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Outline and overview

In Chapter I we introduce the diversity of image analysis and propose a broad
conceptual framework (Section I.1) from where to tackle several relevant problems
in the bioimaging of cellular dynamics (Section I.2). To contextualise this outline,
let us introduce the issue very briefly.

The ability of cells to define and alter their shape and initiate and regulate move-
ment is central to numerous fundamental biological processes including development,
microbial infection, immune response, and cancer metastasis. The mechanisms un-
derlying cell shape and motility involve complex molecular machinery that actuates
mechanical signals. For example, the contractile acto-myosin network is able to gene-
rate endogenous forces both inside and outside the cell. Even though the ensemble of
molecular myosin motors contr-act locally and independently, by exploiting the bio-
physical properties of the cell, their proper coordination is able to exert traction forces
on the extracellular matrix (ECM), as well as to push the cell’s bulk forward. By un-
dergoing these and other phases, the cell is able to translate local mechanical tension
into whole-cell motion and eventually into global cell migration. Therefore, deciphe-
ring how cells deform and move requires a better understanding of the biophysical
quantities that do not only drive but also reflect intracellular (IC) and extracellular
(EC) dynamics, such as IC/EC forces and IC pressure.

Unfortunately, many of these quantities cannot be measured directly with current
methodologies, especially at the IC level. Instead, they are typically estimated using
either invasive experimental methods or indirect approaches. Direct methods are able
to yield precise yet localised measurements at the expense of a more complex expe-
rimental set-up and at a loss of biological relevance. Indeed, at the present stage of
miniaturisation, these techniques often hinder movement and risk cell damage. On the
other hand, indirect methods offer measurements at a more global scale albeit with
less accuracy and lower spatial resolution. Regardless of the method, many biophysi-
cal measurements remain elusive or scarce and are frequently limited by experimental
constraints. In summary, there is a need for a method to measure biophysical quantities
that is reproducible, non-invasive and is generalizable, notably within the cell.

In Chapter II we focus on the intracellular. We begin, Section II.1, by presenting
a method that extracts IC measurements everywhere inside freely moving cells using
live cell imaging. This is achieved by extracting the motion of intracellular material
observed using fluorescence microscopy, while simultaneously inferring the variables

13
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of a physical description of the cell interior. Even though we devised the method
to measure the IC as described, its framework is very general and extends easily to
different models, including the EC. This framework is the result of integrating two
techniques : optical flow, an image processing method that extracts motion information
from image sequences ; and data assimilation. This is all formulated under a variational
approach. Namely, we minimise a functional describing the movement of the pixel
intensity within the images constrained by a system of PDEs that describe the relation
between the movement of the observed material and its parameters of interest. In a
first instance of the method, the theoretical description is chosen as a model in fluid
dynamics. In particular, the cell interior is well described by a Stokes regime (Re� 1)
as inertia plays little role at the cell scale. In this case, the quantities of interest are IC
velocity, IC pressure and IC forces (IC-vpf) ; while the motion of IC material captured
by fluorescence microscopy constitutes the observations of the model. The problem
is solved numerically with an algorithm that combines the finite element and adjoint
methods into a multi-resolution scheme driven by Broyden–Fletcher–Goldfarb–Shanno
gradient descent. The algorithm is automatised into a software module that segments
the cell of interest from a given image sequence and computes the IC estimates.

In Section II.2, we illustrate and validate the efficacy of this approach in the
context of amoeboid cell migration. In particular, we use our method to study the
trophozoite stage of the unicellular parasite Entamoeba histolytica. These amoebas are
characterised by the emission of bulges (blebs) at the cell surface that convert into
protrusions and are filled via cytoplasmic streaming driven by acto-myosin contrac-
tion forces. Their high motility and the predominantly viscous nature of their cyto-
plasm constitute an appealing model from a biophysical standpoint. We show that,
by using only a cytoplasmic label and confocal microscopy, our method yields IC-vpf
spatiotemporal measures everywhere inside Entamoeba histolytica cells migrating on
a conventional substrate in vitro. These measurements corroborate and extend both
theoretical and experimental studies. Our contribution is notable in two aspects. One,
we report for the first time a full quantitative description of the movement phases
of the parasite, confirming several predictions such as the pressure-driven cytoplasmic
streaming or the force-driven retraction of the cell rear. And two, we unveil a concealed
double periodicity driving Entamoeba histolytica : 7.9 ± 0.4s in-between consecutive
protrusions and 4.6± 1.1s characterising the cytoplasmic streaming.

Section II.3. The detail in which the cytoplasmic streaming is captured by our
method has motivated the development of visualisation tools that are offered as add-
ons to the software. These include overlayed vector fields, as well as streamlines and
pathlines in 2D and 3D. In collaboration with Mohammad Goudarzi and Erez Raz, we
use these tools to visualize and quantify the precise role of cytoplasmic streaming du-
ring bleb formation in vivo. The accepted model is that a redistribution of the internal
cytoplasm is not enough to inflate the blebs and that an influx of water from the out-
side through the aquaporin proteins is necessary. Using zebrafish primordial germ cells
(PGCs) and microscopy at cutting-edge spatiotemporal resolution, we show that : (i)
morpholino knockdown of certain aquaporins does not seem to affect blebbing ability ;
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(ii) cell volume changes are not related to blebs ; (iii) blebs are predominantly filled
by a redistribution of cytoplasm from the back of the cells ; and (iv) previous models
overestimated the elastic energy required by the cytoplasmic streaming to stretch the
membrane because they did not take in account membrane folds and invaginations.

In Section II.4, we show how to use the velocity fields extracted by our method
(or any other PIV approach) to build an advection-based tracking scheme that is able
to follow diffuse molecular regions. This is done by solving the ODE posed by the
field on an initially delimited region, and by correcting possible errors with Laplace’s
equation. The advected region is represented by a mesh that can be further divided
into subregions of interest. Finite elements can then be cast onto the mesh and used to
calculate line integrals seamlessly, which allows to define multiple integral measures.
In collaboration with Cecilia Grimaldi and Erez Raz, we use this tracking scheme to
study the role of E-cadherin in in vivo cell migration. This protein is involved in cell-
cell adhesion. The main observation is that a reduction of E-cadherin decreases the
directionality or persistence of cells that move within a zebrafish embryo, but does not
decrease their speed. It seems that E-cadherin stabilizes the actin-rich structures at
the front (called actin brushes) by reducing the “natural” flow of actin towards the
cell rear. As a consequence, the brushes recruit more myosin, weaken the cortex and
therefore bias the formation of blebs to the front. To test this hypothesis we wanted to
quantify the stabilization of actin under different expressions of E-cadherin. Our new
tracking method does not only allow us to follow the actim brushes accurately despite
being very diffuse, but also to define an appropriate quantification measure. In this
case, we quantify the depolarisation of the actin brushes along the front-rear axis of
the cell in the presence and absence of E-cadherin to confirm the hypothesis.

Section II.5. Because of their novelty and of their theoretical nature, the forces
estimated by the proposed method are hard to validate experimentally. In collaboration
with Jérôme Hardoüin, we study a cytoskeleton-like nematic system consisting of a
mixture of microtubules and kinesin in suspension at a water-oil interface. The active
nature of the kinesin molecules (fuelled by ATP hydrolisis) induces forces in the system
that can be deduced from the orientation of the filaments. Since these forces are in
turn reflected on the underlying water at the interface, they can be compared to
those extracted by our framework. In addition, computing the pressure and deviatoric
stresses is showing good promise for studying the nucleation of so-called topological
defects in active matter, and calculating the Lyapunov exponents of the flow field
might help analyse the system’s instabilities.

Section II.6. The intracellular Stokes model is only valid at certain time scales,
which depend on the cell type and its motion. To substitute the viscous Newtonian
model of the cytoplasm with a more accurate representation, we take advantage of
several rheological experiments reported in the literature. In particular, the cytoplasm
of amoeboid cells has been repeatedly reported as a viscoelastic fluid well described by
Jeffreys’ model. While this is a discrete spring-damper mechanical system, its extension
to continuum mechanics is known as the Oldroyd B model. By explicitly deriving
the latter from the former, we reproduce the exact link between the spring-damper
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constants documented in the articles and the viscoelastic parameters that govern the
motion of an Oldroyd fluid. However, not unlike other viscoelastic models, Oldroyd
B fluids suffer from several convergence problems. To stabilise the weak formulation
of the problem, we resort to a combination of the streamline upwind method, which
adds a diffusive term, and the discrete elastic viscous split stress approach. Time-
stepping is then implemented as a backwards scheme and the non-linearity of the
model is attacked with Newton’s method. Once the forward problem has converged,
we adapt the data functional and regularisation introduced in Section II.1 to this
time-dependent problem. While the adjoint approach to minimise the resulting PDE-
constrained is outlined, we have not employed it due to a lack of meaningful biological
data.

In Chapter III we turn to the extracellular. However, we first reassess the optical
flow functional in Section III.1. The 2D movement reflected on the image intensity
is not always linked to the 3D movement of the material in a straightforward manner.
We develop a reformulation of optical flow that clarifies this relationship and is able
to take into account first-order out-of-plane movement in a confocal setting.

Section III.2. As exemplified in Section II.4 with E-cadherin-mediated adhesions,
extracellular forces are essential to many biological functions. Traction Force Micro-
scopy (TFM) measures the forces exerted by cells on the extracellular substrate by
observing its deformation. The aim of this section is to refomulate TFM in our frame-
work. In this case, the biophysical quantities of interest are EC displacement and EC
traction forces ; while the motion of the EC substrate captured by microscopy consti-
tutes the observations of the model. This remake of TFM promises several advantages :
reduced uncertainty propagation, consideration of out-of-plane flow (by virtue of the
modified optical flow), easier extension to 3D, flexibility of the elastic model and a re-
duced need for point-wise measurements (i.e. fluorescent beads within the substrate),
as well as the possibility to consider force-unbalanced systems and non-zero boundary
conditions.

Section III.3. We take the opportunity of reformulating TFM to reinvent the
framework proposed in Section II.1. In particular, our original method has some occa-
sional stability and convergence issues that we tackle by posing the problem on more
solid mathematical grounds. In this direction, we study the importance of the Hessian
to our inverse problem and subsequently introduce Newton’s method. In addition, we
analyse all the linear systems and propose appropriate preconditioners to make the
problem scalable, which is particularly interesting for our multi-resolution scheme. We
also find that optimising with respect to the boundary conditions is better approached
through the so-called Nitsche’s method. Finally, we present different regularisations
and their corresponding interpretations. In the particular case of L2 regularisation,
instead of resorting to iterative descent methods, we show that the inversion can be
solved directly by addressing a coupled system of linear equations.

Section III.4. The last part of the thesis extends the framework into a Bayesian
setting. Inverting the deterministic PDE-constrained problem yields but single esti-
mates of the quantities of interest. However, it is necessary to assess how reliable the
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reconstructions are because the images are noisy. Indeed, a crucial duty of experimental
science is to report measurement errors, yet (to our knowledge) a systematic method
to quantify uncertainty has not been developed neither in PIV nor TFM. Under the
Bayesian framework that we propose, the result is a posterior density that expresses
the probability distribution of the traction force that was exerted by the cells on the
substrate given the observation of an image sequence. To make such a large problem
tractable we rely on a Laplacian approximation that yields a Gaussian posterior whose
covariance is related to the Hessian of the problem, which we address using a low-rank
approximation. We also model the experimental errors of the measured elastic modulus
of the substrate by pre-marginalising the optical flow functional. Lastly, we propose to
use the resulting error estimates to determine whether structures that appear on the
recovered force field are actually significant or artifacts.

Chapter IV wraps up the thesis with some concluding remarks and offers pers-
pective on possible applications of this work.
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I – Introduction

I.1 PDEs and inverse problems in image analysis

Stochastic models, wavelet analysis, variational methods and partial differential
equations have overtaken traditional spectral analysis to drive the latest generation of
image processing techniques. Each approach has its forte.

In order to tackle the statistical nature of images, probabilistic methods rely on
Markov random fields or Bayesian networks to weigh multiple hypotheses according to
their likelihood and some prior knowledge. For instance, probabilistic considerations
are used to reconstruct lost portions of images from their surroundings in a process
known as inpainting. Contrary to the rest of approaches, stochastic models typically
address digital images directly in the discrete pixel domain.

Alternatively, variational methods tailor cost-functions to problems. That is they
formulate an energy that is to be minimised, for example to fit the image data into an
underlying model. More specifically, a blurry image can be deconvoluted by looking
for the "clean" image that, after going through the point spread function of the optical
system, best matches the former image. Similarly, an image pair is registered by finding
a map that minimises the difference between the reference and the mapped images.
However, the cost-function is often not specific enough. To guarantee a unique solution,
the functional space is typically reduced to only include functions of certain regularity.

Also in a continuous setting, partial differential equations (PDEs) describe the
evolution of phenomena as a function of the ratios of small changes in space and time,
i.e. as local differences. A classic example is image denoising. Think of averaging nearby
intensities to get rid of spurious oscillations ; this is precisely the action of the Lapacian
operator ! In this regard, PDEs are used as non-linear filters whose anisotropy can be
calibrated to preserve particular image features.

On the other hand, wavelets excel at tackling multi-scale and localisation problems.
Behind this success is localised basis decomposition, which can be regarded as a natural
answer to the inefficiency of traditional Fourier harmonics at representing local infor-
mation. Image segmentation is a possible application. In particular, spatial-frequency
localisation makes wavelets useful for texture-based partitioning of images.

19
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I.1.1 The modern quartet of image analysis
The four approaches offer complementary frameworks from where to address the

main problems in image analysis. Indeed, they all have their own answer to the clas-
sical quintet : denoising, deblurring, segmentation, inpaitining, and registration. At
a more conceptual level, each framework is related to a way of representing images
[1] : be it discrete or continuous, in one basis or another. Most importantly, they are
all interconnected to varying degrees [2]. Exploring the common grounds supporting
all these perspectives will provide further insight and might help us leverage their
qualities into a more complete framework. Here is a map :

Probabilistic←→ Variational←→ PDEs←→Wavelets.

Take stochastic models and variational methods for example. The prior probability
distribution that models our expectations of the solution in a Bayesian setting is
equivalent to the choice of functional space in the variational context, whose norm
enters the minimisation process as a so-called regularisation term. In addition, partition
functions in statisical mechanics suggest a natural way to relate probabilities and
energies whereby products such as Bayes’ rule are converted into sums à la Tikhonov,
and probability maxima correspond to energy minima.

Or PDEs and wavelets. For instance, consider the reaction-diffusion equation that
is sometimes used for denoising. This PDE can be interpreted as a decomposition
into smooth (Identity) and oscillatory (Laplacian) components, which respectively
behave as coarse-scale and finely-detailed wavelet projections in the context of wavelet
analysis. It is precisely this equivalence that inspired the Laplacian pyramid algorithm
[3]. Other connections have been established with wavelet shrinkage [4, 5] and scale-
space theory [6, 7].

Surely many analogies can be drawn between the disciplines, but it is the rela-
tion between variational methods and PDEs that stands strongest ; perhaps because
of their long-lasting romance in the physical sciences, notably in continuum and La-
grangian mechanics. In the calculus of variations, the stationary points of a given
cost-functional can be formulated as solutions to a set of second order PDEs known as
the Euler-Lagrange equations. For example, minimising the total variation semi-norm
leads to the equations of anisotropic diffusion, whereas the isotropic heat equation
corresponds to the H1

0 norm. Conversely, PDEs are often solved by rewriting them
into their weak forms, which can typically be traced back to the minimisation of some
physical energy functional. This quasi-bijection promises a good basis from where to
articulate a strategy that encompasses the best of each four perspectives. And a solid
one at that : PDEs are supported by extensive mathematical literature [8].

I.1.2 Partial Differential Equations
PDEs also have the gift of intuition. The very PDE-variational equivalence is but

an example : integral-energy conservation principles (mass) can be reworded as locally-
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conserving PDEs (continuity) by using infinitesimal operators (divergence) and arguing
about arbitrary domains. In this sense, so-called "weak" solutions to PDEs are not
as much so. More generally, PDEs constitute a powerful and flexible framework to
describe and model a myriad of phenomena such as diffusion, reaction or advection. It
is local differences that describe the world so naturally. Indeed, it is easier to conceive
that events behave locally, i.e. according to their most immediate neighbours, than
globally. The same logic applies to image analysis ; after all, we are still trying to catch
up with the discriminatory power of our visual system, and retinal neurons fire in
response to local changes in space or time [9]. Nevertheless, let us note that locality
can also be a flaw, some patterns are only discernible from afar ; but one that can be
addressed by a change of scale.

While all these arguments were laid on a continuous setting, where intuition is most
fluent, they still hold after discretisation. In this context, PDEs are often expressed
in terms of finite element bases. Alternative efforts have focused on formulating the
discrete schemes into wavelets, but non-periodic boundary conditions and non-regular
domains remain problematic. In both theory and computation, PDEs can often be
translated into problems of (linear) algebra. Computationally speaking, PDE research
is remarkably active due to their importance in engineering, and of course has benefited
extensively from any hardware revolution.

It is for all these reasons that PDEs are our starting point. However, it is not all
a matter of convenience. In this thesis, we use PDEs to directly model the physical
world, which only later is reflected on an image sequence. A first PDE is used to
describe the scalar transport equation seen through the microscope lens. This is es-
sentially a registration problem. Since the system is underdetermined, we rewrite it in
variational language. Under these terms, we can try to make the problem more specific
by controlling the space of solutions. Cue the second system of PDEs. These equations
model the real physical movement that the camera captures, for example using conti-
nuum mechanics to describe the cytoplasm inside a cell. Now let us rewind : the only
candidates to solve the first variational problem are functions that (also) satisfy the
second physical model. Moreover, instead of restricting the space of registration maps
directly, we can now reduce the space of any unknown physical variable in the second
PDE set. The advantages are twofold. First, regularisation can happen in a physically
relevant way. And second, physical quantities can be estimated from the images ; as
will be presented in the next Section, this is the major topic of the thesis : progress
in image analysis is welcome, but our real interest is taking measurements. Next, we
exploit the connections that we took so much time to lay down. Not local enough ?
We restrict the space through the variational perspective, for example by considering
only physical functions of bounded variation. Not global enough ? We take a mul-
tiresolution approach à la wavelet. Are we certain about our measurements ? Enter
stochasticity through Bayesian inference. We can interpret the physical regularisation
as a prior, the variational functional as an energy, and quantify the uncertainties of
our measurements using Bayes’ rules.
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I.1.3 Inverse problems
In short, we are fitting a continuum mechanics model to image data using a

registration-like functional. To solve such a problem we draw from the theory of inverse
problems. Whereas the forward problem can typically be formulated to be well-posed
(uniqueness), local (spatial correlation decays fast) and causal, e.g. solve the PDEs
given some physical parameters and use the results to warp an image ; inverting the
problem, i.e. finding the original physical parameters from a given image pair, nor-
mally results in ill-posedness (many solutions are consistent with the data), globality
(the parameters depend on the values of the images everywhere) and non-causality.
Variational Tikhonov regularisation, as proposed by [10], has long been the go-to ap-
proach to make image processing tasks well-posed. This is equivalent to adding a priori
information that matches our expectations of the result, or restricting the functional
space. The five traditional problems of image analysis that we have introduced can be
approached as inverse problems in this way.

Inverse problems are specially prevalent in the geosciences. Where on earth did that
earthquake come from? Given an epicenter it is much easier to compute the conse-
quences of the trembling on the surface (forward) than it is to find out the epicenter
from the readings of a couple seismographs (inverse). In this example, the forward mo-
del consists in "observing" (integrating) the results of a PDE on the boundary domain
and thus is well-posed. What the hell is the earth’s core made of ? Again, simula-
ting wave propagation given the properties of the mantle is much better posed than
figuring out the composition of the crust by studying how seismic waves propagate.
Indeed, many combinations of material layers are possible given a limited set of data :
the data might come from earthquakes themselves, which fortunately do not occur all
that often.

The common theme is taking measurements indirectly because the object of in-
terest is largely inaccessible. For obvious reasons this is usual in medical imaging :
tomographies, magnetic resonances, elastographies... all are based in the theory of
inverse problems. Other important disciplines that fit models into data, such as me-
teorology or shape optimisation (e.g. plane wings), also require such machinery. In a
similar way, if we want to estimate any physical parameter in or outside a cell without
being invasive, it is no surprise that we end up with an inverse problem.

Luckily, these are problems of financial (oil, weather, fuel efficiency) or medical
impact and therefore the theory is rich. A collection of methods has been cured over
time that has kept up with advances in computational power. This not only includes
the adjoint or dual approach that we so fondly use throughout the thesis, but other
techniques that can reveal how much we are informing the problem with the data (e.g.
through the Hessian of the functional), or how sensitive it is to any change in the
variables.
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I.2 Bioimaging for morphodynamics

The next dozen of pages are meant as an introduction to cell motility
(as the background question) and bioimaging techniques (as the means)
with an special emphasis on biophysical measurements. The intention is to
introduce several techniques that are used throughout this work and, at
the same time, identify the needs (and problems) that we will be tackling
in the thesis.

(Directed) movement is a decisive advantage in sustaining life at any scale. At
the single-cell level, a myriad of migration modes [11] have evolved [12] because they
enhance the ability of cells to thrive in natural selection : a longer range of action
boosts their potential to colonize resources, evade predators and cooperate. Indeed,
many biological processes, whether physiological or pathological, rely on changes in
cell position or location. Physiological examples are that developing embryos require
precise rearrangements of differentiating cells to shape the growing organism [13], and
that mounting an immune response depends on the ability of lymphocytes to circulate
through the blood and tissue to the target antigen [14]. On the pathological hand,
tumor cell migration is a hallmark of cancer metastasis [15], and infectious agents
have to navigate within the host to reach their niche [16]. Precisely for these reasons,
many potential treatments aim to specifically impair the motility of pathological cells
while preserving the normal behavior of the host [17]. However, it is generally diffi-
cult to develop pharmacological compounds that are specific enough as the molecular
machinery underlying cell movement is highly conserved across different organisms
[12]. Therefore, studies on cell motility do not only constitute fundamental research
but are also at the leading edge of therapeutic investigation. We argue that research
on cell migration profits from the combination of (at least) three approaches : ima-
ging, biophysical measurements and the fabrication of microenvironments ; and that
all of them can benefit from bioimage analysis (BIA). BIA promises to tackle the
ever-growing quantity of data resulting from gene regulation assays and the inherent
stochasticity of cell migration, and to increase the quality of their analysis by bringing
reproducibility and objectivity onto biological grounds. It is in this context that we
will be proposing our method : a BIA approach to take biophysical measurements in
any microenvironment.

I.2.1 Overview
Since the late 17th century, shortly after microscopes became available, the study

of cell behavior and migration has been inseparable from imaging : advances in optical
magnification have allowed resolving increasingly smaller features, the combination of
fluorescence microscopy and tags has permitted identifying some of the prime proteins
that regulate motion, and other technical improvements have facilitated long-term
observations both in vitro and in vivo. A quantitative analysis of these images is
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essential to ensure the objectivity and reproducibility of the findings, but also to pick
up on subtle or complex differences invisible to the naked eye.

To study the physical mechanisms driving cell movement, it is not enough to solely
watch the proteins involved [18]. Rather, their action has to be measured to determine
whether they are able to generate the necessary forces and pressures. In this regard,
physical measurements were introduced to biology experimentally : the first myosin
forces were probed using an enhanced laser trap [19], overall cell strength was tested
against a cantilever [20] and wrinkles on deformable substrates were used as indica-
tors of traction forces [21] ; but quickly moved into more theoretical and non-invasive
grounds by integrating imaging-data, either by way of simulations [22, 23] or inverse
problems [24]. Finally, recent developments in tissue microfabrication have helped mi-
micking the real environment of the cell and demonstrated its profound impact on
cell behavior (including differentiation) and motility [25]. For instance, patterned sub-
strates, 3D extracellular matrices (ECM) and organotypic cultures, all can be tuned to
try and reproduce a setting with the different key characteristics of in vivo conditions,
where the cell-system interaction is more biologically relevant than on a glass slide
[26]. In this case, an investment in image analysis is again crucial to keep up with the
new acquisition systems required to analyze these more and more complex sceneries.

Fortunately, BIA techniques (such as segmentation, tracking, feature extraction
and mechano-imaging methods) have evolved in parallel to tackle this ever-growing
amount of data by exploiting equally fast breakthroughs in computing [27]. In this
introduction, we narrate the evolution of the three approaches to studying cell move-
ment from the perspective of the underlying BIA field. We illustrate the progressive
repercussions of the developments in this field with a case study : the parasite Enta-
moeba histolytica. The reasons are twofold. Relevance : Eh is the causative agent of
human amoebiasis, an enteropathic disease with an annual death toll of over a hundred
thousand whose virulence results from the parasite’s motility [28] ; and quintessence :
this ancient protozoan is an elementary example of amoeboid migration as it only
mobilizes basic cytoskeletal elements where actin is central.

I.2.1.1 The diversity of cell motility

Keeping in movement is a relentless task for a cell. While a single stroke of a whale’s
fluke is enough to coast it for meters ahead [29, 30, 31], inertia plays a drastically
different role at the cell scale. In fact, inertia is irrelevant : relatively small size and
speed and high kinematic viscosity (low Reynolds number), all add up to favor viscous
forces over inertia [32]. This means that past forces matter little, or that a cell needs
to exert forces constantly in order to make its way through the surrounding media.
To this end, nearly all nucleated animal cells rely on the forces generated by their
actomyosin cytoskeletons. This power can be harnessed in diverse ways, but we expect
them all to induce cell shape changes in a (1) polarized and (2) cyclic way. Indeed. 1)
Most moving cells present a marked directional arrangement with two poles : the cell
front, characterized by intense actin polymerization and adhesion ; and the cell rear,
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where actin is more stable, adhesions disassemble and myosin gathers to generate
contraction. 2) Most moving cells also have three iterant phases in common : the cell
makes a protrusion, it interacts with its surroundings (most likely through adhesions)
and then it further translocates its center of mass while retracting its rear [11].

Regardless of the cell type or migration mode, these processes are often regula-
ted by the same proteins [33]. For example, actin de- and polymerization are almost
invariably controlled by the cofilin and formin effectors. Likewise, Paxilin, a signal
transduction adaptor, is highly conserved throughout focal adhesions. Also ubiquitous
is the Rho family of small GTPAses (e.g. RhoA, Rac), which locally fine-tunes the
contractility and spreading of the actomyosin complex in most cells [34]. The activity
of all these proteins is correlated through different layers of feedback that integrate
sensory information and range up to gene transcription. However, the precise molecu-
lar repertoire of a cell, either as present constitutively or activated as a response to
environmental cues, does determine its mode of migration [35, 36]. In the literature,
individual cell migration is loosely classified in a range between two diametric modes :
mesenchymal and amoeboid [11, 37].

Mesenchymal cells exert constant forces by directly pushing on the leading edge
of the membrane with the growing barbed end of actin polymers. The Arp2/3 pro-
tein complex promotes this process by nucleating new actin filaments as branches of
the existing scaffold, which, braced by microtubules, give rise to very recognizable
fan-like (lamellipodia) and spike-like structures (filopodia). This way of crawling re-
quires strong focal adhesions (mediated via integrin receptors) that provide traction
with the ECM and can also propel the cell forward under retrograde flows [38]. As
the accumulation of all these structures reduces the deform-ability of the cell, pericel-
lular proteolysis becomes necessary to cleave obstructing fibers. This "bulldozer-like"
behavior is convenient to tread on with care, but long-term migration and exploration
through complex environments can benefit from better agility and speed.

In amoeboid migration actin delivers in a different way than in mesenchymals :
actomyosin contractility is enhanced through ROCK, especially in the actin cortex
[39]. Myosin II makes pairs of these actin filaments slide past each other at the ex-
pense of ATP hydrolysis, creating localized contractile tensions and, when properly
synchronized, whole-cell hydrostatic pressure gradients. In this way, cells become more
plastic and the need of actively lysing the ECM is practically eliminated [40] in favor
of squeezing their way through the interstices of the matrix. Here adhesions are wea-
ker and turn over much faster, but they are frequently assisted by intercalations with
small gaps in the ECM. Although polymerization-driven gliding and dendrites are pos-
sible propulsion mechanisms, so-called blebs are most emblematic in amoeboid cells.
A bleb is a hemispheroidal protrusion that results from an expansion of the plasma
membrane as a cellular hernia is filled by pressure-driven fluid [41]. The initial breach
is nucleated when the cortical cytoskeleton breaks or detaches from the membrane as
a result of weakened adhesion energies, regulated respectively by α-actinin and ezrin,
or stronger pressures or tensions [42]. Once the bleb is full of cytoplasm (or filtered
cytosol) because the pressure has stabilized, the actin cortex repolymerizes and binds



26 Chapitre I. Introduction

back with the membrane [43], then retracts (non-motile) or becomes a pseudopod that
will guide the cell onward. The last step of the cycle is to move the rear of the cell
forward.

The amoeboid and mesenchymal migration modes are neither mutually exclusive
nor necessarily discrete. Some cells can switch behavior in response to diverse fac-
tors such as the ECM architecture (density, stiffness, dimension, etc.). The transition
between modes has been described as a quasi-continuum of states laying in-between
these two apical modes [11], almost like attractors of a molecular dynamical system
[44], or (alternatively) as a phase transition [45]. In fact, the ability of cancer cells
to alternate between migration strategies during metastasis has been big publicity for
motility studies, especially on the amebic mode because it had been less investigated.
Conveniently, E. histolytica is understood to stay entirely within this amoeboid range.
To invade the intestine and liver, the trophozoites need to traverse mucus, epithelia,
connective tissue and, eventually, blood. Myosin contractility and transient adhesions
(here anchored via integrin-like receptors and loaded to the cytoskeleton through vin-
culin [46]) are tuned according to the stage of infection. An initial exploratory stage is
characterized by pseudorandom blebbing ; but, triggered by chemoattractant molecules
such as ECM-derived proteins, the amoeba soon polarizes into pseudopod (front) and
uropod (rear). These two distinctive actin-based formations are respectively enriched
in stabilizing proteins like PAK and ABP-120 [47], and contraction-inducing proteins
as myosin II [48]. Together, they direct the penetration of the parasite into the colonic
tissue using the inflammatory response of the host as positive feedback and hijacking
human matrix-degrading metalloproteinases to ease their way in [49]. This eagerness
for secreted immune factors such as tumor necrosis factor (TNF) [50] is well backed up
by an effective phagocytic system and a solid evasion mechanism whereby the immu-
noglobulins that identify the amoeba as a pathogen are packed into the uropod and
ejected [48] to (presumably) misdirect the immune response.

In the forthcoming sections we will show how BIA not only helps the community
understand how cells move but also why they move. As E. histolytica, most cells
can move randomly or in a specific direction, normally following physical or chemical
cues, such as stiffness or molecular (chemotaxis) gradients. However, the distinction
is sometimes not straightforward, partly due to the small Reynolds number. Another
consequence of this regime is that cells drag good part of their surrounding media with
them ; therefore, short displacements, even when random, are little use to feed : cells
have to move a certain distance before they can outrun (nutrient) diffusion [32].

Disclaimer : even though we have introduced movement at the single-cell scale,
let us point out that a good part of cells are gregarious. Collective cell migration and
rearrangement are at the heart of fundamental biological processes [51], including mor-
phogenesis [52], wound repair [53], and tumor metastasis [54]. However, the emerging
mesoscale properties of collective cell organization, as seen for example in epithelial
sheets, cannot be predicted efficiently from the behavior of individual cells [55]. For
instance, the fluid-to-solid-like phase transitions that have been characterised in cell
monolayers [56] can be inferred from a small set of physical properties such as cell
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shape and alignment. In the likes of schools or flocks, it is the local interaction bet-
ween neighboring cells (which are often coupled through cadherin-mediated cell-cell
adhesion) that creates this global cell behavior. In short, choosing the appropriate time
and length scales is paramount to studying the biological system at hand. It is for this
reason that we include references to multicellular analysis in this introduction.

I.2.2 Detecting, characterising and following cells

I.2.2.1 Cell segmentation

Segmentation is a cornerstone of BIA ; it is the initial step of many other image
analysis techniques, such as cell shape description or tracking (Figure I.1). The aim
is to partition an image, typically into individual cells and background, using the
distribution of its intensity. The result is disjoint groups of pixels that share some
common characteristic, are delimited by a contour, and together add up to the whole
field of view (see [57] for a thorough review).

Noise permitting, the most naïve approach to cell segmentation is thresholding the
brightness, i.e. creating a binary domain where dark and bright pixels respectively
belong to the background and the cells. Of course the threshold is chosen diligently,
by bisecting the histogram that reflects the probability distribution of the intensity.
Otherwise, the intensity may be clustered into multiple classes to capture cells with
different shades, which ideally show up as peaks of this histogram ; or supported with
additional information that can define alternative quantitative measures (e.g. texture,
color, location) that further evidence the distance between the groups. As a last step,
post-processing the resulting segments helps fight noise ; examples are merging po-
tentially connected subsets and eliminating relatively small regions (compared to the
expected cell size).

If no quantity seems homogeneous within a given cell, it is advisable to focus ins-
tead on the cell contours. Accordingly, edge detection techniques exploit the spatial
derivatives of the image to look for significant changes in intensity, which are ex-
pected to correlate with a change of medium. The same conceptual basis presented
above for thresholding is then readily applied to the resulting edge-image because the
contours also need to be distinguished from the background before they are filled.
In low contrast, conceptually more involved methods, such as wavelets and neural
networks, are recommended ; in other cases, leveraging the motion of the cell with
respect to the background (e.g. low-rank + sparse matrix decomposition) or imposing
a pre-determined elliptical shape (model-based) is better suited.

Cell-cell interaction is another challenge. It is hard to assign a pixel to either of two
cells in contact because of their similar physiognomy, especially when the acquisition-
derived halos shine strongly. Watershed methods look for the boundaries between
adjacent cells in the ridgelines of the brightness-mountains that cells feature over the
darker background [58]. At a tissue scale, where cells are crowded, vertex/graph-based
approaches seek to discriminate membrane-labeled tissue cells by building a network
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Figure I.1 – Classic schematic of a bioimaging workflow. One or more cell conditions
(or strains) are to be compared. Once the image data has been acquired, the first step
is pre-processing. For example, deconvolution and/or registration. Next, the cells can be
segmented out via a myriad of methods, e.g. pixel-based (here H-clustering) or contour-
based (here active contours). If time information is available, the cells can be tracked from the
segmentation results. Examples of techniques are nearest-neighbours and multiple-hypothesis
tracking. With this information the morphology can be analysed using descriptors or a
combination of basis decomposition and machine learning. The resulting shape description
is used to differentiate cell populations (classify) and thus to identify and predict conditions,
or sometimes can be revealed as a causal agent. Additionally, the time-tracks can explain the
reason a cell is moving based on statistical measures (such as mean squared displacement) :
randomly, with a clear direction or in interaction with other cells. Biophysical measurements
such as force estimates also constitute a great source of information, reporting directly on
the effect and manner of the cells actions and bringing us closer to causality. in the form
of forces. -Omics data can also be included. All this input can be combined to uncover any
correlation and (hopefully) any causality, resulting in a biological discovery.

that connects the walls alike a honeycomb [59]. At both scales, including movement into
the picture, as extracted from velocimetry techniques, might also help in distinguishing
contiguous cells.

The methods presented are global in the sense that they incorporate information
from the whole image to decide. To standardize this concept, variational methods
write an energy functional that integrates several measures consisting of data-fitting
expressions and regularizing terms. Lose of uniqueness is the trade-off for flexibility :
convexification aside [60], there are multiple “solutions” (local minima). To find one
possible solution, the image is searched locally by progressively resizing an initial
region according to its surroundings. The most typical of these methods are contour-
based (as opposed to pixel-based), where the image is divided by lines rather than
by grouping pixels. For example, Active Contours gradually deforms a parameterized
curve (or a level-set) by exerting localized forces according to energy-derived criteria
such as intensity, edge information, geometrical constraints and other nearby curves.
The evolution finishes when the forces equilibrate and the curve is (ideally) fitted
around the cell. Most energy/force terms are based on Chan-Vese [61] ; this model
splits the image into constant intensities and hence is bound to overlook heterogeneities
around the cell border. There is some hope that the semi-local probing of the image
might amend this issue, but it is certainly a double-edged sword. A more elegant
way to enforce locality without losing the big picture is to model the cell intensity
with extra degrees of freedom [62]. Anyhow, the convexity of the functionals has to
be addressed complementarily, either by calibrations [60] or multi-scaling. In short,
variational methods are very flexible, can combine several measures, and are more
readily scalable to 3D problems. However, they need a seed (an initial contour for each
cell) and they rarely consider the big picture, falling into local minima.

We have found active contours [63] the most convenient when describing the ra-
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pidly varying shape of amoeboid cells during migration, but their work is only optimal
in fluorescence microscopy. Opportunely, texture filters like standard deviation trans-
late texture into intensity and make phase-contrast or brightfield acquisitions more
amenable to this fluoro-friendly technique. On another scale, subcellular localization
is resolved likewise and can be complemented with statistical tools to examine a pro-
tein’s place relative to the also-segmented cell (e.g. myosin is found at the back of
uroid-capping trophozoites [64]), or to other proteic structures [65, 66] (e.g. Arp2/3
colocalizes with phagocytic macropinosomes [67]). Conversely, when the aim is to ad-
dress the interactions within a sparse population of amoebas, the parasites are imaged
small enough to apply spot-detecting techniques such as multi-scale wavelets [68].

In conclusion, cell segmentation is addressed on an ad hoc basis. Each acquisi-
tion technique and each tag has its exemplar image, but no characteristic that sets
apart cell from backdrop seems to be general : there is a semantic gap between human
heuristics and the algorithms. A common solution is to combine approaches. A seed
can be obtained by a global method and the segmentation can later be smoothed and
refined by a contour-based method. This strategy is especially fruitful if multiple chan-
nels with different labels are available, for example the cell nucleus can serve as a seed
while the membrane signal drives the deforming contour. Artificial neural networks are
booming in image segmentation ; they are promising because they can be extrapolated
almost exhaustively to the different imaging modalities, but they still need to be trai-
ned case by case in a (progressively less) laborious process. Other possible directions
of research are to include physical information that is not captured in standard images
(e.g. refraction index, optical path, motion, etc.), knowledge regarding the image for-
mation process, or biologically inspired cell shape priors. In any case, general image
segmentation remains an open problem and yet is critical for any posterior analysis.

I.2.2.2 Cell shape description

Morphology has historically been regarded as a purely predictive marker of biologi-
cal response (think of cell fate or differentiation), but has been more recently revisited
as part of a complex feedback loop that integrates mechanical and chemical signals
[69]. On the one hand, changes in cell shape overlie the constant reorganization of
the actin cytoskeleton that adapts to specific whole-cell functions in response to intra-
or extracellular cues. Movement, division, and interaction, all require morphological
adjustments. On the other, it has been shown that cells can sense their own shape [70]
via the self-organizing properties of the cytoskeleton and of reaction-diffusion systems
[71]. Cell shape repercusses in the dynamics of molecular transport, and has other
consequences stemming purely from geometric considerations. For instance, regions
of higher membrane curvature will inherently have a higher spatial concentration of
receptors when considered in 3D.

A segmented cell is represented as either a mask (a subgroup of pixels) or a contour
(an ordered array of vertices in 2D or a mesh in 3D). While these data structures are
friendly to the eye, their size and complexity make it hard to establish quantitative
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comparisons between populations of cells. Defining descriptors, which quantify poten-
tially determinant traits, such as cell size or roundness, can reduce the dimensionality
of the data. The choice of descriptors can be purely heuristic, by observing the cells, or
educated with the help of artificial intelligence. Ideally, they should be resistant to noise
and class-specific because the goal is to compare two non-necessarily-homogeneous cell
populations. An extensive list of descriptors can be found in [72, 73], starting from
very simple features (e.g. area, eccentricity) and covering a broad range of applications,
e.g. the ramification factor and branching points are adapted to count filopodia and
dendrites. Independent geometry-based examples are the use of skeletons to study the
effect of myosin II on cellular branching morphogenesis [74] and the pipeline presented
in [75] to analyse neurite growth cones.

Other approaches depend on a change of basis. Just like a color can be descri-
bed via a bijection (one-to-one correspondence) to the Red-Green-Blue components,
shapes can be mathematically decomposed as deviations from the circle (2D) or the
sphere (3D). Respective example basis are the Fourier series and Spherical Harmo-
nics (SH) [76]. In both cases, the original shape is decomposed as a sum of periodic
functions of different frequencies. Alternatively, a color is also uniquely defined by a
combination of Hue-Saturation-Brightness ; similarly, another base for 3D cell shape
can be constructed with Spherical Wavelets (SW) [77]. Different bases ease different
interpretations of the data. For example, SH are better descriptors of general shape
as they are rotationally invariant ; however, this also makes them blind to location,
which is a strong point of SW.

In the study of E. histolytica, we have used SW to automatically detect the po-
sition and number of blebs [78], a strong physiological indicator and a key driver of
amoeboid migration (data not published). Conversely, SH have been used to inspect
differences between populations. For example : when the adhesive properties of the
parasite are reduced by signaling blockage of the Gal/GalNac lectin [79], the cells
shrink and their surface coarsens/wrinkles significantly (the SH coefficients associa-
ted to higher frequencies become more dominant), which is consistent with membrane
tension considerations (data not published). This strain can still navigate the ECM,
but it can no longer cross the hepatic barrier [80], delaying the inflammatory response.
Other studies based on SH concern medical imaging and general cell shape analysis,
for example [81] studies the importance of the membrane-associated cytoskeleton in
red blood cells.

Unfortunately, even when the dimensionality is reduced, it is common that results
still lack human-ready interpretability [82]. Machine learning techniques (e.g. supervi-
sed : Support Vector Machine, decision trees ; or unsupervised : Principal Component
Analysis) can exploit the now-smaller data to answer questions reflecting on the biolo-
gical relevance of the descriptors and experimental conditions [83], as well as to discri-
minate populations ; but can rarely give a biologist-friendly picture of the combination
of features (say SH coefficients) that make the difference. Therefore, we expect future
work to be based on differential geometry because it is a natural and more illustrative
way of dealing with manifolds such as the (2D) surface of a cell bending in (3D) space
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[84, 85]. Indeed, more powerful descriptors can be obtained by eigen-decomposing the
Laplace-Beltrami operator to assess the similarity between two shapes [86]. In this
case, it is necessary to map both boundary surfaces (no sphere here), which can come
at the expense of solving a non-convex optimization problem.

I.2.2.3 Cell tracking and motion fields

Diffusive, confined, intermittent and directed motions are four of many patterns
of cell movement that can be inferred from the stochastic properties of cell trajecto-
ries. For example, mean squared displacement (MSD) is a good statistical measure
to classify trajectories according to their directionality [87] or diffusivity [88]. Purely-
Brownian motions are hardly expected at the scale of the cell [32] : the Reynolds
number is low, cells are self-propelled, and molecular polarization carries some “iner-
tia”. Instead, cells display different degrees of persistence [89] that might reflect why
or how they are moving.

Correlative studies have shown that E. histolytica alternates between low-persis-
tence exploration and a highly polarized and invasive mode induced by signals from
the intestinal environment that include TNF, erythrocyte factors, bacterial lysates,
fibronectin residues [90, 91] and, perhaps most interestingly, self-secreted proteins [92].
Motility switches involve the activation of different molecular pathways that regulate
the cytoskeleton in response to external stimuli (PI3K in the case of TNF [93]), and
have been hypothesized to emerge from bifurcations of dynamical systems that model
competing proteins [44]. During non-chemotactic migration, the fact that cells are still
considerably persistent might reflect optimal environment-searching strategies [94].
In this context, cell persistence has been shown to exponentially correlate with cell
speed. This general law results from a positive feedback loop between the asymmetric
distribution of certain polarity cues such as myosin, which sustain cell directionality,
and their advection by retrograde actin flows, which is often linearly coupled with cell
speed [95].

Computationally, the problem of cell tracking is one of optimal mapping : two sets
of already-segmented cells in consecutive frames (i.e. a bipartite graph corresponding
to a pair of consecutive time frames) are to be matched almost-perfectly by minimizing
a weighting function. Nearest-neighbors - a function assigning a cell’s center of mass to
the closest center in the next frame - is a simple and effective choice when the temporal
resolution is high relative to the number of cells in the field of view. This is the case of
most essays in morphodynamics. At a lower spatiotemporal resolution, where cell and
particle tracking are practically equivalent, there is a need for more educated criteria
that do not only privilege short distances but rather consider multiple hypothesis given
the “historical” evolution of the particles and some statistical priors [96]. A collection
of methods designed to deal with cluttered environments in which particles (here cells)
“jump” across each other can be found in [96, 97]. The “social” behavior of cells is
written down on their tracks too, and could be classified as done in mice [98, 99, 100]. In
particular, cell-cell contact is a means of information exchange in multiple biological
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processes including the immune response wherein T-cells need to recognize surface
antigens. Engineered molecular labels that are enzymatically transferred upon contact
have been used to monitor the dynamics of these so-called kiss-and-run interactions
[101], but cell tracking could help unveil any underlying interaction network. A last
(and remarkable) instance of multicellular tracking concerns following cell lineages, for
example to study morphogenesis [102, 103].

Yet another byproduct of tracking is cell speed, which frequently doubles as a
measure of motility, for example to quantify the invasiveness of E. histolytica in bio-
logical environments such as (enterocytic-like) Caco-2 cell monolayers, enterocyte 3D
models or hamster livers [104]. Intracellular velocity fields are also interesting in cir-
cumstances where there is nothing to segment. Active molecular transport administers
the spatiotemporal distribution of intracellular proteins when diffusion alone is not
sufficient [105] ; related myosin-dependent mechanisms are cytoplasmic streaming and
cargo conveyance along the cytoskeleton. However, the fluorescence of bulk-advected
molecules is too diffuse to be segmented consistently. The classic answers in biology
are two : kymographs, which concentrate on the time evolution of a cross-section of the
original image ; and projections, where the maximum intensity values across a tempo-
ral stack are casted onto a single image [106]. To avoid losing one dimension, bioimage
analysts resort instead to speckle microscopy. In this case, multiple-particle tracking
can be extrapolated into dense velocity fields [107]. Alternatively, correlation- veloci-
metry (PIV) techniques make do with standard fluorescence images by picking up on
the movement of pixel intensity. This is achieved by maximizing the time correlation
of local pixel-groups [108] or assuming that intensity is globally conserved, a technique
known as optical flow (OF) [109]. However, there seem to be no clear results on how
to use the resulting velocity maps to track the diffuse protein regions in the cell.
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Figure I.2 – Classification of methods to measure biophysical quantities. a) Atomic
force microscopy to measure force or elasticity. b) Servo-null micropipette to measure pres-
sure. c) Optical trap to measure forces or probe properties (e.g. rheology). d) Traction force
microscopy to measure forces on the substrate. e) Measurements of cytoplasmic streaming.
e) FRET or photo-quenching to measure forces. While the first three methods require inter-
acting actively with the cell (and possibly disturbing it), the last three use passive reporters
that are captured by non-invasive imaging techniques.

I.2.3 Biophysical measurements
The mechanisms underlying cell shape and motility involve complex molecular

machinery that senses and actuates both mechanical and chemical signals (exter-
nal and internal) [110]. At the mechanical level, cells can detect peripheral stimuli
through transducting sensors [111] such as the conformation-changing integrins at fo-
cal adhesions [112] and mechano-gated ion channels at the membrane [113], or propa-
gate them within through the cytoskeletal scaffold. Together with the chemical input,
these cues regulate the cells’ response, including the generation of endogenous forces
by the contractile acto-myosin network. Even though this ensemble of myosin motors
contr-act locally and independently, by exploiting the biophysical properties of the
cell, their proper coordination is able to (i) exert traction forces on the extracellular
matrix (ECM), as well as to (ii) push the cell’s bulk forward. By undergoing these
and other phases, the cell is able to translate local mechanical tension into whole-cell
motion and eventually into global cell migration. Therefore, deciphering how cells de-
form and move requires a better understanding of the biophysical quantities that do
not only drive but also reflect intra/extra-cellular (IC/EC) dynamics, such as IC/EC
forces and IC pressure.

Whereas molecular biology and fluorescence assays might allow correlating the
different processes underlying motility with their protein actors, only measuring the
actual quantities can establish causal protein-force relations and unveil the physical
mechanisms behind. Unfortunately, many such measurements cannot be taken directly,
especially at the IC level. Instead, current experimental methodology (review in [114])
is either I.2.3.1 invasive or I.2.3.2 indirect.

I.2.3.1 Active

These are active because they apply exogenous forces. For example, using micro-
pipette aspiration [115] or Atomic Force Microscopy [113] to probe cortex tension or
elasticity (Figure I.2a), microchip injection [116] or servo-null micropipette penetration
to measure local IC pressure [117, 118] (Figure I.2b), or magnetic and optical tweezers
to estimate molecular-level IC forces. Optical traps have been used to explore the stall
forces exerted by the motor proteins dynein and kinesin during cargo transport in vivo
[119]. This is done by tethering the molecules to phagocyted micron-sized beads (or
endogenous vesicles) that are big enough to not be affected by the cellular activity, as
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well as to be manipulated by the radiation pressure of a near-infrared laser [120, 121]
(Figure I.2c).

I.2.3.2 Passive

Or passive. This includes any combination of image-based data extraction, such as
PIV [122], with posterior simulations of theoretical models [123, 124, 125] (Figure I.2e) ;
or with inverse problems, e.g. using Traction Force Microscopy (TFM), where EC forces
are estimated by watching cells (or tissue) freely interact with deformable substrates
of known properties formed either of micro-pillars [126] or filled with fluorescent beads
[127, 128] (Figure I.2d). If the constitutive relation of the substrate material is known,
the traction forces can then be deduced from the deformation observed under the
microscope (see [129, 130] for a review). A similar approach will be taken in this thesis,
but studying cytoplasmic flows instead. In both cases, only “macroscopic” forces can
be resolved because the implicit assumption of a substrate continuum does not hold
at molecular length scales. An alternative technique on the same conceptual basis
of passive approaches, but slightly invasive, is the embedding of micro-droplets to
infer intercellular (anisotropic) stresses [131]. In more restrictive settings, notably in
vivo where human intervention is limited, the experimenter relies instead on assuming
several material properties and/or making use of force balance principles, giving rise
to methods such as monolayer stress microscopy (reviewed in [130]).

I.2.3.3 Comparison

Active methods are able to yield precise yet localised measurements at the expense
of a more complex experimental set-up and at a loss of biological relevance. Indeed,
at the present stage of miniaturisation, these techniques often hinder movement and
risk cell damage. On the other hand, passive methods offer measurements at a more
global scale albeit with less accuracy and lower spatial resolution. These approaches
constitute an area of active investigation but are still in their infancy and pose several
computational challenges. First, the physical models are more complex and often lack
generality because they are tailored to a specific context of cellular dynamics. Second,
they suffer from error propagation. And third, they are hard to validate because equi-
valent measurements are typically unavailable. However, they are non-invasive and
thus ideally suited for long-term monitoring of living cells ; and they are easier to
extend to 3D because the experimental constraints are much weaker.

We remark that physical models underlie practically all techniques discussed so far
because forces have to be assessed indirectly (Newton’s second law) by measuring other
related quantities ; most commonly, the response of well-described materials. Ideally,
all these models shy away from including any biological assumption in order to remain
most general and impartial. In this context, in silico experiments are useful to test
differing modeling hypotheses by comparing the simulated behavior of a cell or system
with experimental data. This creates a positive feedback loop that accommodates
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progressively perfecting complex whole-cell models [132]. The combination of both
approaches has been fruitful because they can be complementary [133].

As regards E. histolytica, micropipette aspiration has been used to study the role
of the membrane-cortex pair [115] during bleb-based motility [134]. Magnetic tweezers
have also been quite versatile. They have been used to study the response of the
parasite to mechanical stimuli, whereby forces exerted on the cell rear are transduced
and amplified into a biochemical signal that enhances the polarization of the cell by
way of the phosphatidylinositol 3-kinase [135] ; and also to determine the rheological
properties of the cytoplasm [136]. In this thesis, we will combine these measurements
with estimates extracted by a new method that relates cytoplasmic streaming with
several biophysical quantities within the cytoplasm.

I.2.3.4 FRET and photo-quenching

Other than invasive or indirect, a third set of gages is based on genetic engineering
(Figure I.2f). Genetically-encoded biosensors based on the Förster resonance energy
transfer (FRET) or photo-quenching are conceived to shine in response to tension
across an intracellular protein of interest or at the cell surface, but cannot report
forces between subcellular structures [137]. The results seem sensitive enough to re-
solve (non-directional) magnitudes down to the pN, but the exact range of measure-
ment and application is still controversial [138]. In addition, the calibration process
is very delicate : it requires, first, controls for protein function and environmental in-
dependence (e.g. pH) ; and, later, extensive image analysis [139] because of their low
signal-to noise ratio. These techniques are somewhat reminiscent of the cell own sen-
sors [140] whereby molecular conformational changes that lead to variations in affinity
or activity (such as unfolding, extension or reorientation) are used as force probes.

I.2.4 Microenvironments
Historically, the lack of technological solutions at the micro scale has found good

rationale in reductionism to justify 2D(/glass) experiments. However conducive this
bottom-up avenue has been to singling out the key players in morphodynamics, it has
also demonstrated that cell behavior in vivo should not be (carelessly) extrapolated
from studies performed outside the native context of the cell. Indeed, cells consider
the most variate environmental stimuli [141]. They take into account (i) multicellular
factors : in the colon, Entamoeba histolytica interacts with the polarized epithelial
barrier (enterocytes, goblet cells, etc.) by lysing integrin-ECM focal adhesions [49],
with the immune system (macrophages, T cells. . . ) by triggering a pro-inflammatory
response, and (importantly to the virulence of the disease [142]) with the commensal
microbiota through phagocytosis [143] ; (ii) biochemical cues such as cytokines, che-
moattractants, ionic and nutrient gradients, and a lot of signaling molecules resulting
from the cross-talk of all integrants ; and (iii) physical forces : e.g. shear flow can re-
program Salmonella gene expression [144] or regulate differentiation in the host [145],
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and peristaltic compression-stretch cycles have been shown to influence the outcome
of infection in Shigella [146].

Notice that the ECM has a prominent role in tissue homeostasis : it creates a
stable 3D architecture, regulates the dissemination of signaling molecules, and provides
ligands for cell receptors. Regarding the latter, the dynamic composition and stiffness
of the ECM exert a physical influence that is transduced into the cells and ultimately
influences a lot of processes, including differentiation, proliferation and migration [147].
For example, E. histolytica regulates its mode of migration according to the ECM’s
density, and only uses proteolysis against high-density matrices [148].

In vivo experiments in animal models, fresh explants or grafts are closer to real
conditions but are much more costly, difficult to handle (especially at long term) and
invariably raise ethical concerns. To facilitate experimental design while retaining phy-
siological relevance, great effort has been invested in recreating 3D microenvironments
that integrate a select (e.g. in balance with the cost) subset of relevant variables. The
implementation of these cell culture systems is diverse and ranges from co-cultures in
suspension where cells can self-organize (known as bioreactors) [149], to reproductions
of 3D structures that combine an ECM scaffold with the appropriate mix of cell lines
or stem cells (organoids) [150], and to microfabricated models that include microflui-
dics and elastic compressions to mimic active processes of organ function (organ-on-
chip) [151]. Examples of the relevance that these solutions can achieve are engineered
cultures where cells differentiate and self-assemble into tissue-like structures.

The quest for increasingly relevant set-ups has put optical microscopy to a test
[152]. For instance, the resulting multi-cellular 3D structures require higher penetration
depth and multiple wavelength acquisition, and, if the system is to be imaged live,
faster acquisition and reduced phototoxicity (e.g. lattice light sheet microscopy [153]).
Under these circumstances, manual quantification is too far-fetched (think tracking,
for example) and automatic image analysis is nigh imperative. In the latter context,
the 3D nature of the acquisition (as compared to 2D) is more a question of increased
computational complexity, stemming from the size of the data, than a conceptual
jump (safe exceptions such as geometry or spatial analysis). Anyhow, the speed of
many algorithms does not scale well with increasing dimensions and thus a lot of
techniques have to be reformulated. An additional obstacle is the lagging acquisition
speed in 3D imaging, which currently has to be circumvented via image analysis and
further burdens algorithm design [154, 155].

I.3 Identifying a research niche : image analysis for
non-invasive probing in mechanobiology

In light of the high interest of mechanobiology, we envisage that this area will be
particularly profitable in the context of BIA. While century-old studies had antici-
pated the importance of physical forces in shaping and modeling the organism [156],
only the relatively recent development of force-probing techniques has evidenced their
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far-reaching implications in morphogenesis, differentiation and migration. It is now
established that physical forces can propagate information within (and between) cells
and elicit mechanical and biochemical signals down to the metabolic [157, 158] and
transcriptional [159] pathways. The different mechanisms of mechano- transduction
and sensation span several scales ; and accordingly, the measuring range of the tech-
niques discussed in Section I.2.3 stretches from the protein to the tissue levels. However,
the final choice comes down to a combination of multiple factors : 2D/3D, in vivo/in
vitro, relative/absolute values, resolution, sensitivity, time length, cost, difficulty, etc.

Regardless of the method, many biophysical measurements remain elusive (e.g. IC
pressure gradients) or scarce (e.g. IC forces) and are frequently limited by experimen-
tal constraints. Indeed, the growing complexity of experimental set-ups in search for
biological relevance (Section I.2.4) prevents direct access to the cells and thus favors
methods that rely on least-intrusive measurements such as imaging or genetic enginee-
ring. Of course, non-invasiveness is also a requirement to study the natural behavior
of cells. In summary, there is a newfound interest for methods to measure biophysical
quantities that are reproducible, non-invasive and generalizable, especially within the
cell ; and therefore an open opportunity for the bioimaging community. Additionally,
BIA offers objectivity and reproducibility, as well as the promise of automatisation.
This is especially relevant to the increasingly higher data throughput of modern ima-
ging techniques, which often precludes manual analysis. For this reason as well, new
methods have the opportunity to build on top of the current automatic workflow :
i.e. pre-processing (denoising, deconvolution, registration, etc.), segmentation and tra-
cking ; which travels all the way from pixel information to biological quantification.

In this thesis, we propose image-based methods to quantify multiple intra- and
extra-cellular quantities such as pressure gradients, internal forces and external trac-
tion forces. We do it from the perspective outlined in Section I.1. The resulting ap-
proaches only require standard confocal fluorescence imaging and thus experiments are
non-invasive and very easy to set-up. In particular, the methods only need to observe
the movement of labelled cytoplasm and/or substrate. In short, the core of our ap-
proach is to solve an inverse problem where the temporal variation of image intensity
(describing the underlying movement) is assumed to behave like a continuum model
of the corresponding material that includes the biophysical quantities of interest. The
resulting algorithms are automatic (safe parameter adjustments) and fit well at the
end of a typical BIA workflow. In fact, our software automatises all the steps from
raw data to biophysical measurements, including cell segmentation, into a module that
is open-source and compatible with the ICY software. The intention is to provide a
ready-to-use tool for biologists to quantify cellular mechanics, and at the same time
encourage the wider bioimaging community to reproduce and extend our efforts.



II – Measuring inside the cell

II.1 BioFlow

This section of the work was developed in collaboration with Timothée
Lecomte, Maria Manich, Roman Thibeaux, Elisabeth Labruyère and Nancy
Guillén ; and supervised by Alexandre Dufour. All at Institut Pasteur. This
work is published in [160].
Given the lack of non-invasive measurements to measure intracellular quan-
tities (Section I.2), we present a framework 1 that combines optical flow and
a PDE constraint (here fluid) to estimate intracellular forces, pressure gra-
dients, velocity and out-of-plane flow. Related software is open-source and
freely available as a module in Icy. In the next section II.2 we illustrate the
method by studying amoeboid motility.

In the same context that was set up during the introduction, recent complemen-
tary approaches that exploit image analysis and computational modelling have shown

1. Disclaimer : the mathematical treatment in this initial part of the thesis is mostly expositional
as is superseded by the more general framework discussed in Chapter III. However, we respect the
historical development to be most accurate ; while remarking that this approach is still perfectly
(though not optimally) functional and a good testimony of the potential of the method.

39
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promising potential in the inference (or validation) of biophysical models from video-
microscopy data. For instance, single-cell segmentation and tracking has been used
to fit and validate theoretical models of cortical F-actin distribution during cell reo-
rientation [124]. Likewise, cytoplasmic streams estimated using PIV techniques [133]
have been further exploited to estimate the spatial distribution of intracellular shear
stress and pressure using Monte-Carlo based computer simulations [125]. An inherent
restriction to these approaches lies in the dependence of the modelling quality on the
preliminary image analysis step. In addition, these implementations are tailored speci-
fically to the theoretical model being validated, and cannot easily be applied to other
theoretical models, dimensions or cell types.

In this section, we present a mechano-imaging method that can estimate biophysical
quantities within living cells in a non-invasive manner, in two or three dimensions, by
inferring the parameters of a given theoretical model of the cell interior from the motion
information that is observable via video-microscopy. This is achieved by combining
two concepts in an integrated framework : (i) optical flow and (ii) variational data
assimilation, a highly-scalable framework designed to infer the parameters of a given
theoretical model based on a limited set of observations (known as realisations) [161].
In the present case, the theoretical model is derived from a physical model of the
cell interior comprising several parameters of interest, whereas the realisations of the
model are given by the motion information observed through live microscopy and
described by optical flow. More specifically, we use fluid dynamics to model cytoplasmic
streaming, which defines a constitutive relation between the velocity and pressure of
the cytoplasm and the forces therein. As a result, the proposed method is able to
extract intracellular velocity, while simultaneously producing an estimation of these
biophysical quantities everywhere inside the cell up to pixel resolution. In short, this
computational strategy offers a number of advantages over existing methods : 1) it
is non-invasive and relies exclusively on live microscopy data ; 2) it produces high-
resolution measurements "everywhere" inside the cell in two or three dimensions ; 3) it
is independent of the experimental context and thus easily adapts to other theoretical
models, biological specimens and imaging techniques ; 4) it is open-source and available
as a ready-to-use module for the Icy software [162].

In Section II.2, we illustrate this approach by studying amoeboid motility in En-
tamoeba histolytica , corroborating and extending both theoretical and experimental
reports. This original framework is virtually independent of the chosen theoretical mo-
del, and is therefore adaptable to the biological specimen at hand. This allows testing
and validating numerous experimental and theoretical hypotheses in a straightforward
manner.

Outline - We start by introducing optical flow, justifying its use in biological
images and presenting related literature. Second, we introduce the combined frame-
work, constraining the optical flow functional to a physical model. Next, we apply this
framework to a fluid model of the cell interior. We then dive into the numerical resolu-
tion : the Finite Element Method to solve the PDEs, the Adjoint method to compute
the gradient of the constrained functional, and L-BFGS-B to minimise the functional ;
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specific details regarding multi-scaling, segmentation and parameter estimation are
also discussed. Finally, we explain how the algorithm is automatised and implemented
in Icy.

II.1.1 Optical Flow
To take non-invasive measurements we would like to rely on classical fluorescence

microscopy : it is almost harmless, it is wide-spread, and you are most probably going
to be using it anyway. However, unless they are arduously engineered to (e.g. FRET,
see I), most biophysical quantities are not a function of emitted light. Instead, light
usually indicates position, for example of labelled proteins or fluorescent beads and
dies. Could we infer the underlying forces at stake solely from the distribution of any
such markers ? Precisely ; rheological studies gather experimental data regarding the
response of a substance (position) to stimuli (forces) in order to build a constitutive
set of equations. Most such constitutive relations are not concerned by position alone,
but rather by its change, either in time (e.g. viscous fluids) or with respect to a resting
state (e.g. elastic solids). Therefore, if we could automatically extract motion from
sequences of fluorescence images we could then use a suitable constitutive equation to
deduce the biophysical quantities of interest. Of course, we can only capture so much
of the real movement, specially when working on 2D images 2. To reflect this fact, the
apparent motion as observed from the variations of intensity in a video sequence is
called optical flow. Still, that is not to say we cannot extract a rich characterization
of the underlying movement. In fact, microscopy images do not have it bad : in 2D
they are usually orthogonal projections of the sample plane on which most motion
occurs, and 3D z-stacks are only time lagged. Nevertheless, in this work we will try to
account for some of these apparent-to-real differences by considering the thickness of
a confocal slice as well as out-of-plane motion (respectively in chapters III, II).

As presented in the Introduction (I), there are three main approaches to follow
the apparent movement in an image sequence 3 : tracking multiple particles and ex-
trapolating the motion (feature-based) ; statistically correlating small windows bet-
ween consecutive images (correlation-based) ; and exploiting partial derivatives to pose
conservation laws (differential), for example assuming that the intensity of whatever
is moving is preserved (optical flow constraint enforcing methods or OFs hereafter).
Respective pros and cons of these techniques are as follows. Feature-based methods
can extract high-frequency movement, but break down when the density increases or
there are no persistent features. Correlation-based techniques adapt well to intensity

2. Think of a faraway plane flying much faster than it would appear in you camera.
3. There is a big conflict regarding the naming of techniques. Indeed, many authors will use the

name "PIV" to refer to correlation-based techniques by opposition to techniques that exploit the
so-called optical flow constraint (defined below), which are then referred as "optical flow". Originally,
PIV stands for "particle image velocimetry" and refers broadly to the study of flows by seeding
markers, whereas optical flow was meant as defined above. Thus, technically, both correlation-based
and optical-flow-constrain techniques are PIV and measure optical flow.
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variations, but are strongly dependent on the window size : each correlated window
has a uniform displacement associated which is decided independently of the rest. OFs
are able to consider the motion globally and thus can deal with higher noise and a wide
range of densities ; they can also fill missing information by combining this globality
with some prescribed prior knowledge. However, they are not the best at picking up
high frequencies, they are not well-posed, and they often result in non-convex problems
(see [8] for example). In the context of biological images, OFs have been repeatedly
shown to outperform its competitor techniques not only in accuracy, but also in speed
[163, 164]. Accordingly, we will be using OFs along this thesis.

Figure II.1 – Schematic of the optical flow constraint. The velocity or displacement
between two consecutive images (left-most and right-most) is extracted by assuming that
intensity is conserved, here that is black pixels are to be mapped to black pixels and white
to white. The central left drawing corresponds to the real mapping, but the other possible
map (on the right) also preserves particle intensity even if the arrows are all scrambled. In
a way this illustrates the need for a regularisation.

To be concrete, OFs aim at estimating a displacement (or velocity) field represen-
ting the transport of information (here pixel values) between consecutive image pairs.
To this end, the method assumes that the pixel intensities are simply advected from
one frame to the next without loss (Figure II.1). In other words, any moving particle
in the image sequence has a constant intensity along its trajectory. More formally :

DtI = 0, (II.1)

where Dt• := ∂t •+u · ∇• with u := dx/dt is the material derivative usually present
in the Lagrangian (as opposed to the Eulerian) specification of a flow field ; with
I : O×T −→ R where T ⊂ R stands for the time and O ⊂ RdO , typically dO ∈ {2, 3},
for the image domain. This is known as the optical flow constrain. Since all the particles
present on the image must abide by this rule, we can write the problem in a variational
form : minimise the functional 4 ‖DtI‖2

O. However, we only have images at discrete time
points and are thus interested in discrete displacements. We integrate II.1 accordingly :

I(x + u∆t, t1 + ∆t)− I(x, t1) = 0, (II.2)
4. NOTATION : we use 〈•, •〉∗ to notate the L2 inner product of the appropriate dimension over

a domain ∗, and ‖ • ‖∗ the induced norm. For example, 〈∇u,∇v〉O =
∫

O∇u ..∇v with the Frobenius
tensor product ∇ui,j∇vi,j or 〈u,v〉O =

∫
O u · v with the dot product. Occasionally, a ? in 〈•, •〉∗,? is

used to indicate an inner product other than the default L2.
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where the images at both time points are precisely our discrete images I1(x) = I(x, t1),
I2(x) = I(x, t1+∆t) because ∆t is the acquisition lag. That is, if we warp image I2 with
the displacement map, we should recover image I1. However, the resulting problem is
highly non-linear and leads to a non-convex minimisation : ‖I2(x + u∆t)− I(x)‖2

O. To
convexify the problem, we can linearise it by truncating its Taylor expansion :

u · ∇I2 + I2 − I1

∆t
= 0. (II.3)

While the derivation might feel loopy because it brings us back to the differential
conservation we started with, it gives a good feel for what is going on. Just as in
a physically-derived PDE, we have passed by both the local conservation differential
form and its associated integral form. Finally, we can pose the associated minimisation
problem, this time around with the term

Jdata :=
∥∥∥∥u · ∇I2 + I2 − I1

∆t

∥∥∥∥2

O
, (II.4)

which is convex. However, notice that we are shuffling around a single equation, but
we have as many velocity components as image dimensions : the system is under-
determined. In fact, we can only deduce the component of the motion that is normal
to the isophotes 5. Consequently, the minimisation problem is ill-posed. This is known
as the aperture problem. To tackle this issue, we must specify the problem further
so that the solution becomes unique. However, let us first discuss two extra problems
that afflict OFs.

Linearisation - The linear approximation in (II.3) is only valid for small displace-
ments. One approach (used in this thesis) is to consider a multi-resolution pyramid and
solve the problem at increasingly bigger resolution, i.e. making a lot of small steps. A
possible alternative, albeit daunting, would be to solve the non-convex minimisation,
for example using convexification techniques.

Brightness constancy - Even though (II.1) is based on intensity conservation, there
are many reasons this might not hold and thus one might want to relax the constraint.
For instance, one could allow affine variations of the intensity in time to try and
accommodate changes in light/shade conditions [165, 166]. On a similar note, the
equation can be modified to reflect any information we might have regarding the origin
of the sequence. For example, conservation of mass can be used to derive a slightly
different constraint in meteorological imaging [167]. In a conceptually similar way, in
Chapter III we derive a model-based conservation equation for confocal microscopy.

5. Think of an image with an intensity gradient that is perfectly parallel to one of the axis, we
can only hope to know how fast things are moving in that direction. If particles were to move in the
perpendicular direction we would not notice : we could not tell them apart because they all have the
same intensity.
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II.1.1.1 The aperture problem

We now discuss one of many options to tackle the aperture problem. However, let
us brush over another alternative for the sake of comparison ; for example, one option
is to impose that the gradient of the intensity is simultaneously conserved, which yields
additional equations but prevents rigid transformations and decreases the tolerance of
the method to noise. The approach we focus on is to regularise the velocity field (Figure
II.1). This is by far the most popular approach, perhaps because of its generality. In
this case, the idea is to solve

argmin
u

Jdata + Jreg, (II.5)

where we can determine how much weight we give to being true to the data in Jdata
with respect to the prior regularising knowledge imposed in Jreg by making the latter
proportional to a tunnable constant α ∈ R≥0. The seminal regularisation approach
[109] was to impose first-order spatial smoothness 6,

Jreg = α‖∇u‖2
O, (II.6)

but many other less-arbitrary regularisations have been proposed since then. Some
authors have penalised either the curl or divergence of the flow 7, or their higher-order
derivatives [168, 169]. Other literature has attempted to preserve discontinuities on the
flow (i.e. removing noise while conserving edges) [170, 171] by using the L1 norm and
working on the space of bounded variations [172]. A more recent approach is to help the
regularisation using physically-inspired constraints [173], this is specially fruitful when
considering several images at once as it is easier to achieve some form of spatiotemporal
consistency. This is the case of several efforts, for example to exploit the shallow water
equation for meteorology [174] or the vorticity transport equation [175], which are then
constrained with an additional data fidelity term and an accompanying regularisation
term. In line with our quest to extract biophysical quantities, in this thesis we take
a similar approach, but with an aim that is completely opposed : we are interested
in the physics, and optical flow is just a tool. This also tackles a classic limitation of
OFs, namely that most methods do not take the underlying transport mechanism into
consideration.

II.1.2 Theoretical framework
Here, we adapt and extend the standard optical flow constraint framework to bioi-

maging data using the theory of Optimal Control [176]. The general idea is to constrain
the estimated displacement by a theoretical model of the observable motion defined

6. If the intensity is well-behaved, this yields a strictly convex and quadratic functional, and a
well-posed problem.

7. Perhaps this could be formalised from the perspective of Helmholtz’s decompositions.
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by a number of so-called “control” variables c, which are estimated concomitantly.
Formally, the minimisation problem becomes the following :

argmin
c

(Jdata(u(c)) + Jreg(c)) , subject to A(u, c) = 0. (II.7)

In other words, the goal is to match a dynamical observation (the temporally-
varying image signal) with a given theoretical model of the intracellular material,
whilst jointly estimating its parameters (the biophysical quantities of interest). This
strategy offers two major improvements over existing image-based approaches. Firstly,
the regularisation term Jreg can be specifically tailored to the problem at hand, while
eliminating arbitrary smoothness constraints that may not always hold experimen-
tally. This includes the possibility of regularising on the control variables, which might
be more physically sensible. Secondly, solving this problem readily provides estimates
for the biophysical quantities that minimize the cost function, without the need for
additional simulations or model-fitting steps. This data assimilation strategy is parti-
cularly appealing since it is independent of the control parameters or theoretical model
chosen, and can therefore be applied to a wide range of analogous problems in biology.
It also eliminates the two-step approach of many algorithms whereby data assimilation
and modelling are de-coupled and thus the information is regularised twice (see for
example TFM in I).

The proposed framework is able to extract biophysical parameters integrating opti-
cal flow and data assimilation, we name it BioFlow. This method is straightforward to
implement experimentally as it requires only two inputs : 1) time-lapse imaging data of
intracellular dynamics (typically obtained by labelling the intracellular material with
fluorescence), and 2) a theoretical model of the observable motion. In the remainder
of this work we illustrate the use of BioFlow to study amoeboid motility using a fluid
dynamics approach to model cytoplasmic streaming, while we stress that this frame-
work is sufficiently generic and flexible to adapt to virtually any experimental context,
given these two inputs.

II.1.2.1 Case study : modelling cytoplasmic streaming using fluid dyna-
mics or panta rhei 8

In the context of fluorescent microscopy sequences, the fluorescence emitted by
cellular structures is considered as the information that is transported (or advected)
by the cell material, which is reflected on the optical flow. In a first application of
the method, we model cytoplasmic streaming, i.e. the flow of cytoplasm within a
cell. To this end, we consider any fluorescent protein that is in suspension within
the cytoplasm.We suppose that the resulting observable motion of this protein bulk
describes that of the cytoplasm "everywhere" inside the cell during its movement, and

8. Fluid/solid behavior sometimes depends on the time scale. Even rocks can behave as fluids at a
very large time scale. In fact, salt tectonics are sometimes modeled with incompressible Stokes models
in the context of seismic imaging.
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thus constitutes a good input for the algorithm. Having covered the first "input", we
now tackle the second "input", the theoretical model. In this case, we ask whether our
method could extract the intracellular velocity, pressure gradients and forces driving
cytoplasmic flow.

O

K
K

u

2D

K
K

3D

Figure II.2 – Schema of BioFlow.

a) Theoretical model of the cytoplasm. We model the observable intracellu-
lar material as a single-phase homogeneous fluid, neglecting for now the influence of
organelles such as the nucleus and intracellular vesicles, following previous work [136].
The dynamics of a single-phase fluid are governed by the Navier-Stokes equations.
Two important figures define the regime of solutions for these equations : the Rey-
nolds number Re = ρV L/µ (ρ : density ; V : velocity ; L : characteristic distance ;
µ : viscosity) and the Mach number M = c/c0 (c : characteristic speed ; c0 : speed of
sound). The Reynolds number is very small in cells (of the order of 10−5, see Chapter
I), implying that the flow is laminar and that the material derivative (including both
time-variation and convection terms) in the Navier-Stokes equations can be neglected.
In other words, inertia plays no role at the cell scale [32]. The Mach number is small
enough such that the fluid can be considered incompressible. Finally, while the cy-
toplasm is generally considered visco-elastic rather than purely viscous, the elasticity
component essentially affects deformations at short time-scales, and therefore has a
negligible impact on whole-cell movements at longer (decisecond to second) time-scales
[177]. Of course, the time scale depends on many factors, notably the cell type, but
can be somewhat regulated by the acquistion set-up. Given these assumptions, the cell
medium can be considered as a Newtonian fluid governed by the Stokes equations :
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∇p− µ∆u = f in K
∇ · u = 0 in K (II.8)
u = g on ∂K

where f are the local forces (per unit volume) acting on the cell medium, g is the boun-
dary velocity, andK is the domain corresponding to the cell interior. The first equation
expresses the balance of all the forces acting on the fluid : the first term corresponds to
viscous drag (the laplacian acts as a neighbourhood averaging operator on the velocity,
i.e. the fluid elements drag each other), the second term is the pressure gradient, and
the third term accounts for the sum of all other forces, be they internal (e.g. contrac-
tility due to myosin activity) or external (e.g. gravity). The second equation indicates
that the flow is not divergent, or equivalently that the fluid is incompressible and the
mass is conserved. The third equation corresponds to the boundary condition (Diri-
chlet conditions in the present case). This set of partial differential equations (PDEs)
defines the candidate model A in Equation II.7. It is worth stressing that the model
presented here simplifies the numerical complexity of the problem (with respect to
non-linear models for example), yet the proposed methodology is highly generic, and
is easily adaptable to any fluid dynamics model of the intracellular material.

b) 3D : the general case. Given 3D imaging data and the aforementioned fluid
dynamics model, we are able to recover the intracellular velocity, pressure gradient
and forces from the observable motion of intracellular material by solving the following
problem :

argmin
f,g

(Jdata(u(f,g)) + Jreg(f,g)) , subject to A(u, p, f,g) = 0 (II.9)

where

A(u, p, f,g) =


∇p− µ∆u− f in K
∇ · u in K (II.10)
u− g on ∂K,

and with the image domain of Jdata restricted 9 to K ⊂ O. The regularisation term
reads

Jreg(f,g) = α‖f‖2
K + γ‖g‖2

∂K , (II.11)
where α and γ are non-negative empirical weights that regulate the balance between
the fidelity to the data Jdata and the prior (or imposed) knowledge Jreg. In this case, we
use the L2 norm to regularise both the force 10 and the boundary velocity. Alternati-
vely, we have also regularised the gradient of the velocity along the boundary ‖∇‖g‖2

∂K ,

9. The image gradient is computed on the whole image and only restricted after.
10. See Chapter III for an interpretation of the action of a similar regulariser as a filter.
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where ∇‖g := ∇g − (∇g · n)n with n the normal of ∂K. In optimal control terms,
the velocity u and pressure p describe the state of the system, and are controlled
by the force f and boundary condition g via A = 0. Solving this problem numeri-
cally (see II.1.3) produces estimates for these quantities simultaneously in the entire
(labelled) intracellular domain (Figure II.3). Again, we stress that this theoretical for-
mulation can accommodate virtually any model for the cellular material, by adjusting
the constraint model A and the regularisation Jreg(f,g).

c) 2D : handling out-of-plane flow 11

While we designed the method for the general case of 3D imaging data, we recognise
that live cell imaging in 3D may raise technical limitations, either by compromising
cell viability due to photo-toxicity, or by being too slow. Acquisition speed is specially
relevant in z-stacks because it increases the time lag between consecutive z-images
that "theoretically" belong to the same time point. In case 2D imaging is preferred,
conservation of mass between consecutive images is no longer a valid assumption, due
to the appearance and disappearance of intracellular material in and out of the imaging
plane of focus. We therefore amended our model in 2D to compensate for this artefact.
This is achieved by introducing an additional term r that estimates the divergence of
the observed flow from the image data and relaxes the incompressibility assumption.
Under this condition, the general problem to solve is

argmin
f,g,r

(Jdata(u(f,g, r)) + Jreg(f,g, r)) , subject to A(u, p, f,g, r) = 0 (II.12)

where the candidate model A becomes

A(u, p, f,g, r) =


∇p− µ∆u− f in K
∇ · u− r in K (II.13)
u− g on ∂K,

and the functional needs to be regularised accordingly, i.e. :

Jreg(f,g, r) = α‖f‖2
K + γ‖g‖2

∂K + η‖∇r‖2
K , (II.14)

where η is a new non-negative weight. Note that ‖∇r‖2
K could also be replaced by

‖r‖2
K , should r be assumed small. This new 2D problem is then numerically solved in

the same way as the general 3D case, but with one additional control variable (and thus
derivative direction). It is worth noticing that r is a measure of out-of-plane motion.
Given that the fluid is considered incompressible, and assuming that fluorescence does
not degrade between consecutive images, the actual 2D fluid motion cannot diverge
(∂ux/∂x + ∂uy/∂y = 0) and thus r = −∂uz/∂z reflects the flow in the z-direction. In
fact, the volume of fluid leaving the imaging plane between two images is ∆t

∫
K uz dK,

11. In Chapter III we present a way to compensate for the thickness of the laser slicing, which in-
duces mixing of on-plane and out-of-plane information. These two methods are not mutually exclusive,
but rather complementary because they deal with two different error sources.
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Figure II.3 – Overview of BioFlow (a-c) BioFlow in 2D. (a) Two consecutive frames of
a 2D time-lapse microscopy sequence ; scale bar : 10µm. (b) Cell contours extracted from
the first (black) and second (grey) frames, and streamlines of the extracted velocity field
(integrated using a Runge-Kutta 4 algorithm, see Section II.3). (c) From left to right, esti-
mated 2D intracellular pressure p (Pa), out-of-plane flow r (s−1), forces f (nN/µm2) and
velocity u (µm/s). (d-f) BioFlow in 3D. (d) Axio-lateral slices of two consecutive frames
of a 3D time-lapse microscopy sequence. (e) Top row : 3D volume rendering of (d) ; grid
spacing 2µm) ; Bottom row : Cell contours extracted from the first (black wireframe) and
second (solid mesh) frames. (f) From left to right, sliced view of the estimated 3D intracel-
lular pressure, forces and velocity (the velocity field is displayed as streamlines for better
visualisation). Taken from [160].

while the change in cell area is ∆t
∫
K r dK. From a Dynamical Systems perspective,

the fact that this model does not heavily enforce the conservation of mass permits the
creation of velocity sinks and sources, instead of relying exclusively on saddle points.
The effects of the out-of-plane reformulation of the problem is illustrated in Figure
II.4. We note that we have considered K ⊂ O. This is certainly more justified in the
3D case than it is in a 2D projection, which comes back to the issue of apparent motion
as defined by optical flow 12.

d) Fluid stress. The stresses within the cytoplasm and at the boundaries, where
some contraction occurs, are also of biological relevance. The stresses can be computed
from the resulting state variables u, p [178, 179]. In particular, the Cauchy stress tensor
in the isotropic incompressible Newtonian case,

σ = −pI + τv, (II.15)

can be divided into the hydrostatic stress tensor −pI that tends to "change the volume"
of a body as in a expansion or compression, and the deviatoric stress tensor τv :=
2µε(u), which here is traceless and describes a distortion of the body by means of
the strain rate tensor ε(u) := (1/2)(∇u + (∇u)T ). In addition, σi,j are called normal
stresses when i = j (the mechanical pressure is the mean normal stress p = −σi,i), and
shear stresses when i 6= j. Notice that since the fluid is incompressible, the viscous
stress does not have any compressional contribution (∝ ∇ · u I). Therefore, only the
pure shear tensor, which is proportional to the shear strain rate tensor in Newtonian
fluids, is left.

While these are the general stress tensors, stress on the boundary might be particu-
larly interesting in some biological settings. The stress vector T(n) across an imaginary
surface defined by the unitary normal n can be computed as T(n) := n · τv, and de-
composed into the normal T(n)

v,n := (T(n) ·n)n and tangential T(n)
v,s := T(n)−T(n)

v,n com-
ponent. Their magnitudes are respectively : τv,n := T(n) ·n and τv,s :=

√
(T(n))2 − τv,n.

12. We address this topic in Chapter III. See footnote 11 for further details.
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Figure II.4 – Estimation of out-of-plane flow in 2D. a) Two consecutive frames of a
2D time-lapse microscopy sequence displaying out-of-plane motion ; Scale bar : 10µm. b-c)
Cell contours extracted from the first (black) and second (grey) frames, and streamlines
of the extracted velocity field without (a) and with (b) estimation of out-of-plane flow. d)
Estimated out-of-plane flow r (s−1) ; negative (resp. positive) values correspond to material
leaving (resp. entering) the plane. Taken from [160].



52 Chapitre II. Measuring inside the cell

As a reference, we take the example of a standard horizontal infinite pipe with a
flow along the x-axis and the cross-section on the y − axis. The components of
the stress on the walls (with normal n = (0, 1)) are then τv,n = 2µ∂uy/∂y and
τv,s = µ(∂uy/∂x+ ∂ux/∂y) = µ∂ux/∂y.

II.1.3 Numerical resolution

Solving the problem defined in II.7 entails minimising a functional (II.11 or II.14)
constrained by a system of partial differential equations (PDE) with non-zero boundary
conditions (II.11 or II.13 as A = 0). The minimisation process provides an estimate for
three quantities, namely the force field f, the boundary velocity g and the divergence
r in 2D (hereafter we refer to this set as m := (f,g, r)), while the velocity u and
pressure p are obtained by solving the PDE for a given m (hereafter θ(m) := (u, p)).
A classical solution to the constrained minimisation is to transform the problem into
an unconstrained optimisation framework by introducing Lagrange multipliers [176]
and deriving the associated optimality system. Unfortunately, attacking the resulting
system directly does not scale well when the number of unknowns is large. In particular,
m contains two vector fields and a scalar, all defined on a grid with a size depending
on the spatial resolution of the acquired images, which is potentially large. In such
situations, many approaches are computationally untractable.

Here we adopt gradient descent, which is numerically simpler and theoretically
robust because the functional is convex and well-posed in principle (m is regularised
and the PDE is linear). Implementing gradient descent comprises two main steps,
which are repeated sequentially until convergence : 1) computing the functional J
(which requires solving the PDE system for a given m), and 2) computing the gradient
of J , which provides a direction in the parameter space m where a better solution can
be found.

II.1.3.1 Evaluating the functional by solving the PDE : the Finite Element
Method

Computing J requires solving the so-called forward problem defined by expression
II.13 as A = 0 : calculate θ = (u, p) given m = (f,g, r).

To avoid potential numerical round-off errors due to working with both small and
large numbers, and to assess the importance of each term in the equations, we rewrite
the system into a dimensionless form by posing the following change of variables :
x = x∗l, y = y∗l, z = z∗l, t = t∗∆t p = p∗ µ

∆t
, f = f∗ µ

∆tl
, u = u∗ l

∆t
, r = r∗ 1

∆t
, g = g∗ l

∆t
,

where l is the length scale defined by the size of the image (arbitrarily taken as the y
length) and ∆t the acquisition lag. Furthermore, to simplify the resolution, we modify
the problem such that it has zero-boundary conditions, by posing u∗ = u+u0 (while we
write it u as before, this one is dimensionless, and so is u0). With these new variables,



II.1 BioFlow 53

equation II.13 becomes :
∇p−∆u = f + ∆u0 in K
∇ · u = r −∇ · u0 in K

u = 0 on ∂K
u0 = g on ∂K

(II.16)

Another possibility to deal with the boundary condition would be to apply Nitsche’s
method 13. In any case, equation II.16 cannot be solved analytically. We therefore relax
the problem by deriving its so-called weak variational form. The idea is to integrate the
first (force balance) equation and the second (conservation) equation over the domain
of interest, weighted by some test functions v, q :

w := a(u,v) + b(v, p) + b(u, q)
=

∫
K
∇u ..∇v +

∫
K
p∇ · v +

∫
K
q∇ · u, (II.17)

L := −
∫
K
∇u0

..∇v +
∫
K
f · v−

∫
K
q∇ · u0 +

∫
K
qr,

where the pressure sign is switched for stability. Our goal is now to find a pair of
trial functions velocity and pressure (u, p) belonging to some mixed space V ×M =
H0

1(K)n×L2(K) such that w = L for all test functions v and q belonging to V ×M .
While this reformulation is valid, solutions may exist without necessarily satisfying the
original system of equations. This is however a reasonable simplification, given that
many laws of physics expressed in terms of differential equations are often derived from
their original integral form. For example, the incompressibility equation ∇ · u = 0 is
derived from the continuity equation

∫
K ∇·u = 0 originally expressing the conservation

of mass (and recovered in equation II.17). In fact, given that a is a continuous coercive
bilinear form and b is a continuous bilinear form satisfying the LBB condition, the
Brezzi splitting theorem [180] states that, given a reasonable triad f, u0 and r, a
unique solution to this problem exists.

To solve this new problem numerically, we take advantage of the fact that the weak
mathematical formulation is compatible with the Finite Element Method (FEM) [181].
Applying the FEM consists in dividing the domain K in smaller subdomains that are
modelled by simpler equations. These can then be reassembled into a larger system that
models the weak formulation of the full problem. This is achieved here by discretising
the function space, representing our trial and test functions using a basis of piecewise
polynomials. Piecewise functions guarantee that each subdomain depends only on its
neighbors, while polynomials provide a good local approximation. In our case, the sta-
bility of the solutions of the Stokes equations is ensured using a specific combination of
these finite elements [182]. That is Taylor-Hood elements [183], where the velocity and
the pressure are respectively described as piecewise quadratic and linear polynomials,
ensuring that the discretisation of the weak form is stable and well-posed. Finally,

13. A more flexible approach that is implemented in Chapter III.
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by substituting the discretised functions in the weak formulation (equation II.17), the
problem reduces to solving a very sparse linear system of equations. In particular, To
solve the weak problem for θ we use a very flexible and high-level FEM library called
FEniCS [184, 185]. The linear system resulting from the FEM method is symmetric
indefinite and we solve it using the minimum residual (MINRES) iterative method
with

∫
K ∇u ..∇v+

∫
K pq as preconditioner. Once θ is known, computing J from θ and

m is straightforward. Finally, the PDE constraint A = 0 must be now understood as
w − L = 0.

II.1.3.2 Computing the gradient of the functional : the Adjoint method

The second step involves computing the gradient of J with respect to the control
functions (dJ/dm, i.e. dJ/dg, dJ/df and dJ/dr), which is specially expensive for high-
dimensional problems. A classical finite difference approach would be computationally
intractable, since it involves computing J (and thus solving a PDE) several times for
each of the many degrees of freedom in m. Instead, we use the adjoint method [161],
which can compute the derivative of the functional with a fixed cost with respect to the
size of m. The adjoint method can be approached from two different angles : derive the
adjoint equations from the infinite problem written in the weak formulation, and then
discretise them ; or discretise the weak formulation first and directly derive the adjoint
system in its discrete form [186]. In theory, these two approaches should be consistent in
the limit of infinite mesh resolution, but the underlying conceptual differences become
relevant in the finite case. Discretise-first computes the exact gradient with respect
to the (discrete) functional, and is conceptually straightforward (i.e. mechanic) to
implement, which has led to heavily automatised libraries. Conversely, discretise-last
highlights the underlying physical meaning of the adjoint system, and is simpler to
program, all while requiring less memory. In this first part of the thesis, we chose to
take a discrete-first approach. Very simply put, the adjoint method consists in using
the chain rule and the dual space on A := w − L and J :

dJ(θ(m),m)
dm

= ∂J

∂θ

dθ

dm
+ ∂J

∂m
= −λ∗∂A(θ,m)

∂m
+ ∂J

∂m
, (II.18)(

∂A(θ,m)
∂θ

)∗
λ = ∂J

∂θ

∗
, (II.19)

to avoid computing the total derivative dθ/dm, which has the size of the state space
times that of the control space, and instead compute the adjoint variable λ of size
the state space. This can be achieved by first solving equation II.19 for λ, and only
then computing the gradient via equation II.18. Notice here that the adjoint operator
(∂A/∂θ)∗ corresponds to the linearisation of the PDE A about the solution θ and
therefore equation II.19 is very similar to the linearised forward PDE system. In Annex
A we offer some informal intuition on the adjoint approach. In summary, computing
the gradient of J at m consists in 1) solving the forward PDE (II.17) for θ given m ; 2)
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solving the adjoint system (II.19) for λ given θ and m ; and 3) assembling the gradient
with (II.18).

The discrete approach taken here is automatised by the dolfin-adjoint library
[187, 188]. Similarly to how automatic differentiation uses the chain rule to compose the
derivative of a model from the individual derivatives of each of its sequential elemen-
tary operations, the dolfin-adjoint library is able to differentiate sequences of equation
solves by exploiting the high-level abstraction of the FEniCS FEM library. The reason
behind choosing such an automatised process was to fully exploit the flexibility of the
method proposed in section II.1.2 : any model could be plugged in in its weak form and
be automatically constrained to the optical flow equations ; the problem would then be
minimised by deriving the corresponding adjoint equations (also) automatically. This
strategy was indeed very convenient to try out different formulations, and we have
later checked it to be reliable and accurate by comparison to a few implementations
of the full continuous model. Of course, successful tests were performed previously by
comparing the resulting gradient of the discrete adjoint system to finite differences of
the original functional J . Yet, however much is gained in flexibility by automatising
the derivation of the adjoint of any model, is lost in flexibility as regards tailoring
the optimisation. This difficulty includes (but is not limited to) the discretisation of
the adjoint, taking any approximations that might help convergence, and computing
higher derivatives. For instance, in Chapter III we capitalize on the continuous ap-
proach to examine the Hessian of the associated optimal control problem. In this way,
we accelerate convergence by formulating Newton’s method, which requires approxi-
mating the resulting expression so that it is positive definite (e.g. in total variation
regularisation) and choosing an appropriate preconditioner. The influence of the data
and the regularisation weights can be studied from the eigenvalues of the Hessian. In
addition, the same Hessian opens the door to some Bayesian analysis. In other words,
we switched to a functional analysis (and more manual) approach in order to refine
our framework.

II.1.3.3 Minimisation of the functional using L-BFGS-B

To drive the gradient descent through control space, we use the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) algorithm, a quasi-Newton method ; that is a method that
iteratively approximates the Hessian from gradient evaluations (here provided by the
adjoint method). However, the secant equation

B∆m = dJ(θ(mk + ∆m),mk + ∆m)
dm

− dJ(θ(mk),mk)
dm

(II.20)

(where k indexes the optimisation step) is under-determined in multiple dimensions so
the solution has to be further constrained. In particular, BFGS looks for an approxima-
tion Bk that not only fulfills the secant condition (i.e. the approximation coincides with
the finite difference of gradients at this step size, see (II.20)), but also is symmetric, po-
sitive definite, and minimises the change w.r.t. to the previous Hessian approximation
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under the Frobenius norm : Bk+1 = argminB ‖B− Bk‖. The resulting analytic matrix
can be inverted using the Woodbury formula, yielding a clear update rule that can be
consulted in the literature. More precisely, we use the limited-memory (L) version of
BFGS that also handles box (B) constraints, L-BGFS-B. Since the functional is convex
and the PDE constrained by f is linear, the Hessian should be positive definite and the
Hessian approximations computed by BFGS should converge to the actual Hessian.

II.1.3.4 Multi-scale analysis for large displacements

When displacements between consecutive images I1, I2 are too large (e.g. typically
when the imaging frame rate is insufficiently high compared to intracellular move-
ments), the assumption that displacements are small and local (II.3) is no longer
valid. To handle these situations, a multi-scale strategy is used [189] : a coarse-to-fine
pyramid of sequences is obtained via iterative Gaussian filtering coupled with down-
sampling until a sufficiently coarse scale is reached (i.e. where the largest observable
displacement is no more than one pixel). The displacements are first evaluated at a
coarser scale (uw) and then propagated to the next scale by : 1) warping the image
to a new grid (Iw := I2(x + uw∆t)) and 2) adjusting the data attachment term Jdata
accordingly : ∥∥∥∥(u− uw) · ∇Iw + Iw − I1

∆t

∥∥∥∥2

K
. (II.21)

This two-step process is then iterated from the coarsest scale until the finest scale
is processed (see Figures II.6 and G.2). The resulting method is capable of handling
arbitrarily large displacements. In practice, we use the dimensionless variables and
splitting scheme (as written in (II.16)) and thus (II.21) becomes

‖(u + g− (uw + gw)) · ∇Iw + Iw − I1‖2
K , (II.22)

where I can be normalised at will because the constant would affect all the functional
equally.

II.1.3.5 Automatic estimation of functional weights

The result and quality of the estimated variables depend on the choice of the
empirical weighting factors in equations II.11 and II.14. Small values of α, γ, and η
will tend to over-fit the difference between image pairs, including the experimental
noise, and may favour the estimation of large forces. Conversely, large values of α or
η (e.g. compared to γ) will either constrain the estimated forces or disregard the out
of plane motion, which might no longer describe the observed movements correctly.
In order to adjust these parameters in a less biased manner, we employ an automated
strategy that selects, for a given image pair, the parameter set that best predicts
the previous and following images 14. In practice, this defines an error measure to be
14. In Chapter III, we introduce two different criteria that are based only on the current time point

and that are better motivated.
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Figure II.5 – Automatic parameter estimation. Illustration of the dependency of the
ADCE error measure on the empirical model parameters α and γ (see equations II.11 and
II.14). The optimal parameter values are the minimum of each curve. Taken from [160].

minimised, which is known as the Average Data Constancy Error (ADCE) [190] :

ADCE =
∑
i

(
Ii−1 − Îi−1

)2
+
∑
i

(
Ii+2 − Îi+2

)2
, (II.23)

where Îi−1 is estimated by propagating Ii backwards using−u∆t , while Ii+2 is obtained
likewise by propagating Ii+1 forward with u∆t.

The minimum ADCE can be found using a fast derivative-free minimisation al-
gorithm such as the Brent method [191]. Given that multiple parameters must be
estimated simultaneously, we apply a two-step process, which we illustrate here for γ
and α, regularising the force field. We first estimate γ and g using the unconstrained
optical flow. Secondly, we run a second estimation for α and f with the constrained
optical flow, keeping g constant. Thirdly, we fix the estimated α and γ and conduct a
final joint estimation of f and g to refine the results.

Although the ADCE criterion is not guaranteed to be convex neither in α nor γ, we
have found in practice that this criterion behaves well (its shape is close to parabolic)
when either parameter varies on a logarithmic scale between reasonable bounds (see
Figure II.5). In our experiments, we noted a range for α where the ADCE reaches a
local plateau, indicating that any value within this range is equally satisfying. This
behaviour is directly linked to the definition of the Stokes system (equation II.8).
Indeed, the images are linked by u, which is the first term of the first Stokes equation.
There are however two possible ways to compensate µ∆u for equality (either via ∇p
or via f), and α defines the balance between the two. We assume here that the cell
favours small interior forces to minimise energy consumption (letting the pressure
gradient become comparatively large [134]), and therefore select the largest value of α
on that plateau to favour a large pressure gradient and small internal forces.
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II.1.3.6 Cell segmentation : edge and region-based active contours

To segment the cell domain K on each image O of the time sequence we use yet
another variational method. In particular, we use the piece-wise constant "Chan-Vese"
[61] version (here the constants are IK and IKC ) of the more general Mumford-Shah
[192] partitioning problem, but modified to include edge information. That is we com-
bine region-based and edge-based terms. The functional and associated minimisation
problem can be expressed as a weighted (λ, ν ∈ R≥0) combination of energies

argmin
K,IK ,IKC

‖I − IKC‖2
KC + λ ‖I − IK‖2

K + ν
∫
∂K
gI , (II.24)

where the complementary is taken with respect to the image superset. Notice that if
K is fixed, IK(K) and IKC (K) correspond to the mean intensities of their respective
domains, and thus we can use an alternating scheme. gI is an edge detection function
based on intensity variations, for example as given by the gradient magnitude ∇I :
gI := 1/ (1 + ρ|G ∗ ∇I|) [193], where ρ ∈ R≥0, the gradient is convoluted with a
progressively-finer Gaussian filter G to blur away local minima, and the function is
set up so that it is minimised when the gradient blows up at an edge. Even though
the same edge-detector can act as a regulariser, e.g. the surface area [61] (or curve
length)

∫
∂K 1 is minimised for ρ = 0, some extra regularisation of ∂K is sometimes

desirable. In such cases, we can impose an extra smoothness constraint, for example
on the curvature :

∫
∂K κ

2. An extra volume (or area) constraint (
∫
K 1− V )2 can also

be added to enforce some temporal regularity by comparison to a reference volume
V that is extracted as an averaging function of previous volumes. Finally, extending
the problem to multiple cells (known as multi-phase) is the result of summing the
individual functionals and avoiding collisions by adding additional terms that frown
upon any overlap of the regions :

∫
Ki∩Kj

1. To be a bit more intuitive, problem (II.24)
is, in some sense, looking for the best approximation of the image that can take only
two values (the data-fitting terms express the distance to the original image), but
with some edge information that aims at regularising the problem into uniqueness or
to reduce the influence of noise.

In this work, we implement active contours (Figure II.6) as presented in (II.24) with
some small regularisation of the surface via curvature, and extended to the multi-phase
case to handle touching cells [63]. There are also a lot of choices as regards representing
the surface or contour ∂K. Instead of using the more classic level set approach, which
represents the surface implicitly as the 0-isosurface of a higher-dimensional function 15,
here we use an explicit discrete representation that defines a contour as a set of ordered
points and a surface as a triangulated mesh. While level set methods are easier to
implement and more topologically flexible, discrete models are computationally lighter
and are more easily adapted to handle collisions.

15. The function is generally taken to be of opposite signs on each side of the surface and with
absolute value the distance to the 0 level set. It can be moved by solving the advection equation.
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The energy can be minimised by deriving an evolution equation from the Euler-
Lagrange equations corresponding to the energy functional. [194, 195] The derivatives
of the energy can be interpreted as forces acting on the contour or surface vertices that
progressively deform the initial boundary until it reaches a local minimum. Indeed,
the resulting functionals are non-convex and therefore the final result depends on the
initialisation 16.

II.1.3.7 Delaunay meshing and surface/contour simplification via VSA

To implement the FEM and the Adjoint method we need to derive a mesh from
each of the segmented cell domains K. However, meshing is a delicate subject as the
quality of interpolation (and thus of the results) depends directly on the quality of
the mesh. To maintain a high quality we re-mesh the cell at each time point ; that is
each mesh is constructed independently at every time point, instead of mapping the
older mesh onto the newer domain. While this is much easier to implement, it has
down-sides : having a time-consistent mesh would not only help in keeping track of all
the variables, but also in formulating time-dependent problems.

We choose Delaunay triangulation (tetrahedrisation in 3D) as the meshing algo-
rithm [198]. In this case, the algorithm is constrained or restricted by the polygon or
surface mesh resulting from the discrete segmentation, which preserves any important
feature in the shapes. The mesh is constructed by progressively adding points following
a Delaunay refinement that ensures a nice spread of the vertices [199, 200]. Termina-
tion of the process is dictated by circumradii of the elements : when they fall below
a user-specified size, which reflects the desired resolution, the algorithm stops. Later,
a global criteria such as Optimal Delaunay Triangulation (ODT) smoother is used to
optimally reposition the vertices [201, 202] according to a mesh energy that describes
the error fit of the piece-wise linear interpolation of a quadratic function. Since the
latter criteria is global, a second phase is required to fix the worst mesh elements ; this
is achieved via perturbation [203] and exudation [204].

Another non-trivial endeavor is to downscale the initial contours or surfaces to a
coarser resolution. This is necessary in order to implement the multi-resolution strategy
outlined above. In a 2D setting, it works well to resample the polygonal contour on the
Fourier domain (see the top rows in Figure II.6). However, the same strategy is not
satisfactory when applied to a 3D surface mesh. Instead, we use a variational shape
approximation (VSA) method [205] to try to preserve shape and salient features. Very
broadly put, the aim is to partition (S) the initial surface into a given number k of
subsurfaces Si, i ∈ {1 . . k}, each of them to be well approximated by a so-called proxy
Pi according to an error measure. Proxies are a planar fit of the subsurface defined only
by a point xi and a normal vector ni. To find the set P of proxies the error measure
is to be minimised across all subsurfaces :

argmin
P

∑
i

‖n− ni‖2
Si
, (II.25)

16. Some convex relaxation efforts can be found in [196] and [197].
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Figure II.6 – Segmentation and multi-scaling in 2D and 3D. Row 1) Raw 2D
image, initialisation (green ellipse), and final segmentation with active contours (∼ turquoise
contour). Row 2) Pyramid of meshes (blue triangles) that progressively refine the problem.
Underlying each mesh is the warped image Iw at the corresponding scales. Row 3) Raw 3D
image, initialisation (grey area with HK-means), and final segmentation with active contours
(∼ turquoise surface). Row 4) Pyramid of meshes (∼ turquoise triangles) that progressively
refine the problem. Underlying each mesh is the warped image Iw at the corresponding scales.
See Figure G.2) for the velocity (and pressure) in 2D and 3D at scales 2 and 4.

where n is the spatially-varying surface normal. This "normal" metric captures very
well the anisotropy of the surface [205]. In addition, it is intuition-friendly as not
only approximating the normal field of surfaces is normally a better approach (akin to
focusing on gradient interpolation errors), but also visual perception is very sensitive to
changes in normal fields because they govern lighting effects. Minimisation is conducted
via optimal discrete clustering using a fixed point iteration algorithm [206]. While this
method gives very good results (bottom row, Figure II.6), it is not specially fast. Since
accuracy is not that important until we reach the finest scales, in Chapter III we
introduce a faster (but less accurate) "cost-driven" alternative. In our software, the
multi-scaling is automatically created by setting a decreasing pyramid of k values.
Theoretically, the same progression of the algorithm can be harnessed to extract each
of the scales from a single minimisation to the coarsest scale. However, this is more
straightforward to implement in the latter cost-driven method because it advances
locally on the discrete mesh. This strategy was not implemented in the VSA version
and thus the algorithm had to run once per scale. The CGAL library has a very good
C++ implementation of the VSA approach by Pierre Alliez, David Cohen-Steiner,
Mathieu Desbrun, Lingjie Zhu (in alphabetical order).

II.1.4 Implementation as open-source software in Icy
The workflow was implemented within the Icy [162] software and is available as

an automatically downloadable module (or plug-in) called BioFlow (more details on
the Icy website (http://icy.bioimageanalysis.org/plugin/BioFlow). Icy is free
open-source software dedicated to bioimage analysis, offering a lot of different image
analysis techniques and associated visualisation tools that can help process (shorten,
re-size, register, deconvolute, etc.) a video sequence. By implementing BioFlow inside
Icy, we facilitate pre- and post-processing of the image sequences, and at the same
time benefit from exposition to its active community.

After loading a video-microscopy sequence into the software, an initial contour is
defined around the cell on the first frame (this manual step can be automated using any
available segmentation technique such as HK-means [207]), as shown in Figure II.7. The
main BioFlow script (written in Jython) is launched from Icy’s script editor and starts
by segmenting (active contours, see Figure G.4) and tracking (nearest neighbours) the

http://icy.bioimageanalysis.org/plugin/BioFlow
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Figure II.7 – BioFlow software and initialisation. BioFlow plug-in running on the Icy
software. Steps to run the software : 1) the video sequence can be opened or dragged into
the window ; 2) a region of interest is drawn around the cell to initialise active contours ; 3)
open BioFlow from the top search bar and select 2D/3D on the pop-up window ; 4) change
any parameter ; 5) Press the black arrow to run.

cell boundary over time, then creates a multi-scale version of the image and contour
for each frame. More specifically, the image scaling is performed via Gaussian filters
and interpolation (NumPy [208], SciPy [209] and PIL libraries), whereas the contours
are down-sampled in the Fourier domain in 2D (SciPy), or using the VSA method in
3D (CGAL). The contour-image pairs are subsequently transferred to a python script
(using execnet) where the remainder of the computations take place : a) the image and
contour are converted into a Finite Element mesh by Delaunay triangulation using the
mshr library, which calls the CGAL library [210] via SWIG ; b) the PDE system in 3D
(equation II.11) or 2D (II.13) is assembled into matrices by the FEniCS [185] library
and then solved using a MINRES Krylov solver from the PETSc library [211, 212, 213] ;
c) the gradient of the functional J is computed by deriving the adjoint equation (II.19)
using the dolfin-adjoint library ; and d) the gradient is used to minimise J via an
interface with the optimization module scipy.optimize that implements the L-BFGS-B
algorithm. This process is iterated until convergence and repeated from coarse to fine
image scales (Figure G.5) using appropriate warping : the interpolation is done via
cubic splines (SciPy), and the image gradient is implemented as a five-point difference
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stencil (fourth-order accuracy). Lastly, the results are transformed from normalised
to unitful (p also has to be re-inverted) using the metadata from the video sequence
(default) or user-input values.

To reduce computation time, each pair of frames in the video sequence is processed
in parallel according to the number of processors specified by the user. This is achieved
by exploiting the execnet library in python. The results are output as a tree of folders
corresponding to the estimated parameters (u, p, f, g, r, mesh, I1, I2) each containing
a list of time points in .xml and .pvd/.vtu (VTK format by Kitware, readable in C++,
Java, and Python) format. The final results and figures were produced either within
Icy or with the ParaView software (http://www.paraview.org). In the case of Icy, a
second associated plug-in, BioFlow Display (see Figure II.8), reads the output folder
and generates an overlay on each frame of the original video-sequence. The arrows
used to display the fields (dots for scalar quantities) can be heavily customised : one
can change the absolute scale of the field, scale by magnitude, color by magnitude, set
a constant arrowhead, set some black contour around the arrow, etc.

Figure II.8 – BioFlow Display. This plug-in is associated to the original BioFlow plug-in
and allows to display vector and scalar fields on the original sequence. Steps : 1) open from
the search bar ; 2) load output folder from BioFlow and choose the corresponding video
sequences ; 3) adjust visualisation parameters ; 4) press play. The results are shown as layers
of velocity, pressure and force that can be activated or deactivated at will.

Installation of the BioFlow plug-in in Icy is straightforward : type "BioFlow" on the

http://www.paraview.org
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search bar and it will download automatically. However, actually running the algorithm
requires installing the FEniCS library on the default (or change paths) python of your
workstation. Alternatively, we have created a plug-in that connects Icy to Docker and
automatically runs an image that containts the appropriate library. Of course, this
requires having Docker running on the computer along with Icy, and also slows down
the algorithm because the data has to be packed and unpacked (pickle module in
python) due to security issues. BioFlow will check by itself whether the libraries are
installed and launch Docker otherwise. On the other hand, BioFlow Display is fully
in Java and has no further requirements. While the plug-in is made to run now on
a single cell, extension to multiple cells is conceptually unambiguous and perfectly
parallelisable.

II.1.5 Advantages and limitations
Our method brings together image analysis, physical modelling and mathematical

optimisation to perform direct and non-invasive intracellular measurements of invisible
mechanical quantities from 2D and 3D fluorescence video-microscopy data. BioFlow
is designed as a flexible mechano-imaging data assimilation framework, in which we
adapted the standard optical flow algorithm such that the observed movement of in-
tracellular material is extracted under the constraints of a biophysical model of the
intracellular dynamics. This permits a simultaneous extraction of the intracellular ve-
locity as well as the biophysical parameters of the chosen model, all with high spatial
resolution. The flexibility and ease of use of BioFlow lies in three complementary as-
pects : 1) its theoretical foundation provides a method that is virtually independent of
(and adaptable to) any theoretical model of the cell ; 2) it relies exclusively on conven-
tional video-microscopy data of living cells, and thus permits non-invasive single cell
studies in diverse experimental contexts ; 3) its open-source software implementation
lets any component of the workflow be tailored to the specific problem at hand (for
instance, implementing a new theoretical model solely requires deriving its weak for-
mulation).

In this section we presented one possible implementation : a Newtonian fluid dy-
namics model of the cell material to study the amoeboid motility of Entamoeba his-
tolytica trophozoites, which results in high-resolution maps of intracellular velocities,
pressure gradients, forces and out-of-plane flow (in 2D). While validating some of these
measurements is experimentally challenging, we believe that the study proposed in II.2
constitutes a good case study to both validate the method and enrich the landscape
of experimental and theoretical reports on amoeboid motility with new quantitative
insight.

We stress that our choice of theoretical model only assumes that the observable
intracellular material behaves as a fluid, without making any assumption on the mo-
lecular mechanisms underlying the observed motion. This change of paradigm shifts
the weight from whole-cell models, which assume the underlying biology, to purely
physical models that stay neutral in this regard and thus are at an advantage towards
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drawing unbiased biological conclusions. However, the interpretation of the estimated
quantities still depends on the validity of the chosen model. It can be argued, for ins-
tance, that the chosen Newtonian fluid model is incomplete and should account for
a viscoelastic component [136]. More concretely, this would require replacing the ho-
mogeneous viscous stress of the incompressible Stokes system τv (that results in µ∆u,
see (II.8)) by the non-homogeneous form of the full incompressible Navier-Stokes sys-
tem, i.e. 2µε(u) + τe, where the elastic stress τe is modelled by an additional evolution
equation. This extension is presented in Section II.6 using an Oldroyd-B viscoelastic
model derived from experimental data in the literature. Treating µ as an additional
unknown to the problem is also possible, but would substantially increase the com-
plexity of the theoretical model and its numerical resolution. Given the size of the cell
and the time-scale of the imaging (of order between the decisecond and the second),
we believe that the uniformity of µ is a good preliminary approximation and that the
estimated quantities are only minimally affected by the elasticity component. In addi-
tion, a detailed a posteriori sensitivity analysis (not shown here) of the related inverse
problem (obtain µ(x) from u) shows that the resolution with which the flow field is
captured is not enough to distinguish the small variations in elastic moduli reported in
the literature. 17 However, at other scales or in other cell types, the biophysical model
should perhaps be extended to consider the fact that some cellular organelles (such as
the nucleus) do not necessarily behave like a fluid. In addition to permitting a more
faithful estimation of biophysical quantities, this would allow a better segregation of
the various forces acting within the cell. The membrane forces (e.g. pulling, pushing
or friction) are not directly accounted for by the chosen physical model, and are im-
plicitly taken into account through the boundary displacements, which is reflected by
the traction stresses.

While the method constitutes an original addition to the landscape of methods
to study intracellular dynamics in evermore complex environments, we expect that
the flexibility of the underlying framework will broaden the applicability of the me-
thod to other fields of life sciences. For instance, the current implementation offers an
straightforward and appealing alternative to multi-cellular modelling in developmental
biology, where an equivalent Newtonian assumption was used to infer physical quanti-
ties from tissue dynamics during drosophila gastrulation [214]. At an even higher scale,
the ability to measure out-of-plane flow can be of great interest to decipher the mecha-
nisms establishing and regulating blood-flow in the beating heart, where live imaging
in 3D remains a technical challenge [215]. In chapter III, we present an application
of a similar (but re-formulated) framework to quantify uncertainty in Traction Force
Microscopy, a widely used method to extract forces exerted by cells on the substrate.
However, as discussed in part II.1.3.2, the flexibility required to implement this (as
well as to tailor the convergence of the model and explore it further) hampers the
automatisation of the adjoint derivation.

17. However, this idea opens an avenue for the method to tackle the segmentation of "invisible"
bodies where the elastic moduli ratios are higher such as in microfluidics or elastography (see Annex
D and Conclusion IV). This work is not included in the present thesis.
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II.2 Biophysical measurements inside the amoeboid cell

This section of the work was developed in collaboration with Timothée
Lecomte, Maria Manich, Roman Thibeaux, Elisabeth Labruyère and Nancy
Guillén ; and supervised by Alexandre Dufour. All at Institut Pasteur. This
work is published in [160].
What follows uses the method presented in Section II.1 to study amoeboid
motility, unveling a hidden periodicity in E. histolytica and confirming
several loosely-supported hypothesis in the literature that concern bleb-
based motion.

We applied our BioFlow approach to study amoeboid motility, taking as a model
organism the parasite Entamoeba histolytica , the causative agent of human amoebiasis,
a disease still today characterised by substantial mortality and morbidity [216]. This
unicellular parasite is an appealing model from a biophysical standpoint thanks to
its relative simplicity, notably due to the lack of microtubules outside the nucleus
[217] and apparent lack of intermediate filaments [218]. The cytoskeleton is therefore
essentially formed of actin filaments. During its obligatory amoeboid migration, the
cytoplasmic material flows in the direction of motion, a feature common to many
primitive cell types [219, 220] as well as invasive cancer cells [221]. As a reminder
from chapter I, this mode of migration differs from lamelipodium-based [222] in that
amoeboid migration is thought to be driven by myosin-drive contractility that regulates
intracellular pressure and causes the emission of blebs (protrusions) at the cell surface
[42], which result in forward movement. Amoeboid movement has been studied both
experimentally, for example using micro-pipette aspiration experiments [134], and with
theoretical models [223, 224, 225]. Could our method complement these studies by
quantitatively characterising the intracellular velocities, pressure gradients and forces
driving the cytoplasmic flow into the protrusions ?

a) Imaging data. To observe the movement of the cytoplasm, we labelled actin
with a very low dose of fluorescent Cytochalasin D and performed live 2D and 3D
fluorescence microscopy experiments (see Figures II.3 and II.4). Cytochalasin D binds
to the free barbed-end of actin filaments [226], and yields the appearance of short
fluorescent filaments in suspension within the cytoplasm. The observable motion of
this actin bulk well describes that of the cytoplasm everywhere inside the cell during
its movement, and thus constitutes a good input for the algorithm.

II.2.1 Preliminary analysis of the measurements
Figure II.3 depicts the biophysical quantities (here velocities, pressure, forces, and

out-of-plane flow in 2D) estimated from two consecutive images in 2D and 3D. All
quantities are estimated in each node of the underlying Finite Element mesh, which
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Figure II.9 – Temporal profile of intracellular quantities during amoeboid mi-
gration Maximum (red line), minimum (blue line) and average (green line) magnitude of
the intracellular velocity, pressure and forces extracted from an image sequence. The black
line represents the velocity of the cell centroid, calculated via automated cell tracking. The
dotted line (t = 3.2s) corresponds to Figure II.3. The black rectangle isolates a portion of the
sequence surrounding a protrusion event (dashed line at t = 9.6s), and is further analysed
in Figure II.10. Taken from [160].
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can be defined up to a single-pixel resolution (Figure G.1). By repeating this analysis
over time (Figures II.9 and II.13b), BioFlow enables a quantitative analysis of the
intracellular dynamics in both space and time. In the remainder of this sub-section we
illustrate the results in 2D for easier visualisation, noting that measurements obtained
on both 2D and 3D datasets were found in good agreement both qualitatively and
quantitatively.

The pressure field p (Figure II.3c) exhibits a global gradient in the direction of
migration, with higher pressure at the rear of the cell and lower pressure at the cell
front. Assuming 18 a constant viscosity of 1 Pa s, the pressure values are of the order
of 1 to 10 Pascals, which is consistent with both theoretical simulations [223] and
in agreement with Darcy’s law (see II.2.5). Since pressure is only present in Stoke’s
equation through its gradient, only the resulting pressure gradient is reliable. In other
words, any analysis should be performed on the basis of pressure differences rather
than single values.

It is worth pointing out that only the pressure gradient (and thus differences bet-
ween pressure values) is reliable because

The divergence field r (Figure II.3c) represents out-of-plane flow. On the depicted
image pair, r captures material leaving the plane of focus near the cell rear (blue area,
ravg = −0.01s−1), as well as material entering the plane of focus towards the cell front
(red area, ravg = 0.05s−1). A Fermi order estimation suggests that approximately
0.2µm3 of material leaves the focal plane at the cell rear, and 0.5µm3 flows into the
focal plane at the cell front. It is worth noting that the integral of r over the entire
cell is positive (5µm2s−1), indicating that the visible cell area increases roughly 1µm2,
although this does not imply a change in overall (3D) cell volume.

The force field f (Figure II.3c) is represented as an arrow-field indicating the
magnitude and the direction of intracellular forces. The sum of all intracellular forces
(with the exception of the viscous drag and the pressure gradient) has a magnitude
in the order of the 0.1 to 1 nN/µm2 and is therefore non-negligible when describing
the flow (as a reference, the cell depicted here has an area of 240µm2). While such
intracellular force measurements are unique and cannot be directly validated using
experimental techniques, the estimated values fall well in range with that obtained
using traction-based approaches [227, 228, 229].

The velocity field u is represented as streamlines (Figure II.3b) and as an arrow
field (Figure II.3c) indicating the magnitude and direction of movement between the
two consecutive frames. The streamline representation offers a good indication of the
direction of the flow (Figure II.3c), and well depicts cytoplasmic streaming in the
direction of migration, as expected for amoeboid migration. The flow also describes a
global rotational movement stemming from the rear (where the cell displays a slightly
concentric motion, indicating contraction) and ending at the front, where the fastest
displacements take place. The instant velocity inside the cell has a magnitude ranging

18. We decide on a defined value to make reading easier, but the results (e.g. f and p) can be obtained
up to the viscosity constant because the method computes (first) the dimensionless quantities (see
II.1.3).
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Figure II.10 – Intracellular velocity, pressure and forces during cell protrusion.
a) Top row : snapshots of a 2D video-microscopy sequence ; Bottom : estimated intracellular
velocity u (µm/s), pressure p (Pa) and force f (nN/µm2) before (t = 7.6s), during (t = 9.6s)
and after (t = 11.6s) protrusion, respectively. (b-e) Velocity analysis during protrusion
(t = 9.6s). b) Magnitude of the vorticity v (s−1). The long and short white dashed lines
indicate cuts along the direction of protrusion and across the bleb, respectively. c) Vorticity
profile (black : v ; red : |v|) across the bleb. d)Magnitude of the velocity u and its streamlines
(white). e) Velocity profile across the bleb (black) and a second-degree polynomial fit (red). f)
Pressure values (Y-axis) at several time points along the direction of protrusion (represented
on the X-axis from cell rear to cell front) ; the black line indicates the cell front before
blebbing. g) Pressure profiles along the direction of protrusion, obtained on 2 different cells
(colour separated) for 4 different protrusion events. h) Sigmoid collapse of the curves in (g).
i) PCA analysis and k-means clustering of the sigmoid parameters (a,b,c,d) (as defined in
text) obtained from (h). PC1 (X-axis) is a linear combination of mainly a and d, whereas
PC2 (Y-axis) is a linear combination of mainly b and c. Taken from [160].
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from 1 to 10 µm/s, and faithfully captures the observed movement of intracellular
material. This was confirmed by verifying that the average velocity over the cell (∝∫

Ω |u|dΩ) was similar to that of the cell centroid (∝ | ∫Ω udΩ|), as illustrated in Figure
II.9.

Figure II.9 presents the temporal evolution of the minimum (blue), maximum (red)
and average (green) values for each quantity within a cell over time. A statistical
analysis on 20 cells yielded a maximum velocity, pressure range and force magnitude
of 9.2± 3.8 µm/s (mean, s.d.), 21.8± 6.3 Pa s, and 0.52± 0.70 nN/µm2, respectively.

II.2.2 Study of single protrusions
During amoeboid motility, the process driving bleb nucleation and subsequent cell

protrusion is thought to be powered by myosin, which is assumed to regulate hy-
drostatic pressure within the cell by exerting contractile forces on the actin cortex
lying beneath the plasma membrane [42, 134]. Here we asked whether the extracted
quantities can give more insight into the underlying mechanism, by studying their
spatio-temporal profiles during natural (non-induced) protrusion events.

Figure II.10 depicts the biophysical quantities extracted inside the cell before, du-
ring, and after protrusion (Figure II.9-black box). Before bleb initiation (t=7.6s) the
cell appears stable : the pressure builds up while the velocity and forces remain small.
At t=9.6s, a pressure gradient across the cell drives the intracellular material inside
the expanding bleb, which is reflected by the increase in velocity at the cell front. After
stabilisation of the flow (t=11.6s), the pressure begins to equilibrate, while the cell
body moves forward with the help of an increased force at the rear.

A detailed analysis of the velocity field during protrusion (Figure II.10d) reveals
areas where the intracellular material flows from rear to front in a rotating fashion.
A vorticity analysis of the velocity field (II.10b, c) highlights two vortices, one on
each side of the bleb, where directions of rotation are opposite. The velocity profile
across the bleb (Figure II.10e, short white line in II.10b) is smooth and well describes
a Poiseuille flow (typical of a viscous fluid flowing through two static plates). This
observation was validated by noticing that Poiseuille’s planar equation was able to
accurately recover the bleb width (data not shown). This evidence implies that the
underlying cortex imposes a no-slip boundary condition to the flow, possibly hinting
to the location of the rupture points.

Figure II.10f presents a time-diagram of the intracellular pressure profile measured
along the direction of protrusion (Figure II.10b, long white line). It can be seen that
the pressure first builds up from a steady-state, then suddenly drops (suggesting cortex
breakage) and creates a decreasing gradient towards the cell front causing intracellular
material to flow forward, and stabilises again as the flow stops. Figure II.10g depicts
4 consecutive pressure profiles extracted over time from 2 different cells. The curves
resemble a sigmoid-like shape, which is a characteristic pattern of contraction [230].
Fitting a sigmoid to each curve yields an equation of the form p = d+a/

(
1 + e−b(s−c)

)
,

where s is the normalised arc length and (a,b,c,d) are the sigmoid parameters. By trans-
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Figure II.11 – Relative timing of intracellular force, pressure and velocity. a) Esti-
mated range (difference between maximum and minimum across the cell) of the intracellular
velocity (red), pressure (green) and force magnitude (blue) for a single cell during a protru-
sion event. b) Temporal cross-correlation diagrams between u, p (left), u,u (middle), and
u, f (right), representing the lag between quantities (given by the shift of the maximum peak
away from 0). c) Cumulated analysis of the cross-correlation shift over n = 10 cells. Taken
from [160].
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forming the sigmoid into a linear model, i.e. c − ln (a/(p− d) − 1) /b, all curves can
be collapsed into the same unitary line (Figure II.10h), thereby verifying the sigmoid
hypothesis. The parameter space (a, b, c, d) is able to capture both inter-cellular and
intracellular variations (Figure II.10i). The 2 cells can be distinguished using (a, d).
These parameters describe the amplitude range and the height of the sigmoid and thus
reflect the ability of each cell to generate pressure. Conversely, (b, c) are able to distin-
guish different protrusion events of the same same cell. These parameters characterise
the spatial geometry of the sigmoid (its slope and position) and therefore reflect the
length and position of the protrusion.

The estimated force field f (Figure II.10a) seems to have a low overall magnitude
during pressure build-up and cytoplasmic streaming, and only increases during the
retraction phase, when it localises mostly at the rear of the cell. These observations
suggest that the pressure gradient alone is sufficient to initiate cytoplasmic streaming,
while cell retraction is not due to the pressure gradient, but rather hints at a myosin-
based mechanism. We further investigated the timing and potential causality between
pressure, velocity and forces during protrusions, by performing a correlative analysis
over time (Figure II.11). We first plotted the difference between maximum and mi-
nimum values (i.e. range) for pressure, velocity and forces over the course of a video
sequence, and applied a low-pass Butterworth filter [231] to eliminate spurious small
scale fluctuations while preserving the magnitude of the original (Figure II.11a). We
then calculated the pairwise cross-correlation function (CCF) between quantities (Fi-
gure II.11b) and measured the time lag where the correlation is highest. This analysis
was repeated on n = 10 cells (Figure II.11c) and shows that pressure precedes velocity
by 1.1±1.7s (mean ± s.d.) and that velocity precedes force by 0.9±1.2s, thus further
supporting the hypothesis that pressure drives cell expansion while myosin forces drive
cell retraction.

II.2.3 Periodicity in amoeboid migration
An interesting feature of Entamoeba histolytica migration is the apparent perio-

dicity of protrusions (see Figures II.9 and II.11a). Previous experiments using micro-
pipette aspiration pointed to a periodicity of 8 seconds between protrusion events [134],
but such a measure could not be confirmed in a non-invasive setting. We therefore as-
ked whether BioFlow could allow recovering such a periodicity based on the temporal
profiles (Figure II.12. To do so, we analysed the Fourier spectrum of the range of the
velocity curve (Figure II.12a) using a Tukey window to reduce spectral leakage of the
Discrete Fourier Transform. Note that a similar analysis could be obtained with the
pressure or force profiles, given that all curves are coherent).

In this example, the two biggest coefficients (in black) that form the experimental
measure (in red) correspond to periods of 8.1s and 3.6s respectively. The blue curve
represents the sum of these functions (added to the mean of the original signal) and
reproduces the general patterns of the original signal. We then calculated the density
distribution of the two periods by repeating this analysis for n = 10 cells (Figure
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Figure II.12 – Periodicity in amoeboid migration. a) Velocity range extracted from
a single cell over time (red line), and its partial Fourier decomposition (blue line), formed
of the average speed (dashed line) and the two most relevant frequency components (black
lines). b) Histogram of the associated periods extracted from 10 cells, and the associated sum
of Gaussians fit (blue curves) obtained by nonlinear least-squares fitting. c) Time-aligned
acceleration profiles along the direction of protrusion for two blebs of a same cell. Taken
from [160].
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II.12b), and obtained two distinct periods of 4.6±1.1s (mean±s.d.) and 7.9±0.4s (Non-
linear least-squares fitting residual error : 0.03). Although it is only visually perceptible
in few of the analysed videos, the longest time period matches the periodicity obtained
using invasive techniques and thus demonstrates the robustness of the method.

Most interestingly, the shorter period of 4.6s, which is not visually perceptible,
describes a more subtle process underlying amoeboid migration. To highlight this
period, we first calculated the average velocity over time across the bleb (i.e. along
the line joining the two surrounding vortices, see Figure II.10b-short white line) and
then calculated the corresponding acceleration (i.e. the difference in average velocity
between frames). We repeated this analysis on two different protrusion events and
superimposed the curves in Figure II.12c. It can be seen that the intracellular material
first accelerates as the pressure gradient establishes, then decelerates as this gradient
fades. This cycle takes 3 to 5 seconds, which is precisely captured by the periodicity
analysis, and seems to describe the characteristic time of the cytoplasmic streaming.
Together with the higher variance measured for the shorter period, this might indicate
a dependence on protrusion size, which would take longer to fill with cytoplasmic
material because the streaming velocity is roughly homogeneous across cells. In turn,
this time scale might be reflective of the characteristic time of actin polymerisation.

II.2.4 Importance of actin dynamics on intracellular flow
We also challenged the experimental model by adding 100nM of Latranculin B

in the medium to halt actin polymerisation, and measured the biophysical quantities
immediately after the addition of the molecule. The behavior displayed in Figure
II.13 is representative of the addition of the drug and contrasts with the demeanor
of the wild-type cells. Shortly after addition of Latranculin B, the cell exhibits a
final protrusion that is remarkably slower than in the control condition (2.5 µm/s as
opposed to 9.2 µm/s in the control case), and progressively changes from the natural
protrusive phenotype to a rounder and immobile configuration (Figure II.13a). This
translates quantitatively into a stable decrease in the intracellular pressure gradient,
as well as a stabilisation of the velocity and force fields (Figure II.13b).

II.2.5 Insight into amoeboid motility
A hallmark of amoeboid motility is the emission of protrusions at the cell surface,

largely believed to be induced (directly or indirectly) by pressure-induced actomyo-
sin contractility. Once a bleb is initiated, the membrane locally delaminates from
the cortex and fills with cytosol. In some cases, the bleb retracts without genera-
ting movement, while in other cases the actomyosin cortex locally disrupts (either via
depolymerisation or breakage), causing an influx of intracellular material into the pro-
trusion, eventually leading to pseudopodia and initiating whole cell movement. While
Entamoeba histolytica exhibits both types of blebs, the Cytochalasin-D labelling used
in this work only captures the latter, as it highlights the intracellular actin bulk and
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Figure II.13 – Effect of Latranculin B on cell protrusion. a) Two consecutive frames
of a 2D time-lapse microscopy sequence before (left, t1 and t2) and after (right, t3 and t4)
addition of Latranculin B. b) Estimated range (difference between maximum and minimum
across the cell) of the intracellular velocity, pressure and force magnitude for the treated
cell (LatB, black line) and 3 non-treated cells (WT, coloured lines). Protrusion events are
marked by segments of the corresponding colour above the graph. Taken from [160].
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not the outer cell membrane. If we consider the pressure drop ∆p across the cortex
(of thickness h ∼ 1µm [115]) necessary to drive the percolation of cytosolic fluid (of
viscosity close to water, i.e. ν ∼ 10−3Pa s) through the pores of the actin mesh (of
characteristic size l ∼ 0.01 − 0.1µm [232]), dimensional analysis leads to a value of
∆p ∝ uνh/l2 ∼ 1− 10Pa. The same relation can also be reached by rearranging Dar-
cy’s law (u/A ∝ ∇p/ν), governing the flow of slow fluids through porous media. Once
the actin cortex disrupts, this same pressure gradient then drives the cytoplasm (with
a viscosity of µ ∼ 1Pa s [136]) inside the bleb. Remarkably, the estimated spatiotem-
poral profile of the intracellular pressure during protrusion (Figure II.10) estimated by
BioFlow is in good agreement with this picture both qualitatively and quantitatively,
further supporting the reported role of myosin : 1) increase in intracellular pressure
caused by contraction of the actomyosin cortex ; 2) sigmoid-shaped pressure curves
during cytoplasmic streaming into the bleb (analogous to a contracting heart, also
powered by myosin), with pressure values matching Darcy’s law estimation ; 3) retrac-
tion of the cell rear after stabilisation of pressure and accompanied by an increased
force. Interestingly, the sudden rise in pressure gradient at the onset of protrusion
suggests breakage of the actin cortex in Entamoeba histolytica rather than depoly-
merisation. Finally, an analysis of multiple protrusion events revealed that different
pressure gradients are able to generate blebs without disturbing periodicity (Figure
II.12), suggesting that pressure alone might not suffice to regulate bleb initiation. This
was confirmed by recent evidence that bleb formation and regulation involves addi-
tional mechanisms such as Rho-GTPase activity (e.g. Rho1 [233, 234] or Rac1 [235])
or localised contraction [236]. Verifying these hypotheses would however require the
ability to measure myosin forces everywhere inside the cell, which remains a technical
challenge.

The velocity field extracted by BioFlow corroborates existing reports of cytoplas-
mic streaming in other amoeboid cells (Figure II.3b). However, our high-resolution
measurements, in conjunction with the other estimated quantities, provide further
speculative insight into the underlying mechanisms. Indeed, our temporal analysis
(Figure II.11) indicates that the pressure gradient precedes the velocity increase of the
intracellular material, suggesting a cause-consequence relationship. As the pressure
stabilises and the protrusion is filled, the initial acceleration vanishes (Figure II.12c).
Interestingly, the intracellular material flows towards the protrusion in a rotating fa-
shion, as shown by the two vortices on each side of the bleb (Figure II.10b), while
the Poiseuille nature of the observed flow (Figure II.10e) implies a no-slip boundary
condition. This evidence further supports a localised breakage of the cortex, while the
remainder of the cortex holds in place. It is also worth pointing out that the cyto-
plasmic streaming is noticeably smooth (the intracellular material, including diverse
vesicles and organelles such as the nucleus, seems to be dragged uniformly), although
this was not imposed by the theoretical model. This behaviour might reflect the lack of
microtubules in Entamoeba histolytica as opposed to other cell types such as Physarum
amoebae, where the streaming appears more irregular [133].

Using BioFlow we have been able to provide for the first time (to our knowledge)
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a detailed map of intracellular forces. Regions of high force magnitude were found to
generally appear in one of two cases : a) when the cell reorients, causing rotational
movements (similarly to a Taylor-Couette flow [237]) that might stem from forces exer-
ted by the cell on the substrate (Figure II.3c) ; b) more frequently, during protrusion
events, yet with a slight delay after stabilisation of the pressure gradient and velocity
field (Figures II.10a and II.11). This suggests that forces are highest during the retrac-
tion phase (i.e. when the bleb is practically filled and the flow stabilises) and might
be a consequence of the actomyosin contractility at the cell rear. This hypothesis is
further supported by the acceleration profile of the protrusion (Figure II.12c), where
the first acceleration-deceleration cycle (linked to the pressure drop and stabilisation
discussed above) is followed by a second more subtle acceleration phase concomitant
with the force increase.

The robustness of the method is illustrated by the overall coherence of the quanti-
ties extracted from multiple cells, and successfully challenged by measuring the drama-
tic impact of Latranculin B (a known actin inhibitor) on the intracellular measurements
(Figure II.13). This has led us to highlight a characteristic period of 7.9s between two
consecutive protrusions of Entamoeba histolytica trophozoites with low variance (Fi-
gure II.12), which is in line with previous reports using micropipette aspiration in a
confined environment [134], although it had never been measured in free moving cells.
Furthermore, we were able to isolate a (second) novel characteristic period of 4.6s, al-
though with a higher variance. Interestingly, we found that this duration matches that
of the acceleration-deceleration cycle observed during protrusion (Figure II.12c). Since
this cycle characterises the cytoplasmic streaming towards the bleb, we speculate that
this period could describe the characteristic time of actin cortex re-polymerisation at
the edge of the protrusion.

Taken together, our results were found in excellent agreement with the currently
accepted model of bleb-based amoeboid motility, and illustrate how our approach can
be used to either validate or provide novel quantitative insight into the underlying
mechanisms.
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II.3 Study of vector fields

This section of the work was developed in collaboration with Mohammad
Goudarzi 19, and supervised by Erez Raz, both at Universität Münster. This
work is published in [238].

The intracellular vector fields resulting from Section II.1 offer unpreceden-
ted detail in resolving cytoplasmic streams. We introduce several methods
to visualise the flow, notably streamlines and pathlines ; and outline how
to estimate 3D volume from Active-Contour segmentations. The resulting
streamlines and volume measurements were used to analyse bleb forma-
tion in in-vivo amoeboid-like-moving cells at cutting-edge spatiotemporal
resolution. The results of the study disagree with some of the latest lite-
rature (done at a similar scale) that affirms that a water influx from the
outside media is necessary for bleb formation. In the same experimental
context, our study shows that blebs result mainly from a redistribution of
intracellular material, and that volume changes are negligible at this scale.
This work thus questions the grounds that sustain part of the currently-
accepted paradigm of bleb formation and, at the very least, calls for more
experiments. This complements the analysis on amoeboid motility done in
Section II.1.

II.3.1 Streamlines, pathlines and timelines
Let us first extend the velocity and cell domain fields to a continuous setting

to homogenise the notation with upcoming Section II.4. Since the time-dependent
data are originally discrete, we index the available measurements at times ti by i ∈
{0, . . . , NT}. In the present case, theNT points are evenly-spaced and thus the mapping
is ti = t0 + ih with h = (tf − t0)/NT. Conversely, the spatial dependency is already
continuous by virtue of the finite element functions, which are piece-wise polynomia.

Cell. We notate K(t) the moving cell at time t ∈ T := [t0, tf ], where K(ti) = Ki

results from the segmentation of the cell at each time frame.

Velocity field. We extend the velocity field ui(x) defined at time ti inside the cell
domain (∀x ∈ Ki) to all t ∈ T by linear interpolation :

u(t,x) = αubt/hc(x) + (1− α)udt/he(x̄), (II.26)

where α = t/h− bt/hc and x̄ = arg miny∈Ki+1 ‖y− x‖2.

19. First author of the study.



80 Chapitre II. Measuring inside the cell

Figure II.14 – Characterising cytoplasmic streaming has long been a relevant
topic. From Proceedings of a Symposium on the Mechanism of Cytoplasmic Streaming, Cell
Movement, and the Saltatory Motion of Subcellular Particles. Held at Princeton University,
April 2–5, 1963. Pages 228 and 230, Figures 3 and 5.



II.3 Study of vector fields 81

a) Streamlines. A streamline is defined as an s-parameterized curve cs : S ⊂
R → K(ti) that is tangent to the velocity at each spatial point at a fixed ti. More
formally :

dcs(s)
ds

× u(cs) = 0, (II.27)

where S is the biggest interval such that cs(S) ⊂ K(ti). As a consequence, streamlines
constitute a good visual display of the speed and direction of the fluid flow. In parti-
cular, if the continuity equation holds, the speed flow is inversely proportional to the
separation between contiguous streamlines, and no mass can cross the streamlines. At
fixed time, given an initial point cs(s = 0) (seed) we can construct a streamline by
forward and backwards integration in space, for example using a Runge-Kutta (RK)
scheme [239]. In practice, a collection of initial points is given (randomly or as an inital
partitioned line) so that many streams are generated that span the entire cell domain
K (see Figure II.15).

b) Pathlines. Conversely, pathlines are time-parameterized curves ct : T→ K(t)
that follow the velocity at each time point{

ċt(t) = u(ct(t), t),
ct(t0) = ct0 , (II.28)

and thus constitute an ordinary differential equation (ODE) with initial condition
ct0 ∈ K(t0), where •̇ notates the time derivative. RK is also a good choice. Notice
how pathlines and streamlines are conceptually similar but on different dimensions.
Therefore streamlines coincide with pathlines in steady flows. While Stokes flow is
steady by definition, in our case both the domain and the boundary conditions change
with time and both lines do not necessarily coincide (though perhaps between frames).
While the pathline originates from a single point ct0 , a timeline is the equivalent
temporal ODE integration of a line. In Section II.4 (see Figure, II.20 for example) we
borrow this concept to advect sub-cellular regions instead of lines.

c) ODE integration. We have implemented RK4, i.e. of fourth order, with a local
truncation error of order O(h5) to integrate the ODEs discretely. Successive points xi
of a curve are computed as :

xi+1 = xi + k1 + 2k2 + 2k3 + k4

6 , (II.29)

where k1 = hu(ti,xi), k2 = hu(ti + h/2,xi + k1/2), k3 = hu(ti + h/2,xi + k2/2),
k4 = hu(ti + h,xi + k3) ; h is the step (spatial or temporal) and xi is the discrete
solution corresponding to either cs(ti) or ct(ti). The integration was tested to be exact
when using cubic functions.
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(a) (b) (c)

(d) (e)

Figure II.15 – Streamlines in 2D and 3D show redistribution of material into a cell
protrusion. a) 2D streamlines in a PGC. b) 3D streamlines in a PGC extracted from (c). c)
Dense vector field used to generate the streamlines in b). d) 3D streamlines in E. histolytica,
solid cell volume shows the initial time point whereas white cell mesh indicates the following
time point (see also Figure G.3). e) 3D streamlines in E. histolytica same frames as Figure
II.3 ; notice how a good integration yields more consistent streamlines. Pressure is used to
color the mesh (higher in red at the back, lower in white at the front). all) Arrows from
the corresponding vectors are superimposed on streamlines and color-coded. All displayed in
ParaView.
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II.3.2 Volume measurements
The vector field and streamline analysis of the cells was complemented with a

volume-change study. The volume of the cell at each time frame |Ki| can be compu-
ted directly from the corresponding segmentation obtained by a 3D version of active
contours. The segmentation is represented as a 3D mesh and the volume can be com-
puted using the shoelace formula, also known as Gauss’ volume formula because it
is based on the divergence theorem. Figure II.16 shows a comparison between the
segmentation in Icy and in Imaris (a propietary bioimage analysis software).

Figure II.16 – Volume measurements. Top plot shows Vt/V̄ , the constant decrease is
due to bleaching. Bottom plot shows ∆Vt/Vt. Icy and Imaris compared. Blebs occur around
5s (∼ frame 1), 25s (∼ frame 5), 45s (∼ frame 9) and thus show no apparent correlation
with volume increase. Modified from [238], by M. Goudarzi.

II.3.3 Application to the study of bleb formation in primordial germ
cells

According to the latest literature [224], bleb formation in in vivo primordial zebra-
fish germ cells (PGCs) is correlated with an increase in cell volume. In this context,
the relevant influx of water was announced to be regulated by aquaporins Aqp1 and
Aqp3, a pair of isoform membrane proteins that act as adjustable water channels. More
precisely, some studies highlight the strict need for such an inward flow to inflate the
bleb, painting the process as a rather local event. These statements were also suppor-
ted by in silico experiments conducted on a cell model considering the biomechanics
of cortex-membrane deformations.

To investigate this matter, we analysed both cytoplasmic streaming and cell volume
during bleb formation, as well as the role of the alleged aquaporins. Finally, we critically
examined the computational model.
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Figure II.17 – Velocity field analysis of cytoplasmic streaming during bleb for-
mation. 5 snapshots show how the bleb is inflated by surrounding material. Inset zooms
in on the rear of the cell, which retracts as the bleb expands. Streamlines corresponding to
the last image. are also presented. High speed in red, low in blue, bleb marked with white
asterisk. Modified from [238].

To study intracellular flow, PGCs were engineered to express green fluorescent
protein (GFP) in the cytoplasm [240] ; and imaged inside the developing embryo with
a spinning-disk confocal microscope at high spatiotemporal resolution. Since the ex-
pressed GFP is the source of image intensity, BioFlow acts as a flow tracker of the
fluorophores. In particular, no model of the whole cell or of the membrane is imposed,
and the boundary velocity of the GFP signal is directly derived from the data. In ad-
dition, the proposed assumptions are not divergence-free and thus are able to account
for both out-of-plane flow and volume loss, which is critical in the study presented
here. This is possible because divergence can also be inferred from the intensity data.
Observing the fluorescence signal level yields velocity estimates of the underlying cy-
toplasmic flow up to the microscope’s resolution, both in time and space. These data
capture the progressive redistribution of the cytoplasm and thus allows conducting a
non-invasive analysis of bleb formation. Indeed, as shown in Figures II.15a and II.17,
cytoplasm flows within the cell as the bleb inflates. This is particularly well captured
in the streamlines of the velocity field. More precisely, a flux of cytoplasm is directed
straight into the forming bleb accompanied by a retraction of the cell rear. In addition,
we did not observe any significant water influx at the leading edge of the cell, which
would have mixed or stirred the cytoplasmic GFP (the membrane is impermeable to
GFP).

To increase the precision of volume measurements PGCs were membrane-la-
belled with m-Cherry [241] and cytoplasm-labelled with GFP. Cells were imaged at
high spatiotemporal resolution during bleb formation in the embryo. As shown in
Figures II.16 and II.18, no significant temporal correlation between volume changes
and bleb formation was observed after analysing 15 cells (60 seconds each). Overall,
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volume variations were small, and predominantly negative due to photo-bleaching. We
attribute the conservation of cell volume to the retraction of other parts of the cell
that compensate for the volume trans-located into the forming protrusion.

Figure II.18 – Volume fluctuations during bleb formation. Volume of 15 PGCs (mor-
pholino control) over time, blebs are marked as red dots. No correlation between blebbing
and volume change is observed. Taken from [238], by M. Goudarzi.

The role of the suspect aquaporins was first examined by investigating the ex-
pression in the cells of the mRNAs encoding for Aqp1 and Aqp3 using deep mRNA
sequencing at the time of active PGC migration [242]. We found that aqp1a mRNA
was not expressed in PGCs, whereas aqp3a mRNA was expressed only at very low le-
vels. In addition, controlled morpholino knock-down of the aquaporins using the same
species as in [224] had no visible effect on bleb formation and did not prevent PGCs
from reaching the developing gonad, in spite of the negative effects of the experiment
on the embryo. Together, these results show that Aq1 and 3 do not play a fundamental
role in PGC migration at the time of interest. This is also in contrast with [224], where
morpholino injection was not controlled.

Finally, we analysed the model presented in [224], while well formulated and sol-
ved with the appropriate techniques, we found that it is inherently biased to disable
the main mechanisms of bleb formation. First and foremost, there are membrane in-
vaginations in PCGs [243] that are not present in the model, this means that increa-
sing membrane surface is incredibly expensive in those simulations because, instead
of unfolding new surface, one has to fight against the increasing elastic energy. Put
differently, the model does not assume volume conservation but it does impose a fix
number of nodes in the cortex and the membrane. Second, bleb nucleation occurs (in
the model) because an initial perturbation grows as a result of weakened bonds (that
stem from the random stiffness distribution). In reality there are myosin motors, which
exert active and continued contractions that are not entirely random. Third, the cortex
is also permeable and likely more so than the plasma membrane. We think the first
two reasons might explain why the time-scale of the simulated bleb is off by an order
of magnitude and the blebs are not protuberant.
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In summary, our analysis suggests that bleb formation results primarily from a
redistribution of intracellular material.



II.4 Tracking of intracellular diffuse domains 87

II.4 Tracking of intracellular diffuse domains
This section of the work was developed in collaboration with Cecilia Gri-
maldi, and supervised by Erez Raz, both at Universität Münster. The first
part of this work is published in [244], the second is under submission.
Active molecular transport ensures a purposeful spatiotemporal distribu-
tion of cellular proteins and is therefore key to a wide range of processes
such as morphogenesis, homeostasis or migration. However, redistributions
of intracellular molecules in bulk are seldom quantified because the regions
involved are too diffuse to be segmented consistently. In this section, we use
the dense velocity fields estimated in Section II.1 to advect a triangulated
mesh over time using any ODE integration scheme and a Laplacian-based
error correction. In this way, our framework can follow the movement and
deformation of multiple parts of a diffuse region at once and offers a seam-
less combination with spatiotemporal line integration in Lagrangian coordi-
nates. This allows the flexibility to taylor specific measures to the question
at hand, e.g. mechanical work, bringing long-established physics concepts
into biology grounds. We exemplify our approach by quantifying the effect
of E-cadherin on the intracellular retrograde movement of the frontal actin
rim during PGC migration. In particular, we show that E-cadherin regu-
lates the directionality of the migration by stabilising the rim, which then
recruits myosin and biases bleb formation. This further complements the
analysis on amoeboid motility done in Sections II.1 and II.3.

A controlled redistribution of material within the cell is essential to biological func-
tion : molecules need timing and placing to fulfill their role in the context of whole-cell
coordination. This spatiotemporal organisation is enforced by multiple chemical and
physical processes. Diffusion can passively transport biomolecules along concentration
gradients, but it is speed-limited and one-directional ; therefore, other complementary
and more active mechanisms have had to take on at the expense of energy [105]. One
such mechanism is cytoplasmic streaming, an advective flow that can relocate large
regions of cytoplasm and is most typically driven by cortical actomyosin. Another is
motor-driven conveyance along the cytoskeletal scaffold. The specificity and diversity
of these solutions reflect the relevance of molecular transportation in a wide range
of systems. Two examples are that (i) partitioning-defective proteins need to be at
opposite poles of the zygot during morphogenesis in Caenorhabditis elegans [245], and
(ii) directed translocations of the cytoplasm drive bleb-based migration [236, 238].

Despite its relevance, redistribution remains hard to study quantitatively. The stan-
dard approach in biology starts by video-imaging the fluorescently-labelled protein of
interest and proceeds in either of two ways : maximum intensity projections, where
time is projected onto a single image ; or intensity kymographs, which focus on the
time evolution of a single spatial dimension [106]. While movement information can
be extracted from these two visualizations, they are inherently biased because they
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disregard a dimension “arbitrarily”. The longstanding answer by the image analysis
community has been tracking algorithms [246]. However, the region of interest of bulk-
advected molecules is often too diffuse to be segmented consistently in practice (e.g.
Fig. II.19). On some occasions, using speckle microscopy can bring the problem back
to multiple-particle tracking [107]. On most other occasions, particle image velocime-
try (PIV) is used to extract displacement fields, but these often span the whole image
or, at best, are restricted to identifiable regions such as the cell border [107, 163].

II.4.1 Mesh advection and line integration

Figure II.19 – Example of a diffuse molecular region. The backwards-moving protein
rim is approx. delineated by the green rectangle at 0s and 8s. The velocity field at 0s is
shown in magenta. Taken from [244].

a) Proposed approach In order to follow arbitrary diffuse regions during redis-
tribution studies inside a moving cell K(t), t ∈ T, we propose a corrected advection of
an initially delineated region Ω(t0). The region is represented as a Finite Element mesh
to facilitate the computation of integrals. The evolution of the subdomain Ω(t) ⊂ K(t)
is driven by a velocity field u(t,x) that can be estimated via simulation or data assi-
milation, as presented in Section II.1. Advection is then the result of solving the ODE
posed by the field {

Ω̇ = u(t,Ω),
Ω(t0) = Ω0, (II.30)

The advected region is repeatedly corrected by Laplace’s equation or a Kalman filter
as segmentation data becomes available. These ideas are developed in Sec. II.4.1.1.
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In addition to following diffuse regions, our approach offers further advantages.
First, it is possible to partition the subdomain without loss : Ω = ⋃

j∈P Ωj and Ω̊j ∩
Ω̊j′ = ∅ ∀ j 6= j′, j, j′ ∈ P := {1, . . . , NP}. This allows to compare the behavior
of multiple (NP ) zones within the diffuse region. Second and most important, this
framework enriches quantification. Of particular interest is the possibility to calculate
curve integrals from a Lagrangian perspective ; i.e. of forms similar to

Ij(•) :=
∫

T
wj(t)

∫
Ωj(t)
• dΩj dt, (II.31)

where wj(t) is intended as a weighting function. These integrals bridge biological quan-
tification with established concepts in physics. For example : they can compute the
average of a given quantity within the region over space and time, determine the
amount of material that is being advected, or calculate the energy spent on motored-
transport using the force f (e.g. from Section II.1) and velocity fields : Ij(f ·u), wj = 1.
Moreover, the integrals are seamlessly integrated with the advection method because
our underlying framework is based on a triangulation onto which finite elements are
cast. We elaborate in Section II.4.1.2.

b) Example application An important concept in biological literature is the ani-
sotropic (or polar) distribution of proteins within the cell. This directivity can be re-
duced or enhanced dynamically by molecular transport. For example, the protein rim
in Fig. II.19 moves towards the “back”, varying the cell’s molecular distribution. To
assess changes in directivity, we propose to estimate how much a given protein region
is advected towards the back/front with respect to a reference unit axis n. To this end,
we define

Ij ((u(t,x)− r(t)) · n) , cj(t) = 1
|Ωj(t)| , (II.32)

where r(t) is a ref. velocity, e.g. the cell’s center of mass ; and the dot product projects
the movement onto the direction n of cell directivity or polarity. Notice that c(t) 6= 1
computes by how much (on average) a protein is being displaced (length). This is ne-
cessary to account for bias in size because the final aim is to compare the redistribution
of diffuse regions between different physiological conditions and across multiple parts
within a region. An experiment is shown in Section II.4.1.4 and the method is fully
applied in Section II.4.2.

II.4.1.1 Advection of partitions

To follow the diffuse region through time we divide the subdomain into triangles
and use (II.30) to advect them.

a) Triangulation The initial subdomain Ω0 within the cell is selected and meshed
by triangulating it into a set of elements T0 = {4} such that ⋃T04 = Ω0 and any
intersection between them is either a shared vertex or edge. The triangulation induces



90 Chapitre II. Measuring inside the cell

a subtriangulation T i0 ⊂ T0 of the partitions Ωi
0

20. To ease integration, each 4 is
mapped to a common reference triangle 4̂ by an affine transformation 4 = A4(4̂).
4̂ is defined by its vertices at (0, 0), (1, 0) and (0, 1).

Figure II.20 – Point-wise advection of each vertex in the meshed region. Evolution
of each vertex in the triangulated partition (different colors are only meant to identify each
vertex).

b) Initial value problem The extended vector field (interpolated as described
in (II.26)) drives the advection of the subdomain and its partitions via (II.30). To
integrate the system we can use one of two options depending on the source of the
velocity. RK4 is convenient in cases where ui is the instantaneous velocity at point
ti, e.g. for fields resulting from simulations or continuous assimilation. Conversely, in
Section II.1 the velocity is already computed as an optimal map between consecutive
time points and therefore can be readily used to map the vertices of the subdomain, this
integration can also be thought of as Euler’s time-stepping method (RK1). Whichever
the method, the result defines an operatorRi that advects the subdomain, each triangle
or each point through time (see Figure II.20). For example, we would have xi+1 =
Ri+1(xi) in (II.29). Precisely, the advected region in the next time point is Ωi+1 =
Ri+1(Ωi)∩Ki+1, and can be considered on each partition (or simplex) independently :
Ωi+1 = ⋃Ωj

i+1 = ⋃(Ri+1(Ωj
i ) ∩ Ki+1) = ⋃(Ri+1(Ωj

i )) ∩ Ki+1 = Ri+1(⋃Ωj
i ) ∩ Ki+1.

This defines an affine transformation R4i from ti−1 to ti on each triangle starting from
R40 := A4. We call R4i the complete advection from the reference triangle through
time until ti, R4i := R40 ◦· · ·◦R4i , and note that it is affine because it is a composition
of affinities (Fig. II.21a). We are most interested in the linear map R4i within each
affinity and hence the composition is a multiplication of matrices. In fact, we are only

20. NOTATION : subindexes denote discrete time points, whereas superindexes refer to partitions.
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concerned with determinants, detR4k = ∏k
i=0 detR4i , because they keep track of the

variable and area changes when calculating the line integrals. Notice that, instead of
recording the cumulative advection, we could map all triangles directly to the reference.
However, this provides no computational advantage at the cost of flexibility.

c) Leveraging segmentations In order to correct the approximation errors that
might be introduced by advecting the subdomain, we incorporate segmentation data.
When a segmentation of the subdomain is available at time ti, it is used to replace Ωi.
However, the partitions Ωj

i cannot be reproduced. Therefore, we adjust the partitions
to the new subdomain by using Laplace’s equation

∇2v = 0, v(xi
old)|∂Ωold

i = xi
new − xi

old. (II.33)
By setting the boundary condition of the PDE to be the difference between a vertex
xi

old on the old border ∂Ωold
i and its corresponding point xi

new on the new border
∂Ωnew

i , we bring the old partitions into the new subdomain smoothly. The corres-
pondance between boundaries (bigraph) is established by the optimal mapping that
minimises the sum of pairwise euclidean distances. This minimum-weight perfect mat-
ching problem is solved by the Hungarian method. The displacement solution v of
(II.33) is then used to advect the triangles and is incorporated as an affinity composed
with R4i (Fig. II.21b). Alternatively, if only a rough approximation (e.g. HK-means)
is available but its accuracy can be estimated, the problem is addressed similarly via a
Kalman Filter. In this case, the combined transformation is also included as an affinity.

(a) (b) (c)

Figure II.21 – Schematics of the discrete geometry. a) Diagram of the Runge-Kutta
advection on triangles. b) The red mesh and its two subdomains are brought to the new blue
border by solving Laplace’s equation. c) Triangles from two different domains (blue, green)
of the old mesh are intersected with a triangle of the new mesh (bold black). Bounding boxes
of two triangles are in red. Taken from [244].

II.4.1.2 Integration over advected partitions

To integrate a given quantity f on the moving subdomain, we cast finite elements
on the triangle mesh and handle the integrals with the Finite Element Method [185].
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This has two further advantages : (i) the velocity field estimated in Section II.1 is
expressed in a finite element basis ; and (ii) it is convenient when solving (II.33) in
its weak form. The function fi at time ti is originally obtained in a basis defined on
the whole cell Ki, but can be projected onto finite elements defined on Ti. Here we
use Lagrange elements of second degree : we choose φi,j(x) piecewise polynomials such
that φi,j(pi,k) = δj,k, where the nodes pi,k are all the vertices and midpoints in Ti.
Since the values of a P2 function on a triangle edge are determined by the values on
its three nodes, this family is a basis of {φ ∈ C

(
Ω̄i

)
| φ 4 ∈ P2, ∀4 ∈ Ti} and we

can write fi = ∑
j fi,jφi,j with coefficients fi,j = fi(pi,j). We then choose another set of

polynomials N4i,j that coincide with φi,j only on a triangle4 but are easier to integrate
because they are non-piecewise. These functions depend on the nodes p(4) of their
associated triangle, so it is easier to change variables and calculate the integrals on
the reference triangle : N̂i,j := N4i,j ◦ R4i .

a) Numerical integration The time integral (II.31) is evaluated using the com-
posite trapezoidal rule,

Ik (f) ≈ h

F k
0 + F k

NT

2 +
NT−1∑
i=1

F k
i

 , (II.34)

and the advected partition integral F k
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f4i , (II.35)

where f4i := ∑
j∈p(4) fi,j and C−1 =

∫
4̂ N̂i,j = 1/6. The alternative midpoint quadra-

ture rule would also be adequate in this degree-2 Lagrange example, but we do not
use it because higher order rules are neither straightforward to implement nor general
(e.g. other elements). Moreover, the N functions are anyway needed to solve Laplace’s
equation.

II.4.1.3 Implementation details

a) Triangulation The initial meshing of the subdomain is constructed from a
given contour at t0. The planar straight-line graph defined by the polygonal contour
serves as the basis of a constrained Delaunay triangulation that is progressively refined
by adding points and ends with Lloyd’s relaxation algorithm. This is implemented
using Mshr and its CGAL [210] SWIG. As the mesh is advected, it degenerates and
gradually loses its Delaunay properties, which locally decreases the quality of the
interpolation. To mitigate this effect, we run a quality check at each time step by
assessing the ratio of every cell’s inradius to circumradius [200].
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b) Projection of partitions If the mesh is deemed inadequate we prescribe two
alternatives depending on the degree of degeneration : smoothing by local averaging
[247] or entirely remeshing from the current border. Regardless of the case, the parti-
tions, which are sets of triangles T ji , have to be projected on the new triangulation that
does not necessarily match (rightmost Fig. II.22). In order to assign a partition to a
new-mesh triangle, we compare its intersection area among all the old-mesh triangles it
collides with and choose the partition that is most represented. The areas are calcula-
ted using the shoelace formula on the polygon resulting from the Sutherland-Hodgman
algorithm [248], which is used here to clip pairs of triangles (Fig. II.21c). To avoid com-
paring non-colliding triangles, we use an axis-aligned bounding-box tree (AABB). The
collision detection (Fig. II.21c) is further used to find and remove triangles (without
remeshing) that venture out of the cell domain (remember Ωi+1 = R(Ωi) ∩Ki+1).

c) Advection and integration The implementation is largely based on the Fenics
platform [184], which is used to manage the subdomains and the projection on finite
elements, as well as to solve Laplace’s equation in its weak form. Two python libraries,
NumPy [208] and SciPy [209], are used to implement interpolation, solve the initial
value problem and keep track of the affinity matrices. They also serve the integration
together with a re-purpose of the assembly function within the Fenics framework [249].

Figure II.22 – Mesh advection and remeshing of a region. Evolution of each triangu-
lated (red mesh) partition (different colors) as a cell (blue contour) moves. On the right-most
image, the partitions have been remeshed because the quality decreased. Taken from [244].
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II.4.1.4 Preliminary experiments

We first assessed the numerical implementations. To test the integration scheme
(II.34, II.35), we proved that quadratic-in-space and linear-in-time polynomials were
integrated "exactly" up to machine precision.

In order to evaluate the ability of measure (II.32) to quantify changes in protein
directivity we established a comparison between wildtype cells and a mutant expressing
the constitutively active version of RhoA, which is qualitatively known to show bigger
variations in polarity [250]. Namely, we measured by how much the protein rim was
pulled backwards with respect to the “long” axis n of the moving cell (see Figs. II.19
& II.22).

We used the method presented in Section II.1 to segment the cell and estimate the
velocity field throughout the image sequence, obtaining Ki and ui(x). Next, we defined
n via an intensity-weighted PCA and used it to set the initial zone Ω0 at the leading
edge of the cell, defined by two parameters : width and solid angle. We divided Ω0 into
NP = 5 wedges Ωj

0 evenly spaced according to the arc length (leftmost Fig. II.22). This
is the minimum number of partitions that separates sides from center. The triangulated
partitions were advected as described above (Fig. II.22). With this information, we
calculated the spatiotemporal integral with (II.34, II.35). Since all steps are automatic
(segmentation needs sparse supervision), the pipeline can be readily iterated over all
the cells.

As expected qualitatively, the results (10 cells) show that the change in directivity
is significantly (t-test p-value=0.005) higher 21 in the mutant (1.80±0.2µm) than in the
wildtype (0.54± 0.1µm). Furthermore, we see that the difference between the central
partition and side partitions 22 is significantly increased (binomial p-value=0.0001),
indicating that the central part of the rim is specially affected. For comparison, we
checked the maximum velocity of the advected protein rim on both strains, a measure
resembling that of a manual kymograph (the standard method in biology), and found
the differences less significant (t-test p-value=0.03). While in the kymographic case the
differences were still significant, this method did not reflect the change in the isotropy
of the cell’s molecular distribution, as opposed to our integral approach.

In summary, we provide a framework that tracks diffuse cellular regions that are
not amenable to the classical segmentation+tracking scheme, and also computes ar-
bitrary line integrals. This allows defining measures to precisely quantify biological
questions that are otherwise addressed qualitatively in the community. We exempli-
fied the approach by assessing the notion of intracellular protein redistribution and
proved that (II.32) was able to quantify the movement of the protein rim and boost
the significance of the study.

21. The sign depends on the definition of the reference axis n.
22. See a newer example of the effect of E-cadherin (not RhoA) on the acin cortex in Figure II.24.
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Figure II.23 – Depolarisation of the actin cortex divided into eight regions. The
cell on the left-hand shows the eight divisions of the studied actin cortex. On the right hand
side, we show the average (n = 20) depolarisation suffered by each region.

II.4.2 The role of E-cadherin during amoeboid motility in the ze-
brafish embryo

After fine-tuning the algorithm, we use it to study the role of E-cadherin in amoe-
boid motility. This will be explained thoroughly in Cecilia’s thesis as the first author of
the work. Therefore, the results presented here are only preliminary (albeit full results
are available) and reflect only my naive interpretation of the data. In particular, we
only describe the main findings for three reasons : they are important for the study
of amoeboid motility conducted in this work, they partly motivate the next Chapter,
and they are a good illustration of the framework presented so far in this section.

It is still debated whether cell adhesion is imperative for cell migration. While some
studies have found that specific adhesions are not strictly necessary for single cell mi-
gration in vitro, it is not clear how these results translate into an in vivo setting. In
this context, cells can not only interact with the ECM, but also with other cells. For
example, newly specified zebrafish PGCs make their way to the gonads by navigating
through the developing embryo with the help of a chemokine gradient [251, 252]. Simi-
larly to E. histolytica, these cells rely on bleb-based amoeboid migration, which exploits
myosin contraction to generate pressure driven protrusions. Perhaps more specific to
PGCs is their polar form. During directed motion, Rac1 and RhoA are activated at
the leading edge of the cell [250]. Rac1 is a regulator of the actin cytoskeleton and in
this case acts by assembling an actin-rich structure (actin brush) at the front, whereas
RhoA (used in Section II.4.1.4) has been shown to enhance actomyosin contractility
and here induces a mild retrograde flow of the actin brush (Figure II.23).

Another protein involved in the migration of PGCs is E-cadherin, a cell adhesion
molecule that forms cell-cell junctions. This protein is expressed during early embrio-
genesis, but its presence on the membrane is slightly reduced shortly before migration
starts, presumably to loosen adhesion and initiate movement. In fact, E-cadherin has
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been regarded as necessary for the displacement of PGCs [250]. However, Cecilia et al.
realised that interfering with the protein does not affect a cell’s propulsion nor migra-
tion speed per se, but instead reduces its ability to reach long-range targets. Indeed,
a rigorous quantification of multiple cell tracks showed (Figure not shown) that under
E-cadherin knock-down (KD) PGCs continued to migrate through the embryo at the
same instantaneous speed, but lost their directionality as evidenced by a decrease in
the computed persistance. Since retrograde actin flow plays a role in cell polarisation,
the team asked whether E-cadherin might influence directionality by regulating the
dynamics of the actin brushes.

In this study, we showed that E-cadherin stabilises the actin brushes at the lea-
ding edge by reducing the frontal flow of actin towards the cell rear (Figure II.23) ;
stable brushes recruit more myosin, enhancing contractility and biasing bleb forma-
tion towards the front. Accordingly, when E-cadherin is knocked down, the speed,
depolarisation and overall movement of the actin brush increases with respect to the
direction of cell polarisation (see Figure II.24). The quantification was done using the
protocol described in II.4.1.4 ; that is segment and track the cell, define a region at
the leading edge, advect it around the cell over time, and compute the integrals using
cj(t) = 1

|T||Ωj(t)| or c
j(t) = 1

|Ωj(t)| .
The movement of the actin cortex surrounding the whole cell was studied in the

same way, but by dividing the structure into eight regions. The results in Figure II.23
show that the leading edge undergoes a more severe depolarisation. All the results are
shown in units of length, i.e. the average backwards displacement of the depolarising
actin brush.

Figure II.24 – Depolarisation of the actin brush in E-cad KD, RhoA overexpres-
sion, and ROCK KD. Knocking-down E-cadherin results in a significantly higher depola-
risation as compared to the control. As expected, RhoA over-expression increases retrograde
flow significantly, and knocking-down ROCK inhibits actomyosin activity and therefore sta-
bilizes the brush. A p-value of **** corresponds to < 0.0001, and *** to < 0.001 ; n = 20
cells.

In a nutshell, adhesion via E-cadherin is crucial to maintain the directionality of
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PGCs in the zebrafish embryo, but seems dispensable for cell movement in itself.
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II.5 Molecular forces in intracellular-mimicking nematic
systems

This section of the work was developed in collaboration with Jérôme Har-
doüin at Universitat de Barcelona. This work is still under development.

Because of their novelty and of their theoretical nature, the forces estimated
by the method proposed in Section II.1 are hard to validate experimentally.
In this section, we study a cytoskeleton-like nematic system consisting of a
mixture of microtubules and kinesin in suspension at a water-oil interface.
The active nature of the kinesin molecules (fuelled by ATP hydrolisis)
induces forces in the system that can be deduced from the orientation of
the filaments. Since these forces are in turn reflected on the underlying
water, they can be compared to those extracted by our framework. In
addition, computing the pressure and deviatoric stresses is showing good
promise for studying the nucleation of so-called topological defects in active
matter, and calculating the Lyapunov exponents of the flow field might help
analyse the system’s instabilities.

Nematics are concerned with long-range orientation order without much regard for
positional structure, most notably in reference to elongated molecules with head-tail
symmetry whose principal axes align into loosely parallel lines. This is namely the case
of the well-studied nematic phase in liquid crystals (LC) [253], which is exploited in LC
Displays. Active nematics study how the properties of these systems change when their
constitutive elements are able to individually extract energy from their surroundings
and turn it into mechanical work, maintaining the nematic system out of equilibrium
and giving rise to emergent collective motion (see I). From this perspective, active
nematics is the subset of active matter that displays nematic order [254]. Introducing
’activity’ into a nematic system shortens the range of the orientational order and thus
induces turbulent-looking flows, which manifest in the form of chaotic-like features
such as jets and swirls. The active forces might orient two contiguous regions of the
nematic system differently, creating a singularity in the orientation field known as a
topological defect, which would otherwise only be present as a result of a structural
inhomogeneity in the nematic material. 2D topological defects can be classified into
comet-like (winding number +1/2) and trefoil-like (−1/2) according to the change
in orientation. Active comet defects are motile and annihilate upon meeting their
negative counterpart. On the other hand, both defects are actively nucleated in pairs
of opposite signs. The dynamics created by the generation and destruction of defects
is intimately tied with the active turbulence described before and can be regarded as
impeding long-range order.

Multiple biological systems can be considered nematic active matter. At a multi-
cellular scale, dense assemblies of bone-synthesising osteoblasts [255, 256], expanding
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bacterial colonies [257, 258], and epithelial tissue 23, all display nematic behavior.
Examples at the intracellular level are mostly related to efforts in reproducing the
collective dynamics of the cytoskeleton and involve mixing biopolymers, such as mi-
crotubules or actin, with ATP-fueled molecular motors, e.g. kinesin or myosin [260].

II.5.1 Microtubule-kinesin mixtures
We consider microtubule-kinesin mixtures at a 2D water-oil interface, a minimalist

model frequently used to study cytoskeletal machinery (see rows 1 of Figures II.26 and
II.27). More specifically [261], the system contains fluorescently labelled microtubules,
polyethylene glycol as a depleting agent that helps in forming bundles of microtubules,
streptavidin to join pairs of biotinylated kinesins into two-headed motors, and ATP
as a tunable [262] energy source. The result are aligned bundles of microtubules that
extend and fold continuously in a sort of dynamical steady state flow known as active
turbulence. Underlying this higher scale dynamics is the polar action of the motors.
Microtubule filaments have minus and plus ends, and kinesin motors walk only in
this very direction : if the polarities of two contiguous filaments are opposed, the two-
headed motors will make the two microtubules slide past each other ; whereas filaments
of the same polarity will experience no relative motion. Therefore, microtubule bundles
are locally sorted according to their polarity, which results in extensional motion [254].
The search for a globally polarised system drives the creation of the dynamical steady
state as it competes with the occasional fracturing and disintegration of the bundles.
While the resulting turbulent-looking flow is referred to as "active turbulence", this is
but a visual analogy. In fact, these nematic systems do display some spatial coherence,
which can be defined by a characteristic length scale [263] of order around the length of
10 microtubules. Despite their organisation at a local level, we recall that the systems
do not seem to achieve long-time long-range orientational order and thus they might
be well described by spatio-temporal chaos.

In summary, active stresses act along the microtubules, pulling the filaments apart
but leaving the director field unchanged. However, the extensile system is coupled to
the solvent. The hydrodynamic interactions suck the solvent in from the sides and
expel it along the stretching direction [264]. Under these conditions, active stresses
amplify any bending deformation of the director field leading to unstable behavior
[265, 266], which is reminiscent of buckling instabilities and presumably derives into
active turbulence [267]. The growing deformation is bound to self-fracture and generate
a pair of oppositely signed defects. The positive defects are self-propelled because the
high variations in orientation generate a force unbalance that points in the comet
direction. Positive defects create the characteristic vortices of active turbulence as they
interact, and are annihilated when they meet their negative counterparts, eventually
reaching a steady state with a constant number of defects.

23. The apoptotic sites of some epithelial tissues have been found to be highly correlated with
positive topological defects [259], where compressive stresses are high. In fact, the stress peak triggers
cell death and expulsion via mechanotransduction.
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In the absence of boundaries, the unstable behavior is always present independently
of the activity level. However, there exist multiple ways to stabilise the system, for
example by controlling the viscosity of the underlying fluid to increase friction and
slow down defects [268, 263]. Confining the system is perhaps the most fruitful of the
alternatives. Physical geometric constraints, such as packing the system into a disk
(as in Figures II.26 and II.27), help stabilise chaotic motion and prompt longer-ranged
order (e.g. [269]) as the characteristic size of the confinement shrinks to around the
order of the length scale of the activity. In our setting, the microtubule-kinesin mixture
is confined to a disk and we observe quasi-steady flow and structural patterns.

II.5.1.1 Nematohydrodynamics

Nematohydrodynamic models aim at describing active nematics under a continuum
theory, which summarises the microscopic detail of active molecules into coarse-grained
or macroscopic quantities such as the nematic tensor Q or the fluid velocity u (Figure
II.27) [258, 270]. The evolution of each of these two parameters is described by res-
pective dynamic equations that are mostly coupled through a common velocity. More
concretely, the behavior of the underlying fluid is described by the incompressible
Navier-Stokes equations where the stress tensor not only includes the classical viscous
contribution but also elastic and active terms. In particular, the momentum equation
reads

ρDtu = ∇ · (−pI + τv + τe + τa) , (II.36)
where ρ is a constant density. Elastic stresses are a function of Q itself and of a field H
that describes the elastic relaxation of Q via a free energy. However, in a microtubule-
kinesin mixture, the nematic orientation relaxes at low speeds compared to the rate
of energy injection. Therefore, elastic stresses are typically neglected in favor of active
stresses [254]. Active stresses are directly proportional to the nematic tensor :

τa := −ξQ, (II.37)

where ξ > 0 reflects the extensile nature of microtubule-kinesin mixtures, whose mo-
lecules pull the fluid towards their sides and push it away along their axis. A precise
understanding of active stresses requires a proper explanation of Q. The nematic ten-
sor Q provides a macroscopic characterisation of the orientation field as a function of
the unitary director field o (Figure II.26, row 2), which describes the local alignment
of the microtubules. In 2D,

Q = 2q(o× o− I/2). (II.38)
Thus Q is an order parameter that adds magnitude (q) to o and tensorialises it, making
explicit the head-tail symmetry (o = −o). In particular, q quantifies the "strength" of
the local alignment in reference to a normalised scale ranging between 0 (isotropy) and
1 (perfect alignment). Notice that o is an eigenvector of Q with eigenvalue q, whereas
the vector perpendicular to o is a second eigenvector but of eigenvalue −q. This is
a consequence of the tensor being traceless, which reflects our indifference towards
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isotropic conditions [253]. The tensor is also symmetric and real. The second system
of equations describes the dynamics of the nematic tensor as they are advected by
the flow. The equations model how the elongated molecules align with the flow as a
function of the flow derivatives (S), i.e. of its vorticity and rate of strain ; and how the
system relaxes as described through the molecular field (H). In this case, the dynamics
of the nematic tensor read

DtQ− S = ΓH, (II.39)

where Γ is a diffusivity. While the free energy underlying H accounts for both bulk
energy and the elastic cost of spatial homogeneities (∝ (∇Q)2), it is worth mentioning
that in extensile systems the former can be safely ignored.

II.5.2 A qualitative comparison between fluid and active nematic
forces

Conveniently, the system also has little inertia. Indeed, the sizes at play are mi-
croscopic, and the speeds relatively low. Together with the simplifications introduced
by the extensile nature of the mixture, the small Reynolds number further eases the
PDEs. Specifically, we derive

∇ · (−pI + τv + τa) = 0. (II.40)

By comparison with the Stokes equation introduced in II.1, we identify the divergence
of the active stress with the forcing term :

f = −ξ∇ ·Q. (II.41)

But, could we compare (in practice) these active nematic forces with the forces exerted
on the fluid as extracted by our framework ?

II.5.2.1 Image analysis for the active nematic force

To compute the active force via (II.41), we need to extract the nematic tensor Q out
of the image sequence. The videos of the flowing mixture are taken using fluorescence
confocal microscopy. The director field is extracted from each of these images using
a method based on anisotropic filtering [271], namely coherence-enhanced diffusion
filtering [272]. In short, one looks for the directions along which intensity variations
are weakest, that is the eigenvector corresponding to the smallest eigenvalue of the
intensity gradient tensor. Obligedly, the image is pre-filtered to reduce the influence
of noise, yielding an intensity I ′. In addition, the gradient tensor is convoluted with a
Gaussian filter G in order to increase the range of the measure because the intensity
variations concerning microtubule bundles occur at a scale longer than a pixel. Finally,
the eigenvalue oi of G ∗ (∇I ′) (∇I ′)T , known as the coherence direction in image
analysis, corresponds to the local orientation of our nematic system.
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(a)

(b) (c)

Figure II.25 – Qualitative comparison of PIV techniques. a) Two consecutive frames
of a microtubule-kinesin mixture interluded by their superposition in cyan and red in an
attempt to display motion (cyan+red = white). b) Velocity field extracted from state-of-
the-art PIV techniques used in the field of active nematics. c) Velocity field extracted by our
approach, outlined in Section II.5.2.2.
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The nematic tensor is more reliably constructed by averaging over m neighbouring
pixels : Q = 1

m

∑m
i=1 oi × oi − I/2. Notice that the "averaged" o (Figure II.26, row 2)

and q can be obtained by diagonalising Q. The active force (up to a constant) can be
finally computed as ∇ ·Q (see Figure II.26, row 3).

Figure II.26 – Comparison between active nematic forces and fluid forces. Row
1) 4 frames of a sequence showing a mixture of microtubules and kinesin. Row 2) Director
field o extracted from the images in (Row 1) as detailed in Section II.5.2.1. Row 3) The
divergence of the nematic tensor Q, which is a function of o in (Row 2), is proportional to the
active force. Row 4). Fluid force extracted from the image sequence as detailed in II.5.2.2 ;
to be compared with (Row 3). The last forces are shown as the square of the magnitude.
Together with Jérôme Hardoüin. The raw video is taken from [269].
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II.5.2.2 Image analysis for the fluid force

On the other hand, we solve the minimisation problem (II.12) with

Jreg = α‖f‖2
K + γ‖g · n‖2

∂K + η‖r‖2
K (II.42)

to obtain the external force f felt by the fluid from each image pair of the same
sequence. Here K stands for the domain of the active nematic system, a disk in our
case. In line with the experimental setting, we weakly enforce a free slip condition on
the disk border ∂K, penalising only velocities that are perpendicular to the boundary
normal n. In principle, the flow should be incompressible but we allow some leeway to
accommodate anomalies, mainly related to occasional misrepresentations of the system
by the image intensities. The assimilated velocity field u (Figure II.25, but see also
Figure II.27) appears very accurate and seems to offer unprecedented detail within
the active nematics community. Take the zones near the wall for example. Resolving
the movement in these regions is particularly challenging because the velocity field
aligns with the microtubules, a direction in which contrast is poor 24. As opposed to
correlation-based methods, which are too local, our approach is able to capture the
movement near the wall. This is because the fluorescent microtubules are advected
by the underlying fluid and therefore the motion reflected in the intensity is well
described by our fluid dynamics assumption ; together with the optical flow functional,
the globality of the method manages to fill in the regions without contrast.

II.5.2.3 Calibration of nematic activity

Comparing the active and fluid forces in magnitude is not possible because ξ, and
possibly the viscosity µ too, are unknown ; rather we have to compare their spatio-
temporal distribution. If the results are positive, we might be confident enough to try to
calibrate the nematic parameter ξ with the much more easily accessible µ by equaling
forces. This might be relevant to the active nematics community because there is no
reliable way to measure ξ experimentally as of now. Moreover, if the relation is correct,
this might also reassure us of the adequacy of our framework regarding the study of
intracellular mechanics 25, specially concerning forces exerted by molecular motors.

While there are some discrepancies regarding forces close to the walls, the distribu-
tion of active and fluid forces appears qualitatively similar in respective rows 3 and 4
of Figure II.26. Of course, the latter are much smoother, i.e. less localised, because of
their fluid nature 26. However, it is noteworthy that the maxima of both forces match
almost perfectly, especially considering that both approaches are very different. In-
deed, active forces are computed by informing the nematic equations with the o field
24. In addition the zone has little texture, decreasing the amount of information available, as seen

in the cyan+red superposition of Figure II.25.
25. By way of simulations, we already know that the forces are well recovered when the Stokes

equations are strictly fulfilled.
26. Perhaps this could be alleviated by using a vectorial TV regularisation as introduced in Chapter

III.
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extracted from the gradient eigenvalues of a single image, whereas fluid forces are
computed from pairs of images and are based on the optimisation method presented
in Section II.1. If we compare the spatial integrals of both force sources, it appears
that the product µ/ξ is typically not far from order 102s. This result is preliminary
and must not (yet) be taken at face value.

II.5.3 Applications to the study of defect nucleation, spatio-tem-
poral chaos and dynamical instabilites : wall stress, POD and
Lyapunov exponents

Further interesting problems in active nematics can be tackled with the extracted
information. These ideas and their repercussions in the field will be presented in depth
in Jérôme’s thesis on active nematics, but we outline some in this text.

For example, one could explore the factors that trigger defect nucleation at walls,
where it occurs preferentially due to elastic considerations. This can be approached by
computing the deviatoric stress τv = 2µε(u) of the fluid underlying the nematic system
(see Section II.1.2.1d). Specially relevant is the stress across the surface defined by the
boundary normal n · τv, which coincides with the radial direction of the disk (Figure
II.27). While the normal τv,n := n · τv ·n component of this stress is highest at defects
present on the wall (Figure II.27), the tangential component τv,s is highest at the
sides immediate to these defects (Figure II.27), possibly explaining why sometimes
additional defects are nucleated there (e.g. think of stress-induced bending in plate
theory [273]).

Another direction is to try to analyse the active flows in terms of classical spatio-
temporal chaos, but active nematics appear too complex to be approached with stan-
dard methods. However, it might be possible to characterise the flows through the
underlying fluid instead, where we can have estimates of classical quantities such as
pressure. In this direction, a parallel could be drawn with Rayleigh-Bénard convection
flows : the active forces in the nematic system would correspond to the temperature
gradient that forces the convective system. In the convective case, temperature dif-
ferences lead to pressure gradients, whereas nematic flows seem to follow pressure
gradients (p in Figure II.27) that are generated by the active forces (f in Figure II.27).
Therefore, it seems viable to apply standard methods to the fluid underlying the ne-
matic system. An in depth analysis of this relation will be provided in Jérôme’s thesis.

A third possibility is to analyse the system from a dynamical systems perspective.
In this context, one could attempt to fit a dynamical system into the computed velo-
city fields by representing their fluctuations with respect to the mean via a finite set
of modes that maximise kinetic energy, for example via Proper Orthogonal Decom-
position (POD). Alternatively, another relevant approach is to study the advection
of the fluid by considering Lagrangian Coherent Structures (LCSs) [274]. LCSs are
the most (locally) attracting or repelling surfaces within the flow [275] (pages 66 and
67) and thus bring out the flow topology. These regions can be extracted by ana-
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Figure II.27 – Analysis of the quasi-steady-state regime of a nematic system. Row
1) 3 frames of a sequence showing a mixture of microtubules and kinesin reaching a steady
state. Row 2) Average velocity field u, average pressure field p and average force field f.
Row 3) Field of normals n, average normal stress τv,n and average tangential stress τv,s.
Together with Jérôme Hardoüin.
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lysing the spatial distribution of finite time Lyapunov exponents (FTLEs) [276], as
done for example in heart flows [277]. In turn, FTLEs are computed from the largest
eigenvalues of the Cauchy-Green deformation tensor

(
∇F t

t0

)T ∇F t
t0 as derived from

integrating the velocity field forward (repelling) or backwards (attracting) into a flow
map F t

t0 : x0 → x(x0, t0, t) from a starting position x0 and time t0 until t ; and reflect
the separation rate of "particle" trajectories at long time. Since the microtubule-kinesin
mixture is extensile, the direction of maximum stretch should be that of the nematic
orientation field o and therefore the FTLE (being the largest) can be computed from
|o(t0,x0) · ∇F t

t0 · o(t,x)|. Under ergodic conditions, a recent study points out that the
Lyapunov exponents can be calculated directly as a spatiotemporal average of o·∇u·o.
Lyapunov exponents (and LCSs) should reflect the instabilities (and flow topology)
of the nematic system and perhaps shine light on defect nucleation and the chaotic
characteristics of the flow.

(a) (b)

Figure II.28 – Finite time Lyapunov exponents of the mixture at quasi steady
state. a) Flow map F tt0 , see text. b) FTLEs. The maximal (real) eigenvalue λmax of the
(symmetric)

(∇F tt0)T ∇F tt0 tensor are computed at each vertex of the mesh with NumPy,
which interfaces with LAPACK routines. The FTLE is then formed as ln

(√
λmax

)
. Since the

integration was performed forward, the plot shows potential repelling LCSs. Together with
Jérôme Hardoüin.
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II.6 The viscoelasticity of cytoplasm
This section of the work is fully developed conceptually but was "abando-
ned" due to a lack of experimental support that could derive meaningful
application problems.
The intracellular model implemented in Section II.1 is only valid at certain
time scales, which depend on the cell type and its motion. To substitute
the viscous Newtonian model of the cytoplasm for a more accurate repre-
sentation, we base ourselves on several rheological experiments reported in
the literature. In particular, the cytoplasm of amoeboid cells has been re-
peatedly reported as a viscoelastic fluid well described by Jeffreys’ model.
While this is a discrete spring-damper mechanical system, its extension to
continuum mechanics is known as the Oldroyd B model. By explicitly de-
riving the latter from the former, we reproduce the exact link between the
spring-damper constants documented in the articles and the viscoelastic pa-
rameters that govern the motion of an Oldroyd fluid. However, not unlike
other viscoelastic models, Oldroyd B fluids suffer from several convergence
problems. To stabilise the weak formulation of the problem, we resort to a
combination of the streamline upwind method, which adds a diffusive term,
and the discrete elastic viscous split stress approach. Time-stepping is then
implemented as a backwards scheme and the non-linearity of the model is
attacked with Newton’s method. Once the forward problem has converged,
we adapt the data functional and regularisation introduced in Section II.1
to this time-dependent problem. While the adjoint approach to minimise
the resulting PDE-constrained is outlined, we have not implemented it due
to a lack of meaningful data.

The polymeric nature of biological fluids and solids is better described by viscoelas-
tic models [278, 279]. It is precisely the interaction between the constitutive proteins
of biological materials that condition their response to stress, giving rise to a wide
range of behaviors that combine both viscous and elastic responses. Take for example
a protein solution. In this case, the chains first reorganise (e.g. untangle) in order to ac-
company the stress, aligning with the streamlines and eventually flowing. While most
energy is dissipated as the solution flows, some of it is preserved in internal elastic
stresses that act to return the polymers to their original spatial configuration. This is
a very preliminary example of a viscoelastic fluid. At the opposite end, in viscoelas-
tic solids, there is first some leeway wherein the proteins rearrange (creep) until the
stress is compensated. Different combinations of these and other phenomena result
in different viscoelastic regimes that can be further classified as either fluid, such as
the cytoplasm where proteins interact more weakly, or solid, such as the extracellular
matrix where proteins are often fully cross-linked.

Pure elasticity describes materials that respond immediately to stress, respectively
storing or releasing all the energy as they are strained or relaxed. Conversely, viscous
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Figure II.29 – Viscoelastic creep. Very simple schematic of a viscoelastic fluid responding
to a stress step. When the stress is applied there is an almost instantaneous elastic response
that is retarded by viscous components. As more time passes, the contribution of the elastic
component is saturated and the behavior becomes fundamentally viscous. For comparison, a
purely viscous fluid would display a perfectly linear function, whereas the strain of a purely
elastic material would respond instantly, mimicking the step function imposed on the stress.
Depending on the fluid, any combination of these responses at multiple time scales (e.g.
retardation or relaxation times) is possible, giving rise to many different behaviors ; these
can be modeled for example by mechanical circuits (see Annex B).

.

behavior is entirely dissipative and strains depend on time. In the most simple elastic
and viscous models, strain and strain rate are proportional to the stress. The combi-
nation of both models translates into mixed properties, for example viscoelastic fluids
display anisotropic stresses and have memory, i.e. the internal stress depend on the
fluid history (see review in [280] and computational considerations in [281, 282, 283]).
From the perspective of internal rearrangements, viscosity and elasticity represent the
limits of instantaneous and infinitely-long rearrangements. The balance between the
two regimes is characterised by one or more timescales that result in the different
viscoelastic responses (for example Figure II.29). As shown in Annex B, a good way
to recapitulate these properties and their associated time scales is to build increasin-
gly complex (but linear) circuits of mechanical springs and dampers. In practice, the
great flexibility to model viscoelasticity, as opposed to the one standard Newtonian
fluid and linearly elastic solid, results in models that are eminently phenomenological.
Of course this is also the case in cells : different cell types can be described by different
timescales ; and thus studying the fluid-like behavior of the cytoplasm requires great
experimental support. In other words, rheology is necessary to assess whether it is
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worth to include an elasticity component on our Newtonian model of the cytoplasm
given the cell type and spatiotemporal scale under study. While we do not have the
appropriate set-up to approach this question, we can draw some inspiration from the
literature.

II.6.1 Taylor-Couette inside the cell : viscoelasticity and shear-
thinning

(a) (b)

Figure II.30 – Taylor-Couette [237] inside a cell and the associated viscoelastic
mechanical circuit. a) Pairs of electromagnetic coils are used to create a magnetic field
on the imaging plane that is used to orient pairs of phagocyted beads against the resisting
torque induced by the fluid. In this way, the rheology of the material can be explored. b)
Mechanical model of the viscoelastic cytoplasm of Entamoeba histolytica . The constants
depicted in the figure as η1, G and η are written as η1, E1 and η2 in this text. Both images
are taken from [136].

The rheology of cells has been probed extensively. In this case we focus on a report
on the behavior of the Entamoeba histolytica cytoplasm [136], but similar studies have
been performed in many other cell types such as Dictyostelium discoideum [284], fi-
broblasts, or HeLa cells [285] ; the majority of which coincide in that the cytoplasm is
well approximated as a viscoelastic fluid. Most cell rheology is approached via magne-
tism, and the analysis presented in [136] is no exception. In this study, they induce the
parasites to phagocyte magnetic beads that serve as microrheometers (Figure II.30a).
Two pairs of electromagnetic coils are then used to create a static magnetic field B on
the imaging plane. If the current is direct, the field orients according to the ratio of
intensities. Alternatively, feeding alternating currents to the coil pairs that are π/2-
out-of-phase results in a rotating magnetic field. In both cases, the dipole formed by
the bead pair will be subjected to a magnetic torque that tends to align it with the
magnetic field against the viscoelastic torque. The magnetic torque induced by B is a
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function of the angle between field and dipole, and of the magnetisation of the bead
pair, which can be characterised with a Foner device ; whereas the viscoelastic torque
depends on a geometric constant that can be calibrated using a known fluid.

a) Transient response : viscoelastic creep. By observing how the beads pro-
gressively align when a static field is suddenly applied, one can capture the viscoelastic
response of the material (see Figure II.29). Both [136] and [284] found that the best fit
to explain the observed behavior of the cytoplasm was a spring-damper discrete me-
chanical model known as a three parameter fluid model (Figure II.30b). In Annex B,
we show how a classical fluid model from continuum mechanics known as the Oldroyd
B model can be derived from this experimental discrete model, and give the equiva-
lence between the constants of the spring-damper system and the constants governing
the continuum model.

b) Permanent response : shear-thinning. If the beads are made to perma-
nently follow a rotating magnetic field, both shear strain rate and magnetic torque are
constant. Therefore, one can capture the effective viscosity of the fluid under different
strain rates. In [136] they found that viscosity decreases with increasing shear rates ;
i.e. the fluid is shear-thinning. At a molecular level, this can also be interpreted intui-
tively as the proteins gradually aligning themselves to produce less resistance, or by
aggregates that break into smaller pieces.

In what follows, we focus on viscoelasticity and leave the modelling of the shear-
thinning behavior for future work. Of course, this is not to say that one or the other
are more important, for example shear thinning could facilitate cytoplasmic streaming,
but rather that biological literature seems more concerned with the former [279].

II.6.2 The Oldroyd B model for viscoelastic fluids
The Oldroyd constitutive equations are perhaps the simplest among all continuum

models that describe the viscoelastic behavior of dilute polymeric solutions and contain
relaxation and retardation. They were first derived [286] by extrapolating experimental
observations while trying to satisfy certain requirements, namely : causality, locality
and frame indifference. To preserve frame invariance, the material derivative is not
enough in the context of second-rank tensors such as the stress ; instead, a set of
so-called objective derivatives can be deduced by considering the change of the base
vectors (at each material point) that form the tensor. Perhaps the most used of these
is the upper convected time derivative,

∇• := Dt • −
(
(∇u)T · •+ • · (∇u)

)
. (II.43)

This frame-invariant time derivative corresponds to the rate of change of a second-rank
tensor expressed in a coordinate system that moves and deforms with the underlying
fluid.



112 Chapitre II. Measuring inside the cell

Interestingly, one of Oldroyds’ most successful models, the Oldroyd B model, can
also be derived by considering a suspension of linear spring dumbbells in a Newtonian
fluid. In this case, one can define polymeric µp and solvent µs viscosities and dissociate
the stresses within the fluid into viscous τv and elastic τe contributions :

ρDtu = −∇p+∇ · (τv + τe) + f, (II.44)

τv = 2µsε, (II.45)

λ2
∇
τ e + τe = 2µpε, (II.46)

∇ · u = 0, (II.47)

where the boundary conditions can be specified by fixing u or imposing zero traction
as in the Stokes flow (Dirichlet/ Neumann/ Robin), as well as by fixing the stress
tensor, and we require initial conditions because of the time dependency [283]. Indeed,
a viscoelastic fluid has memory ; and its scale is dictated by the relaxation time λ2,
which in turn is a function of the elastic modulus. More precisely, in Annex B we
show how the Oldroyd B model can also be derived by tensorialising the discrete
experimental system presented in Figure II.30b into a fluid continuum. The resulting
equivalence between the polymeric/viscous constants to the elastic/damper constants
is as follows :

µs = η1η2

η1 + η2
, (II.48)

µp = η2
2

η1 + η2
, (II.49)

λ2 = η1 + η2

E1
. (II.50)

Therefore, a strong elastic modulus E1 will reduce the relaxation time of the fluid,
accelerating its return to an equilibrium state. Most importantly, we now have a fluid-
like description of the rheological experiment ! However, the Oldroyd B model is known
to be unstable (turning from mostly elliptic to mostly hyperbolic) in certain regimes,
which can be defined in terms of some dimensionless constants.

II.6.2.1 Non-dimensionalisation

We scale the problem to recover the characteristic constants of the system. First,
notice that η2 = µs + µp so we can define µs = (1 − α)η2 and µp = αη2, where
α := 1 − λ1/λ2 and reflects how close the fluid is to following a standard Newtonian
model (i.e. α = 0) or a Maxwell model (α = 1) (see Annex B). The appropriate change
of variables reads : x = x∗l, t = t∗∆t, u = u∗ l

∆t
, p = p∗ η2

∆t
, f = f∗ η2

∆tl
, τe = τ ∗e

η2
∆t
, where l,

∆t are the length and time scales of the problem. Dropping the asterisk for readability
we get :

ReDtu = −∇p+ (1− α)∆u +∇ · τe + f, (II.51)
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We∇τ e + τe = 2αε, (II.52)

∇ · u = 0. (II.53)

The scale of the equations is characterised by the Reynolds number Re := ρl2/(η2∆t),
where ρ is the density ; and the Weissenberg number We := λ2/∆t, which compares
elastic and viscous forces by looking at the ratio between the relaxation time λ2 and
a related characteristic time of the experiment 27, for example the inverse of the shear
rate. In a way, this reflects the anisotropy resulting from the deformation of the fluid.
It is precisely because the fluid and its properties are rearranged during (in the same
timescale as) the experiment, that strain and stress cannot have a constant relation
and thus time-dependency arises.

In the cellular context, the inertial contributions are negligible and thus Re � 1
(as in Section II.1). However, depending on the polymeric composition of a cell’s
cytoplasm, which can vary wildly by cell type, and the time scale of the shear rate, the
Weissenberg number might not be negligible. In some applications, we have We ∼ 1.
In the case study of Entamoeba histolytica , the literature reports η2 ≈ 0.35Pa s and
E1 ≈ 2.3Pa 28 ; while η1 is not given, we can assume that it is of the same order
and thus λ2 ∼ 0.1. Since the shear rates are applied at around ξ̇ ∼ 1 (and we do
not expect much higher from contraction-induced cytoplasm streaming), this drives us
below the critical Weissenberg number of 1, from which convergence becomes specially
hard as the flows become more strongly elastic. In fact, the We number drives up the
hyperbolicity component 29 of the elliptic-hyperbolic (steady) Oldroyd B model.

II.6.2.2 Weak formulation : SU, DEVSS, and convergence problems

To solve the Oldroyd B equations we write their corresponding weak formulation.
First, the conservation equations :

aS := 2(1− α)〈ε(u), ε(v)〉K + 〈τe, ε(v)〉K − 〈p,∇ · v〉K + 〈∇ · u, q〉K , (II.54)

LS := 〈f,v〉K , (II.55)

which are eminently Stokesian. Second, the constitutive equations :

ac := We〈∇τ e,a, φ〉K + 〈τe, φ〉K − 2α〈ε(u), φ〉K , (II.56)

Lc := 〈We
dt
τe, 0, φ〉K , (II.57)

∇
τ e,a := 1

dt
τe + u · ∇τe −

(
(∇u)T · τe + τe · (∇u)

)
, (II.58)

27. See footnote 8.
28. In fact, it is not clear what they are reporting as the notation for the damper system and the

relaxation time do not match.
29. I.e. the first-order hyperbolic equation that describes the evolution of the elastic stress.
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where we have discretised the time derivative with a backward difference with time
step dt and the elastic stress τe, 0 evaluated at the previous time point. Of course the
simplest scheme, albeit highly unstable at large We, is the mixed method defined by
the set of equations above : find τe (symmetric, i.e. three values in 2D), u, p, such that
(II.54)-(II.58) ∀ φ, v, q.

a) SUPG-SU. To stabilise the enhanced hyperbolicity of the equation system
at higher We numbers (see [280] for an overview), an approach known as SUPG
(Streamline Upwind Petrov-Galerkin method) adds a consistent upwind diffusion term
〈We∇τ e + τe − 2αε, φ + βu · ∇φ〉K to the stress [287], where β ∈ R≥0 weights the in-
troduced diffusivity tensor. However, under the SUPG formulation, the convergence
of the resulting method is still problematic near geometry-induced singularities [288].
Conversely, settling for a SU scheme [287], which only includes the diffusion term

ac, SU := β〈u · ∇τe,u · ∇φ〉K (II.59)

in addition to the original stress, maintains convergence up to high We at the price of
losing consistency. Indeed, although the resulting predictions are good [289], we should
not expect the SU to be more than first-order accurate [290, 291].

b) DEVSS-EVSS. Additional work accounts for the mixed nature of the coupled
system (and compatibility conditions thereof) to propose complementary stabilising
schemes. Indeed, whereas the Stokesian equations are stable for fairly simple discretisa-
tions fulfilling the LBB condition ; in the viscoelastic context, the mixed trio (u, p, τe) is
only stable for very costly elements that satisfy a generalised compatibility condition.
An approach in this direction is to search for a change of variables that, at least, be-
haves well in the Stokesian limit [292, 293] ; for example by trying to retain the elliptic
contribution of the force balance equations. An instance of this is the elastic viscous
split stress (EVSS) formulation, which uses the change of variables σ := τe − 2αε to
rewrite the equation system [294, 295, 296]. However, the proposed change of variables
is not adaptable to the majority of constitutive equations and it includes the strain
rate tensor into the convection-derivated terms, requiring second derivatives of u. To
amend this, the discrete alternative to EVSS (DEVSS) [297] introduces an additional
unknown ε̄, which is the continuous L2 projection of the discrete rate of strain tensor,
in order to pose a similar change of variables σ := τe − 2ωε̄ for some ω ∈ R≥0. As it
turns out, the change of variables is not necessary ; instead, it is enough to add the
terms

aS, DEVSS := 2ω〈ε(u), ε(v)〉K − 2ω〈ε̄, ε(v)〉K + 〈ε(u), ψ〉K − 〈ε̄, ψ〉K , (II.60)

where the last two summands make up the projection, and the corresponding trial ε̄
and test ψ functions have been introduced (look below for the full problem). While
these additions might look like a null operation, the key lies on the different discrete
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formulations of ε̄ and ε(u) ; in particular one ought to choose the finite approximation
space of the projection such that it is not rich enough to fully represent ε(u). In
practice, the iterative nature of non-linear solving methods allows to easily split the
Oldroyd stabilised equation and the projection 〈ε(u), ψ〉K = 〈ε̄, ψ〉K into a two-step
computation.

The resulting (u, p, τe, ε̄) quartet is remarkably stable, and it has been shown to
require no extra compatibility condition (aside from LBB) in a linearised version of the
Oldroyd B model [293]. As a result, DEVSS [298], and specially the combination SU-
DEVSS, displays better convergence properties as compared to the other formulations
presented and is our choice of implementation.

c) The underlying cause of convergence problems in viscoelastic fluids.
Just like for the general Navier-Stokes equations, well-posedness of the Oldroyd B
model is still open for debate, mainly due to the lack of scale-dependent stress dissi-
pation 30 in the advection equation [299]. However, some solutions have so far helped
numeric implementations assess their results ; for example, the norm of the elastic
stress tensor is a good indicator of existence [300]. In addition, the equations can
be proven to be globally well-posed under unrealistically small initial data and very
favorable geometries [301].

Molecularly, one of the problems mining the theoretical and computational analysis
of the Oldroyd B model can be traced back to the linear elasticity of the immersed
spring model, which does not limit how long the dumbbells can be stretched and thus
might break down during steady extensional flow [302]. However, this is certainly not
the only problem since efforts that model finite extensibility (e.g. FENE-P, Giesekus,
PTT) still suffer at high Weissenberg numbers. It appears that large stress gradients
induced by the advection of the elastic stress around extensional points might be the
common cause underlying the numerical difficulties involved in modelling viscoelastic
fluids, specially in long-term simulations [303].

II.6.2.3 Non-linearity : Picard’s and Newton’s methods, and benchmark
simulations

While the origins of the Oldroyd B are certainly linear (e.g. see Annex B), non-
linearity sneaks in the final equation system via the objective upper-convected deriva-
tive. It is from this perspective that the Oldroyd B model is regarded as a quasi-linear
model. The full set of non-linear weak equations, including the SU and DEVSS stabi-
lisation terms, reads : find U := (u, p, τe, ε̄) such that

aO-B := aS + aS, DEVSS + ac + ac, SU (II.61)

LO-B := LS + LS, DEVSS + Lc (II.62)

30. Note how adding some unnaturally large dissipation stabilises the equations. There is some
natural stress diffusion that stems from the molecular model but it is negligible.
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aO-B − LO-B = 0 (II.63)
∀ V := (v, q, φ, ψ). The problem can be posed in the standard spaces H1

0 for the
velocity, and L2 for the pressure and the three components of the stress (in 2D ; not
4 because of the symmetry). To approach the problem numerically we use the Finite
Element Method discretised via continuous biquadratic elements for the velocity u,
mixed with discontinuous linear elements for the pressure p and continuous linear
elements for both the stress τe and the rate of deformation tensor ε̄ [298]. Even though
hereafter the variables will be discrete functions belonging to discrete subspaces of the
originals, we will be representing them with exactly the same symbols to ease notation.
Notice that a non-linear problem has to be solved at each time step.

a) Picard’s method. There are two main strategies to attack non-linear PDEs
computationally, both of them iterative. The simplest is Picard’s method and is fun-
damentally a fixed-point iteration. Concretely, one turns the problem linear at each
iteration by substituting all the variables within non-linear terms by the solution re-
sulting from the previous iteration. Writing k to index the iterations, at k + 1 we
solve

aO-B(Uk+1; V)− LO-B = 0 (II.64)
∀ V with the convected derivative (the only non-linear term) adjusted to use the stress
from the previous iteration, i.e. ∇τ e,a(uk+1, τ ke ). The result is a new solution indexed by
k + 1 that is (ideally) closer to the real solution. Termination is decided according to
the norm of the difference between the last two successive solutions.

b) Newton’s method. The second method is Newton’s, which can be applied
at the algebraic level, i.e. to the non-linear system of algebraic equations resulting
from introducing the finite elment basis, or at the earlier PDE level. In the latter
case, consider an approximation Uk of the vectorial solution field at iteration k, and a
perturbation δU such that Uk+1 = Uk+δU is the real solution. Of course, the problem
is still non-linear if we substitute the change of variables into (II.63). However, if we are
taking small enough steps we can linearise the resulting expression around the previous
solution. Precisely, this is equivalent to applying Newton’s method with the Gâteaux
differential at Uk in direction δU w.r.t. U, i.e. dUk,δUa := limξ→0 dξa(Uk + ξδU). The
resulting linear system, which gives a new update step δU at each iteration, is given
by

dUk,δUaO-B = −aO-B(Uk; V) + LO-B (II.65)
∀ V. Again, as the equations are quasi-linear, we only need to adjust the objec-
tive derivative. Concretely, we have dUk,δUaO-B = aS(δU; V) + aS, DEVSS(δU; V) +
dUk,δUac, SU(U; V) + 〈δτe, φ〉K − 2α〈ε(δU), φ〉K + We〈dUk,δU

∇
τ e,a, φ〉K . That is all the

terms were linear and thus dU,δUa• = a•(δU; V) except for i) the latter upper-
convected derivative in ac, which expands by the product rule :

dUk,δU
∇
τ e,a = ∇

τ e,a(δu, τ ke ) + ∇
τ e,a(uk, δτe)− τe/dt; (II.66)
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and ii) the SU diffusive term ac, SU, which expands similarly. In this Dirichlet-based
context, notice that the step δU (and thus II.65 by extension) requires homogeneous
boundary conditions.

c) Numerical simulations. To implement the Oldroyd B model we used a back-
wards difference scheme to approximate the time derivative and the Finite Element Me-
thod [184] to discretise the problem in space. Within this framework, we use Newton’s
method, i.e. we solve equation (II.65) iteratively until the stopping criterion is fulfilled.
At each iteration, GMRES is used to solve the linearised system. In steady situations,
the problem is first initialised by solving the corresponding Stokesian problem and then
slowly stepped with increasingly higher values of We, a method known as continuation.
This is sometimes not necessary in time dependent problems (think of having null ini-
tial elastic stress for example). To test the convergence of the software, we use one of
two classic benchmarks for viscoelastic fluids [280, 304, 305, 306, 307, 308, 309, 310].
We focus on the flow past a cylinder in a channel, but contraction flows would be as
good an option.

In particular, we use the measurements of a very idealised cell to construct the
cylinder problem. We take a 16 long times W = 8 wide pipe with a cylinder C of
diameter R = 3.5 (more or less the proportional size of a nucleus), an inflow average
speed of about Ū = 5, and a relaxation time as reported in the literature λ2 =
0.2. When considered in µm and s, these numbers reflect the size and rheology of
Entamoeba histolytica , as well as the characteristic speed of its cytoplasmic streaming.
The corresponding Weissenberg number is We := Ūλ2/R ≈ 0.3. At this regime, the
total drag fd = − ∮C ex · (−pI + τv + τe) · n experimented by the cylinder is 138,
of which 90 are due to the pressure gradient, 45 to the viscous stress, and 3 to the
elastic stress ; where n stands for the normal and ex for the unitary vector in the flow
direction. The components of the computed elastic stress tensor can be consulted in
Figure II.31. Further tests on convergence for increasingly higher We numbers show
that the algorithm holds, at least, until We = 4.

(τe)x,x (τe)x,y (τe)y,y

Figure II.31 – Isolines showcasing the components of the simulated elastic stress
tensor in the wake behind a cylinder. Simulation at We = 0.3, see text for the exact
size of the channel and the cylinder.
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II.6.2.4 Inverting time-dependency : time adjoints and checkpointing

In accordance with our aim of extracting biophysical quantities from imaging data,
we adapt the data fidelity term posed by the optical flow constraint to account for the
time evolution :

Jdata =
∑
i

‖Tiu · ∇Ii+1 + Ii+1 − Ii‖2
K . (II.67)

The data are a video sequence of images Ii sampled at times ti from the continuous
time interval T. Since the movement between two consecutive images is the result
of a continuous motion, the observation operator (see [311] for example) is defined
here as the time integral of the velocity : Tiu =

∫ ti+1
ti u. Of course, our intention is to

constrain this new functional to the Oldroyd equations and thus we can regularise the
problem according to the physical quantities therein. In this new context, the control
parameters are still f and g. In fact, there is a third candidate to control for, the
possibly unknown initial elastic stress τe, 0, but we set it to zero because (fortunately)
a lot of experiments can be started at a resting state. Under these circumstances, we
propose the following regularisation :

Jreg = w1

∫
T
‖f · u‖2

K + w2

∫
T
‖f‖2

K + w3

∫
T

(
‖g‖2

K + ‖∂tg‖2
K

)
, (II.68)

which encourages temporal smoothness of the boundary condition, controls the norm
of both controls, and also tries to minimise the work done ; all through the three
weights wj. Intuitively, this should better pose the system, but a more formal analysis
is required to analyse how well the functional and the regularisation will fare when
constrained to the non-linear problem.

How do we minimise Jdata + Jreg constrained to the Oldroyd B model ? As explai-
ned in Section II.1, the adjoint equations can be derived before or after discretisation.
From the discrete-first perspective, it is clearer that the adjoint equations reverse time.
Indeed, consider a linear problem but know that the same intuition extrapolates to
non-linear situations ; if one thinks of capturing the time structure of the problem as
a block matrix, the resulting matrix will be lower triangular, representing the forward
propagation of information as dictated by causality. Taking the adjoint of the system
turns the matrix upper triangular, reversing the propagation of information and run-
ning back in time. Accordingly, a terminal (instead of initial) condition is required to
fully specify the adjoint problem.

Most conveniently, the adjoint problem derived from a non-linear problem is linear
because it only involves partial derivatives of the model and functional (see Annex A).
Therefore, the computational cost of evaluating the functional derivative (one linear
solve) is only a fraction of solving the original non-linear problem (a linear solve per
Newton iteration). However, there is a downside : the linearisation happens about
the solution of the problem. Storing the solution is not a problem if the equations
are steady, but any time-dependent component of the solution will have to be stored
all throughout its time trajectory. This might evolve into a massive storage problem.
To tackle this issue, checkpointing algorithms only store part of the solution and
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recompute the rest when needed (see [312]). The optimal balance between storage and
additional computational expense is generally determined in advance if the number of
time steps is known a priori, otherwise the checkpoints can also be updated "online".
Given the dolfin-adjoint library [187, 188] also provides automatic checkpointing, it
might be a very good option to automatically derive the time adjoint. Alternatively,
deriving the continuous time adjoint 31 is conceptually straightforward because most
terms are linear and "self-adjoint" ; it will also allow for more freedom regarding the
minimisation and discretisation schemes, but any implementation will have to involve
a careful study on how to manage the storage of the time solutions. Neither option
has been implemented in practice due to a lack of a meaningful biological questions,
and of resources to set-up a system that can reproduce and expand the rheological
measurements reported in the literature.

An additional difficulty lies on the domain : the cell K is constantly moving and
reshaping. Handling the weak formulation can be achieved with a moving Lagrangian
coordinate system (à la immersed boundary method for example) but it is not clear
how to coordinate the segmented cell at each time point with the simulated movement
of the fluid, specially in the adjoint context.

II.6.3 Advantages and limitations
While Oldroyd B fluids are known to be the simplest model that reproduces retar-

dation and relaxation, as well as the simplest closed model with a molecular derivation,
it is perhaps this simplicity that causes convergence issues. For example, linear elasti-
city is problematic in extensional flows because Hookean springs are unbounded. Even
though mechanical circuits exclusively model linear responses, they set the background
for non-linear behavior. The missing inspiration can be drawn from molecular consi-
derations. In this way, one can build on a kinetic theory by considering microscopic
interactions inside a flow to derive a set of constitutive equations on a macroscopic
level that ideally obey the admissibility conditions set by Oldroyd. However, it is worth
noting that most viscoelastic models continue to suffer at high We numbers, requiring
similar stabilisation techniques to the ones already discussed.

The Phan-Thien-Tanner (PTT) model [278] is a good candidate in all these res-
pects : it is non-linear, has a molecular explanation based on entangled polymers that
can "break", and does better in extensional flow. Not only that, but it also includes
shear-thinning. Although, to be completely fair, shear-thinning is usually reported in

31. The weak equation needs to be integrated over time to form the Lagrangian together with
the data and regularisation functionals. Integrating by parts prompts the appearance of an integral
evaluated at the final time that can be eliminated by setting a terminal condition on the test function,
and latter on the adjoint. The derivative with respect to f (for example) depends on time because f does
and because the adjoint variables do, i.e. the full time history of the adjoint variables is required. For
example, the term in the force derivative (in direction f̃) that stems from the weak equation is

∫
T
〈̃f,v〉K

and thus requires the values of the adjoint variable v(t) over time. The two remaining terms that form
the derivative (this time they originate from the functional) are

∫
T

(
2w1〈f · u, f̃ · u〉K + 2w2〈f, f̃〉K

)
and also call for time storage.
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experimental biological literature as a power law [136]. This specific behavior is mode-
led by generalised Newtonian models, where the viscosity is dependent on the strain
rate, i.e. µ(ε), but the tensorial structure remains Newtonian and strain still responds
instantaneously to stress (time independence). In this context, ∂εµ < 0 and ∂εµ > 0
are respectively called shear-thinning (or pseudoplastic) and shear-thickenning (or di-
latant). While perhaps shear-thinning is better apprehended, both materials can be
explained from molecular interactions : for example by considering polymer alignment
under shear in the former case, and hydroclustering or molecular repulsion in the lat-
ter. This phenomenon is not to be confused with viscoelasticity, which is modeled by
altering the constitutive equation to include memory (stresses depend on the history
of the fluid) and stress anisotropy.

Computational cost aside, an additional downside of all these models, is that they
lack in automatisation. The sheer number of considerations that must be accounted
for (e.g. We or geometry) to make the models converge prevents any implementation
from working reliably without supervision. If the aim is to develop a framework that
can be used by a wide audience without numerical training, there is still a lot of work
to do. One possibility would be to explore surrogate models that can account for the
deviations as uncertainties (see Chapter III for a similar approach).

To capture the properties of differently concentrated solutions involved in other cell
types, other models that can capture more time scales might have to be considered.
The biggest underlying problem is to decide how much is gained at a given spatiotem-
poral resolution and cell type by incorporating a non-Newtonian model. Answering
these questions requires having access to rheometers, specially for shear-thinning and
viscoelastic fluids as models are many and mostly phenomenological, and is precisely
why we have abandoned this quest. With appropriate equipment, possible experiments
would be : 1) magnetic beads spun under a controlled magnetic field as in [136] ; 2)
micropipette experiments under controlled pressure conditions [115] ; or 3) optical
tweezers to drag around a fluorescently labelled protein. In all three experiments, the
fluid movement would be recorded, and the forces and pressure estimated by our me-
thod could be compared to the ground-truth. In this way, it would be possible to
validate our framework and at the same time extend it to a broader audience.



III – Measuring outside the cell

The aims of this chapter are twofold. The first is to better the framework introduced in
II.1. To this end, we begin by deriving a modified optical flow functional that adapts
the seminal assumption of intensity conservation to confocal microscopy. Next, we
address numerical considerations ; most notably, we study the importance of the Hes-
sian to our inverse problem and subsequently introduce Newton’s method. Lastly, we
extend the framework into a Bayesian setting to allow for uncertainty quantification.
The second aim is to complement the internal insight from Chapter II with extracel-
lular measurements. The importance of the extracellular matrix is extensely reported
in the literature and is refound in the relevance of E-cadherin-mediated adhesions du-
ring zebrafish PGC migration (Section II.4). To serve both aims, we illustrate our new
framework by reformulating the standard Traction Force Microscopy, reducing uncer-
tainty propagation and providing error bounds of extracellular forces. Even though
this chapter revolves around extracellular measurements, the results are general and
thus hold both in and outside the cell.

III.1 Modified Optical Flow
The seminal optical flow constraint, as introduced in Section II.1, assumes
that intensity is conserved. However, this does not necessarily reflect the
underlying movement ; for example, think of projecting a 3D movement
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onto a 2D image. In this section, we study the constancy assumption in the
context of confocal microscopy and propose an alternative model-dependent
constraint.

While discussing optical flow in Section II.1.1, we already introduced the brightness
constancy assumption as a source of errors, citing changes in lighting conditions as an
example [165]. Other discrepancies can be mitigated by incorporating information re-
garding the origin of the images. In meteorology, for example, image-based velocimetry
of the atmosphere has been improved by relating the radiance emitted by a material
to its density [169], which results in a continuity equation for the intensity similar to
that used in transmittance imagery [313]. In the same direction, [314] derived mul-
tiple intensity conservation equations corresponding to different image modalities for
fluid flows (e.g. laser sheet imaging) by making as many approximations. We approach
confocal imaging in a similar way. As per our framework, we also have a physical mo-
del of the underlying material, which gives us additional flexibility to derive a novel
optical flow constraint.

The displacement depicted in images is only a projection of the behavior of the
fluorescent material that we would like to observe. In particular, the fluorophores of
a sample emit a 3D fluorescence that is picked up by a laser with a certain spread
function and projected into 2D luminance, which is then cast to the image by the
optical system (Figure III.1). This transformation needs to be taken in account in
order to properly relate the material of interest with its digital representation. Here
we show how to pass an initial diffusion equation of fluorophore concentration through
the imaging system to obtain a modified conservation equation for the image intensity.
The derivation is made in general dimensions not only for the sake of generality itself,
but also to take profit of more comprehensive mathematical tools.

III.1.1 The local conservation differential form

Originally, the final intensity I : O × T −→ R imprinted on an image O ⊂ RdO

is related to the concentration Ψ : Ω × T −→ R of fluorophores that are transported
within the labelled material Ω ⊂ RdΩ , dΩ > dO, over time T ⊂ R. Ideally, if we
follow these fluorescent compounds moving in their reference frame, their concentration
should not change except for a sink or loss by diffusion [314] : DtΨ = B∆Ψ. In the
typical biological case of beads or polymer fibers, there is no practical diffusion (B = 0)
and thus

DtΨ = 0. (III.1)

When a laser is shone on the fluorophores inside the material, Ψ(x, t) fluoresces emit-
ting a radiance that is received by the imaging system as luminance. This luminance
L(xΠ, t) is defined on the projection xΠ ∈ ΩΠ of the material-space on the reception
(image) plane of dimension dO, where Π := {1 . . dO} ⊂ {1 . . dΩ} such that the space
is split via the (external [315]) direct sum ΩΠ kΩΠc = Ω (see Figure III.1). More preci-
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sely, L is the integral of the fluorophore concentration over the orthogonal or projected
dimensions ΩΠc pondered by a kernel L0(x) describing the distribution of the laser :

L(xΠ, t) ∝
∫

Γ
L0(x)Ψ(x, t)dΩΠc , (III.2)

where the integration spans the virtual domain Γ(xΠ) ⊂ ΩΠc . This control surface can
either be taken to contain the whole domain of integration, or used to approximate
the decaying range of L0(xΠ,xΠc) as a sort of optical thickness h ∈ RdΠc (dΠc := #Πc)
if necessary.

Figure III.1 – Schematic of the projection of 3D fluorophores on a 2D image. The
fluorophore concentration Ψ (represented by a pair of green beads at different levels) in Ω
(cake slice) emits a radiance that is projected (ΩΠC ) by the laser sheet (grey surfaces mark
example limits) into luminance on a plane ΩΠ. The optical set-up (black lens) casts it on the
image O. The arrows show the difference between the real 3D movement in Ω (transparent
beads correspond to the previous position) and the visible movement on the image O.

Using equations (III.1) and (III.2) we can derive (see Annex C) a conservation equation
for the luminance that is valid up to first order in the orthogonal direction (HΠcu = 0) :

Dtl = l∇Πc · uΠc , (III.3)

with l := L/L0(xΠ, x̂Πc) where x̂Πc ∈ ΩΠc is a byproduct of using the mean value
theorem. That is the luminance is still advected, but it now has a source that depends
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on the out-of-‘hyperplane’ motion. In principle, the advection is driven by the fluoro-
weighted average 〈uΠ〉 over the projected variables (see Annex C), but if we also ignore
the derivatives of uΠ in the orthogonal direction (JΠcuΠ = 0) then the advection only
depends on uΠ itself.

Finally, the radiance received by the imaging system is cast on to the image plane
by the optical system with a perspective projection p : xΠ ∈ ΩΠ −→ X ∈ O described
by the collinearity equations [316, 317] in the dΩ = 3, dO = 2 case. More importantly,
the intensity I recorded on the plane is directly proportional to the luminance if the
solid angle of the camera is small [318] :

I(X, t) ∝ L(xΠ, t). (III.4)

Therefore (equations (III.3) and (III.4)), if we follow a pixel advected inside the image,
its intensity does not change except for a source term :

DtI = sI, (III.5)

where s(u) = ∇ · u − ∇Π · uΠ. In other words, the image brightness gains a source
with respect to the fluorophore emission reflecting the changes due to out-of-plane
motion. In the case of dΩ = dO, (III.5) reverts back to the seminal brightness constancy
equation, i.e. sΠ = 0.

Even though equations (III.1) & (III.5) are expressed on different domains (Ω and
O respectively), the latter holds in both (ΩΠ and O) coordinate systems because of the
colinear transition p : ∃ c | c∂xΠ = ∂X, uΠ = cU. Additionally, this means the optical
flow recorded on the image by PDE (III.5) is representative of the displacement in
the material up to a constant. In the rather usual case of an orthographic projection
(notably in microscopy) this reduces to xΠ = X, uΠ = U and we are no longer
concerned about the constant. Since this case is the norm in microscopy from here on
we write x instead of X without loss of generality.

III.1.2 The energy integral form
If we are interested in the sum over the whole domain of pixels, equation (III.5)

implies minimising functional ‖DtI − sΠI‖2
O. Our interest, however, lays on discrete

displacements, not differential or continuous, and (III.5) is thus only the linear term.
In fact, notice the expression involves velocity instead of displacement. This means
that we need to adapt the strategy if we are to work with displacements that are not
small.

First, we formulate the integrated equivalent (e.g. [319]) of equation (III.5). If we
assume a constant velocity field over a time step then we can integrate the brightness
equation over the pixels’ trajectories as a first-order ODE :

I (x + u∆t, t+ ∆t)− I (x, t) es∆t = 0, (III.6)

where u is the displacement between two consecutive (∆t) time frames, I2 = I(x +
u∆, t + ∆t) and I1 = I(x, t). However, this yields a highly non-linear expression and
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a non-convex minimisation : ‖I (x + ∆u, t+ ∆t) exp (−s∆t) − I (x, t) ‖2
O. Therefore,

second, we linearise model (III.6) around uw into a more tractable problem,

Jdata = ‖e−sw ((−Iw∇sw +∇Iw) · (u− uw) + Iw)− I1‖2
O, (III.7)

where we set ∆t = 1 without loss of generality and Iw = I2(x + uw, t + 1), sw =
s(uw). Alternatively, this is equivalent to considering u as a displacement, instead
of a velocity, which is the point of view we will be taking hereafter. However, the
expression is now valid only for small displacements. As in Chapter II, we adopt a
multi-scale approach [189] to measure larger displacements : by iterating a mixture
of anti-aliasing Gaussian filters and down-sampling, we obtain a pyramid of image
resolutions. The displacements can then be propagated successively through all scales,
from the coarsest (I2, and |uw| of the order of a pixel) until the finest (hopefully I1,
and u). This is done by warping the image at each scale with the displacement uw
measured at the previous scale, i.e. by comparing Iw and I1. Implementation details,
including spline interpolation for warping and finite differences stencils, can be found
in subsection III.3.3.8. We remark that with no source (s = 0) equation (III.7) reverts
to the linearised optical flow equations, just as (III.5) reverts back to the brightness
constancy equation.

III.1.3 Regularisation via PDE constraints
Notice that system (III.6) is under-determined : the problem is ill-posed. In order

to solve this so-called aperture problem, in the field of optical flow it is customary to
regularise the variational formulation by adding a smoothness constraint :

J (u) = Jdata(u) + αJfeg(u), (III.8)

where α ∈ R>0 is a parameter that controls the balance between data fidelity and
imposed knowledge, and can vary with the multi-resolution scale k (e.g. ln(α) ∝ −k
emphasises smoothing at coarser levels [190]). For example, a classic approach is to
require first-order spatial smoothness of the displacement [109] :

Jreg(u) =
∫

O
∇u ..∇u dΩ = ‖∇u‖2

O. (III.9)

Here we propose a less arbitrary approach to regularise the problem : we incorporate
our knowledge of the system’s behavior in a way similar to [174, 175, 320]. As in
Chapter II, we will constrain the observed motion to act like a continuum mechanics
model of the observed material ; in this case a linearly elastic material. To present the
model we first introduce Traction Force Microscopy.
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III.2 Traction Force Microscopy

As exemplified in Section II.4 with E-cadherin-mediated adhesions, ex-
tracellular forces are essential to many biological functions. Traction Force
Microscopy (TFM) is probably the most widely used approach to measure
the forces exerted by cells on the extracellular substrate. Since we will
illustrate our new framework by refomulating TFM, we begin by giving a
short overview of the method. We then define the problem mathematically
and propose an elastic model to describe the constitutive behavior of the
substrate.

As was introduced in Chapter I (see Section I.2.3 in particular), cell-generated me-
chanical forces are essential to biological function. In this section we focus on traction
forces exerted at the interface between the cell and the substrate or the ECM, which
are transmitted through adhesion proteins such as integrin.

In general, forces cannot be measured directly, but rather have to be inferred from
their measurable effects, for example from the deformation exerted on a calibrated ma-
terial. This calibration is typically summarised in a system of constitutive equations
that describe the physical response of the material. In this regard, the first documented
effort to measure traction forces at a cellular scale (find a review in [321]) consisted
in a thin elastic sheet that buckles under cellular traction [21]. While the approach
is visually informative, the formation of wrinkles is a highly non-linear phenomenon
and thus a precise quantification of the force is complicated by instabilities. A more
quantitatively accessible method, known as Traction Force Microscope on soft elas-
tic substrates (here S-TFM), was introduced in response [322, 323]. In this case, the
substrate is a thick film made of a material that remains under a linear regime at
the cellular-force scale, e.g. polyacrylamide. The forces can then be computed from
the deformation of the material, which is typically seeded with fiduciary markers (e.g.
fluorescent beads) to this purpose. To further facilitate the reconstruction of the trac-
tion, arrays of micropillars can be microfabricated to act as simple local strain gauges
at the price of introducing an arbitrary substrate topography [324, 325, 326]. In an
alternative direction, photo-quenching or Förster resonance energy transfer (FRET)
allows to access forces at a molecular level by genetically engineering a linker whose
fluorescence changes under strain [137]. This approach is very flexible regarding the
microenvironment, but is remarkably hard to calibrate and is rather situational ; for
example, it cannot measure macroscopic forces such as those between subcellular struc-
tures. It is worth remarking that TFM is not only useful in a biological context, but
that also other disciplines such as experimental physics benefit from it [327].

Despite the constant evolution of the field, S-TFM remains the most used among
TFM methods, likely because it offers the best value. More concretely : the experi-
mental set-up is simple compared to microfabrication or genetic engineering ; the same
approach adapts to a variety of substrates and is highly generalisable to different 2D
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or 3D 1 environments ; and the stress-strain relation is conceptually straightforward,
yet still supported by extensive literature. Precisely, the large volume of literature on
how to convert deformation into force reflects the interest of the method, but at the
same time indicates that no approach has been definitive. Indeed, there exist a lot
of methods to tackle this inverse problem [321]. Most approaches resort to Green’s
functions, inverting the problem either using the boundary element method [322, 323]
or in Fourier space [328, 329, 327, 330, 331], a method known as FTTC. However,
Green-based methods often need further assumptions : e.g. the cell cannot generate
momentum, the material is incompressible, or the substrate is a half-plane (leading to
Boussinesq’s solution [178]). Alternatively, FEM-based approaches [332, 333] are gai-
ning traction because they are more flexible to changes in geometry (e.g. 3D [334, 335])
and models (e.g. the non-linearity of more biologically relevant materials or big strains
[336]). These include a PDE-constrained minimisation [337] reminiscent of our me-
thod in II.1, but decoupled from the velocimetry. Another approach is to inform the
TFM problem with a cell model, notably by incorporating the position of adhesion
and cytoskeletal proteins [229]. In principle, traction stress can also be reconstruc-
ted directly from the displacement field, but the derivatives involved in this strategy
make it very sensitive to noisy data [338]. In fact, noisy data are an issue in all TFM
methods because the problem is ill-posed 2. That is small error-induced variations on
the deformation field have great repercussion on the reconstructed traction [339, 321].
Therefore, the inverse problem needs to be regularised by adding a priori information,
either via image [340] or reconstruction [341] filters, or à la Tikhonov [330]. In contrast,
the impact of the imaging set-up (from the microscope to the beads) and the accuracy
of the displacement field have been less investigated [164]. All in all, several fronts are
still open.

Good part of reconstructing the map of traction forces accurately is obtaining re-
liable estimates of the deformation field. The displacement map can be extracted from
a reference image, where the material is relaxed, and an image where the substrate
is deformed by the cell. Depending on the density of fiduciary markers, the literature
resorts to different PIV techniques ; most commonly, correlative-based tracking for hi-
gher densities, and multiple particle tracking for lower. However, recent studies have
shown that methods based on the optical flow constraint obtain comparatively more
accurate displacement estimates in TFM in particular [164], and in biological imaging
in general [163]. While it might seem counter-intuitive that a technique looking for
dense reconstructions outperforms techniques that exploit the sparsity of the fluores-
cent beads, the reality is that typical densities are high enough to maximally sample
the domain at the microscospe’s resolution and that the elasticity equations are smoo-
thing. This also casts doubt on the necessity of purposefully seeding the material ;
perhaps imaging the substrate with a 2-photon microscope or tagging 3 the polymers

1. Though 3D dynamic imaging is still subpar in biology.
2. For example, think of the long range (1/r) of the Green’s function in this context.
3. In fact, gelified polyacrilamide is fluorescent when excited at 280 or 340nm, with maximum

emission at 340 and 460− 520nm. Its fluorescence can be greatly reduced by by adding dithiothreitol



128 Chapitre III. Measuring outside the cell

directly might be enough in this respect.
All S-TFM methods have in common that PIV and force reconstruction are de-

coupled. While this allows for new developments in both disciplines to be integrated
easily, the problem ends up being regularised twice. In addition, the two step process
is keen on propagating uncertainties. Using our framework, we are able to regularise
the inverse problem directly on the resulting force (i.e. only once), potentially redu-
cing uncertainty propagation. Moreover, the FEM underlying our framework lets us
work at the incompressibility limit, whereas the combination of Nitsche’s method and
adjoint-based minimisation allows us to introduce free boundary conditions because
they can also be guessed from the image pair. For the same reasons, the method works
in 3D out of the box, and extending it to non-linear models is conceptually straight-
forward. On a different note, our attempt at taking in account the image setting is
threefold : out-of-plane motion via the modified conservation equation introduced in
the previous section, trying to reduce the need for point-wise markers via a dense flow
estimator like optical flow, and turning the method more global via multi-resolution.
Another issue regarding S-TFM methods, is that uncertainty is not quantified. To our
knowledge, no error bounds are ever provided for the reconstructed force except for
those that result from averaging over many samples. In the incoming sections of the
thesis we will also be proposing a way to go from pixel error all the way to traction
error under the same framework.

The final remark of this short review on TFM methods concerns the experimental
characterisation of the substrate’s elasticity (through the constants of the constitutive
equation) and is relegated to Annex D.

III.2.1 Definition of the problem to extract cellular tractions
Consider a cell in either of the two following cases : (i) a cell laying on a flat

substrate and (ii) a cell either on a rugged surface or directly inside the extracellular
matrix (EM). In both cases cells exert a traction force on their surrounding surface
and the EM is deformed as a result. Even though (ii) is usually more informative and
biologically relevant, (i) is much more used for its simplicity both on the computational
and the experimental side (including both microscopy and wet lab). In any case, the
EM is seeded with fluorescently labeled beads ; after a deformation of the material,
the position of the beads change and can be compared to a resting state to obtain the
displacement u : Ω −→ RdΩ , where Ω ⊂ RdΩ is the EM domain reflected in the field
of view of the microscope. The cell has a domain K ⊂ Ω, and stresses the substrate
either (i) as a body force f : K −→ RdΩ ; or (ii) as a traction boundary condition
T : ∂K −→ RdΩ . Generally, the stresses can be further localised [229] as a subset of K
because the cells do not adhere to their substrate continuously through their surface,
but discretely through small patches called focal points. While the domain of adhesion
is not readily available because it requires fluorescent labeling of a protein involved

or by replacing TEMED with sulphite [342].



III.2 Traction Force Microscopy 129

in anchoring such as integrin or paxilin [343, 229], we note that the formulation can
accommodate this information simply by considering these regions as K in place of
the cell.

The problem then consists in recovering the forces f,T exerted by the cell from a
measurement of u, i.e. an inverse problem. However, let us first introduce the forward
problem : find u given f,T. That is we need constitutive equations that describe the
physical response of the material that the cell is deforming.

2D TFM

K
T

3D TFM

Figure III.2 – Schema of TFM.

III.2.2 Constitutive equations : a nearly-incompressible linearly elas-
tic model

Many different polymers can be chosen to build EMs with properties ranging from
elastic to viscoelastic. Conveniently, in most experimental set-ups the substrates used
are comparatively soft and remain linear under cellular stress. Examples of these mate-
rials are polyacrilamide (PAA) gels [344] and polydimethylsiloxane (PDMS) gels [345].
With this consideration, in this section we present an isotropic linearly elastic model
both for (ii) a general 3D situation and (i) its 2D plane-stress projection. Contrary to
most TFM approaches, in this work we obtain a better control and stability of the mo-
del by formulating the would-be (see footnote 4) hydrostatic pressure and deviatoric
stress as a coupled system of PDEs. This mixed formulation is also able to represent
the incompressible limit, which is specially relevant for the stability of nearly incom-
pressible materials such as PAA and PDMS. First, we present the differential form of
the elastic equations. Second, we define the final forward problem (find u given f, g,
T) by deriving the weak form of this system and choosing suitable Hilbert spaces for
the functions involved. Given the symmetries, the resulting formulation is equivalent
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to the principle of virtual work for a deformable body. We note that the framework
developed in this paper can be adapted to any material model (e.g. non-linear elasti-
city) given its weak or energy form. And last, we use Nitsche’s approach to control for
the boundary conditions.

III.2.2.1 The local conservation differential form

An isotropic linearly elastic solid can be described with the Navier-Lamé (or -
Cauchy) equations

(λ+ µ)∇ (∇ · u) + µ∆u + f = 0, (III.10)

where λ ∈ R>0 and µ ∈ R>0 are the Lamé coefficients, which are related to the more
familiar Young’s modulus E and Poisson’s ratio ν as

µ = E

2 (1 + ν) and λ = Eν

(1 + ν) (1− 2ν) . (III.11)

Although expression (III.10) is so far the standard in TFM, in this work we propose
instead to split the original expression of the stress tensor ς : Ω −→ RdΩ × RdΩ into
what would be the hydrostatic and deviatoric components in the incompressible limit.
That is, if ς := λTr (ε(u))I+ 2µε(u) is the tensor describing linear elasticity with the
symmetric strain-rate gradient ε(u) := 1/2

(
∇u +∇uT

)
, we introduce an "artificial"

pressure-like 4 variable p as a source term for the displacement in proportion to the
incompressibility-like λ of the material : ∇ · u + p/λ = 0. This yields

ς (u, p) = −pI + 2µε(u) (III.12)

for the stress, whose divergence is driven by the applied forces as
∇ · ς = −1f|K in Ω
∇ · u = −p/λ in Ω
ς · n = 1T|∂K on ΓT (III.13)
u = g on Γg

where T and g are the traction and displacement boundary conditions on boundary
parts ΓT and Γg respectively (here ΓT t Γg = ∂Ω if the problem is to be well posed) ;
and 1•|• are the extension with zeros of the cell forces and tractions to their respective
supersets. The advantages of this choice of split formulation (III.12 & III.13) are

4. p is only the real 3D hydrostatic pressure in the incompressible case [178, 346]. The real
hydrostatic pressure is −ςi,i or −(λ+2µ/3)ui,i, instead of −λui,i, but both agree at the limit λ→∞.
This is better understood by expressing the stress tensor as a sum of hydrostatic compression and pure
shear ςi,j = Buk,kδi,j + (2µui,j − uk,kδi,j/3) with respective moduli B and µ, where λ = B − 2µ/3.
Therefore λ does not seem to have a straightforward physical meaning other than being convenient to
group the divergence and express near incompressibility. We note also that rigid motions constitute
a singularity of the equation (see (III.10)).
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threefold. First, it is natural to handle incompressible (λ→∞) materials, as opposed
to simpler schemes such as (III.10), which typically underestimate the deformation
(locking). Second, the divergence of the field can be independently monitored and
embedded into the optical flow multi-resolution scheme through the variable p (see
Section III.2.3). And third, the split approach is convenient to formulate and stabilise
the weak variational problem (see Section III.2.2.3) [347, 348].

III.2.2.2 The 2D case : plane stress

While this and the forthcoming framework are formulated for the more general case
of three-dimensional imaging data (Ω ⊂ R3), we recognise that 3D cell microscopy is
still not widely used in biology and often suffers from technical limitations. In this
work, we adapt both the elasticity equations (III.13) (here) and the data assimiliation
formulation (III.6) (Section III.1) to also consider a two-dimensional projection of the
real problem.

Here, we consider a plane-stress model (similar to shallow-water) : we assume
ςi,z ≈ 0 as compared to the longitudinal internal stresses. Therefore, the in-plane
strain tensor is uniform over the thickness [178] and we can integrate (or average)
the 2D displacement ux,y over the effective depth h ∼ 1µm of the microscope’s field.
Further derivation (that we adapt to (III.13)) shows the 3D equation of linear elasticity
can then be reduced to its standard planar form (equation (III.13) with Ω ⊂ R2) by
adjusting its constants as

µ̄ = µ and λ̄ = 2µ
1 + 2µ

λ

, (III.14)

where µ and λ are the original material parameters in (III.11). The original planar
forces can then be recovered : f = hf̄ , where f is the traction at the surface. Finally,
under the plane-stress paradigm, the full space divergence can be deduced from its flat
projection :

2µ∂zuz = −λ̄∇x,y · ux,y = p, (III.15)

where the subscript indicates the subset of components considered. To assess the ade-
quacy [321] of this approximation we consider two main aspects. First, the plate is
sufficiently thin : the cell is generally placed on top of a substrate which is 10 − 100
fold wider/longer than it is thick. Alternatively, one can consider the 3D boundary
conditions. Since the vertical displacement is comparatively smaller in experiments,
∂xuz can be neglected by (III.13) and thus the characteristic depth of the problem is
also around 1µm ∼ µux/T [337], i.e. of the same order as the microscope’s depth of
field.

III.2.2.3 The energy integral form

In order to solve these coupled linear elliptic partial differential equations (PDEs)
via the Finite Elemenent Method (FEM), we derive the weak formulation of (III.13).
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We multiply the equations by respective test functions (v and q), integrate by parts,
assume g is given as a Dirichlet condition, and exploit that the product of antisymme-
tric and symmetric tensors is zero. This process yields a bilinear, a0, (containing the
unknowns u and p) and a linear, l0, variational forms :

a0((u, p), (v, q)) := 〈ς(u, p), ε(v)〉Ω
− 1

λ
〈p, q〉Ω − 〈∇ · u, q〉Ω, (III.16)

l0((v, q); (f,T)) := 〈f,v〉K + 〈T,v〉∂K (III.17)

a0 − l0 = 0 is then the weak equation and its solutions (u, p) are called weak because
the problem has been relaxed (they are only solutions with respect to the tests or,
equivalently, in the sense of a distribution). However, many laws of physics are derived
originally in their integral (as opposed to differential) form and thus the weak version
is not that so : in this case, 〈ς(u, p), ε(v)〉Ω arises in the minimisation of elastic (strain)
potential energy and l considers the work done on the system by the cell. To concretise
the problem, we ought to choose proper spaces on Ω for the formulation. We can select
a space F depending on the expected behavior of the traction forces f ∈ F . Here, we
have taken the Sobolev space F = L2 := W 0,2 because it is a Hilbert space and fits in
well with the required integrals 5. This space is a standard choice both in the forward
[349, 350] and inverse [351] cases, and is accompanied by an election of both the trial
and test function spaces that makes finite all terms in (III.16) :

UPg := W 1,2
g|Γg

(
Ω;RdΩ

)
×W 0,2 (Ω;R) and VQ0 := W 1,2

0|Γg

(
Ω;RdΩ

)
×W 0,2 (Ω;R) ,

(III.18)
where we write •|Γg to express the respective boundary conditions [352, 353]. The
forward problem can then be formulated formally as :

find (u, p) ∈ UPg such that a0 = l0 ∀(v, q) ∈ VQ0. (III.19)

Once in this form, concepts of algebra can be used to show that both the differential
and the weak formulation are equivalent [354] and to establish uniqueness, stability and
regularity of the solutions [346, 355, 356]. Safe the term 〈p, q〉Ω, the setting resembles
the classical Stokes problem. However, this extra integral is not detrimental and, in
fact, helps stabilize the saddle point problem.

An extra mechanical equilibrium constrain can be added to the weak formulation
to ensure that all forces integrate to zero

∫
Ω f = 0. In this case, one would weight

the integral with a scalar Lagrange multiplier and follow suit. However, we refrain
from forcing the system into equilibrium as, for now, we do not want to exclude the
possibility of working with cells that are half-way out of the image.

5. NOTATION : we notate 〈•, •〉∗ the L2-inner product of the appropriate dimension over a
domain ∗, and ‖•‖∗ the induced norm ; e.g. 〈ε(u), ε(v)〉Ω =

∫
Ω ε(u) .. ε(v) dΩ with the Frobenius

tensor product ε(u)ijε(v)ij , or 〈u,v〉Ω =
∫

Ω u · v dΩ with the dot product.
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III.2.2.4 Weak boundary condition via Nitsche’s approach

To have direct control over the boundary conditions g in the weak formulation we
take Nitsche’s approach [349, 357] 6. We prefer g over T because we can regularise the
former more naturally according to the optical flow constraint. We also remark that the
real quantity of interest is still f, and that controlling for g is mostly a computational
requirement. Ideally, we would like to keep the system consistent, symmetric and "as
coercive as possible". However, promoting the boundary term 〈T,v〉Γg into its original
bilinear form −〈ς(u, p)n,v〉Γg breaks the symmetry. To compensate, a productive zero
(u − g)|Γg = 0 is added. While the system is then consistent and the bilinear form
is symmetric, we add a final term 〈u − g,v〉Γg to be able to proof 7 existence and
uniqueness using the inf-sup [361] or Ladyzhenskaya–Babus’ka–Brezzi (LBB) condition
for saddle point problems [362, 363]. The resulting system is

a− l = 0 (III.20)

where

a((u, p), (v, q)) := a0((u, p), (v, q)) − 〈ς(u, p)n,v〉Γg

− 〈ς(v, q)n,u〉Γg
+ ξ

h
〈u,v〉Γg

, (III.21)

l((v, q); (f,g,T)) := l0((v, q); (f,T)) − 〈ς(v, q)n,g〉Γg
+ ξ

h
〈g,v〉Γg

. (III.22)

This equation is formulated in the context of new spaces (u, p) ∈ UP , (v, q) ∈ VQ,
which correspond to the old spaces UPg, VQ0 but without enforcing the boundary
condition. In fact, the two spaces are now the same but we will differentiate them to
keep the forthcoming formulation slightly more general. Contrary to typical problems
with strong Dirichlet conditions, well-posedness of the discrete problem does not result
as directly from that of the continuous problem because the spaces are not conforming
in principle. Instead, the constant ξ > 0 has to be introduced to stabilise the discrete
Galerkin approximation with respect to a mesh-dependent norm. To this end, ξ must
be taken large enough with respect to the constant h that characterises the size of
discretisation [364, 365].

Usually, we have no information regarding T and therefore we take Γ = Γg, ΓT = ∅.

III.2.3 Formulation of a PDE-constrained inverse problem for TFM
Now that we have introduced the forward problem, let us formulate TFM. The

corresponding inverse problem is to recover the traction f and boundary conditions g
from a measurement of the substrate deformation u. With this aim, an image of the

6. Find some original references in [358] (German) or [359], and examples of applications to the
Navier-Stokes equations in [360, 311].

7. The task is complicated by the lack of boundary conditions in the test space.
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system (either 2D or 3D) is taken before and after the deformation. In standard S-
TFM, the displacement would be extracted from the before-after image pair using PIV
techniques ; and the traction derived therefrom. Conversely, we propose to constrain
optical flow to the linearly elastic PDEs describing the ECM.

In particular, we recall our modified optical flow conservation equation (III.7).
Although the formulation of the framework will be general, we restrict its applications
to real live-cell TFM : either with (i) dΩ = 3 (in fact we can use dΩ = 2), dO = 2 or (ii)
dΩ = dO = 3. We first argue the 2D case. As detailed in Annex C, there can be two
main reasons for our formulation to be more relevant than the standard approach :
orthogonal variations of either the displacement or the fluorophore concentration. In
the present context, both are worthy of consideration. First, there is movement along
the z direction ; in fact, we have an expression for its derivative in (III.15). Second,
the derivative of ∂zΨ is non-zero. Indeed, as beads keep getting smaller (e.g. 0.5µm
in 2009 [366], 0.2µm in 2019 [367]), the fluorescence gradient along the projection
direction of the microscope becomes more relevant because the optical thickness is
in the order of ∼ 1µm. An additional note is that the 2D plane stress model results
in a constant planar motion along the z-direction, i.e. ∂zux,y = 0, and therefore the
approximation made in (III.1.1) holds exactly. Under this model, the source of the
conservation equation (III.5) is s = p/(2µ). On the other hand, in 3D we have no
source s = 0. Therefore, in practice (see Section C.1), we regain the original 3D
brightness constancy equation.

The conservation equation relates the image intensity with the displacement, but it
is under-determined. To regularise the expression and pose the inverse problem all at
once, we use the linearly elastic PDEs of the substrate model. That is we require the
displacement term u not only explains the data (equation (III.7)) but also fulfills the
model (equations (III.13) or (III.20)). If we consider f, g to be optimal control variables
and u, p optimal states, this idea can be formally expressed as solving (iteratively over
the scales) the following problem :

argmin
f,g

J (u(f,g), f,g) := Jdata(u) + J •,•reg (f,g) subject to (III.7) (III.23)

where J •,•reg (f,g) = J •reg(f) + J •reg(g) indicates the regularisation of f and g respecti-
vely. Hereafter we use u for either the full 2D or 3D displacement, and only use the
material domain Ω because we can make it match with the image domain O. With
all this strategy we obtain three main advantages : we can estimate physically rele-
vant quantities (the goal here is to measure f, and g allows us to not limit ourselves
to zero boundary conditions) ; the model will "inpaint" local absences of information
yielding highly-resoluted dense vector fields ; and we can regularise the system in a
more plausible way. For example,

J L2,L2

reg := α‖f‖2
K + γ‖g‖2

∂K (III.24)

with α, γ ∈ R>0. Another option is to minimise the derivative of g normal to the
boundary J n

reg(g) := γ‖∇g·n‖2
∂K. However, g is already regularised through the optical
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data term so it does not need much attention. Conversely, in subsection III.3.3.7 we
present three continuous (almost everywhere) and convex regularisation terms on f that
are inspired by different biological questions. In fact, we can even argue an appropriate
range of values for the regularisation weight α (see Annex E). We remark that the
final data and regularisation terms are convex and our constrain linear. Therefore the
problem has a good chance of being well-posed.

An interesting addition to the data term is possible when we have multiple data
for a common displacement field u. For instance, we could image fluorescent beads of
different wavelengths in respective channels [330] and obtain an indexed series Ij1 , Ij2 ,
j ∈ J of pair-wise before-after images. The resulting data functional would simply be
the sum :∑J ωjJdata(Ij1 , Ij2)(u), possibly with some weights ωj reflecting our confidence
on each measurement. The generalisation of what follows to this alternative functional
is straightforward. A last bio-inspired possibility would be to minimise the area where
f is zero in an attempt to find cellular anchor points.

In the next section, we show how to approach the PDE-constrained minimisation
of functional (III.23) via the adjoint method. In section III.4, we solve the equivalent
problem under a Bayesian framework.
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III.3 Deterministic PDE-constrained inverse problem
We take the opportunity of reformulating TFM to reinvent the framework
proposed in II.1. In particular, our original method has some occasional
stability and convergence issues that we tackle by posing the problem on
more solid mathematical grounds. In this direction, we study the impor-
tance of the Hessian to our inverse problem and subsequently introduce
Newton’s method. In addition, we analyse all the linear systems and pro-
pose appropriate preconditioners to make the problem scalable, which is
particularly interesting for our multi-resolution scheme. We also find that
optimising with respect to the boundary conditions is easier after Nitsche’s
reformulation of the weak equations. Finally, we present different regulari-
sations and their corresponding interpretations. In the particular case of L2

regularisation, instead of resorting to iterative descent methods, we show
that the inversion can be solved directly by addressing a coupled system of
linear equations.

We approach the mathematical optimization problem by writing out the Lagran-
gian

L = J (u, f,g) + a((u, p), (v, q))− l((v, q); (f,g)), (III.25)
while reusing the weighting function tuple (v, q) in the weak formulation to represent
the multipliers. Given the big number of variables, the method of Lagrange multipliers
comes at a large computational cost. A viable option is to calculate the gradient of the
functional and to apply a gradient descent algorithm. However, since the total deriva-
tive of the functional with respect to the control variables dJ /d(f,g) has dependencies
on the state variables through the elasticity PDEs, a finite difference approach would
require a costly solve of equation (III.13) for each of the many directions. We propose
to calculate the gradient by the adjoint method (a way to exploit the dual space of
the PDE operator, see Annex A for some intuition) at the cost of only one additio-
nal solve of an equation akin to (III.13). Similarly, we can build the Hessian action
of the functional by formulating two incremental systems (forward, and adjoint) that
correspond to the second variations. Together, the four resulting PDEs can assemble
a Newton system, which results in a descent direction that is exact up to quadratic
expansion. Since the PDE constraint is linear, Newton’s method should converge in a
single step for L2-based regularisation terms.

III.3.1 First order variations to construct the gradient
In order to illustrate the adjoint method we first derive the differential form of the

Lagrangian
δL = D(u,p)L · (ũ, p̃) +D(v,q)L · (ṽ, q̃) +D(f,g)L · (̃f, g̃) (III.26)

where we write δH for the Gâteaux derivative of a functional H(s) in direction s̃. Our
original aim is to calculate the total derivative of J . Notice that if the elastic equation
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is fulfilled, then a = l and computing δL only involves derivatives with respect to
the multipliers and controls. If we can eliminate the derivative with respect to the
multipliers, calculating δL will be the same as computing δJ , the gradient of the
functional. This is done by formulating the adjoint problem in the dual space of the
forward problem. In this Section we derive a form of the gradient that only involves
partial derivatives with respect to the controls precisely by imposing that both the
forward and adjoint systems are satisfied simultaneously.
Forward problem. We set D(v,q)L· (ṽ, q̃) = 0 ∀(ṽ, q̃) ∈ VQ. By the linearity of a and
l, this means finding the pair (u, p) such that

a((u, p), (ṽ, q̃)) = l((ṽ, q̃); (f,g)) ∀(ṽ, q̃) ∈ VQ, (III.27)

which precisely reduces to satisfying the elasticity equation (III.13).
Adjoint problem. By imposing D(u,p)L · (ũ, p̃) = 0 ∀(ũ, p̃) ∈ VQ, we are looking for
(v, q) that satisfy

a((v, q), (ũ, p̃)) = −2〈O · (u− uw) + (Iwe−sw − I1),O · ũ〉Ω ∀(ũ, p̃) ∈ VQ, (III.28)

because a is linear and "self-adjoint", i.e. a((ũ, p̃), (v, q)) = a((v, q), (ũ, p̃)) ∀(ũ, p̃),
(v, q) ∈ VQ. Here O = e−sw (∇Iw − Iw∇sw) and u is the solution of the forward
problem (III.27). The resulting equation is of the same form as the original weak
formulation of the elasticity equation (III.27) but driven by a "force" that reflects the
discrepancy with the data. Since (III.28) holds for all (ũ, p̃) ∈ VQ, this so-called adjoint
equation can be formulated in its PDE strong form for comparison :

∇ · τ = −2
(
O · (u− uw) + (Iwe−sw − I1)

)
O∗ in Ω

∇ · v = −q/λ in Ω
τ · n = 0 on ΓT (III.29)
v = 0 on Γg,

where τ = −qI + 2µε(v) is the adjoint stress tensor.
Gradient.We have δJ = D(f,g)L· (̃f, g̃) because the two other contributors of δL have
been made zero, and thus we can evaluate the gradient with respect to the controls as

δJ (f,g)(̃f, g̃) := DfJ •reg · f̃ +DgJ •reg · g̃− l̃((v, q); (̃f, g̃)), (III.30)

l̃((v, q); (̃f, g̃)) := 〈v, f̃〉K + 〈 ξ
h
v− ς(v, q) · n, g̃〉Γg

, (III.31)

for all directions f̃ ∈ F, g̃ ∈ V where v, q is the solution of the adjoint equation (III.28).
Therefore, the gradient consists of contributions from the regularisation functional and
from the source term of the elastic equation, which is linear with respect to the controls.

Consider the case δJ (f)(̃f) = 〈2αf − v, f̃〉K where we only control for f and the
regularisation is the standard L2, i.e. Jreg = α〈f, f〉Ω. Notice here that δJ = 0 ∀̃f ∈ F
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implies f = v/2α on K. Therefore, finding f is the result of solving the coupled system
of elliptic partial differential equations formed by (III.13) and (III.29). In a similar way,
if both g and f are regularised in a quadratic way the system is still linearly solvable
when coupled : f = v/2α, βg = (ξ/h)v− ς(v, q)n when Jreg = α〈f, f〉Ω + β〈g,g〉Γg.

However, in this work we use the Hessian as an alternative. If the functional term is
indeed quadratic and the forward problem is linear, Newton method takes a single step.
That is, using the Hessian involves solving 4 linear systems, which is not necessarily
slower than solving the double-sized coupled system. Most importantly, computing the
Hessian generalises to non-quadratic regularisations (e.g. here TV on f), non-linear
problems (e.g. viscoelastic models of collagen), and allows to estimate the errors of the
reconstruction (see Sec. 5).

Let us summarise the steps to calculate the gradient at point (f,g) : 1) solve (III.27)
to get (u, p), 2) solve (III.28) to get (v, q), 3) compute gradient in direction (̃f, g̃) by
solving (III.31).

III.3.2 Second order variations to build the Hessian action
In line with the first variations, we avoid using finite differences to compute the

Hessian because there are too many possible sampling directions given the cost of
evaluating the gradient (i.e. two PDEs per direction). Given f, (u, p), (v, q) and a di-
rection f̃, g̃, we write down the meta-Lagrangian, which groups all the terms relevant
to calculate the second variations. This will allow us to calculate the action of the
Hessian in the specified direction.

LH :=a((u, p), (ṽ, q̃))− l((ṽ, q̃); (f,g)) (III.32)
+a((v, q), (ũ, p̃)) + 2〈O · (u− uw) + (Iwe−sw − I1),O · ũ〉Ω (III.33)
+DfJ •reg · f̃ +DgJ •reg · g̃− l̃((v, q); (̃f, g̃)). (III.34)

In this case, we anticipate that the bilinear forms for the incremental equations (both
forward and adjoint) will be the same as in the original equations (respectively state
and adjoint) because the forward problem is linear. In addition, the bilinear incre-
mental forward and adjoint forms are exactly the same because the original a form is
"self-adjoint". Therefore, all bilinear terms of the first and second variations are simply
a ; and the only effect comes through the source terms that include effects from the
force f variations, the boundary condition g variations, and the image pseudo-gradient
O. Similarly, l is linear with respect to both the tests and the controls.

Incremental forward problem. We set D(v,q)LH
(
ṽ̃, q̃̃

)
= 0 ∀

(
ṽ̃, q̃̃

)
∈ VQ. By the

linearity of a and l, this means finding the pair (ũ, p̃) such that

a((ũ, p̃),
(
ṽ̃, q̃̃

)
) = l̃(

(
ṽ̃, q̃̃

)
; (̃f, g̃)) ∀

(
ṽ̃, q̃̃

)
∈ VQ. (III.35)
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Incremental adjoint problem. By imposing D(u,p)LH ·
(
ũ̃, p̃̃

)
= 0 ∀

(
ũ̃, p̃̃

)
∈ VQ,

we are looking for (ṽ, q̃) that satisfy

a((ṽ, q̃),
(
ũ̃, p̃̃

)
) = −2〈O · ũ,O · ũ̃〉Ω ∀

(
ũ̃, p̃̃

)
∈ VQ, (III.36)

because a is linear and "self-adjoint". Here ũ is the solution of (III.35).

Hessian. If the two incremental systems are satisfied, then δLH = D(f,g)LH · (f̃̃, g̃̃)
where the action of the hessian reads very similar to the gradient because of all the
linearities :

〈(f̃̃, g̃̃), δ2J (f,g)(̃f, g̃)〉 := D2
fJ •reg · f̃ · f̃̃ +D2

gJ •reg · g̃ · g̃̃− l̃((ṽ, q̃); (f̃̃, g̃̃)), (III.37)

∀f̃̃ ∈ F, g̃̃ ∈ V with ṽ, q̃ the solution of (III.36).
In the name of perspective, we recall the single control, L2 scenario from the gra-

dient computation where we find the same situation : 〈f̃̃, δ2J (f)(̃f)〉 = 〈2α̃f − ṽ, f̃̃〉K .
The double control works likewise.
Newton. With the first and second order variations we can formulate Newton’s me-
thod to minimise the PDE-constrained functional. That is, we find an update direction
f̃, g̃ that reduces the value of J by solving the system

〈(f̃̃, g̃̃), δ2J (f,g)(̃f, g̃)〉 = −δJ (f,g)(f̃̃, g̃̃) ∀f̃̃ ∈ F, g̃̃ ∈ V. (III.38)

Since the first and second variations each take a pair of PDE solves, constructing
the Newton system requires solving four PDEs. Following the same example, we have
〈2α̃f− ṽ, f̃̃〉K = −〈2αf− v, f̃̃〉K , which reduces to f + f̃ = (v + ṽ)/2α on K.

III.3.3 Discretisation of the ∞-dimensional Newton’s method
III.3.3.1 Galerkin approximation : a finite formulation of the ∞ dimen-

sional weak equations

To solve the problem numerically it is necessary to discretise it. To this end, we
introduce finite-dimensional subspaces UP h ⊂ UP and VQh ⊂ VQ for the trial and test
function spaces, notating the discrete counterparts of the infinite formulation with the
subscript h. We also collect the variable pairs for readability, for example Uh = [uh, ph],
Vh = [vh, qh]. The sections that follow show how we formalise the discrete problem
as a Galerkin approximation of the corresponding infinite formulation, covering from
the forward system all the way to Newton’s method. Under this formulation, we can
clearly see the positive-definitness of the Hessian, which allows us to solve Newton’s
system via conjugate gradients. We also make use of this property to calculate the
eigenvalues that reflect how well-informed is the inverse problem by the available data.
The complete algorithm including all the image analysis steps, such as the pyramidal
iterations and the warping, is described at the end.
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III.3.3.2 The right finite elements avoid locking in the elastic equations

We solve the Galerkin-approximated version of problems III.42, III.43, III.46, III.47
using the Finite Element Method [185, 181]. To avoid locking 8 we choose a mixed
formulation of Taylor-Hood elements that combine second and first order basis func-
tions. We write each component of uh, vh in a piece-wise (bi/tri)-quadratic basis of
Lagrange finite-element functions, whereas ph and qh are a linear combination of piece-
wise (bi/tri)-linear elements of Lagrange type. For example,

ph =
∑
J

pjφj(x) (III.39)

where {φj}j∈J is the basis, #J is the number of nodes and pj are the coefficients we
solve for. The bases of fh and gh are determined according to the choice of regulari-
sation. Replacing the ∞-dimensional test and trial functions with their discrete test
(indexed by l) and trial (by j) counterparts in the weak formulations yields a variety
of j, l linear systems. For example, the matrix resulting from discretising 〈p, q〉Ω is the
positive definite symmetric matrix 〈φj, φl〉Ω known as mass matrix. In the following
sections, we address discretisation in more detail.

To gauge the size of the problem, consider a square 256×256 2D image. Assume we
use a regular triangular mesh to discretise it. Then the linearly-interpolated pressure
field has 2572 nodes or degrees of freedom (dof), and the displacement field 2(257 +
256)2. Together, the mixed space has close to 105.5 dofs, which are squared when the
matrix is constructed. Luckily, the resulting matrices are very sparse. Of course, the
dofs grow cubically in 3D. For all reasons indicated above, in the text we emphasize
size-aware approaches that exploit sparsity or avoid forming matrices altogether.

III.3.3.3 A discrete formulation transforms the problems into linear alge-
bra

We begin by discretising the bilinear form a on the left-hand side of the elastic
equations

A =
[
W BT

B Mp

]
(III.40)

where W and Mp (i.e. the mass matrix of p) are symmetric matrices that result
from the respective discretisations of w(u,v) = 〈2µε(u), ε(v)〉Ω − 〈2µε(u)n,v〉Γg −
〈2µε(v)n,u〉Γg + (ξ/h)〈u,v〉Γg and mp(p, q) = − 1

λ
〈p, q〉Ω ; and B stems from b(u, q) =

−〈∇ · u, q〉Ω + 〈qn,u〉Γg. Therefore A is symmetric as expected from the "self-adjoint"
behavior in the infinite dimensional formulation. However, we will keep the transpose
notation AT to showcase the origin of the terms. We also note that W is positive-
definite for a big enough ξ and that Mp is negative-definite except in the incompres-
sible limit where Mp = 0. On the right-hand side, we call L the discretisation of the

8. That is we expect the same accuracy irrespectively of λ. An arbitrary combination of interpola-
tions can lead to poor convergence and numerical performance. For example, the stresses can become
very inaccurate and the displacements under-estimated.
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linear form l (safe T) :

L =
[
Lf,V Lg,V

]
:=
[
Lf,v Lg,v

0 Lg,q

]
, (III.41)

with the matrices stemming from the following forms : Lf,v from 〈v, f〉 ; Lf,q = 0 ; Lg,v
from 〈(ξ/h)v− 2µε(v)n,g〉 ; and Lg,q from 〈qn,g〉.
The discretised forward and adjoint linear systems are (in this order) :

AUh =
[
Lf,V Lg,V

] [ fh
gh

]
+ Th (III.42)

and
ATVh = −2OTO(Uh −Uwh

) + Ih, (III.43)
with Ih the discretisation of Iwe−sw − I1, Uwh

that of the displacement at the previous
scale, and O such that the discretisation Ju,u of the optical flow source term 〈O⊗O u, ũ〉
in

OTO :=
[
Ju,u 0

0 0

]
. (III.44)

Leaving the gradient g to be[
gf
gg

]
= R

[
fh
gh

]
−
[
LTf,V
LTg,V

]
Vh. (III.45)

The incremental forward reads

AŨh =
[
Lf,V Lg,V

] [ f̃h
g̃h

]
. (III.46)

And we write the incremental adjoint as

AT Ṽh = −2OTO Ũh. (III.47)

Next, we discretise the action of the Hessian :

H

[
f̃h
g̃h

]
=
[
Rf,f 0
0 Rg,g

] [
f̃h
g̃h

]
−
[
LTf,V
LTg,V

]
Ṽh, (III.48)

where Rf,f and Rg,g are the respective discretisations of D2
gJreg · f̃ · f̃̃ and D2

gJreg · g̃ · g̃̃.
The resulting incremental system is of Karush-Kuhn-Tucker form. Lets collapse the full
regularisation matrix under the term R. By substituting the two incremental systems
(III.47), (III.46) into the action (III.48) we can extract an expression for the Hessian
matrix,

H = R +Hdata, (III.49)
Hdata := 2LTA−TOTOA−1L, (III.50)
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that brings out its positive definiteness. Indeed, the right-most term in (III.49) is
positive semi-definite (product of a matrix with its transpose) and the regularisation
matrices R will be positive-definite, eliminating the nullspace. The symmetry of H
is also clear as both summands are symmetric. An alternative argument for positive
definiteness is to notice that the infinite dimensional problem is itself a Gauss-Newton
approximation of the Hessian because the second variations of the PDE with respect
to U , (f,g), and (f,g), (f,g) are zero. From this perspective, symmetry is granted
because the result should be independent of the order of derivation.

III.3.3.4 Conjugate Gradient only requires matrix-free Hessian actions

Solving the resulting discretised Newton system,

Hh

[
f̃h
g̃h

]
= −

[
gf
gg

]
, (III.51)

for f̃h, g̃h provides a directional step that is guaranteed to descend by virtue of the
positive definiteness of the Hessian. However, computing H involves dealing with large
matrices that might become dense when inverted. To avoid building the hessian, we
focus on its action on vectors, which can be calculated by solving the two incremental
linear systems (III.46), (III.47).

Matrix-free direct solvers are scarce and often require constructing sparse ma-
trices [368] or going random [369]. Alternatively, the iterative action of an operator is
the basis of Krylov subspace methods. In particular, we are interested in the Conju-
gate Gradient (CG) method that applies to positive definite and symmetric matrices
[370, 371, 372]. This algorithm takes successive steps that descend as close to the resi-
dual direction of the system as possible while ensuring H-orthogonality 9 with all the
previous directions.

Some of the regularisation forms we will use are expected to converge in a single
step f + f̃ because the problem is quadratic (the PDE is linear w.r.t. to the state and
control variables) and Newton’s method should be exact. Of course, this might not hold
in practice, where round-off errors intervene. In other cases, solving Newton’s system
(III.51) too accurately might be pointless because we are implicitly making a quadra-
tic approximation already. To prevent over-solving, we introduce an early-termination
clause on the CG iterations that is most relevant when far from the minimum. In par-
ticular, we use Eisenstat’s criterium [373], which is based on controlling the gradient.
An additional criterium, Steinhaug’s [374], stops the iterations if the curvature is ever
negative, which might be relevant in TV.

Whereas normally the optimal step length is unitary, the resulting inexact New-
ton method can be globalised by line searching if necessary ; here we implement it
using an Armijo back-tracking scheme [375]. Although Newton’s method converges

9. Think of converting an elliptical space into a circle (as in [371] for the CG method), where
convergence is immediate.
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quadratically, any approximation might reduce the radius of this rate into a smal-
ler neighbourhood around the solution. In terms of cost, each CG iteration requires a
Hessian-vector product, and each such action takes a pair of linearized forward/adjoint
solves.

III.3.3.5 Riesz-inspired preconditioner achieves mesh-independent con-
vergence

In the absence of round-off errors, CG is guaranteed to converge in a number of
iterations smaller than the size of the system. Specifically, the rate of convergence is a
function of the condition number of the system matrix κ(H) [371] :√

κ(H)− 1√
κ(H) + 1

; (III.52)

and thus can be improved by using a preconditioner P such that κ(P−1H) < κ(H).
Here κ(H) = |λ+|/|λ−| with the respective maximum and minimum eigenvalues 10 of
H.

Choosing a preconditioner for CG is equivalent to choosing an inner product for
the Hilbert space the control belongs to [376, 377]. In particular, the default choice
(the identity) is implicitly enforcing the Euclidean product. The link between precon-
ditioner and scalar product goes through the Riesz map. Indeed, the Riesz map acts
precisely as the application of a preconditioner in the CG method when formulated
(more generally) for Hilbert spaces [376] ; and in turn, the Riesz isomorphism is deter-
mined by the scalar product of the space 11. In this work, we write our preconditioner
as

P = ρM +R, (III.53)

where R is the regularisation matrix, andM is the mass matrix (FEM) that we add in
proportion to a constant ρ ∈ R>0 to fill in the nullspace ofR that might be singular (e.g.
constant vectors if the regularisation is on the derivative of the control). In summary,
our preconditioner is chosen to incorporate the inner product associated with the
regularisation (e.g. L2 or H1 above), which specifies in which space we are looking for
the solution 12, weighted by any possible grid irregularities, which are taken in account
when building the (mass) matrix from the finite elements (see [378] for example).

10. A symmetric real matrix is diagonalizable with real eigenvalues.
11. Think for example of applying the derivative (defined in the dual space) of a functional to

a given direction of the original space. The direction of steepest descent is precisely the one that
minimises the resulting dual pairing. Now, if we apply the Riesz-Fréchet representation theorem to
the derivative, we can find that evaluating the derivative in a given direction is equivalent to taking the
inner product (associated to the space) of the same direction with the so-called Riesz representative
of the derivative (here the Riesz map brings the derivative to the representative). Since we are now
working with inner products we can directly deduce that the direction of steepest descent is precisely
the representative by using Cauchy-Schwarz’s inequality. The representative is known as the gradient
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Figure III.3 – The importance of choosing the appropriate inner product. The
figure displays the number of CG iterations to solve the inverse problem as a function of
degrees of freedom when preconditioned with I (red) or P (blue). Choosing the right inner
product P results in size-independent algorithms. The x-axis is log-scaled.

With an appropriate preconditioner/inner product we avoid mesh-dependent ar-
tifacts, notably in non-uniformly refined meshes [379, 380]. This can be understood
intuitively : it is only by considering the correct measure of angles and distances that
we will find the best descent directions. Indeed, we show in Figure III.3 that the total
number of CG and Newton iterations of the problem is stable against mesh-size and
parameter-space-size variations, as well as non-uniformity, when the system is precon-
ditioned ; whereas taking P = I results in the number of iterations increasing with the
system size. This is specially severe when the elements of the mesh are of different sizes
because the euclidean norm assigns equal weights to all of them. Conversely, the mass
matrix reflects the importance of the elements more accurately. A related example re-
garding the importance of choosing an appropriate inner product is how, by choosing
the Hessian in Newton’s method, we drastically accelerate convergence with respect
to steepest descent, which corresponds to the implicit choice of the identity.

The number of iterations when the system is preconditioned by the regularisation
generally depends on how much of the parameter space is informed by the data. In
fact, the data only informs a limited subset of directions in the control space, as shown
later in Figure III.11. In other words, the method is algorithmically scalable : the cost
of solving the (inverse) problem is independent of the mesh size (spatial discretisation)

of the function.
12. Therefore estimating correctly the angles and distances of descent.
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when measured in number of PDE solves 13.
This spectral property of the preconditioned Hessian misfit is specially interesting

in light of our multi-scale approach to OF. In this way, we can better estimate the
complexity of the problem at each scale because the PDE solves dominate the cost of
the approach over other operations (e.g. inner products).

In this work, we take profit of the inherent multi-resolution nature of our problem
(whereby optical flow displacements are sought from coarser to finer) to implement
the preconditioner as an algebraic multi-grid (AMG) [381, 382] solver with whom it
shares the mesh hierarchy. While the image could be easily made into a structured
grid, it might be that we want to keep it unstructured. Two instances that are relevant
to this work : integrating the cell domain to localise the traction forces, e.g. 〈f, f〉 ; and
using a finer grid on the regions of the image with more information in order to better
focus our efforts.

III.3.3.6 Multi-frontal LDLT factorises all saddle-point systems at once

Working out the saddle-point forward and adjoint PDEs requires solving the corres-
ponding linear systems. Once discretised using the FEM, the problem is large, sparse,
and indefinite. More specifically, the size of the matrix is the number of degrees of
freedom squared, of which the off-diagonals are filled up to a width proportional to
the neighborhood graph-order of each node. Whereas these systems are normally ap-
proached/attacked with iterative solvers, the confluence of linearity and symmetry
have originated 4 linear systems Ax = b (III.42, III.43, III.46, III.47), all ruled by the
same matrix A, but under different forcing terms b. To take advantage of this we use
a direct solver that can factorise A into unitriangular matrices UT (lower), U (upper)
and block-diagonal (of order 1 or 2) matrix D as

A = UTDU. (III.54)

This factorisation 14, known as "LDLT ", takes advantage of the matrix symmetry to
halve the cost of the more general "LU" factorisation. Once in this form, the problem
can be quickly solved by forward (UTy = b) and backward (DUx = y) substitution
(for any b). To exploit the lower-dimensionality of sparse matrices, so-called frontal
solvers [383] will divide the problem into a set of smaller dense matrices that avoid
unnecessary zero-operations. The resulting blocks can then be factorised by standard
pivoting. Precisely, the MUMPS library [384] automatises and parallelises this concept
by taking a multi-frontal approach [385].

However, it is true that some image-derived meshes become too large for some
sub-matrices to fit in memory. In this case, we would have to rely on iterative me-
thods. Since the problems is indefinite (no CG), we use the minimal residual method

13. Of course, at finer scales solving each PDE is bound to be more expensive ; it is only the number
of PDE solves that stays constant.
14. Instead of using the nomenclature LDLT here we use UTDU because the former notation is

already taken.
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(MINRES) [386, 387] 15 with an incomplete factorisation as a preconditioner (e.g. In-
complete LU 16), which can also be up-scaled from a lower resolution in the pyramid
scheme.

III.3.3.7 Regularisation depends on the biological motive

We have experimented with three regularisations based on norms/semi-norms that
we think might be suitable to represent different biological situations and that are also
differentiable. We summarise L2 and H1 by writing

J H1

reg (f) := α〈f, f〉K + β〈∇f,∇f〉K , (III.55)

with some constants α, β ∈ R≥0 that act as weights with respect to the data misfit.
The first and second variations of the H1 regularisation are as follows.

DfJ H1

reg · f̃ = 2α〈f, f̃〉K + 2β〈∇f,∇f̃〉K , (III.56)

D2
fJ H1

reg · f̃ · f̃̃ = 2α〈̃f, f̃̃〉K + 2β〈∇f̃,∇f̃̃〉K . (III.57)
Here the parameter α acts as a low-pass filter of sorts (Annex E.1), and β works as
a diffusion coefficient that smooths the control (Annex E.2). This approach is fit for
studying the general distribution of traction forces exerted by a cell on the substrate
or ECM.

Conversely, given a sufficiently good spatial resolution, total variation (TV) might
be better suited to exactly localise the small focal adhesion patches that are generated
by some cells [229]. To mimic the effect of TV in a vectorial setting [389], we minimise
the Frobenius norm of the gradient |∇f|F = (∇f ..∇f)1/2 (we note | for the norm as
opposed to ‖, which we used for the integral of the associated inner product over a
domain) :

J TV
reg := α

∫
K

(∇f ..∇f)1/2 dΩ = α
∫
K

√
tr
(
∇fT∇f

)
dΩ; (III.58)

whose variations are
DfJ TV

reg · f̃ = α
∫
K

∇f ..∇f̃
(∇f ..∇f)1/2 dΩ, (III.59)

D2
fJ TV

reg · f̃ · f̃̃ = α
∫
K
|∇f|−1

F ∇f̃
(

I− ∇f⊗∇f|∇f|2F

)
∇f̃̃ dΩ, (III.60)

where we have used the linearity of the gradient and the sesquilinearity of the Fro-
benius product, or alternatively the cyclicity of the trace and its commutativity with
respect to the derivative. In the second variation, we are thinking of the gradient ma-
trices as stretched vectors and thus have used the outter product to make notation

15. See also the generalised minimal residual method (GMRES) [388] if your matrix is non-
symmetric.
16. Alternatively, see Cholesky factorisation if your matrix is symmetric and positive-definite.
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easier. In Annex E.3, we show how the operator in (III.60) acts as a non-linear ani-
sotropic diffusor that prefers matrix directions that are Frobenius-perpendicular to
∇f and therefore acts by somewhat preserving a common edge (with some directional
"smearing") across the vectorial components.

Notice that the Frobenius norm is differentiable everywhere except at zero-gra-
dients. In practice, we add an extra term ε ∈ R>0 to stabilise the descent

J TV
reg := α

∫
K

(∇f ..∇f + ε)1/2 dΩ, (III.61)

at the price of some extra diffusion (of order ε2) over the "edges". The first and second
variations remain the same but with the perturbation appearing in all denominators.
For smaller values of ε, the Hessian becomes more ill-conditioned as the relevance of the
non-linear term increases, reducing the convergence radius of Newton’s method. When
far from the solution, we approximate the Hessian action by ignoring the non-linear
anisotropic term as

D2
fJ TV

reg · f̃ · f̃̃ ≈ α
∫
K

∇f̃ ..∇f̃̃
(∇f ..∇f + ε)1/2 dΩ, (III.62)

i.e. demoting convergence to a linear rate, only to recover the original expression
(III.60) in a small neighborhood near the minimum to finish quadratically. We remark
that approximating the Hessian is not harmful (as far as the step size is controlled,
e.g. à la back-tracking) because the direction is given by the gradient (again, think of
approximating the Hessian as the Identity to recover steepest descent).

III.3.3.8 An automatic implementation to promote usage

The implementation scheme of the method can be found in algorithm 1. The final
goal is automatisation to make the method accessible for the biological community.
We expect the text will reflect this, but hope that it does not distract from the un-
derlying methodology. The first step is to determine the subregion K whereto forces
are constrained. As in Section II.1.3.6, this is achieved by solving another variational
problem known as active contours (or snakes) that segments the cells automatically by
progressively deforming an initial contour to minimise a given energy [63]. The resul-
ting polygon is the reference of a pyramid of shapes that is obtained by down-sampling
the vertices on the Fourier domain (in 2D, see Section III.3.3.9 for 3D). A hierarchy of
meshes is also established. In this case, we take the image borders and the polygon as
planar straight line graphs to perform a constrained Delaunay triangulation [198] (ite-
rative refinement with Lloyd’s relaxation algorithm [206]) at each scale. Accordingly,
the image resolution is resized by recursively convoluting a size-varying low-pass filter
(e.g. Gaussian), to avoid aliasing, and a continuous-domain filter (e.g. interpolation)
[390] : Ik1 (xh), Ik2 (xh) ∀k ∈ {1 . . n}, where n is the number of scales. The coarsest
level (n) of the sub-sampled dyadic pyramid is chosen to represent displacements of
around a pixel [391, 189].
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We recall that this coarser-to-finer iteration is needed to compensate the lineari-
sation of the non-convex optical flow functional. Increasingly higher spatial-frequency
components are taken in account by progressively subtracting the movement uk−1

h

detected in previous scales from the original image I2 :

Ikw(xh) := Ik2 (xh + uk−1
h ). (III.63)

Ideally, Iw should stabilise and gradually match with I1 as we refine the scale, i.e.
k → n. To this end, we warp the image by mapping it onto the new coordinates
at scale k via cubic spline interpolation. Notice that the multi-scaling doubles as a
sort of remedy for Nyquist’s limit. To evaluate J , we also take the new image de-
rivative ∇Ikw(xh) by convolving with a five-point centered finite difference stencil as
a kernel (order fourth accuracy). We use nearest-neighbors as an heuristic to fill in
the differences at the border, but once the image is being warped we choose to avoid
out-of-bound pixels altogether and cancel the data misfit term (as detected by the co-
ordinate map). Finite elements are automatically cast on the mesh hierarchy using the
FEniCS library [185, 347]. The matrices corresponding to the variational problems are
then assembled by solving the integrals on the basis of piece-wise polynomia (Section
III.3.3.2). The solution of the linear systems, Newton’s method, Conjugate gradient
and back-tracking has already been presented in Sections III.3.3.4-III.3.3.6. At each
new scale, the algorithms are initialized with the solutions resulting from the previous
step, but projected onto the new elements (up-scaled). In the interest of saving com-
putation time, notice that many of the matrices can be pre-assembled because many
variables are not inter-dependent.

The algorithm is implemented in Python 3 and acts as a wrapper to multiple
routines, most of which are optimised in C++. The list of libraries we have used
(directly or indirectly through other libraries) includes PIL, Matplotlib [392], NumPy
[208], SciPy [209], FEniCS [185], mshr, CGAL [210], PETSc [212] (see their linear
solver table), MUMPS [384], Trilinos [393], BLAS [394], LAPACK [395], MPI [396],
and VTK (Kitware). We hope we were exhaustive in our acknowledgment. We also
wish to thank hIPPYlib [397] and Moola [380] as great sources of inspiration. The
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code is open-sourced and will be available at http://icy.bioimageanalysis.org/.
Algorithm 1: Multi-scale TFM
Data: Reference image I1 and image I2, initial contours
Result: Estimates for u, f, g

1 Segment cells automatically from initial contours;
2 Generate hierarchical n-mesh pyramid of cells and images;
3 u0

h, f0h,g0
h = 0;

4 from coarsest scale (k = 1) to finest scale (k = n)
5 Down-sample to Ik1 and Ik2 ;
6 Warp Ik2 with −uk−1

h into Ikw;
7 Compute ∇Ikw;
8 Project (uk−1

h , fk−1
h ,gk−1

h ) on FEM k-grid for initial condition;
9 Newton’s Method to minimize J k

10 Solve adjoint PDE (III.43);
11 Evaluate gradient (III.45);
12 Preconditioner set-up (III.53);
13 Conjugate Gradient
14 Solve incremental forward PDE (III.46);
15 Solve incremental adjoint PDE (III.47);
16 Compute Hessian action (III.48);
17 while

√
|δJ k|/|δJ 1| > CG tol.;

18 Armijo back-tracking
19 fkh,gkh = fk−1

h + f̃kh,gk−1
h + g̃kh;

20 Solve forward PDE (III.42) : ukh;
21 while |δJ k| > N tol.

III.3.3.9 Computational hardships are mostly mesh-related in 3D

The method scales as-is to 3D on the theoretical side, but becomes computationally
heavier as dimensions turn cubic. The most conceptually involved part is geometry. For
example, down-scaling the 3D triangulated surface meshes representing the cells and
images is specially difficult if the essential characteristics of the original shapes are to be
conserved/preserved. To this end, one needs a measure, or cost function, that evaluates
the resemblance between the coarser and finer meshes. Here we use the Lindstrom-Turk
(LT) strategy [398]. In comparison to global error tracking methods (Section II.1.3.7),
which consider the accumulated deviation from the initial surface [205], cost-driven
methods such as LT measure the cost of collapsing individual edges by computing
local deviations and progressing iteratively. The result are faster, though less accurate,
algorithms. In LT specifically, the edges are pruned according to a combination of
constraints that dictate the position of each resulting vertex by considering shape,
volume, and boundary conservation. In this work, we use a memory-less version of

http://icy.bioimageanalysis.org/
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LT implemented in CGAL [210] by F. Cacciola. Another complex adaptation is active
contours as it also concerned with mesh geometry.

In practice, the finite element method can be practically detached from dimensio-
nal considerations thanks to the abstract framework offered by the FEniCS library.
Similarly, differentiating and warping are conceptually invariant, but need to be up-
dimensioned and streamlined to deal with the computational overhead.

While we have implemented the algorithm and found the recovered force fields
accurate, we will not devote extensive attention to 3D imaging because the modality is
still not widely used in biology. Although the literature has emphasized the importance
of a relevant 3D ECM to study cell behavior, the reality is that experiments are
complicated, materials are not well characterised, acquisition speed and resolution lag
behind, and image analysis is overwhelmed by the size of the resulting data. However,
here we have set-up a highly scalable theory and implementation for the data to come.
We note that this framework is also readily adaptable to the no-linear rheologies that
will result from the quest for more biologically relevant materials (e.g. collagen).

III.3.4 Experiments and regularisation
We start by checking both the gradient and hessian. We compare the results of

the adjoint-based computation to a finite difference approximation. That is we are
expecting the error to be proportional to the step h :∣∣∣∣∣J ((f,g) + h(̃f, g̃))− J (f,g)

h
−Df,gJ (f,g)(̃f, g̃)

∣∣∣∣∣ = O(h) (III.64)

in any direction (̃f, g̃) ; and the error of the Hessian to grow quadratically under func-
tional differences, or linearly under a gradient difference scheme :∣∣∣∣∣Df,gJ ((f,g) + h(̃f, g̃))−Df,gJ (f,g)

h
−D2

f,gJ (f,g)(̃f, g̃)
∣∣∣∣∣
∞

= O(h) (III.65)

In the regularisation instances where the problem is quadratic, the Hessian is exact and
the error observed is the precision of the machine. The resulting curves are presented
in Figure III.4.

We disclaim that the selection of the regularisation parameter α was done as per
the next Section III.3.4.3 (accompanying Figure III.10) and is assumed throughout
this one.

Next, we tested the mesh-dependence of the conjugate grandient and Newton’s
method. We found that the choice of preconditioner was key in ensuring that the
number of iterations was constant across all possible sizes of the problem (Figure
III.3). In turn, this allows us to accurately predict/anticipate the performance of the
multi-scale approach.

To assess the accuracy of the inversion, we choose a force field f∗ and boundary
conditions g∗ of appropriate regularity to simulate the forward problem by solving
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Figure III.4 – Checking the gradient and the Hessian by comparison to finite
differences. a) Error of the gradient as a function of the step h. b) Error of the ∞ norm of
the Hessian as a function of the step h. The error values reflect machine precision because
the Hessian is exact for quadratic problems. Both figures are in log-log scale.

a0 = l0 (III.19). The simulation results in a displacement field u∗. We note that we
simulate the problem on a different mesh size than we use for inversion, that we
use a = l instead, and that we add noise. Together, the three modifications should
prevent an inverse crime. While this is enough to evaluate the direct inversion from
displacement to force (Section III.3.4.1), our method aims at recovering force from a
pair of images (Section III.3.4.2). To this end, the displacement u∗ (simulated from f∗)
is used to warp a reference image I1 into a deformed image I2. In this case, the images
are the only data used to inform the inverse problem. All errors are evaluated with a
normalised L2 norm :

Error(f∗, f∗) := ‖f
∗ − f∗‖Ω

‖f∗‖Ω
, (III.66)

where f∗ is the inverted field.

III.3.4.1 Non-optical-flow preliminary test

First, we test the inversion by adding a percentage ηu of noise to the velocity field,

ud := u + ηu|u|∞eu (III.67)

eu ∼ N (0, I), and recovering the force field using the data term J d
data := ‖u − ud‖2

Ω.
As shown in Figures III.5 and G.6, the original fields are well recovered, even under
very noisy conditions. While the error of the recovered forces is higher than that of the
displacement, both are robust to increasing noise (Figure III.6). This analysis allows
us to have an idea of the range of errors we can expect in an ideal case and to verify
that Newton’s method is an adequate choice. For instance, the error of the force field



152 Chapitre III. Measuring outside the cell

is below the typical values upwards of 20 and 30 % reported in the literature ; these
measurements are also inverted directly from a noisy displacement field, but countless
details complicate any comparison.
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Figure III.5 – Displacement and force reconstruction from noisy displacement
data. Row 1) True simulated displacement u∗ (resulting from f∗), displacement corrupted
by ηu 20% noise, ud, and recovered displacement u∗. Row 2) True imposed force f∗ and
recovered force f∗. Row 3) Error map of the displacement |u∗ − u∗|2/‖u∗‖2 and the force
|f∗ − f∗|2/‖f∗‖2. Violet (low) to yellow (high).
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Figure III.6 – Non-optical-flow : error of the inverted fields as a function of noise.
Error(f∗, f∗) of the recovered force field as compared to the true imposed value ; Error(u∗,u∗)
of the displacement field compared to the true displacement (resulting from the true force) ;
and Error(u∗,ud) of the displacement field compared to the erroneous data (notice the
reasoning behind Morozov’s criteria). All of them are a function of the percentage of error
added ηu.
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III.3.4.2 Optical-flow test

The next step is to evaluate the modified optical flow inversion. With this aim, we
add Gaussian noise to the image, and not to the velocity. We believe this approach to
be closer to the conditions found in a real setting because the noise is modeled after
that found on real images :

Id := I1 + ηIeI (III.68)

eI ∼ N (0, I) with level ηI . For this purpose, we recover the original optical-flow-
inspired Jdata. While real image noise is normally a mix of Poisson (photon counting)
and Gaussian, here we focus on Gaussian noise for two reasons. One : it is most
prevalent ; two : it is significantly easier to model when estimating the variance (Section
III.4).

To determine whether our method has any effect on reducing noise sensitivity, in
Figure III.7a we compare our PDE-constrained optimisation with a standard optical
flow. The results show that regularising the underlying force with our method is more
robust to noise than regularising the displacement directly. Indeed, the errors grow
much faster in the standard approach than in the PDE-constrained approach (Figure
III.7b). In addition, we remark that the elastic model we chose should be specially
favorable to standard optical flow as the equations yield smooth displacement fields ;
and that we accounted for neither out-of-plane flow nor for a restricted force zone
K ⊂ Ω because both factors would give further edge to our method.

In our method, the displacement error stays below 10% down until a signal-to-noise
ratio of 1.7 ; for comparison, typical confocal SNRs range between 25 and 50. Even
when compared to the errors in Figure III.6, where the problem is "exact", our results
still hold surprisingly well.

Therefore, we believe that TFM computations can greatly benefit from our ap-
proach : not only they account for out-of-plane flow, boundary conditions and near-
incompressibility ; but they also promise to reduce error sensitivity. We will see in the
up-coming Section III.4 that the method can also yield variance estimates by conside-
ring the image intensity uncertainty.

The force estimates of the PDE-constrained approach also fare well under noise
(Figure III.8a), albeit worse than the displacement measures, as expected from the
preliminary non-optical flow analysis (Figure III.6). We have also assessed the effect
of multi-scaling in the recovery error. As the scale is refined, a progressively higher
amount of information is considered, resulting in smaller reconstruction errors. Howe-
ver, the growing trend stops and plateaus (Figure III.8b). This behavior is a conse-
quence, in part, of the effective rank of the hessian, which is showcased in Section
III.3.4.4. In general, the force reconstruction appears much better than in the litera-
ture, but comparisons are hard for lack of detail. For example, at standard confocal
SNR rates the error moves around 14% and hardly ever falls below 10%.

One of the advantages of this method is the fact that our knowledge of f can be
used to regularise the problem more naturally. In Figure III.9, we show a comparison
between L2 and TV regularisation directly on the force field f. As expected, the TV



III.3 Deterministic PDE-constrained inverse problem 155

method is much more accurate when recovering step functions ; for example, this might
be the case of focal adhesions when enough resolution is available. It is worth noting
that a force function of bounded variation does not correspond to a displacement
function of bounded variation because the elastic equations are smoothing.
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Figure III.7 – Non-constrained optical flow vs PDE-constrained optical flow. a)
Row 1) The deformed image I2 (red) after using the displacement field u∗ to warp the
reference image I1 (cyan). Row 2) After adding noise (SNR 27.6) to both images the force
is recovered with standard multi-scale optical flow (uo) and the PDE-constrained method
(u∗) ; the central image shows displacement in white as a superposition of both noisy images.
Row 3) Same as (Row 2) but with a SNR of 1.7. All meshes (and thus the resolution of the
displacement fields) are pixel sized ; the results shown in III.5 are from the same simulated
system but coarser. Violet (low) to yellow (high). b) Error(u∗,u∗) of the displacement field
as a function of noise. The "image noise" parameter is the coefficient of variation, i.e. the
reciprocal of the signal-to-noise (SNR) ratio. The SNRs of the points are 55.2, 27.6, 13.8, 6.9,
3.5, 1.7, 0.9. The displacement recovered by the regularised multi-scale optical flow is much
more sensitive to noise than our multi-scale PDE-constrained approach. x-axis is log-scaled.
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Figure III.8 – PDE-reconstructed force. a) Comparison of recovered force fields f∗
(SNRs : 27.6 left, 1.7 right) with the true field f∗ (middle). Find the corresponding velocity
fields u∗ and u in Figure III.7a. b) Error(f∗, f∗) of the force field as a function of the scale
(in the multi-resolution approach) for different values of the SNR. Typical confocal imaging
SNRs range between 25 and 50. x-axis is log-scaled.
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f * |f * |
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Figure III.9 – TV vs L2. Vector fields (left column) and magnitudes (right column) for the
true imposed force (top row), the force recovered using TV regularisation (middle row) and
the force recovered using L2 regularisation (bottom row). TV brings down the error from
30% to 20% and from 2% to 1% of the force and the displacement (respectively) as compared
to L2. Violet (low) to yellow (high).
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III.3.4.3 The regularisation parameter should concur with the noise

We have shown (Annex E) the effect that the regularisation parameters (e.g. α)
have on the solution : L2 acts as a low-pass filter, and Tikhonov and Frobenius-TV res-
pectively act as isotropic and anisotropic diffusors. While it is easier to find a suitable
range of values armed with this intuition, the hunt for the perfect parameter requires
some better-defined criteria. Based on the theory of residues, Morozov’s discrepancy
principle [399] states that the reconstruction is best when it recovers the noise norm
δ, for example

‖u∗(α)− ud‖Ω ≤ δu, (III.69)
where u∗ is the solution of the inverse problem, which we compare to the simulated
displacement ud. In other words, the noise bounds the data misfit. Of course, a strong
requirement is to be aware of the noise distribution. This is plausible in our computer-
generated experiments, where we add noise (δu) to the displacement field, but less
so in a real-world context. However, this possibility is not far-fetched as regards our
experimental data. Indeed, we can have an educated idea of the noise δI within the
images from the camera or the image settings. We can then use our original misfit
(Figure III.10) to look for the ideal parameter :

‖I2(x + u(α))− I1(x)es‖Ω ≤ δI . (III.70)

On another note, should we find ourselves completely blind, we can use the L-curve
criterium [399]. In this alternative, one compares the data misfit to the regularisation
effort in search for a compromise between being faithful to the data and providing an
stable solution. Plotting both norms on a log-log scale yields a curve shaped like an L.
The optimal parameter corresponds to the highest curvature of the L as it represents
the tilting point where advancing in any direction is not a good trade-off.
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Figure III.10 – Example of Morozov’s principle in action. Data misfit ‖I2(x+u(α))−
I1(x)es‖Ω as a function of α. Black line marks the noise level δI . Morozov’s principle suggests
α = 10−9.
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III.3.4.4 The spectrum of the Hessian reflects the influence of the data

To assess how well-informed the inverse problem is by the data, we analyse its
eigenvectors [399] 17. The question can be formalised into solving the following ge-
neralised hermitian eigenvalue problem (GHEP) : find some eigenvectors (̂fi, ĝi) and
corresponding eigenvalues λi such that

Hdata(̂fi, ĝi) = λiR(̂fi, ĝi), (III.71)

where we recall R, Hdata are the regularisation and Hessian symmetric matrices, with
R + Hdata positive definite. We have generalised the problem with the regularisation
matrix for the same reasons as we chose the preconditioner in Newton’s method :
we need to properly represent the space of functions and inner product (Riesz). The
dominant eigenvectors are the directions which are most informed by the data. To
appreciate this intuitively, recall that the system is solved by "inverting" the Hessian
and therefore the eigenvalues also get inverted. In fact, the function of the regulariser
(proportional to α) is to lift the eigenvalues above the 1-threshold (Figure III.11b).
If the problem is quadratic and we start with a zero guess, the eigenvectors (Figure
III.12) directly conform the solution.
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Figure III.11 – Hessian eigenvalues. a) The dominant eigenvalues are independent of
mesh dimension (increasing degrees of freedom or mesh size : red, blue, green, grey). b) The
eigenvalues depend on the regularisation (increasing levels of α : red, blue, green, grey). In
both figures the horizontal black line marks the 1-threshold. Both eigenvalues and eigenvec-
tors are indexed in decreasing order.

To compute an approximation of the eigenmodes in feasible time, we use an algo-
rithm based on random low-rank factorisation [404, 405]. In particular, we choose a
double-pass algorithm because it only requires mat-vec products [404, 406]. There are

17. Find an exemplary application in [400], and some recent website resources in [401, 402, 403]. I
would like to take this opportunity to thank the 2018 Gene Golub Summer School for much important
insight (details in Acknowledgments).
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two fundamental ideas behind this approach. The first is to notice that R−1Hdata is
not necessarily symmetric per se, but that it is symmetric with respect to the R inner
product. The second is to adapt a randomized eigenvalue decomposition algorithm to a
non-euclidean inner product [406]. Conceptually, randomised decompositions consist in
constructing a relevant low-dimensional subspace Y of rank r by capturing the action
of the matrix on a r+ p (p over-samples) Gaussian random matrix Θ, i.e. Y = HdataΘ
which is readily parallelisable. Y is then QR-factorised and eigen-decomposed. This
process provides theoretical guarantees of convergence and a posteriori error measures,
which are generally bounded by the eigenvalues left behind (i.e. dominated by λr+p+1).
Our implementation is based on the algorithm proposed by Saibaba [406] for GHEP
problems.

The number of generalised eigenvalues above 1 is called the effective rank of the
Hessian misfit and its a reflection of the inherent dimension of the problem given the
data available. In other words, the sparse observations we can make are only useful to
a limited amount of modes of the infinite parameter field we are inverting for. Indeed,
as is seen in Figure III.11a and is well-known as a spectral property of Hessian misfit
expressions, the effective rank is independent of the spatial resolution (mesh size). In
addition, the spectrum confirms that the Hessian is a compact operator with (rapidly)
decaying eigenvalues, as is expected from an ill-posed problem. This property is behind
the fast convergence of the CG method we have observed in Figure III.3.

Let us share some last intuition regarding the importance of the Hessian. The
Hessian tells us how important (eigenvalue), or how informed by the data, is each
direction (eigenvector) of the system. It is also in this sense that it helps Newton’s
method choose an ideal step and not only a direction. Think of an elliptic (rather
than circular) quadratic potential energy, in which some directions matter more than
others. The PDEs act here only as a linear constraint. If all directions matter the
same, the Hessian is the identity and the algorithm becomes steepest descent. Riesz’s
interpretation is important here again to properly represent angles ; for this reason, we
generalise the eigenvalue problem with the preconditioner matrix, which reflects our
choice of inner product.
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Figure III.12 –Hessian eigenvectors. a) Some eigenvectors f̂i for i ∈ {0, 1, 2, 3, 4, 5, 10, 15}
of the solution in Figure III.5. b) And i ∈ {0, 1, 2, 3, 4, 5} of the solution in Figure III.8.
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III.4 Adding uncertainty : Bayesian PDE-constrained in-
verse problem

The last part of the thesis extends the framework into a Bayesian setting.
Inverting the deterministic PDE-constrained problem yields but single es-
timates of the quantities of interest. However, it is necessary to assess
how reliable the reconstructions are because images are noisy. Indeed, a
crucial duty of experimental science is to report measurement errors, yet
(to our knowledge) a systematic method to quantify uncertainty has not
been developed neither in PIV nor TFM. Under the Bayesian framework
that we propose, the result is a posterior density that expresses the pro-
bability distribution of the traction force that was exerted by the cells on
the substrate given that we observed our image sequence. To make such a
large problem tractable we rely on a Laplacian approximation that yields
a Gaussian posterior whose covariance is related to the Hessian of the pro-
blem, which we address using a low-rank approximation. We also model
the experimental errors of the measured elastic modulus of the substrate
by pre-marginalising the optical flow functional. Lastly, we propose to use
the resulting error estimates to determine whether structures that appear
on the recovered force field are actually significant or artifacts.

Inverting the deterministic PDE-constrained problem yields a single estimate of
the force f, the boundary condition g, and the displacement field u. However, it is ne-
cessary to assess how reliable the reconstructions are because our image measurements
are not perfectly accurate. Indeed, a crucial duty of experimental science is to report
measurement errors, yet (to our knowledge) a systematic method to quantify uncer-
tainty has not been developed in neither PIV (u) nor TFM (f). While error estimates
are sought, they normally consist on averaging many experiments. However, the pat-
terns of force distribution on single experiments are much harder to assess under this
frequentist approach. In this section, we show that the deterministic solution consti-
tutes a good summary of the inversion problem as the point of maximum probability.
We then compute the uncertainty associated with the reconstructed fields and provide
confidence intervals.

To quantify the uncertainty of the inverse solution, we take a Bayesian approach
[407, 408, 378] 18. Under this framework, the result is a posterior density that expresses
the probability distribution of f being the force that was exerted by the cells given
that we observed images I1 and I2 under additive Gaussian noise. This distribution
can be deduced from the combination of two other densities. 1) The likelihood, which
talks about the opposite probability, i.e. "observe I1, I2 given a known force f", and is

18. See an example in [400], some website resources [401], and related libraries [409, 397]. I would
like to take this opportunity to thank the 2018 Gene Golub Summer School for much important
insight (details in Acknowledgments).
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modeled by a noise-corrupted data functional Jdata. 2) And the prior density, which
encodes a priori knowledge regarding f and is equivalent to the regularisation in the
deterministic problem. In this part of the work, we focus on quantifying the uncertainty
of f assuming g is the solution of the deterministic problem.

We recognise, of course, that Bayesian errors are subject to various assumptions,
notably the prior distribution, and thus we recommend caution when interpreting the
results of our method. However, standard PIV and TFM methods are not exempt of
such predicament ; they also require prior knowledge in the form of a regulariser. In
fact, PIV+TFM will often imply two regularisers.

To make such large problem tractable we rely (again) on linearising the data func-
tional, which yields a Gaussian likelihood. Together with a Gaussian prior, this implies
a Gaussian posterior, avoiding prohibitive sampling. We show that both the mean and
the maximum a posteriori probability of the posterior distribution correspond to the
deterministic solution when regularised with a norm equivalent to that used for the
prior. We then compute the posterior covariance using a low-rank approximation. We
also model the experimental errors of the measured elastic moduli by pre-marginalising
the data functional. Lastly, we propose to use the resulting error estimates to determine
whether structures that appear on the recovered force field are actually significant or
are artifacts instead.

III.4.1 ∞-dimensional Bayesian inverse problem
In infinite dimension, Bayes’ rule is formulated in terms of the Radon-Nikodym

derivative because there is no analogue of Lebesgue’s measure. It reads

dνI
dνf
∝ π(I1|f), (III.72)

with the corresponding σ-finite measures νI , νf in the place of conventional probability
density functions (pdf). A second challenge is to ensure the well-posedness of the
posterior distribution. To meet this requirement, in the literature there is not much
room regarding the choice of a valid prior measure. In this work, we pick a Gaussian
measure as a prior, with mean f? and a covariance operator Cf. As will be discussed in
subsection III.4.1.1, priors based on inverse elliptic operators are most convenient as it
is easy to verify that they satisfy the necessary regularity conditions for well-posedness
[410]. In the Bayesian approach, the prior acts similarly to the regularisation term in
the deterministic problem (see subsection III.4.2). Therefore, the choice of prior has
great influence on the resulting reconstruction. Certainly, it is most important when
the inverse problem is under-determined, but it can also be essential in over-determined
systems if there is enough observational noise [410].

On the other hand, the likelihood is the result of both inflicting noise on the modi-
fied optical flow equation (III.6) and considering any modelling error. In particular, we
model the image noise eI ∼ N (0,CI) as Gaussian additive, and postpone the proper
introduction of a surrogate model error eµ,λ until Section III.4.3. Meanwhile, we call
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total error (eI,µ,λ := eI + eµ,λ) the sum of both error sources. Under this notation, the
functional can be expressed as :

I (x + u(f), t+ 1) e−s = I (x, t) + eI,µ,λ. (III.73)

In principle, the additive image noise is independent and identically distributed, i.e.
CI = σ2

I I for some variance σI ∈ R≥0. Like the image error, the total error is also
Gaussian because we approximate (Section III.4.3) the surrogate error as Gaussian. In
particular, we account for the model reduction with a covariance Cµ,λ and a possibly
non-zero mean eµ,λ,?. Therefore, the likelihood of I1 given f can be written as 19

π(I1|f) ∝ exp
(
−‖I2(x + u)e−s − I1(x)− eµ,λ,?‖2

Ω,C−1

)
, (III.74)

where C := CI + Cµ,λ because the covariances of two Gaussians sum, and the means
sum too eµ,λ,? = 0 + eµ,λ,?. In other words, π(I1|f) = N (I2(x + u)e−s − I1(x),C).

Even though the map u(f) is linear, I2(x+u(f)) is certainly not. This non-linearity
results in a non-Gaussian likelihood distribution. However, we cannot afford to use
sampling techniques such as Markov chain Monte Carlo (MCMC) methods because
every sample is PDE-solve expensive. To make the problem tractable, we take the
same linearisation as in (III.7), but directly on I2 :

π(I1|f) ∝∼ exp
(
−‖e−s ((−I2∇s+∇I2) · u + I2)− I1 − eµ,λ,?‖2

Ω,C−1

)
. (III.75)

Alternatively, we have also attempted to follow the propagation of the error through the
multi-scale analysis. For example, by propagating f to u, and then u to the intensity of
the warped image Iw. However, this is slow and it is not clear how to evaluate the errors
incurred by certain operations (e.g. up-scaling). Therefore, we resort to the Laplacian
approximation in (III.75). In the case where both prior and likelihood are Gaussian,
the posterior is Gaussian with mean the maximum a posteriori (MAP) point, and
covariance the Hessian of the negative-log posterior at that point.

III.4.1.1 Prior analysis for well-posedness and scalability

Whereas having access to non-Gaussian priors would be interesting to model edge-
preserving regularisations such as TV, inverting ∞-dimensional fields in a Bayesian
context is still a cutting-edge problem that merits active research. In the context of our
work, the main obstacle is the combination of the high-dimensional parameter space
and the cost of the PDE forward solve, which precludes reasonably-long sampling of
the posterior via conventional approaches such as MCMC. This is the same problem
we have just avoided by linearising the functional term.

19. NOTATION : we use 〈•, •〉∗,M to notate the inner product weighted by a matrix (or operator)
M over a domain ∗, and ‖•‖∗,M the induced norm. More visually, 〈a, b〉∗,M is 〈M1/2a,M1/2b〉∗ or
aT Mb.
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In addition to non-Gaussianity, it has been shown that TV suffers from other pro-
blems in the Bayesian framework. Although it has worked on fixed discretisations
[411, 412, 413], the fact that TV is not discretisation invariant [414] is specially rele-
vant to our multi-scale method. To amend these short-comings while preserving the
blocky reconstruction characteristic of TV regularisation, the literature proposes se-
veral alternatives such as Besov functions [415]. However, most remain non-Gaussian.
Inspired by the asymptotical Gaussianity of TV, [416] uses Gaussian hyper-priors to
recover blocky objects. Alternatively, [417] proposes a TV-G prior that includes a TV
term, but uses Gaussian distributions as a reference measure. This strategy enables
the use of MCMC-like algorithms developed for Gaussian priors that show dimension
independence (e.g. preconditioned Crank-Nicolson). Given all subtleties and difficul-
ties, adapting a TV-like prior to perform well under all our additional requirements
will be the object of future research.

Common Gaussian priors in Bayesian inverse problems are defined in terms of
∞-dimensional covariance functions that result in dense matrices, which need to be
built and later inverted. These computational hardships can be avoided by using in-
verse elliptic operators because they are fast to solve and do not require building
the associated dense operator (we only need their action). Furthermore, [410] outlines
an ∞-dimensional Bayesian framework that ensures well-posedness of the associated
inverse problem given sufficient regularity of the prior such as in Laplacian-like ope-
rators 20. Since it is first formulated on an infinite setting, this approach guarantees
discretisation invariance for any finite approximation of the problem. We note that
these methods are opposed to most classical approaches where the Bayesian frame-
work is only introduced after discretisation (e.g. [407]). These analyses have to resort
to capturing the limit of infinite resolution by modelling the error introduced by the
finite approximation [418].

To represent the covariance operator of the Gaussian random field prior, we choose
an inverse elliptic operator Cf(f) defined as (αI− β∆)−ν f in K with a Neumann boun-
dary condition β∇f ·n on Γ, where n is the boundary normal and ν an exponent. Here
α, β ∈ R≥0 control the variance and the correlation length of the prior, respectively.
Notice that for ν = 1 the prior distribution is equivalent to Tikhonov H1 regularisa-
tion as shown in (III.57) 21. Unfortunately, the proposed operator is only trace class
for ν > dO/2. That is we can only guarantee that the∞-dimensional Bayesian inverse
problem is well-posed for ν > 1 in 2D and ν > 3/2 in 3D [410]. In other words, we
need more regularity than in the deterministic counterpart, where ν = 1 would gene-
rally suffice for well-posedness. Indeed, the resulting biharmonic operator for ν = 2
is known to be very smoothing. This can be also seen from the point of view of the
Green’s functions of the associated elliptic PDE, which actually represents the co-

20. [410] defines so-called Laplacian-like operators as positive-definite, invertible, self-adjoint, with
eigenvalues (indexed by j) that grow like |j2| ; and with eigenfunctions that form an orthonormal
basis of the overlaying Hilbert space, are bounded, and whose gradient grows like |j|.
21. Think of discretising the operator with the FEM : integrating the Laplacian by parts yields a

gradient product.
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variance of the parameter field between two given points : in 2D and 3D they are
bounded for the biharmonic operator but singular along the diagonal in the Laplacian
(unbounded variance) 22. In any case, the PDE imposes that the correlation of a point
with its neighbours decreases (smoothly) with distance. We take ν = 2 as the closest
valid integer that guarantees bounded (point-wise) variance and well-posedness of the
∞-dimensional Bayesian inverse problem. With this operator it is easier to sample the
Gaussian distribution because we have a fast and easy square root operator in C1/2

f as
(αI− β∆)−1.

The Gaussian prior can then be expressed as

π(f) ∝ exp
(
−‖C−1/2

f (f− f?) ‖2
Ω

)
= exp

(
−‖f− f?‖2

Ω,C−1
f

)
(III.76)

where f? is the prior mean (which we will set to zero f? = 0). The first and second
variations of the associated regularisation are

DfJ Cf
reg · f̃ = 2C−1

f (f− f?), (III.77)

D2
fJ Cf

reg · f̃ · f̃̃ = 2C−1
f (̃f). (III.78)

We recall the discrete regularisation for comparison :

DfJ H1

reg · f̃ = 2α〈f, f̃〉K + 2β〈∇f,∇f̃〉K , (III.79)

D2
fJ H1

reg · f̃ · f̃̃ = 2α〈̃f, f̃̃〉K + 2β〈∇f̃,∇f̃̃〉K . (III.80)

III.4.2 Discretisation of Bayes’ formula yields a Gaussian posterior
The finite-dimensional formulation of the Bayesian inverse problem requires sub-

spaces akin to those introduced in its deterministic counterpart (here we only notate
the pdfs with the h subscript, but leave the other variables as they are for readibility).
Therefore, we focus on the discrete version of Bayes’ law :

πh(f|I1) ∝ πh(I1|f)πh(f). (III.81)

Collecting both prior and likelihood, we can write the posterior distribution

πh(f|I1) ∝∼ exp(− ‖e−s ((−I2∇s+∇I2) · u + I2)− I1 − eµ,λ,?‖2
Ω,C−1

− ‖f− f?‖2
Ω,C−1

f
), (III.82)

which is the pdf that represents the probability of f given that we observed I1. Notice
that we have notated Cf the finite-dimensional approximation (via FEM discretisation)
of the covariance operator.

22. Alternatively, think about what exponent is needed for the sum of the eigenvalues (trace) to be
finite (e.g.

∑
i 1/(1 + i2)). The α terms makes the operator invertible.
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The maximum a posteriori (MAP) probability estimate f? is the point that maxi-
mizes the posterior pdf (III.82), or minimizes its negative logarithm,

f? := argmax
f

πh(f|I1) = argmin
f
Jh, (III.83)

because the proportionality constant of the posterior does not depend on f. This is
precisely the result of the discretised version (minimise Jh) of the deterministic inverse
problem (III.23) 23, which we solved with multi-scaling and the adjoint method in
Section III.3. That is f∗ = f? (notation from Section III.3.4). Notice also that the
resulting posterior pdf (III.82) is normal because both the prior and the likelihood
were chosen normal. Therefore, we also have that the MAP estimate is the mean
E(f) = f?. That is πh(f|I1) ∼ N (f?,Cf). This means that only the covariance Cf ∈ Rn×n

is left to fully characterise the posterior distribution, where n is the number of degrees
of freedom of the discretised traction field f. Completing squares and discarding any
non-f-dependent term to the proportionality constant, we can see that the posterior
covariance Cf is the inverse of the Hessian at f?

Cf = H−1; (III.84)

including the data misfit and the prior :

H = Hdata(f?) + C−1
f . (III.85)

Due to size constraints, we use a low-rank approximation to compute a low-dimensional
basis for the inverse of the Hessian. This is possible because the spectrum of the
misfit decays fairly quickly. In other words, the eigenvalues collapse to zero or the
Hessian misfit operator is compact. Similarly to section III.3.4.4, we use a randomized
eigen-decomposition algorithm to extract the first r eigenvectors of a prior-generalised
Hessian misfit from its matrix-free action on a random set of vectors. Then we use the
matrix inversion identity on the full Hessian and obtain (Annex F) an approximation
of the posterior covariance :

Cf ≈ Cf − UΛUT (III.86)
where U ∈ Rn×r is an r-ranked matrix corresponding to the C−1

f -generalised Hessian
misfit eigenvectors, and Λ ∈ Rr×r is the diagonal matrix containing the corresponding
eigenvalues. Expression (F.9) shows very visually how the data misfit reduces (the
matrix stays semi positive-definite after the approximation) the uncertainty of the
prior. All the details, as well as error estimates related to higher-ranked eigenvalues,
can be found in Annex F.
23. With some changes. First, the extra term coming from the mean surrogate error. Second, the

norms of the forcing terms in the adjoint and incremental adjoint are now to be taken with respect
to the C−1-weighted inner product (e.g. −2〈O · ũ,O · ũ̃〉Ω,C−1 or −2OT C−1O when discretised). And
third, the covariance of the prior as presented in equations (III.76)-(III.78) and its relation with the
discrete regularisation [408]. For example, the H1 regularisation is akin to the elliptic operator we
have introduced when ν = 1. In this regard, the effect of σI weighting the data misfit term can be
completely incorporated into the coefficients of the prior covariance, i.e. only the relative weights
should matter to find the MAP.
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III.4.3 Marginalisation can account for imperfections in the elastic
modulus

Image noise is not the only source of uncertainty in our system. Parameters µ and
λ, which describe the elastic behavior of the material, are also subject to error because
they are measured experimentally. A possible solution to account for this uncertainty
is to invert the problem for f, µ and λ simultaneously, but such amount of unknowns
is bound to be ill-posed and computationally prohibitive. Instead, we treat the elastic
moduli as nuisance variables. In this manner, we can premarginalise over the moduli
and propagate them to an additive term ; inverting only for f. The result is a redefined
likelihood with an associated error that takes in account both the original image noise
and an approximation of the error induced by the elastic moduli. This is known as
the Bayesian approximation error (BAE) approach [407, 418, 419], and is normally
used to account for model uncertainties resulting from parameter-space-size reduction
in surrogate models. For example, an alternative application in our context would be
to consider the discrepancy introduced by a linear approximation of the non-linear
response of 3D collagen matrices.

We recall (III.73) in order to specify the total noise term eI,µ,λ. Take the original
expression but considering µ and λ as unknowns. As before, suppose that our images
are corrupted by some Gaussian noise eI ∼ N (0, σ2

I I) :

I2 (x + u(f, µ, λ)) e−s(f,µ,λ) − I1 (x) = eI . (III.87)

We then propose our surrogate model. We reduce the parameter space by assuming
the elastic moduli are fixed to some µ?, λ?. In this case, we choose the experimental
mean value of the moduli as were taken in the deterministic approach (Section III.3).
We model the error eµ,λ := I2 (x + u(f, µ?, λ?)) e−s − I2 (x + u(f, µ, λ)) e−s incurred
when using the simplified model as a Gaussian distribution eµ,λ|f ∼ N ; where we
have dropped the dependence in s for readability. Under all these conditions, the new
functional

I2 (x + u(f, µ?, λ?)) e−s(f,µ?,λ?) − I1 (x) = eI + eµ,λ (III.88)

takes in account both the image error and the surrogate error. The next simplication
gets us a step closer to a solvable problem : we consider that the surrogate error is
independent of the force f and thus eµ,λ ∼ N (eµ,λ,?,Cµ,λ) for some mean eµ,λ,? and
covariance Cµ,λ. The statistics of eµ,λ can be computed by calculating the mean and
covariance of a large number of simulations. The cost of the simulations is very high,
but they can be performed offline. While the surrogate approximation depends on the
image, we have observed very similar values of the associated covariance matrix across
images from the same source.

Finally, we can define the functional in (III.73) by working with a total error
eI,µ,λ := eI + eµ,λ with mean the sum of means eµ,λ,? = 0 + eµ,λ,?, and covariance
the sum of covariances C = CI + Cµ,λ ; and setting µ?, λ? as in the deterministic
inverse problem. The effect of each summand in the total covariance can be assessed
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by comparing the traces of the matrices tr(CI) < tr(Cµ,λ) [419]. In this way, one can
determine whether it is significant to include either term. We would like to recall that
we have made two approximations regarding the surrogate error in this Section III.4.3 :
normalisation and independence.

As a last note, let us comment on the experimental significance underlying the
surrogate errors we have just modeled. The experimental uncertainty intervals of the
moduli are the result of averaging diverse substrate samples and thus are not neces-
sarily representative of the possible variations within a single sample. However, we
take these values for lack of better estimates. Other information such as the spatial
length scale of the moduli variations, which might be related to polymer length, can
be represented as (increasingly far) off-diagonal blocks of the covariance matrix.

III.4.4 Forward propagation of traction errors quantifies displace-
ment uncertainty

After the posterior distribution of f has been computed, we can propagate the
uncertainty [400] through the elastic equations to obtain the posterior distribution of
the displacement u. That is we need to solve a system of linearly elastic stochastic
partial differential equations (SPDEs). Since the force-to-displacement map is linear
(linear PDE), we have π(u|I1) ∼ N (u∗, Cu). It is clear that the mean and MAP point
u? is the result of solving the forward PDE with the force term f? (and thus u? = u∗
also). Likewise, the displacement covariance Cu at the MAP u? is the result of filtering
the force covariance Cf at the MAP f? through the linearly elastic PDEs :

Cu = A−1CfA−∗ = A−1(δ2J )−1A−1, (III.89)

where we have used the expression for a linear transformation (A−1) of a Gaussian
[420] (first equality), and both the "self-adjointness" of A and the non-discretised
version of (III.84) (second equality). Both the force-to-displacement map A−1 and the
Hessian are evaluated at f?. Notice that expression (III.89) can be reformulated as
(A (δ2J )A)−1. We could try to approximate (III.89) as we did with the Hessian, but
we have no guarantees that it will turn out compact. Instead, let us re-summon the
approximation of the hessian inverse (or posterior covariance) H−1

r ∈ Rn×n to try and
reduce computational expenses. First, we form the product AxTr = H−1

r and solve it
for an auxiliary variable xTr . Here again, A ∈ Rn×m is the discretisation of the operator
A, where m is the number of degrees of freedom of the discretised displacement u.
Next, we use xr to pose the following linear system of equations : Ayr = xr. Solving
for yr produces an approximation Cu

r of the discrete Cu covariance Cu. This is yet to
be implemented.
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III.4.5 A null-hypothesis test to assign a significance to observed
biological structures

Given that we now have the posterior distribution of the force, the floor is open to
any kind of statistical inquiries. One in particular is motivated directly from biological
considerations. Could we assess the significance of any structure revealed by TFM? In
other words, say we discover a force patch, could we determine whether it is real or an
artifact ? Now that we have the posterior, we can use the covariance to attack this kind
of problems ; that is to assess whether we are confident that a given structure is actually
there and is not just a product of randomness. To this end, we propose a Bayesian
hypothesis test [421], where we take the null hypothesis as H0 : the structure is absent,
and thus the complementary hypothesis is H1 : the structure is present. This will
divide the space of possible (solution) force fields into two : force fields that show the
structure of interest (H1), and force fields that do not. As usual, the aim is to reject
H0 in favor of H1. This problem can be approached from Bayesian decision theory,
for example as outlined in [421], where a reference set of "inpainted" solutions that
substitute the potential structure by a more regular field is used as a reference. This
is yet to be implemented.

III.4.6 Implementation and experiments
The Bayesian approach is summarised in Algorithm 2. The first step is to apply

the deterministic Algorithm 1 in order to obtain the MAP estimate f? of the posterior
distribution πh(f|I1, I2) of the force. Next, inverting the Hessian at the MAP will yield
the covariance matrix associated to the force pdf, which reflects the uncertainty of
the reconstruction. The diagonal values correspond to the variance, whereas the off-
diagonals reflect the covariance between parameters. A third step is to propagate the
force covariance to obtain the covariance of the displacement distribution. This can
be done using the force-to-displacement map A−1. Lastly, the posterior distribution of
the force can be used to perform statistical tests on the significance of certain regions.

Algorithm 2: Uncertainty quantification in TFM
Data: Reference image I1 and image I2, initial contours, pre-computed

marginalisation of µ and λ, region of interest
Result: Posterior distributions πh(f|I1, I2), πh(u|I1, I2), significance of region

1 Apply Algorithm 1 : u?, f?, g∗ ;
2 Invert the Hessian via low-rank GHEP (F.9) : Cf, πh(f|I1, I2);
3 Propagate variance by solving SPDE (III.89) : Cu, πh(u|I1, I2);
4 Perform statistical test on region of interest : p-value

For the moment, we have only implemented the first and second steps. The cova-
riance of the displacement is not particularly relevant in our context, where recovering
forces is actually the final goal, and is expensive to compute. Contrarily, performing



172 Chapitre III. Measuring outside the cell

statistical tests to assess the significance of small patches of forces is biologically re-
levant. However, to explore this possibility we are awaiting experimental TFM data
from our collaborators. Therefore, let us focus on computing the force covariance. The
results are shown in Figures III.13 and III.14.

The variances displayed in Figure III.13 are computed by taking the diagonal values
of the hessian inverse centered around the MAP point f? displayed in Figure III.5.
This illustrates the problem of a direct inversion of the force from a displacement field
(Section III.3.4.1). In this case, we can see how the boundaries are most uncertain
in the prior distribution (indicating room for improvement in its choice). The data
corrects (through the Hessian) the prior variance (remember expression (F.9)) fairly
uniformly (but slightly less at the boundaries), decreasing its variance greatly. As a
consequence, the posterior variance is quite low, i.e. the reconstruction is certain. This
is further reflected in the samples as they barely deviate from the MAP (even when
they have been exaggerated). Conversely, Figure III.14 focuses on the variance of our
PDE-constrained optical flow method (Section III.3.4.2) centered around the MAP in
Figure III.8. Here, the variance is reduced less in zones where the image intensity is
homogeneous as compared to zones where it is heterogeneous (see Figure III.14c for
comparison in the same color scale) because it is easier to distinguish movement with
the optical flow functional.

Therefore, the results not only quantify the uncertainty of the recovered force from
the image noise, but they also indicate what zones are most informative and thus
might help in experiment design.
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Figure III.13 – Covariance and samples of the direct inversion. a) Row 1) Left-to-
right : diagonal of the covariance of the prior, the correction factor and the posterior. Row
2) Magnitudes corresponding to the vector fields in (Row 1). b) Two samples of both the
prior (left column) and posterior (right column) force distributions. The samples were taken
with an augmented variance to make differences noticeable. Everything is in relation to the
MAP point f? in Figure III.5, but in a lower resolution.
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I1 I2

I2− I1 ∇I2

(c)

Figure III.14 – Covariance and samples of the PDE-constrained optical flow in-
version. a) Row 1) Left-to-right : diagonal of the covariance of the prior, the correction
factor and the posterior. Row 2) Magnitudes corresponding to the vector fields in (Row 1).
b) Two samples of both the prior (left column) and posterior (right column) force distri-
butions. c) Reference I1 and deformed I2 images, their difference, and the gradient of the
deformed image. Everything is in relation to the MAP point f? in Figure III.8.
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IV – Conclusion and future
perspectives

The leading aim of this work has been to develop a methodology that can assist
in the boom of mechanobiology 1. As in many other disciplines, improvements in the
quality of experimental biophysical measurements have a history of turning into biolo-
gical discoveries rather efficiently. In this regard, the central contribution of this thesis
can be pinned down to the optimisation framework we have developed throughout
the manuscript. Its three most relevant points to the cause are 1) non-invasiveness :
it relies exclusively on standard microscopy ; 2) generality : 2D, 3D, intracellular, ex-
tracellular... presumably any theoretical model can be adapted ; and 3) uncertainty
quantification : albeit Bayesian in origin, the error bounds are a good indicator of our
confidence in the measurements. Because biology is eminently empirical, it might be
surprising that we choose to bring up the third point. However, uncertainty is the ele-
phant in the room of inverse problems in general, and (perhaps due to interdisciplinary
miscommunication) of their bio-applications in particular ; this is the case of Traction
Force Microscopy (TFM) for example. Even though an effort is present to average over
many reconstructions (or measurements), many times conclusions are drawn from cir-
cumstantial force maps without a visible concern for possible artifacts. In fact, it is

1. For a less digressive (and more factual) discussion of the thesis we refer the interested reader
to Section .

177
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precisely our rather-qualitative analysis on amoeboid motion that guilt-tripped us into
uncertainty estimation.

Ultimately, all three points support the quest for biological significance. To illus-
trate our idea we opened two fronts : the first to introduce a novel way to look at intra-
cellular physics, the second to reformulate extracellular TFM on alternative grounds.
Even if the methodology was considerably expanded in the context of TFM during
Chapter III, it is applicable to both problems. Quantifying intracellular forces and pres-
sure gradients has helped us confirm and complement multiple hypotheses regarding
amoeboid cell migration ; whereas the computed velocity fields are detailed enough to
characterise cytoplasmic redistribution during bleb formation, and have motivated an
advection-based tracking scheme that can follow dynamic molecular regions and allows
defining integral measures. All these measurements are likely unprecedented, specially
at this spatio-temporal resolution and extent (non-local), and everything without da-
maging the cell. On the other hand, extracellular measurements are more standardised,
but we have been able to reduce noise sensitivity and provide error bounds in this res-
pect. Other applications were found in the field of active nematics that also helped us
test the relevance of the Stokes’ equations to intracellular-like systems.

Throughout this thesis we have tried to emphasise the biological context of our
work. Nevertheless, we believe the mathematical aspects are remarkably interesting,
specially because we draw from several disciplines to build a framework that goes
directly from pixels to measurements. That is we can take profit of the well controlled
errors of the camera images to estimate the uncertainty of our reconstruction. This
results in a big inverse problem that starts by formulating a PDE conservation model
for the intensity and then requires that the underlying movement also abides by some
PDE-based model. The idea can be formulated as an optimal control problem that we
solve using variational calculus and complement with Bayesian estimates.

Software - For measurements to translate into discoveries, they have to be re-
producible and easily accessible. If our hope is to tip the balance from expensive lab
equipment to algorithms, it is imperative to provide working software. To both ends,
we have implemented our methodology as an open-source module in the Icy plat-
form. The concept has sparked interest in several communities, of which we are aware
through direct contact or bug reports ( !), and thus further investment should be pro-
fitable. In particular, there is much work to do in terms of user-friendliness, notably
for very-end users. This is best done in close collaboration with the biology commu-
nity, but also with software engineers. Indeed, programming solutions that can offer
a good visual and interactive display are often in conflict with languages dedicated to
scientific computing. Re-coding super-tested supported libraries, from say C++ into
Java, would be gargantuan work. Therefore, we ask for bioimaging platforms to try
and harness the potential of both worlds. This will also be a relevant point with the
advent of deep learning techniques. Lastly, there is plenty to be optimised in our code
that has not happened due to time constraints, specially in light of the late extensions
introduced in Chapter III ; in other words, the implementation could be significantly
faster.
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Theory - From a theoretical standpoint, the Bayesian approach needs to be further
developed. However, this is still a topic of active research in mathematical literaure. Ta-
king in account the size of the problems we deal with, sampling with MCMC methods
is prohibitive, which rules out the possibility of introducing non-linearities. Therefore,
we are in need of either faster sampling methods, or linear regularisation schemes that
can preserve discontinuous features such as TV. As of now, it seems like good theo-
retical guarantees for the infinite bayesian inverse problem involve rather smoothing
regularisers (such as the Laplacian-like PDE we introduced) ; and that guarantees on
the infinite formulation are needed to get discretisation invariance, which is particulary
convenient in light of our multi-resolution scheme.

Other applications - A straightforward application that derives from the com-
bination of Chapters II and III is to consider the full 3D picture of a cell navigating
through the ECM (see Figure IV.1). In this case, complementary domains can be es-
tablished for the inside and outside of the cell with respective fluid and elastic models.
Of course, this gives rise to a big problem, but we have shown that L2 regularisation
can be turned into a coupled system of PDEs. In this case, we can move the paralleli-
sation effort from considering many images pairs at once to solving the linear algebra
problem derived from a single image pair (see MUMPS for example). This also permits
to use the reconstructed displacement field to inform the segmentation of subsequent
images.

K

Figure IV.1 – In and out : a 3D framework for cell-matrix interaction.

An additional application is elastography (see Annex D). In principle, this problem
is not linear and therefore reformulating it in a Bayesian setting is expensive. To
make it more manageable, one could aim at partitioning the spatial map of elastic
moduli into binary zones delimited by a parameterised curve or spline. Extracting
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only a few parameters (as opposed to a value for each spatial point) could be doable
via an MCMC scheme. This should yield error estimates for the segmentation as
well. While elastography aims at recovering the heterogeneous elastic properties of
a material, it could also be applied to flowing fluids, i.e. to segment fluid regions of
different viscosities that are invisible to the naked eye, for example cells in the blood
stream. Alternatively, cell segmentation could exploit the optical refraction of light
going through a cell by seeding fixed markers on the slide, potentially yielding a 3D
map of the cell if the spatial resolution is enough to detect the smallest deviations.

To better represent the behavior of materials the fluid and elastic models have to
be refined. In particular, biological fluids are better described by non-Newtonian vis-
coelastic models and cross-linked polymers such as the ECM also behave non-linearly.
Section II.6 represents a first step in this direction, but this endeavour requires a lot
of experimental support in the form of rheological probing and thus would be best
reserved for a lab dedicated to the biophysical sciences.

A last possibility concerns the similarity of back-propagation to the adjoint ap-
proach or to reverse automatic differentiation : perhaps constraining deep learning
to physical PDEs could help alleviate the dependence of variational formulations on
energy weights, as well as on the physical constants of the model.

In a more biological direction, combining TFM experiments with intracellular ana-
lysis should help elucidate the essential details driving amoeboid motion, as well as
the interaction and coordination between the inside and the outside of the cell.



A – Some intuition on the Adjoint
method

A lot of ideas in this Annex come from [186] and [187, 188] (associated website
http://www.dolfin-adjoint.org/en/release/documentation).

A.1 Discrete intuition
Let us illustrate the idea behind the adjoint method by taking the discrete ap-

proach, where we reason with matrices but know that a similar intuition holds in
functional analysis. This is the avenue taken in Chapter II, specifically in Section
II.1.3, from where we borrow the notation. First apply the chain rule to the functional
J(θ(m),m) and PDE constraint A(θ,m) = 0 :

dJ(θ(m),m)
dm

= ∂J

∂θ

dθ

dm
+ ∂J

∂m
, (A.1)

∂A(θ,m)
∂θ

dθ

dm
= −∂A(θ,m)

∂m
, (A.2)

where A could be the discretisation of w − L via the FEM (see II.1.3), for example,
and J that of the functional. Since the partial derivatives are simple to compute, the
problem lies in computing the total derivatives. This can be achieved by solving the
tangent linear system (A.2), where the partial derivatives w.r.t. to the controls act as
source terms. However, dθ/dm is a large and dense matrix that scales badly with the
size of the control space ; and in fact, we do not need all this information because we
only care about a single functional. In this case, it is better to explore the dual space :
instead of keeping the freedom of choosing the functional a posteriori, lets invert the
roles with the controls and fix them a posteriori by taking the hermitian of the system.
That is

dJ(θ(m),m)
dm

= −λ∗∂A(θ,m)
∂m

+ ∂J

∂m
, (A.3)(

∂A(θ,m)
∂θ

)∗
λ = ∂J

∂θ

∗
. (A.4)
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While (A.2) had a source term depending on the controls, the forcing term in (A.4)
depends only on the functional. In other words, we avoid computing dθ/dm by first
solving the so-called adjoint equation A.4 for λ, and then computing the final gradient
via equation A.1. The change in dimension is also clear : dθ/dm is a matrix of dimen-
sions state space times control space, whereas λ is a vector of the same dimension as
the state space.

Notice here that the adjoint operator (∂A/∂θ)∗ corresponds to the linearisation of
the PDE A about the solution θ. Equation A.4 is therefore very similar to the forward
PDE system, with the difference that the “propagation” of information is reversed by
the transpose 1, plus a functional-dependant source term ; i.e. computing the gradient
via the adjoint method only requires solving a linear PDE problem. This problem is
akin to the forward model if such model is linear, and to the linearisation of the forward
model if it is non-linear. The trade-off is clear in the duality : while the tangent linear
space is convenient when the number of functionals to consider is big with respect to
the controls, the adjoint approach works best when a functional is fixed but we have
a large number of control parameters. This is perhaps best seen with the following
equality

∂J

∂θ

dθ

dm
= −λ∗∂A(θ,m)

∂m
, (A.5)

which is a direct consequence of duality in linear algebra. Therefore, the adjoint va-
riables λ describe the influence of a given source term (here −∂A/∂m) on the functio-
nal through −λ∗∂A/∂m. Alternatively, the λi component of the adjoint is the value
of the functional when the solution is the corresponding discrete Green’s function :
−λ∗(∂A/∂m)i = λi = ∂J/∂θ(dθ/dm)i, where the "discrete Green’s function" is the
solution (dθ/dm)i of (A.1) when the source term is precisely −(∂A/∂m)i.

The same adjoint approach that was derived from the dual description, can also be
derived from a Lagrangian perspective, i.e. using multipliers to write the constrained
minimisation. Let L be the Lagrangian

L := J − λ∗A (A.6)

whose perturbation is given by

dL = ∂J

∂θ
dθ + ∂J

∂m
dm− λ∗∂A

∂θ
dθ − λ∗ ∂A

∂m
dm. (A.7)

If the derivative of the Lagrangian w.r.t. the state variables is zero and the forward
equation A = 0 is satisfied, the total derivative of the Lagrangian w.r.t. the controls

dL =
(
∂J

∂m
− λ∗ ∂A

∂m

)
dm = dJ (A.8)

1. E.g. advections reverse direction as transposing converts lower triangular matrices into upper
triangular matrices. Similarly, in time-dependent problems time and causality are reversed.
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is also the derivative of the functional w.r.t. to the controls dJ = dL. Setting the state
derivatives to zero yields precisely the adjoint equation for λ :

∂J

∂θ
− λ∗∂A

∂θ
= 0. (A.9)

Note that both these approaches work also for non-linear forward problems, in which
case the adjoint equation is posed by the adjoint of the linearised problem. Under
these frameworks, geometric constraints can be readily implemented by modifying the
search direction of the controls, but state-dependent constraints such as J2(θ) = 0
are harder to incorporate because they require computing additional adjoints, which
undermines the benefits of the adjoint approach. Instead, these are best included in a
weak way in the original functional J .

A.2 Continuous intuition
Most of the intuition discussed for the discrete case applies directly to the conti-

nuous approach 2. Instead of trying to solve the linearised PDE for dθ/dm in its weak
form to evaluate the gradient functional

∫
Ω(∂J/∂θ)(dθ/dm)dx, we look for the adjoint

operator (∂A/∂θ)∗ of the linearised PDE operator, (∂A/∂θ), as defined in functional
analysis : ∫

Ω
Λ∗
(
∂A

∂θ

)
Θ dx =

∫
Ω

((
∂A

∂θ

)∗
Λ
)∗

Θ dx (A.10)

for all appropriate pair of functions Λ, Θ. If we then find a λ such that it solves
the associated adjoint PDE system (∂A/∂θ)∗λ = (∂J/∂θ)∗ in its weak form, we can
cheaply evaluate the gradient as∫

Ω

∂J

∂θ

dθ

dm
dx =

∫
Ω
−λ∗ ∂A

∂m
dx. (A.11)

This duality in functional analysis appears as a natural extension of the duality in linear
algebra or linear programming. In this case, integration by parts to find the adjoint
operator often reverses the sign, creating a similar effect to that of the transpose in
the discrete case. For instance, the adjoint of the operator ∇θ − ∆θ is −∇λ − ∆λ.
In this continuous case, it is specially important to keep track of boundary conditions
as they have to be properly accounted for to solve the PDE associated to the adjoint
system.

The same intuition also holds in terms of Green’s functions. Concretely, the adjoint
variable evaluated at a point x′ is equal to the value of the functional when the solution
is the Green’s function evaluated at that same point. Indeed, consider the Green’s func-
tion corresponding to the solution of the linearised PDE : θ(x) =

∫
Ω−G(x,x′) ∂A

∂m
dx′

2. To emphasize this we heavily abuse the partial derivative notation, but these should rather be
formulated and interpreted as Gâteaux derivatives (see Chapter III for a more formal treatment).
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then ∫
Ω

∂J

∂θ
θ(x)dx =

∫
Ω
−∂J
∂θ
G(x,x′) ∂A

∂m
dx′dx =

∫
Ω
−λ∗(x′) ∂A

∂m
dx′ (A.12)

and thus λ∗(x′) =
∫

Ω
∂J
∂θ
G(x,x′)dx.

As in the discrete case, the Lagragian way is also valid. Indeed, in Chapter III we
take a continuous Lagrangian approach and show how it can be extended to second
variations in order to compute a Hessian.



B – Derivation of the continuous
Oldroyd-B model from a discrete

damper/spring system

B.1 Discrete system
A third derivation of the Oldroyd B equations consists in building a continuum

model starting from a discrete mass-less damper-spring system 1 , i.e. a linear combi-
nation (in series or parallel) of springs and dampers that respectively represent the
elastic and viscous behavior of the material. This is somewhat analogous to building
electrical circuits if the following correspondance is observed : voltage ↔ stress, cur-
rent ↔ strain rate, capacitor ↔ spring because they store energy, and resistance ↔
damper because they dissipate it. In other words, the elastic stress σe is proportional
to the strain acoording to Hooke’s law :

σe ∝ ξ; (B.1)

and the viscous stress σv to the strain rate as stated in Newton’s law :

σv ∝ ξ̇. (B.2)

Series and parallel rules also apply to the total stress σ and strain ξ as a function of all
the passive elements (indexed by i) in the circuit. Elements in parallel are under the
same strain and add their stress, whereas a serial arrangement adds strain but shares
a common stress applied through the system. More succinctly,

in series : σ = σi = σj, ξ =
∑
i

ξi; (B.3)

in parallel : σ =
∑
i

ξi, ξ = ξi = ξj. (B.4)

1. NOTATION : to be consistent with previous notation, we keep u and ε(u) for velocity and
strain rate ; and write d, ξ := ∂xd for displacement and strain, where ∂• denotes the partial derivative
for example in u := ∂td. To keep it simpler, however, we will be using •̇ for the partial time derivative.
We consider the stress σ as a scalar at first, and only tensorialise it after while also dividing it into
hydrostatic and deviatoric.
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However, notice that the rules are opposite to those in an electrical circuit. This
contrast is a consequence of choosing voltage (which acts across elements), and stress
(through elements) as respective excitators ; this role can be swapped from stress to
strain by virtue of the excitation/response dualism in a linear system. In this case, the
series/parallel rules of both circuits would be perfectly analogous at the expense of
losing the direct and intuitive interpretation that the mechanical circuit is connected
exactly as the associated mechanical system [422].

The most general form of these mechanical circuits, where an arbitrary number of
elements in series and parallel is considered, is known as the Maxwell-Wiechert model.
The viscoelastic materials described by this model can be solids or liquids, depending
on whether all the deformations are reversible, which in turn is determined by whether
there is any path of serial springs that can guarantee an instantaneous response. For
example, a spring-damper system in series is called a Maxwell material and behaves
like a liquid, but does not describe creep nor recovery. Conversely, if they are set in
parallel as in a Kelving-Voigt material, they become solid (the deformation is entirely
reversible) and can no longer display stress relaxation. Adding a serial spring to the
latter system results in a material known as the standard solid model, which is the
simplest setting that reproduces creep, recovery and relaxation. Conveniently, the equi-
valent fluid system, in which the serial spring is replaced by a damper (Figure II.30b),
is the rheological model reported in the experimental study on the the cytoplasm of
Entamoeba histolytica . It is known as three parameter fluid, or Jeffreys’ model.

The three parameters : E1 the elastic modulus of the parallel spring, and η1, η2 the
respective viscosities of the parallel and serial dampers. The serial strain sum :

ξ̇ = ξ̇1 + ξ̇2; (B.5)

and respective stress addition (in parallel) and conservation (in series) :

σ = E1ξ1 + η1ξ̇1, σ = η2ξ̇2. (B.6)

The combination of the three equations describes the evolution of the mechanical
system more succinctly,

λ2σ̇ + σ = η2
(
ξ̇ + λ1ξ̈

)
, (B.7)

as a function of the retardation,
λ1 := η1

E1
, (B.8)

and relaxation,
λ2 := η1 + η2

E1
, (B.9)

times. According to (B.7), having reached an equilibrium strain, as the viscosity kicks
in, the stress will slowly relax in a time scale charaterised by λ2 (see Figure II.29). On
the other hand, the retarded onset of the elasticity response caused by the parallelised
damper is described by λ1. That is there is viscosity in every deformation, and no pure
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elastic response. For comparison, a Maxwell material has an instantaneous elastic res-
ponse (η1 = 0, λ1 = 0), and a Voigt material cannot describe the relaxation behavior
as the elastic response is always present and tends to the original state. If both re-
laxation and retardation share the same time scale, λ1 = λ2, the material behaves like
a Newtonian fluid. This is most clear if we split the stress into a viscous and elastic
part :

σ = σv + σe, (B.10)
where the standard viscous stress is defined as usual

σ = 2µsξ̇, (B.11)

and the elastic stress is defined implicitly,

λ2σ̇e + σe = 2µpξ̇. (B.12)

With the stress split into two, the new variables µs and µp respectively act as the
viscosities of the solvent (viscous) and polymeric (viscoelastic) components :

µs := λ1

λ2
η2 = η1η2

η1 + η2
, (B.13)

µp :=
(

1− λ1

λ2

)
η2 = η2 − µs = η2

2
η1 + η2

. (B.14)

Where the elastic influence is reflected by λ2 in (B.12). In fact, both viscosities only
depend on the dampers, but both characteristic times include the elastic modulus.
The sum of both, η2 = µs + µp, acts as a sort of total viscosity.

B.2 Tensorialisation into continuum fluid dynamics
To start the transition to continuum fluid dynamics, we first switch strain for

velocity in (B.12) :
λ2σ̇e + σe = 2µp∂xu. (B.15)

And then generalise the expression into a tensorial equation by assuming the stress is
a symmetric tensor field τ , the velocity is divergence-free, and writing it in terms of
the strain rate tensor ε(u) :

λ2τ̇e + τe = 2µpε (B.16)
τv = 2µsε (B.17)
τ = τv + τe (B.18)
σ = −pI + τ (B.19)

However, equation (B.16) as a whole is not frame indifferent because the time derivative
is not, but constitutive relations are expected to be an intrinsic property of a material



188 Annexe B. Oldroyd-B from a discrete damper/spring system

and therefore independent of the observer. To be more precise, we not only want the
equation to be invariant under any Euclidean transformation representing a frame
change, but we also want the invariant to be frame independent. Similarly to how we
need the material derivative (II.1) to guarantee the invariance of I in a moving image
(or u in a fluid), we cannot carelessly generalise the time derivative of the stress to
a tensorial setting if we want to be "physical". To translate the material derivative
into the context of second-rank tensors, we consider a Lagrangian coordinate system
that moves and deforms with the fluid so that the coordinates of a particular material
point do not change with time regardless of rotations and stretches, including the base
vectors, which also change along with the material as they are convected. The result
is a set of frame-invariant time derivatives of a second-rank tensor in a moving fluid
of which the so-called upper-convected time derivative 2 is the most used :

∇• := Dt • −
(
(∇u)T · •+ • · (∇u)

)
. (B.20)

A frame-invariant version of the equation describing the time evolution of the elastic
tensor can be written as

λ2
∇
τe + τe = 2µpε. (B.21)

The ensemble of equations (B.21), (B.17), (B.18), (B.19) form a model known as
Oldroyd B, which has been derived from the discrete spring/damper system found
experimentally. While it is clear now that this relationship is known in the literature,
I could not find the derivation written explicitly (perhaps it is considered trivial) so
I leave it here as a reference in the hope of helping someone. The discrete-continuous
equivalence of the parameters appears to be unavailable as well.

2. See a derivation of the expression as a Lie derivative [423].



C – Derivation of the modified optical
flow functional

If one has only a dO(< dΩ)-dimensional representation there is little hope of recove-
ring the full dΩ-dimensional representation of the movement. For example, we cannot
integrate the fluorophore advection equation since it would require a dΩ-dimensional
initial condition. At best, one expects to obtain a concentration-weighted average of
the movement :

〈uΠ〉Γ =
∫

Γ
uΠΨdΩΠC/

∫
Γ

ΨdΩΠC . (C.1)

However, one can extract further information from the projected data if there exists a
relation between the movement on spaces ΩΠC and ΩΠ, namely through a model.

Two main factors account for the different behavior of the movement in the image
with respect to the original movement of the fluorophores, i.e. between respective equa-
tions (III.5) and (III.1). First, the fluorophore concentration varies along the comple-
mentary dimensions : otherwise ∇ΠC Ψ = 0. And second, there is movement along
these dimensions : otherwise uΠC = 0. In both exceptions no difference exists and
(III.5) becomes DtI = 0. The first relevant condition is a first order approximation.
Therefore, let us neglect any derivative of order higher than one that does not lay on
the projection ΩΠ.

We begin by using the mean value theorem on III.2,

L(xΠ, t) ∝∼ L0(xΠ)
∫

Γ
Ψ(x, t)dΩΠc , (C.2)

and defining the normalised luminance l := L/L0. Then 1) we take its time derivative,
2) differentiate under the integral sign in equation (C.2), 3) substitute in the fluoro-
phore advection equation (III.1), 4) use the product rule for the divergence, and 5)
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split the space according to the projection . That is

∂tl ∝
∫

Γ
∂tΨ dΩΠc

=
∫

Γ
−u · ∇Ψ dΩΠc

= −
∫

Γ
(∇ · (Ψu)−Ψ∇ · u) dΩΠc

= −
∫

Γ
(∇Π · (ΨuΠ)−Ψ∇Π · uΠ) dΩΠc

−
∫

Γ
(∇Πc · (ΨuΠc)−Ψ∇Πc · uΠc) dΩΠc . (C.3)

The first terms in the last equation (C.3) can be expanded using the general Leibniz’s
integral rule (which we modify slightly to handle the divergence, see Section C.2 below)
by considering the (dΩ − dO)−form ΨdxdO+1 ∧ . . .∧dxdΩ over the ΩΠ-dependent chain
Γ of the same dimension in dΩ-space. Finally, one gets∫

Γ
∇Π · (ΨuΠ) dΩΠc = ∇Π ·

∫
Γ

ΨuΠ dΩΠc (C.4)

−
∫
∂Γ

(ΨuΠ) · ∇ΠΓ · dΣ,∫
Γ
∇Πc · (ΨuΠc) dΩΠc = −

∫
∂Γ

(ΨuΠ) · ∇ΠcΓ · dΣ, (C.5)

where dΣ is the infinitesimal surface element, and ∇ΠcΓ = −I. Notice that the ortho-
gonal (wrt to the projection) term vanishes because both integral and derivatives are
taken over the same variables ; only the boundary terms are left. We can reformulate
the first term on the right hand side of equation (C.4) in terms of the concentration-
weighted velocity field and expanding the divergence :

∇Π ·
∫

Γ
ΨuΠ dΩΠc ∝ ∇Π · (l〈uΠ〉Γ)

= 〈uΠ〉Γ · ∇Πl + l∇Π · 〈uΠ〉Γ, (C.6)

with the same proportionality constant.
Assembling equations (C.4), (C.5) and (C.6) into (C.3) :

∂tl = −l∇Π · 〈uΠ〉Γ − 〈uΠ〉Γ · ∇Πl

+ k
∫

Γ
(Ψ∇Π · uΠ + Ψ∇Πc · uΠc) dΩΠc

+ k
∫
∂Γ

(Ψu) · ∇Γ · dΣ, (C.7)

where k is the proportionality constant in in (III.4). Disregarding the second orders in
the orthogonal direction, we get

∂tl = −〈uΠ〉Γ · ∇Πl + l∇Πc · uΠc + k
∫
∂Γ

(Ψu) · ∇Γ · dΣ, (C.8)
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where ∇Πc · uΠc = ∇ · u − ∇Π · uΠ ≈ ∇ · u − ∇Π · 〈uΠ〉Γ. In addition, if we can also
ignore the first derivatives of uΠ in the orthogonal direction (i.e. the Jacobian is null :
JΠcuΠ = 0dO×dΠc ), 〈uΠ〉Γ · ∇Πl = uΠ and the previous expression can be simplified to

∂tl = −uΠ · ∇Πl + l∇Πc · uΠc + k
∫
∂Γ

(Ψu) · ∇Γ · dΣ, (C.9)

which is much easier to link with our PDE model/constraint. Ideally, we could project
our PDE equations onto the image plane, but the expressions would complicate greatly.
Alternatively, our model can help to reformulate the only remnant of the orthogonal
movement in (C.9), the divergence ∇Πc · uΠc , in terms of the in-plane motion (see an
example in Section III.2.3 with the elastic equations). Notice that the lose of symmetry
between in-plane and out-of-plane variables happens because the integral is taken over
the latter variables ; the consequences of this are clear when comparing (C.4) to (C.5),
as the derivative of the integral disappears.

We now address the boundary terms in the last three equations. In the case where
a 3D movement is projected onto 2D the boundary term reads (Ψu · n)|Γ with n the
boundary normal. In confocal microscopy, and more generally in laser sheet visualisa-
tion, it is reasonable to ignore the boundary terms. For example, one can consider that
the flux in and out of the bounded region compensates (i.e. it does not accumulate in
the region) or that the velocity is parallel to the control surfaces. However, part of the
problem is cutting the space with the control surface Γ. Indeed, if we integrate over all
space (controls Γ is placed at infinity) then the fluorophore concentration (as well as
the velocity) decays to zero ; the only caveat being that greater care has to be taken
when playing around with the integrals (e.g. mean value theorem, Leibniz, switching
the limits in and outside the integrals, etc.) ; but L0 and the other variables can be
chosen well-behaved enough. This is particularly fruitful under the last approximation
as there is no actual averaging. Certainly, the results should at least be good up to
first order with the additional benefit of knowing the real form of the error sources,
possibly leading to some sensible uncertainty quantification. If the boundary terms are
neglected, the conservation equation can be written as

∂tl = −uΠ · ∇Πl + l∇Πc · uΠc ; (C.10)

or in other words,
Dtl = l∇Πc · uΠc . (C.11)

Since I is proportional to L, the equations above also hold for I.

C.1 Other situational conservation equations
In what follows we present three alternative conservation equations that also be

deduced from this perspective on optical flow with the hope that they will be useful
in different situations.
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a) Diffusion. In cases where diffusion is not negligible B 6= 0 in equation (III.1),
then the derivation remains the same, but equations (C.7), (C.8), (C.9) and (C.10)
get two extra terms

B∆Πl + [B.T.] (C.12)
on their right hand side, where [B.T.] stands for boundary terms.

b) Beads. If the number of beads is really small it might be worth to consider
them as a sum of Gaussians bi, i ∈ {1 . . m}, with mean xbi

(t), defining the center
of each bead, and σi, modelling its size. The scattering from the particles illuminated
by the laser sheet is proportional to the number of particles [314], similarly to the
fluorophore concentration Ψ in (III.4) ; and thus the form of the equations derived so
far still holds. We can express the normalised luminance as

m∑
i=1

bi, (C.13)

and readily substitute it into any of the equations (C.7), (C.8), (C.9), (C.10). For
example

m∑
i=1

σ−2
i bi (xΠ − xbi

) · (uΠ − ẋbi
) = −

m∑
i=1

bi∇Πc · uΠc (C.14)

using (C.10). In the limit where all σi go to zero at a similar rate, we have ẋbi
=

δ(xΠ − xbi
)uΠ.

c) 3D of 3D. Consider that we take 3D images of a 3D movement, as in a confocal
z-stack. Notice that if we take L0 = δ(x3 − z), we instantly get the seminal optical
flow equation. Conversely, if we take an arbitrary L0 we can derive an equation as a
function of the velocity averaged in the z-direction along the laser zone Γ defined by
control surfaces, i.e. 〈u〉. In particular, by neglecting again the orthogonal (i.e. in the
z direction because it is a z stack) second order derivatives (or equivalently the second
order of the laser thickness) in the same fashion as before, we can derive the following
expression for the 3D optical flow :

∂tl ≈ −〈u〉 · ∇l − l∇〈u〉+ l∇ · u ≈ −〈u〉 · ∇l, (C.15)

modulo boundary terms. In this case, the orthogonal integration variables are only
auxiliary during the derivation and the real orthogonal variables (the ones we take the
final derivatives with respect to) are taken as the center of the integration domain.

C.2 Leibniz’s general rule extended to the divergence
Let us define the dΠc−form ω = ΨdxdO+1 ∧ . . . ∧ dxdΩ . We would like to adapt the

general Leibniz’s rule (see equation 7.2 in [424]) to the divergence in equations (C.4)
and (C.5). Let’s proceed :
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∇Π ·
∫

Γ
uΠ ω =

∑
i∈Π

∂

∂xi

∫
Γ
uiω (C.16)

=
∑
i∈Π

∫
Γ

∂

∂xi
(uiω) +

∑
i∈Pi

∫
∂Γ
uivi y ω (C.17)

=
∫

Γ

∑
i∈Π

∂

∂xi
(uiω) +

∫
∂Γ

∑
i∈Π

uivi y ω, (C.18)

where y signals the interior product of the vector field vi and the form ω ; and the
second equality is due to the the general Leibniz’s rule. Typically vi is the velocity
describing the motion of the domain (v = ẋ), but here it describes the change of the
control surface Γ. Therefore, vi = ∂Γ/∂xi, which has dimension dΠc .∫

Γ

∑
i∈Π

∂

∂xi
(uiω) =

∫
Γ
∇Π · (uΠΨ) dxdO+1 ∧ . . . ∧ dxdΩ (C.19)

∫
∂Γ

∑
i∈Π

uivi y ω =
∫
∂Γ
uΠ · ∇ΠΓ y ω =

∫
∂Γ
uΠ · ∇ΠΓ · dΣ. (C.20)

Since the vector field and the form are of the same dimention, we can take a last
step and multiply by a generic dΠc-dimensional vector representing the surface area. A
similar derivation holds in the Πc direction, but in such case we have ∇Πc ·∫Γ uΠcω = 0.
Putting together the two directions :

∇Π ·
∫

Γ
uΠΨ dΩΠc =

∫
Γ
∇ · (uΨ) dΩΠc +

∫
∂Γ

(uΨ) · ∇Γ y dΩΠc (C.21)

with dΩΠc = dxdO+1 ∧ . . . ∧ dxdΩ .
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D – Measuring elastic moduli

This section of the work was developed in collaboration with Samy Gobaa
at Institut Pasteur and is published in [425].

Another experimental challenge in TFM is to characterise the elasticity of the
material by measuring its constitutive parameters, namely the Lamé coefficients, i.e.
the shear modulus µ and λ. While there exist calibration tables that relate stiffness to
concentration for widely used materials (e.g polyacrylamide [426, 427]), the stiffness
of many other materials is either not tabulated or not accurate enough. In addition,
the standard rheological approaches to measure sample stiffness at the micro level
require specialised set-ups such as atomic force microscopy, magnetic beads, cone-
plate rheometers, spectrometers and uni-axial stretchers [336]. In this section, we try
to look for alternatives that require little more than the microscope that is available
at our facility. We also remark that this problem is not only of interest for cell biology,
and that it encompasses multiple scales ; these considerations are out of the scope of
the thesis, but we refer to [425] for further context.

D.1 Brownian microrheology
The first idea we considered was to insert beads into the elastic material and ex-

ploit their thermal energy as a microrheometer. The displacement of a particle under-
going thermally-powered Brownian motion within a viscous liquid is well characterised.
Concretely, the standard deviation of the displacements d of the bead, or mean squa-
red displacement (MSD, see Section I.2.2.3), is proportional to the time elapsed t :
< ∆d2 >= 4Dt. The diffusion coefficient D depends on the shear viscosity of the fluid
and therefore can be used as a gauge. Deviations from this linear relation typically
reflect deviations of the viscous model into viscoelasticity. Is a similar approach pos-
sible for elastic materials ? In such case, the Brownian motion is constrained by elastic
forces that respond immediately and thus the MSD is finite and independent of t [428].
In other words, the thermal energy kBT is up against springs :

< ∆d2 >∝ 2kBT
rE

, (D.1)

where kB is Boltzmann’s constant, T is the temperature in Kelvin, r is the radius of
the bead or particle and E is the elastic modulus. This expression is perhaps best
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understood from the point of view of thermodynamics and statistical physics. In this
regard, a thorough study on harmonic oscillators in heat baths can be found in [429].
The MSD can be computed after tracking the moving particles [430, 431]. However,
the problem is that we are out of scale. Take 10nm as the best distance ∆d we can
resolve with a microscope and post-processing (e.g. fitting a PSF) , r = 100nm a bead
on the smaller size, and T ≈ 300K. Then we could measure elastic moduli up to a
maximum of 300Pa. Whereas some techniques could yield better positional resolution,
it would be hard to cover the necessary 0.1− 10kPa range. Therefore, this method is
not feasible in the context of TFM. In addition, while adding tracers in the form of
beads to some materials is simple because they are polymerised from scratch, some
others might result less accessible. Lastly, using a focused laser might help lengthen
the stiffness range of this approach at a loss of simplicity.

D.2 Mechanical elastography
In [425], we explore an alternative method. In this case, we are not only looking

for a single elasticity parameter but rather for the whole spatial distribution µ(x)
of the shear modulus, a problem known as elastography. This can more accurately
characterise the material sample. We propose to use our computational framework
to extract elasticity measurements in biological materials, requiring only a standard
microscopy set-up and a piezoelectric actuator [432] or, possibly, a chip with a vacuum
chamber [433] (both commercially available). The scale of the resulting measurements
is directly linked to the resolutive power of the microscope and thus can range across
several scales. Even though in theory any type of imaging can be used, in the case
of fluorescence microscopy some materials may require a label in the form of either
fluorescent proteins or beads.

D.2.1 Experimental set-up.
More concretely, the experimental set-up (Fig. D.1) consists of a piezoelectric

(PZT) actuator that moves a glass slide to compress the sample with great precision,
either from the top or from the side, generating one or more boundary conditions.
If necessary, the sample can be rotated to generate additional measurements (in this
case, the resulting images can be registered). We note that these actuators and set-
ups have been used to induce compression at different scales, generating displacements
over a wide range of magnitudes within different samples [432, 434]. For example, the
PZT ring actuator by Piezomechanik in [432] is able to induce up to 50% strain in
step-wise micrometer-scale displacements on different synthetic and biological mate-
rials. Besides, more expensive models are able to offer nanometer accuracy. The strain
induced within the sample can thus be regulated at almost any scale and is usually
extracted by taking pictures before and after the compression is applied. These can
be taken in a range of resolutions by using ultrasounds, optical coherence tomography
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or, as in the present case, conventional fluorescence microscopy.

Figure D.1 – Schematic of an experimental set-up. The compression induced by the
actuator on the sample can be finely regulated and can be imaged through a fluorescence
microscope. An image of the sample is taken before (cyan) and after (red) the compression
is applied.

D.2.2 Theoretical set-up
Since we are compressing a single side of the sample at a time, the deformation will

reach the opposite side very weakly as compared to the noise. This situation is inter-
esting as regards inverse problems because we have to combine multiple experiments,
that is we have a problem with multiple PDE constraints.

a) Forward problem. We consider the sample to be a linearly elastic material
with domain Ω described by its weak formulation a(u,w;µ) = 0 ∀ w ∈ H1

0 (Ω), where
u ∈ H1

g is the displacement. The equations are exactly as presented for TFM during
Chapter III (see Section III.2.2 in particular). However, here we do not control for the
force f or the boundary condition g, but for µ. In short, the forward problem is to find
u given µ, with fixed f and g.

b) Inverse problem. Our interest is to find a µ(x) that minimizes Jdata(I,u;µ)+
Jreg subject to a(u,w;µ) = 0 ∀ w ∈ H1

0 (Ω). Here Jdata is taken from (III.7), and we
set Jreg = α‖µ‖2

Ω for some weight α ∈ R≥0. In the incompressible case, i.e. λ → +∞,
inverting µ from u is a well-posed problem for certain boundary conditions [435].
However, several complications arise in practical situations. First, biological materials
are often compressible. Second, the high levels of noise and the limited sampling in
images make the problem very sensitive. Third, in order to conserve the integrity of
the sample, only small displacements can be applied as boundary conditions. As a
consequence, the displacement field over the sample can be hard to resolve, specially
far from the source and in the presence of noise (see Fig. D.2a). For these reasons, we
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introduce a new functional

Jdata :=
n∑
i=1

Jdata(Ii,ui;µ) (D.2)

that incorporates n observations of the sample under different boundary conditions
gi that yield n different image pairs Ii (x, 0), Ii (x, 1). With this strategy, we aim at
completing any lack of information stemming from the above-mentioned difficulties by
accumulating independent observations. We also have to introduce the corresponding
combined weak elastic equation :

A =
n∑
i=1

a(ui,wi;µ), (D.3)

where U = (u1, · · · ,un) ∈ U := ×i
H1

gi
(Ω) and W = (w1, · · · ,wn) ∈ W :=

×i
H1

0 (Ω). The final problem thus reads :

argmin
µ

Jdata + Jreg subject to A = 0 ∀W ∈ W . (D.4)

c) Minimisation. The optimisation problem has several PDE constraints (one
per experiment or applied gi), making the computation of the derivatives particu-
larly costly as the problem grows. We use the L-BGFS-B quasi-Newton method to
solve the optimization problem (D.4) and compute the derivatives with the discrete
adjoint method, exactly as in II.1.3. Importantly, A inherits the properties of linea-
rity and "self-adjointness" (even if in a different space, A∗(W1,W2;µ) = A(W1,W2;µ)
∀ W1,W2 ∈ W) by construction. Therefore the adjoint problem looks like the linear
problem, which in turn looks like the original forward problem. In practice, it is better
to take the change of variables µ = exp(β) and minimise with respect to β ∈ R because
the parameter µ ∈ R>0 is to be kept positive.

d) Experiments. In order to test the methodology, we use different synthetic
examples derived from real data, to which we apply simulated actuations. This allows
us to work with fully controlled conditions. In particular, we use original microscopy
images Ii(x, 0) of polyacrylamide gels, a well-studied linearly elastic material used
widely in biology, and we use real values for the boundary conditions induced by a
piezoelectric actuator, generating displacements like those observed in the literature.
We also reproduce the noisy conditions of conventional fluorescence microscopy.

We start with a given modulus µ(x) map (Fig. D.2c) and solve the forward problem
A = 0 under different boundary conditions gi, i ∈ {1 . . n}, to obtain the different
displacement fields ui (Fig. D.2b, n = 1). Then we use ui to warp images Ii(x, 0)
into images Ii(x, 1) (Fig. D.2a). Finally, we add noise at the level expected from a
microscope and subsample the data to obtain the final pairs of images.

We remark that the magnitude of the displacements quickly decreases as one gets
farther from the side where the boundary condition is applied. In fact, the added noise
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a) b)

c) d)

Figure D.2 – Numerical experiments. (a) Two superimposed images of the polyacry-
lamide gel before (cyan) and after (red) applying an example of a uniform top boundary
condition downwards and adding noise. Lack of movement is shown in white (cyan+red).
(b) Displacement field applied to warp (a). (c) µ(x) with three occlusions. (d) Recovered
µ(x) across the diagonal drawn in (c) for 1 and 3 different boundary conditions (dashed
lines) as compared to the ground truth (solid line). The respective boundary conditions are
compressing from the top, and compressing from the top and the two sides.
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and the sampling amount to an almost complete loss of information at the opposite
side (Fig. D.2a, white). In addition, the side of the image where the compression is
applied is another source of error because the sample changes size slightly.

We work with a rigidity modulus (Fig. D.2c) that consists of three inclusions of
different magnitude that partially occlude each other, making it more difficult to "see
through". The results of the minimization (eq. D.4) are presented in Figure D.2d.
By integrating data in the form of three different boundary conditions, µ(x) is much
better recovered (as compared to using only one experiment) because the effects from
warping the boundary are reduced and because the combination of the displacement
fields samples the domain more extensively. In particular, including experiments where
the sample is pressed from different sides reduces mismatches caused by the small
values (relative to the noise) of the displacement field far from the boundary where
the compression is applied. In this way, all three inclusions are resolved, localized and
ordered in magnitude.

It is worth noting that the recovered values of µ are relative because the applied
traction force is unknown. To obtain absolute values one must be aware of the force
exerted on the sample or to layer it with a reference material of known properties.



E – Interpretation of the
regularisation weights : filters and

diffusers

E.1 L2 regularisation behaves approximately as a low-
pass filter

The filter effect is best seen by rescuing the coupled system of equation mentioned
in Sec. (III.3.1), where we found f = v/2α on K. For simplicity, we resort to a standard
data misfit term (u− ud)2, where ud would be the measured displacement, instead of
the modified optical flow functional. At lower dimension and under periodic boundary
conditions we can write the simplified coupled system in the spatial Fourier domain
as

ν2û ∝ v̂/α, (E.1)

ν2v̂ ∝ ûd − û, (E.2)

(here •̂ notates the amplitude) with the same proportionality constant ξ gathering
the effects of µ and λ. This system is a low-pass filter that can be used to damp
spatial frequencies that are indiscernible at the scale of the experiment : û/ûd =
(1 + αξ2ν4)−1, where ν is the spatial frequency or wavenumber.

E.2 Tikhonov regularisation is a smoothing isotropic dif-
fusor

In this case, the Newton iterations result in an isotropic diffusion regulated by β
that smooths the control. This is most evident in the strong form of the Hessian action
of the regulariser (III.57) :

− 2β∆f̃. (E.3)
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E.3 Frobenius TV operator acts via anisotropic diffusion
We address the action of the (I−∇f⊗∇f/|∇f|2F) operator, where we disregard the

ε perturbation. The gradient itself is a single eigenvector (eigenmatrix) of eigenvalue
0 ; and all the "frobenius-perpendicular" (the Frobenius product of two matrices is the
sum of the inner products of their column vectors) vectors are of eigenvalue 1 and form
a basis that spans the remaining space. The effect of this can be seen on the strong
version of Newton’s system, where the Hessian term becomes

−∇ ·
(

α

|∇f|F

(
I− ∇f⊗∇f|∇f|2F

)
∇f̃
)
, (E.4)

i.e. the Newton iterations act like an anisotropic diffusor. In one dimension this restricts
the diffusion to progress along edges (perpendicular to the gradient), resulting in the
characteristic sharp (piece-wise-like) transitions of TV regularisation. On flatter zones,
the diffusion becomes isotropic. In the vectorial case, diffusion is only discouraged
across the direction of the diagonal matrix. In addition, the definition of "edge" is not
so clear-cut. Consider the image as a 2/3D manifold embedded in a f-dimensioned space
[436, 437, 438] and let ∇fT∇f be the metric tensor, a measure of the rate of change. Its
eigenvectors (symmetric tensor) reflect the directions of maximal and minimal change.
Accordingly, the vectorial edge should result from comparing the dissimilarity between
the different (semi-positive) eigenvalues [439]. A suggestive approach would be to take
the difference between maximum and minimum eigenvalues, but its very expensive
and does not seem to have nice properties. The spectral and Frobenius norms are
close alternatives. They are unitary invariant and convex, and hence Lipschitz and
differentiable everywhere. They can be expressed in terms of the decreasingly-ordered
eigenvalues λi, i ∈ {1 . . dΩ}, of the metric as |∇f|F =

√∑
i λi and |∇f|s =

√
λ1.

Continuing with the analysis of possible Schatten p-norms, after p = 2 and p =∞, we
considered p = 1, known as the nuclear norm |∇f|n = ∑

i

√
λi ; but discarded it because

it requires taking the square root (or SVD) of a matrix. We also gave up on the spectral
norm because it requires computing the dominant eigenvectors, which does not scale
well to 3D dimensions [440]. The Frobenius norm is much simpler to handle and still
couples the many components of the f vector [389]. The edge strength is weighted
over all vectorial components so that common edges are not over-penalised, but the
directions of the edge might be different for each component. This can introduce some
"smearing" over the edges as shown by (E.4), but it is a good trade-off because this
effect is not necessarily bad in the case of cellular traction forces. Aside from the
coupling, TV acts on each component roughly as is expected. It is kind of a gradient
sparsifier : it prefers monotonic functions 1 (as Tikhonov) but does not favor smooth
changes, therefore preserving edges (blocky/stair effect) as are found in the data and
being less penal when the function departs from the constant case.

1. The seminal definition of total variation can be seen as the supremum of the sum of absolute
differences of a one-varied function over any partition of a given interval.
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E.3.1 Expressions for the TV Hessian action

D2
fJ TV

reg · f̃ · f̃̃ = α
∫
K

∇f̃ ..∇f̃̃
(∇f ..∇f + ε)1/2 dΩ− α

∫
K

(
∇f̃ ..∇f

) (
∇f ..∇f̃̃

)
(∇f ..∇f + ε)3/2 dΩ, (E.5)

D2
fJ TV

reg · f̃ · f̃̃ = α
∫
K

(∇f ..∇f + ε)−1/2

∇f̃ ..∇f̃̃−
(
∇f̃ ..∇f

) (
∇f ..∇f̃̃

)
(∇f ..∇f + ε)

 dΩ, (E.6)

D2
fJ TV

reg · f̃ · f̃̃ = α
∫
K

(∇f ..∇f + ε)−1/2∇f̃
(

I− ∇f⊗∇f
(∇f ..∇f + ε)

)
∇f̃̃ dΩ, (E.7)
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F – Low-rank approximation of the
covariance

F.1 Covariance of the Gaussian posterior as the inverse
of the Hessian

We have seen in Section III.4.2 that the posterior distribution can be expressed as

πh(f|I1) ∝∼ exp(− (y −Gθ)T C−1 (y −Gθ)
− (f− f?)T C−1

f (f− f?)), (F.1)

with y = I2e
−s−I1−eµ,λ,?, θ = (f,g) and G = OA−1L, where O is the matrix resulting

from the discretisation of the O = (−I2∇s+∇I2) terms. By using the rules for both
linear combinations and products regarding Gaussian densities [420], we can deduce
that

πh(f|I1) ∝∼ exp(− (θ − (f?,g))T

((OA−1L)TC−1(OA−1L) + C−1
f )

(θ − (f?,g)) (F.2)

because the MAP f? coincides with the mean under these circumstances, and constants
can be absorbed into the exponential. Therefore, the covariance of the posterior is

Cf = ((OA−1L)TC−1(OA−1L) + C−1
f )−1 = (Hdata + C−1

f )−1 = H−1. (F.3)

There should be a factor 2 here, but it can be transferred to the weights ; so we proceed
more simply in this way. The size of the posterior covariance matrix Cf ∈ Rn×n and the
Hessian misfit Hdata ∈ Rn×n corresponds to the degrees of freedom n of the discretised
traction force f. Accordingly, CI , Cµ,λ and C = CI + Cµ,λ all belong to Rl×l, where l
are the number of degrees of freedom of I.
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F.2 Prior-generalised eigenvalue problem to low-rank
approximate the Hessian inverse

When the forward model is expensive (PDE) and the number of parameters large
(i.e. n is big), the Bayesian approach is intractable using conventional sampling tech-
niques. If the problem is linear we can use the Hessian, otherwise, we can linearise it
or marginalise it. As shown in the main text, in either case, an additive Gaussian noise
model and a Gaussian prior density result in a Gaussian posterior density, which is
fully described by its mean 1 and (Hessian-based) covariance. However, inverting the
Hessian matrix is expensive. Specifically, the map A−1, which brings the controls to
u, is dense and constructing it requires a PDE solve per parameter, in contrast to the
deterministic approach.

However, the structure of the Hessian can be exploited towards fast approxima-
tions of its inverse with computable error bounds [441] (see applications in [442, 400]).
In particular, one can construct a lower dimensional basis by using a low-rank ap-
proximation of the Hessian. This problem is tractable because the spectrum of the
Hessian misfit decays rapidly, as only a low-dimension subspace of the parameter field
is informed by the data (ill-posed problem). In other words, the Hessian misfit matrix
is the discretisation of a compact operator. Only the modes of the parameter field that
affect the displacement strongly are present in the dominant spectrum, whereas the
rest (highly oscillatory) are negligible. Therefore, the range is finite dimensional (even
before discretisation) and thus independent of mesh size.

Let’s try to approximate the posterior covariance. Since it is also important to
account for the prior, we present the posterior covariance as the prior covariance, but
filtered through a data-based term :

Cf = (I + CfHdata)−1 Cf. (F.4)

While the data misfit preconditioned with the prior CfHdata is not symmetric, it is
so with respect to the C−1

f inner-product. In addition, the sum of the inverted prior
and hessian misfit is positive definite because positive-definition is invariant under
inversions. To factorise the prior-preconditioned data misfit CfHdata, we first solve the
corresponding generalised hermitian eigenvalue problem (see Section III.3.4.4) 2 : find
the eigenvectors f̂i and corresponding eigenvalues λi such that

Hdataf̂i = λiC−1
f f̂i. (F.5)

1. The mean is the MAP estimate only in the linear case. The MAP results from solving the
associated Tikhonov problem in both linear and non-linear cases.

2. In that case, the preconditioner in the preconditioned misfit defined the inner product (angles)
that best fitted the solution space (Riesz map). In a similar way, the prior acts here by informing
the direction (angles) of the Hessian with a priori knowledge. This results in a sort of space were the
data is weighted/guided by previous information.
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By choosing the r most significant eigenvalues we can r-rank approximate the n× n-
sized misfit, and at the same time have bounds for the accuracy of said approximation :

Hdata =
(
C−1

f U
)

D
(
C−1

f U
)T

+O
 n∑
i=r+1

λi

 (F.6)

where D ∈ Rr×r is a diagonal matrix containing the first (biggest) generalised eigen-
values λi, and U ∈ Rn×r contains the corresponding generalised eigenvectors and is
C−1

f -orthogonal. Notice that taking the largest eigenvalues of the GHEP is a way to
maximise the so-called Rayleigh ratio,

f̃THdatãf
f̃TC−1

f f̃
, (F.7)

where f̃ is any direction in the force space. In other words, for large eigenvalues the
likelihood dominates over the prior. Using the matrix inversion lemma [420] on (F.6)
to approximate the prior-modifier in (F.4), we obtain

(I + CfHdata)−1 = I− UΛUTC−Tf +O
 n∑
i=r+1

λi
λi + 1

 , (F.8)

where the middle term on the right-hand side reflects the substraction (non-negative
definite) effect the hessian data misfit exerts on the prior, i.e. lowering the covariance.
The approximation retains the eigenvectors according to a compromise between data-
fidelity and prior probability. Most clearly :

Cf = H−1 ≈ H−1
r := Cf − UΛUT , (F.9)

where we have used that the inverse of a symmetric matrix is symmetric, and notated
Λ ∈ Rr×r the diagonal matrix with eigenvalues λi/ (λi + 1). We use expression (F.9)
to approximate the posterior covariance. We note that this approximation is optimal
in the sense described in [443]. As in section III.3.4.4, the approximation is computed
via a randomised double-pass algorithm. In general, the less informative is the data,
the faster the eigenvalues decay and thus a lower order approximation is adequate en-
ough. Lastly, note that directions Cfui, with ui an eigenvector, maximise the (relative)
difference between the variance of the posterior and that of the prior.
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(a)

(b)

Figure G.1 – BioFlow at full resolution High (single-pixel) resolution maps of the in-
tracellular forces (a) and velocity (b) presented in Figure II.3c with equivalent colour scale
(NB : arrows are not scaled according to magnitude for better visualisation).
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Figure G.2 – Velocities (and pressure) along the multi-scale process. All images
correspond to scales 2 and 4 (out of 4) in Figure II.6. Row 1) 2D velocity becomes more
accurate as the scale gets finer (arrows are not scaled or colored accordingly). Row 2) 3D
velocity (arrows scaled and colored according to magnitude). Row 3) 3D pressure is colored
from lower (blue) to higher (red).
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Figure G.3 – 3D streamlines in E. histolytica. Solid cell volume shows the initial time
point whereas white cell mesh indicates the following time point (see also Figure II.15),
streamlines are colored from low (blue) to high (red) speed.
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Figure G.4 – BioFlow during active contours.

Figure G.5 – BioFlow during functional minimisation (parallel iteration over
scales).
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Figure G.6 – Displacement and force reconstruction from noisy displacement
data. Row 1) True simulated displacement u∗, displacement corrupted by 10% noise ud,
and recovered displacement u∗. Row 2) True simulated force f∗ and recovered force f∗. Row
3) Error map of the displacement |u∗ − u∗|2/|u∗|2 and the force |f∗ − f∗|2/|f∗|2. Blue/low to
Yellow/high.
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Approches variationnelles en problèmes inverses pour la
caractérisation par imagerie de la dynamique cellulaire

Aleix Boquet Pujadas

Résumé
Nous proposons une méthode pour calculer des grandeurs physiques telles que

les gradients de pressions ∇p, les forces f et les vitesses u nécessaires à la descrip-
tion des dynamiques cellulaires internes et externes et pour étudier les mécanismes
biologiques qui les gouvernent. Cette méthode non invasive extrait le mouvement de
l’objet biologique d’étude de son observation en microscopie à fluorescence conven-
tionnelle, tout en inférant les variables d’un modèle physique décrivant son com-
portement. Cette idée est formulée comme un problème d’optimisation avec des
dérivées partielles comme contrainte. Nous l’abordons par les méthodes adjointe
et des éléments finis puis l’étendons dans un cadre bayésien pour en quantifier les
incertitudes. Nous utilisons la dynamique des fluides pour décrire l’écoulement cyto-
plasmique et obtenons des estimations pour ∇p, f, u qui fédèrent et complètent des
résultats précédents sur la mécanique de la migration cellulaire. Les forces sont vali-
dées par comparaison avec un système nématique incluant des moteurs moléculaires.
Nous montrons aussi comment la vitesse obtenue peut être utilisée dans un shéma
de tracking fondé sur l’advection, ce qui permet de suivre des régions moléculaires
et de définir des mesures globales. Pour compléter l’étude intracellulaire avec des
mesures extracellulaires, nous reformulons la microscopie de force de traction dans
le cadre de la méthode proposée. Ceci permet une réduction de la propagation des
incertitudes et fournit des barres d’erreur. Les logiciels et les outils de visualisation
sont disponibles dans le programme open-source Icy.
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4 Conclusion et perspectives 12

1 Introduction
La capacité des cellules à définir et à modifier leur forme, ainsi qu’à démarrer et à

réguler leur mouvement est au cœur de nombreux processus biologiques fondamentaux
tels que le développement, l’infection microbienne, la réponse immunitaire et les méta-
stases du cancer. Les mécanismes sous-jacents à la forme et à la motilité des cellules
impliquent des mécanismes moléculaires complexes qui déclenchent des signaux méca-
niques. Par exemple, le réseau contractile d’actine-myosine est capable de générer des
forces endogènes à la fois à l’intérieur et à l’extérieur de la cellule. Même si l’ensemble
des moteurs moléculaires de myosine agissent localement et indépendamment, en exploi-
tant les propriétés biophysiques de la cellule, leur coordination appropriée est capable
d’exercer des forces de traction sur la matrice extracellulaire (ECM), ainsi que de la
faire avancer. En passant par ces phases et d’autres, la cellule est capable de traduire
la tension mécanique locale en mouvements qui concernent l’ensemble de la cellule et,
éventuellement, en une migration globale. Par conséquent, déchiffrer la façon dont les
cellules se déforment et se déplacent nécessite une meilleure compréhension des quantités
biophysiques qui actionnent (et reflètent également) les dynamiques intracellulaires (IC)
et extracellulaires (EC), telles que les forces et la pression IC et EC.

Malheureusement, beaucoup de ces quantités ne peuvent pas être mesurées directe-
ment avec les méthodologies actuelles, en particulier au niveau IC. Au lieu de cela, ils sont
généralement estimés à l’aide de méthodes expérimentales invasives ou d’approches indi-
rectes. Les méthodes directes permettent d’obtenir des mesures précises mais localisées
aux dépens d’une installation expérimentale plus complexe et d’une perte de pertinence
biologique. En effet, au stade actuel de miniaturisation, ces techniques entravent souvent
les mouvements des cellules et risquent de les endommager. D’autre part, les méthodes
indirectes offrent des mesures à une échelle plus globale, mais avec moins de précision
et avec une résolution spatiale inférieure. Quelle que soit la méthode employée, de nom-
breuses mesures biophysiques restent insaisissables ou du moins rares et sont souvent
limitées par des contraintes expérimentales. En résumé, il existe un besoin pour une mé-
thode de mesure de quantités biophysiques reproductible, non invasive et généralisable,
notamment à l’intérieur de la cellule.

Dans cette thèse, nous abordons ce défi du point de vue de l’imagerie non inva-
sive. Nous examinons le quartet moderne de traitement d’image, à savoir les modèles
stochastiques, l’analyse par ondelettes, les méthodes variationnelles et les équations aux
dérivées partielles (EDP), afin de proposer un cadre qui tente de tirer le meilleur parti de
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toutes ces approches. Nous avons choisi les EDP comme point de départ ; non seulement
parce qu’il sont connectées au reste des cadres, par exemple a l’approche variationnelle
à l’aide des équations d’Euler-Lagrange ou de la formulation faible, mais également en
raison de leur manière intuitive de décrire les phénomènes physiques. Concrètement,
nous utilisons des PDE pour modéliser directement le monde physique, qui ne se re-
flète que plus tard sur une séquence d’images. La première PDE est donc utilisée pour
décrire l’équation de transport scalaire de l’objet émetteur de lumière vu à travers l’ob-
jectif du microscope. C’est essentiellement un problème d’enregistrement. Comme le
système est sous-déterminé, nous le réécrivons en langage variationnel. Sous ces termes,
nous pouvons essayer de rendre le problème plus spécifique en contrôlant l’espace des
solutions. Entrez le deuxième système d’EDP. Ces deuxièmes équations modélisent le
mouvement physique réel capturé par la caméra, par exemple en utilisant la mécanique
des milieux continus pour décrire le cytoplasme à l’intérieur d’une cellule. Au total, les
seuls candidats pour résoudre le premier problème variationnel sont des fonctions qui
satisfont (également) le deuxième modèle physique. Notez que de cette manière, au lieu
de restreindre directement l’espace des mappes d’enregistrement, nous pouvons mainte-
nant réduire l’espace des variables physiques inconnues en utilisant le second ensemble
d’EDPs. Il y a deux avantages. Premièrement, la régularisation peut avoir lieu de manière
physiquement pertinente. Deuxièmement, les quantités physiques peuvent être estimées
directement à partir des images. Comme nous le verrons dans la section suivante, il s’agit
du sujet principal de la thèse : les progrès en analyse d’images sont les bienvenus, mais
notre véritable intérêt est de prendre des mesures physiques. Ensuite, nous exploitons
les connexions existantes entre les quatre perspectives du traitement d’image. Pas as-
sez local ? Nous limitons l’espace à travers la perspective variationnelle, par exemple en
considérant uniquement les fonctions physiques à variation bornée. Pas assez global ?
Nous adoptons une approche multi-résolution à la ondelette. Sommes-nous certains de
nos mesures ? Entrez la stochasticité par inférence bayésienne. Nous pouvons interpréter
la régularisation physique comme une information à priori, la fonctionnelle variationnelle
comme une énergie et quantifier les incertitudes de nos mesures à l’aide du théorème de
Bayes.

2 Measures intracellulaires
2.1 Bioflow

Nous commençons par présenter une méthode qui extrait des mesures IC partout dans
des cellules qui se déplacent librement en utilisant imagerie en direct. Ceci est réalisé
en extrayant le mouvement du matériel IC (principalement du cytoplasme) observé en
utilisant de la microscopie à fluorescence, tout en déduisant simultanément les variables
d’une description physique de l’intérieur de la cellule. Plus spécifiquement, nous intégrons
le flux optique, une méthode de traitement d’image qui extrait des informations de
mouvement à partir de séquences d’images, dans un cadre d’assimilation de données.
Tout est formulé selon une approche variationnelle. Notamment, nous minimisons une
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fonction décrivant le mouvement de l’intensité des pixels dans les images contrainte par
un système d’EDPs décrivant la relation entre le mouvement du matériau observé et ses
paramètres d’intérêt. La même idée fonctionne à la fois en 2D et en 3D. Même si nous
avons mis au point la méthode décrite ci-dessus pour mesurer l’IC, son cadre est très
général et s’étend facilement à différents modèles, y compris l’EC.

Dans un premier cas, la description théorique du matériau intracellulaire est choisie
comme un modèle en dynamique des fluides. En particulier, l’intérieur de la cellule est
bien décrit par un régime de Stokes (Re � 1) car l’inertie joue peu de rôle à l’échelle
de la cellule. Dans ce cas, les quantités d’intérêt sont la vitesse IC, la pression IC et
les forces IC (IC-upf) ; tandis que les images de microscopie à fluorescence, qui reflet le
mouvement du matériau IC, constituent les observations du modèle (voir Figures 1 et
2). Du point de vue du contrôle optimal, les contrôles du système sont à la fois la force
et les conditions aux limites de la vitesse ; alors que les variables d’état, c’est-à-dire la
pression et la vitesse, sont entièrement déterminées par les équations de la dynamique
des fluides. A leur tour, les variables d’état apparaissent dans la fonctionnelle de flux
optique (c’est-à-dire avec les images) et, par conséquent, toute dérivée de la fonctionnelle
par rapport aux variables de contrôle doit prendre en compte les variations introduites
par les EDPs du fluide.

(a) (b)

Figure 1 – Logiciel Bioflow et modules d’affichage. a) BioFlow fonctionnant sur le logiciel Icy.
Étapes à suivre pour exécuter le logiciel : 1) ouvrir la séquence vidéo ; 2) dessinez une région d’intérêt
autour de la cellule comme référence pour la segmentation ; 3) ouvrir BioFlow ; 4) exécuter. b) BioFlow
Display est associé au logiciel BioFlow et permet d’afficher des champs vectoriels et scalaires sur la
séquence d’origine. Les résultats sont présentés sous forme de couches de vitesse, de pression et de force
pouvant être activées ou désactivées à volonté.

Le problème d’optimisation est résolu numériquement avec la descente itérative
de Broyden–Fletcher–Goldfarb–Shanno où le gradient est calculé via la méthode ad-
jointe. Contrairement à l’utilisation d’un schéma de différences finies, où la fonctionnelle
contrainte à l’EDP doit être évaluée dans toutes les nombreuses directions possibles des
variables de contrôle (chacune au prix d’une EDP), l’approche adjointe exploite l’espace
dual pour formuler le gradient en tant que solution d’un seul système d’EDPs linéaires
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dit adjointe. À un niveau plus bas, les espaces de fonctions discrètes sont écrits en bases
d’éléments finis afin de faciliter la résolution des EDPs sous leur formulation faible. Afin
de rendre convexe le problème d’optimisation, la fonctionnelle de flux optique est géné-
ralement pré-linéarisé et ne peut donc récupérer que des champs de vitesse faibles. Pour
généraliser la méthode, nous l’intégrons dans un schéma multi-résolution, dans lequel le
problème est progressivement optimisé depuis les mouvements les plus grossiers jusqu’à
l’échelle d’un pixel. En d’autres termes, nous pouvons rendre compte de grandes vitesses
en résolvant non pas un mais plusieurs problèmes qui satisfont l’approximation linéaire.

Afin de définir le problème sur le domaine approprié, nous segmentons la cellule dans
l’image donnée à l’aide d’un modèle de contour actif. Comme avec l’image elle-même,
une pyramide à plusieurs échelles doit être construite à partir du contour segmenté. En
2D, nous pouvons ré-échantillonner le contour polygonal sur le domaine de Fourier. Ce-
pendant, la même stratégie n’est pas satisfaisante lorsqu’elle est appliquée à un maillage
de surface 3D. Au lieu de cela, nous utilisons une méthode d’approximation de forme
variationnelle pour tenter de préserver la forme et les caractéristiques saillantes.

Chaque étape a été automatisée dans un logiciel allant des séquences d’images di-
rectement aux estimations physiques. Le programme est disponible sur la plateforme à
code source ouvert Icy (voir Figure 1).

2.2 Mesures biophysiques à l’intérieur de la cellule amiboïde
Nous illustrons et validons l’efficacité de cette approche dans le contexte de la mi-

gration de cellules amiboïdes. En particulier, nous utilisons notre méthode pour étudier
le stade trophozoïte du parasite unicellulaire Entamoeba histolytica. Ces amibes se ca-
ractérisent par l’émission de bosses (blebs) à la surface cellulaire qui se transforment
en protubérances et se remplissent via un flux cytoplasmique induit par les forces de
contraction de l’acto-myosine. Leur grande motilité et la nature principalement visqueuse
de leur cytoplasme constituent un modèle attrayant du point de vue biophysique. Nous
montrons qu’en utilisant uniquement un marqueur cytoplasmique et de la microscopie
confocale, notre méthode permet d’obtenir des mesures spatiotemporelles IC-upf par-
tout dans des cellules migrant sur un substrat conventionnel in vitro. Ces mesures cor-
roborent et étendent plusieurs études théoriques et expérimentales. Notre contribution
est remarquable sous deux aspects. Premièrement, nous rapportons pour la première
fois une description quantitative complète des phases de mouvement du parasite, confir-
mant plusieurs prédictions telles que le flux cytoplasmique induit par la pression ou la
rétraction de l’arrière de la cellule au moyen de forces moléculaires (voir Figures 2 et 3).
Et deuxièmement, nous dévoilons une dynamique à double périodicité dans Entamoeba
histolytica : 7.9±0.4s entre deux protubérances consécutives, et 4.6±1.1s qui caractérise
le flux cytoplasmique.

2.3 Etude des champs de vecteurs
Les détails dans lesquels le flux cytoplasmique est capturé par notre méthode ont

motivé le développement d’outils de visualisation qui sont proposés en tant qu’add-ons
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Figure 2 – Vitesse, pression et forces intracellulaires lors d’une protubérance cellulaire.
En haut : instantanés d’une séquence de vidéo-microscopie 2D ; En bas (par ordre décroissant) : vitesse
intracellulaire estimée u (µm/s), pression p (Pa) et force f (nN/µm2) avant (t = 7.6s), pendant (t = 9.6s)
et après (t = 11.6s) la protubérance, respectivement.
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au logiciel. Ceux-ci incluent des champs de vecteurs superposés, ainsi que des lignes de
courant et des trajectoires de particules à la fois en 2- et 3-D. En collaboration avec
Mohammad Goudarzi et Erez Raz, nous utilisons ces outils pour visualiser et quantifier
le rôle précis du flux cytoplasmique au cours de la formation de blebs in vivo. Le modèle
accepté est qu’une redistribution du cytoplasme interne ne suffit pas pour gonfler les blebs
et qu’un afflux d’eau de l’extérieur via les protéines dites aquaporines est nécessaire. Au
contraire, en utilisant des cellules germinales primordiales de poisson-zèbre (PGCs) et
de la microscopie à une résolution spatio-temporelle de pointe, nous montrons que : (i)
le knockdown de certaines aquaporines au moyen des morpholinos ne semble pas affecter
la formation des blebs ; (ii) les changements de volume cellulaire ne sont pas liés aux
blebs ; (iii) les blebs sont principalement remplies par une redistribution du cytoplasme
à partir de l’arrière des cellules ; et (iv) les modèles précédents surestimaient l’énergie
élastique requise par le flux cytoplasmique pour étirer la membrane car ils ne tenaient
pas compte des plis et des invaginations de la membrane.

(a) (b)

Figure 3 – Des lignes de courant en 2D and 3D montrent la redistribution du matériel vers
une protubérance cellulaire. a) Des lignes de courant 3D dans E. histolytica. La pression est utilisée
pour colorer le maillage (plus haut en rouge à l’arrière, plus bas en blanc à l’avant). b) Des lignes de
courant 3D dans E. histolytica, le volume solide indique le point temporel initial, tandis que le maillage
blanche indique le point temporel suivant. Les flèches se superposent aux lignes de courant et sont codées
par couleur. Tout est affiché dans le logiciel ParaView.

2.4 Suivi des domaines intracellulaires diffus
Une redistribution contrôlée du matériel dans la cellule est essentielle aux fonctions

biologiques : les molécules doivent être synchronisées dans le temps et bien placées dans
l’espace pour remplir leur rôle dans le contexte de la coordination de la cellule entière.
Cette organisation spatio-temporelle est fait par de multiples processus chimiques et
physiques. La diffusion peut transporter passivement des biomolécules le long de gra-
dients de concentration, mais elle est limitée en vitesse et ne fonctionne que dans un
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seul sens. Par conséquent, d’autres mécanismes complémentaires plus actifs, tels que le
flux cytoplasmique et le transport motorisé, ont dû s’engager aux dépens de l’énergie.
La spécificité et la diversité de ces solutions reflètent l’importance du transport molécu-
laire dans un large éventail de systèmes, par exemple dans la division cellulaire. Malgré
son importance, la redistribution moléculaire reste difficile à étudier quantitativement.
L’approche standard en biologie commence par l’imagerie vidéo de la protéine d’inté-
rêt marquée par fluorescence et se déroule de l’une des deux manières suivantes : soit
par projections d’intensité maximale, où le temps est projeté sur une seule image ; soit
par kymographes d’intensité, qui se concentrent sur l’évolution temporelle d’une seule
dimension spatiale. Des informations de mouvement peuvent être extraites de ces deux
visualisations, mais elles sont intrinsèquement biaisées car elles ignorent une dimension
de manière arbitraire. Les réponses de la communauté d’analystes d’image ont toujours
été les algorithmes de suivi, qu’on appelle de tracking. Cependant, la région d’intérêt des
molécules advectées est souvent trop diffuse pour être segmentée de manière constant
dans la pratique. Dans certains cas, l’utilisation de microscopie speckle peut simplifier le
problème et permettre d’utiliser de tracking multi-particule.

(a) (b)

Figure 4 – Exemples d’une région moléculaire diffuse, de l’advection d’une maille et du
re-maillage. a) Le bord de la protéine qui se déplace en arrière est approximativement délimité par
le rectangle vert à 0s et 8s. Le champ de vitesse à 0s est affiché en magenta. b) Évolution de chaque
partition triangulée (maillage rouge) (couleurs différentes) à mesure que la cellule (contour bleu) se
déplace. Sur l’image la plus à droite, les partitions ont été remodelées car la qualité avait diminué. Les
cellules en (a) et (b) sont différentes.

Nous montrons comment utiliser les champs de vitesse extraits par la méthode pré-
sentée dans la section 2.1 pour construire un schéma de suivi basé sur l’advection qui
est capable de suivre des régions moléculaires diffuses. Ceci est fait en résolvant l’équa-
tion différentielle ordinaire posée par le champ sur une région initialement délimitée,
et en corrigeant les erreurs éventuelles avec l’équation de Laplace. La région advectée
est représentée par une maille qui peut être divisé encore en sous-régions d’intérêt. Des
éléments finis peuvent ensuite être posés sur le maillage et utilisés pour calculer des in-
tégrales de ligne de manière transparente, ce qui permet de définir plusieurs mesures. En
collaboration avec Cecilia Grimaldi et Erez Raz, nous utilisons ce système de suivi pour
étudier le rôle de l’E-cadhérine dans la migration cellulaire in vivo. Cette protéine est
impliquée dans l’adhérence cellule-cellule. L’observation principale est qu’une réduction
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de l’E-cadhérine diminue la persistance (dit aussi "directionnellite") des cellules qui se
déplacent dans un embryon de poisson zèbre, mais ne diminue pas leur vitesse. Il semble
que l’E-cadhérine stabilise les structures riches en actine à l’avant de la cellule (appelées
brosses d’actine) en réduisant le flux «naturel» d’actine vers l’arrière des cellules. En
conséquence, les brosses recrutent plus de myosine, ce qui affaiblit le cortex et favorise
donc la formation de blebs à l’avant de la cellule. Pour tester cette hypothèse, nous
avons voulu quantifier la stabilisation de l’actine sous différents degrés d’expression de
l’E-cadhérine. Notre nouvelle méthode de suivi nous permet non seulement de suivre les
brosses d’actine avec précision même si elles sont très diffuses, mais également de définir
une mesure de quantification appropriée. Dans le cas de ce travail, nous quantifions la
dépolarisation des brosses le long de l’axe avant-arrière de la cellule en présence ou en
absence d’E-cadhérine afin de confirmer notre hypothèse.

2.5 Forces moléculaires dans des systèmes nématiques qui imitent l’in-
térieur de la cellule

En raison de leur nouveauté et de leur nature théorique, les forces estimées par la mé-
thode proposée sont difficiles à valider expérimentalement. En collaboration avec Jérôme
Hardoüin, nous étudions un système nématique ressemblant au cytosquelette composé
d’un mélange de microtubules et de kinésine en suspension à une interface eau-huile. La
nature active des molécules de kinésine (alimentées par l’hydrolisis d’ATP) induit des
forces dans le système qui peuvent être déduites de l’orientation des filaments à travers
les équations de la nématohydrodynamique. Comme ces forces se répercutent à leur tour
sur l’eau sous-jacente, elles peuvent être comparées à celles extraites du cadre présenté
dans la Section 2.1, mais avec des termes de régularisation différents. La comparaison
de la magnitude des forces peut également aider à calibrer la viscosité ou le coefficient
d’activité, ce qui s’est révélé particulièrement difficile à déterminer expérimentalement.
En outre, le calcul de la pression et des contraintes déviatoriques semble prometteur pour
l’étude de la nucléation de défauts de la matière active dits topologiques, et le calcul des
exposants de Lyapunov du champ d’écoulement pourrait aider à analyser les instabilités
du système.

2.6 La viscoélasticité du cytoplasme
Le modèle de Stokes intracellulaire n’est valable qu’à certaines échelles de temps,

qui dépendent du type de cellule et de son mouvement. Pour remplacer le modèle new-
tonien visqueux du cytoplasme par une représentation plus précise, nous tirons parti
de plusieurs expériences rhéologiques rapportées dans la littérature. En particulier, le
cytoplasme des cellules amiboïdes a été décrit à plusieurs reprises comme un fluide vis-
coélastique bien modelé par les équations de Jeffreys. Bien qu’il s’agisse d’un système
mécanique discret composé de ressorts et d’amortisseurs, son extension à la mécanique
des milieux continus est connue sous le nom de modèle Oldroyd B. En déduisant explici-
tement le dernier modèle du premier, nous reproduisons le lien exact entre les constantes
des ressorts et des amortisseurs, décrites dans les articles, et les paramètres viscoélas-
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Figure 5 – Comparaison entre les forces nématiques actives et les forces dans le fluide. Co-
lonne 1) Deux images d’une séquence montrant un mélange de microtubules et de kinésine se déplaçant
spontanément. Colonne 2) Champ directeur extrait des images de la (col. 1) reflétant l’orientation des
filaments. Colonne 3) Force calculée à partir du champ d’orientation présenté dans la (col. 2). Colonne
4). Force dans le fluide extraite de la séquence d’images comme indiqué dans la Section 2.5 ; à comparer
avec (col. 3). Les dernières forces sont représentées par le carré de la magnitude car elles sont beaucoup
plus régulières. Lorsque les forces sont générées plus près du mur, la précision de la reconstruction se
dégrade.

tiques qui régissent le mouvement d’un fluide Oldroyd. Cependant, contrairement aux
autres modèles viscoélastiques, les fluides Oldroyd B souffrent de plusieurs problèmes
de convergence. Pour stabiliser la formulation faible du problème, nous avons recours
à une combinaison de la méthode streamline upwind, qui ajoute un terme diffusif, et
de l’approche discrete elastic viscous split stress. Le pas de temps est alors implémenté
avec un schéma backwards et la non-linéarité du modèle est attaquée avec la méthode de
Newton. Une fois que le problème direct a convergé, nous adaptons la fonctionnelle liée
aux données et les termes de régularisation, tous deux introduits dans la section 2.1, à
ce problème dépendant du temps, notamment en introduisant un terme reflétant le tra-
vail effectué par le système. Bien que l’approche adjointe visant à minimiser le système
résultant soit décrite dans la thèse, nous ne l’avons pas utilisée en raison de l’absence de
données biologiques pertinentes.

3 Measures extracellulaires
3.1 Flux optique adapté

Nous avons également exploré l’extracellulaire. À cette fin, nous avons d’abord ré-
évalué la fonctionnelle standard du flux optique. Le lien entre le mouvement 2D réfléchi
sur l’intensité de l’image et le mouvement 3D original du matériau n’est pas simple.
Pour corriger la divergence, nous avons développé une reformulation du flux optique qui
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clarifie la relation entre le mouvement réel et le mouvement perçu dans le contexte de
l’imagerie confocale. Au lieu d’imposer une conservation stricte de l’intensité, la nouvelle
expression incorpore un terme source qui reflète la divergence du flux (déduite d’un mo-
dèle physique) et qui est proportionnelle à l’intensité elle-même. De cette manière, nous
sommes en mesure de prendre en compte les mouvements hors du plan au premier ordre.

Figure 6 – Schéma de la projection de fluorophores 3D sur une image 2D. La concentration
de fluorophores 3D (représentée par une paire de perles vertes à différents niveaux) dans le matériau
d’origine Ω (tranche de gâteau) émet un rayonnement qui est projeté (ΩΠC) par le laser comme luminance
sur un plan ΩΠ. La configuration optique (lentille noire) le projette ensuite sur le plan de l’image O. Les
flèches indiquent la différence entre le mouvement 3D réel dans Ω (les perles transparentes correspondent
à la position précédente) et le mouvement visible sur l’image O.

3.2 Microscopie à force de traction
Comme cela a été illustré avec les adhérences médiées par E-cadhérine dans la Section

2.4, les forces extracellulaires sont essentielles à de nombreuses fonctions biologiques. La
microscopie à force de traction (TFM) mesure les forces exercées par les cellules sur le
substrat extracellulaire en observant sa déformation, par exemple en suivant le mouve-
ment de marqueurs fluorescents intégrés tels que des billes. Nous reformulons la TFM
dans notre cadre. Dans ce cas, les quantités biophysiques d’intérêt sont le déplacement
EC et les forces de traction EC ; tandis que le mouvement du substrat EC capturé sur
des images de microscopie constitue l’observation du modèle, qui est considéré comme un
continuum linéairement élastique. Cette refonte de la TFM promet plusieurs avantages :
réduction de la sensibilité au bruit, prise en compte du mouvement hors du plan (grâce
au flux optique adapté), extension plus facile à la 3D, flexibilité du modèle élastique et
réduction du besoin des mesures ponctuelles (c.-à-d. les billes fluorescentes dans le sub-
strat), ainsi que la possibilité de prendre en compte des systèmes à force non équilibrée et
des conditions aux limites non nulles. Dans ce contexte, le flux optique modifié est par-
ticulièrement important car les marqueurs fluorescents deviennent nettement plus petits
que la profondeur de champ du microscope confocal typique. De plus, les modèles élas-
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tiques de contrainte plane satisfont l’approximation du premier ordre et les expressions
résultant de notre flux optique adapté sont donc exactes.

3.3 Problème inverse déterministe sous contraintes d’EDPs
Nous avons profité de la reformulation de TFM pour réinventer également le cadre

proposé dans la section 2.1. En particulier, notre méthode originale a quelques problèmes
occasionnels de stabilité et de convergence que nous avons résolus en posant le problème
sur des bases mathématiques plus solides. Dans cette direction, nous étudions l’impor-
tance du hessien pour notre problème inverse et puis introduisons la méthode de Newton.
De plus, nous analysons tous les systèmes linéaires et proposons des préconditionneurs
appropriés afin que le problème ne dépende pas de l’échelle ou de la taille des variables, ce
qui est particulièrement intéressant pour notre approche multi-résolution. Nous trouvons
également que l’optimisation par rapport aux conditions aux limites est mieux abordée
par la méthode dite de Nitsche. Enfin, nous présentons différentes régularisations et leurs
interprétations correspondantes. Dans le cas particulier de la régularisation L2, au lieu
de recourir à des méthodes de descente itérative, nous montrons que l’inversion peut être
résolue directement en s’occupant d’un système couplé d’équations linéaires. Par ailleurs,
la régularisation TV est non linéaire mais permet de mieux préserver les contours.

3.4 Ajoutant de l’incertitude : problème inverse bayésien sous contraintes
d’EDPs

La dernière partie de la thèse étend la méthode dans un cadre bayésien. L’inversion
du problème déterministe sous contrainte d’EDP ne produit qu’une seule estimation des
quantités d’intérêt. Cependant, il est nécessaire d’évaluer la fiabilité des reconstructions
car les images sont bruitées. En effet, l’une des tâches cruciales de la science expérimen-
tale est de signaler les erreurs de mesure. Pourtant, à notre connaissance, aucune méthode
systématique de quantification de l’incertitude n’a été mise au point ni dans PIV ni dans
TFM. Dans le cadre bayésien que nous proposons, l’estimation résultante est une densité
postérieure exprimant la distribution de probabilité de la force de traction exercée par
les cellules sur le substrat lors de l’observation d’une séquence d’images. Pour résoudre
un problème aussi grand, nous nous appuyons sur une approximation laplacienne qui
donne un postérieur gaussien dont la covariance est liée à la hessienne du problème,
que nous abordons ensuite à l’aide d’une approximation matricielle de bas rang. Nous
modélisons également les erreurs expérimentales du module d’élasticité du substrat en
pré-marginalisant la fonctionnelle de flux optique. Enfin, nous proposons d’utiliser les
estimations d’erreur résultantes pour déterminer si les structures apparaissant sur le
champ de force récupéré sont réellement significatives ou s’il s’agit d’artefacts.

4 Conclusion et perspectives
L’objectif principal de ce travail a été de développer une méthodologie qui puisse

aider à l’essor de la mécanobiologie. Comme dans de nombreuses autres disciplines,

12

227



I2I2 I1I1

f ∗ f
∗

10.00

10.00

10.00

10.00

10.00

10.00

10.00

10.00

10.00

10.00

4.20

4.80

5.40

6.00

6.60

7.20

7.80

8.40

9.00

9.60

0.30

0.90

1.50

2.10

2.70

3.30

3.90

4.50

5.10

5.70

Prior variance Correction Posterior variance

Figure 7 – Problème inverse déterministe et bayésien pour la TFM. Rangée du haut) Image
avant (I1) et après (I2) ayant été déformée par une force de traction. Rangée du milieu) La force
simulée f∗ et la force ont récupéré f∗ à un RSB de 27.6 (violet 0 à jaune 5) à une échelle légèrement
supérieure. La solution au problème déterministe f∗ correspond au point maximum a posteriori de la
distribution de probabilité de la f dans le problème bayésien. Rangée du bas) La variance a priori de
la f est corrigé par les données d’image entraînant une variance a posteriori inférieure. Il semble que là
où l’image a plus de texture, la variance diminue davantage ; c’est-à-dire que l’on est plus certain du
résultat.
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l’amélioration de la qualité des mesures biophysiques expérimentales a toujours permis
de se transformer en découvertes biologiques de manière assez efficace. À cet égard,
l’apport central de cette thèse peut s’articuler autour du cadre d’optimisation que nous
avons développé tout au long du manuscrit. Ses trois points les plus pertinents pour
la cause sont : 1) le caractère non invasif des mesures : elles reposent exclusivement
sur la microscopie standard ; 2) la généralité : 2D, 3D, intracellulaire, extracellulaire ...
vraisemblablement tout modèle théorique peut être adapté ; et 3) la quantification de
l’incertitude : bien que d’origine bayésienne, les limites d’erreur sont un bon indicateur
de notre confiance dans les mesures. Comme la biologie est éminemment empirique, il
pourrait être surprenant que nous choisissions d’évoquer le troisième point. Cependant,
l’incertitude est le non-dit évident des problèmes inverses en général et (peut-être en
raison d’une mauvaise communication interdisciplinaire) de leurs applications biologiques
en particulier ; c’est le cas de la microscopie à force de traction (TFM) par exemple. Même
si un effort est présent pour faire la moyenne sur plusieurs reconstructions (ou mesures),
des conclusions sont parfois tirées de champs de force circonstanciels sans se soucier
des éventuels artefacts. En fait, c’est précisément notre analyse plutôt qualitative sur le
mouvement amiboïde qui nous a incités à nous lancer dans l’estimation de l’incertitude.

En fin de compte, les trois points contribuent à la lutte pour une recherche biologi-
quement pertinente. Pour illustrer notre idée, nous avons ouvert deux fronts : le premier
pour introduire une nouvelle façon de regarder la physique intracellulaire, le second pour
reformuler la TFM extracellulaire sur des bases alternatives. Même si la méthodologie
a été considérablement développée dans le contexte de TFM lors de la section 3, elle
est applicable aux deux problèmes. La quantification des forces intracellulaires et des
gradients de pression nous a aidés à confirmer et à compléter de nombreuses hypothèses
concernant la migration des cellules amiboïdes ; tandis que les champs de vitesse calcu-
lés sont suffisamment détaillés pour caractériser la redistribution cytoplasmique lors de
la formation des blebs, et ont aussi motivé un schéma de tracking basé sur l’advection
qui peut suivre les régions moléculaires dynamiques et permet de définir des mesures
intégrales. Toutes ces mesures sont probablement sans précédent, en particulier à cette
résolution et à cette étendue spatio-temporelles (non locales) ; et tout se passe sans en-
dommager la cellule. En revanche, les mesures extracellulaires sont plus standardisées,
mais nous avons pu réduire la sensibilité au bruit et fournir des limites d’erreur à cet
égard. D’autres applications ont été trouvées dans le domaine de la nématique active,
ce qui nous a également permis de tester la pertinence des équations de Stokes pour des
systèmes de type intracellulaire.

Tout au long de cette thèse, nous avons essayé de souligner le contexte biologique de
notre travail. Néanmoins, nous pensons que les aspects mathématiques sont remarquable-
ment intéressants, notamment parce que nous nous appuyons sur plusieurs disciplines
pour créer un cadre allant directement des pixels aux mesures. C’est-à-dire que nous
pouvons tirer profit des erreurs bien contrôlées des images de microscopie pour estimer
l’incertitude de notre reconstruction. Il en résulte un gros problème inverse qui commence
par la formulation d’un modèle aux EDPs de conservation pour l’intensité, puis exige
que le mouvement sous-jacent respecte également un modèle de continuum aussi basé sur
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les EDPs. L’idée peut être formulée comme un problème de contrôle optimal que nous
résolvons à l’aide du calcul variationnel et que nous complétons avec des estimations
bayésiennes.

Pour que les mesures se traduisent en découvertes, elles doivent être reproductibles
et facilement accessibles. Si notre espoir est de remplacer les coûteux équipements de
laboratoire par des algorithmes, il est impératif de fournir un logiciel fonctionnel. Dans
les deux cas, nous avons mis en œuvre notre méthodologie en tant que logiciel open source
sur la plate-forme Icy. Cependant, il reste beaucoup à faire en termes de convivialité,
notamment pour les utilisateurs finaux.

D’un point de vue théorique, l’approche bayésienne doit encore être développée.
Cependant, cela reste un sujet de recherche active dans la littérature mathématique.
Compte tenu de la taille des problèmes traités, l’échantillonnage avec les méthodes de
Monte-Carlo par chaînes de Markov est prohibitif, ce qui exclut la possibilité d’intro-
duire des non-linéarités. Par conséquent, nous avons besoin de méthodes d’échantillon-
nage plus rapides ou de systèmes de régularisation linéaires capables de préserver les
caractéristiques discontinues telles que la TV.

Une application simple qui découle de la combinaison des sections 2 et 3 consiste à
considérer l’image 3D complète d’une cellule naviguant dans l’ECM. Dans ce cas, des
domaines complémentaires peuvent être établis pour l’intérieur et l’extérieur de la cellule
avec des modèles fluides et élastiques respectifs. D’autre part, les modèles doivent être af-
finés pour mieux représenter le comportement des matériaux biologiques. En particulier,
les fluides biologiques sont mieux décrits par des modèles viscoélastiques non newtoniens
et les polymères réticulés tels que le ECM ont également un comportement non linéaire.
La section 2.6 représente un premier pas dans cette direction, mais cet effort nécessite
beaucoup de support expérimental sous forme des sondages rhéologiques et serait donc
mieux réservé à un laboratoire dédié aux sciences biophysiques.
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Sujet : Approches variationnelles en problèmes inverses pour la
caractérisation par imagerie de la dynamique cellulaire

Résumé : Nous proposons une méthode pour calculer des grandeurs physiques telles que les
gradients de pressions ∇p, les forces f et les vitesses u nécessaires à la description des dynamiques
cellulaires interne et externe et pour étudier les mécanismes biologiques qui les gouvernent. Cette
méthode non invasive extrait le mouvement de l’objet biologique d’étude de son observation en
microscopie de fluorescence conventionelle, tout en inférant les variables d’un modèle physique
décrivant son comportement. Cette idée est formuleé comme un problème d’optimisation avec des
dérivées partielles comme contraint. Nous l’abordons par les méthodes adjoint et des éléments
finis puis l’étendons dans un cadre Bayesian pour en quantifier les incertitudes. Nous utilisons la
dynamique des fluides pour décrire l’écoulement cytoplasmique et obtenons des estimations pour
∇p, f,u qui fédèrent et complètent des résultats précédents sur la mécanique de la migration
cellulaire. Les forces sont validées par comparaison avec un système nématique incluant des
moteurs moléculaires. Nous montrons aussi comment la vitesse obtenu peut être utilisé dans un
shéma de tracking fondé sur l’advection, ce qui permet de suivir des regions moléculaires et de
definir mesures globales. Pour compléter l’étude interne avec des mesures extracellulaires, nous
reformulons la microscopie de force de traction dans le cadre de la méthode proposée. Ceci permet
une réduction de la propagation des incertitudes et fournit des barres d’erreur. Les logiciels et
les outils de visualisation sont disponibles dans le programme open-source Icy.

Mots clés : problème inverse, biophysique, imagerie, mechanobiologie, cytoplasme, méthode
adjoint, assimilation variationnelle, flux optique, dynamique fluides, mechanique, incertitude

Subject : Variational approaches in inverse problems for
image-based characterisation of cellular dynamics

Abstract: We propose a computational imaging framework that estimates 2D or 3D biophysical
quantities such as pressure gradients ∇p, forces f and velocity u that are required to characterise
cell dynamics in and outside the cell and to model the biological mechanisms that govern it.
The method works non-invasively by extracting the motion of the biological object of interest
observed using conventional fluorescence microscopy, while simultaneously inferring the variables
of a physical model describing its constitutive behavior. This idea is formulated as a PDE-
constrained optimisation, which we approach with the finite element and adjoint methods, and is
subsequently extended into a Bayesian setting to allow for uncertainty quantification. We use a
fluid dynamics model to describe cytoplasmic streaming in amoeboid cells, obtaining intracellular
estimates of∇p, f,u that reconcile and extend multiple reports on the mechanics of cell migration.
The forces are validated by comparison with an active nematic system that includes molecular
motors. We also show how the computed velocity field can be used in an advection-based tracking
scheme that is able to follow dynamic molecular regions and allows defining integral measures. To
complement the internal insight with extracellular measurements, we reformulate the standard
traction force microscopy within our proposed framework, reducing uncertainty propagation and
providing error bounds. Related software and visualisation tools are available in the open-source
Icy program.

Keywords : inverse problems, biophysics, imaging, mechanobiology, cytoplasm, adjoint method,
variational data assimilation, optical flow, fluid dynamics, continuum mechanics, uncertainty
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