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ABSTRACT    
  
Social interactions rely on our ability to learn and adjust on the spot to the other’s behavior. Strategic                                                     

games provide a useful framework to study the cognitive processes involved in the representation of the                                               

other’s intentions and their translation into the most adapted actions. In the last decades, the growing field                                                  

of behavioral economics provided evidence of a systematic departure of human’s behavior from the                                         

optimal prescription formulated by game theory. Based on recent advances in cognitive sciences, we                                         

hypothesized that characterizing the source of heterogeneity in behavior might provide key insights to                                         

understand the boundaries over human social learning, and therefore deviation from mutually beneficial                                      

interactions.    

  

We first address the question of the interplay between the game environment and the heterogeneity in                                               

formation of high-­order beliefs over the opponent’s behavior through strategic learning. We show that in a                                               

competitive repeated interaction, the payoff structure of the underlying game can influence the                                      

engagement in strategically sophisticated learning and explain deviation from game optimality                                

(equilibrium). Our data suggest that participants in a disadvantaged role are constraints in their learning                                            

sophistication, and thus in the overcoming of their position, by their own cognitive capacities. Their                                            

opponents, albeit advantaged, still need to engage in strategically sophisticated learning but to follow and                                            

adjust their behavior in order to maximize their earnings. This study provides the first evidence of the key                                                     

implication of strategic learning heterogeneity in equilibrium departure and provide insight to explain the                                         

emergence of a leader-­follower dynamics of choice. In addition our results suggest that a cost-­benefit                                            

analysis might drive the engagement of strategic players in a more sophisticated learning process. In a                                               

second step, we investigated the hypothesis that the depth of strategic learning is not the only factor in                                                     

play to grasp the other’s mind during competitive interaction, but that the capacity to detect and exploit                                                  

patterns in her behavior is also important. We found that not only subjects were able to detect patterns in                                                        

the opponent’s behavior, but that the capacity to do so was not correlated to a lower engagement in                                                     

sophisticated strategic learning, therefore suggesting that humans can combine information from both                                   

types​  ​of​  ​learning ​  ​to ​  ​improve ​  ​belief​  ​accuracy​  ​during ​  ​social ​  ​decision ​  ​making.  
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-­ ​  ​Chapter​  ​I​  ​-­    
Introduction​  ​-­​  ​Scientific ​  ​Background  

  

  

Foreword    
  

Everyday social interactions are considered a key foundation of our development and cognitive                                      

abilities (Frith & Frith, 2010). With the progress of social neuroscience in the last decade, many                                               

investigations have focused on the brain mechanisms underlying our capacity to grasp the mental states                                            

of others (Frith & Frith, 2012). However, different theories have been proposed to explain how humans                                               

can engage in such “Theory of Mind”. Moreover, even if some brain regions have been identified as                                                  

specifically recruited in this cognitive process, no clear consensus has been reached about the underlying                                            

computations and specific cognitive mechanisms involved (Mahy et al, 2014;; Stanley & Adolphs, 2013).                                         

Faced with this inconsistency it has recently been proposed to rethink the way social interactions are                                               

studied in laboratory. Some authors have suggested that the use of static tasks exposing participants to                                               

so-­called social stimuli (such as faces, or stories about fictive characters) might limit our understanding of                                               

the cognitive processes involved during real social interactions (Di Paolo & De Jaegher, 2012;; Hari et al,                                                  

2015;; Przyrembel et al, 2012). To shed light on the ​dark-­matter of social interaction they hypothesized                                               

that knowing others might not be limited to perceiving them, but also to engage with them. In this line of                                                           

inquiry, dynamic interaction between humans appears to be a cornerstone for understanding how humans                                         

grasp other minds. As Schilbach (2014) points out, “social interactions are characterized by intricate                                         

reciprocal relations with the perception of socially relevant information prompting (re-­) actions, which are                                         

themselves processed and reacted to”. However, analyzing data emanating from such ecological                                   

inter-­individual interactions is a methodological challenge (Hari et al, 2015;; Lee & Harris, 2013;; Schilbach                                            

et​  ​al,​  ​2013).  
  

The special case of strategic interaction might embody this complex systemic problem in the specific                                            

decision problem it constitutes. Indeed, in such a social setting, the outcome of one’s action depends                                               

directly on what the other individual in the interaction decides. In this particular type of social exchange it                                                     

thus appears crucial to anticipate the other’s actions in order to adjust our own behavior and to maximize                                                     

the outcome of the interaction. Game theory models strategic interactions as games representing                                      

decisions between agents where one’s payoffs depend on the other’s actions. This normative framework                                         

provides precise theoretical solutions for optimal behavior embodied in the premises of rationality (such                                         

as the notion of Nash equilibrium). It also provides a benchmark for the analysis of its behavioral                                                  
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departures. However, it has been empirically shown that in practice humans do not always/systematically                                         

follow this prescription of optimality (Camerer, 2003). One hypothesis, which encounters growing support,                                      

lies on the idea that following the (optimal) action profile (by which no player can increase her payoff by                                                        

changing her action given the other players’ actions) requires that both players should hold correct beliefs                                               

over their opponent’s behavior and best-­respond to it (Camerer et al, 2014). The ability to do so might                                                     

therefore be somehow cognitively and/or contextually constrained, leading to sub-­optimal behavior                                

(Crawford ​  ​et​  ​al,​  ​2013).    
As game interactions extend the model of individual decision-­making to the understanding of the                                         

interactions in multi-­agents situations, recent research in neuroeconomics proposed to combine the                                   

computational approach from cognitive neuroscience with the experimental framework provided by                                

behavioral game-­theory to unravel the brain mechanisms underlying human decision-­making during                                

social ​  ​interactions​  ​(Lee,​  ​2008).    
  

In this thesis we propose to take a step back to understand how the heterogeneous deviations observed                                                  

in human behavior from the normative prescription of game-­theory could be informed by the various ways                                               

humans might learn in repeated (strategic) interactions. We believe that a better understanding of how the                                               

two fields of cognitive neuroscience and behavioral economics can be combined, in order to explain how                                               

human make decisions in repeated interactions, might provide crucial insights for a better understanding                                         

of​  ​the ​  ​cognitive ​  ​processes​  ​implicated ​  ​in ​  ​Theory​  ​of​  ​mind.    
  

In the following we will review recent advances in the field of neuroeconomics and outline perspectives for                                                  

a neuroeconomic approach of strategic interactions. First, we will briefly introduce the neuroeconomics of                                         

non-­social decision-­making and the cognitive mechanisms underlying human learning (I). Then we will                                      

describe how this framework can, and has been extended to social interactions (II). Finally, we will                                               

present the framework in which this thesis is rooted (III). We will demonstrate how the theoretical                                               

framework of game theory can been used to better understand the cognitive mechanisms underlying                                         

decision-­making in strategic interactions. Finally we will review how behavioral economics and cognitive                                      

neuroscience have tackled the question of social learning during strategic interactions to introduce the                                         

questions​  ​that​  ​we ​  ​investigate ​  ​in ​  ​this​  ​thesis​  ​(IV).  
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I-­ ​  ​From ​  ​decision-­making​  ​to ​  ​learning:​  ​a ​  ​neuroeconomic​  ​perspective    
  

A)​  ​The​  ​value-­based​  ​framework​  ​in​  ​decision​  ​making  
  
At the heart of choice is believed to be the concept of subjective value. Within this framework,                                                  

value is considered to be the main drive of action selection. Basically a reward, by nature attractive for an                                                        

individual, has a positive value, and conversely a punishment, repulsive, a negative one. Historically the                                            

concept of value in philosophy, and later in psychology, is rooted in the notion of pleasure, so that the                                                        

value of an option corresponds to the amount of pleasure that is eventually obtained once chosen, and by                                                     

extension ​  ​corresponds​  ​to ​  ​its​  ​attractiveness​  ​or​  ​desirability​  ​(Mill,​  ​1901).  
  

Inspired by this concept, but rebutted by the blurriness of introspection, economists ought to build a                                               

decision theory based on observations. The rationale was the following: if the value is the hidden variable                                                  

driving action then from choices such quantity could be inferred and value objectively measured                                         

(Padoa-­Schioppa, 2008). Samuelson, 1938) first proposed that individual preferences can be revealed                                   

through choices made in situations of risk and uncertainty. Based on this idea Von Neumann &                                               

Morgenstern (1947) proposed the expected utility theory. EUT is a set of axioms which aims to ensure                                                  

that if the preferences expressed by an agent in a probabilistic environment are consistent, then a “utility”                                                  

function, a cardinal measure of the expected value driving her choices, can be computed from her ordinal                                                  

preferences. To fill the gap between the generalization of the notion of value proposed by the EUT and                                                     

the predictability of an agent’s choices, Savage (1954) finally reversed this relation by stating that a                                               

rational agent’s choices should be the outcome of a utility maximization process. Note that within the                                               

neoclassical framework in economics a slightly different concept of value is typically confounded, namely                                         

the motivation to engage in a costly or effortful action in order to obtain a good, such as exchanging                                                        

money​  ​against​  ​a ​  ​good,​  ​or​  ​giving ​  ​up ​  ​on ​  ​an ​  ​option ​  ​to ​  ​obtain ​  ​another​  ​outcome ​  ​(O’Doherty,​  ​2014).  
  

In psychology, two types of rewards (i.e. outcome values) are usually distinguished: food and drink are                                               

considered as primary, in opposition to secondary rewards which are non-­crucial for the survival of the                                               

individual (Schultz, 2015). In economics, utility represents a common currency for reward, and choices                                         

are often paired to monetary outcomes as money allows an independency from the nature of the                                               

expected reward. Finally, it is worth noting that in the framework of EUT, subjective value commonly                                               

encompasses both the amplitude of the expected reward and its availability, the probability to receive it.                                               

The EUT thus provides a useful mathematical object that unites the properties of the subjective                                            

(expected) value driving the choice behavior. Psychology later influenced economics, by refining the                                      

typical (average) shape of the utility function through the incorporation of some insights from empirical                                            
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observations, such as risk aversion, probability distortion or the effect of framing (Kahneman & Tversky,                                            

1979).    

  

Following the formalism of choice and expected value provided by the decision theory in economics, two                                               

complementary lines of inquiry have emerged in the last decades. With the rise of modern psychology,                                               

some economists aimed to experimentally test the predictions made by the EUT in order to “improve the                                                  

realism of the psychological assumptions underlying economic theory” (Fumagalli, 2016), and behavioral                                   

economics became a growing field. In a second time, the raise of the cognitive neuroscience field lead                                                  

economists to move a step further and collaborate with cognitivists to use neuroscientific tools to                                            

“advance economic modeling by building more predictive and explanatory models of choice” (Camerer et                                         

al, 2004). These two domains thus aimed at gathering more precise knowledge about choice behavior in                                               

order to explain the (often) observed deviation from theoretical rationality (Camerer, 2003). Still, to date                                            

they​  ​remain ​  ​two ​  ​separate ​  ​fields​  ​of​  ​research ​  ​with ​  ​distinct​  ​methodologies​  ​and ​  ​priors.    
  

In 2008, a group of prominent neuro-­economists proposed a unified model of value-­based                                      

decision-­making breaking the choice process into computational steps hypothesized to be subserved by                                      

different brain structures (Rangel et al, 2008) (​Fig1 ​). The key feature of their model is that it posits the                                                        

existence of two different value computations. The first valuation process takes place at the time of the                                                  

outcome and corresponds to the (affective/hedonic) value of the reward, once experienced. The second is                                            

the (state-­dependent) value of each available action that drives, through direct comparison, the choice                                         

process. This value corresponds to the reward expected to be received. In this framework, such a value                                                  

signal is viewed as the computational equivalent of the theoretical expected utility, and is thus considered                                               

to ​  ​be ​  ​sensitive ​  ​to ​  ​the ​  ​same ​  ​psychological ​  ​effects​  ​included ​  ​in ​  ​the ​  ​EUT​  ​(risk,​  ​uncertainty,​  ​framing).  
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____________________________________________________________________________________

  

  

Figure 1. The unified model of value-­based decision making proposed by Rangel et al (2008). They describe five                                                     

main computational steps: first, the construction of a representation of the decision problem, which entails identifying                                               

internal and external states as well as potential courses of action;; second, the valuation of the different actions under                                                        

consideration;; third, the selection of one of the actions on the basis of their valuations;; fourth, after implementing the                                                        

decision the brain needs to measure the desirability of the outcomes that follow;; and finally, the outcome evaluation is                                                        

used ​  ​to ​  ​update​  ​the ​  ​other​  ​processes​  ​to ​  ​improve ​  ​the ​  ​quality​  ​of​  ​future ​  ​decisions.​  ​(reproduced​  ​from​  ​Rangel​  ​et​  ​al,​  ​2008)  
____________________________________________________________________________________  

  

However, two types of valuation systems operating at the time of choice can be distinguished: the                                               

habitual system storing cached values, which corresponds to the automatic association learned between                                      

a stimulus and an action, and a goal-­directed system that computes at the time of choice a value for each                                                           

action depending on the reward expected to be received at the time of the outcome (Balleine & O'doherty,                                                     

2010;; Dickinson, 1985). This latter system is thought to be a more flexible system as the expected value                                                     

signal generated is the product of the computation of the action-­outcome and stimulus-­reward                                      

contingencies. Such computation requires the knowledge of the structure of the environment as well as a                                               

costly prospection process to infer potential distal outcomes. As we will see in the next section, a                                                  

distinction ​  ​between ​  ​these ​  ​two ​  ​systems​  ​can ​  ​be ​  ​done ​  ​at​  ​the ​  ​brain ​  ​level ​  ​(Dolan ​  ​&​  ​Dayan ​  ​2013).  
  

Now, how these two systems relate to the notion of expected utility in EUT remains unclear. In their                                                     

framework Rangel et al suggest that goal directed values correspond to the subjective value as defined                                               
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by the economic theory (Rangel et al, 2008). Still, the notion of expected utility is not action dependent,                                                     

but relates to the value of the outcome directly. In fact, a series of neuroscience studies lead by                                                     

Padoa-­Schioppa et al (Padoa-­Schioppa, 2011). showed for the first time that some neurons in the                                            

orbitofrontal cortex (OFC) (in monkeys), specifically encode the value of a good per se, independently of                                               

the associated action (Padoa-­Schioppa, 2013). Similar evidence of common value signal were found in                                         

the ventromedial prefrontal cortex (vmPFC) in humans (Levy & Glimcher, 2012). As if values in the                                               

economic sense were abstract constructs (i.e. independent of any choice modalities of physical                                      

properties) encoded at the time of choice by the brain in order to drive action selection. Such a finding                                                        

brings the economic concept of value closer to the goal-­directed value presented in the value-­based                                            

framework, except that for the former the value is attached to a possible outcome, while the latter is                                                     

attached to an action-­outcome association (an action representing here any measurable behavior leading                                      

to an outcome). If this difference may seem negligible, it actually does matter from a theoretical                                               

perspective ​  ​(Padoa-­Schioppa ​  ​&​  ​Schoenbaum,​  ​2015).  
Indeed, there is one element which is not modeled by the EUT: the variation of values over time. As                                                        

preferences are considered as stable, EUT does not consider that values are learned or that they can be                                                     

readjusted over time. As presented in ​Fig.1 ​, in the value-­based decision-­making framework, the                                      

(expected) values are computed from past exposure to the actual (experienced) value, and thus emerge                                            

through learning (Rangel et al, 2008). In this framework, subjective values driving our behavior are not                                               

just ​there when it comes to make a decision, but are they instead computed through experience, and can                                                     

thus​  ​be ​  ​manipulated.  
  

  

B) ​  ​Learning​  ​the ​  ​value,​  ​learning​  ​from ​  ​value  
  
As previously introduced decision-­making can be seen as the cognitive process of evaluation and                                         

comparison of the different options available, reducing our behavior to essentially a reward (utility)                                         

maximization process. In this value-­based framework, a temporality emerges in decision-­making as the                                      

utility maximization concept in economics is split into two steps: the anticipation, or prediction of the                                               

reward to come, and the experience of it. The loop formed by the shaping of the value through experience                                                        

and ​  ​the ​  ​prediction ​  ​of​  ​experience ​  ​through ​  ​evaluation ​  ​is​  ​the ​  ​core ​  ​of​  ​a ​  ​related ​  ​cognitive ​  ​function:​  ​learning.     
At the beginning of the last century, two concomitant studies lead psychologists to first formalize what                                               

they called instrumental learning, or operant conditioning. Pavlov reported that a behavioral response,                                      

such as salivation in dogs, can be eventually induced by any initially neutral (conditioned) stimulus (e.g.                                               

sound), if a primarily rewarding (unconditioned) outcome (e.g. food) was repeatedly paired to it (i.e.                                            

presented shortly after). This observation first suggested that a behavioral response (salivation) can be                                         
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associated to a stimulus;; however, no voluntary action is involved in this process. A bit later, Thorndike                                                  

reported that animals, who managed by chance to experience a reward following an action, would be                                               

more likely to reproduce that same action in order to get the reward. Such observation, labeled as “law of                                                        

effect”, extended the first evidence of (Pavlovian) conditioning, to actions, and not just stimuli. It further                                               

lead to extensive work on operant conditioning, most notably by Skinner, showing that the amplitude of                                               

the reward associated to an action and the timing of its consecutive presentation can modulate the                                               

strength ​  ​of​  ​the ​  ​behavioral ​  ​reinforcement​  ​and ​  ​eventually​  ​influence ​  ​learning    
  

Nevertheless, the behaviorist movement that lead the empirical studies on operant conditioning focused                                      

on the observable while neglecting the hidden variables that could have explained the association                                         

between reward and action, and thus any notion of subjective value. Later on, psychologists observed                                            

that in such an instrumental setting, two types of behaviors could be elicited following a procedure of                                                  

devaluation of the stimuli (extinction) once the association had been established (learned) (Dickinson,                                      

1985). When the action had been paired to a rewarding stimulus (in the sense that the stimulus has                                                     

become sufficient to automatically -­-­ psychologists say “habitually” -­-­ trigger the action without evoking                                         

any anticipatory representation of the outcome), diminishing the value of the reward predicted by the                                            

stimulus did not seem to drive away the selection of this stimulus. In other words, the animal has become                                                        

insensitive to outcome devaluation and just keeps on habitually performing the same behavioral response                                         

in the same context, similarly to humans’ tendency to persist with their previous credit card pin code after                                                     

a recent notification of change by the bank. In contrast to this situation, when the animal had learned that                                                        

the stimulus was paired to a reward and then the action also paired to the reward (in the sense that the                                                              

animal is able to mentally anticipate and represent the outcome it will get as a consequence of the                                                     

action), then a dissociation seemed to have been operated as the devaluation lead to a decrease of the                                                     

rewarding stimulus selection (Dickinson & Balleine, 1994). The interpretation here is that the anticipation                                         

of the outcome permitted by the action-­reward association can be mentally combined with the fact that                                               

now the outcome has been experimentally devalued (e.g. the animal has been given so much food that it                                                     

is now satiated) so that the animal will stop to perform the action because it no longer desires the                                                        

outcome. Later on, lesion studies in animal models showed that such a dichotomy between habitual and                                               

goal-­directed control in instrumental learning has a brain counterpart since lesion to different brain regions                                            

differentially​  ​impair​  ​habitual ​  ​and ​  ​goal-­directed ​  ​processes​  ​(Killcross​  ​&​  ​Coutureau,​  ​2003;;​  ​Yin ​  ​et​  ​al,​  ​2005).  
  

Researches on animal learning were later extended by the rise of computational tools coming from the                                               

field of dynamic programming, allowing the modelling of the potential computational processes and                                      

hidden variables in play. At the origin, the concept of prediction error formulated by Rescorla-­Wagner                                            

(Rescorla, 1972), who proposed that the discrepancy between the prediction of the choice outcome -­-­ the                                               
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expected reward at the time of choice (subjective value V(t)) -­-­ and its realization (experienced reward                                               

once ​  ​the ​  ​action ​  ​chosen,​  ​r(t)​  ​),​  ​was​  ​the ​  ​main ​  ​component​  ​driving ​  ​learning:    
​  ​​  ​​  ​(1.1)(t ) V (t)   (  r(t)  V + 1 =    + α − V (t)  )        

  

In this model, the (signed) prediction error, is weighted by a learning rate α, a parameter modulating its                                                     

update influence on the subjective value of the selected action that lead to the reward (r(t)) ​(Fig.2.A)​.                                                  

From​  ​choice ​  ​to ​  ​choice,​  ​the ​  ​value ​  ​V​  ​driving ​  ​the ​  ​decision ​  ​is​  ​modulated,​  ​in ​  ​a ​  ​trial-­and-­error​  ​fashion ​  ​​(Fig.2.B)​.  
  

____________________________________________________________________________________

  

Figure ​  ​2.​  ​Reward​  ​Prediction​  ​Error,​  ​as ​  ​a ​  ​main​  ​drive ​  ​for ​  ​learning ​  ​​(adapted​  ​from​  ​Schultz,​  ​2015)  
_____________________________________________________________________________________________  

  

Sutton & Barto (1998) then famously combined this concept of (reward) prediction error to dynamic                                            

programming to solve the decision problem formalized mathematically as a Markov Decision Process                                      

(MDP). A MDP is composed by four elements, a series of states (s), an action set (a) available in each                                                           

state, a (probabilistic) transition function linking states together depending on the action chosen in each                                            

state, and a reward function (r) which associates to each (s,a) pair a reward value. Such a framework                                                     

presents two advantages: first, any uncertain but controlled environment an animal or a robot faces can                                               

be simply modeled as an MDP;; second, in this framework the action taken in a state fully determines the                                                        

next state. Moreover, an MDP can be solved through dynamic programming to algorithmically determine                                         

the best policy (which action to select in a each state of the task) an agent should follow to maximize its                                                              

total cumulative sum of reward over the long-­term. Reinforcement learning algorithms were proposed to                                         

model an agent’s optimal policy when the generative model of the environment (reward or transition                                            

functions of the MDP) is unknown. For instance, Q-­learning (Watkins & Dayan, 1992) estimates the                                            

optimal decision at each state through the comparison of the expected reward associated to each                                            

state-­action pair (Q(s,a)). The key feature here is the computation of so-­called Q-­values, which are                                            
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updated, at a certain rate similar to the alpha parameter in Equation 1.1, proportionally to a reward                                                  

prediction error: how much the reward the agent expected to receive by selecting an action in a state is                                                        

different from the actual reward received once the action has been performed. Such a teaching signal is                                                  

the ​  ​(reward)​  ​prediction ​  ​error​  ​(RPE)​.  
  

The suitability of this framework for psychology and neuroscience, is obvious, given the way decision                                            

experiments are usually designed. Indeed, in the laboratory, the experimenter imposes a structure to the                                            

probabilistic environment in which a human, or any other animal, evolves: the world is divided into                                               

sequential choices, or trials, in which a set of possible options represented by a recognizable stimulus are                                                  

presented -­-­ through (state,action) pairs -­-­, each leading to an outcome with a different probability                                            

(reward). RL algorithms then allow to reverse-­engineer the choice series to estimate the subjective values                                            

that​  ​drove ​  ​the ​  ​agent’s​  ​behavior​  ​(Forstmann ​  ​et​  ​al,​  ​2011).  
  

An impressive body of evidence shows that animal learning can be captured by reinforcement learning                                            

models (Schultz, 2015). These models are even more compelling that this learning process is biologically                                            

rooted: the (phasic) firing of dopamine neurons projecting to the ventral striatum (part of the basal                                               

ganglia) encodes a signal which strikingly resembles the reward prediction error driving value-­based                                      

learning ​  ​in ​  ​reinforcement​  ​learning ​  ​models​  ​(Schultz,​  ​2015,​  ​2016).  
  

In the Q-­learning model, the action values computed are attached to each available stimuli (i.e. through                                               

(state,action) pairs). This is because this model assumes that the agent has no structural knowledge of its                                                  

environment, i.e. while people usually assume that the model already knows from the beginning of the                                               

simulation the total number of states and actions which are relevant for the task (and is moreover                                                  

perfectly able to recognize them without ambiguity), the model nevertheless is not provided with nor tries                                               

to learn the probabilistic transitions between these states in the MDP that defines the task. In other words,                                                     

the model is not able to do prospective inference by estimating the next state and outcome it is likely to                                                           

reach after performing a given action in a given state. Instead, in the Q-­learning model action-­outcome                                               

and outcome-­reward associations are conflated into unique state-­action-­reward values which are simply                                   

locally compared in a given state to decide which action to perform without estimating the consequences                                               

of the action (reactive behavior). Therefore if the reward or transition function changes throughout the                                            

task, like in reversal learning experiments or in outcome devaluation paradigms, the model will take a long                                                  

time to update the Q-­values and re-­adjust the behavior to the new contingencies, pretty much in an                                                  

habitual fashion (Wilson, 2014). These cached values synthesize the whole world for the simulated                                         

animal. But as the early literature of cognitive map suggests, animals can also develop through                                            

experience a predictive mental representation of their environment (Redish, 2016). In that case, state                                         

transitions can be conceptualized as a map or tree when the number of states remains tractable as often                                                     
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in experiments. From this internal model of the task, outcomes can be distinguished from actions which                                               

allows the updates of the expected reward values of all the state-­action pairs encountered to be                                               

propagated along the tree, resulting in a more flexible and efficient behavior when a change in the                                                  

contingencies of the environment happens. The process is goal-­oriented because it searches within the                                         

tree the best compromise between path length and magnitude of long-­term reward values, rather than                                            

simply reacting to immediately perceived stimuli. Nevertheless, such a tree-­search-­based inference                                

process takes time before making a decision (Viejo et al., 2015), which could partly explain why the two                                                     

learning processes seem to co-­exist in the brain: because each stable and familiar situation where the                                               

behavior can be automatized makes the brain save the time and energy associated to the tree-­search                                               

process (Khamassi et al, 2016). Such RL models were labelled as model-­based (because a map or a tree                                                     

constitute a partial approximate model of the task), in opposition to Q-­learning and other classical RL                                               

models that are considered as model-­free (Daw et al, 2005;; Doya et al, 2012;; Daw et al, 2005;; Sutton &                                                           

Barto,​  ​1998)​  ​​(Fig.3)​.  
  

____________________________________________________________________________________

  

  

Figure ​  ​3.​  ​Task ​  ​environment​  ​in​  ​which ​  ​a ​  ​dissociation​  ​between​  ​MF/MB ​  ​can​  ​be ​  ​observed    
A) Classic two stages (sequential choices) task used to differentiate between behavior generated through model-­free                                            

and model-­based reinforcement learning (RL). The first step state (geen) leads, with a transition probability                                            

associated to each of the available action in this state to either one or the other second step state (pink, turquoise)​.                                                              

(reproduced from Doll et al, 2012) B) Average stay probability expected for each of the two RL models. Left panel:                                                           

Simulations show that model-­free decision-­making is reflected in a main effect of reward. That is, stay behavior on                                                     

the first choice depends on whether behavior on the previous trial was rewarded or not. Model-­free behavior is                                                     

independent of the transition probability structure. Right panel: Model-­based behavior is reflected in an interaction                                            

between transition on the previous trial and reward on the previous trial. That is, model-­based behavior takes the                                                     

model-­free information as well as knowledge of the transition structure into account. Typically a hybrid version of the                                                     
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model in which the omega parameters represents the arbitration weight between the two systems is fitted to the                                                     

choice ​  ​series​  ​of​  ​the ​  ​participant.​  ​(adapted​  ​from​  ​Eppinger​  ​et​  ​al,​  ​2013)  
____________________________________________________________________________________  

  

In the last two decades, the information theory from cognitive sciences has deeply influenced the field of                                                  

neurosciences. The emerging field of computational neuroscience uses computational models such as RL                                      

algorithms to capture human behavior, to estimate the hidden variables behind their actions and                                         

eventually to investigate how the brain performs such computations through model-­based fMRI analyses                                      1

(Frank, 2015;; O'doherty et al, 2007). For instance, available evidence suggests that outcome values are                                            

encoded in the vmPFC (Lebreton et al, 2009;; McNamee et al, 2013;; Reber et al, 2017), while the                                                     2

prediction error signals are detected in the striatum as input from dopamine neurons (Chase et al, 2015;;                                                  

Gläscher et al, 2010). Computations specifically related to goal-­directed learning have been found to be                                            

correlated to the BOLD signal in the prefrontal cortex (PFC). For instance, the so-­called state prediction                                               

error (SPE), which signals the accuracy of expected state transitions, has been found to be encoded in                                                  

the dorsolateral (dl)PFC (Stalnaker, 2015). Moreover, it has been recently proposed that the orbitofrontal                                         

cortex (OFC, including the ventromedial (vm)PFC) might encode a predictive model of the task, mapping                                            

actions to outcomes in a state-­structure representation of the model-­based learning system (Doll et al,                                            

2015;; Schuck et al, 2016;; Stalnaker, 2015). Such a model construction process would be made possible                                               

by the reception of retrieving signal from the hippocampus, which is believed to encode cognitive maps                                               

across domains (Wikenheiser & Schoenbaum, 2016). ​Fig.4 summarizes a possible mapping of the                                      

different​  ​reinforcement​  ​learning ​  ​computations​  ​in ​  ​the ​  ​human ​  ​brain.    

1​  ​Model-­based​  ​fMRI​  ​consists​  ​in ​  ​identifying​  ​the ​  ​brain ​  ​areas​  ​in ​  ​which ​  ​the ​  ​Blood-­oxygen-­level​  ​dependent​  ​(BOLD)​  ​signal  
recorded​  ​by​  ​the ​  ​scanner​  ​(a ​  ​proxy​  ​of​  ​the ​  ​underlying​  ​neural​  ​activity)​  ​covaries​  ​with​  ​the ​  ​trial-­by-­trial ​  ​value ​  ​of​  ​the  
(individually)​  ​estimated ​  ​variable​  ​of​  ​a ​  ​computational​  ​model ​  ​such ​  ​as​  ​prediction​  ​error​  ​or​  ​Q-­value ​  ​in ​  ​this ​  ​case.​  ​(for  
in-­depth​  ​explanation,​  ​see ​  ​O'doherty,​  ​2007)  
2​  ​Using ​  ​“encoded​  ​by”​  ​or​  ​even ​  ​“correlates​  ​to ​  ​the ​  ​activity​  ​of”​  ​[a ​  ​certain ​  ​brain ​  ​structure]​  ​to ​  ​summarize ​  ​that ​  ​a ​  ​significant  
correlation​  ​between​  ​a ​  ​variable​  ​and ​  ​the ​  ​BOLD ​  ​signal ​  ​recorded​  ​in ​  ​a ​  ​specific​  ​voxel ​  ​using ​  ​MRI​  ​have ​  ​been ​  ​established​  ​is  
a ​  ​simplification,​  ​given ​  ​that ​  ​such ​  ​findings ​  ​supports​  ​this ​  ​hypothesis.​  ​It​  ​is​  ​however​  ​a ​  ​common ​  ​stretch ​  ​of​  ​language.  
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____________________________________________________________________________________

  

  

Figure 4. An implementation of RL in the human brain. ​Schematic mapping specific neuroanatomical loci to the                                                  

implementation of different functions underlying model-­based and model-­free control (reproduced from O'Doherty et                                      

al,​  ​2017).  
____________________________________________________________________________________  

  

As briefly mentioned above, the habitual model-­free learning process is considered as less flexible than                                            

the model-­based one, but also less costly (computationally) as it requires only the storage of state-­action                                               

cached values. On the other hand, the model-­based system appears to be more flexible but also more                                                  

engaging (since it requires to maintain and update a cognitive map of the task). The question of the                                                     

modality of interaction between these two systems is thus central, in order to promote the influence of the                                                     

right system on decision-­making at the right moment, and thus benefit from the respective advantages of                                               

each system (Keramati et al, 2011). Initially authors have proposed that the two systems operate in                                               

parallel and that the brain selects the outcome of one of the two to drive decision-­making based on the                                                        

reliability of each system’s predictions when faced with the uncertainty of the task (Daw et al, 2005;;                                                  
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Gläscher et al, 2010;; Lee et al, 2014). However in practice, humans often display a pattern of average                                                     

choice, as if they were employing a combination of the two (see Daw et al, 2011 and Fig.3.B).                                                     

Nevertheless, such an average combination of the two might also be partly due to the fact that subjects’                                                     

behavioral tendencies are often measured on average during a block of trials [cite Akam Costa Dayan,                                               

PLOS CB], while several more recent studies have clearly identified sudden shifts in the balance between                                               

the two systems to explain the trial-­by-­trial dynamic evolution of choices and reaction times (e.g. Viejo et                                                  

al, 2017). Other recent studies have refined the initial hypothesis of parallel systems, and favored a more                                                  

hierarchical system, model-­free by default, that transiently engages in model-­based computations, using                                   

action-­outcome contingencies of the mental state map to refine the value computation (Deserno et al,                                            

2015;; Gershman et al, 2014;; Zsuga et al, 2016). In fact recent evidence seems to point the nature of this                                                           

system interaction in the direction of cognitive control mechanisms (Gershman et al, 2014;; Khamassi et                                            

al, 2011;; Otto et al, 2014), suggesting that a monitoring of the relative benefit, in terms of choice                                                     

accuracy, to engage into costly model-­based computations is performed (Kool et al, 2017;; Pezzulo et al,                                               

2013). It is worth noting however that the existence of such a meta-­controller in the brain has not yet been                                                           

established, and that other findings suggest that a cooperation between the two systems might also take                                               

place ​  ​(Dollé,​  ​2010;;​  ​Kool ​  ​et​  ​al,​  ​in ​  ​press).  
  

  

C)​  ​Structure​  ​inference ​  ​and​  ​(probabilistic)​  ​beliefs  
  
Now that we have seen how the brain can learn in an uncertain (probabilistic) environment by                                               

using a representation of the well-­structured task, one question arises: how does an agent deals with an                                                  

unknown (not cued) MDP structure? As we previously mentioned, inferring the (state) structure of the                                            

environment through trial-­and-­error is challenging, and might require a model-­based learning system                                   

dedicated to the encoding of the action-­outcome contingencies that might operate independently of the                                         

model-­free ​  ​value-­based ​  ​learning ​  ​systems​  ​(Gershman ​  ​et​  ​Niv,​  ​2010;;​  ​Tenenbaum​  ​et​  ​al,​  ​2011).  
Learning the probabilistic structure of the task requires to form beliefs about the underlying hidden                                            

variables, such as the action-­outcome contingencies or the state space, that generate the observations                                         

(rewards), and constantly update these internal representations (i.e. estimated probabilities) ​(Fig.5.A) ​. In                                   

the last decade the Bayesian framework has encountered a growing interest to model learning, as it                                               

provides an upper bound on optimal levels of performance that can be reached by computational models                                               

of how an individual learns about and infers the underlying latent causes generating observable                                         

phenomena within its environment (Griffiths et al, 2012;; O’Reilly et al, 2012;; Zednik, 2016). At its heart,                                                  

the ​  ​Bayes​  ​theorem:  
​  ​​  ​​  ​(1.2)(m|d)  ∝  p(d|m)p(m)p      
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This (simplified) equation can be used to compute the probability that a particular model (m) is correct                                                  

given a dataset (d). Such posterior probability can thus be seen as the belief that a hypothesized latent                                                     

cause generates the observations accumulated so far. According to the theorem, the belief over this                                            

cause can be approximated by the estimation of both the probability of the observations given this cause                                                  

(likelihood,​  ​ )​  ​and ​  ​the ​  ​probability​  ​of​  ​the ​  ​cause ​  ​itself​  ​(prior,​  ​ ).(d|m)p (m)p     

Such a learning framework has been proven to be useful to approximate human’s perceptual                                         

performances (Pouget et al, 2013) and has been adapted to (value-­based) decision problems in                                         

neuroeconomics. Hampton et al (2006) first suggested that humans faced with two choices in a learning                                               

task in which the probability of reward associated to each option flipped at regular interval (reversals)                                               

might use Bayesian inference to track these predictable changes in the state transition. Behrens et al                                               

(2007) went a step further and exposed participants to a similar two-­armed bandit task in which the                                                  3

reward probability associated to each option was stochastically and independently drifting from                                   

trial-­to-­trial. They modeled human choice using a generative model which represents the hidden variables                                         

generating the observations. By inverting the model through Bayes optimization, a Bayesian learner,                                      

starting with given priors over the variables probability distribution, can infer at each time point the                                               

sufficient parameters of the variable probability densities generating the observations. ​Fig.5.B reproduces                                   

the seminal (generative) model used by Behrens et al to show that humans can track the volatility of a                                                        

stochastic task (e.g. a two-­armed bandit), which corresponds to the trial-­to-­trial amplitude of change in the                                               

underlying reward probabilities. Such Bayesian agents can thus estimate quite efficiently the hidden                                      

variables​  ​structuring ​  ​an ​  ​uncertain ​  ​decision ​  ​environment.    
  

3​  ​In ​  ​two-­armed​  ​bandit​  ​tasks,​  ​participants​  ​choose​  ​between​  ​two ​  ​slot​  ​machines.​  ​Choosing​  ​a ​  ​machine​  ​leads​  ​to ​  ​a ​  ​reward  
(binary​  ​discrete ​  ​or​  ​continuous)​  ​drawn ​  ​from​  ​a ​  ​hidden​  ​probability​  ​distribution.  
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Figure ​  ​5 ​  ​-­​  ​Bayesian​  ​Structure ​  ​Learning  
A) An illustration of a generative model of a choice environment. (Adapted from                                      

http://mbb-­team.github.io/VBA-­toolbox/wiki/)​  ​​  ​B)​  ​​  ​(adapted​  ​from​  ​Behrens​  ​et​  ​al,​  ​2007)  
____________________________________________________________________________________  

  

Nevertheless, this framework poses two constraints to structure learning. First, a Bayesian learning                                      

process requires the encoding of the probabilities, or at least of the sufficient statistics (mean and                                               

variance) of the hidden variable (Gaussian) probability distributions of the task structure, which become                                         

quickly intractable when transposed to more complex decision problems (Jones & Love, 2011). Second,                                         

clear evidence is still lacking that the brain can perform such a type of computation, still recent studies                                                     

begin to suggest otherwise (Diaconescu et al, 2017;; Ting et al, 2015). Another appealing use of such a                                                     

modelling strategy is that, in the case where the generative model embodies in itself the structure of the                                                     
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MDP (state transition function, action-­outcome probabilities), the Bayesian agent, having correct beliefs                                   

over the latent causes of the task, becomes an optimal learner, which can thus be used to provide a                                                        

benchmark​  ​for​  ​model ​  ​comparison ​  ​(by​  ​capturing ​  ​departure ​  ​from​  ​optimality)​  ​(Tauber​  ​et​  ​al,​  ​2017).    
However, despite their computational complexity, Bayesian models do not always outperform RL models                                      

when it comes to capturing human choice behavior (Geana & Niv, 2014;; Niv et al, 2015). Some authors                                                     

have recently proposed that humans could learn action-­outcome contingencies through Bayesian                                

inference and use the computed beliefs over the task structure to guide model-­based learning (Collins &                                               

Franck, 2013;; Gershman, 2017;; O’Doherty et al, 2015;; Starkweather et al, 2017). For instance, Collins &                                               

Koechlin (2012) proposed a tractable way to combine the two learning models in rich choice                                            

environments, based on the notion of stored chunks of action-­outcome association representation                                   

(task-­set). In their model, the RL process is duplicated for each different recognized task-­set, and a                                               

Bayesian module tracks the reliability (accuracy) of the selected task-­set given the environmental                                      

contingencies. In their model, when the current task-­set does not lead to a satisfying level of performance,                                                  

exploitation is stopped in favor of exploration which then either leads to the selection of a more                                                  

appropriate task-­set or to the creation of a new one. Imaging data (Donoso et al, 2014) showed that the                                                        

striatum correlates to the exploitation of the current task-­set, the dlPFC to its rejection, while the vmPFC                                                  

was tracking the adequacy of the currently exploited one and the dorsal part of the dorsomedial (dm)PFC                                                  4

was triggering the switch between exploitation and exploration. Interestingly, such an interaction between                                      

the accuracy of the action-­outcome representations driving learning and the level of cognitive control (as                                            

assessed by the degree of remapping of the contingencies representation) has been shown by Bahlmann                                            

et al who observed an interaction between the dlPFC, encoding the level of engaged cognitive control,                                               

and ​  ​the ​  ​dmPFC,​  ​encoding ​  ​the ​  ​amplitude ​  ​of​  ​the ​  ​expected ​  ​value ​  ​(Bahlmann ​  ​et​  ​al,​  ​2015).  
  

Taken together, these results suggest that the task structure representation in value-­based learning might                                         

be subserved by the medial (m)PFC and that more lateral parts of the PFC might be involved in the                                                        

shaping ​  ​of​  ​such ​  ​model ​  ​to ​  ​drive ​  ​efficient​  ​learning.    
  

Another way to reduce the computational weight of structure inference and to relax the Bayesian brain                                               

hypothesis is to consider that some types of heuristics can be used. For instance, Palminteri et al (2015)                                                     

placed participants in a context in which they were implicitly primed for task (state) structure through trials                                                  

in which feedback to both the chosen and unchosen options were provided to the participants – the                                                  

feedback on the unchosen option thus constituting a fictive or counterfactual outcome. The authors                                         

showed that in the presence of feedback on the unchosen option, humans could efficiently use outcome                                               

4​  ​activation​  ​peak​  ​was​  ​found ​  ​specifically​  ​in ​  ​the ​  ​dorsal​  ​part​  ​of​  ​the ​  ​anterior​  ​cingulate​  ​cortex​  ​(ACC)​  ​which ​  ​correlated​  ​with  
the ​  ​volatility​  ​parameter​  ​in ​  ​Behrens​  ​et​  ​al ​  ​2007.​  ​Note​  ​that ​  ​the ​  ​higher​  ​the ​  ​volatility​  ​of​  ​a ​  ​choice ​  ​environment,​  ​the ​  ​higher  
the ​  ​learning​  ​rate ​  ​in ​  ​a ​  ​reinforcement​  ​model,​  ​which ​  ​leads​  ​to ​  ​a ​  ​stronger​  ​trial-­by-­trial ​  ​update,​  ​and ​  ​thus ​  ​to ​  ​new ​  ​expected  
values​  ​reflecting ​  ​more ​  ​the ​  ​recent​  ​choice ​  ​history​  ​of​  ​the ​  ​agent​  ​than ​  ​the ​  ​past​  ​(Khamassi ​  ​et​  ​al,​  ​2013)  
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information to indirectly infer in which state they were by learning the value of the context (positive /                                                     

negative) and re-­frame the reward received according to the context: a positive reward could be                                            

experienced as subjectively negative if it was lower than the average reward of the current context, and                                                  

conversely. In another study (Lefebvre et al, 2017), the authors highlighted the signs of use of an                                                  

optimistic heuristic in humans learning in an uncertain environment. In their study, some participants (half)                                            

faced with multiple two-­armed bandits displayed a stronger update (higher learning rate) for the expected                                            

value of an option that lead to a better than expected feedback (positive reward prediction error) than a                                                     

negative one (see also Kuzmanovic & Rigoux, 2017). In addition, the same team identified an opposite                                               

trend (lower learning rate) when participants were also learning from the (provided) unchosen outcome,                                         

thus suggesting the existence of a sort of confirmation bias in learning (Palminteri et al, 2017). The way                                                     

the representation of the hypothetical outcome that would have been obtained if one had made a different                                                  

choice alters decision-­making has been well studied in both economics and cognitive neuroscience                                      

(Coricelli & Rustichini, 2010). However, it requires for the subjects to know the task structure in order to                                                     

infer the counterfactual outcome. In the case where capturing this task structure is difficult, some studies                                               

suggested that heuristics can be employed to compensate. In fact, a recent study (Gershman et al, 2017)                                                  

showed that humans could even use imagination, even if suboptimal, to explore the possible structures of                                               

the ​  ​task​  ​and ​  ​drive ​  ​model-­based ​  ​learning.    
  

  

II-­ ​  ​Deciding​  ​in ​  ​a ​  ​social ​  ​world  
  

A) ​  ​Social​  ​decision​  ​making  
  
The first section of this introduction has mostly focused on non-­social tasks, where a subject                                            

learns in interaction with its environment through the sole evaluation of the outcome of her own actions.                                                  

Nevertheless, social interactions constitute an important part of our daily life, which drove an important                                            

body of the decision-­making literature to investigate choices made in a social environment (Rilling &                                            

Sanfey, 2011). Social decisions may be of different nature than nonsocial ones. Neuro-­economists have                                         

questioned whether the value-­based decision-­making framework can be useful to shed light on the                                         

different components of social cognition, with one particular question at the front: what actually makes a                                               

social ​  ​decision ​  ​different​  ​from​  ​a ​  ​non ​  ​social ​  ​decision ​  ​from​  ​a ​  ​cognitive ​  ​point​  ​of​  ​view?  
  

At first, one could simply ask if a decision with consequences for only oneself differs when made in a                                                        

social or in a non-­social context. In 2011, Zaki et al (2011) used functional MRI to test the famous                                                        

influence (or conformity) effect first noticed by Asch in 1956 (Bond & Smith, 1996), according to which                                                  
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peer choices might modulate (non-­social) value-­based decisions. They found that value-­related brain                                   

regions (OFC, striatum) would be more activated when evaluating a face attractiveness after being                                         

informed that average participants ratings were congruent, than when incongruent. A year later, Lebreton                                         

et al (2012) directly tested whether the evaluation of a good can be affected by the implication of another                                                        

person. They hypothesized that the value of a good would be enhanced when participants are (visually)                                               

informed that someone else would also be interested in choosing that good. They found that this was                                                  

indeed the case, extended for goods of different natures, and presented evidence that brain areas                                            

previously labeled as part of the mirror neuron system (MNS) -­-­ for their similar activation when an action                                                     

is either performed or observed -­-­ might modulate the activity of regions typically involved in non-­social                                               

valuation (vmPFC, striatum). But this social contagion effect has been found to go beyond good                                            

evaluation, and to also shape individual preferences. Chung et al (2015) recently showed that observing                                            

someone else making a decision between risky options (gambles) influenced participants in their choices.                                         

Participants chose the risky gamble more often after observing two other persons picking the risky option                                               

than when choosing alone. This influence effect can be computationally operated by increasing the                                         

subjective value of the gamble chosen by others in observation trials. The authors linked the importance                                               

of this preference-­related influence effect during valuation to the vmPFC activity, while the size of the                                               

discrepancy between one’s preference and the other’s choice correlated to the BOLD signal in the ACC                                               

and the Insula. Unlike the other two previous studies, however, this experiment did not reveal any                                               

involvement​  ​of​  ​brain ​  ​regions​  ​usually​  ​implicated ​  ​in ​  ​social ​  ​cognition ​  ​tasks​  ​in ​  ​preference​  ​modulation.    
  

Bault et al (2010) showed that in probabilistic settings (choosing between two lotteries), observing                                         

someone making more risky decisions also pushed participants to become more risk-­seeking. Their study                                         

however shows that the task itself, which displayed the outcome obtained by the other after making a                                                  

choice in the same environment (state), leads to a social comparison effect. The computation of the                                               

difference between one’s experienced reward in comparison to her opponent’s (relative gain or loss) was                                            

correlated to BOLD activity in the striatum, while obtaining a higher reward than the other lead to higher                                                     

activity in the temporo-­parietal junction (TPJ, a region involved in social cognition tasks requiring                                         

self/other​  ​perspective ​  ​switching) ​  ​and ​  ​a ​  ​more ​  ​dorsal ​  ​part​  ​of​  ​the ​  ​PFC ​  ​(mPFC).    
  

Another study by Strombach et al (2015) investigated preferences when the decisions were directed                                         

towards a counterpart. Participants were asked to choose between keeping a given amount of money and                                               

sharing a fixed amount with another person, this person varying from close relative to total stranger. The                                                  

authors showed that the subjective value signal encoded in vmPFC was modulated by the activity of the                                                  

TPJ, which varied in the task with the social distance of the receiver. Taken together, these results                                                  

suggest a common subjective value computation process during non-­social decisions made in a social                                         
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context, modulated by socially relevant information even when not necessary for goal achievement                                      

(expected ​  ​value ​  ​maximization).    
  

Through an extensive review of studies investigating the neural correlates of value-­based decision                                      

making in social contexts, Ruff & Fehr (2014) suggested that the available evidence point towards a                                               

common cognitive machinery subserving both social and non-­social value-­based decisions, modulated by                                   

the integration of signals provided by regions usually found to compute socially-­specific features. In order                                            

to test this hypothesis of a common valuation system to social and non-­social decisions, the two authors                                                  

distinguished between different types of social frames in which the value-­based decision-­making model                                      

proposed by Rangel et al (2008) could be implemented. Indeed, while social decisions might be, as                                               

previously seen, non-­social decisions made in a social context, they nervertheless can also be directed                                            

towards (or at least involved in) the consideration of another person’s behavior, and might thus require                                               

the ​  ​evaluation ​  ​of​  ​the ​  ​counterpart,​  ​their​  ​decisions,​  ​or​  ​the ​  ​nature ​  ​of​  ​the ​  ​social ​  ​interaction ​  ​​per ​  ​se ​.    
Note that a reward can be of a social nature, such as a smile or a positive verbal feedback. Then                                                           

interrogating if such rewards are computed similarly to money, good or food can be considered as part of                                                     

the value-­based framework. Smith et al (2014) addressed this question in a study in which male                                               

participants were asked to pay money to see (subjectively) attractive pictures of women’s faces. Their                                            

fMRI analysis revealed that the values of the social stimuli correlated with the BOLD signal recorded in                                                  

the vmPFC. Functional connectivity revealed that the correlation in activity between vmPFC and brain                                         

areas related to social cognition such as TPJ, covaried with the willingness to pay to see socially                                                  

attractive stimuli, suggesting signal exchange between these areas during the social evaluation process.                                      

However, their study did not tackle the issue of how to compute the value of rewards of social nature per                                                           

se. Nevertheless, recent results suggest that the same striatum structure also encodes both the                                         

experience of non-­social (money) and social reward stimuli such as social approval (Davey et al, 2010),                                               

but also social reputation (Wake & Izuma, 2017), and even the ability to engage in facial mimicry in                                                     

response ​  ​to ​  ​a ​  ​counterpart​  ​(Hsu ​  ​et​  ​al,​  ​2017).  
  

As Ruff and Fehr pointed out, social decisions can also involve the evaluation of another person’s                                               

reliability or attractivity, for instance when asked to make a charitable donation. In a sense, the study by                                                     

Strombach et al posits that the closer a recipient is from the participant, the more valuable s/he appears,                                                     

and therefore the more willing they would be to donate some of their money. Here again, common brain                                                     

mechanisms have been identified when participants were asked to pay for a good, or donate to charities.                                                  

For instance, Hare et al (2010) showed that the BOLD signal in the vmPFC correlates with the magnitude                                                     

of the donations, while functional connectivity analyses suggested that areas such as TPJ might mediate                                            

these social value signals. A recent study (Tusche et al, 2016) managed to disentangle the specific                                               

trial-­by-­trial involvement of TPJ activity during charitable decision-­making, and concluded that TPJ                                   
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encodes a perspective-­taking computation modulating social valuation towards more charitable choices,                                

while ​  ​the ​  ​Insula ​  ​correlates,​  ​independently​  ​at​  ​the ​  ​individual ​  ​level,​  ​with ​  ​the ​  ​empathetic​  ​motivation ​  ​to ​  ​donate.  
Thus, similar cognitive mechanisms seem to encode experienced or expected reward values in social and                                            

non-­social contexts. However, the adequacy of the value-­based framework for social decisions can be                                         

extended beyond self-­oriented choices. An important body of evidence indeed suggests that similar brain                                         

structures encode experienced or expected rewards when a counterpart performs a task. The striatum                                         

has been found to be also activated when observing someone else experiencing a (non-­social) reward                                            

following a choice (Mobbs et al, 2009). Besides, Nicolle et al (2012) showed that making a choice for a                                                        

counterpart which required to take into account her preferences activated the vmPFC similarly than when                                            

making a choice for oneself. Interestingly, Apps et al found a distinction between two parts of the mPFC                                                     

(ACC), one encoding similarly the effort one or someone else needs to engage in order to obtain a                                                     

non-­social reward, while the activity of a more anterior part of this area correlated with the net value                                                     

(benefit​  ​-­​  ​cost)​  ​of​  ​the ​  ​counterpart​  ​only​  ​(Apps​  ​&​  ​Ramnani,​  ​2014).  
Altogether, these studies suggest that a common value-­based decision-­making process implicated in                                   

non-­social decisions is also recruited during social decisions, from non-­social choices in a social context                                            

to the representation of the other’s decisions. Evidence however suggests that a set of socially dedicated                                               

areas such as TPJ, Insula and mPFC could encode socially-­relevant information then used to modulate                                            

one’s​  ​choice ​  ​process.​  ​Something ​  ​about​  ​social ​  ​decisions​  ​might​  ​actually​  ​be ​  ​special.    
  

  

B)​  ​​ToM​​  ​and​  ​the ​  ​Social​  ​brain​  ​hypothesis  
  

Theory of mind, refers to the ability to infer the mental states of other individuals, such as beliefs                                                     

or intentions. This cognitive function has been the center of heavy debates since almost 40 years, from                                                  

the question of its human-­specificity to its neural underpinnings (Mahy et al, 2014). In the last decades,                                                  

the ways to capture this cognitive function have moved from simple static experiments, such as the                                               

false-­belief task (Baron-­Cohen et al, 1985), to the development of sophisticated computational models                                      5

capable of capturing some of its key aspects (Baker et al, 2017). Many hypotheses have been made                                                  

concerning the cognitive processes at its core. Some authors have suggested that displaying ToM                                         

requires a complete simulation of the other person using innate brain apparatus or dedicated modules                                            

(simulation theory) (Gallese & Goldman, 1998). In contrast, others argue that this capacity relies on the                                               

5​  ​​  ​The ​  ​standard​  ​version ​  ​of​  ​the ​  ​false ​  ​belief​  ​task​  ​has​  ​been ​  ​mainly​  ​used ​  ​with​  ​children​  ​to ​  ​assess​  ​their ​  ​ability​  ​to ​  ​engage​  ​in  
Theory​  ​of​  ​mind.​  ​The ​  ​task​  ​consists​  ​in ​  ​a ​  ​series​  ​of​  ​pictures​  ​in ​  ​which ​  ​they ​  ​first​  ​see ​  ​a ​  ​character,​  ​Sally,​  ​who ​  ​leaves​  ​a  
valuable​  ​item​  ​(such ​  ​as​  ​a ​  ​chocolate​  ​bar)​  ​in ​  ​a ​  ​box​  ​before​  ​leaving​  ​her​  ​room.​  ​Then, ​  ​while ​  ​Sally​  ​is​  ​away,​  ​Anne ​  ​comes​  ​and  
removes​  ​the ​  ​item​  ​from​  ​the ​  ​box​  ​and ​  ​places​  ​it​  ​in ​  ​another​  ​content​  ​(such ​  ​as​  ​a ​  ​basket).​  ​Finally,​  ​the ​  ​children​  ​see ​  ​Anne  
leaving​  ​and ​  ​Sally​  ​returning​  ​to ​  ​the ​  ​scene.​  ​Participants​  ​are ​  ​asked ​  ​to ​  ​tell ​  ​where ​  ​Sally​  ​will ​  ​look​  ​for ​  ​the ​  ​item​  ​(or ​  ​where ​  ​she  
thinks​  ​it​  ​is).  
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development of a representation of the other in the same way we learn the contingencies of an external                                                     

phenomenon (theory theory) (Gopnik & Wellman, 1994). However, the accumulated empirical evidence                                   

does not seem to allow strong rejection of one hypothesis in favor of the other (for a recent review see                                                           

reference Mahy et al, 2014). Indeed, ToM is puzzling for cognitivists. On the one hand, neuroscience                                               

studies investigating ToM lead to quite heterogeneous results depending on the task, leading                                      

meta-­analyses to provide little information about its underlying cognitive processes (Molenberghs et al,                                      

2016;; Schurz et al, 2014). On the other hand, a set of brain areas including TPJ and mPFC have been                                                           

consistently found to correlate in activity with the ToM involvement in a variety of tasks ​( ​this paradox is                                                     

presented in Fig.6) ​(Rushworth et al, 2013;; Spunt & Adolphs, 2014);; as if there was actually a ​social brain                                                        

hidden within the brain (Dunbar, 2002). Some authors have recently tried to use a different type of                                                  

analysis using MRI, starting from how people organize their representations about other’s mental states.                                         

They clustered the variety of mental contents reported to be linked to thinking about a counterpart by an                                                     

important pool of Internet participants into relevant dimensions or social mental states, and scanned                                         

subjects who engaged in the representation of situations located along these parameterized dimensions.                                      

The authors found some regularities in the brain activity, along with the mPFC or the TPJ, but no clearer                                                        

distinctions​  ​emerged ​  ​(Tamir​  ​et​  ​al,​  ​2016).  
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____________________________________________________________________________________

  

Figure ​  ​6 ​  ​-­​  ​A ​  ​social​  ​brain?  
A) Meta-­analytic results of 73 ToM studies from Schurz et al, 2014. (adapted from Schaafsma et al, 2015) B) Topic                                                           

maps (Yarkoni et al., 2011;; http://neurosynth.org): emotion (116), social games and interactions (135), mentalizing                                         

(143). (adapted from Stanley & Adolphs, 2013) C) Mapping of medial frontal cortex activations observed during action                                                  

monitoring, social cognition and outcome monitoring. The meta-­analysis suggests that social cognition tasks, which                                         

involve self-­knowledge person perception and mentalizing activate areas in the anterior rostral MFC (arMFC).                                         

(adapted​  ​from​  ​Amodio ​  ​& ​  ​Frith,​  ​2006).  
____________________________________________________________________________________  

  

When it comes to investigating the specific cognitive processes underlying ToM, one main difficulty lies in                                               

its nature: social interactions are hard to control, and hence hard to measure in a laboratory setting                                                  

(Schilbach et al, 2013). Additionally, ToM encapsulates a variety of cognitive processes, not all                                         
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domain-­specific, which is a conceptual problem (Frith & Frith, 2012). Recently a wake-­up call was given                                               

by authors who suggested that, while faced with an ​unsolvable debate, the black box should be opened.                                                  

ToM should be decomposed into its (hypothesized) sub-­functions in order to understand how each one is                                               

encoded by the brain, how specific their computations are and how these ToM subprocesses interact                                            

(Schaafsma et al, 2015). Identifying the different processes involved in ToM, and how the related signals                                               

are encoded at the brain level might help disentangling these different subfunctions and shed light on                                               

their specificity (Spunt & Adolphs, 2017). For instance the mPFC and the TPJ have been shown to                                                  

encode different computational signals given the task performed. The former has been linked to various                                            

cognitive functions such as representing other’s preferences (Amodio & Frith, 2006), or distinguishing                                      

between the thoughts and feelings of the self and the others (Jenkins & Mitchell, 2011) (see Fig.6.C),                                                  

while the latter was found to encode perspective-­taking (Santiesteban et al, 2011), as well as moral                                               

judgment (Koster-­Hale et al, 2013), or the representation of someone else's emotions (Saxe & Houlihan,                                            

2017).    

  

A recent experiment by Kanske et al (2016) proposed that two of the subfunctions commonly associated                                               

to ToM (Schurz et al, 2014), empathy and mentalizing, might be subserved by two distinct processes. In a                                                     

previously validated paradigm in which participants had to answer either empathy-­oriented or                                   

mentalizing-­oriented questions, they showed that the performance in each task did not correlate within                                         

subject, and that two distinct networks were recruited, including anterior insula in the empathy network                                            

and TPJ in mentalizing network, that interacted with each other in case of conflict. Besides, Koster-­Hale &                                                  

Saxe (2013) proposed that the brain computation involved in mentalizing can be investigated through the                                            

predictive coding framework. The authors suggested that the other’s mental states can be considered as                                            

“unobservable, internal causal structure” driving the observable actions. Indeed, it has been shown that                                         

such mental states might be inferred from action observation, like confidence in a choice (Patel et al,                                                  

2012). In this framework, grasping the other’s intentions or beliefs (but also preferences and even                                            

personality traits) can be reduced to a prediction problem, requiring inference over the other’s behavior.                                            

Social learning, seen as a paradigm where subjects aim at using information provided throughout the                                            

interaction to improve the prediction over other participants’ next action, thus appears as a key cognitive                                               

process​  ​underlying ​  ​mentalizing.  
  

The value-­based computational approach presented previously could thus provide a useful framework to                                      

understand how the human brain dynamically updates beliefs about others in a continuously changing                                         

social environment. Moreover, the similarity of the processes involved in the computation of value-­based                                         

choices in non-­social and social settings suggests that social learning might operate upon the same                                            

cognitive mechanisms as non-­social learning. Gęsiarz & Crockett (2015) recently highlighted this parallel                                      

and proposed to extend the reinforcement learning framework to social decisions such as prosocial                                         

  

26



behavior (donation, cooperation), arguing that “brain circuits specialized for prosocial behaviors, if such                                      

circuits exist, could either be embedded within the general-­purpose [value-­based learning] systems or                                      

constitute ​  ​an ​  ​input​  ​and ​  ​output​  ​for​  ​them”.  
  

  

C)​  ​Social​  ​learning  
  
Social learning can take at least two forms depending on the nature of the interaction between                                               

individuals. Learning from other persons requires implementing the information relative to their actions in                                         

one’s own learning process. Learning about the other, also called vicarious learning, requires learning                                         

someone’s behavior through observation. A learning type in-­between could be seen as learning about a                                            

specific​  ​attribute ​  ​of​  ​the ​  ​other’s​  ​behavior​  ​in ​  ​order​  ​to ​  ​improve ​  ​self-­oriented ​  ​decision-­making.  
  

  

1) Learning ​  ​from​  ​others  
  

Previous studies have shown that humans can learn in a RL fashion the action-­outcome                                         

contingencies of a probabilistic learning task through the observation of a counterpart’s learning in a                                            

similar environment (Nicolle et al, 2011). Prediction error signals driving expected value update have                                         

been found to correlate with BOLD signal in similar areas during learning a task in isolation and during                                                     

learning ​  ​by​  ​observation ​  ​(Cooper ​  ​et​  ​al,​  ​2012).    
  

When faced with a decision problem, individuals can observe others’ decisions and try to incorporate this                                               

information into their own learning process. Burke et al (2010) developed a task where participants were                                               

faced with a two-­armed bandit. During each trial the choice of an unknown confederate in the same task                                                     

was displayed. By modulating the amount of information available about the other’s decision-­making                                      

process, either complete (both actions and rewarding outcome of the other are observable), incomplete                                         

(other’s actions but not outcome displayed) or in isolation, they show that the more information about the                                                  

other player’s decision process they had, the better they performed. They fitted the participants choices                                            

using a reinforcement learning (RL) model that computes, in complete feedback, a reward prediction error                                            

from the other’s decisions meant to refine, through simulation, the expected value from their own choice.                                               

This other related PE was found to correlate with BOLD signal in the OFC and striatum. In the incomplete                                                        

information condition, the observational learning only influences imitation based on the relative advantage                                      

it represents for the participant’s cumulated rewards. The teaching signal in this condition, the action                                            

prediction error signal, was found to correlate with activity of the lateral prefrontal cortex (lPFC). Crucially,                                               
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Burke et al’s results show that when it is available, individuals use the information provided by the                                                  

observation of a confederate’s decision to improve their own learning process. Conversely, when only                                         

actions​  ​are ​  ​available ​  ​they​  ​mainly​  ​use ​  ​information ​  ​provided ​  ​by​  ​imitation ​  ​to ​  ​drive ​  ​their​  ​choice.    
  

Simply imitating the other’s behavior is computationally efficient, and as a matter of fact this type of                                                  

learning occupies an important place in animals’ social learning strategies (Heyes & Galef, 1996). Also, a                                               

specific network has been identified in the human brain dedicated to action mirroring, an automatic                                            

process (Van Overwalle & Baetens, 2009). A hypothesis which has been put forward is that humans                                               

imitate the other’s behavior only when this enables to maximize the probability to obtain an expected                                               

reward. Recently, Vostroknutov et al (2017) showed that in a similar task with incomplete information over                                               

a confederate behavior evolving in the same decision environment (a two-­armed bandit in which reward                                            

probabilities change through time), humans were capable of using different types of observational                                      

learning strategies. Some subjects would simply imitate the action of the confederate but only when it had                                                  

lead to increased reward in the past trials, as could be accounted for by the RL framework, similarly to                                                        

what Burke et al showed. However, other participants imitated only when the opponent’s past actions                                            

were constant, and when this mainly selected action corresponded to the best response according to their                                               

own learning process. The authors also showed that the latter, more sophisticated strategy, was used                                            

more among participants with a higher IQ (as measured by a suitable additional reasoning task).                                            

However, these (high IQ) participants were found to abandon this sophisticated observational learning                                      

process for a simpler imitation strategy when the IQ score (high only) of the other confederate was given                                                     

to them. This result suggests that an information relative to the other can be considered as a good                                                     

enough ​  ​proxy​  ​to ​  ​evaluate ​  ​the ​  ​usefulness​  ​of​  ​its​  ​behavior​  ​for​  ​one’s​  ​own ​  ​learning ​  ​strategy.    
  

However, in a social situation, some sort of intentional communication is usually possible between                                         

individuals, such as verbal communication or signalling (Pezzulo, 2013). In that case, an individual faced                                            

with an uncertain environment could for instance receive information directly from a counterpart, in the                                            

form of an advice. In 2008, Behrens et al showed that humans were able to integrate such information in                                                        

their learning process to improve their performance in a changing two-­armed bandit environment. The                                         

authors used a learning model combining a model-­based RL and a Bayesian learning model learning the                                               

generative model of the task (as instructed to the participants) (see Fig.6.B). The Bayesian model was                                               

keeping track of the probability of change in the reward probability driving the choice environment                                            

(volatility) but also o correctness of the advice received by the counterpart, which was controlled by the                                                  

experimenter in order to keep the task solvable. The (model-­based) fMRI analysis revealed that the                                            

prediction error computed by the model over the information provided by the confederate (misleading                                         

advice) correlated to the amplitude of BOLD signal in the dmPFC and rTPJ, while the prediction error on                                                     

the (own) value-­based choice correlated with the activity of the striatum and the vmPFC. As previously                                               
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shown in the nonsocial domain, the dmPFC (ACC) was found to encode the choice environment volatility                                               

(change in action-­outcome associations) over time, expect that here this correlation was stronger for                                         

subjects weighing more the advice in their learning process. Similarly the encoding of expected reward                                            

value derived from the other advice encoded in the vmPFC was found to be modulated by the volatility                                                     

signal in the dmPFC. Biele et al (2011) investigated the effect of trustworthy advices on learned expected                                                  

values in a probabilistic four-­option-­task, they showed that participants’ choices were best modelled by a                                            

RL model including a (subjective) bonus to the experienced reward after following advice. At the brain                                               

level following an advice lead to a greater activity of the striatum at the time of the outcome, but also a                                                              

reduced ​  ​BOLD ​  ​value-­related ​  ​signal ​  ​in ​  ​the ​  ​OFC ​  ​when ​  ​following ​  ​the ​  ​advice ​  ​did ​  ​not​  ​lead ​  ​to ​  ​the ​  ​reward.    
  

Learning from another individual might thus require evaluating the trustworthiness of this person, either by                                            

mere observation -­should I imitate or not when uncertain -­, or when receiving an advice regarding of what                                                     

choice ​  ​to ​  ​make ​  ​or​  ​what​  ​learning ​  ​strategy​  ​to ​  ​adopt.    
  

  

​2)​  ​Learning ​  ​about​  ​others  
  

How humans learn about someone else encompasses a large number of different topics of                                         

investigation. We will distinguish here two main lines of interests: learning about someone’s attributes and                                            

learning ​  ​about​  ​someone’s​  ​behavior.    
  

As previously mentioned, two theories have been proposed in developmental and then cognitive                                      

psychology, to explain mentalizing, or inference about someone’s intentions, beliefs or traits. At one side,                                            

the simulation theory posits that this inference process is rooted in our own cognition, so that we start                                                     

from our knowledge about how we decide or about our own behavior to make sense of the behavior of the                                                           

other. On the other side, the so called theory theory proposed that we learn from scratch about the other                                                        

by making predictions and forming representations about someone’s behavior as much as we learn about                                            

the world surrounding us (Apperly, 2008). Investigating the cognitive mechanisms implicated in learning                                      

about​  ​others,​  ​can ​  ​shed ​  ​light​  ​on ​  ​this​  ​debate ​  ​(Joiner​  ​et​  ​al,​  ​2017;;​  ​Mahy​  ​et​  ​al,​  ​2014).  
  

When it comes to judge someone, including across cultures, two main dimensions or traits, can be                                               

distinguished: warmth, and competence (Judd et al, 2005). Warmth is associated to the perceived intent                                            

including trustworthiness, helpfulness and sincerity, and appears crucial to maximize chances of survival.                                      

Competence on the other hand corresponds to traits such as the abilities to be creative, intelligent or                                                  

skilled. From an evolutionary perspective, competence can be seen as important as warmth when it                                            
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comes to ask for help or to cooperate (Fiske et al, 2007). Albeit complex, both dimensions require                                                  

accurate estimation, so that forming impressions should involve specific learning abilities. Similarity and                                      

dissimilarity have been proposed as an effective proxy for impression formation, and have been linked to                                               

the mPFC, the former to the ventral part of the mPFC, the latter to the dorsal mPFC (Mitchell et al, 2006).                                                              

Recently, Ma et al (2013, 2016) used a specific fMRI design protocol (repetition-­suppression) to identify                                            

the brain areas encoding both warmth and competence traits when representing someone. They found                                         

that both traits correlated with the BOLD signal of the vmPFC. However, in the protocol used by the                                                     

authors, participants were asked to read sentences eliciting the mental representations of those traits, but                                            

the learning processes subserving the formation of impression regarding the others remained unexplored.                                      

In the study conducted by Mende-­Siedlecki et al (2012),  participants were presented with different faces,                                         

either alone or associated to a brief characteristic such as the description of a behavior, with a certain                                                     

valence that switched after some consecutive trials. They found that among the network displaying higher                                            

activity when the description were attached to faces -­-­ this network including TPJ and lateral PFC -­-­, only                                                     

the dmPFC showed an increased BOLD response after a switch suggesting an update in impression                                            

formation ​  ​about​  ​the ​  ​presented ​  ​face.    
  

Moreover, in a similar task Hughes et al (2017) showed that when participants were informed that the                                                  

presented face corresponded to someone from the in group (same university), but not the out group, they                                                  

failed to update the impression regarding this face once a negative description was attached, which                                            

translated into a lower activation (compared to actual update in ingroup) in these brain areas. Still, the                                                  

type of stimuli used to initiate representation of someone else’s traits were written descriptions, which                                            

limits the social aspect of the task. Boorman et al (2013)  used a decision-­making task in which                                               

participants had to predict the evolution of an asset with a value statistically fluctuating over time, either                                                  

by betting directly on its next state (higher/lower than previous trial), or by betting over someone else                                                  

(among 3 different but recognizable confederates) they could watch perform the same task. The learning                                            

model best fitting the participants’ behavior was a Bayesian learner based upon a similar predictive model                                               

as introduced by Behrens et al (2007).The model could track both the performance level of the observed                                                  

confederate and the probability of the asset to go up and down. The authors showed that the beliefs,                                                     

representing in the Bayesian framework the trial-­by-­trial updated probability over someone’s expertise                                   

(accuracy) in the task, correlated with the BOLD signal in the rmPFC (the expected value of the asset and                                                        

the reward prediction error over its evolution correlated respectively to the activity of the vmPFC and                                               

striatum). They then distinguished two types of action prediction error: one at the time of their prediction                                                  

outcome, when the confederate’s action is revealed, encoded in the rTPJ and dmPFC;; and one at the                                                  

time of the other’s choice outcome (update of the belief over its expertise), encoded in the dorsolateral                                                  

PFC.    
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Other studies have recently proposed that humans can also infer other’s preferences using a similar                                            

Bayesian inference scheme (Jern et al, 2017). Devaine & Daunizeau (2017) extended this framework to                                            

capture human’s ability to learn someone else’s biases in costly and uncertain value-­based choice                                         

environment. They notably found that individuals exhibited a strong egocentric bias at start, before                                         

updating ​  ​their​  ​impression ​  ​over​  ​the ​  ​other.  
To test specifically how the computation underlying trait learning interact with the cognitive processes                                         

implicated in value-­based learning, Hackel et al (2015) designed an experiment that aimed at                                         

distinguishing the proportion of trait-­related information from reward-­related information in a probabilistic                                   

two-­choice task (a two-­armed bandit) combining social and non-­social stimuli. They showed that when                                         

informed about both the generosity (propensity to share money from a pool in social context, or pay out                                                     

from a maximum payoff scale in the non-­social context) and the reward (experienced outcome),                                         

participants rely more on the generosity information. Moreover, they showed that the prediction error                                         

related to this trait correlated with BOLD signal in the network previously implicated in social impression                                               

updating (lPFC, parietal cortex, and TPJ). In contrast, the reward prediction error correlated with striatal                                            

activity.  

  

While forming one’s impressions by learning someone else’s traits is crucial in social interaction, inferring                                            

her intentions and beliefs through the observation of her trial-­by-­trial behavior appears as a key function                                               

of mentalizing (Joiner et al, 2017). Gershman et al (2016) tested whether humans are capable of learning                                                  

a strategy employed by the other from her observed behavior. They developed a series of experiments in                                                  

which participants were asked to predict habitual actions in the other’s behavior, by variables such as                                               

action repetition or decision time, to more sophisticated patterns in choice history suggesting the use of a                                                  

model-­free system. They showed that humans are able to infer habitual control in the other’s behavior. In                                                  

addition, they presented evidence that individuals are more compliant (i.e. they blame less the other),                                            

when the negative outcome of their behavior is believed to have been generated through a habitual rather                                                  

than a deliberative process. Together these results suggest that humans are able to build through                                            

learning ​  ​a ​  ​representation ​  ​of​  ​an ​  ​observed ​  ​model-­free ​  ​agent.    
  

Seid-­Fatemi & Tobler (2014) completed this scheme by showing that the blocking effect , considered as                                            6

characteristic of an efficient (model-­free) reinforcement learning strategy (Tobler et al, 2006), could be                                         

learned in others by humans. Participants were asked to predict the outcome of a confederate’s choice in                                                  

a probabilistic two-­choice task, in contrast to learning themselves the reward contingencies in the same                                            

task. The authors showed that participants displayed similar effect when predicting the other’s choice, and                                            

6 ​  ​​Blocking ​  ​corresponds​  ​to ​  ​the ​  ​absence​  ​of​  ​association​  ​between​  ​a ​  ​stimulus​  ​and ​  ​a ​  ​reward ​  ​when ​  ​another​  ​present  
stimulus​  ​had ​  ​already​  ​been ​  ​paired​  ​to ​  ​it,​  ​and ​  ​so ​  ​when ​  ​the ​  ​reward ​  ​is​  ​already​  ​fully ​  ​predictable​  ​by​  ​this ​  ​other​  ​stimulus.    
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this effect was not due to learning in isolation on behalf of the other. Moreover, they found that the                                                        

dorsomedial (dm)PFC displayed higher activity during blocking in the social condition of the experiment                                         

only,​  ​therefore ​  ​suggesting ​  ​that​  ​humans​  ​are ​  ​able ​  ​to ​  ​efficiently​  ​model ​  ​someone ​  ​else’s​  ​learning ​  ​behavior.  
  

Suzuki et al (2012) hypothesized that when observing a model-­free learner, humans employ model-­based                                         

reinforcement mechanisms to learn the action-­outcome contingencies of that other person in order to                                         

predict her behavior in a probabilistic environment. The authors developed a paradigm in which                                         

participants had to learn the reward contingencies of a two-­armed bandit in two conditions. In one                                               

condition they had to solve the decision problem for themselves;; in the other condition they were informed                                                  

trial after trial of the choice that the other made in the same task, and had to place a bet on her next                                                                    

choice ​(Fig.7.A)​. Manipulating the learning model generating the choices of the computerized                                   

confederate, and testing different models that could explain participants’ choice behavior, they were able                                         

to specifically show that humans could predict the other’s choice through the learning of a model of the                                                     

other’s behavior based on the computation of a reward and an action prediction error. These two signals                                                  

(uncorrelated and both equally predictive of the other’s choice), were used to generate at each trial an                                                  

estimation of the simulated other’s choice probability, which would then be integrated within their own                                            

(model-­based) reinforcement learning process to drive their next prediction of the other’s choice ​(Fig.7.B)​.                                         

Using (model-­based) fMRI analyses, Suzuki et al were able to present evidence for a specific dissociation                                               

in the PFC between the subject’s choice process and the representation and update of the other’s choice                                                  

behavior. In their task the BOLD signal in the vmPFC correlated (simulated) reward prediction error (rPE)                                               

of the other (participant’s rPE correlating with striatum activity), while the activity of the dlPFC and dmPFC                                                  

respectively correlated positively and negatively with the action prediction error ​(Fig.7.D) ​(which also                                      

correlated to activation in the TPJ). Again, these results provide more evidence that different parts of the                                                  

human’s brain are able to decompose the observed behavior of someone else into different meaningful                                            

variables​  ​that​  ​can ​  ​be ​  ​then ​  ​combined ​  ​into ​  ​a ​  ​prediction ​  ​of​  ​the ​  ​other’s​  ​forthcoming ​  ​actions.  
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___________________________________________________________________________________

  

Figure ​  ​7 ​  ​-­​  ​Learning​  ​the ​  ​other’s ​  ​action-­outcome ​  ​contingencies ​  ​through​  ​observation    
A) Illustration of the experimental tasks. in both tasks, subjects chose between two fractal stimuli, and the stimulus                                                     

chosen by the subject was indicated by a gray frame. In the Control task, the ‘‘correct’’ (rewarded) stimulus of the                                                           

subject was revealed in the center. In the Other task, the rewarded stimulus of the other was indicated in the center,                                                              

and the other’s choice was indicated by a red frame. B) Best fitting model: ​Simulation-­RL (sRPE+sAPE)​. The large                                                     

box on the left indicates the subject’s internal process;; the smaller box inside indicates the other’s (O’s) internal                                                     

decision making process being simulated by the subject. At the time of decision, subjects use the learned                                                  

simulated-­other’s value to first generate the simulated-­other’s choice probability (O’s Choice Prob), based on which                                            

they generate their own value (S’s Value) and the subject’s choice probability for predicting the other’s choice (S’s                                                     

Choice Prob). Accordingly, subjects then predict the other’s choice. Once the outcome is shown, subjects update the                                                  
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simulated-­other’s value using the simulated-­other’s reward and action prediction errors (sRPE and sAPE),                                      

respectively;; sRPE is the discrepancy between the simulated-­other’s value and the other’s actual outcome, and sAPE                                               

is the discrepancy between the simulated-­other’s choice probability and the other’s actual choice, in the value level.                                                  

C)  Similar data averaged across all trials in a separate experiment. The two Other task conditions, Other I and Other                                                        

II, correspond to the other’s choices modeled by the RL model using risk-­neutral and risk-­averse parameters,                                               

respectively. D) Neural activity in the vmPFC correlated significantly with the magnitude of the sRPE at the time of                                                        

outcome. Neural activity in the dmPFC and dlPFC correlated significantly with the magnitude of the sAPE at the time                                                        

of​  ​outcome.​  ​(adapted​  ​from​  ​Suzuki ​  ​et​  ​al,​  ​2012)  
_____________________________________________________________________________________________  

  

In another study employing a similar probabilistic task, Sul et al (2015) showed that when participants                                               

were asked to learn to maximize either the earning for themselves or the money for someone else (or                                                     

both), the value-­related signal driving their choice was segregated along the mPFC ​(Fig.8.A)​. Indeed,                                         

self-­related values correlated with BOLD signal in the vmPFC, while other-­regarding values implicated a                                         

more dorsal part of the mPFC, which was more active for prosocial participants than for more selfish                                                  

ones. These results mimic the findings obtained by Christopoulos & King-­Casas (2015) who investigated                                         

how expected reward values are encoded while learning in a two-­armed bandit task in which choice                                               

outcomes were displayed for both the participants and someone else, since two distinct action-­outcome                                         

contingencies had to be learned through reinforcement, one for the participants’ own payoffs, and one for                                               

the other. The authors showed that BOLD signal in the mPFC correlated to the other’s reward prediction                                                  

error that was then used to update other-­regarding values ​(Fig.8.B) ​. They moreover showed that the                                            

strength of this teaching signal was modulated by the social value orientation score of participants,                                            

indicating ​  ​their​  ​level ​  ​of​  ​prosociality .  7

  

These findings thus suggest that humans are able to build a representation of the other’s choice behavior,                                                  

and learn in a reinforcement fashion through the use of this model. However, it remains unclear how                                                  

these computations related to the other interact with the (egocentric) cognitive process in social                                         

reinforcement​  ​learning.    
  

The study by Christopoulos & King-­Casas indeed suggests a key feature of decision in social context: the                                                  

influence of one’s behavior over the other. Two recent studies provide interesting insights on that matter.                                               

Suzuki et al (2016) investigated the preference contagion effect we briefly described in the last section, in                                                  

a learning setting in which humans had to make decisions between an uncertain probabilistic option and a                                                  

safe one that varied (independently) in risk and expected reward, and then to switch to prediction of a                                                     

7​  ​“In ​  ​this ​  ​separate​  ​[SVO]  task,​  ​participants​  ​chose ​  ​between​  ​allocations​  ​of​  ​an ​  ​endowment​  ​between​  ​oneself​  ​and ​  ​an  
anonymous​  ​social ​  ​partner,​  ​thus ​  ​revealing​  ​the ​  ​Cooperative,​  ​Individualistic,​  ​or​  ​Competitive​  ​orientation​  ​of​  ​each  
participant.”  
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confederate’s choice in the next series of trial. Using a Bayesian learning model, the authors showed that                                                  

participants were able to track the preference of the other towards risk, and to use this signal (found to be                                                           

encoded in the striatum) to predict their choice. Moreover, they found that participants’ own relation to risk                                                  

was modulated by such learning, hence leading to a contagion effect, and that such modulation,                                            

independent of their own learning process, was correlated with the activity of the dlPFC. In another study                                                  

using a sophisticated fMRI paradigm (repetition-­suppression), Garvert et al ​(2015) were able to show that                                            

the change in configuration of the mPFC activity correlated to the contagion effect, captured by the shift in                                                     

discount rate in one’s own intertemporal decisions towards the learned time-­discounting preference of a                                         

confederate. Their results also suggest that the amplitude of such mPFC plasticity modulates the                                         

correlation ​  ​observed ​  ​in ​  ​the ​  ​activity​  ​of​  ​the ​  ​striatum​  ​and ​  ​the ​  ​shift​  ​in ​  ​discount​  ​rate ​  ​​(Fig.8.C)​.  
  

Taken together these results suggest that humans are able to learn specific traits of another person                                               

through minimal information regarding their (choice) behavior. They are also able to learn someone                                         

else's action-­outcome contingencies on-­line, from the observation of her trial-­by-­trial decisions. A learned                                      

internal model of the other’s learning process is then used to implement a (model-­based) reinforcement                                            

learning strategy, using the prediction made over the other’s choices to guide their own learning process.                                               

Brain imagery data suggests the existence of a specific network dedicated to the learning of the                                               

action-­outcome contingencies underlying the confederate behavior, which includes (dorsal) mPFC and                                

lateral PFC. Moreover, it seems likely that the prediction error signals computed in these areas modulate                                               

the (non-­specific) value-­related signals driving the learning process and subserved by brain regions like                                         

vmPFC ​  ​and ​  ​striatum.  
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____________________________________________________________________________________

  

Figure ​  ​8 ​  ​-­​  ​Interaction​  ​between​  ​social​  ​and​  ​nonsocial​  ​learning​  ​processes ​  ​in​  ​the ​  ​mPFC  
A) Spatial gradient for self-­ and other-­ regarding value computation within the MPFC. Dotted lines indicate linear fits                                                     

of the spatial gradient for self (red) and other (blue) conditions. (adapted from Sul et al, 2015) B) Prediction error                                                           

signal for other-­value encoded in the mPFC. Left panel: Preference-­dependent prediction errors associated with                                         

updating of other-­value were estimated across four experimental conditions and subsequently regressed to                                      

hemodynamic activity. The four conditions correspond to the conditions in which other-­value differed between the two                                               

available options. Right panel: Beta values representing fitted responses to ‘self’ [blue] and ‘other’ [red] PE in medial                                                     

prefrontal cortex and ventral striatum. (adapted from Christopoulos & King-­Casas, 2015) C) The striatal correlate of                                               

the surprise about the novel other’s choices predicted plasticity in the mPFC (path a), and the mediator (mPFC                                                     

plasticity) predicted the shift of subjects’ own discount rate toward the discount rate of the novel other (path b,                                                        

controlled for the striatal surprise signal). There was a significant mediation effect (path ab), indicating that mPFC                                                  

plasticity formally mediates the relationship between striatal surprise and the shift in discount rate. (adapted from                                               

Garvert​  ​et​  ​al,​  ​2015)  
____________________________________________________________________________________  
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Nevertheless, it is still unclear if these cognitive processes are specifically involved during social                                         

decision-­making or if they subserve sophisticated forms of learning. Moreover, as recent studies point out,                                            

the distinction between the two forms of learning remains blurry: a contagion is observed between social                                               

and non-­social learning processes when the task requires to alternate between the two to make                                            

appropriate (rewarded) decisions. In fact, during social interactions, the outcome of one’s behavior often                                         

interacts with the outcome of the other, and therefore influences the contingencies of the choice                                            

environment​  ​itself.    
  

  

3)​  ​Learning ​  ​through ​  ​interactions​  ​with ​  ​others  
  

Most of our social interactions require both learning about and from another person, and often at                                               

the same time. Indeed, when the outcome of one’s decision impacts the environment of the other, or                                                  

directly the outcome of her own action, humans must engage in active learning to infer the other’s                                                  

intentions and beliefs, to adapt their own behavior to these predictions and to update from the feedback                                                  

they​  ​receive ​  ​in ​  ​return.    
  

Several recent studies have tackled this complex problem using a variety of ecological tasks. For                                            

instance, Suzuki et al (2015) scanned participants while they engaged in a consensus task with a small                                                  

group of (unknown) humans. The goal was that after a series of trials all the participants agreed on                                                     

choosing one among two displayed food items, thus requiring to take into account the initial subjective                                               

values (preferences) over the two goods and then, given the feedback received from the other                                            

participants, adapt their own behavior in order to obtain the desired good. The authors showed, using a                                                  

Bayesian learning model, that subjects’ preferences correlated with BOLD signal in the vmPFC, while the                                            

tracking of the probability that the group chooses an item correlated with activity in the rTPJ. Crucially,                                                  

they found that the trial-­by-­trial probability of choice computed by the model through the integration of                                               

these teaching signals was correlated with the recorded activity of the ACC. Hertz et al (2017) recently                                                  

aimed to investigate teaching or influence behavior over the other’s learning process. They set up a task                                                  

in which participants could advise a learner on what choice to make in order to maximize his final                                                     

earnings. Importantly, the scanned subjects were advising in competition against another adviser, which                                      

triggered learning over the optimal choice strategy that would make the learner listen to them. The                                               

authors showed that the participant’s advising choice was mainly influenced by the relative accuracy of                                            

their advice (in comparison with the one of their competitor), and by the actual learner’s decisions. They                                                  

showed that the former hidden variable correlated to the BOLD signal in the mPFC, while the latter                                                  

matched the activity of the rTPJ. This experiment, in a sense, represents the other side of the Behrens et                                                        
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al (2008) study on learning a non-­social task by weighted advices received by a counterpart, who found                                                  

that​  ​the ​  ​prediction ​  ​error​  ​over​  ​the ​  ​advisor’s​  ​choice ​  ​correlated ​  ​with ​  ​the ​  ​BOLD ​  ​signal ​  ​in ​  ​dmPFC ​  ​and ​  ​rTPJ.    
  

Still, in social interactions, interacting with another individual often implies interdependence between the                                      

two individuals’ behaviors. From a decisional standpoint, predicting the other’s behavior during an                                      

interaction in which one’s outcome depends on the other’s decision and vice versa, may require more                                               

cognitive resources/computations than simply learning action-­outcome contingencies hidden in                          

someone’s choice behavior when interacting in isolation (i.e. not in reciprocal interactions). If in both                                            

settings (social and non-­social) an individual would have to learn the ​generative model in order to apply                                                  

model-­based reinforcement learning and maximize her earnings, in an interactive environment, the                                   

hidden structure that the other constitutes changes depending on her own actions. In machine learning                                            

terms, such an influence of another individual’s behavior on the outcome of one’s own actions in the world                                                     

makes the Markov Decision Process ​non-­stationary​, which requires to constantly update one’s internal                                      

model ​  ​of​  ​task.  
Therefore, from a value-­based decision-­making point of view, social interactions might be either seen as a                                               

changing outcome rewards environment or more crucially as an adapting one, reacting to one’s own                                            

choices​  ​and ​  ​in ​  ​which ​  ​the ​  ​term​  ​“interaction”​  ​takes​  ​on ​  ​its​  ​full ​  ​meaning ​  ​(Hari ​  ​et​  ​al,​  ​2015)​  ​​(Fig.9)​.  
  

  

____________________________________________________________________________________  
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Figure ​  ​9 ​  ​-­​  ​Towards ​  ​strategic ​  ​learning ​  ​​  ​​(adapted​  ​from​  ​Shteingart​  ​&​  ​Loewenstein,​  ​2014)  
____________________________________________________________________________________  

  

III-­ ​  ​Social ​  ​learning​  ​in ​  ​strategic​  ​interactions  
  

A)​  ​Strategic​  ​interaction     
  

1)​  ​Behavioral ​  ​Game ​  ​Theory    
  

In economics, people call “strategic interaction” any social situation where one individual’s                                   

outcomes depend both on their own actions and on the ones of the other person(s). In other words, in                                                        

strategic interactions outcomes are jointly determined. Game-­theory models strategic interactions as                                8

games, with consists in a set of players (roles), a set of strategies (actions) for each player, a set of                                                           

8​  ​By​  ​​game​  ​theory​,​  ​we ​  ​actually​  ​imply​  ​noncooperative​  ​game ​  ​theory,​  ​in ​  ​which ​  ​no ​  ​direct​  ​communication​  ​is​  ​permitted  
between​  ​players,​  ​preventing​  ​coalition.  
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possible outcomes (often monetary gains/losses), and a function that links the outcome to each strategy                                            

profile (probability distribution over the actions of each player). Games are played simultaneously, with no                                            

communication possible. Therefore, no other information than the one provided by the game structure is                                            

available to the players. Games can take multiple forms;; we will focus here only on normal-­form games                                                  

with complete information. Since this thesis focuses on dyadic interactions, two-­player games can be                                         

represented ​  ​as​  ​a ​  ​payoff​  ​matrix.​  ​​Fig.10 ​​  ​illustrates​  ​three ​  ​games​  ​widely​  ​used ​  ​in ​  ​the ​  ​literature.     
  

____________________________________________________________________________________  

  

Figure ​  ​10.​  ​Strategic ​  ​interactions ​  ​modeled​  ​as ​  ​2x2 ​  ​normal ​  ​form,​  ​complete ​  ​information,​  ​games.  

A) Prisoner's Dilemma B) Battle of the Sexes C) Matching Pennies. The numbers in the matrices indicate monetary                                                     

outcomes available to each player depending on the combination of actions made by the two players: a or b by                                                           

Player 1 (“Pl.1”);; A or B by Player 2 (“Pl.2”). NE: Nash Equilibrium. MSNE: Mixed Strategy Nash Equilibrium.                                                     

Numbers written outside the matrices represent the probability distribution over each action prescribed by the MSNE                                               

corresponding​  ​to ​  ​a ​  ​​mutual ​  ​best-­response​​  ​profile.  
____________________________________________________________________________________  

  

This formalism represents two main advantages. First, it models quite efficiently strategic interactions in a                                            

form comparable to a Markov Decision Process, second it provides a well-­defined framework for solution                                            

concepts. Game theory indeed makes prescriptions about ​optimal play in any normal-­form games, under                                         

the concept of equilibrium. The well-­known Nash Equilibrium (NE) for instance is a strategy profile that                                               

insures each player involved to have no incentive to deviate from the strategy prescribed by the                                               

equilibrium. The probability distribution over each action prescribed by this equilibrium corresponds to a                                         

best-­response correspondence profile, or ​mutual best-­response profile, which states that at this point                                      

(strategy​  ​profile)​  ​each ​  ​player​  ​best​  ​responds​  ​to ​  ​the ​  ​strategy​  ​of​  ​the ​  ​other.  
The classic example of prisoner’s dilemma, illustrated in ​Fig.10.A ​, consists in a symmetric game in which                                               

the two players are confronted to the same games, in which they have two actions. Typically a way to                                                        

represent this strategic interaction would be to see the players in the role of prisoners, kept in separate                                                     

cells with no possible communication, and to whom a proposition is made to choose between either to                                                  
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cooperate (action a/A) or to defect (action b/B). In this game there is one equilibrium point which                                                  

corresponds to the dominant strategy profile: for each player the payoffs associated to the action b/B, no                                                  

matter what the other player chooses, is always superior to the one linked to the action a/A. Therefore,                                                     

choosing b/B in this game will always lead the player to a better outcome (given each of the two actions                                                           

the other player chooses). Therefore, the strategy profile (b,B) corresponds to the best-­response for                                         

which ​  ​none ​  ​of​  ​the ​  ​two ​  ​players​  ​will ​  ​increase ​  ​their​  ​outcome ​  ​by​  ​deviating ​  ​unilaterally​  ​from​  ​it.    
  

The game illustrated in ​Fig.10.B ​, and usually called “battle of the sexes”, could be represented as a                                                  

player being the husband and the other the wife who have two distinct preferences for spending the night                                                     

doing a common activity (like going to the movie theater vs. going to a concert). In this game, there is no                                                              

dominant strategy but two equilibrium points which correspond to the strategy profile for which the two                                               

characters do something together instead of following their absolute preference and going out by                                         

themselves. However, it could be the case that a game has no pure (Nash) equilibrium: none of the two                                                        

available actions leads to a situation which corresponds to a mutual best-­response. This is the case for                                                  

the matching pennies game illustrated in ​Fig.10.C ​. In this game the Nash equilibrium is mixed, meaning                                               

that the prescribed strategy profile is a probability mixture over all the actions, so that if each player                                                     

chooses each action with a probability of 1/2, the strategy profile ([1/2: a,1/2;; b],[1/2: A,1/2;; B])                                               

corresponds to a mutual best response. A mixed strategy equilibrium (MSNE), thus requires that each                                            

action is played randomly with a fixed probability. A pure NE, can thus be seen as a special case of                                                           

MSNE, where the corresponding strategy profile states that one action should be played with a probability                                               

of​  ​1.  
  

The notion of Nash equilibrium thus makes two assumptions: (1) that the two players involved are                                               

self-­interested and maximize their utility over the payoffs of the game by best responding to the beliefs                                                  9

they hold about the game structure and the strategy profile of the other;; and (2), that each player holds                                                        

correct (certain and accurate) beliefs over the strategy of the other so that her best response corresponds                                                  

to the mutual best-­response profile.It is important to note here that this solution concept can be                                               

interpreted in two ways: it could be seen as prescriptive, i.e. what (rational) people should do, or                                                  

descriptive, what people would do in such a situation. This latter assumptions has been extensively tested                                               

with humans playing games in laboratory (Camerer, 2003). However, the behavioral results consistently                                      

showed that humans do not follow the solution prescription made by the game theory, and often deviate                                                  

from theoretical distributions. Moreover, when the aggregated choices in laboratory seem to fit the                                         

9​  ​Here ​  ​we ​  ​talk ​  ​about​  ​“beliefs”.​  ​However,​  ​the ​  ​exact​  ​premise ​  ​is​  ​that ​  ​rational​  ​players​  ​must​  ​hold ​  ​"mutual​  ​recognition​  ​[or  
knowledge]​  ​of​  ​rationality".​  ​The ​  ​notion​  ​of​  ​knowledge​  ​can ​  ​be ​  ​seen ​  ​as​  ​analogous​  ​to ​  ​“belief”,​  ​which ​  ​embodies​  ​in ​  ​itself​  ​the  
notion​  ​of​  ​probability​  ​(see ​  ​chapter​  ​I) ​  ​allowing​  ​for ​  ​noise ​  ​in ​  ​the ​  ​information​  ​received​  ​(in ​  ​case ​  ​the ​  ​environment​  ​is  
stochastic​  ​for ​  ​instance),​  ​as​  ​in ​  ​the ​  ​computational​  ​process​  ​underlying​  ​the ​  ​representation​  ​of​  ​knowledge.​  ​For  
neuroscientific​  ​consideration​  ​of​  ​this ​  ​notion​  ​see ​  ​Wyart​  ​& ​  ​Koechlin​  ​(2016).  
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theoretical predictions, a slight change in the game (payoff) structure can lead to a strong deviation from                                                  

NE.​  ​A​  ​classic​  ​example ​  ​by​  ​Goeree ​  ​&​  ​Holt​  ​(2001)​  ​is​  ​illustrated ​  ​in ​  ​​Fig.11 ​.     
  

__________________________________________________________________________________

  

  

Figure 11. Empirical deviation from Nash prediction illustrated in a one-­shot Matching Pennies game. ​When                                            

the game is symmetric (top matrix) the average choice (%) fit the mixed-­strategy Nash equilibrium (1/2, 1/2). In the                                                        

center matrix, MSNE predicts that row’s decision probabilities should not change (the row player should ignore the                                                  

unusually high payoff of 320 (cents) and still choose Top or Bottom with probabilities of 1/2), and since column’s                                                        

payoffs are either 40 or 80 for playing Left and either 80 or 40 for playing Right, row’s decision probabilities must                                                              

equal 1/2 to keep column indifferent between Left and Right, and hence willing to randomize. However a strong                                                     

empirical deviation is observed in this case leading Goeree & Holt to conclude that in practice, the MSNE prediction                                                        

“only​  ​works​  ​by​  ​coincidence,​  ​when ​  ​the ​  ​payoffs​  ​are ​  ​symmetric”.​  ​N=50.​  ​(reproduced​  ​from​  ​Goeree​  ​&​  ​Holt,​  ​2001)  
____________________________________________________________________________________  

  

This puzzling result led economists to two different paths concerning game theory (and in general                                            

neoclassical economics). The first consisted in assuming that the theoretical solution has no predictive                                         

power, that it is ​only a mathematical solution to games -­-­ games could thus be seen as abstract objects                                                        

not meant to be implemented in reality (Fumagalli, 2016). The second consisted in considering that the                                               

theory makes accurate prescription for rational play but that something prevents humans to reach                                         

optimality. This second idea, initiated in the 60’s, was strongly inspired by the departure from behaviorism                                               

and the emerging theory in psychology according to which human can be seen as information-­processing                                            

entities (Camerer et al, 2011). Following this idea of a bounded rationality, behavioral game theory aimed                                               
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at running controlled experiments as well as using field data, in order to test what restrained humans from                                                     

displaying ​  ​rational ​  ​behavior,​  ​such ​  ​as​  ​equilibrium​  ​play.    
  

Following this line of inquiry, behavior game theorists formulated the hypothesis that one (or both) of the                                                  

premises of rational game play should be relaxed. In order words, either humans for some reason do not                                                     

maximize their utility over their payoffs and do not best respond to their correct beliefs over the strategy of                                                        

the other player, or they do attempt to maximize but best respond to incorrect beliefs. Over the last                                                     

decade, different models have been proposed to test these assumptions, broadly labeled as                                      

non-­equilibrium models of strategic thinking. The first type of departure has been essentially modeled as                                            

noisy and stochastic choice. For instance, Quantal Response Equilibrium (QRE) (McKelvey & Palfrey,                                      

1995) relaxes the assumption of best response and considers errors in choices (keeping the assumption                                            

of (statistically) accurate beliefs and equilibrium responses). In interactive settings, a small amount of                                         

noise can have a large effect, and QRE models that incorporate stochastic elements in the analysis of                                                  

interactive decisions can explain ‘anomalous’ behaviors (i.e. deviations from rationality) in several                                   

experimental games. According to QRE models, individuals are more likely to select better than worse                                            

actions, but they are often unable to select the very best one. This type of models thus posits that humans                                                           

can compute correct beliefs but fail to implement them properly in their choice. This assumption however                                               

is​  ​purely​  ​theoretical,​  ​and ​  ​not​  ​data-­driven.  
  

Based on the observation of frequency peaks in a famous game called “p-­beauty contest”, in which an                                                  

important number of players choose a number from 0 to 100 in order to get the closest to the average of                                                              

the chosen numbers (or a multiple of an announced value p) ​(Fig 12)​, another class of bounded                                                  

rationality models have been proposed. The Level-­k models (Nagel, 1995;; Stahl & Wilson, 1995) and the                                               

Cognitive Hierarchy (CH) models (Camerer et al, 2004;; Ho et al, 1998) maintain the rational assumption                                               

of best response to beliefs, but relax the assumption of ‘correct’ beliefs (and rational expectation about                                               

beliefs). This class of models considers the presence of heterogeneous players in terms of a hierarchy or                                                  

level of strategic sophistication: level-­0 players are strategically naive (e.g. they play randomly, or do not                                               

fully consider the incentives of the game), while higher-­level players iteratively best respond (i.e. respond                                            

optimally) to a distribution (Poisson for CH, and as k-­1 for Level-­k models) of lower-­level players (e.g. L1                                                     

players best respond to L0 ones;; L2 best respond to a distribution of L1 and L0;; and so on). According to                                                              

this model, high-­level reasoners (L2 or higher) expect the others to behave strategically, whereas                                         

low-­level reasoners (L1) choose based on the expectation that others will choose randomly. Empirically                                         

this type of models has been proven to quite efficiently capture departures from Nash equilibrium                                            

(Camerer​  ​et​  ​al,​  ​2015)​  ​(see ​  ​Crawford ​  ​et​  ​al,​  ​2013 ​  ​for​  ​an ​  ​extensive ​  ​review ​  ​of​  ​empirical ​  ​evidence).  
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____________________________________________________________________________________

  

Figure ​  ​12.​  ​Empirical​  ​deviation​  ​from ​  ​Nash​  ​prediction​  ​illustrated​  ​in​  ​a ​  ​game ​  ​of ​  ​matching​  ​pennies  
Participants choose a number between 0 and 100. The winner is the person whose number is closest to 2/3 times the                                                              

average of all chosen numbers. The level-­k model (iterated best response) predicts that a naïve player (level 0)                                                     

chooses randomly. A level 1 (low-­level) player thinks of others as level 0 reasoning and chooses 33 (=2/3 x 50, where                                                              

50 is the average of randomly chosen numbers from 0 to 100). A more sophisticated player (level 2, high level)                                                           

supposes that everybody thinks like a level 1 player and therefore he or she chooses 22 (= (2/3)2 x 50). Zero is the                                                                    

equilibrium​  ​solution​  ​of​  ​the ​  ​game.​  ​(adapted​  ​from​  ​Bosch-­Domènech​  ​et​  ​al,​  ​2002)  
_____________________________________________________________________________________________  

  

Modelling behavioral departure from an (informational) optimum should not only take into account the                                         

behavioral data but should also be (biologically) plausible (Chater et al, 2017). In that sense, this last                                                  

class of models relaxing the assumption of rationality -­-­ which assumes that players best respond given                                               

their incorrect beliefs -­-­ is appealing from a cognitive point of view. Indeed, the computational cost of                                                  

forming high-­order beliefs over someone else's behavior can be quite high when no other information                                            

than the game structure (i.e. the payoff matrix) is provided. Congruently, behavioral studies in game                                            

theory have found a correlation between the level of strategic sophistication observed experimentally and                                         

reasoning or memory capacities measured in additional tasks (Carpenter et al, 2013;; Gill & Prowse,                                            

2012).  

The goal of a new field called “neuroeconomics” was thus to expand the knowledge and theories                                               

developed in behavioral economics by measuring and manipulating variables that behavioral economists                                   

were unable to observe (Camerer et al, 2004;; Camerer, 2008). The hope was to combine theoretical                                               

concepts and empirical data into a unified framework for modelling choice that might be able to reconcile                                                  

the prescriptive and descriptive sides of economics  (Glimcher et al, 2005). In this line, neuroeconomics                                         

studies have employed neuroscience techniques to test the premises of bounded rationality against the                                         
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cognitive processes involved in game behavior. This is the approach that we will present in the next                                                  

section ​  ​and ​  ​which ​  ​we ​  ​employed ​  ​for​  ​the ​  ​experimental ​  ​work​  ​performed ​  ​during ​  ​this​  ​PhD ​  ​work.  
  

  

​2)​  ​The ​  ​mind ​  ​in ​  ​the ​  ​game  
  

Cognitive neuroscience offers multiple tools to uncover the cognitive processes involved in                                   

decision-­making during one-­shot game play. Early on, neuroeconomists used fMRI to investigate what                                      

brain regions subserve equilibrium play. Batth & Camerer (2005)  scanned participants while playing a                                      

series of (one-­shot) dominance solvable games with another individual outside the scanner. At each trial                                            

the participants had to state their choice, their belief over the choice of the other player (first-­order belief),                                                     

and their belief about the belief the other player may hold about themselves (second-­order belief). By                                               

simply contrasting the average BOLD signal change between each condition they showed that stating                                         

belief vs. choosing activated more prefrontal areas such as the ACC and dlPFC (along with the posterior                                                  

cingulate cortex), while stating second-­ vs. first-­order belief lead to more activity in the insula and the                                                  

inferior frontal gyrus (IFG). By contrasting trials in which players played the NE, compared to                                            

out-­of-­equilibrium​  ​play,​  ​they​  ​suggested ​  ​that​  ​the ​  ​striatum​  ​was​  ​a ​  ​key​  ​area ​  ​for​  ​equilibrium​  ​play.  
  

To investigate more precisely the brain areas involved in equilibrium play, Coricelli and Nagel (2009) took                                               

advantage of the continuous choice data that the p-­beauty contest game offers to identify BOLD signal                                               

variations among different types of players (i.e. different levels of strategic sophistication). Participants                                      

played the (one-­shot) game multiple times with different p values, against either another human or a                                               

computer. In line with the CH theory, their choices revealed different levels of players (0, random, L1, L2                                                     

or higher) in the human condition only. Using the heterogeneity of strategic sophistication levels observed                                            

in their population, they were able to identify brain regions in which BOLD signal was higher in the human                                                        

vs. computer condition, and this for different types of players ​(Fig.13.A)​. They found that the mPFC,                                               

(rostral)ACC, posterior cingulate cortex and TPJ/STS, a network of brain areas known to be recruited in                                               

mentalizing (see section II.B), was more active when playing a game against a human than a computer.                                                  

Moreover, high-­level players presented a specifically higher activity in the mPFC and dlPFC compared to                                            

low-­level players, and a higher mPFC and vmPFC activity when opposed to human vs. computer                                            

(Fig.13.B)​. Taking advantage of the parametric nature of their choice data, the authors showed at the                                               

subject-­level that the activity of the mPFC linearly correlated with the propensity to play on average closer                                                  

to ​  ​the ​  ​NE.​  ​​(Fig.13.C).  
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____________________________________________________________________________________

  

  

Figure 13. Level of strategic sophistication in the p-­beauty contest game correlates with the activity of the                                                  

mPFC.     

A) 26 choices of 2 (representative) participants for each parameter value M in the human (blue dots) and computer                                                        

(triangles) conditions, separately. (Left) the choices of one participant representing a so-­called low-­level type. In both                                               
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the computer condition (triangles) and the human condition (blue dots) she chose near the theoretical (CH Model)                                                  

level 1 line (brown line with choices equal to 50*M). (Right) the choices of one high-­level type participant. In the                                                           

computer condition she chose near the theoretical level1 line. In the human condition she chose near the theoretical                                                     

level 2 line (blue line with choices equal to 50*M2). Below is plotted the choice of the 2 participants for the computer                                                                 

and ​  ​human​  ​conditions​  ​for ​  ​M2/3.​ ​  ​​B)​  ​fMRI​  ​results​.​  ​​(adapted​  ​from​  ​Coricelli ​  ​& ​  ​Nagel,​  ​2009)  
____________________________________________________________________________________  

  

In another study, Batth et al (2010) used another way to capture the brain correlates of strategic                                                  

sophistication. They asked participants to play a series of one-­shot sender-­receiver games (without                                      

feedback), in which they had to make selling proposals (price) to an anonymous counterpart who would in                                                  

return propose a buying price. If the former price did not exceed the latter, the deal was accepted and the                                                           

buyer received the difference. However, this information was not revealed to the participants. They                                         

classified their participants depending on the strategy they used in this game, they considered that a                                               

strategic player would make proposals negatively correlated with the actual value to trick (through                                         

deception) the seller, and would thus maximize their earnings. The authors found that the right (r)dlPFC                                               

and ​  ​(r)TPJ​  ​were ​  ​more ​  ​active ​  ​in ​  ​the ​  ​brain ​  ​of​  ​the ​  ​strategic​  ​players​  ​compared ​  ​to ​  ​the ​  ​other ​  ​types​  ​of​  ​players.  
  

Another technique has been used to uncover the cognitive processes underlying equilibrium-­play in                                      

one-­shot games: eye-­tracking. Polonio et al (2015) used different classes of 2x2 games from competitive                                            

to cooperative games, among which two types of dominant solvable (DS, one action dominates the other)                                               

games: a DS self (DSS), and DS other (DSO). To reach the NE in the DSO type of game, participants                                                           

had to eliminate the dominated strategy (like in the prisoner’s dilemma). In the DSS games however,                                               

doing so did not lead to the Nash. Instead, participants had to switch perspective and consider that the                                                     

other player had a dominant solvable strategy that would lead her to a choice, to which the participants                                                     

should best respond. The authors managed to identify three types of eye-­movement patterns made by the                                               

participants when choosing in these (randomly ordered) games (without feedback), that revealed their                                      

information processing strategy ​(Fig.14.A) ​. They showed that participants were not only consistent across                                      

games in the way they analyse the payoff matrices, but also that their eye-­movement patterns correlated                                               

to their ability to reach the NE ​(Fig.14.B) ​. For instance, participants who constantly paid attention to their                                                  

own payoff only failed more in finding the NE in the DSO game compared to the ones who paid first                                                           

attention to their payoffs, then to the payoffs of the other player and then compared them to their own                                                        

ones ​(Fig.14.C)​. In a second study (Polonio & Coricelli, 2015), the authors showed that the participants                                               

classified as strategically sophisticated presented a high congruence between their patterns of eye                                      

movements​  ​(visual ​  ​attention)​  ​and ​  ​choices,​  ​and ​  ​their​  ​stated ​  ​beliefs​  ​about​  ​the ​  ​other​  ​player’s​  ​strategy.  
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___________________________________________________________________________________

  

Figure ​  ​14.​  ​Equilibrium ​  ​and​  ​non-­equilibrium ​  ​play ​  ​in​  ​normal ​  ​form ​  ​games: ​  ​an​  ​eye-­tracking​  ​study.  
A) Examples of analysis performed by three column players classified as players focused on intra-­cell saccades,                                               

players focused on own payoffs and players with distributed attention. Lines indicate the saccades;; circles, the                                               

fixation location. B) Proportion of each type of saccade for the three clusters (players who analyzed the games in                                                        

similar ways) in four classes of games: Dominant Solvable Self (DSS), Dominant Solvable Other (DSO), Prisoner's                                               

Dilemma (PD), Stag Hunt (SH). C) Temporal pattern of visual analysis (mean and standard error) in DSO games for                                                        

players having distributed attention (level 2), grouped by equilibrium responses (Panel A) and out of equilibrium                                               
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responses (Panel B). Each window (w) is based on a sequence of four consecutive saccades. (adapted from Polonio                                                     

et​  ​al,​  ​2015 ​  ​+​  ​early​  ​draft)  
____________________________________________________________________________________  

  

These results suggest that a specific cognitive process subserves the higher level of strategic reasoning                                            

in one-­shot games;; consistent with the hypothesis that L2 or higher levels imply recursivity (reasoning                                            

about reasoning others) and the fact that a strategic player considers the impact of his or her own                                                     

behavior on the behavior of the others. It also shows that the observed departures from game optimality                                                  

are consistent with the CH/level-­k models: participants with a higher level of strategic sophistication                                         

formed ​  ​more ​  ​accurate ​  ​beliefs​  ​over​  ​the ​  ​other​  ​player,​  ​leading ​  ​them​  ​to ​  ​choose ​  ​closer​  ​to ​  ​the ​  ​NE​  ​prescription.    
Along the same line, recent results in psychology have suggested that humans at early age use common                                                  

sense modules to root inferences, or beliefs over a conspecific’s behavior. Jara-­Ettinge et al (2016)                                            

proposed that humans quite automatically assume that the other would act to maximize her utility, by                                               

taking into account action costs and benefits. This “naive utility calculus” might be at the heart of the                                                     

iterative ​  ​process​  ​of​  ​strategic​  ​reasoning ​  ​in ​  ​one-­shot​  ​games.    
  

So far we focused on one-­shot games. However, a game can be repeated, and feedback about the                                                  

outcome of the choice can be provided once played. This is generally how our general social interactions                                                  

are structured: in a dynamic fashion with knowledge of the outcome of our actions based on previously                                                  

experienced ​  ​similar​  ​interactions.  
  

Behavioral game theory also studied how humans played in laboratory in repeated game interactions in                                            

which information about the past history of choices and outcome was revealed. In this situation, data                                               

usually display a convergence of aggregated choices towards MSNE distribution (Fudenberg & Levine,                                      

2009). However, MSNE posits that not only should (rational) players’ aggregated choices follow the                                         

prescribed distribution, but that they should also randomize over their action set. This randomization                                         

process is crucial since it allows one to not be easily predictable. Thus, in repeated game interactions,                                                  

playing the MSNE strategy ensures that not only the expected payoff would be optimal in case the other                                                     

also follows the theoretical prescription, but also, in accordance to the mutual best-­response premise, that                                            

one’s choices should not be exploited by the other since this would lead the other player to best respond                                                        

differently and not to follow the equilibrium play anymore. And in fact, a second important result,                                               

systematically found in empirical studies of repeated games, is that players do not choose randomly from                                               

an independent and identically distributed distribution, their choice series often displaying an                                   

over-­alternation bias (Camerer, 2003). These results pose the question on the predictive nature of the                                            

MSNE​  ​play.    
A modern interpretation proposed by Camerer (Camerer, 2003) is that “players need not actually                                         

  

49



randomize, as long as other players cannot guess what they will do”, concluding that a MNSE can be                                                     

seen ​  ​as​  ​an ​  ​“equilibrium​  ​in ​  ​beliefs”.    
These results thus provide a hypothesis to the question, not tackled by the theory, of how an equilibrium                                                     

might​  ​arise ​  ​during ​  ​repeated ​  ​(strategic)​  ​interactions:​  ​learning.    
Indeed, when the game is repeated and when choice feedback is provided, like most of our social                                                  

interactions, learning becomes possible as space is given to update and adjust beliefs through predictions                                            

over​  ​the ​  ​opponent’s​  ​behavior.  
  

  

​B)​  ​The​  ​Neuroeconomics ​  ​of​  ​strategic ​  ​learning  
  

In ​  ​a ​  ​published ​  ​opinion ​  ​paper​  ​untitled ​  ​“The ​  ​neuroeconomics​  ​of​  ​strategic​  ​interaction”​  ​(​Appendix ​  ​I​),  
we ​  ​drew ​  ​a ​  ​parallel ​  ​between ​  ​the ​  ​bounded ​  ​rationality​  ​presented ​  ​in ​  ​the ​  ​previous​  ​section ​  ​and ​  ​the ​  ​social  
learning ​  ​models​  ​developed ​  ​in ​  ​cognitive ​  ​neuroscience.​  ​In ​  ​the ​  ​following ​  ​section ​  ​we ​  ​will ​  ​extend ​  ​this​  ​point.  
  

To take into account the empirical dynamics of play observed in repeated games with feedback,                                            

economists first turned to psychology and proposed to implement the model of reinforcement learning.                                         

Erev and Roth famously reported an early work (Erev & Roth, 1998;; Roth & Erev, 1995) where, in a                                                        

variety of games, even a simple reinforcement model with only one parameter (controlling the                                         

determinism of the action selection of the agent, and no learning rate parameter, i.e. α=1 in eq(1.1)),                                                  10

could approximate the directions of the subjects’ aggregate choices. This result lead behavioral game                                         

theorists to the conclusion that humans could actually use the past experience in a repeated game to                                                  

inform their subsequent decision. However, two criticisms were formulated to such a reinforcement                                      

learning framework applied to economics. First, the convergence of play displayed by the model was                                            

much slower than the one displayed by participants in the laboratory (Erev & Roth, 2014). Second,                                               

learning through reinforcement implies that only the outcomes obtained in the previous games are                                         

considered. Thus an important part of the information relative to the other player’s choices is omitted. In                                                  

other words, by nature, a reinforcement learning model only adapts to the past own plays. It does not                                                     

embody​  ​any​  ​inferential ​  ​process​  ​and ​  ​is​  ​thus​  ​not​  ​“strategic”.  
  

10​  ​Usually​  ​a ​  ​logistic​  ​function​  ​is​  ​used ​  ​to ​  ​model​  ​a ​  ​stochastic​  ​action ​  ​selection​  ​process.​  ​The ​  ​function,​  ​also ​  ​called​  ​softmax,  
transforms​  ​the ​  ​subjective​  ​value ​  ​of​  ​an ​  ​action,​  ​relatively​  ​to ​  ​the ​  ​value ​  ​associated​  ​to ​  ​the ​  ​rest​  ​of​  ​the ​  ​action ​  ​set​  ​(Luce,  
1977),​  ​through​  ​an ​  ​exploratory​  ​parameter​  ​(β,​  ​the ​  ​inverse ​  ​temperature)​  ​which ​  ​regulates​  ​the ​  ​sigmoid ​  ​slope,​  ​and ​  ​the  
amount​  ​of​  ​exploratory​  ​choices.​  ​A​  ​large ​  ​β ​  ​corresponds​  ​to ​  ​almost​  ​deterministic​  ​choices​  ​(greedy​  ​strategy,​  ​the ​  ​action  
with​  ​the ​  ​highest​  ​value ​  ​is​  ​selected),​  ​whereas​  ​a ​  ​smaller​  ​β ​  ​leads​  ​to ​  ​noisier​  ​action ​  ​selection​  ​and ​  ​ultimately​  ​(when ​  ​β=0)​  ​to  
random​  ​choice.    
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A second class of learning models has thus been considered: the belief-­based models. Such models posit                                               

that players form beliefs over the strategy profile of the other player through the observation of her past                                                     

play, and best respond to it. This classic belief-­based model is the “fictitious play” which computes at time                                                     

t the frequency of each action played by the other player since t=0, and then best responds to it (Brown,                                                           

1951). This model has been relaxed in two ways;; First, by introducing noise in the strict best response to                                                        

beliefs (cautious fictitious play) making an agent that has converged towards NE to mimic a QRE model -­-­                                                     

Cheung & Friedman (1997) for instance replaced the deterministic action selection rule by a logistic                                            

function;; Second, and more significantly, by relaxing the assumption of perfect memory. Indeed, the                                         

weighted variation of the fictitious play (Cheung & Friedman, 1997;; Fudenberg & Levine, 1998)                                         

incorporates a decay parameter which weights more the recent play in the computation of the beliefs over                                                  

the other strategy profile. The probability P that the other player plays action A is computed at each game                                                        

(trial ​  ​t)​  ​through:  

​  ​​  ​​  ​​  ​​  ​(1.3)(t ) (C (t)   (η ×C (t )))  /  (1 η )P   
A + 1 =    A +    ∑

t−1

x=1
   x

A − x + ∑
t−1

x=1
   x   

  

This probability thus corresponds to the weighted frequency of the action A selected by the other player in                                                     

the past (at each trial, C is 1 when it was the chosen action, 0 otherwise). The parameter η controls for                                                              

the slope of the decay, or in other words the size of the memory, so that the model is a classic fictitious                                                                 

play with infinite memory (all past actions are considered the same way) when η = 1 and a cournot                                                        

adjustment model (only considering the last play) when η=0. In Belief-­based models, beliefs thus                                         

represent​  ​a ​  ​probability​  ​distribution ​  ​over ​  ​the ​  ​action-­set​  ​of​  ​the ​  ​other​  ​player.  
This model has been shown to converge towards NE. However, depending on the type of model used                                                  

and the type of games played, it did not appear clear to economists that a belief-­based model (essentially                                                     

with full memory) was more suited to capture human choice behavior than a reinforcement model                                            

(Battalio et al, 2001). The study by Nyarko & Schotter (2002), showing that belief-­based models could not                                                  

capture all the variance observed in the beliefs directly stated by the participants, convinced behavioral                                            

game-­theorists​  ​that​  ​a ​  ​hybrid ​  ​model ​  ​might​  ​be ​  ​more ​  ​appropriate.    
  

Camerer and Ho (1999) developed the experience weight attraction model (EWA) with the goal to merge                                               

the two approaches into one single learning model that would weight the relative influence of the beliefs                                                  

and the reinforcements in the human’s choice behavior. Essentially for a 2x2 game (as in Fig.10), the                                                  

EWA can be simply represented as following: the attraction value is the expected payoff of the action                             Acp1                     

c​  ​that​  ​is​  ​chosen ​  ​at​  ​trial ​  ​t​  ​by​  ​player​  ​1:    
  

​  ​​  ​​  ​​  ​​  ​(1.4)(t ) (  ((φ  ×N (t)  ×A (t )  )   (t)  )    /  N (t )  Aacp1 + 1 =    a
p1 − 1 + Ra − 1   
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While ​  ​the ​  ​action ​  ​u,​  ​left​  ​unchosen ​  ​is​  ​also ​  ​updated ​  ​counterfactually:    
​  ​​  ​​  ​​  ​​  ​(1.5)(t ) (  (φ  ×N (t)  ×A (t )  )   (t))  )  /  N (t )  Aup1 + 1 =    u

p1 − 1 + (δ  ×Ru − 1   

  

In this model, N(t) represents the weight placed on previous experience, and is updated as                                            

( acts as a decay parameter). The parameter represents the belief about the(t) (ρ  ×N (t ))N =    − 1 + 1 ρ                   φ                  

speed of adaptation of the opponent: a small means that the agent believes that her opponent                     φ                        

depreciates past values faster.Thus acts as a learning rate. And , the main parameter of the model, is           φ                   δ                        

the weight between foregone payoffs and actual payoffs when updating attraction values. The model thus                                            

reduces to an RL model when = 0, and expands to a belief learning model (weighted fictitious play)                  δ                                       

when = 1. The key insight of this hybrid model is to consider belief learning as equivalent to a mode   δ                                                         

whereby actions are reinforced by foregone payoffs in addition to received payoffs as in (model-­free)                                            

reinforcement learning. For the authors, this parameter can be considered as an inclination towards                                         

beliefs or, in their own words, as a “simulation’’ of outcomes under alternative competitive scenarios (i.e.                                               

‘‘counterfactual ​  ​thinking’’ ​  ​in ​  ​the ​  ​terminology​  ​of​  ​psychology)”.    
  

Empirically, this hybrid model has been proven successful in capturing human choice behavior in games                                            

(Camerer et al, 2002). The question posed again by the neuroeconomists is how such a model matches                                                  

the cognitive processes involved during learning in a repeated game. Zhu et al (2012) investigated this                                               

question directly using fMRI. The authors made participants interact with another human in a competitive                                            

4x5 game (the patent race). They fitted the learning model to each participant’s individual choices to find                                                  

the combination of parameters that ensures the EWA to capture the best their choice series. The authors                                                  

found that, at the (sampled) population level, the hybrid model fitted better the participants’ choices than                                               

alternative versions of the model reduced to either RL or Belief-­based (BB) ​(Fig.15.A) ​. Moreover, they                                            

showed that the reward prediction errors values (from their reformulation of the EWA equations)                                         

correlated for both RL and BB to the BOLD signal in the striatum. But more crucially, their fMRI analysis                                                        

revealed that the parameter positively correlated to the activity of the dmPFC (rACC, similarly to Coricelli      δ                                       

& Nagel, 2009), therefore suggesting that this brain region is implicated in the computation of beliefs                                               

during ​  ​repeated ​  ​strategic​  ​interactions​  ​​(Fig.15.B).  
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____________________________________________________________________________________

  

Figure ​  ​15.​  ​Belief-­based​  ​learning ​  ​in​  ​the ​  ​brain    
A) Individual variation in the relative weights placed on RL and belief learning can be captured by using parameter δ                                                           

of the hybrid model (EWA). As δ increases, behavioral fit of belief learning improves relative to that of the RL. B) Left                                                                 

panel: Neural activity in the rACC is correlated only with belief and not with RL prediction error, error bars indicate                                                           

SEM. Right panel: Between-­subject neural response to the belief prediction error in rACC is correlated with individual                                                  

differences​  ​in ​  ​behavioral​  ​engagement​  ​of​  ​belief​  ​learning.​  ​(adapted​  ​from​  ​Zhu ​  ​et​  ​al,​  ​2012)  
____________________________________________________________________________________  

  

Several studies have replicated this result in non-­human primates playing competitive games against a                                         

computerized algorithm which varied in their level of strategic sophistication. In a series of in-­depth work,                                               

Lee et al managed to show that the activity of the neurons recorded directly in the monkey’s mPFC                                                     

correlated with the computation of beliefs during repeated interactions. They notably showed (Abe & Lee,                                            

2011) that when confronted to a belief-­based algorithm similar to a fictitious play in a rock-­scissor-­paper                                               

game, the animal's choice behavior deviated from model-­free reinforcement learning to take into account                                         

the forgone outcomes (reward that would have been obtained if chose otherwise) in their learning                                            

process. Their study showed that more neurons in the dlPFC (compared to OFC) computed the                                            

hypothetical expected values. In a more recent study (Seo et al, 2014), the same team provided strong                                                  

evidence that when faced to such a belief-­based algorithm, exploiting statistical biases in their choices,                                            

monkeys managed to deviate from RL and to engage in sophisticated learning to override their                                            

computerized opponent, playing on average the frequency prescribed by the MSNE (and maximizing their                                         

earning even more than predicted be NE play). Moreover, the authors showed that more neurons in                                               

dlPFC (compared to other areas like dlPFC, ACC or striatum) encoded specific switching patterns                                         

revealing the implementation of strategic learning. Such an ability to refine beliefs by exploiting statistical                                            

regularities in the opponent’s behavior during competitive repeated interactions has been recently                                   
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proposed in behavioral game theory. Spiliopoulos (2012, 2013) developed an extension of the weighted                                         

fictitious play that takes into account deterministic patterns in the opponent’s choice series that might                                            

emerge from randomization failure. Instead of estimating the probability of choice from the computation of                                            

the (decayed) frequency of each past action, the pattern-­based fictitious model computes joint                                      

probabilities over each action based on the combination the two and even three observed past actions.                                               

Using empirical data on repeated competitive games, Spiliopoulos showed that the pattern version of the                                            

fictitious​  ​model ​  ​was​  ​more ​  ​successful ​  ​at​  ​capturing ​  ​participants​  ​choices​  ​than ​  ​the ​  ​original ​  ​non-­pattern ​  ​one.    
  

Together these results strongly suggest that humans (and non-­human primates) can form beliefs over the                                            

opponent’s behavior in strategic repeated games, and that they can use these beliefs to improve their                                               

learning and best respond in a competitive interaction. Moreover, the computation of such probabilistic                                         

beliefs seems to take place in the mPFC, a region previously implicated in action-­outcome                                         

representations of the other behavior (Suzuki et al, 2012) (section II.B,C). However, as suggested by Seo                                               

et al (2014), forming accurate beliefs about the behavior of another human requires to not only engage in                                                     

adaptive learning, but also to infer strategic beliefs from the other play in an iterative fashion. Indeed, in                                                     

competitive interaction learning the action-­outcome contingencies in another player requires to take into                                      

account the strategic nature of the interaction. A strategic learner should form beliefs that take into                                               

consideration that her own choices can influence the behavior of the opponent, which can as well form                                                  

beliefs​  ​over​  ​her​  ​own ​  ​behavior.    
  

Hampton et al (2008) tested this hypothesis of higher-­order belief learning, by extending a fictitious model                                               

so that it considers that the other player is also using a belief-­based learning strategy. Their model would                                                     

first compute the probability of their own actions based on their past (decayed) frequency of choice, and                                                  

then incorporate this simulated belief in its computation of the probability of choice of such (fictitious)                                               

agent ​(Fig.16.B) ​. They showed that on average this ​Influence model fitted better the behavior of                                            

participants engaged in a 2x2 (competitive) repeated game against another human, compared to a                                         

weighted fictitious, a RL or a hybrid model (EWA) ​(Fig.16.C)​. Using fMRI, the authors showed that the                                                  

BOLD signal in the mPFC correlated more to the expected reward value computed by the influence model                                                  

compared to the two others. The key parameter of their Influence model is the parameter that represents                                                  

how much the simulated belief of the opponent is incorporated in the participants' learning process. This                                               

parameter λ thus corresponds to how much the influence of their past choices on the other player’s                                                  

behavior is considered in their own learning process. In other words, it captures their belief that the                                                  

opponent is actually following a belief-­based strategy. The TPJ/STS was the brain area in which the                                               

change in BOLD signal was correlated to this parameter ​(Fig.16.D)​. They found that the dmPFC was                                               

more active on average for subjects (relatively) better fitted by the Influence model ​(Fig.16.E)​. They thus                                               

hypothesized and then experimentally confirmed that the (influence) teaching signal encoded in the                                      
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TPJ/STS would correlate more with the dmPFC (along with the striatum found to be correlated to                                               

influence RPE), at the time of the outcome (learning update). These results shed light on the role of the                                                        

so-­called mentalizing network during competitive interactions through its implication in the strategic                                   

learning ​  ​process.    
  

____________________________________________________________________________________

  

Figure ​  ​16.​  ​Strategic ​  ​learning ​  ​in​  ​the ​  ​brain    
A) Payoff matrix of the 2x2 (Inspection) game. B) The RL model updates the value of the chosen action ( ) a with                                                           V a

t+1         

a reward prediction error as the difference between received rewards and expected rewards ( ), where is the                                         V t
a      η      

learning rate. The fictitious play model instead updates the probability of the opponent’s action with an (action)                                                  

prediction error between the opponent’s action ( ) and expected strategy ( ). The influence model extends this                    P t*               P t*                  

approach by also including the influence that a player’s own action ( ) has on the opponent’s strategy. C) Model                                 Q  
t                        

comparison shows that the influence model, which incorporates the effects of players’ actions influencing their                                            

opponents, has a better fit to subjects’ behavior than either the RL or fictitious models or these two models combined                                                           

(EWA). D) At the time of outcome, the influence update of the inferred opponent’s strategy shows significant                                                  

correlations with BOLD signal change in the TPJ/STS. E) The activity of the mPFC correlates with the (individual)                                                     

difference in fit between the Influence and the Fictitious model, capturing the degree to which a subject believes her                                                        

actions​  ​are ​  ​influencing​  ​her​  ​opponent’s​  ​choice ​  ​behavior.​  ​(adapted​  ​from​  ​Hampton ​  ​et​  ​al,​  ​2008)  
____________________________________________________________________________________  

  

In a recent study Hill et al (2017) went a step further to causally test the role of the rTPJ in the                                                                 

computation of the influence teaching signal in strategic learning. Using a (non-­invasive) brain stimulation                                         

technique (TMS) they were able to first inhibit the activity of the right TPJ in participants who then played                                                        

the Hampton’s 2x2 game ​(Fig.16.A) ​while being scanned. They first replicated the original study showing                                            
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a better fit of the Influence model compared to BB or RL at the (sampled) population scale. They also                                                        

replicated the fMRI results showing a correlation between the BOLD signal in the dmPFC and the                                               

(relative) fit of the Influence model. But more crucially, they managed to show evidence for a causal                                                  

implication ​  ​of​  ​the ​  ​rTPJ​  ​in ​  ​the ​  ​computation ​  ​of​  ​the ​  ​Influence ​  ​teaching ​  ​signal.  
  

These results thus suggest that the TPJ, a core brain area of the mentalizing network, along with the                                                     

mPFC, subserves higher-­order belief formation by encoding the consideration in the learning process of                                         

the influence of a strategic individual’s behavior on her opponent. The mPFC has been extensively                                            

implicated in belief formation in social learning (Apps et al, 2016), and its activity has been shown to                                                     

correlate with the level of strategic sophistication required to reach (initial) equilibrium play in one-­shot                                            

games (Coricelli & Nagel, 2009). This suggests that common computations might be required to form                                            

higher-­order​  ​beliefs​  ​during ​  ​strategic​  ​decision-­making ​  ​(Griessinger​  ​&​  ​Coricelli,​  ​2015).    
Taken together with the results presented in the two previous sections of this introduction, evidence                                            

points towards similar cognitive mechanisms involved in the representation of action-­outcome                                

contingencies in a non-­social probabilistic environment and in the behavior of another person during                                         

dynamic social interactions. The formation of beliefs over someone else’s behavior appears to drive                                         

choices in a model-­based reinforcement fashion. However, a crucial difference arises when the strategic                                         

nature of the (repeated) game interaction is taken into account. The model of the behavior of the                                                  

opponent needs to be fed with computations related to the influence of one’s own behavior, leading to the                                                     

formation of higher-­order beliefs and recruiting mentalizing areas specifically implicated in social setting,                                      

such ​  ​as​  ​the ​  ​TPJ.  
  

Nevertheless, it remains unclear if the formation of such higher-­order beliefs leads to more accurate                                            

choices, and how this cognitive process relates to equilibrium play in real human-­human interactions.                                         

Indeed none of the studies mentioned above investigating strategic (or belief-­based) learning during                                      

human competitive interaction reported how this learning process subserved equilibrium play (see also                                      

Devaine et al, 2014). Hill et al mentioned that participants with a higher influence (best) parameter                                               

increase their earnings. However, no evidence was reported of an effect of the modulation of the TPJ                                                  

activity on performance. As highlighted by Zaki & Ochsner (2011), the question of accuracy when it                                               

comes to social interaction and mentalizing is usually overlooked. However, the question of belief                                         

accuracy​  ​is​  ​at​  ​the ​  ​heart​  ​of​  ​the ​  ​(behavior)​  ​game-­theoretical ​  ​preoccupations.  
  

Another related but also overlooked characteristic of the research on strategic interaction is the                                         

inter-­individual variability. The CH/level-­k models posit that players might differ in the accuracy of their                                            

beliefs, and correlational studies have suggested that engaging in such a strategically-­sophisticated                                   

behavior​  ​during ​  ​one-­shot​  ​games​  ​is​  ​computationally​  ​costly.  
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Previous researches in computational neuroscience do indeed suggest that humans vary in their ability to                                            

engage in model-­based learning, and the research in neuroeconomics presented here show important                                      

variance in belief-­based (​Fig.15 ​) as well as higher-­order strategic learning (​Fig.16 ​). The question thus                                         

remains​  ​open ​  ​of​  ​what​  ​drives​  ​such ​  ​a ​  ​high ​  ​heterogeneity​  ​in ​  ​strategic​  ​learning.    
  

  

IV-­ ​  ​Synthesis​  ​and ​  ​working ​  ​hypothesis​  ​of​  ​the ​  ​present​  ​thesis  
  

We have seen that the value-­based approach initiated in economics and further developed by the                                            

growing field of neuroeconomics has been proven very useful to understand the cognitive mechanisms at                                            

play during decision-­making. Along this line, the framework of reinforcement learning, formalized in                                      

machine learning, has provided neuroscientists with an important toolbox to identify the computations                                      

performed by the brain during repeated interactions with an uncertain environment. It has also fed                                            

cognitive scientists with a major insight about cognition: the concept of prediction error. This signal, which                                               

has been found to be encoded by dedicated structures of the brain, reflects the discrepancy between the                                                  

expected outcome of an action and the outcome actually experienced once realized, and drives                                         

behavioral adaptation (i.e. learning) towards (subjective) value maximization. Recent studies in the field                                      

suggest that different learning systems interact on top in order to adjust action selection in the unknown.                                                  

From probabilistic learning to the use of heuristics, humans seem capable of forming beliefs over the                                               

action-­outcome contingencies constituting their choice environment and implement these representations                             

in a common value-­based frame to guide their decision-­making process through reinforcement. Moreover,                                      

this​  ​computational ​  ​apparatus​  ​has​  ​been ​  ​shown ​  ​to ​  ​be ​  ​transposable ​  ​to ​  ​the ​  ​social ​  ​realm.    
  

The last decade of research in neuroscience has shown that social information computed in dedicated                                            

areas (such as the TPJ) are integrated, voluntarily or not, in the same decision-­making process, recruiting                                               

similar brain circuits as in non-­social environments. But even more importantly, a growing amount of                                            

studies now suggest that humans (and non-­human primates) can even use prediction error signals to                                            

learn action-­outcome contingencies in the behavior of a conspecific, and use such a representation of the                                               

other’s intentions to adjust their own choices through reinforcement. Patterns of activation in the medial                                            

prefrontal cortex (mPFC) suggest that this area plays an important role in the computation of the                                               

prediction error signals which subserves the update of beliefs over a non-­social probabilistic environment                                         

as​  ​well ​  ​as​  ​the ​  ​behavior​  ​of​  ​another​  ​person.  
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Our ability to infer intentions and form beliefs over the mental state of other individuals, broadly labeled                                                  

“mentalizing” in psychology, might thus relate on prediction and involve shared learning mechanisms                                      

across domains. Nevertheless, interacting with another person implicates that our own actions might also                                         

affect her behavior, like in strategic interactions, and that the action-­outcome contingencies might thus                                         

depend on the outcome of our own decision-­making process. Therefore the beliefs one forms over the                                               

contingencies in the choice behavior of another individual might as well incorporate information about the                                            

influence of our own choices. Game theory provides solution concepts for optimal (subjective value                                         

maximizing) choices in strategic interactions, modeled as games. (Mixed Strategy) Nash Equilibrium                                   

(MSNE) for instance prescribes a specific probability distribution over the actions available in a (dyadic)                                            

strategic interaction with another person. However, MSNE relies on the assumption that both individuals                                         

(players) best respond to accurate beliefs over the other player (mutual best response). When the game                                               

is not repeated, game-­theorists have proposed that forming accurate beliefs over the other player might                                            

require to engage in iterative thinking, or sophisticated reasoning. However, when the game is repeated                                            

and when this information from previous play can be used to inform the subsequent choice, several                                               

learning models have been proposed in the behavioral game theory literature, from reinforcement to                                         

probabilistic learning. The latter type of model, labeled belief-­based learning as it computes the beliefs                                            

over the action-­outcome contingencies in the behavior of the other, has been found to also recruit the                                                  

mPFC area. Still, these models take into account neither the strategic nature of the interaction nor the                                                  

interplay between the two players’ choices. Recently, higher-­order beliefs models have been developed,                                      

in which the influence of one’s choice is taken into consideration in the learning of the action-­outcome                                                  

contingencies of the other’s behavior. Using a simple Influence model which computes a second-­order                                         

action prediction error, recent neuroeconomics experiments have shown that the TPJ, a brain area found                                            

to encode specific socially-­related signals like perspective-­taking, encodes such a teaching signal to                                      

update (high-­order) beliefs over the opponent’s behavior in a competitive game. This type of higher-­order                                            

inference model can be seen as a dynamic (learning) equivalent to the iterative thinking models proposed                                               

in ​  ​one-­shot​  ​games,​  ​as​  ​it​  ​might​  ​allow ​  ​a ​  ​more ​  ​accurate ​  ​prediction ​  ​of​  ​the ​  ​other’s​  ​behavior.  
  

On the one hand, heterogeneity in the departure from MSNE play has been systematically observed in                                               

behavioral game theory in both one-­shot and repeated games. On the other hand, the higher order                                               

learning models developed recently capture average behavior quite effectively but still, important variance                                      

is reported in individual learning. However, to our knowledge, no study has yet reported how the dynamic                                                  

computation of higher order beliefs driving learning in repeated game interactions relate to                                      

game-­theoretical ​  ​prescriptions.    
  

In this thesis, we will first present a behavioral investigation of the interplay between higher-­order belief                                               

learning (strategic learning) and optimal play by taking advantage of the heterogeneity observed in human                                            
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behavior during repeated (competitive) strategic interactions. This study, composed of three experiments,                                   

is presented in chapter II. We then investigated whether an individual’s level of strategic learning                                            

engagement during a strategic game is affected by the level of the previously encountered player in the                                                  

same game. This study is presented in chapter III. Finally, we investigated the possibility that statistical                                               

redundancies in the other’s choice behavior (i.e. choice patterns) can be exploited by humans in order to                                                  

improve ​  ​the ​  ​accuracy​  ​of​  ​their​  ​beliefs.​  ​This​  ​study,​  ​divided ​  ​in ​  ​two ​  ​experiments,​  ​is​  ​presented ​  ​in ​  ​chapter​  ​IV.    
In the last chapter (V), we will discuss the implications of these studies for the field of neuroeconomics but                                                        

also ​  ​game ​  ​theory,​  ​and ​  ​draw ​  ​a ​  ​general ​  ​conclusion ​  ​of​  ​the ​  ​work​  ​conducted ​  ​in ​  ​this​  ​thesis.    
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-­ ​  ​Chapter​  ​II​  ​-­    
The ​  ​interplay ​  ​of​  ​learning​  ​sophistication​  ​and    

strategic ​  ​asymmetry ​  ​in​  ​social​  ​competitive ​  ​interactions    
(Exp.​  ​1,​  ​2,​  ​3)  

  

  

I​  ​-­ ​  ​The ​  ​interplay​  ​of​  ​learning​  ​sophistication​  ​and ​  ​strategic​  ​asymmetry​  ​in ​  ​social ​  ​competitive  
interactions.​  ​[Griessinger​  ​T.,​  ​Khamassi ​  ​K.​  ​and ​  ​Coricelli​  ​G.​  ​(in ​  ​prep.)]  
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The ​  ​interplay​  ​of​  ​learning​  ​sophistication​  ​and ​  ​strategic​  ​asymmetry    
​  ​in ​  ​social ​  ​competitive ​  ​interactions     

  

  

This​  ​section ​  ​is​  ​adapted ​  ​from:    
Griessinger​  ​Thibaud,​  ​Khamassi ​  ​Mehdi*,​  ​Coricelli ​  ​Giorgio*.​  ​The ​  ​interplay​  ​of​  ​learning ​  ​sophistication ​  ​and  
strategic​  ​asymmetry.​  ​About​  ​to ​  ​be ​  ​submitted.​  ​[*the ​  ​two ​  ​authors​  ​equally​  ​contributed ​  ​to ​  ​this​  ​work]  
  

  

A)​  ​Introduction  
           

Inferring someone's’ intention is key to adjust our behavior and maximize the outcome of a social                                               

interaction (Schaafsma et al, 2015 [1]). It enables to establish shared action plans and efficient motor                                               

coordination in cases of cooperation (Pacherie & Khamassi, in press [2]). It also enables anticipation of an                                                  

opponent’s​  ​actions​  ​in ​  ​cases​  ​of​  ​competition ​  ​such ​  ​as​  ​in ​  ​strategic​  ​games.  
  

Recently, emphasis has been placed on one particular feature of this mind reading ability: using the past                                                  

experience to predict the near-­future behavior of a conspecific (Koster-­Hale & Saxe, 2013 [3]). Strategic                                            

interactions during competitive games have been proved a useful experimental paradigm to capture the                                         

behavioral dynamics revealing such theory of mind in human and non-­human primates (Lee, 2008 [4]), as                                               

they consist in social situations where one’s choice outcome critically depends upon the action of the                                               

other.    

Game-­theory provides formal solutions to strategic interactions, modelled as games, through the concept                                      

of Nash Equilibrium (NE) and its refinements (Nash, 1950 [5]). The so-­called Mixed Strategy Nash                                            

Equilibrium (MSNE), for instance, prescribes a probability distribution over possible actions that ensures                                      

to each involved agent that they would have no incentive to deviate if they all follow it. In practice,                                                        

however, humans typically deviate from this solution concept (Camerer, 2003 [6]), and when the                                         

aggregated choices seem to fit the theoretical prescription, slightly changing the payoff structure of the                                            

game might lead to a strong departure from MSNE (Goeree & Holt, 2001 [7]). Nevertheless, patterns of                                                  

aggregated choices somehow appear to converge towards MSNE when a game is repeated (Fudenberg                                         

& Levine, 2009 [8]). Following MSNE requires for each subject to show some level of randomness in their                                                     

behavior. This enables subjects in practice to approximately stick to the action probability distribution                                         

prescribed by the MSNE without displaying a trivial repetitive behavior which would have entailed the risk                                               
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to be detected/predictable by the opponent. This empirical finding is surprising as humans have been                                            

systematically proved to be bad randomizers (Gauvrit et al, 2017 [9]). Indeed serial dependency in                                            

between actions is usually observed (Shachat, 2002 [10]), leading authors to suggest that learning might                                            

lead to MSNE (Erev & Roth, 1998 [11];; Fudenberg & Levine, 1998 [12]). However, the way human                                                  

subjects​  ​progressively​  ​learn ​  ​to ​  ​reach ​  ​MSNE​  ​is​  ​still ​  ​little ​  ​understood.  
One hypothesis, which encounters growing support, lies on the idea that convergence towards MSNE                                         

distribution requires that both players, who aim to maximize their earnings, should hold correct beliefs                                            

over their opponent’s behavior and best-­respond to it (Camerer et al, 2004 [13]). According to this                                               

hypothesis the ability to do so must be somehow constrained, leading to sub-­optimal behavior (Barros,                                            

2010 ​  ​[14]).  
In case of non-­repeated interactions, like in one-­shot games, the ability to form accurate beliefs lies on the                                                     

capacity to engage sufficiently in iterative thinking. However, important variability in the population has                                         

been observed (Crawford et al, 2013 [15]), which has been recently linked to specific differences in the                                                  

computation of the information relative to the other’s behavior (Polonio et al, 2015 [16]). When the game                                                  

is repeated and choice feedback is provided, like most of our social interactions (Schilbach, 2013 [17]),                                               

learning becomes possible as space is given to update and adjust beliefs through predictions over the                                               

opponent’s behavior. Such facilitative effects of game repetition on MSNE convergence has been                                      

reported empirically (Fudenberg & Levine, 2009 [7]). Humans are known to be able to track intentions in                                                  

others (Dennett, 1987 [18]), however one might wonder if actually we are able to engage in sufficiently                                                  

sophisticated ​  ​learning ​  ​to ​  ​form​  ​accurate ​  ​beliefs​  ​about​  ​an ​  ​opponent’s​  ​behavior.  
  

Research in cognitive neuroscience suggests that, in probabilistic tasks, humans learn to adjust their                                         

decision based on expected values computed from previously experienced outcomes (model-­free                                

reinforcement learning, RL) but also through the incorporation of (probabilistic) beliefs over the                                      

action-­outcome contingencies underlying the structure of such environment (model-­based RL) (Doll et al,                                      

2012 [19], 2015 [20]). Indeed in such tasks, reward convey at least two types of information, often                                                  

correlated: the affective (hedonic) value embodied in the monetary reward and the information (predictive)                                         

value about the architecture of the world (O’Doherty, 2014 [21]). The ability to use the latter to maintain                                                     

and update, using prediction accuracy, a mental representation of the choice environment has been found                                            

to encompass social interactions as well (Joiner, et al, 2017 [22];; Ruff & Fehr 2014 [23]). In fact, by                                                        

pairing the normative framework of game theory to the computational approach in neurosciences, recent                                         

research has shown that during repeated games, humans can engage in model-­based learning using an                                            

iterative computation of the strategic information provided by the interaction (Devaine et al 2014 [24]);;                                            

Hampton et al, 2008 [25]). Such strategically sophisticated computations drive higher order beliefs that                                         

incorporate the level of influence of one’s past actions on her opponent’s choice behavior, thus allowing                                               

for more accurate predictions (Griessinger & Coricelli, 2015 [26]). Such hierarchy of belief computation                                         
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has been observed at the brain level, with common brain structures implicated in model-­based                                         

(non-­social) and belief-­based (social) learning computations (medial prefrontal cortex) (Lee & Seo, 2016                                      

[27]), and higher-­order belief (strategic) learning incorporating signals from areas involved in theory of                                         

mind ​  ​(temporo ​  ​parietal ​  ​junction)​  ​(Hill ​  ​et​  ​al,​  ​2017 ​  ​[28]).    
  

Crucially, all these studies reported important heterogeneity in the level of engagement in belief-­based                                         

learning, linked to variation in overall performance. However, none of the previous studies directly                                         

investigated the relationship between the human’s ability to engage in strategic learning and the observed                                            

deviation from best response distribution, and ultimately MSNE. Taken together these results yet suggest                                         

that the human’s propensity to follow optimality prescription from game-­theory requires to disengage from                                         

reward-­oriented,​  ​model-­free,​  ​learning ​  ​and ​  ​fully​  ​engage ​  ​in ​  ​belief-­based ​  ​learning.    
  

We hypothesized that, depending on how the reward structure interact with the MNSE prescription in a                                               

repeated strategic game, human performance in the game may be differently affected so that it does not                                                  

necessarily reflect an individual's general level or ability of strategic learning. Previous studies suggest                                         

that the amplitude of the payoffs interferes with the propensity to follow the MSNE (Goeree & Holt, 2001                                                     

[7]), and that the symmetric nature of a game might facilitate the belief formation over the opponent’s                                                  

behavior​  ​through ​  ​perspective ​  ​taking ​  ​(Beckenkamp ​  ​et​  ​al ​  ​2007 ​  ​[29];;​  ​Feldman ​  ​et​  ​al ​  ​2010 ​  ​[30]).    
We developed a novel 2x2 competitive game setting, asymmetric in payoff structure but symmetric in                                            

payoff amplitude and expected payoff, so that the two players would earn the same if they both follow the                                                        

MSNE distribution. The payoff matrix was however designed to lead to ​strategic asymmetry where one                                            

player’s highest rewarded action would happen to be, at the informational level, the one the MSNE                                               

prescribes to choose the most (advantageous role), while for the other player the attractive action (focal                                               

point) would be the one she should choose the less (disadvantageous position). If following the optimal                                               

distribution of choice is conditioned on the ability to consider the strategic structure beyond the payoffs                                               

value ​  ​to ​  ​engage ​  ​in ​  ​belief​  ​learning,​  ​then ​  ​our​  ​game ​  ​should ​  ​lead ​  ​to ​  ​strategic​  ​asymmetry.    
We made the secondary hypothesis that in the repeated version of our stage game, humans with different                                                  

individual strategic learning level (SL) would differ in their capacity to overcome this asymmetry and lead                                               

to observable differences in the final earnings between the advantageous and disadvantageous roles in                                         

the ​  ​game.  
  

We ran 2 distinct experiments with the same game setting: In the first one human subjects play against                                                     

each other, while in the second we specifically manipulate the level of subjects’ computerized opponent.                                            

Beforehand, we simulated agents interacting repeatedly through our competitive game, all modeled as                                      

simple learning algorithms varying from reward-­based to sophisticated belief-­based computations                             

(Hampton et al, 2008 [25]) and developed to capture different levels of strategic learning sophistication                                            
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(SL). As anticipated we show that, at the population level, the game payoff matrix lead to a strong                                                     

strategic asymmetry, such that the agents playing in the disadvantaged position see their loss reduced                                            

only​  ​when ​  ​they ​  ​engage ​  ​in ​  ​higher​  ​SL ​  ​level ​  ​than ​  ​their​  ​opponent.  
The first, unconstrained experiment allowed us to observe behaviorally this strategic asymmetry. Since                                      

subjects in each role did not differ in their SL level ​per se ​, we were able to show that the strategic                                                              

asymmetry of repeated game was indeed causing the observed difference in total outcome, and that, as                                               

hypothesized, the observed deviation from game optimality (MSNE) is mainly driven by the individual                                         

propensity to depart from reward-­based learning and engage in sophisticated belief-­learning. These                                   

results were refined and replicated in the second experiment, showing that individuals in the                                         

disadvantageous position were driven by loss reduction and constrained by their own SL learning                                         

capacity, while subjects in the advantageous position were mainly adjusting their best response to the                                            

estimated behavior of their opponent. Importantly for our computational hypothesis, behavioral results                                   

from both experiments matched the predictions made in the simulation. Strikingly, only subjects endorsing                                         

the disadvantageous role (hence pressed towards their own limit) showed a SL level which was stable                                               

across opponent, as if the reduction of the strategic asymmetry was cognitively bounded (Friedenberg et                                            

al, 2016 [31]). These findings thus provide a possible explanation for the discrepancy between previous                                            

studies in which no correlation between SL level in strategic games and cognitive abilities was observed                                               

(Devaine ​  ​et​  ​al,​  ​2014 ​  ​[24]).  
  

  

B)​  ​Exp.1:​  ​Model ​  ​simulation​  ​and ​  ​prediction  
  

The game is a two by two (two players, two actions) (payoffs) asymmetric game, with a unique Mixed                                                     

strategy equilibrium (​Fig. 1.A). ​The expected payoffs at the mixed strategy Nash equilibrium are the same                                               

for​  ​both ​  ​players.  
  

To make predictions about the effect of the strategic asymmetry of our payoff matrix on subjects’ behavior                                                  

we simulated different computerized agents playing a repeated version of our game in each of the 2 roles,                                                     

with different levels of strategic sophistication.Such simulation analysis allows us to not only test the                                            

robustness of our design but also to make precise predictions regarding the effect the individual level of                                                  

strategic learning would have on the dynamics of play of humans interacting through this experimental                                            

setting (see Supplementary Information for details on the computational modelling and the simulation                                      

analysis).  

  

__________________________________________________________________________________  
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Figure 1. Strategic characteristic of the game: simulation of play between 2 agents varying in their Strategic Learning                                                     

level ​  ​(SL)​  ​shows​  ​strong ​  ​asymmetry​  ​in ​  ​total ​  ​earnings​  ​between​  ​the ​  ​2 ​  ​roles.    
(A) Payoff matrix of the repeated game, in points. In light blue the action probabilities prescribed by the mixed                                                        

strategy equilibrium (MSNE). (B) Each agent modeled by either one of the 3 models of increasing strategic                                                  

complexity, or SL level (i.e. Level 0: Q-­Learning, 1: Fictitious play and 2: the Influence model) played the game in one                                                              

of the 2 role. Every Player1-­Player2 model combination was simulated 100 times playing against each other the 100                                                     

repetitions of the game. Agents endorsing the role of Player 1 won more points on average than Players 2. In fact                                                              

Player 2 agents won more that their opponent only in the situation where they were playing SL Level 2 and Player 2                                                                 

agent​  ​a ​  ​level ​  ​below​  ​or​  ​more.  
____________________________________________________________________________________  

  

To mimic inter-­individual variation of strategic learning we used 3 computational models varying in their                                            

level of strategic sophistication (SL): a simple reinforcement algorithm learning only from the outcomes                                         

obtained through its past choices;; a fictitious play best responding to the probability of each opponent’s                                               

choice computed from its history of actions;; and an Influence model, i.e. a 2nd order fictitious taking into                                                     

account the influence of its own past choices in the computation of the opponent’s probability of play                                                  

(Hampton et al, 2008 [25]). Each simulation consisted in 2 computerized agents, endorsing one of the 2                                                  

roles and modeled by one of the 3 models, playing against each other during 100 repetitions of the stage                                                        

game. Our simulation results reveal an important advantage of Players 1 over Players 2 in our game. Not                                                     

only agents playing as Player 1 performed better than Players 2 in the game, but Players 2 had to be                                                           

consistently higher SL level than their opponent in order to win more points ​(Fig. 1.B). To insure that this                                                        

game propriety does not depend on the tuning of our simulations we replicated the simulation analysis                                               

with different proxies of the SL level such as the parameter λ of the Influence model. This parameter                                                     

captures the weight of the second order fictitious update in the computation of the opponent’s action                                               

probability. Our additional simulation analyses systematically show that the only way for Players 2 to                                            
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outperform their opponent is to engage in a higher level of Strategic Learning ​(Supplementary Figure                                            

Fig.​  ​S1).  
  

Altogether this preliminary analysis confirms the strategic asymmetry of our payoff matrix, revealing the                                         

strong advantage of player 1 over player 2 in the sub-­optimal domain. This setting allows us to clearly test                                                        

how the individual level of strategic sophistication is affected by the strategic asymmetry of the repeated                                               

competitive ​  ​interaction.  
  

  

C)​  ​Exp.2:​  ​Human ​  ​against​  ​human    
  

1)​  ​Material ​  ​and ​  ​Methods  
  

a)​  ​Population     
  

64 participants (29 male, 35 female;; ages 27.1±9.4) took part in the experiment. They were students at                                                  

Lyon University, who had previously joined the recruitment system on a voluntary basis. These volunteers                                            

gave written informed consent for the project which was approved by the French National Ethical                                            

Committee. All participants were right-­handed, medication-­free, with normal eyesight, no history of                                   

neurological ​  ​disorders.  
  

b)​  ​​  ​Experimental​  ​Design  
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____________________________________________________________________________________

  
Figure 2. Experimental design of experiment 1. (A) We manipulated 2 variables: the role (within subject level), and                                                     

the opponent (between subject level). At start subjects were randomly assigned to one of the two roles in the game                                                           

(player 1 or 2). After being instructed, they were randomly paired to an anonymous counterpart during a block of 100                                                           

repetitions of the game, and to a different counterpart during the second trial block. (B) Trial Structure: At each trial                                                           

the two game actions, represented by the randomly assigned colors, were presented for 3s to each player. The                                                     

choice was made by pressing the corresponding button (left or right). 4s after the trial onset, both players were                                                        

simultaneously provided with the outcome feedback of their choice for 3s (the cell matrix matching to the 2 players                                                        

choices​  ​was​  ​highlighted​  ​and ​  ​the ​  ​points​  ​won ​  ​displayed​  ​in ​  ​turquoise).  
____________________________________________________________________________________  

  

The first experiment consisted in a repeated interaction against another anonymized participant. One of                                         

the 2 roles was randomly attributed to each participant at the beginning of the experiment. Each subject                                                  

interacted with two different human opponents, one after the other in two trial blocks of 100 repetitions of                                                     

the stage game with complete choice feedback (​Fig. 2.A). These two opponents were randomly selected                                            

among the participants assigned the opposite role to the subject. Points earned at each trial were                                               

accumulated through each block and summed up to determine their final payoff which would ultimately be                                               

converted to euros according to a predetermined rule. Each subject was initially instructed of the 2 stimuli                                                  

representing her two available actions in the task, the payoff structure of the game, and trained to learn                                                     

the stimulus-­outcome contingencies of the payoff matrix. Each action was made of a different colored                                            
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circle randomly picked from 4 possible colors (all controlled for luminance). The 4 colors were randomly                                               

assigned to each pair of subjects in the first block, and kept unchanged in the second interaction block                                                     

(thus constraining the re-­matching random procedure in the second block). At each trial, both subjects                                            

had 3 seconds to select one of the 2 colors displayed at the left and right of the screen (randomized order                                                              

across trials), the chosen one was highlighted for 1 second as choice feedback. 4s after the trial onset,                                                     

both players were simultaneously provided with the outcome feedback of their choice and the one of their                                                  

opponent for 3s. The outcome feedback screen consisted in the payoff matrix (note that depending of the                                                  

role endorsed in the game the matrix was flipped so that subjects were always presented as row player),                                                     

with the cell corresponding to the matching of the 2 players choices highlighted and the points won by the                                                        

subject displayed in turquoise (​Fig. 2.B). This display ensured minimal framing effect, while controlling for                                            

participants’ ​  ​awareness​  ​of​  ​the ​  ​underlying ​  ​payoff​  ​structure ​  ​of​  ​the ​  ​game.  
We also provided to the subjects an additional task which consisted of a series of four different types of                                                        

2x2 static (one-­shot) games (Polonio et al, 2015 [16]). The goal was to test the endogeneous hypothesis                                                  

of strategic learning sophistication developed in Griessinger & Coricelli, 2015 [26]. We hypothesized that                                         

participants with a SL level in the repeated game (captured by our computational approach from the game                                                  

behavior in the main task) would also display a higher strategic reasoning (SR, expressed as their                                               

capacity to conform to equilibrium play when a game is not repeated and no feedback is provided). All the                                                        

subjects came back a second time to the lab a week later to complete a series of cognitive tasks. Both the                                                              

additional ​  ​experiment​  ​and ​  ​cognitive ​  ​tasks​  ​are ​  ​detailed ​  ​in ​  ​Supplementary​  ​Information.    
  

  

c)​  ​Computational​  ​modeling  
  

To capture the level of strategic learning of the subjects we first used the computational approach                                               

introduced in the preliminary simulation analysis​: 3 computational models, corresponding to 3 different                                      

levels of strategic sophistication, were fitted individually to each choice series from the two trial block                                               

independently (Q-­Learning, Fictitious and Influence models). The underlying assumption is that the higher                                      

the level of strategic complexity of the model that best fits a subject’s behavior, the higher her strategic                                                     

learning engagement in the interaction. As detailed in the Supplementary Information we also tested                                         

additional ​  ​models​  ​to ​  ​control ​  ​for​  ​the ​  ​reliability​  ​of​  ​our​  ​computational ​  ​approach.    
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2)​  ​Results  
  

a)​  ​Behavioral​  ​results  
  

We first tested our hypothesis that our game settings triggers differences in choice behavior between the                                               

2 ​  ​roles.    
As predicted by our simulation analysis subjects who endorsed the role of Players 1 won more points on                                                     

average than Players 2 ​(Block 1, B1: F(2,31)= 3.272 p= 0.0014, t(48.33)= 4.396 p<0.0001 ;; Block 2, B2: F(2,31)=                                                        

2.236 p= 0.0282, t(54.10)= 3.894 p=0.0003)​, in fact, across the 2 blocks, only 15% of Players 2 won more                                                        

points than their opponent. The choice behavior of the 2 groups deviated on average from the optimal                                                  

solution in both blocks ​(Player 1, P1 -­ B1: P(a) = 0.399(0.065), B2: P(a) = 0.391(0.070) ;; P2 -­ B1: P(A) =                                                                 

0.482(0.098), B2: P(A) = 0.448(0.097) ) but Players 2 were the ones who deviated the most from game                                                     

optimality by choosing the action “A” much more frequently than the mixed strategy equilibrium (MSNE)                                            

prescription in comparison to Players 1 ​(B1 t(54.09)= 3.935 p=0.0002 unequal variance, B2: t(62)= 2.696                                            

p=0.009)​. We thus aimed to test if this difference could explain the difference in performance between the                                                  

2 players. As shown on ​Fig. 3 Players 2 deviation from MSNE was not correlated to their overall                                                     

performance like Players 1 (​Fig. 3.A ​), but rather to the size of their loss in the interaction (​Fig. 3.B ​). In                                                           

fact the disadvantage in the interaction that was experimentally induced through the structure of the                                            

game, lead Players 2 to be constrained to the loss domain, so that the closer their choice proportion was                                                        

to the MSNE, the less difference in points they had with their opponent. ​This asymmetry in the interaction                                                     

seems to have been fully exploited by Players 1 since deviation of Players 2 from the MSNE lead them to                                                           

perform​  ​better​  ​than ​  ​their​  ​counterpart​  ​did ​  ​in ​  ​this​  ​situation ​  ​(​Fig.​  ​3.C ​  ​-­​  ​Fig.​  ​S1.C ​).  
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___________________________________________________________________________________

  

Figure 3. Model free analysis -­ Deviation from game optimality affects differently the 2 roles in the strategically                                                     

asymmetric game, leading to a structural disadvantage of Players 2 (A) The closer to the MSNE the choice                                                     

distribution of Players 1 is the higher their absolute performance. On the other hand Players 2 choice optimality did                                                        

not lead to higher absolute performance but to a higher relative performance (B), reducing the gap in points that                                                        

separate them from their opponent. This structural asymmetry lead Players 1 to fully exploit the disadvantage, their                                                  

absolute performance increased more with their opponent suboptimality than Players 2 confronted to a suboptimal                                            

opponent​  ​(C).  
____________________________________________________________________________________  

  

Before investigating how the level of strategic learning affects the choice behavior of the two roles, we                                                  

first tested that our prior assumption that subjects differ in their level of strategic learning was met. Our                                                     

computational analysis revealed that half of our subjects behavior was best captured by the Influence                                            

model ​(Fig. 4.A)​, while near one third of our population was best fitted by models of lower level of                                                        

strategic complexity (less than 10% by the reinforcement learning model). Moreover not only the subjects                                            

best fitted by the Fictitious model were also better captured by the Influence model in comparison to the                                                     
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reinforcement model (relative fit of the Influence) ​(Fig. 4.B) ​, but the better a subject’s choice behavior was                                                  

captured by the high SL model, the higher the value of her Influence best fitting parameter λ was ​(B1: r =                                                              

0.7534, p=6.757e-­13;; B2 : r = 0.7535, p=6.7276e-­13)​. Taken together these results reveal that the majority of                                                  

subjects were engaged in some form of strategic learning throughout a gradient of strategic complexity                                            

(SL).  

  

____________________________________________________________________________________

  

Figure 4. Strategic learning heterogeneity captured by our computational approach. Most of the participants engaged                                            

in Strategic Learning (SL>0) (A) Individual Best Model (I.B.M.) frequency plot. While at the population level, the                                                  

Influence model fits the best the population behavior (not shown), at the individual level about half of the subjects                                                        

were best fitted by high SL and one third by models of lower levels of strategic learning. (B) Population gradient of                                                              

strategic learning sophistication. The plot represents the average relative fit quality of the Influence model (in                                               

comparison to the RL model) for each SL group (I.B.M.). Subjects individually best fitted by higher level of strategic                                                        

learning​  ​model​  ​were ​  ​incrementally​  ​better​  ​fitted ​  ​by​  ​the ​  ​Influence.  
____________________________________________________________________________________  

           

To maximize the accuracy of our individual characterization and avoid the overestimation of the individual                                            

strategic learning level, we conducted an extended computational analysis including additional models.                                   

None of the variations of the Reinforcement and Belief-­Based models tested improved significantly their                                         

fit, thus confirming that most of our subjects indeed engaged in some form of strategic learning                                               

(Supplementary Information). In fact our analysis suggests that the SL level might have been                                         

under-­estimated since more than one third of the subjects previously best fitted by the Influence were                                               

better fitted by a 2nd order version of the model (Devaine et al 2014 [24]) ​(Fig. S2)​. This nevertheless                                                        

does not affect the superiority of their SL level compared to subjects best fitted by RL or Fictitious models.                                                        

Although it is important to note that if the relative fit between the 2-­Inf and simple reinforcement learning                                                     
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improves the precision of the characterization of the individual SL levels, all the results presented in the                                                  

following consistently hold when using as SL measure the fit of the Influence relative to the fictitious, or                                                     

the ​  ​value ​  ​of​  ​the ​  ​Influence ​  ​best​  ​fitting ​  ​parameter​  ​λ.  
  

Our computational analysis thus suggests an overall departure from simple reinforcement in repeated                                      

competitive interactions, with a population spread across a gradient of strategic sophistication going from                                         

value-­based (Reinforcement), to low (Belief-­Based) and high level (Strategic) level of learning                                   

engagement.  

  

Our simulation analysis suggested that the endogenous disadvantage of Players 2 in the game can be                                               

overcome by engaging in a higher level of sophistication than the opponent. However the important                                            

difference in performance and game optimality observed between the 2 roles in our experiment lead us to                                                  

hypothesize that, on average, Players 2 did not engage in a higher level of strategic learning than Players                                                     

1. Indeed we could not reject the null-­hypothesis that the 2 populations of SL came from the same                                                     

distribution, using as SL measure either their departure from reinforcement towards models of highest                                         

strategic complexity ​(D(126)= 0.2031, p=0.1250;; U(126)= 1682, Z = 1.7418 p= 0.0815) or the weight attributed                                               

to 2nd order belief (λ) ​(D(126)= 0.1719, p=0.5809;; U(126)= 2036, Z = 0.0548, p= 0.9563)​, these results hold                                                     

when the 2 blocks were analyzed separately. The 2 roles did not differ either in how frequently they                                                     

switched actions from one trial to the next ​(U(126)= 1986.5, Z =0.2913, p= 0.7708)​. Our results suggest that                                                     

the observed disadvantage of players 2 was not due to a difference on average strategic learning                                               

sophistication ​  ​but​  ​could ​  ​rather​  ​be ​  ​caused ​  ​by​  ​a ​  ​different​  ​implication ​  ​of​  ​the ​  ​SL ​  ​level ​  ​in ​  ​the ​  ​2 ​  ​roles.  
  

We then investigated how the SL level of the 2 Players drove the dynamics of their interaction. We focus                                                        

first on Players 2 behavior. The level of strategic learning engagement of Players 2 was negatively                                               

correlated with deviation from the mixed strategy equilibrium ​(r= -­0.6455, p= 8.48e-­09, SL as relative fit of the                                                     

2-­Inf)​. Therefore, as suggested by our model free analysis (​Fig. 5.A,B), their SL level was not correlated                                                  

directly to the total points won in each block but to the difference in points with their opponent, so that the                                                              

higher their SL the lower their average relative loss is (​Fig. 5.A). In fact the higher their SL level was                                                           

compared to their Player 1 opponent, the closer their action distribution was to the MSNE ​(Fig. 5.B).                                                  

However this was not enough to overcome the structural disadvantage and increase their absolute                                         

performance ​(Fig. 5.C) ​. If Players 2 behavior seems to be constrained by their own SL level, Players 1                                                     

behavior presents a quite opposite pattern. Their deviation from MSNE frequency was not directly driven                                            

by their SL level ​(r=-­0.0396, p=0.7561) ​but by the one of their opponent ​(r=0.49403, p=3.34e-­05)​, ​so that the                                                     

higher the level of Players 2 the worse their performance was ​(absolute: r= -­0.5826, p= 4.40e-­07 and relative:                                                     

r= -­0.4650, p= 0.0001)​. ​Since Players 2 who engaged in a higher SL level deviated more from the High                                                        

Reward action to play closer to the MSNE, they pushed Players 1 to adapt by engaging in a higher SL                                                           
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level. Indeed, given the structural advantage they have in the game, the better they were at anticipating                                                  

their opponent’s behavior (higher SL level than their opponent), the higher were their relative win ​(r=                                               

0.4380, p= 0.0003) ​and their absolute performance (​Fig. 5.C ​). These results hold when comparing these                                            

behavioral ​  ​measures​  ​between ​  ​high ​  ​and ​  ​low ​  ​SL ​  ​level ​  ​(median ​  ​split)​  ​in ​  ​the ​  ​2 ​  ​roles.  
  

____________________________________________________________________________________

  

Figure 5. Model-­based analysis -­ The Strategic Learning level (SL) of the Players 2 in the game, conditions their                                                        

capacity to overcome the structural disadvantage of their position in the game. (A) The higher the SL level, measured                                                        

here by the difference in the fit between the (second order) Influence model compared to the fit of the RL ​1​, the more                                                                 

Players 2 reduced their disadvantage compared to their opponent. (B) The higher their SL level compared to their                                                     

opponent the closer to the MSNE they played. In fact both role converge towards the equilibrium distribution, only                                                     

Players 2 tend to deviate much more when not engaging in strategic learning. (C) Albeit decreasing the gap in points                                                           

with their opponent Players 2 could not on average increase their overall performance, constrained by both the                                                  

structure ​  ​of​  ​the ​  ​interaction​  ​and ​  ​their ​  ​own ​  ​SL ​  ​level.    
1 ​Similar results were obtained when running the correlation test analysis with the relative fit of the (first order                                                        
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Influence. Using the Influence parameter (​λ) ​values as measure of the SL level or comparing Low and High SL IBM                                                           

groups​  ​of​  ​subjects​  ​lead ​  ​conserved​  ​the ​  ​main ​  ​statistical ​  ​effects.  
____________________________________________________________________________________  

  

To capture the effect simultaneously of both the subjects and their opponent SL level on the subject’s                                                  

choice behavior, we ran 3 GLM analyses that confirmed that Players 2’s behavior was impacted mainly by                                                  

their own level of strategic learning sophistication and Players 1 mainly by the SL level of their opponent                                                     

(​Fig.​  ​S3.A.B).  
  

This dynamic can be further unfolded by looking at the choice accuracy of the subjects. Players 2 who                                                     

engaged in higher SL level managed to overrule the value-­based sub-­optimal bias towards the high                                            

reward action. Instead the selection of the action A, easily predictable by their opponent in the                                               

advantageous situation, was selected more carefully, leading them to switch more often their action from                                            

one trial to the other ​(r= 0.3419, p=0.0057) ​and ​get more frequently the high reward when they chose it                                                        

(Fig. S4.C)​. Conversely this lead Players 1 to compensate, to avoid deviating more from the optimal play,                                                  

by​  ​engaging ​  ​in ​  ​higher​  ​strategic​  ​learning ​  ​eventually​  ​leading ​  ​to ​  ​also ​  ​increase ​  ​their​  ​accuracy​  ​​(Fig.​  ​S4.C) ​.  
This overriding of the prime tendency for Players 2 to go for the high reward by engaging in higher level of                                                              

strategic learning level was also observed from one choice to another. Using a logistic regression analysis                                               

we can take a closer look to the series of choices, to investigate how the previous actions impact the next                                                           

current decision (details provided in the Supplementary Information). This analysis revealed that on                                      

average subjects consistently alternated their choices every 2 trials independently of their role (​Fig. S5.A)                                            

but that only Players 2 tended to persist in selecting the action linked to the high reward, taking less into                                                           

account the opponent’s last choice (​Fig. S5.A,B) ​. And the more Players 2 engaged in strategic learning                                               

the ​  ​more ​  ​they​  ​would ​  ​alternate ​  ​their​  ​choice ​  ​(​Fig.​  ​S5.C)​.  
  

Altogether our analyses suggest that among the subjects endorsing the role of Player 2 in this                                               

experiment, only the ones who had a high level of strategic learning sophistication could detach from the                                                  

game sub-­optimal focal point to overcome the structural disadvantage they have in the game interaction.                                            

Their opponent, albeit in the easy position, was then forced to adapt and at the end follows the Players 2                                                           

to ​  ​avoid ​  ​as​  ​much ​  ​as​  ​possible ​  ​to ​  ​lose ​  ​their​  ​advantage.​  ​The ​  ​leader​  ​becomes​  ​the ​  ​follower.    
This hypothesis was further backed up by our initial simulation. Indeed running the same type of analysis                                                  

on our simulation results leads to a very similar dissymmetry in the implication of the SL level between the                                                        

advantageous​  ​and ​  ​the ​  ​disadvantageous​  ​role ​  ​​(Fig.​  ​S6).  
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b)​  ​Correlation​  ​with​  ​additional​  ​cognitive ​  ​tasks  
  
Our main hypothesis was that Players 2’s disadvantage in the game would push them to make the effort                                                     

to use their strategical thinking abilities, so that their performance in the game would be more                                               

representative of their cognitive abilities than it would be the case for Players 1. Thus we expected that                                                     

the heterogeneity in performance among Players 2, as measured in terms of heterogeneity of the SL level                                                  

of the computational model that best accounted for each subject’s behavior, would account more for                                            

differences in cognitive capacity. We thus looked at the consistency of their SL level across blocks                                               

compared to Players 1. We found that their SL level was significantly more consistent (89% of the                                                  

subjects were best fitted by the same class -­ low / high -­ of SL level models in Block 1 and Block 2)                                                                    

compared to Players 1 (59%, ​Fisher exact test: N = 49, p = 0.0269​). Also the correlation in SL level across                                                              

the 2 blocks was significant for Players 2 only ​(Pl.1: r = -­0.0781, p= 0.6710;; Pl.2: r = 0.7171, p=3.88e-­06).                                                           

Moreover no difference on average (or distribution of) SL nor choice behavior (deviation from MSNE,                                            

absolute or relative performance, choice accuracy of high reward action, frequency of switch) was found                                            

between the 2 blocks for each role. Although our analysis revealed that Players 1 chose faster in the                                                     

second trial block ​(Pl1: t(62)= 2.7102, p = 0.0087, Pl2: t(62)= 1.9009, p = 0.0620), suggesting some adaptation                                                     

of​  ​Players​  ​1’s​  ​play​  ​in ​  ​the ​  ​second ​  ​block.  
  

Finally we compared the SL level of the subjects and their individual performances in the additional tasks                                                  

and questionnaires. At the population level only the CRT score (used as a proxy of reasoning ability in the                                                        

literature) was higher for high SL vs. low SL ​(median split: U(62)=313.5,Z= 2.7678, p=0.0056 ;; r=0.2572,                                               

p=0.0402) and in Block 1 only. When comparing the performance in the additional tasks in high vs. low SL                                                        

level (median split) subjects for each role separately, we found that high SL Players 1 in Block 1 only had                                                           

a higher CRT score ​(U(30)=54, Z=2.8891, p=0.0038)​, performed better in the Raven test ​(U(30)=62, Z=2.5389,                                            

p=0.0111)​, and were on average more successful in the Tower of London task ​(ToL : t(25)=2.0675,                                               

p=0.04918 ;; ToL (difficult condition: high Goal Hierarchy, high Search Depth) : U(25)=46, Z=2.3271, p=0.0199)​. No                                               

correlation between the performance in any the additional tasks was found with the SL level of Players 2                                                     

in any of the 2 blocks. No difference was found between subjects based on the role they endorsed in the                                                           

game in terms of demographics (Age, salary and education level) nor additional cognitive tasks                                         

performances (Working Memory, CRT, Raven, ToL). No difference either in performance in these                                      

additional tasks was found between subjects who were consistently fitted by the same SL model in both                                                  

blocks​  ​and ​  ​the ​  ​one ​  ​who ​  ​switched ​  ​SL ​  ​level ​  ​between ​  ​the ​  ​two.    
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Our results suggest that regardless of the role, the subject’s level of strategic sophistication does not                                               

depend on the level of the opponent nor the role endorsed in the game but might be related more to                                                           

different individual cognitive abilities: subjects playing as Player 2 seem to be limited in their propensity to                                                  

engage in strategic learning preventing them to fully compensate their disadvantage in the game                                         

interaction, while the heterogeneity in SL level observed in Players 1, already in a dominant position,                                               

might be more driven initially by their executive cognitive abilities (problem-­solving, planning). If this is                                            

true then Players 2 ability to engage in strategic learning should be correlated to their ability to reason                                                     

strategically.    

During our experimental session, subjects were provided with a second task meant to test specifically the                                               

hypothesis that the level of strategic learning engagement in the repeated game matches the ability to                                               

play the Nash equilibrium in one-­shot games (Griessinger & Coricelli, 2015 [26]). This task was composed                                               

of different types of one-­shot games played 8 times each, in a random order, with no feedback. In one                                                        

type of games (Dominant Solvable Other, DSO), higher strategic sophistication was required to form                                         

correct belief over the opponent’s action and best respond to it but not in the other (Dominant Solvable                                                     

Self, DSS). The analysis detailed in the Supplementary Information did not allow us to reject our                                               

null-­hypothesis of an absence of direct mapping between strategic learning and strategic reasoning at the                                            

population level. This therefore suggests that different cognitive processes are involved in the                                      

engagement in strategic sophisticated play in a repeated game interaction with feedback and in static                                            

one-­shot​  ​games​  ​without​  ​feedback.     
However we found that the more Players 2 reached the N.E. in DSO (requiring higher level of strategic                                                     

sophistication) the closer to the Nash their frequency of action(a) was in the first Block in the repeated                                                     

game ​(all trials B1: r=-­0.3822 p=0.0309;; B2: r=-­0.3078 p=0.0865)​. ​This correlation, specific to Players 2, was                                               

the strongest in the first trials of the all repeated game experiment ​(B1 t(1:10): r=-­0.5647 p=7.6e-­4 -­ not sig.                                                        

for following bins ;; B2 t(1:10): r= -­0.1992 p= 0.2743 -­ not sig. for following bins)​. Using 2 other, more precise,                                                              

measures of strategic reasoning developed in SI, lead to similar results ​(SR: r=-­0.5034, p= 0.0063;; SR': r=                                                  

-­0.6853,​  ​p=0.0068)​,​  ​no ​  ​correlation ​  ​was​  ​found ​  ​with ​  ​the ​  ​% ​  ​of​  ​NE​  ​in ​  ​DSS.  
Taken together these results suggest a transition from static strategic reasoning to on-­line computation                                         

and ​  ​update ​  ​of​  ​beliefs​  ​over​  ​the ​  ​opponent’s​  ​behavior​  ​when ​  ​sufficient​  ​choice ​  ​outcomes​  ​are ​  ​observed.  
  

  
D)​  ​Exp.3:​  ​Human ​  ​against​  ​computerized ​  ​opponents  
  

To better characterize the interplay of strategic learning sophistication with the strategic asymmetry in                                         

game interaction, we conducted a second study in which we controlled for the opponent’s behavior by                                               

making the subject play against a computer opponent (instructed) and specifically manipulating the SL                                         
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level of this opponent. The goal of this experiment was to replicate our initial results and test the specific                                                        

hypotheses derived from them, that subjects endorsing the disadvantageous role in this strategically                                      

asymmetric game were constrained in their choice behavior by their own SL level, while subjects playing                                               

in the advantageous position will indeed have the strategic space to adapt, given their SL level, to the                                                     

behavior​  ​of​  ​their​  ​opponent.  
  

  

1)​  ​Material ​  ​and ​  ​Methods  
  

a)​  ​Population     
  

76 participants (36 male, 40 female;; ages 18–30) took part in the experiment. They were student at the                                                     

University of Trento who had previously joined the Cognitive and Experimental Economics Laboratory                                      

(CEEL) recruitment system on a voluntary basis. All participants were right-­handed, medication-­free, with                                      

normal eyesight, no history of neurological disorders. The Ethics Commission of the University of Trento                                            

approved the experiment. Informed consent was obtained from each subject before the experiment. Data                                         

collection ​  ​was​  ​performed ​  ​blind ​  ​to ​  ​the ​  ​conditions​  ​of​  ​the ​  ​experiment.  
  

b)​  ​Experimental​  ​Design  
  

The experimental design remained unchanged: participants were randomly assigned to one of the 2 roles                                            

of the same game, with the same trial structure and timing, and also played 2 blocks of 100 trials each.                                                           

Nevertheless, this time they did not play against another randomly picked human participant, but rather                                            

played against 2 computerized learning agents: a fictitious play (low SL) and an Influence (High SL), one                                                  

after the other in a random order. To be fully consistent with the previous experiment, we used as model                                                        

parameters of the 2 opponents the average best fitting values obtained in the first experiment (details in                                                  

Supplementary​  ​Information).    
This​  ​design ​  ​allowed ​  ​us​  ​to ​  ​test​  ​our​  ​2 ​  ​main ​  ​hypotheses:    
1) that the role impacts the average performance and game optimality (Players 1 perform better than                                               

Players​  ​2),​  ​but​  ​not​  ​the ​  ​overall ​  ​SL ​  ​distribution ​  ​of​  ​the ​  ​two ​  ​groups.  
2) that Players 1 choice behavior should be impacted by the identity of the opponent with lower                                                  

performance against the High SL (Influence), compared to Low SL (fictitious). Players 2’s behavior on the                                               

other​  ​hand ​  ​should ​  ​only​  ​be ​  ​affected ​  ​by​  ​their​  ​own ​  ​SL ​  ​level,​  ​not​  ​the ​  ​opponent.    
Beforehand we simulated once again the experiment by making agents with different SL level play                                            

against the 2 algorithms. Our results show the selective effect of the opponent SL level manipulation on                                                  
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the Players 1 we expect to see in the actual experiment, thus confirming the adequacy of our design (​Fig.                                                        

S7). ​All statistical analyses were performed using Matlab (www.mathworks.com) with the addition of the                                         

Statistical toolbox and other free-­download functions. All stimuli and feedbacks were presented using                                      

PsychToolBox​  ​and ​  ​appeared ​  ​on ​  ​a ​  ​uniform​  ​black​  ​background.  
  

  

2)​  ​Results  
  

On average, Players 1 won more points ​(t(142)= 8.5298 p=2.7896e-­14) and had a distribution of choices                                               

closer​  ​to ​  ​the ​  ​Mixed ​  ​Nash ​  ​Equilibrium​  ​​(t(142)=​  ​-­4.5144​  ​p=1.322e-­05​  ​unequal​  ​variance)​​  ​than ​  ​Players​  ​2.    
Our Model-­based analysis replicated nicely the distribution and SL gradient across the population                                      

observed in Exp.1 (​Fig. S8) ​. And, as in Exp.1, no difference in SL distribution was found between the 2                                                        

roles.  

But this time participants were playing against an algorithm, not against another human. And since they                                               

played the repeated game in the same experimental conditions as in Experiment 1, we tested if this                                                  

difference affected their behavior. For each of the 2 roles no significant difference was found in                                               

performance (total points, points difference with the opponent) between the two experiments, however a                                         

trend towards higher strategic learning engagement when playing against algorithms was observed.                                   

When comparing low vs. high SL (median split) Players 1 engaged in strategic learning were found to                                                  

have a higher SL level in the second experiment ​(rel. fit 2-­Inf: U(66)=233, Z=4.2082, p= 2.57e-­05, λ parameter:                                                     

U(66)=368, Z=2.5495, p= 0.0108 -­ similar results were obtained when comparing the SL level between subjects best                                                  

fitted ​  ​by​  ​the ​  ​Influence​  ​models)​.  
  

No difference in mean SL level (nor distribution) was found between the 2 roles. Running an ANOVA to                                                     

test if the SL level was modulated by the opponent encountered did not result in any significant effect                                                     

either. As in experiment 1 Players 2 were most consistently fitted by same SL level models between the 2                                                        

opponents than Players 1 ​(P2= 0.84 prop. same low/high SL : P2=0.84, P1 = 0.57 ;; Fisher exact test: N = 58, p =                                                                       

0.0259)​.  
We next tested our second hypothesis regarding the specific effect of the opponent on the choice                                               

behavior of the subject given the role endorsed in the experiment. As shown in ​Fig.6 ​, only Players 1 were                                                        

affected ​  ​by​  ​the ​  ​identity​  ​of​  ​the ​  ​opponent,​  ​exactly​  ​as​  ​predicted ​  ​by​  ​the ​  ​simulation ​  ​(​Fig.5.A.B,​  ​Fig.S7.A.B) ​.    
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____________________________________________________________________________________

  

Figure 6. As hypothesized, only the subjects endorsing the role of Player 1 (pink) in the repeated game were                                                        

affected in their choice behavior by the SL level of the (computerized) opponent encountered. (A) Players 1 frequency                                                     

of choice is closer to the MSNE distribution when playing against the low SL opponent compared to the high level. No                                                              

difference in percentage of deviation from MSNE distribution (p(a)=1/3) was found between the 2 opponent’s block                                               

for Players 2. (B) When opposed to the low SL level opponent, Players 1 won on average more points in total than                                                                 

when playing against the high SL. No difference was found for Players 2. (C) When opposed to the low SL opponent                                                              

both Players, 1 and 2, were more frequently rewarded when playing the high payoff action (b for player 1 and A for                                                                 

player 2), a proxy for choice accuracy, compared to the high SL level. Effect size was however higher for Player 1                                                              

(Cohen's​  ​d=​  ​1.1909)​  ​than ​  ​Player​  ​2 ​  ​(d=​  ​0.7633).  
____________________________________________________________________________________  

  

To refine our analysis, we ran the 3 GLMs we used in Exp. 1, taking into account not only the level of the                                                                    

computerized opponent (low or high) but the SL level of the subjects. Our results replicate strongly the                                                  

asymmetry found in our first experiment and observed in the average results (​Fig.6)​: Subjects playing as                                               
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Player 1 have their deviation from MSNE as well as their performance affected by the level of the                                                     

opponent;; Conversely Players 2’s choice behavior is modulated only by their own Strategic Learning level                                            

(​Fig.6) ​. In this experiment however, Players 1’s behavior seems to have been influenced not only by the                                                  

level of the opponent but also by their own strategic learning engagement ( ​Fig.S9)​. This effect could be                                                  

due ​  ​to ​  ​the ​  ​constraint​  ​our​  ​design ​  ​added ​  ​on ​  ​their​  ​opponent’s​  ​behavior.    
  

At the end of the experiment subjects were provided with an additional task aimed to capture more                                                  

precisely the working memory capacity of our population (namely 2 and 3-­Back tasks -­ see                                            

Supplementary Information for details). We observed a trend towards a higher performance and RT in this                                               

task for high SL Players 2 (median split) only when playing against the high SL opponent ​(% correct in                                                        

2-­Back: t(33) = 2.2047 p=0.036166, 3-­Back : t(33)=1.7420 p=0.0908, albeit a higher % for High SL =75.4(9.5) vs. low                                                        

SL=69.9(8.9), reaction time 3-­Back : t(33)=2.2999 p=0.027917)​. Albeit weak, this effect is in line with our results                                                  

suggesting a cognitive limitation of the subjects playing in the disadvantageous role when confronted to a                                               

highly​  ​sophisticated ​  ​learner    
  

  

E)​  ​Discussion    
  

The present study aimed at testing the prediction that the structure of a repeated game interaction can                                                  

lead to strategic asymmetry depending on the way it facilitates the engagement in sophisticated learning.                                            

More precisely, the hypothesis was that a dissymmetry in the overlap between reward structure and                                            

MSNE (even when there is still symmetry in maximum possible payoffs between players) can differently                                            

engage human subjects in using sophisticated strategic learning so that their overall performance does                                         

not​  ​always​  ​reflect​  ​an ​  ​individual's​  ​general ​  ​ability​  ​of​  ​strategic​  ​learning ​  ​or​  ​strategic​  ​reasoning.  
  

This hypothesis was rooted in research in behavioral economics and cognitive sciences suggesting that                                         

humans can use information available about their counterpart to form beliefs over their intentions                                         

(Koster-­Hale & Saxe, 2013 [3]). Indeed in the case of repeated games, where social interactions are                                               

reduced to actions and rewarded feedbacks, payoffs convey informational value about the opponent’s                                      

behavior and beliefs become analogous to a mapping of action-­outcome contingencies, as suggested by                                         

the model-­based reinforcement learning framework (Doll et al, 2015 [20]). Recent studies suggest that                                         

similar brain computations might be involved in the decrease of the uncertainty (increased prediction)                                         

over the opponent’s next choice allowing one to maximize her overall outcome of the interaction (best                                               

response to beliefs) (Lee & Seo, 2016 [27]). Moreover inferential processes might be implicated in the                                               

iterative incorporation of the strategic nature of the interaction, not only considering one’s behavior but the                                               
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interplay of past actions in the history of play, ultimately increasing belief accuracy over an opponent also                                                  

capable of belief-­learning (Griessinger & Coricelli, 2015 [26];; Hyndman et al, 2009 [32]). Nevertheless,                                         

important heterogeneity has been observed in the level of engagement in such high-­order belief                                         

(strategic)​  ​learning ​  ​among ​  ​individuals​  ​(Devaine ​  ​et​  ​al,​  ​2014 ​  ​[24];;​  ​Hampton ​  ​et​  ​al,​  ​2008 ​  ​[25]).  
  

We thus hypothesized that the reward structure of the interaction might affect subjects differently given                                            

their capacity to engage in strategic learning, depending on how much best-­response to reward-­based                                         

and belief-­based learning overlap. Based on this prediction we developed a 2x2 strategically asymmetric                                         

game where the two roles were meant equal (same payoff distribution and expected payoff at MNSE), but                                                  

in which inequity arises among individuals with different SL level, from the discrepancy in one role                                               

(disadvantaged ​  ​position)​  ​only​  ​between ​  ​the ​  ​highest​  ​reward​  ​action ​  ​(focal ​  ​point)​  ​and ​  ​the ​  ​MSNE​  ​distribution.    
  

To test this hypothesis, we combined agent simulation and behavioral experiments, unconstrained                                   

(human-­human interaction) and constrained (human-­computer). Our two behavioral experiments lead to                                

the same conclusions, predicted by our simulation analysis. First at the population level, subjects                                         

endorsing the disadvantageous position during the repeated game interaction earn significantly less than                                      

their opponent, also their choice distribution deviated more from the MSNE prescription. Second the more                                            

the disadvantaged participants engaged in strategic learning, the more they overcame the strategic                                      

asymmetry, and this effect was even stronger when the opponent did not fully engage in belief-­learning.                                               

Forming accurate beliefs over their opponent allows these subjects to reduce their disadvantage in total                                            

earnings and play closer to the MSNE. Conversely the choice optimality and therefore the absolute                                            

performance of the participants playing in the advantaged role was modulated only by the behavior, and                                               

ultimately​  ​the ​  ​SL ​  ​level,​  ​of​  ​their​  ​opponent,​  ​but​  ​not​  ​by​  ​their​  ​own ​  ​capacity​  ​to ​  ​engage ​  ​in ​  ​strategic​  ​learning.    
  

These results provide clear evidence for sophisticated learning in repeated interactions (Lee, 2008 [4];;                                         

Shteingart & Loewenstein, 2014 [33]) and the central role of belief accuracy in equilibrium play (Bosworth,                                               

2017 [34];; Crawford et al, 2013 [15]). Moreover our study shows how the reward structure of the repeated                                                     

game interacts with the observed heterogeneity in belief-­learning at the population level by creating a                                            

tension between rewards and beliefs. Empirically we show that the high reward attracts maximizing                                         

behavior and creates a focal point, which can easily be exploited by a low strategic learning opponent                                                  

(Coricelli, 2005 [35]) when not aligned with the MSNE prescription. In our stage game the two players had                                                     

identical expected payoffs, but the fact that for only one of the 2 roles the focal point corresponds to the                                                           

action that was theoretically optimal to select the most, creates an endogenous asymmetry, strategic in                                            

nature which reveals itself throughout the interaction. Previous studies also used a computational                                      

approach to capture as precisely as possible the choice behavior of humans in repeated 2x2 games (Hill                                                  

et al, 2017 [28];; Ho et al, 2007 [36];; Marchiori & Warglien, 2008 [37]). We went a step further and                                                           
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manipulated the interaction structure to show that the level of the strategic sophistication of individual’s                                            

learning drives the formation of higher order beliefs and allows them to disengage from the attractions of                                                  

immediate ​  ​outcomes​  ​and ​  ​move ​  ​closer​  ​to ​  ​optimality.  
  

Crucially no correlation was found in any of the 2 experiments between the SL level of the subjects, in any                                                           

of the two roles, and the one of the opponent. This result replicates the correlation in strategic learning                                                     

level found in previous studies in which humans were confronted to different opponents also varying in                                               

their SL level (Devaine et al, 2014 [24];; Shachat & Swarthout, 2012 [38]). It is worth noting however that                                                        

recent research suggests that arbitration between model free and model-­based learning can be affected                                         

by the volatility of the environment (Simon & Daw, 2011 [39]). Indeed in our two experiments most of the                                                        

subjects did engage in rudimentary form of belief-­learning which does not reject the hypothesis that parts                                               

of a subject's learning mechanisms may be with low sophistication (model-­free).. Also our computational                                         

approach was meant to measure the overall level of strategic learning sophistication embedded in                                         

individual choice series, and does not allow to track local changes in strategy. In fact, as previously                                                  

observed (Duersch et al, 2010 [40];; Seo et al, 2014 [41];; Spiliopoulos, 2013 [42]), the SL level of the                                                        

opponent strongly impacted the behavior of the subjects interacting in the advantageous position.                                      

However in our study the influence of these subjects’ own SL level on their choice behavior was reported                                                     

as weaker than the influence of their opponent. One hypothesis for this result is that the sophistication of                                                     

their beliefs did not condition their behavior, which obviously comes in contradiction with the above-­cited                                            

literature. An alternative hypothesis is that the accuracy of their beliefs was already sufficient to maximize                                               

(up to a certain individual threshold) their earnings and that engaging in higher level of strategic learning                                                  

did not present a net advantage. We argue that the present study provides the first experimental evidence                                                  

in favor of the latter explanation. First subjects playing in the advantageous role won on average more                                                  

points throughout the interaction than their opponent, even when opposed to a high SL computerized                                            

agent ​( ​t(70)=2.7833, p=0.0069, ​Fig.6.B). Second, albeit good performance, these subjects presented low                                   

consistency in SL level across interactions in both experiments. Third their behavior was correlated to                                            

planning and problem solving scores captured in additional tasks in the first interaction block only, while in                                                  

the second block conjunctional evidence of behavioral re-­adjustment (faster choices for no change in                                         

performance)​  ​were ​  ​observed.  
On the other hand disadvantaged subjects behavior were found to be solely conditioned by their level of                                                  

strategic engagement, not the one of their opponent. They also presented much higher consistency                                         

across interactions, and evidence of a correlation between working memory and their SL level was found.                                               

Crucially the role endorsed in the repeated game did not seem to impact the SL level of the subjects in                                                           

both ​  ​of​  ​our​  ​experiments.    
  

Altogether our results suggest a dissociation between a strategic learning engagement bounded by                                      
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individual cognition for subjects endorsing the disadvantaged position, and what has been proposed to                                         

resemble a cost benefits-­analysis process (Alaoui & Penta, 2015 [43]) for the subjects ensured to                                            

dominate the interaction at lower SL level. This distinction between bounded cognition and bounded                                         

rationality in suboptimal play has also been observed in static games by Friedenberg et al (Friedenberg et                                                  

al,​  ​2016 ​  ​[44]).  
  

In behavioral game theory the concept of bounded rationality broadly assumes that the capacity of the                                               

agents to grasp and use all the required information leading to equilibrium are somehow constrained                                            

(Simon, 1991 [45]). In this line a theoretical framework which has accumulated growing support in the                                               

past decade has been proposed to explain deviation from optimal choices in static games: level-­k models                                               

(Crawford et al, 2013 [15]). This class of model relaxes the assumption of full rationality and assumes that                                                     

players actually best respond to incomplete beliefs varying among individuals in their degree of                                         

sophistication (k) over the behavior of their opponent, themselves considered as only capable of a lower                                               

order of beliefs (k-­1 or <1, see Camerer et al, 2015 [46]). This hierarchical organisation of beliefs is very                                                        

close to the computational framework previously developed in (Hampton et al, 2008 [25]).and that we                                            

used ​  ​in ​  ​this​  ​study.    
  

In our approach strategic learning sophistication (SL) is modeled as a hierarchy of different levels of                                               

computations: SL0 corresponds to reinforcement learning which computes action values based on the                                      

past reward experienced and is agnostic about the choice behavior of the opponent;; SL1 is modeled as a                                                     

fictitious play which best responds to the opponent’s probability distribution computed from its past                                         

choices;; SL2 is modeled as an influence learning process which assumes that the opponent is also                                               

learning in a way analog to a fictitious play and thus that its own past actions can have an influence over                                                              

the action probability of the other (we also included a SL2+ learning rule that considers that the opponent                                                     

is also learning through influence). Based on this correspondence between the 2 classes of models, we                                               

have hypothesized that a direct mapping might exist between the level k in static games and the SL level                                                        

in repeated interactions (Griessinger & Coricelli, 2015 [26]). We tested this hypothesis but failed to reject                                               

a direct correlation between the 2 measures of strategic sophistication (Supplementary Information).                                   

However we observed that for the subjects endorsing the disadvantaged position in the repeated game, a                                               

correlation was found between their strategic reasoning (level k) and the frequency of play close to the                                                  

MSNE in the very first trials of the first interaction. This result therefore suggests another type of                                                  

relationship between the strategic reasoning and strategic learning models of bounded rationality: at first,                                         

when beliefs cannot be anchored in enough observations, subjects with a strong incentive to take over                                               

the interaction are guided by their ability to reason in an iterative fashion (level k), but when enough                                                     

experience is accumulated subjects with the capacity to engage in strategic learning form and update                                            

beliefs as accurate as possible over their opponent behavior. This hypothesis appears promising to us                                            
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since it echoes to other research on the influence of priors in social inference (Chambon et al, 2017 [47]),                                                        

and ​  ​therefore ​  ​calls​  ​for​  ​proper​  ​testing ​  ​in ​  ​laboratory.  
It is worth noting that another source of suboptimality has been suggested in the behavioral economics                                               

literature: heterogeneity in best response. It has been proposed that social preferences for instance could                                            

bend utility functions (Fehr & Camerer, 2007 [48]). If our study did not allow to test directly this                                                     

hypothesis, we still observed a higher strategic engagement in advantaged subjects capable of high                                         

strategic learning when confronted to an algorithm compared to another human (social framing effect as                                            

in [Devaine]). This result might suggest that social preferences such as altruism or sensitivity to inequity                                               

could be reflected in a lower exploitation of their advantageous position when playing with a human                                               

counterpart​  ​(Silk​  ​&​  ​House,​  ​2016 ​  ​[49]).  
  

Altogether our results reveal three possible sources of variability in strategic behavior during repeated                                         

game interactions. The first, that we call exogenous, is driven by external factors such as the payoff                                                  

structure, the salience of the different outcomes of the game, and also the prior knowledge over the                                                  

opponent. A second source of heterogeneity in game play is endogenous, with differences in social                                            

preferences but also motivation (Schmidt et al, 2012 [50]) or sensitivity to rewards (Kim et al, 2015 [51]).                                                     

Finally a third type of variance emerges from the two previous one, leading to specific dynamics of                                                  

repeated choice behavior. Indeed even if our experimental setting did not allow further investigation of the                                               

phenomenon, it seems clear that the SL level of subjects in the disadvantageous position drove the                                               

interaction, while their opponent in the dominant position would simply track and adapt to changes in                                               

behavior and ultimately followed them. Leader-­follower dynamics have been observed in repeated games                                      

(Seip & Grøn, 2016 [52]), however precise understanding of the underlying behavioral forces remain                                         

unclear (Sato et al, 2002 [53]). Predicting the learning dynamics in play by tuning the structure of the                                                     

interaction ​  ​can ​  ​help ​  ​study​  ​critical ​  ​behavior​  ​such ​  ​as​  ​strategic​  ​teaching ​  ​(Camerer​  ​et​  ​al,​  ​2002 ​  ​[54]).  
  

The present study brings further support to the pertinence of the cognitive neuroscience framework of                                            

learning for the analysis of repeated non-­cooperative game behavior. Moreover, we advocate in favor of                                            

the use of model simulations in the field, that 1) allow to take the most of a normative framework to                                                           

optimize experimental design and make precise predictions regarding the expected results (Palminteri et                                      

al, 2017 [55]) and 2) open the possibility to refine agent based simulation analyses in order to better                                                     

characterize the interplay between the level of strategic learning and the structure of the game underlying                                               

the ​  ​repeated ​  ​interaction.  
  

At a broader scope this study points in the direction of a systematic consideration of between-­subjects                                               

differences and the interaction effect between human variance in learning and the way strategic                                         

interactions are constrained. Taking into consideration asymmetric facilitation can help study the                                   
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emergence of social hierarchy and strategic dominance in interactions (Qu et al, 2017 [56]), but also                                               

better understand how inequity arising from the interaction between the environment and endogenous                                      

differences​  ​could ​  ​be ​  ​reduced ​  ​in ​  ​real-­life ​  ​social ​  ​interactions​  ​(Decety​  ​&​  ​Yoder,​  ​2017 ​  ​[57]).  
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II​  ​-­​  ​Strategic ​  ​learning ​  ​in​  ​repeated​  ​game ​  ​interactions:​  ​Methodological  
considerations    
  

In the following section we will further discuss the methodology used in the first three experiments and                                                  

mention extra analyses that have been conducted on the dataset from Exp.2 but not included in the actual                                                     

version ​  ​of​  ​the ​  ​article.  
    

  

A) Additional​  ​discussion    
  

We would like to discuss the interpretation regarding the use of simple learning models                                         

algorithms. We argue that if such models might be useful to approximate the level of strategic                                               

sophistication, of departure from RL to engage in beliefs and higher-­order inferences, it seems more                                            

parsimonious to interpret the information they provide as a “degree of strategic complexity embedded in                                            

the ​  ​subject’s​  ​choice ​  ​series”.​  ​This​  ​for​  ​two ​  ​main ​  ​reasons.    
  

The first limit lies under a general concern important to keep in mind regarding the modeling approach                                                  

used in decision-­making neuroscience, and in particular learning models in binary choice tasks. The                                         

adequacy of computational models were estimated at the scale of the entire choice series made of binary                                                  

values. Obviously we insured that, once fitted, the models we used were best tuned with a quite                                                  

exploitative action selection strategy (inverse softmax temperature, β: exp.2= 2.01(1.30), exp.3=                                

1.91(1.44)). However, the SL level derived for each individual was still averaged across an entire block.                                               

This could prevent the detection of variations in strategic engagement within an interaction block (Schuck                                            

et al 2015;; Wallin et al, 2017). One evidence for a possible limit of our computational approach is that in                                                           

our experiment reaction time was highly variable across subjects but quite consistent within-­subject, and                                         

still no striking correlation between our computational approach and individual variation in choice reaction                                         

time was observed. However, recent researches suggest that reaction time is an important piece of                                            

information to consider in the framework of game interactions (Gill et al, 2017;; Spiliopoulos, 2016). Thus                                               

improvement in cognitive modelling is possible in this direction. One direction of future research would be                                               

to extend the underlying computational assumptions of our approach to include data from choice reaction                                            

time and through the use of multi-­objective optimization (see Viejo et al, 2015) to better approximate what                                                  

could ​  ​then ​  ​become ​  ​a ​  ​generative ​  ​model ​  ​of​  ​strategic​  ​learning.  
  

This led us to the second limitation, which concerns directly the computational framework we employ. We                                               

made the decision to use strategic learning models derived from the field of reinforcement learning                                            
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(Hampton et al, 2008). This choice was motivated by two reasons. First, as pointed out previously,                                               

regarding the nature of the data we wanted to fit, the use of not-­too-­heavy computational models seemed                                                  

the most parsimonious. Indeed the data available for each subject in this kind of social experiment are                                                  

binary choices repeated 100 times which does not provide tremendous signal-­to-­noise ratio. Regarding                                      

the consistency of our results from simulation prediction to experimental replication, this methodology                                      

seems well suited to provide to the experimenter useful information regarding the subject’s strategy, thus                                            

allowing interpretations regarding the empirical choice dynamics. However more subtle models of                                   

strategic learning have been developed in the field. Based on Bayesian computation these models can                                            

infer trial by trial the precise statistics of the distributions underlying the opponent’s choice allowing better                                               

prediction power (Devaine et al, 2010;; de Weerd et al, 2010;; Yoshida et al, 2010) (see chapter I). This                                                        

leads to the second reason which motivated the use of models rooted in the RL framework: Our goal was                                                        

not to uncover the precise computations performed by the human brain, but to capture between-­subjects                                            

differences in belief-­learning. Note that this argument might as well be inverted, since so far mainly                                               

computations performed by the reinforcement learning rules have been correlated to neural data in                                         

repeated game interactions (Hill et al, 2017;; Seo et al, 2017;; Zhu et al, 2012). We thus used                                                     

computational models as a proxy of their level of strategic learning engagement in repeated game                                            

interaction. Since a model is by definition always an approximation, and since the simple variations of                                               

reinforcement learning rules captured well enough the strategic diversity embedded in the population, it                                         

seemed unnecessary to engage in heavy computational work. A third argument in favor of such                                            

computational framework, already highlighted in the discussion part of the article, lies in the practicality of                                               

such ​  ​simple,​  ​therefore ​  ​light,​  ​strategic​  ​models​  ​for​  ​running ​  ​many​  ​repeated ​  ​game ​  ​simulations.    
  

An actually on going work, not presented in this thesis, aims at using this approach to test the predictive                                                        

power of the strategic learning framework by simulating multiple repeated interactions between agents of                                         

different strategic learning levels varying in the underlying game structure (payoff matrix). The first step of                                               

this analysis is presented on ​Fig.1 ​. We varied the amplitude of the focal point for the two roles (the                                                        

payoffs in the game matrix initially equal to 100 pts), while keeping the rest of the payoff equivalent (0,                                                        

and 50pts). This analysis shows that the higher the SL level of the agent, the closer its choice distribution                                                        

is to the MSNE in all the variations of the game, from the symmetric version (hide and seek 0, 50pts -­                                                              

Fig.1.A ​) to the highly asymmetric version with focal points of 400 pts ​(Fig.1.D) ​. These results confirmed                                               

first that the results presented in the article do not hold for the initial version of the strategic asymmetric                                                        

game only, but emerge from the strategic asymmetry propriety of the game. These results also suggest                                               

that indeed the stronger the focal point for players 2, the higher their SL level has to be to reduce their                                                              

disadvantage.    

The goal of this extended simulation analysis will thus be two-­folds: First, to test the generability of the                                                     

results presented in the article by comparing model predictions to empirical results reported in previous                                            
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research in behavioral game theory. Second, to draw a landscape of dyadic inequity in 2x2 repeated                                               

game to track how both the amplitude and configuration of the payoffs impact the evolution of relative                                                  

performance ​  ​in ​  ​order​  ​to ​  ​identify​  ​equity​  ​aeras​  ​meant​  ​to ​  ​be ​  ​eventually​  ​tested ​  ​in ​  ​laboratory.  
____________________________________________________________________________________

  

Figure 1. Effect of the focal point amplitude on the simulation results of Influence agents with different values of λ                                                           

playing the repeated game in each role against each other. The MSNE distribution prescription corresponds to the                                                  

black dashed line on the left plots. (A-­D) Simulation plots represents for each role the effect of the difference between                                                           

the SL level of the agent and the one of its opponent, on average proportion of choice a/A (left plots), total points                                                                 

accumulated throughout the game interaction (100 repeated choices) (middle plots), and the difference in total points                                               

between the agent and its opponent (right plots). The value of the 2 focal points (payoffs associated to action profile                                                           

(A,a), and (b,A) in the original payoff matrix), varies from 50 pts (reducing to a symmetric hide and seek game -­ A),                                                                 

100 pts (initial strategic asymmetric game employed in the article -­ B), 200 pts (C) and 400 pts (D). The other payoffs                                                                 

remained​  ​the ​  ​same ​  ​(i.e.​  ​0pts​  ​and ​  ​50 ​  ​pts).    
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[The SL level was modeled by the λ value of the Influence model (varying from 0 to 1, with fixed η to the average                                                                       

values of our empirical distribution [0:0.4]). The simulation was ran 10 times, the results plotted here represent the                                                     

average across these repetitions. The same effect were observed in the 12 plots when taking as SL measure in our                                                           

simulation​  ​the ​  ​arbitration​  ​parameter​  ​(κ) ​  ​of​  ​the ​  ​mixture ​  ​model ​  ​(Hybrid ​  ​Influence​  ​model)​  ​instead.]  
____________________________________________________________________________________  

  

  

B)​  ​Additional​  ​results​  ​Exp.2    
  

In the Supplementary Information 2 (SI2) (​Appendix III​), we develop the details of the extension of the                                                  

computational analysis presented in the article and that we conducted on the initial dataset (Exp.2). To                                               

summarize we ran, among many other models, 2 models that have been developed in the behavioral                                               

economics literature (see Chapter I) and that seemed important to test as control. The first model, the                                                  

Experience Weighted Attraction (EWA), has been developed as an hybrid between reinforcement and                                      

belief-­based learning, not only updating the action value based on the outcomes experienced through the                                            

interaction but also the outcomes that could have been experienced if the agent had chosen differently                                               

(Camerer et al, 2002). Such type of fictive computation thus embodies, implicitly, a model of the strategic                                                  

nature of the interaction and by extent information regarding the choices made by both the agents and                                                  

their opponent (Hsu et al, 2012). Our model comparison analysis shows that this model did not                                               

outperform the belief-­based models included in our initial model space ​(SI2, Fig.S3.A). Moreover the                                         

computational ​  ​analysis​  ​of​  ​the ​  ​EWA​  ​confirms​  ​its​  ​hybrid ​  ​nature ​  ​between ​  ​RL ​  ​and ​  ​belief-­based ​  ​learning.  
The second model, the 2-­period (weighted) fictitious play (fp2) (Spiliopoulos, 2012), has been developed                                         

by Spiliopoulos to extend the original (weighted) fictitious play from (Cheung & Friedman, 1997) which                                            

computes the probability that the opponent chooses an action based on its (decaying) frequency of past                                               

play. The fp2 model aims at combining pattern detection and fictitious play by tracking the conditional                                               

probability of the opponent’s choice given the pattern formed by its 2 last choices. The author has shown                                                     

that in repeated games, subjects were able to detect on average choice patterns 2 trials back                                               

(Spiliopoulos, 2013). Moreover, a simulation analysis of agents modeled as fictitious play variations                                      

proposed in the economics literature, and interacting with each other in various repeated games, showed                                            

that the fp2 model better captures the choice patterns in their opponent choice series than the analog                                                  

versions (Chu, 2013). Testing this model was therefore a way to control that the strategic complexity                                               

captured by the influence models was rooted in the iterative sophistication of the beliefs (ToM like, “I think                                                     

that you think that I think...”, see Hampton et al, 2008;; Devaine et al, 2014), and not just a measure of the                                                                 

overall complexity (or autocorrelation) of the individual choice series. The fp2 model did not outperform                                            

the influence models, and interestingly stood out as a model orthogonal to the strategic learning gradient                                               
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identified ​  ​by​  ​our ​  ​approach ​  ​​(SI2,​  ​Fig.S3.C,D)​.    
  

This result thus suggests that pattern learning could be another strategy implementable in competitive                                         

strategic interactions. We are actually running several analyses on our repeated game datasets to further                                            

characterize the choice behavior properties that this model captures (not presented in this thesis).                                         

Moreover, Chapter IV of this manuscript will present a specific experiment that we designed and ran to                                                  

assess​  ​human ​  ​subjects’ ​  ​ability​  ​to ​  ​detect​  ​patterns​  ​in ​  ​the ​  ​choice ​  ​sequence ​  ​of​  ​their​  ​opponent.  
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-­ ​  ​Chapter​  ​III​  ​-­    
Transfer ​  ​effect​  ​in​  ​strategic ​  ​learning    

(Exp.​  ​4 ​  ​-­​  ​extension​  ​of​  ​Exp.3)  
  

  

A)​  ​Introduction  
  

1)​  ​Thesis ​  ​context     
  

In the previous chapter we present evidence of an interaction between the capacity of humans to                                               

engage in strategic learning emerging and the way the repeated social interaction is structured. The                                            

interaction took place in a 2x2 actions space modeled by a competitive game designed to induce                                               

specifically strategic asymmetry between the two players (endogenous advantage of one role over the                                         

other), by agencing the payoff matrix in order to facilitate only one’s engagement in belief-­learning, and                                               

creating for the opponent a focal point anchoring reward-­based learning behavior. We showed that                                         

humans differ in their level of engagement in sophisticated belief (i.e. strategic) learning and that the                                               

framing effect of the game triggered inequity. Moreover, humans in the disadvantageous position in the                                            

repeated game interaction were constrained by their capacity to switch their attention away from the                                            

affective value of payoffs and use the information they provide to engage in a complex inferential process                                                  

over the other's behavior. On the other hand humans in the advantageous position did not engage more                                                  

in strategic learning but the context of the interaction facilitated the tracking and exploitation of the other’s                                                  

behavior. They also seemed to be less constrained by the interaction structure, and therefore guided                                            

more initially by their individual executive abilities to eventually adapt in a cost-­benefit tradeoff fashion.                                            

What drives adaptation of the subjects endorsing this role remains hypothetical. Further investigation is                                         

required to precisely characterize the evolution of subjects’ behavior within an interaction block, and                                         

between interaction blocks in order to better understand how the recent history of strategic interactions                                            

may​  ​affect​  ​subsequent​  ​adaptation ​  ​of​  ​a ​  ​subject’s​  ​will ​  ​to ​  ​engage ​  ​in ​  ​a ​  ​different​  ​strategic​  ​learning ​  ​level.    
  

  

2)​  ​Scientific ​  ​context     
  

The level-­k framework suggests that sophisticated agents adapt to the level of sophistication of                                         

their counterparts in repeated interactive settings (i.e. repeated games). This feature has been directly                                         

implemented in the cognitive neuroscience literature by Yoshida et al (2010), who developed a Bayesian                                            
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model which infers directly the SL level of their opponent from the history of choice interactions and                                                  

adjusts its own level to it in order to optimize its behavior. Devaine et al (2014) relaxed the assumption of                                                           

fully optimal humans able to systematically track the SL level of their opponent and combined                                            

considerations about strategic sophistication embodied in the level-­k framework to the optimal learning                                      

theory of the Bayesian scheme. The authors yet observed that, overall, the level of sophistication of their                                                  

subjects as captured by their model was correlated across the computerized opponents, similarly to what                                            

we found in our own study which is presented in Chapter II. In line with previous experiments studying                                                     

deviations from RL and engagement in belief-­based learning (Seo et al, 2017;; Spiliopoulos, 2013b), these                                            

results suggest that high SL subjects adapt their behavior to the opponent’s past choices but that their SL                                                     

level ​  ​is​  ​bounded ​  ​to ​  ​some ​  ​individual ​  ​constraints​  ​that​  ​remain ​  ​to ​  ​be ​  ​determined.  
  

As detailed in the previous chapter, within the value-­based framework, beliefs can be considered as                                            

transient representations of the action-­outcome contingencies of the task. The advantage of estimating                                      

the model generating the outcomes in such environment is that once learned, it allows quick adaptation to                                                  

changes in the probabilistic structure of the world (Chan et al, 2016;; Humphries et al, 2012;; Wilson et al,                                                        

2014). Recently it has been suggested that previously learned action-­outcome contingencies can be                                      

recovered in case of environmental redundancy (Koechlin, 2016), making the emphasis on the                                      

transferable ​  ​property​  ​of​  ​such ​  ​mental ​  ​representations​  ​(Collins​  ​&​  ​Franck,​  ​2016).  
Vickery et al (2015) showed that when humans play a symmetric game with two identifiable computerized                                               

opponents, they differ in the way they relate to their previous choices depending on the identity of the                                                     

opponent so that they switch from one memorized strategy to the other according to the opponent they                                                  

face. And even when not explicit, researches suggest that personal features such as task performance,                                            

preferences or social status can be learned (Boorman et al, 2013;; Devaine et al 2017;; Ligneul et al,                                                     

2016).  

In our study the opponents were anonymized. Therefore only the experience from the previous repeated                                            

interaction could be used as a prior by a subject. In fact the degree with which priors over the other’s                                                           

intention influences the behavior during social interactions have been recently linked to the strength of                                            

coupling in activity between the rTPJ and the mPFC (Chambon et al, 2017), two regions also implicated in                                                     

the computation of higher order beliefs in repeated game interactions (Hill et al, 2017). In line with this, we                                                        

previously found some conjunctural evidence of anchoring effects on choice behavior (strategic thinking,                                      

depth of reasoning. Chapter II, Exp 2). However, how previous experience impacts the choice behavior in                                               

strategic​  ​interaction ​  ​remains​  ​unexplored.    
  

  

3) ​  ​Hypothesis  
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The results presented in Chapter II, suggest that in a situation of payoffs asymmetry subjects in                                               

the disadvantageous position were cognitively bounded in their engagement of high level of strategic                                         

learning. However, no difference in SL distribution was found when playing against a low vs. a high                                                  

strategic opponent. An alternative hypothesis lies under the concept of transfer learning: Subjects might                                         

transfer some beliefs from the previous interaction onto the next, and thus not (only) being affected by the                                                     

current​  ​opponent’s ​  ​play​  ​but​  ​(also)​  ​by​  ​the ​  ​previous​  ​game ​  ​experience.  
  

The experimental design of the Experiment 3 presented in Chapter II.A, allows us to test specifically the                                                  

hypothesis of a transfer from one opponent to the other, modulated by the strategic learning level of the                                                     

subject.    

  

  

B)​  ​Methods  
  

The study of possible transfer of beliefs within and between interaction blocks requires to                                         

subdivide our dataset into subgroups of subjects. Thus to give us the sufficient statistical power to                                               

investigate these 2 hypotheses we extended our dataset by running extra experimental sessions in the                                            

exact same conditions as Experiment 3 (Chapter II.A). We managed to recruit 58 extra subjects for a total                                                     

of​  ​N=130.  
  

  

C)​  ​Results  
  

  

Beforehand we present analyses verifying that increasing the dataset did not impact our previous                                         

results. As previously observed no effect was found either of the opponent on the SL level itself , in both                                                           11

roles. In fact all the statistical effects found initially between the strategic learning engagement of the                                               

subjects and their choice behavior during the interaction were not only replicated but strengthened when                                            

running our analyses on the full dataset (not shown). The extended analysis also showed that for both                                                  

players the higher their strategic learning level the less often they followed a win-­stay lose-­shift strategy,                                               

as well as the more frequent they switched action from one trial to another ​(Fig. 1) ​, further confirming the                                                        

pertinence ​  ​of​  ​our​  ​computational ​  ​measures.  

11 ​  ​​By​  ​default​  ​we ​  ​use ​  ​as​  ​a ​  ​measure ​  ​of​  ​SL ​  ​level ​  ​the ​  ​relative ​  ​fit ​  ​between​  ​2-­Infl ​  ​and ​  ​Q-­learning.​  ​As​  ​in ​  ​the ​  ​previous  
chapter,​  ​when ​  ​not​  ​specified​  ​the ​  ​results​  ​presented​  ​hold ​  ​when ​  ​using ​  ​the ​  ​relative ​  ​fit ​  ​of​  ​the ​  ​(1-­)Influence​  ​compared​  ​to ​  ​the  
fictitious​  ​model​  ​and ​  ​the ​  ​Influence​  ​best​  ​fitting ​  ​parameter​  ​λ​  ​value.    
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____________________________________________________________________________________

  

Figure 1. Effect of the opponent SL on choice behavior -­ additional GLM results of the distinct influence of the                                                           

subject SL and the level of the computerized opponent (low, high) on the average frequency of switch and                                                     

win-­stay-­lose-­shift​  ​based​  ​choices.  
____________________________________________________________________________________  

  

We tested directly if the SL level of the subjects was affected by the opponent. No difference was found                                                        

for each of the 2 roles. As in our initial experiment we also observed in our extended dataset a higher                                                           

congruence in SL level across the 2 blocks for Players 2 than Players 1 (% B1-­B2 correspondence of                                                     

low/high SL best fitting models for low/high opp.: Player 1, P1: 0.66, P2: 0.87 ;; Fisher exact test: N = 102, p =                                                                    

0.0133)​. As previously shown, the SL level was correlated between the 2 opponent blocks for Players 2                                                  

only ​(only when taking the relative fit of the Influence compared to fictitious r=0.4638, p=9.9e-­05 or the r=0.4515,                                                     

p=1.6e-­4, but not the full SL gradient captured by the relative fit of 2-­Influence compared to Q-­learning: r=0.2438,                                                     

p=0.0503)​.  
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We focused next on the transfer learning hypothesis by investigating how the order, playing against either                                               

the low or the high opponent first, affects the choice behavior of the subjects endorsing each role, given                                                     

their​  ​own ​  ​SL.  
  

We first focused on Players 1 since the level of sophistication of the opponent impacted their choice                                                  

behavior (see Fig.5 in Chapter II.A), but not their strategic learning level per se. To test if the difference in                                                           

performance observed between each opponent was also affected by the order we extended our previous                                            

GLM to include this regressor in our analysis while controlling for the previous effects observed. We                                               

couldn’t find any effect of the order of the opponent encountered on the deviation from MSNE, the                                                  

absolute, nor relative, performance. However we found a small conjunction effect of both the order and                                               

the ​  ​level ​  ​of​  ​the ​  ​opponent​  ​on ​  ​their​  ​accuracy​  ​​(Fig.2.A) ​.    
  

  

____________________________________________________________________________________  

  

Figure 2. Impact of the order of the opponent played on the MSNE deviation and accuracy. The extended GLM                                                        

analysis was ran on the choice series of subjects in each role to dissociate the relative effect of the order of opponent                                                                 

play from the effect of the subject and opponent SL. (1: low first, 2: high first). Here are presented only the results of                                                                    

the models which fitted significantly better than chance the subject’s behavior and show a significative effect of the                                                     

order,​  ​i.E.​  ​MSNE​  ​deviation​  ​and ​  ​accuracy.  
____________________________________________________________________________________  
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When we ran the same analysis on Players 2, we found, in addition to the main effect of their own                                                           

strategic engagement, a similar interaction influence of the order along with the SL of the opponent on                                                  

their overall deviation of their choice distribution from MSNE (this effect was small, by consistent across                                               

SL measures, improved a bit the overall fit of the GLM and was also observed in ANOVA) ​(Fig.2.B). In                                                        

fact when comparing the choice behavior data of Players 2 but dividing the data not only by the opponent                                                        

level played but their order, a dissociation between high and low SL subjects was observed, with an effect                                                     

marked for the highest half of Players 2 when opposed to the low opponent after having been exposed to                                                        

a high SL Player 1 ​(Fig.3). This result is therefore coherent with our transfer hypothesis and could be                                                     

interpreted as a facilitation effect of the sophisticated, and thus more accurate, beliefs formed throughout                                            

the ​  ​previous​  ​interaction.  
  

____________________________________________________________________________________

  

Figure 3. Evidence of transfer learning in Players 2. (A) the order of play affected Players 2 deviation from MSNE:                                                           

subjects who played against the High SL opponent first (N=31) deviated less than the one who were opposed first to                                                           

the low SL (N=34). (B,C) Improvement of the performance and accuracy when playing against the low SL after having                                                        
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played against the high, observed only for high (median split) SL players 2 (Green). In green are represented the half                                                           

of​  ​the ​  ​Players​  ​2 ​  ​with​  ​the ​  ​higher​  ​SL ​  ​level ​  ​(N=16),​  ​in ​  ​red ​  ​with​  ​the ​  ​lowest​  ​(N=16).  
_____________________________________________________________________________________________  

  

To insure that this order effect was not driven by an increase in strategic learning sophistication when                                                  

playing first against a high opponent, we tested the alternative hypothesis of an effect of the opponent’s                                                  

order directly on the SL level of Players. Unexpectedly this analysis revealed a higher Strategic                                            

engagement of Players 2 compared to Players 1 when opposed to this low SL opponent ​(D(128) = 0.2615,                                                     

p= 0.0188 ;; U(128) = 1538, Z= 2.6727, p = 0.0075)​. We tested if this new effect was mediated by the order                                                                 

(allowing for interaction effects). We found for Players 2 (weak ) evidence of an effect of the opponent’s                                                  12

SL and the order. Nevertheless this conjunction effect of the opponent SL and the order on the level of                                                        

strategic engagement of the subject in the strategically disadvantageous position, was also observed,                                      

albeit small, when running an ANOVA on the all dataset, entering the Role as a factor ​(Fig. 4.A). The                                                        

order did not seem however to directly impact the overall stability of their SL level (prop. same low/high                                                     

SL IBM: low-­high opp.= 0.65, high-­low= 0.67) from one opponent to the other. When dividing each                                               

condition group (role, order), between the subjects who engaged the less and the one who engaged the                                                  

most in sophisticated strategic learning we observed that only highly sophisticated Players 2 increased                                         

their SL level when playing against the high SL opponent in comparison to the low SL ​(Fig. 4.B). This                                                        

trend might actually explain the lack of correlation in SL level between blocks previously observed only                                               

when using as a measure of the strategic learning engagement the amplitude offered by the entire model                                                  

space,​  ​i.e.​  ​the ​  ​relative ​  ​fit​  ​of​  ​the ​  ​2-­inf​  ​compared ​  ​to ​  ​the ​  ​Q-­learning.  

12 ​  ​​​  ​weak​  ​effect​  ​is​  ​defined​  ​here ​  ​as​  ​a ​  ​poor​  ​fit ​  ​of​  ​the ​  ​GLM ​  ​model,​  ​R<0.1;;​  ​a ​  ​lack​  ​of​  ​replicability​  ​of​  ​the ​  ​effect​  ​across​  ​our​  ​3  
SL ​  ​measures,​  ​namely​  ​the ​  ​relative ​  ​fit ​  ​of​  ​the ​  ​2-­Inlf​  ​compare​  ​to ​  ​RL,​  ​the ​  ​relative ​  ​fit ​  ​of​  ​the ​  ​Influence​  ​compared​  ​to ​  ​fictitious  
and ​  ​the ​  ​Influence​  ​best​  ​fitting ​  ​parameter​  ​λ​  ​value.​  ​Also ​  ​using ​  ​an ​  ​ANOVA​  ​analysis​  ​the ​  ​effect​  ​was​  ​only​  ​marginal.  
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____________________________________________________________________________________

  

Figure 4. Relative effect of the order on the SL level of the subjects (A) ANOVA conducted on the SL level of the all                                                                       

population (relative fit of 2-­infl and Influence best fitting parameter value) with the role in factor along with the                                                        

opponent SL and the order of play. (B) Effect of the order on the SL level of Players 2. The Sl level is captured here                                                                          

by the relative fit of the 2-­infl, the results remained unchanged for the Low opponent with the 2 others measured                                                           

(Rel.Fit Infl. and Influence parameter), note that the effect on the High opponent does not hold with the other SL                                                           

measures (shaded green star). Only the half of Players 2 with the higher SL level (green -­ median split), are affected                                                              

by​  ​the ​  ​order.    
____________________________________________________________________________________  
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This additional effect suggests that the Players 2 who engaged already in a high strategic learning against                                                  

the High SL subject remained highly engaged when playing against the low SL opponent. One                                            

interpretation is that when they play first against an opponent modelled by low strategic learning algorithm                                               

(i.E. fictitious), sophisticated Players 2 managed to overcome their disadvantage and were thus only                                         

rationally bounded. However when confronted first to a high SL Influence model, their performance was                                            

constrained by individual, probably cognitive, limits (only the one able to fully engage in strategic learning                                               

reduced ​  ​their​  ​disadvantage).  
  

Indeed Players 2 with a higher strategic learning boundary, when confronted to the low SL opponent,                                               

improved their behavior ​(Fig. 5.A,B) ​and even managed to increase their absolute performance ​(r=0.4318                                         

p=3.0e-­4)​. ​According to our computational approach, they achieve to do so against the low SL opponent,                                               

by tracking the interplay between their own behavior and the one of their opponent, leading them to                                                  

deviate from the focal point to play closer to the MSNE and to choose more accurately the high reward                                                        

action. Additional evidence of exploitation of the low SL opponent behavior can be observed in Players 2                                                  

play: the higher their SL level the higher their accuracy and the higher frequency of switch. And                                                  

conversely not only both were impaired against higher SL opponent, (Fig. 5.C,D)​, but a correlation can                                               

then be observed between their SL level and their choice reaction time, with an increase after a loss and                                                        

a ​  ​decrease ​  ​after​  ​a ​  ​win ​  ​​(win:​  ​r=​  ​0.335,​  ​p=​  ​0.006​  ​;;​  ​loss:​  ​r= ​  ​0.315,​  ​p=​  ​0.011)​.  
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____________________________________________________________________________________

  

Figure 5. Correlation between the SL level of the subjects in both role and selected choice behavior. (A,B) correlation                                                        

with performance and accuracy when opposed to low SL opponent resp. (C,D) Difference in correlation with                                               

frequency​  ​of​  ​switch ​  ​between​  ​the ​  ​2 ​  ​types​  ​of​  ​opponent​  ​observed​  ​for ​  ​Players​  ​2 ​  ​only.    
____________________________________________________________________________________  

  

These results seem congruent with the hypothesis that Players 2 due to their disadvantageous position in                                               

the game are constrained to their own cognitive capacity, only reached by high SL subjects in this task                                                     

when ​  ​playing ​  ​against​  ​a ​  ​high ​  ​SL ​  ​opponent.  
  

To further challenge this hypothesis we analysed the additional Working Memory task that the subjects                                            

had to perform at the end of this experiment. This time, working memory capacity was measured using a                                                     

N-­Back task. We confirmed the trend observed in our second experiment: both 2-­back and 3-­back                                            

performance correlated to the SL level of the subjects endorsing the role of Players 2 ​(2-­Back: r=0.3025                                                  

p=5.19e-­4 ;; 3-­Back: r=0.2971 p=6.58e-­4)​, no correlation was found between working memory capacity and                                         
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SL level in Players 1. But more interestingly, this time we could look at this correlation for each type of                                                           

opponent separately, and we found that the correlation was only driven by the block where the Players 2                                                     

were opposed to the high SL opponent ​(2-­Back: r= 0.3980, p=0.0011, 3-­Back: r= 0.4120, p=7.18e-­4)​.Players 1                                               

on the other hand, already in an advantageous position, did not seem to be directly affected by the order                                                        

of play, as if the sophisticated ones only needed to adapt to the opponent. There choice behavior was                                                     

thus not directly affected by the opponent ​(Fig. 5.C,D)​, and no difference in choice reaction time after a                                                     

win ​  ​or​  ​a ​  ​loss​  ​was​  ​observed ​  ​in ​  ​both ​  ​blocks.    
  

  

D)​  ​Discussion  
  

The previous chapter (II) presented evidence for the predictive power of the value-­based decision                                         

making framework developed in neuroeconomics applied to repeated game interactions. Our previous                                   

results (Chapter II) suggested that the behavior of the subjects interacting in the disadvantageous position                                            

was driven by their own level of strategic learning, which was itself not directly impacted by the level of                                                        

sophistication of the computerized opponent encountered. Based on recent research in the field (see                                         

Wikenheiser et al, 2016 [17]), we exploited the experimental design of the Experiment 3 (Chapter II) and                                                  

ran a follow up study by including additional subjects to our dataset, to test the specific hypothesis that                                                     

humans who are capable of engaging in higher-­order belief (strategic) learning would transfer their                                         

sophisticated ​  ​beliefs​  ​from​  ​one ​  ​opponent​  ​to ​  ​the ​  ​next​  ​in ​  ​order​  ​to ​  ​improve ​  ​their ​  ​performance.  
  

The results presented here consolidated our previous results but did not allow the rejection our null                                               

hypothesis of an absence of transfer of sophisticated beliefs across the interaction blocks. Our analysis                                            

revealed that the high level of strategic sophistication of the opponent first encountered directly enhanced                                            

the level of engagement in high order belief-­learning of the subjects playing in the disadvantageous role                                               

(i.e ​  ​Players​  ​2).  
  

The transfer effect we observed in the present (extended) dataset appeared to be specific to the strategic                                                  

learners (subjects capable to engage in high strategic learning level), who endorsed the disadvantaged                                         

role. This result seems to argue in favor of a dissociation between bounded cognition and bounded                                               

rationality in equilibrium play as suggested by Friedenberg et al (2017) and discussed in chapter II.                                               

Indeed, according to this theory, they are two possible reasons why not all participants reach equilibrium,                                               

and ​a fortiori in repeated interactions, engage in higher strategic learning. First the incentive to engage in                                                  

such costly cognitive process is not high enough (according to an individual trade off threshold), as it                                                  

seems to be the case when subjects endorse the dominant position in the strategically asymmetric                                            
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interaction since this position ensures an outcome superior to the one of their opponent for minimal effort                                                  

(bounded rationality). Second the observed heterogeneity also reflects between-­subject differences in                                

cognitive capacities, preventing some participants to fully engage in strategic learning even if it was                                            

maladaptive not to do so (bounded cognition). The results presented here then refine this apparent                                            

dichotomy as they suggest that even when the position is disadvantageous, a cost-­benefit tradeoff arises                                            

for​  ​subjects​  ​capable ​  ​of​  ​high ​  ​strategic​  ​learning.  
This interpretation lies under the assumption that the engagement in (high order) belief-­based learning                                         

requires higher mental effort, a hypothesis at the heart of the bounded rationality framework (Polonioli,                                            

2016). Interestingly a recent review article proposed that cognitive control is at the origin of such trade-­off                                                  

between the cost of computation and its expected benefits (Shenhav et al, 2017). Some authors indeed                                               

showed a correlation between the cognitive control engagement and the switch between model-­free and                                         

model-­based learning (Otto et al, 2014). The idea that cognitive control might subserve the engagement                                            

in model-­based learning has been evoked as a potential link within the value-­based decision making                                            

framework between motivation and cognitive control through incentives (Botvinick & Braver, 2015). And                                      

recently authors presented compelling evidence that the level of cognitive control and the balance                                         

between cost and expected reward could indeed drive the engagement in model-­based RL (Deserno et                                            

al, 2015;; Kool et al, 2017). A posteriori, we could have interpreted the correlation found by Yoshida and                                                     

colleagues (Yoshida et al, 2010) between the adjusted level of strategic learning (from the direct                                            

estimated sophistication of the opponent computed by their fully optimal model) and the dlPFC, as a first                                                  

evidence of cognitive control implication in the level of strategic learning during a repeated game                                            

interaction ​  ​(Duverne ​  ​&​  ​Koechlin,​  ​2017).    
  

An alternative hypothesis would be that playing against a strategically sophisticated learner emphasizes                                      

the strategic nature of the interaction and somehow facilitates the formation of higher-­order beliefs. To our                                               

knowledge this hypothesis is not rooted in one pre-­existing theoretical framework. However, the literature                                         

on value-­based decision making offers several ways to explore possible interpretations. First, it has been                                            

suggested that attention can be driven by the value attached to stimuli through model-­free learning (Le                                               

Pelley, et al, 2016;; Preciado et al, 2017). One possibility is thus that in our task the saliency of the focal                                                              

point is modulated by the subjective value eventually attached to it, and that once the subjects in the                                                     

disadvantageous position formed a high-­order representation of the strategic interaction, the attention                                   

paid to the high payoff / suboptimal action eventually decreased, facilitating their strategic learning                                         

engagement in the next block. A second interpretation lies on the social effect of the interaction itself.                                                  

Authors have shown that when engaged in a situation involving a counterpart the other’s actions tend to                                                  

influence our own decision-­making process even when it is not optimal to do so (Apps & Ramnani, 2017;;                                                     

Suzuki et al, 2016;; Wittmann, et al, 2016). In strategic interactions, higher order beliefs are modeled as                                                  

simulations embodying the interplay of the past behavior of both the subject and her opponent. Thus                                               
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perspective taking facilitation could enhance such representations (Nicolle et al, 2012). This effect could                                         

also be amplified by the joint agentivity emerging from dynamic social settings (Bolt & Loehr, 2017), so                                                  

that realizing that our own actions influence the opponent might improve the accuracy of the learned                                               

generative model (Di Costa et al, 2017). Manipulating the noise in the action selection (i.e. the inverse                                                  

temperature parameter of the softmax function in Equation X) of the belief-­based learning algorithm                                         

generating the opponent’s choice could impact the perception of joint agency, and help disentangle these                                            

two ​  ​interpretations.  
  

We argue that these two hypotheses, of respectively endogeneous and exogeneous effects in transfer                                         

learning, could be tested experimentally. One way to do it would be to manipulate the strategic                                               

asymmetry. This can be done using the simulation process presented in the previous chapter (Exp.1 in                                               

chapter II.A, chapter II.B) to increase or decrease the strength of the focal point by carefully changing the                                                     

payoff​  ​values​  ​of​  ​the ​  ​game ​  ​matrix.  
  

Finally, we wanted to emphasize a main difference found between the 2 experiments, when participants                                            

were playing against a humans vs. a computerized algorithm: the higher the SL level of Players 1                                                  

(advantaged role) the more they deviated from the MSNE when playing against the low SL opponent                                               

(r=0.42802, p=3.75e-­4)​, an effect that seems to be specific to this condition ​(GLM F(126)= 8.66;; p= 2.88e-­05;;                                                  

sub_SL: t=2.5492, p= 0.0119;; opp_SL: t=2.9391, p=0.0039, no interaction effect)​. ​Since performance and                                      

accuracy increased with a subject’s SL level, we hypothesized that this core difference was driven by an                                                  

exploitation of the Low SL computerized opponent. One possibility would be that these subjects managed                                            

to exploit the regularity emerging from the fictitious play behavior of their opponent. We investigated this                                               

hypothesis by comparing the quality of fit of the two pattern versions of the fictitious play developed by                                                     

Spiliopoulos (2013a), fp2 and fp3 (Chapter II, Appendix 2) in each opponent block for each player role.                                                  

The pattern fictitious model ​fp2 tracks how many times two (or three for fp3) temporally consecutive                                               

sequences of actions have been observed, and then computes from the estimated (weighted) frequency                                         

the conditional probability of an action being played based on her last two (or three) past actions. As in                                                        

Exp.1 (Chapter II), at the population level, the fit of the Influence model was higher compared to the fp2                                                        

and fp3 models (AIC comparison both opponents: fp2, U(128)= 3696, z=7.8404, p=4.4897e-­15 ;; fp3,                                         

U(518)= 17379, z=9.5848, p=9.2603e-­22 ;; Similar results were obtained for each opponent separately).                                      

When comparing the fit of the two models in each opponent block for each player, we observed that the                                                        

models better captured the choice behavior of players 1 when playing against the low SL opponent only                                                  

(​Fig.6​). However even in this condition, the Influence model still best fitted their overall behavior (Players                                               

1 low SL opponent: AIC(fp2), U(128)= 1318, z=3.6971, p=2.1807e-­04 ;; AIC(fp3), U(128)= 943, z=5.4432,                                         

p=5.2325e-­08). These results thus suggest that players 1 might have used statistical redundancies                                      

emerging from the behavior of the low SL opponent in order to exploit its strategy and maximize their                                                     
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earning, even if it meant deviating from the MSNE distribution (i.e. from mutual best response, to                                               

unilateral ​  ​best​  ​response).     
  

____________________________________________________________________________________

  

Figure 6. Better fit of the pattern fictitious models only on Players 1 against low SL opponent. (A) Fit of the two                                                                 

choices pattern fictitious (fp2) in each opponent condition for each role. (B) Fit of the three choices pattern fictitious                                                        

(fp3)​  ​in ​  ​each ​  ​condition.  
____________________________________________________________________________________  
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-­ ​  ​Chapter​  ​IV ​  ​-­    
From​  ​strategic ​  ​learning​  ​to​  ​Pattern​  ​detection    

in​  ​competitive ​  ​interactions    
(Exp.​  ​5,​  ​6)  

  

  

The ​  ​experimental ​  ​work​  ​presented ​  ​in ​  ​this​  ​chapter​  ​has​  ​been ​  ​done ​  ​in ​  ​collaboration ​  ​with ​  ​Larsen ​  ​Tobias.  
  

I​  ​-­ ​  ​Pattern​  ​detection​  ​in​  ​strategic ​  ​dyadic ​  ​interactions ​  ​(Exp.5)  
  

A)​  ​Introduction  
  

1)​  ​Thesis ​  ​context     
  

In our previous experiments (Exp.1-­4) we found that most of our subjects engage in some form of                                                  

strategic learning during competitive interactions. Subjects, however, compute the information provided                                

by the history of play at different depths, or levels of sophistication. This results in the formation of                                                     

different orders of beliefs leading subjects to anticipate differently the opponent’s next action and                                         

ultimately ending in observable heterogeneity in best responses. Through several forms of repeated                                      

game experiments conducted in laboratory, we showed that such between-­subject differences in strategic                                      

engagement can explain part of the variance observed in choice sub-­optimality. We also presented                                         

evidence that the payoff structure of the game can drive different behaviors among individuals depending                                            

on the way it facilitates higher engagement in strategic learning and their propensity to do so. Finally, our                                                     

results suggest that human learning sophistication operates upon the implicit computation of a                                      

cost-­benefit​  ​ratio ​  ​of​  ​their​  ​cognitive ​  ​engagement​  ​into ​  ​the ​  ​social ​  ​interaction.    
  

Altogether the results presented in the first part of my PhD work (Chapter II and III) lead to the conclusion                                                           

that humans are able to consider their opponent’s behavior in their own learning process and thus engage                                                  

in belief-­based learning. However individuals vary in the sophistication of their inferences over the                                         

strategic​  ​implication ​  ​of​  ​the ​  ​opponent’s​  ​behavior​  ​(high ​  ​order​  ​belief-­based ​  ​learning).  
  

Nevertheless, similar to the vast majority of the existing literature on human strategic learning and on                                               

computational models of human learning and decision-­making abilities, this work was based on a                                         
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statistical frequentist approach. More precisely, the models for different levels of strategic learning (SL)                                         

consisted in estimating the frequency with which the opponent selected one option over another,                                         

assuming that subjects are just estimating average frequencies of choices over a certain window of trials,                                               

rather than detecting finer choice regularities in the behavior of the opponent. Moreover, these models                                            

also consider that the opponent is himself doing similar frequentist estimations. These models thus use                                            

these different estimations to chose the most rewarding option under the assumption that the opponent                                            

with continue its choices with the same learning strategy. However, the behavioral data acquired during                                            

the first part of this PhD work suggest that subjects may be doing more than simply estimating choice                                                     

frequencies (Exp. 4, Chapter III). In some cases, the subjects seem to be able to identify regular patterns                                                     

in the sequence of the opponent’s choices. For instance, if the opponent performs the following                                            

sequence: Left Right Right Left Right Right, there is more information in this behavior than simply                                               

considering that the opponent selects Left 33% of the time and Right 67% of the time. There is a certain                                                           

pattern or structure to extract from this sequence so that one can more precisely predict the next move,                                                     

rather than simply considering that Right is the most likely next option. In this particular example, the                                                  

actual most probable move from the opponent after this sequence is Left, even if it’s overall frequency is                                                     

lower than that of Right. Thus if subjects are able to extract and respond to such patterns, then their                                                        

behavior may sometimes deviate from what can be captured by models adopting a pure frequentist                                            

approach,​  ​while ​  ​still ​  ​performing ​  ​a ​  ​high ​  ​level ​  ​of​  ​strategic​  ​thinking ​  ​and ​  ​learning.  
  

Here the goal was thus to more systematically investigate the question whether individuals are able to                                               

detect repetitiveness in their opponent’s choices, and form beliefs over such choice patterns to maximize                                            

their final outcome. We moreover explore how this type of social learning interacts with the strategic                                               

learning ​  ​engagement​  ​to ​  ​form​  ​accurate ​  ​beliefs​  ​over​  ​their​  ​opponent’s​  ​(choice)​  ​behavior.  
  

  

​2) ​  ​Scientific ​  ​context      
  

The pattern learning hypothesis has been very rarely explored in the field of game theory                                            

(Sonsino, 1997), until recently. In a recent in-­depth work (Spiliopoulos, 2012, 2013a), Spiliopoulos                                      

hypothesized that in repeated (competitive) games, humans can exploit regularities in the choice series of                                            

their opponent in order to improve their beliefs’ accuracy and maximize their final outcome. To test this                                                  

hypothesis he extended the fictitious play model introduced previously to allow for the computation of the                                               

conditional probability of choice given the past 2 choices of the opponent. This way the model (​fpn) ​tracks                                                     

the n choices patterns in her behavior, update the probability (decayed frequency) associated to the n!                                               

patterns, and best respond to it. The ​fp2 ​model has been shown to outperform classic fictitious play in                                                     
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human-­human repeated game interactions (Spiliopoulos, 2013a). If it seems clear that humans are not                                         

effective randomizers (Gauvrit et al, 2017), the model fitting approach used by Spiliopoulos however does                                            

not​  ​ensure ​  ​that​  ​the ​  ​subject's​  ​opponent​  ​did ​  ​actually​  ​display​  ​obvious,​  ​tractable ​  ​and ​  ​exploitable ​  ​patterns.  
  

Actually the additional computational results presented at the end of our chapter II (“A) Additional                                            

discussion”) suggest that, in a repeated 2x2 competitive game, humans engage in iterative inference over                                            

their opponent’s behavior instead of computing the probability of their opponent’s choice conditionally on                                         

the pattern emerging from her history of play. On the other hand, the results presented in chapter III show                                                        

that high SL subjects playing in the advantageous position and confronted to a computerized fictitious                                            

play opponent (low SL) might exploit regularities in its play to improve their choice accuracy and maximize                                                  

their​  ​final ​  ​earnings​  ​(even ​  ​if​  ​this​  ​implies​  ​deviating ​  ​from​  ​the ​  ​MSNE​  ​choice ​  ​distribution).  
  

Thus, to our knowledge, no strong evidence is available showing that humans can indeed learn from                                               

temporal sequences (patterns) in her opponent’s choice series during a repeated game interaction.                                      

Nevertheless, human’s ability to detect statistical redundancies in the environment has been extensively                                      

explored in psychology and recently in cognitive neuroscience (Schwarb & Schumacher, 2012). Authors                                      

consistently showed that humans detect deterministic (implicit) patterns (increased prediction accuracy,                                

decreased reaction time) in tasks using temporal sequences of identifiable stimuli (Baker et al, 2014;;                                            

Schwarb & Schumacher, 2012), and this in a quasi-­optimal fashion (Meyniel et al, 2016;; Yu & Cohen,                                                  

2009). Moreover it has been shown that humans tend to respond inappropriately to local statistical                                            

redundancy (emerging patterns) even in purely random sequences (Hahn & Warren, 2009;; Oskarsson et                                         

al, 2009). For instance in probabilistic decision tasks, such as the classical two-­arm bandit task, humans                                               

can respond to irrelevant regularities in outcome temporal sequences, leading to overall deviation from                                         

optimal behavior which consists in this case in exploiting the option leading to the highest expected payoff                                                  

(Hanaki et al, 2017). Ultimately Lahav et al (2009) showed that humans can even best respond to                                                  

action-­specific patterns in a similar choice task, a repeated game “against nature” where the (hidden)                                            

transition ​  ​probability​  ​between ​  ​each ​  ​of​  ​the ​  ​3 ​  ​actions​  ​was​  ​predetermined.  
  

We propose that this probabilistic pattern generation approach used in Lahav et al, transposed to                                            

strategic games, can offer a controlled setting to test the hypothesis that humans are able to detect                                                  

patterns in their opponent’s choice series. This way we can really measure the participant’s accuracy to                                               

detect the induced statistical choice redundancies and best respond to the learned patterns while making                                            

sure that these patterns 1) do not depend on the subjects’ behavior (and thus remain constant across                                                  

subjects),​  ​and ​  ​2)​  ​generate ​  ​overall ​  ​choice ​  ​frequencies​  ​that​  ​follow ​  ​MSNE​  ​distribution.    
  

An inherent drawback of this experimental strategy is that, by using such fixed pattern-­driven strategy, the                                               
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opponent does not adapt to the behavior of the subject and thus does not maximize payoff ​per se ​. This                                                        

pitfall is inevitable if we want to control for pattern detection in strategic setting where the outcome of                                                     

one’s choice depends directly on the decision simultaneously made by the opponent. We thus developed                                            

a variation of this algorithm, closer to the ​fpn model of Spiliopoulos in the sense that it generates                                                     

probabilistic patterns directly over the subject’s past history of play. To further control for the maximization                                               

effect we also included another computerized opponent which follows deterministic patterns this time, and                                         

switches​  ​its​  ​predetermined ​  ​choice ​  ​sequence ​  ​when ​  ​exploited ​  ​by​  ​the ​  ​subject.  
  

  

3) ​  ​Hypothesis  
  

We hypothesized that in a repeated game setting where the computerized opponent would                                      

implicitly use a pattern-­driven strategy, subjects would manage to learn this feature from the opponent’s                                            

choice history, in order to use this type of information to better predict their opponent’s next choice and                                                     

thus maximize their total earnings in the game interaction. We expect subjects to vary in their pattern                                                  

learning engagement, and predict that their ability to do so is a stable and transferable cognitive trait                                                  

across opponents, that is, an individual subject should show the same propensity to identify and respond                                               

to ​  ​patterns​  ​when ​  ​confronted ​  ​with ​  ​different​  ​opponents.  
A secondary hypothesis we formulate is that it will be more difficult for subjects to detect that opponents                                                     

track and use patterns embedded in their own choice series -­-­ a higher order pattern strategy                                               

corresponding to some sort of Influence model based on pattern detection rather than simply choice                                            

frequencies. We expect subjects who are better at doing so to also be better at engaging in higher levels                                                        

of​  ​strategic​  ​learning.    
  

We developed a novel task from the framework of repeated 2x2 game interaction used in computational                                               

neuroscience. In this experiment subjects had to interact, in a random order, with 4 different computerized                                               

opponents in an interactive setting. The four opponents gradually varied in the strategy implemented to                                            

interact with the participants, going from probabilistic choice patterns blind to the subject’s choices, to a                                               

maximization ​  ​strategy​  ​adapting ​  ​on-­line ​  ​to ​  ​their​  ​opponent’s​  ​behavior.  
  

  

B)​  ​Methods  
  

1)​  ​Participants  
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67 participants (31 male, 36 female;; ages 18–30) took part in the experiment. All participants                                            

were right-­handed, medication-­free, with normal eyesight, no history of neurological disorders. The Ethics                                      

Commission of the University of Trento approved the experiment. Informed consent was obtained from                                         

each subject before the experiment. Data collection was performed blind to the conditions of the                                            

experiment.  

  

  

2)​  ​Experimental​  ​design​  ​and​  ​task  
  

The experiment consisted in 4 blocks of 102 repetitions of a 2x2 hide and seek game, each block                                                     

against​  ​a ​  ​different​  ​computerized ​  ​opponent.  
Points earned at each trial were accumulated through each block and summed up to determine the final                                                  

payoff, which would ultimately be converted to euros according to a predetermined rule. At each trial the                                                  

two game actions, represented by randomly assigned colored fractals, were presented for 3s to each                                            

player. The choice was made by pressing the corresponding button (left or right). 4s after the trial onset,                                                     

players were provided with the outcome feedback of their choice for 2s. During outcome feedback the two                                                  

fractals chosen respectively by the opponent and the subject were displayed along with a sentence                                            

indicating if they won or lost, and the corresponding points for each player (“you” vs. “your opponent”)                                                  

highlighted (​Fig.1.B). ​The payoff matrix of the game is presented in ​Fig.1.A. ​Subjects always played in                                               

the Role 1, so that the rule was simply: “in order to win, try to select the same fractal as the opponent at                                                                    

the ​  ​same ​  ​trial”.    
  

____________________________________________________________________________________

  

Figure 1. Task Design. (A) Symmetric game. Each option (a/A and b/B on the figure corresponded to two different                                                        

fractals in the experiment, randomly picked at the beginning of the experiment). The participants always played as                                                  
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Player 1. (B) At each trial participants had to choose between two fractals, randomly drawn and assigned at the                                                        

beginning of the experiment. Once the choice was made, the choice outcome was displayed presenting both the                                                  

participant and her opponent’s choice along with the points earned in this trial. In case the choice was not made in                                                              

time, the trial was considered as missed and lead the participant to automatically lose (0 pts). Since participants                                                     

endorsed the Player 1 role, the rule was the same for everyone: “in order to win, try to choose the same fractal as                                                                    

your​  ​opponent​  ​at​  ​the ​  ​same ​  ​trial”.  
____________________________________________________________________________________  

  

Each of the four opponents used a different strategy of adversarial play in order to maximize their own                                                     

pay-­off at the expense of the subject. Three of them were following pattern rules, among which two were                                                     

probabilistic (O,S) and one deterministic (D). The fourth opponent used a belief-­learning rule (modeled by                                            

a weighted Fictitious play algorithm) tracking and updating at each trial the subject’s probability of choice                                               

from​  ​her​  ​past​  ​play​  ​(​Fig.2.A ​).    
  

The ​  ​two ​  ​probabilistic​  ​opponents​  ​differ​  ​in ​  ​their​  ​level ​  ​of​  ​implementation ​  ​of​  ​the ​  ​pattern ​  ​rule.  
First, Opponent O (for “Opponent-­based”) followed a probabilistic rule so that the choice made in the last                                                  

two trials by the algorithm determined its own next choice with a certain probability. Two types of                                                  

probability of choice following a pattern combination were implemented, either low (0.7) or high (0.9). This                                               

allows us to test specifically if subjects actually learn the full two-­choice patterns, or rather simply use a                                                     

two-­back learning strategy pairing the choice at t-­2 with a rough probability of choice. The probabilistic                                               

nature of this algorithm ensured that 1) no meta-­pattern emerged from the choice series of the opponent                                                  

leading to confusion about the number of past choices constituting a pattern, 2) the choice patterns were                                                  

less obvious, and 3) the overall opponent’s behavior looked realistic in the strategic sense to the eye of                                                     

the subject. Probabilities associated to each pattern combination were chosen so that the overall                                         

frequency of each action available to the opponent matches the action distribution prescribed by the                                            

Mixed ​  ​Nash ​  ​Equilibrium​  ​Strategy​  ​(MSNE:​  ​p(A)=0.5) ​  ​(​Fig.2.A ​).  
  

Second, Opponent S (for “Subject-­based”) follows the same probabilistic rule associated to each                                      

combination of past two choices as Opponent O, except that the choices pattern determining the                                            

opponent’s next choice are the one of the subject, not its own. Thus the subject's own behavior triggered                                                     

directly, with a fixed probability, the next action of the opponent. This opponent S was made to be a                                                        

maximizing version of the Opponent O. This algorithm could thus be seen as a intermediate between a                                                  

pattern-­driven opponent (S) and a fictitious play, in the sense that it tracks regularities in the subject's                                                  

choices (to not estimate probability distribution over her two actions, but relative frequency of two last                                               

actions patterns -­ much like ​fp2 (Spiliopoulos, 2012), however the opponent does not best respond to it                                                  

but follow a probabilistic pattern ("if the subject played "a" at t-­2 and "a" at t-­1, then select "B" with                                                           
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p=0.7"). In that sense detecting patterns in this block requires a higher level of strategic awareness, so                                                  

that not only the subject must realize that Opponent S follows patterns, but also that her own choices are                                                        

affecting ​  ​its​  ​behavior​  ​and ​  ​thus​  ​that​  ​the ​  ​patterns​  ​could ​  ​be ​  ​determined ​  ​by​  ​their​  ​own ​  ​behavior.    
Third, Opponent D (for “Deterministic”) was meant as a control for pattern detection ability, and was                                               

simply an algorithm following a fixed, determined, two-­choice pattern. In order to maximize the information                                            

provided by this block we implemented a rule so that the type of fixed patterns changed once the subject                                                        

had learned the current pattern successfully (the threshold was fixed at 10 win in a row), this way we                                                        

could compute different measures quantifying the subject’s ability to learn non-­realistic, fixed, choice                                      

patterns. This deterministic pattern was always played in the last block to avoid any confound with their                                                  

performance in the three other blocks of interaction, whose order was randomized across subjects                                         

(​Fig.1.B). To control for the adequacy of our algorithmic design, we insured that the choice behavior of                                                  

the four opponents indeed followed the MSNE distribution (​Fig.1.C). No correlation was found between                                         

the participants overall performance (total points) and the proportion of choice “A” in any of the four                                                  

opponents.  

  

This design was optimized from pilot studies ​(Fig.S1) in two ways. First, it seemed that subjects were                                                  

better at discriminating the high probability pattern from the low one when they were paired to the pattern                                                     

corresponding to two different choices in the last two trials (AB and BA -­ ​Fig.1.A) ​. Second, pilot results                                                     

suggest that subjects were better at detecting patterns in the opponent’s behavior when the rule was to                                                  

choose ​  ​the ​  ​same ​  ​action ​  ​as​  ​the ​  ​opponent​  ​to ​  ​win ​  ​​(Fig.S1.D).  
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____________________________________________________________________________________

  

  

Figure 2. Experimental Setting. (A) Four computerized opponents divided into four blocks of 102 trials, each one                                                  

facing a different opponent: three pattern opponents, of which two were probabilistic, and one fictitious-­playing                                            

opponent. (B) Experimental manipulation where the order of the four pattern blocks with different opponents varied.                                               

(C) ​  ​On ​  ​average​  ​the ​  ​choice ​  ​behavior​  ​of​  ​each ​  ​of​  ​the ​  ​four ​  ​computerized​  ​opponents​  ​followed ​  ​the ​  ​MSNE​  ​distribution.  
____________________________________________________________________________________  

  

  

C)​  ​Results  
  

We first look at the overall performance in each pattern condition to test our main hypothesis that                                                  

subjects are performing on average better than chance in the pattern blocks, and are better in the                                                  

“Opp-­based” (O) than in the “Sub-­based” (S) blocks. On average subjects performed better than chance                                            

(won more point than randomly drawn) in all the 3 pattern blocks ​(Fig.3.A)​. They were much better but                                                     

also faster in the deterministic pattern condition than in the 2 probabilistic versions, thus confirming the                                               

control nature of this block ​(Fig.3.A.B). However we found only a slight difference in percentage of win                                                  

between the opponent O and the opponent S ​(U(132)=1.9668, p= 0.0492)​. In these 2 blocks, the game was                                                     

probabilistic, meaning that in some trials some players might have detected the pattern in the opponent                                               
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(or their own) past 2 choices and responded accurately to it, but the opponent could have played                                                  

otherwise, leading the subject to lose despite her correct best response. These trials, thereafter called                                            

unpredictable trials (in opposition to the predictable trials where a subject who has accurately learned the                                               

pattern contingencies and best respond to it would win), represented around 20% (on average across the                                               

4 pattern conditions) of the total block trials. We thus defined individual performances as the frequency of                                                  

correct best-­response in a block, i.e. the amount of action selected that corresponded to the opponent’s                                               

most probable action, independently of the actual agent’s choice. Taking this measure of performance                                         

however erased the small difference in percentage of win found previously between the 2 blocks                                            

(Fig.3.C)​. But when plotting the population distribution the heterogeneity among the subjects became                                      

obvious: some subjects failed to learn the patterns and performed around chance level, while some                                            

managed to learn it and perform much better than chance ​. ​When we then considered the half of the                                                     

subjects who performed the best in each of the 2 blocks ​(Fig.3.C, green data points) ​, their average                                                  

percentage of best response was much higher when the choice patterns were in the opponent past                                               

choices​  ​(O),​  ​than ​  ​in ​  ​their​  ​own ​  ​past​  ​choice ​  ​(S)​  ​​(U(746)=3.4386,​  ​p=​  ​5.85e-­04)​.  
  

____________________________________________________________________________________
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Figure 3. Performance comparison across pattern blocks. (A) Subjects on average did win slightly more in the                                                  

“opponent-­based” (O) compared to the subject-­based (S) probabilistic pattern block. However they won significantly                                         

more in the block where the pattern in the computerized opponent choice was deterministic compared to the 2 blocks.                                                        

(B) Similarly subjects were on average faster in the Deterministic pattern block, while no difference between the 2                                                     

versions of the probabilistic pattern was found. (C) No difference in correct Best Response frequency was found                                                  

between the 2 blocks O and S at the population level. When splitting the subjects between low (red) vs. high (green)                                                              

correct Best response rate, a strong difference in performance appears between the 2 blocks, with an advantage in                                                     

the ​  ​block​  ​where ​  ​the ​  ​patterns​  ​in ​  ​the ​  ​opponent’s​  ​behavior​  ​was​  ​driven ​  ​by​  ​its​  ​own ​  ​past​  ​choices.  
____________________________________________________________________________________  

  

To insure that the subjects in the “Opp-­based” block actually learned the patterns in their opponent’s past                                                  

choices we looked closely at the distribution of best-­response frequency across the 4 pattern conditions                                            

within ​  ​the ​  ​interaction ​  ​block.    
  

On average subjects’ choice distribution matched the probabilities associated to each of the 4                                         

combinations of the 2-­choices patterns, they best responded significantly more to high probability patterns                                         

than low probability patterns. They also selected the appropriate action to the probability patterns (0.7)                                            

more than chance ​(Fig.4.A). ​The variability in performance previously observed, also reveals the                                      

between-­subjects variance in pattern discrimination. Indeed the more subjects best-­responded on                                

average (across all pattern conditions) the better they were at discriminating between the 4 patterns, and                                               

this in a symmetric fashion (all patterns were learned equally) ​(Fig.4.B)​. In addition, as observed before,                                               

we clearly observe a distinction between subjects who managed to detect the patterns and the others                                               

(Fig.4.B ​  ​​-­​  ​59% ​  ​of​  ​the ​  ​subjects​  ​above/below ​  ​0.55% ​  ​of​  ​correct​  ​best​  ​response).  
  

____________________________________________________________________________________
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Figure 4. Subjects choice probability matches in best response the probabilistic patterns in the opponent’s choice                                               

behavior when driven by its own past choices (opponent-­based block) (A) On average, the higher the probability of                                                     

the opponent selecting action “A” given the pattern displayed by its past choices, the more subjects selected correctly                                                     

their action “a”. Frequency of choice in the low probability conditions (AA/BB) were significantly different from chance                                                  

level (AA: t= -­2.5579, p=0.0128 ;; BB: t= 2.0487, p=0.0445) (B) When sorting our population by average Best                                                     

response rate (on the all block trials, independently of the pattern condition), we observed a strong asymmetric                                                  

increase in their appropriate best response across the all pattern conditions, with the lower Best responders playing                                                  

at random level independently of the current pattern condition and the higher Best responder’s choices matching                                               

accurately​  ​the ​  ​probabilities​  ​of​  ​the ​  ​opponent​  ​given ​  ​the ​  ​appropriate​  ​pattern ​  ​condition.  
____________________________________________________________________________________  

  

We went a step further to investigate if this heterogeneity in best response to probabilistic pattern was the                                                     

product of learning or an intrinsic pattern detection ability. Looking at the evolution of best response rate                                                  

through pattern repetition for the best performers revealed clear attributes of classic learning curves:                                         

increased best response and decreased reaction time with exposure for each pattern ​(Fig. 5). This                                            

concomitant effect of increase accuracy and decrease reaction time replicate extensive literature on                                      

sequence learning (Meyniel et al, 2016;; Schwarb & Schumacher, 2012). In fact when we divide our                                               

population between portion of our subjects who learned the pattern and best responded better than                                            

chance and the one who did not (median split on average best response, but similar results are obtained                                                     

when taking the subjects who best respond on average more that 55% of the time -­ Fig.4B), we observe                                                        

in the best responders a decrease in their choice reaction time after a predictable trial ​(t(28)=-­2.7922,                                               

p=0.0093) and, in comparison, a increased reaction time after non predictable trials ​(t(30)=2.3908,                                      

p=0.0232)​. Since the propensity to detect patterns varied gradually at the population level (Fig.4.B), we                                            

looked at the linear correlation between the overall percentage of best response and the difference in                                               

choice reaction time at the individual level in the trials following a predictable action from the opponent vs.                                                     

a non predictable one, and found a significant effect ​(r=-­0.3491 p=0.0038)​. Moreover evidence was found                                            

that the more trials in a row are predictable, the higher the best response of the subject. This result thus                                                           

suggest that unpredictable trials, and thus the probabilistic nature of the generated patterns, slow down                                            

pattern learning. Note that a similar effect of predictability was found for relative RT: the more the                                                  

predictable trials are presented in a row, the lower their choice reaction time in these trials compared to                                                     

their​  ​average ​  ​reaction ​  ​time ​  ​across​  ​the ​  ​all ​  ​block​  ​(not​  ​shown).    
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____________________________________________________________________________________

  

  

Figure 5. Subjects manage to learn over time the probabilistic patterns in the opponent’s choice behavior when                                                  

driven by its own past choices (opponent-­based block) (A) Choice learning curve of each opponent’s choice pattern                                                  

for the high best responders (Bold line -­ median split) compared to the low Best responders (thin lines). (B) Learning                                                           

trace in relative reaction time, which decrease as a function of the number of experience of each pattern. Since                                                        

average reaction time was strongly correlated within-­subjects, we plotted the relative reaction time which corresponds                                            

to the difference between the choice reaction time at the current trial and the subject’s average reaction time at the                                                           

block level. (C) Exposure to long deterministic patterns increases the probability of best response compared to                                               

average performance for pattern learners. The more the subject was exposed to predictable trials in a row, the higher                                                        

her​  ​performance​  ​for ​  ​high ​  ​Best​  ​responders​  ​(median ​  ​split)​  ​only.  
____________________________________________________________________________________  

  

We then wanted to check if the difference in performance with the “Sub-­based” block was indeed                                               

triggered ​  ​by​  ​the ​  ​additional ​  ​need ​  ​for​  ​a ​  ​perspective ​  ​switch ​  ​to ​  ​strategic​  ​awareness​  ​as​  ​designed.    
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We ran the same analysis we conducted on the “Opp-­based” block on the the data of the other                                                     

probabilistic pattern block, the “Sub-­based”. This time subjects best responded better than chance to all                                            

patterns, however they failed to distinguish between low and high probability patterns. This was true even                                               

for the best responders ​(Fig.6.A,B). Similarly best responders did not show clear learning curves as in the                                                  

“Opp-­pattern” block, suggesting that they were constrained in their ability to accurately detect and learn                                            

patterns​  ​​(Fig.6.C).  
  

___________________________________________________________________________________

  

Figure 6. Subjects manage to differentiate between high and low probabilistic patterns only when the opponent’s                                               

choice is driven by the subject past choices (subject-­based block), but fail to learn the precise probabilities. A) On                                                        

average, the subjects selected more the action “a” for both low and high probability (that the opponent selects action                                                        

“A” given the pattern displayed by the subjects past choices), but did not differentiate between the low and high                                                        

pattern probability. Frequency of choice in all probability conditions were significantly different from chance level. B)                                               
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When sorting our population by average Best response rate (on the all block trials, independently of the pattern                                                     

condition), we observed an asymmetric increase in their appropriate best response across the main pattern                                            

conditions, with the lower Best responders playing at random level independently of the current pattern condition and                                                  

the higher best responder’s choices matching the probabilities of the opponent, however they did not either respond                                                  

differently in the low and high pattern conditions. C) Choice learning curve of each opponent’s choice pattern for the                                                        

high Best responders (Bold line -­ median split) compared to the low Best responders (thin lines). The former group                                                        

(high)​  ​best​  ​responded​  ​in ​  ​a ​  ​similar​  ​fashion​  ​across​  ​repetitions​  ​for ​  ​both​  ​high ​  ​and ​  ​low ​  ​pattern ​  ​conditions.    
____________________________________________________________________________________  

  

To better understand the difference in performance between the 2 probabilistic blocks, and what exactly                                            

in the opponent’s choice behavior of the “Sub-­based” block triggered such impairment in pattern learning,                                            

we should focus on one inherent feature of our design. In our task, the better a subject is, i.e. the more                                                              

she best responds to the opponent’s patterns, the more the pattern in the opponent’s choice transposes                                               

to her own choice. Indeed the rule of the game being “choose the same choice as the opponent to win“,                                                           

the more they win, the more similar their choice series becomes to the one of the opponent, and thus the                                                           

more confusion there might be regarding whose past behavior is actually predicting the choice of the                                               

opponent​  ​with ​  ​some ​  ​probability,​  ​and ​  ​thus​  ​the ​  ​more ​  ​the ​  ​2 ​  ​probabilistic​  ​pattern ​  ​blocks​  ​become ​  ​alike.  
This feature is observable by looking at the ratio between correct best response and incorrect best                                               

response rate. As described previously correct best response rate is the percentage of trials where                                            

subjects best responded appropriately, i.e. to the opponent’s past 2 choices in the “opp-­based” block, and                                               

her own past 2 choices in the “sub-­based” block). Conversely incorrect best response is the frequency of                                                  

choices driven by the incorrect pattern, i.e. own’s past 2 choices in “opp-­based” block and the opponent’s                                                  

past 2 choices in “sub-­based” blocks. As shown on ​Fig.7.A ​, the more subjects best responded correctly                                               

the higher the frequency of incorrect best-­response in the opp-­based block. This was also true, albeit less                                                  

strongly,​  ​in ​  ​the ​  ​sub-­based ​  ​block​  ​​(r=0.4528,p=1.2e-­04)​.  
  

A way to overcome this confound it to not consider the trials where the subject chose the same action as                                                           

their opponent in the last 2 trials (2 win in a row), since their best response in the next trial could be driven                                                                    

by the correct as well as the incorrect best response. We thus looked at the trials where the subjects lost,                                                           

either because they did not detect the correct pattern or they did recognize the correct pattern but the                                                     

opponent choice was in fact part of the 20% of unpredictable trials triggered by the probabilistic nature of                                                     

their pattern-­driven behavior. In the situation where the subject did not choose the same fractal as the                                                  

opponent on trial (t), but then best responded in the next trial (t+1), the choice at trial (t+2) provides a                                                           

clearer information about the correct best response (​Fig.7.B)​. We thus consider patterns of these trials to                                               

compute an alternative way to discriminate correct best responses from incorrect best responses that we                                            

called “absolute best response”. Absolute best response corresponds to the ratio between the frequency                                         
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of correct best response and incorrect best response given that on the previous trial they chose correctly                                                  

but not 2 trials before. In the “opp-­based” block, this refined measure did correlate with the initial correct                                                     

Best-­response (​Fig.7.C ​), but not with the incorrect best response rate (not shown). Conversely in the                                            

“sub-­based” block, this measure correlated negatively with the incorrect Best-­response rate (​Fig.7.D ​), but                                      

not the correct one (not shown). Taken together these results suggest that the better performance in the                                                  

“Sub-­based” block, was not due to an increased recognition of the pattern embedded in the subjects past                                                  

choices,​  ​but​  ​a ​  ​decrease ​  ​in ​  ​wrong ​  ​pattern ​  ​detection.    
Note that this measure strongly correlates to the simple ratio between our initial correct Best-­response                                            

and the incorrect Best response rate ​((S): r= 0.8215, p= 1.65e-­17 ;; (O): r=0.7650, p=4.8e-­14)​, and thus leads to                                                        

similar ​  ​results​  ​as​  ​presented ​  ​on ​  ​(​Fig.7.C,D​).  
Another way to capture this ratio between correct vs. incorrect best response would be to only consider                                                  

the unpredictable trials (noisy choices) of the opponent followed by a win of the subject and run the same                                                        

computation. However not only the 1/10 of the trials unpredictable are not similarly distributed among the                                               

subjects, the one followed by a win represent only 10% of the block trials compared to our “absolute”                                                     

best-­response measure which represents 1/4 of the choices ​( ​note that despite these constraints the 2                                            

measures​  ​are ​  ​correlated ​  ​​(O):​  ​r=0.4282,​  ​p=3e-­4;;​  ​(S):​  ​r=​  ​0.2441,​  ​p=​  ​0.0465)​.  
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____________________________________________________________________________________

  

Figure 7. To disentangle the frequency of correct Best-­response from the amount of incorrect best-­response we                                               

computed an alternative measure, the absolute best-­response rate. (A) Our design by its nature produces a crucial                                                  

confound, the more often a subject best-­responds to the opponent’s pattern driven behavior, the more often her                                                  

choice can be mistaken for an incorrect best-­response, i.e. a best-­response to the pattern embodied in her own past                                                        

choice. (B) Absolute best-­response gets rid of confound trials by focusing only on the trials following a mismatch in                                                        

choices between the subject and her opponent, this way correct best-­response can be dissociated to incorrect                                               

best-­response. (C,D) The absolute best-­response measures gives a more accurate distinction between correct and                                         

incorrect best-­response in our task. Indeed, the higher the frequency of correct absolute best-­response the higher the                                                  

frequency​  ​of​  ​overall​  ​best-­response​  ​in ​  ​the ​  ​opp-­based​  ​block,​  ​while​  ​the ​  ​opposite​  ​was​  ​observed​  ​in ​  ​the ​  ​sub-­based​  ​block.  
____________________________________________________________________________________  

  

We then looked at the deterministic pattern condition to test if the ability to detect pattern when those                                                     

remained ​  ​fixed ​  ​in ​  ​the ​  ​opponent’s​  ​behavior​  ​is​  ​linked ​  ​to ​  ​the ​  ​ability​  ​to ​  ​detect​  ​probabilistic​  ​patterns.    
  

From our deterministic pattern block, 3 measures could be extracted: 1) the overall performance, 2) the                                               

amount of pattern passed (amount of times the subject did perform correctly 10 trials in a row), and 3) the                                                           

number of trials needed to pass the first pattern which was meant to be a deterministic version of the                                                        
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probabilistic​  ​pattern ​  ​used ​  ​in ​  ​the ​  ​2 ​  ​other ​  ​blocks.    
We found correlations between the first 2 measures and the best-­response rate in both probabilistic                                            

pattern blocks ​([1] (O): r=0.3969, p= 8.8e-­04, (S): r=0.4621 p= 8.3e-­05 ;; [2] (O) r=0.2914 p= 0.0167, (S) r= 0.3236                                                           

p= 0.0076)​, but not with the third one. None of the 3 measures correlated with the absolute best-­response                                                     

rate.  

Finally we tested if subjects’ performance in the non-­pattern block against the fictitious opponent was                                            

correlated to the pattern learning ability. No correlation was found between the individual ability to beat                                               

the fictitious and their best response rate (nor absolute) in the 2 probabilistic pattern blocks. No                                               

correlation ​  ​was​  ​found ​  ​either​  ​with ​  ​any​  ​of​  ​the ​  ​3 ​  ​performance ​  ​measures​  ​in ​  ​the ​  ​deterministic​  ​(D)​  ​block.  
  

Additionally our design allowed us to test some transfer effect between opponent (​Fig.2.B ​). We found that                                               

subjects who encountered first the fictitious opponent, thus non pattern-­driven, had a reduced                                      

performance when playing next against the subject-­based opponent (​Fig.8.A​). Given our previous results,                                      

this effect could thus be interpreted as a reduced incorrect best response from the subjects who first                                                  

experienced an interaction against a maximizing opponent, which required to engage in higher strategic                                         

learning ​  ​in ​  ​order​  ​to ​  ​win ​  ​on ​  ​average ​  ​better ​  ​than ​  ​chance.     
  

____________________________________________________________________________________

  

Figure 8. Performance of subject decreases in the subject-­based block after playing against the non-­pattern driven                                               

(fictitious) opponent. (A) Decrease in % of win (similar effect in Best response) when opposed to subject-­based block                                                     

after playing against the fictitious (N=17) compared to when encountered before (N=18). (B) no order effect on                                                  

subjects​  ​who ​  ​encountered​  ​the ​  ​2 ​  ​probabilistic​  ​pattern ​  ​block​  ​in ​  ​shuffle ​  ​order​  ​(N=32)  
____________________________________________________________________________________  
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D)​  ​Discussion    
  

Research in psychology and in economics suggest that humans can detect patterns in their                                         

opponent’s behavior even when randomizing (Dyson et al, 2016;; Oskarsson et al, 2009). We aimed to                                               

test specifically the hypothesis that, in competitive repeated games, humans can not only detect but best                                               

respond to generated patterns in their opponent’s choice series. We designed a novel experiment that                                            

was meant to be a controlled version of previous work by Spiliopoulos. The author suggested that                                               

participant’s behavior in human-­human interaction could be well fitted by a learning model that tracks and                                               

best responds to statistical redundancies in the opponent’s choice series (patterns) (​fpn model in                                         

Spiliopoulos, 2012), although our own data (presented in this thesis, chapter II, III) suggest that subjects                                               

are in fact better fitted by a Influence model that computes higher order beliefs through iterative inference                                                  

(level-­k​  ​analog).  
  

In the present experiment, participants interacted with 4 computerized algorithms in a pseudo random                                         

order through a repeated symmetric competitive game (hide and seek, see Devaine et al, 2014 for a                                                  

strategic​  ​learning ​  ​analysis​  ​of​  ​the ​  ​game).    
First, we showed that subjects were on average able to learn two-­choice patterns in the opponent’s                                               

behavior when they were generated probabilistically from its past choices (“opp-­based” opponent). This                                      

result is congruent with Spiliopoulos who shows that on average humans can detect patterns embedded                                            

in the last two choices of the opponent (Spiliopoulos, 2013a). The learning behavior displayed in the                                               

repeated game interaction with a computerized opponent follows characteristics of classical pattern                                   

learning: accuracy increases and reaction time decreases with time and repetition (but also higher                                         

reaction time after an unexpected break in the pattern);; overall suggesting improved choice prediction and                                            

thus learning. We even observed a trend towards a facilitation effect over patterns composed by two                                               

same opponent choices in a row, conveying twice more information as two different choices, as predicted                                               

by​  ​Meyniel ​  ​et​  ​al ​  ​(2016).   

  

Second, we observed important inter-­individual variability in subjects’ ability to learn probabilistic patterns                                      

in their opponent’s behavior, with a bit more than half of the population who performed gradually better                                                  

than chance level. Looking back at sequence learning studies, it seems that important heterogeneity is                                            

often observed empirically, with a part of the sampled population who never detected the statistical                                            

redundancies (Meyniel et al, 2016;; Sonsino & Sirota, 2016). However, no systematic distinction is made                                            

in the analysis. Moreover, our data show evidence of a consistency in the individual capacity to learn                                                  

patterns when interacting in the probabilistic condition (non-­maximizing algorithm) and in the deterministic                                      
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condition (maximizing algorithm, i.e. switching pattern when exploited). Interestingly, it seems that even                                      

the best responders in our task did not fully exploit the learned patterns. Such suboptimal behavior has                                                  

been consistently observed in the decision-­making literature, an effect called probability matching [Sugrue                                      

et al 2004 Science;; Niv et al 2006 comment in Nat Neurosci on Morris et al 2006). Authors have                                                        

suggested that the observed tendency of the participants to explore instead of exploit the fixed                                            

probabilistic nature of their choice environment can be, at least in part, explained by the propensity to look                                                     

for temporal patterns (Baker et al, 2014). It has been recently proposed that a combination between                                               

reinforcement learning and pattern detection could actually better capture this effect (Gaissmaier &                                      

Schooler, 2008;; da Silva et al, 2017). This tendency to explore might explain the matching effect in our                                                     

task. As illustrated by the increased best response rate with the number of predictable (not noisy) trials in                                                     

a row, and the difference in (relative) reaction time between a predictable and a non-­predictable trial,                                               

prediction error might have impacted the subject’s optimal performance. Recent research suggest that in                                         

a perceptual decision tasks with stable transition probabilities, such non-­predicted trials could be                                      

considered as non-­relevant and ignored   (Filipowicz et al, 2016). Nevertheless, when patterns of stimuli                                         

are tractable such unpredictable event is experienced as a prediction error (Stefanics et al, 2011). In                                               

repeated games such unpredictable trials could trigger engagement in belief-­learning, as each trial might                                         

be ​  ​considered ​  ​as​  ​informative ​  ​to ​  ​accurately​  ​predict​  ​the ​  ​opponent’s​  ​next​  ​choice.  
One could then ask if, in social interactions, the statistical redundancies in the opponent’s choices are                                               

actually considered by the subjects as probabilistic patterns, or whether they assume that their opponent                                            

is rather trying to maximize his own payoff and thus engage in some sort of belief-­learning allowing for                                                     

pattern ​  ​detection ​  ​(as​  ​suggested ​  ​by​  ​Spiliopoulos’ ​  ​results).  
  

Our design was meant to shed light on this question. We added a “sub-­based” condition, in which the                                                     

opponent was employing probabilistic patterns, as in the “opp-­based” block, but directly on the                                         

participant’s behavior, thus requiring a higher level of strategic sophistication to detect it. We showed that                                               

subjects actually failed to track such higher order patterns. Indeed the best responses displayed by                                            

subjects performing non-­randomly in this block were actually the byproduct of the underlying choice                                         

patterns: these subjects appeared to have focused primarily on their opponent’s behavior and thus to                                            

have ended up learning the wrong generative model underlying the emergence of choice patterns. The                                            

choice series of the two players being partially correlated in such dyadic interaction setting, such                                            

misattribution of belief led them to a higher than chance performance. The difficulty to engage in such                                                  

high-­order pattern was already suggested by Stöttinger et al (2014) who showed that in a repeated                                               

competitive game, participants failed to best respond to a computerized opponent generating probabilistic                                      

behavior conditionally on the individual’s previous choice, and this even after being primed through                                         

training.  

Moreover, we did not find any correlation (positive or negative) between pattern detection ability and the                                               
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performance in the fictitious block, where the opponent was only maximizing and which thus required to                                               

engage in higher-­order belief-­learning. We did observe however that participants who played first against                                         

this opponent failed to detect patterns in the “sub-­based” condition, and thus performed at chance level                                               

since no misattribution occurred. This priming effect is interesting because it challenges the                                      

null-­hypothesis according to which pattern learning was not correlated with strategic learning. We could                                         

thus not reject this null-­hypothesis in this study. However, two interpretations are possible: either subjects                                            

in this experimental group (fictitious opponent before “sub-­based”) were impaired in their general ability to                                            

detect and best respond to patterns, or they were more aware of the strategic dependency (opponent                                               

tracking patterns in the subject’s choice), but failed to engage in higher order pattern learning. To                                               

disentangle the two hypotheses we are planning to run a follow-­up experiment with two extra                                            

experimental manipulations (not presented in the manuscript) where a group of subjects would be playing                                            

against the “opp-­based” opponent after having interacted with the fictitious: in one condition they would                                            

encounter first the fictitious, in another they would have encountered the “sub-­based” first to control for                                               

priors. In the next section, we will address directly the question of the interaction between pattern-­learning                                               

and ​  ​strategic​  ​learning,​  ​using ​  ​a ​  ​different,​  ​more ​  ​suited,​  ​experimental ​  ​paradigm.  
  

  

II​  ​-­​  ​Pattern​  ​detection​  ​and​  ​Strategic ​  ​sophistication​  ​in​  ​Rock-­Paper-­Scissor ​  ​(Exp.6)  
  

A)​  ​Introduction  
  

1)​  ​Thesis ​  ​context  
  

In our previous experiment we found heterogeneity in the human’s ability to detect and best                                            

respond to statistical regularities hidden in the opponent’s choice series. We observed a gradient of                                            

behavior going from subjects missing the patterns in the opponent’s choice and playing at chance level, to                                                  

individuals who were successfully learning the patterns in their opponent’s behavior to anticipate their                                         

next​  ​action ​  ​and ​  ​best​  ​respond ​  ​accordingly.  
We also found evidence for a priming effect from the previous interaction block on the subject’s ability to                                                     

detect and best respond to patterns in the next block. Subjects who were first exposed to a strategic                                                     

learner, an opponent maximizing its behavior by tracking the subject’s past choices, missed the patterns                                            

when interacting against a pattern-­driven opponent. These results thus cannot lead to reject the                                         

null-­hypothesis​  ​of​  ​a ​  ​common ​  ​individual ​  ​propensity​  ​to ​  ​engage ​  ​in ​  ​both ​  ​types​  ​of​  ​learning.    
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To take into account this possibility we formulated the following alternative hypothesis: two different                                         

processes are implicated in pattern and strategic learning;; therefore humans are constrained in their                                         

ability​  ​to ​  ​effectively​  ​combine ​  ​the ​  ​two ​  ​during ​  ​a ​  ​(competitive)​  ​repeated ​  ​game ​  ​interaction.    
This hypothesis thus suggests that engaging in one type of learning might prevent the engagement in the                                                  

other type of learning during strategic interactions. Along with the results presented in Chapter III, the                                               

previous study suggests that priming from a previously experienced strategic interaction might drive                                      

sophisticated players to either track and learn statistical contingencies in their opponent’s behavior or                                         

engage in sophisticated computation over their strategic intentions. If not rejected, this hypothesis would                                         

extend our conception of strategic sophistication and refine our understanding on how the two learning                                            

systems can interact in strategic repeated settings. Note that this hypothesis is different from Spiliopoulos’                                            

hypothesis that pattern detection is imbricated within strategic learning so that a fictitious play (for                                            

instance)​  ​can ​  ​rely​  ​on ​  ​estimating ​  ​both ​  ​choice ​  ​proportions​  ​and ​  ​choice ​  ​patterns​  ​in ​  ​the ​  ​opponent’s​  ​behavior.  
  

  

​2)​  ​Scientific ​  ​context      
  

Statistical learning, and in particular pattern detection seems to be a human ability shared across sensory                                               

modalities and domains (Aslin & Newport, 2012). Faced with inconsistent data on the cognitive cost of                                               

such cognitive process, some authors have suggested that while detection of statistical regularities can                                         

be quasi-­automatic (Kimura et al, 2010), learning the latent structure of the environment in order to adjust                                                  

a goal-­directed behavior might be computationally costly (Collins, 2017;; Sun et al, 2015;; Unsworth &                                            

Engle, 2005). Based on our previous study, we thus hypothesized that human’s capacity to track and                                               

learn patterns in the opponent’s behavior might prevent the iterative computation of high-­order beliefs and                                            

engage ​  ​in ​  ​heavy​  ​strategic​  ​learning.    
  

It has been shown that human’s mental representation of the detected patterns can be influenced by                                               

priming (Schuur et al, 2013). And in a competitive game (Rock-­Scissor-­Paper), Stöttinger et al (2014)                                            

showed that prior over a probabilistic opponent’s strategy (bias towards one action) facilitates the                                         

adaptation to change in the opponent’s behavior (bias towards another action). Moreover Filipowicz et al                                            

(2014) showed that participants learn better the deterministic pattern embedded in a computerized                                      

opponent in a RSP paper game, when the framing of the task facilitates the pattern detection (i.e. when                                                     

the choice patterns matched the location pattern on the screen). Such facilitative transfer of previously                                            

learned patterns have been identified experimentally in a more general social domain, like sport                                         

(Broadbent​  ​et​  ​al,​  ​2017;;​  ​Loffing ​  ​et​  ​al,​  ​2015).  
We therefore hypothesized that interacting with an opponent displaying tractable patterns might facilitate                                      
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pattern detection in the following interaction, and that conversely interacting with a maximizing opponent                                         

adapting ​  ​trial-­by-­trial ​  ​to ​  ​the ​  ​subject’s​  ​behavior​  ​might​  ​impair​  ​such ​  ​learning ​  ​process.  
  

  

3)​  ​Hypothesis  
  

We designed a task divided in three blocks in which participants will interact with three different                                               

computerized opponents in a repeated version of the Rock-­Scissor-­Paper game. During first block                                      

participants will compete against either (1) an opponent following MSNE distribution, and partially                                      

randomizing while not following a deterministic rule producing tractable patterns, or (2) an opponent                                         

maximizing through fictitious play by tracking and best responding to their behavior. This first block will                                               

serve as a priming condition and the second block will be the test block. In the test block all the                                                           

participants will be confronted to a hybrid version of the two opponents, maximizing through                                         

belief-­learning in parallel with a fixed rule producing deterministic patterns. This test block will thus allow                                               

us to observe the priming effect of each type of learning on the behavior displayed during the following                                                     

interaction. Following our hypothesis, we expect that in this block subjects primed by the pattern-­only                                            

opponent will best respond mainly to the deterministic patterns embedded in its choice series and not to                                                  

its maximizing trials. Conversely, we expect the priming of the fictitious block to drive them to focus less                                                     

on the temporal patterns and engage more in iterative belief inference. In the following, we present a                                                  

preliminary analysis of the data from the experiment we conducted in order to test this double dissociation                                                  

prediction.  

  

  

B)​  ​Methods  
  

58 participants (30 male, 28 female;; ages 18–25) took part in the experiment. All participants                                            

were right-­handed, medication-­free, with normal eyesight, no history of neurological disorders. The Ethics                                      

Commission of the University of Trento approved the experiment. Informed consent was obtained from                                         

each subject before the experiment. Data collection was performed blind to the conditions of the                                            

experiment.  

  

The experiment consisted of 3 blocks of a repeated competitive interaction game against 3 different                                            

computerized opponents. The interaction consisted of a 3x3 game known as Rock-­Paper-­Scissor,                                   

repeated 200 times and rewarded from 0 to 100 points depending on the choice combination at each trial.                                                     

The rule was the following: Rock beats Scissor, Scissor beats Paper, and Paper beats Rock. 100 points                                                  
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were won if the option chosen beats the opponent’s symbol, 50 points for a draw (same symbol selected)                                                     

and 0 points in case of a loss. Points earned at each trial were accumulated through each block and                                                        

summed up to determine their final payoff which would ultimately be converted to euros according to a                                                  

predetermined ​  ​rule.    
At each trial the three game actions, represented by three different hand sign symbols, were presented                                               

for 2s (subjects were initially instructed and trained to insure they were familiar with the choice settings)                                                  

(​Fig.9.A). The choice was made by pressing the corresponding button (left, up or right). 2.5s after the trial                                                     

onset, both players were simultaneously provided with the outcome feedback of their choice for 1.5s.                                            

During outcome feedback, the two chosen hand sign symbols (one chose by the opponent, one by the                                                  

subject) were displayed along with an indication of who won, and a sentence indicating their points                                               

underneath.    

  

The subjects were playing against 3 computerized opponents in 3 interaction blocks (​Fig.9.B)​. The                                         

Pattern-­driven opponent (P) was programmed to play each action randomly except when the combination                                         

of the past 2 choices matched one of the 3 target patterns, in these trials the choice was predetermined.                                                        

The Belief-­driven opponent (B) was modeled by a (weighted) fictitious play algorithm, computing at each                                            

trial the weighted frequency of the subjects’ past choices and best responding to it. As opposed to (P), the                                                        

opponent (B) forms beliefs over the subject’s behavior to maximize its play. The third opponent was a                                                  

hybrid (H) between these two algorithms, best responding to the participant choice (weighted) frequency                                         

by following the fictitious learning rule at each trials except when the past 2 choices matched the                                                  

predetermined patterns used by the (P) algorithm. Note that unlike the Pattern-­driven only (P) opponent,                                            

the occurrence of the predetermined pattern choices in the (H) choice series varies given the subject’s                                               

choice series. To make sure that this won’t be an issue we simulated different agents using classic                                                  

strategies of play. None of these strategies lead to an over-­ or under-­representation of the deterministic                                               

choices​  ​in ​  ​the ​  ​opponent’s​  ​choice ​  ​series​  ​​(Supplementary​  ​Information​  ​3 ​  ​(Appendix ​  ​IV) ​  ​-­​  ​Fig.​  ​S2)​.  
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____________________________________________________________________________________

  

Figure 9. Experimental Design. (A) Trial Structure: At each trial the three game actions, represented by the                                                  

corresponding hand sign symbol (subjects were previously instructed and trained), were presented randomly in each                                            

of the 3 positions on the screen, for 2s. The choice was made by pressing the corresponding button (left, up or right).                                                                 

2.5s after the trial onset, both players were simultaneously provided with the outcome feedback of their choice for                                                     

1.5s. (B) Subjects played 3 interaction blocks against 3 different opponents. The pattern-­driven opponent plays the                                               

Mixed Strategy Nash Equilibrium (p(choice)=1/3) except when its 2 last choices were the same, in which case the                                                     

next choice was predetermined. The Belief-­driven opponent was modelled by a weighted fictitious, best responding in                                               

all trials to its estimation of the subject’s action probability computed from the last past choices. The hybrid opponent,                                                        

a mixture between the first two algorithms, maximizing through a fictitious play algorithms in all trials, except when its                                                        

2 ​  ​last​  ​choices​  ​were ​  ​the ​  ​same ​  ​in ​  ​which ​  ​case ​  ​the ​  ​next​  ​choice ​  ​was​  ​predetermined.    
____________________________________________________________________________________  

  

The interaction against the Hybrid opponent was meant to be the test block. We therefore manipulated                                               

the opponent against which the subjects would play before the opponent block, by randomizing the order                                               

of the 2 “pure” opponent blocks ​(Fig.9.C).We hypothesized that the subjects’ behavior in the Hybrid block                                                  
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would be affected by the opponent encountered first: playing against the Belief-­driven only (B) would                                            

prime them to focus on the non-­pattern trials (belief-­driven) trials;; while playing against the Pattern only                                               

(P) opponent would orientate them towards pattern-­learning. We expected that this attentional                                   

manipulation would drive the strategic players to engage either in strategic learning, or in pattern-­learning.                                            

This would in turn translate into different performances in each type of trials;; non-­pattern trials and pattern                                                  

trials​  ​i.e.​  ​belief-­driven ​  ​choices​  ​and ​  ​predetermined ​  ​choices,​  ​respectively.    
  

  

C)​  ​Results  
  

  

We first looked at the overall performance between each opponent condition. We found that on                                            

average, performance (quantified as the average points accumulated across each block) was above                                      

chance level in each block ​(Fig.2.A). ​When comparing how subjects performed in the 2 “pure” conditions,                                               

respectively pattern-­driven only (P) and belief-­driven only (B) blocks, we found that the average                                         

performance (outcome) was higher in the latter condition. However this difference in performance                                      

between these 2 blocks could be explained solely by the fact that in the former block (P) 2/3 of the trials                                                              

cannot be predicted by the subjects (the opponent chooses randomly) and thus their performance is                                            

somehow constrained between 0.5 and 0.67 (max Expect.Perf = (0.5*2/3)+(1*1/3) ). To take this                                         

structural difference into account we computed subjects’ performance in the (P) block as their average                                            

outcome in the predictable trials (opponent’s choices following a predictable pattern) only. By doing so,                                            

we observed that in this block subjects performed better in the predictable trials compared to the                                               

unpredictable trials (random choices) ​(t(84)=4.8832, p=5e-­06, individual ratio of performance between the                                   

predictable vs. unpredictable trials compared to 0: t(57)= 5.2023, p=2.78e-­06). However no difference in reaction                                            

time was found between the two types of trials. Ultimately, considering the performance in (P) as the                                                  

average outcome in the predictable trials only did make the difference in performance between the 2                                               

blocks P and B fade away. No difference on average choice reaction time was found between these two                                                     

blocks.    

  

The same effect was observed when comparing the average performance between the 2 pattern blocks                                            

(P vs. H): when looking at the overall performance a difference was found ​(Fig.10.A)​, but it disappeared                                                  

when considering the performance in the pattern-­predictable trials only (the same lack of difference was                                            

found ​  ​when ​  ​considering ​  ​the ​  ​best​  ​response ​  ​to ​  ​pattern ​  ​rates​  ​instead ​  ​of​  ​average ​  ​outcome ​  ​in ​  ​the ​  ​2 ​  ​blocks).  
In the Hybrid opponent (test) block, both pattern and non-­pattern (belief-­driven) trials lead to better than                                               

chance performance ​(pattern: t(57)=5.1824, p=3e-­06;; non-­pattern: t(57)=5.7113, p=4.25e-­07)​. However unlike                             
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the pattern-­only block (P), no difference on average performance was found between pattern and                                         

non-­pattern trials in the Hybrid opponent ​(t(87.3)= 1.8640, p=0.0657 -­ indivi. ratio performance pattern vs. non                                               

pattern trials to 0: t(57)=1.8014, p=0.0769)​, thus suggesting equivalent performance in pattern and                                      

non-­pattern trials. These results thus suggest that subjects were on average able to not only best respond                                                  

to the deterministic patterns but also to the remaining belief-­driven trials in which the opponent best                                               

responded.    

  

We investigated the hypothesis that the better subjects were at best responding to patterns (predictable                                            

trials) in the pattern only (P) block, the better they were at doing so in the hybrid block (H) too. We found a                                                                    

correlation in best response selection between the 2 blocks when measuring pattern best response as                                            

their average performance in the predictable trials only ​(r=0.4222, p=0.001)​. Similarly we found that that the                                               

higher subjects in earn during their interaction with belief-­driven opponent (block B), the higher their                                            

performed​  ​in ​  ​the ​  ​non-­pattern ​  ​(maximized)​  ​trials​  ​in ​  ​the ​  ​block​  ​H ​  ​​(r=0.4222,​  ​p=0.001)​.  
We then tested our hypothesis of a competition between pattern learning and strategic learning. No                                            

correlation was found between the performance in pattern trials and non-­pattern trials of the Hybrid block                                               

(r-­0.0848, p=0.5268)​, whereas we would have expected to find a negative correlation between the two. In                                               

fact half (N=31) of our subjects had an average performance higher than 0.5 in both types of trials (while                                                        

N=11 had a performance > 0.5 in only pattern trials, N=11 in only non-­pattern trials, and N=1 in any of the                                                              

2 types of trials)​. ​We then computed for each subject the difference in performance (points) between the                                                  

second half of the trials compared the the first half of the trials, this allows us to approximate learning                                                        

since a positive score meant improvement in performance across the interaction. We did not observed                                            

any significant correlation either in this learning measure between the pattern trials and the maximized                                            

trials​  ​​(r=0.0.3093,p=0.0182)​.    
Finally we looked at the correlation between the difference in performance in pattern vs. non pattern trials                                                  

in the Hybrid block, and the average performance when interacting against the 2 other opponents. No                                               

correlation was found with the performance in the belief-­driven block (B) ​(r=-­0.1386, p=0.2994) ​and only a                                               

weak correlation was observed with the performance in the predictable (pattern) trials of the pattern-­only                                            

Block​  ​(P)​  ​​(r=0.2645,​  ​p=0.0448).    
  

To further investigate the interaction between the pattern learning and strategic learning engagement we                                         

looked ​  ​at​  ​the ​  ​effect​  ​of​  ​priming ​  ​our​  ​design ​  ​was​  ​initially​  ​meant​  ​to ​  ​trigger.    
First we observed a difference in overall performance in the hybrid (H) block depending on the opponent                                                  

played first, with a higher performance for the subjects exposed first to the belief-­driven only opponent                                               

(Fig.10.B ;; no effect of the order of play was observed in the pattern only (P) nor belief-­driven only (B)                                                           

blocks)    
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____________________________________________________________________________________

  

Figure 10. Subjects performed better in the deterministic pattern block when the non-­pattern trials were maximized                                               

by the opponent (A) and this effect was mainly driven by the subjects who were playing against the belief-­driven                                                        

(fictitious) opponent first (B). Performance here is the translation from average points across the all block to                                                  

percentage,​  ​so ​  ​that ​  ​1 ​  ​corresponds​  ​to ​  ​an ​  ​average​  ​of​  ​100 ​  ​pts,​  ​50pts​  ​thus ​  ​being​  ​the ​  ​chance​  ​level ​  ​(i.e.​  ​0.5).  
____________________________________________________________________________________  

  

Based on our previous results showing that no difference in pattern detection could be observed between                                               

the 2 pattern blocks, we hypothesized that this difference in performance conditional on the type of                                               

opponent encountered first was driven by an enhanced ability to focus on belief-­driven trials and thus a                                                  

priming ​  ​effect​  ​of​  ​the ​  ​belief-­driven ​  ​opponent​  ​over​  ​the ​  ​hybrid ​  ​block.    
Our data indeed suggests that playing against the belief-­driven only (B) opponent first does not affect the                                                  

performance in the pattern trials in the hybrid block (H) ​(Fig.11.A) ​but enhanced the performance in the                                                  

belief-­driven ​  ​remaining ​  ​trials​  ​​(Fig.11.B)​.    
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____________________________________________________________________________________

  

Figure 11. Splitting the trials in the 2 pattern blocks between the non predictable and the predictable (from                                                     

deterministic patterns) reveals that subjects did not respond better to the deterministic pattern in the “H” block, when                                                     

exposed to the belief-­driven opponen “B” first (A), but accurately best responded to the belief-­driven part of the hybrid                                                        

opponent​  ​(B)  
____________________________________________________________________________________  

  

If this hypothesis was correct then we should find a correlation between subject’s ability to engage in                                                  

strategic learning (taking their overall performance as proxy) and their performance in the non-­pattern                                         

trials of the hybrid block only for subjects who were exposed first to the belief-­driven only (B) block. As                                                        

expected a significant correlation could be observed between the 2 blocks for the subjects who played                                               

first against the belief-­driven ​(r =0.5449, p=0.0015)​, and not for the other group ​(r=0.1385, p=0.4909)​. Note                                               

that the correlation of the performance in pattern trials only between the 2 pattern blocks holds what ever                                                     

opponent​  ​was​  ​encountered ​  ​first​  ​​((P) ​  ​first:​  ​r=0.4411,​  ​p=0.0213​  ​;;​  ​(B) ​  ​first:​  ​r=0.4516, ​  ​p=0.0108)​.  
  

  

D)​  ​Discussion  
  

We hypothesized that, during a competitive repeated game, a human subject’s ability to detect                                         

and best respond to patterns embodied in the choice series of the opponent is in competition with her                                                     

ability to engage in strategic learning, so that the triggering of one process prevents the other one and                                                     

vice versa. We designed a task divided in three blocks. In the priming block subjects were either                                                  

interacting with a partially randomizing (MSNE) opponent following a deterministic rule producing patterns                                      

in one third of the trials, or with a belief-­driven (weighted fictitious play) algorithm. We then tested the                                                     
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priming effect of participants’ interaction in a test block where the opponent followed patterns in one third                                                  

of the trials but best responded in a belief-­driven fashion (fictitious) in the remaining trials (a combination                                                  

of the 2 “priming” opponents). We hypothesized that pattern priming would enhance pattern learning in                                            

the test block and prevent strategic learning, while fictitious priming would have the opposite influence,                                            

preventing ​  ​pattern ​  ​learning.  
  

The preliminary analysis of the data did not reveal the hypothesized double dissociation between the two                                               

types of learning in the test block. Indeed, no difference in pattern learning was found when subjects were                                                     

primed by interacting with either one of the two opponents. However, we found that when playing first                                                  

against the fictitious (belief-­driven) opponent, their performance in the test block improved. Looking more                                         

closely at this effect revealed that subjects on average did not learn the patterns less in the test block, but                                                           

responded more accurately to the belief-­driven choices of the hybrid opponent. In fact, our data do not                                                  

seem to show evidence suggesting that a competition between the two types of learning takes place in                                                  

our​  ​task,​  ​solely​  ​a ​  ​facilitative ​  ​effect​  ​of​  ​being ​  ​primed ​  ​by​  ​a ​  ​strategic​  ​opponent.    
  

Two results are interesting here. First, subjects’ best response rate to patterns in the test block did not                                                     

decrease when primed by the interaction against the fictitious opponent. However, their performance in                                         

the remaining trials (choices where the opponent was belief-­driven, i.e. following a fictitious strategy) was                                            

improved. Moreover, this facilitative effect depended on their ability to override the fictitious play when                                            

encountered in the first interaction block. This suggests that subjects able to engage in higher order                                               

belief-­learning were able to also keep track of the statistical regularities (deterministic patterns) emerging                                         

from​  ​their​  ​opponent’s​  ​choice ​  ​behavior.  
Second, subjects on average did not improve their best response to deterministic patterns. In fact, their                                               

average performance remained quite low in the pattern-­only block. Indeed, on average they did perform a                                               

bit higher than chance (albeit not significantly), by winning only 56.1(±9.7)% of the maximum reward and,                                               

when looking at the actual percentage of correct best response, only 39.5(1.4)% of the predictable trials.                                               

Moreover, this average score did not improve over time since the comparison of the average best                                               

response between the first and the fourth quartile of the predictable trials shows no significant difference                                               

(t(114)=-­0.3617, p= 0.7182)​, even within subjects ​(difference fourt -­ first quartile compared to 0: t(57)=0.4264, p=                                               

0.6714)​. This result is puzzling since we previously observed that pattern learning can take place in a                                                  

competitive ​  ​repeated ​  ​game ​  ​(Exp.5).  
  

A more fine-­grained analysis investigating the dynamics of the interaction as well as between-­subjects                                            

differences is required. For now we can only speculate from the striking difference found with our previous                                                  

experiment that this effect might be triggered by the nature of the patterns, here deterministic and static                                                  

across the whole interaction block. Indeed, in our previous experiment either patterns were probabilistic -­-­                                            
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and thus considered as statistical regularities which could be learned but not as direct sequence learning                                               

-­-­, or patterns were deterministic but changed across the interaction as subjects were able to exploit                                               

them. Duffy et al. (2016) observed that subjects engaged in a repeated 2x2 game against an opponent                                                  

following deterministic patterns (repetition of the same 3-­action sequence) did perform a bit better than                                            

chance but were far from fully exploiting these patterns. Interestingly, the subjects under high cognitive                                            

(working ​  ​memory)​  ​load ​  ​were ​  ​better​  ​at​  ​it​  ​than ​  ​the ​  ​one ​  ​under​  ​low ​  ​cognitive ​  ​load.    
  

An alternative hypothesis would be that the noise surrounding the deterministic patterns, and accounting                                         

for two thirds of the trials, impaired the pattern learning of the subjects. In other words, subjects who                                                     

managed to detect some statistical regularities and performed higher than chance might have tried to                                            

engage in high order belief learning to learn from the random trials as well. This could have thus                                                     

prevented them from best responding in the predictable (pattern) trials. One way to test this hypothesis                                               

with the current dataset would be to then compare the difference in behavior in these random trials in                                                     

subjects who played first the fictitious in comparison to the group who played it at the beginning of the                                                        

experiment.  

  

Taken together these two main results suggest that humans are able to combine information from the two                                                  

sources of information that were manipulated in this experiment, namely the statistical regularities of the                                            

opponent’s behavior (pattern detection) and the correlation between the opponent’s behavior and her own                                         

past​  ​choices ​  ​(high ​  ​order​  ​belief).    
Much refined analyses remain to be performed on this dataset. Nevertheless, we can already rule out our                                                  

initial hypothesis and consider that (some) subjects can simultaneously engage in both pattern and                                         

strategic​  ​learning.    
  

In an additional study, Spiliopoulos et al (2013b) controlled for one side of the repeated interaction by                                                  

making participants play against ​fpn (2,3) algorithms, he showed that subjects managed to adapt their                                            

behavior from one opponent to the other. In the light of the results obtained in this experiment, this                                                     

suggests that human might actually be able to combine pattern detection and engagement in strategic                                            

learning. If true, this then raises the question of the nature of the interaction between pattern and strategic                                                     

learning and the factors influencing such highly sophisticated learning processes. Better characterizing                                   

this interaction could help better capturing inter-­individual variability in (competitive) repeated game                                   

interactions.    

  

  

III-­ ​  ​Conclusion​  ​of ​  ​Experiments ​  ​5 ​  ​and​  ​6  
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Designing an experiment directly testing this hypothesis we have shown that subjects who                                      

interact first against a maximizing opponent engaging in belief-­learning (fictitious play), have seen their                                         

performance improved against an opponent employing in parallel a deterministic rule displaying tractable                                      

choice patterns. This result sheds light on the finding of our previous experiment (presented in section A                                                  

of this chapter), in which we observed that the participants who played against a fictitious opponent first                                                  

did, rightly, not learn patterns in their opponents behavior when the algorithm was exploiting patterns in                                               

their own choice history. Together the results of these two experiments (A,B) suggest that interacting first                                               

against a strategic agent allows to improve one’s belief accuracy by making her fully consider the                                               

strategic​  ​nature ​  ​of​  ​the ​  ​interaction.    
This hypothesis could be tested directly by fitting the learning models varying in the order of belief                                                  

inference operated over the opponent’s choice behavior (Chapter I and II of this thesis). We make the                                                  

prediction that subjects interacting through a 2x2 symmetric game against the “Opp-­based” (exp.1 -­ A)                                            

opponent, and the one playing RSP in the Hybrid block (exp.2 -­ B) would be found to engage more in                                                           

strategic learning (Influence model) compared to a simple RL or even belief-­based such as Fictitious.                                            

Moreover we hypothesize that such subjects might actually be better fitted by the Influence model                                            

compared to the ​fp2 ​model of Spiliopoulos which explicitly forms beliefs over statistical redundancies                                         

(patterns) in the opponent’s history of play. This analysis thus represents a logical next step for the                                                  

analysis​  ​of​  ​the ​  ​present​  ​data.    
  

One striking difference observed between these two experiments, and already outlined in the discussion                                         

of section B, is that subjects failed to really learn patterns, or at least to correctly best respond to it, in the                                                                 

RSP repeated game where the opponent was employing a deterministic pattern strategy. We proposed                                         

several hypotheses and suggested ways to test them in the next step of our data analysis. However, one                                                     

more conceptual hypothesis might lie under the nature of the algorithm used to generate patterns in this                                                  

task. Indeed, one might argue that this opponent, that we called pattern-­driven, is actually implementing a                                               

specific rule, which thus produces identifiable sequences in its choice history. In the previous experiment                                            

however this “rule” was probabilistic, generating patterns that were more statistical redundancies than                                      

fixed ​  ​sequences​  ​of​  ​choices.    
  

While human’s ability to infer structure from statistical regularities (statistical or structure learning) has                                         

been shown to encompass a panel of cognitive functions (Goldstein et al, 2010), our capacity to detect                                                  

fixed sequences, or chunks, have been highlighted in psychology as we were proved to be particularly                                               

skilled when it comes to recognize implicit, deterministic patterns ( Du & Clark, 2017;; Fonollosa et al                                                  

2015). Recently authors have suggested that such chunk detection might probe statistical learning                                      

(Daltrozzo & Conway, 2014;; Jiménez, 2008), notably in goal-­directed settings where cognitive control is                                         
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required ​  ​(​  ​Deroost​  ​et​  ​al,​  ​2012;;​  ​Jones​  ​&​  ​McLaren,​  ​2009).  
Authors have proposed such human's ability to learn underlying structure of their environment to                                         

subserve value-­based decision making (Abrahamse et al, 2010;; Nakahara, H., & Hikosaka, 2012). Indeed                                         

in model-­based learning, knowledge of the task structure is required, and thus refining our mental map of                                                  

the environment is key for adapted behavior in a changing world (Doll et al, 2015;;   Green et al, 2010).                                                        

Accordingly, recent research in cognitive neuroscience suggest that the orbital part of the prefrontal                                         

cortex (OFC), region previously shown to be implicated in the state representation subserving                                      

model-­based learning (Schuck et al, 2016;; Wilson et al, 2014), might encode the mapping of the task by                                                     

integrating signals from the hippocampus (Wikenheiser & Schoenbaum, 2016). Moreover authors have                                   

suggested that encoding task-­sets, chunks of pre-­encoded rules or strategies associating stimuli to action                                         

and actions to outcome, might be at the root of flexible learning (Collins et al, 2013;; Donoso et al, 2014).                                                           

Independently Abrahamse et al (2010) suggested that “the representations that are most relevant (and                                         

thus most active) for current purposes (on the basis of task set and/or task context) ultimately determine                                                  

the ​  ​nature ​  ​of​  ​sequence ​  ​learning”.    
  

Together we suggest that pattern detection in repeated games might trigger learning of the rule, or                                               

task-­set strategies employed by the opponent, in order to refine the mental representation of the structure                                               

of the strategic interaction. If this is true then pattern-­learning could then subserves strategic learning to                                               

improve ​  ​belief​  ​accuracy,​  ​as​  ​suggested ​  ​by​  ​the ​  ​results​  ​presented ​  ​in ​  ​this​  ​chapter.    
However as in statistical learning, such encoding of the task structure have been shown to be                                               

computationally costly and to require important cognitive control (Collins et al, 2013, 2017;; Jones &                                            

McLaren, 2009). Investigating this new hypothesis might ultimately help us to better understand how the                                            

two learning systems outlined here interact and vary among individuals. We believe that this line of inquiry                                                  

will allow us to improve our understanding of the observed individual deviations from optimal play and                                               

characterize ​  ​the ​  ​behavioral ​  ​dynamics​  ​emerging ​  ​from​  ​repeated ​  ​interactions​  ​(Wang ​  ​et​  ​al,​  ​2014).  
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-­ ​  ​Chapter​  ​V​  ​-­    
General​  ​Discussion  

  

  

In this PhD work, we aimed to investigate the cognitive mechanisms underlying human strategic                                         

learning in repeated (competitive) game interactions. The work presented in the manuscript was divided                                         

into ​  ​three ​  ​parts.     
In chapter II (Exp.1-­3) we studied how the level of engagement in strategic learning, allowing for the                                                  

formation of higher-­order beliefs over the opponent’s play, interacted with the structure of the strategic                                            

interaction. We showed that the engagement in strategic learning drives the formation of more accurate                                            

beliefs and eventually leads to an overall convergence towards game optimality embodied in the concept                                            

of (Mixed Strategy) Nash Equilibrium. Moreover, we demonstrated that the heterogeneity in choice                                      

behavior usually observed in repeated strategic interactions can be captured by considering the interplay                                         

between the (payoff) structure of the interaction and the individual ability to engage in strategic learning.                                               

We also observed that the strategic sophistication behavior displayed by the opponent does not influence                                            

the ​  ​engagement​  ​in ​  ​strategic​  ​learning,​  ​but​  ​that​  ​this​  ​engagement​  ​is​  ​endogenously​  ​driven.    
In chapter III (Exp.4) we showed that the level of strategic learning sophistication of the previously                                               

encountered opponent can increase the engagement in higher-­order belief-­based learning of humans                                   

(cognitively) capable of doing so, i.e. strategic players when they are in a situation of strategic                                               

disadvantage. We also provided evidence that highly strategic individuals in an advantageous situation in                                         

the interaction can exploit a belief-­based opponent, by taking advantage of the predictability of her                                            

behavior.    

In chapter IV (Exp.5,6) we showed that humans are indeed capable of learning statistical redundancies                                            

(i.e. patterns) in the choice behavior of their opponent, despite important heterogeneity in their behavior.,                                            

We also found that subjects’ capacity to detect and learn patterns in the opponent’s past play was not                                                     

correlated to the engagement in strategic learning. Moreover, our preliminary data suggest that the                                         

participants displaying pattern learning were not impaired in their strategic learning capacity when an                                         

opponent displayed both rule-­based and strategic behavior, suggesting that humans can combine the                                      

information from both types of learning to improve the accuracy of their beliefs over the opponent’s                                               

behavior.  

  

In the following, we will (A) first discuss this experimental work from a methodological and conceptual                                               

point of view and discuss the implications of the results obtained with respect to the existing literature;; (B)                                                     
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We will then discuss directions for future research. Finally we will briefly conclude on the limits and                                                  

implications​  ​of​  ​this​  ​PhD ​  ​work.  
  

  

A)​  ​Conclusion​  ​of​  ​the ​  ​experimental​  ​studies​  ​(Exp1-­6)  
  

1)​  ​On​  ​the ​  ​methodological​  ​approach  
  

At first sight, one can highlight a general observation regarding the experimental work conducted                                         

in this thesis: the computational approach developed and tested in cognitive neuroscience proved here                                         

once again a useful tool to make sense of the heterogeneity of the repeated choice data obtained in                                                     

laboratory.​  ​We ​  ​found ​  ​that​  ​such ​  ​a ​  ​modelling ​  ​strategy​  ​could ​  ​be ​  ​particularly​  ​useful ​  ​in ​  ​three ​  ​ways:    
  

1) Computational learning models can be fitted to individual choice series, to identify different types of                                               

(averaged) behavior (Exp. 2-­4). By using different types of models varying in their strategic sophistication                                            

(order of beliefs generated), we were able to capture between-­subject differences in behavior and to                                            

establish that individuals can vary in their learning strategy. We thus used computational modelling to                                            

build an abstract measure of the level of strategic learning engagement, as discussed in Chapter II.B.1.                                               

This strategy appeared to be fruitful as we showed that the level of strategic learning we computed for                                                     

each subjects (SL level) fitted both our theoretical and simulation predictions, and eventually lead to                                            

correlational ​  ​results​  ​replicated ​  ​across​  ​experiments,    
  

2) Computational models can be also used to simulate ​ex ante the expected behavioral data in a given                                                     

experimental setting such as a repeated game interaction (Exp. 1). Simulating how a computerized agent,                                            

modelled by a given learning rule with given parameters, would behave in a game might help refine the                                                     

experimental design to improve the quality of the experimental data eventually obtained and enhance the                                            

statistical ​  ​power​  ​of​  ​the ​  ​following ​  ​analyses​  ​of​  ​the ​  ​dataset​  ​(Palminteri ​  ​et​  ​al,​  ​2017).  
  

3) Computational modelling provides us with an additional experimental approach, giving the possibility to                                         

manipulate one side of the interaction in repeated games, and to control for instance the action-­outcome                                               

contingencies that a player can learn (Exp. 3-­6). As presented in this thesis, this approach could be used                                                     

to test how the strategic learning sophistication of the opponent (Exp.3,4) or the statistical redundancies                                            

in its choice series affect human performance or learning (Exp.5,6). It is worth noting that this                                               

experimental strategy has also been recently advocated in behavioral game theory by Spiliopoulos                                      

(2013b). Actually, the use of computerized agents can be pushed even further, by inducing online                                            
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individual-­specific behavioral manipulation ​. In Exp.3, typically, the computerized agent generates its                                

choices through a computational learning model that uses the information provided by either its own                                            

choice (Q-­learning), the choices of the participant with which it interacts (Fictitious), or both (Influence).                                            

The algorithm generates its choice at each trial based on the value of the hidden variables the model                                                     

updates dynamically (trial-­by-­trial), and given the parameter values entered by the experimenter. Thus at                                         

each trial the agent generates a map of the unobservable (hidden variables) that embodies an information                                               

about the current interaction, and by extension about the participant’s behavior. The experimenter could                                         

thus develop a (meta) algorithm which would use these values generated (indirectly) by the choices of the                                                  

participant to change the parameter values of the model, to drive online learning strategy adaptation                                            

depending of the behavior generated by the human encountered. To our knowledge this computational                                         

strategy​  ​has​  ​not​  ​been ​  ​yet​  ​implemented ​  ​in ​  ​an ​  ​experimental ​  ​setting .    1

  

A second general observation regarding the approach we employed in this PhD work can be                                            

made: game theory provides a useful framework to study learning in (dyadic) social interactions, and this                                               

at three levels: experimental, analytical and conceptual. Experimentally, games, which model strategic                                   

interaction in a minimal fashion, are similar to a Markov decision process (MDP), (with an exit probability                                                  

as the number of games (trials) that will be played is unknown), in which players are provided with a set of                                                              

actions and a known state (matrix cell) structure with deterministic payoffs associated to each, only the                                               

transition function is unknown as it depends upon the choice behavior of the opponent. As humans                                               

interact directly with another human (or with a human-­like algorithm), it thus provides a simple social                                               

setting ​  ​to ​  ​study​  ​the ​  ​learning ​  ​process​  ​underlying ​  ​human ​  ​behavior​  ​in ​  ​dynamic​  ​interactions.    
At the analytical level, the value of such a model of social interaction, is that it comes with a strong                                                           

theoretical framework which provides a benchmark to study human behavior. Indeed, Game theory                                      

formulates (mathematical) solution concepts, such as the Mixed Strategy Nash Equilibrium (MSNE),                                   

which prescribes an (mutually) optimal behavioral strategy. This allows to study human behavior and its                                            

departures from such game optimality. In Exp.2-­4, we started with the assumption that humans differ in                                               

their belief accuracy over their opponent behavior, as MSNE is achieved through mutual best response.                                            

By first analysing how subjects’ aggregated choices differed from the prescribed choice distributions                                      

(Exp.2), we were able to formulate the hypothesis that the relative performance (in comparison with the                                               

one of the opponent) was more informative of the accuracy of the behavior in the game than absolute                                                     

performance (total points earned in a block). In Exp.4, the benchmark of MSNE provided us with the                                                  

insight that the more players in the advantageous role engaged in high-­order learning (SL level) against a                                                  

low SL (belief-­based) algorithm, the more they departed from the MSNE distribution, while still managing                                            

1​  ​Still ​  ​we ​  ​would​  ​like ​  ​to ​  ​mention ​  ​that ​  ​this ​  ​approach​  ​is​  ​inspired​  ​by​  ​Geana ​  ​& ​  ​Niv​  ​(2014),​  ​who ​  ​used ​  ​the ​  ​inter-­block​  ​time  
interval ​  ​in ​  ​a ​  ​(non-­social)​  ​armed-­bandit​  ​learning​  ​task​  ​to ​  ​(very​  ​basically)​  ​optimize ​  ​a ​  ​computational​  ​model​  ​on ​  ​the ​  ​choice  
series​  ​the ​  ​participant​  ​generated​  ​in ​  ​the ​  ​first​  ​block​  ​to ​  ​tune ​  ​the ​  ​parameters​  ​of​  ​the ​  ​task​  ​in ​  ​the ​  ​second​  ​block.  
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to increase their final earnings. This result was the only striking difference with the initial (human-­human)                                               

version of the task (Exp.2), and lead us to infer that subjects might have detected and used statistical                                                     

redundancies in their opponent’s past play to improve the accuracy of their belief and exploit their                                               

opponent's choice behavior beyond the mutually optimal distribution (MSNE). Thus, taking the MSNE as                                         

a reference point for belief accuracy provided us with a guide for behavioral analyses, computational                                            

modelling ​  ​adequacy,​  ​between-­subject​  ​comparison,​  ​and ​  ​simulation ​  ​prediction.    
  

In fact, the theoretical framework in games turned out to have been useful at a third level, from a                                                        

conceptual viewpoint. Indeed, research in behavioral game-­theory proposed that the mutual knowledge of                                      

rationality (mutual best response) premise of the MSNE concept should be relaxed (Chapter I section                                            

III.A) in order to take into account the empirical departure from equilibrium systematically observed in                                            

human choice. Following this line, a class of model has been proposed based on the idea of bounded                                                     

rationality. The level-­k/CH models (Crawford et al, 2013) posit that players differ in their level of (iterative)                                                  

strategic sophistication when reasoning in one-­shot games, and empirical data suggest that such models                                         

effectively capture the choice departure from MSNE. The idea behind this conceptual framework is that                                            

humans are cognitively constrained (bounded), or at least that humans differ in their propensity to exert                                               

cognitive ​  ​control ​  ​in ​  ​order​  ​to ​  ​engage ​  ​in ​  ​higher​  ​strategic​  ​reasoning ​  ​levels.    
Based on this theory, we proposed that the engagement in strategic learning (SL) might as well be                                                  

constrained. Indeed, previous studies suggested that humans can use past outcomes and track the past                                            

actions of the opponent in order to adapt their following decision (Zhu et al, 2012), but also that they can                                                           

take into account their own influence over the interaction (Hampton et al, 2008). This hypothesis lead us                                                  

to test different models of various SL level (from Q-­Learning, up to the Influence model developed by                                                  

Hampton et al, 2008). These models embodied different hypotheses regarding the type of learning and                                            

the level of (strategic) sophistication of the beliefs generated. Our data (Exp1-­4) seem to fit this                                               

conceptual framework of bounded rationality as dissociating between different levels of strategic                                   

engagement during a repeated interaction allowed to capture part of the variance in the population, but                                               

also to better understand the consistent departure from equilibrium observed in the behavioral game                                         

theory​  ​literature.    
Crucially, our results showed that engaging in higher-­order learning lead to more accurate beliefs, and                                            

thus to higher performance in a competitive game interaction. A second concept derived from the MSNE                                               

prescription is the idea of randomization. MSNE assumes that, to be unpredictable, players should                                         

randomize over their action-­set following the prescribed (mutually optimal) probability distribution.                                

However, empirical data in both behavioral game theory and neuroeconomics shows that humans fail to                                            

fully randomize and unconsciously display patterns or statistical redundancies in their behavior (such as                                         

over-­alternation) (Camerer, 2003). This lead us to specifically investigate in Exp.5 the ability of humans to                                               

detect and exploit (learn) the probabilistic patterns embodied in the choice behavior of a (computerized)                                            
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opponent, and to study how (if) this information could be implemented in higher-­order beliefs formed                                            

through ​  ​strategic​  ​learning ​  ​(Exp.6).  
  

  
2)​  ​Implication​  ​of​  ​the​  ​present​  ​work ​  ​for​  ​the​  ​related​  ​literature  
  
We first showed that in repeated strategic interactions humans vary in their level of strategic                                            

learning sophistication, from reinforcement learning to higher-­order belief-­based learning in which not only                                      

the individual best responds to the beliefs formed over their opponent’s choice distribution (belief-­based                                         

learning), but also implements higher-­order beliefs that take into consideration how much they believe                                         

their own past choices may have influenced their opponent’s action distribution (strategic learning). The                                         

computation of such higher-­order beliefs has been shown to be subserved by the medial prefrontal cortex                                               

(mPFC) which implements the influence-­related signals encoded by mentalizing-­related brain areas such                                   

as​  ​the ​  ​(right)​  ​tempo-­parietal ​  ​junction ​  ​(rTPJ)​  ​(Hampton ​  ​et​  ​al,​  ​2008;;​  ​Hill ​  ​et​  ​al,​  ​2017).    
In regard to the cognitive neuroscience literature, the computation of beliefs over the action-­outcome                                         

contingencies of a choice environment is computationally costly but allows a more flexible type of learning                                               

(model-­based) that increases the adaptability of the choice behavior (Doll et al, 2012;; Khamassi &                                            

Humphries, 2012). In non-­social decision-­making, the overall performance is a well-­established measure                                   

of accuracy of beliefs over the choice environments, as animals maximize their subjective value (see                                            

introduction I.A). In the social interactions however the notion of belief accuracy over someone else's                                            

intention is difficult to estimate as the actual action-­outcome contingencies emerging in the behavior of an                                               

individual are dictated by internal states and beliefs, thus unknown to the experimenter (Zaki & Ochsner,                                               

2011). Competitive strategic interactions modelled as games simplify this endogenous problem as the                                      

goal of the opponent is obvious: maximizing as much as possible her outcomes. The common knowledge                                               

of the payoff structure of the game clears potential uncertainty about the belief that the opponent aims to                                                     

maximize (best response). Accordingly, we found (Exp.2) that individuals endorsing a delicate position in                                         

a competitive game (strategically disadvantageous role, in which the action linked to the highest reward                                            

does not align with the MSNE prescription) start with this belief (prior) as they seem to engage in                                                     

(iterative)​  ​strategic​  ​reasoning ​  ​in ​  ​the ​  ​absence ​  ​of​  ​past​  ​experience ​  ​to ​  ​be ​  ​learned ​  ​from.    
Moreover, strategic games provide a theoretical benchmark to estimate belief accuracy, departure from                                      

optimal belief, as discussed in the previous section of this chapter. Competitive game interactions thus                                            

allow to quantify a measure of belief accuracy and provide an ideal framework to test how model-­based                                                  

learning might take place. If the MSNE provides a relatively independent and formal measure of (mutual)                                               

optimality, controlling the opponent’s choice behavior through the use of computerized agents informs                                      

about the specific accuracy of the behavior adopted but also about the optimal (normative) behavior                                            

(learning ​  ​strategy)​  ​to ​  ​employ.    
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By their structure, repeated game interactions thus permit to fill the conceptual gap with the non-­social                                               

learning literature. Behavioral game theory proposed learning strategies close to the ones developed in                                         

cognitive neuroscience, from model-­free reinforcement learning to model-­based learning. The latter has                                   

been implemented either through direct action-­outcome learning (similar to a simple Bayesian generative                                      

model learner, with negligible priors) (Fictitious play, Fudenberg & Levine, 1998), or through the use of a                                                  

heuristic like the action (expected) value update from the counterfactual outcome (EWA, Camerer et al,                                            

2002). The crucial component of influence in learning is an add-­on specific to social learning as the                                                  

non-­social environment is usually not directly affected by our own choices, or not to the point where this                                                     

component should be considered as highly predictive of the action-­outcome contingencies in the world.                                         

Similarly to the generative models developed in the Bayesian framework applied to non-­social                                      

decision-­making, and which track and update hidden hyperparameters of the task structure such as its                                            

fluctuation in volatility, Devaine et al (2014) proposed a Bayesian influence model built upon the concept                                               

of hierarchy of beliefs proposed by the level-­k/CH models. Their study showed that even if humans are                                                  

better modelled on average as highly strategic learners, taking into account the influence of their own                                               

behavior on the one of the opponent, and beyond, individuals still differ in their engagement in high-­order                                                  

belief learning in a symmetric game in which perspective taking is facilitated. The Influence model                                            

developed by Hampton et al (2008) offers a simpler way to capture strategic learning engagement and                                               

higher-­order belief formation, while allowing for comparison with the belief-­based and reinforcement                                   

models​  ​developed ​  ​in ​  ​the ​  ​game ​  ​theoretical ​  ​literature.    
  

Using game-­theoretical manipulations along with model simulations (agent-­agent) and empirical                             

analyses of human-­human and human-­agent interactions (Exp1-­4), we provided extensive evidence that                                   

the level of strategic learning, similarly to the level-­k/CH, allows the formation of more accurate beliefs                                               

over the choice behavior of the opponent, thus converging towards theoretical predictions in a competitive                                            

repeated game interaction. This result matches the prediction made by Camerer (2003) according to                                         

whom MSNE can be seen as an equilibrium in beliefs in which players do not need to randomize, as long                                                           

as other players cannot guess what they will do. The level-­k/CH model posits that humans iterative                                               

(strategic) reasoning is somehow bounded, leading to different orders of belief in the population. Studies                                            

in behavioral game theory have suggested that the level of strategic sophistication in one-­shot games                                            

might be cognitively bounded (Camerer et al, 2002), and that executive functions such as                                         

working-­memory of logical reasoning might constrain the formation of higher-­order beliefs (Carpenter et                                      

al, 2013). However, the question of what constraints the level of strategic learning and the formation of                                                  

higher-­order beliefs remained unanswered. In their symmetric repeated game, Devaine et al (2014) failed                                         

to link subjects’ strategic learning level with other cognitive functions, and here we failed (Exp.2) to find a                                                     

correlation between the strategic sophistication level in one-­shot games and the strategic learning level in                                            

the repeated game. We found that the working-­memory capacity of humans playing a competitive game                                            
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in a position requiring to form higher-­order beliefs to overcome their endogenous (strategic) disadvantage                                         

correlated to their level of strategic learning engagement. Conversely, the SL level displayed by their                                            

opponent in the advantageous position correlated in the first interaction block with various measures of                                            

reasoning abilities. In fact, taken together the results presented in Exp.2-­4 seem to suggest that the                                               

boundary leading heterogeneity in strategic learning level in the population might be a ​rationally cognitive                                            

one, in the sense that given an individual trade-­off, humans might engage in a cost-­benefit analysis                                               

driving their engagement in high-­order belief formation through strategic learning. In fact, such an                                         

interpretation of bounded rational models has been proposed in one-­shot games too (Alaoui & Penta,                                            

2015). This hypothesis needs to be tested specifically. However, it is worth noting that it fits the current                                                     

literature on model-­based learning in non-­social choice environments as well, which suggests that the                                         

level of engagement in action-­outcome learning might come at a computational cost requiring a high level                                               

of cognitive control (Otto et al, 2014). Recently, authors in the field proposed that such a trade-­off                                                  

between model-­free and model-­based reinforcement learning might be arbitrated in a cost-­benefit fashion                                      

(Kool ​  ​et​  ​al,​  ​2017).    
  

Besides, our data also provide insights for the leader-­follower dynamics often observed in repeated                                         

competitive games (Frey & Goldstone;; Seip & Grøn, 2016). Indeed, we showed that the ​strategic                                            

asymmetry of the game lead, for each position (advantaged or disadvantaged), to very distinct influences                                            

of the level of strategic learning engagement: the former choice dynamic was mainly influenced by the                                               

consequences of her own past decisions on the strategic interaction, while the latter in a teaching position                                                  

was​  ​driven ​  ​mainly​  ​by​  ​the ​  ​behavior​  ​of​  ​her​  ​opponent.    
  

In line with the hierarchy of beliefs proposed by the level-­k/CH model, our results (Exp.1) indeed suggest                                                  

that forming accurate beliefs over the other’s behavior requires to be capable of a higher-­order of                                               

strategic learning. However, our data (Exp.4) also show that players capable of engaging in strategic                                            

learning and playing in an advantageous position against a computerized agent of lower SL level                                            

(belief-­based learning strategy), might have been able to exploit the statistical redundancies from the                                         

behavior it displayed in order to best respond to this new belief, and to deviate from the mutually optimum                                                        

frequency​  ​(MSNE)​  ​to ​  ​increase ​  ​their​  ​earnings.  
  

We then aimed to test if actually humans can detect statistical redundancies when controlling specifically                                            

for the patterns embodied in the opponent choice series (Exp.5,6). Our results show that humans can                                               

learn and best respond to the patterns when they are deterministic, as already highlighted by Sonsino                                               

(1997) two decades ago, who suggested that players must recognize the repeated pattern if ​it has been                                                  

repeated successively with no interruptions a large enough number of times​. In behavioral game theory,                                            

Spiliopoulos (2012) tackled this question and proposed to extend a belief-­based model computing the                                         
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probability (weighted frequency) of the opponent’s actions conditionally on the last couple of choices she                                            

selected. He showed that such pattern fictitious strategy fitted better human’s choice data. However, we                                            

argued in the present manuscript that such a strategy did not ensure that humans could actually detect                                                  

statistical redundancies, as in his task the opponents were human that might not have displayed any                                               

strong patterns within their choice series. And indeed, we showed that in such human-­human competitive                                            

interactions, a model incorporating a parameter of influence in belief learning and leading to a                                            

higher-­order​  ​strategic​  ​behavior​  ​fitted ​  ​better ​  ​the ​  ​choice ​  ​data ​  ​than ​  ​such ​  ​pattern ​  ​belief-­based ​  ​model ​  ​(Exp.2).    
  

We thus tested (Exp.5) this pattern-­learning hypothesis directly by manipulating one side of the interaction                                            

using computerized agents, allowing us to observe that humans can indeed detect and learn probabilistic                                            

patterns hidden in the opponent choice series. Nevertheless, we found that important between-­subjects                                      

heterogeneity could be observed. More intriguing, when specific sequences of deterministic choices were                                      

generated by an opponent randomizing over the MSNE distribution in a competitive game (Exp.6),                                         

participants appeared to be bad pattern learners (or good detectors, but bad exploiters), as actually no                                               

strong ​  ​evidence ​  ​of​  ​pattern ​  ​learning ​  ​could ​  ​be ​  ​found.    
One possible hypothesis is that strategic competitive interactions elicit beliefs that the opponent must                                         

respond to some beliefs over the strategic nature of the game. As mentioned in the introduction, recent                                                  

studies in psychology (Jara-­Ettinger et al, 2016) suggest that humans, and this even at an early age, start                                                     

with the prior over another person’s intentions that her behavior is driven by the maximization of the                                                  

outcome of her actions. The results presented in Exp.2-­4 indeed suggest that most of individuals engage                                               

in some sort of belief-­based learning over their opponent’s behavior. However, to our knowledge, if the                                               

research in cognitive neuroscience suggests that humans can combine model-­based and rule-­based                                   

behavior in non-­social decisions tasks requiring to do so (Donoso et al, 2014), the question of the                                                  

human’s ability to form beliefs about rule-­based behavior, such as the one used by the computerized                                               

opponent in our experiment, remains open (but see the recent work by Velez-­Ginorio et al (in prep.) going                                                     

in this direction). However, the rule-­based behavior employed by these computerized agents to generate                                         

experimentally tractable choice patterns was not directed towards a specific goal but should have been                                            

considered as systematic biases emerging from a (strong) inability to randomize. As mentioned at the end                                               

of Chapter IV, more work is required to investigate under which conditions pattern learning might take                                               

place in strategic social interactions and how this type of learning interact with higher-­order                                         

belief-­learning.    

  

Finally, we showed that the behavior of the opponent has a limited impact on human’s own overall                                                  

learning strategy in (competitive) repeated game interactions. In Exp.2-­3 we could not find evidence that                                            

the level of strategic learning sophistication (SL level) of the opponent, either human (Exp.2) or                                            
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computerized (Exp.3), influenced the SL level of the subjects. However, we observed that the SL level of                                                  

the subjects endorsing the disadvantageous role (Players 2) was quite stable across opponents in both                                            

experiments, but also that their SL level seemed to be correlated to their working memory capacity                                               

suggesting that their strategic learning engagement was driven by endogenous inter-­individual                                

differences. Moreover, the transfer effect observed in Exp.4 was limited to the subjects who already                                            

engaged ​  ​in ​  ​a ​  ​high-­level ​  ​of​  ​strategic​  ​learning.    
In the group of participants who endorsed the advantageous role in the game, the SL level did not                                                     

correlate strongly across opponents, and in Exp.2 this measure of sophisticated learning engagement                                      

correlated with reasoning abilities as measured in additional tasks in block 1. Still, no systematic increase                                               

or decrease in their sophisticated learning engagement could be predicted from the level of their                                            

opponent​  ​(either​  ​previously​  ​or​  ​currently​  ​encountered)​  ​in ​  ​the ​  ​second ​  ​block.    
Similarly, in Exp.3 as in Exp.4 the (manipulated) SL of their opponent in previous or current interaction did                                                     

not influence in a coherent way their strategic learning level despite the low congruency in SL level also                                                     

observed between the two blocks. While Hampton et al (2008;; Hill et al, 2017) did not investigate this                                                     

question, Devaine et al (2014) coherently found a correlation in strategic learning level across the                                            

computerized opponents (with different SL levels). These results are thus congruent with the idea of an                                               

improvement in behavioral accuracy through the formation of higher-­order beliefs (Camerer & Ho, 1999).                                         

Indeed, implementing the Influence factor in the learning of the action-­outcome contingencies in the                                         

behavior​  ​of​  ​the ​  ​opponent​  ​should ​  ​not​  ​prevent​  ​the ​  ​learning ​  ​of​  ​a ​  ​simpler​  ​generative ​  ​model.    
Similarly, in Exp.4-­5 we did not find any evidence of an impact of the type of pattern-­driven (rule-­based)                                                     

opponent on the subject’s learning strategy. In Exp.4 we found that the ability of the subjects to learn the                                                        

statistical redundancies in the choice behavior of a probabilistic pattern opponent (O) were also able (on                                               

average) to learn the patterns in the deterministic (albeit adaptive) opponent (D). In Exp.5 the                                            

performance in the pattern-­driven trials in the test block (H) was correlated to the performance in the                                                  

Pattern-­driven-­only block (P), while the performance in the Belief-­driven trials of block (H) was correlated                                            

to the performance in the Belief-­driven-­only block (B). Taken together these results thus suggest that our                                               

experimental work failed to trigger important (quantifiable) changes in the learning process (strategy) in                                         

which humans engaged throughout repeated game interaction, leading us to conclude that such a                                         

learning engagement is mainly driven by endogenous characteristics and not by the behavior displayed                                         

by​  ​their​  ​opponent.  
  
  
B)​  ​Future ​  ​research ​  ​directions  
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At the end of chapter IV we suggested that strategic individuals might combine the two types of                                                  

information regarding the behavior of the opponent, from learning the statistical redundancies in her past                                            

choices​  ​and ​  ​forming ​  ​iterative ​  ​high-­order​  ​(influence) ​  ​beliefs​  ​through ​  ​strategic​  ​learning.    
Recently, a neuroscience study (FitzGerald et al, 2017) showed that adding sequence representation of                                         

state to the generative model of a Bayesian learner (thus adding one dimension to the MDP                                               

representation of the choice environment) better fitted the behavior of participants performing a                                      

probabilistic learning tasks, in which action-­outcome probabilities were switched (reversals) at regular                                   

intervals. Using fMRI analysis, they showed that the ability to take into consideration the state sequence                                               

was linked to higher grey matter density in the Brodmann area 10 of the PFC, while the length of the                                                           

sequence correlated to the lateral prefrontal cortex activity. Interestingly, the Brodmann area 10 has been                                            

recently proposed, in an extensive review on human and non-­human primates (Mansouri et al, 2017), to                                               

subserve ​  ​the ​  ​management​  ​of​  ​competing ​  ​goals​  ​in ​  ​decision-­making.    
Thus, it does not seem implausible that forming more accurate action-­outcome contingencies in a                                         

strategic repeated interaction might require to alternate between the information related to the                                      

time-­related belief over the statistical redundancies in the opponent’s choice series, and the strategic                                         

information provided by forming high-­order beliefs implementing the trial-­by-­trial influence of one’s own                                      

actions.    

  

It is indeed possible that humans can alternate between two different types of learning during a strategic                                                  

interaction. Wan et al (2015), for instance, showed that the activity of dmPFC (ACC) matches the relative                                                  

weight given to the value-­related computations associated to two different types of strategies (one related                                            

to ​  ​attack​  ​moves,​  ​the ​  ​other​  ​to ​  ​defense ​  ​moves)​  ​in ​  ​Shogi ​  ​(Japanese ​  ​chess).    
The mPFC has been even related to spontaneous strategy switches in a complex non-­social task (Schuck                                               

et al, 2015), thus suggesting that during repeated games changes in learning strategy might occur. This is                                                  

problematic since the methodology presented in this thesis requires to consider the entire choice series of                                               

an individual to estimate (approximate) her (averaged) level of strategic learning (see related discussion                                         

at the end of Chapter II, B.1). One possibility would be to manipulate on-­line the behavior of the                                                     

computerized opponent to make it switch between either a more oriented rule-­based behavior, or a                                            

belief-­based (adaptive) learning strategy either at fixed intervals of trials, or once exploited by the                                            

participant​  ​in ​  ​a ​  ​dynamic​  ​fashion ​  ​(See ​  ​section ​  ​A.1 ​  ​of​  ​the ​  ​present​  ​discussion).    
  

It is worth noting that the interdependency of the behaviors in (dyadic) social interactions, and specifically                                               

in the strategic ones, makes these kinds of manipulations very tricky as a change in the opponent’s                                                  

behavior might also trigger a change in the strategy of a (strategic) participant. This covariation in                                               

behavior is what makes the concept of equilibrium so delicate, since a strategic individual should find, for                                                  

instance, a balance between exploiting (best responding) the statistical regularities in the opponent’s                                      
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behavior while still making sure that this best response does not induce any change in these learned                                                  

patterns. In order words, in a repeated competitive game the goal is to override the opponent’s behavior                                                  

in ​  ​a ​  ​way​  ​that​  ​she ​  ​does​  ​not​  ​realize ​  ​it.  
  

We argue that the question of influence in high-­order belief-­learning remains too weakly                                      

characterized. In the Influence model of Hampton, as in the sophisticated Bayesian version of Devaine,                                            

the influence component is a statistical one. This means that while it provides a useful tool to analyse                                                     

choice data, its conceptual power is restrained. Indeed, no difference is made between the actual                                            

influence of one’s actions on the choices of the opponent (covariation), and the beliefs that one’s behavior                                                  

influences​  ​the ​  ​other.​  ​This​  ​​representation ​  ​of​​  ​our​  ​own ​  ​influence ​  ​relates​  ​to ​  ​the ​  ​concept​  ​of​  ​agency.    
Agency, or the awareness of being in control of our own actions and responsible for their outcome                                                  

(Haggard & Tsakiris, 2009), has been recently found to be indeed implicated in social interactions. Based                                               

on Pacherie’s (2012) theory of joint action and agency, Bolt & Loehr (2017) indeed showed                                            

experimentally that when performing joint (motor) actions , a feeling of joint agency (shared control over                                            2

the observable outcome of the interaction) emerged when individuals could successfully predict the                                      

other’s​  ​action.  
As predictability seems to play a role in the feeling of agency, we propose that the belief of one’s                                                        

influence over the opponent’s choices might as well be triggered by manipulating the level of joint                                               

predictability. One might imagine an experiment in which participants would interact through a repeated                                         

(competitive game) interaction with a computerized opponent (as in Exp. 3) which would be modelled as a                                                  

(weighted) fictitious model with different levels of determinism. We can do this by manipulating the                                            

exploration parameter of the action selection process ( in the softmax, see chapter II) at regular intervals                     β                           

throughout the interaction. This way, the model would switch (either at regular intervals or in an                                               

adaptative way) between MSNE randomized play, and a fully exploitative fictitious that generates a choice                                            

behavior almost entirely predictable from the participants’ own previous choices (depending on the decay                                         

parameter of the model, see appendix 2) . If humans in such experimental setting indeed report higher                                               3

joint agency when their influence over the opponent’s choices is made more evident, then the question                                               

becomes: how does one’s (acknowledged) influence in a strategic interaction impacts her strategic                                      

learning ​  ​engagement? ​  ​In ​  ​other​  ​words,​  ​can ​  ​joint​  ​agency​  ​promote ​  ​the ​  ​formation ​  ​of​  ​higher-­order​  ​beliefs?    
Related questions follow such as the question of the arbitration between the strength of influence-­driven                                            

2​  ​Participants​  ​were ​  ​asked ​  ​to ​  ​perform​  ​motor​  ​actions​  ​to ​  ​produce​  ​self-­paced​  ​tones ​  ​conjointly​  ​with​  ​another​  ​participant  
(not​  ​visible),​  ​and ​  ​report​  ​their ​  ​feeling ​  ​of​  ​agency​  ​over​  ​the ​  ​tones ​  ​(self,​  ​other,​  ​joint).​  ​The ​  ​other​  ​participant​  ​was​  ​in ​  ​fact​  ​a  
computer​  ​that ​  ​produced​  ​either​  ​predictable​  ​tones ​  ​or​  ​unpredictable​  ​ones.  
3​  ​It​  ​is​  ​worth ​  ​noting​  ​however​  ​that ​  ​the ​  ​two ​  ​learning​  ​strategies​  ​(noisy,​  ​exploratory​  ​/​  ​predictable,​  ​exploitative)​  ​should​  ​be  
clearly​  ​distinguishable,​  ​as​  ​contamination​  ​effects​  ​of​  ​one ​  ​condition​  ​onto​  ​the ​  ​other​  ​might​  ​happen.​  ​Caruana​  ​et​  ​al ​  ​(2017)  
indeed​  ​showed​  ​that ​  ​the ​  ​belief​  ​of​  ​agency​  ​might​  ​sometimes​  ​override​  ​the ​  ​actual ​  ​correlation​  ​in ​  ​behavior,​  ​i.e.​  ​actual  
influence.  
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beliefs and the pattern learning strategy, or the teaching behavior in leader-­follower dynamics of play.                                            

Interestingly, Xue et al, (2013) showed that the agency over choices increased the risky-­behavior of                                            

participants performing a decision-­making task in which the outcomes were actually randomly generated,                                      

and ​  ​activated ​  ​specifically​  ​more ​  ​the ​  ​lateral ​  ​and ​  ​medial ​  ​PFC.    
  

The question of agency in learning is closely related to the topic of causal learning. Infants for instance                                                     

seem to not simply learn the probabilistic associations between world events, but could compute the                                            

hidden causal structure generating them (Gopnik & Wellman, 2012), and this through the interaction with                                            

others (Legare et al, 2017). Studies in computational neuroscience also started to tackle the question of                                               

causal learning (Jocham et al, 2016). Very recently Morris et al (2017) suggested that humans could learn                                                  

action-­outcome contingencies through causal learning, and that the mPFC played an important role in                                         

encoding ​  ​these ​  ​associations​  ​using ​  ​prediction ​  ​error.    
  

Another appeal to this line of inquiry is the conceptual relationship between agency and regret, as the                                                  

latter, the experience of regret, depends on the former, since it takes place only when we are aware                                                     

(believe) that by choosing another action we could have obtained a different outcome. Regret and                                            

counterfactual learning share common themes (Coricelli & Rustichini, 2010) and can thus present another                                         

way​  ​to ​  ​extend ​  ​this​  ​hypothesis​  ​to ​  ​strategic​  ​learning.    
  

  

C)​  ​General ​  ​conclusion  
  

During this PhD work we aimed at improving our understanding of the cognitive mechanisms at                                            

play during (dyadic) social interactions. To do so, we combined the computational modelling and the                                            

conceptual approaches of cognitive neuroscience, to the theoretical and experimental insights developed                                   

in ​  ​behavioral ​  ​game ​  ​theory.    
  

We ​  ​decided ​  ​to ​  ​focus​  ​on ​  ​behavior​  ​for​  ​two ​  ​main ​  ​reasons:    
1) From a cognitive neuroscience perspective we believe that choice behavior in strategic interactions                                         

provides a rich source of information, mostly embodied in the observed between and within-­subject                                         

variance, that has not yet been fully exploited, but also in related behavioral measures such as reaction                                                  

times. We argue that a better understanding of the behavior can lead to a better characterization of the                                                     

cognitive mechanisms and computations performed by the brain (see the recent manifesto by Krakauer et                                            

al,​  ​2017).  
2) From a behavioral game-­theory standpoint, improving the understanding of the cognitive mechanisms                                      

151



at play in (repeated) games through experimental manipulations and computational modelling, and                                   

studying to which extent the experimentally observed behavior relates to the normative framework, might                                         

allow ​  ​us​  ​to ​  ​improve ​  ​its​  ​predictive ​  ​power​  ​(see ​  ​the ​  ​review ​  ​by​  ​Konovalov​  ​&​  ​Krajbich,​  ​2016).  
  

Thus we believe that refining our understanding of how the two fields of research interact in laboratory                                                  

might​  ​lead ​  ​to ​  ​the ​  ​development​  ​of​  ​a ​  ​dedicated ​  ​neuroeconomics​  ​of​  ​strategic​  ​interaction.  
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The neuroeconomics of strategic interaction
Thibaud Griessinger1 and Giorgio Coricelli2

We describe here the theoretical, behavioral and neural bases

of strategic interaction — multiagent situations where the

outcome of one’s choice depends on the actions of others.

Predicting others’ actions requires strategic thinking, thus

thinking about what the others might think and believe. Game

theory provides a canonical model of strategic thinking implicit

in the notion of equilibrium and common knowledge of

rationality. Behavioral evidence shows departures from

equilibrium play and suggests different models of strategic

thinking based on bounded rationality. We report neural

evidence in support of non-equilibrium models of strategic

thinking. These models suggest a cognitive-hierarchy theory of

brain and behavior, according to which people use different

levels of strategic thinking that are associated with specific

neural computations.

Addresses
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Introduction
Everyday social interactions affect our individual deci-

sions. What makes information relative to others relevant

for our own decisional process, and how it is dynamically

incorporated in our valuation system remain open ques-

tions in neuroscience. The specific case of strategic

interactions where the outcome of one’s action depends

directly on the other’s behavior narrows down social

interactions to situations where each agent should take

into consideration not only her own actions, but also the

actions of the others [1,2]. Game theory (GT) prescribes

precise theoretical solutions for optimal behavior embod-

ied in the premises of rationality (and the notion of

equilibrium), and provides a benchmark for the analysis

of its behavioral departures. The emergence of bounded

rationality models [3–5] and behavioral game theory

provide a theoretical framework to unravel the neural

roots of strategic reasoning, and shed light on the deci-

sion-making mechanisms involved in social interaction.

Within this framework, we review work on the neural

substrates of equilibrium and nonequilibrium play, and

we identify a network associated with strategic thinking

in interactive games. In addition, we investigate the

interplay between uncertainty and belief inference in

repeated interactions with a network related with strate-

gic thinking, thus identifying, respectively, neural sub-

strates of strategic uncertainty and strategic learning.

Theoretical background of strategic
interaction
Game theory models strategic interactions as games

representing decisions between agents where one’s pay-

offs depend on the other’s actions, therefore extending

the model of individual decision making to the under-

standing of the interactions in multi-agents situations.

Solution concepts provide an answer about which action

profile will result from playing a game. Nash equilibrium

[6], for instance, prescribes an (optimal) action profile by

which no player can increase her payoff by changing her

action given the other players’ (optimal) actions. Players

are assumed to select strategies that maximize their

utility over the payoffs of the game. The choice of the

strategies is based on their beliefs about what other

players will do. At equilibrium beliefs are correct. Nash

equilibrium implies that players’ are certain and accurate

about the strategies of the others, indeed the equilibrium

is an equilibrium in beliefs that assumes rational expec-

tation and mutual knowledge of beliefs, and thus mutual

rationality.

Do people (think and) play at equilibrium?
Equilibrium reasoning (i.e., rationality-based inference)

can be cognitively extremely demanding and eventually

implausible. Several experimental and empirical studies

show behavioral responses that deviate from the prescription

of standard  game theory, and report extensive evidence of

non-equilibrium play [7,8]. From the basic assumptions of

strategic reasoning in standard game theory, there are two

main departures suggested by behavioral game theory and

Available online at www.sciencedirect.com
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Current Opinion in Behavioral Sciences 

Equilibrium and non-equilibrium play in normal form games: an eye-tracking study [15!]. The authors used eye-tracking to measure the dynamic

patterns of visual information acquisition in two players normal form games (i.e. represented in matrix form). Panel (A) shows the pattern of

saccades (i.e. eye movements) performed by 3 typical participants who played as column players (i.e., can take action I or II and have their own

payoffs on the top right corner of each cell of the game matrix) in the experiment: (left panel) shows data from a participant who focused her

attention on own and other player’s payoffs within each cell of the matrix; (center) focused on own payoffs (i.e., systematically neglected the

payoffs of the other player); and (right) players with distributed attention (strategic player). Lines indicate the saccades and the circles the fixation

location. Panels (B) and (C) show the first 16 saccades (mean and standard error) in a group of players clustered as distributed attention (strategic

players, i.e., level 2 in CH model), divided by equilibrium responses, Panel B: shows that participants started looking at their own payoffs, then

they evaluated the payoffs of their counterpart, and finally, they chose their best response when re-evaluating their own payoffs; and out of

equilibrium responses, Panel C: showing an undefined temporal pattern of visual analysis. On the right side of each Panel are reported the

proportion of own, other and intra-cell saccades at the time of choice (last saccade). These data show how deviation from a distinctive and well-

characterized pattern of visual information acquisition determines out of equilibrium behavior.

Adapted from [15!].
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ABSTRACT    
  
Social interactions rely on our ability to learn and adjust on the spot to the other’s behavior. Strategic                                                     

games provide a useful framework to study the cognitive processes involved in the representation of the                                               

other’s intentions and their translation into the most adapted actions. In the last decades, the growing field                                                  

of behavioral economics provided evidence of a systematic departure of human’s behavior from the                                         

optimal prescription formulated by game theory. Based on recent advances in cognitive sciences, we                                         

hypothesized that characterizing the source of heterogeneity in behavior might provide key insights to                                         

understand the boundaries over human social learning, and therefore deviation from mutually beneficial                                      

interactions.    

  

We first address the question of the interplay between the game environment and the heterogeneity in                                               

formation of high-­order beliefs over the opponent’s behavior through strategic learning. We show that in a                                               

competitive repeated interaction, the payoff structure of the underlying game can influence the                                      

engagement in strategically sophisticated learning and explain deviation from game optimality                                

(equilibrium). Our data suggest that participants in a disadvantaged role are constraints in their learning                                            

sophistication, and thus in the overcoming of their position, by their own cognitive capacities. Their                                            

opponents, albeit advantaged, still need to engage in strategically sophisticated learning but to follow and                                            

adjust their behavior in order to maximize their earnings. This study provides the first evidence of the key                                                     

implication of strategic learning heterogeneity in equilibrium departure and provide insight to explain the                                         

emergence of a leader-­follower dynamics of choice. In addition our results suggest that a cost-­benefit                                            

analysis might drive the engagement of strategic players in a more sophisticated learning process. In a                                               

second step, we investigated the hypothesis that the depth of strategic learning is not the only factor in                                                     

play to grasp the other’s mind during competitive interaction, but that the capacity to detect and exploit                                                  

patterns in her behavior is also important. We found that not only subjects were able to detect patterns in                                                        

the opponent’s behavior, but that the capacity to do so was not correlated to a lower engagement in                                                     

sophisticated strategic learning, therefore suggesting that humans can combine information from both                                   

types​  ​of​  ​learning ​  ​to ​  ​improve ​  ​belief​  ​accuracy​  ​during ​  ​social ​  ​decision ​  ​making.  
  
  
  
  
  
  
  
  
  
  

  



bounded rationality: the first is about equilibration of beliefs

(i.e. the assumption of correct beliefs about the behavior of

the others), the second is about errors in the choice process.

In what follows we discuss two leading non-equilibrium

models of strategic thinking and we report evidence about

their neural substrates: (1) Quantal Response Equilibrium

(QRE); and (2) level-k and Cognitive Hierarchy (CH)

models.3

Non-equilibrium models of strategic thinking
Noisy and stochastic choice: Quantal Response

Equilibrium

Quantal Response Equilibrium [9] belongs to a class of

bounded rationality models that relaxes the assumption of

best response and considers errors in choices, keeping the

assumption of (statistically) accurate beliefs and equilib-

rium responses. In interactive settings, a small amount of

noise can have large effect, and QRE models that incor-

porate stochastic elements in the analysis of interactive

decisions can explain ‘anomalous’ behavior (i.e. deviation

from rationality) in several experimental games. Accord-

ing to QRE models individuals are more likely to select

better than worse actions, but they are often unable to

select the very best one. QRE theory has several features

in common with findings in recent neuroeconomics lit-

erature on noisy and stochastic choice [10]. It has been

recently suggested that QRE can be reduced to a form of

bounded accumulation models [11,12], a class of models

that has been proven relevant to capture under a common

theoretical framework stochasticity in value-based deci-

sion, reaction time, and visual fixation [13,14]. In a recent

paper Polonio et al. [15!] observe that equilibrium play in

normal form games corresponds to a distinctive and well

characterized attentional pattern (in terms of transitions

in visual information acquisition between own and other

player’s payoffs), and any deviation generates non-equi-

librium responses (Figure 1). This suggests how limited

attention or noise in the decision process could lead to out

of equilibrium behavior.

A cognitive hierarchy theory of brain and
behavior
Level-k models [16,17] and Cognitive Hierarchy models

(CH, [18,19]) maintain the rational assumption of best
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Neural substrates of High (Level 2 or higher, mPFC) vs. low (Level 1, rACC) level of strategic reasoning in the Beauty Contest game. In the

experimental game, participants choose a number between 0 and 100. The winner is the person whose number is closest to 2/3 times the

average of all chosen numbers. Level-k model (iterated best response) predicts that a naı̈ve player (level 0) chooses randomly. A level 1 (low level)

player thinks of others as level 0 reasoning and chooses 33 (=2/3 " 50), where 50 is the average of randomly chosen numbers from 0 to 100. A more

sophisticated player (level 2, high level) supposes that everybody thinks like a level 1 player and therefore he or she chooses 22 (= (2/3)2 " 50). Zero

is the equilibrium solution of the game.

Adapted from [48,22].

3 Additional models are k-rationalizability and finitely iterated domi-

nance ([45,46], for an extensive review of non-equilibrium strategic

thinking see [47!!]).
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response to beliefs, but relax the assumption of ‘correct’

beliefs (and rational expectation about beliefs). This class

of models considers the presence of heterogeneous

players in terms of a hierarchy or level of strategic

sophistication: level 0 players, are strategically naı̈ve

(e.g. they play randomly, or do not fully consider the

incentives of the game), while higher levels iteratively

best respond (i.e. respond optimally) to a distribution

(Poisson for CH, and as k-1 for Level-k models) of lower

levels players (e.g. L1 best respond to L0, L2 best

respond to a distribution of L1 and L0, and so on).

Limited strategic thinking (usually 0–2 steps of iteration)

is due to limited cognition (limited recursive thinking,

limited memory, etc. [20]) and personality characteristics

such as overconfidence [21]. According to this model,

high-level reasoners (L2 or higher) expect the others to

behave strategically, whereas low-level reasoners (L1)

choose based on the expectation that others will choose

randomly.

Coricelli and Nagel (2009, [22]) ran a fMRI version of the

‘beauty contest game’ — a game suitable for investigating

whether and how a player’s mental process incorporates

the behavior of the other players in his strategic reason-

ing [23]. In their fMRI study Coricelli and Nagel found

enhanced brain activity in the medial prefrontal cortex

(mPFC), rostral anterior cingulate (rACC), superior

temporal sulcus (STS) and bilateral temporo-parietal

junction (TPJ) when subjects made choices facing hu-

man opponents rather than a computer (that chose

randomly) in the beauty contest game. This network

is often associated  to Theory of Mind (ToM) or menta-

lizing, thus the ability to attribute mental states and

beliefs to others [24–27].

Pattern of neural activity related with
recursive thinking
When Coricelli and Nagel (2009, [22]) analyzed separate-

ly L2 and L1 subjects, they found the activity in the

medial prefrontal cortex to be stronger in subjects classi-

fied as L2 (Figure 2). Similar result was recently found in

Bhatt et al. [28]fMRI results [22] show additional brain

activities related to L2 versus L1 reasoning in the lateral

orbitofrontal cortex and the dorsolateral prefrontal cortex,

areas likely related to performance monitoring and cogni-

tive control [29–31]. This suggests that a complex cognitive

process subserves the higher level of strategic reasoning;

consistent with the hypothesis that L2 or higher levels

imply recursivity (reasoning about reasoning others) and

the fact that a strategic player considers the impact of his or

her own behavior on the behavior of the others.

Strategic learning
A critical aspect of strategic interactions lies in its time-

dependent dynamic. Learning is functional in beliefs

formation and in shaping social preferences (i.e. reputation,
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Thinking and Learning: computational and neural correlation between strategic thinking and learning. Level zero of strategic thinking can be

associated with RL algorithms (Sutton and Barto [49]), low level (level 1) of thinking can be associated with Fictitious play algorithms (Fudenberg

and Levine [50]) and high level of thinking (Level 2 or higher) can be associated with Influence learning algorithms.

Adapted from [35!!,39].
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reciprocity etc.). Several studies tackled the dynamic

update of belief under a Bayesian framework [32!,33].

Yoshida et al. (2010, [34]) first investigated the neural

substrates of (optimal) dynamic beliefs formation in a

repeated game in terms of estimates of the opponent’s

level of strategic sophistication and beliefs uncertainty.

The results of this study show that the mPFC plays a role

in encoding the uncertainty of inference of the strategy

of the (computerized) opponents and the dLPFC is

associated with the level of sophistication implemented

by the subjects.

An alternative approach, in line with level-k and CH

models, has been proposed by Hampton et al. [35!!]

using learning models incorporating different levels of

recursive information integration in repeated strategic

games. Interestingly they show that the mPFC, found to

support high level of strategic thinking [22], also imple-

ments the individual propensity to dynamically incor-

porate in their learning process a representation  of the

opponent’s adaptive behavior (captured in their model

by a parameter of influence, i.e. how one’s own actions

had influenced the behavior of the other). The role of

the mPFC has been found in other studies on social

learning [36–38] as representing other’s action-reward

and action-outcome contingencies. In addition, the

implication of the rACC, found to be active for a lower

level of strategic thinking [22] has also been shown in

repeated strategic games as associated to a lower level of

sophisticated learning. Zhu et al. [39] showed for in-

stance that during repeated strategic interactions the

activity of the rACC correlates with the estimated

departure from reinforcement learning (RL) to (first

order) belief leaning. Seo et al. [40] recently showed
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Strategic Uncertainty: how strategic thinking modulates the perception of risk in games. Participants played lotteries (A), stag hunt games (B), with a

sure payoff choice (e.g. 9.50) and an uncertain choice (gamble) in which a player who chooses it gets 15 if at least 4 out all 10 players (including her)

choose the gamble and otherwise she gets 0, and entry games (C) with a sure payoff choice and an uncertain choice in which a player who chooses it

receives 15 if at most 4 out of all 10 players (including her) choose it and zero otherwise. (D) mPFC activity correlates with choices in the entry games

only (thus reflecting higher level of strategic thinking). (E) neural network associated with Strategic Uncertainty (SU, SU entry > SU stag hunt = risk).

Adapted from [41!!].
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that the equivalent area in monkeys encodes the

amount of switch from RL, a function of the ability of

the computerized opponent to exploit its ongoing learn-

ing strategy. All together these results may suggest a

cognitive hierarchy of strategic learning mechanisms

rooted in a similar level of recursive information inte-

gration (see Figure 3).

The role of mPFC in the interplay between
deliberation (i.e. degrees of strategic thinking)
and strategic uncertainty
Strategic uncertainty arises when the outcome of one’s

choice depends on other people’s actions, and thus is the

result of strategic interaction. Nagel et al. [41!!] investi-

gated how this kind of uncertainty is related to exogenous

individual risk and to degrees of strategic thinking (i.e.

deliberation). The authors used fMRI to measure the

neural correlates of uncertainty in lotteries (i.e. choice

under risk) and two kinds of coordination games (i.e.

strategic uncertainty), the stag hunt game, where parti-

cipants have incentives to coordinate on the same action,

and the entry game that incentivizes coordination on

opposite actions. Solving the former requires low and

the latter high degrees of strategic reasoning (of the kind

‘I think that you think that I think etc.’). The results of

this study (see Figure 4) demonstrate that a common

brain network composed of the thalamus, dorsal medial

prefrontal cortex, inferior frontal gyrus and anterior insula

(commonly associated to individual risk [42]) is engaged

by both individual and social contexts for the resolution of

uncertainty. The activity in this network is similar in

lotteries and in stag hunt games, but is higher in the entry

games. They also found enhanced mPFC activity in the

entry games, where more level of strategic thinking is

required. Thus, the pattern of activity in the medial

prefrontal cortex reflects the interaction between degrees

of strategic thinking and uncertainty in interactive games:

more deliberation correlates with higher strategic uncer-

tainty.

Conclusions and directions for future work
We can hypothesize that degrees of knowledge of the

others and of the context, ranging from certainty to

uncertainty, and the different levels of recursive reason-

ing (depths of reasoning: i.e. the player’s mental proces-

sing that incorporates the thinking process of others in

strategic reasoning), are crucial factors in the definition of

the brain circuits needed to solve strategic interactive

situations. The brain data reviewed here provide substan-

tial support for a cognitive hierarchy model of strategic

thinking. A higher level is associated with recursive

thinking, which is the realization that others can also

produce any thought process that we produce, while a

lower level reflects self-referential thinking. Different

portions of the prefrontal cortex clearly distinguish

high-versus-low levels of strategic thinking, and naı̈ve

versus sophisticated learning, thus encoding the complex-

ity underlying human social behavior.

We believe that several lines of theoretical research could

provide additional relevant insights and tools for the

understanding of the neural basis of strategic interaction.

Examples are concepts from epistemic game theory

(EGT, [43]) and from Global games (GG, [44]). EGT

studies the behavioral implications of different notions of

rationality and mutual beliefs. EGT can provide impor-

tant insights into the definition of types of players in

terms of beliefs about the structure of the game and the

strategies of other players in the game and others’ beliefs,

i.e. hierarchies of beliefs). The theory of GG relaxes the

assumption of common knowledge and assumes that

elements of the game (such as payoffs) are observed with

a small amount of noise and that in an ex ante stage of the

game any payoff is possible (global games). The assump-

tion is that each player observes a private signal over the

course of the payoffs. The result is a unique equilibrium

in games with small amounts of noise.
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Figure S1. ​Strategic asymmetry of the game replicated in simulation with different measures of individual               

Strategic Learning.  

(A) Agents were modelled by the Influence model varying in the values of their parameter λ from 0 (low SL level -                      

fictitious) to 1 (high SL level - full influence), as well as their η ([0:1]). The heatmap were obtained by averaging                     

across the whole range of η values, for each λ combination. (B) Agents were then modelled by a mixture model                    

(Hybrid Influence model) including an arbitration parameter (κ) controlling for the relative weight given to the 1st and                  

2nd order update of the opponent’s action probability (i.e. low κ = Fictitious vs. high κ = Influence) in the final action                      

value computation. Heatmaps represent the difference between the 2 players in their total payoffs obtained for every                 

combination of their respective κ parameter values, averaged across all instances of η1, η2, and λ ([0:1]) . (For both A                     

and B analyses, each game play was averaged across 100 simulations - see text for details). (C) Difference in                   

theoretical expected payoff between the 2 players as a function of their respective probability of choice. If theoretically                  

the expected utility computation assumes independence between trials, this plot suggests that, in order to reduce                

their disadvantage in this game, players 2 will have to deviate from the focal point (i.e. remind what is the focal point)                      

to converge towards the probability of choice prescribed by the Mixed Strategy Nash Equilibrium (in blue). 
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Figure S2. ​Strategic learning heterogeneity refined by our additional computational analysis. Introducing an             

extension of the Influence (i.e., the 2-Infl model) allows our model space to cover higher SL levels.  

(A) Population (extended) gradient of strategic learning sophistication. Subjects now best fitted by the 2-Inf. model                

have a higher relative fit compared to the 3 other SL groups (IBM), thus capturing more of the population continuum                    

of SL level. The subjects individually best fitted by the 2-Inf present also higher ω (2nd order influence parameter)                   

(U(62) = 212, Z= 5.0885, p = 3.6087e-7) and slightly higher 1st order λ parameter (U(62) = 860, Z= 1.9163, p =                      

0.0553) than the group best fitted by the Influence. (B) 37% of the subjects initially best fitted by the Influence are                     

now best fitted by the 2-Infl. Model. Adding the 2-Inf. in the model comparison improved the overall fit by capturing                    

higher SL level, initially constrained to the SL level of the Influence (not shown). MS1/MS2: Model Spaces 1 and 2.                    

IBM: Individual Best Model. 

____________________________________________________________________________________ 
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Figure S3. ​GLM results of the distinct influence of the subject SL level and the one of the opponent on her                     

own choice behavior.  

(A) Players 2’s deviation from MSNE was influenced only by their own SL level. Conversely Players 1’s choice                  

probability was influenced solely by the SL level of their opponent SL not their own. (B) Players 2 had to engage in                      
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higher level of strategic learning in order to reduce their disadvantage, relative performance, but this is not sufficient                  

to increase their absolute performance, while Players 1’s higher performance is solely affected (reduced) by their                

opponent’s behavior (SL level), suggesting a hierarchical leader-follower dynamics. (C) This dynamics is confirmed              

by the similar asymmetry between the 2 roles observed in choice accuracy (percentage of trials where the selection                  

of the subject’s action linked to the highest payoff is actually rewarded). 
____________________________________________________________________________________ 
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Figure S4. ​Logistic regression capturing the average effect of the actions observed (own and opponent) in                

the past 3 trials on the actual high reward action choice of the subjects, for each role separately.  

(A) Graphic representation of the results of the logistic regression ran on the 2 populations of subjects endorsing                  

each role. Players 2 tend to perseverate in choosing the action leading to the highest reward (Sub. HR Action(t-1)),                   

but not Players 1. Player 1 take into account the opponent’s past choices up to 2 trials back, Players 2 only the                      

previous choice. These results suggest that Players 2 are more focused on the choice of the high reward action and                    
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take less into consideration the opponent’s history of play. (B) We then compared the weight (estimate value) of the                   

previous high reward choice of the subject or the opponent on the current choice, by running the logistic regression                   

on each subject independently. Players 2 alternate less than player 1 their high reward choice from one trial to the                    

next. Moreover, this choice is also less affected by the opponent’s last choice. (C) Correlation analysis of the                  

individual estimates of the past high reward choice of the subjects endorsing each role suggests that for Players 2 the                    

higher their SL level, the more they tend to alternate the choice of the high reward action (A). (similar results were                     

obtained by using the relative fit of the Influence compared to fictitious, or the Influence best fitting parameter value λ) 
____________________________________________________________________________________ 
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Figure S5. ​Simulation results of Influence agents with different values of λ playing the repeated game in each                  

role against each other.  

The SL level was modeled by the λ value of the Influence model (varying from 0 to 1, with fixed η to the average                        

values of our empirical distribution [0:0.4]). The same effect were observed in the 9 plots when taking as SL measure                    
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in our simulation the arbitration parameter (κ) of the mixture model (Hybrid Influence model) instead. Simulation plots                 

represents for each role the effect of the SL level, own, opponent’s or difference between the 2, on deviation of action                     

probability distribution from MSNE (A), total points accumulated throughout the game interaction (100 repeated              

choices) (B), and the difference in total points between the agent and its opponent (C). 

____________________________________________________________________________________ 

 

___________________________________________________________________________________

 
Figure S6.​ ​Results expected in Exp. 2, as obtained with model simulation.  

Simulation was performed by making Agents vary in their SL level, and play the repeated game in each role against                    

the 2 fixed algorithms. The SL level was modeled here as the λ value of the Influence model (varying from 0 to 1, with                        

fixed η to the average values of our empirical distribution [0:0.4]). The same patterns of results were observed when                   

taking as SL measure in our simulation the arbitration parameter (κ) of the mixture model (Hybrid Influence model)                  

instead. 

____________________________________________________________________________________ 
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____________________________________________________________________________________

 

Figure S7.​  ​SL level model-based analysis of Exp. 2 replicates the results of Exp. 1.  

(A) Histogram of the frequency of fitted individual best models (I.B.M. - BMS: AIC+LRT) in the 2 populations (with                   

N(exp.1)=64 and N(exp.2)= 72) (B) Population gradient of strategic learning sophistication in Exp.2. As in Exp.1,                

subjects best fitted by higher SL models have on average a higher relative fit (fit(2-Infl.)-fit(RL)) than the groups of                   

subjects best fitted by models of lower SL level. 

____________________________________________________________________________________ 
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____________________________________________________________________________________

 

Figure S8. ​Exp 2 - GLM results of the distinct influence of the subject SL and the level of the computerized                     

opponent (low, high) on her behavior. (A,B) As in Exp. 1, Players 2’s deviation from MSNE and relative                  

performance were influenced only by their own SL level, while Players 1’s choice and performance (absolute and                 

relative, not shown) are impacted by the SL level of their opponent. Two additional effects are observed in this                   
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experiment: Players 2’s absolute performance is also, albeit marginally, directly impacted by the SL level of the                 

opponent encountered; and in Players 1, their own SL level seems to condition their action probability and, slightly,                  

their performance (absolute and relative : Est: 32.45 (15.8), t(68)=2.0467, p= 0.0445). (C) In this more controlled                 

experiment, Players 1’s accuracy was not only impacted by the level of the opponent but also independently by their                   

own SL level. Players 2’s accuracy was still modulated only by their own SL level.  
____________________________________________________________________________________ 

 

 

II - Simulation Analysis 
 

1- Computational models:  

 
The 3 following models (learning rules) approximating 3 different levels of strategic sophistication (none, low, high),                

and forming the initial model space (MS1) used in our computational analysis, were used to simulate the playing                  

behavior of agents interacting with each other:  

 

a- Learning rules :  

(in the following 50 points = 1 point unit (a.u) to simplify the equations, see Hampton et al, 2008) 

 

- Reinforcement Learning (SL level 0) 

Reinforcement learning is modelled as a Q-learning algorithm with a single state.  

At trial t the chosen option value Q​c​(t) (the option being either action a or b for Player 1 and A or B for Player 2 - see                            

payoff matrix on Fig.1.A main text) is updated with the following learning rule:  

   (1.1)(t) (t ) (α (t))Qc = Qc − 1 +  1
 
 × δ 

c  

where α ​1 is the learning rate for the chosen option. δ​c is a (reward) prediction error term calculated from R ​c the reward                      

(points) received as the outcome of the chosen action:  

   (1.2)(t) (t) (t)δ 
c = Rc − Qc   

 

- Fictitious Model (SL level 1) (Hampton et al, 2008 [1]) 

The agent infers the probability that the opponent will choose one action or another, and then decides so as to                    

maximize the action’s consequent expected reward (best response). Reminder: Player 1 can choose between action               

a and action ​b ​; Player 2 can choose between action ​A and action ​B​; the Pay-off matrix showing the outcome for each                      

combination of these two choices is shown in Figure 1A of the main article. From the point of view of a given agent,                       

the opponent’s probability of choosing an action (a/A) (with ) is dynamically inferred by tracking   P *
A/a          PP *

B/b = 1 −  *
A/a       

the history of the actions that the opponent makes (  was initiated to 0.5 at t=0):P *
A/a  

Example from Player 1’s perspective, the probability that Player 2 selects the action A 

   (1.3)(t) P (t ) (η (t))P *
A =  *

A − 1 +  × δ 
A   
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where is the learning rate for the chosen option. δ​A is a (action) prediction error term calculated from C the choice η                      

observed at trial t (1 if opponent chose action A, 0 otherwise): 

   (1.4)(t) (t) (t )δ 
A = C − P *

A − 1   

 

The payoff matrix (in point units) is thus used to convert the probability of the opponent choosing action (A/a)             P *
A/a        

into the expected value (Q) of each action. For player 1:  

    (1.5)(t) (t)Qa = 1 − P *
A (t)  × (t)Qb = 2 P *

A
  

And for player 2 :  

    (1.6)(t) (t)QA = 2 × P *
a (t)  − (t)QB = 1 P *

a
  

 

- 1-Influence (SL level 2) (Hampton et al, 2008 [1]) 

The agent considers that the opponent is playing according to a fictitious play strategy, and thus infers the probability                   

the opponent computes over its own actions ( ) and how this influences her action probability ( ). As in       P **
a/A         P *

A/a    

fictitious play, the agent then uses this probability to decide so as to maximize its action’s consequent expected                  

reward. The opponent’s probability of choosing an action is dynamically inferred by the agent by tracking the    P *
A/a               

last action the opponent makes, and its own past choice. The learning rate of the opponent’s fictitious play thus                   

becomes the influence parameter λ, which captures the weight of the agent’s actions on her choice behavior (action                  

probability), while the agent’s own learning rate is embedded in the parameter .η   

For Player 1 the probability of the opponent playing action A at trial t ( ) is thus obtained through :(t)P *
A  

   (1.7)(t) P (t ) (η (t)) (3 (t ) (1 (t )) C (t))))P *
A =  *

A − 1 +  × δ 
A +  × λ × (P *

A − 1 ×  − P *
A − 1 × ( a − P a**   

with  

  and    (1.8)(t) 1/3 1/3  log((1 (t ))/P (t ))))P a** =  − ( × β × ( − P *
A − 1 *

A − 1 (t)  (t )δ 
A = CA − P *

A − 1   

And for Player 2:  

   (1.9)(t) P (t ) (η (t)) (3 (t ) (1 (t )) C (t))))P *
a =  *

a − 1 +  × δ 
a −  × λ × (P *

a − 1 ×  − P *
a − 1 × ( A − P A**   

with  

  and     (1.10)(t) 1/3 1/3  log((1 (t ))/P (t ))))P A** =  + ( × β × ( − P *
a − 1 *

a − 1 (t)  (t )δ 
a = Ca − P *

a − 1  

 

The computed opponent’s choice probability is then used to estimate at each trial t the expected value of each     (t)P *
A/a                

action of the agent :  

Player 1 :      (1.11)(t) (t)Qa = 1 − P *
A (t)  × (t)Qb = 2 P *

A
  

Player 2 :      (1.12)(t) (t)QA = 2 × P *
a (t)  − (t)QB = 1 P *

a
  

 

b- Action selection :  

Best response is made noisy (probabilistic) through a logistic (softmax) function. For instance for player 1: 

    (1.13)(t) /(1 xp(β Q (t ) Q (t ))))P a = 1 + e × ( b − 1 −  a − 1  

 

c- Hybrid extension:  
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We added an additional model to this initial model space to directly control for the between-subject balance between                  

fictitious play and Influence. This hybrid model is meant to dissociate the weight of the implementation of the own                   

past play on the computation of the opponent’s action probability in the influence (λ parameter), and the relative                  

weight of the first and second order beliefs (fictitious, vs. influence). This model is very close to the Influence agent                    

varying in Influence parameter but insures an additional control for our simulation analysis.  

The “hybrid Influence” model has 2 learning rules, 2 modules operating in parallel (here illustrated for Player 1):  

A fictitious module (F) updating the estimated probability that the opponent chooses A: 

    (1.14)(t) (t) (t )δ 
A(F ) = C − P *

A(F ) − 1  

    (1.15)(t) P (t ) (η (t))P *
A(F ) =  *

A − 1 +  1 × δ 
A(F )   

And a Influence module (I) updating the same probability at a higher order: 

    (1.16)(t) (t) (t )δ 
A(I) = C − P *

A(I) − 1  

    (1.17)(t) P (t ) (η (t)) (3 (t ) (1 (t )) C (t))))P *
A(I) =  *

A(I) − 1 +  2 × δ 
A(I) +  × λ × (P *

A(I) − 1 ×  − P *
A(I) − 1 × ( a − P **

a(I)  

with  

    (1.18)(t) 1/3 1/3  log((1 (t ))/P (t ))))P **
a(I) =  − ( × β × ( − P *

A(I) − 1 *
A(I) − 1  

 

The 2 Q-values are then computed based on a weighted mixture of the 2 probabilities computed by the 2 modules.                    

This weight thus corresponds to an arbitration, a fifth, parameter (κ) : 

     (1.19)(t) (1 ) 1 (t)) κ 1 (t))Qa = ( − κ × ( − P *
A(F ) + ( × ( − P *

A(I)  

and  

     (1.20)(t) (1 ) 2 (t)) κ 2 (t))Qa = ( − κ × ( × P *
A(F ) + ( × ( × P *

A(I)  

 

Conceptually, κ represents the propensity to engage in second order belief (Influence) compared to first order                

(fictitious), while λ represents more the weight of the Influence in this second order belief (how much the opponent                   

takes into account the subject’s past choices in her own choice behavior). 

 

 

2- Simulation procedure : 

 
Each simulation followed the same procedure. We made models play against each others, one endorsing each role,                 

for 100 simulated repetitions of the stage game, thus representing one simulated game interaction. We defined range                 

values for each of the free parameters of each of the 2 models playing against each other (typically for parameters                    

ranging from 0 to 1, 11 uniformly distributed values), and simulated all parameter combinations of play. Each                 

simulated game interaction with a specific combination of free parameters was itself simulated 100 times to reduce                 

potential noise in our data.  

We then computed for each game simulation, with each combination of parameters and each combination of models                 

playing against each other, the key behavioral measures such as the total payoffs accumulated by each player                 

throughout the interaction, or action distribution. Finally, the behavior measures of all repetitions of each interaction                

simulation across all combinations of parameter values of no interest (not representing the SL level per se) were                  
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averaged. The results were thus plotted as heatmaps representing how on average each behavioral measure varies                

with the value of the parameters of interest (​Fig 1.B, Fig S1.A,B ​). 
 

 

III - Exp. 1: Computational Analysis 
 

1- Model Space Extension (MS2): 

 
We extended the initial model space MS1 with additional models used in the strategic learning literature of repeated                  

games:  

 

- Reinforcement Learning variations and extensions :  

 

Generalized RL (Khamassi et al, 2015 [2]): 

 with      (1.21)(t) (t ) (α (t))Qc = Qc − 1 +  1
 
 × δ 

c (t) (t) (t)δ 
c = Rc − Qc   

And the counterfactual update: 

     (1.22)(t) (t ) ((1 ) (t)))Qu = Qu − 1 +  − κ  
 × (Q (0) u − Qu  

where κ is the forgetting rate [0:1] and is the initial Q-value of the unchosen action, which corresponds to the        (0)Qu              

expected value of this action computed from the payoff matrix using = 0.5.P *
A/a  

 

CounterFactual RL (Palminteri et al, 2015 [3]): 

 with      (1.23)(t) (t ) (α (t))Qc = Qc − 1 +  1
 
 × δ 

c (t) (t) (t)δ 
c = Rc − Qc  

And the counterfactual update, since both rewards (factual from chosen action, counterfactual from the one left                

unchosen) are observable when the payoff matrix is displayed at the time of the outcome: 

 with      (1.24)(t) (t ) (α (t))Qu = Qu − 1 +  2
 
 × δ 

u (t) (t) (t)δ 
u = Ru − Qu  

 

- Weighted Fictitious play (Cheung and Friedman, 1997 [4]): 

The standard weighted fictitious model (Cheung and Friedman, 1997 [4]) does not take a reinforcement form with a                  

prediction error but simply computes the probability of the opponent’s action from a weighted average of frequency of                  

its past choices, the steep of the exponential decay being controlled by the parameter η:  

     (1.25)(t) (C (t) (η (t ))) / (1 η )P *
A =  A +  ∑

t−1

x=1
 x × CA − x + ∑

t−1

x=1
 x  

 

- Influence Extension (2-Influence) (Devaine et al, 2014 [5]): 

The agent considers that the opponent is playing using herself an influence learning model, and thus infers the                  

probability the opponent computes over its own actions ( ) and how this influences her action probability ( ).        P **
a/A         P *

A/a  

As in fictitious and influence models, the agent then uses this probability to decide which action should be performed                   

in order to maximize its action’s consequent expected reward. The opponent’s probability of choosing an action            P *
A/a      
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is dynamically inferred by tracking the last action the opponent makes and taking into consideration how her own past                   

action (weighted by the influence parameter λ) influences this calculus, as well as the agent’s own past action. The                   

influence parameter of the opponent’s influence model thus becomes the influence second-order parameter ω, which               

also captures the weight of the agent’s actions on the opponent’s choice behavior (action probability). 

For Player 1 the probability  of the opponent is obtained through :(t)P *
A  

(t) P (t ) (η (t)) (3 (t ) (1 (t )) C (t)) ) 3  (t) 1 (t))) ))P *
A =  *

A − 1 +  × δ 
A +  × λ × ( (P *

A − 1 ×  − P *
A − 1 × ( a − P a** − ( × ω × P a** × ( − P a**  

(1.26) 

with  

  and      (1.27)(t) 1/3 1/3  log((1 (t ))/P (t ))))P a** =  − ( × β × ( − P *
A − 1 *

A − 1 (t) (t )δ 
A = CA − P *

A − 1  

And for Player 2:  

(t) P (t ) (η (t)) (3 (t ) (1 (t )) C (t)) ) 3  (t) 1 (t))) ))P *
a =  *

a − 1 +  × δ 
a −  × λ × ( (P *

a − 1 ×  − P *
a − 1 × ( A − P A** + ( × ω × P A** × ( − P A**  

(1.28) 

 with  

  and      (1.29)(t) 1/3 1/3  log((1 (t ))/P (t ))))P A** =  + ( × β × ( − P *
a − 1 *

a − 1 (t) (t )δ 
a = Ca − P *

a − 1  

 

The expected value of each action are then calculated from the estimated probability of the opponent’s action  :P *
A/a   

Player 1 :       (1.30)(t) (t)Qa = 1 − P *
A (t)  × (t)Qb = 2 P *

A
  

Player 2 :       (1.31)(t) (t)QA = 2 × P *
a (t)  − (t)QB = 1 P *

a
  

 

 

2- Optimization Process: 

 

a- Optimization procedure 

 

Each model was fitted to subjects’ choices using log-likelihood maximization with a slice sampling procedure (Bishop,                

2006 [6], Drugowitsch et al, 2016 [7]). A slice sampler “samples” the parameter space and constructs Markovian                 

“chains” of samples in which the frequency of each set of parameters is proportional to the likelihood function. This                   

method has a high computational cost but presents advantages for high-dimensional parameters space. It allows for                

checking a posteriori the shape of each parameter posterior distribution. We ensured that samples were independent                

enough so that the parameters’ average estimate was reliable. The slice sampler has a few parameters which we                  

tuned empirically. We initialized our chain at random positions within the parameter space, and used 3 chains of 1                   

million samples each. We performed a last gradient ascent from the best sample in order to fine-tune the parameter                   

optimization. We found that this method leads to better optimization results than random parameter sampling or grid                 

search, gradient descent (fmincon initialized with multiple starting points in matlab), or a combination of the two (not                  

shown). With this fitting procedure, we were able to identify, for each model the free parameter set that best fitted                    

subjects’ choices. 
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b-  Population-level Model comparison (Bayesian Model Selection) 

 

We compared the 3 models of our initial model space at the population level. To do so, we compared for each block                      

the difference on average across all subjects in terms of LLH, AIC, BIC but also Log of posterior probability (LPP) and                     

Exceedance probability (EP) (both computed using the VBA toolbox elaborated by Daunizeau et al, 2014 [8]). The                 

Influence model fitted on average the behavior significantly better than the 2 other models for all of our criteria                   

(Fig.S9). 

 

____________________________________________________________________________________

 
Figure S9. ​Exp.1, optimization results at the population level ​. The Influence model fits best the choice behavior                 

of our population of subjects but inter-individual heterogeneity is observed. (A) Bayesian Model Selection (BMS) with                

Model as fixed-effect, i.e. a single model best describes our population of subjects. Criteria included in the BMS: Log                   

Likelihood (LLH), Akaike information criterion (AIC), Bayesian information criterion (BIC), Log of posterior probability              

(LPP) and Exceedance probability (EP). Best model indicated in bold. IGrey shades show the models whose                

population values are significantly different from the two other models (p<0.01). For the BIC score, the Influence                 

model does not fit the population statistically better than the Fictitious, but instead both the fictitious and the influence                   

(in bold) fit (significantly) better the subject’s behavior compared to the Q-learning (thus, in grey) in the 2 blocks. The                    

values between parentheses represent the (population) standard deviation of each selection criterion value reported              

in this table. (B) Distribution of the best parameter values of the Influence model obtained through the optimization                  

process. 
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3- Subject-level Model comparison (extended model space) 

 

a- Q-Learning models:  

 

To increase the power of the standard Q-learning, we tested a Generalized version of the algorithm (see                 

supplementary section II.1). The Generalized version did not fit significantly better the choice data of the subjects                 

than the standard version (AIC: ​U(254)= 7031, Z= 1.9591, p= 0.0501​, this result holds when running the comparison on                   

each of the two blocks separately). Across the 2 blocks, 49% of the subjects were fitted better than chance (LRT,                    

p<0.05) by the standard Q-learning against 43% by the Generalized version and no difference in fit was found for                   

those subjects (AIC: ​U(254)= 1868, Z= 0.7283, p = 0.4664​, this result holds when running the comparison on each of the                     

two blocks separately). Indeed, the average value of the best fitting (counterfactual decay) parameter of the                

Generalized Q-learning was quite low (0.70, std=0.35), while no difference in Beta or Alpha was observed between                 

the 2 versions). We therefore included the standard version of the Q-learning algorithm in our main Model Space                  

(MS1).  

 

b- Fictitious models:  

 

We then controlled for the adequacy of the version of the fictitious model we used (from Hampton et al, 2008). To do                      

so, we compared its performance to the weighted Fictitious model described in supplementary section II.1 (2                

parameters each). No difference in fit was observed at the population level between the 2 models ​(U(254)= 8467, Z=                   

0.4634, p = 0.6431, nor difference in fit difference between blocks: U(126)= 2308, Z= 1.2367, p= 0.2162)​, accordingly across                   

the 2 blocks 48% of the subjects were fitted better than chance (LRT, p<0.05) by the weighted-fictitious for 51% by                    

the TD version ( ​fictitious= 0.38(0.37), ​weighted fictitious = 0.58(0.38)). η  η   

 

 
IV - Additional Cognitive Tasks  
 

A) Reasoning tasks  

1- CRT 

The Cognitive Reflexion Task (CRT) has been elaborated by Frederick, 2005 [9]. The task consists of three short                  

questions that can be answered in less than 3 minutes. The three items of the CRT are designed such that the                     

intuitive response is incorrect, but can be correctly reconsidered through some deliberation. In this sense, the CRT                 

measures cognitive reactiveness or impulsiveness, respondents’ automatic response versus more elaborate and            

deliberative thinking. The three questions have an obvious incorrect answer that can be easily corrected upon                

minimal reflection. Those who arrive at the correct answers are less impulsive and more likely to engage in reflective                   
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thinking. In this sense, the CRT can be viewed as a combination of cognitive capacity and the disposition for                   

judgement and decision-making. Albeit very simple, the CRT has been proven to be quite robust [10]. 

 

2- ​Raven’s Test 

We used the Raven (Advanced Progressive Matrices) test to measure efficient problem-solving and abstract              

reasoning (Raven et al., 1998 [11]). The task consists of a series of pattern-matching tasks that do not require                   

mathematical or verbal reasoning abilities. 30 different test items were presented on the screen, in each test item                  

participants were asked to identify the missing element that completes a pattern of shapes. The patterns are                 

presented in the form of a 3x3 matrix, and possible matching (missing) shapes were presented below with a number                   

from 1 to 8, that had to be entered and validated before jumping to the next problem ​(Fig.S10.A)​. Performance at                    

Raven’s test is usually used as a non-verbal estimate of fluid intelligence [12] 

 

B) Working Memory tasks 

In Exp. 2, we provided subjects with the Digit Span verbal test, the 7th item of the Wechsler adult intelligence scale,                     

WAIS-III (Wechsler, 1997 [12]). The task consists of two parts, in which a series of digits with increasing length (2 to                     

9) are provided, and participants asked to repeat the 3 - 9 digits forward (first part) and 2 - 9 digits backwards (second                       

part). The score represents the limit of performance reached by the participant in both parts (maximum length of digit                   

retrieved). The task thus measures short-term memory but also attention and concentration. 

 

In Exp. 3, we developed a computerized version of the N-Back test, an experimental paradigm widely used in                  

cognitive neuroscience to assess working-memory capacities (Owen et al, 2005 [13]; Blain et al, 2016 [14]). The task                  

was divided into two blocks: first a series of 100 2-Back trials, and then a series of 100 3-Back trials. At each trial, a                        

random letter was presented in the middle of the screen and participants were instructed to respond by pressing the                   

left or the right arrow on the keyboard (key-response association was counterbalanced across participants),indicating              

yes if the current letter was the same as the letter presented N trials before, or no otherwise ​(Fig.S10.B)​. 
 

C) Tower of London 

The tower of london task is a task developed in neuropsychology in order to estimate planning abilities in humans.                   

We adapted the psychometric version validated by Kaller et al 2012 [15]. The task consisted of three differently                  

colored balls placed on three vertical rods of different heights that may hold at maximum either one, two or three                    

balls, respectively. Start state and goal state were presented in the lower and upper parts of the screen, respectively.                   

Subjects were asked to transform the start state to match the goal state while following three rules: (a) only one ball                     

can be moved at a time; (b) a ball may not be moved if another ball is already on top of it; and (c) three balls can be                            

accommodated at the tallest peg on the left, two balls at the peg in the middle, and one ball at the smallest peg on the                         

right. The computer program did not allow rule-incongruent moves. ​(Fig.10.C)​. Two parameters are manipulated in a                

factorial design in this version of the task: Search depth (number of intermediate moves before the first ball can be                    

placed into its goal position) and Goal hierarchy (ambiguity of information on subgoal ordering, i.e. the degree to                  

which the sequence of final goal moves can be derived from the configuration of the goal state). The 32 problems                    
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presented to the participants also varied, orthogonally to the two main parameters, in the minimum number of moves                  

required to transform the respective start state into the goal state ​(Fig.10.C)​.  
 

All the additional tasks (except for the digit span verbal test) were presented using PsychToolBox (Brainard, 1997                 

[16]) and appeared on a uniform black background.  

____________________________________________________________________________________

 

Figure S10. ​Illustration of the Raven’s task (A), the N-Back test (B), and the Tower of London © used as                    

additional cognitive tasks. 

____________________________________________________________________________________ 
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V - One-shot games experiment 
____________________________________________________________________________________

 
Figure S11. ​Endogeneous hypothesis of strategic learning sophistication (adapted from Griessinger et            

Coricelli, 2015). (A) Hypothesized correspondence between individual strategic learning sophistication in the            

repeated game captured by our computational approach from the game behavior in the main task and the expected                  

strategic reasoning ability measured in the secondary task. Each model dynamically differed in how much individuals                

incorporated the information relative to the opponent throughout the repeated interactions, and therefore in their level                

of strategic sophistication. (B) Secondary task design. Subjects were provided with 32 one-shot games without direct                

feedback (4 classes of 8 games each: Dominant Solvable Self, Dominant Solvable Other, Prisoner’s Dilemma and                

Stag Hunt - adapted from Polonio et al, 2015 ​[17] ​) shuffled into 4 blocks of trials.  

____________________________________________________________________________________ 
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Figure S12. ​Secondary task structure and rationale. (A) 32 one-shot games shuffled in 4 blocks of 8 trials (2                   

games of each class in random order). In each game, subjects had to choose between one of the two options                    

knowing that each trial could be selected for their final payoff. In half of the trials subjects were playing as row player,                      

choosing between up and down; in the other half as column player, choosing between left and right. (B) Behavioral                   

results of secondary task (% of Nash Equilibrium reached in each static game) replicate the results from Polonio et al                    

2015 at the population level. (C-D) (Adapted from Polonio et al, 2015 [16]): the strategic reasoning level (k-level)                  

corresponds to specific information acquisition patterns. (C) Saccade patterns reveal different information processing             

in 2x2 static games: some subjects consistently focused on their own payoffs (own focused) while other focused on                  

both their own and the opponent’s payoffs (distributed attention) (top: black lines represent schematic saccades               

patterns). The proportion of these information processing types is independent of the payoff matrix (bottom). (D)                
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“Own focused” subjects were able to reach equilibrium play in DSS but not in DSO (low SR ; k-level = 1). On the                       

other hand, “distributed attention” subjects reached equilibrium in both DSS and DSO, therefore playing as a high SR                  

level (k-level = 2). 
____________________________________________________________________________________ 

 

 

1- Methods:  
 

The 32 games (8 in each class) were randomly but equally divided into four blocks in which subjects had to play                     

either as row or column players. No choice feedback was provided at the end of each trial, but subjects were                    

instructed that each trial could be the one selected at the end to determine their final payoff. 

 

2- Results:  
 

In this task, subjects were asked to make choices without direct feedback in a series of static games borrowed from                    

Polonio et al (2015 [17]) ​(​Fig. S11.B; Fig. S12.A). Performance was measured by the percentage of optimal choices                  

in a game-theoretic sense (action leading to the Nash Equilibrium - NE) in each of the 4 classes of games for each                      

subjects. Performance of our subjects in this task replicate results from Polonio et al quite accurately (​Fig. S12.B).                  

No difference in percentage of N.E. nor reaction time was found between row and column play blocks ​(N.E.: U(126)=                   

2096, Z= 0.2274, p = 0.8201, RT : U(126)= 2099, Z= 0.2407, p = 0.8098), ​nor between each of the 4 blocks ​(N.E.: F(3,                       

252)=0.05, p= 0.9866​; same results when ANOVA for 4 games separately, ​RT: F(3, 252)=2.38, p= 0.0699​; same results when                   

ANOVA for DSS, DSO and PD, but not SH (faster through blocks): ​F(3, 252)=5 p= 0.0022), n​or even between games with low                      

and high payoff amplitude within each class ​(NE: U(126)= 1897, Z= 0.7258, p = 0.7258), RT: U(126)= 2394, Z= 1.6465, p =                      

0.0997)​. To next investigate the congruence of the subjects’ behavior across the 4 games, we conducted a                 

multivariate cluster analysis to regroup subjects according to their performance in the 4 games. The best fitting model                  

was the one with 5 clusters, represented in ( ​Fig. S13.A) and which corresponds to 5 different coherent types of                   

subjects across the 4 games. Indeed, the more subjects reached the Nash Equilibrium Dominant solvable games,                

(i.E. the DSS and DSO games, see next paragraph), the more they were able to choose the optimal action in the                     

prisoner's dilemma game (these cluster results replicate Polonio et al). This result also replicates eye-tracking results                

from Polonio et al showing that reaching the NE in all of these 3 games requires to compute the information relative                     

to both own payoffs and the other’s payoffs in a dynamic strategic fashion. Note that subjects’ behavior did not differ                    

much between our 5 clusters in the Stag Hunt game ( ​Fig. S14.C) ​, congruent with the smaller variance observed in                   

our data in comparison to Polonio et al (​Fig. S12.B).  
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____________________________________________________________________________________

 
Figure S13. ​Choice behavior in the secondary task are consistent but no direct matching with the level of                  

Strategic Learning in the main task was found. (A) Each dot represents for each subject the percentage of N.E.                   

reach in each game (left: DSS and DSO, right: DSS and PD). The 5 colors represent the subjects in our 5 clusters                      

across all of the 4 games, in blue and green our clusters of interest for our analysis. From 0 to 2 the SR score,                        

gradient color matches the cluster colors. (B) Correlation between the difference in individual fit of the (high order)                  

Influence model compared to the fit of the Q-learning in each block of the repeated game and the SR score.                    

Correlation not significant for either block. 
____________________________________________________________________________________ 
 

To test our hypothesis (Griessinger & Coricelli, 2015 [18]) (​Fig. S11.A) ​that SL is not intrinsic, we focused on                   

performances of subjects in the DSS games, in which reaching the Nash Equilibrium required to best respond to their                   

own payoffs only, and in the DSO games in which choosing optimally required to also best respond to the other’s                    

payoffs. We first compared performances in the repeated game task between our 2 clusters of interest: subjects                 

reaching most of the time the NE in DSS but not DSO (low strategic reasoning, SR) and subjects reaching NE in both                      

175



 

DSS and DSO (high SR) (namely Cluster 2 and 3 on ​Fig. 13.A​). As expected, no difference in average points in the                      

repeated game was observed between low and high SR subjects in either block ​(Bl.1: U(29) = 82, Z= 1.451, p = 0.146;                      

Bl.2: U(29) = 100, Z= 0.735, p = 0.462)​, nor in reaction time ​(Bl.1: U(29) = 254, Z= 0.695, p = 0.487 ; Bl.2: U(29) = 108, Z=                            

0.417, p = 0.677)​.  
We then tested directly our hypothesis on our entire population of subjects by comparing our measures of SL                  

engagement in the repeated game for each group of low and high SR subjects. No difference was found between the                    

SR groups in block 1 nor in block 2 in the quality of fit of the Influence model compared to the Q-learning model ​(Bl.1:                        

U(29) = 129, Z= 0.377, p = 0.706 ; Bl.2: U(29) = 100, Z= 0.734, p = 0.463)​, or the individual value of the Influence parameter                          

(Bl.1: U(29) = 120, Z= 0.019, p = 0.984 ; Bl.2: U(29) = 106, Z= 0.496, p = 0.619)​. Consistently no difference in any of the                          

additional cognitive tasks was found between low and high SR subjects (i.e. age, Raven, CRT, WM, Tower of London                   

score).  

Another way of measuring the Strategic Reasoning ability in the static game task consists in simply computing a                  

continuous SR score that corresponds to the sum of their performance in both DSS and DSO games, taking values                   

from 0 to 2 (​Fig. 13.A ​– colored gradient represented on the left plot legend​)​. Indeed, the population behavior                   

distribution makes subjects with such SR score below 1 display low or no strategic reasoning in the task, while                   

subject above 1 display higher strategic behavior. No correlation was neither observed between this SR measure and                 

the SL level in the repeated game, as measured by the quality of fit of the Influence model (or higher order influence)                      

compared to the Q-learning model ​(Bl.1 : r =0.163, p= 0.226 ; Bl.2 : r = -0.011, p= 0.933) ​( ​Fig. 13.B)​, ​nor the individual                        

Influence parameter value ​(Bl.1 : r = -0.06, p= 0.661 ; Bl.2 : r = -0.01, p= 0.929) in either block. This was also true when                          

we took as Strategic Reasoning measure only the performance in DSO (SR’ score) for subjects in SR Cluster 2’ and                    

3’ (​Fig. S14.A)​.  
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____________________________________________________________________________________

 
Figure S14. ​Choice behavior in the secondary task are consistent across the 4 games. (A-C) In colors are                  

represented the subjects in each cluster when forcing the cluster routine to 3 clusters. Same conventions as Figure                  

S13. Results are coherent with initial cluster analysis. No difference in percentage of N.E. in the SH game is                   

observed between the 3 clusters.  
____________________________________________________________________________________ 
 

Thus, while our subjects’ choice behavior displayed in the secondary task replicates previous results using similar                

static games, we could not reject our null-hypothesis of an absence of direct mapping at the population level between                   

the individual propensity to reason strategically in static games and the individual engagement in strategic learning                

during the repeated game interaction.  
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-­ ​  ​Appendix​  ​III​  ​-­    
  
__________________________ ​  ​​SUPPLEMENTARY​  ​INFORMATION ​  ​2​​  ​_______________________  
  

Additional ​  ​analyses​  ​on ​  ​the ​  ​dataset​  ​from​  ​Exp.2 ​  ​in:  
Griessinger Thibaud, Khamassi Mehdi*, Coricelli Giorgio*. The interplay of learning sophistication and                                   

strategic​  ​asymmetry.​  ​About​  ​to ​  ​be ​  ​submitted.  
  

  

I-­​  ​Computational​  ​Analysis​  ​-­​  ​Model​  ​Space ​  ​Extension​  ​2    
  

A-­​  ​Model-­space​  ​extension​  ​2:  
  

In ​  ​this ​  ​part​  ​we ​  ​develop​  ​the ​  ​details​  ​of​  ​the ​  ​additional​  ​computational​  ​analysis​  ​we ​  ​conducted​  ​on ​  ​this ​  ​dataset.    
As​  ​presented​  ​in ​  ​the ​  ​article ​  ​we ​  ​extended​  ​the ​  ​initial​  ​model​  ​space ​  ​with​  ​additional​  ​versions​  ​of​  ​the ​  ​following ​  ​models​  ​:    

-­ Q-­Learning: the classic version was extended with a Generalized (Barraclough et al., 2004;; Ito & Doya,                                               

2009;;​  ​Khamassi ​  ​et​  ​al,​  ​2014)​  ​and ​  ​a ​  ​Counter-­factual​  ​version ​  ​(Palminteri ​  ​et​  ​al ​  ​2015)    
-­ Fictitious: the version of Hampton was extended with the original weighted-­fictitious (Cheung and Friedman,                                         

1997)  

-­ Influence:​  ​the ​  ​Influence​  ​from​  ​Hampton​  ​et​  ​al ​  ​(2008)​  ​was​  ​extended​  ​with​  ​the ​  ​2-­Influence​  ​(Devaine​  ​et​  ​al,​  ​2014)  
  

Here ​  ​we ​  ​detail​  ​additional​  ​models​  ​related​  ​to ​  ​the ​  ​strategic​  ​learning​  ​literature​  ​in ​  ​repeated​  ​games:    
  

-­ ​  ​EWA:  

The ​  ​original​  ​EWA ​  ​from​  ​(Camerer​  ​et​  ​al,​  ​1999,​  ​2002)​  ​  is ​  ​considered​  ​as​  ​a ​  ​hybrid ​  ​between​  ​a ​  ​RL ​  ​and ​  ​a ​  ​Belief-­Based  
model.​  ​Among ​  ​its​  ​3 ​  ​parameters​  ​δ​  ​is​  ​the ​  ​more ​  ​important,​  ​it​  ​represents​  ​the ​  ​relative ​  ​weight​  ​between​  ​foregone​  ​payoffs  
and ​  ​actual ​  ​payoffs​  ​in ​  ​the ​  ​update​  ​of​  ​the ​  ​action’s​  ​value.​  ​This ​  ​parameter​  ​controls​  ​for ​  ​the ​  ​arbitrage​  ​between​  ​the ​  ​RL ​  ​and  
the ​  ​Belief-­Based​  ​component.​  ​The ​  ​concept​  ​of​  ​Belief​  ​learning​  ​in ​  ​the ​  ​model​  ​is​  ​embodied​  ​in ​  ​the ​  ​foregone​  ​payoffs  
whereby​  ​counter-­factual​  ​actions​  ​are ​  ​reinforced,​  ​in ​  ​addition​  ​to ​  ​the ​  ​factual ​  ​Reinforcement​  ​of​  ​the ​  ​chosen​  ​action ​  ​by​  ​the  
payoff​  ​actually​  ​received​  ​at​  ​each ​  ​trial.​  ​The ​  ​hybrid ​  ​model ​  ​thus ​  ​reduces​  ​to ​  ​the ​  ​RL ​  ​model​  ​when ​  ​δ​i​​  ​=​  ​0 ​  ​,​  ​and ​  ​the ​  ​belief  
learning​  ​model​  ​when ​  ​δ​i​​  ​=​  ​1 ​  ​such ​  ​as:    
  

​  ​​  ​​  ​​  ​​  ​(1.1)(t) /N (t )  ×((φ  ×N (t)  ×Q (t ))   (t))   Qc = 1 − 1 c − 1 + Rc   

​  ​​  ​​  ​​  ​​  ​(1.2)(t) /N (t )  ×((φ  ×N (t)  ×Q (t ))   (t)))   Qu = 1 − 1 u − 1 + (δ  ×  Ru   

With ​  ​ ​  ​​  ​​  ​​  ​​  ​(1.3)(t) (ρ  ×N (t ))   N =    − 1 + 1   
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ϕ represents the belief about the speed of adaptation of the opponent, a small ϕ means the agent believe that her                                                              

opponent​  ​depreciates​  ​past​  ​values​  ​faster.    
N(t) captures the strength of past experience, i.E. the number of observation of past experience relative to one period                                                        

of current experience, and impacts directly the update of the action value. If initiated at high value, it plays as a                                                              

Bayesian​  ​prior,​  ​we ​  ​thus ​  ​set​  ​N ​  ​(0) ​  ​to ​  ​0.  
A player with a low N(t) puts little weight on past “attractions”;; a player with a huge N(t) is barely affected by                                                                 

immediate experience. the parameter is considered to control for the influence of the out-­of-­game prior beliefs           ρ                                          

during​  ​the ​  ​first​  ​trials​  ​of​  ​the ​  ​interaction.  
Note that a fourth parameter was originally entered in the models, κ which represented the discount rate for N(t).                                                        

When ​  ​κ​  ​is​  ​large ​  ​the ​  ​effect​  ​of​  ​the ​  ​prior​  ​beliefs​  ​will ​  ​fade ​  ​quickly.  
  

-­ ​  ​EWA ​  ​variations​  ​(Zhu ​  ​et​  ​al,​  ​2012,​  ​Hampton​  ​et​  ​al,​  ​2008):    
Zhu et al developed a TD version of the EWA to allow the model to update the reward predictions through a                                                              

prediction error therefore separating the reward prediction from the prediction error. Due to the equivalence observed                                               

empirically they considered that ϕ = δ, their model therefore includes only 2 parameters, the prior and the weight of                                                           

the ​  ​forgone​  ​payoff​  ​in ​  ​the ​  ​counterfactual​  ​update:    
​  ​​  ​​  ​​  ​​  ​(1.4)(t) (t)   (1/N (t)  ×(R (t)   (t )))   Qc = Qc +    c − Qc − 1   

​  ​​  ​​  ​​  ​​  ​(1.5)(t) (t)   (1/N (t)  ×((δ  ×R (t))   (t )))   Qu = Qu +    u − Qc − 1   

With ​  ​ ​  ​​  ​​  ​​  ​​  ​(1.3)(t) (ρ  ×N (t ))   N =    − 1 + 1   

  

Note that In their study Hampton et al (2008) also tested a simpler version of the EWA, with no decay or discount rate                                                                    

and where R1 is the reward obtained had action a been chosen (Fictitious learning), and R2 is the reward given that                                                              

action ​  ​a ​  ​was​  ​chosen​  ​-­​  ​zero ​  ​otherwise ​  ​(Reinforcement​  ​Learning).    
​  ​​  ​​  ​​  ​​  ​(1.6)(t) (1 α )  ×Q (t ))   (α   ((δ  ×R (t))   ((1 )  ×R (t))))   Qc = ( −    1 c − 1 +    1 u +    − δ c      

  

-­ ​  ​Fictitious​  ​play​  ​(pattern)​  ​variation​  ​(Spiliopoulos,​  ​2012;;​  ​2013a)    
The standard weighted fictitious by Cheung & Friedman (1997) computes the probability of the opponent’s action                                               

from a weighted average of frequency of its past choices, the steep of the exponential decay being controlled by the                                                           

parameter​  ​η:    
​  ​​  ​​  ​​  ​​  ​(1.7)(t) (C (t)   (η ×C (t )))  /  (1 η )P *

A =    A +    ∑
t−1

x=1
   x

A − x + ∑
t−1

x=1
   x     

From this (first order) weighted fictitious model, Spiliopoulos developed a belief based model based on pattern                                               

recognition. In his fictitious play extension, named 2-­p fictitious, the probability distribution over the opponent’s choice                                               

that will lead the action selection in the next trial is conditional over her last 2 choices instead only the choice made in                                                                    

the ​  ​current​  ​trial ​  ​such ​  ​as:    
​  ​​  ​​  ​​  ​​  ​(1.8)(t) (C (t)   (η ×C (t )))  /  (1 η )P *

AA =    AA +    ∑
t−1

x=1
   x

AA − x + ∑
t−1

x=1
   x     

With p ​AA​(t) being the probability that the opponent (playing as player 2 in this case), chooses the action A after she                                                              

played the action A in the previous trial. This way the fp2 algorithm tracks ​how many times two temporally                                                        
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consecutive sequences of actions have been observed and then by conditioning the probability of an action being                                                  

played​  ​on ​  ​the ​  ​previous​  ​action ​  ​chosen​  ​by​  ​the ​  ​opponent​.  
  

  

B-­​  ​Bayesian​  ​Model​  ​Selection​  ​(BMS) ​  ​-­​  ​details:  
  

Our goal here was to characterize for each subject the model, from the target Model Space that fitted the best their                                                              

choice ​  ​behavior​  ​in ​  ​the ​  ​repeated​  ​game ​  ​interaction.    
For each subjects we considered a model as the Individual Best Model (I.B.M.) if it fitted better than chance her                                                           

choice ​  ​series​  ​(Likelihood​  ​ratio ​  ​test)​  ​and ​  ​better​  ​than ​  ​the ​  ​other​  ​model ​  ​included​  ​in ​  ​the ​  ​model​  ​space ​  ​(lower​  ​AIC).    
We initially considered 5 different model selection criteria: LLH, AIC, BIC, Pseudo-­R2 (Camerer et al, 1999;; Daw,                                                  

2011) and the max-­LRT score (Daw, 2011). As presented on ​Fig.S1.C AIC presents the highest congruence between                                                  

all the BMS criteria used. Note that since we hypothesized that the opponent encountered at each block might affect                                                        

the model best fitting the individual behavior we did not include the Out-­of-­Sample LLH (ref., i.E. the LLH of the model                                                              

when fitted to the choice series of one of the 2 block trial with the best parameter set obtained through optimization                                                              

on ​  ​the ​  ​other​  ​block),​  ​but​  ​the ​  ​AIC ​  ​was​  ​also ​  ​more ​  ​coherent​  ​with​  ​this ​  ​criterion.  
  

___________________________________________________________________________________

  

Figure ​  ​S1.​​  ​Congruence​  ​between​  ​the ​  ​different​  ​criteria ​  ​of​  ​quality​  ​of​  ​fit ​  ​used ​  ​for ​  ​the ​  ​model ​  ​selection.​  ​AIC ​  ​​  ​>​  ​​  ​BIC  
____________________________________________________________________________________  

  

A post-­hoc test was performed to confirm that the I.B.M. selection based on AIC (+LRT) was the most appropriate to                                                           

our computational analysis. As presented on ​Fig.S1.A for 0.16% of the choice series (across the 2 block trials) AIC                                                        

and BIC did not lead to the selection of the same I.B.M., the former considering those datasets as best fitted by the                                                                 

Influence model, while the latter mainly lead to the selection of the Fictitious play (for 88%, Q-­Learning otherwise).                                                     

We compared the relative fit of the Influence (individual difference in AIC between the Influence and the Q-­learning                                                     
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models) and the value of its λ parameter for the choice series that were considered by both AIC and BIC as best fitted                                                                    

either by the Belief-­Based models (Q-­Learning, Fictitious) (Low SL, Red ) or by the Strategic model (Influence, High                                                     

SL, Green) to the choice series which were best fitted by the Influence according to the AIC and by the Belief-­based                                                              

models​  ​according​  ​to ​  ​the ​  ​BIC ​  ​(Grey​  ​-­ ​  ​​Fig.S1.B ​).    
  

This result further confirms that considering these choice series as best fitted by the Influence makes more sense,                                                     

and therefore confirms the adequacy of the AIC criterion in our analysis. Thus using the AIC criterion instead of the                                                           

BIC increased the discrepancy between the Low and High strategic learning subjects and the heterogeneity of the 2                                                     

groups​  ​while ​  ​not​  ​changing​  ​the ​  ​congruency​  ​of​  ​our​  ​measures​  ​of​  ​SL ​  ​level ​  ​nor​  ​the ​  ​results​  ​presented​  ​in ​  ​the ​  ​main ​  ​text.     
As mentioned previously we included a prerequisite to the model selection procedure: for a model in the model space                                                        

to be considered as (individually) best fitting a subject’s choice behavior in a repeated game series (block), it had to fit                                                              

statistically better than chance (i.E. a reduced model that would predict with a probability 0.5 the subject’s choice at                                                        

each trial). We thus performed for each model (each subject, each choice series) first a Log Likelihood ratio test                                                        

taking into account the degree of freedom (number of free parameters in the model), and then considered as I.B.M.                                                        

the model with the lowest AIC among those which fitted significantly better than chance (p<0.01, Daw, 2011). Only                                                     

few ​  ​choice ​  ​series​  ​did ​  ​not​  ​pass​  ​this ​  ​additional​  ​criterion ​  ​​(Fig.S2.C)    
  

  

C-­​  ​Model​  ​Comparison​  ​of​  ​the ​  ​extended​  ​model ​  ​space ​  ​2:  
  

1-­​  ​Within-­model​  ​comparison:     
  

-­ ​  ​Fictitious​  ​fp2:    
We then tested how the 2-­pattern version of the fictitious (fp2) fitted the dataset. The fp2 model did not fit significantly                                                              

better the choice data of the subjects that the fictitious model ​(AIC=135.45(7.52), U(254)=7377, Z= 1.3750, p=0.1691)​, and                                                  

fit worse the population data than the Influence model ​(AIC: U(254)=10828, t=4.4492, p= 1.7383e-­08)​. Finally we                                               

compared the relative fit (individual difference between the fit of the target model compared to the fit of the                                                        

Q-­learning) of the fp2 and the Influence model. The Influence model had a higher relative fit than the fp2                                                        

(U(254)=5275, z=8.4999e-­07 1.7383e-­08)​. These three results hold for the comparison within each block (separately) and                                            

using BIC as criteria for goodness of fit. Similar results were obtained when using the 3-­pattern version (fp3) from                                                        

Spiliopoulos​  ​(2012)  
  

-­ ​  ​EWA:  

We compared the simplified TD version of the EWA developed by Zhu et al (2012) to the original version of the EWA                                                                 

from Camerer which contains an extra parameter. The two models lead to equivalent fit (no difference in AIC nor                                                        

BIC). In fact the fit of the two models were highly correlated ​(correlation in AIC: B= 1.0050, r= 0.9896, p< 0.00001, in                                                                 

relative fit with Q-­L : B= 0.9618, r= 0.9126, p< 0.00001)​, as well as the (best) values of δ obtained through the                                                                 

optimization process ​(B= 0.7153, r= 0.7486, p< 0.00001)​. We thus chose to consider the TD-­version of the EWA from                                                        

Zhu et al to allow better comparison with Q-­Learning versions, but also for its more parsimonious form. We thus                                                        
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compared the TD-­EWA to the one-­parameter version developed by Ho et al, 2007, the Self Tunique EWA, but no                                                        

improvement​  ​in ​  ​fit ​  ​was​  ​found ​  ​​(U(254)=​  ​9193,​  ​Z=​  ​1.6890,​  ​p=​  ​0.0912)​.  
  

2-­​  ​Between-­model​  ​comparison:     
  

We first compared the Belief-­based mixture embodied in the EWA with the Fictitious model which computed directly                                                  

the choice probability of the opponent based on her past choices. The assumption behind the EWA is that the more                                                           

subjects consider the counterfactual reward in their learning process the more they form belief over the opponent’s                                                  

behavior and best respond to it. However if the relative fit of the two models correlated with each other significantly it                                                              

was not as strong as the correlation with the Counter-­factual Q-­learning (which updates the counter-­factual Q-­value                                               

at a certain rate -­ weight) ​(​rel fit TD-­EWA vs. Fict.: r= 0.4463, p< 0.0001, CF-­QL vs. Fict: r= 0.7764, p< 0.0001​) and no                                                                       

correlation was found between the propensity to consider the counterfactual reward in the update process (embodied                                               

in ​  ​the ​  ​δ​  ​parameter)​  ​and ​  ​the ​  ​relative ​  ​fit ​  ​of​  ​the ​  ​fictitious​  ​model ​  ​​(​r=​  ​0.0872​  ​p=​  ​0.3280​)​.  
Moreover the weight attributed to the choice of the opponent in the update of the belief over her choice probability at                                                              

each trial (i.E. η parameter) did not correlate either with the weight on counterfactual reward in EWA ​(​r= 0.1034 p=                                                           

0.2455) ​but with the counterfactual learning rate (α ​u​) in the CF-­Q-­learning ​(​r= 0.7107, p< 0.0001)​. Similar results were                                                     

obtained​  ​when ​  ​comparing​  ​the ​  ​full ​  ​version ​  ​of​  ​the ​  ​EWA ​  ​and ​  ​Fictitious​  ​and ​  ​Counter-­factual​  ​Q-­learning.    
One way to explain why the Counter-­factual Q-­learning behaves closely to a Belief-­Based model that the EWA is to                                                        

look at their computational differences. The two models could update the unchosen option value but in 2 different                                                     

ways, the first updates the corresponding Q-­value (when δ tends towards 1) to a certain degree (individual                                                  

parameter) influencing the weight of the outcome received, the other modulates directly the updating rate of the                                                  

unchosen Q-­value. Thus the Counter-­factual QL is the one adjusting its belief regarding the pertinence of the                                                  

counter-­factual​  ​update.    
  

We also ran 2 versions of a WS-­LS (Win Stay -­ Lose Shift) model, a deterministic version ( in softmax fixed at 10 to                                                     β                     

exploit Q-­valued computed -­ see Devaine et al, 2014) and a probabilistic version ( estimated through optimization).                                         β            

Both models did not fit the population better than any of the models included in the 3 model spaces tested for the                                                                 

model comparison. The correlation between the WS-­LS fit and the relative fit of the influence (or the fictitious) was not                                                           

significant (and no significant difference in fit was found between low and high SL subjects for both versions of the                                                           

WS-­LS model -­ results not shown). This result is coherent with the observation that very few subjects were best fitted                                                           

by the Q-­learning algorithms in the 2 blocks and confirms that our subjects incorporated the information relative to the                                                        

opponent​  ​in ​  ​their ​  ​choice ​  ​process.    
  

  

3-­​  ​Between-­subject​  ​comparison:    
  

Once the optimization process launched on all the models included in the extended model space, we selected for                                                     

each subject the I.B.M. following the procedure described previously. ​Fig.S2.A ​represents the frequency of subjects                                            

individually​  ​best​  ​fitted ​  ​by​  ​each ​  ​model.    

183



Most of the subjects previously best fitted by the Q-­learning or the fictitious play models are now best fitted by models                                                              

of lower strategic sophistication, while subjects previously best fitted by the Influence model are best fitted by one of                                                        

the ​  ​two ​  ​versions​  ​of​  ​the ​  ​Influence​  ​models​  ​(1st​  ​or​  ​2nd ​  ​order)​  ​​(Fig.S2.B) ​.    
  

_______________________________________________________________________________

  

Figure ​  ​S2.​​  ​Extended​  ​computational​  ​modeling​  ​analysis​  ​(A) ​  ​Individual​  ​Best​  ​Model ​  ​(I.B.M.) ​  ​frequency​  ​plot​  ​of​  ​extended  
Model ​  ​Space ​  ​(EMS).​  ​At​  ​the ​  ​individual​  ​level,​  ​the ​  ​sophisticated​  ​models​  ​(in ​  ​green)​  ​best​  ​fits ​  ​about​  ​half​  ​of​  ​the ​  ​subjects,  
while ​  ​the ​  ​remaining​  ​were ​  ​best​  ​fitted ​  ​by​  ​lower​  ​levels​  ​of​  ​strategic​  ​learning​  ​models​  ​(red).​  ​(B)​  ​Subjects​  ​individually​  ​best  
fitted ​  ​by​  ​low ​  ​SL ​  ​level ​  ​models​  ​(Q-­L,​  ​Fictitious)​  ​in ​  ​the ​  ​Initial ​  ​-­​  ​reduced​  ​-­​  ​Model​  ​Space ​  ​(IMS) ​  ​are ​  ​consistently​  ​best​  ​fitted  
by​  ​the ​  ​low ​  ​Strategic​  ​Learning​  ​(SL)​  ​models​  ​of​  ​the ​  ​Extended​  ​Model ​  ​Space.​  ​Subjects​  ​best​  ​fitted ​  ​by​  ​the ​  ​high ​  ​SL ​  ​model  
(Influence)​  ​of​  ​the ​  ​IMS ​  ​are ​  ​coherently​  ​best​  ​fitted ​  ​by​  ​the ​  ​Higher​  ​SL ​  ​models​  ​of​  ​the ​  ​EMS.  
____________________________________________________________________________________  

  

Dividing our population in low vs. high strategic learners based on the model that best fitted their choice behavior                                                        

requires that the models considered as low level of strategic sophistication and the one identified as high level cluster                                                        

together in terms of quality of fit. This was confirmed by the the results of the correlations in relative fit between each                                                                 
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model of our extended model space. The analysis ran on our whole dataset is summarized on ​(Fig.S2.D) ​As                                                     

hypothesized the correlation analysis confirms that the quality of fit of the 2 influence models correlate with each                                                     

other, as well as the Belief-­Based models but the 2 categories of models do not correlate with each other (black                                                           

frames). When plotting the average best model ranking of our low vs. high level of strategic learning subjects we                                                        

observe the expected double dissociation between Belief-­based better ranked in terms of quality of fit compared to                                                  

the Influence models for low SL, and vice versa ( ​Fig.S2.C -­ ​similar highly significant dissociation was obtained when                                                     

clustering our subjects in 2 equal groups given the values of their best Influence parameter (λ), low close to 0 and                                                              

high ​  ​close ​  ​to ​  ​1).    
  

  

4-­​  ​Q-­learning​  ​variations​  ​2:    
  

We also tested 4 additional variation of Q-­Learning but none of these learning rules provided a fit of sufficient quality                                                           

to ​  ​be ​  ​considered​  ​in ​  ​our​  ​extended​  ​Model ​  ​Space.    
  

2-­States​  ​Q-­Learning​  ​models​  ​with​  ​Belief-­Based​  ​heuristic:    
The initial RL model being equivalent to a Q-­Learning with only one state. We tested Q-­Learning algorithm                                                  

considering​  ​2 ​  ​states​  ​(s),​  ​each ​  ​corresponding​  ​to ​  ​one ​  ​action ​  ​available​  ​to ​  ​the ​  ​opponent​  ​(p(s=1)​  ​=​  ​P).    
​  ​with​  ​(t) (t )   (α ×δ (t))Qs,c = Qs,c − 1 +    1

  
  

  
s,c (t) (t) (t)δ  s,c = Rc − Qs,c     

To update the action values in the accurate state (Q(s,a)) the model thus has to know in which of the 2 states he’s in,                                                                       

i.E. to use heuristic to predict which choice the opponent will make at each trial to choose the action with the higher                                                                 

value in the corresponding state selected. Here learning on Q-­values, not on the opponent strategy since heuristics                                                  

are ​  ​used.    
At each trial the model selects the state, based on a simple heuristic, and they update the corresponding Q-­value                                                        

once ​  ​the ​  ​outcome​  ​is​  ​displayed.    
4 ​  ​heuristics​  ​were ​  ​tested ​  ​​(from​  ​Player​  ​1​  ​perspective):    
1-­​  ​“Previous”:​  ​state ​  ​s​  ​corresponds​  ​to ​  ​the ​  ​action ​  ​previously​  ​selected​  ​by​  ​the ​  ​opponent  
2-­​  ​“Highest”:​  ​state ​  ​s​  ​corresponds​  ​to ​  ​the ​  ​state ​  ​leading​  ​to ​  ​the ​  ​highest​  ​Q-­value    
3-­ “Frequent” : state s corresponds to the action the most frequently selected by the opponent in all the past trials of                                                                 

the ​  ​same ​  ​block  
4-­ “WS-­LS” : state s corresponds a deterministic Win-­Stay Lose Shift strategy apply to the opponent, so that if the                                                           

action previously chosen by the opponent lead him to not lose ( ), then the state s is the same, if the action                                 Rt
Q > 0                                 

selected​  ​by​  ​the ​  ​opponent​  ​lead ​  ​her​  ​to ​  ​lose ​  ​( )​  ​then ​  ​s​  ​corresponds​  ​to ​  ​the ​  ​other​  ​action.Rt
Q = 0     

  

  

-­ ​  ​Appendix​  ​IV ​  ​-­  
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__________________________ ​  ​​SUPPLEMENTARY​  ​INFORMATION ​  ​4​​  ​_______________________  
  

I-­​  ​Supplementary ​  ​Figures    

  

Figure S1. Overview of the pattern learning in the “opponent-­based” block -­ additional experiments (pilot studies -­                                                  

second half of the interaction block). (A) Summary of the 3 pilot studies. Colored dashed lines represent the                                                     
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probability of the opponent to choose the action “A” (B,C,D) or “B” (E,F), in each pattern condition. The black dashed                                                           

line indicates chance level (p(a)=0.5) The probability associated to each pattern condition (either “same” for patterns                                               

composed by the two same choices, i.e AA and BB, or “different”, when two different choices) could either be low                                                           

(0.7, “L”), medium (0.8,”M”) or high (0.9,”H”). Pilots 1 and 2 only vary in the probability associated to each of the four                                                                 

pattern conditions, Pilot 3 also differs in the rule of the game (role endorsed by the player) . Subjects’ choice                                                           

probability in the last 50 trials matches in best response the probabilistic patterns in the opponent’s choice behavior                                                     

especially when the opponent chose differently in the last 2 trials (B) Initial experiment (Pilot 1). The probabilities                                                     

associated to each pattern were chosen to avoid two-­back learning: the two patterns labeled as “same” or the two                                                        

labeled as “different” were associated to different probabilities. Altogether, these results consistently show a higher,                                            

albeit non significant, tendency of subjects to best respond to patterns composed by two different choices in the last                                                        

two trials (i.e. AB and BA). (C,D) This tendency was confirmed in Pilot 2 when pairing all the four pattern conditions to                                                                 

the same probability (0.8): subjects best responded to the “different” rather than to the “same” pattern conditions. (plot                                                     

C) We also tested a version of the probabilistic pattern task (plot D) in which the 2 combination in the “same” and                                                                 

“different” pattern conditions were each paired to a different probability, respectively low (0.7) and high (0.9)                                               

probability. In this setting, subjects managed to discriminate between low and high probability patterns. (E,F) Finally                                               

we tested in Pilot 3 a version of the task were subjects played as Player2 and not as Player1, thus changing the rule                                                                    

to “in order to win, try to select the opposite fractal as your opponent at the same trial”. On average subjects seem to                                                                    

be still able to discriminate between each pattern condition but performed worse than when playing as Player 1 (for                                                        

exact same probabilistic pattern condition with opposite role/rule -­ E vs. D : all block : t(43.6)=2.1514, p=0.0370, last                                                        

50 ​  ​trials:​  ​t(38.23)=2.3278,​  ​p=​  ​0.0253).    
____________________________________________________________________________________  
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____________________________________________________________________________________

  

Figure S2. Control of the suitability of the Hybrid Algorithm for the opponent (H). 8 agents were simulated (100                                                        

times) playing the repeated RPS game for 200 trials as Player 1 against different simulated opponents. Frequency                                                  

indicates the number of times each pattern emerged from the interaction. Each agent implemented a different                                               

strategy : (1) MSNE play (p(R,P,S) = 1/3), (2) Optimal (P(cBR) = 1 in pattern trials, random in non-­pattern trials), (3)                                                              

Fictitious play (same parameter values as Maximize (F) opponent), (4) Hybrid opponent (same parameter values as                                               

(H)). We then tested different heuristics, among them : (5) Win-­Stay/Lose-­Shift (6) Best response to Opponent’s best                                                  

response to agent’s choice at (t-­1), (7) Alternate between options (selects randomly one of the 2 options not chosen                                                        

last​  ​trial),​  ​(8) ​  ​MSNE​  ​except​  ​if​  ​two ​  ​same ​  ​choices​  ​in ​  ​a ​  ​raw,​  ​then ​  ​shift​  ​to ​  ​randomly​  ​one ​  ​of​  ​the ​  ​2 ​  ​other​  ​option.    
____________________________________________________________________________________  

  

  

II​  ​-­​  ​Computational​  ​Modelling​  ​(computerized​  ​opponents)  
  

-­​  ​Fictitious​  ​play​  ​Opponent​  ​(F):  
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This opponent was model by a standard weighted fictitious (Cheung & Friedman, 1997) which simply                                            

computes the probability of the subject’s action from a weighted average of frequency of her past choices,                                                  

the ​  ​steep ​  ​of​  ​the ​  ​exponential ​  ​decay​  ​being ​  ​controlled ​  ​by​  ​the ​  ​parameter​  ​η ​  ​:    

(t) (C (t)   (η ×C (t )))  /  (1 η )P *
a =    a +    ∑

t−1

x=1
   x

a − x + ∑
t−1

x=1
   x     

The estimated probability of the subject’s action is then transposed into Q-­values given the payoff matrix                                               

of​  ​the ​  ​game ​  ​for​  ​each ​  ​opponent​  ​action ​  ​(illustrated ​  ​here ​  ​for​  ​Exp.5)​  ​:    
​  ​(t) (t)   QA = 1 − P *

a (t)   QB = P (t)*
a

     

Which ​  ​are ​  ​then ​  ​converted ​  ​to ​  ​action ​  ​selection ​  ​through ​  ​a ​  ​softmax​  ​function ​  ​:  
and ​  ​(t) /(1 xp(β×(Q (t )   Q (t ))))   P A = 1 + e B − 1 −    A − 1 (t) (t)   P B = 1 − P A   

  

The fictitious play model has thus 2 free parameters: the inverse temperature controlling for the noise                                    β            

ratio in the action selection of the opponent (arbitration between greedy exploitation and noisy exploration                                            

of the Q-­value associated to each action) and the decay parameter η controlling for the size of the                                                     

memory. For Exp. 5, we fixed the parameters at = 5 and η = 0.5, to obtain the learning curve displayed                           β                                    

on ​Fig.2.A ​(bottom right plot) ​presenting a credible tradeoff between maximizing learning adaptation and                                         

probabilistic action selection. For Exp. 6, we fixed the parameters at = 5 and η = 0.55, to obtain the                                 β                           

learning ​  ​curve ​  ​displayed ​  ​on ​  ​​Fig.9.B ​  ​​(middle ​  ​plot)​.  
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Résumé 
 

Les interactions sociales humaines reposent sur notre 
capacité à apprendre et à ajuster nos comportements en 
réponse à ceux d'autrui. Les jeux stratégiques offrent un 
cadre pertinent pour étudier les processus cognitifs sous-
tendant la représentation des intentions d'autrui, ainsi que 
les actions adaptées par lesquelles ces intentions se 
traduisent. Ces dernières décennies, le champ de 
l'économie comportementale a montré que les 
comportements humains dévient quasi systématiquement 
des prescriptions d’optimalité (équilibre) formulées par la 
théorie des jeux. Sur la base de récentes avancées en 
sciences cognitives, nous avons proposé que l’étude des 
sources de variation comportementale entre les individus 
pourrait fournir des informations cruciales à notre 
compréhension des limites de l’apprentissage social 
humain, et nous permettre de mieux comprendre cette 
non-convergence vers des interactions mutuellement 
bénéfiques. Dans ce travail de thèse, nous avons combiné 
des outils computationnels issus des neurosciences 
cognitives au cadre formel de l’économie comportementale 
dans le but d’étudier la façon dont les humains diffèrent 
dans leur compréhension du comportement d’autrui au 
cours d’interactions stratégiques compétitives. Dans un 
premier temps, nous avons abordé la question de 
l’interaction entre l’environnement de jeu et l’hétérogénéité 
de l’apprentissage stratégique. Nos résultats ont montré 
que, lors d’une interaction compétitive répétée, la structure 
(règle) du jeu peut influencer le niveau d’engagement dans 
un mode d’apprentissage stratégique sophistiqué, et 
expliquer les déviations par rapport à l’équilibre. Nos 
données suggèrent que les participants occupant une 
position désavantageuse dans l’interaction stratégique 
sont contraints par la sophistication de leur apprentissage. 
Leurs opposants, bien qu’avantagés, doivent tout de 
même s’engager dans un apprentissage stratégique 
sophistiqué pour adapter leur comportement et maximiser 
leurs gains. Cette étude a ainsi révélé pour la première fois 
l’impact des différences interindividuelles dans 
l’apprentissage stratégique sur les déviations des 
décisions par rapport à l’optimalité, et éclaire les processus 
responsables de l’émergence de dynamiques de choix 
leader-follower. De plus, nos résultats suggèrent qu’une 
analyse coût-bénéfice pourrait sous-tendre l’engagement 
des joueurs stratégiques dans des processus 
d’apprentissage plus sophistiqués. Dans un second temps, 
nous avons testé l’hypothèse selon laquelle la profondeur 
(le niveau de sophistication) de l’apprentissage stratégique 
n’est pas le seul facteur permettant la compréhension des 
intentions d’autrui au cours d’une interaction stratégique, 
mais que cette compréhension repose également sur la 
capacité à détecter et exploiter des patterns dans son 
comportement. Nous avons observé que les participants 
étaient capables de détecter des régularités statistiques 
dans le comportement de l’opposant, mais également que 
cette aptitude n’était pas corrélée à un engagement plus 
faible dans un apprentissage stratégique sophistiqué, 
suggérant ainsi que les humains peuvent combiner des 
informations provenant de deux types d’apprentissage 
pour améliorer la précision de leurs croyances vis-à-vis 
d’autrui au cours de prises de décision sociales. 
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Abstract 
 
Social interactions rely on our ability to learn and adjust 
on the spot to the other’s behavior. Strategic games 
provide a useful framework to study the cognitive 
processes involved in the representation of the other’s 
intentions and their translation into the most adapted 
actions. In the last decades, the growing field of 
behavioral economics provided evidence of a 
systematic departure of human’s behavior from the 
optimal prescription formulated by game theory. Based 
on recent advances in cognitive sciences, we 
hypothesized that characterizing the source of 
heterogeneity in behavior might provide key insights to 
understand the boundaries over human social learning, 
and therefore deviation from mutually beneficial 
interactions. We first address the question of the 
interplay between the game environment and the 
heterogeneity in formation of high-order beliefs over the 
opponent’s behavior through strategic learning. We 
show that in a competitive repeated interaction, the 
payoff structure of the underlying game can influence 
the engagement in strategically sophisticated learning 
and explain deviation from game optimality 
(equilibrium). Our data suggest that participants in a 
disadvantaged role are constraints in their learning 
sophistication, and thus in the overcoming of their 
position, by their own cognitive capacities. Their 
opponents, albeit advantaged, still need to engage in 
strategically sophisticated learning but to follow and 
adjust their behavior in order to maximize their 
earnings. This study provides the first evidence of the 
key implication of strategic learning heterogeneity in 
equilibrium departure and provide insight to explain the 
emergence of a leader-follower dynamics of choice. In 
addition our results suggest that a cost-benefit analysis 
might drive the engagement of strategic players in a 
more sophisticated learning process. In a second step, 
we investigated the hypothesis that the depth of 
strategic learning is not the only factor in play to grasp 
the other’s mind during competitive interaction, but that 
the capacity to detect and exploit patterns in her 
behavior is also important. We found that not only 
subjects were able to detect patterns in the opponent’s 
behavior, but that the capacity to do so was not 
correlated to a lower engagement in sophisticated 
strategic learning, therefore suggesting that humans 
can combine information from both types of learning to 
improve belief accuracy during social decision making. 
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