-isometry. This is in general not true for non-uniform

lattices, but we know when G is a semisimple Lie group of rank at least 2 and Γ

is an irreducible lattice, the restriction of `G onto Γ is Lipschitz-equivalent to `Γ

[LMR93, LMR00]. The condition on the rank is essential. For example, the length

of the element un =

(
1 n

1 1

)
in SL2(Z) is O(n) while it is O(log n) in SL2(R).

Example 2.2.5. When G acts on a metric space (Y, d) by isometries, for any base

point y0 ∈ Y , one can associate a length function `d,y0 : x ∈ G 7→ d(x.y0, y0).

Conversely, every length function is obtained in this way. Suppose that ` is a length

function of G. We want to construct a metric space (Y, d) and a base point y0 such

that ` = `d,y0 . To this end, define the equivalence relation ∼ on G by x ∼ y if and

only if `(y−1x) = 0. The quotient space Y = G/ ∼= {[x] : x ∈ G} is a metric space

with the distance d([x], [y]) = `(y−1x), and G naturally acts on Y by isometries.

Now, it is enough to choose y0 = [e] to have ` = `d,y0 .

Definition 2.2.6. Let f, g : X → R+ be two functions. We say that f dominates

g if there is a constant k > 0 such that

g(x) ≤ kf(x) + k, (∀x ∈ X).

We say that f and g are equivalent if they dominate each other.

It turns out that all measurable length functions are locally finite (see [Sch93,

Theorem 1.2.11]), hence the following proposition.

Proposition 2.2.7. The word length function associated to a compact generating

set (when it exists) dominates all measurable length functions.

Proof. Suppose that G is generated by a compact subset S = S−1. Let ` be a

measurable length function of G. Put k = sup{`(s) : s ∈ S}. Then for any element

x ∈ G with `S(x) = n and x = s1...sn for some s1, ..., sn ∈ S, we have

`(x) ≤
n∑
i=1

`(si) ≤ nk = k`S(x).
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The proposition implies that all length functions associated to a compact gener-

ating set are equivalent. That is why we say the word length function.

Proposition 2.2.8. Let K be a compact subgroup of G, and ` a length function of G.

Then there exists an integral valued length function `′ equivalent to `. Furthermore,

if ` is Borel measurable, we can assume that `′ satisfies the following properties:

(i) `′(k1xk2) = `′(x) for all x ∈ G and k1, k2 ∈ K.

(ii) K = {x ∈ G : `′(x) = 0}.

Proof. Jolissaint gave a proof for discrete groups in [Jol90]. His proof still works for

the general case, and we provide it here for completeness. Define the functions L1,

L2, L3, and L4 on G as follows:

L1(x) =

{
0, if `(x) = 0

b`(x)c+ 1, otherwise

L2(x) =

∫
K

L1(kxk−1)dk

L3(x) = min{L2(k1xk2) : k1, k2 ∈ K}

L4(x) =

{
0, if x ∈ K
1, otherwise.

For the first part, it is enough to take `′ = L1. For the second part, it is enough to

take `′ = L3 + L4.

In the sequel, all length functions are proper unless otherwise stated.

2.2.2 s-Sobolev completion

Definition 2.2.9. Let G be a locally compact group and let ` be a length function

of G. For s ∈ R, we consider the following weighted-L2-norm of f ∈ Cc(G):

‖f‖s,` =

(∫
G

|f(x)|2(1 + `(x))2sdx

)1/2

.
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The s-Sobolev completion Hs
` (G) is the completion of Cc(G) with respect to the

norm ‖ · ‖s,`. The functions of Rapid Decay are given by

H∞` (G) =
⋂
s∈R+

Hs
` (G).

Remark 2.2.2. The isometry f ∈ (Cc(G), ‖ · ‖s,`) 7→ f(1 + `)s ∈ L2(G) extends to

the isometry Hs
` (G)→ L2(G). This allows us to see Hs

` (G) as a space of functions.

Observe that for any s ∈ R, f ∈ Hs
` (G), and g ∈ H−s` (G), by Cauchy–Schwarz

inequality, we have ∣∣∣∣∫
G

fgdx

∣∣∣∣ ≤ ‖f‖s,`‖g‖−s,`
which gives rise to the duality between Hs

` (G) and H−s` (G) given by

〈f, g〉s =

∫
G

fgdx. (2.7)

Proposition 2.2.10. Let s ∈ R. The duality (2.7) isometrically identifies the space

H−s` (G) with the dual space Hs
` (G)∗.

Proof. Take any continuous linear functional ω ∈ Hs
` (G)∗. We only need to prove

that ω can be represented as 〈·, g〉s for some g ∈ H−s` (G). Since Hs
` (G) isometri-

cally embeds in L2(G), by Hahn-Banach extension theorem and Riesz representation

theorem, there is a square integrable function ξω ∈ L2(G) such that

ω(f) = 〈f(1 + `)s, ξω〉 = 〈f, ξω(1 + `)s〉, (∀f ∈ Hs
` (G)).

Note that g = ξω(1 + `)s ∈ H−s` (G) and ω = 〈·, g〉s. This completes the proof.

2.2.3 Equivalent definitions of the Rapid Decay property

Definition 2.2.11. A locally compact group G endowed with a length function `

has the Rapid Decay property if the identity map on Cc(G) extends to a continuous

map Hs
` (G)→ C∗λ(G) for some s ∈ R+.

Theorem 2.2.12 ([Jol90]). Let G be a locally compact group, and ` a measurable

length function. The following statements are equivalent:

(i) (G, `) has the Rapid Decay property.
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(ii) The identity map on Cc(G) extends to a continuous map Bλ(G) → H−s` (G)

for some s ∈ R+.

(iii) The identity map on Cc(G) extends to a continuous map A(G)→ H−s` (G) for

some s ∈ R+.

(iv) There are constants C, s ≥ 0 such that for all ξ, η ∈ L2(G),(∫
G

|〈λ(x)ξ, η〉|
(1 + `(x))s

dx

)1/2

≤ C‖ξ‖2‖η‖2.

(v) There are constants C, s ≥ 0 such that ‖λ(f)‖ ≤ Cns‖f‖2 for all f ∈ Cc(G)

with supp(f) ⊆ Bn.

Proof. The equivalence (i)⇔ (ii) is trivial from the dualities Bλ(G) = C∗λ(G)∗ and

H−s` (G) = Hs
` (G)∗. Also (ii) ⇒ (iii) since A(G) isometrically embeds in Bλ(G).

(iv) is just a verbatim of (iii). Let us prove (iv) ⇒ (i). Assume (iv). For any

f ∈ Cc(G), we have

‖λ(f)‖ = sup {|〈λ(f), ϕ〉| : ‖ϕ‖A = 1}

= sup

{∣∣∣∣∫
G

f(x)〈λ(x)ξ, η〉dx
∣∣∣∣ : ‖ξ‖2 = ‖η‖2 = 1

}
≤ sup {‖f(x)‖s,`‖〈λ(·)ξ, η〉‖−s,` : ‖ξ‖2 = ‖η‖2 = 1}

(apply (iv)) ≤ C‖f‖s,`,

hence (i). At this point, we have equivalence between the first four statements. Let

us prove (i)⇒ (v). Take any f ∈ Cc(G) with supp(f) ⊆ Bn. By (i), we have

‖λ(f)‖2 ≤ C2‖f‖2
s,` = C2

∫
Bn

|f(x)|2(1 + `(x))2sdx ≤ C2(1 + n)2s‖f‖2
2

for some constants C, s ≥ 0, hence (v). Conversely, assume that (v) is satisfied for

some constants C, s ≥ 0. Take any f ∈ Cc(G). The following calculation completes
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the proof:

‖λ(f)‖ ≤
∞∑
n=0

‖λ(f 1Bn)‖ ≤
∞∑
n=0

Cns‖f 1Bn ‖2 ≤
∞∑
n=0

C(1 + n)−1‖(1 + n)s+1f 1Bn ‖2

≤ C

(
∞∑
n=1

1

n2

)1/2( ∞∑
n=0

‖(1 + n)s+1f 1Bn ‖2
2

)1/2

= C
π√
6
‖f‖s+1,`.

Many Lie groups, including the semisimple ones with a finite center, have the

Rapid Decay property (see [CPSC07] and [Boy13]). Non-uniform lattices in higher

rank Lie groups tend not to satisfy the Rapid Decay property for having a cyclic sub-

group with exponential relative growth. For uniform lattices, we have the following

conjecture which is one of the main problems in this area.

Conjecture 2.2.1 ([Val02]). Uniform lattices in a semisimple Lie group have the

Rapid Decay property.

The conjecture is supported by the following important result.

Theorem 2.2.13 ([Laf00, RRS98, Cha03]). Uniform lattices in SL3(R), SL3(C),

SL3(H), SL3(Qp), E6(−26), or a direct product of these Lie groups satisfy the Rapid

Decay property.

To name more discrete groups with Rapid Decay property, we have groups of

polynomial growth, Gromov’s hyperbolic groups, cocompact cubical CAT(0) groups,

mapping class groups, 3-manifold groups not containing Sol, large type Artin groups,

Wise non-Hopfian group, and some small cancellation groups. See the survey [Cha17]

for more.

2.2.4 Obstruction to the Rapid Decay property

The following theorem gives the main obstruction to the Rapid Decay property.

Theorem 2.2.14 ([Jol90]). Let Γ be a discrete amenable group endowed with a

proper length function `. Then (Γ, `) has the Rapid Decay property if and only if Γ

has polynomial growth with respect to `.

Taking into account that the Rapid Decay property is inherited to open sub-

groups for the restricted length function, one can easily deduce that if (Γ, `) contains
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an amenable subgroup with superpolynomial relative growth, then (Γ, `) does not

satisfy Rapid Decay property. As far as we know, all known discrete non-examples

are explained using this obstruction. In what follows, we use this obstruction to

illustrate some non-examples.

Example 2.2.15. For A ∈ SLd(Z), the group ΓA = ZdoA Z has exponential growth

(hence, does not satisfy the Rapid Decay property) if the matrix A admits an eigen-

value with an absolute value greater than 1. Here, we sketch the proof given in

[dlH00, Proposition 5, p. 189] (see also [Š55]). Suppose that the matrix A has an

eigenvalue λ ∈ C such that |λ| 6= 1. Since det(A) = 1, we can assume that |λ| > 1.

Also, since ΓA contains ΓAk as a subgroup for all k ∈ N, we can assume that |λ| > 2.

Let u ∈ Cd be a λ-eigenvector of At and let P ∈ Md(C) be the projection onto

Cu. Note that PAk = λkP for all k ∈ N. Since P is a non-zero operator, there is

a non-zero vector v ∈ Zd such that Pv 6= 0. We choose the word length function

associated to some finite generating set containing the elements (0, 1) and (v, 1). Fix

n ∈ N. Let us show that the ball Bn contains at least 2n distinct elements. This

can be achieved considering the following elements

Eε = (ε1v, 1)(ε2v, 1)...(εnv, 1) =
(
ε1Av + ε2A

2v + ...+ εnA
nv, n

)
∈ ΓA

where ε = (ε1, ..., εn) runs through {0, 1}n. Indeed, since

P (ε1Av + ε2A
2v + ...+ εnA

nv) = (ε1λ+ ε2λ
2 + ...+ εnλ

n)P (v)

are all distinct, so are the elements Eε for ε ∈ {0, 1}n.

A concrete example of such matrix is A0 =

(
2 1

1 1

)
as its eigenvalues are λ1,2 =

(3±
√

5)/2. It follows that the groups SLn(Z), n ≥ 3 do not satisfy the Rapid Decay

property since these groups contain ΓA0 :

ΓA0
∼=

{(
A v

0 1

)
∈ SL3(Z) : A ∈ SL2(Z), v ∈ Z2

}
< SL3(Z) < SLn(Z).

Being virtually free, the group SL2(Z) has Rapid Decay property.

Example 2.2.16. Let P be a finitely generated infinite group, and F a non-trivial

finite group. The wreath product F oP = (⊕s∈PF )oP (e.g. the Lamplighter group

Z2 oZ) has exponential growth and thus it does not have the Rapid Decay property.
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To see that, fix a finite generating subset SP of P . Then the finite subset

S = {Ef = (sf , eP ) : f ∈ F} ∪ ({δeF } × SP )

generates F o P , where sf is identified with the element of ⊕s∈PF that takes f on

the place indexed with the identity eP , and takes identity eF elsewhere. Fix n ∈ N
and a geodesic Cn = {e = x0, x1, ..., xn} on the Cayley graph of F o P . Note that

the subset

An = {(v, eP ) : v ∈ ⊕s∈PF, supp(v) ⊆ Cn}

contains exactly |F ||Cn| ≥ 2n distinct elements, so it is enough to prove that B4n

contains An. That is true because any element (v, eP ) ∈ An can be written as a

product of at most 3n+ 1 many elements of S:

(v, eP ) = [Ef0 ]
[
(eF , x1)Ef1(eF , x

−1
1 )
]
...
[
(eF , x1)Efn(eF , x

−n
1 )
]
.

Example 2.2.17. Let p, q ∈ N. The action

α : Z×Z[
1

pq
]→ Z[

1

pq
], n.P =

pnP

qn
,

(
∀n ∈ Z,∀P ∈ Z[

1

pq
]

)
defines the semidirect product Γp,q = Z[ 1

pq
] o p

q
Z. We suppose that p and q are

coprime so that Γp,q is finitely generated. The finite subset

S =
{
a±1 = (±1, 0), t±1 = (0,±1)

}
.

generates Γp,q. The simplest case p = q = 1 gives Γ1,1
∼= Z2, which has quadratic

growth. We claim the other cases have exponential growth. We can assume that

q < p. Fix a constant r ∈ N such that 2qr ≤ pr. Fix n ∈ N. The elements

Eε =

(
n∑
i=1

εi

(
p

q

)ri
, 0

)
∈ Γp,q, ε = (ε1, ..., εn) ∈ {0, 1}n (2.8)

are all distinct. It is enough to show that these 2n elements are in the ball B2rn,
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where the length function is ` = `S. To see that, observe

`((1 + P, k)) = `((1, 0)(P, k)) ≤ 1 + `(P, k) (2.9)

`(((p/q)rP, k)) = `((0, r)(P, k)(0,−r)) ≤ 2r + `(P, k)) (2.10)

for any (P, k) ∈ Γp,q. Since

n∑
i=1

εi(p/q)
ri =

h∑
j=1

(p/q)rij = (p/q)rm1 [1 + (p/q)rm2 [... [1 + (p/q)rmh ] ...]] ,

by applying (2.9) on Eε multiple times, we get `(Eε) ≤ 2rn for all ε ∈ {0, 1}n.

This shows that Γp,q has exponential growth. Therefore, being amenable group with

exponential growth, Γp,q does not satisfy the Rapid Decay property for any coprime

p, q ∈ N with p 6= 1 or q 6= 1.

Example 2.2.18. Let p, q ∈ N be distinct integers. We claim the Baumslag-Solitar

group defined by the presentation

BS(p, q) = 〈a, t | tapt−1 = aq〉

does not satisfy the Rapid Decay property. The automorphism a 7→ a, t 7→ t−1 of

BS(p, q) allows us to assume that p < q. When p = 1, we have BS(1, q) = Γ1,q so

this case falls to the previous example. When p > 1, the set {a−1ta, t} generates a

free subgroup and BS(p, q) is not amenable, so we should find an amenable proper

subgroup with superpolynomial relative growth. From the case of p = 1, one gets

an intuition to check the cyclic subgroup 〈a〉. Fix n ∈ N and take any integer

k ∈ {1, ..., b(q/p)nc+ 1}. Write k = dq + r for some d, r ∈ N0 and r < q. We have

`(ak) = `((aq)Nar) = `((t−1apt)dar) = `
(
t−1adptar

)
≤ (q + 1) + `

(
apbk/qc

)
.

Repeat the same inequality on the last terms until its power becomes 1. This will

be done in at most n steps, thus we have

`(ak) ≤ (q + 1)n+ 1,

which shows the ball B(q+1)n+1 contains at least (q/r)n elements. Therefore, the

cyclic subgroup 〈a〉 has exponential relative growth, and BS(p, q) does not satisfy
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the Rapid Decay property.

For p = q ∈ N, the group BS(p, p) contains a finite index subgroup isomorphic

to Fp × Z. This shows that BS(p, p) has the Rapid Decay property.
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Chapter 3

Tame cuts

In this chapter, we will introduce (completely bounded) [characteristic] tame cuts

for locally compact groups.

In Section 3.1, we will provide the first examples admitting (completely bounded)

[characteristic] tame cuts using weakly amenable groups, groups with Rapid Decay

property, and the estimation of Lebesgue constants. Asymptotically minimal prop-

erty of the Lebesgue constants provides the first example without characteristic tame

cuts: (Z, log(1 + log(1 + | · |))).
In Section 3.2, we will introduce groups with RDp where 1 ≤ p < ∞. These

groups extend the Rapid Decay property and admit characteristic tame cuts. In-

terestingly, for 1 ≤ p < q ≤ 2, the groups with both RDp and RDq are exactly the

groups with polynomial growth.

In Section 3.3, some stability properties are studied. Recall that ME-subgroups

inherit weak amenability. We will formulate a similar result for completely bounded

tame cuts. Also, inheritance from polynomial co-growth subgroup is studied. This

will be used in Section 3.4 to construct groups with completely bounded charac-

teristic tame cuts and without Rapid Decay property: some semidirect products,

ZdoA Z and Z[ 1
pq

] o p
q
Z, Lamplighter groups Zp oZ, and Baumslag-Solitar groups

BS(p, q).

In Section 3.5, we will see that property (TSchur, G,K) is an obstruction to the

existence of K-bi-invariant tame cuts.

In Section 3.6, we will provide two applications of tame cuts.
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3.1 Definition and the first examples

Definition 3.1.1. Let G be a locally compact group equipped with a proper length

function `. A sequence (ϕn)n∈N in Cc(G) is called

(i) tame cuts for (G, `) if there are constants C, a ≥ 0 such that

‖ϕn‖MA ≤ Cna and ϕn|Bn ≡ 1 for all n ∈ N .

(ii) completely bounded tame cuts for (G, `) if there are constants C, a ≥ 0 such

that

‖ϕn‖M0A ≤ Cna and ϕn|Bn ≡ 1 for all n ∈ N .

As it connects to the Rapid Decay property, when G is discrete, we also consider

(completely bounded) tame cuts composed of characteristic functions. We define the

intervals I(G, `), Ichar(G, `), Icb(G, `), and Icharcb (G, `) in R+ containing all possible

degrees a occurring in the definition above. For example, a ∈ Icharcb (G, `) if and

only if there exists a sequence of characteristic functions (ϕn)n∈N in Cc(G) such that

Bn ⊆ supp(ϕn) and ‖ϕn‖M0A ≤ Cna for some constant C ≥ 0 and for all n ∈ N,

and we call the sequence (ϕn)n∈N completely bounded characteristic tame cuts for

(G, `). These intervals might be either (a0,∞), [a0,∞), or empty. When there is

no ambiguity, we just write I, Icb, I
char, and Icharcb . We have the following obvious

inclusions

Icharcb ⊆ Icb ⊆ I and Icharcb ⊆ Ichar ⊆ I,

and when G is amenable, we have

I = Icb and Ichar = Icharcb .

One can see that the property of having tame cuts is an analogue of weak amenabil-

ity. Indeed, we replaced the condition of boundedness by polynomial growth and the

condition of uniform convergence on compact sets by fixed values on the balls. The

main difference is that the tame cuts strongly depend on the chosen length functions

while weak amenability does not. The following proposition shows a direct relation

between these two properties.
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Proposition 3.1.2. A locally compact group (G, `) endowed with a proper length

function has completely bounded tame cuts with Icb = [0,∞) if and only if G is

weakly amenable. Similarly, (G, `) has tame cuts with I = [0,∞) if and only if there

is an approximate unit (ϕn)n∈N in A(G) with supn∈N ‖ϕn‖MA <∞.

Proof. The “only if” parts are obvious from the definitions. For the “if” part, see

[CH89, Proposition 1.1]. Although the last part is not much different from the first

part, we provide the proof for convenience.

Suppose that we have an approximate unit (ϕn)n∈N inA(G) with supn∈N ‖ϕn‖MA <

∞. Choose non-negative functions fn ∈ Cc(G) ∩ A(G) with fn|Bn = 1. This is

doable using Lemma 1.2.18. Since A(G) ∩ Cc(G) is dense in A(G), we can assume

that ϕn is compactly supported. By passing to a subsequence, we can assume that

‖ϕnfn− fn‖A ≤ 1 for all n ∈ N. Now, the functions defined by ψn = ϕn−ϕnfn + fn

are compactly supported and takes value 1 on the ball Bn. Moreover, we have

‖ψn‖MA ≤ ‖ϕn‖MA + ‖ϕnfn − fn‖A = O(1).

This proves the statement.

Another point of view for tame cuts, especially the characteristic ones, comes

from classical harmonic analysis. For any integrable function f : [0, 2π] → R, one

can associate a trigonometric series

S[f ](t) =
∑
k∈N

F(f)(k)eikt.

Under some regularity conditions, the series S[f ] pointwise converges to f . Would

the partial sums Sn[f ](t) =
∑n

k=−nF(f)(k)eikt converge uniformly to f for all f ∈
C(T)? To answer this question, firstly we need to verify if the Dirichlet kernels

Dn : [0, 2π]→ R defined by

Dn(t) =
n∑

k=−n

eikt =
sin ((n+ 1/2)t)

sin(t/2)

are uniformly bounded in the space L1(T). However, we have the following well-

known estimation (see e.g. [Zyg02]).

Lemma 3.1.3. Dirichlet kernels Dn, n ∈ N satisfy ‖Dn‖L1([0,2π]) = 4
π

log n+O(1).
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Even though the sequence of Dirichlet kernels fails to be bounded, the growth

rate still keeps some information about the underlying groups, T and Z = T̂. The

notion of (completely bounded) characteristic tame cuts then can be seen as a non-

commutative version of the Dirichlet kernels. Observe that since L1(T) is iden-

tified with A(Z) by Fourier transform, the estimation in Lemma 3.1.3 just says

‖F(Dn)‖A(Z) = 4
π

log n + O(1) where F(Dn) =
∑n

k=−n δk = 1[−n,n]∩Z ∈ A(Z). In

other words, the sequence (F(Dn))n∈N forms tame cuts for Z with respect to the

logarithmic length function k ∈ Z 7→ log(1 + |k|). On the other hand, we have the

following result.

Theorem 3.1.4 ([MPS81]). For any trigonometric polynomial p(t) =
∑N

k=1 cke
inkt

on T where the nk are distinct integers and |ck| ≥ 1 for all k ∈ N, we have∥∥∥∥∥
N∑
k=1

cke
inkt

∥∥∥∥∥
L1(T)

> K logN

where K > 0 is a constant independent from N .

The following result is now straightforward.

Proposition 3.1.5. The infinite cyclic group Γ = Z has characteristic tame cuts

with respect to the logarithmic length function log(1 + | · |) but does not with respect

to the double logarithmic length function log(1 + log(1 + | · |)). More precisely, we

have

Ichar(Z, log(1 + | · |)) = [1,∞) and Ichar(Z, log(1 + log(1 + | · |))) = ∅.

Proof. Lemma 3.1.3 shows that the sequence (D3n)n∈N of Dirichlet kernels forms

characteristic tame cuts for (Z, log(1 + | · |)). Theorem 3.1.4 shows that the linear

growth of characteristic tame cuts is optimal. For the second part, assume that

there exists characteristic tame cuts (ϕn)n∈N. Then the support of ϕn would contain

at least ee
n ≈ |Bn| elements, and Theorem 3.1.4 implies

‖ϕn‖M0A = ‖ϕn‖A = ‖F(ϕn)‖L1(T) ≥ Cen,

which contradicts the assumption.

Remark 3.1.1. We have I(Z, `) = [0,∞) for any proper length function ` since Z is
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amenable, and Ichar(Z, | · |) = (0,∞) since the logarithmic function is slower than

any polynomial.

The following example is the very first class of discrete groups with characteristic

tame cuts.

Proposition 3.1.6. Let Γ be a discrete group satisfying the Rapid Decay property

with respect to a proper length function `. Then (Γ, `) has characteristic tame cuts

and Ichar(Γ) contains all Rapid Decay degrees in Theorem 2.2.12 (v).

Proof. To show that, first note that for any non-zero function f ∈ Cc(Γ), we have

‖λ(f)‖ ≥ 〈λ(f)δe, f〉
‖f‖2

= ‖f‖2.

Thus, if we put ϕn = 1Bn , by Rapid Decay property, we have

‖λ(ϕnf)‖ ≤ Cna‖ϕnf‖2

≤ Cna‖f‖2

≤ Cna‖λ(f)‖,

for all f ∈ Cc(Γ), hence ‖ϕn‖MA ≤ Cna.

Second proof for the first part. Suppose that there are constants C, s > 0 satisfying

‖λ(f)‖ ≤ C‖f‖s,` for all f ∈ Cc(Γ). The function ψn = 1Bn +dC2(2 +n)2s+2eδe sat-

isfies all conditions of Lemma 3.1.7 below. Thus, ψn is a positive Fourier multiplier

and ‖ψn‖MA = ψn(e) = 1 + dC2(2 + n)2s+2e. Now, the inequality

‖1Bn ‖MA ≤ ‖ψn‖MA + ‖dC2(2 + n)2s+2eδe‖MA

≤ 1 + dC2(2 + n)2s+2e+ C2(2 + n)2s+2

≤ C ′n2s+2

proves the statement.

Lemma 3.1.7 ([JV91]). Let Γ be a discrete countable group, ` a proper length

function of Γ with `(x) > 0 for any x ∈ Γ \ {e}, and n ∈ N. Assume that there are

constants C, s > 0 such that

‖λ(f)‖ ≤ C‖f‖s,`, (∀f ∈ Cc(Γ)).
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Suppose that ψ : Γ→ C is a function such that ψ = ψ∗ and

nC2|ψ(x)|(2 + `(x))2s+2 ≤ ψ(e), (∀x ∈ Γ \ {e}).

Then ψ defines a n-positive Fourier multiplier.

3.2 `-comparable norms

Here we state a sufficient condition for a group to admit characteristic tame cuts.

Definition 3.2.1. We say that a norm N on Cc(G) is unconditional if for any

f, g ∈ Cc(G) with |f | ≤ |g|, we have N(f) ≤ N(g).

Example 3.2.2. (Any weighted) Lp-norm is unconditional for 1 ≤ p ≤ ∞.

Definition 3.2.3. Let ` be a proper length function of a locally compact group G.

Two norms N1 and N2 on Cc(G) are `-comparable if there are constants C, a ≥ 0

such that the inequalities

N1(f) ≤ CnaN2(f) and N2(f) ≤ CnaN1(f)

hold for all f ∈ Cc(G) and n ∈ N with supp(f) ⊆ Bn.

Example 3.2.4. Suppose that ` is a proper length function of G. For s ∈ R+ and

1 ≤ p <∞, define Lp,s-norm on Cc(G) by

‖f‖p,s,` =

(∫
G

|f(x)|p(1 + `(x))spdx

)1/p

, (∀f ∈ Cc(G)).

Observe that if supp(f) ⊆ Bn, then∫
G

|f(x)|pdx ≤
∫
G

|f(x)|p(1 + `(x))spdx ≤ (1 + n)sp
∫
G

|f(x)|pdx.

Thus, Lp,s-norm is `-comparable with Lp-norm. It is also true for s < 0.

Example 3.2.5. For a discrete group Γ, the `2-norm is `-comparable with the

C∗λ(Γ)-norm if and only if (Γ, `) has the Rapid Decay property. Note that it is not

always true for general locally compact groups. For example, consider the group

G = T. Being compact, this group has Rapid Decay property for any proper length
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function. Take the length function ` : T 7→ {0}. The L2(T)-norm is `-comparable

with the C∗λ(T)-norm if and only if they are Lipschitz equivalent, which would imply

that the Banach spaces L2(T) ⊆ L1(T) ⊆ C∗λ(T) coincide. This is false since the

function f(x) = x−1/2 on [0, 1] is integrable but not square integrable.

Proposition 3.2.6. Assume that G is a locally compact group, ` is a proper length

function of G, and N is an unconditional norm on Cc(G) that is `-comparable with

the C∗λ(G)-norm (or with the A(G)-norm). Then G has tame cuts. Moreover, if G

is discrete, then G has characteristic tame cuts.

Proof. The main point is that if N is unconditional, any pointwise multiplier of

(Cc(G), N) corresponding to a function ϕ ∈ Cc(G) with |ϕ| ≤ 1 is contracting.

Take a large enough r ∈ N such that Br has positive measure (equivalently

the interior B0
r of the ball Br is non-empty). We can find a non-negative function

f ∈ A(G) with
∫
G
fdx = 1 and supp(f) ⊆ B2r. For example, apply K = Br

and U = BrB
0
r on Proposition 1.2.18 and normalize the resulting function. If G is

discrete, we choose f = δe. Put ϕn = f ∗ 1Bn+3r ∈ A(G). Note that ϕn|Bn ≡ 1,

0 ≤ ϕn ≤ 1, supp(ϕn) ⊆ Bn+5r, and ϕn is continuous. Using the `-comparison

condition, we get

‖λ(ϕng)‖ ≤ C(n+ 5r)aN(ϕng) ≤ C(n+ 5r)aN(g) ≤ C(n+ 5r)a‖λ(g)‖,

for all g ∈ Cc(G) and for some constants C, a ≥ 0. This proves that the sequence

(ϕn)n∈N forms tame cuts for (G, `).

Inspired by the Rapid Decay property, the following classes of discrete groups

are also interesting.

Definition 3.2.7. Let 1 ≤ p ≤ ∞. A discrete group (Γ, `) endowed with a length

function has RDp if the `p-norm on Cc(Γ) is `-comparable with the C∗λ(Γ)-norm. In

particular, RD2 coincides with the Rapid Decay property.

Proposition 3.2.8. Let (Γ, `) be a discrete group endowed with a proper length

function.

(i) If (Γ, `) has RDp for some 1 ≤ p ≤ ∞, then (Γ, `) has characteristic tame

cuts.

(ii) If (Γ, `) has polynomial growth, then it has RDp for all 1 ≤ p <∞.
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(iii) If (Γ, `) has RDp and RDq for some 1 ≤ p < q ≤ 2, then it has polynomial

growth.

Proof.

(i) Clearly, `p-norm is unconditional, and since `p-norm is `-comparable with the

C∗λ(Γ)-norm by assumption, it follows from Proposition 3.2.6 that (Γ, `) has

characteristic tame cuts.

(ii) Take any f ∈ Cc(Γ) with supp(f) ⊆ Bn. Observe that

‖f‖p =

(∑
x∈Bn

|f(x)|p
)1/p

≤ |Bn|
2−p
2 ‖f‖2 ≤ |Bn|

2−p
2 ‖λ(f)‖,

where the first inequality is Hölder’s inequality, and the second one is because

‖λ(f)‖ ≥ 〈λ(f)δe, f〉
‖f‖2

= ‖f‖2. Similarly, we have

‖λ(f)‖ ≤ ‖f‖1 ≤ |Bn|
p−1
p ‖f‖p.

(iii) By transitivity of `-comparison, `p-norm is `-comparable to `q-norm, so there

exist constants C, a ≥ 0 such that ‖f‖p ≤ Cna‖f‖q for all f ∈ Cc(Γ) with

supp(f) ⊆ Bn. In particular, if we put f = 1Bn , we get

|Bn|1/p ≤ Cna|Bn|1/q.

Thus, the growth of (Γ, `) is bounded by (Cna)
pq
q−p .

The point (iii) asserts that the classes RDp for 1 ≤ p ≤ 2 give a priory very

different classes of groups admitting tame cuts. We do not know any example of

RD1 groups besides those with polynomial growth.

3.3 Stability properties

3.3.1 Subgroups

Proposition 3.3.1. Let G be a locally compact group, H a closed subgroup of

G, and ` a proper length function of G. If (ϕn)n∈N forms (completely bounded)
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[characteristic] tame cuts for (G, `), then (ϕn|H)n∈N forms (completely bounded)

[characteristic] tame cuts for (H, `|H). Moreover, we have I(G, `) ⊆ I(H, `|H),

Ichar(G, `) ⊆ Ichar(H, `|H), Icb(G, `) ⊆ Icb(H, `|H), and Icharcb (G, `) ⊆ Icharcb (H, `|H).

This proposition is a direct consequence of the following lemma.

Lemma 3.3.2 (Proposition 1.12 of [DCH85]). Let H be a closed subgroup of a locally

compact group G.

(i) If ϕ ∈MA(G), then ϕ|H ∈MA(H) and ‖ϕ|H‖MA(H) ≤ ‖ϕ‖MA(G).

(ii) If ϕ ∈M0A(G), then ϕ|H ∈M0A(H) and ‖ϕ|H‖M0A(H) ≤ ‖ϕ‖M0A(G).

Proof. By the characterization (iii) in Theorem 1.2.21, the restriction map from

M0A(G) to M0A(H) is clearly norm decreasing. For the restriction map from

MA(G) to MA(H), we provide an elementary proof for the case when H is an

open subgroup of G. For the general case, see [DCH85, Proposition 1.12].

Suppose that ϕ ∈ MA(G). Equivalently, ϕ ∈ Cb(G) and there is a constant

C <∞ such that

‖λG(ϕf)‖ ≤ C‖λG(f)‖, (∀f ∈ Cc(G)). (3.1)

Since H is open in G, any function f ∈ Cc(H) can be seen as a function on G

supported on H. Using (3.1) and Lemma 3.3.3 below, we get

‖λH(ϕf)‖ = ‖λG(ϕf)‖ ≤ C‖λG(f)‖ = C‖λH(f)‖, (∀f ∈ Cc(H)).

This proves ‖ϕ|H‖MA(H) ≤ C.

Lemma 3.3.3. Let G be a locally compact group, H an open subgroup of G, and

x ∈ G. If f ∈ Cc(G) and supp(f) ⊆ H, then f acts on L2(Hx) by (left) convolution

and the norm

‖f‖B(L2(Hx)) = sup{‖f ∗ η‖ | η ∈ L2(Hx), ‖η‖L2(Hx) = 1}

is equal to ‖λG(f)‖. In particular, ‖λH(f |H)‖ = ‖λG(f)‖.

Proof. Suppose that f ∈ Cc(G) is as in the statement. Let us first prove that the

norm ‖f‖B(L2(Hx)) does not depend on x. Consider the map U : L2(H) → L2(Hx),
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η 7→ η(·x−1). It is clearly a surjective isometry. Moreover, we have U(f∗η) = f∗U(η)

for all η ∈ L2(H). Indeed, for all hx ∈ Hx, we have

[U(f ∗ η)](hx) = (f ∗ η)(h) =

∫
H

f(s)η(s−1h)ds =

∫
H

f(s)η(s−1hxx−1)ds

=

∫
H

f(s)(Uη)(s−1hx)ds = [f ∗ (Uη)](hx).

It follows that ‖f‖B(L2(H)) = ‖f‖B(L2(Hx)).

Let us prove ‖λH(f |H)‖ = ‖λG(f)‖. Take any ξ ∈ L2(H). We identify ξ with

the element of L2(G) that coincides with ξ on H and takes value 0 on Hc. From the

calculation

‖f ∗ ξ‖2
L2(G) =

∫
G

∣∣∣∣∫
G

f(x)ξ(x−1k)dx

∣∣∣∣2 dk =

∫
G

∣∣∣∣∫
H

f(x)ξ(x−1k)dx

∣∣∣∣2 dk
≥
∫
H

∣∣∣∣∫
H

f(x)ξ(x−1k)dx

∣∣∣∣2 dk = ‖f ∗ ξ‖2
L2(H),

it is clear that ‖λG(f)‖ ≥ ‖λH(f |H)‖. Now, we will prove the converse inequality.

Let {Hxi | i ∈ I} be the right cosets and take any ξ ∈ L2(G). For each i ∈ I, let ξi

be the orthogonal projection of ξ onto L2(Hxi). Then we have

‖f ∗ ξ‖2
L2(G) =

∑
i∈I

∫
Hxi

∣∣∣∣∫
H

f(x)ξ(x−1k)dx

∣∣∣∣2 dk =
∑
i∈I

‖f ∗ ξi‖2
L2(Hxi)

≤
∑
i∈I

‖f‖2
B(L2(Hxi))

‖ξi‖2
L2(Hxi)

= ‖λH(f |H)‖‖ξ‖2
L2(G),

and we conclude.

3.3.2 From a uniform lattice

The following result is almost direct from Proposition 2.1.5, but we provide the

proof for completeness.

Proposition 3.3.4. Suppose that Γ is a uniform lattice in a locally compact group

G. Let ` be a proper length function of G. Then (Γ, `|Γ) has completely bounded

tame cuts if and only if so does (G, `).

Proof. The “if” part is dealt in the previous subsection. Let us prove the “only

if” part. Take a large enough number r ∈ N such that Br contains a compact
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fundamental domain Ω of Γ. Take any function ϕ ∈ Cc(Γ) with ϕ|Bn+2r ≡ 1 for

some n ∈ N. We will use the induction map Φ : M0A(Γ) → M0A(G) defined in

(2.1). For each x ∈ G, we can write x = γ(x)ω(x) for a unique γ(x) ∈ Γ and

ω(x) ∈ Ω. With this notation, if φ is in M0A(Γ), then we can write

Φ(φ)(x) = φ̂(x) =

∫
Ω

φ(γ(xw))dw, (∀x ∈ G).

Since the induction map is norm decreasing, to prove the statement, it is enough

to check that ϕ̂ is compactly supported and takes 1 on the ball Bn. Since ϕ is

compactly supported, there exists a large enough R ≥ 0 such that supp(ϕ) ⊆ BR.

If x ∈ G is such that `(x) > R + 2r, then

`(γ(xw)) = `(ω(xw)−1xw) ≥ `(x)− `(ω(xw))− `(w) > R,

and ϕ(γ(xw)) = 0 for all w ∈ Ω. This shows that ϕ̂ is supported on the compact

ball BR+2r. Now, take any x ∈ Bn. Since

`(γ(xw)) = `(ω(xw)−1xw) ≤ `(x) + `(ω(xw)) + `(w) ≤ n+ 2r, (∀w ∈ Ω),

we have ϕ̂(x) =
∫

Ω
ϕ(γ(xw))dw =

∫
Ω

1dw = 1. This completes the proof.

We have seen that ME-subgroups inherit the weak amenability. It is quite intu-

itive that completely bounded tame cuts are transferred to ME-subgroups via the

induction map defined in (2.6). However, the problem occurs as the induction map

might not preserve the compact support. We can avoid this inconvenience as follows.

Theorem 3.3.5. Let Λ and Γ be two countable groups, (X, d) a metric space, and

µ a Borel measure on X. Suppose that there exist commuting, measure preserving,

distance preserving, proper, free actions Λ y X x Γ such that the Γ action admits

a precompact fundamental domain Ω. Fix a base point v0 ∈ X and define the length

functions `Γ : δ ∈ Γ 7→ d(v0.δ, v0) and `Λ : s ∈ Λ 7→ d(s.v0, v0). If (Γ, `Γ) has

completely bounded tame cuts, so does (Λ, `Λ).

Proof. We use the notations γ : X → Γ and ω : X → Ω from (2.4). Recall the

induction map sends ϕ ∈ Cc(Γ) to ϕ̂ : Λ→ C defined by

ϕ̂(s) =

∫
Ω

ϕ(γ(s.w)−1)dµ(w), (∀s ∈ Λ).
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Let us prove that ϕ̂ is finitely supported. Choose a large enough R ≥ 0 and R′ ≥ 0

such that Ω ⊆ BR(v0) and supp(ϕ) ⊆ BR′ . If s ∈ Λ is such that `Λ(s) > 2R + R′,

then by the triangle inequality

`Γ(γ(s.w)) = d(v0, v0.γ(s.w))

≥ d(v0, s.v0)− d(s.v0, s.w)− d(ω(s.w).γ(s.w), v0.γ(s.w))

≥ `Λ(s)− 2R > R′,

and ϕ(γ(s.w)−1) = 0 for all w ∈ Ω. This shows that ϕ̂ is supported on the finite set

B2R+R′ .

Suppose that ϕ|Bn+2R
≡ 1 for some n ∈ N. Let us prove that ϕ̂|Bn ≡ 1. Take

any s ∈ Λ such that `Λ(s) ≤ n. Then we have

`Γ(γ(s.w)) = d(v0, v0.γ(s.w))

≤ d(v0, s.v0) + d(s.v0, s.w) + d(ω(s.w).γ(s.w), v0.γ(s.w))

≤ n+ 2R

for all w ∈ Ω, hence ϕ̂(s) =
∫

Ω
ϕ(γ(s.w)−1)dµ(w) =

∫
Ω

1dµ(w) = 1. Now, the

statement follows from Lemma 2.1.13.

Remark 3.3.1. As you can see, we do not require the Λ-action to have a Borel

fundamental domain. This condition was used only in Lemma 2.1.13 to prove that

the map A(Γ)→ A(Λ) is norm decreasing.

Corollary 3.3.6. Suppose that Γ is a uniform lattice in G, and Λ is a discrete

subgroup of G. If Γ has completely bounded tame cuts, so does Λ.

Remark 3.3.2. The corollary also follows from Proposition 3.3.4.

3.3.3 Polynomial co-growth

The main result of this subsection is Proposition 3.3.9 which states that the property

of admitting (completely bounded) [characteristic] tame cuts is inherited by a normal

open subgroup with polynomial co-growth. This result is used to construct groups

with completely bounded characteristic tame cuts that do not satisfy the Rapid

Decay property. The proof is inspired by [Jol90] where the stability of Rapid Decay

property under certain extensions was studied.
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Definition 3.3.7. Let (G, `) be a locally compact group endowed with an integral

valued length function and let H be a normal open subgroup of G. Let π : G→ H\G
be the natural projection. Choose a cross-section σ : Q → G (a map such that

π ◦ σ = idQ and σ(H) = eG) in a way that `(σ(q)) = min{`(hσ(q)) : h ∈ H} for

all q ∈ Q. In other words, we want σ(q) to be inside the smallest ball intersecting

with the corresponding coset. We call this cross section `-optimal. It is not difficult

to see that the function `Q : q ∈ Q 7→ `(σ(q)) is a length function of Q. If Q has

polynomial growth with respect to `Q, we say H has polynomial `-co-growth in G.

Example 3.3.8. If G is generated by a compact subset S, then the quotient group

Q is generated by the compact subset π(S). Moreover, the word length function `π(S)

of Q is equivalent to `Q for any `-optimal cross section. Let us prove it. We already

know that the word length function dominates `Q. For the converse, take any q ∈ Q
and suppose `Q(q) = n. It follows that there exist h ∈ H and s1, ..., sn ∈ S such that

hσ(q) = s1...sn. By applying π on both side, we get q = π(s1...sn) = π(s1)...π(sn).

In other words, `π(S)(q) ≤ n = `Q(q) for all q ∈ Q.

Proposition 3.3.9. Let G be a unimodular locally compact group, ` a proper length

function of G, and H a normal open subgroup of G with polynomial `-co-growth.

The group (H, `|H) has (completely bounded) tame cuts if and only if so does (G, `).

Moreover, the statement is valid for (completely bounded) characteristic tame cuts

when G is discrete.

Corollary 3.3.10. Let Γ be a finitely generated group, ` the word length function of

Γ, and H a normal subgroup of Γ. Assume Γ/H has polynomial growth. If (H, `|H)

has (completely bounded) [characteristic] tame cuts, then so does (Γ, `).

We need some preparation before the proof. Every element x ∈ G can be written

as x = hσ(q) for a unique h ∈ H and q ∈ Q. For f ∈ Cc(G), ξ ∈ L2(G), h ∈ H,

and q, r ∈ Q, we write fq(h) = f(hσ(q)) and ξq,r(h) = ξ(σ(q)−1hσ(r)). Note that

fq ∈ Cc(H) and ξq,r ∈ L2(H). Indeed, for a fixed q ∈ Q, we have

‖ξ‖2
L2(G) =

∫
G

|ξ(x)|2dx =

∫
G

|ξ(σ(q)−1x)|2dx

=
∑
r∈Q

∫
H

|ξ(σ(q)−1hσ(r))|2dh =
∑
r∈Q

‖ξq,r‖2
L2(H).

(3.2)

We need the following two lemmas.
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Lemma 3.3.11. Assume the notations above. The linear map C∗λ(G) → C∗λ(H),

f 7→ fq is norm decreasing for all q ∈ Q. Moreover, if f ∈ Cc(G) is supported on

Hσ(q), then we have ‖λG(f)‖ = ‖λH(fq)‖.

Proof. For every η ∈ L2(H) with ‖η‖L2(H) = 1, we choose ξ ∈ L2(G) to be

ξ(hσ(p)) =

{
η(σ(q)−1hσ(q)), p = H

0, p 6= H.

for all h ∈ H and p ∈ Q. Note that ‖ξ‖L2(G) = ‖η‖L2(H) = 1 and supp(ξ) ⊆ H.

Further, we have

‖λG(f)‖2 ≥ ‖f ∗ ξ‖2
L2(G) =

∑
r∈Q

∫
H

∣∣∣∣∣∑
p∈Q

∫
H

f(kσ(p))ξ(σ(p)−1k−1hσ(r))dk

∣∣∣∣∣
2

dh

(r = q) ≥
∫
H

∣∣∣∣∣∑
p∈Q

∫
H

f(kσ(p))ξ(σ(p)−1k−1hσ(q))dk

∣∣∣∣∣
2

dh

(supp(ξ) ⊆ H) =

∫
H

∣∣∣∣∫
H

f(kσ(q))ξ(σ(q)−1k−1hσ(q))dk

∣∣∣∣2 dh
=

∫
H

∣∣∣∣∫
H

fq(k)η(k−1h)dk

∣∣∣∣2 dh
=‖fq ∗ η‖2

L2(H).

It follows that ‖λH(fq)‖ ≤ ‖λG(f)‖.
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Suppose supp(f) ⊆ Hσ(q). Take any ξ ∈ L2(G). We have

‖f ∗ ξ‖2
L2(G) =

∑
r∈Q

∫
H

∣∣∣∣∣∑
p∈Q

∫
H

f(kσ(p))ξ(σ(p)−1k−1hσ(r))dk

∣∣∣∣∣
2

dh

(supp(f) ⊆ Hσ(q)) =
∑
r∈Q

∫
H

∣∣∣∣∫
H

f(kσ(q))ξ(σ(q)−1k−1hσ(r))dk

∣∣∣∣2 dh
=
∑
r∈Q

∫
H

∣∣∣∣∫
H

fq(k)ξq,r(k
−1h)dk

∣∣∣∣2 dh
=
∑
r∈Q

‖fq ∗ ξq,r‖2
L2(H)

≤‖λH(fq)‖2
∑
r∈Q

‖ξq,r‖2
L2(H)

=‖λH(fq)‖2‖ξ‖2
L2(G),

where the last equality is from (3.2). Thus, ‖λG(f)‖ = ‖λH(fq)‖.

Lemma 3.3.12. Assume the notations above. Suppose that H has polynomial `-co-

growth. Then the map

N : f ∈ Cc(G) 7→ max
q∈Q
‖λH(fq)‖

defines a norm on Cc(G) that is `-comparable with the C∗λ(G)-norm.

Proof. Thanks to Lemma 3.3.11, we have N(f) = maxq∈Q ‖λH(fq)‖ ≤ ‖λG(f)‖ for

all f ∈ Cc(G), so N is well defined. It is routine to check that N is a norm on

Cc(G). Take any function f ∈ Cc(G) with supp(f) ⊆ Bn. Noting that supp(f) ⊆
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Hσ(π(Bn)) implies fq ≡ 0 for all q ∈ π(Bn)c, we have

‖f ∗ ξ‖2
L2(G) =

∑
r∈Q

∫
H

∣∣∣∣∣∑
q∈Q

∫
H

f(kσ(q))ξ(σ(q)−1k−1hσ(r))dk

∣∣∣∣∣
2

dh

=
∑
r∈Q

∫
H

∣∣∣∣∣∑
q∈Q

∫
H

fq(k)ξq,r(k
−1h)dk

∣∣∣∣∣
2

dh

=
∑
r∈Q

∫
H

∣∣∣∣∣
(∑
q∈Q

fq ∗H ξq,r

)
(h)

∣∣∣∣∣
2

dh

=
∑
r∈Q

∥∥∥∥∥∥
∑

q∈π(Bn)

fq ∗H ξq,r

∥∥∥∥∥∥
2

L2(H)

.

By the triangle inequality, we have

‖f ∗ ξ‖2
L2(G) ≤

∑
r∈Q

 ∑
q∈π(Bn)

‖fq ∗H ξq,r‖L2(H)

2

≤ N(f)2
∑
r∈Q

 ∑
q∈π(Bn)

‖ξq,r‖L2(H)

2

≤ N(f)2
∑
r∈Q

|π(Bn)|
∑

q∈π(Bn)

‖ξq,r‖2
L2(H)

≤ N(f)2|π(Bn)|
∑

q∈π(Bn)

∑
r∈Q

‖ξq,r‖2
L2(H)

(Apply (3.2)) = N(f)2|π(Bn)|2‖ξ‖2
L2(G),

and it follows that N is `-comparable with the C∗λ(G)-norm since the growth of

|π(Bn)| is polynomial.

Proof of Proposition 3.3.9. Let us prove first the non-completely bounded case. The

“only if” part is due to Proposition 3.3.1. For the converse, assume that there exists

tame cuts (ψn)n∈N for (H, `|H). By assumption, we have

‖ψn‖MA(H) ≤ Cna, ψn|Bn∩H ≡ 1, and |π(Bn)| ≤ Dnb
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for some constants C,D, a, b ≥ 0 and for all n ∈ N. Define ϕn : G→ C as

ϕn(hσ(q)) =

{
ψ2n(h), q ∈ π(Bn)

0, otherwise
, (∀h ∈ H, q ∈ Q).

Notice that ϕn ∈ Cc(G) since it is a sum of finitely many compactly supported con-

tinuous functions whose supports are in disjoint open subsets of G. Conventionally,

we chose the cross-section σ such that `(σ(q)) ≤ `(hσ(q)) for any h ∈ H. Now, it is

easy to see ϕn|Bn ≡ 1. Indeed, if hσ(q) ∈ Bn, then q ∈ π(Bn) and

`(h) ≤ `(hσ(q)) + `(σ(q)) ≤ 2`(hσ(q)) ≤ 2n,

hence ϕn(hσ(q)) = ψ2n(h) = 1 by construction. Note also that if ψ2n is a character-

istic function, then so is ϕn. Since supp(ϕn) ⊆ Hσ(π(Bn)), by Lemma 3.3.12,

‖λG(ϕnf)‖ ≤ DnbN(ϕnf)

= Dnb max
q∈π(Bn)

‖λH([ϕnf ]q)‖

= Dnb max
q∈π(Bn)

‖λH(ψ2nfq)‖

≤ Dnb‖ψ2n‖MA(H) max
q∈π(Bn)

‖λH(fq)‖

≤ Dnb‖ψ2n‖MA(H)N(f)

≤ CDna+b‖λG(f)‖

for all f ∈ Cc(G). This shows that (ϕn)n∈N forms tame cuts for (G, `).

The completely bounded case can be seen by considering the open subgroup

H × SO(3) of G× SO(3).

We end this subsection by proposing another sufficient condition for an extension

to have (characteristic) tame cuts.

Proposition 3.3.13. Let Γ be a finitely generated group, ` the word length function

of Γ, H a normal subgroup of Γ, and σ : Q = H\Γ→ Γ an `-optimal cross section.

Define the map f ∈ Cc(Γ) → f ′ ∈ Cc(Q), f ′(q) = ‖λH(fq)‖, where fq ∈ Cc(H) is

defined by fq(h) = f(hσ(q)) for all q ∈ Q and h ∈ H. If (H, `|H) has (characteristic)

tame cuts and ‖λQ(f ′)‖ ≤ ‖λΓ(f)‖ for all f ∈ Cc(Γ), then (Γ, `) has (characteristic)

tame cuts.
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Proof. Take any function ψ ∈ Cc(H) with ψ|B2n∩H ≡ 1. Define ϕ ∈ Cc(Γ) as

ϕ(hσ(q)) =

{
ψ(h), `(hσ(q)) ≤ n

0, otherwise.

Since σ is `-optimal, we have ϕ|Bn ≡ 1. Also, note that ϕ is characteristic if so is

ψ. To prove the statement, it is enough to see that ‖ϕ‖MA ≤ ‖ψ‖MA. Recall the

notations

fq(h) = f(hσ(q))

ξp,r(h) = ξ(σ(p)−1hσ(r))

f ′(p) = ‖λH(fp)‖

ξ1(q) =

(∑
h∈H

|ξ(hσ(q))|2
)1/2

= ‖ξq‖`2(H)

for all h ∈ H, p, q, r ∈ Q, and f, ξ ∈ Cc(Γ). It is easily seen that

‖ξp,r‖`2(H) = ξ1(p−1r) (3.3)

‖ξ‖`2(Γ) = ‖ξ1‖`2(Q). (3.4)

It follows that

‖ϕf ∗Γ ξ‖2
`2(Γ) =

∑
r∈Q

∥∥∥∥∥∑
p∈Q

ϕpfp ∗H ξp,r

∥∥∥∥∥
2

`2(H)

(triangle inequality) ≤
∑
r∈Q

(∑
p∈Q

‖ψfp ∗H ξp,r‖`2(H)

)2

(operator norms) ≤ ‖ψ‖2
MA(H)

∑
r∈Q

(∑
p∈Q

‖λH(fp)‖‖ξp,r‖`2(H)

)2

(apply (3.3)) = ‖ψ‖2
MA(H) ‖f ′ ∗Q ξ1‖2

`2(Q)

(operator norms) ≤ ‖ψ‖2
MA(H)

∥∥λQ(f ′)‖2‖ξ1

∥∥2

`2(Q)

(apply the hypothesis and (3.4)) ≤ ‖ψ‖2
MA(H)

∥∥λΓ(f)‖2‖ξ
∥∥2

`2(Γ)
.

This proves ‖ϕ‖MA ≤ ‖ψ‖MA.
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3.3.4 Quasi-direct product

It seems the stability of admitting (characteristic) tame cuts under the direct product

is not clear. The completely bounded case, on the other hand, is not difficult to see.

In this subsection, we will discuss the stability of completely bounded tame cuts

under a version of the direct product, namely quasi-direct product.

Definition 3.3.14. Let G be a locally compact group, {H1, ..., Hk} a collection of

some normal closed subgroups of G. We say that G is a quasi-direct product of

{H1, ..., Hk}, or the collection is quasi-orthogonal, if the intersection
⋂k
i=1KHi is

compact for any compact subset K ⊆ G.

For example, if G is equal to the direct product H1× ...×Hk, then the collection

{H1, ..., Hk} is quasi-orthogonal. Indeed, suppose that K ⊆ G is a compact subset.

Note that

KHi ⊆ p1(K)× ...× pi−1(K)×Hi × pi+1(K)× ...× pk(K),

where pi : G→ Hi are the canonical projections. Thus,

k⋂
i=1

KHi ⊆
k∏
i=1

pi(K).

The right hand side is compact, and the left hand side is closed, hence also compact.

Lemma 3.3.15. Let H be a normal closed subgroup of a locally compact group G.

If ψ is a completely bounded Fourier multiplier on Q = G/H, then the periodic

extension

ϕ : G→ C, ϕ(x) = ψ(xH), x ∈ G

of ψ defines a completely bounded Fourier multiplier on G with ‖ϕ‖M0A(G) ≤ ‖ψ‖M0A(Q).

Proof. By hypothesis, there is a Hilbert space H and two bounded continuous maps

ξ, η : Q→ H such that

ψ(p−1q) = 〈ξ(q), η(p)〉, (∀p, q ∈ Q)

and ‖ψ‖M0A = ‖ξ‖∞‖η‖∞. Define ξ′, η′ : G → C as ξ′(x) = ξ(xH) and η′(y) =
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η(yH) for all x, y ∈ G. Then we have

ϕ(y−1x) = ψ(y−1xH) = ψ((yH)−1xH) = 〈ξ(xH), η(yH)〉 = 〈ξ′(x), η′(y)〉,

which follows that ϕ ∈M0A(G) and ‖ϕ‖M0A ≤ ‖ξ‖∞‖η‖∞ = ‖ψ‖M0A.

Proposition 3.3.16. Let G be a locally compact group that is a quasi-direct prod-

uct of subgroups {H1, ..., Hk}, and ` a proper length function of G. For each i ∈
{1, ..., k}, denote by σi : Qi = G/Hi → G an `-optimal cross section. If each quo-

tient group (Qi = G/Hi, ` ◦ σi) admits completely bounded tame cuts, then so does

G. If G is discrete and each quotient group (Qi = G/Hi, ` ◦ σi) admits completely

bounded characteristic tame cuts, then so does G.

Proof. Let (ψi,n : Qi → C)n∈N be tame cuts for (Qi, ` ◦ σi). Put ϕn =
∏k

i=1 ϕi,n,

where each ϕi,n is the periodic extension of ψi,n. We have

‖ϕn‖M0A ≤
k∏
i=1

‖ϕi,n‖M0A

since M0A(G) is Banach algebra with pointwise multiplication. Also, note that the

right hand side is at most a polynomial of n.

The functions ϕn have compact support. Indeed, since H1, ..., Hk are quasi-

orthogonal, the support

supp(ϕn) =
k⋂
i=1

supp(ϕi,n) ⊆
k⋂
i=1

(
k⋃
i=1

supp(ϕi,n)

)
︸ ︷︷ ︸

compact

Hi

is compact. It remains to show that ϕn take 1 on the ball Bn of radius n. By

assumption, the periodic extension ϕi,n takes value 1 on `−1([0, n])Hi. It follows that

ϕn takes value 1 on the intersection
⋂k
i=1 `

−1([0, n])Hi, which obviously contains the

ball Bn.

Corollary 3.3.17. Admitting completely bounded (characteristic) tame cuts is stable

under direct products.

Corollary 3.3.18. Suppose that H is a compact normal subgroup of a locally com-

pact group G. If the quotient group Q = G/H has completely bounded tame cuts,
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then so does G. If G is discrete and Q = G/H has completely bounded (character-

istic) tame cuts, then so does G.

Proof. Use the proposition for the quasi-orthogonal collection {G,H}.

3.3.5 Quotients by a normal compact subgroup

Let G be a locally compact group, H a normal compact subgroup of G. Denote

by π : G → G/H = Q the natural quotient map. If G is generated by a compact

subset S with S = S−1 and such that H ⊆ S, then Q is compactly generated by

π(S). Denote by `G and `Q the corresponding word length functions. By [Gar15,

Remark 4.2], we can choose a Borel measurable cross-section σ : Q → G such that

`Q(q) = `G(σ(q)) for all q ∈ Q. We write elements x ∈ G in its unique form

x = hσ(q), h ∈ H, q ∈ Q. We normalize the Haar measures of G and Q so that

the Haar measure dh of H corresponding to the formula (cf. [BdlHV08, Theorem

B.1.4]) ∫
G

f(x)dx =

∫
Q

∫
H

f(hσ(q))dhdq

is probability.

Proposition 3.3.19. Under the assumptions above, if (G, `G) has tame cuts, so

does (Q, `Q).

The proof is inspired by [Jol90]. We need the following lemma.

Lemma 3.3.20. The linear map C∗λ(Q)→ C∗λ(G), f 7→ f ′ = f ◦π is norm decreas-

ing.

Proof. For ξ ∈ L2(G), k, h ∈ H, and p, q ∈ Q, denote ξk(p) = ξ(kσ(p)). Noting

hσ(q)σ(p)−1k−1H = σ(qp−1)H, we have

‖f ′ ∗ ξ‖2
L2(G) =

∫
Q

∫
H

∣∣∣∣∫
Q

∫
H

f ′(hσ(q)σ(p)−1k−1)ξ(kσ(p))dkdp

∣∣∣∣2 dhdq
=

∫
Q

∫
H

∣∣∣∣∫
Q

∫
H

f(qp−1)ξk(p)dkdp

∣∣∣∣2 dhdq
=

∥∥∥∥f ∗Q (∫
H

ξkdk

)∥∥∥∥2

L2(Q)

≤ ‖λQ(f)‖2

(∫
H

‖ξk‖L2(Q)dk

)2

≤‖λQ(f)‖2

∫
H

‖ξk‖2
L2(Q) = ‖λQ(f)‖2‖ξ‖2

L2(G)
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for all f ∈ Cc(Q) and ξ ∈ Cc(G).

Proof of Proposition 3.3.19. Suppose that ψ ∈ Cc(G) ∩ MA(G) takes value 1 on

Bn+1. By [BdlHV08, Lemma B.1.2], the function ϕ : Q→ C defined by

ϕ(q) =

∫
H

ψ(hσ(q))dh (3.5)

is compactly supported and continuous. We claim ϕ|Bn ≡ 1. Indeed, if `Q(q) ≤ n,

we have `G(hσ(q)) ≤ 1 + n for all h ∈ H since H ⊆ S and `G(σ(q)) ≤ n by the

choice of σ. Recall that dh is probability on H and ψ|Bn+1 ≡ 1. It follows that

ϕn|Bn ≡ 1 from its definition in (3.5).

It is enough to prove ‖ϕ‖MA ≤ ‖ψ‖MA. Let us observe two useful formulas in

advance. For any f, ξ ∈ Cc(Q), we have

‖f ′ ∗G ξ′‖2
L2(G) =

∫
Q

∫
H

∣∣∣∣∫
Q

∫
H

f ′(kσ(p))ξ′(σ(p)−1k−1hσ(q))dkdp

∣∣∣∣2 dhdq
=

∫
Q

∫
H

∣∣∣∣∫
Q

∫
H

f(p)ξ(p−1q)dkdp

∣∣∣∣2 dhdq
=

∫
Q

∣∣∣∣∫
Q

f(p)ξ(p−1q)dp

∣∣∣∣2 dq
= ‖f ∗Q ξ‖2

L2(Q)

and

(ϕf)′ ∗G ξ′(hσ(q)) =

∫
Q

ϕ(p)f(p)ξ(p−1q)dp

=

∫
Q

(∫
H

ψ(kσ(p))dk

)
f(p)ξ(p−1q)dp

= ψf ′ ∗G ξ′(hσ(q)).

It follows that

‖ϕf ∗Q ξ‖2
L2(Q) = ‖(ϕf)′ ∗G ξ′‖L2(G)

= ‖ψf ′ ∗G ξ′‖2
L2(G)

≤ ‖ψ‖2
MA(G)‖λG(f ′)‖2‖ξ′‖2

L2(G)

≤ ‖ψ‖2
MA(G)‖λQ(f)‖2‖ξ‖2

L2(Q).
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The last inequality follows from Lemma 3.3.20. This completes the proof.

3.4 More examples

In this section, we will provide examples of groups with completely bounded charac-

teristic tame cuts. Some geometric groups are already known to have this property.

For example, hyperbolic groups [Oza08], groups acting properly by isometries on `1-

product of geometrically finite hyperbolic graphs [Ver19], Coxeter groups [Fen02],

and finite dimensional CAT(0) cubical groups [Miz08]. These examples are all based

on the groups acting on a tree that we illustrated in Theorem 2.1.4. Our examples

will be less geometric, and we will use the stability properties from the previous

section and the following lemma.

Lemma 3.4.1. Let G be a locally compact group, H an open subgroup. Then

‖ϕ‖A(G) = ‖ϕ|H‖A(H) for every ϕ ∈ A(G) with supp(ϕ) ⊆ H.

Proof. As H is open, the space of square integrable functions on G with support on

H can be identified with L2(H), and when f, g ∈ L2(G) are supported on H, we

have f |H ∗H g̃|H = (f ∗G g̃)|H . It follows that

‖ϕ‖A(G) = inf{‖f‖2‖g‖2 : f, g ∈ L2(G), ϕ = f ∗ g̃}

≤ inf{‖f‖2‖g‖2 : f, g ∈ L2(G), ϕ = f ∗ g̃, supp(f) ∪ supp(g) ⊆ H}

= inf{‖f‖2‖g‖2 : f, g ∈ L2(H), ϕ|H = f ∗H g̃}

=‖ϕ|H‖A(H).

To show the converse inequality, take any ψ ∈ A(H) and f, g ∈ L2(G) such that

ϕ = f ∗H g̃ and ‖ϕ‖A(H) = ‖f‖2‖g‖2. Then their trivial extensions on G satisfy

ϕ = f ∗G g̃ and ‖ψ‖A(G) = ‖f‖2‖g‖2.

Proposition 3.4.2. Let P be a finitely generated group with polynomial growth and

let F be a finite group. Then the wreath product Γ = F o P has characteristic tame

cuts. In particular, the Lamplighter group Z2 oZ has characteristic tame cuts.

Proof. By definition, Γ is an extension of H =
⊕

x∈P F by the polynomial growth

group P . According to Proposition 3.3.9, it is enough to prove that H has charac-

teristic tame cuts with respect to the restriction of the word length function of Γ.

Suppose that S ⊆ P is a finite generating set of P . For t ∈ F , denote by t̃ : P → F
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the map taking value t on eP , and identity eF elsewhere. Then Γ is generated by

the finite set

T = {(t̃, eP ) | t ∈ F} ∪ {(ẽF , s) | s ∈ S}.

Endow Γ with the word length function ` = `T . For n ∈ N, denote

Gn =
⊕

x∈P,`(x)≤n

F and Hn =
⊕

x∈P,`(x)>n

F

so that H = Gn⊕Hn. Notice that Gn is finite and contains the relative ball Bn∩H.

Put ϕn = 1Gn , the characteristic function of Gn. We want to estimate the norm

‖ϕn‖MA(H). Recall that ‖ϕn‖MA(H) = ‖ϕn‖A(H) because H is amenable and ϕn is

finitely supported. Since the Fourier multiplier 1Gn acts on A(Gn) trivially, and

since supp(ϕn) = Gn, by Lemma 3.4.1, we have

‖ϕn‖MA(H) = ‖ϕn‖A(H) = ‖ϕn|Gn‖A(Gn) = ‖1Gn ‖MA(Gn) = 1.

This completes the proof.

Proposition 3.4.3. For any coprime integers p, q ∈ N, the group Γp,q = Z[ 1
pq

]o p
q
Z

has characteristic tame cuts.

Proof. Recall that Γ = Z[ 1
pq

] o p
q
Z is isomorphic to the subgroup of GL2(R)

Γ ∼=


(pq)k P

0 1

 : k ∈ Z, P ∈ Z[
1

pq
]


generated by the finite set

S =

s±1 =

(
p
q

0

0 1

)±1

, t±1 =

(
1 1

0 1

)±1
 .

Let ` = `S be the word length function of Γ. According to Proposition 3.3.9, we

only need to prove that the subgroup

H =

{(
1 P

0 1

)
: P ∈ Z[

1

pq
]

}
∼= Z[

1

pq
]
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has characteristic tame cuts with respect to the restricted length function `|H . Sup-

pose that x =

(
1 P

0 1

)
∈ H and `(x) ≤ n. Then we can write x = s1...sn for some

si =

((
p
q

)εi
δi

0 1

)
∈ S, εi, δi ∈ {−1, 0, 1}, 1 ≤ i ≤ n with

∑
εi = 0. Moreover, we

have

P = δ1 + δ2

(
p

q

)ε1
+ δ3

(
p

q

)ε1+ε2

+ ...+ δn

(
p

q

)ε1+...+εn−1

=

n∑
i=1

δip
n+

∑i−1
j=1 εjqn−

∑i−1
j=1 εj

qnpn
.

From this, it is easy to see that the cyclic subgroup Hn of H generated by the

element

xn =

(
1 1

qnpn

0 1

)
∈ H

contains the relative ball Bn ∩ H = {x ∈ H | `(x) ≤ n}, and for any element

x ∈ Bn ∩ H, its absolute power |x| with respect to the element xn has an upper

bound

|x| =

∣∣∣∣∣
n∑
i=1

δip
n+

∑i−1
j=1 εjqn−

∑i−1
j=1 εj

∣∣∣∣∣ ≤ nq2np2n.

Denote by An the subset of Hn containing the elements with absolute power less

than nq2np2n. Note that An is finite set containing Bn∩H. Combining the facts that

H is amenable, Lemma 3.4.1, and the estimation of L1-norms of Dirichlet kernels,

we get

‖1An ‖M0A(H) = ‖1An ‖A(H) = ‖1An ‖A(Hn)

= ‖F(1An)‖L1(T) =
4

π
log(nq2np2n) +O(1).

(3.6)

This completes the proof since (3.6) is at most polynomial.

Proposition 3.4.4. Let d ∈ N and let P < SLd(Z) be a finitely generated group

with polynomial growth. Then the semidirect product Γ = ZdoP has characteristic

tame cuts.
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Proof. It is practical to use the following unique canonical form

x = (v, p), v ∈ Zd, p ∈ P

for every element x ∈ Γ. In this form, the group law is given by

(v, p)(w, q) = (v + pw, pq).

Suppose that T is a finite generating set of P with T = T−1. Let {e1, ..., ed} ⊂ Zd

be the usual bases. Then the finite set

S = {(±ei, t) : 1 ≤ i ≤ d, t ∈ T}

generates Γ. We endow Γ with the word length function ` associated to S. Denote

H = 〈e1, ..., ed〉 = {(v, 0) ∈ Γ : v ∈ Zd} < Γ.

Since P has polynomial growth, by Proposition 3.3.9, it is enough to show that

(H, `|H) has characteristic tame cuts. Suppose `(v, 0) ≤ n. Then we can write

(v, 0) = s1...sn

for some si = (εi, ti) ∈ S, 1 ≤ i ≤ n with t1...tn = Id and

v = ε1 + t1ε2 + ...+ t1...tn−1εn.

Notice that

‖v‖∞ ≤ ‖v‖2 ≤ 1 + ‖t1‖+ ...‖t1...tn−1‖ ≤ n (max {‖t‖ : t ∈ T})n .

This can be bounded by Cn for some constant C ∈ N depending only on the set T .

Thus, the finite set An = {(v, 0) ∈ H | v ∈ Zd, ‖v‖∞ ≤ Cn} contains the relative ball

Bn ∩H of radius n. Moreover, by the estimation of L1-norms of Dirichlet kernels

‖1An ‖M0A(G) = ‖F(1An)‖L1(Td) = ‖DCn ⊗ ...⊗DCn‖L1(Td)

= ‖DCn‖dL1(T) =

(
4n log(C)

π
+O(1)

)d
.

(3.7)
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Since (3.7) is a polynomial, we conclude.

Our next example is the Baumslag-Solitar groups. The idea is based on the

work [GJ03]. The proof also works for N -BS groups, which generalizes the classical

Baumslag-Solitar groups. Let us explain what N -BS group is.

Definition 3.4.5. Let N be a locally compact group, G a closed subgroup of N ,

and H1 and H2 two closed subgroups of G such that there is an automorphism

α ∈ Aut(N) with α(H1) = H2. If the subgroups H1 and H2 have finite indices in

G, the group N -BS(G,H1, H2, α) is defined by the presentation

HNN(G,H1, H2, α) ∼= 〈G, t | R, tht−1 = α(h),∀h ∈ H1〉,

where G = 〈G | R〉. There is a unique translation invariant topology on N -

BS(G,H1, H2, α) such that the obvious homomorphism G→ N -BS(G,H1, H2, α) is

an embedding onto an open subset. With this topology, the groupN -BS(G,H1, H2, α)

becomes a locally compact group.

Example 3.4.6. Let p, q ∈ N. Put d = gcd(p, q), p′ = p/d, and q′ = q/d.

The Baumslag-Solitar group BS(p, q) = 〈a, t | tapt−1 = aq〉 is exactly the group

Z[ 1
p′q′

]-BS
(
Z, pZ, q Z, α : x 7→ qx

p

)
.

Proposition 3.4.7. Let N be a discrete group. Consider a group of the form Γ = N-

BS(G,H1, H2, α). If the group N oα Z has completely bounded characteristic tame

cuts, then Γ has completely bounded characteristic tame cuts.

Before giving the proof, we prepare some ingredients. Recall that the group

Γ = HNN(G,H1, H2, α) acts by isometries on the Bass-Serre tree T , that is a

([G : H1] + [G : H2])-regular tree (cf. [Ser03, Section 5.1 ]). This gives rise to a

continuous homomorphism jT : Γ→ Aut(T ), where the group Aut(T ) of isometries

on T is endowed with the compact-open topology. Since each of H1 and H2 has

a finite index in G, the Bass-Serre tree T is locally finite, and Aut(T ) is locally

compact and acts properly on T (cf. [CGK01]). Let v0 ∈ T be the vertex fixed

by G-action. Endow Aut(T ) with the proper length function `T (x) = d(x.v0, v0),

where d is the combinatorial distance on T . We also have another homomorphism

jN : Γ → N oα Z such that jN |G ≡ idG and jN(t) = (eN , 1). Let us denote

GT = Aut(T ) and GN = N oα Z. The following theorem is crucial to the proof.
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Theorem 3.4.8 ([GJ03]). Let N , G, H1, H2, and α be as in Definition 3.4.5. Let

G = N-BS(G,H1, H2, α), and let jT and jN be the homomorphisms defined above.

Then the homomorphism

j = (jT , jN) : G → GT ×GN

is an embedding onto a closed subgroup.

We also need the following lemma.

Lemma 3.4.9 (Lemma 1.4 of [CH89]). Suppose that G1 and G2 are locally compact

groups. If ϕ ∈M0A(G1) and ψ ∈M0A(G2), then the function ϕ⊗ψ : G1×G2 → C,

(ϕ⊗ ψ)(x, y) = ϕ(x)ψ(y) is in M0A(G1 ×G2) and ‖ϕ⊗ ψ‖M0A = ‖ϕ‖M0A‖ψ‖M0A.

Proof of Proposition 3.4.11. Theorem 3.4.8 allows us to see Γ as a discrete subgroup

of GT ×GN . By hypothesis, there are characteristic tame cuts (gn)n∈N for (GN , `N),

where `N a proper length function of GN . The function ` : (x, y) ∈ GT × GN 7→
max{`T (x), `N(y)} gives a proper length function of GT × GN . Denote by fn :

GT → C the characteristic function of the ball {x ∈ GT : `T (x) ≤ n}. Beware

that fn might be not in M0A(G) as the continuity is not guaranteed, but we have

fn ∈ M0A((GT )d) and ‖fn‖M0A((GT )d) ≤ 2n + 1 by Theorem 2.1.4. Here, (GT )d

is the discrete realization of GT . The new function ϕn = fn ⊗ gn on GT × GN

defined by ϕn(x, y) = fn(x)gn(y) is a compactly supported, characteristic function

and obviously takes value 1 on the ball Bn = {(x, y) ∈ GT ×GN : `(x, y) ≤ n}. By

Lemma 3.3.2 and 3.4.9, we have

‖ϕn|Γ‖M0A(Γ) ≤ ‖ϕn‖M0A((GT )d×GN ) = ‖fn‖M0A((GT )d)‖gn‖M0A(GN )

which is bounded by a polynomial. This proves that the sequence (ϕn|Γ)n∈N gives

completely bounded characteristic tame cuts for (Γ, `|Γ).

Corollary 3.4.10. The Baumslag-Solitar group BS(p, q) has completely bounded

characteristic tame cuts for any p, q ∈ N.

Proof. Let p′ = p/ gcd(p, q) and q′ = q/ gcd(p, q). We note that that BS(p, q) is

a Z[ 1
p′q′

]-BS group and that GN = Z[ 1
p′q′

] o p′
q′
Z = Γp′,q′ has completely bounded

characteristic tame cuts.
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Proposition 3.4.11. Let N , G, H1, H2, and α be as in Definition 3.4.5 and let

G = N-BS(G,H1, H2, α). If the group N oα Z has completely bounded tame cuts,

then G has completely bounded tame cuts.

Proof. The proof is essentially the same as Proposition 3.4.7. The only problem is

that fn might be not continuous. To regulate that, we repeat the same technique

used to prove Proposition 3.2.6. Find a large enough number r ∈ R+ such that the

ball {x ∈ GT : `T (x) ≤ r} has a non-empty interior. Find a non-negative function

f ∈ A(G) with supp(f) ⊆ B2r and
∫
GT
f = 1. Now the functions (f ∗ fn+2r) ⊗ gn

give completely bounded tame cuts for G.

3.5 Property (TSchur, G,K)

Concerning non-examples, the rigidity inequality of Theorem 2.1.11 shows that

higher rank simple Lie groups with finite center do not have tame cuts, and their

uniform lattices do not have completely bounded tame cuts. On the other hand, so

far we have only (Z, log(1 + log(1 + | · |))) as an example of discrete group without

characteristic tame cuts, but this length function is not as natural as the word length

function. We do not know any finitely generated group without tame cuts with re-

spect to the word length function. As far as we investigated, property (TSchur, G,K)

is the closest to be an obstruction for the existence of tame cuts.

Definition 3.5.1. Let G be a locally compact group, K a compact subgroup, H a

closed subgroup of G, and ` a proper length function of G. For n ∈ N and f ∈ C(G),

define the quantity

‖f‖MA(H,G,`,n) = sup {‖λH(f |Hϕ)‖ : ϕ ∈ Cc(H), supp(ϕ) ⊆ Bn, ‖λH(ϕ)‖ ≤ 1} .

When G and ` are already fixed, we also write ‖f‖MA(H,G,`,n) = ‖f‖MA(H,n). We say

that H has property (TSchur, G,K, `) if there exist a positive constant s > 0 and a

function φ ∈ C0(G) vanishing at infinity such that for any D > 0 and K-bi-invariant

function ϕ ∈ C(G) with the following condition

‖ϕ‖MA(H,n) ≤ Desn, (∀n ∈ N),
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there exists a limit ϕ∞ ∈ C to which ϕ tends uniformly rapidly

|ϕ(x)− ϕ∞| ≤ Dφ(x), (∀x ∈ G).

Lemma 3.5.2. Let G be an unbounded locally compact group endowed with a proper

length function `. Sup K and H are compact subgroups of G. Then H does not have

property (TSchur, G,K, `).

Proof. Assume, by contradiction, that H has property (TSchur, G,K, `) and let s > 0

and φ ∈ C0(G) be as in Definition 3.5.1. By Proposition 2.2.8, we can assume ` takes

0 on K so that the balls are K-bi-invariant. Choose a large enough r ∈ N such that

Br has a non-empty interior and contains H. For each m ≥ r, construct the function

fm by applying U = B0
2m and K = Bm on Lemma 1.2.18. Then ψm = f4m − fm

is a non-negative compactly supported function in A(G) such that ψm|H = 0 and

ψm(x) 6= 0 for some x ∈ G with `(x) ≥ m. We use K × K double averaging and

normalization on ψm in order to have a K-bi-invariant function ϕm ∈ Cc(G) such

that ϕm|H = 0 and ϕm(x) = 1 for some x ∈ G with `(x) ≥ m. Now, we have

‖ϕm‖MA(H,n) = 0 ≤ esn for all n ∈ N and m ≥ r. It follows that |ϕm(x)| ≤ φ(x) for

all x ∈ G and m ≥ r. Taking limx→∞ supm≥r, we get a desired contradiction.

Definition 3.5.3. With the above notations, a function ϕ ∈ C(H) is said K-bi-

invariant if there is a K-bi-invariant continuous function on G whose restriction on

H is exactly ϕ.

In [Lia16, Proposition 2.3], it was proved that if a discrete subgroup Γ of G has

property (TSchur, G,K, `), then (Γ, `) does not have Rapid Decay property. We give

its analogue for tame cuts in the following theorem.

Theorem 3.5.4. Let H be closed subgroup of an unbounded locally compact group

G. Suppose that H satisfies property (TSchur, G,K, `) for a compact subgroup K and

a proper length function ` of G. Then (H, `|H) does not admit any K-bi-invariant

tame cuts.

Proof. We prove by contradiction. Assume that there exists K-bi-invariant tame

cuts (ϕm)m∈N for (H, `|H). There are constants C, a ≥ 0 such that

‖ϕm‖MA(H) ≤ Cma (3.8)

ϕm|Bm ≡ 1 (3.9)
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for all m ∈ N. Take any f ∈ Cc(H) with supp(f) ⊆ Bn. If m ≥ n, the multiplier

Mϕm acts trivially on f , so ‖λH (ϕmf) ‖ = ‖λH(f)‖. If m < n, then we have

‖λH (ϕmf) ‖ ≤ Cma‖λH(f)‖ ≤ Cna‖λH(f)‖

by (3.8). Unifying these two cases, if we denote by ϕ′m ∈ C(G) a K-bi-invariant

extension of ϕm, we get the inequality ‖ϕ′m‖MA(H,n) ≤ Cna for all n,m ∈ N. Let

s > 0 and φ ∈ C0(G) be from property (TSchur, G,K, `). Put D = supn∈NCn
ae−sn

so that we get

‖ϕ′m‖MA(H,n) ≤ Desn, (∀m,n ∈ N).

By property (TSchur, G,K, `), we get

|ϕm(x)| = |ϕ′m(x)| ≤ Dφ(x), (∀x ∈ H,∀m ∈ N). (3.10)

Now, if we take the sequential limits limx→∞ limm→∞ on (3.10), the left hand side

goes to 1 whereas the right hand side goes to 0. This gives a desired contradiction.

Corollary 3.5.5. If G is unbounded and has property (TSchur, G,K, `), then (G, `)

does not have tame cuts.

Corollary 3.5.6. Suppose that G is a finitely generated infinite group and H is a

finitely generated subgroup of G. Suppose that H is at most polynomially distorted

in G. Recall that H is polynomially distorted in G there exists k ≥ 0 such that

`H(x) ≤ k`G(x)k + k for all x ∈ H, where `G and `H are the word length functions

of G and H, respectively. If H has property (TSchur, G, {e}, `G), then (H, `H) does

not have tame cuts.

Let Fq be a finite field of characteristic different from 2 with cardinality q.

Let G be the symplectic group Sp4(Fq((π))) over the local field Fq((π)) and K =

Sp4(Fq[[π]]) the maximal compact subgroup of G. Let Γ be the non-uniform lattice

Sp4(Fq[π−1]) in G. Let H < Γ be the subgroup consisting of the elements of the
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form 
1 ∗ ∗ ∗

1 ∗ ∗
1 ∗

1

 ∈ Γ.

For i, j ∈ N0, denote D(i, j) = diag(π−i, π−j, πj, πi). By Cartan’s decomposition

theorem, every element x ∈ G can be written as x = kD(i, j)k′ for some k, k′ ∈ K
and a unique (i, j) ∈ N2

0 with i ≥ j. Moreover the length function ` : kD(i, j)k′ 7→
i + j is equivalent to the word length function of G, and even its restriction to

the lattice Γ is equivalent to the word length function of Γ. In [Lia16, Theorem

3.1], it was proved that H and Γ have property (TSchur, G,K, `), hence the following

corollary.

Corollary 3.5.7. The lattice Sp4(Fq[π−1]) of Sp4(Fq((π))) does not have Sp4(Fq[[π]])-

bi-invariant tame cuts.

3.6 Application of tame cuts

In this section, we provide two applications of tame cuts. The first application

is related to the norm decreasing induction map Φ : M0A(Γ) → M0A(G), where

Γ is a lattice of a locally compact group G. When G or Γ is amenable, we also

have Φ : MA(Γ) → MA(G) norm decreasing. The following result shows that the

amenability is essential for the latter map to be continuous.

Theorem 3.6.1. Let Γ be a lattice in G = SL3(R) with a compact fundamental

domain Ω. Then the induction map

Φ : MA(Γ)→MA(G), ϕ 7→ ϕ̂ = 1Ω ∗(ϕµΓ) ∗ 1̃Ω

is not continuous (possibly not well defined).

Proof. Recall that the word length function `S of Γ, the restriction `C |Γ of the word

length function `C of G, and the restriction L|Γ of the length function L : x ∈ G 7→
log ‖x‖+ log ‖x−1‖ are all equivalent on Γ (cf. Example 2.2.4). We choose L as the

main length function of both Γ and G.
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Let us prove by contradiction. Suppose that the map Φ : MA(Γ) → MA(G)

is bounded. By Theorem 2.2.13, Γ has the Rapid Decay property, and a fortiori

characteristic tame cuts, so there is a finitely supported characteristic functions ϕn

such that

‖ϕn‖MA(Γ) ≤ Cna and ϕn|Bn ≡ 1 (∀n ∈ N)

for some constants C, a ≥ 0. By continuity of Φ, there is a constant C ′ > 0 such

that

‖ϕ̂n‖MA(G) ≤ C ′na, (∀n ∈ N).

By Theorem 1.2.22, the K×K double averaging ˙̂ϕn of ϕ̂n is a K-bi-invariant Fourier

multiplier of G with

‖ ˙̂ϕn‖MA(G) ≤ ‖ϕ̂n‖MA(G) ≤ C ′na, (∀n ∈ N).

Applying the rigidity inequality of Theorem 2.1.11 on ˙̂ϕn, we get

C ′′et/3

∣∣∣∣∣∣∣ ˙̂ϕn
e

t 0 0

0 1 0

0 0 e−t


∣∣∣∣∣∣∣ ≤ ‖ ˙̂ϕn‖MA ≤ C ′na, (∀n ∈ N,∀t ∈ R+). (3.11)

Put c = max{L(ω) : ω ∈ Ω} and choose t = n/4 − c so that L(diag(et, 1, e−t)) =

2t < n− 2c. By construction, we have

˙̂ϕn(x) =

∫
K

∫
K

∫
Ω

ϕn(γ(k1xk2ω))dωdk1dk2.

Note that

L(γ(k1xk2ω)) = L(ω′k1xk2ω) ≤ L(k1xk2) + L(ω′) + L(ω) ≤ 2c+ L(x).

Thus, if L(x) ≤ n − 2c, we have ˙̂ϕn(x) = 1. Therefore, the left hand side of (3.11)

grows exponentially while the right hand side grows polynomially, which gives a

desired contradiction.

Remark 3.6.1. There is no difficulty to extend the theorem to uniform lattices of

SL3(C), SL3(H), SL3(Qp), and E6(−26).
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We mentioned in subsection 1.2.5 that all Fourier multipliers of an amenable

group are completely bounded. The following theorem provides a non-amenable

group admitting a non-completely bounded Fourier multiplier.

Theorem 3.6.2. Let Γ be a uniform lattice in G = SL3(R). Then there is a Fourier

multiplier of Γ which is not completely bounded. In other words, M0A(Γ) 6= MA(Γ).

Proof. Suppose by contradiction M0A(Γ) = MA(Γ). Since the inclusion M0A(Γ)→
MA(Γ) is a contraction between two Banach spaces, the norms ‖ · ‖MA and ‖ · ‖M0A

are equivalent by the closed graph theorem applied to the inverse map.

Let us use the functions ϕn, ϕ̂n, and ˙̂ϕn from the proof of the previous theorem.

By equivalence of two norms, we have

‖ϕn‖M0A ≤ Cna, (∀n ∈ N)

for some constants C, a ≥ 0. By Theorem 1.2.22, we have ‖ ˙̂ϕn‖M0A ≤ ‖ϕ̂n‖M0A ≤
Cna. Again, the rigidity inequality on ˙̂ϕn gives a desired contradiction for the same

choice of t as in Theorem 3.6.1.

Remark 3.6.2. Proposition 3.6.2 is also a direct consequence of [HSS10, Boż82],

where it is proved M0A(F2) 6= MA(F2). More precisely, by Tits alternative theorem,

Γ contains a copy of F2, and the trivial extension gives isometric maps

MA(F2)→MA(Γ) and M0A(F2)→M0A(Γ),

so the trivial extension of any function ϕ ∈MA(F2)\M0A(F2) is inMA(Γ)\M0A(Γ).

3.7 Summary

To summarize the examples:

(1) Groups with completely bounded characteristic tame cuts:

(a) Polynomial growth discrete groups.

(b) Groups acting properly by isometries on a fine hyperbolic graph, on a

product of geometrically finite hyperbolic graphs, or on a finite dimensional

CAT(0) cube complex.

(c) (Z, log(1 + | · |)).
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(d) Semidirect product ZdoP , where P < SLd(Z) is a finitely generated group

with polynomial growth.

(e) Semidirect product Z[ 1
pq

] o p
q
Z, where p, q ∈ N are coprime.

(f) Wreath product F o P , where F is a finite group and P is a group with

polynomial growth. In particular, the Lamplighter group Z2 oZ.

(g) Baumslag-Solitar group BS(p, q) for p, q ∈ N.

(2) Groups with completely bounded tame cuts:

(a) Groups in (1).

(b) Weakly amenable groups.

(3) Groups with characteristic tame cuts:

(a) Groups in (1).

(b) Groups satisfying Rapid Decay property or RDp for some 1 ≤ p ≤ ∞.

(4) Groups with tame cuts:

(a) Groups in (1), (2), and (3).

(b) Groups admitting MA-bounded approximation property.

(5) Groups without tame cuts.

(a) Simple Lie groups with finite center and rank at least 2.

(6) Groups without completely bounded tame cuts:

(a) Groups in (5) and their uniform lattices.

(7) Groups without (completely bounded) characteristic tame cuts:

(a) (Z, log(1 + log(1 + | · |))).
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