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Aperçu de la thèse

Cette thèse porte sur la résolution d’équations aux dérivées partielles stochastiques
singulières (EDPSS) sur des variétés. Pour cela, on construit un calcul paracontrôlé
d’ordre supérieur basé sur le semi-groupe de la chaleur. L’étude de chaque équation
a ensuite lieu en deux étapes : la formulation analytique du problème avec les outils
du calcul paracontrôlé et la construction d’un certain nombre de processus aléatoires
singuliers par une procédure de renormalisation.

Les objets modélisant un bruit aléatoire sont par nature très irréguliers locale-
ment. Cela rend l’étude des EDP associées délicate lorsque des produits entre deux
objets irréguliers apparaissent et les équations ne peuvent alors pas être résolues
dans les espaces classiques d’analyse. En se basant sur la même approche que les
chemins rugueux et les chemins contrôlés pour les équations différentielles stochas-
tiques, il est possible de construire des sous-espaces aléatoires à l’aide de méthodes
probabilistes dans lesquels les produits ne sont plus singuliers. Cela permet d’étudier
de nouveaux modèles de processus aléatoires continus, de mieux comprendre les lim-
ites d’échelles d’un certain nombre de systèmes dynamiques discrets aléatoires ou
encore de construire des modèles de théorie quantique des champs. Le chapitre
1 porte sur la construction du calcul paracontrôlé à partir du semi-groupe de la
chaleur qui permet de mettre en pratique cette idée. Dans les chapitres 2 à 6,
différents exemples d’EDPSS paraboliques, elliptiques et dispersives sont étudiés.
Enfin, le chapitre 7 porte sur deux exemples de modèles aléatoires étudiés grâce à
des opérateurs stochastiques singuliers construits à l’aide du calcul paracontrôlé.

L’étude de ces objets stochastiques irréguliers est alors difficile avec les outils
habituels d’analyse et de nouvelles méthodes sont nécessaires. L’intégration stochas-
tique a été développée en ce sens mais de nombreuses questions comme la résolu-
tion des équations KPZ ou du modèle Φ4

d restaient hors de portée des méthodes
d’analyse ou de probabilités jusqu’à récemment. Depuis le début des années 2000,
de nombreux progrès ont été fait avec en particulier l’introduction des structures de
régularité et du calcul paracontrôlé qui permettent aujourd’hui d’étudier de nom-
breux problèmes jusque là inabordable. Cette thèse n’est qu’un petit exemple de la
nature des nombreuses questions qu’on est alors à même de se poser.

Chapitre 1 : Construction du calcul paracontrôlé.
On construit les outils du calcul paracontrôlé d’ordre supérieur sur une variété

compacte à l’aide du semi-groupe de la chaleur dans un cadre espace, en particulier
les deux paraproduits P et P̃. Le premier permet de décomposer un produit comme

ab = Pab+ Pba+ Π(a, b)

où Pab et Pba sont bien définis pour toutes distributions alors que le terme résonant
Π(a, b) contient l’éventuelle singularité. Le deuxième paraproduit P̃ est entrelacé
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avec P par une relation du type

D ◦ P̃ = P ◦D

avec D un opérateur différentiel et permet ainsi d’exprimer les formulations faibles
d’EDP impliquant un produit décrit par P. Le paraproduit P est construit à partir
du semi-groupe de la chaleur associé à une famille d’opérateur différentiel du premier
ordre (Vi)1≤i≤d vérifiant de bonnes hypothèses, D peut être alors être n’importe quel
opérateur construit à partir de cette famille. Dans le cas du calcul paracontrôlé
espace-temps, il est aussi possible de considérer l’opérateur temporel ∂t. Dans les
applications, on considère D = −∆ ou D = ∂t − ∆. Pour réussir à contourner le
problème des produits singuliers, on obtient des estimations de continuité sur des
correcteurs du type

C(a1, a2, b) := Π
(
P̃a1a2, b

)
− a1Π(a2, b)

ainsi que pour ses versions rafinées et itérées. D’autres opérateurs sont aussi néces-
saires pour étudier des termes bien définis mais qui ne sont pas dans une forme
adaptée comme par exemple le commutateur

D(a1, a2, b) := Π
(
P̃a1a2, b

)
− Pa1Π(a2, b)

ou encore l’opérateur de fusion

R(a, b, c) := PaP̃bc− Pabc.

Chapitre 2 : EDP stochastiques singulières paraboliques semi-
linéaires.

À l’aide du calcul paracontrôlé d’ordre supérieur, il est possible de résoudre une
grande classe d’EDP stochastiques singulières paraboliques semi-linéaires comme
par exemple l’équation (PAM) généralisée en dimension 3

∂tu−∆u = f(u)ξ

avec ξ un bruit blanc espace ou l’équation (KPZ) généralisée en dimension 1 + 1

∂tu− ∂2
xu = f(u)ζ + g(u)(∂xu)2

avec ζ un bruit blanc espace-temps. Notre approche repose sur la notion de sys-
tèmes paracontrôlés (ua)a∈A étant donné un ensemble T de fonctions de référence
dépendantes du bruit vérifiant un système triangulaire

ua =
∑
|aτ|≤nα

P̃uaττ + u]a

où | · | correspond à la régularité Hölder des différentes fonctions. La singularité de
l’équation apparait alors par la singularité de certains éléments de T qui doivent être
construit à l’aide d’une procédure de renormalisation. Les équations sont ensuite
résolues presque sûrement par un argument de point fixe sur l’espace des restes
(u]a)a∈A . On présente ici seulement la partie concernant la formulation du point
fixe.
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Chapitre 3 : EDP stochastiques singulières paraboliques quasi-
linéaires.

� I. Bailleul and A. Mouzard, Paracontrolled calculus for quasilinear singular
PDEs, arXiv:1912.09073, (2019).

On développe de nouveaux outils pour le calcul paracontrôlé d’ordre supérieur
afin de résoudre la partie analytique de l’étude d’EDP singulières quasi-linéaires.
En plus de l’étude de nouveaux correcteurs et commutateurs introduits dans ce but,
on généralise la notion de systèmes paracontrôlés afin de pouvoir travailler avec un
nombre infini de fonctions de références générées par une structure algébrique finie.
On considère toute EDP quasi-linéaire

∂tu− d(u)∆u = f(u, ξ)

associée à une EDP semi-linéaire qui peut être traitée à l’aide le cadre du calcul
paracontrôlé, ce qui inclut (gPAM) et (gKPZ). L’équation est reformulée comme

∂tu+ Lu = f(u, ξ) + ε(u, ·)Lu+ ai(u, ·)Viu

avec L un opérateur différentiel du second ordre dépendant de la condition initiale
u0 sous la forme de Hörmander afin d’utiliser le calcul paracontrôlé adapté. En in-
troduisant de nouveaux correcteurs et commutateurs associés au produit mettant en
jeu les opérateurs différentiels L et Vi, on est capable de formuler le point fixe associé
à l’équation dans un espace de système paracontrôlé. À cause du terme de second
ordre dans le membre de droite, on ne peut pas trouver un ensemble fini de fonctions
de références T et il est nécessaire de considérer des entiers comme “décorations” sur
l’ensemble fini donné par l’équation semi-linéaire. Le passage d’un espace algèbrique
de dimension finie à infinie est aussi présent dans les autres approches développées
pour ces équations, cela semble être l’effet quasi-linéaire.

Chapitre 4 : L’hamiltonien d’Anderson.

� A. Mouzard, Weyl law for the Anderson Hamiltonian on a two-dimensional
manifold, arXiv:2009.03549, (2020).

On définit l’opérateur d’Anderson

H = −∆ + ξ

sur une variété de dimension 2 à l’aide du calcul paracontrôlé d’ordre supérieur où
ξ est un bruit blanc espace. À cause de la singularité de l’opérateur, la construction
nécessite une procédure de renormalisation et on obtient un opérateur auto-adjoint
avec un spectre discret

(
λ(Ξ)

)
n≥1

. On peut calculer la régularité Hölder des fonctions
propres et obtenir des bornes inférieures et supérieures pour ses valeurs propres de
la forme

λn −m2
δ(Ξ) ≤ λn(Ξ) ≤ (1 + δ)λn +m1

δ(Ξ)

pour tout δ ∈ (0, 1), des constantes explicitesm1
δ ,m

2
δ qui dépendent de l’enrichissement

du bruit Ξ et (λn)n≥1 les valeurs propres du laplacien. En particulier, ces bornes
impliquent une loi de type Weyl presque sûre pour H de la forme

lim
λ→∞

λ−1
∣∣{λn(Ξ) ≤ λ}

∣∣ =
Vol(M)

4π
.
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Chapitre 5 : Le laplacien magnétique aléatoire.

� L. Morin and A. Mouzard, 2D random magnetic Laplacian with white noise
magnetic field, arXiv:2101.05020, (2021).

On construit le laplacian magnetique aléatoire

H = (i∂1 + A1)2 + (i∂2 + A2)2

sur le tore de dimension 2 avec un potentiel magnétique A = (A1, A2) ∈ Cα−1×Cα−1

aléatoire irrégulier où α < 1 en utilisant le calcul paracontrôlé. Le potentiel est
choisi de manière à ce que le champ magnétique associé soit le bruit blanc espace
avec

A = ∇⊥ϕ où ϕ = ∆−1ξ.

Après une procèdure de renormalisaiton, on obtient un opérateur auto-adjoint avec
un spectre discret. On obtient aussi des bornes inférieures et supérieures pour ses
valeurs propres qui implique une loi de type Weyl presque sûre. En particulier, notre
construction est un exemple d’opérateur de la forme

−∆ + a1 · ∇+ a2

avec a1, a2 des champs aléatoires plus irrégulier que ce qui est possible avec la théorie
classique.

Chapitre 6 : EDP stochastiques singulières dispersives.

� A. Mouzard and I. Zachhuber, Strichartz inequalities with white noise potential
on compact surfaces, arXiv:2104.07940, (2021).

On résout des EDP dispersives non-linéaires avec un bruit blanc multiplicatif
à l’aide de la construction de l’hamiltonien d’Anderson qui permet par exemple
d’interpréter l’équation de Schrödinger

i∂tu+ ∆u = uξ + |u|2u

comme
i∂tu = Hu+ |u|2u.

Les différentes propriétés de H permettent d’obtenir des solutions fortes et énergies
pour cette équation ainsi que pour l’équation des ondes sur une surface compacte
sans bord ou avec des conditions de Dirichlet au bord. Dans le cas déterministe, les
inégalités de Strichartz de la forme

‖eit∆u‖Lp(I,Lq) . ‖u‖Hα

permettent d’obtenir une théorie de solutions dans des espaces de Sobolev de faible
régularité. On prouve de telles inégalités pour l’hamiltonien d’Anderson, c’est-à-dire
de la forme

‖eitHu‖Lp(I,Lq) . ‖u‖Hα
ce qui permet d’obtenir le caractère bien posé localement dans des espaces de Sobolev
de faible régularité pour les équations de Schrödinger et des ondes avec une non-
linéarité cubique et un bruit multiplicatif sur une surface compacte avec ou sans
bord. En particulier, on obtient des bornes sur les normes Lq des fonctions propres
de l’hamiltonien d’Anderson et ses projecteurs spectraux.
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Chapitre 7 : Diffusions en milieu désordonné.

� A. Mouzard, The continuum polymer measure with white noise potential on
compact surfaces, in preparation.

� A. Mouzard, The Brox diffusion on a circle and its generator, in preparation.

On étudie deux modèles de diffusions en milieu désordonné à l’aide d’opérateurs
stochastiques singuliers. Le premier est celui de la mesure polymère avec potentiel
bruit blanc ξ formellement décrite par

V(dX) =
1

ZT
e−

1
2

∫ T
0 ξ(Xs)dsW(dX)

où W est la mesure de Wiener sur C([0, T ],M). Puisque le bruit blanc est seulement
une distribution, le terme ξ(Xs) n’a pas de sens et le formalisme de Gibbs ne peut
pas être utilisé pour construire un tel objet. Cela fait sens puisque dans ce cas, la
mesure polymère est en fait singulière avec la mesure de Wiener et ne peut donc par
admettre une densité par rapport à cette dernière. Notre construction est basée sur
le semi-groupe intrinsèque de Feynman-Kac associé à l’hamiltonien d’Anderson et
est reliée à la diffusion

dXt = ∇(log Ψ)dt+ dBt

où Ψ est l’état fondamental d’Anderson. Le second modèle est la diffusion de Brox
formellement donnée par l’EDS

dXt = ξ(Xt)dt+ dBt

où la dérive est singulière et donné par un bruit blanc espace ξ en dimension un.
Son générateur infinitésimal est formellement donné par

−1

2
∆ + ξ · ∇

qui peut être construit à l’aide du calcul paracontrolé basé sur le semi-groupe de
la chaleur. En particulier, cela permet une nouvelle approche pour l’étude de la
diffusion de Brox ainsi que sa construction sur le cercle où on ne peut utiliser la
propriété d’auto-similarité. L’étude de ces deux modèles étant basée sur des travaux
en cours, ce chapitre présentera seulement les idées générales.
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Introduction

The natural continuous objects that appear in stochastic analysis are very rough
as one already see with the Brownian motion. This made stochastic integration
a real challenge to develop with motivation the resolution of stochastic differential
equation (SDEs) to study new probabilist models and undestand the scaling limits
of discrete random dynamical systems. The same is true for the resolution of PDEs
involving complex operations with random noise distributions and a large number of
questions such as the resolution of the KPZ or Φ4

d equations remained out of reach of
known methods until very recently. Since the early 2000’s, major progess have been
made, in particular with the introduction of regularity structures and paracontrolled
calculus allowing the study of many problems inacessible until then. This thesis is
only a small sample of the kind of questions one is now able to investigate.

What, why and how
Singular stochastic partial differential equations (SSPDEs) are PDEs involving rough
stochastic fields as source terms or initial conditions where a singular operation
appears. Since the stochastic term is not a function, one has to deal with a product
of distributions which is ill-defined in most cases. Given a discrete space Λ, one
of the most natural stochastic noise one can consider is a family {ξ(x);x ∈ Λ} of
independant and identically distributed centered Gaussian random variables. In
a continuous setting, the analogue object ξ is called white noise and one can not
expect it to belong to any classical function spaces because of its roughness; it is not
a function but only a distribution. This stochastic object can appear in any classical
problems of analysis such as parabolic PDEs like the multiplicative heat equation

∂tu−∆u = uξ,

elliptic PDEs like the Laplace equation

∆u = uξ,

hyperbolic PDEs like the multiplicative wave equation

∂2
t u−∆u = uξ

or dispersive PDEs like the multiplicative Schrödinger equation

i∂tu−∆u = uξ.

In all these equations, the solutions u might not be regular enough for the product
uξ to makes sense almost surely; this is the so-called singular SPDEs class. As
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for stochastic differential equations where a probabilistic argument is needed to go
beyond the limit of analysis, solving singular SPDEs comes down to the use of
probability to push back the limit of possible regularity in PDEs. There are also
equations where the singular product does not directly involve the noise such as the
Φ4
d equation

∂tφ−∆φ = ξ − φ3 + φ

or the Kardar–Parisi–Zhang (KPZ) equation

∂tu− ∂2
xu = ξ + (∂xu)2

where the terms u3 and (∂xu)2 do not make sense for rough noise ξ. Since there is no
natural meaning of what a solution should be at first sight, it is normal to ask why
one should try to solve these equations, or at least keep faith to do so. It rapidly
seems clear that there is no hope to find any classical solutions thus it is crucial to
see the greater picture and keep in mind the problem behind the equation that one
wants to solve. In general, two types of problems give rise to singular SPDEs.

− A large number of nonlinear microscopic random systems are described by sin-
gular SPDEs on a macroscopic level. One of the most famous one is the generalised
KPZ equation

∂tu− ∂2
xu = f(u)ξ + g(u)(∂xu)2

with ζ a spacetime white noise which describes a whole range of interacting particle
systems. For example, the case f = g = 1 corresponds to the weakly asymmet-
ric simple exclusion process. An interesting family of discrete growth models to
illustrate different stochastic processes associated to such SPDEs is the random de-
position model. The simplest one is described as follows. One adds new particules
at random time and choses uniformly a site in which the particule falls verticaly
until it reaches the top of the column. Since there is no correlation between the dif-
ferent columns, the stochastic process can be explicitely computed. The interesting
quantity to consider is the fluctuation of the interface line around its mean. In the
correct continuous limit, this is given by a space-time white noise, Gaussian because
of the Central Limit Theorem.

Random deposition Surface relaxation

There are different ways to induce a correlation between columns which yield dif-
ferent SPDEs in the continuous scaling limit. For example, one can induce a surface
relaxation by allowing deposited particules to diffuse to an adjacent lower height.
The final interface will be smoother than without relaxation and one can show that
the continuous limit model is described by the stochastic heat equation with additive
spacetime white noise often refered to as the Edwards-Wilkinson equation in this
framework. Another example of model with correlation is the ballistic deposition
model where a deposited particule sticks to the first edge against which it becomes
incident.

8



Ballistic deposition

While the overall growth rate remains the same, the fluctuation of the interface
line around its mean are very different and falls in the so-called KPZ universality
class. These three models of surface growth appear in many natural phenomena
such as coffee stain or ice deposition and exhibit very different behaviors.

Random deposition
Relaxed random deposition

Ballistic deposition

− Quantum Field Theory (QFT) is an attempt to unify the quantum theory
of particule physics with the theory of relativity. While it takes its root in Dirac’s
theory of antiparticules, it had the major problem of having no concrete meaning
: each computations yielded infinite values. It is only with the works of Bethe,
Tomonaga, Dyson, Schwinger and Feynman that one could get meaningful compu-
tations after a so-called “renormalisation” procedure. It consisted in a sequence of
operations performed for the theory to make sense, this was refered to as constuc-
tive Quantum Field Theory (cQFT). The fact that the renormalisation procedures
produced the most precise computations of the anomalous magnetic dipole moment
gave the hint that the problem was not in QFT but in the actual construction of a
QFT. Thus cQFT appeared as a very hard but interesting mathematical challenge,
the construction of a measure on an infinite dimensional space having a density with
respect to the “Lebesgue” measure satisfying a number of axioms. The problem of
ill-definition already appears with the interpretation of the “Lebesgue” measure in
infinite dimensions. The simplest example is the Φ4

d theory on the torus Td given by

µ(dφ) =
1

Z
e−V (φ)

∏
x∈Td

dφ(x)

where Z is a normalisation constant and

V (φ) :=

∫
Td

(
|∇φ(x)|2 +

1

2
φ(x)4 − φ(x)2

)
dx.

A first step is to remark that

exp
(
−
∫
Td
|∇φ(x)|2dx

)
= exp

(
−
∫
Td
φ(x)(−∆)φ(x)dx

)
9



and to consider the measure ν defined as

ν(dφ) = exp
(
−
∫
Td
φ(x)(−∆)φ(x)dx

) ∏
x∈Td

dφ(x).

Following Gaussian measures in finite dimensions, ν can be interpreted as the Gaus-
sian measure with ∫

〈φ, f〉〈φ, g〉ν(dφ) =
1

2

〈
f, (−∆)−1g

〉
where 〈·, ·〉 denotes the inner product of L2(Td). Then the Φd

4 measure is given by

µ(dφ) =
1

Z
exp

(
−
∫
Td

(
1

2
φ(x)4dx− φ(x)2

)
dx

)
ν(dφ)

and this gives a well-defined measure in dimension d = 1. In dimension d ≥ 2, the
measure ν is only supported in distributions with ν(L∞) = 0 hence the product
φ4 and φ2 do not make sense. Considering the SPDE with µ as formal invariant
measure yields the Φ4

d equation

∂tφ−∆φ = −φ3 + φ+ ξ

with ξ a spacetime white noise which is singular in dimension d ≥ 2; this is the idea
of stochastic quantization introduced by Parisi and Wu.

Now that “what” and “why” are clear, it remains to see the “how”. A classic
approach is to consider a regularisation of the noise (ξε)ε>0 which converges to ξ as
ε goes to 0. If the regularisation is well-chosen, this yields a family of well-posed
problems with associated solution (uε)ε>0 and the question is now to describe the
asymptotic behavior of uε as ε goes to 0. Since the equations are singular, one can
not expect this family to converge but can only hope to get a description of its
asymptotic behavior; this is where a renormalisation procedure appears.

Throughout this thesis, the reader should keep in mind our goal : we want to
build an object independent of ε describing the asymptotic behavior of (uε)ε>0. One
should apply the simplest possible transformation to the equation in order to get a
new family (vε)ε>0 that converges to a distribution v; this is the renormalisation step.
Hence the problem is to find this transformation, construct the space of possible
limits and show the convergence. The convergence should rely on a probabilistic
argument since the problems do not have natural meaning with pure analysis. In
order to have a precise description of the singular product and construct this limiting
object v, one needs adapted analysis tools; this is the role of regularity structures
or paracontrolled calculus.

The presence of a rough stochastic source term already appears in the context
of differential equation where one wants to add a Brownian motion. Such stochastic
differential equations are often written under the form

dXt = f(t,Xt)dt+ g(t,Xt)dBt

and one has to give a meaning to “dBt” since the Brownian motion is almost surely
not differentiable. From a pathwise point of view, B is almost surely of Hölder
regularity 1

2
− κ for any κ > 0 hence to solve the SDEs for almost every ω ∈ Ω, one

10



has to have a theory that can deal with this regularity. Unfortunaly, this is just out
of range of Young’s integration (1936) where one can give a meaning to∫ t

0

f(Ys)dYs

for any path Y of Hölder regularity greater than 1
2
. The condition being sharp,

the study of SDEs with Ito’s (1944) and Stratonovich’s (1966) theories of stochastic
integration were developped. The addition of a probabilistic ingredient allows a
definition of the integral for a class of stochastic processes against each other. In
the late 90’s, Lyons took back the path of stochastic integration from the work
of Young and developped a pathwise approach to SDEs. The idea is to build a
random function space from the Brownian motion in which one can make sense
of the equation almost surely. This random function space is built using a new
analytical object called a rough path, that is not only the data of the path (Bt)t>0

but also the iterated integrals

B =

(∫
0≤t1≤...≤tn≤t

dBt1 ⊗ . . .⊗ dBtn

)
n≥1,t>0

of the path against itself. A rough path lies in a precise algebraic structure, the
space of iterated integrals described by Chen, and need to statify analytical bounds.
Solutions of SDEs are then interpreted as the first component of the solution X of
the associated rough differential equations (RDEs)

dXt = f(t,Xt)dt+ g(t,Xt)dBt

with different advantages. In particular, the solution X is a continuous function of
the input rough path B whereas the solution of an SDE depends only measurably
of the input path B. While rough paths allow to define the integral of 1-forms, this
was extended in 2004 by Gubinelli with the notion of controlled paths where one
looks for solutions whose variations are controlled by the Brownian rough path B,
and later with the notion of branched rough path with the Hopf algebra of trees as a
generalisation of Chen’s condition. This is the philosophy that led to the resolution
of singular SPDEs with the notions of regularity structures as a generalisation of
rough paths and paracontrolled calculus as a generalisation of the controlled paths
approach.

Toolbox to investigate singular SPDEs
As far as SSPDEs are concerned, two different approaches emerged in 2013 follow-
ing the rough paths philosophy : the regularity structures and the paracontrolled
calculus. Again, the idea is that classic function spaces are too large for the problem
to make sense hence the need for random subspaces built from the rough stochastic
terms in which one can almost surely make sense of the equation.

Regularity structures were developped by Hairer in [39]. These are new structures
to describe functions and distributions with a generalisation of the notion of local
regularity. A function is of class Ck if it can be approximated by polynomials of
degree k up to a quantified error. In a regularity structure, a certain set of reference
distributions is given and the regularity of a distribution is measured by how well it
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can be approximated by these given objects. In general, one keeps the polynomials in
the reference set in order to have a generalisation of the classical notion of regularity
and add random distributions built from the noise. Solutions of PDEs are then
described locally by generalised Taylor expansion with building block the reference
distribution, this is the notion of modelled distributions. The local expansions should
agree when based on different points, this gives algebraic condition that are encoded
by Hopf algebra. If they also satisfy appropriate analytical conditions, one can
reconstruct a global object based on the local expansions. To solve a singular SPDEs,
one first constructs a random regularity structure from the stochastic rough term
and then interpret the equation almost surely within this framework. The whole
theory as a black box to solve SSPDEs was developped in the four following works.

� In his first paper [39], Hairer introduced the notion of regularity structures
and solved the first examples of singular SPDEs.

� In [18], Bruned, Hairer and Zambotti set up the algebraic framework of renor-
malisation within regularity structures.

� Chandra and Hairer proved in [23] the convergence of the renormalisation
procedure in the framework of the precedent work.

� In [17], Bruned, Chandra, Chevyrev and Hairer explicited how the renormali-
sation procedure acts at the level of the equations.

The paracontrolled calculus was introduced by Gubinelli, Imkeller and Perkowski
in [35]. Whereas regularity structures relies on a local description with Taylor-like
expansions, paracontrolled calculus deals directly with global objects using har-
monic analysis. In this framework, the regularity of a distribution is measured by
the asymptotic behavior of its Fourier transform for large frequencies. Thus distri-
butions are described by a frequency “scheme” also based on a familly of reference
distributions obtained from the rough stochastic term. To investigate singular prod-
ucts, a precise decomposition of the product is provided with Bony’s paraproduct
based on the Paley-Littlewood decomposition. The singularity of a product fg is en-
coded in a resonant term Π(f, g) while the roughest part is given by the paraproducts
Pfg and Pgf which are always well-defined. Different correctors and commutators
are then used to make sense of the equation almost surely and this yields a family
of stochastic singular processes one has to define, this is the renormalisation step.
While it was originaly a first order calculus on the torus, it was extended to a higher
order calculus on manifolds.

� In [35], Gubinelli, Imkeller and Perkowski developped the paracontrolled cal-
culus for singular SPDEs using Fourier theory.

� In [6], Bailleul and Bernicot devised a new approach based on the heat semi-
group to work on unbounded Riemannian manifolds.

� In [8], Bailleul, Bernicot and Frey sharpened their previous construction and
provided a pair of intertwinned space-time paraproducts.

� In [7], Bailleul and Bernicot extended paracontrolled calculus to a higher order
calculus using space-time paraproducts.

12



As the title suggests, this is the framework in which this thesis fits.

An interesting question is the extension of the study of SSPDEs to the manifold
framework, for example to construct QFT in curved spacetimes. While regularity
structures were used in [26] by Dahlqvist, Diehl and Driver to solve the PAM equa-
tion on a two-dimensional closed Riemannian manifold, it remains to see if it is
possible to adapt it to higher dimensions. The main results for singular stochastic
PDEs on manifolds are obtained within the framework of paracontrolled calculus.
The theory of high order paracontrolled calculus is now able to deal with the ana-
lytical formulation of singular SPDEs such as the generalised (PAM) equation

∂tu−∆u = f(u)ξ

in dimension 3 with ξ a space white noise or the generalised (KPZ) equation

∂tu− ∂2
xu = f(u)ζ + g(u)(∂xu)2

in dimension 1 with ζ a space-time white noise and where ∆ is the Laplace-Beltrami
operator associated on a Riemannian manifold; this is the content of Chapter 2.
One can also deal with the analytical formulation of the quasi-linear version of these
PDEs with the method described in Chapter 3. This theory is also well suited to
deal with Sobolev spaces and the study of random singular operators. The Chap-
ters 4 and 5 respectively study the Anderson Hamiltonian and the random magnetic
Laplacian with white noise magnetic field. The last two Chapters relies on the An-
derson Hamiltonian to investigate associated problems. In Chapter 6, Strichartz
inequalities are provided for the Schrödinger group and the wave semigroup asso-
ciated to the Anderson Hamiltonian which allow a low-regularity solutions theory
for the associated PDEs. Chapter 7 presents the polymer measure with white noise
potential on a two-dimensional manifold and the infinitesimal of the Brox diffusion,
a continuous analogue of Sinai’s random walk in random environment. A detailled
description of each Chapters is given at the end of this introduction.

The algebraic structure in which a rough paths lies is clear and given by the
Hopf algebra of words, later extended with branched rough path and the larger
Hopf algebra of rooted trees. However the algebraic mechanism behind singular
SPDEs depends on the equation where a large number of terms appears, more and
more as the equation gets more singular. In regularity structures, this is also dealt
with using Hopf algebras of decorated rooted trees tailor-made for each equation. In
paracontrolled calculus, such a mechanism is still to be understood and is current
investigation.

High order paracontrolled calculus
The tools of paracontrolled calculus can be briefly described as follows. Given any
distribution f ∈ D′(Td), one can consider its Paley-Littlewood decomposition

f =
∑
n≥0

∆nf

where each ∆nf is smooth and localised in frequencies in an annulus of radius
2n. This allows for example to define function spaces for negative exponent that
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generalise the classical notion of Hölder and Sobolev regularity with a measure of
growth at infinity of ∆nf . It can also be used to describe products as

f · g =
∑
n,m≥0

∆nf ·∆mg = Pfg + Π(f, g) + Pgf

where the sum in Pfg is restricted to n < m − 1 and Π(f, g) is restricted to
|n − m| ≤ 1. The point is that the paraproduct Pfg is always well-defined while
the resonant term Π(f, g) encodes the potential singularity. Using this approach,
Gubinelli, Imkeller and Perkowski translated the idea of controlled paths into para-
controlled calculus by looking for solution of the form

u = Pu′X + u]

where X is a noise-dependent function and (u′, u]) as the new unknown; this is the
paracontrolled interpretation of “u locally looks like X”. In order to adapt this ap-
proach to the manifold setting, Bailleul and Bernicot considered the decomposition

f = lim
t→0

e−t∆f =

∫ 1

0

−(t∆)e−t∆
dt

t
+ e−∆f.

Using Gaussian upper bounds for the heat kernel and its derivatives, this defines
a continuous analogue of the Paley-Littlewood decomposition where t−

1
2 ' 2n and

yields Hölder and Sobolev spaces for scalar fields on manifolds. A refinement of this
decomposition allows to define the paraproduct and the resonant term such that

f · g = Pfg + Π(f, g) + Pgf

where P and Π verifie the same important properties as their Fourier analogue P
and Π. In fact, this is not only true for the Laplace-Beltrami operator but for any
nice enough elliptic operator L = −

∑
i V

2
i . This gives a paracontrolled calculus

tailor made for the study of PDEs involving this family of first order differential
operators (Vi)i. Indeed, one can introduce a new paraproduct P̃ intertwined with P
via the relation

D ◦ P̃ = P ◦D

for any differential operator D obtained from the Vi’s. It enjoys the same properties
as P and appear naturally in the weak formulation of PDEs involving D. There is a
wide range of choice in the construction of P, P̃ and Π which make the paracontrolled
calculus a flexible theory.

We now sketch the general method to solve singular PDEs using high order
paracontrolled calculus. Consider an equation of the form

Du = f(u, ζ)

with D a differential operator, ζ a rough stochastic term and f(u, ζ) an expression
involving a singular product. Using paracontrolled calculus, one decomposes the
right hand side assuming that u is of a particular form paracontrolled by a set of
reference functions T depending on ζ, this is the notion of paracontrolled system
û = (ua)a∈A . Using correctors and commutators, the aim is to get an expression of
the form

f(u, ζ) =
∑
σ∈Tf

Pvσσ

14



where Tf is a new set of noise-dependent functions dictated by the equation and vσ
are functionnals of the generalised unknown û. Using the paraproduct P̃ intertwined
by D to describe the mild formulation, the equation rewrites∑

τ∈T

P̃uττ =
∑
σ∈Tf

P̃vσ(D−1σ).

Semilinear parabolic PDEs as (gPAM) or (gKPZ) corresponds to D = ∂t −∆ and
this defines recursively the set T by identifying terms according to their Hölder
regularity. Then one can perform a fixed point to solve the equation almost surely
once the set T is actually constructed through a renormalisation procedure. This is
the method set in place in Chapter 2 with the following steps.

� Start from a paracontrolled system û = (ua)a∈A for a given unkown set T of
noise-dependent reference functions.

� Use the paracontrolled calculus toolbox to construct recursivly T and formu-
late the equation in a suitable space of functions paracontrolled by T .

� Solve the equation via a fixed point Theorem.

One of the simplest singular SPDE is the heat equation with multiplicative noise

∂tu−∆u = uζ

with ζ a stochastic source term that belongs almost surely to Cα−2 with α > 0.
Schauder estimates give the hint that the solution should be α-Hölder thus consider
u ∈ Cα described by a paracontrolled system û = (ua)a∈A with reference set T , see
Chapter 2 for the details. Roughly, u is described as

u =
∑
τ∈T

P̃uττ + u]

and all “paraderivatives” are also paracontrolled as

uτ1 =
∑
τ2∈T

P̃uτ1τ2
τ2 + u]τ1

up to an order depending on the regularity of τ1 ∈ T . Using the paracontrolled
toolkit, we get the decomposition of the product

uζ = Puζ + Pζu+ Π(u, ζ) =
∑
σ∈T ′

Pφσ(û)σ

with an explicit set T ′ depending on ζ and T and φσ explicit functionnals of the
unknown û. The equation then rewrites∑

τ∈T

P̃uττ =
∑
σ∈T ′

P̃φσ(û)(L
−1σ)

and this defines a unique set T of reference functions. Once each functions in T
is constructed through a renormalisation procedure, this shows that the space of
paracontrolled system is stable by the fixed point formulation. Using an adapted
norm for each remainders (u]a)a∈A , one gets a contraction for a small horizon time.
The rougher the noise is, the higher the order of the system needs to be. Remark that
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the algebraic mechanism that lead to the construction of T for general sub-critcal
equation is still under investigation in the framework of paracontrolled calculus.

This approach can also be used to study singular random operator. An interest-
ing example is the Anderson Hamiltonian

H = ∆ + ξ

with ξ a space white noise. It appears for example in the formulation of associated
heat, Schrödinger or wave equations. One is interested in its spectral properties
hence in the solutions (λ, u) to

∆u+ uξ = λu.

There are a lot of interesting questions like the regularity of solutions, localisation
of their support, asymptotics and more. In dimension d ≥ 2, the product uξ is
singular hence one needs to find a proper interpration for the operator. Following
the singular SPDEs philosophy, the idea is to construct a random domain through
a renormalisation procedure to get an unbounded operator in L2. This gives a
self-adjoint operator with discrete spectrum and we can study more precisely its
properties, this is the content of Chapter 4. In particular, we provide an almost sure
Weyl-type law. We also get Strichartz inequalities for the associated Schrödinger
and wave semigroups on two-dimensional manifolds using that similar result holds
for the Laplace-Beltrami operator with only an arbitrary small loss of regularity,
this is the content of Chapter 6.

The Anderson Hamiltonian can be interpreted as an eletric Laplacian with white
noise as eletric field. Following the introduction and study of the magnetic Laplacian
in the 1970’s independantly by Simon and Helffer, one can consider the magnetic
Laplacian with white noise as magnetic field. The magnetic Laplacien on the two-
dimensional torus is given by

(i∂1 + A1)2 + (i∂2 + A2)2

with A = (A1, A2) the potential vector field with the induced magnetic field being

B = ∇× A = ∂2A1 − ∂1A2.

As for the Anderson operator, paracontrolled calculus allows the study of the random
magnetic Laplacian with space white noise as magnetic field. The operator is also
self-adjoint with pure point spectrum with an almost sure Weyl-type law. The
method illustrates the flexibility of the approach which allows to deal with a general
class of operators of the form

∆ + a1 · ∇+ a2

with a1, a2 random fields. The case a2 = 0 corresponds for example to the infinites-
imal generator of diffusion given by the SDE

dXt = a1(Xt)dt+
√

2dBt

with B a Brownian motion.

16



Outline of the thesis
We construct the high order paracontrolled calculus on manifolds based on the heat
semigroup. It allows to solve different elliptic, parabolic and hyperbolic PDEs on
manifolds involving renormalisation procedures of singular stochastic terms. Chap-
ter 1 deals with the construction of the paracontrolled calculus using the heat semi-
group. In Chapters 2 to 6, different examples of parabolic, elliptic and dispersive
SSPDEs are studied. Finally, Chapter 7 presents two different random models using
singular stochastic operators defined through the paracontrolled calculus.

Chapter 1 : Construction of the paracontrolled calculus.
The tools of high order paracontrolled calculus on a compact manifold based on

the heat semigroup are constructed in the space setting with the two paraproducts
P and P̃. The first one allows to decompose the product operation as

ab = Pab+ Pba+ Π(a, b)

where Pab and Pba are well defined for any distributions while the resonant term
Π(a, b) captures the possible singularity of the product. The second one is inter-
twined with P via a relation of the type

D ◦ P̃ = P ◦D

where D is any differential operator of interest and allows to express weak formu-
lation of PDEs involving a product described by P. The paraproduct P is built
from the heat semigroup associated to a nice enough family of first order differential
operators (Vi)1≤i≤d and D can be any operator built from this family. In the case of
spacetime paracontrolled calculus, one can also consider the time derivative ∂t. In
our applications, we take D = −∆ or D = ∂t −∆. In order to get around singular
products, one needs continuity estimates on correctors of the type

C(a1, a2, b) := Π
(
P̃a1a2, b

)
− a1Π(a2, b)

together with its refined and iterated versions. Other correctors and commutators
are also needed to investigate well-defined terms that are not in an adapted form to
solve the problem under consideration. For example, one might need the commutator

D(a1, a2, b) := Π
(
P̃a1a2, b

)
− Pa1Π(a2, b)

or the merging operator
R(a, b, c) := PaP̃bc− Pabc.

Twisted version of these operators can be considered for example to deal with

(∂u)2 = 2P∂u∂u+ Π(∂u, ∂u).

One of the major advantages of paracontrolled calculus based on the heat semigroup
is that the notion of paraproducts and resonant terms is very flexible. In particular,
operators such as

(a, b) 7→ PDaD
′b,Π(Da,D′b)

are easily dealt with for differential operators D,D′ built from the same Vi’s one
uses to construct the paracontrolled tools.
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Chapter 2 : Semilinear parabolic singular stochastic PDEs.
The high order paracontrolled calculus can be used to solve a large class of semi-

linear parabolic singular stochastic PDEs, including the generalised (PAM) equation
in dimension 3

∂tu−∆u = f(u)ξ

with ξ a space white noise and the generalised (KPZ) equation in dimension 1 + 1

∂tu− ∂2
xu = f(u)ζ + g(u)(∂xu)2

with ζ a spacetime white noise. The method relies on the notion of paracontrolled
systems (ua)a∈A given a set of noise-dependent reference functions T satisfying a
triangular system

ua =
∑
|aτ|≤nα

P̃uaττ + u]a

where | · | corresponds to the Hölder regularity of the different functions. The set
T should be constructed through a renormalisation procedure and the PDEs are
solved almost surely via a fixed point on the random space of remainders (u]a)a∈A .
We only present the fixed point part of the method.

Chapter 3 : Quasilinear parabolic singular stochastic PDEs.

� I. Bailleul and A. Mouzard, Paracontrolled calculus for quasilinear singular
PDEs, arXiv:1912.09073, (2019).

The high order paracontrolled calculus setting is developped further to deal with
the analytic part of the study of quasilinear singular PDEs. Continuity results are
proved for a number of operators for that purpose and we use infinite dimensional
paracontrolled systems based on a finite algebraic strucutre. We consider any quasi-
linear PDE

∂tu− d(u)∆u = f(u, ξ)

that one can solve using high order paracontrolled calculus, including (gPAM) and
(gKPZ). The equation is reformulated as

∂tu+ Lu = f(u, ξ) + ε(u, ·)Lu+ ai(u, ·)Viu

with L an elliptic second order differential operator in Hörmander form in order
to use an adapted paracontrolled calculus depending on the initial condition. In-
troducting new correctors and commutators associated to the product involving L
and the Vi’s, we are able to formulate the equation as a fixed point on a space of
paracontrolled systems. Due to the second order term on the right hand side, one
can not find a finite set of reference functions T and has to consider integer “decora-
tion” on the finite set given by the semilinear equation. Going from finite to infinite
dimensionnal algebraic space also appears in the other approaches developped for
these equations; this seems to be the quasilinear effect.

Chapter 4 : The Anderson Hamiltonian.

� A. Mouzard, Weyl law for the Anderson Hamiltonian on a two-dimensional
manifold, arXiv:2009.03549, (2020).
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This Chapter deals with the construction of the Anderson Hamiltonian

H = −∆ + ξ

on a two-dimensional manifold with ξ a space white noise using high order paracon-
trolled calculus. Due to the singularity of the operator, it involves a renormalisation
procedure and it yields a self-adjoint operator with pure point spectrum

(
λ(Ξ)

)
n≥1

.
The Hölder regularity of the eigenfunctions is computed and we provide lower and
upper bounds on its eigenvalues of the form

λn −m2
δ(Ξ) ≤ λn(Ξ) ≤ (1 + δ)λn +m1

δ(Ξ)

for any δ ∈ (0, 1), explicit constant m1
δ ,m

2
δ depending on the enhanced noise Ξ and

(λn)n≥1 the eigenvalues of the Laplacian. In particular, it implies an almost sure
Weyl-type law for H for the form

lim
λ→∞

λ−1
∣∣{λn(Ξ) ≤ λ}

∣∣ =
Vol(M)

4π
.

Chapter 5 : The random magnetic Laplacian.

� L. Morin and A. Mouzard, 2D random magnetic Laplacian with white noise
magnetic field, arXiv:2101.05020, (2021).

We construct the random magnetic Laplacian

H = (i∂1 + A1)2 + (i∂2 + A2)2

on the two-dimensional torus with A = (A1, A2) ∈ Cα−1 × Cα−1 a rough random
magnetic potential where α < 1 using the paracontrolled calculus. The potential is
taken such that it yields as magnetic field the space white noise with

A = ∇⊥ϕ where ϕ = ∆−1ξ.

After a renormalisation procedure, it is a self-adjoint operator with pure point spec-
trum. We also provide lower and upper bounds on its eigenvalues with an almost
sure Weyl-type law. In particular, this is an example of operator of the form

−∆ + a1 · ∇+ a2

with random scalar fields a1, a2 : T2 → R rougher than the classical theory can deal
with.

Chapter 6 : Dispersives singular SPDEs.

� A. Mouzard and I. Zachhuber, Strichartz inequalities with white noise potential
on compact surfaces, arXiv:2104.07940, (2021).

We solve nonlinear dispersive PDEs with a multiplicative white noise using the
construction of the Anderson Hamiltonian which allows for example the interpreta-
tion of the Schrödinger equation

i∂tu+ ∆u = uξ + |u|2u
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as
i∂tu = Hu+ |u|2u.

The different properties of H allows to get strong and energy solutions to this
equation as well as to the wave equation on a compact surface without boundary
or with Dirichlet boundary conditions. In the deterministic case, the Strichartz
inequalities of the form

‖eit∆u‖Lp(I,Lq) . ‖u‖Hα

allow to get a low-regularity solution theory for these equations. We prove such
results for the Anderson Hamiltonian, that is estimates of the form

‖eitHu‖Lp(I,Lq) . ‖u‖Hα

which allows to get local well-posedness in low regularity Sobolev spaces for the
Schrödinger and wave equations with cubic nonlinearity and multiplicative noise on
compact surfaces with or without boundary. In particular, this yields bounds on the
Lq-norm of the eigenvalues of the Anderson Hamiltonian and its spectral projectors.

Chapter 7 : Diffusions in disordered media.

� A. Mouzard, The continuum polymer measure with white noise potential on
compact surfaces, in preparation.

� A. Mouzard, The Brox diffusion on a circle and its generator, in preparation.

We present two models of diffusions in disordered media using singular stochastic
operators. The first one is the polymer measure with white noise potential ξ formally
described by

V(dX) =
1

ZT
e−

1
2

∫ T
0 ξ(Xs)dsW(dX)

where W is the Wiener measure on C([0, T ],M). Since the white noise is only a
distribution, the term ξ(Xs) does not make sense and this Gibbsian formalism can
not be used. This can be understood in view of the fact that the polymer measure
will actually be singular with the Wiener measure hence can not have a density with
respect to it. Our construction will be based on the so-called intrinsic Feynman-Kac
semigroup associated to the Anderson Hamiltonian and is related to the diffusion

dXt = ∇(log Ψ)dt+ dBt

with Ψ the Anderson gound state. The second model is the Brox diffusion formally
given by SDE

dXt = ξ(Xt)dt+ dBt

where the drift is singular and given by a space white noise ξ in one dimension. Its
infinitesimal generator is formally given by

−1

2
∆ + ξ · ∇

which can be constructed using the heat semigroup paracontrolled calculus. In
particular, this gives a new approach to the study of the Brox diffusion as well as its
construction on the circle where one can not use the self-similarity property. Since
the study of these two models is based on ongoing works, we only present the general
ideas.
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Chapter 1

Paracontrolled calculus

The term “paraproduct” was firs used by Coifman and Meyer in [25] untitled “Au
delà des opérateurs pseudo-différentiels”. This comes from the Greek word “para”
which translates to “au delà” or “beyond”. This was also used by Bony in [14] in order
to adapt pseudo-differentials operators to deal with nonlinear PDEs. Since then, a
paraproduct has been used in different contexts for a bilinear object going beyond
the usual product depending on the goal. In our framework, the paraproduct is a
tool to decompose a product between two distributions in order to understand where
the singularity comes from. While a product between an α-Hölder distribution f
and a β-Hölder one f is well defined if α + β > 0, the paraproducts Pfg and Pgf
always make sense. Therefore, the potential singularity of a product is encoded in
the remainder

Π(f, g) := fg − Pfg − Pgf.

Moreover, the paraproduct has the particularity that Pfg behaves locally like g if f
is actually a function. This is the important property that led Imkeller, Perkowski
and Gubinelli to the introduction of paracontrolled calculus as an equivalent of
Gubinelli’s controlled path in an infinite dimensional setting. This allows the un-
derstanding of the infinite quantity of the singular product in play for a class of
stochastic partial differential equations and thus to go beyond it using this para-
product :

“ To infinity and beyond ”.

On the torus, Fourier analysis yields an approximation of any distributions in
D(Td). One can then measure its regularity using its Paley-Littlewood decomposi-
tion which can also be used to construct Bony’s paraproduct. On a manifoldM , the
heat semigroup P := (etL)t>0 associated to a nice enough second order differential
operator L can be used to regularise distributions in D′(M). One can then consider
the Calderón décomposition as an analogue of the Paley-Littlewood decomposition
with a continuous scaling parameter and Qt := −t∂tPt acting like a localizer on
“frequency” of order t−

1
2 . After giving the geometric framework, we introduce the

standard families of operators we shall use to define the Besov spaces on M . We
then construct the paraproducts P and P̃ with the tools of high order paracontrolled
calculus to study elliptic PDEs. Finally, we discuss different generalisations includ-
ing the space-time framework to study parabolic PDEs, the unbouded spatial setting
and a time weight to deal with rougher initial conditions.
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In this Chapter, we only present the construction of the paracontrolled calculus
based on the heat semigroup for space distributions in order to simplify the technical
details. We give a brief outline of the spacetime calculus in Section 1.6 and refer
for the details to the works [8, 7] by Bailleul, Bernicot and Frey where it was first
introduced. The construction in the spatial setting is from the work [50].

1.1 – Geometric framework
Let (M,d, µ) be a complete volume doubling measured Riemannian manifold. We
assume M compact to avoid the use of spatial weights; everything in this section
should work in the unbounded setting of [8]. All the kernels we consider are with
respect to this measure µ. Let (Vi)1≤i≤d be a family of smooth vector fields identified
with first order differential operators on M . Consider the associated second order
operator L given by

L = −
d∑
i=1

V 2
i .

We assume that L is elliptic. In particular, it implies that the vector fields (Vi)1≤i≤d
span smoothly at every point of M the tangent space and the existence of smooth
functions (γi)1≤i≤d such that for any f ∈ C1(M,R) and x ∈M , we have

∇f(x) =
d∑
i=1

γi(x)Vi(f)(x)Vi(x).

It also implies that L is sectorial in L2 with kernel the constant functions, it has a
bounded H∞-calculus on L2 and −L generates a holomorphic semigroup (e−tL)t>0

on L2, see [30]. Given any collection I = (i1, . . . , in) ∈ {1, . . . , d}n, we denote by
VI := Vin . . . Vi1 the differential operator of order |I| := n. Under the smoothness
and ellipticity conditions, the semigroup has regularity estimate at any order, that
is (t

|I|
2 VI)e

−tL and e−tL(t
|I|
2 VI) have kernels Kt(x, y) for any t > 0 and x, y ∈M that

satifies the Gaussian estimates∣∣Kt(x, y)
∣∣ . µ

(
B(x,

√
t)
)−1

e−c
d(x,y)2

t

and for x′ ∈M∣∣Kt(x, y)−Kt(x
′, y)
∣∣ . d(x, x′)√

t
µ
(
B(x,

√
t)
)−1

e−c
d(x,y)2

t

for d(x, x′) ≤
√
t and a constant c > 0. The range of application contains the case of

a bounded domain with its Laplacian associated with periodic or Dirichlet boundary
conditions if the boundary is sufficiently regular, see again [30]. In particular, the
Laplacien can indeed be written in the Hörmander form, see Strook’s book [57] for
example.

The operator L : H2 ⊂ L2 → L2 is not invertible since its kernel contains
constant function however it is invertible up to a smooth error term. Indeed, setting

L−1 :=

∫ 1

0

e−tLdt,

we have L ◦ L−1 = Id up to the regularising operator e−L. In the litterature, L−1 is
often refered as a parametrix.
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1.2 – Approximation theory
All computations below make sense for a choice of large enough integers b and ` that
are fixed in any application, we also assume b even. Given x, y ∈ M and t ∈ (0, 1],
we define the kernel

Gt(x, y) :=
1

µ
(
B(x,

√
t)
) (1 + c

d(x, y)2

t

)−`
with c > 0 a constant. We do not emphasize the dependance on the positive constant
c and abuse notation by writing the same letter Gt for two functions corresponding
to two different values of the constant. We have for any s, t ∈ (0, 1]∫

M

Gt(x, y)Gs(y, z)dy . Gt+s(x, z).

A choice of constant ` large enough ensures that

sup
t∈(0,1]

sup
x∈M

∫
M

Gt(x, y)dy <∞.

This implies that any linear operator with a kernel pointwisely bounded by Gt is
bounded in Lp(M) for every p ∈ [1,∞]. The family (Gt)t∈(0,1] is our reference kernel
for Gaussian operator due to the singularity as t goes to 0; this is the letter ‘G’ in
the following definition.

Definition. We define G as the set of families (Pt)t∈(0,1] of linear operator on M with
kernels pointwisely bounded by

|KPt(x, y)| . Gt(x, y)

given any x, y ∈M .

We consider two such families of operators (Q
(b)
t )t∈(0,1] and (P

(b)
t )t∈(0,1] defined as

Q
(b)
t :=

(tL)be−tL

(b− 1)!
and − t∂tP (b)

t = Q
(b)
t

with P (b)
0 = Id. In particular, there exist a polynomial pb of degree (b− 1) such that

P
(b)
t = pb (tL) e−tL and pb(0) = 1. The family (Pt)t∈(0,1] regularises distributions

while the family (Qt)t∈(0,1] is a kind of localizer on ‘frequency’ of order t−
1
2 as one

can see with the parabolic scaling of the Gaussian kernel. In the flat framework of
the torus, this can be explicitly written using Fourier theory. These tools also enjoy
cancellation properties as Fourier projectors however it is not as precise since the
operators involved here are not locally supported. For example, the following simple
computation shows that the composition

Q
(b)
t ◦Q(b)

s '
(

ts

(t+ s)2

)b
Q

(2b)
t+s

is small for s � t or t � s but not equal to 0. The importance of the parameter b
appears here as a ‘degree’ of cancellation. One can also see that in the fact that for
any polynomial function p of degree less than 2b in the flat case, we have P (b)

t p = p

and Q
(b)
t p = 0 for any t ∈ (0, 1]. We now define the standard family of Gaussian

operators with cancellation that we shall use in this work.
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Definition. Let a ∈ J0, 2bK. We define the standard collection of operators with
cancellation of order a as the set StGCa of families(

(t
|I|
2 VI)(tL)

j
2P

(c)
t

)
t∈(0,1]

with I, j such that a = |I|+ j and c ∈ J1, bK. These operators are uniformly bounded
in Lp(M) for every p ∈ [1,∞] as functions of the parameter t ∈ (0, 1]. In particular,
a standard family of operator Q ∈ StGCa can be seen as a bounded map t 7→ Qt from
(0, 1] to the space of bounded linear operator on Lp(M). We also set

StGC[0,2b] :=
⋃

0≤a≤2b

StGCa.

Since the first order differential operators Vi do not a priori commute with each
other, they do not commute with L and we introduce the notation(

VIφ(L)
)•

:= φ(L)VI

for any function φ such that φ(L) is defined in order to state the following cancella-
tion property. This is not related to any notion of duality in general. In particular,
L is not supposed self-adjoint here.

Proposition 1.1. Given a, a′ ∈ J0, 2bK, let Q1 ∈ StGCa and Q2 ∈ StGCa
′
. Then for

any s, t ∈ (0, 1], the composition Q1
s ◦Q2•

t has a kernel pointwisely bounded by

∣∣KQ1
s◦Q2•

t
(x, y)

∣∣ .
(s

t

)a
2
1s<t +

(
t

s

)a′
2

1s≥t

Gt+s(x, y)

.

(
ts

(t+ s)2

)a
2

Gt+s(x, y)

with a = min(a, a′).

Proof : Let t ∈ (0, 1]. We have

Q1
t = t

a
2VIL

j
2P

(c)
t and Q2

t = t
a′
2 VI′L

j′
2 P

(c′)
t

with c, c′ ∈ J1, bK, a = |I|+ j and a′ = |I ′|+ j′. For any t, s ∈ (0, 1], the composition
is given by

Q1
s ◦Q2•

t = s
a
2 t

a′
2 VIL

j+j′
2 P (c)

s P
(c′)
t VI′

=
s
a
2 t

a′
2

(t+ s)
a+a′

2

(t+ s)
a+a′

2 VIL
j+j′

2 P (c)
s P

(c′)
t VI′

and this yields

KQ1
s◦Q2•

t
(x, y) .

s
a
2 t

a′
2

(t+ s)
a+a′

2

Gt+s(x, y)

.
{(s

t

)a
2
1s<t +

(
t

s

)a′
2

1s≥t

}
Gt+s(x, y).

The last estimate follows from a direct computation.
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�

Operators with cancellation but not in this standard form also appear in the
description of solutions to PDEs. This is the role of the set GCa of the following
definition.

Definition. Let a ∈ J0, 2bK. We define the subset GCa ⊂ G as families (Qt)t∈(0,1] of
operators with the following cancellation property. For any s, t ∈ (0, 1] and standard
family S ∈ StGCa

′
with a′ ∈ Ja, 2bK, the operator Qs ◦ S•t has a kernel pointwisely

bounded by ∣∣KQs◦S•t (x, y)
∣∣ . ( ts

(t+ s)2

)a
2

Gt+s(x, y).

The set StGC can be used to define Besov spaces on a manifold. For any f ∈
Lp(M) with p ∈ [1,∞[ or f ∈ C(M), we have the following reproducing Calderón
formula

f = lim
t→0

P
(b)
t f =

∫ 1

0

Q
(b)
t f

dt

t
+ P

(b)
1 f.

We interpret it as an analogue to the Paley-Littlewood decomposition of f on a
manifold but with a continuous parameter. Indeed, the measure dt

t
gives unit mass

to the dyadic intervals [2−(i+1), 2−i] with the operator Q(b)
t as a kind of multiplier

roughly localized at frequencies of size t−
1
2 . This motivates the following definition.

Definition. Given any p, q ∈ [1,∞] and α ∈ (−2b, 2b), we define the Besov space
Bαp,q(M) as the set of distribution f ∈ D′(M) such that

‖f‖Bαp,q :=
∥∥e−Lf∥∥

Lp(M)
+ sup

Q∈StGCk

|α|<k≤2b

∥∥t−α2 ‖Qtf‖Lpx
∥∥
Lq(t−1dt)

<∞.

Remark : As far as regularity is concerned, a limitation appears with this defini-
tion of Bαp,q since we can only work with regularity exponent α ∈ (−2b, 2b). This
restriction is only technical and b can be taken as large as needed. It can be seen for
example in the flat case with the fact that Q(b)

t p = 0 for any t > 0 and polynomial
function p of order less than 2b.

The Hölder spaces Cα := Bα∞,∞ and Sobolev spaces Hα := Bα2,2 are of particular
interest with

‖f‖Cα := ‖e−Lf‖L∞ + sup
Q∈StGCk

|α|<k≤2b

sup
t∈(0,1]

t−
α
2 ‖Qtf‖L∞x

and

‖f‖Hα := ‖e−Lf‖L2 + sup
Q∈StGCk

|α|<k≤2b

(∫ 1

0

t−α‖Qtf‖2
L2
x

dt

t

) 1
2

.

This is indeed a generalisation of the classical Hölder spaces as stated in the following
Proposition. We shall denote Cα the classical spaces of Hölder functions with the
norm

‖f‖Cα := ‖f‖L∞ + sup
x 6=y

|f(x)− f(y)|
d(x, y)α

for 0 < α < 1. Note that for any integer regularity exponent, Cα 6= Cα since C1

contains the space of Lipschitz functions. The proof of the following Proposition is
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left to the reader, it works exactly as Proposition 5 in [8]. This mainly relies on the
fact that Qt is localised on spatial scale |x− y| '

√
t if it encodes cancellations.

Proposition. For any α ∈ (0, 1), we have Cα = Cα and the norms ‖ · ‖Cα and ‖ · ‖Cα
are equivalent.

We have an analogue result for Sobolev spaces however one has to be careful in
the case of a manifold with boundary. The semigroup is obtained with Dirichlet
conditions hence the associated Sobolev spaces are the analogue of the classical Hα

0

spaces. We keep the notation Hα but the reader should keep that in mind.
Given a distribution f ∈ Cα and Q ∈ StGCk, we have by definition a bound for

‖Qtf‖∞ only for |α| < k. If f is a distribution and not a function, the quantity
diverges and we still have the estimate for all k; this will be important to keep an
accurate track of the regularity. The same holds for negative Sobolev spaces.

Proposition 1.2. Let −2b < α < 0 and P ∈ StGCk with k ∈ J0, bK. For f ∈ Cα, we
have

sup
t∈(0,1]

t−
α
2 ‖Ptf‖L∞ .

1

k − α
‖f‖Cα .

For f ∈ Hα, we have

‖t−
α
2 ‖Ptf‖L2

x
‖L2(t−1dt) .

1

k − α
‖f‖Hα .

Proof : Since P ∈ StGCk with k ∈ J0, 2bK, there exist I = (i1, . . . , in), j ∈ N and
c ∈ J1, bK such that k = |I|+ j and

Pt = (t
|I|
2 VI)(tL)

j
2P

(c)
t .

If |α| < k, the result holds by definition of Cα. If |α| ≥ k, we have

Ptf = (t
|I|
2 VI)(tL)

j
2

(∫ 1

t

Q(c)
s f

ds

s
+ P

(c)
1 f

)
=

∫ 1

t

(
t

s

) k
2

(s
|I|
2 VI)(sL)

j+c
2 P (1)

s f
ds

s
+Rtf

=

∫ 1

t

(
t

s

) k
2

Qsf
ds

s
+Rtf

with Qs := (s
|I|
2 VI)(sL)

j+c
2 P

(1)
s ∈ StGCk+c and Rt := (t

|I|
2 VI)(tL)

j
2P

(c)
1 . The term

Rtf is bounded because of the smoothing operator P (c)
1 . Since c ≥ 1, Q belongs at

least to StGCk+1 hence if |α| < k + 1 we have

t−
α
2 ‖Ptf‖L∞ ≤ t−

α
2

∫ 1

t

(
t

s

) k
2

‖Qsf‖L∞
ds

s

≤ ‖f‖Cα
∫ 1

t

(
t

s

) k−α
2 ds

s

≤ ‖f‖Cα
2

k − α
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and this yields the result using that α < 0 ≤ k hence k − α > 0. If |α| ≥ k + 1,
using the same integral representation for Q and an induction completes the proof
of the L∞-estimate. For the L2-estimate, we interpolate between L1 and L∞ as in
Appendix A.1 to get

‖t−
α
2 ‖Ptf‖L2‖L2(t−1dt) ≤

∥∥∥∥∥t−α2
∫ 1

t

(
t

s

) k
2

‖Qsf‖L2

ds

s

∥∥∥∥∥
L2(t−1dt)

≤ 2

k − α
‖f‖Hα .

�

One can see that the bound diverges as α goes to 0 if the operator does not encode
any cancellation, that is k = 0. In the case α = 0, we have ‖Ptf‖L∞ . ‖f‖L∞ hence
the L∞-bound holds. However the L2-bound is not satisfied since ‖Ptf‖L2 . ‖f‖L2

only implies ∫ 1

0

‖Ptf‖2
L2

dt

t
≤ ‖f‖2

L2

∫ 1

0

dt

t
=∞.

This will explain an important difference for paraproducts on negative Hölder and
Sobolev spaces as one can see with Propositions 1.3 and 1.4.

1.3 – Intertwined paraproducts
We use the standard family of Gaussian operators to study the product of distribu-
tions as one can do using the Paley-Littlewood decomposition in the flat case; this
leads to the definition of the paraproduct P and the resonant term Π to describe
products. Then we introduce the paraproduct P̃ intertwined with P to describe
solutions of PDEs.

1.3.1 – Paraproduct and resonant term
One can define the product of a distributions f ∈ D′(M) with a smooth function
g ∈ D(M). If however the distribution f belongs to a Hölder space Cα with α < 0,
one might hope to do better. It is indeed the case as we can see with the next
Theorem which is nothing more than Young’s integration condition.

Theorem. The multiplication (f, g) 7→ fg extends as a unique bilinear operator from
Cα × Cβ to Cα∧β if and only if α + β > 0.

We are however interested in the case α + β < 0 when dealing with singular
stochastic PDEs, as we are interested to stochastic ODEs where Young’s condition
is not verified. Following [35], Bailleul, Bernicot and Frey in [6, 8, 7] have defined
two bilinear operators Pfg and Π(f, g) such that we have the formal decomposition
of the product of two distributions as

fg = Pfg + Π(f, g) + Pgf

where the paraproducts Pfg and Pgf are well-defined for any distibutions f, g ∈
D′(M). Of course, this means that Π(f, g) does have a meaning for f ∈ Cα and
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g ∈ Cβ if and only if α+β > 0; this is the resonant term. We want this decomposition
to keep an accurate track of the regularity of each terms. More precisely, Pfg and
Π(f, g) should belong to Cα+β if α < 0 while Pgf to the less regular space Cα as it
is the case for the torus. We construct in this work such paraproduct and resonant
term for space distributions on our manifold M , we mainly follow [8] in the simpler
spatial setting.

Let f, g ∈ D′(M). Formally, we have

fg = lim
t→0

P
(b)
t

(
P

(b)
t f · P (b)

t g
)

=

∫ 1

0

{
Q

(b)
t

(
P

(b)
t f · P (b)

t g
)

+ P
(b)
t

(
Q

(b)
t f · P

(b)
t g
)

+ P
(b)
t

(
P

(b)
t f ·Q(b)

t g
)} dt

t

+ P
(b)
1

(
P

(b)
1 f · P (b)

1 g
)
.

The last term being smooth, it does not bother us. Remark that the choice of the
constant “1” is arbitrary and it might be useful to change it, as one can see with the
construction of the Anderson Hamiltonian. The family P (b) does not encode any
cancellation while Q(b) encodes cancellation of order 2b so each terms in the integral
have one operator with a lot of cancellations and two with none. Since we do not
have nice estimates for these terms, we want to transfer some of the cancellation
from Q(b) to the P (b) in each term. To do so, we use the Leibnitz rule

Vi(fg) = Vi(f)g + fVi(g).

For example, we have∫ 1

0

P
(b)
t

(
(tV 2

i )Q
(b−1)
t f · P (b)

t g
) dt

t
=

∫ 1

0

P
(b)
t (
√
tVi)

(
(
√
tVi)Q

(b−1)
t f · P (b)

t g
) dt

t

−
∫ 1

0

P
(b)
t

(
(
√
tVi)Q

(b−1)
t f · (

√
tVi)P

(b)
t g
) dt

t

so if we denote by (c1, c2, c3) the cancellation of the three operators in the integral,
we have

(0, 2b, 0) = (1, 2b− 1, 0) + (0, 2b− 1, 1).

This shows that we will not be able to have cancellation for all three operators at
the same time but at least two. This is where the notation Q• comes into play and
multiple uses of this trick allows to decompose the product as

fg =
∑
a∈Ab

∑
Q∈StGCa

bQ

∫ 1

0

Q1•
t

(
Q2
tf ·Q3

tg
) dt

t

where Q = (Q1, Q2, Q3), StGCa = StGCa1 × StGCa2 × StGCa3 ,

Ab =
{

(a1, a2, a3) ∈ N3 ; a1 + a2 + a3 = 2b and a1, a2 or a3 = b
}

and bQ ∈ R is a real coefficient associated to Q. In particular, only one of the ai in
a ∈ Ab can be less than b

2
and this gives us three terms Pfg,Pgf and Π(f, g) such

that
fg = Pfg + Π(f, g) + Pgf + P

(b)
1

(
P

(b)
1 f · P (b)

1 g
)
.
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Definition. Given two distributions f, g ∈ D′(M), we define the paraproduct and the
resonant term as

Pfg :=
∑

a∈Ab;a2<
b
2

∑
Q∈StGCa

bQ

∫ 1

0

Q1•
t

(
Q2
tf ·Q3

tg
) dt

t
.

and

Π(f, g) :=
∑

a∈Ab;a2,a3≥ b2

∑
Q∈StGCa

bQ

∫ 1

0

Q1•
t

(
Q2
tf ·Q3

tg
) dt

t
.

In particular, Pfg is a linear combination of∫ 1

0

Q1•
t

(
Ptf ·Q2

tg
) dt

t

and Π(f, g) of ∫ 1

0

P •t
(
Q1
tf ·Q2

tg
) dt

t

with Q1, Q2 ∈ StGC
b
2 and P ∈ StGC[0,b].

These operators enjoy the same continuity estimates as their Fourier counterparts
from which one can recover Young’s condition. We give the proof here as it is a good
way to get used to the approximation theory.

Proposition 1.3. Let α, β ∈ (−2b, 2b) be regularity exponents.

� If α ≥ 0, then (f, g) 7→ Pfg is continuous from Cα × Cβ to Cβ.

� If α < 0, then (f, g) 7→ Pfg is continuous from Cα × Cβ to Cα+β.

� If α + β > 0, then (f, g) 7→ Π(f, g) is continuous from Cα × Cβ to Cα+β.

Proof : Let us first consider the case α < 0 and let Q ∈ StGCr with r > |α + β|.
Recall that Pfg is a linear combination of terms of the form∫ 1

0

Q1•
t

(
Ptf ·Q2

tg
) dt

t

with Q1, Q2 ∈ StGC
b
2 and P ∈ StGC[0,b]. Since α < 0, Proposition 1.2 gives∣∣∣∣∫ 1

0

QsQ
1•
t

(
Ptf ·Q2

tg
) dt

t

∣∣∣∣ . ∫ 1

0

(
ts

(t+ s)2

) r
2

‖f‖Cα‖g‖Cβ t
α+β

2
dt

t

. s
α+β

2 ‖f‖Cα‖g‖Cβ

for any s ∈ (0, 1) hence Pfg ∈ Cα+β.
For α ≥ 0, we consider Q ∈ StGCr with r > |β|. In this case, we have |Ptf | ≤

‖f‖Cα for all t ∈ (0, 1) so∣∣∣∣∫ 1

0

QsQ
1•
t

(
Ptf ·Q2

tg
) dt

t

∣∣∣∣ . s
β
2 ‖f‖Cα‖g‖Cβ

hence Pfg ∈ Cβ.
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For the resonant term, let Q ∈ StGCr with r > |α + β|. We have∣∣∣∣∫ 1

0

QsP
•
t

(
Q1
tf ·Q2

tg
) dt

t

∣∣∣∣ . ‖f‖Cα‖g‖Cβ (∫ s

0

t
α+β

2
dt

t
+

∫ 1

s

(s
t

) r
2
t
α+β

2
dt

t

)
. s

α+β
2 ‖f‖Cα‖f‖Cβ

using that α + β > 0 hence Π(f, g) ∈ Cα+β.

�

We also have estimates for the Sobolev spaces whose proofs are given in Propo-
sition A.5 from Appendix A.2.

Proposition 1.4. Let α, β ∈ (−2b, 2b) be regularity exponents.

� If α > 0, then (f, g) 7→ Pfg is continuous from Cα × Hβ to Hβ and from
Hα × Cβ to Hβ.

� If α < 0, then (f, g) 7→ Pfg is continuous from Cα × Hβ to Hα+β and from
Hα × Cβ to Hα+β.

� If α + β > 0, then (f, g) 7→ Π(f, g) is continuous from Hα × Cβ to Hα+β.

In particular, this implies that (f, g) 7→ Pfg is continuous from L2×Cβ to Hβ−δ

for all δ > 0. For Sobolev spaces, there is a small loss of regularity and one does
not recover the space Hβ while this does not happen for Hölder spaces. This comes
from the remark following Proposition 1.2.

As in the works [38, 59] of Gubinelli, Ugurcan and Zachhuber, one last property
of P and Π in terms of Sobolev spaces is that P is almost the adjoint of Π when
L is self-adjoint in the sense that the difference is more regular. A careful track
of the previous computation show that for all a ∈ {(0, b, b), (b, 0, b), (b, b, 0)} and
Q ∈ StGCa, we have bQ = 0 except for

Q = (P
(b)
t , Q

(b/2)
t , Q

(b/2)
t ), (Q

(b/2)
t , P

(b)
t , Q

(b/2)
t ), (Q

(b/2)
t , Q

(b/2)
t , P

(b)
t )

where bQ = 1. Define the corrector for almost duality as

A(a, b, c) :=
〈
a,Π(b, c)

〉
−
〈

Pab, c
〉
.

Proposition 1.5. Assume L self-adjoint. Let α, β, γ ∈ (−2b, 2b) such that β + γ < 1
and α+ β + γ ≥ 0. If α < 1, then (a, b, c) 7→ A(a, b, c) extends in a unique trilinear
operator from Hα × Cβ ×Hγ to R.

Proof : A(a, b, c) is a linear combination of∫ 1

0

{〈
a, P 1•

t

(
Q1
t b ·Q2

t c
)〉
−
〈
Q3•
t

(
P 2
t a ·Q4

t b
)
, c
〉}dt

t

with P 1, P 2 ∈ StGC[0,b] and Q1, Q2, Q3, Q4 ∈ StGC
b
2 . We first consider P 1, P 2 ∈

StGC0. By construction of the paraproduct and the resonant term, we have P 1 =
P 2 = P (b) =: P and Q1 = Q2 = Q3 = Q4 = Q(b/2) =: Q hence we consider∫ 1

0

{〈
a, Pt

(
Qtb ·Qtc

)〉
−
〈
Qt

(
Pta ·Qtb

)
, c
〉}dt

t
.
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Since L is self-adjoint, Pt and Qt are too and we have∫ 1

0

〈
a, Pt

(
Qtb ·Qtc

)〉dt

t
=

∫ 1

0

〈
Pta,Qtb ·Qtc

〉dt

t

=

∫ 1

0

〈
Pta ·Qtb,Qtc

〉dt

t

=

∫ 1

0

〈
Qt

(
Pta ·Qtb

)
, c
〉dt

t

hence the difference is equal to 0. Let us now consider the terms with P 1, P 2 ∈
StGC[1,b] and bound each of them independently. Since α + β + γ ≥ 0, we have∣∣∣∣∫ 1

0

〈
a, P 1•

t

(
Q2
t b ·Q3

t c
)〉dt

t

∣∣∣∣ . ‖a‖Hα ∥∥∥∥∫ 1

0

P 1•
t

(
Q2
t b ·Q3

t c
)dt

t

∥∥∥∥
Hβ+γ

. ‖a‖Hα‖b‖Cβ‖c‖Hγ

with β + γ < 1 and using α ∈ (0, 1) we have∣∣∣∣∫ 1

0

〈
Q3•
t

(
P 2
t a ·Q4

t b
)
, c
〉dt

t

∣∣∣∣ . ∥∥∥∥∫ 1

0

Q3•
t

(
P 2
t a ·Q4

t b
)dt

t

∥∥∥∥
Hα+β

‖c‖Hγ

. ‖a‖Hα‖b‖Cβ‖c‖Hγ

which completes the proof since α + β + γ ≥ 0.

�

1.3.2 – Intertwined paraproducts
The description of weak solution of PDEs involving a differential operator D using
paracontrolled calculus necessitate to study how D and P interacte with each other.
In the initial work [35] by Gubinelli, Imkeller and Perkowski, they consider the
commutator between the paraproduct and the integral operator L −1. In the work
[8], Bailleul, Bernicot and Frey introduced the new paraproduct P̃ intertwined with
P via the relation

D ◦ P̃ = P ◦D

with D = ∂t − ∆. This is a natural object to study weak formulation of PDEs
involving products described by the paraproduct P. We only give the proofs for
D = ∆ since we only consider space paracontrolled calculus and refer to the work of
Bailleul, Bernicot and Frey for D = ∂t−∆. We want to define the new paraproduct
P̃ intertwined with the paraproduct through

LP̃fg = PfLg.

Since L is not invertible, we use L−1 an inverse up to a smooth error term. Hence
a more conceivable intertwining relation is

LP̃fg = PfLg − e−L (PfLg) .
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Definition. Given any distributions f, g ∈ D′(M), we define P̃fg as

P̃fg := L−1PfLg

for which we have the explicit formula

P̃fg =
∑

a∈Ab;a2<
b
2

∑
Q∈StGCa

bQ

∫ 1

0

Q̃1•
t

(
Q2
tf · Q̃3

tg
) dt

t

where Q̃1
t := Q1

t (tL)−1 and Q̃3
t := Q3

t (tL).

It is immediate that Q̃3 belongs to StGCa3+2. The cancellation property of Q̃1

is given by the following Lemma. Remark that it is not in standard form anymore,
this is where the GC class comes into play.

Lemma 1.6. Let Q ∈ StGC
b
2 . Then Q̃t := Qt(tL)−1 defines a family that belongs to

GC
b
2
−2 for b large enough.

Proof : Since Q ∈ StGC
b
2 , there exist I = (i1, . . . , in), j ∈ N and c ∈ J1, bK such

that b
2

= |I|+ j and
Qt = (t

|I|
2 VI)(tL)

j
2P

(c)
t .

This immediatly follows from

Qt(tL)−1 = (t
|I|
2 VI)(tL)

j
2 (tL)−1P

(c)
t

= (t
|I|
2 VI)(tL)

j−2
2 P

(c)
t (Id− eL).

�

This Lemma immediatly yields the following Proposition, that is P̃ has the same
structure as P hence the same continuity estimates.

Proposition 1.7. For any distribution f, g ∈ D′(M), P̃fg is given as a linear combi-
nation of terms of the form ∫ 1

0

Q̃1•
t

(
Q2
tf · Q̃3

tg
) dt

t

where Q̃1 ∈ GC
b
2
−2, Q2 ∈ StGC[0,b] and Q̃3 ∈ StGC

b
2

+2. Thus for any regularity
exponent α, β ∈ (−2b, 2b), we have the following continuity results.

� If α ≥ 0, then (f, g) 7→ P̃fg is continuous from Cα × Cβ to Cβ.

� If α < 0, then (f, g) 7→ P̃fg is continuous from Cα × Cβ to Cα+β.

We also have the same associated Sobolev estimates.

� If α > 0, then (f, g) 7→ P̃fg is continuous from Cα × Hβ to Hβ and from
Hα × Cβ to Hβ.

� If α < 0, then (f, g) 7→ P̃fg is continuous from Cα × Hβ to Hα+β and from
Hα × Cβ to Hα+β.
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1.4 – Correctors and commutators
The study of PDEs with a singular product involves resonant terms given a function
u paracontrolled by a noise-dependent function X ∈ Cα, that is

u = P̃u′X + u]

with u′ ∈ Cα and u] ∈ C2α a smoother remainder. If α < 1, the product uζ is
singular for ζ ∈ Cα−2. However, we have the formal decomposition

Π(u, ζ) = Π
(
P̃u′X, ζ

)
+ Π(u], ζ) = u′Π(X, ζ) + C(u′, X, ζ) + Π(u], ζ)

where the corrector C introduced by Gubinelli, Imkeller and Perkowski in [35] is
defined as

C(a1, a2, b) := Π
(
P̃a1a2, b

)
− a1Π(a2, b).

If 2
3
< α < 1, then the product Π(u], ζ) is well-defined. Thus we are able to give

a meaning to the product uζ for u paracontrolled by X once we have a proper
continuity estimate for C and a meaning to the product Xζ; this is the rough paths
philosophy. This last task is only a probabilistic one and does not impact the
analytical resolution of the equation, this is the renormalisation step. We state here
a continuity estimate for C while its proof is given in Proposition A.8 in Appendix
A.2. The proof is based on the remark that for a fixed x ∈M , we have

C
(
a1, a2, b

)
(x) = Π

(
P̃a1a2, b

)
(x)− a1(x) · Π

(
a2, b

)
(x)

' Π
(
P̃a1−a1(x)a2, b

)
(x)

where ' is equal up to a smooth term using that

a1(x) · a2 ' a1(x) · P̃1a2 = P̃a1(x)a2.

Proposition 1.8. Let α1 ∈ (0, 1) and α2, β ∈ R. If

α2 + β < 0 and α1 + α2 + β > 0,

then (a1, a2, b) 7→ C(a1, a2, b) extends in a unique continuous operator from Cα1 ×
Cα2 × Cβ to Cα1+α2+β.

We also have the following Proposition to work with Sobolev spaces.

Proposition 1.9. Let α1 ∈ (0, 1) and α2, β ∈ R. If

α2 + β < 0 and α1 + α2 + β > 0,

then (a1, a2, b) 7→ C(a1, a2, b) extends in a unique continuous operator from Hα1 ×
Cα2 × Cβ to Hα1+α2+β.

Note that a restriction appears here since the first parameter α1 has to be smaller
than 1. This is due to the fact that for any function f ∈ Cα with α ≥ 0, one has

|f(x)− f(y)| ≤ ‖f‖Cαd(x, y)α∧1

with a factor not greater than 1 even for α > 1. This means that we are not able
to benefit from regularity greater than 1 only with a first order Taylor expansion.
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To work with a function of regularity α1 ∈ (1, 2), one has to consider the refined
corrector defined in the flat one dimensional case by

C(1)
(
a1, a2, b

)
(x) := Π

(
P̃a1a2, b

)
(x)− a1(x)Π

(
a2, b

)
(x)− a′1(x)Π

(
P̃(x−·)a2, b

)
(x)

that we interpret as a first order refined corrector for x ∈ T. One could consider
higher order refined correctors however it is not needed for the equations considered
here. On a manifold M , the analogue is defined for any x ∈M by

C(1)

(
a, b, c

)
(x) := C

(
a, b, c

)
(x)−

∑̀
i=1

γi
(
Via
)
(x)Π

(
P̃δi(x,·)b, c

)
(x)

where δi is given for x, y ∈M by

δi(x, y) := χ
(
d(x, y)

)
〈Vi(x), πx,y〉TxM

with χ a smooth non-negative function on [0,+∞) equal to 1 in a neighbourhood
of 0 with χ(r) = 0 for r ≥ rm the injectivity radius of the compact manifold M and
πx,y a tangent vector of TxM of length d(x, y), whose associated geodesic reaches y
at time 1. The functions γi are defined from the identity

∇f =
∑̀
i=1

γi(Vif)Vi,

for all smooth real-valued functions f on M .

Proposition 1.10. Let α1 ∈ (1, 2) and α2, β ∈ R. If

α2 + β < 0 and α1 + α2 + β > 0,

then (a1, a2, b) 7→ C(1)(a1, a2, b) extends in a unique continuous operator from Cα1 ×
Cα2 × Cβ to Cα1+α2+β.

The corrector C is needed to study ill-defined product, this is the condition
α2 + β < 0. However, we also have to investigate well-defined product to get more
accurate descriptions. For this purpose, we introduce the commutator

D(a1, a2, b) := Π
(
P̃a1a2, b)− Pa1Π(a2, b).

Proposition 1.11. Let α1 ∈ (0, 1) and α2, β ≥ 0. Then (a1, a2, b) 7→ D(a1, a2, b)
extends in a unique continuous operator from Cα1 × Cα2 × Cβ to Cα1+α2+β and from
Hα1 × Cα2 × Cβ to Hα1+α2+β.

Again, one can bypass the condition α1 ∈ (0, 1) using refined commutators. Note
that in their initial work [35], Gubinelli, Imkeller and Perkowski call C a commutator
whereas within the high order paracontrolled calculus of [7], the operator D is closer
to be a commutator than C. We need two final operator. The commutator S that
swaps paraproducts defined by

S(a1, a2, b) := PbP̃a1a2 − Pa1Pba2

and the corrector R defined by

R(a, b, c) := PaP̃bc− Pabc.
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Proposition 1.12. � Let α1, α2 ∈ R and β < 0. Then (a1, a2, b) 7→ S(a1, a2, b)
extends in a unique continuous operator from Cα1 × Cα2 × Cβ to Cα1+α2+β and
from Hα1 × Cα2 × Cβ to Hα1+α2+β.

� Let β, γ ∈ R. Then (a, b, c) 7→ R(a, b, c) extends in a unique continuous oper-
ator from L∞ × Cβ × Cγ to Cβ+γ.

In addition to the refined versions of the corrector and the commutator, the
high order paracontrolled calulus has to deal with iterated versions. Indeed, the
term C(u′, X, ζ) is not defined if the noise is too rough hence u′ also has to be
paracontrolled. To deal with this, one needs to consider the iterated corrector

C
(
(a1, a2), b, c

)
:= C

(
P̃a1a2, b, c

)
− a1C

(
a2, b, c

)
.

It satisfies the following continuity estimate.

Proposition 1.13. Let α1, α2 ∈ (0, 1) and β, γ ∈ R. If

α1 + β + γ < 0, α2 + β + γ < 0 and α1 + α2 + β + γ > 0,

then (a1, a2, b, c) 7→ C
(
(a1, a2), b, c

)
extends in a unique continuous operator from

Cα1 × Cα2 × Cβ × Cγ to Cα1+α2+β+γ.

We do not state here all the continuity results here and refer to the different
works [6, 7, 8, 11, 49, 50] for details. For example, one might need higher order
iterated version such as

C
((
a1, a2), b), c, d

)
= C

(
(P̃a1a2, b)c, d

)
− a1C

(
(a2, b), c, d).

Depending on the problem under consideration, new correctors and commutators
might be needed as one will see with quasilinear parabolic SSPDEs in 3, the random
magnetic Laplacian in 5 or with the Brox diffusion in Chapter 7.

1.5 – Nonlinear paracontrolled expansion
In order to solve nonlinear PDEs with a fixed point formulation in a space of paracon-
trolled distributions, it is necessary to understand how it interact with a nonlinear
expression. At first order, this is given by Bony’s paralinearisation.

Proposition. Let α ∈ (0, 1) and f ∈ C2(R). For any u ∈ Cα, we have

‖f(u)]‖C2α . ‖f‖C2(1 + ‖u‖Cα)2

with f(u)] := f(u) − Pf ′(u)u. If moreover f ∈ C3(R), then the map u 7→ f(u)] is
locally Lipschitz and

‖f(u)] − f(v)]‖C2α . ‖f‖C3(1 + ‖u‖Cα + ‖v‖Cα)2‖u− v‖Cα .

In general, one has the following Proposition.
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Proposition 1.14. Let n ≥ 0 and α ∈ (0, 1). For f ∈ Cn+1(R) and u ∈ Cα, we have∥∥∥∥∥f(u)−
n∑
k=1

k−1∑
i=0

(−1)i

n!

(
k

i

)
Pf (k)(u)uiu

k−i

∥∥∥∥∥
C(n+1)α

. ‖f‖Cn+1(1 + ‖u‖Cα)n+1.

If moreover f ∈ Cn+2(R), we have

‖f(u)] − f(v)]‖C(n+1)α . ‖f‖Cn+2(1 + ‖u‖Cα + ‖v‖Cα)n+1‖u− v‖Cα

where

f(u)] := f(u)−
n∑
k=1

k−1∑
i=0

(−1)i

n!

(
k

i

)
Pf (k)(u)uiu

k−i.

Proof : We have to prove that

f(u)] := f(u)−
n∑
k=1

k−1∑
i=0

(−1)i

n!

(
k

i

)
Pf (k)(u)uiu

k−i.

is a (n + 1)α-Hölder function. Using that P1f(u) = f(u) up to smooth term and
that Pab is the sum of terms of the form∫ 1

0

Q1•
t (Q2

ta · Ptb)
dt

t

with Q1, Q2 ∈ StGC
b
2 and P ∈ StGC[0,b], f(u)] is a sum of terms of the form∫ 1

0
Q1•
t (rt)

dt
t
with

rt = Q2
t

(
f(u)

)
−

n∑
k=1

k−1∑
i=0

(−1)i

n!

(
k

i

)
Q2
t

(
f(k)(u)ui

)
Pt(u

k−i).

We need to get a bound on rt in L∞(M). We have for x ∈M

rt(x) =

∫
M2

KQ2
t
(x, y)KPt(x, z)

{
f(u)(x)

−
n∑
k=1

k−1∑
i=0

(−1)i

n!

(
k

i

)(
f(k)(u)ui

)
(y)uk−i(z)

}
µ(dy)µ(dz).

Using a Taylor expansion for f , we have

rt(x) =

∫
[0,1]n+1

f (n+1)
(
u(z) + sn+1

(
u(y)− u(z)

))
sn
(
u(y)− u(z)

)n+1
dsn+1

. ‖u‖n+1
α t

(n+1)α
2

with sk =
∏k

i=1 si which allows us to conclude. The Lipschitz property follows from
the same kind of computations.

�
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To solve (gPAM) in dimension 3 or (gKPZ) in dimension 1 + 1, one only needs
the third order expansion given by

f(u) = Pf ′(u)u+
1

2!

{
Pf (2)(u)u

2 − 2Pf (2)(u)uu
}

+
1

3!

{
Pf (3)(u)u

3 − 3Pf (3)(u)uu
2 + 3Pf (3)(u)u2u

}
+ f(u)].

Using the correctors and commutators, this can be rewritten as

f(u) = Pf ′(u)u+
1

2!
Pf (2)(u)Π(u, u)

+
1

3!
Pf (3)(u)

(
8R(u, u, u) + 2D(u, u, u) + Π

(
Π(u, u), u

))
+ f(u)]

which can be interpreted as a “Taylor” expansion since each i-linear term if of regu-
larity iα for i ∈ {1, 2, 3}. It is however not clear how to get such a general formula for
arbitrary high order due to the large number of terms appearing in the computation.

1.6 – Generalisations and notations
The same theory can be adapted to deal with spacetime distribution in a parabolic
scaling. Consider an horizon time T > 0 and the parabolic manifold

M := [0, T ]×M

equipped with the parabolic distance

ρ
(
(σ, x), (τ, y)

)
:=
√
|τ − σ|+ d(x, y)

for (σ, x), (τ, y) ∈M and the parabolic measure

ν := dt⊗ µ.

One can define analogously spacetime families G, StGCa and GCa with

Gt(e, e′) =
1

ν
(
B(e,

√
t)
) (1 + c

ρ(e, e′)2

t

)−`
for e, e′ ∈M and t ∈ (0, 1]. While the heat semigroup is used to regularise in space,
the regularisation in time is done through

ϕ?(f)(τ) :=

∫ ∞
0

ϕ(τ − σ)f(σ)dσ

with the scaling

ϕt(·) :=
1

t
ϕ
( ·
t

)
for ϕ ∈ L1(R). The standard family StGCa of Gaussian operators with cancellation
of order a is then (

(t
|I|
2 VI)(tL)

j
2P

(c)
t ⊗ ϕ?t

)
t∈(0,1]
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where a = |I|+ j+ 2k, c ∈ J1, bK and ϕ a smooth function supported in [2−1, 2] with
first derivative bounded by 1 such that∫

τ iϕ(τ)dτ = 0 for 0 ≤ i ≤ k − 1.

Using these families of spacetime operator can be used to construct analogue para-
products P, P̃ and resonant product Π in the parabolic spacetime setting of M.
In particular, the Besov spaces in this setting are in the parabolic scaling. In the
Chapters 2 and 3, C will denote the parabolic Hölder spaces in which the equation
are naturally solved. They have the same structure as their spatial counterparts
thus everything work the same way even though the computations are more in-
volved. This was introduced in [8] and extended to a higher order calculus in [7].
In this framework, one is interested in solving parabolic PDEs hence the natural
intertwining relation is

(∂τ + L) ◦ P̃ = P ◦ (∂τ + L).

While there is a slightly larger lost of cancellation, P̃ still has the same structure
as P thus satisfies the same continuity estimates. The particular case of space
paracontrolled calculus was developped in [50] and is easier to understand at first.

The restriction of compactness on M is convenient since the space white noise
does not belong to any unweighted function spaces on Rd. Indeed, it does not satify
any integrability properties at infinity. The technicalities of weight to deal with
white noise on the full space was used by Hairer and Labbé in [40] and this was also
present in the work on paracontrolled calculus with the heat semigroup by Bailleul,
Bernicot and Frey [8]. This could be developped also in the spatial setting however
we restrict ourselves to the case of bounded manifold M in this thesis for simplicity.
While weights at infinity can be used to deal with the unbounded spatial setting,
one can also use weight for small time to deal with rougher initial condition. Indeed,
Chapters 2 and 3 work with smooth enough initial condition which is somehow not
natural. This can be generalised using weight for small time since the divergence
for the heat kernel as t goes to 0 can be explicitly computed, we refrain from doing
so for simplicity but this could also be done.

Finally, we introduce a notation in order to deal with the large number of terms
appearing in the study of parabolic PDEs such as (gPAM) equation in three dimen-
sions or (gKPZ) equation in one dimension. Since we do not have a clear algebraic
structure to order the expansion richer than just the scale of Hölder regularity, the
only information we need to keep on terms is their regularity and the paracontrolled
expansion rule. In the end, we only have two types of terms denoted by E and F.
For example, one uses the corrector C to expand singular product as

Π
(
P̃a1a2, b

)
= a1Π(a2, b) + C(a1, a2, b)

while the commutator D has to be used if the product is well-defined with

Π
(
P̃a1a2, b

)
= Pa1Π(a2, b) + D(a1, a2, b).

The first term correspond to the notation E while the second one to F. To be more
precise, denote by Eβ(. . .) given β ∈ R a generic multi-linear operator that sends
formally Cγ to Cβ+γ for any γ ∈ R and such that

Eβ(P̃ab, . . .) = aEβ(b, . . .) + Eβ(a, b, . . .)
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for all a ∈ C|a|, b ∈ C|b| with suitable regularity exponents |a| and |b|. For Fβ, the
expansion rule is

Fβ(P̃ab, . . .) = PaFβ(b, . . .) + Fβ(a, b, . . .).

Since we are only interested in expansion with respect to functionals of the unknown
u, we write

Eβ(b, . . .) = Eβ+|b|(. . .)

and
Fβ(b, . . .) = Fβ+|b|(. . .)

when b only depends on the noise.

As explained, new correctors and commutators need to be introduced for different
problem. One important example is to deal with derivatives for examples such as
the KPZ equation. See Section 2.3 in Chapter 2 for a discussion on this. This
will also be important for the random magnetic Laplacian and the Brox diffusion
respectively in Chapters 5 and 7.
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Chapter 2

Parabolic semilinear singular
SPDEs

One of the simplest parabolic SSPDE is the stochastic heat equation with multi-
plicative noise

∂tu−∆u = uζ

with smooth initial condition u0 ∈ C∞ and ζ ∈ Cα−2 where α ∈ (0, 1). A word of
warning, we denote in this Chapter and the following by Cβ the parabolic spacetime
β-Hölder spaces. One of the most natural path to solve the equation is to perform
a fixed point and take

u1 := L −1(u0ζ).

Since u0 is smooth, the product is well-defined with u0ζ ∈ Cα−2. Schauder estimates
then imply u1 ∈ Cα and one would want to define

u2 := L −1(u1ζ).

Since α < 1, the product does not make sense hence one can not formulate the
fixed point problem in Cα. This happens for the white noise in dimension d > 1
and corresponds to the singular nature of the equation. However the roughness of
u1 comes from ζ in a particular form dictated by the equation. This is where the
controlled rough paths philosophy helps us and the paracontrolled calculus comes
into play. We have the decomposition

u1 = L −1
(
Pu0ζ + Pζu0 + Π(u0, ζ)

)
= P̃u0Z + u]1

with Z := L −1ζ ∈ Cα and u]1 ∈ C2α. Thus the singular product is formally given by

Π(u1, ζ) = Π
(
P̃u0Z + u]1, ζ

)
= u0Π(Z, ζ) + C(u0, Z, ζ) + Π(u]1, ζ)

where the corrector C(u0, Z, ζ) is well-defined for 3α− 2 > 0. Hence for 2
3
< α < 1,

one only has to define Π(Z, ζ) which is independent of the equation as an element
of its natural space C2α−2, this is the renormalisation step. With this being done,
the fixed point can be formulated in the solution space

D(Z) :=
{

P̃u′Z + u] ; (u′, u]) ∈ Cα × C2α
}
⊂ Cα.
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To get local existence and uniqueness, one needs to show that for an horizon time
small enough, the map

Φ :

∣∣∣∣ D(Z) → D(Z)
u 7→ Pu0 + L −1(uξ)

is a well-defined contraction. Note that one needs to twist the domain by introducing
a parameter β ∈ (2

3
, α) and consider

Dβ(Z) :=
{

P̃u′Z + u] ; (u′, u]) ∈ Cβ × Cα+β
}

to get a contraction.

The limitation α ∈ (2
3
, 1) appeared in the initial work [35] of Gubinelli, Imkeller

and Perkowski and in the works [6, 8] of Bailleul, Bernicot and Frey on manifolds.
This was extended with a higher order paracontrolled calculus in [7] by Bailleul and
Bernicot to α ∈ (2

5
, 1) as far as the fixed point formulation is concerned. The main

obstacle to go all the way to the critical threshold α > 0 is the understanding of the
algebraic mechanism behind the large number of terms which appear in the compu-
tation of construct the solution space. Together with the development of a general
renormalisation procedure, this is currently under investigation. The methods of
higher order paracontrolled calculus can be briefly outlined as follows. Consider for
example 1

2
< α < 2

3
. The first order expansion

u = P̃u′Z + u] ∈ D(Z)

is not enough since the corrector C(u′, Z1, ζ) and the products u′Π(Z, ζ) and Π(u], ζ)
are singular. This suggests that u′ and u] should be given by a first order paracon-
trolled expansion hence u should be given by a second order paracontrolled expansion
of the form

u = P̃u1Z1 + P̃u2Z2 + u] and u1 = P̃u11Z1 + u]1

with u1, u2, u11 ∈ Cα, u]1 ∈ C2α and u] ∈ C3α. To define the singular corrector
C(u1, Z1, ζ), one uses the iterated corrector to get

C(u1, Z1, ζ) = C
(
P̃u11Z1+u]1, Z1, ζ

)
= u11C(Z1, Z1, ζ)+C

(
(u11, Z1), Z1, ζ

)
+C(u]1, Z1, ζ)

where C(Z1, Z1, ζ) is singular but only noise-dependent hence defined through the
renormalisation step as an element of its natural space C3α−2. The term C(u]1, Z1, ζ)
does not seem singular since 4α− 2 > 0 however u]1 ∈ C2α with 2α ∈ (1, 2) and one
can only gain regularity less than one for the first argument of the corrector. This
is where the refined corrector C(1) appears to get

C
(
u]1, Z1, ζ

)
(x) = C(1)

(
u]1, Z1, ζ

)
(x) + (u]1)′(x)Π

(
(x− ·)Z1, ζ

)
(x).

The two singular products are dealt as the first one using the corrector with

Π
(
P̃u2Z2, ζ

)
= u2Π(Z2, ζ) + C(u2, Z2, ζ)

and

Π
(
u1,Π(Z1, ζ)

)
= u11Π

(
Z1,Π(Z1, ζ)

)
+ C

(
u11, Z1,Π(Z1, ζ)

)
+ Π

(
u]1,Π(Z2, ζ)

)
where Π(Z2, ζ) and Π

(
Z1,Π(Z1, ζ)

)
need to be define within the renormalisation

step. For higher paracontrolled expansion, one needs estimates on a number of cor-
rectors/commutators, their refined version and higher order iterated. The subspace
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of Cα on which the fixed point is performed is constructed based on the notion of
paracontrolled systems. To obtain a contraction for small horizon time, one used
the triangular character of the system with adapted regularity exponents for the
control of the remainders just as one needs the parameter β for α ∈ (2

3
, 1).

In this chapter, we give the tools to solve the generalised (PAM) equation

(∂t + L)u = f(u)ξ

on a three-dimensional manifold with ξ a space white noise. We also give the tools
to solve the generalised (KPZ) equation

(∂t + L)u = f(u)ζ + g(u)(∂u)2

with ζ a spacetime white noise in dimension 1 + 1. This is based on the work [7].

2.1 – Paracontrolled systems
Let n ∈ N∗ and T be a finite set of reference functions. Assume that T is the union

T =
n⋃
i=1

Ti ⊂ Cα

of finite sets T1, . . . , Tn where Ti ⊂ Ciα for 1 ≤ i ≤ n. For any τ ∈ T , we denote
by |τ| its Hölder regularity and for any word a = (τ1, . . . , τk) with letter in T , we
define its homogeneity as

|a| := |τ1|+ . . .+ |τk|.

A paracontrolled system by T at order n is naturally indexed by the set of words

A :=
{
a = (τ1, . . . , τk) ; k ≥ 0, |a| ≤ nα

}
where k = 0 correspond to the empty word a = ∅. Indeed, a second order paracon-
trolled system by (Z1, Z2) is given by

u = P̃u1Z1 + P̃u]2
Z2 + u]

u1 = P̃u]11
Z1 + u]1

where u]a ∈ C3α−|a| for any a ∈ A = {∅, 1, 2, 11} with T = {1, 2}. This motivates the
following definition of a paracontrolled system, where the role of the family (βa)a∈A

is to get a contraction in the fixed point formulation. At first sight, the βa’s can be
thought of as equal to α.

Definition 2.1. Let (βa)a∈A be a family of positive real numbers. A system paracon-
trolled by T at order n is a family û = (ua)a∈A of functions such that for all a ∈ A ,
one has

ua =
∑

τ∈T ;|aτ |≤nα

P̃uaτ τ + u]a,

with u]a ∈ Cnα+βa−|a|.
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As for rough paths, the solution space consists of enhanced data û := (ua)a∈A

where u = u∅ is actually the stochastic process solution to the PDE. The data û is
equivalent to the data of the remainders û] := (u]a)a∈A . Each function ua can be
interpreted as a high order Gubinelli’s derivative and belongs a priori to Cα. The
Hölder regularity of each remainder u]a is measured by the parameter βa and the
homogeneity of a. In particular, the larger the homogeneity of a is, the more regular
the remainder u]a is.

Remark : In regularity structures, the addition of an algebraic structure on T for
the description of the enhanced data allows the resolution of a large class of subcriti-
cal singular SPDEs. In paracontrolled calculus, this has not been developped yet and
would be interesting, a perspective under investigation is the notion of operads. Note
that A is the truncated Hopf algebra of words with letters in T with the homogeneity
as graduation.

The set T will be implicitly defined with the fixed point formulation hence one
needs to have a paracontrolled expression for the right hand side of the equation for
a function u described by the enhanced data of an arbitrary paracontrolled system.
This is the content of the following Theorem.

Theorem 2.2. Let û = (ua)a∈A be a third order paracontrolled system by a set T .
Then

f(u)ζ = Pf(u)ζ +
∑
|a|≤2α

Pf ′(u)uaζa +
∑
|ab|≤2α

Pf (2)(u)uaub
ζa,b + v]

where ζa and ζa,b are distributions that depend only on ξ and T of respective Hölder
regularity |a| + α − 2 and |ab| + α − 2 and with v] ∈ C4α−2 a remainder depending
on û and T .

Proof : We have
f(u)ζ = Pf(u)ζ + Pζf(u) + Π

(
f(u), ζ).

Using the nonlinear paracontrolled expansion for f(u), one has

f(u) = Pf ′(u)u+
1

2!

{
Pf (2)(u)u

2 − 2Pf (2)(u)uu
}

+
1

3!

{
Pf (3)(u)u

3 − 3Pf (3)(u)uu
2 + 3Pf (3)(u)u2u

}
+ f(u)].

Using the correctors and commutators, this gives

f(u) = Pf ′(u)u+
1

2!
Pf (2)(u)Π(u, u)

+
1

3!
Pf (3)(u)

(
8R(u, u, u) + 2D(u, u, u) + Π

(
Π(u, u), u

))
+ f(u)].

This is where the notation E/F comes into play in order to simplify the computations.
The previous equality rewrites as

f(u) = Pf ′(u)u+
1

2!
Pf (2)(u)E(u, u) +

1

3!
Pf (3)(u)

(
E(u, u, u) + F(u, u, u)

)
+ f(u)].

Then the result follows from

E−2(u, u) = E−2
(
P̃uττ, P̃uσσ

)
= uτuσE−2+|τ|+|σ| + uτuσ1σ2E−2+|τ|+|σ1|+|σ2| + uτuσ1σ2σ3E−2+|τ|+|σ1|+|σ2|+|σ3|

+ uτ1τ2uσ1σ2E−2+|τ1|+|τ2|+|σ1|+|σ2| + (5α− 2)
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and

E−2(u, u, u) = E−2
(
P̃uττ, P̃uσσ, P̃uγγ

)
= uτuσuγE−2+|τ|+|σ|+|γ| + uτuσuγ1γ2E−2+|τ|+|σ|+|γ1|+|γ2| + (5α− 2)

obtained after multiple uses of the expansion rule for E. In particular, each time the
expansion yields a paraderivatives of order more than 4, it goes in the remainder.

�

2.2 – Fixed point
As a guide for the fixed point formulation, we first detail the (PAM) equation in two
dimensions where 2

3
< α < 1 hence a first order paracontrolled expansion is enough

as explained in the introduction of this chapter. A solution to the PDE

L u = uξ

with initial condition u0 ∈ C2α is a fixed point of the map

u 7→ L −1(uξ) = P̃u(L
−1ξ) + L −1

(
Pξu+ Π(u, ξ)

)
+ Pu0

where Pu0 : (t, x) 7→
(
e−tLu0

)
(x) is the propagation of the initial condition. Since

the equation is singular, this map is not well-defined from Cα to Cα and we consider

Φ : (u′, u]) ∈ Dβ(Z) 7→
(

P̃u′Z + u] , R(u′, u])
)
∈ Dβ(Z)

with Z = L −1ξ and

R(u′, u]) := L −1
(

Pξu+ u′Π(Z, ξ) + C(u′, Z, ξ) + Π(u], ξ)
)

+ Pu0

and where the solution space is given by

Dβ(Z) =
{

P̃u′Z + u] ; (u′, u]) ∈ Cβ × Cα+β with u′|t=0 = u0 and u]|t=0 = u0

}
.

The natural norm on Dβ(Z) is the product norm

‖u‖Dβ(Z) := ‖u′‖Cβ + ‖u]‖Cα+β .

Note that the term Pu0 goes in the remainder since u0 ∈ C2α, it is however possible
to introduce a weight for small time to deal with u0 ∈ Cα. To get local existence and
uniqueness, we want to show that Φ is a contraction for an horizon time T small
enough. This is where the parameter β ∈ (2

3
, α) comes into play with the bound

‖w‖Cγ ≤ T
γ−γ′

2 ‖w‖Cγ′

for any spacetime function w : [0, T ]×M → R equal to 0 at time t = 0 and regularity
exponent γ < γ′. Indeed, this gives∥∥Φ(u′, u])− Φ(v′, v])

∥∥
Dβ(Z)

=
∥∥(P̃u′Z + u]

)
−
(
P̃v′Z + v]

)∥∥
Cβ +

∥∥R(u′, u])−R(v′, v])
∥∥
Cα+β

. T
α−β

2 ‖P̃u′−v′Z‖Cα + T
α+β−β

2 ‖u] − v]‖Cα+β + T
2α−(α+β)

2 ‖R(u′, u])−R(v′, v])‖C2α

. T
α−β

2 ‖u′ − v′‖L∞‖Z‖Cα + T
α
2 ‖u] − v]‖Cα+β + T

α−β
2 ‖R(u′, u])−R(v′, v])‖C2α
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for (u′, u]), (v′, v]) ∈ Dβ(Z) hence Φ is a contraction for T small enough since
β < α. For higher order paracontrolled system, we choose the exponents (βa)a∈A

such that βa > βa′ if the word a has more letters than a′ or if a and a′ have the
same number of letters and |a| > |a′|. We consider the fixed point on the set of
remainders û] = (u]a)a∈A and define the solution space as

S(u0) :=
{
û]; ∀a ∈ A , ua ∈ C3α+βa−|a| and u]a|t=0 = ha(û)

}
⊂
∏
a∈A

C3α+βa−|a|

where ha given by the paracontrolled expansion of the right hand side defined below
for a 6= ∅ and h∅(u0) = u0 with associated norm

‖û]‖S :=
∑
a∈A

‖u]a‖C3α+βa−|a| .

Given a family of remainders û] ∈ S(u0), Theorem 2.2 gives a representation of the
right hand side of the equation

L −1
(
f(u)ξ

)
=
∑
σ∈T ′

P̃hσ(û)σ + L −1
(
v]
)

with T ′ a set of functions depending on ξ and T . For example, the only term of
homogeneity α in T ′ is Z = L −1ξ with associated coefficient hZ(û) = f(u). All
the other terms σ ∈ T ′ are obtained from a word a or a couple of words (a, b) with
respective homogeneity |a|+α or |ab|+α hence this yields the recursive construction
of a concrete set T such that T = T ′. The coefficients hσ(û) is of the form f(u),
f ′(u)ua or f (2)(u)uaub for some words a, b ∈ A and are also paracontrolled by T .
Thus the paracontrolled nonlinear expansion yields that L −1

(
f(u)ξ

)
is described

by a third order paracontrolled system by T with coefficient ha(û) for a ∈ A , we
denote as Φ(û]) its family of remainders. By construction, the solution space S(u0)
is stable by the map Φ and a solution to the map equation is a fixed point of the
map

Φ : S(u0)→ S(u0).

We now prove that it is a contraction for T small enough.

Theorem 2.3. For T small enough, the map Φ is a contraction from S(u0) to itself.

Proof : The contraction properties follows from the cascade of inequalities satisfied
by the family (βa)a∈A . Indeed, we want to control the norm of the difference

‖Φ(û)− Φ(v̂)‖S =: ‖ŵ‖S

for paracontrolled systems û, v̂ ∈ S(u0). Since each w]a is equal to zero at time t = 0,
we want to make use of the bound

‖w]a‖Cγ < T
γ−γ′

2 ‖w‖Cγ′

for any regularity exponent γ < γ′ as explained before. According to the decompo-
sition of the right hand side of the equation, each terms w]a is given by a product
of paraderivatives of u − v of higher order than a in the sense that it implies for
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letter than the number of letters in a. In the first order expansion, this was the two
bounds

‖w]∅‖Cα+β = ‖R(u′, u])−R(v′, v])‖Cα+β

. T
α−β

2 ‖R(u′, u])−R(v′, v])‖C2α

. T
α−β

2 ‖u′ − v′‖Cβ + T
α
2 ‖u] − v]‖Cα+β

and

‖w]1‖Cβ = ‖P̃u′Z + u] − (P̃v′Z + v])‖Cβ

. T
α−β

2 ‖P̃u′−v′Z‖Cα + T
α
2 ‖u] − v]‖Cα+β

. T
α−β

2 ‖u′ − v′‖L∞ + T
α
2 ‖u] − v]‖Cα+β .

In the general case, the paracontrolled expansion for the right hand side of the
equation induce that any a ∈ A comes from b ∈ A or b, c ∈ A such that |a| > |b|
or |a| > |bc|. Thus we bound the associated remainder as

‖w]a‖Cβa = ‖f ′(u)ub − f ′(v)vb‖Cβa

. T
α−βa

2 ‖f ′(u)− f ′(v)‖Cα‖ub‖Cβa + T
βb−βa

2 ‖f ′(v)‖Cα‖ub − vb‖Cβb
. T

α−βa
2 ‖u− v‖+ T

βb−βa
2 ‖ub − vb‖Cβb

.
(
T
α−βa

2 ‖ub‖Cβa + T
βb−βa

2 ‖f ′(v)‖Cα
)
‖û− v̂‖

for example in the case where a comes from b, the case where it comes from b, c holds
with the same kind of computations. Thus we get a contraction for T small enough
since βa > βa′ if the word a has more letters than a′ or if a and a′ have the same
number of letters and |a| > |a′|. In particular, one has a finite number of terms of
the form T δ that needs to be small hence there exists an horizon time T > 0 such
that Φ is a contraction.

�

2.3 – Generalisations
To solve the (gKPZ) equation

L u = f(u)ζ + g(u)(∂u)2,

with ζ a spacetime white noise in dimension 1, the only missing ingredient is a
paracontrolled expression for

(∂u)2 = 2P∂u∂u+ Π(∂u, ∂u)

when u is described by a paracontrolled system û. This can be done with the intro-
duction of new correctors and commutators to deal with the first order differential
operator ∂. For u ∈ Cα with α < 1, the term P∂u∂u is well-defined as an element of
C2α−2 since ∂u is only a distribution. This gives the hint that

P∂∂ : Cα × Cα → C2α−2
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behaves more like the resonant term than the paraproduct as far as paracontrolled
calculus is concerned. This is actually true and can be seen as follows. The para-
product Pab is given as a linear combination of terms of the form∫ 1

0

Q1•
t

(
Pta · Q2

t b
) dt

t

for Q1,Q2 ∈ StGC
b
2 and P ∈ StGC[0,b]. Thus P∂a∂b is a linear combination of∫ 1

0

Q1•
t

(
P̃ta · Q̃2

t b
) dt

t2

where P̃t :=
√
t∂Pt ∈ StGC[1,b+1] and Q̃2

t :=
√
t∂Q2

t ∈ StGC
b
2

+1. Since the family P̃
encodes some cancellations, this is close to a resonant term with associated correctors

C<∂ (a1, a2, b) := P∂P̃a1a2
∂b− a1P∂a2∂b,

C>∂ (a, b1, b2) := P∂a∂P̃b1b2 − b1P∂a∂b2.

The same holds for Π(∂a, ∂b) with associated corrector

C=
∂ (a1, a2, b) := Π

(
∂P̃a1a2, ∂b

)
− a1Π

(
∂a2, ∂b

)
.

As for the corrector C, one can get continuity estimates for its refined and iterated
versions which allows to get a paracontrolled expression for the term (∂u)2 when u is
described by a paracontrolled system. This is an illustration of the flexibility of the
paracontrolled calculus since one only needs to introduce new operators satisfying
the correct continuity estimates to solve new problems. The same will be true in
Chapters 3, 4 and 5 where the general idea and the basic tools will be the same
with different operators. In particular, the class of what we call a paraproduct or a
resonant term is very large. We only prove the estimates for some particular case
in the Appendix, the proofs are similar in each cases.

While the paracontrolled calculus relies on classical tools from harmonic anal-
ysis, it still lacks a clear algebraic structure as it was developped for regularity
structures. The works [9, 10] and [48] investigate the relation between the two ap-
proaches and it seems that while both have their advantages and disadvantages, the
range of possible regularity should more or less be the same. Thus developping an
algebraic framework as powerful as Hopf algebra are for regularity stuctures should
be the only missing step to a formulation of all subcritical singular SPDEs through
paracontrolled calculus.

In this Chapter, we only dealt with the analytical formulation of the equations
as a fixed point and assumed that a number of ill-defined stochastic process were
given to us. The construction of these is the probabilistic step in the resolution of
SSPDEs and is called the renormalisation procedure. While this will be detailled in
the different works hereafter, we do not give details for the semilinear and quasilinear
parabolic SSPDEs of this Chapter and the next one. The main reason is that, as
explained in the last paragraph, we do not have a clear algebraic framework to list all
the singular processes that have to be renormalised. In the case of (gPAM) equation
in dimension 3 and (gKPZ), one could do the details of the computations hidden in
the E/F notation to get this list of more than one hundred terms appearing in the
computations and renormalise by hand each singular ones. We do not think that this
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would be interesting to read for anyone thus we refrain us from doing so. In regularity
structures, the algebraic formulation of this list of terms was one of the main goal
of the work [18] by Bruned, Hairer and Zambotti while their renormalisation of the
work [23] by Chandra and Hairer. In particular, our E/F notation can be interpreted
as keeping only the leaf of their tree notation together with the loss of regularity
since we forget the precise structure of each terms. In a sense, we smash the Hopf
algebra of trees into the simpler structure of words. More importantly, the work of
Chandra and Hairer is based on the BPHZ algorithm as in Bogoliubov, Parasiuk,
Hepp and Zimmerman, coming from the renormalisation of Feynman diagrams in
Quantum Field Theory and strongly relies on the euclidian structure through Taylor
expansions. The extension of this method to the framework of manifolds is not trivial
and was one of the goal of this thesis at first. It is still under investigation and is a
very interesting question.
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Chapter 3

Parabolic quasilinear singular
SPDEs

In this Chapter, we explain how to solve the quasilinear version of any semilinear
singular PDEs we are able to solve within the paracontrolled calculus thus including
quasilinear generalised (KPZ) equation. This is done through two main arguments
in addition to the method for semilinear PDEs.

(1) The introduction of new correctors and commutators to deal with first order
and second order terms.

(2) Paracontrolled systems with a reference set

T =
3⋃
i=1

Ti

where each Ti ⊂ Ciα is infinite.

While (1) is of interest in itself to consider other problems as we will see in other
Chapters, (2) seems strongly related to the quasilinear character of the equations.
Indeed, the infinite set T can be interpreted as the finite set obtained by the semi-
linear methods with “decorations” and this also appears in the other methods devel-
opped to solve such PDEs. A word of warning, we denote in this Chapter as in the
previous one by Cβ the parabolic spacetime β-Hölder spaces. Consider

∂tu− d(u)∆u = f(u, ξ)

with f(u, ξ) a nonlinear term associated to a semilinear PDE one can solve with the
paracontrolled calculus and d : R → (0,+∞) a smooth function taking values in
a compact of (0,+∞). Given u0 smooth enough for the product with ξ to be well
defined, we first rewrite the equation to fit more in the framework of the method for
semilinear PDEs as

∂tu− d(u0)∆u =
(
d(u)− d(u0)

)
∆u+ f(u, ξ).

Thus we define

L := −
d∑
i=1

V 2
i with Vi :=

√
d(u0)∂i,
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and the equation rewrites

L u := (∂t + L)u = ε(u, ·)Lu+
d∑
i=1

ai(u, ·)Viu+ f(u, ξ)

with

ε(u, ·) := d(u0)−1
(
d(u0)− d(u)

)
,

ai(u, ·) :=
(
d(u0)−1

(
d(u0)− d(u)

)
− 1
)∂i(d(u0)

)
2d(u0)

.

As notation, we write ∆ = ∂2
1 +. . .+∂2

d but as in Chapter 1, the first order differential
operator ∂i’s might be more general Ai’s. Since we assumed that the semilinear
equation can be solve with paracontrolled calculus, we already have a representation
of f(u, ξ) of the correct form and the aim is to get an expression of the type

ε(u, ·)Lu+
d∑
i=1

ai(u, ·)Viu =
∑
σ

Pvσσ.

Due to the quasilinear character of the equation, we are not able to find a finite set
T to get stable paracontrolled systems. Considering an infinite set obtained from
T such that it is stable by the operator L −1L, we are able to construct a stable
solution space. The convergence of the infinite paracontrolled system is obtained
using that ε(u, ·) is small for a small horizon time since it a spacetime function null
at t = 0 of positive Hölder regularity. This is based on the work [11].

3.1 – Additional correctors and commutators
The terms that appear are of the form

f(u)Du = Pf(u)Du+ PDuf(u) + Π
(
f(u), Du)

with f : R → R a smooth function and D a differential operator of order |D|
constructed from the Vi’s. As for the KPZ equation, the operators

(a, b) 7→ PDab, Π
(
a,Db)

look like resonant terms since (t
|D|
2 D)Qt belongs to StGCr+|D| for Q ∈ StGCr. Thus

the associated correctors

C<D(a1, a2, b) := PDP̃a1a2
b− a1PDa2b,

C=
D(a1, a2, b) := Π

(
DP̃a1a2, b

)
− a1Π

(
Da2, b

)
,

satisfies adapted continuity estimates as well as their refined and iterated versions.
The term

(a, b) 7→ PaDb

does not look like a resonant term but like a paraproduct. Indeed, it is a linear
combination of terms of the form∫ 1

0

Q1•
t

(
Pta · Q2

tDb
) dt

t
=

∫ 1

0

Q1•
t

(
Pta · Q̃2

t b
) dt

t1+|D|
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with Q̃2
t = (t

|D|
2 D)Q2

t ∈ StGC
b
2

+|D| hence there are no cancellations in the lower
term. The paraproduct term

Pf(u)u = Pf(u)P̃uττ

in the semilinear method is dealt with using the operator

R(a, b, c) = PaP̃bc− Pabc

hence we introduce
RD(a, b, c) = PaDP̃bc− PabDc.

To sum up, we introduce the correctors

C<V (a1, a2, b) := PV P̃a1a2
b− a1PV a2b,

C<L(a1, a2, b) := PLP̃a1a2
b− a1PLa2b,

C=
V (a1, a2, b) := Π

(
V P̃a1a2, b

)
− a1Π

(
V a2, b

)
,

C=
L(a1, a2, b) := Π

(
LP̃a1a2, b

)
− a1Π

(
La2, b

)
,

to deal with the terms

PViuai(u, ·),PLuε(u, ·),Π
(
Viu, ai(u, ·)

)
,Π
(
Lu, ε(u, ·)

)
.

We introduce the operators

RV (a, b, c) := PaV P̃bc− PabLc,

RL(a, b, c) := PaV P̃bc− PabLc,

to deal with the terms
Pai(u,·)Viu,Pε(u,·)Lu.

Proposition 3.1. � Let α1 ∈ (0, 1) and α2, β ∈ R. If

α2 + β − 1 < 0 and α1 + α2 + β − 1 > 0,

then the operators C<V and C=
V have natural extensions as continuous operators

from Cα1 × Cα2 × Cβ to Cα1+α2+β−1.

� Let α1 ∈ (0, 1) and α2, β ∈ R. If

α2 + β − 2 < 0 and α1 + α2 + β − 2 > 0,

then the operators C<L and C=
L have natural extensions as continuous operators

from Cα1 × Cα2 × Cβ to Cα1+α2+β−2.

� Let β ∈ (0, 1) and γ ∈ R. Then the operator RV has a natural extension as a
continuous operator from L∞ × Cβ × Cγ to Cβ+γ−1.

� Let β ∈ (0, 1) and γ ∈ R. Then the operator RL has a natural extension as a
continuous operator from L∞ × Cβ × Cγ to Cβ+γ−2.

This is not exaclty what is done in [11] where the operators

V(a, b) := V P̃ab− PaV b ' RV (1, a, b)

and
L(a, b) := LP̃ab− PaLb ' RL(1, a, b).

We prefer to use RV and RL here as it seems more natural in the line of Chapter 2,
this is not important since they are equal up to a smooth term.
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3.2 – Infinite paracontrolled systems
Due to the second order term on the right hand side of the equation, we need to
consider paracontrolled system by a set

T =
3⋃
i=1

Ti

where each Ti ⊂ Ciα is infinite. This is because the set T needs to be stable under
the operator L −1L which is continuous from Cγ to itself for any γ ∈ R, as explained
with the fixed point formulation. Recall that A is the set of words with letters in
T of homogeneity less than nα. We suppose that T is coutable, it will be the case
in the following. In addition to the defintion of a paracontrolled system, an infinite
paracontrolled system satifies a convergence condition with respect to the norm of
a word defined as

‖a‖ := ‖τ1‖C|τ1| . . . ‖τk‖C|τk|
for a = τ1 . . . τk ∈ A . As for semilinear PDEs, the family (βa)a∈A is a tool to get a
contraction for a small horizon time and can be taught as equal to α at first sight.
While it is infnite here, it will only take a finite number of values, this will be crucial
to guarantee the existence of a positive horizon time T > 0 such that the fixed point
map is a contraction.

Definition 3.2. Let (βa)a∈A be a family of positive real numbers. A system paracon-
trolled by T at order n is a family û = (ua)a∈A of functions such that for all a ∈ A ,
one has

ua =
∑

τ∈T ;|aτ |≤nα

P̃uaτ τ + u]a,

with u]a ∈ Cnα+βa−|a| and

‖û‖ =
∑
a∈A

‖u]a‖Cnα+βa−|a|‖a‖ <∞.

Since the convergence condition is always satisfied for a finite set T , this defi-
nition is coherent with the notion of finite paracontrolled system. Since the fixed
point is performed on the space of remainders, the size of û is measured through the
family of remainders (u]a)a∈A . Proposition 3.3 proves that the condition ‖û‖ < ∞
guarantees the convergence of the infinite sums appearing in the paracontrolled sys-
tem. The βa’s will be chosen in the interval (2

5
, α) in a particular way explained in

Section 3.3. In particular, they verify βa > βa′ for any a, a′ ∈ A with a′ a word
containing a as a subword. Note that each ua with |a| < nα belongs to Cα, while the
ua with |a| = nα are elements of Cβa . Putting together all the contributions from Ti
for i ∈ {1, . . . , n}, each ua in a paracontrolled system with |a| < nα is in particular
required to have an expansion of the form

ua = (α) + (2α) + . . .+ (nα + βa − |a|)

as will be proved in the following propostion. As in the finite case, a paracontrolled
system is triangular, the bigger |a| the lesser we expand ua, and is actually deter-
mined by the family û = (u]a)a∈A of remainders and we rewrite the convergence
condition in terms of the remainders only.
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Proposition 3.3. Let û = (ua)a∈A be a system paracontrolled by T at order n. One
has ∑

a∈A

‖ua‖Cβa‖a‖ . ‖û‖.

In particular, this implies

∀a ∈ A , ‖ua‖Cβa . ‖û‖.

Proof : Let a ∈ A . A finite induction gives

‖ua‖Cβa .
∑

τ∈T ;|aτ|≤nα

‖uaτ‖Cβa‖τ‖+ ‖u]a‖Cβa

.
∑

τ∈T ;|aτ|≤nα

‖uaτ‖Cβaτ‖τ‖+ ‖u]a‖Cβa

.
∑

b∈A ;|ab|≤nα

‖u]ab‖Cβab‖b‖

since βa ≥ βab for any b ∈ A . Thus∑
a∈A

‖ua‖Cβa‖a‖ .
∑
a∈A

‖u]a‖Cβa‖a‖ . ‖û‖.

�

As for semilinear PDEs, we need an expression for the right hand side as a
paracontrolled system by a set T ′ for an arbitrary û = (ua)a∈A . The difference is
that the system is not strictly triangular due to the second order term. This can be
seen for example in the mild formulation with the term

L −1
(
Pε(u,·)uτLτ

)
= P̃ε(u,·)uτ

(
L −1Lτ

)
.

While each term τ ∈ T only generates terms of higher homogeneity in the semilinear
case, it gives rise here to a term (L −1L)τ ∈ T ′ of the same homogeneity. This causes
the set T to be infinite since it has to be stable under the operator L −1L.

Theorem 3.4. Let û = (ua)a∈A be a third order paracontrolled system by a set T .
Then

f(u)ξ + ε(u, ·)Lu+
d∑
i=1

ai(u, ·)Viu = Pf(u)ζ +
∑
|a|≤2α

Pf ′(u)uaζ
(1)
a +

∑
|ab|≤2α

Pf (2)(u)uaub
ζ

(1)
a,b

+
∑
τ∈T

Pε(u,·)uτLτ +
∑

|a|≤3α;a/∈T

Pε(u,·)uaζ
(2)
a +

∑
|ab|≤3α

Pd−1
0 d′(u)uaub

ζ
(2)
a,b

+
∑
|abc|≤3α

Pd−1
0 d(2)(u)uaubuc

ζ
(2)
a,b,c +

d∑
i=1

∑
|τ|=α

Pai(u,·)uτζi,τ + v]

where ζ(1)
e , ζ

(2)
e , ζi,e are distributions that depend only on ξ and T of respective Hölder

regularity |e|+ α − 2, |e| − 2, |e|+ 1 and with v] ∈ C4α−2 a remainder depending on
û and T .
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Proof : This works as Theorem 2.2 in Chapter 2. The major difference is the
presence of an infinite number of terms, this is however hidden in the recursive
definition of T . In particular, the terms f(u)ξ gives rise to the terms of the form

Pf ′(u)uaζ
(1)
a and Pf (2)(u)uaub

ζ
(1)
a,b .

For the new terms

ai(u, ·)Viu and PLuε(u, ·) + Π
(
Lu, ε(u, ·)

)
,

we respectively get ζi,e and ζ
(2)
e with e a tuple of words. The term

Pε(u,·)Lu

is the concrete second order term in the right hand side that encode the quasilinear
character of the equation. It gives the terms Lτ for any τ ∈ T , this is why the
space T needs to be stable under the operator L −1L. See [11] for the details of the
computations where one needs to use the differents correctors CD and commutators
RD for D ∈ {Vi, L} introduced before. The fact that one still gets convergence series
will be explained in the fixed point Theorem, it mainly follows from the fact that
each iteration of the operator L −1L comes with a factor ε(u, ·) as one can see on
the right hand side of the equation.

�

3.3 – Fixed point
Except for the presence of infinite sums, the method is the same as for semilinear
PDEs. The family (βa)a∈A also has to verify that βa > βa′ if a′ has more letter than
a. Furthermore, we ask that βa > βa′ if a and a′ have the same number of letter but
|a| < |a′|. Since the set of possible number of letter or homogeneity for words in A
is finite, it is possible to choose such a family that takes a finite number of values.
In particular, it verifies

α > βa > β∅ >
2

5

for any a 6= ∅. The fixed point is again considered on the set of remainders û] =
(u]a)a∈A and we define the solution space as

S(u0) :=
{
û]; ∀a ∈ A , ua ∈ C3α+βa−|a| and u]a|t=0 = ha(û)

}
⊂
∏
a∈A

C3α+βa−|a|

where h∅(u0) = u0 and ha given by the paracontrolled expansion of the right hand
side defined below as for the semilinear equation with associated norm

‖û]‖S :=
∑
a∈A

‖u]a‖C3α+βa−|a|‖a‖.

Since the product is infinite, one has to guarantee that S(u0) is indeed a closed
subspace of the Banach space

∏
a∈A C3α+βa−|a|. This is granted by the term ‖a‖ in

the norm of the solution space. In the case of a finite set T , the two norms with
or without this term are equivalent while this is not true for infinite set T . Given
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a family of remainders û] ∈ S(u0), Theorem 3.4 gives a representation of the right
hand side of the equation as

L −1
(
f(u)ξ + ε(u, ·)Lu+

d∑
i=1

ai(u, ·)Viu
)

=
∑
σ∈T ′

P̃hσ(û)σ + L −1
(
v]
)

with T ′ a set of functions depending on ξ and T and explicit coefficients hσ(û). This
gives the construction of a set T such that T = T ′, necessary infinite since it has
to be stable by the operator L −1L. Thus the paracontrolled nonlinear expansion
yields that the right hand side is described by a third order paracontrolled system
by T , we denote as Φ(û]) its family of remainders. By construction, the solution
space S(u0) is stable by the map Φ and a solution to the map equation is a fixed
point of the map

Φ : S(u0)→ S(u0).

We now prove that it is a contraction for T small enough.

Theorem 3.5. For T smalll enough, the map Φ is a contraction from S(u0) to itself.

Proof : The contraction for an horizon time T > 0 small enough follows again
from the cascade relations satisfied by the βa’s. There is one new subtility due to
the terms (

L −1L
)
τ

for any τ ∈ T , this is dealt with by the condition βa > βa′ for |a| < |a′| with the
same number of letters. While the set A is infinite here, the required conditions
on the βa’s allow to suppose that it is actually a finite family hence there exists an
horizon time T > 0 such that Φ is a contraction. The only things that is different
is the setting on infinite paracontrolled systems hence we have to prove that the
convergence condition is stable under Φ. This is granted by the fact that for each
tuple e of k words, the paraderivative with respect to ζe is the product of the k
paraderivatives of the associated words. See the proof of Theorem 10 from [11] for
details.

�

As explained at the end of the previous Chapter, the set Tsemi is quite large for
the example of (gPAM) equation in three dimensions and (gKPZ) equation in one
dimension. For the quasilinear version of these equations, the infinite set Tquasi has
the same structure as Tsemi in the following sense. Since it has to be stable under
the operator L −1L, each time you add a term of the form

M(X1, . . . , Xn)

with X1, . . . , Xn functionnals of the noise and M a n-linear operator, you have to
also add

(L −1L)k0M
(
(L −1L)k1X1, . . . , (L

−1L)knXn

)
for any integers k0, k1, . . . , kn ∈ N. If one represents the finite set Tsemi with trees,
this corresponds to adding integer decorations on edges thus Tquasi is equipped with
a natural graduation c(τ) corresponding to the number of times the operator L −1L
appears on the tree τ ∈ Tquasi. This does not seems surprising since the other works
dealing with such quasilinear equations also add decorations on trees, however not
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integers one but infinite dimensional because of their parametrix approach. As far
as renormalisation is concerned, this imposed a condition of convergence where the
norm of each tree should be controlled by a geometric factor, that is

‖τ‖C|τ| . Kc(τ)

with constant K a positive constant.
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Chapter 4

The Anderson Hamiltonian

In this Chapter, we define and study the Anderson Hamiltonian

H := L+ ξ

where −L is the Laplace-Beltrami operator on a compact two-dimensional manifold
M without boundary or with smooth boundary under Dirichlet conditions. To apply
the construction of the first Chapter, one needs to have an Hörmander representation
for L. This is possible in this case with a number of vector fields possibly greater
than the dimension, see for example Section 4.2.1 from Stroock’s book [57]. The
random potential ξ is a spatial white noise and belongs almost surely to Cα−2 for
any α < 1. For a generic function u ∈ L2, the product uξ is ill-defined hence one
needs to find a proper domain for the operator. A natural method would be to take
the closure of the subspace of smooth functions for the operator norm

‖u‖L2 + ‖Hu‖L2 .

However this yields a trivial domain since Hu has the same regularity as the noise
because of the product uξ for smooth u thus does not belong to L2. The idea is
to construct a random domain DΞ depending on an enhancement Ξ of the noise
obtained through a renormalisation procedure. To do so, we use the paraproduct to
decompose the product for u ∈ Hα as

uξ = Puξ + Pξu+ Π(u, ξ).

In this expression, the roughest term is Puξ ∈ Cα−2 while Pξu + Π(u, ξ) formally
belongs to H2α−2. For a function u in the domain, we want to cancel out the
roughest part of the product using the Laplacian term Lu, hence we want

Lu = Puξ + v]

with v] ∈ H2α−2. This suggests the paracontrolled expansion

u = P̃uX + u]

with
X := −L−1ξ

and u] ∈ H2α. The operator L is not invertible but as for the definition of the
intertwined paraproduct P̃ and L−1 denotes an inverse up to the regularising operator
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e−L, see Chapter 1. We insist that we want functions in the domain to encode exactly
what is needed to have a cancellation between the Laplacian and the product. In
particular, H is not treated at all like a perturbation of the Laplacian. At this point,
two natural questions arise. Is the subspace of such paracontrolled functions dense
in L2 and can one make sense of the singular product?

1) For the first question, one can introduce a parameter s > 0, in the spirit of
what Gubinelli, Ugurcan and Zachhuber did in [38], and consider the modified
paracontrolled expansion

u = P̃suX + u]s

with the truncated paraproduct P̃s defined below. For s = s(Ξ) small enough,
the map Φs(u) := u−P̃suX is invertible as a perturbation of the identity and one
can show that the subspace of such paracontrolled functions is indeed dense.
The parameter s will also be a very useful tool to investigate the different
properties of H. Indeed, the Anderson operator will be given as

Hu = Lu]s + FΞ,s(u)

with FΞ,s : D(H) ⊂ L2 → L2 an explicit operator and as s goes to 0, u]s gets
closer to u while FΞ,s diverges. These different representations of H will yield
a family of bounds on the eigenvalues

(
λn(Ξ)

)
n≥1

of H of the form

m−(Ξ, s)λn −m(Ξ, s) ≤ λn(Ξ) ≤ m+(Ξ, s)λn +m(Ξ, s)

with (λn)n≥1 the eigenvalues of L. In partiular, m−(Ξ, s) and m+(Ξ, s) con-
verge to 1 while m(Ξ, s) diverges almost surely as s goes to 0.

2) For the second question, we use the corrector C with

Π(u, ξ) = uΠ(X, ξ) + C(u,X, ξ) + Π(u], ξ)

for u paracontrolled by X. One has to define the product Π(X, ξ) indepen-
dently of the operator, this is the renormalisation step. To do so, we use the
Wick product and set

Π(X, ξ) := lim
ε→0

(
Π(Xε, ξε)− E

[
Π(Xε, ξε)

])
with ξε a regularisation of the noise. In some sense explained in Proposition
5.8, the operator H is the limit of the renormalised operators

Hε := L+ ξε − cε

with cε := E
[
Π(Xε, ξε)

]
a smooth function diverging almost surely as ε goes

to 0. Note that on the torus, the noise is invariant by translation and cε is
constant.

The approach sketched above yields an operator H : D(H) ⊂ L2 → H2α−2 with
D(H) the space of paracontrolled functions. In two dimensions, 2α − 2 < 0 hence
one needs to refine the definition of the domain to get an unbounded operator in
L2. To this purpose, Allez and Chouk introduced in [2] the subspace of D(H) of
strongly paracontrolled functions still dense in L2. This was also used by Gubinelli,
Ugurcan and Zachhuber in [38] and adapted to the dimension 3 using a Hopf-Cole
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type transformation. We present here a different approach based on a higher order
expansion. In particular, the domain of H will consist of functions u such that

u = P̃uX1 + P̃uX2 + u]

where X1 ∈ Cα, X2 ∈ C2α are noise-dependent functions and u] ∈ H2. Note that
since we want to get bounds with respect to the enhanced noise Ξ, quantitative esti-
mates are needed and we keep track of the different explicit constants that appear,
in particular how small s needs to be with respect to the noise. If one is only interest
in qualitative results, details of almost all computations can be skipped.

The Anderson Hamiltonian is for example involved in the study of evolution
equations such as the heat equation with random multiplicative noise

∂tu = ∆u+ uξ

called the Parabolic Anderson model. It first appeared in [3] as a description of a
physical phenomena involving quantum-mechanical motion with an effect of mass
concentration called Anderson localization. It also describes random dynamics in
random environment, see the book [42] of König for a complete survey in a discrete
space setting. In dimension 1, the noise is regular enough for the multiplication to
make sense and the operator has been constructed by Fukushima and Nakao in [34]
without renormalisation using Dirichlet space methods. Dumaz and Labbé recently
gave in [29] a very accurate asymptotic behaviors in one dimension of the Anderson
localization. In two dimensions using paracontrolled calculus, Allez and Chouk were
the first to construct the operator on the torus, see [2]. They introduced the space
of strongly paracontrolled distributions to get an operator from L2 to itself with
a renormalisation procedure and proved self-adjointness with pure point spectrum.
They gave bounds on its eigenvalues and a tail estimate for the largest one. They
also studied the large volume limit and gave a bound on the rate of divergence. Then
Labbé constructed the operator in dimension ≤ 3 in [45] with different boundary
coundition using regularity structures. It relies on a reconstruction Theorem in
Besov spaces from his work [40] with Hairer. He also proved self-adjointess with
pure point spectrum and gave tail estimate for all the eigenvalues as well as bounds
for the large volume limit. Chouk and van Zuijlen also studied the large volume limit
in two dimensions, see [24]. Finally Gubinelli, Ugurcan and Zachhuber constructed
in [38] the operator in dimension 2 and 3 on the torus using a different approach.
With a finer description of the paracontrolled structure, they showed density of the
domain in L2 before studying the operator. They also proved self-adjointness with
pure point spectrum considering the bilinear form associated to H and considered
evolution PDEs associated to the Anderson Hamiltonian such as the Schrödinger
equation or the wave equation. Zachhuber used this approach in [59] to prove
Strichartz estimate in two dimensions.

We shall first construct in Section 4.1 the enhanced noise Ξ from ξ by a renormal-
isation procedure and prove exponential moments for its norm. The domain DΞ of
H is constructed in Section 4.2 and proved to be dense using a truncated paraprod-
uct P̃s. We show in particular in Proposition 5.5 that the natural norms of DΞ are
equivalent to the norm operator; this will give the upper bound for the eigenvalues.
The Section is ended with the computation of the Hölder regularity of the elements
of the domain. After showing that the operator is closed, we show in Section 4.3 that
H is the limit of the operators Hε in some sense which yields the symmetry of H.
We then control in Proposition 5.7 the H1 norm of u] from the associated bilinear
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form applied to u; this will give the lower bound for the eigenvalues. This gives
self-adjointness and pure point spectrum using the Babuška-Lax-Milgram Theorem
and we conclude the section with a bound on the convergence of the eigenvalues of
Hε to H.

As in the work of Allez and Chouk [2], Labbé [45] and of Gubinelli, Ugurcan and
Zachhuber [38], we construct a dense random subspace of L2 though a renormali-
sation step to get a self-adjoint operator with pure point spectrum. Our approach
is different since we perform a second order expansion using paracontrolled calculus
based on the heat semigroup on the manifold M . We refine the upper bounds on
the eigenvalues obtained in [2] on the torus while also providing lower bounds. We
get upper bounds for P(λn(Ξ) ≤ λ) for λ to +∞ and −∞. For λ to −∞, a bound
was first given in [45] for a bounded domain with different boundary conditions. We
have a more explicit dependence on n while a less precise bound with respect to λ.
To the best of our knowledge, no bounds for λ to +∞ were known. We also prove
that the eigenfunctions of H belong to C1− while the works [2, 45, 38] only gave
Sobolev regularity. For the Schrödinger equation, the construction of H on a mani-
fold yields immediatly the same result as Gubinelli, Ugurcan and Zachhuber get on
the torus, see [38]. As in their work, our construction of the Hamilton Anderson on
M could be used to study other evolution PDEs, this is done in the Chapter 6. All
these results are new in our geometrical framework and come from [50].

In [59], Zachhuber proves Strichartz inequalities for the Schrödinger equation on
the two-dimensional torus. In the joint work [51], we were able to extend the result
to a two-dimensional manifold. Furthermore, we obtained Strichartz inequalities for
the wave equation on a two-dimensional manifold using the almost sure Weyl-type
law obtained for the Anderson Hamiltonian. This is the content of Sections 6.1 and
6.2 in Chapter 6.

4.1 – Renormalisation and enhanced noise
As explained in the introduction, an element of the domain of H should behave
like the linear part X := −L−1ξ hence the product uξ does not make sense in
two dimensions. Using the corrector, we are able to define the product uξ for u
paracontrolled by X once the product Xξ is defined. To do so, a naive approach
would be to regularize the noise where ξε = Ψ(εL)ξ is a regularisation of the noise
and take ε to 0. The only condition we take is Ψ such that (Ψ(εL))ε belongs to
the class G, for example Ψ(εL) = eεL works. Since the product is ill-defined, the
quantity Π(Xε, ξε) diverges as ε goes to 0 with Xε := −L−1ξε. The now usual way
is to substract another diverging quantity cε such that the limit

Π(X, ξ) := lim
ε→0

(
Π(Xε, ξε)− cε

)
exists and take this as the definition of the product. This is the Wick renormali-
sation and the purpose of the following Theorem with the renormalised Anderson
Hamiltonian

Hε := L+ ξε − cε.

Theorem 4.1. Let α < 1 and

cε := E
[

Π(Xε, ξε)
]
.
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Then there exists a random distribution Π(X, ξ) that belongs almost surely to C2α−2

and such that
lim
ε→0

E
[∥∥Π(X, ξ)− (Π(Xε, ξε)− cε)

∥∥p
C2α−2

]
= 0

for any p ≥ 1.

Proof : Since the noise is Gaussian, we only need to control second order moment
using hypercontractivity. The resonant term Π(Xε, ξε) is a linear combination of
terms of the form

Iε :=

∫ 1

0

P •t
(
Q1
tXε ·Q2

t ξε
) dt

t

with P ∈ StGC[0,b] and Q1, Q2 ∈ StGC
b
2 . We also define the renormalised quantity

Jε := Iε − E[Iε].

Let u ∈ (0, 1), x ∈ M and Q ∈ StGCr with r > |2α − 2|. The expectation
E
[
|Qu

(
Iε
)
(x)|2

]
is given by the integral over M2 × [0, 1]2 of

KQuP •t
(x, y)KQuP •s (x, z)E

[
Q1
tXε(y)Q2

t ξε(y)Q1
sXε(z)Q2

sξε(z)
]

against the measure µ(dy)µ(dz)(ts)−1dtds. Using the Wick formula, we have

E
[
Q1
tXε(y)Q2

t ξε(y)Q1
sXε(z)Q2

sξε(z)
]

= E
[
Q1
tXε(y)Q2

t ξε(y)
]
E
[
Q1
sXε(z)Q2

sξε(z)
]

+ E
[
Q1
tXε(y)Q1

sXε(z)
]
E
[
Q2
t ξε(y)Q2

sξε(z)
]

+ E
[
Q1
tXε(y)Q2

sξε(z)
]
E
[
Q1
sXε(z)Q2

t ξε(y)
]

= (1) + (2) + (3)

and this yields

E
[
|Qu

(
Iε
)
(x)|2

]
= I(1)

ε (x) + I(2)
ε (x) + I(3)

ε (x).

The first term corresponds exactly to the extracted diverging quantity since

I(1)
ε = E

[∫ 1

0

QuP
•
t

(
Q1
tXε ·Q2

t ξε
) dt

t

]2

= E
[
Qu(Iε)

]2
and we have

E
[
|Qu

(
Jε
)
(x)|2

]
= E

[{
Qu

(
Iε
)
(x)− E[Qu

(
Iε
)
](x)

}2
]

= I(2)
ε (x) + I(3)

ε (x).

Using that (Ψ(εL))ε belongs to G, ξ is an isometry from L2 to square-integrable
random variables and Lemma 1.6, we have

I(2)
ε (x) + I(3)

ε (x)

.
∫
M2

∫
[0,1]2

KQuP •t
(x, y)KQuP •s (x, z)

〈
G2ε+t+s(y, ·),G2ε+t+s(z, ·)

〉2
µ(dy)µ(dz)tsdtds

.
∫
M2

∫
[0,1]2

KQuP •t
(x, y)KQuP •s (x, z)G2ε+t+s(y, z)

2µ(dy)µ(dz)tsdtds

.
∫
M2

∫
[0,1]2
Gu+t(x, y)Gu+s(x, z)G2ε+t+s(y, z)

2µ(dy)µ(dz)tsdtds

.
∫
M2

∫
[0,1]2

(2ε+ t+ s)−
d
2Gu+t(x, y)Gu+s(x, z)G2ε+t+s(y, z)µ(dy)µ(dz)tsdtds

.
∫

[0,1]2
(2ε+ t+ s)−

d
2 (ε+ u+ t+ s)−

d
2 tsdtds

. (ε+ u)2−d
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hence the family
(
Π(Xε, ξε)− cε

)
ε>0

is bounded in C2α−2 for any α < 1 since d = 2.
These computations also show that the associated linear combination of

J :=

∫ 1

0

{
P •t
(
Q1
tX ·Q2

t ξ
)
− E

[
P •t
(
Q1
tX ·Q2

t ξ
)] }dt

t

yields a well-defined random distribution of C2α−2 for α < 1 that we denote Π(X, ξ).
The same type of computations show the convergence and completes the proof.

�

The enhanced noise is defined as

Ξ :=
(
ξ,Π(X, ξ)

)
∈ X α

where X α := Cα−2 × C2α−2. One has to keep in mind that the notation Π(X, ξ) is
only suggestive. In particular for almost every ω, one has

Π
(
X, ξ

)
(ω) 6= Π

(
X(ω), ξ(ω)

)
since the product is almost surely ill-defined. We also denote the regularized en-
hanced noise Ξε :=

(
ξε,Π(Xε, ξε)− cε

)
with the norm

‖Ξ− Ξε‖Xα := ‖ξ − ξε‖Cα−2 +
∥∥Π(X, ξ)− Π(Xε, ξε) + cε

∥∥
C2α−2

which goes to 0 as ε goes to 0. Using that the noise is Gaussian and almost surely
in C−1−κ for all κ > 0, we have exponential moment for the norm of the enhanced
noise.

Proposition 4.2. There exists h > 0 such that

E
[
eh‖ξ‖

2
Cα−2+h‖Π(X,ξ)‖C2α−2

]
<∞.

Proof : Let t ∈ (0, 1) and Q ∈ StGCr with r > |α − 2|. Using the Gaussian
hypercontractivity, we have

E
[
‖Qtξ‖pLpx

]
=

∫
M

E [|Qtξ|p(x)]µ(dx)

≤ (p− 1)
p
2

∫
M

E
[
|Qtξ|2(x)

] p
2 µ(dx)

hence we only need to bound the second moment, which is bounded by

E
[
|Qtξ|2(x)

]
= ‖KQt(x, ·)‖2

L2 .
1

µ
(
B(x,

√
t)
) .

Using that B
α−2+ 1

p

2p,2p ↪→ Bα−2
∞,∞, we have

E
[
eh‖ξ‖

2
Cα−2

]
=
∑
p≥0

hp

p!
E
[
‖ξ‖2p

Cα−2

]
≤

p0∑
p=0

hp

p!
E
[
‖ξ‖2p

Cα−2

]
+
∑
p>p0

hp

p!
E

[
‖ξ‖2p

B
α−2+ 1

p
2p,2p

]

.
p0∑
p=0

hp

p!
E
[
‖ξ‖2p0

Cα−2

] p
p0 +

∑
p>p0

hp(2p− 1)p

p!
Vol(M)
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for p0 >
2

1−α hence the result for h small enough. For the bound on Π(X, ξ), the
computations are the same without the square since it belongs to the second Wiener
chaos hence Gaussian hypercontractivity gives

E
[
|QtΠ(X, ξ)|p(x)

]
≤ (p− 1)p E

[
|QtΠ(X, ξ)|2(x)

] p
2 .

�

4.2 – Domain of the Hamiltonian

We first motivate the definition of the domain. Let α ∈ (2
3
, 1) such that ξ belongs

almost surely to Cα−2. Let X ∈ Cα be a noise-dependent function and consider
u = P̃u′X + u] a function paracontrolled by X with u′ ∈ Hα and u] ∈ H2α. Then

Hu = Lu+ ξu

= L
(
P̃u′X + u]

)
+ Puξ + Pξu+ Π

(
P̃u′X + u], ξ

)
= Pu′LX + Puξ +

(
Lu] + Pξu+ u′Π(X, ξ) + C(u′, X, ξ) + Π(u], ξ)

)
.

Taking u′ = u and −LX = ξ, the first two terms cancel each other and we get

Hu = Lu] + Pξu+ uΠ(X, ξ) + C(u,X, ξ) + Π(u], ξ) ∈ H2α−2.

This yields an unbounded operator in L2 with values in H2α−2. Since 2α − 2 < 0,
Hu does not belong to L2 hence we do not have an operator from L2 to itself
and this makes harder to study the spectral properties of H. To get around this,
Allez and Chouk introduced in [2] the subspace of functions u paracontrolled by
L−1ξ such that Hu does belong to L2 called strongly paracontrolled functions. This
approach was also used by Gubinelli, Ugurcan and Zachhuber in [38] however we
proceed differently and use higher order expansions. Let X1 := X and X2 ∈ C2α

be another noise-dependent function. Given u2 ∈ Hα and u] ∈ H3α, we consider
u = P̃uX1 + P̃u2X2 + u] and we have

Hu = Pu2LX2 + uΠ(X1, ξ) + C(u,X1, ξ) + Pu2Π(X2, ξ) + D(u2, X2, ξ)

+ PuPξX1 + S(u,X1, ξ) + PξP̃u2X2 + Pξu
] + Lu] + Π(u], ξ).

Taking u2 = u and −LX2 = Π(X1, ξ)+PξX1 cancels the terms of Sobolev regularity
2α− 2 and we get

Hu = Π
(
u,Π(X1, ξ)

)
+ PΠ(X1,ξ)u+ C(u,X1, ξ) + PuΠ(X2, ξ) + D(u,X2, ξ)

+ S(u,X1, ξ) + PξP̃uX2 + Pξu
] + Lu] + Π(u], ξ)

hence Hu ∈ H3α−2 ⊂ L2. This motivates the following definition for the domain DΞ

of H with
−LX1 := ξ and − LX2 := Π(X1, ξ) + PξX1.

Definition. We define the set DΞ of functions paracontrolled by Ξ as

DΞ :=
{
u ∈ L2; u] := u− P̃uX1 − P̃uX2 ∈ H2

}
.
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The domain DΞ is the random subspace of functions u ∈ L2 paracontrolled by
X1 and X2 up to a remainder u] ∈ H2 given by the explicit formula

u] = Φ(u) := u− P̃uX1 − P̃uX2.

With this notation, we have DΞ = Φ−1(H2) and since X1 + X2 ∈ Cα, we actually
have DΞ ⊂ Hβ for every β < α. However, we have no idea at this point if this
domain is trivial or dense in L2 and an inverse to Φ would be useful. However, it is
not necessarily invertible so we introduce a parameter s > 0 and consider

Φs :

∣∣∣∣ DΞ → H2

u 7→ u− P̃suX1 − P̃suX2

where P̃s is defined as

P̃sfg :=
∑

a∈Ab;a2<
b
2

∑
Q∈StGCa

bQ

∫ s

0

Q̃1•
t

(
Q2
tf · Q̃3

tg
) dt

t
.

The important property is that while still encoding the important information of
the paraproduct P̃, the truncated paraproduct P̃s is small as an operator for s small;
this is quantified as follows and proved in Proposition A.6 in Appendix.

Proposition 4.3. Let γ ∈ (0, 1) be a regularity exponent and X ∈ Cγ. For any
β ∈ [0, γ), we have

‖u 7→ P̃suX‖L2→Hβ .
s
γ−β

4

γ − β
‖X‖Cγ

Since X1 and X2 depends continuously on Ξ, this implies the existence of m > 0
such that

‖P̃suX1 + P̃suX2‖Hβ ≤ m
s
α−β

4

α− β
‖Ξ‖Xα(1 + ‖Ξ‖Xα)‖u‖L2

thus the operator u 7→ P̃su(X1 +X2) is continuous from L2 to Hβ for β ∈ [0, α) and
arbitrary small as s goes to 0. Hence we get that

Φs : Hβ → Hβ

is invertible for s = s(Ξ, β) small enough as a perturbation of the identity. Since
P̃uXi − P̃suXi is a smooth function for any s > 0, the domain is still given by

DΞ = Φ−1(H2) = (Φs)−1(H2)

and we have a decomposition given by Φs for any u ∈ DΞ, that is

u = P̃suX1 + P̃suX2 + Φs(u).

In particular, we emphasize that the domain does not depend on s while the
decomposition we consider for element of the domain might. We denote

x := ‖Ξ‖Xα

to keep track of the quantitative dependance with respect to the enhanced noise Ξ
and lighten the notation. We use the letter x as a reminder of the noise-dependance.
For any 0 ≤ β < α, we define

sβ(Ξ) :=

(
α− β

mx(1 + x)

) 4
α−β
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such that for s < sβ(Ξ), the operator Φs : Hβ → Hβ is invertible and we denote
Γ its inverse. We choose to drop the parameter s in the notation to lighten the
computations however the reader should keep in mind that the map Γ depends on
s. It is implicitly characterized by the relation

Γu] = P̃sΓu]X1 + P̃sΓu]X2 + u]

for any u] ∈ Hβ. Our choice of P̃s is motivated by the preservation of the intertwining
relation

P̃s = L−1 ◦ Ps ◦ L
with Ps defined as P̃s. The map Γ will be a crucial tool to study the domain DΞ, in
particular to show density in L2. Continuity estimates for Φs and Γ are given in the
next Proposition. Note that in the following, this bound of the form ‖a − b‖ ≤ c
will be used as ‖a‖ ≤ ‖b‖+ c or ‖b‖ ≤ ‖a‖+ c.

Proposition 4.4. Let β ∈ [0, α) and s ∈ (0, 1). We have

‖Φs(u)− u‖Hβ ≤
m

α− β
s
α−β

4 x(1 + x)‖u‖L2 .

If moreover s < sβ(Ξ), this implies

‖Γu]‖Hβ ≤
1

1− m
α−βs

α−β
4 x(1 + x)

‖u]‖Hβ .

Proof : The bounds on Φs follows directly from Proposotion 4.3. Moreover since
m

α− β
s
α−β

4 x(1 + x) < 1

for s < sβ(Ξ), the map Φs : Hβ → Hβ is invertible and we have

‖Γu]‖Hβ ≤
1

1− m
α−βs

α−β
4 x(1 + x)

‖u]‖Hβ .

�

Let us insist that ‖u]s‖Hβ is always controlled by ‖u‖Hβ while s need to be
small depending for ‖u‖Hβ to be controlled by ‖u]s‖Hβ . We also define the map
Γε associated to the regularized noise Ξε as

Γεu
] = P̃sΓεu]X

(ε)
1 + P̃sΓεu]X

(ε)
2 + u]

with
−LX(ε)

1 := ξε and − LX(ε)
2 := Π(X

(ε)
1 , ξε)− cε + PξεX

(ε)
1 .

It satisfies the same bound as Γ with ‖Ξε‖Xα and the following approximation
Lemma holds. We do not need to explicit the constant, it depends polynomialy
on the noise Ξ and diverges as s goes to sβ(Ξ).

Lemma 4.5. For any 0 ≤ β < α and 0 < s < sβ(Ξ), we have

‖Id− ΓΓ−1
ε ‖L2→Hβ .Ξ,s,β ‖Ξ− Ξε‖Xα .

In particular, this implies the norm convergence of Γε to Γ with the bound

‖Γ− Γε‖Hβ→Hβ .Ξ,s,β ‖Ξ− Ξε‖Xα .
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Proof : Given any u ∈ Hβ, we have u = ΓΓ−1(u) = Γ(u − P̃suX1 − P̃suX2). Using
Proposition 4.4, we get

‖u− ΓΓ−1
ε (u)‖Hβ =

∥∥Γ
(
u− P̃suX1 − P̃suX2

)
− Γ

(
u− P̃suX

(ε)
1 − P̃suX

(ε)
2

)∥∥
Hβ

=
∥∥∥Γ
(

P̃su
(
X

(ε)
1 −X1

)
+ P̃su

(
X

(ε)
2 −X2

))∥∥∥
Hβ

≤ α− β
α− β −msα−β4 x(1 + x)

∥∥∥P̃su
(
X

(ε)
1 −X1

)
+ P̃su

(
X

(ε)
2 −X2

)∥∥∥
Hβ

.
s
α−β

4 (1 + x)

α− β −msα−β4 x(1 + x)
‖Ξ− Ξε‖Xα‖u‖L2

using the Proposition 4.3 and that X(ε)
i −Xi is i-linear in Ξε−Ξ for i ∈ {1, 2}. The

second statement follows from

‖Γε − Γ‖Hβ→Hβ = ‖
(
Id− ΓΓ−1

ε

)
Γε‖Hβ→Hβ ≤ ‖Id− ΓΓε‖Hβ→Hβ‖Γε‖Hβ→Hβ

with the bound uniform in ε for s < sβ(Ξε)

‖Γε‖Hβ→Hβ ≤
α− β

α− β −msα−β4 x(1 + x)
.

�

This allows to prove density of the domain.

Corollary. The domain DΞ is dense in Hβ for any β ∈ [0, α).

Proof : Given f ∈ H2, Γ(gε) ∈ DΞ where gε = Γ−1
ε f ∈ H2 thus we can conclude

with the Lemma 4.5 that
lim
ε→0
‖f − Γ(gε)‖Hβ = 0.

The density of H2 in Hβ then yields the result.

�

Taking into account in the previous computation the smooth term e−L coming
from the intertwining relation, we are able to define H as an unbounded operator
in L2 with domain DΞ as follows.

Definition. We define the Anderson Hamiltonian H : DΞ → L2 as

Hu = Lu] + Pξu
] + Π(u], ξ) +R(u)

with u] = Φ(u) and R : DΞ → L2 given by

R(u) := Π
(
u,Π(X1, ξ)

)
+ PΠ(X1,ξ)u+ C(u,X1, ξ) + PuΠ(X2, ξ) + D(u,X2, ξ)

+ S(u,X1, ξ) + PξP̃uX2 − e−L (PuLX1 + PuLX2) .

The parameter s does not appear in the definition of H, it is a tool to study the
properties of the operator. Indeed, one has different representations of Hu as

Hu = Lu]s + Pξu
]
s + Π(u]s, ξ) +R(u) + Ψs(u)
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where u]s := Φs(u) and

Ψs(u) :=
(
L+ Pξ ·+Π(·, ξ)

)(
P̃su − P̃u

)
(X1 +X2).

The different representations of H through the parameter s > 0 will be useful to get
different bounds. For example, we can compare the graph norm of H given as

‖u‖2
H := ‖u‖2

L2 + ‖Hu‖2
L2

and the natural norms of the domain

‖u‖2
DΞ

:= ‖u‖2
L2 + ‖Φs(u)‖2

H2

with the following Proposition. For s ∈ (0, 1) and δ > 0, we introduce the constant

m2
δ(Ξ, s) := k

(
s
α−2

2 x(1 + x2) + s
α−β

4 x2(1 + x3) + δ−3
(
1 + s

α
4 x(1 + x)

)
x4(1 + x8)

)
where the index “2” refers to H2 and for a constant k > 0 large enough depending
only on M and L. In particular, it depends polynomialy on the enhanced noise and
diverges as s or δ goes to 0.

Proposition 4.6. Let u ∈ DΞ and s > 0. For any δ > 0, we have

(1− δ)‖u]s‖H2 ≤ ‖Hu‖L2 +m2
δ(Ξ, s)‖u‖L2

and
‖Hu‖L2 ≤ (1 + δ)‖u]s‖H2 +m2

δ(Ξ, s)‖u‖L2

with u]s = Φs(u).

Proof : For any s > 0, we have

Hu = Lu]s + Pξu
]
s + Π(u]s, ξ) +R(u) + Ψs(u).

Then Lu]s ∈ L2 and for β = 1
2
(2

3
+ α), we have

‖R(u)‖L2 . x(1 + x2)‖u‖Hβ

‖Ψs(u)‖L2 . s
α−2

2 x(1 + x2)‖u‖L2

‖Pξu]s + Π(u]s, ξ)‖L2 . ‖ξ‖Cα−2‖u]s‖H 4
3
.

One can bound the Hβ norm of u using Proposition 4.4 with

‖u‖Hβ ≤ ‖u]s‖Hβ +
m

α− β
s
α−β

4 x(1 + x)‖u‖L2

and since β < 1, one has

‖Lu]s −Hu‖L2 .
(
s
α−2

2 x(1 + x2) + s
α−β

4 x2(1 + x3)
)
‖u‖L2 + x(1 + x2)‖u]s‖H 4

3
.

Since 0 < β < 2, we have for any t > 0

‖u]s‖H 4
3
.

∥∥∥∥∫ t

0

(t′L)e−t
′Lu]s

dt′

t′

∥∥∥∥
H

4
3

+
∥∥e−tLu]s∥∥H 4

3

. t
2
3‖u]s‖H2 + t−

4
2

(
1 + s

α
4 x(1 + x)

)
‖u‖L2 .
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Take

t =

(
δ

kx(1 + x2)

) 3
2

with k the constant from the previous inequality and δ > 0. This yields

‖Lu]s −Hu‖L2 . m2
δ(Ξ, s)‖u‖L2 + δ‖u]s‖H2 .

and completes the proof.

�

Finally, we can compute the Hölder regularity of the domain. In particular, this
will implies the α-Hölder regularity of the eigenfunctions of H.

Proposition. We have
DΞ ⊂ Cα.

Proof : The Besov embedding in two dimensions implies

H2 ↪→ L∞

and Φs : L∞ → L∞ is also invertible hence

DΞ =
(
Φs
)−1

(H2) ⊂ L∞.

Given any u ∈ DΞ, we get

‖u‖Cα . ‖u‖L∞‖X1 +X2‖Cα + ‖u]s‖Cα
.Ξ ‖u‖L∞ + ‖u]s‖H2

and the proof is complete.

�

4.3 – Self-adjointness and spectrum

4.3.1 – The operator is symmetric

We show that H is a closed self-adjoint operator on its dense domain DΞ ⊂ L2.
This relies on approximation results and the Babuška-Lax-Milgram Theorem. The
spectrum is pure point and the eigenvalues verify a min-max principle that allows
to get estimates depending on the eigenvalues of L.

Proposition 4.7. The operator H is closed on its domain DΞ.
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Proof : Let (un)n≥0 ⊂ DΞ be a sequence such that

un → u in L2 and Hun → v in L2.

Proposition 4.6 gives that
(
Φ(un)

)
n≥0

is a Cauchy sequence in H2 hence converges
to u] ∈ H2. Since Φ : L2 → L2 is continuous, we have Φ(u) = u] hence u ∈ DΞ.
Finally, we have

‖Hu− v‖L2 ≤ ‖Hu−Hun‖L2 + ‖Hun − v‖L2

.Ξ ‖u]n − u]‖H2 + ‖u− un‖L2 + ‖Hun − v‖L2

hence Hu = v and H is closed on DΞ.

�

In some sense, the operator H should be the limit of the renormalised Hε as ε
goes to 0. Since D(Hε) = H2, one can not compare directly the operators. However
given any u ∈ L2, we have

u =
(
Γ ◦ Φs

)
(u) = lim

ε→0

(
Γε ◦ Φs

)
(u).

Thus for u ∈ DΞ, the approximation uε :=
(
Γε ◦ Φs

)
(u) belongs to H2 and one can

consider the difference

‖Hu−Hεuε‖L2 = ‖(HΓ−HεΓε)u
]‖L2

with u] := Φs(u). The following Proposition gives a bound for this quantity which
yields the convergence as ε goes to 0 for s is small enough. We do not need to
explicit the constant, it depends polynomialy on the enhanced noise Ξ and diverges
as s goes to s0(Ξ).

Proposition 4.8. Let u ∈ DΞ and s > 0 small enough. Then

‖Hu−Hεuε‖L2 .Ξ,s ‖u]s‖H2‖Ξ− Ξε‖Xα

with u]s = Φs(u) and uε := Γεu
]
s. In particular, this implies that HεΓε converges to

HΓ in norm as ε goes to 0 as operators from H2 to L2.

Proof : We have

Hεuε = Lu]s + Pξεu
]
s + Π(u]s, ξ) +Rε(uε) + Ψs

ε(uε)

where Rε and Ψs
ε are defined as R and Ψs with Ξε instead of Ξ. For β = 1

2
(2

3
+ α),

we have

‖R(u)−Rε(uε)‖L2 ≤ ‖R(u− uε)‖L2 + ‖(R−Rε)(uε)‖L2

. x(1 + x2)‖u− uε‖Hβ + (1 + x)‖Ξ− Ξε‖Xα‖uε‖Hβ

.
(
x(1 + x2)‖Γ− Γε‖Hβ→Hβ + (1 + x)‖Γε‖Hβ→Hβ‖Ξ− Ξε‖Xα

)
‖u]s‖H2

and the same reasoning gives

‖Ψs(u)−Ψs
ε(uε)‖L2 .s,Ξ ‖u− uε‖L2 + ‖Ξ− Ξε‖Xα .

Thus one completes the proof with the bound ‖Γ− Γε‖Hβ→Hβ from Lemma 4.5.

�

The symmetry of H immediately follows.

Corollary. The operator H is symmetric.
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Proof : Let u, v ∈ DΞ and consider u] := Φs(u) and v] := Φs(v) for s < s0(Ξ).
Since Hε is a symmetric operator, we have

〈Hu, v〉 = lim
ε→0
〈HεΓεu

],Γεv
]〉 = lim

ε→0
〈Γεu], HεΓεv

]〉 = 〈u,Hv〉

using that HεΓε converges to HΓ and Γε to Γ in norm convergence.

�

4.3.2 – The operator is self-adjoint
The next Proposition states that the quadratic form associated to H is bounded
from below by the H1 norm of u]. This weak coercivity property will give below
self-adjointness with the Babuška-Lax-Milgram Theorem. This was already used
in the work [38] of Gubinelli, Ugurcan and Zachhuber, where the proof of self-
adjointness relies on the reasoning of almost duality encoded in the operator A. For
s ∈ (0, 1) and δ > 0, introduce the constant

m1
δ(Ξ, s) := k

{
x(1 + x2) + s

α−β
4 x2(1 + x3) + s

α−2
2 x(1 + x2) + s

α−4
2 x

+ δ−
β

1−β

(
x(1 + x2) + s

α−β
4 x2(1 + x)

) β
1−β
(

1 + s
α
4 x(1 + x)

)}
where β = 1

2
(2

3
+ α) and for a constant k > 0 large enough depending only on M

and L while the index “1” refers to H1. In particular, it depends polynomialy on
the enhanced noise and diverges as s or δ goes to 0.

Proposition 4.9. Let u ∈ DΞ and s > 0. For any δ > 0, we have

(1− δ)〈∇u]s,∇u]s〉 ≤ 〈u,Hu〉+m1
δ(Ξ, s)‖u‖2

L2

and
(1− δ)〈∇u]s,∇u]s〉 ≤ 〈u,Hεu〉+m1

δ(Ξ, s)‖u‖2
L2

where u]s = Φs(u).

Proof : For u ∈ DΞ, we have

Hu = Lu]s + Pξu
]
s + Π(u]s, ξ) +R(u) + Ψs(u)

with u]s = Φs(u) ∈ H2. Thus

〈u, Lu]s〉 =
〈

P̃suX1, Lu
]
s

〉
+
〈

P̃suX2, Lu
]
s

〉
+
〈
u]s, Lu

]
s

〉
=
〈

PsuLX1, u
]
s

〉
+
〈

PsuLX2, u
]
s

〉
+
〈
∇u]s,∇u]s

〉
and this yields

〈u,Hu〉 = −
〈

Psuξ, u
]
s

〉
+
〈

PsuLX2, u
]
s

〉
+
〈
∇u]s,∇u]s

〉
+
〈
u,Pξu

]
s + Π(u]s, ξ)

〉
+
〈
u,R(u) + Ψs(u)

〉
= −A(u, ξ, u]s) +

〈
PsuLX2, u

]
s

〉
+
〈
∇u]s,∇u]s

〉
+
〈
u,Pξu

]
s

〉
+
〈
u,R(u) + Ψs(u)

〉
+
〈
(Pu − Psu)ξ, u

]
s

〉
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where A(u, ξ, u]) =
〈

Puξ, u
]
〉
−
〈
u,Π(u], ξ)

〉
. For β := 1

2
(2

3
+ α), we have∣∣〈u,R(u)

〉∣∣ . ‖u‖L2‖R(u)‖L2 . x(1 + x2)‖u‖L2‖u‖Hβ ,∣∣〈u,Pξu]s〉∣∣ . ‖u‖Hβ‖Pξu]s‖C2β−2 . x‖u‖Hβ‖u]s‖Hβ ,∣∣〈PuLX2, u
]
s

〉∣∣ . ‖PuLX2‖H2β−2‖u]s‖Hβ . x2‖u‖L2‖u]s‖Hβ .

Using Proposition 1.5, we have∣∣A(u, ξ, u]s)
∣∣ . ‖ξ‖Cα−2‖u‖Hβ‖u]s‖Hβ . x‖u‖Hβ‖u]s‖Hβ .

Finally, we have∣∣〈u,Ψs(u)
〉∣∣ . ‖u‖L2‖Ψs(u)‖L2 . s

α−2
2 x(1 + x2)‖u‖2

L2∣∣〈(Pu − Psu)ξ, u
]
s

〉∣∣ . ‖(Pu − Psu)ξ‖L2‖u]s‖L2 . s
α−4

2 x‖u‖L2‖u]s‖L2

with Proposition A.7 in Appendix. Since u ∈ DΞ, we have

‖u‖Hβ ≤ ‖u]s‖Hβ +
m

α− β
s
α−β

4 x(1 + x)‖u‖L2

hence there exists k > 0 such that〈
∇u]s,∇u]s

〉
≤
〈
u,Hu

〉
+ k
(
x(1 + x2) + s

α−β
4 x2(1 + x3) + s

α−2
2 x(1 + x2) + s

α−4
2 x
)
‖u‖2

L2

+ k
(
x(1 + x2) + s

α−β
4 x2(1 + x)

)
‖u]s‖Hβ .

Since 0 < β < 1, we have for any t > 0

‖u]s‖2
Hβ .

∥∥∥∥∫ t

0

(t′L)e−t
′Lu]s

dt′

t′

∥∥∥∥2

Hβ
+
∥∥e−tLu]s∥∥2

Hβ

. t1−β‖u]s‖2
H1 + t−β

(
1 + s

α
4 x(1 + x)

)2

‖u‖2
L2 .

Given any δ > 0, we set

t =

 δ

k′
(
x(1 + x2) + s

α−β
4 x2(1 + x)

)
 1

1−β

where k′ > 0 the constant from the previous inequality and this yields

(1− δ)
〈
∇u]s,∇u]s

〉
≤
〈
u,Hu

〉
+m1

δ(Ξ, s)‖u‖L2 .

The same computations show

(1− δ)〈∇u]s,∇u]s〉 ≤ 〈u,Hεu〉+m1
δ(Ξε, s)‖u‖2

L2 .

Since ‖Ξε−Ξ‖α goes to 0 as ε goes to 0, the result holds uniformly in ε withm1
δ(Ξ, s).

�

This implies that H is almost surely bounded below by the random variable
−m1

δ(Ξ, s) for any δ > 0 and s > 0. Using the Babuška-Lax-Milgram Theorem, one
gets an invertible operator via the solution of

(H + kΞ)u = v

for kΞ > m1
δ(Ξ, s) and v ∈ L2.
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Proposition 4.10. Let δ ∈ (0, 1) and s > 0. Then for any constant kΞ > m1
δ(Ξ, s),

the operators H + kΞ and Hε + kΞ are invertibles. Moreover the operators(
H + kΞ

)−1
: L2 → DΞ(

Hε + kΞ

)−1
: L2 → H2

are bounded.

Proof : We want to use the Theorem of Babuška-Lax-Milgram, see [5]. This is a
generalization of the Lax-Milgram Theorem with a weaker condition of coercivity.
Since kΞ > m1

δ(Ξ, s), Proposition 4.9 gives(
kΞ −m1

δ(Ξ, s)
)
‖u‖2

L2 <
〈
(H + kΞ)u, u

〉
for u ∈ DΞ. Considering the norm

‖u‖2
DΞ

= ‖u‖2
L2 + ‖u]s‖2

H2

on DΞ, this yields a weakly coercive operator using Proposition 4.6 in the sense that

‖u‖DΞ
.Ξ ‖(H + kΞ)u‖L2 = sup

‖v‖L2=1

〈
(H + kΞ)u, v

〉
for any u ∈ DΞ. Moreover, the bilinear map

B : DΞ × L2 → R
(u, v) 7→

〈
(H + kΞ)u, v

〉
is continuous since Proposition 4.6 implies

|B(u, v)| ≤ ‖(H + kΞ)u‖L2‖v‖L2 .Ξ ‖u‖DΞ
‖v‖L2

for u ∈ DΞ and v ∈ L2. The last condition we need is that for any v ∈ L2\{0}, we
have

sup
‖u‖DΞ

=1

|B(u, v)| > 0.

Let assume that there exists v ∈ L2 such that B(u, v) = 0 for all u ∈ DΞ. Then

∀u ∈ DΞ, 〈u, v〉DΞ,D∗Ξ = 0.

hence v = 0 as an element of D∗Ξ. By density of DΞ in L2, this implies v = 0 in
L2 hence the property we want. By the Theorem of Babuška-Lax-Milgram, for any
f ∈ L2 there exists a unique u ∈ DΞ such that

∀v ∈ L2, B(u, v) = 〈f, v〉.

Moreover, we have ‖u‖DΞ
.Ξ ‖f‖L2 hence the result for (H + kΞ)−1. The same

argument works for Hε + kΞ since Proposition 4.9 also holds for Hε with bounds
uniform in ε.

�

Using that a closed symmetric operator on a Hilbert space is self-adjoint if it has
at least one real value in its resolvent set, this immediatly implies that H and Hε

are self-adjoint, see [56]. Moreover, the resolvant is a compact operator from L2 to
itself since DΞ ⊂ Hβ for any β ∈ [0, α) hence the following result.
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Corollary 4.11. The operators H and Hε are self-adjoint with pure point spectrum(
λn(Ξ)

)
n≥1

and
(
λn(Ξε)

)
n≥1

which are nondecreasing diverging sequences without
accumulation points. Moreover, we have

L2 =
⊕
n≥1

Ker
(
H − λn(Ξ)

)
with each kernel being of finite dimension. We finally have the min-max principle

λn(Ξ) = inf
D

sup
u∈D;‖u‖L2=1

〈Hu, u〉

where D is any n-dimensional subspace of DΞ that can also be given as

λn(Ξ) = sup
v1,...,vn−1∈L2

inf
u∈Vect(v1,...,vn−1)⊥

‖u‖
L2=1

〈Hu, u〉.

4.3.3 – Comparison between the spectrum of H and L
A natural question now is to estimate the size of the eigenvalues of H and try to get
back geometric informations on the manifold M as one can do from the Laplacian.
Let λ be an eigenvalue of H and u ∈ DΞ such that

Hu = λu.

Then there exists u] ∈ H2 such that u = Γu] thus

HΓu] = λΓu].

This yields
HΓu] = λu] + λ

(
Γ− Id

)
u]

hence one can relate the spectrum of H to the one of HΓ and the parameter s
measures the error since (

Γ− Id
)
u] = P̃sΓu]X1 + P̃sΓu]X2.

And since HΓ is a perturbation of L, one can relate the spectrum of HΓ to the
spectrum of L, as stated in the following Proposition using the min-max result. We
denote by (λn)n≥1 the non-decreasing positive sequence of the eigenvalues of L, since
it corresponds to the case Ξ = 0. For s ∈ (0, 1) and δ > 0, introduce the constant

m+
δ (Ξ, s) := (1 + δ)

(
1 +

m

α
s
α
4 x(1 + x)

)
.

If s < s0(Ξ), we also introduce

m−δ (Ξ, s) := (1− δ) 1

1− m
α
s
α
4 x(1 + x)

.

In particular, the constants depend polynomialy on the enhanced noise Ξ and con-
verge to 1 as δ and s goes to 0. Moreover, m−δ (Ξ, s) diverges as s goes to s0(Ξ).
Write a, b ≤ c to mean that we have both a ≤ c and b ≤ c.

Proposition 4.12. Let s ∈ (0, 1) and δ > 0. Given any n ∈ Z+, we have

λn(Ξ), λn(Ξε) ≤ m+
δ (Ξ, s)λn + (1 + δ)

(
1 +

m

α
s
α
4 x(1 + x)

)
+m2

δ(Ξ, s).

If moreover s < s0(Ξ), we have

λn(Ξ), λn(Ξε) ≥ m−δ (Ξ, s)λn −m1
δ(Ξ, s).
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Proof : Let u]1, . . . , u]n ∈ H2 be an orthonormal family of eigenfunctions of L asso-
ciated to λ1, . . . , λn and consider

ui := Γu]i ∈ DΞ

for 1 ≤ i ≤ n. Since Γ is invertible, the family (u1, . . . , un) is free thus the min-max
representation of λn(Ξ) yields

λn(Ξ) ≤ sup
u∈Vect(u1,...,un)

‖u‖
L2=1

〈Hu, u〉.

Given any normalised u ∈ Vect(u1, . . . , un), we have

〈Hu, u〉 ≤ ‖Hu‖L2 ≤ (1 + δ)‖u]s‖H2 +m2
δ(Ξ, s)

for u]s = Φs(u) using Proposition 4.6. Moreover

‖u]s‖H2 ≤ (1 + λn)‖u]s‖L2 ≤ (1 + λn)
(

1 +
m

α
s
α
4 x(1 + x)

)
hence the upper bound

λn(Ξ) ≤ m+
δ (Ξ, s)λn + 1 +

m

α
s
α
4 x(1 + x) +m2

δ(Ξ, s).

For the lower bound, we use the min-max representation of λn(Ξ) under the form

λn(Ξ) = sup
v1,...,vn−1∈L2

inf
u∈Vect(v1,...,vn−1)⊥

‖u‖
L2=1

〈Hu, u〉.

Introducing
F := Vect(um;m ≥ n),

we have that F⊥ is a subspace of L2 of finite dimension n− 1 thus there exists a or-
thogonal family (v1, . . . , vn−1) such that F⊥ = Vect(v1, . . . , vn−1). Since F is a closed
subspace of L2 as an intersection of hyperplans, we have F = Vect(v1, . . . , vn−1)⊥

hence
λn(Ξ) ≥ inf

u∈F
‖u‖

L2=1

〈Hu, u〉.

Let u ∈ F with ‖u‖L2 = 1. Using Proposition 4.9, we have

〈Hu, u〉 ≥ (1− δ)〈∇u]s,∇u]s〉 −m1
δ(Ξ, s)

≥ (1− δ)〈u]s, Lu]s〉 −m1
δ(Ξ, s)

≥ (1− δ)λn‖u]s‖2
L2 −m1

δ(Ξ, s).

Finally using Proposition 4.4 for s < s0(Ξ), we get

〈Hu, u〉 ≥ 1− δ
1− m

α
s
α
4 x(1 + x)

λn −m1
δ(Ξ, s)

and the proof is complete.

�
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There is a wide range of choices for the constants s ∈ (0, 1) and δ > 0. For
example, one can take

s =

(
αδ

mx(1 + x)

) 4
α

for any δ ∈ (0, 1) and get

λn −m1
δ ≤ λn(Ξ) ≤ (1 + δ)2λn + 1 + δ +m2

δ

for explicit constants m1
δ and m2

δ , where the lower bound holds since δ < 1 gives
s < s0(Ξ). This implies the following estimate for the tail of all the eigenvalues. A
more precise result of this type was already obtained in [45] by Labbé in the flat case
for λ to −∞ with a = 1 where he also obtained a lower bound on the convergence
of the form

e−anλ ≤ P(λn(Ξ) ≤ −λ) ≤ e−bnλ

for λ > 0 large enough and an > bn > 0 two constants. Here we get upper bounds
for λ to +∞ and −∞.

Corollary 4.13. For any n ∈ Z+ and λ ∈ R, we have

1−me−h(λ−2λn)
1
12 ≤ P

(
λn(Ξ) ≤ λ

)
≤ me−h(λn−λ)

1
5

where m = E
[
eh‖Ξ‖Xα

]
.

Proof : Fix δ ∈ (0, 1) and let λ ∈ R. Denote m1 = m1
δ and m2 = m2

δ . We have

P
(
λn(Ξ) ≤ λ

)
≤ P

(
λn −m1 ≤ λ

)
and

P
(
λn(Ξ) > λ

)
≤ P

(
(1 + δ)λn +m2 > λ

)
thus

P
(
m2 ≤ λ− (1 + δ)λn

)
≤ P

(
λn(Ξ) ≤ λ

)
≤ P

(
m1 ≥ −λ+ λn

)
.

There exists two constants a1, a2 > 0 such that

mi ≤ 1 + ‖Ξ‖aiXα

for i ∈ {1, 2}, take for example a1 = 5 and a2 = 12. Hence

P
(
mi ≥ y

)
= P

(
‖Ξ‖Xα ≥ (y − 1)

1
ai

)
= P

(
eh‖Ξ‖Xα ≥ ehy

1
ai
)

≤ e−hy
1
ai E
[
eh‖Ξ‖Xα

]
using Markov inequality and this yields

1−me−h(λ−(1+δ)λn)
1
a2 ≤ P

(
λn(Ξ) ≤ λ

)
≤ me−h(λn−λ)

1
a1

where m = E
[
eh‖Ξ‖Xα

]
.

�
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We proved that Hε converges to H is some sense as ε goes to 0. The following
Proposition gives the convergence of Hε+kΞ to H+kΞ in resolvent sense as ε goes to
0. We do not need to explicit the constant, it depends polynomialy on the enhanced
noise Ξ.

Proposition 4.14. Let s ∈ (0, 1) and δ > 0. Then for any constant kΞ > m1
δ(Ξ, s),

we have
‖(Hε + kΞ)−1 − (H + kΞ)−1‖L2→L2 .Ξ,s ‖Ξ− Ξε‖Xα .

In particular, (Hε + kΞ)−1 converges to (H + kΞ)−1 in norm as operator from L2 to
itself.

Proof : Let v ∈ L2. Since H + k : DΞ → L2 is invertible, there exists u ∈ DΞ such
that

v = (H + k)u

thus
‖(H + k)−1v − (Hε + k)−1v‖L2 = ‖u− (Hε + k)−1(H + k)u‖L2 .

We introduce uε := ΓεΦ
s(u) which converges to u in L2 and we have

‖u− (Hε + k)−1(H + k)u‖L2 ≤ ‖u− uε‖L2 + ‖uε − (Hε + k)−1(H + k)u‖L2 .

Since Lemma 4.5 gives
‖u− uε‖L2 .Ξ,s ‖Ξ− Ξε‖Xα ,

we only have to bound the second term. We have

‖uε − (Hε + k)−1(H + k)u‖L2 = ‖(Hε + k)−1
(
(Hε + k)uε − (H + k)u

)
‖L2

. ‖(Hε + k)uε − (H + k)u‖L2

. ‖Hεuε −Hu‖L2 + k‖uε − u‖L2

using Proposition 4.8. In the end, we have

‖(H + k)−1v − (Hε + k)−1v‖L2 . ‖u]s‖H2‖Ξ− Ξε‖Xα

hence the result since (H + k)−1 : L2 → DΞ is continuous.

�

This allows to get a bound on the convergence of λn(Ξε) to λn(Ξ) as ε goes to 0.

Corollary 4.15. For all n ∈ N∗, we have∣∣∣∣ 1

λn(Ξ) + kΞ

− 1

λn(Ξε) + kΞ

∣∣∣∣ .Ξ ‖Ξ− Ξε‖Xα .

In particular, this implies

|λn(Ξ)− λn(Ξε)| .Ξ (λn(Ξ) + kΞ)2 ‖Ξ− Ξε‖Xα
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Proof : We use the min-max principle for (H+kΞ)−1 and (Hε+kΞ)−1 and denote µn
and µ(ε)

n their n-th smallest eigeinvalue with multiplicity. Let Dn = Vect(v1, . . . , vn)

with vi an eigenfunction associated to µ(ε)
i for 1 ≤ i ≤ n. Then for all v ∈ Dn with

‖v‖L2 = 1, we have〈
(H + kΞ)−1u, u

〉
=
〈(

(H + kΞ)−1 − (Hε + kΞ)−1
)
u, u
〉

+
〈
(Hε + kΞ)−1u, u

〉
≤
∥∥(H + kΞ)−1 − (Hε + kΞ)−1

∥∥
L2→L2 + µ(ε)

n

hence with Proposition 5.11 we get

µn − µ(ε)
n .Ξ ‖Ξ− Ξε‖Xα .

Using the same argument with eigeinfunctions associated to (H + kΞ)−1, we get

|µn − µ(ε)
n | .Ξ ‖Ξ− Ξε‖Xα .

Thus this gives ∣∣∣∣ 1

λn(Ξ) + kΞ

− 1

λn(Ξε) + kΞ

∣∣∣∣ .Ξ ‖Ξ− Ξε‖Xα

and completes the proof with the upper bound on λn(Ξ).

�

We conclude this section by giving as corollary the Weyl law for the Anderson
Hamiltonian H.

Corollary 4.16. We have

lim
λ→∞

λ−1|{n ≥ 1;λn(Ξ) ≤ λ}| = Vol(M)

4π
.

Proof : Let N(λ) be the number of eigenvalues of the Laplace-Beltrami operator
lower than λ ∈ R. Then the lower and upper bounds on the eigenvalues give

N

(
λ−m2

δ(Ξ)

1 + δ

)
≤
∣∣{n ≥ 1;λn(Ξ) ≤ λ}

∣∣ ≤ N
(
λ+m1

δ(Ξ)
)

hence the proof is complete using the result for N .

�
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Chapter 5

The random magnetic Laplacian

The magnetic Laplacian associated to a magnetic potential A in two dimensions

H = (i∂1 + A1)2 + (i∂2 + A2)2

is of interest in the description of a number of physical models. For example, it
describes the behavior of a particule in a magnetic field B related to A via

B = ∇× A = ∂2A1 − ∂1A2.

While the case of constant magnetic field has been largely studied, the analysis of
the magnetic Laplacian with nonconstant magnetic field gives rise to a number of
interesting questions. Motivations to study the magnetic Laplacian are for example
the functional formulation of associated PDEs and the analogy with the electric
Laplacian −∆ + V with electric field V . This work is dedicated to the study of the
magnetic Laplacian with random singular magnetic field given by the space white
noise B = ξ. It can be constructed as a distribution with independant random
Fourier coefficients with centered normal law of unit variance. In two dimensions,
the space white noise belongs almost surely to the Sobolev spaces H−1−κ or Besov-
Hölder spaces C−1−κ for any κ > 0. Since the associated potential A verifies the
equation

ξ = ∂2A1 − ∂1A2,

each component A1, A2 are expected to belong to C−κ for any κ > 0. In particular, its
is not even a measurable function and the associated magnetic Laplacian falls in the
range of the singular random operator. This is similar to the Anderson Hamiltonian

−∆ + ξ

which was defined and studied in the previous Chapter. The random operator
introduced and studied in this Chapter is the magnetic analogue of the Anderson
Hamiltonian.

The random magnetic Laplacian with white noise magnetic field is formally given
by

H = L+ 2iA · ∇+ A · A+ i · div(A)

with L = −∆ and
ξ = ∇× A ∈ Cα−2(T2,R)
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for any α < 1. Different choices of potential A can give the same magnetic field B,
this is the choice of gauge and our choice is

A := ∇⊥Φ

where Φ = ∆−1ξ ∈ Cα(T2,R). It is motivated by the fact that div(A) = 0 hence
the operator is simpler to define. We could deal with different choice of gauge, see
Section 5.3 for a discussion about this. This leaves us with

H = L+ 2iA · ∇+ A · A

with A ∈ Cα−1 almost surely for any α < 1. In particular, the term A ·A is singular
and one has to give a meaning to it using probabilistic arguments. This is done in
Section 5.3 and yields the associated enhanced potential

A = (A,A2) ∈ Cα−1(T2,R2)× C2α−2(T2,R).

Remark that since A is a distribution of negative Hölder regularity, the singular
product A·A is expected to worsen the regularity. Given such an enhanced potential
A, we construct in Section 5.1 a dense subspace DA ⊂ L2 such that

u ∈ DA ⊂ L2 =⇒ Hu ∈ L2.

In Section 5.2, we show that (H,DA) is almost surely a self-adjoint operator with
pure point spectrum. We also prove that it is the resolvent-limit of

Hε = L+ 2iAε · ∇+ A2
ε

for any regularisation Aε = (Aε, A
2
ε) ∈ C∞(T2,R2)× C∞(T2,R) such that

lim
ε→0
‖A− Aε‖Cα−2 + ‖A2 − A2

ε‖C2α−2 = 0.

Finally, we construct in Section 5.3 the enhanced potential A associated to the
random magnetic field B = ξ. In particular, it is described by the limit of(

Aε, A
2
ε − cε

)
as ε goes to 0 where Aε is a regularisation of A and

cε = E
[
Aε(0) · Aε(0)

]
.

In particular, the almost sure singularity of the product A · A implies the need to
substract a diverging constant cε as ε goes to 0 and a singular random operator has
to be interpreted as the description of the limiting behavior of a diverging system.
One is interested in the fluctuations of this system in this diverging frame, as the
central limit Theorem for a simple random walk. For the case of the Anderson
Hamiltonian, see the work [48] of Martin and Perkowski for a nice example.

Our results on the random magnetic Laplacian is the analogue of the ones ob-
tained in Chapter 4 on the Anderson Hamiltonian. This illustrates the flexibility
of the paracontrolled calculus approach to singular stochastic PDEs. In particular,
this show that the method used here allow to deal with a general class of operators
of the form

−∆ + a1 · ∇+ a2
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with rough stochastic scalar fields a1, a2 : M → R on a Riemaniann manifold M
and therefore associated time-dependant PDEs. See Chapter 7 for another example
of such operator in the context of the Brox diffusion. A description of the small
or large noise limit of the operator would be an interesting question to pursue.
For example, the large noise limit is of interest for a description of the parabolic
associated equation on the full space. Indeed, the scaling of the white noise implies
that the large noise limit correspond to the large volume limit of the torus. For
probabilistic motivations to study this limit for the Anderson Hamiltonian, see [24,
44]. From an analyst point of view, this corresponds to the semi-classical limit of

−h2∆ + ξ

and
(ih∂1 + A1)2 + (ih∂2 + A2)2

which is obviously interesting.

In the first Section, we construct the domain and prove density in L2. We
compare the graph norm and the natural norms of the domain which gives the
closedness of the operator. We also give an explicit form comparison between the
random magnetic Laplacian H and the Laplacian L. In the second Section, we show
that the operator is symmetric as a weak limit of the regularised operator. The
form comparison of H and L with the Babuška-Lax-Milgram Theorem gives the
self-adjointness. Finally, we show that H is the resolvent-limit of the regularised
operator Hε and compare the spectrum of H and L. In particular, this implies an
almost sure Weyl-type law for the random magnetic Laplacian. The third Section
deals with the construction of the enhanced potential A built from the noise ξ
through a renormalisation procedure. This corresponds to the work [49].

5.1 – Definition of the operator
In this Section, we first construct the domain and show that its natural norms are
equivalent to the graph norm of H. In particular, this guarantees the closedness of
the operator. Finally, we compare the respective forms associated to H and L.

5.1.1 – Construction of the domain
Fix α ∈ (2

3
, 1) and let A be an enhanced magnetic potential

A = (A,A2) ∈ X α := Cα−1(T2,R2)× C2α−2(T2,R)

with its natural norm

‖A‖Xα := ‖A‖Cα−1 + ‖A2‖C2α−2 .

For A ∈ L∞, the term A2 can be interpreted as A · A while it is not defined if A
is only a distribution. It is enhanced in the sense that one does not have a natural
interpretation for A · A, this is specified by the additional data of A2. Section 5.3
is devoted to the particular case of magnetic white noise where A2 is constructed
through a probabilistic renormalisation procedure. Thus we refer as noise-dependent
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a quantity that depends on this enhanced potential A. For any regular function
u ∈ C∞(T2), we have

2iA · ∇u+ A2u = P∇u2iA+ PuA
2 + (])

where (]) ∈ C∞(T2) with P∇u2iA ∈ Hα−1 and PuA
2 ∈ H2α−2. Assuming Hu ∈ L2

yields
Lu = Hu− 2iA · ∇u+ A2u ∈ H2α−2

since 2α − 2 < α − 1 hence u is expected to belong to H2α by elliptic regularity
theory. For u ∈ H2α, we have

2iA · ∇u+ A2u = 2iP∇uA+ 2iPA∇u+ 2iΠ(∇u,A) + PuA
2 + PA2u+ Π(u,A2)

= (α− 1) + (3α− 2) + (2α− 2) + (4α− 2)

= PuA
2 + P∇u2iA+ (3α− 2)

where (β) denotes a term of formal regularity Hβ for any β ∈ R. Following the
paracontrolled calculus approach, we want to consider a paracontrolled function of
the form

u = P̃uX1 + P̃∇uX2 + u]

with u] a smoother remainder such that Hu ∈ L2. Thus we take

−LX1 := A2 and − LX2 := 2iA

and define the domain of H as follows.

Definition. We define the set DA of functions paracontrolled by A as

DA := {u ∈ L2; u− P̃uX1 − P̃∇uX2 ∈ H2}.

The domain is defined as
DA = Φ−1(H2)

with
Φ(u) := u− P̃uX1 − P̃∇uX2

however the domain could be anything from trivial to dense in L2. For s ∈ (0, 1),
we introduce the map Φs as

Φs :

∣∣∣∣ DA → H2

u 7→ u− P̃suX1 − P̃s∇uX2

with P̃s the paraproduct truncated at scale s; see Section 4.2 in the previous Chapter
for the definition and continuity estimates. In particular, the map

Φs : Hβ → Hβ

is a perturbation of the identity for any β ∈ [0, 2α) invertible for s small enough,
we denote its inverse Γ. Since

(
P̃v − P̃sv

)
X is a smooth function, the domain is also

given by
DA = (Φs)−1(H2) = Γ(H2).

The reader should keep in mind that Γ implicitely depends on s, we do not keep it in
the notation to lighten this work. This parametrisation of the domain will be crucial
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to prove that the domain is dense in L2 and to study H. In particular, sharp bounds
on the eigenvalues of H are needed to get a Weyl-type law for H. To do so, we need
to keep a careful track of the different constants. The reader interested only in
the construction of the operator and its self-adjointess can skip these computations.
Obtaining sharp bounds requires explicit constants with respect to the parameter s
and the regularity exponent in the paracontrolled calculus. For β ∈ [0, 2α), let

sβ(A) :=

(
β∗

m‖A‖Xα

) 4
2α−β

where β∗ = 1−β if β ∈ [0, 1) and β∗ = 2α−β if β ∈ [1, 2α) and m > 0 is a universal
constant. The following Proposition gives regularity estimates for Φs and Γ.

Proposition 5.1. Let β ∈ [0, 2α) and s ∈ (0, 1). We have

‖Φs(u)− u‖Hβ ≤ m
s

2α−β
4

β∗
‖A‖Xα‖u‖Hβ .

In particular, s < sβ(A) implies that the map Φs is invertible and its inverse Γ
verifies the bound

‖Γu]‖Hβ ≤
1

1−m s
2α−β

4

β∗
‖A‖Xα

‖u]‖Hβ .

Proof : If β < 1, the bounds on Φs follow directly from

‖P̃suX1 + P̃s∇uX2‖Hβ ≤ m
s

2α−β
4

1− β
‖u‖L2‖X1‖C2α +m

s
α+1−β

4

1− β
‖∇u‖Hβ−1‖X2‖Hα+1

≤ m
s

2α−β
4

1− β
‖u‖Hβ

(
‖X1‖C2α + ‖X2‖Cα+1

)
≤ m

s
2α−β

4

1− β
‖u‖Hβ‖A‖Xα .

For β ∈ [1, 2α), we have

‖P̃suX1 + P̃s∇uX2‖Hβ ≤ m
s

2α−β
4

2α− β
‖u‖L2‖X1‖Cα +m

s
α+1−β

2

α + 1− β
‖∇u‖L2‖X2‖Hα+1

≤ m
s

2α−β
4

2α− β
‖u‖H1

(
‖X1‖C2α + ‖X2‖Cα+1

)
≤ m

s
2α−β

4

2α− β
‖u‖H1‖A‖Xα .

The result for Γ follows since 2α− β > 0.

�

We also consider the associated maps Φs
ε and Γε for a regularizion Aε of the

enhanced potential. It is defined as

Φs
ε(u) := u− P̃uX

(ε)
1 − P̃∇uX

(ε)
2

and
Γεu

] = P̃Γεu]X
(ε)
1 + P̃∇Γεu]X

(ε)
2 + u]
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where
−LX(ε)

1 := A2
ε and − LX(ε)

2 := 2iAε.

They satisfie the same continuity properties as Φs and Γ with bounds uniform with
respect to ε. Moreover, we have the following approximation Lemma.

Lemma 5.2. Let β ∈ [0, 2α) and s ∈ (0, 1). If s ≤ sβ(A), we have

‖Id− ΓΓ−1
ε ‖L2→Hβ .A,s ‖A−Aε‖Xα .

In particular, this implies the convergence of Γε to Γ with the bound

‖Γ− Γε‖Hβ→Hβ .A,s ‖A−Aε‖Xα .

Proof : Given any u ∈ Hβ, we have u = ΓΓ−1(u) = Γ(u− P̃suX1− P̃s∇uX2). We get

‖u− ΓΓ−1
ε (u)‖Hβ =

∥∥Γ
(
u− P̃suX1 − P̃s∇uX2

)
− Γ

(
u− P̃suX

(ε)
1 − P̃s∇uX

(ε)
2

)∥∥
Hβ

=
∥∥∥Γ
(

P̃su
(
X

(ε)
1 −X1

)
+ P̃s∇u

(
X

(ε)
2 −X2

))∥∥∥
Hβ

.A,s

∥∥∥P̃su
(
X

(ε)
1 −X1

)
+ P̃s∇u

(
X

(ε)
2 −X2

)∥∥∥
Hβ

.A,s ‖Aε −A‖X 2α‖u‖L2

since s < sβ(A) implies the continuity of Γ : Hβ → Hβ and X
(ε)
i − Xi depends

linearly on Aε −A for i ∈ {1, 2}. The result on Γ − Γε follows from the bound on
Γε uniform with respect to ε.

�

This allows to prove density of the domain.

Corollary 5.3. The domain DA is dense in Hβ for every β ∈ [0, 2α).

Proof : Given f ∈ H2, Γ(gε) ∈ DA where gε = Γ−1
ε f ∈ H2 thus we can conclude

with the previous Lemma that

lim
ε→0
‖f − Γ(gε)‖Hβ = 0.

The density of H2 in Hβ completes the proof.

�

5.1.2 – First properties of H
Since H is formally given by

H = L+ 2iA · ∇+ A · A

with L = −∆, we are able to define (H,DA) as an unbounded operator in L2

associated to the enhanced potential A.
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Definition 5.4. We define H : DA ⊂ L2 → L2 as

Hu := Lu] +R(u)

where u] = Φ(u) and

R(u) := P2iA∇u+ Π(∇u, 2iA) + PA2u+ Π(u,A2) + e−L
(
PuA

2 + P∇u2iA
)
.

The definition of H is independant of the parameter s ∈ (0, 1). As for the An-
derson Hamiltonian, it is a very useful tool to get differents bounds on the operator
with the different representations

Hu = Lu]s +R(u) + Ψs(u)

where u]s := Φs(u) and

Ψs(u) := L
(
P̃su − P̃u

)
X1 + L

(
P̃s∇u − P̃∇u

)
X2 ∈ C∞(T2).

For example, we can compare the graph norm of H

‖u‖2
H := ‖u‖2

L2 + ‖Hu‖2
L2

and the natural norms of the domain

‖u‖2
DA

:= ‖u‖2
L2 + ‖Φs(u)‖2

H2

with the following Proposition provided s is small. Let β := 1
2
(4

3
+ 2α) and δ > 0.

For s ∈ (0, 1) such that s < sβ(A), we introduce the constant

m2
δ(A, s) := ks

α−2
2 ‖A‖Xα + kδ−

β
2−β

 ‖A‖Xα

1−m s
2α−β

4

β∗
‖A‖Xα

 2
2−β (

1 + s
α
2 ‖A‖Xα

)
with k > 0 a large enough constant depending. In particular, m2

δ(A, s) diverges as
s goes to 0 or sβ(A) or as δ goes to 0.

Proposition 5.5. Let u ∈ DA and s ∈ (0, 1) such that s < sβ(A). Then for any
δ > 0, we have

(1− δ)‖u]s‖H2 ≤ ‖Hu‖L2 +m2
δ(A, s)‖u‖L2

and
‖Hu‖L2 ≤ (1 + δ)‖u]s‖H2 +m2

δ(A, s)‖u‖L2

with u]s = Φs(u).

Proof : Recall that for any s ∈ (0, 1), the operator is given by

Hu = Lu]s +R(u) + Ψs(u)

thus we need to bound R and Ψs. For u ∈ DA, we have

‖P2iA∇u+ Π(∇u, 2iA)‖L2 . ‖2iA‖Cα−1‖u‖Hβ
‖PA2u+ Π(u,A2)‖L2 . ‖A2‖C2α−2‖u‖Hβ
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hence
‖R(u)‖L2 . ‖A‖Xα‖u‖Hβ .

We also have

‖Ψs(u)‖L2 . ‖(P̃u − P̃su)X1 + (P̃∇u − P̃s∇u)X2‖H2 . s
α−2

2 ‖A‖Xα‖u‖L2 .

For s < sβ(A), Proposition 5.1 gives

‖u‖Hβ ≤
1

1−m s
2α−β

4

β∗
‖A‖Xα

‖u]s‖Hβ

thus we get

‖Hu− Lu]s‖L2 .
‖A‖Xα

1−m s
2α−β

4

β∗
‖A‖Xα

‖u]s‖Hβ + s
α−2

2 ‖A‖Xα‖u‖L2 .

Since 0 < β < 2, we have for any t > 0

‖u]s‖Hβ .
∥∥∥∥∫ t

0

(t′L)e−t
′Lu]s

dt′

t′

∥∥∥∥
Hβ

+
∥∥e−tLu]s∥∥Hβ

. t
2−β

2 ‖u]s‖H2 + t−
β
2 ‖u]s‖L2

. t
2−β

2 ‖u]s‖H2 + t−
β
2

(
1 + s

2α
4 ‖A‖Xα

)
‖u‖L2 .

For any δ > 0, take

t =

δ(1−m s
2α−β

4

β∗
‖A‖Xα

)
k‖A‖Xα


2

2−β

with k the constant from the previous inequality. This yields

‖Lu]s −Hu‖L2 . m2
δ(A, s)‖u‖L2 + δ‖u]s‖H2 .

and completes the proof.

�

Remark : In comparison with the Anderson Hamiltonian from the Chapter 4

u 7→ −∆u+ uξ

where the space white noise can be interpreted as an electric potential, one needs s
small for these bounds to hold here. In fact, one could perform the same kind of
expansion with

LX2 = P∇X12iA

at the price of a nonlinear dependance of X2 with respect to A in order to bypass
the smallness condition on s. This would change the different bounds one get for
Φs and Γ but still yield a self-adjoint operator that is the limit of the regularised
Hε. Theorem XIII.26 from [56] guarantees that the different choice of construction
coincide provided that H is self-adjoint.

In particular, this implies that (H,DA) is a closed operator in L2.

Proposition 5.6. The operator H is closed on its domain DA.
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Proof : Let (un)n≥0 ⊂ DA be a sequence such that

un → u in L2 and Hun → v in L2.

Proposition 5.5 gives that
(
Φs(un)

)
n≥0

is a Cauchy sequence in H2 hence converges
to u]s ∈ H2 for s < sβ(A). Since Φs : L2 → L2 is continuous, we have Φs(u) = u]s
hence u ∈ DA. Finally, we have

‖Hu− v‖L2 ≤ ‖Hu−Hun‖L2 + ‖Hun − v‖L2

.A ‖u]s − Φs(un)‖H2 + ‖u− un‖L2 + ‖Hun − v‖L2

hence Hu = v and H is closed on DA.

�

We conclud this Section by computing the Hölder regularity of the functions in
the domain. Remark that there is no gain with respect to the Anderson Hamiltonian
since one is limited by the embedding of H2 in two dimension of the remainder.

Corollary. We have
DA ⊂ C1−κ

for any κ > 0.

Proof : The Besov embedding in two dimensions implies

H2 ↪→ B1
∞,2 ↪→ L∞

and Φs : L∞ → L∞ is also invertible for s small enough hence

DA = (Φs)−1(H2) ⊂ L∞.

First for u ∈ DA, we have

‖u‖Cα . ‖u‖L∞‖X1‖Cα + ‖∇u‖C−1‖X2‖Cα+1 + ‖u]‖Cα
.A ‖u‖L∞ + ‖u]‖H2 .

Finally, this gives

‖u‖C1−κ . ‖u‖L∞‖X1‖C1−κ + ‖∇u‖Cα−1‖X2‖C2−α+κ + ‖u]‖C1−κ

.A ‖u‖L∞ + ‖u‖Cα + ‖u]‖H2

and the proof is complete. Since α < 1 is arbitrary closed to 1, the second compu-
tation might appear redundant. The point is that one controls the norm C1−κ for
all κ > 0 for any fixed α < 1.

�
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5.1.3 – Form comparison between H and L
We proved in Theorem 5.5 that Hu can be seen as a small perturbation of Lu] in
norm. Here, we prove a similar statement in the quadratic form setting. Let η := α

4

and δ > 0. For s ∈ (0, 1) such that s < s1−η(A), define

m1
δ(A, s) := (1 + s

α−2
2 )‖A‖Xα + δ−

1−η
η

(
‖A‖Xα

(1− η−1s
2α+η−1

4 ‖A‖Xα)2

) 1
η

(1 + s
α
2 ‖A‖Xα)

with k > 0 a large enough constant depending only on L. In particular, m1
δ(A, s)

diverges as s goes to 0 or s1−η(A) or as δ goes to 0.

Proposition 5.7. Let u ∈ DA and s ∈ (0, 1) such that s < s1−α
4
(A). For any δ > 0,

we have
(1− δ)〈∇u]s,∇u]s〉 ≤ 〈u,Hu〉+m1

δ(A, s)‖u‖2
L2

and
(1− δ)〈∇u]s,∇u]s〉 ≤ 〈u,Hεu〉+m1

δ(A, s)‖u‖2
L2

where u]s = Φs(u).

Proof : For u ∈ DA, recall that

Hu = Lu]s +R(u) + Ψs(u)

where u]s = Φs(u) ∈ H2. We have〈
u, Lu]s

〉
=
〈

P̃suX1, Lu
]
s

〉
+
〈

P̃s∇uX2, Lu
]
s

〉
+
〈
u]s, Lu

]
s

〉
=
〈

PsuLX1, u
]
s

〉
+
〈

Ps∇uLX2, u
]
s

〉
+
〈
∇u]s,∇u]s

〉
thus

〈u,Hu〉 =
〈

PsuLX1, u
]
s

〉
+
〈

Ps∇uLX2, u
]
s

〉
+
〈
∇u]s,∇u]s

〉
+
〈
u,R(u)

〉
+
〈
u,Ψs(u)

〉
.

For η ≤ α
2
, we have〈
PsuLX1, u

]
s

〉
. ‖PsuLX1‖H2α−2‖u]s‖H1−η . ‖A‖Xα‖u‖L2‖u]s‖H1−η ,〈

Ps∇uLX2, u
]
s

〉
. ‖Ps∇uLX2‖Hα−1−η‖u]s‖H1−η . ‖A‖Xα‖u‖H1−η‖u]s‖H1−η ,〈

u,P2iA∇u
〉
. ‖u‖H1−η‖P2iA∇u‖Hα−1−η . ‖A‖Xα‖u‖2

H1−η ,〈
u,PA2u+ Π(u,A2)

〉
. ‖u‖L2‖PA2u+ Π(u,A2)‖L2 . ‖A‖Xα‖u‖L2‖u‖H1−η ,〈

u,Ψs(u)
〉
. ‖u‖L2‖(Pu − Psu)LX1 + (P∇u − Ps∇u)LX2‖L2 . s

α−2
2 ‖A‖Xα‖u‖2

L2 .

The only term that is not a priori controlled is
〈
u,Π(2iA,∇u)

〉
since the resonant

term is singular if we only suppose that u ∈ H1; this is where the almost duality
property comes into play. We have〈

u,Π(2iA,∇u)
〉

=
〈

Pu2iA,∇u
〉

+ A(u, 2iA,∇u)

with the corrector A(u, 2iA,∇u) controlled if u ∈ H1−η with η < α
2
. The paraproduct

is not singular however one can not use better regularity than L2 for u thus we use
an integration by part to get〈

Pu2iA,∇u
〉

= −
〈
div(Pu2iA), u

〉
= −

〈
Pudiv(2iA), u

〉
+
〈

B(u, 2iA), u
〉
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with
B
(
a, (b1, b2)

)
:= div

(
Pa(b1, b2)

)
− Padiv(b1, b2),

see Proposition A.10 in Appendix for continuity estimates on B. We have〈
u,Π(2iA,∇u)

〉
.
∣∣〈B(u, 2iA), u

〉∣∣+ |A(u, 2iA,∇u)| . ‖A‖Xα‖u‖2
H1−η

since div(A) = 0. Since s < s1−η(A), we get

∣∣〈u,Hu〉−〈∇u]s,∇u]s〉∣∣ . (1+s
α−2

2 )‖A‖Xα‖u‖2
L2+

‖A‖Xα(
1− η−1s

2α+η−1
4 ‖A‖Xα

)2‖u
]
s‖2
H1−η .

To complete the proof, one only has to interpolate the H1−η norm of u]s between its
H1 norm and its L2 norm which is controlled by the L2 norm of u, as in the proof
of Proposition 5.5. Since 0 < 1− η < 1, we have for any t > 0

‖u]s‖H1−η .

∥∥∥∥∫ t

0

(t′L)e−t
′Lu]s

dt′

t′

∥∥∥∥
H1−η

+
∥∥e−tLu]s∥∥H1−η

. t
η
2 ‖u]s‖H1 + t−

1−η
2 ‖u]s‖L2

. t
η
2 ‖u]s‖H1 + t−

1−η
2

(
1 + s

2α
4 ‖A‖Xα

)
‖u‖L2 .

For any δ > 0, take

t =

(
δ
(
1− η−1s

2α+η−1
4 ‖A‖Xα

)2

k‖A‖Xα

) 2
η

with k the constant from the previous inequality. This yields

‖Lu]s −Hu‖L2 . m2
δ(A, s)‖u‖L2 + δ‖u]s‖H1 .

and completes the proof.

�

5.2 – Self-adjointness and spectrum
In this Section, we prove that H is self-adjoint with pure point spectrum. It is
symmetric since HΓ is the limit in norm of the regularised HεΓε as proved in Section
5.2.1. Hence it is enough to prove that

H + k : DA → L2

is surjective for some k ∈ R, this is the content of Section 5.2.2. In Section 5.2.3,
we prove that Hε converges to H in the stronger resolvent sense. Finally, we give in
Section 5.2.4 bounds for the eigenvalues of H using the different representation

H = LΦs +R + Ψs

parametrised by s ∈ (0, 1) from the eigenvalues of L. In particular, it implies a
Weyl-type law for H.
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5.2.1 – The operator is symmetric
To prove that H is symmetric, we use the regularised operator Hε. Recall that
(Hε,H2) is self-adjoint and that Φs

ε : H2 → H2 is continuous. In some sense, the
operator H should be the limit of

Hε := L+ 2iAε · ∇+ A2
ε

as ε goes to 0 with Aε := (Aε, A
2
ε) a smooth approximation of A in X α. Since

D(Hε) = H2, one can not compare directly the operators. However given any
u ∈ L2, we have

u =
(
Γ ◦ Φs

)
(u) = lim

ε→0

(
Γε ◦ Φs

)
(u).

Thus for u ∈ DA, the approximation uε :=
(
Γε ◦ Φs

)
(u) belongs to H2 and one can

consider the difference

‖Hu−Hεuε‖L2 = ‖(HΓ−HεΓε)u
]‖L2

with u] := Φs(u). The following Proposition assures the convergence of HεΓε to HΓ
provided s < sβ(A) where β = 1

2
(4

3
+ 2α).

Proposition 5.8. Let u ∈ DA and s ∈ (0, 1) such that s < sβ(A). Then

‖Hu−Hεuε‖L2 .A,s ‖u]s‖H2‖A−Aε‖Xα

with u]s = Φs(u) and uε := Γεu
]
s. In particular, this implies that HεΓε converges to

HΓ in norm as ε goes to 0 as operators from H2 to L2.

Proof : We have
Hεuε = Lu]s +Rε(uε) + Ψs

ε(uε)

where Rε and Ψs
ε are defined as R and Ψs with Aε instead of A. Since 4

3
< β < 2α,

we have

‖R(u)−Rε(uε)‖L2 ≤ ‖R(u− uε)‖L2 + ‖(R−Rε)(uε)‖L2

.s,A ‖u− uε‖Hβ + ‖A−Aε‖Xα‖uε‖Hβ

and
‖Ψs(u)−Ψs

ε(uε)‖L2 .s,A ‖u− uε‖L2 + ‖A−Aε‖Xα‖u‖L2

and the proof is complete since s < sβ(A) implies

‖u‖Hβ .s,A ‖u]s‖Hβ .

�

The symmetry of H immediately follows.

Corollary. The operator H is symmetric.

Proof : Let u, v ∈ DA and consider u] := Φs(u) and v] := Φs(v) for s < sβ(A).
Since Hε is a symmetric operator, we have

〈Hu, v〉 = lim
ε→0
〈HεΓεu

]
s,Γεv

]
s〉 = lim

ε→0
〈Γεu]s, HεΓεv

]
s〉 = 〈u,Hv〉

using that HεΓε converges to HΓ and Γε to Γ in norm convergence.

�
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5.2.2 – The operator is self-adjoint
In this Section we prove that (H,DA) is self-adjoint. Being closed and symmetric,
it is enough to prove that

(H + k)u = v

admits a solution for some k ∈ R, see Theorem X.1 in [55]. This is done using the
Babuška-Lax-Milgram Theorem and Theorem 5.7 which implies that H is almost
surely bounded below for any δ ∈ (0, 1) and s small enough.

Proposition 5.9. Let δ ∈ (0, 1) and s ∈ (0, 1) such that s < s1−α
4
(A). For k >

m1
δ(A, s), the operators H + k and Hε + k are invertibles as unbounded operator in

L2. Moreover the operators (
H + k

)−1
: L2 → DA(

Hε + k
)−1

: L2 → H2

are bounded.

Proof : Since s < s1−α
4
(A) and k > m1

δ(A, s), Proposition 5.7 gives(
k −m1

δ(A, s)
)
‖u‖2

L2 <
〈
(H + k)u, u

〉
for u ∈ DA. Considering the norm

‖u‖2
DA

= ‖u‖2
L2 + ‖u]s‖2

H2

on DA, this yields a weakly coercive operator using Proposition 5.5 in the sense that

‖u‖DA
.A ‖(H + k)u‖L2 = sup

‖v‖L2=1

〈
(H + k)u, v

〉
for any u ∈ DA. Moreover, the bilinear map

B : DA × L2 → R
(u, v) 7→

〈
(H + k)u, v

〉
is continuous since Proposition 5.5 implies

|B(u, v)| ≤ ‖(H + k)u‖L2‖v‖L2 .A ‖u‖DA
‖v‖L2

for u ∈ DA and v ∈ L2. The last condition we need is that for any v ∈ L2\{0}, we
have

sup
‖u‖DA

=1

|B(u, v)| > 0.

Let assume that there exists v ∈ L2 such that B(u, v) = 0 for all u ∈ DA. Then

∀u ∈ DA, 〈u, v〉DA,D∗A = 0.

hence v = 0 as an element of D∗A. By density of DA in L2, this implies v = 0 in
L2 hence the property we want. By the Theorem of Babuška-Lax-Milgram, for any
f ∈ L2 there exists a unique u ∈ DA such that

∀v ∈ L2, B(u, v) = 〈f, v〉.

Moreover, we have ‖u‖DA
.A ‖f‖L2 hence the result for (H + k)−1. The same

argument works for Hε + k since Proposition 5.7 also holds for Hε with bounds
uniform in ε.
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�

As explain before, this immediatly implies that H is self-adjoint. Moreover, the
resolvent is a compact operator from L2 to itself since DA ⊂ Hβ for any β ∈ [0, 2α)
hence it has pure point spectrum.

Corollary 5.10. The operator H is self-adjoint with discret spectrum
(
λn(A)

)
n≥1

which is a nondecreasing diverging sequence without accumulation points. Moreover,
we have

L2 =
⊕
n≥1

Ker
(
H − λn(A)

)
with each kernel being of finite dimension. We finally have the min-max principle

λn(A) = inf
D

sup
u∈D;‖u‖L2=1

〈Hu, u〉

where D is any n-dimensional subspace of DA that can also be written as

λn(A) = sup
v1,...,vn−1∈L2

inf
u∈Vect(v1,...,vn−1)⊥

‖u‖
L2=1

〈Hu, u〉.

5.2.3 – Resolvent-limit of the renormalised operator
Since the intersection of domains of H and Hε is trivial, the natural convergence of
Hε to H is in the resolvant sense, this is the following Proposition. In particular,
this result explains why our operator H is natural since the regularised operator
satisfies (

i∂1 + A
(ε)
1

)2
+
(
i∂2 + A

(ε)
2

)2
= H + cε + oε→0(1)

in the norm resolvent sense.

Proposition 5.11. Let δ > 0 and s ∈ (0, 1) such that s < sβ(A). Then for any
constant k > m1

δ(A, s), we have

‖(H + k)−1 − (Hε + k)−1‖L2→L2 .A,s ‖A−Aε‖Xα .

Proof : Let v ∈ L2. Since H + k : DA → L2 is invertible, there exists u ∈ DA such
that

v = (H + k)u

thus
‖(H + k)−1v − (Hε + k)−1v‖L2 = ‖u− (Hε + k)−1(H + k)u‖L2 .

We introduce uε := ΓεΦ
s(u) which converges to u in L2 and we have

‖u− (Hε + k)−1(H + k)u‖L2 ≤ ‖u− uε‖L2 + ‖uε − (Hε + k)−1(H + k)u‖L2 .

Since Lemma 5.2 gives

‖u− uε‖L2 .A,s ‖A−Aε‖Xα ,

we only have to bound the second term. We have

‖uε − (Hε + k)−1(H + k)u‖L2 = ‖(Hε + k)−1
(
(Hε + k)uε − (H + k)u

)
‖L2

. ‖(Hε + k)uε − (H + k)u‖L2

. ‖Hεuε −Hu‖L2 + k‖uε − u‖L2
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using Proposition 5.8. In the end, we have

‖(H + k)−1v − (Hε + k)−1v‖L2 . ‖u]s‖H2‖A−Aε‖Xα

hence the result since (H + k)−1 : L2 → DA is continuous.

�

5.2.4 – Comparison between the spectrum of H and L
The following Proposition provides sharp bounds for the eigenvalues of H from the
eigenvalues of L, we denote by (λn)n≥1 the non-decreasing positive sequence of the
eigenvalues of L since it corresponds to the case A = 0. For δ ∈ (0, 1) and s ∈ (0, 1),
introduce the constant

m+
δ (A, s) := (1 + δ)(1 +ms

α
2 ‖A‖Xα).

For s < s0(A), we also introduce

m−δ (A, s) :=
1− δ

1−msα2 ‖A‖Xα
.

Recall β = 1
2
(4

3
+ 2α). Write a, b ≤ c to mean that we have both a ≤ c and b ≤ c.

Proposition 5.12. Let δ ∈ (0, 1) and s ∈ (0, 1) such that s < sβ(A)∧s1−α
4
(A). Given

any n ∈ Z+, we have

λn(A), λn(Aε) ≤ m+
δ (A, s)λn + 2 + 2ms

α
2 ‖A‖Xα +m2

δ(A, s).

If moreover s < s0(A), we have

λn(A), λn(Aε) ≥ m−δ (A, s)λn −m1
δ(A, s).

Proof : Let u]1, . . . , u]n ∈ H2 be an orthonormal family of eigenfunctions of L asso-
ciated to λ1, . . . , λn and consider

ui := Γu]i ∈ DA

for 1 ≤ i ≤ n. Since Γ is invertible, the family (u1, . . . , un) is free thus the min-max
representation of λn(A) yields

λn(A) ≤ sup
u∈Vect(u1,...,un)

‖u‖
L2=1

〈Hu, u〉.

Given any normalised u ∈ Vect(u1, . . . , un), we have

〈Hu, u〉 ≤ ‖Hu‖L2 ≤ (1 + δ)‖u]s‖H2 +m2
δ(A, s)

for u]s = Φs(u) using Proposition 5.5 and s < sβ(A). Moreover

‖u]s‖H2 ≤ (1 + λn)‖u]s‖L2 ≤ (1 + λn)
(

1 +ms
α
2 ‖A‖Xα

)
hence the upper bound

λn(A) ≤ m+
δ (A, s)λn + 2 + 2ms

α
2 ‖A‖Xα +m2

δ(A, s).

99



For the lower bound, we use the min-max representation of λn(A) under the form

λn(A) = sup
v1,...,vn−1∈L2

inf
u∈Vect(v1,...,vn−1)⊥

‖u‖
L2=1

〈Hu, u〉.

Introducing
F := Vect(um;m ≥ n),

we have that F⊥ is a subspace of L2 of finite dimension n− 1 thus there exists a or-
thogonal family (v1, . . . , vn−1) such that F⊥ = Vect(v1, . . . , vn−1). Since F is a closed
subspace of L2 as an intersection of hyperplans, we have F = Vect(v1, . . . , vn−1)⊥

hence
λn(A) ≥ inf

u∈F
‖u‖

L2=1

〈Hu, u〉.

Let u ∈ F with ‖u‖L2 = 1. Using Proposition 5.7, we have

〈Hu, u〉 ≥ (1− δ)〈∇u]s,∇u]s〉 −m1
δ(A, s)

≥ (1− δ)〈u]s, Lu]s〉 −m1
δ(A, s)

≥ (1− δ)λn‖u]s‖2
L2 −m1

δ(A, s).

Finally using Proposition 5.1 for s < s1−α
4
(A), we get

〈Hu, u〉 ≥ 1− δ
1−msα2 ‖A‖Xα

λn −m1
δ(A, s)

and the proof is complete.

�

In particular, taking

s =

(
δ

m‖A‖Xα

) 2
α

gives the simpler bounds

λn −m1
δ(A) ≤ λn(A) ≤ (1 + δ)2λn +m2

δ(A)

for any δ small enough. This is sharp enough to get an almost sure Weyl-type law
from the Weyl law for L.

Corollary 5.13. We have

lim
λ→∞

λ−1|{n ≥ 1;λn(A) ≤ λ}| = π

Proof : The lower and upper bounds on the eigenvalues give

N

(
λ−m2

δ(A)

1 + δ

)
≤
∣∣{n ≥ 1;λn(A) ≤ λ}

∣∣ ≤ N
(
λ+m1

δ(A)
)

hence the proof is complete using the result for the Laplacian.

�
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5.3 – Renormalisation and enhanced potential

The enhanced potential

A := (A,A2) ∈ X α = Cα−1 × C2α−2

is defined with A2 := A · A for regular enough potential, A ∈ L∞ is enough. For
arbitrary distributions A ∈ Cα−1, this does not make sense since the product of
two distributions in Hölder spaces can be defined only if the sum of their regularity
exponents is positive. The magnetic Laplacian with white noise B = ξ as magnetic
field corresponds to this framework since the associate magnetic potential

A := ∇⊥Φ

where Φ = ∆−1ξ belongs to Cα−1 for any α < 1. In this case, one has to make sense
of

A · A = (−∂2Φ)2 + (∂1Φ)2

which is expected to belong to C2α−2 since α− 1 < 0. A natural way of procedding
is to consider a regularisation of the noise ξε := ξ ∗ ρε. In this case, the associated
magnetic potential Aε is smooth and the product Aε ·Aε is well-defined. The singu-
larity of the limit translates as the almost sure divergence of the product as ε goes
to 0. Indeed for x ∈ T2, one has

E
[
Aε(x) · Aε(x)

[
] = E

[
(∂2∆−1ξε)

2(x) + (∂1∆−1ξε)
2(x)

]
=
∥∥∂2Gε(x, ·)

∥∥2

L2 +
∥∥∂1Gε(x, ·)

∥∥2

L2

with G the Green function of the Laplacian and Gε(x, ·) := G(x, ·) ∗ ρε. Hence the
mean of the regularised product diverges as

cε := E[Aε(0) · Aε(0)] ∼
ε→0

ln(ε)

4π2
.

While the mean of the random variable Aε(x)·Aε(x) diverges, one can try to describe
the fluctuation around this asymptotic and find a limit to

Aε · Aε − E[Aε · Aε]

as ε goes to 0. It happens that this converges to a limit in the expected Hölder
space C2α−2, this is the Wick product. As far as discrete associated models are
concerned, this can be interpreted as a central limit Theorem where one describes
the fluctuation around a diverging number of particules, see for example [47] for an
example with the Anderson Hamiltonian.

Theorem 5.14. There exists a random distribution A2 that belongs almost surely to
C2α−2 such that

lim
ε→0

E
[∥∥A2 − (Aε · Aε − cε)

∥∥p
C2α−2

]
= 0

for any p ≥ 1.
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Proof : Since the noise is Gaussian, we only need to control second order moment
using hypercontractivity. The resonant term Π(Aε, Aε) is a linear combination of
terms of the form

Iε :=

∫ 1

0

Pt
(
Q1
tAε ·Q2

tAε
) dt

t

with P ∈ StGC[0,b] and Q1, Q2 ∈ StGC
b
2 . We also define the renormalised quantity

Jε := Iε − E[Iε].

Let u ∈ (0, 1), x ∈ T2 and Q ∈ StGCr with r > |2α − 2|. The expectation
E
[
|Qu

(
Iε
)
(x)|2

]
is given by the integral over T2 × T2 × [0, 1]2 of

KQuPt(x, y)KQuPs(x, z)E
[
Q1
tAε(y)Q2

tAε(y)Q1
sAε(z)Q2

sAε(z)
]

against the measure µ(dy)µ(dz)(ts)−1dtds. Using the Wick formula, we have

E
[
Q1
tAε(y)Q2

tAε(y)Q1
sAε(z)Q2

sAε(z)
]

= E
[
Q1
tAε(y)Q2

tAε(y)
]
E
[
Q1
sAε(z)Q2

sAε(z)
]

+ E
[
Q1
tAε(y)Q1

sAε(z)
]
E
[
Q2
tAε(y)Q2

sAε(z)
]

+ E
[
Q1
tAε(y)Q2

sAε(z)
]
E
[
Q1
sAε(z)Q2

tAε(y)
]

= (1) + (2) + (3)

and this yields

E
[
|Qu

(
Iε
)
(x)|2

]
= I(1)

ε (x) + I(2)
ε (x) + I(3)

ε (x).

The first term corresponds exactly to the extracted diverging quantity since

I(1)
ε = E

[∫ 1

0

QuP
•
t

(
Q1
tAε ·Q2

tAε
) dt

t

]2

= E
[
Qu(Iε)

]2
and we have

E
[
|Qu

(
Jε
)
(x)|2

]
= E

[{
Qu

(
Iε
)
(x)− E[Qu

(
Iε
)
](x)

}2
]

= I(2)
ε (x) + I(3)

ε (x).

Using that (Ψ(εL))ε belongs to G, ξ is an isometry from L2 to square-integrable
random variables, we have

I(2)
ε (x) + I(3)

ε (x)

.
∫
T2×T2

∫
[0,1]2

KQuP •t
(x, y)KQuP •s (x, z)

〈
G2ε+t+s(y, ·),G2ε+t+s(z, ·)

〉2
µ(dy)µ(dz)tsdtds

.
∫
T2×T2

∫
[0,1]2

KQuP •t
(x, y)KQuP •s (x, z)G2ε+t+s(y, z)

2µ(dy)µ(dz)tsdtds

.
∫
T2×T2

∫
[0,1]2
Gu+t(x, y)Gu+s(x, z)G2ε+t+s(y, z)

2µ(dy)µ(dz)tsdtds

.
∫
T2×T2

∫
[0,1]2

(2ε+ t+ s)−
d
2Gu+t(x, y)Gu+s(x, z)G2ε+t+s(y, z)µ(dy)µ(dz)tsdtds

.
∫

[0,1]2
(2ε+ t+ s)−

d
2 (ε+ u+ t+ s)−

d
2 tsdtds

. (ε+ u)2−d

102



hence the family
(
Π(Aε, Aε)− cε

)
ε>0

is bounded in C2α−2 for any α < 1 since d = 2.
These computations also show that the associated linear combination of

J :=

∫ 1

0

{
P •t
(
Q1
tA ·Q2

tA
)
− E

[
P •t
(
Q1
tA ·Q2

tA
)] }dt

t

yields a well-defined random distribution of C2α−2 for α < 1 that we denote Π(A,A).
The same type of computations show the convergence and completes the proof with

A2 := 2PAA+ Π(A,A).

�

Then A := (A,A2) belongs to X α and

lim
ε→0
‖A−Aε‖Xα = 0

with
Aε := (Aε, Aε · Aε − cε) ∈ X α.

Remark :

• The effect of a change of gauge Ã = A + df on H can be seen at the level of
the regularised operator. It would give

H̃ε = (i∂1 + Ã1)2 + (i∂2 + Ã2)2 − c̃ε

with
c̃ε = E[Ãε · Ãε].

Since the spectral properties of the magnetic Laplacian with smooth potential
are not affected by the choice of gauge, it only remains to see the impact in
the renormalisation procedure. It gives

c̃ε = E[Aε · Aε] + 2E[df · Aε] + E[df · df ] = cε + |df |2

in the case of a deterministic change of gauge df . This would change the
spectral properties of the limit however one could recover the same operator by
incorporating the term |df |2 in the renormalisation procedure since it does not
cause any divergence. The arbitrary choice one has to make in the renormal-
isation allows to deal with different gauge choice and should be motivated by
the applications.

• As for the Anderson Hamiltonian, this raises interesting questions as far as
probability is concerned. For example, the eingenvalues are random variables
and one could get tail estimates as in [50]. One could also consider the mar-
tingale problem associated to rough differential equations (RDEs) in the case
of a time-independant distributional drift, see Chapter 7.
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Chapter 6

Dispersive singular SPDEs

While the previous Chapters dealt with parabolic and elliptic PDEs, substantial
progress was naturally also made in the field of singular dispersive SPDEs following
the paper [28] due to Debussche and Weber on the cubic multiplicative stochastic
Schrödinger equation and the paper [36] by Gubinelli, Koch and Oh on the cubic
additive stochastic wave equation. Since the powerful tools from singular SPDEs are
only directly applicable to parabolic and elliptic SPDEs, these initial papers were
in a not so singular regime, the former using an exponential transform to remove
the most singular term and the latter using a “DaPrato-Debussche trick” to do the
same. In [38], Gubinelli, Ugurcan and Zachhuber proved some sharpened results on
the multiplicative Schrödinger equation and its wave analogue by reframing it in
relation to the Anderson Hamiltonian as well as extending the results to dimension
3. Building on this, Strichartz estimates were shown to hold in [59] by Zachhuber
for the Anderson Hamiltonian which, in a nutshell, leverage dispersion in order to
allow to trade integrability in time for integrability in space, see Section 6.1.2 for
a more detailed introduction. Moreover, Tzvetkov and Visciglia extended in [58]
the results of [28] to a larger range of power nonlinearities. For the nonlinear wave
equation with additive noise, let us mention here the follow-up paper by Gubinelli,
Koch and Oh [37] in three dimensions with quadratic nonlinearity and the paper
[52] by Oh, Robert and Tzvetkov which extends the results of [36] to the case of
two-dimensional surfaces and is thus salient for the current Chapter.

In this Chapter, we first explain how the construction of H yields immediately
to strong energy solutions for the cubic nonlinear Schrödinger equation with mul-
tiplicative noise on a two-dimensional manifold while the form estimate gives en-
ergy solution. We then prove Strichartz inequalities for the Schrödinger and wave
equation with white noise potential on compact surfaces. Moreover, we show how
this provides local well-posedness for the associated nonlinear equations in a low-
regularity regimes. As for the deterministic case, the Strichartz estimates obtained
depend whether the manifold has a boundary or not and are improved in the flat
case of the torus. By Strichartz inequalities, we generally refer to space-time bounds
on the propagators of Schrödinger and wave equations where the results on integra-
bility are strictly better than what one gets from the Sobolev embedding so – for
definiteness we consider the Schrödinger case – a bound like

‖eitHu‖Lp(I,Lq) . ‖u‖Hα ,

with p ∈ [1,∞], q > 2d
d−2α

where d denotes the dimension and I ⊂ R is an interval.
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The overall approach to the Schrödinger group associated to H we follow is similar
to the one in [59], where such Strichartz estimates were shown for the Anderson
Hamiltonian on the two and three-dimensional torus. However, one gets sharper
results in the particular case of flat geometry due to the fact that one has stronger
classical Strichartz inequalities available. In the more general setting of a Rieman-
nian compact manifold, we work with a result due to Burq, Gérard and Tzvetkov [19]
which has been extended to the case with boundary by Blair, Smith and Sogge in
[13]. These results can be thought of as quantifying the statement “finite frequencies
travel at finite speeds – in (frequency dependent) short time the evolution is morally
on flat space”. Let us also mention at this point the recent work by Huang and Sogge
[41] which deals with a similar setting, however their notion of singular potential
refers to low integrability while in our case singular refers rather to potentials with
low regularity.

For the case of Strichartz estimates for the wave equation related to H, we fol-
low the approach introduced by Burq, Lebeau and Planchon [20] on domains with
boundary. The main idea, which is why this approach is applicable, is that all that is
required is that the operator driving the wave equation satisfies some growth condi-
tion on the Lq bounds on the its eigenfunctions and one knows about the asymptotics
of the eigenvalues, in their case the Laplace with boundary conditions. Since a Weyl
law for H was obtained by Mouzard in [50] and our result for the Schrödinger equa-
tion gives us a suitable Lq bound on the eigenfunctions of H, their approach turns
out to be enough to prove Strichartz estimates that beat the Sobolev embedding.
One also gets improved results in the flat case of the two-dimensional torus since
one has sharper Lq bounds coming from the sharper Strichartz estimates proved
by Zachhuber in [59]. Overall this approach seems somewhat crude and we assume
there to be sharper bounds possible whereas in the Schrödinger case, our result is
the same as the one without noise obtained in [19] worsened only by an arbitrarily
small regularity. The state of the art of Strichartz estimates for wave equations on
manifolds with boundary is the paper [12], the case of manifolds without boundary
being comparable to the Strichartz estimates on Euclidean space because of the finite
speed of propagation. The final objective of this Chapter is to use the Strichartz
inequalities obtained to prove local well-posedness for the associated defocussing
nonlinear equations, also known as cubic multiplicative stochastic Schrödinger and
wave equations. This will be done using fairly straightforward contraction argu-
ments for which the Strichartz estimates will be crucial, this is analogous to Section
5 of [59]. The results of this Chapter are from the works [50, 51].

6.1 – Nonlinear Schrödinger equation
In the first Section, we explain how the construction of the Anderson Hamiltonian H
and its form domain yields strong and energy solutions. We then provide Strichartz
inequalities for the Schrödinger groups asscoiated to H after recalling the proof of
this result for the Laplace-Beltrami operator from [19]. Finally, we show how this
can be used to get local well-posedness in low-regularity Sobolev spaces. Recall that
H is constructed as the limit of

Hε := L+ ξε − cε
with cε a diverging function as ε goes to 0. In particular, one can take shift cε by a
large enough constant to ensure that H is positive.
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6.1.1 – Strong and energy solutions
The construction of the Anderson Hamiltonian allows the study of associated evo-
lution equations. This was the motivation for the work [38] of Gubinelli, Ugurcan
and Zachhuber and they studied the nonlinear Schrödinger and wave equations on
the torus in two and three dimensions. The construction from Chapter 4 allows
to do the same on a two-dimensional manifold. As an example, we give results for
the cubic nonlinear Schrödinger equation associated to H. See the work [27] of De-
bussche and Weber for the equation on the torus where they use a Hopf-Cole type
transformation. This was extended in [58] by Tzvetkov and Visciglia to the fourth
order nonlinearity. Since H is positive, Proposition 5.9 yields a characterization of
the domain and the form domain which is defined as follows.

Definition. We define the form domain of H denoted DΞ(
√
H) as the closure of the

domain under the norm
‖u‖DΞ(

√
H) :=

√
〈u,Hu〉

In particular, the form estimate on H gives the following parametrisation of the
form domain using the Γ map in addition to the parametrisation of the domain DΞ.

Proposition 6.1. For s < s0(Ξ) and u ∈ L2,(
u ∈ DΞ(

√
H)
)
⇐⇒

(
Φs(u) = u]s ∈ H1

)
with the bounds

‖u]s‖H1 .Ξ,s ‖u‖DΞ(
√
H) .Ξ,s ‖u]s‖H1 .

Proof : As stated, Proposition 4.9 yields

‖u]s‖H1 .Ξ,s ‖u‖DΞ(
√
H).

In fact, the inequality that is proved is∣∣〈Hu, u〉 − 〈∇u]s,∇u]s〉∣∣ ≤ kΞ‖u‖L2 + δ‖u]s‖H1

thus one also get the other estimate

‖u‖DΞ(
√
H) .Ξ,s ‖u]s‖H1 .

�

This yields a version of Brezis-Gallouët inequality for the Anderson Hamiltonian.
In some sense, it interpolates the L∞-norm between the energy norm and the loga-
rithm of the domain norm. This was already obtained in [38] by Gubinelli, Ugurcan
and Zachhuber on the torus.

Theorem 6.2. For any v ∈ DΞ, we have

‖v‖L∞ .Ξ ‖v‖DΞ(
√
H)

1 +

√√√√log

(
1 +

‖v‖DΞ

‖v‖D(
√
H)

) .

For any v ∈ H2, we have

‖v‖L∞ .Ξ ‖
√
Hεv‖L2

(
1 +

√
log

(
1 +

‖Hεv‖L2

‖
√
Hεv‖L2

))
.

In particular, the second inequality holds uniformly in ε.
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Proof : For any t > 0, we have

v =

∫ t

0

(t′L)e−t
′Lv

dt′

t′
+ e−tLv

thus

‖v‖L∞ ≤
∥∥∥∥∫ t

0

(t′L)e−t
′Lv

dt′

t′

∥∥∥∥
L∞

+ ‖e−tLv‖L∞ .

One can bound the integral as∥∥∥∥∫ t

0

(t′L)e−t
′Lv

dt′

t′

∥∥∥∥
L∞
.
∫ t

0

‖Lv‖L2dt′

. t‖v‖H2

and the remainder as

‖e−tLv‖L∞ .
∥∥∥∥∫ 1

t

(t′L)e−t
′Lv

dt′

t′

∥∥∥∥
L∞

+ ‖e−Lv‖L∞

.

(∫ 1

t

dt′

t′

) 1
2
(∫ 1

t

‖(t′L)e−t
′Lv‖2

L∞
dt′

t′

) 1
2

+ ‖v‖H1

.

(∫ 1

t

dt′

t′

) 1
2
(∫ 1

t

‖
√
t′Le−t

′Lv‖2
L2dt′

) 1
2

+ ‖v‖H1

. ‖v‖H1

(
1 + | log(t)|

1
2

)
,

to get
‖v‖L∞ . t‖v‖H2 +

(
1 + | log(t)|

1
2

)
‖v‖H1 .

Taking ‖v‖H1 ≤ 1 and t =

√
log(1+‖v‖H2

)

1+‖v‖H2
> 0, we get the classical Brezis-Gallouet

inequality, that is
‖v‖L∞ . 1 +

√
log (1 + ‖v‖H2).

Thus for ‖v‖D(
√
H) ≤ 1, we have

‖v‖L∞ .Ξ ‖v]‖L∞

.Ξ 1 +
√

log (1 + ‖v]‖H2)

.Ξ 1 +
√

log
(
1 + ‖H+‖D(H)

)
using Proposition 6.1. Since every estimates also hold for Hε with bound uniform in
ε, we also get the estimate for Hε. Applying this result to v

‖v‖D(
√
H)

yields the general
inequality.

�

This inequality can be used for example to study the cubic nonlinear Schrödinger
equation with multiplicative noise

i∂tu−∆u+ uξ = −|u|2u

with initial condition u0 ∈ DΞ. The construction of the operator H immediatly
yields the renormalised solution u(t, ·) := e−itHu0 to the linear equation

i∂tu−∆u+ uξ = 0
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given any u0 ∈ DΞ. This is the content of the following Theorem. Remark that
when one regularizes the question, one also has to consider a suitable sequence of
initial data (u

(ε)
0 )ε>0, it is often refered to as “well-prepared data” in the litterature.

Theorem 6.3. Let T > 0 and u0 ∈ DΞ. Then there exists a unique solution u ∈
C
(
[0, T ],DΞ

)
∩ C1

(
[0, T ], L2

)
to the equation{

i∂tu = Hu
u(0, ·) = u0

on [0, T ]×M.

Moreover, u is the L2-limit of the solutions uε ∈ C
(
[0, T ],H2

)
∩ C1

(
[0, T ], L2

)
of

solutions to the equations{
i∂tuε = Hεuε
uε(0, ·) = u

(ε)
0

on [0,∞[×M,

with the initial data
u

(ε)
0 := (Hε)

−1Hu0 ∈ H2

which converges to u0 in L2.

One can also solve the associated equation with cubic nonlinearity. One can
not apply the same Theorem as Brezis and Gallouët in [15] since we do not have a
control on the cubic term from DΞ to itself. One could modify the domain taking into
account the term Π(X1, X1) in X2 to get a domain stable by multiplication. However
since a direct computation as done by Gubinelli, Ugurcan and Zachhuber in [38] is
enough, it is not necessary. In particular, the proof of the following Theorem works
exactly as in their work and is left to the reader. This will be detailled in Section
6.1.5 with the use of Strichartz inequalities.

Theorem 6.4. Let T > 0 and u0 ∈ DΞ. Then there exists a unique solution u ∈
C
(
[0, T ],DΞ

)
∩ C1

(
[0, T ], L2

)
to the equation{

i∂tu = Hu− |u|2u
u(0, ·) = u0

on [0, T ]×M.

Moreover, u is the L2-limit of the solutions uε ∈ C
(
[0, T ],H2

)
∩ C1

(
[0, T ], L2

)
of

solutions to the equations{
i∂tuε = Hεuε − |uε|2uε
uε(0, ·) = u

(ε)
0

on [0,∞[×M,

with the initial data
u

(ε)
0 := (Hε)

−1Hu0 ∈ H2

which converges to u0 in L2. We also have the convergences

uε(t)→ u(t) in L2,

Hεuε(t)→ Hu(t) in L2,

∂tuε(t)→ ∂tu(t) in L2

for all t ∈ [0, T ].
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Remark : The solution to

i∂tvε = ∆vε + ξεvε − |vε|2vε

on the torus can be related to the renormalised equation

i∂tuε = Hεuε − |uε|2uε

via the change of variable uε(t, ·) = etcεvε(t, ·) since cε is a constant as Tzvetkov and
Visciglia’s Theorem 1.1 from [58]. One could want to do the same in a manifold
setting, it is however not clear what the change of variable should be on a manifold
since cε is a function and not a constant. It should still be possible to find an
appropriate change of variable even though this requires some work.

6.1.2 – Strichartz inequalities for the Laplace-Beltrami operator
Since our proof of the Schrödinger Strichartz inequalities for the torus relies on the
result for the deterministic equation, we first explain how one gets these estimates in
this case. As explained, we use the result obtained by Burq, Gérard and Tzvetkov in
[19]. On the torus, regularity of distributions can be measured using the Littlewood-
Paley decomposition. On a manifold, one has an analogue decomposition using the
eigenfunctions of the Laplace-Beltrami operator ∆ as a generalisation of Fourier
theory, see for example Section 2 in [53] by Oh, Robert, Tzvetkov and Wang and
references therein. Let (M, g) be a two-dimensional compact Riemannian manifold
without boundary or with boundary and Dirichlet boundary conditions. In this
framework, the Laplace-Beltrami operator −∆ is a self-adjoint positive operator
with discrete spectrum

λ1 < λ2 ≤ λ3 ≤ . . .

with the associated normalized eigenfunctions (ϕn)n≥1 belonging to C∞(M). Fur-
thermore, the Weyl law gives the asymptotics

lim
n→∞

λn
n

=
Vol(M)

4π
.

The basis (ϕn)n≥1 of L2 gives the decomposition

u =
∑
n≥1

〈u, ϕn〉ϕn

for any distribution u ∈ D′(M). On the torus, this gives the Littlewood-Paley
decomposition of u where the regularity is measured by the asymptotics behavior of∑

λk∼2n〈u, ϕk〉. On a manifold M , this is done with

∆n := ψ
(
− 2−2(n+1)∆

)
− ψ

(
− 2−2n∆

)
for n ≥ 0 and

∆−1 := ψ(−∆)

with ψ ∈ C∞0 (R) a non-negative function with supp(ψ) ⊂ [−1, 1] and ψ = 1 on
[−1

2
, 1

2
]. Recall that for any function ψ ∈ L∞(R), the operator ψ(∆) is defined as

ψ(∆)u =
∑
n≥1

ψ(λn)〈u, ϕn〉ϕn
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and this yields a bounded operator from L2(M) to itself. In this setting, Besov
spaces can also be defined for α ∈ R and p, q ∈ [1,∞] as

Bαp,q := {u ∈ D′(M) ; ‖u‖Bαp,q <∞}

where

‖u‖Bαp,q :=
(
‖∆−1u‖qLp(M) +

∑
n≥0

2αq‖∆nu‖qLp(M)

) 1
q
.

The particular case p = q = 2 corresponds to Sobolev spaces and we have

‖u‖2
Hα = ‖∆−1u‖2

L2(M) +
∑
n≥0

22nα‖ϕ(2−2n∆)u‖2
L2(M)

where ϕ(x) := ψ(−x2) − ψ(−x). Burq, Gérard and Tzvetkov proved in [19] the
bound

‖f‖Lq(M) . ‖ψ(−∆)f‖Lq(M) +
(∑
n≥0

‖ϕ(2−2n∆)f‖2
Lq(M)

) 1
2

using that for λ ∈ R, we have

ψ(−λ) +
∑
n≥0

ϕ(2−2nλ) = 1.

Applying this to the Schrödinger group, they obtain

‖eit∆v‖Lp([0,1],Lq) . ‖ψ(−∆)v‖Lq(M) +
∥∥∥(∑

k≥0

‖eit∆ϕ(2−2k∆)v‖2
Lq(M)

) 1
2
∥∥∥
Lp([0,1])

using that the Paley-Littlewood projectors commute with the Schrödinger group
hence one only needs a bound for spectrally localised data. This is proved using
semi-classical analysis with the use of the WKB expansion, see Proposition 2.9 from
[19] and references therein which gives(∫

J

‖eit∆ϕ(h2∆)v‖pLq(M)dt

) 1
p

. ‖v‖L2(M) (6.1)

for J an interval of small enough length proportional to h ∈ (0, 1). Moreover, a
well-known trick is to slice up the time interval into small pieces, this will be useful
later. The previous bounds with the Minkowski inequality lead to

‖eit∆v‖Lp([0,1],Lq) . ‖v‖L2(M) +
(∑
k≥0

2
2k/p‖ϕ(2−2k∆)v‖2

L2(M)

) 1
2
. ‖v‖

H
1
p
.

This yields the following Theorem.

Theorem 6.5. Let p ≥ 2 and q <∞ such that

2

p
+

2

q
= 1.

Then
‖e−it∆u‖Lp([0,1],Lq) . ‖u‖H 1

p
.
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While this result is optimal on general surfaces, this can be improved in the
flat case of the torus. For the Anderson Hamiltonian, analogue result was obtained
by Zachhuber in [59] and we also expect the bound to be weaker on manifolds.
This is indeed the case and we obtained an the same result with an arbitrary loss
of regularity, this is the content of Section 6.1.4. In the case of a manifold with
boundary, the following result was obtained by Blair, Smith and Sogge [13].

Theorem 6.6. Let p ∈ (2,∞] and q ∈ [2,∞) such that

3

p
+

2

q
≤ 1

and consider σ given by
2

p
+

2

q
= 1− σ.

Then
‖e−it∆u‖Lp([0,1],Lq) . ‖u‖H 1

p+σ .

We end this Section with two classical results that will be needed in this pa-
per. First, one still has Bernstein Lemma with the Littlewood-Paley decomposition
associated to the Laplace-Beltrami operator.

Lemma 6.7. Let g : M → R be a function which has spectral support in an interval
[a, b] with 0 < a < b < ∞. Then for any α, β ∈ R we have the following bounds
which are the analogue of Bernstein’s inequality on Euclidean space

‖g‖Hα . max(bα−β, aα−β)‖g‖Hβ

and
‖g‖Hα & min(bα−β, aα−β)‖g‖Hβ .

The former estimate still holds in the case where a = 0 and α > β. For Littlewood-
Paley projectors, this will be applied b = 2a = 2j for j ∈ N.

Proof : The condition on g means that

g =
∑

λk∈[a,b]

(g, φk)φk

and we have
‖g‖2

Hα =
∑

λk∈[a,b]

(g, φk)
2λ2α

k .

The upper bounds follow directly with

λ2α
k = λ2β

k λ
2(α−β)
k ≤ λ2β max

(
b2(α−β), a2(α−β)

)
and analogously for the lower bounds.

�

The space Hσ is an algebra only for σ large enough depending on the dimension,
this can be seen with the following Proposition and the Sobolev embedding. This
type of estimates are important for the dispersive equations with cubic nonlinearity
considered here.

Lemma 6.8. Let σ ≥ 0. The space Hσ ∩ L∞ is an algebra and one has the bound

‖f · g‖Hσ . ‖f‖Hσ‖g‖L∞ + ‖g‖Hσ‖f‖L∞ .
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6.1.3 – Additional results on the Anderson Hamiltonian
In this Section, we provide two results on the Anderson Hamiltonian needed for our
proof of Strichartz inequalities that follows directly from the construction of Chapter
4. Recall that for any u ∈ DΞ, the operator H is given by

Hu = Lu] + Pξu
] + Π(u], ξ) +R(u)

with u] = Φ(u) ∈ H2 and R an explicit operator depending on Ξ which is continuous
from Hα to H3α−2. For each s > 0, we have a different representation of H, namely

Hu = HΓu]s = Lu]s + Pξu
]
s + Π(u]s, ξ) +R(Γu]s) + Ψs(Γu]s)

with u]s = Φs(u) ∈ H2 and Ψs an explicit operator depending on Ξ and s continuous
from L2 to C∞ which we henceforth include in the operator R. The operator HΓ
is thus a perturbation of L, the following Proposition shows that it is a continuous
operator from H2 to L2. In Section 6.2.1, we show that it is even a lower order per-
turbation of the Laplace-Beltrami operator; this will be crucial to obtain Strichartz
inequalities.

Proposition 6.9. For any γ ∈ (−α, 3α− 2) and s as above, we have

‖HΓu]s‖Hγ . ‖Γu]s‖Hγ+2 .

In particular, the result holds for γ ∈ (−1, 1) since the noise belongs to Cα−2 for any
α < 1.

Proof : We have
HΓu]s = Lu]s + Pξu

]
s + Π(u]s, ξ) +R(u)

with u = Γu]s. Assume first that 0 < γ < 3α− 2 hence

‖HΓu]‖Hγ . ‖Lu]‖Hγ + ‖Pξu] + Π(u], ξ)‖Hγ + ‖R(u)‖Hγ
. ‖u]‖Hγ+2 + ‖ξ‖Cα−2‖u]‖Hγ+2−α + ‖R(u)‖H3α−2

where the condition γ > 0 is needed for the resonant term and γ < 3α− 2 for R(u).
The result follows for this case since

‖R(u)‖H3α−2 . ‖u‖Hα . ‖u]‖Hα . ‖u]‖Hγ+2 .

Assume now that −α < γ ≤ 0. For any δ > 0, we have

‖HΓu]‖Hγ . ‖Lu]‖Hγ + ‖Pξu] + Π(u], ξ)‖Hγ + ‖R(u)‖Hγ
. ‖Lu]‖Hγ + ‖Pξu] + Π(u], ξ)‖Hδ + ‖R(u)‖Hγ
. ‖u]‖Hγ+2 + ‖ξ‖Cα−2‖u]‖Hδ+2−α + ‖R(u)‖H3α−2

using that γ ≤ 0 < δ. The proof is complete since γ > −α and δ small enough
implies γ + 2 > δ + 2− α.

�

While the regularity of a function can be measured by its coefficients in the basis
of eigenfunction of the Laplacian, the same is true for the Anderson Hamiltonian
and the spaces agree if the regularity one considers is below the form domain.

Proposition 6.10. For β ∈ (−α, α), there exists two constants cΞ, CΞ > 0 such that

cΞ‖H
β
2 u‖L2 ≤ ‖u‖Hβ ≤ CΞ‖H

β
2 u‖L2 .
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Proof : Observe first that the statement is clear for β = 0, we consider only the
case β ∈ (0, α) since the case of negative β follows by duality. Again we take (ϕn)n≥1

and (en)n≥1 to denote the basis of eigenfunctions of −∆ and H respectively. We
have for any v ∈ DΞ∥∥H β

2 v
∥∥
L2 =

(∑
n≥1

λβn〈v, en〉2
) 1

2

=
(∑
n≥1

λβn〈v, en〉2β〈v, en〉2−2β
) 1

2

.
(∑
n≥1

λn〈v, en〉2
)β

2
(∑
n≥1

〈v, en〉2
) 1−β

2

. ‖H
1
2v‖βL2‖v‖1−β

L2

using Hölder’s inequality. Thus the equivalence of ‖H 1
2v‖L2 and ‖v]s‖H1 together

with the continuity of Φs from L2 to itself yields∥∥H β
2 v
∥∥
L2 . ‖v]s‖

β
H1‖v]‖1−β

L2 .

Applying this with v = Γ
(
〈u]s, ϕn〉ϕn

)
gives∥∥H β

2 Γ
(
〈u], ϕn〉ϕn

)∥∥
L2 . ‖〈u], ϕn〉ϕn‖βH1‖〈u], ϕn〉ϕn‖1β

L2

. |〈u], ϕn〉|‖ϕn‖Hβ

Thus

‖H
β
2 u‖2

L2 = ‖H
β
2 Γ(u]s)‖2

L2 ≤
∑
n≥1

‖H
β
2 Γ
(
〈u]s, ϕn〉ϕn

)
‖2
L2

.
∑
n≥1

|〈u]s, ϕn〉|2‖ϕn‖2
Hβ

. ‖u]s‖2
Hβ .

Since β ∈ [0, α), we get
‖H

β
2 u‖L2 . ‖u‖Hβ .

from the boundedness of Γ. The other inequality follows from the same reasoning
with

‖v‖Hβ . ‖v]s‖Hβ . ‖v]s‖
β
H1‖v]s‖

1−β
L2 . ‖H

1
2v‖βH1‖u‖1−β

L2

and applying this bound to u =
∑

n≥1〈u, en〉en and proceeding as above we get the
other direction.

�

6.1.4 – Strichartz inequalities with white noise potential
As was hinted at in Proposition 5.5, the transformed operator

H] := Γ−1HΓ

is a lower-order pertubation of the Laplace-Beltrami operator. This transformed
operator appears naturally when transforming the Schrödinger equation and the
wave equation with multiplicative noise, the continuity result on Γ and its inverse
allow to relate results on H] to H. We obtain the following result which is analogous
to Proposition 3.2 in [59].

114



Proposition 6.11. Let 0 ≤ β < 1. For any κ > 0, we have

‖(H] − L)v‖Hβ . ‖v‖H1+β+κ .

Proof : For u = Γu] ∈ DΞ, recall that

Hu = Lu] + Pξu
] + Π(u], ξ) +R(u)

where

R(u) := Π
(
u,Π(X1, ξ)

)
+ PΠ(X1,ξ)u+ C(u,X1, ξ) + PuΠ(X2, ξ) + D(u,X2, ξ)

+ S(u,X2, ξ) + PξP̃uX2 − e−L (PuX1 + PuX2) .

Thus H]v is given by

H]v = Lv + Pξv + Π(v, ξ) +R(Γv)− P̃HΓv(X1 +X2)

and for any κ > 0 and β ∈ [0, α], we have

‖(H] − L)v‖Hβ . ‖Pξv + Π(v, ξ)‖Hβ + ‖R(Γv)‖Hβ + ‖P̃HΓv(X1 +X2)‖Hβ
. ‖ξ‖C−1−κ‖v‖Hβ+1+κ + ‖Γv‖Hα + ‖HΓv‖H−1+κ+β‖X1 +X2‖C1−κ

. ‖v‖H1+β+κ + ‖v‖Hα + ‖v‖H1+κ+β

using Proposition 6.9 and the proof is complete since α < 1.

�

Since the unitary group associated to H is bounded on L2 and on the domain
DΞ of H, this implies a similar result for the “sharpened” group associated with H]

in terms of classical Sobolev spaces.

Proposition 6.12. For any 0 ≤ β ≤ 2 and t ∈ R, we have

‖eitH]

v‖Hβ . ‖v‖Hβ .

Moreover, eitH] is a non-unitary group of L2 bounded operators, namely

ei(t+s)H
]

v = eitH
]

eisH
]

v

for all s, t ∈ R and v ∈ L2.

Proof : For β = 0, this follows from the continuity of Γ and Γ−1 from L2 to itself.
For β = 2, Proposition 4.6 gives

(1− δ)‖Γ−1u‖H2 ≤ ‖Hu‖L2 +m2
δ(Ξ, s)‖u‖L2

thus

‖eitH]

v‖H2 = ‖Γ−1eitHΓv‖H2

. ‖HeitHΓv‖L2

. ‖eitHHΓv‖L2

. ‖HΓv‖L2

. ‖v‖H2 .

The results for any β ∈ (0, 2) is obtained by interpolation and the group property
follows simply from the group property of eitH by observing

ei(t+s)H
]

v = Γ−1ei(t+s)HΓv = Γ−1eitHΓΓ−1eisHΓv = eitH
]

eisH
]v
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�

Strichartz inequalities are refinement of the estimates from the previous Propo-
sition. The following statement is such a result, which has an arbitraty small loss
of derivative coming from the irregularity of the noise in the addition to the 1

p
loss

from the manifold setting which one sees in [19]. We refer to a pair (p, q) statisfying

2

p
+

2

q
= 1

as a Strichartz pair from here.

Theorem 6.13. Let (p, q) be a Strichartz pair. Then for any κ > 0

‖eitH]

v‖Lp([0,1],Lq) . ‖v‖H 1
p+κ .

First, we need to prove the following Lemma. It gives the difference between the
Schrödinger groups associated to H] and L from the difference between H] and L
itself. Moreover it quantifies that their difference is small in a short time interval if
one gives up some regularity.

Lemma 6.14. Given v ∈ H2, we have(
ei(t−t0)H] − ei(t−t0)L

)
v = i

∫ t

t0

ei(t−s)L(H] − L)ei(s−t0)H]

vds

for any t, t0 ∈ R.

Proof : The “sharpened” group yields the solution of the Schrödinger equation(
i∂t +H]

)
(eitH

]

v) = 0

thus (
i∂t + L

)
(eitH

]

v) =
(
L−H]

)
(eitH

]

v).

Using the unitary group representation of the solution to the Schrödinger equation
associated to L, we deduce that(

i∂t + L
)
(eitLv − eitH]

v) =
(
H] − L

)
(eitH

]

v).

Since the solution is equal to 0 at time 0, the mild formulation of this last equation
yields (

eitH
] − eitL

)
v = i

∫ t

0

ei(t−s)L(H] − L)eisH
]

vds.

The result for any t0 ∈ R follows from the same proof.

�

Proof of Theorem 6.13 : For N ∈ N∗ to be chosen, we have

‖eitH]

v‖pLp([0,1],Lq) =
N∑
`=0

‖eitH]

v‖pLp([t`,t`+1],Lq)
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where t` := `
N
. For t ∈ [t`, t`+1), the previous Lemma gives

eitH
]

v = ei(t−t`)H
]

eit`H
]

v = ei(t−t`)Leit`H
]

v + i

∫ t

t`

ei(t−s)L(H] − L)eisH
]

vds.

Applying this with v = ∆ku gives

‖∆je
itH]

∆ku‖pLp([0,1],Lq) ≤
N∑
`=0

∥∥∆je
i(t−t`)Leit`H

]

∆ku
∥∥p
Lp([t`,t`+1],Lq)

+
N∑
`=0

∥∥∥∆j

∫ t

t`

ei(t−s)L(H] − L)eisH
]

∆kuds
∥∥∥p
Lp([t`,t`+1],Lq)

.

Assume N ≥ 2j such that |t`+1 − t`| ≤ 2−j. For the first term, we have

‖∆je
i(t−t`)Leit`H

]

∆ku‖pLp([t`,t`+1],Lq) = ‖ei(t−t`)L∆je
it`H

]

∆ku‖pLp([t`,t`+1],Lq)

. ‖∆je
it`H

]

∆ku‖pL2

. 2−jδp‖∆je
it`H

]

∆ku‖pHδ
. 2−jδp2−kδ

′p‖∆ku‖pHδ+δ′

for any δ, δ′ ∈ R using Proposition 6.12, Strichartz inequality for spectrally localised
data from Section 6.1.2 and Bernstein’s Lemma, see Lemma 6.7. For the second
term, we have∥∥∥∆j

∫ t

t`

ei(t−s)L(H] − L)eisH
]

∆kuds
∥∥∥p
Lp([t`,t`+1],Lq)

=
∥∥∥∫ t

t`

ei(t−s)L∆j(H
] − L)eisH

]

∆kuds
∥∥∥p
Lp([t`,t`+1],Lq)

.

(∫ t`+1

t`

∥∥ei(t−s)L∆j(H
] − L)eisH

]

∆ku
∥∥
Lp([t`,t`+1],Lq)

ds

)p
.

(∫ t`+1

t`

∥∥∆j(H
] − L)eisH

]

∆ku
∥∥
L2ds

)p
. 2−jσp

(∫ t`+1

t`

∥∥∆j(H
] − L)eisH

]

∆ku
∥∥
Hσds

)p
. 2−jσp

(∫ t`+1

t`

∥∥(H] − L)eisH
]

∆ku
∥∥
Hσds

)p
. 2−jσp

(∫ t`+1

t`

∥∥eisH]

∆ku
∥∥
Hσ+1+κds

)p
. N−p2−jσp‖∆ku‖pH1+σ+κ

. N−p2−jσp2−kσ
′p‖∆ku‖pH1+σ+σ′+κ

for any σ ∈ (0, 1), σ′ ∈ R and 0 < κ < 1 − α where again the dyadic factors
come from Bernstein’s Lemma and we have used the bounds from Propositions 6.11
and 6.12 with Strichartz inequality for spectrally localised data. Summing over the
sub-intervals gives

‖∆je
itH]

∆ku‖Lp([0,1],Lq) . N
1
p2−jδ2−kδ

′‖∆ku‖Hδ+δ′ +N
1−p
p 2−jσ2−kσ

′‖∆ku‖H1+σ+σ′+κ .
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Let η > 0 small and take

N = 2j, δ = η +
1

p
, δ′ = σ = σ′ = η

which satisfies in particular N ≥ 2j and σ ∈ [0, α) to sum over k ≤ j. We get

‖
∑
k≤j

∆je
itH]

∆ku‖Lp([0,1],Lq) .
∑
j

∑
k≤j

‖∆je
itH]

∆ku‖Lp([0,1],Lq)

.
∑
j≥0

∑
k≤j

2
j
p2−j(

1
p

+η)2−kη‖∆ku‖H 1
p+2η + 2j

1−p
p 2−jη2−kη‖∆ku‖H1+2η+κ

.
∑
j≥0

2−jη‖∆≤ju‖H 1
p+2η + 2j

1−p
p 2−jη‖∆≤ju‖H1+2η+κ

. ‖u‖
H

1
p+2η +

∑
j≥0

2−jη2j
1−p
p 2−j

1−p
p ‖∆≤ju‖H1−1+ 1

p+2η+κ

. ‖u‖
H

1
p+2η + ‖u‖

H
1
p+2η+κ ,

having used Bernstein’s inequality, Lemma 6.7, for the projector ∆≤j. For the sum
over j ≤ k, we choose instead

N = 2k, δ = δ′ = σ = σ′ = η,

with η > 0 small as before. Since j ≤ k, we have N ≥ 2j thus get the bound for the
other part of the double sum

‖
∑
j≤k

∆je
itH]

∆ku‖Lp([0,1],Lq) .
∑
k≥0

∑
j≤k

‖∆je
itH]

∆ku‖Lp([0,1],Lq)

.
∑
k≥0

∑
j≤k

2
k
p 2−jη2−kη‖∆ku‖H2η + 2

k(1−p)
p 2−jη2−kη‖∆ku‖H1+2η+κ

. ‖u‖
H

1
p+2η + ‖u‖

H1+
1−p
p +2η+κ

. ‖u‖
H

1
p+2η+κ ,

having used Bernstein’s inequality again. This completes the proof since η and κ
can be taken arbitrary small.

�

Remark : We proved that Strichartz inequalities are stable under suitable perturba-
tion, that is lower-order perturbation in the sense of previous Proposition 6.11. One
can show that the magnetic Laplacian with white noise magnetic field constructed in
[49] is also a lower order perturbation of the Laplacian on the two-dimensional torus
in this sense. Thus Theorem 6.13 also gives Strichartz inequalities for the associated
Schrödinger group. Also, the different continuity results for Γ and its inverse impliy
the same bounds for the group associated to H and not H].

As Corollary, we state the inhomogeneous inequalities needed to solve the nonlin-
ear equation. This is straightforward and we ommit the proof, see [59] and references
therein.
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Corollary 6.15. In the setting of Theorem 6.13, we have in addition the bound∥∥∥∥∫ t

0

e−i(t−s)H
]

f(s)ds

∥∥∥∥
Lp([0,1],Lq)

.
∫ 1

0

‖f(s)‖
H

1
p+εds

for all f ∈ L1([0, 1],H
1
p

+κ).

The only ingredient in the proof of the Theorem where the boundary appears
is when we apply the result for the Laplacian. Theorem 6.6 immediatly gives the
following result.

Theorem 6.16. Let p ∈ (2,∞] and q ∈ [3,∞) such that

3

p
+

2

q
= 1.

Then for any κ > 0
‖e−itH]

u‖Lp([0,1],Lq) . ‖u‖H 2
p+κ .

and ∥∥∥∥∫ t

0

e−i(t−s)H
]

f(s)ds

∥∥∥∥
Lp([0,1],Lq)

.
∫ 1

0

‖f(s)‖
H

2
p+κds

for all f ∈ L1([0, 1],H
2
p

+κ).

6.1.5 – Local well-posedness in low-regularity Sobolev spaces
We now apply our results to the local in time well-posedness of the cubic multiplica-
tive stochastic NLS ∣∣∣∣ i∂tu−Hu = −|u|2u

u(0) = u0

with u0 ∈ Hσ where σ ∈ (1
2
, 1) and in the energy space, that is u0 ∈ D(

√
H) = ΓH1

the form domain. As explained in Section 3.2.2 of [38], their result for the equation
with white noise potential is weaker than the one for the deterministic equation since
Strichartz inequalities were not know in this singular case. This was a motivation
for the work [59] while our result allows to solve the equation in a regime arbitrary
closed to the one of the deterministic equation on a surface. This Section follows the
line of this last paper, we recall the core ideas nonetheless. Finally, we only consider
a surface without boundary, the case with boundary is analogue with the associated
Strichartz inequalities. The mild formulation is

u(t) = e−itHu0 + i

∫ t

0

e−i(t−s)H
(
|u|2u

)
(s)ds

and applying the Γ−1 map introduced in Chapter 4 yields the mild formulation for
the transformed quantity u] = Γ−1u. We get

u](t) = e−itH
]

u]0 + i

∫ t

0

e−i(t−s)H
]

Γ−1
(
|Γu]|2Γu]

)
(s)ds

where u]0 := Γ−1u0, this is where the transformed operator H] = Γ−1HΓ appears
naturally. Despite the seemingly complicated nonlinear expression, this new mild
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formulation is easier to deal with since H] is a perturbation of the Laplacian and
has domain H2, hence it is not as outlandish as H and its domain which contains
no non-zero smooth functions. Now, we have to find a bound for the map

Ψ(v)(t) := e−itH
]

v0 + i

∫ t

0

e−i(t−s)H
]

Γ−1
(
|Γv|2Γv

)
(s)ds

in a suitable space which allows us to get a unique fixed point. One then recovers
a solution to the original equation with u := Γv and choosing v0 := Γ−1u0. Since
both e−itH] and Γ are bicontinuous from Lp to itself for p ∈ [2,∞] and from Hσ to
itself for σ ∈ [0, 1), it is natural to consider initial datum v0, and thus also u0, in
Hσ for 0 < σ < 1. Therefore we bound Ψ(v) in Hσ with

∥∥Ψ(v)(t)
∥∥
Hσ . ‖v0‖Hσ +

∫ t

0

‖Γv(s)3‖Hσds

. ‖v0‖Hσ +

∫ t

0

‖Γv(s)‖Hσ‖Γv(s)‖2
L∞ds

. ‖v0‖Hσ +

∫ t

0

‖v(s)‖Hσ‖v(s)‖2
L∞ds

. ‖v0‖Hσ + ‖v‖L∞([0,t],Hσ)‖v‖2
L2([0,t],L∞)

where in the first and third lines we have used the continuity of e−itH] and Γ and
Bernstein Lemma 6.8 in the second line. For σ < 1, the space Hσ is not an algebra
and one can not simply use its norm to bound the nonlinearity. However, one may
bound it using the L∞-norm in space by observing that one needs less integrability
in time and this is precisely the point where the Strichartz estimates turn out to be
useful. As for the deterministic equation, we work with the function spaces

Wβ,q(M) = {u ∈ D′(M); (1−∆)
β
2 u ∈ Lq}

with associated norm

‖u‖Wβ,q := ‖(1−∆)
β
2 u‖Lq .

For β ∈ [0, 1) and q = 2, one recovers the Sobolev spaces and the norm is equivalent
to

‖u‖Hβ = ‖(1 +H)
β
2 u‖L2

by Proposition 6.10. Within this framework, Strichartz inequalities from Theorem
6.13 gives us the bound

‖e−itH]

w‖Lp([0,1],Wβ,q) . ‖w‖H 1
p+β+κ ,

for any Strichartz pair (p, q) and κ > 0. Furthermore, the spaceWβ,q is continuously
embedded in L∞ for β ≥ 2

q
. Let σ ∈ R such that

1

p
+

2

q
+ 2κ ≤ σ.
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Thus for 0 < t ≤ 1, we get the bound

‖Ψ(v)‖
Lp
(

[0,t],W
2
q+κ,q

) . ‖v0‖H 1
p+ 2

q+2κ +

∫ t

0

∥∥Γ−1
(
|Γv|2Γv

)
(s)
∥∥
H

1
p+ 2

q+2κds

. ‖v0‖Hσ +

∫ t

0

∥∥Γv(s)3
∥∥
Hσds

. ‖v0‖Hσ + ‖v‖L∞([0,t],Hσ)‖v‖2
L2([0,t],L∞)

. ‖v0‖Hσ + ‖v‖L∞([0,t],Hσ)‖v‖2

L2
(

[0,t],W
2
q+κ
)

. ‖v0‖Hσ + t
p−2
p ‖v‖L∞([0,t],Hσ)‖v‖2

Lp
(

[0,t],W
2
q+κ
)

using Corollary 6.15 in the first line, Hölder inequality in the last line and biconti-
nuity of Γ from Hσ to itself. For 0 < t′ ≤ t, we also have∥∥Ψ(v)(t′)

∥∥
Hσ . ‖v0‖Hσ +

∫ t′

0

‖v(s)‖Hσ‖v(s)‖2
L∞ds

. ‖v0‖Hσ + ‖v‖L∞([0,t],Hσ)‖v‖2
L2([0,t],L∞),

. ‖v0‖Hσ + t
p−2
p ‖v‖L∞([0,t],Hσ)‖v‖2

Lp
(

[0,t],W
2
q+κ
).

This gives us the combined bound

‖Ψ(v)‖
Lp
(

[0,t],W
2
q+κ,q

)+‖Ψ(v)‖L∞([0,t],Hσ) . ‖v0‖Hσ+t
p−2
p ‖v‖L∞([0,t],Hσ)‖v‖2

Lp
(

[0,t],W
2
q+κ
)

that will be the main tool for the fixed point. Remark that the restrictions

1

p
+

2

q
+ 2κ ≤ σ and

2

p
+

2

q
= 1

gives

1− 1

p
+ 2κ ≤ σ.

Since p ≥ 2 and κ > 0 can be taken arbitrary small, this gives

σ >
1

2

and leads to the following local-in-time well-posedness result. Without Strichartz
estimates, one could not go beyond the limit σ ≥ 1.

Theorem 6.17. Let σ > 1
2
and initial data v0 ∈ Hσ. Let κ > 0 and (p, q) a Strichartz

pair such that
1

p
+

2

q
+ 2κ ≤ σ,

there exists a time T > 0 until which there exists a unique solution

v ∈ C
(
[0, T ],Hσ

)
∩ Lp

(
[0, T ],W

2
q

+κ
)

to the mild formulation of the transformed PDE∣∣∣∣ i∂tv −H]v = −Γ−1
(
|Γv|2Γv

)
v(0) = v0

.

Moreover, the solution depends continuously on the initial data v0 ∈ Hσ.
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Proof : This is a straightforward contraction argument where the main ingredient
is the bound proved in the preceding arguments. By choosing the radius R of the
ball and the final time appropriately, we can prove that

Ψ : B(0, R)
C([0,T ],Hσ)∩Lp(([0,T ],W

2
q+κ

)
→ B(0, R)

C([0,T ],Hσ)∩Lp(([0,T ],W
2
q+κ

)

is in fact a contraction, we refer to [59] for the details.

�

Finally we give the analogous result for surfaces with boundary which is of course
weaker, however we still get a better result than one gets simply from using the
algebra property of Sobolev spaces.

Theorem 6.18. Let M be a compact surface with boundary, σ > 2
3
and p, q, κ s.t.

3

p
+

2

q
= 1 and

2

p
+

2

q
+ 2κ ≤ σ.

For any initial datum v0 ∈ Hσ there exists a unique solution

v ∈ C([0, T ],Hσ) ∩ Lp([0, T ],W
2
q

+κ)

to the mild formulation of the transformed PDE up to a time T > 0 depending on
the data which depends continuously on the initial condition.

6.2 – Nonlinear wave equation
Again, we consider the “sharpened”operator

H] := Γ−1HΓ

which appears naturally when transforming the wave equation with multiplicative
noise. If u solves ∣∣∣∣ ∂2

t u+Hu = 0
(u, ∂tu)|t=0 = (u0, u1)

then u] := Γ−1u solves the transformed equation∣∣∣∣ ∂2
t u

] +H]u] = 0
(u], ∂tu

])|t=0 = (Γ−1u0,Γ
−1u1)

In this Section, we show Strichartz inequalities for the associated wave equation. In
the particular case of the torus, the improved Strichartz estimates for the Schrödinger
equations yields better bounds on the eigenfunctions of the Anderson Hamiltonian
thus improved Strichartz estimates for the wave equation. Afterwards, we detail
how these can be used to get a low-regularity solution theory for the nonlinear wave
equation with multiplicative noise. The propagator associated to the wave equation
is

(u0, u1) 7→ cos(t
√
H)u0 +

sin(t
√
H)√

H
u1

with initial conditons (u, ∂tu)|t=0 = (u0, u1). As for the Schrödinger equation,
we first recall the deterministic result for the deterministic PDE. The following

122



Strichartz inequalities hold on a two-dimensional compact Riemannian manifold
without boundary, see [12] and the references therein. We state the result in the ho-
mogeneous case for simplicity however one has similar results for the inhomogenous
case, see Corollary 6.15. We cite the following Strichartz estimates which hold on
compact surfaces respectively without and with boundary, see [12].

Theorem 6.19. Let (M, g) be a compact two-dimensional Riemannian manifold with-
out boundary. Let p, q ∈ [2,∞] such that

2

p
+

1

q
≤ 1

2

and consider
1

p
+

2

q
:= 1− σ.

Then the solution to

(∂2
t −∆g)u = 0

(u, ∂tu)|t=0 = (u0, u1) ∈ Hσ ×Hσ−1

satisfies the bound
‖u‖Lp([0,T ],Lq) . ‖u0‖Hσ + ‖u1‖Hσ−1 .

In the case where the surface M has a boundary, there is this slightly weaker
result.

Theorem 6.20. Let (M, g) be a compact two-dimensional Riemannian manifold with
boundary. Let p ∈ (2,∞] and q ∈ [2,∞) such that

3

p
+

1

q
≤ 1

2

and consider σ given by
1

p
+

2

q
= 1− σ.

Then the solution to

(∂2
t −∆g)u = 0

(u, ∂tu)|t=0 = (u0, u1) ∈ Hσ ×Hσ−1

satisfies the bound
‖u‖Lp([0,T ],Lq) . ‖u0‖Hσ + ‖u1‖Hσ−1 .

6.2.1 – Strichartz inequalities for the wave equation with multiplica-
tive noise

While our proof of the Strichartz inequalities for the Schrödinger equation with
white noise potential strongly relies on the deterministic result, this is not the case
for the wave equation. In this case, we follow the approach from [20] for which
one has two mains ingredients, firstly a Weyl law for the Laplace-Beltrami operator
and secondly Lq bounds on its eigenfunctions. In particular, we treat at the same
time the case with and without boundary here. An analogous Weyl law for the
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Anderson Hamiltonian was obtained in Chapter 4 and the analogue of the second
part follows from the Strichartz inequalities for the Schrödinger group obtained in
Section 6.1.4. Let (en)n≥1 be an orthonormal family of eigenfunctions ofH associated
to
(
λn(Ξ)

)
n≥1

. Since the eigenfuctions belong to the domain DΞ, they belong in
particular to L∞ and we have the following bounds on its Lq-norm for q ∈ (2,∞).
As stated in the remark after the proof of Theorem 6.13, the bounds are valid for
the group associated to H as well as H]. In particular, the following bounds rely on
the Strichartz inequalities for the Schrödinger group associated to H.

Proposition 6.21. Let q ∈ (2,∞). We have

‖en‖Lq .
√
λn(Ξ)

1
2
− 1
q

+κ

for any κ > 0. In particular, this implies

‖en‖Lq . (1 +
√
n)

1
2
− 1
q

+κ.

Proof : We have

‖en‖Lq = ‖eitλnen‖Lp([0,1],Lq) = ‖eitHen‖Lp([0,1],Lq)

with (p, q) a Strichartz pair. For any κ > 0, this gives

‖en‖Lq . ‖en‖H 1
p+κ

. ‖
√
H

1
p

+κ
en‖L2

.
√
λn(Ξ)

1
p

+κ

using Proposition 6.10 and
1

p
=

1

2
− 1

q
.

Using the bound on the eigenvalues of the Anderson Hamiltonian

λn(Ξ) . 1 + λn(0),

the proof is complete using the asymptotics of the eingenvalues of the Laplace-
Beltrami operator.

�

Another important operator is the projection onto the eigenspaces of H. Let

Πλu :=
∑

λn(Ξ)∈[λ,λ+1)

〈u, en〉en

for any λ ≥ 0. The Weyl law for H together with the bounds on en gives the
following bound on Πλ.

Proposition 6.22. Let λ ≥ 0 and q ∈ (2,∞). We have

‖Πλu‖Lq .
√
λ+ 1

1
2
− 1
q

+κ‖u‖L2

for any κ > 0.
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Proof : The result follows from the direct computation

‖Πλu‖Lq =
∑

λn(Ξ)∈[λ,λ+1)

〈u, en〉‖en‖Lq

.
∑

λn(Ξ)∈[λ,λ+1)

‖u‖L2‖en‖L2‖en‖Lq

. ‖u‖L2

∣∣{λn(Ξ) ∈ [λ, λ+ 1)}
∣∣√λ+ 1

1
2
− 1
q

+κ

. ‖u‖L2

√
λ+ 1

1
2
− 1
q

+κ

for any κ > 0 since the almost sure Weyl-type law implies

sup
λ>0
|{λn(Ξ) ∈ [λ, λ+ 1)}| <∞.

�

As mentioned before, this is the point where there are slightly weaker results in
the case of a surface with boundary. We use Theorem 6.16 instead.

Proposition 6.23. Let q ∈ (2,∞) and M a compact surface with boundary. We have

‖en‖Lq .
√
λn(Ξ)

2
3
− 4

3q
+κ

for any κ > 0. In particular, this implies

‖en‖Lq . (1 +
√
n)

2
3
− 4

3q
+κ.

Moreover, for the operator Πλ we have

‖Πλu‖Lq .
√
λ+ 1

2
3
− 4

3q
+κ‖u‖L2

for any κ > 0.

Let B be the operator defined by

Ben := b
√
λn(Ξ)cen

for any n ≥ 1. The following Proposition gives continuity estimates for the unitary
groups associated to

√
H and B and bound the difference between the two operators.

Proposition 6.24. For any β ∈ [0, 1) and t ∈ R, we have

‖eit
√
Hu‖Hβ . ‖u‖Hβ

and
‖eitBu‖Hβ . ‖u‖Hβ .

Moreover, the difference B −
√
H is bounded on Hβ for any β ∈ [0, 1) and the

difference between the semigroups is given by

eitBu− eit
√
H = −i

∫ t

0

ei(t−s)B(
√
H −B)eis

√
Hds.
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Proof : We have
‖eit

√
Hv‖L2 . ‖v‖L2 .

thus
‖H

β
2 eit

√
Hv‖L2 = ‖eit

√
HH

β
2 v‖L2 . ‖H

β
2 v‖L2

for any β ∈ (0, α). Using Proposition 6.10, this gives

‖eit
√
Hv‖Hβ . ‖v‖Hβ

and the result for eitB follows from this. For the difference, ‖B −
√
H‖L2→L2 is

bounded by 1 and we have

‖H
β
2 (B −

√
H)u‖L2 = ‖(B −

√
H)H

β
2 u‖L2

≤ ‖H
β
2 u‖L2

hence the boundeness of B −
√
H on Hβ. The result on the difference of semigroup

eitBu− eit
√
H = −i

∫ t

0

ei(t−s)B(
√
H −B)eis

√
Hds

follows with the same reasoning as in Lemma 6.14.

�

We now have all the ingredients to prove of the Strichartz inequalities for the
wave propagator associated to the Anderson Hamiltonian.

Theorem 6.25. Let M be a compact surface without boundary (p, q) ∈ [2,∞)2 and
0 < σ < α such that p ≤ q and

σ =
3

2
− 2

p
+

1

q
.

Then for any κ > 0, we have the bound

∥∥ cos(t
√
H)u0 +

sin(t
√
H)√

H
u1

∥∥
Lp([0,1],Lq)

. ‖(u0, u1)‖Hσ+κ×Hσ−1+κ .

Proof : We start by proving the bound for eitB using the spectral decomposition

eitBu =
∑
n≥1

eitnΠnu

and then bound the difference of the two groups. First, the condition p ≤ q implies

‖eitBu‖Lp([0,1],Lq(M)) ≤ ‖eitBu‖Lq(M,Lp([0,1]))

hence it is enough to bound the right hand side. Using the Sobolev embedding in
the time variable and the Lq bound on the eigenvalues from Proposition 6.21, we
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have

‖eitBu‖2
Lq(M,Lp([0,1])) =

∥∥∥‖eitBu‖2
Lp([0,1])

∥∥∥
L
q
2 (M)

.
∥∥∥‖eitBu‖2

H
1
2−

1
p ([0,1])

∥∥∥
L
q
2 (M)

.
∑
n≥0

∥∥∥‖eitnΠnu‖2

H
1
2−

1
p ([0,1])

∥∥∥
L
q
2 (M)

.
∑
n≥0

‖eitn‖2

H
1
2−

1
p ([0,1])

‖Πnu‖2
Lq(M)

.
∑
n≥0

(n+ 1)1− 2
p (
√
n+ 1)1− 2

q
+2κ‖Πnu‖2

L2

. ‖
√
H

3
2
− 2
p
− 1
q

+κ
u‖2

L2

. ‖u‖2

H
3
2−

2
p−

1
q+κ

which gives the result for B. To obtain the proof for
√
H, we use

eitBu− eit
√
H = −i

∫ t

0

ei(t−s)B(
√
H −B)eis

√
Hds.

Indeed, this gives

‖eit
√
Hu‖Lp([0,1],Lq) . ‖eitBu‖Lp([0,1],Lq) +

∫ 1

0

‖ei(t−s)B(
√
H −B)eis

√
H‖Lp([0,1],Lq)ds

. ‖u‖Hσ+κ +

∫ 1

0

‖(
√
H −B)ei(t−s)Bu‖Hσ+κds

. ‖u‖Hσ+κ

for any κ > 0. The proof is directly completed from

cos(t
√
H) =

eit
√
H + e−it

√
H

2

and
sin(
√
H)√
H

=
eit
√
H − e−it

√
H

2i
√
H

.

�

Again, the inhomogeneous inequalities follow direclty and we ommit the proof.

Corollary 6.26. Let p, q, σ be as in Theorem 6.25. Then we have the following bound

∥∥∫ t

0

sin
(
(t− s)

√
H
)

√
H

f(s)
∥∥
Lp([0,1],Lq)

.
∫ 1

0

‖f(s)‖Hσ−1+κds

for f ∈ L1([0, 1],Hσ−1+κ).

Moreover, we have the analogous result for surfaces with boundary which is
proved analogously by using Proposition 6.23 instead of Proposition 6.21.
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Theorem 6.27. Let M be a compact surface with boundary and p, q ∈ [2,∞) such
that p ≤ q and

σ =
5

3
− 2

p
− 4

3q
∈ (0, α).

Then for any κ > 0, we have the bound

∥∥ cos(t
√
H)u0 +

sin(t
√
H)√

H
u1

∥∥
Lp([0,1],Lq)

. ‖(u0, u1)‖Hσ+κ×Hσ−1+κ + ‖v‖L1([0,1],Hσ−1+κ)

and

∥∥∫ t

0

sin((t− s)
√
H)√

H
v
∥∥
Lp([0,1],Lq)

. ‖(u0, u1)‖Hσ+κ×Hσ−1+κ + ‖v‖L1([0,1],Hσ−1+κ)

for initial data (u0, u1) ∈ Hσ ×Hσ−1 and inhomogeneity v ∈ L1([0, 1],Hσ−1+κ).

6.2.2 – The special case of the two-dimensional torus
Finally, we discuss here how the procedure from the previous Section can be applied
to get improved results on the torus. The only difference is that instead of Theorem
6.13, we have

‖e−itHv‖L4([0,1],L4(T2)) . ‖v‖Hκ ,

which was the central result of [59]. This implies improved Lq bounds on the eigen-
functions, we ommit the details since the proof is identical to before.

Proposition 6.28. Consider the Anderson Hamiltonian H on the two-dimensional
torus and let q ∈ [4,∞). Then we have the bound

‖en‖Lq(T2) .
√
λn(Ξ)

1− 4
q

+κ
∼ (1 +

√
n)1− 4

q
+κ.

Moreover, we get the bound for the spectral projector

‖Πλu‖Lq(T2) .
√
λ+ 1

1− 4
q

+κ‖u‖L2 .

Since the Weyl law holds in the same way in the particular case of the torus, we
get the following improved result by the identical proof as before using Proposition
6.28.

Theorem 6.29. Let 2 ≤ p ≤ q <∞ such that q ≥ 4 and let

σ =
3

2
− 1

p
− 4

q
.

Then for any κ > 0, we have the bound

∥∥ cos(t
√
H)u0 +

sin(t
√
H)√

H
u1

∥∥
Lp
t;[0,1]

LqM
. ‖(u0, u1)‖Hσ+κ×Hσ−1+κ

for initial data (u0, u1) ∈ Hσ ×Hσ−1.

128



Remark : Due to the nature of the bound from [59], there is no gain by allowing q
to be smaller than 4. Indeed, the loss of derivative in that case is arbitrarily small
and one does not gain anything by interpolating with the trivial L2 bound.

6.2.3 – Local well-posedness in low-regularity Sobolev spaces
Now we use the results from the previous Section to prove local well-posedness of
stochastic multiplicative wave equations of the form∣∣∣∣ ∂2

t u+Hu = −u|u|2
(u, ∂tu)|t=0 = (u0, u1)

in a low-regularity regime both on general two-dimensional surfaces with boundary
and in the special case of the two-dimensional torus. While we have the classical
Sobolev embedding

Hν ↪→ L
2

1−ν

for ν ∈ [0, 1), we also make use of the following dual Sobolev bound

∀σ ∈ (0, 1], L
2

2−σ ↪→ Hσ−1

which is true on general manifolds, see for example the book by Aubin [4]. Using
this, we make a preliminary computation meant to show how far we get by using
only the Sobolev embedding result. Then we will see how the bounds in Theorems
6.25 and 6.29 give better results on general manifolds and on the torus respectively.
We first rewrite the equation under the mild formulation

u(t) = cos(t
√
H)u0 +

sin(t
√
H)√

H
u1 +

∫ t

0

sin
(
(t− s)

√
H
)

√
H

u(s)3ds.

Then apply the dual Sobolev bound for σ ∈ (0, 1] and p = 2
2−σ ∈ (1, 2] to get

‖u(t)‖Hσ .‖u0‖Hσ + ‖u1‖Hσ−1 + ‖u3‖L1([0,t],Hσ−1)

.‖u0‖Hσ + ‖u1‖Hσ−1 + ‖u3‖L1([0,t],Lp)

.‖u0‖Hσ + ‖u1‖Hσ−1 + ‖u‖
L∞([0,t],L

2
1−σ )
‖u‖2

L2([0,t],L4),

having applied Hölder with 1
2

+ 1−σ
2

= 2−σ
2
. Finally, the Sobolev embedding gives

‖u(t)‖Hσ .‖u0‖Hσ + ‖u1‖Hσ−1 + ‖u‖L∞([0,t],Hσ)‖u‖2

L2([0,t],H
1
2 )
.

This can then lead to a solution by fixed point by choosing σ ≥ 1
2
. Clearly this is

can be improved by using more subtle bounds than the Sobolev embedding. The
Strichartz inequalities from the previous section allow us to get local well-posedness
below, this is the content of the following Theorems; As before we separately state
the cases of surfaces without boundary, with boundary, and the special case of the
torus which are proved in precisely the same way, just using Theorems 6.25, 6.27
and 6.29 respectively.

Theorem 6.30. Let M be a compact surface without boundary and σ ∈ (1
4
, 1

2
) and

δ > 0 sufficiently small. Then for any initial data (u0, u1) ∈ Hσ ×Hσ−1 there exists
a time T > 0 depending on the data such that there exists a unique solution

u ∈ C
(
[0, T ],Hσ

)
∩ L

2
1−δ
(
[0, T ], L4

)
to the mild formulation of the multiplicative cubic stochastic wave equation. More-
over, the solution depends continuously on the initial data (u0, u1).
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Proof : As usual, this is proved in a standard way using the Banach fixed point
Theorem. Define the map

Ψ(u)(t) := cos(t
√
H)u0 +

sin(t
√
H)√

H
u1 +

∫ t

0

sin
(
(t− s)

√
H
)

√
H

u(s)3ds.

For t > 0, we have as above

‖u(t)‖Hσ . ‖u0‖Hσ + ‖u1‖Hσ−1 + ‖u‖L∞([0,t],Hσ)‖u‖2
L2([0,t],L4)

. ‖u0‖Hσ + ‖u1‖Hσ−1 + tδ‖u‖L∞([0,t],Hσ)‖u‖2

L
2

1−δ ([0,t],L4)

using Hölder inequality in the last line for δ ∈ (0, 1). We can apply Theorem 6.25
using with p = 2

1−δ∥∥Ψ(u)
∥∥
L

2
1−δ
(

[0,T ],L4
) . ‖u0‖H1− 1−δ

2 −
1
4 +κ + ‖u1‖H− 1−δ

2 −
1
4 +κ + ‖u3‖

L1([0,T ],H−
1−δ

2 −
1
4 +κ)

. ‖u0‖Hσ + ‖u1‖Hσ−1 + ‖u3‖L1([0,T ],Hσ−1)

using that σ > 1
4
and δ < σ

2
− 1

2
gives 1 − 1−δ

2
− 1

4
+ κ ≤ σ for κ > small enough.

Finally, we get∥∥Ψ(u)
∥∥
L

2
1−δ
(

[0,T ],L4
) . ‖u0‖Hσ + ‖u1‖Hσ−1 + T δ‖u‖L∞([0,T ],Hσ)‖u‖2

L
2

1−δ ([0,T ],L4)

as above. Thus we can get a fixed point in

C
(
[0, T ],Hσ

)
∩ L

2
1−δ
(
[0, T ], L4

)
in the usual way for T > 0 small enough.

�

In a completely analogous way we get the following result for the case of surfaces
with boundary using the Strichartz estimates from Theorem 6.27.

Theorem 6.31. Let M be a compact surface without boundary and σ ∈ (1
3
, 1

2
) and

δ > 0 sufficiently small. Then for any initial data (u0, u1) ∈ Hσ ×Hσ−1 there exists
a time T > 0 depending on the data such that there exists a unique solution

u ∈ C
(
[0, T ],Hσ

)
∩ L

2
1−δ
(
[0, T ], L4

)
to the mild formulation of the multiplicative cubic stochastic wave equation. More-
over, the solution depends continuously on the initial data (u0, u1).

In the special case of the two-dimensional torus, the range of regularities in which
we obtain well-posedness is greater using the improved bound from Theorem 6.29
as one might expect. This is the following Theorem, we again omit the proof since
it is similar to the previous one. Note that this result gives the maximal range of
regularities for which the regularity measured in terms of H agrees with the usual
regularity, see Proposition 6.10.

Theorem 6.32. Let M = T2, σ ∈ (0, 1
2
) and δ > 0 sufficiently small. Then for any

initial data (u0, u1) ∈ Hσ ×Hσ−1 there exists a time T > 0 such that there exists a
unique solution

u ∈ C
(
[0, T ],Hσ(T2)

)
∩ L

2
1−δ
(
[0, T ], L4(T2)

)
to the mild formulation of the multiplicative cubic stochastic wave equation. More-
over, the solution depends continuously on the initial data (u0, u1).
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Chapter 7

Diffusions in disordered media

In this Chapter, we use the heat semigroup paracontrolled calculus to hint the study
of two different random models of diffusions in disordered media. The first one is the
polymer measure associated to the white noise on a two-dimensional surface which
is formally given by

V(dX) =
1

ZT
e−

1
2

∫ T
0 ξ(Xs)dsW(dX)

with W the usual Wiener measure on C([0, T ],M). The Gibbsian formalism does
not make sense here due to the singularity of the potential. Our approach is based
on the intrinsic Feynman-Kac semigroup associated to the Anderson Hamiltonian.
The second model is the Brox diffusion formally given by

dXt = ξ(Xt)dt+ dBt

with ξ a space white noise on the circle which corresponds to the derivative of a
Brownian motion over T. It is the continuous analogue of Sinai’s random walk with
infinitesimal generator formally given by

−1

2
∆ + ξ.∇

which falls into the range of singular stochastic operators. With the same meth-
ods used for the Anderson Hamiltonian and the random magnetic Laplacian, we
construct this operator as an unbouded operator in L2.

7.1 – The polymer measure with white noise potential
A natural way to proceed is first to consider a regularisation (ξε)ε>0 of the noise hence
one needs to be able to deal with smooth potential. Thus we first deal with such
potential and introduce the notion of intrinsic Feynman-Kac semigroup associated
to a Schrödinger operator. We refer to the very great book [46] which mainly treat
with the euclidian space Rd and applications to Quantum Field Theory.

In probability, the Schrödinger operator associated to a potential V : M → R is

−1

2
∆ + V
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where ∆ is the Laplace-Beltrami operator on M . The factor 1
2
is here to see a

Schrödinger operator as a perturbation of the infinitesimal generator of the Brownian
motion. If V ∈ D′(M), then

u 7→ −1

2
∆u+ V u

makes sense for u ∈ C∞(M) and the behavior of the operator strongly depends on
the different properties of its potential V . Under suitable conditions, one can prove
that it is a self-adjoint operator bounded from below with pure point spectrum, the
simpler example being the case of a smooth potential. In the unbounded setting, one
requires in addition properties of V at infinity thus we will only consider bounded
manifolds due to the lack of integrability of the white noise at infinity. As explained,
we will restrict ourselves to V ∈ C∞ in this Section since we want to consider a
regularisation (ξε)ε>0 of the noise. In this case, the operator

H = −1

2
∆ + V

is well-defined from C∞ to L2. A natural candidate as domain is the closure of the
space

{u ∈ C∞, Hu ∈ L2}

with respect to the norm domain

‖u‖H := ‖u‖L2 + ‖Hu‖L2 .

In the case V = 0, this corresponds to the Sobolev space H2. This is also true
for smooth potential V and the operator (H,H2) is an unbounded operator in L2,
symmetric since the potential is real valued. It is even self-adjoint as a bounded
from below symmetric operator. Finally, the injection

H2 ↪→ L2

is compact hence H has pure point spectrum. We denote as

λ1(V ) ≤ λ2(V ) ≤ . . . ≤ λn(V ) ≤ . . .

its eigenvalues with multiplicity. Using a basis (en)n≥1 of L2 eigenfunctions of H,
one can define f(H) as a continuous operator in L2 for any f ∈ L∞

(
[λ1(V ),+∞

)
.

This allows in particular to consider the semigroup associated to H

e−tHu :=
∑
n≥1

e−tλn(V )〈u, en〉en

defined for any t > 0. Conversely, the semigroup can be used to deduce properties
on H. For example, the Perron-Frobenius Theorem implies λ1(V ) < λ2(V ) and
positivity of e1 given that e−H is a positive operator in the sense

f, g ≥ 0 =⇒ 〈f, e−tHg〉 > 0.

for all non-zero functions f, g ∈ L2. The Feyman-Kac formula stated below will
imply positivity of e−H hence there exists a unique function Ψ of unit L2-norm such
that

HΨ = λ1(V )Ψ.
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The function Ψ is called the ground state of H and λ1(V ) is the ground state
energy. In particular, Ψ > 0 and V ∈ C∞ implies Ψ ∈ C∞. The particular case
V = 0 corresponds to the heat semigroup which is a central object in the theory
of probability since it characterizes the law of the Brownian motion on the space
of path. Indeed, the kernel of the heat semigroup corresponds to its probability
transition as a continuous Markov process. Given a potential V , the semigroup of
the associated Schrödinger operator is also related to the Brownian motion through
the Feynman-Kac formula. It holds with various hypothesis on V , we suppose again
V to be smooth for simplicity.

Theorem 7.1. Let V ∈ C∞(M). Then for all f ∈ L2(M) and t > 0, we have(
e−tHf

)
(x) = Ex

[
e−

∫ t
0 V (Bs)dsf(Bt)

]
where Ex denotes the expectation with respect to the Wiener measure starting at
x ∈M .

Proof : This is Theorem 3.30 in [46]. First, one can show that both sides of the
equality are C0-semigroups. For the left hand side, this comes from the properties of
H. For the right hand side, it is bounded on L2(M) since the potential V is bounded
from below. Moreoever, the time reversibility of the Brownian motion implies that it
is symmetric and the semigroup properties comes from the Markov property. Finally,
the strong continuity is simply obtained by dominated convergence. To conclud, one
uses the Itô formula to prove that these two C0-semigroups have the same generator.

�

The Feynman-Kac formula still holds for a large class of potential V , see Chapter
3 in [46] for different examples. While the heat semigroup gives the expectation of
the Brownian motion

Ex
[
f(Bt)

]
=
(
e
t
2

∆f
)
(x),

one can ask about the existence of a process (Xt)t≥0 such that

Ex[f(Xt)] =
(
e−tHf

)
(x)

for t > 0. In particular, this would imply(
etH1

)
(x) = 1

for any t > 0 and x ∈ M , that is the semigroup associated to H would be conser-
vative. In general, this is not the case thus one needs to modify the semigroup for
this question to have a solution. Introduce the ground transform

U :

∣∣∣∣ L2(M,µ) 7→ L2(M,Ψ2µ)
u 7→ Ψu

which is a unitary map since Ψ is positive and normalised in L2 and define the
operator

F = U −1
(
H − λ1(V )

)
U

with domain
DF =

{
f ∈ L2(M,µ) ; U f ∈ D

}
.
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Then the semigroup associated to F is conservative by construction, it is called the
intrinsic Feynman-Kac semigroup; this corresponds to the h-transform in terms of
stochastic process. In the case V ∈ C∞(M), the ground state Ψ is also smooth and
we have the explicit formula

F = −1

2
∆−∇ log Ψ · ∇

which corresponds to the infinitesimal generator of the process (Xt)t>0 given by the
SDE

dXt = ∇(log Ψ)dt+ dBt.

Thus, this gives an explicit process that answer our question in the case V ∈ C∞(M).
However, even when the operator K makes sense, the ground state might not be
differentiable and the SDE is only formal. This is the case when V = ξ is the
space white noise in two dimensions and we need another way of constructing such
process. In this setting, it is clear that (Xt)t≥0 is a continuous Markov process with
probability transition

K(t, x; s, y) = e−(t−s)F (x, y)

for 0 ≤ s ≤ t, that is the Schwartz Kernel of the semigroup associated to F . In
particular, one can directly construct the law of X on path space with

V(Xt1 ∈ A1, . . . , Xtn ∈ An) =

∫
A1×...×An

(
n−1∏
i=0

K(ti+1, xi+1;xi, ti)

)
dx

for any t0 = 0 ≤ t1 ≤ . . . ≤ tn ≤ T , measurable sets A1, . . . , An ⊂ M and x0 ∈ M
the initial value. In order to prove that the measure is supported on the space of
continuous function, one needs an estimate on the semigroup which is granted from
the almost sure regularity of the Brownian motion and the Feynman-Kac formula.
In particular, the measure is supported on paths of Hölder regularity 1

2
− κ for any

κ > 0. The Feynman-Kac formula also allows to relate the polymer measure with
potential V to the intrinsic Feynman-Kac semigroup of ∆ +V through density with
respect to the Wiener measure W.

To construct the polymer measure with white noise on a two-dimensional com-
pact manifold, we want to use the same method. Since the Anderson Hamiltonian
H is not a priori conservative, consider Ψ the Anderson groud state defined by

HΨ = λ1(Ξ)Ψ.

Since e−H is positive, Perron-Frobenius Theorem again gives that Ψ is unique and
positive. Using the intrinsic Feynman-Kac semigroup of the Anderson Hamiltonian
and the formula

V(Xt1 ∈ A1, . . . , Xtn ∈ An) =

∫
A1×...×An

(
n−1∏
i=0

K(ti+1, xi+1;xi, ti)

)
dx,

one gets a measure on the set of functions from R to M , it formally correponds to
the SDE with drift ∇(log Ψ). In order to guarantee that this measure is supported
on continuous path, one needs additionnal information. This is current investigation
related to the study of SDEs with distributionnal drift, see for example [31, 32] and
reference therein. In particular, the work [21] by Cannizzaro and Chouk studied the
polymer measure with white noise using the KPZ equation and SDEs with noise-
dependent distributional drift.
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7.2 – The Brox di�usion and its generator
Given a potential V : R→ R, one can consider the diffusion

dXt = V (Xt)dt+ dBt

with infinitesimal generator

−1

2
∆ + V · ∇

which is an unbounded operator in L2 for suitable potential V . We here consider
V = ξ a space white noise on the circle T. This corresponds to the Brox diffusion
which is formally described by the SDE

dXt = ξ(Xt)dt+ dBt

where the drift term ξ(Xt) does not make sense since ξ is only a distribution, pre-
cisely it belongs to C− 1

2
−κ for any κ > 0. This diffusion corresponds to a Brownian

diffusion in a Brownian environment and was first studied by Brox in [16] on the full
space. It is the continuous analogue of Sinai’s random walk which can be described
as follows. The environment is a collection (ωx)x∈Z of independant and identically
distributed random variables with values in [0, 1]. Given the environment, Sinai’s
random walk (Sn)n≥0 is a Markov chain starting at S0 = 0 such that

P(Sn+1 = y |Sn = x) =


ωx if y = x+ 1,

1− ωx if y = x− 1,
0 otherwise.

An important random variable is

ηx := log

(
1− ωx
ωx

)
which is well-defined under the elliptic condition κ < ωx < 1− κ for a given κ > 0.
For example, the walk explodes to infinity for E[η0] 6== 0 while it is recurrent for
E[η0] = 0. In the deterministic case ωx = p, one recovers the condtion p 6= 1

2
or

p = 1
2
. In particular, the diffusion behavior is slowed by the disordered environment

in the centered case
lim
n→∞

σ2

log(n)2
Sn = b∞

with σ = Var(η0) <∞ and b∞ a non-degenerate non-Gaussian random variable. To
construct the continuous diffusion, Brox consider the generator under the form

− 1

2e−2B

d

dx

(
1

e2B

d

dx

)
where B is a Brownian motion obtained from integrating the white noise environ-
ment ξ, that is B′ = ξ. Using the self-similarity of the Brownian motion B, he used
Itô-McKean’s construction and set

Xt = S−1
(
BT−1(t)

)
where S(x) and T (t) are given for x ∈ R and t > 0 by

S(x) :=

∫ x

0

e2Bydy and T (t) :=

∫ t

0

e−4BS−1(2Bs)ds.
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In this Section, we propre a different approach and construct directly the infinitesi-
mal generator

−1

2
∆ + ξ · ∇

as a singular stochastic operator. We consider the circle T because of the lack
of integrability of the white noise to avoid the introduction of weight but losing
the self-similarity property of the environment. For another approach to the Brox
diffusion with the singular SPDEs approach, see the recent work [43] from Kremp
and Perkowski where they solve the singular martingale problem on the full space
with a Lévy noise.

For Sinai’s random walk, the slow-down of Sn is due to the presence of traps
given by the wells of the potential

Vx =

{ ∑
1≤y≤x ηy if x ≥ 0

−
∑
−x+1≤y≤0 ηy if x < 0

for x ∈ Z. The idea is that the walk Sn escapes from a valley of V to get trapped
in another one. This can be seen clearly with numerical simulation, for example in
the simple case where ωx ∼ U([κ, 1− κ]) with κ ∈ (0, 1

2
).

Random walk (Sn)n≥0 Random environment (Vx)x∈Z

Given the environment, (Sn)n≥0 is a Markov chain with transition operator given
by

Tf(x) = ωxf(x+ 1) + (1− ωx)f(x− 1).

Thus the generator is

Lf(x) = (T − I)f(x)

= ωxf(x+ 1) + (1− ωx)f(x− 1)− f(x)

=
1

2

[
f(x+ 1) + f(x− 1)− 2f(x)

]
+
(
ωx −

1

2

)[
f(x+ 1)− f(x− 1)

]
=

1

2
∆f(x) + ξx · ∇f(x)

with ∆ a discrete Laplacian, ∇ a discrete derivative and

ξ :=

(
ωx −

1

2

)
x∈Z

the centered random environment. This hints

H :=
1

2
∆ + ξ · ∇

as the formal infinitesimal generator of the Brox diffusion. As explained, the noise ξ
belongs to Cα−2 for any α < 3

2
hence the product ξ · ∇u does not belong to L2 for a
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generic smooth function u. It thus falls in the range of singular stochastic operators
and we want to construct a domain D such that (H,D) is a self-adjoint unbounded
operator in L2 with dense domain, maybe after a renormalisation procedure. For
u ∈ C∞ such that Hu ∈ L2, we have

−1

2
∆u = Hu− ξ · ∇u ∈ Hα−2

hence u is expected to belong to Hα. Thus consider u ∈ Hα, we have

−1

2
∆u = Hu− ξ · ∇u ∈ Hα−2

where the product ∇u · ξ is singular since 2α − 3 < 0 but formally belongs to
Hα−2 since α − 1 > 0. As for the Anderson Hamiltonian, the idea is to cancel
the singular part of the product with noise with roughness in the Laplacian term
through a suitable paracontrolled expansion. Since the roughest part is given by the
paraproduct of ξ by ∇u, we consider

u = P̃∇uX + u]

with u] ∈ H2 and
X = 2∆−1ξ ∈ Cα.

This formally gives

Hu = −1

2
∆u+ ξ · ∇u

= −1

2
P∇u∆X −

1

2
∆u] + P∇uξ + Pξ∇u+ Π(∇u, ξ)

= −1

2
∆u] + Pξ∇u+ Π(∇u, ξ)

where the resonant term Π(∇u, ξ) is ill-defined but formally belongs to H2α−3. To
deal with the singularity, we write

Π(∇u, ξ) = Π(∇P̃∇uX, ξ) + Π(∇u], ξ)
= ∇uΠ(∇X, ξ) + C∇(∇u,X, ξ) + Π(∇u], ξ)

where the correcteor is given by

C∇(a1, a2, b) := Π(∇P̃a1a2, b)− a1Π(∇a2, b).

It satifies analogue continuity estimates as the classical corrector C or the corrector
C∂ used to solve the KPZ equation. The construction of the singular term Π(∇X, ξ)
is done through a renormalisation procedure as an element of its natural space C2α−3.
With this, H is then a well-defined operator from

{u ∈ L2 ; u− P̃∇uX ∈ H2}

with values in H2α−3 which is however not contained in L2 since 2α− 3. This is not
surprising since the product was singular and a second order expansion is needed.
The rough term that we want to cancel is P∇uΠ(∇X, ξ) thus we consider the second
order expansion

u = P̃∇uX1 + P̃∇uX2 + u]
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with
X1 := 2∆−1ξ ∈ Cα and X2 := 2∆−1Π(∇X, ξ) ∈ C2α−1

given the enhanced noise

Ξ :=
(
ξ,Π(∇X1, ξ)

)
∈ X α := Cα × C2α−3.

Definition 7.2. We define the space DΞ of functions paracontrolled by Ξ as

DΞ := {u ∈ L2; u] := u− P̃∇uX1 − P̃∇uX2 ∈ H2}.

This is done as for the Anderson Hamiltoniann in Chapter 4 and the random
magnetic Laplacian in Chapter 5. The renormalisation probabilistic procedure to
construct the enhanced noise Ξ is needed to deal with the singularity as in the
other Chapters. Since the operator is not symmetric even for smooth potential V ,
its study requires new ideas from the classical study of unbounded operator of this
type but one can expect the general idea to be the same. In particular, H should
be the resolvent-limit of

Hε :=
1

2
∆ + (ξε − cε) · ∇

as ε goes to 0 for some appropriated renormalisation constant cε. As explained, the
Brox diffusion is formally described by

dXt = ξ(Xt)dt+ dBt

where the drift ξ(Xt) does not make sense. Heuristically, its infinitesimal generator
should correspond to the singular stochastic operator

H = −1

2
∆ + ξ · ∇

constructed in the previous Section. While Brox construction of the process relied on
the Ito-Mckean construction of a Feller diffusions, this gives a new approach where
one constructs directly the law of the process on path space using the semigroup
associated to (H,DΞ) as done for the polymer measure with white noise potential.
Indeed, one has

Ex[f(Xt)] =
(
e−tHf

)
(x)

for any x ∈ T and f ∈ L∞. Since the process (Xt)t≥0 is a Markov process, it is
enough to specify its probability transitions given by

P(Xt ∈ dx |Xs ∈ dy) = e−(t−s)H(x, y)

for any 0 ≤ s ≤ t and x, y ∈ T. This gives a measure on the set of function
from R to T and one needs additionnal information to guarantee that this measure
is supported on continuous path. As for the polymer measure with white noise
potential, this is related to SDEs with time-independent distributionnal drift, see
again [31, 32] and references therein. In the case of the Brox diffusion, Kremp and
Perkowski recently solved the singular martingale problem associated in the case
of a Lévy process driving the SDE, see [43]. The properties of the process that
can be deduced from this construction in the spirit of this paper are work under
investigation.
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Chapter A

Paracontrolled calculus toolbox

A.1 – Approximation operators
We describe in this Appendix technical estimates needed in our continuous setting
analogue of the discrete Paley-Littlewood decomposition. The following Proposition
is the analogue of the inclusions of `p spaces.

Proposition A.1. Let p, q1, q2 ∈ [1,∞] with q1 ≤ q2. For f ∈ Lp and α ∈ R, we have∥∥t−α2 ‖Qtf‖Lpx
∥∥
Lq2 (t−1dt)

.
∥∥t−α2 ‖Qtf‖Lpx

∥∥
Lq1 (t−1dt)

.

Proof : We prove ‖ · ‖L∞(t−1dt) . ‖ · ‖Lq(t−1dt) for any q ∈ [1,∞) and the result
follows from duality. To get this, we use

Qt = 2

∫ t

t
2

Qs

(
t

s

)a+1

P
(c)
t−s

ds

s

for any Q ∈ StGCa and t ∈ (0, 1] which yields

‖Qtf‖Lp .
∫ t

t
2

‖Qsf‖Lp
dt

t
.

(∫ t

t
2

‖Qsf‖qLp
dt

t

) 1
q

.

�

One needs the following bound to keep an accurate track of the constant in
different estimates.

Lemma A.2. Let r > 0 and α ∈ (−r, r). We have∫ ∞
0

(
u

1 + u2

)r
uα

du

u
≤ 2r

r2 − α2
.

Proof : Since

1 =
1 + u2

1 + u2
=

1

1 + u2
+

u2

1 + u2
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and u ≥ 0, both terms are bounded by 1 and we have∫ ∞
0

(
u

1 + u2

)r
uα

du

u
=

∫ 1

0

(
u

1 + u2

)r
uα

du

u
+

∫ ∞
1

(
u

1 + u2

)r
uα

du

u

≤ 1

r + α
+

1

r − α

hence the bound.

�

The next Lemma describes the localisation of the cancellation in our continuous
context, including the dependance on s > 0.

Lemma A.3. Let r > 0 and α ∈ (−r, r). Given any q ∈ [1,∞], we have∥∥∥∥u−α ∫ 1

0

(
tu

(t+ u)2

)r
f(t)

dt

t

∥∥∥∥
Lq(u−1du)

≤ 2r

r2 − α2

∥∥u−αf(u)
∥∥
Lq(u−1du)

.

We also have∥∥∥∥u−α ∫ s

0

(
tu

(t+ u)2

)r
f(t)

dt

t

∥∥∥∥
Lq(u−1du)

≤ 2r

r2 − α2
sβ−α

∥∥u−βf(u)
∥∥
Lq(u−1du)

for any s > 0 and β ∈ (α, r).

Proof : For q =∞, we have∣∣∣∣∫ 1

0

(
tu

(t+ u)2

)r
f(t)

dt

t

∣∣∣∣ ≤ ‖t−αf(t)‖L∞
∫ 1

0

(
tu

(t+ u)2

)r
tα

dt

t

≤
(∫ ∞

0

(
v

1 + v2

)r
vα

dv

v

)
uα‖t−αf(t)‖L∞

≤ 2r

r2 − α2
uα‖t−αf(t)‖L∞

which yields the result. For q = 1, we have∫ 1

0

u−α
∣∣∣∣∫ 1

0

(
tu

(t+ u)2

)r
f(t)

dt

t

∣∣∣∣ du

u
≤
∫ 1

0

(∫ 1

0

(
tu

(t+ u)2

)r
u−α

du

u

)
|f(t)|dt

t

≤
(∫ ∞

0

(
v

1 + v2

)r
vα

dv

v

)∫ 1

0

t−α|f(t)|dt
t

≤ 2r

r2 − α2

∫ 1

0

t−α|f(t)|dt
t
.

The result then follows for any q ∈ (1,∞) by interpolation. For the dependance
with respect to s, we also interpolate between q = 1 and q =∞ and conclud with∣∣∣∣∫ s

0

(
tu

(t+ u)2

)r
f(t)

dt

t

∣∣∣∣ ≤ ‖t−βf(t)‖L∞
∫ s

0

(
tu

(t+ u)2

)r
tβ

dt

t

≤ sβ−α‖t−βf(t)‖L∞
∫ s

0

(
tu

(t+ u)2

)r
tα

dt

t

≤ 2r

r2 − α2
sβ−αuα‖t−αf(t)‖L∞
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and∫ 1

0

u−α
∣∣∣∣∫ s

0

(
tu

(t+ u)2

)r
f(t)

dt

t

∣∣∣∣ du

u
≤
∫ s

0

(∫ 1

0

(
tu

(t+ u)2

)r
u−α

du

u

)
|f(t)|dt

t

≤ 2r

r2 − α2

∫ s

0

t−α|f(t)|dt
t

≤ 2r

r2 − α2
sβ−α

∫ 1

0

t−β|f(t)|dt
t
.

�

Finally, we have the following estimate for integrals.

Lemma A.4. Given any α > 0 and q ∈ [1,∞], we have∥∥∥∥u−α2 ∫ u

0

f(t)
dt

t

∥∥∥∥
Lq(u−1du)

≤ 2

α
‖u−

α
2 f(u)‖Lq(u−1du).

Proof : We proceed again by interpolation proving the estimate for q = ∞ and
q = 1. Using that α > 0, we have∣∣∣∣∫ u

0

f(t)
dt

t

∣∣∣∣ ≤ ‖t−α2 f(t)‖L∞
∫ u

0

t
α
2

dt

t
≤ 2

α
u
α
2 ‖t−

α
2 f(t)‖L∞

and ∫ 1

0

u−
α
2

∣∣∣∣∫ u

0

f(t)
dt

t

∣∣∣∣ du

u
≤
∫ 1

0

(∫ 1

t

u−
α
2

du

u

)
|f(t)|dt

t
≤ 2

α

∫ 1

0

t−
α
2 |f(t)|dt

t
.

�

A.2 – Estimates on paraproducts, correctors and com-
mutators

We give in this Appendix proofs of estimates needed in paracontrolled calculus. We
shall first prove the estimates for the paraproduct P and resonant operator Π in
Sobolev spaces. It works as for Hölder spaces with L2 estimates instead of L∞.

Proposition A.5. Let α, β ∈ (−2b, 2b) be regularity exponent.

� If α > 0, then (f, g) 7→ Pfg is continuous from Cα × Hβ to Hβ and from
Hα × Cβ to Hβ.

� If α < 0, then (f, g) 7→ Pfg is continuous from Cα × Hβ to Hα+β and from
Hα × Cβ to Hα+β.

� If α + β > 0, then (f, g) 7→ Π(f, g) is continuous from Hα × Cβ to Hα+β.
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Proof : Let f ∈ Hα and g ∈ Cβ with α < 0. We want to compute the regularity
Hα+β of Pfg hence let Q ∈ StGCr with r > |α + β|. Recall that Pfg is a linear
combination of terms of the form∫ 1

0

Q1•
t

(
Ptf ·Q2

tg
) dt

t

with Q1, Q2 ∈ StGC
b
2 and P ∈ StGC[0,b]. Given s ∈ (0, 1], we have∥∥∥∥∫ 1

0

QsQ
1•
t

(
Ptf ·Q2

tg
) dt

t

∥∥∥∥
L2
x

.
∫ 1

0

(
ts

(t+ s)2

) r
2 ∥∥Ptf ·Q2

tg
∥∥
L2
x

dt

t

. ‖g‖Cβ
∫ 1

0

(
ts

(t+ s)2

) r
2

t
β
2 ‖Ptf‖L2

x

dt

t
.

This yields∥∥∥∥s−α+β
2

∥∥∥∫ 1

0

QsQ
1•
t

(
Ptf ·Q2

tg
) dt

t

∥∥∥
L2
x

∥∥∥∥
L2(s−1ds)

. ‖g‖Cβ
∥∥∥s−α+β

2

∫ 1

0

(
ts

(t+ s)2

) r
2

t
β
2 ‖Ptf‖L2

x

dt

t

∥∥∥
L2(s−1ds)

. ‖g‖Cβ
∥∥∥s−α2 ‖Psf‖L2

x

∥∥∥
L2(s−1ds)

. ‖f‖Hα‖g‖Cβ

where we used that α < 0 since P can encode no cancellation and this complete the
proof for the third estimate. The proofs for the other estimates on Pfg are similar
and we only give the details for the resonant term. Let Q ∈ StGCr with r > |α+ β|
and recall that Π(f, g) is a linear combination of terms∫ 1

0

P •t
(
Q1
tf ·Q2

tg
) dt

t

with Q1, Q2 ∈ StGC
b
2 and P ∈ StGC[0,b]. Given s ∈ (0, 1], we have∥∥∥∥∫ 1

0

QsP
•
t

(
Q1
tf ·Q2

tg
) dt

t

∥∥∥∥
L2
x

.
∫ s

0

‖Q1
tf ·Q2

tg‖L2
x

dt

t
+

∫ 1

s

(s
t

) r
2 ∥∥Q1

tf ·Q2
tg
∥∥
L2
x

dt

t

and the result follows again from the Lemmas using that α + β > 0.

�

The dependance of P̃s with respect to s in given in the following Proposition.

Proposition A.6. Let s ∈ (0, 1) and a regularity exponent β ∈ (0, 1). Given g ∈ Cβ,
we have

‖f 7→ P̃sfg‖L2→Hγ .
s
β−γ

4

β − γ
‖g‖Cβ

for any γ ∈ [0, β).
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Proof : Given f ∈ L2 and γ ∈ [0, β), we want to bound the Hγ norm of P̃sfg hence
let Q ∈ StGCr with r > |γ|. Recall that P̃sfg is a linear combination of terms of the
form ∫ s

0

Q̃1•
t

(
Ptf · Q̃2

tg
) dt

t

with Q̃1 ∈ GC
b
2
−2, Q̃2 ∈ StGC

b
2 and P ∈ StGC[0,b]. Given u ∈ (0, 1], we have∥∥∥∥∫ s

0

QuQ
1•
t

(
Ptf ·Q2

tg
) dt

t

∥∥∥∥
L2
x

.
∫ s

0

(
tu

(t+ u)2

) r
2 ∥∥Ptf ·Q2

tg
∥∥
L2
x

dt

t

. ‖g‖Cβ
∫ s

0

(
tu

(t+ u)2

) r
2

t
β
2 ‖Ptf‖L2

x

dt

t
.

This yields∥∥∥∥u− s2∥∥∥∫ s

0

QuQ
1•
t

(
Ptf ·Q2

tg
) dt

t

∥∥∥
L2
x

∥∥∥∥
L2(u−1du)

. ‖g‖Cβ
∥∥∥u− γ2 ∫ s

0

(
tu

(t+ u)2

) r
2

t
β
2 ‖Ptf‖L2

x

dt

t

∥∥∥
L2(u−1du)

. ‖g‖Cβ
4r

r2 − γ2
s
β′−γ

2 ‖u−
β′−β

2 ‖Puf‖L2‖L2(u−1du)

. ‖g‖Cβ
4r

r2 − γ2
s
β′−γ

2
2

k + β − β′
‖f‖Hβ′−β

.
‖g‖Cβ
1− β

s
β′−γ

2

k + β − β′
‖f‖Hβ′−β

for any β′ ∈ (γ, β) and P ∈ StGCk using that r ≥ 1. For k ≥ 1, one can take β′ = β
and get ∥∥∥∥u− γ2 ∥∥∥∫ s

0

QuQ
1•
t

(
Ptf ·Q2

tg
) dt

t

∥∥∥
L2
x

∥∥∥∥
L2(u−1du)

.
s
β−γ

2

1− β
‖g‖Cβ‖f‖L2 .

For k = 0, we have∥∥∥∥u− γ2 ∥∥∥∫ s

0

QuQ
1•
t

(
Ptf ·Q2

tg
) dt

t

∥∥∥
L2
x

∥∥∥∥
L2(u−1du)

.
‖g‖Cβ
1− β

s
β′−γ

2

β − β′
‖f‖L2

hence taking β′ = γ+β
2

yields∥∥∥∥u− γ2 ∥∥∥∫ s

0

QuQ
1•
t

(
Ptf ·Q2

tg
) dt

t

∥∥∥
L2
x

∥∥∥∥
L2(u−1du)

.
s
β−γ

4

(1− β)(β − γ)
‖g‖Cβ‖f‖L2 .

�

Proposition A.7. Let s ∈ (0, 1) and a regularity exponent β < 2. Given g ∈ Cβ, we
have

‖(P̃f − P̃sf )g‖H2 . s
β−2

2 ‖f‖L2‖g‖Cβ

for any f ∈ L2.
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Proof : Given f ∈ L2, we want to bound the H2 norm of (P̃f − P̃sf )g hence let
Q ∈ StGCr with r > 2. It is a linear combination of terms∫ 1

s

Q̃1•
t

(
Ptf · Q̃2

tg
) dt

t

with Q̃1 ∈ GC
b
2
−2, Q̃2 ∈ StGC

b
2 and P ∈ StGC[0,b]. Given u ∈ (0, 1], we have∥∥∥∥∫ 1

s

QuQ
1•
t

(
Ptf ·Q2

tg
) dt

t

∥∥∥∥
L2
x

.
∫ 1

s

(
tu

(t+ u)2

) r
2 ∥∥Ptf ·Q2

tg
∥∥
L2
x

dt

t

. ‖f‖L2‖g‖Cβ
∫ 1

s

(
tu

(t+ u)2

) r
2

t
β
2

dt

t

using that ‖Ptf‖L2 . ‖f‖L2 . This yields∥∥∥∥u−1
∥∥∥∫ 1

s

QuQ
1•
t

(
Ptf ·Q2

tg
) dt

t

∥∥∥
L2
x

∥∥∥∥
L2(u−1du)

. ‖g‖Cβ
∥∥∥u−1

∫ 1

s

(
tu

(t+ u)2

) r
2

t
β
2

dt

t

∥∥∥
L2(u−1du)

. s
β−2

2 ‖f‖L2‖g‖Cβ

and the proof is complete.

�

Proposition A.8. Let α1 ∈ (0, 1) and α2, β ∈ R. If

α2 + β < 0 and α1 + α2 + β > 0,

then (a1, a2, b) 7→ C(a1, a2, b) extends in a unique bilinear operator from Cα1×Cα2×Cβ
to Cα1+α2+β and from Hα1 × Cα2 × Cβ to Hα1+α2+β.

Proof : We first consider (a1, a2, b) ∈ Cα1 × Cα2 × Cβ. We want to compute the
regularity of

C(a1, a2, b) = Π
(
P̃a1a2, b

)
− a1Π(a2, b)

using a family Q of StGCr with r > |α1 +α2 + β|. Recall that a term Π(a, b) can be
written as a linear combination of terms of the form∫ 1

0

P 1•
t (Q1

ta ·Q2
t b)

dt

t
,

while P̃ba is a linear combination of terms of the form∫ 1

0

Q̃3•
t

(
P 2
t b · Q̃4

ta
)dt
t

with Q1, Q2, Q̃4 ∈ StGC
b
2 , Q̃3 ∈ GC

b
2
−2 and P 1, P 2 ∈ StGC[0,b]. For P 2 ∈ StGC[1,b],

we already have the correct regularity since∫ 1

0

∫ 1

0

QuP
1•
t

(
Q1
t Q̃

3•
s

(
P 2
s a1 · Q̃4

sa2

)
·Q2

t b
) ds
s

dt

t

. ‖a1‖α1‖a2‖α2‖b‖β
∫ 1

0

∫ 1

0

(
ut

(t+ u)2

) r
2
(

ts

(s+ t)2

) b
2

s
α1+α2

2 t
β
2
ds

s

dt

t

. ‖a1‖α1‖a2‖α2‖b‖β u
α1+α2+β

2
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using that α1 ∈ (0, 1). We consider P 2 ∈ StGC0 for the remainder of the proof. For
all x ∈M , we have

C
(
a1, a2, b

)
(x) = Π

(
P̃a1a2, b

)
(x)− a1(x) · Π(a2, b)(x)

= Π
(

P̃a1a2 − a1(x) · a2, b
)

(x)

' Π
(

P̃a1−a1(x)a2, b
)

(x),

since Π is bilinear and a1(x) is a scalar and P̃1a1 = a1 up to smooth terms. Thus
we only have to consider a linear combination of terms of the form∫ 1

0

∫ 1

0

P 1•
t

(
Q1
t Q̃

3•
s

((
P 2
s a1 − a1(x)

)
· Q̃4

sa2

)
·Q2

t b

)
(x)

ds

s

dt

t

using that
∫ 1

0

Q̃3•
s Q̃

4
s

ds

s
= Id up to smooth terms. This gives

(
QuC(a1, a2, b)

)
(x) as

a linear combination of terms of the form∫
KQu(x, x′)P 1•

t

(
Q1
t Q̃

3•
s

((
P 2
s a1 − a1(x′)

)
· Q̃4

sa2

)
·Q2

t b

)
(x′)

ds

s

dt

t
ν(dx′)

=

∫
KQu(x, x′)KP 1•

t
(x′, x′′)

(
Q1
t Q̃

3•
s

((
P 2
s a1 − a1(x′′)

)
· Q̃4

sa2

)
·Q2

t b

)
(x′′)

ds

s

dt

t
ν(dx′)ν(dx′′)

+

∫ ∫ u

0
KQu(x, x′)KP 1•

t
(x′, x′′)

(
a1(x′′)− a1(x′)

) (
Q1
ta2 ·Q2

t b
)

(x′′)
dt

t
ν(dx′)ν(dx′′)

+

∫ ∫ 1

u
KQu(x, x′)KP 1•

t
(x′, x′′)

(
a1(x′′)− a1(x′)

) (
Q1
ta2 ·Q2

t b
)

(x′′)
dt

t
ν(dx′)ν(dx′′)

=: A+B + C.

The term A is bounded using cancellations properties. We have

|A| =
∫
KQuP 1•

t
(x, x′)

(
Q1
t Q̃

3•
s

((
P 2
s a1 − a1(x′)

)
· Q̃4

sa2

)
·Q2

t b

)
(x′)

ds

s

dt

t
ν(dx′)

. ‖a1‖α1‖a2‖α2‖b‖β

(∫ u

0

∫ 1

0

(
st

(s+ t)2

) b
2

(s+ t)
α1
2 s

α2
2 t

β
2
ds

s

dt

t

+

∫ 1

u

∫ 1

0

(
tu

(t+ u)2

) r
2
(

st

(s+ t)2

) b
2

(s+ t)
α1
2 s

α2
2 t

β
2
ds

s

dt

t

)
. ‖a1‖α1‖a2‖α2‖b‖β u

α1+α2+β
2 ,

using that α1 ∈ (0, 1), P 2 ∈ StGC0 and (α1 + α2 + β) > 0.

For the term B, we have

|B| . ‖a1‖α1‖a2‖α2‖b‖β
∫
x′,x′′

∫ u

0

KQu(x, x′)KP 1•
t

(x′, x′′)d(x′, x′′)α1t
α2+β

2
dt

t
ν(dx′)ν(dx′′)

. ‖a1‖α1‖a2‖α2‖b‖β
∫ u

0

t
α1+α2+β

2
dt

t

. ‖a1‖α1‖a2‖α2‖b‖β u
α1+α2+β

2 ,

using again that α1 ∈ (0, 1) and (α1 + α2 + β) > 0.
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Finally for C, we also use cancellation properties to get

|C| . ‖a1‖α1‖a2‖α2‖b‖β
{∫

x′,x′′

∫ 1

u

KQu(x, x′)KP 1•
t

(x′, x′′)
∣∣∣a1(x)− a1(x′)

∣∣∣tα2+β
2
dt

t
ν(dx′)ν(dx′′)

+

∫
x′,x′′

∫ 1

u

KQu(x, x′)KP 1•
t

(x′, x′′)
∣∣∣a1(x′)− a1(x′′)

∣∣∣tα2+β
2
dt

t
ν(dx′)ν(dx′′)

}
. ‖a1‖α1‖a2‖α2‖b‖β

{∫
x′,x′′

∫ 1

u

KQu(x, x′)KP 1•
t

(x′, x′′)d(x, x′)α1t
α2+β

2
dt

t
ν(dx′)ν(dx′′)

+

∫
x′,x′′

∫ 1

u

KQu(x, x′)KP 1•
t

(x′, x′′)d(x′, x′′)α1t
α2+β

2
dt

t
ν(dx′)ν(dx′′)

}
. ‖a1‖α1‖a2‖α2‖b‖β

{
u
α1
2

∫ 1

u

t
α2+β

2
dt

t
+

∫ 1

u

(
tu

(t+ u)2

) r
2

t
α1+α2+β

2
dt

t

}
. ‖a1‖α1‖a2‖α2‖b‖β u

α1+α2+β
2 ,

using that α1 ∈ (0, 1) and (α2 + β) < 0. In the end, we have∥∥∥QuC(a1, a2, b)
∥∥∥
∞
. ‖a1‖α1‖a2‖α2‖b‖β u

α1+α2+β
2

uniformly in u ∈ (0, 1], so the proof is complete for C. The adaptation of the proof
to the case a1 ∈ Hα1 is left to the reader and follows from the estimates of the
Appendix A.1.

�

As explained, one needs refined correctors to gain from Hölder regularity greater
than one. In the following Theorem, we prove the needed estimates for the first
refined corrector which is the only one needed for (gPAM) equation in dimension 3
and (gKPZ) equation in dimension 1 + 1. Recall that it is given for any x ∈M by

C(1)

(
a, b, c

)
(x) := C

(
a, b, c

)
(x)−

∑̀
i=1

γi
(
Via
)
(x)Π

(
P̃δi(x,·)b, c

)
(x)

where δi is given for x, y ∈M by

δi(x, y) := χ
(
d(x, y)

)
〈Vi(x), πx,y〉TxM

with χ a smooth non-negative function on [0,+∞) equal to 1 in a neighbourhood
of 0 with χ(r) = 0 for r ≥ rm the injectivity radius of the compact manifold M and
πx,y a tangent vector of TxM of length d(x, y), whose associated geodesic reaches y
at time 1. The functions γi are defined from the identity

∇f =
∑̀
i=1

γi(Vif)Vi,

for all smooth real-valued functions f on M .

Theorem A.9. Let α1 ∈ (1, 2) and α2, β ∈ R. If

α2 + β < 0 and α1 + α2 + β > 0

then the operator C(1) has a natural extension as a continuous operator from Cα1 ×
Cα2 × Cβ to Cα1+α2+β.

150



Proof : For the continuity estimate of C(1), we also want to compute the regularity
using a family Q of StGCr with r > |α1 + α2 + β|. Again a term Π(a, b) can be
written as a linear combination of terms of the form∫ 1

0

P 1•
t

(
Q1
ta ·Q2

t b
)dt

t
,

while P̃ba is a linear combination of terms of the form∫ 1

0

Q̃3•
t (Q̃4

ta · P 2
t b)

dt

t
,

with Q1, Q2, Q̃3, Q̃4 ∈ StGC
b
4 and P 1, P 2 ∈ StGC[0,b]. For the terms where P 2 ∈

StGC[2,3], we already have the correct regularity since∫ 1

0

∫ 1

0

QuP
1•
t

(
Q1
t Q̃

3•
s

(
P 2
s a1 · Q̃4

sa2

)
·Q2

t b
) ds

s

dt

t

. ‖a1‖α1‖a2‖α2‖b‖β
∫ 1

0

∫ 1

0

(
ut

(t+ u)2

) r
2
(

ts

(s+ t)2

) 3
2

s
α1+α2

2 t
β
2

ds

s

dt

t

. ‖a1‖α1‖a2‖α2‖b‖β u
α1+α2+β

2

using that α1 ∈ (1, 2) so we only consider P 2 ∈ StGC[0,1]. For P 2 ∈ StGC0, we
control it using the term a1Π(a2, b) as in the proof of the continuity estimate of C.
We are left with∫

P 1•
t

(
Q1
t Q̃

3•
s

(
P 2
s

(
a1 −

∑̀
i=1

γi(Via1)(x)δi(·, x)
)
· Q̃4

sa2

)
·Q2

t b

)
(x)

ds

s

dt

t

with P 2 ∈ StGC1. Then the result follows with the same proof using that P 2
s 1 = 0

since it encodes some cancellation and the first order Taylor expansion∣∣∣∣∣a1(y)− a1(x)−
∑̀
i=1

γi(Via1)(x)δi(y, x)

∣∣∣∣∣ . d(x, y)α.

�

We end this Section with the estimate on the commutator of the divergence.
Recall the definition

B
(
a, (b1, b2)

)
= div

(
Pa(b1, b2)

)
− Padiv(b1, b2).

Proposition A.10. Let α < 1 and β ∈ R. Then (a, b) 7→ B(a, b) extends in a unique
bilinear operator from Hα(M,R)× Cβ(R2,R2) to Hα+β−1(M,R).

Proof : We have

B
(
a, (b1, b2)

)
= ∂1Pab1 + ∂2Pab2 − Pa∂1b1 + Pa∂2b2

hence the result follows from the continuity estimates on the commutators

(a, b) 7→ ViPab− PaVib

proved in the following Section in the context of parabolic Hölder spaces. The
extension to Sobolev spaces can be done as previously.

�
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A.3 – Additional correctors and commutators
The proofs of the corrector estimates follow the line of reasoning of similar estimates
proved in the previous Section. We do not details the proof, see [11] for the details.
As in Chapters 2 and 3, we denote here by C the parabolic Hölder spaces and the
standard families of operators are also taken in spacetime. Recall the definitions of
the following operators

C<L
(
a1, a2, b

)
= PLP̃a1a2

b− a1PLa2b,

C>L
(
a, b1, b1

)
= PLaP̃b1b2 − b1PLab2,

CL
(
a1, a2, b

)
= Π

(
LP̃a1a2, b

)
− a1Π

(
La2, b

)
.

Theorem A.11. � Let α1 ∈ (0, 1) and α2, β ∈ R. If

α2 + β − 2 < 0 and α1 + α2 + β − 2 > 0

then the operators C<L and CL have natural extensions as continuous operators
from Cα1 × Cα2 × Cβ to Cα1+α2+β−2.

� Let β1 ∈ (0, 1) and α, β2 ∈ R. If

α + β2 − 2 < 0 and α + β1 + β2 − 2 > 0

then the operator C>L has a natural extension as a continuous operator from
Cα × Cβ1 × Cβ2 to Cα+β1+β2−2.

� Let α1 ∈ (0, 1) and α2, β ∈ R. If

α2 + β − 1 < 0 and α1 + α2 + β − 1 > 0

then the operators C<Vi and CVi have natural extensions as continuous operators
from Cα1 × Cα2 × Cβ to Cα1+α2+β−1.

� Let β1 ∈ (0, 1) and α, β2 ∈ R. If

α + β2 − 1 < 0 and α + β1 + β2 − 1 > 0

then the operator C>Vi has a natural extension as a continuous operator from
Cα × Cβ1 × Cβ2 to Cα+β1+β2−1.

As one needs refined corrector to gain from regularity exponent greater than one,
the same is true for the modified correctors, this is the following Theorem for CL,(1).

Theorem A.12. � Let α1 ∈ (1, 2) and α2, β ∈ R. If

α2 + β − 2 < 0 and α1 + α2 + β − 2 > 0

then the operators C<L,(1) and CL,(1) have natural extension as continuous oper-
ators from Cα1 × Cα2 × Cβ to Cα1+α2+β−2.

� Let β1 ∈ (1, 2) and α, β2 ∈ R. If

α + β2 − 2 < 0 and α + β1 + β2 − 2 > 0

then the operator C>L,(1) has a natural extension as a continuous operator from
Cα × Cβ1 × Cβ2 to Cα+β1+β2−2.
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The continuity results on RV and RL are obtained as for R. This also follows
from the estimate on V and L from [11] recalled here.

Theorem A.13. � Let α ∈ (0, 1) and β ∈ R. Then the operator L has a natural
extension as a continuous operator from Cα × Cβ into Cα+β−2.

� Let α1, α2 ∈ (0, 1) and β ∈ R. Then the iterated operator

L
(
(a1, a2), b

)
:= L

(
Pa1a2, b

)
− Pa1L(a2, b)

has a natural extension as a continuous operator from Cα1 × Cα2 × Cβ into
Cα1+α2+β−2.

� Let α1, α2, α3 ∈ (0, 1) and β ∈ R. Then the iterated operator

L
((

(a1, a2), a3

)
, b
)

:= L
(
(Pa1a2, a3), b

)
− Pa1L

(
(a2, a3), b

)
has a natural extension as a continuous operator from Cα1 × Cα2 × Cα3 × Cβ
into Cα1+α2+α3+β−2.

� Let α ∈ (1, 2) and β ∈ R. Then the operator L(1) has a natural extension as a
continuous operator from Cα × Cβ into Cα+β−2.

� Let α ∈ (0, 1) and β ∈ R. Then the operator Vi has a natural extension as a
continuous operator from Cα × Cβ to Cα+β−1.

� Let α1, α2 ∈ (0, 1) and β ∈ R. Then the iterated operator

Vi((a1, a2), b) := Vi(Pa1a2, b)− Pa1Vi(a2, b)

has a natural extension as a continuous operator from Cα1 × Cα2 × Cβ to
Cα1+α2+β−1.
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Titre : Un calcul paracontrôlé pour les EDP stochastiques singulières sur les variétés : vers l’infini 
et au-delà 
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Résumé : Cette thèse porte sur le calcul 
paracontrôlé construit à l’aide du semi-groupe 
de la chaleur pour étudier différentes équations 
aux dérivées partielles stochastiques singulières 
sur des variétés riemanniennes compactes. En 
utilisant la formule de Calderón comme 
analogue continu à la décomposition de Paley-
Littlewood, on peut construire un paraproduit 
dans un tel cadre géométrique. Il est alors 
possible de donner un sens à une large classe 
d’équations paraboliques semi-linéaires incluant 
les équations généralisées de KPZ en 
dimension 1+1 et du modèle parabolique 
d’Anderson en dimension 3. On montre ensuite 
que cette méthode peut être étendue pour la 
résolution des versions quasi-linéaires de ces 
équations en adaptant simplement les outils du 
calcul paracontrôlé et en généralisant la notion 
de système paracontrôlé à des familles infinies 
générées par une structure algébrique finie. 
 

Un autre problème abordé dans cette thèse est 
l’étude des opérateurs stochastiques singuliers 
comme l’hamiltonien d’Anderson, c’est-à-dire 
l’opérateur de Schrödinger avec comme 
potentiel un bruit blanc espace. Après une 
étape de renormalisation, le calcul paracontrôlé 
permet la définition de cet objet en tant 
qu’opérateur auto-adjoint à spectre discret. 
D’autres opérateurs sont aussi étudiés comme 
le laplacien magnétique avec un champ 
magnétique bruit blanc. L’étude de ce type 
d’opérateur permet la résolution d’équations 
d’évolutions associées ou l’étude de modèles 
aléatoires continus. On obtient ainsi des 
inégalités de Strichartz pour les équations de 
Schrödinger et des ondes avec un potentiel 
bruit blanc sur une surface compacte avec ou 
sans bord et on étudie les modèles de la 
mesure polymère en dimension 2 avec 
potentiel bruit blanc et la diffusion de Brox sur 
le cercle. 

 

Title : A paracontrolled calculus for singular stochastic PDEs on manifolds : to infinity and beyond 

Keywords : Singular stochastic PDEs, renormalisation, paracontrolled calculus 

Abstract : This thesis presents the 
paracontrolled calculus built with the heat 
semigroup to study different singular stochastic 
partial differential equations on compact 
Riemannian manifolds. Using the Calderón 
formula as a continuous analogue of the Paley-
Littlewood decomposition, we can construct a 
paraproduct in such geometrical framework. It is 
then possible to give a sense to a large class of 
semilinear parabolic equations including the 
generalised KPZ equation in dimension 1+1 and 
the generalised parabolic Anderson model 
equation in dimension 3. We show that this 
method can be extended to deal with the 
quasilinear version of these equations by a 
simple adaptation of the paracontrolled calculus 
and by generalizing the notion of paracontrolled 
systems to infinite families generated by a finite 
algebraic structure. 
 

Another problem tackled in this thesis is the 
study of singular stochastic operators such as 
the Anderson Hamiltonian, that is the 
Schrödinger operator with as potential a space 
white noise. After a renormalisation step, 
paracontrolled calculus allows the definition of 
this object as a self-adjoint operator with 
discrete spectrum. Other operators are also 
studied such as the magnetic Laplacian with  
white noise magnetic field. Study of this type of 
operators allows the resolution of associated 
evolution equations or the study of continuous 
random models. We thereby obtain Strichartz 
inequalities for the Schrödinger and wave 
equations with a white noise potential on 
compact surfaces with or without boundary and 
we study the models of the polymer measure in 
two dimensions with white noise potential and 
the Brox diffusion on the circle. 
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