
HAL Id: tel-03382774
https://theses.hal.science/tel-03382774v2

Submitted on 18 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Complex systems co-simulation with the CoSim20
framework : for efficient and accurate distributed

co-simulations
Giovanni Liboni

To cite this version:
Giovanni Liboni. Complex systems co-simulation with the CoSim20 framework : for efficient and
accurate distributed co-simulations. Computer Aided Engineering. Université Côte d’Azur, 2021.
English. �NNT : 2021COAZ4019�. �tel-03382774v2�

https://theses.hal.science/tel-03382774v2
https://hal.archives-ouvertes.fr

 Co-simulation de systèmes complexes
avec le framework CoSim20

Pour des co-simulations distribuées performantes et
fidèles

Giovanni LIBONI
Inria Sophia Antipolis – Méditerranée, Équipe Kairos

Safran Tech, Modélisation & Simulation 	

Présentée en vue de l’obtention
du grade de docteur en Informatique
d’Université Côte d’Azur
Dirigée par : Frédéric Mallet	
Co-encadrée par : Julien Deantoni
Date de soutenance:	
21 Avril 2021

Devant le jury, composé de : 	
Jean-Philippe Babau, Professeur, Université de Bretagne
Occidentale – Rapporteur
Frédéric Boulanger, Professeur, Centrale Supélec -
Examinateur
Bernard Coulette, Professeur, Université Toulouse Jean
Jaurès - Rapporteur
Julien Deantoni, Maître de conférence, Université Côte
d’Azur - Co-Encadrant
Virginie Galtier, Enseignante-chercheur , Centrale Supélec -
Examinatrice
Frederic Mallet, Professeur, Université Côte d’Azur –
Directeur de thèse
Maurice Theobald, Ingénieur chercheur, Safran Tech –
Invité

	

	

THÈSE DE DOCTORAT	

Résumé

Les systèmes cyber-physiques sont des systèmes d’ingénierie complexe dans lesquels

les parties computationnelles communiquent entre elles et avec les parties physiques

décrivant l’environnement. Pour apprivoiser la complexité croissante de ces systèmes, ils

sont généralement décomposés en différentes parties qui sont modélisées par différents

experts, éventuellement issus de différentes organisations. Ces experts utilisent un langage

adapté à leur problème, à la fois syntaxiquement et sémantiquement. À ce stade, d’une

part on obtient des modèles exécutables des parties computationnelles et des modèles

exécutables des parties physiques et, d’autre part, les modèles exécutables ne doivent pas

violer les propriétés intellectuelles lorsqu’ils sont partagés et sont donc généralement

partagés en tant qu’unités de simulation en boîte noire. Cependant, pour comprendre

le comportement émergeant de l’ensemble du système, il est nécessaire de faire une

simulation collaborative ; où les unités de simulation de différentes disciplines sont

coordonnées pour échanger des données aux moments opportuns. Les problèmes avec

les approches existantes sont multiples. Premièrement, les unités de simulation exposées

sous forme de boîtes noires ne permettent pas de prendre en compte les spécificités

sémantiques de chaque modèle. Deuxièmement, les co-simulations sont aujourd’hui

principalement basées sur une interface de programmation dirigée par le temps, et il

a été montré que de telles interfaces introduisaient, lorsqu’elles sont appliquées à des

systèmes cyber-physiques, des «retards artificiels» dus à la co-simulation elle-même.

De tels retards impliquent une mauvaise précision qui peut invalider les résultats de

la co-simulation. De plus, réduire ces délais de co-simulation implique de mauvaises

performances globales de co-simulation. Troisièmement, la définition d’un cadre de

co-simulation précis et performant peut être complexe d’un point de vue algorithmique,

de sorte qu’un support est nécessaire pour augmenter le niveau d’abstraction lors de

la définition de la coordination. La thèse développée dans ce document est qu’il est

possible 1) de fournir une interface de coordination de niveau modèle qui englobe à la

fois les modèles cyber et les modèles physiques d’un système cyber-physique et 2) de

définir un langage dédié à la coordination de tels modèles. Sur la base de ces artefacts et

d’une interface de co-simulation originale, il est possible de générer automatiquement

une infrastructure distribuée précise et performante pour la co-simulation. La thèse

est soutenue par la mise en œuvre de deux langages dédiés. Un pour la définition

de l’interface de coordination du modèle et un pour la définition de la spécification

de la coordination. De plus, la thèse est également soutenue par un prototype d’API

respectueux de la sémantique comportementale des modèles, qui est introduite comme

une généralisation des API standard existantes. Enfin, un compilateur a été défini pour

que les coordinations définies avec les langages proposés puissent être utilisées pour

générer automatiquement un environnement de co-simulation distribué. Les différentes

propositions sont appliquées sur une étude de cas où les avantages de l’approche sont

clairement illustrés.

Mots-clés: co-simulation; sémantique comportementale; coordination; algorithme maître; modèles

hétérogènes; Langages de coordination;

Abstract

Cyber-Physical Systems are complex engineered systems where computational parts communicate

together and with physical parts describing the environment. To tame the growing complexity

of such systems, they are usually decomposed into different parts that are modeled by different

experts, possibly from different organizations. These experts are using a language tailored to their

problem, both syntactically and semantically. At this point, on the one hand, it results in executable

models of the cyber parts and executable models of the physical parts and, on the second hand,

executable models should preserve intellectual properties and are usually shared as black-box

simulation units. However, to understand the behavior emerging from the whole system, it is

required to do a collaborative simulation; where the simulation units from different disciplines are

coordinated to exchange data when appropriate.

The problems with the existing approaches are manifolds. First, simulation units exposed as

black boxes do not allow taking into account the semantic specificities of each model. Second,

co-simulations are nowadays mainly based on a time-driven application programming interface,

which has been shown to introduce ’artificial delays’ when applied to cyber-physical systems. Such

delays imply a bad accuracy that may invalidate the co-simulation results. Moreover, reducing such

co-simulation delays implies bad overall co-simulation performances. Third, the definition of an

accurate and performant co-simulation framework may be algorithmically complex so that support

is required to increase the abstraction level when defining the coordination.

The thesis developed in this document is that it is possible 1) to provide a model level coordination

interface that encompasses both the cyber and the physical parts of a cyber-physical system and 2)

to define a language dedicated to the coordination of such parts. Based on these artifacts and an

original co-simulation programming interface it is possible to automatically generate an accurate

and performant distributed infrastructure for co-simulation.

The thesis is supported by the implementation of two domain-specific languages. One for the

definition of the Model Coordination Interface and one for the definition of the Model Coordination

Specification. Additionally, the thesis is also supported by the prototype of a semantic-aware API

introduced as a generalization of existing standard APIs. Finally, a compiler has been implemented

so that coordinations defined with the proposed languages can be used to automatically generate a

distributed co-simulation framework. The different proposals are applied to a case study where the

advantages of the approach are clearly illustrated.

Keywords: co-simulation; behavioral semantics; coordination; master algorithm; heterogeneous

models; coordination languages;

Contents

Résumé iii

Abstract v

Contents vii

1 Introduction 1

1.1 Motivation . 1

1.2 Main Challenges . 6

1.3 Limitations . 6

1.4 Structure . 7

2 Background 9

2.1 Complexity of Cyber-Physical Systems . 9

2.2 Model-Driven Engineering . 12

2.3 Model Integration . 15

2.4 Conclusion . 18

3 State of the Art 19

3.1 Coordination Semantics . 20

3.1.1 Continuous-Time Based Co-simulation 20

3.1.2 Discrete-Event Based Co-simulation . 24

3.1.3 Hybrid Co-simulation . 30

3.2 DSLs for Co-simulation . 35

3.2.1 Architecture Description Languages . 35

3.2.2 Coordination Languages . 37

3.3 Co-Simulation Interfaces . 42

3.3.1 Runtime Coordination Interface . 42

3.3.2 Model Coordination Interface . 47

3.4 Distributed Co-simulation . 52

3.5 Conclusion . 57

3.5.1 Correctness of Co-simulations . 57

3.5.2 Research Problems . 58

4 Proposition 60

4.1 Introduction . 60

4.2 Model Coordination Interface . 63

4.2.1 Port . 63

4.2.2 Data nature . 64

4.2.3 Temporal references . 66

4.2.4 Simulation Unit Properties . 67

4.2.5 Implementation . 67

4.3 Model Coordination Specification . 72

4.3.1 Interaction . 72

4.3.2 Triggering Condition . 74

4.3.3 Synchronization Constraints . 77

4.3.4 Implementation . 77

4.4 Coordination Algorithm . 81

4.4.1 Semantics-aware API . 81

4.4.2 Coordination Algorithm . 84

4.4.3 Implementation . 87

4.5 Conclusion . 98

5 Validation 99

5.1 Use Case: CPU Cooling System . 100

5.1.1 Model Coordination Specification . 104

5.1.2 Results . 107

5.1.3 Discussion . 108

5.2 Use Case: Fault Injection Simulation . 109

5.3 Conclusion . 113

6 Conclusion 114

6.1 Overview . 114

6.2 Future works . 115

Appendix 117

A Appendix 118

A.1 Detailed MCILang language class-diagram . 118

A.2 Java class for the wrapper of the Box with CPU and Fan 120

A.3 Java class for the wrapper of the Heat controller 122

Bibliography 125

List of Figures

1.1 Temporal inaccuracy and delays introduced by using a Time-Triggered API on a piece-

wise constant data. 3

1.2 Overview of the proposition for the CoSim20 Modeling Environment and Runtime

Framework. 4

2.1 Four layer architecture of MDE . 13

2.2 Artificial delay introduces by the sampling in time-triggered approaches. 17

3.1 Algebraic loop . 22

3.2 Algebraic loop . 22

3.3 DE simulator activity diagram . 25

3.4 Atomic DEVS . 27

3.5 Coupled DEVS . 28

3.6 Overview of the hierarchical simulators in DEVS. 28

3.7 Main concepts of co-simulation: the master algorithm, the interface, and the simulation

unit. 30

3.8 Event associated to the threshold reaching instant. 32

3.9 Piecewise-constant data. 32

3.10 Event detection problem using FMI 2.0 Standard . 32

3.11 Rollback for event detection using FMI 2.0 Standard 32

3.12 Communication impact on performance using a time-triggered API 32

3.13 FMI for Model Exchange. Taken from [4]. 43

3.14 FMI for Co-simulation. Taken from [4]. 43

3.15 FMI for Co-simulation calling state machine. Taken from [4]. 45

3.16 Overview on the HLA infrastructure. Taken from [155]. 45

3.18 Continuous & piecewise differentiable signal. Taken from [18]. 48

3.17 Overview on the Model Description Schema. Taken from [4]. 49

3.19 Continuous & piecewise differentiable signal. Taken from [18]. 49

3.20 Piecewise continuous & differentiable signal. Taken from [18]. 49

3.21 Discrete event signal. Taken from [18]. 49

3.22Centralized network. 52

3.23Decentralized network. 53

3.24Overview of the distributed architecture provided by DACCOSIM. 54

3.25Distributed network. 54

3.26Overview of a MECSYCO co-simulation distributed system. Picture from [103]. 55

3.27 Temporal inaccuracy and delays of a TT co-simulation coordination with a DE SU. . . . 57

4.1 Overview of the proposition. 61

4.2 Example for the datanature piecewise-continuous: a Bouncing Ball trajectory. 64

4.3 Example of a piecewise-constant generator. 65

4.4 Simple Timed Finite State Machine (TFSM) representing a sensor that triggers an event

when a predefined threshold is reached. 66

4.5 A partial overview of the class diagram for the MCILang language. 68

4.6 Class diagram of the model properties in the MCILang language. 69

4.7 Example of a piecewise-constant generator. 69

4.8 The MCILang textual editor. 71

4.10 Two possible topological maps: 4.10a shows an allowed topological map; 4.10b shows a

topology where multiple ports assign their value to a single port. The latter topological

map is not allowed because a destination port must have only a source port. 73

4.9 Simple system with two SUs and a connector. 73

4.11 Co-simulation specification of two SUs based on a connector that defines a sample rate

triggering condition. 74

4.13 Timed Finite State Machine (TFSM) encapsulated in (*1 in Figure 4.12. 75

4.12 Simple Timed Finite State Machine (TFSM) representing a sensor that triggers an event

when a predefined threshold is reached. 75

4.14 Wheel encoder example. The rotating encoder disk has 36 slots. Therefore, the wheel has

traveled one revolution every 36 pulses. Taken from [179] 76

4.15 Overview of the wheel encoder system defined in Figure 4.14 with the coordination

model specification as the connector �3. 76

4.16 Temperature sensor example. The temperature is retrieved from the sensor only at specific

point during the execution of the controller code. The system is then composed by two

logical components: the environment with a sensor and the controller. 76

4.17 Overview of the temperature sensor system defined in Figure 4.16 with the coordination

model specification as the connector �4. The environment model is encapsulated into

(*2 while the Arduino controller model is encapsulated into (*1. 77

4.18 Overview of a classic example with a controller and a plant. 78

4.19 Overview of a rejected MCL specification. A topological loop of initiator predicate cannot
be automatically transformed into a deadlock-free coordination algorithm. 79

4.20Minimal but extendable set of predicates. 82

4.21 Simple StopCondition, returned by the doStep function. 83

4.22 Set of DebugPredicates. 84

4.23Overview of a Home Heating System. 84

4.24MCL Visual representation of the Home Heating System. Each connector specifies under

which condition and constraint the interaction must take place. 85

4.25 Publish-Subscribe model. 87

4.26 Publish-Subscribe one-to-many topology. 88

4.27 Publish-Subscribe many-to-many topology. 88

4.28 Publisher/Subscriber overview communication using a topic-based system. 88

4.29 Shows an overview of the Interface classes. 91

4.30 Shows an overview of the CoordinationInterface class and its extension by two SU

coordination interfaces. 93

4.31 Shows the content of a message represented as a Java class. 93

4.32 Shows the content of a message represented as a Java class. 94

4.33 Illustrates the Finite State Machine for the Coordination Interface during its execution. 94

4.34 Overview on the automatic generation process. 97

5.1 Overview of the CPU cooling system used as use case. 100

5.2 Modelica model representation of a box with CPU and Fan. 101

5.3 Modelica model representation of the Fan Controller. 102

5.4 Over Heat Controller state machine. 103

5.5 CPU Cooling System represented in Cosim20 Modeling Environment. If a port is

monitored and logged, a red border is added to the visual representation of the port. . 104

5.6 Results obtained at the begin of the co-simulation. 107

5.7 Results obtained when the controller enters in the tooHot state. 108

5.8 Results obtained when running the coordination algorithm. 109

5.9 Overview of the system with a Fault Injector component. 110

5.10 Modelica model represeting the box with a CPU and a fan system with a fault injector

capability. The fanIsBroken input allows to enable or disable the fans according to its

boolean value. 112

5.11 Results obtained by applying the fault at instant 1900, as specified in Listing 5.8. 112

A.1 ECore class diagram for the MCILang language. 119

Introduction 1

1.1 Motivation 1

1.2 Main Challenges 6

1.3 Limitations 6

1.4 Structure 7

1.1 Motivation

The increasing complexity of systems makes their design a highly challenging

task that requires advanced engineering techniques to reason, develop, build, and

maintain those systems. The fast 21-th century technological advancement and

demand formore integrated and interconnected systems lead engineers todevelop

systems such as smart cities, networked medical devices, advanced automated

aircraft systems, critical electrical power control, integrated defense systems.

Those systems typically combine cyber capabilities (e.g. computation, control,

and communication) with physical processes (e.g. electrical, mechanical, or

chemical). For instance, the automatic pilot is a system that controls the trajectory

of an aircraft, car, or vessel without constant control by a human operator. The

vehicle moves physically into space following a trajectory that is determined

by a computerized control algorithm that adjusts it using actuators(e.g. flaps)
based on sensor readings of the physical space. We refer to these systems as

Cyber-Physical Systems (CPS).

Since CPS integrates cyber and physical parts, we need to have knowledge of

both in order to understand the emerging behavior of those systems. Their

development requires advanced and deep knowledge in several domains, such

as Software Engineering, Electrical Engineering, Mechanical Engineering, and

Control engineering to cite a few of them. During the development, each domain

requires more than one point-of-view and involves skills from different scientific

and technical fields [1]. Nevertheless, it is not enough to have deep knowledge

into a domain in isolation: we need to understand how the different domains

work together, and what behaviors emerged when they interact and interface.

We need to represent those systems to understand their behavior, to predict their

effects on the environment under their control, and to safely determine their

behaviors. Given the critical nature of those systems, the increasing demanding

complexity, stricter safety, and environmental regulations, and faster project

development cycles, the developmentmay be distributed across different societies,

experts, stakeholders, and engineers using unambiguous representations. Formal

specifications and representations permit to perform validation and verification

tasks on each model and, more importantly, on the overall system.

The Model Driven Engineering (MDE) promotes the use of Domain-Specific

Modeling Languages to develop complex CPS, using languages, tools, and

methodologies tailored both syntactically and semantically to the domain of

expertise of the user [2]. The use of those languages and tools ease the work of

modeling, simulation, verification, and validation of parts of the system under a

specific point-of-view. Therefore, using different languages and tools to develop

different parts of the system leads to an heterogeneous development environment

i. e. the system ismade using differentmodels that conforms to different languages.

TheCPS development can be considered an example of heterogeneousdevelopment

environment due to the intrinsical heterogeneity of languages and tools due

1 Introduction 2

to the CPS requirement to represent the different formalism and domains that

composed those systems (i. e. physical and cyber domains).

In particular, the heterogeneous nature of CPS leads to the use of different

formalisms representing thedifferent parts of those systems. For instance, physical

processes are defined by using a Continuous Time (CT) formalism to better

represent the continuous nature of the physical mechanisms in nature where the

time is represented as a continuous flow where between two points in time there

is an infinite number of other points. On the contrary, the cyber processes must

express the logic and algorithms used in a CPS and are better described using,

for instance, a Discrete Event (DE) formalism where their execution is given by

the sequence of triggered events.

The validation and verification of those systems are challenging tasks due to the

heterogeneity of the formalisms, languages, and tools used in the development.

One of the possible solutions to this problem is to use co-simulation. In a

collaborative simulation or co-simulation, different loosely coupled and stand-

alone simulation units conjointly simulate. A simulation unit (SU) is an executable

entity that produces output data and consumes input over its execution. For

instance, it can be a stand-alone model with its solver or simulator, a software

with its interpreter, or a proxy to an existing part such as hardware- or software-

in-the-loop. A simulation unit may conform to a black-box, which encapsulates

algorithms, equations, and other workings into a model where only its inputs

and subsequent outputs are known, ensuring that internal behaviors are not

visible to external.

The black-box approach assumes an important role in those enterprises that

require to collaborate with other companies. In an extended enterprise, the

extensive use of electronic communications to exchange information with sup-

pliers and vendors allows reducing the life cycle of material and information

processing, product and infrastructure development, the required time to market

given by the increasing competition and to create a more effective and efficient

organization and systems [3]. An extended enterprise is then responsible for the

whole life cycle of their products: from material procurement and supply chain

management to production, manufacturing, product distribution, and customer

service. Further, it is responsible for the disposal and recycling processes of

end-of-life products. However, the development of a complex system based on

the model-based approach requires sharing and exchange models to perform

the integration among them, for validation and verification tasks. The black-

box approach ensures Intellectual Property protection by hiding the sensitive

knowledge in a non-readable format (e.g. a binary file).

To support a black-box co-simulation, the FMI standard [4], nowadays imple-

mented by more than a hundred industrial tools, proposed to bundle, in a

black-box manner, the simulation units using a homogeneous time-driven inter-

face. Alternatively, the HLA standard [5] proposed the same idea but uses an

event-driven interface. Based on one of these interfaces, the coordinator (also

called Master Algorithm) is in charge of keeping time consistency and exchange

data between the different models under execution. The development of such

a coordinator usually relies on (1) the graph representing the sharing of data

between the different models [6–9], and (2) the nature of the interaction between

different models [10].

Several works have shown that neither a pure time-driven nor a pure event-

driven approach can handle all model executions correctly [11–13]. Other studies

have shown that the correctness of the co-simulation does not only rely on the

1 Introduction 3

Figure 1.1: Temporal inaccuracy and de-

lays introduced by using a Time-Triggered

API on a piece-wise constant data.

correctness of each executable models but also depends on the coordinator [11,

14–16]. It is then the system engineer, who is in charge of writing the coordinator

so that the co-simulation provides the actual system emerging behavior.

In this work, we consider a coordination algorithm as correct if it does not introduce any
delays or lose information during the communication with the simulation unit. Conse-
quently, delays and information loss that appear when using a time-triggered

API on a piece-wise constant data are considered incorrect (see Figure 3.27).

Three important things must be noticed at this point. First, sampling a piece-

wise constant value can make sense and does not necessarily introduce a major

problem; however, this should be done on purpose and not be the result of an

inappropriate API. Second, there exists in many API (e.g., the FMI standard [4])

the possibility to avoid such delay, typically by roll-backing the simulation to

a previous state and trying to locate the actual value change. This can be done

only if the simulation can actually be rolled-backed; also this is costly in terms of

simulation time. Finally, third, it is worth noticing that the problem is broader

than the simple illustrative case. As illustrated in [17], the coordination algorithm

can have an impact on the correctness of the simulation of the system.

The core of the problem was identified in several papers: it is not appropriate

for any simulation unit to communicate only through a time-triggered or event-

triggered API. In the literature, some approaches proposed to extend some

existing API to fix a particular problem. This was for instance the case in [18]

where they proposed to add a new parameter to the FMI time-triggered doStep(Δt)
function. The new parameter is =4GC�E4=C)8<4, a placeholder to store the time

at which unpredictable events occurred. [11] went further by proposing to extend

the FMI API with new functions that simulate until input and output ports are

respectively ready to be read or just written. Finally, the new features of FMI 3.0

for hybrid co-simulation tries to aggregate such propositions (see chapter 5 of

FMI 3.0 development version
∗
).

However, in all these related works, the problem is not handled in its generality

and they make specific cases of something that should be straightforward. In

order to speak correctly with a simulation unit, you should be aware of its

behavioral semantics and adapt the way to realize the doStep accordingly. As an

abstraction of a simulation unit behavioral semantics, previous works proposed

to focus on the nature of the inputs and outputs of the simulation units [8, 19]

like for instance continuous, piecewise-continuous, piecewise-constant or spurious.

We then identify three main aspects that affect co-simulation:

∗ https://fmi-standard.org/docs/3.0-dev/#fmi-for-hybrid-co-simulation

https://fmi-standard.org/docs/3.0-dev/#fmi-for-hybrid-co-simulation

1 Introduction 4

1. the writing of the coordinator is more and more complex because it must

take into account the characteristics of the data it conveys;

2. the characteristics of the models, the behavioral semantics of the used

language, and their implementation by a solver;

3. the topology between the different interconnected executable models.

Considering all of these aspects are often neglected but it has been shown to

condition the correctness of the co-simulation.

In this thesis, we take into consideration the three aspects previously identified

proposing a framework to ease the writing of correct coordinators based on

a dedicated set of information on the simulation unit, such as a partial view

of the syntax and semantics used internally. The framework is then composed

of three main elements (see Figure 1.2): a Model Coordination Interface, a

Model Coordination Language, and a distributed co-simulation algorithm as a

Runtime Framework. The Model Coordination Interface is inspired by works on

the Architecture Description Languages [20, 21], Coordination Languages [22]

and heterogeneous frameworks [23–26], and exhibits the minimal amount of

information needed to definemeaningful interaction between different simulation

units, which are developed using different languages or tools.

Figure 1.2: Overview of the proposition

for the CoSim20 Modeling Environment

and Runtime Framework.

The characteristics of the model and its solver are key elements to define the

interactions with the other SUs. A possible solution is to exhibit them through an

interface tailored to the semantics of the underlying simulation unit. In contrast

with the white box Model Coordination Interface, this proposition exposes only

a partial view of the syntax and semantics of the SU. The interface is tailored

specifically to share only the elements necessary to coordinate the execution

and communication among the simulation units. The goal is to help to protect

the Intellectual Property contained in the SU. We proposed to provide a higher

abstraction level about the semantics to ease the reasoning. We divided the

interface into three main elements:

I Set of Ports, their properties such as name, direction, and type, and their

data nature that represents the element which exhibits a partial view of the

semantics of the models by defining it through its behavior;

1 Introduction 5

I Temporal reference used by the model representing which temporal refer-

ential the model is using. In the context of heterogeneous systems, each

model can be simulated using a different temporal referential e.g. time,

angle, or distance. For example, in a fuel engine, the camshaft angle is

used to define when to open/close valves or to actuate the fuel pumps.

The execution semantics for this model is not based on time but on the

angle. The actions depend on the movement of the camshaft and not on

the physical time;

I Set of model properties denoting model-wide behaviors (i. e. rollback capabil-

ities or saved states which allow restoring a previous state if necessary).

However, this set of properties are not yet exploited by the current propo-

sition.

The resulting interface provides enough information to ensure that a system

integrator has the knowledge that is required to correctly coordinate the different

executable models, as studied in [27].

The Coordination Model Specification (MCS) explicitly defines the interactions

and rules between different Model Coordination Interfaces. It is composed of a

set of Connectors. Each connector is in charge of defining when and how one or

more data are conveyed from a model to another. In order to define interactions,

we structured a connector through three different elements:

I Interaction specifies how data are actually exchanged between ports and

which transformation should take place here i. e. unit alignment between

Meter and Feet;

I Triggering Condition defines the instant at which the interaction must be

realized. The instant can be expressed as a periodic condition (e.g. every
5ms) or as an aperiodic condition (e.g. event, internal variable usage [11]);

I Timing Constraint specifies a relation between the temporal references of

the models.

We validate our proposal by developing an Integrated Development Environment

(IDE) which supports the specification of Model Coordination Interfaces (MCI)

and Model Coordination Specifications (MCS). Two Domain-Specific Languages

were then proposed to write these specifications using a language capable to

express coordination concepts and their integration. Both languages can be

used in a textual environment, provided by Xtext, and a graphical visualizer

provided using Sirius. Some facilities, such as FMI importing features and

auto-completion ease the designer to write correct specifications. However, the

final coordination model must be developed by the designer. Once specified

in the coordination model, an automatic process generates the corresponding

run-time implementation of the system by providing a Java implementation that

supports the co-simulation of the FMI compatible model (i. e. FMU) and Gemoc

exported models. We propose a runtime framework capable of coordinating

several distributed entities without the need for a centralized coordinator. At

runtime, this framework encapsulates the SU, according to its MCI, with a

dedicated wrapper tailored to its semantics. The wrapper contains a semantics

parametrized API to handle the execution of the model and a communication

module to interact with the rest of the system.

In the next section, we present the challenges we address in this thesis.

1 Introduction 6

1.2 Main Challenges

In this section, we illustrate our main challenges addressed in this thesis. Our

main goal is to develop a co-simulation tool that can be used seamlessly at

different stages of the development to support the engineering process among

different stakeholders. Some of the main challenges are then presented.

The extended enterprise approach gives the opportunity to share executable

models across multiple enterprises. The black-box approach for IP protection

is one of the most important aspects of this process and its preservation is

mandatory.

The current standards and tools offer little support to enable a correct co-

simulation based on a black-box approach. It introduces little or no control over

the internal configuration and execution of the model and its simulator.

The different languages and tools used to develop a system lead to heterogeneity

of the system in terms of how time is represented and handled within the

model and in the global system. Timed models may conform to a different

formalism that represents time using different representations (e.g. Newtonian,

discrete, or superdense [28]). The relationships between those representations

are given by their relationship with the physical or wall-clock time. However,

due to the heterogeneity of the systems, other representations of time should

be able to integrate into the system. For instance, a multiform time is a time

representation where time process in a non-uniform way and independently

from any reference to physical time. In this thesis, we address this problem as

temporal synchronization among heterogeneous models.

System Architects and System Designer may want to use the co-simulation as a

method to bring out the overall behavior of the system under co-simulation. Its

access should be transparent to them and easy to put in place. However, the actual

approaches required to configure and tune the algorithm used to coordinate the

execution of the co-simulation. Moreover, the specification of the algorithm is

written using General-Purpose Language (e.g. Java, C++, Python), limiting the

choice of co-simulation frameworks according to the language known by the

System Architects/Designer. It allows using co-simulation during all the phases

of the development, from the early phase of the development where several

solutions are evaluated to the verification and validation of the final solution.

The presented challenges will be illustrated and discussed broadly and addressed

in the proposition (in Chapter 4). However, this work has assumed some limi-

tations on the systems we are dealing with and their composition to focus our

research on the interesting challenges.

1.3 Limitations

In this section, we present the assumptions and limitations for this work.

In an extended enterprise context, we assume that the suppliers want to protect

theirmodels using state-of-the-art approaches. Sharing amodel with its simulator

avoids exposing internal computations and behaviors that can be captured by an

external simulator. Note that if the suppliers do not mind sharing a white-box

model then our approach can benefit from additional information on its internal

semantics and on the simulator control.

1 Introduction 7

The model integration can be driven by the approach choose to exchange models:

a white-box approach shares the internal mechanisms and source code, giving

clear access to the Intellectual Properties; a black-box approach shares an entity

with only exposed inputs and outputs. We think that sharing a black-box model

may result in better IP protection given the technical obstacle to reverse engineer

the inner algorithms. However, this approach leads to model integration issues

whose presence is absent or limited in the white-box approach.

While a single language can be used to develop different models, it is not always

the more appropriate choice. The heterogeneity of reality leads to having a

different point of view and behaviors to represent. For instance, languages

tailored to represent physical processes such as Modelica, cannot be used to

represent logical processes such as the behavior of algorithms used in software

development.

From the industrial point of view, a black-box approach ensures the Intellectual

Property Protection of the internal workings of the model and the knowledge

used to develop them.

As assumptions, we choose to focus our work on the coordination aspect of the

co-simulation, we assume that the models we are working with are correct and

valid.

The recent growing interest in co-simulation techniques changes continuously

the state of the art. The importance of this technology has lead several companies

and research organizations to invest a significant effort into its research and

development: consequently, the state of the art and thematurity of somepresented

technologies may vary during the last period needed to publish this thesis.

1.4 Structure

In this section, we give the outline of the manuscript by briefly presenting its

organization. The thesis is organized into six chapters.

Chapter 1 introduces the context and motivations for this thesis, reviewing the

current techniques used for the development of Cyber-Physical Systems.

We then illustrate our work, the proposed approaches, and our use case

used to validate our proposition. We discussed the main challenges

addressed in this thesis, the assumptions we took, and the limitations

encountered and identified in the current state of the art.

Chapter 2 introduces the backgroundofComplexCyber-Physical Co-simulation,

giving the reader the context and the essential vocabulary to understand

the issues of co-simulation and the problems that this thesis addressed.

Chapter 3 presents an overview of the semantics used to coordinate a co-

simulation, the Domain-Specific Languages proposed to address coor-

dination issues and to express the structure and interactions between

components, and the interfaces those languages and standards are based

on. Then, we illustrate the distributed co-simulation approaches, giving the

main concepts of distributed topologies. Finally, we expose the addressed

research questions of this thesis.

Chapter 4 describes our proposition by presenting the three main elements of

our framework: the Model Coordination Interface, the Model Coordination
Specification, and the Distributed Coordination Algorithm.

1 Introduction 8

Chapter 5 illustrates our approach by presenting a representative use case of

a CPU cooling system. The heterogeneity of the systems is achieved by

decomposing the systems into three different sub-systems: a hard overheat

controller, written using a DSL to specify Timed Finite State Machine,

represents a software controller that handles the state of the fan; a fan

controller, written using Modelica and then exported as an FMU, defines

PID controller that computes the speed of the fan according to the current

temperature; the fan and the CPU, both written using Modelica and

exported as a single FMU, represents the close system to control.

Chapter 6 summarizes our work and provides the conclusion of this thesis along

with some future perspectives.

Background 2

2.1 Complexity of Cyber-Physical

Systems 9

2.2 Model-Driven Engineering . . . 12

2.3 Model Integration 15

2.4 Conclusion 18

Cyber-Physical Systems combine physical, computing, and communication

processes to execute tasks to allow interactionswith the surrounding environment

and humans. The development and operation of those systems are extremely

complex tasks. Many different fields such as aerospace, automotive, railway, and

maritime have to comply with an increasingly demanding complexity, stricter

safety and environmental regulations, and faster project development cycles.

Model-Driven Engineering (MDE) proposes methods and standards to promote

and ease communication among different stakeholders. MDE enables the collabo-

ration among different experts but introduces issues during the integration phase.

Model changes can affect other models in the system and it becomes difficult to

understand the emerging behavior of the system.

Simulation has become a key method to tackle these challenges. It allows a

more efficient and quick exploration of the design space, helping in the early

phase to retains certain development direction. In particular, virtual prototyping

enables an early verification of concepts and their characteristics, dynamics, and

performances.

In the next section, we introduce the context of this thesis detailing the complexity

of the development for complex systems. In section 2.2, we detail the main

concepts of Model-Driven Engineering such as model transformation and model

integration.

2.1 Complexity of Cyber-Physical Systems

In Computer Science and Engineering, a system is a group of organized and

interacting entities that forms a unified whole to accomplish an overall objective.

A system can then be physical, conceptual, or both [29]: matter and energy are

the main parts of a physical system, information and knowledge are encoded

using matter-energy relationships that exhibit the overall observable behavior.

A conceptual system abstracts the physical parts and relationships of a physical

system to exhibit its meaning. It defines abstracted relationships on its element

but not the actual interactions. The combination of both systems must be studied,

organized, and managed in a well-defined method. An engineered system

includes both conceptual and physical elements. A definition is then given by

the International Council on Systems Engineering (INCOSE)
∗
: "An engineered

system is a system designed or adapted to interact with an anticipated operational

environment to achieve one or more intended purposes while complying with

applicable constraints" [29].

We then consider a system to be complexwhen it is composed of interconnected

heterogeneous components which interact in intricate ways [30]. It is worth

mentioning that a complicated system is not necessarily a complex one. A

complicated system can be decomposed into its parts and each part can be

studied in isolation. Its behavior and properties, which are valid isolated from

∗ https://www.incose.org/

https://www.incose.org/

2 Background 10

the original system, are still valid once reassembled with the other pieces of the

system. The resulting behavior and properties of the system are the composition

of all the behavior and properties of each model. Their interactions do not

change their original behavior [31]. In contrast, in a complex system, interactions

among the components lead to changes in the behaviors of each model in a

not-unambiguousway or unexpected behaviors. For instance, in [32], they present

the example of a water tank whose overflows are due to neglected handling of

the accumulation of water during the shutdown procedure. That behavior was

not taken into account during the development of the system but emerged as a

result of the interaction among components.

A complex system then requires to be executed as a whole to observe its global

behavior. The execution is a manner to observe the emerging properties and

behaviors in such a way that they can be validated and verified against the

expected ones. Moreover, in a complex system, the composition of the properties

for each component does not hold and they cannot be studied as a disjoint subset

of the complex system properties [33].

The model-driven approach is a software design method that proposes to tackle

the complexity of the development by relying on abstractions of the different

components. The abstracted entities are called models. A model is an abstraction of

an original component, device, or system that reflects only the relevant subset of

properties for a given purpose where it can then be used instead of the original,

avoiding handling all the complexity of the reality. Within a defined context, it

eases the understanding of a specific behavior by excluding the non-essential

aspects. A model should be standalone, reusable, and inter-operable [34, 35].

The independence and reusability allow an expert to use existing models as

building bricks to develop new systems, along with the degree of abstraction

required [36]. The interoperability allows using the model in different systems

without significant effort by the final user [37].

In the context of Modeling & Simulation, models are used as a representation

of systems, entities, or processes that show their behavior over time. We can

then distinguish two different types of time: wall-clock time and simulated time.

The wall-clock time is the physical time we normally experience in reality. The

simulated time is a virtual mathematical representation of time that emulates the

wall-clock time in a simulated environment. There is not a strong correspondence

between the two types of time: the simulated time can represent a wider timeline

in respect to the wall-clock time spent to simulate it. For example, a geological

simulation, that studies the Earth’s crust tectonic movement for thousands of

years, executes in hours [38]. Vice versa, continuous-time simulations describe

physical processes that happen within seconds or minutes but require days or

even weeks to execute.

We can use models to test the system without actually test it in the reality.

Simulation allows us to understand the impact of a change in the model without

an expensive test on the field like in the case of tectonic studies from [38], without

the possibility to test a proposition in the real world. Simulation becomes a key

technology to develop complex systems that have a direct impact on humans and

their life. For instance, the development of a collision-avoidance system for cars

can be simulated before the actual implementation and test on a real car, reducing

to zero the risk of injuries compared to a real test. An interesting aspect of this

example is that it requires the integration of different components, abstracted as

models, used to describe the different physics and logical controls that allow the

overall system to be simulated.

2 Background 11

The increasing integration of technology in our life has developed a category of

complex systems called Cyber-Physical System (CPS). It uses advanced and smart

computational techniques to sense and control some aspects of the surrounding

physical world. The interaction of computational (i. e. cyber) units and physical

unit, when connected through a global network (i. e. Internet), brings to advanced

interconnected implementations called Internet of Things (IoT). Both IoT&CPS

aims to support real-time applications that combine digital controls and the

physical environment.

In a real-time system (RT), its correctness depends not only on the logical result

of the computation but also on the time at which the results are produced [39].

In particular, the software behavior must be predictable in its execution time: a

given set of inputs must produce the same output, respecting some temporal

constraints such as deadlines. For instance, a user interface in an aircraft cockpit

must meet constraints on response times to visualize data within a certain delay.

Depending on the importance of meeting deadlines, RT systems are divided into

two types: soft-RT systems cannot meet their temporal constraints since their

failure does result in a dramatic impact on human beings (e.g. personal computers

or audio and video encoders/decoders); on contrary, hard-RT systems must meet

temporal constraints otherwise their failure have a dramatic impact on human

beings (e.g. automotive engines, aerospace and avionics command-and-control,

or nuclear power plants control).

Therefore, the complexity of those systemsmakes their development a challenging

multi-expert effort. Each expert focuses on a specific aspect of the system and

uses dedicated tools and languages tailored to her or his domain of expertise [27].

Cooperation among these different stakeholders is necessary due to the strong

inter-dependency of every part of the system. Cyber-Physical Systems (CPSs)

require modeling techniques that take into account the complexity of the design

of this system and embrace the cyber and physical parts of the system [40].

For such a system, the optimization of the overall performance as a whole cannot

be achieved by optimizing the performance of each subsystem and component.

Instead, it must be achieved taking into consideration the interactions between

components, environment, control systems, software, and humans behavior.Only

ifwe take into account the systemas awhole,we can then optimize it regarding the

desired optimization constraints e.g. efficiency, safety, consumption, or cost [41].

The model integration is required to understand the impact of a particular

optimization on the system. In particular, model developers can have feedback

on their changes to study and understand their impact on the system. It is an

important aspect since multidisciplinary experts have to work together, usually

on the same system but using different models that conform to different tools and

languages [42]. The intrinsic connection among different physics, hardware, and

software makes the model integration an important aspect in the development of

complex systems.

Moreover, different competencies can be distributed geographically. In the

globalization era, a modern manufacturing enterprise can combine its effort with

several other companies to develop and create a new product.For instance, an

extended enterprise [3] is typically an international companywithdistributed sites

across several cities and continents. Engineers, experts, technicians, designers,

and system architects need to exchange information and knowledge to reach a

final result (e.g. the development of a new product).

2 Background 12

In the Modeling & Simulation context, the exchange of information among

stakeholders is represented by sharing models of components or systems. The

challenge is to protect the knowledge and to ensure Intellectual Property while

allowing the sharing of parts of the system, as models. A possible solution is to

adopt the black-box concept: "A device, system or object which can be viewed solely in
terms of its input, output and transfer characteristics without any knowledge of its internal
workings, that is, its implementation is opaque" [43]. On one hand, the black-box

concept allows to abstract away the details on how the inputs are transformed to

outputs easing the discussion and integration of different models focusing on

their inputs and outputs. On the other hand, the internal implementation of the

model is hidden and so the language, tool, and formalism used preventing to

expose them to the external environment.

Model integration requires integrating models which have been developed using

different formalisms and tools. The component-based approach adopted byMDE

enables the design of complex systems using reusable components which are

standalone executable entities accessible only through an interface [44].

2.2 Model-Driven Engineering

The Model-Driven Engineering (MDE) [45–47] is a software development ap-

proach that allows interoperability and reusability of components. It raises the

level of abstraction of traditional languages by using the concept ofmodel tailored
to the concepts it is representing [48]. In the context of MDE, a system is a "generic
concept from designating a software application, software platform, or any other software
artifact" [49]. Also, it can be a hierarchical system, with sub-systems, and may

communicate with other systems. In this context, models are then abstractions of

the system under development that already exists or may exist in the future. The

developer uses a language at the right level of abstraction and expressiveness to

build domain-specific models.

The Model-Driven Engineering approach combines Domain-Specific Modeling
Languages (DSMLs), whose syntax and semantics are tailored for a particular

domain, andModel Transformation engines and generators, which analyze models

looking for certain aspects and then generate corresponding entities, called

artifacts, such as General Purpose Language source code, or transform them into

a different model representation.

Initiatives such as the Object Management Group (OMG) [50] and Eclipse
†
help

to popularize the Model-Driven Engineering approach by promoting several

standards (e.g. Unified Modeling Language and its subset fUML ‡
), or providing

a set of programming and modeling tools like the Eclipse Modeling Framework.

This framework permits the implementation of modeling-related languages and

tools by providing a set of features and facilities based on the Model Driven

Architecture standards of the OMG.

Domain-SpecificModelingLanguages Domain-SpecificModelingLanguages
(DSMLs) formalize the elements of the language, such as syntax, type system, and

semanticswithin specific domains, such as avionics embedded controls, hardware

description, infrastructure configuration, relational database queries, or even

French Tax [51]. The direct representation allows a strong coupling of problems to

† https://www.eclipse.org/
‡ https://modeldriven.github.io/fUML-Reference-Implementation/

https://www.eclipse.org/
https://modeldriven.github.io/fUML-Reference-Implementation/

2 Background 13

Figure 2.1: Four layer architecture ofMDE.

Taken from [48].

solutions. It helps to understand the problem and to represent a possible solution.

Furthermore, the reduced expressiveness then General-Purpose Languages and

their characterization for a specific domain allow imposing constraints on the

syntax to enforce correct patterns. Moreover, the domain-specific constraints

allow performing model checking to detect errors from the early phases of the

development cycle.

As shown in Figure 2.1, on the bottom of the pyramid, there are the objects

of reality, for instance, a car or a house. An element of the real-world is then

represented by a model. Concepts, as the model specification, are then defined

using a DSML. In the context of MDE, amodel is an abstraction of some aspect of a

system, that exists or may exist in the future. It is created for particular purposes

such as to present a human-understandable description of some relevant aspects

of the system or to formalize its characteristics to analyze some properties. The

resulted abstraction can then be used as a replacement for the reality since it

provides equivalent results.

The model is then described using a language with a proper expressiveness, such

as DSMLs. A DSML, as general-purpose languages, is composed by a syntax and

semantics.

The syntax is the set of symbols that can be combined to build well-formed

programs. It can be represented as an abstract syntax, that defines the concepts

used in the DSML and the relationship between these concepts, and as a concrete
syntax, that represents the grammars using a human-readable form such as

images or words. The DSML syntax is described using ametamodel, which defines

the concepts in a precise domain along with relationships and constraints among

these concepts [52]. It defines the valid elements in a specific model such as class,
attributes, and associations.

The Semantics gives themeaning to a syntactically correct sentence in the language.

There are several formsof semantics, for instance operational, axiomatic, translational,
and denotational. The operational semantics describes how a program is executed

on a virtual machine as a sequence of operational steps [53]. The sequence of

steps represents the meaning of the program. For this reason, the operational

semantics is useful to understand the behavioral execution of a program. In a

axiomatic semantics, the meaning of a program is given by describing assertions

of truth using axioms and proof rules [54]. It is particularly useful to provide

the correctness proof of a program with respect to given specifications. The

translational semantics defines an exogenous transformation from a syntax of a

source language to another target language. It exploits the meaning associated

with an element in the source language to transform it and create a meaning

compatible set of elements in the target language. Moreover, the translational
semantics may transform a source language into a mathematical model by

defining a denotational semantics [55]. These semantics are useful to understand

and study the internal logic of a program. Software development, integration,

and management benefit from the usage of models, metadata, and model-

code transformations at different abstractions levels: it is possible to define

platform-independent models for business purposes and then refine them to

platform-specific models while maintaining predictable transformation between

different levels [56].

Model Transformation Engines and Generators Once a model is de-

fined, it can be statically analyzed and checked for inconsistency and errors.

Furthermore, the development of a system requires modifying or generate new

2 Background 14

models in an automated way. It is possible thanks to Models Transformations
Engines and generators. Model transformations play a central role in the MDE, by

allowing to modify and refactor models or generate a new model specification

from an existing one. A model transformation is a set of transformation rules. A
rule defines which changes to perform on a specific element of the model, based

on its metamodel.

There are two types of transformation: if the transformation is done to convert a

source model to a target model and both models conform to the samemetamodel,

then it is called an endogenous transformation. On the second type, if the transfor-

mation converts a source model to a target model and both models conform to

different meta-models, it is then called exogenous transformation. In this thesis, we

use the second type to transform a set of DSL specifications that represent the

Model Coordination Interface and the Model Coordination Interface into a set of

Java source code specifications that can be later compiled and executed.

This automatedmodel transformation helps to achieve a "correct-by-construction"

implementation process, as opposed to the conventional "construct-by-correction"

software development implementation process that is tedious and error-prone.

Several frameworks and languages were proposed to specify and perform model

transformation tasks. We then distinct two main categories: model-to-model

and model-to-code transformations. In fact, a model-to-code approach can

be considered as a special case of model-to-model transformation: the target

generated code is usually a textual model, which is compiled or interpreted

later by the corresponding compiler or interpreter. We can then categorize the

approaches by the techniques used.

The model-to-code approaches can use a visitor-based or a template-based

mechanism to transform a model into code.

The model-to-model approaches can be based on direct-manipulation, graph-

transformation, structure-driven, or relational.

Some of these languages are then supported and integrated into the EMF. For

instance:

I ATL [57] is declarative transformation language that defines a model

transformation by declaring a set of rules. A rule is composed of a source

pattern and a target pattern. The source pattern is used to identify a subset

of the source model, while the target pattern defines the transformation to

apply. The application of those model transformations consist to execute a

pattern-matching task in a loop;

I VIsual Automated model TRAnsformation (VIATRA) is a declarative query
language based on graph transformation patterns. It is based on the same

concepts of ATL The model transformation is then applied on the same

source model to ensure termination [58];

Modeling Tools Developing a language requires developing some programs

such as a lexer, a parser, and an evaluator.Moreover, nowadaysmodern languages

are expected to be shipped with extra features as syntax highlighter, syntax

checker, completion, and quick fixes. In this context, the Eclipse Modeling

Framework (EMF) [59] offers an environment composed of a set of Eclipse plug-in

which forms a modeling framework that enables to define Domain-Specific

Languages and related tools. It provides an environment with tools and facilities

such as model and metamodel transformations, model checking, and model-

to-model and model-to-code transformations. The metamodel specification can

2 Background 15

be described using XMI, UML, or annotated Java. Usually, the metamodel in

specified using a dialect of the UML class diagram called Ecore. It implements a

widely used standard to define a metamodel called Essential Meta-Object Facility

(EMOF). Using the Ecore representations, we can then defined the syntax of a

DSL defying its grammar and the relationships between its elements.

The metamodel can then be used to automatically generate tooling for that

language. For instance, Xtext is a framework that supports metamodel defined as

Ecore and enables the automatic generation of the associated tooling such as the

parser, the lexer, the type-checker, and modern facilities as the syntax highlighter,

completion, and quick-fix.

A meta-model conforming to theMeta Object Facility (MOF) § standard is defined

in terms of packages, classes, properties, attributes, and operation signatures.

These elements can be used to represent the syntax of a language but it does not

include the support to specify its operational semantics and constraints. For this

reason, EMF integrates into its framework a set of DSL dedicated to defining the

semantics of a language. For instance:

I Kermeta [60] is action language based on the aspect-oriented paradigm

that allows to extend meta-models with dynamic and static semantics.

2.3 Model Integration

Model-based design of Cyber-Physical System (CPS) requires approaches that

can handle both the cyber and the physical part of the system [61], accepting the

heterogeneity of the system along with the formalisms, tools, and techniques

with whom it is developed [62]. The component-based approach is used as the

base mechanism to enable integration and simulation of models. In particular,

co-simulation is a model integration approach in which models are integrated

using their exposed inputs and outputs.

In this context, co-simulation enables to combine heterogeneous components

(i. e. models) following the hierarchical heterogeneity principle [9, 14]. It consists

of techniques to enable the simulation as a whole of a coupled-system by

composing different heterogeneous models and simulators. For instance, a

co-simulation can integrate continuous dynamics into real-time hardware-in-the-

loop simulators [63], physical test stands [64], or software and hardware [65].

The basic element of co-simulation is the executable model: it can be run, tested,

measured, and debugged as executable code. As an executable code, it is possible

to read its implementation only if the program code is available: in this case we

refer to the model as white box. Otherwise, if the program code is not available

and only the executable is provided, then we refer to it as black box. As seen in

Section 2.1, the black-box approach is particularly useful in the context of an

extended enterprise that adopts amodel-based design. It allows to sharemodels and

thus reusing existing ones created with dedicated knowledge and softwares [33],

while protecting the Intellectual Property of vendors and suppliers, to reuse

a well-defined and built model, and to ease the integration and exchange of

models.

In this thesis, we refer to components and models using a wide-open definition

that embraces different by nature entities.We use the term SimulationUnit (SU) to

denote an entity that produces output data and consumes input over its execution.

§ https://www.omg.org/mof/

https://www.omg.org/mof/

2 Background 16

It can be a stand-alone model with its simulator, a real-world component, a

software with its interpreter, a proxy to an existing part (hardware or software-

in-the-loop), or a composition of these entities. A SU is then encapsulated into a

black-box hiding its internal mechanisms and semantics. However, conforming

to the co-simulation model integration concepts, it is possible to execute and

interact with a SU through its inputs and outputs.

Traditionally, the simulation of complex systems results in a closely-coupled and

monolithic simulation customized for a specific purpose. The entire process is

costly and lacks the reusability of components. Co-simulation enables intercon-

necting loosely-coupled independent models and sub-systems and simulating

the created system as a whole. The execution of the different SUs needs to be

orchestrated to obtain a coherent and correct simulation. The algorithm that

controls the execution of each SU is called Master Algorithm. The MA controls

how the simulated time advances in each SU and exchanges data among the SUs

according to their topology, given by their inputs and outputs connection.

Functional Mockup Interface (FMI) A widely used standard that carries

out supporting these requirements is the Functional Mockup Interface Standard

(FMI) [4], introduced by the MODELISAR project [66] in 2008. It defines a

standardized interface of a simulation unit to support collaborative simulation,

composing model components designed using different modeling tools [67, 68].

The simulation unit, called Functional Mockup Unit (FMU) implements the FMI

Standard interface, providing a set of functions that the MA can exploit to control

the advancement of the internal simulated time, to set input data, and retrieve

output data. The internal time advances step-by-step by defining an integration

step size to pass to the model.

High Level Architecture (HLA) The High Level Architecture (HLA) [69]

standard was originally developed and standardized by the Defense Modeling &

Simulation Office (DMSO) in the 90s. The specification has two main standard-

ization: the HLA 1.3 [70], the last final release from the defense community, and

the IEEE 1516 [71] released to facilitate the adoption of the standard for applica-

tions other than military simulation. The standard defines a general-purpose

architecture specification based on an event-driven Application Programming

Interface (API). However, the standard does not provide any implementation. A

distributed simulation is called Federation and it is composed of several entities

called Federate, which interact with each other by using the Run-Time Infrastruc-

ture (RTI). The RTI provides several management services such as Federation,

Object, Time, Declaration, Ownership, and Data Distribution Management. The

federates exchange data by relying on a publish/subscribe pattern. Time synchro-

nization and event management are then handled by the RTI. HLA provides two

possible styles of time synchronization for federates: a time regulating federate

prevents other federates to advance their internal time by sending their internal

time as a timestamped event, and time-constrained federate which internal time

advancement is constrained by other federates and executes itself under the

constraints to process events in their timestamped order (using a conservative or

optimistic approach).

Combination of FMI and HLA and their limitations Both FMI and

HLA present a standardized interface to enable co-simulation among different

simulators and executable models. While the HLA standard is more focused on

2 Background 17

Figure 2.2: Artificial delay introduces

by the sampling in time-triggered ap-

proaches.

the distribution of the co-simulation, by defining the RTI that embeds critical

coordination services such as data exchange, time advancement, and event

handling. On the contrary, in FMI these services are not defined by the standard

and must be implemented into the Master Algorithm. The former proposes a

time-triggered API while the latter an event-driven API. In the CPS context,

neither FMI norHLA could support natively the co-simulation of a heterogeneous

system. Several works [11, 72, 73] show side effects of using pure time-trigger

communication in a co-simulation of a hybrid system. Two main concerns must

be taken into consideration: the artificial delay introduced by the sampling and

the delay in the propagation of data between SUs.

The first concern results in a bias in the internal simulation time. As shown in

Figure 2.2, the time-triggered approaches retrieve data from a SU at specific points

in time called communication points. A finer accuracy reduces the performance,

augmenting the communication points required. Fast simulation implies reducing

the number of communication points, whichmay produce non-correct simulation

results [11]. An ideal solution could be to go beyond time-trigger approaches

in order to use the right number of communication points to achieve a correct

simulation. It requires coordinating a component in such a way it produces and

consumes data only when its internal semantics require it to. This idea is one of

the principles of the approaches presented in this thesis.

The time-triggered approach imposes to propagate data from a SU to another at

specific points in time (i. e. communication points). At these points, for each SU, the

MA is in charge to copy the data from the outputs port of a SU to the connected

inputs on other SUs. In a monolithic or a local co-simulation, the overhead due

to this phase may be a minor issue. Data can be transferred by copy or reference,

avoiding moving them across different memory areas. However, in a networked

co-simulation, each communication point curtails the overall performance: data

must be moved from a machine to another over a network. In this case, the data

transfer time introduces an important overhead for simulation time. Approaches

like [73] proposed to minimize data transfers that require network by grouping in

the same machine the SUs that have a strong connection (i. e. strongly coupled).

To reduce the simulation time, it is important to reduce the communication

between the models. Two options are available here: reduce the number of

communication points reducing the sample rate (non the right choice due to the

instability added to the system that results in wrong simulation and results) or to

reduce the number of communication points by adapting them to the minimum

required to achieve a correct simulation of every model.

2 Background 18

2.4 Conclusion

In this chapter, we provided an overview of the main concepts in Model-Driven

Engineering and the context of this thesis. Many concepts that were introduced

briefly are then discussed in later chapters.

We focused on the complexity of the development of software and hardware

systems that interact with the real world. The increasing complexity of those

systems and their capabilities required advanced techniques to understand and

develop them while meeting fast development, safety requirements, and user’s

needs. Model-Driven Engineering tackles the complexity relying on abstractions

of the reality, allowing to work and focus only on relevant parts of the system,

called models.

Models are described using dedicated languages, with their syntax and semantics

tailored to a particular domain to help experts to express their solution using

elements and concepts close to their domain of expertise. The intrinsic connections

among models in a system can cause integration problems due to the difference

between different semantics and tools used. In this thesis, we focus on these

integration problems and, in particular, on the semantics gap caused by generic

master algorithms. These algorithms do not consider the semantics specificities

of the models: the internal semantics of the model is hidden behind the interface

due to the black-box hypothesis meanwhile the master algorithm enforces its

semantics to the model through the use of specific API (e.g. time-triggered

API in FMI Standard). On the contrary, a dedicated master algorithm defines a

semantics-aware coordination model tailored to the semantics specificities of

each model. However, those specificities require to be exposed and exploited by

the master algorithm.

To ease the specification of a dedicatedmaster algorithm, we propose a Domain-

Specific Modeling Language dedicated to the coordination domain: it uses

coordination concepts and elements to build optimized connections between

heterogeneous simulation units.

In order to define a dedicated master algorithm, we propose an interface tailored

to coordination purpose: it exposes a partial view of the internal syntax and

semantics of the SU allowing their exploitation to construct a dedicated master

algorithm.

State of the Art 3

3.1 Coordination Semantics 20

Continuous-Time Based Co-

simulation 20

Discrete-Event Based Co-

simulation 24

Hybrid Co-simulation 30

3.2 DSLs for Co-simulation 35

Architecture Description Lan-

guages 35

Coordination Languages 37

3.3 Co-Simulation Interfaces 42

Runtime Coordination Interface 42

Model Coordination Interface . 47

3.4 Distributed Co-simulation . . . 52

3.5 Conclusion 57

Correctness of Co-simulations . 57

Research Problems 58

Complex system engineering requires integrating several different formalisms,

tools, and standards. The intrinsic complexity of the real world leads to the use

of abstractions and languages dedicated to different domains that explicitly show

interesting behaviors. Tools and languages are used to express these behaviors

and reason on possible solutions. The heterogeneity of those languages and tools

leads to a transposition of the complexity that we find in the real world, also in

the engineering world. In the Software Architecture community, Architecture

Description Languages (ADLs) were proposed to tackle this problem: they

provided Domain Specific Languages (DSLs) to organize and integrate different

models. Typically, an Architecture Description Language (ADL) manages a SU

as a component, encapsulated into a homogeneous interface that exposes some

relevant part of the model as a set of input/outputs that allow exchanging data

with themodel. Then, based on that, they specify the connections betweenmodels.

It is worth noticing that ADLs and Coordination Languages (CLs) mainly focus

on the integration of software components instead of Cyber-Physical System

(CPS) components; however, they proposed interesting concepts that were used

in this thesis.

In the simulation community, the collaborative simulation focuses on the orches-

tration among different simulation units that represent different parts of the same

system, in order to better understand the emerging behavior of the system. In

this context, the simulation unit is a, usually black box, executable entity, which

may for instance encapsulate a model and its solver, a binary executable process,

or a proxy to a hardware device. The orchestration is then of prime importance

because it defines the instants when a simulation unit exchanges data with other

simulation units. There exist several models of coordination that follow different

semantics. For instance, the most popular coordination models are based on

time-trigger and event-trigger semantics. In addition, a coordination model may

be distributed across different cores, CPUs, devices, or network infrastructure. All

these properties and semantics heterogeneity impact the accuracy and the overall

performance of the co-simulation, as we will discuss later in this chapter.

In the next section, we present the main coordination semantics used to coordi-

nate a co-simulation such as Continuous-Time and Discrete-Event semantics. In

section 3.2, we analyze the Domain-Specific Languages for Co-simulation pro-

posed to describe a collaborative architecture and the interactions that must occur

among its components. In section 3.3, we analyze the coordination interfaces

exploited by the presented languages. In section 3.4, we present the co-simulation

approaches highlighting their capabilities to distribute a co-simulation execution.

Centralized and distributed approaches are presented based on the supported

topology. Finally, in section 3.5, we discuss the correctness of the co-simulation

approaches andwe present the three identified research problems thatwe address

in this thesis.

3 State of the Art 20

3.1 Coordination for Co-simulation

In this section, we illustrate the techniques used to coordinate the execution of

a co-simulation. The terms simulation and co-simulation can be confused during

the reading: for the sake of clarity, we use the term simulation to indicate an

independent process that executes a model and its solver, a software and its

interpreter, or an executable. These entities are considered to run within a process

or a thread and they were not meant to run in a cooperative and collaborative

context. Consequently, we use the term co-simulation to indicate a collaborative

simulation between two or more simulations. In particular, we perform co-

simulation using a black-box simulation unit: the internal mechanisms and

algorithms are hidden behind an interface that exposes an API to be controlled

from the external without disclosing its internal IP.

In this section, we analyze the underlying algorithms used to actually run

the co-simulation and which implications they have on the execution. In the

literature, the algorithm that coordinates the execution of a set of models is called

in several ways: Master Algorithm and orchestrator [12] in Functional Mockup

Interface (FMI) [4], coordinator in CLs [74], or director in Ptolemy II [14]. In

this thesis, we refer to the implementation (i. e. source code) of the executable

semantics used to develop the coordination as coordination algorithm. It is worth

noticing that the coordination algorithm can be distributed or centralized: the

FMI community proposed mainly centralized Master Algorithms, meanwhile,

Coordination Languages focused on distributed coordination [75, 76].

The next subsection introduces the coordination algorithm for Continuous Time

(CT)-based co-simulation, subsection 3.1.2 focuses on Discrete Event (DE)-based

co-simulation, and finally subsection 3.1.3 analyses approaches which propose a

hybrid coordination algorithms to integrate CT and DE-based simulations.

3.1.1 Continuous-Time Based Co-simulation

In Cyber-Physical Systems, the physical components are usually designed and

modeled using differential equations or a language on top of them. For instance,

Micro Electro-Mechanical Systems (MEMS), mechanical parts, and analog circuits

can be described using differential equations; these equations can be then defined

using the Modelica language [77] that supports the definition of differential

equations systems. In these components, the input and output signals are mostly

continuous-time signals. Differential equations used to model the continuous-

time dynamics can be divided into several types: the distinction is based on the

fact that equations are ordinary or partial, homogeneous or heterogeneous, and

linear or non-linear. For instance, a non-exhaustive list comprehends Ordinary

Differential Equations (ODE), Differential Algebraic Equations (DAE), and Partial

Differential Equations (PDE).

Simulation In particular, we focus on Ordinary Differential Equations (ODE),

which, in this thesis, are differential equations over the time variable. A common

approach to expose numerical solutions of differential equations is by using

numerical integration. The base problem is to compute an approximate solution

to a definite integral to a given degree of accuracy. In this section, we give a brief

overview of numerical integration and solvers based on [78] definitions.

We introduce a simple model with two continuous-time variables, $ and G, as

a descriptive example. We assume that � is an integrable function of the form

3 State of the Art 21

� : ℝ→ ℝ. Further, we assume to provide a function to evaluate $()) for any
C ∈ ℝ. Then, the model provides G according to

G(C) = G0 +
∫ C

0

$(�)3�

where G0 is a constant. Then, G(C) represents the area under the curve formed

by $(�) in the interval from � = 0 to � = C, translated by the initial value

G0. Therefore, we can compute G by providing � as the input to an numerical

integrator with the initial state G0.

The basic problem of numerical integration is to compute an approximate solution

to a definite integral to a given degree of accuracy. The degree of accuracy depends

on the application: one of the criteria to determine the required accuracy is that

the computed value for G should be sufficiently accurate at a sufficient number

of points that those values can be used to calculate future values of G in time

C ∈ ℝ

The realization of a numerical integration algorithm is called solver. We introduce

a numerical approach based fixed-step size solver called Euler method. It is

the simplest of explicit numerical methods for solving differential equations. A

constant step size ℎ is fixed, the approximation G=+1 to G(C=+1 = (= + 1)ℎ) is
explicitly computed from G= as

G=+1 = G= + ℎ�(G=)

Starting from the initial value G(0) = G0, the method computes the sequence

of approximations G1 , G2 , ..., G= to the solution using one evaluation of 5 per

step [79]. This method is less accurate and errors tend to accumulate faster but

the solver does not require knowing the input at time = + 1 [78]. If a high degree

of accuracy is required, a smaller step size ℎ can be used but, as a drawback, it

increases the number of computations.

The Euler method can be generalized to adjust the step size according on how

rapidly the signal is varying. Such solvers use specific algorithm to evaluate the

more appropriate step size to evaluate the model at each time instant. First, a

tolerance must be chosen based on the degree of accuracy required. The idea

is that the algorithm fixes a step size ℎ, then computes the first approximation

G=+1 and the estimated error &. If the error is above the tolerance &, then the

algorithm must re-computes the approximation G=+1 using a smaller step size

ℎ. The variable-step-size Euler solver will then define a time increment ℎ= to

compute C= = C=−1 + ℎ= and then compute

G(C=) = G(C=−1) + ℎ=�(C=−1)

The variable-step-size Euler solver is then a special case of the wide used Runge-

Kutta (RK) methods [78, 80] in co-simulation.

Co-simulation of Continuous-Time Simulation Units The objective of

a co-simulation is to approximate the behavior of the coupled SUs with a certain

degree of accuracy. In this context, where several models have their internal step

size and are independent of another, a macro-step size has to be defined. We

then defined � as the communication step size (i. e. sample rate value) at which

dynamic models are required to exchange data. Usually, it is greater or equal

to all step sizes defined in each model. To orchestrate the overall co-simulation,

a Master Algorithm (MA) needs to be defined. It is in charge to determine in

3 State of the Art 22

Figure 3.1: Simple example representing

an algebraic loop on the same simulation

unit.

Figure 3.2: Simple example representing

an algebraic loop between two simulation

units.

which order the models are given inputs and outputs and instructed to compute

the next time step interval. Two widely used methods to implement the MA are

then here presented: Gauss-Seidel and Jacobimethods [81].

An algebraic loop can occur when an input port with direct feedthrough is driven

by the output of the same simulation unit, either directly (see Figure 3.1), or by a

feedback path through other simulation units which have direct feedthrough

(see Figure 3.2).

If an algebraic loop is detected, there are two possible solutions [15]: perform a

fix-point algorithm [82, 83], or add a third component that delays one of the two

inputs [15].

However, in many cases, solving an algebraic loop is not always possible due to

the lack of rollback support, and adding a third component, with input/output

dependencies, may not be a feasible solution. The solution of algebraic loops is a

well-knownproblem [9, 15, 83] and it is outside of the scope of this thesis.However,

amenable algebraic loop solvers, based on theNewton-Raphson approach, have as

requirement smooth functions and are not compatible with discrete changes [84].

For this reason, algebraic loops shouldbe rejectedbyour framework andawarning

will be raised to the system designer. Moreover, the following algorithms will

not take into consideration algebraic loops.

In Gauss-Seidelmethod, the MA asks sequentially each model to compute its next

time step interval and retrieves outputs. Then, the MA provides the most recent

outputs to the next model (according to their topology). The sequential nature

of the algorithm requires establishing order among the models. The total order

can be found using approaches proposed in [85]. A possible implementation of

the Gauss-Seidel method is given by [85], which is reproduced in Algorithm 1.

We illustrate the pseudo-code for the implementation of the Gauss-Seidel method

to coordinate a co-simulation system. We define the list of models as a vector

of Simulation Units (* . The vector (* is already ordered using a topological

sort. The algorithm takes as input the simulation stop time), the communication

step size �, and the ordered vector (* . The method �[BD]({H[E] |E ∈ ([BD]})
computes the input for the simulation unit BD from the output samples of its

sources. The method 64C$DC?DC(BD, D2[BD]) retrieves the output values for the
simulation unit BD, using the value in the variable D2[BD], if needed. The method

3>(C4?(BD, �, D2[BD] , D?[BD]) ask to perform a computational step of size � to

the simulation unit BD.

In Jacobi method, the MA asks simultaneously every model to compute their

interval. Then, at the end of their step, the MA sets their inputs (according to

their topology). The list of models (* does not require to be ordered due to the

fact that the master algorithm does not impose any execution order. A possible

implementation of the Jacobi method is given by [85], which is reproduced in

Algorithm 2. Usually, the Jacobi-based algorithm is less accurate than the Gauss-
Seidel-based, due to the fact that models cannot use interpolation techniques [85].

However, it is possible to take advantage of parallelism to execute the system in a

distributed way.

When the Continuous-Time based technique is used for CPS co-simulation, it

raises an integration problem given by the temporal location of events. The time-

trigger master-algorithms presented in literature and commonly used do not

natively support simulation units that present discontinuity or trigger discrete-

event. Due to the widespread adoption of the FMI standard [4] that spreads the

use of co-simulation for CPS, several works addressed the event location problem,

3 State of the Art 23

Algorithm 1 Master Algorithm based on Gauss-Seidel method. Taken

from [85]

1: for BD ∈ (* do

2: D2[BD] := H[BD] := 0 ⊲ D2 →Inputs; H →Outputs

3: D?[BD] := 0 ⊲ D? →Previous Inputs

4: end for

5: C := 0

6: for BD ∈ (* do ⊲ Compute the output for each model.

7: D2[BD] := �[BD]({H[E] |E ∈ ([BD]})
8: H[BD] := 64C$DC?DC(BD, D2[BD])
9: D?[BD] := D2[BD]
10: end for

11: while C <=) do

12: for BD ∈ (* do

13: D2[BD] := �[BD]({H[E] |E ∈ ([BD]})
14: 3>(C4?(BD, �, D2[BD] , D?[BD])
15: H[BD] := 64C$DC?DC(BD, D2[BD])
16: end for

17: for BD ∈ (* do

18: D?[BD] := D2[BD] ⊲ Update previous input
19: end for

20: C := C + � ⊲ Advance time

21: end while

proposing different techniques mainly based on the mechanism of step-rejection

and rollback.

A simulation unit may reject a proposed communication step size: if the one

proposed is larger than the minimum supported, then the SU may reject it [86].

This mechanism is then used also in case, during the internal simulation of

the SU, a discontinuity occurs. How the discontinuity is handled then depends

on the capabilities and nature of the simulation units. In case the simulation

unit encapsulates a CT-based entity, then the discontinuity should be handled

by re-initializing the SU [87]. However, the main drawback of this approach

is that it can cause a cascade of re-initializations in the system, degrading the

overall performance and increasing the simulation time [88, 89]. A technique

to re-initialize a SU consists of rollback the SU simulation to a previous state in

which the discontinuity has not yet occurred. It requires the SU to save its state

and restore it whenever necessary. However, the rollback mechanism may not be

supported by all simulation units.

In a CT-based simulation unit, the event location is associated with the zero-

crossing detector that triggers an event when a continuous signal crosses a

defined threshold. Furthermore, those events are typically considered uncommon.

However, in a Discrete-Event based simulation unit, events are an important

element of the semantics. The methods proposed to locate events are not well-

suited due to the high number of rollbacks needed: in particular, all the proposed

works to minimize the needed rollbacks are worthless because rollbacks are

systematic.

In the context of FMI, several master algorithms were proposed to handle

heterogeneous systems such as CPS. A majority of them are variants of well-

known Jacobi or Gauss-Seidel methods and dedicated to (continuous-time)

system of differential equations [6, 7, 9, 15, 90–92]. Two possible solutions, to

approximately locate the instant when an event is detected, are to compute the

3 State of the Art 24

Algorithm 2 Master Algorithm based on Jacobi method. Taken from [85]

1: for BD ∈ (* do

2: D2[BD] := H[BD] := 0

3: end for

4: C := 0

5: while C <=) do

6: for BD ∈ (* do ⊲ Compute the output for each model.

7: D2[BD] := �[BD]({H[E] |E ∈ ([BD]})
8: H[BD] := 64C$DC?DC(BD, D2[BD])
9: D?[BD] := D2[BD]
10: end for

11: for BD ∈ (* do

12: 3>(C4?(BD, �, D2[BD])
13: end for

14: C := C + � ⊲ Advance time

15: end while

integration step using the minimum step size accepted by the SU [93] or to use

the bi-sectional method [94, 95]. The main drawback is that all of them require a

rollback mechanism, decreasing the overall co-simulation performance.

Interfaces and Tools A widely standard for co-simulation is the Functional

Mockup Interface (FMI) Standard [4]. It is a tool-independent standard that

proposes to bundle a simulation unit behind a homogeneous time-driven API.

The master algorithm is not part of the standard and it must be implemented. It

can set or get the current value of an exposed variable (according to its direction)

by using the standardized FMI API. This API is also used to simulate the model

for a specific interval of time specified in the doStep method. In the co-simulation

mode, each FMU solver decides how many computational steps should be done

in that time interval to reach the desired precision.

Conclusion These standards and toolswereoriginallydesigned for continuous-

time co-simulation. In fact, in the FMI standard, we find many features and

properties to improve co-simulation results and performance based on numeri-

cal solver capabilities (e.g. state variables and derivatives of signals). With the

increasing use of co-simulation for CPS, several works introduce proposals to

support different formalism other than CT-based, such as discrete-event based

simulation units. For instance, [11, 19, 28] propose to update the current FMI API

to natively support different formalisms such as Discrete-Event. However, these

changes break the compatibility with the co-simulation tools that supports FMI

1.0 and FMI 2.0 and they must be accepted by the FMI community to become

part of the standard.

In the next subsection, we introduce the characteristics of Discrete-Event (DE) co-

simulation along with standard interfaces and tools use for DE co-simulation.

3.1.2 Discrete-Event Based Co-simulation

Continuous-time models are appropriate to design and analyze physical models

but they are not well suited to design, simulate and analyze a large collection

of models or complex systems due to their size. Systems as networks, software,

CPU, and hardware design present some phenomena that cannot be expressed

3 State of the Art 25

Figure 3.3: DE simulator activity diagram

using a CT-based system. In particular, problems such as synchronization, mutual
exclusion, parallelism, contention, and scheduling cannot be defined and studied

using differential equations. In this section, we first introduce Discrete Event

(DE) simulation, and then we describe the collaborative simulation approaches

that exploit the Discrete Event semantics.

The simulation unit time, which evolves internally in the model, may not be

synchronized with the real time or wall-clock time, which is the time that elapses

in the real world while the model executes. Model time can advance faster or

slower than the wall-clock time. In some contexts, such as Hardware-In-the-Loop

simulation driven by DE algorithms, the algorithm must take into account the

delay introduced by the simulation: if the computer simulates the system fast

enough, the simulation must "wait" the real world time to synchronize the

execution. Moreover, if the simulation time is too slow compare to the wall-clock,
then it is not possible to perform a Hardware-In-the-Loop simulation. In a

Discrete-Event simulation, time advances not by emulating the wall-clock (i. e.
represented as a continuum) but by the changes of system’s states at discrete

instants in time.

More precisely, a Discrete-Event Simulation (DES) describes the behavior of a

system by defining how the internal state evolves according to a discrete sequence

of events. An event is an instantaneous occurrence that changes the state of the

system at a specific point in time, called timestamp. The timestamp has a scope

limited to the simulation unit. An event can produce other events with the

same timestamp or with a greater timestamp. In contrast to a continuous-time

simulation, a discrete-event simulation unit is not allowed to change its state

between two successive events. The simulation is then carried on by increasing

time and updating the model’s state accordingly (or when necessary).

In Figure 3.3, we illustrate the main concepts of a simulation algorithm of a

standard DE simulator. The main mechanism for advancing simulation time and

ensuring that events occur in the correct chronological order is based on the idea

of an event list, called Future Event List (FEL). The FEL contains all event notices

for all events that have been scheduled to occur in the future. The chronological

order implies that all events must satisfy C ≤ C1 ≤ C2 ≤ ... ≤ C= with = ∈ ℕ where

C is the current simulation time. The scheduling of future events implies that

activity will push, on the event list, the next associated event. A global clock can
then be used to synchronized the events across the system.

In a loop, the simulation algorithm then takes the first event from the list, sets

the current simulation time to the time in the event, pulls it from the list, and

performs the set of actions associated with the event. An action can then generate

new events that will be pushed into the event list. Their associated timestamps

must be equal to or greater than the current simulation time. When the event

list is empty or the end of the simulation time is reached, then the simulation is

terminated.

If an event with a larger timestamp was executed before a smaller one that

would schedule this bigger timestamped event, a logic error would occur. These

types of errors are called causality errors. In a single DE simulation, the time

management is ensured by a local clock to which every event refers for their

timestamp. In a system where multiple parallel DE simulations execute, a local

clock does not guarantee a consistent timestamp for all the events.

3 State of the Art 26

Co-simulation of Discrete-Event Simulation Units The objective of the

DE co-simulation is to correctly simulate the DE-based simulation in a collabora-

tive way. In a Parallel Discrete Event Simulation (PDES), also called Distributed

Simulation [96], an independent Discrete Event simulation runs on a parallel

machine (i. e. computer). The main concern is the time synchronization among

the components of the system: when multiple parts of a DE system execute in

parallel, they may trigger events sporadically or at a different rate. In a PDES, a

possible solution is to use a global simulation clock shared among computers. A

lock-step execution ensures that at each tick of the simulated time, each event list

on the computers is checked and the events due in time are executed. However,

the overall execution may suffer from poor performance due to the fact that two

events rarely have the same exact timestamp [96]. In fact, if no events occur at the

same timestamp, then the simulator must stop at every occurrence of an event,

checking the event list and executing the scheduled events. This process must be

done in sequence in order to prevent causality errors.

A possible solution to speed-up the simulation is to allow a concurrent execution

of events that happens at a different simulated time. It allows simulating parallel

events of different computers. Usually, the simulation runs as a physical process

on a single processor: a typical approach is to map a physical process to a logical

process (LP) and each LP can independently simulate.

In this parallel execution contest, to prevent causality errors, we define a local

causality constraint: "A discrete event simulation, consisting of logical processes (LPs)
that interact exclusively by exchanging time-stamped messages, obeys the local causality
constraint if and only if each LP processes events in non-decreasing timestamp order" [97].
It ensures the correctness of the simulation without introducing errors caused by

the simulation itself (i. e. by avoiding causality errors). The causality constraint is

sufficient but not always necessary to guarantee that no causality errors occur [97].

One of the main challenges in PDEVS is to concurrently execute logical processes

ensuring correct simulation results. It is possible to achieve this goal by providing

a formal algorithm to synchronize the execution of each logical process with the

rest of the system.

Synchronization refers to the correct execution of the DE component in a dis-

tributed system ensuring that repeated experiments of the execution with the

same set of input produce the same results [97]. Time management algorithms

can be divided into twomain categories: conservative and optimistic synchronization.
These approaches were developed to execute distributed or parallel simulation

units on a distributed network or multiprocessors platforms.

The conservative approach strictly prevents the possibility of any causality error

by determining if it is safe to process an event. The first algorithm was developed

by [98]: in a network that ensures that messages are received in the same order as

they were sent, each LP can send its non-decreasing timestamp within a message.

Messages are then organized in a First-In-First-Out (FIFO) queue and executed.

Events are then scheduled according to the FIFO queue. The local simulation

starts consuming the event with the lowest timestamp: local events are then

scheduled within the LP in a dedicated event list. When the messages queue

(on every LPs) becomes empty, then the LP stops and it is in deadlock. To avoid

it, messages with NULL events are used. The NULL event cannot generate new

events or update the internal state of the system. NULL messages are a key

element of the lookahead concept: if an LP is at simulation time) and it ensures

that outgoing messages in the future will have a timestamp at least of value

3 State of the Art 27

Figure 3.4: Simple example representing

an atomic DEVS component.

) + !, where ! is the lookahead period. However, this approach results in a high

number of NULLmessages, and in a high computational overhead [97].

The optimistic approach uses a detect and recovery strategy: causality errors

are allowed to happen but, when they are detected, a recovery mechanism (i. e.
rollback)must be executed. The optimistic approach has twomain features: a high

level of parallelism and the synchronization ismore transparent to the application

than the conservative approach. However, due to the rollback mechanism in

case of violation of causality constraint, it may result in a cascade of rollbacks

that impacts the overall performance. One of the widely used algorithm, called

Time Warp (TW), was developed by [99]: it allows that each LP independently

advances its own simulation time and, when a causality constraint violation is

detected then Time Warp performs a rollback, restoring the state previous to the

violation, and re-computes the events that violated the temporal constraint [97].

The main problem with this approach is that I/O operations cannot be always

undone with a rollback. A solution to this problem is to use a Global Virtual

Time [100] that defines a lower bound on the timestamp on every future rollback,

allowing to discard data written before the Global Virtual Time and the saved

states affected.

The main drawback of the optimistic approach is the high cost due to state-saving

and rollbacks [100]. In CPS co-simulation context, simulation units cannot always

provide a rollback mechanism and it impacts the usability of this approach in the

scenarios where there are those SUs. On the contrary, the conservative approach

does not require a rollback mechanism due to the lookahead mechanism that

prevents a SU to go ahead in time if it depends on other SUs.

One of the first discrete-event co-simulation formalisms used to co-simulate DE

models is the Discrete Event System Specification (DEVS) [101]. In particular, it

defines a coordination interface used by simulation units to communicate with

their external environment (e.g.Master Algorithm) that will be presented later

in this chapter (see section 3.3). In [102], authors define an atomic DEVS (see

Figure 3.4) specification as a structure

" =< -, (, ., �8=C , �4GC ,�, C0 >

where - is the set of inputs port through which external events are received, . is

the set of ports throughwhich internal events are sent to the external environment

(e.g. a connected models), (is the set of states, �8=C : (→ (is the internal

transition function which specifies to which next state the systemwill transit after

the time given by the time advance function has elapsed, �4GC : & × -1 → (: is

the external transition function which specifies how the system changes state

when an input is received, where & = (B, 4)|B ∈ (, 0 ≤ 4 ≤ C0(B) is the total state
set and 4 is the time elapsed since last transition. -1 defines the collection of

bags over -. � : (→ . is the output function that describes the output events

according to the current state of the model and C0 is the time advance function

that controls the duration of internal transitions (during which the model does

not change its state).

The DEVS specification structure is defined on a single component, called atomic
DEVS model. In a co-simulation, the different atomic DEVS models are coupled

using the coupled DEVS formalism (see Figure 3.5): it describes a DE system

composed by atomic DEVS models as a network of coupled components. As

defined in [103], a coupled DEVS# describes the structure of a system in terms of

3 State of the Art 28

Figure 3.5: Simple example representing

a coupled DEVS component.

interconnection between the atomic DEVS model. It is then defined as follow:

=< -,., �, "3 |3 ∈ �, ���, �$�, �� >

where

- = (?, E)|? ∈ �=%>ACB, E ∈ +-8
defines the set of input ports and values,

. = (?, E)|? ∈ $DC%>ACB, E ∈ +.8

defines the set of output ports and values, � defines the set of models identifiers

used to address each model using a unique identifier,

��� = ((#, 8?#), (3, 8?3))|8?# ∈ �=%>ACB, 3 ∈ �, 8?3 ∈ �=%>ACB3

defines the set of External Input Couplings,

�$� = ((3, >?3), (#, >?#))|>?# ∈ $DC%>ACB, 3 ∈ �, >?3 ∈ $DC%>ACB3

defines the set of external output couplings,

�� = ((0, >?0), (1, 8?1))|0, 1 ∈ �, >?0 ∈ $DC%>ACB0 , 8?1 ∈ �=%>ACB1

defines the set on internal couplings.

Based on these definitions, the closure under the coupling of DEVS allows to

prove that an atomic model is equivalent to coupled model: this property enables

hierarchical and modular modeling of DE systems. In particular, as shown in

Figure 3.6, it is possible to compose hierarchical DEVS models (represented as

DEVS-coordinators) to coordinate multiple enclosed DEVS simulators.

Figure 3.6: Overview of the hierarchical

simulators in DEVS.

An extension of the DEVS formalism for parallel execution is represented by

Parallel DEVS (P-DEVS) [104]. The structure of a P-DEVSmodel is the following:

" =< -, (, ., �8=C , �4GC ,�, C0 >

where - defines a set of input events, (defines a set of sequential states, .

defines a set of outputs events,

�8=C : (→ (

represents the internal transition function,

�4GC : & × -1 → (

3 State of the Art 29

defines the external transition function, -1 is a set of bags over elements in

- with �4GC (B, 4 , ∅) = (B, 4), where & = (B, 4)|B ∈ (, 0 < 4 < C0(B), and 4 is the
elapsed time since the last state transition,

� : (→ .1

specifies output function,

C0 : (→ '

represents the time advance function.

Approaches that support P-DEVS proposed both sequential [105] and paral-

lel [106, 107] coordinators for simulating atomic and coupled model, respectively.

In sequential execution, each component executes sequentially its internal transi-

tions: if internal transitions trigger external transitions on other models, all the

transitions occur at the same simulation time [108]. The operational semantics of

a simulator is described in [104] as an abstract simulator. The simulator computes

the next state of the underlying coupled model until its end condition is satisfied.

In particular, it computes the set of atomic DEVS models that have events on

their event list; it then computes its outputs by executing the output function for

each connected model. Output events are then available in the corresponding

ports. Each atomic DEVS model must determine which transition to execute

(internal or external). The simulator then executes in parallel all the transition

functions (internal or external). Finally, each atomic DEVS computes its next

internal transition, defined by its time advance function.

In parallel execution, such as proposed in [106], the operational semantics is

defined by implementing a parallel abstract simulator based on the Chandy-

Misra-Bryant algorithm [109, 110]. It guarantees a deadlock-free co-simulation

and ensures the causality constraint.

Interface and Tools Discrete-event based co-simulation standards and tools

are proposed to execute systems where events are first-class citizens. DEVS is

one of the first event-based standards for co-simulation. DEVS proposes both a

homogeneous interface event-based with which simulation units communicate

and standardization for the Master Algorithm used to synchronize the execution

of the co-simulation.

Another standard for real-time distributed co-simulation is the High Level

Architecture (HLA) standard [71]. As DEVS, it proposes a homogeneous interface

event-driven and the guideline to develop the master algorithm. However, it does

not provide any implementation for both the interface and the master algorithm.

Due to its distributed nature, the HLA standard is mostly supported by network

simulators such as OMNET++ [111] and NS3
∗
.

Conclusion In our proposition, one of the main goals is to reduce to the

minimum the number of required rollbacks during the execution of the co-

simulation. The application of a conservative approach helps to reduce the

overall required rollbacks using the lookahead concept that prevents the Cyber

SUs to execute themselves ahead of time. Their execution will be then upper

bounded by the safe timestamp at which they can execute without providing

outputs or consume inputs. The details of this approach are presented in the next

chapter 4.

∗ https://www.nsnam.org/

https://www.nsnam.org/

3 State of the Art 30

Figure 3.7: Main concepts of co-

simulation: the master algorithm, the in-

terface, and the simulation unit.

In the next subsection, we analyze the main challenges that we address in CPS

Hybrid co-simulation.

3.1.3 Hybrid Co-simulation

Cyber-Physical Systems design requires to reason on the different interactions

between environment (e.g. plant) and software (e.g. cyber controller). Different

behaviors are exhibited by the heterogeneity of components: a cyber (or digital)

controller can be represented using a DE formalism, meanwhile, the plat can be

described using Ordinary Differential Equations. However, the complexity of

the entire system, as the ensemble of plant, controllers, sensors, actuators, and

software, is such that is difficult and impractical to detail it [112].

Systems that combine discrete-event and continuous-time systems are called

Hybrid Systems. This notion is traditionally used by the control community to

indicate discrete and continuous dynamics. In particular, a hybrid system has

a continuous-time evolution and drastic changes. The changes correspond to

the change of state in an automaton in response to external events [113]. Hybrid
systems are often described using dedicated formalisms [112] and languages,

such as Zelus [114] that mixes discrete-event and continuous-time behaviors

by describing hybrid systems using a single language, for both expressing the

physical models as Ordinary Differential Equations (ODEs) and cyber models

as Data-flow formalism. In a co-simulation context, expressing models using a

single language prevents the heterogeneity of the languages and tools used to

develop CPSs but the white-box approach forces us to eventually disclose the IP

of models. Our hypothesis on co-simulation is to use a black-box approach to

prevent IP disclosure, making these languages not suited for co-simulation.

In this subsection, we focus on the co-simulation of black-box simulation units

and on the main challenges due to the heterogeneity of CPS.

Hybrid Model Integration More and more, both CT- and DE-based co-

simulation approaches proposed mechanisms and techniques to integrate the

other formalism. We can divide the approaches into two main categories:

I CT-based co-simulation with all SUs encapsulated as CT simulation unit

(i. e. a DE-based SU will use a CT-based interface to communicate with the

master algorithm);

I DE-based co-simulation with all SUs encapsulated as DE-simulation unit.

Moreover, based on the main concepts of the co-simulation (the master algo-

rithm, the interface, and the simulation unit), it is possible to further divide the

approaches based on their proposition and the concerned level.

In the first category, every SU must conform to the CT-based co-simulation inter-

face and, consequently, to the master algorithm semantics. Several approaches

proposed techniques andmechanisms to integrate DE-based SU. For instance, [12]

proposed to encapsulate every model not conforming to the CT formalism, into a

CT-based SU providing a semantics adaptation between the inner semantics and

the CT semantics.

In [115], they proposed to modify the CT-based master algorithm to take into

account the internal time and events exploiting a dedicated variable. However, it

needs to build a specific wrapper or modify the internal model in order to take

3 State of the Art 31

into account the semantics changes of the communication protocol between the

interface and the master algorithm.

Other works, such as [11, 73, 116], proposed to adapt the interface by adding the

support for different semantics directly to the CT-based interface. In this case, the

semantics of the API change according to the semantics of the added API, and

a dedicated master algorithm is needed to take this change into consideration.

For instance, in [11], they proposed a dedicated master algorithm based on the

different simulation unit semantics.

In the second category, all the SU must conform to the DE-based co-simulation.

[117] proposed a DEVS&DESS (Differential Equation System Specification) [118]

integration to embed Differential Equation-based simulation unit within DEVS

simulations.

In our proposition, we address only the coordination level, without introducing

any modification to the underlying interface or wrapping the simulation unit

using a semantics adapter. This approach allows reusing existing interface

standards (e.g. FMI, HLA, or DEVS) without requiring to provide a semantics

adapter or change/update the API in use by the simulation unit. However, the

generation of the master algorithm must take into account the heterogeneity of

the system and the different semantics that compose it. The Model Coordination

Interface is a dedicated interface to coordination used to expose a partial view of

the syntax and semantics of the simulation unit in order to exhibit the minimal set

of elements needed to define the master algorithm, as described in Chapter 4.

According to the DEVS semantic, the getNextInternalEventTime() function must

return the time of the earliest scheduled internal event in the model. In the DEVS

specification, the returned time corresponds to the minimum of:

I timestamp of the next internal event scheduled in a discrete-event compo-

nent;

I timestamp of the current time plus the communication step size;

I timestamp of the next state-event.

The authors assume that it is possible to implement a rollback functionality to

go one single integration step back. Getting the first two dates is trivial as they

are a priori known. Things get more complex for the state-events: because of

the numerical resolution of the ODE model, state-events can only be detected

after each integration step of the FMU, and their localization in time can only be

approximated. They perform an exploration of the FMU: thus, the FMU will be

always ahead in time compared to the actual simulation time. When a state event

is detected, they approximate the timestamp of the event by using a bi-sectional

method. A similar approach is used by DACCOSIM [73] to find the time of a

state change. Differently, DACCOSIM uses a sequential approach to the date of a

state-change. A limitation of both solutions is that some state-changes might go

undetected; for instance, if a Boolean value changes twice during the exploration,

the change will not see its value as modified.

Event Location One of the differences between CT-based and DE-based co-

simulation approaches is the role of an event. If we can agree on its standard

definition where an event represents an action or occurrence that happens, its use

in the co-simulation is different. In CT-based co-simulation, an event is triggered

when a variable drastically changes its value, for instance when a discontinuity

occurs, or the value has reached a certain threshold. An event is not considered

as a first citizen of Continuous-Time but a behavior that can eventually occur

3 State of the Art 32

Figure 3.8: Event associated to the thresh-

old reaching instant.

Figure 3.9: Piecewise-constant data.

Figure 3.10: Event detection problem us-

ing FMI 2.0 Standard. Taken from [18].

Figure 3.11: Rollback for event detection

using FMI 2.0 Standard. Taken from [18].

Figure 3.12: Communication impact on

performance using a time-triggered API.

Taken from [72].

during simulation. On the contrary, in DE-based co-simulation, the event is the

first citizen of the simulation. It cannot be considered as a rare occurrence but

must be considered as ineluctable and common.

CT-based co-simulation approaches, mostly based on the FMI standard, propose

to perform CPS co-simulation using a Time-Trigger Master Algorithm [11, 72, 73,

116, 119]. Such co-simulations involve both DE-based and CT-based simulation

units.

A Time-Trigger Master Algorithm does not correctly support the integration of

heterogeneous Simulation Units, as explained in the remainder of this section.

Typically, CPS co-simulation also contains Cyber simulation units which are

not based on Continuous-Time but rather on Discrete-Event like, for instance,

simulation unit wrote using a Hardware Description Languages to describe

digital hardware, or simulation unit written in General-Purpose Languages to

describe software. These simulation units usually embed so-called piece-wise

constant data where sampling creates bias (see Figure 3.9). As shown in [11, 18,

72, 120], such bias may invalidate the results of the co-simulation.

For example, Figure 3.10 shows the temporal evolution of a variable that changes

its value instantaneously between two communication points. It is the case, for

instance, if the model represents a Cyber component and it performs a variable

assignment. The resulting trace shows that the change can trigger an associated

event that will be detected only at the end of the step. From the external point-of-

view (the point of view of the Master Algorithm and the rest of the models of

the system), the event was triggered only at C8+3C : the introduced delay between

the instant when the event was triggered and the instant at which the event is

detected creates an artificial delay due to the MA semantics used to communicate

with the component.

A possible solution is to use the bisectional method [94] (Figure 3.11) to find an

approximation of timestamp, or the smallest interval, at which the event was

triggered. Like for other approaches. this method is intrinsically slow due to the

several rollbacks needed to approximate the event location. By using this method,

the compromise between the accuracy and the simulation time should be taken

into consideration: if high accuracy is needed then the simulation time increases

due to the time spent to locate the timestamp when the event was triggered.

While rollback mechanisms can be improved to reduce the time to locate the

event [84, 121], other component behaviors can degrade performances. For

instance, as shown in Figure 3.12, a Cyber model can have a periodic behavior in

which a task is executed periodically. Between two activations of the task, the

cyber model does not perform any activities or operations. Nevertheless, the

semantics of the Time-TriggeredMA imposes to keep theminimal communication

step size imposed by the activity period: the communication between the MA

and the model cannot take advantage of the specific semantic of the model to

reduce the communication. An alternative can be the adjustment of the step size

but the information of the inactivity period is usually hidden into the component

and not accessible externally.

Modeling of Time The real-world phenomena happen as a continuous flow

of behaviors. To describe these phenomena, the flow is then abstracted as time. The

concept of time is an intrinsic element to describe physical phenomena behavior.

To better describe the reality, physical models are usually based on a common

3 State of the Art 33

resolution for the model of time: the Newtonian time. Time is represented as a

Real number that advances uniformly in a non-decreasing way.

Unfortunately, Real numbers are represented using a floating-point approach.

The main critical aspect of using such representation is appearing when per-

forming arithmetic operations. [122] demonstrates how IEEE floating-point

operations [123] introduce rounding errors. This is a particular problem, espe-

cially in hybrid systems where only Newtonian time is used, for equality tests:

two floating-point values can result to be equal even if a & value is added to one

of the two [28].

Additionally, the Newtonian time is not well-adapted to simulate discrete-event

systems. For instance, given two DE models that periodically trigger two events

with the same period. The time representation should ensure that these two

events will appear simultaneously to a third observer. Instead, the Newtonian

time does not ensure the simultaneously of events and their determinism. The

inner inaccuracy of the software representation of the Newtonian time introduces

quantization errors [8, 28].

In order to mix Discrete-Event and Continuous-Time simulations, [124, 125]

propose a model of time for hybrid co-simulation: the superdense time. A super-

dense time value is represented by a timestamp defined as a tuple (C , =), where

C is the model time and = is the microstep number. The model time C defines the

actual time at which an event occurs. The microstep = is then used to provide

an index of the sequence of events that occur at the same time C. Two events

happen to be weakly simultaneous only if given two tuples (C , =1) and (C , =2) have
C == C and (=1 ≠ =2). The order among events is then defined lexicographi-

cally [28]: (C1 , =1) < (C2 , =2)8 5 5 (C1 < C2) ∨ ((C1 = C2) ∧ (=1 < =2)). An event is

then represented by a tuple (E, CB)where E is the value of the event and CB the

timestamp (C , =) at which the event occurs. This representation allows to add

the notion of event at the Newtonian time, ensuring the causality constraint for

events. Another approach proposes to overcome the problem of representing real

numbers as floating-points, instead by representing the time as an integer [28].

However, this representation is not supported by the widely used co-simulation

standard such as FMI [4] or DEVS [101].

Interfaces and Tools In the hybrid co-simulation context, Ptolemy II [14] is

a modeling and simulation environment based on an actor-oriented approach

for heterogeneous systems. It is based on the concept of Model of Computation

which defines the underlying formalism of the simulation unit (e.g. Discrete-

Event (DE), Continuous-Time (CT), Dataflow (SDF), or Process Networks(PN)).

It addresses the heterogeneous model integration problem by providing a

semantics adaptation between the different Model of Computations in the form

of directors.

Conclusion In this section, we illustrated the main challenges in hybrid

co-simulation. Several approaches and tools proposed to include hybrid co-

simulation by supporting it using CT-based standards, such as FMI Standard,

or DE-based ones, such as HLA. The limits of both formalisms cannot natively

support the co-simulation of a heterogeneous system. Based on the proposed

frameworks that categorize the approaches based on the level they addressed,

we illustrate the state-of-the-art and the limits that we identified and addressed

in this thesis. As shown in Figure 3.7, most of the approaches proposed solutions

thatWe go further by proposing an approach that takes into account the semantics

3 State of the Art 34

of the simulation units by expressing a dedicatedmaster algorithm on the specific

scenario of the system and then, generating a parametrized master algorithm

capable to exploit the exposed characteristics of each semantics to perform correct

coordination. We will show in section 3.5.1 the meaning of correct in the context

of hybrid co-simulation.

3 State of the Art 35

3.2 Domain-Specific Languages for

Co-simulation

From the ’90s, Software Engineering and System Engineering proposed several

Domain-Specific Languages that focused on binding different computational

entities together in order to performa collaborative computation. They support the

communication across different software processes by defining a coordination

model (i. e. relationships among variables and data streams of the different

models) [126].

A co-simulation can be seen as a heterogeneous software architecture where

simulation units are represented by the software components, and the exchange

of data among the simulation units is represented by the interactions between

components.

In this section, we introduce some specific DSL used to describe the composition

of a system. They were introduced in the context of studies about Software

Architecture, known as Architecture Description Languages. We then illustrate

some Coordination Languages used to define the behavior of the interactions

that occur among components.

3.2.1 Architecture Description Languages

Software architecture aims to separate computation (i. e. components) and inter-

actions (i. e. connectors) in a system. The architecture of a software system defines

a high-level view as a collection of interacting components. More precisely: "An
architecture (of a Software-Intensive System) is the fundamental organization of a system
embodied in its components, their relationships to each other, and to the environment,
and the principles guiding its design and evolution" [127]. Instead of describing the

system using informal notations, such as boxes and arrows diagrams, to visualize

the inter-relationships among the various components, the system software

engineering community proposed well-defined formal approaches. For several

years, the Software-Intensive Systems and Architecture fields implement ADLs

to design software and hardware architectures [21, 128]. ADL specifications can

then be used to generate executable models that enable design automation of

tasks such as design space exploration, simulation, compilation, synthesis, test

generation, and validation [129].

As identified in [25], such languages help to:

I Clarify structural and semantics difference between components and

interactions;

I Reuse and compose architectural elements;

I Identify/enforce commonly used patterns.

The expressiveness needed to define an architecture resulted in several ADLs to

share some basic elements, such as:

I Components : Encapsulation of a procedure, an object or a (formal) abstrac-

tion of its behavior;

I Component Interfaces : Explicit characterization of the component;

I Connectors : Behavioral description of the interactions among interfaces: a

connector can represent a large variety of interactions (e.g. procedure call,
event broadcast or database queries) of different complexity ranging from

the identity function to complex protocol specification. [25].

3 State of the Art 36

Moreover, [130] defines three main criteria that an ADL must satisfy:

1. decomposition : each unique interface has only one corresponding compo-

nent in the system;

2. interface conformance : each component must conform to its behavioral and

syntactical interface;

3. communication integrity : each component must use connectors to interact

with another component of the system;

In the following part of the section, we focus on the ADLs that respect these

criteria, analyzing the basic elements (components, components interfaces, and

connectors) and their role in these languages. In particular, we focus on the

component interface and the connector elements.

Component Interface While the ADL community agrees on the definition

of a Software Architecture as a set of components and connections among them,

there are two styles of architecture [130]:

I ObjectConnectionArchitecture : It is composedby object-oriented interfaces
and connections. An object-oriented interface is a set of features that must be

provided by components conforming to the interface. A feature is a function

that must conform to the name and signature specified in the interface. The

component contains the actual implementation of the function. For instance,

C++ classes are consideredObject-oriented interfaces. The connection is then

defined object-to-object: the direction defines which object uses (i. e. calls)
the function defined on the other object;

I Interface Connection Architecture : It defines connections among com-

ponents based on the interfaces which specify both provided and required
features. A connection is defined between a required feature and a provided
one. In contrast with the Object Connection Architecture, all the connections
are between interface features. A mechanism to defined connections is

then required: name matching (e.g. with a similar semantics as Hardware

Description Language (HDL) for pin connections), or pattern triggered

reactive rules, such as in Rapide [131].

Most of the actual ADLs are based on the Interface Connection Architecture. It

constrains the components of the system to satisfy the three ADLs criteria of

decomposition, interface conformance, and communication integrity. These properties
allow using components that conform to the interface while keeping their

internal behavior hidden (i. e. a component can be implemented as a black-box
which exposes only the required and provided features thorough the interface,

as in some co-simulation approaches such as FMI [4]).

Connector Usually, programming languages define interactions among differ-

ent components by using procedure calls or accessing shared data. Connectors

are types [21] that can be used to define domain-specific interactions. Approaches

like AADL [132] or Clara [133] (to cite only two of them) proposed built-in connec-

tor and component types. Providing built-in connector types reifies interesting

interactions, usually according to a specific domain. For instance, the Clara ADL

is dedicated to real-time systems, consequently it proposed built-in connector

types like Rendez-vous, Mutex or Mailboxes. This reification of coordination helps

the coordination tasks by providing relevant domain-specific constructions. It

also limits what can appear in the interaction and is a step towards providing

domain-specific reasoning.

3 State of the Art 37

Other approaches introduced a notion of user-defined type [134–136]. These

ADLs can then be specialized to a specific domain by the creation of domain-

specific types. A connector type is usually defined by a set of roles and a glue

specification. Roughly speaking, a role represents a formal parameter that is used

by the specification of the glue. The glue specification specifies how the activities

of the roles are coordinated. This glue can be specified more or less formally

depending on the domain need. For instance, inWright [135], the glue is specified

in a variant of CSP [137], and in Reo [136] it is specified by the composition

of dedicated primitives. The connector types are later on instantiated and the

roles are bound to the actual interfaces of the instances of components. Other

approaches define a connector as a component, such as the notion of "connection

component" in Rapide [131], or a class, such as the notion of "Association Block"

in SysML [138].

The Rapide language [131] is supported by a framework composed of four main

elements: a typed language, an executable architecture definition language, the

specification language, and the concurrent reactive programming language.

The executable architecture definition language allows describing constraints

and reactive rules based on events and their associated behaviors. The main

feature of this framework is the possibility to use alternative programming and

specification languages in cooperation with the type language. The heterogeneity

of the languages on the specification of the coordination model can be exploited

to compose a coordination model that is based on the syntax and semantics of

the languages used to describe the internal component. This idea will be better

illustrated in the next Chapter 4.

Conclusion The clear distinction between the computational aspect (compo-

nents) and the interactions (connectors) allows the development of heterogeneous

architecture in which the components conform to different languages and se-

mantics. While the components are built by developers and system engineers,

the specification of the interactions is defined by a system designer. In the first

case, several general-purpose languages and domain-specific languages exist but,

in the second case, the need for a formal specification has pushed the System

Architecture Community to propose dedicated languages called ADLs. They

identify in the connector the first citizen of the languages [139]. ADLs allow the

definition of the interactions between two models by instantiating and binding

connectors.

Moreover, from the modeling environment point-of-view, many of them are

only textual and could appear less appealing for a software developer or sys-

tem designer from other domains than only those for which the ADL was

created [140].

The main limitation is found in the expressiveness of the behavior of the connec-

tor. Most ADLs provide only well-understood and formally defined connectors.

Meanwhile, coordination languages allow system designers to define the behav-

ioral semantics of connectors using given basic structures, such as in Reo [136],

or using primitives to coordinate the overall execution in such a way as to bring

out the actual coordination model [75].

3.2.2 Coordination Languages

In contrast with the ADLs, Coordination Languages focus on defining the

semantics of connectors for execution purpose, with little support on specifying

3 State of the Art 38

the relationship between components and describing the overall architecture of

the system.ConjointlywithADLs, Coordination Languages proposed to explicitly

specify an executable architecture by specifying how models interact and by

using an external model called, in this thesis, coordination model. Coordination
language approaches focus on the development of parallel and multilingual

systems by separating the computation concerns from the coordination concerns.

They provide several dedicated models and languages for the specification

of the interaction between different parts of the system. According to [126],

“Coordination is the process of building programs by gluing together active pieces”. In [141],
authors highlighted that the design of coordination languages must address the

following issues: identification of the entities to coordinate, architecture style of

the coordination, and protocols/rules of coordination.

Coordination languages may handle run-time entities like processes, threads,

actors, services, or agents. In this context, independently of the languages used

to define a coordination model, the entity must exist and be implemented in

order to build a coordination model. The entity may not be originally developed

to be executed in a distributed context: the developer may or may not have

used software best practices for a distributed environment such as critical

section protections. Coordination languages provide a formal specification to

concurrently execute it in a distributed context, with respect to its original

semantics. In contrast with the Interface and Object Connection Architecture for
ADLs, CLs target mainly entities that do not have any method or function that

an external entity can call or execute.

Due to the fact that it was not meant for concurrent execution, an entity has not

any methods to exchange data, for instance using a messaging pattern through

send/receive method calls. It means that if an entity requires to communicate

with external entities, it has to use blocking I/O operations on its variables. If we

suppose that the evaluation of a variable implies reading its value, it means that

in the original design the value exists at the time of the variable reading. Using

a blocking I/O prevents the entity to process an absent value (i. e. dirty value),

ensuring that the value is the most up-to-date and available (i. e. it is present at
the time of the reading).

Similar to the Interface Oriented Architecture, CLs constraint the access to the

variables as the exclusive way to access data from the external. The exposed

variables are then called ports. For instance, in Manifold [74] a port is uni-

directional and is part of the definition of the component while in BIP [76],

in particular, the version with data-aware interactions [142], a port has a type

and a list of data variables parameters. The port element plays an important

role in the coordination model: a connector is based on the notion of ports for

both data transfers and interactions between components. Both ADLs and CLs

use the notion of connector: it represents an interaction that can be simple (e.g.
assignment of value from a source port to a target port, procedure call, or event

broadcast), or complex (e.g. definition of a communication protocol).

The main goal of coordination languages is to support a clear separation between

the computational aspect and the communication concerns. However, not every

coordination languages respect a clear distinction between computation and

coordination aspects. Coordination languages can be classified by the level of

separation achieved into two main categories:

1. Exogenous languages: A component does not contain any code that is

used to define a specific protocol that coordinates its execution with other

entities of the system;

3 State of the Art 39

2. Endogenous languages: The separation of concerns is not well-reflected

at the level of the source code, a component uses primitives to perform

inter-component communication from within the component.

For instance, Linda [75], integrates its provided coordination primitives into the

source code using methods proposed by some libraries of the target component

language that implement the Linda model e.g. C-Linda†, and Javaspaces [143].

Exogenous languages lead to reusable coordination code, independent from the

specificities of the component defined. For instance, Reo [136] provides primitives

that define the coordination of the system outside the scope of the component.

Moreover, several style of models of coordination were proposed depending on

the semantics of the computation: data-driven (e.g. Linda [75]), channel-based
(e.g. Reo [136]), or component-based (e.g. BIP [76]). Our main focus is on the

languages that support data-sharing or data-aware coordination models. In CPS

co-simulation, data plays a central role during the execution but all the works

done on coordination languages were not taken into account to improve the

coordination model of the co-simulation. In our proposition, we want to take

advantage of the studies and the main concepts on coordination languages to

integrate them to better define a correct co-simulation coordination model. In

the literature, we studied the main languages focused on data coordination.

In particular, the two most important languages are Linda [75] and Reo [136].

The former is considered the ancestor of approaches that implements the idea

of generative communication. This idea is based on the interactions among

independent and autonomous components that can be expressed as a space

orthogonal to computation [144]. This space is then reserved as aworking space for

the processes where it is possible to read andwrite data to or from other processes

as a distributed system [145]. The latter enables a clear distinction between

communication and computation models: communication should not rely on

primitives used by components but defined as an independent communication

model.

Linda [75] is the first coordination language based on a data-driven tuple-

based approach. It has the notion of tuple space in which data, called tuple, are
stored and shared among processes. Tuple is a record with typed fields and can

be accessed using atomic operations for synchronization and data exchange.

In particular, Linda is based on four atomic operations: out for writing, in

for withdrawing, read for reading tuples in or out the tuple space, and eval

for spawning new processes [146]. This model can be used to develop other

forms of communication, like one-to-many broadcast operations or many-to-one

aggregation, and synchronization, like semaphores or synchronizations barrier.

The idea of using a shareddata space to coordinate different activities can be found

in the Distribution Data Service [147]. It is based on a publish/subscribemodel for

real-time systems, delivering the data at the right place at the right time. The data-

flow is specified by the intent of publishers/subscribers to produce/consume

only a specific type of data. The promoted decoupling in communication is

due to the asynchronous approach which does not require any information

about the sender, the tuple-space, and tuple insertion time. The shared data

space concept allows components of distributed and parallel systems to read

and write information as in a blackboard [145]. It enables collaboration among

independent and autonomous software systems to achieve a so-called generative
communication.

† https://www.comp.nus.edu.sg/~wongwf/linda.html

https://www.comp.nus.edu.sg/~wongwf/linda.html

3 State of the Art 40

On the other hand, Reo [136] is a coordination language wherein graph-like

structures express concurrency constraints among multiple components. These

structures consist of a composition of channels and nodes. By using channel

elements, it is possible to build a more complex link, called connector. A channel

in Reo has exactly two ends, and each end either accepts data items, if it is a source

end, or offers data items if it is a sink end. Each channel defines a well-defined

behavior e.g. sync (a value is simultaneously propagated to every target and

the operation is atomic) or FIFO (a channel represents a buffer with a certain

capacity and the values are propagated asynchronously depending on the target

behavior). Moreover, a channel has a type for its behavior in terms of a formal

constraint on the dataflow through its two ends. The data-aware implementation

is based on a Constraints Automata [148]. Each constraint defines a different basic

behavior, allowing to specify synchronous and asynchronous transitions. One or

more boolean condition on the data flow permits to exchange of data globally

only if local constraints are met.

The language is still actively maintained and developed
‡
. The main benefit of

REO is the connector expressiveness: using the elementary channels, it is possible

to create connectors that take into account the semantics of the models of both

ends. However, the construction of new connectors requires a deep knowledge of

the semantics of channels to ensure that the resulting connector meets the given

coordination requirements (e.g. propagate an input when an event is triggered

by the simulation unit).

Another exogenous language is BIP [76, 149]. A BIP system consists of three

layers: Behaviour, Interaction, and Priority. The behavior layer encapsulates all

computation, consisting of atomic components processing sequential code. Ports

form the interface of a component through which it interacts with other compo-

nents. BIP represents these atomic components as Labeled Transition Systems

(LTS) having transitions labeled with ports and extended with data stored in local

variables [149]. The second layer exploits BIP interaction models to define the

component coordination. For each interaction among components in a BIP system,

the interaction model of that system specifies the set of ports synchronized by

that interaction and the way data is retrieved, filtered, and updated in each of the

involved components. In the third layer, priorities impose scheduling constraints

to resolve conflicts in case alternative interactions are possible. BIP data-aware

implementations is based on the interaction expressions [150]. It describes the

control and data flow between a set of ports. The data flows only if a boolean

condition is satisfied.

Lately, coordination languages have grown interest in their use in CPS co-

simulation. The adoption of the FMI Standard [4] in the CPS community, has

shown limitations especially for the configuration and integration of several

FMUs. In an attempt to tackle this problem, the FMI consortium proposed a

textual representation called System Structure and Parameterization (SSP) [151]

which provides an XML schema of the system as a set of connections among FMU.

It allows to express the topology of the system but the limited expressiveness

of connectors does not allow the definition of any coordination model. Other

approaches focus on giving a possible coordination model by defying the

actual semantics required by each FMU to be correctly simulated. For instance,

HintCo [152] framework proposed the Hint Language that uses hints to build the

coordination model between two models by choosing and adapting statements

in which behavioral patterns are defined on the exposed variables. Hints are then

‡ http://reo.project.cwi.nl/reo/

http://reo.project.cwi.nl/reo/

3 State of the Art 41

translated into semantics adapters, having the same limitation of the semantics

adaption approach illustrated in section 3.1.3.

Conclusion In this subsection, we have presented approaches that identified

the need for the connector notion to enable the integration of heterogeneous

components. Each approach proposes a DSL to define the set of interactions

among models. The main advantages of the coordination languages are:

I Changing the model behavior or the connector semantics does not affect

other elements of the system;

I The development of each component can occur concurrently and indepen-

dently from each other;

I A connector can define a protocol that is independent of the actual

implementation of the components connected;

I The enrich semantics of connector allows to specify and ensure the cor-

rectness of the system’s execution.

Both ADLs and Coordination Languages are based on the concept of connector
that explicits the interaction between two or more components. In this thesis, we

focus on systems that implement an Interface Oriented Architecture since usually a

co-simulation is composed of components that hide their internal behavior using

a black-box approach.

As for the connector, for which each language proposes its own implementation

with different capabilities, properties, and semantics, the interface used by each

language reflects the purpose of each language. Moreover, different levels of

abstraction can be provided, for instance, ADLs require a high-level description

to represent the system architecture with support for the actual semantics of

the interactions, for instance in Rapide [131] the semantics of connectors can be

expressed using CSP [153].

To express a correct and soundness coordination model that takes into account

the semantics of the models under coordination, a coordination language should

allow using elements of the syntax and semantics of the language with which the

model is defined. In particular, the coordinationmodel must take into account the

synchronization points at which, during the execution, the model can exchange

data with the external environment (e.g. other models) in a safe way. For instance,

in CT-based models, these points are identified by the communication points or,

in DE-based models, these points are identified as the synchronization of events

between two or more models. A possible solution to express synchronization

points without the need to expose the entire model is through an interface. In

particular, an interface must contain the minimal set of information needed to

express a correct coordination model.

In the next section, we illustrate the role of interfaces in the co-simulation

context.

3 State of the Art 42

3.3 Co-Simulation Interfaces

In the Model-Driven Architecture, components are abstracted as interfaces. An

interface defines a set of properties and features that define a specification of

the internal behavior. For instance, in an object-oriented interface, the interface

defines which set of features (i. e.methods and attributes) themodel must provide

to be conformed.

Model-Driven Engineering encourages the re-usability of components in a plug-

and-play way: a component should be easily substituted with another model

with the same capabilities but with a different implementation. To achieve that,

a coordination model should be defined between components using only the

information on the interfaces.

In the context ofCPS co-simulation andour hypothesis of black-box, it is important

to find a balance between expressiveness and IP protection: information exposed

on the interface must be such to express a correct coordination model while,

at the same time, not too expressive to disclose the internal mechanisms and

algorithms of the model.

In this thesis, we focus on two level of abstractions: runtime and model. At runtime
level, the interface exposes attributes, parameters, and methods that are used

during the actual execution; at model level, the interface exposes conceptual

elements of the models such as properties, events, or ports.

In the next subsection, we illustrate the main concepts of the Runtime Coordi-

nation Interfaces for co-simulation. In subsection 3.3.2, we illustrate the Model

Coordination Interfaces and their properties for co-simulation purposes.

3.3.1 Runtime Coordination Interface

During the execution of the co-simulation, the Runtime Coordination Interface

(RCI) exposes a set of functions, properties, and attributes conforming to the

semantics by which external entities can interact with the underlying model. A

runtime behavioral interface is usually implemented by an Application Program-

ming Interface (API). An API describes how to interact with the model by giving

a set of methods and attributes that can be called or accessed at runtime.

In the context of co-simulation, two widely used standards aim to specify an

interface that components must conform to: the Functional Mockup Interface

(FMI) and the HLA (High Level Architecture).

The Functional Mockup Interface (FMI) is a standard that promotes a tool-

independent co-simulation and model exchange of models or subsystems devel-

opedusingdifferentmodeling tools. Itwas createdwithin the ITEA2MODELISAR

project [4, 67, 68] and it is currently maintained by Modelica Association [154].

The FMI Standard proposes two differentmodes: FMI forModel Exchange (FMI-

ME) and FMI for Co-Simulation (FMI-CS). A component that implements the

FMI is then called Functional Mockup Unit (FMU). It consists of a single zip

file package with the extension "fmu". It contains three main elements, either for

Model Exchange, for co-simulation, or for both:

I Model Description: A XML file contains information that is needed for

model integration such as the declaration of the exposed variables of the

FMU. These variables can then be used to get or set the actual internal

3 State of the Art 43

Figure 3.13: FMI for Model Exchange.

Taken from [4].

Figure 3.14: FMI for Co-simulation. Taken

from [4].

variables of the FMUs, according to the specified direction (i. e. input,
output, or parameter);

I C-functions: A source or binary file must implement the functions defined

in the standard. It provides a set of functions that execute model equations

(FMI-ME) or setup and run the internal model (FMI-CS). In case of release

as a binary, it is possible to embed platform-depend executable for each

platform supported;

I Documentation files: Documentations, model icons, tables, or maps can

be included in the package to support users. Other files such as libraries

or DLLs dependencies can be embedded.

In the FMI for Model Exchange, the modeling environment exports the model as

a C-code in a form of an input/output block. Only the model is then exported

(without any dedicated solver) as an algebraic-, discrete-, or differential-equation

description with time-, step-, and state-events [4]. The resulting model is then a

passive FMU: an external solver must solve the set of equations inside the FMU

(see Figure 3.13). The accessibility of the mathematical model of the FMU makes

the ME approach unsuitable for exchanging models between different companies

due to the disclosure of the IP.

Instead, in FMI for Co-simulation, the FMU is a black-box that acts as an active

component: the FMU contains both the model description and an embedded

simulation engine or solver (see Figure 3.14). In an industrial context, FMI for

Co-simulation is a particularly attractive and useful approach that gives the

possibility to embed compiled code into the FMU, keeping the source code

in-house. It ensures to protect of the Intellectual Property of the model while

sharing it with suppliers and vendors. The standard defines only the APIs that

an FMU must implement and constrains on the order of calls defined as a state

machine (see Figure 3.15), but it does not specify any algorithm, called Master

Algorithm (MA), to coordinate the co-simulation.

The FMI interface is a C-based header file that defines the signature of the

functions that the FMU must implement. Each of the two variants (FMI-ME and

FMI-CS) has its own set of signatures defined on the specific requirements of

each variant. However, the set of methods that handle the exchange of data from

and to the internal component is in common:

1 /∗ Gett ing and s e t t i n g var i ab l e values ∗/
2 fmi2Status fmi2GetRealTYPE (fmi2Component c ,

3 const fmi2ValueReference vr [] , s i z e _ t nvr , fmi2Real value [])

;

4 fmi2Status fmi2GetIntegerTYPE (fmi2Component c , const

fmi2ValueReference vr [] , s i z e _ t nvr , fmi2Integer value []) ;

5 fmi2Status fmi2GetBooleanTYPE (fmi2Component c , const

fmi2ValueReference vr [] , s i z e _ t nvr , fmi2Boolean value []) ;

6 fmi2Status fmi2GetStringTYPE (fmi2Component c , const

fmi2ValueReference vr [] , s i z e _ t nvr , fmi2Str ing value []) ;

7

8 fmi2Status fmi2SetRealTYPE (fmi2Component c , const

fmi2ValueReference vr [] , s i z e _ t nvr , const fmi2Real value

[]) ;

9 fmi2Status fmi2SetIntegerTYPE (fmi2Component c , const

fmi2ValueReference vr [] , s i z e _ t nvr , const fmi2Integer value

[]) ;

10 fmi2Status fmi2SetBooleanTYPE (fmi2Component c , const

fmi2ValueReference vr [] , s i z e _ t nvr , const fmi2Boolean value

[]) ;

11 fmi2Status fmi2SetStringTYPE (fmi2Component c , const

fmi2ValueReference vr [] , s i z e _ t nvr , const fmi2Str ing value

3 State of the Art 44

[]) ;

Listing 3.1: Excerpt of FMI standard co-

simulation and model exchange API.

As listed in Listing 3.1, the common functions allow to provide and retrieve the

current value of inputs and outputs from the component. The functions are then

specific to the actual type of the variable: for each allowed type in FMI, there

is a corresponding function that handles all the variables with that type in the

component. A major limitation imposed by the API is the limited expressiveness

of types: more complex types, such as objects or tuples of values, cannot be

natively used. Due to the implementation in C, the function takes an array of

references and its size: a value reference is a unique ID that identifies an input or

output in the component.

The function that is specific for FMI for Co-simulation is then listed in List-

ing 3.3.1.

1 /∗∗∗
2 Types fo r Functions fo r FMI2 for Co−Simulat ion

3 ∗∗/
4 /∗ Simulat ing the s lave ∗/
5 typedef fmi2Status fmi2DoStep (fmi2Component c ,

6 fmi2Real currentCommunicationPoint ,

7 fmi2Real communicationStepSize ,

8 fmi2Boolean noSetFMUStatePriorToCurrentPoint) ;

The fmi2DoStep, or abbreviated as doStep, method provides a homogeneous

interface to ask to perform a simulation step of the underlying model. If the size

of the simulation step is too large to be computed using a single integration step,

the internal solver can perform multiple integration steps until the requested

simulation step size. The FMI Standard does not provide any MA definition.

Instead, it provides a formalization on the calling order of the functions (as shown

in Figure 3.15) to constrain the calling sequence of the functions. In particular,

the doStep function is responsible to perform a simulation step on the FMU, given

a communicationStepSize or ΔC (a non-negative real number). The FMU can then

execute the step proposed or reject it if not compatible with its acceptable step

size or an event internally occurs.

The Master Algorithm is in charge to orchestrate the simulation by calling the

API functions for each FMU to advance their internal time, retrieve and provide

outputs and inputs, and synchronize the internal time of every FMUs with the

global time. In the literature several MAs were proposed, each one with some

specific capabilities, for instance: ensure determinism and consensus of the size

of each time step [4, 116], respect the error bounds of numerical approximation

algorithms [84].

CPS co-simulation is composed of cyber and physical components. FMI supports

natively the physical components but it lacks supporting cyber components

with a dedicated API. To better support the concept of event, few works pro-

posed an extension of the current API: [18] proposed two new functions called

fmi21DoStep(stepSize, nextEventTime) and fmi21GetNextEventTime(currentTime, stop-
Time, eventTime). The former allows the FMU to stop its execution on the first

unpredictable event (i. e. asynchronous events) and return the eventTime times-

tamp at which the event was triggered. The later is used for predictable events

(e.g. periodic events). Both methods enable the communication of the date of the

next to know time event, enabling the MA to adapt the communication step size

ΔC accordingly.

3 State of the Art 45

Figure 3.15: FMI for Co-simulation calling

state machine. Taken from [4].

In [9], authors introduced in FMI the notion of super-dense time to locate the

changes of a signal happening at the same instant, modifying the semantics

of the doStep method to accept a ΔC = 0. Then, they introduced a set of func-

tions, fmi2SetHybridXXX and fmi2GetHybridXXX, to handle the event type. In

this case, according to the definition of event in [8], which stated that events

are instantaneous, they are able to retrieve events only if present during the

execution.

Another popular standard for co-simulation is the High Level Architecture

(HLA) [71], an IEEE standard for distributed computer simulation systems, origi-

nally created by the Defense Modeling and Simulation Office (DMSO). It is an

event-based interface standard for software-centric co-simulations. Components

of the distributed simulations are called Federates. The federates that cooperate to-
gether under guidelines and a defined object models form a Federation. Federates

communicate with each other using a common infrastructure called Run-Time

Infrastructure (RTI). The RTI represents a Federation execution backbone and

provides a set of services to manage the communication the time and the data

exchange between Federates.

Figure 3.16: Overview on the HLA infras-

tructure. Taken from [155].

Federates interact using services proposed by the RTI (see Figure 3.16): Federation,

3 State of the Art 46

Object, Time, Ownership, Data Distribution, and Declaration Management. To

interact with each other, federates can use a publish-subscribe approach, in

which they send information to the federation to inform about an intention (i. e.
publish), or receive information from other federates (i. e. subscribe). The content
of messages is represented by objects. HLA defines two classes: an Object Class

and an Interaction Class. The Object class contains the run-time data shared

with the federation in the form of object-oriented data. The Interaction class data

contains information on sending and receiving among federates. These objects

are implemented using a XML format [156].

One of the current implementations of the HLA standard is Portico
§
. It is an

open-source implementation of the Run-Time Infrastructure written in C++. In

Portico, the Ambassador is the real interface between the model and the external

environment. It means, the Runtime-Infrastructure represents the coordination

engine and the federate/Simulator Entity represents the actual executable model.

The RTI Ambassador and the Federate Ambassador are the two classes in

charge to exchange data between the RTI and federates. So, the model has two

ambassadors, one in the RTI and the other one for the federate.

As in FMI,HLAdoes not provide any coordination algorithm, and the architecture

of the distributed system, letting its implementation be tool-specific. Differently

from FMI, HLA does not provide any constraint for the actual implementation

leading to different implementations that may not be interoperable and cannot

be used in a co-simulation [103]. In fact, Co-simulation requires that different

implementations can communicate together but each implementation has its

own set of interfaces and communication protocols that are not compatible with

other HLA implementations.

Some works proposed to integrate FMI and HLA: the FMI standard is based on

a time-trigger master algorithm that is well-suited to co-simulation CT-based

models, while the event-driven approach used in HLA is suited for DE-based

models such as software. [155] proposes to integrate an FMU in an HLA

Federation introducing a dedicated HLA component that acts as an orchestrator,

which implements the Master Algorithm. This integration shows the same limit

that the FMI has: events are managed only at the end of the time steps. In [92],

authors proposed to integrate the telecom network simulator OMNET++ [111]

with FMI, interconnecting FMU modeling continuous-time systems, but it used

only constant time steps and the proposed Master Algorithm did not manage

events between communication points.

In the discrete-event context, MECSYCO [106] proposes a Java/C++ API to

support the Discrete Event System Specification (DEVS). In particular, they

identified five methods to implement the DEVS model presented in the previous

subsection (see Listing 3.2).

1 public void initialize ();

2 public void processInternalEvent(double time);

3 public void processExternalInputEvent(String port ,

Event <?> anEvent);

4 public double getNextInternalEventTime ();

5 public Event <?> getExternalOutputEvent(String port);

Listing 3.2: Runtime Interface signatures

provided by MECSYCO to support the

DEVS model interface.

The API is aligned with the definition of P-DEVS model, given in subsec-

tion 3.1.2:

" =< -, (, ., �8=C , �4GC ,�, C0 >

§ http://porticoproject.org/

http://porticoproject.org/

3 State of the Art 47

Each input and output is identified with an unique string identifier called port.
The �8=C : (→ (internal transition function is implemented by the processInter-
nalEvent: for each internal state B, it must define which is the next state. By defini-

tion, every state has atmost one next state, to prevent ambiguity, not allowing inter-

nal concurrency or nondeterminism [157]. The method processExternalInputEvent
implements the external transition function �4GC : & × -1 → (: is the external

transition function which specifies how the system changes state when an input

is received, where & is the total state set where & = (B, 4)|B ∈ (, 0 ≤ 4 ≤ C0(B) is
the total state set, 4 is the time elapsed since last transition and -1 defines the

collection of bags over -. It will process the incoming simulation timestamped

event anEvent on the given port that has received it.

MECSYCO reflects the semantics in DEVS providing a DE API to encapsulate

discrete-event based model. Some works proposed to integrate the FMI Stan-

dard, witch its time-trigger semantics, into the DEVS formalism to enable a

co-simulation between DEVS-compatible models and FMI-compatible models:

in [103], authors proposed to wrap the FMI model into a DEVS model that

handles adaptation between the DE paradigm and the CT model. However, the

proposition has the same limitations introduced in subsection 3.1.3: if an event

occurs between two communication points, it will be localized in the upper

communication point, and new inputs are taken into consideration only at the

successive communication point, resulting in temporal inaccuracy that may

invalidate the co-simulation.

In all the studied runtime interfaces, the API provides a specific set of methods

and attributes that reflect specific semantics (i. e. only DE-based or CT-based).

In the CPS co-simulation context, some approaches extended the API to sup-

port different semantics by adding new methods for each new semantics. This

methodology increases the number of methods and attributes of the API by the

number of different semantics composing the co-simulation scenario. Moreover,

with the increasing usage of DSL in CPS development, adding and maintaining

APIs could be time-consuming and difficult. In our proposition, we illustrate our

approach to propose a general interface that exploits polymorphism to handle

different semantics using a reduced API.

3.3.2 Model Coordination Interface

In software engineering, an interface can be used to restrict access to resources.

For instance, theApplication Programming Interface (API) of an operating system

provides access to the underlying hardware avoiding direct access that can lead to

malfunctions or instability of the overall system. In this case, the API abstracts the

underlying behavior to expose a set of attributes and properties that defines how

an external entity (i. e. in the case of the OS API, it is represented by applications

or users) can interact with the underlying model. In a Model-Driven Architecture,

the Model Behavioral Interface abstracts the behaviors of the model by providing a

set of elements that defines how external entity (e.g. simulators, tools, or users)

can interact with the internal model. Used in conjunction with MDE tools, it

allows, for instance, automated analysis and verification, checking semantics

properties detection of vulnerabilities, and generation of test cases.

Respecting the definition given in [130], aModel-DrivenArchitecture is composed

of three main elements: interfaces, connections, and constraints. Interfaces represent
the models of the system while connections and constraints define how the

models may interact. Connections and constraints are then expressed using the

3 State of the Art 48

Figure 3.18: Continuous & piecewise dif-

ferentiable signal. Taken from [18].

elements expressed on the interface. In this case, the Model Behavioral Interface

can restrict access to its elements, providing only the minimal set of elements

needed to define connections and constraints. The resulting interface is then

called Model Coordination Interface.

For instance, the Coordination language Rapide [131] conforms to the Interface

Connection Architecture: the coordination model relies on the information

defined on the interface to specify connections among interfaces. In Rapide, an

interface can be defined before the actual implementation of the component,

allowing it to use as an early prototype. The abstraction of the component

behavior is then carried out by the definition of an abstracted behavior on the

interface itself. It specifies the set of features that component provides and

features it requires from other components, and a set of behaviors, called reactive
rules, that define how the interface should react to the received events. The

expressiveness of the language used to define the reactive rules must take

into account the inner semantics of the component. Usually, reactive rules are

used to implement the behavior of a component without the need for actual

implementation. Unfortunately, the specification of the component behavior on

the interface may expose the internal component implementation which results

in Intellectual Properties disclosure.

In the context of co-simulation, a more protective approach is adopted by the

Functional Mockup Interface (FMI) Standard [4]. The proposed interface is

composed of two components: an API C-header file, containing the signatures

of the methods the internal components must conform to, and an XML model

description file. The file, called modelDescription.xml contains static properties

and information on the FMU and the model. In particular, the main elements it

contains are:

I DefaultExperiment: It defines the property of the co-simulation execution

such as start and stop time, and the preferred step size;

I UnitDefinitions: All the units used in the model must be previously

defined;

I ModelVariables: The exposed variables are defined as ScalarVariables.

Each variable is associated with its name, unit, value reference, causality

(i. e. direction), and variability (e.g. continuous, discrete, or constant);
I ModelStructure: Used for equations based models. It defines outputs,

derivatives, and initial unknowns that can be used to solve the internal

model.

The FMI Standard 2.0 was designed to support a dynamic system that presents

continuous and differentiable time signals. In the context of CPS, in which

co-simulation requires the interaction of heterogeneous components conforming

to different semantics, the behavioral semantics of the components may be

exploited at the model-level to retrieve more information on the correct use of the

component itself. In [18], the authors formalized different types of signals that

may be present in a co-simulation with heterogeneous components. For instance,

they identified hybrid signals that may be considered along with continuous and

differentiable ones:

Continuous& piecewise differentiable The Figure 3.18 show a signal that

is present at each time C8 ∈ ℝ+, continuous in ℝ+ but it is not differentiable in

some points

C8 : lim

�→0

5 ′(C8 − �) ≠ lim

�→0

5 ′(C8 + �)

3 State of the Art 49

Figure 3.17: Overview on the Model De-

scription Schema. Taken from [4].

Figure 3.19: Continuous & piecewise dif-

ferentiable signal. Taken from [18].

Figure 3.20: Piecewise continuous & dif-

ferentiable signal. Taken from [18].

Figure 3.21: Discrete event signal. Taken

from [18].

Piecewise constant The Figure 3.19 show a signal that is present at each time

C8 ∈ ℝ+, constant on disjoint and continuous time slots � 8 such that ∪8 � 8 = ℝ+

with a discontinuity appearing at each time slot switch.

Piecewise continuous & differentiable The Figure 3.20 show a signal that

is present at each time C8 ∈ '+, not continuous in '+ and not differentiable at

some points

C8 : lim

�→0

5 (C8 − �) ≠ lim

�→0

5 (C8 + �)

Discrete event The Figure 3.21 show a signal that is present for a set of

definition � being a discrete time set C8 ∈ � with � ⊂ ℝ+. These discrete signals
generate an event at each discontinuity.

The study on the type, or nature, of signals was then used to improve the current

FMI Standard 2.0, adding a set of C functions to support that new natures [18].

In particular, the authors were interested in capturing the value changes that

could happen during the execution and exposing the change as an event. We

must precise that the event that we are talking about is different from the discrete

event that we defined in subsection 3.1.2: in fact, the discrete events that we find

in DE-based models are not considered rare as in the case of [18] but they are

triggered in a systematic way. Nevertheless, in [18], the nature of the signals was

not abstracted as a property at model-level nor defined in themodelDescription file.

In our proposition, we aim to expose through the Model Coordination Interface

the nature of the signal, or more general of the variable, to partially disclose the

underlying semantics.

In the DE system co-simulation context, one of the widely discussed model

coordination interfaces is the DEVS specification (see in subsection 3.1.2). A DEVS

atomic model is described using the 6-tuple structure

" =< -, (, ., �8=C , �4GC ,�, C0 >

3 State of the Art 50

, while a DEVS coupled is defined as follow:

=< -,., �, "3 |3 ∈ �, ���, �$�, �� >

These two tuples represent the model-level interface for a DE component. The

interface is then a set of acceptable events by the internal model, constrained by

the current state.

In other approaches, such as Ptolemy II [14], the model interface is composed of a

set of external ports and parameters. A port can then be connected to the external

ports of the model itself or to the ports of other models. External parameters are

used to determine the value of the parameter’s component encapsulated in the

model interface. The coordination interface is then defined as a set of coordination

points (i. e. Javamethods []) that anymodels should provide. The resulting generic

interface provides a homogeneous view of all the models, independently of their

behavioral semantics, that can be exploited by an actor-based coordinator, called

director. Each director implements a set of common Java methods (e.g. initialize(),
prefire(), fire(), postfire(), wrapup()). The actual implementation of these methods

obviously relies on the semantics of the model.

Approaches like [25, 158] proposed to reify elements of the behavior semantics

within a behavioral interface. In particular, based on a formal representation of

executable languages, the authors proposed to define a relationship between the

Domain-Specific Actions (DSA), that represent data and functions that represents

and modify, respectively, the execution state of the model, and the Model of
Computation (MoCC), that represents causalities and synchronization of the

system [25]. This relationship is represented by using a Domain-Specific Event
(DSE). The model interface is then composed by a set of DSEs and constraints.
Based on that, the concurrency and time-related aspects are then abstracted

and explicitly exposed. Moreover, in [159], authors go further by proposing a

DSL, called xDSL, that allows to explicit a behavioral interface specification for

any given language (that conform to the Ecore [59] metamodeling language).

However, these approaches are strongly based on the concept of events and

they do not have native elements that support the specification of data-aware

coordination model or time-related coordination such as we find in CT-based

approaches.

Conclusion In this section, we illustrated the main concepts and implementa-

tions for an Interface. In particular, two types of interface are discussed: model

coordination interface and runtime behavioral interface. The Model Coordina-

tion Interface exposes a partial view of the internal syntax and semantics of

components to enable the specification of coordination models based on its

semantics-aware elements. We then illustrated some examples from Coordina-

tion Languages, CT-based co-simulation standards, and DE-based co-simulation

formalisms. Each interface exposes elements of the internal model based on

their domain: for instance, FMI exposes properties typical of CT-domain such

as derivatives, variables, unknowns. Instead, the DEVS-based model interface

exposes DE-domain related elements such as events and states. Domain-specific

elements may be then used by a coordination model to define semantics-aware

connections. These approaches are well-suited for co-simulation of models that

conform to their semantics (i. e. the FMI standard implements a time-trigger se-

mantics to handle CT-based models while DEVS or HLA implement event-trigger

semantics to co-simulation DE-based models). However, if used with models that

do not conform with the corresponding semantics, a semantics gap is introduced.

To avoid it, it is required to expose through the interface the internal semantics

3 State of the Art 51

of the model while preserving the IP. This limitation will be tackled in the next

chapter 4 by introducing a Model Coordination Interface capable to partially

exhibit the semantics of the model using the nature of the exposed variables.

3 State of the Art 52

Figure 3.22: Centralized network.

3.4 Distributed Co-simulation

A Cyber-Physical system is by nature composed of different parts, possibly

distributed across devices, computers, or networks. Furthermore, even its co-

simulation can be distributed across different simulators hosted on different

computers or networks. It is important to understand the different topologies

and mechanisms of a distributed system to deeply understand the impact of the

coordination on co-simulation performance. A possible definition of a distributed

system was given by [160] "A distributed system is a collection of independent
computers that appears to its users as a single coherent system". In a distributed co-

simulation, several computers or, to be more precise, Simulation Unit, collaborate
to achieve a consistent simulation. In co-simulation context, some approaches

proposed to distribute the execution of the co-simulation across a network [41,

106, 119, 161, 162]. We analyzed the approaches based on the three main standards

and formalism for co-simulation: FMI, HLA, and DEVS.

An important aspect of a distributed system is its organization. In this thesis, we

used the definition provided by [163] to review approaches by the architecture

they are using: centralized, decentralized, and distributed.

Centralized architecture Traditionally, in a centralized architecture, nodes

are organized using a client-server topology (see Figure 3.22), where the central

node, called server, stores data and serves the connected nodes, called clients. In
a co-simulation, the role of the server is played by the simulation unit which

replies to the requests of the central coordinator or Master Algorithm, which plays

the role of the client. The connection between the server and clients represents

the communication between the coordinator and simulation units.

Maestro [119] is an FMI-based framework that supports distributed co-simulation

using a RESTful web service API, written using a combination of Java, Scala,

and C. It was developed in the context of the INTO-CPS project
¶
. Maestro

implements a Jacobi-based iteration Master Algorithm, called Co-simulation
Orchestration Engine (COE), to simulate the overall system [119], exploiting its

property to execute continuous-time models in parallel. The co-simulation is

controlled by the VCS and it is in charge to compute the next step size for the

system under co-simulation. In case one of the FMUs discards the proposed

step size �, then it must return the amount of the proposed step that was able

to execute. The VSC then rolls back the other FMUs according to the retrieved

value. The synchronization between CT-based FMUs and DE-based FMUs is

carried out by exploiting the FMI API extension getMaxStepSize, proposed

by [9], to get the largest step size that the SU can perform at that given point

in time. However, this approach still requires rollback capabilities for certain

SUs as they need to execute themselves to know their next possible step size. If

a causally connected FMU requires a smaller step size, then the FMU needs to

rollback its execution. Moreover, the required FMI extension is not part of the

FMI Standard [4], delegating its development into the FMU.

Coral [41] is an FMI-based co-simulation software developed by the ViProMa

project, developed in C++. It implements a centralized client-server architecture.

The main element of the infrastructure is the slave provider, which runs on the

machine along with the FMU handling its loading, execution, and exchanging

data with the master. The masterwill then carry on the execution relying on the

Coral software to communicate with the FMUs. The communication layer is

¶ https://into-cps.org/

https://into-cps.org/

3 State of the Art 53

Figure 3.23: Decentralized network.

implemented using the ∅MQ middleware. The current version does not support

any mechanism to support DE-based FMU co-simulation. The authors developed

Coral because of the lack of solutions that meet their requirements: a model-

driven framework, easy-to-use and that provide support for themain standards in

the industry. These requirements were also addressed by our work by providing

an open-source implementation that meets the requested requirement.

Differently from the previous approaches, the FMU-Proxy [161] provides an

infrastructure to execute remote FMUs using the Remote Procedure Calls (RPC)

paradigm. The RPCs are implemented by a proxy-server that wraps the FMU and

exposes an FMI-CS API. The proxy-client controls the co-simulation by calling

the remote procedures over HTTP and encoding messages with JSON schema.

It allows defining an FMI Master Algorithm by using languages that support

RPC. This approach results in a strictly centralized architecture where the RPC

must be up-to-date with the underlying FMI-based SU and it does not support

DE-based SU co-simulation.

Another communication middleware is the Distributed Co-Simulation Protocol

(DCP)
‖
developed in the context of ACOSAR project

∗∗
. It proposes a standard to

distribute models of different platforms, focusing on the integration of real-time

and non-real-time systems. It is composed of three main elements: a data model,

a Finite State Machine, and the communication protocol. The communication

protocol supports high-level protocols such as TCP, UDP, CAN, Bluetooth, or

USB. Since it does not allow the definition of an actual communication protocol

that can be implemented by a Master Algorithm, its use is dedicated to defining

high-level interactions between real-time and non-real-time systems. The only

open source implementation is DCPLib ††
, implemented as a C++ library.

A centralized architecture allows to quickly implement co-simulation solutions.

Several libraries and frameworks ease the setup, configuration, and execution of

networked co-simulation relying on standards, such as FMI [4]. The two main

drawbacks of a centralized approach are scalability and overall performance. The

central node that acts as the coordinator can easily become the bottleneck due to

the high number ofmessages exchangedwith the nodes that host simulation units.

Moreover, the FMI-based approaches may suffer the high number of messages

exchanged on the network, as previously discussed in Section 3.1.3.

Decentralized architecture The centralized architecture shows its limitation

using a single central node causing a bottleneck for the communication. A

possible solution is to have multiple central nodes that handle a sub-network: the

load will be then distributed across the multiple servers, allowing to potentially

reduce the total load on each server (see Figure 3.23).

DACCOSIM (Distributed Architecture for Controlled CO-SIMulation) [73] is an

FMI-based co-simulation framework based on a decentralized architecture. The

interaction with the FMU is handled by the JavaFMI library [164], which provides

a set of tools to work with the FMI Standard. The DACCOSIM NG version [162] is

based on the same concepts and architecture as the first version [73]. As shown in

Figure 3.24, the co-simulation is divided into multiple computational nodes. Each

node has a local Master Algorithm that handles the co-simulation of the FMUs on

its node. A global Master Algorithm is then in charge to synchronize the overall

co-simulation among the local Master Algorithms. The use of a hierarchical

‖ https://dcp-standard.org/
∗∗ http://www.acosar.eu/
††

Last check in November 14, 2020 on https://dcp-standard.org/tools/

https://dcp-standard.org/
http://www.acosar.eu/
https://dcp-standard.org/tools/

3 State of the Art 54

Figure 3.24: Overview of the distributed

architecture provided by DACCOSIM.

Figure 3.25: Distributed network.

approach aims to reduce the simulation time overhead due to the communication

between two FMUs (that could be assigned on two different nodes). If two ormore

FMUs are closely coupled, they may require a high number of communication

points to exchange data. To reduce the number of exchanges between two different

computational nodes, DACCOSIM distributes FMUs according to their network

use. Daccosim NG includes a DSL [162] to design the co-simulation topology

by defining the relationships between the exposed inputs and outputs of the

FMUs, and to configure the overall co-simulation (as shown in Listing 3.3). Based

on this information, DACCOSIM distributes the FMUs, keeping the FMUs that

communicate with a higher rate on the same node, as shown in Figure 3.24. The

expressiveness of the connection specification is very limited: it is possible to

define only the topology and the sample rate for each pair of FMUs.

1 FMU fmu_A "fmus/A.fmu"

2 Output fmu_A x2 Real

3 Input fmu_A x1 Real

4 FMU fmu_D "fmu/D.fmu"

5 Output fmu_D x1 Real

6 Input fmu_D x2 Real

7 Connection fmu_A.x2 fmu_D.x2

8 Connection fmu_D.x1 fmu_A.x1

9 CoInit 10 1.0E-6

10 ConstantStepper 0.5

11 Simulation 0.0 100.0

Listing 3.3: DACCOSIMDSL specificationThe decentralized architecture improves the overall performance by distributing

strongly coupled nodes closer. However, the performance may be inconsistent

due tomisconfiguration of the system or not properly optimized. For instance, the

specification of the topology of the system does not take into account DE-based

communications: the number of times an event is triggered is known only at

runtime and cannot be always computed at static time.

Distributedarchitectures Centralizedanddecentralizedarchitecturespresent

two main disadvantages due to central nodes: throughput bottlenecks and single-

point-of-failure. The central node is the central point of exchange of data and

may suffer poor performance when heavily used by the rest of the nodes to

communicate. Moreover, if the central node (or nodes) fails, the whole execution

fails as well. The idea behind a distributed architecture is to avoid bottlenecks by

eliminating any single-point-of-failure (i. e. central nodes). A node communicates

directly with the interested node(s), without relying on a central node to exchange

data with the others.

DE-based co-simulation approaches such as HLA [71] standard proposed a

native distributed architecture. However, the HLA standard does not provide

any implementation of the Runtime Infrastructure, which must provide services

to support the coordination of federate operations and data exchange. Several

3 State of the Art 55

Figure 3.26: Overview of a MECSYCO

co-simulation distributed system. Picture

from [103].

works proposed their own implementations, supporting different languages and

standard versions.

To the best of our knowledge, there is no FMI-based co-simulation approach that

implements a distributed architecture. However, MECSYCO [106] implements

a distributed architecture as a discrete-event framework which supports also

FMI [103].

MECSYCO [106] is a DEVS wrapping framework for the multi-paradigm co-

simulation of a complex system. MECSYCO is based on the AA4MM (Agents

& Artifacts for Multi-Modeling) paradigm [165] to represent a heterogeneous

co-simulation as a multi-agent system. In this context, the Simulation Unit is

embedded into an agent. The data exchanges between agents correspond to the

data exchange between executable models. Then, the dynamics of interactions

among agents correspond to the actual co-simulation of the system. The current

implementation is implemented in Java and C++
‡‡
. The messages are in the

JSON format, in particular, they rely on the OpenSplice implementation of the

OMG standard DDS (Data Distribution Service). To receive and send data, a

coupling artifact relies on two components called reader and writer, as illustrated
in Figure 3.26. Given the implementation using DDS, which uses a publish-

subscriber pattern, the writer component plays the role of a publisher while the

reader component acts as a subscriber. Each component defines a specific DDS

topic on which to publish or subscribe for messages.

The parallel co-simulation is based on Chandy-Misra-Bryant (CMB) master

algorithm [109, 110] that guarantees deadlock-free and ensures the causality

constraint. Differently from the two architecture described before, in a distributed

architecture each node implements itself the algorithm that we previously called

master algorithm. It has a strong impact on the coordination of the overall system

because, in absence of a single node, that plays the role of the master algorithm

that orchestrates the co-simulation and where nodes are seen as passive entities,

the "master algorithm" emerges from the interactions between nodes.

The main advantage of this architecture is the distribution of the co-simulation

algorithm across each node (or agent). It overcomes the limitations of centralized

and decentralized approaches removing the bottleneck represented by the central

coordinator. Consequently, the communication load is usually distributed across

links. However, some downsides should be taken into consideration, such as

the distribution of the nodes is a key element for overall performance (e.g.
strongly connected simulation units must be located as close as possible), and

the implementation can be hard and difficult to deploy and maintain.

‡‡ http://mecsyco.com

http://mecsyco.com

3 State of the Art 56

Conclusion In this section, we discuss the three main architectures use to

distribute a co-simulation across a network: centralized, decentralized, and

distributed. A centralized architecture has the main benefit to be simple to

develop and easy to understand the communication between the central node

and the other nodes. On one hand, associated with the FMI standard to perform

co-simulation, this architecture is well adapted to the development of master

algorithms based on the Time-trigger mechanism used in accordance with FMI

compatible simulation units. On the other hand, the main limitation regards the

intensive use of the central node due to the transfer of data among nodes that

must take place through the central node. A decentralized approach avoids the

intensive use of the central node, by grouping strong coupled nodes, and using a

hierarchical topology of master algorithms, optimizes the overall co-simulation

performance. This architecture still has a central, event if decentralized in some

parts, master algorithm. A distributed approach goes beyond a central master

algorithm, by delegating the synchronization and data exchange to the nodes,

and optimizes the communication between the various SUs by allowing a direct

connection between two nodes.

In this work, we want to take advantage of the advantages of a distributed system,

both in terms of decentralization of the master algorithm and optimization of

the overall communication among nodes. Since a distributed system presents

some challenges for its development and its configuration, in our proposition we

present a framework capable of automatically generating the corresponding run-

time infrastructure that actually runs the co-simulation. Moreover, the distributed

master algorithm idea is improved in the proposed algorithm by the definition

of scenario-specific coordination constraint (i. e. coordination model) between

two or more simulation units in order to optimize the data exchange, and by

introducing an extension to the concept of events capable to handle simulation

unit with different semantics in addition to Discrete-Event or Continuous-Time

Simulation Units.

In the next section, we conclude the state-of-the-art and discuss the three research

problems that we address in this thesis.

3 State of the Art 57

3.5 Conclusion

In this section, we introduce the three research questions based on the limitations

found in the literature. In particular, we propose for each section presented in this

chapter a research question that addresses the problems highlighted before.

3.5.1 Correctness of Co-simulations

The major limitation of the current state-of-the-art approaches is that we do not

have enough information on the simulation unit. It makes the specification of

correct coordination difficult to achieve. As introduced in [166], in order to define

correct coordination, the simulation unit needs to exhibit its capabilities and the

usage of its input and output ports. For instance, using the FMI Standard, an FMU

does not expose all the required capabilities to be correctly coordinated but the

MA can ensure some capabilities needed to perform a correct co-simulation.

In this work, we consider a coordination algorithm is correct if it does not introduce any
delays or loss of information while interacting with the simulation units. Consequently,
delays and information loss that appear when using a time-triggered API on

a piece-wise constant data are considered incorrect (see Figure 3.27). Three

important things must be noticed at this point. First, sampling a piece-wise

constant value can make sense and does not necessarily introduce a major

problem; however, this should be done on purpose and not be the result of an

inappropriate API. Second, there exists in many API (e.g., the FMI standard [4])

the possibility to avoid such delay, typically by roll-backing the simulation to

a previous state and trying to locate the actual value change. This can be done

only if the simulation can actually be rolled-backed; also this is costly in terms of

simulation-time. Finally, third, it is worth noticing that the problem is broader

than the simple illustrative case. As illustrated in [17], the coordination algorithm

can have an impact on the correctness of the system.

The core of the problem was identified in several papers: it is not appropriate

for any simulation unit to communicate only through a time-triggered or event-

triggered API. In the literature, some approaches have proposed to extend some

existing APIs to fix a particular problem. This was for instance the case in [18]

where they proposed to add a new parameter to the FMI time-triggered doStep(Δt)
function. The new parameter is =4GC�E4=C)8<4, a placeholder to store the time

at which unpredictable events occurred. [11] went further by proposing to extend

the FMI API with new functions that simulate until input and output ports are

respectively ready to be read or just written. Finally, the new features of FMI3.0

for hybrid co-simulation tries to aggregate such propositions (see chapter 5

Get and Set FMU data

Coordination
communication

points

t

t

Internal evolution
of a piece-wise
constant data

Information
lost

Delay due to time-triggered API

doStep(Δt)

Figure 3.27: Temporal inaccuracy and de-

lays of a TT co-simulation coordination

with a DE SU.

3 State of the Art 58

of FMI3.0 development version https://fmi-standard.org/docs/3.0-dev/

#fmi-for-hybrid-co-simulation).

However, in all these related works, the problem is not handled in its generality

and they make specific cases of something that should be straightforward. In

order to speak correctly with a simulation unit, you should be aware of its

behavioral semantics and adapt the way to realize the doStep accordingly.

3.5.2 Research Problems

The collaborative simulation focuses on the orchestration among different simu-

lation units that represent different parts of the same system, in order to better

understand the emerging behavior of the system. A simulation unit is a, usually

black box, executable entity, which may for instance encapsulate a model and its

solver, a binary executable process, or a proxy to a hardware device. The orches-

tration is of prime importance because it defines the instant when a simulation

unit exchanges data with other simulation units, i. e. when it synchronizes its

internal time in order to produce or consume data at the right timing.

Consequently, several orchestrations (mainly based on the FMI Standard) were

proposed. A majority of them are variants of well-known Jacobi or Gauss-Seidel

methods and dedicated to (continuous) system of equations [6, 7, 9, 15, 90–92].

All the proposed algorithms implement time-triggered coordination that does

not correctly support the integration of heterogeneous simulation units as found

in Cyber-Physical Systems. Typically, CPS co-simulation also contains Cyber
simulation units which are not based on continuous-time models but rather

on discrete-time/ discrete event models like for instance models specified in

a Hardware Description Languages to describe digital hardware, or models

specified in General-Purpose Languages to describe software. These simulation

units usually embed so-called piece-wise constant data where sampling creates

bias. For instance, Figure 3.27 shows that time-triggered sampling can create

either information loss or delays. As shown in [11, 17, 18, 72, 120], such bias

may invalidate the results of the co-simulation. Consequently, we consider a

coordination as correct when not timing bias like the ones of Figure 3.27 are

introduced.

Research Question 1 What coordination algorithm can be used to study emerging
behaviors of a heterogeneous CPS without introducing timing bias?

The problem in Figure 3.27 is not really related to the sample rate but rather to

an inappropriate communication schema between the simulation unit and the

coordination. One can increase the sample rate but it decreases the performances

and reduces the delays without removing them. Also, when the possibility is

offered by the co-simulation framework, one can roll-back the simulation units

to a previously saved state and try to locate when the value actually changed;

this is, however, (when available) a costly procedure that decreases overall

performances.

The main problem comes from the black-box nature of simulation units, which

does not allow to determine the correct communication schema between a

simulation unit and the coordination. To thwart such problem, several works on

component-based architecture description languages and coordination languages

proposed to exhibit in an interface partial information from the (black box)

components [21, 22, 167]. For instance, in the context of event-based systems

https://fmi-standard.org/docs/3.0-dev/#fmi-for-hybrid-co-simulation
https://fmi-standard.org/docs/3.0-dev/#fmi-for-hybrid-co-simulation

3 State of the Art 59

[131] relies on an interface for coordination, composed by the set of acceptable

events, to define the synchronization relationships among components. Such

interface gives enough information on how to coordinate the component without

disclosing the internalmodel, i. e.without problematic IP violations. In the context

of CPS, we addressed in this thesis how to exhibit, in a coordination-specific

interface, an abstraction of the simulation unit behavioral semantics which is

suitable to define an appropriate communication between the simulation unit

and the coordination.

Research Question 2 What is the abstraction of the behavioral semantics of simulation
units which is sufficient to specify an appropriate communication schema between different
simulation units without disclosing their intellectual properties?

Then, the exposed behavioral semantics and syntax can be exploited to define a

coordination algorithm. Even though coordination languages, such as [22, 76, 136],

proposed sophisticated techniques to define correct and efficient coordination

among software components, their focus on discrete-event coordination makes

the approaches unsuitable to the coordination of CPS simulation units.

Additionally, as illustrated in [6, 12, 168] and by the glue proposed in [76,

131, 136], defining an appropriate communication schema is specific to the

interaction between two simulation units and can not be inferred only from

the formalism(s) initially used to specify the two simulation units. It implies

that a dedicated interaction model must be provided for each set of coupled

simulation units. Finally, in order to simplify the co-simulation process, the

definition of a coordination model that takes advantage of the information

defined on the simulation units should be amenable to the automatic generation

of the co-simulation execution.

Research Question 3 What language constructions are required to define a correct
coordination model between coupled simulation units, so that it can automatically result
in a distributed co-simulation?

The next Chapter addresses these three research questions and describes our

proposition. In section 4.2, we address the research question 2 by proposing

a Model Coordination Interface that exposes a partial view of the syntax and

internal semantics of the simulation unit and reduces their expressiveness for

coordination purpose. In section 4.3, we address the research question 3 by

proposing a Domain Specific Language that exploits the information defined on

the interface to specify a coordination model specification tailored to the exposed

syntax and semantics of the simulation units. Finally, in section 4.4, we address

the research question 1 by giving a distributed coordination algorithm used

for the actual co-simulation. The algorithm is parameterized by the previously

definedModel Coordination Interfaces andModel Coordination Specification.

Proposition 4

4.1 Introduction 60

4.2 Model Coordination Interface . 63

Port 63

Data nature 64

Temporal references 66

Simulation Unit Properties . . . 67

Implementation 67

4.3 Model Coordination Specifica-

tion 72

Interaction 72

Triggering Condition 74

Synchronization Constraints . . 77

Implementation 77

4.4 Coordination Algorithm 81

Semantics-aware API 81

Coordination Algorithm 84

Implementation 87

4.5 Conclusion 98

4.1 Introduction

In this thesis, we want to take into consideration the three aspects previously

identified and ease the writing of correct coordinators based on the semantic

properties of simulation units. To remind the reader, it appears that:

1. the writing of the coordinator is more and more complex because it must

take into account the characteristics of the data it conveys;

2. the characteristics of the simulation units, the behavioral semantics of

the used languages, and their implementation by a solver are not always

accessible;

3. the topology between the different interconnected simulation units is

usually not exploited.

Considering all of these aspects are often neglected but it has been shown

to condition the correctness of the co-simulation. Inspired by works on the

Architecture Description Languages, discussed in subsection 3.2.1, Coordination

Languages, discussed in subsection 3.2.2 and heterogeneous frameworks [23–

26], we propose to define a Model Coordination Interface that exhibits enough

information to ensure that the interaction between different simulation units can

be correctly specified. We also propose a structured dedicated language to specify

the different interactions between the simulation units. From such description,

it is possible to automatically generate an appropriate coordinator (e.g.Master

Algorithm in FMI [4]) and its underlying co-simulation infrastructure.

The characteristics of each simulation unit are key elements to define the inter-

actions with the other simulation units. A possible solution is to exhibit them

through an interface tailored to the semantics of the underlying model. In con-

trast with the white boxModel Coordination Interface defined in frameworks like

Gemoc
∗
, this proposition exposes only a partial view of the syntax and semantics

of the simulation unit. The interface is tailored specifically to share only the

elements necessary to coordinate the execution and communication among the

simulation units. The goal is to help to protect the Intellectual Property contained

in the simulation unit. We proposed to provide a higher abstraction level about

the semantics to ease the reasoning. We divided the interface into two main

elements:

I Ports defined the exposed variables of the simulation unit and their

attributes such as name, type, direction, and data-nature;

I Temporal reference used by the model representing which temporal refer-

ential the model is using. In the context of heterogeneous systems, each

model can be simulated using a different temporal referential e.g. time,

angle, or distance. For example, in a fuel engine, the camshaft angle is

used to define when to open/close valves or to actuate the fuel pumps.

The execution semantics for this model is not based on time but on the

∗
http://gemoc.org/

4 Proposition 61

Figure 4.1: Overview of the proposition.

angle. The actions depend on the movement of the camshaft and not on

the physical time;

I Set of simulation unit properties denoting SU-wide behaviors (i. e. rollback
capabilities or saved states which allow restoring a previous state if

necessary). On one hand, these properties enable the generation of a more

sophisticated that takes into account some additional properties of the

simulation unit. On the other hand, we do not yet have exploited these

properties in the current version of our implementation.

The most important element of the interface is represented by the data-nature. It

characterizes the value of the port according to its behavior during the execution of

the model. Thus, different natures have different behaviors during the execution

and then the coordination needs to take them into account. By using such

information, the designer can decide the way to coordinate different data. For

instance, the way to coordinate transient data (e.g. ported by an event) is handled

differently than the way to coordinate continuous data (that may be sampled

periodically). Other information is added to the data according to their nature.

For instance for piecewise-continuous input data, an annotation is added to specify

if internally, the executable model is using interpolation or extrapolation (like

explained in [12]). Another example of such annotations are events associated to

piecewise-constant data, like for instance the D?30C4 event represents the instant at
which a data is assigned or the A403H)>'403 event represents the instant before

the data is actually read
†
. Based on the primitive ones, e.g. Double, Integer, it

will be possible to extend the interface allowing the definition of new complex

data types, e.g. Electric Current, Acceleration.

The resulting interface provides enough information to ensure that a system

integrator has the knowledge that is required to correctly coordinate the different

executable models, as studied in [27]. Simulation units enclose as black-boxes

different models that conform to modeling languages with different syntaxes

and semantics. To explicit the semantics without opening the black-box, we need

to abstract it as a property on the interface. Based on the abstracted semantics,

†
This is directly inspired from [11, 158]

4 Proposition 62

the system integrator must relate the different semantics of the simulation units

to determine how to integrate them. We introduce a specification to express the

relations between simulation units as coordination models.

The Coordination Model Specification explicitly defines the interactions and

constraints between different Coordination Interfaces. It is composed of a set of

Connectors. Each connector is in charge of defining when and how one or more

data are conveyed from a model to another. In order to define interactions, we

structured a connector through three different elements:

I Interaction specifies how data are actually exchanged between ports and

which transformation should take place here i. e. unit alignment between

Meter and Feet;

I Triggering Condition defines the instant at which the interaction must be

realized. The instant can be expressed as a periodic condition (e.g. every
5ms) or as an aperiodic condition (e.g. event, internal variable usage [11]);

I Timing Constraint specifies a relation between the temporal references of

the models.

To validate our proposals, we have developed an Integrated Development

Environment (IDE) to support the specification of Model Coordination Interfaces

(MCI) andModelCoordination Specifications (MCS). For this reason,weproposed

two Domain-Specific Languages (DSL) called MCILang and MCL to define the

MCI and MCS respectively. We provided a formal syntax, both abstract and

concrete, using Ecore and Xtext, respectively. We then provided a textual and

visual environment with few facilities such as auto-completion, connection

helpers, and an FMI 2.0 compatible importer. Based on these DSLs, we provide

an automatic generation process to create a dedicated coordinator based on the

specified system. In particular, we developed a framework capable of coordinating

several distributed entities without the need for a centralized coordinator. At

runtime, this framework encapsulates the SU, according to its MCI, with a

dedicated wrapper tailored to its semantics. The wrapper contains a semantics

parametrized API to handle the execution of the model and a communication

module to interact with the rest of the system.

We discuss our proposition starting from the introduction of the model coordina-

tion interface in section 4.2, we illustrate our model coordination specification in

section 4.3, and then, finally, in Section 4.4, we introduce the proposed distributed

coordination algorithm and its automatic generation.

4 Proposition 63

4.2 Model Coordination Interface

In a co-simulation environment, we can identify two main execution phases: in

the first one, the defined coordination model is applied and determines which

model has to execute; the second one, the model executes according to its internal

semantics. In the last phase, we can identify the need to interface with the

model to get information on its internal semantics, on the exposed variables that

the environment has access to, and on the required communication point, at

which data propagates between the model and the environment. The goal of the

proposed interface is to answer the research question 2:

What is the abstraction of the behavioral semantics of simulation units
that is sufficient to specify an appropriate communication schema between
different simulation units without disclosing their intellectual properties?

We were inspired by existing approaches, such as the FMI standard [4] and ADL

languages, as we discussed in subsection 3.2.1, for structural information (e.g.
exposed variables and their types). We then adapted the data nature concepts
proposed by [120] to add semantics to each variable that better fits the coordination

purpose of the API. The semantics reflect the inner semantics of the simulation

unit. The proposed Model Coordination Interface (MCI) consists in a set of ports
and their direction (input or output), a temporal reference and a set of simulator
capabilities. It is interesting to notice that each port represents a point of interaction
between the internal variable of the model and the external environment i. e.
the coordination algorithm. A port is then categorized using a data-nature that

defines different ways to exchange data. TheModel Coordination Interface allows

defining in the interface the correct way to handle the data. For instance, if a

piecewise-constant port is handled using time-trigger coordination, two errors can

occur: the data are delayed in time according to the size of the step, or if the

value changes during the step size, the change is not registered and the updated

value is lost. Exploiting the data nature of the port, we can then define the more

appropriate interaction semantics and give the expected interaction.

4.2.1 Port

Inspired by the existing interfaces and components, the set of Ports is the

main element of the Model Coordination Interface. It provides a well-defined

and formal abstraction to communicate with the underlying SU. A port is an

abstraction of the variable value and its properties such as its identifier, direction,

and type, but also co-simulation properties such as initial value or the SU internal

variable name.

The direction property can assume the values Input e.g. the SU can read the

value assigned but it is not allowed to write to it, or Output e.g. the SU is allowed

to make assignments (writings) to it but it is not allowed to read from it. A

bi-directional port (i. e. assignments and readings are allowed to such a port

simultaneously) is not supported since the current co-simulation tools do not

support it at runtime. For instance, it is not possible to define it using VHDL [169]

or Modelica [170].

By looking at the various existing approaches and by developing various systems,

we realized that the information which is important from the coordination point

of view depends on how andwhen the inputs and outputs are internally used (i. e.
read and/or write) by the simulation unit. Such information is strongly linked to

the data nature of the simulation units inputs/outputs. The different natures of

4 Proposition 64

Figure 4.2: Example for the datanature

piecewise-continuous: a Bouncing Ball tra-

jectory.

the data found in CPS have been introduced in several approaches but are nicely

summed up in [8, 120], illustrated in subsection 3.3.2. We then introduce the

notion of data nature as a property of the port and we adapted such specification

ending up with the data nature defined in the next subsection. In particular, the

data natures proposed by [120] were used to define an associated event at each

discontinuity of the signal and which kind of signal is compatible with their

proposition. Otherwise, we propose the data nature as port property to reflect

the inner semantics of the signal and not only if it can support an event-based

API. Exposing the data nature of a variable enables it to be exploitable outside

the internal model, in particular for coordination purposes. We illustrate how is

possible to exploit it in the next subsection.

4.2.2 Data nature

By looking at the various existing approaches and by realizing various systems,

we realized that the information which is important from the coordination point

of view depends on how andwhen the inputs and outputs are internally used (i. e.
read and/or write) by the simulation unit. Such information is strongly linked to

the data nature of the simulation units inputs/outputs. The different natures of

the data found in CPS have been introduced in several approaches but are nicely

summed up in [8, 120]. We adapted such specifications and ended up with the

data nature defined later.

The data nature defines how data is internally used in simulation units, inde-

pendently of the internal model itself. It provides partial information about the

behavioral semantics of the simulation units with respect to a specific input or

output.

Before explaining how we used them, a description of the different data natures

supported by the proposed MCI is provided:

Continuous A variable is defined as continuous if its value is present for all
C ∈), continuous and differentiable at any points of its range of definition e.g.
the value of the physical temperature of a room. The continuous data nature

is usually associated with nonlinear systems’ model e.g. Ordinary Differential

Equation. In case the data nature is continuous, then there is no real coordination

point in time of interest. What is important is to sample is data fast enough to

avoid losing quick variation (i. e. Nyquist-Shannon law should actually hold).

Piecewise-continuous A variable is defined as piecewise-continuous if its

value is present at each instant but it is not continuous and not differentiable

at some points. For instance, two classical sources of discontinuity are a multi-

mode model [171] and internal discontinuities due to the differential equation

system e.g. Bouncing ball. In addition to the previous case, if the data nature is

piecewise-continuous, then it may be important to be noticed of any discontinuity

in the signal.

For instance, a representative example is a Bouncing Ball (Figure 4.2). Every time

the ball touches the floor, a discontinuity appears: from a coordination point

of view, this information can be then used by the system integrator to define a

coordination model that takes into account only the discontinuities occurring

without asking the most updated value all over the parabolic curve. However,

the coordination model depends on the scenario we want to define. For instance,

4 Proposition 65

Figure 4.3: Example of a piecewise-constant
generator.

in the case the simulation unit representing the behavior of the bouncing ball

must be integrated with a second SU that reacts every time the ball reaches

its maximum height at each bound, then the coordination model must change

accordingly. The system integrator must then sample the signal with the most

appropriate sample rate to detect the maximum height, with a certain degree of

inaccuracy.

Piecewise-constant A variable is defined as piecewise-constant if its value is
present at each instant but it presents discontinuities and the value is constant

between two discontinuities.

Associated with the direction of the data, the data-nature as defined above gives

information on important points in time at which coordination should be done.

Typically, if the output of a simulation unit is declared as piecewise-constant, then
the coordinationmodel is interested in the points in time atwhich data arewritten;

so the corresponding value can be updated in the connected simulation unit

input port(s). On the other direction, if it is declared as an input, the coordination

model takes into account the points in time at which data are read. The last case

is quite interesting because it enables the coordination of the I/O operations of a

simulation unit with the rest of the system, according to its internal semantics.

This type of data-nature enables to define on the port specials events that represent

interesting coordination instants on which the model can synchronize its execution

to exchange data from or to the external [11, 158].

Algorithm 3 Piecewise-constant generator example.

1: while CAD4 do
2: if =>=�4C4A<8=8BC82�>>() then
3: var 8=?DC = 8;
4: if =>=�4C4A<8=8BC82�0A(8=?DC) then
5: > = 5 (8=?DC);
6: end if

7: end if

8: end while

For example, we take a simulation unit as represented in Figure 4.3 that im-

plements the program implemented in Listing 3. The program reads the in-

put 8 according to the condition represented by a non-deterministic function

=>=�4C4A<8=8BC82�>>. Once it reads the value, it then computes the result

only if the input 8 reaches an unknown threshold. If the threshold is reached,

the program can then compute the result that depends on 8 and write on its

output the value. Once computed, the result of the computation is written to

its output variable >. The program then interacts with the other SU by reading

or writing from/to the exposed variables 8 and > declared on the interface. The

piecewise-constant data-nature is given by the internal and external assignment

to these variables. In particular, at line 3, the program reads the input 8 and it

assigns its value to the internal variable 8=?DC. The knowledge of this particular

behavior, related to the data-nature, exposes a possible coordination model that

would not be possible without this information. In this case, the piecewise-constant
data-nature gives the possibility to coordinate the SU by relying on the semantics

of the assignment: the 8 value must be present at the time when it is evaluated for

the assignment. In the complementary case for the output port, in the line 5, the

result of the function 5 is assigned to the variable >, defined as an output port.

The resulting data-nature will be then defined by the internal assignment: the

4 Proposition 66

value is present at each instant but the variable > presents discontinuities caused

by the assignment.

Transient A variable is defined as transient if its value is present only at a

specific point in time and absent at other points in time. Transient data are usually

associated with the notion of event or signal as, for instance, in synchronous

languages. Furthermore, the data-nature of a port is defined as transientwhen

its value exists only for an instant or it is associated with an internal SU event.

In this case, the interesting coordination points in time are the instants when the

data is present. For example, the Figure 4.4 shows a simple Timed Finite State

Machine (TFSM) reading the variable G every second and it triggers the event 41

after 5 seconds when it reads a value over a predefined threshold.

� �

8 5 G > 20
◦

0 5 C4A 5B | B4=3(41)

F08C 1B | A403(G)
Figure 4.4: Simple Timed Finite State

Machine (TFSM) representing a sensor

that triggers an event when a predefined

threshold is reached.

All in one, the data nature gives hints to the coordination of what is the event

of interest on the data. Of course one can decide knowingly to sample piecewise-
constant data, aware of potential problems as illustrated in subsection 3.1.3.

4.2.3 Temporal references

Due to the heterogeneity of formalism participating in the system, the time

representation can be different across the simulation units. In a Cyber-Physical

System, time may have different representations, depending on the semantics

of the simulation unit and its formalism. Even if physical time (with or without

relativity effects) is mainly used to model CPS but time can also be logical or user-
defined (e.g. semantics driven by the distance or angle), discretized, superdense

or even from a different magnitude like if we consider for instance the angle of

a camshaft [172]. Allowing the coordination model to align different temporal

reference is important to ensure the correctness of the simulation. For example,

the Global Positioning System (GPS) uses to keep physical time synchronized

between the satellite and the receiver device. Due to the relativity effects, the

satellite embedded atomic clock experiences time slowdown. So, the clocks

embedded by each satellite must tick about 38 microseconds faster than those on

earth. If this effect is not taken into account, GPS computation would lose 10km

of accuracy each day [173].

The time can also be multiform, where different times progress in a non-uniform

way and independently from any reference to physical time. Inspired by the

time model of MARTE [174], the model behavioral interface also defines the

temporal reference of the model, i. e. the way time is encoded and the dimension

it refers to (typically the physical time but possibly other dimensions like an angle

or distance). This is particularly useful in case we are managing polychronous

systems [175] (i. e. system whose temporal referential can come from different

dimensions). For example, the angle is used to breathe out exhaust gases and

take in the air for the next cycle. To perform these actions, it is necessary to

open/close valves and actuate the fuel pumps thanks to an actuating mechanism

that is triggered by the movement of the camshaft. The execution semantics for

4 Proposition 67

this model is not based on time but on the angle. The actions depend on the

movement of the camshaft e.g. the angle reached by it.

4.2.4 Simulation Unit Properties

The simulation unit may embed an executable model and its simulator. In the

coordination context, it is useful to expose a set of properties and capabilities of

the underlying simulator. A capability denotes a behavior of the simulation engine

(or simulator) associated with the simulation unit. For instance, [87] identified a

set of requirements to improve the co-simulation based on additional information

on simulators, like for instance the input extrapolation method performed by the

model [176] or the support of rollback mechanism. Such information could then

be used during the generation of the co-simulation runtime.

We tried to identify which capabilities a simulator should support to enable a

correct co-simulation of the model. For instance, the rollback capability allows

to retrieve a previously saved state of the SU and restore it. In co-simulation,

this technique requires the SU to keep a state of its states at different points in

time and to restore it even if not explicitly requested by the external entity that is

controlling the co-simulation (i. e. the coordinator or Master Algorithm).

For instance, the rollback capability can be used to compute scheduling that

takes it into account. However, these properties are not currently exploited by

the implementation of the framework but they represent important extensions

for a future release.

4.2.5 Implementation

AnyModel Coordination Interface has the same structure: providing the minimal

set of elements required to co-simulate the simulation unit. For this reason,

we developed a declarative DSL to formalize the specification of the Model

Coordination Interface using the previously introduced concepts. This DSL is

called Model Coordination Interface Language (MCILang).

In the following paragraphs, we illustrate the abstract syntax and the concrete

syntax of the language, and its implementation as an Eclipse Plug-in to provide

an Integrated Development Environment (IDE) to help its adoption and ease

the definition of the specification thanks to some features such as an FMI model

description importer.

Abstract syntax The abstract syntax of MCILang is defined by using an Ecore

metamodel (see Figure 4.5). A more detailed figure is available in Appendix A.1.

The root element is the Interface. An interface must refer to an executable Sim-

ulation Unit. At this moment, we support two different simulation units: FMI,

exported as an FMU, and Gemoc Executable Unit, exported as a stand-alone

JAR
‡
file. The SUPath supports both types of simulation units and it is used to

define the absolute path of the actual simulation unit. Then, it exposes a partial

view of the semantics and syntax of the SU defining three main parts:

‡
Java ARchive

4 Proposition 68

I Ports: The set of ports contains some information used later to define

the coordination specification. In particular, it exposes the type and the

data-nature of the variable, its temporal reference, and its direction. If any

temporal reference is defined, model temporal reference is used.;

I Model Temporal Reference: The Model Temporal Reference exposes the

temporal reference of the SU, shared to all the variables, and used later

to define the synchronization among the coordinated models. For the

moment, it is a fixed enumeration encoded in the language of the interface

but it would be interesting to allow the definition of different temporal

references by the user at the model level. The temporal reference could

for instance be expressed using MoCCML that allows the semantics

specification of different temporal references [177];

I Simulation Unit Properties: This field is used to define the specificity of

the model, in particular, the properties that can be exploited to define a

dedicated coordination algorithm. It is possible to specify the supported

properties specified in the subsection 4.2.4, such as rollback support.

Figure 4.5: A partial overview of the class

diagram for the MCILang language.

Following the classical definition of port in ADLs, a port is an abstraction of an

exposed variable of the simulation unit. A set of shareable variables of the model

are exposed through the interface enabling access from the external environment.

To interact with the external environment or other models, the model should

expose all the variables that can be modified by the external. Each port contains

a set of attributes and properties. More precisely, a port is a variable that can be

externally read or set, according to its direction.

We defined it as a Port, conforming with the definition given in Section 4.2.1. A

Port is a structured variable or structure representing a variable and its properties.

Properties express a particular behavior or additional information on the port.

The port is composed by:

I Value: associated with the Runtime Data, it represents the current value of

the variable;

I Set of properties: They define one or more properties on the port;

I Direction: It defines the direction of the port if it can be considered as an

input or an output;

I Type: It defines the type of the value e.g. Boolean, Integer;
I Data-nature: It defines the nature of the value e.g. constant, continuous, or

piecewise-constant.

4 Proposition 69

Figure 4.6: Class diagram of the model

properties in the MCILang language.

Figure 4.7: Example of a piecewise-constant
generator.

The IOEvent represents the link between the state of the model (e.g. runtime

data) and the elements of the interface (e.g. port) in order to exploit the internal

semantics for coordination and communication purposes. The provided abstrac-

tion allows accessing the runtime data of the model only at specific points. The

IOEvent can be defined according to the direction and data-nature specified

for the Port. The direction defines which IOEvents can be specified: an IOEvent

Updated if the port direction has the value output, IOEvent ReadyToRead if it has
the value input. The IOEvent Updated means that, during the last step, the value

of the port was updated. The fresh value is now available as the current value of

the port. Therefore, the IOEvent ReadyToRead means that, during the last step,

the internal computation requires reading the value from the Port to execute the

next computational step. The current implementation supports the specification

of IOEvents only in the case the port has a piecewise-constant data-nature.

As defined for the port, it is possible to define the properties of the simulation

unit. A property denotes a specific behavior of the simulation unit and it is not

associated with a specific port. A SU property can be defined as follows:

I Rollback: The simulation unit is able to restore a previously saved state at

specific points in time and restore a previous state if requested;

Making explicit the specification of these properties will help to generate the

dedicated coordinator. According to the specified properties, the coordinator

executes the models in a specific order that permits the exploitation of the

different specified properties. For example, if a model exposes the capability to

perform rollbacks, it is used by the generator to generate a dedicated coordinator

that executes this model before a model that cannot perform rollbacks. In this

way, it is possible to avoid useless rollbacks and increasing accuracy without

decreasing the performance.

Concrete Syntax The concrete syntax ofMCILang is introduced by describing

the MCIs of the running use-case simulation units along with their intended

meaning. In particular, we introduce two MCIs that define the concepts defined

in the abstract syntax. In the first example, we build the MCI for the model

of the Timed Finite State Machine presented in Figure 4.4. The model presents

two ports: an input port G used to retrieve the external temperature and the

output port 4 used to send the event when the threshold is reached. The resulting

abstracted model is then presented in Figure 4.7 and the corresponding MCI is

described in Listing 4.1. In the first port (see line 4), given the continuous nature

of the temperature value, we define it with the continuous data-nature. If any
initial value is needed, it can be specified using the attributes initValuewith the

value encoded as a string. In the output port 4 (see line 11), we define the port as

a transient data-nature due to the internal event. (*%0Cℎ attributes define the

absolute path where the actual simulation unit is hosted.

1 Interface Controller {

2 SUPath "path/to/the/simulation/unit"

3 ports {

4 Port x {

5 direction INPUT

6 nature continuous

7 initValue "0.0"

8 type Real

9 monitored true

10 },

11 Port e {

12 direction OUTPUT

13 nature transient

4 Proposition 70

14 type Real

15 ioevents {

16 Triggered

17 }

18 monitored true

19 plotterColor "Color.GREEN"

20 }

21 }

22 temporalreferences {

23 ModelTemporalReference t {

24 reference time

25 }

26 }

27 }

Listing 4.1: Excerpt of the Controller
interface conforming to the model

illustrated in Figure 4.19.

In addition to the previous MCILang elements, we introduced few elements

more related to the analysis of the co-simulation results. These elements are

taken into account for logging and displaying variables and their runtime values.

In particular, we add:

I monitored: Boolean variable that enables the logging of the value of the

variable. Enabling it will result in the generation of the associated code in

order to log and display the obtained results;

I plotterColor: String variable that defines which color to display for the

associated variable. It is possible to define colors present in the Java class

Color §
or define a new color by using the construct new Color(float r,

float g, float b) provided by the Java class Color.

The resulting configuration will be used to generate the associated source code

that handles the logging to a textual file, one per variable, and a logger that shows

the values at runtime. In Listing 4.1, we use these two attributes to monitor both

ports (producing the corresponding traces during the simulation) and, in the case

of the port 4, we define the color of the trace by specifying its color. The concrete

syntax is supported by the IDE that helps to define the MCI providing some

facilities such as completion and auto-filling in case the underlying simulation

unit is FMI2.0 compatible.

Integrated Development Environment The project MCILang is part of

the Gemoc Studio as a set of Eclipse plugins. The MCILang abstract syntax has

been developed using Ecore and the textual concrete syntax has been developed

using Xtext. It provides some facilities to create and edit the specification.

Some facilities exist to allow easier and faster development of a dedicated

interface for some widely used standards such as FMI Standard [4]. The current

implementation of MCIL allows to specify the path for an FMU (Functional

Mockup Unit) as a property of MCI and retrieve the FMI interface and the

executable model. The importer takes into account the list of exposed variables

and their properties to generate the corresponding representation in MCILang.

The IDE supports the import of the Functional Mockup Unit by automatically

creating the set of exposed variables defined as Input or Output. It creates each

port from a single variable semi-automatically defining some properties: the

unique name, type, direction, and data-nature. In this thesis, the data nature

cannot be inferred automatically due to the black-box approach that prevents

a formal approach to precisely retrieves the underlying semantics for the unit.

§ https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/java/

awt/Color.html

https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/java/awt/Color.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/java/awt/Color.html

4 Proposition 71

Figure 4.8: The MCILang textual editor.

Moreover, hierarchical FMU can contain different executable semantics that is

hidden from an external point of view. Without any knowledge of the simulation

units inside the FMU, the data nature cannot be automatically inferred.

The current implementation of the language and the associated IDE can be found

on the public repository hosted by Inria
¶
at this link: https://gitlab.inria.

fr/glose/model-coordination-language.

In this section, we have illustrated the main concepts of the Model Coordina-

tion Interface, by giving its elements and characteristics. We have then given

implementation as a DSL called MCILang, with which it is possible to expose the

elements required to correctly coordinate the simulation respecting its internal

semantics. Using the data-nature property of the variables, the semantics can

be exposed as a property of each variable without disclosing the Intellectual

Property of the simulation unit.

Once defined the interface for each simulation unit, we need to define how the

different simulation unit interacts: wewill introduce a dedicated language capable

to take advantage of the exposed properties and semantics of the simulation unit

to define a coordination model tailored on its semantics.

¶ https://www.inria.fr

https://gitlab.inria.fr/glose/model-coordination-language
https://gitlab.inria.fr/glose/model-coordination-language
https://www.inria.fr

4 Proposition 72

4.3 Model Coordination Specification

A co-simulation execution requires defining a coordination model in order to

exchange data among the simulations unit and to ensure time synchronization.

To improve the coordination model, we propose to take advantage of the specific

semantics of each simulation unit by relying on a Model Coordination Interface

capable to expose a partial view of the syntax and semantics of the simulation unit.

In particular, we introduce the concept of the data-nature to abstract the internal

semantics without disclosing its internal mechanisms and preserving the IP.

Furthermore, it is possible to exhibit synchronization points using Model Specific

Events called IOEvents for certain data-nature such as the piecewise-constant
data-nature.

To take advantage of the information defined on theModel Coordination Interface,

we propose a specification based on MCI calledModel Coordination Specification
(MCS). The goal of MCS is to enable a semantics-aware coordination model that

we addressed in the research question 3:

What language constructions are required to define a correct coordination
model between coupled simulation units, so that it can automatically result
in a distributed co-simulation?

Its role is to explicitly define which type of interactions must occur among the

simulation units. The coordination model between two simulation units is then

specified as a single element called Connector. All the inter-SU interactions are

possible only by connectors. Consequently, a Model Coordination Specification

contains a set of Connectors, each one defining a particular interaction between

two or more models. In an interaction, at least two SUs must participate to be

considered valid.

A connector is defined based on the semantics and syntactical elements defined

in MCI. More precisely, a connector defines three main concepts: the actual

interaction, defined as a directed-graph topology of the system, the triggering
condition, defined as a boolean expression that defines when the interaction must

be triggered, and the synchronization constraint, defined as a temporal constraint

that must hold before to perform the interaction. The resulting connector is a

tuple defined as follows:

�8 =< � 8 ,)�, (H=2 >

with 8 ∈ ℕ and where �8 is the i-th connector of the Model Coordination

Specification, the � 8 is the set of interactions of the connector �8 that are realized

when the triggering condition)� occurs ensuring the synchronization constraint

(H=2. In thenext subsections,wediscuss these threemain concepts that composed

a connector.

4.3.1 Interaction

A connector defines the interactions between two or more MCIs and their

semantics. It embeds one or more interactions that occur between MCIs. An

Interaction represents the assignment of the value from a source port > to a

destination port 8. The source port > must be an output port while the destination

port 8 must be an input port. As represented in the Figure 4.9, each simulation

4 Proposition 73

(a) (b)

Figure 4.10: Two possible topological

maps: 4.10a shows an allowed topologi-

cal map; 4.10b shows a topology where

multiple ports assign their value to a sin-

gle port. The latter topological map is not

allowed because a destination port must

have only a source port.

Figure 4.9: Simple system with two SUs

and a connector.

exposes a port, (*1 exposes an output port > while the (*2 exposes an input

port 8. The assignment of the value from > to 8 is represented as follows

�1 : > → 8

where �1 is the assignment and→ defines the assignment direction. The graphical

representation for interaction is given by a directed edge that connects two ports

according to their direction.

Defining the interaction using an assignment can represent a limitation for certain

scenarios where a System Engineer may require more expressive language. In the

interaction statement is possible to perform deterministic logical and arithmetical

operations such as unary operation such as negate a value (it does not affect the

current value but only its assignment),

�2 : ¬> → 8

, or using binary operators, such as addition or subtraction of two elements,

�3 : > + 3→ 8

where 3 can be another port or a constant.

At the interaction level, some topological maps are not allowed due to the possible

concurrency of assignments that will not be taken into account by the semantics

of the connector. For instance, we consider the following set of interactions that

textually defines the interactions in Figure 4.10b:

�4 : >1 → 8

�5 : >2 → 8
(4.1)

Due to the possible concurrency between the two interactions, our approach does

not take into account this topology. However, a single output port is allowed to

assign its value to multiple input ports. For instance, as shown in Figure 4.10a,

it is possible to define a system with three SUs where (*1 can act as a sensor,

(*2 can act as a controller monitoring the values of the sensor, and (*3 plots

the current value of the sensor for debugging purpose.

�6 : > → 81

�7 : > → 82
(4.2)

The expressiveness in the interaction statement is reduced at basic operations

to ensure the determinism of the interaction. In fact, interactions are meant to

exchange data without adding any additional semantics to the data exchange.

The semantics will then be added using the other two elements of the connector:

triggering condition and synchronization constraint.

4 Proposition 74

4.3.2 Triggering Condition

Once defined the interactions statement of the connector, we must define its

semantics. We divide it by proposing two elements: a triggering condition and the

synchronization constraint. A Triggering Condition defines a boolean expression

that represents the condition at which the interactions must occur. It is based on

the data-nature of the ports participating in the set of interactions � 8 defined on

the connector

�8 =< � 8 ,)�, (H=2 >

The triggering condition exploits the semantics elements exposed on the MCI.

For instance, if the data involved are all of continuous nature, the triggering

condition should specify a sample rate at which the data exchange occurs. As

another example, if an interaction involves a piecewise-constant output port, the

triggering condition can refer to each update of this port (instead of using a

time-triggered approach). The allowed triggering conditions are aligned with the

expressiveness of predicates defined in [178] and aligned with the data nature

defined in subsection 4.2.2.

In particular, we propose four different triggering conditions: Sample rate, Event,
Updated, and ReadyToRead. We illustrate them in the following paragraphs.

Sample Rate We introduce first a triggering condition inspired by the co-

simulation techniques for Continuous-Time co-simulation based on the notion of

the communication step-size. In particular, we define the triggering condition

using the following statement:

every <sample rate> <temporal reference>

where sample rate defines the size of the communication step and temporal

reference defines which temporal reference the triggering condition is based

on. For instance, in Figure 4.11 we represent two SUs that exchange data using

Figure 4.11: Co-simulation specification

of two SUs based on a connector that de-

fines a sample rate triggering condition.

a connector �1: an output port ?1, that exposes a value with a continuous
data-nature, is connected with an input port ?2, exposing a piecewise-constant
data-nature. On the connector, we have defined as triggering condition a sample

rate with a communication step size of 1 second (1 s). The temporal reference B

refers to the exposed temporal reference on the MCI of (*1. It allows defining a

sample rate based on the internal temporal reference of the SU, enabling the use

of different temporal references exposed by the SUs of the system.

It is possible to exploit this triggering condition in all those scenarios composed

of continuous-time SUs that requires a time-trigger approach to exchange data.

If the scenario requires a coordination model based on the notion of event then it

is possible to define it by using an event triggering condition.

4 Proposition 75

� �

8 5 G > 20
◦

0 5 C4A 5B | B4=3(41)

F08C 1B | A403(G)

Figure 4.13: Timed Finite State Machine

(TFSM) encapsulated in (*1 in Figure 4.12.

Event In case the SU is DE-based and it exposes its IOEvents on its port

(thorough its MCI), it is possible to exploit its event data-nature. It allows defining

a discrete-event connector based on that notion. In this case, the triggering

condition statement has the following structure:

event on <port> occurs

Let us consider as an example, as shown in Figure 4.12, a simulation unit (*1 that

encapsulates a Timed Finite State Machine: it reads a random-generated variable

x and triggers the event 41 is the threshold is reached. Then, the simulation unit

(*2 starts its execution when an event is received on its port ?2. The connector

�2 specifies that when the event 41 occurs during the simulation of (*1, the

associated value is propagated. The interactions rules (not ?2 → ?2) specify

that when the event 41 is triggered than the value on the port ?2 is negated

and assigned to the port itself. The resulting data-nature of the port will be

piecewise-constant due to the change driven by the event.

Figure 4.12: Simple Timed Finite State

Machine (TFSM) representing a sensor

that triggers an event when a predefined

threshold is reached.

Updated The updated triggering condition relies on the exposed IOEvent
provided by the MCI. The event allows catching the change of the value for the

port on which it is defined on. The specification of the triggering condition is

then defined as following:

value on <port> has been Updated

where port is the port that exposes a piecewise-constant data-nature along with the

Updated IOEvent (as specified in subsection 4.2.5).

Let us consider a system (Figure 4.15) composed of a cyber model of a wheel

encoder driver ((*1), producing a digital output ?1. A wheel encoder is a

sensor that allows tracking the number of wheel rotations (see Figure 4.14).

More precisely, in our example, the output of the driver switches from 0 to 1

or conversely each time a 1/36 of revolution of a wheel is done. Signal ?1 is

consumed by another simulation unit ((*2), which computes the actual speed

of the wheel according to the time spent between two successive switches of ?1.

Consequently, E1 is assigned only at specific points in time, depending on the

speed of the wheel. This assignment creates a discontinuity, which is neither a

rare event nor symptomatic of a specific phenomenon like in models of physical

systems.

ReadyToRead Another IOEvent that is possible to defined on a port of theMCI

is the ReadyToRead event: it allows to pause the current execution of the simulation

unit before the reading of the current value of the port and wait for the value at
the current time of the simulation unit. In the model coordination specification,

it is possible to exploit by defining a triggering condition as following:

value on <port> is ReadyToRead

4 Proposition 76

Figure 4.14: Wheel encoder example. The

rotating encoder disk has 36 slots. There-

fore, the wheel has traveled one revolution

every 36 pulses. Taken from [179]

Figure 4.15: Overview of the wheel en-

coder system defined in Figure 4.14 with

the coordination model specification as

the connector �3.

As an example, consider a cyber simulation unit (*1 that senses the environment

(e.g. a room, a CPU) and computes the temperature. Usually, in the actual

implementation of such a system, the environment is sensed periodically. In

Figure 4.16, the cyber simulation unit is represented by the Arduino controller

with its connected sensor. We consider here that the environment that provides

the temperature evolution is modeled by a physical simulation unit (*2 whose

output is read periodically by (*1. In Figure 4.16, the physical simulation unit

is represented by the surrounding environment. In usual time-triggered co-

simulation, the co-simulation period is chosen so that the data obtained by the

physical model is fresh enough when propagated to the cyber model. There are

three drawbacks here. First, the cyber model is called several times to update

its input even if this input is not required to be read internally thus wasting

simulation time. Second, the physical model is called several times to compute

fresh values that are actually not used by the cyber model. Third, there is no

synchronization between the actual reading of the input by the cyber model

and its update by the coordinator. This can lead to a temporal inaccuracy since

the actual reading can occur at the end of a simulation step, i. e.without a fresh
input. In this case, either the designer considers that the freshness of the data is

not important (but that can lead to wrong simulation results!) or the designer

decreases the co-simulation period and consequently decreases the performance.

As shown in the section 3.1.3, increasing the number of communication points

between models and coordinators for better accuracy decreases the overall

performance and therefore we aim at reducing the number of communication

points without reducing accuracy. In themodel coordination specification, we can

Figure 4.16: Temperature sensor example.

The temperature is retrieved from the sen-

sor only at specific point during the exe-

cution of the controller code. The system

is then composed by two logical compo-

nents: the environment with a sensor and

the controller.

4 Proposition 77

take advantage of the ReadyToRead event defining a triggering condition based

on it. Figure 4.17 shows the connector defined on the previous system on which

(*1 exposes a piecewise-constant data-nature along with a ReadyToRead event.

Based on that, the connector specifies that when the simulation unit (*1 requires

to read the value on ?1, the value is retrieved from ?2 at the time required by

(*1: a temporal synchronization will happen if the two simulation units are not

at the same time.

Figure 4.17: Overview of the temperature

sensor system defined in Figure 4.16 with

the coordinationmodel specification as the

connector �4. The environment model is

encapsulated into (*2 while the Arduino

controller model is encapsulated into (*1.

The exact synchronization between two simulation units can be specified by

using the synchronization constraint statement.

4.3.3 Synchronization Constraints

Given the previous definition of a connector

�8 =< � 8 ,)�, (H=2 >

we focus on the (H=2 element of the connector. The Synchronization Constraint

defines the relation between the temporal references in different MCIs. This

relation defineswhen the actual interaction can be done. Typically, such constraint

specifies that the time must be equal when two models exchange some data.

However, on one hand, we want to be more expressive, for instance, to encode

some time relativity effects between different timebases (for instance between

the time on earth and in a satellite) or to support polychronous systems [175],

i. e. system whose temporal referential can come from different dimensions

(e.g. a distance or an angle). For example, the camshaft is used to breathe out

exhaust gases and take in the air for the next cycle. To perform these actions,

it is necessary to open/close valves and actuate the fuel pumps thanks to an

actuating mechanism that is triggered by the movement of the crankshaft. The

execution semantics for this model is not based on time but angle. The actions

depend on the movement of the camshaft and not on the physical time. It is also

possible to express quantities, like interval or duration, which is consistent for

the models to exchange data, without relying on a perfect synchronization.

On the other hand, it is also important to be able to define the exact condition

under which time is considered to be the same in two different models, for

instance, if time is encoded as a Float in one model and as an Integer in the other.

Such constraints, when respected, ensure a consistent temporal state of the two

models, allowing the interaction to occur.

4.3.4 Implementation

Based on the previous definition of the Model Coordination Specification, we

developed a language called Model Coordination Language (MCL). It is a DSL that

allows the definition of a Model Coordination Specification between one or more

models exposing the Model Coordination Interface (written in MCILang). It

4 Proposition 78

allows specifying all the concepts described for coordination according to the

definition given in Section 4.3.

It enables the specifications of conditions and constraints under which data

exchanges have to occur. Inspired by coordination languages like REO [136] and

Wright [135], it defines the coordination model as a set of rich connectors between

ports from the MCI. The main element of MCL is aMCLSpecification that imports

Model Coordination Interfaces and contains a set of Connectors. At least two

Model Coordination Interfaces must be imported in order to define a connector.

This section describes the basic syntax and semantics of these rich connectors,

showing how they are combined to specify the coordination between simulation

units in an unambiguous way.

The current implementation of MCL is an Eclipse plugin in Gemoc Studio, which

integrates several facilities in the context of the Eclipse Modeling Framework

(EMF). Textual and graphical editors are then provided to ease the specification

of the coordination model. Moreover, an integrated automatic process generation

makes ease the development and configuration of the entire system using the

framework Cosim20. The MCL syntax has been developed using the EMF

metamodel facility Ecore, the textual concrete syntax has been developed using

Xtext
‖
, and the visual concrete editor has been developed using Sirius

∗∗
. The

textual and visual editor are synchronized to ease the creation, modification, and

validation of the coordination model.

The resulting implementation is then integrated into the Cosim20 framework.

It allows handling both the MCI specifications written using MCILang and the

MCL specification developed by usingMCL. Furthermore, the automatic runtime

generation process is embedded in the MCL implementation and it allows the

creation of a runtime co-simulation producing the corresponding source code in

Java. Then, it can be compiled and executed to run the actual co-simulation. The

runtime co-simulation coordination algorithm and its automatic generation will

be presented later in this chapter.

Plant
out v
(continuous)

in w
(continuous)

Controller
in v
(continuous)

in w
(continuous)

out r
(continuous)

every 1 on Plant.s

every 3 on Controller.t
Figure 4.18:Overview of a classic example

with a controller and a plant.

A complex system can contain hundreds of simulation units and each one can

expose a huge amount of port. Without advanced features to help and ease the

definition of coordination mode, this task can be difficult and error-prone. Xtext

provides some advanced editing facilities such as context assist auto-completion

but is based only on the syntax. We augmented the standard module presented

in Xtext with a semantics context assistant that takes into account the information

provided in the Model Coordination Interface of each Simulation Unit. We can

exploit the properties of the set of ports expressed in the MCI to match elements

that fit the current context in which the writer is on. For instance, in Figure 4.18,

we have an example composed by two Simulation Units, Plant and Controller,

connected by two connectors. The first connector, named Feedback, links the

output port v of the Plant with an input port of the Controller. During the

specification, the keyword from triggers the completion process to retrieve every

input port available on the SU Plant. Then, when the system designer has chosen

‖ https://www.eclipse.org/Xtext/
∗∗ https://www.eclipse.org/sirius/

https://www.eclipse.org/Xtext/
https://www.eclipse.org/sirius/

4 Proposition 79

Software
in n
(piecewiseConstant)

out m
(piecewiseConstant)

Controller
out v
(piecewiseConstant)

in w
(piecewiseConstant) when m has been updated

when v has been updated Figure 4.19: Overview of a rejected MCL

specification.A topological loopof initiator
predicate cannot be automatically trans-

formed into a deadlock-free coordination

algorithm.

the port, the to keyword triggers the completion process that retrieves every

compatible port with the one chosen before. The facility eases the connection

between ports, avoiding incompatible connections by type, data nature, and

direction. It permits the definition of a coordination model that does not present

any mismatches. The resulting textualMCSpecification is listed in Listing 4.2.

1 load "Plant.mci"

2 load "Controller.mci"

3

4 Connector Feedback (from Plant.v to Controller.v)

5 when every 1 Plant.s

6 do

7 Plant.v -> Controller.v

8

9 Connector Command (from Controller.r to Plant.w)

10 when every 3 Controller.t

11 do

12 Controller.r -> Plant.w

Listing 4.2: Textual specification of the

connector.

Further checks are also implemented to reject non-schedulable coordination

algorithms based on the current static topology. For instance, Figure 4.19 shows

a simple system composed of two simulation units, a Controller and a Software
module, that exchange data using two connectors, as defined in Listing 4.3, where

their composition creates a loop where all the triggering conditions are of types

Initiator.

1 load "Software.mci"

2 load "Controller.mci"

3

4 Connector Ctrl (from Software.m to Controller.w)

5 when value on Software.m has been Updated

6 do

7 Software.m -> Controller.w

8

9 Connector Software (from Controller.v to Software.n)

10 when value on Controller.v has been Updated

11 do

12 Controller.v -> Software.n

Listing 4.3: Excerpt of the MCL

specification with two connectors. Each

connector defines an Initiator condition on

it, closing a loop.

As we introduce later in this Chapter, we use the initiator definition to give an

execution priority in the system and configure it accordingly. Moreover, this

configuration can produce a graph where:

1. Node represents a single simulation unit;

2. Edge represents a triggering condition that is specified between two ports.

In this case, we create an edge only if an initiator condition of type updated. The
resulting graph is then analyzed using Depth First Search (DFS) to detect the

presence of a cycle. The DFS for a connected graph produces a tree. There is a cycle

in a graph only if there is a back edge present in the graph. A back edge is an edge

that is from a node to itself (self-loop) or one of its ancestors in the tree produced

by DFS. If a cycle is detected then the system cannot be coordinated automatically

due to the lack of information on the priority among the simulation units. For

4 Proposition 80

instance, in Figure 4.19, if Controller executes first and goes ahead of Software
when it receives an updated value from Sofware, it must execute a rollback to

synchronize its execution (the implicit synchronization constraint defined that the

internal time of the two SUs must be equal). The lack of any rollback capability

for the SU Controller, as illustrated in Listing 4.4, does not allows this specification.

In the case the SU Controller supports a rollback capability, then it is possible to

compute a schedule based on this information. Controller could execute and when

it receives an updated value from Software, it rollbacks and takes into account the

newly received value.

1 Interface Controller {

2 SUPath "/path/to/the/controller"

3 ports {

4 Port v {

5 direction OUTPUT

6 nature piecewise -constant

7 type Real

8 monitored true

9 },

10 Port w {

11 direction INPUT

12 nature piecewise -constant

13 type Real

14 initValue "0.0"

15 monitored true

16 plotterColor "Color.BLUE"

17 }

18 }

19 temporalreferences {

20 ModelTemporalReference t {

21 reference time

22 }

23 }

24 }

Listing 4.4: Excerpt of the Controller
interface conforming to the model

illustrated in Figure 4.19.

In this section, we have illustrated the Model Coordination Specification by

defining its elements and by showing the corresponding modeling environment.

The MCS is composed of connectors that define the coordination models between

two or more simulation units. By relying on the MCI of each SU, the coordination

model can be expressed using semantics-aware elements exposed as ports’ data-

nature. In particular, the connector is based on three main parts: an interaction, a

triggering condition, and a synchronization constraint. The interaction defines

the connection between two ports by specifying their causality and their dataflow.

The triggering condition, defined as a boolean expression, is used to express the

set of conditions on which the set of interactions must be performed (i. e. the
current values must be propagated). To ensure the temporal synchronization

among the simulation units, the synchronization constraint defines explicitly the

constraint that must hold in order to exchange data between two simulation units.

To ease the definition of the MCS, we provide an integrated environment with

completion and error check features, preventing the specification of coordination

models that brings the co-simulation of the system to deadlock. In the next

section, we illustrate the Distributed Coordination Algorithm generated from

the previously defined MCS and MCIs.

4 Proposition 81

4.4 Distributed Coordination Algorithm

TheModel Coordination Specification and theModel Coordination Interface give

coordination at the model level: it describes and connects concepts and elements

of models but it does not enable the actual co-simulation of the simulation unit.

To execute the co-simulation, it is required to realize the code that executes each

model in the system. We called it Coordination Algorithm or Master Algorithm (as

in FMI Standard [4]). In particular, we focus on the third research question:

What coordination algorithm can be used to study emerging behaviors of a
heterogeneous CPS without introducing timing bias?

In this section, we show a distributed algorithm built using static information

i. e. topology, causal, timing, and event relationships, and runtime information

i. e. synchronization events, timing, data exchange. Then, the source code imple-

menting the algorithm is generated using coordination information contained

in the MCI and MCL specifications. The Algorithm 4 shows the pseudo-code

of the Runtime Coordination Interface (RCI) (see Figure 4.1). The RCI contains

the distributed coordination algorithm that relies on (1) the native runtime

interface of the simulation unit to perform the computational concern and (2) on

a distributed communication technology to exchange actions to be performed

across the system by other simulation units.

4.4.1 Semantics-aware API

We propose to consider the FMI time-triggered interface doStep(Δt) as a specific

case where we ask a simulation unit to simulate until a specific predicate

characterized by an amount of time spent in the simulation unit
††
. Following

the same rationale, the proposed semantics-aware API can ask a simulation

unit to execute until a specific coordination predicate holds. The predicate must

be expressed according to the information from the simulation unit behavioral

interface (typically containing input/output nature, time representation, and

solver capability [8, 11, 19, 180]). Consequently, the general form of the proposed

doStep API is:

StopCondition doStep(CoordinationPredicate p)

where ? expresses a condition under which the execution should pause, i.e., the
condition under which the doStep function returns. For instance, considering

the input and output nature as defined in [19] (i.e., continuous, piece-wise

constant, piece-wise continuous or transient), the concept of predicate for correct

coordination can be defined as shown in the class diagram Figure 4.20.

††
Note that, in reference to study on Model of Computations [16] that this may be done

only for timed simulation units.

4 Proposition 82

Figure 4.20: Minimal but extendable set

of predicates.

If the simulation unit supports only temporal predicates, then it corresponds to

the FMI API. However, other coordination predicates have been defined. Here is

a brief description of their meaning and their typical use case.

1. TemporalPredicate is a predicate that becomes true when the internal

time of the simulation unit reaches the value of the predicate. This is the

classical FMI predicate.

2. UpdatedPredicate is a predicate that becomes true as soon as the ref-

erenced variable, which must be a piece-wise constant output, has been

assigned. It typically corresponds to the example from Figure 3.27, which

can then be managed without data loss, delays, or very small communica-

tion step size; i. e. in a correct way.

3. ReadyToReadPredicate is a predicate that becomes true just before the

simulation units actually read the referenced variable. It is typically used

if there is a need to provide an input to a simulation unit that actually

reads (non necessarily in a deterministic way) this input at specific points

in time. Instead of periodically providing the input data (consequently

with unavoidable delays), the data is provided only when needed by the

simulation unit.

4. ThresholdPredicate is a predicate that becomes true when the refer-

enced variable crosses the defined threshold (according to the crossing

direction
‡‡
). It is typically used when a simulation unit is waiting for a

specific threshold on a value from another simulation unit. Instead of

periodically providing the input data (consequently with unavoidable

delays) to be tested and possibly using rollback for more precision, the

data is provided only when the condition is reached.

5. EventPredicate is a predicate that becomes true when the referenced

event occurs. While this is in our implementation only used for cyber

events, it may also be extended to encompass discontinuities or other kinds

of events on (piecewise) continuous signals.

6. BinaryPredicate defines the disjunction of other predicates.

Finally, the proposed API also provides the classical function like for instance

loadModel, get/set Variable, get/set State and terminate.

What is important is the (preliminary) definition of the coordination predicate,

which is, according to our experiments, the minimal set of predicates to have

an accurate coordination i. e. without losing any data, events, or signals. Note

that for now, we are only using the disjunction of predicates since it is not clear

about the meaning of their conjunction. For instance, existing works about Event

constraints suggest using Union or Inf/Sup constraints instead of AND since

‡‡
It can be either from above to below, from below to above or both.

4 Proposition 83

Figure 4.21: Simple StopCondition, re-

turned by the doStep function.

they intrinsically embed a notion of order which is not existing in the classical

Boolean operators [181, 182].

To these predicates, many others could be added like for instance a discontinuity

predicate that stops when a discontinuity is detected on a piece-wise continuous

variable (see description of the Event predicate). Another more complex pred-

icate could be a Büchi predicate, which is verified when a specific state-based

observation occurs. There is no real reason to limit the kind of predicate that can

be defined, as long as it makes sense according to the simulation unit execution

semantics.

In other words, based on the simulation unit behavioral interface, one can speak

about the simulation in terms of predicates that are relevant in the particular

simulation units used in the co-simulation. For instance, considering a simulation

unit interface of an untimed simulation unit, no temporal predicate can be used.

In the same idea, if the simulation unit exposes only (piece-wise) continuous

variables, then it should not be possible to refer to these variable updates (since it

creates an undesired connection with the internal simulation unit discretization

step). In short, the acceptable predicates for a specific simulation unit can be

inferred from the simulation unit behavioral interface of such simulation unit.

However, it is also important that each tool specifies the predicates it supports.

The value returned by the doStep function must allow the coordinator to

understand why the simulation was actually paused so that it can do the

appropriate action. For instance, if the simulation unit was paused due to

an UpdatedPredicate, then the variable that has been updated should be

communicated to the appropriate simulation unit input (after being sure that

the receiving simulation unit is at the same time as the emitting simulation unit,

aligning the time if needed). For now, we used a simple form a StopCondition

but it might be aligned with the Predicate class diagram. The Figure 4.21 shows

a minimal proposition for a simple StopCondition. The StopReason is a predicate

type defining why the simulation was paused; the elementName defines the

referenced element link with the stop reason and the stopTime stores the internal
time of the simulation unit when paused.

Observation 1: This is not clear yet how the link should be made between the name

of an exposed variable in the simulation unit behavioral interface and the actual

variable inside the model under simulation. For now, we are using qualified

names instead of simple names like in the simulation unit behavioral interface.

Similarly, for experimental facilities, we are using a Double to encode time in

the co-simulation. It does not mean that the time is internally a double (since

it may be encoded by super-dense time for instance) but it provides a helpful

homogenization of the time from the coordination point of view.

Observation 2: According to our definition, FMI is a specific mold of our interface

since it defines only (piece-wise) continuous variables and it does not allow for

Threshold predicate injection. Consequently, the only acceptable predicate is a

Temporal predicate.

4 Proposition 84

Figure 4.22: Set of DebugPredicates.

Figure 4.23:Overview of a Home Heating

System.

We show in the validation Chapter 5 how this API, implemented for language

developed in the GEMOC studio [26], provides a simple way to gain in term

of accuracy and performance during the coordination of multiple simulation

units. However, in the next subsection, we overview how it can be used for other

usages, typically debugging.

Extension of the API for Debugging In this subsection, we show an

implementation experimented in the GEMOC studio to use the very same API for

debugging. Our goal was to implement the functionality of an API as defined in

the usual debugger. We consider this useful for the developer of one simulation

unit when she/he wants to debug the simulation unit in the context of the other

simulation units. For this reason, we considered that breakpoints are defined

with another interface and considered only the way to execute the simulation

unit. To define the new use of the interface, we simply defined the necessary

Predicate for debugging (see Figure 4.22) and implemented the corresponding

management of the Predicate in a wrapper. Furthermore, it is interesting to

realize that debugging equational simulation units could use a totally different

notion of breakpoint. For instance, one could want to pause the simulation when

the derivative of a specific output reaches a symptomatic threshold, in order to

check different values in the system and try to understand what actually happens.

In this case, Predicates should be defined accordingly.

Once again, we tried to provide an extendable simulation API, focused on

co-simulation but suitable for different activities.

4.4.2 Coordination Algorithm

In this section, we present a distributed algorithm generated from the information

of the modeling environment introduced above. To introduce using an explicative

example, we introduce a simple example of a Heating Home System.

4 Proposition 85

Figure 4.24:MCLVisual representation of

the Home Heating System. Each connec-

tor specifies under which condition and

constraint the interaction must take place.

The main idea is that a connector creates an Initiator/Follower relationship on

the ports it connects, depending on its triggering conditions. An initiator port

initiates the data exchange and chooses the time at which it occurs. On the

opposite, a follower port waits for the initiator and does not know about the time

at which the data exchange must occur. For instance, the triggering condition of

the connector in Figure 4.24 is “when value on roomTemperature is ready to be

read“. This means that each time the BoilerController simulation unit internally

reads the Sensor variable roomTemperature, it pauses just before the reading so

that a fresh value can be provided to it (see [178] for details). In this case, the target

of the connector initiates the data exchange by querying for a value at a specific

point in time (to the related follower ports, i. e. the source of the connector). For
this mechanism to work correctly, it requires that the simulation unit which

exposes the follower ports did not simulate beyond the point in time at which the

value is queried. More generally it means that each simulation unit that exposes

a follower port should not simulate beyond the minimum point in time of the

simulation units exposing the initiator ports. We name this point in time the

Temporal Horizon of the simulation unit. Rephrased, it means that a simulation

unit that has at least a follower port can never simulate beyond its temporal

horizon to be able to correctly handle queries from its connected initiator ports.

Sometimes, it is possible to take advantage of deterministic triggering conditions. For
instance, the triggering condition of the Boiler2Heater connector on Figure 4.24 is

“every 1 on Boiler.s”. In this case, statically, the follower ports know when the

data exchange will happen (every 1 second of time units of the Boiler simulation

units). We refer to such ports as DeterministicFollowerPort.

4.4.2.1 Description

The proposed algorithm runs in parallel for each simulation unit (in the runtime

coordination interface of Figure 4.1). The list of initiator ports, follower ports, and

deterministic follower ports are parameters of this algorithm, generated from the

modeling environment (see line 1 in Listing 4). The algorithm also relies on (1)

the native runtime interface of the simulation unit to perform the computational

concern and (2) on a distributed communication technology to exchange actions

to be performed across the system by other simulation units. It means that an

initiator port will send actions to be done by the simulation unit of the associated

follower port. These actions are stored in the simulation todo list, which is a list of

actions to be done, sorted according to the time at which action must be done.

The next action in the todo list is the action with the smallest time. An action

is a request to the simulation unit. There are three kinds of action: publish(data,
time) to ask a simulation unit to publish data on a port at a specific time, set(data,
value, time) to ask a simulation unit to internally assign a data to E0;D4 at a

specific point in time and updateTH(time) to update the temporal horizon of the

simulation unit.

4 Proposition 86

Before running the co-simulation, it computes, according to the list of its initiator

port triggering conditions, the predicate at which it is mandatory to pause the

simulation. For instance, if we consider the triggering condition of connector

cpuTemp2 already explained, the predicate requires that the simulation must

pause when the cpuTemperature variable is (internally) ready to be read. The

conjunction of such predicates required by the initiator ports is then constructed

(line 2).

After the initialization and while the simulation is running, the next action in

the todo list is taken (line 4). Note that, a simulation unit can assign itself actions

to do, typically if it possesses initiator ports for which actions to be done are a

priori known (e.g. to publish a data on a port at every 5 time units).

Each action must be done at a specific point in time, this is the current action

time attribute. If the time of the current action is the current simulation time (i. e.
the time at which the simulation unit is actually paused) then it performs the

action (see lines 5 and 7 of Listing 4).

If the current action is in the future, the simulation unit has to check if it can

actually simulate or not (lines 8 and 9). For that, we first check, according to the

current action, initiator predicates, and deterministic follower ports, what we

have to do in the future and how much we can simulate. If we cannot advance in

time (the max step size is 0) it means that we have to wait for a new temporal

horizon from another simulation unit (i. e. we wait for the temporal horizon

from a simulation unit connected to the actual simulation unit through an

initiator/follower relation) (line 11). Also, before waiting, we have to reschedule

the current action by putting it in the todo list (line 10).

If the max step size is greater then 0, then it is add to the initiator predicates

(line 13) and the simulation is restarted (3>(C4? line 14). When the simulation

pauses, the =>F variable is updated according to the stop condition of the

doStep call. This stop condition makes explicit the reason why the simulation

stopped. Pragmatically it refers to the part of the predicate that became true

and the algorithm can consequently determine the actions to be submitted to

other simulation units. For instance, if the stop condition tells that the simulation

units are ready to read the 2?D)4<?4A0CDA4 (see connector 2?D)4<?2) then

the ?D1;8Bℎ(2?D)4<?4A0CDA4 , =>F) action is sent to the simulation unit that

contains the CPU temperature variable. Thanks to the temporal horizon mecha-

nism (lines 9 to 11), the time in the simulation unit that will receive the action

will be lower or equals to the local =>F sent in the ?D1;8Bℎ action. Eventually,

the emitter of the action will receive a B4C action with the requested value of the

variable at the correct time. Finally, depending on the stop condition reason, the

current action may be accomplished or not. If not, it is rescheduled (lines 17 and

18).

If the coordination defined by the rich connector does not violate constraints (see

the previous section) then this algorithm ensures that no action in the past will

be present in the todo list of a simulation unit. In other words, there is no need to

rollback. Additionally, as shown in the next section, such an algorithm drastically

reduces the number of required communication between simulation units and

avoids timing bias like the one in Figure 3.10.

4 Proposition 87

Algorithm 4 Pseudo-Code for the Wrapper Coordination Algorithm.

1: function cosimulate(Set<Port>initiatorPort, Set<Port>followerPorts,

Set<Port>deterministicFollowerPorts)

2: 8=8C80C>A%A43← B4C$F=43�=8C80C>A%A43820C4()
3: while B8<D;0C8>=�B'D==8=6 do

4: 2DAA4=C�2C8>= ← C>3>.64C#4GC�2C8>=()
5: if =>F = 2DAA4=C�2C8>=.)� then

6: A40;8I4(02C8>=)
7: end if

8: <0G(C4?(8I4 ← 64C#4GC(C4?(8I4(02C8>=)
9: if <0G(C4?(8I4 = 0 then

10: C>3>.033(02C8>=)
11: F08C)�()
12: else

13: ?A43820C4 ← <0G(C4?(8I4 ∪ 8=8C80C>A%A43
14: BC>?�>=38C8>= ← BD.3>(C4?(?A43820C4)
15: =>F ← BC>?�>=38C8>=.C8<4
16: BD1<8C�2C8>=B)>$Cℎ4A(*((C>?�>=38C8>=)
17: if 2DAA4=C�2C8>=! = 3>=4 then
18: C>3>.033(02C8>=)
19: end if

20: end if

21: end while

22: end function

Figure 4.25: Publish-Subscribe model.

4.4.3 Implementation

We then discuss the actual implementation of the distributed coordination

algorithm.We developed a standalone version using Java 1.8 that can be imported

as a library for future reuse.

4.4.3.1 Message-oriented Distributed Architecture

In a distributed architecture, different entities and components (i. e. nodes) are
hosted on different devices and platforms cooperating to achieve a given objective

over a communication medium (e.g. pipe, networks, shared memory).

There are three main benefits to implement a distributed system:

I Scalability: Each computation happens independently on each node, it is

generally easy to add additional nodes and functionality;

I Performance: A node can be customized on the needs for specific computa-

tional requirements, improving performance for that kind of computation;

I Geographical Distribution: Intellectual Property software can be pro-

tected by distribution allowing external access to its usewithout distributes

it.

In order to communicate among nodes, two main alternatives exist: Remote

Procedure Call (RPC) and Message-Oriented Middleware (MOM). In a system

with multiple programming languages, operating systems, and requirements on

dynamic deployment and reliability, RPC shows its main disadvantage in general

compatibility with several programming languages. It does not allow
§§

to na-

tively implement heterogeneous middleware supporting different programming

§§
at the best of our knowledge, at the time of writing this thesis

4 Proposition 88

Figure 4.26: Publish-Subscribe one-to-

many topology.

Figure 4.27: Publish-Subscribe many-to-

many topology.

languages. Meanwhile, the Message Oriented Middleware provides a standard

and homogeneous method to implement a native solution in several languages.

Two interaction models are possible: synchronous and asynchronous. In syn-

chronous communication, when a method is called, the caller must stop and

wait (suspending its execution) until the method completes and returns. In

asynchronous communication, when a method is called, the caller does not

need to stop and wait. It allows the caller to continue processing without any

regard for the state of the called method. As a requirement, the asynchronous

interaction requires an intermediary to handle the exchanged messages and save

the received requests. Normally, this role is taken by a message queue.

One of the messaging models available is the publish/subscribe model (see

Figure 4.25). It is a mechanism used to propagate data between anonymous

entities. The entity that emits the data is called publisher. The entity that receives

the data is called subscriber. It is possible to have a one-to-many mechanism (see

Figure 4.26) in which a message is sent to one subscriber or a many-to-many

mechanism (see Figure 4.27) in which a message is sent to multiple subscribers

at once.

We use a topic-based approach, in which messages are published to queues

called "topics" to ground them by logical channels. Each subscriber will receive

all messages published to the topic to which it subscribes. The definition of the

available topics is delegated to the publisher, it is in charge to create, handle and

destroy the available topics to which subscribers can subscribe.

Figure 4.28: Publisher/Subscriber

overview communication using a

topic-based system.

ZeroMQ ∅MQ is an asynchronous messaging open-source library developed

by iMatix under the LGPLv3 license with a static linking exception. The library

provides a simple and compact socket API. A ∅MQ socket can be used to

establish threads, in-process, inter-process, or inter-host (using TCP or multicast)

communication. It supports several messaging patterns such as request/reply,

client/server, publisher-subscriber (PUB/SUB), and others. The transport layer

uses the ZeroMQ Message Transport Protocol (ZMTP) for exchanging messages

between two peers over a connected transport layer such as TCP. ∅MQ core is

written in C++ but it has bindings and native ports for most modern languages

and operating systems.

This feature allowed us to define runtime coordination API in different languages

and to abstract the network stack by using ∅MQ distributed queues. Moreover,

4 Proposition 89

since the topology is static and a priori known (defined in the modeling environ-

ment), we chose a point-to-point communication to avoid having a router that

may introduce a performance bottleneck due to the single-point-of-routing.

∅MQ allows to build messages using different frames. The resulting "multi-part"

message is then structured as a single message that will be delivered to the

network. The marshaling/unmarshalling processes are then more efficient and

the low-latency performance of the library is not compromised. A multi-part

message is then composed of two parts: a leading frame that is used as "topic",

and a second frame that is used as "content". In a publish/subscribe architecture,

the leading frame allows to set "filters" to route the messages only to the right

subscribers. The message content structure will be discussed later.

4.4.3.2 Software Architecture

The Cosim20 framework is based on a runtime middleware that eases the de-

velopment of distributed multi-SUs based on a peer-to-peer communication

architecture. The runtime middleware organizes the system as a structured

distributed sets of independent software components. The actual runtime mid-

dleware is fully developed in Java to achieve some engineering principles as:

I Portability and easy-to-use: Cosim20 provides a portable environment that

does not depends on third-parties program. It is possible to use the runtime

Java library as a dependency on all system supporting Java;

I Interoperability: Cosim20 is based on the widely use ∅MQ library, avail-

able for a vast number of languages. As a consequence, the developed

Java library can interoperate with other Cosim20 Runtime Coordination

libraries written in different languages.

Cosim20 provides the library required to execute the coordination algorithm

with the basic communication services, and the Java classes required to develop

the coordination interface for the simulation units. Each instance of the Cosim20

runtime is composed of a model-specific coordination interface. The set of all the

model-specific coordination interfaces is the called System. The System is in charge

to instantiate the model-specific coordination interfaces for each simulation unit

and executing them. In case the System is in a distributed network environment,

is in charge to configure the connection information on the position of each

simulation unit. For instance, if simulation units are distributed across a network,

the System instance should act as a service discovery server and provides the

information on the location for each simulation unit. In our case, the automatic

compilation process avoids putting in place a service discovery server due to the

static configuration of every coordination interface with the needed information

(e.g. IP address and port on which the coordination interface is available).

In the following paragraphs, we illustrate the runtime architecture of the Cosim20

Java middleware based on the coordination algorithm presented in section 4.4.

The developed coordination algorithm can then be developed using other pro-

gramming languages, depending on the supported ones by ∅MQ library and by

the simulation unit. The Java library is composed of three main components:

I Interface: It homogenizes an API to communicate with the simulation

engine of the simulation unit using a reduced set of methods. In particular,

the simulation unit should provide the four methods listed in listing 4.5;

4 Proposition 90

I Coordination Interface : It embeds an instance of the SU and the distributed

coordination algorithm. It is in charge of the actual data exchange between

the SU and the rest of the system using the Communication Layer;
I Communication Layer: It provides facilities to exchange data among models

using a Publish-Subscriber pattern based on the ∅MQ library;

Interface The first component provides a homogeneous interface to handle

the execution of the Simulation Unit and to exchange runtime data between

the coordination interface and the Simulation Unit. It requires a minimal set of

methods to be implemented, in particular, the Java interface (see Listing 4.5).

1 public interface Interface {

2 public StopCondition doStep(CoordinationPredicate

predicate);

3 public Object get(String variableName);

4 public Boolean set(String variableName , Object value);

5 public Boolean simulationIsTerminated ();

6 }

Listing 4.5: Shows the set of methods that

are required to communication with the

simulation engine of the Simulation Unit.

The implementation of eachmethod can vary depending on the specific semantics

provided by the co-simulation standard or simulator aligning the expected

semantics of the methods. In particular, each dedicated interface must be able to

implement these abstracted methods following these expectations:

I StopCondition doStep(CoordinationPredicate predicate) : This method executes

the underlying simulation unit according with the parameter coordination
predicated. When the predicate is true, a Stop Condition is returned to notify

the algorithm on the cause of the return;

I Object get(String variableName) : This method retrieves the actual value for

the specified variable;

I Boolean set(String variableName, Object value) : This method updates the

actual value of the specified variable with the new value passed;

I Boolean simulationIsTerminated() : This method returns true if and only if

the simulation unit has terminated its execution;

The Cosim20 runtime middleware already supports two semantically different

simulation engines and standards. We developed an FMI 2.0 interface and a

Gemoc interface: the first interface allows us to be compatible with a widely use

standard and to perform a validation of our approach implementing some use

cases, as we see later in Chapter 5, and the second interface allows us to introduce

heterogeneous simulation unit developed using DSLs with different semantics

and syntaxes. Figure 4.29 shows the two implementations of the classes and the

exposed methods. In the FMI interface, we embed the FMU as a simulation unit

using the Java library JavaFMI ¶¶ to load the FMU and its executable model and

to read or write data according to their type using the polymorphic property of

Java. It is worth noticing the actual implementation of the doStepmethods that

should match the required predicate from the semantics of FMI.

In particular, in Listing 4.6, we restricted the coordination predicate only using the

temporal predicate as the acceptable predicate. The TemporalPredicate conforms

to the definition given in section 4.4.1. The actual FMIInterface class is responsible
to accept only the valid temporal predicates. Other predicates, such as Event

Predicate, should not be supported by the FMIInterface class due to the lack of

support by the FMI 2.0 standard. The ΔC is then used as a parameter in the doStep

¶¶ https://bitbucket.org/siani/javafmi/wiki/Home

https://bitbucket.org/siani/javafmi/wiki/Home

4 Proposition 91

fr.inria.glose.cosim20

interfaces

C FMIInterface

sim : Simulation

FMIInterface()

doStep()

get()

set()

simulationIsTerminated()

C GemocInterface

cin : ObjectInputStream

controllerExec : Process

cout : ObjectOutputStream

out : OutputStream

socket : Socket

GemocInterface()

doStep()

get()

set()

simulationIsTerminated()

terminate()

I Interface

doStep()
get()
set()
simulationIsTerminated()

Figure 4.29: Shows an overview of the

Interface classes.

function of the FMI simulator (line 8). The simulation instance of JavaFMI is in

charge to execute the step size on the FMU and returning its new state and return

status.

1 public StopCondition doStep(CoordinationPredicate

predicate) {

2 TemporalPredicate tp = predicate.getTemporalPredicate ();

3 // Execute the doStep of FMI 2.0

4 Status status = null;

5 if(tp.deltaT == 0){

6 status = sim.doStep (0.0001);

7 } else {

8 status = sim.doStep(tp.deltaT);

9 }

10 if (status == Status.OK) {

11 return new StopCondition(StopReason.TIME , "", "", ((int)

sim.getCurrentTime ()));

12 }

13 return new StopCondition(StopReason.TIME , "", "",

((int)sim.getCurrentTime ()));

14 }

Listing 4.6: Shows an example of

doStep method for an FMI 2.0 interface

implementation.

The start and end times will be defined later using the CONFIG class. Both values

are then used to parametrize the simulation of the FMU, defining the start time

and the end time. A limitation of the JavaFMI library is for the handling of the

set methods: it is not possible to set multiple times a variable without incurring

an error. Even if the multiple assignments of a variable are legal in FMI 2.0, it

creates the impossibility to update a variable to its current and updated value.

For this reason, we introduced a workaround (line 6 in Listing 4.6) that consists

to call the doStep method with a step size smaller than the accepted one. The step

size does not advance the internal time of the FMU but enables to set a variable

twice in the same instant of time.

We implemented an interface to support languages developed using Gemoc

Studio. It enables us to take advantage of the various semantics developed in

Gemoc to validate our approach against the proposed coordination predicates.

The proposed implementation is based on a standalone exported model that

exposes the API of the Gemoc Execution Engine using a socket used with two

streams: one to receive commands and the other to emit the result of the given

command. The standalone Gemoc executable is then able to communicate us-

ing a protocol defined by Gemoc Studio. As done for the FMI 2.0 Standard,

4 Proposition 92

we developed an interface tailored to the semantics of the protocol and com-

patible with the proposed Interface abstract class. The GemocInterface is able to
connect to a running model or to launch the JAR file containing the exported

executable model. As shown in Listing 4.7, the constructor launches the JAR

file (line 3) and then it opens a socket to communicate with the model using

two streams. The input stream is used to send command to the model, such as

DoStepCommand (line 2 in listing 4.8), getVariableCommand (line 2 in listing 4.9),

and setVariableCommand∗∗∗.

1 public GemocInterface(String path , String host , int port) {

2 try {

3 controllerExec = Runtime.getRuntime ().exec("java -jar

" + path);

4 Thread.sleep (2500);

5 socket = new Socket(host , port);

6 cout = new

ObjectOutputStream(socket.getOutputStream ());

7 cin = new ObjectInputStream(socket.getInputStream ());

8 } catch (Exception e) {

9 e.printStackTrace ();

10 }

11 }

Listing 4.7: Shows the constructor for the

GemocInterface in the case a JAR, with the

executablemodel and its execution engine,

is provided.

1 public StopCondition doStep(CoordinationPredicate p) {

2 DoStepCommand doStep = new DoStepCommand(p);

3 try {

4 cout.writeObject(doStep);

5 StopCondition sc = (StopCondition) cin.readObject ();

6 return sc;

7 } catch (Exception e) {

8 e.printStackTrace ();

9 }

10 return null;

11 }

Listing 4.8: Shows the doStep method

implementation for the GemocInterface.
1 public Object get(String varQN){

2 GetVariableCommand getVar = new

GetVariableCommand(varQN);

3 try {

4 cout.writeObject(getVar);

5 Object varValue = (Object) cin.readObject ();

6 return varValue;

7 } catch (Exception e) {

8 e.printStackTrace ();

9 }

10 return null;

11 }

Listing 4.9: Shows the get method

implementation for the GemocInterface.
Coordination Interface The Interface is then used as a homogeneous API

to handle the underlying Simulation Unit by the Coordination Interface. The

class CoordinationInterface implements the distributed algorithm presented in

subsection 4.4. It is composed of three main elements: the simulation unit that

implements the Interface class, the communication layer, and the implemen-

tation of the coordination algorithm. As shown in Figure 4.30, each model

coordination interface for a specific simulation unit is required to extend the

∗∗∗
The implementation of the setmethod is similar to the implementation of the getmethod.

Consequently, it is not reported here.

4 Proposition 93

CoordinationInterface inheriting the actual implementation of the coordination

algorithm and implementing the methods associated with the interactions that

occur. The interactions are group by the type of triggering condition specified on

the Connector(see section 4.3.4).

fr.inria.glose.cosim20

test

A CoordinationInterface

waitR2Rport : Semaphore

waitTH : Semaphore

ID : String

followerDeterministicPorts : List<FollowerDeterministicPort>

followerPorts : List<Port>

initiatorPorts : List<Port>

initiatorsTemporalHorizons : ConcurrentHashMap<String, BigDecimal>

nextDeterministicTemporalHorizon : BigDecimal

nextInitiatorsTemporalHorizon : BigDecimal

now : BigDecimal

todo : PriorityBlockingQueue<Action>

CoordinationInterface()

onEnd()
onEvent()
onReadyToRead()
onSync()
onTime()
onUpdated()
setInitiatorsPredicate()
waitTH()

getNextActionInTodoList()

C WheelEncoder

onEnd()

onEvent()

onReadyToRead()

onSync()

onTime()

onUpdated()

setInitiatorsPredicate()

C SpeedController

onEnd()

onEvent()

onReadyToRead()

onSync()

onTime()

onUpdated()

setInitiatorsPredicate()

Figure 4.30: Shows an overview of the

CoordinationInterface class and its extension

by two SU coordination interfaces.

An interaction needs at least two ports to exchange the actual value from

the output port to the input port. The communication layer is in charge to

provide a transparent and reactive API to exchange data. The implementation

reflects our study to minimize the communication among the simulation units

without sacrificing the accuracy. For these reasons, we proposed to adopt a

publish/subscribe approach to exchange data across the system. It allows us to

reduce the number of exchanged messages to the minimum required to perform

a correct execution of the co-simulation of the system. Each coordination interface

acts as a publisher and as a subscriber, depending on its input or output ports. We

decide to associate the publisher entity to the output direction and the subscriber

entity to the input direction. The publisher and the subscriber entities are then

used by (1) the communication layer to exchange the data value and (2) by the

coordination algorithm to perform the coordinated activities of the distributed

coordination algorithm. The messages exchanged are formatted according to

the JSON format: it allows us to interoperate with other interfaces implemented

using a different language. We represent a message using the Message class (see
Figure 4.31).

fr.inria.glose.cosim20

fr.inria.glose.cosim20.Action

C Message

id : String

source : String

temporalHorizon : BigDecimal

value : Object

Message()

compareTo()

getId()

setId()

C TypeOfAction

typeOfAction

Figure 4.31: Shows the content of a mes-

sage represented as a Java class.

A message contains five important fields:

4 Proposition 94

I ID : Unique identifier used to identify the source port of the message;

I source : Unique URI used to identify the source simulation unit. It is used

in conjunction with the ID to route the message to the correct port;

I temporalHorizon : Actual Temporal Horizon of the simulation unit at the

instant when the message is sent;

I value : (Optional) Resulting value of the requested action. It can be used

to store the new value to set or the actual value read from the Simulation

Unit;

I typeOfAction : Type of Action to execute of the simulation unit that receives

the message.

A message is then parsed and transformed into an Action (see Figure 4.32).

An Action is an operation that the coordination interface must execute on the

simulation unit. An Action can derive from a message or from the coordination

algorithm (e.g. a periodic action is defined in the coordination interface and it

does not arrive from an external SUs coordination interface).

fr.inria.glose.cosim20

fr.inria.glose.cosim20.predicates

C Action

hostSource : String

temporalHorizon : BigDecimal

value : Object

typeOfAction: TypeOfAction

done : boolean

Action()

compareTo()

getValue()

isDone()

setDone()

setValue()

C ActionWithPredicate

ActionWithPredicate()

E TypeOfAction

FAKE

PUBLISH

RETRIEVE

SET

TERMINATE

UPDATETH

C ActionOnPort

ActionOnPort()

ActionOnPort()

replyWith()

C PeriodicAction

PeriodicAction()

getTemporalPredicate()

C Port C CoordinationPredicate

port predicate

Figure 4.32: Shows the content of a mes-

sage represented as a Java class.

The action is then pushed into an ordered FIFO queue, prioritized by timestamp,

called todo list. Then, the implementation follows the Algorithm 4.

A Finite State Machine (see Figure 4.33) is used to implement the communication

protocol among the coordination interfaces. In particular, depending on the

semantics of some predicates (e.g. ReadyToReadPredicate or EventPredicate) and
the coordination algorithm.

INITIALIZING WAIT_TH

RUNNING

TERMINATING WAIT_Set

waitTHAquired waitTH

simulationIsTerminated retrievePortValue waitR2Rport

Figure 4.33: Illustrates the Finite State

Machine for the Coordination Interface

during its execution.

The received actions are then pushed to an ordered-by-timestamp queue that

dictates the next action to execute on the simulation unit. In order to respect the

synchronization constraint specified in the connector, the first action (the one

4 Proposition 95

with the smallest timestamp) is pulled from the queue and, if the timestamp

specified in action holds the constraint defined in the synchronization constraint,

then it is removed from the queue and execute. The coordination interface then

executes the action: depending on its type, the action can advance the internal

simulation of the SU or retrieve the current value of a port.

A possible Java implementation of the algorithm is proposed in Listing 4.10:

1 public void algorithm () {

2 Action currentAction;

3 StopCondition sc;

4 CoordinationPredicate actualPredicate;

5 // Initialize initiators predicate

6 initiatorsPredicate = setInitiatorsPredicate ();

7 // Update the TH for all local Initiator ports

8 initiatorPorts.forEach(port -> {

9 updateTH(port , now);

10 });

11 // Set the current state to RUNNING

12 state = BIState.RUNNING;

13 // Simulation loop: execute the internal model until the

simulation is terminated or the co-simulation is halted

14 while (!model.simulationIsTerminated () && state !=

BIState.TERMINATING) {

15 // Retrieve the next action from the todo list

16 currentAction = getNextActionInTodoList ();

17 if (currentAction.typeOfAction ==

Action.TypeOfAction.TERMINATE state ==

BIState.TERMINATING) break;

18 // If the model is already on sync with the time of

the current action , then it is possible to execute the

action

19 if (now.compareTo(currentAction.temporalHorizon) == 0)

{

20 onSync(currentAction);

21 continue;

22 }

23 actualStepSize = computeNextStepSize(currentAction);

24 if ((actualStepSize.compareTo(BigDecimal.valueOf (0.0))

== 0) //no progress in time

25 && currentAction.temporalHorizon.compareTo(now) > 0

// nothing to do at that time but waiting

26) {

27 todo.add(currentAction); // Reschedule current

action on the queue

28 // wait that all the port I follow have put their TH

29 waitTH ();

30 continue;

31 }

32 // If the action contains a temporal predicate then it

computes the size of the next safe step size

33 TemporalPredicate nextTimeToStopPredicate = new

TemporalPredicate(actualStepSize.intValueExact ());

34 if (followerPorts.isEmpty () &&

followerDeterministicPorts.isEmpty ()) {

35 nextTimeToStopPredicate = new

TemporalPredicate(CONFIG.InfOfSimulation);

36 }

37 // If the simulation unit is an initiator , then the

predicate must include the initilized initiator

predicate

38 if (initiatorsPredicate != null) {

39 actualPredicate = new

BinaryPredicate(nextTimeToStopPredicate ,

initiatorsPredicate ,

BinaryPredicate.BooleanBinaryOperator.OR);

40 } else {

4 Proposition 96

41 actualPredicate = nextTimeToStopPredicate;

42 }

43 // If the currentAction can be reached , execute the

doStep method and get the StopReason

44 sc = model.doStep(actualPredicate);

45 // Retrieve the current internal time , it will use to

determine the actual stop reason

46 now = Utils.toBigDecimal(sc.timeValue);

47 if (now.compareTo(CONFIG.EndOfSimulation) >= 0) break;

48 // The timestamp of the current action is aligned with

the internal time of the FMU

49 if (sc.stopReason == StopReason.TIME) {

onTime(currentAction , sc); }

50 else if (sc.stopReason == StopReason.EVENT) {

onEvent(currentAction , sc); }

51 else if (sc.stopReason == StopReason.READYTOREAD) {

onReadyToRead(currentAction , sc); }

52 else if (sc.stopReason == StopReason.UPDATE) {

onUpdated(currentAction , sc); }

53 if ((! currentAction.isDone ())) {

54 todo.add(currentAction); //was not done this time ,

reschedule.

55 }

56 }

57 // End of the simulation , let the simulation unit

terminate safely

58 onEnd();

59 // Message all the connected models that the simulation

is terminating

60 followerDeterministicPorts.forEach(

61 port -> {

62 Message m = new

Message(Action.TypeOfAction.TERMINATE , port.ID,

"tcp://" + hostname + ":" + this.port ,

CONFIG.EndOfSimulation);

63 sendMessage(publisher , m, port.ID);

64 });

65 initiatorPorts.forEach(

66 port -> {

67 Message m = new

Message(Action.TypeOfAction.TERMINATE , port.ID,

"tcp://" + hostname + ":" + this.port ,

CONFIG.EndOfSimulation);

68 sendMessage(publisher , m, port.ID);

69 });

70 followerPorts.forEach(

71 port -> {

72 Message m = new

Message(Action.TypeOfAction.TERMINATE , port.ID,

"tcp://" + hostname + ":" + this.port ,

CONFIG.EndOfSimulation);

73 sendMessage(publisher , m, port.ID);

74 });

75 }

Listing 4.10: Implementation of the

distributed algorithm in Java.
4.4.3.3 Automatic Runtime Model Coordination Interface

Generation

In order to reduce the effort to build a correct co-simulation, we develop an auto-

matic generation process that, starting from the Model Coordination Interfaces

and the Model Coordination Specification, is able to generate the corresponding

runtime co-simulation. The process is based on the template engine provided by

the Xtext framework. It generates the corresponding source code in Java for each

4 Proposition 97

Figure 4.34: Overview on the automatic

generation process.

Model Coordination Interface. Figure 4.34 illustrates the workflow for the entire

process: starting from the specification of the MCIs and the MCS, it is possible

to translate the exposed information into a runnable Java source code using a

global RCI template. An RCI template contains some common parts, such as

the logical structure. The customization is done using the data expressed in the

MCI such as the set of ports and their properties, the set of connectors that link

ports, and the topology of the system. A customized RCI is then created for each

MCI. Once the process has been completed, it is possible to compile and execute

the resulting executable system using the built-in Java compiler of the Cosim20

Studio. An advantage of the template-based approach is also the generation

speed: for small-medium size systems, the process can be done in the background

having a synchronized generated sources with the loaded coordination model. It

enables fast development and verification of the coordination model. Due to the

template-based approach, the generation of the source code can be customized

using other languages. If an existing implementation of the coordination algo-

rithm exists, then the creation of a template and the customization can be done

using as an example the template done for the Java language.

In the next chapter, we validate our proposition by illustrating the use of the

Cosim20 framework and the developed IDE on a representative use-case.

4 Proposition 98

4.5 Conclusion

In this chapter, we have presented the three parts of our proposition: the Model

Coordination Interface, theModel Coordination Specification, and the distributed

coordination algorithm. In the first section, we presented theModel Coordination

Interface to partially exposed the semantics and the syntax of the simulation unit.

Along with the set of ports and their properties, such as name, direction, and

type, we introduced the notion of data-nature: it enables to expose the semantics

of the value of the associated port. We developed an Integrated Development

Environment to support the MCI specification by giving a DSL called MCILang

that eases its definition.

Then, a system designer needs to define the coordination model of the system.

Relying on the previously defined MCI for each simulation unit, it is possible to

develop a semantics-aware coordination model among the different simulation

units. In particular, we introduced the Model Coordination Specification as a

set of connectors that provided the coordination "glue" between two or more

simulation units. A connector is based on three main concepts: interactions,
triggering condition, and synchronization constraint. The set of interactions define
the dataflow connection among the ports defined on the MCIs, based on their

direction. The triggering conditions take into account the data-nature (defined

on the interested port) to specify a semantics-aware condition on which the

interactions should occur. The synchronization constraint prevents to exchange of

data when the two simulation units are not synchronized. It allows defining the

synchronization constraint that must hold in order to perform the interactions of

the connector.

However, theModel Coordination Specification cannot be executed to co-simulate

the system.We provide a template-based generator that, based on the information

in the MCIs and the defined MCS, is able to generate an executable specification

written in Java. The executable framework is based on a distributed coordination

algorithm that exploits the proposed semantics-aware API to execute each

simulation unit. In the next chapter, we validate our approach by using as

use-case a heterogeneous CPS of a CPU cooling system. We use the proposed

Integrated Development Environment to define theModel Coordination Interface

for each SU and then to define the Model Coordination Specification. Based

on those specifications, we are able to automatically generate an executable

co-simulation.

Validation 5

5.1 Use Case: CPU Cooling System 100

Model Coordination Specifica-

tion 104

Results 107

Discussion 108

5.2 Use Case: Fault Injection Simu-

lation 109

5.3 Conclusion 113

In this chapter, we discuss a representative use-case used to validate our proposi-

tions. The validation of the proposed approaches is divided into four parts: the

definition of the Model Coordination Interface for every component, the defini-

tion of the Model Coordination Specification, the generation of the framework,

and the execution and analysis of the results.

We used the management of a CPU temperature as a simple but representative

case study. This system is made up of 3 simulation units. CPUinBoxWithFan
and fanControler have been developed in the OpenModelica tool

∗
to respectively

define the CPU in a box which is cooled by a fan and the controller of the fan

speed (a simple Proportional controller). The heat between the box and the CPU is

transferred according to the fan speed. The overHeatController has been developed

as a state machine in the GEMOC studio
†
.

Weorganize this chapter as follows: in thenext sectionwepresent theCPUCooling

System and we detail its components. We present the corresponding Model

Coordination Interfaces. We then illustrate the proposed Model Coordination

Specification for the system and the three types of connectors used. Finally, we

discuss the results obtained by the co-simulation and we conclude.

∗ https://openmodelica.org.
† http://eclipse.org/gemoc.

https://openmodelica.org
http://eclipse.org/gemoc

5 Validation 100

5.1 Use Case: CPU Cooling System

The CPU Cooling System use-case
‡
is composed of three components (see

Figure 5.1): a logic controller written in TFSM, a DSL dedicated to modeling

timed finite state machine, a fan controller written in Modelica, and a plant

modeled as a box composed by a CPU and a fan, written both a single component

in Modelica. The resulted system is then constituted by three models written in

two different languages that conform to two different semantics. Furthermore,

we make a hypothesis that we are dealing with black-box components: the two

Modelica models are then exported as two FMUs that embed an executable

model. The logic controller is exported as an executable binary that conforms to

the Gemoc API for coordination.

The resulting three simulation units are then ready to be used in the CPU

Cooling System. In the first part, we define for each SU the corresponding

Model Coordination Interface. In the second part, we define three different types

of connectors, based on the data nature of the ports exposed in the MCIs. In

particular, the first connector defines a time-trigger co-simulation by specifying

the most appropriate sample rate to exchange data between the fan controller

and the box. In the second connector, we define the coordination model between

the logic controller and the box by specifying an event-driven co-simulation on

an exposed event. In the third connector, we define the coordination between the

box and the logic controller as a feedthrough loop where the controller exposes

the requirement to read the most updated value at a specific point in time. In

the third part, we generate the corresponding runtime framework based on the

specifications written in the first and second parts. Finally, in the fourth part, we

execute and analyze the results of the co-simulation.

Figure 5.1: Overview of the CPU cooling

system used as use case.

Box with CPU and Fan The subsystem composed of a CPU and a fan is

embedded into a box and it is modeled using OpenModelica (see Figure 5.2).

In the CPUinBoxWithFan simulation unit, the CPU is activated as long as the

isStopped input is equal to false. When activated, the CPU produces heat, which

is exchanged with the air of its box more or less rapidly depending on the

fanSpeedCommand input (∈ [0..10] where at 0 the fan is stopped and at 10 the fan

is at full speed).

Using the proposed Model Coordination Interface, we define an interface as

following:

‡
the associated code can be retrieved from https://github.com/giovanni-liboni/

cosim20-CPU-cooling-system.

https://github.com/giovanni-liboni/cosim20-CPU-cooling-system
https://github.com/giovanni-liboni/cosim20-CPU-cooling-system

5 Validation 101

Figure 5.2: Modelica model representa-

tion of a box with CPU and Fan.

1 Interface CPUinBox {

2 FMUPath "su/CPUinBoxWithFanHeatModel.fmu"

3 ports {

4 Port "BoxTemperature" {

5 direction INPUT

6 nature constant

7 type Real

8 initValue "25"

9 },

10 Port "CPUTemperature" {

11 direction OUTPUT

12 nature continuous

13 type Real

14 initValue "0.0"

15 },

16 Port "CPUfanSpeed" {

17 direction INPUT

18 nature continuous

19 type Real

20 initValue "0"

21 },

22 Port "isStopped" {

23 direction INPUT

24 nature piecewiseConstant

25 type Boolean

26 initValue "false"

27 }

28 }

29 temporalreferences {

30 ModelTemporalReference t {

31 reference time

32 }

33 }

34 }

Listing 5.1: MCI textual representation of

the model described in Figure 5.2.

In the Model Coordination Interface defined in Listing 5.1, we expose all the

information such as the set of ports with their properties (from line 3 to line 28),

the temporal reference used in the model (line 30), and the path of the executable

model (line 2). According to the Modelica model (Figure 5.2), the list of ports

5 Validation 102

reflect the exposed variables. For instance, CPUfanSpeed and isStopped are defined
as INPUT ports of type Real and Boolean, correspondingly. The nature is defined

accordingly with the use of the variable in the model: the CPUfanSpeed defines
the speed of the fan and it’s directly use to set the speed of both fans in the model.

In the other case, the isStopped controls an ideal switch and its value should

change instantaneously.

FanController The Fan Controllermodel is written inModelica and developed

in OpenModelica. We use the integrated simple continuous controller PID in the

Modelica library. As illustrated in Figure 5.3, it represents a PID controller with

limited output, anti-windup compensation, and setpoint weighting. The gain

of controller : is driven by the input variable ?. The time constant)8 of the

integrator block is set to 0.5. The time constant)3 of the derivative block is set to

0.1. The output H is then limited between 0 and 10. The output of the controller

is transformed from the Real value to an Integer value.

Figure 5.3: Modelica model representa-

tion of the Fan Controller.

To use the model in our framework, we export the model as an FMU. Based on

the FMI model description, we then automatically generate the corresponding

Model Coordination Interface using the importing feature of the MCILang IDE.

The resulting MCI of the Fan Controller is represented in Listing 5.2.

1 Interface fanController {

2 FMUPath "su/FanController.fmu"

3 ports {

4 Port "CPUTemperature" {

5 direction INPUT

6 nature continuous

7 type Real

8 initValue "25"

9 monitored false

10 },

11 Port "CPUfanSpeed" {

12 direction OUTPUT

13 nature continuous

14 type Real

15 monitored false

16 },

17 Port "targetTemperature" {

18 direction INPUT

19 nature constant

20 type Real

21 initValue "65"

22 monitored false

23 },

24 Port "Kp" {

25 direction INPUT

26 nature constant

27 type Real

28 initValue "5.0"

29 monitored false

30 }

31 }

32 temporalreferences {

33 ModelTemporalReference t {

5 Validation 103

34 reference time

35 }

36 }

37 }

Listing 5.2: MCI textual representation of

the model described in Figure 5.3.

Figure 5.4: Over Heat Controller state

machine.

Over Heat Controller The overHeatControllermodel is written using a DSL

developed in Gemoc Studio. The controller is then defined as a state machine.

It monitors periodically (every 3 seconds) the cpuTemperature and if it exceeds a

specific threshold, the switch event occurs and the state machine enters in a new

state where it monitors the CPU temperature every 5 seconds. If it goes above a

specific threshold, the switch event occurs and the state machine enters the first

state (see Figure 5.4). The resulting model is then exported as an independent

simulation unit.

1 Interface overHeatController {

2 GemocExecutablePath "su/overHeatControler.jar :39635"

3 ports {

4 Port "SwitchCPUState" {

5 variableName "CPUprotection :: switchCPUState"

6 direction OUTPUT

7 nature transient

8 type Boolean

9 initValue "false"

10 ioevents {

11 Triggered occurs

12 }

13 },

14 Port "CPUTemperature" {

15 variableName "CPUprotection :: cpuTemperature"

16 direction INPUT

17 nature piecewiseConstant

18 type Integer

19 initValue "25"

20 ioevents {

21 ReadyToRead readyToRead

22 }

23 }

24 }

25 temporalreferences {

26 ModelTemporalReference t {

27 reference time

28 }

29 }

5 Validation 104

30 }

Listing 5.3: MCI textual representation of

the model described in Figure 5.4.

The resultingMCI for the overHeatController is presented in Listing 5.3. Compared

to the interfaces presented previously, there are two new elements: variableName
and ioevents. In line 5, the variableName attribute links the internal event switchC-
PUState with the port of the same name and expose through the interface the

specific event of type triggered named occurs (line 11), which will be triggered

when the internal event will be internally triggered. In the second case, the port

will be linked to an internal variable (line 15) and the associated ioevent will be

of type ReadyToRead (line 21). In this case, the specific ioevent will be fired before

the expression on the guard is evaluated for the two transactions to and from the

internal states normalTemp and tooHot.

5.1.1 Model Coordination Specification

Figure 5.5: CPU Cooling System repre-

sented inCosim20ModelingEnvironment.

If a port is monitored and logged, a red

border is added to the visual representa-

tion of the port.

To connect the different simulation units we relied on strategies defined in [11].

Consequently the temperature from CPUinBoxWithFan to overHeatController is
only exchanged when the later simulation unit is ready to read the data. Similarly,

the change of the isStopped input is only done only when the switch event occurs.

Between the two simulation units obtained from Modelica, the connectors define

classical time trigger communication. The corresponding specification using the

proposed language MCL is illustrated in Listing 5.4.

1 load "overHeatController.mbi" as ctrl

2 load "fanController.mbi" as pid

3 load "CPUinBoxWithFan.mbi" as plant

4

5 Connector cpuTemp

6 when every 5 plant.t

7 sync pid.t = plant.t

8 do

9 plant.cpuTemperature -> pid.cpuTemperature

10

11 Connector fanSpeed

12 when every 5 plant.t

13 sync pid.t = plant.t

14 do

15 pid.fanSpeedCommand -> plant.fanSpeedCommand

16

17 Connector cpuTemp2

18 when value on ctrl.cpuTemperature is ReadyToRead

19 sync ctrl.t = plant.t

5 Validation 105

20 do

21 plant.cpuTemperature -> ctrl.cpuTemperature

22

23 Connector switchCPUState

24 when event on ctrl.SwitchCPUState occurs

25 sync ctrl.t = plant.t

26 do

27 plant.isStopped -> not plant.isStopped

Listing 5.4: MCL textual specification for

the system in Figure 5.5.

We handled the different cases by using different Predicates in the doStep function
call. However, one can notice that the coordination algorithm will not be generic

anymore but dedicated to the topology of simulation units and the information on

the connectors. For this specific use case, the coordination algorithm is provided

on Listing 5.5. Lines 4 to 6, the predicate for the overHeatController simulation unit

is defined as “the variable cpuTemperature is ready or the switch event occurs”.

Line 7, the dostep function is called and in lines 8 to 16 the result of the function

is managed. If the simulation was paused due to the variable cpuTemperature

which is ready to be read, then a function (simulateBoxAndFanControl defined line

19) is called to set the CPUinBoxWithFan simulation unit at the same time as the

overheat controller simulation unit. Once done, the expected value is exchanged

between the FMU. If the simulation was paused due to the occurrence of the

switch event, then the receiving simulation unit is at the time when the event

occurred, so the isStopped variable is changed. The temporal connector between

the fan controller and the CPU, as defined in Figure 5.5, requires the simulation

of both models until a specific point in time. In lines 21 to 36, the simulation units

must reach an expectedTime. If there is one (or several) intermediate temporal steps

in between now and the expected time (i.e., =>F%5 = 0 in our case), then the

simulation units are simulated until this point in time, and data are exchanged

as expected.

1 public void coSimulate(double endtime) {

2 //now = 0; localIsStopped = false;

3 while (now < endTime){

4 ReadyToReadPredicate r2rp("cpuTemperature");

5 EventPredicate ep ("switch");

6 BinaryPredicate bp (r2rp , ep);

7 StopCondition sc = controlerSU.doStep(bp);

8 if (sc.stopReason == READYTOREAD) {

9 simulateBoxAndFanControl(sc.stopTime);

10 double cpuTemperature = c.boxSU.read("cpuTemperature");

11 controlerSU.setVariable("cpuTemperature",

cpuTemperature);

12 } else { //event occured

13 simulateBoxAndFanControl(sc.stopTime);

14 localIsStopped = !localIsStopped;

15 boxSU.write("isStopped").with(localIsStopped);

16 }

17 }

18 }

19

20 public void simulateBoxAndFanControl(double expectedTime) {

21 double delta = expectedTime - now;

22 //\Delta t == 5 for each connector from boxSU and

fanControllerSU

23 while (delta + (now % 5) >= 5) {

24 double stepToDo = (5-(now % 5));

25 boxSU.doStep(stepToDo);

26 fanControllerSU.doStep (5);

27 double cpuTemperature = boxSU.read("cpuTemperature");

28 fanControllerSU.write("cpuTemperature")

29 .with(cpuTemperature);

5 Validation 106

30 int fanCommand =

fanControllerSU.read("fanSpeedCommand");

31 boxSU.write("fanSpeedCommand").with(fanCommand);

32 double boxTemperature = boxSU.read("BoxTemperature");

33 now += stepToDo;

34 delta = expectedTime - now;

35 }

36 if (delta > 0) {

37 boxSU.doStep(delta);

38 now += delta;

39 }

40 }

Listing 5.5: Coordination Algorithm

dedicated to the example on Figure 5.5

using the proposed interface.

Along with the MCI specifications, the MCL is used to generate the executable

Java source code that implements the coordination algorithm. The distributed

nature of the coordination is achieved by creating tailored wrappers for each

simulation unit. In particular, by providingmethods to handle the communication

protocol to and from the simulation unit. A possible implementation of one of

these methods is represented in Listing 5.6, where we implement the onTime
method for the Box simulation unit. For each port, we have the associated action

to perform on the simulation unit and the corresponding step for the coordination

algorithm.

1 @Override

2 public void onTime(Action currentAction , StopCondition sr)

{

3 if (currentAction.port.compareTo(CPUfanSpeed) == 0) {

4 model.set(CPUfanSpeed.associatedModelVariableName ,

5 (Double) currentAction.getValue ());

6 }

7 ...

8 else if

(currentAction.port.compareTo(CPUTemperatureForCtrl)

== 0) {

9 double temperature =

model.get(CPUTemperatureForCtrl);

10 publish(CPUTemperatureForCtrl , temperature , now);

11 }

12 ...

13 currentAction.setDone (); // Mark the current action as

executed

14 if (currentAction instanceof PeriodicAction) {

15 todo.add(new PeriodicAction (...);

16 }

17 }

Listing 5.6: Implementation in Java of the

onTime method for the simulation unit

illustrated in Figure 5.2. The source code

is generated from the corresponding MCI

and MCL specification for the simulation

unit in Listing 5.1 and the coordination

specification in Listing 5.4.

The generated wrapper source code for the Box with CPU and Fan is available in

Appendix A.2.

Two possible implementations for the onEvent and onReadyToReadmethods are

illustrated in Listing 5.7. In the first method, onEvent, an event is retrieved from

the simulation unit, and then it is handled by publishing it to the subscribers.

In this case, we have only a single event that must be exported and so the

implementation takes into account only a single instance at the time. In the

second method, the onReadyToReadmethod is called only when the associated

event is triggered. The method retrieve implements a set of function calls needed

to implement the correct communication protocol between the simulation unit

that has generated the readyToRead event and the target simulation unit that must

provide the data. The generated wrapper source code for the Over Heat controller

is available in Appendix A.3.

5 Validation 107

The source code of this use case is available here, along with other test cases

and additional technical documentation: https://gitlab.inria.fr/glose/

cosim20-java.

1 @Override

2 public void onEvent(Action currentAction , StopCondition

sc) {

3 SwitchCPUState_ctrl2box.setValue (!((boolean)

SwitchCPUState_ctrl2box.getValue ()));

4 boolean value = (boolean)

SwitchCPUState_ctrl2box.getValue ();

5 publish(SwitchCPUState_ctrl2box , value ,

Utils.toBigDecimal(sc.timeValue));

6 }

7

8 @Override

9 public void onReadyToRead(Action currentAction ,

StopCondition sc) {

10 retrieve(portMap.get(sc.objectQualifiedName), now);

11 currentAction.setDone ();

12 }

Listing 5.7: Implementation in Java of

the onEvent and onReadyToReadmethods.

The source code is generated from

the corresponding MCI and MCL

specification for the simulation unit

in Listing 5.3 and the coordination

specification in Listing 5.4.

5.1.2 Results

The results from the beginning of the co-simulation obtained with this setup are

provided in Figure 5.6. The reader should notice that the points are only retrieved

as specified in Figure 5.5, i.e., at the exact time, it is needed to have a correct

co-simulation. For instance on Figure 5.6, we can see that a first paused was

realized by the overheat controller at time 2, i.e., which is the non-deterministic

time spent for the state machine to enter in the normalTemp state, where the guard

of output transition is evaluated and consequently the CPU temperature is read.

Then, pauses are realized every 5 seconds and every multiple of 3 (the reading

period in the first state of overHeatController). This way, we reduce the number of

communication points to their strict minimum to have a correct co-simulation

and we avoid the delays introduced by the classical sampling strategy.

Temperature (°C)
Time (s) CPU Box

0 20 20

2 20.33212 20.00001

5 20.82698 20.00009

8 21.31794 20.00023

10 21.64328 20.00035

11 21.80536 20.00042

14 22.28902 20.00067

15 22.44940 20.00076

17 22.76890 20.00097

20 23.24500 20.00133

Figure 5.6: Results obtained at the begin

of the co-simulation.

In the Figure 5.7, the first point in time is the one when the state machine switch

from the normalTemp state to the tooHot state. It occurred at the time 14679.

Consequently, as long as the state machine remains in this state, data are retrieved

every 5 seconds as specified in the temporal connectors and in the reading period

from the state machine. However, since the state machine entered in the tooHot
state at time 14679, then the simulation unit was paused after 5 seconds, i.e., at

https://gitlab.inria.fr/glose/cosim20-java
https://gitlab.inria.fr/glose/cosim20-java

5 Validation 108

14684, while the temporal connectors induce a pause every 5 seconds. We can see

here that the internal semantics of the simulation is consistently exposed and

took into consideration.

14680 14682 14684 14686 14688 14690 14692 14694
time (s)

60

65

70

75

80

85

te
m

pe
ra

tu
re

 (°
C)

cpuTemp
boxTemp

Temperature (°C)
Time (s) CPU Box

14679 85.00110 57.21210

14680 84.87561 57.21432

14684 84.37902 57.22311

14685 84.25629 57.22527

14689 83.77094 57.23384

14690 83.65101 57.23595

14694 83.17671 57.24429

Figure 5.7: Results obtained when the

controller enters in the tooHot state.

Finally, in Figure 5.8, the simulation is run for 8 hours and 20 minutes (30000

seconds). For this simulation, we obtained 15023 communication steps without

sacrificing accuracy over performance. If we were using a time-triggered interface

and allowed an error up to 100ms, then we would have 300’000 communication

steps and a loss of accuracy.

5.1.3 Discussion

We argued that the proposed interface is extendable, efficient, and intuitive to

use. In this section, we discuss some of these points according to our experiment

in implementing the API in the GEMOC studio.

Concerning the implementation of the predicates, two main points can be

addressed. First, its efficiency strongly relies on how the API is internally imple-

mented. In our case, we modified the code generation to generate a pause when

needed. For instance, for the Updated predicate, all assignments are instrumented

to create a pause. This has only a minor impact on performance. However, if the

implementation is done in a wrapper where all micro-steps are checked to see if

a variable has been updated, then the execution may suffer from a slowdown.

The same phenomenon happens for the Threshold predicate. If one samples the

variable to check the crossing, the execution will be slow down and the exact

point in time when the crossing occurs may be missed. It is better to inject the

actual zero crossings in the model (typically in the equation set) to ensure better

performance and accuracy. This is what is expected to be done in collaboration

with Safran. Also, the implementation of the predicatesmust follow the semantics

of the simulation unit. For instance, if a simulation unit is executing a model

developed in a synchronous language [183], then all the assignments should

NOT be caught since according to the synchronous semantics, data are latched

at specific points in time. In our implementation, we relied on annotations to

provide flexibility on the exposed semantics. Consequently, the tool developer is

in charge of providing the expected semantics.

Concerning the extension of the predicate, there are two minors points to take

care of. First, it is important to rely on a mechanism to clearly specify which

predicate is supported for a specific simulation unit. This may for instance be

done in an artifact equivalent of the FMI model description. Second, there is a

5 Validation 109

0 5000 10000 15000 20000 25000 30000
25

50

75

CP
UT

em
pe

ra
tu

re

0 5000 10000 15000 20000 25000 30000
0

5

10

CP
Uf

an
Sp

ee
d

0 5000 10000 15000 20000 25000 30000
time (s)

0.0

0.5

1.0

isS
to

pp
ed

0 5000 10000 15000 20000 25000 30000
time (s)

20

40

60

Bo
xT

em
pe

ra
tu

re

Figure 5.8: Results obtained when running the coordination algorithm.

risk of an uncontrolled evolution of predicates, leading to a predicate tower of

Babel. This is a long-term issue and we believe there are few risks it happens. If

the road to this situation is taken, it may be interesting to provide an official set

of predicate extension repository, where people can look for existing predicate

before creating their own and where all predicates are put together.

Concerning the size of the use-case, we choose to use a simple but representative

use-case to focus on the interactions between simulation units. It enables us

to study the specific behaviors and coordination models without introducing

the development complexity of an industrial use case. Due to our interest in

the coordination aspect of co-simulation, we propose to validate our approach

on a system that experiences all the coordination problems that we identify in

subsection 3.5.2.

5.2 Use Case: Fault Injection Simulation

In this use case, we extend the previous systems by adding a simulation unit

that injects in the system faulty values to test the behavior in case of a sensor

fault (see Figure 5.9). A first we introduce the main concepts of fault injection

and its application in the context of Model-Driven Engineering for co-simulation.

We then introduce the fault injector simulation unit written in Python that

implements an interpreter for a simple DSL to inject values into the co-simulation

at a specific point in time.

Fault Injection Fault injection is a testing approach to evaluate dependability.

In safety-critical CPS is an important phase of the development due to the high

impact in case of failure of the system, such as loss of human being life or

environmental damages. The Fault Injection techniques can be classified into

three categories based on their implementation: hardware-based, software-based,

and simulation-based.

Hardware-based fault injection approaches inject faults at the physical level

by changing environment parameters to examine their effects. The emulation

of real-life faults is done by disturbing the power supply, stuck-at transistors,

5 Validation 110

Figure 5.9: Overview of the system with a Fault Injector component.

creating external voltage or current changes, electromagnetic interference, or

heavy-ion radiation. For instance, the heavy-ion radiation induces changes in the

hardware at the memory level, such as in CPU registers or the main memory,

corrupting both program and data memory.

Software-based fault injection approaches inject faults into the software. In

contrast with hardware-based techniques, they do not require a physical device,

allowing less expensive tests. Moreover, they are used to test programs and

operating systems logic by introducing the fault injector in a layer between the

hardware and the OS for the former, and by embedding the fault injector into the

OS for the latter. Given the flexibility of software, different types of faults can

be injected, for instance, disturbances in conditions or flags, loss or duplicated

messages, memory faults, or errors in timing.

A fault injection tool can rely on a different trigger mechanism that produces an

artificial fault or error and inserts it into the normal co-simulation execution. In

particular, we take the classification given by [184], in which the authors classify

the fault injection approaches into three types:

I Execution-driven: It dynamically occurs at runtimedepending on the control

flow of the program;

I Location-based: It consists of writing values in specific memory locations in

order to corrupt it;

I Time-based: It occurs at runtime at a specific point in time or predetermined

intervals.

In particular, simulation-based fault injection approaches introduce faults into the

simulation unit that represents the system-under-test by changing parameters and

values. These approaches are used mainly in the context of embedded systems

where hardware models are written using Hardware Description Languages

(HDLs), such as Verilog [185] or VHDL [186] and hardware faults can be emulated

by injecting faults into the model. With the increasing interest in MDE and CPS,

this technique is then used to inject faults into models that conform to different

formalisms.

In this use-case, we use a model-based approach in which a SU injects faults at

specific points in time to test the resilience of the controllers to a faulty sensor as

shown in Figure 5.9.

The Fault Injector simulation unit is composed of a faults specification and an

interpreter written in Python. The faults specification is written using a simple

DSL that defines at which instant the defined variable changes its value (i. e.
time-based fault injection). The current version implements a stuck-at semantics.

For instance, Listing 5.8 drives the variable fanIsBroken to enable the fan at the

5 Validation 111

1 @0 fanIsBroken false

2 @1900 fanIsBroken true

Listing 5.8: Faults specification executed

by the fault injector SU.

1 load "CPUinBox.mbi"

2 load "FaultInjector.mbi"

3

4 Connector faultInjector

5 (from FaultInjector.fanIsBroken to

CPUinBox.fanIsBroken)

6 when value on FaultInjector.fanIsBroken has been

Updated

7 do

8 FaultInjector.fanIsBroken -> CPUinBox.fanIsBroken

Listing 5.9: MCL specification

representing the connector that defines

the coordination between the fault injector

simulation unit (FaultInjector) and theCPU

cooling system (CPUinBox).

beginning and then disable it when the internal time of the box reaches 1900

seconds.

Based on the previous example, we add a connector from the fault injector to

the box: the boolean piecewise-constant port fanIsBroken is connected with the

fanIsBroken input port exposed by the box. In this case, we take advantage of

the piecewise-constant data-nature and the interpreter capability to define a

connector that exploits the Updated event.

To support this scenario, we update the Modelica model that represents the box

with the CPU and the fan adding a thermal swith driven by the input variable

fanIsBroken (see Figure 5.10). It allows to disable or enable the fans according to

its boolean value.

In Figure 5.11, we show the results of the co-simulation of the system. In the

beginning, both fans are working normally: the temperature is under control

and it increases slowly. However, at the instant 1900, we inject a fault to simulate

that one of the fans breaks. Once applied, the temperature quickly increases

and it reaches the maximum allowed temperature. When the overheat controller

senses the maximum temperature, the fan is activated but it cannot lower the

temperature as done previously, as shown in Figure 5.8.

We illustrate a simple use-case but still representative: we introduce the support

to rapid prototype fault injection scenarios and we integrate a Python executable

module into the system and the Cosim20 framework thanks to the language

interoperability of the communication protocol.

5 Validation 112

Figure 5.10:Modelica model represeting

the box with a CPU and a fan system with

a fault injector capability. The fanIsBroken
input allows to enable or disable the fans

according to its boolean value.

0 1000 2000 3000 4000 5000

40

60

80

Te
m

pe
ra

tu
re

0 1000 2000 3000 4000 5000
0.0

0.5

1.0

fa
nI

sB
ro

ke
n

0 1000 2000 3000 4000 5000
time (s)

0.0

0.5

1.0

isS
to

pp
ed

Figure 5.11: Results obtained by applying

the fault at instant 1900, as specified in

Listing 5.8.

5 Validation 113

5.3 Conclusion

In this chapter, we have validated our framework by implementing two use-

cases: a CPU Cooling System that uses three types of connectors, and a CPU

Fault Injection System that enables injecting faults at runtime using a simple

DSL that uses a different connector in addition. We have shown that those

connectors can express a coordination model between cyber and physical models.

In particular, we have defined four main connectors: sample-rate, ready to read,

event-based, and updated. The first three connectors are used in the first use-case

that defines a heterogeneous coordination model by defining the interaction

among two Modelica models and a DSL model based on the Gemoc engine.

The last connector is used in the second use case where we add a Python-based

simulation unit that injects runtime faults.

For each use case, we have used the MCI and MCL specification to generate

the corresponding runtime framework. A simulation unit is handled by its

generated wrapper that contains a distributed coordination algorithm in charge

to coordinate the overall co-simulation. The communication among the simulation

unit is based on a communication protocol implemented using the∅MQprotocol

and the corresponding library.

In the next chapter, we conclude by summarizing the contributions of this thesis

and by giving some future perspectives on the thesis that could be a path to

continue this work.

Conclusion 6

6.1 Overview

The Cyber-Physical Systems development raises important challenges given by

the increasing complexity in systems themselves and their development pro-

cesses. In this thesis, we focused on the modeling phase of the development with

a particular focus on the integration of heterogeneous models. Co-simulation

techniques enable to validate and verify the emerging system in the early stage

of the development but few limitations may occur: the intrinsic heterogeneity

of CPS leads to the use of different specialized tools and languages, and the

cooperation among different stakeholders and enterprises rises concern for in-

tellectual property protection of the exchanged models. In the co-simulation

context, few solutions were proposed to tackle those problems and to allow

seamless collaboration and models exchange among entities (i. e. enterprises and
stakeholders): the FMI Standard and the HLA standard propose homogeneous

interfaces to co-simulation continuous and discrete-event based models, respec-

tively. However, in a Cyber-Physical System co-simulation, its heterogeneity limits

the usability of homogeneous co-simulation standards due to their limitation in

terms of adaptability and correctness.

We have illustrated the main semantics that composed Cyber-Physical systems

and the coordination semantics used to simulate and co-simulation those systems

in regards to their natural semantics. Both continuous-time based and discrete-

event based co-simulation approaches present limitations on the integration of

heterogeneous systems due to the semantics gap between the native semantics

and the adapted semantics.We have shown that this gap can lead to co-simulation

errors due to the semantics mismatch of the models. We have noted that the

current approaches rely on homogeneous interfaces and provides an adaptation

between the semantics. However, these approaches do not take into account

the native semantics of the models to define a coordination model capable to

correctly exploit the semantics elements of the underlying models.

In Software and System Engineering, coordination-oriented approaches pro-

posed to explicitly define the integration glue for models that conform to different

semantics. In particular, we have presented Architecture Description Languages

and Coordination Languages that focus on the expression of explicit coordina-

tion models between different computational entities. To be able to access the

underlying semantics, those languages rely on dedicated interfaces that expose

elements of the semantics and syntax of the models. We have noted that those

interfaces conform to specific semantics. For instance, the FMI Standard supports

only continuous-based models and the proposed interface enforces its semantics

to the underlying model semantics. In a heterogeneous context, the interface

must be able to express the heterogeneity of the system while ensuring the IP

protection of the model.

In this thesis, we proposed a framework dedicated to the modeling of co-

simulation. The framework is composed of two Domain-Specific Languages and

an Integrated Modeling Environment that embeds them. It provides textual

and visual editors with completion, syntax check, and graphical editing to

6 Conclusion 115

support the two proposed languages. MCL provides a set of rich connectors

enabling the definition of correct coordination between simulation units of

Cyber-Physical Systems. Based on these definitions, the framework is then able

to automatically generate code for a distributed co-simulation. The generated

code is based on point-to-point coordination between simulation units. A case

study shows the different benefits of the proposed framework. First, by proposing

appropriate connectors it allows the designer to define correct coordination, i. e.
coordination for which the co-simulation does not introduce unexpected delays.

This is important since early V&V should not be biased due to the co-simulation

framework. Second, it reduces the communication between the units to their strict

minimum to ensure correctness. Less communication means better simulation

performance. Finally, the high degree of automation in the framework removes

the time-consuming task of writing correct coordination.

6.2 Future works

Co-simulation Runtime Performance Despite not being our primary ob-

jective, the performance of the generate runtime architecture should be similar

to a custom-made solution, both distribute or not. In some cases where the

geographical distribution is not a constraint and the size of the system allows to

simulate it on a single machine, it makes sense to provide a local architecture or

a monolithic solution (a centralized coordinator).

A possible improvement is to take into consideration these constraints to generate

an optimal runtime architecture. It allows choosing which architecture best

suits the geographical, computational, and network constraints. Additionally,

the network overload should be taken into account to measure a more precise

performance gain or loss over the local deployment.

The allocation of resources and computational power should be also considered.

In a large system, an analysis on strongly connected simulation units must be

performed to allocate a single host or closed hosts to reduce the communication

over the network. This should be the case for physical systems where their

interactions strongly depend on each other.

Productivity The design and development of a coordination model is a chal-

lenging task. Different levels of abstractions, different semantics, different tools,

and languages can represent an obstacle to creating a correct coordination model.

For this reason, we abstract away any tool or language dependency providing an

agnostic DSL tailored for coordination modeling. In particular, our contribution

eases the design of heterogeneous and semantics aware coordination models

by giving the designer access to semantics-specific elements of each simulation

unit. These elements are then used to build semantics-aware connectors that

create semantics bridges across the simulation units. Connectors are then used

to generate a runnable co-simulation to verify and validate the overall system.

The emerging behavior can be analyzed using the tools provided by the Cosim20

framework, such as plotters, or by external tools that exploit the communication

layer. Furthermore, compared with other solutions that proposed a library for a

specific language, we ease the apprentice by giving an easy-to-learn language

specifically designed to support coordination modeling.

6 Conclusion 116

Runtime Coordination Algorithm We did not consider the initialization

problem. It can be studied as a separate problem, so the out-coming results

can be integrated into our proposition without losing their validity. Likewise,

it completes our proposition in order to have a functional solution ready to

be used in complex co-simulations. Furthermore, we did not exploit all the

properties of the simulator exposed in the interface. As the main improvement,

the generation should take them into account and generate a better performing

runtime algorithm.

Cosim20 IntegratedModeling Environment&Runtime Move to a Pub-

Sub network with a proxy: dynamic discovery is needed for large co-simulation.

Continuing to connect each subscriber to each publisher, the cost of avoiding

dynamic discovery gets higher. A simple solution is to add an intermediary

proxy: a static point in the network to which all nodes connect. Usually, this is

the role of a message broker, but ∅MQ does not come with a message broker.

The proxy opens an XSUB socket, an XPUB socket, and binds each to well-known

IP addresses and ports. Then, all other processes connect to the proxy, instead of

to each other. It becomes trivial to add more subscribers or publishers. We plan

also to add features in the IDE to represent the actual network and help in the

deployment of the different simulation units on the different nodes (according to

the expected number of communications between nodes).

Coordination pattern between languages The major drawback of our

approach is that the instantiation and binding of connector types are done

manually by the system designer. With the increasing number and heterogeneity

of the components, this task can quickly become difficult and error-prone. For

instance, Coordination Frameworks approaches [14, 187–189] identified that the

instantiation and binding of connector types can be a systematic activity the

system designer repeats many times and can consequently be defined as a pattern.

Such a pattern is based on the know-how of the system designer and sometimes

on naming or organizational conventions adopted by the models. Thus, they

have captured the specification of such a behavioral coordination pattern into a

tool to automate the instantiation and binding of connector types. They specify

the coordination between heterogeneous languages instead of specifying it

between particular models. Such specification is then applied to a set of models

to automatically instantiate a set of connector types and bind their instances. We

plan to focus on how a particular coordination pattern is captured by specifying

the coordination between a set of heterogeneous languages using a coordination

framework. Finally, we plan to propose the definition of coordination pattern

between language behavioral interface to enable the automatic generation of

coordination model based on “good practice” (inspired by [25]).

Appendix

Appendix A

A.1 Detailed MCILang language class-diagram

A Appendix 119

Figure A.1: ECore class diagram for the

MCILang language.

A Appendix 120

A.2 Java class for the wrapper of the Box with

CPU and Fan

1 package CoSim20GeneratedSystem ;

2

3 import f r . i n r i a . g lose . cosim20 . ∗ ;
4 import f r . i n r i a . g lose . cosim20 . i n t e r f a c e s . ∗ ;
5 import org . e c l i p s e . gemoc . execut ion . commons . commands . ∗ ;
6 import org . e c l i p s e . gemoc . execut ion . commons . pred i ca t e s . ∗ ;
7 import java . io . IOException ;

8 import f r . i n r i a . g lose . cosim20 .CONFIG;

9

10 import java . io . F i l e ;

11 import java . io . FileNotFoundException ;

12 import java . io . IOException ;

13 import java . io . Pr in tWr i te r ;

14 import java . math . BigDecimal ;

15 import java . u t i l . Arrays ;

16 import java . u t i l . ArrayList ;

17 import java . u t i l . concurrent . TimeUnit ;

18

19 publ ic c l a s s BoxBI extends Coord ina t ionIn te r face {

20 // FMI Standard s p e c i f i c va r i ab l e s

21 double s tar tTime = 0 . 0 ;

22 double stopTime = CONFIG. EndOfSimulation . doubleValue () ;

23 S t r ing fmuPath =

" s r c/ t e s t /resources/CPUinBoxWithFanHeatModel . fmu" ;

24

25 publ ic Port isStopped = new FollowerPort (

26 " CPUprotection : : switchCPUState " ,

27 " isStopped " ,

28 "CTRL" ,

29 f a l s e) ;

30 publ ic Port CPUTemperatureForController = new FollowerPort (

31 " CPUTemperatureForController " ,

32 "CPUTemperature " ,

33 "CTRL" ,

34 0 . 0) ;

35 publ ic Port CPUTemperatureForPID = new I n i t i a t o r P o r t (

36 "CPUTemperatureForPID " ,

37 "CPUTemperature " ,

38 "CTRL" ,

39 0 . 0) ;

40 publ ic Port BoxTemperature = new FollowerPort (

41 " BoxTemperature " ,

42 " BoxTemperature " ,

43 " TestBox " ,

44 25) ;

45 publ ic Fo l lowerDetermin is t i cPor t CPUfanSpeed = new

Fol lowerDetermin is t i cPor t (

46 "CPUfanSpeed " ,

47 "CPUfanSpeed " ,

48 "PID" ,

49 0 ,

50 new TemporalPredicate (5)) ;

51

52 publ ic BoxBI () {

53 super ("Box " , " l o c a l ho s t " , 26001 , 26101 , 2 , 2) ;

54

55 // Setup the FMI model

56 model = new FMIInter face (fmuPath , startTime , stopTime) ;

57

58 // Connector between Box CPUTemperature −> PIDControl ler

using dt = 5 seconds

59 i n i t i a t o r P o r t s . add (CPUTemperatureForPID) ;

A Appendix 121

60 todo . add (new Per iodicAct ion (Action . TypeOfAction . PUBLISH ,

CPUTemperatureForPID , " tcp :// l o c a lho s t :26001 " , now, new

TemporalPredicate (5))) ;

61 // Connector between Cont ro l l e r −> Box using Updated

condi t ion

62 fo l lowerPor t s . add (isStopped) ;

63 // Connector between Test −> Box using dt (f i xed in t h i s

example)

64 fo l lowerPor t s . add (BoxTemperature) ;

65 // Connector between Box −> Cont ro l l e r using R2R condi t ion

on Cont ro l l e r

66 fo l lowerPor t s . add (CPUTemperatureForController) ;

67 // Connector between PID and Box using dt = 5

68 f o l l owerDe te rmin i s t i cPor t s . add (CPUfanSpeed) ;

69

70 portMap . put (" CPUprotection : : switchCPUState " , isStopped) ;

71 portMap . put (" CPUprotection : : cpuTemperature " ,

CPUTemperatureForController) ;

72 portMap . put ("CPUTemperature " , CPUTemperatureForPID) ;

73 portMap . put (" BoxTemperature " , BoxTemperature) ;

74 portMap . put ("CPUfanSpeed " , CPUfanSpeed) ;

75

76 // Set the input ports

77 addNewInputPort (" CPUprotection : : switchCPUState " ,

" tcp :// l o c a lho s t :26000 " , " tcp :// l o c a lho s t :26100 ") ;

78 addNewInputPort (" CPUprotection : : cpuTemperature " ,

" tcp :// l o c a lho s t :26000 " , " tcp :// l o c a lho s t :26100 ") ;

79 addNewInputPort ("CPUfanSpeed " , " tcp :// l o c a lho s t :26003 " ,

" tcp :// l o c a lho s t :26103 ") ;

80

81 model . s e t (BoxTemperature . associatedModelVariableName , 25) ;

82 model . s e t (CPUfanSpeed . associatedModelVariableName , 0) ;

83 model . s e t (isStopped . associatedModelVariableName , f a l s e) ;

84 }

85 @Override

86 publ ic void onTime (Action currentAction , StopCondition sr) {

87 i f (now. compareTo (currentAct ion . temporalHorizon) == 0) {

88 // Execute the corresponding ac t ion

89 i f (currentAct ion . port . compareTo (CPUfanSpeed) == 0) {

90 model . s e t (CPUfanSpeed . associatedModelVariableName ,

(Double) currentAct ion . getValue ()) ;

91 } e l s e i f (currentAct ion . port . compareTo (isStopped) == 0) {

92 model . s e t (isStopped . associatedModelVariableName ,

(Boolean) currentAct ion . getValue ()) ;

93 } e l s e i f (currentAct ion . port . compareTo (BoxTemperature) ==

0) {

94 model . s e t (BoxTemperature . associatedModelVariableName ,

(Double) currentAct ion . getValue ()) ;

95 } e l s e i f

(currentAct ion . port . compareTo (CPUTemperatureForController)

== 0) {

96 double temperature =

97 (double) model . get (

98

CPUTemperatureForController . associatedModelVariableName) ;

99 publish (CPUTemperatureForController , temperature , now) ;

100 } e l s e i f

(currentAct ion . port . compareTo (CPUTemperatureForPID) == 0) {

101 double temperature =

102 (double) model . get (

103

CPUTemperatureForController . associatedModelVariableName) ;

104 publish (CPUTemperatureForPID , (double) temperature ,

now) ;

105 }

106

107 currentAct ion . setDone () ;

A Appendix 122

108 i f (currentAct ion ins t anceo f Per iodicAct ion) {

109 todo . add (new Per iodicAct ion (currentAct ion . typeOfAction ,

currentAct ion . port , currentAct ion . hostSource , now,

((Per iodicAct ion) currentAct ion) . getTemporalPredicate ())) ;

110 }

111 }

112 }

113

114 @Override

115 publ ic void onEvent (Action currentAction , StopCondition sr) { }

116

117 @Override

118 publ ic void onReadyToRead (Action currentAction , StopCondition

sr) { }

119

120 @Override

121 publ ic void onUpdated (Action currentAction , StopCondition sr)

{ }

122

123 @Override

124 publ ic void onSync (Action currentAct ion) {

125 onTime (currentAct ion , nu l l) ;

126 }

127

128 @Override

129 publ ic void onEnd () { }

130

131 @Override

132 publ ic Coordinat ionPredicate s e t I n i t i a t o r s P r e d i c a t e () {

133 re turn nul l ;

134 }

135 }

A.3 Java class for the wrapper of the Heat

controller

1 package CoSim20GeneratedSystem ;

2

3 import f r . i n r i a . g lose . cosim20 . ∗ ;

4 import f r . i n r i a . g lose . cosim20 . i n t e r f a c e s . ∗ ;

5 import org . e c l i p s e . gemoc . execut ion . commons . commands . ∗ ;

6 import org . e c l i p s e . gemoc . execut ion . commons . pred i ca t e s . ∗ ;

7 import java . io . IOException ;

8 import f r . i n r i a . g lose . cosim20 .CONFIG;

9

10 import java . io . F i l e ;

11 import java . io . FileNotFoundException ;

12 import java . io . IOException ;

13 import java . io . Pr in tWr i te r ;

14 import java . math . BigDecimal ;

15 import java . u t i l . Arrays ;

16 import java . u t i l . ArrayList ;

17 import java . u t i l . concurrent . TimeUnit ;

18

19 publ ic c l a s s OverHeatController extends Behav io ra l In t e r f a c e {

20 publ ic Port SwitchCPUState_ctrl2box = new I n i t i a t o r P o r t (

21 " SwitchCPUState_ctrl2box " ,

22 " CPUprotection : : switchCPUState " ,

23 "CPUinBox" ,

24 f a l s e) ;

25 publ ic Port CPUTemperature_box2ctrl = new I n i t i a t o r P o r t (

26 " CPUTemperature_box2ctrl " ,

27 " CPUprotection : : cpuTemperature " ,

28 "CPUinBox" ,

A Appendix 123

29 25) ;

30

31 publ ic OverHeatController () {

32 super (

33 " overHeatControl ler " ,

34 " l o c a l ho s t " ,

35 38237 ,

36 36751 ,

37 0 ,

38 2) ;

39 // −−−
40 // I n i t i a l i z e the model

41 // −−−
42 t h i s . model = new GemocInterface (

43 " s r c/ t e s t /resources/overHeatControler . j a r " ,

44 " l o c a l ho s t " ,

45 39635) ;

46 i n i t i a t o r P o r t s = new ArrayList < >() ;

47 fo l lowerPor t s = new ArrayList < >() ;

48 f o l l owerDe te rmin i s t i cPor t s = new ArrayList < >() ;

49

50 i n i t i a t o r P o r t s . add (SwitchCPUState_ctrl2box) ;

51 i n i t i a t o r P o r t s . add (CPUTemperature_box2ctrl) ;

52

53 portMap . put (" i sS topped_ctr l2box " , SwitchCPUState_ctrl2box) ;

54 portMap . put (" SwitchCPUState_ctrl2box " ,

SwitchCPUState_ctrl2box) ;

55 portMap . put (" CPUprotection : : switchCPUState " ,

SwitchCPUState_ctrl2box) ;

56 portMap . put (" CPUTemperature_box2ctrl " ,

CPUTemperature_box2ctrl) ;

57 portMap . put (" CPUprotection : : cpuTemperature " ,

CPUTemperature_box2ctrl) ;

58

59 addNewInputPort (

60 " CPUTemperature_box2ctrl " ,

61 " tcp :// l o c a lho s t : 4 1789 " ,

62 " tcp :// l o c a lho s t : 4 1989 ") ;

63

64 model . s e t (" CPUprotection : : cpuTemperature : : currentValue " , 25) ;

65 }

66

67 @Override

68 publ ic void onTime (Action currentAction , StopCondition sr) {

69 i f (now. compareTo (currentAct ion . temporalHorizon) == 0) {

70 // Execute the corresponding ac t ion

71 i f

(currentAct ion . port . ID . compareTo (SwitchCPUState_ctrl2box . ID)

== 0) {

72 boolean value = (boolean)

SwitchCPUState_ctrl2box . getValue () ;

73 publish (SwitchCPUState_ctrl2box , value , now) ;

74 }

75 // Execute the corresponding ac t ion

76 i f

(currentAct ion . port . ID . compareTo (CPUTemperature_box2ctrl . ID)

== 0) {

77 BigDecimal temp = new

BigDecimal (currentAct ion . getValue () . t oS t r ing ()) ;

78 i n t value = temp . intValue () ;

79 model . s e t (" CPUprotection : : cpuTemperature : : currentValue " ,

value) ;

80 }

81 // Remove the current ac t ion from the to−do l i s t

82 currentAct ion . setDone () ;

83 i f (currentAct ion ins t anceo f Per iodicAct ion) {

84 todo . add (

A Appendix 124

85 new Per iodicAct ion (

86 currentAct ion . typeOfAction , currentAct ion . port ,

currentAct ion . hostSource , now, ((Per iodicAct ion)

currentAct ion) . getTemporalPredicate ())) ;

87 }

88 }

89 }

90

91 @Override

92 publ ic void onEvent (Action currentAction , StopCondition sc) {

93 SwitchCPUState_ctrl2box . setValue (! ((boolean)

SwitchCPUState_ctrl2box . getValue ())) ;

94 boolean value = (boolean) SwitchCPUState_ctrl2box . getValue () ;

95 publish (SwitchCPUState_ctrl2box , value ,

U t i l s . toBigDecimal (sc . timeValue)) ;

96 }

97

98 @Override

99 publ ic void onReadyToRead (Action currentAction , StopCondition

sc) {

100 r e t r i e v e (portMap . get (sc . objectQualif iedName) , now) ;

101 currentAct ion . setDone () ;

102 }

103

104 @Override

105 publ ic void onUpdated (Action currentAction , StopCondition sc)

{ }

106

107 @Override

108 publ ic void onSync (Action currentAct ion) {

109 onTime (currentAct ion , nu l l) ;

110 }

111

112 @Override

113 publ ic Coordinat ionPredicate s e t I n i t i a t o r s P r e d i c a t e () {

114 EventPredicate SwitchCPUState_ctr l2box_predicate = new

EventPredicate (" occurs " , " CPUprotection : : switchCPUState ") ;

115 ReadyToReadPredicate CPUTemperature_box2ctrl_predicate = new

ReadyToReadPredicate (" currentValue " ,

" CPUprotection : : cpuTemperature ") ;

116 BinaryPredica te b inaryPredica te0 = new BinaryPredica te (

117 SwitchCPUState_ctr l2box_predicate ,

CPUTemperature_box2ctrl_predicate ,

B inaryPredica te . BooleanBinaryOperator .OR) ;

118 re turn binaryPredica te0 ;

119 }

120

121 @Override

122 publ ic void onEnd () { }

123 }

Bibliography

References in citation order.

[1] Edward A Lee. ‘Cyber physical systems: Design challenges’. In: Object Oriented Real-Time Distributed
Computing (ISORC), 2008 11th IEEE International Symposium on. IEEE. 2008, pp. 363–369 (cited on

page 1).

[2] Stefan Klikovits, Rima Al-Ali, Moussa Amrani, Ankica Barisic, Fernando Barros, Dominique Blouin,

Etienne Borde, Didier Buchs, Holger Giese, Miguel Goulão, Mauro Iacono, Florin Leon, Eva Navarro,

Patrizio Pelliccione, and Ken Vanherpen. State-of-the-art on Current Formalisms used in Cyber-Physical
Systems Development. Jan. 2019. doi: 10.5281/zenodo.2533455 (cited on page 1).

[3] Harinder Jagdev and Jim Browne. ‘The Extended Enterprise - A Context for Manufacturing’. In:

Production Planning & Control - PRODUCTION PLANNING CONTROL 9 (Apr. 1998), pp. 216–229. doi:

10.1080/095372898234190 (cited on pages 2, 11).

[4] Modelisar. FMI for Model Exchange and Co-Simulation. July 2014. url: https://fmi-standard.org/

downloads%5C#version2 (cited on pages 2, 3, 16, 20, 22, 24, 33, 36, 40, 42–45, 48, 49, 52, 53, 57, 60, 63,

70, 81).

[5] Judith S Dahmann. ‘High level architecture for simulation’. In: Proceedings First International Workshop
on Distributed Interactive Simulation and Real Time Applications. IEEE. 1997, pp. 9–14 (cited on page 2).

[6] Jens Bastian, Christoph Clauß, Susann Wolf, and Peter Schneider. ‘Master for Co-Simulation Using

FMI’. In: 8th International Modelica Conference. 2011 (cited on pages 2, 23, 58, 59).

[7] Tom Schierz, Martin Arnold, and Christoph Clauß. ‘Co-simulation with communication step size

control in an FMI compatible master algorithm’. In: Proceedings of the 9th International MODELICA
Conference; Munich; Germany. 076. Linköping University Electronic Press. 2012, pp. 205–214 (cited on

pages 2, 23, 58).

[8] David Broman, Lev Greenberg, Edward A. Lee, Michael Masin, Stavros Tripakis, and Michael Wetter.

‘Requirements for Hybrid Cosimulation Standards’. In: Proceedings of the 18th International Conference
on Hybrid Systems: Computation and Control. HSCC ’15. Seattle, Washington: Association for Computing

Machinery, 2015, pp. 179–188. doi: 10.1145/2728606.2728629 (cited on pages 2, 3, 33, 45, 64, 81).

[9] David Broman, Christopher Brooks, Lev Greenberg, Edward A Lee, Michael Masin, Stavros Tripakis,

and Michael Wetter. ‘Determinate composition of FMUs for co-simulation’. In: Proceedings of the
Eleventh ACM International Conference on Embedded Software. IEEE Press. 2013, p. 2 (cited on pages 2, 15,

22, 23, 45, 52, 58).

[10] Julien Deantoni, Cédric Brun, Benoît Caillaud, Robert France, Gabor Karsai, Oscar Nierstrasz,

and Eugene Syriani. ‘Domain Globalization: Using Languages to Support Technical and Social

Coordination’. In: Globalizing Domain-Specific Languages. Ed. by Combemale, Benoit, Cheng, Betty H.C.,

France, Robert B., Jézéquel, Jean-Marc, Rumpe, and Bernhard. Vol. 9400. Lecture Notes in Computer

Science. Springer International Publishing, 2015, pp. 70–87. doi: 10.1007/978-3-319-26172-0_5

(cited on page 2).

[11] Giovanni Liboni, Julien Deantoni, Antonio Portaluri, Davide Quaglia, and Robert De Simone. ‘Beyond

Time-Triggered Co-simulation of Cyber-Physical Systems for Performance and Accuracy Improve-

ments’. In: 10th Workshop on Rapid Simulation and Performance Evaluation: Methods and Tools. Manchester,

United Kingdom, Jan. 2018 (cited on pages 2, 3, 5, 17, 24, 31, 32, 57, 58, 61, 62, 65, 81, 104).

[12] Sadaf Mustafiz, Cláudio Gomes, Hans Vangheluwe, and Bruno Barroca. ‘Modular design of hybrid

languages by explicit modeling of semantic adaptation’. In: 2016 Symposium on Theory of Modeling and
Simulation (TMS-DEVS). Apr. 2016, pp. 1–8. doi: 10.23919/TMS.2016.7918835 (cited on pages 2, 20,

30, 59, 61).

https://doi.org/10.5281/zenodo.2533455
https://doi.org/10.1080/095372898234190
https://fmi-standard.org/downloads%5C#version2
https://fmi-standard.org/downloads%5C#version2
https://doi.org/10.1145/2728606.2728629
https://doi.org/10.1007/978-3-319-26172-0_5
https://doi.org/10.23919/TMS.2016.7918835

[13] Cláudio Gomes, Casper Thule, David Broman, Peter Gorm Larsen, and Hans Vangheluwe. ‘Co-

simulation: a Survey’. In: ACM Computing Surveys 51.3 (2018), Article 49. doi: 10.1145/3179993 (cited

on page 2).

[14] Johan Eker, Jorn W Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef Ludvig, Sonia Sachs, Yuhong

Xiong, and Stephen Neuendorffer. ‘Taming heterogeneity - the Ptolemy approach’. In: Proceedings of
the IEEE 91.1 (2003), pp. 127–144 (cited on pages 3, 15, 20, 33, 50, 116).

[15] Bert Van Acker, Joachim Denil, Hans Vangheluwe, and Paul De Meulenaere. ‘Generation of an

Optimised Master Algorithm for FMI Co-simulation’. In: Proceedings of the Symposium on Theory of
Modeling & Simulation: DEVS Integrative M&S Symposium. DEVS ’15. Alexandria, Virginia: Society for

Computer Simulation International, 2015 (cited on pages 3, 22, 23, 58).

[16] Stavros Tripakis, David Broman, and Computer Sciences. Bridging the Semantic Gap Between Heteroge-
neous Modeling Formalisms and FMI. Tech. rep. 2014 (cited on pages 3, 81).

[17] Casper Thule, CláudioGomes, JulienDeantoni, Peter GormLarsen, Jörg Brauer, andHansVangheluwe.

‘Towards the Verification of Hybrid Co-simulation Algorithms’. In: Workshop on Formal Co-Simulation
of Cyber-Physical Systems (SEFM satellite). Toulouse, France, June 2018 (cited on pages 3, 57, 58).

[18] Jean-Philippe Tavella, Mathieu Caujolle, Stephane Vialle, Cherifa Dad, Charles Tan, Gilles Plessis,

Mathieu Schumann, Arnaud Cuccuru, and Sebastien Revol. ‘Toward an accurate and fast hybrid

multi-simulation with the FMI-CS standard’. In: 2016 IEEE 21st International Conference on Emerging
Technologies and Factory Automation (ETFA). 2016, pp. 1–5. doi: 10.1109/ETFA.2016.7733616 (cited on

pages 3, 32, 44, 48, 49, 57, 58).

[19] Jean-Philippe Tavella, Mathieu Caujolle, Charles Tan, Gilles Plessis, Mathieu Schumann, Stephane

Vialle, Cherifa Dad, Arnaud Cuccuru, and Sebastien Revol. ‘Toward an Hybrid Co-simulation with

the FMI-CS Standard’. In: 2016 (cited on pages 3, 24, 81).

[20] David Garlan and Mary Shaw. ‘Introduction to software architecture’. In: Advanced Topics in Science
and Technology in China January (1994), pp. 1–33. doi: 10.1007/978-3-540-74343-9_1 (cited on

page 4).

[21] Nenad Medvidovic and Richard N Taylor. ‘A framework for classifying and comparing architecture

description languages’. In: ACM SIGSOFT Software Engineering Notes 22.6 (1997), pp. 60–76 (cited on

pages 4, 35, 36, 58).

[22] George A Papadopoulos and Farhad Arbab. ‘Coordination models and languages’. In: Advances in
computers 46 (1998), pp. 329–400 (cited on pages 4, 58, 59).

[23] Edward A Lee and Alberto Sangiovanni-Vincentelli. ‘A framework for comparing models of com-

putation’. In: IEEE Transactions on computer-aided design of integrated circuits and systems 17.12 (1998),

pp. 1217–1229 (cited on pages 4, 60).

[24] Cécile Hardebolle and Frédéric Boulanger. ‘Modhel’x: A component-oriented approach to multi-

formalism modeling’. In: International Conference on Model Driven Engineering Languages and Systems.
Springer. 2007, pp. 247–258 (cited on pages 4, 60).

[25] Matias Ezequiel Vara Larsen, Julien Deantoni, Benoit Combemale, and Frédéric Mallet. ‘A Behavioral

Coordination Operator Language (BCOoL)’. In: International Conference on Model Driven Engineering
Languages and Systems (MODELS). Ed. by Timothy Lethbridge, Jordi Cabot, and Alexander Egyed. 18.

to be published in the proceedings of the Models 2015 conference. Ottawa, Canada: ACM, Sept. 2015,

p. 462 (cited on pages 4, 35, 50, 60, 116).

[26] Erwan Bousse, Thomas Degueule, Didier Vojtisek, Tanja Mayerhofer, Julien Deantoni, and Benoit

Combemale. ‘Execution framework of the gemoc studio (tool demo)’. In: Proceedings of the 2016 ACM
SIGPLAN International Conference on Software Language Engineering. ACM. 2016, pp. 84–89 (cited on

pages 4, 60, 84).

[27] Benoit Combemale, Julien Deantoni, Benoit Baudry, Robert B France, Jean-Marc Jézéquel, and JeffGray.

‘GlobalizingModelingLanguages’. In:Computer 47.6 (June 2014), pp. 68–71. doi:10.1109/MC.2014.147

(cited on pages 5, 11, 61).

https://doi.org/10.1145/3179993
https://doi.org/10.1109/ETFA.2016.7733616
https://doi.org/10.1007/978-3-540-74343-9_1
https://doi.org/10.1109/MC.2014.147

[28] Fabio Cremona, Marten Lohstroh, David Broman, Edward A. Lee, Michael Masin, and Stavros Tripakis.

‘Hybrid co-simulation: it’s about time’. In: Software & Systems Modeling 18.3 (2019), pp. 1655–1679. doi:

10.1007/s10270-017-0633-6 (cited on pages 6, 24, 33).

[29] International Council on Systems Engineering, ed. INCOSE Systems Engineering Handbook. Vol. 2.0.
2000 (cited on page 9).

[30] Joel Moses. ‘Flexibility and Its Relation to Complexity and Architecture’. In: Complex Systems Design &
Management. Ed. by Marc Aiguier, Francis Bretaudeau, and Daniel Krob. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2010, pp. 197–206 (cited on page 9).

[31] Julio M Ottino. ‘Engineering complex systems’. In: Nature 427.6973 (2004), pp. 399–399. doi: 10.1038/

427399a (cited on page 10).

[32] Nicolai Pedersen., Kenneth Lausdahl., Enrique Vidal Sanchez., Peter Gorm Larsen., and Jan Madsen.

‘Distributed Co-Simulation of Embedded Control Software with Exhaust Gas Recirculation Water

Handling System using INTO-CPS’. In: Proceedings of the 7th International Conference on Simulation and
Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH, INSTICC. SciTePress,

2017, pp. 73–82. doi: 10.5220/0006412700730082 (cited on page 10).

[33] Cláudio Gomes, Hans Vangheluwe, and Paul DeMeulenaere. ‘Property preservation in co-simulation’.

PhD thesis. Ph. D. thesis, University of Antwerp, 2019 (cited on pages 10, 15).

[34] Getachew F. Belete, Alexey Voinov, and Gerard F. Laniak. ‘An overview of the model integration

process: From pre-integration assessment to testing’. In: Environmental Modelling Software 87 (2017),
pp. 49–63. doi: https://doi.org/10.1016/j.envsoft.2016.10.013 (cited on page 10).

[35] Jonathan L. Goodall, Bella F. Robinson, and Anthony M. Castronova. ‘Modeling water resource

systems using a service-oriented computing paradigm’. In: Environmental Modelling Software 26.5
(2011), pp. 573–582. doi: https://doi.org/10.1016/j.envsoft.2010.11.013 (cited on page 10).

[36] Bernd Neumayr, Michael Schrefl, and Bernhard Thalheim. ‘Modeling Techniques for Multi-level

Abstraction’. In: Jan. 2008, pp. 68–92. doi: 10.1007/978-3-642-17505-3_4 (cited on page 10).

[37] Heejung Chang and Kangsun Lee. ‘Applying Web Services and Design Patterns to Modeling and

Simulating Real-World Systems’. In: Artificial Intelligence and Simulation. Ed. by Tag Gon Kim. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2005, pp. 351–359 (cited on page 10).

[38] Vadim Lisitsa, Vladimir Cheverda, and V. Volianskaia. ‘Numerical Simulation of Geological Faults by

Discrete Elements Method’. In: June 2019. doi: 10.3997/2214-4609.201901680 (cited on page 10).

[39] John A. Stankovic. ‘Misconceptions about real-time computing: a serious problem for next-generation

systems’. In: Computer 21.10 (1988), pp. 10–19. doi: 10.1109/2.7053 (cited on page 11).

[40] Gabor Karsai, Janos Sztipanovits, Akos Ledeczi, and Ted Bapty. ‘Model-integrated development of

embedded software’. In: Proceedings of the IEEE 91.1 (2003), pp. 145–164 (cited on page 11).

[41] Severin Sadjina, Lars Tandle Kyllingstad, Martin Rindarøy, Stian Skjong, Vilmar Æsøy, and Eilif

Pedersen. ‘Distributed Co-simulation of Maritime Systems and Operations’. In: Journal of Offshore
Mechanics and Arctic Engineering 141.1 (Sept. 2018). 011302. doi: 10.1115/1.4040473 (cited on pages 11,

52).

[42] Robert M Argent. ‘An overview of model integration for environmental applications–components,

frameworks and semantics’. In: Environmental Modelling Software 19.3 (2004). Concepts, Methods and

Applications in Environmental Model Integration, pp. 219–234. doi: https://doi.org/10.1016/

S1364-8152(03)00150-6 (cited on page 11).

[43] W Ross Ashby. An introduction to cybernetics. Chapman & Hall Ltd, 1961 (cited on page 12).

[44] BOSE Debayan. ‘Component Based Development-Application In Software Engineering’. In: Indian
Statistical Institute (2011) (cited on page 12).

[45] Jean Bézivin and Olivier Gerbé. ‘Towards a precise definition of the OMG/MDA framework’. In: Dec.

2001, pp. 273–280. doi: 10.1109/ASE.2001.989813 (cited on page 12).

[46] Jean Bézivin. ‘From Object Composition to Model Transformation with the MDA.’ In: Jan. 2001,

pp. 350–354. doi: 10.1109/TOOLS.2001.10021 (cited on page 12).

https://doi.org/10.1007/s10270-017-0633-6
https://doi.org/10.1038/427399a
https://doi.org/10.1038/427399a
https://doi.org/10.5220/0006412700730082
https://doi.org/https://doi.org/10.1016/j.envsoft.2016.10.013
https://doi.org/https://doi.org/10.1016/j.envsoft.2010.11.013
https://doi.org/10.1007/978-3-642-17505-3_4
https://doi.org/10.3997/2214-4609.201901680
https://doi.org/10.1109/2.7053
https://doi.org/10.1115/1.4040473
https://doi.org/https://doi.org/10.1016/S1364-8152(03)00150-6
https://doi.org/https://doi.org/10.1016/S1364-8152(03)00150-6
https://doi.org/10.1109/ASE.2001.989813
https://doi.org/10.1109/TOOLS.2001.10021

[47] Jean Bézivin. ‘Model Driven Engineering: An Emerging Technical Space’. In: vol. 4143. Jan. 2005,

pp. 36–64. doi: 10.1007/11877028_2 (cited on page 12).

[48] Vicente García Díaz, Edward Núñez Valdez, Jordán Espada, B. Pelayo García-Bustelo, Juan Cueva

Lovelle, and Carlos Marín. ‘A brief introduction to model-driven engineering’. In: 18 (Apr. 2014),

pp. 127–142 (cited on pages 12, 13).

[49] Alberto Rodrigues da Silva. ‘Model-driven engineering: A survey supported by the unified conceptual

model’. In: Computer Languages, Systems & Structures 43 (2015), pp. 139–155. doi: https://doi.org/

10.1016/j.cl.2015.06.001 (cited on page 12).

[50] Object Management Group. Object Management Group. http://www.omg.org/. Nov. 2020 (cited on

page 12).

[51] Denis Merigoux, Raphaël Monat, and Jonathan Protzenko. A Modern Compiler for the French Tax Code.
2020 (cited on page 12).

[52] Douglas C. Schmidt. ‘Guest Editor’s Introduction: Model-Driven Engineering’. In: Computer 39.2
(2006), pp. 25–31. doi: 10.1109/MC.2006.58 (cited on page 13).

[53] Gordon D Plotkin. ‘A structural approach to operational semantics’. In: (1981) (cited on page 13).

[54] Robert W Floyd. ‘Assigning meanings to programs’. In: Program Verification. Springer, 1993, pp. 65–81
(cited on page 13).

[55] Robert D. Tennent. ‘The Denotational Semantics of Programming Languages’. In: Commun. ACM 19.8

(Aug. 1976), pp. 437–453. doi: 10.1145/360303.360308 (cited on page 13).

[56] Frank Budinsky, Raymond Ellersick, David Steinberg, Timothy J Grose, and EdMerks. Eclipse modeling
framework: a developer’s guide. Addison-Wesley Professional, 2004 (cited on page 13).

[57] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. ‘ATL: A model transformation tool’.

In: Science of computer programming 72.1-2 (2008), pp. 31–39 (cited on page 14).

[58] Krzysztof Czarnecki and Simon Helsen. ‘Classification of model transformation approaches’. In:

Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the Context of the Model Driven
Architecture. Vol. 45. 3. USA. 2003, pp. 1–17 (cited on page 14).

[59] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. EMF: eclipse modeling framework.
Pearson Education, 2008 (cited on pages 14, 50).

[60] Zoé Drey, Cyril Faucher, Franck Fleurey, Vincent Mahé, and Didier Vojtisek. ‘Kermeta language’. In:

Reference Manual (2009) (cited on page 15).

[61] Jeff C Jensen, Danica H Chang, and Edward A Lee. ‘A model-based design methodology for cyber-

physical systems’. In: 2011 7th International Wireless Communications and Mobile Computing Conference.
2011, pp. 1666–1671. doi: 10.1109/IWCMC.2011.5982785 (cited on page 15).

[62] Gabor Karsai, Andras Lang, and Sandeep Neema. ‘Design patterns for open tool integration’. In:

Software & Systems Modeling 4.2 (2005), pp. 157–170 (cited on page 15).

[63] Andreas Himmler. ‘Hardware-in-the-Loop Technology Enabling Flexible Testing Processes’. In: Jan.

2013. doi: 10.2514/6.2013-816 (cited on page 15).

[64] Ming-chin Wu and Ming-chang Shih. ‘Simulated and experimental study of hydraulic anti-lock

braking system using sliding-mode PWM control’. In: Mechatronics 13.4 (2003), pp. 331–351. doi:

https://doi.org/10.1016/S0957-4158(01)00049-6 (cited on page 15).

[65] Enrico Fraccaroli, Michele Lora, Sara Vinco, Davide Quaglia, and Franco Fummi. ‘Integration of

mixed-signal components into virtual platforms for holistic simulation of smart systems’. In: 2016
Design, Automation Test in Europe Conference Exhibition (DATE). 2016, pp. 1586–1591 (cited on page 15).

[66] ITEA3 project.Modelisar. https://itea3.org/project/modelisar.html (cited on page 16).

[67] Torsten Blochwitz,MartinOtter,MartinArnold, Constanze Bausch, ChristophClauß,HildingElmqvist,

Andreas Junghanns, Jakob Mauss, Manuel Monteiro, Thomas Neidhold, Dietmar Neumerkel, Hans

Olsson, Jörg-Volker Peetz, and Susann Wolf. ‘The Functional Mockup Interface for Tool independent

Exchange of Simulation Models’. In: Mar. 2011, pp. 105–114. doi: 10.3384/ecp11063105 (cited on

pages 16, 42).

https://doi.org/10.1007/11877028_2
https://doi.org/https://doi.org/10.1016/j.cl.2015.06.001
https://doi.org/https://doi.org/10.1016/j.cl.2015.06.001
http://www.omg.org/
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1145/360303.360308
https://doi.org/10.1109/IWCMC.2011.5982785
https://doi.org/10.2514/6.2013-816
https://doi.org/https://doi.org/10.1016/S0957-4158(01)00049-6
https://itea3.org/project/modelisar.html
https://doi.org/10.3384/ecp11063105

[68] T. Blochwitz, Martin Otter, Johan Åkesson, Martin Arnold, C. Clauß, Hilding Elmqvist, Markus

Friedrich, Andreas Junghanns, Jakob Mauss, Dietmar Neumerkel, Hans Olsson, and Antoine Viel.

‘Functional Mockup Interface 2.0: The Standard for Tool independent Exchange of Simulation Models’.

In: Sept. 2012. doi: 10.3384/ecp12076173 (cited on pages 16, 42).

[69] Judith S. Dahmann, Richard M. Fujimoto, and Richard M. Weatherly. ‘The Department of Defense

High Level Architecture’. In: Proceedings of the 29th Conference on Winter Simulation. WSC ’97. Atlanta,

Georgia, USA: IEEE Computer Society, 1997, pp. 142–149. doi: 10.1145/268437.268465 (cited on

page 16).

[70] Judith S Dahmann, Richard M Fujimoto, and Richard M Weatherly. ‘The DoD high level architecture:

an update’. In: 1998 Winter Simulation Conference. Proceedings (Cat. No. 98CH36274). Vol. 1. IEEE. 1998,
pp. 797–804 (cited on page 16).

[71] IEEE Standards Association et al. ‘IEEE Standard for Modeling and Simulation (M&S) high level

architecture (HLA)–framework and rules’. In: Institute of Electrical and Electronics Engineers, New York.
IEEE Standard 1516-2010 (2010), pp. 10–1109 (cited on pages 16, 29, 45, 54).

[72] Stefano Centomo, Julien Deantoni, and Robert De Simone. ‘Using SystemC Cyber Models in an FMI

Co-Simulation Environment’. In: 19th Euromicro Conference on Digital System Design 31 August - 2
September 2016. Vol. 19. 19th Euromicro Conference on Digital System Design. Limassol, Cyprus, Aug.

2016. doi: 10.1109/DSD.2016.86 (cited on pages 17, 32, 58).

[73] Virginie Galtier, Michel Ianotto, Mathieu Caujolle, Rémi Corniglion, jean-philippe Tavella, Jose Evora-

Gomez, José Juan, Hernández Cabrera, Vincent Reinbold, and Enrique Kremers. ‘Experimenting with

Matryoshka Co-Simulation: Building Parallel and Hierarchical FMUs’. In: May 2017 (cited on pages 17,

31, 32, 53).

[74] Farhad Arbab, Ivan Herman, and Pål Spilling. ‘An overview of Manifold and its implementation’. In:

Concurrency: practice and experience 5.1 (1993), pp. 23–70 (cited on pages 20, 38).

[75] Sudhir Ahuja, NCurriero, andDavidGelernter. ‘Linda and Friends’. In:Computer 19.8 (1986), pp. 26–34.
doi: 10.1109/MC.1986.1663305 (cited on pages 20, 37, 39).

[76] Ananda Basu, Bensalem Bensalem, Marius Bozga, Jacques Combaz, Mohamad Jaber, Thanh-Hung

Nguyen, and Joseph Sifakis. ‘Rigorous component-based system design using the BIP framework’. In:

IEEE Software 28.3 (2011). cited By 164, pp. 41–48. doi: 10.1109/MS.2011.27 (cited on pages 20, 38–40,

59).

[77] Michael Tiller. Introduction to physical modeling with Modelica. Springer Science & Business Media, 2001

(cited on page 20).

[78] Edward A. Lee, Stephen Neuendorffer, and Gang Zhou. ‘Continuous-Time Models’. In: System Design,
Modeling, and Simulation using Ptolemy II. Ed. by Claudius Ptolemaeus. Ptolemy.org, 2014 (cited on

pages 20, 21).

[79] Sergio Blanes and Fernando Casas. A concise introduction to geometric numerical integration. CRC press,

2017 (cited on page 21).

[80] Uri M Ascher, Steven J Ruuth, and Raymond J Spiteri. ‘Implicit-explicit Runge-Kutta methods for

time-dependent partial differential equations’. In: Applied Numerical Mathematics 25.2-3 (1997), pp. 151–

167 (cited on page 21).

[81] Jonathan M. Blackledget. ‘Chapter 9 - Iterative Methods of Solution’. In: Digital Signal Processing
(Second Edition). Ed. by Jonathan M. Blackledget. Second Edition. Woodhead Publishing Series in

Electronic and Optical Materials. Woodhead Publishing, 2006, pp. 237–254. doi: https://doi.org/

10.1533/9780857099457.2.237 (cited on page 22).

[82] Carl Kelley. ‘Iterative Methods for Solving Linear and Nonlinear Equations’. In: SERBIULA (sistema
Librum 2.0) 16 (Jan. 1995). doi: 10.1137/1.9781611970944 (cited on page 22).

[83] Simon Thrane Hansen, Casper Thule, and Cláudio Gomes. ‘An FMI-Based Initialization Plugin for

INTO-CPS Maestro 2’. In: Software Engineering and Formal Methods. SEFM 2020 Collocated Workshops.
Ed. by Loek Cleophas andMiekeMassink. Cham: Springer International Publishing, 2021, pp. 295–310

(cited on page 22).

https://doi.org/10.3384/ecp12076173
https://doi.org/10.1145/268437.268465
https://doi.org/10.1109/DSD.2016.86
https://doi.org/10.1109/MC.1986.1663305
https://doi.org/10.1109/MS.2011.27
https://doi.org/https://doi.org/10.1533/9780857099457.2.237
https://doi.org/https://doi.org/10.1533/9780857099457.2.237
https://doi.org/10.1137/1.9781611970944

[84] Fabio Cremona, Marten Lohstroh, David Broman, Marco Di Natale, Edward A. Lee, and Stavros

Tripakis. ‘Step Revision in Hybrid Co-Simulation with FMI’. In: Proceedings of the 14th ACM-IEEE
International Conference on Formal Methods and Models for System Design. MEMOCODE ’16. Kanpur,

India: IEEE Press, 2016, pp. 173–183 (cited on pages 22, 32, 44).

[85] Cláudio Gomes, Casper Thule, P. Larsen, J. Denil, and H. Vangheluwe. ‘Co-simulation of Continuous

Systems: A Tutorial’. In: ArXiv abs/1809.08463 (2018) (cited on pages 22–24).

[86] David Broman, Edward A Lee, Stavros Tripakis, and Martin Törngren. ‘Viewpoints, formalisms,

languages, and tools for cyber-physical systems’. In: Proceedings of the 6th International Workshop on
Multi-Paradigm Modeling. 2012, pp. 49–54 (cited on page 23).

[87] Cláudio Gomes, Casper Thule, David Broman, Peter Larsen, and Hans Vangheluwe. ‘Co-simulation:

State of the art’. In: (Feb. 2017) (cited on pages 23, 67).

[88] Christian Andersson. ‘Methods and tools for co-simulation of dynamic systems with the functional

mock-up interface’. PhD thesis. Lund University, 2016 (cited on page 23).

[89] Christian Andersson, Claus Führer, and Johan Åkesson. ‘Efficient predictor for co-simulation with

multistep sub-system solvers’. In: Technical Report in Mathematical Sciences 2016.1 (2016) (cited on

page 23).

[90] Baobing Wang and John S. Baras. ‘HybridSim: A Modeling and Co-simulation Toolchain for Cyber-

physical Systems’. In: Proceedings of the 2013 IEEE/ACM 17th International Symposium on Distributed
Simulation and Real Time Applications. DS-RT ’13. Washington, DC, USA: IEEE Computer Society, 2013,

pp. 33–40. doi: 10.1109/DS-RT.2013.12 (cited on pages 23, 58).

[91] Vitaly Savicks, Michael Butler, and John Colley. ‘Co-simulating Event-B and continuous models via

FMI’. In: Proceedings of the 2014 Summer Simulation Multiconference. Society for Computer Simulation

International. 2014, p. 37 (cited on pages 23, 58).

[92] Himanshu Neema, Jesse Gohl, Zsolt Lattmann, Janos Sztipanovits, Gabor Karsai, Sandeep Neema,

Ted Bapty, John Batteh, Hubertus Tummescheit, and Chandraseka Sureshkumar. ‘Model-based

integration platform for FMI co-simulation and heterogeneous simulations of cyber-physical systems’.

In: Proceedings of the 10 th International Modelica Conference; Lund; Sweden. 096. Linköping University

Electronic Press. 2014, pp. 235–245 (cited on pages 23, 46, 58).

[93] Virginie Galtier, Stephane Vialle, Dad Cherifa, jean-philippe Tavella, Jean-Philippe Lam-Yee-Mui, and

Gilles Plessis. ‘FMI-based distributed multi-simulation with DACCOSIM’. In: Simulation Series 47 (Apr.

2015) (cited on page 24).

[94] Pieter J Mosterman. Hybrid dynamic systems: Modeling and execution. 2007 (cited on pages 24, 32).

[95] Benjamin Camus, Virginie Galtier, and Mathieu Caujolle. ‘Hybrid Co-simulation of FMUs using DEV

DESS in MECSYCO’. In: 2016 Symposium on Theory of Modeling and Simulation (TMS-DEVS). 2016,
pp. 1–8. doi: 10.23919/TMS.2016.7918814 (cited on page 24).

[96] Richard M. Fujimoto. ‘Parallel Discrete Event Simulation’. In: Commun. ACM 33.10 (Oct. 1990), pp. 30–

53. doi: 10.1145/84537.84545 (cited on page 26).

[97] Richard M Fujimoto. ‘Parallel and distributed simulation systems’. In: Proceeding of the 2001 Winter
Simulation Conference (Cat. No.01CH37304). Vol. 1. 2001, 147–157 vol.1. doi: 10.1109/WSC.2001.977259

(cited on pages 26, 27).

[98] K. Mani Chandy and Jayadev Misra. ‘Asynchronous Distributed Simulation via a Sequence of Parallel

Computations’. In: Commun. ACM 24.4 (Apr. 1981), pp. 198–206. doi: 10.1145/358598.358613 (cited

on page 26).

[99] David R. Jefferson. ‘Virtual Time’. In: ACM Trans. Program. Lang. Syst. 7.3 (July 1985), pp. 404–425. doi:

10.1145/3916.3988 (cited on page 27).

[100] Jeffrey S Steinman, Craig A Lee, Linda F Wilson, and David M Nicol. ‘Global Virtual Time and

Distributed Synchronization’. In: Proceedings of the Ninth Workshop on Parallel and Distributed Simulation.
PADS ’95. Lake Placid, New York, USA: IEEE Computer Society, 1995, pp. 139–148. doi: 10.1145/

214282.214324 (cited on page 27).

https://doi.org/10.1109/DS-RT.2013.12
https://doi.org/10.23919/TMS.2016.7918814
https://doi.org/10.1145/84537.84545
https://doi.org/10.1109/WSC.2001.977259
https://doi.org/10.1145/358598.358613
https://doi.org/10.1145/3916.3988
https://doi.org/10.1145/214282.214324
https://doi.org/10.1145/214282.214324

[101] Bernard P. Zeigler, AlexandreMuzy, and Ernesto Kofman. ‘Chapter 6 - Basic Formalisms: DEVS, DESS,

DTSS’. In: Theory of Modeling and Simulation (Third Edition). Ed. by Bernard P. Zeigler, Alexandre Muzy,

and Ernesto Kofman. Third Edition. Academic Press, 2019, pp. 153–165. doi: https://doi.org/10.

1016/B978-0-12-813370-5.00014-6 (cited on pages 27, 33).

[102] Bernard Zeigler and Hessam Sarjoughian. ‘DEVS Component-Based M&S Framework: An Introduc-

tion’. In: (Jan. 2007) (cited on page 27).

[103] Benjamin Camus, Thomas Paris, Julien Vaubourg, Yannick Presse, Christine Bourjot, Laurent Ciarletta,

and Vincent Chevrier.MECSYCO: aMulti-agent DEVSWrapping Platform for the Co-simulation of Complex
Systems. Research Report. LORIA, UMR 7503, Université de Lorraine, CNRS, Vandoeuvre-lès-Nancy ;

Inria Nancy - Grand Est (Villers-lès-Nancy, France), Sept. 2016 (cited on pages 27, 46, 47, 55).

[104] Alex Chung Hen Chow. ‘Parallel DEVS: A Parallel, Hierarchical, Modular Modeling Formalism and

Its Distributed Simulator’. In: Trans. Soc. Comput. Simul. Int. 13.2 (Dec. 1996), pp. 55–67 (cited on

pages 28, 29).

[105] Jan Himmelspach and Adelinde M Uhrmacher. ‘Sequential processing of PDEVS models’. In:

Proceedings of the 3rd EMSS (2006), pp. 239–244 (cited on page 29).

[106] Julien Vaubourg, Yannick Presse, Benjamin Camus, Christine Bourjot, Laurent Ciarletta, Vincent

Chevrier, Jean-Philippe Tavella, and Hugo Morais. ‘Multi-agent Multi-Model Simulation of Smart

Grids in the MS4SG Project’. In: Advances in Practical Applications of Agents, Multi-Agent Systems, and
Sustainability: The PAAMS Collection. Ed. by Yves Demazeau, Keith S. Decker, Javier Bajo Perez, and

Fernando de la Prieta. Cham: Springer International Publishing, 2015, pp. 240–251 (cited on pages 29,

46, 52, 55).

[107] Jan Himmelspach, Roland Ewald, Stefan Leye, and Adelinde M. Uhrmacher. ‘Parallel and Distributed

Simulation of Parallel DEVS Models’. In: Proceedings of the 2007 Spring Simulation Multiconference
- Volume 2. SpringSim ’07. Norfolk, Virginia: Society for Computer Simulation International, 2007,

pp. 249–256 (cited on page 29).

[108] Bernard P. Zeigler, Alexandre Muzy, and Ernesto Kofman. Theory of Modeling and Simulation: Discrete
Event & Iterative System Computational Foundations. 3rd. USA: Academic Press, Inc., 2018 (cited on

page 29).

[109] K. Mani Chandy and Jayadev Misra. ‘Distributed simulation: A case study in design and verification

of distributed programs’. In: IEEE Transactions on software engineering 5 (1979), pp. 440–452 (cited on

pages 29, 55).

[110] Randal E Bryant. ‘Simulation on a distributed system’. In: Proc. of the 16th Design Automation Conference.
1979, pp. 544–552 (cited on pages 29, 55).

[111] Andras Varga. ‘OMNeT++’. In: Modeling and tools for network simulation. Springer, 2010, pp. 35–59
(cited on pages 29, 46).

[112] Luca P Carloni, Roberto Passerone, and Alessandro Pinto. Languages and tools for hybrid systems design.
now Publishers Inc, 2006 (cited on page 30).

[113] John Lygeros, Claire Tomlin, and Shankar Sastry. ‘Controllers for reachability specifications for

hybrid systems’. In: Automatica 35.3 (1999), pp. 349–370. doi: https://doi.org/10.1016/S0005-

1098(98)00193-9 (cited on page 30).

[114] Timothy Bourke and Marc Pouzet. ‘Zelus: A Synchronous Language with ODEs’. In: Proceedings of
the 16th International Conference on Hybrid Systems: Computation and Control (2013), pp. 113–118. doi:

10.1145/2461328.2461348 (cited on page 30).

[115] Stefano Centomo, Michele Lora, and Franco Fummi. ‘Transaction-level Functional Mockup Units for

Cyber-Physical Virtual Platforms’. In: 2018 Forum on Specification Design Languages (FDL). 2018, pp. 5–8.
doi: 10.23919/DATE.2018.8342095 (cited on page 30).

[116] Fabio Cremona, Marten Lohstroh, Stavros Tripakis, Christopher Brooks, and Edward A Lee. ‘FIDE:

An FMI Integrated Development Environment’. In: 31st Annual ACM Symposium on Applied Computing.
Pisa, Italy: ACM New York, NY, USA, 2016, pp. 1759–1766. doi: 10.1145/2851613.2851677 (cited on

pages 31, 32, 44).

https://doi.org/https://doi.org/10.1016/B978-0-12-813370-5.00014-6
https://doi.org/https://doi.org/10.1016/B978-0-12-813370-5.00014-6
https://doi.org/https://doi.org/10.1016/S0005-1098(98)00193-9
https://doi.org/https://doi.org/10.1016/S0005-1098(98)00193-9
https://doi.org/10.1145/2461328.2461348
https://doi.org/10.23919/DATE.2018.8342095
https://doi.org/10.1145/2851613.2851677

[117] Bernard P. Zeigler. ‘Embedding DEV and DESS in DEVS’. In: 2005 (cited on page 31).

[118] Herbert Praehofer. ‘System theoretic formalisms for combined discrete-continuous system simulation’.

In: International Journal of General System 19.3 (1991), pp. 226–240 (cited on page 31).

[119] Casper Thule, Kenneth Lausdahl, Cláudio Gomes, Gerd Meisl, and Peter Gorm Larsen. ‘Maestro: The

INTO-CPS co-simulation framework’. In: Simulation Modelling Practice and Theory 92 (2019), pp. 45–61.

doi: https://doi.org/10.1016/j.simpat.2018.12.005 (cited on pages 32, 52).

[120] Jean-Philippe Tavella, Mathieu Caujolle, Charles Tan, Gilles Plessis, Mathieu Schumann, Stéphane

Vialle, Cherifa Dad, Arnaud Cuccuru, and Sébastien Revol. ‘Toward an Hybrid Co-simulation with

the FMI-CS Standard’. In: (Apr. 2016) (cited on pages 32, 58, 63, 64).

[121] Dehui Du, Yao Wang, Yi Ao, and Biao Chen. ‘An Optimized Partial Rollback Co-simulation Approach

for Heterogeneous FMUs’. In: 2019 International Symposium on Theoretical Aspects of Software Engineering
(TASE). 2019, pp. 273–280. doi: 10.1109/TASE.2019.00013 (cited on page 32).

[122] David Goldberg. ‘What every computer scientist should know about floating-point arithmetic’. In:

ACM Computing Surveys (CSUR) 23.1 (1991), pp. 5–48 (cited on page 33).

[123] Michael L Overton. Numerical computing with IEEE floating point arithmetic. SIAM, 2001 (cited on

page 33).

[124] Edward A Lee and Haiyang Zheng. ‘Operational semantics of hybrid systems’. In: International
Workshop on Hybrid Systems: Computation and Control. Springer. 2005, pp. 25–53 (cited on page 33).

[125] Oded Maler, Zohar Manna, and Amir Pnueli. ‘From Timed to Hybrid Systems’. In: LNCS 600 (Mar.

1999). Ed. by Robert L. Grossman, Anil Nerode, Anders P. Ravn, and Hans Rischel (cited on page 33).

[126] David Gelernter and Nicholas Carriero. ‘Coordination languages and their significance’. In: Communi-
cations of the ACM 35.2 (1992), p. 96 (cited on pages 35, 38).

[127] ‘IEEE Recommended Practice for Architectural Description for Software-Intensive Systems’. In: IEEE
Std 1471-2000 (2000), pp. 1–30. doi: 10.1109/IEEESTD.2000.91944 (cited on page 35).

[128] Paul C. Clements. ‘A Survey of Architecture Description Languages’. In: Proceedings of the 8th
International Workshop on Software Specification and Design. IWSSD ’96. USA: IEEE Computer Society,

1996, p. 16 (cited on page 35).

[129] Prabhat Mishra and Nikil Dutt. ‘Chapter 1 - Introduction to Architecture Description Languages’.

In: Processor Description Languages. Ed. by Prabhat Mishra and Nikil Dutt. Vol. 1. Systems on Silicon.

Burlington: Morgan Kaufmann, 2008, pp. 1–12. doi: https://doi.org/10.1016/B978-012374287-

2.50004-5 (cited on page 35).

[130] David Luckham, James Vera, and Sigurd Meldal. ‘Three Concepts of System Architecture’. In: (Aug.

1996) (cited on pages 36, 47).

[131] David Luckham. ‘Rapide: A language and toolset for causal event modelling of distributed system

architectures’. In: Nov. 2006, pp. 88–96. doi: 10.1007/3-540-64216-1_42 (cited on pages 36, 37, 41,

48, 59).

[132] Peter Feiler, David Gluch, and John Hudak. The Architecture Analysis & Design Language (AADL):
An Introduction. Tech. rep. CMU/SEI-2006-TN-011. Pittsburgh, PA: Software Engineering Institute,

Carnegie Mellon University, 2006 (cited on page 36).

[133] Emmanuel Durand. ‘Description et vérification d’architectures d’application temps réel : CLARA et

les réseaux de Petri temporels’. Th. : automatique et informatique appliquées. PhD thesis. Nantes:

Nantes, ECN, 1998 (cited on page 36).

[134] Mary Shaw, Robert DeLine, Daniel V. Klein, Theodore L. Ross, DavidM. Young, and Gregory Zelesnik.

‘Abstractions for software architecture and tools to support them’. In: Software Engineering, IEEE
Transactions on 21.4 (Apr. 1995), pp. 314–335. doi: 10.1109/32.385970 (cited on page 37).

[135] Robert J. Allen. A Formal Approach to Software Architecture. Tech. rep. CMU-CS-97-144. Carnegie Mellon

University, 1997 (cited on pages 37, 78).

https://doi.org/https://doi.org/10.1016/j.simpat.2018.12.005
https://doi.org/10.1109/TASE.2019.00013
https://doi.org/10.1109/IEEESTD.2000.91944
https://doi.org/https://doi.org/10.1016/B978-012374287-2.50004-5
https://doi.org/https://doi.org/10.1016/B978-012374287-2.50004-5
https://doi.org/10.1007/3-540-64216-1_42
https://doi.org/10.1109/32.385970

[136] Farhad Arbab. ‘Reo: A Channel-Based Coordination Model for Component Composition’. In:Math-
ematical. Structures in Comp. Sci. 14.3 (June 2004), pp. 329–366. doi: 10.1017/S0960129504004153

(cited on pages 37, 39, 40, 59, 78).

[137] C. A. R. Hoare. Communicating Sequential Processes. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.,

1985 (cited on page 37).

[138] OMG. ‘System Modeling Language, SysML®. Version 1.6’. In: (2020) (cited on page 37).

[139] Nikunj R Mehta, Nenad Medvidovic, and Sandeep Phadke. ‘Towards a taxonomy of software

connectors’. In: Proceedings of the 22nd international conference on Software engineering. ACM. 2000,

pp. 178–187 (cited on page 37).

[140] R. K. Pandey. ‘Architectural Description Languages (ADLs) vs UML: A Review’. In: SIGSOFT Softw.
Eng. Notes 35.3 (May 2010), pp. 1–5. doi: 10.1145/1764810.1764828 (cited on page 37).

[141] Peter Wegner. ‘Coordination as constrained interaction (extended abstract)’. English. In: Coordination
Languages and Models. Ed. by Paolo Ciancarini and Chris Hankin. Vol. 1061. Lecture Notes in Computer

Science. Springer Berlin Heidelberg, 1996, pp. 28–33 (cited on page 38).

[142] Simon Bliudze and Joseph Sifakis. ‘The algebra of connectors–structuring interaction in BIP’. In: IEEE
Transactions on Computers 57.10 (2008), pp. 1315–1330 (cited on page 38).

[143] Eric Freeman, Susanne Hupfer, and Ken Arnold. JavaSpaces principles, patterns, and practice. Addison-
Wesley, 1999, p. 344 (cited on page 39).

[144] Mirko Viroli, Jacob Beal, Ferruccio Damiani, Giorgio Audrito, Roberto Casadei, and Danilo Pianini.

‘From Field-Based Coordination to Aggregate Computing’. In: Jan. 2018, pp. 252–279. doi: 10.1007/

978-3-319-92408-3_12 (cited on page 39).

[145] Daniel D Corkill. ‘Collaborating software: Blackboard and multi-agent systems & the future’. In: 2003

(cited on page 39).

[146] Vitaly Buravlev, Rocco De Nicola, and Claudio Antares Mezzina. ‘Tuple spaces implementations

and their efficiency’. In: International Conference on Coordination Languages and Models. Springer. 2016,
pp. 51–66 (cited on page 39).

[147] GerardoPardo-Castellote. ‘Omgdata-distribution service:Architectural overview’. In: 23rd International
Conference on Distributed Computing Systems Workshops, 2003. Proceedings. IEEE. 2003, pp. 200–206
(cited on page 39).

[148] Christel Baier, Marjan Sirjani, Farhad Arbab, and Jan Rutten. ‘Modeling component connectors in

Reo by constraint automata’. In: Science of Computer Programming 61.2 (July 2006), pp. 75–113. doi:

10.1016/j.scico.2005.10.008 (cited on page 40).

[149] Kasper Dokter, Sung-Shik Jongmans, Farhad Arbab, and Simon Bliudze. ‘Relating BIP and reo’. In:

arXiv preprint arXiv:1508.04848 (2015) (cited on page 40).

[150] Simon Bliudze, Joseph Sifakis, Marius Dorel Bozga, and Mohamad Jaber. ‘Architecture internalisation

in BIP’. In: Proceedings of the 17th international ACM Sigsoft symposium on Component-based software
engineering - CBSE ’14. 2014, pp. 169–178. doi: 10.1145/2602458.2602477 (cited on page 40).

[151] Modelica Association. System Structure and Parameterization. https://ssp-standard.org/. Nov. 2020

(cited on page 40).

[152] Cláudio Gomes, Bentley Oakes, Mehrdad Moradi, Alejandro Gámiz, Juan Mendo, Stefan Dutre,

Joachim Denil, and Hans Vangheluwe. ‘HintCO – Hint-based Configuration of Co-simulations’. In:

Proceedings of the 9th International Conference on Simulation and Modeling Methodologies, Technologies
and Applications - Volume 1: SIMULTECH, INSTICC. SciTePress, July 2019, pp. 57–68. doi: 10.5220/

0007830000570068 (cited on page 40).

[153] Moritz Kleine. ‘CSP as a Coordination Language. A CSP-based Approach to the Coordination of

Concurrent Systems’. In: (2011) (cited on page 41).

[154] Modelica Association. Functional Mock-up Interface. https://fmi-standard.org/. Nov. 2020 (cited

on page 42).

https://doi.org/10.1017/S0960129504004153
https://doi.org/10.1145/1764810.1764828
https://doi.org/10.1007/978-3-319-92408-3_12
https://doi.org/10.1007/978-3-319-92408-3_12
https://doi.org/10.1016/j.scico.2005.10.008
https://doi.org/10.1145/2602458.2602477
https://ssp-standard.org/
https://doi.org/10.5220/0007830000570068
https://doi.org/10.5220/0007830000570068
https://fmi-standard.org/

[155] Youssef Bouanan, SimonGorecki, Judicael Ribault, GregoryZacharewicz, andNicolas Perry. ‘Including

in HLA Federation Functional Mockup Units for Supporting Interoperability and Reusability in

Distributed Simulation’. In: Proceedings of the 50th Computer Simulation Conference. SummerSim ’18.

Bordeaux, France: Society for Computer Simulation International, 2018 (cited on pages 45, 46).

[156] Zhiying Tu, Gregory Zacharewicz, and David Chen. ‘A federated approach to develop enterprise

interoperability’. In: Journal of Intelligent Manufacturing 27.1 (2016), pp. 11–31. doi: 10.1007/s10845-

013-0868-1 (cited on page 46).

[157] Hans Vangheluwe. ‘The Discrete EVent System specication (DEVS) formalism’. In: (Jan. 2005) (cited

on page 47).

[158] Benoit Combemale, Julien Deantoni, Matias Larsen, FrédéricMallet, Olivier Barais, Benoit Baudry, and

Robert France. ‘Reifying Concurrency for Executable Metamodeling’. In: 6th International Conference on
Software Language Engineering (SLE 2013). Ed. by Richard F. Paige Martin Erwig and Eric van Wyk.

Lecture Notes in Computer Science. Indianapolis, Etas-Unis: Springer-Verlag, 2013 (cited on pages 50,

61, 65).

[159] Dorian Leroy, Erwan Bousse, Manuel Wimmer, Tanja Mayerhofer, Benoit Combemale, and Wieland

Schwinger. ‘Behavioral interfaces for executable DSLs’. In: Software and Systems Modeling (Apr. 2020).

doi: 10.1007/s10270-020-00798-2 (cited on page 50).

[160] Andrew S Tanenbaum and Maarten Van Steen. Distributed systems: principles and paradigms. Prentice-
Hall, 2007 (cited on page 52).

[161] Lars Ivar Hatledal, Arne Styve, Geir Hovland, and Houxiang Zhang. ‘A Language and Platform

Independent Co-Simulation Framework Based on the Functional Mock-Up Interface’. In: IEEE Access
7 (2019), pp. 109328–109339. doi: 10.1109/ACCESS.2019.2933275 (cited on pages 52, 53).

[162] Jose Evora-Gomez, José Cabrera, jean-philippe Tavella, Stephane Vialle, Enrique Kremers, and Loïc

Frayssinet. ‘Daccosim NG: co-simulation made simpler and faster’. In: Feb. 2019, pp. 785–794. doi:

10.3384/ecp19157785 (cited on pages 52–54).

[163] Paul Baran. ‘On Distributed Communications Networks’. In: IEEE Transactions on Communications
Systems 12.1 (1964), pp. 1–9. doi: 10.1109/TCOM.1964.1088883 (cited on page 52).

[164] José Juan Hernández-Cabrera, José Évora-Gómez, and Octavio Roncal-Andrés. JavaFMI. https:
//bitbucket.org/siani/javafmi/. 2013 (cited on page 53).

[165] Julien Siebert, Laurent Ciarletta, and Vincent Chevrier. ‘Agents and artefacts for multiple models

co-evolution. Building complex system simulation as a set of interacting models’. In: 1 (May 2010). doi:

10.1145/1838206.1838279 (cited on page 55).

[166] Julien Deantoni and Claudio Gomes. ‘Towards a Ultimate Formally Verified Master Algorithm’. In:

Short Term Scientific Report COST IC1404 (2018) (cited on page 57).

[167] Ivica Crnkovic and Magnus Peter Henrik Larsson. Building reliable component-based software systems.
Artech House, 2002 (cited on page 58).

[168] Martin Arnold, Christoph Clauß, and Tom Schierz. ‘Error Analysis and Error Estimates for Co-

simulation in FMI for Model Exchange and Co-Simulation v2.0’. In: Progress in Differential-Algebraic
Equations. Ed. by Sebastian Schöps, Andreas Bartel, Michael Günther, E. Jan W. ter Maten, and Peter C

Müller. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 107–125 (cited on page 59).

[169] Douglas L Perry. Vhdl. McGraw-Hill, Inc., 1993 (cited on page 63).

[170] Peter Fritzson. Principles of object-oriented modeling and simulation with Modelica 2.1. John Wiley & Sons,

2004 (cited on page 63).

[171] Albert Benveniste, Benoît Caillaud, Hilding Elmqvist, Khalil Ghorbal, Martin Otter, and Marc Pouzet.

‘Multi-Mode DAE Models - Challenges, Theory and Implementation’. In: Computing and Software
Science: State of the Art and Perspectives. Ed. by Bernhard Steffen and Gerhard Woeginger. Cham:

Springer International Publishing, 2019, pp. 283–310. doi: 10.1007/978-3-319-91908-9_16 (cited

on page 64).

https://doi.org/10.1007/s10845-013-0868-1
https://doi.org/10.1007/s10845-013-0868-1
https://doi.org/10.1007/s10270-020-00798-2
https://doi.org/10.1109/ACCESS.2019.2933275
https://doi.org/10.3384/ecp19157785
https://doi.org/10.1109/TCOM.1964.1088883
https://bitbucket. org/siani/javafmi/
https://bitbucket. org/siani/javafmi/
https://doi.org/10.1145/1838206.1838279
https://doi.org/10.1007/978-3-319-91908-9_16

[172] Charles Andrè, Frédéric Mallet, and Robert De Simone. ‘Modeling Time(s)’. In: ACM/IEEE Int.
Conf. on Model Driven Engineering Languages and Systems (MoDELS/UML). Vol. LNCS 4735. Lec-

ture Notes in Computer Sciences. The original publication is available at www.springerlink.com

(http://dx.doi.org/10.1007/978-3-540-75209-7_38). Nashville, TN, United States: Springer, Oct. 2007,

pp. 559–573. doi: 10.1007/978-3-540-75209-7_38 (cited on page 66).

[173] Wlodzimierz Lewandowski, Gerard Petit, and Claudine Thomas. ‘Precision and accuracy of GPS time

transfer’. In: IEEE Transactions on Instrumentation and Measurement 42.2 (1993), pp. 474–479 (cited on

page 66).

[174] OMG. ‘UML Profile for MARTE (Modeling and Analysis of Real Time Embedded Systems)’. In: Object
Management Group v1.2 (Dec. 2018) (cited on page 66).

[175] Paul Le Guernic, Jean-Pierre Talpin, and Jean-Christophe Le Lann. ‘POLYCHRONY for SystemDesign’.

In: Journal of Circuits, Systems and Computers 12.03 (2003), pp. 261–303 (cited on pages 66, 77).

[176] Antoine Viel. ‘Implementing stabilized co-simulation of strongly coupled systems using the Functional

Mock-up Interface 2.0’. In: Mar. 2014. doi: 10.3384/ecp14096213 (cited on page 67).

[177] Julien Deantoni, Diallo Papa Issa, Joël Champeau, Benoit Combemale, and Ciprian Teodorov. Opera-
tional Semantics of the Model of Concurrency and Communication Language. Research Report RR-8584.

Sept. 2014, p. 23 (cited on page 68).

[178] Giovanni Liboni and JulienDeantoni. ‘A Semantic-Aware, accurate and efficient API for (co-)simulation

of CPS’. In: 4th Workshop on Formal Co-Simulation of Cyber-Physical Systems – conjointly with the 18th
edition of the International Conference on Software Engineering and Formal Methods (2020), pp. 1–16 (cited

on pages 74, 85).

[179] Roland Pelayo.Use LM393 IRModule as Motor Speed Sensor. https://www.teachmemicro.com/lm393-
ir-module-motor-speed-sensor/ (cited on page 76).

[180] Giovanni Liboni and Julien Deantoni. ‘WIP on a Coordination Language to Automate the Generation

of Co-Simulations’. In: 2019 Forum for Specification and Design Languages (FDL). IEEE. 2019, pp. 1–4
(cited on page 81).

[181] Charles André. Syntax and semantics of the clock constraint specification language. Tech. rep. 6925. INRIA,

2009 (cited on page 83).

[182] Julien Deantoni, Charles André, and Régis Gascon. CCSL denotational semantics. Research Report

RR-8628. Inria, Nov. 2014, p. 29 (cited on page 83).

[183] Albert Benveniste, Paul Caspi, Stephen A Edwards, Nicolas Halbwachs, Paul Le Guernic, and Robert

De Simone. ‘The synchronous languages 12 years later’. In: Proceedings of the IEEE 91.1 (2003), pp. 64–83

(cited on page 108).

[184] CristianoGiuffrida,AntonKuĳsten, andAndrewSTanenbaum. ‘EDFI:Adependable fault injection tool

for dependability benchmarking experiments’. In: 2013 IEEE 19th Pacific Rim International Symposium
on Dependable Computing. IEEE. 2013, pp. 31–40 (cited on page 110).

[185] Hamid R Zarandi, Seyed Ghassem Miremadi, and Alireza Ejlali. ‘Fault injection into verilog models

for dependability evaluation of digital systems’. In: Second International Symposium on Parallel and
Distributed Computing, 2003. Proceedings. 2003, pp. 281–287. doi: 10.1109/ISPDC.2003.1267675 (cited

on page 110).

[186] Todd A Delong, Barry W Johnson, and Joseph A Profeta. ‘A fault injection technique for VHDL

behavioral-level models’. In: IEEE Design Test of Computers 13.4 (1996), pp. 24–33. doi: 10.1109/54.

544533 (cited on page 110).

[187] Marco Di Natale, Francesco Chirico, Andrea Sindico, and Alberto Sangiovanni-Vincentelli. ‘An MDA

Approach for the Generation of Communication Adapters Integrating SW and FW Components

from Simulink’. English. In:Model-Driven Engineering Languages and Systems. Ed. by Juergen Dingel,

Wolfram Schulte, Isidro Ramos, Silvia Abrahão, and Emilio Insfran. Vol. 8767. Lecture Notes in

Computer Science. Springer International Publishing, 2014, pp. 353–369. doi: 10.1007/EPTCS (cited

on page 116).

https://doi.org/10.1007/978-3-540-75209-7_38
https://doi.org/10.3384/ecp14096213
https://www.teachmemicro.com/lm393-ir-module-motor-speed-sensor/
https://www.teachmemicro.com/lm393-ir-module-motor-speed-sensor/
https://doi.org/10.1109/ISPDC.2003.1267675
https://doi.org/10.1109/54.544533
https://doi.org/10.1109/54.544533
https://doi.org/10.1007/EPTCS

[188] Per Bjuréus and Axel Jantsch. ‘Modeling of mixed control and dataflow systems in MASCOT’. In:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems 9.5 (Oct. 2001) (cited on page 116).

[189] Frédéric Boulanger and Cécile Hardebolle. ‘Simulation of Multi-Formalism Models with ModHel’X’.

In: Proceedings of ICST’08. IEEE Comp. Soc. 2008, pp. 318–327 (cited on page 116).

	Résumé
	Abstract
	Contents
	Introduction
	Motivation
	Main Challenges
	Limitations
	Structure

	Background
	Complexity of Cyber-Physical Systems
	Model-Driven Engineering
	Model Integration
	Conclusion

	State of the Art
	Coordination Semantics
	DSLs for Co-simulation
	Co-Simulation Interfaces
	Distributed Co-simulation
	Conclusion

	Proposition
	Introduction
	Model Coordination Interface
	Model Coordination Specification
	Coordination Algorithm
	Conclusion

	Validation
	Use Case: CPU Cooling System
	Use Case: Fault Injection Simulation
	Conclusion

	Conclusion
	Overview
	Future works

	Appendix
	Appendix
	Detailed MCILang language class-diagram
	Java class for the wrapper of the Box with CPU and Fan
	Java class for the wrapper of the Heat controller

	Bibliography

