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Résumé

Cette thèse est consacrée à l’étude de la géométrie des variétés complexes projectives à fibré
anticanonique positif. Un des objectifs principaux est la classification de ces variétés par l’analyse
de leur système anticanonique et de leur structure géométrique.

La première partie a pour but de classifier les variétés à fibré anticanonique nef, qui consti-
tuent une généralisation naturelle des variétés de Fano. La classification de ces variétés est plus
compliquée car des nouveaux phénomènes se produisent et de nombreux résultats pour les va-
riétés de Fano ne restent plus valables dans ce cas. On considère les variétés rationnellement
connexes de dimension 3 à fibré anticanonique nef. Plus précisément, on se concentre sur le cas
difficile : celui où le fibré anticanonique est nef, mais pas semiample. Nous établirons les résultats
suivants :

• Une classification complète dans le cas où le système anticanonique n’a pas de diviseur fixe.

• Une description géométrique dans le cas où le système anticanonique a un diviseur fixe : après
une suite finie de flops, la variété admet une fibration au-dessus de P1. Selon la géométrie de
l’unique courbe dans le système anticanonique de la fibre générale, on obtient une classification
complète dans certains cas.

Dans la deuxième partie, nous nous intéressons aux espaces de modules Y de faisceaux
semistables, sans torsion et de rang 2 sur une surface polarisée (S,−KS) de del Pezzo de degré
1, tels que c1 = −KS , c2 = 2. En effet, ces espaces sont des exemples de variétés de Fano de
dimension 4, et possèdent des propriétés géométriques remarquables. L’étude de cette famille de
variétés est motivée par le fait que les variétés de Fano de dimension 4 ne sont pas classifiées,
et qu’en dehors des produits de surfaces de del Pezzo, peu d’exemples de variétés de Fano de
dimension 4 de grand nombre de Picard sont connus. Nous décrirons :

• Le schéma de base du système linéaire anticanonique | −KY |.

• Une description de l’action de l’involution de Bertini sur Y restreinte à une surface particulière
incluse dans Y .

Mots-clés Variétés de Fano, positivité du fibré anticanonique, théorie de Mori, système antica-
nonique, espaces projectifs, surfaces de del Pezzo, involution de Bertini
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Abstract

This thesis is devoted to the study of the geometry of complex projective manifolds with positive
anticanonical bundle. One of the main goals is the classification of these manifolds via an analysis
of their anticanonical systems and their geometric structure.

The first part of the thesis aims to classify a class of manifolds which appears as a natural
generalisation of Fano manifolds, namely manifolds with nef anticanonical bundle. The classifi-
cation of this class of manifolds is more complicated, as new phenomena arise and many results
for Fano varieties no longer hold in this case. We focus on rationally connected threefolds with
nef anticanonical divisor, and more precisely on the delicate case where the anticanonical divisor
is not semi-ample. Our main results are the following:

• A complete classification when the anticanonical system has no fixed divisor.

• A geometric description when the anticanonical system has a fixed divisor: after a finite
sequence of flops, the threefold admits a fibration over P1. Certain cases are classified according
to the geometry of the anticanonical divisor of the general fibre.

The second part of the thesis addresses a family of Fano fourfolds with remarkable geometric
properties, namely the moduli spaces Y of semi-stable rank-two torsion-free sheaves with c1 =
−KS , c2 = 2 on a polarised degree-one del Pezzo surface (S,−KS). As Fano manifolds have
been classified only up to dimension three, and few examples of Fano fourfolds with large Picard
number which are not products of del Pezzo surfaces are known, the geometry of such an example
is worth studying. Below are the main results of this part:

• The base scheme of the anticanonical system | −KY |.

• A description of the action of the Bertini involution of Y on a special surface in Y .

Keywords Fano varieties, positivity of anticanonical bundle, Mori theory, anticanonical system,
projective spaces, del Pezzo surfaces, Bertini involution
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Résumé

L’objet d’étude principal de cette thèse est les variétés complexes projectives rationnellement
connexes à fibré anticanonique positif, en particulier, les variétés de Fano et plus généralement
les variétés à fibré anticanonique nef.

Les variétés de Fano apparaissent comme une composante élémentaire dans la classification
birationnelle des variétés : pour les variétés de dimension de Kodaira négative, on s’attend, à la
fin du programme du modèle minimal (MMP), à un morphisme de type fibré dont les fibres sont
des variétés de Fano (singulières).

Notons ici que la notion de connexité rationnelle joue un rôle important. Les variétés de Fano
sont rationnellement connexes, tandis qu’en général, une variété à fibré anticanonique nef n’est
pas nécessairement rationnellement connexe. Cependant, au vu du théorème de décomposition
pour les variétés complexes projectives à fibré anticanonique nef, démontré par Cao et Höring
dans [CH19], il est essentiel d’étudier les variétés à fibré anticanonique nef rationnellements
connexes.

Les questions abordées s’incrivent dans le contexte du problème de la classification des variétés
projectives. Les variétés de Fano de dimension au plus 3 sont complètement déterminées : en
dimension 1, c’est la droite projective ; en dimension 2, ce sont les surfaces de del Pezzo (c’est-à-
dire P1×P1 et les éclatements de P2 en au plus 8 points en position générale, soit 10 familles) ; en
dimension 3, elles se répartissent en 105 familles, grâce aux travaux de Mori-Mukai (cf. [MM82])
et de Iskovskikh (cf. [Isk77] [Isk78]). Cependant, pour les classes de variétés plus générales, par
exemple les variétés de dimension 3 à fibré anticanonique nef ou les variétés de Fano de dimension
4, on est loin d’obtenir une liste complète de familles de variétés.

Avant d’aborder le problème de la classification des variétés projectives rationnellement
connexes à fibré anticanonique positif, il faudrait vérifier qu’il y a un nombre fini de possibi-
lités dans la liste de classification. Bien que notre classification ne concerne que des variétés
lisses, la discussion sur les singularités intervient naturellement dans les preuves lorsque l’on fait
tourner le MMP. Par conséquent, nous énonçons au paragraphe suivant les résultats de finitude
dans le cas singulier.

On dit qu’un ensemble χ de variétés de même dimension forme une famille bornée s’il existe
des schémas de type fini X,B, et un morphisme φ : X→ B tel que toute fibre géométrique de φ soit
une variété dans χ, et que toute variétéX ∈ χ soit une fibre géométrique de φ. Suite à des avancées
récentes en géométrie birationnelles (notamment dues à Birkar, Cascini, Hacon, McKernan et
Shokurov), Birkar a confirmé la conjecture de Borisov-Alexeev-Borisov (BAB) dans [Bir21] : les
variétés de Fano à singularités ε-lc forment une famille bornée, à dimension et ε donnés. McKernan

1



et Prokhorov ont énoncé une conjecture de BAB généralisée ([MP04]) : les variétés projectives
normales rationnellement connexes à fibré anticanonique nef et à singularités ε-lc forment une
famille bornée, à dimension et ε donnés. Notons encore une fois que l’hypothèse de la connexité
rationnelle est indispensable ici. Par exemple, les surfaces K3 projectives à singularités canoniques
ne forment pas une famille bornée ; elles satisfont les hypothèses de la conjecture en dimension 2
pour ε = 1, sauf qu’elles ne sont pas rationnellement connexes.

Revenons au problème de la classification. L’approche commune pour mieux comprendre
la géométrie d’une variété à fibré anticanonique positif consiste à étudier son système linéaire
anticanonique, qui est l’un des premiers objets intrinsèquement attachés à une telle variété.

Dans toute cette thèse, on travaille sur le corps des complexes.

Variétés rationnellement connexes de fibré anticanonique nef

La classification des surfaces projectives lisses à fibré anticanonique nef, non big et non numéri-
quement trivial est une conséquence de la classification de Kodaira-Enriques (cf. [BP04, p. 318]
ou section 2.4). En particulier, si la surface S est rationnelle (la connexité rationnelle est équi-
valente à la rationnalité pour les variétés propres et lisses de dimension au plus 2), alors elle est
obtenue par éclatement de P2 en 9 points. De plus, si la position des 9 points éclatés est suffi-
samment générale, alors −KS est nef et non semiample. Dans ce cas, la géométrie du système
anticanonique | −KS | pourrait déjà être pathologique : l’unique élément dans | −KS | peut être
réductible et non réduit. En revanche, pour une surface de del Pezzo de degré 1 (c’est-à-dire
l’éclatement de P2 en 8 points en position générale), tout élément du système anticanonique est
irréductible et réduit, et un élément général est une courbe elliptique lisse.

En dimension supérieure, de nombreux efforts ont été faits pour étudier la finitude de la
famille de variétés projectives rationnellement connexes à fibré anticanonique nef. Récemment,
Birkar, Di Cerbo et Svaldi ont montré ([BCS20, Theorem 1.6]) une version plus faible de la
conjecture de BAB généralisée en dimension 3. En particulier, leur résultat nous dit que les
variétés projectives lisses rationnellement connexes de dimension 3 à fibré anticanonique nef
forment une famille bornée à flops près. Par conséquent, il est en principe possible de classifier
cette classe de variétés, comme l’ont fait par Mori et Mukai pour les variétés de Fano de dimension
3 à l’aide du MMP.

Soit X une variété projective lisse rationnellement connexe de dimension 3 à fibré anticano-
nique −KX nef. Si −KX est semiample, on trouve une classification partielle dans [BP04, sec-
tions 5 et 6]. On s’intéresse ainsi au cas plus délicat où le fibré anticanonique est nef et non
semiample. Bauer et Peternell ont montré que la non semiamplitude de −KX implique que sa
dimension nef (cf. definition 2.4.2) n(−KX) est 3 et que sa dimension numérique (cf. notation
2.4.1) ν(−KX) est 2. Cela est dû au résultat suivant :

Théorème ([BP04], Theorem 2.1). Soit X une variété projective lisse rationnellement connexe
de dimension 3 à fibré anticanonique −KX nef. Alors sa dimension d’Iitaka vérifie :

κ(−KX) ≥ 1.

Si n(−KX) = 1 ou 2, alors −KX est semiample et l’application de réduction nef associée à −KX
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peut être prise comme (la factorisation de Stein de) l’application définie par un certain multiple
globalement engendré de −KX .

Esquissons la preuve de Bauer-Peternell pour montrer que κ(−KX) ≥ 1 : dans le cas où
ν(−KX) = 2, cela est une conséquence directe du théorème d’annulation de Kawamata-Viehweg
et de la formule de Riemann-Roch ; dans le cas où ν(−KX) = 1, la preuve est plus compliquée
et nécessite une discussion sur les contractions de Mori possibles de X.

Au vu de la non semiamplitude du diviseur anticanonique, une première approche est d’étu-
dier le lieu de base du système anticanonique. Commençons par le cas où le système anticanonique
n’admet pas de diviseur fixe (cf. chapitre 3). On obtient dans ce cas une classification complète.

Théorème (= Theorem 3.0.1). Soit X une variété projective lisse rationnellement connexe de
dimension 3, dont le fibré anticanonique est nef avec n(−KX) = 3 et ν(−KX) = 2. Supposons
que le système anticanonique n’a pas de diviseur fixe. Alors −KX est divisible par 2 dans Pic(X),
et on est dans l’un des cas suivants :

(1) X → P1 est une fibration de del Pezzo à fibre générale isomorphe à P1 × P1. Alors X est
un élément du système linéaire |OP(E)(2) + 4F |, où E = O⊕2

P1 ⊕ OP1(−1)⊕2, et F est une
fibre générale de π : P(E)→ P1.

(2) X = P(E) est un fibré en P1 sur une surface rationnelle lisse Y avec −KY nef, où E est
un fibré vectoriel sur Y de rang 2 avec c1(E) = −KY , c2(E) = K2

Y et donné par l’extension
suivante :

0→ OY → E→ IZ ⊗ OY (−KY )→ 0,

où IZ est le faisceau d’idéaux d’un sous-schéma Z de Y de longueur c2(E).

(3) X = Blp(Y ) est l’éclatement d’une variété Y de dimension 3 presque de del Pezzo de degré
1 (c’est-à-dire −KY ∼ 2HY , où HY est un diviseur premier sur Y qui est nef et vérifie
H3
Y = 1) en un point p qui n’est pas l’unique point de base du système linéaire |HY |.

Réciproquement, soit X une variété qui apparaît dans l’un des trois cas ci-dessus, satisfaisant
respectivement l’une des conditions suivantes :

(1’) l’élément X de |OP(E)(2) + 4F | est très général.

(2’) les points de l’ensemble fini Z sont en position suffisamment générale sur Y .

(3’) le point éclaté p ∈ Y est général.

Alors −KX est nef, non semiample et divisible par 2 dans Pic(X).

Considérons ensuite le cas où le système anticanonique admet un diviseur fixe (cf. chapitre
4). On trouve alors une description géométrique de la variété :

Théorème (= Theorem 4.0.1). Soit X une variété projective lisse rationnellement connexe de
dimension 3, dont le fibré anticanonique est nef et vérifie n(−KX) = 3 et ν(−KX) = 2. Supposons
que le système anticanonique a un diviseur fixe non nul. Alors il existe une suite finie de flops
ψ : X 99K X ′ telle que :
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• X ′ est lisse,

• −KX′ est nef,

• la partie mobile |B′| de | −KX′ | est nef.

Dans ce cas, on a B′2 = 0, de sorte que |B′| est sans point base. Cette partie mobile induit une
fibration f : X ′ → P1. De plus, la fibre générale F de f est une surface lisse avec −KF nef,
ν(−KF ) = 1 et n(−KF ) = 2.

Revenons au problème de la finitude birationnelle de la famille de variétés projectives lisses
rationnellement connexes de dimension 3 à fibré anticanonique nef. Dans le cas où le diviseur fixe
du système anticanonique d’une telle variété est non nul, la finitude ne se déduit pas directement
du théorème ci-dessus. Cependant, on s’attend à une classification complète dans ce cas comme
dans le premier.

Notons que, dans le théorème ci-dessus, la structure géométrique de la fibration f : X ′ → P1

pourrait être compliquée (X ′ n’est pas nécessairement un produit). Pour étudier la structure
géométrique de cette fibration, on considèrera la configuration suivante dans la suite de cette
section et on notera désormais X au lieu de X ′.

Hypothèses (= Setup 4.2.5). Soit X une variété projective lisse rationnellement connexe de
dimension 3, dont le fibré anticanonique est nef avec n(−KX) = 3 et ν(−KX) = 2. Supposons
que le système anticanonique a un diviseur fixe non nul et que sa partie mobile est nef, de sorte
que cette dernière est sans point base et qu’elle induit une fibration f : X → P1. Dans ce cas,
la fibre générale F de f est une surface lisse avec −KF nef, ν(−KF ) = 1, n(−KF ) = 2, et
| −KX | = A+ |kF | avec k ≥ 2.

Traitons d’abord le cas où la fibre générale F est rationnelle (cf. chapitres 5 et 6). Énonçons
explicitement le cas particulier suivant, qui est complètement classifié dans le chapitre 5.

Proposition (= Proposition 5.1.1). Sous les hypothèses ci-dessus, supposons de plus que F est
rationnelle et que l’unique élément B ∈ | − KF | est une courbe elliptique lisse. Alors k = 2,
A ' B × P1, la restriction de f sur A est la seconde projection, et on est dans l’un des cas
suivants :

(1) A est nef. Le diviseur anticanonique relatif −KX/P1 est nef, et la fibration f est localement
triviale.

(2) A est le diviseur exceptionnel d’une contraction de Mori. La variété X est obtenue comme
l’éclatement ϕ : X → X ′ le long d’une courbe elliptique lisse R sur une variété lisse X ′

de dimension 3 avec −KX′ nef, n(−KX′) = 3 et ν(−KX′) = 2. De plus, le système
anticanonique | −KX′ | = |2G| avec G := ϕ(F ) ' F n’a pas de diviseur fixe et Bs |G| = R.

(3) A est le diviseur exceptionnel d’une contraction crépante extrémale. Il existe une contraction
de Mori birationnelle ϕ : X → X ′ telle que la fibration f se factorise comme f = f ′ ◦ ϕ
avec f ′ : X ′ → P1 et on est dans l’un des cas suivants :
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(i) X ′ satisfait les même hypothèses sur X : −KX′ est nef tel que |−KX′ | = A′+|2F ′| avec
A′ := ϕ(A) ' A, F ′ := ϕ(F ) ' F et A′ est le diviseur exceptionnel d’une contraction
de Mori. Dans ce cas, ϕ est l’éclatement de X ′ le long d’une courbe elliptique lisse
contenue dans une fibre de f ′|A′.

(ii) −KX′ est nef et big tel que |−KX′ | = |A′+ 2F ′|, où A′ := ϕ(A) ' A, et la restriction
ϕ|F : F → F ′ := ϕ(F ) est une contraction de certaines (−1)-courbes dans F de sorte
que −KF ′ est nef et big. Dans ce cas, ϕ est l’éclatement de X ′ le long d’une courbe
lisse contenue dans A′ que f ′ envoie surjectivement sur P1.

En outre, chaque cas dans la proposition ci-dessus existe (cf. section 5.2).
On donne ici un exemple qui n’est pas un produit. PrenonsX0 := P1×S, où S est l’éclatement

de P2 en 9 points en position suffisamment générale, de sorte que−KS est nef et non semiample, et
que l’unique élément B ∈ |−KS | est une courbe elliptique lisse. Soient f0 : X0 → P1 la première
projection de fibre générale F0 ' S et πS : X0 → S la seconde projection. Alors | − KX0 | =
A0 + |2F0|, avec A0 := π∗S(B) isomorphe à P1 × B, et −KX0 est nef et non semiample. On fixe
deux points p1, p2 ∈ P1. Soit µ : X := Blp1×B,p2×BX0 → X0 l’éclatement de X0 le long de deux
fibres elliptiques de A0. Alors,

• −KX est nef et non semiample,

• | −KX | = A+ |2F |, où A est la transformée stricte de A0 et F est le transformé stricte de
F0,

• A ' B × P1 est le diviseur exceptionnel d’une contraction crépante extrémale, et F ' S.

En particulier, X est un exemple du cas (3)(i) de la proposition ci-dessus. On a µ∗π∗S(B) =
A+E1+E2, où E1 et E2 sont les deux diviseurs exceptionnels au-dessus des deux fibres elliptiques
éclatées sur A0. Alors A|A = −E1|A−E2|A. Soit f := f0 ◦µ : X → P1, alors f admet exactement
deux fibres réductibles. Donc X n’est pas un produit.

Néanmoins, la variété a dans certains cas une structure géométrique très particulière. On
analyse dans le chapitre 6 la situation plus générale où l’unique élément dans | −KF | n’est pas
lisse.

Proposition (= Theorem 6.2.1). Sous les hypothèses ci-dessus, supposons de plus que F soit
rationnelle et que l’unique élément dans | −KF | soit une courbe cubique cuspidale. Alors A est
nef, et la fibration f : X → P1 est localement triviale.

On conclut ce chapitre par la conjecture suivante :

Conjecture (= Conjecture 6.4.6). Sous les hypothèses ci-dessus, supposons de plus que F est
rationnelle et que l’unique élément dans | −KF | est réduit. Alors | −KX | = A + |2F |, et A n’a
pas de composante f -verticale.

En particulier, la conjecture sera démontrée dans le cas où la paire (X,A) est log canonique
au-dessus du point générique de P1 (cf. chapitre 6), et on évoquera certaines pistes de recherche
pour les autres cas dans le même chapitre.
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Le dernier chapitre de la première partie est consacré au cas où la surface F est non rationnelle.
Dans ce cas, f ne peut pas être un produit puisque X est rationnellement connexe. On montrera
que cette situation est très particulière (cf. proposition 7.1.3) et que ce cas existe (cf. exemple
7.1.4).

Modèle de Fano de l’éclatement de P4 en 8 points généraux

En dimension 4, les travaux de Casagrande (notamment [Cas12,Cas13]) donnent de nombreux
résultats sur la classification de certaines variétés de Fano, selon leur nombre de Picard et leur
défaut de Lefschetz.

La seconde partie de cette thèse est consacrée à l’étude d’une famille de variétés de Fano
de dimension 4 dont la géométrie est très riche, à savoir les espaces de modules Y de faisceaux
semistables, sans torsion et de rang 2 sur une surface polarisée (S,−KS) de del Pezzo de degré
1, tels que c1 = −KS , c2 = 2. Le nombre de Picard d’un tel espace de modules Y est 9. L’étude
de cette famille de variétés est motivée par le fait que peu d’exemples de variétés de Fano de
dimension 4 de grand nombre de Picard (par exemple au moins 7) sont connus, en dehors des
produits des surfaces de del Pezzo. Comme indiqué dans l’article [CCF19], cette famille d’espaces
de modules Y est le seul exemple connu de variété de Fano de dimension 4, qui a comme nombre
de Picard au moins 9 et qui n’est pas un produit.

Pour étudier la géométrie de Y , Casagrande, Codogni et Fanelli établissent, dans l’article
[CCF19], le lien explicite entre la variété de Fano Y et l’éclatement X de 8 points sur P4 : la
variété Y est obtenue à partir de X en flippant les transformées strictes des droites passant par
2 points éclatés et des courbes quartiques normales passant par 7 points éclatés dans P4. Grâce
à ce lien explicite, ils montrent dans le même article que le lieu de base de | −KY | contient la
transformée stricte RY d’une courbe quintique rationnelle lisse passant par les 8 points éclatés
dans P4, et que le système bianticanonique |−2KY | est sans point base. À l’aide de leurs résultats
et d’une analyse plus fine du système anticanonique | −KY |, on détermine le schéma de base de
ce dernier :

Proposition (=Proposition 10.1.12). Le schéma de base de | −KY | est la courbe lisse RY .

On obtient comme corollaire :

Corollaire (=Corollary 10.1.13). Soit D ∈ | −KY | un diviseur général. Alors D est lisse.

Par ailleurs, l’analyse du système anticanonique de X est essentielle pour comprendre un
automorphisme particulier de la variété Y , à savoir l’involution de Bertini ιY . Cette involution
de Bertini ιY est induite par l’involution classique sur la surface de del Pezzo S de degré 1, qui
est définie comme suit : rappelons ici que | − 2KS | est sans point base et définit un morphisme
φ : S → Q ⊂ P3 de degré 2, dont l’image est un cône quadrique. L’involution de Bertini ιS
provient alors du revêtement double S → Q.

Pour comprendre l’action de ιY , on la décrit sur une surface particulière WY incluse dans Y .
Cette surface WY est la transformée stricte de la surface cubique réglée engendrée par le pinceau
des courbes elliptiques quintiques passant par les 8 points éclatés dans P4. Par analogie entre S
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et Y , on étudie la restriction à WY du morphisme défini par le système bianticanonique de Y ,
et on obtient la description suivante :

Proposition (=Proposition 10.2.1). L’involution de Bertini ιY préserve la surface WY , et la
restriction ιY |WY

à WY est une involution birégulière définie par le revêtement double

φ|−2KY |WY
: WY → V2,4 ⊂ P7,

où V2,4 ' F2 est une surface réglée normale rationnelle de bidegré (2, 4). En particulier, l’in-
volution de Bertini ιY est l’identité sur la courbe RY et induit une involution sur chaque fibre
elliptique FY de WY → P1.

De plus, il existe une courbe lisse R′ ∼ 3(RY + FY ) de genre 4 sur la surface WY , telle que
R′ est disjointe de RY et contenue dans le lieu fixe de ιY .

Dans la suite de ce travail en cours, il est envisagé de décrire complètement le lieu fixe
de l’involution ιY , ainsi que son action sur le système anticanonique | − KY | et le système
bianticanonique | − 2KY |.
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Chapter 1

Introduction

1.1 Complex projective manifolds with nef anticanonical divisor

Let X be a complex projective manifold. We say that X is a Fano manifold if the anticanonical
divisor −KX is ample. The classification of three-dimensional Fano manifolds by Mori and Mukai
(for ρ > 1, [MM82]) and by Iskovskikh (for ρ = 1, [Isk77] [Isk78]) is one of the first achievements
of the Minimal Model Program (MMP) with an impressive number of applications. Projective
manifolds with nef anticanonical divisor −KX are a natural generalisation of Fano manifolds,
and one hopes to similarly fulfil a complete classification for this class of manifolds.

One of the most important methods to study a manifold with nef anticanonical bundle is to
analyse its Albanese map.

Theorem 1.1.1 ([Cao19], Theorem 1.2). Let X be a projective manifold with −KX nef, and let
α : X → Y be its Albanese map. Then α is locally trivial, i.e. for any small open set U ⊂ Y ,
α−1(U) is biholomorphic to the product U × F , where F is the generic fibre of α.

Thanks to the above result, Cao and Höring [CH19] showed a decomposition theorem for
projective manifolds with nef anticanonical bundle: for such a manifold X, its universal cover X̃
decomposes as a product

X̃ ' Cq ×
∏

Yj ×
∏

Sk × Z,

where Yj are irreducible projective Calabi-Yau manifolds, Sk are irreducible projective hyperkäh-
ler manifolds (so that Yj and Sk have trivial canonical bundle), and Z is a projective rationally
connected manifold with −KZ nef (and non trivial as Z is rationally connected). In view of this
result, it is important to study the case when X is rationally connected, and it is also the most
difficult one.

1.2 Rationally connected threefolds with nef anticanonical divi-
sor

Recently, Birkar, Di Cerbo and Svaldi proved in [BCS20, Theorem 1.6] that birationally, there
are only finitely many deformation families of projective rationally connected threefolds with
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ε-lc singularities and nef anticanonical divisor. Thus it is in principle possible to classify these
varieties.

Let X be a smooth projective rationally connected threefold with −KX nef. If −KX is semi-
ample, i.e. some multiple of it is globally generated, we refer to [BP04, Section 5, Section 6]
for a partial classification. Another approach to boundedness and a classification in this case
stems from its similarity with weak Fano threefolds, i.e. threefolds with nef and big anticanonical
bundle. One may analyse the (pluri-)anticanonical morphism

φ|−mKX | : X → Y

for m sufficiently large, as did in weak Fano case, which led to boundedness of weak Fano
threefolds (see [Bor01,KMMT00,Mck02]). Together with a discussion of the Mori contractions,
one may obtain a classification by following the strategy in [JPR05, JPR11], where the authors
gave a complete classification of weak Fano threefolds.

We thus focus on the case where −KX is not semi-ample. In [BP04], Bauer and Peternell
gave the following criterion for verifying the non semi-ampleness.

Proposition 1.2.1 ([BP04], Theorem 2.1). Let X be a smooth projective rationally connected
threefold with −KX nef. Then the Iitaka dimension κ(−KX) is at least 1.

If the nef dimension (see Definition 2.4.2) n(−KX) is 1 or 2, then −KX is semi-ample and
the nef reduction map associated to −KX can be taken as (the Stein factorisation of) the map
defined by some positive multiple of −KX which is globally generated.

By a result of Kawamata [Kaw85, Theorem 6.1], if ν(−KX) = κ(−KX), where ν(−KX) is
the numerical dimension of −KX (see 2.4.1 for definition), then −KX is semi-ample. Thus in
practice, the proposition (together with Theorem 2.4.4) implies that the non semi-ampleness of
−KX is equivalent to n(−KX) = 3 and ν(−KX) = 2, which is also equivalent to ν(−KX) = 2
and κ(−KX) = 1.

We start the investigation with the base locus of the anticanonical system as the latter one
is not semi-ample. We can write

| −KX | = A+ |B|,

where A is the fixed divisor (which may be zero) and |B| is the mobile part.

Lemma 1.2.2 (see Corollary 2.5.4). Let X be a smooth projective rationally connected threefold
with −KX nef, n(−KX) = 3 and ν(−KX) = 2. Let |B| be the mobile part of the anticanonical
system | −KX |. Then

B ∼ mH,

where m ≥ 2 and H is a prime divisor.

A natural approach to the classification problem stems from the MMP. The above lemma
imposes special restrictions on the geometry of X and leads to only a few possibilities when
running the MMP.

When the anticanonical system has no fixed divisor, which is a missing case in [BP04, Sec-
tion 7], running the MMP leads to the following complete classification.
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Theorem 1.2.3 (= Theorem 3.0.1). Let X be a smooth projective rationally connected threefold
X with −KX nef, n(−KX) = 3, ν(−KX) = 2. Suppose that the anticanonical system has no
fixed divisor. Then −KX is divisible by 2 in Pic(X) and X is one of the following:

(1) X → P1 is a del Pezzo fibration with general fibre isomorphic to P1 × P1. Then X is an
element of the linear system |OP(E)(2) + 4F |, where E := O⊕2

P1 ⊕ OP1(−1)⊕2, and F is a
general fibre of π : P(E)→ P1.

(2) X = P(E) is a P1-bundle over a smooth rational surface Y with −KY nef, where E is a nef
rank-2 vector bundle with c1(E) = −KY and c2(E) = K2

Y , given by an extension

0→ OY → E→ IZ ⊗ OY (−KY )→ 0,

where IZ is the ideal sheaf of a length-c2(E) subscheme Z of Y .

(3) X = Blp(Y ) is the blow-up in a point p of a smooth almost del Pezzo threefold Y of degree
1 (i.e. −KY ∼ 2HY for some prime divisor HY on Y with HY nef and H3

Y = 1) such that
p is not the unique base point of |HY |.

Conversely, let X be a variety that appears in one of the above cases with respectively the
following conditions:

(1’) X ∈ |OP(E)(2) + 4F | is a very general member;

(2’) the points of the finite set Z are in sufficiently general position on Y ;

(3’) the blown up point p ∈ Y is general.

Then −KX is nef, not semi-ample and divisible by 2 in Pic(X).

The type of varieties in case (3) also appeared in [LO16, Section 2], where an explicit example of
this case is constructed. For a complete list of smooth almost del Pezzo threefolds of degree 1,
we refer to [JP08]. Notice here that we deduce boundedness for the family of smooth projective
rationally connected threefolds with nef (and not semi-ample) anticanonical divisor from the
above theorem (and Proposition 3.2.1) in the case where the anticanonical system has no fixed
divisor.

When the anticanonical system has a non-zero fixed divisor, it turns out that, after a finite
sequence of flops, one can assume that the mobile part is always nef. We will further show that
the mobile part is base-point-free when it is nef.

Theorem 1.2.4 (= Theorem 4.0.1). Let X be a smooth projective rationally connected threefold
X with −KX nef, n(−KX) = 3, ν(−KX) = 2. Suppose that the anticanonical system has a
non-zero fixed divisor. Then there exists a finite sequence of flops ψ : X 99K X ′ such that the
following holds:

• X ′ is smooth,

• −KX′ is nef,
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• the mobile part |B′| of | −KX′ | is nef.

In this case, B′2 = 0 so that |B′| is base-point-free and induces a fibration f : X ′ → P1. Further-
more, a general fibre F of f is a smooth surface with −KF nef and effective, (−KF )2 = 0, and
n(−KF ) = 2.

Notice here that in the case where the anticanonical system has a non-zero fixed divisor, birational
boundedness does not follow from this theorem. However, we expect a complete classification in
this case as in the previous one.

The main obstacle towards a complete classification in this case is that the property of having
nef anticanonical divisor is not stable under the MMP. It is shown in [PS98] that the smallest
class of varieties appearing in the MMP of threefolds with nef anticanonical divisor is the class of
terminal threefolds X with −KX almost nef, i.e. −KX ·C ≥ 0 for all curves C with only finitely
many exceptions, and these exceptions are all rational curves. By the work of Demailly, Peternell
and Schneider ([DPS93, Proposition 3.3]), there are two types of birational Mori contractions in
dimension three which do not preserve the nefness of the anticanonical bundle (see Section 2.4).
Let us remark that these two types of Mori contractions do not appear when −KX is divisible
by 2 in Pic(X).

In order to study the geometry of the fibration X ′ → P1 in Theorem 1.2.4, we consider the
following setup where we denote X ′ by X for simplicity of notation in the rest of our discussion.

Setup 1.2.5 (= Setup 4.2.5). Let X be a smooth projective rationally connected threefold with
anticanonical bundle −KX nef, n(−KX) = 3 and ν(−KX) = 2. We suppose that the anticanon-
ical system | − KX | has a non-zero fixed divisor A and that its mobile part |B| is nef so that
B2 = 0 by Theorem 1.2.4. Hence the mobile part induces a fibration f : X → P1.

If F is a fibre of f , then | −KX | = A+ |kF | with k ≥ 2. Furthermore, A3 = A2 ·F = 0, and
−KF is nef with n(−KF ) = 2, ν(−KF ) = 1.

Now we write A = Ah + Av, where Ah and Av are effective divisors such that Ah|F = −KF

and Av|F = 0 for a general fibre F .

Our approach to the classification problem is exploring the geometry of X in Setup 1.2.5
according to the geometry of the unique member D in | −KF |. We first consider the case where
F is rational and D is a smooth elliptic curve. It is shown in [BP04, Proposition 7.7] that in
this case, | −KX | = A + |2F |, and A ' D × P1. In Chapter 5, we will show that the property
of being smooth and having nef anticanonical divisor is stable under the MMP, which leads to
a complete classification in this case (see Proposition 5.1.1 and Proposition 5.1.3). Notice that
even though A is isomorphic to a product, the structure of X can be complicated. Examples of
such X which are not isomorphic to a product can be found (see Section 5.2).

More generally, under Setup 1.2.5, we consider the case where F is rational and the unique
member D in | −KF | is reduced. We first show that if the pair (X,Ah) is log canonical over the
generic point of P1, then (X,Ah) is log canonical, and | − KX | = Ah + |2F | (Theorem 6.1.1).
This concerns most of the cases when F is rational and D is reduced.

We then examine more precisely the geometry of X when F is rational and D is either a
cuspidal or a nodal cubic curve. In order to avoid the two types of Mori contractions which
spoil the nefness of the anticanonical bundle, our strategy is to choose particular extremal rays
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when running a (log-)MMP. By a discussion on the classification of three-dimensional flops and
extremal divisorial crepant contractions, we show that the structure of X is very special in this
case: when D is a cuspidal curve, the fibration f : X → P1 is locally trivial (Theorem 6.2.1);
when D is a nodal curve (and thus the pair (X,Ah) is generically log canonical), we give an
explicit description of all the possible singular fibres of f |Ah : Ah → P1 (Proposition 6.3.1).

We conclude this case by analysing the remaining cases where the pair (X,Ah) is not gener-
ically log canonical (see Section 6.4), which brings to the following conjecture.

Conjecture 1.2.6 (= Conjecture 6.4.6). In Setup 1.2.5, assume moreover that F is rational
and that the unique member in | −KF | is reduced. Then | −KX | = Ah + |2F |.

Let us point out that the case where the general fibre F is non-rational in Setup 1.2.5 might
happen only in very few situations (see Proposition 7.1.3). We also construct an example in this
case (see Example 7.1.4). Notice that X 6' F × P1 when F is non-rational, since X is rationally
connected.

Plan of Part I. This part is organised as follows. In Chapter 2, we review relevant material and
results from singularities of pairs and the Mori contractions in dimension three. We also collect
some basic notions and properties about varieties with nef anticanonical bundle.

In Chapter 3, we prove Theorem 1.2.3 thanks to Lemma 1.2.2 and the Mori contractions in
dimension three.

In Chapter 4, we prove Theorem 1.2.4. The main part of this chapter is devoted to the proof
by contradiction of the statement B′2 = 0.

The rest of Part I is under Setup 1.2.5. In Chapter 5, we give a complete classification when
F is rational and the unique member in | − KF | is a smooth elliptic curve, and we construct
examples in each case of the classification. In Chapter 6, we study the more general case where
F is rational and the unique member in | −KF | is reduced. Finally, in Chapter 7, we analyse
the case when F is non-rational.
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Chapter 2

Preliminaries

2.1 Notation and conventions

We work over C.

• Let X be a projective variety. Let C1, C2 be two algebraic cycles on X.

We note C1 ∼ C2 if the two cycles are rationally equivalent. In particular, if X is normal,
then rational equivalence for cycles of codimension 1 coincides with linear equivalence of Weil
divisors.

We note C1 ≡ C2 or C1 ≡num C2 if the two cycles are numerically equivalent.

• Given a variety X, a point x ∈ X is called general if it is in the complement of a proper
algebraic subset of X, and very general if it is in the complement of a countable union of
proper algebraic subsets of X.

• In order to describe the configurations of blowing up points on P2, we adopt the following
conventions.

Let Σ be a set of r ≤ 8 distinct points on P2. We say that Σ is in general position if no 3 of
them are collinear, no 6 of them are on a conic, and when r = 8, there exists no singular cubic
which passes through all the points of Σ and has one of them as the singular point. Note that
we obtain a del Pezzo of degree 9− r by blowing up a set of points in general position.

Let Σ be a set of r ≤ 8 points on P2 (infinitely close points are allowed). We say that Σ is in
almost general position if no 4 of them are collinear, no 7 of them are on a conic, and no 3 of
them are infinitely close. Note that we obtain an almost del Pezzo of degree 9− r by blowing
up a set of points in almost general position.

Let Σ be a set of 9 points on P2 (infinitely close points are allowed). We say that Σ is in
sufficiently general position if by blowing up the points of Σ, we obtain a surface with nef and
non semi-ample anticanonical divisor. We refer to [Sak01, Section B] for precise configurations
of points. Notice that the condition on Σ of being in sufficiently general position is much
weaker than the two previous conditions; in particular, all the 9 points of Σ can be infinitely
close (see [Sak01, p. 222, E(1)

8 -surface]).
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2.2 Singularities of pairs

We recall in this section some definitions and results of singularities of pairs. The references for
this part are [Kol97, Sect. 2] and [Fuj11, Sect. 4].

Definition 2.2.1. Let X be a normal variety. Let ∆ be a Q-Weil divisor (or Q-divisor) on X,
i.e. ∆ =

∑
i di∆i where di ∈ Q and ∆i are distinct prime divisors. We say that ∆ is Q-Cartier

if m∆ is Cartier for some non-zero m ∈ Z. We say that X is Q-factorial if every Q-divisor is
Q-Cartier. We call (X,∆) a pair if KX + ∆ is Q-Cartier.

Definition 2.2.2 (Log resolution). A log resolution of a pair (X,∆) with ∆ =
∑

i di∆i an
effective Q-divisor is a proper birational morphism µ : Y → X satisfying that Y is smooth, and
that the exceptional locus Exc(µ) ⊂ Y is a divisor such that Exc(µ)∪µ−1

∗ (∆) has a simple normal
crossing support.

The existence of log resolution was shown by Hironaka, and generalised by Szabó (see [Sza94,
Resolution Lemma]).

In order to get a global measure of the singularities of the pair (X,∆), we introduce the
following.

Definition 2.2.3 (Singularities of pairs). Let (X,∆) be a pair with ∆ =
∑

i di∆i an effective
Q-divisor. Let µ : Y → X be a proper birational morphism with Y normal. We can write

KY ≡ µ∗(KX + ∆) +
∑
i

a(Ei, X,∆)Ei,

where Ei ⊂ Y are distinct prime divisors and a(Ei, X,∆) ∈ Q. We adopt the convention that a
non-exceptional divisor E appears in the sum of the right hand side if and only if E = µ−1

∗ ∆i for
some i, and then its coefficient a(Ei, X,∆) = −di.

• We call a(Ei, X,∆) the discrepancy of Ei with respect to (X,∆). Then we say that (X,∆) is
log canonical or lc for abbreviation (resp. Kawamata log terminal or klt for abbreviation) if
a(Ei, X,∆) ≥ −1 (resp. a(Ei, X,∆) > −1) for every i. Note that the discrepancy a(E,X,∆)
can be defined for every prime divisor E over X.

• There exists a largest Zariski open subset U (resp. U ′) of X such that (X,∆) is log canonical
(resp. Kawamata log terminal) on U (resp. U ′). We note

Nlc(X,∆) = X\U

resp.
Nklt(X,∆) = X\U ′

and call it the non-lc locus (resp. non-klt locus) of the pair (X,∆).

Note that by blowing up along smooth centres on a given Y , we create new exceptional divisors.
Nevertheless, only additional positive coefficients for new exceptional divisors will appear when
we continue this process. Therefore, the above definition for lc (resp. klt) pair is consistent.

Now we introduce the notion of log canonical threshold and log canonical centre.
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Definition 2.2.4 (Log canonical threshold). Let (X,∆) be a log canonical pair and let B be
an effective Q-Cartier divisor on X. The log canonical threshold of (X,∆) with respect to B is
defined by

lct((X,∆), B) = sup{t|(X,∆ + tB) is lc}

Definition 2.2.5 (Log canonical centre). Let (X,∆) be a pair with ∆ an effective Q-divisor.
A place for (X,∆) is a prime divisor E on some proper birational model µ : Y → X of X such
that a(E,X,∆) = −1. If µ(E) is not contained in Nlc(X,∆), then µ(E) is called a log canonical
centre of (X,∆). There are at most finitely many lc centres.

2.3 Mori contractions in dimension three

Let X be a smooth projective threefold and let Γ be an extremal ray of NE(X). Consider a Mori
contraction ϕ : X → Y corresponding to Γ. Recall that the length of Γ is defined as

l(Γ) = min{−KX · Z | [Z] ∈ Γ}.

Remark 2.3.1. An extremal ray Γ of NE(X) is not necessarily KX-negative. We say that the
corresponding contraction ϕΓ is a Mori contraction if Γ is KX-negative; we say that ϕΓ is an
extremal crepant contraction if Γ is KX-trivial.

We list here the Mori contractions in dimension three (see [MM83, Sect. 3]).

Case dimY = 3. In this case, ϕ is a divisorial contraction. Denote by E the exceptional divisor
of ϕ. Then ϕ is the blow-up of Y in the ideal defining ϕ(E) (given the reduced structure).

Type of Γ ϕ and E l(Γ)

E1 ϕ(E) is a smooth curve, Y is smooth and ϕ|E : E → ϕ(E) is a P1-bundle 1

E2
ϕ(E) is a point, Y is smooth, E ' P2 and

OE(E) ' OP2(−1)
2

E3
ϕ(E) is an ordinary double point, E ' P1 × P1 and

OE(E) ' OP1×P1(−1,−1)
1

E4
ϕ(E) is a double point, E is a quadric cone in P3 and

OE(E) ' OE ⊗ OP3(−1)
1

E5
ϕ(E) is a quadruple non Gorenstein point, E ' P2 and

OE(E) ' OP2(−2)
1

Case dimY = 2. In this case, Y is a smooth projective surface and ϕ : X → Y is a conic bundle.
Moreover, ϕ−1(C) is irreducible for every irreducible curve C on Y .

Type of Γ ϕ l(Γ)

C1 ϕ has a singular fibre 1

C2 ϕ is a P1-bundle 2

Case dimY = 1. In this case, Y is a smooth curve. Every fibre of ϕ is irreducible and reduced,
and the generic fibre is a del Pezzo surface. In particular, Y ' P1 if q(X) = 0.
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Type of Γ ϕ l(Γ)

D1 the general fibre of ϕ is a del Pezzo surface of degree d, with 1 ≤ d ≤ 6 1

D2
ϕ is a quadric bundle, i.e. the general fibre is isomorphic to P1 × P1,

and a singular fibre is isomorphic to a quadric cone in P3 2

D3 ϕ is a P2-bundle 3

Case dimY = 0. Then X is a Fano threefold with Picard number one.

2.4 Varieties with nef and effective anticanonical divisor

In order to measure the positivity of an effective divisor L on a smooth projective variety, we study
the asymptotic behaviour of the linear system |mL| as m increases. The two most important
features of the asymptotic behaviour are the following:

Notation 2.4.1 ([Laz04], Def. 2.1.3, Rem. 2.3.17). Let X be a normal projective variety and L
a Cartier divisor on X. We denote by

• κ(L) the Iitaka (Kodaira) dimension of L defined as follows.

Let m be a positive integer such that H0(X,L⊗m) 6= 0. Consider the rational map

φm := φ|L⊗m| : X 99K PH0(X,L⊗m)

associated to the complete linear system |L⊗m|. Then the Iitaka dimension of L is defined
to be

κ(L) = κ(X,L) = max
m>0
{dimφm(X)}.

If H0(X,L⊗m) = 0 for all m > 0, one puts κ(L) = −∞.

• ν(L) := max{n | Ln 6≡ 0} the numerical dimension of L when L is nef.

Note that the numerical dimension can also be defined for a pseudo-effective divisor, see for
example [Leh14, Def. 2.14].

For a nef divisor L on a variety X, one would like to describe the maximal "quotient" of
X contracting all the curves C with L · C = 0. This is done in [BCE+02], where the authors
construct a reduction map for nef divisors.

Theorem-Definition 2.4.2 ([BCE+02], Thm. 2.1). Let L be a nef line bundle on a normal
projective variety X. Then there exists an almost holomorphic dominant meromorphic map
f : X 99K B with connected fibres such that

(1) L is numerically trivial on all compact fibres of f of dimension dim X − dim B,

(2) for a general point x ∈ X and every irreducible curve C passing through x such that
dim f(C) > 0, we have L · C > 0.

The map f is unique up to birational equivalence of B. In particular dim B is an invariant of L
and we set n(L) = dim B, the nef dimension of L.
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Recall that a meromorphic map f : X 99K B is almost holomorphic if there exists a Zariski dense
open subset U ⊂ X such that f |U is holomorphic and proper. So the fibre over a point b ∈ f(U)
is well defined, which is f |−1

U (b).
We have the following inequalities which relate the above three invariants:

Theorem-Definition 2.4.3 ([Kaw85], Prop. 2.2, Thm. 6.1 [BCE+02], Prop. 2.8). Let X be a
smooth projective variety. Let L be a nef divisor on X. Then we have

κ(L) ≤ ν(L) ≤ n(L).

We say that L is good if κ(L) = ν(L), otherwise we say that it is bad. If L = ±KX is good, then
it is semi-ample.

By the Abundance Conjecture, the canonical divisor is expected to be always good, whereas
the anticanonical divisor can be bad.

More generally, the concept of reduction map can be generalised to a pseudo-effective divisor
(see [Leh14, Thm. 1.3]). We mention the following equivalent conditions for the goodness of a
nef divisor, which is a particular case of a more general result in [Leh14, Thm. 6.1].

Theorem 2.4.4. Let X be a normal projective variety. Let L a divisor on X with κ(L) ≥ 0.
The following are equivalent:

(1) κ(L) = ν(L).

(2) κ(L) = n(L).

Surfaces with nef anticanonical divisor

Complex projective surfaces with nef and not numerically trivial anticanonical bundle are com-
pletely classified. This is a consequence of the Kodaira-Enriques classification for compact com-
plex surfaces.

Lemma 2.4.5 ([BP04], Prop. 1.5, Prop. 1.6). Let S be a smooth projective surface with −KS

nef and ν(−KS) = 1. Then S is one of the following:

1. n(−KS) = 1: S admits an elliptic fibration and −KS is semi-ample;

2. n(−KS) = 2: we have κ(−KS) = 0 and either

(A) S is P2 blown up in 9 points in sufficiently general position or

(B) S = P(E) with E a rank-2 vector bundle over an elliptic curve which is an extension

0→ O→ E→ L→ 0

with L a line bundle of degree 0 and either

(i) L = O and the extension is non-split or
(ii) L is not torsion.
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The structure of the unique element D in | −KS | is as follows:
(i) either D = 2C and C is a smooth elliptic curve,
(ii) or D = C1 + C2 where C1 and C2 are smooth elliptic curves which do not meet.

In the case where S is P2 blown up in 9 points and −KS is not semi-ample, the unique
member D ∈ | − KS | is one of the types in Kodaira’s table of singular fibres for an elliptic
fibration. We list here all the possible configurations for D by Sakai (see [Sak01, p. 181, Table
2]).

Type Intersection matrix and Kodaira’s symbol for D
Elliptic type A

(1)
0 (= I0)

Multiplicative type A
(1)∗
0 (= I1), A

(1)
1 (= I2), A

(1)
2 (= I3), . . . , A

(1)
7 , A

(1)
7

′
= (I8), A

(1)
8 (= I9)

Additive type
A

(1)∗∗
0 (= II), A

(1)∗
1 (= III), A

(1)∗
2 (= IV ),

D
(1)
4 (= I∗0 ), . . . , D

(1)
8 (= I∗4 ),

E
(1)
6 (= IV ∗), E

(1)
7 (= III∗), E

(1)
8 (= II∗)

Table 2.1 – Sakai’s Table

We refer the readers to [Sak01, Sect. B] for the realisation of each configuration as the blow-up
of P2 in 9 points. Let us point out that for elliptic type, D is a smooth elliptic curve; for every
configuration of multiplicative type, D is reduced; for additive type, D is reduced only in the
3 configurations A(1)∗∗

0 (= II), A
(1)∗
1 (= III) and A(1)∗

2 (= IV ). In particular, D is a cubic nodal
curve in configuration A(1)∗

0 (= I1), and D is a cubic cuspidal curve in configuration A(1)∗∗
0 (= II).

Remark 2.4.6. Let S be a smooth rational projective surface. Suppose that−KS is nef, effective
and not big. Then by Lemma 2.4.5, the surface S is obtained by blowing up 9 points on P2. The
case where −KS is not semi-ample is discussed as above. Now suppose that −KS is semi-ample.
Let m ≥ 1 be the minimal integer such that | −mKS | is base-point-free. Then there exists an
irreducible pencil of curves of degree 3m with 9 base points of multiplicity m in P2, such that S
is the blow-up of the 9 base points and | −mKS | is the proper transform of this pencil (the set
of base points may contain infinitely close points), see for example [CD12, Prop. 2.2].

Threefolds with nef anticanonical divisor

Let X be a smooth projective threefold with −KX nef and κ(X) = −∞. Let ϕ : X → Y be
a Mori contraction. There are exactly two types of birational Mori contractions which do not
preserve the nefness of the anticanonical bundle:

Proposition 2.4.7 ([DPS93], Prop. 3.3). Assume that dimY = 3, in which case ϕ is a birational
divisorial contraction and the exceptional divisor E is irreducible. Then we have one of the
following.

(1) If dimϕ(E) = 0, then −KY is nef and big, and q(X) = 0.

(2) If dimϕ(E) = 1, then Y is smooth, and ϕ is the blow-up of the smooth curve C0 := ϕ(E)
and −KY is again nef except in the case where C0 is rational, and either
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(A) NC0/Y ' OP1(−2)⊕ OP1(−2), or

(B) NC0/Y ' OP1(−1)⊕ OP1(−2).

For a non-birational Mori contraction, the structure of ϕ is as follows.

Proposition 2.4.8 ([DPS93], Prop. 3.1). Assume that dimY ≤ 2. Then one of the following
cases occurs.

(1) If Y is a point, then X is Fano.

(2) If Y is a smooth curve, then ϕ is a del Pezzo fibration, and g(Y ) ≤ 1. In the case when
g(Y ) = 1, we have ϕ = α, where α : X → Alb(X) is the Albanese map; in the case when
g(Y ) = 0, we have q(X) = 0.

(3) If Y is a smooth surface, then either

(a) ϕ is a P1-bundle and −KY is nef, or

(b) ϕ is a proper conic bundle with discriminant locus ∆ such that −(4KY + ∆) is nef,
and q(Y ) ≤ 1.

For case (3)(b) above, a more precise result on the positivity of direct image sheaves states that
the anticanonical bundle of the surface Y is nef:

Proposition 2.4.9 ([Hör10], Cor. 3.31). Let X be a smooth projective threefold which is a conic
bundle ϕ : X → Y over a surface Y . Let L be a line bundle over X that is nef and ϕ-big. Then
the direct image sheaf ϕ∗(L⊗ ωX/Y ) is nef.

2.5 Basic results

In this section, we prove some fundamental geometric properties of rationally connected threefolds
with nef and not semi-ample anticanonical divisor, which are useful throughout Part I.

We start by showing some results which are valid in a more general setting.

Lemma 2.5.1. Let X be a normal projective Q-factorial variety with −KX nef. Let D be an
effective Q-divisor such that the pair (X,D) is log canonical. If D is not nef, then there exists a
(KX +D)-negative extremal ray Γ such that D · Γ < 0.

Proof. Suppose that there is no such extremal ray. Since D is not nef, there exists an irreducible
curve l ⊂ X such that D · l < 0. Then we can write

l =
∑
i

λiΓi +R,

where

• λi ≥ 0;

• the Γi are (KX +D)-negative extremal rays. By assumption they all satisfy D · Γi ≥ 0;
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• (KX +D) ·R ≥ 0.

Therefore,
0 > D · l =

∑
i

λiD · Γi +D ·R ≥ D ·R,

i.e. D ·R < 0.
Since (KX +D) ·R ≥ 0, we have

KX ·R ≥ −D ·R > 0,

which contradicts the fact that −KX is nef.

Lemma 2.5.2. Let X be a smooth projective rationally connected threefold. Let D be a divisor
with κ(D) = 1. Suppose that the linear system |D| has no fixed divisor and the general member
in |D| is reducible. Then D is linearly equivalent to mH, where H is a prime divisor and m ≥ 2.
Furthermore, h0(X,OX(H)) = 2 and h0(H,OH(H)) = 1.

Proof. Let φ : X 99K C be the rational map determined by the linear system |D|. Then C ' P1

as κ(D) = 1 and H1(X,OX) = 0.
Let µ : X̃ → X be a birational modification which resolves φ. Let F be a general fibre of the

induced morphism φ̃ : X̃ → C. Since |D| has no fixed divisor, the pushforward µ∗(F ) is a general
member of |D|. Furthermore, the general fibre F is not connected as the general member in |D|
is reducible.

Let X̃ φ̃′−→ C ′
ν−→ C be the Stein factorisation of the morphism φ̃. Then φ̃′ has smooth

connected general fibres and C ′ ' P1 as H1(X,OX) = 0.
For a point p ∈ C, we have

ν∗(p) ' OP1(m)

with m ≥ 2 the number of connected components of φ̃∗(p), and thus

φ̃∗(p) = φ̃′∗(ν∗(p)) ' φ̃′∗(OP1(m)).

Let F ′ be a general fibre of φ̃′ : X̃ → P1. Then F ∼ mF ′, and thus a general member in |D| is
linearly equivalent to mH where H := µ∗(F

′). Hence,

h0(X,OX(H)) = h0(P1,OP1(1)) = 2.

Now the exact sequence:
0→ OX → OX(H)→ OH(H)→ 0

gives h0(H,OH(H)) = 1.

For the rest of this section, X will be a smooth projective rationally connected threefold with
−KX nef, n(−KX) = 3 and ν(−KX) = 2.

By [BP04, Thm. 2.1], the conditions n(−KX) = 3 and ν(−KX) = 2 on −KX are equivalent
to ν(−KX) = 2 and κ(−KX) = 1. The latter one is more useful since it is in practice easier to
compute the Iitaka dimension than the nef dimension.
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Since X is rationally connected, we have χ(OX) = 1. Together with K3
X = 0, we deduce by

the Riemann-Roch theorem that χ(−KX) = 3. Moreover, as −KX is nef and ν(−KX) = 2, by
the Kawamata-Viehweg vanishing theorem [Kaw82, Corollary], one has H1(X,OX(2KX)) = 0.
Hence we deduce

H2(X,OX(−KX)) = 0

by Serre duality. Therefore,
h0(X,OX(−KX)) ≥ 3.

Lemma 2.5.3. Let X be a smooth projective rationally connected threefold with −KX nef,
n(−KX) = 3 and ν(−KX) = 2. Let |B| be the mobile part of the anticanonical system | −KX |
and D be a general member in |B|. Then D has at least two irreducible components.

Proof. We can write | −KX | = A+ |B| with A the fixed divisor (which can be zero) and |B| the
mobile part. For a general member D of |B|, we have the exact sequence:

0→ OX(−KX −D)→ OX(−KX)→ OD(−KX)→ 0.

Since
h0(X,OX(−KX −D)) = h0(X,OX(A)) = 1,

together with h0(X,OX(−KX)) ≥ 3, we have h0(D,OD(−KX)) ≥ 2.

Now suppose by contradiction that D is irreducible. Let ν : D → D be the normalisation of
the surface D. Then for the pullback of the Cartier divisor −KX |D, we have

h0(D, ν∗(−KX |D)) ≥ h0(D,−KX |D) ≥ 2.

Hence the linear system |ν∗(−KX |D)| on D has a mobile part M . On the other hand, since
−KX is nef and (−KX)3 = 0, one has (−KX)2 ·D = 0, i.e. (−KX |D)2 = 0. Since ν∗(−KX |D)
is nef and ν∗(−KX |D)2 = (−KX |D)2 = 0, we deduce that

ν∗(−KX |D) ·M = 0.

Therefore, D is covered by ν∗(−KX |D)-trivial curves, from which we deduce that D is covered
by (−KX)-trivial curves. As D moves, this contradicts the fact that n(−KX) = 3.

Now Lemmas 2.5.2 and 2.5.3 give the following:

Corollary 2.5.4. Let X be a smooth projective rationally connected threefold with −KX nef,
n(−KX) = 3 and ν(−KX) = 2. Let |B| be the mobile part of the anticanonical system | −KX |.
Then

B ∼ mH,

where m ≥ 2 and H is a prime divisor such that h0(H,OH(−KX)) = 1, h0(X,OX(H)) = 2 and
h0(H,OH(H)) = 1.
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Proof. By Lemma 2.5.3 and 2.5.2, it remains to show that

h0(H,OH(−KX)) = 1.

By contradiction, suppose that h0(H,OH(−KX)) ≥ 2. In Lemma 2.5.3, we may repeat the
same argument in the second part of the proof with H playing the role of D, then the argument
following from the normalisation of the surface leads to a contradiction.

We close this section with the following lemma which is convenient for verifying the nefness
and the non semi-ampleness of the anticanonical divisor.

Lemma 2.5.5. Let X be a smooth projective rationally connected threefold with −KX non-zero
effective, divisible by 2 in Pic(X), and K3

X = 0. Suppose that there exists an irreducible normal
surface H ∈ | − 1

2KX | such that −KH is nef, non-zero, effective, and not semi-ample. Then
−KX is nef and not semi-ample, i.e. ν(−KX) = 2 and κ(−KX) = 1.

Proof. We have −KX ∼ 2H. The adjunction formula gives −KH ∼ H|H . We first show that H
(and thus −KX) is nef. Indeed, it is enough to show that the restriction of H on itself is nef: let
C ⊂ H be an integral curve, then

H · C = H|H · C = −KH · C ≥ 0

as −KH is nef.
Since there exists a non-zero effective divisor in | −KH |, we deduce that

ν(−KX) = ν(H) = 2.

As −KH is not semi-ample, we have 0 ≤ κ(H,−KH) < ν(H,−KH) < n(H,−KH) ≤ 2 by
Definition-Theorem 2.4.3 and Theorem 2.4.4. Thus κ(H,−KH) = 0. Then for any m ≥ 1,

h0(H,OH(mH)) = h0(H,OH(−mKH)) = 1.

Now the short exact sequence

0→ OX((m− 1)H)→ OX(mH)→ OH(mH)→ 0

gives h0(X,OX(mH)) ≤ h0(X,OX((m− 1)H)) + 1, and thus

κ(−KX) = κ(H) ≤ 1.

Together with κ(−KX) ≥ 1 by Proposition 1.2.1, one has κ(−KX) = 1.
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Chapter 3

Anticanonical system without fixed
divisor

The main result of this chapter is the following classification:

Theorem 3.0.1. Let X be a smooth projective rationally connected threefold X with −KX nef,
n(−KX) = 3, ν(−KX) = 2. Suppose that the anticanonical system has no fixed divisor. Then
−KX is divisible by 2 in Pic(X) and X is one of the following:

(1) X → P1 is a del Pezzo fibration with general fibre isomorphic to P1 × P1. Then X is an
element of the linear system |OP(E)(2) + 4F |, where E := O⊕2

P1 ⊕ OP1(−1)⊕2, and F is a
general fibre of π : P(E)→ P1.

(2) X = P(E) is a P1-bundle over a smooth rational surface Y with −KY nef, where E is a nef
rank-2 vector bundle with c1(E) = −KY and c2(E) = K2

Y , given by an extension

0→ OY → E→ IZ ⊗ OY (−KY )→ 0,

where IZ is the ideal sheaf of a length-c2(E) subscheme Z of Y .

(3) X = Blp(Y ) is the blow-up in a point p of a smooth almost del Pezzo threefold Y of degree
1 such that p is not the unique base point of | − 1

2KY |.

Conversely, let X be a variety that appears in one of the above cases with respectively the
following conditions:

(1’) X ∈ |OP(E)(2) + 4F | is a very general member;

(2’) the finite set Z of c2(E) points are in sufficiently general position on Y ;

(3’) the blown up point p ∈ Y is general.

Then −KX is nef, not semi-ample and divisible by 2 in Pic(X).
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Let us point out the Picard number of X in each case. In case (1), X has ρ(X) = 2. In case (2),
X has 2 ≤ ρ(X) ≤ 11, since 1 ≤ ρ(Y ) ≤ 10 (this is because Y is isomorphic to P2 blown up in at
most 9 points). In case (3), X has 2 ≤ ρ(X) ≤ 11, since 1 ≤ ρ(Y ) ≤ 10 (see [CJR08, Thm. 1.1]).
Therefore, 2 ≤ ρ(X) ≤ 11, and ρ(X) = 11 if and only if we are in one of the following cases:

(a) either X = X1 := P(OY1 ⊕OY1(−KY1)), where Y1 is P2 blown up in 9 points in sufficiently
general position such that −KY1 is nef and not semi-ample,

(b) or X = X2 := Blp(Y2) is the blow-up of Y2 at a point p which is not the unique base point of
|− 1

2KY2 |, where Y2 is a smooth almost del Pezzo threefold of degree 1 such that there exists
a finite sequence of flops χ : Y2 99K Blp1,...,p8(P(OP2 ⊕ OP2(3))) (see [CJR08, Thm. 1.1]).

Remark that in case (a), by [CJR08, Lem. 2.6] (where the bigness assumption on the anticanonical
divisor is not used in their proof), there exists a finite sequence of flops

χ1 : X1 99K Blp1,...,p9(P(OP2 ⊕ OP2(3))).

Note that in case (b), the blow-up point p ∈ Y2 is not contained in the flopping locus of χ, as
−KX is nef. Therefore, we can lift χ to obtain a finite sequence of flops

χ2 : X2 99K Blp1,...,p9(P(OP2 ⊕ OP2(3))).

Therefore, ρ(X) = 11 if and only if there exists a finite sequence of flops X 99K Blp1,...,p9(P(OP2⊕
OP2(3))).

We consider the following setup throughout this chapter:

Setup 3.0.2. Let X be a smooth projective rationally connected threefold with anticanonical
bundle −KX nef, n(−KX) = 3 and ν(−KX) = 2. We suppose that the anticanonical system
| −KX | has no fixed divisor so that by Corollary 2.5.4, we can write

−KX ∼ mH

with m ≥ 2 and H some prime divisor.

We may now run the Minimal Model Program.

3.1 Del Pezzo fibrations

Proposition 3.1.1. In Setup 3.0.2, suppose that there exists a Mori contraction ϕ : X → P1.
Then X ⊂ P(E) such that X ∈ |OP(E)(2) + 4F |, where F is a general fibre of π : P(E)→ P1, and

E = OP1 ⊕ OP1 ⊕ OP1(−1)⊕ OP1(−1).

Proof. Since −KX is divisible by m ≥ 2 in Pic(X), we deduce from the classification of Mori
(see Section 2.3) that m = 2 or 3.
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Case 1. Ifm = 3, then ϕ is a P2-bundle and we can writeX = P(E) where E is a vector bundle
over P1 of rank 3. Denote the tautological line bundle by ξ := OP(E)(1). Then the Grothendieck
relation gives

ξ3 − ξ2 · ϕ∗(c1(E)) = 0.

Hence

(−KX)3 = (3ξ + ϕ∗(−KP1 − c1(E)))3

= 27ξ3 + 27ξ2 · ϕ∗(OP1(2)− c1(E))

= 27ξ2 · ϕ∗(OP1(2))

= 54

which contradicts the fact that K3
X = 0.

Case 2. If m = 2, then ϕ : X → P1 is a quadric bundle with general fibre FX ' P1 × P1,
and every fibre is a smooth quadric or a quadric cone in P3. Define E := ϕ∗(OX(H)) which is a
vector bundle on P1 of rank

r = h0(FX , H|FX ) = h0(P1 × P1,OP1×P1(1, 1)) = 4.

Now the morphism ϕ∗E→ OX(H) is surjective as it is the evaluation map on each fibre and the
restriction of H on each fibre is base-point-free. Hence it gives an embedding X ⊂ P(E) such
that H = OP(E)(1)|X . Let π : P(E)→ P1 such that ϕ = π|X .

We write E = ⊕4
i=1OP1(ai) with a1 ≥ a2 ≥ a3 ≥ a4. Denote a tautological divisor associated

to the tautological line bundle OP(E)(1) by ξ and a general fibre of π by F . Since

KP(E) ∼ −4ξ + π∗(KP1 + c1(E))

and KX ∼ −2ξ|X , we deduce from the adjunction formula that

X ∈ |2ξ + αF |

with α = −c1(E)+2, because the morphism Pic(P(E))→ Pic(X) is injective (indeed Pic(P(E)) '
Z⊕ Z and both ξ, and F are non-trivial and linearly independent on X).

On the other hand, by the Grothendieck relation, we have

ξ4 − ξ3 · π∗(c1(E)) = 0.

Hence
0 = H3 = (ξ|X)3 = ξ3 · (2ξ + αF ) = 2c1(E) + α.

Therefore, c1(E) = −2 and α = 4.
Since h0(P1,E) = h0(X,OX(H)) = 2 by Corollary 2.5.4, there are two possibilities: either

a1 = 1, a2 = a3 = a4 = −1,

or
a1 = a2 = 0, a3 = a4 = −1.
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Now suppose that E = O(1)⊕ O(−1)⊕3. Then Bs |ξ| = P(O(−1)⊕3) =: D0 and ξ ∼ D0 + F .
Since H0(P(E),OP(E)(ξ − X)) = H0(P(E),OP(E)(−ξ − 4F )) = 0, we deduce from the short

exact sequence
0→ OP(E)(ξ −X)→ OP(E)(ξ)→ OX(ξ)→ 0

that the restriction morphism H0(P(E),OP(E)(ξ))→ H0(X,OX(H)) is injective, hence surjective
as h0(P(E),OP(E)(ξ)) = h0(X,OX(H)).

Therefore, when we restrict the base locus D0 of |ξ| to X, we have

D0 ∩X ⊂ Bs |H|.

But this implies that the base locus of |H| on X has a divisorial part, which contradicts the fact
that |H| is mobile on X.

Remark 3.1.2. In the setting of Proposition 3.1.1, ϕ : X → P1 is a quadric bundle with general
fibre FX ' P1 × P1 and | − KX | = |2H|. Let D be a general member of |H|, then OFX (D) '
OP1×P1(1, 1). Hence, a general fibre of ϕ : D → P1 is isomorphic to P1 or two P1’s intersecting
transversally at one point.

Proof of Theorem 3.0.1 (1’). Let E = O⊕2
P1 ⊕ OP1(−1)⊕2 and π : P(E) → P1 be the projection

morphism. Denote a tautological divisor associated to the tautological line bundle OP(E)(1) by ξ,
and a general fibre of π by F . Let X be a very general member in |2ξ+ 4F |. Since S2E⊗OP1(4)
is globally generated, a general member in |2ξ + 4F | is smooth. As

KP(E) ∼ −4ξ + π∗(KP1 + c1(E)),

the adjunction formula gives KX ∼ −2ξ|X . Let H := ξ|X , then −KX ∼ 2H.
Let E0 := OP1 ⊕ OP1(−1)⊕2 and D0 := P(E0). Then D0 ∈ |ξ| and we have the projection

morphism π0 := π|D0 : D0 → P1 and a tautological divisor ξ0 ∼ ξ|D0 associated to OP(E0)(1). Let
H0 := X ∩D0. Then H0 ∈ |H|. Let S0 := P(OP1(−1)⊕2) ' P1 × P1. Then S0 ∈ |ξ0|.

Since Riπ∗(OP(E)(1)) = 0 for all i > 0,

H1(P(E),OP(E)(X −D0)) ' H1(P1,E⊗ OP1(4))

= H1(P1,OP1(4)⊕2 ⊕ OP1(3)⊕2)

= 0.

Similarly, we have

H1(D0,OD0(H0 − S0)) ' H1(P1,E0 ⊗ OP1(4))

= H1(P1,OP1(4)⊕ OP1(3)⊕2)

= 0.

Therefore, the evaluation maps

H0(P(E),OP(E)(X))→ H0(D0,OD0(X))
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and
H0(D0,OD0(H0))→ H0(S0,OS0(H0))

are surjective. On the other hand, since 2ξ+4F is globally generated, its restriction to D0 (resp.
to S0) is globally generated. Hence, by the surjectivity of the above evaluation maps, we deduce
that H0 = X ∩D0 (resp. C0 := X ∩ S0) is smooth for a general X ∈ |2ξ + 4F |.

Claim. H (and thus −KX) is nef.
For any curve C ⊂ P(E) such that ξ · C < 0, we have C ⊂ S0.
Denote the two rulings of S by f1 and f2, where f1 := F |S and f2 is mapped surjective to P1

by π. Then
ξ|S0 = OP(OP1 (−1)⊕2)(1) ∼ −f1 + f2.

Therefore,
X|S0 ∼ (2ξ + 4F )|S0 ∼ 2(−f1 + f2) + 4f1 = 2(f1 + f2).

Now suppose by contradiction that there exists an integral curve C ⊂ X such that −KX ·C <
0. Then ξ · C = ξ|X · C < 0, and thus C ⊂ X ∩ S0. But C0 = X ∩ S0 is a smooth irreducible
curve (it is a smooth elliptic curve), we deduce that

[C] = [2(f1 + f2)],

which implies that
ξ · C = ξ|S0 · C = (−f1 + f2) · 2(f1 + f2) = 0.

This contradicts the fact that ξ · C < 0. Hence H is nef, and this proves the claim.

By the adjunction formula, one has that −KH0 ∼ H|H0 is nef with (−KH0)2 = 0 and
C0 ∈ | −KH0 |. Furthermore, π induces a fibration on H0 over P1 with general fibre isomorphic
to P1.

Now let S be the blow-up of P2 at 9 points in very general position such that −KS is nef, not
semi-ample, and the unique member D ∈ |−KS | is a smooth elliptic curve. Denote the blow-up
by σ : S → P2. Let h = σ∗(OP2(1)) and Ci be a conic on S, i.e. a smooth rational curve such
that −KS · Ci = 2 and C2

i = 0. Here, for example, we take Ci the strict transform of a general
line through a blown up point pi ∈ P2 such that Ci ∼ h − ei, where ei is the exceptional curve
over pi. Then the class of Ci induces a conic bundle τ : S → P1.

Since τ : S → P1 is a regular conic bundle, one has

Riτ∗(OS(−KS)) = 0

for all i > 0 and τ∗(OS(−KS)) is a locally free sheaf of rank 3 that we denote by V. Therefore,

Hk(P1,V) ' Hk(S,OS(−KS))

for all k ≥ 0 and thus χ(P1,V) = χ(S,OS(−KS)) = 1. By the Grothendieck-Riemann-Roch
theorem, one has

χ(P1,V) = deg(V) + 3,

and thus c1(V) = −2.
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Since h0(P1,V) = h0(S,OS(−KS)) = 1, we can write

V ' OP1 ⊕ OP1(a)⊕ OP1(b)

with a, b < 0. As a+ b = −2, we deduce that a = b = −1. Therefore,

S ⊂ P(OP1 ⊕ OP1(−1)⊕2) = D0,

and we have S ∈ |(2ξ + 4F )|D0 | by the adjunction formula. Hence by semicontinuity of coho-
mology, the surface H0 = X ∩ D0 has nef and not semi-ample anticanonical divisor for a very
general element X ∈ |2ξ + 4F |. Thus −KX is not semi-ample by Lemma 2.5.5.

3.2 Conic bundles

Proposition 3.2.1. In Setup 3.0.2, suppose that there exists a Mori contraction ϕ : X → Y to
a surface Y . Then X = P(E) is a P1-bundle over Y with −KY nef, E is a nef rank-2 vector
bundle with c1(E) = −KY and c2(E) = K2

Y , given by an extension

0→ OY → E→ IZ ⊗ OY (−KY )→ 0,

where IZ is the ideal sheaf of a length-c2(E) subscheme Z of Y . Furthermore, the set of such X
forms a bounded family.

Proof. By the classification of Mori (see Section 2.3), ϕ is a conic bundle and Y is a smooth
rational surface. Since −KX is divisible by m ≥ 2 in Pic(X), we deduce from the classification
that m = 2 and ϕ is a P1-bundle. By Proposition 2.4.8, the anticanonical bundle −KY is nef.
Let d := (−KY )2, thus we have that 0 ≤ d ≤ 9, and that Y is either P1 × P1 or P2 blown up in
(9− d) points.

We write X = P(E) with E = ϕ∗(OX(H)). Then H ∈ |ξ|, where ξ is a tautological divisor
associated to OP(E)(1). As −KX = 2H and

−KX ∼ ϕ∗(−KY − det(E)) + 2ξ,

one has c1(E) = det(E) = −KY .
On the other hand, since (−KX)3 = 0, one has

0 = ξ3 = c2
1(E)− c2(E),

from which we deduce that c2(E) = K2
Y = d.

Claim. E has a section which vanishes in codimension at least 2.
Suppose by contradiction that every non-zero section in H0(Y,E) vanishes in codimension 1.

Let s ∈ H0(Y,E) be a non-zero section and Hs the element in |H| associated to s. Let D be the
one-dimensional component of the vanishing locus of s taken with multiplicity. Now consider the
vector bundle E′ := E⊗ OY (−D). Then it has a non-zero section s′ ∈ H0(Y,E′) which vanishes
in codimension at least 2. We denote the element associated to s′ in |OP(E′)(1)| by Hs′ . Then
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one has an isomorphism X ' P(E′) under which Hs′ corresponds to Hs⊗ϕ∗(−D). Hence, there
exists an effective divisor R on X (which corresponds to Hs′) such that

Hs = ϕ∗(D) +R.

Notice that R is non-zero as the restriction of Hs to a general fibre is OP1(1). Since this holds for
every non-zero section s ∈ H0(Y,E), it contradicts the fact that H is irreducible and reduced.
This proves the claim.

Therefore, following [Brî96, Sect. 4.1, p. 85–87], we have an exact sequence

0→ OY → E→ IZ ⊗ OY (−KY )→ 0, (3.1)

where Z is the zero locus of a general section of E with length c2(E) = d.
If d = 0, then we have Z = ∅, and (3.1) must split as

Ext1(OY (−KY ),OY ) ' H1(Y,OY (KY )) ' H1(Y,OY ) = 0.

Thus E = OY ⊕OY (−KY ). Consider the case when d > 0. For a fixed smooth rational surface Y
such that −KY is nef, Z is a finite subscheme of length d = K2

Y on Y . Hence it is parameterised
by the Hilbert scheme Y [d]. Furthermore, the extensions (3.1) are parameterised by the vector
space Ext1(IZ ⊗OY (−KY ),OY ) of finite dimension. Therefore, the varieties P(E) such that E is
a vector bundle of rank 2 over Y satisfying (3.1) form a bounded family.

Now since smooth rational surfaces Y with −KY nef form a bounded family, we deduce that
X = P(E) form a bounded family as well.

Remark 3.2.2. In the setting of Proposition 3.2.1, one has X = P(E), where E is a rank-2
vector bundle on the surface Y , and −KX ∼ 2H, where H is a tautological divisor associated to
OP(E)(1).

Let D be a general member in |H|. Since E is given by the short exact sequence (3.1), one
has

D = BlZ(Y ).

Example 3.2.3. Let S be P2 blown up at 9 points in sufficiently general position, such that
−KS is nef and not semi-ample. Then there exists a unique element D ∈ | − KS |. We have
κ(−KS) = 0 and K2

S = 0.
Now define E := OS ⊕OS(−KS) and π : X := P(E)→ S. Then E is nef, and thus −KX ∼ 2ξ

is nef, where ξ is a tautological divisor associated to OP(E)(1). Furthermore, we have c1(E) = D
and c2(E) = 0.

For n ∈ N∗, we have

h0(X,OX(−nKX)) = h0(S, S2n(E)) = 2n+ 1.

Hence κ(−KX) = 1.
Now we consider the sections associated to π. Notice that for any extension

0→ L→ E→ Q→ 0,
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where L and Q are line bundles on S, we have

P(Q) = ξ − π∗(L).

Hence there are two types of sections: either it corresponds to the quotient E→ OS(−KS)→ 0
and thus gives an element D1 ' S such that D1 ∈ |ξ|, or it corresponds to the quotient E →
OS → 0 and thus gives an element D2 ' S such that D2 ∈ |ξ − π∗D|. Therefore, there are two
types of elements in |ξ|: one of the form D1, and the other of the form D2 + π∗D, where D1 and
D2 are two disjoint sections of π.

Since D1 ∈ |ξ| moves, D2
1 is an effective 1-cycle. By the Grothendieck relation, one has

ξ2 − ξ · π∗c1(E) ∼ 0.

Hence ξ2 ∼ D2
1 ∼ D1 · π∗D is a non-zero effective 1-cycle represented by D1 ∩ π∗D which is a

curve isomorphic to D. Furthermore,

ξ3 = ξ · (π∗D)2 = 0

as D2 = 0. Therefore, ν(−KX) = 2.

Proof of Theorem 3.0.1 (2’). Let E be a nef rank-2 vector bundle on a smooth rational surface Y
with nef anticanonical divisor such that c1(E) = −KY , c2(E) = (−KY )2, fitting into a sequence

0→ OY → E→ IZ ⊗ OY (−KY )→ 0, (3.2)

where IZ is the ideal sheaf of a subscheme Z of c2(E) points in sufficiently general position on
Y . Let X = P(E) and ξ be a tautological divisor. Let H be a general member in |ξ|. Then

−KX ∼ 2H,

and (−KX)3 = 8ξ3 = 8(c1(E)2 − c2(E)) = 0. Furthermore, the sequence (3.2) gives

H ' BlZ(Y ), NH/X = −KH .

Since Y is a smooth rational surface with −KY nef (and thus Y is the blow-up of P2 at
9 − (−KY )2 points in almost general position), and the c2(E) points are in sufficiently general
position, we deduce that −KH is nef and not semi-ample. Hence, −KX is nef and not semi-ample
by Lemma 2.5.5.

3.3 Birational contractions

Proposition 3.3.1. In Setup 3.0.2, suppose that there exists a birational Mori contraction
ϕ : X → Y . Then −KX is divisible by 2 in Pic(X), Y is a smooth almost del Pezzo threefold of
degree 1, and ϕ is the blow-up at a point p ∈ Y . Furthermore, if we write | −KY | = |2HY |, then
p 6∈ Bs |HY |.
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Proof. Since −KX is divisible by m ≥ 2, by the classification of Mori contractions on smooth
threefolds (see Section 2.3), one has m = 2 and ϕ is the blow-up at a smooth point p on Y with
exceptional divisor E ' P2, and OE(E) = OP2(−1). Hence, −KY is nef by Proposition 2.4.7,
and

(−KY )3 = (−KX)3 + (2E)3 = 8,

i.e. −KY is big.
On the other hand,

−KY = ϕ∗(−KX) = 2ϕ∗(H) =: 2HY

with HY ∈ Pic(Y ). Then HY is nef and big with (HY )3 = 1. We conclude that Y is an almost
del Pezzo threefold of degree 1, and the base scheme of |HY | is one point by [JP08, Sect. 2].

If p is the base point of |HY |, then Bs |H| = ∅ as the base scheme of |HY | is one point. This
is absurd because | −KX | is not semi-ample.

Proof of Theorem 3.0.1 (3’). Let Y be a smooth almost del Pezzo threefold of degree one. Then
a general member in | − 1

2KY | is a smooth almost del Pezzo surface of degree one. Now fix a
general member DY ∈ | − 1

2KY |. Since DY is the blow-up of P2 at 8 points in almost general
position, by choosing a sufficiently general point p ∈ DY ⊂ Y , the blow-up D := BlpDY of DY

at the point p has nef and not semi-ample anticanonical divisor. Let ϕ : X → Y be the blow-up
of Y at p. Then

−KX = 2(ϕ∗DY − E) =: 2H,

and D ∈ |H|. Therefore, we deduce by Lemma 2.5.5 that −KX is nef and not semi-ample.

Remark 3.3.2. In the setting of Proposition 3.3.1, let DY be a general member in |HY | and
D be a general member in |H|. Then DY is a smooth almost del Pezzo surface of degree one,
i.e. DY is isomorphic to P2 blown up at 8 points, and thus D is isomorphic to P2 blown up at 9
points.
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Chapter 4

Anticanonical system with a non-zero
fixed divisor

In this chapter, we will prove the following main result:

Theorem 4.0.1. Let X be a smooth projective rationally connected threefold X with −KX nef,
n(−KX) = 3, ν(−KX) = 2. Suppose that the anticanonical system has a non-zero fixed divisor.
Then there exists a finite sequence of flops ψ : X 99K X ′ such that the following holds:

• X ′ is smooth,

• −KX′ is nef,

• the mobile part |B′| of | −KX′ | is nef.

In this case, B′2 = 0 so that |B′| is base-point-free and induces a fibration f : X ′ → P1. Further-
more, a general fibre F of f is a smooth surface with −KF nef and effective, and (−KF )2 = 0,
n(−KF ) = 2.

Throughout this chapter, we consider the case when the anticanonical system | −KX | has a
non-zero fixed divisor, and we can write | −KX | = A+ |B| with A the fixed divisor and |B| the
mobile part. By Corollary 2.5.4, we have |B| = |mH| where m ≥ 2 and H is some prime divisor.

Proposition 4.0.2. Let X be a smooth projective rationally connected threefold with −KX nef,
n(−KX) = 3, ν(−KX) = 2. If the anticanonical system

| −KX | = A+ |mH|, m ≥ 2

has a non-zero fixed divisor A, then there exists a finite sequence of flops ψ : X 99K X ′ such that
X ′ is smooth with −KX′ nef and H ′ := ψ∗(H) is nef.

Proof. Fix a general member F ∈ |H|. Since X is smooth, for sufficiently small ε > 0, the pair
(X, εF ) is log canonical. It follows from Lemma 2.5.1 that if F is not nef, then there exists
a (KX + εF )-negative extremal ray Γ such that εF · Γ < 0. Let cΓ be the contraction of the
extremal ray Γ and l a contracted curve. Thus F · l < 0, which implies l ⊂ Bs(|H|). But |H|
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is mobile, it follows that cΓ is small. This implies that KX · l = 0 since there is no flipping
contraction for smooth threefolds. Hence there exists a flop of cΓ and the flopped threefold X+

is smooth by [Kol89, Thm. 2.4].
By repeating the above argument and by the termination of three-dimensional flops (see

[KM98, Cor. 6.19]), we deduce that there exists a sequence of flops ψ : X 99K X ′ such that
H ′ := ψ∗(H) is nef.

Lemma 4.0.3. In the setting of Proposition 4.0.2, if H is nef, then

A3 = A2 ·H = A ·H2 = H3 = 0.

Proof. As −KX is nef, one has K2
X ·A ≥ 0 and K2

X ·H ≥ 0. Then

0 = (−KX)3 = K2
X · (A+mH)

gives K2
X ·A = K2

X ·H = 0. From this we further conclude that

0 = −KX · (A+mH) ·H = −KX · (A ·H +mH2).

Since H moves, one has that A ·H and H2 are effective 1-cycles. This implies that

−KX ·A ·H = −KX ·H2 = 0.

Hence, A2 ·H +mA ·H2 = 0 and A ·H2 +mH3 = 0. As H is nef, and A ·H, H2 are effective
1-cycles, we deduce that

A ·H2 = H3 = 0.

This implies A2 ·H = 0. Together with K2
X ·A = 0, we conclude that A3 = 0.

After performing possibly a sequence of flops, the mobile part |B| = |mH| of the anticanonical
system | − KX | becomes nef. In this case, either B2 = 0 and we are in the case described in
Theorem 4.0.1, or B2 is a non-zero effective 1-cycle which is the case that we will study in the
rest of the chapter. We will show that this latter case does not occur.

4.1 Description of the anticanonical system

First we study the anticanonical system in this case, and we will give a description of the geometry
of its fixed divisor, as well as a general member of its mobile part.

Proposition 4.1.1. Consider as above a smooth projective rationally connected threefold X with
−KX nef, n(−KX) = 3, ν(−KX) = 2. Suppose that the anticanonical system |−KX | = A+|mH|
with m ≥ 2 has a non-zero fixed divisor A, and that H is nef such that H2 is a non-zero effective
1-cycle. Let F be a general member of |H|. Then −KF is nef, effective and divisible by r ≥ 2 in
NS(F ). Furthermore, κ(F,−KF ) = 0, K2

F = 0, and F is not covered by (−KF )-trivial curves.
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Proof. By the adjunction formula, we have

−KF ∼ −(KX + F )|F ∼ A|F + (m− 1)F |F .

As F is nef, it suffices to show that A|F is nef to obtain the nefnees of −KF : suppose that there
exists an irreducible curve l ⊂ F such that A|F · l < 0. Then l is an irreducible component of
C := A ∩ F . On the other hand, F is nef, and F · C = 0 as A · F 2 = 0, from which we deduce
that F · l = 0. Hence

−KX · l = A · l +mF · l = A · l < 0,

which contradicts the fact that −KX is nef. Therefore, the restriction A|F is nef.
Note that A|F cannot be zero: since −KX is nef with numerical dimension two, the support

of a divisor D ∈ | −KX | is connected in codimension one by [Sha99, Lem. 2.3.9].
Now let ν : F̃ → F be a desingularisation of the surface F . Since A|F and F |F are nef

Cartier divisors such that A|F · F |F = 0, their pullbacks to the desingularisation F̃ remain nef
and orthogonal to each other. Let

V :=< ν∗(A|F ), ν∗(F |F ) >⊂ NS(F̃ ).

Let H be an ample divisor on F̃ , then NS(F̃ ) = RH ⊕ (RH)⊥. If dimV ≥ 2, then dim(V ∩
(RH)⊥) ≥ 1. Hence, there exists v ∈ V ∩ (RH)⊥ which is non zero, and v2 < 0 by the Hodge
index theorem. But v = λν∗(A|F ) + µν∗(F |F ) with λ, µ ∈ R, which implies that v2 ≥ 0. This is
absurd. Hence dim V = 1, i.e. ν∗(A|F ) and ν∗(F |F ) are non-zero and numerically proportional.
Hence −KF is divisible by r ≥ 2 with r ∈ N.

The surface F is not covered by (−KF )-trivial curves: otherwise, F is covered by (−KX)-
trivial curves as −KF ∼ −KX |F − F |F and −KF is numerically proportional to F |F . As F
moves in X, this implies that X is covered by (−KX)-trivial curves. This is absurd because
n(−KX) = 3.

Furthermore, as A2 · F = A · F 2 = F 3 = 0, we have K2
F = 0.

It remains to show that κ(F,−KF ) = 0. Indeed, for any n ∈ N, we have

1 ≤ h0(F,OF (−nKF )) ≤ h0(F̃ , ν∗(−nKF )).

If h0(F̃ , ν∗(−nKF )) ≥ 2 for some n, then the linear system |ν∗(−nKF )| has some non-zero
mobile part M on F̃ , and ν∗(−KF ) ·M = 0 as (−KF )2 = 0 and −KF is nef. Thus F̃ is covered
by ν∗(−KF )-trivial curves, from which we deduce that F is covered by (−KF )-trivial curves.
This is absurd.

In order to get a more precise description of the geometric structure of A and F , we need the
following lemma:

Lemma 4.1.2. Let S be a projective Gorenstein surface such that the anticanonical divisor −KS

is of the form:
−KS ∼ D1 +D2,

where D1 is effective and D2 is a non-zero effective Cartier divisor which is nef and divisible by
r ≥ 2 in NS(S).

Suppose that D2
2 = 0, and that one of the following assertions holds:

39



(i) S is not covered by D2-trivial curves;

(ii) D2 contains a smooth curve of positive genus.

Then D1 = 0, and S is normal with at most rational singularities. Furthermore, the surface S̃
obtained by the minimal resolution of S is relatively minimal.

Proof. Special case. Assume that S is smooth. Suppose by contradiction that D1 is not zero.
Since D2 is divisible by r ≥ 2 in NS(S), we put rL ≡num D2, with L nef and L2 = 0. Then

−(KS + rL) ≡num D1,

and we deduce that the adjoint bundle KS + rL is not nef as D1 is effective.
Now for every irreducible reduced curve l ⊂ S such that (KS + rL) · l < 0, one has KS · l < 0

since L is nef. Then by the cone theorem, there exists a KS-negative extremal ray R which is
(KS + rL)-negative. We denote the contraction of the extremal ray R by φ : S → Z.

1. If dimZ = 1, then φ : S → Z is a P1-bundle over a smooth algebraic curve Z. Let f be a
fibre of φ, then f2 = 0 and (KS + rL) · f < 0.

Since KS · f = −2 by the adjunction formula, together with L · f ≥ 0 and r ≥ 2, we have
L · f = 0.

2. If Z is a point, then S = P2. But L is nef, not ample and not numerically trivial, this is
absurd.

If φ is birational, let l ∈ R be an integral contracted curve, then l is actually a (−1)-curve
since we contract a KS-negative extremal ray. Hence L · l = 0 as (KS + rL) · l < 0 and L is nef.

Now we put L′ := φ∗(L) and D′1 := φ∗(D1). Then

−KZ ≡num rL′ +D′1.

Since L · l = 0, we know by the contraction theorem that L ' φ∗(L′). Hence L′ is nef and
L′2 = 0.

Notice that the two assertions in the lemma are preserved by the contraction φ. More
precisely,

(i) if Z is covered by φ∗(D2)-trivial curves, then S is covered byD2-trivial curves as L = φ∗(L′);

(ii) φ∗(D2) contains a curve of positive genus, as φ does not contract any curve of positive
genus.

Moreover, Z cannot be a minimal surface. Indeed if KZ is nef, then

KS + rL = φ∗(KZ) + C + rL

is pseudo-effective, where C is an effective divisor supported on the exceptional locus. Therefore,
KS + rL is zero as it is anti-effective. This is absurd because D1 is not zero.

Therefore, by running a (KS + rL)-Minimal Model Program, we can suppose that S is a P1-
bundle as described in the first case above. Now we show that this will lead to a contradiction:
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(i) We first consider the case when S is not covered by D2-trivial curves: since L · f = 0 for
every fibre f of φ, the surface S is covered by L-trivial curves. Hence S is covered by
D2-trivial curve, which is absurd.

(ii) For the case when D2 contains a smooth curve of positive genus: since

D2 · f = rL · f = 0

for a general fibre f of φ, D2 is contained in some special fibre of the P1-bundle. This is
absurd because D2 contains a curve of positive genus.

Therefore, D1 = 0. Furthermore, since −KS ∼ D2 is divisible by r ≥ 2 in NS(S), the surface
S does not contain any (−1)-curve, i.e. S is relatively minimal.

General case. Let ν : S → S be the normalisation of S, and µ : S̃ → S the minimal resolution
of S. We put π := ν ◦ µ : S̃ → S. Computing the anticanonical bundles, we get

−KS = ν∗(−KS) + E1

with some effective Weil divisor E1 supported on the zero locus of the conductor ideal and

−KS̃ = π∗(−KS) + Ẽ1 + E2

with Ẽ1 the proper transform of E1 in S̃ and E2 some effective divisor supported on the excep-
tional locus.

Now S̃ is a smooth surface such that

−KS̃ ∼ D̃1 + D̃2

with D̃1 := Ẽ1 +E2 +π∗(D1) effective divisor, D̃2 := π∗(D2) non-zero, effective, nef and divisible
by r ≥ 2 in NS(S̃).

Furthermore, one has D̃2
2

= D2
2 = 0 and D̃2 satisfies one of the two assertions in the lemma

if D2 does:

(i) if S̃ is covered by π∗(D2)-trivial curves, then S is covered by D2-trivial curves;

(ii) π∗(D2) contains a smooth curve of positive genus which is mapped surjectively onto the
one contained in D2.

Hence by the previous smooth case, we deduce that D̃1 = 0. This implies that D1 = 0 and
S is normal as it is Cohen-Macaulay, with at worst rational singularities.

Let µ : S̃ → S be the minimal resolution of S. Then −KS̃ = µ∗(−KS) ∼ µ∗(D2) is divisible
by r ≥ 2 in NS(S̃). Thus S̃ does not contain any (−1)-curve, i.e. S̃ is relatively minimal.

Corollary 4.1.3. In the setting of Lemma 4.1.2, the surface S is smooth. It is a P1-bundle over
a smooth elliptic curve.
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Proof. Let µ : S̃ → S be the minimal resolution of S. Then by Lemma 4.1.2 −KS̃ = µ∗(−KS) is
non-zero, effective and nef. Hence S̃ is uniruled and thus it admits a Mori fibration. Furthermore,
since S̃ is relatively minimal by Lemma 4.1.2, we deduce that S̃ is a P1-bundle over a smooth
curve.

Now by the classification in Lemma 2.4.5, the surface S̃ is either an elliptic fibration or a
P1-bundle over a smooth elliptic curve. In both of the two cases, we deduce that S̃ is a P1-bundle
over a smooth elliptic curve and S = S̃.

Lemma 4.1.4. Let X be a smooth projective rationally connected threefold X with −KX nef,
n(−KX) = 3, ν(−KX) = 2. Suppose that the anticanonical system | − KX | = A + |mH| with
m ≥ 2 has a non-zero fixed divisor A, and H is nef such that H2 is a non-zero effective 1-cycle.
Let F be a general member of |H|. Then F is a smooth surface such that −KF is nef and divisible
by 2 in NS(F ) with ν(−KF ) = 1, κ(−KF ) = 0. More precisely, F = P(E) with E a rank-2 vector
bundle over an elliptic curve as described in Lemma 2.4.5, 2.(B). Furthermore, we have m = 2,
and A ∩ F (resp. the intersection of two general members in |H|) is a smooth elliptic curve.

Proof. By Proposition 4.1.1, we have that −KF is non-zero, effective, nef and divisible by r ≥ 2.
Furthermore, (−KF )2 = 0 and F is not covered by (−KF )-trivial curves. Hence we can apply
Lemma 4.1.2 and Corollary 4.1.3 to obtain that the surface F is a P1-bundle over a smooth
elliptic curve. Now since F is not covered by (−KF )-trivial curves, i.e. n(−KF ) = 2, we deduce
from the classification in Lemma 2.4.5 that F = P(E) with E a rank-2 vector bundle over an
elliptic curve defined as in the case (B) of the same lemma.

Since −KF ∼ A|F + (m − 1)F |F with F |F and A|F non-zero effective, we deduce from the
structure of the unique element in | −KF | that m = 2, and A ∩ F (resp. the intersection of two
general members in |H|) is a smooth elliptic curve.

Lemma 4.1.5. Let X be a smooth projective rationally connected threefold X with −KX nef,
n(−KX) = 3, ν(−KX) = 2. Suppose that the anticanonical system | − KX | = A + |mH| with
m ≥ 2 has a non-zero fixed divisor A, and H is nef such that H2 is a non-zero effective 1-cycle.
Then A is an integral smooth surface such that −KA is nef and divisible by 2 in Pic(A) with
ν(−KA) = 1. More precisely, the surface A is a P1-bundle over a smooth elliptic curve.

Proof. Let F be a general member in |H|. As A|F is an irreducible reduced curve by Lemma
4.1.4, we can find a divisor A1 which occurs in A with multiplicity one, and the rest A′ does not
meet F . Since m = 2, and A ∩ F is a smooth elliptic curve by the Lemma 4.1.4, the adjunction
formula gives

−KA1 ∼ (A′ + 2F )|A1 = A′|A1 + 2C0,

where C0 is a smooth elliptic curve and A′|A1 is an effective divisor on A1.
Moreover, since F is nef and A · F 2 = 0, C0 is nef and C2

0 = 0 on A1.
Now we can apply Lemma 4.1.2 and Corollary 4.1.3 to the surface A1, which gives A′|A1 = 0

and A1 is a P1-bundle over a smooth elliptic curve. Moreover, the support of a divisorD ∈ |−KX |
is connected in codimension one by [Sha99, Lem. 2.3.9]. As A′ does not meet F , and A′|A1 = 0,
we obtain A′ = 0. Thus A = A1 and −KA ∼ 2F |A.

In conclusion, we have the following description of the anticanonical system:
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Proposition 4.1.6. Let X be a smooth projective rationally connected threefold X with −KX

nef, n(−KX) = 3, ν(−KX) = 2. Suppose that the anticanonical system has a non-zero fixed
divisor and that its mobile part |B| is nef. If B2 6= 0, then | −KX | = A + |2H| where H is a
prime divisor. In this case, let F be a general member in |H|. Then both A and F are P1-bundles
over a smooth elliptic curve, such that their anticanonical divisors −KA (resp. −KF ) are nef
and divisible by 2 in Pic(A) (resp. NS(F )). Furthermore, A ∩ F (resp. the intersection of two
general members in |H|) is a smooth elliptic curve.

Proof. It follows from Lemma 4.1.4 and Lemma 4.1.5.

4.2 Running the Minimal Model Program

In this subsection, we consider the following setup:

Setup 4.2.1. Let X be a smooth projective rationally connected threefold X with −KX nef,
n(−KX) = 3, ν(−KX) = 2. Suppose that the anticanonical system | − KX | = A + |mH| with
m ≥ 2 has a non-zero fixed divisor A, and H is nef such that H2 is a non-zero effective 1-cycle.

Remind that in this setup, one has | − KX | = A + |2H|, both A and a general member F
in |H| are P1-bundles over a smooth elliptic curve, such that their anticanonical divisors are nef
and divisible by two in Pic(A) (resp. in NS(F )). Furthermore, A ∩ F (resp. the intersection of
two general members in |H|) is a smooth elliptic curve.

Consider a Mori contraction ϕ : X → Y . Let Γ be the extremal ray contracted by ϕ. Let l
be a rational curve such that [l] ∈ Γ and that −KX · l = l(Γ), where l(Γ) is the length of Γ. In
the birational case, we denote the exceptional divisor of ϕ by E.

Now we are in the position to run the Minimal Model Program in the setting of Prop 4.1.6.

4.2.1 Non-birational cases

In this subsection, we will show that the contraction ϕ : X → Y cannot be of Mori fibre type.

Case dimY = 1. In this case, −KX · l = 1, 2 or 3. Recall that for a Mori contraction ϕ : X → P1,
all the fibres are irreducible. Since A is the fixed divisor of | −KX |, it cannot be a fibre of ϕ. As
for H, since H2 is a non-zero effective cycle, it cannot be a fibre of ϕ. We deduce that A · l > 0
and H · l > 0, as Pic(X) is generated by a fibre of ϕ and another element which has positive
intersection with l. Therefore, −KX · l = 3, A · l = H · l = 1, and ϕ is a P2-bundle over P1.

Now we can write X = P(E) with E a rank-3 vector bundle over Y = P1. After twisting E by
some line bundle, we can suppose that E = ϕ∗OX(H) with H a tautological divisor associated to
OP(E)(1). Since H is nef, the vector bundle E is nef. From the fact that a vector bundle on P1 is
nef if and only if it is generated by its global sections, we deduce that E is generated by its global
sections. Therefore, OP(E)(1) is also generated by its global sections. Since h0(X,OX(H)) = 2
by Corollary 2.5.4, and H2 6= 0, we have Bs |H| 6= ∅. This leads to a contradiction.

Case dimY = 2. In this case, ϕ : X → Y is a conic bundle and we have −KX · l = 1 or 2.
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(i) If F · l = 0, then we have F = ϕ∗(C), where C is an irreducible curve on Y . Hence the
intersection of two general members in |H| is contained in some fibres of ϕ. This is absurd
because such an intersection is a smooth elliptic curve, but ϕ only contracts rational curves.

(ii) If F · l = 1, then ϕ is a P1-bundle and induces a birational morphism from F to Y . This
is impossible since q(F ) = 1 and q(Y ) = 0.

4.2.2 Birational contractions

Since X is a smooth threefold, the contraction ϕ is divisorial.

Case A · l = 0. In this case, we have F · l = 1 and −KX · l = A · l + 2F · l = 2. Hence ϕ is the
blow-up of Y at a smooth point, with exceptional divisor E ' P2 and OE(E) ' OP2(−1). Now
the adjunction formula KE ∼ (KX + E)|E gives

OE(A)⊗ OE(2F ) = OE(2).

As E · F is a non-zero effective 1-cycle, we deduce that A ·E = 0 and F |E ∼ l. Hence, E ∩ F is
a line on E ' P2. On the other hand, we have

(E|F )2 = F · E2 = F · (−l) = −1.

Hence E ∩ F is a (−1)-curve on the surface F , which contradicts the fact that F is relatively
minimal.

Case A · l < 0. Since the contraction is divisorial, we have E = A in this case. Since A is
a ruled surface over a smooth elliptic curve, we know that l is a fibre of A and F · l = 1.
Therefore, ϕ is the blow-up along an elliptic curve in Y , and Y is smooth with −KY nef by
Proposition 2.4.7. Furthermore, as we contract the curves meeting F transversally, we conclude
that G := ϕ(F ) ' F . Since

−KY = ϕ∗(−KX) = ϕ∗(A+ 2F ) = 2ϕ∗(F ) = 2G,

we see that | −KY | = |2G| has no fixed divisor.
We can compute the Kodaira dimension and the numerical dimension for −KY :

κ(−KY ) = κ(ϕ∗(−KY )) = κ(−KX + E),

and similarly, for the numerical dimension we have

ν(−KY ) = ν(−KX + E).

On the other hand, since E = A, we have

κ(−KX) ≤ κ(−KX + E) ≤ κ(−2KX) = κ(−KX),

and similarly,
ν(−KX) ≤ ν(−KX + E) ≤ ν(−2KX) = ν(−KX).
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Hence, κ(−KY ) = κ(−KX) = 1 and ν(−KY ) = ν(−KX) = 2.

Case A · l > 0. In this case, F · l = 0 since otherwise −KX · l > 2, which contradicts the
classification of Mori (see Section 2.3). Furthermore, E 6= A and thus A · E is an effective
1-cycle. We will show that the only possible case is when ϕ contract E to a smooth curve of
positive genus.

By the classification of Mori (see Section 2.3), we are in one of the following cases:

(1) If E is contracted to a point, then one of the following cases occurs:

(i) E ' P2, OE(E) ' OP2(−1). In this case, we have A · l = 2 and the adjunction formula
KE ∼ (KX + E)|E gives

OE(A)⊗ OE(2F ) ' OE(2).

As A · E is a non-zero effective 1-cycle, we deduce F |E = 0 and OE(A) ' OP2(2).

(ii) E ' P1 × P1, OE(E) ' OP1×P1(−1,−1). In this case, we have A · l = 1 and the
adjunction formula gives

OE(A)⊗ OE(2F ) ' OE(1, 1).

As A ·E is a non-zero effective 1-cycle, we deduce F |E = 0 and OE(A) ' OP1×P1(1, 1).

(iii) E is a quadric cone in P3 with OE(E) ' OP3(−1)⊗OE . In this case, we have A · l = 1
and the adjunction formula gives

OE(A)⊗ OE(2F ) ' OP3(1)⊗ OE = OE(2l).

But since F |E is Cartier, one cannot have F |E = l which is 2-Cartier. Hence, OE(A) '
OE(2l), F |E = 0.

(iv) E ' P2, OE(E) ' OP2(−2). In this case, we have A · l = 1 and the adjunction formula
gives

OE(A)⊗ OE(2F ) ' OE(1).

As A · E is a non-zero effective 1-cycle, we deduce F |E = 0 and OE(A) ' OP2(1).

We now show that E cannot be contracted to a point. Suppose that we are in one of the
above cases, then F · E = 0, and A ∩ E is some rational curve(s). On the other hand, as
A is a ruled surface over an elliptic curve, this implies that E|A consists of some fibres on
A. But F |A is an elliptic curve which is a section, hence E|A · F |A > 0. This contradicts
F · E = 0.

(2) If ϕ contracts E to a smooth curve C ⊂ Y of genus g, then E ' P(N∗C/Y ). Let V = N∗C/Y⊗L
(with L some line bundle on C) be the normalisation of the conormal bundle [Har77,
Chapter. V, Prop. 2.8]. Then NE/X = OE(−C1 + µl) where C1 is the minimal section
satisfying C2

1 = c1(V ) =: −d and µ := degL.
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In this case, one has −KX · l = 1, F · l = 0 and A · l = 1. Hence F |E ∼ bl with b ≥ 0 and
the adjunction formula gives

−KE ∼ (A+ 2F )|E − E|E ,

i.e. A|E ∼ C1 + (d+ µ+ 2(1− g − b))l.
Since F (resp. A) is a P1-bundle over a smooth elliptic curve, we deduce that the in-
tersection F ∩ E (resp. A ∩ E) does not contain the curve l or any of its deformations,
since otherwise l moves on the surface F (resp. A). Therefore, F · E = 0 and A ∩ E is a
section of ϕ|E : E → C. In particular, ϕ(F ) ' F as E · F = 0, and all the curves l meet A
transversally in one point, which implies that ϕ|A is an isomorphism.

Now by the same argument as in the case (1), we deduce that the integral curve A ∩ E
cannot be a rational curve. Hence C is of genus g > 0. By Proposition 2.4.7, −KY is again
nef.

Hence we have the following proposition:

Proposition 4.2.2. In Setup 4.2.1, let ϕ : X → Y be a Mori contraction. Then ϕ is the blow-up
of a smooth curve C of positive genus in the smooth threefold Y with −KY nef, κ(−KY ) = 1,
ν(−KY ) = 2. Let E be the exceptional divisor of ϕ. Then one of the following two cases occurs:

(1) E = A and we have |−KY | = |2G| with G := ϕ(F ) ' F . Furthermore, the blown up curve
C is a smooth elliptic curve contained in Bs |G|.

(2) E 6= A and E · F = 0. We have | − KY | = AY + |2FY |, where AY := ϕ(A) ' A,
FY := ϕ(F ) ' F , and the intersection of two general members in |FY | is a smooth elliptic
curve. In particular, Y satisfies again Setup 4.2.1.

Proof. (1) It remains to prove the last sentence of the first case. Since | −KX | = A+ |2H|, one
has h0(X,OX(H)) = 2 by Corollary 2.5.4.

Now consider the threefold Y , since the anticanonical system | − KY | = |2G| has no fixed
divisor, and again −KY is nef with n(−KY ) = 3, ν(−KY ) = 2, one has that h0(Y,OY (G)) = 2
by the Corollary 2.5.4.

Since F is the strict transform of G by ϕ, we deduce from h0(X,OX(F )) = h0(Y,OY (G))
that the blown up elliptic curve C must be contained in the base locus of |G|.

(2) Since E · F = 0, we have that ϕ∗(FY ) ∼ F . We deduce that FY is nef as ϕ∗(FY ) ∼ F is
nef.

We first show that −KY is not semi-ample, which implies κ(−KY ) = 1 and ν(−KY ) = 2.
Since F 2 is a non-zero effective 1-cycle and E · F = 0, we deduce that F 2

Y = ϕ(F )2 is also
a non-zero effective 1-cycle. Since FY moves, AY · FY is an effective 1-cycle. By the adjunction
formula, we get

−KFY ∼ (−KY − FY )|FY ∼ (AY + FY )|FY ,

and thus
−KY |FY ∼ −KFY + FY |FY
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is a non-zero effective divisor on FY such that −KY |FY ≤ −2KFY , i.e.

h0(FY ,OFY (−2KFY − (−KY ))) > 0.

Suppose by contradiction that −KY is semi-ample, then | − mKY | is base-point-free for
m� 0. Hence | −mKY |FY | is also base-point-free.

On the other hand, since FY ' F , we have κ(FY ,−KFY ) = 0. Hence,

1 ≤ h0(FY ,OFY (−mKY )) ≤ h0(FY ,OFY (−2mKFY )) = 1.

Therefore, the linear system | −mKY |FY | is fixed, which contradicts the fact that | −mKY |FY |
is base-point-free.

Now we show that the anticanonical system | −KY | has a fixed divisor. Since FY is mobile,
it is then clear that AY is the fixed divisor of | −KY |.

Suppose by contradiction that | −KY | has no fixed divisor, then −KY is divisible by two in
Pic(Y ) by Theorem 3.0.1. As −KY ∼ AY + 2FY , this implies AY ∼ 2L for some L ∈ Pic(Y ).
Hence

−KFY ∼ (AY + FY )|FY ∼ (2L+ FY )|FY .

Since FY ' F , the surface FY is a P1-bundle over a smooth elliptic curve such that −KFY ·f = 2,
where f is a fibre. Since F ∩ F ′ (where F ′ is another general member in |F |) a smooth elliptic
curve (i.e. a section of the P1-bundle F ), and E · F = 0, we deduce that FY ∩ F ′Y (where F ′Y is
another general member in |FY |) is also a smooth elliptic curve (i.e. a section of the P1-bundle
FY ). Thus

FY |FY · f = 1.

This implies that 2L|FY · f = 1, which contradicts the fact that L|FY is a Cartier divisor.

Remark 4.2.3. In the setting of Proposition 4.2.2 (2), we deduce by the same proposition that
there exists a finite sequence

X = X0
ϕ1→ X1

ϕ2→ · · · ϕk→ Xk

where

• ϕi is the blow-up of Xi along a smooth curve Ci of positive genus;

• Xi satisfies again Setup 4.2.1;

• Xk has a birational Mori contraction which contracts the fixed divisor Ak of | −KXk |.

Furthermore, the curve Ci is contained in Ai, where Ai is the fixed divisor of | −KXi | and is a
P1-bundle over a smooth elliptic curve Di. Then Ck is an elliptic curve and k = 1.

Proof. For 1 ≤ i ≤ k, let gi be a fibre of the P1-bundle Ai.
Since Ci has positive genus and it is contained in the P1-bundle Ai, it must be surjective to

the curve Di. Let αi be the degree of Ci onto the elliptic curve Di. Then gi meets Ci at αi
point(s). Hence in Xi−1, we have

Ei−1 · gi−1 = αi,

47



where Ei−1 is the exceptional divisor of ϕi, and gi−1 is the strict transform of gi. Therefore,

−KXi−1 · gi−1 = ϕ∗k(−KXi) · gi−1 − Ei−1 · gi−1 = −KXi · gi − αi.

Since −KXi−1 is nef, we deduce that −KXi · gi − αi ≥ 0, and thus −KXi · gi ≥ 1.
For i = k, sinceAk is the exceptional divisor of a Mori contraction, we have that−KXk ·gk = 1.

Hence, αk = 1 (which implies Ck ' Dk is a smooth elliptic curve), and −KXk−1
·gk−1 = 0 (which

implies k = 1).

To summarise, we have the following:

Proposition 4.2.4. In the setting of Proposition 4.1.6, one has

X
ϕ1→ Y or X

ϕ1→ X1
ϕ2→ Y,

where X1 is a smooth threefold with −KX1 nef such that | −KX1 | has a non-zero fixed divisor,
ϕi (for i = 1, 2) is the blow-up along a smooth elliptic curve, and Y is a smooth threefold with
−KY nef, n(−KY ) = 3, ν(−KY ) = 2 such that |−KY | = |2G| has no fixed divisor and a general
member in |G| is isomorphic to F .

Proof. It follows from Proposition 4.2.2 and Remark 4.2.3.

Proof of Theorem 4.0.1. Let |B| be the mobile part of the anticanonical system | − KX |. By
Proposition 4.0.2, there exists a finite sequence of flops ψ : X 99K X ′ such that −KX′ is nef and
the mobile part |B′| of | −KX′ | is nef.

Now we consider the case when B is nef and suppose by contradiction that B2 is a non-zero
effective 1-cycle. Then by Proposition 4.2.4, one has

X
ϕ1→ Y or X

ϕ1→ X1
ϕ2→ Y,

where ϕi (for i = 1, 2) is the blow-up along a smooth elliptic curve, and Y is one of the cases
described in Theorem 3.0.1 with | − KY | = |2G|. Moreover, a general member D ∈ |G| is
isomorphic to F , where F is a general member in |H|. Hence, D is a P1-bundle over a smooth
elliptic curve as described in Lemma 2.4.5, 2.(B).

On the other hand, D is in one of the following cases:

1. If Y is a del Pezzo fibration: φ : Y → P1, then by Remark 3.1.2, φ : D → P1 induces a
fibration on D with general fibre isomorphic to P1 or two P1’s intersecting at one point.

2. If Y is a P1-bundle over a smooth rational surface, then by Remark 3.2.2, D is a rational
surface.

3. If Y has a birational Mori contraction, then D is a rational surface by Remark 3.3.2.

Hence D 6' F , which gives a contradiction.
The last statement on the general fibre of f follows from [BP04, Lem. 7.4].
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In view of Theorem 4.0.1 and Lemma 4.0.3, we will consider the following setup in the rest of
Part I and discuss the geometry of the threefold X according to different geometry of the general
fibre:

Setup 4.2.5. Let X be a smooth projective rationally connected threefold with anticanonical
bundle −KX nef, n(−KX) = 3 and ν(−KX) = 2. We suppose that the anticanonical system
|−KX | has a non-zero fixed divisor A, and that its mobile part |B| is nef so that B2 = 0. Hence,
the mobile part induces a fibration f : X → P1.

If F is a fibre of f , then | −KX | = A+ |kF | with k ≥ 2. Furthermore, A3 = A2 ·F = 0, and
−KF is nef with n(−KF ) = 2, ν(−KF ) = 1.

Now we write A = Ah + Av, where Ah and Av are effective divisors such that Ah|F = −KF

and Av|F = 0 for a general fibre F .

Let us point out an important special case under the setup. Suppose that the relative anti-
canonical divisor −KX/P1 is nef. Then the fibration f is locally trivial (isomorphic to the product
family) in the Euclidean topology, see [PZ19, Thm. A12] and [Cao19, Prop. 2.8]. Applying the
latter proposition, we further obtain X ' F × P1; we explain how to apply the proposition in
our case, as follows.

Note that in [Cao19, Prop. 2.8], the assumption is different. Instead of assuming (H1): the
relative anticanonical divisor is nef, they assume (H2): there exists an f -very ample line bundle
L such that f∗(mL) is a numerically flat vector bundle for every integer m ≤ 1. However, when
the fibration is over a smooth curve, [PZ19, Prop. A11] shows that (H1) implies (H2). As the
fibration is over P1 (which is simply connected) in our case, [Cao19, Prop. 2.8] gives X ' F ×P1.
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Chapter 5

Rational general fibre: smooth elliptic
case

In this chapter, we consider the following setting:

Setup 5.0.1. Under Setup 4.2.5, we further assume that F is rational (so F is P2 blown up in
9 points) and that there exists a unique member B in | −KF |, which is a smooth elliptic curve.
By [BP04, Prop. 7.7], one has k = 2, A ' B×P1, and f restricted to A is the second projection.

5.1 Running the Minimal Model Program

Here is the main result of this section:

Proposition 5.1.1. Assume that X is as Setup 5.0.1. Then one of the following cases occurs:

(1) A is nef. Then the relative anticanonical divisor −KX/P1 is nef, and the fibration f is
locally trivial.

(2) A is the exceptional divisor of a Mori contraction. Then X is obtained by the blow-up
ϕ : X → X ′ along a smooth elliptic curve R of a smooth threefold X ′ with −KX′ nef,
n(−KX′) = 3, and ν(−KX′) = 2. Furthermore, | −KX′ | = |2G| with G := ϕ(F ) ' F has
no fixed divisor, and Bs |G| = R.

(3) A is the exceptional divisor of a crepant extremal contraction. Then there exists a birational
Mori contraction ϕ : X → X ′ such that the fibration f factors as f = f ′ ◦ϕ with f ′ : X ′ →
P1, and we are in one of the following cases:

(i) X ′ again satisfies the setup: −KX′ is nef such that | −KX′ | = A′ + |2F ′| with A′ :=
ϕ(A) ' A, F ′ := ϕ(F ) ' F , and A′ is the exceptional divisor of a Mori contraction.
In this case, ϕ is the blow-up along an elliptic curve contained in some fibre of f ′|A′.

(ii) −KX′ is nef and big such that | − KX′ | = |A′ + 2F ′|, where A′ := ϕ(A) ' A, and
the restriction ϕ|F : F → F ′ := ϕ(F ) is the blow-down of some (−1)-curves in F with
−KF ′ nef and big. In this case, ϕ is the blow-up along a smooth curve in A′, which
is mapped surjectively onto P1 by f ′.
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Definition 5.1.2. Let X be a smooth projective threefold with −KX nef. We say that X has
structure (I0) if the following conditions are satisfied:

• there exists a fibration f : X → P1 such that | −KX | = |A+ 2F | with F a general fibre;

• F is a smooth rational surface with −KF nef such that | −KF | contains a smooth elliptic
curve B;

• A ' B × C with C = P1 such that f |A is the second projection.

Proposition 5.1.3. In case (3)(ii) of Proposition 5.1.1, by running the Minimal Model Program,
either X ′ becomes a smooth almost del Pezzo threefold, or it stays weak Fano with the structure
(I0), and the outcome is a Mori fibre space ϕ′ : X ′ → Y which is one of the following:

(a) Y is smooth rational surface, either Y = F ′, X ′ = P1 × Y and ϕ′ is the second projection,
or Y = P1 × P1, F ′ is a ruled surface over P1 and ϕ′ : X ′ → P1 × P1 is a P1-bundle.

(b) ϕ′ = f ′ is a del Pezzo fibration over P1.

Proof of Prop.5.1.1 (1)(2). (1) If the relative anticanonical divisor A = −KX/P1 is nef, then the
fibration f is locally trivial by [PZ19, Thm. A.12].

(2) Suppose that A is the exceptional divisor of a Mori contraction ϕ : X → X ′. Let l be a
rational curve which generates the extremal ray Γ corresponding to the contraction ϕ and such
that −KX · l = l(Γ), where l(Γ) is the length of the extremal ray Γ.

Since A ' B × P1, we know that l is a fibre of the first projection of A, and that F · l = 1 as
A|F = B. As we contract the curves meeting F transversally, we conclude that G := ϕ(F ) ' F .
Therefore, ϕ is the blow-up along a smooth elliptic curve R in X ′, and X ′ is smooth with −KX′

nef by Proposition 2.4.7. Furthermore, we have that the anticanonical system | −KX′ | = |2G|
has no fixed divisor.

Now we can compute the Kodaira dimension and the numerical dimension for −KX′ :

κ(−KX′) = κ(ϕ∗(−KX′)) = κ(−KX +A),

and similarly, for the numerical dimension, we have

ν(−KX′) = ν(−KX +A).

On the other hand,

κ(−KX) ≤ κ(−KX +A) ≤ κ(−2KX) = κ(−KX)

and similarly,
ν(−KX) ≤ ν(−KX +A) ≤ ν(−2KX) = ν(−KX),

we deduce that κ(−KX′) = κ(−KX) = 1 and ν(−KX′) = ν(−KX) = 2. This implies that −KX′

is not semi-ample and thus n(−KX′) = 3. Therefore, Bs |G| has dimension at least one. As
Bs |G| ⊂ R by construction, one has that Bs |G| = R.

The rest of this section is devoted to proving Propositions 5.1.1 and 5.1.3.
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Lemma 5.1.4. Assume that X has structure (I0). If −KX is semi-ample, then −KF is semi-
ample.

Proof. Suppose that −KX is semi-ample, then OX(−mKX) is globally generated for m � 0.
Hence its restriction OF (−mKX) to F is also globally generated. As

−KF ∼ (−KX − F )|F ∼ −KX |F ,

we deduce that −KF is semi-ample.

Lemma 5.1.5. Assume that X has structure (I0). If A is not nef, then A is the exceptional
divisor of an extremal contraction φ which contracts A to a smooth curve and one of the following
two cases occurs:

(i) A · C = −1 and φ is a Mori contraction.

(ii) A · C = −2 and φ is a crepant extremal contraction.

Proof. If A is not nef, then by Lemma 2.5.1 there exists a (KX + A)-negative extremal ray
Γ such that A · Γ < 0. Let l be an integral curve such that the class [l] generates Γ. Then
2F · l = −(KX +A) · l > 0 and A · l < 0, i.e. l is an f -horizontal curve contained in A. Therefore,
Γ = R+[C].

Since C moves in A, the contraction φ of the extremal ray Γ is divisorial. Moreover, as the
image of N1(A) in N1(X) has dimension two (this is because F · B = 0 and F · C = 1, we
deduce that numerical classes [B] and [C] are not proportional in N1(X)), φ contracts A to a
curve. Hence either φ is a Mori contraction and A · C = −1, or φ is a crepant contraction and
A · C = −2.

5.1.1 Birational case

Proposition 5.1.6. Assume that X has structure (I0) and A · C = −2. Let ϕ : X → X ′ be
a birational Mori contraction with E the exceptional divisor. Then E is mapped to a curve,
and the fibration f factors as f = f ′ ◦ ϕ such that f ′ : X ′ → P1 gives X ′ the structure (I0):
−KX′ ∼ A′ + 2F ′ is nef, where A′ := ϕ(A) ' A and F ′ := ϕ(F ). We are in one of the following
two cases:

(i) E is contained in some fibre of f , F ′ ' F and

(−KX′)
3 = (−KX)3 + 2(−KX)2 · F ≥ (−KX)3.

Moreover, A′ is the exceptional divisor of a Mori contraction.

(ii) ϕ|F is the blow-down of some (−1)-curves in F , −KX′ is big with

(−KX′)
3 > (−KX)3.
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Proof. Step 1. Since A ' B × C, one has A2 = (A ·B)C + (A · C)B and thus

A3 = 2(A ·B)(A · C).

Hence
(−KX)3 = A3 + 6A2 · F = 2(A ·B)(A · C) + 6A ·B.

Since A · C = −2 by assumption, one has (−KX)3 = 2A ·B.

Step 2. Let l be a rational curve which generates the extremal ray Γ corresponding to the
contraction ϕ and such that −KX · l = l(Γ), with l(Γ) the length of Γ.

By [BP04, Prop. 7.11], E cannot be mapped to a point. Hence ϕ contracts E to a smooth
curve D of genus g and X ′ is smooth. Notice that E 6= A since A · C = −2 and E · l = −1. As
−KX · l = 1, we obtain A · l = 1 and F · l = 0. Hence F · E ∼ bl with b ≥ 0.

Notice that A ∩ E does not contain the curve l or any of its deformations, since otherwise,
the curve l moves on A as A is a product. As A · l = 1, we deduce that A ∩ E is a section of
ϕ|E : E → D. We denote this section by D0.

Case 1. If f(E) is a point, then E is contained in a special fibre F0 of f . Hence the fibration
f factors as f = f ′ ◦ ϕ such that f ′ : X ′ → P1, ϕ is an isomorphism outside F0, and E|A = aB0,
where a > 0 and B0 is a special fibre of the second projection f |A : B × P1 → P1.

On the other hand, as D0 = A∩E is a section of ϕ|E : E → D, we deduce that D0 = A∩E =
B0, and that D is a smooth elliptic curve.

Therefore, F ′ := ϕ(F ) ' F , A′ = ϕ(A) ' A, and ϕ contracts E to a smooth elliptic
curve in X ′, which implies that −KX′ is again nef by Proposition 2.4.7. In particular, we have
A′ ' B′×C ′, where B′ is a smooth elliptic curve and C ′ ' P1. Since E ·C = E|A ·C = B0 ·C = 1
and E ·B = E|A ·B = B0 ·B = 0 on the surface A, one has

A′ · C ′ = ϕ∗(A′) · C = (A+ E) · C = A · C + 1

(in particular, A′ · C ′ = −1 as A · C = −2, and thus A′ is the exceptional divisor of a Mori
contraction by Lemma 5.1.5), and

A′ ·B′ = ϕ∗(A′) ·B = (A+ E) ·B = A ·B.

This implies A′2 = (A ·B)C ′ + (A · C + 1)B′, and A′3 = 2(A ·B)(A · C + 1).
Hence,

(−KX′)
3 = A′3 + 6A′2 · F ′ = 2(A ·B)(A · C + 1) + 6A ·B = (−KX)3 + 2A ·B.

As A ·B = (−KX) ·B = (−KX)2 · F ≥ 0, we have

(−KX′)
3 = (−KX)3 + 2(−KX)2 · F ≥ (−KX)3.

Case 2. If f |E maps onto P1, then E · F is a non-zero effective 1-cycle. Hence, E · F ∼ bl
with b > 0, and a fibre l0 of ϕ must be contained in some fibre F0 of f . In particular, by the
rigidity lemma [Deb01, Lem. 1.15], the fibration f factors as f = f ′ ◦ ϕ such that f ′ : X ′ → P1,
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and that ϕ contracts E to a smooth curve D ⊂ X ′ which is mapped surjectively onto P1 by f ′.
Restricted to a general fibre F , ϕ|F blows down some (−1)-curves in F and each of them meets
B ∈ | −KF | transversally in one point. In particular, every curve l meets A transversally in one
point, which implies that ϕ|A is an isomorphism.

Claim. −KX′ is nef.
If g ≥ 1, then −KX′ is again nef by Proposition 2.4.7. Now suppose that D is a smooth

rational curve. Then A ∩ E = D0 is a smooth rational curve. Since B is not rational, we see
that D0 is a fibre of the first projection A ' B × C → B.

Suppose by contradiction that −KX′ is not nef. Then R+[D] contains only a finite number
of curves, i.e. D is a very rigid curve. On the other hand, since ϕ(D0) = D, we have ϕ∗([C]) =
ϕ∗([D0]) = m[D] for some positive integer m. As C deforms in A and A is not contracted, we
deduce that D is not rigid, which leads to a contradiction. This proves the claim.

On the surface A, we can write
D0 ∼ αC + βB

with α > 0, β ≥ 0 integers.
Now we write A′ ' B′ × C ′, where B′ is a smooth elliptic curve and C ′ ' P1. Since

E · C = E|A · C = D0 · C = β, one has

A′ · C ′ = ϕ∗(A′) · C = (A+ E) · C = A · C + β.

Since E ·B = E|A ·B = D0 ·B = α, one has

A′ ·B′ = ϕ∗(A′) ·B = (A+ E) ·B = A ·B + α.

Therefore,
A′2 = (A · C + β)B′ + (A ·B + α)C ′,

and A′3 = 2(A ·B + α)(A · C + β). Moreover, we have

A′2 · F ′ = A′ ·B′ = (A ·B + α).

Hence,
(−KX′)

3 = A′3 + 3A′2 · (2F ′) = 2(A ·B + α)(A · C + β) + 6(A ·B + α).

Since A · C = −2, A ·B = (−KX) ·B ≥ 0, and α > 0, β ≥ 0, one has

(−KX′)
3 = (−KX)3 + 2α+ 2αβ + 2βA ·B > (−KX)3 ≥ 0.

Hence, −KX′ is big.

Proof of Proposition 5.1.1. It follows from Lemma 5.1.5 and Proposition 5.1.6.
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5.1.2 Mori fibre spaces

This subsection is a rewriting of [BP04, Prop. 7.16, Prop. 7.18]. Assume that X has structure
(I0). Consider a Mori contraction ϕ : X → Y of fibre type. Let Γ be an extremal ray contracted
by ϕ. Let l be a rational curve such that [l] generates Γ and that −KX · l = l(Γ) with l(Γ) the
length of Γ.

Case dimY = 2. In this case, −KX · l = 1 or 2 and ϕ : X → Y is a conic bundle. Since [l] is
a movable class, we have A · l ≥ 0.

(i) We first consider the case F · l > 0. Then F · l = 1 and −KX · l = A · l + 2F · l = 2.
We deduce that ϕ is a P1-bundle and ϕ|F is birational. Consider the product map p :=
f × ϕ : X → P1 × Y which is generically one to one.

Claim. p is an isomorphism.

Suppose that there exists a curve D ⊂ X which is contracted by p, then D is also
contracted by ϕ. Hence D is a fibre ϕ−1(y0) of ϕ, where y0 ∈ Y . By the rigidity
lemma [Deb01, Lem. 1.15], there exists a neighbourhood Y0 ⊂ Y of y0 and a factoriza-
tion f |ϕ−1(Y0) : ϕ−1(Y0)

ϕ−→ Y0 → P1, which implies f(D) is a point. This is absurd because
F ·D = 1, i.e. D is a f -horizontal curve. This proves the claim.

Therefore, X ' P1 × Y ' P1 × F and ϕ is the second projection.

(ii) The other case is F · l = 0. This implies F = ϕ∗(D) for some irreducible curve D on Y ,
which gives a factorization f : X

ϕ−→ Y
pr2−−→ P1, where Y is a smooth rational surface. Notice

that ϕ|A is finite as A ' B × P1 (where B is a smooth elliptic curve) has no contractible
curve. Restricted to a general fibre F , ϕ|F maps the smooth elliptic curve A|F = B onto
pr−1

2 (f(F )) ' P1. Hence, ϕ|A is not birational and thus A · ` ≥ 2, where ` is a general
conic of ϕ (and we have that either [`] = [l] and −KX · l = 2, or [`] = 2[l] and −KX · l = 1).
Since 2 ≥ −KX · ` = A · ` ≥ 2, we get equality. Hence, ϕ restricted to A is generically 2 : 1
and A · ` = 2. As pr2 ◦ ϕ|A is the second projection of A, the ramification locus of ϕ|A
must be equal to some fibre of the first projection of A, which gives Y = P1 × P1.

Now we show that the discriminant locus ∆ of the conic bundle ϕ is empty, so that ϕ is a
P1-bundle. Indeed, let Q = {p} × P1 be a general fibre of the first projection Y → P1 and
let XQ = ϕ−1(Q). Then A|XQ consists of two disjoint sections Q1 and Q2 of ϕ|XQ . Since
A · ` = 2, we deduce that Qi · ` = 1 for i = 1, 2. Moreover, as Qi is a Cartier divisor on
XQ, we deduce that ϕ|XQ is a smooth conic bundle, i.e. XQ is a ruled surface. Hence ∆ is
contained in some special fibres of the first projection of Y . On the other hand, as ϕ is an
extremal contraction, by [Miy83, p. 83, Remark], every non singular rational curve in ∆
must meet the other components of ∆ in at least two points. This implies that ∆ is empty.

Therefore, ϕ is a P1-bundle and ϕ|F exhibits F = f−1(p) with p ∈ P1 as a ruled surface
over pr−1

2 (p) ' P1.

Case dim Y = 1. In this case, Y = P1, −KX · l = 1, 2 or 3 and a general fibre of ϕ is a del
Pezzo surface. Since A is not del Pezzo and thus not a fibre of ϕ, one has A · l > 0. If −KX · l = 1
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or 2, this implies F · l = 0 and thus F = ϕ∗(p) with p ∈ Y . Therefore, f and ϕ coincide. If
−KX · l = 3, then ϕ is a P2-bundle. As P2 is not fibred, F restricted to a P2 is trivial. Hence
again, the two fibrations ϕ and f coincide.

Proof of Proposition 5.1.3. It follows from Proposition 5.1.6 and the above discussion.

5.2 Examples

Example 5.2.1. (Case (2) of Prop. 5.1.1)
Let S be P2 blown up in 9 points in sufficiently general position such that −KS is nef

and not semi-ample, and the unique member in | − KS | is a smooth elliptic curve D. Define
E := OS ⊕ OS(−KS) and π : Y := P(E) → S. Thus E is nef and thus −KY ∼ 2ξ is nef, where
ξ is a tautological divisor associated to OP(E)(1). Furthermore, (−KY )3 = 0, κ(−KY ) = 1 and
ν(−KY ) = 2.

As discussed in Example 3.2.3, there are two types of sections associated to π: one of the form
D1 ∈ |ξ|, and the other of the form D2 ∈ |ξ−π∗D|, where D1 and D2 are disjoint. Furthermore,
D1 · (D2 + π∗(D)) = D1 · π∗D, D2

1 ∼ D1 · π∗D, and R := D1 ∩ π∗D is a smooth elliptic curve.
Since |ξ| has non-empty base locus, we have Bs |ξ| ⊂ R. Moreover, as ξ is not semi-ample, we
deduce that Bs |ξ| has dimension at least one. Thus Bs |ξ| = R.

Now let µ : X := BlR(Y ) → Y be the blow-up of Y along the curve R. Let E be the
exceptional divisor and F be the strict transform of D1. Then

−KX = µ∗(−KY )− E ∼ 2F + E.

and the linear system |F | is base-point-free.
Claim. −KX is nef.
Suppose by contradiction that −KX is not nef. Then there exists some integral curve l ⊂ X

such that −KX · l < 0. Thus
(2F + E) · l < 0,

and
(2F + 2E) · l = µ∗(−KY ) · l ≥ 0,

from which we deduce E · l > 0 and F · l < 0. Therefore, l ⊂ Bs |F |, which contradicts the fact
that |F | is base-point-free. This proves the claim.

Since F is mobile, one has κ(X,F ) ≥ 1. As

κ(X,F ) ≤ κ(X,µ∗(D1)) = κ(Y, ξ),

we deduce that κ(X,F ) = 1. Therefore, the linear system |F | induces a fibration f : X → P1.
Now since the exceptional divisor E = P(N∗R/Y ) has two contractions µ|E : E → R and f |E : E →
P1, we deduce that E is a product that we denote by B ×C, where B is a smooth elliptic curve
and C ' P1. Therefore, X has structure (I0).

Since F ' D1 ' S, we see that −KF is not semi-ample. Therefore −KX is not semi-ample
by Lemma 5.1.4. Hence A := E (which is the exceptional locus of a Mori contraction) is the
fixed divisor of the anticanonical system | −KX |.
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Example 5.2.2. (Case (3)(i) of Prop. 5.1.1)
Let X be as in Example 5.2.1. Let B0 be a special fibre of f |A : A→ P1.
Let µ1 : X1 := BlB0(X) → X be the blow-up of X along the smooth elliptic curve B0. Let

E1 be the exceptional divisor. Let F1 be the strict transform of F , and let A1 be the strict
transform of A. Then µ∗1(F ) = F1, µ∗1(A) = A1 + E1, and thus

−KX1 = µ∗1(−KX)− E1 = 2F1 +A1.

Claim. −KX1 is nef.
Suppose by contradiction that −KX1 is not nef. Then there exists some integral curve l ⊂ X1

such that −KX1 · l < 0. Thus we have

(2F1 +A1) · l < 0.

As F1 = µ∗1(F ) is nef, we have A1 · l < 0. Hence l ⊂ A1.
On the other hand, since A1 ' A ' B×C with B a general fibre of f |A : A→ P1 and C ' P1

a general fibre of the first projection, we have A1 ' B1 × C1 where B1 (resp. C1) is the strict
transform of B (resp. C). Since −KX ·B = 0 and B does not meet B0, one has

−KX1 ·B1 = µ∗1(−KX) ·B1 = 0.

Since −KX ·C = 1, and C meets B0 transversally at one point, one has µ∗1(−KX) ·C1 = 1, and
E1 · C1 = 1. Hence,

−KX1 · C1 = µ∗1(−KX) · C1 − E1 · C1 = 0.

Since NE(A1) is generated by B1 and C1, this shows that there is no (−KX′)-negative curve in
A1, which gives a contradiction. This proves the claim.

Since F1 ' F , we deduce that −KF1 is not semi-ample. Therefore, −KX1 is not semi-ample
by Lemma 5.1.4. Hence A1 (which is the exceptional locus of a divisorial crepant extremal
contraction) is the fixed divisor of | −KX1 |.

For the last two examples of this section, we will need the following lemma:

Lemma 5.2.3. Let S be a ruled surface over a smooth elliptic B. Suppose that S admits an
elliptic fibration τ : S → P1. If h0(S,OS(−KS)) ≥ 3, then S ' B × P1.

Proof. Since S is a P1-bundle over a smooth elliptic curve B, and S admits an elliptic fibration,
by [Suw69, Thm. 5] we deduce that S = P(V), where V is one of the following:

(a) V is the unique indecomposable rank-2 vector bundle of degree 1 on B;

(b) V = OB ⊕ L, where L is a (possibly trivial) torsion line bundle.

In the first case, let ` be a fibre of the ruling, and let θi be a section with minimal self-intersection,
i.e. θ2

i = 1. Then −KS ∼ 2θi − `. By [Suw69, Thm. 5(iii)], the elliptic fibration is given by the
linear system |4θi − 2`|. Hence,

h0(S,OS(−KS)) = 1.
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In the second case, we have that

h0(S,OS(−KS)) = h0(B,S2V⊗ L∗) = h0(B,L⊕ L∗ ⊕ OB) ≤ 3,

with equality if and only if L = OB.
Since h0(S,OS(−KS)) ≥ 3 by assumption, we deduce that V = OB ⊕ OB. Thus S '

B × P1.

Example 5.2.4. (Case (3)(ii) of Prop. 5.1.1) Consider V a del Pezzo fibration of degree 2
with nef and big anticanonical divisor −KV , which is a two-sheeted cover of P(OP1(2)⊕O⊕2) (as
described in [JPR05, Thm. 2.6]). Then (−KV )3 = 4.

Let ϕ : V → P1 be the del Pezzo fibration with general fibre FV , and let ψ : V → Y be
the anticanonical model. Then Y is a degree-two covering over the weighted projective space
P(12, 22), and the unique prime divisor D ∼ −KV −2FV contracted by ψ is a P1-bundle (induced
by ψ|D) over a smooth elliptic curve. Moreover, by the adjunction formula, −KD ∼ (−KV −
D)|D ∼ 2FV |D. Thus

h0(D,OD(−KD)) = h0(D, (ϕ|D)∗(OP1(2))) = 3.

Since D is ruled over a smooth elliptic curve and admits an elliptic fibration (induced by ϕ|D),
by Lemma 5.2.3, we obtain that D ' B0 × C0 with B0 a smooth elliptic curve, and C0 ' P1.
Furthermore, D|FV ∼ −KV |FV ∼ −KFV , hence D|FV is an elliptic curve in the anticanonical
system | −KFV |.

Let φ : X → V be the blow-up of two rational curves C1 and C2, where Ci = {pi} × P1 is
a general fibre of ψ|D for i = 1, 2, and p1, p2 are two sufficiently general distinct points on a
general fibre of ϕ|D. Let E1 (resp. E2) be the exceptional divisor over C1 (resp. over C2). Let
A be the strict transform of D, and let F be the strict transform of FV . Then −KX ∼ A+ 2F
with A ' D. Restricted to a fibre F , the morphism φ : F → FV is the blow-up at two sufficiently
general points on an elliptic curve in | −KFV |. Hence −KF is nef and not semi-ample.

We can write A ' B × C with B (resp. C) the strict transform of B0 (resp. C0). Then

−KX ·B = φ∗(−KV ) ·B − E1 ·B − E2 ·B = −KV ·B0 − 2 = 2− 2 = 0,

and
−KX · C = φ∗(−KV ) · C − E1 · C − E2 · C = −KV · C0 = 0.

Hence by the same arguments as in Example 5.2.2, we deduce that −KX is nef. Furthermore,
−KX is not semi-ample by Lemma 5.1.4.

In particular, A · C = −KX · C − 2F · C = 0− 2 = −2. Hence, A is the exceptional locus of
a divisorial crepant extremal contraction.

Example 5.2.5. (Case (3)(ii) of Prop. 5.1.1) Consider V a del Pezzo fibration of degree 2
over P1 which is a double covering of Y := P(O⊕2

P1 ⊕ OP1(1)) branched along Γ ∈ |4H| with H a
tautological divisor of π : Y → P1 (as described in [Tak09, (5.6.1)]). Then −KV is ample with
(−KV )3 = 8, and we have the following diagram:
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V Y = P(O⊕2
P1 ⊕ OP1(1))

P1

ϕ

ψ

2:1

π

where ϕ : V → P1 is the del Pezzo fibration.
Let FY be a fibre of π : Y → P1. Let HV := ψ∗(H) and FV := ψ∗(FY ). We have −KV ∼

HV + FV and ρ(V ) = 2. The extremal ray not corresponding to ϕ : V → P1 is generated by
the strict transform of the section P(OP1) of π : Y → P1 and the corresponding contraction
morphism is defined by |HV | which maps to P3 with degree 2. By taking the Stein factorization,
this morphism factors through the double covering V2 of P3 branched along a quartic surface and
the exceptional divisor E of the morphism is the unique member of |HV −FV |. Therefore, there
exists a contraction µ : V → V2 which is the blow-up of V2 along a smooth elliptic curve R2 such
that −KV2 ·R2 = 4, and V2 is a Fano threefold of index 2.

By the adjunction formula, −KE ∼ (−KV − E)|E ∼ 2FV |E . Hence,

h0(E,OE(−KE)) = h0(E, (ϕ|E)∗(OP1(2))) = 3.

Since the exceptional divisor E is ruled over a smooth elliptic curve (induced by µ|E) and admits
an elliptic fibration (induced by ϕ|E), we deduce from Lemma 5.2.3 that E ' B0 × C0 with B0

a smooth elliptic curve, and C0 ' P1. Moreover,

E|FV ∼ (HV − FV )|FV ∼ HV |FV ∼ −KV |FV ∼ −KFV ,

thus E|FV is a smooth elliptic curve in | −KFV |.
Let R ∈ |2C0 + B0| be a smooth elliptic curve on E. Let φ : X → V be the blow-up of the

curve R and let E1 be the exceptional divisor. Let F (resp. A) be the strict transform of FV
(resp. E). Then −KX ∼ A+ 2F with A ' E. Restricted to a fibre F , the morphism φ : F → FV
is the blow-up at two points on an elliptic curve in | −KFV |. Hence by choosing R sufficiently
general, we obtain that −KF is nef and not semi-ample.

We can write A ' B × C with B (resp. C) the strict transform of B0 (resp. C0). Then

−KX ·B = φ∗(−KV ) ·B − E1 ·B = −KV ·B0 − 2 = 2− 2 = 0

and
−KX · C = φ∗(−KV ) · C − E1 · C = −KV · C0 − 1 = 1− 1 = 0.

Hence by the same arguments as in Example 5.2.2, we deduce that −KX is nef.
In particular, A ·C = −KX ·C−2F ·C = −2. Hence, A is the exceptional locus of a divisorial

crepant extremal contraction.
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Chapter 6

Rational general fibre: general case

In this chapter, we first consider the general Setup 4.2.5.

Remark 6.0.1. Remind that under the general setup, if the general fibre F of f is a rational
surface, i.e. F is P2 blown up at 9 points in sufficiently general position, then the unique member
in | − KF | is one of the types in Kodaira’s table of singular fibres for an elliptic fibration (see
Table 2.1).

We first prove the following lemma in a more general situation.

Lemma 6.0.2. Let X be a complex projective smooth threefold such that | −KX | = A + |kF |,
where A is the non-zero fixed divisor of the anticanonical system, F is a prime divisor, and k ≥ 2
an integer. Suppose that there exists an εA-flop (with ε > 0 such that the pair (X, εA) is lc),
then A has multiplicity at least k along the flopping curve.

Proof. By assumption, there exists an εA-flop:

ψ : X 99K X+,

where X+ is again smooth (by [Kol89, Thm. 2.4]). Since ψ induces an isomorphism in codimen-
sion one, the anticanonical system | −KX+ | has non-empty fixed divisor A+ := ψ∗(A) and we
can write

| −KX+ | = A+ + |kF+|,

where F+ := ψ∗(F ) and |kF+| is the mobile part of the anticanonical system.
Since ψ is a flop, there exists a common resolution:

X̃

X X+

g h

ψ

such that g∗(KX) = h∗(KX+). Moreover, by [KMM87, Prop. 5-1-11], one has

KX̃ = g∗(KX + εA) +
∑
i

aiEi = h∗(KX+ + εA+) +
∑
i

a+
i Ei,
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where a+
i ≥ ai, and a

+
i > ai if and only if g(Ei) is contained in the flopping locus.

Hence,

h∗(kF+)− g∗(kF ) = (1− ε)(g∗(A)− h∗(A+)) +
∑
i

(a+
i − ai)Ei =

1

ε

∑
i

(a+
i − ai)Ei

is effective. Since F and F+ are Cartier divisors, we can write h∗(kF+) − g∗(kF ) =
∑

i kniEi
with ni ∈ N.

Since g∗(A) = h∗(A+) + h∗(kF+)− g∗(kF ), one has that g∗(A)− Ã−
∑

i kniEi is effective,
where Ã := g−1

∗ (A) is the strict transform of A in X̃. Therefore, A has multiplicity at least k
along the flopping curve.

Recall that in Setup 4.2.5, we write A = Ah + Av, where Ah and Av are effective divisors
such that Ah|F = −KF and Av|F = 0 for a general fibre F of f : X → P1. Applying the above
lemma to our case, we prove the following.

Lemma 6.0.3. In Setup 4.2.5, the divisor A is f -nef. If A is not nef, then we are in one of the
following cases:

(i) there is an extremal contraction which contracts horizontally an irreducible component of
Ah to a curve;

(ii) there is an εA-flop (with ε > 0 such that the pair (X, εA) is lc), and Ah has multiplicity at
least k along the f -horizontal flopping curve.

Proof. Suppose that A is not nef. Then applying Lemma 2.5.1 to the pair (X, εA) for ε > 0
small enough such that (X, εA) is lc, there exists a (KX + εA)-negative extremal ray Γ such that
A · Γ < 0. Let l be an integral curve such that the class [l] generates Γ. Then l ⊂ A as A · l < 0.

We first notice that l is f -horizontal, i.e. dim f(l) = 1. This is because otherwise F · l = 0
and thus −KX · l = A · l + kF · l < 0, which contradicts to the fact that −KX is nef. As
dim f(Av) = 0, we deduce that l ⊂ Ah.

(i) If the contraction ϕΓ of Γ is divisorial, then it contracts an irreducible component Bh of
Ah. Since any f -vertical curve b ⊂ Bh satisfies F · b = 0, we have [b] 6∈ Γ. Hence, ϕΓ contracts
Bh to a curve.

(ii) If the contraction ϕΓ of Γ is small, then KX · l = 0 because otherwise, l is not rigid.
Hence, there exists an εA-flop:

ψ : X 99K X+,

where X+ is again smooth (by [Kol89, Thm. 2.4]) with nef anticanonical divisor. By Lemma
6.0.2, we obtain that A (and thus Ah) has multiplicity at least k along the flopping curve.

Corollary 6.0.4. In Setup 4.2.5, suppose that the general fibre F is rational and that the unique
member in | −KF | is a nodal (resp. cuspidal) cubic curve. Let C be the closure of the rational
section of f formed by the nodes (resp. cusps). If A is not nef, then k = 2, and C is the flopping
curve of the unique (KX + εA)-negative extremal ray Γ such that A · Γ < 0.
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Proof. In the case where the unique member in | −KF | is a nodal or cuspidal cubic curve, the
surface Ah is irreducible and non-normal.

Suppose that A is not nef. Let Γ be a (KX + εA)-negative extremal ray such that A · Γ < 0.
Denote by ϕΓ the contraction of Γ. We apply Lemma 6.0.3:

(i) We first show that ϕΓ cannot be divisorial. If ϕΓ is a Mori contraction, then Ah is
a smooth ruled surface by the classification of Mori (see Section 2.3), which contradicts the
fact that Ah is non-normal. If ϕΓ is a crepant contraction, then Ah is a conic bundle by the
classification of Wilson (that we cite in Prop 6.0.5 for readers’ convenience). As Ah is non-normal,
a general fibre of ϕΓ is two lines denoted by l1 and l2 intersecting at one point. In particular,
Ah · l1 = Ah · l2 = −1. Since li is f -horizontal, one has F · li ≥ 1 and Av · li ≥ 0 for i = 1, 2.
Hence,

0 = −KX · li = Ah · li +Av · li + kF · li ≥ k − 1,

i.e. k ≤ 1, which contradicts the fact that k ≥ 2.
(ii) If ϕΓ is a small crepant contraction, then Ah has multiplicity at least k ≥ 2 along the

flopping curve which is f -horizontal. Since the general fibre of f |Ah : Ah → P1 is a nodal or a
cuspidal curve, the only possible flopping curve is C. Thus, we have that k = 2, and the unique
possible (KX + εA)-negative extremal ray is generated by [C].

Proposition 6.0.5 ([Wil92], Thm.2.2, [Wil93], [Wil97], Prop.3.1). Let X be a smooth complex
projective threefold and let φ : X → Y be a crepant contraction of an extremal ray, contracting
some irreducible surface E ⊂ X down to a curve C ⊂ Y . Then C is a smooth curve and
φ : E → C is a conic bundle over C such that one of the following holds:

(i) E is normal and a general fibre of φ : E → C is a smooth conic;

(ii) E is non-normal and a general fibre of φ : E → C is two lines meeting at one point.

For a general fibre l of φ : E → C, one has E · l = −2. A singular fibre of φ : E → C is either
two P1’s intersecting at one point, or a double line.

Furthermore, if E is normal, then the possible singularities of E are An singularities at the
point where distinct components of a singular fibre meet, or A1 singularities appearing as a pair
on some double fibre.

6.1 Generically log canonical case

Theorem 6.1.1. In Setup 4.2.5, if the pair (X,Ah) is lc over the generic point of P1, then k = 2,
Av = 0 and the pair (X,Ah) is lc.

Proof. We follow the strategy of the proof in [AD13, Thm. 5.1]. Let π : X̃ → X be a log resolution
of singularities of (X,Ah). Then

KX̃ + Ãh ∼Q π
∗(KX +Ah) + E+ − E−,

where Ãh := π−1
∗ (Ah) is the strict transform of Ah, E+ and E− are effective π-exceptional divisors

with no common components such that the support of π−1
∗ (Ah) + E+ + E− is a snc divisor.
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Since the pair (X,Ah) is lc over the generic point of P1, we can write E− as

E− = E + E′,

where dEe is reduced and E− coincides with E over the generic point of P1. Furthermore,

π(Supp(E′)) = Nlc(X,Ah).

In particular, E′ is not dominant onto P1.
Let f̃ := f ◦π. Observe that f̃∗OX̃(KX̃/P1 +Ãh+E) is weakly positive by [Cam04, Thm. 4.13].
Since E+ is effective and π-exceptional, π∗OX̃(E+) ' OX . Hence

f̃∗OX̃(KX̃/P1 + Ãh + E−) = f̃∗OX̃(π∗(KX/P1 +Ah) + E+) ' f∗OX(KX/P1 +Ah).

Together with
KX/P1 +Ah ∼ −(k − 2)F −Av,

one has

f̃∗OX̃(KX̃/P1 + Ãh + E)
i
↪−→ f̃∗OX̃(KX̃/P1 + Ãh + E + E′)

= f̃∗OX̃(KX̃/P1 + Ãh + E−)

' OP1(−(k − 2))⊗ f∗OX(−Av)
i′
↪−→ OP1(−(k − 2)).

However, f̃∗OX̃(KX̃/P1 + Ãh + E) is pseudo-effective and k ≥ 2. This implies that k = 2 and i,
i′ are isomorphisms. Hence, Av = 0 and

f̃∗OX̃(KX̃/P1 + Ãh + E−)⊗ f̃∗OX̃(−E′) ' f̃∗OX̃(KX̃/P1 + Ãh + E−) ' OP1 .

Therefore, E′ = 0, and we deduce that the pair (X,Ah) is lc.

In the two following sections, we describe the geometric structure of X explicitly in two
particular cases.

6.2 Cuspidal case

Theorem 6.2.1. In Setup 4.2.5, assume moreover that the general fibre F is rational and that
the unique member in | − KF | is a cuspidal cubic curve. Then A is nef and thus the fibration
f : X → P1 is locally trivial.

Proof. Suppose by contradiction that A is not nef. Then by Corollary 6.0.4, the curve C (where
C is the closure of the rational section of f formed by the cusps) is a flopping curve and −KX ∼
Ah +Av + 2F .

64



Let µ : Y → X be the blow-up of X along the curve C and let Ãh be the strict transform of
Ah in Y . Let E be the exceptional divisor of µ. Since C is an f -horizontal curve and Ah has
multiplicity 2 along C, one has

−KY = µ∗(−KX)− E ∼ Ãh + 2E + Ãv + 2F̃ − E = Ãh + Ãv + 2F̃ + E,

where Ãv (resp. F̃ ) is the strict transform of Av (resp. F ).
Since E is a ruled surface, one has

−KE ∼ 2C1 + (d+ 2)fE ,

where

• case d > 0: C1 is the minimal section with C2
1 = −d, and fE is a fibre of µ|E ;

• case d = 0, i.e. E ' P1 × P1: C1 is a fibre of the second projection, and fE is a fibre of the
first projection µ|E .

Moreover, the fibration (f ◦ µ)|E coincides with the ruling.
On the other hand, by the adjunction formula, one has

−KE ∼ (−KY − E)|E ∼ (Ãh + Ãv + 2F̃ )|E ∼ (Ãh + Ãv)|E + 2fE .

As Ãv is contained in some fibres of f ◦ µ, one has Ãv|E ∼ αfE with 0 ≤ α ≤ d, and

Ãh|E ∼ 2C1 + (d− α)fE .

Therefore,

• If d > 0, then on the surface E one has

(2C1 + (d− α)fE) · C1 = −2d+ d− α = −d− α < 0

and thus, C1 is contained in the fixed divisor of the linear system |2C1 + (d − α)fE | on E.
Hence C1 is an irreducible component of the intersection Ãh ∩ E.

• If d = 0, then Ãh|E ∼ 2C1. Since the general fibre of f |Ah : Ah → P1 is a cuspidal curve, the
surface E is tangent to Ãh along an (f ◦ µ)-horizontal curve. From now on, we define C1 as
the reduction of the intersection Ãh ∩ E when E ' P1 × P1.

Since E is smooth, one has

0→ NC1/E → NC1/Y → NE/Y |C1 → 0. (6.1)

Since C is a flopping curve, by [Pin83, Thm. 4] we are in one of the following cases:
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(a) NC/X ' OP1(−1)⊕ OP1(−1), E ' P1 × P1, and NC1/Y ' OP1 ⊕ OP1(−1).

In this case, we have α = d = 0, Ãh · E ∼ 2C1, and the short exact sequence (6.1) gives
E · C1 = −1.

On the other hand, we have Ãh ∩ E = 2C1, i.e. E and Ãh intersect along a smooth curve
without embedded point. Hence, Ãh is smooth near C1, and thus C1 is a Cartier divisor
on Ãh, i.e. C2

1 ∈ Z on Ãh. Therefore,

E · C1 = E|Ãh · C1 = 2C2
1 ,

where the last self-intersection number is computed on Ãh. Hence, E ·C1 is divisible by 2,
which contradicts the fact that E · C1 = −1.

(b) NC/X ' OP1⊕OP1(−2), E ' F2, and either NC1/Y ' OP1⊕OP1(−2) or NC1/Y ' OP1(−1)⊕
OP1(−1).

In this case, the short exact sequence (6.1) gives E · C1 = 0. By the adjunction formula,
one has

−KÃh
· C1 = (−KY − Ãh)|Ãh · C1 = Ãv · C1 + 2F̃ · C1 + E · C1 ≥ 2.

This is because 2F̃ · C1 = 2, and C1 6⊂ Ãv by construction, which implies Ãv · C1 ≥ 0.

(c) NC/X ' OP1(1) ⊕ OP1(−3), E ' F4, and either NC1/Y ' OP1(−1) ⊕ OP1(−2) or NC1/Y '
OP1 ⊕ OP1(−3).

In this case, the short exact sequence (6.1) gives E · C1 = 1. By the adjunction formula,
one has

−KÃh
· C1 = (−KY − Ãh)|Ãh · C1 = Ãv · C1 + 2F̃ · C1 + E · C1 ≥ 3

by the same argument as in case (b).

For cases (b) and (c), we will obtain a contradiction as follows. Let λ : Âh → Ãh be the nor-
malisation of the surface Ãh, and let π : Ah → Âh be the minimal resolution of the surface Âh.
Denote by ν := λ ◦ π the composition map. Then

−KÂh
= λ∗(−KÃh

) +D1,

where D1 is an effective Weil divisor supported on the zero locus of the conductor ideal of the
normalisation λ, and

−KAh
= ν∗(−KÃh

) +D1 +D2 = ν∗(−KÃh
) +D,

whereD1 is the strict transform ofD1,D2 is an effective Weil divisor supported on the exceptional
locus of π, and D := D1 +D2 is an effective Weil divisor.

Since C1 is not contained in the singular locus of Ãh (because Ãh is generically smooth along
C1), one has D · C1 ≥ 0, where C1 ⊂ Ah is the strict transform of C1. Therefore,

−KAh
· C1 ≥ ν∗(−KÃh

) · C1 ≥ −KÃh
· C1 ≥ 2.
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By [Kol96, Chap. 2, Thm. 1.14], the rational curve C1 deforms on the surface Ah. Hence, C1

deforms on the surface Ãh. Since Ãh is not contracted by the morphism µ, we deduce that
C ⊂ X is not rigid. This contradicts the fact that the extremal ray R+[C] contains only a finite
number of curves.

Therefore, the divisor A is nef. Since −KX ∼ A + kF with k ≥ 2 and F nef, the relative
anticanonical divisor−KX/P1 is nef. Hence, the fibration f is locally trivial by [PZ19, Thm. A.12].

6.3 Nodal case

Proposition 6.3.1. In Setup 4.2.5, assume moreover that the general fibre F is rational and
that the unique member in | −KF | is a nodal cubic curve. Let C be the closure of the rational
section of f formed by the nodes. If A is not nef, then we are in one of the following cases:

(i) A is smooth outside C. There are exactly two degenerated fibres of f |A and both are of type
I2.

(ii) A has exactly one degenerated fibre F0 of f |A, and F0 is of the type I2. The surface A has
one A1 singularity at the intersection point of the two irreducible components of F0, which
is not contained in C.

(iii) A is smooth outside C. There is exactly one degenerated fibre of f |A and it is of type I3.

Here the types of degenerated fibres are described in terms of the Kodaira’s table of singular
elliptic fibres.

Proof. By Theorem 6.1.1, one has that A = Ah,

−KX ∼ A+ 2F,

and the pair (X,A) is log canonical.
Suppose that A is not nef. Let µ : Y → X be the blow-up of X along C with exceptional

divisor E. Denote by Ã the strict transform of A. Then by repeating the argument in the proof
of Theorem 6.2.1, the only possible case is when NC/X ' OP1(−1)⊕ OP1(−1).

In this case, E ' P1 × P1, µ|E : E ' P1 × P1 → C ' P1 is the first projection, and
A ∩ E = C1 + C2, where C1 and C2 are two fibres of the second projection E ' P1 × P1 → P1,
which are mapped surjectively onto C by µ. Notice that C1 and C2 are distinct fibres: the
general fibre of f |A : A→ P1 is a nodal curve, so Ã and E are not tangent over the generic point
of P1. As the intersection Ã ∩ E is smooth, we deduce that Ã is smooth near C1 and C2. Thus
C1, C2 are Cartier divisors on Ã. Moreover,

−1 = E · C1 = E|Ã · C1 = C2
1 ,

where the last self-intersection number is computed on Ã. Similarly, we have C2
2 = −1 on Ã.

Let ψ : X 99K X+ be the A-flop which flops the curve C to a curve C+. We have the following
commutative diagram:
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Y

X X+

µ ρ

ψ

where ρ : Y → X+ is the blow-up of X+ along the curve C+ with exceptional divisor E, and
ρ|E : E ' P1 × P1 → C+ ' P1 is the second projection. Then X+ is again smooth (by [Kol89,
Thm. 2.4]) with nef anticanonical divisor. Since ψ induces an isomorphism in codimension one,
the anticanonical system | −KX+ | has a non-zero fixed divisor A+ := ψ∗(A) and we can write

| −KX+ | = A+ + |2F+|,

where F+ := ψ∗(F ) and |2F+| is the mobile part of the anticanonical system.
Let ` := A∩F and let `+ be its strict transform on X+. Then `+ is a rational curve. Since ψ

is an isomorphism outside the indeterminacy curves (with ` not contained in the flopping locus),
and Ã∩E = C1 +C2 (so that C+ is not contained in A+), we deduce that A+ ∩F+ = `+. Thus
`+ is a Cartier divisor on A+. By the adjunction formula,

−KA+ ∼ (−KX+ −A+)|A+ ∼ 2F+|A+ = 2`+.

By the adjunction formula on the surface A+,

KA+ · `+ + (`+)2 = −2,

and thus −2`+ · `+ + (`+)2 = −2. Therefore, (`+)2 = 2 and KA+ · `+ = −4 on the surface A+.
Since ψ is a flop, one has KX+ ·`+ = KX ·` = 0, which gives A+ ·`+ = KA+ ·`+−KX+ ·`+ = −4.

Claim. A+ is a normal surface.
Since ρ|Ã : Ã→ A+ is the blow-down of two (−1)-curves C1 and C2 contained in the smooth

locus of Ã, it is enough to show that Ã is normal.
Suppose by contradiction that Ã is non-normal. Let f̃ := (f ◦ µ)|Ã : Ã→ P1 and let fÃ be a

general fibre. By the adjunction formula, one has

−KÃ ∼ (−KY − Ã)|Ã ∼ C1 + C2 + 2fÃ.

Let λ : Â→ Ã be the normalisation of the surface Ã, and let π : A→ Â be the minimal resolution
of the surface Â. Denote by ν := λ ◦ π the composition map. Then

−KÂ = λ∗(−KÃ) +D1,

where D1 is an effective Weil divisor supported on the zero locus of the conductor ideal of the
normalisation λ, and

−KA = ν∗(−KÃ) +D1 +D2 = ν∗(−KÃ) +D,

whereD1 is the strict transform ofD1,D2 is an effective Weil divisor supported on the exceptional
locus of π, and D := D1 +D2 is an effective Weil divisor. Then D is non-zero by assumption.
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Note that D1 is (f̃ ◦ λ)-vertical, as the general fibre of f |A : A→ P1 is a nodal curve. Hence,
D1 is (f̃ ◦ν)-vertical. As D2 is also (f̃ ◦ν)-vertical, we deduce that D is (f̃ ◦ν)-vertical. Since C1

and C2 are contained in the smooth locus of Ã, and fÃ is a general fibre (so that we can choose
a general fibre contained in the smooth locus of Ã), we have

−KA ∼ C1 + C2 + 2fA +D,

where C1 (resp. C2) is the strict transform of C1 (resp. C2), and fA is a general fibre of f̃ ◦ ν;
moreover, D is disjoint from C1, C2 and fA.

On the other hand, let M ∈ | −KA|. By the short exact sequence

0→ OA(KA)→ OA → OM → 0,

one has H0(M,OM ) ' H0(A,OA) ' C as h1(A,OA(KA)) = h1(A,OA) = 0 by Serre duality.
Therefore, M is connected. This contradicts the fact that C1 +C2 + 2fA +D ∈ |−KA| and that
D is a non-zero component disjoint from C1 + C2 + 2fA. This proves the claim.

Claim. A+ is the exceptional divisor of an extremal crepant contraction denoted by φ.
Since X+ is smooth, for sufficiently small ε > 0, the pair (X+, εA+) is lc. Since A+ is not

nef, it follows from Lemma 2.5.1 that there exists a (KX + εA+)-negative extremal ray which is
A+-negative; denote by φ the associated contraction. Since A+ is a normal surface, φ cannot be
a small contraction (namely an εA+-flop) by Lemma 6.0.2. Since −KX+ ·`+ = 0, we deduce that
φ is an extremal crepant contraction which contracts the divisor A+. This proves the claim.

Since f̃ = (f ◦µ)|Ã : Ã→ P1 induces a fibration with general fibre isomorphic to P1 such that
the two exceptional (−1)-curves C1, C2 of ρ|Ã are two sections, we deduce that a fibre of f̃ is the
strict transform of some curve (not necessarily integral) on A+ with self-intersection number 2
passing through the two blown up points denoted by p1, p2 of ρ|Ã (with Ci contracted to pi, for
i = 1, 2).

By the classification of the extremal crepant contractions, we are in one of the following cases.

The surface A+ is contracted to a point. Since A+ · `+ = −4, we deduce that A+ is a Gorenstein
del Pezzo surface of degree 8 by [Tam04, 2.2]. Hence, A+ is isomorphic to P1 × P1, or F1, or a
quadric cone Q ⊂ P3 by [Tam04, 2.4]. Since −KA+ is divisible by 2 in Pic(A+), we deduce that
A+ 6' F1.

(A) Case A+ ' P1× P1. Let l1 (resp. l2) be a general fibre of the first projection (resp. second
projection) of A+ ' P1 × P1 → P1. Then f̃ : Ã → P1 is the conic bundle defined by the
linear system |(ρ|Ã)∗(l1 + l2)− C1 − C2|.
Note that p1, p2 cannot lie on the same fibre of A+ ' P1 × P1 → P1 as (l1 + l2) · li = 1 for
i = 1, 2.

There are exactly two singular fibres of f̃ . Indeed, let l11 (resp. l12) be the fibre through p1

(resp. through p2) of the first projection A+ ' P1×P1 → P1. Let l21 (resp. l22) be the fibre
through p1 (resp. through p2) of the second projection A+ ' P1× P1 → P1. Then l̃11 + l̃22

and l̃21 + l̃12 are the two singular fibres of the conic bundle f̃ : Ã→ P1, where l̃ij ⊂ Ã is the
strict transform of lij for i, j = 1, 2, and the two singular fibres are two P1’s intersecting
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transversally at one point. Moreover, each component of a singular fibre intersects one of
the two sections C1, C2, and these two intersection points are distinct from the intersection
point of the two components.

(B) Case A ' Q ⊂ P3. Let l be a ruling of the cone Q. Then f̃ : Ã → P1 is the conic bundle
defined by the linear system |(ρ|Ã)∗(2l)− C1 − C2|.
Note that p1, p2 are smooth points of Q and thus distinct from the vertex. Moreover, p1

and p2 cannot lie on the same ruling of Q, as 2l · l = 1.

There is exactly one singular fibre of f̃ . Indeed, let l1 (resp. l2) be the ruling through p1

(resp. p2). Then l̃1 + l̃2 is the singular fibre of f̃ , where l̃i is the strict transform of li for
i = 1, 2. There is exactly one singular point on Ã, which is an A1 singularity at the point
where l̃1 and l̃2 meet, and l̃i intersects Ci at one point distinct from the singular point of
Ã

The surface A+ is contracted to a curve. By Proposition 6.0.5, the crepant contraction φ induces
a conic bundle on A+ over a smooth curve. Since A+ · `+ = −4, the curve `+ is not contracted
by φ. Let R be a general fibre of the conic bundle φ|A+ . Since A+ is normal, we deduce that R
is a smooth conic with A+ ·R = −2.

On the surface A+, one has

2`+ ·R = −KA+ ·R = −KX+ ·R−A+ ·R = 2,

i.e. `+ ·R = 1. Hence, `+ is a section of the conic bundle φ|A+ , and

F+ ·R = F+|A+ ·R = `+ ·R = 1.

Then we can show that φ|A+ has no singular fibre. Indeed, suppose that there exists a singular
fibre, and let R′ be an irreducible reduced component of the singular fibre. Then [R′] = 1

2 [R] by
Proposition 6.0.5. Hence, F+ ·R′ = 1

2 , which contradicts the fact that F+ is Cartier.
Therefore, A+ is a ruled surface over a smooth rational curve. Since −KA+ is divisible by

two in Pic(A+), we deduce that A+ ' F2d with d ∈ N. If d > 0, let C0 be the minimal section
of φ|A+ : A+ → P1. Since −KA+ ∼ 2`+, one has

`+ ∼ C0 + (d+ 1)R.

As `+ is a section of φ|A+ , one has C0 · `+ ≥ 0, i.e. d ≤ 1 and thus d = 1.

• If A+ ' P1 × P1, then the same argument in the case (A) can be applied to describe the
singular fibres of Ã.

• If A+ ' F2, then `+ ∼ C0 + 2R, and f̃ : Ã→ P1 is defined by the linear system |(ρ|Ã)∗(C0 +
2R)− C1 − C2|.
Note that p1, p2 cannot lie on the same fibre of φ|A+ as R · `+ = 1. Moreover, p1, p2 6∈ C0, as
C0 · `+ = 0.

There is exactly one singular fibre of f̃ . Indeed, let R1 (resp. R2) be the fibre of φ|A+ through
p1 (resp. p2). Then C̃0 + R̃1 + R̃2 is the singular fibre of f̃ , where C̃0 is the strict transform of
C0, and R̃i is the strict transform of Ri for i = 1, 2. Moreover, R̃i intersects Ci at one point,
and C̃0 is disjoint from Ci.
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In view of the above discussion on the nodal case, if A is not nef, we have a precise description
on the geometric structure of the smooth threefold X+. As A+ is the exceptional locus of an
extremal crepant contraction, by contracting A+, we obtain a threefold X ′ with Q-factorial
Gorenstein canonical singularities. Moreover, −KX′ is nef and divisible by two as Weil divisor
(but not as Cartier divisor). One may expect to classify this kind of varieties X ′ in order to
obtain a complete classification of X in the nodal case.

6.4 Other cases

In this section, we discuss the remaining cases when the general fibre F is rational and the unique
member in | −KF | is reduced in Setup 4.2.5.

Setup 6.4.1. In Setup 4.2.5, assume moreover that the general fibre F is rational and that the
unique member in | −KF | is of the type A(1)∗

1 (= III) or A(1)∗
2 (= IV ). Then the pair (X, cAh)

(with c = 3
4 for the type A(1)∗

1 (= III), and c = 2
3 for the type A(1)∗

2 (= IV )) is lc over the generic
point of P1, and there is a corresponding rational section formed by the singular points of the
general fibres of the morphism f whose closure is denoted by C. Hence, the pair (X, cAh) is lc
over the generic point of C.

Definition 6.4.2. ([OX12, Def. 2.1]) Let X be a normal variety and let ∆ =
∑

i ai∆i be a
Q-divisor with distinct prime divisors ∆i on X and rational numbers ai. Assume 0 ≤ ai ≤ 1 for
all i. We say that a birational projective morphism µ : (X̃, ∆̃) → (X,∆) gives a log canonical
model over (X,∆) if with the divisor ∆̃ = µ−1

∗ (∆) +E=1 on X̃ , where E=1 denotes the sum of
µ-exceptional prime divisors with coefficients 1, the pair (X̃, ∆̃) satisfies

(1) (X̃, ∆̃) is log canonical,

(2) KX̃ + ∆̃ is µ-ample.

Remark 6.4.3. From the negativity lemma, we know that µ : X̃ → X is isomorphic over the
maximal open locus X lc ⊂ X on which (X,∆) is log canonical.

Theorem 6.4.4. ([BHN15, Lem. 3.1]) Let (X,∆) be a projective log canonical pair, and let
W ⊂ X be a log canonical centre. Let ν : Wn → W be the normalisation. Then there exists an
effective divisor ∆Wn on Wn such that

KWn + ∆Wn ∼Q ν
∗(KX + ∆)|W .

Suppose that Z ⊂ W is a log canonical centre such that dim Z = dim W − 1. Then we have a
set-theoretic inclusion

ν−1(Z) ⊂ ∆Wn .

Proposition 6.4.5. In Setup 6.4.1, one has that k+Av.C ≤ 3. For the type A(1)∗
1 (= III), one

has that k = 2, Av.C = 0, and that the pair (X, 3
4Ah) is lc in a neighbourhood of C.
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Proof. Let D := cAh and let µ : (X̃, D̃)→ (X,D) be a log canonical model over the pair (X,D).
Let f̃ = f ◦ µ : X̃ → P1. Then

KX̃ + D̃ ∼Q µ
∗(KX +D)− E

with E effective µ-exceptional divisor.
Let C̃ := µ−1

∗ (C) be the strict transform of C. By the construction of C, we know that the
curve C̃ is a section of f̃ and that it is the log canonical centre of the pair (X̃, D̃). Moreover, as
(X,D) is lc over the generic point of C, the curve C̃ is not contained in the support of E. We
deduce that E · C̃ ≥ 0.

By Theorem 6.4.4, there exists an effective divisor DC̃ on C̃ such that

(KX̃ + D̃)|C̃ ∼Q KC̃ +DC̃ .

Hence,
µ∗(KX +D)|C̃ ∼Q KC̃ +DC̃ + E|C̃

and thus
−2 = deg(KC̃) ≤ deg(OC̃(µ∗(KX +D))).

Since −KX is nef, µ∗(−KX) is nef and thus one has µ∗(KX) · C̃ ≤ 0. Hence,

µ∗(−Ah) · C̃ = µ∗(KX + kF +Av) · C̃ ≤ k + µ∗(Av) · C̃.

Therefore,

deg(OC̃(µ∗(KX +D))) = deg(OC̃(µ∗(−Ah −Av − kF + cAh)))

= deg(OC̃(µ∗(−Av − kF − (1− c)Ah)))

≤ −µ∗(Av) · C̃ − k + (1− c)(k + µ∗(Av) · C̃)

= −c(k + µ∗(Av) · C̃).

Since µ∗(Av) is f̃ -vertical and C̃ is a section, one has q := µ∗(Av) · C̃ ≥ 0. Hence,

−2 ≤ −c(k + l),

i.e.

• k + q ≤ 8
3 for the type A(1)∗

1 (= III),

• k + q ≤ 3 for the type A(1)∗
2 (= IV ).

In particular, for the type A(1)∗
1 (= III), as k, q are integers such that k ≥ 2 and q ≥ 0, we deduce

that k = 2 and q = 0. Hence, Av · C = 0. Moreover,

−2 + degDC̃ + E · C̃ ≤ −3

2
.

Since degDC̃ ≥ 0, and E · C̃ is a positive integer, we deduce that E · C̃ = 0. Therefore, µ induces
an isomorphism over a neighbourhood of C.
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We finish this chapter by proposing a conjecture on the structure of X:

Conjecture 6.4.6. In Setup 1.2.5, assume moreover that F is rational and that the unique
member in | −KF | is reduced. Then | −KX | = Ah + |2F |.

Most of the cases are already proved in this chapter, except for the two cases where the unique
member in | −KF | is of the type A(1)∗

1 (= III) or A(1)∗
2 (= IV ). However, Proposition 6.4.5 gives

evidence for the conjecture to hold true in these two cases.
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Chapter 7

Non-rational general fibre

In this chapter, we study the case when a general fibre is non-rational:

Setup 7.0.1. Under Setup 4.2.5, assume that the general fibre F is non-rational.

We will show that this case exists, and we give an example at the end of this chapter (see
Example 7.1.4). Remark that when F is non-rational, X cannot be a product (i.e. X 6' F ×P1),
since otherwise X is not rationally connected.

By Lemma 2.4.5, we have that F = P(E) with E a rank-2 vector bundle over an elliptic curve
which is an extension

0→ O→ E→ L→ 0

with L a line bundle of degree 0 and either

(i) L = O and the extension is non-split or

(ii) L is not torsion.

The structure of the unique element D in | −KF | is as follows:

(i) either D = 2C and C is a smooth elliptic curve,

(ii) or D = C1 + C2, where C1 and C2 are smooth elliptic curves which do not meet.

Lemma 7.0.2. In Setup 7.0.1, Ah is not a prime divisor and one of the following cases occurs:

(i) −KF = 2C and C is a smooth elliptic curve, then Ah = 2D where the restriction of f to
D is an elliptic fibration.

(ii) −KF = C1 + C2 where C1 and C2 are smooth elliptic curves which do not meet, then
Ah = D1 +D2 where the restriction of f to Di is an elliptic fibration, i = 1, 2 and D1 ∩D2

is contained in some fibres of f .

Proof. Suppose by contradiction that Ah is a prime divisor. By the adjunction formula, we have

−KAh ∼ (−KX −Ah)|Ah ∼ (Av + kF )|Ah .
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Since F |Ah is nef and contains a smooth elliptic curve, (F |Ah)2 = 0 and k ≥ 2, we can apply
Lemma 4.1.2 and Corollary 4.1.3 to the surface Ah, which implies that Av|Ah = 0, −KAh ∼ kF |Ah
and Ah is a P1-bundle over a smooth elliptic curve.

On the other hand, the restriction of f to Ah induces a fibration on Ah such that the general
fibre F |Ah is either

• 2C, or

• C1 + C2

with C, C1 and C2 smooth elliptic curves. The first case is impossible by the generic smoothness
of the P1-bundle Ah. In the second case, −KAh ∼ kF |Ah with k ≥ 2 contains at least 4 elliptic
curves (counted with multiplicity). Let ` ⊂ Ah be a fibre of the ruling. Then −KAh · ` ≥ 4,
which contradicts −KAh · ` = 2 for a P1-bundle over a smooth curve.

Lemma 7.0.3. In the case (ii) of Lemma 7.0.2, we have k = 2, Av = 0 and A = D1 + D2,
where D1 and D2 are disjoint with Di ' Ci × P1, i = 1, 2.

Proof. For i, j = 1, 2 with i 6= j, the adjunction formula gives

−KDi ∼ (−KX −Di)|Di ∼ (Av +Dj + kF )|Di .

Recall that F |Di is an elliptic curve, (F |Di)2 = 0 and k ≥ 2, then by Lemma 4.1.2 and Corollary
4.1.3 we have Av|Di = Dj |Di = 0, −KDi ∼ kF |Di , and Di is a P1-bundle over a smooth elliptic
curve. Hence D1 ·D2 = 0, and thus D1 and D2 are disjoint. Moreover, the support of a divisor
L ∈ | − KX | is connected in codimension one by [Sha99, Lem. 2.3.9]. As Av does not meet F
and Av ·D1 = Av ·D2 = 0, we obtain that Av = 0. Thus A = Ah.

Since Di is a P1-bundle over the smooth elliptic curve Ci, and the restriction of f to Di

induces an elliptic fibration with

h0(Di,ODi(−KDi)) = h0(Di, (f |Di)∗OP1(k)) = k + 1 ≥ 3,

we deduce Di ' Ci × P1 by Lemma 5.2.3, and thus k = 2.

7.1 Running the Minimal Model Program

Assume that X satisfies Setup 7.0.1. Consider a Mori contraction ϕ : X → Y . Let Γ be an
extremal ray contracted by ϕ. Let l be a rational curve such that [l] generates Γ and that
−KX · l = l(Γ), where l(Γ) is the length of the extremal ray Γ. In the birational case, denote the
exceptional divisor of ϕ by E. In this section, we will suppose the following:
Assumption. Av = 0, i.e. A = Ah.

Remark 7.1.1. If Av = 0, then for any f -vertical curve R contained in A, one has A · R = 0.
Indeed, by Lemma 7.0.3 we only need to prove for the case A = 2D. Suppose by contradiction
that there exists a f -vertical curve R ⊂ D such that D ·R 6= 0.
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• If D ·R < 0, then −KX ·R = A ·R + kF ·R < 0 as F ·R = 0, which contradicts the fact
that −KX is nef.

• if D ·R > 0, let F0 be the special fibre of f which contains R. Since D · (F |D) = 0, we have
that D · (F0|D) = 0. Hence there exists a curve R′ in F0|D such that D ·R′ < 0, this gives
a contradiction by the previous case.

7.1.1 Birational contractions

Since X is a smooth threefold, the contraction ϕ is divisorial.

Case A · l = 0. In this case, we have F · l = 1 and −KX · l = A · l+ kF · l = k = 2. Hence ϕ
is the blow-up of Y at a smooth point, with exceptional divisor E ' P2. As E is not fibred, it
is contained in a fibre of f and thus F · E = 0. This contradicts the fact that F · l = 1.

Case A · l < 0. Since the contraction is divisorial, E is an irreducible component of A. Since
every irreducible component of A is an elliptic fibration, we deduce from the classification of
Mori (see Section 2.3) that E is a P1-bundle over a smooth elliptic curve and ϕ contracts E to
a smooth elliptic curve. Therefore,

ϕ∗(−KY ) = −KX + E.

Since E ↪−→ A ↪−→ −KX , one has

κ(−KX) ≤ κ(−KX + E) ≤ κ(−2KX) = κ(−KX),

and similarly,
ν(−KX) ≤ ν(−KX + E) ≤ ν(−2KX) = ν(−KX).

Hence, κ(−KY ) = κ(−KX) = 1 and ν(−KY ) = ν(−KX) = 2.

• If A = 2D, then E = D is a P1-bundle over a smooth elliptic curve and ϕ contracts E to a
smooth elliptic curve. This implies that Y is smooth with −KY nef by Proposition 2.4.7.
In this case, we have D · l = −1, −KX · l = 2D · l + kF · l = 1, and thus F · l = 1, k = 3.

As we contract the curves meeting F transversally, we conclude that G := ϕ(F ) ' F . Since

−KY = ϕ∗(−KX) = ϕ∗(A+ 3F ) = 3ϕ∗(F ) = 3G,

we see that | − KY | = |3G| has no fixed divisor. This contradicts the fact that −KY is
divisible by 2 in Pic(Y ) (see Theorem 3.0.1).

• If A = D1 +D2, then E = Di with i = 1 or 2 and ϕ contracts E to a smooth elliptic curve.
This implies that Y is smooth with −KY nef by Proposition 2.4.7. In this case, we have
Di · l = −1, −KX · l = Di · l +Dj · l + 2F · l = 1 with j 6= i, and thus F · l = 1.

As we contract the curves meeting F transversally, we conclude that G := ϕ(F ) ' F . Let
R be the intersection of two general members in |G|, then R is a smooth elliptic curve, and
ϕ is the blow-up of Y along the curve R.
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We have

−KY = ϕ∗(−KX) = ϕ∗(A+ 2F ) = ϕ∗(Dj) + 2ϕ∗(F ) = AY + 2G,

where AY := ϕ∗(Dj).

Claim. AY is the fixed divisor of | −KY |. Suppose by contradiction that | −KY | has no
fixed divisor, then −KY is divisible by two in Pic(Y ). As −KY ∼ AY + 2G, this implies
AY ∼ 2L for some L ∈ Pic(Y ). Hence

−KG ∼ (AY +G)|G ∼ (2L+G)|FY .

Since G ' F , one has that G is a P1-bundle over a smooth elliptic curve such that −KG ·g =
2, where g is a fibre. Since R ⊂ G is a smooth elliptic curve (i.e. a section of the P1-bundle
G), we deduce

G|G · g = 1.

This implies 2L|G · g = 1, which contradicts the fact that L|G is a Cartier divisor. This
proves the claim.

Claim. G is nef.

It is enough to show that G ·R ≥ 0. Since R does not meet AY , we have AY ·R = 0. Hence

0 ≤ −KY ·R = (2G+AY ) ·R = 2G ·R.

This proves the claim.

Therefore, the anticanonical system | − KY | has a non-zero fixed divisor, and its mobile
part |2G| is nef with G2 6= 0. This case cannot happen by Theorem 4.0.1.

Case A · l > 0. In this case, F · l = 0 since otherwise −KX · l > 2, which contradicts the
classification of Mori (see Section 2.3). Furthermore, since either A = 2D or A = D1 +D2 with
D1, D2 disjoint, we know that E is not an irreducible component of A (otherwise A · l < 0). Thus
A · E is a non-zero effective 1-cycle.

By the classification of Mori (see Section 2.3), we are in one of the following cases:

(1) If E is contracted to a point, then by the same arguments in Section 4.2.2 (1), one has
that F ·E = 0. Hence E is contained in some fibre of f . Moreover, the intersection A∩E
consists of rational curves contained in some fibre of f . We deduce from Remark 7.1.1
A · (A · E) = 0, and thus A · l = 0. This contradicts A · l > 0.

(2) If E is contracted to a smooth curve, then −KX · l = 1 and A · l = 1.

• If A = 2D, then D · l = 1
2 , which contradicts the fact that D is a Cartier divisor.
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• If A = D1 + D2, then E is contained in some special fibre F0 of f . Indeed, suppose
by contradiction that f |E maps to P1, then F · E is non-zero and in fact F |E ∼ bl
with b > 0. But F is a P1-bundle over a smooth elliptic curve, we deduce that F ∩E
does not contain l or any of its deformations, since otherwise l moves on the surface
F . This gives a contradiction.
Therefore, ϕ is an isomorphism outside F0, and A ∩ E = Ci with i = 1 or 2. Hence
FY := ϕ(F ) ' F , AY := ϕ(A) ' A, and E is contracted to a smooth elliptic curve
by ϕ, which implies that −KY is nef by Proposition 2.4.7. Furthermore, the fibration
f factors as f = f ′ ◦ ϕ and f ′ : Y → P1 gives Y the fibration structure. In this case,
Y satisfies again Setup 5.0.1. Indeed, −KY is not semi-ample, since otherwise −KFY

is semi-ample; and | − KY | has a non-zero fixed divisor (and hence AY is the fixed
divisor), since otherwise AY is divisible by 2 in Pic(Y ) and thus −KFY is divisible by
2 in Pic(FY ), and this contradicts −KF = C1 + C2 with C1 6∼ C2.

To sum up, we have shown the following:

Proposition 7.1.2. In Setup 7.0.1, assume that Av = 0. Let ϕ : X → Y be a birational Mori
contraction. Then A = D1 + D2 with D1, D2 disjoint and ϕ : X → Y factors as f = f ′ ◦ ϕ.
Furthermore, Y satisfies again Setup 5.0.1 with |−KY | = AY +|2FY | such that AY ' A, FY ' F
and ϕ is the blow-up of Y along a smooth elliptic curve in some fibre of f ′|AY .

By continuing the MMP, we will show that this above case cannot happen.

7.1.2 Non-birational cases

Case dimY = 1. In this case, Y = P1, −KX · l = 1, 2 or 3, and a general fibre of ϕ is a del
Pezzo surface. Since A is not a fibre of ϕ, one has A · l > 0. If −KX · l = 1 or 2, this implies
F · l = 0, and thus F = ϕ∗(p) with p ∈ Y . Therefore, f and ϕ coincide. If −KX · l = 3, then ϕ is
a P2-bundle. As P2 is not fibred, F restricted to a P2 is trivial. Hence again, the two fibrations
ϕ and f coincide.

By the classification of Mori (see Section 2.3), F is a del Pezzo surface, which contradicts the
fact that −KF is not ample.

Case dimY = 2. In this case, ϕ : X → Y is a conic bundle with Y a smooth rational surface,
and we have −KX · l = 1 or 2.

(i) If F · l = 1, then ϕ is a P1-bundle and induces a birational morphism from F to Y . This
is impossible since q(F ) = 1 and q(Y ) = 0.

(ii) If F · l = 0, then we have F = ϕ∗(R) with R an irreducible curve on Y , which gives a
factorisation f : X

ϕ−→ Y
π−→ P1. On the other hand, as F = P(E) where E is a rank-2

vector bundle over a smooth elliptic curve, we deduce that R is a smooth elliptic curve,
and that the fibration ϕ|F coincides with the P1-bundle structure P(E)→ R on F . Let ∆
be the discriminant locus of the conic bundle ϕ. Then ∆ is contained in some special fibres
of π : Y → P1. As ϕ is an extremal contraction, by [Miy83, p. 83, Remark], every non
singular rational curve in ∆ must meet the other components of ∆ in at least two points.
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This implies that ∆ is empty. Therefore, ϕ : X → Y is a P1-bundle, and −KX ·l = A ·l = 2.
We can write X ' P(V), where V is a rank-2 vector bundle over Y , and we have V|R ' E.

• If A = 2D, then D · l = 1. Since D is a rational section, we have an extension

0→ OY → V→ IZ ⊗ detV→ 0,

where IZ is the ideal sheaf of c2(V) points on Y and D = P(IZ ⊗detV). We have that
−KY is nef by Proposition 2.4.7, and that π : Y → P1 induces an elliptic fibration
on Y . Hence, Y is isomorphic to P2 blown up at 9 points such that −KY is nef and
semi-ample (with some multiple of −KY defining the elliptic fibration π), and thus
−KY ∼ αR, where R is a general elliptic fibre of π and α ≤ 1. Hence, (−KY )2 = 0.
Now since D is isomorphic to BlZ(Y ) and (−KD)2 = (D|D + kF |D)2 = 0 as A3 =
A2 · F = 0, we deduce that Z = ∅, c2(V) = 0, and D ' Y . Since

−KX ∼ ϕ∗(−KY − c1(V)) + 2D,

and −KX ∼ 2D+ kF , we deduce that ϕ∗(c1(V)) ∼ −(k−α)F . By the Grothendieck
relation, one has D2 ∼ D ·ϕ∗(c1(V)) ∼ −(k−α)D ·F. Denote by e the smooth elliptic
curve D ∩ F . Then,

(−KX)|D ∼ (2D + kF )|D ∼ (2α− k)e.

Since −KX (and thus −KX |D) is nef, and α ≤ 1, k ≥ 2, we deduce α = 1 and k = 2.
Therefore, −KX ∼ 2D + 2F and V is an extension

0→ OY → V→ OY (KY )→ 0.

• If A = D1 + D2, then D1 · l = D2 · l = 1 and D1, D2 are birational to Y . This
contradicts the fact that Y is rational, whereas D1, D2 are not.

In conclusion, we have the following:

Proposition 7.1.3. Let X be a smooth projective rationally connected threefold with anticanon-
ical bundle −KX nef, n(−KX) = 3 and ν(−KX) = 2. We suppose that the anticanonical system
| −KX | has a non-zero fixed divisor A, and that its mobile part |B| is nef so that B2 = 0. Hence
the mobile part induces a fibration f : X → P1. Let F be a general fibre of f . Suppose that F is
non-rational. Then F = P(E) is a P1-bundle over a smooth elliptic curve, where E is a rank-2
vector bundle over the elliptic curve which is a non-split extension

0→ O→ E→ O→ 0.

Moreover, if the fixed divisor of | − KX | has no f -vertical component, then X = P(V) is a
P1-bundle over a surface Y and | −KX | = 2D + |2F |, where Y is isomorphic to P2 blown up in
9 points such that −KY is nef and base-point-free (thus induces an elliptic fibration π : Y → P1),
V is a rank-2 vector bundle which is a non-split extension

0→ OY → V→ OY (KY )→ 0, (7.1)

and D = P(OY (KY )). Furthermore, f factors as X ϕ→ Y
π→ P1.
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Proof. It remains to show that V is indecomposable.
We first notice that

Ext1(OY (KY ),OY ) ' H1(Y,OY (−KY )) = C,

where the last equality follows from the Riemann-Roch formula.
Now suppose by contradiction that V = OY ⊕ OY (KY ). Then the quotient

V→ OY → 0

gives a section D′ of ϕ : X = P(V) → Y such that D′ ∈ |D − ϕ∗(KY )| = |D + F |. Therefore,
−KX ∼ 2D′ and D′ 6= D, which contradicts the fact that 2D is the fixed divisor of | −KX |.

Example 7.1.4. Conversely, let Y be P2 blown up at 9 points such that −KY is nef, base-point-
free and thus defines an elliptic fibration π : Y → P1. Let V be a rank-2 vector bundle which is
a non-split extension

0→ OY → V→ OY (KY )→ 0, (7.2)

and let ϕ : X := P(V) → Y . Then −KX is nef and not semi-ample, and | −KX | = 2D + |2F |,
where D := P(OY (KY )) and F is a general fibre of f := π ◦ ϕ : X → P1. Moreover, F = P(E)
is a P1-bundle over a smooth elliptic curve, where E is a rank-2 vector bundle over the elliptic
curve which is a non-split extension

0→ O→ E→ O→ 0.

Proof. Let R be a general fibre of π : Y → P1. Then −KY ∼ R and F = ϕ∗(R). Since D is a
tautological divisor of P(V) = X, we have

−KX ∼ 2D + ϕ∗(−KY − det(V)) ∼ 2D + 2F.

We first show that F = P(E), where E is a rank-2 vector bundle over R, which is a non-split
extension

0→ OR → E→ OR → 0. (7.3)

Indeed, as F = ϕ∗(R), we have F = P(E) with E ' V|R. Restricting the short exact sequence
(7.2) to R, we obtain

0→ OR → V|R → OR → 0,

as OR(KY ) ' OR.
Let s be a non-zero element in Ext(OY (KY ),OY ) ' H1(Y,OY (−KY )) ' H1(Y, π∗OP1(1)).

Since H1(P1, π∗(π
∗OP1(1))) = 0,

H1(Y, π∗OP1(1)) ' H0(Y,R1π∗(π
∗OP1(1)))

by the Leray spectral sequence. As π∗OP1(1) ' ωY/P1 , one has

R1π∗(π
∗OP1(1)) ' R1π∗ωY/P1 ' OP1
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by [Kol86, Prop. 7.6]. Hence, Ext(OY (KY ),OY ) ' H0(P1, R1π∗(π
∗OP1(1))) ' H0(P1,OP1) ' C.

Denote by Rt ⊂ Y the fibre over t ∈ P1. Then the natural map

R1π∗(π
∗OP1(1))⊗ C(t)→ H1(Rt,ORt) ' Ext(ORt ,ORt)

is an isomorphism (see for example [Har77, III, Cor. 12.9]). Therefore, the non-zero element
s ∈ Ext(OY (KY ),OY ) corresponds to a non-zero element st ∈ Ext(ORt ,ORt). Thus E is a
non-split extension (7.3).

Now we show that −KX is nef. It is enough to check −KX · C ≥ 0 for any integral curve
C ⊂ D, as −KX ∼ 2D + 2F and F is nef. Let C ⊂ D be an integral curve. We have

D2 ∼ ϕ∗(c1(V)) ·D ∼ −D · F

by the Grothendieck relation. Thus

−KX · C = (2D + 2F ) · C = (2D + 2F )|D · C = 0.

It remains to show that −KX is not semi-ample and that 2D is the fixed divisor of | −KX |.
Since

(−KX)2 ∼ (2D + 2F )2 ∼ (−4D · F + 8D · F ) = 4D · F

is not numerically zero, and (−KX)3 = 8(D + F ) ·D · F = 0, one has ν(X,−KX) = 2.
Since 2D|F ∼ −KF by the adjunction formula, and κ(F,−KF ) = 0, we deduce that

| −mKX | = 2mD + |2mF |

for any integer m ≥ 1. Thus, 2D is the fixed divisor of | −KX |, and

κ(X,−KX) = κ(X,F ) = 1,

where the last equality follows from OX(F ) ' f∗OP1(1).
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Part II

Anticanonical system of the Fano
model of P4 blown up at 8 points
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Chapter 8

Introduction

Let Y = MS,−KS be the moduli spaces of semi-stable rank-two torsion-free sheaves with c1 =
−KS , c2 = 2 on a polarised degree-one del Pezzo surface (S,−KS). The moduli spaces Y =
MS,−KS form a remarkable family of smooth Fano fourfolds with Picard number 9. The study
of this family is motivated by two issues. Firstly, for Fano fourfolds with large Picard number
(e.g. at least 7), only few examples which are not products of del Pezzo surfaces are known. As
pointed out in [CCF19, Sect. 1, B], the family of Fano fourfolds Y is the only known example
of Fano fourfolds with Picard number at least 9, which is not a product of surfaces. Secondly,
it is delicate to find examples of Fano fourfolds whose anticanonical system has non-empty base
locus, since most Fano fourfolds classified so far are toric, meaning that any ample line bundle on
them is globally generated. Some examples are constructed in [Heu16, Chapter 6.3] as complete
intersections of two hypersurfaces in weighted projective spaces. In [CCF19, Thm. 1.10], it is
shown that the base locus of the anticanonical system |−KY | has positive dimension. Therefore,
the geometry of Y is worth detailed understanding.

The birational geometry of Y is related to the birational geometry of the blow-up X of P4

at 8 points. In [CCF19, Lem. 5.18], an explicit relation between X and Y is given: the Fano
fourfold Y is obtained from X by flipping the strict transforms of the lines through all pairs of
blown up points and of the quartics through 7 blown up points in P4. Thanks to this relation
between X and Y , it is shown in [CCF19, Lem. 7.5, Cor. 7.6] that the base locus of | − KY |
contains the strict transform RY of a smooth rational quintic curve through the 8 blown up
points in P4, and that | − 2KY | is base-point-free. We further our study of the anticanonical
system and show more precisely that:

Proposition 8.0.1 (=Proposition 10.1.12). The base scheme of |−KY | is the smooth curve RY .

As an application, we obtain the smoothness of a general member in the anticanonical system:

Corollary 8.0.2 (=Corollary 10.1.13). Let D ∈ |−KY | be a general divisor. Then D is smooth.

Now we turn our attention to the automorphism group of Y . In [CCF19, Sect. 4], a group
morphism ρ between the Picard groups of the surface S and of the moduli spaces Y = MS,−KS
is defined. This morphism ρ induces an isomorphism between the automorphism groups of S
and of Y (see [CCF19, 6.15]). In particular, there is an involution ιY of Y which is induced by
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the Bertini involution ιS of S. By the analogy of Y and S, one expects that the action of ιY on
Y has similar properties as the action of ιS on S, where the latter is well understood (see for
example [Dol12, 8.8.2]).

To understand the Bertini involution ιY , our approach would be analysing its behaviour on
a special surface WY which is invariant by ιY . This surface WY is the strict transform of the
cubic scroll swept out by the pencil of elliptic normal quintics in P4 through the 8 blown up
points; in particular, it contains the curve RY . Inspired by the similarity with degree-one del
Pezzo surfaces, we study the morphism defined by the restricted bianticanonical system of Y on
WY , and we give the following description of ιY restricted to WY :

Proposition 8.0.3 (=Proposition 10.2.1). The Bertini involution ιY preserves the surface WY ,
and its restriction ιY |WY

on WY is the biregular involution defined by the double covering

φ|−2KY |WY
: WY → V2,4 ⊂ P7,

where V2,4 ' F2 is a rational normal scroll of bidegree (2, 4). In particular, the Bertini involution
ιY is the identity on the curve RY and ιY induces an involution on each elliptic fibre FY of
WY → P1.

Furthermore, there exists a smooth curve R′ ∼ 3(RY + FY ) of genus 4 on the surface WY ,
such that R′ is disjoint from RY and contained in the fixed locus of ιY .

As suggested in [CCF19, 7.15], further study is envisaged to describe completely the fixed
locus of ιY , as well as the action of ιY on | −KY | and on | − 2KY |.

We mention here that another motivation behind the study of the Bertini involution ιY is the
understanding of the corresponding birational involutions ιX of X and ιP4 of P4. These birational
maps ιX and ιP4 are classically known, as they can be defined via the Cremona action of the
Weyl group W (E8) on sets of 8 points in P4 (see [DO88] and [DV81]). Nevertheless, the classical
definitions of ιX and ιP4 do not give a geometric description of these maps. In [CCF19, Prop. 8.9,
Cor. 8.10], a factorization of these maps is given as smooth blow-ups and blow-downs using the
interpretation of X as a moduli space of vector bundles on S. In view of the relation among Y ,
X and P4, understanding one of the involutions helps describe the behaviour of the others.

Plan of Part II. In Chapter 9, we summarise some results in [CCF19], including the geometry
of the Fano model Y , the connection between the blow-up X of P4 at 8 points and the degree-
one del Pezzo surface S, and the relation between X and Y . We finish by recalling some basic
properties of the Bertini involution of a degree-one del Pezzo surface.

In Chapter 10, we study the geometry of the Fano model Y . In Section 10.1, we investigate the
anticanonical system |−KY | and the bianticanonical system |−2KY |, and we prove Proposition
8.0.1 by an additional analysis on the simplicial facets of the cone of effective divisors on Y . In
Section 10.2, we prove Proposition 8.0.3 by extensively using various properties of | −KY | and
| − 2KY |.

In Appendix A, we include the code for several computations in Chapter 10 using the software
system Macaulay2.
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Chapter 9

Preliminaries

We fix S a general del Pezzo surface of degree one. Let MS,L be the moduli space of semi-stable
(with respect to L ∈ Pic(S) ample) rank-two torsion free sheaves F on S with c1(F) = −KS and
c2(F) = 2. Then it follows from the classical properties of the determinant line bundle that for
the polarisation L = −KS , the moduli space Y := MS,−KS is Fano.

For the degree-one del Pezzo surface S, we introduce the following notions (see [CCF19,
Sect. 2.1]). A conic on S is a smooth rational curve such that −KS · C = 2 and C2 = 0. Every
such conic yields a conic bundle S → P1 having C as fibre. There are 2160 conics (as classes
of a curve) in H2(S,Z). A big divisor h on S which realises S as the blow-up σ : S → P2 at 8
distinct points is called a cubic. We have h = σ∗OP2(1). There are 17280 cubics (as classes of a
curve) in H2(S,Z).

Notation 9.0.1. Given a cubic h, we use the following notation:

• σh : S → P2 is the birational map defined by h

• q1, . . . , q8 ∈ P2 are the points blown up by σh

• ei ⊂ S is the exceptional curve over qi, for i = 1 . . . , 8

• Ci ⊂ S is the transform of a general line through qi, so that Ci ∼ h− ei, for i = 1, . . . , 8

• `ij ⊂ S is the transform of the line qiqj ⊂ P2, so that `ij ∼ h − ei − ej and `ij is a
(−1)-curve, for 1 ≤ i < j ≤ 8.

9.1 The Fano model Y

Proposition 9.1.1 ([CCF19], Prop.1.6). The moduli space Y := MS,−KS is a smooth, rational
Fano 4-fold with index one and b2(Y ) = 9, b3(Y ) = 0, h2,2(Y ) = b4(Y ) = 45, (−KY )4 = 13,
h0(Y,−KY ) = 6, h0(Y, TY ) = 0, and h1(Y, TY ) = 8.

For such a moduli space Y , the determinant map ρ : H2(S,R)→ H2(Y,R) is an isomorphism
(see [CCF19, Thm.1.3]) and yields a completely explicit description of the relevant cones of
divisors Eff(Y ), Mov(Y ) and Nef(Y ), as well as the cone of effective curves NE(Y ). We cite
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the following statements for the cone of effective divisors Eff(Y ) and the cone of effective curves
NE(Y ), and refer the readers to [CCF19, Sect. 6] for the description of the other relevant cones.

Proposition 9.1.2 ([CCF19], Sect.2.3, Cor.6.2). The determinant map ρ : H2(S,R)→ H2(Y,R)
yields an isomorphism between E and Eff(Y ), where E is the subcone of Nef(S) generated by the
conics:

E := 〈C |C a conic〉 ⊂ H2(S,R).

Hence, the cone Eff(Y ) has 2160 extremal rays, each generated by a fixed divisor EC , where
C ⊂ S is a conic.

Moreover, given a cubic h, (2h + KS)⊥ ∩ E is a simplicial facet (i.e. a face of codimension
one) of E, generated by the conics Ci for i = 1, . . . , 8 (notations as in Notation 9.0.1). Hence,
the fixed divisors ECi for i = 1, . . . , 8 generate a simplicial facet of Eff(Y ).

Proposition 9.1.3 ([CCF19], Prop.1.7). The cone of effective curves NE(Y ) has 240 extremal
rays, and is isomorphic to NE(S). If ` is a (−1)-curve, the corresponding extremal ray of NE(Y )
is generated by the class of a line Γ` in P` ∼= P2 ⊂ Y . The corresponding elementary contraction
is a small contraction, sending P` to a point.

The determinant map ρ also relates the two automorphism groups Aut(Y ) and Aut(S):

Theorem 9.1.4 ([CCF19], Thm.1.9). The map ψ : Aut(S) → Aut(Y ) given by ψ(f)[F] =
[(f−1)∗F], for f ∈ Aut(S) and [F] ∈ Y , is a group isomorphism. In particular Aut(Y ) is finite,
and if S is general, then Aut(Y ) = {IdY , ιY }, where ιY : Y → Y is induced by the Bertini
involution of S.

Definition 9.1.5 ([CCF19], Def.6.19). The Bertini involution ιS of S induces an involution
ιY = ψ(ιS) of Y , that we still call the Bertini involution; explicitly ιY : Y → Y is given by
ιY ([F]) = [ι∗SF]. We have a commutative diagram:

H2(S,R)
ι∗S //

ρ

��

H2(S,R)

ρ

��
H2(Y,R)

ι∗Y // H2(Y,R).

(9.1)

Finally, motivated by the analogy with del Pezzo surface of degree one, the study of the base
loci of the anticanonical and the bianticanonical linear systems of Y gives the following:

Theorem 9.1.6 ([CCF19], Thm.1.10). The linear system | − KY | has a base locus of positive
dimension, while the linear system | − 2KY | is base point free.

9.2 The blow-up X of P4 at 8 general points

9.2.1 Degree-one del Pezzo surfaces and blow-ups of P4 in 8 points

For S = Blq1,...,q8 P2 and X = Blp1,...,p8 P4 the blow-ups respectively of P2 and P4 at 8 general
points, there is a classical association between these two varieties due to Gale duality. The
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following is summarised from [CCF19, 2.21]; for further details of the association, we refer to
[CCF19, 2.18].

Let h be a cubic on S. We associate to (S, h) a blow-up X of P4 in 8 points in general linear
position as follows.

Let q1, . . . , q8 ∈ P2 be the points blown up under the birational morphism S → P2 defined by h
(the points q1, . . . , q8 are in general linear position by [CCF19, Rem. 2.20]), and let p1, . . . , p8 ∈ P4

be the associated points to q1, . . . , q8 ∈ P2 (the points p1, . . . , p8 are in general linear position by
[CCF19, Lem. 2.19]). Then we set

X = Xh = X(S,h) := Blp1,...,p8 P4.

We always assume that q1, . . . , q8 ∈ P2 and p1, . . . , p8 ∈ P4 are associated as ordered sets of
point.

Conversely, let X be a blow-up of P4 in 8 general points. Differently from the case of
surfaces, the blow-up map X → P4 is unique and thus X determines p1, . . . , p8 ∈ P4 up to
projective equivalence. The 8 points p1, . . . , p8 ∈ P4 in turn determine q1, . . . , q8 ∈ P2 up to
projective equivalence, and thus a pair (S, h) such that X ∼= X(S,h). The pair (S, h) is unique
up to isomorphism, therefore S is determined up to isomorphism, and h is determined up to the
action of the automorphism group Aut(S) on cubics.

9.2.2 Notation for the blow-up X of P4 at 8 points

Let p1, . . . , p8 ∈ P4 be 8 points in general linear position, and set X := Blp1,...,p8 P4. We use the
following notation:

• Ei ⊂ X is the exceptional divisor over pi ∈ P4, for i = 1, . . . , 8

• H ∈ Pic(X) is the pull-back of OP4(1)

• Lij ⊂ X is the transform of the line pipj ⊂ P4, for 1 ≤ i < j ≤ 8

• ei ⊂ Ei is a line, for i = 1, . . . , 8

• γi ⊂ P4 is the rational normal quartic through p1, . . . , p̌i, . . . , p8, for i = 1, . . . , 8

• Γi ⊂ X is the transform of γi ⊂ P4, for i = 1, . . . , 8.

9.3 From the blow-up X to the Fano model Y

We recall the explicit relation between X and Y :

Lemma 9.3.1 ([CCF19], Lem.5.18). The birational map ξ : X 99K Y is the composition of 36
(K-positive) flips: first the flips of Lij for 1 ≤ i < j ≤ 8, and then the flips of Γk for k = 1, . . . , 8.
There is a commutative diagram:

X̂

�� ��
X

ξ // Y
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where X̂ → X is the blow-up of the curves Lij and Γk, with every exceptional divisor isomorphic
to P1 × P2 with normal bundle O(−1,−1), and X̂ → Y is the blow-up of 36 pairwise disjoint
smooth rational surfaces.

Notation 9.3.2. We use the following notation:

• P`ij ⊂ Y is the flipped surface replacing Lij ⊂ X, for 1 ≤ i < j ≤ 8

• Pek ⊂ Y is the flipped surface replacing Γk ⊂ X, for k = 1, . . . , 8.

We will sometimes write ξh : Xh 99K Y to stress that Xh and ξh depend on the chosen cubic
h (while Y does not). Denote by ηh the composition map:

Y Xh P4

ξ−1
h

ηh

9.4 The Bertini involution of S

We recall some basic properties of the Bertini involution of a del Pezzo surface of degree one.

Proposition 9.4.1 ([Dol12],Thm.8.3.2). Suppose that S is a del Pezzo surface of degree 1. Then

(i) | −KS | is a pencil of genus 1 curves with smooth general member and one base point;

(ii) |−2KS | is base-point-free and defines a morphism φ|−2KS | : S → P3 which is finite of degree
2 with image Q a quadric cone.

The Bertini involution ιS : S → S is the biregular involution defined by the double covering

φ|−2KS | : S → Q.

For S general, ιS is the unique non-trivial automorphism of S. The pull-back ι∗S acts on
Pic(S) (and on H2(S,R)) by fixing KS and acting as −1 on K⊥S (see [Dol12, §8.8.2]). This
yields:

ι∗Sγ = 2(γ ·KS)KS − γ for every γ ∈ H2(S,R). (9.2)

The fixed locus of ιS is a smooth irreducible curve of genus 4 isomorphic to the branch curve
of the double cover and the base point of | −KS |. The fixed curve belongs to the linear system
| − 3KS |.
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Chapter 10

Geometry of the Fano model Y

10.1 Anticanonical and bianticanonical linear systems

To analyse the anticanonical linear system | −KY |, we introduce a special surface as follows.

Lemma 10.1.1 ([CCF19], Lem.7.2). Let p1, . . . , p8 ∈ P4 be general points. Then there is a pencil
of elliptic normal quintics in P4 through p1, . . . , p8, which sweeps out a cubic scroll W ⊂ P4.

Let moreover q1, . . . , q8 ∈ P2 be the associated points to p1, . . . , p8 ∈ P4. Then there is a
birational map α : W → P2 such that α(pi) = qi for i = 1, . . . , 8, α sends the pencil of elliptic
normal quintics to the pencil of plane cubics through q1, . . . , q8, and α is the blow-up of the ninth
base point q0 ∈ P2 of the pencil of plane cubics.

Let W ′ ⊂ X be the transform of the cubic scroll W ⊂ P4. By [CCF19, (7.3)], we have the
following diagram:

W ′ ⊂ X

η

yy ##
α′

��

W ⊂ P4

α

%%

S

σ
{{

P2

(10.1)

where η : W ′ → W is the blow-up of p1, . . . , p8, so the composition α′ := α ◦ η : W ′ → P2 is the
blow-up of q0, . . . , q8. Thus W ′ is isomorphic to the blow-up of S in the base point of | −KS |.
Hence, there is an elliptic fibration π : W ′ → P1, where the smooth fibres are the transforms of
the elliptic normal quintics through p1, . . . , p8 in P4, and every fibre is integral.

Lemma 10.1.2 ([CCF19], Lem.7.4). The surface W ′ ⊂ X is disjoint from Lij for 1 ≤ i < j ≤ 8
and from Γk for k = 1, . . . , 8, and W ′ is contained in the open subset where ξ : X 99K Y is an
isomorphism.

We denote by WY the strict transform of W ′ in Y . Then WY 'W ′.

Lemma 10.1.3 ([CCF19], Lem.7.5, Rem.7.10). We have (−KX)|W ′ = OW ′(R + 2F ) and R =
Bs |(−KX)|W ′ |, where F ⊂ W ′ is a fibre of the elliptic fibration, and R ⊂ W ′ is a (−1)-curve
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and a section of the elliptic fibration. The curves R and F satisfy −KX ·R = −KX · F = 1 and
Ei ·R = Ei · F = 1 for every i = 1, . . . , 8, so R ≡ F in X and ξ(R) ≡ ξ(F ) in Y .

Remark 10.1.4 ([CCF19], Lem.7.7). Let R4 ⊂ P4 and R2 ⊂ P2 be the images of R under
η : W ′ ⊂ X →W ⊂ P4 and α′ : W ′ → P2 respectively (see (10.1)).

Then R4 is a smooth rational quintic curve through p1, . . . , p8, and R2 is a rational plane
quartic containing q1, . . . , q8 and having a triple point in q0.

Corollary 10.1.5 ([CCF19], Cor.7.6). The base locus of | −KX | contains the smooth rational
curve R, and the base locus of | −KY | contains the smooth rational curve ξ(R).

We denote by RY the smooth rational curve ξ(R) contained in the base locus of |−KY |, and
FY a fibre of the elliptic fibration WY → P1.

Lemma 10.1.6. The normal bundle NRY /Y
∼= OP1(−1)⊕ O⊕2

P1 .

Proof. Since R4 is a rational quintic curve in P4, one has

NR4/P4
∼= OP1(a)⊕ OP1(b)⊕ OP1(c)

with a ≤ b ≤ c and a + b + c = 23. Since TP4 |R4 � NR4/P4 → 0, one has that NR4/P4 is ample.
Hence, we deduce that a, b, c > 0. Moreover, by Macaulay2 (see Listing A.2),

h0(R4,N
∗
R4/P4 ⊗ OP4(1)⊗ ω∗R4

) = 1,

we deduce that a = 7 and b, c > 7. Hence, b = c = 8. Therefore, by [Ful98, B.6.10], one has

NR/X
∼= OP1(−1)⊕ O⊕2

P1 .

As R is disjoint from the indeterminacy locus of the map ξh, we deduce that

NRY /Y
∼= OP1(−1)⊕ O⊕2

P1 .

Remark 10.1.7. (see also [CCF19, Remark 7.8]) In P4, let M be the linear system of quintic
hypersurfaces with multiplicity at least 3 at 8 general points. Then by Macaulay2 (see Listing
A.1) the base ideal b(M) is the intersection of the ideals of 28 line pipj for 1 ≤ i < j ≤ 8,
the ideals of 8 rational normal quartic curves γk for k = 1, . . . , 8 and the ideal of the rational
quintic curve R4. This shows that the base scheme of | − KY |, in the open subset of Y where
ηh : Y 99K P4 is an isomorphism, is RY (reduced) minus the 8 points of intersection with the
8 exceptional divisors ξ(E1), . . . , ξ(E8). The base locus of | −KY | is thus given by RY , possibly
union some other components contained in ξ(E1), . . . , ξ(E8).

Lemma 10.1.8. The base locus of the anticanonical system |−KY | is disjoint from the surfaces
P`ij and Pek , for 1 ≤ i < j ≤ 8 and k = 1, . . . , 8.
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Proof. Consider the commutative diagram in Lemma 9.3.1:

X̂

X Y

p q

ξ

where p : X̂ → X is the blow-up of X along the curves Lij and Γk with every exceptional divisor
isomorphic to P1 × P2, and q : X̂ → Y is the blow-up of 36 pairwise disjoint smooth rational
surfaces P`ij and Pek , for 1 ≤ i < j ≤ 8 and k = 1, . . . , 8.

Suppose by contradiction that there exists a base point y of |−KY | contained in some flipped
surface that we denote by S (which is one of the surfaces P`ij or Pek). Denote by C ⊂ X the
corresponding flipping curve (which is one of the curves Lij or Γk).

Let E be the sum of exceptional divisors over Lij for 1 ≤ i < j ≤ 8 and over Γk for k = 1, ..., 8.
Since

p∗(−KX)− 2E = −KX̂ = q∗(−KY )− E,

one has
q∗(−KY ) = p∗(−KX)− E.

Let Ey ' P1 be the exceptional fibre in X̂ above y. Then Ey is contained in Bs |q∗(−KY )| =
Bs |p∗(−KX)− E| and Ey is mapped surjectively onto C.

Since the blow-up of the 8 points X = Blp1,...,p8 → P4 is an isomorphism near a general point
of C, the base scheme of | −KX | is generically reduced along C by Remark 10.1.7. Hence, the
linear system |p∗(−KX) − E| is base-point-free above the generic point of C. This contradicts
the fact that Bs |p∗(−KX)− E| contains a curve which is mapped surjectively onto C.

Remark 10.1.9. More generally, the proof of Lemma 10.1.8 shows the following. Let X,Y be
projective smooth fourfolds. Let ξ : X 99K Y be an (anti-)flip which flips a smooth curve C ⊂ X
by blowing up the curve and contracting the exceptional divisor to a smooth surface S ⊂ Y . If
Bs | −KX | is reduced in the generic point of C, then | −KY | is base-point-free on S.

Corollary 10.1.10. The curve RY is the unique base curve in Bs |−KY | of anticanonical degree
1. Therefore, RY is independent of the choice of cubic h.

Proof. Let C ⊂ Bs | − KY | be a base curve contained in some exceptional divisor ξ(Ei), for
i = 1, . . . , 8. Let C̃ be its strict transform in X. By Lemma 10.1.8, the curve C is disjoint from
the indeterminacy locus of ξ−1. Hence, one has −KY · C = −KX · C̃ and C̃ ⊂ Ei.

Since −KX = 5H − 3
∑8

j=1Ej , H · C̃ = 0, Ej · C̃ = 0 for j 6= i, and Ei · C̃ ≤ −1, one has

−KY · C = −KX · C̃ ≥ 3.

Therefore, the curve RY is the unique base curve satisfying −KY ·RY = −KX ·R = 1.

Corollary 10.1.11. Let B ⊂ Y be an irreducible component of the (set-theoretic) base locus of
| − KY |, which is distinct from RY . Then for every simplicial facet 〈EC1 , . . . , EC8〉 of Eff(Y )
(notation as in Notation 9.0.1 and Proposition 9.1.2), there exists a unique ECi for i = 1, . . . , 8
such that B ⊂ Ei.
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Proof. Given a cubic h, consider the simplicial facet 〈EC1 , . . . , EC8〉 of Eff(Y ), where Ci ∼ h−ei
for i = 1, . . . , 8 (notation as in Notation 9.0.1). Then ECi are the strict transforms of the
exceptional divisors Ei ' P3 ⊂ Xh = X under ξh = ξ : X 99K Y .

Since B is distinct from RY , we deduce that B is contained in some fixed divisor ECi by
Remark 10.1.7. By the construction of the composition of flips ξ (see Lemma 9.3.1), the inter-
section of two fixed divisors ECj and ECk (for k 6= j) is the union of the flipped surfaces P`jk
and Pel for l 6= j, k. Hence, by Lemma 10.1.8, the fixed divisor Ei containing B is unique.

Proposition 10.1.12. The base scheme of | −KY | is the reduced smooth curve RY .

Proof. We first show that RY is the unique irreducible component of the (set-theoretic) base
locus of | −KY |.

Let h be a cubic. Let Ci be a conic such that Ci ∼ h − ei for i = 1, . . . , 8 (notation as in
Notation 9.0.1). Let Ei := ECi , where we use the notation of Proposition 9.1.2. By the same
proposition, E1, . . . , E8 generate a simplicial facet of Eff(Y ). Suppose by contradiction that there
exists another component B distinct from RY of the base locus of | −KY |. Then by Corollary
10.1.11, we may suppose that B ⊂ E1 and B 6⊂ E2, E3, . . . , E8.

Let i, j, k, l be distinct indices in {1, . . . , 8}. Consider the conics C ′l such that C ′l ∼ 2h− ei−
ej − ek − el and the corresponding fixed divisors Fijkl := E2h−ei−ej−ek−el .

Claim. The fixed divisors Ei, Ej , Ek and Fijkl for l ∈ {1, . . . , 8} distinct from i, j, k generate
a simplicial facet of Eff(Y ).

Indeed, by Proposition 9.1.2, it is enough to find a cubic h′ such that 2h′+KS is orthogonal
to the 8 conics Ci, Cj , Ck and C ′l for l ∈ {1, . . . , 8} distinct from i, j, k.

We take h′ ∼ 2h− ei − ej − ek. Then we can check that

Ci ∼ h′ − `jk
Cj ∼ h′ − `ik
Ck ∼ h′ − `ij
C ′l ∼ h′ − el

and 2h′ + KS is orthogonal to the above 8 conics. Moreover, h′ is nef and big, and the corre-
sponding birational map σh′ : S → P2 contracts the 8 pairwise disjoint (−1)-curves `jk, `ik, `ij , el
for l 6= i, j, k. Hence, h′ is a cubic. This proves the claim.

We will repeatedly use Corollary 10.1.11 in the following.

• Consider the simplicial facet generated by E1, E2, E3, F1234, F1235, F1236, F1237, F1238. Then
B 6⊂ F1234, F1235, F1236, F1237, F1238.

• Consider the simplicial facet generated by E2, E3, E4, F1234, F2345, F2346, F2347, F2348. Then
B is contained in one of the fixed divisors F2345, F2346, F2347, F2348. We may suppose that
B ⊂ F2345. Then B 6⊂ F2346, F2347, F2348.

• Consider the simplicial facet generated by E2, E3, E5, F1235, F2345, F2356, F2357, F2358. Then
B 6⊂ F2356, F2357, F2358.
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• Consider the simplicial facet generated by E2, E3, E6, F1236, F2346, F2356, F2367, F2368. Then
by what precedes, we know that B is contained in one of the fixed divisors F2367, F2368.
We may suppose that B ⊂ F2367. Then B 6⊂ F2368.

• Consider the simplicial facet generated by E2, E3, E7, F1237, F2347, F2357, F2367, F2378. Then
B 6⊂ F2378.

• Finally, consider the simplicial facet generated byE2, E3, E8, F1238, F2348, F2358, F2368, F2378.
Then by what precedes, we know that B is contained in none of these 8 fixed divisors, which
contradicts Corollary 10.1.11.

Therefore, the curve RY is the unique irreducible component of the base locus of | −KY |.
Now we show that the base scheme of | − KY | is the reduced curve RY , i.e. there are no

embedded points. Indeed, given a cubic h, consider the birational map ηh : Y 99K P4. By Remark
10.1.7, the base scheme of |−KY | is the reduced curve RY with possible embedded points which
have support in the 8 points of intersection with the 8 exceptional divisors of ηh. By varying
h, we may consider another map ηh′ : Y 99K P4 with other 8 exceptional divisors, so that we
get 8 different points of intersection on RY . Such a cubic h′ exists because otherwise, there is
a base point y on RY such that for every simplicial facet 〈EC1 , . . . , EC8〉 of Eff(Y ) the point y
is contained in a unique ECi , and thus we obtain a contradiction by replacing B with y in the
above paragraph. Hence, there is no embedded base point on RY .

Corollary 10.1.13. Let D ∈ | −KY | be a general divisor. Then D is smooth.

Proof. Since the base scheme Bs | −KY | is the smooth curve RY by Proposition 10.1.12, we can
apply [MM86, Prop. 6.8] which implies that a general member in | −KY | is smooth.

Lemma 10.1.14. For a general point x ∈ R4, there exists a unique divisor in M which has
multiplicity 3 at x: it is the secant variety of the elliptic normal quintic through the nine points
p1, . . . , p8 and x.

By varying x on R4, one obtains a one-dimensional family Sec of divisors in M with scheme-
theoretic intersection BsSec defined by the ideal b(Sec). Then

(b(Sec) : b(M)) : IW = IW ,

where the scheme defined by the ideal IW is the reduced surface W .

Proof. We choose a random point x on R4 which is not one of the 8 blown up points. Let
Mx,3 be the linear subspace of divisors in M having multiplicity at least 3 at the point x. Then
dimMx,3 = 0 by Macaulay2 (see Listing A.3) and thus the unique element in Mx,3 is the secant
variety Sec(Ex), where Ex is the elliptic normal quintic in W passing through the point x and
the 8 blown up points.

Let Sec be the family of secant varieties Sec(Ex) for x varying on R4 and b(Sec) be the
ideal associated to the scheme-theoretic intersection BsSec of the family Sec. Let b3(Sec) be
the ideal associated to the scheme-theoretic intersection of three general secant varieties in Sec
(obtained by choosing three distinct random points on R4 and intersecting the corresponding
secant varieties).
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By Macaulay2 (see Listing A.4), the quotient IS := (b3(Sec) : b(M)) has degree 6 and
dimension 2. Let IW be the ideal of singular locus of the variety defined by IS . Then by
Macaulay2 (see Listing A.4), IW has dimension 2 and degree 3; moreover, the variety defined by
IW is smooth and one has (IS : IW ) = IW . Since each of these secant varieties in Sec contains
the cubic scroll W , we deduce that the variety defined by IW is indeed the surface W .

By Macaulay2 (see Listing A.5),

h0(P4,OP4(5)⊗ I3
p1,...,p8 ⊗ IW ) = 3.

Since Sec is a family of divisors in M, we deduce that Bs(Sec) can be obtained by the scheme-
intersection of three general members in Sec. Therefore, b3(Sec) = b(Sec).

Lemma 10.1.15. The surface WY is unique, i.e. WY is independent of the choice of cubic h.
Therefore, WY is disjoint from every one of the loci P` of the small extremal rays of Y .

Proof. Let SecY be the family of the strict transforms in Y of the secant varieties in Sec. Let
MY,3 be the family of divisors in | −KY | having multiplicity 3 at some point on RY . Then the
two families MY,3 and SecY are equal, as dimMx,3 = 0 for a general point x ∈ R4 by Lemma
10.1.14 and ηh is an isomorphism at the generic point of R4.

Suppose by contradiction thatWY depends on h. Then there exist two distinct surfacesWY,h

andWY,h′ . Let BsMY,3 be the scheme-theoretic intersection of the family MY,3. Then by Lemma
10.1.14, one has the following set-theoretic inclusion:

BsMY,3 ⊃WY,h ∪WY,h′ .

Since WY,h′ contains the curve RY which is generically in the locus where ξ−1
h : Y 99K Xh is an

isomorphism, we deduce that WY,h′ is not contracted by ξ−1
h .

Since the surface ξ−1
h (WY,h′) contains the curve R, this surface cannot be contained in any

exceptional locus Ei, i = 1, ..., 8 of Xh → P4, and thus it cannot be contracted; we denote byWh′

its image in P4. Therefore, BsSec contains two distinct surfaces W and Wh′ , which contradicts
Lemma 10.1.14.

Since by Lemma 10.1.2 the surface WY is disjoint from the indeterminacy locus of the map
ξ−1
h : Y 99K Xh, which is a union of some of the loci P` (depending on h), and WY is the same
for all h, we deduce that WY is disjoint from every one of the loci P`.

Lemma 10.1.16. (i) We have h0(WY ,OWY
(−KY )) = 3. The restriction

r1 : H0(Y,OY (−KY ))→ H0(WY ,OWY
(−KY ))

is surjective.

(ii) We have h0(WY ,OWY
(−2KY )) = 8. The restriction

r2 : H0(Y,OY (−2KY ))→ H0(WY ,OWY
(−2KY ))

is surjective.
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Proof. Since −KWY
∼ FY and −KY |WY

∼ RY + 2FY by Lemma 10.1.3, by the Riemann-Roch
formula one has χ(WY ,−KY |WY

) = 3. Since −KY |WY
is ample on WY and −KWY

is nef, by
Kodaira vanishing theorem one has

hj(WY ,OWY
(−KY )) = hj(WY ,OWY

(KWY
−KWY

+ (−KY ))) = 0

for j = 1, 2. Therefore, h0(WY ,OWY
(−KY )) = 3. The same argument can be applied to obtain

h0(WY ,OWY
(−2KY )) = 8.

(i) By Macaulay2 (see Listing A.5),

h0(P4,OP4(5)⊗ I3
p1,...,p8 ⊗ IW ) = 3.

Since H0(Y,OY (−KY )) ' H0(P4,OP4(5) ⊗ I3
p1,...,p8), and the surface WY is disjoint from the

indeterminacy locus of ηh by Lemma 10.1.2 and WY is not contained in the exceptional locus of
ηh, we deduce that

H0(Y,OY (−KY )⊗ IWY
) ' H0(P4,OP4(5)⊗ I3

p1,...,p8 ⊗ IW ).

Hence,

h0(Y,OY (−KY )⊗ IWY
) = 3.

As h0(Y,OY (−KY )) = 6 and h0(WY ,OWY
(−KY )) = 3, we deduce that the restriction morphism

H0(Y,OY (−KY ))→ H0(WY ,OWY
(−KY ))

is surjective.
(ii) By Macaulay2 (see Listing A.6),

h0(P4,OP4(10)⊗ I6
p1,...,p8 ⊗ IW ) = 21.

Since H0(Y,OY (−2KY )) ' H0(P4,OP4(10) ⊗ I6
p1,...,p8) and by the same argument as above, we

deduce that

H0(Y,OY (−2KY )⊗ IWY
) ' H0(P4,OP4(10)⊗ I6

p1,...,p8 ⊗ IW ).

Hence,

h0(Y,OY (−2KY )⊗ IWY
) = 21.

As h0(Y,OY (−2KY )) = 29 and h0(WY ,OWY
(−2KY )) = 8, we deduce that the restriction mor-

phism

H0(Y,OY (−2KY ))→ H0(WY ,OWY
(−2KY ))

is surjective.
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10.2 The Bertini involution

By the diagram (9.1) and the behaviour of the Bertini involution ιS described in (9.2), the
invariant part of H2(Y,R) by the action of the Bertini involution ιY is RKY . In this section,
we further our study of the involution ιY by looking at its action on the surface WY . The main
result of this section is the following:

Proposition 10.2.1. The Bertini involution ιY preserves the surface WY , and its restriction
ιY |WY

on WY is the biregular involution defined by the double covering

φ|−2KY |WY
: WY → V2,4 ⊂ P7,

where V2,4 ' F2 is a rational normal scroll of bidegree (2, 4). In particular, the Bertini involution
ιY is the identity on the curve RY and ιY induces an involution on each elliptic fibre FY of
WY → P1.

Furthermore, there exists a smooth curve R′ ∼ 3(RY + FY ) of genus 4 on the surface WY ,
such that R′ is disjoint from RY and contained in the fixed locus of ιY .

We start by showing that the surface WY is invariant by the Bertini involution ιY .

Lemma 10.2.2. The Bertini involution ιY preserves the curve RY and the surface WY . More-
over, (ιY |WY

)∗(ei) ∼ −2KY |WY
− ei and (ιY |WY

)∗(FY ) ∼ FY , where ei is the exceptional curve
of ηh|WY

: WY →W for i = 1, . . . , 8.

Proof. Since ιY preserves the family of divisors in the anticanonical system |−KY |, the involution
ιY preserves the base locus of | −KY |. Thus ιY (RY ) = RY by Proposition 10.1.12.

Let x be a general point in RY . Then by Lemma 10.1.14, there exists a unique divisor in
|−KY | having multiplicity 3 at x: it is the strict transform in Y of the secant variety of the elliptic
normal quintic through p1, . . . , p8 and ηh(x) in P4. In particular, this divisor has multiplicity 3
along the elliptic fibre ofWY through x. By varying x in RY , this gives a one-dimensional family
MY,3 of divisors in |−KY |, which is preserved by ιY . On the other hand, the intersection of these
divisors is the surface WY , so WY is preserved by ιY . Let D1 ∈MY,3 and D2 = ιY (D1) ∈MY,3.
Let F1 (resp. F2) be the elliptic fibre of WY along which D1 (resp. D2) has multiplicity 3. Then
ιY (F1) = F2, and thus ιY preserves the family of elliptic fibres of WY , i.e. (ιY |WY

)∗(FY ) ∼ FY .
By [CCF19, 7.12], one has ι∗Y (ξ(Ei)) ∼ −2KY − ξ(Ei). Hence, (ιY |WY

)∗(ei) ∼ −2KY |WY
−

ei.

Now we investigate the morphism defined by the linear system | − 2KY |WY
|.

Proposition 10.2.3. The linear system |−2KY |WY
| defines a finite morphism φ : WY → V ⊂ P7

of degree 2, where V = V2,4 ' F2 is a rational normal scroll of bidegree (2, 4). There is a non-
trivial involution i of WY such that φ = φ ◦ i. Moreover, i is the identity on RY and i induces
an involution on each elliptic fibre of WY .

Proof. Since h0(WY ,OWY
(−2KY )) = 8 (see Lemma 10.1.16), and | − 2KY | is base-point-free by

Theorem 9.1.6, the linear system | − 2KY |WY
| defines a morphism φ : WY → V ⊂ P7, where V

is the image of WY .
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Claim. V is a surface of degree 6 in P7, the image of an elliptic fibre FY by φ is a line and the
image of RY by φ is a conic.

Since the restriction morphism H0(Y,OY (−2KY ))→ H0(WY ,OWY
(−2KY )) is surjective by

Lemma 10.1.16 (ii), the restriction of the morphism φ|−2KY | defined by | − 2KY | to the surface
WY coincides with the morphism φ, i.e. φ = φ|−2KY ||WY

.
In P4, let 2M be the linear system of hypersurfaces of degree 10 with multiplicity at least 6

at the 8 general points p1, ..., p8. Consider the map φ2M defined by the linear system 2M. Then
by Macaulay2 (see Listing A.7), the image of the surface W by φ2M is a surface of degree 6, the
image of an elliptic normal quintic through the 8 points by φ2M is a line and the image of the
rational quintic R4 through the 8 points by φ2M is a conic. This proves the claim.

Since (−2KY |WY
)2 = 4(RY + 2FY )2 = 12, and the image of WY by φ is of degree 6, we

deduce that φ is of degree 2. As −KY is ample, the morphism φ does not contract any curve
and thus it is a finite morphism of degree 2.

Since the linear system |−2KY |WY
| has no fixed divisor, the image V is not contained in any

hyperplane of P7 (see for example [Bea96, II.6]), i.e. V is non-degenerate. Hence, V is a non-
degenerate irreducible surface of degree 6 (variety of minimal degree) in P7, and by [GH94, p. 525]
we deduce that V is a rational normal scroll Vk,l of bidegree (k, l), with 0 ≤ k ≤ l and k+ l = 6.
In particular, V is isomorphic to one of the following: a cone over a rational normal curve of
degree 6, P1 × P1, or a Hirzebruch surface Fl−k, where the minimal section is mapped to the
rational normal curve of degree k, and the fibres are mapped to lines. Therefore, φ is a finite
morphism between two normal surfaces and by [Fuj83, (2.3)], there is a non-trivial involution i
of WY such that φ = φ ◦ i and V 'WY /i.

Since the restriction of φ to a general fibre FY induces a finite morphism from an elliptic
curve to a line l ⊂ V , which cannot be an isomorphism, we deduce that φ−1(l) = FY as φ is of
degree 2. Hence, i induces an involution on FY .

Since −2KY |WY
is i-invariant, one has 2(i∗(−KY |WY

) − (−KY |WY
)) ∼ 0. As Pic(WY ) is

torsion-free (this is because WY is isomorphic to P2 blown up at 9 points), we deduce that
i∗(−KY |WY

) ∼ −KY |WY
. Since RY is the base locus of | −KY |WY

|, the curve RY is preserved
by i. We claim that RY is contained in the ramification locus of φ. Indeed, suppose that RY
is not contained in the ramification locus of φ. Then there exists a curve C ⊂ V such that
RY = φ∗(C). As RY is a (−1)-curve on WY , one has

−1 = R2
Y = (φ∗(C))2 = deg φ · C2,

i.e. C2 = −1
2 . Hence, C is not Cartier on V , i.e. V is singular. In view of the classification

of minimal degree varieties, we see that V is a cone. But there is no curve with negative
self-intersection number on a cone, which leads to a contradiction. Therefore, RY is in the
ramification locus. As φ is a double cover, we deduce that i is the identity on RY .

Let C = φ(RY ). Since RY is contained in the ramification locus of φ, and every point in RY
has ramification index 2, one has

R2
Y = (

1

2
φ∗(C))2 =

1

2
C2.

Since RY is a (−1)-curve on WY , one has C2 = −2. Therefore, V = V2,4 ' F2, and φ(RY ) is
minimal section of F2 which is a conic.
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Remark 10.2.4. Since φ is a finite morphism of degree 2 between smooth surfaces, the rami-
fication locus is a smooth divisor on WY (see [Fuj83, (2.5)]). Let e be the minimal section of
V ' F2 and f be a fibre of V . Let D be the ramification divisor. Then

KWY
∼ φ∗(KS) +D.

As KWY
∼ −FY = −φ∗(f), and KS ∼ −2e− 4f , one has

D ∼ φ∗(2e+ 3f).

Let B ⊂ V be the branch locus. Then D = 1
2φ
∗B and thus B ∼ 4e + 6f . As e is contained in

the branch locus, we can write B = e + B1, where B1 is a smooth curve disjoint from e. Then
B1 ∼ 3e + 6f . Notice that B1 is irreducible. Indeed, suppose that B1 has at least two disjoint
irreducible components. Then we can decompose B1 as

B1 ∼ (e+ bf) + (2e+ (6− b)f)

with 0 ≤ b ≤ 6 and (e+ bf) · (2e+ (6− b)f) = 0. Hence b = −2, which leads to a contradiction.
Hence D = RY + R′, where R′ ∼ 1

2φ
∗(3e+ 6f) = 3(RY + FY ) is a smooth curve of genus 4

which is disjoint from RY .

Finally, we compare the action of the two automorphisms i and ιY |WY
on WY .

Lemma 10.2.5. Let ei be the exceptional curves of ηh|WY
: WY →W for i = 1, . . . , 8. Then

i∗(ei) ∼ −2KY |WY
− ei.

Proof. For i = 1, . . . , 8, by Macaulay2 (see Listing A.8), there exists a unique hypersurface
of degree 10 with multiplicity at least 7 at the point pi and multiplicity at least 6 at pj for
j 6= i. Moreover, this hypersurface does not contain the surface W . Therefore, the linear system
| − 2KY |WY

− ei| is non-empty.
Let Ri ∈ | − 2KY |WY

− ei|. Since −KY |WY
∼ RY + 2FY , and RY · ei = FY · ei = 1, one has

R2
i = −1, and Ri · FY = Ri ·RY = 1. Hence, Ri is a (−1)-curve on WY .
Since ei +Ri ∈ | − 2KY |WY

| = φ∗|OV (1)|, one has Ri ∼ i∗(ei).

Proposition 10.2.6. The involution i coincides with the restriction of the Bertini involution ιY
on the surface WY , i.e. ιY |WY

= i.

Proof. We first show that (ιY |WY
)∗ = i∗. By Lemma 10.2.3, Lemma 10.2.5 and Lemma 10.2.2,

it is enough to show that RY , FY and ei for i = 1, . . . , 8 form a basis of H2(WY ,R).
Since W ′ is disjoint from the indeterminacy locus of ξh, it is equivalent to show that R,F

and ei for i = 1, . . . , 8 form a basis of H2(W ′,R). We have the following diagram (see (10.1)):

W ′ ⊂ X

W ⊂ P4

P2

η

α′

α

100



where α is the blow-up of P2 at one point and η is the blow-up of W at p1, . . . , p8. Moreover,
let e0 ⊂ W be the (−1)-curve and f0 ⊂ W be a fibre of the P1-bundle on W , then by Lemma
10.1.1 and Remark 10.1.4, one has F ∼ η∗(2e0 + 3f0)−

∑8
i=1 ei and R ∼ η∗(e0 + 4f0)−

∑8
i=1 ei.

Therefore, R,F and ei for i = 1, . . . , 8 form a basis of H2(W ′,R).
We have a group homomorphism ρ1 : Aut(WY ) → Aut(H2(WY ,R)) given by g 7→ (g−1)∗.

Let Aut(RY ,WY ) be the subgroup of automorphisms in Aut(WY ) fixing the curve RY . We
show that the restriction ρ1 : Aut(RY ,WY )→ Aut(H2(WY ,R)) is injective, which implies that
ιY |WY

= i.
Since RY is a (−1)-curve on WY , by blowing down RY , we obtain a rational surface S′ with

(−KS′)
2 = 1, and the curve RY is contracted to a point x0 ∈ S′. We denote by β : WY → S′

the blow-up of S′ at x0. Since −KWY
is nef, we obtain that −KS′ is nef by the projection

formula (see for example [Har77, Appendix A, A4]). Moreover, since every fibre of WY → P1

is integral, there is no KS′-trivial curve. Hence, S′ is a del Pezzo surface of degree one. By
[Dol12, Prop. 8.2.39], the homomorphism ρ2 : Aut(S′)→ AutH2(S′,R) is injective.

Let Aut(x0, S
′) be the subgroup of automorphisms in Aut(S′) fixing the point x0. Then

Aut(x0, S
′) ' Aut(RY ,WY ). Since Pic(WY ) ' β∗ Pic(S′)⊕ Z[RY ], the image ρ1(Aut(RY ,WY ))

is contained in a subgroup G1 of Aut(H2(WY ,R)) such that G1 ' Aut(H2(S′,R)). Hence, we
have the following diagram:

Aut(RY ,WY ) G1

Aut(x0, S
′) Aut(H2(S′,R))

ρ1

' '

ρ2

Since ρ2 is injective, the restriction ρ1 : Aut(RY ,WY )→ G1 ⊂ Aut(H2(WY ,R)) is injective.

Proof of Proposition 10.2.1. The first paragraph follows from Lemma 10.2.2, Proposition 10.2.3
and Proposition 10.2.6. The second paragraph follows from Remark 10.2.4.
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Appendix A

Computations by Macaulay2

restart
k = ZZ/67

We set up the projective space P4:

R = k [ x_0 . . x_4 ]

We choose 8 points in P4:

I_0 = ideal (x_1 , x_2 , x_3 , x_4)
I_1 = ideal (x_0 , x_2 , x_3 , x_4)
I_2 = ideal (x_1 , x_0 , x_3 , x_4)
I_3 = ideal (x_1 , x_2 , x_0 , x_4)
I_4 = ideal (x_1 , x_2 , x_3 , x_0)
I_5 = ideal (x_1−x_2 , x_2−x_3 , x_3−x_4 , x_0−x_4)
I_6 = ideal (x_0−3∗x_1 , x_1−7∗x_2 , x_2−11∗x_3 , x_3−13∗x_4)
I_7 = ideal (x_0−17∗x_1 , x_1−23∗x_2 , x_2−29∗x_3 , x_3−31∗x_4)

We compute the ideal II defined by the 6 quintics through the 8 points with multiplicity at least
3:

J = I_0 ; for j from 1 to 7 do J = intersect (J , I_j ) ;
H = saturate J^3;
G = gens (H) ;
betti G
G1 = submatrix (G, { 0 . . 5 } ) ;
I I = ideal (G1 ) ;
I I I = sheaf module I I ;
HH^0( I I I ( 5 ) )

We check that II is the intersection of the ideal of the 28 lines, the ideal of the 8 quartics and
the ideal I5 of a smooth rational quintic curve:

LL = ideal (1_R) ;
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for i from 0 to 7 do for j from 0 to i−1 do
LL = intersect (LL , ideal submatrix (gens intersect ( I_i , I_j ) , { 0 . . 2 } ) ) ;
isSubset ( I I , LL)
RN = ideal (1_R) ;
for i from 0 to 7 do
RN = intersect (RN,minors (2 , submatrix ( ( res ( J : I_i ) ) . dd_4 , { 3 . . 6 } , { 0 . . 1 } ) ) ) ;
isSubset ( I I ,RN)
I5 = ( ( I I : LL ) :RN) ;
degree I5 , genus I5 , ideal singularLocus variety I5
I I == intersect ( intersect (LL ,RN) , I5 )

Listing A.1 – Base scheme

We compute the normal bundle of the smooth rational quintic curve:

RI5 = R/ I5
N5 = (module I5 )∗∗RI5
PI5 = Proj RI5
SN5 = sheaf N5
HH^0(SN5)
HH^0( sheaf dual N5)
KI5 = Ext^3(R^1/I5 ,R^{−5})∗∗RI5
HH^0(SN5∗∗OO_PI5(1 )∗∗ ( sheaf dual KI5 ) )

Listing A.2 – Normal bundle

We choose three points on the smooth rational quintic curve:

P1 = ideal (x_3−14∗x_4 , x_2−x_4 , x_1+x_4 , x_0−12∗x_4)
P2 = ideal (x_3+17∗x_4 , x_2−22∗x_4 , x_1+20∗x_4 , x_0+2∗x_4)
P3 = ideal (x_3−26∗x_4 , x_2+27∗x_4 , x_1−30∗x_4 , x_0+21∗x_4)

We compute the quintic with multiplicity 3 at the 8 points and the point P1 (resp. P2 and resp.
P3):

J13 = intersect ( J^3 ,P1^3) ;
H13 = saturate J13 ;
G13 = gens (H13 ) ;
betti G13
GP1 = submatrix (G13 , { 0 } ) ;
Q1 = ideal (GP1) ;

J23 = intersect ( J^3 ,P2^3) ;
H23 = saturate J23 ;
G23 = gens (H23 ) ;
betti G23
GP2 = submatrix (G23 , { 0 } ) ;
Q2 = ideal (GP2) ;
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J33 = intersect ( J^3 ,P3^3) ;
H33 = saturate J33 ;
G33 = gens (H33 ) ;
betti G33
GP3 = submatrix (G33 , { 0 } ) ;
Q3 = ideal (GP3) ;

Listing A.3 – Three secant varieties

We compute the elliptic normal quintic curve along which Q1 is singular:

SingQ1 = ideal singularLocus variety Q1;
dim SingQ1 , degree SingQ1
SSingQ1 = ideal singularLocus variety SingQ1 ;
dim SSingQ1 , degree SSingQ1
E1 = ( SingQ1 : SSingQ1 ) ;
dim E1 , degree E1 , genus E1
ideal singularLocus variety E1

We compute the intersection of the three quintics and obtain the cubic scroll W:

SS3 = Q1 + Q2 + Q3 ;
SS = (SS3 : I I ) ;
dim SS , degree SS
W = ideal singularLocus variety SS ;
dim W, degree W, genus W, ideal singularLocus variety W
W == (SS :W)

Listing A.4 – Scheme-theoretic intersection of secant varieties

We compute the quintics through the 8 points with multiplicity at least 3 containing the surface
W:

JW = intersect ( J^3 ,W) ;
HW = saturate JW;
GW = gens (HW) ;
betti GW
GW1 = submatrix (GW, { 0 . . 2 } ) ;
IIW = ideal (GW1) ;
IIIW = sheaf module IIW ;
HH^0( IIIW (5 ) )

Listing A.5 – Quintics containg W

We compute the hypersurfaces of degree 10 through the 8 points with multiplicity at least 6:

JI5 = intersect ( I_5^6 , intersect ( I_6^6 , I_7 ^6) ) ;
HI5 = saturate JI5 ;
GI5 = gens HI5 ;
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betti GI5
GI15 = submatrix (GI5 , { 0 . . 1 0 5 } ) ;
I I 5 = ideal (GI15 ) ;
JI4 = intersect ( I_4^6 , I I 5 ) ;
HI4 = saturate JI4 ;
GI4 = gens HI4 ;
betti GI4
GI14 = submatrix (GI4 , { 0 . . 1 3 2 } ) ;
I I 4 = ideal (GI14 ) ;
JI3 = intersect ( I_3^6 , I I 4 ) ;
HI3 = saturate JI3 ;
GI3 = gens HI3 ;
betti GI3
GI13 = submatrix (GI3 , { 0 . . 1 5 4 } ) ;
I I 3 = ideal (GI13 ) ;
JI2 = intersect ( I_2^6 , I I 3 ) ;
HI2 = saturate JI2 ;
GI2 = gens HI2 ;
betti GI2
GI12 = submatrix (GI2 , { 0 . . 1 2 3 } ) ;
I I 2 = ideal (GI12 ) ;
JI1 = intersect ( I_1^6 , I I 2 ) ;
HI1 = saturate JI1 ;
GI1 = gens HI1 ;
betti GI1
GI11=submatrix (GI1 , { 0 . . 1 3 6 } ) ;
I I 1 = ideal (GI11 ) ;
JI0 = intersect ( I_0^6 , I I 1 ) ;
HI0 = saturate JI0 ;
GI0 = gens HI0 ;
betti GI0
GG = submatrix (GI0 , { 0 . . 2 8 } ) ;
IGG = ideal (GG) ;

We compute the hypersurfaces of degree 10 through the 8 points with multiplicity at least 6
containing the surface W:

JW2 = intersect (W, IGG) ;
HW2 = saturate JW2;
GW2 = gens HW2;
betti GW2
GGW = submatrix (GW2, { 0 . . 2 0 } ) ;
IW2 = ideal (GGW) ;
IIW2 = sheaf module IW2 ;
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HH^0(IIW2 (10 ) )
Listing A.6 – Decics containing W

We compute the image of the elliptic normal quintic E1 via the map defined by the linear system
of hypersurfaces of degree 10 through the 8 points with multiplicity at least 6:

S2 = k [ u_0 . . u_28 ] ;
ImE1 = ker map(R/E1 , S2 ,GG) ;
dim ImE1 , degree ImE1

We compute the image of the rational quintic curve I5 via the map defined by the linear system
of hypersurfaces of degree 10 through the 8 points with multiplicity at least 6:

ImI5 = ker map(R/ I5 , S2 ,GG) ;
dim ImI5 , degree ImI5

We compute the image of the surface W via the map defined by the linear system of hypersurfaces
of degree 10 through the 8 points with multiplicity at least 6:

ImW = ker map(R/W, S2 ,GG) ;
dim ImW, degree ImW

Listing A.7 – Image by bianticanonical map

We compute the hypersurfaces of degree 10 with multiplicity at least 7 at the point I_0 and
multiplicity at least 6 at the other 7 points:

JI00 = intersect ( I_0^7 , I I 1 ) ;
HI00 = saturate JI00 ;
GI00 = gens HI00 ;
betti GI00
GG0 = submatrix (GI00 , { 0 } ) ;
IGG0 = ideal (GG0) ;

And we obtain a unique such hypersurface of degree 10; now we check if this hypersurface contains
the surface W:

JW0 = intersect (W, IGG0 ) ;
HW0 = saturate JW0;
GW0 = gens HW0;
betti GW0

Listing A.8 – Special member in bianticanonical system
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