
HAL Id: tel-03384624
https://theses.hal.science/tel-03384624v1

Submitted on 12 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multiplicity in the Partitioning of Signed Graphs
Nejat Arinik

To cite this version:
Nejat Arinik. Multiplicity in the Partitioning of Signed Graphs. Other [cs.OH]. Université d’Avignon,
2021. English. �NNT : 2021AVIG0285�. �tel-03384624�

https://theses.hal.science/tel-03384624v1
https://hal.archives-ouvertes.fr

THESIS
presented at the Avignon Université to obtain

the degree of Doctor

Graduate School No 536
Agrosciences & Sciences

Sciences, Technologies, Santé
Speciality : Computer Science

By

Nejat ARINIK
Multiplicity in the Partitioning of Signed Graphs

Research Unity : EA 4128 LIA – Laboratoire Informatique d’Avignon

Jury members :
Reviewers : Mme Nadia Brauner Professor, G-SCOP - Université Grenoble Alpes

M. Mathieu Latapy Professor, LIP6 - CNRS and Sorbonne Université
Examiners : M. Zacharie Ales Associate professor, UMA - CEDRIC - ENSTA Paris

Mme Christine Largeron Professor, LabHC - Université Jean Monnet
Advisor : M. Rachid Elazouzi Professor, LIA - Avignon Université
Co-Advisor : M. Vincent Labatut Associate professor, LIA - Avignon Université
Co-Supervisor : Mme Rosa Figueiredo Associate professor, LIA - Avignon Université

ACKNOWLEDGEMENT

First and foremost, I would like to express my special appreciation and gratitude to my supervisors
Associate Professor Vincent Labatut, Associate Professor Rosa Figueiredo and Professor Rachid
Elazouzi. I would like to thank them for encouraging my research. After all our meetings, I have felt
that a new perspective has opened in my mind not only about my research but also about science
and universe. Since we met, I have always felt lucky to have such experienced and talented advisors.
Your characters with endless patience and discipline have become a good role model for my further
academic life. I deeply believe that the end of this thesis only marks a fresh start for future and
fruitful collaborations with them.

I warmly thank Nadia Brauner, Professor at the University of Grenoble Alpes, and Mathieu
Latapy, Professor at Sorbonne University, for accepting to review my PhD thesis. I thank them for
all the time and efforts they have engaged to read the manuscript and write the reviews. I deeply
thank as well Professor Christine Largeron and Associate Professor Zacharie Ales to be part of my
PhD committee.

I would like to thank all my colleagues from the LIA for the numerous and various discussions
and shared moments.

I am particularly grateful to Assistant Professor Özgün Pınarer, for his support, guidance and
valuable comments when I was asking him questions about doing a PhD. Thanks to his advice, I
contacted Vincent Labatut, who was searching for a PhD student on signed graph partitioning with
Rosa Figueiredo.

Many thanks to Assistant Professor Günce Keziban Orman and Associate Professor Özlem Dur-
maz İncel, which had highly and positively impacted my early research career during my Bachelor
thesis in Galatasaray University.

The support of my family motivated me during my studies. I dedicate my thesis to my parents,
for their love and for fostering all my academic endeavors.

Finally, I thank my partner Ana Valenzuela. Her love, encouragement and tolerance made possible
everything. Thank you.

3

Titre : Multiplicité dans le partitionnement de graphes signés

Mot clés : Graphe Signé, Correlation Clustering, Équilibre Structural, Graphe Multiplexe Signé, Es-
pace des Solutions Optimales, Mesures d’Évaluation entre les Partitions.

Résumé : Selon la théorie de l’équilibre structu-
ral, un graphe signé est structurellement équilibré
s’il peut être partitionné en sous-groupes mutuel-
lement hostiles (i.e. reliés seulement par des liens
négatifs) tout en exhibant une solidarité interne
(i.e. contenant uniquement des liens positifs).
Mais un réseau réel (i.e. un graphe représentant
un système du monde réel) est rarement parfai-
tement équilibré : on trouvera quelques liens po-
sitifs entre les groupes et/ou quelques liens né-
gatifs à l’intérieur de certains groupes. L’un des
défis du domaine est de quantifier le niveau de
déséquilibre d’un tel réseau et d’identifier les liens
qui causent ce déséquilibre. Le problème Corre-
lation Clustering (CC) se définit précisément par
l’obtention d’une partition possédant un déséqui-
libre minimal.

Le partitionnement de graphes signés consti-
tue une tâche importante du point de vue appli-
catif, étant donné que trouver une partition équili-
brée aide à comprendre le système modélisé par
le graphe signé. Cependant, l’approche standard
dans la littérature se contente de chercher une
seule partition, comme si elle caractérisait suffi-
samment le système étudié. Or, on peut avoir be-
soin de plusieurs partitions pour construire une
image plus juste du système étudié. Même si
cette notion de la multiplicité est extrêmement im-
portant du point de vue des utilisateurs finaux,
elle a été très peu abordée dans la littérature.

Dans cette thèse, on veut relaxer l’hypothèse
de partition unique pour en chercher plusieurs, et
ce dans deux situations séparées. La première
concerne les graphes multiplexes signés. Un tel
graphe est composé de plusieurs graphes sé-
parés, appelés couches, et chacun contient les
mêmes noeuds, mais possiblement des liens dif-
férents. Toutes les approches traditionnelles pro-
posées pour les graphes multiplexes produisent
une seule partition à la fin. Pour pallier ce pro-
blème, nous proposons une nouvelle approche
qui intègre un processus de clustering avant de
fusionner les couches individuelles, ce qui permet
de regrouper les couches structurellement simi-
laires. En l’appliquant sur les données du Parle-
ment Européen, cela nous a permis non seule-
ment d’extraire plusieurs comportements de vote

caractéristiques, ce qui améliore l’interprétation,
mais aussi d’expliquer le contexte associé aux
comportements, grâce aux documents législatifs
concernés.

La deuxième situation est spécifique au pro-
blème CC. Quand on résout une instance de ce
problème, plusieurs partitions optimales peuvent
coexister. La question qui se pose est de savoir
ce qu’on perd, si on considère une seule partition
optimale, alors qu’il en existe plusieurs. Idéale-
ment, il faut les énumérer toutes avant de faire
une analyse concluante. Pour ce faire, on pro-
pose une nouvelle méthode d’énumération et un
framework basé sur l’analyse de clustering afin
de d’abord complètement énumérer l’espace des
partitions optimales, puis étudier empiriquement
un tel espace. Nos résultats ont révélé une typo-
logie de l’espace de partitions optimales : 1) une
seule partition optimale ; 2) quelques partitions
constituant une seule classe ; 3) beaucoup de
partitions optimales constituant une seule classe
de forme allongée ; 4) plusieurs partitions opti-
males constituant plusieurs classes de partitions.

Dans les deux situations décrites ci-dessus,
mesurer la similarité entre deux partitions est un
point essentiel. Pourtant, il n’existe pas une dé-
finition de la meilleure mesure pour cela, étant
donné que toute définition de la similarité est
subjective et dépend notamment de l’application
considérée. En conséquence, de nombreuses
mesures ont été décrites dans la littérature. Ce-
pendant, l’abondance de mesures de similarité
est une limitation plutôt qu’un avantage, car la sé-
lection de la mesure la plus appropriée pour une
application donnée devient un défi pour les uti-
lisateurs finaux. Pour pallier ce problème, nous
proposons un nouveau framework. Celui-ci prend
en compte plusieurs paramètres liés au parti-
tionnement (e.g. nombre de noeuds, nombre de
modules), et évalue statistiquement les mesures
dans plusieurs scénarios de partitionnement à
travers ces paramètres, via l’analyse de régres-
sion. Nos résultats montrent l’importance d’une
évaluation générique et paramétrique, car le com-
portement d’une mesure dans un scénario spéci-
fique peut être complètement différent en fonction
des valeurs des paramètres.

4

Title: Multiplicity in the Partitioning of Signed Graphs

Keywords: Signed Network, Correlation Clustering, Structural Balance, Signed Multiplex Network,
Space of Optimal Solutions, External evaluation measures.

Abstract: According to the structural balance
theory, a signed graph is considered structurally
balanced when it can be partitioned into a num-
ber of modules such that positive edges are lo-
cated inside the modules and negatives ones are
in-between them. In practice, real-world networks
are rarely perfectly balanced. When it is not the
case, one wants to measure the magnitude of the
imbalance and to identify the set of edges related
to the network imbalance. The Correlation Clus-
tering (CC) problem is precisely defined as finding
the partition with minimal imbalance.

Signed graph partitioning is an important task,
which has many applications, as finding a bal-
anced partition helps understanding the system
modeled by the graph. However, the standard ap-
proach used in the literature is to find a single par-
tition and focus the rest of the analysis on it, as if
it was sufficient to fully characterize the studied
system. Yet, it may not reflect the meso-structure
of the network, and one may need to seek for
other partitions to build a better picture. Although
this need to look for multiplicity is extremely im-
portant from the end user’s perspective, only a
very few works took it into consideration in their
analysis, up to now.

In this thesis, we want to relax this traditional
single-partition assumption to allow searching for
multiple partitions in two separate situations. The
first one arises in the context of signed mul-
tiplex networks. All traditional approaches pro-
posed to partition multiplex networks in general
are based on the single-partition assumption. To
overcome this limitation, we propose a new par-
titioning method that integrates a meta-clustering
process before merging the partitions of individ-
ual layers, which allows identifying structurally
similar layers. By applying it to a European Par-
liament dataset, we could obtain multiple parti-
tions, each corresponding to a different character-
istic voting pattern of the same considered legis-
lators. The emergence of such patterns was com-
pletely hidden when considering only traditional
approaches. For instance, we could not only con-
firm that the French S&D and ALDE MEPs alter-
natively side with the left- and right-wing groups,
but also identified which topics are concerned by

these swings.

The second situation is specific to the CC
problem. When solving an instance of such prob-
lem, several or even many optimal partitions may
coexist. If multiple optimal partitions coexist, one
can then wonder how different/diverse they are.
Put differently, we want to know what we loose
when considering only one partition, while there
might be multiple ones. In order to answer these
questions, one should ideally enumerate com-
pletely the space of optimal partitions, and per-
form its analysis. To this end, we propose a new
efficient solution space enumeration method and
a cluster analysis-based framework in order to
first enumerate the space of optimal partitions
and then empirically study such space. Based on
our empirical study, our main finding is the iden-
tification of 4 different situations: 1) unique solu-
tion; 2) single class of similar solutions; 3) several
classes of similar solutions; 4) multiple solutions
without a clear clustering structure.

Lastly, each of these previous situations re-
quires to compute the similarity between parti-
tions. In the context of graph partitioning, this task
can be done through a so-called external evalu-
ation measure. However, there exist many such
measures, each having different characteristics.
This makes it challenging to select the most ap-
propriate for a given situation for the end user.
To this end, we propose a new empirical evalu-
ation framework in order to produce results that
end users can easily interpret. For a collection of
candidate measures, it first consists in describ-
ing their behavior by computing them for a gener-
ated dataset of parametric partitions, obtained by
applying a set of predefined parametric partition
transformations. Second, our framework charac-
terizes the measures in terms of how they are af-
fected by these parameters and transformations.
Our results show that our framework allows identi-
fying the desirable properties possessed by each
measure. For some of them, our results confirm
empirical and theoretical findings already pub-
lished in the literature. For others, the systematic
nature of our approach even uncovers properties
not mentioned before in the literature.

5

TABLE OF CONTENTS

1 Introduction 11
1.1 Context . 11
1.2 Signed graph partitioning related to structural balance 12

1.2.1 Notations . 12
1.2.2 Correlation Clustering (CC) . 12
1.2.3 Relaxed Correlation Clustering (RCC) . 13

1.3 Challenges . 14
1.4 Contributions . 15
1.5 Personal Bibliography . 17
1.6 Organization . 18

2 CC methods 21
2.1 Introduction . 21
2.2 ILP-based exact methods . 23

2.2.1 ILP formulations . 23
2.2.2 Facet-defining inequalities . 26
2.2.3 Resolution methods . 28

2.3 Heuristic methods . 30
2.3.1 LP-based rounding methods . 31
2.3.2 Trajectory-based (meta-)heuristic methods . 32
2.3.3 Population-based (meta-)heuristic methods . 36

2.4 Dataset . 37
2.5 Experiments . 39

2.5.1 Experiments for exact methods . 39
2.5.2 Experiments for heuristic methods . 42

2.6 Conclusion . 46

3 Characterizing measures 47
3.1 Introduction . 48
3.2 Literature Survey . 49

3.2.1 Desirable Properties . 50
3.2.2 Partition Transformations . 53

6

TABLE OF CONTENTS

3.2.3 Assessment Methods . 56
3.3 Proposed Framework . 58

3.3.1 Characterization of the Measures . 58
3.3.2 Regression Analysis . 63

3.4 Experimental Setup . 66
3.4.1 Selected Measures . 66
3.4.2 Dataset and regression assumptions . 67

3.5 Results and Discussion . 68
3.5.1 Visual inspection . 68
3.5.2 Relative importance analysis . 70

3.6 Conclusion . 76

4 Multiplex signed networks 79
4.1 Introduction . 79
4.2 Problem definition . 82
4.3 Our method . 83

4.3.1 Processing the Patterns . 83
4.3.2 Computing the Dissimilarity Values . 84
4.3.3 Performing the Clustering . 85
4.3.4 Computing the Characteristic Patterns . 85

4.4 Experiments . 86
4.4.1 IYP Dataset . 86
4.4.2 Network Extraction . 90
4.4.3 Measure Selection for Calculating Dissimilarities Between Patterns 90

4.5 Results . 92
4.5.1 Baseline . 92
4.5.2 Clustering . 93
4.5.3 Characteristic Patterns . 96

4.6 Conclusion . 100

5 Enumeration of the space of optimal solutions for the CC problem 103
5.1 Introduction . 103
5.2 Related Work . 105

5.2.1 Existence of Multiple Optimal Solutions . 105
5.2.2 Enumerating All Optimal Solutions . 106

5.3 Enumeration of the optimal solution space for the CC problem 108
5.3.1 Finding an alternative optimal solution . 109
5.3.2 Enumerating all optimal solutions . 109

7

TABLE OF CONTENTS

5.4 Recurrent Neighborhood Search (RNS) . 111
5.4.1 Edit Distance . 112
5.4.2 Complete Neighborhood Search (CoNS) . 114
5.4.3 Recurrent Neighborhood Search (RNS) . 117

5.5 Pruning Strategies . 118
5.5.1 Non-Minimum Edit Operation Pruning . 119
5.5.2 Decomposable Edit Operation . 120
5.5.3 Multiple Vertex Moves between Optima (MVMO) Property 122
5.5.4 Tractable cases of the MVMO Property . 124

5.6 Experiments . 126
5.6.1 Dataset . 127
5.6.2 Evaluation of the MVMO-based pruning strategies 127
5.6.3 Evaluation of EnumCC . 129
5.6.4 Investigation on harder instances . 133

5.7 Conclusion . 136

6 Investigation of the space of optimal solutions for the CC problem 137
6.1 Introduction . 137
6.2 Related Work . 138

6.2.1 Comparison Between Solutions . 138
6.2.2 Diversity of Solutions . 139

6.3 Illustrative Cases . 139
6.4 Methods . 140

6.4.1 Enumerating All Optimal Solutions . 142
6.4.2 Computing the Dissimilarity Values . 142
6.4.3 Performing the Clustering . 143
6.4.4 Identifying the Core Parts . 143

6.5 Results . 144
6.5.1 General remarks . 144
6.5.2 Diversity of the Solutions . 145
6.5.3 Analysis of the Core Parts . 147
6.5.4 Real-World Example . 148

6.6 Conclusion . 151

7 Conclusion 153
7.1 Conclusions . 153
7.2 Perspectives . 154

8

TABLE OF CONTENTS

Appendices 156

A Evaluation Measures 157
A.1 Definitions of evaluation measures . 157

A.1.1 Rand Index, RI . 157
A.1.2 Adjusted Rand Index, ARI . 158
A.1.3 Jaccard Index, JI . 159
A.1.4 Fowlkes-Mallows Index, FMI . 159
A.1.5 F-measure, F . 159
A.1.6 Normalized Mutual Information, NMI . 160

A.2 Experimental details about the heterogeneity of module sizes 160
A.3 Significance results regarding the comparison of the segment heights 161

B Common Agricultural Policy and Additional Agriculture-Related Results 164
B.1 EP- and CAP-Related Concepts . 164
B.2 Key Elements of the 2013 CAP Reforms . 165
B.3 Hierarchy of AGRI-related topics . 166
B.4 Additional Plots for Figure 4.3 . 168

C Edit Distance for Partitions, and Related Proofs 170
C.1 Edit distance between two membership vectors . 170
C.2 Proof of Lemma 5.11 . 171

D Number of Solutions of the CC Problem 173

Bibliography 175

9

Chapter 1

INTRODUCTION

1.1 Context

In a signed graph, each edge is associated to a sign, which can be either positive (+) or neg-
ative (−). This type of graph was originally introduced in Psychology, as a means to describe re-
lationships between people belonging to distinct social groups [110]. More generally, they can be
used to model any system containing two types of antithetical relationships (like/dislike, for/against,
similar/different...). A signed graph is considered structurally balanced if it can be partitioned into
two [39] or more [56] modules, such that positive edges are located inside the modules, and nega-
tives ones are in-between them. For instance, in the case of a social network whose edges represent
like/dislike relationships, this amounts to having mutually hostile social groups with internal friend-
ship.

However, it is very rare for a real-world network to have a perfectly balanced structure: the ques-
tion is then to quantify how imbalanced it is. Various measures have been defined for this purpose,
the simplest consisting in counting the numbers of frustrated edges, i.e. negative ones located in-
side the modules, and positive ones located between them [39]. Such measures are expressed
relatively to a graph partition, so processing the graph balance amounts to identifying the partition
corresponding to the lowest imbalance measure. In other words, calculating the graph balance can
be formulated as an optimization problem. This problem can be compared to Community Detec-
tion, which consists in partitioning unsigned networks in order to detect groups of vertices more
densely connected relatively to the rest of the network [93]. The main difference is of course the
presence of signs attached to edges, which represent additional information one has to take into
account [68, 69, 65]. Doing so is a non-trivial task, which cannot be conducted by simply performing
minor adaptations of community detection methods [46, 164].

Signed graph partitioning is also an important problem in terms of applications: it is used in
a number of situations to get a better understanding of the studied real-world system, be it so-
cial [63], biological [55], diplomatic [72], business-related [120], sports-related [125], judicial [170],
bibliographic [113], political [51], conversational [109], geographic [45], financial [156], etc. It is also
used to solve some problems of interest related to the considered systems, e.g. portfolio optimiza-
tion [156], opinion group detection in online discussions [109], decomposition of biological sys-
tems [55], document classification [27], surface detection in 3D images [133], or detection of em-

11

Part , Chapter 1 – Introduction

bedded matrix structures [91].

1.2 Signed graph partitioning related to structural balance

One appropriate way of studying the structural balance of a signed network is by solving the
Correlation Clustering problem (Section 1.2.2) and its relaxed version (Section 1.2.3). Before pre-
senting them, let us first introduce the notations necessary for defining both problems, as well as
the common notations used throughout this thesis (Section 1.2.1).

1.2.1 Notations

Let G = (V,E,w) be an undirected weighted graph, where V and E are the sets of vertices and
edges, respectively, and w : E → IR+ is a function associating a positive weight to each edge. We
note n = |V | the number of vertices, and w(e) the weight of edge e ∈ E. If the graph is unweighted,
then the definition is the same except all weights are 1. Now, consider a function s : E → {+,−}
that assigns a sign to each edge in E. An undirected weighted graph G together with a function s is
called an undirected weighted signed graph (signed graph for short), denoted by G = (V,E,w, s).
An edge e ∈ E is called negative if s(e) = − and positive if s(e) = +. We note E− and E+ the sets
of negative and positive edges in a signed graph, respectively. Let also define the positive graph G+

of a given signed graph G = (V,E,w, s) as the subgraph (V,E+, w) (i.e. same vertices, but only the
positive edges). Throughout this thesis, we use the terms graph and network interchangeably.

Let P = {M1, ...,M`} (1 ≤ ` ≤ n) be an `-partition of V , i.e. a division of V into ` non-overlapping
and non-empty subsets Mi (1 ≤ i ≤ `) called modules. Given a partition P , an edge (u, v) is
called internal if it is located inside a module, i.e., u and v belong to the same module. On the
contrary, an edge (u, v) is called external if it is located between any two modules, i.e., u and v

belong to two different modules. Given two modules Mi,Mj ∈ P and σ ∈ {+,−}, let us define
Eσ(Mi,Mj) = {(u, v) ∈ Eσ | u ∈ Mi and v ∈ Mj} the edges of sign σ connecting two modules Mi

andMj . We also define E(Mi,Mj) = E−(Mi,Mj)∪E+(Mi,Mj) as the set of edges connecting both
modules, without regards for their sign. Similarly, given two modules Mi,Mj ∈ P and σ ∈ {+,−},
let us define Ωσ(Mi,Mj) =

∑
(u,v)∈Eσ(Mi,Mj)

w(u, v) the weighted sum of edges of sign σ connecting

these modules. We also define Ω(Mi,Mj) = Ω+(Mi,Mj) − Ω−(Mi,Mj) as the signed sum of the
edge weights connecting both modules.

1.2.2 Correlation Clustering (CC)

In its original version [27], and consistently with the definition of structural balance given earlier in
Section 1.1, the CC problem consists in finding a partition of the set of vertices V which maximizes

12

1.2. Signed graph partitioning related to structural balance

both the number of positive edges located inside the modules, and that of negative edges located
between them.

The Imbalance I(P) of a partition P is defined as the total weight of positive edges located
between modules, and negative edges located inside them, i.e.

I(P) =
∑

1≤i≤`
Ω−(Mi,Mi) +

∑
1≤i 6=j≤`

Ω+(Mi,Mj). (1.1)

Problem 1.1 (CC problem). For a signed graph G = (V,E,w, s), the Correlation Clustering problem
consists in finding a partition P of V such that the imbalance I(P) is minimized.

The partition P is called a solution of the CC problem for the given graph G. We note that the
CC problem can be independently solved for each subgraph induced by a component of G+ [8].

To the best of our knowledge, this NP -hard minimization problem [27] appears under this name
for the first time in Bansal’s paper [27], but it has been addressed before in the literature, e.g. [63].
Moreover, we note that the CC problem is equivalent to the Multicut problem [57], where their ob-
jective functions differ by a constant (see [141] for the calculation details). Finally, the CC problem is
also equivalent to the Cluster Editing problem [35] when the input graph is complete and unweighted.

1.2.3 Relaxed Correlation Clustering (RCC)

In [64], the definition of a structurally balanced signed graph was extended in order to include rel-
evant processes (polarization, mediation, differential popularity and subgroup internal hostility) that
are counted in Equation 1.1 as violations of the structural balance. According to this new definition,
a signed graph is considered relaxed `′-balanced if it can be `-partitioned, with ` ≤ `′, in such a way
that: 1) all the edges within a given module have the same sign (not necessarily +) ; and 2) all the
edges between two given modules have the same sign (not necessarily −).

Using this new definition, the structural balance was generalized to a version named Relaxed
Structural Balance [64], resulting in a new definition for the imbalance of a graph partition. For an
`-partition P = {M1, ...,M`}, the Relaxed Imbalance RI(P) is defined as

RI(P) =
∑

1≤i≤`
min{Ω+(Mi,Mi),Ω−(Mi,Mi)} (1.2)

+
∑

1≤i 6=j≤`
min{Ω+(Mi,Mj),Ω−(Mi,Mj)}. (1.3)

This generalized imbalance defines a new criterion to evaluate the partition of a signed graph,
and gives rise to the following graph clustering problem.

Problem 1.2 (RCC problem). Let G = (V,E,w, s) be a signed graph, and `′ an integer value
satisfying 1 ≤ `′ ≤ n. The Relaxed Correlation Clustering problem consists in finding an `-partition

13

Part , Chapter 1 – Introduction

P of V , with ` ≤ `′, such that the relaxed imbalance RI(P) is minimized.

It is worth noticing that, for a given graph, the RCC solution is necessarily equally or more
balanced than the CC one. In the worst case, the CC solution holds, and in the best case, the graph
can be partitioned more efficiently by taking advantage of the fact some violations of the original
structural balance are accepted in its relaxation.

Both CC and RCC problems have been proved to be NP -hard [27, 90]. Exact approaches
(e.g. [57, 90, 185]) can be used to solve both problems to optimality. Numerical experiments have
shown that the additional parameter `, in the RCC definition, makes the graph clustering problem
more difficult to solve numerically [90]. Both problems can be efficiently solved by heuristic methods
(e.g. [148, 185]. We review and compare later exact and heuristic methods proposed for the CC
problem in Chapter 2.

1.3 Challenges

Signed graph partitioning is an important task, which has many applications. In this regard,
obtaining a partition for this task helps understand the studied system. However, the standard ap-
proach in the literature is to find a single partition and focus the rest of the analysis on it, as if finding
it was sufficient to understand the considered system at hand. Yet, a single partition of a given set
of vertices may not reflect the meso-structure of the network. It is possible that one needs to seek
for multiple partitions to get a better understanding. Although this need to look for multiplicity is ex-
tremely important from the end user’s perspective, only a very few works took it into consideration in
their analysis, up to now. This notion of multiplicity is the main challenge that we want to tackle in this
thesis. We want to relax this traditional single-partition assumption to allow searching for multiple
partitions in two separate situations.

The first one is related to the optimal solutions of a given graph partitioning problem. Such
multiplicity raises several questions in this context. First, if several optimal partitions (i.e. optimal
solutions) coexist, one can wonder which network properties lead to this situation, and how many of
these partitions are equally relevant to the application problem at hand. Put differently, we want to
know what we lose when we consider only one optimal partition, while there might be multiple ones.
Second, what methodology would be appropriate to obtain these partitions? Third, how different do
the obtained partitions need to be? Application-wise, very similar partitions could be given the same
interpretation 1, whereas substantially different ones might correspond to dramatically different ways
of seeing the studied system. Fourth and finally, in such different partitions, what distinguishes them
from each other? Identifying these characteristic differences could provide some valuable informa-
tion to understand the studied system. More generally, the answers to all these questions could drive
the task of searching multiple partitions.

1. Although a difference of one vertex could be important in a given application, if the vertex is central for instance.

14

1.4. Contributions

The second situation concerns multiplex signed networks. A multiplex network consists of a
collection of single ones, called layers, each containing the same vertices but possibly different
edges. Each layer provides a different, possibly conflicting, view of the same system under different
conditions. In the literature, all approaches proposed to partition multiplex networks in general (i.e.
not necessarily signed) are based on the single-partition assumption [132]. Yet, there could be
several relevant partitions, each one fitting only certain layers, and ignoring them would result in
an unsatisfying resolution. The notion of multiplicity in this context differs from the previous one in
that the number of partitions can be an input parameter of a resolution method, rather than the
consequence of it. Finding the most appropriate number could be challenging for the end-user, and
depends on the application at hand.

This paradigm of multiplicity naturally gives rise to a secondary challenge, which is related to the
similarity between obtained partitions. In the presence of a large number of partitions, one needs
to calculate the similarity between them. In the context of graph partitioning, this task can be done
through a so-called external evaluation measure, i.e. a measure originally designed to compare
two partitions. However, many such measures have been proposed in the literature, each having
different characteristics. This makes it challenging to select the most appropriate for a given situation
for the end user. In general, this issue is overlooked in the literature. Researchers tend to follow
tradition and use the standard measures of their field, although they often became standard only
because previous researchers started consistently using them. Ideally, one should identify desirable
properties that a measure should satisfy relative to the application context. Directly using a standard
measure amounts to completely discard the application context.

1.4 Contributions

This thesis contributes to the research field in several different ways, by tackling the challenges
described in Section 1.3 and related to multiplicity, in two separate situations. The first one arises in
the context of signed multiplex networks and the second one is specific to the CC problem. In both
situations, we also address the issue of selecting the most appropriate external measure. The most
prominent three contributions are:

Multiplicity for the CC problem: It has been pointed out, but not studied, in the literature that
an instance of the CC problem can possess several optimal partitions [56, 63, 62, 57, 38]. In order
to answer the questions asked in Section 1.3 and also to select some of these partitions (e.g. the
representative ones), one should ideally enumerate completely the space of optimal partitions of the
CC problem, and then proceeding with confidently the subsequent analysis. To this end, we make
the following two contributions.

1. We design a new efficient method for the enumeration of all optimal partitions of an instance.

15

Part , Chapter 1 – Introduction

Such method needs to employ exact approaches to guarantee the completeness of the optimal
partition space. This is not a trivial task, because due to the NP-hard nature of the problem,
even methods finding a single optimal partition do not scale well. In order to accelerate this
process, our proposed enumeration method includes a local search mechanism and several
pruning strategies.

2. We propose a cluster analysis-based framework, which allows us to study how the nature
of multiple partitions is affected by the network characteristics. Put differently, we empirically
study the CC problem itself.

Multiplicity for signed multiplex networks: To overcome the single-partition assumption in
multiplex signed networks, we propose a new partitioning method able of outputting as many par-
titions as required. Each layer is partitioned separately, then the resulting partitions are gathered
to form clusters of structurally similar solutions. A consensual merging process tailored for signed
networks is then performed for each cluster, in order to obtain a set of representative partitions,
each associated to certain layers of the multiplex graph.

Selection of evaluation measure: We also address the issue of selecting the most appropriate
measure for a given situation by proposing a new empirical evaluation framework. For a collection of
candidate measures, it first consists in describing their behavior by computing them for a generated
dataset of partitions, obtained by applying a set of predefined parametric partition transformations.
Second, our framework characterizes the measures in terms of how they are affected by these
parameters and transformations. This allows both describing and comparing the measures.

Beside these prominent contributions, there are two secondary contributions of this thesis:

Comparison of resolution methods proposed for the CC problem: Solving the CC problem
is a compulsory task that we will consistently address throughout this thesis. For this reason, we
need an efficient exact method and high quality heuristic(s). To this aim we review and evaluate
both exact and heuristic methods that have been proposed for the CC problem.

Validation of the proposed methods: We evaluate each proposed framework and method ei-
ther on a synthetic or real-world dataset, and show its usefulness by extensively interpreting the
obtained results. Regarding the synthetic signed networks, we propose two random network gener-
ation methods:

1. The first one is based on a model inspired by the Erdős-Rényi random graph model and allows
generating signed graphs with controlled balance.

16

1.5. Personal Bibliography

2. The second method guarantees that the optimal solution is known by construction, thanks to
the definition of stability range [176]. This allows to skip the application of an exact partitioning
method, which can be very time-consuming when graph order n increases.

On the side, this thesis contributes also for :

Data availability: In order to promote transparency and reproducibility in research we made pub-
licly available all datasets and results used throughout this thesis: 10.6084/m9.figshare.14551113.
Our source codes are also publicly available, and indicated in each chapter.

1.5 Personal Bibliography

All the contributions listed in Section 1.4 allowed us to make the following publications and sub-
missions:

— International Journals

— N. Arınık et al., « Multiple partitioning of multiplex signed networks: Application to Euro-
pean parliament votes », in: Social Networks 60 (2020), pp. 83–102, DOI: https://doi.

org/10.1016/j.socnet.2019.02.001 (Chapter 4)

— N. Arınık et al., « Multiplicity and Diversity: Analyzing the Optimal Solution Space of the
Correlation Clustering Problem on Complete Signed Graphs », in: Journal of Complex
Networks (2020), DOI: 10.1093/comnet/cnaa025 (Chapters 6)

— N. Arınık et al., « Characterizing and comparing external measures for the assessment
of cluster analysis and community detection », in: IEEE Access (2021), pp. 1–22, DOI:
10.1109/access.2021.3054621 (Chapter 3)

— International Conferences / Workshops

— N. Arınık et al., « Signed Graph Analysis for the Interpretation of Voting Behavior », in:
International Conference on Knowledge Technologies and Data-driven Business - Inter-
national Workshop on Social Network Analysis and Digital Humanities, 2017 (Chapter 4)

— N. Arınık et al., « Study of the European Parliament votes through the multiple partitioning
of signed multiplex networks », in: 29th European Conference On Operational Research
(EURO), 2018 (Chapter 4)

— National Conferences / Workshops with proceedings

— N. Arınık et al., « Analysis of Roll-Calls in the European Parliament by Multiple Partitioning
of Multiplex Signed Networks », in: 9ème Conférence Modèles & Analyse des Réseaux :
Approches Mathématiques & Informatiques (MARAMI), 2018 (Chapter 4)

17

https://doi.org/10.6084/m9.figshare.14551113
https://doi.org/https://doi.org/10.1016/j.socnet.2019.02.001
https://doi.org/https://doi.org/10.1016/j.socnet.2019.02.001
https://doi.org/10.1093/comnet/cnaa025
https://doi.org/10.1109/access.2021.3054621

Part , Chapter 1 – Introduction

— N. Arınık et al., « Multiple Optimal Solutions but Single Search: A Study of the Correlation
Clustering Problem », in: 20ème congrès annuel de la société Française de Recherche
Opérationnelle et d’Aide à la Décision (ROADEF), Société Française de Recherche Opéra-
tionnelle et d’Aide à la Décision, 2019 (Chapter 6)

— N. Arınık et al., « Multiple Partitioning of Multiplex Signed Networks », in: 21ème Congrès
Annuel de la Société Française de Recherche Opérationnelle et d’Aide à la Décision
(ROADEF), Société Française de Recherche Opérationnelle et d’Aide à la Décision, 2020
(Chapter 4)

— N. Arınık et al., « Characterizing measures for the assessment of cluster analysis and
community detection », in: 11ème Conférence Modèles & Analyse de Réseaux : ap-
proches mathématiques et informatiques (MARAMI), 2020 (Chapter 3)

— National Conferences / Workshops without proceedings

— N. Arınık et al., « Exploiting Antagonistic Relations in Signed Graphs under the Struc-
tural Balance Hypothesis », in: Programme Gaspard Monge Pour l’Optimisation (PGMO)
Days, 2018 (Chapter 4)

— Submitted Articles for International Journals

— N. Arınık et al., « Efficient Enumeration of Correlation Clustering Optimal Solution Space
(submitted) », in: Journal of Global Optimization (2021) (Chapter 5)

1.6 Organization

The thesis is organized into six additional chapters, which we summarize as follows.

— Chapter 2: We review and evaluate both exact and heuristic methods that have been proposed
for the CC problem.

— Chapter 3: We introduce our own framework designed to study and compare evaluation mea-
sures and their properties. We put it into practice on a selection of widespread measures and
discuss its results.

— Chapter 4: We describe the approach we propose for the analysis of multiplex signed net-
works. We put the proposed method into practice through an application to a European Par-
liament dataset.

— Chapter 5: We present our method for enumerating the space of optimal solutions of the CC
problem. We put the proposed method into practice on a collection of complete and incomplete
unweighted synthetic signed networks and discuss its results.

18

1.6. Organization

— Chapter 6: We explain the approach we propose for the characterization of the optimal solu-
tions of the CC problem. We describe and discuss our results based on the same synthetic
graphs generated in Chapter 5.

— Chapter 7: We summarize and criticize our work, propose some leads to solve the existing
limitations, and identify our major perspectives.

19

Chapter 2

CORRELATION CLUSTERING RESOLUTION

METHODS

2.1 Introduction . 21
2.2 ILP-based exact methods . 23

2.2.1 ILP formulations . 23
2.2.2 Facet-defining inequalities . 26
2.2.3 Resolution methods . 28

2.3 Heuristic methods . 30
2.3.1 LP-based rounding methods . 31
2.3.2 Trajectory-based (meta-)heuristic methods . 32
2.3.3 Population-based (meta-)heuristic methods . 36

2.4 Dataset . 37
2.5 Experiments . 39

2.5.1 Experiments for exact methods . 39
2.5.2 Experiments for heuristic methods . 42

2.6 Conclusion . 46

2.1 Introduction

In the literature, a large number of works deal with the CC problem to get a better understanding
of the studied system at hand, or to solve a specific problem of interest. When solving an instance
of the CC problem, most of these works rely on heuristic approaches, e.g. [67, 66, 148, 52, 26],
especially when dealing with large networks, since the problem is NP-hard [27], as described in
Section 1.2. But a non-negligible number of studies are also concerned with optimality, e.g. [10,
38, 90, 19, 12, 130]. As we see in the next chapters, solving the CC problem is a compulsory task
that we consistently address throughout this thesis. For this reason, we need an efficient exact
method and high quality heuristic(s). Nevertheless, to the best of our knowledge, the literature lacks

21

Part , Chapter 2 – CC methods

a comprehensive review of the resolution methods that have been proposed for the CC problem.
Therefore, our objective in this chapter is to review and compare both exact and heuristic methods,
and identify the efficient ones through computational experiments. In this review and comparison, we
exclude from our discussion the approximation methods, as their primary interest is to get provable
approximation bounds. Interested readers can refer to [44, 220] and references therein.

The literature provides three main methods to solve an instance of the CC problem exactly: 1)
Branch-and-Bound (B&B), 2) Weighted partial MaxSAT-based and 3) Parameterized Enumeration.
B&B can be performed using two different algorithmic approaches: Integer Linear Programming
(ILP) vs. ad hoc B&B programming. Their main difference is that the former can tackle any problem
translated in the language of mathematical programming through any optimization solver, whereas
in the latter the construction of the B&B tree relies on problem-specific idiosyncrasies. An ad hoc
B&B programming method for a clustering problem systematically constructs partial solutions by
assigning the vertices to one of the existing modules. This forms a search tree, whose branches
correspond to assignments of vertices to modules. As shown in Figueiredo and Moura [90] for the
CC problem, the ad hoc B&B method proposed in [38] is outperformed by an ILP approach, since it
cannot deal well with finding an optimal solution of graphs containing more than 20 vertices.

The weighted partial MaxSAT-based method transforms an instance of the CC problem into a
Maximum Satisfiability formulation and solves it through an appropriate MaxSAT solver. The cor-
responding MaxSAT formulation consists of two sets of clauses, soft and hard ones, of Boolean
variables and a function that associates a non-negative cost with each of the soft clauses. Any truth
assignment that satisfies the hard clauses gives a valid solution. Berg and Järvisalo [32] propose
three different MaxSAT formulations for the CC problem and obtain their best results based on a
compact bit-wise formulation by using a hybrid MaxSAT solver MaxHS 1. However, as shown by
Miyauchi et al. [168], their method is outperformed by an ILP-based solution method.

Parameterized Enumeration is slightly different from the previous ones in that it is an ad hoc
principle which requires to transform a part of the considered problem as a new input parameter.
This in turn guarantees to bound the overall running time in function of the problem inputs, assum-
ing that the new parameter is small in practice for an efficient resolution. In the literature, Böcker
et al. [35] propose an FPT (Fixed-Parameter Tractable) algorithm for the Cluster Editing problem,
which is equivalent to the CC problem when the input graph is complete and unweighted. Con-
cretely, this FPT algorithm makes the number of frustrated edges in structural balance a parameter
to solve the problem. However, a drawback of this approach is that the amount of imbalance I(P),
the input parameter, can be very large. Indeed, Böcker et al. [35] show in their experiments that an
ILP-based method outperforms the proposed FPT algorithm. Due to the efficiency of mathematical
programming-based approaches (e.g. dual tightening), in this chapter we therefore focus only on
ILP-based exact methods proposed for the CC problem.

1. http://www.maxhs.org

22

http://www.maxhs.org

2.2. ILP-based exact methods

Contributions. This chapter makes the following contributions:

1. Random network generator. We propose two open source unweighted signed graph gen-
erators. The first one is based on a model inspired by the Erdős-Rényi random graph model
which generates signed graphs with controlled balance. The second one accomplishes this
task by perturbing existing signed graphs without affecting their initial optimal partitions thanks
to the definition of stability range [176].

2. Evaluation. We evaluate a large number of exact and heuristic approaches proposed for the
CC problem on synthetic unweighted complete and incomplete signed networks of moder-
ate size. We also include several large real-world networks in the evaluation of the heuristic
methods.

The rest of this chapter is organized as follows. In Section 2.2, we review ILP-based exact ap-
proaches proposed for the CC problem. Next, in Section 2.3, we pass to heuristic methods and
describe the most relevant ones for this work. We put both exact and heuristic methods into practice
on a selection of complete and incomplete signed networks in Section 2.4 and discuss their results
in Section 2.5. Finally, we review our main findings in Section 2.6, and identify some perspectives
for our work.

2.2 ILP-based exact methods

In this section, we describe two classical exact approaches proposed for the CC problem. These
are Branch-and-Cut (B&C) and Benders Decomposition (BD) methods. In the literature, they are
solved through a Cutting Plane (CP) approach. In the following, we give the preliminary context for
these approaches, followed by their descriptions.

The CC problem can be independently solved for each subgraph induced by a component of
G+ [8]. Therefore, throughout this chapter, we assume that there is a single connected component
in G+ of a given graph G.

Let us introduce the necessary definitions and notations used in the rest of this chapter. We call
a cycle of G chordless if no two vertices of the cycle are connected by an edge that does not itself
belong to the cycle. Moreover, we call a cycle of G conflicted if it contains precisely one negative
edge. In the following, C(G) denotes the set of all chordless cycles of G. Also, C−(G) denotes the
set of all conflicted cycles of G, i.e., C−(G) = {cycle C of G : |C ∩ E−| = 1}.

2.2.1 ILP formulations

The CC problem can be modeled by using any graph clustering formulation. In the following,
we present the most widespread ILP formulations, where the decision variables can be defined on
edges or vertex pairs.

23

Part , Chapter 2 – CC methods

2.2.1.1 Decision variables on edges

For any G, the CC problem can be modeled, as in [47], by means of an ILP proposed for the
graph partitioning problem. For each edge (u, v) ∈ E : u < v, a binary variable is defined to indicate
whether it is located inside a module, i.e.,

xuv =

1, if edge (u, v) is inside a module,

0, otherwise.
(2.1)

Then, the ILP formulation of the CC problem for signed networks is written as follows:

min
∑

(u,v)∈E+
wuv(1− xuv) +

∑
(u,v)∈E−

wuvxuv (2.2)

s.t.
∑

(u,v)∈C\(i,j)
xuv − xij ≤ |C| − 2,∀C ∈ C(G),∀(i, j) ∈ C (2.3)

xuv ∈ {0, 1}, ∀xuv ∈ E. (2.4)

The objective function (2.2) allows looking for a feasible solution minimizing the imbalance de-
fined in Equation (1.1). A feasible solution (i.e. decision variables corresponding to a partition) must
satisfy the cycle inequalities [47] defined in Equation (2.3). They ensure that if a cycle C contains an
edge located between modules (i.e., xuv = 0), then another edge of C must be also located between
modules. Finally, constraints (2.4) are the domain constraints for the variables in the formulation.

It is important to stress that there are an exponential number of cycle inequalities, and this num-
ber substantially increases with increasing values of |E|. In [57, 142] (and in [231] for its relaxation
version), the authors show that Equation (2.3) can be replaced by Equation (2.5). This indicates that
a substantial amount of cycles in C(G) are actually redundant, and not needed to be included in the
model.

∑
(u,v)∈C\(i,j)

xuv − xij ≤ |C| − 2, ∀C ∈ C−(G), (i, j) = C ∩ E−. (2.5)

We denote Fe(G) as the formulation defined in Equations (2.2) to (2.4), and F ?e (G) as the formu-
lation defined in Equations (2.2), (2.4) and (2.5). Moreover, we define Pe(G) as the corresponding
polytope of these formulations. In practice, these formulations are particularly appropriate for sparse
signed networks [10, 130].

2.2.1.2 Decision variables on vertex pairs

The CC problem can be also modeled, as in [57, 90], by means of an ILP proposed to solve
the clique partitioning problem [103, 47]. This formulation defines a decision variable for each pair

24

2.2. ILP-based exact methods

of vertices, even when the original graph G is not complete. In such case, we can reduce the cycle
inequalities to a polynomial number of triangle inequalities.

Let us introduce the second ILP formulation for the CC problem. For each pair of vertices u, v ∈
V : u < v, a binary variable is defined to describe pairs of vertices that are in the same module, i.e.,

xuv =

1, if u and v are in a same module,

0, otherwise.
(2.6)

Then, the ILP formulation of the CC problem for undirected signed graphs is written as follows:

min
∑

(u,v)∈E+
wuv(1− xuv) +

∑
(u,v)∈E−

wuvxuv (2.7)

s.t. xuv + xvr − xur ≤ 1, ∀u < v < r ∈ V (2.8)

xuv − xvr + xur ≤ 1, ∀u < v < r ∈ V (2.9)

−xuv + xvr + xur ≤ 1, ∀u < v < r ∈ V (2.10)

xuv ∈ {0, 1}, ∀u, v ∈ V. (2.11)

The objective function (2.7) is the same as in the previous model, which minimizes the imbalance
defined in Equation (1.1). A feasible solution (i.e. decision variables corresponding to a partition)
must satisfy the triangle inequalities defined in Equations (2.8)-(2.10). For instance, the triangle
inequality in Equation (2.8) says that if vertices u and v are in the same module, as well as vertices
v and r, then vertices u and r must also be in this module. Finally, constraints (2.11) are the domain
constraints for the variables in the formulation.

In this formulation, the number of triangle inequalities is cubic, which is still too large for practical
efficiency. Miyauchi et al. [168] reveal that some of these triangle constraints are redundant. There-
fore, it is sufficient to use only those in Equations (2.12)-(2.14). The triangle constraints other than
Equations (2.12)-(2.14) are then called redundant.

xuv + xvr − xur ≤ 1, ∀u < v < r ∈ V,wuv > 0 ∨ wvr > 0 (2.12)

xuv − xvr + xur ≤ 1, ∀u < v < r ∈ V,wuv > 0 ∨ wur > 0 (2.13)

−xuv + xvr + xur ≤ 1, ∀u < v < r ∈ V,wvr > 0 ∨ wur > 0 (2.14)

We denote Fv(G) as the formulation defined in Equations (2.7)-(2.10) and (2.11), and F ?v (G)
as the one defined in Equations (2.7), (2.11), (2.12)-(2.14). Moreover, we define Pv(G) as the corre-
sponding polytope of these formulations. It is important to stress that F ?v (G) may fail to obtain a valid
optimal solution on incomplete signed networks in the absence of the redundant triangle constraints.
This is because some variables associated to the edges with zero weight can have inconsistent val-

25

Part , Chapter 2 – CC methods

ues so as to minimize the objective function, since they do not contribute to the calculation of the
imbalance. To correct this, Miyauchi et al. [168] propose the following simple post-processing. Let
x∗ be an optimal solution to F ?v (G). Also, let E1 = {(u, v) ∈ E | x∗uv = 1, wuv > 0} the decision
variables located in the same modules in G+. We obtain a set of weakly connected components
{V1, V2, ..., Vk} of (V,E1) by a depth-first search. The final optimal solution corresponds to a 0-1
vector reflecting the result of the weakly connected components.

2.2.2 Facet-defining inequalities

Both ILP models are sufficient to find an optimal solution through an optimization solver, but it can
be very time-consuming. One way to deal with this issue is to strengthen the formulations through
facet-defining inequalities. We are interested in such inequalities because they are the strongest
ones to improve a formulation, as we can see in the following definitions.

A set P ⊆ IRn is called a polyhedron if P is the intersection of finitely many half-spaces, that is:

P = {x ∈ IRn|Ax ≤ b}, (2.15)

for somem×nmatrixA and some b ∈ IRm. If P is bounded, then P can also be written as the convex
hull of many points in IRn, and it is a polytope. The dimension of P , denoted by dim(P), is one less
than the maximum number of affinely independent points in P . If, for some a ∈ IRn, a 6= 0, a0 ∈ IR,
P is contained in the half-space {x ∈ IRn|aTx ≤ a0}, then the inequality aTx ≤ a0 is said to be valid
for P . The set F = P ∩ {x ∈ IRn|aTx = a0} is called a face of P . Notice that F itself is a polyhedron
(or a polytope). We have dim(F) ≤ dim(P)− 1, if F is a face of P . If dim(F) = dim(P)− 1, then F
is called a facet, and the inequality aTx ≤ a0 is said to be facet-defining. See, e.g., Nemhauser and
Wolsey [174] for further details.

2.2.2.1 Facet-defining inequalities for Pe(G)

The first class of known facet-defining inequalities is cycle inequalities (2.3) defined for chordless
cycles [47].

Odd-Wheel inequalities are another class of known facet-defining inequalities for the Pe(G) poly-
tope. A wheel is a cycle, in which all vertices are connected to a further vertex. Let a q-wheel be
a connected subgraph Gq = (Vq ∪ {j}, Eq), where Vq is the set of q vertices constituting the cy-
cle and Eq = C ∪ C̃ is composed of cycle edges C = {(vi, vi+1)|i = 1, .., q} and non-cycle edges
C̃ = {(j, vi)|i = 1, .., q}. All indices are modulo q with q(mod q) = 0. For q = 3, an example of 3-wheel
is shown in Figure 2.1a.

26

2.2. ILP-based exact methods

For every q-wheel, a valid partitioning x satisfies the inequality

∑
(u,v)∈C

xuv −
∑

(u,v)∈C̃

xuv ≤ b
q

2c. (2.16)

Deza et al. [58] prove for Pe(G) that the odd-wheel inequalities (2.16) are facet-defining for every
odd q ≥ 3.

For completeness, we note that other inequalities are known to further tighten the LP relaxation
of Pe(G), which are also facet-defining. These are the clique-web [58] and bicycle [47] inequalities.
Nevertheless, in practice, taken together the inequalities (2.3) and (2.16) describe a tight polynomial-
time solvable relaxation to Pe(G) [176, 126].

2.2.2.2 Facet-defining inequalities for Pv(G)

We note that Pe(G) is a projection of Pv(G), therefore, any facet for Pe(G) is also valid for Pv(G).
In the following, we describe those defined only for Pv(G).

Grötschel and Wakabayashi [104] show that the triangle inequalities (2.12)-(2.14) define facets
of the Pv(G) polytope, as well as the lower bound constraints xuv ≥ 0 (u, v ∈ V) in the LP-relaxation.
Furthermore, Grötschel and Wakabayashi [104] also prove that the following two classes of inequal-
ities define facets of the Pv polytope:

— Let S, T ⊆ V be two nonempty disjoint subsets of V . Then, the inequality

∑
u∈S

∑
v∈T

xuv −
∑

(u,v)∈S
u6=v

xuv −
∑

(u,v)∈T
u6=v

xuv ≤ min{|S|, |T |} (2.17)

is valid. It defines a facet if and only if |S| 6= |T |. It is called a 2-partition inequality (see
Figure 2.1b).

— Let C ⊆ E be a cycle of length at least 5, and C = {vivi+2|i = 1, .., |C| − 2} ∪ {v1v|C|−1, v2v|C|}
be a 2-chorded cycle of C. Then, the inequality

∑
(u,v)∈C

xuv −
∑

(u,v)∈C

xuv ≤ b
|C|
2 c (2.18)

is valid. It defines a facet if and only if |C| is odd, and it is called a 2-chorded cycle inequality
(see Figure 2.1c).

For completeness, we note that other inequalities can further tighten the LP relaxation of Pv(G).
These are the 2-chorded even wheel [104] inequality and those defined in [178]. Nevertheless, in
practice, together the inequalities (2.17) and (2.18) describe a tight polynomial-time solvable relax-
ation to Pv(G).

27

Part , Chapter 2 – CC methods

j

v1

v2 v3

(a) 3-wheel graph.

v1 v2

v3v4

v5

v1

S

v2

v3v4

T

v5

(b) 2-partition inequalities.

v1

v2 v3

v4

v5

v6

v7

(c) 2-chorded cycle inequalities.

Figure 2.1 – Illustrations of some facet-defining inequalities for Pv(G) and Pe(G).

2.2.3 Resolution methods

2.2.3.1 Cutting Plane (CP) approach

Both B&C and BD approaches rely on a Cutting Plane (CP) algorithm [228]. When the number
of constraints is too large to deal with explicitly, it provides an efficient method to solve relaxations
of ILPs. The CP approach consists of four steps.

Step 1: Define a set of linear valid inequalities Form which approximates the polytope Pv(G) or
Pe(G).

Step 2: Solve the current formulation Form.

Step 3: Solve a subproblem, which is used to improve the approximation Form by including addi-
tional inequalities. In case of B&C, the subproblem is a separation problem, which strives to
find valid inequalities that are violated by the current primal solution. In case of BD, the sub-
problem is an optimization problem in the dual domain, where a feasible solution to it can yield
new Benders inequalities.

Step 4: Use the inequalities found in step 3 and update the current approximation Form.

We repeat the steps 2-4 until one of the three termination criteria are met: 1) the solution obtained
in step 2 is integral, 2) this solution is still fractional but there is no violated valid inequalities found,
and 3) this solution is still fractional but a predefined time limit is reached.

2.2.3.2 Branch-and-Cut

In combinatorial optimization, Branch-and-Cut [174] is a well-known efficient method, which im-
proves the traditional B&B procedure by adding violated valid inequalities during the optimization
process. This can be done in many ways. Nevertheless, empirical works in the literature [126, 4]
show that there exist two successful applications of Branch-and-Cut for Fv(G)/F ?v (G) and Fe(G): 1)

28

2.2. ILP-based exact methods

adding violated valid inequalities only at the root of the B&B tree through the CP method and then
proceeding to the branching phase, 2) adding violated valid inequalities only for integer solutions
during the branching phase.

The first strategy is based on the idea that the CP method improves the current LP relaxation
faster than the branching process at the beginning, and switches to the branching phase when the
improvement gathered by the CP method starts to become negligibly small. Ales et al. [4] show
for a related problem that the first strategy performs best for Fv(G) (this is also valid for F ?v (G)).
The second strategy takes advantage of integer solutions to produce more efficient optimization
process. The authors in [126] obtain the best results based on the second strategy, when they deal
with Fe(G) on sparse signed graphs. Moreover, they point out that using an efficient calculation of
an initial lower bound at start (see [126] for more details) seems to be beneficial for accelerating the
optimization process.

In our computational experiments, we stick to the two successful applications of Branch-and-Cut
described above. In the following, we denote the B&C procedures based on Fe(G) and F ?v (G) by
B&C(Fe(G)) and B&C(F ?v (G)), respectively.

2.2.3.3 Benders decomposition (BD)

The main objective of a BD method [174] is to turn a hard-to-solve formulation with a subproblem
structure into a simpler one by temporarily fixing a subset of variables and introducing an exponential
number of constraints. Adding all the constraints would be too costly. Therefore, the CP method is
applied for an efficient solving process, where new cuts, called Benders cuts, are found by solving
subproblems of the original problem.

Originally, the CC problem does not fit the definition of the BD method, in the sense that it
does not possess a subproblem structure. Nevertheless, the decomposition scheme proposed by
Keuper et al. [130] makes this possible for the formulation F ?e (G). In their decomposition scheme,
the authors take advantage of the definition of the conflicted cycles and decompose the edges into
subproblems based on a minimal vertex cover S for E−. They re-write the CC problem as

min
∑

(u,v)∈E−
wuvxuv +

∑
(u,v)∈E+

wuv(1− xuv) +
∑
s∈S

Q(w, s,x) (2.19)

s.t. xuv ∈ {0, 1}, ∀u, v ∈ V. (2.20)

The term Q(w, s,x) provides the cost to correct x in order to satisfy all conflicted cycles in-

29

Part , Chapter 2 – CC methods

equalites. It is defined as follows:

Min
∑

(u,v)∈E−s
wuvx

s
uv +

∑
(u,v)∈E+

wuv(1− xsuv) (2.21)

s.t.
∑

(s,t)∈C\(u,v)
(xst + xsst)− xuv − xsuv ≤ 2|C| − 3, ∀C ∈ C−s (G), (u, v) ∈ C ∩ E− (2.22)

xsuv ∈ {0, 1}, ∀u, v ∈ s. (2.23)

The set C−s (G) ⊆ C−(G) represent a subset of cycles C−(G) associated with the negative
edges E−s in subproblem s. This means that in each subproblem a certain number of a slightly
modified version of cycle inequalities are enforced. With this new form of cycle inequalities in (2.22),
Q(w, s,x) provides the cost to alter x by increasing (resp. decreasing) xuv for (u, v) in E+ (res. E−).
The authors reformulate Q(w, s,x) as a cut-problem and dualize it in order to obtain the Benders
cut.

The master problem is as follows:

min
∑

(u,v)∈E−
wuvxuv +

∑
(u,v)∈E+

wuv(1− xuv) (2.24)

s.t.
∑

(u,v)∈E
xuvλ

z
uv ≤ 0, ∀z ∈ Z (2.25)

xuv ∈ {0, 1}, ∀(u, v) ∈ E. (2.26)

where Z is the set of dual feasible solutions found for all subproblems s ∈ S, and λzuv the dual
variables associated.

Using the CP method, the BD algorithm repeatedly solves the master problem, which includes
only a subset of constraints, to obtain a trial value for the x variables, i.e. x̄. It then solves Benders
subproblem with x̄. If any Benders cut are violated by the current solution, they are inserted into the
current formulation and the process repeats. During the CP, the authors also includes another class
of cuts, called Magnanti-Wong Benders Rows [158], to accelerate the optimization process.

In the following, we denote the corresponding BD procedure based on the formulation F ?e (G) by
BD(F ?e (G)).

2.3 Heuristic methods

Despite advances in the development of exact methods, the partitioning of large signed networks
can be tackled only by heuristic approaches. Moreover, these problem-specific approaches are often
appropriate as a primal heuristic in the design of an exact method to provide an upper bound.

In the following, we describe a selection of heuristic methods proposed in the literature for the CC
problem, which we divide into three categories: LP-based rounding (Section 2.3.1), and Trajectory-

30

2.3. Heuristic methods

based meta-heuristic (Section 2.3.2) and population-based meta-heuristic (Section 2.3.3) methods.
All these heuristics use somehow some neighborhood search operators for discovering new parti-
tions. For this reason, given a partition P , we define an r-neighborhood structure, denoted byNr(P),
as the family of all partitions obtained by moving r vertices in P from one module into another.

2.3.1 LP-based rounding methods

A traditional rounding procedure proposed in the literature first obtains a primal LP relaxation
for the Pv(G) polytope, which outputs a fractional solution. Then, this procedure rounds the values
of the variables in the fractional solution to either 0 or 1 based on a rounding scheme (e.g., putting
vertices u and v in the same module, if xuv is close to 1). For the CC problem, the final solution must
satisfy the triangle inequalities, so that this results in a valid partitioning solution. In the literature,
several approximation methods (e.g., [42]) rely on this procedure. However, because the number of
triangle inequalities largely increases with n, they do not scale well. For this reason, we consider in
this section two recent rounding methods based on a dual LP relaxation, which scales much better.
We are also interested in these methods because their performances with respect to the existing
heuristics are not known.

These methods possess a different rounding scheme from a traditional one. They somehow
estimate new signed edge weights from the solution of a dual LP relaxation, then apply a local-
search method onto the same input graph, whose edges are re-weighted by the previous step. The
idea behind this weight adjustment is to guide primal heuristics toward better feasible solutions.

2.3.1.1 Message Passing (MP+GAEC+KLj)

In [207], the authors decompose the original problem into easily solvable combinatorial sub-
problems defined on graph substructures (edges, triangles and odd-wheels) in order to obtain a LP
relaxation.

The proposed algorithm is performed in two steps. In the first step, the relaxation problem is
solved in a fashion similar to the cutting plane approach: it alternates for a fixed number of iterations
between the message passing and separation procedures. The message passing procedure [208]
solves a dual of the relaxation of the proposed decomposition and tightens the previous relaxation
by adding new cycle and odd-wheel inequalities (described in Section 2.2.2.1), which are violated
by the current solution. Finally, in the second step, based on the solution obtained for the relaxation,
a feasible integer solution is found through GAEC and KLj heuristics (see Section 2.3.2.2), which
are two local search algorithms widely used in the community of computer vision.

31

Part , Chapter 2 – CC methods

2.3.1.2 Iterative Cycle Packing (ICP+GAEC+KLj)

Lange et al. [142] design a rounding procedure different than a decomposition approach as in
MP+GAEC+KLj. They propose an iterative heuristic, called ICP, to solve the maximum set packing
problem with respect to conflicted cycles, which is obtained by taking the dual of the F ?e (G) formu-
lation (see [142] for the definition of this problem). The resulting solution indicates which conflicted
cycles are selected, and knowing this allows to compute a lower bound for the F ?e (G) formulation. In
addition to that, ICP outputs another set of edge weights, called residual weights, related to the se-
lection of the conflicted cycles. They can be interpreted as an indication of how likely pair of vertices
are placed in the same module in an optimal solution. The authors propose to adjust the original
edge weights w in the F ?e (G) formulation by taking into account these residual weights c ∈ R|E|.
This is obtained through the convex combination λ|ce|+ (1− λ)we of w and c with a suitable choice
of λ ∈ (0, 1) for each existing edge e (see Lange [141] for the calculation of the residual weights
c). Finally, as in MP+GAEC+KLj, the authors propose to use the GAEC and KLj heuristics (see
Section 2.3.2.2) onto the given input signed graph whose edge weights are adjusted by ICP.

2.3.2 Trajectory-based (meta-)heuristic methods

In this section, we rely on trajectory-based (meta-)heuristics. The term trajectory refers to the
search process characterized by a trajectory, i.e. the evolution of a dynamical system considered
through discrete time. These methods start from an initial partition, and always deal with a single
partition at a time throughout the trajectory. In the following, we describe the trajectory methods
designed for the CC problem.

2.3.2.1 Basic Local Search: Iterative Improvement

Iterative Improvement designates a local search process, where the initial partition is iteratively
improved by exploring the neighborhood of the visited partitions. This neighborhood exploration can
be a very time-consuming process. For this reason, only a small number of vertex changes (relative
to the current partition) is usually investigated. Two different improvement criteria terminate such
investigation: first vs. best improvement. In the former, the local search updates the current solution
whenever it finds an improved solution, whereas the latter exhaustively explores the r-neighborhood
Nr(P) and replace the current solution by one of the partitions with the best objective value. Some
examples of Iterative Improvement are the Kernighan-Lin (KL) [129] and BOEM [67] methods.

Iterative Improvement constitutes the most basic form of local search, because it does not involve
any technique to escape from local minima during the search. This makes its performance limited.
Therefore, it is usually embedded in (meta-)heuristics. For this reason, we do not consider it as a
separate heuristic in this chapter.

32

2.3. Heuristic methods

2.3.2.2 Hierarchical Iterative Improvement

Hierarchical Iterative Improvement is a natural extension of the iterative improvement heuristic,
such that the neighborhood exploration of the current solution is not only based on vertices, but
also on modules. Such module-based exploration can be agglomerative or divisive. In the former,
vertices initially constitute their own modules and these modules are iteratively merged. In the latter,
there is initially a single module containing all vertices and it is recursively split.

In the literature, there are several heuristics of this kind [147, 181, 26]. In the following, we
consider one agglomerative and one hybrid iterative improvement methods: GAEC+KLj and CGC,
respectively. The latter combines both agglomerative and divisive strategies. In [147], both methods
give better results compared to standard ones.

Greedy Additive Edge Contraction and Kernighan-Lin Algorithm with Joins (GAEC+KLj)
The algorithm proposed by Levinkov et al. [147] is composed of two independent methods: GAEC
and KLj. First, GAEC starts by forming an initial partition: vertices are initially single-module ver-
tices. In every iteration, a pair of modules sharing at least one positive edge are merged, if this
operation yields the maximal gain in terms of objective value. Then, KLj takes the result of GAEC
as an input and starts to modify it. KLj is a slight extension of the Kernighan-Lin algorithm [129].
In addition to the vertex-exchange move used in [129], KLj includes two additional types of moves:
merging two modules and moving some of vertices from an existing module into an empty one.
These three moves are used in each iteration in order to update greedily the underlying partition so
as to approach to being pairwise optimal.

GAEC+CGC+QPBO The idea behind Cut, Glue & Cut (CGC) [29] is to improve an existing par-
tition locally, by focusing on only a subset of vertices at a time. The proposed method consists of
two phases: the cut and glue&cut phases. In the cut phase, the underlying graph is recursively split
by solving max-cut (also known as the weighted 2-coloring problem) problems. Since solving the
max-cut problem is NP-hard, the authors sovle it approximately by using the QPBO-I method [194].
In the glue&cut phase, any two neighboring modules are first merged and then a new partition is
sought between them by solving again a max-cut problem. These two phases are repeated and the
process stops when the value of the objective function cannot be improved anymore. The method
keeps track of the previously solved subproblems, therefore it avoids resolving the same subprob-
lems. According to [147], this methods gives better results when it takes the result of GAEC as an
input.

2.3.2.3 Simulated Annealing (SA)

In physics, the simulated annealing (SA) technique simulates the evolution of a physical system
towards its thermodynamic equilibrium at a given temperature. Some pioneer works [131, 40] es-
tablish the connection between this physical system and the search for global minima for a discrete

33

Part , Chapter 2 – CC methods

optimization problem. These works rely on the results from statistical mechanics (Metropolis algo-
rithm) for the simulation of the underlying system, which employs an explicit strategy to escape from
local minima. SA can be considered as one of the first algorithms that includes such local minima
escape strategy.

In the literature, SA has been successfully used to solve the CC problem [173, 216, 211]. In our
computational experiments, we use the algorithm proposed by Néda et al. [173]. It starts by gen-
erating a random initial solution P and initializing the so-called temperature parameter T . In each
iteration, many simulation steps are performed. In each simulation step, a vertex is randomly chosen
and is reassigned to a randomly chosen module, which results in a new solution P ′. If the value of
imbalance I(P ′) is better than I(P), then P ′ is accepted to replace P with a probability of 1. Other-
wise, P ′ is accepted to replace P , with a probability, defined as a function of T and the difference
I(P ′)− I(P). This probability is computed following the Boltzmann distribution exp(− I(P ′)−I(P)

T). In-
troducing parameter T in this formula allows to control the probability of accepting a worse solution.
At the beginning, this probability is high, which allows the exploration of the search space. Then, it
gradually decreases, converging to a simple iterative improvement algorithm.

2.3.2.4 Tabu Search (TS)

Tabu Search is another heuristic, which also employs a strategy to escape from local minima,
but through a so-called tabu list. This list keeps track of a limited number of previously visited so-
lutions and forbids any move towards them. Thus, using the tabu list restrains the neighborhood of
the current solution in each iteration. On the one hand, this restriction scheme gives the ability of
preventing from cycling (from local optima through non-improving moves). On the other hand, the
search process tend to be too local, i.e. exploring only a small portion of the search space most of
the time, which can be considered an intensification process.

To take advantage of the intensification nature of the tabu search Brusco and Doreian [37] pro-
pose an algorithm, in which the tabu search is preceded by a multi-start iterative first improvement
heuristic. Since their proposed algorithm seeks a partition with a fixed number of modules, we adapt
it for any number of modules in our computational experiments. The algorithm starts by generat-
ing an initial good-quality solution P through many runs of the iterative first improvement heuristic
based on a single vertex move and by initializing the tabu list L. In each iteration, the move of a sin-
gle vertex v that provides the largest improvement (or smallest worsening) of the objective function
is obtained and this results in a new partition P ′. If P ′ is the best solution obtained so far in terms of
imbalance, then P is replaced by P ′ and the tabu list L is emptied. Otherwise, vertex v is placed into
L, and it is kept in for a fixed number τ of iterations and cannot be moved to any module. Moreover,
the remaining number of iterations for the other vertices in L is updated by reducing this number by
one. The algorithm is run until a prespecified time limit is reached.

34

2.3. Heuristic methods

2.3.2.5 Variable Neighborhood Search (VNS)

Unlike the iterative improvement where a single neighborhood is used, Variable Neighborhood
Search (VNS) [169] alternates between different neighborhoods within the local search phase. It is
able to perform moves to distant neighborhoods, which enables to tackle the trajectory difficulties in
the search space. This technique is based on the idea that local optima can be different regarding
different neighborhood structures. In its original version [169], VNS considers a set of neighborhoods
N1(P) to Nr(P) and dynamically varies the value of r in Nr(P) in order to improve the current
solution through increasingly distant neighborhoods. Namely, if an enhanced solution is found with
the current value of r, then r resets to its initial value and the best solution is updated. Otherwise,
the next neighborhood is traversed by increasing r.

A variant of VNS is introduced by Brusco and Doreian [37] for the CC problem. Like TS, since
their proposed algorithm seeks a partition with a fixed number of modules, in our computational
experiments we adapt it for any number of modules. In this variant, the size of the neighborhood is
controlled by four parameters: ypert, ymin, ymax and ystep. Parameter ypert is the probability that any
given vertex will be moved from its current module to a different module. For instance, if ypert = 0.10,
then we expect 10% of the vertices to be moved to other modules. Parameters ymin and ymax are
the minimum and maximum value that ypert can take, respectively, and ystep represents the step size
for moving from ymin to ymax. In [37], VNS is preceded by a multi-start iterative first improvement
heuristic. The algorithm starts by generating an initial good-quality solution P through many runs
of the iterative first improvement heuristic based on a single vertex move and by initializing the
parameters of VNS. In each iteration, the algorithm first perturbs the best solution found so far with
respect to the current value of ypert, then a local minimum solution P ′ is found by performing the
iterative first improvement heuristic. If P ′ is the best solution obtained so far in terms of imbalance,
ypert resets to ymin. Otherwise, ypert is incremented by ystep for examining larger neighborhoods.
The overall process is repeated until a prespecified time limit is reached.

2.3.2.6 Greedy Randomized Adaptive Search Procedure (GRASP)

GRASP [87, 88] is a meta-heuristic that combines randomized constructive heuristic and local
search. It is composed of two phases: solution construction and solution improvement. The first
phase, the construction of an initial solution P is done step-by-step by starting with an empty partition
and adding one new vertex at a time through a randomized greedy function. The second phase is
a local search process, which strives to improve P through a basic local search algorithm such as
iterative improvement, or a more involved technique such as VNS.

In our computational experiments, we consider a multi-start GRASP heuristic proposed by Lev-
orato et al. [148], which is a slightly modified version of the algorithm proposed by the same authors
in [66]. The algorithm is composed of several iterations. The multi-start nature enables GRASP to

35

Part , Chapter 2 – CC methods

start from a different solution in each iteration. In each iteration, the classical GRASP procedure, as
described above, is performed. In the first phase, the construction of an initial solution P is shaped
based on how we choose the next vertex to add into the partition. This is done by picking it uni-
formly at random from a candidate list, where the vertices are ranked by their fitness function. The
random choice is guided by the parameter α, which allows to pick only one of the first (hence, best)
α vertices from the candidate list. In the extreme case, the best vertex would be added when α = 1,
whereas the choice would be completely random when α = n. Therefore, α is a critical parameter
which affects how the regions of the search space are explored. In the second phase, the original
VNS heuristic, as in [169], is applied to improve P . In the end, the best solution is determined over
all iterations.

2.3.2.7 Iterated Local Search (ILS)

A related alternative of the GRASP heuristic for escaping from a local minimum is Iterated Local
Search [152]. Instead of a multiple solution construction phase, ILS relies on perturbations applied
onto the current solution, followed by a local search. ILS starts by finding a first local optimum S̃ from
an initial solution S through a local search procedure. Then, in each iteration, it tries to improve S̃ in
three steps: 1) S̃ is perturbed to obtain S′ as a diversification process, 2) a local search is performed
on S′ to obtain another local optimum S̃′, 3) S̃ is replaced by S̃′ if the acceptance criterion is satisfied.

In our computational experiments, we consider the multi-start ILS heuristic proposed by Levorato
et al. [148]. Since the authors embed into their ILS framework a classical single GRASP iteration and
a VNS procedure together, it can be seen as an improved version of the GRASP and VNS heuristics.
Their algorithm is composed of several iterations. Like GRASP, the multi-start nature enables ILS to
start from a different solution in each iteration. The algorithm finds a first local optimum S̃ in each
iteration by applying the classical single GRASP iteration, which is described in the previous section.
Then, another local optimum S̃′ is found by applying a VNS algorithm similar to one used in [37] and
described in Section 2.3.2.5. The main differences are that the perturbation intensity is controlled
by the number of random vertex movements, rather than a proportion value, and VNS is terminated
when ypert attains ymax, instead of a time limit. In the end, if S̃′ is better than S̃ in terms of imbalance,
S̃ is replaced by S̃′.

2.3.3 Population-based (meta-)heuristic methods

Population-based approaches deal in every iteration of the algorithm with a set (i.e. a population)
of solutions rather than with a single one. Therefore, these methods differ from those presented in
Section 2.3.2 on the way the search space is explored. Although several population-based methods
exist in the literature for other clustering problems, such as Genetic/Memetic algorithms [100, 206,
155], Ant [203] and Bee [127] Colony Optimization, to the best of our knowledge, only Memetic

36

2.4. Dataset

algorithms are proposed for the CC problem.

2.3.3.1 Memetic algorithm: MLMSB

A memetic algorithm is an extension of the traditional Genetic algorithm (GA), in that it is
strengthen with a local search process, which is supposed to decrease the possibility of premature
convergence. In the context of GA, the individuals (also sometimes called chromosomes) corre-
spond to the solutions for the problem at hand. Since those individuals evolve simultaneously, they
constitute a population. In the beginning, an initial population is created randomly or high-quality
solutions from another heuristics can be provided. It evolves by being exposed to several genetic
operations throughout several iterations until some termination criterion is met. Those genetic oper-
ations are designed to improve the current population by escaping from a local optima. The pipeline
is constituted mainly of three such operations: 1) the so-called tournament selection, i.e. selection
of best solutions in terms of solely the objective function, or in combination with another criterion;
2) crossover operator executed for each pair of solutions selected in the tournament selection, i.e.
switching some genes from one parent to another; 3) mutation operator which randomly perturbs
current solutions to escape from a local optima.

In our computational experiments, we consider the memetic algorithm (MA) proposed by Ma et
al. [155]. This method outperforms the others in the literature of MA through its multi-level learning
based local search. This search consists of three processes, which are applied as a pipeline. The
first one, vertex learning, aims at performing the iterative best improvement based on a single ver-
tex move. The second one, module learning, consists in applying the agglomerative iterative best
improvement. Finally, the last one, partition learning, perturbs the solution generated by module
learning, by creating an intersection partition with respect to the best solution in the population, and
then applies again the first and second steps. This multi-level local search is performed onto the
current population, once genetic operations are applied.

2.4 Dataset

This section is dedicated to the description of the datasets used in the experiments presented in
this chapter. As mentioned in the introduction, in this chapter we focus on unweighted signed net-
works. Application-wise, these networks fit certain modeling situations and methodological choices.
Indeed, in some works binary values better represent the studied relations (e.g. alliance/conflict
between countries in international relationships [65]), or the authors prefer to use such values for
practical reasons (e.g. limited or unreliable information [70]). We conduct our experiments in this
chapter on three datasets of random signed networks.

Dataset 2.1: These networks are generated through our random signed network generator,

37

Part , Chapter 2 – CC methods

which is publicly available online 2. For complete unweighted signed networks, this model relies on
only three parameters: n (number of vertices), `0 (initial number of modules) and qm (proportion
of misplaced edges, i.e. edges meant to be frustrated by construction). Moreover, we make the
assumption that the proportion of misplaced edges is the same inside and between the modules.
For complete unweighted signed networks, we generate 3 replications for parameter values `0 = 3,
n = 40 and qm = {0.3, 0.4, 0.5}. In these networks, the value of qneg with the considered parameters
is approximately 0.7. When it comes to incomplete unweighted signed networks, we introduce two
more parameters, which are the density d of the graph and the proportion qneg of the negative edges.
The last parameter allows to control the ratio of positive to negative edges. In these incomplete
networks we generate 5 replications for parameter values d = {0.25, 0.50}, n = {40, 50}, qm =
{0.3, 0.5} and qneg = {0.3, 0.5, 0.7}. In total, we produce 9 and 120 instances for complete and
incomplete networks, respectively, which makes a total of 129 instances. We use this dataset in
Section 2.5.1.

Dataset 2.2: This dataset uses the same random signed network generator as in Dataset 2.1, but
with different parameter values. We use this dataset in the evaluation of heuristics (Section 2.5.2)
and we concentrate on only the maximal value of graph order n that exact methods can handle
within reasonable time limit. For complete unweighted signed networks, we generate 20 replica-
tions for parameter values `0 = 3, n = 50 and qm = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. In these networks,
the value of qneg with the considered parameters is approximately 0.7. For incomplete unweighted
signed networks with d = {0.25, 0.50} and qneg = {0.3, 0.5, 0.7}, we generate 20 replications with the
same parameter values as in the complete networks. In total, we produce 120 and 720 instances for
complete and incomplete networks, respectively, which makes a total of 840 instances.

Dataset 2.3: For each network in this dataset, the optimal solution is known by construction.
This allows to consider relatively large graph orders n without being limited by the long running
time of an exact partitioning method. For given n, d and `0, we first create a perfectly structurally
balanced (i.e. internally positive and externally negative) signed network with a built-in module struc-
ture through the same random signed network generator used in Dataset 2.1. Clearly, the underlying
module structure constitutes the optimal partition. Then, in order to take into account different pos-
itive to negative ratio values for internal and external edges, we generate several signed networks
by increasingly perturbing the initial signed network without affecting its underlying optimal partition,
thanks to its definition of stability range [176]. We perform this generation with parameter values
n = 150, d ∈ {0.25, 0.50, 1.00} and `0 = {6, 8, 10} through our random signed network generator,
which is publicly available online 3. In each generated network, the associated optimal solution cor-
responds to the planted partition defined for the corresponding network without perturbation. In total,
we produce 13 and 49 instances for complete and incomplete networks, respectively, which makes

2. https://github.com/CompNet/SignedBenchmark
3. https://github.com/arinik9/SignedStabilityBenchmark

38

https://github.com/CompNet/SignedBenchmark
https://github.com/arinik9/SignedStabilityBenchmark

2.5. Experiments

a total of 62 instances. We use this dataset in Section 2.5.2.
Dataset 2.4: In addition to artificial graphs, we also consider 6 sparse unweighted large real-

world networks of different sizes from various sources: Slashdot [145], Wikipedia Election [145]
and 4 Biological datasets [115]. The Slashdot social network contains friend/foe edges between the
users of the Slashdot website in February 2009. The Wikipedia Election social network is based
on all adminship elections before January 2008, and the edges between Wikipedia users indicate if
one approves/disapproves the other. The biological networks include two gene regulatory networks:
Yeast and E. coli, related to two organisms: a eukaryote (the yeast Saccharomyces cerevisiae),
and a bacterium (Escherichia coli), respectively, and two other networks related to the molecular
interaction map of a white blood cell (macrophage) and the epidermal growth factor receptor (EGFR)
pathway (see [115] for more details). We use an undirected version of these social and biological
signed networks, which are made publicly available in [146] and [115], respectively 4. The considered
networks range in order from 329 to 82,144 vertices and from 779 to 498,532 edges. We use this
dataset in the evaluation of heuristics (Section 2.5.2).

2.5 Experiments

We now assess the performances of the methods. We first investigate the efficiency of the exact
methods (Section 2.5.1), then pass to the evaluation of the heuristics (Section 2.5.2). Our source
codes are publicly available 5.

2.5.1 Experiments for exact methods

In this section, we evaluate the performances of the exact methods B&C(F ?v (G)), B&C(Fe(G))
and BD(F ?e (G)) presented in Section 2.2. The implementation of B&C(F ?v (G)) is based on the code
obtained by the authors of [4] and is in Java. We implemented B&C(Fe(G)), as described in Sec-
tion 2.2.3.2, in Java. For BD(F ?e (G)), we kindly obtained the implementation from the authors of
[130]. While it is implemented in MATLAB, all computation-heavy parts are delegated to C++ func-
tions via MEX wrappers, such that its comparison with both B&C methods is fair. All methods use
CPLEX for solving ILPs and LPs. The experiments ran with a time limit of 1 hour up to 8 threads on
the same machine, an Intel i7-2100 CPU, operating at 3.10 GHz and equipped with 16 GB of RAM.
We present a selection of the most relevant results in Tables 2.1 and 2.2.

We first describe our results generically here, before interpreting them. In these tables the
columns are divided into three parts. The first part describes the network characteristics, whereas
the second and third ones correspond to the two methods to be compared. In each of these last

4. Most of them can also be retrieved from http://www.doi.org/10.1093/comnet/cny015
5. https://github.com/arinik9/HeuristicsCC, https://github.com/arinik9/ExCC, https://github.com/

arinik9/BenchmarkCC.

39

http://www.doi.org/10.1093/comnet/cny015
https://github.com/arinik9/HeuristicsCC
https://github.com/arinik9/ExCC
https://github.com/arinik9/BenchmarkCC
https://github.com/arinik9/BenchmarkCC

Part , Chapter 2 – CC methods

two parts there are six columns, each corresponds to a different pair of values of qm and qneg. For
ease of comparison, some corresponding columns of both methods are shaded. For each param-
eter set, five random networks are generated and they constitute the rows of the tables. Rows are
also constituted of several parts, and each corresponds to a different pair of values of n and d. For
each network, we report the execution time in seconds, or the best percentage optimality gap if the
optimization process could not be terminated before the time limit.

We start by comparing B&C(Fe(G)) and BD(F ?e (G)), which both use the formulation based on
edge variables. The results are shown in Table 2.1. First, we observe that both methods are severely
affected when n increases. Indeed, they both handle well the instances with n = 40, but often
require much more time for those with n = 50. This is because increasing n can exponentially
increase the number of cycle constraints that need to be generated to guarantee optimality. Second,
increasing qm affects the running times of both methods, especially for n = 50 and qneg = 0.5.
This can be explained as introducing more and more misplaced edges tend to increase the number
of conflicted cycles. Nonetheless, the instances with small and large values of qneg, i.e. qneg =
{0.3, 0.7}, are usually easier to solve for both methods. Finally, B&C(Fe(G)) outperforms BD(F ?e (G))
in all instances. This is probably because the considered sparse networks with d = 0.25 is probably
not as sparse as the authors of BD(F ?e (G)) assume in their work, for which this method is originally
tested. To conclude this part, B&C seems to be a more efficient choice compared to BD on the
formulation Fe(G) and we stick to B&C(Fe(G)) in the following when we use Fe(G).

B&C(Fe(G)) BD(F ?e (G))

qm = 0.3 qm = 0.5 qm = 0.3 qm = 0.5

Graph qneg
0.3

qneg
0.5

qneg
0.7

qneg
0.3

qneg
0.5

qneg
0.7

qneg
0.3

qneg
0.5

qneg
0.7

qneg
0.3

qneg
0.5

qneg
0.7

n = 40
d = 0.25

G1 1 1 1 1 2 1 55 41 9 86 12% 9

G2 1 1 1 1 1 1 105 48 9 61 41 9

G3 1 1 1 1 1 1 119 44 6 400 60 15

n = 50
d = 0.25

G1 1 155 1 4 300 1 45 12% 35 595 16% 1372

G2 1 2 1 1 300 1 328 3% 2% 479 14% 295

G3 1 3 1 2 300 1 81 7% 4% 470 18% 49

Table 2.1 – Evaluation of the two exact methods BD(F ?e (G)) and B&C(Fe(G)) based on the random
networks from Dataset 2.1 for d = 0.25. Both methods use the formulation based on edge variables.
For each parameter set, five random networks are generated and they constitute the rows of the
tables. For each network, we report the execution time in seconds, or the best percentage optimality
gap (%) if the optimization process could not be terminated before the time limit. When reporting
the execution times, we fix to 1 second those being below this value.

We now compare two Branch&Cut methods B&C(Fe(G)) and B&C(F ?v (G)), which are based
on different ILP formulations. As one can expect, modelling complete networks through F ?v (G) is

40

2.5. Experiments

more appropriate than Fe(G), whereas the latter is supposed to better handle sparse networks.
We confirm this with our experiments based on d = {0.25, 1.0}. Nonetheless, the networks with
d = 0.5 are more challenging for both methods. For this reason, our discussion in the following
concentrates on only these cases. The results are shown in Table 2.2. First, we see that increasing
n affects less B&C(F ?v (G)) than B&C(Fe(G)). This is because the number of triangle constraints
in F ?v (G) polynomially increases with n. This can explain why B&C(Fe(G)) is efficient for n = 40,
whereas B&C(F ?v (G)) better handles the instances with n = 50. Second, small and larges values of
qneg seem to advantage one formulation to another, independently of the values of n and qm. Indeed,
B&C(F ?v (G)) better performs for qneg = 0.3, whereas it is outperformed by B&C(Fe(G)) for qneg = 0.7.
Finally, the harder instances, which are "unsolved" by both methods within the time limit of 1 hour,
are better dealt with by B&C(F ?v (G)). It seems to be more beneficial to reduce the optimality gap
through the CP approach, rather than the branching process, in these instances. This aspect is bet-
ter exploited by B&C(F ?v (G)). To conclude this part, there is not a single method which always gives
the best results, and both Branch&Cut methods have desirable performances depending on the
network characteristics. Sparse networks are better handled by B&C(Fe(G)), whereas B&C(F ?v (G))
better performs on complete networks. Moreover, for a medium graph density, B&C(F ?v (G))) is less
sensitive to increase in n than B&C(Fe(G))).

B&C(Fe(G)) B&C(F ?v (G))

qm = 0.3 qm = 0.5 qm = 0.3 qm = 0.5

Graph qneg
0.3

qneg
0.5

qneg
0.7

qneg
0.3

qneg
0.5

qneg
0.7

qneg
0.3

qneg
0.5

qneg
0.7

qneg
0.3

qneg
0.5

qneg
0.7

n = 40
d = 0.5

G1 38 12 2 229 1,564 1 1 254 180 2 768 253

G2 1 1 2 199 256 2 1 12 181 9 541 205

G3 1 31 1 36 1,136 1 1 293 216 1 884 35

G4 1 2 1 8 46 10 2 16 185 1 335 191

G5 1 331 1 16 91 8 1 343 152 1 606 301

n = 50
d = 0.5

G1 2 3,177 2.6% 1 8.7% 1,104 3 1,072 2,286 5 4.7% 1,451

G2 64 5.5% 304 1 8.8% 2,260 3 1.4% 1,352 4 3.8% 3,551

G3 121 2.4% 1.9% 7 10.8% 567 4 1,163 1,059 3 6.5% 249
G4 1 4 75 17 7.5% 1,077 2 93 649 3 3.1% 1,175

G5 121 2.6% 30 121 10.3% 170 2 2,121 542 3 6.9% 605

Table 2.2 – Evaluation of the two exact methods B&C(Fe(G)) and B&C(F ?v (G)) based on the random
networks from Dataset 2.1 for d = 0.5. Each Branch&Cut method uses a different formulation. For
each parameter set, five random networks are generated and they constitute the rows of the tables.
For each network, we report the execution time in seconds, or the best percentage optimality gap
(%) if the optimization process could not be terminated before the time limit. When reporting the
execution times, we fix to 1 second those being below this value.

41

Part , Chapter 2 – CC methods

2.5.2 Experiments for heuristic methods

In this section, we evaluate the performances of the 10 heuristic methods described in Sec-
tion 2.3 based on Datasets 2.2, 2.3 and 2.4. Most heuristics are either publicly available or made
available upon demand. We had to implement SA, TS and VNS by following the instructions in the
associated papers. For MLMSB, GRASP and ILS, we kindly obtained the implementations by the
authors of [155] and [148], respectively. For the remaining heuristics, we used the publicly available
codes of the corresponding authors 6. Although some methods can be run in parallel, not all meth-
ods have this option. For a fair comparison, all methods were executed without multi-threading, on
the same machine. Certain of these methods are stochastic (SA, TS, VNS, GRASP, ILS, MLMSB),
whereas others are purely deterministic (GAEC+KLj, ICP+GAEC+KLj, MP+GAEC+KLj and CGC+QPBO).
We run the former 20 times to account for variability, and the latter only once. Finally, all methods
were configured with the recommended values for their input parameters. We refer the reader to the
corresponding articles for more details.

qm = 0.1 qm = 0.3 qm = 0.5

Heuristics qneg
0.5

qneg
0.7

qneg
0.3

qneg
0.5

qneg
0.7

qneg
0.3

qneg
0.5

qneg
0.7

GAEC+KLj 1 1 0.65 0.4 0 1 0 0

MP+GAEC+KL 1 1 0.65 0.4 0 1 0 0

ICP+GAEC+KL 0.9 0.4 0.15 0 0 0.05 0 0

GAEC+CGC+QBPO 0.75 0.75 0.15 0 0 1 0 0

SA 1 (1) 1 (1) 0.59 (0.75) 0.97 (1) 0.84 (1) 0.62 (0.8) 0.86 (1) 0.76 (1)

TS 1 (1) 1 (1) 1 (1) 1 (1) 0.9 (1) 1 (1) 1 (1) 0.96 (1)

VNS 1 (1) 1 (1) 0.99 (1) 1 (1) 0.97 (1) 1 (1) 0.96 (1) 0.84 (1)

GRASP 1 (1) 1 (1) 1 (1) 0.9 (1) 0.26 (0.65) 1 (1) 0.63 (1) 0.12 (0.55)

ILS 1 (1) 1 (1) 0.93 (1) 0.8 (1) 0.42 (0.95) 1 (1) 0.4 (1) 0.19 (0.85)

MLMSB 1 (1) 1 (1) 0.86 (1) 0.99 (1) 0.7 (1) 1 (1) 0.65 (1) 0.44 (0.78)

Table 2.3 – Average proportion of optimal solution discovery, by the considered 10 heuristics, based
on the random networks from Dataset 2.2 for d = 0.5, qm = {0.1, 0.3, 0.5} and qneg = {0.3, 0.5, 0.7}.
For each network, the first statistic (without parenthesis) shows how persistent the optimal solution
discovery is over 20 repetitions. It equals 1 when an optimal solution is reached for each repetition.
The second one (within parenthesis) is a binary value and equals 1 when a heuristic finds an optimal
solution at least once out of its 20 repetitions, 0 otherwise. These statistics are averaged over 20
random networks from the same parameter set.

We start by comparing the heuristics based on the Dataset 2.2. We want to see how often these
methods can find an optimal solution. For this purpose, we already computed the optimal I(P) value

6. https://github.com/abailoni/GASP for GAEC+CGC+QPBO, and https://github.com/LPMP/LPMP for
GAEC+KLj, ICP+GAEC+KLj and ICP+GAEC+KLj

42

https://github.com/abailoni/GASP
https://github.com/LPMP/LPMP

2.5. Experiments

for each instance of this dataset through the exact methods. The results are shown in Table 2.3.
The table structure is similar to that of Table 2.2, with the exception that the rows correspond to
heuristics. Each table cell depicts two average statistics over 20 random networks generated from
the same parameter set. Both compute the average proportion of optimal solution discovery by the
considered heuristics, but they differ from the way the optimal solution discovery is computed. For
each generated network, the first one computes an average optimality value over 20 repetitions,
whereas the second one (shown in parenthesis) is a binary value and equals to 1 when a heuristic
finds an optimal solution at least once out of its 20 repetitions, 0 otherwise. Clearly, the first statistic
shows how persistent the optimal solution discovery is over 20 repetitions. It gets 1, when an optimal
solution is reached for each repetition.

We can summarize the results of the Dataset 2.2 in three points. First, graph density d slightly
affects the performances (not shown in the table), in that the frequency of finding an optimal so-
lution over 20 repetitions slightly worsens when d decreases. But, the value of d does not change
the overall trends observed, though. Second, when qm and qneg increase jointly, it is more chal-
lenging for heuristics to find an optimal solution. Finally, we identify three different types of heuristic
performances: 1) those usually finding an optimal solution only on slightly imbalanced networks
(GAEC+CGC+QPBO, GAEC+KLj, ICP+GAEC+KLj, MP+GAEC+KLj), 2) those usually finding an
optimal solution, but not persistently over 20 repetitions (ILS, GRASP, MLMSB), and 3) those per-
forming well overall (TS, VNS, SA). Of course, as we show later with Dataset 2.4, a method which
is a type 3 on small networks does not necessarily get the best performance on larger networks, as
increasing the graph order introduces other challenges in the solution improvement process. Nev-
ertheless, if a heuristic hardly finds an optimal solution, even in these networks, this would put into
question its underlying perturbation mechanism to escape from local optima. Indeed, this indicates
that its performance severely depends on the quality of the first solution(s) generated. When this
quality is not good at start, it is difficult to reach optimality (or high-quality solution in case of large
networks) at the end.

We now compare the considered heuristics based on the Dataset 2.3. Remember that the con-
sidered networks are generated by incrementally perturbing structurally balanced signed networks
thanks to the definition of stability range [176]. For this reason, this dataset allows us to answer when
a heuristic starts to fail in finding an optimal solution. This aspect was missing in Dataset 2.2. Only
the results for n = 150, l0 = 6 and d = 0.5 are shown in Figure 2.2, as the other values give similar
results. In this figure, each subfigure corresponds to a different heuristic. The x-axis represents the
proportion of the perturbed edges with respect to the initial perfectly balanced signed network and
this simply amounts to the detected graph imbalance I(P). The y-axis is log-scaled and represents
the gap to the considered qm value (equivalently, gap to the optimal I(P) value) in percentage. Since
we ran heuristics in 20 repetitions, we show the results in a shaded region to illustrate the minimal
and maximal gap values obtained.

43

Part , Chapter 2 – CC methods

SA TS

MLMSB GAEC+CGC+QBPO

VNS GRASP ILS

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

0.1

1.0

10.0

0.1

1.0

10.0

0.1

1.0

10.0

qm (perturbation)

G
ap

 to
 q

m
 (

%
)

GAEC+KLj
MP+GAEC+KLj
ICP+GAEC+KLj

maximal value
for qm=0.35

minimal value
for qm=0.35

Figure 2.2 – Evaluation of the considered 10 heuristics based on the random networks from Dataset
2.3 for n = 150, l0 = 6 and d = 0.5. Each subfigure corresponds to a different heuristic. The x-axis
represents the proportion of perturbed edges with respect to the initial perfectly balanced signed
network and this simply amounts to the detected graph imbalance I(P). The y-axis is log-scaled
and represents the gap to the considered qm value (equivalently, gap to the optimal I(P) value)
in percentage. Since we ran heuristics in 20 repetitions, we show the results in a shaded region to
illustrate the minimal and maximal gap values obtained.

By looking at the results of Figure 2.2, we observe that TS, GAEC+KLj and the rounding meth-
ods ICP+GAEC+KLj and MP+GAEC+KLj always find an optimal solution, and the others fail at least
once over the 20 repetitions. The performance of TS is as expected, since it belongs to type 3 in the
typology identified for Dataset 2.2. However, the results of GAEC+KLj and its rounding methods are
surprising, because they belong to type 1. More than that, the performance of ILS is also surpris-
ing, as it usually finds at least one optimal solution out of 20 repetitions in Dataset 2.2. However, it
never finds any in this dataset, starting from qm = 0.3. To summarize, all these observations high-
light that both Datasets 2.2 and 2.3 are complementary, since each can reveal different heuristic
performances. In the literature, the heuristics are usually compared based on large real-world net-

44

2.5. Experiments

works. However, considering Datasets 2.2 and 2.3 seems to be also beneficial when evaluating the
performances of the heuristics.

Slashdot
n = 82, 144
|E| = 498, 532

Wikipedia
Election
n = 8, 298
|E| = 99, 917

E. coli
n = 1, 461
|E| = 3, 215

Yeast
n = 690
|E| = 1, 080

Macrophage
n = 678
|E| = 1, 425

EGFR
n = 329
|E| = 779

GAEC+KLj 117,599 44,370 287 36 323 197

MP+GAEC+KLj 117,599 44,351 287 36 323 197

ICP+GAEC+KLj 117,599 46,651 281 36 326 209

SA 376,748 68,031 297 70 356 194

TS 68,912 47,239 306 37 341 203

VNS 69,212 61,100 280 36 324 192

GRASP 69,255 34,460 315 37 337 203

ILS 69,157 35,194 360 37 327 195

MLMSB 68,927 45,002 266 41 316 195

Table 2.4 – The best imbalance I(P) detected by the considered 10 heuristics within the limit of 2
hours (4 hours for Slashdot due to its very large size) based on the six real-world signed networks
from Dataset 2.4.

Finally, we evaluate the considered heuristics based on Dataset 2.4, which includes six real-
world signed networks. We exclude GAEC+CGC+QPBO from the comparison, since it does not
scale well. For each network, we ran the remaining 10 heuristics twice with a time limit of 2 hours.
For Slashdot, the time limit was set to 4 hours due to its very large size. The results are shown
in Table 2.4. Overall, we see that our previous observations do not hold for these networks, since
there is not a single method, or a heuristic category, which always gives the best results. Even those
belonging to type 1 in the typology identified in Dataset 2.2 can be beneficial, depending on the
network at hand. The most surprising result is the performance of SA in general. Its performance is
worse than the others in all networks but EGFR and E. coli. In particular, it appears that it does not
deal well with very large networks with a time limit of 2 hours, such as Slashdot. Another noticeable
result is related to both rounding methods ICP+GAEC+KLj and MP+GAEC+KLj. In the experiments
with Datasets 2.2 and 2.3 they do not seem to improve GAEC+KLj. Nonetheless, we see from
Table 2.4 that both methods can occasionally improve GAEC+KLj, as for the Wikipedia Election and
E. coli networks.

To conclude this part, we evaluated the considered heuristics on three different datasets of differ-
ent sizes. We empirically showed that all these datasets are useful in evaluating the performances
of the heuristics. We can conclude that TS and VNS seem to be the best method as a primal heuris-
tic in the design of an exact method to provide an upper bound. However, when it comes to larger
networks, it is better to take all or most of these heuristics into consideration.

45

Part , Chapter 2 – CC methods

2.6 Conclusion

In this chapter, we first reviewed the state-of-the-art on exact methods and a large number of
heuristics proposed for the CC problem, and then assessed their performances on a collection of
signed networks. In our experiments related to exact methods, we showed that the choice of the
formulation and its resolution method depends on the characteristics of the network at hand. When
a network is sparse (resp. dense), B&C(Fe(G)) (resp. B&C(F ?v (G))) better performs. Moreover, for a
medium graph density, B&C(F ?v (G))) is less sensitive to increase in n than the other methods, hence
preferable in this case. In our experiments related to heuristic methods, we showed that TS and VNS
seem to be the best methods to be used as a primal heuristic (i.e. to provide upper bounds) in the
design of an exact method. However, when it comes to larger networks, it is better to take all these
heuristics into consideration.

46

Chapter 3

CHARACTERIZING MEASURES FOR

PARTITION COMPARISON

3.1 Introduction . 48
3.2 Literature Survey . 49

3.2.1 Desirable Properties . 50
3.2.2 Partition Transformations . 53
3.2.3 Assessment Methods . 56

3.3 Proposed Framework . 58
3.3.1 Characterization of the Measures . 58
3.3.2 Regression Analysis . 63

3.4 Experimental Setup . 66
3.4.1 Selected Measures . 66
3.4.2 Dataset and regression assumptions . 67

3.5 Results and Discussion . 68
3.5.1 Visual inspection . 68
3.5.2 Relative importance analysis . 70

3.6 Conclusion . 76

3.1 Introduction

The problem of comparing two partitions of the same set occurs in a number of situations. The
most widespread is probably the assessment of clustering (or cluster analysis) and graph partition-
ing results. In the rest of this chapter, we will approach this problem from the perspective of graph
partitioning, for the sake of consistency with this thesis. In such context, one wants to compare the
estimated partition of a network with some ground-truth also taking the form of a partition. Alterna-
tively, one has computed several such estimations, and wants to compare them to each other.

47

Part , Chapter 3 – Characterizing measures

This comparison is traditionally performed through some measure able to quantify the similar-
ity between two such partitions. These are called external measures, as they allow comparing the
output of the partitioning method to an independent solution (generally the ground truth). In the rest
of this chapter, we will simply call them measures, as there is no possible confusion in our context.
Examples of such measures include Adjusted Rand Index (ARI) [114], Normalized Mutual Informa-
tion [205] and so on. There are many ways to formalize what one means by "similar", resulting in
the proposition of a very large number of measures over the years [225, 163]. In turn, this situation
inevitably leads to the publication of a number of surveys aiming at reviewing and comparing all
these measures [223].

In the literature, authors proposing new external measures follow a relatively standard workflow.
First, they list some mathematical properties which they deem desirable in such measures, e.g.
not being sensitive to the number ` of modules in a partition [184, 189, 95]. They then show that
existing measures do not possess these properties. Finally, they solve this issue by proposing a new
measure having these properties, or modifying an existing one to this end.

There are mainly two ways to check whether a measure has a given property. The most robust
approach is to proceed analytically, through a mathematical proof (e.g. [162]). However, this task
requires certain skills, and can be difficult or even impossible depending on the considered measure
and property. Moreover, the proof is generally not transposable to other measures and properties,
which makes it a one-shot effort. This is why the second approach, which is empirical, is much more
frequent in the literature (e.g. [186, 189]). It consists in applying some predefined transformations to
certain partitions, both designed in a way that is related to the property of interest, and to study how
the measure reacts to these perturbations by using it to compare those partitions. For instance, to
assess the sensitivity to `, one could increase the number of modules in the transformed partition,
and check how this affects the measure values.

Each application case is likely to bring its own constraints and requirements, so there is no such
thing as a "best" measure that would fit all situations. One trait considered as positive in one case
could very well be perceived as a drawback in another. However, due to the profusion of available
measures, selecting the most appropriate one for a given situation is a challenge for the end user. As
mentioned before, some survey articles try to compare them, but they focus only a small number of
measures [223] and/or properties [3]. More importantly, the comparisons they perform are specific to
these measures and properties [223], preventing the end user from including additional measures
or properties in the comparison. In practice, the problem of selecting an appropriate measure to
compare partitions is generally overlooked, and researchers tend to follow tradition and use the
measures frequently appearing in the literature of their field.

In this chapter, we propose a new framework to solve this issue. It is based on the empirical
approach mentioned above, and consequently relies on a set of predefined partitions and parametric
partition transformations. We study the effect of each parameter on the measure through multiple

48

3.2. Literature Survey

linear regression, in order to produce results that the end user can interpret. Our framework is
not tied to any specific measure, property, or transformation, so it can be applied to any situation.
We illustrate its relevance by applying it to a selection of popular measures. In addition to these
contributions, we review the literature for desirable properties and the partition transformations used
to test their presence, and propose a typology of the latter.

Contributions. The following content is based on our work published in IEEE Access [23]. This
chapter makes the following contributions:

1. Method. We propose a new framework to study the effect of partition parameters on the
measures through multiple linear regression.

2. Evaluation. We evaluate our framework on a synthetic dataset and a selection of popular
external measures, and show its usefulness by extensively interpreting the obtained results.

The rest of this chapter is organized as follows. First, in Section 3.2, we review the literature
on external measures, focusing on desired properties, partition transformations, and property as-
sessment methods. Next, in Section 3.3, we introduce our own framework designed to study and
compare measures and their properties. We put it into practice on a selection of widespread mea-
sures in Section 3.4 and discuss its results in Section 3.5. Finally, we review our main findings in
Section 3.6, and identify some perspectives for our work.

3.2 Literature Survey

In this section, we perform a review of the literature, focusing on three aspects directly related to
our work. We first discuss the desirable properties used to characterize measures (Section 3.2.1).
We then survey the partition transformations proposed to empirically show the absence or presence
of these properties (Section 3.2.2). Finally, we give an overview of the evaluation methods used for
assessing and comparing the measures based on these transformations (Section 3.2.3).

3.2.1 Desirable Properties

As mentioned in the introduction, measures can be characterized in terms of a number of dis-
tinct desirable properties. There are many of them, sometimes with minor differences, and the same
property is likely to appear under different names and forms in the literature: this makes it difficult to
list them exhaustively and compare them. Here, we focus on the most frequently used, and propose
a typology to ease their comparison. These properties are listed in Table 3.1, with a short descrip-
tion, as well as examples of popular measures known to possess them. When the bibliographic
sources explicitly name the property, we use the same name in the table. Otherwise, we propose

49

Part , Chapter 3 – Characterizing measures

a name based on its description. In the following, we distinguish three main categories, depend-
ing on whether the property is related to the measure interpretation, to the way it handles random
partitions, and to its sensitivity to certain characteristics of the partitions.

3.2.1.1 Interpretation-Related Properties

The first category of properties is related to the interpretability of a measure, i.e. how easily its
values can be understood by a human operator. This concerns the interpretation of a single value,
i.e. what its magnitude means, but also the comparison of several values, and the interpretation of
their difference.

Understandability [61, 191, 163, 177] means that the measure has a straightforward interpreta-
tion. For instance, the Rand index [187] (RI) is the proportion of vertex pairs for which both partitions
agree. Other measures have less direct interpretations, for example the Standardized Mutual Infor-
mation [191] (SMI) is a normalized version of the mutual information corresponding to the number
of standard deviations the mutual information is away from the mean value, for a specific null distri-
bution. At the other end of the spectrum, composite measures such as the F -measure [25] do not
have a straightforward interpretation, as they combine other measures. This property is generally
obtained by construction.

The Fixed Range property [225, 229, 223] means that the measure is designed so that its values
are restricted to a predefined interval, which is often [0, 1]. This property eases the comparison of
scores obtained on different partitions.

It is also the case of the Value Validity property [137]. Let m1, m2, m3 and m4 represent four
numerical values obtained with some external measure for several pairs of partitions. In addition to
order (size) comparisons such as m1 > m2, when a measure possesses the Value Validity property,
the difference between several pairs of partitions, such as m1 − m2 > m3 − m4 or m1 − m2 >

k(m3 −m4) (for constant `), can also be interpreted.
Convex Additivity [161, 162] concerns the case where one partition is a refinement of another

partition (i.e. there is a hierarchical relationship between them). With a measure possessing this
property, the difference in overall score can be expressed as a weighted sum of the score differences
between individual modules.

3.2.1.2 Handling of Independent Partitions

The second category of properties focuses on how two independent partitions should be treated
by the measure.

The Constant Baseline [225, 223, 191, 186, 2] property deals with statistical independence,
i.e. the case where one compares two partitions sampled independently at random. This property
specifies that in this situation, the measure should return a constant value. In practice, this constant

50

3.2. Literature Survey

value is very often zero, in particular when the maximal value is 1 (cf. also the Fixed Range property),
see for instance the Adjusted Rand Index [114] (ARI).

The traditional approach to bring this property to an existing measure is to apply a so-called
correction for chance. It consists in subtracting to the measure the score estimated for two indepen-
dent partitions, and possibly in normalizing the resulting expression, in order to get a fixed range.
This is how Hubert & Arabie derived their Adjusted Rand Index [114] (ARI) from the original Rand
Index [187], but the method had been used before in other contexts [102, 48]. Note that there is a
number of ways to define the null model used to estimate the measure score under the assumption
of independent partitions [98], with no consensus emerging regarding which of these models is the
most appropriate.

Certain authors consider two independent partitions as the worst possible case [184], meaning
that the resulting score should correspond to the measure minimal value. On the contrary, oth-
ers make a distinction between independence and worst case [233, 97], a property that is called
Baseline-Minimum Distinction. They generally place the constant baseline midway between the re-
spective scores of the worst and base cases. This is for instance the case of the ARI, which ranges
from −1 to +1, 0 being the constant baseline. In practice though, cases with scores lower than the
constant baseline are rare, and have not been studied much in the literature [233].

3.2.1.3 Sensitivity to Partition Characteristics

The last category of properties concerns the sensitivity of the measures to certain characteristics
of the compared partitions. The main such characteristics are the number of modules, the number
of vertices, the size of the modules, and various descriptors allowing to express how similar the
partitions are. These characteristics are often considered separately, and sometimes several at
once.

In this category, the most frequent property is probably `-invariance. Certain measures such
as the Normalized Mutual Information tend to favor partitions depending on the number of modules
they contain when compared with a reference partition [223], a bias that a number of authors want to
avoid [225, 222, 232, 192, 9, 175]. For example, suppose that one compares a ground truth partition
to two estimated partitions differing only in their number of modules. A biased measure will reach a
noticeably higher value for one of these partitions due to this single difference.

By comparison, the Discriminativeness property relies on the difference in number of modules
between the compared partitions [186, 9, 112]. It states that the measure score should decrease
when this difference increases. Put differently, the score should be larger when both partitions con-
tain similar numbers of modules than when they differ on this point.

The n-invariance property is analogous to the `-invariance, except it is defined relative to the
number of vertices in the partition [162, 225, 229], instead of the number of modules. It allows
comparing measure scores computed on graphs of different sizes, as n-invariant measures are not

51

Part , Chapter 3 – Characterizing measures

affected by such changes.

Authors do not agree on whether a measure should be sensitive or not to module size. This
disagreement concerns partitions constituted of modules which are imbalanced in terms of size, i.e.
containing large and small modules. Certain authors want the measure to focus mainly on the larger
modules, as they consider smaller ones as negligible [229, 111, 166]. Others adopt the Insensitivity
to Module Size property and assume that all modules are equally important regardless of their size,
and that the measure should not be sensitive to module size imbalance [184, 189, 95].

Finally, some properties focus on how the measure should quantify the differences between
pairs of partitions. Suppose we compare one primary partition to two different secondary partitions,
resulting in two scores. The Monotonicity property states that the score of the most similar pair of
partitions should be consistently higher or smaller (depending on whether the measure expresses
similarity or dissimilarity) [189, 230, 97]. In addition, the Proportionality property states that the differ-
ence between these scores should be proportional to how close the secondary partitions are [151].
On the contrary, certain authors expect the measure score to rapidly change in presence of even
the smallest differences, which corresponds to a non-linear behavior [184]. More generally, some
authors want the measure to be sensitive to small differences [94, 162], whereas some others, on
the contrary, want the measure to ignore what are considered as marginal differences [95]. It is
important to stress that these are very generic properties, as the notion of proximity between two
partitions can be understood in a number of ways.

3.2.1.4 Discussion

As explained in the introduction, and as summarized in Table 3.1, certain of the properties de-
scribed in this section are obtained by construction, or verified through an analytical proof, whereas
others are shown empirically, by applying specific transformations to a set of partitions. This is gen-
erally the case when the mathematical proof is impractical or too difficult to make.

In this article, we adopt an empirical approach, therefore we focus only on the latter type of prop-
erties. This includes the properties of our second (Comparison with Random Partitions) and third
(Sensitivity to Partition Characteristics) categories. The framework that we propose does not neces-
sarily handles the properties exactly as they are described here: we sometimes had to reformulate
them to ease experiments and make the framework more generic. It relies on a set of variables
similar to those used in the literature to define these properties (number of modules, number of ver-
tices, module size distribution, etc.). Our framework is able to handle properties on which authors
disagree, such as the sensitivity to module size distribution or to small differences.

52

3.2. Literature Survey

Table 3.1 – Overview of the main desirable properties appearing in the literature, with examples of
measures possessing them, and transformations used for their assessment.

Category Desirable Property Example mea-
sures

Related Transformations

Interpretation-
Related

Fixed Range [225, 229, 223] NMI [205],
NVI [223]

— None (proof)

Convex Additivity [162] RI [187],
Mirkin [167],
VI [162], χ2 dis-
tance [114]

— Splitting into unequal
parts [162] (proof)

Understandability [61, 191,
162, 177]

RI [163], JI [163],
SMI [191], Split-
Join [61]

— None (proof)

Value Validity [137] MIc [137] — None (proof)
Handling
of Inde-
pendent
Partitions

Constant Baseline [225, 223,
191, 186, 2]

ARI [114],
AMI [222],
rNMI [232],
RMI [175],
FNMI [9],
cNMI [139]

— Fragmenting every module [184]
— Random shuffling [222, 191, 189,

192, 9, 98, 97]

Baseline-Minimum Distinc-
tion [233, 97]

ARI [114],
SMI [191]

— Random shuffling [97]

Sensitivity
to

Partition
Charac-
teristics

`-invariance [225, 222, 232,
192, 9, 175]

ARI [114], VI [162] — Random shuffling [222, 232, 192,
9, 97]

— Splitting into singleton mod-
ules [175]

— Swap with single module [189]
n-invariance [162, 225, 229] VI [162], FMI [94],

NMI [205],
ARI [114]

— None (proof)

Discriminativeness [186, 9,
112]

ARI [114],
GNMI [9],
FNMI [9]

— Merging whole modules [186,
9] & Splitting into unequal
parts [186, 9]

Sensitivity to Small Differ-
ences [184, 94, 162, 95]

VI [162],FMI [94] — Swap with all modules [184]

Insensitivity to Module
Size [184, 189, 95]

PSI [189] — Swap with single module & re-
move [189]

— Fragmenting a single mod-
ule [189]

— Random shuffling [111, 226]
Monotonicity [189, 230, 97] PSI [189], Element-

centric [97]
— Merging a whole module with a

part of other module [189]
— Merging parts of different mod-

ules [60, 193]
— Merging whole modules & split-

ting into equal parts [230]
— Swap with single module [189]
— Swap with all modules [189]
— Random shuffling [97]

Proportionality [162, 151]
vs. Non-linearity [184]

Kappa index [151] — Random shuffling [151]

53

Part , Chapter 3 – Characterizing measures

3.2.2 Partition Transformations

Like for the desired properties, the literature exhibits a large number of different partition trans-
formations, which are not always named, and when they are, not always similarly. This makes it
difficult to identify and compare them. Here, we focus on the most frequent ones and use their most
consensual names. Table 3.1 indicates the transformations used in the literature to assess the pres-
ence of each listed property. One can distinguish two types of partition transformations: random vs.
deterministic.

3.2.2.1 Random Transformations

Random transformations consist in randomly distributing all the vertices of the reference parti-
tion over a number of modules to form the new partition. These transformations mainly differ in the
probability distributions they rely upon. Such processes can be seen more as shuffling than trans-
formations, as the original partition has no effect on the result. In essence, the goal is to obtain a
partition as independent as possible from the original one. They are mainly used to check the exis-
tence of the Handling of Independent Partitions category of properties [222, 191, 189, 192, 9, 98,
97]. But several works leverage random transformations to look for other desirable properties, too.
Certain authors force the shuffled partition to have various numbers of modules and imbalanced
module sizes, in order to check the `-invariance [222, 232, 192, 9, 97] and Insensitivity to Module
Size [189, 226] properties, respectively. Others shuffle the original partition with an increasing level
of randomness in order to test for the Monotonicity [97] and Proportionality [151] properties.

3.2.2.2 Deterministic Transformations

Deterministic transformations are used more frequently in the literature, probably because they
offer a better control of the changes applied to the original partition. We distinguish five categories
of such transformations. We call the first one Remove, and it consists in deleting some vertices from
a module without erasing it completely. Although it is used to check the Insensitivity to Module Size
property in the literature [189], it has the drawback of affecting simultaneously two aspects of the
partition: module size, and number of vertices n. For this reason, it is not frequently used.

The second transformation category is Split, which consists in dividing a module into multiple
smaller parts. Two variants mainly appear in the literature: splitting into equal [162, 163] vs. unequal
parts [162, 163, 186, 9]. There is also a specific case of the first variant, consisting in splitting a
module into only singleton modules [187, 188, 175]. This transformation category is used in the
literature to test several distinct properties. Hierarchical splits (i.e. refinements of a partition) consti-
tute an important part of the small experiments proposed by Meilă [162, 163], and allow to check
the Convex Additivity property. Reichart and Rappoport [188] compare a reference partition to two
estimated partitions differing mainly in their number of modules: slightly perturbed reference vs.

54

3.2. Literature Survey

singleton modules. They expect that singleton modules are less similar to the reference, and a mea-
sure should not favor singleton modules in such a case (cf. `-invariance property). Rabbany et al.
[186] apply repeated split operations onto the ground truth of several real-world networks and then
compare them to check the Discriminativeness property.

Transformation Merge is the reciprocal of Split, as it gathers nodes belonging to different mod-
ules into the same module. It also appears under three forms: merging a whole module with a whole
other module [162, 186, 9, 230] vs. a part of another module [189], and merging parts of differ-
ent modules [193]. Note that the last two transformations are not pure, in the sense that a Split is
performed before the Merge. Regarding the desirable properties, since Merge is the reciprocal of
Split, all the properties tested through Split can be also be tested by using Merge. On top of that,
some authors leverage Merge to test for Monotonicity, in two different ways: Rezaei and Fränti [189]
enlarge incrementally a specific module by moving vertices from the other modules, whereas Rosen-
berg [193] merge same-sized parts of each module to create new modules, which they consider as
noise.

The next two transformations can be viewed as combinations of Split and Merge, and they are
also frequently used in the literature. Swap consists in interchanging a number of vertices between
pairs of (generally equal-sized) modules. In practice, this operation is usually repeated for each
module, using one of two different forms: each module swaps vertices with only one different mod-
ule [162, 189] vs. all other modules [162, 184, 189]. In the literature, the first form is mainly used with
a range of the number of modules to check the `-invariance property. In the experiments of Rezaei
and Fränti [189], the authors keep the module sizes fixed, independently from the number of mod-
ules. However, this increases the number of total vertices, which arguably introduces a side effect
in their experiments. The second form induces more perturbation of the original partition compared
to first one, and the experiments in the literature mainly focus on the desirable properties related to
this aspect, which are Monotonicity [189] and Sensitivity to Small Differences [184].

Finally, the idea behind the Fragment transformation is that vertices belonging to the same mod-
ule in the original partition are placed in different modules in the transformed partition, as much as
possible. Two variants mainly appear in the literature: fragmenting a single module vs. all of them.
The former [189] is only used to change marginally the underlying partition structure, whereas the
aim of the latter [187, 184, 111] is to obtain two maximally different partitions. In the literature, these
variants are used to check the Insensitivity to Module Size [189, 111] and Constant Baseline [184]
properties, respectively.

3.2.2.3 Discussion

Besides these categories, the literature also contains transformations which can be expressed
as combinations of some of these categories [230, 186, 189]. It is important to stress that transfor-
mations are typically defined ad hoc, specifically to test for a particular property of interest, and on

55

Part , Chapter 3 – Characterizing measures

some predefined partitions. For this reason, each author adopts a different angle, and it is hard to
find two articles with the exact same methodology, targeting the exact same desired properties. In
turn, this makes it difficult to compare transformations and measures from one paper to the other.
To solve this issue, there is clearly a need for a unified view.

Another important limitation of the existing work is the lack of control over the original partition
and its transformation. Some authors use a single parameter, for example the number of modules
in the transformed partition [60, 191]. However, there are other aspects likely to affect the outcome,
such as the number and size of the modules in the original partition, or the intensity of the trans-
formation, and they are not taken into account simultaneously in the literature. This results in a
relatively incomplete assessment of the measure properties.

In Section 3.3.1.2, we try to solve both these issues, by proposing a unified set of transformations
designed to cover most of the literature, and by defining a set of parameters to get the appropriate
level of control.

3.2.3 Assessment Methods

After having described the properties that authors want to find in partition comparison measures
and the related partition transformations, we now turn to the methods used in the literature to check
the presence or absence of these desired properties based on these transformations. We distinguish
two families of approaches: visual inspection vs. statistical methods, more specifically correlation
and regression.

3.2.3.1 Visual Inspection

Visual inspection is perhaps the most intuitive way to characterize the behavior of a measure.
Typically, one plots the value of the measure as a function of some parameter used to control the
partition transformation, e.g. the number of modules produced. Authors usually expect a monotonic
trend, e.g. proportional increase or decrease in [97]. Some are more specific and look for a specific
pattern, e.g. the so-called knee shape used in [186] for a parameter controlling the number of mod-
ules in the transformed partition. It requires the function to reach its maximum when the numbers of
modules in the original and transformed partitions match, and to decrease when there are too few
or too many modules in the transformed partition.

There are mainly two limitations to visual inspection. First, it is not an objective method, so
limit cases can be difficult to judge. Second, it can handle only a very limited number of distinct
parameters at once, especially if one wants to compare several measures and consider several
properties, or assess how parameters interact. Statistical methods allow to solve the first issue, by
providing an objective score. There are mainly two types of statistical tools used in the literature to
assess measure properties: correlation and regression.

56

3.2. Literature Survey

3.2.3.2 Correlation

A correlation coefficient quantifies the dependence between two random variables. In our con-
text, and like with visual comparison, these variables are on the one hand the score computed with
the measure of interest, and on the other hand a parameter controlling the partition definition or
transformation. Many authors [112, 233] use the popular Pearson’s product-moment correlation co-
efficient, which measures the linear dependence between the variables. Others use a rank-order
correlation coefficient such as Kendall’s (e.g. [229]) or Spearman’s (e.g. [186]), which relies on the
rank of the values rather than on the values themselves. Compared to Pearson’s, such coefficients
are able to detect a non-linear dependence, and can thus lead to different conclusions [186].

Besides objectivity, another advantage of correlation coefficients over visual inspection is that
they summarize the dependence through a single value, which allows representing a number of
pairwise relationships in a single table. However, this approach too becomes cumbersome when one
wants to consider simultaneously a certain number of parameters and/or measures [60]. Moreover,
multiple pairwise correlation values are not able to capture the potential interactions between the
parameters (i.e. changing one parameter value may affect the partition or transformation feature
controlled by another parameter).

3.2.3.3 Regression

Regression analysis does not suffer from this limitation, though. In its simplest form, it consists in
describing the functional relation between a dependent variable and an independent variable [5]. In
our context, those are the considered measure and a parameter of interest, respectively. However,
multiple regression allows considering several independent variables at once, i.e. several parame-
ters in our case. Another advantage over correlation is that the regression model can be used not
only for interpretation, but also for prediction purposes [153].

To the best of our knowledge, the work of Saxena & Navaneetham [201] is the only one that uses
multiple regression analysis to assess the similarity of external evaluation measures. The authors
study the effects of three input parameters (module size, number of dimensions and number of
modules) on a single measure (the ARI). On top of the regression, they also assess the significance
of these effects, and compare the relative importance of the parameters through their associated
regression coefficients.

As we will see in Section 3.3.2.2, our method goes in the same direction as Saxena and Nava-
neetham [201], but with a more complex model, for the following reasons. First, the set of transfor-
mations that we propose in Section 3.3.1.2 requires to handle more parameters, and therefore to
include more independent variables in the model. Second, not only do we study the direct effect of
each parameter on the measure, but also their interactions. Third, we consider several distinct mea-
sures, and we want to assess and compare the relative importance of the effects that the parameters

57

Part , Chapter 3 – Characterizing measures

have on them, which requires a specific processing.

3.3 Proposed Framework

In this section, we describe the framework that we propose to analyze the behavior of a set of
considered measures. It is independent from these measures, so we describe it in a generic way,
for any selection of measures.

Our framework is constituted of two parts. The first one consists in characterizing the considered
measures through the partition transformation-based principle mentioned in the Introduction (Sec-
tion 3.3.1). The second part is to perform an appropriate regression analysis in order to interpret
these characteristics and compare the measures (Section 3.3.2).

3.3.1 Characterization of the Measures

Our objective is to quantify how similar two partitions are through several external measures,
under different scenarios, and then to assess how the resulting values are affected when one of the
partitions undergoes systematic and controlled changes. Unlike the common approach taken in the
literature, we generate the necessary data in a fully parametric way in order to get a greater control.
For the same reason, our approach is deterministic.

Number of elements (n)

Number of modules (ℓ)
Create
Original
Partition

... Transformation ...

Original Partition

Compare

Transformed Partition

Transformation type (t)

Transformation
intensity (q)

Measure (m) Dissimilarity
Score

0

1

C1

...

C2

Cℓ

Cℓ'

C1
C2

Cℓ

Cℓ+1
Cℓ+2

 Module size heterogeneity (h)

Figure 3.1 – General Framework, with parameters represented in orange. For illustration purposes,
the ` New Modules transformation is used to produce the output partition with ` new modules.

Our three-step method is summarized in Figure 3.1, and detailed in the rest of this section. The
first step is to create a base partition, called original partition, and controlled by three parameters
(Section 3.3.1.1). The second step consists in applying to this partition a transformation controlled by

58

3.3. Proposed Framework

two other parameters (Section 3.3.1.2). This leads to a second partition, which we call transformed
partition. Finally, the third step is to compute the selected external measures in order to assess how
similar the original and transformed partitions are (Section 3.3.1.3). The whole process is repeated
with an adequate number of different parameter values, in order to cover the parameter space.

3.3.1.1 Creating the Reference Partition

We control the generation of the reference partition through three parameters: the number of
vertices n, the number of modules ` and the heterogeneity of the module sizes h. The first two
parameters allow to control the most basic aspects of the partition. These are frequently targeted in
the literature, albeit not always through explicit parameters.

The last one is much more uncommon, and lets us control how much module sizes vary in the
same partition, and therefore to get more realistic module sizes. Similar concepts appear in the
literature, for example when dealing with balanced vs. imbalanced module sizes, but not under the
form of such a convenient parameter, to the best of our knowledge. It ranges from 0 to 1. When
h = 0, all modules have the same size (i.e. so-called balanced module sizes), whereas they get
imbalanced when h > 0, and the differences between their sizes increase when h gets closer to
1. More formally, the smaller module has a size of s1 = α and the ith smallest module has a size
of si = si−1 + β, whereas α and β depend on `, n and h. In particular, β is proportional to h. See
Appendix A.2 for details. This choice is a form of compromise allowing to obtain very heterogeneous
module sizes even for a small n and/or a large `.

3.3.1.2 Applying the Parametric Transformations

After having generated the original partition at the previous step, we now want to change it in
order to get the transformed partition. Based on our review of the existing work (Section 3.2.2), we
propose a set of five parametric transformations aiming at fulfilling several constraints. We want
to cover most of the transformations used in the literature, in order to deal with as many desired
properties as possible, while keeping our transformations as simple (and thus interpretable) as
possible and avoiding overlap between them. We discard Remove, as it changes n, which in our
context is a parameter of the first step of our process. As mentioned before, all our transformations
are deterministic in order to offer better control.

We note t the nature of the transformation, and use it later as a categorical variable during the
regression analysis. We define a parameter q to specify the intensity of the transformation, i.e. the
proportion of vertices it involves. It ranges from 0, meaning no transformation at all, to 1, in which
case the transformation involves all vertices. We want to give the same importance to all modules
when applying the transformation, which means that it affects all of them. However modules may
have different sizes, depending on the heterogeneity of module sizes h. To deal with this situation,

59

Part , Chapter 3 – Characterizing measures

we make the number of vertices concerned by the transformation in each module proportional to
the module size.

The five transformations that we propose are illustrated in Figure 3.2, on two example reference
partitions (Subfigure 3.2a). Both contain n = 72 vertices, represented as numbered squares in the
figure, and distributed over k = 3 modules, represented by colors. However, the top partition is
balanced (h = 0) whereas the bottom one is moderately imbalanced (h = 0.5). Each other subfigure
shows the partitions resulting from a specific transformation with intensity q = 1/6. Note that all
these transformations allow to test by construction whether or not a measure is sensitive to some
framework parameters. On top of that, they can be used to test certain desirable properties from
Section 3.2.1, as explained in the rest of this section and summarized in Table 3.2.

3.3.1.2.1 ` New Modules, t`nm

This transformation takes a predefined proportion of each module from the original partition, and
creates a new module with these vertices, resulting in ` additional modules (Subfigure 3.2b). The
effect of this proportion on the transformed partition is mirrored in 0.5. For instance, transforming
40% and 60% of the vertices give the same transformed partition. For this reason, we scale q so that
it corresponds to twice this proportion, which allows us to keep the same [0; 1] range as for the other
transformations.

It is worth noting that the transformed partition is a subpartition of the original one, in the sense
that each one of its modules is included in one original module. Parameters ` and h therefore affect
the way the created submodules relate to the original modules. This transformation consequently
allows testing for the Convex Additivity property, which states that a measure should not be affected
when comparing refinements of the same partition. Concretely, we conclude that a measure has
this property if it is not affected by ` and h when applying this transformation.

3.3.1.2.2 Singleton Modules, tsm

All the vertices affected by this transformation become singletons, i.e. single-vertex modules (Sub-
figure 3.2c). This can be viewed as an extreme form of partition refinement, in the sense that each
such singleton module is fully part of one of the original modules. Therefore, like ` New Modules,
but to a lesser extent, this transformation allows testing the Convex Additivity property through pa-
rameters ` and h. Moreover, it allows checking the Sensitivity to Small Differences by considering
the effect of parameter q. To be consistent with the nature of this property, it is necessary to focus
on relatively small values of q (i.e. a limited transformation magnitude), though.

Parameter q can also be used to assess the Discriminativeness property, as increasing q largely
increases the number of modules in the transformed partition. Therefore, a measure which is af-
fected by an increasing q is likely to discriminate more between transformed partitions whose num-

60

3.3. Proposed Framework

ber of modules is closer to ` (and hence to possess this property [186]). This is particularly true
when the measure scores cover the whole [0; 1] range. Parameter ` can also be used, indirectly, to
check the `-invariance property. Indeed, the number of modules created by this transformation does
not depend on `, and is generally much larger than `. So increasing ` changes noticeably the num-
ber of modules in the original partition, but not in the transformed one. Consequently, a measure
which is marginally or never affected by changes in ` when undergoing this transformation can be
considered as `-invariant.

3.3.1.2.3 1 New Module, tonm

Like the previous transformation, this one takes a proportion of each original module, but it gathers
these vertices to create a single module instead of ` distinct ones (cf. Subfigure 3.2d). If we switch
the original and transformed partitions, this transformation can alternatively be seen as the removal
of a same-sized module, i.e. distributing proportionally the vertices of a single module over the oth-
ers. This is similar to the transformations used in [189] to test for the Insensitivity to Module Size
property. In our case, if increasing ` results in a substantial change in the measure score (all other
things remaining equal), then this indicates that the measure is likely to treat the modules equally,
i.e. that it holds the property [189].

3.3.1.2.4 Neighbor Module Swaps, tnms

This transformation moves a proportion of each module into its neighbor module. Each module
swaps vertices with exactly one different module (cf. Subfigure 3.2e). Like for ` New Modules, the
effect of this proportion on the transformed partition is mirrored in 0.5 for certain values of h. We
therefore rescale it in the same way as before, in order to obtain a parameter q ranging from 0 to 1.
This transformation allows to test for the Insensitivity to Module Size property through parameter h.
By design, the number of modules in the original and transformed partitions are the same. Hence,
this transformation does not interfere with ` and h. If increasing h has a substantial effect on the
measure score, then this indicates that the measure is not likely to treat the modules equally, i.e. it
does not hold the property.

3.3.1.2.5 Orthogonal Modules, tom

This transformation uses a proportion of each module to create new modules, in such a way that
all of their vertices come from different original modules (cf. Subfigure 3.2f). The resulting modules
are orthogonal to the original ones, in the sense that each original module is represented equally in
the new modules.

Applying this transformation with different values of ` has an effect on the number of modules

61

Part , Chapter 3 – Characterizing measures

in the transformed partitions, such that the difference in number of modules between the original
and compared partitions substantially decreases, when ` increases. This is similar to the transfor-
mations used in [97]. The main difference is that the authors shuffle completely the transformed
partitions, whereas this randomization process is tuned with the parameter q in our case. Therefore,
like in [97], this transformation can be used, to a lesser extent, to test for the `-invariance property. If
a measure is marginally or never affected by changes in ` when undergoing this transformation can
be considered as `-invariant.

Moreover, this transformation can also be used to check the Proportionality property with param-
eter q, as in [151]. If the scores of a distance measure increase linearly with increasing values of
q, then we say that the measure validates this property. Finally, like in Singleton Modules, the Sen-
sitivity to Small Differences property can be also checked through small values of q, i.e. a limited
transformation magnitude [184].

Property Transformation
& Parameter

Description

`-invariance
tsm & ` [175] The measure is marginally affected by changes in ` when under-

going this transformation.

tom & ` [97] The measure is marginally affected by changes in ` when under-
going this transformation.

Discriminativeness tsm & q [186] Increasing q results in a substantial change in the measure score
for this transformation.

Insensitivity to
Module Size

tonm & ` [189] Increasing ` results in a substantial change in the measure score
this transformation.

tncs & h [189] The measure is marginally or never affected by this transforma-
tion, for increasing h.

Convex Additivity
tsm & `, h [162] The measure is not affected by ` or h for this transformation.

t`nm & `,
h [162]

The measure is not affected by ` or h for this transformation.

Proportionality tom & q [151] The measure score increases proportionally with q.

Sensitivity to
Small Differences

tom & q [184] Even small values of q have a substantial effect on the measure
score.

tsm & q Even small values of q have a substantial effect on the measure
score.

Table 3.2 – The six desirable properties selected from Section 3.2.1, together with the framework pa-
rameters and transformations that allow testing them. The bibliographic references indicate matching
situations from the literature, when available.

62

3.3. Proposed Framework

1 NEW MODULE (tonm)

5 6 13 14 15 16 17 18 19 20 21 22 23 24
h = 0
n = 72
ℓ = 3

7 8 9 10 11 12

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

5 6 13 14 15 16 17 18 19 20 21 22 23 247 8 9 10 11 12

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

49 50 51 52

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

1 2 3 4 25 26 27 28

4 5 6 13 14 15 16 17 187 8 9 10 11 12

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

1 2 3 19 20 21 22 43 44 45 46 47

5 6 13 14 15 16 17 18 19 20 21 22 23 247 8 9 10 11 12

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

49 50 51 52

1 2 3 4

25 26 27 28

4 5 6 13 14 15 16 17 187 8 9 10 11 12

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 421 2 3

19 20 21 22

43 44 45 46 47

5 6 13 14 15 16 17 18 19 20 21 22 23 247 8 9 10 11 12

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

4 5 6 13 14 15 16 17 187 8 9 10 11 12

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

19
20 21 22

43
44 45 46 47

1 2 3

NEIGHBOR MODULE SWAPS (tnms)

SINGLETON MODULES (tsm)

ORTHOGONAL MODULES (tom)

5 6 13 14 15 16 17 18 19 20 21 22 23 247 8 9 10 11 12

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

49

50

51

52

1

2

3

4

25

26

27

28

4 5 6 13 14 15 16 17 187 8 9 10 11 12

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

19

20

21

22

43

44

45

46

47

1

2

3

5 6 13 14 15 16 17 18 19 20 21 22 23 247 8 9 10 11 12

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

49 50 51 52

1 2 3 4

25 26 27 28

4 5 6 13 14 15 16 17 187 8 9 10 11 12

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

1 2 3

19 20 21 22

43 44 45 46 47

ℓ NEW MODULES (tℓnm)

q = 1/6

Transformed Partition

Transformed Partition

Transformed Partition

Transformed Partition

Transformed Partition

Transformed Partition

Transformed Partition

Transformed Partition

Transformed Partition

Transformed Partition

q = 1/6

q = 1/6

q = 1/6 q = 1/6q = 1/3

q = 1/3

q = 1/6q = 1/3

q = 1/3

a) b) c)

d) e)

4 5 6 13 14 15 16 17 187 8 9 10 11 12

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

1 2 3

19 20 21 22

43 44 45 46 47

h = 0.5
n = 72
ℓ = 3

Original Partition

Original Partition

f)

C1
C2
C3

C1
C2
C3

C1
C2
C3

C1
C2
C3

C1
C2
C3

C1
C2
C3

C1
C2
C3

C1
C2
C3

C1
C2
C3

C1
C2
C3

C1
C2
C3

C1
C2
C3

C4

C4

C5C4 C6

C7 C9C8 C10

C11 C13C12
C15

C14

C5

C4

C6

C5

C4

C6

C5

C4

C6
C7

C5

C4

C6
C7
C8

1 2 3 4

25 26 27 28

49 50 51 52

25
26 27 28

49
50 51 52

1 2 3C5C4 C6

C8 C10C9 C11

C12 C14C13 C15

4C7

Figure 3.2 – Parametric partition transformations used in our framework. Subfigure a) shows two
reference partitions containing both n = 72 vertices and k = 3 modules, but differing on the het-
erogeneity of the module sizes: balanced (h = 0) vs. moderately imbalanced (h = 0.5). The 5 trans-
formations, illustrated in Subfigures b)–f), are applied to these two original partitions to produce
corresponding transformed partitions. Transformation intensity is q = 1/6, or equivalently 1/3 for
both transformations concerned with rescaling.

3.3.1.3 Computing and Normalizing the Measures

The third step is very straightforward and simply consists in computing the measures for each
pair of partitions generated, in order to compare the reference partition with each transformed parti-
tion. Note that during the regression analysis, the measure of interest is considered as a categorical
variable noted m.

In order for these values to be comparable, one has to make sure they respect two constraints,
though. First, some measures of the literature quantify the similarity between two partitions, whereas
others assess their dissimilarity. For comparison purposes, all measures compared within our frame-
work should express the same concept, be it similarity or dissimilarity. Without loss of generality, we
assume in the rest of our framework that all considered measures are dissimilarity measures (pos-
sibly after having undergone an appropriate transformation).

Second, all measures are not necessarily defined on the same range, which means that some
of them must be normalized in order to allow comparison. Many measures are defined on [0; 1], so

63

Part , Chapter 3 – Characterizing measures

this seems like a consensual choice.

3.3.2 Regression Analysis

The second part of our framework consists in analyzing all the dissimilarity values obtained dur-
ing the first part. In the following, we first introduce our proposed regression model (Section 3.3.2.1).
We then turn to relative importance analysis (Section 3.3.2.2), which aims at determining how much
the framework parameters affect the measures depending on the applied transformations.

3.3.2.1 Model Design

In our context, the dependent variable is a dissimilarity score in [0, 1], which we note y, whereas
the independent variables correspond to the five parameters of the framework (n, `, h, q, t) and the
nature of the measure used to compute the score (m). Four of them are therefore quantitative (n, `,
h and q), and two are categorical (t and m).

We study the relation between these variables through a multiple linear regression model. Note
that in this type of model, the linearity constraint concerns the regression coefficients, and not the
independent variables. This means that independent variables can appear as polynomial terms in
the model, and that the model can contain interaction terms corresponding to products of indepen-
dent variables. There exist more complex types of regression models (e.g. polynomial regression),
which could better fit our data. We chose to use a linear regression nevertheless, because it is much
more interpretable [49], a property which is particularly important in our case.

The presence of categorical independent variables makes it necessary to adopt a specific ap-
proach, by comparison to a straightforward model including only numeric dependent variables, and
there are several methods to do so [49]. Among them, we decide to use so-called dummy variables,
as they allow to avoid splitting the model in several parts, which in turns makes it easier to compare
the estimated regression coefficients [108].

Our multiple linear regression model is as follows

y =
∑
i

∑
j

(
β0ijtimj

+ β1ijntimj + β2ijktimj + β3ijqtimj + β4ijhtimj

+ β5ijnktimj + β6ijnhtimj + β7ijnqtimj

+ β8ijkhtimj + β9ijkqtimj + β10ijhqtimj

)
+ ε,

(3.1)

where the β·ij are the regression coefficients, ti and mj are the dummy variables, and ε is the
common error, which is assumed independent and normally distributed with mean 0 and standard

64

3.3. Proposed Framework

deviation σ. Each dummy variable is binary, and represents one specific value of a categorical vari-
able: transformations for ti (1 ≤ i ≤ T) and measures for mj (1 ≤ j ≤ M), where T (resp. M) is
the number of transformations (resp. measures). The model focuses on various types of interactions
between the independent variables. The second line contains terms describing interactions between
the categorical variables and each single numeric variable. The third line deals, in addition, with in-
teractions between pairs of quantitative variables. These terms are likely to introduce some amount
of collinearity with the corresponding terms from the previous line. In order to solve this issue, we
center all the quantitative independent variables [135]. In order to keep the model interpretable, we
do not include any higher order term.

3.3.2.2 Relative Importance Analysis of Independent Variables

As this stage, we have a multiple linear regression model able to represent the relations between
our framework parameters and the scores of the measures. Next, we want to assess the relative
importance (also called relative strength [107] or effect size [218]) of the terms constituting our
model.

In our context, relative importance refers to the contribution of an independent variable, by it-
self and in combination with other independent variables, to the prediction or the explanation of the
dependent variable [121]. Such notion can be formalized in a number of ways, therefore several
methods have been proposed [121], originating from different research fields. Nevertheless, they
are designed with a common goal in mind, which is to handle both problems frequently occurring
in multiple regression analysis and making this task challenging: 1) multi-collinearity between in-
dependent continuous variables; and 2) non-linearity of regression models. Since our independent
variables are perfectly uncorrelated by design, and since we consider a purely linear model, all of
these methods are relatively equivalent in our case. Therefore, we select the most straightforward
approach, consisting in using squared standardized regression coefficients (SRC), or squared β

weights [121, 172], to assess the relative importance.
When the regression terms are by design perfectly uncorrelated, zero-order correlations and β

weights are equivalent [121]. Thus, squared β weights sum to the explained variance of the de-
pendent variable [121], generally noted R2. This implies that squared β weights can be used as a
means of decomposing R2 according to the terms of the model [172]. That is, a squared β weight
close to zero makes a regression term less important, from which we can deduce that it does not
play a key role in explaining the observed variance for the dependent variable y.

Having a similar beta weight is not sufficient to conclude that two terms have the same impor-
tance: the significance of their difference must be statistically tested [108]. In the presence of such
significance we can confirm the superiority of the same variable in one transformation type (similarly,
for one measure) over the others. The importance analysis framework includes this test for all pairs
of β weights.

65

Part , Chapter 3 – Characterizing measures

3.4 Experimental Setup

In order to illustrate how to use our framework and interpret its results, we now apply it to a
selection of popular external measures. In this section, we define our experimental setup. We first
describe briefly these measures (Section 3.4.1), before turning to the dataset and the regression
assumptions (Section 3.4.2). The results are presented afterwards, in Section 3.5.

3.4.1 Selected Measures

In the literature, external measures are divided into three main categories based on the ba-
sic principle they rely upon [225, 163]: 1) Pair-counting, 2) Set-matching (or set overlaps) and 3)
Information-theory. Among them, the pair-counting measures are the most studied ones. In line with
this, for our experimental setup we select 6 widely used measures covering all three categories,
with a prevalence of pair-counting measures. The formal description is given in the Appendix (Sec-
tion A.1): in this section, we focus on the principle underlying these measures, as well as their
similarities and differences.

A pair of vertices can be handled in only two different ways in a given partition: either they be-
long to the same module or to two different modules. Pair-counting measures are based on the
idea of comparing how two partitions of the same graph handle each pair of vertices. For a given
pair, there is positive agreement between the partitions if its vertices belong to the same module
in both partitions; negative agreement if they belong to different modules in both partitions; and
disagreement otherwise. The Rand Index (RI) [187] is the proportion of agreement relative to the
total number of vertex pairs. Hubert and Arabie’s Adjusted Rand Index (ARI) [114] is based on the
RI, but additionally includes a correction for chance. The Jaccard Index (JI) was originally defined to
compare sets [118], but it is also used as an external measure [30]. It completely ignores negative
disagreements, as it corresponds to the proportion of positive agreements relative to the number of
disagreements and positive agreements. The Fowlkes-Mallows Index (FMI) [94] also ignores nega-
tive agreements, as it is based on a score corresponding to the proportion of positive agreements
relative to the number of pairs belonging to the same module in one partition. This score is com-
puted separately for each one of the two compared partitions, and the Fowlkes-Mallows Index is the
geometric mean of the resulting values.

To represent the category of set-matching measures, we select the F -measure (F). Note that
this name is sometimes used in the literature as a synonym of harmonic mean, and therefore covers
several distinct measures (e.g. [186, 98]). We use the definition of Artiles et al. [25], according
to which the F -measure is the harmonic mean of two quantities called Purity and Inverse Purity.
In order to compute the Purity of a module from the first considered partition, one needs first to
identify the module from the second partition with which it has the largest intersection. The Purity
then corresponds to the proportion of the first module which belongs to this intersection. The Purity

66

3.4. Experimental Setup

of the first partition is the total purity of its modules. The Inverse Purity is simply the Purity of the
second partition relative to the first. Finally, the F -measure is the harmonic mean of the Purity and
Inverse Purity.

Information-theoretical measures are generally based on the notion of Mutual Information [50].
The principle behind these measures is to consider each partition as a categorical random variable,
whose possible values are the modules. The mutual dependence between these variables can then
be interpreted as the similarity between the partitions. There are a number of variants of the notion of
mutual information, in particular several normalizations have been proposed (see for instance [223]).
In this work, we focus on the sum normalization as defined in [205], which is very widespread, and
results in the so-called Normalized Mutual Information (NMI).

As mentioned in Section 3.3.1.3, our framework expects that all measures express the same
concept, either dissimilarity or similarity, and that they are all defined on the same fixed range.
Regarding the latter point, all the selected measures are originally ranging from 0 to 1 except ARI,
which can output negative values in theory. However, in practice it is very rare to get negative
values for ARI. In the context of our experiments, it is always positive, so we decided not to perform
any additional change. Regarding the former point, we adjust our selected measures through a
simple subtraction, so that they all quantify the dissimilarity between partitions. We note the resulting
measures as follows: DRI (Rand Index), DARI (Adjusted Rand Index), DFMI (Fowlkes-Mallows
Index), DJI (Jaccard Index), DF (F -measure) and DNMI (Normalized Mutual Information).

3.4.2 Dataset and regression assumptions

We generate our data through the process presented in Section 3.3.1, using the following pa-
rameter values. For the number of vertices n, we choose values arithmetically compatible with the
desired numbers of modules, ranging from 3, 240 to 12, 960 with increments of 1, 080. The number of
modules ` ranges from 2 to 11. The heterogeneity of the modules size h ranges from 0 to 0.9 with
increments of 0.1. Regarding the transformations, their intensity q ranges from 0.1 to 1, also by in-
crements of 0.1, and the nature t of the transformation itself is one among tsm (Singleton Modules),
tonm (1 New Module), t`nm (` New Modules), tncs (Neighbor Module Swaps), tom (Orthogonal Mod-
ules), as defined in Section 3.3.1.2. In the end, the different combinations of our parameter values
produce a total of 50, 000 pairs of partitions.

There are several standard assumptions to check before performing a linear regression [107,
135, 49]: 1) sufficient sample size, 2) linear relationships, 3) no or little multicollinearity, 4) multivari-
ate normality, and 5) homoscedasticity. We review them here for our dataset and framework. First,
our sample size of 50, 000 observations is large enough for getting reliable estimates of the regres-
sion. Second, after a visual inspection we observe that the relation between the dependent variable
and the independent variables appear to be linear, except for ` and q in which case it looks rather
curvilinear. We stick to the linear model for the sake of readability and understandability, though.

67

Part , Chapter 3 – Characterizing measures

Third, by design of our dataset, the observations are independent and there is no collinearity be-
tween the independent variables. Fourth, the large size of our dataset makes the possible presence
of outliers unlikely to affect our results [86]. For the same reason, the central limit theorem guaran-
tees that the residuals will be approximately normally distributed. Fifth, a visual inspection reveals
that the variance of y increases with parameters q (intensity of the transformation) and ` (number
of modules), which means the data are not completely homoscedastic. The standard way of solving
this issue is to introduce non-linear terms in the model [107, 135, 49], but again we want to keep it
simple, and moreover the observed level of heteroscedasticity does not prevent us from interpreting
the regression coefficients [107].

3.5 Results and Discussion

We now assess, compare and discuss the performance of the considered measures when ap-
plied to the generated dataset. We first show the relevance of our method through visual inspection
(Section 3.5.1), then present our results in further detail (Section 3.5.2). Our source code is publicly
available 1.

3.5.1 Visual inspection

To show the relevance of our method we highlight two aspects of our analysis through the visual
inspection of Figure 3.3: 1) slope coefficients and 2) interaction between parameters. As we will see
in Section 3.5.2, those aspects allow our method to identify similarities and differences between the
considered measures, and therefore to discriminate between them.

Plot 3.3a shows how the measure scores evolve as functions of q, for the Singleton Modules
transformation, while the other parameters are fixed to arbitrary values. One can observe that all
the scores increase with q, albeit in different ways. Overall, DRI has the smallest slope coefficient,
followed by DNMI , and they are therefore the least sensitive to this transformation. We observe that
DJI , DARI , DFMI and DF get similar scores for extreme q values, but are relatively different when
q gets closer to 0.5. Plot 3.3b is built upon the same principle, except it focuses on ` instead of q.
As before, all measures differ in terms of absolute score values, but this time one can detect similar
certain trends. In particular, DJI , DFMI and DF remain unchanged, whereas DRI , DARI and DNMI

decrease with `. These two plots show that our framework is able to produce situations for which the
measures behave differently. Moreover, they also show that the slope coefficients, which constitute
the basis of our analysis, are able of capturing these differences.

As mentioned in Section 3.2.3.1, the common way to assess the performances of the measures
is trough visual inspection, which requires fixing many parameters, as we did just now, as such plots

1. https://github.com/CompNet/ExtMeasEval.

68

https://github.com/CompNet/ExtMeasEval

3.5. Results and Discussion

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

DF
DFMI

DJI

DARI

DRI

DNMI

m
ea

su
re

 s
co

re

q

t=Singleton Modules, n=6480, ℓ=5

(a)
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

m
ea

su
re

 s
co

re

2 4 6 8 10

ℓ

DARI

DJI

DNMI

DFMI

DF

DRI

t=Singleton Modules, n=6480, q=0.5

(b)

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ℓ

q=0.1
q=0.2
q=0.3

q=0.4

q=0.5

q=0.6

q=0.7

q=0.8

q=0.9

q=1

D
R
I

t=1 New Module, n=6480, h=0

(c)

Figure 3.3 – (a) Score of each measure as a function of q, for the Singleton Modules transformation.
(b) Score of each measure as a function of `, for the Singleton Modules transformation. (c) DRI score
as a function of `, for the 1 New Module transformation, and for several values of q.

are able to handle only a limited number of parameters at once. Plot 3.3c illustrates the limitation of
this approach by showing the evolution of the DRI score for the 1 New Module transformation, as a
function of both ` and q. When considering only `, the DRI score is always monotonic. However the
nature and slope of the trend depend on q: increasing for q ≥ 0.7 vs. decreasing for q < 0.7. This
means that there is an interaction between both parameters. This type of joint effect between pa-
rameters is hard to detect when using only plots, as it requires considering all possible combinations
of parameters. However, it is captured by the interaction terms present in our regression model, as
we will see in Section 3.5.2.

3.5.2 Relative importance analysis

We first discuss the effect of the framework parameters on each measure (Section 3.5.2.1), and
compare them. Along with our discussion, we identify the desirable properties possessed by each
measure, as well. We then show how this analysis can be leveraged to derive a typology of the
measures (Section 3.5.2.2).

3.5.2.1 Effect of the Parameters

We show all the results from our relative importance analysis in Figure 3.4, using stacked
barplots. We describe these plots globally here, for matters of convenience, before interpreting them
in the rest of this section. The figure contains 6 barplots (i.e. subfigures), each one corresponding
to a specific dissimilarity measure. Each barplot is constituted of 5 stacked bars, each one cor-
responding to a different transformation. The segments constituting these stacked bars represent
the regression terms from (3.1). Their colors and order match the legend, and their height corre-
sponds to the associated regression coefficient β in (3.1). More precisely, the segment heights are

69

Part , Chapter 3 – Characterizing measures

proportional to the square root of the squared β coefficients.
The larger the segment height, the more important the regression term for the measure and

transformation represented by the considered stacked bar. The values they represent are unitless,
and we perform no upper bound normalization in order to ease comparisons between transforma-
tions and measures. Differences between segment heights are not always statistically significant,
though. The exhaustive list of significant differences at p-value ≤ 0.05 is given in Appendix (Fig-
ures A.1 and A.2) for the sake of completeness. However, we find it difficult for the reader to cross-
check them systematically with Figure 3.4. It is more intuitive to use the following rule of thumb: if
one can visually detect a difference between two bars of Figure 3.4, then it is statistically significant.

Finally, there is a last bit of information in Figure 3.4, under the form of triangles placed over cer-
tain segments and representing monotonic behaviors. Upward (resp. downward) triangles indicate
that the measure score consistently increases (resp. decreases) when the concerned parameter
increases, independently from the other parameters. This information can be seen as complemen-
tary to the relative importance analysis. Suppose that a given parameter is similarly important for
several measures, i.e. it affects them to roughly the same extend. The triangles allow distinguishing
the measures qualitatively, based on the nature of this effect.

Orthogonal
Modules

(toc)

h:q

ℓ:q

ℓ:h

q

h

ℓ

n:q

n:h

n:ℓ

Terms

n

DRI DARI DFMI

DJI DF DNMI

S
R

C
S

R
C

S
R

C
S

R
C

S
R

C
S

R
C

a) b) c)

d) e) f)

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

ℓ New
Modules

(tℓns)

1 New
Module

(tons)

Neighbor
Module Swaps

(tncs)

Singleton
Modules

(tsc)

Orthogonal
Modules

(toc)

ℓ New
Modules

(tℓns)

1 New
Module

(tons)

Neighbor
Module Swaps

(tncs)

Singleton
Modules

(tsc)

Orthogonal
Modules

(toc)

ℓ New
Modules

(tℓns)

1 New
Module

(tons)

Neighbor
Module Swaps

(tncs)

Singleton
Modules

(tsc)

Orthogonal
Modules

(toc)

ℓ New
Modules

(tℓns)

1 New
Module

(tons)

Neighbor
Module Swaps

(tncs)

Singleton
Modules

(tsc)

Orthogonal
Modules

(toc)

ℓ New
Modules

(tℓns)

1 New
Module

(tons)

Neighbor
Module Swaps

(tncs)

Singleton
Modules

(tsc)

Orthogonal
Modules

(toc)

ℓ New
Modules

(tℓns)

1 New
Module

(tons)

Neighbor
Module Swaps

(tncs)

Singleton
Modules

(tsc)

Figure 3.4 – Results of the relative importance analysis, for measures a) DRI , b) DARI , c) DFMI , d)
DJI , e) DF and f) DNMI . The order of the terms in each bar is shown in the legend. The relative
importance scores represented on the y-axis are square-roots. Upper (resp. lower) triangles indicate
an increasing (resp. decreasing) trend of measure scores, when the corresponding parameter increases,
independently of the values of the other parameters.

70

3.5. Results and Discussion

Overall, we can observe that all measures are strongly affected by q, and to a lesser extent by `
and h. On the contrary, n has close to no effect on the measures. This effect of q on all measures
also appears under a different form in Figure 3.3a. As shown by the triangles in Figure 3.4, the
measure score increases with q in all cases. This general behavior is intuitively sound, as q controls
the intensity of the transformation. There are differences, as illustrated in Figure 3.3a, in the way the
measures are affected by q and the other parameters, though, and we can also see some punctual
effects due to interactions between parameters. In the following, we consider each measure and
discuss the results displayed in Figure 3.4.

3.5.2.1.1 RI

We can distinguish roughly two categories of transformations regarding DRI , depending on how
the measure is affected by the parameters. The first category contains only 1 New Module, for
which we observe a sensitivity almost twice as important as for the other transformations, which
is unique among the considered measures. Also, this transformation exhibits a very strong effect
of q, and to a lesser extent of the interaction between q and `, as also illustrated in Figure 3.3c
from a different perspective. The second category contains the rest of the transformations, for which
parameter importance is more balanced between q, `, and their interaction.

As mentioned in Section 3.4.1, DRI considers positive and negative agreements equally. When
applying a transformation of the second category, an increase in q causes the number of positive
agreements to decreases, whereas the negative agreements are largely preserved. This prevents
DRI from using its whole nominal range [0, 1], as also pointed out by Meilă [163] and Vinh et al. [223].
This in turns explains the observed smaller effect of q. As explained in Section 3.3.1.2.2, we can
infer from a small q effect for Singleton Modules that DRI does not possess the Discriminativeness
property, a conclusion that confirms the results of Rabbany et al. [186].

On the contrary, there is a relatively substantial effect of ` for the transformations of the second
category, which is due to them largely preserving negative agreements, as already noticed for q. As
explained in Section 3.3.1.2, the large effect of ` for the Singleton Modules and Orthogonal Modules
transformations indicates that the measure is not `-invariant. Similarly, the large effect of ` for the
Singleton Modules and ` New Modules transformations indicates that it does not have the Convex
Additivity property. These findings are in line with the results of Rabbany et al. [186] and Amelio &
Pizzuti [9] regarding `-invariance, and Meilă [163] regarding Convex Additivity.

The relatively small effect of ` for 1 New Module shows that DRI is sensitive to variations in the
module sizes (cf. no Insensitivity to Module Size), as already pointed out by Rezaei and Fränti [189]
for pair-counting measures. The absence of any significant effect of h in the results of Neighbor
Module Swaps corroborates this finding. Regarding the remaining parameters, 1 New Module is
also the only transformation which seems not to be affected by h. Finally, n does not seem to affect
DRI at all.

71

Part , Chapter 3 – Characterizing measures

3.5.2.1.2 ARI

Overall, q has a much stronger effect on DARI when compared to DRI , which results in a total
sensitivity approximately twice as large for all transformations except 1 New Module (which is al-
ready large in DRI). Based on the effects observed for Singleton Modules, DARI seems to validate
the Discriminativeness property much more than DRI .

The effect of ` is much lower than in DRI , for all transformations except Neighbor Module Swaps.
According to certain results obtained by Meilă [163] for a similar transformation, the correction term
in DARI can be sensitive to variations in the module number and sizes, which may explain our
observation. Regarding 1 New Module, the effect of ` in DRI is already small, and the correction
present inDARI only slightly increases it. Therefore,DARI is sensitive to the variations of the module
sizes, too (cf. Section 3.3.1.2.3).

The effect of ` observed for Singleton Modules and Orthogonal Modules is much smaller than
in DRI , which indicates that the measure is `-invariant (Sections 3.3.1.2.2 and 3.3.1.2.5). This is
consistent with the fact that DARI was designed specifically to make DRI `-invariant, a property
already verified empirically by Rabbany et al. [186]. However, this effect is still noticeable, which
shows that the measure is not completely `-independent. Similarly, the effect of ` for ` New Modules
is smaller than in DRI but still considerable. Based on these two observations, we can conclude that
DARI does not possess the Convex Additivity property (Section 3.3.1.2.1).

The introduction of chance correction has a side-effect on h, as it has a much smaller effect on
DARI compared to DRI , for all transformations. This is consistent with a similar observation pointed
out by Romano et al. [192]. Interaction-wise, the effect of `:q is much weaker than in DRI , probably
due to the lower overall effect of `, except for 1 New Module. Finally, n does not seem to affect DARI

at all.

3.5.2.1.3 FMI & JI

We jointly discuss both other pair-counting measures, DFMI and DJI , because their results are
very similar and differ only on the magnitude of the effect of q. The main difference with the other
measures is that q is the only perceptible effect for three transformations: Orthogonal Modules, `
New modules and Singleton modules. Consequently, both measures differ from the two previous
ones regarding certain desirable properties. First, like DARI but unlike DRI , both measures possess
the Discriminativeness property. Second, unlike DRI and DARI , they seem to validate the Convex
Additivity property. It is worth stressing that, in theory, DFMI and DJI are not supposed to possess
this last property [162], strictly speaking. However, our results show that in practice they behave as
if they do, at least to some extent, and under some conditions (here: when the number of vertices n
is large enough).

The effect of ` is negligible for all transformations but 1 New Module, i.e. the second category of

72

3.5. Results and Discussion

transformations previously identified for DRI . These transformations affect only marginally negative
agreement, which explains why the effect of ` is so small here, compared to DRI . This effect is small
for Singleton Modules and Orthogonal Modules, so we can conclude that both measures appear
to validate the `-invariance property (Sections 3.3.1.2.2 and 3.3.1.2.5). The strong effect of ` for
1 New Module indicates that these measures possess the Insensitivity to Module Size property
(Section 3.3.1.2.3).

Regarding the other effects, one can observe that unlike DRI and DARI , h has a small effect
only for 1 New Module. Furthermore, not only do ` and q have a strong effect for this transformation,
but their interaction does too. Finally, overall, n has no significant effect on both measures.

3.5.2.1.4 F -measure Unlike the previous measures, which rely on pair-counting, DF is based
on set-matching. Nevertheless, the observed effects are very similar to those of DFMI and DJI . We
observe essentially two differences. The first is that ` and h have a relatively noticeable effect for
Orthogonal Modules. The second is that the effect of interaction h:q is stronger for Neighbor Module
Swaps and 1 New Module. DF still validates the same properties as DFMI and DJI do, despite
these small differences.

3.5.2.1.5 NMI

The results obtained for the information-theoretical measure DNMI are very similar to those of
DRI , qualitatively speaking, and to those of DARI , in terms of magnitude of the effect observed for
each transformation. Like DRI , DNMI behaves in the same way for all the four desirable properties,
and this is consistent with the observations from the literature. For instance, Meilă [162] proves that
the rescaling performed by some measures for normalization purposes, such as NMI, have the
effect of breaking the Convex Additivity property. Moreover, Newman et al. [175], like others [223,
186, 9], show that NMI tend to favor partitions with more modules when compared with a reference
partition (cf. no `-invariance), and that this behavior can be smoothed by correcting NMI for chance.

A clear difference between DNMI and all the other measures is that n has a very visible effect for
Orthogonal Modules and Singleton Modules. This seems to be an artefact of the normalization for
these transformations, which would match the observation made by Amelio & Pizzuti [9], rather than
a violation of the n-invariance property. Indeed, the information-theoretic measures are n-invariant
by construction [162].

3.5.2.1.6 General Observations

For the sake of clarity, we roughly summarize in Table 3.3 the discussion that takes place throughout
the current section regarding the presence or absence of desirable properties within the considered
measures. We observe that three measures validate all 4 properties (DF , DJI , DFMI), whereas two

73

Part , Chapter 3 – Characterizing measures

measures have none of them (DRI , DNMI). The last one, DARI , holds an intermediary position, as
it possesses the `-invariance and Discriminativeness properties like DF , DJI and DFMI , whereas
it shares the same behavior with DRI and DNMI regarding Insensitivity to Module Size and Convex
Additivity.

Let us now conclude this section by highlighting the main observations we could draw from the
relative importance analysis. First, it is important to stress that the results produced by our frame-
work are consistent with those published in the literature, including both theoretical and empirical
works. This is summarized in Table 3.3. Second, the systematic nature of our approach helps un-
covering properties not already described in the literature. For instance, Rezaei & Fränti [189] state
that set matching measures are more suitable regarding the Insensitivity to Module Size property.
Nevertheless, we find out that the pair-counting measures DJI and DFMI also possess this prop-
erty. Third, our framework allows us to state that some measures possess certain properties at
least partially, or under certain conditions. Indeed, our framework does not predict the presence of
a property in a Boolean way, but rather on some continuous spectrum, through regression. Put dif-
ferently, instead of predicting whether a measure has a property or not, we can estimate how much
it possesses this property, and assess how this can change depending on the parameter values.
For instance, as mentioned above, we can say that DARI validates the Discriminativeness property
much more than DRI , based on the effect of q for Singleton Modules.

`-invariance Discriminativeness Insensitivity to Module Size Convex Additivity
(tsm and tom with `) (tsm with q) (tonm with `, tncs with h) (tsm and t`nm with ` and h)

DRI 7 [186, 9, 163] 7 [186] 7 [204, 189] 7 [163]
DARI 3 [186] 3 [186] 7 [204, 189] 7 [163]
DFMI 3 [97] 3 3 3

DJI 3 [97] 3 [186] 3 3

DF 3 3 3 [204] 3

DNMI 7 [223, 186, 9, 97, 175] 7 [186, 9] 7 [204, 189] 7 [163]

Table 3.3 – Relations between four desirable properties and the considered measures, based on our
results presented in Figure 3.4. The method used to check whether a measure has a property is sum-
marized between parenthesis in the first line, and additional details can be found in Section 3.3.1.2.
The bibliographic references show matching observations found in the literature, when available.

3.5.2.2 Typology of Measures

We now show how a typology of the measures can be built based on the results shown in
Figure 3.4, through a cluster analysis. First, we compute a distance matrix comparing all pairs of
stacked bars constituting the plots from this figure. For this purpose, we represent each stacked
bar by a vector of proportions, each value corresponding to a term of the regression model (i.e. a
segment of the stacked bar). We use the Hellinger distance [143], which was designed to compare
pairs of discrete probability distributions. Second, we perform the cluster analysis by applying the k-

74

3.5. Results and Discussion

medoids method [128] to our distance matrix. This method requires us to specify the desired number
of modules, though. To find the most appropriate number, we apply the standard approach consist-
ing in performing the clustering using all possible values, and then selecting the most appropriate
one. For this purpose, we use the Silhouette measure, a well-known internal criterion [196], but we
also take into account a more subjective constraint of parsimony (i.e. we want a small number of
modules).

The analysis results in 5 clusters of stacked bars, for a Silhouette of 0.55. Table 3.4 shows the
distribution of the bars from Figure 3.4 over these clusters, each one being represented as a specific
color. The blue cluster corresponds to bars in which there is a relatively balanced main effect of ` and
q, and a minor effect of h and `:q. In the brown cluster, the situation is quite similar but q supersedes
`. In the red cluster, q even more prevalent, and both minor effects are even smaller. The orange
cluster contains bars in which all effects are negligible compared to q. Finally, bars from the green
cluster are dominated by q and exhibit a minor effect of h:q.

Orthogonal ` New Neighbor 1 New Singleton
Modules Modules Module Swaps Module Modules

DRI

DARI

DFMI

DJI

DF

DNMI

Table 3.4 – Comparison of the measures based on the characterization provided by our framework
and shown in Figure 3.4. We use the Hellinger distance and k-medoids to identify groups of similar
behaviors, each one being represented by a color in the table.

Table 3.4 shows that each transformation produces a different vertical pattern, which indicates
that the transformations we selected in our framework are not redundant in the way they allow char-
acterizing the measures. The measures can be compared using the horizontal patterns present in
the table. Roughly speaking, there is a first group constituted of DFMI , DJI , DF ; a second con-
taining DRI and DNMI ; and DARI is apart. We see that this characterization is consistent with the
results in Table 3.3. The fact that these groups of measures, which are automatically obtained, match
the ones identified manually based on our knowledge of the desired properties, indicates that this
clustering-based method could be useful when the user is not able to (or does not want to) express
their desired properties a priori. Indeed, for a given collection of available measures, this method
allows identifying clusters of measures possessing a similar behavior: these clusters can then be
characterized a posteriori, and the user can select a measure from the cluster considered as the
most appropriate to the considered application.

To sum up, not only does our analysis allows distinguishing the effects of the framework pa-

75

Part , Chapter 3 – Characterizing measures

rameters over transformation types and measures, but it also makes it possible to categorize the
measures based on their empirical behavior. Our results confirm the findings of Pfitzner et al. [184],
which indicate that the categorization of the measures based on their sole definitions (cf. Sec-
tion 3.4.1) does not necessarily hold when it comes to comparing them through experiments.

3.6 Conclusion

In this chapter, we have presented a new evaluation framework to address the problem of select-
ing an appropriate measure to compare partitions. We want not only to compare measures, but also
to produce results that the end user can easily interpret. For this purpose, based on our review of
the literature, we designed a set of predefined partitions and parametric partition transformations in
order to generate a benchmark dataset. Our two-step framework first computes the considered mea-
sures for these partitions, then conducts a regression and relative importance analysis to determine
how the measures are affected by the transformations. We illustrated its relevance by applying it to
a selection of standard measures. We showed that our framework allows identifying the desirable
properties possessed by each measure. For some of them, our results confirm empirical and theo-
retical findings already published in the literature. For others, the systematic nature of our approach
even uncovers properties not mentioned before in the literature. Finally, we propose a typology of
the considered measures based on their characteristics. Overall, our results confirm the findings of
Pfitzner et al. [184], which indicate that categorizing measures based on their mathematical defini-
tions does not necessarily match experimental comparison.

We believe that this work opens new directions for future research. First, our method can be
applied systematically to other external measures, for the sake of completeness. It is particularly
important to include the recently proposed measures for an up-to-date comparison, which would
prevent from following the tradition of using only well-established measures without regard for their
relevance. Second, similar to the previous point, some new parametric transformations can be pro-
posed to closely investigate the performance of the measures on a specific subject. For instance,
there is an important number of measures aiming at correcting Mutual Information for chance in the
literature. Including some specific transformations could enable to concentrate more on the aspect
related to the number of clusters. Finally, by proposing relevant parameters and transformations, our
general method could be adapted to handle objects similar to partitions, such as covers, to compare
overlapping clusters (e.g. [112, 97]), or edge-aware community similarity measures, to compare
community structures while taking graph topology into account (e.g. [186, 138]).

76

Chapter 4

MULTIPLE PARTITIONING OF MULTIPLEX

SIGNED NETWORKS

4.1 Introduction . 79
4.2 Problem definition . 82
4.3 Our method . 83

4.3.1 Processing the Patterns . 83
4.3.2 Computing the Dissimilarity Values . 84
4.3.3 Performing the Clustering . 85
4.3.4 Computing the Characteristic Patterns . 85

4.4 Experiments . 86
4.4.1 IYP Dataset . 86
4.4.2 Network Extraction . 90
4.4.3 Measure Selection for Calculating Dissimilarities Between Patterns 90

4.5 Results . 92
4.5.1 Baseline . 92
4.5.2 Clustering . 93
4.5.3 Characteristic Patterns . 96

4.6 Conclusion . 100

4.1 Introduction

In certain specific situations, one needs to partition the set of vertices not according to a single
network, but to several ones, each containing the same vertices but possibly different edges. Each
network provides a different, possibly conflicting, view of the same system under different conditions.
For instance, in [41] the authors consider a set of functional connectivity brain networks, each one
corresponding to one specific subject. All of them are assumed to share a general modular structure,

77

Part , Chapter 4 – Multiplex signed networks

1

2

3
4

5

7

6

1

2

3
4

5

7

6

1

2

3
4

5

7

6

1

2

3
4

5

7

6

1

2

3
4

5

7

6

(a) Layer aggregation approach.

1

2

3
4

5

7

6

1

2

3
4

5

7

6

1

2

3
4

5

7

6

1

2

3
4

5

7

6

1

2

3
4

5

7

6

1

2

3
4

5

7

6

1

2

3
4

5

7

6

(b) Ensemble clustering ap-
proach.

1

2

3
4

5

7

6

1

2

3
4

5

7

6

1

2

3
4

5

7

6

1

2

3
4

5

7

6

(c) Multiplex approach.

Figure 4.1 – Traditional partitioning approaches for multiplex networks.

but also exhibit inter-individual variations. Such a collection of networks can be viewed as a multiplex
network, in which one layer corresponds to one uniplex network.

The literature contains 3 main approaches to partition multiplex networks in general [132]. The
first one, called layer aggregation, merges the layers to obtain a single aggregated network (also
called flattened [210] or projected [28] network) and then apply a traditional partitioning method to
it, as illustrated in Figure 4.1a. For instance, Macon et al. [157] aggregates vote results of the sep-
arate annual sessions in the United Nations General Assembly to characterize the countries’ voting
behaviors. Barigozzi et al. [28] combine the layers by trade category to analyze geopolitical and
socio-economic patterns across trading blocks of countries. Miller [165] fuses different relationship
types between terrorists operating in Indonesia and finds groups of terrorists for network disruption
purposes.

The second approach, called partition integration, applies a traditional partitioning method sep-
arately to each layer and merges the resulting partitions to obtain a consensual one, as illustrated in
Figure 4.1b. Santra et al. [200] combine the partitions of three-layered Road Accidents multiplex net-
work by intersecting them, if they are self-preserving. Whether a partition is self-preserving or not is
determined by calculating the internal clustering coefficient of the vertices. Tagarelli et al. [210] uses
a cluster ensemble technique [205] for merging, when they extensively study this approach based
on random multiplex networks and datasets from various domains. Berlingerio et al. [33] adopt the
methodology of frequent itemset mining when they study DBLP multiplex networks, which can be
seen as another form of merge process.

In both first approaches, each module of the resulting partition contains all instances of the same
vertex over all layers: it can be considered as a consensual partition, fitting all layers at once. Conse-
quently, it is more likely that these approaches result in information loss [171, 212, 132] or distortion
of properties [132, 183], when the layers display different community (modular) structures. The third
and last approach, called multiplex approach [59] or multi-graph clustering [180], is proposed to
tackle this drawback: a module does not necessarily span all layers. It uses a method specifically
designed for multilayer networks, which directly partitions the set of all vertices over all layers, with
the aim of combining different characteristics of the layers (e.g. sparse vs. dense) in a more ap-

78

4.1. Introduction

propriate way, as illustrated in Figure 4.1c. Didier et al. [59] use an extension of the modularity for
multiplex networks, called multiplex-modularity, to identify groups of protein cells in a multiplex bio-
logical network. Tang et al. [213] propose a factorization method based on linked matrices (similar to
tensor decomposition) which allows to extract only informative structural information from layers. In
addition to a tensor decomposition-based approach, Papalexakis et al. [180] formulates the problem
as a data compression task and aim to find the partition that minimizes the total description cost of
a multiplex network.

All 3 approaches are based on the assumption that one is looking for a single partition. In this
chapter, we relax this single-partition assumption to allow searching for several partitions. To this
end, we propose a new partitioning process for multiplex signed networks. It can be viewed as a
partition integration approach with a main difference. It integrates a meta-clustering process before
merging the partitions of layers, and this consequently allows to cluster structurally similar layers. A
consensual merging process, tailored for signed networks, is then performed for each cluster with
no sensible information loss.

Our method differs from the existing ones in that it strives to cluster layers based on their parti-
tion similarity. Nevertheless, different similarity criteria can be provided to the task of layer cluster-
ing [124]. The existing methods in literature mainly address this task for reducing the large number
of layers in a multiplex network, and not specifically for finding multiple partitions. Hence, their goal
is rather to construct composite networks without a sensible information loss by quantifying either
layer similarity [224] or layer redundancy [124] through network-centric approaches, which can be at
either micro- (vertex-centric [116] or edge-centric [209, 224]) or macro-scale (quantum information
theory [124]). In our method, we want to compare the layers partition-wise based on well-studied
external evaluation measures, without passing through this network comparison step.

Contributions. The following content is based on our two works published in iKNOW [21] and
Social Networks [19]. This chapter makes the following contributions:

1. Method. We propose a new method which aims to find multiple informative partitions describ-
ing an underlying multiplex signed network.

2. Evaluation. We evaluate our method on European Parliament vote dataset from political anal-
ysis, and show its usefulness by extensively interpreting the obtained results.

The rest of this chapter is organized as follows. First, in Section 4.2, we introduce the fundamen-
tal concepts and the problem definition. We then turn to the methods in Section 4.3, and describe
the approach we propose for the analysis of multiplex signed networks. In Section 4.4, we put the
proposed method into practice through an analysis of voting data, and discuss its results in Sec-
tion 4.5. Finally, we review our main findings in Section 4.6, comment the limitations of our work and
describe how they can be overcome, and how our work can be extended.

79

Part , Chapter 4 – Multiplex signed networks

4.2 Problem definition

As explained in Section 4.1, the methods tackling traditional approaches output a single partition
for multiplex networks. In this work, we relax this constraint by allowing to produce multiple partitions.
To this end, we define this task as a clustering problem over a set of partitions, as in a meta-
clustering problem [205, 190]. The traditional partition integration approaches can be viewed as
fitting a particular case of our more general problem, in which only one partition is output. In the
following, we first introduce the fundamental concepts that we use throughout the chapter, followed
by the definition of the problem itself. We start by defining a multiplex signed network.

Definition 4.1 (Multiplex signed network). A multiplex signed network G = (G1, G2, .., Gp) is
a network constituted of p layers, where each layer is itself a signed network Gi = (V,Ei, si) with
i ∈ {1, . . . , p}.

Each layer in G contains the same set of vertices V , nevertheless, the edges can be different from
one layer to the other. This type of graph should not be confused with the more general multilayer
networks, which allow inter-layer edges and different vertices in each layer. It is worth noting that
it is more valuable to use an automated method such as ours if the number of layers is not small.
Therefore, we assume there are many layers in G.

Since we will handle various types of partitions, we need to distinguish them in our terminology.

Definition 4.2 (Pattern). Given a multiplex signed network G, a pattern Pi = {M1,M2, ...,M`i} is
a partition of the vertex set V of a single layer Gi, where `i denotes the number of modules in Pi.

Concretely, if there are p layers in G, then there will be p patterns. It is important to stress that
any partitioning criterion or method related to signed graph partitioning, such as the one reviewed
in Chapter 2, can be used for finding patterns.

To gather similar patterns together during cluster analysis, we need to define how dissimilar
patterns are.

Definition 4.3 (Dissimilarity between patterns). The dissimilarity D between a pair of patterns
Pi and Pj is score Dm(i, j) computed by any external evaluation measure m.

Score Dm(i, j) indicates how dissimilar two patterns are by considering only the corresponding
partitions and not the graph structures.

Since the cluster analysis is applied over a set of patterns, we need to define the result of this
analysis as another type of partition:

Definition 4.4 (Cluster and clustering). The term clustering, denoted by Ck, refers to a partition
of the set of all p patterns into k subsets, such that the dissimilarity between patterns being in the
same cluster is minimized and that of patterns is maximized. The subsets constituting a clustering
Ck are called clusters, and the ith cluster, with i ∈ {1, ..., k}, is denoted by Cik.

80

4.3. Our method

We assume that there are inherent similarities between the patterns of the same cluster, so that
it is meaningful to characterize them. This requires us to define a specific type of pattern:

Definition 4.5 (Characteristic pattern of a cluster). The characteristic pattern of cluster Cik,
with i ∈ {1, .., k}, denoted by P̂ ik, is the most consensual partition that represents the patterns of this
cluster, with respect to a consensus function.

The consensus function can be one of several procedures, as illustrated in [219]. We describe
one later in Section 4.3.4.

Now, we introduce formally the problem we tackle in this chapter.

Problem 4.1 (Multiple partitioning of a multiplex signed network). Let G be a multiplex signed
network with p layers, and Pi with i ∈ {1, .., k} the patterns detected in these layers. The Multiple
partitioning of a multiplex signed network problem consists in finding a clustering of these
patterns such that each cluster Cik with i ∈ {1, .., k} produces a characteristic pattern Cik with respect
to a consensus function.

Problem 4.1 is generic enough so that it could be also defined for unsigned graphs. The problem
can be interpreted in various ways depending on the application. In the next section, we will briefly
discuss the steps of our proposed method by making some methodological choices for a general
use.

4.3 Our method

In this section, we describe our four-step method to solve Problem 4.1, summarized in Fig-
ure 4.2.The first step is to separately partition each of the p layers of the multiplex signed net-
work G through a standard signed graph partitioning method, in order to get as many patterns
(Section 4.3.1). The second step consists in computing the dissimilarity between the patterns (Sec-
tion 4.3.2), in order to perform the third step, which is a cluster analysis (Section 4.3.3). This leads to
a set of k clusters, each one gathering similar patterns. The fourth step is to process the characteris-
tic pattern of each cluster, which is supposed to consensually represent all the patterns constituting
the cluster (Section 4.3.4).

4.3.1 Processing the Patterns

This step can be done by any signed graph partitioning method. As stated in Section 1, there
are a number of partitioning problems and resolution methods for signed graphs. Among them,
application-wise the CC problem has received the most consideration in the literature (see Sec-
tion 2.1 and references therein). It is used in a number of situations to get a better understanding of

81

Part , Chapter 4 – Multiplex signed networks

1

2

3
4

5

7

6

Signed
 Graph

Partitioning

Cluster
Characterization

1

2

3
4

5

7

6

1

2

3
4

5

7

6

Multiplex Network Patterns

Characteristic Patterns

STEP 1

Clustering Ck

STEP 2

STEP 4

1

2

3
4

5

7

6

1

2

3
4

5

7

6

Similarity
Measure

m

Distance Matrix

1

2

3
4

5

7

6

1

2

3
4

5

7

6

Cluster
Analysis

STEP 3

La
y
e
r

1
La

y
e
r
p

Pa
tt

e
rn

 P
1

Pa
tt

e
rn

 P
p

1

1

p

p

C
lu

st
e
r

C
1 k

C
lu

st
e
r

C
k k

C
lu

st
e
r

C
2 k

G
1

G
p

C
h
a
ra

ct
e
ri

st
ic

Pa
tt

e
rn

 P
1 k

C
h
a
ra

ct
e
ri

st
ic

Pa
tt

e
rn

 P
2 k

C
h
a
ra

ct
e
ri

st
ic

Pa
tt

e
rn

 P
k k

Figure 4.2 – General workflow of the proposed analysis method.

the studied real-world system. Therefore, we propose to solve the CC problem in our method when
detecting the pattern Pi associated with the ith signed network Gi of G.

In order to identify the patterns, we use an exact method for medium-sized networks (e.g. for
n ≤ 50), because only exact methods guarantee to output the best solution in terms of imbalance.
Particularly, as shown in Section 2.5.1, it is more appropriate to use B&C(F ?v (G)) for graph density
d ≥ 0.5 and when graph order n increases, and switch to B&C(Fe(G)) below this threshold. In case
of large signed networks, as shown in Section 2.5.2, it is preferable to take into consideration a
collection of heuristics methods, such as those presented in Section 2.3.

4.3.2 Computing the Dissimilarity Values

At this stage, we have identified the pattern Pi associated with each Gi. We now want to gather
similar patterns together in a classic cluster analysis approach.

This clustering approach requires to process the dissimilarity matrix by comparing each pair of
patterns. A number of measures have been defined to compare such patterns, each one possess-
ing a specific behavior. These measures are sensitive to various characteristics of the compared
patterns, such as the sizes or numbers of the clusters, as shown in Chapter 4. Moreover, the choice
of an appropriate measure depends on a number of factors, including the broad situation, but also
the nature of the application at hand and other contextual aspects such as the behavior expected by
the user. We select the measure by expressing our expectations regarding the application at hand,
and following the methodology proposed in Section 3.3. The selected measure m can be either a
metric on the space of patterns or a similarity-based external evaluation measure, as defined in

82

4.3. Our method

Chapter 3.4.1. Based on m, we then build a dissimilarity matrix summarizing these comparisons.

4.3.3 Performing the Clustering

Next, we apply the k-medoids clustering [128] method to the previously extracted dissimilarity
matrix to obtain a clustering Ck. It is similar to the well-known k-means algorithm in the sense that it
tries to partition the dataset into k clusters, while minimizing the dissimilarity between the members
of each cluster and some center of the cluster. The difference is that in k-means, this center is
an average value, whereas in k-medoids it is one of the actual data points from the dataset. It is
generally used in place of k-means when one cannot perform the required average operation, which
is true in our case (we cannot straightforwardly process an average pattern).

This method requires us to specify k, but we do not know it in advance. In this situation, the
standard approach is to use all possible values of k, from 2 to p, and assess the quality of the
p − 1 resulting clusterings through some internal criterion. The most widespread such measure
is the Silhouette S, which characterizes the clustering in terms of internal cohesion and external
separation of the clusters [196]. It takes a value between −1 and +1, where the latter represent the
best possible clustering.

In theory, the value of k associated with the highest Silhouette S(Ck) is the best candidate.
However, in practice, one possibly has to consider other factors to make a choice. For example,
marginal improvements of the Silhouette are sometimes caused by the creation of singleton clusters,
which generally do not bring much relevant information in terms of interpreting the clustering. It is
therefore necessary to study qualitatively how the clusters evolve with k to make an informed choice.
This choice can be also guided by some constraints arising from the application context itself.

4.3.4 Computing the Characteristic Patterns

We now have k clusters, each Cik with i ∈ {1, .., k} containing a certain number of patterns. The
patterns constituting a cluster may differ slightly, but overall they are supposed to be very similar.
The next step is to compute a characteristic pattern P̂ ik, with i ∈ {1, .., k}, representing the whole
cluster, such that these small differences are smoothed.

For this purpose, we use as a consensus function a similarity network-based approach, inspired
by the work of Lancichinetti and Fortunato [140]. Based on a collection of p partitions of the same
set, they derive a consensual partition by first extracting a weighted similarity network, and then per-
forming community detection in this network. The resulting communities correspond to consensual
clusters, and the community structure is the consensual partition. Their network is built as follow:
each vertex represents an element of the partitioned set, and the edge weight is the proportion of
partitions in which both connected vertices belong to the same module. We experimented with this
approach, and found we obtained better results by using the following signed version. The weights

83

Part , Chapter 4 – Multiplex signed networks

are now the difference between the proportion of patterns putting both vertices in the same module,
and the proportion of patterns putting them in different ones. Finally, instead of a community de-
tection algorithm, we solve the CC problem by applying the same signed graph partitioning method
used in Section 4.3.1 so as to identify a partition corresponding to the characteristic pattern of the
cluster.

4.4 Experiments

We apply our method to a dataset representing the voting activity during the 7th term (2009-2014)
of the European Parliament (EP) in order to study the voting activity of the Members of the EP
(MEPs). Our goal is not only to detect groups of MEPs which would be cohesive in terms of votes,
but also to identify the different typical voting behavior patterns of the EP, i.e. the characteristic ways
in which the MEP set is partitioned by these votes, as well as the legislative propositions to which
they apply.

We want to illustrate how our method differs from those of the traditional approaches (see Sec-
tion 4.1). Among them, we opt for a standard layer aggregation approach as a reference, which is
prevalent in the literature, particularly in the context of vote analysis (e.g., [157, 227, 89, 148]). The
standard way to deal with a long period of voting activity, such as the considered period 2009-2014,
is to split it into several distinct periods, each one leading to a separate (aggregated) network. These
networks are signed and weighted: a positive (resp. negative) numerical value associated with an
edge represents the level of similarity (resp. dissimilarity) between the vertices (MEPs) it connects.
Such a weight is processed thanks to a similarity function, whose role is to estimate the level of
agreement or disagreement between two MEPs of interest, based on the votes they cast during a
selection of roll-calls. This is an important methodological choice, because the resulting network is
obtained by temporal integration of the raw data.

In this section, we first present the dataset and highlight its most relevant characteristics (Sec-
tion 4.4.1). We then summarize how the signed network constituting the layers of our multiplex
signed network are extracted from the raw voting data (Section 4.4.2). Finally, we explain how we
select an appropriate evaluation measure for the application of EP, when such measure is needed
in our method for calculating the dissimilarities between patterns (Section 4.4.3).

4.4.1 IYP Dataset

The raw data are publicly available on the official website of the EP 1, but they are technically
difficult to collect. Some citizen oversight websites did the work of retrieving them, and publishing
them online. We use such a dataset, provided by the website It’s Your Parliament 2 (IYP).

1. http://www.europarl.europa.eu/
2. http://www.itsyourparliament.eu/

84

http://www.europarl.europa.eu/
http://www.itsyourparliament.eu/

4.4. Experiments

These data describe the activity of the MEPs during the 7th term of the EP (2009–14). They are
constituted of the votes cast by all MEPs for all roll-calls taking place during a plenary at the EP. Note
that the default voting procedure at the EP is the show of hands, during which individual votes are
not recorded, and that roll-calls happen only under certain circumstances. During the 7th term, these
noticeably include the final vote of any legislative proposition, or a written demand by a group of 40
MEPs or a parliamentary group [82]. These data are therefore incomplete by definition, but recent
studies have shown that they are nevertheless representative of the overall voting behavior [123].
Several works have studied them under the form of networks [217, 164, 199, 21].

The vote of MEPs can take 3 distinct values: FOR (they support the proposition), AGAINST (they
oppose the proposition) and ABSTENTION (they do not want to take a stand). It is also possible for
MEPs not to vote at all. Officially, the EP distinguishes various types of absences or reasons for not
voting (see [164]). But in this dataset, all are simply represented by the value ABSENT. Each text is
itself associated with one among 21 specific policy domains (see [164] for the complete list).

A number of personal details are available for each MEP: Name (the full name of the MEP),
Country (one of the 28 member states in which the MEP was elected), Party (the national political
party to which the MEP belongs, in his own country), and Group (the parliamentary group to which
the MEP belongs in the EP).

The EP groups are important when interpreting a voting pattern of the MEP set, because they
correspond to the political position that MEPs are supposed to hold, at least theoretically. During
the 7th term, there were seven groups, described in Table 4.1. Note that NI is a technical group
containing MEPs not belonging to any of the other groups. For the 7th term, NI members were
mainly far-right MEPs. One would expect that patterns automatically estimated based on the voting
data would fit this division, but as we will see in Section 4.5, this is not necessarily the case.

Table 4.1 – Groups of the EP during the 7th term, in decreasing order of size.

Group name Acronym Description
European People’s Party EPP Right/center-right conservatives
Progressive Alliance of Socialists and
Democrats S&D Center-left

Alliance of Liberals and Democrats for
Europe ALDE Right/center-right neoliberals

Greens–European Free Alliance G-EFA Left environmentalists, progressives
and regionalists

European Conservatives and Reformists ECR Right euroskeptics and anti-federalists

European United Left–Nordic Green Left GUE-NGL Left/far-left, socialists and
communists

Non-Inscrits NI Far-right

Instead of working on the whole dataset, we focus on some subsets in order to perform a more
thorough and qualitative interpretation of the results. In particular, we restrict the analyses to the
French MEPs, to propositions related to the AGRI (agriculture) policy domain, and considered sep-

85

Part , Chapter 4 – Multiplex signed networks

arately the years constituting the term. This domain was selected due to its potentially polarizing
nature: the Common Agricultural Policy (CAP) has historically been of great importance for Europe
(38% of the total EU budget [81]), especially for France [73] and Italy [74], due to the importance of
agriculture in their economies, because a part of the population wants to leave the industrial model
of production. We provide more context in Appendix B.1 by defining the most important UE- and
CAP-related concepts. In addition, the 2012-13 legislative year marks the start of a major reform of
the CAP, as explained in further detail in Appendix B.2. These reforms cover various aspects of agri-
culture (e.g. production quotas, environmental aspects, market regulation), which allows analyzing
the results from multiple perspectives.

At some point in our processing, we will need to characterize subgroups of legislative propo-
sitions in a topical way, in order to assess their thematic homogeneity (or lack thereof). Since all
the propositions we examine are related to agriculture, we have to consider subdomains. For this
purpose, we use the typology proposed by EUR-Lex, the EU website for the publication of offi-
cial documents such as treaties and legislation. The detailed hierarchy of domains is described in
Appendix B.3.

In order to interpret the groups of similarly voting MEPs identified by our method, we will also
need some real-world reference regarding the positioning of the EP groups on agricultural questions.
To this aim, we have manually reviewed the official material published by the EP groups on these
topics for the 2012-13 period: manifestos, positioning papers, and revised written transcriptions
of speeches made at the EP. Table 4.2 summarizes the information that we collected. Each row
corresponds to one of the main agricultural topics, and each column to an EP group. Empty cells
reflect either the fact that the concerned group did not take any position relatively to the considered
topic, or that no source could be found to describe this position. It appears that agreement between
groups covers all the spectrum, ranging from complete disagreement (e.g. GUE-NGL and G-EFA) to
almost perfect agreement (e.g. GUE-NGL and G-EFA). The question is now to check whether these
theoretical positions translate into actual votes.

86

4.4.Experim
ents

Table 4.2 – Position of the EP groups on AGRI-related topics for the considered period of 2012-13.

Subject GUE-NGL G-EFA S&D ALDE EPP EFD ECR NI

1) Reduction of
direct payments

FOR reduction
(ceiling at 100

kAC) [84]

FOR reduction
(starting from 50

kAC) [215]

FOR reduction
(starting from
150 kAC) [83]

-
AGAINST

reduction [83]
AGAINST

reduction [83]
AGAINST

reduction [83]
-

2) Maintaining
milk quotas

FOR quotas
(with

flexibility) [83]

FOR quotas (food
security

purposes) [83]
FOR quotas [83]

AGAINST quotas
(competitive-

ness purposes);
FOR transition

period [6]

AGAINST quotas
(competitive-

ness
purposes) [83]

-

AGAINST

quotas (low
food price

purposes) [83]

FOR quotas
(fair price pur-
poses) [144,

99]

3) Export
subsidies

-
AGAINST

subsidies [215,
214]

AGAINST

subsidies [83]

AGAINST

subsidies (with
transition
period) [6]

AGAINST

subsidies; FOR

exceptional
subsidies [83]

- - -

4)
Competitiveness

AGAINST

current system
(too competi-

tive) [83]

AGAINST current
system (too

competitive) [83]
-

FOR competi-
tiveness [6]

FOR

competitiveness
(better

functioning of
supply chain

purposes) [83,
106]

-

FOR competi-
tiveness (low

food price
purposes) [83]

AGAINST

current system
(fair price pur-
poses) [144,

99]

5) Aid for rural
development

-

AGAINST current
scheme (not

enough); FOR

co-financing [83]

FOR transfer from
Pillar I to Pillar II;

AGAINST co-
financing [105]

FOR transfer
from Pillar I to

Pillar II,
co-financing [83]

FOR transfer
from Pillar I to

Pillar II,
producers as

market
actors [83]

-

AGAINST risk
management
measures (not
enough) [83]

AGAINST the
current

scheme (not
enough) [144]

6) Food quality
vs. quantity

Favors
QUALITY [84]

Favors
QUALITY [214,

83]
-

Favors
QUANTITY [6]

Both QUANTITY

and
QUALITY [106]

Favors QUAL-
ITY [221]

Both QUANTITY

and
QUALITY [83]

Favors
QUALITY [99]

7) Enhancing
environmental
measures

FOR organic
farming;

AGAINST GMO

FOR crop rotation
and

diversification,
promoting

biodiversity,
organic farming,

permanent
grasslands,

AGAINST GMO,
intensive

agriculture [214,
215]

FOR reducing
use of chemicals,

promoting
biodiversity,

energy savings;
AGAINST

intensive
farming [105]

FOR greener
CAP, energy

savings, tackling
climate change

through
innovative

solutions [6]

-
AGAINST

GMO [221]
Not the

priority [83]
-

87

Part , Chapter 4 – Multiplex signed networks

4.4.2 Network Extraction

The voting behavior of each MEP is represented by a series of vote values, each one corre-
sponding to a specific roll-call of the considered period. A natural approach consists in modeling the
data as a dynamic network, in which each time slice corresponds to a roll-call. However, this is not
appropriate for the EP, due to its very specific scheduling, which differs greatly from a typical national
parliament’s. At the EP, there are only 4 days of plenary session by month, in average, during which
the MEPs consider a large number of propositions. The chronology of the propositions therefore has
little effect on the votes, as we verified empirically. This is why a multiplex representation, in which
each layer models one roll-call, is more appropriate here.

The similarity function that we use is very basic, since it is applied to each roll-call considered
separately (by opposition to the whole series). For a pair of MEPs u and v and a roll-call i, we have
(u, v) ∈ Ei if and only if both MEPs voted, i.e. neither were absent. Moreover, we set si(u, v) = +
if both MEPs voted similarly (FOR-FOR, AGAINST-AGAINST, or ABSTAIN-ABSTAIN) and − otherwise.
Unlike other approaches such as in Section 4.5.1, we do not need to filter the resulting edges,
because their weights are not the result of some averaging, and all of them are assumed to be infor-
mative. It is difficult to decide how to treat abstention, since it can be considered as the expression
of some intermediate position. In this extraction phase, we consider ABSTAIN exactly like the other
forms of vote (FOR and AGAINST).

4.4.3 Measure Selection for Calculating Dissimilarities Between Patterns

We now use our results from Section 3.5.2, and in particular from Figure 3.4, to solve the mea-
sure selection problem presented in Section 4.3.2. The application of European Parliament brings
specific constraints on any pattern Pi of G, which can contain at most three modules, i.e. 1 ≤ `i ≤ 3:
1) a single module in case of unanimity (all MEPs vote either For, Against or Abstain the legislative
text); 2) two modules when there is either an antagonistic situation (i.e. some MEPs support the
concerned document and the rest oppose it), or a unanimous module with an additional module of
abstentionists; 3) two antagonistic modules with an additional module of abstentionists. It is impor-
tant to stress that some parameters and transformations presented in Chapter 4 are not relevant
here, due to the application context. In the following, our discussion is based on the concepts and
the notations introduced in Chapter 4, for the sake of consistency.

First, the single module of unanimity is not applicable for some transformations presented in
Section 3.3.1.2. Therefore, we apply all the transformations if there is more than one module in
the original partition. For k New Modules and Singleton Modules, this means that we get at least
four modules in the transformed partition. This is incompatible with the fact that all the compared
partitions of this application contain at most three modules, so we exclude both transformations.
Second, in this context, the Orthogonal Modules transformation can be applied only when there

88

4.4. Experiments

are two modules in the original partition, and only one vertex in each module is affected by the
transformation. In this case, this transformation results in the same transformed partition as with 1
New Module, therefore we also exclude Orthogonal Modules.

This leaves us with two transformations. The first is 1 New Module, which we apply only when
the original partition has two modules, in which case the transformation produces an additional
module in the transformed partition. The second is Neighbor Module Swaps, which we apply only
when the original partition has either two or three modules, but not a single one. For both these
transformations, there is no constraint on parameters h and q. However, as explained above, our
analysis must focus only on certain values of `, due to 1 ≤ `i ≤ 3 in Pi. Finally, in the context of
EP all the considered Gi contains the same number of vertices, which means that n is fixed in the
framework and can therefore be ignored in our discussion.

Each application has its own desirable properties that an appropriate measure should satisfy
regarding the application needs. In this application, we want the selected measure to be sensitive
enough so that it detects relevant module changes, but not enough so that it is affected by simple
individual exchanges of MEPs. Next, we express this desired behavior with respect to the remaining
parameters and transformations. The measure must be sensitive to the 1 New Module transforma-
tion as, in this context, detecting an extra module or missing one is an important error, since there
are only a few possible module of MEPs. When ` increases, so does the diversity of the module cre-
ated by this transformation, in the sense that its vertices come from more distinct original modules.
In this context, this is an important difference with the original partition, so we want the score of
the measure to increase with `. By comparison, it is desirable that the dissimilarity score decreases
when h increases, as this means most vertices of the extra module come from the same original
module, an error which is less serious. For the same reason, the effect of ` should be stronger than
that of h.Transformation Neighbor Module Swaps consisting in mixing the original modules to get
the transformed partition without changing the number of modules makes the modules more differ-
ent, when q increases. In this application context, it is important that this type of difference between
partitions is taken into account, so the measure must be sensitive to it. Changes in ` and h do not
affect the mixing much, so the measure score is expected to be largely independent from these
parameters.

Let us now study which measures studied in Section 3.4.1 fit the constraints described above.
Regarding transformation 1 New Module, it appears that only DFMI , DJI and DF behave appro-
priately. When considering transformation Neighbor Module Swaps, we can see that, even if it is a
small one, ` has an effect on DFMI and DJI . In conclusion, based on these observations, we select
DF in this context.

89

Part , Chapter 4 – Multiplex signed networks

4.5 Results

As explained previously, we want to illustrate how our method differs from those of the tradi-
tional approaches. We do so by comparing our method with a classic layer aggregation approach,
which relies on the temporal integration of the raw vote data. For this purpose, as explained in
Section 4.4.1, we focus on the votes of French MEPs related to agricultural questions during the
2012-13 legislative year. Our source code is publicly available 3.

We represent all networks and voting patterns using a circular layout (Figures 4.3) generated
through Circos 4. We describe them generically here, for matters of convenience. They shall be
read from the center to the periphery. The negative and positive edges are drawn at the center, in
red and green, respectively. Next, the inner colored ring represents the vertices (MEPs), and these
colors correspond to the modules constituting the detected pattern. If a MEP was often absent, he is
ignored (as explained in Section 4.3.4) and appears in white. The names of the MEPs are indicated
separately in B.4 (Figure B.2). Finally, the outer ring shows the European political groups to which
the MEPs belong. They are ordered according to the political spectrum, from left to right: GUE-NGL
(red), G-EFA (green), S&D (pink), ALDE (orange), EPP (light blue), ECR (dark blue), EFD (purple)
and NI (brown) (see Section 4.4.1 for their full names and descriptions).

The rest of this section is organized as follows. We start by presenting the results of a classic
layer aggregation approach (Section 4.5.1), then turn to our own clustering results (Section 4.5.2),
and finally discuss the obtained characteristic patterns and compare them with those of the tradi-
tional approach (Section 4.5.3).

4.5.1 Baseline

As a classic layer aggregation method, a.k.a traditional approach, we have extracted a layer
aggregated network by integrating the votes of French MEPs related to agricultural questions over
the whole considered legislative year (2012-13). Moreover, the weakest edges are filtered to sparsify
the network, which eases both their processing and the interpretation of the results (see [21] for the
filtering details). Figure 4.3a and Figure 4.3d show the best pattern obtained by solving the CC
and RCC problems, respectively. When solving the RCC problem, we fix ` to the optimal number of
modules for CC.

The pattern for the CC problem, which is the optimal solution to CC, contains 3 modules. There
are two large modules of similar size: the left one is largely dominated by the environmentalists
(G-EFL) and also contains the radical left (GUE-NGL) and NI ; and the right module contains the
center-left (S&D), right and center-right (EPP and ALDE) groups. Both modules have a majority of
positive internal and negative external edges. The third module (at the bottom) is a single vertex

3. https://github.com/CompNet/MultiNetVotes.
4. http://circos.ca

90

https://github.com/CompNet/MultiNetVotes
http://circos.ca

4.5. Results

corresponding to Philippe de Villiers, the only French member of the right-wing euroskeptic EFD
group. Unlike the three members of the other euroskeptic group (NI), he is connected to the rest of
the graph only by negative edges. This pattern displays a clear left/right divide, with the exception
of the three NI members, who are put together with the left/environmentalists. This divide can be
explained when considering the texts voted this year, among which a noticeable proportion (further
details are later given in Figure 4.4) concerns environmental issues and animal rights (questions of
great importance for these groups). The fact one ALDE member was put with the Greens supports
this, since it corresponds to Corrine Lepage, former Minister of the Environment in a right-wing
French government. One could expect the S&D to vote similarly to the rest of the left on these
topics. However, even more texts voted during this year concern the CAP, on which the center-left
is more likely to side with the right. This also explains the position of NI, which is more likely to
opportunistically support resolutions in favor of small family-owned farms (and therefore vote like
the radical left).

The other pattern, illustrated in Figure 4.3d, is the solution of the RCC problem with ` = 3.
This pattern differs from the previous one in that it identifies 3 modules of comparable sizes (no
more singleton module). Both large clusters from the previous pattern loose a number of members,
which are gathered to form a new, intermediary group. It contains some of the radical left (GUE-
NGL), the center-left (S&D), center-right (ALDE) as well as the NI group. The two other modules
are the environmentalists (G-EFL with Lepage) and the rest of the right (EPP with de Villiers),
respectively. This pattern is interesting, because it manages to identify a module of moderate MEPs,
which sometimes vote like the environmentalists, and sometimes like the right. This type of structure
could be identified due to the relaxed nature of RCC, which allows here to have positive edges
between modules.

To conclude this part, the position of S&D and ALDE is interesting, because they belong to the
right-wing module according to CC, whereas they hold an intermediate position with RCC. Never-
theless, a classic layer aggregation approach is not able to give a solid explanation for this, and to
discover in which context this happens. But we assume that these groups are sometimes voting like
the left-wing module, and sometimes like the right-wing one. We take this discussion as a reference
when commenting the results of our method, highlighting both differences and similarities between
these approaches.

4.5.2 Clustering

Figure 4.4 displays the results obtained after the third step of our method (k-medoids clustering,
Section 4.3.3), when applied to the same raw data. The bottom right plot shows the Silhouette score
S(Ck) as a function of the k value used when performing the clustering. The highest Silhouette
scores are obtained for the smallest k values. Note, in particular, the very large gap between k =
1, ..., 8 and k ≥ 9. This confirms our assumption from Section 4.3.3 regarding the expected number

91

Part , Chapter 4 – Multiplex signed networks

of clusters, and justifies that we discard the clusterings Ck obtained for k ≥ 8 in our analysis.

The left plot of the same figure is an alluvial diagram 5 representing the changes underwent by
the clustering depending on k. Each vertical bar corresponds to the clustering obtained for a given
value of k, ranging from 2 to 8. Its vertical rectangles represent the constituting clusters. The value
indicated below the bar is the corresponding Silhouette score. Each horizontal line represents a
document, and its color depends on the document subdomain (cf. B.3). If a document has several
subdomains, it is duplicated as many times (but here, this concerns only 3 documents).

Let us first discuss the topical heterogeneity of the clusters. One could a priori assume that the
opinions of MEPs do not change much when considering documents related to the same subdo-
main, and therefore expect the clusters to be somewhat homogeneous regarding this aspect, or at
least to see all documents related to a given subdomain gathered in the same cluster. However, the
alluvial diagram shows that this is not the case at all: each cluster contains several subdomains,
and certain subdomains appear in several clusters. We can think of several reasons for this. First,
the subdomains do not completely encompass the characteristics of the documents, and there are
other factors to take into account. We would need to detect the sentiment (in the Natural Language
Processing sense, i.e. positive or negative opinion) conveyed by the document’s textual content to
explore further this issue. Second, the dataset contains all available amendments: an amendment
is generally a small modification of an existing document and can therefore lead to an easy consen-
sus, which can introduce a bias toward this type of pattern. Third, the distribution of documents over
the different subdomains is very unbalanced, and some rare subdomains are actually completely in-
cluded in a single cluster, whereas other ones are widespread. For instance, themes mostly related
to the economic aspects of agriculture (such as CAP mechanisms, social and structural measures,
and multiple market organizations – see Table B.1 for details) appear in every cluster. Of course, the
clusters mechanically become purer when k takes much larger values, as their sizes decrease.

Another important property of our clusterings is that, even though we do not use a hierarchical
clustering method, they exhibit a quasi-hierarchical organization. More precisely, all clusters ob-
tained for a given k are kept for k+1, except one which is split in two to get an additional cluster. For
instance, when considering k = 2 and k = 3: C1

2 is kept as C1
3 , whereas C2

2 is split into C2
3 and C3

3 .
Interestingly, among the two clusters resulting from such a split, one always exhibits a characteristic
pattern identical or very similar to that of its ancestor (e.g. C3

3), whereas the other’s is different (e.g.
C2

3). For k > 5 though, the characteristic patterns obtained for the new clusters are not different
enough to present any interest, in terms of interpretation. In the end, if the highest Silhouette value
is obtained for k = 3, the second best is k = 5, and it additionally leads to a larger number of suffi-
ciently different characteristic patterns. As mentioned in Section 4.3.3, when identifying the best k,
it is important to consider qualitative aspects in addition to the Silhouette. Under these terms, we
identify k = 5 as our best trade-off, and discuss it in the rest of this subsection.

5. https://cran.r-project.org/web/packages/alluvial/

92

https://cran.r-project.org/web/packages/alluvial/

4.5. Results

G
U

E
-N

G
L

G-EFAS&D

A
LD

E

EPP

EFD

N
I

C
. Le

p
a
g
e

(a)
C
C

(a
classical

layer
aggregation

ap-
proach

used
in

Section
4.5.1).

G
U
E
-N
G
L

G-EFAS&D

A
LD

E

EPP

EFD

N
I

(b)
P̂

25 .

G
U

E
-N

G
L

G-EFAS&D

A
LD

E

EPP

EFD

N
I

C
. Le

p
a
g
e

(c)
P̂

35 .

G
U
E
-N
G
L

G-EFAS&D

A
LD

E

EPP

EFD

N
I

(d)
R
C
C

(a
classicallayer

aggregation
ap-

proach
used

in
Section

4.5.1).

G
U
E
-N
G
L

G-EFAS&D

A
LD

E

EPP

EFD

N
I

(e)
P̂

45 .

G
U
E
-N
G
L

G-EFAS&D

A
LD

E

EPP

EFD

N
I

(f)
P̂

55 .

Figure
4.3

–
C
haracteristic

patternsofthe
French

M
EPson

A
G
R
Iquestionsin

2012-13.R
ed

and
green

linesatthe
centerrepresent

negative
and

positive
edges,respectively

(red
edges

are
draw

n
on

top
ofgreen

ones
in

order
to

im
prove

readability).A
round

the
edges,each

M
EP

isrepresented
by

a
colored

tile,w
hose

colorcorrespondsto
the

M
EP’sfaction

in
the

displayed
pattern.T

he
green

factions
in

plots
(b),(c),(e)

and
(f)

correspond
to

abstentionists.T
he

M
EPs’nam

es
are

indicated
separately

in
Figure

B
.2.T

he
outer

ring
represents

the
politicalgroups

at
the

EP.T
he

left
plots

show
the

patterns
obtained

by
the

classicallayer
aggregation

approach
used

in
Section

4.5.1
on

the
sam

e
integrated

netw
ork

w
hen

solving
(a)C

C
and

(d)R
C
C
.T

he
rightplotsshow

the
second

to
fifth

clusters
obtained

w
ith

our
proposed

m
ethod

for
k

=
5:(b)

P̂
25
(%

15
ofroll-calls),(c)

P̂
35
(%

32
ofroll-calls),(e)

P̂
45
(%

8
of

roll-calls),and
(f)

P̂
55
(%

3
ofroll-calls).T

he
firstcluster,

P̂
15 ,w

hich
correspondsto

a
unanim

ity
situation,isrepresented

separately
in

Figure
B
.1.

93

Part , Chapter 4 – Multiplex signed networks

C5
5 C8

8

C1
2 C1

3 C1
5 C1

6 C1
7C1

4 C1
8

C2
2

C2
3

C2
6

C2
4 C2

5
C2

7 C2
8

C3
3

C3
4

C3
5

C3
6

C3
7

C3
8

C4
5

C4
4

C4
6

C4
8

C4
7

C5
6

C5
7

C5
8

C6
6

C6
7

C6
8

C7
7

C7
8

S(C2)
 =0.52

S(C3)
 =0.66

S(C4)
 =0.57

S(C5)
 =0.58

S(C6)
 =0.53

S(C7)
 =0.50

S(C8)
 =0.49

Agricultural structural funds, General (GEN)
Coordination of structural instruments (CSI)

 Social and structural measures (SSM)
Bilateral agreements with non−member countries (BANC)
Fish, External (EXT)
Arrangements covering more than one market org. (ACMOMO)
Protection of economic interests (PEI)
European Agricultural Guarantee Fund (EAGF)
Animal health and zootechnics (AHZ)
Wine (WINE)
Processing and marketing of agricultural products (PMAP)
Seeds and seedlings (SEED)
Seeds (SEED)
Common agricultural policy mechanisms (CAPM)
European Agricultural Fund for Rural Development (EAFRD)

0 50 100 150 200

Number of clusters (k)

S
ilh

o
u
e
tt

e
 s

co
re

 (
S

(C
k)

)
k=5

k=4

k=3

k=6
k=2

k=7 k=8

0.65

0.40

0.20

0.00

0.58

Figure 4.4 – Alluvial diagram (left) with its legend (top right), and Silhouette scores (bottom right)
for the French MEPs.

4.5.3 Characteristic Patterns

In the following, we discuss each cluster obtained for k = 5 and its corresponding characteristic
pattern.

4.5.3.1 Unanimity

For space considerations, the characteristic pattern P̂ 1
5 associated with cluster C1

5 is represented
separately in Figure B.1, as it corresponds to a unanimity situation. Indeed, it contains a single
module, and only one negative edge, between P. Le Hyaric (GUE-NGL) and M. Le Pen (NI). The
emergence of such a high level of agreement was completely hidden when considering only the layer
aggregated network, and therefore could not be detected in Section 4.5.1. C1

5 is the largest cluster

94

4.5. Results

with 100/232 roll-calls (43%), so we can assume that P̂ 1
5 represents the regular voting behavior in the

considered context. All the other clusters correspond to characteristic patterns containing varying
antagonistic modules. This is consistent with the fact that our clusters are supposed to correspond,
by construction, to distinct voting patterns.

Although the unanimity case could be considered of less importance in terms of characteristic
pattern, it is worth illustrating its occurrence in this context. One such roll-call is related to the im-
provement of applications for the protection of a designation of origin or a geographical indication
(e.g. wine). Specifically, this text is about determining more explicitly the eligibility requirements to
make such an application, and giving the concerned member state the responsibility to verify it.

4.5.3.2 Conservatives vs. the Rest

The characteristic pattern P̂ 2
5 associated with C2

5 , shown in Figure 4.3b, finds the right-wing con-
servative group (EPP) opposing the rest of the MEPs, while both Euroskeptic groups (EFD and NI)
abstain. This cluster contains 34/232 (15%) roll-calls. An examination of the content of the corre-
sponding legislative documents, as well as of certain positioning documents produced by the EP
groups, such as election manifestos and public letters, reveals that this voting behavior corresponds
to EPP trying to block radical changes related to the CAP. These changes, as well as their blocking
by the right-wing conservatives, are confirmed in a positioning paper published by S&D about the
2013 CAP reform [105].

Among them, one of the most important was the capping of direct payments to farmers. Direct
payments constitute a form of basic income conditioned on the implementation of certain EU rules.
They represent a consequent budgetary item: 72% of the EU farm budget [75]. As such, they are
difficult to reform, but the EP was willing to do so at this time, according to the chair of the AGRI
Committee [85]. Most roll-calls related to this topic consequently correspond to amendments to
the text proposed by the commission. For instance, the first amendment proposed by S&D, which
matches the characteristic pattern, aims at capping the direct payment at 200 kAC. Its goal here is
to decrease the support granted to large agriculture structures without affecting small- and middle-
sized businesses. This change is first rejected by EPP, but a compromise is later found: it consists in
raising the cap to 300 kAC. The corresponding roll-call belongs to cluster C3

5 (discussed next), which
therefore exhibits a much different characteristic pattern.

4.5.3.3 Environmentalists vs. the Rest

Cluster C3
5 contains 74/232 roll-calls (32%). Its characteristic pattern P̂ 3

5 , shown in Figure 4.3c,
finds the environmentalist group (G-EFA) opposing a large module constituted of the rest of the
MEPs. The far-left group (GUE-NGL) is apart, as one MEP agrees with the environmentalists
whereas the rest of his group abstains. This is very similar to the pattern obtained by the tradi-

95

Part , Chapter 4 – Multiplex signed networks

tional approach when solving CC on the layer aggregated network, except for the NI group and a
few MEPs. In particular, Corinne Lepage, which was described in Section 4.5.1 as an environmen-
talist member of ALDE, is placed in the G-EFA module by our current method. The relevance of this
module is confirmed by her activity both at the EP, where she is very active on issues such as food
safety, and outside, through her own initiative reports and consciousness-raising conferences [7].
The roll-calls composing this cluster are mainly associated with amendments related to environ-
mental aspects of agriculture, and most are proposed by G-EFA, sometimes in collaboration with C.
Lepage.

Obviously, the singular position of G-EFA in this characteristic pattern is caused by its systematic
opposition to the other groups on the texts associated with this cluster. However, one can distinguish
two different situations. On the one hand, G-EFA tables amendments to enhance and complete
the social and/or environmental regulations proposed in the amended text, and then vote in their
favor. For instance, a legislative text was presented to include crop diversification (in opposition to
monoculture) among the rules that farmers must enforce to obtain direct payments. G-EFA proposed
to add crop rotation (growing different crops on the same land each year) to these requirements,
as it considers it to be as crucial (in addition to crop diversification), because it helps increasing
productivity as well as reducing the use of chemical fertilizer [214].

On the other hand, G-EFA opposes amendments considered as not environmentally and/or so-
cially progressive enough, like in the case of milk quotas. An amendment was proposed to trigger
milk quotas only in case of severe market imbalance. These quotas were introduced in the EU in
1984, in order to prevent milk overproduction [80]. In 2008, the EP had already decided to increase
gradually the milk quotas and abolish the quota regime in 2015. According to G-EFA, the quotas
should not be abolished at all, as they favor high-quality production rather than overproducing and
selling EU surplus to other countries [83]. Therefore, the group opposed the amendment.

By comparison, all the other groups are in favor of activating milk quotas only in cases of severe
market disturbance. Nonetheless, they position themselves differently on the quota system itself.
For S&D, it allows balancing between supply and demand, and contributes to market efficiency. The
group assumes that its complete removal would pose serious problems. On the contrary, ALDE and
EPP aim at increasing competitiveness in order to meet the global demand, and want to reduce
quotas as much as possible [83]. Interestingly, this characteristic pattern is the only one, with una-
nimity (P̂ 1

5), for which the Euroskeptics (NI, EFD) do not abstain. It is difficult to assess why exactly
it is the case, but this is likely to denote the importance they give to the concerned issues (yet,
they have an official position on other topics, as shown in Table 4.2, and nevertheless abstained for
some of them). Like G-EFA, they too express their will to support product quality and producer price
guarantee. Moreover, it is worth noticing that this period corresponds to a significant broadening of
their electoral base in rural areas [195]. Therefore, one reason for their behavior could be to support
these small farmers.

96

4.5. Results

4.5.3.4 S&D/EPP vs. the Rest

Cluster C4
5 represents 18/232 (8%) roll-calls. Its characteristic pattern P̂ 4

5 , shown in Figure 4.3e,
contains a module formed by the far-left, environmentalist and liberal groups (GUE-NGL, G-EFA,
ALDE), vs. another module containing the socialists and conservatives (S&D, EPP), while both
Euroskeptical groups form an abstentionist module. This constitutes a new type of characteristic
pattern, different from all the others met until now, including in the baseline. In particular, it is worth
noticing that S&D and ALDE do not belong to the same module. Thus, if these groups alternatively
side with left- and right-wing groups, as already assumed by the classical layer aggregation ap-
proach presented in Section 4.5.1 (and as illustrated before), our current method shows that they
do not always do so simultaneously.

The example of the gradual elimination of export refunds [76], and its impact on developing coun-
tries, is particularly illustrative of the positions adopted by the different groups. Export refunds are
subsidies granted for certain products (e.g. cereals, rice, sugar, beef and veal, milk and dairy prod-
ucts) that are exported outside the EU, to enable EU exporters to better compete on world markets.
According to ALDE, which argues for agriculture to be liberalized as much as possible, keeping
export subsidies would cause unfair competition and might deteriorate rural development [6]. As
a result, ALDE was in favor of phasing-out export refunds. G-EFA was also against export subsi-
dies, but for different reasons. The group normally supports any market regulation guaranteeing fair
producer prices and encouraging product quality. However, it considers that this specific piece of
regulation goes in the opposite direction of its ideology [215] , and therefore opposes it. S&D also
criticizes continuing export subsidies, but at the same time, the group is not in favor of eliminating
them, because this might weaken the EU’s hand in worldwide trade negotiations [83]. EPP is not
against eliminating the export subsidies in general, but they want to keep them in case of crisis.

4.5.3.5 Unholy Alliance

For Cluster C5
5 , the characteristic pattern P̂ 5

5 , as illustrated in Figure 4.3f, finds a module gath-
ering environmentalists and right-wing liberals and conservatives (G-EFA, ALDE, EPP), opposing
a module composed of the far-left and socialist groups (GUE-NGL and S&D), while the Euroskep-
tics abstain once again. These modules are surprising from a political standpoint, as they exhibit
a somewhat unholy alliance between environmentalists and conservatives, whose views generally
clash for AGRI matters. But the characteristic pattern is also surprising when considering the results
of Section 4.5.1, as this alliance was not detected at all. The cluster contains only 6 roll-calls (2%),
which shows that this situation does not happen often.

Examining the concerned documents and debates reveals that these groups vote similarly (in
this specific context), but for different reasons, as shown later by the subsequent amendments they
tabled. Let us take for example the case of green payments [78], i.e. direct payments specifically tar-

97

Part , Chapter 4 – Multiplex signed networks

geting agricultural practices beneficial for the climate and the environment. On the one hand, G-EFA
considers that the constraints related to biodiversity are not strong enough, as already mentioned
for crops when discussing P̂ 3

5 . On the other hand, EPP thinks that there are too many requirements
to earn an organic farming certification, and that a subset of these constraints would suffice 6. Later,
each group proposed a few amendments trying to pull the original text in its own ideological direc-
tion. Each group supported its own amendments and voted against the other’s, fitting the previously
discussed Environmentalists vs. the Rest and Conservatives vs. the Rest. patterns, and thus high-
lighting their disagreement. This specific example is important, as it shows that voting similarly is
not equivalent to having the same opinion.

4.5.3.6 Comparison with the Baseline

Our results confirm in a more objective way the assumption of those of the traditional approach
presented in Section 4.5.1, based on the RCC pattern from Figure 4.3, and according to which S&D
and ALDE sometimes vote like the left-wing groups (as in P̂ 2

5) and sometimes like the right-wing
ones (P̂ 3

5). Our method additionally identifies the documents for which the EP adopts these two
patterns: it turns out most of them are amendments to the same legislative propositions, in both
clusters C2

5 and C3
5 . But our method also shows that these two groups vote differently on a number

of occasions (P̂ 4
5 and P̂ 5

5), a fact overlooked when using the traditional approach.
In addition, our results uncover the fact that the Euroskeptics systematically abstain on most

documents, and only vote for a specific subset corresponding to the Green vs. the Rest pattern.
This specific behavior put them apart from the rest of the groups, and maybe this is why they had
been categorized by the traditional approach as an intermediate group, like S&D and ALDE, in
Section 4.5.1. However, our results show that this is an artifact of the Euroskeptics’ abstentionist
behavior, and that they hold a completely different position than S&D and ALDE.

Finally, our method allows identifying the Unholy Alliance pattern, which had completely been
overlooked by the layer aggregation approach in Section 4.5.1. It corresponds to a very surpris-
ing coalition, politically speaking, which emerged when voting for a very specific set of legislative
documents, also identified by our method. By leveraging amendments related to the concerned doc-
uments, our method even allows identifying specific points of agreement and disagreement in these
texts.

4.6 Conclusion

In this chapter, we have presented a new method to partition multiplex signed networks. Our
four-stepped method first partitions each layer separately to obtain as many patterns, computes the

6. Incidentally, it is worth noting that changing the definition of organic farming would make it easier to receive
green payments.

98

4.6. Conclusion

similarity between these patterns, then groups them using cluster analysis, and characterizes each
such cluster through a representative pattern. These steps can be implemented in various ways,
depending on the application. By applying it to a subset of the 7th term European Parliament dataset
presented in [21], we could uncover findings which had been overlooked by traditional approaches.
For instance, we could not only confirm that the French S&D and ALDE MEPs alternatively side
with the left- and right-wing groups, but also identify which topics are concerned by these swings.
We could also uncover more surprising results, such as the so-called unholly alliance between right
conservatives and environmentalists on a specific subset of propositions. In addition, we could show
that they were voting similarly, but for completely opposed rationales.

We believe that our work opens new directions for future research. First, our method is generic
enough so that it could be also adapted to unsigned graphs or any kind of partitionable data, with
slight modifications. Second, our method currently treats patterns equally during the characterization
step. It is possible to weight appropriately the patterns by leveraging the topological information of
their corresponding layers. This can be viewed as a hybrid approach with combines both network-
and partition-centric approaches. Finally, another interesting future direction is to generalize our
method for multilayer signed networks, which subsumes inter-layer edges. This can offer to take into
account the relations/dependencies between layers, when such information exists.

99

Chapter 5

ENUMERATION OF THE SPACE OF OPTIMAL

SOLUTIONS FOR THE CORRELATION

CLUSTERING PROBLEM

5.1 Introduction . 103
5.2 Related Work . 105

5.2.1 Existence of Multiple Optimal Solutions . 105
5.2.2 Enumerating All Optimal Solutions . 106

5.3 Enumeration of the optimal solution space for the CC problem 108
5.3.1 Finding an alternative optimal solution . 109
5.3.2 Enumerating all optimal solutions . 109

5.4 Recurrent Neighborhood Search (RNS) . 111
5.4.1 Edit Distance . 112
5.4.2 Complete Neighborhood Search (CoNS) . 114
5.4.3 Recurrent Neighborhood Search (RNS) . 117

5.5 Pruning Strategies . 118
5.5.1 Non-Minimum Edit Operation Pruning . 119
5.5.2 Decomposable Edit Operation . 120
5.5.3 Multiple Vertex Moves between Optima (MVMO) Property 122
5.5.4 Tractable cases of the MVMO Property . 124

5.6 Experiments . 126
5.6.1 Dataset . 127
5.6.2 Evaluation of the MVMO-based pruning strategies 127
5.6.3 Evaluation of EnumCC . 129
5.6.4 Investigation on harder instances . 133

5.7 Conclusion . 136

101

Part , Chapter 5 – Enumeration of the space of optimal solutions for the CC problem

5.1 Introduction

We have shown in Chapter 4, through an application of vote analysis, that a single partition of a
given set of vertices may not reflect the meso-structure of a network. It is possible that one needs
to seek for multiple partitions to get a better understanding. This need to look for multiplicity could
be seen as related to such networks having multiple layers. However, we will see that it also holds
even when considering a single layer, i.e. a uniplex network. When solving an instance of the CC
problem, the standard approach in the literature, be it heuristic or exact, is to find a single solution
and focus the rest of the analysis on it, as if it was the only solution.

Yet, it is possible that several, and even many, other optimal solutions exist for the considered
instance [56, 63, 62, 57, 38]. In this chapter, we relax this single-partition assumption to allow search-
ing for all optimal partitions. To the best of our knowledge, the issue of multiple optimal solutions for
the CC problem is first pointed out by Davis [56] for perfectly balanced incomplete signed graphs,
as he gives an example of how such graphs may have several optimal partitions. In particular, he
states that a signed graph should have a unique optimal partition, otherwise, it amounts to a lack
of cluster structure. The issue is then also confirmed by Doreian and Mrvar [63] (also in [62] with
more networks) for imbalanced incomplete signed graphs, and the authors integrate this knowledge
into their heuristic method to collect all discovered best partitions across a large number of restarts,
evidently with the risk of obtaining local optima. Later, Brusco and Steinley [38] overcome this lo-
cal optima issue by adapting their ad hoc B&B programming exact method to enumerate multiple
optimal partitions.

Figure 5.1 illustrates the issue of multiplicity on a complete unweighted signed graph (see cap-
tion). Solving the CC problem for this graph of only 7 vertices yields no less than 22 distinct optimal
solutions. We show only a few of them to highlight how different these can be. For instance, on the
one hand P a and P b are very similar, partition-wise, as they are both bisections differing only in the
module assignment of v1. On the other hand, P c is quite different from them: it contains an extra
module obtained by separating an element from each module of the previous solutions, in addition
to v1.

Nevertheless, guaranteeing the completeness of the optimal solution space enumeration re-
quires employing exact approaches. It is well known that, due to their NP-hard nature, exact ap-
proaches solving most clustering problems (including the CC problem) do not scale well even when
looking for a single optimal solution [103]. This constrains the number of vertices that we can han-
dle. We could instead look for quasi-optimal solutions, which can be found faster using a heuristic
method. However, we want to study the CC problem itself, and not some of its existing resolution
methods. Using a heuristic-based method would introduce a bias in the way the solution space is
explored, and thus in our study of the problem.

In this chapter, we propose a new efficient method for the enumeration of the CC optimal so-

102

5.1. Introduction

+
+

–

+

+

–

–

+ +

–
+

+ v3

v2

v6
–

v5

v1

– v4v7

a)

(a) P a

+
+

–

+

+

–

–

+ +

–
+

+ v3

v2

v6
–

v5

v1

– v4v7

b)

(b) P b

+
+

–

+

+

–

–

+ +

–
+

+

–
–

v5

v6

v7 v4

v3

v2

v1

c)

(c) P c

Figure 5.1 – Three (out of 22) different optimal CC solutions obtained for the same network: a) P a
= {{v1,v5,v6,v7}, {v2,v3,v4}}; b) P b = {{v5,v6,v7}, {v1,v2,v3,v4}}; and c) P c = {{v1,v2,v5}, {v6,v7},
{v3,v4}}. Red and green lines represent negative and positive edges, respectively. The graph is com-
plete, but for clarity, some negative edges between modules are intentionally omitted.

lution space. Motivated by the high similarities that optimal solutions can share (e.g. Figure 5.1), it
integrates into an exact approach several local search mechanisms combining neighborhoods from
small to large sizes. The efficacy of our method relies on the use of neighborhoods of different sizes
in a recurrent manner which allows to explore different regions of the optimal solution space. In
order to accelerate the proposed enumeration method, we developed pruning strategies based on
optimal conditions satisfied by partial solutions.

In this work, we focus only on unweighted signed graphs, although our proposed method can
handle edge weights. Application-wise, unweighted signed networks are much less used in the liter-
ature, but they nevertheless fit certain modeling situations and methodological choices. Accordingly,
it can be that binary values better represent the studied relations (e.g. alliance/conflict between
countries in international relationships [65]), or that the authors prefer to use such values for practi-
cal reasons (e.g. limited or unreliable information [70]).

Contributions. The following content is based on our work submitted to Journal of Global Opti-
mization [15]. This chapter makes the following contributions:

1. Enumeration method. We propose an efficient enumeration method to generate all optimal
solutions of a given unweighted signed network.

2. Evaluation. We present extensive computational experiments established for the proposed
method, relying on sparse and dense signed unweighted networks.

The rest of this chapter is organized as follows. In Section 5.2, we review the works identifying
the issue of multiple optimal solutions and those related to the exact enumeration of all optimal
solutions of the CC problem. Next, we introduce our enumeration method in Section 5.3 and detail
our neighborhood search and pruning strategies in Section 5.4 and 5.5, respectively. We put the
proposed method into practice on a selection of complete and incomplete signed networks and
discuss our results in Section 5.6. Finally, we review our main findings in Section 5.7, and identify
some perspectives for our work.

103

Part , Chapter 5 – Enumeration of the space of optimal solutions for the CC problem

5.2 Related Work

There are some methods proposed in the literature to solve CC exactly [57, 90, 130], however
very few methods were proposed for enumerating the CC optimal solution space. In fact, more
generally very few methods were proposed for enumerating the optimal space of any combinatorial
problem (e.g., [24] for maximal covering problem). In Section 5.2.1, we first summarize the works
identifying the issue of multiple optimal solutions, we then review the existing and related optimal
space enumeration methods for the CC problem in Section 5.2.2.

5.2.1 Existence of Multiple Optimal Solutions

As mentioned in Section 5.1, multiple optimal solutions for the CC problem are already identified
in the literature [56, 63, 62, 38]. Although considerable efforts are made in both of these works to
deal with the multiplicity of solutions, their authors do not try to study the optimal solution space of
the CC problem. This might be due to the fact that the number of optimal partitions they encountered
was small, around 20, for most of the networks they considered [62]. Doreian et al. [62] suggest to
use the multiplicity as an additional criteria to select the most appropriate number of modules, in
cases where the optimal imbalance value is reached for several values of this number of modules.
Brusco and Steinley apply this principle in [38]. However, as we show in Section 5.6.3.1, in practice
the number of optimal solutions can be much larger than 20.

The problem of multiplicity is of general interest, and was studied in the context of other opti-
mization problems than CC. There are just a few of these works, thus for the sake of completeness
we briefly cover them here. Paris [182] proposes to take advantage of multiple optimal solutions
to perform a more thorough validation of linear programming economic models, in order to provide
more flexibility at decision-making. Liu et al. [150] tackle the multiplicity for the Optimal Load Distri-
bution problem to manage multiple generator units in hydropower plants. Ruiter et al. [197] show in
the context of Adjustable Robust Optimization that even when all optimal solutions have the same
worst-case cost, their mean costs can drastically differ, which allows discriminating between optimal
solutions. Arthur et al. [24] also recognize the need to identify all optimal solutions for the Maximal
Covering problem in the context of geosciences. In addition, they observe a connection between the
size of the problem (number of units) and the number of optimal solutions.

All these works show that 1) there can be multiple optimal solutions in practical contexts; and 2)
identifying all or several of these multiple solutions is informative, and therefore worthwhile, as they
can be leveraged to improve the results application-wise. Among other things, the work we present
in this chapter extends the findings of Davis [56] and Doreian et al. [62] by showing that the issue
of multiplicity also occurs for complete imbalanced signed graphs. Moreover, we study how certain
parameters of the problem affect the multiplicity of solutions.

104

5.2. Related Work

5.2.2 Enumerating All Optimal Solutions

The literature provides three main methods to enumerate all optimal solutions of a combinatorial
problem: Branch-and-Bound (B&B), Fixed-Parameter Enumeration and Weighted partial MaxSAT-
based. The literature for B&B is more prevalent for the CC problem and most works concentrate on
it.

5.2.2.1 Branch-and-bound (B&B)

Like for any combinatorial problem, the enumeration of all optimal solutions of the CC problem
through a B&B method can be performed by using two different algorithmic approaches: Integer
Linear Programming (ILP) vs. ad hoc B&B programming. Their main difference is that the former can
tackle any problem translated on the language of mathematical programming through any industrial
optimization solver, whereas in the latter the construction of the B&B tree relies on problem-specific
idiosyncrasies. Based on how the B&B tree is used, the ILP approach can be implemented in two
different ways. The first one relies on a simple sequential process: a slightly modified version of
the original problem is solved as many times as solutions in the optimal solution space (like in [24]
for maximal covering problem). In each iteration, already-found optimal solutions are sequentially
added as constraints into the mathematical model to exclude them. However, the drawback of this
approach is that a B&B tree needs to be built from scratch for each new optimal solution found.

Danna et al. [54] reduce the computational effort with a more efficient two-step method than
the simple sequential approach, called OneTree. As its name suggests, this methods constructs
a single B&B tree. In simple terms, the authors first build and explore the search tree in order to
find efficiently the first optimal solution, then enumerate all the other optimal solutions based on the
same tree. This method is currently incorporated in the industrial optimization solver CPLEX [117]
and we detail in Section 5.3.2 how we use it for the CC problem.

An ad hoc B&B programming method constructs the B&B tree different from the previous ap-
proach. Namely, these methods for a clustering problem systematically construct partial solutions by
assigning the vertices to one of the existing modules. This forms a search tree, where the branches
of the tree correspond to assignments of vertices to modules while the nodes correspond to partial
assignments. Similar to Danna et al. [54], Brusco and Steinley [38] propose a two-step method for
generating all CC optimal solutions. In their method, they first identify the optimal objective function
value by finding an optimal solution, then use the optimal value as input for another branch-and-
bound tree from scratch. As shown in Figueiredo and Moura [90] this method cannot deal well for
finding a single optimal solution of graphs with more than 20 vertices.

105

Part , Chapter 5 – Enumeration of the space of optimal solutions for the CC problem

5.2.2.2 Fixed-Parameter enumeration

This is also an ad hoc method which requires to transform a part of the considered problem as a
new input parameter. This in turn guarantees to bound the overall running time in function of an input
parameter. Assuming that this input parameter is small, the parameterized enumeration is efficient
in practice. Damaschke [53] proposes an FPT (Fixed-Parameter Tractable) algorithm to enumerate
all optimal solutions in a given graph for the Cluster Editing problem, which is equivalent to the CC
problem when the input graph is complete and unweighted. Concretely, this FPT algorithm makes
the number of frustrated edges in structural balance parameterized to solve the problem. However,
a drawback of this approach is that the amount of imbalance, the input parameter, can be very large.
Furthermore, Damaschke does not provide the computational results in his theoretical work.

5.2.2.3 Weighted partial MaxSAT-based enumeration

A weighted partial MaxSAT allows to define soft and hard clauses of Boolean variables and a
function that associates a non-negative cost with each of the soft clauses. Any truth assignment
that satisfies the hard clauses gives a valid solution. In the literature, Saikko et al. [198] propose a
weighted partial MaxSAT solver, called LMHS, to enumerate all optimal solutions. Their enumeration
strategy relies on a sequential approach, as in [24] for a ILP, such that an already-found optimal
solution is added as a clause. The authors point out based on their experiments that integrating a
preprocessing step into the solver can degrade solver performance compared to no preprocessing.
Regarding the CC problem, as mentioned in Section 2.1, three different weighted partial MaxSAT
formulations are proposed in the literature [32]. Nevertheless, the performance of LMHS for the CC
problem is not known yet. Particularly, like the preprocessing step, its performance can be affected
by the choice of a MaxSAT formulation.

The computational results presented in the works mentioned in this section places the ILP B&B
as the more efficient method for exactly solving the CC problem. This is explained by a tighten initial
linear relaxation of the ILP formulation and the quality of the cuts used. In this work, we apply a
ILP B&B method for the complete enumeration of the CC optimal space and propose a compromise
strategy between the sequential approach and the OneTree method from Danna et al. [54].

5.3 Enumeration of the optimal solution space for the CC problem

Any of the ILP formulations described in Section 2.2 is in theory sufficient to enumerate all op-
timal solutions. Nevertheless, this task is more difficult than finding a single optimal solution and
requires dealing with different challenges, such as finding an alternative optimal solution and ensur-
ing the completeness of the solution space. Moreover, a solution space enumeration method can
be affected by the choice of the formulation and its exact method used to solve it. This is why, for

106

5.3. Enumeration of the optimal solution space for the CC problem

a fair comparison, we opt for using a single formulation and its best resolution method, which are
beneficial for both solution space enumeration methods described in Section 5.3.2. Accordingly, we
use Fv(G), as defined in Chapter 2 and solve it by applying the following strategy. We strengthen
its polytope Pv(G) through a cutting plane approach [174] with 2-partition (Equation 2.17) and 2-
chorded cycle (Equation 2.18) valid inequalities. We add the tight valid inequalities (only) during
the root relaxation phase, before proceeding to the construction of the B&B search tree. Note that
using Fv(G) amounts to keep the redundant inequalities in the formulation (Section 2.2.1). This is
a methodological choice, which allows to keep away from numerous invalid optimal solutions on
incomplete signed networks, a fact already mentioned in Section 2.2.1. Otherwise, this can be very
time-consuming, especially for the sequential approach. Nonetheless, removing the redundant in-
equalities, i.e. considering F ?v (G) instead of Fv(G), can be beneficial for the considered enumeration
methods on complete signed networks, as we briefly see later in Section 5.6.4.

In the following, we first present an ILP-based method for finding an alternative optimal solution
(Section 5.3.1), then pass to the methods enumerating all optimal solutions (Section 5.3.2). Through-
out this work, we denote Fv+(G) as the strengthened ILP obtained after executing B&C(Fv(G)),
i.e. the formulation obtained by adding to Fv(G) all the cuts generated by B&C(Fv(G)). Finally, let
B&B(Fv+(G)) be the Branch-and-Bound procedure based on Fv+(G). In the rest of this chapter,
by abuse of notation, the term solution designates a graph partition, as well as a feasible solution of
the formulation Fv(G).

5.3.1 Finding an alternative optimal solution

In the methods introduced in Section 5.3.2, we need to find an optimal solution different from a
set S of previous ones found. For this matter, we need to define an extended model of Fv+(G), that
we denote Fv+jump(G,S).

Consider a partition P . Let xp ∈ {0, 1}
n(n−1)

2 be the representative vector of P defined as: xpuv = 1
if u and v belong to the same module in P ; and xpuv = 0 otherwise. Fv+jump(G,S) simply includes
the set of constraints defined in Equation (5.1) on top of Fv+(G):

∑
u,v∈V :u<v

|xpuv − xuv| > 0, ∀P ∈ S. (5.1)

We refer readers to [92] for the implementation details of these constraints.

We see that this extended formulation allows us to find an alternative optimal solution other than
the ones in S. Furthermore, given an optimal solution P ∈ S, to ensure that this alternative solution
has the same objective value as I(P), we add the objective function defined in (2.7) as a constraint,

107

Part , Chapter 5 – Enumeration of the space of optimal solutions for the CC problem

as shown in Equation (5.2).

∑
u,v∈V :(u,v)∈E−

xuv +
∑

u,v∈V :(u,v)∈E+

(1− xuv) ≤ I(P) (5.2)

Equation (5.1) along with Equation (5.2) ensure that each feasible solution to Fv+jump(S) is an
optimal solution to the original problem. Finally, we denote the corresponding B&B procedure based
on formulation Fv+jump(G,S) by B&B(Fv+jump(G,S)).

5.3.2 Enumerating all optimal solutions

As we have mentioned before, the CC problem can have multiple optimal solutions. In this sec-
tion, we are interested in methods enumerating all optimal solutions of the CC problem for a given
signed graph G. In the following, we first present OneTreeCC [54] which is the best general enu-
meration solution space method available in the literature, incorporated in CPLEX [117], applied to
formulation Fv+(G). Then, we introduce our ad hoc method EnumCC in the aim of obtaining a
faster method able to handle relatively larger graphs.

We start with OneTreeCC(G), which takes in input a signed graph G. The sketch of this two-
step method is shown in Algorithm 1. In the first step (line 2), OneTreeCC(G) finds an initial optimal
solution based on Fv+(G). We note TB&B the B&B search tree constructed during this step. Besides
storing the search tree, the fathomed nodes in this first step are stored for further examination during
the second step. Moreover, Danna et al. [54] completely turn off dual tightening in the B&B procedure
in order to guarantee exhaustive enumeration. According to the authors, the latter can cause a
negative impact on performance. In the second step (line 3), OneTreeCC(G) enumerates the set
S of all other optimal solutions by expanding the search tree TB&B until obtaining the complete
enumeration of all optimal solutions.

Algorithm 1: OneTreeCC(G)
Result: The set of all optimal solutions S

1 S = ∅
/* 1st step */

2 Solve B&B(Fv+(G)) to obtain an optimal solution P , and let TB&B be the constructed
B&B search tree

/* 2nd step */
3 Expand fathomed nodes in TB&B until enumerating the set S of all other optimal solutions.

To compete with OneTreeCC(G), we propose a new method for the complete enumeration of
the CC optimal space. This method, EnumCC(G, rmax), with an input signed graph G and a max-
imum distance parameter rmax, shown in Algorithm 2, can be viewed as an improved version of
the sequential approach proposed by [24] for the Maximal Covering problem (described in Sec-

108

5.3. Enumeration of the optimal solution space for the CC problem

tion 5.2). In the first step (line 2), EnumCC(G, rmax) starts obtaining an initial optimal solution with
B&B(Fv+(G)). In the second step, instead of directly "jumping" onto undiscovered optimal solu-
tions one by one through Fv+jump(G,S) (like in the sequential approach), we slightly change this
process. EnumCC(G, rmax) first discovers the recurrent neighborhood RN≤rmax(P) of the current
optimal solution P (line 4), with the hope of discovering new optimal solutions. The recurrent neigh-
borhood RN≤rmax(P) of an optimal solution P , represents the set of optimal solutions, reached
directly or indirectly from P depending on the maximum distance parameter rmax. The complete
description of the RNS is given in Section 5.4. Whether a new solution is found or not through
RNS(G,P, rmax), the jumping process into a new solution P is performed (line 6). This process is
repeated, until all optimal solutions are discovered.

Clearly, EnumCC(G, rmax) can only improve the sequential approach used in [24], provided
that RNS discovers at least one new solution and that its execution time is faster than that of
B&B(Fv+jump(G,S)). Furthermore, the choice of rmax is delicate: it does not contribute much to
the method when it is small, whereas the method becomes slower than the sequential approach
when rmax is large.

Algorithm 2: EnumCC(G, rmax)
Result: The set of all optimal solutions S

1 S = ∅
/* 1st step */

2 Solve B&B(Fv+(G)) to obtain an optimal solution P
/* 2nd step */

3 while P 6= null do
/* step 2.1 */

4 Apply RNS(G,P, rmax) to generate the recurrent neighborhood RN≤rmax(P) of P
5 S = S

⋃
RN≤rmax(P)

/* step 2.2 */
6 Jump onto an undiscovered optimal solution P , with P /∈ S, through

B&B(Fv+jump(G,S)) // if not possible, then P = null

7 end

The jumping phase in step 2.2 of EnumCC(G, rmax) can be time-consuming for two reasons.
First, even finding an alternative solution can be costly. Second, the number of jumps, denoted by
the notation njump(.) (here, njump(EnumCC(G, rmax))), can be very large, despite the use of the
neighborhood RN≤rmax(π). Nonetheless, we expect to save time and compensate the time spent in
the jumping phase thanks to RN≤rmax(π).

In the rest of this work, we leave out the common parameter G from the notations of the men-
tioned methods and ILP models, for the sake of convenience: OneTreeCC(), EnumCC(rmax) and
Fv+jump(S).

In the next section, we detail the recurrent neighborhood search RNS used in Algorithm 2.

109

Part , Chapter 5 – Enumeration of the space of optimal solutions for the CC problem

5.4 Recurrent Neighborhood Search (RNS)

Recurrent Neighborhood Search (RNS) is the common and undoubtedly the most important part
of our method EnumCC. As we have mentioned in the last section, if we want that this method can
compete with OneTreeCC(), RNS needs to be efficient and fast.

Before defining the neighborhood of a solution, i.e. a partition, we need to determine a dis-
tance function for partitions. In the following, we first present minimum edit distance as our distance
function (Section 5.4.1). Then, we introduce the algorithmic details of the Complete Neighborhood
Search (CoNS) used in our Recurrent Neighborhood Search (Section 5.4.2). Finally, we explain the
Recurrent Neighborhood Search (RNS) (Section 5.4.3).

Let us first introduce our notations related to graph partitioning. Remember that, G = (V,E,w, s)
is a signed graph, n = |V | and each partition concerns the vertex set V . Since we consider only
unweighted signed networks in this chapter, we define the entries, auv, of the signed adjacency
matrix, A, as in Equation 5.3.

auv =

1, if (u, v) ∈ E+,

−1, if (u, v) ∈ E−,

0, otherwise.

(5.3)

Let P = {M1, ...,M`} (1 ≤ ` ≤ n) be an `-partition of V , i.e. a division of V into ` non-overlapping
and non-empty subsets Mi (1 ≤ i ≤ `) called modules. The partition P is called a solution of the
CC problem for the given graph G. A partition P with ` modules can be associated with one or
more membership vectors. Such vector of size n, denoted by π, defines a function {1, 2, ..., n} →
{1, 2, ..., `}. For a given vertex u, π(u) is the corresponding module label in partition P , while Mπ(u)

denotes the module to which vertex u belongs in P . Finally, given a partition P , we define an r-
neighborhood structure, denoted by Nr(P), as the family of partitions obtained by moving r vertices
in P from their source modules into the others. We also define Nr(π) as the family of membership
vectors obtained by moving r vertices in π.

5.4.1 Edit Distance

In Natural Language Processing (more generally in Computer Science) the edit distance [122]
is defined as the minimum number of edit operations required to transform one string into another
(or more precisely, their total cost). In the context of graph partitioning, when removing an existing
vertex or inserting a new one is not allowed, edit operations define neighborhood search operators
in local search heuristics developed for graph problems [34, 154, 1]. In this context, an edit oper-
ation is defined on two membership vectors, each storing the module labels of the vertices. Such
an operation consists in moving one or more vertices, called moving vertices, from their current
modules (called source modules) to other ones (called target modules). This transforms a source

110

5.4. Recurrent Neighborhood Search (RNS)

membership vector into a target membership one. The number of moving vertices constitutes the
cost of the edit operation. In this work, we are interested in edit operations whose cost is minimal.

Definition 5.1 (Min-edit operation). Consider an edit operation transforming a source membership
vector into a target membership one. If the set of moving vertices is the minimum set required for this
transformation, then it is a min-edit operation. Otherwise, we call it non-min-edit operation.

Notice that the cost of an edit operation is not always minimal. This is because two membership
vectors, i.e. the module labels of two partitions, can be very different, but essentially suggest very
similar module assignments for the vertices. The distinction between min-edit and non-min-edit
operations is illustrated in Figure 5.2.

We also note that the edit distance between two membership vectors is the cost of the min-
edit operation allowing to turn one vector into the other. The calculation of such distance between
two membership vectors can be done in polynomial time by solving an assignment problem (see
Appendix C.1 for more details).

Let us now introduce our notations related to edit distance. Let πs and πt represent the source
and target membership vectors for an edit operation. They are associated with the source and target
partitions P s = {M s

1 ,M
s
2 , ...,M

s
`s} and P t = {M t

1,M
t
2, ...,M

t
`t} with `s and `t modules, respectively.

Since the edit distance is symmetric, without loss of generality, let `s ≤ `t. Moreover, we designate
πs → πt an edit operation applied onto P s to obtain P t, whose set of moving vertices is defined
as

s−~ tV = {u | πs(u) 6= πt(u)}. This means that the remaining vertices, called non-moving vertices,
do not change modules, hence their module labels are the same in πs and πt. The cost of this
edit operation is denoted by cost(πs → πt), and computed by taking the cardinality of

s−~ tV . In the
rest of the text, we use r for short whenever we are interested only in the value of cost(πs → πt).
Also, a r-edit operation (resp. min-r-edit operation) is any edit operation (resp. min-edit operation)
whose cost equals r. Consider an edit operation πs → πt whose moving vertices are in set

s−~ tV .
The distinct labels of the source and target modules of a subset V ′ ⊂ V of vertices are denoted,
respectively, by πs(V ′) =

⋃
u∈V ′ π

s(u) and πt(V ′) =
⋃
u∈V ′ π

t(u). Finally, by abuse of notation, let us
define M t

L =
⋃
l∈LM

t
l for any L ⊆ {1, .., `t} and M s

L =
⋃
l∈LM

s
l for any L ⊆ {1, .., `s}.

To illustrate the aforementioned concepts, let us consider the example of Figure 5.2. As shown in
Figure 5.2.a, πs = (1, 1, 2, 2, 2), where M s

1 = {v1, v2} and M s
2 = {v3, v4, v5}. Let us consider an edit

operation πs → πt with the moving vertices
s−~ tV = {v2, v4} (Figure 5.2.b). The edit operation consists

in moving v2 into M s
2 and v4 into M s

1 , which produces πt. Hence, we have M t
1 = (M s

1 \ {v2}) ∪ {v4}
andM t

2 = (M s
2 \{v4})∪{v2}. The labels of the source and target distinct modules of

s−~ tV are πs(
s−~ tV) =

{1, 2} and πt(
s−~ tV) = {1, 2}, respectively. Also, we have M s

πs(
s−~ tV)

= M s
1 ∪M s

2 and M t

πt(
s−~ tV)

= M t
1∪M t

2

for this example. The sets M s

πs(
s−~ tV)

and M t

πt(
s−~ tV)

could be different, if some of the moving vertices

move into a module M s
i other than M s

πs(
s−~ tV)

.

111

Part , Chapter 5 – Enumeration of the space of optimal solutions for the CC problem

Ms
1

Ms
2

v1v2

v3

v4

v5

(a) Source member-
ship vector πs =
(1, 1, 2, 2, 2), where
Ms

1 = {v1, v2} and
Ms

2 = {v3, v4, v5}.

M t
1

M t
2

v1v4

v3

v2

v5

(b) Target membership vector
πt = (1, 2, 2, 1, 2), where M t

1 =
{v1, v4} and M t

2 = {v2, v3, v5}.
The moving vertices are shown
with a purple border. πs → πt

is a min-2-edit operation, where
s−~ tV = {v2, v4}.

M t′
1 = M t

2

M t′
2 = M t

1

v2

v3

v5

v4

v1

(c) Target membership vector πt′ =
{2, 1, 1, 2, 1}, where M t′

1 = {v2, v3, v5}
and M t′

2 = {v1, v4}. The moving ver-
tices are shown with a purple border.
Since M t′

1 = M t
2 and M t′

2 = M t
1, πs →

πt′ is not a min-3-edit operation, where
s−~ t′V = {v1, v3, v5}.

Figure 5.2 – Illustrative example for two edit operations from the same source membership vector
πs:

s−~ tV (Fig. 5.2.b) and
s−~ t′V (Fig. 5.2.c). The underlying partition in P t and P t′ is the same, but the

corresponding membership vectors πt and πt
′ are different. Consequently, the former is a min-edit

operation, whereas the latter is not.

5.4.2 Complete Neighborhood Search (CoNS)

CoNS(G, πs, r), which takes in input a signed graph G, a membership vector πs associated with
an optimal partition P s of ` modules and an edit distance r, is a neighborhood search method which
generates the set Nr(πs) of membership vectors associated with all optimal partitions, obtained by
applying min-r-edit operations to a given membership vector πs. To ensure the completeness of
set Nr(πs), CoNS(G, πs, r) analyses all combinations of moving vertices and their target modules.
Two pruning strategies are used in order to eliminate some combinations that do not conduct to
an optimal partition when an edit operation is applied. Both of them are described in this section
while the properties in which they are based in are detailed in Section 5.5. In simple terms, they are
based on the relations between a set of moving vertices and their target modules. Next, we present
CoNS(G, πs, r) as a pipeline procedure consisting of four parts, as shown in Algorithm 3.

In the first part, CoNS(G, πs, r) starts by selecting a candidate set of r moving vertices
s−~ tV

among all vertices V (line 2). The set of all possible r moving vertices is obtained by generating
all combinations

(V
r

)
. We know that probably not every

s−~ tV leads to a min-r-edit operation and an
optimal partition P t. To detect such cases, we apply the first pruning procedure (line 3), called
internalPruning and depicted in Algorithm 4. This procedure checks, without the knowledge of target

112

5.4. Recurrent Neighborhood Search (RNS)

Algorithm 3: CoNS(G, πs, r).
Input : signed graph G(V,E,w, s), source membership vector πs with ` module labels, edit distance r
Output: Nr(πs)

1 T = {1, 2, .., `} // module labels in πs
/* 1st part */

2 for each
s−~ tV ∈

(
V
r

)
do

3 if internalPruning(G, πs,
s−~ tV) then

4 go to line 2
5 end

/* 2nd part */

6 T0 = π(
s−~ tV)

⋃
{Unknown} // initial target module labels

7 Trem = T \ T0 // remaining module labels

8 for each T ′0 ∈ P(
(
T0
r

)
), s.t. πs(u) /∈ T ′0, ∀u ∈

s−~ tV do // P(.): permutations

9 Let πt be the partition after assigning T ′0 to
s−~ tV

10 if externalPruning(G, πs, πt,
s−~ tV) then

11 go to line 8
12 end

/* 3rd part */
13 Let B be the the number of Unknown labels in πt
14 if B 6= 0 then

15 Let
s−~ tV rem be the moving vertices, whose πt(

s−~ tV rem) = Unknown
16 for b ∈ {1, .., B} do
17 Let I be the set of all vectors of size B with elements belonging to {1, .., b}, s.t. each element

for each vector appears once
18 for each I ∈ I do

19 Update πt with the assignment of I to πt(
s−~ tV rem)

20 if externalPruning(G, πs, πt,
s−~ tV) then

21 go to line 18
22 end

/* 4th part */
23 T+

rem = Trem ∪ {`+ 1, .., `+ b} // expand for empty modules
24 for each T ′r ∈ P(

(
T+

r
b

)
) do

25 Replace the assignment of I to
s−~ tV rem by Trem in πt

26 if I(πs) = I(πt) and ¬externalPruning(G, πs, πt,
s−~ tV) then

27 Nr(πs) = Nr(πs)
⋃
πt

28 end
29 end
30 end
31 end
32 else
33 if I(πs) = I(πt) then
34 Nr(πs) = Nr(πs)

⋃
πt

35 end
36 end
37 end
38 end

113

Part , Chapter 5 – Enumeration of the space of optimal solutions for the CC problem

modules, if
s−~ tV satisfies some connectivity conditions related to the atomicity property (defined in

Section 5.5.2) and the MVMO property up to three moving vertices (defined in Section 5.5.3). As we
see in Section 5.5, whenever one of these two conditions is not satisfied, the candidate set

s−~ tV can
be pruned.

Algorithm 4: internalPruning(G, πs,
s−~ tV)

Input : signed graph G(V,E,w, s), source membership vector πs, moving vertices
s−~ tV

Output: Boolean variable
/* 1st part */

1 if ¬intAtomic(G, πs,
s−~ tV) then // Properties 5.5 and 5.6.a

2 return true
3 end

/* 2nd part */

4 if 2 ≤ |
s−~ tV | ≤ 3 and ¬intMVMO(G, πs,

s−~ tV) then // Lemma 5.10.1 and Lemma 5.11
5 return true;
6 end
7 return false;

At this point, the set of moving vertices
s−~ tV is fixed. Next, the algorithm defines step by step

the target membership vector πt by setting the target module of each vertex in
s−~ tV . We handle the

process of generating the target membership vector πt in three steps, which constitutes our second,
third and fourth parts in Algorithm 3, in order to take advantage of our pruning strategy. The pruning
strategy used in these parts is slightly different from the one in the first part: it is based on external
connections from

s−~ tV to
s−~ tV . The procedure relying on that is called externalPruning and depicted

in Algorithm 5. This procedure verifies, based on external relations among
s−~ tV , if

s−~ tV satisfies min-
edit (Section 5.5.1), atomicity (Section 5.5.2) and MVMO (Section 5.5.3) properties. As we see in
Section 5.5, whenever one of these three conditions is not satisfied, the possibility of target modules
for candidate set

s−~ tV is pruned. These pruning strategies can be applied even when some target
modules are not already decided. Therefore, it is invoked, whenever the target modules of

s−~ tV are
updated (lines 10, 20 and 26).

In the second part, a moving vertex is allowed to move into a module, whose label is in T0. The
set T0, defined at line 6, is the set of all unique source modules of

s−~ tV and a label Unknown. We
also define Trem as the remaining modules. Notice that, from this point a target membership vector
πt can contain multiple vertices with target modules labeled as Unknown, which means their target
modules are not already assigned. The use of the Unknown module allows us to handle in the third
part the other modules in Trem as target possibilities. At line 8, we consider all possible permutations
in P(

(T0
r

)
) such that, for each vertex in

s−~ tV , the target and source modules are different.

At this point, the externalPruning procedure can be applied for vertices whose target modules

114

5.4. Recurrent Neighborhood Search (RNS)

are already assigned. If the pruning conditions are not satisfied, the algorithm proceeds to the
third part. Line 14 checks if no target module in πt is unknown (B = 0). If so, i.e. a new optimal
partition has been found, the algorithm proceeds to the final test (line 32). However, if it is not the
case, the algorithm enters in the fourth part: all the combinations in Trem (more precisely, T+

r) are
considered as a possible assignment of unknown target modules. As we can expect, this task can
be computationally expensive. Then, instead of directly determining the target modules of each
vertex in

s−~ tV rem, we first generate all the coupling scenarios of moving vertices going into the same
Unknown target module. To handle this, let b be the number of distinct Unknown target modules
(line 16), for each value in the range of {1, .., B}. Then, we construct all possible coupling scenarios
I for the value b (line 17). A pair of remaining moving vertices is coupled, if they move into the same
Unknown target module. For instance, {Unknown1, Unknown1, Unknown2} indicates that the last
moving vertex moves into a different Unknown target module than the first two. Once the target
membership vector πt is enriched with a coupling scenario I, the external pruning is reapplied in
line 20. If pruning conditions are not satisfied, the algorithm finally determines the target modules of
s−~ tV rem, by respecting the actual coupling scenario I (line 25). In the end, we add the current πs → πt

into Nr(πs), if the optimality condition is met (line 26).

Algorithm 5: externalPruning(G, πs, πt,
s−~ tV)

Input : signed graph G(V,E,w, s), source membership vector πs, target membership
vector πt, moving vertices

s−~ tV
Output: Boolean variable
/* 1st part */

1 if ¬minEdit(πs, πt,
s−~ tV) or ¬extAtomic(G, πs, πt,

s−~ tV) then // Properties 5.2, 5.4,
5.6.b and 5.7

2 return true
3 end

/* 2nd part */

4 if 2 ≤ |
s−~ tV | and ¬extMVMO(G, πs, πt,

s−~ tV) then // Lemmas 5.10.2, 5.11 and 5.12
5 return true
6 end
7 return false;

Algorithm 3 without problem-specific pruning strategies (internal and external verification of prop-
erties from Section 5.5.3) becomes a brute force method. Although CoNS(G, πs, r) can be very
costly (even for small values of r), the properties announced in Section 5.5 allow us to develop a
method whose cost is relatively lower than the brute force method. Indeed, given a membership vec-
tor of size n with ` module labels, the number of nonrepetitive permutations of all the combinations
of r moving vertices is nr× r! and the number of non-repetitive permutations of all the combinations
of target modules is equal to `r × r!. In the end, the brute force method is Θ(nr × r! × `r × r!),

115

Part , Chapter 5 – Enumeration of the space of optimal solutions for the CC problem

... ...

......

P

P1

1-edit r max-edit2-edit

1-edit 2-edit

P6 P7 P8 P9 P10 P11 P12

P2 P3 P4 P5

rmax-edit

(a) RNS Tree

P1

P2

P3

P4
V

1
2
={v

1,v2
}

V3
4
={

v1,
v2}

V
2

4

={v3}

V
1 3

={v3}

(b) Example of duplication in
RNS. Both P 2 and P 3 generate
P 4.

Figure 5.3 – Illustrations for Recurrent Neighborhood Search (RNS). In both figures, circles represent
membership vectors associated with optimal partitions.

where we assume that ` > r. Computational results in Section 5.6.2 show that the application of the
pruning strategies reduces the computational cost of this procedure.

5.4.3 Recurrent Neighborhood Search (RNS)

Recurrent Neighborhood Search (RNS) consists in constructing a search tree by applying CoNS
from Section 5.4.2 in a recursive manner. We denote this search tree as RNS tree. This recursive
procedure is depicted in Figure 5.3a. The root node of RNS tree corresponds to the initial partition
P . All other nodes of the RNS tree constitute the set of optimal solutions reached directly or indirectly
from P . A solution associated with a node in a level h of a RNS tree is obtained after h−1 applications
of the CoNS procedure. The number of levels in RNS is unknown but necessarily finite as we see
next.

RNS(G,P, rmax), which takes in input a signed graph G, an optimal partition P and a maximum
edit distance rmax, is detailed in Algorithm 6. It starts with the initial partition P (line 1) to enumerate
a set of its neighbor optimal partitions up to edit distance rmax (line 4), denoted by RN≤rmax(P).
Each partition P t associated with πt ∈ Nr(πs) is considered as a potential initial partition for seeking
new neighbor partitions (line 8). Despite the pruning techniques which avoids some repetitions, it is
possible that P t has been already discovered and belongs to RN≤rmax(P) (see such an example
in Figure 5.3b). Line 9 checks this case, and discards P t, if required. This process is repeated in a
recursive manner, until there is no new partition obtained.

In the rest of this work, we leave out the common parameter G and P s (or P) from the mentioned
methods for the sake of convenience: CoNS(r) and RNS(rmax).

116

5.5. Pruning Strategies

Algorithm 6: RNS(G,P, rmax)
Input : signed graph G(V,E,w, s), partition P , maximum edit distance rmax
Output: RN≤rmax(P)

1 U = {P} // a set of unprocessed partitions
2 RN≤rmax(P) = ∅ // a set of discovered partitions
3 while U 6= ∅ do
4 for each r ∈ {1, .., rmax} do
5 Let P s be an element of U , where πs is an associated membership vector of P s
6 RN≤rmax(P) = RN≤rmax(P)

⋃
P s

7 Nr(πs) = CoNS(G, πs, r) // Complete Neighborhood Search
8 for πt ∈ Nr(πs) do // P t is the associated partition of πt

/* memory-based duplication removal */
9 if P t /∈ RN≤rmax(P) then

10 U = U
⋃
P t

11 end
12 end
13 end
14 end

5.5 Pruning Strategies

In this section, we present the pruning strategies incorporated in CoNS(G, πs, r) presented in
Section 5.4.

Before proceeding, some new definitions must be introduced. Consider an edit operation πs →
πt with moving vertices in set

s−~ tV , where membership vectors πs (resp. πt) is associated with
source partition P s (resp. target partition P t). Let G̃[

s−~ tV] = (
s−~ tV , Ẽ, w), where Ẽ = {(u, v) | (u, v) ∈

E and u, v ∈
s−~ tV and (πs(u) = πs(v) ∨ πt(u) = πs(v) ∨ πs(u) = πt(v) ∨ πt(u) = πt(v))} and w(e) = 1

for each e ∈ Ẽ, be the interaction subgraph defined for the edit operation πs → πt. The extraction of
a subgraph G̃[

s−~ tV] from its original graph G is illustrated in Figure 5.5.

Moreover, let us define
−~V sπs(u) =

s−~ tV ∩M s
πs(u) (resp.

−~V tπs(u) =
s−~ tV ∩M t

πs(u)) as the set of moving

vertices being in the source module of vertex u in P s (resp. in P t). Also, let
−~V sπt(u) =

s−~ tV ∩M s
πt(u)

(resp.
−~V tπt(u) =

s−~ tV ∩M t
πt(u)) be the set of moving vertices being in the target module of u in P s

(resp. in P t). Finally, we define
s−~ tV u = (

−~V sπs(u) ∪
−~V tπs(u) ∪

−~V tπt(u) ∪
−~V sπt(u)) \ {u} as the set of moving

vertices having edges with vertex u in G̃[
s−~ tV]. To illustrate the aforementioned notations related to

s−~ tV , we consider again the same example in Figure 5.2. For v1 ∈
s−~ tV , πs(v1) = {1} and πt(v1) = {3}.

Then, we have
−~V sπs(v1) = {v1, v2} as the set of vertices in M s

1 and
−~V tπt(v1) = {v1} since v1 is the only

moving vertex belonging to M t
3. Also, we have

−~V sπt(v1) =
−~V s{3} = ∅ since there is no moving vertex in

M s
3 and

−~V tπs(v1) = {v3} since v3 ∈M t
1. Finally,

s−~ tV v1 = {v2, v3}.

117

Part , Chapter 5 – Enumeration of the space of optimal solutions for the CC problem

Ms
a Ms

b

−~Va

V a

−~Vb

V b

(a) Source partition P s.

M t
a M t

b

−~Va

V a V b

(b) Target partition P t.

Figure 5.4 – Illustrative example for Property 5.2.a, where vertices in
−~Va (resp.

−~Vb) move from their
source module M s

a (resp. M s
b) (Fig. 5.4.a) into target module M s

b (resp. M s
c , which is purposely not

shown) (Fig. 5.4.b). V a and V b represent the non-moving vertices.

5.5.1 Non-Minimum Edit Operation Pruning

When generating the set Nr(πs) in RNS, only considering min-edit operations is sufficient. Next,
we define a property allowing to detect, in some cases, that an edit operation is not minimum. The
idea behind it is to define two sufficient conditions on the set of moving vertices implying r not to be
minimum.

In the following, let πs → πt be an edit operation with moving vertices in
s−~ tV .

Property 5.2 (non-min-edit operation). Let
−~Va ⊆

s−~ tV be a subset of
s−~ tV . Assume that the vertices

in
−~Va constitute the majority part of module M s

a (i.e. |
−~Va| > |M s

a \
−~Va|) and they are in the same

target module M t
b in P t (i.e. |πt(

−~Va)| = 1). Moreover, suppose there exists a subset of moving vertices
−~Vb ⊆

s−~ tV , such that ∅ ⊆
−~Vb ⊆ M s

b . Let us define V a (resp. V b) as M s
a \

s−~ tV (resp. M s
b \

s−~ tV) in P s.
Each condition in the following is a sufficient condition for πs → πt to be a non-min-edit operation:

(a) If
−~Vb does not move into M s

a and |
−~Va| > |V a|+ |V b|, then πs → πt is not a min-edit operation.

(b) If
−~Vb moves into M s

a and |
−~Va|+ |

−~Vb| > |V a|+ |V b|, then πs → πt is not a min-edit operation.

Proof. Let us first handle the case of (a), which is illustrated in Figure 5.4. When condition (a) is
satisfied, keeping

−~Va in M s
a and rather moving V a (resp. V b) into M s

b (resp. M s
a) results in a r′-edit

operation with r′ < r. In the case that condition (b) is satisfied, keeping
−~Vb in M s

b while moving V a

and V b results in a r′-edit operation with r′ < r.

5.5.2 Decomposable Edit Operation

The next set of properties is related to the decomposability of a r-edit operation πs → πt. In
these properties, we assume I(P s) = I(P t) which is in line with our objective of enumerating all
optimal solutions of a given graph G.

Definition 5.3 (Decomposable edit operation). We call a r-edit operation πs → πt decomposable if
there is an intermediate membership vector πt′, associated with a partition P t

′, between πs and πt

such that:

118

5.5. Pruning Strategies

M1 M2 M3 M4

v1

v2

v3

v4

v1v2

v3

v4

(a) An illustration of a r-edit operation πs → πt with
s−~ tV = {v1, v2, v3, v4}. The member-

ship vector πs associated with partition P s is defined by (1,1,3,4) while πt by (2,2,2,3).

v1 v2 v3 v4

(b) Corresponding interaction graph G̃[
s−~ tV].

Figure 5.5 – Illustrative example of interaction subgraph G̃[
s−~ tV] definition.

1. I(P s) = I(P t) = I(P t′);

2.
s−~ t′V ⊂

s−~ tV ; and

3. πt′(u) = πt(u) for each u ∈
s−~ t′V .

Property 5.4 (atomic edit operation). If a r-edit operation πs → πt is atomic, then I(P s) < I(P t′)
for all r′-edit operation P s → P t

′ with r′ < r, satisfying (2) and (3) in Definition 5.3.

Proof. We assume there is such a r′-edit operation with I(P s) = I(P t′). Then, we can construct a
r′′-edit operation πt′ → πt satisfying (1) in Definition 5.3 and πt′(u) = πt(u) for each u ∈

s−~ tV \
s−~ t′V .

Atomicity imposes three types of connectivity conditions. The first one is stated in the following
property.

Property 5.5 (Edge connectivity). In an atomic edit operation πs → πt, G[
s−~ tV] is a single connected

component.

Proof. Let
s−~ t′V and

t′−~ tV be any two proper subsets of
s−~ tV , such that

s−~ t′V ∩
t′−~ tV = ∅ and E(

s−~ t′V ,
t′−~ tV) = ∅.

Then, we can construct with
s−~ t′V a r′-edit operation satisfying Definition 5.3.

Nevertheless, being connected in G[
s−~ tV] is not a sufficient condition. The next property states

that the signs of edges between moving vertices play a key role in the atomicity. In the next results,
we assume that G[

s−~ tV] is connected.

Property 5.6 (Fake edge connectivity). Each condition in the following is a sufficient condition for
πs → πt to be a decomposable edit operation:
(a) Let S ⊆

s−~ tV be a subset such that |πs(S)| = 1 and E(S,
−~V sπs(S)) 6= ∅. If Ω(S,

−~V sπs(S)) = 0 and

the graph G′ = (
s−~ tV , E′, w), where E′ = E \ E(S,

−~V sπs(S)) and w(e) = 1 for each e ∈ E′, is not
connected, then πs → πt is decomposable.

119

Part , Chapter 5 – Enumeration of the space of optimal solutions for the CC problem

(b) Let S ⊆
s−~ tV be a subset such that |πt(S)| = 1 and E(S,

−~V tπt(S)) 6= ∅. If Ω(S,
−~V tπt(S)) = 0 and

G′ = (
s−~ tV , E′, w), where E′ = E \ E(S,

−~V tπt(S)) and w(e) = 1 for each e ∈ E′, is not connected,
then πs → πt is decomposable.

Proof. Straightforwardly, we can imagine S as a contracted vertex v in both cases. Since Ω(S,
−~V sπs(S)) =

0 (Ω(S,
−~V tπt(S)) = 0), the edges between v and

−~V sπs(v) (resp.
−~V tπt(v)) do not play a role (i.e., as if they

do not exist). Therefore, the proof is the same as in Property 5.5 with subsets S and
s−~ tV \ S.

The last connectivity condition allows to verify if a moving vertex depends on the simultaneous
movement of a subset of other vertices in

s−~ tV . It can be checked through the interaction subgraph
G̃[

s−~ tV], illustrated in Figure 5.5.

Property 5.7 (Interaction connectivity). Consider an atomic edit operation πs → πt. The interac-
tion subgraph G̃[

s−~ tV] is a single connected component.

Proof. Assume that G̃[
s−~ tV] is not connected (e.g. Figure 5.5). This implies that there is a subset

s−~ t′V ⊆
s−~ tV , such that Ẽ(

s−~ t′V ,
s−~ tV \

s−~ t′V) = ∅. Let πs → πt
′ be an edit operation with moving vertex set

s−~ t′V , which satisfies (2)-(3) in Definition 5.3. When moving a vertex u ∈
s−~ t′V from M s

πs(u) to M s
πt′ (u)

the contribution of vertex u to the imbalance is

Ω({u},
−~V sπs(u))− Ω({u},

−~V s
πt′ (u)) + Ω({u},

−~V t′
πt′ (u))− Ω({u},

−~V t′πs(u))
2 . (5.4)

From the definition of Ẽ and from Ẽ(
s−~ t′V ,

s−~ tV \
s−~ t′V) = ∅, there is no vertex v ∈

s−~ tV \
s−~ t′V which

contributes to the contribution of vertex u. Therefore, (1) in Definition 5.3 is also satisfied for πs →
πt
′ .

For the sake of simplicity in Algorithm 4, we define the function intAtomic(G, πs,
s−~ tV) which is used

to indicate whether πs → πt satisfies Properties 5.5 and 5.6.a. Notice that this is applied when the
target modules of

s−~ tV are not known. Likewise, in Algorithm 5, we define the function extAtomic(G,
πs, πt,

s−~ tV), which indicates whether πs → πt satisfies Properties 5.2, 5.4, 5.6.b and 5.7. Notice that
this is applied when the target modules of

s−~ tV are partially or completely known, i.e., in lines 10, 20
and 26 of Algorithm 3).

5.5.3 Multiple Vertex Moves between Optima (MVMO) Property

In the previous properties, P s and P t, associated with πs and πt, are not necessarily optimal.
In this section, we introduce our last family of properties which assumes that both partitions are
optimal in a edit operation.

120

5.5. Pruning Strategies

Property 5.8 (MVMO on weighted signed networks). Consider an atomic edit operation πs → πt

with r > 1, where P s (and P t) is optimal. The following condition must be satisfied, for each u ∈
s−~ tV :

γleftu > γrightu , (5.5)

where

γleftu = Ω({u},
−~V sπs(u))− Ω({u},

−~V sπt(u)), (5.6)

γrightu = −Ω({u},
−~V tπt(u)) + Ω({u},

−~V tπs(u)). (5.7)

(5.8)

Proof. First, we recall a simple condition satisfied by any optimal partition [43]. Given an optimal
partition P , the placement of any vertex u is optimal, i.e., Ω({u},M s

πs(u)) ≥ Ω({u},M s
πt(u)). Now,

let πs → πt be an atomic min-r-edit operation. If r > 1, this condition becomes Ω({u},M s
πs(u)) >

Ω({u},M s
πt(u)), for each u ∈

s−~ tV . Clearly, the atomicity assumption with r > 1 is contradicted
whenever this condition is satisfied with equality. Next, in order to take into account the existence
of other moving vertices in the source and target modules of vertex u, the last equation can be
rewritten as γleftu >

s−~ t∆u, where
s−~ t∆u = Ω({u},M s

πt(u) \
−~V sπt(u)) − Ω({u},M s

πs(u) \
−~V sπs(u)). Similarly,

considering the atomic min-r-edit operation P t → P s, we have also −
t−~ s∆u > γrightu , where

t−~ s∆u =
Ω({u},M t

πs(u) \
−~V tπs(u)) − Ω({u},M t

πt(u) \
−~V tπt(u)). Since both

s−~ t∆u and
t−~ s∆u are defined on relations

of vertex u with non-moving vertices in P s and P t, we have
s−~ t∆u = −

t−~ s∆u. Finally, by rewriting the
previous equations we obtain γleftu >

s−~ t∆u = −
t−~ s∆u > γrightu .

Corollary 5.9 (MVMO on unweighted signed networks). The inequality γleftu − γrightu ≥ 2 must be
satisfied for each vertex u ∈

s−~ tV , on top of Property 5.8.

Proof. The proof is straightforward from the proof of Property 5.8.

Figure 5.6 can be used to illustrate Property 5.8 and Corollary 5.9. For instance, for vertex v1,
the equation in Property 5.8 becomes

a12 − a13 > a15 − a12 − a14. (5.9)

Similarly, for vertex v3, the equation in Property 5.8 becomes

−a34 − a35 > a13 + a23 + a34. (5.10)

121

Part , Chapter 5 – Enumeration of the space of optimal solutions for the CC problem

M1 M2

M3

v1 v2 v3

v4v5

v1

v2

v4

v3

v5

a12

a15 a34

Figure 5.6 – Illustrative example, where five vertices v1, v2, v3, v4 and v5 moves from their source
modules into target ones. Dashed circles indicate the moving vertices, when they are in their target
modules. Note that non-moving vertices are not drawn.

5.5.4 Tractable cases of the MVMO Property

Notice that the MVMO property requires πs and πt to be known, which makes this property
not very useful for computational purposes (in Algorithm 3). In this section, we analyze the MVMO
property when only partial information of πt is known (lines 10 and 20 in Algorithm 3).

We start by analysing some special relational patterns for 2-edit and 3-edit operations. Lemma 5.10
focuses on 2-edit operations. Recall that Ẽ = {(u, v) | (u, v) ∈ E and u, v ∈

s−~ tV and (πs(u) =
πs(v) ∨ πt(u) = πs(v) ∨ πs(u) = πt(v) ∨ πt(u) = πt(v))}.

a) d) e)b) c)

u

v

u

v

u

v

u

u

v
v

Figure 5.7 – All 2-edit operation scenarios, where (u, v) ∈ Ẽ. Note that only scenarios (a) and (b)
are atomic 2-edit operations, with auv > 0 and auv < 0, respectively.

Lemma 5.10 (MVMO 2-edit). Consider an atomic 2-edit operation πs → πt, where
s−~ tV = {u, v}.

Since it is an atomic edit operation, we have (u, v) ∈ Ẽ. Then

1. If (πs(u) = πs(v)) ∨ (πt(u) = πt(v)) = true, then auv > 0.

2. If (πs(u) = πt(v)) ∨ (πt(u) = πs(v)) = true, then auv < 0.

122

5.5. Pruning Strategies

Proof. From Property 5.5, we have (u, v) ∈ E. In this proof, we use an exhausting strategy: moving
vertices u and v, with (u, v) ∈ Ẽ, can be in one of the five scenarios presented in Figure 5.7. Since
Corollary 5.9 must be satisfied for each vertex u ∈

s−~ tV , only scenarios (a) and (b) are atomic.
Therefore, auv > 0 for scenario (a) whereas auv < 0 for scenario (b):

a) We have (γleftu = auv) > (γrightu = −auv) and (γleftv = auv) > (γrightv = −auv). We see that auv
must be positive. Since Corollary 5.9 is satisfied with auv > 0, it is atomic.

b) We have (γleftu = −auv) > (γrightu = auv) and (γleftv = −auv) > (γrightv = auv). We see that auv
must be negative. Since Corollary 5.9 is satisfied with auv < 0, it is atomic.

c) We have (γleftu = 0) > (γrightu = −auv) and (γleftv = 0) > (γrightv = −auv). We see that auv must
be positive and this satisfies Property 5.8. However, Corollary 5.9 is not satisfied, which makes
this edit operation decomposable.

d) We have (γleftu = auv) > (γrightu = 0) and (γleftv = auv) > (γrightv = 0). We see that auv must
be positive and this satisfies Property 5.8. However, Corollary 5.9 is not satisfied, which makes
this edit operation decomposable.

e) We have (γleftu = −auv) > (γrightu = 0) and (γleftv = 0) > (γrightv = −auv). We see that auv
must be negative and this satisfies Property 5.8. However, Corollary 5.9 is not satisfied, which
makes this edit operation decomposable.

Next, we focus on 3-edit operations. We verify some cases in which Lemma 5.10 is also valid.

b) c)a) d) e)
u

u
u

v v
v

z

z

z

u

v

z

u

v

z

Figure 5.8 – Some of all possible 3-edit operation scenarios. The full list can be found in Appendix
(Figure C.1). In this figure, all edit operations are atomic.

Lemma 5.11 (MVMO 3-edit). Consider an atomic r-edit operation πs → πt with r = 3, where
s−~ tV = {u, v, z}. Since it is an atomic edit operation, we have (u, v), (u, z), (v, z) ∈ Ẽ. Lemma 5.10
holds true for each pair (u, v) of vertices, with two exceptions:

1. all vertices in
s−~ tV are in the same source module and are moved into the same target module

(Figure 5.8.a),

2. only two of
s−~ tV are in the same source module and are moved into the source module of the

third moving vertex. Reciprocally, the third moving vertex moves into the source module of the
others’ source module (Figure 5.8.b).

123

Part , Chapter 5 – Enumeration of the space of optimal solutions for the CC problem

Proof. Without these two exceptions, G[
s−~ tV] forms a triangle. Nevertheless, in these two exceptions,

G[
s−~ tV] can form a path, and, as we see next, this path ensures that moving vertices being in the same

source module are positively connected. Similar to Lemma 5.10, the proof is based on all possible 17
scenarios of three moving vertices with (u, v), (u, z), (v, z) ∈ Ẽ. Some of those scenarios are shown
in Figure 5.8, and the full list is found in Appendix (Figure C.1). The proof is straightforward when
one adapts Corollary 5.9 to those scenarios. We verify below only those in Figure 5.8. The full list of
verification is found in Appendix (Section C.2).

a) We have (γleftu = auv+auz) > (γrightu = −auv−auz), (γleftv = auv+avz) > (γrightv = −auv−avz)
and (γleftz = auz + avz) > (γrightz = −auz − avz). We see that auv, auz and avz cannot be
negative. Since Corollary 5.9 is satisfied with a positive path formed in G[

s−~ tV] for each vertex
u ∈

s−~ tV , it is atomic.

b) We have (γleftu = auv−auz) > (γrightu = −auv+auz), (γleftv = auv−avz) > (γrightv = −auv+avz)
and (γleftz = −auz − avz) > (γrightz = auz + avz). We see that auv (resp. auz and avz) cannot
be negative (resp. positive). Since Corollary 5.9 is satisfied with a path formed in G[

s−~ tV], it is
atomic.

c) We have (γleftu = 0) > (γrightu = −auv − auz), (γleftv = 0) > (γrightv = −auv − avz) and
(γleftz = 0) > (γrightz = −auz − avz). We see that auv, auz and avz must be positive. Since
Corollary 5.9 is satisfied with a positive triangle formed in G[

s−~ tV], it is atomic.

d) We have (γleftu = auv) > (γrightu = −auv − auz), (γleftv = auv) > (γrightv = −auv − avz) and
(γleftz = 0) > (γrightz = −auz − avz). We see that auv, auz and avz must be positive. Since
Corollary 5.9 is satisfied with a positive triangle formed in G[

s−~ tV], it is atomic.

e) We have (γleftu = auv − auz) > (γrightu = 0), (γleftv = auv) > (γrightv = −avz) and (γleftz = 0) >
(γrightz = auz−avz). We see that auv and avz (resp. auz) must be positive (resp. negative). Since
Corollary 5.9 is satisfied with a triangle formed in G[

s−~ tV], it is atomic.

Unlike Lemma 5.11, we cannot completely generalize Lemma 5.10 for more than three moving
vertices. Nevertheless, there are some circumstances, where Lemma 5.10 is still valid for a subset
of

s−~ tV , and this is formalized in Lemma 5.12.

Lemma 5.12 (MVMO r-edit). Consider an atomic r-edit operation πs → πt with r ≥ 4 and a vertex
u ∈

s−~ tV . If 2 ≤ |u ∪
s−~ tV u| ≤ 3, Lemma 5.10 holds true for each pair (u, v) with v ∈

s−~ tV u.

Proof. The condition of 2 ≤ |u∪
s−~ tV u| ≤ 3 ensures that subset u∪

s−~ tV u represents one of the scenarios
in 2- or 3-edit operation. We note that two exceptional scenarios mentioned in Lemma 5.11 are not of
interest here, because such scenarios must necessarily satisfy the definition of atomic edit operation,
hence |u ∪

s−~ tV u| > 3.

124

5.6. Experiments

For the sake of simplicity, in Algorithm 4, we define the function intMVMO(G, πs,
s−~ tV) which

indicates whether πs → πt satisfies Lemmas 5.10.1 and 5.11, when the target modules of
s−~ tV are

not known. Likewise, in Algorithm 5 we define the function extMVMO(G, πs, πt,
s−~ tV), which indicates

whether πs → πt satisfies Lemmas 5.10.2, 5.11 and 5.12, when the target modules of
s−~ tV are

partially or completely known (10, 20 and 26 of Algorithm 3).

5.6 Experiments

We now assess the performances of the enumeration methods aiming to generate the space
of optimal solutions for the CC problem. We first describe the datasets used in our experiments
(Section 5.6.1). Then, we investigate the efficiency of the pruning conditions used in Algorithms 4
and 5 based on the MVMO property (Section 5.6.2). Next, we proceed to the evaluation of our
method EnumCC(rmax), which includes all the pruning strategies used in the recurrent neighbor-
hood search. We compare our method with OneTreeCC(), the best enumeration method available
in the literature (Section 5.6.3). Finally, we perform an in-depth analysis for the instances, where the
complete solution space is not achieved within the time limit of 12 hours (Section 5.6.4). Our source
codes are publicly available 1.

5.6.1 Dataset

This section is dedicated to the description of the datasets used in our experiments. As men-
tioned in the introduction, in this chapter we focus on unweighted signed networks. Our experiments
are conducted on two datasets of random signed networks generated through two network genera-
tion strategies presented in Section 2.4.

Dataset 5.1: We generate this dataset through the same random signed network generator
used in Dataset 1.1 and Dataset 2.2 (Section 2.4), but with different parameter values. For com-
plete unweighted signed networks, we generate 20 replications for parameter values `0 = 3, n ∈
{32, 36, 40, 45, 50} and qm = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. In these networks, the value of qneg with
the considered parameters is approximately 0.7. For incomplete unweighted signed networks with
d = {0.25, 0.50}, we generate 20 replications for parameter values `0 = 3, n ∈ {32, 36, 40}, qm =
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6} and qneg = {0.3, 0.5, 0.7}. In total, we produce 600 and 1080 instances for
complete and incomplete networks, respectively, which makes a total of 1680 instances. We use this
dataset in Sections 5.6.3 and 5.6.4.

Dataset 5.2: We generate this dataset through the same random signed network generator used
in Dataset 2.3 (Section 2.4), but with different parameter values. We generate signed networks with

1. https://github.com/arinik9/EnumCC, https://github.com/arinik9/ExCC, https://github.com/arinik9/
BenchmarkCC.

125

https://github.com/arinik9/EnumCC
https://github.com/arinik9/ExCC
https://github.com/arinik9/BenchmarkCC
https://github.com/arinik9/BenchmarkCC

Part , Chapter 5 – Enumeration of the space of optimal solutions for the CC problem

parameter values n ∈ {30, 40, 50, 60, 70, 90}, d ∈ {0.25, 1.00} and `0 = {2, 4, 6}. In total, we produce
214 and 184 instances for complete and incomplete networks, respectively, which makes a total
of 398 instances. In each generated network, the associated optimal solution corresponds to the
planted partition defined for the corresponding network without perturbation. We use this dataset
only in Section 5.6.2.

5.6.2 Evaluation of the MVMO-based pruning strategies

The MVMO property takes an important place in EnumCC due to its ability to prune unfeasible
edit operations in several parts of CoNS(r). To be able to consider relatively large graph orders n
without being limited by long running time of an exact partitioning method we evaluate its perfor-
mance based on Dataset 5.2.

We apply CoNS(r) with and without the MVMO property onto all generated networks with r ∈
{3, 4}. We mean by with MVMO property, the method as described in Section 5.3 and by without, the
method obtained by removing this property from Algorithms 4 and 5. Due to space considerations,
only results related to 4-edit are illustrated in Figure 5.9. In this figure, the results related to d = 0.25
and d = 1.00 are shown in separated subfigures. In each subfigure, the x-axis represents graph
order n, and execution times (in seconds) are shown in the log-scaled y-axis. A plot line is solid
(resp. dashed) when it corresponds to CoNS(r) with (resp. without) the use of MVMO property.
Each plot line in these subfigures corresponds to a specific value of `0 and is represented with a
specific color. Each plot line includes a shaded colored region to depict a range of execution times
based on the corresponding initial signed network and its perturbed versions.

By looking at the results, the first thing to notice is how graph density affects the execution times
with increasing values of n. Indeed, the execution times with and without the MVMO property are
much more larger with d = 1.00 than those with d = 0.25. Second, the execution times without
the MVMO property are severely affected by increasing values of n, whereas including the MVMO
property allows to better handle this drawback. Indeed, we observe based on d = 0.25 and 4-
edit distance that average execution times without the MVMO property are approximately `0 times
larger than those with the MVMO property. Finally, including the MVMO property also allows to
better handle increasing values of `0. Indeed, when n = 70 and d = 0.25, the difference of average
execution times between `0 = 2 and `0 = 6 without (resp. with) the MVMO property is 3.8s (resp.
0.6s) based on 3-edit and 595s (resp. 63s) based on 4-edit.

To conclude this part, the MVMO property makes a substantial improvement on CoNS(r). This
improvement is apparent even with small values of n. Note that, even a small improvement (1s or 2s)
can make a clear difference in terms of execution time for a solution space with 100 or more solutions,
since CoNS(r) is repeated several times in our methods. Nevertheless, our results suggest that
CoNS(4) should not be used for computationally purposes, even with the MVMO property. For this
reason, in the following we stick to rmax = 3 for EnumCC(rmax) and see if the improvements

126

5.6. Experiments

0
1

10

100

1000

5000

30 40 50 60 70

ℓ0
2
4
6

without
MVMO

with
MVMO

E
xe

cu
tio

n
tim

e
(s

)

Graph order (n)

(a) Instances with d = 0.25.

0
1

10

100

1000

5000

30 40 50 60 70

Graph order (n)

E
xe

cu
tio

n
tim

e
(s

)

ℓ0
2
4
6

without
MVMO

with
MVMO

(b) Instances with d = 1.00.

Figure 5.9 – Benchmark results for CoNS(r = 4) with vs. without MVMO-based pruning. Note that
the y-axes are log-scaled.

gathered by the MVMO property and other pruning strategies can enable EnumCC(3) to compete
with OneTreeCC().

5.6.3 Evaluation of EnumCC

We now compare the results of EnumCC(3) against OneTreeCC() based on Dataset 5.1. We
run both methods with a time limit of 12 hours and a limit of 50, 000 on the number of solutions found.
We first evaluate the results for several values of density d with a fixed value of n (Section 5.6.3.2),
then pass to the evaluation of several values of n with a fixed value of d (Section 5.6.3.3).

Regarding the synthetic graphs, we present a selection of the most relevant results in Fig-
ures 5.10a to 5.11c, for d ∈ {0.25, 1.00}. We first describe these plots generically here, before
interpreting them. In these figures there are 3 subfigures. Each subfigure corresponds to a spe-

127

Part , Chapter 5 – Enumeration of the space of optimal solutions for the CC problem

cific value of qm (hence, a specific parameter set), and displays the difference of execution times
between EnumCC(3) and OneTreeCC() (i.e., EnumCC(3) minus OneTreeCC()), represented on
the log-scaled y-axis of the plots. When such difference takes a negative value, this means our pro-
posed method runs faster than OneTreeCC(). The set of 20 graphs generated for each parameter
set are indexed, in the x-axis. Finally, to guide our discussion, we show for each graph the maximal
number of solutions found by the method(s) within a time limit and the number of jumps related to
EnumCC(3), i.e. njump(EnumCC(3)), where the latter is shown in parentheses.

5.6.3.1 Discussion for the number of solutions

In this section, we briefly discuss the number of optimal solutions obtained for different values of
density in Dataset 5.1. The results are presented in Table 5.1.

We can summarize the results in three points. First, there is a unique optimal solution in 28% of
the graph instances generated for d = {0.5, 1.0} and 14% for d = 0.25. Indeed, we observe that the
average and maximal number of solutions for d = 0.25 are much larger than those for d = {0.5, 1.0}.
Second, for all values of density, when qm increases, i.e. when we introduce more misplaced edges,
multiple optimal solutions tend to be more and more frequent. Finally, for d = {0.25, 0.5}, increasing
qneg essentially results in the appearance of very large size of the solution space. In the random
network generation, increasing qneg with a low graph density is more likely to produce instances
having a large number of vertices with only few positive edges. Then, these vertices are often placed
at peripheral in the solutions, i.e. they can easily change their module from one solution to another.
To conclude, an overwhelming number of instances has multiple solutions and they need to be
enumerated efficiently.

Table 5.1 – Average and maximal number of optimal solutions. The latter is shown in parenthesis.
These results are obtained by aggregating the instances by the values of n. N/A indicates that there
is no available entry.

qm = 0.1 qm = 0.2 qm = 0.3 qm = 0.4 qm = 0.5 qm = 0.6

d = 0.25

qneg = 0.3 1.4 (10) 8.7 (243) 12.8 (181) 52.2 (2,036) 21.9 (615) 37.7 (635)
qneg = 0.5 24.8 (693) 133.4

(1,714)
249.7
(2,868)

546.4
(17,775)

318.4
(4,610)

292.7
(10,338)

qneg = 0.7 8,839.3
(50,000)

11,866
(50,000)

17,432
(50,000)

18,970
(50,000)

21,965
(50,000)

23,041
(50,000)

d = 0.50

qneg = 0.3 N/A 1.2 (3) 1.9 (10) 2.2 (11) 2.6 (17) 3.1 (20)
qneg = 0.5 1.1 (4) 3.7 (28) 12.1 (107) 19.1 (145) 15.2 (69) 19.5 (232)
qneg = 0.7 10.2 (60) 99.7 (2,455) 325.2

(7,713)
417.7
(14,061)

1434.7
(50,000)

822.2
(36,871)

d = 1.00 qneg ≈ 0.7 1.1 (2) 8 (78) 20 (220) 36.3 (1,029) 24.5 (242) 29.5 (367)

128

5.6. Experiments

5.6.3.2 Evaluation of EnumCC by density

In this section, the results are based on n = 36 and d ∈ {0.25, 0.5, 1.0}. They are more or less
representative for other values of n. We first consider the results with d = 0.25, shown in Figure 5.10.
The first thing that we notice is how the results are affected by qneg, independently of qm. Indeed,
we first see for qneg = 0.3 that EnumCC(3) runs faster than OneTreeCC() in the overwhelming
majority of instances. Then, for qneg = 0.5, OneTreeCC() increases the number of instances, where
it runs faster, but the dominance of EnumCC(3) is still preserved with a lesser extent. Finally, for
qneg = 0.7, OneTreeCC() dominates EnumCC(3) on almost all instances.

We observe that increasing qneg essentially has three consequences, which advantageOneTreeCC()
over EnumCC(3). The first one is a large value of njump(EnumCC(3)). Since the B&B tree needs
to be built from scratch, each additional jump has an extra cost for EnumCC(3) in terms of execution
time. We observe that the values of njump(EnumCC(3)) are relatively larger for mainly qneg = 0.5
and qm = {0.4, 0.5, 0.6}. This shows that increasing qm is likely to increase the dissimilarity between
solutions, an aspect investigated in Chapter 6.

The second consequence is a very large size of the solution space. The results show that
OneTreeCC() does much better job in such case. Indeed, when qneg = 0.7, OneTreeCC() can
solve instances associated with a very large number of solutions (e.g. 50, 000) within 5 minutes,
whereas the same process often takes several hours for EnumCC(3). Nevertheless, such an ex-
treme case happens only with some specific graph topology, as in qneg = 0.7. As mentioned in
Section 5.6.3.1, these instances have a large number of vertices with only few positive edges. Then,
these vertices can easily change their module from one solution to another. OneTreeCC() seems to
handle well these vertices in the enumeration process, thanks to the mathematical modeling behind
it.

Finally, the third consequence, complementary to the previous one, is that instances having
vertices with only few positive edges are often easier to solve, so that an initial optimal solution is
often found at root relaxation, before passing to B&B. This usually results in a B&B tree with less
branches for enumerating other optimal solutions in OneTreeCC(). It seems that this substantially
advantages OneTreeCC() over EnumCC(3), when there are many optimal solutions to enumerate.

For space considerations, we do not present here the results for d = {0.5, 1.0}. Note that in these
cases, we observe 3 such extreme instances with a very large number of solutions (as happens in
d = 0.25 and qneg = 0.7). This is probably because even though a vertex has only few positive
edges, it has much more negative edges with large graph density, which does not allow to place
it easily to other modules. This fact seems to advantage EnumCC(3) over OneTreeCC(). Indeed,
the dominance of EnumCC(3) persists for qneg ∈ {0.3, 0.5} and even better than those for d = 0.25
(see Table 5.2). This fact is also true for qneg = 0.7. OneTreeCC() outperforms EnumCC(3) only for
qm = 0.1, whereas this was true for all values of qm for d = 0.25. These results confirm our previous
observation: OneTreeCC() outperforms EnumCC(3) on instances with specific graph topology,

129

Part , Chapter 5 – Enumeration of the space of optimal solutions for the CC problem

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

2

(1)

1

(1)

1

(1) 1

(1)

243

(2)

2

(1)

1

(1)
1

(1)

2

(1)

2

(1)
1

(1)

2

(1)
1

(1)

5

(2)

3

(1)
1

(1)
1

(1)
2

(1)

2

(1)

2

(2)

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

78

(1)

2

(1)

31

(1)

2

(1)

32

(1)

30

(1)

2036

(1)

1

(1)

2

(1)

5

(1)

167

(1)

6

(1)

1

(1)

1

(1)

12

(2)

2

(1)
4

(1)

7

(1)

88

(1)

3

(1)

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

7

(1)

3

(1)

3

(1)

3

(1)

10

(1)

16

(1)

7

(1)

3

(1)
8

(1)

3

(1)

20

(1)

79

(3)

25

(3)

8

(2)

1

(1)

1

(1)

37

(2) 20

(1)

20

(1)

90

(2)

qm=0.2 qm=0.4 qm=0.6

5 10 15 20 5 10 15 20 5 10 15 20

−100

−10

−1
0
1

10

100

1000

Instance number

E
nu

m
C

C
(3

)
-

O
ne

T
re

eC
C

()

(a) Instances with d = 0.25 and qneg = 0.3.

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

116

(2)

2

(1)
11

(1)

32

(1)

95

(1)

4

(1)

10

(2)

61

(2)

45

(2)

307

(1)

7

(1)

27

(1)

5

(1)

1304

(1)

21

(1)

6

(2)
4

(2)

54

(1)

14

(1)

3

(1)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

66

(1)

2

(1)

2070

(3)

30

(1)
14

(1)

96

(2)

112

(3)

142

(2)

183

(4)

12

(2)

653

(4)

35

(1)

62

(1)

57

(1)

203

(6)

580

(8)

41

(2)

1058

(1)

8

(1)

11

(1)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

169

(3)

12

(1)

18

(1)

129

(1)

228

(4)

231

(3)

4

(1)

72

(1)

13

(1)

9

(1)

55

(3)

15

(2)

56

(1)

37

(1)

84

(1)

308

(2)

8

(1)

13

(1)

8

(3)

45

(3)

qm=0.2 qm=0.4 qm=0.6

5 10 15 20 5 10 15 20 5 10 15 20

−100

−10

−1
0
1

10

100

1000

Instance number

E
nu

m
C

C
(3

)
-

O
ne

T
re

eC
C

()

(b) Instances with d = 0.25 and qneg = 0.5.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

7418

(1)
10934

(1)

465

(1)

94

(1)

9

(1)

11888

(1)

535

(2)

13

(1)

179

(2)

3918

(1)

4929

(1)

734

(1)

450

(1)

484

(1)

44506

(1)

50000

(1)

50000

(1) 50000

(1)

54

(1)

5008

(1)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

238

(1)

50000

(1) 50000

(1)

32468

(1)

408

(1)

574

(1)

887

(1)

108

(1)

50000

(1)

9

(1)

5420

(3)

50000

(1)

40

(1)

26683

(1)

4

(1)

7564

(1)

1488

(1)

317

(1)

1042

(1)

4058

(4)

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

50000

(1)

100

(1)

50000

(1)

467

(1)

50000

(1) 50000

(1)

79

(1)

50000

(1) 6999

(2)

3701

(2)

50000

(1)
50000

(3)
1916

(1)

50000

(1)

1596

(1)
654

(1)

50000

(1)

50000

(1)

30772

(1)

1280

(1)

qm=0.2 qm=0.4 qm=0.6

5 10 15 20 5 10 15 20 5 10 15 20

−100

−10

−1
0
1

10

100

1000

5000

Instance number

E
nu

m
C

C
(3

)
-

O
ne

T
re

eC
C

()

(c) Instances with d = 0.25 and qneg = 0.7.

Figure 5.10 – Results based on n = 36, d = 0.25 and qneg = {0.3, 0.5, 0.7}. Note that the y-axes are
log-scaled. We show for each graph the maximal number of solutions found by the method(s) within
a time limit and the number of jumps related to EnumCC(3), i.e. njump(EnumCC(3)), where the
latter is shown in parentheses.

130

5.6. Experiments

where low density and large proportion of negative edges produce a very large number of solutions.
In the other cases, EnumCC(3) performs much better. Next, we see if increasing values of graph
order n confirms these observations.

5.6.3.3 Evaluation of EnumCC by graph order

In this section, we analyze the effect of increasing values of graph order with n ∈ {40, 45, 50}. To
do so, we focus only on instances with d = 1.0 in order to reduce the total number of instances, hence
processing time of our analysis. We note that qneg approximately equals 0.7 in these instances. We
show the corresponding results in Figure 5.11. Overall, we see that our observations made for n =
36 and d ∈ {0.5, 1.0} in Section 5.6.3.2 are still valid, when increasing n:EnumCC(3) performs much
more better. Furthermore, unlike the results with d = 0.25, EnumCC(3) handles much better the
instances with a large value of njump(EnumCC(3)) (when we exclude some exceptional instances
with more than 10 jumps), and runs faster than OneTreeCC() in most of the instances. This point is
even more valid, with increasing values of n.

Another interesting point is the hardness of instances, when increasing values of n. We ob-
serve that solving instances takes much more time in this case, which often results in exceeding
the time limit of 12 hours. A total of 21 instances were not solved within the time limit by both meth-
ods. These instances are identified as the ones at y = 0 (see Figure 5.11c). EnumCC(3) handles
these time-consuming instances relatively better than OneTreeCC(). Indeed, EnumCC(3) could
solve 7 instances that OneTreeCC() could not within the limit of 12 hours. Moreover, among the
21 instances not solved by any method, EnumCC(3) finds more solutions than OneTreeCC() in 20
instances. These "unsolved" instances is analysed in a detail way in Section 5.6.4.

To summarize the evaluation of EnumCC(3), there is not a single method which always gives
the best results. On the one hand, OneTreeCC() handles very well the instances with a very large
solution space. This extreme case is associated with a specific graph topology, based on low graph
density and large qneg. On the other hand, EnumCC(3) better performs in the rest of the instances,
which constitutes the overwhelming majority of them. Indeed, when we summarize our results in
Table 5.2 by showing the proportion of cases where EnumCC(3) runs faster, this point is clearer.

5.6.4 Investigation on harder instances

In this last section, we want to perform an in-depth analysis for the instances where the complete
solution space is not achieved within the time limit of 12 hours. There are 21 such instances and
each of them is with n = 50. The number of solutions obtained by OneTreeCC() and EnumCC(3)
on these instances are summarized in the first two rows of Table 5.3. We further consider the F ?v (G)
formulation, i.e. removing the redundant triangle inequalities from Fv(G), to see if it brings any im-
provement. These versions of both methods are denoted by OneTreeCC+() and EnumCC+(3)

131

Part , Chapter 5 – Enumeration of the space of optimal solutions for the CC problem

● ● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

1

(1)
2

(1)
14

(2)

78

(1)

1

(1)

4

(1)3

(1)
3

(1)

1

(1)

2

(1)12

(1)

20

(1)

2

(1)6

(1)

3

(1)

12

(2)37

(1)

2

(2)

9

(1)

4

(2)

●
● ●

●

●

●

●

●

● ● ● ●

●

●
●

●

●
●

●
●

3

(1)
1

(1)

10

(1)

12

(4)

21

(5)

329

(3)

163

(5)

14

(4)2

(1)

1

(1)

1

(1)

4

(2)

3

(1)5

(2)
4

(1)

117

(3)

3

(1)

1

(1)33

(1)
22

(3)

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

78

(13)

9

(2)
30

(1)

13

(2)

1

(1)
14

(3)

45

(8)

6

(2)
7

(2) 28

(3)

9

(1)
13

(2)

26

(3)
74

(5)

367

(9)

51

(6)

1

(1)150

(9)

9

(5)

200

(2)

qm=0.2 qm=0.4 qm=0.6

5 10 15 20 5 10 15 20 5 10 15 20

−5000

−1000

−100

−10

−1
0
1

10

100

1000

5000

Instance number

E
nu

m
C

C
(3

)
-

O
ne

T
re

eC
C

()

(a) Instances with n = 40 and d = 1.00.

●

●
●

●
● ● ●

● ●
●

●

●
●

●
●

●

●

●

●

●

37

(4)

4

(1)
2

(1)
4

(1)

10

(1)

6

(2)
8

(1)

2

(1)

4

(1)
6

(1)

2

(1)9

(2)
9

(1)

3

(1)
6

(1)1

(1)
16

(1)

1

(1)
27

(2)

14

(2)

●

●

●

● ●

●

●

● ●

●

●

●

●

●
●

●

●

●

● ●94

(3)
113

(1)

9

(4)

1

(1)
52

(5)

1

(1)

23

(10)

6

(1)

18

(2)8

(2)16

(2)

194

(7)

7

(4)

13

(2)
21

(4)11

(2)

3

(1)

23

(5)
10

(2)

1

(1)
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

8

(2)

10

(6)

17

(1)

6

(3)

42

(6)

6

(3)

4

(1)

8

(1)

16

(2)69

(10)

4

(2)

5

(2)5

(1)
1

(1)

3

(2)

13

(6)

3

(1)

4

(1)

24

(4)

7

(1)

qm=0.2 qm=0.4 qm=0.6

5 10 15 20 5 10 15 20 5 10 15 20

−5000

−1000

−100

−10

−1
0
1

10

100

1000

Instance number

E
nu

m
C

C
(3

)
-

O
ne

T
re

eC
C

()

(b) Instances with n = 45 and d = 1.00.

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

● ●

3

(2)
36

(1)

2

(1)36

(2)

14

(1)6

(1)

2

(1)1

(1)

6

(1)
8

(1)

1

(1)

1

(1)
2

(1)
24

(1)

2

(1)

5

(1)6

(1)
6

(2)

1

(1)

8

(1)

●

●

● ●

● ●

●

●
● ●

●

●

●

● ●

●

●

●

●

●

10

(4)

2

(2)
89

(1)

21

(2)

13

(2)

6

(1)

9

(2)

2

(1)

6

(3)

3

(1)

5

(1)

14

(1)

15

(3)
3

(2)

1

(1)

255

(5)

40

(2)
102

(7)

16

(4)

6

(1) ●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

1

(1)

45

(2)

4

(1)8

(1)

5

(2)

10

(4)

1

(1)

1

(1)

35

(3)

32

(3)

1

(1)

6

(4)

60

(8)

9

(2)

8

(3)

3

(1)

7

(3)

24

(2)

4

(1)

65

(3)

qm=0.2 qm=0.4 qm=0.6

5 10 15 20 5 10 15 20 5 10 15 20

−5000

−1000

−100

−10

−1
0
1

10

100

1000

Instance number

E
nu

m
C

C
(3

)
-

O
ne

T
re

eC
C

()

(c) Instances with n = 50 and d = 1.00.

Figure 5.11 – Results with n = 40, n = 45 and n = 50 based on d = 1.00. Note that the y-axes are
log-scaled. We show for each graph the maximal number of solutions found by EnumCC(3) within
a time limit and the number of jump ofs EnumCC(3), i.e. njump(EnumCC(3)), where the latter is
shown in parentheses.

132

5.6. Experiments

Table 5.2 – Summary regarding the proportion of the cases where EnumCC(3) is faster than One-
TreeCC. These results are obtained by aggregating the instances by the values of n (excluding the
instances, when in the margin of 5 seconds). N/A indicates that there is no available entry.

qm = 0.1 qm = 0.2 qm = 0.3 qm = 0.4 qm = 0.5 qm = 0.6

d = 0.25

qneg = 0.3 1.00 0.92 1.00 0.87 0.96 0.92
qneg = 0.5 0.00 0.52 0.77 0.61 0.61 0.86
qneg = 0.7 0.00 0.08 0.08 0.05 0.08 0.03

d = 0.50

qneg = 0.3 N/A 1.00 1.00 1.00 1.00 1.00
qneg = 0.5 N/A 1.00 1.00 0.92 0.84 0.75
qneg = 0.7 0.11 0.80 0.95 0.90 0.89 0.87

d = 1.00 ≈ 0.7 1.00 0.98 0.98 0.94 0.95 0.98

and their results are summarized in the last two rows of Table 5.3. Each column of the table rep-
resents an instance, identified by its id and its associated value of qm. First, we want to compare
the number of solutions obtained by OneTreeCC() and EnumCC(3), since both of them could not
finish their optimization process. Second, we want to see if using the F ?v (G) formulation, rather than
Fv(G), would be beneficial for both methods.

We first analyze the number of optimal solutions obtained by OneTreeCC() and EnumCC(3).
When we focus on the instances where there are at least 2 solutions (i.e. 20 out of 21), we see that
the number of solutions found by OneTreeCC() is always smaller than those found by EnumCC(3).
Furthermore, by further investigation, we found out in 15 instances that EnumCC(3) already enu-
merate all the solutions and it passes the remaining time by trying to ensure that the solution space
is complete.

Table 5.3 – Number of optimal solutions found by the considered methods within the time limit of 12
hours on hard instances with n = 50. The method OneTreeCC+() (resp. EnumCC+(3)) corresponds
to OneTreeCC() (resp. EnumCC(3)) without redundant triangle inequalities. Note that ? is used for
last two methods to indicate when a method could finish the resolution within the time limit of 12h.

methods
instance no qm = 0.4 qm = 0.5 qm = 0.6

1 5 6 11 16 19 2 11 12 13 15 18 20 2 6 10 12 13 17 19 20
OneTreeCC() 4 4 1 1 13 2 7 21 3 1 10 2 2 3 1 3 4 5 3 1 3

EnumCC(3) 10 13 6 5 255 16 217 44 8 1 115 46 13 45 10 32 6 60 7 4 65
OneTreeCC+() 7 2 2 1 33 5 4 14 3 1 10 5 1 1 3 9 4 17 7? 1 2

EnumCC+(3) 10? 13? 6? 5? 255? 16? 231 45? 8? 1? 115? 46 13 45 5 32? 6? 60 7? 4? 78

Finally, we now analyze the number of solutions obtained by OneTreeCC+() and EnumCC+(3)
based on the same instances. On the one hand, we observe that using F ?v (G) is very beneficial
for EnumCC+(3), since it could finish its solving process in 14 instances. The only drawback is
that it generates less number of solutions for the 6th instance of qm = 0.6. On the other hand,

133

Part , Chapter 5 – Enumeration of the space of optimal solutions for the CC problem

surprisingly, using F ?v (G) is not usually beneficial for OneTreeCC+(), since OneTreeCC+() finds
more (resp. less) solutions than OneTreeCC() in 9 (resp. 6) instances. Moreover, it could finish its
solving process for only 1 instance.

To conclude this part, EnumCC(3) outperforms OneTreeCC() in terms of the number of so-
lutions, when a time limit is applied. Furthermore, a further investigation on the use of F ?v (G) for
both methods reveals that removing redundant triangle inequalities is much more beneficial for
EnumCC(3) than OneTreeCC(). Nevertheless, an in-depth analysis on incomplete and complete
signed networks is required before drawing any conclusion on this subject, which is out of scope for
this current work.

5.7 Conclusion

For most clustering problems, due to their NP-hard nature, exact approaches do not scale well
even when looking for a single optimal solution. In this chapter, we proposed an efficient enumeration
method to retrieve the complete optimal solution space of the CC problem for a given signed graph.
It combines an exhaustive enumeration strategy with neighborhoods from small to large sizes, de-
signed for our problem. In our experiments, we first showed that a signed network can have a very
large number of optimal solutions for the CC problem, e.g., 50, 000 and more. Further investigation
indicates that this extreme case is associated with a specific graph topology, based on low graph
density and large proportion of negative edges. Otherwise, multiple solutions can still exist, mostly
for the graphs with considerably more imbalance. Furthermore, we also showed that our method
EnumCC(3) performs better than OneTreeCC() in the overwhelming majority of the instances.
Nevertheless, there is not a single method which always gives the best results. OneTreeCC() also
handles very well the instances with a very large solution space. We conclude that it is more appro-
priate to use OneTreeCC() in this specific graph topology, whereas EnumCC(3) is more suitable
for all the remaining cases.

We believe that this work opens new directions for future research. First, the most straightforward
perspectives are to consider weighted signed graphs; and to take advantage of the optimal solutions
found by heuristic methods in order to enumerate through an exact method only the undiscovered
ones. For instance, when we combine the optimal solutions found by all the heuristics presented
in Section 2.3 for complete networks with n = 50, we observe that they are able to generate more
than half of the solution spaces in 61% of the cases. Second, one can wonder how different are the
solutions of a given solution space. Application-wise, very similar solutions could be given the same
interpretation, although a difference of one vertex could be important in a given application, if the
vertex is central for instance. Nevertheless, structurally different solutions are much of interest [202],
since they might correspond to dramatically different ways of seeing the studied system. We address
this point in chapter 6. Third, one can study how robust the solution spaces are, when we slightly

134

5.7. Conclusion

introduce some perturbations into the corresponding networks. This would also enable to identify
critical vertices when the underlying space of optimal solutions is changed. This could be done
through either repeating the process from scratch for each perturbed signed graph, or based on the
definition of stability range [176].

135

Chapter 6

INVESTIGATION OF THE SPACE OF OPTIMAL

SOLUTIONS FOR CORRELATION

CLUSTERING PROBLEM

6.1 Introduction . 137
6.2 Related Work . 138

6.2.1 Comparison Between Solutions . 138
6.2.2 Diversity of Solutions . 139

6.3 Illustrative Cases . 139
6.4 Methods . 140

6.4.1 Enumerating All Optimal Solutions . 142
6.4.2 Computing the Dissimilarity Values . 142
6.4.3 Performing the Clustering . 143
6.4.4 Identifying the Core Parts . 143

6.5 Results . 144
6.5.1 General remarks . 144
6.5.2 Diversity of the Solutions . 145
6.5.3 Analysis of the Core Parts . 147
6.5.4 Real-World Example . 148

6.6 Conclusion . 151

6.1 Introduction

In chapter 5, we showed that it is possible to obtain many optimal solutions when solving the CC
problem. Such multiplicity raises several questions. First, one can wonder how many of these solu-
tions are equally relevant to the application problem at hand. Put differently, it is worth enumerating

137

Part , Chapter 6 – Investigation of the space of optimal solutions for the CC problem

all optimal solutions when solving CC for a given application? Perhaps it would be necessary to
design a more appropriate version of the CC problem, in order to distinguish them, possibly based
on some additional criteria related to the application context. Second, how different are these so-
lutions? Application-wise, very similar solutions could be given the same interpretation, whereas
substantially different ones might correspond to dramatically different ways of seeing the studied
system. Third, when dissimilar solutions coexist for the same problem, is it possible to detect classes
of similar solutions? Indeed, if such classes exist, one could need only to find one representative
solution in each class, which would ease the exploration of the solution space. Fourth and finally, in
case of the existence of multiple such classes, what distinguishes them from each other? Identifying
these characteristic differences could provide some valuable information to understand the studied
system. More generally, the answers to all these questions can drive the choice of the method used
to solve CC.

In this chapter, our goal is to answer these questions through the characterization of the space
of optimal solutions associated with the same collection of unweighted signed graphs generated in
Chapter 5 (Dataset 5.1 in Section 5.6.1). To this aim, we propose a cluster analysis-based frame-
work, which allows us to study how nature of multiple solutions is affected by the network character-
istics.

Contributions. The following content is based on our work published in Journal of Complex
Networks [20]. This chapter makes the following contributions:

1. Method. we propose a cluster analysis-based framework to study the solution space, which is
generic enough to be applied to other combinatorial problems.

2. Evaluation. We present extensive computational experiments established for the proposed
method, relying on sparse and dense signed unweighted networks.

The rest of the chapter is organized as follows. In Section 6.2, we review the literature related
to the enumeration and analysis of solution spaces containing multiple optimal solutions. In Sec-
tion 6.3, we then justify our approach through a few simple examples. We turn to the methods in
Section 6.4, and explain the approach we propose for the analysis of the space of optimal solutions
for CC. In Section 6.5, we describe and discuss our results, in order to answer the questions asked
above. Finally, in Section 6.6 we summarize our findings, comment the limitations of our work and
describe how they could be overcome, and how our work can be extended.

6.2 Related Work

As we explain in Section 5.2, there is only a very limited number of methods proposed in the
literature to solve CC exactly. Some of them, as well as subsequent works, identify the issue of

138

6.2. Related Work

multiple optimal solutions, but only scratch the surface, as already summarized in Section 5.2.1.
Indeed, once getting the complete set of optimal solutions for the considered instance, studying
the space of optimal solutions requires to deal with additional methodological points, in particular:
determining how similar or different they are. However, we could not find any work dealing with
this for CC in the literature. For this reason, we widen the scope of our review on these aspects,
and consider works conducted on other problems than CC. In Section 6.2.1, we first focus on the
comparison of solutions; and finally in Section 6.2.2 we review works concerned with the diversity
of these solutions.

6.2.1 Comparison Between Solutions

The works identifying the existence and relevance of multiple optimal solutions usually do not
try to compare them, or only in terms of cost [63, 24]. From this perspective, the approach of Good
et al. [101] is interesting, even if it deals with sub-optimal solutions, as it aims to compare the nature
of these solutions. They study the Modularity Maximization problem, which consists in detecting
a community structure in an unsigned graph, i.e. to partition it in order to get cohesive and well
separated modules. They show that this problem admits an exponential number of distinct quasi-
optimal solutions, and that moreover, these can be structurally very different, an issue they call
degeneracy.

The connection with our own work is double. First, they deal with the partitioning of graphs,
albeit unsigned ones. Second, we perform a similar comparison between graph partitions, with the
difference that we focus only on optimal solutions. Such comparison is very important, as one can
consider a given solution as a view or interpretation of the studied system. Therefore, in addition to
identifying the multiplicity of optimal solutions, it is necessary to study how much they differ.

6.2.2 Diversity of Solutions

Enumerating all optimal solutions is costly, so one alternative is to discover only certain of them,
often with some additional criterion of diversity (similar in principle to multi-objective optimization
approaches). Appa [11] proposes an LP-based algorithm which, starting from an already-found
optimal solution, finds an alternative optimal solution which is as different as possible. One can
apply the method a number of times to sample the space of optimal solutions, and then select the
most diverse ones. Danna et al. [54] do the same but for binary linear models. In the context of Data
Clustering, some methods such as [119] have been proposed to detect multiple partitions, but these
are not necessarily optimal.

In any case, the limitation of these methods is usually the estimation of the correct number of
solutions: if it is underestimated, the solution space may not be sufficiently covered, whereas if it is
overestimated, the computational cost stays high. Here, the connection with our work is the idea that

139

Part , Chapter 6 – Investigation of the space of optimal solutions for the CC problem

diversity is important when dealing with multiple optimal solutions. We explore this aspect through
the notion of classes of similar solutions, which we define later in Section 6.4.

6.3 Illustrative Cases

In this section, we show with examples how structurally very similar or very different solutions
can be formed. Figure 6.1a gives an example of the kind of situation that can lead to two very similar
optimal solutions in complete signed graphs. Other examples exist in the literature for incomplete
signed graphs, e.g. [56, 62]. Note that the graph in Figure 6.1a is fully connected, but only the edges
attached to v1 are represented, for matters of readability. The displayed bisection (i.e. modules M1

and M2) corresponds to an optimal solution. Consequently, the module assignment of v1 is optimal
as well. This implies that the signed sum of its external edges towards any module (currently, +1
for M2) cannot be greater than that of its internal edges (currently, +1 for M1). This case of equality
between the internal and external edges means that moving v1 to module M2 instead of M1 does
not change the imbalance. Consequently, this change produces another optimal solution.

–

+

+

M2

M1

–

–
+

+

+

v1

a)

(a) Two structurally similar optimal solutions: 1)
v1 ∈M1, 2) v1 ∈M2.

18 –

M1 M2

18 +

b)

(b) Two structurally different optimal solutions:
1) a single module, 2) modules M1 and M2.

Figure 6.1 – Illustrative examples regarding optimal multiplicity for the CC problem.

This example shows how two similar optimal solutions can be obtained through a simple vertex
change (see also Figures 5.1a and 5.1b). Of course, the same principle can be extended to larger
changes involving more vertices (e.g. Figure 5.1c). Our point here is that it is relatively straightfor-
ward to explain the existence of multiple similar optimal solutions. However, it is equally easy to give
examples of very different optimal solutions, as well. For instance, Figure 6.1b shows the case of
a network constituted of two positive cliques, both connected by the same number of positive and
negative edges. Again, the network is complete, but only the relevant edges are displayed. Solv-
ing the CC problem for this network yields a bisection whose modules M1 and M2 correspond to
the positive cliques. But putting all the vertices in the same module is also an optimal solution: in
both cases, the imbalance is 18. This example shows that structurally different optimal solutions can
coexist for the CC problem.

In conclusion, we have shown that it is possible to obtain structurally very similar as well as very

140

6.4. Methods

different optimal solutions when solving the CC problem. However, we do not know whether these
situations coexist in the same solution space, how frequent they are, or how this depends on the
graph topology. These observations motivate us to adopt a more systematic approach for further
investigations in the rest of this chapter.

6.4 Methods

In this section, we describe the method that we propose to analyze the space of optimal solutions
for the CC problem. First, we need to clarify our terminology, as we handle various types of partitions.
As mentioned before, the optimal solution (or solution for short) obtained by solving CC for a given
graph is a partition of the vertex set that minimizes the imbalance measure. A subset of vertices in
this partition is called a module. We reserve the term clustering to refer to a partition of the set of
all solutions. A subset of solutions in such clustering is simply called a solution class (or a class, for
short).

Signed
 Graph

Partitioning

 A signed Network All Optimal SolutionsSTEP 1

Clustering

STEP 2

Dissimilarity
Measure

Dissimilarity Matrix

Cluster
Analysis

STEP 3

o
p
ti

m
a
l

so
lu

ti
o
n
 1

o
p
ti

m
a
l

so
lu

ti
o
n
 p

1

1

p

p

S
o
lu

ti
o
n

cl
a
ss

 1
S
o
lu

ti
o
n

 C
la

ss
 2

S
o
lu

ti
o
n

 C
la

ss
 3

Core part
Identification

STEP 4

C
o
re

 p
a
rt

 1

C
o
re

 p
a
rt

 2

C
o
re

 p
a
rt

 3

1

2

3
4

5

7

6

1

2

3
4

5

7

6

1

2

3
4

5

7

6

1

2

3
4

5

7

6

1

2

3
4

5

7

6

1

2

3
4

5

7

6

Figure 6.2 – Workflow proposed to study the solution space.

Our goal here is to determine whether it is worth enumerating all optimal solutions when solving
CC for a given application. Put differently, we want to know what we lose when we consider only
one solution, while there might be multiple ones. To this aim, we propose a 4-step pipeline approach
which is represented in Figure 6.2. Each step allows answering a question that naturally arises in
our analysis of the space of optimal solutions, and it is implemented through a well-known existing

141

Part , Chapter 6 – Investigation of the space of optimal solutions for the CC problem

tool deemed appropriate for this purpose. Our methodological contribution is found in the combina-
tion of these tools to build our pipeline. The input of the pipeline is a complete unweighted signed
network. The first step is to enumerate all optimal solutions for this network (Section 6.4.1), allowing
to determine whether several optimal solutions coexist. If so, the second step consists in computing
the dissimilarity between them (Section 6.4.2), in order to assess how different the obtained solu-
tions are. The third step consists in performing a cluster analysis of the solutions (Section 6.4.3), to
check for the existence of classes of similar solutions. If there are several of them, the fourth and
final step is to identify their core parts (Section 6.4.4), in order to characterize them. These cores
correspond to the subset of vertices that stays constant, partition-wise, over all solutions constituting
a class. Note that our workflow is relatively generic, in the sense that one could apply it to another
optimization problem, provided steps 2 and 4 are adjusted to fit the nature of the solutions. In the
rest of this section, we review the different steps of our framework in detail.

6.4.1 Enumerating All Optimal Solutions

The enumeration of all distinct optimal solutions can be very time- and memory-consuming, so
we need an efficient method. We handle this step with two ILP-based methods, OneTreeCC(G) and
EnumCC(G, 3), presented in Chapter 5. According to their performances assessed in Chapter 5,
it is preferable to use OneTreeCC(G) on low density and highly negative signed networks, and
EnumCC(G, 3) otherwise.

6.4.2 Computing the Dissimilarity Values

At this stage, we have identified all optimal solutions associated to the input graph. Let us de-
note as p the number of solutions found. We now want to gather similar solutions together. For this
purpose, we perform a classic cluster analysis, which in turns requires the computation of a dissim-
ilarity matrix. This matrix is obtained by comparing each pair of solutions. The literature contains a
number of similarity or dissimilarity measures to perform such a task, each one possessing specific
behavior and characteristics (Chapter 3).

We now use our results from Section 3.5.2 to solve the measure selection problem. The appli-
cation of optimal solution space for the CC problem does not bring any specific constraint on the
solutions. Nevertheless, it is less likely for an optimal solution space to have solutions with a large
number of single-vertex modules, since positive edges between these modules would cause more
imbalance. This can happen when the Orthogonal Modules and Singleton Modules transformations
(Section 3.3.1.2) are applied with medium and large values of q. Therefore, these cases are not
applicable in our context. Furthermore, the number of vertices across all the considered instances
does not vary much. This means that n can be fixed in the framework and can therefore be ignored
in our discussion.

142

6.4. Methods

Each application has its own desirable properties that an appropriate measure should satisfy
regarding the application needs. In this application, the number and size of modules affected by a
transformation are two important criteria to consider. This is because neighbor optimal solutions of
a given optimal solution are usually reached by moving a few vertices. Additionally, a move of these
vertices usually affects a few modules. When one of these two usual situations does not occur, we
want the selected measure to be sensitive enough. This means that it is desirable for the selected
measure to have the Discriminativeness property and not to satisfy the Insensitivity to Module Size
property (Section 3.2.1.3).

Let us now study which measures studied in Section 3.4.1 fit the constraints described above. It
appears from Table 3.3 that overall only DARI behave appropriately. In conclusion, we select DARI

as a dissimilarity measure in this context.

6.4.3 Performing the Clustering

Next, we apply the k-medoids clustering method [128] to our dissimilarity matrix. As already
explained in Section 4.3.3, this method partitions the dataset into k clusters, while minimizing the
dissimilarity between the members of each cluster and some center of the cluster. It requires us to
specify k, which we do not know in advance. In this situation, the standard approach is to use all
possible values of k, from 2 to p (the number of optimal solutions), and assess the quality of the p−1
resulting clusterings through some internal criterion. As in Section 4.3.3, we use Silhouette for this
purpose.

In theory, the k value associated with the highest Silhouette is the best candidate. However,
in practice, one possibly has to set a threshold value large enough to ensure a reasonable cluster
structure. Obtaining a Silhouette score above this threshold indicates that each cluster contains very
similar solutions, and is at the same time clearly separated from the others. Otherwise, a Silhouette
score below this threshold means that there is no cluster structure (i.e. a single cluster containing
all solutions), or at least that the clustering is inconclusive. Kaufman & Rousseeuw recommend to
use a threshold value of 0.51 (resp. 0.71) to get a reasonable (resp. strong) cluster structure [128].
Deciding the value of such a threshold can be considered either as an issue, as it can be a delicate
operation, or an advantage, as it allows controlling the strength of the cluster structure. An alternative
to determine the existence of a proper cluster structure is to use significance testing. However, using
this type of test requires a certain number of observations, so this approach is not always applicable
in practice (as in our case).

6.4.4 Identifying the Core Parts

At the end of the previous step, we obtain a collection of k clusters, each corresponding to a
class of solutions that are, by construction relatively similar. We now want to assess how different

143

Part , Chapter 6 – Investigation of the space of optimal solutions for the CC problem

these classes can be. For this purpose, we leverage the concept that we call core part. The core
part of a class is the maximal subset of vertices whose relative module assignment stays constant
over all the solutions constituting the class. When two vertices belong to the core part, we call them
core vertices, and they are either always in the same module, or always in different modules, for all
the solutions of the class. Consequently, vertices that are always isolated (i.e. that constitute their
own module) are core vertices, as their module assignment always differ from the rest of the core
part. It is also possible to obtain an overall core part by proceeding similarly with all the solutions in
the space (i.e. not focusing on a single class).

To identify the core part of a class, we rely on the idea of consensus matrix (a.k.a. co-association
matrix) originating from Consensus Clustering [140]. The consensus matrix C of a class is an n× n
matrix, whose entry Cij indicates the number of solutions in which vertices vi and vj are assigned
to the same module, divided by the total number of solutions constituting the solution class. Entries
equal to one indicate vertices that are always assigned together to the same modules over all
solutions.

6.5 Results

In this part (Sections 6.5.1 to 6.5.3), we investigate the space of optimal solutions of Dataset
5.1 generated in Section 5.6. We present the results in the order that our workflow follows (see
Section 6.4), since it is a pipeline.

Regarding the synthetic graphs, we present a selection of the most relevant results in Figures 6.5
and 6.6. Accordingly, we discuss only the results for d = 0.5, since the results for the other density
values are similar. We point out the differences between d values, when applicable. Our source code
is publicly available 1.

6.5.1 General remarks

We first describe our plots generically here, for matters of convenience, before interpreting them.
In these figures there are as many subfigures as the number of considered values of the parameter
qn. Each subfigure is a block of 3 (resp. 5) plots for d ∈ {0.25, 0.5} (resp. d = 1), and focuses on a
specific variable of interest, represented on the y-axis of the plots. The x-axis can either represent
the detected graph imbalance I(P) (e.g. Figures 6.5 and 6.6) or parameter qm (e.g. Figures 6.3
and 6.4). Each plot in a subfigure corresponds to a different graph order n (number of vertices). The
plots in Figure 6.5 represent the data as histograms, whereas the others contain violin plots, each
one representing the results from 20 replications for the same parameter set. In each violin plot, the

1. https://github.com/arinik9/BenchmarkCC

144

https://github.com/arinik9/BenchmarkCC

6.5. Results

interquartile range is shown as a purple thick line, the mean as a green triangle and the median as
a blue dot. In case of a unique value, only the mean and median appear.

To guide our discussion in the following, we plot the number of solutions presented in Table 5.1
with the same illustration scheme described above and they can be found in Appendix (Figures D.1,
D.2 and D.3).

In the subsequent figures, we deem more suitable to present the results as a function of the
graph imbalance and this choice is justified in Figure 6.3. For all d values, we observe that when
qm increases, I(P) also increases for small qm values, but then reaches a plateau. Yet, one would
expect the imbalance to directly depend on the number of misplaced edges introduced in the graph.
However, it turns out that when qm exceeds some threshold, the number of misplaced edges (rela-
tive the initial partition) becomes so large that it provides some form of flexibility to graph partitioning.
Consequently, even if these misplaced edges are randomly distributed, it becomes possible to par-
tition the graph into a larger number of smaller modules allowing to reach a lower imbalance than
expected (though still high), particularly when qneg increases (see Figure 6.4).

0
10

30

0.1 0.2 0.3 0.4 0.5 0.6

●

●

●
● ●

●

0
10

30

0.1 0.2 0.3 0.4 0.5 0.6

●

●

●
● ● ●

0
10

30

0.1 0.2 0.3 0.4 0.5 0.6

●

●

●
● ● ●

Proportion of misplaced links (qm) Proportion of misplaced links (qm) Proportion of misplaced links (qm)

Graph order = 32 Graph order = 36 Graph order = 40

D
e
te

ct
e
d
 G

ra
p
h

Im
b
a
la

n
ce

(a) Imbalance percentage for d = 0.5 and qn = 0.3.

0
10

30

0.1 0.2 0.3 0.4 0.5 0.6

●

●

●
● ● ●

0
10

30

0.1 0.2 0.3 0.4 0.5 0.6

●

●

●
● ● ●

0
10

30

0.1 0.2 0.3 0.4 0.5 0.6

●

●

●
● ● ●

Proportion of misplaced links (qm) Proportion of misplaced links (qm) Proportion of misplaced links (qm)

Graph order = 32 Graph order = 36 Graph order = 40

D
e
te

ct
e
d
 G

ra
p
h

Im
b
a
la

n
ce

(b) Imbalance percentage for d = 0.5 and qn = 0.5.

0
10

30

0.1 0.2 0.3 0.4 0.5 0.6

●

●
● ● ● ●

0
10

30

0.1 0.2 0.3 0.4 0.5 0.6

●

●
● ● ● ●

0
10

30

0.1 0.2 0.3 0.4 0.5 0.6

●

●
● ● ● ●

Proportion of misplaced links (qm) Proportion of misplaced links (qm) Proportion of misplaced links (qm)

Graph order = 32 Graph order = 36 Graph order = 40

D
e
te

ct
e
d
 G

ra
p
h

Im
b
a
la

n
ce

(c) Imbalance percentage for d = 0.5 and qn = 0.7.

Figure 6.3 – Detected graph imbalance I(P) as a function of qm for d = 0.5, (a) for qneg = 0.3, (b)
for qneg = 0.5 and (c) for qneg = 0.7. Notice that an x-axis value may be empty if the parameter set
is not defined or no data is available.

145

Part , Chapter 6 – Investigation of the space of optimal solutions for the CC problem
2

6
10

14

0.1 0.2 0.3 0.4 0.5 0.6
●

● ●
● ●

●

2
6

10
14

0.1 0.2 0.3 0.4 0.5 0.6
●

●
● ● ● ● 2

6
10

14

0.1 0.2 0.3 0.4 0.5 0.6
●

●
● ● ● ●

N
u
m

b
e
r

o
f

m
o
d
u
le

s

Proportion of misplaced links (qm) Proportion of misplaced links (qm)Proportion of misplaced links (qm)

Graph order = 32 Graph order = 36 Graph order = 40

(a) Number of detected modules for d = 0.5 and qn = 0.3.

2
6

10
14

0.1 0.2 0.3 0.4 0.5 0.6

●
●

● ●
●

●

2
6

10
14

0.1 0.2 0.3 0.4 0.5 0.6

●

● ● ● ● ●

2
6

10
14

0.1 0.2 0.3 0.4 0.5 0.6

● ●

● ● ● ●

N
u
m

b
e
r

o
f

m
o
d
u
le

s

Proportion of misplaced links (qm) Proportion of misplaced links (qm)Proportion of misplaced links (qm)

Graph order = 32 Graph order = 36 Graph order = 40

(b) Number of detected modules for d = 0.5 and qn = 0.5.

2
6

10
14

0.1 0.2 0.3 0.4 0.5 0.6

●

●

● ●
●

●

2
6

10
14

0.1 0.2 0.3 0.4 0.5 0.6

●

●
● ●

●
●

2
6

10
14

0.1 0.2 0.3 0.4 0.5 0.6

●

●

●
●

● ●

N
u
m

b
e
r

o
f

m
o
d
u
le

s

Proportion of misplaced links (qm) Proportion of misplaced links (qm)Proportion of misplaced links (qm)

Graph order = 32 Graph order = 36 Graph order = 40

(c) Number of detected modules for d = 0.5 and qn = 0.7.

Figure 6.4 – Number of detected modules as a function of qm for d = 0.5, (a) for qneg = 0.3, (b) for
qneg = 0.5 and (c) for qneg = 0.7. Notice that an x-axis value may be empty if the parameter set is
not defined or no data is available.

6.5.2 Diversity of the Solutions

Our first question is how different the obtained solutions are, in case of multiplicity. We answer
it by analyzing the numbers of classes of solutions produced by our framework. Remember that, by
construction, a class is a cluster of highly similar solutions. Figure 6.5 displays the proportions of
cases for which there is a single solution class, as a function of the detected imbalance I(P). Note
that we do not include the instances for which there is only a unique optimal solution. This results in
the absence of certain histogram bars in the plot.

It appears that different trends are associated with qneg = {0.3, 0.5} and qneg = 0.7, respectively,
for incomplete graphs. For qneg = {0.3, 0.5}, our method usually detects a single class for slightly
imbalanced graphs, and that the number of classes increases with the imbalance. There is an ex-
ception though, as the proportion of single class cases increases again for I(P) = [0.30, 0.35[in
graphs with n = {32, 36}. It seems that these cases could not reduce much their imbalance when

146

6.5. Results

a large number of misplaced edges (relative the initial partition) is introduced, although this large
number provides some form of flexibility to graph partitioning. In turn, this mostly results in a few
similar solutions, hence a single class. Note that all these observations are also valid for complete
graphs.

For qneg = 0.7 on incomplete graphs, we usually observe the opposite trend. Our method fre-
quently detects a relatively small proportion of a single class case for slightly imbalanced graphs,
and that this proportion increases with the imbalance. This is surprising, as there can be much
more optimal solutions when graph imbalance increases, but this could be explained by the concept
of elongated class developed next. Overall, single class instances represent 53% of the cases for
d = 0.25, 67% for d = 0.5 and 71% for d = 1.

To summarize our findings up to now, complete graphs and incomplete ones with small imbal-
ance and qneg = {0.3, 0.5} tend to lead to a unique solution, and even when there are several,
these tend to constitute a single class (100% and 83% of the cases with a detected imbalance
I(P) ∈ [0.05, 0.15[for d = {0.5, 1.0} and d = 0.25, respectively). Nevertheless, incomplete graphs
with small imbalance and qneg = 0.7 tend to lead to multiple solutions in most cases and they can
exhibit multiple class structure in their solution spaces. All of these observations reveal the necessity
of exploring further the solution space. Because, there is no absolute guarantee to get a single class
structure for networks with a low imbalance and this depends on density and proportion of negative
edges.

6.5.3 Analysis of the Core Parts

We now turn to the characterization and comparison of the classes, through the analysis of their
core parts. As a reminder, the core part corresponds to the maximal subset of vertices that always
belong to the same modules over all solutions constituting the class. We express the size of a core
part in terms of proportion of the graph order n (number of vertices). Our assumption is that, for a
class to be considered as cohesive, its core part (processed over the solutions of that class) should
be large enough. Otherwise, it should be small.

Figure 6.6 shows the distribution of class core part sizes as a function of k, the number of solution
classes (bottom x-axis). In addition, the values are grouped using the detected imbalance I(P) (top
x-axis of each plot). Like before, these plots do not show cases with only a unique solution.

First, we observe that the core part size is always very large for qneg = 0.3, independently of the
number of classes k. This is mainly because there is only a few solutions obtained for the considered
networks, where the maximal number is 17. Second, the range of core part sizes becomes much
wider with increasing values of qneg. This point is also true for d = 1, where qneg ≈ 0.7. Especially, in
the single-class case, the core part size can be extremely small, close to zero. This indicates that,
in certain cases, the cluster analysis is not conclusive: the Silhouette score is too low (below the
threshold) to conclude there are several classes, but the single class is not cohesive, and contains

147

Part , Chapter 6 – Investigation of the space of optimal solutions for the CC problem

Graph order = 32 Graph order = 36 Graph order = 40

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.3

0,
0.

35
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.3

0,
0.

35
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.3

0,
0.

35
[

(a) Proportion of single-class cases as a function of the detected imbalance for d = 0.5 and qneg = 0.3.

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.3

0,
0.

35
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.3

0,
0.

35
[

Graph order = 32 Graph order = 36 Graph order = 40

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.3

0,
0.

35
[

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

(b) Proportion of single-class cases as a function of the detected imbalance for d = 0.5 and qneg =
0.5.

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.3

0,
0.

35
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.3

0,
0.

35
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.3

0,
0.

35
[

Graph order = 32 Graph order = 36 Graph order = 40

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

(c) Proportion of single-class cases as a function of the detected imbalance for d = 0.5 and qneg = 0.7.

Figure 6.5 – Proportion of single-class cases as a function of the detected imbalance for d = 0.5, (a)
for qneg = 0.3, (b) for qneg = 0.5 and (c) for qneg = 0.7. Notice that an x-axis value may be empty if
the parameter set is not defined or no data is available.

some sensibly different solutions. This can be explained by the concept of elongated class. If such
a class is indeed a dense group of locally similar solutions, its most extreme members are never-
theless quite different. For a specific real-world application, one would need to manually consider
this situation. Finally, the core part size for qneg = {0.5, 0.7} seems to increase with the number
of classes k, at least until it reaches a plateau. This means that the classes are more and more
cohesive internally. Moreover, the dispersion also decreases when k increases.

Let us now conclude this section related to synthetic networks. We empirically identified four
different types of solution spaces. In the first, which tends to happen in only slightly imbalanced
graphs, there is only one optimal solution. The second type corresponds to the case where there
are multiple solutions distributed over several distinct and cohesive classes. This tends to happen
for larger imbalance values. In the third type, we have a single class containing multiple solutions
that are very similar, resulting in a large core. A small core means that this class is not cohesive,

148

6.5. Results

k=1 1 1 2 3 4 6 8 1 2

● ●
●

● ● ● ● ●
●

●

Graph order = 32
k=1 2 1 2 3 1 2 8

● ●
● ● ● ● ● ●

Graph order = 36
k=1 1 2 5 1 2 3 4

● ●
●

● ●
● ● ●

Graph order = 40

C
la

ss
 c

o
re

 p
a
rt

si
ze

 (
%

)

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.3

0,
0.

35
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.3

0,
0.

35
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.3

0,
0.

35
[

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

(a) Proportion of the graph covered by the class core parts for d = 0.5 and qneg = 0.3.
k=1 1 1 2 4 1 2 17 1 2 3 4 5 6 8 9 151620 1 2

● ● ● ●
●

● ●
● ● ● ●

●
●

● ● ● ● ● ● ● ●

Graph order = 32
1 2 1 2 6 1 2 3 4 7 8 1015 1 2 3 4 8

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●
●

●

●

Graph order = 36
1 1 1 2 3 4 5 6 13 1 2 3 4 5 6 11 12

● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ●
●

Graph order = 40

C
la

ss
 c

o
re

 p
a
rt

si
ze

 (
%

)

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.3

0,
0.

35
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.3

0,
0.

35
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.3

0,
0.

35
[

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0
k=1 k=1

(b) Proportion of the graph covered by the class core parts for d = 0.5 and qneg = 0.5.
k=1 2 3 4 5 8 1 2 3 4 5 6 7 9 12 20 1 2 3 4 5 6 7 14 18 6

●●●●●●
●

●

●●●●
●●●●●

●●

●

●●

●

●
●

●●●●●●

●

Graph order = 32
k=1 2 3 4 6 1 2 4 5 6 812 20 1 2 3 4 512 20 5 20

● ● ● ●
●

●

● ●
● ● ● ● ●

●

●
● ●

●

●
●

●
●

Graph order = 36
k=1 2 3 61220 1 2 3 4 6 8 20 1 2 3 4 5101620 1 2 3

● ● ● ● ● ● ● ●
●

● ● ●

●

●

●
●

●

● ● ● ● ●
●

●

Graph order = 40

C
la

ss
 c

o
re

 p
a
rt

si
ze

 (
%

)

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.3

0,
0.

35
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.3

0,
0.

35
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.3

0,
0.

35
[

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

(c) Proportion of the graph covered by the class core parts for d = 0.5 and qneg = 0.7.

Figure 6.6 – Proportion of the graph covered by the class core parts for d = 0.5, as a function of the
detected imbalance I(P) and number of classes k, (a) for qneg = 0.3, (b) for qneg = 0.5 and (c) for
qneg = 0.7. Notice that an x-axis value may be empty if the parameter set is not defined or no data
is available.

and corresponds to the fourth type. This typology shows that the answers to our initial questions
are multiple and depend on the considered graph. Our work highlights the necessity to develop a
method allowing to handle these different cases.

6.5.4 Real-World Example

To show the relevance of the questions at the origin of our work, as well as the usefulness of our
method, we further analyze a small real-world graph representing the relations between the main
actors of the ongoing Syrian conflict. We choose this dataset because of its size, which eases the
interpretation of the obtained CC solutions, but also because it depicts a very interesting situation,
as the affiliations of the involved parties are multiple: they are positioned relative to terrorist group
ISIS, the Syrian government, and various other geopolitical interests.

149

Part , Chapter 6 – Investigation of the space of optimal solutions for the CC problem

Solution 1 Solution 2 Solution 3

Solution 4 Solution 5 Solution 6

Iran and Hezbollah
Kurds

Russia

Iraq

Syrian Gov.

Turkey

Syrian Rebels

ISIS

Jabhat al-Nusra

Saudi Arabia, Gulf States

U.S. and Allies

b) c)

e)

d)

f) g)

a)

Figure 6.7 – a) Signed graph representing the Syria conflict in 2015. b–g) show optimal solutions.
The graph is complete, but for the sake of clarity, only positive edges are shown (the missing ones
thus represent negative edges). Colored vertices constitute the core part in a) (non-core vertices are
white), and the module assignments for the other graphs.

Our source is the 2015 press article A Guide to Who Is Fighting Whom in Syria published by
Keating & Kirk in the online news magazine Slate 2, which aims at depicting the Syrian situation as it
was in 2015. This is a journalistic work, not an academic work, and it contains certain simplifications,
for instance several distinct entities are collapsed together to ease understanding. However, we
deem it sufficient in our case, as we are not Political Science or International Relations scholars
ourselves, and do not intend at making a thorough political analysis of the situation, but simply use
the article content for illustration purposes.

The article is constituted of a chart and its textual description. The chart is an update of the
so-called Middle East Friendship Chart, which lists the actors of the conflict as well as the nature of
their interactions: enmity, friendship, or complicated. The latter do not correspond to neutral relation-
ships, but rather to undetermined ones, corresponding to a mix of hostile and friendly interactions.
The associated text discusses this chart and explains the undetermined relationships. To build a
signed graph based on this article, we interpret the chart as the adjacency matrix of a signed graph,
representing the operating forces by vertices and their enmity and friendship relationships with neg-
ative and positive edges, respectively. Moreover, to keep the network complete and for the sake of
illustration, we resolve undetermined relationships into hostile or friendly ones, by leveraging the
analysis carried in the text. This results in the network presented in Figure 6.7.

We apply our framework to the Syria graph, like we did with the synthetic networks. Solving

2. www.slate.com/blogs/the_slatest/2015/10/06/syrian_conflict_relationships_explained.html

150

www.slate.com/blogs/the_slatest/2015/10/06/syrian_conflict_relationships_explained.html

6.6. Conclusion

the CC problem yields 6 optimal solutions, each containing 7 frustrated edges (i.e. 12% of the
edges). We describe and discuss each of them for the sake of completeness. In all the solutions,
the actors are positioned relative to terrorist group ISIS, which is always detected as a single-vertex
module. On top of that, the first to fifth solutions are bipolar: they contrast a pro- (Syrian government,
Russia, Iran-Hezbollah, and Iraq) and an anti-Syrian government modules, whereas the module
assignments of the rest of the actors (Kurds, Jabhat al-Nusra, and ISIS) are not consistent. The
sixth (and last) solution is tripolar: the anti-Syrian government module is split in two: a pro-Kurds
module (Kurds, U.S. and Allies, and Saudi Arabia-Gulf States) and an anti-Kurds one (Jabhat al-
Nusra, Syrian rebels, and Turkey). Overall, the solution space shows that even for solutions differing
only in the assignment of one vertex, the interpretation may change substantially (e.g. whether
Kurds forms an alliance with the Syrian government or not). This confirms the necessity to explore
the solution space.

When performing the cluster analysis over the space of optimal solutions, we obtain a maximal
Silhouette score of 0.31 for k = 2, which corresponds to the two types of solutions identified man-
ually above (1st–5th vs. 6th). Although this value is below Kaufman & Rousseeuw’s 0.51 threshold
(cf. Section 6.4.3), this clustering makes a lot of sense here, and shows that this threshold is not
necessarily always relevant. The overall core part for these classes is represented by the vertex
colors in Subfigures 6.7a: each color corresponds to a maximal group of vertices always assigned
to the same module over all solutions. This highlights how core parts can be used to interpret the
differences/similarities between the solution classes. Indeed, the figure reflects common knowledge
regarding the geopolitical situation: the tight relationship between the USA and Saudi Arabia, Turkey
supporting the Free Syrian Army to create a buffer zone in northern Syria from Kurds, and the dis-
agreement between the USA and Turkey regarding Kurds. Interestingly, ISIS is a core vertex, as it
is never placed with other vertices.

6.6 Conclusion

In this chapter, we empirically studied through our cluster analysis-based framework the space
of optimal solutions for the CC problem based on the complete set of optimal solutions identified
for Dataset 5.1 in Section 5.6. Our main finding is the identification of 4 different situations: 1)
unique solution; 2) single class of similar solutions; 3) several classes of similar solutions; 4) multiple
solutions without a clear clustering structure. We also showed that both density and proportion of
negative edges can affect the solution class structure. Indeed, a higher imbalance tend to lead to
several classes for both complete graphs and incomplete graphs with qneg = {0.3, 0.5}, whereas
this multiple class structure is mostly obtained for slightly imbalanced incomplete networks with
qneg = 0.7. Finally, we illustrated the usefulness of our framework on a small real-world network.

Our work can be extended in several ways. First, the most straightforward perspectives are to

151

Part , Chapter 6 – Investigation of the space of optimal solutions for the CC problem

Table 6.1 – Average proportion of classes present in the solutions found by the heuristic methods
presented in Section 2.3 for the instances possessing multiple solution classes on complete networks
with n = 50, which makes in total 29 instances. Only stochastic heuristics which frequently find
optimal solutions are considered. We run them 20 times. We observe that VNS always discovers all
the solution classes for the considered instances.

Heuristics

I(P)
[0.15, 0.20[[0.20, 0.25[[0.25, 0.30[

SA [173] 1 0.98 0.98
TS [37] 1 0.98 0.98
VNS [37] 1 1 1
GRASP [66] 1 0.82 0.39
ILS [148] 1 0.90 0.69
MLMSB [155] 1 0.92 0.86

apply our framework to weighted signed graphs; and to consider quasi-optimal solutions provided
by heuristic methods (such as those presented in Section 2.3) for large graphs, following the ex-
ample of Good et al. [101] with unsigned networks. Second, certain steps of our pipeline could be
improved. The detection of single-class cases is not satisfying, as it can lead to undetermined sit-
uations. Maybe certain solution spaces do not have a crisp clustering structure, in which case a
fuzzy clustering method could be more appropriate. Third, we plan to do a thorough investigation in
order to determine whether core vertices possess certain specific topological properties compared
to other vertices. Fourth, our results could be used to improve the search for optimal solutions. From
a practical perspective, it is not possible to exhaustively enumerate all optimal solutions in large
graphs. However, we could leverage the concept of class of similar solutions to design algorithms
able to exploit a known optimal solution and find optimal solutions belonging to other classes. Such
an exact approach would produce a set of diverse optimal solutions offering a better summary of
the whole solution space than the traditional single optimal solution discussed in this paper. This ap-
proach can be also done through existing heuristics by slightly modifying them. For instance, when
we analyze the optimal solutions found by the heuristics presented in Section 2.3, we observe that
some of them give promising results (see Table 6.1). Fifth, we could work directly on the CC problem
itself to reduce the number of optimal solutions. This can be done by optimizing a different imbalance
measure (e.g. cycle- [39] or walk-based measures [71]), capable to discriminate between partitions
otherwise considered optimal by the classic imbalance used in this chapter. It is also possible to add
extra constraints in the problem formulation, e.g. by requiring modules to be internally connected in
a stronger way (similarly to what is done in [31] for the clique partitioning problem).

152

Chapter 7

CONCLUSIONS AND PERSPECTIVES

7.1 Conclusions

In this thesis, we tackled the notion of multiplicity in the partitioning of signed networks and could
confirm its importance. In the literature, this concept is largely overlooked, because the standard
approach is to find a single partition, as if finding it was sufficient to understand the considered
system at hand. However, since a single partition is only one particular way of seeing the studied
system, it is possible that one needs to seek for multiple partitions to get a better understanding, for
interpretation purposes.

We relaxed this traditional single-partition assumption in two specific situations. The first one
was in the context of signed multiplex networks. We proposed a new partitioning method which
clusters partition-wise structurally similar layers of such a network and characterizes each obtained
cluster through a consensual merging process, tailored for signed networks. By applying it to a
European Parliament dataset, we could obtain multiple partitions, each corresponding to a different
characteristic voting pattern of the same considered legislators. The emergence of such patterns
was completely hidden when considering only traditional approaches. For instance, we could not
only confirm that the French S&D and ALDE MEPs alternatively side with the left- and right-wing
groups, but also identify which topics are concerned by these swings.

This need to look for multiplicity also holds even when considering a single (uniplex) network.
Indeed, it has been pointed out, but not studied, in the literature that an instance of the CC problem
can possess several optimal solutions. This type of multiplicity differs from the previous one in that
the number of partitions is not tied to any user-defined parameter and depends solely on the topo-
logical features of a given network. This motivated us to study the space of optimal solutions of the
CC problem as a second situation. Ideally, one should enumerate completely such space, and then
proceeding confidently with the subsequent analysis. However, since this task needs to employ ex-
act approaches to guarantee the completeness of the solution space, it can be very time-consuming.
For this reason, we first designed a new efficient enumeration method, which includes a local search
mechanism and several pruning strategies. Once the space of optimal solutions is completely enu-
merated, we then proceeded with its characterization through a cluster analysis-based framework.
This allowed us to study how the nature of multiple solutions is affected by the network character-
istics. Based on our empirical study on synthetic networks we first showed that it is possible, unlike

153

what has been observed in the literature, that a very large number of optimal partitions (e.g. 50,000)
populates the solution space, and that this multiplicity mostly depends on graph density, proportion
of negative edges and graph imbalance. Second, we could identify a typology of 4 different situa-
tions: 1) unique solution; 2) single class of similar solutions; 3) several classes of similar solutions;
4) multiple solutions without a clear clustering structure. Finally, we illustrated the usefulness of our
characterization framework on a small real-world network.

In both situations described above, computing the similarity between partitions is a required
task. In the context of graph partitioning, this task can be conducted through a so-called external
evaluation measure, i.e. a measure originally designed to compare two partitions. However, there
exist many such measures, each having different characteristics. This makes it challenging to select
the most appropriate for a given situation for the end user. The widespread tendency among end
users is to use popular measures, without considering much their relevance relative to the applica-
tion at hand. This motivated us to solve this issue, and help the end user selecting an appropriate
measure for their application. To this aim, we proposed a new empirical evaluation framework. For
a collection of candidate measures, it first consists in describing their behavior by computing them
for a generated dataset of partitions, obtained by applying a set of predefined parametric partition
transformations. Second, our framework characterizes the measures in terms of how they are af-
fected by these parameters and transformations. This allows both describing and comparing the
measures. We illustrated its relevance by applying it to a selection of standard measures. Further-
more, when addressing each of the situations described above, our framework helped us select the
most relevant measure.

7.2 Perspectives

The different investigations conducted in this work suggest diverse questions that, to the best of
our knowledge, remain open. In the end of each chapter, we already discussed the most technical
aspects related to these questions. In the following, we review the larger methodological points
deserving some longer term efforts.

When evaluating our solution space enumeration method, we generated a collection of syn-
thetic signed networks based on a model inspired by the Erdős-Rényi random graph model. Nev-
ertheless, as showed by Orman et al. [179] for the Community Detection problem on unsigned
graphs, including more realistic topological properties in such generative model can substantially
affect the performances of certain resolution methods. It is likely that this holds when partitioning
signed graphs, too. For this reason, an interesting research line would be to design a more realistic
random model, reflecting the same topological properties as signed real-world networks. In the liter-
ature, there are some straightforward signed extensions of the community structure-generating LFR
model (e.g. [69]) originally designed for unsigned networks, but it is not clear how realistic they are.

154

Designing a proper realistic model would require to review the existing random models, but also to
analyze the characteristics of a large number of real-world signed networks, in order to identify their
topological property, and embed them into the random model. Such a tool would allow to perform a
more reliable evaluation of our own methods, but more generally it would be very beneficial to the
research community, e.g. for assessing the performance of heuristics methods and estimate their
robustness, even when looking for a single partition.

When evaluating our enumeration method of the solution space, we found out that the number
of optimal partitions can be very large, even for small graphs. From an applications perspective,
this poses serious problems in terms of interpretation. Either all obtained optimal partitions are
equally relevant, in which case the application at hand has indeed many partitions of interest, or the
problem is not well-defined for this application. In this case, it is necessary to perform adjustments
to the problem itself in order to match the application needs. This can be done either by considering
a related problem, such as RCC and others (e.g. [36, 32, 149]); or by coming up with a new problem
definition with extra constraints allowing to reduce the solution space and focus only on relevant
solutions. For instance, we have been recently experimenting with an extension of the CC problem
that includes a two positive edge connectivity requirement at the module level, a work that led to
an oral communication [18]. In any case, whatever the choice of the extended problem, we need to
reapply our cluster-based characterization method to see if this would reach the same typology of
solution space that we proposed during this thesis. More generally, it would be interesting to apply
more systematically this characterization method onto a collection of extended versions of the CC
problem. Hence, this would allow us to classify problems themselves depending on the shape of
their spaces of optimal solutions.

Even when considering extensions of the CC problem for interpretation purposes, there can still
be several structurally different optimal partitions in the solution space, depending on the application
at hand. In this case, one still needs to explore this solution space, and as we saw in Chapter 5,
this can be very costly computationally. To overcome this limitation, another interesting research line
would be to infer some information related to the solution space (e.g. the number of solution classes)
directly from the network characteristics, before applying an exact method. Recently, we started to
experiment with machine learning techniques, especially based on graph embeddings, in order to
predict the number of optimal partitions and that of solution classes directly from the extracted
network characteristics. This is still an ongoing research and we believe that performing this task
would be very beneficial for estimating in an instant way the answers of the research questions that
we asked regarding the notion of multiplicity. In turn, these characteristics could then be used to
drive the search for optimal solutions.

155

Appendices

156

Appendix A

EVALUATION MEASURES

This appendix presents additional details and results, which were not included in Chapter 3. We
first give the formal definition of the considered evaluation measures (Section A.1), then explain the
additional experimental details mentioned in Section 3.3.1.1 about the heterogeneity of module sizes
(Section A.2). Finally, we include two additional figures depicting the significance results regarding
the comparison of the segment heights (Section A.3).

A.1 Definitions of evaluation measures

A common point of the evaluation measures is that they can be computed using the so-called
confusion matrix (also called association matrix or contingency table) based on the two partitions.

We note n the numbers of vertices of a graph G. Also, let P = {M1, ...,M`} (1 ≤ ` ≤ n) be a
non-overlapping `-partition of G. Let have another partition P ′ formed by `′ modules, where `′ may
be different from `. Then, the confusion matrix is a ` × `′ integer matrix, whose ii′th cell is the
number of vertices in the intersection of modules Mi and Mi′ , as shown in Table A.1.

Table A.1 – The confusion matrix for two partitions P = {M1, ...,M`} and P ′ =
{M ′1, ...,M ′`′} of n vertices, where nij = |Mi ∩ M ′j | are the number of vertices in both
modules Mi ∈ P and M ′i ∈ P ′.

Partition P ′

Module M ′1 . . . M ′`′ Marginal sum
M1 n11 . . . n1`′ n1·

Partition · · · ·
P · · · ·

M` n`1 . . . n``′ n`·

Marginal sum n·1 . . . n·`′ n·· = n

A.1.1 Rand Index, RI

The formulation of all pair-counting measures can be expressed in terms of four types of element
pairs. The positive agreement N11 corresponds to the number of element pairs which are in the

157

same module in both partitions P and P ′. The negative agreement N00 is the number of element
pairs which are in different modules in both P and P ′. The partitions disagree on the remaining
element pairs, as N10 (resp. N01) corresponds to the number of element pairs which are in the same
module in P (resp. P ′), but not in P ′ (resp. P). The formula of each term is shown in Table A.2.

Table A.2 – Formulae for the number of (unordered) element pairs of the four types

Type Formula

N11
∑̀
i=1

`′∑
j=1

(
nij
2

)
= 1

2
∑̀
i=1

`′∑
j=1

nij(nij − 1)

N00

(
n

2

)
− (N11 +N10 +N01)

N10
1
2
(∑̀
i=1

n2
i· −

∑̀
i=1

`′∑
j=1

n2
ij

)
N01

1
2
(`′∑
j=1

n2
·j −

∑̀
i=1

`′∑
j=1

n2
ij

)
N·· = N11 +N10 +N01 +N00

(
n

2

)
= n(n− 1)/2

The Rand Index (RI) [187] is the proportion of total agreement, i.e. when counting both positive
and negative agreement:

RI(P, P ′) = N11 +N00
N··

. (A.1)

Its values lie between 0 and 1, where 0 occurs for the absence of any positive and negative agree-
ments, whereas 1 corresponds to the case where the partitions are perfectly identical.

A.1.2 Adjusted Rand Index, ARI

The Adjusted Rand Index (ARI) [114] is a well-known extension of the Rand Index, with additional
correction for chance. It aims at dealing with the statistical independence of two partitions (see
Section 3.2.1.2). Its formula is

ARI(P, P ′) = RI(P, P ′)− E[RI(P, P ′)]
1− E[RI(P, P ′)] . (A.2)

where E[RI(P, P ′)] corresponds to the estimated score ofRI(P, P ′) for independent partitions under
hypergeometric assumption (so-called permutation model). This term is defined as

E(
∑
ij

(
nij
2

)
) =

∑
i

(
ni·
2

)∑
j

(
n·j
2

)
/

(
n

2

)
. (A.3)

158

The ARI takes a value of 1 for identical partitions, whereas 0 indicates a case of statistical
independence. Moreover, ARI can take a negative value for very dissimilar partitions [163], when
the observed RI is smaller than expected.

A.1.3 Jaccard Index, JI

The Jaccard Index (JI) was originally defined to compare sets [118], but it is also used as an
external measure [30]. As reported in [163], the negative agreement N00 can be often almost as
large as the maximum number of element pairs

(n
2
)
. The Jaccard Index is an improved version of RI

on this aspect, as it does not take N00 into account. It is defined as

JI(P, P ′) = N11
N11 +N01 +N10

. (A.4)

The Jaccard Index ranges from 0 (absence of any positive agreement) to 1 (identical partitions).
Note that one minus the Jaccard Index is a metric on the finite sets [159].

A.1.4 Fowlkes-Mallows Index, FMI

The Fowlkes-Mallows Index [94] is the final pair-counting measure that we consider in this work.
It was originally introduced to ease the comparison of hierarchical dendrograms. Like the Jaccard
Index, it ignores negative agreements. It can be described as the geometric mean of two asymmetric
forms of positive agreement: the proportion of positive agreements relative to the number of pairs
belonging to the same module in P vs. those in P ′. Its formal description is

FM(P, P ′) = N11√
(N11 +N10)(N11 +N01)

. (A.5)

A.1.5 F-measure, F

In the category of set-matching measures, we select the F -measure (F). Note that this name
is sometimes used in the literature as a synonym of harmonic mean, and therefore covers several
distinct measures (e.g. [186, 98]). We use the definition of Artiles et al. [25], according to which the
F -measure is the harmonic mean of two quantities called Purity and Inverse Purity.

The formal definition of Purity is as follows:

Purity(P, P ′) =
∑
i

ni·
n

max
j

nij
ni·

. (A.6)

The Inverse Purity is simply the Purity of the second partition relative the first, i.e. Purity(P ′, P).

159

Finally, the F -measure is the harmonic mean of the Purity and Inverse Purity

F (P, P ′) = 2Purity(P, P ′)× Purity(P ′, P)
Purity(P, P ′) + Purity(P ′, P) . (A.7)

A.1.6 Normalized Mutual Information, NMI

The last measure that we consider is the Normalized Mutual Information (NMI), which belongs to
the category of information-theoretical measures. It is based on the notions of entropy and Mutual
Information [50]. The principle behind these notions is to consider each partition as a categorical
random variable, whose possible values are the modules.

In the context of clustering, entropy in the sense of Shannon is defined as

H(P) = −
∑̀
i=1

ni·
n

log ni·
n
. (A.8)

Each vertex in G has an equal probability of being picked, so its probability of being in module Mi

is ni/n. Thus, we have a discrete random variable taking ` values, which is associated to the partition
P . If the partition P has only 1 module containing all the points, then H(P) will be zero, since there
is no uncertainty in the clustering structure. If the partition P consists of as many modules as n, it
will reach its maximum value. Note that H(P) does not depend on n, but on the relative proportions
of the modules.

The Mutual Information can be described as the mutual dependence between these variables,
and it can then be interpreted as the similarity between the partitions. It is formally described as

MI(P, P ′) =
∑̀
i=1

`′∑
j=1

nij
n

log
nij
n

ni·
n
n·j
n

. (A.9)

There are a number of variants of the notion of mutual information, in particular several normal-
izations have been proposed (see for instance [223]). In this work, we focus on the sum normaliza-
tion as defined in [136, 205], which is very widespread. The resulting NMI is

NMI(P, P ′) = 2MI

H(P) +H(P ′) . (A.10)

A.2 Experimental details about the heterogeneity of module sizes

There are many ways to make modules imbalanced. In this work, we opt for a sequence based on
an arithmetic progression. Consider the sizes of the modules in a partition as a sequence of values
S` whose sum is equal to the number of nodes n, as in (A.11). In this equation, α corresponds to

160

the first value and β corresponds to the constant increment value

n = α+ (α+ β) + (α+ 2β) + ...+ (α+ (`− 1)β)

= α`+ β`(`− 1)
2 .

(A.11)

Note that the sequence contains as many terms as the number of modules.
In such a sequence, each term is a constant increment value β larger than the previous term

(e.g. β = 2 for the sequence 3, 5, 7, ..). This β is computed based on the parameter h (heterogeneity
of module sizes). When h = 1, it reaches its maximal value that we note βmax. In the case of h < 1,
β is proportional to βmax to the extent of h (i.e. β = h× βmax). The value of βmax can be determined
in different ways. In order not to introduce an additional parameter for this, our approach is to assign
the first term α and the constant increment βmax to the same value, i.e. α = βmax. Then, we compute
β as follows

n = βmax`(`+ 1)
2

β = bhβmaxc.
(A.12)

Note that b.c denotes the floor function (returning the greatest integer less than or equal to the
input value). Finally, we obtain the value of α as follows

α =
n− β`(`−1)

2
`

. (A.13)

A.3 Significance results regarding the comparison of the segment
heights

This section presents two additional figures, which were not included in Section 3.5.2. Fig-
ures A.1 and A.2 visually report the significance results regarding the comparison of the segment
heights performed in Section 3.5.2.

161

Column

R
o
w

Column

R
o
w

Column

R
o
w

Column

R
o
w

Column

R
o
w

Column

R
o
w

Column

R
o
w

Column

R
o
w

Column

R
o
w

Column

R
o
w

Column

R
o
w

Column

R
o
w

Column

R
o
w

Column

R
o
w

Column

R
o
w

Column

R
o
w

Column

R
o
w

Column

R
o
w

Column

R
o
w

Column

R
o
w

R
o
w

R
o
w

R
o
w

DRI

tocs
tknc
tncs
tonc
tsc

toc tknc tncs tonc tsc

tocs
tknc
tncs
tonc
tsc

toc tknc tncs tonc tsc

tocs
tknc
tncs
tonc
tsc

toc tknc tncs tonc tsc

tocs
tknc
tncs
tonc
tsc

toc tknc tncs tonc tsc

tocs
tknc
tncs
tonc
tsc

toc tknc tncs tonc tsc

tocs
tknc
tncs
tonc
tsc

toc tknc tncs tonc tsc

tocs
tknc
tncs
tonc
tsc

toc tknc tncs tonc tsc

tocs
tknc
tncs
tonc
tsc

toc tknc tncs tonc tsc

tocs
tknc
tncs
tonc
tsc

toc tknc tncs tonc tsc

tocs
tknc
tncs
tonc
tsc

toc tknc tncs tonc tsc

tocs
tknc
tncs
tonc
tsc

toc tknc tncs tonc tsc

tocs
tknc
tncs
tonc
tsc

toc tknc tncs tonc tsc

tocs
tknc
tncs
tonc
tsc

toc tknc tncs tonc tsc

tocs
tknc
tncs
tonc
tsc

toc tknc tncs tonc tsc

tocs
tknc
tncs
tonc
tsc

toc tknc tncs tonc tsc

tocs
tknc
tncs
tonc
tsc

toc tknc tncs tonc tsc

tocs
tknc
tncs
tonc
tsc

toc tknc tncs tonc tsc

tocs
tknc
tncs
tonc
tsc

toc tknc tncs tonc tsc

tocs
tknc
tncs
tonc
tsc

toc tknc tncs tonc tsc

tocs
tknc
tncs
tonc
tsc

toc tknc tncs tonc tsc

tocs
tknc
tncs
tonc
tsc

toc tknc tncs tonc tsc

tocs
tknc
tncs
tonc
tsc

toc tknc tncs tonc tsc

tocs
tknc
tncs
tonc
tsc

toc tknc tncs tonc tsc

tocs
tknc
tncs
tonc
tsc

toc tknc tncs tonc tsc

DARI

DFMI

DJI

DF

DNMI

n k h p

Figure A.1 – Significance of the results regarding the comparison of the segment heights performed
in Section 3.5.2 over all pairs of transformations, considered for each measure and parameter set. For
instance, the top four matrices correspond to Figure 3.4.a. Green (resp. red) cells represent significant
(resp. non-significant) differences between the considered transformations, with a significance level
of α = 0.05. Figure available at 10.6084/m9.figshare.13109813 under CC-BY license.

162

https://doi.org/10.6084/m9.figshare.13109813

Column

R
ow

Column

R
ow

Column

R
ow

Column

R
ow

Column

R
ow

Column

R
ow

Column

R
ow

Column

R
ow

Column

R
ow

Column

R
ow

Column

R
ow

Column

R
ow

Column

R
ow

Column

R
ow

Column

R
ow

Column

R
ow

Column

R
ow

Column

R
ow

Column

R
ow

Column

R
ow

DRI
DARI
DFMI
DJI

DF
DNMI

DRI DARI DFMI DJI DF DNMI

DRI
DARI
DFMI
DJI

DF
DNMI

DRI DARI DFMI DJI DF DNMI

DRI
DARI
DFMI
DJI

DF
DNMI

DRI DARI DFMI DJI DF DNMI

DRI
DARI
DFMI
DJI

DF
DNMI

DRI DARI DFMI DJI DF DNMI

DRI
DARI
DFMI
DJI

DF
DNMI

DRI DARI DFMI DJI DF DNMI

DRI
DARI
DFMI
DJI

DF
DNMI

DRI DARI DFMI DJI DF DNMI

DRI
DARI
DFMI
DJI

DF
DNMI

DRI DARI DFMI DJI DF DNMI

DRI
DARI
DFMI
DJI

DF
DNMI

DRI DARI DFMI DJI DF DNMI

DRI
DARI
DFMI
DJI

DF
DNMI

DRI DARI DFMI DJI DF DNMI

DRI
DARI
DFMI
DJI

DF
DNMI

DRI DARI DFMI DJI DF DNMI

DRI
DARI
DFMI
DJI

DF
DNMI

DRI DARI DFMI DJI DF DNMI

DRI
DARI
DFMI
DJI

DF
DNMI

DRI DARI DFMI DJI DF DNMI

DRI
DARI
DFMI
DJI

DF
DNMI

DRI DARI DFMI DJI DF DNMI

DRI
DARI
DFMI
DJI

DF
DNMI

DRI DARI DFMI DJI DF DNMI

DRI
DARI
DFMI
DJI

DF
DNMI

DRI DARI DFMI DJI DF DNMI

DRI
DARI
DFMI
DJI

DF
DNMI

DRI DARI DFMI DJI DF DNMI

DRI
DARI
DFMI
DJI

DF
DNMI

DRI DARI DFMI DJI DF DNMI

DRI
DARI
DFMI
DJI

DF
DNMI

DRI DARI DFMI DJI DF DNMI

DRI
DARI
DFMI
DJI

DF
DNMI

DRI DARI DFMI DJI DF DNMI

DRI
DARI
DFMI
DJI

DF
DNMI

DRI DARI DFMI DJI DF DNMI

Singleton
Modules

1 New
Module

Neighbor
Module Swaps

Orthogonal
Modules

ℓn h q

ℓ New
Modules

Figure A.2 – Significance of the results regarding the comparison of the segment heights performed
in Section 3.5.2 over all pairs of measures, considered for each transformation and parameter set.
For instance, the top four matrices correspond to the last stacked bar in each barplot of Fig-
ure 3.4 (Singleton Modules). Green (resp. red) cells represent significant (resp. non-significant) dif-
ferences between the considered measures, with a significance level of α = 0.05. Figure available at
10.6084/m9.figshare.13109813 under CC-BY license.

163

https://doi.org/10.6084/m9.figshare.13109813

Appendix B

COMMON AGRICULTURAL POLICY AND

ADDITIONAL AGRICULTURE-RELATED

RESULTS

This appendix presents additional details and results, which were not included in Chapter 4.
We first give some context regarding the European Parliament and the Common Agricultural Policy
(Section B.1) and the 2013 CAP Reforms (Section B.2), then present the hierarchy of topics re-
lated to Agriculture Policy Domain (Section B.3). Finally, we present additional plots, which were not
included in Figure 4.3 (Section B.4).

B.1 EP- and CAP-Related Concepts

This section aims at providing the reader with some context regarding the European Parliament
and the Common Agricultural Policy, through the definition of the main related concepts.

Common Agricultural Policy The CAP was established in 1957 to help EU farmers face agri-
cultural challenges, which can be social (e.g. low labor force), economic (e.g. increasing inequalities,
subsidies) or environmental (e.g. water pollution, global warming) [81].

The CAP is funded and shared by all the members state of the European Union. It currently
takes action with income support (i.e. income stability through direct payments), market measures
(i.e. dealing with difficult market situations such as severe market imbalance) and rural development
measures (specific challenges facing rural areas).

Pillars I and II The CAP has two main principles called pillars in EU jargon [77]. The Pillar I is
support to farmers’ incomes. It is established through direct payments and market measures, and
is entirely financed from the European Agricultural Guarantee Fund (EAGF). Pillar II is support to
the development of rural areas. It is established through Rural Development programmes, and is
co-financed by the European Agricultural Fund for Rural Development (EAFRD).

Direct payments Direct payments were introduced in 1992 to support the incomes of farm-
ers [77]. Before that, the CAP was supporting the prices instead (an indirect form of payment).

Green payment A specific form of direct payment, granted for agricultural practices beneficial

164

for the climate and the environment. Member states must allocate 30% of their direct payment
allocation to this greening payment [78]. After the 2013 CAP reform, the three greening obligations
are: 1) Crop diversification, 2) Maintenance of permanent grassland, 3) Ecological focus area.

Co-financing scheme Member states have a certain discretion regarding the final design of
Rural Development measures. The support granted under each measure is shared between the EU
and the concerned member state. This arrangement is known as co-financing [77].

Milk quota system A quota system designed to control the production of dairy products in
the EU. Its aim was to avoid overproduction. It was first established in 1983, after the occurrence
of large volume of milk (and other dairy products) surplus, which had to be bought by European
Commission [80].

Export subsidy Export subsidies (or export refunds) are special payments provided by the gov-
ernment to encourage export of goods, and to discourage sale of goods on the domestic market [77].

Cross-compliance scheme The cross-compliance scheme is a set of requirements (e.g. food
safety, animal health, plant health) that farmers should satisfy in order to receive direct payments [77].

Permanent grassland It corresponds to a land used permanently (usually more than five con-
secutive years) [77].

Natura 2000 Natura 2000 is a network of nature protection areas in the European Union. The
aim is to protect the most seriously threatened habitats and species across Europe [77].

Water Framework Directive (WFD) This legislation regarding water protection aim for the fu-
ture [77].

B.2 Key Elements of the 2013 CAP Reforms

The 2013 CAP reform, which covers the 2014-2020 period, differed from the previous reforms,
because it was the first time that the EP had a say in their adoption, by co-legislating with the Council
of the EU. The reform process was launched by the EU commission in April 2010, through public
debates and conferences. The final adoption of the legal texts took place on December 2013. Many
of the regulations took effect in 2015, so that member states would have enough time to prepare.

The 2013 CAP reforms can be grouped in the following 4 different sets of regulations [81, 79,
160]:

— Rules for direct payments to farmers:

— Greening of farm payments, through the introduction of environmental practices, such as
crop diversification, and maintaining ecologically rich landscape features and a minimum
area of permanent grassland;

— More equality in the distribution of funds received by farmers across the EU, and a reduc-
tion in payments above a certain amount for the biggest farms;

165

— Better targeting of income support to farmers (active farmers, young farmers, small farm-
ers);

— A common organization of the markets in agricultural products:

— Strengthening producer power in the food chain: Contracts (e.g. contract duration, quan-
tity and quality requirements for agricultural products), price negotiations in dairy sector
(e.g. maintaining effective competition), withdrawals (e.g. implementing private supply
management to fix prices under difficult situations);

— Support for rural development:

— Encouraging knowledge transfer and innovation in forestry and rural areas;

— Enhancing farm viability and competitiveness;

— Promoting food chain organization, including processing and marketing of agricultural
products, risk management in agriculture;

— Promoting resource efficiency and supporting environment-friendly practices (e.g. low
carbon use);

— Promoting social inclusion, poverty reduction.

— Financing, management and monitoring of the common agricultural policy:

— European Price Monitoring Tool: It aims at collecting necessary information about the
stages of food supply chain in the EU and the Member States (e.g. exports and imports,
farm gate prices, consumer prices);

— Food security and assessment of impact on developing countries.

B.3 Hierarchy of AGRI-related topics

In order to characterize subgroups of legislative propositions in a topical way, we use EUR-Lex 1,
the website of the EU for the publication of official documents such as treaties and legislation. For
indexing matters, this website provides a hierarchical nomenclature of topics.

The agriculture domain (AGRI) is represented over 4 hierarchical levels. The fourth one is too
specific: for the considered period, each document basically concerns a different subdomain, which
would prevent us from detecting any relevant pattern. For this reason, we work with the third level,
which is represented in Table B.1. The subdomains relevant for the considered time period are rep-
resented in bold. Based on the titles and summaries of the legislative propositions, we manually
annotate each of them with the most appropriate subdomains. Note that one document can be as-
sociated with several subdomains. Moreover, in addition to their agriculture-related subdomain(s),

1. http://eur-lex.europa.eu

166

http://eur-lex.europa.eu

Domains and subdomains for the legislative propositions related to agriculture in 2012-13

Agriculture (AGRI)

Basic provisions (BP)

(22.9%) Common agricultural policy mechanisms (CAPM)

Agricultural structures (AS)

(15.9%) Social and structural measures (SSM)

(0.8%) Processing and marketing of agricultural products (PMAP)

Agricultural structural funds (ASF)

(0.8%) General (GEN)

(0.4%) European Agricultural Guarantee Fund (EAGF)

(10.8%) European Agricultural Fund for Rural Development (EAFRD)

Approximation of laws and health measures (ALHM)

(8.6%) Animal health and zootechnics (AHZ)

(0.4%) Seeds and seedlings (SS)

Products subject to market organization (PSMO)

(0.4%) Seeds (SEED)

(0.4%) Wine (WINE)

(37.9%) Arrangements covering multiple market organizations (ACMOMO)

Regional policy and coordination of structural instruments (REGP)

(0.8%) Coordination of structural instruments (CSI)

Environment, consumers and health protection (ENVI)

Consumers(CONS)

(0.4%) Protection of economic interests (PEI)

External relations (EXTR)

(0.4%) Bilateral agreements with non-member countries (BANC)

Fisheries (FISH)

(0.4%) External (EXT)

Table B.1 – EUR-Lex subdomains used to categorize the legislative propositions themes

some documents also belong to other domains, such as environment (ENVI) or fisheries (FISH).
We proceed similarly to identify their subdomains, and these are also shown in the table. Finally,
Table B.1 also displays the proportions of propositions described by each subdomain, for the con-
sidered selection.

167

B.4 Additional Plots for Figure 4.3

Figure B.1 represents cluster P̂ 1
5 , which was not included in Figure 4.3. Figure B.2 contains the

names of all French MEPs. Their position in the figure match the one they have in Figure 4.3.

GUE-NGL

G
-E

FA

S&D

ALDE
E
P
P

EF
DNIP. Le Hyaric M. Le Pen

Figure B.1 – Characteristic pattern P̂ 1
5 for French MEPs, in complement to Figure 4.3.

168

J.
-L

.
B

e
n
n
a
h
m

ia
s

M
.-T

. S
.-S

ch
m

id

J.-L. M
elen

ch
on

A. Lamassoure

E. M
.-Chartie

r

C
. T

ra
ut

m
an

n

V. M.Houillon

M
.-C

. Vergiat

M
.
D

e
 S

a
rn

e
z

J.L
. C

otti
gny

G
. P

ar
gn

ea
ux

J.-M
. Cavada

F. Grossetete

J.
-M

.
Le

 P
e
n

N. K.-Nielsen

C. De Veyrac

D. C.-Bendit

S.
 G

ui
lla

um
e

R
. R

o
ch

e
fo

rt

J.-P. Gauzes

B. Hortefeux

P.
 d

e
V
ill

ie
rs

M
. B.-Attou

B
.
Ve

rg
n
au

d N
. G

rie
sb

e
ck

P. Le
 H

ya
ric

J.-P. Besset

Y. O
m

arjee B
.
G

ol
ln

is
ch

P. Boulland

A. Danjean

M
. S

tr
iffl

er

A. Le Brun

J.-J. Bicep

S
.
G

o
u
la

rd

S
. A

u
con

ie
J.-P. A

udy

Y. Cochet

E. Andrieu

P.
 T

ir
ol

ie
n

C. Le Grip

M
.
Le

 P
e
n

H. Flautre

C
. Le

p
a
g
e

M. Dantin

L.
 H

.N
go

c
I.

Th
om

as

M. Ponga

F. Alfonsi

H
.
W

e
b
e
r

G. Franco

D. R
iquet

J.
Roa

tta

M. Rivasi

F. C
aste

x

A. Cadec

F. P
roust

D
. V

la
st

o

S. Belier

C. Greze
Y. Jadot

K. Zeribi

J. H
e
n
in

P. B
eres

N
. B

erra

M. Gallo

H. D
esir

P. Juvin

T.
 S

ai
fi

J. Bove

K. Delli

R. Dati

J. Daul

E. Joly

GUE-NGL

G
-E

FA
S&D

ALDE

E
P
P

EF
DNI

FR

Figure B.2 – Name of the French MEPs studied in Section 4.5. The layout is the same as in Figure 4.3.

169

Appendix C

EDIT DISTANCE FOR PARTITIONS, AND

RELATED PROOFS

This appendix presents additional details and results regarding Chapter 5. We first detail how
to calculate the edit distance between two membership vectors (Section C.1), then pass to the
complete details regarding the proof of Lemma 5.11 (Section C.2). Our source code regarding the
calculation of the edit distance between two membership vectors is publicly available 1.

C.1 Edit distance between two membership vectors

Before calculating the edit distance between two membership vectors, we need to determine
one of two membership vectors as a reference vector in order to adapt the module assignments
of the other membership vector based on the reference one. Hence, the edit distance is calculated
between the reference vector and this newly changed one, that we call relative vector.

The task of adapting the relative vector w.r.t the reference one can be transformed into assign-
ment problem, also known as maximum weighted bipartite matching problem, as already done in
the literature [151]. Let πs and πt be two membership vectors of length n associated with the parti-
tions P s and P t with `s and `t modules respectively. Also, since edit distance is symmetric, without
loss of generality, let `s ≤ `t. Moreover, let CM be the `s × `t confusion matrix of πs and πt. The
term CMij , with 1 ≤ i ≤ `s and 1 ≤ j ≤ `t, represents the number of vertices in the intersection
of modules M s

i and M t
j , i.e. |M s

i ∩M t
j |. Then, we look for a bijection f : {1, 2, ..., `s} → {1, 2, ..., `t}

such that the objective is to maximize the number of vertices that is common between modules of
those membership vectors, i.e.

Max
`s∑
i=1

CMif(i). (C.1)

Since this problem can be modelled as assignment or maximum weighted bipartite matching
problem, it can be solved in various ways. One of them is through well-known the Hungarian algo-
rithm with the complexity O(n3) [134]. Nevertheless, the best polynomial time algorithm is currently

1. https://github.com/arinik9/ClusteringEditDistance.

170

https://github.com/arinik9/ClusteringEditDistance

a) b) c) d) f)

g) h) i) j) k)

l) m) n) o) p) r)

e)

z

u
u

u

u

u

u

u
u u

u

u

u u

u
u

u
u

v v
v

v

v

v

v v
v

v

v v
v

v
v

v

z
z z

z

z

z

z
z

z

z
z

z z
z

z
v

z

Figure C.1 – All atomic 3-edit operations

based on network simplex algorithm, and it runs in O(|V ||E|+ |V |2log(|V |)) time using the Fibonacci
heap data structure [96]. One final remark is about the case of `s < `t, in which there will be |`t− `s|
unassigned module labels in πt. In which case, one can arbitrarily renumber those labels, starting
from `s + 1.

Finally, the edit distance between two membership vectors is calculated by simply counting the
number of cases where the module labels of the vertices in reference and relative vectors are
different.

C.2 Proof of Lemma 5.11

This section gives the complete details regarding the proof of Lemma 5.11 based on the full list
of 17 scenarios of three moving vertices with uv, uz, vz ∈ Ẽ. Given source and target membership
vectors πs and πt, Ẽ is defined as {(u, v) | (u, v) ∈ E and u, v ∈

s−~ tV and (πs(u) = πs(v) ∨ πt(u) =
πs(v) ∨ πs(u) = πt(v) ∨ πt(u) = πt(v))}. These 17 scenarios are depicted in Figure C.1. The proof
is straightforward when one adapts Corollary 5.9 to those scenarios. We detail below all of them.

a) We have (γleftu = auv+auz) > (γrightu = −auv−auz), (γleftv = auv+avz) > (γrightv = −auv−avz)
and (γleftz = auz+avz) > (γrightz = −auz−avz). We see that auv, auz and avz cannot be negative.

b) We have (γleftu = auv + auz) > (γrightu = 0), (γleftv = auv + avz) > (γrightv = −avz) and
(γleftz = auz + avz) > (γrightz = −avz). We see that auv, auz and avz cannot be negative.

171

c) We have (γleftu = auv + auz) > (γrightu = 0), (γleftv = auv + avz) > (γrightv = 0) and (γleftz =
auz + avz) > (γrightz = 0). We see that auv, auz and avz cannot be negative.

d) We have (γleftu = auv) > (γrightu = −auv − auz), (γleftv = auv) > (γrightv = −auv − avz) and
(γleftz = 0) > (γrightz = −auz − avz). We see that auv, auz and avz must be positive.

e) We have (γleftu = auv−auz) > (γrightu = −auv+auz), (γleftv = auv−avz) > (γrightv = −auv+avz)
and (γleftz = −auz − avz) > (γrightz = auz + avz). We see that auv (resp. auz and avz) cannot be
negative (resp. positive).

f) We have (γleftu = auv − auz) > (γrightu = −auv), (γleftv = auv − avz) > (γrightv = −auv) and
(γleftz = 0) > (γrightz = auz + avz). We see that auv, auz and avz cannot be negative.

g) We have (γleftu = auv) > (γrightu = auz − auv), (γleftv = auv) > (γrightv = avz − auv) and
(γleftz = −auz − avz) > (γrightz = 0). We see that auv, auz and avz cannot be negative.

h) We have (γleftu = auv) > (γrightu = −auv), (γleftv = auv) > (γrightv = −auv) and (γleftz =
−auz − avz) > (γrightz = 0). We see that auv, auz and avz cannot be negative.

i) We have (γleftu = auv) > (γrightu = auz), (γleftv = auv − avz) > (γrightv = avz) and (γleftz =
−auz − avz) > (γrightz = +avz). We see that auv (resp. auz and avz) cannot be negative (resp.
positive).

j) We have (γleftu = auv) > (γrightu = −auz), (γleftv = auv) > (γrightv = −avz) and (γleftz = 0) >
(γrightz = −auz + avz). We see that auv and avz (resp. auz) must be positive (resp. negative).

k) We have (γleftu = auv) > (γrightu = 0), (γleftv = auv − avz) > (γrightv = 0) and (γleftz = 0) >
(γrightz = avz). We see that auv and avz (resp. auz) must be positive (resp. negative).

l) We have (γleftu = −auv) > (γrightu = auz), (γleftv = −avz) > (γrightv = auv) and (γleftz = −auz) >
(γrightz = avz). We see that auv and avz (resp. auz) must be positive (resp. negative).

m) We have (γleftu = −auv) > (γrightu = 0), (γleftv = −avz) > (γrightv = auv) and (γleftz = 0) >
(γrightz = avz). We see that auv and avz (resp. auz) must be positive (resp. negative).

n) We have (γleftu = −auv) > (γrightu = auv − auz), (γleftv = −auv) > (γrightv = auv + avz) and
(γleftz = −avz) > (γrightz = −auz). We see that auv (resp. auz and avz) cannot be negative
(resp. positive).

o) We have (γleftu = −auv) > (γrightu = 0), (γleftv = 0) > (γrightv = auv − avz) and (γleftz = 0) >
(γrightz = −avz). We see that auv (resp. auz and avz) cannot be negative (resp. positive).

p) We have (γleftu = −auv) > (γrightu = −auz), (γleftv = 0) > (γrightv = auv + avz) and (γleftz =
−avz) > (γrightz = −auz). We see that auv (resp. auz and avz) cannot be negative (resp.
positive).

r) We have (γleftu = 0) > (γrightu = −auv − auz), (γleftv = 0) > (γrightv = −auv − avz) and
(γleftz = 0) > (γrightz = −auz − avz). We see that auv, auz and avz must be positive.

172

Appendix D

NUMBER OF SOLUTIONS OF THE CC
PROBLEM

This appendix presents additional three figures regarding the number of solutions as a function
of graph imbalance I(P) based on the instances of Dataset 5.1. Figures D.1, D.2 and D.3 are
complementary to Table 5.1.

●

● ●

●
●

●

Graph order = 32

●

● ● ●

●
●

Graph order = 36

●

● ● ●

● ●

Graph order = 40

2,000

200

20

2

20,000
50,000

N
u
m

b
e
r

o
f

so
lu

ti
o
n
s

2,000

200

20

2

20,000
50,000

2,000

200

20

2

20,000
50,000

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

(a) Number of solutions for d = 0.25 and qn = 0.3.

●

●

●

●

● ●

Graph order = 32

●

●

●

● ●
●

Graph order = 36

● ●

●

●
●

●

Graph order = 40

2,000

200

20

2

20,000
50,000

N
u
m

b
e
r

o
f

so
lu

ti
o
n
s

2,000

200

20

2

20,000
50,000

2,000

200

20

2

20,000
50,000

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

(b) Number of solutions for d = 0.25 and qn = 0.5.

●
●

●

●

● ●

Graph order = 32

●

●
●

●

● ●

Graph order = 36

●

●
●

●

● ●

Graph order = 40

2,000

200

20

2

20,000
50,000

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

2,000

200

20

2

20,000
50,000

2,000

200

20

2

20,000
50,000

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

N
u
m

b
e
r

o
f

 s
o
lu

ti
o
n
s

(c) Number of solutions for d = 0.25 and qn = 0.7.

Figure D.1 – Number of solutions for d = 0.25 and qn = {0.3, 0.5, 0.7}.

173

● ● ●

● ●
● ●

Graph order = 32

● ● ●

● ● ●
●

Graph order = 36

● ● ●

● ● ●
●

Graph order = 40

2,000

200

20

2

20,000
50,000

2,000

200

20

2

20,000
50,000

2,000

200

20

2

20,000
50,000

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.3

0,
0.

35
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.3

0,
0.

35
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.3

0,
0.

35
[

N
u
m

b
e
r

o
f

so
lu

ti
o
n
s

(a) Number of solutions for d = 0.5 and qn = 0.3.

●

● ●
●

●
●

●

Graph order = 32

●

● ● ●

●
●

●

Graph order = 36

●

● ● ● ●

● ●

Graph order = 40

2,000

200

20

2

20,000
50,000

2,000

200

20

2

20,000
50,000

2,000

200

20

2

20,000
50,000

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.3

0,
0.

35
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.3

0,
0.

35
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.3

0,
0.

35
[

N
u
m

b
e
r

o
f

so
lu

ti
o
n
s

(b) Number of solutions for d = 0.5 and qn = 0.5.

●

●

●
● ●

● ●

Graph order = 32

●

●

●
●

●

● ●

Graph order = 36

●

●
●

●

●

● ●

Graph order = 40

2,000

200

20

2

20,000
50,000

2,000

200

20

2

20,000
50,000

2,000

200

20

2

20,000
50,000

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.3

0,
0.

35
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.3

0,
0.

35
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.3

0,
0.

35
[

N
u
m

b
e
r

o
f

so
lu

ti
o
n
s

(c) Number of solutions for d = 0.5 and qn = 0.7.

Figure D.2 – Number of solutions for d = 0.5 and qn = {0.3, 0.5, 0.7}.

●

●

●

●

●

●

Graph order = 32

●

●

●

●

●

●

Graph order = 36

●

● ●

●

●

●

Graph order = 40

●

●
●

●

Graph order = 45

●

● ●
●

Graph order = 50

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

N
u
m

b
e
r

o
f

so
lu

ti
o
n
s

2,000

200

20

2

20,000
50,000

2,000

200

20

2

20,000
50,000

2,000

200

20

2

20,000
50,000

2,000

200

20

2

20,000
50,000

2,000

200

20

2

20,000
50,000

Figure D.3 – Number of solutions for d = 1 and qn ≈ 0.7.

Primary sources

[1] R. K. Ahuja, Ö. Ergun, J. B. Orlin, and A. P. Punnen, « A survey of very large-scale neigh-
borhood search techniques », in: Discrete Applied Mathematics 123.1-3 (2002), pp. 75–102,
doi: 10.1016/s0166-218x(01)00338-9 (cit. on p. 112).

[2] A. N. Albatineh and M. Niewiadomska-Bugaj, « Correcting Jaccard and other similarity in-
dices for chance agreement in cluster analysis », in: Advances in Data Analysis and Classifi-
cation 5.3 (2011), pp. 179–200, doi: 10.1007/s11634-011-0090-y (cit. on pp. 51, 54).

[3] A. N. Albatineh, M. Niewiadomska-Bugaj, and D. Mihalko, « On Similarity Indices and Cor-
rection for Chance Agreement », in: Journal of Classification 23.2 (Sept. 2006), pp. 301–313,
doi: 10.1007/s00357-006-0017-z (cit. on p. 49).

[4] Z. Ales, A. Knippel, and A. Pauchet, « Polyhedral Combinatorics of the K-partitioning Prob-
lem with Representative Variables », in: Discrete Applied Mathematics 211 (2016), pp. 1–14,
doi: 10.1016/j.dam.2016.04.002 (cit. on pp. 28, 29, 39).

[5] E. C. Alexopoulos, « Introduction to multivariate regression analysis », in:Hippokratia 14.Suppl
1 (2010), pp. 23–28 (cit. on p. 57).

[8] A. Alush and J. Goldberger, « Ensemble Segmentation Using Efficient Integer Linear Pro-
gramming », in: IEEE Transactions on Pattern Analysis and Machine Intelligence 34.10 (Oct.
2012), pp. 1966–1977, doi: 10.1109/tpami.2011.280 (cit. on pp. 13, 23).

[9] A. Amelio and C. Pizzuti, « Correction for Closeness: Adjusting Normalized Mutual Infor-
mation Measure for Clustering Comparison », in: Computational Intelligence 33.3 (2016),
pp. 579–601, doi: 10.1111/coin.12100 (cit. on pp. 51–55, 72, 74, 75).

[10] B. Andres, T. Kroeger, K. L. Briggman, W. Denk, N. Korogod, G. Knott, U. Koethe, and
F. A. Hamprecht, « Globally Optimal Closed-Surface Segmentation for Connectomics », in:
Computer Vision – ECCV 2012, ed. by A. Fitzgibbon, S. Lazebnik, Pietro Perona, Y. Sato,
and C. Schmid, Springer Berlin Heidelberg, 2012, pp. 778–791, isbn: 978-3-642-33712-3, doi:
10.1007/978-3-642-33712-3_56 (cit. on pp. 21, 24).

[11] G. Appa, « On the uniqueness of solutions to linear programs », in: Journal of the Operational
Research Society 53.10 (2002), pp. 1127–1132, doi: 10.1057/palgrave.jors.2601320 (cit.
on p. 139).

[12] S. Aref and M. C. Wilson, « Balance and frustration in signed networks », in: Journal of
Complex Networks 7.2 (2018), pp. 163–189, doi: 10.1093/comnet/cny015 (cit. on p. 21).

175

https://doi.org/10.1016/s0166-218x(01)00338-9
https://doi.org/10.1007/s11634-011-0090-y
https://doi.org/10.1007/s00357-006-0017-z
https://doi.org/10.1016/j.dam.2016.04.002
https://doi.org/10.1109/tpami.2011.280
https://doi.org/10.1111/coin.12100
https://doi.org/10.1007/978-3-642-33712-3_56
https://doi.org/10.1057/palgrave.jors.2601320
https://doi.org/10.1093/comnet/cny015

[13] N. Arınık, R. Figueiredo, and V. Labatut, « Analysis of Roll-Calls in the European Parliament
by Multiple Partitioning of Multiplex Signed Networks », in: 9ème Conférence Modèles &
Analyse des Réseaux : Approches Mathématiques & Informatiques (MARAMI), 2018 (cit. on
p. 17).

[14] N. Arınık, R. Figueiredo, and V. Labatut, « Characterizing measures for the assessment of
cluster analysis and community detection », in: 11ème Conférence Modèles & Analyse de
Réseaux : approches mathématiques et informatiques (MARAMI), 2020 (cit. on p. 18).

[15] N. Arınık, R. Figueiredo, and V. Labatut, « Efficient Enumeration of Correlation Clustering
Optimal Solution Space (submitted) », in: Journal of Global Optimization (2021) (cit. on
pp. 18, 105).

[16] N. Arınık, R. Figueiredo, and V. Labatut, « Exploiting Antagonistic Relations in Signed
Graphs under the Structural Balance Hypothesis », in: Programme Gaspard Monge Pour
l’Optimisation (PGMO) Days, 2018 (cit. on p. 18).

[17] N. Arınık, R. Figueiredo, and V. Labatut, « Multiple Optimal Solutions but Single Search:
A Study of the Correlation Clustering Problem », in: 20ème congrès annuel de la société
Française de Recherche Opérationnelle et d’Aide à la Décision (ROADEF), Société Française
de Recherche Opérationnelle et d’Aide à la Décision, 2019 (cit. on p. 18).

[19] N. Arınık, R. Figueiredo, and V. Labatut, « Multiple partitioning of multiplex signed networks:
Application to European parliament votes », in: Social Networks 60 (2020), pp. 83–102, doi:
https://doi.org/10.1016/j.socnet.2019.02.001 (cit. on pp. 17, 21, 81).

[20] N. Arınık, R. Figueiredo, and V. Labatut, « Multiplicity and Diversity: Analyzing the Opti-
mal Solution Space of the Correlation Clustering Problem on Complete Signed Graphs », in:
Journal of Complex Networks (2020), doi: 10.1093/comnet/cnaa025 (cit. on pp. 17, 138).

[21] N. Arınık, R. Figueiredo, and V. Labatut, « Signed Graph Analysis for the Interpretation of
Voting Behavior », in: International Conference on Knowledge Technologies and Data-driven
Business - International Workshop on Social Network Analysis and Digital Humanities, 2017
(cit. on pp. 17, 81, 87, 92, 101).

[22] N. Arınık, R. Figueiredo, and V. Labatut, « Study of the European Parliament votes through
the multiple partitioning of signed multiplex networks », in: 29th European Conference On
Operational Research (EURO), 2018 (cit. on p. 17).

[23] N. Arınık, V. Labatut, and R. Figueiredo, « Characterizing and comparing external measures
for the assessment of cluster analysis and community detection », in: IEEE Access (2021),
pp. 1–22, doi: 10.1109/access.2021.3054621 (cit. on pp. 17, 49).

176

https://doi.org/https://doi.org/10.1016/j.socnet.2019.02.001
https://doi.org/10.1093/comnet/cnaa025
https://doi.org/10.1109/access.2021.3054621

[24] J. L. Arthur, M. Hachey, Sahr K., M. Huso, and A. R. Kiester, « Finding all optimal solutions
to the reserve site selection problem », in: Environmental and Ecological Statistics 4.2 (1997),
pp. 153–165, doi: 10.1023/a:1018570311399 (cit. on pp. 105–107, 110, 138).

[25] Javier Artiles, Julio Gonzalo, and Satoshi Sekine, « The SemEval-2007 WePS Evaluation: Es-
tablishing a Benchmark for the Web People Search Task », in: Proceedings of the 4th Interna-
tional Workshop on Semantic Evaluations, SemEval ’07, Prague, Czech Republic: Association
for Computational Linguistics, 2007, pp. 64–69, url: http://dl.acm.org/citation.cfm?

id=1621474.1621486 (cit. on pp. 50, 67, 159).

[26] A. Bailoni, C. Pape, S. Wolf, T. Beier, A. Kreshuk, and F. A. Hamprecht, « A Generalized
Framework for Agglomerative Clustering of Signed Graphs applied to Instance Segmenta-
tion », in: arXiv e-prints, arXiv:1906.11713 (June 2019), arXiv:1906.11713, arXiv: 1906.11713

(cit. on pp. 21, 33).

[27] N. Bansal, A. Blum, and S. Chawla, « Correlation Clustering », in: 43rd Annual IEEE Sym-
posium on Foundations of Computer Science, 2002, pp. 238–247, doi: 10.1109/SFCS.2002.

1181947 (cit. on pp. 11–14, 21).

[28] M. Barigozzi, G. Fagiolo, and G. Mangioni, « Identifying the community structure of the
international-trade multi-network », in: Physica A: Statistical Mechanics and its Applications
390.11 (June 2011), pp. 2051–2066, doi: 10.1016/j.physa.2011.02.004 (cit. on p. 80).

[29] T. Beier, T. Kroeger, J. H. Kappes, U. Kothe, and F. A. Hamprecht, « Cut, Glue & Cut: A
Fast, Approximate Solver for Multicut Partitioning », in: 2014 IEEE Conference on Computer
Vision and Pattern Recognition, June 2014, pp. 73–80, doi: 10.1109/CVPR.2014.17 (cit. on
p. 33).

[30] Asa Ben-Hur, Andre Elisseeff, and Isabelle Guyon, « A stability based method for discovering
structure in clustered data », in: Pacific Symposium on Biocomputing 2002, ed. by R. B.
Altman, A. K. Dunker, L. Hunter, and T. E. Klein, World Scientific, 2001, pp. 6–17, doi:
10.1142/9789812799623_0002 (cit. on pp. 66, 159).

[31] S. Benati, J. Puerto, and A. M. Rodríguez-Chía, « Clustering data that are graph connected »,
in: European Journal of Operational Research 261.1 (2017), pp. 43–53, doi: 10.1016/j.ejor.

2017.02.009 (cit. on p. 152).

[32] J. Berg and M. Järvisalo, « Cost-optimal constrained correlation clustering via weighted par-
tial Maximum Satisfiability », in: Artificial Intelligence 244 (Mar. 2017), pp. 110–142, doi:
10.1016/j.artint.2015.07.001 (cit. on pp. 22, 108, 155).

[33] M. Berlingerio, F. Pinelli, and F. Calabrese, « ABACUS: frequent pAttern mining-BAsed
Community discovery in mUltidimensional networkS », in: Data Mining and Knowledge Dis-
covery 27.3 (July 2013), pp. 294–320, doi: 10.1007/s10618-013-0331-0 (cit. on p. 80).

177

https://doi.org/10.1023/a:1018570311399
http://dl.acm.org/citation.cfm?id=1621474.1621486
http://dl.acm.org/citation.cfm?id=1621474.1621486
https://arxiv.org/abs/1906.11713
https://doi.org/10.1109/SFCS.2002.1181947
https://doi.org/10.1109/SFCS.2002.1181947
https://doi.org/10.1016/j.physa.2011.02.004
https://doi.org/10.1109/CVPR.2014.17
https://doi.org/10.1142/9789812799623_0002
https://doi.org/10.1016/j.ejor.2017.02.009
https://doi.org/10.1016/j.ejor.2017.02.009
https://doi.org/10.1016/j.artint.2015.07.001
https://doi.org/10.1007/s10618-013-0331-0

[34] C. Blum and A. Roli, « Metaheuristics in combinatorial optimization », in: ACM Computing
Surveys 35.3 (Sept. 2003), pp. 268–308, doi: 10.1145/937503.937505 (cit. on p. 112).

[35] S. Böcker, S. Briesemeister, and G. W. Klau, « Exact Algorithms for Cluster Editing: Eval-
uation and Experiments », in: Algorithmica 60.2 (July 2009), pp. 316–334, doi: 10.1007/

s00453-009-9339-7 (cit. on pp. 13, 22).

[36] F. Bonchi, A. Gionis, F. Gullo, C. E. Tsourakakis, and A. Ukkonen, « Chromatic Correlation
Clustering », in: ACM Transactions on Knowledge Discovery from Data 9.4 (June 2015),
pp. 1–24, doi: 10.1145/2728170 (cit. on p. 155).

[37] M. J. Brusco and P. Doreian, « Partitioning signed networks using relocation heuristics, tabu
search, and variable neighborhood search », in: Social Networks 56 (Jan. 2019), pp. 70–80,
doi: 10.1016/j.socnet.2018.08.007 (cit. on pp. 34–36, 152).

[38] Michael Brusco and Douglas Steinley, « K-balance partitioning: An exact method with appli-
cations to generalized structural balance and other psychological contexts », in: Psychological
Methods 15.2 (2010), pp. 145–157, doi: 10.1037/a0017738 (cit. on pp. 15, 21, 22, 103, 105,
107).

[39] D. Cartwright and F. Harary, « Structural balance: A generalization of Heider’s theory », in:
Psychological Review 63 (1956), pp. 277–293, doi: 10.1037/h0046049 (cit. on pp. 11, 152).

[40] V. Černý, « Thermodynamical approach to the traveling salesman problem: An efficient sim-
ulation algorithm », in: Journal of Optimization Theory and Applications 45.1 (Jan. 1985),
pp. 41–51, doi: 10.1007/bf00940812 (cit. on p. 33).

[41] Y.-T. Chang and D. Pantazis, « Multi-view network module detection », in: Asilomar Con-
ference on Signals, Systems and Computers, 2013, pp. 975–979, doi: 10.1109/ACSSC.2013.

6810435 (cit. on p. 79).

[42] M. Charikar, V. Guruswami, and A. Wirth, « Clustering with qualitative information », in:
Journal of Computer and System Sciences 71.3 (2005), pp. 360–383, doi: https://doi.org/

10.1016/j.jcss.2004.10.012 (cit. on p. 31).

[43] Moses Charikar, Neha Gupta, and Roy Schwartz, « Local Guarantees in Graph Cuts and
Clustering », in: Integer Programming and Combinatorial Optimization, Springer Interna-
tional Publishing, 2017, pp. 136–147, doi: 10.1007/978- 3- 319- 59250- 3_12 (cit. on
p. 122).

[44] S. Chawla, K. Makarychev, T. Schramm, and G. Yaroslavtsev, « Near Optimal LP Rounding
Algorithm for CorrelationClustering on Complete and Complete k-partite Graphs », in: Pro-
ceedings of the forty-seventh annual ACM symposium on Theory of Computing, ACM, June
2015, pp. 219–228, doi: 10.1145/2746539.2746604 (cit. on p. 22).

178

https://doi.org/10.1145/937503.937505
https://doi.org/10.1007/s00453-009-9339-7
https://doi.org/10.1007/s00453-009-9339-7
https://doi.org/10.1145/2728170
https://doi.org/10.1016/j.socnet.2018.08.007
https://doi.org/10.1037/a0017738
https://doi.org/10.1037/h0046049
https://doi.org/10.1007/bf00940812
https://doi.org/10.1109/ACSSC.2013.6810435
https://doi.org/10.1109/ACSSC.2013.6810435
https://doi.org/https://doi.org/10.1016/j.jcss.2004.10.012
https://doi.org/https://doi.org/10.1016/j.jcss.2004.10.012
https://doi.org/10.1007/978-3-319-59250-3_12
https://doi.org/10.1145/2746539.2746604

[45] Y. Chen and J. W. Baker, « Community Detection in Spatial Correlation Graphs: Application
to Non-stationary Ground Motion Modeling », in: Computers and Geoscience (2021), In press
(cit. on p. 11).

[46] K.-Y. Chiang, C.-J. Hsieh, N. Natarajan, I. S. Dhillon, and A. Tewari, « Prediction and
clustering in signed networks: a local to global perspective », in: Journal of Machine Learning
Research 15.1 (2014), pp. 1177–1213, url: http://jmlr.org/papers/v15/chiang14a.html

(cit. on p. 11).

[47] S. Chopra and M. R. Rao, « The partition problem », in: Mathematical Programming 59.1-3
(Mar. 1993), pp. 87–115, doi: 10.1007/bf01581239 (cit. on pp. 24, 26, 27).

[48] J. Cohen, « A Coefficient of Agreement for Nominal Scales », in: Educational and Psychological
Measurement 20 (1960), pp. 37–46, doi: 10.1177/001316446002000104 (cit. on p. 51).

[49] J. Cohen, P. Cohen, S. G. West, and L. S. Aiken, Applied Multiple Regression/Correlation
Analysis for the Behavioral Sciences, 3rd Edition, Routledge, 2002, isbn: 9780203774441,
doi: 10.4324/9780203774441 (cit. on pp. 64, 68).

[50] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd Edition, Wiley-Interscience,
2006, isbn: 978-0-471-24195-9 (cit. on pp. 67, 160).

[51] M. Cucuringu, « Synchronization over Z2 and community detection in signed multiplex net-
works with constraints », in: Journal of Complex Networks 3.3 (2015), pp. 469–506, doi:
10.1093/comnet/cnu050 (cit. on p. 11).

[52] M. Cucuringu, P. Davies, A. Glielmo, and H. Tyagi, « SPONGE: A generalized eigenprob-
lem for clustering signed networks », in: Proceedings of Machine Learning Research, vol. 89,
Proceedings of Machine Learning Research, PMLR, 2019, pp. 1088–1098 (cit. on p. 21).

[53] P. Damaschke, « Fixed-Parameter Enumerability of Cluster Editing and Related Problems »,
in: Theory of Computing Systems 46.2 (July 2010), pp. 261–283, doi: 10.1007/s00224-008-

9130-1 (cit. on p. 107).

[54] E. Danna, M. Fenelon, Z. Gu, and R. Wunderling, « Generating Multiple Solutions for Mixed
Integer Programming Problems », in: International Conference on Integer Programming and
Combinatorial Optimization, Springer, 2007, pp. 280–294, doi: 10.1007/978-3-540-72792-

7_22 (cit. on pp. 107–109, 139).

[55] B. DasGupta, G. A. Enciso, E. Sontag, and Y. Zhang, « Algorithmic and complexity results
for decompositions of biological networks into monotone subsystems », in: Biosystems 9.1
(2007), pp. 161–178, doi: 10.1016/j.biosystems.2006.08.001 (cit. on p. 11).

[56] J. A. Davis, « Clustering and structural balance in graphs », in: Human Relations 20.2 (1967),
pp. 181–187, doi: 10.1177/001872676702000207 (cit. on pp. 11, 15, 103, 105, 106, 139).

179

http://jmlr.org/papers/v15/chiang14a.html
https://doi.org/10.1007/bf01581239
https://doi.org/10.1177/001316446002000104
https://doi.org/10.4324/9780203774441
https://doi.org/10.1093/comnet/cnu050
https://doi.org/10.1007/s00224-008-9130-1
https://doi.org/10.1007/s00224-008-9130-1
https://doi.org/10.1007/978-3-540-72792-7_22
https://doi.org/10.1007/978-3-540-72792-7_22
https://doi.org/10.1016/j.biosystems.2006.08.001
https://doi.org/10.1177/001872676702000207

[57] E. D. Demaine, D. Emanuel, A. Fiat, and N. Immorlica, « Correlation clustering in general
weighted graphs », in: Theoretical Computer Science 361.2-3 (Sept. 2006), pp. 172–187, doi:
10.1016/j.tcs.2006.05.008 (cit. on pp. 13–15, 24, 103, 105).

[58] M. Deza, M. Grötschel, and M. Laurent, « Clique-Web Facets for Multicut Polytopes », in:
Mathematics of Operations Research 17.4 (Nov. 1992), pp. 981–1000, doi: 10.1287/moor.

17.4.981 (cit. on p. 27).

[59] G. Didier, C. Brun, and A. Baudot, « Identifying communities from multiplex biological net-
works », in: PeerJ 3 (Dec. 2015), e1525, doi: 10.7717/peerj.1525 (cit. on pp. 80, 81).

[60] B. E. Dom, « An Information-theoretic External Cluster-validity Measure », in: Proceedings
of the 18th Conference on Uncertainty in Artificial Intelligence, UAI’02, Morgan Kaufmann
Publishers Inc., 2002, pp. 137–145, isbn: 1-55860-897-4, url: http://dl.acm.org/citation.

cfm?id=2073876.2073893 (cit. on pp. 54, 56, 57).

[61] S. Dongen, Performance Criteria for Graph Clustering and Markov Cluster Experiments, tech.
rep. 4, Amsterdam, The Netherlands, The Netherlands: National Research Institute For Math-
ematics and Computer Science, 2000, doi: 10.5445/IR/1000011477 (cit. on pp. 50, 54).

[62] P. Doreian, V. Batagelj, and A. Ferligoj, Generalized Blockmodeling, Cambridge University
Press, 2005, url: https://www.cambridge.org/core/books/generalized-blockmodeling/

E9B040215C13C1819EA98F2F932BE0CE (cit. on pp. 15, 103, 105, 106, 139).

[63] P. Doreian and A. Mrvar, « A partitioning approach to structural balance », in: Social Net-
works 18.2 (1996), pp. 149–168, doi: 10.1016/0378-8733(95)00259-6 (cit. on pp. 11, 13,
15, 103, 105, 138).

[64] P. Doreian and A. Mrvar, « Partitioning signed social networks », in: Social Networks 31.1
(2009), pp. 1–11, doi: 10.1016/j.socnet.2008.08.001 (cit. on p. 13).

[65] P. Doreian and A. Mrvar, « Structural balance and signed international relations », in: Journal
of Social Structure 16 (2015), p. 1, doi: 10.21307/joss-2019-012 (cit. on pp. 11, 37, 104).

[66] L. Drummond, R. Figueiredo, Y. Frota, and M. Levorato, « Efficient Solution of the Corre-
lation Clustering Problem: An Application to Structural Balance », in: OTM Confederated
International Conferences "On the Move to Meaningful Internet Systems", ed. by Y. T. Demey
and H. Panetto, vol. 8186, Full description of the ILS algorithm, Springer Berlin Heidelberg,
2013, pp. 674–683, isbn: 978-3-642-41033-8, doi: 10.1007/978-3-642-41033-8_85 (cit. on
pp. 21, 35, 152).

[67] M. Elsner and W. Schudy, « Bounding and Comparing Methods for Correlation Clustering
Beyond ILP », in: Proceedings of the Workshop on Integer Linear Programming for Natural
Langauge Processing, ILP ’09, 2009, pp. 19–27 (cit. on pp. 21, 32).

180

https://doi.org/10.1016/j.tcs.2006.05.008
https://doi.org/10.1287/moor.17.4.981
https://doi.org/10.1287/moor.17.4.981
https://doi.org/10.7717/peerj.1525
http://dl.acm.org/citation.cfm?id=2073876.2073893
http://dl.acm.org/citation.cfm?id=2073876.2073893
https://doi.org/10.5445/IR/1000011477
https://www.cambridge.org/core/books/generalized-blockmodeling/E9B040215C13C1819EA98F2F932BE0CE
https://www.cambridge.org/core/books/generalized-blockmodeling/E9B040215C13C1819EA98F2F932BE0CE
https://doi.org/10.1016/0378-8733(95)00259-6
https://doi.org/10.1016/j.socnet.2008.08.001
https://doi.org/10.21307/joss-2019-012
https://doi.org/10.1007/978-3-642-41033-8_85

[68] P. Esmailian, S. E. Abtahi, and M. Jalili, « Mesoscopic Analysis of Online Social Networks:
The Role of Negative Ties », in: Physical Review E 90.4 (Oct. 2014), doi: 10.1103/physreve.

90.042817 (cit. on p. 11).

[69] P. Esmailian and M. Jalili, « Community Detection in Signed Networks: the Role of Negative
ties in Different Scales », in: Scientific Reports 5.1 (Sept. 2015), doi: 10.1038/srep14339

(cit. on pp. 11, 154).

[70] J. Esteban, L. Mayoral, and D. Ray, « Ethnicity and Conflict: An Empirical Study », in:
American Economic Review 102.4 (2012), pp. 1310–1342, doi: 10.1257/aer.102.4.1310

(cit. on pp. 37, 105).

[71] E. Estrada, « Rethinking structural balance in signed social networks », in: Discrete Applied
Mathematics 268 (2019), pp. 70–90, doi: 10.1016/j.dam.2019.04.019 (cit. on p. 152).

[72] E. Estrada and M. Benzi, « Walk-based measure of balance in signed networks: Detecting
lack of balance in social networks », in: Physical Review E 90.4 (2014), p. 042802, doi:
10.1103/PhysRevE.90.042802 (cit. on p. 11).

[86] J. J. Faraway, « Practical regression and ANOVA using R », Accessed on 07/2020, https:

//cran.r-project.org/doc/contrib/Faraway-PRA.pdf, 2002, url: https://cran.r-

project.org/doc/contrib/Faraway-PRA.pdf (cit. on p. 68).

[87] T. A. Feo and M. G. C. Resende, « A probabilistic heuristic for a computationally difficult
set covering problem », in: Operations Research Letters 8.2 (Apr. 1989), pp. 67–71, doi:
10.1016/0167-6377(89)90002-3 (cit. on p. 35).

[88] T. A. Feo and M. G. C. Resende, « Greedy Randomized Adaptive Search Procedures », in:
Journal of Global Optimization 6.2 (Mar. 1995), pp. 109–133, doi: 10.1007/bf01096763

(cit. on p. 35).

[89] R. Figueiredo and Y. Frota, « The Maximum Balanced Subgraph of a Signed Graph: Applica-
tions and Solution Approaches », in: European Journal of Operational Research 236.2 (July
2014), pp. 473–487, doi: 10.1016/j.ejor.2013.12.036 (cit. on p. 86).

[90] R. Figueiredo and G. Moura, « Mixed Integer Programming Formulations for Clustering Prob-
lems Related to Structural Balance », in: Social Networks 35.4 (2013), pp. 639–651, doi:
10.1016/j.socnet.2013.09.002 (cit. on pp. 14, 21, 22, 24, 105, 107).

[91] R. M. V. Figueiredo, M. Labbé, and C. C. de Souza, « An exact approach to the problem
of extracting an embedded network matrix », in: Computers & Operations Research 38.11
(2011), pp. 1483–1492, doi: 10.1016/j.cor.2011.01.003 (cit. on p. 12).

[92] Matteo Fischetti, Fred Glover, and Andrea Lodi, « The feasibility pump », in: Mathematical
Programming 104.1 (Mar. 2005), pp. 91–104, doi: 10.1007/s10107-004-0570-3 (cit. on
p. 109).

181

https://doi.org/10.1103/physreve.90.042817
https://doi.org/10.1103/physreve.90.042817
https://doi.org/10.1038/srep14339
https://doi.org/10.1257/aer.102.4.1310
https://doi.org/10.1016/j.dam.2019.04.019
https://doi.org/10.1103/PhysRevE.90.042802
https://cran.r-project.org/doc/contrib/Faraway-PRA.pdf
https://cran.r-project.org/doc/contrib/Faraway-PRA.pdf
https://cran.r-project.org/doc/contrib/Faraway-PRA.pdf
https://cran.r-project.org/doc/contrib/Faraway-PRA.pdf
https://doi.org/10.1016/0167-6377(89)90002-3
https://doi.org/10.1007/bf01096763
https://doi.org/10.1016/j.ejor.2013.12.036
https://doi.org/10.1016/j.socnet.2013.09.002
https://doi.org/10.1016/j.cor.2011.01.003
https://doi.org/10.1007/s10107-004-0570-3

[93] S. Fortunato, « Community detection in graphs », in: Physics Reports 486.3-5 (2010), pp. 75–
174, doi: 10.1016/j.physrep.2009.11.002 (cit. on p. 11).

[94] E. B. Fowlkes and C. L. Mallows, « A Method for Comparing Two Hierarchical Clusterings »,
in: Journal of the American Statistical Association 78.383 (1983), pp. 553–569, doi: 10.1080/

01621459.1983.10478008 (cit. on pp. 52, 54, 67, 159).

[95] P. Fränti, M. Rezaei, and Q. Zhao, « Centroid index: Cluster level similarity measure », in:
Pattern Recognition 47.9 (2014), pp. 3034–3045, doi: 10.1016/j.patcog.2014.03.017

(cit. on pp. 48, 52, 54).

[96] Michael L. Fredman and Robert Endre Tarjan, « Fibonacci heaps and their uses in improved
network optimization algorithms », in: Journal of the ACM (JACM) 34.3 (1987), pp. 596–615,
doi: 10.1145/28869.28874 (cit. on p. 171).

[97] Alexander J Gates, Ian B Wood, William P Hetrick, and Yong-Yeol Ahn, « Element-centric
framework unifies overlaps and hierarchy », in: Scientific Reports 9.1 (2017), issn: 2045-2322,
doi: 10.1038/s41598-019-44892-y (cit. on pp. 51–54, 56, 62, 63, 75, 77).

[98] Alexander J. Gates and Yong-Yeol Ahn, « The Impact of Random Models on Clustering
Similarity », in: Journal of Machine Learning Research 18.1 (2017), pp. 3049–3076, issn:
1532-4435, url: http://dl.acm.org/citation.cfm?id=3122009.3176831 (cit. on pp. 51,
53, 54, 67, 159).

[100] M. Gong, B. Fu, L. Jiao, and H. Du, « Memetic algorithm for community detection in net-
works », in: Physical Review E 84.5 (Nov. 2011), doi: 10.1103/physreve.84.056101 (cit. on
p. 36).

[101] B. H Good, Y.-A. de Montjoye, and A. Clauset, « Performance of modularity maximization
in practical contexts », in: Physical Review E 81.4 (2010), p. 046106 (cit. on pp. 138, 151).

[102] L. A. Goodman and W. H. Kruskal, « Measures of Association for Cross Classification », in:
Journal of the American Statistical Association 49.268 (1954), pp. 732–64, doi: 10.2307/

2281536 (cit. on p. 51).

[103] M. Grötschel and Y. Wakabayashi, « A cutting plane algorithm for a clustering problem »,
in: Mathematical Programming 45.1-3 (Aug. 1989), pp. 59–96, doi: 10.1007/bf01589097

(cit. on pp. 24, 104).

[104] M. Grötschel and Y. Wakabayashi, « Facets of the clique partitioning polytope », in: Math-
ematical Programming 47.1-3 (May 1990), pp. 367–387, doi: 10.1007/bf01580870 (cit. on
p. 27).

[107] D. N. Gujarati, Basic Econometrics, ed. by A. Bright, McGraw-Hill, 2003 (cit. on pp. 65, 68).

182

https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1080/01621459.1983.10478008
https://doi.org/10.1080/01621459.1983.10478008
https://doi.org/10.1016/j.patcog.2014.03.017
https://doi.org/10.1145/28869.28874
https://doi.org/10.1038/s41598-019-44892-y
http://dl.acm.org/citation.cfm?id=3122009.3176831
https://doi.org/10.1103/physreve.84.056101
https://doi.org/10.2307/2281536
https://doi.org/10.2307/2281536
https://doi.org/10.1007/bf01589097
https://doi.org/10.1007/bf01580870

[108] M. Hardy, Regression with Dummy Variables, Quantitative Applications in the Social Sciences,
SAGE Publications, Inc., 1993, isbn: 9780803951280, doi: 10.4135/9781412985628 (cit. on
pp. 64, 66).

[109] A. Hassan, A. Abu-Jbara, and D. Radev, « Detecting subgroups in online discussions by mod-
eling positive and negative relations among participants », in: Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language Learning, 2012,
pp. 59–70, url: https://www.aclweb.org/anthology/D12-1006/ (cit. on p. 11).

[110] F. Heider, « Attitudes and cognitive organization », in: Journal of Psychology 21.1 (1946),
pp. 107–112, doi: 10.1080/00223980.1946.9917275 (cit. on p. 11).

[111] H. van der Hoef and M. J. Warrens, « Understanding information theoretic measures for
comparing clusterings », in: Behaviormetrika 46.2 (2019), pp. 353–370, doi: 10.1007/s41237-

018-0075-7 (cit. on pp. 52, 54, 56).

[112] D. Horta and R. J. G. B. Campello, « Comparing Hard and Overlapping Clusterings », in:
Journal of Machine Learning Research 16.93 (2015), Editor: Marina Meila, pp. 2949–2997,
url: http://jmlr.org/papers/v16/horta15a.html (cit. on pp. 52, 54, 57, 77).

[113] Z. Huang and Y. Qiu, « A multiple-perspective approach to constructing and aggregating
Citation Semantic Link Network », in: Future Generation Computer Systems 26.3 (2010),
pp. 400–407, doi: 10.1016/j.future.2009.07.006 (cit. on p. 11).

[114] L. Hubert and P. Arabie, « Comparing partitions », in: Journal of Classification 2.1 (1985),
pp. 193–218, doi: 10.1007/bf01908075 (cit. on pp. 48, 51, 54, 66, 158).

[115] G. Iacono, C. Altafini, N. Soranzo, and F. Ramezani, « Determining the distance to mono-
tonicity of a biological network: a graph-theoretical approach », in: IET Systems Biology 4.3
(May 2010), pp. 223–235, doi: 10.1049/iet-syb.2009.0040 (cit. on p. 39).

[116] J. Iacovacci and G. Bianconi, « Extracting information from multiplex networks », in: Chaos:
An Interdisciplinary Journal of Nonlinear Science 26.6 (June 2016), p. 065306, doi: 10.1063/

1.4953161 (cit. on p. 81).

[118] P. Jaccard, « Étude comparative de la distribution florale dans une portion des Alpes et des
Jura », in: Bulletin de la Société Vaudoise des Sciences Naturelles 37.142 (1901), pp. 547–579,
doi: 10.5169/seals-266450 (cit. on pp. 66, 159).

[119] P. Jain, R. Meka, and I. Dhillon, « Simultaneous Unsupervised Learning of Disparate Clus-
terings », in: Statistical Analysis and Data Mining 1.3 (2008), pp. 195–210, doi: 10.1002/

sam.10007 (cit. on p. 139).

[120] P. Jensen, « Network-based predictions of retail store commercial categories and optimal lo-
cations », in: Physical Review E 74.3 (2006), 035101(R), doi: 10.1103/PhysRevE.74.035101

(cit. on p. 11).

183

https://doi.org/10.4135/9781412985628
https://www.aclweb.org/anthology/D12-1006/
https://doi.org/10.1080/00223980.1946.9917275
https://doi.org/10.1007/s41237-018-0075-7
https://doi.org/10.1007/s41237-018-0075-7
http://jmlr.org/papers/v16/horta15a.html
https://doi.org/10.1016/j.future.2009.07.006
https://doi.org/10.1007/bf01908075
https://doi.org/10.1049/iet-syb.2009.0040
https://doi.org/10.1063/1.4953161
https://doi.org/10.1063/1.4953161
https://doi.org/10.5169/seals-266450
https://doi.org/10.1002/sam.10007
https://doi.org/10.1002/sam.10007
https://doi.org/10.1103/PhysRevE.74.035101

[121] J. W. Johnson and J. M. Lebreton, « History and Use of Relative Importance Indices in
Organizational Research », in: Organizational Research Methods 7.3 (2004), pp. 238–257,
doi: 10.1177/1094428104266510 (cit. on pp. 65, 66).

[122] D. Jurafsky and J. H. Martin, Speech and Language Processing: An Introduction to Nat-
ural Language Processing, Computational Linguistics, and Speech Recognition, 2nd edition,
Prentice-Hall, Inc., 2000 (cit. on p. 112).

[123] P. Kaniok and O. Mocek, « Roll Call Votes in the European Parliament: a good sample or a
poisoned dead end? », in: Parliaments, Estates and Representation 37.1 (2017), pp. 75–88,
doi: 10.1080/02606755.2016.1232994 (cit. on p. 87).

[124] T.-C. Kao and M. A. Porter, « Layer Communities in Multiplex Networks », in: Journal of
Statistical Physics 173.3-4 (Aug. 2017), pp. 1286–1302, doi: 10.1007/s10955-017-1858-z

(cit. on p. 81).

[125] T. D. Kaplan and S. Forrest, « A dual assortative measure of community structure », in:
arXiv physics.data-an (2008), p. 0801.3290, url: http://arxiv.org/abs/0801.3290 (cit. on
p. 11).

[126] J. H. Kappes, M. Speth, G. Reinelt, and C. Schnörr, « Higher-order segmentation via mul-
ticuts », in: Computer Vision and Image Understanding 143 (Feb. 2016), pp. 104–119, doi:
10.1016/j.cviu.2015.11.005 (cit. on pp. 27–29).

[127] D. Karaboga and C. Ozturk, « A novel clustering approach: Artificial Bee Colony (ABC)
algorithm », in: Applied Soft Computing 11.1 (Jan. 2011), pp. 652–657, doi: 10.1016/j.

asoc.2009.12.025 (cit. on p. 36).

[128] L. Kaufman and P. J. Rousseeuw, « Partitioning Around Medoids », in: Finding Groups in
Data: An Introduction to Cluster Analysis, Hoboken, NJ, USA: John Wiley & Sons, 2009,
10.1002/9780470316801.ch2, doi: 10.1002/9780470316801.ch2 (cit. on pp. 75, 85, 143).

[129] B. W. Kernighan and S. Lin, « An Efficient Heuristic Procedure for Partitioning Graphs »,
in: Bell System Technical Journal 49.2 (1970), pp. 291–307, doi: 10.1002/j.1538-7305.

1970.tb01770.x (cit. on pp. 32, 33).

[130] M. Keuper, J. Lukasik, M. Singh, and J. Yarkony, « A Benders Decomposition Approach to
Correlation Clustering », in: The International Conference for High Performance Computing,
Networking, Storage, and Analysis, 2020 (cit. on pp. 21, 24, 29, 39, 105).

[131] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, « Optimization by Simulated Annealing », in:
Science 220.4598 (May 1983), pp. 671–680, doi: 10.1126/science.220.4598.671 (cit. on
p. 33).

184

https://doi.org/10.1177/1094428104266510
https://doi.org/10.1080/02606755.2016.1232994
https://doi.org/10.1007/s10955-017-1858-z
http://arxiv.org/abs/0801.3290
https://doi.org/10.1016/j.cviu.2015.11.005
https://doi.org/10.1016/j.asoc.2009.12.025
https://doi.org/10.1016/j.asoc.2009.12.025
https://doi.org/10.1002/9780470316801.ch2
https://doi.org/10.1002/j.1538-7305.1970.tb01770.x
https://doi.org/10.1002/j.1538-7305.1970.tb01770.x
https://doi.org/10.1126/science.220.4598.671

[132] M. Kivelä, A. Arenas, M. Barthélemy, J. P. Gleeson, Y. Moreno, and M. A. Porter, « Multilayer
Networks », in: Journal of Complex Networks 2.3 (2014), pp. 203–271, doi: 10.1093/comnet/

cnu016 (cit. on pp. 15, 80).

[133] R. Kolluri, J. R. Shewchuk, and J. F. O’Brien, « Spectral surface reconstruction from noisy
point clouds », in: Eurographics/ACM SIGGRAPH Symposium on Geometry processing, 2004,
pp. 11–21, doi: 10.1145/1057432.1057434 (cit. on p. 11).

[134] H. W. Kuhn, « The Hungarian method for the assignment problem », in: Naval Research
Logistics Quarterly 2.1-2 (1955), pp. 83–97, doi: 10.1002/nav.3800020109 (cit. on p. 170).

[135] M. H. Kutner, C. J. Nachtsheim, J. Neter, and W. Li, Applied linear statistical models, ed. by
B. Gordon, 5th Edition, McGraw-Hill Irwin, 2005, isbn: 0-07-238688-6 (cit. on pp. 65, 68).

[136] O. T. Kvålseth, « Entropy and Correlation: Some Comments », in: IEEE Transactions on
Systems, Man, and Cybernetics 17.3 (1987), pp. 517–519, doi: 10.1109/tsmc.1987.4309069

(cit. on p. 160).

[137] O. T. Kvålseth, « On Normalized Mutual Information: Measure Derivations and Properties »,
in: Entropy 19.11 (2017), pp. 631–645, doi: 10.3390/e19110631 (cit. on pp. 50, 54).

[138] V. Labatut, « Generalised measures for the evaluation of community detection methods », in:
International Journal of Social Network Mining 2.1 (2015), pp. 44–63, doi: 10.1504/ijsnm.

2015.069776 (cit. on p. 77).

[139] D. Lai and C. Nardini, « A corrected normalized mutual information for performance evalua-
tion of community detection », in: Journal of Statistical Mechanics: Theory and Experiment
2016.9 (Sept. 2016), p. 093403, doi: 10.1088/1742-5468/2016/09/093403 (cit. on p. 54).

[140] A. Lancichinetti and S. Fortunato, « Consensus clustering in complex networks », in: Scientific
Reports 2 (2012), p. 336, doi: 10.1038/srep00336 (cit. on pp. 85, 143).

[141] J.-H. Lange, « Multicut Optimization Guarantees & Geometry of Lifted Multicuts », PhD
thesis, Saarland University, 2020 (cit. on pp. 13, 32).

[142] J.-H. Lange, A. Karrenbauer, and B. Andres, « Partial Optimality and Fast Lower Bounds for
Weighted Correlation Clustering », in: Proceedings of the 35th International Conference on
Machine Learning, ed. by J. Dy and A. Krause, vol. 80, 2018, pp. 2892–2901 (cit. on pp. 24,
32).

[143] L. M. Le Cam, Asymptotic Methods in Statistical Decision Theory, Springer-Verlag New York,
1986, isbn: 978-1-4612-4946-7, doi: 10.1007/978-1-4612-4946-7 (cit. on p. 75).

[145] J. Leskovec, D. Huttenlocher, and J. Kleinberg, « Signed networks in social media », in:
Proceedings of the SIGCHI conference on human factors in computing systems, 2010, pp. 1361–
1370 (cit. on p. 39).

185

https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1145/1057432.1057434
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1109/tsmc.1987.4309069
https://doi.org/10.3390/e19110631
https://doi.org/10.1504/ijsnm.2015.069776
https://doi.org/10.1504/ijsnm.2015.069776
https://doi.org/10.1088/1742-5468/2016/09/093403
https://doi.org/10.1038/srep00336
https://doi.org/10.1007/978-1-4612-4946-7

[146] J. Leskovec and A. Krevl, SNAP Datasets: Stanford Large Network Dataset Collection, http:

//snap.stanford.edu/data, June 2014 (cit. on p. 39).

[147] E. Levinkov, A. Kirillov, and B. Andres, « A Comparative Study of Local Search Algorithms
for Correlation Clustering », in: Lecture Notes in Computer Science, Springer International
Publishing, 2017, pp. 103–114, doi: 10.1007/978-3-319-66709-6_9 (cit. on p. 33).

[148] M. Levorato, R. Figueiredo, Y. Frota, and L. Drummond, « Evaluating balancing on social
networks through the efficient solution of correlation clustering problems », in: EURO Journal
on Computational Optimization 5.4 (Jan. 2017), Full description of the ILS algorithm, pp. 467–
498, doi: 10.1007/s13675-017-0082-6 (cit. on pp. 14, 21, 35, 36, 42, 86, 152).

[149] P. Li, H. Dau, G. Puleo, and O. Milenkovic, « Motif clustering and overlapping clustering
for social network analysis », in: IEEE INFOCOM 2017 - IEEE Conference on Computer
Communications, IEEE, May 2017, pp. 1–9, doi: 10.1109/infocom.2017.8056956 (cit. on
p. 155).

[150] P. Liu, T.-D. Nguyen, X. Cai, and X. Jiang, « Finding Multiple Optimal Solutions to Optimal
Load Distribution Problem in Hydropower Plant », in: Energies 5.5 (2012), pp. 1413–1432,
doi: 10.3390/en5051413 (cit. on p. 106).

[151] X. Liu, H.-M. Cheng, and Z.-Y. Zhang, « Evaluation of Community Detection Methods »,
in: IEEE Transactions on Knowledge and Data Engineering 32.9 (2019), pp. 1736–1746, doi:
10.1109/tkde.2019.2911943 (cit. on pp. 52–54, 62, 63, 170).

[152] H. R. Lourenço, O. C. Martin, and T. Stützle, « Iterated Local Search », in: Handbook of
Metaheuristics, ed. by F. Glover and G. A. Kochenberger, Kluwer Academic Publishers, 2003,
pp. 320–353, isbn: 978-0-306-48056-0, doi: 10.1007/0-306-48056-5_11 (cit. on p. 36).

[153] P. Luo, H. Xiong, G. Zhan, J. Wu, and Z. Shi, « Information-Theoretic Distance Measures for
Clustering Validation: Generalization and Normalization », in: IEEE Transactions on Knowl-
edge and Data Engineering 21.9 (2009), pp. 1249–1262, doi: 10.1109/tkde.2008.200 (cit. on
p. 57).

[154] F. Ma and J.-K. Hao, « A multiple search operator heuristic for the max-k-cut problem », in:
Annals of Operations Research 248.1 (June 2016), pp. 365–403, doi: 10.1007/s10479-016-

2234-0 (cit. on p. 112).

[155] L. Ma, M. Gong, H. Du, B. Shen, and L. Jiao, « A memetic algorithm for computing and
transforming structural balance in signed networks », in: Knowledge-Based Systems 85 (2015),
pp. 196–209, doi: 10.1016/j.knosys.2015.05.006 (cit. on pp. 36, 37, 42, 152).

[156] M. MacMahon and D. Garlaschelli, « Community detection for correlation matrices », in:
Physical Review X 5.2 (2015), p. 021006, doi: 10.1103/PhysRevX.5.021006 (cit. on p. 11).

186

http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://doi.org/10.1007/978-3-319-66709-6_9
https://doi.org/10.1007/s13675-017-0082-6
https://doi.org/10.1109/infocom.2017.8056956
https://doi.org/10.3390/en5051413
https://doi.org/10.1109/tkde.2019.2911943
https://doi.org/10.1007/0-306-48056-5_11
https://doi.org/10.1109/tkde.2008.200
https://doi.org/10.1007/s10479-016-2234-0
https://doi.org/10.1007/s10479-016-2234-0
https://doi.org/10.1016/j.knosys.2015.05.006
https://doi.org/10.1103/PhysRevX.5.021006

[157] K. T. Macon, P. J. Mucha, and M. A. Porter, « Community structure in the United Nations
General Assembly », in: Physica A 391.1-2 (2012), pp. 343–361, doi: 10.1016/j.physa.

2011.06.030 (cit. on pp. 80, 86).

[158] T. L. Magnanti and R. T. Wong, « Accelerating Benders Decomposition: Algorithmic En-
hancement and Model Selection Criteria », in: Operations Research 29.3 (June 1981), pp. 464–
484, doi: 10.1287/opre.29.3.464 (cit. on p. 30).

[159] E. Marczewski and H. Steinhaus, « On a certain distance of sets and the corresponding distance
of functions », in: Colloquium Mathematicum 6.1 (1958), pp. 319–327 (cit. on p. 159).

[161] M. Meilă, « Comparing Clusterings by the Variation of Information », in: Learning Theory
and Kernel Machines, ed. by Bernhard Schölkopf, Springer Berlin Heidelberg, 2003, pp. 173–
187, isbn: 978-3-540-45167-9, doi: 10.1007/978-3-540-45167-9_14 (cit. on p. 50).

[162] Marina Meilă, « Comparing clusterings—an information based distance », in: Journal of Mul-
tivariate Analysis 98.5 (2007), pp. 873–895, doi: 10.1016/j.jmva.2006.11.013 (cit. on
pp. 48, 50, 52, 54, 55, 63, 73, 74).

[163] Marina Meilă, « Criteria for comparing clusterings », in: Handbook of cluster analysis, ed. by
C. Hennig, M. Meila, F. Murtagh, and R. Rocci, 1st Edition, Chapman and Hall/CRC, 2015,
chap. 27, pp. 619–635, isbn: 9780367570408 (cit. on pp. 48, 50, 54, 55, 66, 71, 72, 75, 159).

[164] I. Mendonça, R. Figueiredo, V. Labatut, and P. Michelon, « Relevance of Negative Links in
Graph Partitioning: A Case Study Using Votes From the European Parliament », in: 2nd
European Network Intelligence Conference, 2015, pp. 122–129, doi: 10.1109/ENIC.2015.25

(cit. on pp. 11, 87).

[165] R. E. Miller, « Purpose-Driven Communities In Multiplex Networks: Thresholding User-
Eengagd Layer Aggregatation », MA thesis, Naval Postgraduate School, 2016 (cit. on p. 80).

[166] G. W. Milligan and M. C. Cooper, « A Study of the Comparability of External Criteria for
Hierarchical Cluster Analysis », in: Multivariate Behavioral Research 21.4 (1986), pp. 441–
458, doi: 10.1207/s15327906mbr2104_5 (cit. on p. 52).

[167] B. Mirkin, « Mathematical Classification and Clustering: From How to What and Why »,
in: Classification, Data Analysis, and Data Highways, ed. by I. Balderjahn, Springer Berlin
Heidelberg, 1998, pp. 172–181, isbn: 978-3-642-72087-1, doi: 10.1007/978-3-642-72087-

1_20 (cit. on p. 54).

[168] A. Miyauchi, T. Sonobe, and N. Sukegawa, « Exact Clustering via Integer Programming and
Maximum Satisfiability », in: AAAI Conference on Artificial Intelligence 32.1 (2018) (cit. on
pp. 22, 25, 26).

187

https://doi.org/10.1016/j.physa.2011.06.030
https://doi.org/10.1016/j.physa.2011.06.030
https://doi.org/10.1287/opre.29.3.464
https://doi.org/10.1007/978-3-540-45167-9_14
https://doi.org/10.1016/j.jmva.2006.11.013
https://doi.org/10.1109/ENIC.2015.25
https://doi.org/10.1207/s15327906mbr2104_5
https://doi.org/10.1007/978-3-642-72087-1_20
https://doi.org/10.1007/978-3-642-72087-1_20

[169] N. Mladenović and P. Hansen, « Variable neighborhood search », in: Computers & Operations
Research 24.11 (Nov. 1997), pp. 1097–1100, doi: 10.1016/s0305-0548(97)00031-2 (cit. on
pp. 35, 36).

[170] A. Mrvar and P. Doreian, « Partitioning Signed Two-Mode Networks », in: Journal of Mathe-
matical Sociology 33.3 (2009), pp. 196–221, doi: 10.1080/00222500902946210 (cit. on p. 11).

[171] P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J.-P. Onnela, « Community Struc-
ture in Time-Dependent, Multiscale, and Multiplex Networks », in: Science 328.5980 (May
2010), pp. 876–878, doi: 10.1126/science.1184819 (cit. on p. 80).

[172] L. L. Nathans, F. L. Oswald, and K. Nimon, « Interpreting multiple linear regression: A
guidebook of variable importance », in: Practical Assessment, Research and Evaluation 17.9
(2012), pp. 1–19 (cit. on pp. 65, 66).

[173] Z. Néda, R. Sumi, M. Ercsey-Ravasz, M. Varga, B. Molnár, and G. Cseh, « Correlation clus-
tering on networks », in: Journal of Physics A: Mathematical and Theoretical 42.34 (Aug.
2009), p. 345003, doi: 10.1088/1751-8113/42/34/345003 (cit. on pp. 34, 152).

[174] G. Nemhauser and L. Wolsey, Integer and Combinatorial Optimization, Wiley, 1999, isbn:
0-471-35943-2 (cit. on pp. 26, 28, 29, 108).

[175] M. E. J. Newman, G. T. Cantwell, and J. G. Young, « Improved mutual information measure
for classification and community detection », in: Phys. Rev. E 101.4 (2020), p. 042304, doi:
https://doi.org/10.1103/PhysRevE.101.042304 (cit. on pp. 51, 54, 55, 63, 74, 75).

[176] S. Nowozin and S. Jegelka, « Solution stability in linear programming relaxations », in: Pro-
ceedings of the 26th Annual International Conference on Machine Learning - ICML, ACM
Press, 2009, doi: 10.1145/1553374.1553473 (cit. on pp. 17, 23, 27, 38, 43, 136).

[177] J. J. O’Brien, M. T. Lawson, D. K. Schweppe, and B. F. Qaqish, « Suboptimal Comparison
of Partitions », in: Journal of Classification 37.2 (2019), pp. 435–461, doi: 10.1007/s00357-

019-09329-1 (cit. on pp. 50, 54).

[178] M. Oosten, J. H. G. C. Rutten, and F. C. R. Spieksma, « The clique partitioning problem:
Facets and patching facets », in: Networks 38.4 (2001), pp. 209–226, doi: 10.1002/net.10004

(cit. on p. 27).

[179] G. K. Orman, V. Labatut, and H. Cherifi, « Towards realistic artificial benchmark for commu-
nity detection algorithms evaluation », in: International Journal of Web Based Communities
9.3 (2013), p. 349, doi: 10.1504/ijwbc.2013.054908 (cit. on p. 154).

[180] E. E. Papalexakis, L. Akoglu, and D. Ience, « Do more views of a graph help? Community
detection and clustering in multi-graphs », in: Proceedings of the 16th International Conference
on Information Fusion, 2013, pp. 899–905 (cit. on pp. 80, 81).

188

https://doi.org/10.1016/s0305-0548(97)00031-2
https://doi.org/10.1080/00222500902946210
https://doi.org/10.1126/science.1184819
https://doi.org/10.1088/1751-8113/42/34/345003
https://doi.org/https://doi.org/10.1103/PhysRevE.101.042304
https://doi.org/10.1145/1553374.1553473
https://doi.org/10.1007/s00357-019-09329-1
https://doi.org/10.1007/s00357-019-09329-1
https://doi.org/10.1002/net.10004
https://doi.org/10.1504/ijwbc.2013.054908

[181] C. Pape, T. Beier, P. Li, V. Jain, D. D. Bock, and A. Kreshuk, « Solving Large Multicut Prob-
lems for Connectomics via Domain Decomposition », in: 2017 IEEE International Conference
on Computer Vision Workshops (ICCVW), IEEE, Oct. 2017, pp. 1–10, doi: 10.1109/iccvw.

2017.7 (cit. on p. 33).

[182] Q. Paris, « Multiple Optimal Solutions in Linear Programming Models », in: American Jour-
nal of Agricultural Economics 63.4 (1981), p. 724, doi: 10.2307/1241218 (cit. on p. 106).

[183] T. P. Peixoto, « Inferring the mesoscale structure of layered, edge-valued, and time-varying
networks », in: Physical Review E 92.4 (Oct. 2015), doi: 10.1103/physreve.92.042807

(cit. on p. 80).

[184] D. Pfitzner, R. Leibbrandt, and D. Powers, « Characterization and evaluation of similar-
ity measures for pairs of clusterings », in: Knowledge and Information Systems 19.3 (2008),
pp. 361–394, doi: 10.1007/s10115-008-0150-6 (cit. on pp. 48, 51, 52, 54–56, 62, 63, 76,
77).

[185] E. Queiroga, A. Subramanian, R. Figueiredo, and Y. Frota, « Integer programming formu-
lations and efficient local search for relaxed correlation clustering », in: Journal of Global
Optimization (Feb. 2021), doi: 10.1007/s10898-020-00989-7 (cit. on p. 14).

[186] R. Rabbany, M. Takaffoli, J. Fagnan, O. R. Zaïane, and R. J. G. B. Campello, « Communities
validity: methodical evaluation of community mining algorithms », in: Social Network Analysis
and Mining 3.4 (2013), pp. 1039–1062, doi: 10.1007/s13278-013-0132-x (cit. on pp. 48,
51, 52, 54–57, 61, 63, 67, 72, 74, 75, 77, 159).

[187] W. M. Rand, « Objective Criteria for the Evaluation of Clustering Methods », in: Journal of
the American Statistical Association 66.336 (1971), pp. 846–850, doi: 10.1080/01621459.

1971.10482356 (cit. on pp. 50, 51, 54–56, 66, 158).

[188] R. Reichart and A. Rappoport, « The NVI Clustering Evaluation Measure », in: Proceedings of
the Thirteenth Conference on Computational Natural Language Learning, CoNLL ’09, Boulder,
Colorado: Association for Computational Linguistics, 2009, pp. 165–173, isbn: 978-1-932432-
29-9, url: http://dl.acm.org/citation.cfm?id=1596374.1596401 (cit. on p. 55).

[189] M. Rezaei and P. Fränti, « Set Matching Measures for External Cluster Validity », in: IEEE
Transactions on Knowledge and Data Engineering 28.8 (2016), pp. 2173–2186, doi: 10.1109/

tkde.2016.2551240 (cit. on pp. 48, 52–56, 61, 63, 72, 74, 75).

[190] M. Rocklin and A. Pinar, « On Clustering on Graphs with Multiple Edge Types », in: Internet
Mathematics 9.1 (Jan. 2013), pp. 82–112, doi: 10.1080/15427951.2012.678191 (cit. on
p. 82).

189

https://doi.org/10.1109/iccvw.2017.7
https://doi.org/10.1109/iccvw.2017.7
https://doi.org/10.2307/1241218
https://doi.org/10.1103/physreve.92.042807
https://doi.org/10.1007/s10115-008-0150-6
https://doi.org/10.1007/s10898-020-00989-7
https://doi.org/10.1007/s13278-013-0132-x
https://doi.org/10.1080/01621459.1971.10482356
https://doi.org/10.1080/01621459.1971.10482356
http://dl.acm.org/citation.cfm?id=1596374.1596401
https://doi.org/10.1109/tkde.2016.2551240
https://doi.org/10.1109/tkde.2016.2551240
https://doi.org/10.1080/15427951.2012.678191

[191] S. Romano, J. Bailey, N. X. Vinh, and K. Verspoor, « Standardized Mutual Information for
Clustering Comparisons: One Step Further in Adjustment for Chance », in: Proceedings of the
31st International Conference on International Conference on Machine Learning - Volume
32, ICML’14, Beijing, China: JMLR.org, 2014, pp. II-1143–II-1151, url: http://dl.acm.

org/citation.cfm?id=3044805.3045020 (cit. on pp. 50, 51, 53, 54, 56).

[192] S. Romano, N. X. Vinh, J. Bailey, and K. Verspoorn, « Adjusting for Chance Clustering
Comparison Measures », in: Journal of Machine Learning Research 17.134 (2016), pp. 1–32,
url: http://jmlr.org/papers/v17/15-627.html (cit. on pp. 51, 53, 54, 73).

[193] Julia Bell Rosenberg Andrewand Hirschberg, « V-Measure: A conditional entropy-based exter-
nal cluster evaluation », in: Proceedings of the 2007 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning (EMNLP-
CoNLL) (2007), pp. 410–420, doi: 10.7916/d80v8n84 (cit. on pp. 54, 55).

[194] C. Rother, V. Kolmogorov, V. Lempitsky, and M. Szummer, « Optimizing Binary MRFs
via Extended Roof Duality », in: 2007 IEEE Conference on Computer Vision and Pattern
Recognition, IEEE, June 2007, pp. 1–8, doi: 10.1109/cvpr.2007.383203 (cit. on p. 33).

[195] Charlotte Rotman, Comment le FN élargit sa base électorale [How FN enlarges its electoral
base], ed. by Libération, Sept. 9, 2014, url: www.liberation.fr/france/2014/09/09/

comment-le-fn-elargit-sa-base-electorale_1095996 (visited on 11/08/2018) (cit. on
p. 98).

[196] P. J. Rousseeuw, « Silhouettes: A graphical aid to the interpretation and validation of cluster
analysis », in: Journal of Computational and Applied Mathematics 20 (Nov. 1987), pp. 53–65,
doi: 10.1016/0377-0427(87)90125-7 (cit. on pp. 75, 85).

[197] F. J. C. T. de Ruiter, R. C. M. Brekelmans, and D. den Hertog, « The impact of the exis-
tence of multiple adjustable robust solutions », in:Mathematical Programming 160.1-2 (2016),
pp. 531–545, doi: 10.1007/s10107-016-0978-6 (cit. on p. 106).

[198] P. Saikko, J. Berg, and M. Järvisalo, « LMHS: A SAT-IP Hybrid MaxSAT Solver », in: Theory
and Applications of Satisfiability Testing - SAT 2016, ed. by N. Creignou and D. Le Berre,
Springer International Publishing, 2016, pp. 539–546, doi: 10.1007/978-3-319-40970-2_34

(cit. on p. 107).

[199] G. Santamaria and V. Gomez, « Convex inference for community discovery in signed net-
works », in: NIPS Workshop: Networks in the Social and Information Sciences, 2015, p. 15,
url: http : / / web . stanford . edu / ~jugander / NetworksNIPS2015 / papers / NIPS % 5C _

Networks%5C_2015%5C_paper%5C_15.pdf (cit. on p. 87).

190

http://dl.acm.org/citation.cfm?id=3044805.3045020
http://dl.acm.org/citation.cfm?id=3044805.3045020
http://jmlr.org/papers/v17/15-627.html
https://doi.org/10.7916/d80v8n84
https://doi.org/10.1109/cvpr.2007.383203
www.liberation.fr/france/2014/09/09/comment-le-fn-elargit-sa-base-electorale_1095996
www.liberation.fr/france/2014/09/09/comment-le-fn-elargit-sa-base-electorale_1095996
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1007/s10107-016-0978-6
https://doi.org/10.1007/978-3-319-40970-2_34
http://web.stanford.edu/~jugander/NetworksNIPS2015/papers/NIPS%5C_Networks%5C_2015%5C_paper%5C_15.pdf
http://web.stanford.edu/~jugander/NetworksNIPS2015/papers/NIPS%5C_Networks%5C_2015%5C_paper%5C_15.pdf

[200] A. Santra, S. Bhowmick, and S. Chakravarthy, « Efficient Community Re-creation in Mul-
tilayer Networks Using Boolean Operations », in: Procedia Computer Science 108 (2017),
pp. 58–67, doi: 10.1016/j.procs.2017.05.246 (cit. on p. 80).

[201] P. C. Saxena and K. Navaneetham, « The Effect of Cluster Size, Dimensionality, and Number
of Clusters on Recovery of True Cluster Structure Through Chernoff-Type Faces », in: Journal
of the Royal Statistical Society (the Statistician) 40.4 (1991), pp. 415–425, doi: 10.2307/

2348731 (cit. on pp. 57, 58).

[202] P. Schittekat and K. Sorensen, « OR Practice-Supporting 3PL decisions in the automotive
industry by generating diverse solutions to a large-scale location-routing problem », in: Op-
erations Research 57.5 (2009), 10.1287/opre.1080.0633, pp. 1058–1067 (cit. on p. 136).

[203] P. S. Shelokar, V. K. Jayaraman, and B. D. Kulkarni, « An ant colony approach for clus-
tering », in: Analytica Chimica Acta 509.2 (May 2004), pp. 187–195, doi: 10.1016/j.aca.

2003.12.032 (cit. on p. 36).

[204] M. C.P. de Souto, A. L.V. Coelho, K. Faceli, T. C. Sakata, V. Bonadia, and I. G. Costa, « A
Comparison of External Clustering Evaluation Indices in the Context of Imbalanced Data
Sets », in: 2012 Brazilian Symposium on Neural Networks, ed. by IEEE Computer Society
Press, IEEE, Oct. 2012, pp. 49–54, doi: 10.1109/sbrn.2012.25 (cit. on p. 75).

[205] A. Strehl and J. Ghosh, « Cluster Ensembles - A Knowledge Reuse Framework for Combining
Multiple Partitions », in: Journal of Machine Learning Research 3 (2002), Editor: Claire
Cardie, pp. 583–617, url: https://www.jmlr.org/papers/v3/strehl02a.html (cit. on
pp. 48, 54, 67, 80, 82, 160).

[206] Y. Sun, H. Du, M. Gong, L. Ma, and S. Wang, « Fast computing global structural balance
in signed networks based on memetic algorithm », in: Physica A: Statistical Mechanics and
its Applications 415 (Dec. 2014), pp. 261–272, doi: 10.1016/j.physa.2014.07.071 (cit. on
p. 36).

[207] P. Swoboda and B. Andres, « A Message Passing Algorithm for the Minimum Cost Multicut
Problem », in: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
IEEE Computer Society, July 2017, pp. 4990–4999, doi: 10.1109/cvpr.2017.530 (cit. on
p. 31).

[208] P. Swoboda, J. Kuske, and B. Savchynskyy, « A Dual Ascent Framework for Lagrangean
Decomposition of Combinatorial Problems », in: 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), IEEE, July 2017, pp. 4950–4960, doi: 10.1109/cvpr.

2017.526 (cit. on p. 31).

191

https://doi.org/10.1016/j.procs.2017.05.246
https://doi.org/10.2307/2348731
https://doi.org/10.2307/2348731
https://doi.org/10.1016/j.aca.2003.12.032
https://doi.org/10.1016/j.aca.2003.12.032
https://doi.org/10.1109/sbrn.2012.25
https://www.jmlr.org/papers/v3/strehl02a.html
https://doi.org/10.1016/j.physa.2014.07.071
https://doi.org/10.1109/cvpr.2017.530
https://doi.org/10.1109/cvpr.2017.526
https://doi.org/10.1109/cvpr.2017.526

[209] M. Szell, R. Lambiotte, and S. Thurner, « Multirelational organization of large-scale social
networks in an online world », in: Proceedings of the National Academy of Sciences 107.31
(July 2010), pp. 13636–13641, doi: 10.1073/pnas.1004008107 (cit. on p. 81).

[210] A. Tagarelli, A. Amelio, and F. Gullo, « Ensemble-based community detection in multilayer
networks », in: Data Mining and Knowledge Discovery 31.5 (2017), pp. 1506–1543, doi: 10.

1007/s10618-017-0528-8 (cit. on p. 80).

[211] S. Tan and J. Lü, « An evolutionary game approach for determination of the structural
conflicts in signed networks », in: Scientific Reports 6.1 (2016), p. 22022, doi: 10.1038/

srep22022 (cit. on p. 34).

[212] L. Tang, X. Wang, and H. Liu, « Community detection via heterogeneous interaction analy-
sis », in: Data Mining and Knowledge Discovery 25.1 (Aug. 2011), pp. 1–33, doi: 10.1007/

s10618-011-0231-0 (cit. on p. 80).

[213] W. Tang, Z. Lu, and S. I. Dhillon, « Clustering with Multiple Graphs », in: 2009 Ninth IEEE
International Conference on Data Mining, 2009, pp. 1016–1021, doi: 10.1109/ICDM.2009.125

(cit. on p. 81).

[216] V. A. Traag and J. Bruggeman, « Community detection in networks with positive and negative
links », in: Physical Review E 80.3 (Sept. 2009), p. 036115, doi: 10.1103/physreve.80.

036115 (cit. on p. 34).

[217] V. A. Traag, G. Krings, and P. van Dooren, « Significant Scales in Community Structure »,
in: Scientific Reports 3.1 (2013), doi: 10.1038/srep02930 (cit. on p. 87).

[218] J. Trusty, B. Thompson, and J. V. Petrocelli, « Practical Guide for Reporting Effect Size in
Quantitative Research in the Journal of Counseling & Development », in: Journal of Counsel-
ing & Development 82.1 (2004), pp. 107–110, doi: 10.1002/j.1556-6678.2004.tb00291.x

(cit. on p. 65).

[219] S. Vega-Pons and J. Ruiz-Shulcloper, « A survey of clustering ensemble algorithms », in:
International Journal of Pattern Recognition and Artificial Intelligence 25.03 (May 2011),
pp. 337–372, doi: 10.1142/s0218001411008683 (cit. on p. 83).

[220] Nate Veldt, Anthony I. Wirth, and David F. Gleich, « Correlation Clustering with Low-
Rank Matrices », in: Proceedings of the 26th International Conference on World Wide Web,
International World Wide Web Conferences Steering Committee, Apr. 2017, doi: 10.1145/

3038912.3052586 (cit. on p. 22).

[222] N. X. Vinh, J. Epps, and J. Bailey, « Information theoretic measures for clusterings compar-
ison: Is a Correction for Chance Necessary? », in: Proceedings of the 26th Annual Interna-
tional Conference on Machine Learning, ICML ’09, ACM Press, 2009, pp. 1073–1080, doi:
10.1145/1553374.1553511 (cit. on pp. 51, 53, 54).

192

https://doi.org/10.1073/pnas.1004008107
https://doi.org/10.1007/s10618-017-0528-8
https://doi.org/10.1007/s10618-017-0528-8
https://doi.org/10.1038/srep22022
https://doi.org/10.1038/srep22022
https://doi.org/10.1007/s10618-011-0231-0
https://doi.org/10.1007/s10618-011-0231-0
https://doi.org/10.1109/ICDM.2009.125
https://doi.org/10.1103/physreve.80.036115
https://doi.org/10.1103/physreve.80.036115
https://doi.org/10.1038/srep02930
https://doi.org/10.1002/j.1556-6678.2004.tb00291.x
https://doi.org/10.1142/s0218001411008683
https://doi.org/10.1145/3038912.3052586
https://doi.org/10.1145/3038912.3052586
https://doi.org/10.1145/1553374.1553511

[223] N. X. Vinh, J. Epps, and J. Bailey, « Information Theoretic Measures for Clusterings Compar-
ison: Variants, Properties, Normalization and Correction for Chance », in: Journal of Machine
Learning Research 11.95 (2010), pp. 2837–2854 (cit. on pp. 48–51, 54, 67, 71, 74, 75, 160).

[224] A. Vörös and T. A. B. Snijders, « Cluster analysis of multiplex networks: Defining composite
network measures », in: Social Networks 49 (May 2017), pp. 93–112, doi: 10.1016/j.socnet.

2017.01.002 (cit. on p. 81).

[225] S. Wagner and D. Wagner, Comparing clusterings: an overview, tech. rep., Universität Karl-
sruhe, 2007 (cit. on pp. 48, 50–52, 54, 66).

[226] M. J. Warrens and H. van der Hoef, Understanding partition comparison indices based on
counting object pairs, tech. rep., Groningen Institute for Educational Research, 2019, arXiv:
1901.01777 [stat.ML] (cit. on pp. 53, 54).

[227] A. S. Waugh, L. Pei, J. H. Fowler, P. J. Mucha, and M. A. Porter, « Party Polarization in
Congress: A Network Science Approach », in: arXiv e-prints, arXiv:0907.3509 (July 2009),
arXiv:0907.3509, arXiv: 0907.3509 (cit. on p. 86).

[228] L. A. Wolsey, Integer Programming, ed. by R. L. Graham, J. K. Lenstra, and R. E. Tarjan,
Wiley-Interscience, 1998 (cit. on p. 28).

[229] J. Wu, H. Xiong, and J. Chen, « Adapting the right measures for K-means clustering », in:
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’09, ACM Press, 2009, pp. 877–886, doi: 10.1145/1557019.1557115 (cit.
on pp. 50, 52, 54, 57).

[230] Q. Xiang, Q. Mao, K. M. A. Chai, H. L. Chieu, I. W.-H. Tsang, and Z. Zhao, « A Split-merge
Framework for Comparing Clusterings », in: Proceedings of the29th International Conference
on Machine Learning, ICML’12, Omnipress, 2012, pp. 1259–1266, url: http://dl.acm.org/

citation.cfm?id=3042573.3042735 (cit. on pp. 52, 54–56).

[231] J. Yarkony, T. Beier, P. Baldi, and F. A. Hamprecht, « Parallel Multicut Segmentation via
Dual Decomposition », in: New Frontiers in Mining Complex Patterns, ed. by A. Appice, M.
Ceci, C. Loglisci, G. Manco, E. Masciari, and Z. W. Ras, Springer International Publishing,
2015, pp. 56–68, doi: 10.1007/978-3-319-17876-9_4 (cit. on p. 24).

[232] P. Zhang, « Evaluating accuracy of community detection using the relative normalized mutual
information », in: Journal of Statistical Mechanics: Theory and Experiment 2015.11 (2015),
P11006, url: https://iopscience.iop.org/article/10.1088/1742- 5468/2015/11/

P11006 (cit. on pp. 51, 53, 54).

[233] S. Zhang, Z. Yang, X. Xing, Y. Gao, D. Xie, and H.-S. Wong, « Generalized Pair-Counting Sim-
ilarity Measures for Clustering and Cluster Ensembles », in: IEEE Access 5 (2017), pp. 16904–
16918, doi: 10.1109/access.2017.2741221 (cit. on pp. 51, 54, 57).

193

https://doi.org/10.1016/j.socnet.2017.01.002
https://doi.org/10.1016/j.socnet.2017.01.002
https://arxiv.org/abs/1901.01777
https://arxiv.org/abs/0907.3509
https://doi.org/10.1145/1557019.1557115
http://dl.acm.org/citation.cfm?id=3042573.3042735
http://dl.acm.org/citation.cfm?id=3042573.3042735
https://doi.org/10.1007/978-3-319-17876-9_4
https://iopscience.iop.org/article/10.1088/1742-5468/2015/11/P11006
https://iopscience.iop.org/article/10.1088/1742-5468/2015/11/P11006
https://doi.org/10.1109/access.2017.2741221

Secondary sources

[6] Alliance of Liberals and Democrats for Europe (ALDE), ALDE priorities for CAP reform
post - 2013, tech. rep., retrieved September, 2018, url: www.meng- landwirtschaft.lu/

fileadmin/files/meng-landwirtschaft/CAP_reform_ALDE.pdf (visited on 11/08/2018)
(cit. on pp. 89, 99).

[7] Alliance of Liberals and Democrats for Europe (ALDE), ASPARTAME: The European Health
authorities play a fools game, Mar. 2013, url: www.alde.eu/press/press-and-release-

news/press-release/article/alde-meps-call-for-an-investigation-into-serious-

health-concerns-over-the-aspartame-40971/ (visited on 11/08/2018) (cit. on p. 98).

[73] European Commission, CAP In Your Country: France, Sept. 2016, url: www.ec.europa.

eu/info/sites/info/files/food-farming-fisheries/by_country/documents/cap-in-

your-country-fr_en.pdf (cit. on p. 88).

[74] European Commission, CAP In Your Country: Italy, Sept. 2016, url: www.ec.europa.eu/

info/sites/info/files/food-farming-fisheries/by_country/documents/cap-in-

your-country-it_en.pdf (cit. on p. 88).

[75] European Commission, Direct payments, retrieved september, 2018, url: www.ec.europa.

eu/agriculture/direct-support/direct-payments_en (cit. on p. 97).

[76] European Commission, Export refunds for processed agricultural products, retrieved septem-
ber, 2018, url: www.ec.europa.eu/growth/sectors/food/processed- agricultural-

products/export-refunds_en (cit. on p. 99).

[77] European Commission, Glossary of terms related to the Common Agricultural Policy, Apr.
2015, url: www.ec.europa.eu/agriculture/glossary_en (cit. on pp. 164, 165).

[78] European Commission, Greening, retrieved september, 2018, url: www . ec . europa . eu /

agriculture/direct-support/greening_en (cit. on pp. 99, 165).

[79] European Commission, Overview of CAP Reform 2014 - 2020, Dec. 2013, url: www.eige.

europa.eu/resources/05_en.pdf (visited on 11/08/2018) (cit. on p. 165).

[80] European Commission, The end of milk quotas, Mar. 2015, url: www . ec . europa . eu /

agriculture/milk-quota-end_en (cit. on pp. 98, 165).

[81] European Council, Reform of the Common Agricultural Policy, retrieved September, 2018,
url: www.consilium.europa.eu/en/policies/cap-reform/ (cit. on pp. 88, 164, 165).

[82] European Parliament, Rules of procedure, F, July 2010, url: www.europarl.europa.eu/

sides/getDoc.do?pubRef=- //EP//NONSGML+RULES- EP+20100705+0+DOC+PDF+V0//EN

(cit. on p. 87).

194

www.meng-landwirtschaft.lu/fileadmin/files/meng-landwirtschaft/CAP_reform_ALDE.pdf
www.meng-landwirtschaft.lu/fileadmin/files/meng-landwirtschaft/CAP_reform_ALDE.pdf
www.alde.eu/press/press-and-release-news/press-release/article/alde-meps-call-for-an-investigation-into-serious-health-concerns-over-the-aspartame-40971/
www.alde.eu/press/press-and-release-news/press-release/article/alde-meps-call-for-an-investigation-into-serious-health-concerns-over-the-aspartame-40971/
www.alde.eu/press/press-and-release-news/press-release/article/alde-meps-call-for-an-investigation-into-serious-health-concerns-over-the-aspartame-40971/
www.ec.europa.eu/info/sites/info/files/food-farming-fisheries/by_country/documents/cap-in-your-country-fr_en.pdf
www.ec.europa.eu/info/sites/info/files/food-farming-fisheries/by_country/documents/cap-in-your-country-fr_en.pdf
www.ec.europa.eu/info/sites/info/files/food-farming-fisheries/by_country/documents/cap-in-your-country-fr_en.pdf
www.ec.europa.eu/info/sites/info/files/food-farming-fisheries/by_country/documents/cap-in-your-country-it_en.pdf
www.ec.europa.eu/info/sites/info/files/food-farming-fisheries/by_country/documents/cap-in-your-country-it_en.pdf
www.ec.europa.eu/info/sites/info/files/food-farming-fisheries/by_country/documents/cap-in-your-country-it_en.pdf
www.ec.europa.eu/agriculture/direct-support/direct-payments_en
www.ec.europa.eu/agriculture/direct-support/direct-payments_en
www.ec.europa.eu/growth/sectors/food/processed-agricultural-products/export-refunds_en
www.ec.europa.eu/growth/sectors/food/processed-agricultural-products/export-refunds_en
www.ec.europa.eu/agriculture/glossary_en
www.ec.europa.eu/agriculture/direct-support/greening_en
www.ec.europa.eu/agriculture/direct-support/greening_en
www.eige.europa.eu/resources/05_en.pdf
www.eige.europa.eu/resources/05_en.pdf
www.ec.europa.eu/agriculture/milk-quota-end_en
www.ec.europa.eu/agriculture/milk-quota-end_en
www.consilium.europa.eu/en/policies/cap-reform/
www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//NONSGML+RULES-EP+20100705+0+DOC+PDF+V0//EN
www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//NONSGML+RULES-EP+20100705+0+DOC+PDF+V0//EN

[83] European Parliament, The revised written translation of speeches retrieved from regulations
related to 2011/0280(COD), 2011/0281(COD), 2011/0282(COD), 2011/0288(COD), Mar. 12,
2013, url: www.europarl.europa.eu/sides/getDoc.do?type=CRE&reference=20130312&

secondRef=ITEM-014&language=EN&ring=B7-2013-0079 (cit. on pp. 89, 98, 99).

[84] European United Left/Nordic Green Left (GUE-NGL), Supporting small farmers, consumers
and the environment: A plan for a fair CAP reform, tech. rep., 2011, url: www.guengl.eu/

uploads/_old_cms_files/leaflet- agri- EN- web.pdf (visited on 11/08/2018) (cit. on
p. 89).

[85] European Views, ed., CAP Reform – Paolo De Castro MEP (S&D) [interview, video], Feb. 26,
2013, url: www.european-views.com/videos/cap-reform-paolo-de-castro-mep-sd/

(visited on 11/08/2018) (cit. on p. 97).

[99] B. Gollnisch, Oral intervention retrieved from the regulation related to 2011/0280(COD), ed.
by European Parliament, Mar. 14, 2013, url: http://www.europarl.europa.eu/sides/

getDoc . do ? pubRef= - / / EP / /TEXT + CRE + 20130314 + ITEM - 009 - 10 + DOC + XML + V0 / /EN &

language=fr&query=INTERV&detail=4-223-750 (cit. on p. 89).

[106] Group of the European People’s Party (EPP), The new CAP: for more modern and efficient
agriculture, Nov. 2013, url: www.eppgroup.eu/newsroom/news/the-new-cap-for-more-

modern-and-efficient-agriculture (cit. on p. 89).

[117] IBM, IBM ILOG CPLEX 12.8 User Manual IBM Corporation, 2018 (cit. on pp. 107, 109).

[144] M. Le Pen, Oral intervention retrieved from the regulation related to 2013/0117(COD), ed. by
European Parliament, Nov. 20, 2013, url: www.europarl.europa.eu/sides/getDoc.do?

pubRef=-//EP//TEXT+CRE+20131120+ITEM-004+DOC+XML+V0//EN&language=fr&query=

INTERV&detail=3-041-000 (cit. on p. 89).

[160] Alan Matthews, More supply management demanded in COMAGRI single CMO report [Blog
post], June 12, 2012, url: www.capreform.eu/more-supply-management-demanded-in-

comagri-single-cmo-report/ (visited on 11/08/2018) (cit. on p. 165).

[215] The International Federation of Organic Agriculture Movements, Europe (IFOAM EU), The
inside view of the CAP debate in the European Parliament, Sept. 2012, url: www.ifoam-eu.

org/sites/default/files/event/files/ifoameu_event_biofach_martin_haeusling_

presentation_201202.pdf (cit. on pp. 89, 99).

[221] P. de Villiers, Oral intervention retrieved from the regulation related to 2011/0280(COD), ed.
by European Parliament, Mar. 14, 2013, url: www.europarl.europa.eu/sides/getDoc.do?

pubRef=-//EP//TEXT+CRE+20130314+ITEM-009-10+DOC+XML+V0//EN&language=fr&query=

INTERV&detail=4-222-000 (cit. on p. 89).

195

www.europarl.europa.eu/sides/getDoc.do?type=CRE&reference=20130312&secondRef=ITEM-014&language=EN&ring=B7-2013-0079
www.europarl.europa.eu/sides/getDoc.do?type=CRE&reference=20130312&secondRef=ITEM-014&language=EN&ring=B7-2013-0079
www.guengl.eu/uploads/_old_cms_files/leaflet-agri-EN-web.pdf
www.guengl.eu/uploads/_old_cms_files/leaflet-agri-EN-web.pdf
www.european-views.com/videos/cap-reform-paolo-de-castro-mep-sd/
http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+CRE+20130314+ITEM-009-10+DOC+XML+V0//EN&language=fr&query=INTERV&detail=4-223-750
http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+CRE+20130314+ITEM-009-10+DOC+XML+V0//EN&language=fr&query=INTERV&detail=4-223-750
http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+CRE+20130314+ITEM-009-10+DOC+XML+V0//EN&language=fr&query=INTERV&detail=4-223-750
www.eppgroup.eu/newsroom/news/the-new-cap-for-more-modern-and-efficient-agriculture
www.eppgroup.eu/newsroom/news/the-new-cap-for-more-modern-and-efficient-agriculture
www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+CRE+20131120+ITEM-004+DOC+XML+V0//EN&language=fr&query=INTERV&detail=3-041-000
www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+CRE+20131120+ITEM-004+DOC+XML+V0//EN&language=fr&query=INTERV&detail=3-041-000
www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+CRE+20131120+ITEM-004+DOC+XML+V0//EN&language=fr&query=INTERV&detail=3-041-000
www.capreform.eu/more-supply-management-demanded-in-comagri-single-cmo-report/
www.capreform.eu/more-supply-management-demanded-in-comagri-single-cmo-report/
www.ifoam-eu.org/sites/default/files/event/files/ifoameu_event_biofach_martin_haeusling_presentation_201202.pdf
www.ifoam-eu.org/sites/default/files/event/files/ifoameu_event_biofach_martin_haeusling_presentation_201202.pdf
www.ifoam-eu.org/sites/default/files/event/files/ifoameu_event_biofach_martin_haeusling_presentation_201202.pdf
www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+CRE+20130314+ITEM-009-10+DOC+XML+V0//EN&language=fr&query=INTERV&detail=4-222-000
www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+CRE+20130314+ITEM-009-10+DOC+XML+V0//EN&language=fr&query=INTERV&detail=4-222-000
www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+CRE+20130314+ITEM-009-10+DOC+XML+V0//EN&language=fr&query=INTERV&detail=4-222-000

Multiplicity in the Partitioning of Signed Graphs

by
Nejat ARINIK

	Introduction
	Context
	Signed graph partitioning related to structural balance
	Notations
	Correlation Clustering (CC)
	Relaxed Correlation Clustering (RCC)

	Challenges
	Contributions
	Personal Bibliography
	Organization

	CC methods
	Introduction
	ILP-based exact methods
	ILP formulations
	Facet-defining inequalities
	Resolution methods

	Heuristic methods
	LP-based rounding methods
	Trajectory-based (meta-)heuristic methods
	Population-based (meta-)heuristic methods

	Dataset
	Experiments
	Experiments for exact methods
	Experiments for heuristic methods

	Conclusion

	Characterizing measures
	Introduction
	Literature Survey
	Desirable Properties
	Partition Transformations
	Assessment Methods

	Proposed Framework
	Characterization of the Measures
	Regression Analysis

	Experimental Setup
	Selected Measures
	Dataset and regression assumptions

	Results and Discussion
	Visual inspection
	Relative importance analysis

	Conclusion

	Multiplex signed networks
	Introduction
	Problem definition
	Our method
	Processing the Patterns
	Computing the Dissimilarity Values
	Performing the Clustering
	Computing the Characteristic Patterns

	Experiments
	IYP Dataset
	Network Extraction
	Measure Selection for Calculating Dissimilarities Between Patterns

	Results
	Baseline
	Clustering
	Characteristic Patterns

	Conclusion

	Enumeration of the space of optimal solutions for the CC problem
	Introduction
	Related Work
	Existence of Multiple Optimal Solutions
	Enumerating All Optimal Solutions

	Enumeration of the optimal solution space for the CC problem
	Finding an alternative optimal solution
	Enumerating all optimal solutions

	Recurrent Neighborhood Search (RNS)
	Edit Distance
	Complete Neighborhood Search (CoNS)
	Recurrent Neighborhood Search (RNS)

	Pruning Strategies
	Non-Minimum Edit Operation Pruning
	Decomposable Edit Operation
	Multiple Vertex Moves between Optima (MVMO) Property
	Tractable cases of the MVMO Property

	Experiments
	Dataset
	Evaluation of the MVMO-based pruning strategies
	Evaluation of EnumCC
	Investigation on harder instances

	Conclusion

	Investigation of the space of optimal solutions for the CC problem
	Introduction
	Related Work
	Comparison Between Solutions
	Diversity of Solutions

	Illustrative Cases
	Methods
	Enumerating All Optimal Solutions
	Computing the Dissimilarity Values
	Performing the Clustering
	Identifying the Core Parts

	Results
	General remarks
	Diversity of the Solutions
	Analysis of the Core Parts
	Real-World Example

	Conclusion

	Conclusion
	Conclusions
	Perspectives

	Appendices
	Evaluation Measures
	Definitions of evaluation measures
	Rand Index, RI
	Adjusted Rand Index, ARI
	Jaccard Index, JI
	Fowlkes-Mallows Index, FMI
	F-measure, F
	Normalized Mutual Information, NMI

	Experimental details about the heterogeneity of module sizes
	Significance results regarding the comparison of the segment heights

	Common Agricultural Policy and Additional Agriculture-Related Results
	EP- and CAP-Related Concepts
	Key Elements of the 2013 CAP Reforms
	Hierarchy of AGRI-related topics
	Additional Plots for Figure 4.3

	Edit Distance for Partitions, and Related Proofs
	Edit distance between two membership vectors
	Proof of Lemma 5.11

	Number of Solutions of the CC Problem
	Bibliography

