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RÉSUMÉ EN FRANÇAIS

Modélisation et simulation numérique de croissance tumorale et
réponse a la radiotherapie

Le cancer de la prostate est le deuxième type de cancer le plus fréquent et la cinquième cause de
décès par cancer chez les hommes. On estime qu’en 2018, près de 1,3 million de nouveaux cas ont
été diagnostiqués, faisant 359 000 décès dans le monde [1]. Bien que plusieurs options thérapeutiques
existent, la radiothérapie externe (RTE) est devenue le standard clinique pour traiter le cancer localisé de
la prostate. Typiquement, une dose totale comprise entre 74 et 80 Gy est prescrite. Pour limiter les effets
secondaires, elle est délivrée en plusieurs fractions pendant 7 ou 8 semaines. Le contrôle local de la tumeur
est atteint dans la plupart des cas. Cependant, il a été rapporté que 0-10 %, 10-20 % et 30-40 % des
patients avec, respectivement, des tumeurs à risque faible, intermédiaire et élevé (selon la classification
de D’Amico [2]) subissent une récidive biochimique au bout de 5 ans. Pour réduire ces pourcentages,
des traitements hypofractionnés ont été récemment proposés [3–8]. Ils suggèrent d’augmenter la dose par
fraction, réduisant ainsi le nombre de séances d’irradiation. Cependant, les connaissances de la réponse
des patients à ces nouveaux schémas sont encore limitées.

Les modèles dose-effet [9–11], basés sur des courbes de probabilité de contrôle tumoral (TCP), ont
été utilisés dans le passé pour prédire le risque de récidive. Cependant, ils ont une intégration limitée
de l’hétérogénéité inter-patient. Des approches radiomiques, basées sur des biomarqueurs d’image, sont
apparues ces dernières années comme des outils attrayants pour prédire la récidive tumorale et la survie
[12–14]. Cependant, elles ont montré des performances limitées, elles sont généralement basées sur des
méthodes d’apprentissage automatique complexes, ce qui complique l’interprétabilité, et elles ont besoin
d’une grande quantité de données de population.

La modélisation mécaniste apparaît comme une approche alternative basée sur l’intégration des dif-
férents mécanismes radiobiologiques sous-jacents au comportement de la récidive biochimique. Grâce à
la simulation in silico, elle permet de mieux comprendre la réponse des patients cancéreux à un certain
schéma d’irradiation et leurs résultats sont facilement explicables. Les capacités prédictives des modèles
mécanistes ont déjà été montrées dans d’autres contextes [15, 16].

De nombreux mécanismes radiobiologiques ont été considérés comme participant à la survie de la
tumeur après radiothérapie et à l’éventuelle récidive. En particulier, ceux liés aux 5 R (réoxygénation,
repeuplement, réparation de l’ADN, radiosensibilité et redistribution dans le cycle cellulaire) ont été
minutieusement étudiés [17]. La modulation de la résistance tumorale aux rayonnements est liée, au
moins, à l’hypoxie et à une angiogenèse anormale entraînant la réoxygénation du tissu [18–20], à un
taux élevé de prolifération/repeuplement des cellules tumorales [21–23] et à une faible radiosensibilité
intrinsèque des cellules tumorales [24–26], associée à une distribution prépondérante du cycle cellulaire
dans la phase radiorésistante S [27]. La catastrophe mitotique [28], considérée comme le type principal de
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mort cellulaire après irradiation, peut également jouer un rôle majeur dans le contrôle tumoral [29, 30].
Un grand nombre de modèles numérique mécanistes combinant certains de ces processus ont déjà été

proposés dans la littérature [31–34]. En particulier, le modèle d’Espinoza et al. intègre un grand nombre
des mécanismes radiobiologiques majeurs. Cependant, il n’a pas été testé, à notre connaissance, sur des
coupes histopathologiques. De plus, les valeurs des paramètres du modèle restent incertaines, car elles
peuvent varier considérablement dans la littérature. Également, bien que l’impact de différentes stratégies
de radiothérapie ait été exploré [35], sa sortie de simulation représentant un contrôle clinique de la tumeur
après des schémas d’irradiation de la prostate conventionnels et hypofractionnés n’a pas été clairement
identifiée.

En outre, certains des mécanismes radiobiologiques susceptibles de jouer un rôle majeur dans le
contrôle des tumeurs, comme la catastrophe mitotique et la distribution du cycle cellulaire permettant la
simulation d’une radiosensibilité dépendant de la phase pour les cellules tumorales, n’ont pas été inclus.
Ce problème est applicable à d’autres modèles de la littérature. À notre connaissance, aucun travail
antérieur n’a intégré simultanément dans un seul modèle une oxygénation dynamique, la catastrophe
mitotique et la réponse des cellules tumorales à l’irradiation dépendant de la phase du cycle cellulaire.

De plus, les modèles mécanistes de réponse tumorale contiennent généralement un grand nombre de
paramètres difficiles à mesurer in vivo ou même in vitro, ce qui complique la calibration et la validation.
Une analyse de sensibilité peut être effectuée pour évaluer l’impact de tous les paramètres d’un modèle et
ensuite construire une version réduite en incluant uniquement les facteurs les plus importants. Plusieurs
exemples peuvent être trouvés dans d’autres contextes biomédicaux [36–38]. Bien que la contribution
indépendante de différents mécanismes radiobiologiques ait été évaluée pour certains cas à travers des
courbes de TCP ou de densité tumorale [31, 32, 39], une étude exhaustive pour identifier précisément
l’impact de chaque paramètre n’a pas encore été réalisée, à notre connaissance, pour aucun des modèles
mécanistes de réponse tumorale de la littérature.

Les objectifs de cette thèse étaient donc :

1. d’adapter le modèle d’Espinoza et al., afin qu’il puisse être initialisé avec des coupes histopathologi-
ques de prostate

2. de simuler des schémas d’irradiation de prostate conventionnels et hypofractionnés en utilisant
l’adaptation du modèle d’Espinoza et al.

3. de développer un modèle in silico original de croissance tumorale et de réponse à l’irradiation,
intégrant les principaux mécanismes radiobiologiques de la littérature dans le contexte du cancer
de la prostate

4. de réaliser une analyse de sensibilité exhaustive de ce modèle original complet

5. de proposer un modèle simplifié basé sur les résultats de l’analyse de sensibilité et équivalent en
termes de TCP, de densité cellulaire tumorale et de prédiction de récidive biochimique

6. de prédire la récidive biochimique après radiothérapie en utilisant les sorties de simulation obtenues
avec le modèle réduit et de comparer les résultats avec ceux d’une approche radiomique classique

7. de tester des schémas d’irradiation alternatifs personnalisés en utilisant le modèle réduit.

Dans un premier temps, le modèle d’Espinoza et al. a été adapté et implémenté dans le logiciel
de simulation Netlogo [40]. Il a été initialisé avec des configurations réalistes obtenues à partir de
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coupes histopathologiques de la prostate. Cette adaptation considérait 4 mécanismes radiobiologiques: (i)
l’oxygénation statique, modélisée avec une équation de réaction-diffusion; (ii) la prolifération de cellules
tumorales, basée sur un facteur de prolifération; (iii) la réponse à l’irradiation des cellules tumorales,
dépendante de l’oxygène et considérant le modèle linéaire-quadratique (MLQ) [41–43], et (iv) la résorp-
tion des cellules mortes, donnée par une constante de résorption. Des schémas d’irradiation de la prostate
conventionnels et hypofractionnés ont été simulés et les doses totales pour atteindre le contrôle tumoral
in silico ont été étudiées.

Comme cette première approche présentait plusieurs faiblesses, un modèle mécaniste original de crois-
sance tumorale et réponse à la RTE a été développé et impléménté en C++. Il intégrait 5 mécanismes
radiobiologiques : (i) l’oxygénation dynamique, modélisée avec une équation de réaction-diffusion et in-
cluant la mort hypoxique; (ii) la division des cellules tumorales, en considérant leur cycle cellulaire; (iii)
l’angiogenèse gouvernée par la concentration de VEGF (Vascular endothelial growth factor), donnée par
une équation de réaction-diffusion; (iv) la division des cellules saines et (v) la réponse à l’irradiation,
dépendante de la phase du cycle cellulaire et de l’oxygène, basée sur le MLQ et incluant l’arrêt dans le
cycle et la catastrophe mitotique. Une analyse de sensibilité exhaustive à l’aide de la méthode de screen-
ing de Morris a été réalisée. Les courbes TCP du modèle complet et de 15 versions simplifiées excluant
certains mécanismes ont été comparées. Sur la base de ces résultats, une version réduite, équivalente en
termes de densité cellulaire tumorale et de TCP, a été proposée.

Ce modèle réduit original a été utilisé pour prédire la récidive biochimique dans une cohorte de 76
patients atteints d’adénocarcinome prostatique localisé traités par RTE. À cet effet, des tissus numériques
2D représentant les individus de la cohorte ont été construits à partir de caractéristiques d’IRM multi-
paramétriques (IRMmp) pré-traitement. Ensuite, le protocole de radiothérapie administré à chaque pa-
tient a été simulé sur le tissu virtuel correspondant et l’évolution du nombre de cellules tumorales au
cours des 8 semaines de traitement a été obtenue. Une régression logistique a été réalisée pour prédire la
récidive biochimique directement à partir des caractéristiques des IRMmp pré-traitement ou du nombre
in silico de cellules tumorales à la fin du traitement et les résultats ont été comparés.

Ce manuscrit est basé sur des articles rédigés en tant que premier auteur précédemment publiés dans
des revues et des conférences internationales ou des travaux en préparation. Il est divisé en 4 parties et
contient 6 chapitres structurés comme suit :
Partie I

— Le chapitre 1 présente le contexte clinique de cette thèse ainsi qu’un état de l’art des différentes
approches de modélisation de la réponse tumorale à l’irradiation. Tout d’abord, une brève de-
scription du cancer de la prostate et des options thérapeutiques les plus courantes est fournie. En
particulier, les principes de la RTE sont expliqués. Deuxièmement, un état de l’art des différentes
approches de prédiction de récidive biochimique après radiothérapie est fourni. Des modèles dose-
effet et radiomiques sont présentés et leurs faiblesses sont expliquées. Ensuite, les principes de
la modélisation mécaniste sont décrits et plusieurs exemples de modèles in silico de croissance
tumorale et de réponse à l’irradiation de la littérature sont présentés. Les enjeux méthodologiques
de ce type d’approche sont largement discutés. En particulier, les faiblesses dues au grand nombre
de paramètres des modèles mécanistes et les bases des analyses de sensibilité sont expliquées.

— Le chapitre 2 décrit les motivations et les objectifs de cette thèse.
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Partie II
— Le chapitre 3, basé sur un article en préparation, décrit l’adaptation du modèle mécaniste de

réponse tumorale à la radiothérapie d’Espinoza et al. Les résultats d’une analyse de sensibilité
locale effectuée pour déterminer l’impact de chaque paramètre sur la mort des cellules tumorales
sont rapportés. Une comparaison des résultats du modèle en termes d’hypoxie avec des données
cliniques prostatiques de la littérature est présentée. Les résultats des simulations de différents
protocoles d’irradiation de prostate (conventionnels et hypofractionnés) considérant 6 valeurs de
radiosensibilités intrinsèques publiées sont rapportés. Les doses totales simulées pour atteindre le
contrôle de la tumeur dans les rangs cliniques sont identifiées.

Partie III
— Le chapitre 4, basé sur un article de revue publié précédemment, présente tout d’abord un modèle

original de croissance tumorale et réponse à l’irradiation intégrant les principaux mécanismes
radiobiologiques de la littérature. Ensuite, les résultats de l’analyse de sensibilité réalisée sur des
tissus numériques de prostate à l’aide de la méthode de screening de Morris sont rapportés. Des
comparaisons des courbes TCP du modèle complet et de 15 versions simplifiées excluant certains
mécanismes sont présentées. Sur la base des résultats de l’analyse de sensibilité et des courbes
TCP, un modèle réduit de réponse tumorale est proposé. Enfin, une application potentielle du
modèle dans un contexte clinique est décrite.

— Le chapitre 5, basé sur un article de conférence évalué par des pairs publié précédemment,
explore l’utilisation du modèle mécaniste réduit de croissance tumorale et réponse à l’irradiation
pour prédire la récidive biochimique dans le contexte du cancer de la prostate. Les résultats pour
une cohorte de patients atteints d’adénocarcinome prostatique localisé ayant été traités par RTE
sont présentés. Ils sont comparés aux prédictions de récidive directement obtenues à partir de
caractéristiques d’IRMmp suivant une approche radiomique conventionnelle.

Partie IV
— Le chapitre 6 comprend une discussion générale sur les principaux résultats et contributions

de cette thèse. Ses principales faiblesses sont également expliquées et des suggestions de travaux
futurs sont proposées.

Les principales contributions de cette thèse sont donc :

1. l’adaptation et la comparaison avec des données cliniques prostatiques d’un modèle existant de
réponse tumorale à l’irradiation

2. le développement d’un modèle numérique original de croissance tumorale et réponse à la radio-
thérapie intégrant les principaux mécanismes radiobiologiques de la littérature

3. l’identification des paramètres et mécanismes radiobiologiques ayant l’impact le plus important
sur la densité de cellules tumorales et la TCP

4. le développement d’un modèle mécaniste réduit intégrant uniquement les mécanismes radiobi-
ologiques les plus importants

5. la génération de prédictions de récidive biochimique significativement meilleures en utilisant le
modèle mécaniste réduit, par rapport à une approche radiomique conventionnelle, dans le contexte
de la RTE du cancer de la prostate.
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ACRONYMS

— 3D conformal radiotherapy (3D-CRT)
— 4D transperineal ultrasound (4D-TPUS)
— Adaptive synthetic oversampling (ADASYN)
— Apparent diffusion coefficient (ADC)
— Androgen deprivation therapy (ADT)
— Area under the curve (AUC)
— Cone beam computed tomography (CBCT)
— Cluster of differentiation 31 (CD31)
— Clinical linear accelerator (CLINAC)
— Computed tomography (CT)
— Digital rectal examination (DRE)
— External beam radiation therapy (EBRT)
— Electromagnetic transponders (EMT)
— Edited nearest neighbour (ENN)
— Fluorodeoxyglucose (FDG)
— False positive rate (FPR)
— Hematoxylin-eosin-saffron (HES)
— High-intensity focused ultrasound (HIFU)
— Image-guided intensity-modulated radiotherapy (IG-IMRT)
— Institutional review board (IRB)
— Linear-quadratic model (LQM)
— Multi-formalism modeling and simulation library (M2SL)
— Multileaf collimator (MLC)
— Multi-parametric magnetic resonance imaging (mpMRI)
— Magnetic resonance imaging (MRI)
— Magnetic resonance dynamic contrast enhanced (MR-DCE)
— One-at-a-time (OAT)
— Oxygen enhancement ratio (OER)
— Partial differential equation (PDE)
— Positron emission tomography (PET)
— Prostate specific antigen (PSA)
— Receiver operating characteristic (ROC)
— Region of interest (ROI)
— Radical prostatectomy (RP)
— Relative sensitivity coefficient (RSC)
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Acronyms

— Main effect index (SI)
— Synthetic minority oversampling technique (SMOTE)
— Stereotactic radiosurgery (SRS)
— Tumour angiogenesis factors (TAF)
— Tumour control probability (TCP)
— Tumour, node and metastasis (TNM)
— True positive rate (TPR)
— Treatment planning system (TPS)
— Total effect index (TSI)
— Union for International Cancer Control (UICC)
— Vascular endothelial growth factor (VEGF)
— Volumetric modulated arc therapy (VMAT)
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INTRODUCTION

Prostate cancer ranks as the second most frequent type of cancer and the fifth leading cause of cancer
death in men. It has been estimated that, in 2018, almost 1.3 million new cases were diagnosed, causing
359 000 fatalities, worldwide [1]. Although several therapeutic options exist, external beam radiotherapy
(EBRT) has emerged as the clinical standard to treat localised prostate cancer. Typically, a total dose
between 74 and 80 Gy is prescribed. To limit side-effects, it is delivered in several fractions during 7 or 8
weeks. Local tumour control is achieved in most of the cases. However, it has been reported that 0-10%,
10-20% and 30-40% of patients with, respectively, low, intermediate and high risk tumours (according
to the D’Amico classification [2]) experience biochemical recurrence within 5 years. To reduce these
percentages, hypofractionated treatments have been recently proposed [3–8]. They suggest increasing
the dose per fraction, thus reducing the number of irradiation sessions. However, the knowledge of the
response of patients to these new schedules is still limited.

Dose-effect models [9–11], based on tumour control probability (TCP) curves, have been used in the
past to predict the risk of recurrence. However, they have limited integration of inter-patient heterogeneity.
Radiomics approaches, based on image biomarkers, have emerged in recent years as appealing tools to
predict tumour recurrence and survival [12–14]. However, they have shown limited performance, they are
usually based on complex machine learning methods, which complicates interpretability, and they need
a large amount of population data.

Mechanistic modelling appears as an alternative approach based on the integration of the different
radiobiological mechanisms underlying the behaviour of biochemical recurrence. Through in silico simu-
lation, it allows to better comprehend the response of cancer patients to a certain irradiation schedule
and their results are easily explainable. The predictive capabilities of mechanistic models have already
been shown in other contexts [15, 16].

Numerous radiobiological mechanisms have been considered to participate in tumour survival after
radiotherapy and later recurrence. In particular, those related to the 5 R’s (reoxygenation, repopulation,
DNA repair, radiosensitivity and redistribution in the cell cycle) have been thoroughly studied [17].
Modulation of tumour radiation resistance is thought to be related, at least, to hypoxia and abnormal
angiogenesis resulting in the reoxygenation of the tissue [18–20], a high rate of proliferation/repopulation
of tumour cells [21–23] and a low intrinsic radiosensitivity of tumour cells [24–26], associated with a
preponderant cell cycle distribution in the radioresistant phase S [27]. Mitotic catastrophe [28], considered
to be the main type of cell death after irradiation, may also play a major role in tumour control [29, 30].

A large number of in silico mechanistic models combining some of these processes have already
been proposed in the literature [31–34]. In particular, the model of Espinoza et al. integrates a great
number of the major radiobiological mechanisms. However, it has not been tested, to our knowledge, on
histopathological specimens. Moreover, the values of the model parameters remain uncertain, as they can
widely vary in the literature. In addition, although the impact of different radiotherapy strategies has
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been explored [35], its simulation endpoint representing clinical tumour control after conventional and
hypofractionated prostate irradiation schedules has not been clearly identified.

Furthermore, some of the radiobiological mechanisms which may play a major role in tumour control,
such as mitotic catastrophe and cell cycle distribution allowing the simulation of a phase-dependent ra-
diosensitivity for tumour cells were not included. This issue is applicable to other models of the literature.
To our knowledge, no previous work has simultaneously integrated dynamic oxygenation, mitotic catas-
trophe and cell-cycle-phase-dependent response of tumour cells to irradiation in a single comprehensive
model.

Moreover, mechanistic models of tumour response usually contain a large number of parameters
difficult to measure in vivo or even in vitro, which hampers calibration and validation. Sensitivity analysis
can be performed to evaluate the impact of all the parameters of a model and subsequently build a reduced
version including only the most relevant factors. Multiple examples can be found in other biomedical
contexts [36–38]. Although the independent contribution of different radiobiological mechanisms has
been evaluated for some cases through TCP or tumour density curves [31, 32, 39], a thorough study to
precisely identify the impact of each parameter has not been performed yet, to our knowledge, for any of
the mechanistic models of tumour response of the literature.

The objectives of this thesis were thus:

1. to adapt the model of Espinoza et al., so that it can be initialised with prostate histopathological
specimens

2. to simulate conventional and hypofractionated prostate irradiation schedules using the adaptation
of the model of Espinoza et al.

3. to develop an original in silico model of tumour growth and response to irradiation, integrating
the main radiobiological mechanisms of the literature in the context of prostate cancer

4. to perform an exhaustive sensitivity analysis of this original comprehensive model

5. to propose a simplified model based on the results of the sensitivity analysis and equivalent in
terms of TCP, tumour cell density and prediction of biochemical recurrence

6. to predict biochemical recurrence after radiotherapy using simulation outputs obtained with the
reduced model and to compare the results with those of a classical radiomics approach

7. to test personalised alternative irradiation schedules using the reduced model.

As a first step, the model of Espinoza et al. was adapted and implemented in the simulation soft-
ware Netlogo [40]. It was initialised with realistic configurations obtained from prostate histopathological
specimens. This adaptation considered 4 radiobiological mechanisms: (i) static oxygenation, modelled
with a reaction-diffusion equation; (ii) proliferation of tumour cells, based on a proliferation factor; (iii)
oxygen-dependent response to irradiation, considering the linear-quadratic model (LQM) [41–43], and
(iv) resorption of dead cells, given by a resorption constant. Conventional and hypofractionated prostate
irradiation schedules were simulated and in silico total doses to achieve tumour control studied.

Since this first approach presented several limitations, an original mechanistic in silico model of
tumour response to EBRT was developed and implemented in C++ using the in-house simulation library
M2SL [44]. It integrated 5 radiobiological mechanisms: (i) dynamic oxygenation, modelled with a reaction-
diffusion equation and including hypoxic death; (ii) division of tumour cells, considering their cell-cycle;
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(iii) angiogenesis driven by the VEGF (Vascular endothelial growth factor) concentration, given by a
reaction-diffusion equation; (iv) division of healthy cells and (v) cell-cycle-phase-and-oxygen-dependent
response to irradiation, based on the LQM and considering cycle arrest and mitotic catastrophe. A
thorough sensitivity analysis using the Morris screening method, was performed. TCP curves of the
comprehensive model and 15 simplified versions excluding certain mechanisms were compared. Based on
these results, a reduced version, equivalent in terms of tumour cell density and TCP, was proposed.

This original reduced model was used to predict biochemical recurrence in a cohort of 76 patients
with localised prostate adenocarcinoma having undergone EBRT. For this purpose, 2D digital tissues
representing the individuals of the cohort were built from pre-treatment mpMRI features. Then, the
radiotherapy protocol administered to each patient was simulated on the corresponding virtual tissue
and the evolution of the number of tumour cells throughout the 8 weeks of treatment was obtained.
Logistic regression was performed to predict biochemical recurrence directly from pre-treatment mpMRI
features or from the in silico number of tumour cells at the end of the treatment and results were
compared.

This manuscript is based on first-authored articles previously published on international journals and
conferences or works in preparation for submission. It is divided in 4 parts and contains 6 chapters
structured as follows:
Part I

— Chapter 1 presents the clinical context of this thesis as well as a state of the art of the different
approaches of modelling the tumour response to irradiation. Firstly, a brief description of prostate
cancer and the most common therapeutic options is provided. In particular, the principles of EBRT
are explained. Secondly, a state of the art of the different approaches of prediction of biochemical
recurrence after radiotherapy is provided. Dose-effect and radiomics models are presented and
their limitations are explained. Then, the principles of mechanistic modelling are described and
several examples of in silico models of tumour growth and response to irradiation of the literature
are presented. The methodological challenges of this kind of approach are widely discussed. In
particular, limitations due to the large number of parameters of mechanistic models and the basis
of sensitivity analysis are explained.

— Chapter 2 describes the motivations and objectives of this thesis.
Part II

— Chapter 3, based on an article in preparation for submission, describes the adaptation of an
existing mechanistic model of tumour response to radiotherapy. The results of a local sensitivity
analysis performed to determine the impact of each parameter on tumour cell death are reported.
A comparison of the outcomes of the model in terms of hypoxia with prostate clinical data from
the literature is shown. The results of simulations of various prostate irradiation schedules (conven-
tional and hypofractionated) considering 6 different published intrinsic radiosensitivity values are
presented. Simulated total doses to achieve tumour control within the clinical ranges are identified.

Part III
— Chapter 4, based on a previously published journal article, presents firstly an original mechanistic

in silico model of tumour growth and response to irradiation integrating the major radiobiological
mechanisms of the literature. Then, the results of the sensitivity analysis performed on prostate
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computational tissues using the Morris screening method are reported. Comparisons of TCP curves
of the comprehensive model and 15 simplified versions excluding certain mechanisms are shown.
Based on the results of the sensitivity analysis and the TCP curves, a reduced model of tumour
response is proposed. Finally, a potential application of the model as a useful tool in a clinical
context is described.

— Chapter 5, based on a previously published peer-reviewed conference paper, explores the use of
the reduced mechanistic in silico model of tumour growth and response to irradiation to predict
biochemical recurrence in the context of prostate cancer. Results for a cohort of localised prostate
adenocarcinoma patients having undergone EBRT are presented. They are compared with re-
currence predictions directly obtained from mpMRI features following a conventional radiomics
approach.

Part IV
— Chapter 6 includes a general discussion on the main results and contributions of this thesis. Its

major limitations are also explained and suggestions about future work are offered.
The main contributions of this thesis are therefore:

1. the adaptation and comparison with prostate clinical data of an existing model of tumour response
to irradiation

2. the development of an original mechanistic model of tumour growth and response to radiotherapy
integrating the main radiobiological mechanisms of the literature

3. the identification of the radiobiological parameters and mechanisms having the most important
impact on tumour cell density and TCP

4. the development of a reduced mechanistic model integrating only the most important radiobiolog-
ical mechanisms

5. the generation of significantly better biochemical recurrence predictions using the reduced mech-
anistic model, compared to a conventional radiomics approach, in the context of prostate cancer
EBRT.

This thesis was funded by the Brittany Region and FHU TECH-SAN.

24



Part I

Clinical context, state of the art and
objectives
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Chapter 1

CLINICAL CONTEXT AND STATE OF THE

ART

This chapter presents the clinical and methodological context of this thesis. Firstly, a brief description
of prostate cancer and the available therapeutic options is provided. In particular, the principles and
limitations of external beam radiation therapy are discussed. This is followed by a state of the art of
the most important approaches of prediction of biochemical recurrence after radiotherapy, namely dose-
effect, radiomics and mechanistic models. Their methodological challenges, especially those of mechanistic
modelling, are widely discussed.
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Part I, Chapter 1 – Clinical context and state of the art

1.1 Prostate cancer

1.1.1 Prostate anatomy

The prostate is a gland of the male reproductive system situated in the pelvic cavity, in front of the
rectum, below the bladder and surrounding the urethra, as shown in Fig. 1.1. In healthy adults, it has
an average size around 4 cm × 3 cm and its weight ranges between 20 and 25 g. It is formed of both
glandular and connective tissue and surrounded by an elastic, fibromuscular capsule. Its main function is
the production of the prostatic fluid. This liquid contains several enzymes such as the prostate specific
antigen (PSA) and represents about a third of the total volume of semen. Furthermore, prostate muscles
ensure that the seminal fluid is forcefully pressed into the urethra and then expelled outwards during
ejaculation.

Figure 1.1 – Anatomy of the male reproductive system (source: www.bladderclinic.com.au)

1.1.2 Epidemiology

It has been estimated that, in 2018, almost 1.3 million new cases of prostate cancer were diagnosed,
causing 359,000 deaths worldwide [1]. Prostate cancer ranks thus as the second most frequent type of
cancer (13.5%) and the fifth leading cause of cancer death in men (6.5%). In France, prostate cancer is
by far the most common type of cancer in men. It is estimated that circa 55,000 new cases are diagnosed
every year, being the cause of, approximately, 8,000 annual deaths.

1.1.3 Diagnosis

Prostate cancer is typically first detected through digital rectal examination (DRE) or a blood test
measuring the levels of PSA. DRE is the standard way to define texture, shape and size and of the
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prostate. It is simple and complication-free, but subjective as it depends on the examiner. PSA has been
traditionally used as a marker of prostate cancer. Most healthy men have PSA levels below 4 ng/ml. This
concentration rises when prostate cancer develops.

However, DRE and PSA test have relatively low sensitivity, and they do not differentiate between
aggressive and indolent disease. For these reasons, when an abnormal lump is found through DRE ex-
amination or when a blood test reveals high PSA levels, prostate biopsy may be performed. Definitive
diagnosis is only confirmed after histopathological verification of adenocarcinoma.

1.1.4 Staging

The Gleason grading system allows to classify prostate tumours based on their microscopic appearance
[45]. The following 5 patterns are defined:

— Pattern 1: the cancerous prostate closely resembles normal prostate tissue. The glands are small,
well-formed, and closely packed.

— Pattern 2: the tissue still has well-formed glands. However, they are larger and have more tissue
between them, implying that the stroma has increased.

— Pattern 3: the tissue still has recognizable glands, but the cells are darker. At high magnification,
some of these cells have left the glands and are beginning to invade the surrounding tissue or
having an infiltrative pattern.

— Pattern 4: the tissue has few recognizable glands. Many cells are invading the surrounding tissue
in neoplastic clumps.

— Pattern 5: the tissue does not have any or only a few recognizable glands. There are often just
sheets of cells throughout the surrounding tissue.

The Gleason score is defined as the sum of the two most frequent patterns observed during the
histopathological analysis.

In the early stage, the tumour is located within the prostate. However, as the disease progresses,
it can expand to neighbouring organs and tissues as well as more distant locations, such as the lymph
nodes or the the bones. The process by which cancer cells spread to other parts of the body is called
metastasis. Tumour extension is usually expressed as being at a certain T stage using the tumour, node
and metastasis (TNM) classification system published by the Union for International Cancer Control
(UICC) [46]. It defines four T stages with various subcategories indicating tumour size and location:

— T1: the tumour is too small to be detected on a scan or felt through DRE:
— T1a: the tumour is found in less than 5% of the resected prostate tissue
— T1b: the tumour is found in more than 5% of the resected prostate tissue
— T1c: the tumour is found in a needle biopsy performed due to an elevated PSA level

— T2: the tumour can be felt through DRE but it is still confined to the prostate:
— T2a: the tumour is found in only half or less than half of one of the prostate lobes
— T2b: the tumour is found in more than half of one lobe, but not in both
— T2c: the tumour is found in both lobes

— T3: the tumour has spread throughout the prostate capsule
— T3a: the tumour has spread through the capsule but not to the seminal vesicles
— T3b: the tumour has invaded one or both seminal vesicles
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— T4: the tumour has invaded other nearby structures, such as the rectum, the bladder or the pelvic
wall

Based on the Gleason score, the T stage and the PSA level, the D’Amico classification [2] assigns
prostate cancer patients to low, intermediate and high risk categories as follows:

— Low risk: T1 to T2a stages, Gleason score ≤ 6 and PSA < 10 ng/ml.
— Intermediate risk: T2b stage or Gleason score = 7 or 10 ng/ml ≤ PSA ≤ 20 ng/ml.
— High risk: T2c to T4 stages or Gleason score ≥ 8 or PSA > 20 ng/ml.

1.2 Therapeutic options

Different therapeutic options for localised prostate cancer exist. Depending on the age of the patient,
his life expectancy and the aggressiveness of the cancer (determined as explained in the previous section),
the most appropriate treatment or combination of them is chosen considering the therapeutic objective.
This may include suppressing the tumour or metastases, reducing the risk of recurrence or slowing the
tumour progression [47].

The main therapeutic options in the context of prostate cancer, according to their frequency of
prescription, are:

— Radical prostatectomy (RP): it is a surgical treatment consisting in the total removal of the
prostate gland and the seminal vesicles. It may be accompanied by lymph node dissection. It is
one of the standard treatments for localised prostate cancers with low and intermediate risk. It
can also be proposed in certain cases of localised high-risk, locally advanced cancers with lymph
node involvement. Radiation and/or hormonal therapy may be prescribed as supplement. The
most common side effects of radical prostatectomy are urinary incontinence, related to impaired
functioning of the bladder and sphincter muscles, and erectile dysfunction. This treatment also
implies a definite impossibility to ejaculate.

— Radiotherapy: it consists in irradiating cancer cells in order to prevent them from multiplying.
Radiation doses can be administrated in two ways:
— External: The source of radiation is located outside the body. It is delivered in the form of

photons (X-rays from linear accelerator machines), electrons or, more rarely, other particles
such as protons. It is one of the reference treatments for localised cancers with low and inter-
mediate risk. Coupled with hormonal therapy, it is the recommended therapeutic option for
localised high-risk cancers. It can also complement radical prostatectomy to reduce the risk
of recurrence. Irradiation of healthy tissues adjacent to the prostate can cause a variety of
side effects, including difficult or painful urination, diarrhea, fatigue, rectal bleeding or sexual
dysfunction.

— Brachytherapy: The source of radiation is located inside the body. Radioactive seeds are im-
planted within the prostate gland. These sources emit radiation that destroys the surrounding
malignant cells. Since the gradient of dose drops sharply away from the radioactive seeds,
brachytherapy is indicated for low-risk localised cancers. The most frequent side effects include
difficult or painful urination, fatigue, rectal irritation or sexual dysfunction.

— Hormonal therapy, also called androgen deprivation therapy (ADT): it aims to reduce the levels
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of the male hormones (mainly, testosterone and dihydrotestosterone) that stimulate prostate cancer
cells to divide. Lowering androgen levels or preventing them from getting into prostate cancer cells
often makes prostate cancers shrink or delay their growth. However, hormonal therapy alone is not
curative. Combined with radiation therapy, it is the gold standard for high-risk localised prostate
tumours. It is also used in case of metastatic cancers. The most common side effects of hormonal
therapy are hot flushes, erectile dysfunction, changes in physical appearance and osteoporosis.

— Deferred therapy: in some cases, treatment of localised prostate cancer may be deferred or even
avoided to prevent toxicity. There are two distinct strategies for conservative management that
aim to reduce overtreatment:
— Active surveillance: the surveillance of cancer evolution is carried out through frequent DRE,

blood tests to measure the PSA levels, biopsies and magnetic resonance imaging (MRI) scans.
It is prescribed to patients with clinically confined, very-low-risk tumours.

— Watchful waiting: it involves fewer tests than active surveillance, so the side effects of repeated
tests or biopsies are also avoided. It is recommended when cancer progresses slowly or for older
men with a high incidence of comorbidities and other causes of mortality.

— High-intensity focused ultrasound (HIFU): it consists in delivering focused ultrasound waves
to a focal point in order to kill tumour cells through heating and cavitation. This technique is
advised for patients aged over 70 years with low-risk tumours. It is mostly used in the case of local
recurrence following radiotherapy.

This thesis focus on external beam radiotherapy (EBRT) for the treatment of prostate cancer. This
therapeutic option is detailed in the following section.

1.2.1 External beam radiation therapy

More than two thirds of the patients diagnosed with localised prostate cancer are treated with EBRT
[30], often combined with a concomitant treatment (e.g., surgery or hormonal therapy). During EBRT,
ionising rays charged with high energy photons are delivered to the tumour, aiming to maximise local
control while sparing neighbouring organs (mainly the rectum and the bladder). In order to allow healthy
tissues to recover, the radiation dose is fractionated and delivered over several weeks from Monday to
Friday.

Prior to the beginning of treatment, the radiotherapy team plans the optimal radiation scheme, in
terms of total dose, fractionation and angles of the beams. This process starts by acquiring a computed
tomography (CT) scan of the the pelvic region. The different structures observed on the CT scan (prostate,
seminal vesicles, bladder and rectum) are then delineated by an expert. This information is imported to
a treatment planning system (TPS) to generate the irradiation scheme. A 3D map relating every point
of the CT with a prescribed level of dose is obtained. During the treatment, the patient is placed on a
table below the linear particle accelerator delivering the ionising rays (Fig. 1.2).

Over the last decades, improvements in imaging and computing have led to a number of technical
advances (Fig. 1.3). They have allowed more precise and conformal delivery of doses of radiation to the
prostate, thereby improving the therapeutic ratio.
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Figure 1.2 – Patient positioned during the irradiation session (source: www.mskcc.org)
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Figure 1.3 – Evolution of EBRT

Image-guided intensity-modulated radiotherapy

At the present time, image-guided intensity-modulated radiotherapy (IG-IMRT) is considered the gold
standard for EBRT. It has replaced 3D conformal radiotherapy (3D-CRT) thanks to its high conformity,
which facilitates dose escalation and improves local control without significantly increasing the risk of
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toxicity [48, 49]. A comparison of treatment plannings using 3D-CRT and IG-IMRT is shown in Fig. 1.4.

(a) (b)

Figure 1.4 – Dose distribution of a prostate cancer patient using (a) 3D-CRT and (b) IG-IMRT [50].
Lowest dose dose is represented in blue and highest dose, in red.

In the case of intensity-modulated radiotherapy, the fluence (amount of photons per surface unit) is
not homogeneous but adjusted with a multileaf collimator by continuously adapting the beams to the
shape of the target volume [51]. This allows to deliver more conformal dose distributions, fitting complex
structures.

The benefits of intensity-modulated radiotherapy can only be realised if the target and healthy tissues
are given exactly the radiation dose prescribed in the treatment plan. Geometric differences between the
two distributions can compromise tumor control or increase the risk of complications.

Different anatomical references, such as skins markers, can be used to reproduce the patient positioning
in the irradiation field throughout the different irradiation sessions. However, since the patient may
experience anatomical changes, such as weight loss, the effectiveness of these markers is limited and may
lead to setup errors [52].

Portal imaging systems were developed with the introduction of linear accelerators [53]. Using a
digitally-reconstructed radiograph based on the planning CT, the patient bone structures could be aligned
throughout the irradiation sessions. However, repositioning the patient according to the bone structures
did not completely solve the problem of geometric uncertainties. Indeed, between two irradiation fractions
or even during a session, anatomical variations (displacements or deformations of the tumour or the
healthy tissues) can occur in a fixed bone reference system.

This need to precisely locate the target and the organs at risk has led to the development of imaging
devices integrated in the linear accelerators and allowing the visualization of the soft tissues [54]. Cone
beam computed tomography (CBCT) is the most frequently used imaging modality for this purpose. An
X-ray source and a 2D detector are integrated in every modern linear accelerator. This system rotates
around the patient and acquires a large number of 2D projections, allowing to reconstruct a 3D image
that can be compared with the planning CT. In the recent years, alternative techniques using non-ionising
radiation modalities, such as electromagnetic transponders (EMT) and 4D transperineal ultrasound (4D-
TPUS), have been proposed [55].
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Conventional fractionations

In the context of prostate cancer, an irradiation total dose between 74 and 80 Gy delivered at 2
Gy fractions has been typically prescribed [56–58]. The benefits of these schedules, in terms of tumour
control and reduced toxicity, have been clearly shown in the past. However, it has been reported that
about 0-10%, 10-20% and 30-40% of patients with respectively, low, intermediate and high-risk tumours
(according to the D’Amico classification) suffer biochemical recurrence within the 5 years following the
end of irradiation [2]. It is thus crucial to identify predictors of recurrence to adapt treatments for patients
with the highest rates of biochemical failure. Furthermore, this conventional fractionation presents several
issues concerning both patient access and convenience, as well as resource utilization during the 8 weeks
of treatment.

Hypofractionated treatments

In recent years, moderate hypofractionated schedules (consisting in increasing the dose per fraction up
to 3.4 Gy, thus reducing the number of irradiation sessions) have been proposed and tested in randomised
clinical trials [3, 5–8]. Results suggest that hypofractionated radiotherapy is non-inferior to conventional
fractionation in terms of freedom from biochemical or clinical failure and is not associated with increased
toxicity. It may be thus recommended as a new standard for localised prostate cancer. Nevertheless,
numerous uncertainties about the dose equivalences, in terms of both local tumour control and toxicity,
still exist.

1.3 Models of tumour response: state of the art

1.3.1 Dose-effect approaches

First data-based approaches of modelling the tumour response to irradiation consisted in exploring the
dose-effect relationship, which states that the higher the dose, the higher the tumour control probability
(TCP) [9, 59–62]. These TCP curves are believed to have a sigmoid shape (Fig. 1.5). They may be fitted
empirically performing a regression analysis [10, 11, 63] or derived from a model of tumour control using
the linear-quadratic (LQM) formalism of cell survival [64–66].

Although TCP curves have been generated from population data for different risk groups [67, 68] and
some TCP models have included inter-patient variations in terms of intrinsic radiosensitivity of tumour
cells [66, 69, 70], this kind of approach has limited integration of inter-patient heterogeneity, which may
be deduced from imaging parameters.

1.3.2 Radiomics approaches

The qualitative study of prostate MRI scans has typically played a crucial role at the pre-treatment
staging step. In contrast, their quantitative analysis, in particular, the association of MRI features with
biochemical recurrence, has not been fully explored in clinical practice yet. The only MRI-derived param-
eters whose impact on survival has been clearly established are T-stage, tumour volume, extracapsular
extension, seminal vesicle invasion and volume of malignant spectroscopic MRI metabolism [71–74].
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Figure 1.5 – Example of TCP curves for different frationations

Other imaging parameters such as the Haralick textural features [75], characterizing the spatial vari-
ations of signal intensity in an image, may also provide useful information about underlying pathophysi-
ological processes. Radiomics approaches [76, 77], based on these imaging biomarkers, have emerged over
the last few years as appealing tools to discriminate prostate tumour from healthy tissue [78], to assess
the Gleason score [79, 80] or to predict tumour recurrence and survival in the context of prostate cancer
EBRT [12, 13].

Nevertheless, the performance of these radiomics approaches is still limited in terms of prediction
scores (e. g. AUC, C-index). Furthermore, they require a large amount of population data in order to be
statistically significant and they are usually based on complex machine learning methods, which raises
the question of interpretability.

In addition, radiomics-based studies are frequently confronted with the class imbalanced problem, i.e.
nearly every individual of the cohort belongs to the majority class and only a few of them constitute the
complimentary minority class. This phenomenon is particularly evident in the context of the present work,
as the vast majority of the prostate cancer patients treated with EBRT do not experience biochemical
recurrence. It must be noted that training a classifier on such highly imbalanced data can be mislead-
ing, since the minority class has a minimal effect on overall accuracy. To cope with this issue, several
methods consisting in artificially oversampling the minority class (such as SMOTE, Borderline SMOTE,
SMOTE+ENN and ADASYN) have been proposed [81]. In depth, the SMOTE technique produces new
minority observations based on weighted average of the k-nearest neighbours of the same class. However,
these artificial minority class examples may be produced too deeply into the majority class space. Induc-
ing a classifier under such a situation can lead to overfitting. To deal with this issue, the Wilson Edited
Nearest Neighbour Rule (ENN) [82] can be used to remove noisy SMOTE examples while leaving the
original data unchanged.
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1.3.3 Mechanistic modelling approaches

As opposed to the data-driven techniques described in the previous sections, mechanistic modelling
appears as a groundbreaking approach based on the integration of the different biological processes
underlying the behavior of a given clinical endpoint. Numerous radiobiological mechanisms have been
considered to participate in tumour survival after radiotherapy and later recurrence. In particular, those
related to the 5 R’s (reoxygenation, repopulation, DNA repair, radiosensitivity and redistribution in the
cell cycle) have been thoroughly studied [17]. Modulation of tumour radiation resistance is thought to be
related, at least, to hypoxia and abnormal angiogenesis resulting in the reoxygenation of the tissue [18–
20], a high rate of proliferation/repopulation of tumour cells [21–23] and a low intrinsic radiosensitivity of
tumour cells [24–26], associated with a preponderant cell cycle distribution (Fig. 1.6) in the radioresistant
phase of synthesis (S) [27]. Mitotic catastrophe [28], considered to be the main type of cell death after
irradiation, and cycle arrest of irradiated cells at checkpoints between phases G1/S and G2/M may also
play a major role in tumour control [29, 30].

Figure 1.6 – Cell cycle composed of phases Gap 1 (G1), in blue; synthesis (S), in orange; Gap 2 (G2), in
green; mitosis (M), in purple, and a quiescent phase Gap 0 (G0), in red. Two checkpoints where irradiated
cells may be arrested exist between phases G1/S and G2/M.

Mechanistic in silico modelling [83, 84] emerges as a powerful tool to integrate all these radiobiological
mechanisms and predict their behaviour on hypothetical scenarios. These computational models make
it possible to create, at a limited cost, infinite virtual tumours with different vascular architectures on
which various irradiation schedules can be simulated. A panoply of mechanistic in silico models of tumour
response to radiotherapy exist in the literature. For the vast majority of them, the response to irradiation
is based upon the widely-used LQ formalism [41–43]. According to their spatial scale, mechanistic models
can be classified into 3 categories: microscopic, macroscopic and hybrid or multiscale.
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Microscopic models [31, 39, 85] consider the stochastic behaviour of individual cells and the inter-
actions between them. They can reflect cell heterogeneity but may not reproduce a realistic tumour
microenvironment and the link to the image is not clear. Borkenstein et al. [85] developed a single-cell-
based computational model that integrated tumour proliferation governed by the cell cycle, oxygenation
and radiation response. It also included angiogenesis, considering the diffusion of tumour angiogenesis
factors (TAF) emitted by hypoxic cells. Harting et al. [39] went further from Borkenstein et al. and
proposed a more detailed description of the oxygen supply and angiogenesis. Paul-Gilloteaux et al. [31]
developed a 2D and 3D cellular automaton that was validated on human prostate tumours transplanted
in mice and then used to generate TCP curves for different radiotherapy protocols. It introduced mitotic
catastrophe instead of instantaneous apoptosis as the main type of cell death after irradiation.

Macroscopic models [16, 86–89], in contrast, describe spatiotemporal changes in tumour cell density
using differential equations at the tissue scale, which makes them susceptible to be validated with clinical
data. However, they have limited integration of cell heterogeneity. Powathil et al. [86] and Rockne et al.
[88] each developed an in silico model which included proliferation of tumour cells and their response to
irradiation. Kohandel et al. [87] proposed another computational model that incorporated hypoxia and
angiogenesis. Belfatto et al. [89] developed an in silico model based on Gompertzian growth and fitted
with uterine cervical cancer CBCT scans. It included oxygenation and a response to irradiation that
considered both its instantaneous effect and its delayed cell killing capability, which may be associated
with mitotic catastrophe.

Hybrid or multiscale models arise to combine the advantages of the 2 previous approaches in a single
framework. Numerous multiscale in silico models of tumour response to radiotherapy already exist in the
literature. Titz et al. [33] developed a model of tumour growth and response to radiation that incorporated
the cell cycle distribution. This allowed to consider phase-dependent radiosensitivity. Espinoza et al. [32]
proposed a voxel-based multiscale model to simulate the radiation response of hypoxic tumours. Pre-
calculated oxygen histograms for each voxel were used to simulate hypoxic-induced angiogenesis and
oxygen-dependent response to irradiation. Apeke et al. [34] developed another in silico model considering
cell cycle distribution at a mesoscopic scale. Realistic static oxygenation maps were obtained from FDG
PET images.

Overall, a large number of in silico mechanistic models combining some of the most important bio-
logical processes characterizing cancer and the response to radiotherapy have already been proposed in
the literature (Table 1.1). However, some of these mechanisms, which may play a major role in tumour
control, have never been included in a single comprehensive model. In particular, no work of the literature
has simultaneously integrated, to our knowledge, dynamic oxygenation, mitotic catastrophe and cell cycle
distribution allowing the simulation of a phase-dependent radiosensitivity for tumour cells.

Several issues are intrinsic to multiscale modelling. Firstly, multiscale models integrate complex ra-
diobiological mechanisms occurring at different spatial and temporal scales (from cell to tissue and from
milliseconds to months, respectively). This constitutes a serious challenge from a mathematical and com-
putational point of view. Simulations must have adapted time-steps and spatial resolutions in order to
capture changes while limiting redundant iterations. They must be synchronised at a reasonable frequency
to be able to reflect the numerous interactions existing among them. Computational libraries like M2SL
(Multi-formalism Modeling and Simulation Library) [44] have been developed to facilitate the integration
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Table 1.1 – Mechanistic in silico models of tumour response from the literature
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of different multiscale processes in the modelling task.
Secondly, hybrid models may contain a large number of parameters. Due to ethical or technical reasons,

some of them are complicated to measure in vivo or even in vitro, which hampers model calibration and
validation.

1.4 Sensitivity analysis

As stated in the previous section, mechanistic models may integrate a large number of parameters. In
the context of cancer and response to radiotherapy, some of them are difficult to measure in vivo or even
in vitro, which complicates model calibration and validation. Although the independent contribution
of different radiobiological mechanisms has been evaluated for some models through TCP or tumour
density curves [31, 32, 39], a thorough study to precisely identify the impact of each parameter has not
been performed yet, to our knowledge, for any of the mechanistic models of the literature.

Sensitivity analysis can be used to study the impact of all the parameters of a model on a given output,
identify the most relevant ones and determine which ones could be negligible [93, 94]. Multiple examples
of sensitivity analysis allowing subsequent parameter identification and model dimension reduction can
be found in the biomedical literature [36–38].

Sensitivity analysis can be defined as the measurement of the effect that variations in the parameters
xxx = [x1, x2, ...xk, ...xK−1, xK ] of a model f(xxx) cause on its outputs yyy = [y1, y2, ...yl, ...yL−1, yL].

Thus, they allow to determine which parameters of a model have the highest impact on a given output,
so that subsequent estimation or observation focus on these most important factors. Morevover, they help
identify which parameters of a model have little effect and can be thus replaced with a simpler definition.

Sensitivity analysis methods consist of the following four steps:
— Definition of parameter ranges: intervals of possible values for every parameter xk of the model

are defined from the literature or empirical observation.
— Generation of value sets within the parameter ranges: it can be performed following a simple

plan (e. g., taking minimum, mean and maximum value combinations from the previously defined
intervals) or using more complex techniques

— Computation of model outputs: the model is evaluated for each set of parameter values
— Computation of sensitivity indices: multiple sensitivity indices allow to quantify or qualify the

impact of parameters on a given output
Existing sensitivity analysis methods can be divided into three groups: local, global and screening

methods.

1.4.1 Local sensitivity analysis

Local methods are the most simple form of sensitivity analysis. They allow to asses the impact of
variations of parameters in a small region of their space. A common approach consist in selecting a working
point xxx(0) = [x(0)

1 , x
(0)
2 , ...x

(0)
k , ...x

(0)
K−1, x

(0)
K ] and evaluating the model at xxx(0) and xxx(i) = [x(0)

1 , x
(0)
2 , ...x

(0)
k +

δ, ...x
(0)
K−1, x

(0)
K ] , where δ is a certain perturbation of parameter xk and i = 1, ..., N , with N , the number

of variations. From yyy(0) = f(xxx(0)) and yyy(i) = f(xxx(i)), the partial derivatives ∂yyy
∂xk

can be estimated,
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normalised and compared.
Local sensitivity analysis may be useful given their simplicity and their reduced number of evaluations

of the model. However, the parameter space is not fully explored, as they do not consider simultaneous
variations of factors. Consequently, these one-at-a-time (OAT) approaches cannot detect interactions
between parameters. Furthermore, they do not allow to identify non-linear effects.

1.4.2 Global sensitivity analysis

As opposed to local approaches, global sensitivity analysis explore variations of parameters in a large
region of interest. The most popular family are variance-based methods. They allow to quantify which
part of the variability of yyy can be attributed to the variability of the parameter xk by means of different
measures, such as the first order or main effect, SI(xk), and the total effect, TSI(xk), indices proposed
by Sobol [95]. SI(xk) (1.1) quantifies the amount of variability on the outputs caused only by parameter
xk. TSI(xk) (1.2) measures the main effect of xk as well as the impact of its interactions with other
parameters.

SI(xk) = σ2 [E(yyy|xk)]
σ2(yyy) (1.1)

TSI(xk) =
E
[
σ2(yyy|xj , j 6= k)

]
σ2(yyy) . (1.2)

The values of both indices belong to [0, 1] and, by definition, SI(xk) ≤ TSI(xk).
SI(xk) and TSI(xk) are highly descriptive. However, they are computationally expensive to calculate

as a great number of evaluations of the model are required.

1.4.3 Screening methods

In contrast to global sensitivity approaches, screening methods do not quantify the sensitivity of the
different uncertain factors. Instead, they provide a qualitative view of the hierarchy of the parameters
of a model with a reduced computational cost. For this reason, they can be used prior to any global
sensitivity analysis or extensive parameter estimation process.

Figure 1.7 – µ∗ vs. σ plane where the three regions of negligible effect, linear effect and non-linear effect
or interactions can be identified
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The most common screening technique is the Morris elementary effects method [96]. A full description
of this approach can be found in section 4.2.3. In brief, the Morris method consists in calculating the mean
µ∗ and the standard deviation σ of the absolute values [97] of the elementary effects of the parameters
of a model. Factors with low µ∗ and σ can be considered negligible, those with high µ∗ and low σ exert
a linear effect on the model output and those with high µ∗ and σ have either a non-linear effect or an
important interaction with other factors.

The Morris method can thus rapidly identify linear relations between the parameters and the outputs
of a model. However, it cannot distinguish between non-linear relations and parameter interactions.
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Chapter 2

MOTIVATIONS AND OBJECTIVES

In this chapter, the motivations and objectives of this work are described. In addition, an overview of
the structure of this thesis is presented.
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2.1 Motivations

As explained in the previous chapter, it is crucial to identify predictors of recurrence for prostate
cancer patients treated with EBRT, in order to adapt the irradiation schedule for individuals with a high
risk of biochemical failure. Dose-effect models [9–11], based on TCP curves, have been used in the past
to predict recurrence. However, they have limited integration of inter-patient heterogeneity. Radiomics
approaches, based on image biomarkers, have emerged in recent years as appealing tools to predict tumour
recurrence and survival [12–14]. However, they have shown, limited performance, they are usually based
on complex machine learning methods, which complicates interpretability, and they need a large amount
of population data.

Mechanistic modelling appears as an alternative approach based on the integration of the different
biological mechanisms underlying the behaviour of biochemical recurrence. Through in silico simulation,
it allows to better comprehend the response of cancer patients to a certain irradiation schedule and its
results are easily explainable. A large number of in silico mechanistic models combining some of the
most important biological processes characterizing cancer and the response to EBRT have already been
proposed in the literature [31–34, 39, 85–88, 90].

In particular, the model of Espinoza et al. [32, 91] integrates a great number of the major radiobio-
logical mechanisms. However, it has not been tested, to our knowledge, on histopathological specimens.
Moreover, the values of the model parameters remain uncertain, as they can widely vary in the literature.
In addition, although the impact of different radiotherapy strategies has been explored [35], its simu-
lation endpoint representing a clinical tumour control after prostate conventional and hypofractionated
irradiation schedules has not been clearly identified.

Furthermore, some of the radiobiological mechanisms which may play a major role in tumour control,
such as mitotic catastrophe and cell cycle distribution allowing the simulation of a phase-dependent ra-
diosensitivity for tumour cells were not included. This issue is applicable to other models of the literature.
To our knowledge, no previous work has simultaneously integrated dynamic oxygenation, mitotic catas-
trophe and cell-cycle-phase-dependent response of tumour cells to irradiation in a single comprehensive
model.

Moreover, although the independent contribution of different radiobiological mechanisms has been
evaluated for some models through TCP or tumour density curves [31, 32, 39], a thorough study to
precisely identify the impact of each parameter has not been performed yet, to our knowledge, for any of
the mechanistic models of the literature.

2.2 Objectives

The objectives of this work were therefore

1. to adapt the model of Espinoza et al. so that it can be initialised with prostate histopathological
specimens

2. to simulate conventional and hypofractionated prostate irradiation schedules using the adaptation
of the model of Espinoza et al.
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3. to develop an original in silico model of tumour growth and response to irradiation, integrating
the main radiobiological mechanisms of the literature in the context of prostate cancer

4. to perform an exhaustive sensitivity analysis of this original comprehensive model

5. to propose a simplified model based on the results of the sensitivity analysis and equivalent in
terms of TCP, tumour cell density and prediction of biochemical recurrence

6. to predict biochemical recurrence after radiotherapy using simulation outputs obtained with the
reduced model and to compare the results with those of a classical radiomics approach

7. to test personalised alternative irradiation schedules using the reduced model.

An overview of the thesis structure is depicted in Fig. 2.1.
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Figure 2.1 – Overview of the thesis structure. In chapter 3, from prostate histopathological specimens,
computational tissues are built and used to initialise simulations of conventional and hypofractionated
treatments using a model of tumour growth and response to EBRT based on Espinoza et al. A local
sensitivity analysis of this model is performed. In chapter 4, an original comprehensive model of tumour
response to radiotherapy is developed. A Morris sensitivity analysis using the histology-based compu-
tational tissues is performed. Based on its results, a reduced version equivalent in terms of TCP and
biochemical recurrence prediction is obtained. In chapter 5, from prostate pre-treatment mpMRI, ra-
diomics features are extracted. Firstly, they are employed to predict biochemical recurrence following a
classical radiomics approach. Secondly, they are used to build analogous computational tissues on which
the prescribed treatments are simulated with the reduced model of tumour response to radiotherapy.
Biochemical recurrence is then predicted using the simulation outputs.
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Chapter 3

ADAPTING AN EXISTING IN SILICO

MODEL OF TUMOUR RESPONSE TO

SIMULATE HYPOFRACTIONATED

TREATMENTS IN THE CONTEXT OF

PROSTATE CANCER

In this chapter, an existing computational model of tumour response to radiotherapy is adapted so that
it can be initialised with prostate histopathological specimens. It is implemented in the programmable
modelling environment Netlogo. A local sensitivity analysis is performed to determine the impact of each
parameter of the model on tumour cell death. The different radiobiological mechanisms implemented in
the model are compared with prostate clinical data from the literature. The response to various irradiation
protocols (conventional and hypofractionated) considering 6 different published values of α and β, are
simulated. Total doses to achieve tumour control close to clinical values are identified.

The content of this chapter will be submitted for publication.
C. Sosa-Marrero, V. Aubert, N. Rioux-Leclercq, R. Mathieu, A. Fautrel, F. Paris, O. Acosta and

R. de Crevoisier. «Simulation of moderate hypofractionated irradiation schedules on prostate histopatho-
logical specimens». (To be submitted)
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Part II, Chapter 3 – Adapting an existing in silico model of tumour response to simulate hypofractionated
treatments in the context of prostate cancer

3.1 Introduction

As previously explained, prostate cancer can be treated with EBRT at a standard fractionation of
2Gy/fraction, with a total dose ranging from 74 Gy to 80 Gy. Moderate hypofractionation protocols (up
to 3.4 Gy/fraction) have been tested [3–8] and recently considered as a full option to irradiate localised
prostate cancer [56]. However, the critical issue of finding the optimal total dose in terms of maximum
tumour control and reduced toxicity remains.

The tumour response to irradiation may appear highly complex due to the wide range of parameters
and mechanisms impacting on tumour cell survival, such as the oxygenation of the tissue [18–20], the
proliferation of tumour cells [21, 23], the intrinsic radiosensitivity, given by the parameter α of the LQM
[41], and the response to fractionation, that can be expressed with the ratio α/β. Computational modelling
emerges as an appealing tool to include all these mechanisms and parameters [31–34, 90].

The model of Espinoza et al. [32] integrates most of the major radiobiological mechanisms of the
literature, namely (i) oxygenation, (ii) proliferation of tumour cells, (iii) hypoxia-induced angiogenesis,
(iv) oxygen-dependent cell survival after irradiation and (v) resorption of dead cells. In addition, it
proposes a multiscale approach in which each voxel contains a fraction of tumour, capillary, normal
and dead cells. This allows, at the same time, to consider heterogeneity at the microscopic level and to
integrate clinical data at the macroscopic scale. Nevertheless, the model of Espinoza et al. has not been
tested, to our knowledge, on histopathological specimens. Moreover, the values of the model parameters
(in particular, α and β) remain uncertain, as they can widely vary in the literature [98–102]. Finally,
although the impact of different radiotherapy strategies has been explored [35], its simulation endpoint
representing a clinical tumour control has not been clearly identified in the context of prostate cancer.

The main purpose of this work was therefore to use the model of Espinoza et al. on histopathological
specimens to simulate the response of prostate tumours to conventional and moderate hypofractionated
radiotherapy and to compare the results with clinical data from the literature. The secondary objectives
were to perform a local sensitivity analysis assessing the impact of the model parameters on tumour
response and to compare the outcome of the model with published prostate in vivo pO2 data.

3.2 Material and methods

3.2.1 Workflow of the study

The workflow of the study is depicted Fig. 3.1 and can be divided in 3 steps:

1. Generation of a computational model of tumour growth and response to radiotherapy based on
the works of Espinoza et al [32]. and using prostate histopathological specimens

2. Local sensitivity analysis assessing the impact of every parameter of the in silico model on tumour
cell survival

3. Comparison of the model with prostate clinical data from the literature, in terms of both pO2 and
recurrence after conventional and moderate hypofractionated schedules
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Figure 3.1 – Workflow of the study. It can be divided in 3 steps (in orange): generation of a model of
prostate tumour growth and response to radiotherapy based on histopathological specimens, the works
of Espinoza et al. and prostate-specific parameter values from the literature; local sensitivity analysis
assessing the impact of the model parameters on tumour cell survival and comparison of the simulation
outcomes with prostate clinical data of the literature (pO2 distributions and recurrence after conventional
and moderate hypofractionated schedules).
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3.2.2 Histopathological delineation, image processing and generation of com-
putational tissues

Histopathological specimens were used to create realistic computational prostate tissues. They were
extracted from 7 patients with localised prostate cancer treated with radical prostatectomy. Each sample
was then sliced by an expert pathologist according to the Stanford protocol. The resulting histology blocks
were embedded in paraffin. Slices were obtained every 0.5 mm using a microtome and a hematoxylin-
eosin-saffron (HES) staining was performed. All the slices were then digitised. A senior uropathologist
manually delineated all tumour foci on the HES axial images and assigned Gleason scores to each focus.
Blood vessels were marked by CD31 antibodies. Three slices with tumour foci were then selected per
patient (a total of 21 analysed slices). The surface of each slice was approximately 2000 µm × 1200 µm.
The Gleason score distribution was the following: Gleason 7 (3+4) (n=8, 38%), Gleason 7 (4+3) (n=5,
24%) and Gleason 8 (n=8, 38%). Images were processed with CellProfiler, a free, open-source software
for quantitative analysis of biological images [103]. A semi-automatic method to extract the position
of endothelial cells and tumour foci was used. The distribution of endothelial cells was extracted from
the CD31 marking, using a threshold on the hue component of the images. The number and position of
tumour cells were extracted from the manual delineation of the uropathologist combined with a threshold
on the blue component of the CD31 images (a high blue value indicating a high density of tumour cells).
The remaining cells extracted from every slice (lymphocytes, fibroblasts, non-tumour glandular cells. . . )
were considered to form a third category of non-tumour cells. This information was then used to create
21 virtual tissues for our computational model developed on the Netlogo software [40], a free multi-agent
programmable modelling environment. Each pixel of the 2D virtual tissues corresponded to a tumour,
non-tumour or endothelial cell (approximately 20 µm × 20 µm).

3.2.3 Description of the model of tumour response to radiotherapy

The model developed in this work was based on the approach proposed by Espinoza et al. [32, 91].
We adapted their model so that it could be apply to prostate histopathological specimens as support
for simulations. Our version integrated the following radiobiological mechanisms: (i) oxygenation, (ii)
proliferation of tumour cells, (iii) oxygen-dependent response to irradiation and (iv) resorption of dead
cells.

Oxygenation

The distribution of oxygen in the model was based on a reaction-diffusion equation (3.1)

∂u(xxx, t)
∂t

= D∆u(xxx, t)− r(u(xxx, t)), (3.1)

where u(xxx, t) is the oxygen concentration; D, the diffusion coefficient and, r(u(xxx, t)), the oxygen con-
sumption modeled by a Michaelis-Menten equation (3.2)

r(u(xxx, t)) = Vmax
u(xxx, t)

u(xxx, t) +KM
, (3.2)
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with Vmax, the maximum oxygen consumption rate and KM , the Michaelis constant. The diffusion was
considered isotropic and homogeneous. The correspondence between the oxygen concentration and the
partial pressure of oxygen, pO2(xxx, t), could be established using the Henry’s law (3.3)

pO2(xxx, t) = KHu(xxx, t), (3.3)

where KH is the Henry’s constant. The pO2 of endothelial cells was fixed at a constant pOcap2 .

Proliferation of tumour cells

The proliferation of tumour cells was considered by multiplying, at every iteration of the simulation,
the number of tumour cells by a proliferation factor PF , given by (3.4)

PF = 2
∆t
tp , (3.4)

where tp is the tumour cell proliferation time and ∆t, the simulation timestep. New tumour cells were
randomly placed adjacent to the existing ones, replacing non-tumour cells.

Oxygen-dependent response to irradiation

We considered only the response to irradiation of tumour cells. Endothelial and non-tumour cells
were supposed completely radioresistant. The survival fraction SF of tumour cells after irradiation was
calculated using the LQM, including the OER as a factor to modulate the SF according to the pO2. The
fate of each tumour cell was determined after every irradiation by (3.5)

SF = exp
(
− α
m

d OER(pO2)− β

m2 d2 OER2(pO2)
)
, (3.5)

where α and β are the intrinsic radiosensitivity parameters of the LQM in normoxic conditions; m, the
maximum value of OER, and d, the dose per fraction. The OER is given by (3.6)

OER(pO2) = m pO2 + k

pO2 + k
, (3.6)

where, k is the oxygen partial tension such that OER = (m + 1)/2. After every irradiation, the SF of
every tumour cell was computed. Next, it was compared with a random number n ∈]0, 1]. If n ≤ SF ,
then the tumour cell in question was considered to survive. Otherwise, it was supposed to be killed by
irradiation.

Resorption of dead cells

Dead cells were resorbed after a certain time. The number of dead cells in the tissue was multiplied at
every iteration of the simulation by (1−RF ), where RF is the resorption fraction of dead cells calculated
with (3.7)

RF = 1− 2
−∆t

tr , (3.7)
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where tr is the dead cell resorption time. After resorption, new non-tumour cells randomly replaced dead
cells.

3.2.4 Local sensitivity analysis

A local sensitivity analysis was performed to assess the effect of the 10 parameters of the model on
tumour cell survival. The impact of the variation of a single parameter xk at a time on the number
of remaining tumour cells after irradiation, Ntum, was quantified by means of the relative sensitivity
coefficient (RSCk) (3.8)

RSCk = RSCmaxk +RSCmink

2 , (3.8)

with RSCmaxk and RSCmink given by (3.9) and (3.10)

RSCmaxk = (Ntum(xmaxkx
max
kx
max
k )−Ntum(xmeanxmeanxmean))xmeank

(xmaxk − xmeank )Ntum(xmeanxmeanxmean) , (3.9)

RSCmink =
(
Ntum(xmeanxmeanxmean)−Ntum(xminkx

min
kx
min
k )

)
xmeank

(xmeank − xmink )Ntum(xmeanxmeanxmean) , (3.10)

where xmink , xmeank and xmaxk correspond, respectively, to the minimal, mean and maximal values
of the tested parameter xk reported in the literature and Ntum, to the number of tumour cells af-
ter simulation considering xminkx

min
kx
min
k = [xmean1 , ..., xmink , ..., xmean10 ], xmeanxmeanxmean = [xmean1 , ..., xmean10 ] or xmaxkx

max
kx
max
k =

[xmean1 , ..., xmaxk , ..., xmean10 ].
An RSCk close to 0 indicates that a variation of the parameter xk has a negligible impact on the

number of tumour cells after irradiation. A positive RSCk suggests that an increase of the parameter
results in a greater value of the endpoint. In contrast, a negative RSCk implies that augmenting xk causes
a decrease of the remaining number of tumour cells.

The analysis was carried out on a single virtual tissue containing 70% of tumour cells, randomly
distributed. For every simulation, a sequence of 10 days of tumour growth followed by 5 fractions of 2 Gy
each (total dose of 10 Gy), delivered every 24 hours was considered. Due to the stochastic component of
the model, 5 repetitions were performed for each combination of parameters (corresponding to a total of
105 simulations). The values of the 10 parameters used in the sensitivity analysis are shown in Table 3.1.

3.2.5 Comparison of the simulation outputs with pO2 in vivo data

In order to study the realism of our model, the outcome of our oxygenation mechanism was compared
with the results of two experiments of the literature in which prostate in vivo pO2 was measured using
Eppendorf microelectrodes: Movsas et al. [119] (6040 measurements from 59 patients) and Parker et
al. [120] (2500 measurements from 55 patients). We studied the mean pO2 values reported in the in
vivo studies and the one obtained after simulations on our 21 virtual tissues, and the corresponding
distributions.
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Table 3.1 – Model parameter values used for the local sensitivity analysis and the comparisons with
clinical data. Stars indicate prostate cancer data.

Local sensitivity analysis Comparisons with clinical data
Parameter

(unit)
xmin xmean xmax Sources Chosen

values
Sources

dvasc (%) 0.3 4.2 8
Our histopathological

specimens*
Tissue

dependent
Our histopathological

specimens*
pOcap

2 (mmHg) 12 42 72 [104] 42 [104]
D (mm2/s) 1.46 · 10−9 1.835 10−9 2.21 10−9 [105–107] 1.8 10−9 [107]

Vmax mmHg/s) 8.3 15.2 22.1 [108–110]* 15 [110]*
KM (mmHg) 0.17 3.035 5.9 [111, 112] 3 [111, 112]

α (Gy−1) 0.02 0.13 0.26 [98, 113]*
0.032, 0.036,
0.041, 0.15
0.25, 0.26

[98–102]*

β (Gy−2) 0.0012 0.0506 0.1 [98, 114, 115]*
0.0229, 0.024,
0.026, 0.0293,
0.048, 0.06

[98–102]*

m 2.7 3 3.3 [116, 117] 3 [116, 117]
k (mmHg) - - - NA 3 [32]
tp (h) 122.4 565.2 1008 [99, 113, 118]* 1008 [113, 118]*
tr (h) 36 234 432 [39] 234 [39]

3.2.6 Comparison of the simulation outputs with conventional and moderate
hypofractionated clinical data

In order to assess the impact of moderate hypofractionated schedules and to identify plausible ra-
diosensitivity parameters, we simulated different fractionations, considering several prostate published
values of α and β on our virtual tissues. Three fractionations were tested, 2, 2.5 and 3 Gy/fraction at 24h
intervals. Six pairs of α and β from the literature (Valdagni et al. [98], Walsh et al. [99], Wang et al. [100],
Miralbell et al. [101] and Brenner et al. [102]) were taken for each irradiation protocol. Values considered
for the other parameters are presented on the right columns of Table 3.1. The experiment was conducted
on the 21 virtual tissues. Five repetitions were performed per slice for each combination of fractionation
and α/β ratio (a total of 1890 simulations). We identified the total dose, at each fractionation and for
each α/β ratio, to eliminate 50%, 80%, 90%, 95%, 99% and 99.9% of tumour cells. Results were compared
with the clinical ranges of total doses reported in the literature [3–8], i.e. between 74 and 80 Gy, 70 and
72 Gy and 57 and 62 Gy, for a 2, 2.5 and 3 Gy fractionation, respectively.

3.3 Results

3.3.1 Characteristics of the histopathological specimens

Each of our 21 virtual tissues was characterised by a tumour and an endothelial cell density. The
tumour cell density ranged from 45 to 85% with a mean value of 67% ±10.8. The endothelial cell density
had a minimal, mean and maximal value of 0.3, 2 ±1.8 and 8%, respectively.
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3.3.2 Local sensitivity analysis

Fig. 3.2 shows the results of the local sensitivity analysis. RSC for the 10 parameters of the model are
presented. They ranged from –1.31 to 0.79. The vascular density, dvasc; α and the pO2 value of endothelial
cells, pOcap2 , had the greatest impact on tumour cell survival. For these three parameters, an RSC lower
than -1 was obtained. The oxygen diffusion coefficient, D; β, the oxygen consumption parameter, KM ,
and the proliferation time of tumour cells, tp, had an RSC between -0.9 and 0.2, which suggested a
moderate impact. Lower tumour cell survival was obtained when these parameters were increased. In
contrast, the oxygenation parameters Vmax and m had positive values. An augmentation of these factors
resulted in higher tumour cell survival to radiotherapy. The resorption time of dead cells, tp presented a
very limited effect on tumour cell response to irradiation.

dvasc α pOcap
2 D Vmax β Km m tp tr

−1.0

−0.5

0.0

0.5

RS
C

Figure 3.2 – Local sensitivity analysis results. RSCk of the 10 parameters of the model in descending
order of importance. Blue bars indicate that an augmentation of the parameter increases the elimination
of tumour cells by irradiation. In contrast, orange bars are used when an increase of the parameter reduces
the elimination of tumour cells.

3.3.3 Comparison of the simulation outputs with pO2in vivo data

The mean pO2 obtained in each virtual tissue after simulation ranged from 0.5 to 16 mmHg, with a
mean value of 3.7±4.0 mmHg over the 21 virtual tissues. This result was in line with pO2 in vivo data
from the literature. Mean values of 2.4 [119] and 4.5 [120] mmHg have been reported on prostate tumour.
For the sake of comparison, a mean pO2 of 30 mmHg has been observed in normal muscle [119]. Mean
pO2 obtained after simulation was linearly correlated with endothelial cell density (R2 = 0.996). Fig. 3.3
presents the distributions of pO2 values observed in vivo [119] and obtained after simulation with our
computational model on the 21 virtual tissues.
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Figure 3.3 – Distribution of pO2 in prostate tumour either reported from in vivo data or simulated with
our model on the 21 virtual tissues. In vivo values from Movsas et al. [119] are represented in green and
simulated values, in orange.

3.3.4 Comparison of the simulation outputs with conventional and moderate
hypofractionated clinical data

Fig. 3.4 presents the total doses needed to eliminate of 50, 80, 90, 95, 99 and 99.9% of tumour cells
considering the different values of the α and β parameters from the literature and 2, 2.5 and 3 Gy
fractionations. Total doses within the clinical ranges were identified when taking the α and β values
proposed by Miralbell et al. [101] (α = 0.041 Gy−1 and β = 0.0293 Gy−2) and eliminating 80% of tumour
cells, when considering the α and β values suggested by Wang et al. [100] (α = 0.15 Gy−1 and β = 0.048
Gy−2) and eliminating 99% of tumour cells, and when using the α and β values reported by Valdagni et
al. [98] and Walsh et al. [99] (α = 0.26 Gy−1 and β = 0.026 Gy−2, and α = 0.25 Gy−1 and β = 0.0625
Gy−2, respectively) and eliminating 99.9% of tumour cells.

3.4 Discussion

In this work, we adapted an existing computational model of tumour growth and response to ra-
diotherapy. Prostate histopathological images were used to initialise simulations of tissue oxygenation,
proliferation of tumour cells, oxygen-dependent response to irradiation and resorption of dead cells. We
determined the impact of each parameter of the model. We compared the outcomes of our model with
prostate clinical data from the literature, in terms of both pO2 and response to various irradiation pro-
tocols (conventional and hypofractionated).

We chose the model of Espinoza et al. [32, 91] since its spatial scale was appropriate for our pur-
poses. Furthermore, it integrated the most relevant biological mechanisms (oxygenation, tumour growth,
response to irradiation based on the LQM and including the oxygen enhancement ratio, and resorption
of dead cells). The use of prostate histopathological specimens as support for simulations and the choice
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Figure 3.4 – Total doses for elimination of (a) 50, (b) 80, (c) 90, (d) 95, (e) 99 and (f) 99.9 % of tumour cells
considering different published values of the α and β parameters (Valdagni et al. [98], Walsh et al. [99],
Wang et al. [100], Miralbell et al. [101] and Brenner et al. [102]) and 2 (green), 2.5 (orange) and 3 (red) Gy
fractionations. Dotted lines indicate the interval of the usual prostate clinical total dose. Simulated total
doses within the clinical ranges are marked with a star. Error bars represent the heterogeneity among
the 21 virtual tissues.

of the Netlogo software to implement the model imposed a 2D architecture.
Vascular density, observed on the histopathological specimens, the intrinsic radiosensitivity factor, α,

and the constant pO2 value of endothelial cells, pOcap2 , were identified as the parameters of the model hav-
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ing the most important effect on tumour cell survival. It can be deduced that tissues with a great number
of endothelial cells supplying high levels of O2 were well-oxygenated and therefore less radioresistant. It
can also be assumed that a high value of the intrinsic radiosentivity parameter α facilitated tumour cell
death due to irradiation. In contrast, the augmentation Vmax and m resulted in an increased tumour
cell survival. Indeed, raising these parameters provoked a higher oxygen consumption. Consequently,
oxygenation levels were lower and cells were, thus, less radiosensitive.

Results of our computational model were compared with prostate in vivo data from the literature.
Previous studies have reported that prostate tumours are hypoxic, with a mean pO2 between 3 and 4.5
mmHg [119, 120]. In silico results belonged to this interval observed experimentally. A great heterogeneity
over the 21 studied tissues was observed. A linear dependence of mean pO2 on vascular density was
reported. In Fig. 3.3, it can be observed our model slightly overestimated and underestimated the number
of pO2 values in the 0 - 5 and 5 - 10 mmHg intervals, respectively. This may be explained by the fact
that, in our computational model, the pO2 of endothelial cells was fixed at 42 mmHg whatever the size
of the vessels. However, we could expect to have a higher pO2 value for large capillaries, which would
result in a slightly better oxygenation of the tissue in question.

Some computational models [31, 32] assume that local tumour control is achieved only if all clonogenic
cells are sterilised by radiation. However, this consideration might prove to be too strict, as the immune
system may be capable of destroying small clusters of tumour cells remaining after irradiation [121]. In
Fig. 3.4, we supposed that different percentages of elimination of tumour cells suffice to avoid recurrence.

This work presents several limitations that will be tackled in the future. Firstly, some biological
mechanisms which may also play an important role in tumour cell elimination were not included in
our model. At the microscopic scale, hypoxia is recognised as inducing angiogenesis [122]. The dynamic
evolution of the vascular system could impact the oxygenation and, consequently, the radiosensitivity of
the whole tissue during simulation. The results of the local sensitivity analysis confirmed this idea. Indeed,
vascular density is the parameter with the greatest influence on tumour elimination. Furthermore, the
cell cycle distribution also has an impact on the response to irradiation. The model proposed by Titz et
al. [92] suggests a way that we are exploring to include this mechanism in the next version of our model.
The integration of mitotic catastrophe [28], instead of instantaneous apoptosis, as the main type of cell
death after irradiation in the model may also affect the response of the virtual tissues to radiotherapy.

In addition, especially due to limitations of the simulation software Netlogo, our model only considered
2D computational tissues. Espinoza et al. [91] observed that 2D and 3D vascular architectures produce
similar oxygenation. However, the other biological mechanisms of the model, like the proliferation of
tumour cells, may behave differently in 2D and 3D simulation environments. A 3D version of the model
will be developed in the future in a more efficient programming language allowing faster simulations.

Furthermore, the RSC calculated in our local sensitivity analysis provided a preliminary view of the
impact of each factor of the model. However, these results must be taken cautiously since this one-at-a-
time approach cannot detect interactions between parameters. A more robust analysis using, for example,
the Morris [96] or Sobol [95] methods will be performed in the future.

Finally, prostate tumours show high heterogeneity among patients, regions of a same patient (some
patients have several tumour foci) and even cells at the microscopic scale. This fact may significantly
affect the response to radiotherapy. Our model can simulate heterogeneity at the microscopic scale (in
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particular, in terms of vascular architecture) and can be calibrated to consider patient heterogeneity on
radiosensitivity. A version of the model that will integrate a more macroscopic approach, especially using
imagery (MRI and CT, corresponding to our histopathological specimens), to improve realism of our
simulation will be developed in the future.

3.5 Conclusion

We were able to adapt an existing computational model of tumour growth and response to radio-
therapy to be initialised with prostate histopathological specimens. A local sensitivity analysis showed
that the vascular density and the intrinsic radiosensitivity parameter α had the most important effect on
tumour cell death. The different biological mechanisms implemented in the model were compared with
prostate in vivo data of the literature. The response to various irradiation protocols (conventional and
hypofractionated) considering different radiosensitivities, given by α and β, were simulated. In silico total
doses to achieve tumour control (defined as the elimination of 99.9% of tumour cells) within the clinical
ranges were obtained when taking α = 0.15 Gy−1, β = 0.048 Gy−2 and, consequently, α/β = 3.1 Gy.
In the future, the model will be improved by expanding it to the macroscopic level and adding other
biological mechanisms and parameters, such as angiogenesis, cell cycle and mitotic catastrophe.

In this chapter, the model of tumour response proposed by Espinoza et al. was adapted so that it
could be used on prostate histopathological specimens. The performed local sensitivity analysis showed
that the vascular density and the intrinsic radiosensitivity parameter α had the most important effects
on the number of tumour cells after irradiation. Oxygen distributions obtained after simulation were
in line with clinical data from the literature. Total doses to achieve tumour control in agreement with
randomised trials of conventional and hypofractionated prostate irradiation schedules were identified.

Nevertheless, this work presents several limitations, mainly due to the implementation of the model
in the simulation software Netlogo. Some radiobiological mechanisms which may play a major role in
tumour control, such as the cell cycle distribution, mitotic catastrophe or angiogenesis resulting in the
reoxygenation of the tissue, were not integrated. In addition, only a 2D configuration could be considered.
Furthermore, the OAT local sensitivity analysis performed in this chapter did not fully explore the
parameter space and appeared insufficient to detect interactions and non-linear effects.

In the next chapter, an original comprehensive model integrating every major radiobiological mech-
anism of the literature, considering both 2D and 3D configurations and implemented in C++ will be
proposed. In addition, a thorough sensitivity analysis using the Morris screening method will be per-
formed.
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Chapter 4

TOWARDS A REDUCED IN SILICO MODEL

PREDICTING BIOCHEMICAL RECURRENCE

AFTER RADIOTHERAPY IN PROSTATE

CANCER

In this chapter, a reduced in silico mechanistic model of tumour response predicting biochemical
recurrence after radiotherapy in prostate cancer is developed and implemented in C++. Firstly, an orig-
inal comprehensive model integrating the main radiobiological of the literature is presented. Then, the
results of an exhaustive sensitivity analysis performed on 21 prostate computational tissues using the
Morris screening method are reported. TCP curves of the comprehensive model and 15 simplified ver-
sions excluding certain mechanisms are compared. Based on the results of the sensitivity analysis and
the TCP curves, a reduced model of tumour response is proposed. Finally, a potential application of
the model as a useful tool in a clinical context is described. Logistic regression is performed to predict
biochemical recurrence after radiotherapy on 76 localised prostate cancer patients considering an output
of the comprehensive and the reduced models. Results are compared with those of a classical radiomics
approach.

The content of this chapter has been published in the international journal IEEE Transactions on
Biomedical Engineering.
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Fautrel, F. Paris and O. Acosta. «Towards a reduced in silico model predicting biochemical recurrence
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4.1 Introduction

A large number of in silico models integrating some of the radiobiological mechanisms characterising
cancer and the response to radiotherapy (in particular, those related to the 5 R’s) have already been
proposed. However, no work of the literature has simultaneously included, to our knowledge, dynamic
oxygenation, mitotic catastrophe and cell cycle distribution allowing the simulation of a phase-dependent
radiosensitivity for tumour cells. Moreover, although the independent contribution of different radiobio-
logical mechanisms has been evaluated for some of the models through TCP or tumour density curves
[31, 32, 39], an exhaustive sensitivity analysis to precisely identify the impact of each radiobiological
parameter has not been performed yet.

The objectives of this work were thus to develop an original comprehensive in silico model of tu-
mour response to radiotherapy integrating the major radiobiological mechanisms, to perform a thorough
sensitivity analysis of the model in order to reduce the number of parameters and propose a more com-
pact version equivalent in terms of TCP and tumour cell density and, finally, to demonstrate its clinical
usefulness in the prediction of biochemical recurrence after prostate cancer radiotherapy.

4.2 Material and methods

4.2.1 Description of the model of tumour response to radiotherapy

General description

The developed in silico model of tumour response to radiotherapy considered either a 2D or a 3D
prostate computational tissue (Fig. 4.4) where each pixel (20 µm × 20 µm) or voxel (20 µm × 20 µm × 20
µm) corresponded to a cell of one of the following 6 types: healthy (fibroblasts, macrophages, epithelial,
smooth muscle, etc.), undamaged or lethally damaged tumour, pre-existing or neo-created endothelial
and dead.

The model integrated the following radiobiological mechanisms, happening at different temporal and
spatial scales: (i) oxygenation of the tissue, (ii) division of tumour cells, (iii) angiogenesis, (iv) division of
healthy cells and (v) response to irradiation. A functional diagram of the model is presented in Fig. 4.1.

Oxygenation (Reoxygenation)

Oxygenation of the tissue was modeled, as in [91], using the reaction-diffusion equation (4.1)

∂u(xxx, t)
∂t

= DO2∆u(xxx, t)− r(u(xxx, t)), (4.1)

where u(xxx, t) is the oxygen concentration; DO2 , the oxygen diffusion coefficient and r(u(xxx, t)), the oxygen
consumption, calculated, for healthy and tumour cells, with the Michaelis-Menten equation (4.2)

r(u(xxx, t)) = V O2
max

u(xxx, t)
u(xxx, t) +KO2

M

(4.2)
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Figure 4.1 – Functional diagram of the model. The different types of simulated cells are represented with
a gray ellipse. The different mechanisms are represented with a rectangle. The same color code as in
Table 4.1 is used. Correspondences to the 5 R’s are indicated in italics. Endothelial cells diffuse O2 (1).
Healthy and tumour cells divide (2) and consume O2 (3). As a result, they may become hypoxic, in which
case they diffuse VEGF (vascular endothelial growth factor) (4), or, if the O2 levels are extremely low,
severely hypoxic, which provokes their death (4’). VEGF is consumed by endothelial cells (5), resulting
in their division (6). Tumour cells irradiated with a dose of 2 Gy per fraction are arrested (7). According
to their intrinsic response to radiation (8), if their DNA can be repaired, they resume their division. If
the damage caused by irradiation is lethal, they die at the next mitosis (mitotic death) (9).

where V O2
max is the maximum oxygen consumption ratio and KO2

M , the Michaelis constant. Dead cells were
considered to consume no oxygen.

Henry’s law states that, at a constant temperature, the amount of gas dissolved in a liquid is propor-
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tional to the partial pressure that the gas applies to the liquid (4.3),

p = KHu, (4.3)

with p, the partial pressure and KH , the Henry’s constant that depends on the gas, the liquid and
the temperature. Using this relationship and redefining KO2

M as KO2
M := KO2

M KH and V O2
max as V O2

max :=
V O2
maxKH , the oxygenation of the tissue could be expressed as a function of the partial pressure of oxygen

(4.4) [91]
∂pO2(xxx, t)

∂t
= DO2∆pO2(xxx, t)− r(pO2(xxx, t)), (4.4)

with r(pO2(xxx, t)) calculated for healthy and tumour cells as (4.5)

r(pO2(xxx, t)) = V O2
max

pO2(xxx, t)
pO2(xxx, t) +KO2

M

. (4.5)

Pre-existing and neo-created endothelial cells were supposed to have fixed pO2 values pOpreEnd2 and
pOneoEnd2 , respectively. The steady state solution was obtained numerically using the finite differences
method (see section 4.2.2 for further details). Healthy and tumour cells having a pO2 lower than a
threshold, pOnec2 , were considered to die instantaneously due to hypoxia.

Division of tumour cells (Repopulation)

The tumour cell cycle was implemented like in the models proposed in [33] and [34]. It had a duration
Ttum and was composed of 4 phases: G1 (gap 1), S (synthesis), G2 (gap 2) and M (mitosis). In our model,
there existed a fifth phase, called G0 and placed out of the cycle, in which cells were quiescent. When an
undamaged tumour cell arrived at the end of its cycle, it divided, replacing a healthy or dead cell of its
Moore neighborhood of order N with a new tumour cell. If there was no adjacent healthy or dead cell,
then it entered the phase G0.

Tumour cells with no available place in their Moore neighbourhood were initialised in phase G0. Tu-
mour cells with at least an available place in their Moore neighbourhood were supposed to be distributed
at the beginning of the simulation according to the following percentages: 60% in phase G1; 25%, in S;
7.5%, in G2 and 7.5%, in M [33].

Angiogenesis (Reoxygenation, repopulation)

The model of angiogenesis was based on the VEGF (vascular endothelial growth factor) diffusion. This
protein, consumed by endothelial cells, is emitted by hypoxic cells to provoke the creation of blood vessels
that satisfy their oxygen needs. The VEGF distribution was assumed to be given by the reaction-diffusion
equation (4.6)

∂v(xxx, t)
∂t

= DV EGF∆v(xxx, t)− r(v(xxx, t)), (4.6)
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whereDV EGF is the diffusion coefficient and r(v(xxx, t)), the VEGF consumption, calculated, for endothelial
cells, with the Michaelis-Menten equation

r(v(xxx, t)) = V V EGFmax

v(xxx, t)
v(xxx, t) +KV EGF

M

, (4.7)

where V V EGFmax is the maximum VEGF consumption ratio and KV EGF
M , the Michaelis constant. Hypoxic

cells (with a pO2 value lower than a given threshold, pOhyp2 ) were supposed to have a fixed v value, vhyp

[39]. The finite differences method was used to obtain the numerical steady state solution (see section 4.2.2
for further details). A cycle duration, Tend, was defined for both pre-existing and neo-created endothelial
cells. If at the end of its cycle, the VEGF concentration of an endothelial cell whose DNA had not been
lethally damaged by irradiation exceeded a predetermined value v̄, the cell in question divided. If not,
it entered the quiescent phase G0, where it remained until a potential augmentation of v(x, t). The new
endothelial cell was placed in the most hypoxic direction [39].

Division of healthy cells

The duration of the healthy cell cycle Theal was defined. When a cell whose DNA had not been
lethally damaged by irradiation arrived at the end of its cycle, it divided, replacing a dead cell of its
Moore neighborhood of order N with a new healthy cell. If there was no adjacent dead cell, then it
entered the phase G0.

Response to irradiation (Redistribution in the cell cycle, radiosensitivity, DNA repair)

The response of every cell to irradiation was modeled as the survival fraction (SF) following the
linear-quadratic equation and adjusted to consider the influence of the pO2 (4.8) [31–33, 39]

SF = exp
(
− α
m
d OER(pO2)− β

m2 d
2OER2(pO2)

)
, (4.8)

where α and β are the radiosensitivity parameters; d, the administered dose per session and OER, the
oxygen enhancement ratio given by (7)

OER(pO2) = m pO2 + k

pO2 + k
, (4.9)

with m, the maximum value of the OER (set to 3 [29]) and k, the partial pressure of oxygen such that
OER = (m + 1)/2 (3 mmHg). The radiosensitivity of tumour cells was supposed to vary throughout
the cycle. Thus, cells were more sensitive in phases G2 and M and more resistant to irradiation in phase
S [27]. Healthy and endothelial cells, significantly more radioresistant, had constant values of α and β

throughout their cycle. Irradiated cells were arrested for a duration Tarrest at checkpoints located in
transitions between phases G1/S and G2/M [31]. Cells lethally damaged by irradiation died by mitotic
catastrophe.
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4.2.2 Implementation of the model

The model was implemented in C++ using the Multiformalism Modeling and Simulation Library
(M2SL) [44]. This in-house library previously developed in other biomedical modelling contexts [123],
allows the integration of different processes arising at different temporal and spatial scales expressed with
various formalisms (algebraic equations, partial differential equations and cell automata). In this work, we
extended its functionalities to 2D and 3D arrays representing virtual tissues and allowing fast simulations
of multiple simultaneous processes.
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Figure 4.2 – Computational tissue Ω and regular mesh X considered to solve PDEs characterising oxy-
genation and the diffusion and consumption of VEGF

Numerical resolution of the PDEs characterising oxygenation and diffusion and consumption
of VEGF

For each computational tissue Ω with boundary ∂Ω and containing Nrow × Ncol square cells of side
h, we considered the discrete function a(xxx) (4.10)

a(xxx) =



0, if healthy

1, if undamaged tumour

2, if lethally damaged tumour

3, if pre-existing endothelial

4, if neo-created endothelial

5, if dead,

(4.10)
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giving the type of every cell. Thus, the following sub-domains could be defined,

Ωheal = {xxx ∈ Ω : a(xxx) = 0},
Ωtum = {xxx ∈ Ω : a(xxx) = 1},
ΩdamTum = {xxx ∈ Ω : a(xxx) = 2},
ΩpreEnd = {xxx ∈ Ω : a(xxx) = 3},
ΩneoEnd = {xxx ∈ Ω : a(xxx) = 4},
Ωdead = {xxx ∈ Ω : a(xxx) = 5},
Ωend = ΩpreEnd ∪ ΩneoEnd,
ΩnonEnd = Ω\Ωend.

Oxygenation of the tissue is given by the following PDE system (4.11)

∂pO2(xxx,t)
∂t = DO2∆pO2(xxx, t)− r(pO2(xxx, t)), ∀xxx ∈ ΩnonEnd, t > 0

r(pO2(xxx, t)) = V O2
max

pO2(xxx,t)
pO2(xxx,t)+KO2

M

, ∀xxx ∈ Ωheal ∪ Ωtum ∪ ΩdamTum, t ≥ 0

r(pO2(xxx, t)) = 0, ∀xxx ∈ Ωdead, t ≥ 0

pO2(xxx, 0) = 0, ∀xxx ∈ ΩnonEnd

pO2(xxx, t) = pOpreEnd2 , ∀xxx ∈ ΩpreEnd, t ≥ 0

pO2(xxx, t) = pOneoEnd2 , ∀xxx ∈ ΩneoEnd, t ≥ 0

∇pO2(xxx, t) ·nnn = 0, ∀xxx ∈ ∂Ω, t > 0.

(4.11)

It was solved using the finite differences method. For this purpose, we defined a regular mesh X, in
which each point x(i,j)x(i,j)x(i,j), i = 0, ..., Nrow − 1, j = 0, ..., Ncol − 1 corresponded to the center of a cell of the
computational tissue (Fig. 4.2).

The following subsets were considered

Xheal = {x(i,j)x(i,j)x(i,j) ∈ Ωheal},
Xtum = {x(i,j)x(i,j)x(i,j) ∈ Ωtum},
XdamTum = {x(i,j)x(i,j)x(i,j) ∈ ΩdamTum},
XpreEnd = {x(i,j)x(i,j)x(i,j) ∈ ΩpreEnd},
XneoEnd = {x(i,j)x(i,j)x(i,j) ∈ ΩneoEnd},
Xdead = {x(i,j)x(i,j)x(i,j) ∈ Ωdead},
Xend = {x(i,j)x(i,j)x(i,j) ∈ Ωend},
XnonEnd = {x(i,j)x(i,j)x(i,j) ∈ ΩnonEnd}.

At each point of the mesh x(i,j)x(i,j)x(i,j), the nth iteration of the pO2 was therefore given by (4.12)
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pO2
(0)
(i,j) = 0, ∀i, j : x(i,j)x(i,j)x(i,j) ∈ XnonEnd

pO2
(n)
(i,j) = pOpreEnd2 , ∀i, j : x(i,j)x(i,j)x(i,j) ∈ XpreEnd, ∀n ≥ 0

pO2
(n)
(i,j) = pOneoEnd2 , ∀i, j : x(i,j)x(i,j)x(i,j) ∈ XneoEnd, ∀n ≥ 0

pO2
(n)
(i,j) = pO2

(n−1)
(i,j) + ∆t

(
DO2

h2

(
pO2

(n−1)
(i−1,j) + pO2

(n−1)
(i,j−1) − 4pO2

(n−1)
(i,j) + pO2

(n−1)
(i,j+1) + pO2

(n−1)
(i+1,j)

)
−r(pO2

(n−1)
(i,j) )

)
, ∀i, j : x(i,j)x(i,j)x(i,j) ∈ XnonEnd, 0 < i < Nrow − 1, 0 < j < Ncol − 1, ∀n > 0

pO2
(n)
(0,j) = pO2

(n−1)
(0,j) + ∆t

(
DO2

h2

(
pO2

(n−1)
(0,j−1) − 3pO2

(n−1)
(0,j) + pO2

(n−1)
(0,j+1) + pO2

(n−1)
(1,j)

)
−r(pO2

(n−1)
(0,j) )

)
, ∀j : x(0,j)x(0,j)x(0,j) ∈ XnonEnd, j = 1, ..., Ncol − 2, ∀n > 0

pO2
(n)
(Nrow−1,j) = pO2

(n−1)
(Nrow−1,j) + ∆t

(
DO2

h2

(
pO2

(n−1)
(Nrow−2,j) + pO2

(n−1)
(Nrow−1,j−1) − 3pO2

(n−1)
(Nrow−1,j)

+pO2
(n−1)
(Nrow−1,j+1)

)
− r(pO2

(n−1)
(Nrow−1,j))

)
,

∀j : x(Nrow−1,j)x(Nrow−1,j)x(Nrow−1,j) ∈ XnonEnd, j = 1, ..., Ncol − 2, ∀n > 0

pO2
(n)
(i,0) = pO2

(n−1)
(i,0) + ∆t

(
DO2

h2

(
pO2

(n−1)
(i−1,0) − 3pO2

(n−1)
(i,0) + pO2

(n−1)
(i,1) + pO2

(n−1)
(i+1,0)

)
−r(pO2

(n−1)
(i,0) )

)
, ∀i : x(i,0)x(i,0)x(i,0) ∈ XnonEnd, i = 1, ..., Nrow − 2, ∀n > 0

pO2
(n)
(i,Ncol−1) = pO2

(n−1)
(i,Ncol−1) + ∆t

(
DO2

h2

(
pO2

(n−1)
(i−1,Ncol−1) + pO2

(n−1)
(i,Ncol−2) − 3pO2

(n−1)
(i,Ncol−1)

+pO2
(n−1)
(i+1,Ncol−1)

)
− r(pO2

(n−1)
(i,Ncol−1))

)
,

∀i : x(i,Ncol−1)x(i,Ncol−1)x(i,Ncol−1) ∈ XnonEnd, i = 1, ..., Nrow − 2, ∀n > 0

pO2
(n)
(0,0) = pO2

(n−1)
(0,0) + ∆t

(
DO2

h2

(
−2pO2

(n−1)
(0,0) + pO2

(n−1)
(0,1) + pO2

(n−1)
(1,0)

)
− r(pO2

(n−1)
(0,0) )

)
,

if x(0,0)x(0,0)x(0,0) ∈ XnonEnd, ∀n > 0

pO2
(n)
(0,Ncol−1) = pO2

(n−1)
(0,Ncol−1)∆t

(
DO2

h2

(
pO2

(n−1)
(0,Ncol−2) − 2pO2

(n−1)
(0,Ncol−1) + pO2

(n−1)
(1,Ncol−1)

)
−r(pO2

(n−1)
(0,Ncol−1))

)
, if x(0,Ncol−1)x(0,Ncol−1)x(0,Ncol−1) ∈ XnonEnd, ∀n > 0

pO2
(n)
(Nrow−1,0) = pO2

(n−1)
(Nrow−1,0) + ∆t

(
DO2

h2

(
pO2

(n−1)
(Nrow−2,0) − 2pO2

(n−1)
(Nrow−1,0) + pO2

(n−1)
(Nrow−1,1)

)
−r(pO2

(n−1)
(Nrow−1,0))

)
, if x(Nrow−1,0)x(Nrow−1,0)x(Nrow−1,0) ∈ XnonEnd, ∀n > 0

pO2
(n)
(Nrow−1,Ncol−1) = pO2

(n−1)
(Nrow−1,Ncol−1)∆t

(
DO2

h2

(
pO2

(n−1)
(Nrow−2,Ncol−1) + pO2

(n−1)
(Nrow−1,Ncol−2)

−2pO2
(n−1)
(Nrow−1,Ncol−1)

)
− r(pO2

(n−1)
(Nrow−1,Ncol−1))

)
,

if x(Nrow−1,Ncol−1)x(Nrow−1,Ncol−1)x(Nrow−1,Ncol−1) ∈ XnonEnd, ∀n > 0
(4.12)
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r(pO2
(n)
(i,j)) = V O2

max

pO2
(n)
(i,j)

pO2
(n)
(i,j) +KO2

M

, ∀i, j : x(i,j)x(i,j)x(i,j) ∈ Xheal ∪Xtum ∪XdamTum, ∀n ≥ 0

r(pO2
(n)
(i,j)) = 0, ∀i, j : x(i,j)x(i,j)x(i,j) ∈ Xdead, ∀n ≥ 0.

A time-step of ∆t = 10 ms was taken. This value ensured the convergence of the algorithm.

The diffusion and consumption of VEGF is given by the PDE system (4.13)

∂v(xxx,t)
∂t = DV EGF∆v(xxx, t)− r(v(xxx, t)), ∀xxx ∈ ΩnonHyp, t > 0

r(v(xxx, t)) = V V EGFmax
v(xxx,t)

v(xxx,t)+KV EGF
M

, ∀xxx ∈ Ωend, t ≥ 0

r(v(xxx, t)) = 0, ∀xxx ∈ ΩnonEnd ∩ ΩnonHyp, t ≥ 0

v(xxx, 0) = 0, ∀xxx ∈ ΩnonHyp

v(xxx, t) = vhyp, ∀xxx ∈ Ωhyp, t ≥ 0

∇v(xxx, t) ·nnn = 0, ∀xxx ∈ ∂Ω, t > 0,

(4.13)

with Ωhyp and ΩnonHyp defined as

Ωhyp = {xxx ∈ Ωheal ∪ Ωtum ∪ ΩdamTum : pO2(xxx, t) < pOhyp2 },
ΩnonHyp = Ω\Ωhyp.

As for the case of oxygenation, the finite differences method was used to solve (4.13). The same mesh
(Fig. 4.2) and time-step were considered and the following subsets were defined

Xhyp = {x(i,j)x(i,j)x(i,j) ∈ Ωhyp},
XnonHyp = {x(i,j)x(i,j)x(i,j) ∈ ΩnonHyp}.

The nth iteration of the VEGF concentration v was thus calculated at each point of the mesh x(i,j)x(i,j)x(i,j)

using (4.14)

v
(0)
(i,j) = 0, ∀i, j : x(i,j)x(i,j)x(i,j) ∈ XnonHyp

v
(n)
(i,j) = vhyp, ∀i, j : x(i,j)x(i,j)x(i,j) ∈ Xhyp, ∀n ≥ 0

v
(n)
(i,j) = v

(n−1)
(i,j) + ∆t

(
DV EGF

h2

(
v

(n−1)
(i−1,j) + v

(n−1)
(i,j−1) − 4v(n−1)

(i,j) + v
(n−1)
(i,j+1) + v

(n−1)
(i+1,j)

)
− r(v(n−1)

(i,j) )
)
,

∀i, j : x(i,j)x(i,j)x(i,j) ∈ XnonHyp, 0 < i < Nrow − 1, 0 < j < Ncol − 1, ∀n > 0

v
(n)
(0,j) = v

(n−1)
(0,j) + ∆t

(
DV EGF

h2

(
v

(n−1)
(0,j−1) − 3v(n−1)

(0,j) + v
(n−1)
(0,j+1) + v

(n−1)
(1,j)

)
− r(v(n−1)

(0,j) )
)
,

∀j : x(0,j)x(0,j)x(0,j) ∈ XnonHyp, j = 1, ..., Ncol − 2, ∀n > 0
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v
(n)
(Nrow−1,j) = v

(n−1)
(Nrow−1,j) + ∆t

(
DV EGF

h2

(
v

(n−1)
(Nrow−2,j) + v

(n−1)
(Nrow−1,j−1) − 3v(n−1)

(Nrow−1,j)

+v(n−1)
(Nrow−1,j+1)

)
− r(v(n−1)

(Nrow−1,j))
)
∀j : x(Nrow−1,j)x(Nrow−1,j)x(Nrow−1,j),∈ XnonHyp, j = 1, ..., Ncol − 2, ∀n > 0

v
(n)
(i,0) = v

(n−1)
(i,0) + ∆t

(
DV EGF

h2

(
v

(n−1)
(i−1,0) − 3v(n−1)

(i,0) + v
(n−1)
(i,1) + v

(n−1)
(i+1,0)

)
− r(v(n−1)

(i,0) )
)
,

∀i : x(i,0)x(i,0)x(i,0) ∈ XnonHyp, i = 1, ..., Nrow − 2, ∀n > 0

v
(n)
(i,Ncol−1) = v

(n−1)
(i,Ncol−1) + ∆t

(
DV EGF

h2

(
v

(n−1)
(i−1,Ncol−1) + v

(n−1)
(i,Ncol−2) − 3v(n−1)

(i,Ncol−1) + v
(n−1)
(i+1,Ncol−1)

)
−r(v(n−1)

(i,Ncol−1))
)
, ∀i : x(i,Ncol−1)x(i,Ncol−1)x(i,Ncol−1) ∈ XnonHyp, i = 1, ..., Nrow − 2, ∀n > 0

v
(n)
(0,0) = v

(n−1)
(0,0) + ∆t

(
DV EGF

h2

(
−2v(n−1)

(0,0) + v
(n−1)
(0,1) + v

(n−1)
(1,0)

)
− r(v(n−1)

(0,0) )
)
,

if x(0,0)x(0,0)x(0,0) ∈ XnonHyp, ∀n > 0

v
(n)
(0,Ncol−1) = v

(n−1)
(0,Ncol−1) + ∆t

(
DV EGF

h2

(
v

(n−1)
(0,Ncol−2) − 2v(n−1)

(0,Ncol−1) + v
(n−1)
(1,Ncol−1)

)
− r(v(n−1)

(0,Ncol−1))
)
,

if x(0,Ncol−1)x(0,Ncol−1)x(0,Ncol−1) ∈ XnonHyp, ∀n > 0

v
(n)
(Nrow−1,0) = v

(n−1)
(Nrow−1,0) + ∆t

(
DV EGF

h2

(
v

(n−1)
(Nrow−2,0) − 2v(n−1)

(Nrow−1,0) + v
(n−1)
(Nrow−1,1)

)
−r(v(n−1)

(Nrow−1,0))
)
, if x(Nrow−1,0)x(Nrow−1,0)x(Nrow−1,0) ∈ XnonHyp, ∀n > 0

v
(n)
(Nrow−1,Ncol−1) = v

(n−1)
(Nrow−1,Ncol−1) + ∆t

(
DV EGF

h2

(
v

(n−1)
(Nrow−2,Ncol−1) + v

(n−1)
(Nrow−1,Ncol−2)

−2v(n−1)
(Nrow−1,Ncol−1)

)
− r(v(n−1)

(Nrow−1,Ncol−1))
)
, if x(Nrow−1,Ncol−1)x(Nrow−1,Ncol−1)x(Nrow−1,Ncol−1) ∈ XnonHyp, ∀n > 0

r(v(n)
(i,j)) = V V EGFmax

v
(n)
(i,j)

v
(n)
(i,j)+K

V EGF
M

, ∀i, j : x(i,j)x(i,j)x(i,j) ∈ Xend, ∀n ≥ 0

r(v(n)
(i,j)) = 0, ∀i, j : x(i,j)x(i,j)x(i,j) ∈ XnonEnd ∩XnonHyp, ∀n ≥ 0.

(4.14)

Simulation sequence

M2SL provided the tools necessary for handling multi-scale simulations with different time-steps
∆t. Oxygenation and diffusion and consumption of VEGF (fast mechanisms) were simulated considering
∆tfast = 10 ms. For the division of tumour, healthy and endothelial cells and their response to irradiation
(slow mechanisms), ∆tslow = 6 h was taken. Results from both simulations were coupled every 6 h (∆tcoup
= 6 h).

In deep, the following simulation sequence was considered (Fig. 4.3). A 2D array representing a
computational tissue in which each element (pixel) corresponded to a cell was built. Firstly, based on the
initial cell type map (giving the distribution of tumour, healthy and endothelial cells), oxygenation and
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∆𝒕𝒔𝒍𝒐𝒘 = ∆𝒕𝒄𝒐𝒖𝒑 = 6 h

∆𝒕𝒇𝒂𝒔𝒕

= 
10 ms

Oxygenation Diffusion and consumption of VEGF

Division of tumor 
cells

Division of 
endothelial cells

Division of healthy cells

Response to irradiation

𝒑𝑶𝟐 map

VEGF concentration 
map

Cell type 
map

Fast mechanisms

Slow mechanisms

Cell type 
map

Figure 4.3 – Simulation sequence

diffusion and consumption of VEGF (fast mechanisms) were simulated with a time-step of 10 ms until
finding steady values of pO2 and VEGF concentration for every cell of the tissue. Secondly, considering the
obtained pO2 and VEGF concentration maps and the initial cell type distribution, a single iteration (6 h)
of the division of tumour, healthy and endothelial cells and their response to irradiation (slow mechanisms)
was simulated. Results were then coupled with those of the simulation of the fast mechanisms.

Subsequently, oxygenation and diffusion and consumption of VEGF were resimulated considering the
updated cell type map, which could contain new endothelial cells providing O2 or healthy, tumour and
dead cells impacting on its consumption. Once the steady state had been reached for every cell of the
tissue, a new iteration of the slow mechanisms was simulated considering the updated pO2 and VEGF
concentration maps. These latter two steps were repeated until the end of the simulation.

4.2.3 Morris screening method

The Morris screening method [96] offers an overall view of the influence of the parameters xxx =
[x1, ..., xK ] of a model y = f(xxx) on its outputs yyy = [y1, .., yL] with a low computational cost. Additionally,
it provides information about the nature of the impact (linear or non-linear or having interactions with
other parameters). It explores a K-dimensional cube regularly divided in p levels. In this space, for an
output yl, N elementary effects, given by (4.15) are calculated for each factor xi. A clever experimental
plan taking ∆, the discrete variation of the parameter, equal to p

2(p−1) with p even, is used. It requires,
in total, N(K + 1) evaluations of the model.

EEi = f(x1, ..., xi, ..., xK)− f(x1, ..., xi + ∆, ..., xK)
∆ . (4.15)
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Figure 4.4 – Example of a 40 × 2 Gy treatment on a synthetic tissue. Tumour density at (a) the beginning
of the simulation (t = 0 weeks); (b) the end of a 40 × 2 Gy treatment (t = 8 weeks) and (c) t = 12 weeks
after the beginning of the treatment; (d) evolution of tumour density (the integral of tumour density can
be deduced); corresponding distribution of tumour cells in the cycle at (e) t = 0 weeks, (f) t = 8 weeks
and (g) t = 12 weeks; (h) evolution of the distribution of tumour cells in the cycle; pO2 map at (i) t
= 0 weeks; (j) t = 8 weeks and (k) t = 12 weeks; (l) evolution of the median pO2 of the tissue; VEGF
concentration map at (m) t = 0 weeks; (n) t = 8 weeks and (o) t = 12 weeks and (p) evolution of the
median VEGF concentration of the tissue.
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The mean and standard deviation (µ∗
i ± σi) over the absolute values [97] of the elementary effects are

computed for each parameter. The Euclidean distance of each point (µ∗
i , σi) to the origin, Si =

√
µ∗2
i + σ2

i ,
can be calculated as an indicator of the impact of the parameter in question [37]. The prostate-specific
ranges presented in Table 4.1 were considered for theK = 33 parameters of the model. They were obtained
calculating, respectively, 0.7 and 1.3 of the minimum Pmin and maximum Pmax values extracted from
the literature or our radiobiological expertise. Ranges of the angiogenesis parameters were based on the
global results of our previous study of vasculature in orthotopic mouse prostate cancer [124].

4.2.4 Tumour control probability curves

Tumour control probability (TCP) curves, typically used in clinical trials [121, 127], were generated
as virtual endpoints in the simulations. A tumour was supposed to be controlled when the computational
tissue did not contain any undamaged tumour cell [31, 39]. Using this definition, TCP curves can be
fitted by the sigmoid function (4.16)

TCP (D) = 1
1 + exp(−a(D − b)) , (4.16)

where D is the total dose; a, the tangent at the inflection point and b, its shift. It can be noticed that a
value of D equal to b leads to a TCP of 50% (TCP50). Thus, b can be interpreted as the dose necessary
to have a tumour control probability of 50% (TCD50).

4.2.5 Simplification of the model

Based on the results of the sensitivity analysis, the initial comprehensive model was contrasted,
through TCP curves, with simplified versions where different mechanisms or sub-mechanisms were pro-
gressively removed. Firstly, the complete model was compared with 4 reduced versions that did not
consider angiogenesis, healthy cell division, cycle arrest or the response to irradiation of healthy and
endothelial cells. Then, the differences between the comprehensive model and simplified versions that did
not include 2-and-3-element combinations of these mechanisms were studied. Finally, the complete model
was contrasted with a reduced version that integrated neither angiogenesis, nor healthy cell division nor
cycle arrest, nor the response to irradiation of healthy and endothelial cells.

4.2.6 Initialisation of the model from prostate histological cuts

In order to perform simulations on realistic configurations of tumour and vascular cells, HES and
CD31 prostate histological cuts from 7 patients treated with radical prostatectomy were used to initialise
the model for the sensitivity analysis and the simplification experiments. Tumour foci were delineated on
the HES axial slides (Fig. 4.5a) and a CD31 staining (Fig. 4.5b) was carried out to identify the blood
vessels. Twenty-one regions of interest (ROI) of approximately 2 mm × 1.2 mm (100 pixels × 60 pixels)
were selected from the tumour foci to create 21 initial computational tissues with different tumour and
vascular densities. An example of ROI and the corresponding virtual tissue are presented in Fig. 4.5c and
d, respectively.
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Table 4.1 – Ranges and reference values of the 33 parameters of the comprehensive model, classified by
radiobiological mechanism

Oxygenation
Factor Range Reference value

pOnec
2 (mmHg) 0 - 1.3 [31, 33] 0.7

DO2 (µm2/ms) 1.02 - 2.87 [91] 1.84
V

O2
max (mmHg/ms) 0.006 - 0.029 [91] 0.015
K

O2
M

(mmHg) 0.119 - 7.67 [91] 3.04
pOpreEnd

2 (mmHg) 8.4 - 93.6 [104] 42
pOneoEnd

2 (mmHg) 8.4 - 93.6 [104] 42

(a)

Division of tumour cells
Factor Range Reference value
Ttum (h) 85 - 1310 [32, 118] 565

N 1 - 3 [31] 1

(b)

Angiogenesis
Factor Range Reference value
Tend (h) 1680 - 3120 2400

DV EGF (µm2/ms) 1.4 - 2.6 2
V V EGF

max (mol/µm2ms) 0.005 - 0.007 0.006
KV EGF

M (mol/µm2) 1.75 - 3.25 2.5
pOhyp

2 (mmHg) 3.5 - 6.5 [31] 5
v̄ (mol/µm2) 10.5 - 19.5 15

vhyp (mol/µm2) 14 - 26 20

(c)

Division of healthy cells
Factor Range Reference value
Theal (h) 171 - 2620 1130

(d)

Response to irradiation
Factor Range Reference value

αheal (Gy−1) 7 · 10−4 - 1.3 · 10−3 0.001
α/βheal (Gy) 0.7 - 13 5.5
αtumG1 (Gy−1) 0.024 - 0.356 [125, 126] 0.154
α/βtumG1 (Gy) 0.7 - 13 [125, 126] 5.5
αtumS (Gy−1) 0.017 - 0.256 [125, 126] 0.111
α/βtumS (Gy) 0.7 - 13 [125, 126] 5.5
αtumG2 (Gy−1) 0.025 - 0.381 [125, 126] 0.165
α/βG2 (Gy) 0.7 - 13 [125, 126] 5.5

αtumM (Gy−1) 0.028 - 0.425 [125, 126] 0.184
α/βtumM (Gy) 0.7 - 13 [125, 126] 5.5
αtumG0 (Gy−1) 0.105 - 0.195 [125, 126] 0.15
α/βtumG0 (Gy) 0.7 - 13 [125, 126] 5.5
αpreEnd (Gy−1) 7 · 10−4 - 1.3 · 10−3 [31] 0.001
α/βpreEnd (Gy) 0.7 - 13 [31] 5.5
αneoEnd (Gy−1) 7 · 10−4 - 1.3 · 10−3 [31] 0.001
α/βneoEnd (Gy) 0.7 - 13 [31] 5.5
Tarrest (h) 4.2 - 39 18

(e)
Parameters ranges, used for the sensitivity analysis, were extracted from the literature and our radiobiological expertise.

Reference values were defined as intermediate values within the ranges.
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(a) (b)

(c) (d)

Figure 4.5 – Example of (a) HES staining of a prostate histological cut with tumour focus delineated
by an anatomopathologist; (b) corresponding CD31 staining; (c) CD31 staining region of interest where
vessels can be identified in brown and (d) initial computational tissue, where healthy cells are represented
in white; undamaged tumour, in light blue and pre-existing endothelial, in red.

4.2.7 Validation of the model. Biochemical recurrence prediction

A first clinical validation of both the comprehensive and the reduced model in terms of biochemical
recurrence prediction was performed. A cohort of 76 localised prostate cancer patients having undergone
EBRT [12] was used for this purpose. Patient, tumour and treatment characteristics are presented in
Supplementary Table I. Patients were followed up by means of clinical examination and PSA analysis
every 6 months for 5 years after the end of irradiation. Nine patients suffered biochemical recurrence,
defined according to the Phoenix criteria [128]. Our IRB approved this retrospective study.

The logistic model (stratified 3-fold cross-validation, 1000 repetitions) was used to predict biochemical
recurrence. A first prediction was made from 3 pre-treatment imaging parameters, namely maximal
tumour area and average ADC and T2w, obtained from 3.0 T MRI.

Biochemical recurrence was then predicted using the tumour area at t = 8 weeks output given by
the comprehensive and reduced in silico models. For this purpose, 76 virtual tissues analogous to the
76 patients of the cohort were built from their respective average ADC and T2w values, correlated
with cell density [129], and maximal tumour areas observed before treatment. The radiotherapy protocol
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administered to each patient of the cohort (a total dose of 74 - 80 Gy delivered in 2 Gy fractions from
Monday to Friday) was then simulated on the corresponding virtual tissue. Reference values given in
Table 4.1 were taken for every parameter except for the highly influential hypoxic death threshold pOnec2 ,
for which a low value was fixed. An initial vascular density of 3.8% [31], within the ranged observed in our
histological cuts, was considered for every virtual tissue. Endothelial cells were supposed to be randomly
distributed forming a poorly-vascularised tumour core. Given the stochastic component of the model,
each simulation was repeated 5 times and the mean output value was taken.

4.3 Results

4.3.1 Integrative model of tumour response to radiotherapy

As a proof of concept, a 40 × 2 Gy treatment, typically applied in prostate cancer, was tested on a
synthetic tissue. Results are presented in Fig. 4.4. Tumour density, cell cycle, pO2(x, t) and v(x, t) maps
at the beginning of the simulation (t = 0 weeks), t = 8 weeks (end of the treatment) and t = 12 weeks
are shown. Curves of tumour density, cell cycle distribution and median pO2 and v evolution through
time are also presented.

4.3.2 Sensitivity analysis

The sensitivity analysis using the Morris method was performed on the 21 computational tissues
obtained from the prostate histological cuts, considering a treatment of 40 × 2 Gy, administered every
24 h from Monday to Friday. The tumour density 12 weeks after the beginning of the treatment and
its integral over time were used as endpoints. The value of ∆, considering p = 20, was normalised for
each parameter as ∆

1.3Pmax−0.7Pmin . In order to ensure convergence, N = 100 was taken. A total of
21 × 100 × (33 + 1) = 71400 simulations were thus performed. The Euclidean distances Si of the 33
parameters of the complete model for the 2 outputs considered are presented in Fig. 4.6.

The duration of the tumour cell cycle, Ttum, and the radiosensitivity parameter of tumour cells in the
phase G1, αtumG1, were identified as the factors having the highest impact on the tumour density at t =
12 weeks (Fig. 4.6a). Other radiosensitivity parameters of tumour cells (αtumG2, α/βtumG1, αtumM and
αtumS) and oxygenation factors, like pOnec2 , KO2

M , pOpreEnd2 and V O2
max, had a considerable impact on this

output as well.
Ttum was also the most influential parameter on the integral of tumour density (Fig. 4.6b). The

hypoxic death threshold, pOnec2 , had the second most important effect. Other factors of the oxygenation
mechanism, like pOpreEnd2 , V O2

max, KO2
M and DO2 and the radiosensitivity parameters of tumour cells,

especially those of the phase G1, also had a significant impact on the integral of tumour density.
In contrast, these results suggest that parameters associated with angiogenesis (in red), the division

of healthy cells (in orange) and the response to irradiation of healthy and endothelial cells (in purple)
were negligible for both the tumour density at t = 12 weeks and the integral of tumour density endpoints.

The impact of parameters located to the right of the dashed lines in Fig. 4.6 was indistinguishable
from the uncertainty due to the stochastic nature of the model.
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Figure 4.6 – Sensitivity analysis results. Euclidean distances to the origin, Si, of the 33 parameters in
descending order of importance taking as output: (a) the tumour density at t = 12 weeks and (b) the
integral of tumour density. Twenty-ones computational tissues obtained from prostate histological cuts
of 7 patients were used for this analysis. Error bars represent the heterogeneity of Si among the different
tissues. The same color code as in Table 4.1 is used. The effect of parameters to the right of the dashed
lines is indistinguishable from the uncertainty caused by the intrinsic stochastic component of the model
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Figure 4.7 – TCP curves considering different values of (a) Ttum, (b) αtumG1, (c) αtumG2 and (d) pOnec2 ,
identified with a red star as the most important parameters in Fig. 4.6. A 2 Gy fractionation from Monday
to Friday was used for every simulation. Six equidistant values within the ranges presented in Table 4.1
were considered for each studied factor. Reference values defined in the same table were used for the
other parameters. A total of 210 simulations (10 repetitions × 21 computational tissues) were performed
to build each TCP curve.

To better illustrate the impact of the most important parameters of the model, TCP curves are
presented in Fig. 4.7 for 6 different values of Ttum, αtumG1, αtumG2 and pOnec2 within the ranges specified
in Table 4.1. Reference values indicated in the same table were taken for the constant parameters. A 2
Gy fractionation administered every 24 h from Monday to Friday was considered. The experiment was
repeated 10 times for each of the 21 computational tissues (a total of 210 simulations per curve).

It can be noticed that a small value of Ttum (85 h) complicated tumour control. There seemed to
be no major variation between TCP curves for the other values of Ttum (Fig. 4.7a). Tumour control
probabilities increased with the radiosensitivity parameters of tumour cells in phases G2, αtumG2, and
especially G1, αtumG1, (Fig. 4.7c and b, respectively). Finally, the threshold of hypoxic death pOnec2 (Fig.
4.7d) also had a significant effect on the TCP curves. Low values of this parameter, especially 0 mmHg
(no hypoxic death at all), considerably complicated tumour control.
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Figure 4.8 – TCP curves excluding (a) one and (b) 4 mechanisms or sub-mechanisms. A 2 Gy fractionation
from Monday to Friday was simulated. The reference parameter values presented in Table 4.1 were
considered. A total of 210 simulations (10 repetitions × 21 computational tissues) were performed to
build each TCP curve. The same color code as in Table 4.1 is used.

4.3.3 Simplification of the model

The TCP curves obtained for the comprehensive model and the reduced versions are presented in Fig.
4.8. The reference parameter values presented in Table 4.1 and a 2 Gy fractionation were used for every
repetition. As in Fig. 4.7, each TCP curve was built from 21 × 10 = 210 simulations.

The exclusion of angiogenesis from the model slightly complicated tumour control, whereas somewhat
higher TCP values were obtained when the division of healthy cells was not considered. There seemed
to be no major difference when the cycle arrest or the response to irradiation of healthy and endothelial
cells were not included in the model (Fig. 4.8a).

The TCP curve obtained when angiogenesis, healthy cell division, cycle arrest and the response
to irradiation of healthy and endothelial cells were simultaneously excluded is shown in Fig. 4.8b. No
significant difference with respect to the reference TCP curve could be observed. It can be thus concluded
that a simplified version of the model which considers neither angiogenesis nor healthy cell division nor
cycle arrest nor the response to irradiation of healthy and endothelial cells (Fig. 4.9) is equivalent to the
complete model integrating these mechanisms and sub-mechanism in terms of TCP. This reduced version
includes only 18 parameters against 33 of the comprehensive model.

The TCP curves of the intermediate reduced versions excluding 2 and 3 mechanism or sub-mechanism
combinations, as well as the values and the absolute and relative variations of the sigmoid constants a
and b for every TCP curve can be found in Fig. 4.9.

4.3.4 Validation of the model. Biochemical recurrence prediction

Results of the biochemical recurrence predictions are presented in Fig. 4.10. Mean ROC curves and
confidence intervals obtained after 1000 repetitions for the 3 different sets of features are shown. The
corresponding mean AUC values are indicated. Biochemical recurrence predictions based on the tumour
area at t = 8 weeks output of the comprehensive (AUC = 0.81 ± 0.02) and reduced (AUC = 0.82 ± 0.02)
in silico models were significantly better than those obtained from the pre-treatment maximal tumour
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Figure 4.9 – Functional diagram of the reduced model. The different types of cells are represented with a
gray ellipse. The different mechanisms are represented with a rectangle. The same color code as in Table
4.1 is used. Correspondences to the 5 R’s are indicated in italics. Endothelial cells diffuse O2 (1). Tumour
cells divide (2). Healthy and tumour cells consume O2 (3). As a result, if the O2 levels are extremely
low, they become severely hypoxic, which provokes their death (4). According to their intrinsic response
to radiation (5), tumour cells irradiated with a dose of 2 Gy per fraction resume their division, if their
DNA can be repaired, or die at the next mitosis (mitotic death) (6), if the damage caused by irradiation
is lethal.

area and average ADC and T2w values (AUC = 0.75 ± 0.03). Furthermore, no major difference could be
found between predictions made from the output of the comprehensive and the reduced versions of the
model.
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4.4 Discussion

The developed comprehensive model of tumour response to irradiation included the most relevant
radiobiological mechanisms, which have been considered separately in previous multiscale approaches of
the literature [31–34]. In particular, this is the first model simultaneously integrating, to our knowledge,
mitotic catastrophe and cell cycle distribution, including checkpoints between phases G1/S and G2/M
and a quiescence phase G0 affecting the radiosensitivity of tumour cells. This singularity offers a more
realistic response to irradiation and opens doors to simulations considering cell cycle inhibitors or syn-
chronisers [130]. In addition, this work introduced a novel approach of modelling angiogenesis, based on
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Figure 4.9 – TCP curves excluding (a) 1, (c) 2, (e) 3 and (g) 4 mechanisms or sub-mechanisms and
corresponding (b), (d), (f) and (h) constants a and b of the sigmoid functions fitting every TCP curve
and absolute and relative differences with respect to the version considering all mechanisms (AM), defined
as ∆a = a − aAM , ∆b = b − bAM , ∆rel

a = ∆a

aAM
and ∆rel

b = ∆b

bAM
. A 2 Gy fractionation from Monday to

Friday was simulated. The reference parameter values presented in Table 4.1 were considered. A total of
210 simulations (10 repetitions × 21 computational tissues) were performed to build each TCP curve.
The same color code as in Table 4.1 is used.
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Figure 4.10 – ROC curves of biochemical recurrence predictions based on the maximal tumour area and
average ADC and T2w values observed before treatment (blue) and the tumour area at t = 8 weeks
outputs given by the comprehensive (gray) and reduced (brown) in silico models. Mean AUC values are
indicated.

the calculation of dynamic VEGF distributions using a reaction-diffusion equation. Dynamic pO2 maps
were obtained, as in the works of Espinoza et al. [91] and others [39, 131], using partial differential equa-
tions. The stochastic intrinsic radiosensitivity of tumour, endothelial and healthy cells was given by the
linear-quadratic formalism, adjusted to consider the influence of O2, as in[31–34, 39, 89].

The complexity of the model lay, thus, in the integration of all these different mathematical for-
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malisms, including stochastic and deterministic, as well as continuous and discrete approaches using a
single computational framework based on M2SL. Furthermore, it must be remarked that the considered
radiobiological mechanisms take place at different timescales. Tumour, healthy and endothelial cell divi-
sion and response to irradiation were simulated with a time-step in the order of hours while oxygenation
and VEGF diffusion and consumption are much faster processes happening at the scale of milliseconds.
M2SL provided the tools to couple all the simulations at adapted frequencies without unnecessary com-
putational burden.

The described model allowed in silico simulations of a complete radiotherapy protocol (40 × 2 Gy).
The obtained oxygenation maps (Fig. 4.4) showed that cells situated in the poorly vascularised tumour
core presented low pO2 values. As O2 diffusion is limited to a certain range, vessels located in the tumour
rim could not fully oxygenate too distant cells situated in the central region, which therefore developed
hypoxia and, in severe cases, necrosis. Consequently, since VEGF is emitted by hypoxic cells, a higher
concentration of this protein was found in the tumour core. All these results are in line with the literature
consensus [29, 132, 133].

Furthermore, TCP curves could be obtained. It must be noticed that the tumour was supposed to
be controlled when there were not any undamaged tumour cells in the tissue. This consideration might
prove to be too strict in clinical cases as the immune system, which was not integrated in the model,
may be capable of destroying small quantities of tumour cells remaining after a radiotherapy treatment,
assuring tumour control [121].

As far as we can tell, this is the first work presenting the results of an exhaustive sensitivity analysis
(71400 simulations) of an integrative in silico model of tumour response to irradiation. Other studies of
the literature [31, 32, 39] have only performed partial approaches to individually evaluate the impact of
certain mechanisms or parameters. Those one-at-a-time analysis provide a preliminary view of the effect
of a given factor with very few evaluations of the model. However, they prove to be insufficient and their
results must be taken cautiously since these approaches cannot detect interactions between parameters.
The Morris screening method used in this work provided qualitative information about the effect of the 33
parameters, including their interactions. This made it possible to rank, for the first time to our knowledge,
all the parameters of an integrative model of tumour response to radiotherapy in order of importance.
These results allowed to better assess the importance of the different radiobiological mechanisms and
were used to reduce the dimension of the comprehensive model. Numerous examples of model reduction
based on sensitivity analysis can be found in the biomedical literature [36, 93, 94].

Prostate histological cuts from 7 patients were used to initialise computational tissues for the sensi-
tivity analysis and the model reduction simulations. These represent a large variability of tumour config-
urations. Results presented in this work are thus based on realistic tumour and vascular architectures.

The duration of the tumour cell cycle, Ttum, was identified as the parameter having the highest impact
on tumour density at t = 12 weeks and its integral. This is in agreement with previous partial results
of the literature. Harting et al. [39] also noted that the mechanism of division of tumour cells had an
important effect on TCP. Espinoza et al. [32] explored the effect of different values of the doubling time
of tumour cells. This parameter, comparable to the Ttum of our model, was found to have a significant
influence on tumour cell density. Furthermore, the impact was higher when the value was decreased,
which resulted in an increased division of tumour cells. All this is in consonance with results presented
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in our Fig. 4.7a in the form of TCP curves.
The impact of Ttum can be interpreted as the sum of 2 contributions that apparently affect tumour

density in opposite directions. On the one hand, it has an obvious effect on the proliferation of tumour
cells. A low value of Ttum results in a fast division of this kind of cells. On the other hand, as tumour
cells die by mitotic catastrophe, Ttum also impacts on their response to irradiation. A low value provokes
a slow destruction of tumour cells.

Our parameters of dynamic oxygenation also had a significant effect on the studied outputs. In partic-
ular, hypoxic death had a great impact on tumour control. It can be suggested that, when this mechanism
was not considered (pOnec2 = 0 mmHg), extremely hypoxic cells, which are very radioresistant, did not die
due to this lack of oxygen but had to be killed by irradiation, therefore at the expense of tumour control.
The importance of oxygenation on tumour control was already illustrated by TCP curves presented by
Harting et al. and Paul-Gilloteaux et al. [31].

In contrast, angiogenesis parameters had a negligible effect on both tumour density at t = 12 weeks and
its integral. When the whole angiogenesis mechanism was excluded, tumour was slightly more difficult to
control. It can be hypothesised that the tissue was less oxygenated and, consequently, more radioresistant.
However, the difference was not enormous. On this matter, Espinoza et al. showed that versions of their
model considering an increased angiogenesis or no angiogenesis at all presented no significant differences
in terms of tumour density.

The duration of the healthy cell cycle, Theal, also had a negligible effect on the tumour density at t =
12 weeks and its integral. When the whole mechanism was not considered, tumour control was slightly
easier to achieve. It can be suggested that, in this case, the tissue contained more dead cells, which did
not consume O2. Consequently, it was better oxygenated and, therefore somewhat less radioresistant.
Nevertheless, the difference was not substantial. This is in agreement with the results of Espinoza et
al. The analogous mechanism of resorption of dead tumour cells of their model was found to have no
influence on tumour density.

The impact on tumour control of the 3 radiobiological mechanisms retained in the reduced model
(oxygenation, division of tumour cells and their response to irradiation) has been largely reported in the
literature [21–26]. In particular, the relationship between hypoxia and tumour response to irradiation
has been widely discussed [117, 132, 134, 135]. Hypoxic regions, situated at a certain distance from
blood vessels, are known to be more resistant to irradiation that well-oxygenated areas. To consider
this heterogeneity, in this work, as in most of the previous in silico models [32, 39], we included, at the
cell scale, the oxygen enhancement ratio (OER). This factor establishes a relation between the doses
administered under hypoxic and aerobic conditions producing the same biological effect [29]. It can be
expressed in alternative ways [31, 33, 34, 89].

Biochemical recurrence predictions made with the tumour area at t = 8 weeks output of the com-
prehensive and the reduced versions of the model significantly improved those based on pre-treatment
imaging parameters. These results show a potential application of the model as a useful tool in a clini-
cal context. In addition, they corroborate the equivalence of the comprehensive and the reduced model,
already suggested by the sensitivity analysis and demonstrated in terms of TCP curves, as no major
difference was observed between the predictions made from the outputs of the 2 versions.

It must be remarked that this preliminary validation was performed taking the intermediate reference
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values of Table 4.1 for every parameter of the model, except for the highly influential hypoxic death
threshold, pOnec2 . Future model calibration, especially of the other parameters having an important impact
on tumour area at t = 8 weeks, should improve the quality of the predictions. Furthermore, an initial
vascular density of 3.8% [31] was supposed for the 76 virtual tissues. Individual values for each sample
deduced from PET images, may also lead to better biochemical recurrence predictions, as the sensitivity
analysis showed that oxygenation parameters had an important impact on tumour regression.

As a first step, the presented results were obtained considering only a dose per fraction of 2 Gy, typi-
cally applied in prostate cancer. However, the flexible implementation of the model with MS2L will allow
to simulate hypo-and-hyperfractionated treatments [7, 125, 136, 137] in the future. Using optimisation
algorithms [138, 139], the total dose, the dose per fraction and the interval between sessions maximising
tumour control will be identified.

This work presents several limitations which will be tackled in the future. Firstly, the comprehensive
model intended to integrate the most relevant biological mechanisms of the literature, in particular those
described by the 5 R’s [17]. Nevertheless, some mechanisms which may also play a role on tumour regres-
sion, such as the immune response [121], were not included as only short-term evolution was considered.
Furthermore, it must be remarked that the linear-quadratic equation, almost universally used to model
the response to irradiation, may not be valid for every value of dose per fraction. The applicability of this
formalism to high doses (more than 6 Gy) remains controversial [140].

Secondly, it must be borne in mind that the validity of the conclusions of the sensitivity analysis can
only be guaranteed within the studied prostate-specific limit values of the parameters. The definition of
appropriate ranges is, thus, a key aspect of the Morris method. Due to ethical or technical reasons, the
vast majority of the parameters of cancer models have never been measured in vivo and, for many of them,
a panoply of in vitro values exists [31, 32, 91, 104, 118, 125, 126]. Ranges in this work were defined from
maximum and minimum values of the literature and our radiobiological expertise. This should assure
the significance of the obtained results. Nevertheless, to complement this approach, a more precise, but
also more computationally expensive, sensitivity analysis using, for example, the Sobol method will be
performed in the future on the reduced model, including only the most relevant parameters identified by
the Morris analysis.

Thirdly, the results of the first validation of the model at the population scale need to be corroborated
on an external cohort including a larger number of patients. Furthermore, although each mechanism has
been previously considered in the literature, the model should still be validated at the microscopic and
macroscopic scales. Several options to cope with this issue may be considered. Time-lapse imaging of
prostate tumour cells cultured in vitro and irradiated with different fraction schedules can be used to
carry out a rough validation of tumour cells division and response to irradiation at the microscopic scale.
Cells can be tracked using detection strategies [141]. Nevertheless, a cell-based approach presents several
limitations, the most important being the lack of consideration of realistic tumour microenvironment. At
a macroscopic scale, several mechanisms can also be validated. Using longitudinal mpMRI [142], CBCT
[89] and PET images [34] of irradiated patients, tumour volumes and cell densities can be obtained and
compared with the results of in silico simulations. Additionally, PET images can be used to validate the
oxygenation of the tissue [143, 144].
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4.5 Conclusion

An original multiscale in silico model of tumour response to radiotherapy (33 parameters) integrat-
ing 5 radiobiological mechanisms (oxygenation, division of tumour cells, angiogenesis, division of healthy
cells and phase-and-oxygen-dependent response to irradiation, considering cycle arrest and mitotic catas-
trophe) was developed. A thorough sensitivity analysis (71400 simulations) using the Morris method,
applied for the first time to a whole integrative model of tumour response to radiotherapy, allowed to
obtain a reduced version (18 parameters), equivalent in terms of tumour control probability and bio-
chemical recurrence prediction. This simplified model included only 3 radiobiological mechanisms: oxy-
genation, given by a reaction-diffusion equation, division of tumour cells, considering their cycle, and
cycle-phase-and-oxygen-dependent response to irradiation of tumour cells, based on the linear-quadratic
formalism. Biochemical recurrence predictions obtained with the reduced model were significantly bet-
ter than those performed from pre-treatment imaging parameters. The reduced model should still be
thoroughly validated at the microscopic and macroscopic scales using experimental data. Other radio-
biological mechanisms, such as the radio-induced tissue inflammation provoking neovascularisation and
immune cell recruitment, should be explored and potentially integrated. In the future, the model will be
used to simulate different radiotherapy fractionation schedules (hypo/hyper fractionation), paving the
way for the clinical optimisation of patient-specific treatments.

In this chapter, an original reduced mechanistic model of tumour growth and response to radiotherapy
was developed. After an exhaustive sensitivity analysis, it integrates only three radiobiological mecha-
nisms: oxygenation, the division of tumour cells and their response to irradiation. It is equivalent in
terms of TCP and tumour cell density to a comprehensive version integrating the main radiobiological
mechanisms of the literature.

To demonstrate the clinical usefulness of our model, a first prediction of biochemical recurrence after
EBRT was performed on a cohort of 76 localised prostate cancer patients using the tumour area after
treatment obtained through simulation. This prediction was significantly better than those performed
directly from pre-treatment mpMRI parameters This clinical application of our reduced model will be
fully explored in the next chapter.
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Chapter 5

MECHANISTIC SIMULATION OF TUMOUR

RESPONSE OUTPERFORMS RADIOMICS

PREDICTING RECURRENCE IN PROSTATE

CANCER RADIOTHERAPY

In this chapter, our reduced mechanistic in silico model of tumour growth and response to irradiation
was used to predict biochemical recurrence in the context of prostate cancer. Digital tissues, repre-
senting 76 patients with localised prostate adenocarcinoma having undergone EBRT, were built from
pre-treatment MRI. The prescribed irradiation protocols were simulated using the mechanistic model.
Logistic regression was then performed to predict recurrence directly from MRI features following a
conventional radiomics approach and from different outputs given by the mechanistic model.

The content of this chapter has been presented at the international conference IEEE ISBI 2021, in
the form of peer-reviewed 4-page paper and oral communication.

C. Sosa-Marrero, P. Fontaine, E. Mylona, K. Gnep, A. Hernández, F. Paris, R. de Crevoisier and
O. Acosta, «Mechanistic simulation of tumour response outperforms radiomics predicting recurrence in
prostate cancer radiotherapy», in IEEE ISBI 2021, pp. 1-4, 2021. (Oral communication)

89



Part III, Chapter 5 – Mechanistic simulation of tumour response outperforms radiomics predicting recurrence in
prostate cancer radiotherapy

5.1 Introduction

Radiomics approaches based on imaging biomarkers [76, 77] have emerged over the last few years
as appealing tools to predict tumour recurrence and survival [12–14]. Nevertheless, their performance
is still limited in terms of prediction scores (e. g. AUC, C-index). Furthermore, they require a large
amount of population data in order to be statistically significant and they are usually based on complex
machine learning methods, which raises the question of interpretability. In addition, radiomics-based
studies are frequently confronted with the class imbalanced problem, i.e. most of the individuals of the
cohort belong to the majority class and only a few of them constitute the complimentary minority class.
This phenomenon is particularly evident in the context of the present work.

As opposed to these data-driven techniques, mechanistic modelling appears as a groundbreaking
approach based on the integration of the different biological mechanisms underlying the behavior of a
given clinical endpoint. Through in silico simulation, they allow to better comprehend the response of
patients to a certain treatment and their results are easily explainable. Their predictive capabilities have
already been shown in other contexts [15, 16].

The objective of the present work was thus to predict biochemical recurrence using our reduced
mechanistic in silico model of tumour growth and response to radiotherapy [145] in the context of prostate
cancer. It integrates the most relevant radiobiological mechanisms, identified by the Morris sensitivity
analysis: oxygenation, division of tumour cells and their response to irradiation. It allows to create digital
patients from pre-treatment mpMRI scans, representing real individuals, on which different irradiation
protocols can be simulated in silico. Its predictive capabilities were compared to those of a radiomics
workflow using mpMRI features and oversampling techniques.

5.2 Material and methods

5.2.1 Population dataset

A cohort of 76 patients with peripheral zone localised prostate adenocarcinoma having undergone
EBRT [12] was used for this study. Prior to the beginning of treatment, 3 T MRI was performed. Se-
quences, fully described in [12], included axial turbo spin echo T2-w and axial diffusion using multiple
b-values. Apparent diffusion coefficient (ADC) maps were calculated. Patients were followed up by means
of clinical examination and PSA analysis every 6 months for 5 years after the end of irradiation. Nine
patients suffered biochemical recurrence, defined according to the Phoenix criteria [128] Our Institutional
Review Board approved this retrospective study.

5.2.2 Experimental design

The experimental design (depicted in Fig. 5.1) consisted of the following steps:
– Step 0: Tumour segmentation. In previous work [12], tumours had been manually segmented on

pre-treatment T2-w sequences and contours propagated onto the corregistered ADC images.
– Step 1: Feature extraction. Tumour volume and average T2-w and ADC were calculated from the

corresponding images.
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Figure 5.1 – Workflow. Tumour segmentation (0). Feature extraction (1). Digital tissue characterization
(2). Digital tissue initialization (3). In silico simulation (4). At every step, biochemical recurrence was
predicted using 3-fold cross-validation logistic regression.

– Step 2: Digital tissue characterization. In order to simulate tumour response to radiotherapy with
our mechanistic model, 76 2D digital tissues representing the 76 patients of the cohort were characterised.
Every tumour was mapped to an equivalent spherical volume. Then, the area of its great circle, Atum, [31]
was calculated. In addition, 2 cell density measures were obtained from the corresponding average T2-w
and ADC through a linear transformation [129]. The mean density value, ρtum, was then calculated.

– Step 3: Digital tissue initialization. The 76 digital tissues were initialised using the corresponding
2 input parameters previously obtained: Atum and ρtum. A fraction ρtum of a disk of area Atum was
initialised with tumour cells. They were placed following a normal distribution around the centre of the
disk taking σ = 0.33. An initial prostate-specific vascular density of 3.8% [31] was taken for every digital
tissue. Endothelial cells were supposed to be randomly distributed forming a poorly-vascularised tumour
core.

– Step 4: In silico simulation. The radiotherapy protocol administered to each patient of the cohort
(total dose of 74 - 80 Gy delivered in 2 Gy fractions from Monday to Friday) was simulated on the
corresponding digital tissue and the evolution of the number of tumour cells throughout the 8 weeks of
treatment was obtained. For the sake of interpatient comparison, numbers of tumour cells were normalised
by their initial values (at t = 0 weeks). Model parameters were manually calibrated considering prostate-
specific ranges reported in the literature [125, 126]. Given its stochastic component, each simulation was
repeated 5 times and the mean output was taken.
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At each step, the logistic model (stratified 3-fold cross-validation, 1000 repetitions) was used to predict
biochemical recurrence. "Prediction 1" was made from the 3 pre-treatment imaging parameters, namely
tumour volume and average T2-w and ADC. It was set as a baseline. "Prediction 1*" was performed
from the same MRI features after oversampling the dataset with the SMOTE+ENN technique to obtain
a minority-majority ratio of 1:2. "Prediction 2" was based on the calculated tumour area and mean cell
density. "Prediction 3" was made from the number of tumour cells in the digital tissue before the start
of simulation, at t = 0 weeks. "Prediction 4" was performed using the normalised number of tumour cells
at the end of treatment (t = 8 weeks) provided by the mechanistic model.

5.2.3 Mechanistic in silico model

To simulate the irradiation protocols administered to each patient, our previously developed mech-
anistic in silico model of tumour growth and response to radiotherapy [145] was used. As described in
chapter 4, it considers a digital tissue in which each pixel corresponds to a healthy, tumour, endothelial
or dead cell. It integrates 3 major radiobiological mechanisms: oxygenation, division of tumour cells and
their response to irradiation (Fig. 5.2). A sensitivity analysis using the Morris screening method per-
formed on 21 digital tissues, built from prostate histological cuts, showed that parameters characterizing
these mechanisms had a high impact on tumour regression [145]. Dynamic oxygenation is given by a
reaction-diffusion equation. Endothelial cells have a fixed O2 value and diffusion is considered isotropic.
Hypoxic stress is included. The cycle of tumour cells, composed of the 4 classical phases G1, S, G2 and
M and a quiescent state G0, is implemented to model their division. The response to irradiation is based
on the linear-quadratic formalism [41]. Radiosensitivity depends on the oxygenation levels and the cycle
phase. Mitotic catastrophe is integrated.

5.3 Results and discussion

Results of the simulations using the mechanistic model are shown in Fig. 5.3. Mean curves of the
evolution of the normalised in silico number of tumour cells are presented for patients with and without
biochemical recurrence. Interpatient standard deviations are indicated. It was shown that the tumour
cell reduction during the course of the treatment was higher for patients who did not suffer biochemical
recurrence. Differences between the 2 curves were significant (p-value ≤ 0.001, given by a Mann-Whitney
U test) since week 4, demonstrating the efficiency of the proposed mechanistic model. Particularly, a
p-value ≤ 0.0005 was obtained at t = 8 weeks.

Results of the biochemical recurrence predictions are presented in Fig. 5.4. "Prediction 4", based
on the normalised in silico number of tumour cells at t = 8 weeks, was significantly better (p-value ≤
0.0001, given by a Wilcoxon signed-rank test) than predictions "1" and "1∗", performed directly from
pre-treatment imaging parameters without and with oversampling: median AUC = 0.85 vs. AUC = 0.77
and 0.80, respectively. Median AUC values of 0.81 and 0.82 were obtained for the intermediate predictions
"2" and "3", based on the calculated tumour area and mean cell density and the number of tumour cells
on the digital tissue before simulation, respectively.

These results show the potential of our mechanistic model of tumour growth and response to radio-
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Figure 5.2 – Functional diagram of the mechanistic in silico model of tumour growth and response
to radiotherapy. The different types of simulated cells are represented with an ellipse. The different
mechanisms are represented with a rectangle. Endothelial cells diffuse O2 (1). Healthy and tumour cells
consume O2 (2). As a result, if the O2 levels are extremely low, they become severely hypoxic, which
provokes their death (3). Tumour cells divide (4). According to their intrinsic response to radiation (5),
irradiated tumour cells resume their division, if their DNA can be repaired, or die at the next mitosis
(6), if the damage caused by irradiation is lethal.

therapy as a robust tool to predict recurrence in prostate cancer. By simulating the prescribed irradiation
protocol on virtual tissues representing the 76 patients of the cohort, we obtained an easily-explainable
marker of biochemical failure (the number of tumour cells at the end of treatment). It can be readily
inferred from the results of the logistic regression that a great number of tumour cells at t = 8 weeks
resulted in a high probability of suffering recurrence. This intuitive explanation contrasts with the diffi-
culties frequently experienced when interpreting the results of radiomics approaches of the literature, in
which complex machine learning methods are often used as black boxes and fed with hundreds of imaging
parameters, whose clinical significance is not always clear.

The use of SMOTE+ENN to oversample the cohort resulted in an improvement in predictions from
MRI features. However, performance was still limited. Indeed, the median AUC value of "Prediction
1*" was similar to the one obtained for "Prediction 2", which required no oversampling. Furthermore, it
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Figure 5.3 – Evolution of the number of tumour cells throughout simulation, normalised by the initial
value, for the 2 groups of patients, with and without recurrence (red and green, respectively). Differences
between the 2 curves were significant (p-value ≤ 0.001) in the gray area. "Prediction 4" was made from
values at t = 8 weeks.

must be noted that the use of this technique adds considerable complexity to the process, which reduces
explainability and entails computational burden.

Due to its interpretability and robustness, the logistic model was chosen for this study. Only 3 param-
eters significantly associated with biochemical recurrence [12] and clinically meaningful (tumour volume
and average T2-w and ADC) were considered. Other classifiers frequently used in the medical context
such as random forests or support-vector machines, considering a wider range of radiomic features, or
ensemble methods could be explored for the baseline "Prediction 1". However, their results would be less
explainable from a clinical point of view.

This study presents several limitations that are going to be addressed in future work. Firstly, the
results need to be corroborated on an external cohort including a larger number of patients. Secondly, it
has been widely reported in the literature that oxygenation has a crucial impact on biochemical recurrence
[18, 146], which was confirmed by our previous sensitivity analysis [145]. However, in this work, a single
average prostate-specific vascular density [31] was considered for every digital tissue. In future work,
individual values may be deduced from MR-DCE images.
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1*", in blue; "prediction 2", in red; "prediction 3", in orange, and "prediction 4", in green.

5.4 Conclusion

Biochemical recurrence prediction based on the output of our mechanistic in silico model of tumour
growth and response to radiotherapy was significantly better (p-value ≤ 0.0001) than those made directly
from pre-treatment imaging parameters (AUC = 0.85 vs. AUC = 0.77, respectively), even when the orig-
inal dataset was oversampled (in this case, AUC = 0.80 was obtained from MRI features). These results
reinforce the potential of digital patients to perform personalised predictions based on the mechanistic
understanding of tumour response to radiotherapy.

In this chapter, our reduced mechanistic model was used to predict biochemical recurrence in the con-
text of prostate cancer EBRT and results were compared with a conventional radiomics approach. Signif-
icantly better biochemical recurrence predictions in terms of AUC were obtained when using simulation-
based markers.

The next and final chapter presents a general discussions on the main contributions and limitations
of this thesis. Suggestions about future work on the prediction of biochemical recurrence using our mech-
anistic model are also offered.
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Chapter 6

CONCLUSION

6.1 Overview

This thesis aimed to better comprehend, through in silico simulation, the tumour response to EBRT
in the context of prostate cancer. For this purpose, as a first step, the model of Espinoza et al. was adapted
and used to simulate conventional and hypofractionated prostate irradiation schedules, as described in
part II of this document. This adaptation considered 4 radiobiological mechanisms: static oxygenation,
modelled with a reaction-diffusion equation; proliferation of tumour cells, based on a proliferation factor;
oxygen-dependent response to irradiation, considering the LQM, and resorption of dead cells, given by a
resorption constant. The OAT local sensitivity analysis performed on this adapted model showed that the
oxygen-diffusion factors and the intrinsic radiosensitivity parameter of the LQM α had the most important
effect on tumour cell survival right after EBRT. The pO2 distributions obtained after simulation were
inline with prostate clinical values from the literature. In silico total doses to achieve tumour control within
the clinical ranges were obtained for conventional and hypofractionated prostate irradiation schedules.

Nevertheless, this approach presented several limitations, mainly due to the implementation of the
model in the simulation software Netlogo. Some radiobiological mechanisms which may play a major
role in tumour control, such as the cell cycle distribution, mitotic catastrophe or angiogenesis resulting
in the reoxygenation of the tissue, were not integrated. In addition, only a 2D configuration could be
considered. Furthermore, the OAT local sensitivity analysis performed in this part of the thesis had to
be taken cautiously. It did not fully explore the parameter space and could not detect interactions and
non-linear effects.

For these reasons, as described in part III of this document, an original mechanistic in silico model
of tumour response to EBRT was developed. It was implemented in C++ using the in-house simulation
library M2SL and both 2D and 3D configurations could be considered. It integrated 5 radiobiologi-
cal mechanisms: dynamic oxygenation, modelled with a reaction-diffusion equation and including hy-
poxic death; division of tumour cells, considering their cell-cycle, VEGF-driven angiogenesis, given by a
reaction-diffusion equation; division of healthy cells and cell-cycle-phase-and-oxygen-dependent response
to irradiation, based on the LQM and considering cycle arrest and mitotic catastrophe. A thorough sen-
sitivity analysis (71400 simulations) using the Morris screening method, was performed for the first time
to a whole integrative model of tumour response to radiotherapy. It showed that the duration of the cycle
of tumour cell cycle, the radiosensitivity parameters of tumour cells in the phases G1 (αtumG1) and G2
(αtumG2) and the hypoxic death threshold had the most important effect on tumour cell density 12 weeks
after the beginning of the treatment and its integral over time. In contrast, parameters associated with
angiogenesis the division of healthy cells and the response to irradiation of healthy and endothelial cells
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had a negligible impact. TCP curves of the comprehensive model and 15 simplified version excluding cer-
tain mechanisms were compared. Based on these results, a reduced version, equivalent in terms of tumour
cell density and TCP, was proposed. This simplified model included only 3 radiobiological mechanisms:
oxygenation, given by a reaction-diffusion equation, division of tumour cells, considering their cycle, and
cell-cycle-phase-and-oxygen-dependent response to irradiation of tumour cells, based on the LQM.

This original reduced model was used to predict biochemical recurrence in a cohort of 76 patients
with localised prostate adenocarninoma having undergone EBRT. For this purpose, 2D digital tissues
representing the individuals of the cohort were built from pre-treatment mpMRI features. Then, the
radiotherapy protocol administered to each patient was simulated on the corresponding digital tissue
and the evolution of the number of tumour cells throughout the 8 weeks of treatment was obtained.
Logistic regression was performed to predict biochemical recurrence directly from pre-treatment mpMRI
features or from the in silico number of tumour cells at the end of the treatment. Predictions obtained
with the simulation-based marker were significantly better than those performed from pre-treatment
imaging parameters in terms of AUC. These results reinforce the potential of digital patients to perform
personalised predictions based on the mechanistic understanding of tumour response to EBRT.

6.2 Main contributions

The main contributions of this thesis were therefore:

1. the adaptation and comparison with prostate clinical data of an existing model of tumour response
to irradiation

2. the development of an original mechanistic model of tumour growth and response to radiotherapy
integrating the main radiobiological mechanisms of the literature

3. the identification of the radiobiological parameters and mechanisms having the most important
impact on tumour cell density and TCP

4. the development of a reduced mechanistic model integrating only the most important radiobiolog-
ical mechanisms

5. the generation of significantly better biochemical recurrence predictions using the reduced mech-
anistic model, compared to a conventional radiomics approach, in the context of prostate cancer
EBRT

6.3 Limitations

This work presents however several limitations. Firstly, the original comprehensive model intended to
integrate the most relevant biological mechanisms of the literature, in particular those described by the
5 R’s [17]. Nevertheless, some mechanisms which may also play a role on tumour regression, such as the
immune response [121], were not included as only short-term evolution was considered. Furthermore, it
must be remarked that the LQM, almost universally used to model the response to irradiation, may not
be valid for every value of dose per fraction. The applicability of this formalism to high doses (more than
6 Gy) remains controversial [140].
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Secondly, it must be borne in mind that the validity of the conclusions of the Morris sensitivity
analysis can only be guaranteed within the studied prostate-specific limit values of the parameters. The
definition of appropriate ranges is, thus, a key aspect of the Morris method. Due to ethical or technical
reasons, the vast majority of the parameters of cancer models have never been measured in vivo and, for
many of them, a panoply of in vitro values exists [31, 32, 91, 104, 118, 125, 126]. Furthermore, the Morris
screening analysis provided a rough view of the hierarchy of the parameters of the model. The Euclidean
distance of each point to the origin on the plane µ∗ vs. σ was calculated as an indicator of the impact of
the parameter in question [37]. However, the effect was not precisely quantified and non-linear relations
and interactions between parameters could not be distinguished.

Thirdly, the results of the first validation of the model in terms of biochemical recurrence prediction at
the population scale need to be corroborated on an external cohort including a larger number of patients.
Furthermore, and most importantly, although each mechanism has been previously considered in the
literature, the model should still be thoroughly validated at the microscopic and macroscopic scales.

Finally, it has been widely reported in the literature that oxygenation has a crucial impact on bio-
chemical recurrence [18, 146], which was confirmed by our local and Morris sensitivity analyses. However,
in this work, every digital tissue used to predict biochemical recurrence was initialised considering a single
average prostate-specific vascular density value. Furthermore, for the sake of simplicity and, especially,
rapidity of the simulations, every tumour of the cohort was mapped to an analogous 2D disk where cells
were placed following a normal distribution around its centre. However, the shape of tumours may also
play a major role in tumour control. More realistic initial configurations may lead to better biochemical
recurrence predictions. In addition, due to its interpretability and robustness, only logistic regression was
performed in this study. Moreover, the most important parameters of the mechanistic model (duration
of the cycle of tumour cells, α of tumour cells in phase G1 and hypoxic death threshold) were manually
calibrated within the ranges of the literature to maximise AUC. For every other factor, intermediate
values were taken. This rudimentary technique could not assure that optimal parameter values giving the
best AUC were used.

6.4 Future work

The limitations of this work explained in the previous section could be tackled in the future as follows.
To complement the results of the screening analysis, a more precise, but also more computationally
expensive, sensitivity study using, for example, the Sobol method may be performed in the future on the
reduced model, including only the most relevant parameters identified by the Morris analysis.

Furthermore, several options may be considered to validate the reduced model at the microscopic
and macroscopic scales. Time-lapse imaging of prostate tumour cells cultured in vitro and irradiated
with different fraction schedules can be used to carry out a rough validation of tumour cells division
and response to irradiation at the microscopic scale. Cells can be tracked using detection strategies
[141]. Nevertheless, a cell-based approach presents several limitations, the most important being the lack
of consideration of realistic tumour microenvironment. High resolution bioprinting technologies allow to
design and generate in vitro cell patterns [147] mimicking the structural organization of prostate tumours.
An equivalent tumour and endothelial architecture can be generated to initialise the computational model.
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Then, tumour growth and the response to different fractionations can be studied in the analogous in vitro
and in silico tissues. Tumour and endothelial densities and even spatial disposition can be thus compared.

At a macroscopic scale, several mechanisms can also be validated. Using longitudinal mpMRI [142],
CBCT [89] and PET images [34] of irradiated patients, tumour volumes and cell densities can be ob-
tained and compared with the results of in silico simulations. Additionally, PET images can be used to
validate the oxygenation of the tissue [143, 144]. The correspondence in terms of cell density between the
microscopic level and in vivo mpMRI data at the macroscopic scale can be established using voxel-wise
machine learning techniques as proposed by Sun et al [148].

Concerning the biochemical recurrence predictions, in future work, individual vascular densities for
each digital tissue could be deduced from MR-DCE images. Furthermore, the construction of 3D avatars
mimicking the shape of every tumour of the cohort is being explored (Fig. 6.1).

(a) (b)

Figure 6.1 – Example of (a) tumour of the cohort and (b) corresponding 3D avatar at the beginning of
simulations

In addition, other classifiers frequently used in the medical context such as random forests or support-
vector machines or ensemble methods could be explored for the biochemical recurrence predictions. How-
ever, their results would be less explainable from a clinical point of view. Finally, the parameter values
of the reduced model, at least for the most important factors, giving maximal AUC, could be identified
using optimization algorithms [149].

In the long term, once the model is fully validated and calibrated, it may be used as a planning
platform to simulate alternative irradiation schedules (such as hypofractionated treatments) for patients
with the highest risks of biochemical failure. This work paves the way for the clinical optimisation of
patient-specific therapies.

An overview of the thesis structure, indicating its main contributions and perspectives is depicted in
Fig. 6.2.
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Titre : Modélisation et simulation numérique de croissance tumorale et réponse à la radio-
thérapie

Mot clés : Modélisation mécaniste, cancer de la prostate, radiothérapie, analyse de sensibilité,
récidive biochimique, probabilité de contrôle tumoral

Résumé : La radiothérapie externe (RTE) est
le traitement le plus courant du cancer localisé
de la prostate. Une dose totale comprise entre
74 et 80 Gy, délivrée en fractions de 2 Gy, est
généralement prescrite. Le contrôle local de la
tumeur est atteint dans 60 % à 90 % des cas,
selon le groupe de risque. Des thérapies mod-
ifiées, telles que des traitements hypofraction-
nés, qui pourraient augmenter ces pourcent-
ages ont été récemment proposées. Cepen-
dant, les connaissances sur la réponse des
patients à ces nouveaux schémas sont encore
limitées. L’objectif principal de cette thèse est
donc de simuler numériquement la réponse
tumorale à la RTE dans le contexte du can-
cer de la prostate. À cette fin, dans un pre-
mier temps, un modèle mécaniste existant est

adapté et différents schémas d’irradiation sont
testés. Ensuite, un modèle original intégrant
les principaux mécanismes radiobiologiques
est développé. Une analyse de sensibilité ex-
haustive est réalisée et les courbes de prob-
abilité de contrôle tumoral (TCP) du modèle
complet et de 15 versions excluant certains
mécanismes sont comparées. Un modèle sim-
plifié, équivalent en termes de TCP et de den-
sité cellulaire tumorale est proposé. Enfin, les
prédictions de récidive biochimique utilisant le
modèle réduit sont comparées à celles d’une
approche radiomique classique. Ces travaux
ouvrent la voie à l’optimisation clinique des
traitements d’irradiation spécifiques aux pa-
tients.

Title: In silico modelling and simulation of tumour growth and response to radiotherapy
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Abstract: External beam radiotherapy
(EBRT) is the most common treatment for lo-
calised prostate cancer. A total dose between
74 and 80 Gy, delivered in 2 Gy fractions, is
typically prescribed. Local tumour control is
achieved in 60% to 90% of cases, depend-
ing on the risk group. Modified therapies, such
as hypofractionated treatments, that may in-
crease these percentages have been recently
proposed. However, the knowledge about the
response of patients to these new schedules
is still limited. The main objective of this the-
sis is thus to simulate in silico the tumour re-
sponse to EBRT in the context of prostate
cancer. For this purpose, as a first step, an ex-

isting mechanistic model is adapted and differ-
ent irradiation schedules are tested. Then, an
original model integrating the main radiobio-
logical mechanisms is developed. A thorough
sensitivity analysis is performed and tumour
control probability (TCP) curves of the com-
prehensive model and 15 versions excluding
certain mechanisms are compared. A simpli-
fied model, equivalent in terms of TCP and
tumour cell density is proposed. Finally, bio-
chemical recurrence predictions using the re-
duced model are compared with those of a
conventional radiomics approach. This work
paves the way for the clinical optimisation of
patient-specific irradiation treatments.
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