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Abstract

Over the last three decades, seismologists have been successful in probing the Earth’s
internal structure using copious seismic records gathered at its very surface. Widely
known as seismic tomography, one of its central goals is to construct three-dimensional
elastic models of the Earth using various inversion strategies tailored to the type of seis-
mic data used. A remaining challenge however is the interpretation of the inherent het-
erogeneities in its elastic structure in terms of several physical properties (e.g., density,
chemical/mineralogical composition, temperature) and of the ubiquity of large-scale
anisotropy that are crucial to understand plate tectonics and mantle dynamics. For
instance, long-wavelength seismic anisotropy observed in tomographic models have
often thought to have been caused by crystallographic preferred orientation (CPO)
(i.e., the net alignment of intrinsically-anisotropic upper-mantle minerals) due to man-
tle deformation. Seismic tomography thus provides a great deal of information about
the present-day flow in the mantle.

We introduce Geodynamic Tomography, a novel approach to the tomographic prob-
lem that incorporates geodynamical and petrological constraints to reduce the num-
ber of Earth models down to a subset consistent with geodynamic predictions. This
approach encompasses several methodologies: mantle flow modeling, texture evo-
lution modeling, thermodynamic modeling, and seismic data inversion into a single
self-consistent probabilistic inversion procedure. Ultimately, we aim to retrieve the
complete pattern of upper-mantle deformation by inverting seismic data to better un-
derstand mantle dynamics from a seismological point of view.

In this work, we mainly focus on the inversion of local anisotropic surface wave
phase velocity dispersion measurements since they provide unique constraints to the
large-scale anisotropy associated with convective flow in the mantle. Geodynamic to-
mography addresses one of the most pressing issues of conventional anisotropic sur-
face wave tomography, that is, its inability to resolve the 21-component elastic tensor
independently at every location. We formulate the tomographic problem by using geo-
dynamical and petrological constraints to reduce this large number of model param-
eters. In lieu of inverting for seismic velocities, we parameterize our inverse problem
directly in terms of physical quantities governing mantle flow: a temperature field, and
a temperature-dependent viscosity field. The full forward problem proceeds as fol-
lows: (1) calculation of instantaneous mantle flow using the temperature field, and the
viscosity field as inputs, (2) from the flow field and deformation gradient of (1) as in-
puts, calculation of the induced CPO and seismic anisotropy using a micro-mechanical
model for texture evolution, (3) modeling the pressure- and temperature-dependence
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of isotropic properties for a given bulk composition using a thermodynamic model,
(4) construction of the full elastic tensor given (2) and (3), and finally estimation of
azimuthally-varying surface wave dispersion curves.

The non-linearity of the forward problem, the possible existence of trade-offs among
the free parameters, and the non-uniqueness of the solution warrants the need to cast
the inverse problem in a Bayesian probabilistic framework. The formalism is an en-
semble inference approach, where the solution is an ensemble of models representing a
posterior probability distribution, accompanied by the uncertainties in each model pa-
rameter. In fact, any implicitly-computed variable (e.g. deformation and anisotropy)
in the forward problem can be recast in terms of a posterior distribution in their re-
spective model space. We efficiently explore the space of candidate Earth models (e.g.,
temperature field) by employing a Markov chain Monte Carlo (McMC) algorithm.

We demonstrated geodynamic tomography based on two synthetic tests and com-
pared it with an isotropic inversion (i.e., inversion for temperature fields in the absence
of deformation-induced anisotropy). The first tests involves the inversion for temper-
ature fields composed of multiple spherical anomalies. We showed how the incorpo-
ration of geodynamic constraints outperforms isotropic inversion in every aspect and
robustly recovers not only the temperature field but also of the anisotropic structure.

The second test showcases the applicability of the method exhibiting realistic and
hence more complex deformation patterns. As such, we considered 3-D instanta-
neous flows in the upper-mantle induced by subduction. We mimic real, periodically-
correlated data by inverting surface wave dispersion measurements at very low noise
conditions to retrieve five unknown parameters defining the thermal and the rheolog-
ical structures of the subduction zone.

The implementation of the method deemed to be a success as both demonstrations
exemplified the implicit retrieval of the complete patterns of mantle deformation, and
correspondingly, the 21-independent coefficients of the elastic tensor from the inver-
sion of seismic data alone. Geodynamic tomography is therefore a potentially pow-
erful technique to elucidate the structure of the upper mantle, and interpret seismic
observations in terms of mantle deformation patterns.
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Résumé

Au cours des trois dernières décennies, les sismologues ont réussi à sonder la struc-
ture interne de la Terre à l’aide de nombreux enregistrements sismiques recueillis à sa
surface. Largement connue sous le nom de tomographie sismique, l’un de ses princi-
paux objectifs est de construire des modèles élastiques tridimensionnels de la Terre en
utilisant diverses stratégies d’inversion adaptées au type de données sismiques util-
isées. Il reste cependant un défi à relever : l’interprétation des hétérogénéités élastique
en termes de propriétés physiques (e.g., densité, composition chimique/minéralogique,
température) et de l’omniprésence de l’anisotropie à grande échelle qui sont cruciales
pour comprendre la tectonique des plaques et la dynamique du manteau. Par exem-
ple, l’anisotropie sismique à grande longueur d’onde observée dans les modèles to-
mographiques a souvent été attribuée à l’orientation cristallographique préférentielle
(CPO) (i.e., l’alignement net des minéraux intrinsèquement anisotropes du manteau
supérieur) due à la déformation du manteau. La tomographie sismique fournit donc
une grande quantité d’informations sur le flux actuel dans le manteau.

Nous présentons Tomographie Geodynamique, une nouvelle approche du problème
tomographique qui intègre des contraintes géodynamiques et pétrologiques afin de
réduire le nombre de modèles terrestres à un sous-ensemble conforme aux prévisions
géodynamiques. Cette approche englobe plusieurs méthodologies : la modélisation
de l’écoulement du manteau, la modélisation de l’évolution de la texture, la modéli-
sation thermodynamique et l’inversion des données sismiques en une seule procédure
d’inversion probabiliste autoconsistante. En fin de compte, nous visons à retrouver
le schéma complet de la déformation du manteau supérieur en inversant les données
sismiques pour mieux comprendre la dynamique du manteau d’un point de vue sis-
mologique.

Dans ce travail, nous nous concentrons principalement sur l’inversion des mesures
de dispersion de vitesse de phase des ondes de surface, car elles fournissent des con-
traintes uniques à l’anisotropie à grande échelle associée à l’écoulement convectif dans
le manteau. La tomographie géodynamique aborde l’un des problèmes les plus pres-
sants de la tomographie anisotrope classique des ondes de surface, à savoir son in-
capacité à résoudre le tenseur élastique à 21 composantes indépendamment à chaque
endroit. Nous formulons le problème tomographique en utilisant les contraintes géo-
dynamiques et pétrologiques pour réduire ce grand nombre de paramètres du modèle.
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Au lieu d’inverser pour les vitesses sismiques, nous paramétrons notre problème in-
verse directement en termes de quantités physiques régissant l’écoulement du man-
teau : un champ de température, et un champ de viscosité dépendant de la tem-
pérature. Le problème d’inversion se déroule comme suit : (1) calcul de l’écoulement
mantélique instantané en utilisant le champ de température et le champ de viscosité
comme entrées, (2) à partir du champ d’écoulement et du gradient de déformation de
(1) comme entrées, calcul de la CPO induite et de l’anisotropie sismique en utilisant un
modèle micro-mécanique pour l’évolution de la texture, (3) modélisation de la dépen-
dance en pression et en température des propriétés isotropes pour une composition
donnée à l’aide d’un modèle thermodynamique, (4) construction du tenseur élastique
complet, et enfin estimation des courbes de dispersion des ondes de surface variant en
azimut.

La non-linéarité du problème, l’existence possible de ’trade-offs’ entre les paramètres
libres et le caractère non unique de la solution justifient la nécessité de placer le prob-
lème inverse dans un cadre probabiliste bayésien. Le formalisme est une approche, où
la solution est un ensemble de modèles représentant une distribution de probabilité,
accompagnée des incertitudes dans chaque paramètre du modèle. En fait, toute vari-
able calculée implicitement (e.g. déformation et anisotropie) dans le problème peut être
refondue en termes de distribution postérieure. Nous explorons efficacement l’espace
des modèles terrestres candidats (e.g., champ de température) en employant un algo-
rithme de Monte Carlo à chaîne de Markov (McMC).

Nous avons fait la démonstration de la tomographie géodynamique à partir de
deux tests synthétiques et l’avons comparée à une inversion isotrope (i.e., inversion
pour les champs de température en l’absence d’anisotropie induite par la déforma-
tion). Le premier test concerne l’inversion pour les champs de température composés
de multiples anomalies sphériques. Nous avons montré comment l’incorporation de
contraintes géodynamiques surpasse l’inversion isotrope à tous les égards et permet
de récupérer de manière robuste non seulement le champ de température mais aussi
la structure anisotrope.

Le second test montre l’applicabilité de la méthode en présentant des modèles de
déformation réalistes et donc plus complexes. Ainsi, nous avons considéré les flux in-
stantanés en 3D dans le manteau supérieur induits par la subduction. Nous imitons
des données réelles, périodiquement corrélées, en inversant les mesures de disper-
sion des ondes de surface dans des conditions de très faible bruit pour récupérer cinq
paramètres inconnus définissant les structures thermiques et rhéologiques de la zone
de subduction.
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La mise en œuvre de la méthode a été considérée comme un succès car les deux
démonstrations ont permis de récupérer implicitement les schémas complets de dé-
formation du manteau et, par conséquent, les 21 coefficients indépendants du tenseur
élastique à partir de la seule inversion des données sismiques. La tomographie géody-
namique est donc une technique potentiellement puissante pour élucider la structure
du manteau supérieur et interpréter les observations sismiques en termes de modèles
de déformation du manteau.
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Chapter 1

Introduction

Understanding the dynamical evolution of the earth requires one’s knowledge of the
interplay between different geophysical processes. Of course, providing the full pic-
ture may seem far-fetched; with various length and time scales, and wavelengths il-
lustrating different geophysical scenarios, not to mention the coupling of the systems
involved. Such highly complex study produces a web of sub-disciplines that describe
how the earth evolves through time. Much has been done with scientists teaming up to
study different sub-disciplines; with the goal of fitting these puzzle pieces together to
illuminate our preconceived knowledge about the planet. And with the advancement
of high performance computing and data science applications such as to big data, the
dream of reconciling this multidisciplinary study may be within our grasp and already
be a part of our reality. However, this comes with a caveat. The evolutionary trajectory
of the earth with time cannot be traced with pure accuracy. Although present-day dy-
namics can be modeled with computers, tracking the earth history requires field data
such as indirect observations fleshed out by dating exhumed rocks and other similar
geologic methods.

In this work, we will make a joint effort to lay down the foundation of reconciling
what initially seems to be two mutually independent sub-disciplines. Seismology, on
one hand, and mantle geodynamics on the other, we will see how a given set of simple
3D structures of the Earth can be retrieved using first-order observations measured at
the surface.

We show how geodynamic tomography, though being at its infancy, is a potentially
powerful technique to constrain the complete patterns of upper mantle deformation,
and thus elucidate some aspects of its interior structure and dynamics.
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1.1 Dynamics of the Earth’s interior

Before understanding the internal dynamics of the Earth, we first have to define, to
first-order, the composition and the structure of the Earth. In the early 1900’s, there has
been a growing consensus about the inherent heterogeneity of the Earth’s structure.
Until then, it is not new to the general populace that the Earth is comprised of three
major layers with associated compositions and mechanical properties: crust, mantle,
and the core. It was not until the late 80’s when Dziewonski and Anderson (1981)
published a comprehensive list of the Earth’s elastic structure where it served as one
of the foundations that the Earth is indeed composed of several intricate concentric
layers. However, whether these divisions are independent or coupled and to what
scale these occur is still a subject of extensive research.

1.1.1 A heterogeneous Earth

The crust is the Earth’s outermost layer that is exposed to the atmosphere, and where
biological life forms thrive. It is characterised to be cold and brittle as it is comprised
mainly of exhumed rocks that congeals as they make their way towards the surface.
Moreover, the crust is considered to be orders of magnitude thinner relative to the man-
tle and the core. Because of this, the crust only makes up a tiny fraction (about 1 %) of
the Earth’s total mass. This pencil-thin layer of mass is then subdivided into two major
domains characterised based on their geological features and formation mechanisms:
(1) continental crust, which is on average 30 to 50 km thick, and composed mostly of
felsic rocks and (2) oceanic crust, which is on average 5 to 10 km thick, and composed
mostly of mafic rocks (Daly, 1940).

Probing the Earth deeper, we arrive in the mantle. The boundary between these two
layers is known as the "Moho" discontinuity, named after the Croatian seismologist
Andrija Mohorovicic who discovered the discontinuity in 1909 (Mohorovičić, 1909).
Unlike the crust, the dynamics of the mantle depends on the time scales considered.
At relatively short time scale, the upper mantle behaves like a solid as shown by the
transmission of a specific type of seismic wave, known as S-wave or ’shear’ waves.
Unlike compressional waves (also called P− waves), S-waves cannot propagate in low
viscosity liquids. Because of this, the uppermost layer of the mantle, and the crust,
make up the lithosphere which up to a certain extent, can be described as rigid. Typi-
cal thickness of oceanic lithosphere is about ∼ 100 km, whereas continental lithosphere
can go as far as 250 km (Watts and Burov, 2003; Steinberger and Becker, 2018). Apart
from propagation of elastic waves, another compelling evidence about the existence of
this brittle layer is through earthquakes. For this reason, the lithosphere may also be
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called the seismogenic layer, that is, the layer at which earthquakes mostly originate
due to its brittle nature. However, due to the complexity of earthquake mechanisms
and the mechanical properties of the region considered, the length scale of the seis-
mogenic layer may not always be in agreement with that of the lithosphere especially
in cratonic regions (Watts and Burov, 2003). While earthquakes most certainly occur
within the oceanic mantle lithosphere (Wiens and Stein, 1983), the continental man-
tle lithosphere is relatively stable, and hence, earthquakes rarely occur in this region.
Maggi et al. (2000) argued that such observations are attributed to its thermal structure
and the presence of water.

The lithosphere is not a homogeneous shell, rather, they are composed of frag-
mented pieces, known as plates, resulting from unprecedented tectonic activities that
took place over millions of years. Coined as plate tectonics, this theory subsumes the
continental drift theory proposed by Alfred Wegener in the early 1900’s. In the present,
the continental plates move past each other at a constant rate of about few millimeters
per year as they glide over the mantle. Such motions are sustained by the convect-
ing mantle underneath as first confirmed by Harry Hess in the late 50’s (Hess, 1962).
However, surface reconstruction experiments also deduced that plate motion acts as
one of the driving forces of upper mantle flow (e.g. Tovish, Schubert, and Luyendyk,
1978). This mutual interaction gave birth to a class of geodynamic flow models called
’passive’ mantle flow models. It was not until the late 60’s when Morgan (1968) laid
the groundwork on the basic hypothesis underlying plate tectonics. This was then
followed by a group of geophysicists who independently formulated the kinematics
of rigid plate motions (McKenzie and Parker, 1967; McKenzie and Morgan, 1969; Le
Pichon, 1968). At this point, plate tectonics was then able to explain the apparent clus-
tering of earthquakes along plate boundaries where surface deformation appears to be
the largest (Isacks, Oliver, and Sykes, 1968).

The Earth consists of 9 major plates that are separated by distinctive margins known
as plate boundaries. Subduction zones are convergent plate margins that result from
the density contrast between the oceanic lithosphere and the surrounding upper man-
tle causing the former to descend due to negative buoyancy. An exquisite example
of passive flow is then the constant injection of oceanic lithosphere into the mantle
causing large-scale thermal convection (Coltice and Ricard, 1999). On the other end,
divergent margins refer to two plates spreading apart such as mid-ocean ridges and
continent rift zones. Spreading margins act as conveyors systems as hot mantle mate-
rials upwell due to positive buoyancy. Since the rigid plates are locked for extended
periods of time, the boundaries accumulate and relieve most of the stresses due to tec-
tonic activity, thus making it a hotbed of earthquake activity. The accumulation phase
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FIGURE 1.1: Global seismicity map as of 9 April 2020. The data are re-
trieved from the ISC-GEM Catalogue (Storchak et al., 2013; Storchak et al.,

2015; Di Giacomo, Engdahl, and Storchak, 2018).

is called interseismic loading. In this period, the stresses stockpile for extended peri-
ods of time due to frictional loading between plates as they struggle to move past each
other. The locked interfaces will then be ripe for rupture and slip past one another
once a critical stress level is attained, hence an earthquake (also called co-seismic slip
in the earthquake cycle). This is followed by a transient period, known as post-seismic
deformation. In this phase, the fracture heals from the seismic event and most of the
delayed deformation caused by stress relaxation will be accounted for in this phase.
Fig. 1.1 shows the global distribution of earthquake hypocenters (Storchak et al., 2013;
Storchak et al., 2015; Di Giacomo, Engdahl, and Storchak, 2018). As expected, most of
the events occur along plate boundaries where deformation is primarily concentrated.
The sporadic nature of some of the events highlight the existence of intraplate earth-
quakes resulting from faulting mechanisms.

Over geologic time scales however, the upper mantle behaves like a liquid. In this
state, the mantle is characterised as a highly-viscous material that undergoes deforma-
tion creep. Since the temperature difference between the crust and the core is immense,
the zone of influence of this temperature difference reaches to the upper mantle; thus
undergoing convection over geologic time scales, similar to how warm water rises
from the bottom of the pot due to the heating of its base. Seismological studies have
then shown the existence of discontinuities between 410 km and 670 km (Anderson,
1967). The presence of the transition zone may seem to be an elegant way to subdivide
the mantle into two separate regions comprised of an upper mantle and a lower man-
tle. To now, solid earth geophysicists debate whether the mantle acts as a single unit or
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two separate entities. However, we can safely assume that the mantle is a dynamical
unit, with the transition zone being a product of small-scale processes such as ther-
mochemical phase transitions. Just below the lower mantle, there exists a layer that
outstretches down to 200 km before the CMB. This is known as the D” (pronounced as
d double prime) layer. The D” layer is characterised as a smooth undulated layer and
contains heterogeneities whose structures show uncanny resemblance to continental
formation (Czechowski, 1993). Although its mechanism is not yet well-understood, its
existence provides plausible implications on mantle convection.

Finally, at the center of the Earth lies the core, an extremely hot and dense material
composed mostly of iron-nickel alloy. The transition between the lowermost mantle
and the core is called the core-mantle boundary (CMB) located at approximately 2900
km below the Earth’s surface, which was discovered by Beno Gutenberg in 1912 (re-
fer to Brush (1980) for a review). Tomographic studies of the deep Earth suggest the
existence of a liquid outer core and a solid inner core partitioned by the inner core
boundary (ICB), also called the Lehmann discontinuity, named after the Danish seis-
mologist, Inge Lehmann who discovered its existence back in 1936 (Lehmann, 1936).
The ICB is located at a depth of approximately 5200 km relative to the Earth’s surface,
whereas the inner core extends all the way towards the Earth’s center at 6370 km. As
its names suggests, the outer core behaves in a fluid-like fashion due to the absence of
S− wave propagation. This observation, accompanied by the refraction of P− waves
by the outer core produces an area of the Earth known as the ’shadow zone’ where no
elastic body waves are recorded at the surface. The Earth’s magnetic field is thought to
have been generated by internal convection of magnetic fluids within the outer core,
known as the dynamo theory (e.g. Buffett, 2000). Self-consistent theories related to the
geodynamo problem is still a hot topic of debate and remain an open problem in the
field of geomagnetism.

1.1.2 Convection in the Mantle

In this chapter, we will focus on describing the structure and the dynamics of the man-
tle. In this way, we can slowly build the foundation towards geodynamic tomography.

The advent of plate tectonic theory expedited the notion of convection in the man-
tle. However, it was as early as the middle 1800’s when Kelvin published his cal-
culation about the age of the Earth when the mantle behaves like a fluid is theo-
rised (Kelvin, 1963). Here, Kelvin argued that the Earth is 100 My which initially
sparked controversy among creationists during the Victorian era. In 1895, John Perry
subsequently refuted Kelvin’s estimate, and argued that heat transfer by convection
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could have reconciled the physical and the geological assertions (Perry, 1895). Years
later, Holmes (1931) argued that plate tectonics is driven by subsolidus convection
that resulted from the generation of heat by radioactivity. Not long after, Hess (1962)
confirmed that plate tectonics is indeed driven by mantle convection. Based on his
work on the Great Global Rift system, he postulated that the ridge acts as a conveyor
that pushes the plates away as the upwelled molten magma oozes out the conduit.
The molten magma then congeals, forming a new oceanic crust that branches off the
spreading center, a phenomenon known as seafloor spreading. Since then, plate tec-
tonics has been a widely accepted theory and accelerated the advancement of mantle
dynamics.

In physics, natural convection is a process at which heat is transferred through
the movement of fluid parcels due to density variations. The density structure of the
Earth’s mantle is heterogeneous and hence, drives thermal convection due to these
buoyancy anomalies. To first order, the Earth’s temperature decreases with depth
which then defines its geotherm (i.e., lines of equal temperature). The geotherm, how-
ever, is not consistent radially but is undulated due to several major factors such as the
(1) liberation of thermal energy due to exothermic reactions powered by radioactive
decay of radiogenic elements, (2) the temperature difference between the superficial
layer and the deep lower mantle brought about by the heat transfer from the CMB,
and (3) finally, secular cooling of the Earth after its accretion (Schubert, Turcotte, and
Olson, 2001). Upon heating, the rocks undergo expansion thus decreasing their den-
sity with depth. Since the tendency of this thermodynamic system is to minimise the
free energy, the heterogeneous mantle is gravitationally unstable. To achieve stability,
the mantle has to upwell deep low density material followed by the downwelling of
an equivalent volume of cold high density material. However, as the heavier material
flushes to the bottom, its temperature increases. The same can be said for the positively
buoyant mantle materials. The result is then a self-sustained convection, a process that
occurs over geological time scales (Schubert, Turcotte, and Olson, 2001) (See Fig. 1.2).

Physically speaking, the subsolidus mantle can be sufficiently described in terms
of the motion of a highly viscous fluid subjected to a large temperature gradient. In
such cases, the fluid parcels undergo convection, however in a creeping fashion due to
the negligibility of the advective forces with respect to the viscous forces. For mantle
convection to occur, three main conditions have to be fulfilled. The first one involves
a a highly viscous fluid bounded by a large temperature difference between the top
and the bottom, while subjected to its own gravity. The second is a positive thermal
expansivity. In this way, mantle materials tend to increase their volume as soon as they
heat up. And finally, thermal conductivity should be relatively low, allowing for heat
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FIGURE 1.2: A cartoon depiction of mantle convection retrieved from the
U.S Geological Survey online repository (USGS, 2020).

to be transferred solely by thermal convection. In the mantle, the temperature drop
is sustained by the heat transfer at the CMB and the influence of the cold surface that
is subjected to atmospheric temperature and pressure. Even though the temperature
drop causes the volumetric expansion of the materials and gravitational instability,
thermal convection in the mantle is hindered by viscous dissipation and thermal dif-
fusion. To allow for natural convection, the time scale for heat transfer by convection
should be much lower than the time scale for heat diffusion. Formally, this is defined
by the dimensionless Rayleigh number Ra, named after Lord Rayleigh. Natural con-
vection occurs when Ra exceeds a critical value. Thus, any value below it does not
allow for free convection; instead, heat transfers purely by conduction. The character-
istic Rayleigh number in the mantle depends on a variety of parameters such as the
length scale and the temperature drop across the whole domain. Further details will
be elaborated in the succeeding chapter.

It is now clear that several factors come into play that drive convection in the man-
tle. Of course, it is impossible to dig a hole in the Earth to observe first-hand such
processes, not to mention how it is absurd given the time scales of mantle convection.
To understand such processes, we have to rely on experiments scaled-down to the size
of a laboratory. However, doing such proves to be laborious due to uncontrollable
problems associated with the correct scaling relations and given the limited resources
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appropriate for these experiments. This calls for the need to use computers to math-
ematically model mantle convection. Although the physics of convection is already
laid upon, it will still be difficult to perform such computations without fine-tuning
some input parameters that rely on direct observations. The need for geological data
is thus indispensable . Geological constraints such as the mechanical properties of ex-
humed mantle minerals serve as A priori information needed for successfully modeling
convection that is representative of the Earth’s mantle.

1.1.3 Models of mantle convection

Experimental models of convection

According to George Box (1987), all models are wrong, however, some are useful. Ex-
perimental models of mantle convection, although they only constitute some charac-
teristics of the mantle, still reveal key insights about the processes that govern it, and
possibly its origin. Laboratory experiments of mantle convection can be categorised in
two sections. The first is the replication of the Rayleigh-Benard convection, where a
viscous fluid inside a tank forms upwellings and downwellings generated by a large
temperature gradient powered by a constant heat source from below and an isother-
mal bath that cools the fluid from above. Early accounts of such experiments only
reach Ra values of about 105 (Whitehead Jr and Luther, 1975; White, 1988), which is
not well-suited to that of the mantle 107 − 108. With the same arrangement, Davaille
and Jaupart (1993) result of Ra 106 − 108 seem to be more well-grounded as they ac-
counted for large viscosity contrasts using corn syrup. The second class of laboratory
setups involve the artificial creation of plumes by injecting a positively buoyant parcel
to the surrounding denser fluid, followed by analysing changes in its properties along
its trajectory (e.g. Olson and Singer, 1985).

These experiments, however, are unable to address several issues (Lithgow-Bertelloni
et al., 2001). The first of which is the inability to account for instabilities along the
boundary which supposedly generates plumes. Although this is remedied with the
use of the more classical Rayleigh-Benard scheme, these setups are unable to recre-
ate flows associated with plate motions. Moreover, these studies exhibit strong top
and bottom boundary layer interactions. As such, the heat transfer through the upper
boundary layer strongly affects the kinematics of the upwellings.

Numerical models of convection

At geologic timescales, the mantle behaves like a fluid where rocks creep in a laminar
fashion. Such flow is characterised by a very low Reynolds number where advective
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inertial forces are negligible compared to viscous forces, also known as Stoke’s flow,
a very high Rayleigh number where convection is buoyancy-driven, and an infinite
Prandtl number where thermal diffusivity is negligible compared to momentum dif-
fusivity. To represent some aspects of mantle dynamics, we then need a model for
the physics of convection. These models are formulated in terms of coupled differ-
ential equations whose solutions are vector fields that represent flow in the mantle.
These equations then need to be set up in such a way that they can be solved numer-
ically. Since numerical models are never perfect, they should converge towards an
approximate solution constrained by a tolerance value. The complexity of these equa-
tions requires one to make some major assumptions in order to simplify the problem.
These may include initial and boundary conditions, and simplified parameterisation
schemes when some parameters are poorly known at depth. As an example, man-
tle flow, to first-order, can be formulated using Stoke’s equations. In these equations,
one is required to simultaneously solve the conservation of mass, momentum, and en-
ergy equations to obtain the velocity that represents the motion of a convecting viscous
fluid. Assuming that the mantle is an incompressible fluid, the conservation of mass
writes:

∇ · u = 0 (1.1)

In the mantle, the inertial forces are negligible, the conservation of momentum is given
by:

−∇P +∇ · τ + f = 0 (1.2)

Assuming no radiogenic heat is transferred, the conservation of energy is:

DT
Dt

= κ∇2T (1.3)

where u is velocity, P is pressure that accounts for the dynamic and the hydrostatic
component, η is kinematic viscosity, f is the body force term (gravitational force acting
on the density), T is temperature, and κ is thermal diffusivity. This system of differ-
ential equations then describes time-dependent flows of a highly viscous and incom-
pressible fluid.

Theory-based mantle convection models have been pioneered in the late 60’s with
simple assumptions such as uniform material properties, a 2D Cartesian coordinate
system implemented, and time-independent flows (e.g. Turcotte and Oxburgh, 1967).
Although the models lack complexity and only represent some aspects of mantle flow,
it still paved the way to put forward additional insights regarding mantle dynamics
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such as the ability of mantle convection to sufficiently provide energy to drive plate
motions (e.g. Turcotte and Oxburgh, 1967).

Current developments in the numerical modeling of convective flow have addressed
the shortcomings brought initially by classical methods. These include the implemen-
tation of (1) lateral viscosity variations based on a temperature-dependent exponential
law (e.g. Torrance and Turcotte, 1971; Albers, 2000), (2) self-consistent equations of
state (e.g. Ita and King, 1994; Ita and King, 1998), 3D geometry (e.g. Gable, O’connell,
and Travis, 1991; Tackley, 1993; Zhong et al., 2000; Zhong et al., 2008), (3) spheri-
cal geometry, which permits the extension to global convective flow (e.g. Hager and
O’Connell, 1981; Bercovici, Schubert, and Glatzmaier, 1989; Tackley, 1993; Zhong et al.,
2000; Zhong et al., 2008), and (4) rigid plate motion, which then induces shear flow un-
related to buoyancy anomalies (also known as toroidal flow) (e.g. Gurnis and Hager,
1988; Gable, O’connell, and Travis, 1991; Tackley, 2008; Piromallo et al., 2006). Modern
advancements in this field, as well as the emergence of multi-core architectures, have
also included techniques that tremendously increase the computational efficiency of
solving the Navier-Stokes problem. One of which is the widely used spatial decompo-
sition method, where the physical modeling domain is subdivided into smaller spatial
domains allocated evenly to a set of processors (e.g. Bunge and Baumgardner, 1995;
Zhong et al., 2000; Kageyama and Sato, 2004; Aleksandrov and Samuel, 2010).

Following the pioneering work of Turcotte and Oxburgh (1967), one may solve an-
alytically Stoke’s equations by imposing plate velocities and a constitutive law that
accounts for non-Newtonian flows (e.g. Tovish, Schubert, and Luyendyk, 1978). This
family of analytical solutions are called corner flows, and this class of modeling scheme
is called passive mantle models. In the latter, mantle flow is assumed to be plate-
driven. To the first order, these can be applied in the upper mantle with or without
lithospheric coupling. Another class of models are active mantle flow models, where
the flow is buoyancy-driven instead of prescribed plate velocities. One of the earliest
attempts to produce global mantle flow models based on theory and observation that
proved to be a success was the work of Hager and O’Connell (1981). In their work,
semi-analytical mantle flow models can be mapped out globally supposing no lateral
variations in mantle viscosity. This is carried out by imposing plate velocities as sur-
face boundary conditions, computing crude density anomalies inferred directly from
early seismic tomography studies, and evaluating 1D radial viscosity profiles from
postglacial rebound, geoid anomalies, and/or dynamic topography (e.g. Hager and
O’Connell, 1981; Hager, 1984; Hager and Clayton, 1989; Mitrovica and Forte, 1997;
Panasyuk and Hager, 2000, hey). To account for lateral variations in viscosity, the
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Stoke’s equations should be approached fully numerically, with some even account-
ing for sharp viscosity contrasts (Christensen and Harder, 1991; Albers, 2000; Tackley,
2008; Ghosh, Becker, and Zhong, 2010; Kronbichler, Heister, and Bangerth, 2012, to
name a few).

In our work, we will limit ourselves to instantaneous flow solutions, a subset of
active mantle flow models subjected to the steady-state assumption. Here, instanta-
neous flow solutions are obtained numerically with the following as inputs: 3D density
anomalies that depend on temperature using a linear equation of state, 3D viscosity
profiles that depend on temperature resembling Arrhenius law for viscous fluids, and
a dimensionless Rayleigh number.

1.1.4 Validity of numerical mantle convection models

At this point, we have made our case that mantle geodynamics plays a pivotal role
in driving plate tectonics. Numerical models of mantle convection as previously dis-
cussed should be testable in order to serve its purpose, that is, to understand mantle
dynamics. The key lies on its deformation history which is a permanent signature that
something has moved in the geological past. Permanent deformation in the mantle
derives from the changes in the volume of a rock as it gets advected along its flow
trajectory. Observations of present-day mantle deformation rely on indirect measure-
ments inferred from, but not limited to dynamic topography, plate motions, tectonic
stresses, geoid anomalies, and seismic data.

In our work, we will restrict ourselves to seismic data, that is, the observable that
maps the elastic response of the medium (i.e., the Earth) due to a disturbance (e.g.
passive sources such as earthquakes, or anthropogenic sources such as dynamite ex-
plosions). The link between mantle deformation and seismic wave propagation lies
within a property known as seismic anisotropy. In the upper mantle, the propagation
of seismic waves appears to be anisotropic. Thus, seismic anisotropy reveals key in-
sights, not only into the Earth’s elastic structure, but also into its present-day dynamics.
From this point forward, we will relate this so-called intrinsic anisotropy to the defor-
mation history associated with convection through a specific type of indirect seismic
observation - surface waves.
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1.2 Probing the deep Earth with long period seismic waves

Over the last decade, the Earth’s interior has been successfully imaged thanks to the
joint efforts made by seismologists through the use of different state-of-the-art tech-
niques and computational strategies coupled with the advancement of high-performance
computing. The idea is to probe the Earth using seismic waves generated by active
sources such as man-made explosions and/or passive sources specifically earthquakes.
As seismic waves travel within the Earth, its path is strongly affected by the Earth’s
structure. Knowing the location of the source, the seismic waves recorded at the sur-
face through seismograms thus contain relevant information about a portion of the
Earth’s structure covered by its path. However, much work remains to be done to in-
terpret these resulting images in terms of various physical properties that govern the
dynamics of the mantle. In this section, we will provide an overview of seismic to-
mography, and then start laying the groundwork for surface wave tomography - an
imaging technique which will be of utmost relevance throughout our whole work.

1.2.1 An overview on various available seismic observables

The energy associated with an earthquake travels radially starting at the source with a
given speed, and then inevitably arrives at the surface of the Earth where the energy
is completely reflected. When recorded at the surface, the ground motion attributed
to its propagation is graphically represented as a complex waveform (i.e., a seismo-
gram). The heterogeneity of the Earth’s interior structure allows us to decompose this
waveform into different components at a given range of frequencies. Since some of
the information about the Earth’s structure is embedded in the complete waveform,
each decomposed signal such as direct, converted, and reflected body waves, surface
waves, and ambient noise can be used to extract meaningful information related to
different structures, be it that of small-scales of about 1-10 km or large-scale structures
of about 102 km.

Since each observable exists at specific frequency bands, each of them have differ-
ent resolving power. Simply put, different data-types sample different length scales.
To cite an example, scattering studies use high frequency converted body waves to
map seismic discontinuities and small-scale heterogeneities, but fail to sample deep
and large scale structures. On the other hand, surface waves are long period observ-
ables. As a result, they only recover smooth large scale structures of the mantle, and
lack the capability to capture sharp discontinuities and are poor in locating cavities.
Another emerging technique is ambient noise tomography (ANT) which is practically
useful to image the Earth’s superficial layer. As an auxiliary method of surface wave
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tomography, current advancements in ANT proved it to be efficient in imaging sharp
discontinuities, as well as the Moho, from reconstructed surface waves (e.g. Macquet
et al., 2014; Lu et al., 2018).

1.2.2 Seismic tomography

One of the major applications of seismology is the inference of the spatial distribu-
tion of seismic velocities, and in fine the elastic structure of the Earth from seismic
observations measured at the surface, a technique known as seismic tomography. Seis-
mic velocities are bulk properties, and hence are derived from the mineralogy and the
thermochemical state of the Earth’s interior. They thus provide basic constraints on
chemical composition, petrology, and temperature of the mantle. Seismic tomography
is an imaging technique that is loosely based on the concept of an inverse problem. In
the context of geophysical studies, the main goal of an inverse problem is to retrieve
model parameters that represent a subset of the Earth’s physical properties given some
data measured at the surface. Mathematically, this translates to:

d = g(m) (1.4)

where d is the data vector, m is also a vector containing the Earth model, and g is a
function related to the physics of the problem.

In seismic tomography, d is the seismic observable measured at the surface, m is
our Earth model, and g is a nonlinear mapping related to the path traversed by the
propagating wave. For reasons of computational tractability, the fundamental data
inverted in tomography is the travel time of seismic waves. Seismograms however,
only record the arrival time of these waves. This requires the determination of the ori-
gin time and the location of the source if one wants to convert these into travel times.
For non-anthropogenic sources such as earthquakes in particular, these should be es-
timated using other methods, however, this would then introduce uncertainties that
will potentially affect the quality of the inverted structure. Knowing the travel times
between the source and the receiver, we can simply formulate the forward problem
corresponding to that pair as:

T(S, R) =
ˆ R

S

1
V(r)

dr (1.5)

where the reciprocal of the velocity V, also called the slowness, is integrated along the
ray path from the source S to the receiver R. As a simple exercise, let us suppose that
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the velocity is constant. In this case, the total travel time is just the sum of the indi-
vidual times in each segment dr, hence providing an integral constraint onto the ve-
locity structure traversed by the rays. This however, introduces non-uniqueness to the
problem since other ray paths may share this same characteristic. A single travel time
record is therefore insufficient to map the distribution of seismic velocities. This urges
the addition of more travel time data to tightly constrain the velocity structure. Ideally,
a homogeneous ray path coverage solves the problem, but this is close to impossi-
ble given the unresolved problems associated with the distribution of source-receiver
pairs.

In the most simple cases, the example above illustrates that if the seismic veloci-
tity structure is known, then the travel times can be computed straightforward in a
complete forward modeling approach. The inverse problem is much more difficult
however, that is, the retrieval of the velocity structure from a set of travel time mea-
surements at the surface. As such, various methods have been developed to tackle the
tomographic problem such as the inclusion of other data-types (e.g., surface waves,
converted phases, and/or eigenfrequencies of normal modes) in order to better con-
strain the velocity structure. Still, just like most geophysical inverse problems, seismic
tomography is ill-posed (i.e., existence of non-unique solutions) and ill-conditioned
(i.e., small changes in the inputs greatly influence the outputs). This arises due to the
uneven distribution of sources and receivers in a given area of study causing inade-
quate ray coverage. Apart from the inhomogeneous sampling, another recurring com-
plication is due to errors in the observed data (i.e. instruments are never perfect but
are precise to some degree, and that measurements are degraded due to noise).

Formulating the tomographic problem then requires one to choose an appropriate
parameterisation scheme. One of the most common practices is to apply regular spatial
parameterisations, such as an evenly-spaced grid cells in 2D or blocks in 3D. The stan-
dard approach is then to set in advance the velocity structure as basis functions such as
splines or spherical harmonics (in the global case). However, this introduces a trade-
off between model uncertainty and model resolution. Suppose that one chooses a fine
grid. Intuitively speaking, this would tremendously increases model resolution. How-
ever, doing so deteriorates the recovered model due to the mapping of the data noise
onto the model parameters, thus having poor constraints on the velocity structure.
Moreover, without sufficient ray coverage, poorly sampled regions produces small-
scale artifacts unrelated to the true velocity structure. On the other hand, coarsening
the grid may indeed better constrain the structure, but at the cost of its resolution.

Seismic tomography is indeed a powerful tool; however, it is restricted by the prob-
lems associated with inhomogeneous sampling and choice of parameterisation. To
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combat this ill-constrained problem, one would then favor a stable and unique solution
through regularisation. Various regularisation techniques are available (e.g. Zhdanov,
2002). In the context of tomography, perhaps the two most common techniques are
norm damping and smoothing (e.g. Charlety et al., 2013). Damping refers to the coer-
cion of a solution to stay as close as possible to the pre-established model while still
being able to explain the data. This pre-established model depends on a priori knowl-
edge. As an example, if a velocity structure is already known based from previous
studies, this may serve as a reference Earth model where the favored solution depends
on a perturbation around it. The second type of regularisation is known as smooth-
ing. Smoothing techniques make use of approximate functions that modify the values
of neighboring poorly constrained cells from a given well-constrained cell. The out-
put is therefore a smooth velocity structure that to some extent, eliminates unwanted
small-scale artifacts. It is important to note however that regularisation is a user’s pre-
rogative, and that such subjective choices are not driven by the data nor the physics of
the problem at hand.

At this point, we have talked about the basics of the tomographic problem as well
as some conventional techniques used to handle some complications involved in the
method. The following sections below briefly discuss two kinds of tomographic strate-
gies: isotropic tomography and anisotropic tomography, and some of the main features
observed inside the Earth obtained from them. These two inversion schemes will then
be the basis of geodynamic tomography.

1.2.3 Isotropic tomography

Isotropic tomography refers to the inversions for the isotropic shear and compressional
wave velocities, Vs and Vp. As the complete elastic structure of the Earth depends on
21-independent coefficients, its isotropic structure only depends on two parameters.
In terms of the isotropic velocities, the isotropic Earth can be written in terms of a
Voigt-averaged 6 × 6 stiffness matrix S0ij as:

S0ij =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρV2
p ρ(V2

p − 2V2
s ) ρ(V2

p − 2V2
s ) 0 0 0

ρ(V2
p − 2V2

s ) ρV2
p ρ(V2

p − 2V2
s ) 0 0 0

ρ(V2
p − 2V2

s ) ρ(V2
p − 2V2

s ) ρV2
p 0 0 0

0 0 0 2ρV2
s 0 0

0 0 0 0 2ρV2
s 0

0 0 0 0 0 2ρV2
s

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1.6)
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FIGURE 1.3: Preliminary reference Earth model (PREM) (Dziewonski and
Anderson, 1981). Image retrieved courtesy of Ada Palmer.

where ρ is the density. In the mid to late 80’s, seismologists were able to exploit the
growing amount of seismic records, and build 1D reference Earth models reconstructed
from direct P− and S− wave travel time residuals and the eigenfrequencies of the
normal mode vibrations of the Earth (Dziewonski and Anderson, 1981) (See Fig. 1.3).
Other 1D reference models have then been produced such as the IASP91 (Kennett and
Engdahl, 1991) and the AK135 (Kennett and Engdahl, 1991). All of these models rep-
resent the radial average of the Earth and hence, various physical parameters may be
obtained with depth such as attenuation and anisotropy (more on this later on). As
such, they served as reference models for 2D and 3D image reconstruction techniques.

Over the last 40 years, isotropic tomography still considers to be an active domain
of research in the field of seismology. It has produced countless robust Earth models
with a considerable degree of overlap (e.g. See Woodhouse and Dziewonski, 1989; Ro-
manowicz, 2003; Trampert and Fichtner, 2013, for a comprehensive review). To cite
some examples, Vp velocity models inferred from the inversion of P− and S−wave
travel time residuals have successfully captured important features from tectonically
active settings such as descending lithospheric slabs (e.g. Hilst, Widiyantoro, and En-
gdahl, 1997; Romanowicz, 2003). The geometry of the recovered slabs vary with some
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FIGURE 1.4: P−wave tomography of stagnant slabs across the transition
zone (Gorbatov et al., 2000; Obayashi et al., 2006).

even extending down to the depths of the lower mantle. One of the most notable ob-
servations is the stagnation of old subducting slabs at the 660 km discontinuity such
as those observed beneath the circum Pacific and the Mediterranean (see Fukao et al.,
2009, for a review). Fig. 1.4 shows Vp models of stagnant slabs across the transition
zone beneath the North Pacific (Gorbatov et al., 2000) and Peru (Obayashi et al., 2006).

On the other hand, Vs models are inferred using a combination of low frequency
travel time residuals, surface wave data, and/or normal-mode splitting functions(e.g.
Mégnin and Romanowicz, 2000; Kustowski, Ekström, and Dziewoński, 2008; Ritsema
et al., 2011). Low-velocity mid ocean ridges appear to be well-resolved up to a depth
of 100-150 km by isotropic inversions for S−wave models. Across the oceanic up-
per mantle, observations from isotropic tomography suggest the existence of radially
symmetric seismic velocity gradients which have been attributed to a low velocity
zone (LVZ) beneath a high velocity layer (e.g. Zhao, Hasegawa, and Horiuchi, 1992;
Matsubara et al., 2005). This high velocity layer coincides with the seismogenic litho-
sphere. Contrastingly, the LVZ in most parts of the Earth somehow matches with the
mechanically weak layer of the upper mantle (i.e., asthenosphere). As mentioned ear-
lier, the mechanical properties of each layer are distinguished based from the fact that
the lithosphere skids over the weak upper mantle. Thus, we may in fact deduce that the
rough correspondence between the elastic and the mechanical properties of each layer
means that seismic observations are indeed sensitive to the mechanical structure of the
Earth. Down to the depths of the lowermost mantle, one of the most striking features
constrained by Vs models are the existence of the large low-shear-velocity provinces
(LLSVPs) in the lowermost mantle beneath Africa and the Pacific as initially docu-
mented by Masters et al. (1982), Woodhouse and Dziewonski (1984), and Dziewonski
(1984).
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In essence, models inferred from travel time tomography are often designated as
high resolution models although some have argued that such statements are mislead-
ing due to the limitations of a gridded parameterisation (Trampert and Fichtner, 2013).
Consequently, Vs models reconstructed from low frequency observations exhibit smooth
long-wavelength structures, also partly due to the implementation of lower-order spher-
ical harmonic basis functions. As such, they sample the Earth deeper compared to
high-frequency direct P− waves, thus providing good vertical resolution but poor lat-
eral resolution.

1.2.4 Anisotropic tomography

All of the results mentioned above assumes that the elastic properties of the Earth
do not vary with the direction of propagation and/or the orientation of the polarised
waves. Such assumptions would fail to explain anomalous seismic signatures mea-
sured at the surface such as the delay time in core-refracted phases (also known as SKS
and SKKS), the azimuthal variations of surface wave phase velocities, and the discrep-
ancies between the phase velocities of Love waves and Rayleigh waves (also known
as the Rayleigh-Love discrepancy). Because of this, seismologists resort to anisotropic
velocity tomography. As we will see later on, anisotropic tomography allows us to
constrain deformation patterns in the mantle, and thus provide insights not only to its
structure, but to its dynamics as well.

Elastic anisotropy

In physics, anisotropy is an umbrella term that refers to the changes in the physical
properties of a material when measured at different directions. In seismology, seismic
anisotropy is a property of an elastic material to assume variations in the velocity of
seismic waves passing through it depending on their direction of propagation or polar-
isation orientation. We will now refer the azimuthal dependence of seismic wave ve-
locities as azimuthal anisotropy, and the variations in seismic wave speeds with polar-
isation as radial anisotropy. It is worth mentioning that anisotropy differs from hetero-
geneity in such a way that its physical properties vary with direction whereas the latter
depends on the non-uniformity of the composition. The concept of radial anisotropy
is a seismological analogue of optical birefringence. Here, seismic anisotropy causes
the splitting of an incident S−wave into two S−waves with horizontal VSH and ver-
tical polarisations VSV and different velocities as shown in Fig. 1.5. Surface waves
also suffer from radial anisotropy. As Rayleigh waves are sensitive to VSV whereas
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FIGURE 1.5: As soon as an S−wave is incident onto an anisotropic media,
it splits into two orthogonally polarised S−waves with different speeds.
The fast wave is indicated in blue and the slow one in red. As it traverses
yet into an isotropic media, they have identical speeds again and are sep-

arated by a delay time δ t. Image courtesy of Ed Garnero.

Love waves are sensitive to VSH, this causes the well-known Rayleigh-Love discrep-
ancy when these waves propagate into an anisotropic media. As a simple exercise,
consider Hooke’s law of linear elasticity where the stress σij relates to the strain by εij,

σij = cijklεij, (1.7)

Since stress and strain are symmetric tensors where both have 6 independent com-
ponents, this makes the number of independent elastic parameters to 36. The idea
of strain energy further reduces the number of independent elastic parameters to 21.
Now we consider plane waves propagating in an anisotropic media. Suppose we have
a plane wave solution in a homogeneous and anisotropic media given by,

u(x, t) = aψ(t − n · x

c
), (1.8)
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where a is the polarisation vector, c is the phase velocity, and the wave is propagating
along n. The plane wave solution satisfies the anisotropic wave equation,

ρ
∂2ui

∂t2 = Cijkl
∂2uk

∂xj∂xl
, (1.9)

Substituting equation 1.8 into equation 1.9 we obtain,

ai = milal
1
c2 , (1.10)

where mil is the Christoffel matrix and is expressed as,

mil =
1
ρ

cijklnjnk, (1.11)

Once we find mil for a given anisotropic medium, we can immediately obtain the
phase velocities of the different wave types through its eigenvalues. The correspond-
ing eigenvectors of this matrix give us the polarisation direction of these waves. The
speed and the polarisation direction of the wave depend on the propagation direc-
tion and the crystallographic structure of the mineral. In the next few discussions we
identify one basic type of crystal symmetry arising from a given mineral that exhibit
anisotropic properties, namely hexagonal anisotropy.

Seismic waves in a hexagonally symmetric media

In the upper mantle, the propagation of seismic waves appear to be anisotropic, and
thus P− and S−waves suffer from variations in their wave speeds of about 20% (Ku-
mazawa and Anderson, 1969). Anisotropy in the upper mantle are often attributed
to the presence of anisotropic minerals as documented by mineralogical studies (refer
to Maupin and Park, 2015, for a review). The complexity of the 21-component elas-
tic tensor and the inability of seismic observables to be sensitive to each component,
more often than not, urged seismologists to reduce the number of independent param-
eters by imposing symmetry constraints. The type of symmetry most often used in
seismological studies is hexagonal symmetry with a horizontal axis of symmetry, also
called horizontal transverse isotropy (HTI). Imposing HTI reduces the number of in-
dependent parameters to only five: A, C, F, L, and N. These are also called the Love
parameters. Another class of symmetries is vertical transverse isotropy (VTI) which
have often been utilised to resolve the Rayleigh-Love discrepancy problem and shear
wave birefringence. Finally, we have tilted transverse isotropy (TTI) where the sym-
metry axis is tilted and defined by two angles: dip angle θ and the azimuth Ψ. At least
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FIGURE 1.6: Cartoon depiction of a vertical transverse isotropic medium
(Left) and a horizontal transverse isotropic medium (Right).

in the upper mantle, such assumptions are valid, to first order, as petrological stud-
ies suggest that upper mantle minerals exhibit such symmetries (e.g. Montagner and
Nataf, 1988).

Going back to our little exercise above, let us consider a VTI solid whose stiffness
matrix is given by: ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A A − 2N F 0 0 0
A − 2N A F 0 0 0

F F C 0 0 0
0 0 0 L 0 0
0 0 0 0 L 0
0 0 0 0 0 N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (1.12)

Suppose a wave is traveling in the + x1 direction. The corresponding Christoffel matrix
is,

M =

⎛⎜⎜⎝ m11 m12 m13

m21 m22 m23

m31 m32 m33

⎞⎟⎟⎠ ,

Using equation 1.11 and substituting the components of equation 1.12 into the desig-
nated components of M we have,

M =
1
ρ

⎛⎜⎜⎝ A 0 0
0 N 0
0 0 L

⎞⎟⎟⎠ ,
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By inspection, we easily identify the eigenvalues of M which are essentially the seismic
velocities:

Vp =

√
A
ρ

, VSV =

√
L
ρ

, VSH =

√
N
ρ

.

The polarisation vector can be inferred from the eigenvectors. Thus:

ap =

⎛⎜⎜⎝ 1
0
0

⎞⎟⎟⎠ , ash =

⎛⎜⎜⎝ 0
1
0

⎞⎟⎟⎠ , asv =

⎛⎜⎜⎝ 0
0
1

⎞⎟⎟⎠ .

The example above shows that 3 waves are produced for a wave incident to a VTI
medium traveling along the + x1 axis. The fastest one being a P-wave polarised par-
allel to the propagation direction. Two of which are S-waves having two contrasting
speeds that depend on the elastic coefficients L and N, and polarisation orthogonal
to the propagation direction. This phenomenon where VSV and VSH have different
velocities demonstrates shear wave splitting.

Anisotropic surface wave tomography

For the sole purpose of building toward geodynamic tomography, the scope of the
anisotropic inversions discussed here will only cover surface wave inversions.

Surface waves are long period observations, and as a result, cannot constrain veloc-
ity structures associated with small-scale inhomogeneities. Still, surface wave tomog-
raphy offers a powerful tool to constrain seismic anisotropy, and thus image the elastic
structure of the upper mantle at both regional and global scales. Part of this is due to
the fact that the energy associated with surface waves are mostly concentrated across
the subsurface. Hence, its fundamental mode is sufficient to evenly sample upper man-
tle structure along the great circle path traversed from the source to the receiver. With
a growing amount of surface wave data, seismologists have produced detailed models
of azimuthal anisotropy over the last decades (e.g., Debayle, Kennett, and Priestley,
2005; Deschamps et al., 2008; Adam and Lebedev, 2012; Yuan and Beghein, 2013; Yuan
and Beghein, 2014), and radial anisotropy (e.g., Plomerová, Kouba, and Babuška, 2002;
Lebedev, Meier, and Hilst, 2006; Nettles and Dziewoński, 2008; Chang et al., 2014;
Chang et al., 2015).

Numerous studies have inverted dispersion curves by minimising the difference
between observed and synthetic phase and/or group velocities, proving that they can
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effectively constrain the depth dependence of anisotropy (e.g., Montagner and Tani-
moto, 1990; Ritzwoller et al., 2002). Still, the adequacy of vertical resolution provided
by surface waves depends on the frequency range considered, and the type of surface
wave used. Moreover, surface waves still contain limited lateral resolution, thus pro-
viding only a large-scale image of anisotropy. Recent developments in surface wave
studies have indicated the presence of strong anisotropy in oceanic regions at 50 km
to 150 km depth, and in old continental regions at about 200 km to 400 km depth
with scales consistent to convective flow in the upper mantle (Gung, Panning, and Ro-
manowicz, 2003). Presence of anisotropy in the upper transition zone (410 to 520km)
has been observed in global models ()trampert2002global, while some arguing little
to no anisotropy (e.g. Kaneshima, 2014), thus still being highly debatable rendering
limited understanding of mid-mantle anisotropy.

As mentioned earlier, seismic anisotropy can be described with 21 independent
components of the elastic tensor. In practice however, the full tensor cannot be re-
solved by the seismic data independently at every location, and generally only a re-
stricted number of parameters are inverted for. This is done by assuming hexagonal
symmetry, or by using petrological constraints to impose relations between some of
the parameters. Surface waves in particular are only sensitive to 13 parameters that are
just a linear combination of the elastic constants (Montagner and Nataf, 1986). General
practices in surface wave tomography thus investigate: (1) radial anisotropy assum-
ing a VTI medium. Here, radial anisotropy is constrained by comparing the phase
velocities of Rayleigh waves with that of Love waves (Babuska and Cara, 1991); or (2)
azimuthal anisotropy, which deals with first-order variations of velocities as function
of the azimuth of propagation. For example, azimuthal anisotropy can be inferred from
the azimuthal terms of the Rayleigh wave phase velocities assuming an HTI medium
(Smith and Dahlen, 1973).

Simultaneous interpretations of radial and azimuthal anisotropy have been the sub-
ject of extensive research (e.g. Beghein et al., 2014; Burgos et al., 2014). Joint efforts
involving the use of a priori information have already been conducted to reduce the
high dimensionality of anisotropic inversion. Montagner and Anderson (1989) showed
that correlations exist between the elastic constants derived from petrological models,
thereby reducing the total number of free parameters to be inverted for. This mo-
tivated the development of "vectorial tomography" where it involves inverting for 7
parameters instead of 13: two angles defining the strike and dip of the symmetry axis,
three coefficients defining the strength of anisotropy, and finally two isotropic coeffi-
cients (Montagner and Nataf, 1988; Montagner and Jobert, 1988). Such a medium is
also known as tilted transverse isotropy (TTI) and describes the 3D distributions of
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anisotropy. This further led to studies revealing that deformation-induced anisotropy
can be described by a TTI medium where correlations appear to exist between P and
S wave anisotropy (Becker et al., 2006). Such correlations can then be exploited to
further simplify anisotropic inversion. Panning and Nolet (2008) then laid the ground-
work to derive finite-frequency kernels of surface waves that are explicitly based on
a TTI medium. In practice however, constraining the tilt may still be difficult due to
sparse azimuthal sampling, alongside other competing factors such as non-uniqueness
of the solution and poor data quality. Even so, simultaneous inversions for radial and
azimuthal anisotropy using TTI models have already been applied at the regional scale
using probabilistic approaches to combat these shortcomings (Xie et al., 2015; Xie et al.,
2017).

1.2.5 Probabilistic approaches to surface wave tomography

Surface wave tomography is an ill-posed inverse problem. Just like with any tomo-
graphic problem, this arises from the uneven distribution of sources and receivers
causing limited ray path coverage, and from noise in the observed seismograms. The
type of spatial parameterisation may also lead to ambiguity when interpreting tomo-
graphic results. A conventional technique is to separate the problem into two steps.
The first step is to construct velocity maps for each considered period, which is an al-
most linear inverse problem. It is followed by an inversion of each local dispersion
curve to build a model of elastic parameters. The inversion is in general performed
using a linearised technique, which favors a stable and unique solution through regu-
larisation, for example by adding a spatial smoothness constraint on the model param-
eters.

More recently, the development of probabilistic approaches using direct sampling
of the model space makes it possible to handle the non-uniqueness of the solution and
estimate uncertainties on the inferred parameters. These methods require the evalu-
ation of the forward model a large number of times, and hence have a high compu-
tational cost. Nevertheless, numerous works have been successful in applying such
inversion schemes to seismic data and in particular to the inversion of surface waves
dispersion curves (Shapiro and Ritzwoller, 2002; Shen et al., 2012; Bodin et al., 2016;
Ravenna and Lebedev, 2017; Xu and Beghein, 2019).
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1.3 Bridging the gap between upper mantle structure and

dynamics

Seismic anisotropy originates from various processes with depth and can be observed
at different spatial scales. Early accounts of upper mantle anisotropy have been ex-
plained in terms of the net alignment of intrinsically anisotropic minerals as they get
deformed along the trajectory of the flow (Crampin, 1981; Estey and Douglas, 1986;
Nicolas and Christensen, 1987). Anisotropy resulting from these is often called intrin-
sic anisotropy. Some studies however have acknowledged that some of the large-scale
anisotropy reconstructed from joint inversion of Love and Rayleigh waveforms cannot
be explained by deformation mechanisms in the upper mantle. Instead, the strong
anisotropy mapped may be related to fine-layering, or the presence of small-scale
heterogeneities. To cite an example, a horizontally-layered isotropic structure when
sampled by long period seismic waves may be mapped as smooth radial anisotropic
structure instead (Backus, 1962; Capdeville et al., 2013). In the crust for example, ap-
parent anisotropy exists from horizontal layering due to the preferential alignment of
cracks which has long been interpreted to be influenced by the compressional compo-
nents of the regional stresses oriented parallel to the cracks (Nur, 1971). The appar-
ent anisotropy associated with unmapped small-scales is called extrinsic anisotropy.
Anisotropic structures retrieved from tomography may therefore be a combination of
intrinsic and extrinsic anisotropy. The ambiguity whether a material is intrinsically
anisotropic or strongly heterogeneous may thus mislead seismologists in interpreting
the structural origin of seismic anisotropy observed in tomographic image.

1.3.1 Origins of upper mantle anisotropy

Extrinsic anisotropy due to shape preferred orientation

Extrinsic anisotropy is produced under two conditions: (i) when the scale of the hetero-
geneities are much smaller than the minimum wavelength of the observed wavefield,
and (2) when the contrast between seismic wave speeds is very large. Fig. 1.7 illustrates
this concept.

One of the known configurations at which extrinsic anisotropy is produced is rock-
scale shape preferred orientation (SPO). In the Earth’s upper mantle, rock-scale SPO
are a result of igneous differentiation (Faccenda et al., 2019). These meter-scale hetero-
geneities are often depicted by stratified layers due to the preservation of the differ-
entiated magma during the congealing phase (Middlemost, 1986). Since magmatically
differentiated oceanic lithosphere is composed of a basaltic crustal layer blanketed by
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FIGURE 1.7: When seismic waves sample a strongly heterogeneous me-
dia whose scales λ0 are much small than the wavelength of the ob-
served wavefield λh, the unmapped small-scales are then removed and
instead replaced with effective properties. In the case above, a horizon-
tally stratified isotropic medium is interpreted as a homogeneous radially

anisotropic medium with a vertical symmetry axis (VTI).

a depleted harzburgitic mantle (Allègre and Turcotte, 1986), upper mantle structure is
often modeled in terms of a mechanical mixture of these two end-member composi-
tions (e.g. Hofmann, 1988; Xu et al., 2008; Ballmer et al., 2015).

Along convergent margins, the density contrast between the oceanic lithosphere
and the surrounding upper mantle causes the former to descend due to negative buoy-
ancy. Such processes then also drive large-scale thermal convection in the mantle re-
sulting to the constant injection of oceanic lithosphere into the mantle (Coltice and
Ricard, 1999). As it exposes to the mantle, the subducting oceanic lithosphere heats
up and as a result, weakens its structural integrity. Upon the reduction of its viscos-
ity, the subducting oceanic lithosphere mechanically stirs with the surrounding mantle
and experiences a series of stretching and thinning due to the normal and shear strains
associated with mantle convection (Allègre and Turcotte, 1986). The magmatically dif-
ferentiated lithosphere can then be described in terms of elongated strips that tend to
wear-off as deformation dwindles (Olson, Yuen, and Balsiger, 1984). This led Allègre
and Turcotte (1986) to develop a geodynamic model of the mantle that would resemble
marble cake-like patterns. In their model, the layering may be erased either by disso-
lution processes or mantle reprocessing at mid-ocean ridges resulting into the cumula-
tive decrease in the length scale of the heterogeneities considered. Assuming that the
mixing preserves the physical properties of the two-end members with depth and over
geological time scales, such processes may explain rock-scale seismic heterogeneities
observed in the mantle (Xu et al., 2008; Stixrude and Jeanloz, 2015).
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Intrinsic anisotropy due to crystallographic preferred orientation

Intrinsic anisotropy is interpreted in terms of the development of the crystallographic
preferred orientation (CPO) of anisotropic crystals within an aggregate during their
plastic deformation (Crampin, 1981; Estey and Douglas, 1986; Nicolas and Christensen,
1987). Due to the physical process at its origin, intrinsic anisotropy can be interpreted
in terms of the strain history associated with mantle circulation.

Olivine is the most abundant anisotropic mineral in the upper mantle. Single crystal
olivine exhibits orthorhombicity, and thus suffers variations in fast and slow P- and S-
wave velocities up to 20 % (Kumazawa and Anderson, 1969). When an ensemble of
olivine forms a polycrystalline aggregate, their CPO can be described in terms of a
hexagonally symmetric medium with a distinct fast and slow axes (e.g. Montagner
and Nataf, 1988). Pyroxene, another naturally occuring mineral in the mantle, is also
intrinsically anisotropic. Along with olivine, both constituents contribute to the bulk
anisotropy in periodotite (Estey and Douglas, 1986) although numerical simulations
of texture evolution suggest that the incorporation of pyroxene may impede the net
alignment of the minerals. This results in a net decrease in the overall anisotropy due
to the difference in their single crystal properties and their individual responses to a
macroscopic deformation (Kaminski, Ribe, and Browaeys, 2004). Although such effects
are noticeable, olivine is still twice as abundant as pyroxene and thus has a greater
contribution to the large scale anisotropy in the mantle (Babuska and Cara, 1991).

Observations of large-scale anisotropy in tomographic models appear to be ubiq-
uitous at patches associated with strong deformation, and thus have often been inter-
preted in terms of convective flow (McKenzie, 1979). For instance, tomographic imag-
ing has revealed the presence of positive radial anisotropy (i.e., horizontally propagat-
ing SH−waves traveling faster than SV−waves) of about 4% in the upper ∼ 250 km of
the mantle and has been interpreted as lateral flow (refer to Long and Becker (2010) for
a comprehensive review). Long wavelength seismic anisotropy is also prevalent in the
transition zone as documented by some studies (Trampert and Heijst, 2002; Wookey
and Kendall, 2004) although its origin is still highly debatable up to this day (Chen
and Brudzinski, 2003; Chang and Ferreira, 2019; Sturgeon et al., 2019). Probing deeper
depths, the lower mantle appears to be isotropic (e.g. Meade, Silver, and Kaneshima,
1995) barring the D” layer where enough evidence have shown it to be anisotropic
(e.g. Kendall and Silver, 1998; McNamara, Keken, and Karato, 2002; Panning and Ro-
manowicz, 2006).

It is worth mentioning however that since CPO anisotropy maps the deformation
patterns, CPO may deviate far from the flow direction. This is because the deformation
patterns relate not to the velocity field, but to the velocity gradient itself. Moreover,
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CPO anisotropy is not instantaneous, but depends on the history of the deformation.
As a result, regions with short deformation trajectories such as mid-ocean ridges ap-
pear to have underdeveloped CPO anisotropy, and thus would lag behind the direction
of shear deformation (Kaminski and Ribe, 2002).

Different proxies have then been utilised to interpret seismic anisotropy directly
in terms of mantle flow. First-order seismic observations suggest that the fast axis of
azimuthal anisotropy tends to align with horizontal mantle flow (Ribe, 1989; Becker
et al., 2003; Becker et al., 2014). However, this behavior may not always be exhibited
due to complex local deformation mechanisms associated with CPO evolution. Lab-
oratory experiments have then been performed to mimic such observations. Simple
shear experiments suggest that, at low strains, the orientation of the olivine fast axis
tends to be aligned with the long axis of the finite strain ellipsoid (FSE) (Zhang and
Karato, 1995; Ribe, 1992). The amplitude of anisotropy, on the other hand, can be ap-
proximated as a monotonic function relating to the ratio between the long axis and
the short axis of the FSE (Ribe, 1992; Hedjazian and Kaminski, 2014). At sufficiently
large strains however, CPO evolution deviates from the FSE due to the apparition of
dynamic recrystallisation. It tends to align nearly parallel to the direction of shear in-
stead (Zhang and Karato, 1995; Bystricky et al., 2000), although its transient behavior
remains complex (Hansen et al., 2014a). Following this observation, a possible proxy
is to interpret the orientation of the anisotropy fast axis as the infinite strain axis (ISA),
that is, the axis of the FSE in the limit of infinite strains (Kaminski and Ribe, 2002). In
practice however, this proxy have had limited success at the global scale (Becker et al.,
2014).

1.3.2 The story of a convecting mantle as told by seismic tomography

As previously discussed, large-scale convective flow in the mantle manifest themselves
in seismic observables through seismic anisotropy. Initially undeformed mantle miner-
als develop preferential orientations once they undergo straining as they get advected
along the flow trajectory. Since the time scales associated with seismic wave propaga-
tion are tremendously lower than the development of CPO anisotropy, and thus the
deformation history of the mantle, seismic waves only record the present-day defor-
mation in the mantle which then precludes the evolution history of mantle dynamics.
Still, seismology provides a great deal of information about some aspects of mantle
dynamics such as the very nature of imbricated convection, and are able to constrain
deformation patterns responsible for tectonic plate motions and possibly the existence
of hot mantle plumes.
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Various upper mantle studies are in concord that the recovered structures from seis-
mic tomography are consistent with the scale of the convective patterns. The surface
manifestation of these patterns are in close agreement with different geological fea-
tures observed at the surface and that they strongly influence the distribution of con-
tinents and oceans. As mentioned earlier, isotropic arrival time tomography revealed
the penetration of subducting slabs down to the depths of the lower mantle while some
appear to stagnate across or below the 660 km transition zone. In the context of mantle
dynamics, Hilst and Seno (1993) and Hilst (1995) argued that the conditions whether
slabs penetrate deep into the lower mantle or stagnate across the transition zone is
an interplay between lateral trench migration (i.e. relative plate motions) and slab de-
formation associated with viscosity variations and/or recession of phase boundaries.
To confirm this hypothesis, numerical models of mantle flow have been utilised (e.g.
Zhong and Gurnis, 1995) to compare this with the tomographic results. Indeed, adding
constraints from geodynamic modeling have implied that the complex flow patterns
associated with slab stagnation are a result of various geophysical processes such as
plate coupling and viscosity stratification, and that surface plate motions are indeed
linked to large-scale convection in the mantle (Kárason and Van Der Hilst, 2000).

In retrospect, none of the studies mentioned above however have integrated com-
putational geodynamic modeling with seismic imaging. Even still, some aspects of
mantle dynamics in hindsight remains enigmatic such as the demise of slabs as they
penetrate across the transition zone. As suggested by Montagner (1998), the incorpora-
tion of seismic anisotropy would allow the complete mapping of mantle deformation
beneath trenches which may address the problem mentioned, and perhaps provide us
a clear understanding on the relation between the return flow adjacent to the slab and
the existence of hot plumes.

Supposing that we only have information provided by isotropic tomography, it is
still plausible to directly incorporate seismic velocity distribution as inputs in geody-
namic forward models. As mentioned in the first few sections, flow in the mantle is
driven by density anomalies. These anomalies stem from temperature variations in the
mantle. Intuitively, we know that temperature is inversely proportional to the strength
of materials (i.e. cold anomalies tend to be more rigid that warm ones). Of course,
rudimentary physics is not enough and a more rigorous proof is needed to model such
behavior. Thankfully, semi-empirical models that allow us to estimate seismic veloc-
ities from temperature for a given bulk composition exist. These models were con-
strained based on first principles of thermodynamics (i.e. free energy minimisation)
and from petrological experiments. It is important to keep in mind however that such
techniques are valid if we ignore the effect of petrological heterogeneities and that a
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more thorough method involves modeling the dependence of seismic wave velocities
onto composition. Seismic tomography also has the ability to constrain the Rayleigh
number Ra. As we will see later, Ra depends on various parameters and one of them
is the scale of the convection Ls. Here, Ls can also pertain to the length scale of the
tomographic region considered. Tomographic models can thus be viewed as added
geometrical constraints onto convective flow in the mantle.

The manifestation of seismic anisotropy onto seismic observables is guaranteed
most of the time especially with surface waves where they sample the anisotropic
structure of the upper mantle. Because of this, seismic anisotropy has to be integrated
in the geodynamic forward problem. Doing so will also be easier to delineate com-
plex flow patterns that cannot be explained by isotropic tomography alone. In order
to explain surface wave anisotropy, particularly in intra-oceanic and young continen-
tal regions where the flow appears to be in steady-state, first-order interpretations in-
volve finite strains computed from global circulation models (Becker et al., 2003). In
their work, the density field derived from isotropic tomography (Becker and Boschi,
2002) is used to compute instantaneous flow solutions in the upper mantle assuming a
homogeneous bulk composition. Finite strain models derived from the flow are subse-
quently compared with azimuthal anisotropy in surface waves. However, as discussed
before, finite strain-derived models may fall short at larger strains due to complex de-
formation mechanisms such as dynamic recrystallisation (Zhang and Karato, 1995).
This urges the use of computational strategies that incorporate texture evolution mod-
els to estimate the level of intrinsic anisotropy.

Mechanical models of texture evolution, coupled with geodynamic flow model-
ing have been developed to replicate the laboratory results and have been extrapo-
lated at scales consistent with upper mantle deformation patterns. Among these is
the viscoplastic self-consistent (VPSC) model which is used to explain the mechan-
ical response of polycrystals from plastic deformation (Tommasi et al., 2000). Such
tools however are computationally expensive, especially when applied to 3D and non-
steady state flows (Lev and Hager, 2008). Another well-received method is a simple
kinematic approach that utilises an average field formalism to quantify the net orienta-
tion of a polycrystal under an imposed macroscopic deformation (Kaminski, Ribe, and
Browaeys, 2004). In their model, the mineral assemblage responds to the deformation
by plastic deformation and dynamic recrystallisation. Texture evolution models input
the deformation gradient tensor computed from the geodynamic flow field. The output
can either be expressed as a function describing the volume fraction and the orienta-
tion of the crystals, or a Voigt-averaged elastic tensor with 21-independent coefficients
(Mainprice, 1990). The latter can then be used as a reference medium for which seismic
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FIGURE 1.8: The story of a convecting mantle as told by seismic tomog-
raphy. The outline reads as follows: seismic data can be inverted to re-
trieve the anisotropic structure of the mantle (seismic tomography). Tex-
ture evolution modeling on the other hand is utilised to retrieve the same
anisotropic structure, but starting from mantle flow models. Lastly, man-
tle flow models are obtained in a full forward modeling approach with the
density field and viscosity fields as inputs. Most tomographic studies and
texture evolution modeling schemes cease at the recovery of anisotropy
(second box). The latter serves as the point of interest between two dis-
ciplines (seismology and upper mantle dynamics) where most geophysi-
cists rely on visual comparison of the anisotropy reconstructed from the
two methods (i.e. seismic tomography and texture evolution modeling).
If we imagine an arrow pointing towards density and viscosity starting

from seismic data, we thus have geodynamic tomography.

waves can propagate into, and thus explain anisotropic signatures observed in seismic
data recorded at the surface.

Texture evolution models have been extensively applied to predict CPO-induced
anisotropy from geodynamic flow models in a forward modeling approach at the re-
gional (Hall et al., 2000; Lassak et al., 2006; Miller and Becker, 2012; Faccenda and
Capitanio, 2013) and at the global scale (Becker et al., 2006; Becker, Kustowski, and Ek-
ström, 2008). Forward models such as these assist further in the interpretation of seis-
mic tomography models in terms of mantle circulation patterns. For instance, CPO-
induced anisotropy resulting from to 3D numerical simulations of subducting slabs
shows consistency with radial anisotropy patterns inferred from global tomographic
images (Ferreira et al., 2019; Sturgeon et al., 2019).

In summary, most studies rely on visual comparisons between CPO anisotropy ob-
tained from numerical simulations and tomographic images. To the best of our knowl-
edge, no study yet exists where mantle deformation has been inferred directly from
seismic observations using an inverse approach.
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1.4 Geodynamic tomography

This motivated us to implement a novel approach to the seismic tomography problem,
called Geodynamic Tomography, where no symmetry is imposed to the elastic tensor at
the outset, and where seismic observations are inverted with constraints from geody-
namic modeling and petrological modeling. Although the word ’seismic’ from seismic
tomography indicates the type of data used in the inversion, we chose ’geodynamic’ to
stipulate the significance of geodynamic flow modeling in limiting the search for ad-
missible tomographic models. The ultimate goal of the method is to map the complete
deformation patterns associated with mantle convection, as opposed to conventional
seismic tomography where the process ends at inferring the Earth’s elastic structure.

To constrain the patterns of mantle deformation, we jointly invert Love and azimuthally-
varying Rayleigh phase velocity dispersion curves to retrieve the present-day 3D ther-
mal structure of the upper mantle. The thermal structure relates to density anoma-
lies through a linear equation of state. Given the density anomalies, one may then be
able to compute convective flow in the mantle that matches the seismic predictions
observed at the surface through deformation-induced CPO anisotropy.

The complete forward problem proceeds as follows: (1) Given a temperature field,
we first numerically solve an instantaneous 3D convection problem with temperature-
dependent viscosity (Samuel, 2012a). (2) Using the obtained velocity field and velocity
gradient obtained, we track CPO evolution of olivine crystals (Kaminski, Ribe, and
Browaeys, 2004) where the steady-state assumption of the flow is implied. This com-
putes for the anisotropic part of the elastic tensor. (3) From the temperature field (and
the hydrostatic pressure), we derive the pressure and temperature dependence of the
isotropic part using a thermodynamic model for a given bulk composition (Connolly,
2005; Connolly, 2009; Stixrude and Lithgow-Bertelloni, 2011). The result from (2) and
(3) is a complete elastic tensor Sij at each point in space. (3) The last step involves com-
puting synthetic surface wave dispersion curves using normal mode summation in a
spherical earth (Smith and Dahlen, 1973) and their azimuthal variations from the full
Sij (Montagner and Nataf, 1986).

To efficiently look for candidate models that best explain the data, the inversion ex-
plores the parameter space using a Markov chain Monte Carlo (McMC) algorithm, and
evaluates through Bayesian inference the posterior probability of model parameters.
In opposition to conventional tomography where elastic parameters are to be inverted
for, our method directly inverts for a single scalar field (e.g., temperature anomalies)
and extra information is driven by the physics of mantle convection. The complete
solution to our problem is a probability distribution of the 3D present-day thermal
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structure of the upper mantle. Since the complete elastic tensor is computed for each
sampled model, we can also obtain a posterior distribution of the full elastic tensor. In
fact, any variable that is implicitly computed in the forward model can be expressed as
a posterior distribution in their respective model space (temperature, flow, deforma-
tion, and anisotropy). Thus, geodynamic tomography may be viewed as a technique
to reduce model dimension (i.e., the number of inverted parameters) in the inverse
problem. Our goal in this study is to lay its proof of concept by applying it to simple
synthetic temperature fields. We base our conclusions on the quality of the recovered
structures.

1.5 Structure of the manuscript

This thesis is organised in such a way that the reader will chronologically follow all the
work I have accomplished during my stint as a PhD candidate. The next chapter covers
an introduction to Bayesian methods. Chapter 3 lays the foundation of the full forward
problem to geodynamic tomography. Chapters 4 and 5 present synthetic experiments.
Chapter 6 covers the concluding remarks and future perspectives of the method. The
last chapter reports the project I have done on the side.

Bayesian Inference in Surface Wave Tomography

This chapter presents a detailed description of Bayesian inference and the Markov
chain Monte Carlo (McMC) algorithm. As a simple demonstration, we perform con-
ventional anisotropic surface tomography with Bayesian inference to synthetic data
generated by a 3-D deforming upper mantle due to a sinking, spherical anomaly. We
impose strong a priori constraints to the elastic structure by prescribing the correct val-
ues associated with the P−wave structure. The purpose of this synthetic experiment
is that even when placed in a favorable scenario (e.g., some of the elastic properties
are well-known), conventional surface wave tomography is stil hampered by several
issues such as the dependence on the choice of parameterisation and its inability to
resolve sharp gradients in the elastic structure.

Geodynamic Tomography: The Forward Problem

The previous chapter serves as motivation to reformulate the tomographic problem by
incorporating geodynamic and petrological constraints to reduce the number of candi-
date models down to a subset consistent with mantle dynamics. As such, this chapter
unravels in detail the full forward problem to geodynamic tomography which consists
of several intimately related sub-forward models. We present how one could arrive at
seismic data (i.e., surface wave dispersion measurements) starting from a scalar field
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(i.e. temperature). In the process, the full elastic tensor can be implicitly computed
everywhere thus solving one of the prevailing problems associated with conventional
surface wave tomography.

Geodynamic Tomography: Joint Inversion of Love and Rayleigh Waves with Az-

imuthal Variations

This chapter presents the results of geodynamic tomography through synthetic ex-
periments. We applied a Bayesian Monte Carlo approach to jointly invert Love and
aniotropic Rayleigh wave dispersion measurements for an ensemble of temperature
fields. The synthetic data were generated coming from a true model corresponding
to a 3-D deforming upper mantle due to a temperature field made of multiple spher-
ical anomalies. The data is contaminated with random noise to test the ability of the
method to recover the temperature field and quantify model uncertainties. We show
how such a method implicitly retrieves the complete pattern of mantle deformation,
and correspondingly, the full elastic tensor at every location.

Geodynamic Tomography: Application to a 3D Deforming Upper Mantle Beneath a

Subduction Zone

We extend the method by applying it with a more physical parameterisation to test its
competence in retrieving more complex deformation patterns. In this chapter, we con-
sider synthetic data associated with 3-D instantaneous flows induced by subduction.
We replicate realistic (i.e., period-correlated) surface wave dispersion measurements
by stipulating very low noise levels to the synthetic data.

Concluding Remarks and Perspectives

The achievements of the methodology is listed briefly in this chapter. We also dis-
cuss its limitations, and propose future avenues to delve into in order to address such
limitations.

Quantifying Intrinsic and Extrinsic Contributions to Elastic Anisotropy Observed

in Tomographic Models

The final chapter digresses from geodynamic tomography, however is still essential as
it paves the way towards a new way to interpret tomographic models. Geodynamic
tomography only accounts for the intrinsic component of anisotropy due to mantle
deformation. In reality however, elastic structures reconstructed from long-period ob-
servations may also depict large-scale spurious anisotropy due to small-scale hetero-
geneities. The coexistence of both thus prompted us to assess their separation contri-
butions in tomographic models for better interpretation. Here, we hypothesise that the
effective anisotropy observed in tomographic models is simply the product between
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the spurious component and the ’smooth’ version of the intrinsic component. To test
our hypothesis, we consider 2-D marble cake models of the mantle in the presence of
intrinsic anisotropy.

1.6 Publication schedule

One of the chapters in this manuscript Chapter 4, (Magali et al., 2020) is published in
Geophysical Journal International, Chapter 2 (Magali, 2020) is published as a preprint in
arXiv, and lastly Chapter 6 is under preparation in pursuit of this thesis. Note that we
plan to submit Chapter 6 in a peer-reviewed journal ahead of the dissertation defense
schedule. Other than these three papers, I believe that some of the research work I
have conducted have the potential to be published. Rest assured that these works will
be revisited and that enough material will be produced fit for a publication.

Submitted as preprint:

Chapter 2: Magali, John Keith (2020). "1D Anisotropic Surface Wave Tomography with
Bayesian Inference". arXiv:2012.03915 [physics.geo-ph].

Published in a peer-reviewed journal:

Chapter 4: Magali, JK et al. (2020). “Geodynamic Tomography: Constraining Upper
Mantle Deformation Patterns from Bayesian Inversion of Surface Waves”. In: Geo-
physical Journal International.

To be submitted to a peer-reviewed journal:

Chapter 6: Magali, JK et al. (2020). “Quantifying Intrinsic and Extrinsic Contributions
to Elastic Anisotropy Observed in Tomographic Models”. In: Geophysical Journal In-
ternational.
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Bayesian Inference in Surface Wave

Tomography

1D Anisotropic Surface Wave Tomography with Bayesian Inference

Submitted as a preprint in arXiv
Can be accessed at https://arxiv.org/abs/2012.03915
J.K. Magali1
1 Université de Lyon, UCBL, CNRS, LGL-TPE, 69622 Villeurbanne, France

2.1 Summary

Classically, anisotropic surface wave tomography is treated as an optimisation problem
where it proceeds through a linearised two-step approach. It involves the construction
of 2D group or phase velocity maps for each considered period, followed by the in-
version of local dispersion curves inferred from these maps for 1D depth-functions
of the elastic parameters. Here, we cast the second step into a fully Bayesian prob-
ability framework. Solutions to the inverse problem are thus an ensemble of model
parameters (i.e. 1D elastic structures) distributed according to a posterior probability
density function and their corresponding uncertainty limits. The method is applied
to azimuthally-varying synthetic surface wave dispersion curves generated by a 3-D-
deforming upper mantle due to a sinking spherical anomaly. We show that such a
procedure captures essential features of the upper mantle structure. The robustness
of these features however strongly depend on the wavelength of the wavefield con-
sidered and the choice of the model parameterisation. Additional information should
therefore be incorporated to regularise the problem such as the imposition of petrolog-
ical constraints to match the geodynamic predictions.
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2.2 Introduction

Conventional surface wave tomography is usually implemented using a two-step ap-
proach (e.g Nakanishi and Anderson, 1983; Nataf, Nakanishi, and Anderson, 1984;
Trampert and Woodhouse, 1995; Romanowicz, 2002; Ritzwoller et al., 2002). The first
step involves the inversion of the arrival times of each period considered in the mea-
sured source-receiver dispersion data to infer 2D group or phase velocity maps at a
given period. Using the 2D velocity maps, the second step proceeds by inverting a
dispersion curve at a given geographical location to estimate the 1D velocity struc-
ture beneath this location. One may then build a smooth 3-D velocity model by the
juxtaposition of the inferred 1D models followed by interpolating them.

The tomography problem is often solved by applying first-order corrections of the
forward function g around a reference model m0. Mathematically. this translates to:

d = g(m0) +
∂g
∂m

Δm. (2.1)

Doing so allows it to be treated as a linearised inverse problem. For instance, one may
estimate the 2D phase velocity maps by minimizing an objective function containing a
data residual term and more than one regularization terms such as:

S = ||Gm − d||+ R1||m||+ R2||Dm|| (2.2)

where G = ∂g
∂m is now a mathematical forward operator which now refers to the lin-

earised physics between the model parameters (in this case surface wave velocities),
and the data (dispersion data), D is a second-order smoothing operator, and R1 and
R2 are the damping and smoothing parameters, respectively. As mentioned earlier, the
last two parameters will often dictate the trade-off between the data misfit (i.e., how
well the model parameters predict the data), the proximity of the estimated model
from its reference state, and the degree of smoothing in the inverted model. Moreover,
the regularization parameters are chosen ad hoc. Hence, the inverted model may be
susceptible to non-data driven constraints and that these constraints shroud essential
information provided by the data. Lastly, optimization techniques such as this lack the
capability to estimate model uncertainties.

The problems associated with non-uniqueness and quantification of uncertainties,
coupled by the ever-growing computational capacity of modern supercomputers led
to the advancement of probabilistic approaches to geophysical inverse problems, as
first exemplified by Mosegaard and Tarantola (1995). Following this pioneering study,
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a volume of studies that involve probabilistic approaches to geophysical inverse prob-
lems have been published in seismology (e.g. Lomax et al., 2000; Shapiro and Ritz-
woller, 2002; Husen et al., 2003; Bodin and Sambridge, 2009; Debski, 2010; Bodin
et al., 2016), and rapidly growing in the field of geodynamics (e.g. Baumann, Kaus,
and Popov, 2014; Baumann and Kaus, 2015; Morishige and Kuwatani, 2020; Ortega-
Gelabert et al., 2020).

Casting the inverse problem in a probabilistic framework allows one to utilise the
original non-linear mapping g between the data and the model within its forward pro-
cedure. However due to the use of sampling-based methods, one is then forced to solve
the forward model numerous times depending on the number of candidate models to
be sampled. Fortunately, various techniques are available to address such complica-
tions that are not solely based on heuristics. Here, we restrict ourselves with Bayesian
inference, that is, a form of statistical inference that formulates our solution as an a
posteriori probability initially based on the information we have prior to evaluating the
inverse problem. The goal is therefore not to create an ensemble of solutions that fol-
low a certain probability distribution ex nihilo, but to update a prior probability based
on valuable information provided by the data.

In such schemes, the parameter space has to be explored for best possible model
candidates that could match the predictions observed at the surface. Grid-search algo-
rithms however are time consuming and thus uniform sampling may not be performed
efficiently. As such, direct-search algorithms have been introduced in geophysical in-
verse problems that sample candidate models within a subset instead of the entire
parameter space. A specific class of ergodic algorithms is called Markov chain Monte
Carlo (McMC) methods, which has been initially used to solve problems in physics
(Metropolis and Ulam, 1949; Metropolis et al., 1953), but is now widely used in geo-
physical inverse problems. In this algorithm, the parameter space is randomly sampled
based on our current state of knowledge of a given model candidate. The sequence of
searching new model candidates depend on an acceptance probability that is often de-
termined by satisfying a detailed balance condition to ensure stationarity of the desired
solution, the most common being the Metropolis-Hastings algorithm (Hastings, 1970).

In this chapter, we cast the second step of the surface wave tomography problem
in a Bayesian framework. That is, we assume that we have completely inferred 2D
phase velocity maps of the regions considered, and invert for 1D velocity structures
that explain the dispersion curves built from these maps. The problem is applied to
synthetic data for each geographical location considered whose anisotropic signatures
are solely influenced by convective flow in the mantle beneath it. The solution is a
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marginal posterior distribution of 1D velocity models that best explain the data accom-
panied by their uncertainty limits. We show that even with strong a priori constraints,
conventional surface tomography falls short to capture the complete picture related to
mantle deformation. Still, some of the notable features are resolved more or less. This
exercise builds upon the hypothesis that adding geodynamical and petrological con-
straints would allows us to reduce the number of acceptable tomographic models that
are consistent with the geodynamical predictions.

2.3 Bayesian inference

As opposed to learning based on heuristics, Bayesian framework is a methodical pro-
cess of logical reasoning that relies on integrating new information with prior beliefs.
It emancipated in the late 1700’s, thanks to its proponent Thomas Bayes, and still con-
tinues today as a mode of learning in decision theory. Bayes’ theorem has been suc-
cessfully applied in various areas of discipline, particularly as a method in statistical
inference. In Bayesian inference, valuable information is extracted from a probability
distribution ex post facto based on evidence.

Bayesian inference offers a practical way to solve the inverse problem by recast-
ing the ensemble of model solutions m as a posterior probability distribution. The
posterior probability is formulated by updating an initial probability distribution that
already contains information prior to the inversion process, called the prior distribu-
tion or prior, with new information provided by the data d, called the likelihood (Box
and Tiao, 2011). Mathematically, Bayes’ theorem writes:

p(m|d) = p(d|m)p(m)

p(d)
(2.3)

where for any measured quantity A and B, p(A|B) reads as the probability of A knowing
B. Here, p(m|d) is the posterior distribution, that is, what we know about the model
parameters given the data. p(d|m) is the likelihood, that is, the probability of observ-
ing the data for a given model. p(m) is the prior, or the distribution of allowable mod-
els prior to the inversion process. Lastly, p(d) is the marginal likelihood also called
the evidence. In most cases, and in our work hereafter, we regard the marginal like-
lihood as a constant since it does not depend on any given model. As such, we can
reformulate eq. (2.3) as:

p(m|d) ∝ p(d|m)p(m). (2.4)
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It is worth noting that these functions are continuous distributions, and that the re-
sult of the inverse problem is instead a finite amount of models distributed according
to the target distribution p(m|d). The main challenge is therefore to generate sam-
ples that are ergodic in nature to approximate the posterior distribution. This calls for
the need to implement direct-searching algorithms that efficiently samples complex
probability distributions. One such technique, as previously mentioned, is the Markov
chain Monte Carlo (McMC) algorithm, where model updates m’ solely depends on its
current state m, and any information prior to the realization of m is erased in m’.

2.3.1 Likelihood function

The likelihood function p(dobs|m) quantifies how well the model parameters fit the
observed data. In the context of our problem, it is loosely based on the L2-norm cost
function in that it measures the level of misfit between the predictions and the obser-
vations. Here, it is essential to distinguish the data residuals related from errors in
measurement εd, and from the modeling error due to the use of an incorrect forward
model εg. Assuming that the errors are independent and describe a random process,
the forward problem can be written as:

dobs = g(m) + εd + εg. (2.5)

Thus, dobs can also be seen as a random process, and the likelihood distribution can be
formulated in terms of the pdf of the data errors:

p(dobs|m) = p(εd + εg). (2.6)

If we then assume that the errors are uncorrelated and follow a univariate Gaussian
distribution with zero mean, and variance σ2 where σ2 = σ2

d + σ2
g , we can write the

likelihood function as an exponential giving:

p(dobs|m) =
1

(2πσ2)N/2 exp

[
−||dobs − g(m)||2

2σ2

]
. (2.7)

where N is the size of the data vector. Since the goal of any optimization problem is to
minimise the L2 cost function, minimising it tantamounts to maximising the probabil-
ity of the Gaussian likelihood function given by eq. (2.7).
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2.3.2 Prior distribution

One of the flexibilities of the Bayesian framework is that it enables one to account for
prior information provided that it can be formulated as a probability distribution. The
choice of the prior depends on the type of geophysical process we aim to tackle. In
the context of seismic tomography, the prior information depends on a range velocity
structures that are reasonable for the Earth in general. In practice, the prior information
is constrained by existing studies.

At this point forward, we assume minimal prior knowledge and hence, make use
of uniform prior distributions with wide bounds. Although we acknowledge that us-
ing uniform distributions may be a naive way to setup the prior, working with such
a simple distribution would already suffice when demonstrating proofs of concept.
Here, we know the exact values of the model parameters, and by imposing wide uni-
form priors, we are able to assess the efficiency of the method by placing ourselves in
the worst case scenario. Indeed, a subject of future work is to consider other forms of
the prior distribution, for example non-informative priors or even hierarchical Bayes
(Malinverno and Briggs, 2004).

Let us now consider a given model parameter mi. The prior p(mi) is prescribed a
constant value over a given range of values defined by [mmin, mmax]. The prior distri-
bution is thus given by:

p(mi) =

⎧⎨⎩0 mi > mmax, mi < mmin

1
Δm mmin ≤ mi ≤ mmax.

(2.8)

Eq. (2.8) is interpreted as follows. Suppose that we draw a sample for the specific
model parameter mi from the proposal distribution q. If mi is out of bounds, then the
proposal is automatically rejected because the value is not specified by the prior. If
mi is within the prior bounds, then the proposal is accepted with condition based on
the the acceptance probability A. Choosing narrow bounds therefore imposes hard
constraints to the model parameters giving less emphasis to the information provided
by the data.

2.4 Markov chain Monte Carlo algorithm

In the context of a probabilistic inverse problem, McMC is a class of iterative stochas-
tic algorithms used to efficiently sample the parameter space. As opposed to uniform
sampling methods, McMC ultimately tends to sample towards a restricted area of high
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probability density and operates according to a random walk-type behavior. The al-
gorithm proceeds as follows. An initial model m0 is randomly drawn from the prior
distribution p(m). A perturbation around m0 according to a proposal probability gives
birth to a new model m within the Markov chain which will then be accepted condi-
tionally based on an acceptance probability. Once a statistically significant amount of
models are sampled, known as the burn-in phase, the random walk develops an im-
portance sampling of the parameter space. In this state, the ensemble of models begin
to be distributed according to the posterior, and that the random-walk behavior allows
for further refinement of the approximation. At this point, the Markov chain is said
to be converged. When implemented in parallel with different starting models, the
converged chains are also said to be well-mixed.

2.4.1 The proposal distribution

At this point forward, we will make use of Gaussian probability distributions as the
proposal probability of choice. Note that the choice of the proposal probability will
not affect the nature of the posterior pdf. However, such ad hoc choices may be held
accountable to some computational lapses associated with the algorithm’s efficiency
and convergence. Formally, the proposal probability for a given model parameter mi

can be expressed as a univariate normal distribution with zero mean and standard
deviation σi assuming uncorrelated model residuals:

q(mi|m′
i) ∝ exp

[
− ||mi − m′

i||2
2σ2

i

]
. (2.9)

Conventionally, the proposed model m′
i can be treated as a Gaussian perturbation cen-

tered at the current model mi giving:

m′
i = mi + N(0, σi) (2.10)

where N is a normal distribution. Here, σi can be regarded as the degree of perturba-
tion. Take note that using small perturbations avoids drawing samples far from the
current model, leading to small changes in the likelihood function. As such, the pro-
posal is most likely to be accepted. Likewise, choosing large perturbations will most
likely be rejected as it means larger variations in the likelihood function. Regardless,
both situations restrain the movement of the sampler when searching the parameter
space, and that the candidate models may strongly depend on their initial state. The
game is therefore to choose perturbations that strike balance between the acceptance
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and rejection rates. As a rule of thumb, the acceptance rates should be around 30-40%
for more efficient sampling (Sambridge and Gallagher, 2011).

2.4.2 An adaptive perturbation scheme

Throughout the course of my PhD thesis that covers McMC inversions, I instead opted
for a more dynamic perturbation, that is, the perturbations vary depending on a given
situation. Here, we employ the McMC sampler with an adaptive perturbation scheme
based on the acceptance rate. This requires keeping track of the acceptance rate for a
given model parameter on the fly. Let us now denote N to be the population size, that
is, total number of samples in the inversion, and M to be the total number of accepted
models within N. The acceptance rate corresponding to the entire population is just:

acceptance =
M
N

× 100% (2.11)

Next, we need a sizeable amount of samples n within N to allow for the relaxation
of the acceptance rates, that is, the period at which the acceptance rates are in sta-
ble conditions. The population N are then separated into different cycles (i.e., sample
window) that are multiples of n. For instance, choosing n = N just pertains to the
acceptance rates of the entire population, whereas choosing n = 1 would constantly
reset the counters for the proposal and the accepted models at every iteration. At the
end of every cycle, the current values of the acceptance rates are then used to deter-
mine whether to increase or decrease the perturbation. If the acceptance is less than
20%, then the perturbations will be reduced by 25% of its current value. Likewise, if
the acceptance is more than 50%, then the perturbations will be increased by 25% in-
stead. The counters for the proposal and the acceptance are then reset, and the new
acceptance rate is recalculated in the subsequent cycle. As an example, suppose that
we have N = 50000 samples, and a subset of n = 5000, we thus having ten cycles. Af-
ter the first 5000 iterations l (first cycle), the acceptance rate at l = 5001 will determine
whether to increase or decrease the perturbations by 25%. Resetting of the counters
will then be ensued regardless. The appraisal of the acceptance rates are then marked
after every n intervals,that is, at l = 10000, 15000, 20000 and so on.

2.4.3 The acceptance probability

The transition to the new state is decided using the Metropolis-Hastings algorithm
(Hastings, 1970). The process elaborates as follows. Suppose we have a population of
size N with each iteration denoted by l. First, we initialise our sampler by drawing an
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initial model m0 from the prior, and setting l = 0. We then proceed with the iterative
process. We propose a new model m’ from the proposal distribution q(ml|m’). Once
the new model is drawn, the transition is accepted or rejected with condition depend-
ing on an acceptance probability A(ml|m’) . The acceptance probability is computed
using the following expression:

A(ml|m′) = min

(
1,

p(m′|d)
p(ml|m′)

× q(ml|m′)
q(m’|ml)

)
. (2.12)

Next, a random number is generated between 0 and 1 from a uniform probability dis-
tribution u ∈ [0, 1]. The proposal is accepted, that is ml+1 = m’, if u ≤ A(ml|m’). It is
rejected otherwise if u > A(ml|m’). In this case, the old state is copied in the next state,
that is, ml+1 = ml. Finally, l is updated for the next iteration l = l + 1.

Generating samples using McMC is indeed efficient. However, one must be cau-
tious because the models sampled by McMC every l iterations are different from draw-
ing l independent samples from the posterior pdf. This is based from the very nature
of the Markov chain itself wherein the samples are correlated. This requires a burn-
in period to be implemented, that is, the period at which the sampler moves errati-
cally. After disregarding the burn-in period, we should expect the random-walk to
be in a steady-state condition. Only then when the chains can be regarded as quasi-
independent. At this point, we could start recording the samples generated by McMC,
and hence, infer a posterior distribution out of them. Another path we could take
which facilitates drawing independent samples is to parallelise the algorithm.

2.5 Synthetic experiment

In this section, we discuss the full implementation of a 1D anisotropic surface wave
tomography in a full Bayesian parameter search approach. We highlight in full detail
the (1) model parameterisation, (2) the forward problem, (3) the data, and (4) the in-
verse approach. The method is applied to synthetic surface wave dispersion curves
produced by simple setups of an intrinsically anisotropic upper mantle.

2.5.1 Model parameterisation of a 1D Earth structure

Radial anisotropy component

Surface waves are sensitive to 13 depth parameters which are just a linear combina-
tion of the full elastic tensor Sij (Montagner and Nataf, 1986). In particular, Love and
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Rayleigh phase velocities are sensitive to five depth depth parameters which make up
an azimuthally-averaged vertically transverse isotropic (VTI) medium. These param-
eters are also known as the Love parameters, and by convention, are designated as
A, C, F, L, and N. Note that these functions are constrained by the isotropic phase
velocities, and are independent of the azimuth of surface wave anisotropy. As a sup-
plementary, the seismic wave velocities propagating either parallel or perpendicular
to the symmetry axis can be written as:

VPH =

√
A
ρ

(2.13)

VPV =

√
C
ρ

(2.14)

VSH =

√
N
ρ

(2.15)

VSV =

√
L
ρ

, (2.16)

where ρ is the density of the medium. Here, it is important to understand that the
vertical symmetry axis need not be the fast axis of anisotropy. Hence, the relative
magnitude between N and L, and C and A are interchangeable. Most anisotropic
tomography studies interpret L > N as vertical flow, since to first-order, the direc-
tion of shear is presumed to be vertical and thus aligned with vertically propagating
S−waves (e.g. Montagner, 1994). Likewise, L < N is often interpreted in terms of
horizontal flow. When the flow has both horizontal and vertical components, then the
resulting anisotropy will be ambiguous. This requires resolving the tilt of anisotropy
(Montagner and Nataf, 1988; Montagner and Jobert, 1988).

We constrain radial anisotropy by using a more compact form related to the Love
parameters. For P−waves, the strength of radial anisotropy can be expressed as φ =

C/A, whereas for S−waves, it is given by ξ = N/L. Finally, there exists another
anisotropic parameter which relates to the ellipticity η = F/A − 2L. The phenomenol-
ogy of η can be understood through the parameter F which controls the velocity along
the direction between the fast and slow velocities.
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Azimuthal anisotropy component

Assuming a slightly anisotropic medium, azimuthal anisotropy in surface waves can
be decomposed into two terms that depend on its azimuth θ. These two terms are usu-
ally called the 2θ and 4θ components, and are small perturbations around the isotropic
phase velocities. The 2θ and 4θ components are sensitive to eight depth functions 2θ:
Gs, Gc, Bs, Bc, Hs, Hc, and 4θ: Cs, Cc (Montagner and Nataf, 1986).

We will only work with azimuthal anisotropy in Rayleigh waves. Rayleigh waves
are much more sensitive to the 2θ terms than the 4θ terms (Maupin and Park, 2015).
Thus, to first-order, we could eliminate the parameters Cs and Cc from the inversions.
Surface waves also poorly resolve the parameters Hs and Hc (Bodin et al., 2016). Thus,
we could reduce the model dimensionality associated with azimuthal anisotropy down
to four parameters Gs, Gc, Bs, and Bc.

Pseudo-regularisation

By using compact notations and first-order approximations, we are able to reduce the
possible number of parameters to be inverted for. Four of which: A, L, ξ, φ, and η

are sensitive to Love and Rayleigh phase velocities, and the remaining four: Gs, Gc, Bs,
and Bc are sensitive to the azimuthal variations in Rayleigh phase velocities. Working
with synthetic data allows us to access the correct values of the parameters defining
our Earth model. As we wish to compare conventional tomography with geodynamic
tomography, here, we will be placing ourselves in the best case scenario. We impose
strong a priori constraints to our solution in the tomographic problem. These con-
straints can be regarded as regularisation parameters which limit the regions in the
parameter space to search through. Here, we assume that we have the correct values
relating to the P−wave structure A, φ, η, Bs, and Bc; and thus, only invert for S−wave-
related structures L, ξ, Gc, and Gs. The list of parameters to/what not to invert for is
summarized in Table 2.1.

The 1D Earth structure spans from the surface down to a depth of 400 km. It is
subdivided into 62 layers of equal thicknesses where each layer has a given value of the
nine depth functions (see Table 2.1). Thus, the total number of unknowns to be inverted
for is 62 × 4 = 248. Bayesian inversion is therefore a suitable method to treat such
an under-determined inverse problem. To reduce the model dimensions further, the
mantle is parameterised using a piecewise cubic Hermite polynomials at fixed control
points. In the inversions, we vary the unknown parameters L, ξ, Gc, and Gs at the
control points and in-between these points, the parameters are interpolated. Below



48 Chapter 2. Bayesian Inference in Surface Wave Tomography

TABLE 2.1: Depth functions constrained by surface waves and their az-
imuthal variations.

Parameter Fixed Inverted for
A �
L �
ξ �
φ �
η �

Gc �
Gs �
Bc �
Bs �

the 400 km, we impose isotropic PREM (Dziewonski and Anderson, 1981). The 1D
structure is illustrated in Fig. 2.1

The model vector is thus defined as:

m = [L, ξ, Gs, Gc], (2.17)

where bold faces indicate that each parameter is also a vector of size 62.

2.5.2 The forward problem

For each step in the McMC algorithm, the forward problem is evaluated using the
proposed model (see Fig. 2.1) as input. The predicted data from this model is then
compared with the observed synthetics.

Isotropic Rayleigh cR(T) and Love cL(T) dispersion curves are computed using
normal mode summation in a spherical Earth (Smith and Dahlen, 1973). Here, the
computations are carried out in a fully non-linear approach following the method de-
veloped by Saito (1967) and Saito (1988). The software package DISPER80 (Saito, 1988)
takes 1D depth profiles of Vp, Vs, ρ, ξ, φ, and η as inputs to compute for cR(T) and
cL(T) and their associated sensitivity kernels using a Runge-Kutta matrix integration
scheme.

Following the pioneering work of Montagner and Nataf (1986), the azimuthal vari-
ations in surface wave phase velocities c1 and c2 can be evaluated using the following
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FIGURE 2.1: Schematic diagram of the 1D parameterisation. The entire re-
gion is parameterised with a piecewise cubic Hermite polynomials based
on a number of control points. Here, the control points are fixed in depth.
The model parameters are then varied at these points using an McMC
sampling algorithm. The layers in between are interpolated, and anything

below the 400 km is isotropic PREM.
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expressions:

c1(T) =
ˆ ∞

z=0

(
Bc(z)

∂cR(T)
∂A

+ Gc(z)
∂cR(T)

∂L

)
dz (2.18)

c2(T) =
ˆ ∞

z=0

(
Bs(z)

∂cR(T)
∂A

+ Gs(z)
∂cR(T)

∂L

)
dz. (2.19)

Eqs (2.18) and (2.19) imply that the azimuthal variations in Rayleigh waves are lin-
earized around the reference VTI model after averaging azimuthally. Such approxima-
tions are valid assuming the medium is quasi-isotropic (Montagner and Nataf, 1986;
Maupin and Park, 2015).

2.5.3 The data

For each geographical location, we can express the local dispersion curve as the sum
of the isotropic dispersion curves and their azimuthal variations giving:

c(T, θ) = c0(T) + c1(T) cos(2θ) + c2(T) sin(2θ), (2.20)

where T is the period, and θ is the azimuth of the propagating surface wave.

For Rayleigh waves, we invert c0, c1, and c2 whereas for Love waves, we only
invert c0. For simplicity, we neglect the higher-order terms associated with the elastic
parameter N. such assumptions are valid due to sparse sampling, low sensitivity, or
high noise levels.

2.5.4 Quantification of anisotropy

Anisotropic surface wave tomography is capable of constraining azimuthal and ra-
dial anisotropy. As previously discussed, the level of radial anisotropy can be quanti-
fied through the parameter ξ. Conversely, there are a variety of ways to quantify the
strength of azimuthal anisotropy, and its fast azimuth Ψ. Here, we quantify it in terms
of the peak-to-peak anisotropy:

azi =
2G
L

, (2.21)

where G =
√

G2
c + G2

s . The azimuth of fast propagation is given by:

Ψ = 0.5 arctan
(

Gs

Gc

)
. (2.22)
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2.5.5 The inverse problem

The inverse problem is cast in a full Bayesian procedure where the solution is an en-
semble of models distributed according to the posterior pdf p(m|dobs), accompanied
by their uncertainty bounds. In this framework, Bayes’ theorem holds:

p(m|dobs) ∝ p(m)p(dobs|m). (2.23)

The parameter space is searched using a Markov chain Monte Carlo (McMC) algo-
rithm. To produce reasonable acceptance rates, we employed the adaptive perturba-
tion scheme discussed in Section 2.4.2.

The likelihood

Assuming errors are uncorrelated and distributed according to a Gaussian distribu-
tion with zero mean and variance σc, the likelihood function corresponding to a single
dispersion measurement can be written as:

p(cobs|m) =
1

(2πσ2
c )

N/2 exp

[
−||cobs − c||2

2σ2
c

]
, (2.24)

where m is the 1D velocity model described in Fig. 2.1, N is the number of discreet
periods, and σ2

c is the estimated variance of the data noise. The forms of the likelihood
functions of the 2θ terms can be cast in the same manner.

The prior

Assuming prior independence, the prior p(m) can be written as a product of 1D priors
on each unknown parameter considered giving us:

p(m) =
Nlyrs

∏
i=1

[
p(Li)p(ξi)p(Gsi)p(Gci)

]
, (2.25)

where Nlyrs is the number of layers of the 1D Earth model. Eq. (2.25) implies that the
probability of accepting the transition is automatically zero should one of the parame-
ters be outside their respective bounds.
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The Sampling algorithm

We use a Markov chain Monte Carlo (McMC) algorithm to search the parameter space
for 1D Earth model candidates that could explain the surface wave dispersion mea-
surements. The sampler initiates by randomly drawing a reference model from the
prior followed by the evaluation of the likelihood function. Within the Markov chain,
the current 1D Earth model is perturbed at their control points (see the red arrows in
Fig. 2.1 to transition into a new state. This is performed by randomly selecting one of
the following set of moves:

1. Change the Love parameter L values of all control points according to a Gaussian
distribution centered at the current value of L.

2. Change ξ values of all control points according to a Gaussian distribution cen-
tered at the current value of ξ.

3. Change Gs values of all control points according to a Gaussian distribution cen-
tered at the current value of Gs.

4. Change Gc values of all control points according to a Gaussian distribution cen-
tered at the current value of Gc.

If the proposed 1D Earth model is within their respective prior bounds, we then solve
the forward problem completely. The computed dispersion curves are then compared
with the observed synthetics following the evaluation of the likelihood function. The
resulting probability is then used to evaluate the acceptance probability via the Metropolis-
Hastings algorithm. The outcome of the algorithm determines whether the proposed
model is added to the posterior distribution. Should it be rejected, the current model
is counted successively in the next iteration.

2.5.6 Application to a 3-D deforming upper mantle induced by a sink-

ing anomaly

We perform 1D anisotropic surface wave tomography at 32 different geographical lo-
cations. To efficiently implement the inversions for each location, the algorithm is par-
allellised in such a way that multiple Markov chains can simultaneously search the
parameter space independently from one another. Here, one Markov chain is allo-
cated to one processor. At the end of the inversion procedure, the ensemble of models
from each chain are then gathered to construct the posterior probability distribution.
Since we consider 20 independent chains for each geographical location, and we have
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FIGURE 2.2: Snapshot of a 3-D deforming mantle induced by a sinking
spherical anomaly. The model domain is of the size 400 km × 400 km ×
400 km. The isovolumetric gradients correspond to the 3-D temperature
profile of the region, and the superimposed vector field is the flow induced
by the spherical body. The dashed lines at the surface represent the 32

geographical locations of the local surface wave dispersion curves.

32 locations in total, we need a hefty 32 × 20 = 640 cores to implement the parallel
scheme.

We demonstrate the method in the case of a 3-D deforming upper mantle induced
by a negatively buoyant spherical anomaly, akin to a Stoke’s sinker. As illustrated in
Fig. 2.2, the surrounding material responds to the sinking anomaly by producing a
return flow. The return flow, together with the downward motion of the anomaly, gen-
erates local convection cells whose scales are consistent with that of the upper mantle
(which we set at Ls = 400 km). We setup the geographical locations of the local sur-
face wave dispersion curves in such a way that they provide a good coverage of the
anomaly. Here, we use 32 locations that slice the region evenly into two (refer to the
dashed lines).

In the succeeding chapter, we will explain in detail the full forward problem that
allows us to arrive at azimuthally-varying dispersion curves from the deformation pat-
tern and from the temperature field. For now, we have at hand the observed synthetics
generated by a 3-D deforming upper mantle.

To mimic real-Earth observations, we tarnish the observed synthetics with noise.
We added random uncorrelated noise with standard deviation σcR,L = 0.001 km/s for
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(A) (B)

(C) (D)

FIGURE 2.3: Surface wave phase velocity dispersion curves and their az-
imuthal variations at a specific geographical location. Solid blue lines are
the correct values and the scatter plots are the ones added with noise and

are to be inverted.

TABLE 2.2: Prior ranges of the unknown model parameters.

L(GPa) ξ Gc(GPa) Gs(GPa)
min 20 0.7 -5 -5
max 150 1.3 5 5

the isotropic dispersion curves cR and cL, and σc1,2 = 0.0005 km/s for the azimuthal
components c1 and c2. Fig. 2.3 shows the resulting dispersion curves at one given
location. Solid blue lines are the synthetic dispersion curves without noise and the red
dots represent the synthetics with added random uncorrelated noise. By stacking the
dispersion curves laterally (i.e., placing them side-by-side), we are able to visualize the
true structure in the data space. Fig. 2.4 shows the effect of the density anomaly onto
the resulting surface wave dispersion maps. The negative subsidence observed in the
Rayleigh map corresponds to an increases in its speed as it traverses the cold anomaly.
The contaminated data is then used to invert for the elastic structure.

For each geographical location, the inversion consists of 20 independent Markov
chains each containing 1.0 × 106 samples initiated at a random 1D Earth model drawn
from the prior distribution. The prior bounds of each model parameter is summarized
in Table 2.2. The models are then collected after a burn-in period of 900,000 samples
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(A)

(B)

FIGURE 2.4: Constructed 2D surface wave maps with added noise to be
used in the inversion. (A) Rayleigh. (B) Love. The negative subsidence
in the Rayleigh map corresponds to the cold anomaly mapped in the data

space.
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to ensure the chains are in steady-state and are properly sampling the posterior dis-
tribution. Note that even though the models are randomly initiated, the positions of
the control points are fixed, and thus may have strong implications on the recovered
structures.

Fig. 2.5 shows the mean velocity structure and the mean radial anisotropy recov-
ered from Bayesian inversion, and the correct structures. The 2D models are con-
structed by placing the recovered 1D mean structures side-by-side. Surface waves were
able to successfully map the most prominent feature, that is, the seismic anomaly as-
sociated with the denser sphere. Radial anisotropy was also successfully recovered.
However, one of the major drawbacks of surface waves is that they are more sensitive
at shallower depths. Hence, the top layers are better resolved than the bottom layers.
We thus expect the upper portion to exhibit less model uncertainties that the bottom
half. Additionally, some essential features are smeared vertically, which we attribute
to the inherent long period nature of surface waves. The structure also appears to be
smooth with depth which in part is due to the choice of parameterisation (i.e., cubic
splines are smooth functions). The lateral resolution however does not exhibit com-
plete smoothness; instead, appears to be degraded at some regions. This is a result
of using randomly uncorrelated data. In this case, the random data noise manifest as
small-scale artifacts in the model space.

One of the main advantages of a Bayesian framework is we can express the solution
as a marginal posterior pdf where the width of the distribution quantifies the model
uncertainties. Fig. 2.6 shows 1D marginal distributions versus depth of L, ξ, peak-to-
peak azimuthal anisotropy, and its fast azimuth Ψ at a specific geographical location.
These depth profiles were obtained by merging the ensemble of models from the 20
Markov chains. The entire number of models m used to build the posterior pdf is
thus 2.0 × 106. Results show that the profiles successfully capture the true structure
although sharp gradients fail to be resolved. The resulting azimuthal anisotropy shows
some peculiarities. Since we only make use of five control points which are fixed, the
saddle points of the true azimuthal anisotropy fail to be captured. The increase in
model uncertainty at depths is again a result of surface waves being concentrated at
shallower depths.

2.5.7 Discussion and conclusion

We have demonstrated conventional anisotropic surface wave tomography. Here, the
inverse problem is fully Bayesian in that the solution is an ensemble of models dis-
tributed according to a posterior probability. Here, the parameter space is searched
using a Markov chain Monte Carlo algorithm with importance sampling. This method
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(A) (B)

(C) (D)

FIGURE 2.5: True models (left), Mean models recovered from the inversion
(right). (A) and (B) L− structure, (C) and (D) radial anisotropy.
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FIGURE 2.6: 1D marginal posterior distributions of L, ξ, peak-to-peak az-
imuthal anisotropy, and its fast azimuth Ψ at a specific geographical lo-
cation, inferred from the Bayesian inversion of surface wave dispersion

curves. The true structures are plotted in solid red.
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was applied to azimuthally-varying surface wave dispersion curves computed from a
3-D deforming upper mantle.

Conventional surface wave tomography was able to recover robust features. How-
ever, the resolving power of surface waves limits the vertical resolution of the recov-
ered structures. Surface are long period observations and hence cannot resolve small-
scale features. These features are instead spatially-averaged and are smooth as a result.
It is also important to emphasize that the choice of parameterisation regularises the in-
verse problem. As initially stated, the positions of the control points where the values
are perturbed are fixed. As a consequence, the results from all the chains inflict strong
dependency of the final result on the parameterisation. Such is apparent in the recov-
ered azimuthal anisotropy structures. Finally, since the energy associated with surface
waves tend to be more concentrated near the surface, they thus tend to decrease reso-
lution with depth. This is evident in the inversions where below the 250 km mark, the
width of the posteriors begin to increase.

To handle such complications, possible future avenues include the incorporation
of higher-modes. Throughout the inversions, we only considered fundamental-mode
surface waves. Using higher modes would increase the sensitivity of surface waves
to deeper structures thus providing adequate resolution with depth (e.g. Simons, Ziel-
huis, and Van Der Hilst, 1999). Another alternative route we could take is to consider
trans-dimensional approaches where the number of model parameters to be inverted
for are treated as an unknown. In such cases, the model adapts to the data itself, thus
providing a state of balance between model complexity and resolution (Bodin et al.,
2012).

Across the horizontal, the recovered structures appear to be less resolved since un-
like teleseismic body waves, surface waves exhibit poor lateral resolution. Still, we
should expect the horizontal structures to be smooth. This is not the case however as
this was a result of using randomly uncorrelated data noise. This random noise maps
as small-scale artifacts in the model, which clearly explains the lateral discontinuities.
Since real data noise are inherently spatially- and periodically-correlated, it is there-
fore necessary to build the full data covariance matrix and account for them in the
likelihood function.

Finally, even though we placed ourselves in the best case scenario, that is, impos-
ing hard a priori constraints in the inversions by setting the correct values for A, φ, η,
Bc, and Bs, we are still inhibited by the problems associated with conventional surface
wave tomography. In practice, these values are treated as unknowns in the inversion
or are determined based on empirical relations. Implementing the former complicates
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the inversion procedure in a way that it increases the model complexity, and that us-
ing only one type of data may not resolve these parameters at every location. One is
thus forced to go with the latter, where they utilise simple relations such as the VpVs

ratio to constrain Vp-related parameters. Velocity models inferred from such simplistic
formulations however may not be representative of the would-be recovered structure
especially in situations where complex underlying mechanisms dictate the lithologi-
cal integrity of the region. The tomographic problem should therefore be approached
from a different perspective, where no symmetry of the elastic tensor is imposed at the
outset, and are instead driven by key geophysical processes.



61

Chapter 3

Geodynamic Tomography: The Forward

Problem

3.1 Summary

As demonstrated in the previous chapter, conventional surface wave tomography is
indeed a powerful technique to constrain the seismic structure of the upper mantle.
Its interpretation however is equivocal and is usually up to the tomographer’s pre-
rogative. Apart from this even though the problem is cast in a Bayesian framework,
constraining the 13-depth functions at every geographical location is still proven to be
a gruelling task. Even with the imposition of hard constraints on the prior, surface
waves still fail to render some important features not only due to its very nature and
the choice of parameterisation, but also due to the inherent complexity brought about
by a 3-D-deforming upper mantle. This felt the need to redefine the surface wave to-
mography problem, where geodynamical and petrological constraints are introduced
to estimate the full elastic tensor at every geographical location and thus precisely ex-
plain the observations measured at the surface. In this way, it also reduces the possible
number of Earth models down to a subset that are consistent with geodynamical and
mineralogical predictions. Finally, incorporating geodynamical constraints address the
high-dimensionality of anisotropic surface wave tomography by only utilising a single
scalar field (i.e., temperature). In this chapter, we discuss in detail the complete for-
ward problem which consists of four major steps: (1) geodynamic mantle flow model-
ing, (2) mineral physics modeling, (3) thermodynamic modeling, and (4) surface wave
dispersion calculations.
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3.2 Geodynamic modeling of upper mantle flow

3.2.1 3-D instantaneous flow with variable viscosity

We consider buoyancy-driven convection in a highly-viscous, incompressible, creep-
ing element of fluid in a 3-D Cartesian domain. These density heterogeneities pertain
to pervasive mantle rocks that are gravitationally unstable. Its density at a given geo-
graphical position can be expressed as a function of four major variables:

ρ = f (T, P, M, C), (3.1)

where T is temperature, P is hydrostatic pressure, M is mineral composition, and C is
chemical composition. Assuming the rocks to be independent of C and M, and that
the P and T dependence of ρ is separable, one may express the P and T variations of ρ

with:
α =

−1
ρ

∂ρ

∂T
, (3.2)

and
β =

1
ρ

∂ρ

∂P
. (3.3)

The variables α and β are the thermal expansion and compressibility coefficients, re-
spectively. Typically treated as constants in most instantaneous flow models, α and β

> 0 ensures that the density increases with pressure and decreases with temperature
at a constant pace. In real Earth scenarios however, α and β are very much dependent
on P and T and thus more realistic equations of state should be considered to model
density variations. Solving the differential equations by separation of variables yields:

ρ = ρ0 exp
(−α(T − T0) + β(P − P0)

)
(3.4)

where ρ0 is a reference value for density, and T0 and P0 are the temperature and pres-
sure at ambient conditions. Throughout our work, we assume the response of the
density to variations in pressure to be negligible compared to temperature, and since
rocks tend to exhibit strong resistance to changes in its mechanical properties, we can
treat α(T − T0) to be minuscule and thus exploit a first-order Taylor approximation to
eq. (3.4):

ρ(T) = ρ0[1 − α(T − T0)], (3.5)

resulting in a linear equation of state.

The dynamics of this system, just like any classical particle, can be described by
Newton’s second law but applied to an element of fluid. Its full form is formulated
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giving the well-known Navier-Stokes equation:

−∇P +∇ · τ + ρgêg = ρ
Du

Dt
, (3.6)

where τ is the deviatoric stress tensor obtained from a constitutive law, g is gravity,
and the last term is the Lagrangian derivative applied to the flow field u. One useful
assumption applied to most fluid dynamics models is the incompressibility criterion.
In geodynamic modeling for example, rocks are tend to be sturdy enough to resist
variations in density with time. Such a case simplifies the constitutive law to:

τij = 2ηεij, (3.7)

where η is the dynamic viscosity, and εij is the strain rate tensor. Under this condition,
the conservation of mass can be reduced to:

∇ · u = 0. (3.8)

In the convective mantle, rocks pervade in a laminar fashion over geologic time
scales. Such can be modeled by considering highly viscous flows where the inertial
term of eq. (3.6) vanishes due to its negligibility compared to the surface forces and
the body forces. Since we work with buoyancy-driven flows, we apply the Boussinesq
approximation. Here, the density variations are only accounted for when they appear
in the body force term. The momentum equation simplifies to the Stokes equation:

−∇P +∇ · τ + ρgêg = 0, (3.9)

which is also referred to as creeping flow. The pressure can be decomposed into two
parts: (1) a hydrostatic term PH, and (2) a dynamic term PD. By the distributive prop-
erty, the gradient of P can be expressed as:

∇P = ∇PH +∇PD. (3.10)

Note that the hydrostatic term can be simplified further by knowing that ∇PH = ρ0g.
Applying the simplification and plugging eq. (3.5) to eq. (3.9) yields:

−∇PD +∇ · τ + αρ0g(T − T0) = 0. (3.11)

Finally, apart from the conservation of mass and momentum, dynamic fluid parcels
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have to abide by the conservation of energy. With this, geodynamic models have to in-
corporate heat transport phenomenon to predict variations in the temperature field.
However, since we will be dealing with present-day temperature fields and instan-
taneous flow solutions, the convection-diffusion equation for temperature can be ig-
nored.

3.2.2 Computational strategy

In this section, we explain in detail our computational strategy to solve eq. (3.11) for a
given class of temperature fields.

Non-dimensionalisation

We adopt scaling relations to introduce non-dimensional counterparts of the relevant
variables as a prerequisite in solving the eq. (3.11) numerically. In this way, it reduces
the number of free parameters thereby simplifying the analysis of the problem at hand.
The scaling relations are shown below. Here, the primed variables pertain to the non-
dimensional form of the free parameters.

η′ = η

η0
u′ = u

Ls

κ
(3.12)

P′ = P
L2

s
η0κ

T′ = T
T0

,

where κ is the thermal diffusivity coefficient and Ls is the characteristic length scale
of the model domain. Note that the scaling factor of the deviatoric stress tensor is the
same with pressure. Thus, the momentum equation can be written alternatively as:

η0κ

L3 (−∇P′ +∇ · τ ) = −ρ0αgT′ êg. (3.13)

Finally, the non-dimensional form of the momentum equation is:

−∇P +∇ · τ + RaT′ êg = 0. (3.14)

Ra is the well-known Rayleigh number which regulates the degree of natural con-
vection. In the case of instantaneous flows, it controls the magnitude of the velocity.

Ra =
ρ0αT0L3

s g
η0κ

. (3.15)
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Throughout this work, we impose a power law rheology for η′ analogous to Ar-
rhenius law for viscous fluids. Known as the Frank-Kametnetzkii approximation, the
viscosity obeys an exponential law depending only on temperature:

η′ = exp(E(T′ − 1)), (3.16)

where E is the activation energy for viscosity. Microscopically, E is interpreted as an
energy barrier describing the degree of shear resistance between molecules. This bar-
rier has to be overcome by a thermally-activated process for molecules to get past each
other (Glasstone, Laidler, and Eyring, 1941).

Multigrid method with variable viscosity

Solving the Stokes equation using direct methods interdicts one from producing fine
resolution models due to limitations related to computational memory and computa-
tional speed. Such is critical specifically when transitioning from 2D to 3-D since the
number of linear equations to be solved and the number of mathematical operations
required to solve such equations scale with the dimensionality. Thus to preserve the
resolution in 3-D, the amount of linear equations increases by at least two orders of
magnitude, and as a consequence the computational operations has to increase by at
least three orders of magnitude. To address this problem, iterative methods have been
introduced to combat memory limitations. However, most of the well-known itera-
tive techniques, Gauss-Sidel for instance, faces the problem of resolution. Here, the
number of iterations needed to come up with a solution model grows with increasing
resolution.

To overcome these limitations, we implement the multigrid algorithm which was
first formulated by Fedorenko (1964) and has been actively developed ever since. Just
like any classical iterative methods, multigrid allocates computational memory effi-
ciently. Its main advantage however lies on the fact that the number of iterations is
independent of the grid size thus speeding up the rate of convergence. The basic idea
is that the system of equations are solved simultaneously on several grids with varying
resolution where information exchange is permitted between these grids.

We adopt the approach of Albers (2000) where we solve the Stokes problem with
variable viscosity using multigrid methods on a staggered grid parameterisation. The
latter simply means that in a unit cell, scalar fields are assigned/solved at the geomet-
ric center whereas vector field components are parameterised at the center of the cell
faces with directions parallel to the surface normal. We follow this by employing a
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control-volume sequence to discretise the mass conservation and momentum conser-
vation equations:
Mass conservation

uxijk − uxi−1jk

Δx
+

uyijk − uyij−1k

Δy
+

uzijk − uzijk−1

Δz
= 0 , (3.17)

Momentum conservation

τxx
i+1jk − τxx

ijk

Δx
+

τ
xy
ijk − τ

xy
ij−1k

Δy
+

τxz
ijk − τxz

ijk−1

Δz
= − pi+1jk − pijk

Δx
, (3.18)

τ
xy
ijk − τ

xy
i−1jk

Δx
+

τ
yy
ij+1k − τ

yy
ijk

Δy
+

τ
yz
ijk − τ

yz
ijk−1

Δz
= − pij+1k − pijk

Δy
, (3.19)

τxz
ijk − τxz

i−1jk

Δx
+

τ
yz
ijk − τ

yz
ij−1k

Δy
+

τzz
ijk+1 − τzz

ijk

Δz
= −(Ra

Tijk+1 + Tijk

2
+

pijk+1 − pijk

Δz
) , (3.20)

where

τxx
ijk = 2ηijk(

uxijk − uxi−1jk

Δx
),

τ
yy
ijk = 2ηijk(

uyijk − uyij−1k

Δy
),

τzz
ijk = 2ηijk(

uzijk − uzijk−1

Δz
),

τ
xy
ijk = 2η

xy
ijk(

uxij+1k − uxijk

Δy
+

uyi+1jk − uyijk

Δx
),

τxz
ijk = 2ηxz

ijk(
uxijk+1 − uxijk

Δz
+

uzi+1jk − uzijk

Δx
),

τ
yz
ijk = 2η

yz
ijk(

uyijk+1 − uyijk

Δz
+

uzij+1k − uzijk

Δy
).

Eqs (3.17), (3.18), (3.19), and (3.20) form a discrete set of equations that can be ex-
pressed in block form as: ⎛⎝B AT

A 0

⎞⎠⎛⎝u

P

⎞⎠ =

⎛⎝f

0

⎞⎠ (3.21)

The 2 × 2 matrix is acted upon the solution vector (u, P)T to produce the source term
(f, 0)T containing the body force (i.e. gravity). The Jacobian operator contains the
constitutive equation B related to the rheology of the medium. Operators AT and
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A are the gradient, and the divergence, respectively. As mentioned earlier, classical
iterative methods such as Gauss-Seidel, Jacobi, and successive over-relaxation (SOR)
are usually used to solve eq. (3.21). The success of these methods however decline with
model complexity. We therefore employ the multigrid method to solve eq. (3.21). Here,
the algorithm reduces the modeling errors on a coarse grid, and uses the coarse-grid
solutions to improve convergence on a refined grid. We briefly elicit the algorithm
given a set of linear equations of the form Ax = b:

1. A smooth solution is initially obtained iteratively followed by the damping of
high-frequency errors. This technique is called smoothing. Here, we use the
SIMPLER algorithm (Patankar, 2018) since classical iterative procedures are invalid
when solving block matrices with zeros on the main diagonal.

2. This is followed by restriction where information (e.g., residuals) have to be trans-
ferred from a fine grid to a coarse grid. This means that low frequency errors ε

from (1) are mapped onto the coarse grid domain. To obtain coarse grid errors,
we solve the equation Acεc = Rε where Ac and εc are the coarse grid counterparts
of the Jacobian and the residual, respectively, and R is the restriction operator.

3. Once restriction is cycled several times, εc is delineated onto a finer grid. This
step is called prolongation. The prolongation operator is then applied onto εc,
the resulting prolongation error is then summed with the fine grid solution to
increase the rate of convergence. Prolongation is performed until the initial grid
size is attained.

The code is written in Fortran90 and parallelised with OpenMP (i.e., shared memory
processing among multiple threads). The inputs are the scalar fields temperature and
viscosity which are adimensionalised before solving. The algorithm terminates upon
reaching a tolerance value that is chosen ad hoc. It determines the accuracy of the
method but also evinces trade-offs with the computation time. For instance, choosing
small values would increase the model accuracy however at the cost of suppressing
the speed of convergence. Once the flow is calculated, we compute the local velocity
gradient by means of finite difference. Central differencing we get:
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Lxx
ijk =

1
2

uxi+1jk − uxi−1jk

Δx
, Lyx

ijk =
1
2

uyi+1jk − uyi−1jk

Δx
, Lzx

ijk =
1
2

uzi+1jk − uzi−1jk

Δx
,

(3.22)

Lxy
ijk =

1
2

uxij+1k − uxij−1k

Δy
, Lyy

ijk =
1
2

uyij+1k − uyij−1k

Δy
, Lzy

ijk =
1
2

uzij+1k − uzij−1k

Δy
,

Lxz
ijk =

1
2

uxijk+1 − uxijk−1

Δz
, Lyz

ijk =
1
2

uyijk+1 − uyijk−1

Δz
, Lzz

ijk =
1
2

uzijk+1 − uzijk−1

Δz
.

We test the algorithm both in series and in parallel given an initial grid resolution
of 64 × 64 × 64 to weigh up the computation times. Compared to serial computation
which ran in about 6.6s, the parallel computation took six times faster within an 8-
core processor which we found to be the optimal number of cores. It is worth noting
that the speed of convergence does not necessarily scale with the number of cores.
As for the physical parameters governing the flow, we chose Ls = 400 km, α = 2.0 ×
10−5 K−1, g = 9.81 m/s2, η0 = 1021 Pa, T0 = 1900 K, κ = 10−6 m2/s, and ρ0 = 3.8 ×
103 kg/m3. From these values, one may then compute the Rayleigh number using
eq. (3.15). Fig. 3.1 illustrates the flow field with free-slip boundary conditions across
the borders of the box and the second invariant of the velocity gradient tensor for
a given class of temperature fields. Since the viscosity obeys a power law rheology
with temperature, it is essential for the temperature fields to be smooth. In this way,
the viscosity as well avoids sharp contrasts which might deteriorate the convergence
towards a stable solution.

3.3 Texture evolution modeling of upper mantle miner-

als

In this section, we discuss the role of mineral-scale fabrics in interpreting seismic anisotropy
measurements and how the latter associates with upper mantle flow. Let us consider a
polycrystalline aggregate composed of Ncrystal crystals. Each crystal has its own crys-
tallographic axis oriented at a given position with respect to a laboratory frame, and
a volume fraction Vfrac (i.e., the ratio between the volume of a single crystal versus all
constituents). Each crystallographic axis is measured using a set of three Euler angles
given by Φ, Θ, and Ψ. By convention, we utilise the Bunge ZXZ notation (i.e., a rota-
tion by an amount Ψ about the Z1 axis, followed by Θ about the X2 axis, lastly Φ about
the Z2 axis). Supposing that the crystals are randomly-oriented, the aggregate contains
no distinguishable fabric and is thus considered to be seismically isotropic. Upon the
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FIGURE 3.1: 2D representation of a 3-D instantaneous flow field and its
corresponding deformation gradient (second invariant) for a given family
of temperature fields in a 64 × 64 × 64 grid. We use the multigrid method
to approximate the solution to eq. (3.21). (Left panels) Sinking spherical
anomaly. (Middle panels) Ascending plume. (Right panels) Subduction.
Color gradient from blue to red denotes intensity. Flow velocity’s magni-
tude are the strongest where the temperature anomaly is located whereas
its gradients specify the zones where shear deformation appears to be the

largest.
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deformation of the aggregate, each crystallographic axis on average tends to rotate to-
wards the direction of shear. Thus, the vector sum of these individual orientations take
a ’preferred’ orientation. This phenomenon is called crystallographic preferred orien-
tation (CPO), and is one of the primary sources of long wavelength seismic anisotropy
observed in tomographic images.

3.3.1 Finite strain theory

Before we examine the well-established theory governing CPO evolution, we briefly
discuss as a preliminary a first-order theory that may explain how seismic anisotropy
relates with mantle flow in the absence of constraints from mineral physics. McKen-
zie (1979) detailed how finite strain theory may be a substitute to constrain patterns
of mantle deformation. In his work, he analysed the connection between seismic
anisotropy and finite strain under the proposition that anisotropy is influenced only
by the properties of the finite strain ellipse (fse). We commence by determining the
distance between two particles in an element of fluid with positions xa and xb both
taken at time t with respect to their initial positions xa

0 and xb
0 at t = 0:

xa(t)− xb(t) = F(t)[xa
o − xb

o ], (3.23)

where F is the finite strain tensor responsible for the displacement of both particles
resulting to a deformed element. At time t = 0, F is just the identity matrix, hence, no
deformation is imposed. Supposing r(t) = xa(t) − xb(t), the displacement of these
particles at a later time is:

r(t + Δt) = xa(t + Δt)− xb(t + Δt). (3.24)

Subtracting the two equations above and taking the limit as Δt → 0 we get the differ-
ence between the instantaneous velocities of these particles as:

Dr
Dt

= ua(t)− ub(t), (3.25)

where D/Dt is the material derivative. Assuming that the particles are much smaller
than the length scale of the convection cells, one may write the right-hand side of
eq. (3.25) as a small perturbation around the reference velocity. Equation eq. (3.25)
becomes:

Dr
Dt

= Lr, (3.26)
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where L is the local velocity gradient tensor. Substituting r with the right-hand side of
equation eq. (3.23) yields:

DF

Dt
= LF. (3.27)

Here, one may think of particles a and b as points along a flow line. Thus, for each ele-
ment along a flow line, there is a corresponding local velocity gradient L evaluated at x,
and a time spent t by a tracer particle. If we assume that the flow is time-independent,
the advection terms in the material derivative vanish. This means that it easens the
computation of F since it is evaluated along a streamline. For steady-state solutions we
finally get:

∂F

∂t
= LF. (3.28)

Before we relate F with anisotropy, we first perform a polar decomposition of the for-
mer by taking the product of two second rank tensors: F = RE, where R and E are the
rotation and the left-stretch matrices, respectively. We can express E as:

E = FFT. (3.29)

Essentially, E is interpreted as an operator that transforms a sphere into an ellip-
soid. Thus starting from an undeformed configuration (i.e., a sphere), a material un-
dergoing progressive deformation along a flow line accumulates strain and forms an
ellipsoid. In such a scenario, the major axis of the fse lengthens continuously as strain
accumulation progresses. The eigenvalues of E given by λ1 > λ2 > and λ3 pertain to
the lengths of the fse axes, and the eigenvectors are their corresponding orientations.
It is convenient to introduce a new parameter that characterises the strength of the fi-
nite deformation based from the eigenvalues of the fse. Known as natural strains, we
measure the amplitude of finite deformation as:

λ =
1
2

ln(
λ1

λ3
), (3.30)

where λ is the natural strain, λ1 is the length of the major axis, and λ3 is that of the mi-
nor axis. Backed by numerous studies (e.g. Ribe, 1989; Ribe, 1992; Zhang and Karato,
1995; Becker et al., 2003), finite strain theory proved to be a fast and cheap proxy for
seismic anisotropy. In principle, the fast axis of mantle olivine at sufficiently low tem-
peratures (≈ 1400 K), and at natural strains up to λ = 1 was observed to be in line
with the long axis of fse. This means that body waves tend to move faster along the
direction of maximum extension of strain, and thus mimics the spatial distribution of
CPO-driven seismic anisotropy. At high temperatures, and moderate to high strains (λ
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≈ 0.75), the fast axis of olivine tends to be parallel to the shear direction. It has been the-
orised that for simple shear flows, dynamic recrystallisation predominates over plas-
tic deformation at high temperatures causing misalignment between the fast axis of
olivine and the long axis of the fse.

3.3.2 Continuum mechanics approach to CPO evolution

In this section, we elaborate the dynamics of CPO evolution using a theory for continu-
ous bodies. As such, we treat the spatial distribution of the individual crystallographic
orientations also called the orientation distribution function (odf) as a continuous en-
tity.

Suppose that a single crystal has an orientation represented by the three Euler an-
gles, Φ, Θ, and Ψ, the odf, which we denote as h, is a function that describes the spatial
distribution of the individual orientations at time t. If we slightly perturb the orienta-
tion α, where α = [Φ, Θ, Ψ], by an amount dα, h(α,t)dα is the volume fraction of crystals
with orientations between α and α+dα at a given time t. With this, let us consider an
ensemble of crystals within an aggregate. If we let the aggregate yield under a locally
imposed deformation, individual crystals respond by rotating at a rate dα

dt where we
assume no interaction taking place between each crystal. Since the rotation rate is in-
dependent of the orientation of a neighboring crystal, the evolution with time of the
crystal volume fractions between two different states of orientation is:

∂h
∂t

+
∂

∂α
(α̇h) = 0. (3.31)

In terms of the Euler angles, eq. (3.31) can be finally expanded into:

∂h
∂t

+
∂

∂Φ
(Φ̇h) +

1
sin Θ

∂

∂Θ
(Θ̇h sin Θ) +

∂

∂Ψ
(Ψ̇h) = 0. (3.32)

Eq. (3.32) therefore represents CPO evolution as the time rate of change of crystal vol-
ume fractions in an interval [α, α+dα] while being compensated by a net outflow of
crystallographic orientations in the same interval at a specified time t.

3.3.3 Deformation mechanisms for texture evolution

The evolution of h as shown in eq. (3.32) depends on ones knowledge of α̇. Thus,
eq. (3.32) is particularly useful if we specify the rotation rate. Although assigning a
function for α̇ would already suffice in the case of CPO evolution of a uniaxially com-
pressed olivine, it is still rather simplistic and hence may not accommodate complex
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flow patterns. With this, linking seismic anisotropy with realistic flow patterns is ill-
advised. To fill this gap, we discuss a kinematic formalism where an analytical expres-
sion for α̇ is available. The aggregate then responds to an imposed macroscopic defor-
mation through two main deformation mechanisms (e.g. Ribe and Yu, 1991; Kaminski
and Ribe, 2001): (1) plastic deformation which drives the changes in crystallographic
orientation, and (2) dynamic recrystallisation which administers the development of
volume fractions of crystals.

Plastic deformation

Since plastic deformation depends on mineral composition, we only consider models
of CPO evolution of a single mineral species, in this case, olivine whose number of slip
systems S (i.e., for materials undergoing plastic deformation, a slip system is a family of
slip planes where atoms are densely packed, and slip vectors that represent the dislo-
cation direction tangent to the corresponding slip plane.) is three assuring the validity
of the theory which we are about to discuss. Let us recall the polycrystalline aggregate
which we described at the beginning of the section composed of Ncrystal crystals with
Vf rac volume fractions. In this formalism, each grain has its own orientation defined
by the three Euler angles. Denoting the subscript p as the pth crystal, the aggregate
has an ensemble of orientations αp=1,Ncrystal = [Φp=1,Ncrystal , Θp=1,Ncrystal , Ψp=1,Ncrystal ]. By
considering an unrotated crystal with respect to the lab frame, one can perform a se-
quence of orthogonal transformations resulting into the rotated configuration. Apply-
ing the Bunge convention, the transformation matrix composed of a matrix of direction
cosines, for the pth crystal is given by:

bp
ij =

⎛⎜⎜⎝ cos(Ψp) cos(Φp)−sin(Ψp) sin(Φp) cos(Θp) sin(Ψp) cos(Φp)+cos(Φp) sin(Ψp) cos(Θp) sin(Ψp) sin(Θp)

− sin(Ψp) cos(Φp)−cos(Ψp) sin(Φp) cos(Θp) − sin(Ψp) sin(Φp)+cos(Φp) cos(Ψp) cos(Θp) cos(Ψp) sin(Θp)

sin(Φp) sin(Θp) cos(Φp) sin(Θp) cos(Θp)

⎞⎟⎟⎠
(3.33)

Individual crystals may respond differently when the crystal aggregate is subjected
to a macroscopic deformation. In the case of olivine in the upper mantle, the aggregates
are subjected to progressive simple shear along the direction of flow and a rigid body
rotation. Locally, the total velocity gradient within an olivine grain with S = 3 is just
equal to the total amount of simple shear deformation across the three slip systems S1,
S2, and S3 accompanied by a rigid body rotation around the crystallographic axis. We
assign l as the local velocity gradient tensor, and L as the macroscopic velocity gradient
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tensor. l is expressed as:

lij =
3

∑
S=1

2 ˙εSrinj − εijkα̇k, (3.34)

whereas L is:
Lij = Ėij − εijkΩk. (3.35)

where εijk is the levi-civita tensor. The variables r and n in eq. (3.34) are the unit vectors
corresponding to the slip direction and the direction normal to the slip plane, respec-
tively. The first expression in eq. (3.34) just takes the sum of each simple shear contribu-
tion at a rate ε̇ for each slip system. Eij is the macroscopic strain rate which is imposed
by the flow. The anti-symmetric portions of both equations eq. (3.34) and eq. (3.35)
correspond to the single-crystal rotation rate, and the rotation rate of the aggregate,
respectively.

In this model of plastic deformation, ε̇ is not implicitly defined. Instead, we apply
an empirical relation coming from a product of different studies, that relates the strain
rate to the resolved shear stress (RSS) τS at a given slip system S. Here, the resolved
shear stress is the component of stress that resolves skewed slip planes. In order to
relate the constitutive properties of a macroscopic system (i.e., the deformation of the
aggregate) with that of its constituents (i.e., deformation of each grain), it is assumed
that the stress tensor of both systems are proportional to each other. To quantify the de-
gree of activity occuring in a given slip system with respect to an imposed macroscopic
deformation, we utilise the weakest slip system (S = 1) resulting to:

ε̇s

ε̇
= γS =

ISτ1

I1τS

∣∣∣∣ ISτ1

I1τS

∣∣∣∣n−1

, (3.36)

where n is the stress component. The variable I is a scalar that links the resolved shear
stress with the macroscopic strain rate tensor Eij, I = rinjEij. In this formulation, each
slip system is a function of their respective reference RSS values and their matching
orientations. Knowing eq. (3.36), one may rewrite eq. (3.34) to match the macroscopic
velocity gradient. Fleshed out by Ribe and Yu (1991), the local velocity gradient tensor
for each grain is given by:

lij = Gij ε̇ − εijkα̇k, (3.37)

where Gij is a dimensionless tensor that controls the activities of all slip systems foisted
by a macroscopic deformation:

Gij = 2
S

∑
s=1

γsrijnj. (3.38)
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For any given mineral, von Mises criterion dictates that only crystals whose number
of independent slip systems greater than 5 could accommodate deformation past the
yield point (i.e., the onset of plastic behavior under an imposed deformation). Thus, it
is not enough for minerals such as olivine where S = 3 to acclimate macroscopic defor-
mation. As a result, one cannot equate the microscopic velocity gradients in individual
grains with the macroscopic velocity gradients even if one arbitrarily assigns α̇ and ε̇

to coerce lij into matching with Lij. The discrepancy between the two variables may be
alleviated by introducing new means of deformation mechanisms. It may be assumed
that this gap may be filled with secondary mechanisms such as dislocation climb and
grain boundary sliding. Instead of choosing α̇ and ε̇, a more realistic approach is to
minimise the volume-averaged differential strain rate (i.e., the difference between the
macroscopic and local velocity gradients) to obtain α̇ and ε̇. The average strain rate in
the aggregate is:

〈D〉 =
Ncrystal

∑
p=1

Pp(Lij − lij)(Lik − lik). (3.39)

Pp is a tensor of the pth crystal that describes the shape currently taken by a crystal
where its principal axes is proportional to the length of the symmetry axis of an el-
lipsoid. In order to proceed with the minimisation, one must assume that the volume
average of the local velocity gradients assigned to each crystal be equal to the macro-
scopic velocity gradient constraining the aggregate:

1
N

N

∑
p=1

(Gp
ij ε̇

p − εijkα̇
p
o ) = Lij. (3.40)

Once 〈D〉 is minimised, a system of 4N linear equations appear that describe α̇ and ε̇.
The solutions to these equations for a pth grain are given by:

˙εp =
(Lii+1 − Li+1i)(G

p
ii+1 − Gp

i+1i)− 2Gp
ijLij

(Gp
kl+1 − Gp

k+1l)(G
p
kl+1 − Gp

k+1l)− 2Gp
klG

p
kl

, (3.41)

and

α̇p =
˙εp(G

p
i+1i+2 − Gp

i+2i+1) + (Li+2i+1 − Li+1i+2)

2
. (3.42)

Rewriting eq. (3.32) in terms of the direction cosine matrix, the development of CPO
for a pth crystal due to plastic deformation is finally given by:

Dbp
ij

Dt
= εjklb

p
il α̇

p
k . (3.43)
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Eq. (3.43) describes the evolution of CPO by the alignment of the crystallographic axes
due to macroscopic deformation imposed onto the aggregate.

Dynamic recrystallisation

When minerals are subjected to stress, they experience certain processes responsible
for changes in their physical properties (i.e. CPO evolution) aside from plastic de-
formation. In metallurgy, this is known as recrystallisation. As defined by Guillope
and Poirier (1979), recrystallisation is a process concerning the evolution of crystallo-
graphic volume fractions and the reorientation of grains in the absence of chemical
change under an imposed macroscopic deformation. In our models, we restrict our-
selves in the case where recrystallisation occurs during material deformation, called
dynamic recrystallisation. In other cases, recrystallisation can also be induced follow-
ing deformation (post-tectonic); this is referred to as static recrystallisation.

Albeit complex, dynamic recrystallisation is an essential phenomenon as it unfolds
the thermo-mechanical history of rocks beneath the lithosphere given its link with tex-
ture evolution. Grains undergoing intracrystalline slip have been observed to increase
the global strain energy, or the potential energy due to deformation. This is due to
the piling-up of stored energy during dislocation creeping across all slip systems in
individual crystals. Studies have shown that dynamic recrystallisation relaxes strain
energy buildup (e.g. Guillope and Poirier, 1979; Karato, 1988; Kaminski and Ribe, 2001)
in favor of grain growth. During this process, grain boundaries tend to migrate from
regions of low-energy crystals to regions of high-energy crystals thereby reducing the
global strain energy. This is further reduced by nucleation processes activated by re-
gions of high dislocation density forming new grains. As a result, grain growth is
activated by migration of grain boundaries.

Deformation mechanisms respond differently depending on grain size. With dy-
namic recrystallisation taking over, it is plausible for grain-boundary migration to be
strong enough to generate large discrepancies between grain sizes. This disparity, in
turn, would activate grain boundary sliding or diffusion creep among small grains
(Karato, 1988). Larger grains, on the other hand, tend to deform by dislocation creep.
Finally, there have been compelling arguments suggesting that at larger strains, dy-
namic recrystallisation dominates over intracrystalline slip. Further verified by sim-
ple shear experiments, olivine fast axes have been observed to reorient themselves
along the direction of shear during dynamic recrystallisation (Zhang and Karato, 1995;
Bystricky et al., 2000). Thus, such a mechanism is of great importance when modeling
CPO in the asthenosphere where strains are large.
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Since dynamic recrystallisation tends to decrease the global strain energy, we first
define the strain energy of a grain as the energy stored due to the presence of disloca-
tions. The strain energy is therefore just a function of the dislocation density ρ giving
(Kaminski and Ribe, 2001):

E = ρAμb2, (3.44)

where A is a non-dimensional constant, b is the magnitude of the Burgers’ vector(i.e.,
a vector quantity representing the magnitude and orientation of a line defect forming
the dislocation) and μ is the shear modulus. Note that eq. (3.44) represents the stored
energy in a grain in the absence of grain nucleation. Suppose that a grain has been
immensely deformed to allow dynamic recrystallisation. The excessive strain energy
brought about by the increase in dislocation density triggers nucleation of new strain-
free subgrains. The presence of strain-free subgrains reduces the bulk strain energy of
the crystal. The resulting strain is:

E = αρAμb2, (3.45)

where α is the volume fraction of crystals that have not undergone recrystallisation. It
is convenient to define a nucleation parameter λ that would quantify the efficiency of
the nucleation process. The volume fraction of non-recrystallised grains is:

α = e−λρ2
, (3.46)

In eq. (3.46), one may infer that the parent grain is one-hundred percent recrys-
tallised (α = 0) as lambda approaches infinity. On the other hand, should λ approach
zero, the efficiency of nucleation becomes minuscule (α = 1). Knowing eq. (3.45), we
may construct the evolution equation for the volume fraction of crystals undergoing
dynamic recrystallisation based from the fact that the volume fraction Vfrac depends on
the difference between the strain energy of a pth grain versus the average strain energy
of the aggregate. In equation form, this gives us:

dVf rac

dt
= −MVf rac(E − E), (3.47)

where E is the average strain energy of the aggregate, and M is called the grain-
boundary mobility; a parameter quantifying the efficiency of grain boundary migra-
tion. Based on eq. (3.47), grain size increases if the average energy of the aggregate is
larger than the grain strain energy. Otherwise, the grain shrinks.

To formulate the kinematic model of dynamic recrystallisation, one must first link
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the relationship between dislocation density and the associated deformation mecha-
nism. From Kaminski, Ribe, and Browaeys (2004), the non-dimensional strain energy
associated to a pth crystal with phase m is:

Ep′
m = ∑

s
Is
p exp [−λm(Is

v)
2], (3.48)

where Is
p is a scalar known as the Schmidt factor for a given slip system s of a pth

particle. Basically, the Schmidt factor measures the amount of shear stress resolved
in a given slip system s for a deformed material. It is usually scaled with the non-
dimensional RSS for a given phase m , and the reference shear rate ε̇o giving:

Is
p =

(
τo

τs
m

)n−n2
∣∣∣∣∣ ε̇

s
p

ε̇o

∣∣∣∣∣
n2
n

, (3.49)

where ε̇s
p is the local shear rate, and n2 is another stress exponent that relates the dis-

location density with stress (Durham, Goetze, and Blake, 1977; Poirier, 1985; Bai and
Kohlstedt, 1992).

As a matter of fact, the local shear rate is already obtained from eq. (3.41) whereas
the reference shear rate is calculated given the macroscopic velocity gradient. The
nucleation rate λ and the reference resolved shear stress for each phase on a slip system
S on the other hand are obtained empirically following the work of numerous authors
(e.g. Raleigh et al., 1971; Kohlstedt and Goetze, 1974; Bai, Mackwell, and Kohlstedt,
1991; Hanson and Spetzler, 1994; Jin, Bai, and Kohlstedt, 1994; Jung and Karato, 2001).
Once the strain energy of each grain is quantified, eq. (3.47) is used to allow for the
evolution of the crystallographic volume fractions via grain boundary migration. It is
worth noting that the grain boundary mobility M is also estimated from experimental
results. For pure olivine, it is shown that Molivine = 125 ± 75 e.g. Kaminski, Ribe, and
Browaeys, 2004.

In summary, mineral aggregates subjected to an imposed macroscopic deformation
develop net lattice preferred orientation by two deformation mechanisms: (1) plastic
deformation which induces reorientation of each crystallographic axis (alignment of
grains) dictated by eq. (3.43), and (2) dynamic recrystallisation which allows for the
evolution of crystallographic volume fractions by grain boundary migration dictated
by equation equation eq. (3.47).
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3.3.4 Computational strategy

Backward tracing of flow streamlines

CPO evolution results from finite deformation accumulated over time. This requires
the knowledge of the flow velocity u, and the deformation gradient L. So far, we have
discussed how we can compute u and L given a single scalar field (i.e., temperature) as
an input. The next step now is to assign undeformed mantle minerals at each point in
3-D space subjected to the current configuration of the flow to allow for CPO evolution.
Here, instead of allowing the aggregates to be advected forward in time, our strategy
is first to perform a backward tracing of the flow along its path down to an initial time
t0. From here then we can assign an undeformed aggregate of a given size Ncrystal

at a point [x(t = t0), y(t = t0), z(t = t0)] followed by integrating the deformation
experienced by the aggregate along this path. The result would therefore be a well-
developed fabric corresponding to its present-day configuration.

Under the steady-state assumption, the path traversed by an advected particle is
simply the flow streamline. We trace the streamline backwards starting at the present-
day configuration of the mantle using a fourth-order Runge-Kutta scheme with adap-
tive time stepping. At each segment along the path, it is imperative to determine the
velocity values at arbitrary locations. Fortunately, it is rather straightforward to com-
pute for the velocity, the local velocity gradient tensor, and the time spent by the par-
ticle using linear interpolation schemes. Since strain accumulation and thus CPO evo-
lution only depends on its flow trajectory, there is no interaction between neighboring
aggregates under this numerical paradigm.

Forward integration along flow streamlines

For first-order observations with finite strain analysis, we apply eq. (3.28) at each seg-
ment along the streamline by performing a matrix multiplication of the local velocity
gradient tensor with the fse. The total strain accumulated is then just the sum over the
whole segment of the discrete contributions in each step along the path. As there are
various ways to perform this procedure such as first-order central differencing, here
we opt for a Runge-Kutta integration approach instead. At the end of the procedure,
we expect to produce the current configuration of a deformed body in terms of the
finite strain tensor F corresponding to the present-day structure and the present-day
dynamics of the mantle.

Fig. 3.2 illustrates some properties of the fse at each grid point due to a negatively
buoyant spherical temperature anomaly in a convecting upper mantle. Note that the
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model is in 3-D having a grid resolution of 64 × 64 × 64 elements. The image is a ver-
tical cross-section that slices the anomaly evenly through its center. The natural strain
is computed using eq. (3.30) where the maximum and minimum eigenvalues of F (i.e.,
long and short axis of the fse) are approximated using the Jacobi algorithm. It refers to
the amplitude of the accumulated finite deformation. The solid black lines describe the
long axis of the fse. As observed, the fse representation maps out the anomaly quite
well. This is because the amplitude of the deformation depends on the rheology of the
material considered; and since we parameterised viscosity in terms of temperature, the
cold, and therefore highly viscous anomaly tends to withstand deformation. Strong
deformation on the other hand are ubiquitous in regions that surround the anomaly
which correspond to shear zones. Finally, we observe that the orientation of the long
axis aligns nearly parallel to the direction of flow. In rare occasions however, the orien-
tation of the fse may be well away from the direction of flow since fse relates directly
to the velocity gradient and not to the flow field itself. Thus to first-order, fse can be
used as a proxy to infer convection in the mantle.

Micro-mechanical model for texture evolution

The fse framework is a quick yet primitive way to describe simple convection patterns.
Its reliability however declines when we consider complex flow patterns or in cases
where deformation is large. To accommodate such complexities, we resort to more so-
phisticated formalism such as that of micro-mechanical models for texture evolution.
Here, we still employ fourth-order Runge-Kutta to integrate the local velocity gradi-
ents along the flow path. However, in lieu of an initially homogeneous sphere sphere
defined by the identity matrix of F, we assign an aggregate of size Ncrystal whose con-
stituents are initially randomly oriented. Most texture evolution models such as those
included in the homogenisation (e.g. Tommasi et al., 2000) or in the kinematic cate-
gories (e.g. Kaminski and Ribe, 2001) however adhere to an ’averaged field’ formalism.
Here unlike ’full-field’ models where the aggregate is explicitly deemed as a spatially
extended body, it is not necessary to keep track of the interaction among crystals. In-
stead, the crystals within the aggregate are finite and are treated as a collective entity
in a homogeneously isotropic medium whose properties are the weighted mean of the
properties of each crystal. Thus in the averaged field formalism, the aggregate can also
be initially regarded as a sphere which later transitions to an ellipsoid as it gets pro-
gressively sheared along the streamline. In principle, the evolution equations eqs (3.43)
and (3.47) are evaluated for each step along the flow path with the accumulated local
velocity gradients driving the deformation of the aggregate.
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FIGURE 3.2: Finite strain representation of a 3-D deforming upper mantle
due to a sinking, cold, spherical anomaly. The surface plot refers to the
natural strain (i.e. logarithm of the ratio between the long and short axis of
the fse) and the superimposed solid black lines are the orientations of the
long axis. Since the amplitude of deformation depends on the mechanical
properties of the body considered, we expect the cold, and highly viscous
anomaly to resist deformation. To first-order, fse can be used to map the

flow direction.
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Throughout our work, we implement a particular texture evolution model when-
ever we are obligated to compute for flow-derived seismic anisotropy. We employ
D-Rex (Kaminski, Ribe, and Browaeys, 2004), a kinematic model that calculates strain-
induced crystallographic preferred orientation (CPO) of olivine and enstatite aggre-
gates in arbitrary proportions via plastic deformation, dynamic recrystallisation, and
grain boundary sliding. D-Rex is written in Fortran90 and is highly-scalable. Here,
we parallelised the code with MPI although in the inversions, as we will see later on,
we have substituted it with a quick and cheap method because a hybrid OpenMP (flow
computation) and MPI(texture evolution modeling) algorithm has not been considered.

As mentioned earlier, models of plastic deformation and dynamic recrystallisation
depend on physical parameters (e.g., slip system activities S for olivine and enstatite)
that control each deformation mechanism. Thankfully, the control parameters in D-Rex

have already been constrained from laboratory experiments (e.g. Zhang and Karato,
1995; Bystricky et al., 2000) and are extrapolated at scales consistent with upper mantle
convection. The user-defined inputs are then the (1) initial orientation distribution
function (always set to random thus corresponding to an isotropic material), (2) the
macroscopic velocity gradient tensor which can be derived directly from the flow, (3)
and the percentage of olivine and enstatite making up the aggregate. The raw output
of D-Rex is the final configuration of the orientation distribution function (i.e., volume
fraction and orientation) after the aggregate has been progressively sheared along the
streamline. In the way we implement D-Rex, it equates to the present-day structure of
the mantle.

Knowing its single crystal elastic properties, it is plausible to construct a 21-component
average elastic tensor S for an olivine polycrystal (i.e., the aggregate) using various av-
eraging methods. One notable method is Voigt averaging, that is, taking the dot prod-
uct over ns species between the crystallographic volume fractions and the average of
the single crystal elastic tensor over Ncrystal crystals (Mainprice, 1990). For a single
mineral species, mathematically this translates to:

Svoigt
ijkl =

Ncrystal

∑
p=1

Sijkl/Ncrystal, (3.50)

where Sijkl is the elastic tensor associated to a specified grain p with an orientation αp.
Sijkl can be obtained using a series of rotational transformations given by:

Sijkl = RiqRjrRksRltSqrst, (3.51)



3.4. Thermodynamic modeling of isotropic properties 83

where Sqrst relates to the single crystal elastic tensor, and R is a rotational matrix de-
rived from αp. For any n-rank symmetric tensor, it is convenient to reduce its order for
easier transcription. In the case of a fourth-rank Svoigt

ijkl tensor, we can represent such in
terms of a 6 × 6 matrix with 21 independent coefficients using various notations. The
elastic matrix Sij in the Voigt notation is given by:

Sij =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S11 S12 S13 S14 S15 S16

S21 S22 S23 S24 S25 S26

S31 S32 S33 S34 S35 S36

S41 S42 S43 S44 S45 S46

S51 S52 S53 S54 S55 S56

S61 S62 S63 S64 S65 S66

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.52)

3.4 Thermodynamic modeling of isotropic properties

Although temperature and pressure variations do not significantly affect anisotropic
properties (e.g. Da Silva, Stixrude, and Wentzcovitch, 1997), the same cannot be said for
the isotropic properties of rocks. Because of these thermodynamic constraints on var-
ious bulk properties including seismic wave velocities, most geophysicists are urged
to implement free-energy minimisation algorithms to obtain mineral assemblages and
compositions as a function of temperature, pressure, and bulk compositions. Recently
developed semi-empirical models have then been utilised to estimate seismic wave
velocities given the equilibrium mineral modes and compositions of several abundant
ultramafic lithologies (e.g. periodotite and eclogite).

3.4.1 Computational strategy

D-Rex, the micro-mechanical model to be used for CPO evolution does not account for
pressure and temperature dependence of the single crystal elastic parameters. In this
work we employ Perple_X (Connolly, 2005; Connolly, 2009), a numerical software that
solves the Gibbs free energy minimisation problem, to obtain the mineral assemblage
of an olivine-dominated composition. We then use the thermodynamic formalism from
Stixrude and Lithgow-Bertelloni (2011) to model the pressure and temperature depen-
dence of the isotropic seismic wave velocities (VP and VS), and the local density ρ cor-
responding to the equilibrium mineral assemblage. From VP,VS, and ρ, it is rather
straightforward to build the isotropic part of the elastic tensor.

Meanwhile, the elastic tensor given by D-Rex corresponds at ambient temperature
and pressure conditions. One of the properties of the elastic tensor S is that it can be
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broken down into several symmetry classes by performing a cascade of orthogonal
projections. Because of this, we can decompose S into an isotropic part S0, which
remains unaffected regardless of transformations, and an intrinsically anisotropic part
δS:

S(T0, P0) = S0(T0, P0) + δS(T0, P0) . (3.53)

We replace the isotropic part of the tensor with the one computed from Perple_X.
To account for the pressure and temperature dependence of the anisotropic part, it
is scaled by the ratio between the shear modulus μ(T, P) at the given pressure and
temperature, and the shear modulus at the reference temperature-pressure μ(T0, P0)

(Gallego, Ito, and Dunn, 2013). Other methods are available, such as the use of first-
order corrections around the elastic tensor at ambient T and P conditions (Estey and
Douglas, 1986; Becker et al., 2006). Thus, the full elastic tensor, whose isotropic part
depends on pressure and temperature is:

S(T, P) = S0(T, P) +
μ(T, P)

μ(T0, P0)
δS(T0, P0) . (3.54)

3.5 Surface wave dispersion calculation

Up to this point, it is clear to us now how one could build a local elastic tensor without
the imposition of any symmetry relations at any arbitrary location. More importantly,
the general picture involving the reduction of dimensionality from a 21-component
elastic tensor down to a single scalar field (e.g., temperature) by introducing geody-
namic and petrological constraints and with the help of a series of intermediate steps
(i.e., geodynamic flow modeling and texture evolution modeling) is more or less indis-
putable.

The next and final step of the geodynamic tomography problem is now the com-
putation of local surface wave dispersion curves for a given depth profile of the elastic
tensor S. Once obtained, it is now rather straightforward to compare this result from
real Earth observations, and thus infer the structure of the upper mantle that is exclu-
sively explainable by its present-day dynamics using only this set of observations.

As discussed in Chapter 2, we can write the azimuthal dependence of surface wave
phase velocities in terms of a Fourier series under the assumption that such a wavefield
is propagating through a quasi-isotropic medium. Neglecting higher order terms (i.e.,
4θ coefficients of surface wave azimuthal anisotropy), the anisotropic surface wave
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phase velocity is expressed as:

c(T, θ) = c0(T) + c1(T) cos(2θ) + c2(T) sin(2θ), (3.55)

where T is the period and θ is the fast azimuth of surface wave anisotropy. Here, we
can interpret c as a result of small anisotropic perturbation δc related to the 2θ terms
around a reference, isotropic surface wave phase velocity c0.

In practice, c0 is usually treated in a fully-non-linear fashion whereas the model
parameters (e.g. the elastic tensor S) linking to the anisotropic perturbations c1 and c2

are more often that not linearised around an azimuthally-averaged version of S thanks
to the quasi-isotropic assumption.

3.5.1 Computational strategy

Calculation of isotropic phase velocity dispersion curves

To a certain degree, isotropic surface wave phase velocities c0 are sensitive to an azimuthally-
averaged version of the full elastic tensor S. Surface waves thus ’see’ the elastic medium
as an equivalent vertically transverse isotropic (VTI) medium with five independent
coefficients (i.e., Love parameters). The VTI medium with Love parameters A, C, F, L,
and N can be written in a coherent fashion as:

SVTI =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A A − 2N F 0 0 0
A − 2N A F 0 0 0

F F C 0 0 0
0 0 0 2L 0 0
0 0 0 0 2L 0
0 0 0 0 0 2N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.56)

According to Montagner and Nataf (1986), the Love parameters are just a linear
combination of the coefficients of the full elastic tensor S. In terms of Sij, the five depth
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functions are given by:

A =
3
8
(S11 + S22) +

1
4

S12 +
1
2

S66,

C = S33,

F =
1
2
(S13 + S23), (3.57)

L =
1
2
(S44 + S55),

N =
1
8
(S11 + S22)− 1

4
S12 +

1
2

S66.

The isotropic phase velocities for both Love and Rayleigh waves can then be computed
from an elastic model with A, C, F, L, and N through normal-mode summation in a
spherical Earth (Saito, 1967).

To perform such calculations, we employ DISPER80 (Saito, 1988), a software package
that computes for isotropic phase velocity dispersion following a Runge-Kutta matrix
integration scheme for any given depth profile of azimuthally-averaged elastic models.
Here, the program inputs 1D depth profiles of: (1) the number of layers and their
associated thicknesses, (2) the density ρ of each layer which in our case retrieved from
PREM, azimuthally-averaged horizontally propagating (3) SV−wave obtained from
VSV =

√
L/ρ and (4) PH−wave obtained from VPH =

√
A/ρ, and three parameters

describing the strength of anisotropy: (5) S−wave radial anisotropy ξ = N/L, (6)
P−wave radial anisotropy φ = C/A, and lastly (6) an ellipticity parameter η = F/A −
2L. The last parameter η is related to the velocity along the direction intermediate to
the fast and slow seismic velocities. The program outputs the local isotropic surface
wave dispersion curve at a number of discrete periods T and its associated sensitivity
kernels to the elastic parameters (i.e., a sensitivity kernel describes how the behavior
of seismic waves is influenced by the changes in the Earth’s structure with depth) for
any T.

Calculation of the 2θ terms

The 2θ terms are sensitive to the depth functions Gc and Gs, Bc and Bs which relate
to the azimuthal variations of the horizontally propagating S− and P−wave, respec-
tively. Surface wave azimuthal anisotropy thus ’sees’ the elastic structure of the Earth
as an effective horizontally transverse isotropic (HTI) medium given by these four
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depth functions. Similar to the VTI parameterisation, the elastic constants of the ef-
fective HTI medium can be regarded as a linear combination of S:

Gc =
1
2
(S55 − S44),

Gs = S54,

Bc =
1
2
(S11 − S22), (3.58)

Bs =
1
2
(S16 + S26).

Another convenient way to describe azimuthal anisotropy of a horizontally propagat-
ing S− and P−wave in a weakly anisotropic medium is in terms of its strength and
orientation:

G =
√

G2
c + G2

s ,

B =
√

B2
c + B2

s , (3.59)

Ψfast = 0.5 arctan
(

Gs

Gc

)
, (3.60)

where G and B are the levels of azimuthal anisotropy for S− and P−waves, respec-
tively and Ψfast is their azimuth of fast propagation.

According to Montagner and Nataf (1986), the sensitivity kernels of the 2θ terms c1

and c2 are equivalent to that of c0. Under the quasi-isotropic assumption, the azimuthal
variations in surface wave phase velocities in any period T can be evaluated through
the following expressions:

c1(T) =
ˆ ∞

z=0

(
Bc(z)

∂c0(T)
∂A

+ Gc(z)
∂c0(T)

∂L

)
dz, (3.61)

c2(T) =
ˆ ∞

z=0

(
Bs(z)

∂c0(T)
∂A

+ Gs(z)
∂c0(T)

∂L

)
dz. (3.62)

Eqs (3.61) and (3.62) is straightforward to implement numerically using various nu-
merical integration recipes available. Finally, the anisotropic surface wave dispersion
curve c can be fully realised following eq. (3.55).
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3.5.2 Fast forward calculations of seismic anisotropy

Finite strain framework for radial anisotropy

Texture evolution modeling deemed to be the computational bottleneck of the geody-
namic tomography forward problem compared to flow modeling and surface wave
dispersion calculation. It was documented that even when processed in parallel with
more than 100 cores, the texture evolution computations in a 32 × 32 × 32 grid yielded
a computing time of 1.8 × 103 seconds. Thus, implementing a computationally ex-
pensive routine is unsuitable for an inversion that involves sampling-based parameter
search approaches.

As pointed out by Becker et al. (2003) and Becker et al. (2006), the finite strain el-
lipsoid (fse) framework is a viable first-order approximation to showcase the fast axis
of olivine CPO in most places. For this reason, we attempted to fast track the texture
evolution modeling step by approximating it with an fse-based method. The inputs
are the usual: (1) flow field u and (2) macroscopic velocity gradient tensor L. Since
the raw output is a finite strain tensor F, we need an empirical formula that relates F

to the elastic tensor S computed from a texture evolution model. However, since sur-
face waves are not sensitive to every component of S, we only seek to relate F to the
azimuthally-averaged VTI tensor with components A, C, F, L, and N. Under the as-
sumption that the 3-axis of the fse is aligned with the symmetry axis of a hexagonally
projected S, we can impose a rotational transformation of S onto the basis of F giving:

Sfse
ijkl = Rfse

iq Rfse
jr Rfse

ks Rfse
lt Sijkl, (3.63)

where Rfse is a rotation matrix derived from the eigenvectors of FFT. This intermediate
step is necessary to impose a robust correspondence between the fse and the elastic
constants built from a texture evolution model. The next step is to find a scaling law
among some properties of F with that of Sfse. For convenience, we will use the third
eigenvalue λ3 of F corresponding to the length of its 3-axis, and compare it with the
Love parameters A, C, L, and N obtained from a VTI projection of Sfse. For the elastic
parameter F, it is somehow more fitting to relate it with λave:

λave =
1
2

ln
(

2λ3

λ1 + λ2

)
. (3.64)

To test whether there is indeed a correspondence, we compute the finite strain ten-
sor and the full elastic tensor from a texture evolution model in each point along a
regular grid of 32 × 32 × 32 elements for a 3-D deforming upper mantle due to a
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negatively-buoyant, highly-viscous, spherical temperature anomaly located at the cen-
ter of the box. After dealing with the appropriate rotational transformations and pro-
jections mentioned above, for any grid cell in our 3-D model we map a point with
coordinates [λ3, A/C/L/N] and [λave, F].

FIGURE 3.3: Relations between some properties of the finite strain ellipse
and the elastic tensor computed from a texture evolution model. The plots
clearly indicate that an empirical formula can be explicitly inferred from
the correspondence between the fse and the elastic tensor. Note however
that such is a result by imposing a strong assumption that the third axis of
the fse is aligned with the symmetry axis of a hexagonally projected elastic

tensor.

Fig. 3.3 illustrates the presence of strong correlation among the Love parameters A,
C, L, N of an Sfse

VTI media with the third eigenvalue λ3 of the fse, and F with λave. From
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here it is straightforward to infer an empirical relation between the parameters:

A = fA(λ3), C = fC(λ3),

L = fL(λ3), N = fN(λ3),

F = fF(λave).

Thus, Sfse
VTI can be viewed as a tilted transverse isotropic (TTI) medium with its sym-

metry axis aligning the 3-axis of the fse. Such a medium is also called an orthothropic
medium defined by the five elastic parameters and two angles defining the symmetry
axis: β is the angle of the symmetry axis with respect to the vertical, and Ψ is the az-
imuth of its projection. Fig. 3.4 shows a schematic representation of this medium. In

FIGURE 3.4: A tilted transverse isotropic (TTI) medium. Since the TTI is
built from the basis of an fse framework (dashed red ellipsoid), its sym-
metry axis (solid blue lines) is equivalent to the 3-axis of the fse (dashed
red lines). The dashed blue lines pertain to the horizontal projection of the
symmetry axis. The angles β and Ψ represent the orientation of the sym-
metry axis. The Cartesian coordinate with axes x, y, and z represent the
geographical frame of reference. A word of caution, the 3-axis does not

necessarily equate to the long axis of the fse.

order to compute for isotropic surface wave dispersion curves, it is necessary to revert
the Sfse

VTI back from the fse frame to the geographical frame since surface waves probe
the elastic medium as an azimuthally-averaged structure with its symmetry axis align-
ing the geographical vertical axis z. To do this, we must determine the dip angle β

from our TTI medium. Fortunately since the symmetry axis aligns with the 3-axis of
the fse, we can just extract an angle from its third eigenvector ˚ 3 with respect to the z
axis giving:

β = arctan
(

ν31

ν33

)
. (3.65)
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Together with Ψ, we then use these angles to rotate the TTI medium Sfse
VTI back to the

geographical reference frame SVTI with components A0, C0, F0, L0, and N0. The trans-
formations from A, C, F, L, N → A0, C0, F0, L0, N0 is (Montagner and Nataf, 1988):

A0 =
A
64

(41 + 20 cos 2β + 3 cos 4β) +
C
64

(9 − 12 cos 2β + 3 cos 4β)

+
F + 2L

32
(7 − 4 cos 2β − 3 cos 4β),

C0 =
A
8
(3 − 4 cos 2β + 4 cos 4β) +

C
8
(3 + 4 cos 2β + cos 4β)

+
F + 2L

4
(1 − cos 4β),

F0 =
A
16

(5 − 4 cos 2β − cos 4β) +
C + 4L

16
(1 − cos 4β)

+
F
8
(5 + 2 cos 2β + cos 4β) +

N
2
(1 − cos 2θ), (3.66)

L0 =
A + C − 2F

16
(1 − cos 4β) +

L
4
(2 + cos 2β + cos 4β)

+
N
4
(1 − cos 2β),

N0 =
A + C − 2F

64
(3 − 4 cos 2β + cos 4β)

+
L
16

(5 − 4 cos 2β − cos 4β) +
N
2
(1 + cos 2β).

A neural network-based approximation for general patterns of elastic anisotropy

This motivated us to endeavor alternative methodologies to model the general patterns
of elastic anisotropy. In this section, we use an artificial neural network (ANN) as a
surrogate model gnn, to approximate the forward model for texture evolution gCPO.
We consider a simple architecture of feedforward neural network called a multi-layer
perceptron (MLP) with two hidden layers similar to the work of LeCun, Bengio, and
Hinton (2015) defined by:

gnn(Xl) = Ŷl = a1

(
Nh1

∑
k=1

w3
kla2

(
Nh2

∑
j=1

w2
jka3

(
Nx

∑
i=1

w1
ijXi

)))
. (3.67)

The output Ŷl of the MLP is an estimate of the 21 independent coefficients of the
stiffness tensor where l is the index pertaining to one element in the tensor. Nh1 and
Nh2 are the sizes of the two hidden layers considered, and Nx is the size of the input
vector. We design the network such that the input X contains the deformation his-
tory along a flow streamline. The streamline is divided into 200 time steps. Each step
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contains one Lij matrix and one corresponding dt. Thus, each step has 10 indepen-
dent components as inputs. The number of inputs in the neural network first layer is
Nx = 2000 (see eq. (3.67)). The functions a1, a2, and a3 are known as activation func-
tions whose purpose are to introduce non-linearity to the output of one neuron and to
constrain its output to a desired range and distribution. Here, we choose them as de-
fault rectified linear unit functions to allow faster convergence (Pedregosa et al., 2011).
Lastly, the w’s refer to the weights which reflect the significance of a given neuron.

To build a suitable surrogate model to D-Rex, the weights w1, w2, and w3 have to be
adjusted to the proper value. This is performed by minimising a loss function which
is the difference between the training outputs gCPO(X) and the output of the network
itself gnn(X) using a stochastic gradient descent algorithm (Rumelhart, Hinton, and
Williams, 1985). Formally, the loss function is a squared L2 norm and takes the form:

Loss(Y, Ŷ, w) =
1
2
‖Y − Ŷ‖2

2 +
λ

2
‖w‖2

2 . (3.68)

The second term constrains the weights to avoid data over-fitting, where α is a reg-
ularisation parameter that quantifies the degree of penalisation. The weights are up-
dated iteratively by subtracting its current value from the gradient of the loss function
with respect to the weights:

wi+1 = wi − ε∇lossi , (3.69)

where ε is the learning rate which controls the step-size for updating the weights, and
i is the iteration step. The training achieves convergence when the tolerance value tol
for the loss function is reached. However, the algorithm may also be stopped once the
maximum number of iterations is reached.

The network is trained by considering 30 flow models, each comprising M tem-
perature anomalies to drive thermal convection. Each anomaly has a random position
and size, and can either be positively or negatively buoyant. This is to ensure that
each flow path we define is unique enough so that the network can learn a variety of
input-output combinations. Here, we acknowledge that the choice of flow models is
not enough to be able to predict seismic anisotropy in the most general case. However,
in this work, we only attempt to predict anisotropy for a small class of flow models
(convection due to a collection of temperature anomalies). Since only such classes of
models are tested, we can restrict ourselves to this type of model when training the
network.

One training input corresponds to one deformation history along a streamline whereas
one training output corresponds to one stiffness matrix computed with D-Rex. The
training set can be represented as a matrix containing the stiffness coefficients and the
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TABLE 3.1: Neural network parameters.

Ntrain Nx Ny Nh1 Nh2 λ ε tol Max iterations
1.2288 × 105 2000 21 100 50 0.1 1.0 × 10−3 1.0 × 10−4 1000

input parameters given by [Yl=1,21, Xi=1,Nx]n=1,Ntrain where Ntrain is the number of train-
ing sets. Thus, the training inputs are of the size [2000, Ntrain] and the training outputs
are of the size [21, Ntrain]. In this problem, 163 input-output combinations for each 3-
D flow model are used to train the network. In total, there are Ntrain = 1.2288 × 105

training sets for the network to learn from.
We adopt the Python package scikit-learn to train the network (Pedregosa et

al., 2011). Table 3.1 below summarises the parameters used to design and build the
network.

The network is tested by considering a 3-D deformation due to a sinking anomaly
that is not part of the training input. For each pixel in the 3-D map of full seismic
anisotropy, a point is plotted containing the predicted elastic coefficients (y−axis) ver-
sus the elastic coefficients computed with D-Rex (x−axis) (Fig. 3.5). Each panel cor-
responds to one element of the anisotropic part of the elastic tensor. The plots are
interpreted such that if the slope is one, then the predictions perfectly match the theo-
retical values. Minor offsets are attributed to several factors such as the imperfections
of the network architecture, and the number of training data used.

The elastic tensor computed from gnn is projected into both a VTI medium, thus
having elastic parameters A, C, F, L, & N, and radial anisotropy strength ξ, φ, & η;
and an HTI medium, with parameters Gs, Gc, Bs, & Bc. We compare the results with
D-Rex by plotting 1-D marginal distributions of the residuals of each seismic parame-
ter. Each parameter contains a small bias very close to zero which is attributed to the
minimisation of the L2 loss function.

Model comparison of radial anisotropies

We test the robustness of the two surrogate models (i.e., fse framework and neural net-
work) with respect to the true model (i.e., D-Rex) by comparing 3-D radial anisotropy
ξ profiles obtained from these models. The ξ models correspond to a 3-D deforming
upper-mantle due to a cold, sinking, and highly-viscous spherical anomaly placed at
the center of a 400 km × 400 km × 400 km box. Fig. 3.7 shows the vertical cross-section
of the true ξ model. Patches of positive radial anisotropy ξ > 1 correlate well with
expected lateral flow patterns whereas patches of negative radial anisotropy ξ < 1 cor-
relate well with vertical flow patterns. At the location of the spherical anomaly, ξ is
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FIGURE 3.5: Predicted elastic coefficients from gnn versus theoretical elas-
tic coefficients from gCPO. Each panel corresponds to one element of the
δSij matrix. A slope of unity simply means that the predictions perfectly

match the theoretical values.

approximately unity which implies that the material is more or less isotropic. This re-
sult is unsuprising since anisotropy throughout this whole context is induced purely
by deformation but because of its rigidity, the anomaly is less likely to deform thus
producing dismal levels of anisotropy.

Fig. 3.8 shows vertical cross-sections of ξ models obtained from the fse framework
(top left panel) and neural network (top right panel). To compare the results, we calcu-
late for each pixel in the maps the relative error (in %) with respect to the true model for
the fse framework (bottom left panel), and the neural network (bottom right panel). We
observe the radial anisotropy produced from an fse approximation to be no much dif-
ferent from that of a texture evolution model, with most of the uncertainties of about
2% confined along the edges that delineate large variations in radial anisotropy. On
the other hand, the errors in the neural network appear to be more sporadic, with
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FIGURE 3.6: 1-D marginal distribution of the difference between gCPO(X)
and gnn(X) in terms of the VTI and HTI-projected elastic tensor.

FIGURE 3.7: Radial anisotropy ξ computed from D-Rex. The structure cor-
responds to a 3-D deforming upper mantle due to a negatively buoyant,
highly-viscous, and rigid spherical anomaly. Regions of ξ > 1 are inter-
preted in terms of horizontal flow whereas ξ < 1 are vertical flow. At the
center where the anomaly is located, ξ ≈ 1 implies that the anomaly re-

sists deformation and is essentially isotropic.

large uncertainties of about 5-6% flocking across the center top of the box. Such results
are expected since the empirical relations inferred from the fse framework were built
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TABLE 3.2: Computation times for each subroutine in the forward model.

Routine D-Rex FSE ANN Flow Dispersion Training
Time (s) 73919.83 13.17 21.55 6.6 119.63 603.85

upon an elastic model that is uniquely defined by the sinking spherical temperature
anomaly setup. Therefore should this hypothesis be further validated with other types
of flow, then the fse framework is a viable substitute to texture evolution models when
incorporated in an inversion procedure for radial anisotropy from isotropic surface
wave phase velocity dispersion measurements. Apart from the fact that it is easy to
implement, its main advantage lies on its cheap computational cost, that is, it is more
than three orders of magnitude faster (≈13.17 seconds) than D-Rex. As of the moment,
this method only thrives in the case of an azimuthally-averaged VTI medium whereas
correlations based on an HTI medium and the lateral projection of the fse fails. As
such, this method is currently not applicable for the inversion of the azimuthal com-
ponents of surface waves for azimuthal anisotropy. In contrast, the neural-network
architecture is more general in a sense that is tailor-made to handle a multitude of flow
patterns induced by a number of temperature anomalies. Similar to the former, the
relative speed-up of neural network is over three orders of magnitude compared to
performing texture evolution calculations with D-Rex.

Table 3.2 shows the computation times for computing anisotropy from D-Rex, fse
framework, and neural network. For reference, we also give the computation times for
network training, flow modeling, as well as for surface wave dispersion curve calcu-
lations. Each routine in the forward problem has been executed in a serial fashion for
the sake of comparison.

3.6 Conclusion

In this chapter, we formulate the full forward problem to geodynamic tomography.
We presented our computational strategy to derive azimuthally-varying surface wave
dispersion curves (the data) from a single scalar field - temperature (the model). The
four main steps can be summarised as follows:

1. From a temperature field T, calculate the instantaneous solution of upper mantle
flow. This outputs the flow field u, and the macroscopic velocity gradient tensor
L.

2. From u and L, calculate the anisotropic part of the elastic tensor δS at any arbi-
trary position via texture evolution modeling.
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FIGURE 3.8: Top panels: Radial anisotropy ξ computed from: fse frame-
work (left), and neural network (right). Bottom panels: percentage error
in ξ with respect to the true model for: fse framework (left), and neural
network (right). Results show that the fse framework reproduces better
the true model. This is expected since the empirical relations were built
upon an elastic tensor solely associated with the sinking anomaly setup
whereas the neural-network is trained from a family of flow patterns in-

duced by several temperature anomalies.

3. From T (and hydrostatic pressure P), calculate the pressure and temperature de-
pendence of the isotropic part S0 using a thermodynamic model for a given bulk
composition.

4. From a model of S, calculate the azimuthally-varying surface wave dispersion
curve for Love and Rayleigh wave phase velocities.

Fig. 3.9 shows a schematic representation of the full forward problem to geodynamic
tomography (in green). For comparison, we also include traditional tomography (in
red) which covers only a small portion of the full forward problem.

The estimated dispersion curves can then be compared with observed data in an in-
verse approach. Because the full forward problem is highly non-linear and comprises
several intimately-related sub-procedures, the Bayesian inversion scheme is very much
suitable to handle such complexity. In the next two chapters, we will show how such
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FIGURE 3.9: Geodynamic tomography (green) in comparison with tra-
ditional tomographic techniques (red). In geodynamic tomography, the
unknown model to be inverted for is the temperature field denoted by
T, whereas in traditional tomography, the model is a fourth-order elastic
tensor Sij with 21 independent coefficients. Often, seismologists assume a
hexagonally symmetric medium onto Sij to reduce the dimensionality of
the would be inverted model. The complete forward model (in green) is
cast in a Bayesian McMC framework. One of the advantages of geody-
namic tomography is the reduction of unknown model parameters due to

constraints from geodynamics.

a complex forward problem coupled with a Bayesian inversion approach is a poten-
tially powerful method to constrain the complete pattern of upper mantle deformation
and therefore elucidate some aspects associated with the Earth’s internal structure and
present-day dynamics.
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4.1 Summary

In the Earth’s upper mantle, seismic anisotropy mainly originates from the crystal-
lographic preferred orientation (CPO) of olivine due to mantle deformation. Large-
scale observation of anisotropy in surface wave tomography models provides unique
constraints on present-day mantle flow. However, surface waves are not sensitive to
the 21 coefficients of the elastic tensor, and therefore the complete anisotropic tensor
cannot be resolved independently at every location. This large number of parame-
ters may be reduced by imposing spatial smoothness and symmetry constraints to the
elastic tensor. In this work, we propose to regularise the tomographic problem by
using constraints from geodynamic modeling to reduce the number of model param-
eters. Instead of inverting for seismic velocities, we parameterise our inverse problem
directly in terms of physical quantities governing mantle flow: a temperature field,
and a temperature-dependent viscosity. The forward problem consists of three steps:
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(1) calculation of mantle flow induced by thermal anomalies, (2) calculation of the in-
duced CPO and elastic properties using a micro-mechanical model, and (3) computa-
tion of azimuthally-varying surface wave dispersion curves. We demonstrate how a
fully non-linear Bayesian inversion of surface wave dispersion curves can retrieve the
temperature and viscosity fields, without having to explicitly parameterise the elas-
tic tensor. Here, we consider simple flow models generated by spherical tempera-
ture anomalies. The results show that incorporating geodynamic constraints in surface
wave inversion help to retrieve patterns of mantle deformation. The solution to our
inversion problem is an ensemble of models (i.e., thermal structures) representing a
posterior probability, therefore providing uncertainties for each model parameter.

4.2 Introduction

To our knowledge, no such study yet exists where mantle deformation has been in-
ferred directly from surface wave observations. In summary, two challenges remain as
an open problem to interpret surface wave tomography:

1. Surface waves lack the resolving power to constrain anisotropy in space, and
seismologists impose non-data-driven constraints to the tomography problem.

2. Surface waves are sensitive to a restricted number of elastic parameters. This
is addressed by assuming symmetry relations to the elastic tensor, with some
even accounting for transverse isotropic medium with a tilted axis of symmetry.
However, this limits its interpretation in terms of deformation patterns.

We propose a complementary approach to estimate the full elastic tensor. This in-
volves the incorporation of geodynamic and mineral physics modeling constraints: the
textural evolution of peridotite aggregates during their deformation in the convective
mantle. We propose a method to invert directly for the temperature field that produces
convective flow and texture evolution. Modeling intrinsic anisotropy in this way re-
moves the issue of low sensitivity from seismic waves since the elastic tensor is not
explicitly inverted for, but instead computed directly from texture evolution models.
Additionally, the inversion is performed using a Bayesian sampling algorithm, hence
provide uncertainties on the obtained temperature field.

In Section 4.3, we explain how geodynamic tomography is implemented, starting
with the model parameterisation, followed by the forward problem, the data, and fi-
nally the Bayesian inversion scheme. This is followed by Section 4.4, where we apply
the method to synthetic data obtained from prescribed temperature fields.
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4.3 Methodology

Geodynamic tomography involves two main procedures: (1) evaluate the forward
model completely, and (2) implement a fully Bayesian non-linear inversion scheme
with an McMC sampling technique. The solution of our inversion scheme is a poste-
rior distribution of thermal structures and their corresponding uncertainty bounds.

4.3.1 Model parameterisation

To parameterise the 3-D thermal structure in a Cartesian domain (x,y,z), we build a
basis containing spherical temperature anomalies, on top of an adiabatic temperature
gradient. Mathematically, this translates to:

T(r) = Tbackground(r) +
M

∑
i=1

Ti
anomaly(r) , (4.1)

where the background temperature is assumed to be linear and only a function of
depth z:

Tbackground(r) = T0 +

(
z
Ls

− 1
)
(T0 − 1200 K) , (4.2)

and M is the number of spherical anomalies, r = (x, y, z) defines any point in the 3-D
volume, T0 is the temperature at the bottom (i.e., also the reference value), and Ls is the
characteristic length scale. Each anomaly has a distinct size, temperature, and position.
We define the basis function for one given spherical anomaly as:

Tanomaly(r) = −Tc

2

⎡⎣1 − tanh

(
β

Ls

(
‖r − r0‖ − R

2

))⎤⎦ , (4.3)

where Tc is maximum temperature anomaly reached at the center of the sphere r0 =

(x0, y0, z0), and R controls its size. These five variables are unknown model parame-
ters to be inverted for in our problem. The non-dimensional constant β = 20 controls
the sharpness of the temperature gradient. Additional details can be found in Ap-
pendix 4.6.1.

We model the medium rheology by assuming a temperature-dependent viscosity,
following the Frank-Kamenetskii approximation to Arrhenius-type viscosity. Here, we
only invert for a dimensionless scalar constant E, which plays a similar role to the
conventional activation energy (i.e., the sensitivity of viscosity to temperature). The
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viscosity field is described by:

η(r) = η0 exp

[
−E

(T(r)− T0)

T0

]
, (4.4)

where η0 is a reference value for viscosity. The total number of parameters defining the
model is therefore 5M + 1, and the corresponding model vector m is defined as:

m = [ E, x0
i, y0

i, z0
i, Ri, Tc

i, ..., x0
M, y0

M, z0
M, RM, Tc

M ] . (4.5)

4.3.2 The forward problem

The forward problem involves three main steps: (1) regional flow modeling in 3-D
Cartesian coordinates, (2) modeling texture evolution and computation of the full elas-
tic tensor, and (3) computation of seismic surface wave dispersion curves. We enhance
the computational efficiency in Step 2 by using a surrogate model based on an artificial
neural network (ANN) to compute the deformation-induced anisotropy.

Flow model

For our instantaneous flow models, we consider the buoyancy-driven convection of
a highly-viscous, Newtonian, and incompressible fluid in a 3-D Cartesian coordinate
system. The flow is subjected to free-slip boundary conditions. The system of equa-
tions describing the flow is given by:

∇ · u = 0 , (4.6)

and
−∇P +∇ · [η(∇u +∇uT)] + ρ g êg = 0 , (4.7)

where u is the flow velocity, P is the dynamic pressure, and êg is a unit vector pointing
towards the direction of gravity. We assume density ρ to be a function of tempera-
ture T using a linear equation of state controlled by a thermal expansion coefficient α,
where ρ(T) = ρ0 − ρ0 α(T − T0). The dimensional values of the governing parame-
ters are listed in Table 4.1. The Stokes equations are discretised using a finite-volume
approach (e.g., Patankar, 1980; Albers, 2000), and are solved using the coupled itera-
tive geometric multigrid method using V-cycles (Brandt, 1982; Gerya, 2010), yielding
linear convergence with the number of unknowns. The complete code is parallelised
with OpenMP. The accuracy of the numerical solution has been benchmarked against
numerical and analytical solutions (Samuel, 2012a; Samuel, 2018).
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TABLE 4.1: Dimensional parameters that define the Rayleigh number.

Symbol Parameter Value

η0 Viscosity 1021 Pa s
α Thermal expansion 2 10−5 K−1

g Gravity 9.81 m/s2

Ls Layer thickness 400 km
T0 Temperature scale 1900 K
k Thermal diffusivity 10−6 m2/s
ρ0 Density 3800 kg/m−3

Ra Rayleigh number 1.05 106

Although the code accommodates sharp viscosity contrasts, the latter tend to re-
duce the speed of convergence. Sharp viscosity contrasts are avoided in this study
since smooth thermal structures are considered in our prior distribution. The veloc-
ity gradients are obtained by second-order finite differences of the computed velocity
field.

Modeling intrinsic anisotropy

Upper mantle minerals develop CPO due to progressive shearing along a flow path.
We initially model CPO evolution by employing D-Rex, a kinematic model of strain-
induced crystal lattice preferred orientation of olivine and enstatite aggregates devel-
oped by (Kaminski, Ribe, and Browaeys, 2004). The crystal aggregates respond to an
imposed macroscopic deformation by two mechanisms: (1) dislocation creep which
induces reorientation of each crystallographic axis, and (2) dynamic recrystallisation,
which allows for the evolution of crystallographic volume fractions by grain nucleation
and grain boundary migration. In this study, we only consider pure olivine of type-A
fabric corresponding to dry upper mantle conditions. The raw output of D-Rex is a set
of crystallographic orientations and volume fractions for a given aggregate. Finally,
its effective elastic properties can be estimated with an averaging scheme such as the
Voigt average (Mainprice, 1990). In Voigt notation, the elastic tensor can be represented
as a 6 × 6 matrix with 21 independent elastic coefficients.

We model the temperature and pressure dependence of the isotropic seismic wave
speeds of an olivine mantle composition (Vp and Vs) using Perple_X (Connolly, 2005;
Connolly, 2009) with the thermodynamic model from Stixrude and Lithgow-Bertelloni
(2011).
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Fast forward approximation for texture evolution calculations

Sampling-based techniques such as Markov chain Monte Carlo schemes can be ap-
plied to most geophysical inverse problems provided that the parameter space can be
sampled efficiently. In some cases however, the forward model is computationally ex-
pensive, and sampling-based techniques may not be efficient at approximating a multi-
dimensional probability distribution. Fast approximations of the forward model, such
as artificial neural networks (ANN) are sometimes therefore used. Such approxima-
tions, however, lead to a theoretical error (also called modeling error). The form of
these errors can be estimated and modeled as a Gaussian probability distribution with
its resulting variance being accounted for in the likelihood function during the inver-
sion process (Hansen et al., 2014b; Köpke, Irving, and Elsheikh, 2018). In our case,
the computational bottleneck is clearly the texture evolution modeling, which we ad-
dressed by using an ANN-based surrogate model to approximate seismic anisotropy.

In the field of geophysics, these methods have already been used to approximate
the inverse function in a variety of applications in seismology (e.g., Meier, Curtis, and
Trampert, 2007; Käufl et al., 2014; Hansen and Cordua, 2017; Hulbert et al., 2019),
and in geodynamics (e.g., Shahnas, Yuen, and Pysklywec, 2018). Among these stud-
ies, some have already applied surrogate models for fast forward approximations in
sampling-based techniques (Hansen and Cordua, 2017; Köpke, Irving, and Elsheikh,
2018; Conway et al., 2019; Moghadas, Behroozmand, and Christiansen, 2020).

These networks are composed of highly non-linear functions that can be trained
to approximate a non-linear mapping between an input and an output (Bishop et al.,
1995). To approximate such a function, one needs to train this network given a col-
lection of training data consisting of a set of input and output pairs. In this work,
we replicate the operator for texture evolution, which we now denote as gCPO. Flow
streamlines with assigned local velocity gradients are fed into the network as training
inputs. The training output contains the anisotropic part of the elastic tensor δS(T0, P0)

computed from D-Rex. The package scikit-learn in Python is used to train the net-
work.

Once the network is trained, which we denote as the operator gnn, we perform a
simple numerical test of 3-D deformation due to a cold spherical temperature anomaly,
and applied both operators to output seismic anisotropy. Fig. 4.1 shows the percent-
age of total anisotropy found by the two methods. We observe comparable levels of
anisotropy. Moreover, the approximation also appears to capture some important fea-
tures such as the absence of anisotropy at the center, which is ascribed to the larger
viscosity of the anomaly in this region. However, the surrogate model tends to under-
estimate the total anisotropy, which may be attributed to the simplicity of the network
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FIGURE 4.1: Vertical cross section of the percentages of total anisotropy
obtained from: neural networks (left), and D-Rex (right). The total
anisotropy is derived from the norm of the elastic tensor. The slices are
oriented along the yz− plane, and taken at the center of the x− axis (i.e.,

x = 200 km)

architecture, and the number of available training data used.

Predicting surface wave data

For any geographical location at the surface, we can extract the 1D velocity profile
(e.g., Sij as a function of depth) and compute dispersion curves for Love and Rayleigh
waves. The azimuthal dependence of surface wave phase velocity can be treated as
the sum of a small anisotropic perturbation around an isotropic phase velocity model
(Smith and Dahlen, 1973) giving:

c(T, θ) = c0(T)+ c1(T) cos(2θ)+ c2(T) sin(2θ)+ c3(T) cos(4θ)+ c4(T) cos(4θ) , (4.8)

where T is the period and θ is the azimuthal angle.
In this work, we only invert c0(T), c1(T), and c2(T) for Rayleigh waves and only

c0(T) for Love waves. It is not common to to invert other terms, due to low sensitivity
or to high levels of noise. For convenience, we denote isotropic Rayleigh wave phase
velocity as cR(T) and Love wave phase velocity as cL(T).

The different terms in eq. (4.8) can be computed from Sij in a fully non-linear fash-
ion by normal mode summation with a Runge–Kutta matrix integration (Takeuchi and
Saito, 1972). We refer the reader to Montagner and Nataf (1986) and Bodin et al. (2016)
for details. The seismic forward model is computed using a 1D earth assumption
beneath each geographical location. We acknowledge that surface waves velocities
depend on 3-D heterogeneities, and particularly the fact that surface wave computa-
tions exhibit non-linearities due to mode-coupling and finite frequency effects (e.g.,
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Sieminski et al., 2007; Ekström, 2011). However, these approximations can be treated
as theoretical errors and can be accounted for in the Bayesian inversion procedure.

4.3.3 Bayesian sampling scheme

We formulate the problem in a fully non-linear Bayesian framework (Box and Tiao,
2011; Smith, 1991; Mosegaard and Tarantola, 1995), where the predicted surface wave
dispersion curves estimated for a large ensemble of models (3-D temperature fields)
are compared to observed data. The solution of the inverse problem is the posterior
distribution p(m|d), the probability model of parameters m given the data d. Accord-
ing to Bayes’ theorem we have:

p(m|d) ∝ p(m) p(d|m) . (4.9)

The prior distribution p(m) describes our predetermined knowledge on m (i.e., the
position and the amplitude of thermal anomalies, as well as the activation energy). The
likelihood function p(d|m) describes the probability of observing the data given our
current knowledge of the model parameters.

Since our forward problem is highly non-linear, the posterior distribution is sam-
pled using a Markov chain Monte Carlo algorithm. It involves direct sampling of the
parameter space by random iterative search, where the distribution of the sampled
models asymptotically converges towards the posterior distribution.

The likelihood function

The likelihood function p(d|m) quantifies how well the model parameters explain the
observed data (i.e. the ensemble of local dispersion curves located at the surface).
Supposing that each data-type (i.e. cR and cL for isotropic Rayleigh and Love wave
dispersion curves, respectively; c1 and c2 for Rayleigh wave anisotropy) is measured
independently, the likelihood function gives:

p(d|m) = p(cR|m) p(cL|m) p(c1|m) p(c2|m) . (4.10)

For all dispersion curves, we assume that the errors are uncorrelated and follow
Gaussian distributions with zero mean, and variances σ2

cR
, σ2

cL
, σ2

c1
, and σ2

c2
. For isotropic

Rayleigh waves and isotropic Love waves cR and cL, respectively, we can express the
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likelihood function as a Gaussian distribution:

p(cR,L|m) =
1

(2πσ2
cR,L

)
N
2

exp

[−|| cobs
R,L − cR,L(m) ||2

2σ2
cR,L

]
. (4.11)

Here, the likelihood function corresponds to a single dispersion measurement where
N is the number of discrete periods. The likelihood functions of the 2θ terms, c1 and
c2, can be written in the same manner as eq. (4.11).

A maximum likelihood estimate of data errors

In general, it is difficult to estimate σcR,L due to the lack of knowledge on the error
distribution. In particular, approximating an elastic tensor with a neural network may
introduce errors that are difficult to quantify.

In this work, we use a maximum likelihood estimate (MLE) of the noise parameters
σcR,L and σc1,2 following the work of Dettmer, Dosso, and Holland (2007). This is per-
formed by maximising the likelihood function over the data standard deviation. The
strength of this technique is that it is not necessary to estimate each contribution to the
noise parameters individually. Maximising eq. (4.11) over σcR,L yields:

σcR,L =

[
1
N

N

∑
i=1

(cobs
R,L − cR,L(m))2

]1/2

. (4.12)

Substituting eq. (4.12) onto eq. (4.11), and taking the log likelihood we obtain:

ln[p(cR,L|m)] = −N
2

ln

[
N

∑
i=1

(cobs
R,L − cR,L(m))2

]
. (4.13)

The log likelihood functions of c1 and c2 can be defined using the same procedure.
This method has two advantages: (1) the absolute value of errors need not be defined,
and (2) in the case of joint inversion, we do not have to define the relative weights
between each data type. Finally, the full log likelihood function gives:

ln[p(d|m)] = ln[p(cR|m)] + ln[p(cL|m)] + ln[p(c1|m)] + ln[p(c2|m)] . (4.14)

The prior distribution

In Bayesian inference, one expresses the a priori information in terms of a probability
distribution p(m). In geophysical inverse problems, model parameters are typically
given a uniform prior distribution with given upper and lower bounds inferred from
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prior knowledge (Mosegaard and Sambridge, 2002). Adopting the same formulation,
the prior can be written as:

p(mi) =

⎧⎨⎩0 mi > mmax, mi < mmin

1
Δm mmin ≤ mi ≤ mmax ,

(4.15)

where mmax, and mmin are the prior bounds for the model. Assuming that the model
parameters in our inversion are prior independent, we can express the prior fully as:

p(m) = p(E)
M

∏
i=1

[
p(xi

0) p(yi
0) p(zi

0) p(Ri) p(Ti
c)

]
, (4.16)

where p(E) is the prior distribution for the activation energy, and M is the total number
of spherical temperature anomalies. For an ith temperature anomaly, p(xi

0), p(yi
0) and

p(zi
0) are the prior distributions for position; p(Ri) and p(Ti

c) are the prior distributions
for the size and temperature, respectively. We choose wide uniform prior distributions.
For the prior bounds, we select: (1) the length of the spatial domain (0 km to 400 km)
for the positions x0, y0, and z0, (2) 40 km to 240 km for R, (3) 500 K to 1200 K for Tc, and
(3) 6 to 12 for E. Choosing wide bounds ensures that the model parameters are loosely
constrained from the prior, and more emphasis is given to the information provided
by the data.

A random walk to sample the posterior distribution

We use a Markov chain Monte Carlo algorithm to sample the posterior distribution. It
begins by randomly selecting an initial temperature model followed by the evaluation
of the initial log likelihood. At each iteration, the current model is perturbed to propose
a new model. The proposal proceeds sequentially as follows:

1. Assign local perturbation: One sphere is randomly picked out of M number of
spheres. Once a sphere is picked, we randomly select one of four possible ways
to perturb the sphere are as follows:

• Perturb horizontal position; i.e. x0 and y0 together;

• Perturb vertical position z0;

• Perturb the size of the sphere R;

• Perturb the temperature of the sphere Tc.

Each perturbation is drawn from a univariate normal distribution centered at the
current value of the model parameter.
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TABLE 4.2: True model parameters defining the synthetic temperature
field.

Model parameter Assigned value

x0 200 km
y0 200 km
z0 200 km
R 120 km
Tc 800 K
E 11.0

2. Perturb the activation energy: We then apply eq. (4.1) to define the 3-D tem-
perature field. Alongside, we perturb the activation energy E by using a normal
distribution centered at the current value of E, and apply eq. (4.4) to define the
3-D viscosity field. These two scalar fields are used as inputs in the flow calcula-
tion.

If the proposed model lies within the prior bounds following eq. (4.16), we evaluate
the forward problem completely. The computed dispersion curves from the latter are
compared with the observed data using eq. (4.13). The resulting likelihood is then
compared to the likelihood of the current model, and the proposed model is either
accepted or rejected according to an acceptance probability (Metropolis et al., 1953;
Hastings, 1970). If the proposed model is accepted, it becomes the current model for
the next iteration. After a sufficient number of iterations, the ensemble of accepted
models converges towards the posterior distribution.

4.4 Application with 3-D Synthetic Temperature Fields

4.4.1 Inversion for One Spherical Anomaly

We demonstrate our proof of concept by setting up a simple temperature field consist-
ing of one spherical negative temperature anomaly (i.e. negatively buoyant) placed at
the middle of a 400 km × 400 km × 400 km box. The setup is a very simple toy ex-
ample inspired by the work of Baumann, Kaus, and Popov (2014) where they applied
Bayesian inversion to constrain rheology from gravity anomalies and surface veloci-
ties.

Table 4.2 shows the complete list of true model parameters, and Fig. 4.2 displays a
cross-sectional view of the temperature field, and its associated instantaneous velocity
field.
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(A) (B)

FIGURE 4.2: (a) Cross-sectional view in the yz− plane of the 3-D temper-
ature field. The slice is taken at the center of the x− axis. (b) 3-D flow
velocity due to the sinking anomaly. Largest flow magnitudes correspond

to the cold anomaly.

We simulate the full forward model given the true model parameters to generate
synthetic dispersion curves at periods between 10s and 200s. Fig. 4.3 shows a map
of the computed phase velocity and azimuthal anisotropy for Rayleigh waves at 100
seconds. In Fig. 4.3a, the phase velocity is maximum at the middle of the region, due
to the presence of the cold anomaly underneath.

Fig. 4.3b shows a map of azimuthal anisotropy in Rayleigh waves. Here, anisotropy
is at its minimum at the center, above where the cold more viscous anomaly is located.
As a result of this higher rigidity, local velocity gradients are lower, resulting in smaller
amounts of deformation and hence lower anisotropy. Another feature is the presence
of strong anisotropy at certain locations. These regions are points where shear defor-
mation is at its maximum due to the convergence of flow lines. On top of the level of
azimuthal anisotropy is the orientation of its fast axis. Since we expect the flow direc-
tion to converge towards the center when observed from the top, the fast axis may be
interpreted as the horizontal projection of the flow.

The complete data constitute a regular array of 8 × 8 locations containing cR, cL, c1,
and c2 spanning the entire surface. We emphasise that the data generated comes from
an elastic tensor computed with D-Rex whereas during inversion, the estimated data is
obtained from an elastic tensor approximated by neural networks.

Finally, we added random uncorrelated noise onto cR, cL, c1, and c2. Standard
deviations for Love and Rayleigh are set at σR = 0.05 km/s and σL = 0.05 km/s, whereas
σc1 = 0.01 km/s and σc2 = 0.01 km/s. Fig. 4.4 illustrates the resulting dispersion curves
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(A) (B)

FIGURE 4.3: Phase velocity maps resulting from one sinking anomaly at
100s period. (a) Rayleigh wave phase velocity (km/s). (b) Azimuthal
anisotropy in Rayleigh waves (km/s). The solid black lines correspond
to the direction of the fast propagation axis. Surface wave maps always lie

along the xy− lateral plane.

at one given location with and without noise.
The inversion consists of 20 independent Markov chains each containing 40,000

samples initiated at a random temperature structure. We demonstrate two cases. First
is an isotropic inversion, where no anisotropy is involved in the forward model. In
this case, it is not necessary to compute instantaneous flow and anisotropy, as isotropic
seismic velocities Vp and Vs can be directly scaled with temperature. The inverted data
are the isotropic phase velocities cR and cL. Secondly, we present an anisotropic inver-
sion (geodynamic tomography). Both isotropic and anisotropic inversions are given
the same wide uniform priors allowing for more mobility when searching the param-
eter space. We initiate geodynamic tomography by first employing an isotropic inver-
sion. Once the chains have converged in this phase, we then start the actual anisotropic
inversion procedure.

The diagonal panels of Figs 4.5 and 4.6 illustrate the ensemble of models recovered
from isotropic inversion and anisotropic inversion. The off-diagonal panels depict 2D
marginal distributions as 2D histograms to explore possible trade-offs. The black cir-
cles indicate the values of the true model parameters. Compared to isotropic inversion,
the width of the posterior distribution inferred from geodynamic tomography has been
reduced considerably. More information is thus added by introducing geodynamic
constraints in the tomographic problem.
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(A) (B)

(C) (D)

FIGURE 4.4: Synthetic surface wave dispersion curves from 10s to 200s at
a given location: (a) Rayleigh wave phase velocity, (b) Love wave phase
velocity, (c) Rayleigh anisotropy c1, (d) Rayleigh anisotropy c2. Scatter
plot: observed dispersion curve with added noise. Line plot: observed

dispersion curve without noise.
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As expected, the posterior distribution on the activation energy E in the isotropic
case is flat, as isotropic velocities are only sensitive to temperature and not to viscosity.
Anisotropic inversion, on the other hand, constrains E as shown in Fig. 4.6. The dis-
tribution, however, appears to be distant from the correct value of E. Such a behavior
is also evident in its 2D marginal posterior where the true value is outside the inferred
distribution. This clearly exhibits a bias which is deduced from the imperfections of
the neural network when computing anisotropy. This effect is eliminated when one
uses the correct forward operator for modeling anisotropy. Another distinct feature in
these figures is the negative trade-off between Tc and R, which may be attributed to
the symmetry of the problem considered. An increase in temperature of the anomaly
compensates for an increase in its radius. Such trade-offs may be reduced in the case
where the true model exhibits less symmetry.

We also plot the mean temperature models from both inversions (see Fig. 4.7). The
figures are obtained by averaging the temperature values at each point. By visual
inspection, anisotropic inversion better resolves the 3-D thermal structure. This is fur-
ther supported by the standard deviation computed around the mean temperature at
a given pixel as shown in Figs 4.7c and 4.7d. In both cases, the standard deviations is
higher at the center of the box, where the spherical anomaly is located. This is due to
the variations in the location and amplitude of the sphere in the ensemble of sampled
models. In the anisotropic case, the vertical position of the sphere is less constrained
than its horizontal position, as can be seen in the 2D histograms. The ensemble of sam-
pled spheres therefore share the same horizontal position but have a variable vertical
position, which explains the shape of the standard deviation map in Fig. 4.7c. The pos-
terior uncertainties are also relatively small compared to the recovered temperature
field, implying that sufficient information can be retrieved from the noisy dispersion
curves.

Fig. 4.8a shows the 1D depth marginal posterior probability profiles (see captions
for further details) for temperature, and Fig. 4.8b for radial anisotropy ξ, peak-to-
peak azimuthal anisotropy, and the trend of the fast-axis of azimuthal anisotropy at
a given location. Both methods capture the 1D structures for temperature. How-
ever, by adding geodynamic constraints (i.e., anisotropic inversion), we observe that
the temperature is much better resolved. Additionally, we successfully recover ra-
dial anisotropy and azimuthal anisotropy without having to explicitly invert for the
elastic tensor (see Fig. 4.8b). Here, due to the positioning of the chosen depth pro-
file for temperature (passing nearly through the center of the anomaly), the azimuthal
anisotropy appears to be nonexistent at this location. For that reason, we consider an-
other depth profile (x = 325 km, y = 225 km) where azimuthal anisotropy is noticeable
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FIGURE 4.5: Posterior probability distribution in the 6-dimensional pa-
rameter space inferred from the isotropic inversion p(m|cR, cL). Diag-
onal panels show 1D marginal distributions for each model parameter.
Off-diagonal panels show 2D marginal distributions and depict possible
trade-offs between pairs of model parameters. The red vertical lines and
the black markers indicate the true model values for the diagonal and the
off-diagonal panels, respectively. The intensity pertains to the level of pos-
terior probability (i.e., high intensity means high probability, and thus low

misfit).
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FIGURE 4.6: Posterior probability distribution in the 6-dimensional pa-
rameter space inferred from the anisotropic inversion p(m|cR, cL, c1, c2).
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(A) (B)

(C) (D)

FIGURE 4.7: Upper panel: Cross-sectional view in the yz− plane of the
mean temperature field recovered from (a) isotropic inversion, and (b)
anisotropic inversion. Lower panel: Standard deviations around the mean
temperature fields from (c) isotropic inversion, and (d) anisotropic inver-

sion. These cross-sections are taken at the center of the x− axis.
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(Fig. 4.8b−middle).
This method also allows us to resolve 3-D structures of seismic properties. In fact,

any implicitly computed variable can be restructured in 3-D. Figs 4.9 and 4.10 show the
resulting structures computed from the mean temperature model placed side by side
with that of the true model. It appears that the value of anisotropy computed with
the neural network is underestimated compared to that of D-Rex when using the same
input model. This explains why the activation energy E resulting from the inversion is
lower compared to the true value: to produce larger anisotropy and replicate the same
output as obtained from D-Rex, one has to reduce the value of E. Indeed, reducing the
viscosity of the material allows for a stronger deformation. The resulting percentage of
total anisotropy from both figures are nearly identical. Fig. 4.9 shows the presence of
positive radial anisotropy at the bottom, indicating horizontal flow. Due to the impo-
sition of free-slip boundary conditions combined with zero normal velocities imposed
on all surfaces, the flow at the bottom of the box is oriented nearly horizontally. The
negative radial anisotropy we observe implies vertical flow (see Fig. 4.9 caption for de-
tails). This is a result of convection cells forming at the sides of the anomaly as it sinks.
At the top of the anomaly, negative radial anisotropy also indicates vertical flow due
to downwelling. Finally and as we expect, radial anisotropy at the middle is nearly
unity due to the presence of the more viscous anomaly. The difference in the structures
may be attributed to the following: (1) imperfections of the forward model used in the
inversion; (2) information loss related to data sensitivity, and data noise.

We tested the convergence of the Markov chain by plotting the estimates for data
errors with MC steps. For further details, refer to Appendix 4.6.2.

4.4.2 Inversion for Multiple Spherical Anomalies

This section covers the inversion for ten spherical temperature anomalies with different
properties (i.e., temperature Tc and radius R), positioned randomly in 3-D space. Such
parameterisation scheme may be essential to represent anomalies with complex shapes
(e.g., subducting slab) using a collection of several spheres with different characteris-
tics. The synthetic data is generated from a true temperature model consisting of ten
spherical anomalies as well. We compare the true temperature model with the mean
temperature models obtained from isotropic and anisotropic inversions (Fig. 4.11).
Even with this much more complex structure, we are able to recover the main features
of the temperature field. Also, as in the test of Section 4.4, anisotropic inversion better
recovers the structure than isotropic inversion. Posterior uncertainties are represented
in Fig. 4.12 and support this observation. However, some differences with the exact
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(A)

(B)

FIGURE 4.8: Upper panel: Probability density plots of temperature with
depth. Lower panel: Probability density plots of radial anisotropy, peak-
to-peak azimuthal anisotropy, and its fast axis with depth. The depth
profiles of temperature and radial anisotropy are taken nearly through
the center of the sphere. To show that azimuthal anisotropy is also well-
constrained, we took a depth profile at (x = 325 km, y = 225 km), where
azimuthal anisotropy is large. Geodynamic tomography offers the capa-
bility to constrain seismic anisotropy. The solid red lines indicate the true

structures.
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(A) (B)

FIGURE 4.9: Cross-sectional view in the yz− plane of the radial anisotropy
ξ inferred from (a) true model, (b) mean model. Radial anisotropy is of-
ten used as a proxy to infer flow orientation. A ξ > 1 (positive radial
anisotropy) is often interpreted as horizontal flow. A ξ < 1 (negative ra-
dial anisotropy) on the other hand, pertains to vertical flow. A ξ = 1
indicates the absence of radial anisotropy. The cross sections are taken at

the center of the x− axis.

(A) (B)

FIGURE 4.10: Cross-sectional view in the yz− plane of the percentage of
total anisotropy(i.e., norm of Sij) inferred from (a) true model, (b) mean
model. The absence of anisotropy at the center corresponds to a region of
minimal deformation for the cold and highly-viscous anomaly. The cross

sections are taken at the center of the x− axis.
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FIGURE 4.11: Isovolumetric view of the temperature fields. Left: True
temperature field. Middle: Mean temperature field from isotropic inver-

sion. Right: Mean temperature field from anisotropic inversion.

true structure remain, even using anisotropic inversion. Surface waves are long pe-
riod observations and hence, small and sharp thermal anomalies may not be resolved.
Other contributing factors involve the very nature of the tomographic problem itself
as enumerated earlier (e.g., data and modeling errors).

In Fig. 4.13, we choose one depth profile to show the 1D marginal posterior prob-
ability densities for temperature, radial anisotropy, and azimuthal anisotropy. The
dashed black lines represent the true model. Based on the recovered profiles, anisotropic
inversion resolves temperature better than the isotropic case again due to the com-
plementing information brought by geodynamic constraints. Radial and azimuthal
anisotropy still appears to be tightly constrained; however with some noticeable devi-
ations from the true model.

4.5 Conclusion

We have laid the groundwork for geodynamic tomography, a novel approach that in-
volves constraints from geodynamic modeling to invert seismic surface waves. Impos-
ing these geodynamic constraints reduces the number of model parameters to a single
scalar field (i.e., temperature) and one scalar variable (i.e., activation energy for viscos-
ity). The inverse problem is cast using Bayesian inference where we directly sample
the model space using Markov chain Monte Carlo algorithm. Here, instantaneous flow,
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FIGURE 4.12: Isovolumetric view of the standard deviations around the
mean temperature models. Left: Standard deviation for the isotropic in-

version. Right: Standard deviation for the anisotropic inversion.
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(A)

(B)

FIGURE 4.13: Upper panel: Comparison between isotropic and
anisotropic inversion. Probability density plots of temperature with
depth. The profiles are taken nearly through the center of the sphere.
Lower panel: Anisotropic inverison: probability density plots of ra-
dial anisotropy, peak-to-peak azimuthal anisotropy, and its fast axis with
depth. All profiles correspond to the temperature profile above. The solid

red lines indicate the true structures.
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deformation history, and finally seismic anisotropy are computed in our forward prob-
lem. The model space is reduced further by parameterising the temperature field as a
sum of spherical temperature anomalies with variable position, size, and temperature.

We tested geodynamic tomography in simple cases, where we successfully recov-
ered synthetic 3-D temperature fields, by jointly inverting fundamental mode anisotropic
Rayleigh wave and isotropic Love wave phase velocities. In the process, we are also
able to constrain the complete deformation pattern, to provide a quantitative interpre-
tation of seismic anisotropy in the mantle. Given the Bayesian formulation, one may
express the ensemble of temperature models, and any implicitly computed variables
(such as deformation or anisotropy) as posterior probability distributions, and quan-
tify their associated uncertainties. Geodynamic tomography is therefore a potentially
powerful technique to study the structure of the upper mantle, and interpret seismic
observations in terms of mantle deformation patterns.

4.6 Appendix

4.6.1 Parameterising temperature with spherical anomalies

For a given anomaly, we define a basis function corresponding to that anomaly using
eq. (4.3). The negative sign indicates that the anomaly is colder than the background
temperature if Tc is positive (a negatively buoyant anomaly). Should Tc be negative,
then the anomaly adds up with the background temperature resulting to a positively
buoyant anomaly. The function is designed such that: (1) When

∥∥∥r − r0
Ls

∥∥∥ > R
Ls

and
tanh returns a value of nearly one, then the temperature is just the background tem-
perature. (2) When

∥∥∥r − r0
Ls

∥∥∥ = R
Ls

, then the temperature at just half of the radius of the

anomaly is equal to Tbackground − Tc
2 . (3) Finally, when

∥∥∥r − r0
Ls

∥∥∥ < R
Ls

and tanh returns
a value of minus one, this corresponds to the temperature at the center of the anomaly
Tbackground − Tc.

Here, β controls the sharpness of the temperature gradient and is held at a fixed
value. Choosing a very large value for β results in a sharp temperature gradient (see
Fig. 4.14). In addition, opting for a smooth function such as hyperbolic tangent avoids
very sharp viscosity contrasts when computing for the flow. The advantage of build-
ing a basis set is to reduce the number of model parameters. In conventional inversion
schemes of scalar fields, we usually invert for a scalar at a given grid point. Hence, the
number of model parameters depends on the grid size. In a cube, this would result
to N3 model parameters to constrain, where N3 is the size of the 3-D block. In our
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case, this gives us 5M parameters to be inverted, where M is the number of spheri-
cal anomalies. Finally, we define the 3-D scalar temperature field as the sum of the
background temperature and the spherical anomalies as shown in eq. (4.1).

FIGURE 4.14: 1D temperature profiles with depth for different values of
R and β. Left: β = 5. Middle: β = 20. Right: β = 50. Here, we consider a
spherical anomaly with Tc = 800 K located at the center of the 3-D volume.
The plots refer to 1D depth profiles of temperature through the middle of
the sphere at specified values of R and β. The x and y axes correspond
to temperature and depth, respectively. Based on our parameterisation,
increasing the value of R at constant β increases the size of the temperature
anomaly. At constant R, the anomalies retain their respective sizes but the
temperature gradient becomes sharper at increasing β. Thus, choosing an
appropriate β is important so as to avoid sharp viscosity contrasts (since
η depends on T) when computing flow. In our inversion, we choose to fix

β = 20, and invert for R.

4.6.2 A simple test for convergence

Fig. 4.15 shows the noise estimate plotted against MC step in the one sphere case. The
standard deviation of data noise is implicitly computed with MLE (see Section 4.3.3),
and is simply given by the level of data fit. The starting point for each plot is the
iteration at which anisotropic tomography commences. The trends exhibit well-mixed
random walk behaviors indicating that convergence has been achieved. This level
of noise estimated by MLE represents the combination of observational errors (white
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noise added to the data), and theoretical errors (errors of the surrogate model used for
texture evolution).

(A) (B)

(C) (D)

FIGURE 4.15: Noise estimate with MC step for (a) Rayleigh waves, (b)
Love waves, (c) c1, and (d)c2. Each colored line plot is associated with
one independent Markov chain. Solid green line indicates the standard

deviation of random errors added to the data.
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Chapter 5

Geodynamic Tomography: Application

to a 3D Deforming Upper Mantle

Beneath a Subduction Zone

5.1 Summary

The previous chapter highlights the success of geodynamic tomography in the recov-
ery of the complete patterns of upper mantle deformation from anisotropic surface
wave dispersion measurements in the most simple cases (i.e., classical Stokes sphere-
like geometry problem). This chapter explores the ability of the method to capture
more complex deformation patterns in the guise of a 3-D deforming upper mantle in-
duced by subduction. Thus this demonstration can be viewed as an intermedial step
prior to its full realisation towards real Earth problems.

A myriad of model parameterisations can be implemented. One notable procedure
is to represent regional tectonics as geometrical blocks regarded initially as a priori
constraints (i.e., our preconceived knowledge about the geometrical structure of the
region of interest). Constant values of relevant parameters defining its thermal and
rheological properties can then be ascribed in each of these blocks. For instance in the
case of a subduction geometry, the subducting slab can be assigned with a constant
temperature and viscosity that is inherently distinct from the values assigned for the
sub-slab mantle and the mantle wedge.

This chapter covers an alternative parameterisation where in lieu of assigning con-
stant values, we apply a continuous parameterisation of the temperature field in terms
of hyperbolic tangent basis functions. This implies that the block of subducting slab
can be treated as a smooth temperature anomaly defined by this basis function on top
of an adiabatic temperature gradient. The basis function depends on four parameters
which would be treated as unknowns: (1) slab length L, (2) slab thickness R, (3) dip
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angle θ, and (3) slab temperature Tc. For the medium rheology, we still employed
temperature-dependent viscosity controlled by a single activation energy E; although
it is acknowledged that a realistic parameterisation involves the implementation of
viscoplastic behavior with several control parameters other than temperature.

We implement geodynamic tomography to retrieve these five unknown parame-
ters that define the thermal and rheological structure of a synthetic subduction zone.
The method is tested to synthetic data prescribed with very low noise levels to mimic
periodically-correlated surface wave dispersion measurements. Results show the in-
corporation of geodynamic and petrological constraints tightly recover these five un-
knowns, which implies the implicit retrieval of the complete patterns of upper man-
tle deformation, and correspondingly, the 21-independent coefficients defining elastic
anisotropy. The final output is an ensemble of models of L, R, θ, Tc, and E cast in terms
of a posterior probability distribution and their uncertainty limits.

5.2 Model parameterisation: thermal structure of a sub-

duction zone

We begin by defining the temperature field T as the sum of a background temperature
Tbackground derived from a half-space cooling model and a thermal anomaly δT. This
translates to:

T(r) = Tbackground(r) + δT(r), (5.1)

where Tbackground is given by:

Tbackground(r) = (1900K − 500K) erf

(
z

2
√

κt

)
+ 500K, (5.2)

where r is any arbitrary position in 3D space defined by the coordinates r = [x,y,z], κ is
the thermal diffusivity, z is depth, and t is the plate age in million years. The anomaly
δT is a subducting slab defined by three geometrical parameters: (1) dip angle θ, (2)
length of the slab L, (3) thickness R which relates to the rate of heat diffusion.

For simplicity, we assume the subducting slab to be symmetrical about the y− axis.
In this way, the trench axis can now be viewed as a point in the xz−plane defined by
rtrench = [x1, z1]. Given θ, L, and rtrench, we are now able to define another point [x2, z2],
and the line joining these two points delineates the axis of symmetry of the slab about
the xz−plane. The slope and the z-intercept of the line can then be computed using the
two-point formula. For convenience, let’s call this line AB.
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FIGURE 5.1: Simple 2D subduction zone geometry. The gray region en-
capsulates the grid nodes that are within the bounds of the slab geometry.
The line joined by the two red circles designated as AB is the axis of sym-
metry of the slab. The blue circles are the projections of the grid nodes

(white circles) along the axis of symmetry of the slab.

The temperature field is constructed in a regular grid of size Nx × Ny × Nz. To
assign a thermal anomaly for each grid node at point [x0, z0] that is representative of a
slab, one must first determine the distance d from one grid node to AB. However prior
to this step, a grid node is required to be within the bounds of the symmetry axis. To
do this, we need to determine another point [xs, zs] along AB perpendicular to a given
grid node. For any line perpendicular to AB joined by [xs, zs] and [x0, z0], its slope is
just the negative reciprocal of the slope of AB. Calling this line CD, the intersection
between AB and CD is the point [xs, zs]. The problem can be treated as a system of
2 linear equations, with 2 unknowns (i.e.), xs and zs. In terms of the slope m and the
intercept b, the solution is given by:

xs =
mz0 + x0 − mb

m2 + 1
.

zs =
m

m2 + 1
(mz0 + x0 − mb) + b.

(5.3)

The condition at which the grid node is within the said bounds is determined by com-
puting the distance Ls from [x1, z1] to [xs, zs]. If L is greater than Ls, then the grid
node of interest is within bounds, otherwise, it is out of bounds. Figure 5.1 shows an
illustration of this simple 2D geometry problem.

We model the anomaly in terms of a hyperbolic tangent function, the same way we
defined the spherical temperature anomalies in the previous chapter. This coerces the
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(A) (B)

FIGURE 5.2: Thermal structure of a subduction zone parameterised in
terms of geometrical points. The structure is rendered using the follow-
ing input parameters: L = 150 km, θ = 350, R = 120 km, Tc = 800 K. The left
panel represents the vertical cross-section of the model whereas the right
panel corresponds to the isovolumetric contour plot of the temperature

field.

temperature to be smaller as it gets closer to the slab’s symmetry axis. This also means
that the spread of the tanh function relates to the thickness of the slab itself. In here we
define it using the input parameter R. Larger values of R tantamount to a thicker slab.
When L is greater than Ls, the temperature anomaly at node r=[x0, y0, z0] is:

Tanomaly(r) = −Tc

2

⎡⎣1 − tanh

(
β

Lscale

(
d − R

2

))⎤⎦ , (5.4)

where d is the Euclidean distance between points [x0, z0] and [xs, zs], Tc is the maximum
perturbation around the background temperature located along the axis of symmetry
of the slab, and β controls the sharpness of the temperature gradient which is held at a
fixed value. When [x0, z0] is out of bounds, we can model the curvature of the slab by
still using eq. (5.4) but replacing d with ds (see Fig. 5.1) which is the Euclidean distance
between points [x0, z0] and [x2, z2]. Fig. 5.2 shows the thermal structure of the subduc-
tion model viewed in 2D (left panel) and in 3D (right panel) using the aforementioned
parameterisation. The model parameters possess the following values: L = 150 km, θ

= 350, R = 120 km, Tc = 800 K.

The medium rheology is modeled following the Frank-Kamenetskii approximation
to Arrhenius-type viscosity. This means that the influence of temperature onto viscos-
ity is supervised by the same activation energy E described in the previous chapter.
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The viscosity field η is given by:

η(r) = η0 exp

[
−E

T(r)− T0

T0

]
, (5.5)

where η0 and T0 are reference values for viscosity and temperature, respectively. In the
inversions, the total number of parameters to be inverted for are five: four of which L,
θ, Tc, and R characterize the temperature field of the subduction model, and the latter
E controls the temperature-dependence of viscosity. The model vector m is thus:

m = [L, θ, Tc, R, E]. (5.6)

5.3 Modifications in the Bayesian sampling scheme

Since the formulation of the inversion procedure is identical to the previous example,
this section highlights instead the minor modifications implemented to the Bayesian
sampling scheme tailored to the new parameterisation of the temperature field.

5.3.1 The prior distribution

We assume the model parameters to be independent. In this way, the prior distribu-
tion of each model parameter are separable and can be expressed as a product of each
distribution:

p(m) = ∏ p(L)p(θ)p(R)p(Tc)p(E). (5.7)

Each prior on the model parameters follows a uniform distribution with wide bounds
to avoid imposing hard constraints from the prior. Such a setup mimics a scenario
where prior knowledge about the regional setting is scant and thus the solution to our
inverse problem is more likely driven by the information provided by the data. The
prior bounds are as follows: (1) 100 km - 200 km for L, (2) 80 km - 150 km for R, (3) 200

- 450 for θ, (4) 500 K to 1000 K for Tc, and (5) 5 to 12 for E.

5.3.2 Generation of new models along the Markov chain

At each iteration in the McMC algorithm, a new model m′ is proposed by uniformly
randomly selecting one of the possible set of moves:

1. Vary the length of the slab L. The slab length is perturbed according to a univari-
ate Gaussian distribution centered at the current value of L.
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TABLE 5.1: True model parameters defining the thermal structure of the
subduction model.

Model parameter Assigned value

L 150 km
R 120 km
θ 350

Tc 800 K
E 11.0

2. Vary the dip angle θ. The dip angle is perturbed according to a univariate Gaus-
sian distribution centered at the current value of θ.

3. Vary the thickness of the slab R. The slab thickness is perturbed according to a
univariate Gaussian distribution centered at the current value of R.

4. Vary the temperature of the slab Tc. The slab temperature is perturbed according
to a univariate Gaussian distribution centered at the current value of Tc

After choosing one of the four possibilities, the proposal is always accompanied by
the perturbation of the activation energy E. The activation energy is perturbed using a
univariate Gaussian distribution centered at the current value of E.

5.4 Full forward procedure to predict surface wave mea-

surements from the subduction model

Table 5.1 summarises the true model parameters used to generate the data (i.e., lo-
cal anisotropic surface wave dispersion curves). The data are produced coming from
an anisotropic tensor computed with D-Rex. Note that the other scalar variables un-
involved in the inversion procedure such as the dimensionless parameters defining
the Rayleigh number and the control parameters for CPO evolution modeling are pre-
served.

To generate the flow model, we employed multigrid methods with variable viscos-
ity on a staggered regular grid parameterisation. This is followed by the interpolation
of the velocity components to the center cells of a unit cube making up the grid. The
flow is computed in a 400 km × 400 km × 400 km box whose resolution is of the size
6.25 km × 6.25 km × 6.25 km across all directions. Although most of the computational
qualities involved in flow modeling from the previous demonstration are preserved,
here we modified the top boundary conditions by imposing plate velocities to repli-
cate real Earth subduction dynamics. The bottom and lateral boundary conditions are
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always free-slip. Thus apart from slab descent due to gravitational instability, the slab
itself moves laterally due to the influence of the imposed plate velocities.

Fig. 5.3a shows the vertical cross-section of the 3D instantaneous flow field induced
by subduction. We observe one of the conspicuous features of subduction-induced
flow, that is the existence of a local convection cell beneath the slab tip attributed to
retrogade slab migration. This is accommodated by the existence of back-arc motion
towards the trench made responsible mainly by trench suction and in part by the in-
duced leftward motion due to the imposed plate velocity across the overriding plate.
This also ensues flow ascension in front of the slab. The vigorous mixing observed
across the sub-slab mantle resembling roll-back motion is mainly influenced by hor-
izontal boundary effects. Such effects can be reduced by increasing the size of the
model domain. Nevertheless, most features observed across the vertical cross-section
are mainly predisposed by poloidal flow (i.e., buoyancy-related motion). In essence
as with any divergence-free vector field, our velocity field can be decomposed into a
poloidal component, and a toroidal component which relates to horizontal flow due to
the presence of lateral viscosity contrasts (Gable, O’connell, and Travis, 1991; Bercovici,
1995b). Since we imposed temperature-dependent viscosity, we are compelled to deal
with toroidal motion due to lateral variations in viscosity as shown in Fig. 5.3b where
we observe local vorticities around the slab edges.

Fig. 5.4 shows the vertical cross-section of the finite strain representation of the sub-
duction model. Solid black lines pertaining to the orientation of the long axis of the fi-
nite strain ellipsoid (fse) are superimposed on top of the natural strains (i.e., amplitude
of finite deformation in terms of the relative lengths between the long and short axes
of the fse). Finite strain orientations to first-order tend to be parallel to the direction
of flow, however, may lag behind in some instances where deformation rapidly varies
along the flow trajectory. The absence of deformation correlate well with the presence
of the fortified and highly-viscous slab.

From the velocity field, we gain access to the macroscopic velocity gradients by
second-order finite differencing. The 3D map of the local velocity gradient in con-
junction with the temperature field are utilised to construct an elastic model of the
synthetic subduction zone using a micro-mechanical model for CPO evolution for the
anisotropic part, and a thermodynamic model for the isotropic part, respectively. At
any arbitrary location in 3D space, the elastic model contains the elastic tensor S with
21-independent coefficients. Since it is arduous to interpret a fourth-rank tensor, it is of-
ten convenient to decompose S into a specific symmetry class to better analyse its prop-
erties. Fig. 5.5 illustrates the vertical cross-section of the elastic constants A0 related
to PV−waves and L0 related to SV−waves associated with the subduction model.
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(A) (B)

FIGURE 5.3: Instantaneous velocity field induced by subduction. Model
domain is of the size 64 × 64 × 64 elements, free-slip boundary conditions
are imposed at the lateral and bottom sides. Opposing plate velocities
are prescribed at the top to drive horizontal motion. (a) Vertical cross-
section of the velocity field with the temperature field superimposed. (b)
Overhead view of the velocity field. Fig. (b) illustrates the significance of

lateral viscosity variations to produce toroidal fluid flow.
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FIGURE 5.4: Cross-sectional view in the xz− plane of the natural strains
(i.e., amplitude of the fse). Solid black lines are attributed to the orientaiton
of the long axis of the fse. Finite strain framework is usually used as a

proxy to infer convective flow in the mantle.

The elastic constants are computed from the elastic projection of S to an azimuthally-
averaged VTI medium (Montagner and Nataf, 1986). Both panels robustly map the
cold subducting slab with L0 exhibiting sensitivity to temperature variations more fer-
vently than A0. Since the constants A0 and L0 are not the isotropic averages of the fast
and slow velocities but a linear combination of the elastic tensor, they possess small
anisotropic pertubations thus explaining the presence of smearing in some areas of the
maps.

On the other hand, Fig. 5.6 represents the vertical cross-section of S−wave radial
anisotropy ξ (left panel) and of the total anisotropy (i.e., norm fraction of the elastic
tensor with respect to the isotropic component) (right panel). As observed, regions of
positive radial anisotropy ξ > 1 correlate well with horizontal flow and of negative ra-
dial anisotropy ξ < 1 with vertical flow. In terms of the total anisotropy, the entrained
mantle wedge adjacent to the plunging slab, and beneath the back-arc produced the
most CPO due to shear deformation initiated by slab pull and reinforced by trench
suction. Strong anisotropy produced across the shallower depths of the sub-slab can
be attributed to roll-back motion augmented by boundary effects. Across the slab itself,
we expect ξ ≈ 1 since the material is designed to mimic rigid plates that widthstand
deformation. This is also observed at the right panel where total anisotropy across
the slab appears to be nearly non-existent. Thus in this case, the subducting slab is
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(A) (B)

FIGURE 5.5: Cross-sectional view in the xz− plane of the elastic constants
L0 (left panel) and A0 (right panel). Since elasticity strongly depends on
temperature, we can easily map the cold subducting slab in the seismic

models. The cross sections are taken at the center of the y− axis.

isotropic since no CPO is generated due to its resilient rheological integrity. The pres-
ence of small-scale artifacts in the anisotropic structures may be attributed to numerical
errors associated with the forward calculations.

From an elastic model built from the spatial distribution of S, it is now permissi-
ble to compute 2D phase velocity maps and their azimuthal variations. For instance,
Fig. 5.7 shows a map of the computed phase velocity and azimuthal anisotropy for
Rayleigh waves at 100 s. The increase in velocity on the left portion of the map shown
in Fig. 5.7a indicates the influence of the cold subducting slab. In Fig. 5.7b, the charac-
teristic blue margin in between the yellow regions corresponds to the slab itself. This
is also delineated by the shortening of the fast axis of azimuthal anisotropy within
its vicinity (solid black lines). Although the orientation of the fast axis is a sufficient
proxy to infer the horizontal projection of flow, it may still fail to render some im-
portant characteristics such as the presence of a toroidal component in the flow. This
is because azimuthal anisotropy in surface waves is an integrated effect of the elastic
anisotropy with depth. Furthermore, the latter depends on the deformation trajectory.
Hence, absolute flow velocities may be well away from the orientation of its fast propa-
gation. Finally, the deformation induced by subduction seemingly produces about 2 %
azimuthal anisotropy in surface waves which spreads out almost evenly throughought
the map and only restricted by the existence of the isotropic slab.
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(A) (B)

FIGURE 5.6: Cross-sectional view in the xz− plane of the shear wave ra-
dial anisotropy ξ (left panel) and the total anisotropy expressed in terms
of the tensor norm fraction of S with respect to its isotropic component

(right panel). The cross sections are taken at the center of the y− axis.

(A) (B)

FIGURE 5.7: Phase velocity maps derived from a 3D deforming upper
mantle beneath a subduction zone at 100s period. (a) Rayleigh wave phase
velocity (km/s). (b) Azimuthal anisotropy in Rayleigh waves (km/s). The
solid black lines correspond to the direction of the fast propagation axis.

Surface wave maps always lie along the xy− lateral plane.
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5.5 Inversion for the five unknown model parameters

Using the true values of the model parameters summarised in Table 5.1, we generated
synthetic surface wave dispersion curves and their azimuthal variations at periods
between 10 and 200 s with 10-s interval. The complete data consist of a regular array of
8 × 8 locations containing cR, cL, c1, and c2 spanning the entire surface. The synthetic
data were computed based on elastic tensors calculated with D-Rex.

We added Gaussian uncorrelated noise onto cR, cL, c1, and c2. Since we are pushing
the limits of geodynamic tomography by applying it with more physical parameteri-
sations, it is also more appropriate to test the method with realistic synthetic data. As
such, to replicate surface wave dispersion measurements that are correlated in period,
we prescribed very low noise levels for cR and cL with σR,L = 0.001 km s−1. Conversely,
the azimuthal variations were assigned with σ1,2 = 0.005 km s−1. Fig. 5.8 shows a syn-
thetic surface wave dispersion curve with and without added noise at one specific
geographical location.

FIGURE 5.8: Synthetic surface wave dispersion curves from 10 to 200 s at
a given geographical location (blue lines). The data used in the inversions

have been added with Gaussian uncorrelated noise (red circles).
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The inversion consists of 20 independent Markov chains containing 40 000 samples
each initiated at a random model (i.e., values for L, θ, R, Tc, and E are randomised
for all chains) to ensure loose compliance to the initial model. Similar to the previous
chapter, we demonstrate two cases: (1) an isotropic inversion and an (2) anisotropic
inversion (i.e., geodynamic tomography). Both cases are imposed with wide uniform
priors as discussed in Section 5.3.1 allowing for more mobility when searching the
parameter space. For efficient sampling, we commenced geodynamic tomography by
first employing an isotropic inversion. Once the independent chains have converged
in this phase, we then proceeded with the actual anisotropic inversion procedure. It is
important to emphasise that we still implemented an artifical neural network (ANN)
algorithm to approximate D-Rex. Since the current architecture of the ANN is problem-
specific, it is designed based on training data generated by flow models produced by a
family of thermal subduction models.

Figs 5.9 and 5.10 shows the 1D marginal posterior probability distribution on each
model parameter (diagonal panels) and the joint marginal posterior probability distri-
bution between a pair of model parameters (off-diagonal panels) to explore possible
trade-offs for isotropic inversion and anisotropic inversion, respectively. The red lines
and the black circles indicate their correct values. Both cases have exhibited a single
misfit minima for the model parameters that define the thermal structure of the sub-
duction model. However by incorporating geodynamic and petrological constraints,
we observe that the entirety (this includes the activation energy E) are much more
tightly constrained than the isotropic case, as evidenced by the considerable decrease
in the spread of the distributions. The narrow widths of the posterior distributions are
also a manifestation of the low noise levels accounted for in the inversions. Between
these two effects, it can be implied that the imposition of geodynamic constraints con-
tributes far more toward the robustness of the solutions than the usage of low-noise
data.

It is expected that isotropic inversion hardly constrains E since isotropic veloci-
ties do not depend on deformation history but are directly derived from tempera-
ture and pressure for a given chemical and mineralogical composition. Contrastingly,
anisotropic inversion effectively constrains E although the result is clearly biased as it
is shown to be two values lower than the correct number. In actuality, bias exists in
all the parameters at least except for the length of the slab L. Thus the existence of
a misfit minima that are not in agreement with the true model parameters can only
be explained by the use of an incorrect surrogate model. Indeed, implementing the
correct forward model to compute anisotropy would eliminate this effect. However
since it entails to be computationally expensive when employed with direct-search
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algorithms, it is imperative to utilise fast-forward approximations such as neural net-
works. This necessetitates the inclusion of additional training data and/or possibly the
partial or complete overhauling of the network architecture. Finally, the existence of a
linear trade-off between a pair of parameters appear to be widespread. Such behavior
is most apparent between the temperature of the slab Tc and the slab geometry par-
ticularly L and R. This is likely due to the accommodation of the increase in the slab
temperature by an increase in its size.

Fig. 5.11 illustrates the reconstructed mean temperature field from both inversions
(top panels) and their corresponding uncertainties in terms of the standard deviation
(bottom panels). By visual inspection, we notice that the mean temperature field from
the isotropic inversion to be not much different from the anisotropic case. Due to the
low levels of noise in the data, anisotropy does not bring much in the recovery of the
temperature field. However in the case of larger noise as demonstrated in the previ-
ous chapter, the inclusion of anisotropy in the inversions would be more beneficial.
The standard deviation conveys a different story however as observed by its smaller
amplitude in the case of geodynamic tomography (Fig. 5.11d). In both cases, the uncer-
tainties are seemingly clustered across subducting slab with two discernible plunging
stripes. This indicates a state of relaxation, or more prefereably, convergence of the
Markov chains towards a stable solution. The plunging stripes therefore are a result of
a random-walk behavior of the subducting slab about its axis of symmetry. The axis of
symmetry is delineated by the area of low uncertainty partitioning the two plunging
stripes of high uncertainties.

Fig. 5.12 shows the 1-D depth marginal posterior probability profiles at a given lo-
cation for temperature, radial anisotropy, peak-to-peak azimuthal anisotropy, and the
fast azimuth inferred from geodynamic tomography. We successfully jointly recov-
ered azimuthal and radial anisotropy without having to explicitly invert for the elastic
tensor. One of the key advantages of geodynamic tomography is its capacity to cap-
ture intricate and highly complex features as exemplified by the recovered amplitude
of azimuthal anisotropy and its fast azimuth. Furthermore, one of the long standing
problems of conventional surface wave tomography is the depletion of its resolving
power with depth since its energy is mostly concentrated across the surface. Here we
have demonstrated the ability of geodynamic tomography in the apparent eradication
of this effect as evidenced by the preservation of the width of the posteriors in depth.

Lastly, geodynamic tomography offers the capability to resolve 3-D structures of
any implicitly computed varible. As a demonstration, Fig. 5.13 illustrates the radial
anisotropy (left panel) and the total anisotropy (right panel) obtained from the mean
temperature model. A recurring issue is the underestimation of seismic anisotropy in
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FIGURE 5.9: Posterior probability distribution in the 6-dimensional pa-
rameter space inferred from the isotropic inversion p(m|cR, cL). Diag-
onal panels show 1D marginal distributions for each model parameter.
Off-diagonal panels show 2D marginal distributions and depict possible
trade-offs between pairs of model parameters. The red vertical lines and
the black markers indicate the true model values for the diagonal and the
off-diagonal panels, respectively. The intensity pertains to the level of pos-
terior probability (i.e., high intensity means high probability, and thus low

misfit).
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FIGURE 5.10: Posterior probability distribution in the 6-dimensional pa-
rameter space inferred from the anisotropic inversion p(m|cR, cL, c1, c2).
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(A) (B)

(C) (D)

FIGURE 5.11: Upper panel: Cross-sectional view in the xz− plane of the
mean temperature field recovered from (a) isotropic inversion, and (b)
anisotropic inversion. Lower panel: Standard deviations around the mean
temperature fields from (c) isotropic inversion, and (d) anisotropic inver-

sion. These cross-sections are taken at the center of the y− axis.
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(A)

(B)

FIGURE 5.12: 1-D marginal posterior probability profiles with depth of
several variables inferred from geodynamic tomography. Upper panel:
Probability density plots of temperature and radial anisotropy. Lower
panel: Probability density plots of peak-to-peak azimuthal anisotropy,
and its fast axis with depth. The depth profiles of temperature and radial
anisotropy are taken at (x = 125 km, y = 225 km). To show that azimuthal
anisotropy is also well-constrained, we took a depth profile at (x = 175
km, y = 225 km), where the patterns of azimuthal anisotropy is highly
complex. Geodynamic tomography offers the capability to constrain seis-

mic anisotropy. The solid red lines indicate the true structures.
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(A) (B)

FIGURE 5.13: Cross-sectional view in the xz− plane of the radial
anisotropy ξ (left panel) and the total anisotropy (right panel) obtained
from the mean temperature model. The cross sections are taken at the

center of the y− axis.

comparison with the true model (Fig. 5.6) due to the use of an approximate forward
operator to model CPO evolution. This is compensated by the weakening of the slab
rheology, by the reduction of the activation energy E (Fig. 5.10 bottom right panel), in
order to produce larger levels of anisotropy.

5.6 Conclusion

Geodynamic tomography is an imaging technique that incorporates constraints from
geodynamics and mineral physics to restrict the potential number of candidate seismic
models down to a subset consistent with geodynamic predictions. Imposition of these
constraints eliminate the need to explicitly invert for the elastic tensor everywhere. In-
stead, the elastic tensors are implicitly computed based on known micro-mechanical
models for texture evolution. Such methods tremendously reduce the number of Earth
parameters from a spatial distribution of elastic tensors with 21 independent coeffi-
cients down to a single scalar field (e.g. temperature).

We have tested the applicability of geodynamic tomography to a 3D deforming up-
per mantle induced by subduction. Isotropic Love and Rayleigh wave phase velocity
measurements and their azimuthal variations at a given location were jointly inverted
to recover the 3-D thermal structure of a synthetic subduction zone. The method is
cast in a single self-consistent Bayesian inversion procedure where the solution is an
ensemble of unknown model parameters defining the subduction thermal structure
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and rheology. The assembly of these unknown parameters are distributed according
to a posterior probability density function.

In the process, not only do we successfully recover the desired thermal structures,
we have also constrained the complete pattern of upper mantle deformation induced
by subduction, and to provide a quantitative interpretation of intrinsic seismic anisotropy.
The Bayesian framework propounds the capability to render marginal posterior prob-
ability distributions not only of the target unknown Earth models, but also of any
implicitly computed varible such as deformation and anisotropy, and quantify their
associated uncertainty limits.
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Chapter 6

Concluding remarks and perspectives

For the first time, we have reconciled seismology and mantle geodynamics, two seem-
ingly independent subdisciplines, into a single self-consistent geophysical inversion
approach called Geodynamic Tomography. Being at its infancy, much work remains to be
done towards the recognition of its full potential when applied to real-Earth problems.
As such, this chapter elucidates geodynamic tomography from a broader perspective.
The first section summarises the achievements of the thesis. This is followed by the
limitations of the method and possible future avenues to take in order to address such
limitations. The last section explores possible strategies to consider towards the imple-
mentation of geodynamic tomography to real-data.

6.1 Geodynamic tomography: a redefinition of the seis-

mic imaging problem

The long standing issue associated with conventional anisotropic seismic tomogra-
phy, surface wave studies in particular, is its inability to resolve the 21-component
elastic tensor independently at every location. Because of this, in practice only a re-
stricted number of parameters are inverted for by assuming tensor symmetry rela-
tions. Anisotropic surface wave tomography however, even after the assumption of
symmetry relations, remains troublesome due to the high-dimensionality of the free
parameters surface waves are sensitive to. This motivated the development of tomo-
graphic techniques that exploit any intrinsic correlation among the elastic constants
derived from petrological models. The result is the further reduction of the free pa-
rameters to be inverted for. In reality however, the full elastic tensor contains every
ounce of information regarding the thermo-chemical structure and current state of de-
formation of the Earth’s interior. Conventional anisotropic surface wave tomography
may therefore fail to yield some key aspects associated with the Earth’s present-day
structure and dynamics.
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This urged the need to redefine the surface wave tomography problem by combin-
ing geodynamic flow modeling, thermodynamic modeling, texture evolution model-
ing, and finally seismic forward modeling in order to formulate a general geophysical
inversion strategy to tackle the problem stated above. The main advantage of such a
technique is the confinement of the number of possible Earth models down to a subset
that matches with geodynamic predictions, and the total elimination of parameterising
the elastic tensor. Constructing the latter does not require the imposition of tensor sym-
metries at the outset but is purely driven instead by the physics of mantle convection.
The underlying idea is that although surface waves are only sensitive to a limited num-
ber of elastic constants, the incorporation of geodynamic and petrological constraints
serves as leverage to allow for the full elastic tensor to be resolved everywhere. As a
favorable consequence of including such constraints, it is plausible to reduce the total
amount of free parameters to be inverted for in the tomographic problem to a single
scalar field (e.g., density, temperature). The caveat is that the method is computation-
ally expensive due to the use of a multitude of numerical recipes to model various
geophysical processes.

Geodynamic tomography consists of two main ingredients. First is the compu-
tation of synthetic data (e.g., surface wave dispersion measurements) given an Earth
model (e.g., temeprature). The forward model that describes the non-linear mapping
between the model and the data involves the following series of steps: (1) geodynamic
flow modeling using a scalar field (i.e., temperature) as an input, (2) thermodynamic
modeling to compute for the isotropic part of the elastic tensor from temperature and
pressure at a given mineralogical and chemical compositions, (3) texture evolution
modeling to compute for the intrinsically anisotropic part of the elastic tensor using
the flow model derived from (1), (4) constructing the full elastic tensor from (2) and
(3), and lastly (5) computing synthetic seismic data given the elastic model built from
(4). The second procedure is the actual inversion process which involves the appraisal
based on Bayesian inference of a randomly-selected Earth model using direct-search
algorithms. The solution to the inverse problem is therefore a posterior distribution in
each model parameter and their associated uncertainty bounds.

We first demonstrated this technique to a synthetic upper mantle whose thermal
structure is constructed from spherical temperature anomalies. Here, we inverted sur-
face wave phase velocity dispersion measurements and their azimuthal variations to
retrieve the temperature and the viscosity fields. In the process, we have successfully
recovered the complete pattern of upper mantle deformation. One of the main benefits
of the Bayesian framework is the ability to cast any implicitly-computed variable such
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as deformation and seismic anisotropy in terms of posterior probability distributions
and the quantification of their associated uncertainties.

The second example deviates from the initially simple parameterisation in terms of
spheres, towards its application to thermal structures of a synthetic subduction zone.
The goal was to test the ability of geodynamic tomography to recover structures har-
bouring complex deformation patterns. Anisotropic surface wave dispersion measure-
ments were inverted to retrieve five unknown parameters that define the thermal and
rheological structure of the subduction zone. Results show that the unknown param-
eters are tightly constrained with the apparent existence of a single misfit minima in
each model pararameter. Each model realisation however fails to swarm around its
true value. Such results are attributed to the inability of the surrogate model to accu-
rately replicate the correct forward model for computing anisotropy due to the inherent
complexity of the deformation patterns considered.

6.2 Additional comments on geodynamic tomography

6.2.1 Model parameterisation strategies

The goal of Chapter 4 was to test the method in the most simple cases, and we ac-
knowledge that our parameterisation of the temperature field in terms of a sum of
spherical anomalies is simplistic. However, such parameterisation can be applied to
invert for more complex geometries such as a detached slab, a homogeneous plume,
or upper mantle structures beneath cratons. A step further will be to test more realistic
approaches. One possible alternative parameterisation is the use of initial temperature
models inferred from isotropic tomography, and an iterative update of the structure
based on the anisotropy signature at the surface (i.e., anisotropic surface wave disper-
sion curves). This, however, may only be feasible at the global scale due to boundary
effects. It should still be possible to apply this technique at the regional scale, but the
structure of interest should be far from the borders of the region considered in order to
avoid these boundary effects. Another simple yet effective parameterisation would be
to invert for constant parameters (e.g., density, viscosity) within geometrical blocks de-
fined from a priori information regarding the tectonics of the region (Baumann, Kaus,
and Popov, 2014). This was demonstrated in Chapter 5, however in place of constant
values, continuous basis functions were used instead to administer smoother parame-
terisations. In general, the quality of the results will depend on the choice of the model
parameters, and the prior information available for the region of interest.
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6.2.2 Neural network-based approach to texture evolution

The computational demands of direct sampling techniques such as McMC is high, as
it requires evaluating the forward model a large number of times. Among all routines
involved in the forward model, calculating CPO anisotropy proved to be the most
costly. We therefore devised a surrogate model that computes texture evolution via
a neural network, thus reducing the computation time by three orders of magnitude
compared to D-Rex.

However, the surrogate model introduces theoretical errors, which can be reduced
by using a network architecture or a training procedure more adapted to the problem at
hand. More accurate predictions could be obtained by using a larger training data set,
but this has a higher initial computational cost. We observed that the surrogate model
does not generalise well. It was trained for specific types of flow (e.g., convective flows
due to spherical temperature anomalies/induced by subduction), and thus provided
correct predictions only for flow models of the same nature. However, only these spe-
cific flow types were tested in the McMC scheme, and it is therefore not necessary here
to have a general neural network that applies to any type of flows.

The success of our synthetic tests is in some ways a proof of the quality of the
neural network. The inverted anisotropic seismic data sets were calculated using the
exact D-Rex model. Therefore, any errors introduced by the network would manifest
themselves by producing a poor fit to the observed data. These theoretical errors have
been quantified and accounted for in the Bayesian inversion. If we want to treat an-
other problem, such as a sinking slab with complex geometry, one needs to re-train
the surrogate model for the specific parameterisation and prior distribution used. A
possible future avenue of geodynamic tomography that is independent of this specific
step would be to directly parameterise mantle flow, and build a family of expected
convection patterns (together with their predicted anisotropy) to investigate flow pat-
terns underneath mid-ocean ridges and subduction zones. Such parameterisation can
be easily extended to the global scale by treating these patterns in terms of source and
sink models derived from prescribed plate velocities (Bercovici, 1995a).

The Bayesian formulation is a practical tool to quantify and account for the theoreti-
cal errors introduced by the parameterisation choice and the surrogate model. Statistics
of these errors can be studied by comparing responses obtained with the true forward
model and the surrogate model. If the distribution of residuals is approximated as
a normal distribution, theoretical errors can be accounted for in the likelihood func-
tion (Hansen et al., 2014b). However, the size of the residual vector may not be large
enough to properly represent the statistics of errors. Here instead, we used a maximum
likelihood estimation (MLE) to implicitly account for these theoretical errors (Dettmer,
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Dosso, and Holland, 2007).

6.2.3 Adapting to other data-types

In this work, we assume that the measurement errors in the data are uncorrelated. In
reality however, surface wave dispersion measurements are inherently smooth, and
correlated both in space and in frequency. A simple improvement when modeling
noise can be made by introducing a function that varies with period while still main-
taining the assumption of uncorrelated errors, as in the work of Ravenna and Lebedev
(2017). One may proceed a step further by constructing a covariance matrix of data
noise, more importantly when working on highly spatially-correlated data sets.

It is also worth mentioning that the method is not limited to the use of a single
data-type (i.e., surface wave measurements) to effectively constrain the patterns of up-
per mantle deformation. This calls for the inclusion of other data-types such as grav-
ity anomalies, surface topography, and/or surface velocities in a joint or separate ap-
proach. Such strategies have already been successfully implemented to invert for the
3D density structure of the mantle (e.g. Ricard and Wuming, 1991; Baumann, Kaus,
and Popov, 2014).

6.3 Physical assumptions imposed

The trade-off between physical complexity and computational cost is evident in every
geophysical problem considered. In this work, we chose to decrease the computational
cost to massively explore the parameter space (using an inverse problem formulation)
but at the price of using simplified physical assumptions.

6.3.1 Nature of the flow model

We assumed that the flow is in steady-state in order to trace the flow streamlines, which
is a prerequisite to compute CPO anisotropy. However, this may not be the case in
regions where flow appears to be time-dependent such as migrating trenches and mid
ocean ridges (Heuret and Lallemand, 2005; Masalu, 2007). A time-dependent flow
could be implemented by accounting for the evolution of the surface tectonics (Ricard
et al., 1993) and the retrodiction of internal heterogeneities (Bunge, Hagelberg, and
Travis, 2003; Steinberger, Sutherland, and O’connell, 2004). Nevertheless, steady-state
assumption is still valid in some places such as intra-oceanic regions where flow has
been observed to be in steady-state over the last 40 Myr (Becker et al., 2003; Becker
et al., 2006).
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Another limiting factor is the imposition of arbitrary boundary conditions on the
sides of the model domain which strongly impact the nature of the flow. Note that
the boundary conditions could be treated as an unknown parameter to be inverted for.
An obvious way to address this issue is also to work at the global scale. In this case,
a fast and reliable method to compute geodynamic flow in a spherical Earth is indis-
pensable. To cite an example, semi-analytical circulation models such as that of Hager
and O’Connell (1981) can be computed from simple density distributions assuming
no lateral variations in viscosity. However, the latter may not render a reasonable
assumption within the context of geodynamic tomography since lateral viscosity vari-
ations affect the flow significantly, and thus may also strongly influence the resulting
anisotropy.

The rheological structure of the Earth’s mantle is innately heterogeneous. Consider-
ing only temperature-dependent viscosity, one can roughly assume that a temperature
variation of 100 K yields a viscosity variation by one order of magnitude. Therefore,
neglecting lateral viscosity contrasts would only make sense should lateral tempera-
ture variations are small. This is probably untrue however in the global scale. For
instance, mantle plumes are roughly 100 - 200 K warmer than the surroinding mantle.
For subducting slabs, the temperature contrasts are even larger (> 500 K). Thus, even
if one is distant from the upper and the lower thermal boundary layers (i.e. the litho-
sphere and the core-mantle boundary, respectively), one should expect lateral viscosity
variations to possess several ( > 4-5 ) orders of magnitude. One might be tempted to
justify neglecting these specific objects (e.g., plates and plumes) by arguing that they
are relatively small compared to the volume of the mantle. However, this would not
work because these objects are those that drive the flow since gravitational instabilities
originate from temperature differences.

Therefore, one cannot decouple viscosity variations from density variations. In the
context of inverse modeling, the inclusion of lateral viscosity variations is indeed com-
putationally more challenging. However, it remains attainable by performing these
calculations in a coarser grid to obtain the general pattern of the flow. This step can
be followed by interpolating the coarse grid solution on a finer grid prior to the com-
putation of CPO. Using iterative approaches to flow calculations, another practical ap-
proach is to degrade the accuracy of the solution should convergence be an impedi-
ment. When cast in a Bayesian formulation, the modeling error due the approximation
of the flow can be accounted for in the inversion process, similar to how the errors due
to the ANN were dealt with. Consequently, texture evolution modeling at the global
scale could reasonably be achieved from flows of this nature. The availability of global
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surface wave maps on the other end should thus make geodynamic tomography fea-
sible at the global scale.

6.3.2 Composition of the mantle

We assumed that the composition of the mantle to be olivine, with an A-type crys-
tal fabric, corresponding to dry upper mantle conditions. In the real Earth, seismic
wave velocities not only depend on temperature and pressure variations, but also on
the compositional structure of the minerals. Recently, self-consistent thermodynamic
models have already been incorporated in seismic inversion schemes to interpret to-
mographic images in terms of mantle composition (Ricard, Mattern, and Matas, 2005;
Cammarano et al., 2009). While the bulk properties (i.e., seismic wave speeds) ob-
tained from Gibbs minimisation are isotropic, to our knowledge, deformation-induced
anisotropy has not yet been formulated cohesively with thermodynamic models, let
alone casting it in an inverse problem.

In general, intrinsic anisotropy in the upper mantle results from complex deforma-
tion processes, which depend on a plethora of physical parameters that may be linked
to one another. Unlike conventional tomographic techniques, the elastic structure re-
covered in our scheme directly depends on the assumptions made on these upper-
mantle processes. As an example, one would expect that the inclusion of enstatite in
our models would dilute the overall amplitude of anisotropy in surface waves. In ad-
dition, inversion results depend on control parameters for CPO modeling such as the
choice of the slip systems of olivine. For the moment, the value of these parameters
have been chosen ad hoc, using current available knowledge mostly originating from
laboratory experiments, and thus can be viewed as prior (regularisation). Ultimately,
the flexibility of Bayesian inference would allows us to treat these parameters as un-
known parameters to be inverted for in geodynamic tomography.

6.4 Potential application to a real Earth problem

On the real-data application of geodynamic tomography, we anticipate that the inver-
sion strategy should consist of three stages. In the first stage, we assume that surface
wave dispersion maps are freely available, and that we have a general overview of
the 3D geometry of the problem. This is arguably the case in most places where sur-
face wave dispersion measurements are widely available thanks to an ever growing
amount of seismic records. We then invert an array spanning the entire geographi-
cal surface of local isotropic Rayleigh wave phase velocity dispersion curves inferred
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FIGURE 6.1: Three-step approach to geodynamic tomography. The first
step involves 1D isotropic surface wave tomography to infer the shear
wave structure (solid red lines) from a geographical array of isotropic
Rayleigh wave dispersion measurements (blue triangle on top of the 1-
D column). From the 1-D shear wave structures, the second step is the
estimation of 1D temperature profiles (dashed red lines across the 1-D
column). From the set of 1D temperature profiles, one may then build a
smooth 3-D model of temperature through interpolation. The 3-D model
can thus be viewed as a collection of 1-D columns containing depth pro-
files of temperature. Geodynamic tomography commences by using the 3-
D temperature field (dashed red lines in the 3-D model) as a starting model
followed by its iterative update through the inversion of anisotropic sur-
face wave dispersion measurements (blue triangles on top of the 3-D

model).

from these maps for 1-D depth isotropic VS models. From the shear wave structure,
the second stage involves the estimation of 1-D depth profiles of temperature T using
first-order scaling relations between VS and T. A more elaborate and precise yet more
computationally demanding approach is the inverse implementation of self-consistent
thermodyamic models to infer T from VS for any given bulk composition. The 1-D
depth profiles of temperature can then be placed side-by-side followed by refinement
through various interpolation schemes to build a smooth 3-D temperature field. The
last stage is geodynamic tomography itself, that is, using the 3-D temperature field
inferred from the previous stages as the starting model to iteratively update its struc-
ture by inverting anisotropic surface wave dispersion curves. Fig. 6.1 is a schematic
representation of this three-step inversion strategy.
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7.1 Motivation

In the previous chapters, we have assumed that the anisotropy is purely intrinsic, that
is, it results from the crystallographic preferred orientation (CPO) of mantle minerals
due to finite deformation over time. It therefore provides unique constraints to convec-
tive processes in the mantle. Such has been demonstrated by our method, geodynamic
tomography, where we auspiciously retrieved the complete deformation patterns in
the mantle.

However, small-scale isotropic heterogeneities may generate seismic wavefield pat-
terns that are identical to those produced by anisotropy. Because of this, seismically-
unresolved small-scales can be mapped into an apparent/extrinsic anisotropy in to-
mographic models. This calls for the need to distinguish intrinsic anisotropy from ex-
trinsic anisotropy to avoid misinterpretations about the probable cause of anisotropy
observed in tomographic models.

In this chapter, we investigate the separate contributions of the intrinsic and the
extrinsic components of anisotropy. The problem is applied to tomographic models
of the mantle exhibiting spatial inhomogeneities in both its isotropic and intrinsically-
anisotropic components.
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7.2 Summary

Large-scale seismic anisotropy inferred from seismic observations has been loosely in-
terpreted either in terms of intrinsic anisotropy due to Crystallographic Preferred Ori-
entation (CPO) development of mantle minerals or extrinsic anisotropy due to rock-
scale Shape Preferred Orientation (SPO). The coexistence of both contributions mis-
construes the origins of seismic anisotropy observed in seismic tomography models.
It is thus essential to discriminate CPO from SPO in the effective anisotropy of an up-
scaled/homogenized medium, that is, the best possible elastic model recovered using
finite-frequency seismic data assuming perfect data coverage. In this work, we inves-
tigate the effects of upscaling an intrinsically anisotropic and highly heterogeneous
Earth’s mantle. The problem is applied to a 2-D marble cake model of the mantle
with a binary composition in the presence of CPO predicted from a micro-mechanical
model. We compute the long-wavelength effective equivalent of this mantle model
using the 3-D non-periodic elastic homogenization technique. Our numerical find-
ings predict that overall, upscaling purely intrinsically anisotropic medium amounts
to the convection-scale averaging of CPO. As a result, it always underestimates the
anisotropy, and may only be overestimated due to the additive extrinsic anisotropy
from SPO. Finally, we show analytically (in 1-D) and numerically (in 2-D) that the full
effective radial anisotropy ξ∗ is approximately the product of the effective intrinsic
radial anisotropy ξ∗CPO and the extrinsic radial anisotropy ξSPO:

ξ∗ ≈ ξ∗CPO × ξSPO.

Based on the above relation, it is imperative to homogenize a CPO evolution model
first before drawing comparisons with tomographic models. Such a composite law can
therefore be used as a constraint to better estimate the separate contributions of CPO
and SPO from the effective anisotropy. As a demonstration, we use the composite law
to identify an SPO model from an existing tomographic model of the upper-mantle
underneath a mid-ocean ridge together with a homogenized CPO model.

7.3 Introduction

Seismic anisotropy in the Earth’s mantle originates from various processes and can be
observed at different spatial scales. At the mineral scale, crystallographic preferred ori-
entation (CPO) of mantle minerals due to progressive shearing over time (Nicolas and
Christensen, 1987; Maupin and Park, 2015) produces large-scale intrinsic anisotropy.
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On the other hand, rock-scale shape preferred orientation (SPO) such as a stack of lay-
ered cracks, seismic discontinuities, and/or preferentially oriented conduits contain-
ing fluid intrusions unresolved by long period seismic waves are mapped as large-scale
extrinsic anisotropy (Backus, 1962; Crampin and Booth, 1985).

Although these two mechanisms are completely different, a medium may either
be intrinsically anisotropic or strongly heterogeneous depending on the minimum
wavelength of the observed wavefield used (Maupin et al., 2007; Bodin et al., 2015).
Backus (1962) showed that a horizontally-layered isotropic medium is equivalent to
a homogeneous radially anisotropic medium with a vertical axis of symmetry when
sampled by seismic waves whose wavelength is much longer than the length of lay-
ers. This urged seismologists to interpret tomographic models separately depending
on the type of data used (i.e., different data-types sample different length scales). Scat-
tering studies use high frequency body waves and interpret small-scale isotropic het-
erogeneities in terms of phase changes (e.g. Tauzin and Ricard, 2014) or chemical strat-
ification (e.g. Tauzin et al., 2016). Likewise, long period surface waves with typical
wavelengths of the order 102 km retrieve a smooth anisotropic mantle with scales con-
sistent with convective flow (e.g. Debayle and Ricard, 2013; Bodin et al., 2015; Maupin
and Park, 2015). Surface waves however lack the resolving power to recover sharp
seismic discontinuities and instead, map these as long wavelength radial anisotropy
(Backus, 1962; Capdeville et al., 2013). Anisotropic structures retrieved from tomog-
raphy may therefore be a combination of apparent extrinsic anisotropy due to SPO
and deformation-induced intrinsic anisotropy. The ambiguity whether a material is
intrinsically anisotropic or strongly heterogeneous may mislead seismologists in inter-
preting the structural origin of seismic anisotropy observed in tomographic images.

In this chapter, we extend the work of Alder et al. (2017) by obtaining the long-
wavelength effective equivalent of the marble cake model of the mantle hypothesized
by Allègre and Turcotte (1986), but in the presence of intrinsic anisotropy. Our aim
is to quantify the level of effective anisotropy resulting from elastic homogenization,
that is, the relegated version of the true Earth as seen by long-wavelength seismic
tomography. Section 7.4 provides an overview of the elastic homogenization theory
and highlights a composite law that separates intrinsic and extrinsic anisotropy for a
layered and anisotropic media. Here, we analytically prove in 1-D that the effective
anisotropy varies with the square of isotropic heterogeneity and with that of intrinsic
anisotropy plus a cross term related to their coupling. In section 7.5, we build a 2-D
media analogous to the marble cake model where we consider a mechanical mixture
of two end-member compositions. We follow this by introducing intrinsic anisotropy
due to mantle deformation associated with convection patterns consistent with the
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marble cake model. We compute the long-wavelength effective equivalent of the 2-
D models using the Fast-Fourier Homogenization algorithm (Capdeville, Zhao, and
Cupillard, 2015). Section 7.6 presents the results of the previous section. One of the
major findings is that in the absence of isotropic heterogeneities, intrinsic anisotropy
is always underestimated upon homogenization due to the spatial averaging of the
preferred orientation of the anisotropic minerals. We also verify numerically that the
composite law derived in section 7.4 can be extended to 2-D media. Finally in section
7.7, we apply the composite law to infer the extrinsic component of anisotropy from a
tomographic model of the upper-mantle beneath a mid-ocean ridge with the help of a
homogenized CPO model.

7.4 Elastic homogenization

Seismic tomography outputs only a smooth representation of the real Earth due to lim-
ited frequency band. The resulting model however is not just a simple spatial average
but is produced from highly non-linear upscaling relations. In the context of wave
propagation, such upscaling relations, also known as elastic homogenization, remove
seismic heterogeneities whose scales are much smaller than the minimum wavelength
of the observed wavefield and instead replace them with effective properties.

This section provides an overview of the elastic homogenisation theory. As a pre-
liminary, we introduce Backus homogenisation for any 1-D elastic media. We then
apply this technique to derive analytical expressions for seismic anisotropy in the gen-
eral case of an intrinsically anisotropic and heterogeneous VTI medium, followed by
its application to a more specific problem. The third part covers a brief description
of other homogenisation techniques tailored to 2-D and 3-D elastic media. Finally we
introduce a jargon tool-box to guide the reader regarding the proper use of some im-
portant terminologies.

7.4.1 Definition of terms

Hereafter, what we refer to as the reference medium S(r) is an elastic model of the real
Earth varying in space r that accounts for both intrinsic anisotropy due to CPO and
small-scale isotropic heterogeneities that resemble marble cake-like patterns. This ref-
erence medium can be treated as a sum of several decompositions resulting from a
cascade of orthogonal projections (Browaeys and Chevrot, 2004). One can then express
S(r) in terms of an isotropic tensor SI(r) plus an intrinsically anisotropic component
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FIGURE 7.1: Homogenization of different Earth models and their respec-
tive outputs. The true Earth mantle (top middle box) is described by an
average isotropic model S0, isotropic heterogeneities, δSI and intrinsic
anisotropy SA, the sum of which being the elastic model S that tomog-
raphy tries to recover. However, tomographic methods have only access
to a homogenized model H(S) (or full effective medium). This model
has both isotropic components symbolized by I(H(S)) and anisotropic
components, A(H(S)). The goal of this chapter is to quantify the differ-
ences between A(H(S)) and A(S), I(H(S)) and I(S). Numerically we
can also discuss how an anisotropic model without isotropic anomalies
(boxes on the left) can be recovered and if the tomographic inversion can
lead to spurious isotropic anomalies. Reciprocally (boxes on the right),
one can quantify how much a pure isotropic model is recovered by the
tomographic inversion and what is the level of spurious anisotropy (SPO)

that can be estimated.



160
Chapter 7. Quantifying Intrinsic and Extrinsic Contributions to Elastic Anisotropy

Observed in Tomographic Models

SA(r) related to CPO:
S(r) = SI(r) + SA(r), (7.1)

where SI(r) can be decomposed further into:

SI(r) = S0 + δSI(r). (7.2)

Here, S0 is an isotropic tensor uniform in space, and δSI(r) is a deviation from
S0 in space related to the small-scale isotropic heterogeneities. The reference medium
becomes:

S(r) = S0 + δSI(r) + SA(r). (7.3)

For convenience, let us introduce an operator I that extracts an elastic tensor from
S solely related to the isotropic heterogeneities, and an operator A that extracts the
anisotropic component from S. Using such notations, I(S) is simply equation (7.2),
whereas A(S) is given by:

A(S(r)) = S0 + SA(r). (7.4)

These notations will be used heavily in the rest of the text to denote the isotropic and
anisotropic components of the reference medium. The complexity of A(S) urged geo-
physicists to use various notations to quantify the level of seismic anisotropy. One of
which quantifies the relative strength of horizontally-polarized S−waves (VSH) with
vertically-polarized S−waves (VSV), called radial anisotropy. The intrinsic radial anisotropy
associated with A(S) will be denoted by ξCPO.

In the event where seismic observations sample this reference medium, seismic to-
mography only outputs a smooth representation of S due to limited frequency band,
a process known as upscaling or homogenization. Note that these two terminologies are
interchangeable but to avoid further confusion, we will go with the latter. Seismic to-
mography can be viewed as a mathematical operator H that homogenizes S. From
this moment forth, any variable applied by H will refer to the long-wavelength effec-
tive equivalent of it. For S, it is H(S) = H(S0 + δSI + SA) which we now refer to as the
full effective medium. The anisotropic component of the full effective medium given by
A(H(S)) will be referred hereafter as the full effective anisotropy and its isotropic com-
ponent I(H(S)) is the full effective isotropy. We will symbolize the full effective radial
anisotropy corresponding to A(H(S)) with ξ∗.

On the other hand, the tomographic counterpart of a pure anisotropic Earth (i.e., a
model where only the anisotropic component varies spatially) is H(A(S)) = H(S0 +

SA) where A(H(A(S))) is the effective intrinsic anisotropy. Due to the non-linearity of H
however, it creates spurious isotropic heterogeneities in the elastic tensor I(H(A(S)))
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as a byproduct albeit trivial. The effective intrinsic radial anisotropy corresponding to
A(H(A(S))) will then be designated as ξ∗CPO. Finally, the tomographic counterpart
of a pure isotropic Earth (i.e., a model where the isotropic component varies spatially,
and the anisotropic component is zero) is H(I(S)) = H(S0 + δSI) where the non-
negligible spurious anisotropic component due to SPO A(H(I(S))) is called extrinsic
anisotropy. Here, extrinsic radial anisotropy will be denoted by ξSPO (Refer to Figure 7.1
for a comprehensive summary).

7.4.2 Backus homogenization

A vertically transverse isotropic (VTI) medium can be described by five elastic param-
eters A, C, F, L, and N, also known as the Love parameters (Love, 1906). Supposing
that axis 3 is the symmetry axis, the local S for a VTI solid can be expressed in Voigt
notation as:

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A A − 2N F 0 0 0
A − 2N A F 0 0 0

F F C 0 0 0
0 0 0 2L 0 0
0 0 0 0 2L 0
0 0 0 0 0 2N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (7.5)

and the level of shear wave radial anisotropy can be compactly written as:

ξ =
N
L

. (7.6)

Following the groundwork laid by Thomson (1950), Postma (1955), and Anderson
(1961), Backus (1962) explicitly showed analytical upscaling relations for seismic waves
propagating in a 1-D stratified medium. These upscaling relations refer to the filtering
processes applied to the non-linear combinations of the fine-scale properties of the 1-D
medium provided that they are smaller than the minimum wavelength of the observed
wavefield. Thus for a 1-D fine-scale isotropic medium, its long-wavelength effective
equivalent primarily assumes the behavior of a homogeneous, transversely isotropic
medium.

To perform such calculations, we first define a minimum wavelength λh of the ob-
served wavefield (i.e., homogenization wavelength). In general, this is required for
non-periodic medium with no scale separation. Since scales smaller than λh are ho-
mogenized, we define the threshold wavelength λ0 for which heterogeneities are con-
sidered small scales as (Capdeville, Zhao, and Cupillard, 2015):
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λ0 = ε0λh, (7.7)

where ε0 is a scale-separation parameter that depends upon the choice of the user.
In this chapter, we set ε0 = 0.5 equivalent to the sensitivity of seismic waves to hetero-
geneities whose scales are smaller than half of λh in an effective manner e.g. Capdev-
ille, Zhao, and Cupillard, 2015; Alder et al., 2017.

According to Backus (1962) for any 1-D fine-scale media regardless of its elastic
nature (i.e., purely heterogeneous, anisotropic or a combination of both), the effective
equivalent of the elastic constants, for instance, N and L concerning the shear wave
velocities can be expressed in terms of an arithmetic mean and a harmonic mean, re-
spectively:

N∗ = 〈N〉 , (7.8)

L∗ = 〈1/L〉−1 , (7.9)

where 〈.〉 refers to the spatial average over λ0, and ∗ denotes the long wavelength
effective equivalent. As a supplementary, the effective density ρ∗ is simply the arith-
metic mean of the local density ρ:

ρ∗ =
〈
ρ
〉

. (7.10)

The effective shear wave radial anisotropy ξ∗ is essentially the ratio between the
effective equivalents of N and L:

ξ∗ = N∗

L∗ = 〈N〉 〈1/L〉 . (7.11)

7.4.3 An analytical expression to quantify CPO and SPO in a 1-D lay-

ered media

Let us consider an intrinsically anisotropic (CPO component) and finely-layered (SPO
component) VTI medium. Similar as to how we defined our reference medium in
section 7.4.1, we regard the elastic parameters N and L as the sum of an isotropic com-
ponent defined by the shear moduli μ, and local anisotropic perturbations NA and LA,
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respectively:

N(z) = μ(z) + NA(z), (7.12)

L(z) = μ(z) + LA(z). (7.13)

For any transversely isotropic medium, the isotropic equivalent of μ can be computed
following the Voigt averaging method (Montagner, 2007; Maupin et al., 2007):

μ =
1

15
(C + A − 2F + 6L + 5N), (7.14)

where A and C are elastic parameters concerning P−waves, and F relates to the so-
called ’ellipticity’(i.e., the velocity along the direction interposing fast and slow ve-
locities). Assuming no P−wave anisotropy and setting F to unity, one can simplify
equation (7.14) to:

μ =
1
3
(2L + N). (7.15)

Knowing equations (7.6) and (7.15), one can re-write N and L in terms of μ and
ξCPO giving:

N = ξCPO
3μ

2 + ξCPO
, (7.16)

L =
3μ

2 + ξCPO
. (7.17)

It is now straightforward to determine the anisotropic components NA and LA by
equating equations (7.12) and (7.16). For the sole purpose of segregating the isotropic
and anisotropic components, the forms of N and L consistent with equation (7.1) is
therefore:

N(z) = μ(z) +

(
ξCPO(z)

3μ(z)
2 + ξCPO(z)

− μ(z)

)
, (7.18)

L(z) = μ(z) +

(
3μ(z)

2 + ξCPO(z)
− μ(z)

)
, (7.19)

where any variable as a function of z implies variations in space.
To calculate the long-wavelength effective equivalent of ξ, let us first write the pa-

rameters μ and ξCPO as:

μ(z) = 〈μ〉+ δμ(z), (7.20)

ξCPO(z) = 〈ξCPO〉+ δξCPO(z), (7.21)
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where 〈μ〉 and 〈ξCPO〉 are the spatially-averaged counterparts, and δμ and δξCPO with
〈δμ〉 and 〈δξCPO〉 = 0 are small-scale heterogeneities in the shear modulus and intrin-
sic radial anisotropy, respectively. The long-wavelength effective equivalents N∗ and
1/L∗ are:

N∗ = 〈N〉 =
〈

ξCPO
3μ

2 + ξCPO

〉
=

〈
(〈ξCPO〉+ δξCPO)

3(〈μ〉+ δμ)

2 + 〈ξCPO〉+ δξCPO

〉
, (7.22)

1/L∗ = 〈1/L〉 =
〈

2 + ξCPO

3μ

〉
=

〈
2 + 〈ξCPO〉+ δξCPO

3(〈μ〉+ δμ)

〉
. (7.23)

We attempt to simplify equations (7.22) and (7.23) by calling forth two simplifying
assumptions:

1. Weak contrast among seismic wave velocities (and hence, in the shear moduli) so
that δμ/〈μ〉 → 0.

2. Weak contrast in intrinsic radial anisotropy so that δξCPO/2 + 〈ξCPO〉 → 0. Al-
though not physically intuitive, such an assumption does not necessarily mean
weak anisotropy, but may also imply strong levels of intrinsic anisotropy but
nearly homogeneous (i.e., small spatial variations).

Using these two simplifying assumptions, and knowing 〈δμ〉 and 〈δξCPO〉 = 0, we
are now in the position to evaluate equations (7.22) and (7.23). Approximating to the
second-order we get:

N∗ ≈ 3〈μ〉
2 + 〈ξCPO〉

(
〈ξCPO〉 − 2

(2 + 〈ξCPO〉)2 〈δξ2
CPO〉+

2
〈μ〉(2 + 〈ξCPO〉) 〈δμ · δξCPO〉

)
,

(7.24)

1/L∗ ≈ 2 + 〈ξCPO〉
3〈μ〉

(
1 +

1
〈μ〉2 〈δμ2〉 − 1

〈μ〉(2 + 〈ξCPO〉) 〈δμ · δξCPO〉
)

. (7.25)

As a supplement, L∗ is computed by simply approximating equation (7.25) to the sec-
ond order:

L∗ = 3〈μ〉
2 + 〈ξCPO〉

(
1 − 1

〈μ〉2 〈δμ2〉+ 1
〈μ〉(2 + 〈ξCPO〉) 〈δμ · δξCPO〉

)
. (7.26)

Multiplying equations (7.24) and (7.25) and neglecting terms higher than order two,
the full effective radial anisotropy ξ∗ due to fine-layering and intrinsic anisotropy is
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therefore:

ξ∗ ≈ 〈ξCPO〉 − 2
(2 + 〈ξCPO〉)2 〈δξ2

CPO〉+
〈ξCPO〉
〈μ〉2 〈δμ2〉+ 2 − 〈ξCPO〉

〈μ〉(2 + 〈ξCPO〉) 〈δμ · δξCPO〉.
(7.27)

Equation (7.27) explicitly shows the separate effects of the small-scales in the isotropic
component and in the intrinsically anisotropic component onto the effective anisotropy
as ’seen’ by seismic waves. Assuming the medium to be devoid of intrinsic anisotropy
(i.e., ξCPO = 1 and δξCPO = 0), the full effective radial anisotropy ξ∗ directly relates
to the level of heterogeneities in the shear moduli. Here,

〈
δμ2
〉

refers to the variance
of the shear modulus for scales much smaller than λ0. It can be interpreted as the ex-
trinsic radial anisotropy ξSPO due to the seismically unresolved small-scale isotropic
heterogeneities. It varies as the square of the heterogeneities which is in agreement
with the result of Alder et al. (2017). On the other hand, when the isotropic component
is uniform (i.e., δμ = 0), ξ∗ also varies with the square of heterogeneities, but now in
intrinsic anisotropy. This can be interpreted as the effective intrinsic radial anisotropy
ξ∗CPO, or the radial component of the intrinsic anisotropy that gets smoothed out as a re-
sult of upscaling. Interestingly, its overall effect is to underpredict intrinsic anisotropy
as indicated by the minus sign in front of the second term. In the absence of small-
scale isotropic heterogeneities, we anticipate anisotropy to be always underestimated
by tomography. Finally, equation (7.27) apparently suggests the existence of a cross
term 〈δμ · δξCPO〉 due to the coupling of intrinsic anisotropy and the shear modulus.
Supposing spatial variations in both components are significant such as in interfaces,
the correlation term should strongly influence the anisotropy mapped in tomographic
models. Nevertheless it is propounded that this correlation term is trivial and hence
may need not be accounted for (Bakulin, 2003).

In the Earth’s asthenosphere, we do not expect velocity variations (i.e. ΔVS/(VS1 +

VS2)) oftentimes to be larger than 5% e.g. Xu et al., 2008; Stixrude and Jeanloz, 2015.
This roughly translates to ∼10% heterogeneities in the shear modulus assuming con-
stant density ρ. To perform a numerical estimate, we consider binary-structured hori-
zontal laminations where CPO only exists in one of the two phases (e.g. in the harzbur-
gite phase when considering a mechanical mixture of eclogite and harzburgite) with
〈ξCPO〉 = 1.025, where ξ1 = 1 and ξ2 = 1.05 (i.e., ∼5% radial anisotropy analogous
to what is observed in the upper-mantle e.g. Long and Becker, 2010), with the other
parameters being ρ = 3500 kg·m−3, VS1 = 4.4 km·s−1, VS2 = 4.7 km·s−1, and 〈μ〉=72.5
GPa. Clearly by applying equation (7.27), the intrinsic component (first term) con-
tributes the most to the effective anisotropy with 1− 〈ξCPO〉 = 0.025 wherein its spatial
variations’ overall effect is to tone-down the amplitude of anisotropy by an amount of
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∼ −10−4 (second term). This is followed by the SPO component (third term) which
is responsible for the amplification of anisotropy (∼ +10−3). Lastly, the cross term
provides the least contribution (∼ ±10−4) and therefore can reasonably be ignored in
most cases. The ± sign denotes that it may increase or decrease anisotropy depending
on the coupling pattern between the shear modulus and intrinsic anisotropy.

As an added bonus of deriving equations (7.24) and (7.26), one could also compute
for the effective Voigt-averaged shear modulus μ∗ through:

μ∗ = 2L∗ + N∗

3
. (7.28)

Plugging these expressions to equation (7.28), we get:

μ∗ = 〈μ〉− 2
〈μ〉(2 + 〈ξCPO〉) 〈δμ2〉− 2〈μ〉

(2 + 〈ξCPO〉)3 〈δξ2
CPO〉+

4
(2 + 〈ξCPO〉)2 〈δμ · δξCPO〉.

(7.29)
Based on the above equation ignoring intrinsic anisotropy, the homogenized shear
modulus μ∗ is always smaller than its spatially-averaged version 〈μ〉. Such a result
is logical in the 1-D case. Here, radial anisotropy induced by fine-layering is always
positive thereby having N∗ > L∗. Since L ’counts’ twice and N once in its isotropic av-
erage, its long-wavelength effective equivalent μ∗ is always slower than 〈μ〉. Contrast-
ingly if one neglects isotropic heterogeneities and only consider variations in intrinsic
anisotropy, homogenization also results in the underestimation of the shear modulus.
One would predict that homogenization at shorter wavelengths leads to the creation of
spurious isotropic heterogeneities due to small-scales in CPO. Lastly and as expected,
the cross term recurs due to the spatial correlation between the shear modulus and
intrinsic anisotropy.

We acknowledge that the homogenized expressions given by equations (7.27) and
(7.29) in terms of the isotropic shear modulus μ may not be particularly convenient
for seismologists. In practice, seismologists observe spatial distributions in VS and
not in μ. If one assumes that density is uniform, then δμ/μ can be simply replaced
by 2δVS/VS. On the other hand, if one assumes that density increases with VS, one
could also establish long-wavelength effective equivalent expressions for VS in the
same manner as μ using simple empirical relations for density such as that of Tkalčić
et al. (2006).

As an example, let us examine a stack of planar layers with alternating shear mod-
uli values determined by ± Δμ/2 (Figure 7.2a middle panel). This is translated from
shear wave velocity variations ΔVS/(VS1 + VS2) of about 10%. The 1-D depth profile
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spans from 0−1000 km with layers of equal thicknesses of 5 km. Positive intrinsic ra-
dial anisotropy (ξ = 1.2) is prescribed in the even layers, whereas the odd layers are
isotropic (ξ = 1) (Figure 7.2a right panel). Using equations (7.16) and (7.17), one can
then compute for the Love parameters L and N (Figure 7.2a left panel). In practice,
Backus homogenization can be implemented by filtering out the spatial variations in
N and L much smaller than λ0 = ε0λh. Upon upscaling at an extremely long homoge-
nization wavelength λh ∼ 103 km, the resulting signals for N and L are flat, and simply
given by their arithmetic and harmonic means, respectively (Figure 7.2a left panel).
Once the long-wavelength effective equivalents N∗ and L∗ are acquired, one can then
compute for the full effective radial anisotropy ξ∗ through equation (7.11) (solid red
line in Figure 7.2a right panel), and the effective Voigt-averaged shear modulus μ∗

through equation (7.28) (solid red line in Figure 7.2a middle panel). For reference,
we also estimate ξ∗ and μ∗ using equations (7.27) and (7.29) respectively (dashed blue
lines in Figure 7.2a middle and right panels), whereby showing robust predictions. Of
course, both expressions are only valid assuming small heterogeneity perturbations
and hence they are expected to worsen when considering strong contrasts. Finally,
Figure 7.2b illustrates a different scenario where ξ only exists in the odd layers (Fig-
ure 7.2b right panel). In essence when the shear modulus and intrinsic anisotropy are
uncorrelated, the homogenized parameters μ∗ and ξ∗ should be the same regardless.
However, a slight offset in μ∗ and ξ∗ of Figure 7.2b with respect to Figure 7.2a can be
observed which is exclusively attributed to this cross term as hinted by equations (7.27)
and (7.29). Strictly speaking, the reduction in the amplitude of the effective properties
arises from the switch in signs in the cross term from positive to negative 〈δμ · δξ〉,
implying that in the second scenario, the shear modulus and intrinsic anisotropy are
now anti-correlated.

In the following section, we investigate two special cases, that is, a purely isotropic
(i.e., finely-layered) and a purely anisotropic (i.e., no spatial variations in isotropic com-
ponent) 1-D media by finding equivalent expressions for extrinsic radial anisotropy
ξSPO and effective intrinsic radial anisotropy ξ∗CPO. By doing so, our goal is to elicit
a simple composite law related to equation (7.27) that can be extrapolated to 2-D and
3-D media.

7.4.4 Composite law for radial anisotropy

In the case of an isotropic medium with spatially-varying shear modulus, the terms of
equation (7.27) in δξCPO are zero while 〈ξCPO〉 = 1. The radial anisotropy is entirely
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FIGURE 7.2: 1-D binary and periodic media with 10% isotropic het-
erogeneities in terms of ΔVS/(VS1 + VS2) in the presence of intrinsic
anisotropy with 20% heterogeneities in its radial component prescribed
across: (a) even layers, and (b) odd layers. Upon homogenization over
very long wavelengths (e.g., λh = 2000 km), the resulting signals are flat
(variables denoted by (*)). The dashed blue lines at the middle (μ∗

approx)
and left panels (ξ∗approx) correspond to the predicted long-wavelength ef-
fective equivalents using equations (7.29) and (7.27), respectively. The dif-
ference in the homogenized shear moduli and radial anisotropy between
(a) and (b) is attributed to the cross term as implied by equation (7.27).
Since the medium is periodic, it is enough to only display a portion of the

medium.
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due to SPO:
ξSPO ≈ 1 +

1
〈μ〉2 〈δμ2〉. (7.30)

On the other hand, a purely anisotropic medium without spatial variations in the
shear modulus leads to an effective anisotropy obtained from equation (7.27) by as-
suming δμ = 0 yielding:

ξ∗CPO ≈ 〈ξCPO〉 − 2
(2 + 〈ξCPO〉)2 〈δξ2

CPO〉. (7.31)

Notice by comparing equation (7.27) with equations (7.30) and (7.31), neglecting
terms higher than order two, one has simply:

ξ∗CPO × ξSPO ≈ 〈ξCPO〉 − 2
(2 + 〈ξCPO〉)2 〈δξ2

CPO〉+
〈ξCPO〉
〈μ〉2 〈δμ2〉 ≈ ξ∗ (7.32)

In practice, ξ∗ can be inferred from a seismic tomography model, whereas ξ∗CPO

is overwhelmingly difficult to estimate without access to any elastic homogenization
tools. For this reason, seismologists often compare ξ∗ with the intrinsic radial anisotropy
ξCPO computed from a CPO model rather than to the homogenized model they could
at best obtain. Furthermore, equations (7.27) and (7.32) suggest that there is a non-
negligible spurious component of anisotropy due to the unresolved small-scale isotropic
heterogeneities. Therefore while it is difficult to rigorously establish analytical so-
lutions in the case of a 2-D/3-D complex media, following the logic above, we hy-
pothesize that the mismatch often observed between homogenized CPO models and
tomographic models is the extrinsic radial anisotropy ξSPO. The full effective radial
anisotropy can be quantified through the following composite law:

ξ∗ ≈ ξ∗CPO × ξSPO. (7.33)

7.4.5 Homogenization in 2-D and in 3-D media

In 2-D and in 3-D media, one is compelled to solve the so-called periodic cell prob-
lem. This however is only applicable to media exhibiting spatial periodicity. Here, it is
still feasible to analytically derive upscaling relations but only in the case of a layered
media. For complex media, deriving analytical solutions would be impractical. One
resorts to numerical methods involving finite element schemes to tackle the periodic
cell problem. The true Earth however may display irregularities, exhibit minimal nat-
ural scale separation, or pose any kind of spatial statistical invariance. This precludes
the use of any homogenization technique not limited to the ones mentioned above



170
Chapter 7. Quantifying Intrinsic and Extrinsic Contributions to Elastic Anisotropy

Observed in Tomographic Models

to upscale such a complex media. To alleviate this problem, Capdeville and Marigo
(2007), Capdeville, Guillot, and Marigo (2010), Guillot, Capdeville, and Marigo (2010),
and Capdeville, Zhao, and Cupillard (2015) developed a non-periodic homogeniza-
tion method. So far, this method serves as a pre-processing step by enabling one to
solve the elastostatic wave equation using a simple mesh, speeding up the computa-
tions for wave propagation in complex media (Capdeville and Marigo, 2007; Guillot,
Capdeville, and Marigo, 2010; Capdeville, Zhao, and Cupillard, 2015). It also has been
extensively utilized for the discovery of a specific class of stable and fine-scale models
of the mantle (Alder et al., 2017).

Assuming perfect data coverage, Capdeville and Métivier (2018) numerically veri-
fied that for any elastic medium, a tomographic model is equivalent to a homogenized
model. Homogenization can be viewed as a first-order tomographic operator, that is,
when applied to an elastic medium, the homogenized model is considered to be the
best image one could get from tomography. This can be translated to:

S∗ = H(S) (7.34)

where H is the tomographic operator, S is the reference medium, and the homog-
enized model S∗ is the full effective medium (i.e., the best resulting image as seen
by a wavefield of a given maximum frequency fmax assuming perfect data coverage).
In this chapter, we extend the ’tomographic operator’ hypothesis to a 2-D composite
medium by upscaling the marble cake model in the presence of deformation-induced
anisotropy. We compute the full effective medium S∗ using the Fast Fourier homoge-
nization algorithm developed by Capdeville, Zhao, and Cupillard (2015).

7.5 Methodology

7.5.1 Elastic isotropy in a 2-D mechanically-mixed mantle

To define our 2-D incompressible flow model imitating mantle convection, we use a
stream function similar to that of Alder et al. (2017):

Ψ(x, z, t) = sin(aπz)
[

sin(bπx) + α(t) sin((b + 1)πx) + β(t) sin((b + 2)πx)
]

(7.35)

where α(t) and β(t) are sinusoidal functions of time that introduces chaotic mixing.
The variables a and b relate to the number of distinguishable convection cells and are
chosen arbitrarily. The velocity field components are computed using the following
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FIGURE 7.3: Initially a circle, the anomaly is deformed progressively until
the medium reaches a stage resembling marble cake-like patterns.

expressions:

ux =
∂Ψ
∂z

, uz = −∂Ψ
∂x

. (7.36)

The form of the function Ψ ensures free-slip boundary conditions. Finally, the velocity
field is scaled using a reference value of 1 cm·yr−1.

We replicate the marble cake patterns by deforming a circular anomaly at the center
of the box using our prescribed flow field. To do this, control points that define the
contour of the anomaly are advected using fourth-order Runge Kutta methods with
variable time-stepping (Press et al., 1992). Figure 7.3 illustrates the evolution of the
pattern when subjected to the flow field defined in equation (7.35). Setting a = 1 and
b = 2, we have a well-mixed medium with two characteristic convection cells.

Using the last panel of Figure 7.3, the binary system is defined by assigning a refer-
ence S-wave velocity value VS2 = 4.52 km·s−1 to the yellow region, and VS1 = 3.7 km·s−1

to the blue region so that 100% × (VS1 − VS2)/(VS1 + VS2)) = 10%. P−wave velocities
are computed by imposing a constant ratio VP/VS = 1.7 (Obrebski et al., 2010). Fol-
lowing the work of Tkalčić et al. (2006), we compute the density ρ using the empirical
relation ρ = 2.35 + 0.036(VP − 3)2. To fully describe the elastic medium, one needs to
define the local isotropic tensor SI. This requires the computation of the bulk K and
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the shear μ moduli:

K = ρ(V2
P − V2

S /3) (7.37)

μ = ρV2
S . (7.38)

The isotropic tensor at a given point is therefore:

SI =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K + 4μ/3 K − 2μ/3 K − 2μ/3 0 0 0
K − 2μ/3 K + 4μ/3 K − 2μ/3 0 0 0
K − 2μ/3 K − 2μ/3 K + 4μ/3 0 0 0

0 0 0 2μ 0 0
0 0 0 0 2μ 0
0 0 0 0 0 2μ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7.39)

7.5.2 Kinematic modeling of Crystallographic Preferred Orientation

Crystallographic preferred orientation evolves due to strain accumulation over time.
This requires the knowledge of the macroscopic velocity gradient tensor ∇u driving
the net alignment of the crystals within an aggregate. We model CPO evolution using
D-Rex, a program which calculates strain-induced crystallographic preferred orienta-
tion of olivine-enstatite aggregates by plastic deformation, dynamic recrystallization,
and grain-boundary sliding. The code inputs the externally-imposed velocity gradient
tensor ∇u which can be easily derived from the stream function Ψ, the number of crys-
tals Ncrystal, the amount of olivine and enstatite, and a random initial orientation of the
individual grains making up the aggregate. Apart from this, it inputs four other pa-
rameters that are already constrained from laboratory experiments (Zhang and Karato,
1995; Bystricky et al., 2000) namely: the activity of the slip systems of olivine and en-
statite, a dimensionless grain boundary mobility, a dimensionless nucleation rate, and
a dimensionless threshold volume for grain boundary sliding. The main output is a
Voigt-averaged elastic tensor with 21 independent coefficients at every location. Users
also have the option to output the best-fit hexagonally-symmetric medium calculated
from the elastic decomposition method of Browaeys and Chevrot (2004). D-Rex has
been extensively applied in the regional (Lassak et al., 2006; Miller and Becker, 2012;
Faccenda and Capitanio, 2013) and at the global scale (Becker et al., 2006; Becker, Kus-
towski, and Ekström, 2008).

In our numerical experiments, we compute CPO everywhere (i.e., in both yellow
and blue phases of the mantle model). We consider 100% olivine of type-A crystal fab-
ric corresponding to dry upper-mantle conditions. We scale the elastic tensor derived
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from D-Rex so that its isotropic component is built from the binary system derived
in Section 7.5.1. The reference medium can be constructed from equation (7.1) where
SI now relates to the small-scale isotropic heterogeneities in the mechanically-mixed
mantle, and SA is the intrinsically anisotropic component computed with D-Rex.

7.5.3 Fast-Fourier Homogenization

We use the 3-D Fast-Fourier Homogenization algorithm developed by Capdeville, Zhao,
and Cupillard (2015). It inputs the local elastic tensors and the local densities of the ref-
erence medium and relies on the extensive usage of Fast-Fourier Transforms. The code
also requires the scale-separation parameter ε0 as an input. For now, the value is cho-
sen ad-hoc and has been kept constant throughout the numerical experiments. For the
output, it provides the local elastic tensor and the local density at any arbitrary point
of the effective medium.

In this chapter, we implement the Fast-Fourier Homogenization algorithm to obtain
the long-wavelength effective equivalent of the reference medium S. We also homog-
enize its constituents, I(S) and A(S) separately to analyze their individual contribu-
tions to the full effective anisotropy.

7.5.4 Quantifying the level of anisotropy

In this section, we quantify the level of seismic anisotropy for any given elastic ten-
sor S. Since the 3-D elastic tensor contains 21 independent coefficients, quantification
of anisotropy necessitates the elastic projection of the tensor in a specific symmetry
class. In our case, we use the Montagner and Nataf (1986) projection where we treat
the projected tensor as an azimuthally-averaged vertically transverse isotropic (VTI)
medium. The Love parameters (Love, 1906) of a hexagonally symmetric medium can
be regarded as a linear combination of the 21-component elastic tensor (Montagner
and Nataf, 1986). The parameters L and N, which relate to the azimuthally-averaged
vertically- and horizontally-polarized S−waves, can be computed as follows:

L =
1
2
(S44 + S55) (7.40)

N =
1
8
(S11 + S22)− 1

4
S12 +

1
2

S66. (7.41)

The level of radial anisotropy is then given by equation (7.6). Anisotropic inversion
studies generally interpret ξ > 1 as horizontal flow, and ξ < 1 as vertical flow (refer to
Montagner (1994) and Bodin et al. (2015) for a comprehensive review).
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Another convenient way to quantify anisotropy is to compute the percentage of to-
tal anisotropy by taking the norm fraction of the anisotropic part of the elastic tensor
with respect to the isotropic part. This however entails the extraction of the isotropic
part of the elastic tensor. To do this, Browaeys and Chevrot (2004) proposed a de-
composition method for the isotropic tensor in terms of the dilatational d and Voigt
stiffness v tensors derived from S (Cowin and Mehrabadi, 1987):

d =

⎛⎜⎜⎝S11 + S12 + S13 S16 + S26 + S36 S15 + S25 + S35

S16 + S26 + S36 S12 + S22 + S32 S14 + S24 + S34

S15 + S25 + S35 S14 + S24 + S34 S13 + S23 + S33

⎞⎟⎟⎠ , (7.42)

and

v =

⎛⎜⎜⎝S11 + S66 + S55 S16 + S26 + S45 S15 + S35 + S46

S16 + S26 + S45 S66 + S22 + S44 S24 + S34 + S56

S15 + S35 + S46 S24 + S34 + S56 S55 + S44 + S33

⎞⎟⎟⎠ . (7.43)

where the bulk K and shear moduli μ can be expressed in terms of the traces of the
dilatational and Voigt tensors as (Fedorov, 2013):

K =
tr(d)

9
, (7.44)

and
μ =

3tr(v)− tr(d)
30

. (7.45)

The isotropic tensor SI can be computed in terms of μ and K following equation (7.39).
The total anisotropy is given by:

atot =
||S − SI||2
||SI||2 (7.46)

where atot is the tensor norm fraction of the total anisotropy with respect to SI.

7.6 Elastic homogenization of a 2-D mechanically-mixed

mantle in the presence of CPO

Figure 7.4 displays some seismic properties of the reference medium S before and after
homogenization. The left panels are the true structures, whereas the middle and right
panels are the structures equating to the full effective medium H(S) at homogenization
wavelengths λh of 200 km and 500 km, respectively. The first row depicts the shear
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wave velocities. The anisotropy characterized by its radial component, and by its norm
fraction are depicted in the second row and in the third row, respectively. Each pixel
initially contains an isotropic part derived from the marble cake model with a mixing
time for advection TSPO ∼ 75 My , and an anisotropic part computed from a CPO model
with a time scale for CPO evolution of TCPO ∼ 40 My. Hereafter, we define λmax = 1000
km as the length scale of our simulations.

As expected, homogenization results in the smoothing of the structures with the
level modulated by λh. Several glaring features can also be observed such as the pres-
ence of positive radial anisotropy (ξ > 1) at the top and bottom boundaries where we
expect the flow to be sub-horizontal, and likewise negative (ξ < 1) at regions where
the flow is expected to be sub-vertical. In addition, the resolution of the small-scales
is diminished everywhere (top left panels) and the full effective medium is devoid of
anisotropy at some patches (bottom left panels) post-homogenization. This implies
that homogenization is not just a simple spatial average but a product of highly non-
linear upscaling relations.

By decomposing S into an isotropic tensor I(S) and an anisotropic tensor A(S)

through equations (7.2) and (7.4), respectively, one could also homogenize each tensor
and analyze its effects. Figure 7.5 shows the level of effective radial anisotropy of the
two separate components after homogenization. The top panels recreate the results of
Alder et al. (2017). Indeed, homogenizing a fine-layered medium produces extrinsic ra-
dial anisotropy ξSPO (i.e., radial anisotropy of model H(I(S))). Notice that the effective
intrinsic radial anisotropy and the extrinsic radial anisotropy maps are roughly similar
as they both induced a positive radial anisotropy ξ > 1 in the horizontal layers (i.e.,
the stretched heterogeneities that induce SPO become elongated along the direction
of the maximum principal strain rate that also controls the CPO). As for the homoge-
nization of A(S), it is noteworthy that analogous as to how a purely isotropic medium
produces extrinsic anisotropy, a purely anisotropic medium (i.e., a model where only
the anisotropic component varies with space) synthesizes spurious isotropic hetero-
geneities upon homogenization (See Figure 7.6). It however appears to be small with
maximum artificial velocity perturbations of about 0.25 % at λh = 200 km and 0.2 % at
λh = 500 km considering the severity of intrinsic anisotropy produced from our CPO
experiments (i.e., 100 % A-type olivine with an evolution time scale of ∼40 My). We
also find that the effective intrinsic radial anisotropy ξ∗CPO (i.e., radial anisotropy of
model H(A(S)) is slightly underestimated compared to ξCPO of the previous figure.
This is better illustrated in Figure 7.7 where we plot the standard deviation of radial
anisotropy of the entire 2-D model domain against λh.

Some essential information can be extracted from Figure 7.7.
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FIGURE 7.4: Some of the seismic properties of the reference medium S be-
fore and after homogenization. The model dimensions are 1000 km × 1000
km × 1000 km, with cell sizes of 5 km × 5 km × 5 km. Here, each pixel
contains an S which consists of small-scale isotropic heterogeneities and
an intrinsically anisotropic perturbation computed with D-Rex (Kaminski,
Ribe, and Browaeys, 2004). The present-day marble cake patterns corre-
spond to a mixing time for advection TSPO ∼ 75 My, whereas the time
scale for CPO evolution is TCPO ∼ 40 My. We homogenized S using the
Fast-Fourier homogenization algorithm of Capdeville, Zhao, and Cupil-
lard (2015). (From left to right) First row: Vs models derived from S, H(S)
at λh = 200 km, and H(S) at λh = 500 km. Second row: ξCPO, ξ∗ at λh =
200 km, and ξ∗ at λh = 500 km. Last row: Total anisotropy in terms of the
norm fraction of S, H(S) at λh = 200 km, and H(S) at λh = 500 km. Elas-
tic homogenization can be viewed as the best possible model resolved by

seismic tomography assuming perfect ray-path coverage.
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FIGURE 7.5: Extrinsic radial anisotropy ξSPO (i.e., radial anisotropy of
model H(I(S))) (top panels) at two different wavelengths of homogeniza-
tion λh. Here, ξSPO > 1 is now interpreted as vertical layering whereas < 1
as horizontal layering. The bottom panels are the effective intrinsic radial

anisotropy ξ∗CPO (i.e., radial anisotropy of model H(A(S))).

FIGURE 7.6: Spurious isotropic velocity perturbations with respect to a
mean velocity VS at two different wavelengths of homogenization λh.
H(A(S)) pertains to the homogenized model of a purely anisotropic
medium. Even when placed in a very favorable scenario for intrinsic
anisotropy, homogenizing a purely anisotropic medium produces a mea-
ger 0.25% artificial heterogeneities at λh = 200 km and 0.2% at λh = 500 km.
When superimposed with the bottom left panels of Figure 7.4, it appears

that spurious isotropy fills the void in anisotropy.
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FIGURE 7.7: Level of effective radial anisotropy as a function of the
wavelength of homogenization. Here, we quantified the effective radial
anisotropy in terms of its standard deviation σξ over the entire 2-D image.
The time scales indicated in million years pertain to the evolution history
of CPO (i.e., larger time scale means well-developed CPO). The dashed
lines represent the standard deviation of ξCPO (i.e., radial anisotropy of
model S) and serve as reference values. In this experiment, ξSPO (i.e.,
radial anisotropy of model H(I(S))) (black circles) deemed to be five
times smaller than ξ∗CPO (i.e., radial anisotropy of model H(A(S))) (hollow
squares), and since SPO is mostly in-phase with CPO, the two anisotropic
components add constructively giving the full effective radial anisotropy

ξ∗ (solid line-dots).
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(i) First, we compute the intrinsic anisotropy component of the reference medium
S using D-Rex assuming that the CPO develops over a time TCPO of 5, 40 or 75 Myr.
The resulting intrinsic radial anisotropy ξCPO in terms of its standard deviation over
the entire convecting box is reported with dashed horizontal lines. Not surprisingly,
the overall anisotropy increases with TCPO although some saturation is observed (i.e.,
the orientation of crystals depends mostly on their recent deformation, and lose the
memory of the deformation they underwent too long ago).

(ii) This anisotropy, if it were not associated with velocity anomalies could be recov-
ered from seismic tomography as an effective intrinsic radial anisotropy ξ∗CPO (squares)
which is always lower than the reference value ξCPO. This is in qualitative agreement
with equation (7.31).

(iii) On the contrary, the full effective radial anisotropy ξ∗ at short wavelengths of
homogenization λh are larger than ξCPO. This again is in agreement with the analytical
expression given by equation (7.27). This additional anisotropy is of course due to the
existence of SPO (black circles) which reinforces the total level of effective anisotropy.

(iv) Both ξ∗CPO and ξ∗ converge toward ξCPO at infinitely short homogenization
wavelengths. Only in this unrealistic case, would seismologists be able to map the
intrinsic anisotropy without smoothing or addition of spurious SPO. At λh larger than
the typical size of the anomalies (of order 100 km for the stripes of Fig 7.3), the recov-
erable anisotropies rapidly decrease.

(v) Extrinsic radial anisotropy ξSPO here is much lower than ξ∗CPO. For a well-
developed CPO fabric (∼75 My), this amounts to ≈ 10.5% for λh = 100 km. This is
five times bigger than ξSPO. Such a result however is specific to this numerical exper-
iment, and that CPO is indeed stronger than SPO might not be always true. A longer
stirring time (here TSPO ∼75 My) would have resulted in thinner and more complex
layering that would have increased the SPO. We are unfortunately limited by the num-
ber of tracers necessary to describe the phase stirring which is exponentially increasing
with time.

7.6.1 Effect of homogenization to the preferred orientation of crystals

We now explore as to why the effective intrinsic anisotropy is always underestimated,
or the fact that the full effective total anisotropy appears to be diminished in some
areas. Figure 7.8 depicts the best-fit hexagonally symmetric medium to S (left panel)
and the effective intrinsic total anisotropy (i.e., total amount of anisotropy in H(A(S)))
(top right panels) and the difference in the angles of the symmetry axis of a hexago-
nally projected S and H(A(S)) (bottom left panels) at two different homogenization
wavelengths. Regions of high misfit in the symmetry angles (Figure 7.8 bottom right
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FIGURE 7.8: (Left panel) Amplitude and symmetry axis orientation (solid
black lines) of the best-fit hexagonally symmetric medium to S. We use the
elastic decomposition method of Browaeys and Chevrot (2004) to arrive at
such a medium. The symmetry axis maps well regions of high hexagonal
anisotropy associated with strong shear deformation. It is often used as a
proxy to identify the fast axis of olivine which appears to be also in agree-
ment with the shear direction. (Top right panels) Effective intrinsic total
anisotropy (i.e., total amount of anisotropy in H(A(S))) at two different
wavelengths of homogenization. (Bottom right panels) Difference in the
angle of the symmetry axis of a hexagonally-projected S and H(A(S)).
Regions of high-misfit in the angle correlates well with low amplitudes of

anisotropy.

panels) correlate well with regions of low effective intrinsic total anisotropy (top right
panels). Other features can also be noticed such as the dilution of the effective intrinsic
total anisotropy at [600 km, 800 km] (Figure 7.8 top right panels). When juxtaposed
with the left panel of Figure 7.8, these are areas where the symmetry axis appear to be
misaligned compared to their neighbors. This implies that localized preferential orien-
tations cannot be discerned by a wavefield of λh = 500 km. On the other hand, shorter
period wavefields as exemplified by λh = 200 km preserve the anisotropy at [600 km,
800 km] since these waves are capable of delineating the preferential orientations of
the left panel at the same location.

In theory, λh → 0 km localizes the observations down to the crystal level where we
can pinpoint the net crystallographic orientation, thus converging towards the original
CPO model where the amplitudes of intrinsic anisotropy are at a maximum. Figure 7.9
reaffirms this hypothesis where we plot ξ∗CPO in terms of σξ versus λh/λmax for differ-
ent length scales of convection λc (i.e., λc = 500 km corresponds to mantle flow with
two characteristic convection cells, 333.33 km for three convection cells, and so on). Let
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FIGURE 7.9: Level of effective intrinsic radial anisotropy ξ∗CPO (i.e., radial
anisotropy of model H(A(S))) expressed as σξ of the entire 2-D model
of ξ∗CPO versus wavelength of homogenization. Each plot pertains to one
family of convection patterns with a given length scale λc. Here, λc =
500 km is for the 2-cell pattern, 300 km for the 3-cell pattern, and so on.
The propensity of the effective intrinsic anisotropy to amplitude loss ap-
pears to be well-correlated with increasing complexity in the convection

patterns.

us put our attention to the trend of σξ when λh/λmax ≤ 0.5. The most salient character-
istic is that the slope generally decreases with increasing complexity of the convection
patterns. This is a clear indication that the preferential orientations indeed average out.
When 0.5 < λh/λmax < 1.75, the slope decreases with decreasing complexity. This is
because at longer wavelengths of homogenization, the wavefield ’sees’ a net vertical
structure for the 5-cell pattern whereas orientations from the 2-cell pattern tend to can-
cel out more since both horizontal and vertical orientations are equally prominent. In
a case where the convection cells are stacked vertically, we expect this same behavior.
At λh/λmax > 1.75, the wavefields almost fail to render any preferential orientations
which is why the effective intrinsic radial anisotropy eventually stagnates at a value of
zero.

7.6.2 Verifying the composite law ξ∗ = ξ∗
CPO × ξSPO in 2-D

CPO versus homogenized CPO

Earlier we have shown that in the 1-D case, ξSPO can be directly estimated from ξ∗ in-
ferred from a tomographic model and from ξ∗CPO computed from a homogenized CPO
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model assuming CPO and SPO are uncorrelated. To verify whether equation (7.33) still
holds in 2-D, we plot for each pixel in our 2-D maps a point containing ξSPO (i.e., ra-
dial anisotropy of model H(I(S))) × ξ∗CPO (i.e., radial anisotropy of model H(A(S)))
against ξ∗ (i.e., radial anisotropy of model H(S)) for the x− and y−coordinates, re-
spectively. Note that in this demonstration, CPO is computed everywhere and hence,
the effect of the cross term is mitigated. Figure 7.10b shows just this for different ho-
mogenization wavelengths λh. As expected, the relation holds exceptionally well even
when λh is large.

In practice however, seismologists and geodynamicists alike painstakingly com-
pare tomographic models of ξ∗ directly with ξCPO computed from CPO models. We
mimic a conventional scenario where a homogenized CPO model is unavailable by
comparing ξSPO × ξCPO instead with ξ∗ (Figure 7.10a). As it turns out, the relation
only holds for small values of λh. This is expected since as stated earlier, full effective
anisotropy converges towards intrinsic anisotropy when λh → 0 since not only do the
short period wavefields delineate the geographically-localized CPO, but also extrinsic
anisotropy eventually vanishes. At larger values of λh, the trend appears to be more
dispersed as a consequence of the averaging process, losing its viability to some ex-
tent. In the absence of a homogenized CPO model, we project that this composite law
would remain true in general under the condition that the minimum wavelength used
in tomography is sufficiently small.

Effect of the rigidity-anisotropy cross term

To test the impact of the rigidity-anisotropy cross term, we consider another mantle
model where CPO is confined in one of the colored regions of the 2-D marble cake
illustrated in Figure 7.3. In addition, we increase the percentage of isotropic hetero-
geneities in VS to 15%. In this way, we indirectly amplify its effect. Figure 7.10c dis-
plays the numerical solution at λh = 50 km and 200 km when CPO is computed in
the yellow phases alone. Based on our analytical results, the points are much more
spread-out than that of Figure 7.10b. In this scenario, CPO now varies abruptly and
appears heterogeneous locally (i.e., δξCPO terms are now much larger), and as expected
the cross term is much more apparent. Nonetheless, it still exhibits strong linearity im-
plying that the predictions carried out by the composite law are robust.

Let us now explore what happens when we administer CPO in the blue phase and
in the yellow phase separately. Neglecting higher-order terms, one could numerically
compute for the cross terms by simply taking the residual radial anisotropy εξ from
εξ = ξ∗ − ξ∗CPO × ξSPO at each pixel in the 2-D maps of radial anisotropy. Figure 7.11
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FIGURE 7.10: For each pixel i on our 2-D maps of ξ∗, ξCPO, ξ∗CPO, and
ξSPO Figure 7.10a: , we plot a cloud of points with coordinates: (a) [ξCPO
× ξSPO(i), ξ∗(i)], (b) [ξ∗CPO × ξSPO(i), ξ∗(i)] overlaying the analytical solu-
tion equation (7.33) (solid red lines). Our numerical simulations suggest
that CPO models should be homogenized first before comparing with to-
mographic models. Figure 7.10c displays the effect of the cross term by
increasing isotropic heterogeneities to 15% and by prescribing CPO only

in the yellow phases of the marble cake model in Figure 7.3.
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displays 2-D maps of ξ∗, ξ∗CPO, ξSPO, and εξ homogenized at λh = 50 km for a man-
tle model where CPO is confined in the yellow regions (top panels) and in the blue
regions (bottom panels). Firstly, the cross terms appear to change sign depending on
where CPO is prescribed which is in agreement with equation (7.27). One one hand
when CPO exists only in the yellow regions, the cross terms are negative and tend
to diminish anisotropy (i.e., εξ becomes more negative across horizontal laminations
and horizontal flow direction, and more positive across the vertical), implying that the
shear modulus and intrinsic anisotropy are anti-correlated. On the other hand when
CPO exists only in the blue regions, the opposite effect is observed implying that now,
they are positively correlated. Secondly, zones where εξ ∼ 0 correlates well with zones
where ξSPO ∼ 1. Such a result is expected. Because the filaments in these zones are
comparable to the size of λh, they appear homogeneously isotropic, and hence do not
produce any extrinsic anisotropy nor cross terms since both depend on small-scale
isotropic heterogeneities to exist. Finally when the two εξ maps are merged, the result
is close to zero. This is because the magnitudes of the cross terms in both configura-
tions (i.e., CPO in blue or CPO in yellow) are approximately the same, and that the
distinction between them is determined solely by their signs.

7.6.3 Discussion

We extended the work of Alder et al. (2017) in that we primarily investigated the effects
of elastic homogenization to a specific class of stable, and fine-scale models of the man-
tle in the presence of deformation-induced anisotropy. We homogenized our mantle
models using the 3-D Fast-Fourier homogenization algorithm developed by Capdev-
ille, Zhao, and Cupillard (2015). The homogenization procedure can be viewed as a
tomographic operator applied to a reference elastic model (Capdeville et al., 2013). The
result is the best possible image one might recover from seismic tomography assuming
perfect data coverage.

According to our experiments, we showed that the extrinsic radial anisotropy pro-
duced by fine-layering could reach up to 2% (see Figure 7.7). This is much lower than
those induced by CPO where the effective intrinsic radial anisotropy could peak at
nearly 11%. This result however is restricted by some parameters that regulate the
level of effective anisotropy. For example, the layered filaments produced by our mar-
ble cake models are of the order 10− 100 km whereas of those proposed by Allègre and
Turcotte (1986) are much thinner and can stretch even further down to the centimeter
scale. By increasing the mixing time for advection TSPO in our simulations, we ex-
pect the filaments to be more elongated and in turn, induce larger extrinsic anisotropy.
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FIGURE 7.11: Quantification of the coupling between the shear modulus
and intrinsic anisotropy in terms of the residual radial anisotropy εξ com-
puted from εξ = ξ∗ − ξ∗CPOξSPO at each pixel in the 2-D maps of radial
anisotropy under two scenarios: CPO is only computed in (1) the yellow
phases (top panels), and (2) the blue phases (bottom panels). The reference
2-D maps S, A(S), and I(S) are homogenized at λh= 50 km to obtain ξ∗,
ξ∗CPO, and ξSPO, respectively. Based on the εξ maps, shear modulus and
intrinsic anisotropy are anti-correlated in (1), and positively correlated in
(2). In both cases, the magnitudes of the cross terms are essentially equiv-

alent, and only differ by their signs.
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Another factor that needs to be mentioned is the spatial roughness of the model do-
main. Indeed that models constructed using finer grid would exhibit more extrinsic
anisotropy than with models contrived from coarse parameterizations. Last is more of
on the intrinsic aspect. Since CPO results from finite strain accumulation over time,
the amplitude of intrinsic anisotropy increases with the time scale for CPO evolution
TCPO, although recrystallization and damage would limit the CPO that can be eventu-
ally accumulated (Ricard and Bercovici, 2009). Such presumptions may only be valid
in regions where rock deformation varies over extended periods of time. Therefore,
whether CPO accounts for most of the bulk anisotropy observed in tomographic im-
ages remains inconclusive and needs further verification.

In light of the simulations conducted, we expect large-scale anisotropy to be only
overestimated when CPO coexists with SPO at some point as exemplified in our sim-
ulations. In the absence of SPO, homogenization can only decrease the strength of
anisotropy. By accounting for both contributions, we showed that ξ > 1 is attributed
to a combination of flow ascent and horizontal layering, and ξ < 1 is a combination
of lateral flow and vertical layering. Indeed, the direction of shear not only dictates
the net orientation of the anisotropic minerals, but also of the orientation of the folded
strips that gives rise to fine-layering.

The repercussion of homogenizing intrinsic anisotropy alone amounts to the convection-
scale averaging of the CPO as evidenced by our simulations. By definition, intrinsic
anisotropy develops from the net alignment of the minerals in the crystal level. This
explains why we can map-out the fast axis of olivine at an arbitrary location. When
long period observations sample an intrinsically anisotropic medium, the wavefield
unknowingly spatially-averages these geographically localized orientations. As a re-
sult, crystallographic orientations that are products of imbricated convection tend to
be more disoriented within their vicinity, thereby ostensibly losing effective intrinsic
anisotropy in the process. In contrast, spatially-coherent crystallographic orientations
that are produced by simpler convection patterns are less susceptible to the dilution of
effective intrinsic anisotropy when sampled by long period observations.

The applicability of equation (7.33) in a 2-D complex media as demonstrated may
be of interest to geodynamicists and tomographers alike because not only does it per-
mit one to directly quantify the discrepancy between the full effective radial anisotropy
inferred from a tomographic model and the effective intrinsic radial anisotropy com-
puted from a homogenized CPO model, it further solidifies the supposition that the
mismatch is indeed a result of extrinsic radial anisotropy due to the seismically-unresolved
small-scale isotropic heterogeneities. We have conducted several numerical experi-
ments to prove that the composite law still holds exceptionally well even when the



7.6. Elastic homogenization of a 2-D mechanically-mixed mantle in the presence of
CPO

187

rigidity-intrinsic anisotropy cross term is amplified. Erroneous interpretation of a CPO
model to explain tomographic observations may therefore be avoided upon homoge-
nization.

The conclusions reached in this section are based on a number of simplifying as-
sumptions:

(1) Although the elastic homogenization code used is completely 3-D, our mantle
models were only 2D. Hence, any 3-D structural effects that might have thwarted some
of the results in this study were completely ignored. A possible extension of this work
therefore is to consider 3-D geodynamic flow models of the mantle e.g. Zhong et al.,
2000; Samuel, 2012b to accommodate any structural effects.

(2) We held the isotropic velocity contrast at a fixed value and assumed it to be
representative of the entire mantle. In reality however, VS variations between basalt
and harzburgite generally decrease with depth (Xu et al., 2008; Stixrude and Jeanloz,
2015). This is not to mention the local presence of melt and water that contributes to the
variations in wavespeeds, and hence the strength of heterogeneities which completely
alters the level of apparent anisotropy.

(3) We completely disregarded the dependency of the elastic constants built from
our mantle models on pressure P and temperature T. Future avenues one could take
would be to incorporate P − T dependence using empirical relations constrained from
laboratory experiments. For instance, one may compute P − T dependence using first-
order corrections around a reference elastic tensor at ambient P − T conditions (Estey
and Douglas, 1986). The growing availability of self-consistent thermodynamic models
based on free-energy minimization schemes (Connolly, 2005; Connolly, 2009) can also
be employed in lieu of the simpler relations for more accurate predictions of seismic
wavespeeds in any given bulk composition (Stixrude and Lithgow-Bertelloni, 2011).

(4) We considered olivine of type-A crystal fabric as the solitary anisotropic mineral
in our mantle models. Because of this, the intrinsic anisotropy produced from finite de-
formation should be seen as an upper bound. Inclusion of other anisotropic minerals
such as pyroxene which make up a fraction in mantle periodotite (Maupin and Park,
2015) would change the net anisotropy. For instance, we anticipate that including a
substantial amount of enstatite would dilute the net anisotropy e.g. Kaminski, Ribe,
and Browaeys, 2004 bringing intrinsic anisotropy and extrinsic anisotropy to compa-
rable levels.
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7.7 Separating SPO from CPO in tomographic models:

Application to radial anisotropy beneath oceanic plates

7.7.1 Radial anisotropy beneath oceanic plates

Within the context of seismic tomography, surface waves offer the capability to image
upper-mantle structure providing an in-depth view of large-scale anisotropy. They
are sensitive to both azimuthal and radial anisotropy. The depth-distribution of ra-
dial anisotropy underneath oceanic basins is positive, VSH > VSV , characterized by a
layer of strong signatures lying in between ∼ 80 km − ∼ 250 km corresponding to
the asthenosphere e.g. Montagner, 1985; Ekström and Dziewonski, 1998; Panning and
Romanowicz, 2006; Nettles and Dziewoński, 2008. Meanwhile, geodynamic models
of upper-mantle flow beneath ridges reveal that the flow is primarily horizontal. Cou-
pled with micro-mechanical models of CPO evolution, the patterns of radial anisotropy
across this depth-range can be explained by the net alignment of anisotropic aggre-
gates with upper-mantle flow (Becker et al., 2006; Becker, Kustowski, and Ekström,
2008; Becker et al., 2014).

Traversing shallower depths, plate-averaged radial anisotropy across the oceanic
lithosphere appears frozen-in and displays modest levels of about 1−3% which can-
not be explained by CPO alone (Hansen, Qi, and Warren, 2016). It is proposed that
the preservation of quasi-laminated structures due to the transportation of crystal-
lized or unextractable melt during lithospheric thickening and magmatic underplat-
ing expounds this frozen-in signature of anisotropy e.g. Auer et al., 2015; Hansen,
Qi, and Warren, 2016; Debayle et al., 2020. With this, there is a growing consensus
that rock-scale SPO may also be a potential mechanism, and that a substantial fraction
of the observed lithospheric anisotropy may be a spurious effect due to small-scale
isotropic heterogeneities (Wang et al., 2013; Kennett and Furumura, 2015). However,
constraints from geological experiments suggest that the spatial distribution of melt
conduits across the oceanic lithosphere, especially beneath slow-spreading ridges, is
not perfectly-layered but displays sporadic patterns e.g. Kelemen, Braun, and Hirth,
2000 which would then eventually suppress the level of extrinsic anisotropy by an in-
surmountable degree (Faccenda et al., 2019). In summary, although asthenospheric
anisotropy is well-understood, lithospheric anisotropy still poses ambiguities.

The corroboration of the composite law in a 2-D complex media prompted us to as-
sess the discrepancy between a tomographic model and a CPO model of upper-mantle
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radial anisotropy underneath a mid-ocean ridge. In our hypothesis, this should com-
mensurate to the extrinsic radial anisotropy due to the unresolved small-scales in seis-
mic velocities.

7.7.2 The tomographic model

In conjunction with the pre-existing global VSV model of the upper-mantle constrained
from Rayleigh wave data DR2012 (Debayle and Ricard, 2012), we adopt the recent
global VSH model CAM2016SH of Ho, Priestley, and Debayle (2016) to acquire a plate-
averaged 2-D profile of radial anisotropy associated with slow-spreading oceanic ridges.
The VS models were reconstructed by independently inverting Love (for VSH models)
and Rayleigh (for VSV models) waveforms up to the fifth overtone between the period
range 50 − 250 s using an extension of the automated waveform inversion approach
of Debayle (1999). We refer the reader to Debayle and Ricard (2012) and Ho, Priestley,
and Debayle (2016) for a more detailed description of the inversion procedure.

From the VSV and VSH models of the upper-mantle, we compute the tomographic
counterpart of radial anisotropy using ξ∗ = (VSH/VSV)

2. Here, we acknowledge that
ξ∗ is not directly inferred from simultaneous inversions of Love and Rayleigh data but
is a rudimentary estimate from the two S−wave velocity models that may conceiv-
ably have different qualities. We view this demonstration as a proof-of-concept and
therefore one must proceed with caution.

The depth distribution of ξ∗ spanning from 35 − 400 km is shown in Figure 7.12
(top panel). Positive radial anisotropy values (ξ∗ > 1) are confined in the upper ∼
200 km of the model domain which is in close agreement with previous studies e.g.
Montagner, 1985; Ekström and Dziewonski, 1998; Panning and Romanowicz, 2006.
The maximum positive vertical gradient of ξ∗ at ∼ 100 km is usually interpreted as the
depth of the lithosphere-asthenosphere boundary (LAB). Since this gradient appears to
be constant laterally, radial anisotropy is often used as a seismic proxy to trace an age-
independent LAB (Burgos et al., 2014; Beghein, Xing, and Goes, 2019). Although the
origin of anisotropy in the asthenosphere is well-understood purely in terms of CPO,
lithospheric anisotropy may be an amalgamation of CPO and SPO (Wang et al., 2013).
Our task is to invoke the composite law to isolate SPO from CPO in this tomographic
model with the help of a homogenized CPO model.

7.7.3 The CPO model

In this section, we re-interpret the results of Hedjazian et al. (2017) where they exam-
ined radial anisotropy profiles predicted from CPO models produced by plate-driven
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flows underneath a mid-ocean ridge. From their work, we borrowed two CPO models
that correspond to a fast-developing CPO and a slow-developing CPO. The rate is dic-
tated by the dimensionless grain boundary mobility parameter M which controls the
degree of dynamic recrystallization (Kaminski, Ribe, and Browaeys, 2004). In the first
case, a classical value of M = 125 constrained from laboratory experiments was im-
posed. Subsequently, the second case considers a case where M = 10 (i.e., slower CPO
evolution) which also reproduces experimental results but in the case of a non-random
initial (i.e., initially-developed) CPO (Boneh et al., 2015). Hedjazian et al. (2017) com-
pared the CPO anisotropy directly with tomographic models. They concluded that
the patterns of radial anisotropy predicted with the slow CPO evolution were in better
agreement with tomographic models. We homogenize the two CPO models and obtain
their long-wavelength effective equivalent, and again appraise the resulting profiles in
comparison with tomographic observations.

The intrinsic CPO mineralogical model

2-D surface-driven flows were acquired by solving the incompressible momentum and
energy equations befitting to mantle convection using the code Fluidity (Davies, Wil-
son, and Kramer, 2011). In both CPO models, upper-mantle deformation is governed
by a composite dislocation and diffusion creep (i.e., mixed rheology) following the im-
plementation of Garel et al. (2014). D-Rex was used to model CPO evolution. Crystal
aggregates comprised of 70% type-A olivine and 30% enstatite starting with a random
initial CPO at 400 km are subsequently deformed along their flow trajectory. A com-
plete description of the methodology can be found in Hedjazian et al. (2017)

Figure 7.12 displays the intrinsic radial anisotropy profiles ξCPO belonging to the
fast-evolving CPO with reference D-Rex values M = 125 (model A) and the slow-
evolving CPO with M = 10 (model B). Model A predicts a layer with strong levels
of intrinsic radial anisotropy of about 10% (ξCPO ≈ 1.1) at a depth of ∼ 80 km start-
ing at approximately 20 My. At about the same depth, tomography models yield ap-
proximately 5% radial anisotropy e.g. Panning and Romanowicz, 2006; Nettles and
Dziewoński, 2008; Burgos et al., 2014. Hence, it is argued that model A overpredicts
the level of large-scale anisotropy in the upper-mantle (Hedjazian et al., 2017). On
the contrary, model B predicts modest levels of intrinsic radial anisotropy, about 5%
(ξCPO ≈ 1.05) across the oceanic lithosphere (> 80 km) which is more consistent with
tomographic observations.
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The homogenized CPO model

Figure 7.12 also shows the effective intrinsic radial anisotropy profiles ξ∗CPO of model
A∗ and model B∗ . In both cases, the ensuing patterns of radial anisotropy are smoothed
out as a result of homogenization. For instance, the apparent two-layered distribution
of intrinsic radial anisotropy with depth (down to ∼ 250 km) in model A vanishes
upon homogenization. The depth profiles of effective intrinsic radial anisotropy as a
result contain one layer of radial anisotropy centered at ∼ 100 km, making it com-
patible with expected patterns from tomographic models of the asthenosphere. Fur-
thermore, it was implied that radial anisotropy predicted with laboratory parameters
exceeds tomographic observations. Here, we argue that it may be other way around.
Due to finite-frequency effects and eventually limitations in resolution power, seismic
tomography underestimates the strength of intrinsic anisotropy, at least in the absence
of small-scale isotropic heterogeneities. The level of radial anisotropy in models A and
B are therefore larger than their homogenized/tomographic counterparts (models A∗

and B∗ ). As opposed to common practice, the physical parameters used in CPO mod-
els of which are initially constrained by experimental data may need not be manually
tuned, and perhaps that the action of varying such parameters to conform with to-
mographic observations deems unnecessary. We therefore conclude that direct visual
comparison between a CPO model and a tomographic model could lead to wrong in-
terpretations, and that homogenization is necessary to have correct interpretations of
the CPO models.

7.7.4 The SPO model

The SPO models of Figure 7.12 illustrate the extrinsic radial anisotropy ξSPO profiles
computed from ξ∗ of the tomographic model, and ξ∗CPO of model A∗ (model C) and
ξ∗CPO of model B∗ (model D) using eq. (7.33) for each pixel on the 2-D maps. Strong lev-
els of positive extrinsic radial anisotropy clustering near the ridge axis may be due to
the inability of surface waves to register vertical flow because of its limited lateral res-
olution. At the moment, one should look past the 20 My mark. Based on our results, to
infer a realistic SPO model from a tomographic model, one should favor a CPO model
with a fast-evolving texture over a slow-evolving one. This is expected since the slow
model D was tailored to fit the observations from CPO only. On the other hand, the
fast model C displays positive extrinsic radial anisotropy above 200 km. This is more
consistent with the observed lithospheric anisotropy underneath oceanic plates which
has been partly due to the existence of lateral fine-scale structures associated with mag-
matic underplating and congealing e.g. Auer et al., 2015; Kennett and Furumura, 2015;
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Hansen, Qi, and Warren, 2016. Although our SPO models based on first-order princi-
ples are far from perfect, this demonstration serves as a proof of concept.

7.8 Conclusion

In retrospect, differentiating the relative contributions of CPO and SPO to the full ef-
fective medium is not a simple, straightforward process. The tomographic operator
H is highly non-linear hence a full effective medium cannot be explicitly decomposed
into two independent components; not to mention the manifestation of non-negligible
spurious artifacts that only exacerbates the problem. It would be seemingly implausi-
ble to exactly measure CPO and SPO discretely from tomographic models. One of the
most logical courses of action to address such problems is to compare the results with
existing micro-mechanical models of CPO evolution. Should there be any discrepancy
between the two models however, to the best of our knowledge, there is still no con-
sistent way to independently quantify CPO and SPO from the full effective medium.

Here, we proposed a very simple composite law that directly quantifies the separate
contributions of CPO and SPO from the full effective radial anisotropy ξ∗ inferred from
tomographic models:

ξ∗ = ξSPO × ξ∗CPO,

which we have verified numerically using simple 2-D toy models of an intrinsically
anisotropic and a heterogeneous mantle. Although our numerical experiments were
mainly a proof of concept, constraining a CPO model from an existing tomographic
model is unwarranted and that we highly recommend homogenizing a CPO model as
an intermedial step. Doing so may therefore yield essential observations that could
benchmark a suite of tomographic models based on this numerical paradigm.
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FIGURE 7.12: Radial anisotropy profiles across the upper-mantle under-
neath a mid-ocean ridge obtained from a tomographic model (top panel),
reference CPO models corresponding to fast and slow-evolving textures
(models A and B), homogenized versions of model A (model A∗) and
of model B (model B∗). Upon homogenization, the strength of radial
anisotropy is curtailed. CPO models constructed from reference param-
eter values therefore do not overestimate anisotropy, instead, seismic
tomography underestimates anisotropy due to limited frequency band.
Models C and D, respectively, are the extrinsic radial anisotropy profiles
computed from ξ∗ of the tomographic model, and ξ∗CPO of model A∗ ,
and of model B∗ using the composite law. Positive lithospheric radial
anisotropy in model C implies the existence of horizontally-laminated
structures consistent with observations. This is absent in model D which

is expected since model B∗ is designed to fit observations.
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