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Abstract

After the first demonstration of graphene, 2D materials have attracted tremen-

dous attention in the electronic devices community. Graphene was regarded as

a promising material for electronics due to its extremely high carrier mobility.

However, graphene is a semi-metal that does not have a bandgap in its inherent

form, which makes it inappropriate for switching devices in digital logic circuits.

More recently new class of 2D semiconducting materials, such as Transition

Metal Dichalcogenides (TMDs), have been found, and it has been shown that

stacking layered materials to get heterostructures is a very powerful method to

tailor their properties, mixing them, but also inducing new ones. In this con-

text, this PhD thesis work focused on the electronic properties of monolayers

of TMDs, graphene/TMDs bilayers, and twisted bilayers of TMDs. In order

to study such a complex structures, we have combined the density functional

theory (DFT) approaches and simplified tight-binding (TB) models.

The first part of this work is to study theoretically the imperfections in the

crystal structure, such as point defects that can strongly modify the transport

properties. We analyze the effect of vacant sites on the density of states, the

conductivity, and the mobility of single layers of semiconducting TMDs with

the form MX2 (M = Mo, W and X = S, Se, Te). The electronic structure is

considered within an eleven band-model, which accounts for the relevant com-

bination of d orbitals of the metal M and p orbitals of the chalcogen X. We use

a real-space recursion method (Lanczos method) and Kubo-Greenwood formula

for the calculation of the conductivity in TMDs with different distributions of

the disorder. Our result show that M or X vacant atoms create midgap states

that localize charge carriers around the defects and which modify the transport

properties.

The second part focuses on the electronic properties of van der Waals het-

erostructures of graphene/MoS2, graphene/WSe2, twisted bilayer MoS2 through
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DFT and TB calculations. Plane-wave pseudopotential DFT calculations were

carried out with the ABINIT software package using the generalized gradient

approximations and local density approximations for the exchange- correlation

potential. In order to obtain precise results, we have fully optimized atomic

positions, as well as lattice parameters of all studied heterostructures. First-

principles calculations show the effect of the interlayer spacing between the

graphene monolayer and the MX2 monolayer on the location of the graphene

Dirac cone in the band gap of MX2 semiconductor. We further examine the

electronic properties with and without optimization of the atomic positions in

different bilayer configurations. For that, we studied graphene/MoS2: 4×4/3×3

[4:3], 5×5/4×4 [5:4], and 9×9/7×7 [9:7], and graphene/WSe2: 4×4/3×3 [4:3]

supercell geometries, having different magnitudes of lattice mismatch. It turns

out that this mismatch is a key parameter, whereas it has been often forgotten

in previous studies. Spin-orbit coupling interaction is also included to see how

the strong spin-orbital coupling in MX2 may influence the one of graphene.

Finally, we investigate the electronic localization in twisted bilayer MoS2. We

propose a new DFT-based Slater-Koster TB model to find the band structure

of twisted bilayer MoS2 with small rotation angles θ, where the moiré unit cell

becomes too large for DFT computations. This allows the first reliable and

systematic studies of such states in twisted bilayer MoS2 for the whole range

of rotation angles θ. We show that isolated bands appear at low energy for

θ . 5 − 6◦. Moreover, these bands become “flat bands”, characterized by a

vanishing average velocity, for the smallest angles θ . 2◦, thus conforming the

existence of moiré flat bands in twisted bilayer semiconductors, as they exist in

twisted bilayer graphene.



Résumé

Depuis la découverte du graphène, les matériaux 2D ont suscité une atten-

tion considérable dans la communauté des matériaux pour l’électronique. Le

graphène est un matériau prometteur par la très grande mobilité de ses porteurs

de charge. Cependant, pur, il est un semi-métal sans bande interdite, ce qui

le rend inapproprié pour des dispositifs électroniques. Récemment, de nouvelles

familles de semi-conducteurs 2D, tels que les dichalcogénures de métaux de tran-

sition (TMD), ont été découvertes. Et il a été démontré que l’empilement de

matériaux en couches, formant des hétérostructures, est une méthode très per-

formante pour modifier leurs propriétés, les mélanger et en induire de nouvelles.

Dans ce contexte, cette thèse a porté sur les propriétés électroniques de mono-

couches de TMD, de bicouches de graphène/TMD et de bicouches tournées de

TMD. Afin d’étudier ces structures complexes, nous avons combiné approches

par théorie de fonctionnelle de la densité (DFT) et modèles simplifiés en liaisons

fortes (TB).

La première partie consiste en une étude théorique des d’imperfections de la

structure cristalline, telles que des défauts ponctuels pouvant modifier fortement

les propriétés de transport. Nous analysons l’effet de lacunes atomiques sur la

densité des états, la conductivité et la mobilité des monocouches de TMDs semi-

conducteurs MX2 (M = Mo, W et X = S, Se, Te). La structure électronique est

décrite par onze bandes, combinaison des orbitales d du métal M et des orbitales

p du chalcogène X. Par une méthode de récursion dans l’espace réel (méthode

de Lanczos) et la formule de Kubo-Greenwood nous calculons la conductivité

pour différentes distributions de désordre. Nos résultats montrent comment les

lacunes créent des états d’impureté qui localisent les porteurs de charge autour

des défauts et modifient les propriétés de transport.

La deuxième partie se concentre sur les propriétés d’hétérostructures de van der

Waals bicouche graphène/MoS2, graphène/WSe2 et de la bicouche tournée de
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MoS2 par des calculs DFT et TB. Les calculs de DFT, à partir d’ondes plane

et de pseudo-potentiel, ont été effectués avec le logiciel ABINIT en utilisant

l’approximation de gradient généralisées et de la densité locale pour le potentiel

d’échange-corrélation. Afin d’obtenir des résultats précis, nous relaxons les posi-

tions atomiques ainsi que le paramètre de maille. Ces calculs montrent l’effet de

l’espacement entre les monocouches de graphène et MX2 sur la position du cône

de Dirac du graphène dans la bande interdite du semi-conducteur MX2. Nous

analysons aussi les propriétés électroniques avec et sans optimisation des posi-

tions atomiques dans différentes configurations de bicouches. Pour cela, nous

avons étudié des super-mailles de graphène/MoS2 (4×4/3×3 [4:3], 5×5/4×4

[5:4], and 9×9/7×7 [9:7]) et de graphène/WSe2 (4×4/3×3 [4:3]) ayant des in-

compatibilités de paramètres de maille différentes. En effet cette incompatibilité

est un paramètre clé, alors qu’il a souvent été négligé dans les études précédentes.

Le couplage spin-orbite est également inclus pour étudier comment le fort spin-

orbite du MX2 peut influencer celui du graphène.

Enfin, nous étudions la localisation électronique dans les bicouches tournées de

MoS2. Nous proposons un nouveau modèle TB, de type Slater-Koster basé sur

la DFT, pour calculer la structure de bande de bicouches tournées aux petits

angles de rotation θ, qui formant un moiré de trop grande taille pour être traité

en DFT. Cela permet l’une des premières études fiable et systématique pour

une grande gamme des angles de rotation θ. Nous montrons que des bandes

isolées apparaissent à énergie faible pour θ . 5 − 6◦. Ces bandes deviennent

plates, caractérisées par une vitesse moyenne très faible, pour des angles plus

petits θ . 2◦, confirmant ainsi l’existence de bandes plates de moiré dans les

bicouches tournées de semi-conducteurs, comme elles existent dans les bicouches

de graphène.
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The characterization of materials deals with many parameters and proper-

ties, being the dimensionality of the system one of the determining points taken

for such a procedure. The arrival of new technologies enhances the possibility of

discovery and later production of new kind of materials, this is what happened

with graphene, the first 2D material synthesized in the laboratory [8,67,155,248].

For a long time it was believed that the realization of 2D materials was not pos-

sible. Theoreticians working in that aspect like Landau and Peierls [100, 167]

argued that any 2D crystal was thermodynamically unstable. After 2004, Andre

Geim and Kostya Novoselov from Manchester University were able to isolate

a graphene sheet containing a single layer of carbon atom using “Scotch tape”

method [155,156]. This result was awarded the Nobel prize in Physics 2010.

The family of 2D layered materials has gained appreciable attention over the

last few years, starting with graphene [157]. The disclosure of every new ma-

terial leads to enthusiasm and mystery because of the contrasting properties of

these 2D materials from their bulk materials. The 2D library is increasing in

size every year and contains more than 150 exotic materials that can easily be

cleaved into sub-nanometer 2D monolayers [19, 245]. These 2D materials [246]

include transition metal dichalcogenides (TMDs), e.g. MoS2, MoSe2, MoTe2,

WS2, WSe2 WTe2, hexagonal boron nitride (h-BN), 2D silicene, 2D-germanium

and MXenes (2D carbides/nitrides) [206].

Electronic properties of 2D materials.

Graphene, hexagonal boron nitride monolayers [107] and TMDs with a 2H sym-

metry (2H-TMDs) [127] are all well-established 2D materials. Graphene displays

a sixfold rotational symmetry and also has three mirror planes, while hBN and

hexagonal 2H-TMDs have a sixfold rotational-inversion symmetry with two mir-

ror planes. The physical properties of these materials have been studied by many

groups (for reviews see for instance [5, 151]). But two-dimensional structural

anisotropy implies that a given material displays different physical properties

when probed along different spatial directions, and lowering the symmetry of

graphene and of other two-dimensional materials by the application of strain

leads to remarkable effects, not available in the highly symmetric phase. A

striking effect from a lowered local symmetry is the superconductivity observed

in twisted bilayer graphene [22].

The discovery of graphene, however, was just the beginning of the story re-

lated to these 2 dimensional materials. Graphene is a prominent material from

the other 2D materials because of its peculiar properties like exclusive electronic
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band structure, high transparency with 0 eV bandgap, and thermal conductivity

(3000-5000 Wm−1K−1) [251]. These unique properties enabled graphene to be a

significant actor in liquid crystal displays and LEDs, etc. However graphene is

a semimetal with zero bandgap, and in this scenario, one can say that other 2D

materials, particularly TMDs, have what graphene does not: a bandgap range

of 1.2 to 1.9 eV [64], which admirably corresponds to the solar spectrum and

analogs to ongoing industrial needs in photovoltaics. The upcoming generations

of nanoelectronics require a discourse of the enhancing desire of reducing the size

of elements in the circuit but not the quality. Due to the usage of monoatomic

thin layers of 2D materials and their fine quality, it is possible to control elec-

trostatic conductivity more efficiently. Moreover, the charge carrier scattering

is reduced in 2D materials as compared to their bulk materials, owing to the

reduced number of dangling bonds [221].

The 2D materials have a layered structure with strong covalent interlayer bond-

ing and relatively weak interlayer van der Waals forces [19]. The layered struc-

ture of 2D materials permits efficient electronic properties and conductivity much

higher within the layers than between the layers, normally three or four orders

of magnitude [51, 153]. Some of the noticeable properties that make 2D mate-

rials interesting are: high carrier mobility, superconductivity, mechanical flex-

ibility, exceptional thermal conductivity, large photoluminescence, high optical

and UV absorption, quantum spin Hall effect, strong light-matter interactions,

and observation of highly confined plasmon polaritons [114, 119, 126, 151, 237].

Interestingly, these properties can be efficiently harnessed in 2D materials by

means of strain engineering, number of atomic layers, adsorption, and interlayer

twist [54,140,225,237].

Transition Metal Dichalcogenides.

The layered 2D transition metal dichalcogenides contain a large number of crys-

tals and are represented by the general formula of MX2 where M is a transition

metal from groups IV B (Ti, Zr, Hf), V B (V, Nb, Ta), VI B (Mo, W), VII B

(Tc, Re) and X is a chalcogen element from group VI A (S, Se, Te) [83, 173].

Depending upon the layer number, elemental conjuction, and presence or ab-

sence of dopant, TMDs exhibit a bandgap ranging from 0 to 2 eV, unlike pure

graphene which is a semimetal with zero bandgap [226].

The TMDs are classified into metals, semimetals, insulators and superconduc-

tors based upon the elemental composition and structural layout. Layered TMDs

are leading successors of graphene and they are transparent, flexible and as thin
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as graphene [244]. Apart from sharing comparability of bandgap, on/off ratio,

and charge carrier mobility to that of ever-present in silicon, TMDs can also be

stacked on to the flexible substrate and can bear stress and strain consents of

flexible support [26].

The crystalline structure of TMDs (MX2) has a atomic layer of transition metal

(M) that is sandwiched between two atomic layers of chalcogens (X). In an MX2

monolayer, a covalent bond is formed by coordination of d orbitals of M and

p orbitals of X atoms. Every individual layer has weak van der Waals forces

(vdW). Because of weak vdW interaction between each layer, bulk TMDs can

be exfoliated into monolayers by chemical, mechanical or electrochemical ex-

foliation methods. On account of the quantum confinement effect and surface

properties, there are various properties observed in monolayer TMDs which are

not observed in their bulk materials. The bandgap of TMDs convert from direct

to indirect: a monolayer of TMDs, like MoS2 (1.8 eV), MoSe2 (1.5 eV), MoTe2

(1.1 eV), WSe2 (1.6 eV) shows a direct bandgap, though their bulk materials

show indirect bandgap with smaller energies [97].

The MX2 have three types of crystal structures based upon the atomic stacking:

trigonal prismatic (2H) phase, an octahedral (1T) phase, and a rhombohedral

(3R) phase [76, 210]. In the 2H-MX2 phase, every M atom prismatically col-

laborates to six neighboring X atoms and in the 1T-MX2 phase, the nearby six

X atoms exihibit a distorted octahedron, circling one M atom. The 2H phase

is thermodynamically stable and the 1T phase is metastable. The 1T phase

is thermodynamically unstable and it shows metallic behavior, whereas the 2H

phase is thermodynamically stable and it shows semiconducting behavior which

is important for optoelectrical properties [150]. In my thesis, we used the most

stable and semiconducting natural phase (2H-MX2).

Van der Waals Heterostructures.

The 2D layered materials have covered an amazing range of electrical, chemical,

optical and mechanical properties, perhaps the most surprising discovery is that

these crystals can be combined freely to create altogether new materials [54].

Strong covalent bonds provide in-plane stability of 2D layered materials of the

crystals; these materials are called van der Waals heterostructures because the

atomically thin layers are not mixed through a chemical reaction but rather at-

tached to each other via a weak van der Waals interaction [157]. More recently,

considerable efforts have been devoted to the van der Waals integration of dif-

ferent 2D layered materials by vertically stacking distinct 2D layered materials
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to form 2D−2D heterostructures and superlattices. 2D−2D heterostructures of

distinct 2D layered materials (graphene, MoS2, WSe2, etc.) give rise to intrigu-

ing possibilities for controlling and manipulating the generation, confinement

and transport of charge carriers [115]. An important consideration when stack-

ing 2D layered materials is the crystal orientation; the relative alignment of the

lattice can have a significant impact on the structural outcome of certain systems

(such as the resulting moiré and other periodic patterns), which might result in

a commensurate to incommensurate transition [230]. Generally, a moiré pattern

appears only when the regular patterns are rotated by a small twist angle rela-

tive to each other, but similar pitches. In my thesis, we study two different types

of vdW heterostructures: graphene/MoS2, graphene/WSe2 and twisted bilayer

MoS2.

Electronic property calculations.

Since the 1990s, electronic structure calculations based on density functional

theory become more and more popular in condensed matter physics, quantum

chemistry, and materials science. Density functional theory is by far the most

widely used approach for electronic structure calculations nowadays. It is usu-

ally called first-principle method or ab initio method, because it allows people

to determine many properties of a condensed matter system by just giving some

basic structural information without any adjustable parameter. It provides an

alternative way to investigate condensed matter systems, other than the tra-

ditional experimental method and pure theoretical method based on quantum

field theory [218]. It is becoming a useful tool used by both experimentalists

and theorists to understand characteristic properties of materials and to make

specific predictions of experimentally observable phenomena for real materials

and to design new materials.

The most widely used programs today are based on the Kohn-Sham ansatz to

original density functional theory [34,128]. The Kohn-Sham ansatz is to replace

the original many-body problem by an auxiliary independent-particle system,

specifically, it maps the original interacting system with a real potential onto a

fictitious non-interacting system whereby the electrons move within an effective

Kohn-Sham single-particle potential. The many-body effects are approximated

by a exchange-correlation functional in the effective Kohn-Sham single-particle

potential. The most widely used exchange-correlation functionals are the local

density approximation (LDA) [128, 160] and the generalized gradient approxi-

mation (GGA) [65,128].
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When the number of atoms and electrons is very small we can use an exact

method like configuration interaction to calculate the true many-electron wave

function. However, beyond about 10 electrons we hit the exponential wall and

such calculations become impossible. For larger systems containing up to a few

hundred or a few thousand atoms we can use DFT techniques to find the ground

state density and ground state energy of the interacting system without explic-

itly calculating the many-electron wave function. In a DFT calculation we can

calculate an approximation to the actual band structure of the crystal.

In even larger systems with around thousands or more atoms, we can no longer

use self-consistent DFT calculations to take into account the full interaction.

To calculate the band structure and set of approximate single-particle states we

instead try to include the effects of the interaction in a semiempirical way, using

a tight-binding model, based on Slater-Koster (SK) parameters. The SK param-

eters are extracted from the DFT on smaller systems. The starting point for all

semiempirical approaches is the physics. In metals, for example, the electrons

are almost free and so we can treat the single-particle states in terms of plane

waves. We could also take a very different approach and assume that the states

in a crystal look like combinations of the wave functions of isolated atoms. We

might imagine this is more likely to be the case in insulators or semiconductors.

Outline of the Thesis.

The structure of the thesis is summarized in the following: The first two chapters

(chapter-2 and 3) are a review of methods developed by other groups, briefly

explain about the first principle calculations, tight-binding method, spin-orbit

coupling, and numerical methods for quantum transport properties. The physics

starts only in chapter-4, first with a bit more details on 2D materials (lattice,

Brillouin zone, etc), then with our new results (chapter-4, 5, and 6).

Chapter-2

In this chapter, we briefly describe the methods used along the thesis to perform

the theoretical calculations of the electronic properties of the studied materials.

This includes density functional theory (DFT) and the tight-binding method

(TB).

Chapter-3

This chapter focuses on the implementation of numerical methods of quantum

transport. Particularly, we focus on the implementation of the recursion method
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(Lanczos) to calculate the density of states (DOS) and transport properties based

on the Chebyshev polynomials and the Kubo-Greenwood formula.

Chapter-4

We studied imperfections in the crystal structure, such as point defects, that can

strongly modify the transport properties of materials. Here, we study the effect

of point defects on the quantum conductivity of single layers of semiconducting

transition metal dichalcogenides with the form MX2, where M = Mo, W and

X = S, Se, Te. The electronic structure is considered within an eleven band

tight-binding model, which accounts for the relevant combination of d orbitals

of the transition metal M (5-orbitals) and p orbitals of the chalcogen X [(top-

X) 3 + (bottom-X) 3 = 6-orbitals]. We use the Kubo-Greenwood formula for

the calculation of the conductivity in samples witch different distributions of

disorder.

Chapter-5

In this chapter, we discuss the structural and electronic properties of different

heterostructures like graphene/MoS2 and graphene/WSe2. Vertically stacked

graphene and MoS2 monolayers have a huge lattice mismatch between the layers.

To reduce the lattice mismatch between the layers we consider different supercell

geometries of graphene and MoS2: graphene/MoS2 [4×4 (graphene)/3×3 (MoS2)

4:3, similarly 5:4 and 9:7]. Some research groups [174, 192, 196] have tried and

succeeded to reduce the lattice mismatch between the layers up to 2.9 %. Finally,

we reduced the lattice mismatch between the layers (graphene/MoS2) from 3.5 %

to 0.5 %, and for graphene/WSe2 to 0.6%. After that, we studied the electrical

properties of the above configurations with and without relaxations.

Chapter-6

We report moiré patterns that are known to confine electronic states in TMDs

bilayers, thus generalizing the notion of magic angles discovered in twisted bi-

layer graphene to semiconductors. Here, we present a new Slater-Koster tight-

binding model that allows the first reliable and systematic studies of such states

in twisted bilayer MoS2 for the whole range of rotation angles θ. We show that

isolated bands appear at low energy for θ ≤ 5 − 6◦. Moreover, these bands be-

come “flat bands”, characterized by a vanishing average velocity, for the smallest

angles θ ≤ 2◦.
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Theoretical and Methodological background Chapter-2

In the twentieth century, one of the most important advances in physics was

the development of quantum mechanics and the many experimental observations

which confirmed this theory [36,236]. The translation of quantum mechanics and

statistical mechanics of molecular and solid-state systems into efficient numerical

algorithms has allowed us to accurately study many systems computationally.

This was used to obtain a deeper understanding of physics beyond experimental

observations.

In the last three decades onwards, Density functional theory (DFT) has become

one of the most popular and widely used methods to solve the many-body prob-

lems in physics and chemistry. The main reason is that DFT can treat many

problems with high accuracy.

In this chapter, we introduce some concepts related to quantum physics to set

the basis to explain briefly the standard time-independent DFT. Several approx-

imations such as Born-Oppenheimer (BO), exchange correlations (LDA, GGA

...) are described. We only try to give a brief explanation without attempting

to discuss the underlying mathematics. For solving the many-body problem, we

made two approximations. One is the Born-Oppenheimer (BO) approximation

and the second one is the Hartree-Fock (HF) approximation.

2.1 The Born-Oppenheimer approximation

The forces on both electrons and nuclei due to their electric charge are of the

same order of magnitude, and so the changes which occur in their momenta as a

result of these forces must also be the same. Therefore, assume that the actual

momenta of the electrons and nuclei were of similar magnitude. In this case,

since the nuclei are so much more massive than the electrons, they must have

much smaller velocities. Thus it is possible that on the typical time scale of

the nuclear motion, the electrons will rapidly relax to the instantaneous ground

state configuration, so that in solving the time-independent Schrödinger equation

resulting from the Hamiltonian.

Ĥ = −1

2

∑
i

∇2
i −

∑
α

1

2mα

∇2
α −

∑
i

∑
α

Zα
|ri − rα|

+
1

2

∑
i

∑
i 6=j

1

|ri − rj|

+
∑
α

∑
β 6≡α

ZαZβ
|rα − rβ|

(2.1)

where mα is nuclear mass and Zα atomic numbers. In equation 2.1 the first

term represents the kinetic energy of the electrons, the second term represents

the kinetic energy of the nucleus, the third term represents electron and nuclei

interaction, the fourth term represents electron-electron interaction, and the

final term represents inter-nuclear Coulomb interaction energies. We can assume

10
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that the nuclei are stationary and solve for the electronic ground state first, and

then calculate the energy of the system in that configuration and solve for the

nuclear motion. This separation of electronic and nuclear motion is known as

the Born-Oppenheimer (BO) approximation [15]. According to Ziman

principles [252], eigen-function for the above Hamiltonian equation 2.1 can be

written as

ψ̃
({
ri
}
,
{
rα
})

= ψ
({
ri
}
,
{
rα
})
φ
({
rα
})
. (2.2)

Where ψ
({
ri
}
,
{
rα
})

is a wave function only for the
{
ri
}

with the
{
rα
}

as

parameters satisfy the time independent Schrödinger equation

[
− 1

2

∑
i

∇2
i −

∑
i

∑
α

Zα
|ri − rα|

+
1

2

∑
i

∑
i 6=j

1

|ri − rj|

]
ψ
({
ri
}
,
{
rα
})

= Ee
{
rα
}
ψ
({
ri
}
,
{
rα
}) (2.3)

in which the dependence of the eigenvalues Ee on the nuclear positions
{
rα
}

are

acknowledged. We apply the full Hamiltonian of equation (2.1)

Ĥψ̃
({
ri
}
,
{
rα
})

=

[
−1

2

∑
β

1

mβ

∇2
β+Ee

{
rα
}

+
1

2

∑
β

∑
γ 6=β

ZβZγ
|rβ − rγ|

]
ψ̃
({
ri
}
,
{
rβ
})

(2.4)

and substitute equation 2.2 in equation 2.4. Then we can get,

= ψ
({
ri
}
,
{
rβ
})[
− 1

2

∑
β

1

mβ

∇2
β + Ee

{
rα
}

+
1

2

∑
β

∑
γ 6=β

ZβZγ
|rβ − rγ|

]
φ
({
rα
})

−
∑
β

1

2mβ

[
2∇βφ

({
rα
})
· ∇βψ

({
ri
}
,
{
rβ
})

+ φ
({
rα
})
∇2
βψ
({
ri
}
,
{
rβ
})]
(2.5)

The energy Ee
{
rα
}

is called the adiabatic contribution of the electrons to the

energy of the system. The remaining non-adiabatic terms contribute very little

to the energy, which can be demonstrated using time-independent perturbation

theory [201]. The first-order correction arising from the first non-adiabatic term

on the last line of equation 2.5 reads

−
∫ ∏

j

drj
∏
β

drβψ
∗
({
ri
}
,
{
rα
})
φ∗
({
rα
})∑

r

1

mr

[
∇rφ

({
rα
})
·∇rψ

({
ri
}
,
{
rα
})]

(2.6)

= −
∑
r

∫ ∏
β

drβφ
∗
({
rα
})
∇rφ

({
rα
})
·

[∫ ∏
j

drjψ
∗
({
ri
}
,
{
rα
})
∇rψ

({
ri
}
,
{
rα
})]

(2.7)

11



Theoretical and Methodological background Chapter-2

The part of the above equation inside the big bracket term reads[∫ ∏
j

drjψ
∗
({
ri
}
,
{
rα
})
∇rψ

({
ri
}
,
{
rα
})]

. (2.8)

Rearranging the terms of above equation leads to

1

2
∇r

[∫ ∏
j

drj

∣∣∣ψ({ri},{rα})∣∣∣2 ], (2.9)

From equation 2.9 the term inside the bracket (normalization) goes to zero
1
2
∇r[1] = 0.

Therefore, the normalization of the electronic wave-function does not change

when the nuclei move so that the first-order contribution vanishes. The second-

order shift due to this term does not vanish and gives rise to transitions between

electronic states as the ions move, otherwise known as electron-phonon interac-

tion, which will modify the energy. The second non-adiabatic term in the final

term of equation 2.5 will be the largest when the electrons labeled ′i′ are tightly

bound to the nuclei labeled α.

The wave function can be written as ψ
({
ri
}
,
{
rα
})

= ψ
({
u(i,α)

})
,

where u(i,α) = ri − rα and the second term of the last line of equation 2.5 is

−
∫ ∏

j

drj
∏
β

drβψ
∗
({
u(i,α)

})
φ∗
({
rα
})∑

r

1

2mα

[
φ
({
rα
})
∇2
rψ
({
u(i,α)

})]
(2.10)

= −
∑
r

1

2mr

[∫ ∏
β

drβ

∣∣∣φ({rα})∣∣∣2 ][∫ ∏
(j,β)

du(j,β)ψ
∗
({
u(i,α)

})
∇2
rψ
({
u(i,α)

})]

= −
∑
(k,r)

1

mr

∫ ∏
(j,β)

ψ∗
({
u(i,α)

})1

2
∇2

(k,r)ψ
({
u(i,α)

})
.

(2.11)

The order of the electronic kinetic energy multiplied by the ratio of the electron

and nuclear masses is much smaller, so the contribution of this term is neglected.

Therefore neglecting the non-adiabatic terms in equation 2.4 is justified if φ
{
rα
}

obeys the Schrödinger equation of the form

[
− 1

2

∑
β

1

mβ

∇2
β + Ee

{
rα
}

+
1

2

∑
β

∑
γ 6=β

ZβZγ
|rβ − rγ|

]
φ
{
rα
}

= Eφ
{
rα
}
. (2.12)

The adiabatic principle is crucial because it allows us to separate the nuclear

and electron motion, leaving a residual electron-phonon interaction.

From this point, it is assumed that the electrons respond instantaneously to the

nuclear motion and always occupy the ground state of that nuclear configuration.

12
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2.1.1 Hartree-Fock approximation

In the Hartree-Fock (HF) approximation the electronic wave function ψ [50,124],

introduced in the BO approximation, is rewritten as an anti-symmetric product

of one-particle wave functions φi(ri, σi),

ψ(r1, σ1, r2, σ2 · · · ) =
1√
N !

N !∑
p

(−1)pP̂ [φ1(r1, σ1)× φ2(r2, σ2) · · · × φN(rN , σN)]

(2.13)

where N is the number of electrons and P̂ is the permutation operator yielding

N ! permutations. Each of these is characterized by a number of elementary

permutations of the two electrons, p. As such, the wave function can be rewritten

as a determinant, the so called Slater determinant

ψ(r1, σ1, r2, σ2 · · · ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
φ1(r1, σ1) φ2(r1, σ1) · · · φN(r1, σ1)

φ1(r2, σ2) φ2(r2, σ2) · · · φN(r2, σ2)
...

...
. . .

...

φ1(rN , σN) φ2(rN , σN) · · · φN(rN , σN)

∣∣∣∣∣∣∣∣∣∣
. (2.14)

An equation for the one-particle orbitals φi can be derived by making use of

the variational principle of quantum mechanics. It states that the energy cor-

responding to a variational wave function ψ̃ always exceeds the ground state

energy E0,

E0 ≤
〈ψ̃|H|ψ̃〉
〈ψ̃|ψ̃〉

. (2.15)

Ortho-normalization of the one-electron orbitals, 〈φ|φ〉 = δij, is imposed by

using Lagrange multipliers. The derivation is too long to present it here [92].

The result of the HF approximation is the Hartree-Fock equation for the one

electron orbitals φi(r1). The Hamiltonian consists of a one electron operator ĥ1

and two electron operators Ĵ and K̂. The electron operators are:

[
ĥ1 + Ĵ − K̂

]
φi(r1) = εiφi(r1) (2.16)

The one electron operator is:

ĥ1 = −1

2
∇2

1 −
∑
I

ZI
r1I

(2.17)

where r1I = |r1 −RI |. The first term represents the kinetic energy of the electron

and the second term is the operator of the Coulomb interaction between the

electron and the nuclei. The first two electron operator, Ĵ , is the direct operator.

It is given by

Ĵφi(r1) =
∑
j

∫
φ∗j(r2)φj(r2)φi(r1)

r12
dr2 (2.18)
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with r12 = |r1 − r2|. The second two electron operator, K̂, is the exchange

operator given by

K̂φi(r1) =
∑
j‖i

∫
φ∗j(r2)φj(r1)φi(r2)

r12
dr2 (2.19)

The summation over j‖i runs over all electrons with spin parallel to the spin of

particle i.

HF approximation summary:

• The exchange density is subtracted and based on electrons with spin parallel

to that of electron i are located outside the region around i. The region is

called the Fermi exchange hole.

• The self interaction between the electrons are canceled in the HF approxima-

tion, because of the presence of the exchange operator.

• In the Hartree approximation, the antisymmetrization of the wave function

is not carried out. Therefore, it suffered from self-interaction. The cor-

responding energy HHF is always higher than that of the ground state

energy E0. The energy difference is called as the correlation energy, EC =

EHF − E0.

• By using post-HF methods, one can systematically increase the accuracy of

the HF approximation.

The flow chart Fig. 2.1 indicates the possibilities of electronic structure calcula-

tion with different codes, mainly two types of codes. A first one is wave function

based and the second one is electronic density based as shown in Fig. 2.1. In

my thesis, I worked with electronic density based codes and the explanation of

parameters can be found in the next sections.

2.2 Density Functional Theory (DFT)

The quantum mechanical wave function contains, in principle, all the information

about a given system. For the case of a simple 2-D square potential or even a

hydrogen atom we can solve the Schrödinger equation exactly [33] in order to

get the wave function of the system. We can then determine the allowed energy

states of the system. Unfortunately it is impossible to solve the Schrödinger

equation for a N -body system. Evidently, we must involve some approximations

to render the problem soluble albeit tricky. Here we have our simplest definition

of DFT: A method of obtaining an approximate solution to the Schrödinger

equation of a many-body system.
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Electronic structure

Wave function based codes Electronic density based codes

Semi empirical:

HMO,EHT, CNDO,

AMI, ....

ab initio

Hartree-Fock (HF)

Post-HF [Many body perturbation

theory: (MPn), CASPT2,

Coupled-Cluster: CCSD]

First

principles Semi-empirical

[EMT, EAM]DFT

Kohn-Sham

(LDA, GGA, ..)

Many-body corrections (GW),

ABINIT, VASP, ....

Figure 2.1: Flow chart for different type of codes for electronic structure calcu-

lations.

In DFT the electron density n(r) is the principal quantity. The aim of general

DFT [34, 73, 93, 128] is to reformulate the quantum mechanical theory in terms

of the density instead of the wave function. DFT computational codes are used

in practiced to investigate the structural, magnetic and electronic properties of

molecules, materials with or without defects.

2.2.1 The Hohenberg-Kohn theorems

As a result of the Born-Oppenheimer approximation, the Coulomb potential

arising from the nuclei is treated as a static potential Vext(r)

Ĥ = F̂ + V̂ext, (2.20)

such that

F̂ = −1

2

∑
i

∇2
i +−1

2

∑
i

∑
j 6=i

1

|ri − rj|
, (2.21)

and

V̂ext =
∑
i

Vext(ri) = −
∑
α

Zα
|r − rα|

, (2.22)

F̂ is the same for all N -electron systems, so that the Hamiltonian, and hence the

ground state |ψ0〉, are completely determined by F̂ and Vext. The ground state
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|ψ0〉 for this Hamiltonian gives rise to a ground state electronic density n0(r),

n0(r) = 〈ψ0| n̂ |ψ0〉 =

∫ N∏
i=2

dri |ψ0(r1, r2, r3 · · · rN |2 . (2.23)

Thus the ground states |ψ0〉 and density n0(r) are both functionals of their

number of electrons N and the external potential Vext(r). DFT was introduced

in 1964 by Hohenberg and Kohn [73,74,93,105].

2.2.1.1 The Hohenberg-Kohn theorem-1

Statement-1:

For any system of interacting particles the external potential Vext(r) is uniquely

determined by the corresponding ground state density, to within an additive

content.

“The external potential V (r) is determined, within a trivial additive constant

by the ground-state electron density ρ”.

Proof:

The first external potential Vext(r) and ground state |ψ0〉, 2nd external potential

V
′
ext(r) and ground state |ψ′0〉.

Both give the same ground state density n0(r).

The corresponding ground state energies are E0 = 〈ψ0| Ĥ |ψ0〉 andE
′
0 = 〈ψ′0| Ĥ

′ |ψ′0〉.
where Ĥ = F̂ + V̂ext and Ĥ ′ = F̂ + V̂

′
ext

Taking |ψ′0〉 as a trial wave function for the Hamiltonian Ĥ, we obtain the strict

inequality.

E0 < 〈ψ
′

0| Ĥ |ψ
′

0〉 = 〈ψ′0| Ĥ
′ |ψ′0〉+ 〈ψ′0| Ĥ − Ĥ

′ |ψ′0〉 (2.24)

E0 < 〈ψ
′

0| Ĥ |ψ
′

0〉 = E
′

0 +

∫
drn0(r)[Vext(r)− V

′

ext(r)] (2.25)

where taking |ψ0〉 as a trial wave function for Ĥ ′ gives

E
′

0 < 〈ψ0| Ĥ ′ |ψ0〉 = 〈ψ0| Ĥ |ψ0〉+ 〈ψ0| Ĥ ′ − Ĥ |ψ0〉 (2.26)

E
′

0 < 〈ψ0| Ĥ |ψ0〉 = E0 −
∫
drn0(r)[Vext(r)− V

′

ext(r)] (2.27)

adding equations 2.25 and 2.27 leads to

E0 + E
′

0 < E
′

0 + E0. (E0 = 〈ψ0| Ĥ |ψ0〉 < 〈ψ
′

0| Ĥ |ψ
′

0〉) (2.28)

Which is clearly a contradiction [73,74].

Thus, at least in principle, the ground state density determines (up to a con-

stant), the external potential of the Schrödinger equation of which it is a solution,
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the external potential and the number of electrons N =
∫
drn0(r) determine all

the ground state properties of the system since the Hamiltonian and the ground

state wave function is determined by them.

So far, the functional F (n) = 〈ψ| F̂ |ψ〉 is special and well defined for all densities

n(r) that are ground state densities for some external potential (V-representable).

Therefore n(r) determines the external potential and N (and therefore F̂ ) and

hence |ψ〉. Now a functional for an arbitrary external potential V (r) unrelated

to the potential Vext(r) determined by n(r) can be defined:

Ev[n] = F [n] +

∫
drV (r)n(r). (2.29)

2.2.1.2 The Hohenberg-Kohn theorem-2

Statement-2:

For all V-representable densities n(r), Ev[n] ≥ E0 where E0 is now the ground

state energy for N electrons in the external potential V (r).

The first Hohenberg-Kohn theorem proves a one to one mapping between the

external potential and ground-state densities in a many-electron system.

It does not say anything about neither the analytic form of the univer-

sal functional F [n] nor the practical ways to obtain the ground-state

electron densities.

The second theorem concerns the latter issue.

By the first theorem, a given n(r) determines its own external potential Vext(r)

and ground state |ψ〉. If this state is used as a trial state for the Hamiltonian

with external potential V (r), we have

〈ψ| Ĥ |ψ〉 = 〈ψ| F̂ |ψ〉+ 〈ψ| V̂ |ψ〉 = F [n] +

∫
drV (r)n(r) = Ev[n] ≥ E0 (2.30)

by the variational principle. For non-degenerate ground states, equality only

holds if |ψ〉 is the ground state for the potential V (r) [73, 74].

The constrained search formulation

A functional of density n(r) for the operator F̂ is:

F [n] = min
|ψ〉→n

〈ψ| F̂ |ψ〉 . (2.31)

That is the functional takes the minimum value of the expectation value with

respect to all states |ψ〉 which gives the density n(r). For a system with external

potential V (r) and ground state |ψ〉 with energy E0 consider a state |ψ[n]〉 an

N -electron state which yields density n(r) and minimizes F [n]

Ev[n] = F [n] +

∫
drV (r)n(r) = 〈ψ[n]| (F̂ + V̂ ) |ψ[n]〉 (2.32)
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Since Ĥ = F̂ + V̂ , by the variational principle

Ev[n] ≥ E0 (2.33)

with equality only if |ψ[n]〉 = |ψ0〉.
This holds for all densities which can be obtained from an N -electron wave

function. But from the equation 2.24, we can get

F [n0] ≤ 〈ψ0| F̂ |ψ0〉 . (2.34)

Therefore |ψ0〉must be one of the states which yields n0(r). Adding
∫
drV (r)n(r)

gives

Ev[n] ≤ E0 (2.35)

which combined with the result of equation 2.26 is

Ev[n] ≥ Ev[n0] = E0 (2.36)

Thus the ground state density n0(r) minimizes the functional Ev[n] and the

minimal value is the ground state energy.

NOTE:

The requirement for non-degeneracy of the ground state has disappeared, and

further that instead of considering only V-representable densities, we can now

consider N-representable densities. The requirements of N-representability are

much weaker and satisfied by any well-behaved density, such as the quantity∫
dr
∣∣∣∇n 1

2 (r)
∣∣∣2.

Hohenberg-Kohn

Find an approximation for

FHK [n]

Compute density n0(~r) by minimizing E[n(~r)] = FHK [n(~r)] + Eext[n(~r)]

Compute energy E[n0(~r)]

Figure 2.2: Flow chart: Computational approaches for Hohenberg-Kohn (HK)

to calculate the energy.
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The flow chart Fig. 2.2 indicates that to calculate the energy by using HK

approximation, for that choose suitable approximation for functional density and

then compute density using Hohenberg-Kohn constrained search formulation.

2.2.2 The Kohn-Sham (KS) equations

In order to take advantage of the power of DFT without sacrificing accuracy

(that is including exchange and correlation effects), I follow the method of Kohn

and Sham [93] to map the problem of the system of interacting electrons onto

a fictitious system of non-interacting “electrons”. Fig. 2.3 indicates the con-

Vext(r) n0(~r) n0(~r) VKS(r)

ψi(r) ψ0(r) Ψi=1,Ne(r) Ψi(r)

HK

KS HK0

Figure 2.3: Chart for connection between the many-body and independent par-

ticles through Kohn-Sham (KS) equations.

nection between the many-body and independent particles through Kohn-Sham

equations [93]. Here HK0 denotes the Hohenberg-Kohn theorem applied to the

non-interacting problems. Kohn-Sham (KS) provides the connection in both di-

rections between the many-body particles and independent particle systems so

that the arrows connect any point to any other point. Therefore, in principle a

solution of the independent particle Kohn-Sham [93] determines all properties

of the full many-body system shown in Fig. 2.3.

The variational problem of the Hohenberg-Kohn density functional, with a La-

grange multiplier µ to limit the number of electrons to N : leads to

δ
[
F [n] +

∫
drVext(r)n(r)− µ

(∫
drn(r)−N

)]
= 0 (2.37)

Kohn and Sham [93] separated F [n] into three parts

F [n] = Ts[n] +
1

2

∫
drdr

′ n(r)n(r
′
)

|r − r′|
+ Exc[n] (2.38)

where Ts[n] is the kinetic energy of a non-interacting gas with density n(r)

(not the same as that of the interacting system, although we might

hope that the two quantities are of the same order of magnitude).

Here 1
2

∫
drdr

′ n(r)n(r
′
)

|r−r′| is classical electrostatic (Hartree) energy, Exc[n] is the

exchange-correlation energy which contains the non-classical electrostatic inter-

action energy and the difference between the kinetic energy of the interacting

and non-interacting systems.
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The first and second terms can be dealt with simply, and the last term, which

contains the effect of the complex behavior is a small fraction of the total energy

and can be approximated surprisingly well.

Using this separation equation 2.37 can be written as

δTs[n]

δn(r)
+ Vks(r) = µ (2.39)

in which the Kohn-Sham potential Vks(r) is given by

Vks(r) =

∫
dr
′ n(r

′
)

|r − r′|
+ Vxc(r) + Vext(r) (2.40)

and the exchange-correlation potential Vxc(r) is

Vxc(r) =
δExc[n]

δn(r)
(2.41)

Here, the equation 2.39 is precisely the same equation which would be obtained

for a non-interacting system of particles moving in an external potential Vks(r).

To find the ground state density n0(r) for this non-interacting system we simply

solve the one-electron Schrödinger equations:[
− 1

2
∇2 + Vks(r)

]
ψi(r) = Eiψi(r) (2.42)

for 1
2
N single-particle state Vext(r), |ψ〉i with energies Ei. The density form

n(r) = 2

N
2∑
i=2

|ψi(r)|2 . (2.43)

Here the factor 2 is for spin degeneracy.

Assume that orbitals are single-occupied and the non-interacting kinetic-energy

Ts[n] from equations 2.38 and 2.43 is given by

Ts[n] = −
N
2∑
i=1

∫
drψ∗i (r)∇2ψi(r) (2.44)

Since the Kohn-Sham potential Vks depends upon the density n(r) it is necessary

to solve these equations self-consistently that is having made a guess for the form

of the density, the Schrödinger equation is solved to obtain a set of orbitals ψi(r)

from which a new density is constructed and the process repeated until the input

and output densities are the same.

The energy of the non-interacting system, the sum of a one-electron eigenvalue

is

2

N
2∑
i=1

Ei = Ts[n] +

∫
drn(r)Vks(r), (2.45)
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after rearrangement of the equation 2.45

2

N
2∑
i=1

Ei = Ts[n] +

∫
drdr

′ n(r)n(r
′
)

|r − r′ |
+

∫
drn(r)Vxc(r) +

∫
drn(r)Vext(r) (2.46)

If we compare this to the interacting system, one double-counts the Hartree

energy and over-counts the exchange-correlation energy so that the interaction

energy is

E = 2

N
2∑
i=1

Ei −
1

2

∫
drdr

′ n(r)n(r
′
)

|r − r′|
−
∫
drn(r)Vxc(r) + Exc[n]. (2.47)

A direct solution of the Schrödinger equation for the extended non-interacting

orbitals ψi(r) requires a computational effort which scales as the cube of the

system-size N , due to the cost of diagonalizing the Hamiltonian or orthogonil-

ising the orbitals, whereas the original complexity of finding a minimum of the

Hohenberg-Kohn functional only required an effort which scaled linearly with

N . Thus a linear scaling method must modify this Kohn-Sham scheme.

Kohn-Sham

Initial electron density n(r)

Calculate Kohn-Sham potential VKS(r)

Solve Kohn-Sham equation

Calculate new electron density n(r)

Self-consistent?

Calculate energy, forces, stresses

yes

no

Figure 2.4: Flow chart for Kohn-Sham (KS) self-consistent approaches.

A flow chart of the iteration scheme is shown in Fig. 2.4. At first, an initial

guess for the electron density is assumed, which is required for the calculation

of VKS(r), the diagonalization of the Kohn-Sham equations, and the subsequent
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evaluation of n(r) along with Etot. As long as the convergence criterion (self-

consistent) is not fulfilled, the numerical procedure is continued with the last

n(r) instead of the initial guess. When the criterion (self-consistent) is satisfied,

various output quantities are computed.

2.3 Exchange-correlation functional

The most widely used exchange-correlation (XC) approximations [73,93] are the

local density approximation (LDA) exchange-correlation functional [88] and the

Perdew-Burke-Ernzerhof (PBE) parameterized generalized gradient approxima-

tion (GGA) exchange-correlation functional [168].

2.3.1 The Local Density Approximation (LDA)

The results so far are exact, provided that the functional form of Exc[n] is known.

The problem of determining the functional form of the universal Hohenberg-

Kohn density functional has now been transferred to this one term,

but this term is not known exactly.

To make a simple exchange-correlation energy approximation that works ex-

tremely well, and the simplest of these is the local density approximation (LDA),

which is the approximation used in this work [88].

In the LDA, the contribution to the exchange-correlation energy from each in-

finitesimal volume in space, dr, is taken to be the value it would have if the

whole of space was filled with a homogeneous electron gas with the same density

as found in dr that is.

ELDA
xc [n] =

∫
Exc
(
n(r)

)
n(r)dr (2.48)

where Exc
(
n(r)

)
is the exchange-correlation energy per electron in a homoge-

neous electron gas of density n(r).

The exchange-correlation potential Vxc(r) is

Vxc =
δExc[n]

δn(r)
= Exc

(
n(r)

)
+ n(r)

dExcn(r)

dn
. (2.49)

The exchange-correlation energy for the homogeneous electron gas has been

calculated by Cerperely and Alder [25] using Monte Carlo methods and param-

eterize by Perdew and Zonger [169].

The LDA is exact in the limit of slowly-varying densities, however the density

in systems of interest varies rapidly, and the LDA would appear to be a crude

approximation. It is used as justified a posterior by its surprising success at

predicting physical properties in real systems. This success may be due in part
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to the fact that the sum rule for the exchange-correlation hole, which must be

obeyed by the real functional, is reproduced by the LDA.

Now we can connect the interacting and non-interacting systems using a vari-

able coupling constant λ which varies between 0 and 1. We replace the Coulomb

interaction by λ

|r−r′ | , and but λ vary in the presence of an external potential

Vλ(r) so that the ground-state density for all values of λ is the same [66].

The Hamiltonian is

Ĥλ = −1

2

∑
i

∇2
i +

1

2

∑
i

∑
i 6=j

λ

|ri − rj|
+ V̂ext + V̂λ. (2.50)

The exchange-correlation hole nxc(r, r
′
) is then defined in terms of a coupling

constant integration of the pair correlation function g(r, r
′

: λ) of the system

with density n(r) and scaled Coulomb interaction

nxc(r, r
′
) = n(r

′
)

∫ 1

0

dλ
[
g(r, r

′
: λ)− 1

]
. (2.51)

The exchange-correlation energy can be expressed in the form of a classical

interaction between the density n(r) and the hole density nxc(r, r
′
)

Exc[n] =
1

2

∫
drdr

′ n(r)nxc(r, r
′
)

|r − r′|
. (2.52)

A sum rule follows from the definition of the pair correlation function∫
dr
′
nxc(r, r

′
) = −1. (2.53)

The main factors of success of LDA are:

• The exchange-correlation hole excludes electrons as expected.

• The exchange-correlation energy depends only weakly on the detailed shape

of the exchange correlation hole.

PROS and CONS of LDA: [58–60]

1. Structural, elastic, and vibrational properties are often imprecise

• The bond length is 4 % and atomization energy is 2 % of the experi-

mental data.

• Crystal bulk lattice constants are accurate to within 3 %, usually

underestimated.

• Bulk modulation is somewhat too large, >10 % error is common for

d-orbitals.

• Phonons are somewhat stiff.
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2. Overestimation of binding energies (up to several eV), and underestimation

of the bonding distances between atoms.

3. Activation energies in chemical reactions are unreliable and relative sta-

bility of crystal bulk phases can be uncertain.

4. Electronic structure can be usefully interpreted (Density of states and band

structures), except for bandgaps.

2.3.2 The Generalized Gradient Approximation (GGA)

The LDA approximation can be improved on, taking into account the spatial

change in the local density by including the gradient in the XC functional.

This approach is called as the generalized gradient approximation (GGA). It

is important to note that the GGA is a semi-local approximation since only the

gradient at the same coordinate is taken into account. Thus XC functional is in

the form of

EGGA
xc [n] =

∫
Exc
(
n(r), |∇n(r)|

)
n(r)dr. (2.54)

A widely used GGA functional is the Perdew-Burke-Ernzerhof (PBE) functional

[168].

2.3.3 Van der Waals interactions

Long-range correlations are considered to be the source of van der Waals interac-

tions, but both the LDA and GGA approximations to the exchange-correlations

energy in DFT struggle to catch them. To include van der Waals interactions,

DFT-D methods have been implimented inside ABINIT, namely DFT-D2 [62]

and DFT-D3 [63]. The implementation includes the contribution of these meth-

ods to forces and stresses, in view of geometry optimization, as well as to first-

order response functions like dynamical matrices.

2.4 Tight-Binding Method

The tight-binding (TB) method based on Bloch’s formalism and Linear Combi-

nation of Atomic Orbital (LCAO) [145] is used in chemistry to study electronic

wave functions in a molecule. The TB method is built with atomic orbitals of

isolated atoms [61]. The TB method was successfully implemented by Slater

and Koster in 1954 [198] and applied to that periodic structures, as we make a

general theory that considers all orbitals. We know the electrons in a crystal
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obey the Schrödinger equation. The Hamiltonian for the electron in the solid is

Ĥ |ψ〉 = E |ψ〉 (2.55)

where Ĥ is the Hamiltonian operator, |ψ〉 is the electronic wave function of the

system and E is the total energy (E = p2

2m
+ V ) of the electrons. The wave

function |ψ〉 has the periodicity of the lattice. Suppose that there are M atoms

in each unit cell and ΓM orbitals per atom are considered to play a role in the

electrical properties of the studied material.

The LCAO theory, the starting point of the TB model is to consider that an

electronic wave function in a crystal is given by the superposition of the wave

functions of the isolated atoms. The first step is to decompose the total wave

function ψ as a linear combination of the periodic wave functions ψiα. Here, i

stands for the label of an atom in the unit cell (1 ≤ i ≤ M) and α stands for

one orbital of this atom (1 ≤ α ≤ ΓM). The linear combination is obtained by

multiplying each E by a proportionality factor ai.

ψ =
∑
i,α

aiαψiα. (2.56)

The wave function of the orbital α of an isolated atom i is called φiα(r − Ri),

where Ri stands for the Bravais lattice vector corresponding to the cell where

orbital i is. Ri is the position of the orbital only if there is 1 atom per cell. The

positions of the atom i in one of the lattice unit cells is obtained by applying

Bloch’s theorem [12], ψiα can be built with the functions φiα(r −Ri) as [198]

ψiα =
1√
N

∑
Ri

e(ik·Ri)φiα(r −Ri) (2.57)

where N is the number of unit cells in the crystal. By applying 〈ψjβ| and

ψ =
∑

iα aiαψiα to the Schrödinger equation

〈ψjβ| Ĥ
(∑

i,α

aiα |ψiα〉
)

= E 〈ψjβ|
∑
i,α

aiα |ψiα〉 (2.58)

after rearranging the above equation 2.58∑
i,α

aiα 〈ψjβ|Ĥ|ψiα〉 = E
∑
i,α

aiα 〈ψjβ|ψiα〉 (2.59)

To make the problem easier, let us consider a new notation

Hjβiα = 〈ψjβ|Ĥ|ψiα〉 and Sjβiα = 〈ψjβ|ψiα〉 (2.60)

The Hamiltonian matrix of the system can be written as

Hnmam = ESnmam (2.61)
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where the m→ iα and n→ jβ.

Rearranging the above equation 2.61 leads to (Hnm − ESnm)am = 0. A non

trivial solution is formed when the determinant of the matrix (H −ES) should

be zero.

|H − ES| = 0 (2.62)

The determinant gives an equation λ(E) = 0. The solution of this equation

yields the eigenvalues εi of the Schrödinger equation. Each eigenvalue corre-

sponds to an energy dispersion, also called an energy band of the system. In-

deed, the components of H and S depend on the wave vector k, and also the set

of eigenvalues then depends on k.

2.4.1 Slater-Koster parameters

To study the matrix elements from the TB method and extract the Slater-

Koster [198] parameters. In real space Hjβiα and Sjβiα can be written as [165]:

Hjβiα =
1

N

∑
Rj

∑
Ri

e

(
ik·(Ri−Rj)

) ∫
φ∗jβ(r −Rj)Ĥφiα(r −Ri)dr (2.63)

Sjβiα =
1

N

∑
Rj

∑
Ri

e

(
ik·(Ri−Rj)

) ∫
φ∗jβ(r −Rj)φiα(r −Ri)dr. (2.64)

Due to the periodicity of the lattice, one only considers the difference of the

positions of the atoms R = Rj − Ri. For the reference position of the atom, i

can be taken as zero position (Ri = 0). From the position of the atom i, the sum

can be influenced by the other atoms, at position of the atom j. If the crystal

contains N unit cells each distance R = Rj − Ri is to be taken to N times. A

simplified version of the above equations is

Hjβiα =
∑
R

e

(
−ik·R

) ∫
φ∗jβ(r −R)Ĥφiα(r)dr (2.65)

Sjβiα =
∑
R

e

(
−ik·R

) ∫
φ∗jβ(r −R)φiα(r)dr (2.66)

where
∫
φ∗jβ(r − R)Ĥφiα(r)dr is called the bond energy or the hopping param-

eter or on-site energy of Slater-Koster parameter, and is denoted by γjβiα, tjβiα

or Ejβiα (energy difference of i and j while bonding). The high value of this

parameter indicates that the electron could be easily moved from atom i to j,

by tunneling one orbital to another.
∫
φ∗jβ(r − R)φiα(r)dr is called the overlap

integral.

The Slater-Koster parameters are mainly composed of the angle between the

two atoms or orbitals (direction of cosines l, m, and n), bond integral between
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two orbitals, and also the distance between the two atoms.

To get rid of the electron-electron interaction, we can write the independent

electron Hamiltonian:

Ĥe = T̂e + V̂eff (2.67)

where V̂eff is an effective potential that contains all the possible interactions

in the solid. Assume that the effective potential (V̂eff ) is just the sum of the

atomic potential generated by all the atoms in the solid:

V̂eff =
∑
j

v(r −Rj) (2.68)

Substituting this equation in Hjβiα, we can get the different type of matrix

elements, see Fig. 2.5.

• One center, where the two orbitals and the potential are at the same atom.∫
φ∗jβ(r −Rj)v(r −Rj)φjβ(r −Rj)dr. (2.69)

• Two center, where each orbitals is sitting on a different atom and the

potential on one of them∫
φ∗iα(r −Ri)v(r −Rj)φjβ(r −Rj)dr. (2.70)

• Two centers, where the two orbitals are sitting on the same site but the

potential is centered in another∫
φ∗jβ(r −Rj)v(r −Ri)φjβ(r −Rj)dr. (2.71)

• Three center, where all the three ( the two orbitals and the potential) are

centered on different atoms

∫
φ∗iα(r −Ri)v(r −Rj)φkγ(r −Rk)dr. (2.72)

Since calculating all the matrix elements of the Hamiltonian that involves even

multi-center integrals is computationally expensive, so an approximation be

made. J. C. Slater and G. F. Koster [198] proposed that all the matrix ele-

ments could be treated in an effective way as two center integrals and then fit

them into experimental or first principal’s calculations data.

We have also three-center integrals, and also compute the transition amplitude

of jump from one site to another site but mediated by the atomic potentials

located in different sites of the lattice. Actually, these integrals are small com-

pared with the two-center integrals.
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(a) (b)
(c)

Figure 2.5: Representation of different type of matrix elements: (a) Represents

one center, where the two orbitals and the potential are at the same atom, (b)

represents two centers integrals, where each orbitals is sitting on a different atom

and the potential on one of them, (c) represents two centers integrals, where the

two orbitals are sitting on the same site but the potential is centered in another.

The blue color circle indicates S orbitals, Crimson color lobes indicates P orbitals

and Green circle indicates the potential V(r).

In the Slater-Koster approximation, three-center integrals are neglected. Thus,

in this approximation, when we evaluate each matrix element between two dif-

ferent atoms, we are considering that the rest of the atoms do not interact, there-

fore, the problem is equivalent to consider an electron in a diatomic molecule.

Most of the Hamiltonian matrix elements are zero due to the symmetry if you

consider the z-axis as the quantization axis of the orbitals. The Slater-Koster

parameters are those matrix elements in the real atomic basis set. In this way,

if the ordering of the basis set is: s, px, py, pz, dxy, dyz, dzx, dx2−y2 , dz2 the

parameters are defined in the independent two-center hopping integrals between

two atoms on the z-axis in the form of a matrix shown as below [48].

H =



Vssσ 0 0 Vspσ 0 0 0 0 Vsdσ

0 Vppπ 0 0 0 0 Vpdπ 0 0

0 0 Vppπ 0 0 Vpdπ 0 0 0

−Vspσ 0 0 Vppσ 0 0 0 0 Vpdσ

0 0 0 0 Vddσ 0 0 0 0

0 0 −Vpdπ 0 0 Vddπ 0 0 0

0 −Vpdπ 0 0 0 0 Vddπ 0 0

0 0 0 0 0 0 0 Vddσ 0

Vspσ 0 0 −Vpdσ 0 0 0 0 Vddδ


The matrix indicates that hopping between the different orbitals. The deter-

mination of Slater-Koster parameters in two-center integrals for the different

orbitals (s, p, and d) [52, 198] is a straightforward matter of rotating axes and

transforming spherical harmonics in terms of one set of axes into spherical har-

monics with respect to another set, to find the nature of these integrals. Thus,
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atomic orbitals can be set up with respect to a set of rectangular axes. From

equation 2.64, let the direction of cosines of the direction of the vector Rj − Ri

point from one atom to the other, be l, m, and n as shown in Fig. 2.6.

x

l = cos(a), m = cos(b), n = cos(c)

y

z

atom i

atom j

Rij

b

c

a

Pz

Pz

Figure 2.6: A two-center matrix element between Pz orbitals on atoms i and j

separated by the vector Rij = Rj − Ri. Each Pz orbital may be expressed as a

linear combination of Px, Py, and Pz orbitals quantized relative to the Rij axis,

so the matrix element is a linear combination of the Slater-Koster parameters

Vppπ and Vppσ .

For example writing a Slater-Koster energy integral of Ex,xy [52, 198], meaning

an integral in which the function ψn is a Px like wave function; ψm is function

worth symmetry properties like xy. This particular function can be written

approximately in terms of two integrals: that between a pσ orbital on the first

atom and a dσ orbital on the second; and that between a pπ on the first and a

dπ on the second. Let the first of these be symbolized by (pdσ)and the second by

(pdπ); we shall assume that the first index, such as p, refers to the first orbital,

the second, as d, to the second, interchanging the order has no effect if

the sum of the parities of the orbital is even, but changes the sign if

the sum of the parities is odd.

Ex,xy =
√

3l2m(Vpdσ) +m(1− 2l2)(Vpdπ) (2.73)

Similarly, different combinations work as listed in Table. 2.1 [198].

Using the above TB calculations, we made a test on a simple graphene mono-

layer considering only Pz-orbitals, got good agreement with DFT [ABINIT]

shown in Fig. 2.7. Left-hand side represents the electronic band structure of a

29



Theoretical and Methodological background Chapter-2

Ex,x l2(Vppσ + (1− l2)(Vppπ)

Ex,y lm(Vppσ − lm(Vppπ)

Ex,z ln(Vppσ − ln(Vppπ)

Ex,xy
√

3l2m(Vpdσ) +m(1− 2l2)(Vpdπ)

Ex,yz
√

3lmn(Vpdσ)− 2lmn(Vpdπ)

Ex,zx
√

3l2n(Vpdσ) + n(1− 2l2)(Vpdπ)

Ex,x2−y2
1
2

√
3l(l2 −m2)(Vpdσ) + l(1− l2 +m2)(Vpdπ)

Ey,x2−y2
1
2

√
3m(l2 −m2)(Vpdσ)−m(1 + l2 −m2)(Vpdπ)

Ez,x2−y2
1
2

√
3n(l2 −m2)(Vpdσ)− n(l2 −m2)(Vpdπ)

Ex,3z2−r2 l[n2 − 1
2
(l2 +m2)](Vpdσ)−

√
3ln2(Vpdπ)

Ey,3z2−r2 m[n2 − 1
2
(l2 +m2)](Vpdσ)−

√
3mn2(Vpdπ)

Ez,3z2−r2 n[n2 − 1
2
(l2 +m2)](Vpdσ) +

√
3n(l2 +m2)(Vpdπ)

Exy,xy 3l2m2(Vddσ) + (l2 +m2 − 4l2m2)(Vddπ) + (n2 + l2m2)(Vddδ)

Exy,yz 3lm2n(Vddσ) + ln(1− 4m2)(Vddπ) + ln(m2 − 1)(Vddδ)

Exy,zx 3l2mn(Vddσ) +mn(1− 4l2)(Vddπ) +mn(l2 − 1)(Vddδ)

Exy,x2−y2
3
2
lm(l2−m2)(Vddσ)+2lm(m2−l2)(Vddπ)+ 1

2
lm(l2−m2)(Vddδ)

Eyz,x2−y2
3
2
mn(l2 −m2)(Vddσ) −mn[1 + 2(l2 −m2)](Vddπ) + mn[1 +

1
2
(l2 −m2)](Vddδ)

Ezx,x2−y2
3
2
nl(l2−m2)(Vddσ) +nl[1−2(l2−m2)](Vddπ)−nl[1− 1

2
(l2−

m2)](Vddδ)

Exy,3z2−r2
√

3lm[n2− 1
2
(l2+m2)](Vddσ)−2

√
3lmn2(Vddπ)+ 1

2

√
3lm(1+

n2)(Vddδ)

Eyz,3z2−r2
√

3nm[n2− 1
2
(l2+m2)](Vddσ)+

√
3mn(l2+m2−n2)(Vddπ)−

1
2

√
3nm(l2 +m2)(Vddδ)

Ezx,3z2−r2
√

3nl[n2 − 1
2
(l2 +m2)](Vddσ) +

√
3ln(l2 +m2 − n2)(Vddπ)−

1
2

√
3nl(l2 +m2)(Vddδ)

Ex2−y2,x2−y2
3
4
(l2−m2)2(Vddσ)+[l2+m2−(l2+m2)2](Vddπ)+[n2+ 1

4
(l2−

m2)2](Vddδ)

Ex2−y2,3z2−r2
1
2

√
3(l2−m2)[n2− 1

2
(l2+m2)](Vddσ)+

√
3n2(m2−l2)(Vddπ)+

1
4

√
3(1 + n2)(l2 −m2)(Vddδ)

E3z2−r2,3z2−r2 [n2− 1
2
(l2+m2)]2(Vddσ)+3n2(m2+ l2)(Vddπ)+ 3

4
(1+n2)(l2+

m2)2(Vddδ)

Table 2.1: Energy integrals for a crystal in terms of two-center integrals where

n, l, m are direction of cosines shown in Fig. 2.6.
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graphene monolayer (TB method) including Slater-Koster parameters and right-

hand side represents the electronic band structure of a graphene monolayer ab

initio ABINIT (first principle calculations) + TB method.
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Figure 2.7: Electronic band structure of graphene monolayer TB method [left]

with pz-orbital only, and first neighbor coupling Vppπ = -2.7 eV. Comparison

of DFT+TB [right], the DFT calculation includes all orbitals around the Dirac

energy.

2.4.2 Spin Orbit Coupling (SOC)

The Spin-Orbit Coupling (SOC) is a relativistic effect that has to be considered

in the Schrödinger equation. This interaction relates the spin degree of freedom
~S with the angular momentum of the electron ~L. We have included the spin

degree of freedom (s =↑, ↓) in the tight-binding formalism duplicating the size

of the basis set. Now the spin-orbital states are denoted by |i, α, s〉 = |i, α〉⊗ |s〉
[where i indicates the atomic sites and α indicates the orbital]. We derived the

expressions to include this interaction in the tight-binding method.

Considering an electron moving with velocity, ~υ, in an electric field, ~E, this

electric field is created by the effective potential of the atoms, −e ~E=−∆Veff .

In the reference system where the electron is at rest, it will lead to an induced

magnetic field, ~B = −~υ
c
× ~E [81]. The induced field interacts with the spin

magnetic moment, ~µ = eg
mc2

~S, resulting in a new term in the Hamiltonian

ĤSOC = −1

2
~µ · ~B =

1

2

[
~µ ·
(
~υ

c
× ~E

)]
=

1

2

1

m2c2

[
~S · (~p× (−∆Veff ))

]
=

1

2

1

m2c2

[
~S · (∆Veff × ~p)

] (2.74)

where the 1
2

factor in the definition is originated by the Thomas precession [81].

Classically, this is due to the fact that the electron trajectory is not straight and

uniform. We have to consider that g ≈ 2, to obtain the final result in equation
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2.74.

In the Slater-Koster approximation, we assume that the potential created by a

solid is the sum of effective atomic potentials located at each atom in equation

2.69. This way, for each of these effective potentials V i
eff (~r) (we assumed that

they are referred to the atomic site in ~Ri). We can approximate these potentials

with spherical symmetry, V i
eff (~r) = V i

eff (r), at least in the closer region to the

nucleus. Therefore, we can evaluate ∆V i
eff ,

∆V i
eff (r) =

~r

r

dV i
eff (r)

dr
. (2.75)

Including this expression into equation 2.74 we get

ĤSOC =
1

2

1

m2c2
1

r

dV i
eff

dr

[
~S · (~r × (~p)

]
= λi(r)~L · ~S (2.76)

where λi(r) = 1
2

1
m2c2

1
r

dV ieff
dr

is a radial function which is different for each atomic

species. The scalar product of the spin and angular momentum can be written

as
~L · ~S =

1

2

(
L̂+Ŝ− + L̂−Ŝ+

)
+ L̂zŜz (2.77)

with L̂± and Ŝ± the ladder operators defined as

L̂± = L̂x ± iL̂y = Ŝx ± iŜy. (2.78)

Representing this Hamiltonian in the basis set of complex atomic orbitals, |l,m〉,
eigenstates of L̂2 and L̂z, is straightforwardly using the eigenvalue relations

L̂z |l,m〉 = ~m |l,m〉 (2.79)

L̂± |l,m〉 = ~
√
l(l + 1)−m(m± 1) |l,m± 1〉 (2.80)

The matrix elements of equation 2.76 expressed in the real space representation

of the atomic orbitals, 〈~r|i, l,m〉 = R
(i)
l (r)Y

(i)
l,m(θ, φ) are

〈i, l,m, s|Ĥ|i′, l′,m′, s′〉 =

∫ ∞
0

drr2ξ(r)
(
R

(i)
l

)∗
(r)R

(i′)
l′ (r)

×
∫ 2π

0

∫ π

0

dθdφ sin(θ)
(
Y

(i)
l,m(θ, φ)

)∗ 〈s|~L · ~S|s′〉Y (i′)
l′,m′(θ, φ).

(2.81)

We divided this expression in two parts: λi,i
′

l,l′ (r) which encodes the radial depen-

dence and 〈l,m, s|~L · ~S|l′,m′, s′〉 containing the angular dependence

λi,i
′

l,l′ (r) =

∫ ∞
0

drr2ξ(r)
(
R

(i)
l

)∗
(r)R

(i′)
l′ (r) (2.82)
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〈l,m, s|~L · ~S|l′,m′, s′〉 =

∫ 2pi

0

∫ pi

0

dθdφ sin(θ)
(
Y

(i)
l,m(θ, φ)

)∗ 〈s|~L · ~S|s′〉Y (i′)
l′,m′(θ, φ)

(2.83)

Thus, we rewrite the SOC Hamiltonian in a much more compact form

〈i, l,m, s|Ĥ|i′, l′,m′, s′〉 = λi,i
′

l,l′ (r) 〈l,m, s|~L · ~S|l
′,m′, s′〉 (2.84)

~L · ~S does not mix states with different orbital quantum number l. Therefore,

the only elements different from zero are those with l = l′. On the other hand,

due to the local character of the wave functions and the effective potential, we

can consider that the integrals λi,i
′

l,l′ (r) are local, that is the only terms different

from zero are intra-atomic (a = a′). These two features reduce the number of

λal integrals for each atomic species, only one per type of orbital (λip, λ
i
d, λ

i
f ).

In the tight-binding method, these integrals are considered also as parameters

obtained from experiments or fitted from DFT calculations.

Thus, the matrix representation of the SOC in the basis of atomic orbital eigen-

states of ~L2 and Lz, |i, l,m, s〉, are

〈i, l,m, s|Ĥ|i′, l′,m′, s′〉 = λil(r) 〈l,m, s|~L · ~S|l′,m′, s′〉 δl,l′ . (2.85)

Similarly, we can express the Hamiltonian in the basis set of real atomic orbitals

|i, α, s〉

〈i, α, s|Ĥ|i′, α′, s′〉 = λil(r) 〈α, s|~L · ~S|α, s′〉 . (2.86)

The radial part is independent of the orbital representation, thus the parameters

λil are the same in both basis sets. We show the specific matrix representation

of 〈α, s|~L · ~S|α, s′〉 for s and p orbitals in the table below [for the d-orbitals see

appendix 1].

|s↑〉 |p↑x〉 |p↑y〉 |p↑z〉 |s↓〉 |p↓x〉 |p↓y〉 |p↓z〉
|s↑〉 0 0 0 0 0 0 0 0

|p↑x〉 0 −iλ
2

0 0 0 0 0 λ
2

|p↑y〉 0 iλ
2

0 0 0 0 0 −iλ
2

|p↑z〉 0 0 0 0 0 −λ
2
−iλ

2
0

|s↓〉 0 0 0 0 0 0 0 0

|p↓x〉 0 0 0 −λ
2

0 0 iλ
2

0

|p↓y〉 0 0 0 −iλ
2

0 −iλ
2

0 0

|p↓z〉 0 λ
2

iλ
2

0 0 0 0 0

Table 2.2: Spin orbit Hamiltonian in the basis set of atomic orbitals (s and p).
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Figure 2.8: Electronic band structure of a graphene monolayer including spin

orbit coupling (SOC). Spin splitting of bands at the Dirac point is 30µeV. Cal-

culations are done by using the TB method including s, px, py, pz orbitals.

We made a calculation on a graphene monolayer by the TB method including

SOC. Fig. 2.8 represents the electronic band structure of a graphene monolayer

including spin-orbit coupling, we observe very small splitting at the Dirac point

is 30µeV in good agreement with first principle calculations 24 µeV [55], λSOC

= 0.35 eV and hopping parameters are Vssσ =-0.55 eV, Vspσ = -8.25 eV, Vppπ =

-1.7 eV and Vppσ = -2.7 eV.

2.4.3 Wannier functions

As we mentioned, in the tight-binding method, the Bloch wave functions can

also be expanded using other local orbitals instead of atomic orbitals, these are

called Wannier functions because they were introduced by G. Wannier [229].

Wannier functions of such local orbitals, though they are not localized in some

cases where the bandwidths are wide, are not like the atomic wave functions.

Wannier functions behave like a Fourier transformation of Bloch wave functions

ψnk(r). Since ψnk(r) is periodic in the reciprocal lattice, i.e, ψnk+G(r) = ψnk(r),

where G is a reciprocal lattice vector, ψnk(r) can be expanded in plane waves as

ψnk(r) =
∑
R

wn(r−R)eiR·k (2.87)

where the coefficients wn(r −R) are Wannier functions, which depend only on

r−R instead of r and R independently due to the Bloch theorem.
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The Wannier functions wn(r−R) can be obtained by inverse transformations

wn(r−R) =
Ωcell

(2π)3

∫
BZ

eiR·kψnk(r)dk (2.88)

where Ωcell is the volume of the real-space primitive cell of the crystal.

The Wannier functions so obtained are not unique because of any Bloch func-

tion ψnk(r) does not change any physically meaningful quantity under a “gauge

transformation”

ψnk(r)→ ψ̃nk(r) = eiφn(k)ψnk(r) (2.89)

A more general form of the Wannier functions is given by

wn(r−R) =
Ωcell

(2π)3

∫
BZ

eiφn(k)e−iR·kψnk(r)dk (2.90)

The non-uniqueness of the Wannier functions is totally due to the presence

of the phase factor φn(k). In addition to the freedom in the choice of phase

factor φn(k), there is also a degree of freedom associated with the choice of a

full unitary matrix Uk
nm, which transforms the N Bloch wave functions ψnk(r)

between themselves at every wave vector k, but leaves the electronic energy

functional invariant. This leads to the most general construction of Wannier

functions from Bloch wave functions ψnk(r) in the form

wn(r−R) =
Ωcell

(2π)3

∫
BZ

N∑
m=1

Uk
nme

−iR·kψmk(r)dk (2.91)

where Uk is an M × N unitary matrix with M ≤ N . Remark that Uk is

not necessarily a square matrix as one can use this procedure to construct M

Wannier functions out of N bands. Again, in the procedure, the choice of Uk is

not unique. Actually, one can use this freedom to construct Wannier functions

with properties of ones own interest, such as the most symmetric, or maximally

projected, or maximally localized. A widely used one is the maximally localized

Wannier function proposed by Vanderbilt and coworkers [129,200], in which the

quantity

Ω =
N∑
n=1

(
〈r2〉n − 〈r〉

2
n

)
(2.92)

equation 2.92 represents the total spread of the Wannier functions in real space

[129]. This is minimized by choosing appropriate Uk, where 〈· · ·〉n is the expec-

tation value over the nth Wannier function in the unit cell. There are also other

Wannier functions in use which are constructed by using projections onto local

orbitals to emphasize symmetries [96,235].

The Wannier functions wn(r − R) for all the bands n and R form a complete
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orthogonal set. This is to say that the Wannier functions are orthogonal at

different sites or different bands,∫
wn(r−Rj)wm(r−Rj) = δn,mδi,j (2.93)

In the tight binding approach, if Wannier functions are used as the local orbitals,

the overlap matrix sn,m(R) is greatly simplified to

sn,m(R) = δn,mδ0,R (2.94)

The result for the overlap Hamiltonian matrix is

Sn,m(k) =
∑
R

eiR·ksn,m(R) =
∑
R

eiR·kδn,mδ0,R = δn,m (2.95)

Now, we can change the Hamiltonian of the matrix, so this is the main advan-

tage to use Wannier functions in the tight-binding method.

In practice, Wannier functions are constructed from the result of DFT calcula-

tions and used as the local orbitals in the tight-binding method. The hopping

parameters and onsite energies are obtained by fitting the eigenvalues (obtained

from the tight-binding method) to the band structures of DFT calculations. The

hopping parameters are then used to construct a model Hamiltonian to study

many-body effects (Note that the overlap matrix is the identity matrix due to

the use of Wannier functions as local orbitals). The Wannier functions are not

localized if the bands have large bandwidths. This procedure is better for sys-

tems with an isolated set of narrow bands. Using the Wannier90 code [144,172]

we measured the projections of the orbital character in the band structure of

the systems energy example of a graphene monolayer [Fig. 2.9].

We examine the graphene monolayer band structure, interpolated with Wan-

nier90 [144,172] on the Γ - K - M - Γ path. Using s, p, and d orbitals as initial

guesses for the MLWFs of the graphene monolayer shown in Fig. 2.9 shows

that the bands of interest have very high p character in the graphene monolayer

electronic band structure.

In the same spirit, We use the Wannier90 code [144,172] to calculate a Wannier

Hamiltonian from DFT results, extract the bands and compare the electronic

band structure of a graphene monolayer, interpolated with Wannier90 on the Γ

- K - M - Γ path and DFT (ABINIT) reference as shown in Fig. 2.10.
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Figure 2.9: Electronic band structure of a graphene monolayer. Estimated p-

orbital character of bands, computed by band projections using Wannier90 code.

A color scheme is used to measure the p-orbital character (red color) of the bands.
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Figure 2.10: Electronic band structure of a graphene monolayer, Interpolation

with Wannier90 on the Γ - K - M - Γ path(red lines) and DFT (ABINIT)

reference band structure (blue circles).
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2.5 Conclusion

In this chapter, we discussed some concepts related to the quantum physics to set

the basis to explain briefly the standard time-independent DFT. We explained

several approximations such as Born-Oppenheimer (BO), exchange correlation

functionals (LDA and GGA). We gave a brief explanation without attempting

to discuss the underlying mathematics. For solving the many-body problem, we

made two approximations: One is the Born-Oppenheimer (BO) approximation

and the second one is the Hartree-Fock (HF) approximation. We constructed

a tight-binding method on Bloch’s formalism and linear combination of atomic

orbitals. We included a spin-orbit coupling in the tight-binding method to study

the electronic structure of graphene and transition metal dichalcogenides. We

introduced Wannier functions of local orbitals to study the orbital contribution

in the electronic band structure.
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The Lanczos iteration [99] was proposed as a method for tridiagonalizing

Hermitian matrices. Like the related Arnoldi method [4] for non Hermitian

matrices, this method initially received a great attention because of Lanczos ba-

sically replaces matrix diagonalization by matrix-vector products are relatively

inexpensive to perform. The Lanczos method is particularly efficient for the de-

termination of extreme eigenvalues and eigenvectors. Therefore, it was rediscov-

ered in the 1970s [159], when the computers had become sufficiently powerful to

treat large enough matrices for the Lanczos algorithm to perform general meth-

ods, nicely illustrating the Fundamental Law of Computer Science: the faster

the computer, the greater the importance of the speed of algorithms [215].

The Lanczos method is mainly suitable for dealing with large scattered Hamil-

tonian’s, it is the method of choice for systems with short range interactions.

For density of states and electronic band structure calculations in a linear com-

bination of atomic orbitals (LCAO) or tight-binding (TB) basis, it is known

as the recursion method [70]. The basic idea here is to switch from the Bloch

picture of a perfectly periodic solid to a local picture, replacing the solution of

the Schrödinger equation in terms of Bloch waves by the calculation of the local

density of states. The crucial technical point is to calculate the density of states

not via a spectral representation (in terms of Bloch waves), but by repeated

application of the Hamiltonian H to a localized single electron state. With each

application of H the electron explores more and more sites. Thus, if the hop-

ping matrix elements beyond a certain distance are zero, such calculations can

be performed without having to restrict the system to a finite size.

It has to be defined on a finite cluster, giving rise to a finite dimensional Hamil-

tonian matrix. Since the size of the Hilbert space grows exponentially with

system size, actual calculations are stopped by the available computer memory.

In a typical simulation, first the ground state is calculated by a Lanczos itera-

tion. Building on this, spectral functions are calculated in a similar way as in

the recursion method. The great advantage of this approach is that it gives the

dynamical properties of the ground state (T=0 K) directly in real space.

In this chapter, we introduce some concepts related to the recursion methods for

computing the density of states (DOS). Several approximations such as the Lanc-

zos method, density of states, termination of the continued fraction, wave-packet

propagation method. We only try to give a brief explanation (mathematical de-

scription) of the methods, most of the things in this chapter follow from Didier

Mayou, Triozon, Khanna, Roche research works [130,131,183,184,217].
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In the Kubo-Greenwood approach for transport properties, the quantum diffu-

sion D is computed by using the polynomial expansion of the average square

spreading, ∆X2, for charge carriers. This method, developed by Didier Mayou,

Khanna, Roche and Triozon [130, 131, 183, 184, 217], allows for very efficient

numerical calculations by recursion in real space that takes into account all

quantum effects. Static defects are included directly in the structural modelling

of the system and they are randomly distributed on a supercell containing up to

≈107 orbitals. Inelastic scattering is computed [37] within the relaxation time

approximation (RTA), including an inelastic scattering time τi beyond which the

propagation becomes diffusive due to the destruction of coherence by inelastic

processes.

3.1 Recursion methods for computing the den-

sity of states and wave-packet dynamics

The Lanczos tridiagonalization method transforms real symmetric matrix into a

symmetric tridiagonal form. Basically, this very simple algorithm is suitable for

calculations of lower eigenvalues and the corresponding eigenvectors of very large

Hermitian matrices, for the full diagonalization is impossible. In this chapter,

we explain the basics of the recursion method based on the Lanczos tridiago-

nalization and explain how to calculate the DOS as well as the wave-packets

dynamics (Diffusivity and related conductivity) [211].

3.1.1 Recursion method (Lanczos method)

The Lanczos method is a highly effective and efficient recursive approach for

calculation of the electronic structure as well as the DOS [99]. This method was

developed based on Lanczos eigenvalue approach [68,69] and they were included

Green’s function matrix elements by continued fraction expansion. It can be

implemented in real or reciprocal space. This method is suitable for treating

disorder and defect related problems, using a tight-binding approximation [116]

to calculate the density of states and electronic structure for amorphous semi-

conductors, transition metals [16].

Since the computational cost is proportional to the total number of atoms defin-

ing the disordered structure, the recursion method should be of order N [32], a

basis transformation that has proven to be very useful for dealing with tight-

binding Hamiltonians for which diagonalization methods are ineffective. The

Lanczos method allows simulation of the electronic behavior of disordered sys-

tems up to the scale of 100 millions of orbitals using high performance computing
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resources. A very efficient computational trick [183,184] is to compute the trace

of any operator related to electronic and transport properties on a reduced num-

ber of random phase states (NRP ) instead of a complete and orthogonal basis:

Tr
[
δ(E − Ĥ)

]
=

N∑
j=1

〈φj|δ(E − Ĥ)|φj〉 =
N

NRP

×
NRP∑
i=1

〈
φiRP

∣∣δ(E − Ĥ)
∣∣φiRP〉

(3.1)

where N is the dimension of the Hamiltonian Ĥ in the TB basis, φj is an atomic

orbital state of the system and |φRP 〉 is defined by

|φRP 〉 =
1√
N

N∑
j=1

ei2πθj |φj〉 (3.2)

with θj a random number between 0 and 1. This state |φRP 〉 has a random phase

on each orbital of the TB basis.

To evaluate numerically equation 3.1, we compute the local density of states

(LDOS) on an orbital ψ0 by the recursion method, as follows.

We can construct an orthonormal basis |ψn〉 of the N space. We start with the

normalized vector |ψ0〉. The second basis vector |ψ1〉 is constructed by using the

Lanczos method.

b1 |ψ1〉 = |ψ̃1〉 = H |ψ0〉 − a0 |ψ0〉 (3.3)

where a0 = 〈ψ0|H|ψ0〉 and b21 = 〈ψ̃1|ψ̃1〉. The next basis vector is likewise

constructed as H |ψn〉 orthogonalized to all previous vectors and normalized

b2 |ψ2〉 = |ψ̃2〉 = H |ψ1〉 −
1∑
i=0

|ψi〉 〈ψi|H|ψ1〉 = H |ψ1〉 − a1 |ψ1〉 − b1 |ψ0〉 (3.4)

where a1 = 〈ψ1|H|ψ1〉 and b22 = 〈ψ̃2|ψ̃2〉. The fourth basis vector is

b3 |ψ3〉 = |ψ̃3〉 = H |ψ2〉 −
2∑
i=0

|ψi〉 〈ψi|H|ψ2〉 = H |ψ2〉 − a2 |ψ2〉 − b2 |ψ1〉 . (3.5)

Here, an and bn are vanishing (when n > dimension of Hilbert space) in the

orthogonalization, when H is Hermitian: equation 3.3 together with the orthog-

onality of the basis vectors for n = 0....2 implies 〈ψ2|H|ψ0〉 = 0. When H is

Hermitian it follows that 〈ψ1|H|ψ2〉 = 0. The construction of the further basis

vectors follows the same scheme
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bn+1 |ψn+1〉 = |ψ̃n+1〉 = H |ψn〉−
n∑
i=0

|ψi〉 〈ψi|H|ψn〉 = H |ψn〉−an |ψn〉−bn |ψn−1〉

(3.6)

with an = 〈ψn|H|ψn〉 and b2n+1 = 〈ψ̃n+1|ψ̃n+1〉. Rearranging the above equation

3.6 shows that H is tridiagonalized

H |ψn〉 = bn |ψn−1〉+ an |ψn〉+ bn+1 |ψn+1〉 . (3.7)

Equation 3.7 shows that the Hamiltonian is similar to that of a linear chain with

interaction between nearest neighbors where the coefficients an and bn repre-

sent the site energies of each atom and the jump integrals between the nearest

neighbor atoms see Fig. 3.1.

a1a0

b1

a4a3a2

b3 b4b2 b5

Figure 3.1: Schematic representation of the linear chain generated by the Lanc-

zos procedure.

an and bn are called the recursion coefficients, they are respectively the diagonal

and off-diagonal elements of the matrix representation of Ĥ in the Lanczos basis

(that we write Ĥ). In equation 3.6, we see that Ĥ |ψi〉 is orthogonal to all basis

states except |ψi〉 and |ψi±1〉 [99]

Ĥ =



a0 b1 0 0 0 0 0

b1 a1 b2 0 0 0 0

0 b2 a2 b3 0 0 0

0 0 b3 a3 b4 0 0

0 0 0
. . . . . . . . . 0

0 0 0 0
. . . . . . bN

0 0 0 0 0 bN aN


. (3.8)

3.1.2 The density of states

The total density of states n(E) of the system energy E is defined by n(E)dE,

the number of energy states between E and E + dE. The density of states can
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be represented as

n(E) =
2

Norbital

∑
n

δ(E − En) (3.9)

where Norbital is the total number of orbitals, the factor 2 is the spin degeneracy

factor and En is the nth energy state. In equation 3.9 En is calculated by using

the Schrödinger time independent equation

Ĥ |ψn〉 = En |ψn〉 . (3.10)

The total density of states can be expressed in terms of the Hamiltonian of the

Schrödinger time independent equation [recursion method to avoid calculating

the eigenstates]

n(E) =
2

Norbital

Tr
[
δ(E − Ĥ)

]
(3.11)

Here, the trace is invariant, now we are able to determine the matrix δ(E − Ĥ)

in any basis.

The local density of states (LDOS) ni on the site i is the projection of the density

of states and can be written as:

ni(E) = 〈i|δ(E − Ĥ)|i〉 (3.12)

if the system contains one orbital per site. The total density per site will be the

normalized sum of all the local densities:

n(E) =
1

Norbital

Norbital∑
i

ni(E). (3.13)

In our calculations, I projected on the states of random phase to reduce the

computing time, see the previous section 3.1.1. The total average density of

states of the system can be expressed in terms of the total density of states of

the random phase φRP :

n(E) = 〈φRP |δ(E − Ĥ)|φRP 〉 . (3.14)

The Dirac function can be represented as:

δ(x) = lim
ε→0+

(
− Im

π

1

x+ iε

)
(3.15)

where Im is the imaginary part, the density of states nRP (E) is the local DOS

on state ψ0=ψRP :

nRP (E) = 〈φRP |δ(E − Ĥ)|φRP 〉 = 〈ψ0|δ(E − Ĥ)|ψ0〉

= − 1

π
lim
ε→0+

Im

[
〈ψ0|

1

(E + iε− Ĥ)
|ψ0〉

]
(3.16)
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For the calculation of LDOS, we have chosen the fractional method. The eigen-

states of the system are not determined with this approach. The density of

states will be the imaginary part of the Green’s function (G) of the system in

terms of recursion coefficients an and bn, which can be determined by a fractional

method [35]. 〈ψ0| 1

(E+iε−Ĥ)
|ψ0〉 can be written in the form of a fraction:

〈ψ0|
1

(E + iε− Ĥ)
|ψ0〉 =

1

(E + iε− a1) +
b21

(E+iε−a2)+
b22

(E+iε−a3)+
b23

(E+iε−a4)+
b24

(E+iε−a5)+···

(3.17)

which is called the continued fraction. In the density of states calculation, the

density is convoluted by the Lorentzian 1
π

ε
ε2+E2 for large ε, which means that it

is independent of the chain being truncated or extended after site Nr, when Nr

is sufficiently large. We need to define the number of stages of the continuous

fraction to which, we must stop the precision of energy computation. In practice

we must introduce a termination, typically after Nr ≈ 1000 recursion steps.

I changed the configuration of random numbers in the state φRP (equation 3.1)

to verify the dependency of the calculation on the construction of φRP . We

calculated the total density of states of a graphene monolayer without vacan-

cies considered 3 different initial random phase state configurations:φRP1, φRP2,

and φRP3 see Fig. 3.2. The Tight-Binding Hamiltonian adopted from [37]. I

observed, the density of states of different initial random phase states have a sim-

ilar behavior, so single random phase state is sufficient to calculate the density

of states.

3.1.3 Termination of the continued fraction

The termination (named TERM) of the fraction determined based on the system

(with and without bandgap). In case the system is a conductor, we can observe

that after certain number of steps the recursion coefficients an and bn are almost

constant.

〈ψ0|
1

(E + iε− Ĥ)
|ψ0〉 =

1

(E + iε− a1) +
b21

(E+iε−a2)+
b22

(E+iε−a3)+
b23

(E+iε−a4)+
b24

(E+iε−a5)+···×TERM

(3.18)

For simplification, let G0(z) = 〈ψ0| 1

(z−Ĥ)
|ψ0〉 with z = E + iε. To define G1(z)

until Gn(z)
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Figure 3.2: Effect of initial random phase states on the total density of states of

a graphene monolayer: without vacancies, considered 3 different initial random

phase state configurations are φRP1, φRP2, and φRP3. Number of recursion steps

(Nr = 1000) and resolution of energy ε = 5 meV. TB model from [37].

G1(z) =
1

z − a1 − b21G2

(3.19)

...

Gn(z) =
1

z − an − b2nGn+1

(3.20)

In practice, we can use n is a fraction, and Nr is the number of steps of the

recursion (an=Nr , bn=Nr , G0(z)) can be written as:

G0(z) =
1

z − a1 +
b21

z−a2+
b22

z−a3+
b23

z−a4+
b24

z−a5+···GN+1(z)

(3.21)

where GN+1(z) denotes such a termination. As we said the recursion coefficients

are constant after the number of recursion steps. We set asymptotic limits [72]

an = an+1 = a∞ and bn = bn+1 = b∞, these limits are related to the bandwidth

of spectrum. The bandwidth [a∞ − 2b∞, a∞ + 2b∞] indicates the spectrum of

Ĥ. The termination then satisfies
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GN+1(z) =
1

z − a∞ − b2∞GN+2

=
1

z − a∞ − b2∞GN+1

(3.22)

above equation 3.22 is a second degree polynomial,

− b2∞G2
N+1(z) + (z − a∞)GN+1(z)− 1 = 0 (3.23)

and straightforwardly solved

∆ = (z − a∞)2 − (2b∞)2 (3.24)

GN+1(z) =
z − a∞ − i

√
((2b∞)2 − (z − a∞)2)

(2b∞)2
. (3.25)

The periodic termination of the continuous fraction is good for single band en-

ergy systems. For other systems, G. Allan [2] has identified more appropriate

terminations that make it possible to evaluate the recursion coefficients are an

and bn of the continuum [a∞ − 2b∞, a∞ + 2b∞] has prohibited the band. From

equation 3.25 the periodic termination of continuous fraction make it possible

to determine the recursion coefficients an and bn of a graphene monolayer see

Fig. 3.3.

-3.5

-3

-2.5

-2

-1.5

-1

	0 	50 	100 	150 	200 	250 	300 	350 	400 	450 	500

a n
	(e

V)

Nr

	3.9

	4

	4.1

	4.2

	4.3

	4.4

	4.5

	4.6

	4.7

	0 	50 	100 	150 	200 	250 	300 	350 	400 	450 	500

b n
	(e

V)

Nr

Figure 3.3: Recursion coefficients an and bn of a graphene monolayer without

vacancies. Number of recursion steps Nr = 500. TB model from [37].

Figure. 3.3 shows recursion coefficients an and bn for the monolayer of a graphene.

A closed form of the termination can be introduced after a few hundreds of re-

cursion steps (Nr = 100-500), these recursion steps depends on cell size.

I have calculated the total density of states of a graphene monolayer with dif-

ferent number of recursion steps Nr = 50 and Nr = 500 see Fig. 3.4. I observed

oscillations which are digital artifacts, the resolution is too ambitious compared
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to the size of the system. On the other hand number of recursion steps and en-

ergy resolution are very important parameters to calculate the density of states

of a graphene monolayer without vacancies results are shown in Fig. 3.4.
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Figure 3.4: Effect of number of recursion steps Nr on the density of states of a

graphene monolayer: without vacancies, number of steps of recursion Nr = 50

[Left], Nr = 500 [Right] and resolution of energy ε = 5 meV. TB model from [37].

3.2 Recursion method for computing the wave

packet dynamics

This method has been developed 20 years ago by D. Mayou and his coworkers

[106, 180–183, 216]. This method has also been used by other groups [106, 181,

182].

3.2.1 Kubo-Greenwood method

The wave packet spreading in an arbitrary complex disordered material is com-

puted by the Lanczos method. D. Mayou and his colleagues computationally

implemented the Kubo-Greenwood approach (real space and order N) [106,180–

183,216]. The Kubo-Greenwood conductivity written in terms of the diffusivity

σ(EF ) = e2n(EF )D(EF ) (3.26)

where, e is charge, n(EF ) is density of states and D(EF ) is diffusivity at the

energy EF (it corresponds to the static and 0K conducting). The diffusivity can

be calculated by using mean square spread, ∆X2.

D(EF ) =
1

2
lim
t→∞

d

dt
∆X2(EF , t). (3.27)
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One thus has to compute ∆X2(E, t) at every significant energy E and the time

t is

∆X2(E, t) = 〈|X̂(t)− X̂(0)|2〉E (3.28)

where X̂(t) the position operator in the Heisenberg representation. In general

the average operator of an energy state E is given by:

〈Â〉E =
Tr[δ(E − Ĥ)Â]

Tr[δ(E − Ĥ)]
. (3.29)

From the definition of average operator equation 3.29, the average square spread

∆X2(E, t) becomes

∆X2(E, t) =
Tr[δ(E − Ĥ)|X̂(t)− X̂(0)|2]

Tr[δ(E − Ĥ)]
. (3.30)

We rearrange the term |X̂(t)− X̂(0)|2 in equation 3.30

∆X2(E, t) =
Tr[(X̂(t)− X̂(0))†δ(E − Ĥ)(X̂(t)− X̂(0))]

Tr[δ(E − Ĥ)]
(3.31)

and then use several identities and definitions to rewrite (X̂(t)− X̂(0)):

X̂(t) = ei
Ĥt
~ X̂(0)e−i

Ĥt
~ (3.32)

Û(t) = e−i
Ĥt
~ (3.33)

where, Û(t) is the evolution operator,

X̂(t)− X̂(0) = Û †(t)X̂(0)Û(t)− X̂(0), (3.34)

X̂(t)− X̂(0) = Û †(t)X̂(0)Û(t)− Û †(t)Û(t)X̂(0), (3.35)

X̂(t)− X̂(0) = Û †(t)[X̂(0), Û(t)] (3.36)

using Û †(t)Û(t) = 1, and [X̂(0), Û(t)] the commutator, equation 3.36 substituted

in equation 3.31 one gets,

∆X2(E, t) =
Tr
[
[X̂(0), Û(t)]†Û(t)δ(E − Ĥ)Û †(t)[X̂(0), Û(t)]

]
Tr[δ(E − Ĥ)]

. (3.37)

Using the random phase states as initial states, we find

∆X2(E, t) =
〈φRP |[X̂(0), Û(t)]†δ(E − Ĥ)[X̂(0), Û(t)]|φRP 〉

〈φRP |δ(E − Ĥ)|φRP 〉
. (3.38)

49



Numerical methods of Quantum transport Chapter-3

For the equation 3.36, we define the states |φ′RP 〉 = [X̂(0), Û(t)] |φRP 〉, and then

∆X2(E, t) =

〈
φ
′
RP

∣∣δ(E − Ĥ)
∣∣φ′RP〉

〈φRP |δ(E − Ĥ)|φRP 〉
. (3.39)

The technique used for the computation of the density of states can thus also be

employed for the computation of ∆X2(E, t), provided that one first evaluates

|φ′RP 〉. The evaluation of |φ′RP 〉 needs Û(t) |φRP 〉 together with [X̂, Ĥ].

3.2.2 Relation between low frequency conductivity and

quantum diffusion

The velocity operator is defined as Vx(t) = dX(t)
dt

, its correlation function C(E, t)

is defined as

C(E, t) = 〈Vx(t)Vx(0) + Vx(0)Vx(t)〉E = 2Re〈Vx(t)Vx(0)〉E (3.40)

where ReA is the real part of A and it is related to quantum diffusion [132]

through
d

dt
∆X2(E, t) =

∫ t

0

C(E, t′)dt′. (3.41)

The real part of the low frequency conductivity is then related to quantum diffu-

sion. Indeed from the Kubo-Greenwood formula the real part of the conductivity

is given by

Reσ(ω) =

∫ µ

µ−~ω

dE

~ω
F (E,ω) (3.42)

where µ is the chemical potential. In equation 3.42 the Fermi-Dirac distribution

function is taken equal to its zero temperature value. This is valid provided that

the electronic properties vary smoothly on the thermal energy scale kT . For

finite temperature, it has been shown [37] that the conductivity of a graphene

depends mainly on the temperature through the diffusivity but not through the

Fermi-Dirac distribution function. Therefore in the following, the Fermi-Dirac

distribution function is taken equal to its zero temperature value1. But the

effect of defects and temperature (scattering by phonons) on the diffusivity is

taken into account via the relaxation time approximation. The central quantity

F (E,ω) is given by

F (E,ω) =
2π~e2

Ω
Tr〈δ(E −H)Vxδ(E + ~ω −H)Vx〉 (3.43)

where Ω is the volume of the system. Expressing the operator δ(E −H) as the

Fourier transform of the evolution operator e−iHt shows that

1A non-zero T Fermi-Dirac distribution function will be introduced to calculate the ther-

modynamic average conductivity and the mobility in semiconductor TMDs (chapter-4)
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2F (E,ω)

e2n(E)
=

∫ ∞
−∞

dteiωt〈Vx(t)Vx(0)〉E (3.44)

and

2F (E − ~ω, ω)

e2n(E)
=

∫ ∞
−∞

dteiωt〈Vx(0)Vx(t)〉E (3.45)

where n(E) is the density of states per unit volume (summed over up and down

spins which are assumed to have the same transport properties here). Then one

finds

2Reσ̃(E,ω) = F (E,ω) + F (E − ~ω, ω) (3.46)

where

σ̃(E,ω) = e2
n(E)

2

∫ ∞
0

eiωtC(E, t)dt (3.47)

Let us note that the function σ̃(E,ω) is analytical in the upper half of the

complex plane. For large ω ⇒ σ̃(E,ω) ∝ 1
ω

and the Kramers-Kronig relations

are valid. Finally, the usual sum rule is valid∫ ∞
0

σ̃(E,ω)dω =
πe2n(E)

2
C(E, t = 0) =

πe2n

2m∗
(3.48)

where m∗ is the effective mass.

If the variation of F (E,ω) with energy is small in the interval [EF−~ω,EF +~ω],

one deduces from the previous equations that

Reσ(ω) ≈ e2
n(EF )

2
Re

∫ ∞
0

eiωtC(EF , t)dt (3.49)

equation 3.49 is valid at sufficiently small values of ω. In particular at zero

frequency the conductivity is given by the Einstein relation

σ(0) = e2n(EF )D(EF ) (3.50)

with

D(EF ) = lim
t→∞

1

2

d

dt
∆X2(EF , t). (3.51)

3.2.3 Relaxation time approximation (RTA)

Within the relaxation time approximation one assumes that the response cur-

rents respectively with disorder j(t) and without impurities j0(t) are related

through [133]

j(t) = j0(t)e
|t|
τ (3.52)
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where τ is the relaxation time. So the relaxation time approximation (RTA)

allows to treat the effect of disorder on quantum diffusion and conductivity.

We give the relations satisfied by conductivity and quantum diffusion in this

approximation. The complex conductivity is σ(ω) =
∫∞
0
eiωtj(t)dt [since: j(t) =

J(t)
E

], and within the RTA, the conductivity with disorder σ(ω, t) and without

disorder σ0(z) are related by

σ(ω, t) = σ0

(
ω +

i

τ

)
(3.53)

The real part of conductivity with defectsReσ(ω, τ) and without defectsReσ0(ω)

are related simply. Using complex conductivity to get [133]

Reσ(ω, t) =
1

πτ

∫ +∞

−∞

Reσ0(ω
′)

(ω − ω′)2 + 1
τ2

dω′ (3.54)

which allows to compute the real part of the conductivity with defects.

The RTA defined from the point of view of quantum diffusion. In all cases,

consider that the influence of disorder is much stronger on the quantum diffusion

than on the density of states. Now neglect the variation of n(E) with disorder.

From j(t) ≈ e2 n(EF )
2

C(EF , t) one deduces that, for not too large disorder that is

for sufficiently large relaxation time τ the RTA is equivalent to

C(E, t) = C0(E, t)e
− |t|
τ (3.55)

where C(E, t) and C0(E, t) are respectively the velocity correlation functions

with and without disorder. After equation 3.41 one deduces that the long time

propagation is diffusive with a diffusion coefficient defined as

D(E) =
1

2

∫ +∞

0

C0(E, t)e
− |t|
τ (3.56)

which is equivalent to

D(E) =
1

2

d

dt
∆X2(E, t) {if t >> τ}. (3.57)

At zero frequency the diffusivity can be written in the useful form [37]

D(EF , τ) =
L2(EF , τ)

2τ
. (3.58)

Using the t = 0 conditions ∆X2(E, t = 0) = 0 and d
dt

∆X2(E, t = 0) = 0 and

performing integration by parts and we get

L2(EF , τ) =

∫ +∞
0

∆X2
0 (EF , t)e

− t
τ dt∫ +∞

0
e−

t
τ dt

' 〈∆X2(EF , t)〉τ (3.59)

where L is scattering length, 〈...〉τ is a time average on a time scale τ . ∆X(EF , t)

is the spreading of states of energy E, in the perfect system i.e. without disorder.
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More generally at low frequency, using equation 3.50 one can define a frequency

dependent diffusivity D(EF , ω) such that

Reσ(ω) ≈ e2n(EF )D(EF , ω) (3.60)

and

D(EF , ω) =
1

2

∫ ∞
0

eiωtC(EF , t)dt. (3.61)

Within the RTA the above equation 3.61 becomes

D(EF , ω) =
1

2
Re

∫ +∞

0

e(iω−
1
τ
)tC0(E, t)dt (3.62)

It can be convenient to use the equivalent from which expresses the frequency de-

pendent diffusivity D(EF , ω) in terms of the quantum diffusion without disorder

∆X2
0 (E, t) [37]:

D(EF , ω) =
1

2
Re

[(1

2
− iω

)2 ∫ +∞

0

e(iω−
1
τ
)t∆X2

0 (E, t)dt

]
(3.63)

3.3 Chebyshev polynomials

Now, we focus on the calculation of Û(t) |φRP 〉 = |φRP (t)〉. The time evolu-

tion of the random phase wave packet is followed through use of the evolution

operator Û(t), which can be efficiently approximated using a basis of orthogo-

nal polynomials, with the Chebyshev polynomials as the most computationally

efficient [130]. For a given time step (T ) we can write such a decomposition as

Û(T ) = e−i
ĤT
~ =

∞∑
n=0

cn(T )Qn(Ĥ) (3.64)

where Qn is a Chebyshev polynomial of order n. The Chebyshev polynomials

(Tn) usually act on the interval [-1:1], whereas the Hamiltonians considered

here have larger bandwidths [-1:1] so some rescaling to the all spectrum of the

polynomials needs to be performed to use their recurrent properties. While for

the rescaled Chebyshev polynomials (∀E ∈ [a− 2b : a+ 2b]) we get

Q0(E) = 1 {if n = 0} (3.65)

Q1(E) =
√

2
Ĥ − a

2b
{if n = 1} (3.66)

Q2(E) = 2
√

2

(
Ĥ − a

2b

)2

−
√

2 {if n = 2} (3.67)
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Qn(E) =
√

2Tn

(
Ĥ − a

2b

)
(∀n ≥ 1) (3.68)

with the recurrence relation n ≥ 2,

Qn+1(E) = 2

(
Ĥ − a

2b

)
Qn(E)−Qn−1(E) (3.69)

Equation 3.69 represents the recurrence relation of Chebyshev polynomialsQn(E),

once the Qn(E) polynomials are well defined, one needs to compute the related

cn(T ) coefficients.

3.3.1 Spectral coefficient Cn(T)

Let us consider a normalized state |ψ0〉, and then construct a generalized (dif-

ferent) states [141]:

|ψi〉 = Qi(E) |ψ0〉 (3.70)

ortho-normalized basis states is 〈ψi|ψj〉 = δij, since the polynomials Qi are

orthogonal. Multiply |ψ0〉 both sides of the equation 3.64 we get

Û(T ) |ψ0〉 =
∑
i

ci(T )Qi(E) |ψ0〉 =
∑
i

ci(T ). |ψi〉 (3.71)

The coefficients ci are determined as follows

ci(T ) = 〈ψi|Û(T )|ψ0〉 (3.72)

To calculate Û(T ) |ψ0〉 in the basis of |ψi〉 write Ĥ in the basis of |ψi〉: for i ≥ 1

Qi+1(E) |ψ0〉 =

(
Ĥ − a
b

)
Qi(E) |ψ0〉 −Qi−1(E) |ψ0〉 (3.73)

|ψi+1〉 =

(
Ĥ − a
b

)
|ψi〉 − |ψi−1〉 (3.74)

Multiply 〈ψi| (∀i) and 〈ψi+1| (∀i+ 1) in equation 3.74

0 = 〈ψi|Ĥ|ψi〉 − a 〈ψi|ψi〉
a = 〈ψi|Ĥ|ψi〉

(3.75)

and

0 = 〈ψi+1|Ĥ|ψi〉 − b 〈ψi+1|ψi+1〉
b = 〈ψi+1|Ĥ|ψi〉

(3.76)

For i = 0,
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b0 |ψ1〉 = Ĥ |ψ0〉 − a |ψ0〉 (3.77)

〈ψ1|Ĥ|ψ0〉 = b0 =
√

2b (3.78)

where all the diagonal elements are identical and taken as a, while all identical

off-diagonal elements are b except the first one, which becomes
√

2b, so that

Ĥ =



a
√

2b√
2b a b

b a b

b a b
. . . . . . . . .

. . . b

b a


. (3.79)

We need to calculate the determinant of Û(T ) |ψ0〉, for that we should diagonal-

ize Ĥ by considering the space |ψi〉 of dimension Nd (that is i < Nd). Parallelly,

we can deduce the spectral coefficient ci(T ) for i = 0, ...., NTc(Max) (NTc(Max)

maximum degree of Chebyshev polynomial). ci(T ) can be calculated, by diag-

onalization of a matrice (Nd × Nd), i ≤ NTc(Max) � Nd. In our calculations,

typically NTc(Max) <1000 and Nd = 4000.

3.3.2 Calculation of |φ′
RP (T )〉 & |φRP (T )〉

The evolution operator defined by the state |φ′RP (T )〉 with time steps T is

|φ′RP (T )〉 = [X̂, Û(T )] |φRP (T )〉 (3.80)

we can write, unitary transformation Û(T ) in terms of the linear combination

of Chebyshev polynomial

|φ′RP (T )〉 =
N∑
n=0

cn(T )[X̂,Qn(E)] |φRP (T )〉 =
N∑
n=0

cn(T ) |βn〉 (3.81)

with |βn〉 = [X̂, Q̂n(E)] |φRP (T )〉. The commutator relation is applied to the

recurrence relation equation 3.69

[X̂,Qn+1(Ĥ)] =

[
X̂,

Ĥ − a
b

Qn(Ĥ)

]
− [X̂,Qn−1(Ĥ)]. (3.82)

Modify the equation 3.82 using commutation relation [A, BC] = B[A, C]+[A,

B]C,
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[X̂,Qn+1(Ĥ)] =

(
Ĥ − a
b

)
[X̂,Qn(Ĥ)] +

[
X̂,

Ĥ − a
b

]
Qn(Ĥ)− [X̂,Qn−1(Ĥ)]

(3.83)

The evolution of the random phase state as a function of time is also determined

by the evolution operator

|φRP (T )〉 = Û(T ) |φRP 〉 (3.84)

A similar development of the Chebyshev polynomial yields

|φRP (T )〉 =
N∑
n=0

cn(T )Qn(E) |φRP 〉 =
N∑
n=0

cn(T ) |αn〉 (3.85)

with |αn〉 = Qn(E) |φRP 〉. The state |αn〉 satisfies to the recurrence relations;

|α0〉 = |φRP 〉 (3.86)

|α1〉 =

(
Ĥ − a√

2b

)
|α0〉 (3.87)

|α2〉 =

(
Ĥ − a
b

)
|α1〉 −

√
2 |α0〉 (3.88)

For n ≥ 2 in the recurrence relation

|αn+1〉 =

(
Ĥ − a
b

)
|αn〉 − |αn−1〉 (3.89)

The definition of |αn〉 in equation 3.85 and |βn〉 in equation 3.81 multiply |φRP 〉
then;

|βn+1〉 =

(
Ĥ − a
b

)
|βn〉 − |βn−1〉+

[
X̂,

Ĥ − a
b

]
|αn〉 (3.90)

Simplify the commutator in equation 3.90

[
X̂,

Ĥ − a
b

]
=

1

b
[X̂, (Ĥ−a)] =

1

b

[
[X̂, Ĥ]−[X̂,−a]

]
=

1

b

[
[X̂, Ĥ]−0

]
=

1

b
[X̂, Ĥ]

(3.91)

Substitute equation 3.91 in equation 3.90

|βn+1〉 =

(
Ĥ − a
b

)
|βn〉 − |βn−1〉+

1

b
[X̂, Ĥ] |αn〉 (3.92)

Equation 3.92 states that the calculation of |βn+1〉 requires a |αn〉 and the com-

mutator [X̂, Ĥ]. In the algorithm recurrence coefficients |αn〉 and |βn〉 are par-

allel calculations
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Û(T ) |φRP 〉 =

NTc∑
n=0

cn(T ) |αn〉 (3.93)

[X̂, Û(T )] |φRP 〉 =

NTc∑
n=0

cn(T ) |βn〉 (3.94)

where NTc is the maximum order of the Chebyshev polynomial. For the calcu-

lations of conductivity, and microscopic conductivity, we follow different time

steps (φ(0), φ(1T ), φ(2T ), .....φ(mT )) to reach the maximum conductivity.

3.3.3 Numerical implementation of RTA

The relaxation time approximation (RTA) is a way to introduce the effects of

inelastic collisions. The advantage of this approximation is simplicity in numeri-

cal implementation. It allows to study in a simple way the inelastic phenomenon

(Integral calculation). Inelastic mean free path which defined by (from equation

3.59)

L2
i (EF , τi) =

∫ +∞
0

∆X2
0 (EF , t)e

− t
τi dt∫ +∞

0
e
− t
τi dt

(3.95)

where ∆X2
0 (EF , t) is the quadratic spread of the perfect system (without defects)

in the energy eigenstate E. Equation 3.95 is a well known auto correlation

function of the speed C(E, t) and that includes two integrals. The first integral

is
∫ +∞
0

e
− t
τi dt only τi. The second integral upper limit infinity. For the great

values of time t, now we interpolate the quantity ∆X2
0 (EF , t) from at+ b.

∫ +∞

0

∆X2
0 (EF , t)e

− t
τi dt =

∫ tmax

0

∆X2
0 (EF , t)e

− t
τi dt+

∫ +∞

tmax

(at+ b)e
− t
τi dt

(3.96)

with tmax the last calculated time.

This method has been developed by D. Mayou and his coworkers [106,180–183,

216]. We adapted this code to 2D material systems, for work flow see in Fig.

3.5.
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Supercell structure

Write H, with static defects
N ≅ 𝟏𝟎𝟕 orbitals.

ψ(t=0)=ɸ𝑹𝑷
(generate)

For T value
𝑪𝒏 𝑻 generate.

Recursion method
ψ(mT)        ψ((m+1)T) ɸ(𝒎𝒎𝒂𝒙 T)

DOS
DOS[ψ(0)]=DOS[ψ(

𝒎𝒎𝒂𝒙 T)]

∆X𝟐, D, σ, 
𝑳𝒆,….etc

∆X𝟐, D, σ, 
𝑳𝒆,….etc

RTA

Figure 3.5: Flow chart for Recursion method. This method has been developed

by D. Mayou and his coworkers [106,180–183,216].

3.4 Conclusion

In this chapter we have presented a numerical method to study the electronic

transport properties based on the Kubo-Greenwood formalism. We explained

the relation between the Kubo-Greenwood conductivity and the mean square

spread ∆X2 (quantum diffusion); this analytical development allows us to sim-

plify the expression of ∆X2. The recurrence relations deduced from a develop-

ment on the Chebyshev polynomials of the evolution operator. The recursion

method used to calculate the density of states. We have determined the diffusion

quantity ∆X2 as a function of time and energy, these quantities that allow us the

phenomenon of electronic transport. This numerical method allows an efficient

processing of the quantum transport due to defects. The defects that act as a

static disorder (elastic scattering) are directly introduced into the Hamiltonian,

while inelastic scattering (electron-phonon collision, and an external magnetic

field) can be treated by introducing an inelastic scattering with relaxation time

approximation.
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2D materials are attracting a lot of interest as possible candidates for re-

placing traditional semiconductors (Si, Ge, etc.) in the next generation of

nano-electronic devices. These materials may provide a variety of benifits, in-

cluding excellent electronic properties such as very high mobility [14, 80]. The

most known and widely studied 2D material, graphene, has no bandgap in its

electronic structure. This characteristic electron property limits its application

in integrated circuits. But 2D TMD materials (group-VIB Transition Metal

Dichalcogenides MX2 (M = Mo, W; X = S, Se, Te)) have an intrinsic bandgap,

and thus an attractive possibility for the electronic, optoelectronic applications

and use as conductive channel in field effect transistors [112,175]. An important

limitation of transport properties are static defects that are often found in the

structure [41, 108, 121]. It is thus essential to understand more correctly the

effect of those types of defects on transport properties.

Atomically thin MX2 semiconductors (M = Mo, W and X = S, Se, Te) form a

sandwich structure with a honeycomb lattice [233], where one atomic layer of

transition metal atoms (M) is sandwiched between two atomic layers of chalco-

gens (X) is shown in Fig. 4.1-(a). These semiconductors exhibit a strong SOC in

their valence bands, which increases with increasing mass of the M atoms. MoS2

and WSe2 are widely studied TMDs with a tunable bandgap in the visible and

infrared (IR) regions of the electromagnetic spectrum as the number of atomic

layers in the crystal changes. Bulk MoS2 exhibits an indirect bandgap ≈ 1.2

eV and bulk WSe2 exhibits an indirect bandgap ≈ 0.7 eV which increases with

decreasing number of layers [10, 57, 84, 226]. A monolayer of MoS2 and WSe2

shows a direct bandgap with an energy gap ≈ 1.7 to 1.9 eV and ≈ 1.5 to 1.7 eV,

respectively, at the highest symmetry point K of the hexagonal Brillouin zone

shown in Fig. 4.1-(b). Because of broken inversion symmetry, SOC effects lifts

the spin degeneracy of bands and substantially split the highest valence bands

at the K symmetry point [40].

On the theoretical level, one of the reasons for the strong popularity of graphene

is the availability of a paradigmatic Hamiltonian model for the single layer in

terms of a few tight-binding (TB) parameters [177, 224] (actually only one, the

nearest neighbors carbon-carbon hopping γ0, in the simplest case [151]). The

well known Dirac equation can thus be derived from that as a low-energy ex-

pansion. Crucial to the development of the theoretical analysis in graphene

is also the fact that model Hamiltonians for multi-layer graphene can be built

using the single layer TB description as a fundamental block and just adding

additional interlayer hopping terms [134,158,166,219]. Different stacking orders

can also be easily investigated. Tight-binding approaches can be also more con-
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venient than first-principles methods such as density functional theory (DFT)

for investigating systems involving a very large number of atoms [199], and

have been thoroughly applied to large scale graphene related problems, but

they are still computationally challenging and demanding. Therefore, TB has

been the method of choice for the study of disordered and inhomogeneous sys-

tems [24,161,170,178,239], materials nanostructured in large scales or in twisted

multi-layer materials [11,117,137,143,202,205,213].

In this chapter, after obtaining our own DFT-based TB model, we study the ef-

fect of point defects (see discussion) on electronic structure and quantum trans-

port properties of several transition metal dichalcogenides (MX2). Imperfections

can strongly modify the optical and transport properties of these materials. We

analyzed the effect of point defects on the inelastic mean free path scattering

length and microscopic conductivity of single layers of TMDs (MX2, where M

= Mo or W and X = S, Se, Te). We use the Kubo-Greenwood formula for the

calculation of conductivity with different distributions of disorder as explained

in chapter-3.

4.1 Atomic structure

The crystal structure of MX2 is shown in Fig. 4.1(a). A single layer is composed

by an inner layer of metal M atoms ordered on a triangular lattice, which is

sandwiched between two layers of chalcogen X atoms placed on the triangular

lattice of alternating empty sites. The lattice constant a represents the distance

between nearest neighbor in-plane M-M and X-X atoms. The in-plane Brillouin

zone is a hexagon is shown in Fig. 4.1(b). It contains the high-symmetry points

Γ, K and M .

The two Bravais primitive lattice vectors are:

~a1 = (a, 0, 0), ~a2 =

(
a

2
,

√
3

2
a, 0

)
. (4.1)

The reciprocal lattice vectors are

~b1 =
4π√
3a

(√
3

2
,−1

2
, 0

)
, ~b2 =

4π√
3a

(0, 1, 0). (4.2)

The distance between the two X layers is d cos θb = a√
3
, where θb ≈ 40.6◦ is the

angle between the Mo-S bond and the Mo plane and d is the distance between

neighboring Mo and S atoms for MoS2 see [179]. The nearest-neighbor vectors,

connecting M and X atoms are given by

~δ±1 = d(0, cos θb,± sin θb) (4.3)
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a1

a2

(a)
(b)

K'

M

K

Ky

Kx

b1

b2

Figure 4.1: Sketch of the atomic structure of MX2: (a) Top view of monolayer

of MX2. Blue (red) circles indicates M (X) atoms. ~δi (where i=± 1, 2, 3)

indicates the nearest neighbor vectors and ~ai (i=1, 2) indicates the next nearest

neighbor vectors. (b) Brillouin zone for the MX2 lattice, where ~b1 and ~b2 are

the reciprocal lattice basis vectors, and Γ, M and K are the highest symmetry

points.

~δ±2 = d

(
−
√

3

2
cos θb,−

1

2
cos θb,± sin θb

)
(4.4)

~δ±3 = d

(√
3

2
cos θb,−

1

2
cos θb,± sin θb

)
(4.5)

The MX2 Brillouin zone is hexagonal. The highest symmetry points and symme-

try lines are indicated see Fig. 4.1(b), namely Γ, M and K [M = 1
3
(2~b1−~b2), K =

1
2
(~b1)].

Γ = (0, 0, 0),M =
2π

3a

(
3

2
,−
√

3

2
, 0

)
, K =

2π

3a

(
1,−
√

3, 0

)
. (4.6)

4.2 Electronic band calculation

It is well known that first principle computations may not give the correct

bandgap when compared to the experimental outcome. Since we do not have

sufficient experimental data to match the Slater-Koster parameters in the tight-

binding model, we used a DFT electronic band structure as a reference.
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4.2.1 DFT-Electronic band structure

In the construction of a reliable TB model for semiconducting dichalcogenides,

we are guided by first-principles DFT calculations that will provide the reference

on which to calibrate the TB model. The first principle calculations of MX2 (M

= Mo, W and X = S, Se, Te) monolayer are carried out using density functional

theory as implemented in the ABINIT software package [60]. A plane wave

cutoff of 544 eV (20 Hartree) and the generalized gradient approximation of

Perdew, Burke, and Ernzerhof (PBE) [168] to the exchange correlation functional

are used. Integrals in reciprocal space are calculated using a Gamma-centered

18×18×1 k-mesh. Along the c-axis, a vacuum region greater than 12.72 Å (≈ 20

Å) has been maintained to avoid spacies interactions between the images [109].

All structures are relaxed until the forces on the atoms have decreased to 0.01

eV/Å. For the hexagonal unit cell, the lattice constants of optimized MoS2,

MoSe2, MoTe2, WSe2, and WTe2 are 3.18 Å, 3.30 Å, 3.52 Å, 3.30 Å, and 3.60 Å

respectively. The bond lengths and bandgaps are summarized in Table 4.1, cell

values which are consistent with the measured value as reported in experimental

results [13].

4.2.1.1 Without spin orbit coupling (SOC)

Single layer TMDs are direct bandgap semiconductors, with the gap located at

K point of the Brillouin zone. The main orbital character at near the bandgap

region of the valence band is due to a combination of the dx2−y2 and dxy orbitals

of the metal M, which hybridize with px and py orbitals of the chalcogen X.

On the other hand, near the bandgap region of the conduction band is formed

by the d3z2−r2 orbital of M, plus some contribution of px and py orbitals of

the chalcogen X. The Γ-point lies close to the top of the valence band (VB),

the energy difference between Γ and K is very small at VB (≈ 46.4 meV, 106

meV, 410 meV, 268 meV, and 423 meV for MoS2, MoSe2, MoTe2, WSe2, and

WTe2, respectively) as shown in Fig. 4.2. Our DFT band structures are in good

agreement with previous works [110, 186]. Hence, hole-doped samples of Γ and

K symmetry points will contribute to the electronic transport [95]. The direct

bandgap is located at K-point. The M -point signaling a local minimum in the

conduction band (CB) along the circuit Γ and K, received a lot of attention

due to relevance for transport properties [138,147], since energy minimum at M

close to the bottom of the CB is shown in Fig. 4.2.

4.2.1.2 With spin orbit coupling (SOC)

Another important feature of TMDs is the SOC; the atoms are heavy and the

outermost electronic states are from d-orbitals that have a strong spin orbit
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Figure 4.2: The electronic band structure of monolayer of a different TMDs of

MX2 (M = Mo, W and X = S, Se, Te) without SOC. The direct bandgap is

obtained at highest symmetry point K. (a) MoS2, (b) MoSe2, (c) MoTe2, (d)

WSe2, and (e) WTe2.
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Lattice parameters and bandgap of single layer MX2

MX2 a (Å) M-X (Å) X-X (Å) Bandgap (eV)

MoS2 3.18 2.4017 3.1237 1.765

MoSe2 3.30 2.4900 3.2409 1.444

MoTe2 3.52 2.7160 3.5350 1.108

WSe2 3.30 2.5260 3.2877 1.556

WTe2 3.60 2.7410 3.6342 0.983

Table 4.1: The DFT optimized lattice parameters, first neighbor distance and

bandgap for monolayer MX2, where the metal M is Mo or W and chalcogen X

is S or Se or Te.

coupling (SOC) as shown in Fig. 4.3. Our DFT band structures are in good

agreement with previous literatures [110, 185, 186]. This SOC removes the spin

degeneracy in both conduction and valence band which leads to a large energy

splitting between spin up and down states of the valence band at the highest

symmetry point of the Brillouin zone of K is shown in Fig. 4.3. The splitting is

high for W based TMDs than that of Mo based TMDs, because of the heavier

mass of W based TMDs. SOC also leads to a splitting of the conduction band

at the K point as well as the minimum in between K and Γ is shown in Fig.

4.3. K: the direct bandgap located at K-point and the spin splitting at VB

(K-point) is larger ≈ 145 meV, 188 meV, 218 meV, 475 meV, and 506 meV for

MoS2, MoSe2, MoTe2, WSe2, and WTe2, respectively. We observed that mass or

atomic number (Z) of transition metal (M) or chalcogen (X) increases the spin

splitting at VB (K) increases.

When the atomic number and weight of the chalcogenides increases along with

transition metal the bandgap is decreasing, and also spin splitting (SOC) in-

creasing at valence band (K), the SOC effect will be more and more important

for the calculation of transport properties of single layer TMDs.

4.2.2 Tight-Binding model description for Transition Metal

Dichalcogenides

We describe the monolayer of MX2, the states around the gap at the Fermi en-

ergy EF are mainly d states of M. However, to describe valence and conduction

bands correctly, it is not sufficient to restrict an effective Hamiltonian to d M

orbitals. Indeed, the ligand field (X atoms) splits the d levels of the transition

metal (M) atoms, and thus creates a direct gap at the K point [79]. Therefore, all

TB models proposed in the literature include at least p X orbitals [23,179,194].

The valence band has mainly d0 = 4dz2 M character, whereas the conduction

band has d0 character mixed with d2 = dx2−y2 , dxy M character near the gap,
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Figure 4.3: The electronic band structure of a monolayer of different TMDs of

MX2 (M = Mo, W and X = S, Se, Te) with SOC. The direct bandgap is obtained

at highest symmetry point K. (a) MoS2, (b) MoSe2, (c) MoTe2, (d) WSe2, and

(e) WTe2.
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Tight-Binding parameters

MoS2 MoSe2 MoTe2 WSe2 WTe2

On-site energies of d-orbital of M (Mo, W)

∆2 = dxy = dx2−y2 (eV) -0.0563 -0.0009 -0.0425 -0.010 -0.0576

∆1 = dzy = dzx (eV) -0.4916 -0.440 -0.6948 -0.80 -0.6727

∆0 = d3z2−r2 (eV) 0.0644 0.0349 0.0168 0.0149 0.0568

On-site energies of p-orbital of X (S, Se, Te)

∆p = px = py (eV) -38.7786 -35.3295 -22.0570 -36.3295 -43.5846

∆z = pz (eV) -29.5254 -27.9754 -17.5945 -27.9754 -15.2913

Slater-Koster parameters of MX2

Vddσ (M-M) (eV) -0.9035 -0.8124 -0.5509 -0.8524 -0.8442

Vddπ (M-M) (eV) 0.7027 0.6611 0.3842 0.6611 0.6039

Vddδ (M-M) (eV) 0.0897 0.0836 0.0089 0.0836 0.0162

Vppσ (X-X) (eV) 8.0790 10.5297 7.5192 10.5297 12.9422

Vppπ(X-X) (eV) -2.6784 -3.5751 -0.7837 -3.5751 -1.0655

Vdpσ (M-X) (eV) -7.1933 -6.3099 -4.9915 -6.5099 -6.1066

Vdpπ (M-X) (eV) 3.2674 3.1085 1.9374 3.3085 2.6339

Spin-Obit-Coupling (SOC) of MX2

λM (eV) 0.075,

0.086?
0.077,

0.089?
0.109 0.235,

0.251?
0.215

λX (eV) 0.042,

0.052?
0.175,

0.256?
0.375 0.475,

0.439?
7.052

Table 4.2: Tight-binding parameters and SOC (λ) for monolayer MX2, where

the metal M is Mo or W and chalcogen X is S or Se or Te. ? indicates values

from the reference [194].

and d1 = dxz, dyz M character for higher energies [23]. It seems that p X orbitals,

which have lower on-site energies, act as a perturbation of the d M bands. For

this reason, several TB models [23, 179, 194] fit rather well to the DFT band

structure, while they propose very different parameters (on-site energies and

Slater-Koster parameters).

We constructed new tight-binding models for TMDs based on Slater-Koster

parameters. This TB approximation contains 11 orbitals per layer and per unit

cell: the five d orbitals of the transition metal M atom and the six p orbitals of the

two chalcogen X atoms in the unit cell [23, 179]. The Slater-Koster parameters

that account for the relevant hopping processes of the model are Vpdσ and Vpdπ

for M-X bonds, Vddσ, Vddπ and Vddδ for M-M bonds, and Vppσ and Vppπ for X-X

bonds. Additional parameters of the theory are on-site energies which depend
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on the crystal fields for d orbitals: ∆0, ∆1, ∆2, and for p orbitals: ∆p, ∆z. The

Slater-Koster parameters and the on-site energies that we choose to simulate

the DFT bands for the five compounds are given in table 4.2. We notice that

the main restriction of the TB model considered here is that it only includes

up to next-nearest neighbor hopping terms, and this is why the fit to the DFT

bands cannot be perfect. Moreover our TB-model does not include p orbital of

M which seems not necessary to simulate bands around the gap [222].

4.2.3 Electronic band structure of Wannier orbitals from

DFT

More sophisticated methods such as DFT based tight-binding Hamiltonian rep-

resented in the basis of maximally localized Wannier functions (MLWFs) (see

section 2.4.3) can lead to better agreement, at the cost of inclusion of longer

range hopping terms [98,144,172]. The band structure of the Wannier Hamilto-

nian calculated with Wannier90 code [144,172], is in good agreement with DFT

calculations is shown in Fig. 4.4. The Wannier-semiempirical-TB [144, 172]

model has broad range of hopping terms and on-site energies that are struc-

ture dependent. Therefore these terms are no more valid when static defects

are introduced in the atomic structure. It is thus not possible to use the Wan-

nier orbitals for our transport calculations. So, we are using our tight-binding

model parameters for the calculation of transport properties. Nevertheless, the

Wannier approach allows us to check the character of states, as follows.
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Figure 4.4: A comparison of electronic band structure of a monolayer of MoS2

with Wannier-TB model and DFT [ABINIT].
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The electronic band structure of transition metal dichalcogenides (TMDs) ob-

tained a bandgap, main contribution d-orbitals of the transition metals (M =

Mo, W). Now, we are justified (ex:MoS2) d-orbitals have a major contribution

in the band structure around the gap region is shown in Fig. 4.5. The orbital

contributions, calculated using the orbital projections (Wannier) in the elec-

tronic band structure are shown in Fig. 4.5. The bands of interest around the

gap region of the conduction and valence bands have very little contribution

of p-orbital (chalcogenides) character is shown in Fig. 4.5 [bottom] and major

contribution of d-orbital (transition metal) character is shown in Fig. 4.5 [top].

4.3 Local density of states (LDOS)

The TB total and local density of states (LDOS) are calculated by the recursion

method (see section 3.1.1) employed uniform broadening by Lorentzian with ε

= 6 meV. We use a large number of recursion steps, with Nr = 3000 in the real

space unit cell. The total DOS and LDOS are shown in Fig. 4.6 for different

monolayer TMDs. It shows also the contributions of d0 = d3z2−r2 , d1 = dxz, dyz

and d2 = dxy, dx2−y2 . For all TMDs, the density of states around the energy gap

have a d0 = d3z2−r2 major contributions in the valence and conduction bands,

the other d orbitals of M have a small contribution.

4.4 Density of states with defects

In this section, we study the TB-total density of states of TMDs with a random

distribution of vacant atoms (vacancies) in a large supercell containing 2799468

atoms, which corresponds to an L1 = L2 = 1000 cell of MX2. The effect of point

defects in the DOS of different TMDS (MX2) with the defect concentration

(c = 0 %, 3 %, 2 %, 1 %, and 0.5 % ) with respect to the total number of

atoms without defects is shown in Fig. 4.7. The defects lead to the appearance

of a series of peaks in the gaped region of the DOS, which are associated to

the creation of midgap states localized around the defects, whose energy and

strength depends on the specific missing atoms, their concentration as well as

the specific arrangement of the point defects [53, 240]. In order to identify the

energy of M-vacancy midgap states and X-vacancy midgap states (Fig. 4.7),

we have compare the total DOS calculated with only one of the two types of

vacancies. The energies of midgap states seems to be a little different from the

previous works [240], this may come from the different TB model.
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Figure 4.5: The electronic band structure of monolayer of MoS2 with the Wannier

method showing the contribution of d-like MLWFs (proportion of d-character of

the bands Mo) in red [top] and p-like MLWFs (proportion of p-character of the

bands S) in red [bottom]. A color scheme is used to measure the proportion of

orbital character of the bands.
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Figure 4.6: TB-total density of states (DOS) and local DOS (LDOS), d0 =

d3z2−r2 , d1 = dxz, dyz and d2 = dxy, dx2−y2 monolayer of different TMDs without

defects and without SOC. The LDOS and total DOS are calculated employing

a broadening by a Lorentzian (see section 3.1.2) with ε = 6 meV. (a) MoS2, (b)

MoSe2, (c) MoTe2, (d) WSe2, and (e) WTe2.

71



Transport properties of different TMDS Chapter-4

	0

	0.05

	0.1

	0.15

	0.2

	0.25

	0.3

	0.35

	0.4

	0.45

-0.5 	0 	0.5 	1 	1.5 	2

MoS2
DO
S	
(S
t/(
eV
.o
rb
ita
l))

Energy	(eV)

	(a)

c=0%
c=3%
c=2%
c=1%
c=0.5%

S-defectMo-defect

	0

	0.05

	0.1

	0.15

	0.2

	0.25

	0.3

	0.35

	0.4

	0.45

-0.5 	0 	0.5 	1 	1.5 	2

MoSe2

DO
S	
(S
t/(
eV
.o
rb
ita
l))

Energy	(eV)

	(b)

c=0%
c=3%
c=2%
c=1%

c=0.5%

Se-defectMo-defect

	0

	0.1

	0.2

	0.3

	0.4

	0.5

	0.6

	0.7

-0.4 -0.2 	0 	0.2 	0.4 	0.6 	0.8 	1 	1.2 	1.4

MoTe2

DO
S	
(S
t/(
eV

.o
rb
ita

l))

Energy	(eV)

	(c)

c=0%
c=3%
c=2%
c=1%

c=0.5%

Te-defect
Mo-defect

	0

	0.1

	0.2

	0.3

	0.4

	0.5

-0.5 	0 	0.5 	1 	1.5 	2

WSe2

DO
S	
(S
t/(
eV
.o
rb
ita
l))

Energy	(eV)

	(d)

c=0%
c=3%
c=2%
c=1%

c=0.5%

Se-defect
W-defect

	0

	0.1

	0.2

	0.3

	0.4

	0.5

-0.5 	0 	0.5 	1 	1.5

WTe2

DO
S	
(S
t/(
eV
.o
rb
ita
l))

Energy	(eV)

	(e)

c=0%
c=3%
c=2%
c=1%

c=0.5%

Te-defect
W-defect

Figure 4.7: TB-Total density of states (DOS) with random distribution of va-

cancies (vacant M atoms or vacant X atoms) with different concentrations c of

vacancies with respect to the total number of atoms (c = 0 %, 3 %, 2 %, 1 %,

and 0.5 %) of monolayer of different TMDs. The DOS is calculated employing

a broadening by a Lorentzian (see section 3.1.2) with ε = 15 meV. The peaks in

the DOS associated to midgap bands is due to X or M defects. (a) MoS2, (b)

MoSe2, (c) MoTe2, (d) WSe2, and (e) WTe2.
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4.5 Transport properties

In the framework of the Kubo-Greenwood formula for the electronic transport

properties, the quantum diffusion coefficient D (diffusivity) and conductivity (σ)

are computed by using the polynomial expansion method, developed by Didier

Mayou and his co-workers [130, 131, 183, 184, 217] discribed in chapter 3. This

numerical approach allows very efficient calculations by recursion (Lanczos al-

gorithm) in real space which take into account all quantum effects. Now we are

using this recursion method to study quantum transport in disordered TMDs.

Our calculations are performed on samples containing up to 28 × 105 M (tran-

sition metal) and X (chalcogenides) atoms, which corresponds to typical sizes

of about one micrometer square and allows to study systems with elastic mean

free path length of the order of a few hundred nanometers.

4.5.1 Conductivity & Inelastic mean free path

The elastic scattering events are taken into account in the Hamiltonian, but

effects of inelastic scattering by phonons at temperature T are not included in

the Hamiltonian. To consider the inelastic processes, we introduce an inelastic

scattering time τi(T ) beyond which the propagation becomes diffusive due to the

destruction of coherence by these inelastic processes see section 3.2.3. The effect

of a magnetic field on the electron propagation is not included directly in the

TB model, but a magnetic field B can have also a similar incoherent dephasing

effect. This dephasing effect occurs on a length Li(B) such that the flux of the

magnetic field enclosed in the disk of radius Li(B) is equal to the flux quantum
h
e
, that is h

e
≈
√

h
eB

. We treat these two dephasing effects in a phenomenological

way through a Relaxation Time Approximation (RTA) [133] as described here

after. In the RTA, the conductivity along the x-axis is given by [37] (see section

3.3.3)

σ(EF , τi) = e2n(EF )D(EF , τi), (4.7)

D(EF , τi) =
L2
i (EF , τi)

2τi
(4.8)

where EF is the Fermi energy, n(EF ) is the density of states (DOS) and Li is

the inelastic mean free path along the x-axis. Li(EF , τi) is the typical distance

of propagation during the time interval τi for electrons at energy E.

We compute the distance Li from equation 3.95, and then from 4.7 and 4.8,

the diffusivity D and the conductivity σ at all inelastic scattering times τi and
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all energies E for a model Hamiltonian that includes elastic scatterers (vacan-

cies) distributed randomly in the supercell. At short times τi, i.e. τi lower than

elastic scattering time τe, the propagation is ballistic and the conductivity σ

increases when τi increases in the ballistic region is shown in Fig. 4.8.

The three main transport regimes which can be generically followed through

the time evaluation of the wave packet dynamics are [104,211]:

• Ballistic regime. For small τi, electrons travel through the system with-

out suffering any scattering, so the D(E, τi) and Li(τi) remains linear func-

tions in τi, with slopes respectively equal to v2F and vF .

• Diffusive regime. For intermediate τi, behavior in weakly disordered

and its characterized by a saturation of D(E, τi). The saturation value

identifies the elastic relaxation time τe, above which diffusive regime is

reached.

• Localized regime. For large τi, behavior in a strongly disordered system

is manifested by an increasing contribution of quantum interference which

reduces the diffusion coefficient, not always it depends on the system:

thus D decreases when t increases [104]. The spreading Li(τi) reaches an

asymptotic value that is related to the localization length ξ(E).

The variation of the conductivity σ and inelastic mean free path Li versus τi for

different energies corresponding to the valence band region to conduction band

region is shown in Fig. 4.8. The first case (i) conduction band region: MoS2 (E

=1.90 eV), MoSe2 (E =1.88 eV), MoTe2 (E =1.36 eV), WSe2 (E = 2.10 eV),

and WTe2 (E =1.62 eV). The large values of τi, the conductivity σ is almost

constant as expected in a diffusive regime. This regime corresponds to energies

for which the DOS is weakly affected by scatterers. We have checked that σ

with different concentration of vacancies (c), σ is almost independent on c which

is expected by the Boltzmann theory of transport. Second case (ii) bandgap

region: MoS2 (E =0.80 eV), MoSe2 (E =0.66 eV), MoTe2 (E =0.56 eV), WSe2

(E = 0.60 eV), and WTe2 (E =0.72 eV), the transport is determined by diffusion

of midgap states which are localized states. Therefore, the localization regime

is reached at small τi. Third case (iii) valence band region: MoS2 (E = -0.60

eV), MoSe2 (E = -0.64 eV), MoTe2 (E = -0.32 eV), WSe2 (E = -0.56 eV), and

WTe2 (E = -0.58 eV) the behavior is similar to the first case. The first and third

cases, for τi closed to the elastic scattering time τe, there is a diffusive behavior

where σ(τi) reaches a maximum, σM ; for larger values of τi, τi � τe, σ(τi)

decreases progressively as expected in the localization regime due to Anderson

localization in 2D [104]. Variation of conductivity and inelastic scattering length

versus inelastic scattering time for a large concentration of vacancies 3 % and 10
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Figure 4.8: The variation of conductivity σ (solid line) and inelastic scattering

length Li (dashed line) in MX2 versus inelastic scattering time τi for the defect

concentration c = 1 % of point defects (vacancies by random removal of atoms).

For the three energy values: valence band (blue), inside the midgap states region

(magenta) and conduction band (red). (a) MoS2, (b) MoSe2, (c) MoTe2, (d)

WSe2, and (e) WTe2. G0 = 2e2/h.
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% in a large supercell are shown in appendix B.1. We observed that when the

concentration of defects increases the diffusive regime is reached at very small

τi, therefore, the localization length is also smaller.

4.5.2 Microscopic conductivity

As shown in the previous paragraph,

Li(E, τi) ' V0(E)τi when τi � τe, (4.9)

where V0 is a velocity at the energy E and short time t. In crystals, when

inter-band terms are negligible V0 = VB, where VB is the Boltzmann velocity

(intra-band velocity) [38]. According to the renormalization theory [104] in 2D

systems with static defects, diffusivity D always goes to zero at very large τi.

Thus, at each energy, the microscopic diffusivity DM (microscopic conductivity

σM) is defined as the maximum value of D(τi) (σ(τi)).

The microscopic conductivity is

σM(E) = e2n(E)DM(E). (4.10)

We compute also the elastic mean free path Le along the x-axis, from the relation

[37],

Le(E) =
1

V0(E)
Maxτi

{
L2
i (E, τi)

τi

}
=

2DM(E)

V0(E)
. (4.11)

Le is the average distance between two elastic scattering events. At each energy,

the elastic scattering times τe is deduced from Le by Le = V0(E)τe(E). The

variation of the elastic mean free path Le along the x-axis as a function of the

energy E is shown of appendix B Fig. 3 for different values of point defect con-

centrations in MX2.

The microscopic conductivity σM versus energy E as a function of the energy

(E) see Fig. 4.9 for different values of point defect concentrations in MX2.

According to the renormalization theory [104], this value is obtained when the

inelastic mean free path Li and the elastic mean free path Le are compara-

ble, Le ' Li, which corresponds to τe ' τi. As Li and τi decrease when the

temperature T increases, the microscopic conductivity is a good estimation of

the high-temperature conductivity (room temperature and higher temperature

conductivity).

We analyze the microscopic conductivity with concentration σMc (c in %) versus

energy E for different values of point defect concentrations in MX2 see Fig. 4.10.

σM = constant
c

(c in %) implies σMc = constant for every energy. Therefore, σMc
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Figure 4.9: The variation of microscopic conductivity σM versus energy E in

MX2 for different concentration (c = 0.5 %, 1 %, 2 %, 3 %, 5 %, and 10 %) of

point defects (vacancies by random removal of atoms M = Mo, W or X = S, Se,

Te). (a) MoS2, (b) MoSe2, (c) MoTe2, (d) WSe2, and (e) WTe2. G0 = 2e2/h.

≈ constant as expected in Boltzmann theory of transport around the valence

and conduction band region, but this is not true in the midgap states.
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Figure 4.10: The variation of the microscopic conductivity σMc (c in %) versus

energy E in MX2 for different concentration (c = 0.5 %, 1 %, 2 %, 3 %, 5 %,

and 10 %) of point defects (vacancies by random removal of atoms M = Mo, W

or X = S, Se, Te). (a) MoS2, (b) MoSe2, (c) MoTe2, (d) WSe2, and (e) WTe2.

σM in G0 = 2e2/h and c in %.

4.5.3 Thermodynamic average conductivity at room tem-

perature

We define the thermodynamic average conductivity at room temperature (T ≈
300 K) as

σ(µC , T ≈ 300K) =

∫ +∞

−∞
dEσM(E)

(
− ∂f

∂E

)
, (4.12)

where µC is the chemical potential, and σM is the microscopic conductivity. The

Fermi-Dirac distribution function f is defined as

f(E, µC , T ) =
1

e
(
E−µC
kBT

)
+ 1

(4.13)

and Ne is the number of charge carriers with respect to the neutral system

Ne(µC , T ) =

∫ +∞

−∞
dEn(E)f(E, µC , T )−

∫ +∞

−∞
dEn(E)f(E, µC = EF0, T = 0),

(4.14)

where EF0 is the Fermi energy at T = 0 K of the undoped system. We choose

EF0 to be at the middle of the gap of the MX2 without static defects.

At temperature T , the mobility µ is related with conductivity σ by [53,240]:
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σ(µC , T ) = e | Ne(µC , T ) | µ(µc, T ). (4.15)

Therefore, at room temperature (T ≈ 300K), mobility is

µ(µC , T = 300K) =
1

e | Ne |

∫ +∞

−∞
dEσM(E)(− ∂f

∂E
). (4.16)

The thermodynamic average conductivity (σ300K) versus chemical potential (µC)

is shown in Fig. 4.11 for different concentrations of vacancies of MX2.

The thermodynamic average conductivity (σ300K) and the corresponding mo-

bility versus number of charge carriers (Ne) at room temperature (300K) for

different concentration of vacancies of MX2 is shown in Fig. 4.12 and Fig. 4.13.

When the defect concentration is too large, there is too large midgap states in

the gap region and thus mobility also, which is a semiconductor quantity, is not

significant so we do not plot it see Fig. 4.13. When Ne ≈ 0 shows a numerical

error in the calculation of mobility because of conductivity does not go correctly

to zero (tail of Lorentzian expansion). σ300K with respect to the charge carriers,

we found that for n-doped samples, MoTe2, MoSe2, MoS2 show similar behavior,

where as for p-doped samples. σ300K for n-doped samples, MoTe2, MoSe2, MoS2

smaller than that of p-doped samples of MoTe2, MoSe2, MoS2. σ300K with re-

spect to the charge carriers, we observed that for n-doped samples, WTe2, WSe2

show similar behavior, where as for p-doped samples WTe2, WSe2. The ther-

modynamic average conductivity (σ300K) for n-doped samples, MoTe2, MoSe2,

MoS2 is larger than that of p-doped samples of MoTe2, MoSe2, MoS2.

We observed that n doping corresponds to M (Mo, W) point defects, whereas p

doping corresponds to X (S, Se, Te) point defects with different concentration of

vacancies is shown in Fig. 4.13. We found that for n-doped samples, MX2 show

similar mobilities, where as for p-doped samples, the mobility of WTe2 is larger

than for WSe2, MoTe2, MoSe2, MoS2. Our results show that in general, the

mobilities of TMDs are low, but they are larger for holes than for electrons, in

agreement with experimental results [250]. The results for the mobility suggest

that it is independent of carrier concentration, except at the edge of the valence

band. If the concentration of the vacancies increases mobility decreases.
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Figure 4.11: Thermodynamic average conductivity at room temperature (σ300K)

versus chemical potential (µC) in MX2 for different concentration (c = 0.5 %,

1 %, 2 %, 3 %, 5 %, and 10 %) of point defects (vacancies by random removal

of atoms M = Mo, W or X = S, Se, Te). (a) MoS2, (b) MoSe2, (c) MoTe2, (d)

WSe2, and (e) WTe2. G0 = 2e2/h.
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Figure 4.12: Thermodynamic average conductivity at room temperature (σ300K)

versus number of charge carriers (Ne) in MX2 for different concentration (c =

0.5 %, 1 %, 2 %, 3 %, 5 %, and 10 %) of point defects (vacancies by random

removal of atoms M = Mo, W or X = S, Se, Te). (a) MoS2, (b) MoSe2, (c)

MoTe2, (d) WSe2, and (e) WTe2. G0 = 2e2/h.
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Figure 4.13: Mobility (µ) at room temperature (T ≈ 300K) versus number of

charge carriers (Ne) in MX2 for different concentration (c = 0.5 %, 1 %, and

2 %) of point defects (vacancies by random removal of atoms M = Mo, W or

X = S, Se, Te). (a) MoS2, (b) MoSe2, (c) MoTe2, (d) WSe2, and (e) WTe2.

The numerical calculation of the mobility is no more valid when Ne → 0 as

the conductivity in equation 4.16 is overestimated because of the tail of the

Lorentzian used in the recursion method, therefore the peak in µ at zero is a

numerical artifact.
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4.6 Conclusion

In this chapter, we proposed an eleven band tight-binding model for different

TMDs, and investigate the electronic band structure with and without spin or-

bit coupling compared to the first-principle calculations done with the ABINIT

program. We have studied the density of states without and with point de-

fects using recursion method. The point defects in the TMDs create midgap

states. We have studied numerically the quantum diffusion of charge carriers in

monolayers of different types of TMDs in the presence of local defects. For the

transport properties, we used Kubo-Greenwood formulas to calculated Diffusiv-

ity, conductivity, inelastic mean free path, elastic mean free path and microscopic

conductivity. We analyze conductivity versus scattering time obtained the three

different types of regimes as expected: ballistic regime, Diffusive regime and

localized regime. In the ballistic regime, electrons are traveling through the

system without suffering any scattering that means conductivity remains a lin-

ear function (not exactly linear function in time because of many orbitals in

the TMDs) in times. In the diffusive regime, weak disorder is characterized by

a saturation of diffusivity, this saturation identifies the transport or relaxation

time. In the localized regime, strong disorder by an increasing contribution of

quantum interference reduces the diffusion coefficient. Once the system reached

the diffusive regime, which corresponds to an inelastic relaxation time close to

the elastic relaxation time, we can calculate the microscopic conductivity at ev-

ery energy E, the thermodynamic average conductivity, and the mobility.

The presented results are preliminary results that show qualitatively good agree-

ment with the experiments [121] and the previous theoretical works [53,240]. For

small concentration of defects, the microscopic conductivity has a behavior close

to that expected in the Boltzmann theory. For large concentration of defects,

situation is different as defects change a lot, the density of states and multiple

scattering effect may be more important. A perspective for future works is to

study the spin orbit coupling effect on transport [223] (calculations are now in

progress but computation time is very long), and the analysis in more details of

the effects of specific static defects such as atomic substitutional S atoms by Ni,

that have been found from STM measurements [41].
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5.1 Introduction & experimental motivation

The last decade onwards, several 2D materials namely graphene, BN, MoS2,

MoSe2, WS2, WSe2, MoTe2, Xene sheets (X = Si, Ge, Sn), phosphorene, bis-

muthene, and many more, have been fabricated and extensively investigated

due to their promising applications in the electronic, valleytronic, spintronics,

catalysis, energy and bi-sensing areas [7, 49, 91, 139, 152, 154, 190, 191, 197, 226].

Several types of 2D materials can be vertically stacked to design van der Waals

(vdW) heterostructures which often enhance the desirable properties of the con-

stituent atomic layers [54,82,140,237]. These heterostructures offer unique ways

to tailor their remarkable properties, hence they have promising applications in

modern technology. However, control of the doping type, carrier concentration

and stoichiometry remains challenging in most of the known 2D materials and

vdW heterostructures [82].

A single layer of a graphene exhibits numerous novel features such as ultra high

intrinsic mobility (200000 cm2V−1s−1), large electrical conductivity, excellent

thermal conductivity (5000 Wm−1K−1), bio-sensing, and exceptional elastic and

mechanical properties with a large Young’s modulus (≈ 1.0 TPa) [3, 90, 151].

However, the negligible intrinsic spin orbit coupling (SOC) and correspondingly

small energy bandgap limit many practical applications of pristine graphene

in spintronics. In recent years, researchers have succeeded in enhancing the

bandgap of graphene by several orders using unconventional methods and sub-

strate proximity effects. The availability of many other 2D materials allow us

to design new graphene based vdW heterostructures having strong proximity

effects. A particular family of such 2D crystals is given by the semiconducting

Transition Metal Dichalcogenides (TMDs) MX2 (M = Mo, W and X = S, Se, Te)

that shows interesting optoelectronic and valleytronic features, and offer strong

proximity effects on graphene’s electronic band structure [1, 56,57,84,227].

In pursuit of combining the novel features of graphene and MoS2 monolayers, and

mitigate their undesirable properties, researchers have recently made outstand-

ing efforts to combine graphene and MoS2 monolayers, and built graphene/MoS2

vdW bilayer heterostructures [9,28,54,140,188]. Lattice incommensurate graphene/MoS2

bilayer heterostructures show intriguing properties that can be controlled by tun-

ing several factors such as strain, relative sliding between the layers, interlayer

twist, doping, bending, stacking order, and interrelation [27, 44, 164, 189, 228].

Due to the lattice mismatch between the graphene and MoS2 monolayer, moiré

patterns are expected to appear in graphene/MoS2 vdW heterostructures, which
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has been observed in the recent experiments [6, 56,120,238].

The proximity of MoS2 induces relatively strong SOC effects in graphene open-

ing an energy bandgap in the scale of meV at the Dirac point [56]. This bandgap

can be further enhanced by means of gating and strain. Interestingly, the sub-

strate induced SOC effects compete with the intrinsic SOC of graphene causing

anti crossing of spin-split bands near the Dirac point [1]. One can also real-

ize distinct topological quantum phases in graphene/MoS2 heterostructures by

exploiting interlink between the proximity effects, SOC and staggered poten-

tial [1]. Gmitra et al. [56] have demonstrated that a SOC induced band inver-

sion occurs near the Dirac point in graphene/WSe2 heterostructure, thanks to

the large SOC of W, which yields a quantum spin Hall phase with chiral edge

states in the graphene/WSe2 heterostructure. A similar topological phase tran-

sition can be realized in graphene/MoS2 heterostructures by applying a gate

voltage [56]. In addition, recent works report the observation of exceptional

optical response with large quantum efficiency, gate tunable persistent photo-

conductivity, excellent mechanical response, high power conversion efficiency,

photo current generation, and negative compressibility in the graphene/MoS2

heterostructures [9, 18, 28, 101, 188]. In practical applications, researchers have

constructed electronic logic gates, transistors, memory devices, optical switches

and biosensors using graphene/MoS2 heterostructures [9, 18, 27,28,101,188].

In this chapter, we report DFT results for the structural and electronic proper-

ties of graphene/MoS2 and graphene/WSe2 bilayer heterostructures, with and

without structural relaxation and also with and without spin orbit coupling.

• Without relaxation: We take the reference of MoS2 simple monolayer

(acell (lattice parameters), position of atoms, ...etc), constructing super

cells to avoid lattice mismatch between the graphene and MoS2 layers.

Thus, the lattice parameters of the graphene is adapted according to the

choice of the supercell.

• With relaxation: We start from the case without relaxation (above case)

and the lattice parameters of the hexagonal supercell and the atomic po-

sitions are optimized.

An important task is to analyze the behavior (stretching or compressing) of

graphene layer and TMD layer in the graphene/MoS2 and graphene/WSe2 vdW

bilayer heterostructure, for different choice of the supercell. Graphene/MoS2[4:3]

and graphene/MoS2[5:4] structures have significant lattice mismatches, whereas

there is no experimental evidence of such a lattice mismatch. This mismatch

introduce important modifications of the band structures (for instance a charge
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transfer from one layer to the other in graphene/MoS2[4:3]) that are not conform

by experimental result. This is why we invesigated the graphene/MoS2[9:7]

configuration, which seems more realistic since it has a small lattice mismatch.

Indeed, we will find that this modifies the result for the band structure and in

particular no charge transfer occurs in the graphene/MoS2[9:7] system.

5.2 Computational details

5.2.1 Density functional theory

Density functional theory (DFT) [73, 93] based first principle calculations were

carried out by the ABINIT code [60], using the Perdew-Burke-Ernzerhof (PBE)

parameterized generalized gradient approximation (GGA) exchange-correlation

functional [168] and the local density approximation (LDA) exchange-correlation

functional [88]. Fourteen valence electrons of W (5s2, 5p6, 5d4, 6s2), Mo (4s2, 4p6,

4d5, 5s1), six valence electrons of Se (4s2, 4p4), S (3s2, 3p4) and four valence

electrons of C (2s2, 2p2) are taken into account in the PAW-PBE pseudopo-

tential. In order to minimize the lattice mismatch between the graphene and

MoS2 layers, we considered three different types of supercell geometries like 4×4

(graphene)/3 × 3 (MoS2) [hereafter 4:3], 5 × 5 (graphene)/4 × 4 (MoS2) [here-

after 5:4] and 9× 9 (graphene)/7× 7 (MoS2) [hereafter 9:7] to reduce the lattice

mismatch of the graphene and MoS2 layers.

The total number of atoms in each heterostructures unit cell. There are 309

atoms in graphene/MoS2 [9:7], 98 atoms in graphene/MoS2 [5:4], and 59 atoms

in graphene/MoS2 [4:3]. Another very similar heterostructure was built from 4

unit cells of graphene and 3 unit cells of different material WSe2 (graphene/WSe2

[4:3]). A vacuum thickness larger than 20 Å was added along the c-axis to avoid

the periodic interactions. The lattice parameters and inner coordinates of atoms

were optimized until the Hellmann-Feynman forces (Tolerance on the Difference

of Forces) was less than 10−4 eV/Å per atom, and 10−10 eV was defined as the

total energy difference criterion for convergence of the electronic self consistent

calculations. We used 20 Hartree (544 eV) as the kinetic energy cutoff of plane

wave basis set and a Γ-type 3 × 3 × 1 [9:7], Γ-type 6 × 6 × 1 [5:4] and Γ-type

12 × 12 × 1 [4:3] k-point mesh was employed to sample the irreducible Bril-

louin zone of heterostructures and also van der Waals (vdW) corrections were

included in the structural optimization. We have checked different pseudopoten-

tials and xc functionals (LDA-PW-PAW and GGA-PBE-PAW 1) for 4:3 and 5:4

heterostructures, but for 9:7 heterostructure we have checked only LDA-PW-

1I used a pseudopotentials produced by Jollet et al using PAW atomic datasets [86] in

ABINIT. Note: LDA-PW and GGA-PBE are exchange-correlation functional.
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PAW, because of the band structure calculations with both LDA-PW-PAW and

GGA-PBE-PAW give a very similar results. The crystal structure figures are

made by XCRYSDEN visualization [94].

5.2.2 Choice of hexagonal supercell structure

The large lattice mismatch between the graphene and MoS2 monolayers (≈
22.67%) makes the ab initio modeling of graphene/MoS2 bilayer heterostructures

computationally demanding. In order to minimize the lattice mismatch, one can

vertically stack two commensurate supercells of graphene and MoS2 monolayers.

The most commonly used graphene/MoS2 heterostructures are [45,176,195,196]:

(i) graphene/MoS2 [4:3], and (ii) graphene/MoS2 [5:4], where the latter has rel-

atively smaller lattice mismatch like 4:3 (≈ 3.33%, number of atoms in the unit

cell 59) and 5:4 (≈ 2.52%, number of atoms in the unit cell 98) but larger num-

ber of atoms/cell. In my work, I tried to reduce the lattice mismatch between

the graphene and MoS2 layers, for that we create a larger supercell, nine unit

cells of graphene and seven unit cells of MoS2 monolayers, vertically stacked

graphene/MoS2 [9:7] heterostructure has very small lattice mismatch (≈ 0.53%,

and number of atoms in the unit cell 309).

5.3 Graphene/MoS2 heterostructure [4:3]

5.3.1 Atomic structure

5.3.1.1 Non relaxed structure

The crystal structure of the graphene/MoS2 bilayer heterostructure is shown in

Fig. 5.1(a) side view, Fig. 5.1(b) top view. Unit cells and lattice parameters

of graphene and MoS2 monolayers are shown in Fig. 5.1(c) and also bilayer

(interlayer) separation distance the between graphene (4×4) and MoS2 (3×3)

layers see Fig. 5.1(d). The crystal structure of graphene/MoS2 [4:3] bilayer

heterostructure was constructed with the reference of MoS2 cell. We have done

bilayer separation distance calculations by using LDA-PAW pseudopotentials

obtained a bilayer (interlayer) separation distance between the two layers C-Mo

distance 4.9 Å and C-S distance 3.33 Å.

In graphene/MoS2 [4:3] bilayer heterostructures, graphene and MoS2 monolay-

ers weakly interact through long range vdW interactions. The experimentally

reported interlayer distance between the graphene and MoS2 nano sheets is

3.4±0.1Å [171]. However, many first principles studies inconsistently predicted

interlayer gap (C-S distance) values ranging from 3.1 Å to 4.3 Å [43, 56, 75,

85, 102, 189, 193]. This is mainly because of the inadequate evaluation of weak
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Figure 5.1: Non relaxed crystal structure of graphene/MoS2 [4:3] bilayer het-

erostructure. (a) Side view (blue lines indicate the distance between the carbon

to molymbdenum, and carbon to top sulfur). (b) Top view. (c) Unit cells of

graphene and MoS2 monolayers lattice mismatch. (d) Bilayer separation dis-

tance between the graphene (4×4) and MoS2 (3×3) layers, with the lattice pa-

rameter of MoS2. All the calculations have been done by using LDA-PW-PAW

pseudopotentials and basic reference was taken MoS2 unit cell.

nonlocal vdW interactions with the DFT framework. Various DFT-vdW meth-

ods [62, 103] have been used to describe this system to be insufficient, for vdW

corrections efficiently evaluates the long range vdW interactions in this sys-

tem, and accurately predicts the interlayer spacing between graphene and MoS2

sheets, which is in remarkable agreement with the experimental data [171].

5.3.1.2 Relaxed structure

To find out the most stable configuration of the graphene/MoS2 bilayer het-

erostructure, we relaxed the heterostructure using several starting positions of

the graphene layer relative to the MoS2 layer. The optimized lattice parameters

of the 4:3 bilayer with the least lattice mismatch are a = b = 9.784 Å as shown

in Fig. 5.2. For the structural optimization, the atomic positions and unit cell

lattice parameters are changed; in the case of MoS2 unit cell is extended by

2.45 % and the graphene unit cell is compressed by 0.61 %. Optimized average

interlayer distances are: C-Mo distance 4.902 Å, C-S distance 3.367 Å and S-S

distance 3.073 Å. The bond lengths of Mo-S and C-C are changed which is in

good agreement with the experimentally reported [171].
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Graphene[4x4]MoS2[3x3]
Graphene/MoS2

         [4:3]
X X X

asupercell9.78 Ang9.54 Ang 9.84 Ang

Figure 5.2: Simplified sketch of the lattice parameters of hexagonal superlattice

of relaxed graphene/MoS2 [4:3] bilayer heterostructure, comparison to MoS2 and

graphene supercells alone. In our work the basic reference (without relaxation)

has taken MoS2 (3×3) unit cell.

We analyzed structural optimization of graphene/MoS2 [4:3] bilayer heterostruc-

ture along the z-direction see Fig. 5.3. Without optimization of carbon layer,

atomic positions occupied along the c-axis at 4.9 Å, after optimization the atoms

are moving up and down it seems to look like a cosine wave see Fig. 5.3-(a). The

carbon layer atoms are moving along the c-axis the maximum is 4.914 Å and

the minimum is 4.8874 Å. This same phenomenon happened to the MoS2 layer,

without optimization the Mo atoms are at rest position at 0.0 Å along the c-axis,

after optimization the Mo atoms are moving along the c-axis the maximum is

0.0012 Å and the minimum is -0.0026 Å see Fig. 5.3-(d). Without optimization

the top S atoms are at rest position at 1.5667 Å along the c-axis, after optimiza-

tion the top S atoms are moving along the c-axis the maximum is 1.5352 Å and

the minimum is 1.5335 Å see Fig. 5.3-(b). Without optimization the bottom S

atoms stay at -1.5667 Å along the c-axis, after optimization the bottom S atoms

are moving along the c-axis the maximum is -1.5381 Å and the minimum is

-1.5387 Å see Fig. 5.3-(e). We took the reference of MoS2 (3×3) unit cell value

then constructed a 4:3 structure without optimization. After atomic positions

and lattice parameter optimization, the graphene layer was compressed and the

MoS2 layer has stretched as shown in Fig. 5.2. We checked displacement of

atoms along the xy-direction, it is very small ≈ 10−4 a (a = 9.54 Å). This much

of small atomic displacement in the xy plane have not effect on the electronic

properties of the vdW heterostructures.

5.3.2 Electronic band structure

The electronic band structures of bilayer heterostructure of graphene/MoS2 [4:3]

are calculated, including vdW, with and without SOC along with high symmetry

directions of the hexagonal Brillouin zone. The electronic properties of graphene

and MoS2 monolayers are well preserved due to the weak vdW interactions be-

tween the monolayers. The linear dispersion of the Dirac cone lies above the

bandgap of the MoS2 monolayer in the graphene/MoS2 [4:3] bilayer heterostruc-
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Figure 5.3: Variation of atomic positions along the z-direction in the unit cell

of graphene/MoS2 [4:3] bilayer heterostructure without (empty blue circles) and

with (full red circles) relaxation: (a) Graphene layer, (b) MoS2 layer-sulfur (top),

(c) graphene/MoS2 [4:3] bilayer heterostructure position of atoms in the unit cell,

(d) MoS2 layer-molybdenum, (e) MoS2 layer-sulfur (bottom).

ture.
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5.3.2.1 Influence of pseudopotentials

We have calculated the electronic band structure of graphene/MoS2 bilayer

heterostructures using different pseudopotentials and xc functionals [LDA-PW-

PAW, GGA-PBE-PAW+vdW and Hartwigsen-Goedecker-Hutter (HGH) (norm

conserving pseudopotentials (NCPP))] see Fig. 5.4. For the comparison of elec-

tronic bands of three different pseudopotentials, we shift the Dirac point at zero

energy level, the LDA-PW-PAW pseudopotential gives a large bandgap at the

highest symmetry point of Brillouin zone Γ because of choosing the electrons

in the core and valence shells. HGH and GGA-PBE-PAW gives almost similar

result on energy scale around the gap. Further calculations in this thesis will be

performed by HGH and GGA-PAW+vdW2. Optimization with different pseu-

dopotentials gives similar atomic positions. Electronic bands of individual layers

of graphene/MoS2[4:3] as shown in Appendix C.1, in MoS2 layer direct bandgap

shifted K to Γ3.
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Figure 5.4: Electronic band structure of graphene/MoS2 [4:3] bilayer heterostruc-

ture with optimized atomic positions and optimized lattice parameters, calcu-

lated with different pseudopotentials HGH-NCPP, GGA-PBE-PAW+vdW and

LDA-PW-PAW. Optimization with different pseudopotentials gives similar po-

sitions.

2HGH(Ecut ≈ 20 Hartree), GGA-PBE-PAW (Ecut ≈ 22 Hartree) and LDA-PW-PAW(Ecut

≈ 21 Hartree).
3In the Brillouin zone of a n × n supercell, the K point is shift to Γ when n is a multiple

of 3 (see Apendix A.2).
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5.3.2.2 Interlayer distance effect
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Figure 5.5: Electronic band structure of graphene/MoS2 [4:3] bilayer heterostruc-

ture with different bilayer (interlayer) separation distance between carbon and

molybdenum layers (C-Mo), all the calculations have done by using LDA-PW-

PAW pseudopotentials. Calculations are done without relaxation and with the

lattice parameter of MoS2.

After structural relaxation of the graphene/MoS2 [4:3] bilayer heterostructure,

we obtained a bilayer separation (interlayer) distance is 4.9 Å. Fig. 5.5 show

that the effect of a different bilayer separation (interlayer) distance. The bilayer

separation (interlayer) distance between the layers increases, the Dirac point

moves up in the energy (y-axis) level corresponding to the highest symmetry

points of the Brillouin zone Γ and K points at the conduction band. The bilayer

(interlayer) separation distance between the layers decreases, the Dirac point

moves down in the energy (y-axis) level corresponding to the highest symmetry

points of Brillouin zone Γ and K points at the conduction band.

5.3.2.3 Relaxation effect

A comparison of electronic band structure of graphene/MoS2 [4:3] bilayer het-

erostructures with relaxation, without relaxation and also atomic positions are

not relaxed and lattice parameters are relaxed is shown in Fig. 5.6. After relax-

ation, the position of atoms and unit cell parameters are changed either com-

pressed or stretched graphene and MoS2 layers is shown in Fig. 5.3 and Fig. 5.2.

95



S and E properties of graphene/MoS2 & graphene/WSe2 Chapter-5

-2

-1.5

-1

-0.5

	0

	0.5

	1

Γ K M Γ

Non-Relaxed
Relaxed

Acell-Relaxed

En
er
gy

	(e
V)

-0.01
-0.005

	0
	0.005
	0.01

K

Figure 5.6: Comparison of electronic band structure of graphene/MoS2 [4:3] bi-

layer heterostructure with relaxation (red lines), without relaxation (blue lines),

and the lattice parameters (acell) are relaxed and the atomic positions are not

relaxed (black lines). Zoom of the bands around the Dirac point (inset). The

points are calculated results and lines are guide for the eyes. All the calculations

have been done by using GGA-PAW pseudopotentials (PBE) including vdW. For

comparison of electronic bands, we shift the Dirac cone at zero energy.

4:3 band structure has a bandgap at Dirac point (K-point in the Brillouin zone)

due to the optimized atomic positions, at Γ-point in the Brillouin zone minimum

of the conduction band bands and maximum of the valence band bands close

together because of optimized lattice parameters (major contribution) and also

optimized atomic positions is shown in Fig. 5.6. After the relaxation of atomic

positions and lattice parameters of graphene/MoS2 [4:3] bilayer heterostructure

has an internal stress and strain because of that we got a small bandgap (≈
20.5 meV) at the Dirac point (K-point), this bandgap mainly comes from re-

laxed atomic positions of graphene/MoS2 [4:3] bilayer heterostructure is shown

in Fig. 5.6. For the calculation of electronic and optical properties of the sys-

tem, structural and lattice optimization play a crucial role. The effect of relaxed

atomic positions and non-relaxed lattice parameters on electronic band structure

of graphene/MoS2 [4:3] bilayer heterostructure is shown in Fig. 6 of appendix

C.2.
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The weak vdW interaction between graphene and MoS2 monolayers yields a

small, but it significant, bandgap at the Dirac point. Fig. 5.6 shows that the

bandgap in 4:3 bilayer is ≈ 20.5 meV. Another interesting result of the 4:3 bi-

layer heterostructure is a shift of the optical (direct) bandgap of MoS2 monolayer

from K to the Γ point of Brillouin zone (the bandgap of MoS2 monolayer changes

from 1.8 to 1.13 eV). Near the bandgap region valence and conduction bands

have Mo-dz2 character at Γ point . Consequently, the direct energy bandgap of

the MoS2 monolayer decreases in magnitude and shifts from the K-point to the

Γ point of Brillouin zone and for the individual layers of graphene and MoS2 see

appendix C.1.

The charge transfer between the graphene and MoS2 layers is found in Fig.

5.6. The Dirac point in the 4:3 bilayer is shifted above the Fermi-level and re-

sides above the lowest conduction band with MoS2 character. This indicates

transfer of electrons from the graphene to the MoS2 monolayer. The net shift

of the Dirac point above the Fermi-level is ≈ 0.265 eV. Since the Dirac point

has shifted above the Fermi-level, the bottom of the conduction band of MoS2

is expected to dip below the Fermi-level to catch the electrons transferred from

graphene. The lowest conduction band of MoS2 near the Fermi level shows that

the Fermi-level is almost 0.009 eV above the bottom of the conduction band at

the Γ point, thus showing the presence of electrons around the Γ point.

In order to study the effect of direct interlayer coupling between the two layers,

we compare the bands of relaxed graphene/MoS2 [4:3] bilayer heterostructures

with bands of graphene alone with relaxed positions of a relaxed graphene/MoS2

[4:3] bilayer heterostructure and MoS2 layer alone with the positions of relaxed

graphene/MoS2 [4:3] bilayer heterostructures see Fig. 5.7. A direct effect of

interlayer coupling is would have found that at Dirac point (K-point) and at

the Γ-point it is very small. Indeed the electronic bands of graphene/MoS2 [4:3]

bilayer heterostructure are similar to a sum of the electronic bands of graphene

alone and the electronic bands of MoS2 alone [energy shift of Dirac cone due to

interlayer distance is discussed in section 5.3.2.2, atomic positions and lattice

parameter values are discussed in section 5.3.1.2]. Therefore our calculations

show that hopping terms of the Hamiltonian have no direct effect near the Dirac

point on the electronic band structure, but the relaxation of atomic positions

and lattice parameters of the heterostructure modify significantly the electronic

band structure. The relaxation effect on graphene/MoS2 bilayer heterostructure

has not been discussed in previous literature [43, 56,75,85,102,189,193].

97



S and E properties of graphene/MoS2 & graphene/WSe2 Chapter-5

-2

-1.5

-1

-0.5

	0

	0.5

	1

Γ K M Γ

Graphene[4x4]

Graphene/MoS2[4:3]

MoS2[3x3]

En
er

gy
	(e

V)

-0.01
-0.005

	0
	0.005
	0.01

K

Figure 5.7: Electronic band structure of relaxed graphene/MoS2 [4:3] bi-

layer heterostructure. Comparison between the electronic bands of relaxed

graphene/MoS2 [4:3] bilayer heterostructure, electronic bands of graphene layer

alone and with the carbon atomic positions of the relaxed graphene/MoS2 [4:3]

bilayer heterostructure, electronic bands of MoS2 layer alone and with the atomic

positions of the relaxed graphene/MoS2 [4:3] bilayer heterostructure. Zoom of

the bands around the Dirac point (inset). The points are calculated results and

lines are guide for the eyes. All the calculations have been done by using GGA-

PAW pseudopotentials (PBE) including vdW. For the comparison of electronic

bands, we shift the Dirac cone to zero energy. The Fermi level is located in

between the Dirac cone and the minimum of the conduction band.

5.3.2.4 Spin orbit coupling effect

The effect of the spin orbit coupling (SOC) of graphene/MoS2 [4:3] bilayer het-

erostructure is not strong around the Dirac point see Fig. 5.8. The MoS2

monolayer have a strong SOC effect at valence band (K-point) and band split-

ting is ≈ 148 meV which is in good agreement with the first principle calcula-

tions [47, 95, 186] and the band splitting of conduction band at the Dirac point

is very small. The energy bandgap difference of graphene/MoS2 [4:3] bilayer
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heterostructure with and without SOC at the Dirac point is 1.86 meV.
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Figure 5.8: Electronic band structure of graphene/MoS2 [4:3] bilayer heterostruc-

ture with (blue lines) and without (red lines) spin orbit coupling along high

symmetry lines. Zoom of the bands around the Dirac point (right). The points

are calculated results and lines are guide for the eyes. After SOC the bandgap

at the Dirac point is reduced by ≈ 1.86 meV. All the calculations have been

done by using GGA-PAW pseudopotentials (PBE) including vdW.

5.4 Graphene/MoS2 heterostructure [5:4]

5.4.1 Atomic structure

5.4.1.1 Non relaxed structure

The crystal structure of graphene/MoS2 [5:4] bilayer heterostructure is shown

in Fig. 5.9(a) side view, Fig. 5.9(b) top view. Unit cells and lattice param-

eters of graphene and MoS2 monolayers are displayed Fig. 5.9(c) and bilayer

(interlayer) separation distance between the graphene and MoS2 layers see Fig.

5.9(d). The crystal structure of graphene/MoS2 [5:4] bilayer heterostructure was

constructed with the reference of MoS2 cell. We have done bilayer (interlayer)

separation distance calculations by using LDA-PAW pseudopotentials obtained

a bilayer (interlayer) separation distance C-Mo between the two layers 4.9 Å and
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C-S distance 3.33 Å.

Top view
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Mo-S = 2.40 Å, a = 3.18 Å.
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Figure 5.9: Non relaxed crystal structure of graphene/MoS2 [5:4] bilayer het-

erostructure. (a) Side view (blue lines indicate the distance between the carbon

to molymbdenum, and carbon to top sulfur). (b) Top view. (c) Unit cells of

graphene and MoS2 monolayers lattice mismatch. (d) Bilayer separation dis-

tance between the graphene (5 × 5) and MoS2 (4 × 4) layers, with the lattice

parameter of MoS2. All the calculations have been done by using LDA-PW-PAW

pseudopotentials and basic reference was taken MoS2 (4×4) unit cell.

In graphene/MoS2 bilayer heterostructures [5:4], graphene and MoS2 monolayers

weakly interact through long range vdW interactions. The experimentally re-

ported interlayer distance between graphene and MoS2 nano sheets is 3.40 ± 0.1

Å [171]. However, many first principles studies inconsistently predicted inter-

layer distance (C-S) values ranging from 3.1 Å to 4.3 Å [43,56,75,85,102,189,193].

5.4.1.2 Relaxed structure

To find out the most stable configuration of the graphene/MoS2 [5:4] bilayer

heterostructure, we relaxed the heterostructure using several starting positions

of the graphene layer relative to the MoS2 layer. The optimized lattice parame-

ters of the 5:4 bilayer with the smallest lattice mismatch are a = b = 12.423 Å

see Fig. 5.10. The atomic positions and lattice parameters have changed, the

MoS2 sheet is being compressed by 2.35 % and the graphene sheet is stretched

by 0.97 % from the optimized cell (lattice) parameters. Optimized average in-

terlayer distances are: C-Mo distance 4.932 Å, C-S distance 3.287 Å and S-S
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Figure 5.10: Simplified sketch of the lattice parameters of hexagonal super lat-

tice of graphene/MoS2 [5:4] bilayer heterostructure, comparison to MoS2 and

graphene supercells alone. In our work the basic reference (without relaxation)

was taken to be MoS2 (4×4) unit cell.

distance 3.288 Å. The bond lengths of Mo-S and C-C are changed which is in

good agreement with the experimentally reported [171].

We analyzed structural optimization of graphene/MoS2 [5:4] bilayer heterostruc-

tures along the z-direction see Fig. 5.11. Without optimization of carbon layer,

position occupied along the c-axis at 4.9 Å, after optimization the atoms are

moving up and down it seems to look like a cosine wave see Fig. 5.11-(a). The

carbon layer atoms are moving along the c-axis the maximum is 4.9615 Å and

the minimum is 4.8765 Å see Fig. 5.11-(a). The same phenomenon happened

to the MoS2 layer, without optimization the Mo atoms are at rest position at

0.0 Å along the c-axis, after optimization the Mo atoms are moving along the

c-axis the maximum is 0.0012 Å and the minimum is -0.0025 Å see Fig. 5.11-(d).

Without optimization the top S atoms are at rest position at 1.5667 Å along

the c-axis, after optimization the top S atoms are moving along the c-axis the

maximum is 1.6302 Å and the minimum is 1.623 Å see Fig. 5.11-(b). With-

out optimization the bottom S atoms stay at -1.5667 Å along the c-axis, after

optimization top bottom S atoms are moving along the c-axis the maximum is

-1.6557 Å and the minimum is -1.6689 Å see Fig. 5.11-(e). We took the ref-

erence of MoS2 (4×4) unit cell values then constructed a 5:4 structure without

optimization. After atomic positions and acell (lattice parameter) optimization,

graphene layer has stretched and the MoS2 layer has compressed see Fig. 5.10.

We checked displacement of atoms in the xy-plane, they are very small ≈ 10−4 a

(a = 12.72 Å). This small amount of atomic displacement does not affect the

electronic properties of the vdW heterostructures of graphene/MoS2 [5:4].

5.4.2 Electronic band structure

5.4.2.1 Relaxation effect

A comparison of the electronic band structure of graphene/MoS2 [5:4] bilayer

heterostructures with relaxation and without relaxation are shown in Fig. 5.12.
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Figure 5.11: Variation of atomic positions along the z-direction in the unit cell

of graphene/MoS2 [5:4] heterostructure without (empty blue circles) and with

(full red circles) relaxation: (a) Graphene layer (b) MoS2 layer-sulfur (top) (c)

graphene/MoS2 [5:4] heterostructure position of atoms in the unit cell, (d) MoS2

layer-molybdenum, (e) MoS2 layer-sulfur (bottom).

After relaxation of the graphene/MoS2 [5:4] bilayer heterostructure, the atomic

positions and lattice parameters are changed with the effect that graphene and

102



S and E properties of graphene/MoS2 & graphene/WSe2 Chapter-5

-2

-1.5

-1

-0.5

	0

	0.5

	1

Γ K M Γ

Non-Relaxed	

Relaxed

En
er
gy

	(e
V)

-0.016

-0.008

	0

	0.008

	0.016

K

Figure 5.12: Comparison of electronic band structure of the graphene/MoS2

[5:4] bilayer heterostructure with relaxation (red lines), without relaxation (blue

lines). Zoom of the bands around the Dirac point (inset). The points are

calculated results and lines are guide for the eyes. All the calculations have

been done by using GGA-PAW pseudopotentials (PBE) including vdW. For the

comparison of electronic bands, we shifted the Dirac cone to zero energy level

and fermi level located near to the Dirac cone.

MoS2 layers are either compressed or stretched as shown in Fig. 5.11 and Fig.

5.10. The 5:4 band structure has a bandgap at the Dirac point (K-point in

the Brillouin zone) due to the optimized atomic positions, lattice parameters

and also an effect on the MoS2 layer. At the Γ-point in the Brillouin zone the

minimum of the conduction band bands towards Fermi level and maximum of

the valence band bands away from the Fermi level because of optimized atomic

positions, and lattice parameters see Fig. 5.12.

After the relaxation of atomic positions and lattice parameters the 5:4 structure

has an internal stress and the strain. Maybe this also a reason why we obtained

a bandgap (≈ 31.32 meV) at the Dirac point (K-point) see Fig. 5.12. Indeed,

For the calculation of electronic and optical properties of the system, structural

and lattice optimization plays a crucial role.
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The linear dispersion of the Dirac cone lies within the bandgap of the MoS2

monolayer in the 5:4 bilayer heterostructure. The weak vdW interaction between

graphene and MoS2 monolayers yields a small, but significant bandgap at the

Dirac point. Fig. 5.12 shows that the bandgap in 5:4 bilayer is ≈ 31.32 meV. In

5:4 bilayer heterostructure, MoS2 monolayer preserves its direct bandgap semi-

conducting nature at the K-point of the Brillouin zone (the bandgap of the MoS2

monolayer changes from 1.8 to 1.70 eV), which is in good agreement with the

reported values in the literature [45, 176, 195]. Since the graphene/MoS2 [5:4]

bilayer heterostructure maintains the direct bandgap nature of the MoS2 mono-

layer at the K-point, it can be concluded that the aforementioned transition in

the 4:3 bilayer is primarily triggered by the strain effects arising due to the large

lattice mismatch [196].

No charge transfer between the graphene and MoS2 layers can observed in Fig.

5.12, which is the case of minimal strain. This finding is consistent with the ex-

perimental observations by Diaz et al [31], who performed angle resolved photo

emission spectroscopic (ARPES) measurements to probe the electronic structure

of graphene/MoS2 bilayer heterostructures. They observed that the Dirac cone

of graphene remains intact and no significant charge transfer occurs between the

graphene and MoS2 layers.

In order to study the effect of direct interlayer coupling between the two lay-

ers, we compare the bands of the relaxed graphene/MoS2 [5:4] bilayer het-

erostructure with bands of graphene alone with relaxed positions of the relaxed

graphene/MoS2 [5:4] bilayer heterostructure and the MoS2 layer alone with the

positions of relaxed graphene/MoS2 [5:4] bilayer heterostructure see Fig. 5.13.

The direct effect of interlayer coupling found at Γ-point and at the Dirac point

(K-point) is very small. Indeed the electronic bands of graphene/MoS2 [5:4] bi-

layer heterostructure are similar to the sum of the electronic bands of graphene

alone and the electronic bands of MoS2 alone [energy shifts because of atomic

positions and lattice parameter values see section 5.4.1.2]. Therefore our cal-

culations show that hopping terms of the Hamiltonian have no direct effect on

the electronic band structure, but the relaxation of atomic positions and lattice

parameters of the heterostructure modify significantly in the electronic band

structure. The relaxation effect on the graphene/MoS2 [5:4] bilayer heterostruc-

ture has not been discussion in previous works [43,56,75,85,102,189,193].
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Figure 5.13: Electronic band structure of relaxed graphene/MoS2 [5:4] bi-

layer heterostructure. Comparison between the electronic bands of relaxed

graphene/MoS2 [5:4] bilayer heterostructure, electronic bands of graphene layer

alone and with the carbon atomic positions of the relaxed graphene/MoS2 [5:4]

bilayer heterostructure, electronic bands of MoS2 layer alone and with the atomic

positions of the relaxed graphene/MoS2 [5:4] bilayer heterostructure. Zoom of

the bands around the Dirac point (inset). The points are calculated results

and lines are guide for the eyes. All the calculations have been done by using

GGA-PAW pseudopotentials (PBE) including vdW.

5.4.2.2 Spin orbit coupling effect

The effect of the spin orbit coupling (SOC) of the graphene/MoS2 [5:4] bilayer

heterostructure is not strong around the Dirac point see Fig. 5.14. The MoS2

monolayer has a strong SOC effect at valence band (K-point) and band splitting

around theK is≈ 148 meV, which is in good agreement with previous theoretical

works [47, 95, 186]. The band splitting of conduction band at the Dirac point

(K) is very small. The graphene/MoS2 [5:4] bilayer heterostructure with and

without SOC energy bandgap difference at the Dirac point is 2.02 meV.
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Figure 5.14: Electronic band structure of the graphene/MoS2 [5:4] bilayer het-

erostructure with (blue lines) and without (red lines) spin orbit coupling along

high symmetry lines. Zoom of the bands around the Dirac point (right). The

points are calculated results and lines are guide for the eyes. After SOC bandgap

at the Dirac point is reduced by 2.02 meV. All the calculations have been done

by using GGA-PAW pseudopotentials (PBE) including vdW.

5.5 Graphene/MoS2 heterostructure [9:7]

5.5.1 Atomic structure

5.5.1.1 Non relaxed structure

The crystal structure of the graphene/MoS2 [9:7] bilayer heterostructure is shown

in Fig. 5.15 (a) side view, Fig. 5.15 (b) top view. We already shown (see sections

5.3.1 and 5.4.1) the lattice mismatch between the different structures. Further to

minimize the lattice mismatch, one can vertically stack two commensurate super

cells of graphene and monolayer MoS2. We take the reference of MoS2 (7×7)

lattice parameters to construct the graphene/MoS2 [9:7] bilayer heterostructures

by 9×9 unit cells of the graphene and 7×7 unit cells of the MoS2 see Fig. 5.15.

The induced lattice mismatch is smaller than 1 % (≈ 0.53 %).
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Figure 5.15: Non relaxed crystal structure of graphene/MoS2 [9:7] bilayer het-

erostructure different views (a) Side view (blue lines indicate the distance be-

tween the carbon to molymbdenum, and carbon to top sulfur). (b) Top view.

All the calculations have been done by using LDA-PW-PAW pseudopotentials

and basic reference has taken MoS2 (7×7) unit cell.

In graphene/MoS2 [9:7] bilayer heterostructures, graphene and MoS2 monolayers

weakly interact through long range vdW interactions. The experimentally re-

ported interlayer distance between graphene and MoS2 nano sheets is 3.40 ± 0.1

Å [171]. We found that the interlayer distance ranges are approximately equal

even though supercell structures are different like 4:3, 5:4 and 9:7. However,

many first principles studies inconsistently predicted inter layer distance values

ranging from 3.1 Å to 4.3 Å [43, 56,75,85,102,189,193].

5.5.1.2 Relaxed structure

To find out the most stable configuration of the graphene/MoS2 [9:7] bilayer

heterostructure, we relaxed the heterostructure using several starting positions of

the graphene layer relative to the MoS2 layer. The optimized lattice parameters

of the 9:7 bilayer with less lattice mismatch are a = b = 22.14 Å see Fig. 5.16.

The atomic positions and the lattice parameters are changed, in the case of MoS2

the sheet is being compressed by 0.51 % (the 4:3 structure MoS2 sheet is being

stretched by 2.45 % and the 5:4 structure MoS2 sheet is being compressed by

2.35 %) and the graphene sheet is almost neither stretched nor compressed (the

4:3 structure graphene sheet is being compressed by 0.5 % and the 5:4 structure

graphene sheet is being stretched by 0.97 %) from the optimized cell (lattice)

parameters see Fig. 5.16. Optimized average interlayer distances are: C-Mo

107



S and E properties of graphene/MoS2 & graphene/WSe2 Chapter-5

distance 4.981 Å, C-S distance 3.361 Å and S-S distance 3.239 Å.
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Figure 5.16: Simplified sketch of the lattice parameters of hexagonal super lat-

tice of graphene/MoS2 [9:7] bilayer heterostructure, comparison to MoS2 and

graphene supercells alone. In our work the basic reference (without relaxation)

has been taken as the MoS2 (7×7) unit cell.

We analyzed structural optimization of the graphene/MoS2 [9:7] bilayer het-

erostructure along the z-direction see Fig. 5.17. Carbon layer without optimiza-

tion, position occupied along the c-axis at 4.9 Å after optimization the atoms

are moving up and down it seems to look like a cosine wave see Fig. 5.17-(a).

The carbon layer atoms are moving along the c-axis, maximum is 5.0210 Å and

minimum is 4.9415 Å see Fig. 5.17-(a). The same phenomenon happened to the

MoS2 layer, without optimization the Mo atoms are at rest position at 0.0 Å

along the c-axis. After optimization the Mo atoms are moving along the c-axis

maximum is 0.0136 Å and minimum is 0.0029 Å see Fig. 5.17-(d). Without

optimization the top S atoms are at rest position at 1.5667 Å along the c-axis,

after optimization the top S atoms are moving along the c-axis maximum is

1.6324 Å and minimum is 1.6253 Å see Fig. 5.17-(b). Without optimization

the bottom S atoms stay at -1.5667 Å along the c-axis, after optimization the

top S atoms are moving along the c-axis maximum is -1.6047 Å and minimum

is -1.6159 Å see Fig. 5.17-(e). We took the reference of MoS2 (7× 7) unit cell

value then construct a 9:7 structure. After structural and lattice parameters op-

timization, graphene layer has neither stretched nor compressed and MoS2 layer

has compressed see Fig. 5.16. Comparison of structural behavior of different

supercell geometries of graphene/MoS2 bilayer heterostructure see table 5.1.

We also analyzed the structural optimization of the graphene/MoS2 [9:7] bilayer

heterostructure in the xy-plane see Fig. 5.18. We observed very small atomic

displacements in the xy-plane and it shows an hexagonal symmetry pattern.

We rescaled both x and y axis for the visualization purpose. The multiplication

factor of x and y axis is 400.

5.5.2 Electronic band structure

5.5.2.1 Relaxation effect

A comparison of electronic band structure of graphene/MoS2 [9:7] bilayer het-

erostructure with and without relaxation is shown in Fig. 5.19. After relaxation,
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Figure 5.17: Variation of atoms in the unit cell of graphene/MoS2 [9:7] bi-

layer heterostructure along the z-direction without (empty blue circles) and with

(full red circles) relaxation: (a) Graphene layer (b) MoS2 layer-sulfur (top) (c)

graphene/MoS2 [9:7] heterostructure position of atoms in the unit cell (d) MoS2

layer-molybdenum (e) MoS2 layer-sulfur (bottom).

the atomic positions and lattice parameters are changed with the effect that

graphene and MoS2 layers are either compressed or stretched. But due to the
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Figure 5.18: Variation of atomic positions in the unit cell of the graphene/MoS2

[9:7] bilayer heterostructure along the xy-direction: The arrows show the dis-

placement of atoms from non-relaxed positions to relaxed positions, with scaling

factor of 400.

small mismatch between the layers, the graphene layer has neither stretched nor

compressed [Fig. 5.17 and Fig. 5.16]. The 9:7 band structure has a bandgap at

the Dirac point (Γ-point in the Brillouin zone because of the graphene supercell

9×9 is multiple of 3) due to the optimized atomic positions, lattice parame-

ters and also an effect of the MoS2 layer. At K-point in the Brillouin zone

minimum of the conduction band bends towards Fermi level (Dirac point) and

maximum of the valence band bends towards Fermi level (Dirac point) because

of optimized atomic positions. Lattice parameters and also bilayer (interlayer)

distance effects are shown in Fig. 5.19.

The linear dispersion of the Dirac cone lies within the bandgap of the MoS2

monolayer in the 9:7 bilayer heterostructure. The weak vdW interaction between

graphene and MoS2 monolayers yields a small, but significant, bandgap at the

Dirac point see Fig. 5.19 and the Dirac point shifted from K-point to Γ-point

for the individual layer of graphene see in appendix 3. The graphene/MoS2 [9:7]

bilayer heterostructure have a bandgap around the Dirac point (K) is ≈ 2.01

meV see Fig. 5.19. In 9:7 bilayer heterostructure, the MoS2 monolayer changes

its indirect bandgap semiconducting nature at the maximum of the valence band

at the K-point to the minimum of the conduction band at in-between K and

Γ-points of Brillouin zone (the bandgap of MoS2 monolayer changes from 1.8
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Figure 5.19: Comparison of electronic band structure of graphene/MoS2 [9:7] bi-

layer heterostructure with relaxation (red lines), without relaxation (blue lines).

Zoom of the bands around the Dirac point (right). The points are calculated

results and lines are guide for the eyes. All the calculations have been done by

using GGA-PAW pseudopotentials (PBE) including vdW.

to 1.6 eV). Since the graphene/MoS2 [9:7] bilayer heterostructure maintains the

indirect bandgap nature of MoS2 monolayer at the K-point (because of the very

small lattice mismatch), it can be concluded that the aforementioned transition

in the 4:3 bilayer is primarily triggered by the strain effects arising due to the

large lattice mismatch [196].

No such charge transfer between the graphene and MoS2 layers can be observed

see Fig. 5.19, which is very minimally strained. This finding is consistent with

the experimental observations by Diaz et al [31], who performed angle resolved

photo emission spectroscopic (ARPES) measurements to probe the electronic

structure of the graphene/MoS2 heterostructure. They observed that the Dirac

cone of graphene remains intact and no significant charge transfer occurs be-

tween the graphene and MoS2 layers.

In order to study the effect of direct interlayer coupling between the two lay-

ers, we compare the bands of the relaxed graphene/MoS2 [9:7] bilayer het-
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Figure 5.20: Electronic band structure of a relaxed graphene/MoS2 [9:7] bi-

layer heterostructure. Comparison between the electronic bands of relaxed

graphene/MoS2 [9:7] bilayer heterostructure, electronic bands of a graphene layer

alone with the carbon atomic positions of the relaxed graphene/MoS2 [9:7] bi-

layer heterostructure, electronic bands of MoS2 layer alone with the atomic po-

sitions of the relaxed graphene/MoS2 [9:7] bilayer heterostructure. Zoom of the

bands around the Dirac point (right). The points are calculated results and lines

are guide for the eyes. All the calculations have been done by using GGA-PAW

pseudopotentials (PBE) including vdW.

erostructure with bands of graphene alone with the relaxed position of relaxed

graphene/MoS2 [9:7] bilayer heterostructure and a MoS2 layer alone with the

positions of the relaxed graphene/MoS2 [9:7] bilayer heterostructure see Fig.

5.20. Direct effect of interlayer coupling found at Γ-point and at the Dirac point

(K-point) is very small. Indeed the electronic bands of graphene/MoS2 [9:7]

bilayer heterostructure are very similar to the sum of the electronic bands of

graphene alone and the electronic bands of MoS2 alone [energy shifts because of

atomic positions and lattice parameter values see section 5.5.1.2]. Therefore our

calculations show that hopping terms of the Hamiltonian has no direct effect on

the electronic band structure, but the relaxation of atomic positions and lattice

parameters of the heterostructure modify significantly the electronic band struc-

ture. We proposed a TB-model for the graphene/MoS2 [5:4] and graphene/MoS2
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[9:7] bilayer heterostructures to check interlayer effect on graphene/MoS2 bilayer

heterostructure see appendix C.3.

5.5.2.2 Spin orbit coupling effect

The effect of the spin orbit coupling (SOC) of graphene/MoS2 [9:7] bilayer het-

erostructure is not strong around the Dirac point see Fig. 5.21. The MoS2

monolayer has a strong SOC effect at valence band (K-point) and band split-

ting is ≈ 148 meV which is a good agreement with first principle calcula-

tions [47, 95, 186]. The conduction band at the Dirac point band splitting is

very small. The graphene/MoS2 [9:7] bilayer heterostructure with and without

SOC energy bandgap difference at the Dirac point (Γ-point) is 0.77 meV.
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Figure 5.21: Electronic band structure of graphene/MoS2 [9:7] bilayer het-

erostructure with (blue lines) and without (red lines) spin orbit coupling along

high symmetry lines. The fine structure of the low energy bands at the Fermi

level, around the Dirac point (Γ-point)(right). The points are calculated results

and lines are guide for the eyes. After SOC bandgap at the Dirac point is re-

duced by 0.77 meV. All the calculations have been done by using GGA-PAW

pseudopotentials (PBE) including vdW.
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Graphene/MoS2 (4:3, 5:4 and 9:7) bilayer heterostructure-structural properties

Properties 4:3 structure 5:4 structure 9:7 structure

WOP a = b = 9.540 Å. a = b = 12.720 Å. a = b = 22.260 Å.

WP a = b = 9.784 Å. a = b = 12.423 Å. a = b = 22.138 Å.

Position of atoms

Graphene layer

[WOP]

4.900 Å. 4.900 Å. 4.900 Å.

Graphene layer

[WP]

Maxi 4.914 Å &

Min 4.887 Å.

Maxi 4.9615 Å &

Min 4.8765 Å.

Maxi 5.021 Å &

Min 4.9415 Å.

MoS2 layer

(Top-S)[WOP]

1.5667 Å. 1.5667 Å. 1.56694 Å.

MoS2 layer

(Top-S) [WP]

Maxi 1.5352 Å &

Min 1.5335 Å.

Maxi 1.6303 Å &

Min 1.6238 Å.

Maxi 1.6324 Å &

Min 1.6253 Å.

MoS2 layer (Mo)

[WOP]

0.00 Å. 0.00 Å. 0.00 Å.

MoS2 layer (Mo)

[WP]

Maxi 0.0012 Å &

Min -0.0026 Å.

Maxi 0.0012 Å &

Min -0.0025 Å.

Maxi 0.01365 Å &

Min 0.00291 Å.

MoS2 layer

(Bottom-S)

[WOP]

-1.5667 Å. -1.56694 Å. -1.56694 Å.

MoS2 layer

(Bottom-S)[WP]

Maxi -1.5381 Å &

Min -1.5387 Å.

Maxi -1.6557 Å &

Min -1.6689 Å.

Maxi -1.6047 Å &

Min -1.6159 Å.

Comparison-1 Lattice mismatch

≈3.33%).

Lattice mismatch

≈2.52%.

Lattice mismatch

≈0.53% .

Comparison-2 MoS2 is stretched

(≈2.45%)

Graphene is com-

pressed (≈0.6%).

MoS2 is com-

pressed (≈2.35%)

Graphene

is stretched

(≈0.97%).

MoS2 is com-

pressed (≈0.851%)

Graphene is nei-

ther compressed

nor stretched.

Comparison-3 Bandgap at the

Dirac point (with-

out SOC) ≈ 20.6

meV. With and

without SOC

bandgap difference

≈ 1.86 meV.

Bandgap at the

Dirac point (with-

out SOC) ≈ 31.3

meV . With and

without SOC

bandgap difference

≈ 2.02 meV.

Bandgap at the

Dirac point (with-

out SOC) ≈ 1.89

meV. With and

without SOC

bandgap difference

≈ 0.77 meV.

Table 5.1: Simplified comparison of the DFT optimized lattice parameters and

atomic positions of different supercell geometries of graphene/MoS2 bilayer. WP

(with optimization) and WOP (without optimization).
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5.6 Graphene/WSe2 heterostructure [4:3]

5.6.1 Atomic structure

5.6.1.1 Non relaxed structure

C-W=5.80 Å C-Se=4.194 Å

Sid
e

 vie
w

(a)

(b) Top view

W-Se = 2.55 Å, a = 3.30 Å.

C
-C

=1
.4

2
 Å

, a =
 2

.4
6

 Å
.

(c)

(d)

Figure 5.22: Non relaxed crystal structure of the graphene/WSe2 [4:3] bilayer

heterostructure. (a) Side view (blue lines indicate the distance between the

carbon to tungsten , and carbon to top selenium). (b) Top view. (c) Unit cells

of graphene and WSe2 monolayers lattice mismatching. (d) Bilayer separation

distance between the graphene (4×4) and WSe2 (3×3) layers, with the acell of

MoS2. All the calculations have been done by using LDA-PAW pseudopotentials

and basic reference was taken WSe2 (3×3) unit cell.

The crystal structure of the graphene/WSe2 bilayer heterostructure is shown in

Fig. 5.22(a) side view, Fig. 5.22(b) top view. Unit cells and lattice parameters of

graphene and WSe2 monolayers are shown in Fig. 5.22(c) and bilayer separation

distance between graphene and WSe2 layers are shown in Fig. 5.22(d). The large

lattice mismatch between the graphene and WSe2 monolayers (≈ 25.45%) makes

the ab initio modeling of graphene/WSe2 bilayer heterostructure computation-

ally demanding. In order to minimize the lattice mismatch, one can vertically

stack two commensurate supercells of graphene and WSe2 monolayers. We fixed

the lattice constant of WSe2 and construct the heterostructures by using 4×4

unit cells of graphene and 3×3 unit cells of WSe2 are shown in Fig. 5.22. With

this commensurate structure, the graphene/WSe2 [4:3] bilayer heterostructure

has an induced lattice mismatch smaller than 1 % (≈ 0.606 %). We have done
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bilayer separation distance calculations by using LDA-PAW pseudopotentials.

The obtained bilayer separation distances are: C-W between the two layers is

5.8 Å and C-Se distance is 4.15 Å in good agreement with previous theoretical

studies [204].

5.6.1.2 Relaxed structure

To find out the most stable configuration of the graphene/WSe2 [4:3] bilayer het-

erostructure, we relaxed the heterostructure using several starting positions of

the graphene layer relative to the WSe2 layer. The optimized lattice parameters

of the graphene/WSe2 [4:3] bilayer heterostructure with small lattice mismatch

a = b = 9.912 Å is shown in Fig. 5.23. The atomic positions and the lattice

parameters are changed because of the WSe2 sheet is being stretched by 0.12

% and the graphene sheet is also stretched by 0.72 % is shown in Fig. 5.23.

Thus unlike for graphene/MoS2 bilayer (see previous sections) both layers are

stretched in graphene/WSe2 [4:3] bilayer. Optimized average interlayer distances

are: C-W distance 5.803 Å, C-Se distance 4.194 Å and Se-Se distance 3.373 Å.

The bond lengths of W-Se and C-C are changed which is in good agreement

with the previous works [89,204].

Graphene[4x4] WSe2[3x3] Graphene/WSe2

X XX
9.912 Ang9.84 Ang 9.90 Ang asupercell

Figure 5.23: Simplified sketch of the lattice parameters of a hexagonal super

lattice of graphene/WSe2 [4:3] bilayer heterostructure, comparison to WSe2 and

graphene supercells alone. In our work the basic reference was taken to be the

WSe2 (3×3) unit cell.

We analyzed structural optimization of the graphene/WSe2 [4:3] bilayer het-

erostructure along the z-direction is shown Fig. 5.24. The carbon layer without

optimization, position occupied along the c-axis at 5.80 Å, after optimization

the atoms are moving up and down it seems look like a cosine wave is shown

Fig. 5.24-(a). The carbon layer atoms are moving along the c-axis. Maximum

is 5.8053 Å and minimum is 5.8027 Å see Fig. 5.24-(a). The same phenomenon

happened to the WSe2 layer, without optimization W atoms are at rest position

at 0.00 Å along the c-axis, after optimization the W atoms are moving along

the c-axis. Maximum is -0.0040 Å and minimum is -0.0044 Å see Fig. 5.24-(d).

Without optimization the top Se atoms are at rest position at 1.6437 Å along

the c-axis, after optimization the top Se atoms are moving along the c-axis.
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Figure 5.24: Variation of atomic positions along the z-direction in the unit cell

of graphene/WSe2 [4:3] bilayer heterostructure without (empty blue circles) and

with (full red circles) relaxation: (a) Graphene layer (b) WSe2 layer-selenium

(top) (c) graphene/WSe2 [4:3] heterostructure positions in the unit cell (d) WSe2

layer-tungsten (e) WSe2 layer-selenium (bottom). Basic reference was taken to

be the WSe2(3×3) unit cell.
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Maximum is 1.6826 Å and minimum is 1.6818 Å see Fig. 5.24-(b). Without

optimization the bottom Se atoms stay at -1.6437 Å along the c-axis, after opti-

mization the bottom Se atoms are moving along the c-axis. Maximum is -1.6903

Å and minimum is -1.6909 Å see Fig. 5.24-(e). We took the reference of WSe2

(3×3) unit cell value then constructed a graphene/WSe2 [4:3] structure. Af-

ter atomic positions and lattice parameter optimization, the graphene layer has

stretched a bit and the WSe2 layer has very little stretched as shown in Fig. 5.23.

We also analyzed structural optimization of the graphene/WSe2 [4:3] bilayer het-

erostructure along the xy-direction, obtained very small atomic displacements

along the xy-direction and atomic displacement followed by a hexagonal sym-

metry pattern.

5.6.2 Electronic band structure

5.6.2.1 Relaxation effect

The linear dispersion of the Dirac cone lies within the bandgap of the WSe2

monolayer in the 4:3 bilayer heterostructure. The weak vdW interaction be-

tween graphene and WSe2 monolayers yields a small, but significant, bandgap

at the Dirac point (K-point). Fig. 5.25 shows that the bandgap in 4:3 bilayer is

≈ 12.58 meV. In the 4:3 bilayer heterostructure, the WSe2 monolayer preserves a

semiconducting nature and it is direct bandgap at the K-point of Brillouin zone

(the bandgap of the WSe2 monolayer is 1.556 eV). The graphene/WSe2 [4:3]

bilayer heterostructure maintains the direct bandgap nature of WSe2 monolayer

but the symmetry point changed from K-point to Γ-point, as expected because

of WSe2 cell is 3×3.

No charge transfer between the graphene and WSe2 layers can observed in Fig.

5.25, which is a minimal strain. But this is a contrast to the graphene/MoS2

[4:3] bilayer heterostructure.

In order to study the effect of direct interlayer coupling between the two layers,

we compare the bands of relaxed graphene/WSe2 [4:3] bilayer heterostructure

with bands of graphene alone with relaxed position of relaxed graphene/WSe2

[4:3] bilayer heterostructure and WSe2 layer alone with the positions of relaxed

graphene/WSe2 [4:3] bilayer heterostructure see Fig. 5.25. A direct effect of

interlayer coupling found at the Dirac point (K-point) and at Γ-point is very

small. Indeed the electronic bands of graphene/WSe2 [4:3] bilayer heterostruc-

ture is similar to the sum of the electronic bands of graphene alone and the

electronic bands of WSe2 alone [energy shift of Dirac cone due to interlayer dis-
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tance see section 5.25, atomic positions and lattice parameter values see section

5.6.1.2]. Therefore our calculations show that hopping terms of the Hamilto-

nian have no direct effect on the electronic band structure, but the relaxation

of atomic positions and lattice parameters of the heterostructure modify signif-

icantly the electronic band structure.
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Figure 5.25: Electronic band structure of relaxed graphene/WSe2 [4:3] bi-

layer heterostructure. Comparison between the electronic bands of relaxed

graphene/WSe2 [4:3] bilayer heterostructure, electronic bands of graphene layer

alone with the carbon atomic positions of the relaxed graphene/WSe2 [4:3] bi-

layer heterostructure, electronic bands of WSe2 layer alone with the atomic po-

sitions of the relaxed graphene/WSe2 [4:3] bilayer heterostructure. Zoom of the

bands around the Dirac point (inset). The points are calculated results and lines

are guide for the eyes. All the calculations have been done by using GGA-PAW

pseudopotentials (PBE) including vdW.

5.6.2.2 Spin orbit coupling effect

The effect of the spin orbit coupling (SOC) an the graphene/WSe2 [4:3] bilayer

heterostructure is not strong around the Dirac point see Fig. 5.26. The WSe2

monolayer has a strong SOC effect at valence band (K-point) and spin splitting

119



S and E properties of graphene/MoS2 & graphene/WSe2 Chapter-5

-2

-1.5

-1

-0.5

	0

	0.5

	1

	1.5

Γ K M Γ

With-SOC

Without-SOC

... ...

En
er
gy

	(e
V) 	0.006

	0.0062

	0.0064

-0.0066

-0.0064

-0.0062

-0.006

K

Figure 5.26: Electronic band structure of graphene/WSe2 [4:3] bilayer het-

erostructure with (blue lines) and without (red lines) spin orbit coupling along

high symmetry lines. The fine structure of the low energy bands at the Fermi

level, around the Dirac point (right). The points are calculated results and lines

are guide for the eyes. After SOC bandgap at Dirac point reduced by 0.07 meV.

All the calculations have been done by using GGA-PAW pseudopotentials (PBE)

including vdW.

is ≈ 0.48 eV. The conduction band spin splitting at the Dirac point is very

small. The graphene/WSe2 [4:3] bilayer heterostructure with and without SOC

exhibits an energy bandgap difference at the Dirac point of 0.07 meV.

5.6.2.3 Structural imperfection effects

In this section, we present briefly some first results on static defects in graphene/WSe2

[4:3] bilayer heterostructure. Four types of intrinsic defects were considered see

Fig. 5.27:

• One C vacancy (removal of one carbon atom) in the graphene/WSe2 su-

percell denoted by graphene/WSe2-VC .

• One W vacancy (removal of one tungsten atom) in the graphene/WSe2

supercell denoted by graphene/WSe2-VW .
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• Two Se vacancies (removal of two selenium atoms) in the graphene/WSe2

supercell denoted by graphene/WSe2-Vdi−Se.

• Substitution of Fe in W-vacancy (substituting iron atom in place of tung-

sten atom) in the graphene/WSe2 supercell denoted by graphene/WSe2-

SVFe.

We performed optimized (lattice parameter and atomic position optimization)

calculations by DFT for each structure. We found interlayer distance between

the graphene and WSe2 layers with all types of vacancies ≈ 4.194 ± 0.1 Å which

is good agreement with previous theoretical works [204].

With defects of the graphene/WSe2-VC , graphene/WSe2-VW , graphene/WSe2-

Vdi−Se, and graphene/WSe2-SVFe (see Fig. 5.27). A common feature of the

graphene/WSe2 (see Fig. 5.26) and graphene/WSe2-Vdi−Se (see Fig. 5.27-(c))

systems is that the electronic structures of both the semiconducting layer and

the graphene layer are well preserved upon binding. In Fig. 5.27-(a) we created

a vacancy by removal of C atom on the graphene layer, due to the C-vacancy

metallic behavior disappears at highest symmetry point K, and it shows the

indirect bandgap semiconductor with a small gap. In Fig. 5.27-(b) we created a

vacancy by removal of W atom on the WSe2 layer, due to the W-vacancy several

impurity states are formed close to the valence band edge, and some of them

cross the Fermi level, suggesting metallic behavior. In Fig. 5.27-(c) we created a

vacancy by removal of two Se atoms on the WSe2 layer, two bands are appeared

below the conduction band. In Fig. 5.27-(d) create vacancy by substituting

the Fe atom in place of W on WSe2 layer, this behavior is similar to that of

electronic band structure of graphene/MoS2[4:3] bilayer heterostructure.
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Figure 5.27: Atomic structure (left) and electronic band structure (right) of

graphene/WSe2 [4:3] bilayer heterostructure with point and substitutional de-

fects (a) graphene/WSe2-VC (removal of one carbon atom in the graphene layer),

(b) graphene/WSe2-VW (removal of one tungsten atom in the WSe2 layer), (c)

graphene/WSe2-Vdi−Se (removal of two selenium atoms (top and bottom) in

WSe2 layer), (d) graphene/WSe2-SVFe (substituting iron (in place of tungsten)

atom in the WSe2 layer). All the calculations have been done by using GGA-

PAW pseudopotentials (PBE) including vdW. All the calculations have been

done with optimization and Without SOC.
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5.7 Conclusion

In this chapter we have studied the properties of a new family of substrates for

graphene. We focused on two different TMDs (MoS2 and WSe2), but we expect

the results should be similar to the other TMDs. A theoretical study of struc-

tural and electronic properties of graphene/MoS2 and graphene/WSe2 bilayer

vdW heterostructures was performed using the ABINIT software program. For

reducing the lattice mismatch between the layers we studied different configura-

tions of graphene/MoS2 [4:3 (≈ 3.33%), 5:4 (≈ 2.52%), and 9:7 (≈ 0.53%)] and

graphene/WSe2 [4:3 (≈ 0.606%)] bilayer vdW heterostructures.

We discovered that the strong lattice mismatch of graphene/MoS2[4:3] and

graphene/MoS2[5:4] model structures, which has no experimental evidence, mod-

ifies strongly the band structures, and may induce an artificial charge transfer.

These structures are thus not realistic to recover experimental results. There-

fore, we invesigated the graphene/MoS2[9:7] configuration, which has the least

lattice mismatch and seems more realistic. Indeed, the resulting band structure

turns out to be closer to two isolated graphene and MoS2 layers, and no charge

transfer occurs.

We know that weak vdW interactions exists between the graphene based TMDs

bilayer heterostructures and predict the interlayer spacing accurately in graphene/MoS2

and graphene/WSe2 vdW heterostructures. The predicted interlayer spacing of

graphene/MoS2 heterostructures are 3.367 Å, 3.287 Å, and 3.361 Å respectively,

which is in good agreement with the experimental data (3.4 ± 0.1 Å) [171] and

graphene/WSe2 vdW heterostructure is 4.194 Å. The electronic band structure

analysis of graphene/MoS2 bilayers using ABINIT reveals that the Dirac point

of graphene is shifted upwards above the Fermi level and is located near the

conduction bands of the MoS2 sheet, yielding a considerable charge transfer in

the 4:3 bilayer, whereas the Dirac point lies in the bandgap region in the 5:4

bilayer indicating no charge transfer between the constituent layers. The final

configuration 9:7 bilayer, the Dirac point (shifted to K to Γ ) lies in the bandgap

region it is indicated no charge transfer between the constituent layers because

of a small lattice mismatch. According to the electronic band structure analysis

of graphene/WSe2 bilayers, the Dirac point lies in the bandgap region in 4:3

bilayer indicating no charge transfer between the constituent layers because of a

small lattice mismatch between the layers. We observed that the location of the

Dirac point can be shifted by tuning the interlayer spacing between the graphene

and MoS2 layers, and it’s likely that this will happen to graphene and WSe2 as

well.
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The effect of the spin orbit coupling (SOC) on graphene/MoS2 and graphene/WSe2

bilayer heterostructures is not strong around the Dirac point whereas in the

monolayer with a MoS2 and WSe2 at the valence band (K-point) large band

splitting observed due to a strong SOC effect and graphene layer at the Dirac

point band splitting remains very small. The energy bandgap difference between

bilayers with and without SOC at the Dirac point is very small. We also found

that the electronic band structure has changed after the relaxation of the atomic

positions and lattice parameters because of the internal stress and strain. For

the electronic and optical properties, lattice optimization, relaxation of atoms

in the unit cell are thus needed.

By the creation of C-vacancy in the graphene/WSe2 [4:3] bilayer heterostructure,

metallic behavior disappears and it shows indirect bandgap semiconductor. W-

vacancy, shows a metallic behavior. Substitutional impurity (W replaced by Fe)

similar behavior of the graphene/MoS2 [4:3] bilayer heterostructure.
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This chapter is based on the paper Physical ReviewB 102, 081103(R)(2020)

[222]. Apart from the journal, we have explained the relaxation effect on band

structures, different stacking of moiré pattern of tb-MoS2, different tight-binding

models, band analysis of AB-stacking, and spin orbit coupling effect on band

structures.

In recent years, the broad family of Transition Metal Dichalcogenides (TMD)

[42,111,225], which offers a wide variety of possible rotationally stacked bilayer

systems, has also prompted numerous experimental [77,78,113,163,212,220,234,

243,249] and theoretical [29,30,46,122,123,125,146,162,186,207,208,228,231,232]

studies to understand such confined moiré states in semiconductor materials.

Many of these studies analyze the interlayer distances, the possible atomic re-

laxation, the transition from a direct band gap in the monolayer system to an

indirect band gap in bilayer (bulk) systems, and more generally the effect of

interlayer coupling in those twisted 2D systems with various rotation angles θ.

At small values of θ, the emergence of flat bands has been established [146] from

first principle density functional theory calculations in twisted bilayer MoS2 (tb-

MoS2), and observed in a 3◦ twisted bilayer WSe2 sample by using tunneling

spectroscopy [249]. Recently, it has been shown numerically [123] that Lithium

interaction in tb-MoS2 increases interlayer coupling and thus promotes flat bands

around the gap. There is also experimental evidence that moiré patterns may

give rise to confined states due to the mismatch of the lattice parameters in

MoS2-WSe2 hetero bilayers [163].

Most theoretical investigations of the electronic structure of bilayer MoS2 are

density functional theory (DFT) studies [21,29,39,46,71,77,78,113,122,146,186,

203,207,209,212,220,243] with eventually a Wannier wave function analysis [46].

Those approaches provide interesting results, but they do not allow a systematic

analysis of the electronic structure as a function of the rotation angle θ, in par-

ticular for small angles, i.e., very large moiré cells, for which DFT calculations

are not feasible. Several Tight-Binding (TB) models, based on Slater-Koster

(SK) parameters, have been proposed for monolayer MoS2 [23,179,187,194,241]

and multi-layer MoS2 [23, 46, 194, 212]. Following these efforts, we propose here

a Slater-Koster (KS) set of parameters that match correctly the DFT bands

around the gap of tb-MoS2 with rotation angles θ > 7◦. This SK-TB model,

with the same parameters, is then used for smaller angles, in order to describe

the confined moiré states.

We thus show that, for θ . 6◦, the valence band with the highest energy is

separated from the other valence states by a minigap of a few meV. In addition,
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the width of this band decreases as θ decreases so that the average velocity of

these electronic states reaches 0 for θ . 2◦ such that flat bands emerge at these

angles. This is reminiscent of the vanishing of the velocity at certain “magic”

rotation angles in bilayer graphene [11,117,202,213,214] except that in the case

of bilayer MoS2 it arises for an interval of angles. Other minigaps and flat bands

are also found in the conduction band. The confined states that are closest to

the gap are localized in the AA stacking regions of the moiré pattern, like in

twisted bilayer graphene.

6.1 Atomic structure

The commensurate structure of tb-MoS2 can be defined in the same manner that

is common for twisted bilayer graphene (see for instance Refs. [20, 136]). Here

we use the same notation as in Refs. [213, 214]. A commensurate tb-MoS2 with

rotation angle θ is defined by two integers n and m, such that

cos θ =
n2 + 4nm+m2

2(n2 + nm+m2)
, (6.1)

and its lattice vectors are ~t = n~a1 +m~a2 and ~t′ = −m~a1 + (n+m)~a2, where ~a1

(a
√

3/2,−a/2, 0) and ~a2 (a
√

3/2, a/2, 0) are the lattice vectors of monolayer 2H-

MoS2, with the lattice distance a = 0.318 nm. A unit cell of tb-MoS2 contains

N = 6(n2 + nm+m2) atoms.

6.1.1 Non relaxed structure

The crystal structure of tb-MoS2 for large angle (θ = 13.17◦) is shown in Fig. 6.1.

Non relaxed structure of tb-MoS2 unit cell containing 114 atoms see in equation

6.1 n = 2 and m = 3. The unit cell (~a1,~a2) of monolayer 2H-MoS2 contains

3 atoms: Mo at (0, 0, 0), S (0, a/
√

3, 0.49115a) and S (0, a/
√

3,−0.49115a) [79,

179].

6.1.2 Structural relaxation

To find out the most stable configuration of the tb-MoS2, we relaxed the struc-

ture using starting positions obtained from the equation 6.1. The optimized

position of the atoms in the unit cell are allowed to vary but the unit cell was

unchanged like same as of MoS2 mono and bilayer (a = 0.318 nm) [Unit cell was

fixed].

Relaxation of atomic positions along the xz-direction in the unit cell of tb-MoS2

with different configurations shown in Fig. 6.2 leads to a small variation of
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Figure 6.1: Atomic structure of bilayer MoS2 at a twist angle θ = 13.17◦ (n =

2 and m = 3). (a) side view. (b) top view.
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Figure 6.2: Variation of atomic positions along the xz-direction of tb-MoS2 with

(full blue circles) and without ( empty red circles) relaxation of tb-MoS2 different

angles: (a) (1, 2) θ = 21.79◦, (b) (2, 3) θ = 13.17◦, (c) (3, 4) θ = 9.43◦, and (d)

(4, 5) θ = 7.34◦.

atomic positions as well as interlayer distance see in Fig. 6.3 and table 6.1, this

small variation nevertheless shows a large effect on the electronic band structure
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Variation of atomic positions with relaxation in the unitcell of tb-MoS2. 

Angle 
(θ) 

Atom 
type 

Non relaxed 
(Average) 

(Å) 

Relaxed 
Minimum 

(Å) 
Maximum 

(Å) 
Average (Å) 

Top layer of tb-MoS2 

21.79° S (Top) 8.3618 8.41184 8.41195 8.41189 
Mo 6.7999 6.79879 6.79909 6.79894 

S 
(Bottom) 

5.2381 5.18333 5.18537 5.18435 

13.17° S (Top) 8.3618 8.19550 8.25118 8.22334 

Mo 6.7999 6.58041 6.63037 6.60539 
S 

(Bottom) 
5.2381 4.96599 5.03606 5.10010 

9.43° S (Top) 8.3618 8.14464 8.30346 8.22405 

Mo 6.7999 6.55465 6.67651 6.61558 
S 

(Bottom) 
5.2381 4.91389 5.08365 4.99877 

7.34° S (Top) 8.3618 8.10150 8.35520 8.22835 

Mo 6.7999 6.48560 6.72367 6.60463 

S 
(Bottom) 

5.2381 4.89072 5.12878 5.00975 

Bottom layer of tb-MoS2 
21.79° S (Top) 1.5618 1.61462 1.61666 1.61564 

Mo 0.0000 0.00088 0.00119 0.00103 
S 

(Bottom) 
-1.5618 -1.61202 -1.61189 -1.61195 

13.17° S (Top) 1.5618 1.76400 1.83407 1.79903 

Mo 0.0000 0.16965 0.21961 0.19463 
S 

(Bottom) 
-1.5618 -1.45133 -1.39587 -1.42376 

9.43° S (Top) 1.5618 1.71611 1.88519 1.80065 

Mo 0.0000 0.12309 0.27165 0.19737 

S 
(Bottom) 

-1.5618 -1.50358 -1.34407 -1.42382 

7.34° S (Top) 1.5618 1.67073 1.92879  
Mo 0.0000 0.07585 0.31392 0.19488 

S 
(Bottom) 

-1.5618 -1.55466 -1.30269 -1.42867 

 

Figure 6.3: Variation of atomic positions along the xz-direction of tb-MoS2

with relaxation of tb-MoS2 different angles: (a) (1, 2) θ = 21.79◦, (b) (2, 3)

θ = 13.17◦, (c) (3, 4) θ = 9.43◦, and (d) (4, 5) θ = 7.34◦.

of tb-MoS2, it has explained in next section.
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6.2 DFT calculations (Large angles)

Density functional theory (DFT) calculations based on first principle calculations

were carried out with the ABINIT code, using the local density approximation

(LDA) exchange-correlation functional and the Perdew-Burke-Ernzerhof (PBE)

parameterized generalized gradient approximation (GGA) exchange-correlation

functional. We considered fourteen valence electrons of Mo (4s2, 4p6, 4d5, 5s1),

six valence electrons of S (3s2, 3p4) in the PAW pseudopotential. The Brillouin

zone was sampled by a K-point mesh of 0.8 nm−1 separation in reciprocal space

within the Monkhorst-Pack scheme [253], and the kinetic energy cutoff was cho-

sen to be 544.22 eV. A vacuum region of 2 nm was inserted between the MoS2

bilayers to avoid spurious interactions between periodic images.

6.2.1 Electronic band structure of different angles

For all of the DFT electronic band structure calculations done by LDA-PAW

pseudopotentials to minimize the computational expense, we tested different

pseudopotentials LDA-PAW and GGA-PAW +vdW obtained similar result, as

shown in the appendix D.1.

Table 6.1: Calculated interlayer distance and supercell size of twisted bilayer

MoS2 with and without relaxation in different configurations.

Configuration Super cell size Interlayer distance-

without relaxation

(Å)

Interlayer

distance-with

relaxation (Å)

AA 2 6.790 6.790

21.79◦ 14 6.790 6.607

13.17◦ 38 6.790 6.608

9.43◦ 74 6.790 6.690

7.34◦ 122 6.790 6.586

5.08◦ 254 6.790 6.614

Figure 6.4 shows DFT bands of tb-MoS2 along symmetric lines of the first Bril-

louin zone (see inset of the Fig. 6.4) for four values of the rotation angle θ.

Note that the size of the Brillouin zones depends on the size of a unit cell of

the moiré pattern such that the scale of the horizontal axis varies with θ. These

bands should be compared with the monolayer bands plotted in the same first

Brillouin zone as follows. On the one hand, some bands are not affected by the

value of θ see in appendix Fig. 10. The parabolic bands that emanates for the

point S0 are not affected by θ. Therefore, we always set the energy of S0 to zero.

Similarly, for the angles shown in Fig. 6.4, the curvature of the parabola at the
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Figure 6.4: DFT conduction band (top) and valence band (bottom) in tb-MoS2:

(1, 2) θ = 21.79◦, (2, 3) θ = 13.17◦, (3, 4) θ = 9.43◦ and (4, 5) θ = 7.34◦. For

every rotation angle, the origin of energy is fixed at the energy of the state S0 (see

bottom). The first Brillouin zone is sketched in the insert, all the calculations

have done by using LDA-PAW pseudopotentials.

lowest conduction band energy at K is not affected by θ. On the other hand,

many bands are modified with respect to the monolayer case. Like for simple

stacking bilayers (AA, AB, AB’, . . . ) [39,71,209], the highest valence energy at

Γ, E(S1), increases with respect to the monolayer such that the gap becomes

indirect. However, for sufficiently large angles, E(S1) does not vary significantly

with θ. In particular for the angles presented in Fig. 6.4, the curvature of the

parabola at S1 is not affected by θ and remains close to that of the monolayer.

Finally, considering the valence band, the most spectacular effect of decreasing θ

is the increase of the energies of some bands, thus gradually filling the gap. This

is, for instance, clearly seen in Fig. 6.4 when considering the energy variation

of the states S2 and S3 when θ decreases. Similarly, some energies of certain

conduction bands decrease as θ decreases. Such a θ dependence of bands has

already been observed for some values of the rotation angle in previous DFT

calculations [146]. In order to analyze it systematically, it is necessary to perform

calculation for smaller angles which is difficult using DFT calculations. This is

the reason why we have developed a TB model that can be used for every value
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of θ.

6.2.2 Electronic band structure of different angles with

and without structural relaxation

As we explained in the structural relaxation of different angles, the position of

atoms are moved until reach the minimum energy, but the unit cell (a = 0.318

nm) remains the same before and after relaxation. Comparison of electronic

band structure of tb-MoS2 with and without relaxation of different angles (1, 2)

θ = 21.79◦ see in Fig. 6.5 and (2, 3) θ = 13.17◦ tb-MoS2 see in Fig. 6.6. After

the relaxation bilayer separation distance between the layers have changed as

shown in table 6.1 compare to the simple AA-stacking of MoS2 bilayer, interlayer

distance is decreasing because of internal stress or strain between the layers

and atoms. This small variation of interlayer distance and atomic positions of

the atoms in the unit cell of tb-MoS2 band structure at the conduction band

symmetry points Γ to K moves towards the valence band (Γ-point) and also

modifies the bandgap as shown in Fig . 6.5 and Fig. 6.6.

-2
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Γ K M Γ

Without	structural	optimization
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Figure 6.5: DFT bands around the gap in (1, 2) θ = 21.79◦ tb-MoS2 (built from

AA stacking): Comparison between computation with and without structural

relaxation. All the calculations have done by using LDA-PAW pseudopotentials.
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Figure 6.6: DFT bands around the gap in (2, 3) θ = 13.17◦ tb-MoS2 (built from

AA stacking): Comparison between computation with and without structural

relaxation.

6.3 Tight-Binding (TB) calculations

6.3.1 TB-model for MoS2 monolayer

Our TB model for monolayer MoS2 results from adapted onsite and hopping

parameters of model proposed in Ref. [179] to our DFT result for monolayers as

shown in Fig. 6.7. This TB-model is a recent update of the TB-model presented

in chapter-4 ( 4.2.2), to account more correctly on the fact that there is two

different S-S first neighbor distances (sse Table 6.3).

As in chapter-4, each unit cell of the monolayer contains 11 orbitals: 5d Mo

orbitals (d0 = 4dz2 , d1 = 4dxz, 4dyz, d2 = 4dx2−y2 , 4dxy of 1 Mo atom) and 6p S

orbitals (3px, 3py and 3pz of 2 S atoms). Since the precise model may differ for

valence and conduction states [179], we have decided to focus on reproducing

the valence band accurately. The p S−p S , dMo−dMo and dMo−p S hopping

terms are calculated using a Slater-Koster formula with the parameters Vppσ,

Vppπ, Vddσ, Vddπ, Vddδ, Vdpσ, Vdpπ. For the monolayer, only first neighbor S-S,

Mo-Mo and S-Mo hopping terms are taken into account. On-site energy values,

number of neighbors taken into account, and values of Slater-Koster parameters

are listed table 6.2.
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Figure 6.7: DFT and TB bands in monolayer MoS2. The origin of the energy

is chosen at the maximum energy of the valence band, i.e., at the energy of the

states labeled S0, E(S0) = 0. Since E(S1) < E(S0) the gap is direct at K. The

first Brillouin zone is sketched in the insert.

Note that our TB model has been adapted to simulate not only the DFT mono-

layer bands, but also the DFT bands of twisted bilayers (mainly valence bands).

Lattice vectors and lattice parameters are defined in section 6.1.

6.3.2 TB model for twisted bilayer MoS2 (tb-MoS2)

In a second step, we consider the coupling between two layers of MoS2. Most

previous studies [23,46,186,241] include only p S−p S interlayer coupling terms,

but dMo − p S and dMo − dMo terms may also be important because we do

not limit the interlayer coupling to first neighbor hopping. Therefore, we include

p S−p S, dMo−p S, and dMo−dMo interlayer terms in our Slater-Koster scheme

as shown in table 6.3. It turns out that the latter two are indeed important to

reproduce the DFT valence band correctly. An exponential decay with inter-

atomic distance [46] and a cutoff function [135] are applied to these interlayer

terms, like in twisted bilayer graphene [214] for the explanation of cut-off distance

see in appendix D.2. Figure 6.8 shows the comparison between DFT and TB

bands for tb-MoS2 with θ = 21.79◦ and 9.43◦. The agreement is excellent for

the highest energy valence bands and qualitatively correct for the conduction

bands.

The atomic structure of commensurate twisted bilayer MoS2 (tb-MoS2) have
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Table 6.2: Tight-binding (TB) Slater-Koster parameters for monolayer MoS2,

and pair of neighbors for which the hopping term is non zero. Lattice parameter

of monolayer MoS2 a = 0.318 nm.

Atom Orbitals On-site energy (eV)

Mo d0 = 4dz2 E0
0 = 0.1356

d1 = 4dxz, 4dyz E0
1 = −0.4204

d2 = 4dx2−y2 , 4dxy E0
2 = 0.0149

S 3px, 3py E0
x,y = −38.71

3pz E0
z = −29.45

Atom Neighbor Number Inter-atomic Slater-Koster

distance (nm) parameters (eV)

Mo Mo 3 0.318 Vddσ = −0.9035

Vddπ = 0.7027

Vddδ = 0.0897

S 6 0.241 Vdpσ = −7.193

Vdpπ = 3.267

S S 1 0.312 Vppσ = 8.079

Vppπ = −2.678

6 0.318 Vppσ = 7.336

Vppπ = −2.432
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Figure 6.8: TB and DFT bands around the gap in tb-MoS2: (left) (1, 2) θ =

21.79◦ and (right) (3, 4) θ = 9.43◦.

been used in the present work are listed table 6.4.
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Table 6.3: TB Slater-Koster parameters for interlayer hopping terms in tb-

MoS2. d0 is the interlayer distance; for the definition of dMo−Mo, dMo−Mo, and

dMo−S, see Fig. 6.1.

Atom Neighbor d0 (nm) q Slater-Koster

parameters (eV)

Mo Mo 0.6800 11.6496 V 0
ddσ = −0.1416

V 0
ddπ = −0.4254

V 0
ddδ = −0.1237

S 0.5238 8.9738 V 0
dpσ = −1.4793

V 0
dpπ = 0.52431

S S 0.3676 6.2981 V 0
ppσ = 6.2782

V 0
ppσ = −8.9733

Table 6.4: (n,m) twisted bilayer MoS2 (tb-MoS2) structures that have been

used in the present work. θ is the rotation angle between the two layers and N

the number of atoms in a cell.

(n,m) θ [deg.] N

(1,2) 21.787 42

(2,3) 13.174 114

(3,4) 9.430 222

(4,5) 7.341 366

(5,6) 6.009 546

(6,7) 5.086 762

(7,8) 4.408 1014

(10,11) 3.150 1986

(15,16) 2.134 4326

(16,17) 2.004 4902

(18,19) 1.788 6162

(19,20) 1.696 6846

(20,21) 1.614 7566

(22,23) 1.470 9114

(25,26) 1.297 11706

(27,28) 1.203 13614

(30,31) 1.085 16746

(33,34) 0.987 20202

(36,37) 0.906 23982
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6.3.3 Moiré pattern of tb-MoS2

Moiré pattern from AA: We were constructed, a different type tb-MoS2 moiré

cells that can be built from AA-stacking, as the atoms of a monolayer unit cell

are not equivalent by symmetry. For simplicity, we consider only moiré patterns

constructed as follows. Starting from an AA stacked bilayer (where Mo atoms

of a layer lie above the Mo atoms of the other layer, and S atoms of a layer lie

above the S atoms of the other layer), the layer 2 is rotated with respect to the

layer 1 by the angle θ around a rotation axis going through two Mo atoms as

shown in Fig. 6.9.

• AA stacking regions are regions where Mo atoms of a layer lie above a Mo

atom of the other layer, and S atoms of a layer lie above an S atom of the

other layer.

• AB’ stacking regions are regions where Mo atoms of layer 1 lie above an

S atom of layer 2, and S atoms of layer 1 (Mo atoms of layer 2) do not lie

above an atom of layer 2 (layer 1).

• BA’ stacking regions are regions where S atoms of layer 1 atoms lie above

a Mo atom of layer 2, and Mo atoms of layer 1 (S atoms layer 2) do not

lie above an atom of layer 2 (layer 1).

Moiré pattern from AB: Figure 6.10 shows a top view of the atomic structure

of (6, 7) tb-MoS2 built from AB stacking. Here one can identify several specific

types of stacking regions: Starting from an AB stacked bilayer (were Mo atoms

of layer 1 lie above a Mo atom of layer 2, and S atoms of each layer do not lie

above an atom of the other layer), layer 2 is rotated with respect to layer 1 by

the angle θ around an axis containing two Mo atoms.

• AA’ stacking regions are regions where Mo atoms (S atoms) of one layer

lie above an S atom (Mo atom) of the other layer.

• AB stacking regions are regions where Mo atoms of layer 1 lie above a Mo

atom of layer 2, and S atoms of each layer do not lie above an atom of the

other layer.

• BA stacking regions are regions where S atoms of layer 1 lie above an S

atom of layer 2, and Mo atoms each layer do not lie above an atom of the

other layer.

In Fig. 6.10, AB stacking regions are located at the corners of the moiré cell.

AA’ and BA stacking regions are located at 1/3 and 2/3 of its long diagonal,

respectively.
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Mo layer 1
S layer 1

Mo layer 2
S layer 2

Figure 6.9: Atomic structure of (6,7) tb-MoS2 built from AA stacked bilayers.

Black lines show the unit cell. AA stacking regions are at the corners of this

cell, BA’ and AB’ stacking regions are at 1/3 and 2/3 of its longest diagonal,

respectively.

We have checked that the qualitative results presented below are also found in tb-

MoS2 built from an AB stacked bilayer before rotation. The interlayer distance

between layers containing Mo atoms is fixed to dMo−Mo = 0.68 nm which is the

DFT-optimized interlayer distance for AA stacked bilayer MoS2. The atomic

relaxation probably has an important effect on the electronic structure in tb-

MoS2 see in sections 6.1.2 and 6.2.2 [125, 146], like in twisted bilayer graphene

[148]. However in this work, our aim is to provide a simple tight-binding (TB)

scheme using Slater-Koster parameters that can be used for tb-MoS2 at all angles

in order to analyze qualitatively the electronic states that are confined by the

moiré pattern. Indeed, as was the case for twisted bilayer graphene, the study of

the non-relaxed structure should make it possible to identify generic properties

that will persist with relaxation. Therefore, our numerical results should be

qualitatively relevant even if they may not be quantitatively accurate.
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Mo layer 1
S layer 1

Mo layer 2
S layer 2

Figure 6.10: Atomic structure of (6,7) tb-MoS2 built from AB stacked bilayers.

Black lines show the unit cell. AB stacking regions are at the corners of this

cell, AA’ and BA stacking regions are at 1/3 and 2/3 of the longest diagonal,

respectively.

6.3.4 Analysis of bands of tb-MoS2 built from AA stack-

ing

Now, we analyze the evolution of the bands around the main gap with θ. Fig-

ure 6.11 shows this evolution for the top of the valence bands with a focus on

the states labeled S1, S2, S3, and S4. Both DFT and TB results show that the

energies E(S2) and E(S3) vary almost linearly with θ2 (Fig. 6.11(b)), which is

a strong indication that this phenomenon is a direct consequence of the moiré

structure. Indeed, in the MoS2 monolayer, the states around the gap are close

to the Γ and K points in reciprocal space, with a parabolic dispersion. In the

twisted bilayer, the points Γ1 and Γ2 of the 2 monolayers (layer 1 and layer 2)

coincide, while K1 and K2 are separated by a small distance K1K2 proportional

to the angle θ for small θ. As the monolayer band dispersion is parabolic, the

energy of the crossing of the bands of the two layers varies with θ2, and so do the

changes in energy induced by the moiré pattern. Similarly, many studies have

shown that the changes of energy due to the moiré pattern in twisted graphene

bilayer varies linearly with θ because the low-energy bands of a graphene mono-

layer are linear in ‖ ~K − ~k‖ (see, e.g., Ref. [17]).
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Figure 6.11: Dependence of valence bands on rotation angle θ: (a) Valence

band dispersion of (4, 5) tb-MoS2, θ = 7.34◦. (b) Energy E(S2) of the state S2

(see panel (a)) versus θ2. (c) Energy difference between the states S4 and S2,

∆E24 = E(S4) − E(S2), versus θ. A negative value of ∆E24 means that a gap

|∆E24| exists between the band below the gap and the other valence bands. (d)

Average slope of E(~k) of the band between states S2 and S3. For every rotation

angle, the origin of energy is fixed at the energy E(S0) of the state S0 (see Figs.

6.4).

Furthermore, our TB computations show that the highest energy valence band
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is isolated from the remainder of the valence bands by a minigap for sufficiently

small values of θ (see in Fig. 6.15). This is illustrated by Fig. 6.11(c), showing

that E(S4) − E(S2) < 0, i.e., the presence of a minigap, for θ < θC ≈ 6◦. This

isolated band is not degenerate, thus it corresponds to one state per moiré cell.

Figure 6.15 shows that such isolated bands are also present among the conduc-

tion bands with different values of θC . Finally, for the smallest angles, several

isolated bands appear both among the valence and conduction bands.

We also consider the average slope of the highest valence band between the points

K and M, i.e., between the states S2 and S3 (Fig. 6.11(a)). This quantity is pro-

portional to the average Boltzmann velocity (intra-band velocity). As shown in

Fig. 6.11(d), this velocity tends towards zero for small angles, θ = θ0 ≈ 2◦. This

demonstrates an electronic confinement corresponding to a “flat band”, like it

has been found for twisted bilayer graphene and twisted bilayer MoS2 for specific

angles, so-called magic angles [11, 117, 202, 213, 214, 247]. However, in tb-MoS2,

this velocity vanishes not only for discrete values of θ, but flat bands emerge for

a continuous range of θ, θ . θ0. We worked different TB-models, that one also

shows qualitatively same behavior but quantitatively different behavior, for the

tight-binding parameters and band analysis see in appendix D.3.

6.3.5 Analysis of bands of tb-MoS2 built from AB stack-

ing

Above section, we showed only results for tb-MoS2 built from AA stacking.

However, other types of moiré patterns exist in this system as well; in particular,

one can start from AB stacking. Figure 6.12 presents a comparison of the θ-

dependence of the band structure between tb-MoS2 between bilayers built from

AA stacking and from AB stacking. The results are qualitatively very similar,

which shows that the main results of our study do not depend on the type of

moiré pattern. The main quantitative differences with respect to the results

discussed in the main text are the values of θC and θ0: θC ≈ 6◦ versus θC ≈ 4.5◦

for tb-MoS2 built from AA and AB stacking, respectively; θ0 ≈ 2◦ versus θ0 ≈
1.8◦ for tb-MoS2 built from AA and AB stacking, respectively.
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Figure 6.12: Dependence of valence bands on rotation angle θ: Comparison

between tb-MoS2 built from AA stacking and tb-Mos2 built from AB stacking.

The TB-AA curves coincide with those of Fig. 6.11. (a) valence-band dispersion

of (4, 5) tb-MoS2, θ = 7.34◦. (b) Energy E(S2) of state S2 (see panel (a)) versus

θ2. (c) Energy difference between states S4 and S2, ∆E24 = E(S4) − E(S2),

versus θ. A negative ∆E24 value means that a gap |∆E24| exists between the

band below the gap and the other valence bands. (d) Average slope of E(~k)

of the band between states S2 and S3. For every rotation angle, the origin of

energy is fixed at the energy E(S0) of the state S0 (see Fig. 6.4).

6.3.6 Local density of states (LDOS)

The TB density of states (DOS) is calculated employing a Gaussian broadening

with a standard deviation σ = 2 meV. For the k-integration we use a grid with
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Figure 6.13: TB local density of states (LDOS) of the 4dz2 Mo orbital at the

center of the AA stacking region for different rotation angles of tb-MoS2. The

LDOS is calculated employing a Gaussian broadening with a standard deviation

σ = 2 meV.

Nkx ×Nky points in the reciprocal unit cell, with Nkx = Nky large enough to

obtain a DOS that is independent of these parameters. Due to this broadening,

the minigaps found in the band structure are not always seen clearly in the DOS.

Figure 6.13 shows the LDOS for the d0 = dz2 orbital of an Mo atom at the

center of the AA stacking region for several rotation angles θ. Figure 6.14 (top

panel) shows the local density of states (LDOS) of the d0 = dz2 Mo orbital for

the selected rotation angle θ = 5.09◦, but for Mo atoms located at different

stacking regions of the moiré pattern (Fig. 6.9). Confined states (“flat bands”)

lead to sharp peaks in the LDOS (Fig. 6.13). These states have dz2 Mo character

(Fig. 6.14 (bottom panel)), and a very small weight for the other d Mo orbitals.

The flat bands are mainly located in the AA stacking region (Fig. 6.14 (top

panel)). Figure 6.17 shows that the lowest-energy flat bands in the conduction

and valence bands correspond to Mo atoms that are located at the center of the

AA stacking regions, and that the next flat band in the conduction and valence

bands corresponds to states located in a ring in the AA stacking regions.
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Figure 6.14: TB local density of states (LDOS) of the Mo orbital around the

main gap in (6,7) θ = 5.09◦ tb-MoS2 (built from AA stacking, see Fig. 6.9):

(Top panel) LDOS of the d0 = dz2 Mo orbital at the center of AA, BA’, and

AB’ stacking regions. (Bottom panel) LDOS of d0, d1 = 4dxz, 4dyz and d2 =

4dx2−y2 , 4dxy Mo orbitals at the center of the AA stacking region. The LDOS

is calculated employing a Gaussian broadening with the standard deviation σ =

2 meV.
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Figure 6.15: TB band dispersion and local density of states (LDOS) of d0 = dz2

Mo atoms at the center of the AA stacking region and the center of the AB region:

(a) for (10, 11) tb-MoS2 θ = 3.15◦, and (b) for (20, 21) tb-MoS2 θ = 1.61◦. In a

moiré cell, two symmetrically equivalent AB stacking regions are located at 1/3

and 2/3 of the longest diagonal of the cell (see Fig. 6.9)). Each AB stacking

region contains two types of Mo atoms: (AB-A) Mo atom of a layer lying above

an S atom of the other layer, (AB-B) Mo atom of a layer not lying above an

atom of the other layer.

6.3.7 Confined state in the AA region of the moiré pat-

tern

Like for the monolayer, the electronic states of tb-MoS2 closest to the gap have

mainly 4dz2 Mo character. This is still true for small angles, we explained in
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previous section see 6.3.6 , but states of the isolated bands are mainly localized

in the AA stacking region. Consequently, the local density of states (LDOS) for

4dz2 Mo at the center of AA region contains sharp peaks around the gap (Fig.

6.15). Note that in the LDOS (Fig. 6.15), the minigap discussed in the previous

paragraph is not seen clearly because of the numerical Gaussian broadening

used to calculate the LDOS. The sharp peaks closest to the main gap are found

neither in the LDOS of the other 4d Mo orbitals, nor in the LDOS of the Mo

atoms that are not located in the AA stacking regions. Thus, the flat band

states are confined in AA stacking regions, like in twisted bilayer graphene for

small rotation angles [11,118,149,213,214]. The lowest energy flat bands (closest

to the gap in the valence and conduction bands) are localized at the center of

the AA regions, as is also reflected by a strong enhancement of the local density

of states in the corresponding regions (Fig. 6.15), whereas the next flat bands

are localized in a ring in the AA regions rather than at the their center (see

Fig. 6.17).

6.3.7.1 Electronic band structure with SOC at θ = 3.15◦ and θ = 1.61◦

The electronic band structure of twisted bilayer MoS2 with SOC of (10, 11) tb-

MoS2 θ = 3.15◦ and (20, 21) tb-MoS2 θ = 1.61◦ is shown in Fig. 6.16. As

we explained in the monolayer case (see in Chapter-6 section 4.2.1.2) large spin

splitting at valence band ≈ 148 meV. Similarly, we investigated the effect of SOC

on electronic band structure of tb-MoS2, where the mirror symmetry broken by

the rotation angle. Because of broken inversion symmetry, spin degeneracies

are lifted along the highest symmetry path (Γ-K-M-Γ) in the Brillouin zone,

but the time reversal invariant points Γ and M remain spin degenerate (for the

time reversal symmetry see appendix A.2). Here, the splitting is opposite to the

monolayer case, the effect of SOC more significant at the conduction band of

the tb-MoS2 [242]. The band splitting at the minimum of the conduction band

is ≈ 4.53 meV.

6.3.7.2 Eigenstates corresponding to flat bands (θ = 1.61◦) in tb-MoS2

Analysis of the band dispersion (Fig. 6.15) shows that the first isolated flat

band below the main gap (valence band) is non-degenerate and thus contains

one state per moiré cell. By contrast, the two first isolated flat bands above

the gap (conduction bands) are two-fold quasi degenerate. The weight of the

eigenstates corresponding to these flat bands is mainly concentrated on d0 = dz2

Mo orbitals (more than 98% and 95%, respectively) located at the center of AA

stacking regions. This is shown in Fig. 6.17(b,c) for eigenstates at the points Γ,
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Figure 6.16: TB electronic band structure with and without SOC: (Top) for

(10, 11) tb-MoS2 θ = 3.15◦, and (Bottom) for (20, 21) tb-MoS2 θ = 1.61◦.

K, and M of the flat band above and below the main gap, respectively.

For small enough angles, the next isolated flat bands (Fig. 6.15(b)) are four-

fold quasi degenerate in the conduction band and two-fold quasi degenerate in

the valence band. The weight of the eigenstates, corresponding to these flat

bands at the points Γ, K, and M, is mainly located in a ring in AA stacking

regions (Fig. 6.17(a,d)). Analysis of eigenstates corresponding to flat bands at

θ = 3.15◦ see in appendix D.4.
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Figure 6.17: Average weight of the eigenstates at Γ, K, and M, of the flat band

around the gap in real space in (20, 21) tb-MoS2 (built from AA stacking, see

Fig. 6.9)) with a rotation angle θ = 1.61◦, Conduction band: (a) Average of the

four-fold quasi-degenerate band at energy E ' 1.686± 0.002 eV and (b) average

of the two-fold quasi-degenerate band at energy E ' 1.6626±0.0002 eV. Valence

band: (c) non-degenerate bands at energy E ' 0.26249 ± 0.00001 eV, and (d)

average of the two-fold quasi-degenerate band at energy E ' 0.2518±0.0003 eV.

The corresponding bands are shown in Fig. 6.15(b). The color scale shows the

weight of the eigenstate on each d0 = 4dz2 orbital of the Mo atoms. The sum

of these weights is more than 98% and 95% of each state for the valence and

conduction band, respectively. Black lines show the unit cell containing 2522

Mo atoms. AA stacking regions are at the corners of this cell.
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6.4 Conclusion

We have revisited the tight-binding description of twisted MoS2 bilayers start-

ing from DFT computations. Particular attention was paid to interlayer Slater-

Koster parameters and we confirmed that not only the closest p S−p S interlayer

coupling terms, but also dMo− p S and dMo− dMo coupling needs to be taken

into account for an accurate description. We then used this tight-binding model

to investigate the band structure of MoS2 bilayers at smaller rotation angles θ

where the moiré unit cell becomes too large for DFT computations. We found

that isolated bands appear in the valence and conduction bands close to the gap

for θ . 5 − 6◦. For even smaller angles θ . 2◦, the average velocity vanishes.

The emergence of the corresponding flat bands is reflected by sharp peaks in

the density of states. This phenomenon is accompanied by a localization of the

wave function mainly in AA stacking regions. Depending on the flat band, this

real-space confinement can occur at the center of AA region and also in a ring

around the center of the AA region.

In the present discussion, we have focused on rotated MoS2 bilayers that are

constructed from AA stacking, but we have checked that qualitatively the same

behavior is found when one starts from AB stacking instead.

The vanishing velocity and related emergence of flat bands identifies weakly

doped MoS2 bilayers as good candidates for the observation of strong correla-

tion effects. Beyond first theoretical efforts in this direction [232], we offer our

DFT-based tight-binding model as a solid starting point for more detailed stud-

ies of correlation effects in twisted MoS2 bilayers.
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This PhD thesis work focused on the electronic properties of monolayers of

Transition Metal Dichalcogenides (TMDs), graphene/TMD bilayers, and twisted

bilayers of TMDs. In order to study such complex structures, we have combined

density functional theory (DFT) approaches and simplified tight-binding (TB)

models.

We have first studied theoretically electronic and transport properties of TMDs.

We focused on different TMDs of imperfections in the crystal structure, such

as point defects that can strongly modify the transport properties of these ma-

terials. Here, we analyze the effect of point defects on the density of states,

conductivity, microscopic conductivity, carrier concentration, and mobility of

single layers of semiconducting TMDs with the form MX2 (M = Mo, W and

X = S, Se, Te). The electronic structure is considered within an eleven-band

model, which accounts for the relevant combination of d orbitals of the metal

M and p orbitals of the chalcogen X. We use the recursion method (Lanczos

method) and Kubo-Greenwood formula for the numerical calculation of the con-

ductivity in the TMDs with different distributions of disorder. Our results show

that M or X defects create midgap states that localize charge carriers around

the defects and modify the transport properties of the material.

Secondly, we analyzed a new family of graphene based transition metal dichalco-

genide (TMDs) heterostructures including van der Waals interactions. We checked

two different TMDs (MoS2 and WSe2), but results should be similar to the

other TMDs. A study of first principle calculations (DFT) including vdW inter-

actions and modeling of 2D graphene/MoS2, and graphene/WSe2 bilayer vdW

heterostructures was conducted by ABINIT software program. We checked dif-

ferent supercell configurations of the bilayer system to minimize the lattice mis-

match between the layers: graphene/MoS2 [4:3 (≈ 3.33%), 5:4 (≈ 2.52%), and

9:7 (≈ 0.53%)] and graphene/WSe2 [4:3 (≈ 0.606%)].

We predicted accurate interlayer spacing between the graphene and MoS2 layers

in the graphene/MoS2 bilayer heterostructure and the graphene and WSe2 lay-

ers in the graphene/WSe2 heterostructure. The predicted interlayer spacing of

the three different configurations of graphene/MoS2 heterostructures are 3.367

Å, 3.287 Å, and 3.361 Å respectively, which is in good agreement with the ex-

perimental data (3.4 ± 0.1 Å) [171] and interlayer spacing between the layers

of graphene/WSe2 heterostructure is 4.194 Å. We analyze the electronic band

structure of graphene/MoS2 bilayer heterostructures using the ABINIT software

program and find that the Dirac point of graphene is shifted upwards above the

Fermi level and is located near the conduction bands of the MoS2 layer, yielding

a considerable charge transfer in the 4:3 bilayer, whereas the Dirac point lies
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in the bandgap region in the 5:4 bilayer indicating no charge transfer between

the constituent layers and final configuration, the Dirac point (shifted from K

to Γ) lies in the bandgap region in the 9:7 bilayer indicating no charge transfer

between the constituent layers because of the smaller lattice mismatch and min-

imal strain. The 9:7 system has minimized the lattice mismatch between the

layers. We also analyzed the electronic band structure of the graphene/WSe2

[4:3] bilayer heterostructure. The Dirac point lies in the bandgap region in the

4:3 bilayer indicating no charge transfer between the constituent layers because

of the smaller lattice mismatch between the layers. We observed that the loca-

tion of the Dirac point can be shifted by tuning the interlayer spacing between

the graphene and MoS2 layers, and it might happen to graphene and WSe2.

The effect of the spin orbit coupling (SOC) on graphene/MoS2 and graphene/WSe2

bilayer heterostructures is not strong around the Dirac point whereas in the

monolayer with a MoS2 and WSe2 at the valence band (K-point) large band

splitting (MoS2 ≈ 148 meV and WSe2 ≈ 475 meV) observed due to a strong

SOC effect and the graphene layer at the Dirac point band splitting remains

very small. For vdW bilayer heterostructures with and without SOC the energy

bandgap difference at the Dirac point is very small. We also found that the elec-

tronic band structure has changed after the relaxation of the atomic positions

and lattice parameters because of the internal stress and strain due to lattice

mismatch between the graphene and TMDs layers. From our calculations, we

strongly recommend to calculate the electronic and optical properties of vdW

bilayer heterostructures, lattice optimization, relaxation of atoms in an unit cell

with a small lattice mismatch.

The next step we will studied point defects, such as vacancies or substitution of

atoms in order to calculate the electronic properties of these heterostructures.

Some preliminary results (C-vacancy in the graphene/WSe2 [4:3] bilayer, M re-

placed by Fe in graphene/WSe2 [4:3] bilayer) are in progress.

Furthermore, we have revisited the tight-binding description of monolayers of

TMDs as well as twisted MoS2 bilayers starting from DFT computations. Par-

ticular attention was paid to interlayer Slater-Koster parameters and we con-

firmed that not only the closest p S − p S interlayer coupling terms, but also

dMo−p S and dMo−dMo coupling needs to be taken into account for an accu-

rate description. We then used this tight-binding model to investigate the band

structure of MoS2 bilayers at smaller rotation angles θ where the moiré unit cell

becomes too large for DFT computations. We found that isolated bands appear

in the valence and conduction bands close to the gap for θ . 5 − 6◦. For even

smaller angles θ . 2◦, the average velocity vanishes. The emergence of the cor-

responding flat bands is reflected by sharp peaks in the density of states. This
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phenomenon is accompanied by a localization of the wave function mainly in

AA stacking regions. Depending on the flat band, this real-space confinement

can occur at the center of AA region and also in a ring around the center of the

AA region.

In this last part, we have focused on rotated MoS2 bilayers that are constructed

from AA stacking, but we have checked that qualitatively the same behavior is

found when one starts from AB stacking instead. The vanishing velocity and

related emergence of flat bands identifies weakly doped MoS2 bilayers as good

candidates for the observation of strong correlation effects. Beyond first theoret-

ical efforts in this direction [232], we offer our DFT-based tight-binding model

as a solid starting point for more detailed studies of correlation effects in twisted

MoS2 bilayers. We have started to look into magnetic instabilities in the tb-

MoS2 at small angles and the first preliminary results show, as expected, a very

strong reduction of the electronic interaction energy beyond which a magnetic

state appears.

Outlook:

In Chapter-4, we proposed a tight-binding model for various TMDs and calulated

transport properties of defected systems (point defect). A natural continuation

would be to calculate the transport properties with effect of spin orbit coupling

and substitutional atoms.

In Chapter-5, to study graphene/MoS2 heterostructure, we consider the super-

lattice structure [9:7], characterised by a small lattice mismatch, which is more

realistic with respect to ones used in previous studies ([4:3] and [5:4]structures).

Now it would be interesting to study a twisted graphene/MoS2 [9:7] bilayer and

analyze the electronic properties as a function of twist angle. One could also

investigate heterostructures band folding and compare the experimental result.

In chapter-6, we looked at the electronic confinement and weights of the low

energy electronic states at the smallest angles using the tight-binding model of

twisted bilayer MoS2. We will investigate the electronic properties effect of spin

orbit coupling with small rotation angles, the relaxation effect and study the

magnetic properties at smallest angeles by using mean field theory.
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A Spin Orbit Coupling (SOC)

The main text we explained the SOC Hamiltonian of p-orbital (see section 2.4.2),

this appendix, we present the SOC Hamiltonian of the d-orbital (see section

A.1). The calculation of electronic band structure of the TMDs including SOC,

we used d-orbital of transition metal, the time reversal symmetry and spatial

inversion symmetry see section A.2.

A.1 Spin Orbit Coupling (SOC) of d-orbitals

For the simplicity d-orbitals can be represented as |d1±〉 = |dxy±〉, |d2±〉 =

|dyz±〉, |d3±〉 = |dzx±〉, |d4±〉 = |d(x2−y2)±〉, and |d5±〉 = |d(3z2−r2)±〉. where +

= spin up (↑) and - = spin down (↓) [87] see table 1.

|d↑1〉 |d↑2〉 |d↑3〉 |d↑4〉 |d↑5〉 |d↓1〉 |d↓2〉 |d↓3〉 |d↓4〉 |d↓5〉
|d↑1〉 0 0 0 iλ 0 0 λ

2
−iλ

2
0 0

|d↑2〉 0 0 iλ
2

0 0 −λ
2

0 0 −iλ
2
−i
√
3λ
2

|d↑3〉 0 −iλ
2

0 0 0 iλ
2

0 0 −λ
2

+
√
3λ
2

|d↑4〉 −iλ 0 0 0 0 0 iλ
2

λ
2

0 0

|d↑5〉 0 0 0 0 0 0 i
√
3λ
2
−
√
3λ
2

0 0

|d↓1〉 0 −λ
2
−iλ

2
0 0 0 0 0 −iλ 0

|d↓2〉 λ
2

0 0 −iλ
2
−i
√
3λ
2

0 0 −iλ
2

0 0

|d↓3〉 iλ
2

0 0 λ
2

−
√
3λ
2

0 iλ
2

0 0 0

|d↓4〉 0 iλ
2

−λ
2

0 0 iλ 0 0 0 0

|d↓5〉 0 i
√
3λ
2

√
3λ
2

0 0 0 0 0 0 0

Table 1: Spin orbit coupling Hamiltonian parameters in the basis set of atomic

orbital (d).

A.2 Time Reversal Symmetry and Spatial Inversion Sym-

metry

Time reversal symmetry preserves the Kramer’s degeneracy, which states that

a wave function ψ only differs from its complex conjugate ψ∗ by a reversal of

wave vector and electron spin. The condition for time reversal symmetry in the

Brillouin zone reads

E(~k, ↑) = E(−~k, ↓). (1)

Equation 1 says that the energy of a state with wave vector ~k and spin-up at a

point in Brillouin zone is the same as the state with wave vector -~k and spin-down

at the same point. On the other hand, if the crystal lattice has spatial inversion
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symmetry (the crystal lattice does not change under the operation ~r → −~r), the

energy of the bands will satisfy

E(~k, ↑) = E(−~k, ↑) and E(~k, ↓) = E(−~k, ↓) (2)

if the crystal has both time reversal and spatial inversion symmetry, the band

structure of the crystal would satisfy both equation 1 and equation 2:

E(~k, ↑) = E(~k, ↓). (3)

The energy level splitting will not only depend on SOC but also on the sym-

metries present in the solids. In other words, the energy bands will stay spin

degenerate when there is any crystal symmetry even if the spin orbital interac-

tion is considered.
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B Transport properties of MX2

The chapter-4, we explained the conductivity and inelastic scattering length of

different TMDs in small concentration of vacancies (1 %), here we present large

concentration of vacancies (3 % and 10 %) to study the conductivity and inelastic

scattering length of different TMDs see B.1. Elastic mean free path results see

B.2.

B.1 Conductivity and inelastic scattering length vs scat-

tering time

Figures 1 and 2 show the variation of the conductivity σ and inelastic mean

free path Li versus τi for different energies corresponding to the valence band to

conduction band region in large vacancy concentration 3 and 10 % in a supercell

respectively. The first case (i) conduction band region: MoS2 (E =1.90 eV),

MoSe2 (E =1.88 eV), MoTe2 (E =1.36 eV), WSe2 (E = 2.10 eV), and WTe2

(E =1.62 eV) see Figs. 1 and 2. The large values of τi, the conductivity σ is

almost constant as expected in a diffusive regime. This regime corresponds to

energies for which the DOS is weakly affected by scatterers. We have checked

that σ with different concentration of vacancies (c), σ is almost independent

on c which is expected by the Boltzmann theory of transport. Second case (ii)

bandgap region: MoS2 (E =0.80 eV), MoSe2 (E =0.66 eV), MoTe2 (E =0.56

eV), WSe2 (E = 0.60 eV), and WTe2 (E =0.72 eV) see Figs. 1 and 2. The

transport is determined by diffusion of midgap states which are localized states.

Therefore, the localization regime is reached at small τi. Third case (iii) valence

band region: MoS2 (E = -0.60 eV), MoSe2 (E = -0.64 eV), MoTe2 (E = -0.32

eV), WSe2 (E = -0.56 eV), and WTe2 (E = -0.58 eV) in Figs. 1 and 2 the

behavior similar to the first case. The first and third cases, for τi closed to the

elastic scattering time τe, there is a diffusive behavior where the σ(τi) reaches a

maximum, σM ; for larger values of τi, τi � τe, σ(τi) decreases progressively as

expected in the localization regime due to Anderson localization in 2D [104,142].

B.2 Elastic mean free path

In our calculations τi and then Li are considered as adjustable parameters.

Roughly speaking, when Li � Le (τi � τe) the inelastic disorder dominates; it

should correspond to very high temperatures (ballistic regime). When Li ' Le

(τi ' τe), the conductivity is equal to microscopic conductivity, which should

correspond to the high temperature case, typically room temperature (diffusive

regime). If Li � Le (τi � τe), quantum localization will dominates transport
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Figure 1: Conductivity σ (solid line) and inelastic scattering length Li (dashed

line) in MX2 versus inelastic scattering time τi for defect concentration c = 3 %

of point defects (creating a vacancy by removal of atoms M = Mo, W or X = S,

Se, Te randomly). For three energy values: Valence band (blue), inside midgap

states region (magenta) and conduction band (red). (a) MoS2, (b) MoSe2, (c)

MoTe2, (d) WSe2, and (e) WTe2. Where, G0 = 2e2/h.
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Figure 2: Conductivity σ (solid line) and inelastic scattering length Li (dashed

line) in MX2 versus inelastic scattering time τi for defect concentration c = 10 %

of point defects (creating a vacancy by removal of atoms M = Mo, W or X = S,

Se, Te randomly). For three energy values: Valence band (blue), inside midgap

states region (magenta) and conduction band (red). (a) MoS2, (b) MoSe2, (c)

MoTe2, (d) WSe2, and (e) WTe2. Where, G0 = 2e2/h.
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properties (localization regime); this is the low temperature limit (see section

4.5.1).
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Figure 3: Elastic mean free path Le(E) versus energy E in MX2 for different

concentration (c = 0.5 %, 1 %, 2 %, 3 %, 5 %, and 10 %) of point defects (creating

a vacancy by removal of atoms M = Mo, W or X = S, Se, Te randomly). (a)

MoS2, (b) MoSe2, (c) MoTe2, (d) WSe2, and (e) WTe2.
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C Graphene/MoS2 bilayer heterostructures DFT+TB

calculations

We have calculated, the electronic band structure of graphene/MoS2 bilayer

heterostructure of individual layers (graphene and MoS2) supercell structures

see C.1. We analyze the electronic band structure of graphene/MoS2 [4:3] bi-

layer heterostructure with and without optimization of atomic positions and

lattice parameters see C.2. Finally, We proposed a tight-binding model for the

graphene/MoS2 bilayer heterostructure see C.3.

C.1 Individual layers of graphene/MoS2 heterostructures

of different configurations 4:3 and 9:7
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Figure 4: Electronic band structure of supercells of graphene (4×4) [Left] and

MoS2 (3×3) [Right] with optimized atomic positions and lattice parameters of

graphene/MoS2 [4:3] bilayer heterostructures. All the calculations have been

done using LDA-PW-PAW pseudopotentials.

The electronic band structure of individual layers of supercell geometries of

graphene (4×4) and MoS2 (3×3) of graphene/MoS2 [4:3] bilayer heterostructure

see Fig. 4. We taken the graphene/MoS2 [4:3] bilayer heterostructures without

relaxation, and we separated graphene and MoS2 layers with same atomic posi-

tions and lattice parameters of graphene/MoS2 [4:3] heterostructure. We found

that, the MoS2 (3×3)[right] has a direct bandgap at the Γ-point, it move from

K-point to Γ point in the Brillouin zone. The simple case MoS2 (1×1) shows

that the direct bandgap at the K point in the Brillouin zone. This comparison

thus shows that the importance of the change of lattice parameters due to the

mismatch imposed by the choice of a 4:3 supercell.

The electronic band structure of individual layers of supercell geometries of the
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Figure 5: Electronic band structure of supercells of graphene (9×9) [Left] and

MoS2 (7×7) [Right] with optimized atomic positions and lattice parameters of

graphene/MoS2 [9:7] bilayer heterostructures. All the calculations have been

done using LDA-PW-PAW pseudopotentials.

graphene (9×9) and MoS2 (7×7) of graphene/MoS2 [9:7] bilayer heterostructure

see Fig. 5. The graphene/MoS2 [9:7] bilayer heterostructure without relaxation,

we separated the graphene and MoS2 layers with same atomic positions and

lattice parameters of graphene/MoS2 [9:7] heterostructure. We found that, the

graphene (9×9)[left] has a direct bandgap at the Γ-point, it move from K-point

to Γ point in the Brillouin zone. The simple case graphene (1×1) shows that

direct band gap at the K point in the Brillouin zone.

Why direct band gap changes from K to Γ in the supercell n × n

with n a multiple of 3:

The reciprocal lattice vectors of a simple unit cell (1 × 1) are ~b1 and ~b2 in the

Brillouin zone. The calculation of symmetry points in the Brillouin zone is K

= 1
3
~b1 + 2

3
~b2 (highest symmetry point K in the Brillouin zone). Let us take ~B1,

and ~B2 are reciprocal lattice vectors of a large unit cell (n × n) in the Brillouin

zone.

Large unit cell reciprocal lattice vectors can be represented interms of the small

unit cell reciprocal lattice vectors, so ~B1 = 1
n
~b1, and ~B2 = 1

n
~b2.

When K is at Γ, its possible to find out p & q , where p, q ∈ Z, such as

K + p ~B1 + q ~B2 = 0 ⇐⇒
(

1

3
+
p

n

)
~B1 +

(
2

3
+
q

n

)
~B2 = 0 (4)

⇒
(
n+ 3p

3n

)
~B1 +

(
2n+ 3q

3

)
~B2 = 0 (5)
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Therefore n = −3p, 3q
2

, this is possible only, where n is multiple of 3.

C.2 Electronic band structure of graphene/MoS2 [4:3]

heterostructure with and without relaxation

We analyze the electronic band structure of graphene/MoS2 [4:3] bilayer het-

erostructure with and without optimization of atomic positions and lattice pa-

rameters.
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Figure 6: Comparison of electronic band structure of graphene/MoS2 [4:3] bi-

layer heterostructure with relaxation (red lines), without relaxation (cyan lines).

Atomic positions are not relaxed and lattice parameters are relaxed (blue lines),

and atomic positions are relaxed and lattice parameters are not relaxed (green

lines). All the calculations have been done by using GGA-PAW pseudopotentials

(PBE) including vdW.

The electronic band structure of the graphene/MoS2 [4:3] heterostructure with

and without relaxation (lattice constant) is shown in Fig. 6. red color indicates

optimization of atomic positions as well as lattice parameters, cyan color indi-

cates the without optimization of atomic positions as well as lattice parameters

(i.e. lattice parameters of isolated MoS2 layer), green color indicates optimiza-

tion of atomic positions and without optimization of lattice parameters, and blue

color indicates without optimization of atomic positions and with optimization

of lattice parameters.
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C.3 TB-model for graphene/MoS2 (5:4 and 9:7)

We proposed a tight-binding model for the graphene/MoS2 bilayer heterostruc-

ture.

In this TB-model, we choose pairs up to next nearest neighbors 〈ij〉 in MoS2

with a 11-band model basis. The MoS2 monolayer have a five d-orbitals of Mo

and six p-orbitals of two S see section 4.2.2, so that Hamiltonian of MoS2 can

be written as:

HM =
∑
i,σ,ν

εν,σC
†
iνσCiνσ +

∑
〈ij〉,σ,νµ

tiν,jµC
†
iνσCjµσ + h.c., (6)

where C†iνσ label the ν-orbital site i of the Mo-lattice with spin σ. The first term

considers the on-site energy of atom i and orbital ν. The second term describes

hopping between the Mo d-orbitals (d-d) to nearest and next nearest neighbors

(similarly S p-orbitals (p-p) and also Mo d-orbitals - S p-orbitals (d-p). Strong

MoS2 spin orbit coupling is considered from the atomic SOC contribution. Pa-

rameters are given Table 2 .

For the model of graphene (Table 2), we adopt the usual single-orbital rep-

resentation for the triangular lattice with a two-atom basis that couples only

nearest neighbors 〈ij〉,

HG =
∑
i,σ

εi,σC
†
iσCiσ +

∑
〈ij〉,σ

ti,jC
†
iσCjσ + h.c., (7)

where ε of the first term describes the on-site energy, and the second term con-

siders hopping to the nearest neighbors with coupling strength ti,j.

For the inter-layer hopping, we include on the C-S coupling terms with a expo-

nential decay versus the interatomic distance as in twisted bilayers (chap 6 and

appendix D.2).

In the construction of a reliable TB model for graphene based heterostructures,

we are guided by first principles DFT calculations that will provide the reference

on which to calibrate the TB model. Our tight-binding model electronic band

structure shows good agreement with the DFT electronic band structure see Fig.

7 and Fig. 8.
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Table 2: Tight-binding (TB) Slater-Koster parameters for the graphene/MoS2

bilayer heterostructure, and pair of neighbors for which the hopping term is non

zero. The lattice parameter of the graphene/MoS2[5:4] are a = 1.276 nm and

graphene/MoS2[9:7] a = 2.214 nm.

Atom Orbitals On-site energy (eV)

Mo d0 = 4dz2 E0
0 = 0.0644

d1 = 4dxz, 4dyz E0
1 = −0.4916

d2 = 4dx2−y2 , 4dxy E0
2 = −0.0563

S 3px, 3py E0
x,y = −38.7786

3pz E0
z = −29.5254

C 2pz E0
z = 1.269

Atom Neighbor Number Inter-atomic Slater-Koster

distance (nm) parameters (eV)

Mo Mo 3 0.318 Vddσ = −0.9035

Vddπ = 0.7027

Vddδ = 0.0897

S 6 0.241 Vdpσ = −7.1933

Vdpπ = 3.2674

S S 1 0.312 Vppσ = 8.0790

Vppπ = −2.6784

6 0.318 Vppσ = 7.336

Vppπ = −2.432

C C 3 0.142 Vppπ = −2.8

Table 3: TB Slater-Koster parameters for interlayer hopping terms in

graphene/MoS2. d
0 is the interlayer distance; for the definition of dC−S. The q

and d0 are parameters for the exponential decay (see appendix D.2)

Atom Neighbor d0 (nm) q Slater-Koster

parameters (eV)

C S 0.342 6.4516 V 0
ppσ = 1.925

V 0
ppπ = −3.055
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Figure 7: DFT and TB electronic band structure of graphene/MoS2 [5:4] bilayer

heterostructure without relaxation.
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Figure 8: DFT and TB electronic band structure of graphene/MoS2 [9:7] bilayer

heterostructure without relaxation.
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D Electronic properties of tb-MoS2

We investigate the effect of different pseudopotentials (LDA-PAW and GGA-

PAW + Van der Waals)on electronic band structure of MoS2 monolayer see D.1.

We gave a detailed formalism for the calculation of cut off radius in the twisted

bilayer MoS2 see D.2. We proposed a alternative Tight-binding (TB) Slater-

Koster parameters for monolayer MoS2 and twisted bilayer MoS2, to compare

the electrical properties of tb-MoS2 with alternative TB-model see D.3. All the

explanations and calculations found in our paper [222].

D.1 Electronic band structure of different pseudopoten-

tials

This appendix we investigate the effect of different pseudopotentials (LDA-PAW

and GGA-PAW + Van der Waals)on electronic band structure of MoS2 mono-

layer. The LDA-PAW and GGA-PAW + Van der Waals exchange-correlation

functionals yield very similar results (see Fig. 9).
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Figure 9: DFT bands around the gap in (1, 2) θ = 21.79◦ tb-MoS2 (built from

AA stacking): Comparison between LDA-PAW and the GGA-PAW + Van der

Waals exchange-correlation functional.

So all the results presented in the main text are based on LDA calculations,

which require less computation time for large systems.

In Fig. 10, we compare the bands around the gap of θ = 21.79◦ (1, 2) and θ =

13.17◦ (2, 3) tb-MoS2 with the monolayer case. For the purpose of comparison,
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Figure 10: DFT bands around the gap in tb-MoS2 (built from AA stacking):

(a) (1, 2) θ = 21.79◦, (b) (2, 3) θ = 13.17◦. (red color) bilayer, (black color)

monolayer represented in the bilayer unit cell.

the monolayer unit cell has been mapped to the bilayer one. Some of the bands

do not change with different angles of rotation of tb-MoS2.

D.2 Cut off distance of tb-MoS2

This appendix we gave a formalism for the calculation of cut off radius in the

twisted bilayer MoS2. In twisted bilayer TMDs [46, 222] and twisted bilayer
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graphene [213, 214], each interlayer Slater-Koster parameter Vi is assumed to

decrease exponentially as a function of the distance d between orbitals:

Vi(d) = V 0
i exp

(
−qi

d− d0
d0

)
Fc(d) , (8)

where the V 0
i is S-S V 0

ppσ, S-S V 0
ppπ, Mo-Mo V 0

ddσ, Mo-Mo V 0
ddπ, Mo-Mo V 0

ddδ, Mo-S

V 0
dpσ, Mo-S V 0

dpπ, respectively; d0i is the corresponding interlayer distance dMo−Mo,

dMo−Mo, and dMo−S, respectively (see Fig. 6.1). The coefficients qi are fixed, like

in twisted bilayer graphene [214], to have a reduction by a factor 10 between

first neighbor hopping and second neighbor hopping terms,

qi =

√
3 ln(10) d0i

(
√

3− 1) a
. (9)

Numerical values of V 0
i , d0i and qi are listed table 5. In equation (8) a smooth

cutoff function [135] is used,

Fc(d) =

(
1 + exp

(
d− rc
lc

))−1
, (10)

with rc the cutoff distance and lc = 0.0265 nm [135]. For r � rc, Fc(r) ' 1; and

for r � rc, Fc(r) ' 0. All results presented in the main text are calculated with

rc = 2.5a = 0.795 nm.

D.3 TB-model (alternative) for twisted bilayer MoS2

We have analyzed the evolution of the bands around the main gap with θ. Fig-

ure 11 shows this evolution for the top of the valence bands with a focus on the

states labeled S1, S2, S3, and S4. Both DFT and with alternative TB -method

results show that the energies E(S2) and E(S3) vary almost linearly with θ2 (Fig.

11(b)), which is a strong indication that this phenomenon is a direct consequence

of the moiré structure. Furthermore, our TB computations show that the high-

est energy valence band is isolated from the remainder of the valence bands by

a minigap for sufficiently small values of θ. This is illustrated by Fig. 11(c),

showing that E(S4)−E(S2) < 0, i.e., the presence of a minigap, for θ < θC ≈ 2◦

(main TB-model θ < θC ≈ 6◦).

We also consider the average slope of the highest valence band between the

points K and M, i.e., between the states S2 and S3 (Fig. 11(a)). This quantity is

proportional to the average Boltzmann velocity (intra-band velocity). As shown

in Fig. 11(d), this velocity tends towards zero for small angles, θ = θ0 ≈ 2◦. This

demonstrates an electronic confinement corresponding to a “flat band”, like it
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Table 4: Alternative Tight-binding (TB) Slater-Koster parameters for mono-

layer MoS2, and pairs of neighbors for which the hopping term is non zero. The

lattice parameter of monolayer MoS2 is a = 0.318 nm.

Atom Orbitals On-site energy (eV)

Mo d0 = 4dz2 E0
0 = −1.0437

d1 = 4dxz, 4dyz E0
1 = −2.499

d2 = 4dx2−y2 , 4dxy E0
2 = −1.4808

S 3px, 3py E0
x,y = −3.3868

3pz E0
z = −7.4352

Atom Neighbor Number Inter-atomic Slater-Koster

distance (nm) parameters (eV)

Mo Mo 3 0.318 Vddσ = −0.8477

Vddπ = 0.2372

Vddδ = 0.2136

S 6 0.241 Vdpσ = 3.7132

Vdpπ = −1.2064

S S 1 0.312 Vppσ = 1.323

Vppπ = −0.637

6 0.318 Vppσ = 1.336

Vppπ = −0.432

Table 5: TB Slater-Koster parameters for interlayer hopping terms in tb-MoS2.

d0 is the interlayer distance; for the definition of dMo−Mo, dS−S, and dMo−S.

Atom Neighbor d0 (nm) q Slater-Koster

parameters (eV)

Mo Mo 0.6800 11.6496 V 0
ddσ = −0.0395

V 0
ddπ = −0.2482

V 0
ddδ = −0.0505

S 0.5238 8.9738 V 0
dpσ = −0.1992

V 0
dpπ = 0.

S S 0.3676 6.2981 V 0
ppσ = 0.2894

V 0
ppσ = −0.0742

has been found for twisted bilayer graphene for specific angles, so-called magic

angles [11, 117, 202, 213, 214]. However, in tb-MoS2, this velocity vanishes not

only for discrete values of θ, but flat bands emerge for a continuous range of θ,

θ . θ0.
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Figure 11: Dependence of valence bands on rotation angle θ: (a) Valence band

dispersion of (4, 5) tb-MoS2, θ = 7.34◦. (b) Energy E(S2) of the state S2 (see

panel (a)) versus θ2. (c) Energy difference between the states S4 and S2, ∆E24 =

E(S4) − E(S2), versus θ. A negative value of ∆E24 means that a gap |∆E24|
exists between the band below the gap and the other valence bands. (d) Average

slope of E(~k) of the band between states S2 and S3.
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Figure 12: Weight of the eigenstates at Γ, K, and M, of the non-degenerate

flat band below the gap (valence band), in real space, in (10, 11) tb-MoS2 (built

from AA) with a rotation angle θ = 3.15◦. The color palette is the weight of the

eigenstate on each orbital d0 = 4dz2 Mo. The sum of these weights is more than

98% of each state.

D.4 Eigenstates corresponding to flat bands (θ = 3.15◦)

in tb-MoS2

We analyzed the band dispersion of large angle θ = 3.15◦ (Fig. 12) shows that

the first isolated flat bands below the main gap (valence band) is non-degenerate

and thus contains one state per moiré cell. By contrast, the two first isolated

flat bands above the gap (conduction band) are two-fold quasi degenerate. The

weight of eigenstates of these flat bands is mainly on d0 = dz2 Mo orbitals (more

than 98%) located in AA stacking regions. This is shown in Fig. 12 for eigen-

states at the points Γ, K, and M of the flat band below the main gap.
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A Mazur, and J Pollmann. Band structure of MoS2, MoSe2, and α-

MoTe2: Angle-resolved photoelectron spectroscopy and ab initio calcu-

lations. Physical Review B, 64(23):235305, 2001.

[14] K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone,

P. Kim, and H.L. Stormer. Ultrahigh electron mobility in suspended

graphene. Solid State Communications, 146(9):351 – 355, 2008.

[15] Max Born and J Robert Oppenheimer. On the quantum theory of

molecules. 1927.

[16] SK Bose, K Winer, and OK Andersen. Electronic properties of a realistic

model of amorphous silicon. Physical Review B, 37(11):6262, 1988.
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F. Bruneval, D. Caliste, M. Côté, F. Dahm, F. Da Pieve, M. Delaveau,

M. Di Gennaro, B. Dorado, C. Espejo, G. Geneste, L. Genovese,

179



A. Gerossier, M. Giantomassi, Y. Gillet, D. R. Hamann, L. He, G. Jo-

mard, J. Laflamme Janssen, S. Le Roux, A. Levitt, A. Lherbier, F. Liu,
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Theory of Many-Fermion Systems, volume 21 of Advances in Quantum

Chemistry, pages 7 – 26. Academic Press, 1990.

[75] Wei Hu and Jinlong Yang. First-principles study of two-dimensional van

der Waals heterojunctions. Computational Materials Science, 112:518–

526, 2016.

[76] Zehua Hu, Zhangting Wu, Cheng Han, Jun He, Zhenhua Ni, and Wei

Chen. Two-dimensional transition metal dichalcogenides: interface and

defect engineering. Chemical Society Reviews, 47(9):3100–3128, 2018.

[77] Shengxi Huang, Liangbo Liang, Xi Ling, Alexander A. Puretzky, David B.

Geohegan, Bobby G. Sumpter, Jing Kong, Vincent Meunier, and Mil-

dred S. Dresselhaus. Low-frequency interlayer Raman modes to probe

interface of twisted bilayer MoS2. Nano Letters, 16(2):1435–1444, Feb

2016.

[78] Shengxi Huang, Xi Ling, Liangbo Liang, Jing Kong, Humberto Terrones,

Vincent Meunier, and Mildred S. Dresselhaus. Probing the interlayer

coupling of Twisted Bilayer MoS2 using photoluminescence spectroscopy.

Nano Letters, 14(10):5500–5508, Oct 2014.

[79] R. Huisman, R. de Jonge, C. Haas, and F. Jellinek. Trigonal-prismatic

coordination in solid compounds of transition metals. Journal of Solid

State Chemistry, 3(1):56–66, 1971.

[80] Nengjie Huo, Yujue Yang, and Jingbo Li. Optoelectronics based on 2D

TMDs and heterostructures. Journal of Semiconductors, 38(3):031002,

2017.

181



[81] J. D. Jackson. Classical Electrodynamics, 3rd ed. American Journal of

Physics, 67(9):841–842, 1999.

[82] Deep Jariwala, Tobin J Marks, and Mark C Hersam. Mixed-dimensional

van der Waals heterostructures. Nature materials, 16(2):170–181, 2017.

[83] Deep Jariwala, Vinod K Sangwan, Lincoln J Lauhon, Tobin J Marks, and

Mark C Hersam. Emerging device applications for semiconducting two-

dimensional transition metal dichalcogenides. ACS nano, 8(2):1102–1120,

2014.

[84] Jin-Wu Jiang. Graphene versus MoS2: A short review. Frontiers of

Physics, 10(3):287–302, 2015.

[85] Wencan Jin, Po-Chun Yeh, Nader Zaki, Daniel Chenet, Ghidewon Arefe,

Yufeng Hao, Alessandro Sala, Tevfik Onur Mentes, Jerry I Dadap, An-

drea Locatelli, et al. Tuning the electronic structure of monolayer

graphene/MoS2 van der Waals heterostructures via interlayer twist. Phys-

ical Review B, 92(20):201409, 2015.

[86] François Jollet, Marc Torrent, and Natalie Holzwarth. Generation of pro-

jector augmented-wave atomic data: A 71 element validated table in the

xml format. Computer Physics Communications, 185(4):1246–1254, 2014.

[87] MD Jones and RC Albers. Spin-orbit coupling in an f-electron tight-

binding model: Electronic properties of Th, U, and Pu. Physical Review

B, 79(4):045107, 2009.

[88] R. O. Jones and O. Gunnarsson. The density functional formalism, its

applications and prospects. Rev. Mod. Phys., 61:689–746, Jul 1989.

[89] Thaneshwor P Kaloni, Liangzhi Kou, Thomas Frauenheim, and U. Schwin-
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patterns of twisted bilayer transition metal dichalcogenides. Physical Re-

view Letters, 121:266401, Dec 2018.

[147] Michio Naito and Shoji Tanaka. Electrical Transport Properties in 2H-

NbS2, -NbSe2, -TaS2 and -TaSe2. Journal of the Physical Society of Japan,

51(1):219–227, 1982.

187



[148] Nguyen N. T. Nam and Mikito Koshino. Lattice relaxation and en-

ergy band modulation in twisted bilayer graphene. Physical Review B,

96:075311, Aug 2017.

[149] Omid Faizy Namarvar, Ahmed Missaoui, Laurence Magaud, Didier

Mayou, and Guy Trambly de Laissardière. Electronic structure and quan-

tum transport in twisted bilayer graphene with resonant scatterers. Phys-

ical Review B, 101:245407, Jun 2020.

[150] Tahreem Nawz, Amna Safdar, Muzammil Hussain, Dae Sung Lee, and

Muhammad Siyar. Graphene to advanced MoS2: a review of structure,

synthesis, and optoelectronic device application. Crystals, 10(10):902,

2020.

[151] AH Castro Neto, Francisco Guinea, Nuno MR Peres, Kostya S Novoselov,

and Andre K Geim. The electronic properties of graphene. Reviews of

Modern Physics, 81(1):109, 2009.

[152] Janne Nevalaita and Pekka Koskinen. Atlas for the properties of elemental

two-dimensional metals. Physical Review B, 97(3):035411, 2018.

[153] Konstantin S Novoselov, VI Fal, L Colombo, PR Gellert, MG Schwab,

K Kim, et al. A roadmap for graphene. Nature, 490(7419):192–200, 2012.

[154] Konstantin S Novoselov and AK Geim. The rise of graphene. Nature

Materials, 6(3):183–191, 2007.

[155] Kostya S Novoselov, Andre K Geim, Sergei V Morozov, D Jiang, Y Zhang,

Sergey V Dubonos, Irina V Grigorieva, and Alexandr A Firsov. Electric

field effect in atomically thin carbon films. Science, 306(5696):666–669,

2004.

[156] Kostya S Novoselov, D Jiang, F Schedin, TJ Booth, VV Khotkevich,

SV Morozov, and Andre K Geim. Two-dimensional atomic crystals. Pro-

ceedings of the National Academy of Sciences, 102(30):10451–10453, 2005.

[157] K.S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto. 2D

materials and van der Waals heterostructures. Science, 353(6298), 2016.

[158] Richard Olsen, Ralph van Gelderen, and C Morais Smith. Ferromagnetism

in ABC-stacked trilayer graphene. Physical Review B, 87(11):115414, 2013.

[159] Christopher Conway Paige. The computation of eigenvalues and eigen-

vectors of very large sparse matrices. PhD thesis, University of London,

1971.

188



[160] GS Painter and FW Averill. Bonding in the first-row diatomic

molecules within the local spin-density approximation. Physical Review

B, 26(4):1781, 1982.

[161] J. J. Palacios, J. Fernández-Rossier, and L. Brey. Vacancy-induced mag-

netism in graphene and graphene ribbons. Physical Review B, 77:195428,

May 2008.

[162] Haining Pan, Fengcheng Wu, and Sankar Das Sarma. Band topology,

Hubbard model, Heisenberg model, and Dzyaloshinskii-Moriya interaction

in twisted bilayer WSe2. Physical Review Research, 2:033087, Jul 2020.
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Freimuth, Guillaume Géranton, Marco Gibertini, Dominik Gresch, Charles

Johnson, Takashi Koretsune, Julen Ibañez-Azpiroz, Hyungjun Lee, Jae-
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[185] R. Roldán, M. P. López-Sancho, F. Guinea, E/ Cappelluti, J. A. Silva-

Guillén, and P. Ordejón. Momentum dependence of spin-orbit interaction

effects in single-layer and multi-layer transition metal dichalcogenides. 2D

Materials, 1(3):034003, nov 2014.

[186] Rafael Roldán, Jose A. Silva-Guillén, M. Pilar López-Sancho, Francisco
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cisco Guinea, José Ángel Silva-Guillén, and Shengjun Yuan. Tunability

of multiple ultraflat bands and effect of spin-orbit coupling in twisted bi-

layer transition metal dichalcogenides. Physical Review B, 102(24):241106,

2020.

196



[243] Chendong Zhang, Chih-Piao Chuu, Xibiao Ren, Ming-Yang Li, Lain-Jong

Li, Chuanhong Jin, Mei-Yin Chou, and Chih-Kang Shih. Interlayer cou-
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