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Abstract

Semiconductor colloidal quantum dots are fluorescent semiconductors of nanometric size, gen-

erally between 2 and 10 nm. These materials have raised the interest of the scientific commu-

nity for more than thirty years because of their particular opto-electronic properties, which re-

sult from the strong confinement of charge carriers. Thanks to on-going developments in their

chemical synthesis to produce monolayers of nanocrystals whose facets can now be fused, elec-

tronic coupling between quantum dots within arrays is now within reach. However, electronic

transport in such a network is still limited and requires further study at the scale of the single

nanocrystal.

Scanning tunneling microscopy is a suitable tool for studying the electronic properties of

individual nanostructures. In this work, this technique was used to characterize square super-

lattices of lead selenide quantum dots. To begin with, we studied the electronic and structural

properties of a superlattice deposited on a gold substrate. After annealing the samples to en-

sure high stability of the tunnel junction, tunnel spectroscopy revealed a p-doped monolayer

comprising two types of nanocrystals: those, the majority, exhibiting discrete states on both

sides of the band gap, where the analysis of the width of the peaks shows a more or less pro-

nounced coupling of the valence band states and those, in lower concentration, having a peak

in the forbidden band. To better understand the origin of this peak, the superlattice was also

studied on a thin layer of silicon oxide that electronically decouples the grating from the sil-

icon substrate. In this case, the appearance of vibronic states associated with the peak in the

band gap indicates the presence of localized states. These traps are attributed to the loss of

ligands on certain facets of the nanocrystals. By keeping these facets passivated with ligands,

the transport properties of the superlattices were finally investigated by multi-tip scanning

tunneling microscopy. Conductivity measurements show the importance of film cracks on the

electrical conduction. However, at the micrometer scale, state-of-the-art conductivities of the

order of 10-5 S have been obtained, demonstrating the interest of fusing colloidal quantum

dots to tend towards band transport.



Résumé

Les boites quantiques colloı̈dales semiconductrices sont des semi-conducteurs fluorescents de

taille nanométrique, généralement comprises entre 2 et 10 nm. Ces matériaux ont suscité

l’intérêt de la communauté scientifique depuis plus de trente ans en raison de leurs propriétés

opto-électroniques particulières qui résultent du fort confinement des porteurs de charge.

Grâce aux développements continuels de leur synthèse chimique pour produire des mono-

couches de nanocristaux dont les bords peuvent être à présent fusionnés, le couplage électronique

entre boı̂tes au sein de réseaux semble à portée de main. Cependant, le transport électronique

dans de tel réseau est encore limité et nécessite une étude approfondie à l’échelle du nanocristal

unique.

La microscopie à effet tunnel est un outil adéquat pour étudier les propriétés électroniques

de nanostructures individuelles. Dans ce travail, cette technique a été utilisée pour caractériser

des super-réseaux carrés de boı̂tes quantiques de séléniure de plomb. Pour commencer, nous

avons étudié les propriétés électroniques et structurelles d’un super-réseau déposé sur un sub-

strat en or. Après recuit des échantillons pour assurer une grande stabilité de la jonction

tunnel, la spectroscopie tunnel a révélé une monocouche dopée p comportant deux types de

nanocristaux : ceux, majoritaires, présentant des états discrets de part et d’autre de la bande in-

terdite, dont l’analyse fine de la largeur des pics montre un couplage plus ou moins prononcé

des états de bande de valence et ceux, en moindre concentration, possédant un pic dans la

bande interdite. Pour mieux comprendre l’origine de ce pic, le super-réseau a également été

étudié sur une fine couche d’oxyde de silicium qui découple électroniquement le réseau du

substrat de silicium. Dans ce cas, l’apparition d’états vibroniques associés au pic dans la bande

interdite indique la présence d’états localisés. Ces pièges sont attribués à la perte de ligands sur

certaines facettes des nanocristaux. En conservant la passivation de ces facettes par des ligands,

les propriétés de transport de super-réseaux ont finalement été étudiées par microscopie à effet

tunnel à pointes multiples. Des mesures de conductivité montre l’importance des fissures du

film sur la conduction électrique. Néanmoins à l’échelle du micromètre, des conductivités à

l’état de l’art de l’ordre de 10-5 S ont été obtenues, démontrant l’intérêt de fusionner les boı̂tes

quantiques colloı̈dales pour tendre vers un transport de bande.
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Introduction

Since their discovery, colloidal semiconductor quantum dots (QDs) have been seen as an in-

teresting alternative in the deposition of semiconductor thin film thanks to their electronic

properties tuneable by size, shape and composition. The ability to absorb and emit light at

different wavelengths make them very attractive for a plethora of optoelectronic applications

ranging from remote phosphor emitters in commercially available display screens to poten-

tial super-emitters for quantum communication. Moreover, their rather easy synthesis as dis-

persed colloids allows them to be directly used in solution-based processes, such as spin- or

dip-coating, drop casting or doctor-blading.

Colloidal QDs are widely used as building block for self-assembled array. QDs deposited

thin films consist of ordered or randomly packed QD assemblies where each QD is separated

from its nearest neighbour by capping ligands. However, the presence of these ligands is prob-

lematic for applications relying on charge transport. The recent development of synthesis pro-

tocol enabling the formation of superlattices of epitaxially connected colloidal QDs has the

potential to overcome this problem. The elimination of any tunnelling barrier between adja-

cent QD was expected to yield high mobility and band-like charge transport. Unfortunately,

these materials has so far not exhibited the great enhancement in carrier mobility nor the band

transport predicted by theoretical calculation. Therefore, to get better understanding of the

transport properties of these QD superlattice, experimental investigation of individual QD in

the superlattice as well as information on the local transport properties are mandatory. By

mean of scanning tunnelling microscopy (STM) and spectroscopy (STS) under cryogenic con-

ditions, this thesis aims at the study of the electronic and transport properties of PbSe QD

superlattice.

This thesis is divided into five chapters. The first chapter describes the context in which

this work takes place. The attention will be turned to the of quantum dots array materials and

the self-assembly of epitaxially connected quantum dots. In particular, we will describe the

electronic and transport properties of these materials. We will show that structural disorder

and defects still limits the full potential of the QD solid.

The second chapter deals with the experimental techniques used in this work. A theoretical

background of scanning tunnelling microscopy (STM) and spectroscopy (STS) are provided. It
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starts with a description of the tunnel effect up to the presentation of the microscope. A special

focus is given to the STS on quantum dots and the peculiar tunnelling regimes occurring when

a quantum dot is inserted in a double barrier tunnel junction. In a second step, multi probe

scanning tunnelling microscopy is presented, starting with a brief explanation of the four-point

measurements and a list of probe configurations to readily get access to the resistivity of the

materials depending. Then a detailed presentation of the microscope, from the UHV system to

the preparation of the tips, is given.

In the third chapter, we will inverstigate the electronic properties the PbSe QD superlattice

deposited on a gold substrate. STM and scanning transmission electronic microscopy (STEM)

are used to characterize the QD array. High resolved STEM images reveal the atomic connec-

tion between the QDs and the long-range square order of the superlattice, which is also found

in STM. STS was first performed on QDs in the superlattice to investigate the electronic prop-

erties of the as-synthesized sample. A lack of homogeneity in the measured spectra, which was

attributed to the large discrepancy in the nano-environment. We will show that annealing the

superlattice at 120 °C leads to a stable and reproducible spectroscopy of the QDs across the

superlattice. While clear peaks corresponding to the discrete levels of the QDs are resolved,

we show that the QDs are p-type doped and that only the hole states contribute to the tunnel-

ing current. From the analysis of the linewidth, we show a to quantum mechanical coupling

between the QDs. The hallmark of band formation is observed in a few regions of the sample.

Finally, a small amount of QDs show a peak in the apparent band gap measured with STS.

In the fourth chapter, we will address the exact nature of an in-gap state observed in the STS

spectra by changing the host substrate. By replacing the gold susbtrate with a highly doped

silicon substrate terminated with an oxide layer, the lever arm of the double barrier tunnel

junction becomes more asymmetric. This will enable us to reverse the potential distribution

across the junction in comparison with the gold substrate used in the second chapter. In such a

way, the lever arm reaches values below 0.5 and allows to expand the energy scale to get more

insight into the peak shape, highlighting the contribution of vibronic states to the tunneling

current and the importance of residual charges at the interface between the superlattice and

the SiO2 surface.

The fifth chapter will focus on the study of the local transport properties of the superlattice.

By performing four-probe STM transport measurements, we will study the PbSe QD superlat-

tices in a controlled and non-destructive way. While a first linear probe configuration is used

in order to measure the sample conductivity, a second square probe configuration shows the

presence of a conductance anisotropy. We unveil the origin of the conductance anisotropy by

studying the structural morphology of the superlattice which is obtained from high resolu-

tion scanning electronic microscopy images. We conclude the chapter by an estimation of the

charge mobility of the sample.

1



Chapter 1

Individual and superlattice of quantum
dots semiconductor

1.1 The quantum confinement effect

Classification of nanostructures

Figure 1.1: Schematic representation of a macroscopic semiconductor with different dimensions. The associ-

ated DOS of each case is represented below. The bulk semiconductor (3D) shows a quasi continuous band of

states. The quantum well (2D) exhibits a step like form representative of the formation of band states while the

nanowire/nanorod (1D) shows Van Hove singularities in their DOS. For the quantum dot (0D), the DOS shows

sharp and discrete peaks corresponding to single quantum states.

When one of the dimension is reduced to the nanoscale, materials show very fascinating prop-

erties. The quantum confinement effect emerges from this size reduction. According to the

geometrical constrains, the quantum size effect produces a discreteness of the accessible carri-
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ers energies. In such quantum-confined systems, several parameters, assumed to be constant

in bulk semiconductors, are instead dependent of the dimension of the material. For instance,

the band gap, the band edge positions and density of state (DOS) (see Figure ??) change due

to quantum confinement. Therefore, semiconductor quantum structures are classified in ac-

cordance to the number of degrees of freedom experienced by electrons and holes inside the

material.

Quantum Well : Quantum wells are thin structures with thicknesses of the order of a few

nanometers. They are described as two-dimensional structures as the charge carriers can move

freely along two directions. Their DOS exhibits a step like shape [?].

Quantum rods : These are one-dimensional (1D) structures in which electrons are free to

move in one direction, while quantization occurs in the remaining two directions. They appear

like tubes and wires with diameters in the nanometer range and lengths of several micrometers.

Quantum rods show E−1/2 dependence for each discrete group of energy levels, called Van Hove

singularities.

Quantum dots : QDs are nanosized crystals composed of several tens to a few thousand

atoms. These structure are described as zero-dimensional (0D) objects because the electrons

and holes are totally confined and behave as stationnary waves. The QD DOS consists of dis-

crete peaks [?].

1.1.1 What are QDs ?

QDs are a class of materials in which quantum confinement effects are strongly enhanced.

They correspond to small semiconductor crystals with a size on the order of a few nanome-

ters. From a fundamental point of view the QDs are described by the text-book example of the

’particle in a box’ problem. A QD is thus a 0D material and exhibits discrete quantized levels

(see Figure ??). This is due to confinement effects that collapse the continuous density of states

of bulk solids into discrete ”atomic-like” electronic states. Particularly, QDs are significant for

optoelectronic applications due to their precisely tunable bandgap and emission color. Indeed,

by properly adjusting the size of a QD one can precisely tailor its properties for the desired

applications.

Because of their unique properties, nanostructures are good candidates for many applica-

tions in the development of novel optoelectronic devices including solar cells, LEDS, transistor

or photodetector [?, ?, ?, ?, ?]. In several cases, research has even been translated into the pro-

duction of commercial devices. For example, in 2019, Samsung announced the creation of

a quantum-dot-based display of 4 inch with higher definition and lower power consumption

than commercial liquid crystal display. Many other companies start using QDs technology for

enhanced resolution, such as Sony (through the company QD vision) or Amazon with the Ama-
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zon Kindle [?].

Depending on their growth technique, two main classes of QDs exist :

Epitaxial quantum dots : The epitaxial QDs correspond to a wide range of structures where

an epitaxial growth is used. These QDs can be fabricated thanks to lithographic patterning of

epitaxial quantum well [?], self-assembly induced by Stranksky-Krastanow growth mode [?] ,

droplet-epitaxy [?], etc. Epitaxial quantm dots are usually flat-shaped (see Figure?? (a)) with a

height along the growth direction of a few nm while the in-plane extension can go from 10 nm

to tens of nm. The large range of accessible sizes (up to 100 nm) for the epitaxial QD is an ad-

vantage, but unfortunately the quality of the confinement and the minimal size of the QDs are

still limited. Epitaxial QDs find application in lasers working in the near infrared wavelength

range (from 0.9µm to 1.3µm), communication and information processing to replace classic

wire circuits (energy saving and operation speed-up). However, the cost of production of the

epitaxial QDs is high since it requires ultra high vacuum equipment like molecular beam epi-

taxy machines and the evaporation cells need to be filled with expensive high purity materials.

One the other hand, from one wafer, one can fabricate millions of devices at once.

(b) (c)

Figure 1.2: (a) Cross-sectionnal TEM image of an uncapped InAs-GaAs self-assembled QD. Figure taken and

adapted from[?]. (b) and (c) HAADF-STEM images of a PbSe QD. The perpendicular direction to the plane is (b)

<110> . Atomic columns are seen, each consisting of equal numbers of Pb and Se, (c) <100> and the column of pure

Pb (bright) and pure Se (dark gray) are seen. Figures taken and adapted from [?].

Colloidal nanocrystals : Colloidal QDs on the other hand allow for a strong confinement

regime as the typical size of these QDs is below 10 nm (see Figure ?? (b) and (c)). For the col-

loidal QDs, corresponding precursors are injected in a solvent and mixed in a flask at moderate

temperatures which is cheaper than the growth of epitaxial QDs. The shape of QDs is very flex-

ible and a wide catalog of forms and sizes can be found in the literature. Shapes from star shape

QD [?], nanoplatelets [?] (2D quantum well), cubes [?], nanorods [?] (quasi-1D) and many fancy

others shapes [?] have been synthesized. Moreover colloidal QDs are very versatile in terms of

composition. A lot of studies has been done with II-VI compounds (PbSe, PbS, CdSe,ZnSe, ect)

and few others with III-V compounds based QDs (such as InAs or InP). Moreover, the small

size of these systems allows to reach the strong confinement regime which easily enables one

4



to tailor the optical transition over a very broad range. While the synthesis of colloidal QDs is

cheap and easy, integration into the devices may be trickier and technologically challenging.

1.1.2 Quantum confinement in semiconductor QDs

Quantum confined exciton

Inside a bulk crystalline semiconductor, an electron from the conduction band and a hole from

the valence band can be paired together thank to Coulombic interaction to form an exciton.

The exciton is characterized by its Rydberg energy Ry∗ defined by :

Ry∗ =
e2

2εraB
=

µe4

2ε2
r ~2

=
µ

m0

1

ε2
r
× 13.6 (1.1)

where m0 is the free electron mass, εr the relative permittivity of the material, µ = 1/m∗e + 1/m∗h
is the reduce effective mass of the exciton and 13.6 is the Rydberg energy of the hydrogen atom.

By analogy with the hydrogen atom, an exciton is also described by its Bohr radius :

aB =
εr~2

µe2 (1.2)

The Bohr radius corresponds to the mean distance between the electron and the hole. By

comparing the size of the QD to the exciton Bohr radius it is possible to determine when the

confinement energy will be dominant over the Coulombic energy of the exciton. Depending

on the Bohr radius of the material, two kinds of confinement regime can be distinguished :

Figure 1.3: Comparison of exciton radius and QD size. Figure taken from [?]
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Weak confinement regime : In this case, the exciton Bohr radius is smaller than the QD size.

The quantum confinement is negligible compared to the Coulombic interaction and therefore,

the effect of the confinement is treated as a perturbation.

Strong confinement regime : The exciton Bohr radius is larger than the QD size. This time

the exciton is strongly confined in the QD (see Figure ??) and it is the Coulombic interaction

which is treated as perturbation.

For example, the Bohr exciton radius is about 5.4nm for CdSe [?, ?] and 46 nm for PbSe [?].

In our work, the PbSe QDs will have a diameter of 5.8 nm. Therefore our QDs belong to the

strong confinement regime.

QD as a large molecule

In analogy with molecules, the electronic structure of a single QD can be described by the Lin-

ear Combination of Atomic Orbital (LCAO). The diatomic hydrogen molecule is the simplest

example of multiple electron molecule. The two atomic orbitals combine to form two molecu-

lar orbitals (MOs) that spread out over the two H atoms. The two MOs are called bonding and

anti-bonding MOs. The bonding MO is lower in energy than the individual atomic orbitals.

On the contrary, the anti-bonding MO is higher in energy. The electrons occupy the differ-

ent orbitals in a way that minimizes the potential energy. Therefore, in the H2 molecule both

electrons occupy the bonding MO, leaving the anti-bonding MO empty. The highest occupied

molecular orbital is referred as HOMO and the lowest unoccupied molecular orbital is called

LUMO. For larger material, the number of atomic orbitals combined to form MOs increases.

The bigger the material, the more energy levels are created which decrease the HOMO-LUMO

bandgap. Thanks to the large number of atom the energy states due to the MOs of a bulk ma-

terial lye very close to each another and constitute a quasi-continuum or a band. The HOMO

level is the top of the VB, whereas the LUMO is the bottom of the CB. For a semiconductor

QD the number of atoms is less important ((102 to 105) than in the bulk. The electronic struc-

ture will be characterized by energy bands with a large density of levels and discrete energy

levels near the band edges, where the density of MOs is small. The HOMO-LUMO bandgap

is larger than for the QDs for the bulk material. Moreover, in the case of QDs, this gap is size

dependent and decreasing with increasing number of atoms in the QD. This approach gives

a simple yet general description of the electronic structure of a QD. Moreover it illustrates

clearly the reasons of the size dependence of the bandgap in QDs. The profound impact of

spatial confinement on the optical properties on colloidal QDs is illustrated in Figure??.
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Figure 1.4: a) Simplified schematic of the energy levels in QDs with increasing confinement. The bandgap of the

semiconductor particle increases with decreasing size. Taken from [?]. b) Photograph of five colloidal dispersion

of CdSe QDs with decreasing size (from 6 to 2 nm). The color of the light emitted by the QDs change from red to

blue, under UV excitation. Taken from [?]

1.2 Lead Chalcongenide quantum dots

The QDs studied in this work are composed of Lead Selenide (PbSe). Lead salts materials such

as PbSe or PbS (Lead Sulfide) are mostly known for being among the oldest and most common

materials in the fabrication of infrared detectors. Atoms in PbSe are arranged with a rock salt

crystal structure where the lead and the selenide ions form two separate face-centered cubic

lattice interpenetrating each other. These two lattices are separated by half a lattice parameter.

The lattice parameter being 6.12 Angstrom Å. [?].

PbSe is mainly known to have unique electronic structure. The fundamental gap of this

material occurs at the L-point of the Brillouin zone. Because there is four L-points in a Brillouin

zone, the first valence and conduction states are fourfold degenerate [?, ?]. In PbSe QDs,the

addition of a twofold spin degeneracy leads to an eight fold degeneracy of the quantum states

[?, ?, ?]. The high dielectric constant (ε = 227) and the small electron and hole effective masses

at the L-point of the Brillouin zone (m∗h ∼ m∗e ' 0.16 [?]) creates an exciton Bohr radius of 46

nm [?] (compared to 20 nm for PbS). This large exciton Bohr radius allows for the tuning of the
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Figure 1.5: a) The rock salt structure of PbSe. Each atom has six nearest neighbors with octahedral geometry.b)

Band structure of bulk PbSe. The bandgap is located at the L-point of the Brillouin zone. Figure taken from [?]

bandgap and absorption edge across the near-infrared to the visible spectrum [?]. Therefore

quantum confinement effect is strongly pronounced in PbSe QDs. Bulk PbSe exhibits a narrow

band gap of ' 0.26-0.29 eV at 300 K and 0.16 eV at 4K [?, ?]. Due to quantum confinement

effects, the gap can increase to values between 0.35 eV and 1 eV for QDs with diameter of 17

nm and 3 nm, respectively [?, ?], covering the whole short-wave infrared region. The analytic

relation between the energy gap (in eV) and effective diameter D (in nanometer) of PbSe QDs

is given by [?] :

Egap(D) = Egap(∞) +
1

0.0105×D2 + 0.2655×D + 0.0667
(1.3)

where Egap(∞) is the bulk band gap. Equation ?? shows a size dependence in 1/D because the

coefficient of D2 is small.

1.3 Quantum mechanical coupling and QD arrays

As discussed above, the QDs belong to the strong confinement regime due to their small size.

Although electrons are spatially confined and localized within the QD, when two QDs are

brought close to each other, their electronic wavefunction can overlap leading to delocalization

of the latter over the entire structure. When the orbitals of two QDs overlap and have the same

sign, their wavefunction constructively interferes and gives rise to a bonding orbital :

Ψ = C1Ψ1 +C2Ψ2 (1.4)

where C1 and C2 are the normalization constants and Ψ1 and Ψ2 are the wavefunctions of

two QDs. The coefficients depend on the energy mismatch of the orbital of the QDs but for

two identical QDs, C1 = C2 = 1/
√

2. If the two orbitals have opposite sign, C1 = −C2. This

leads to destructive interference and the creation of an antibonding orbital. In such a system
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the electron is delocalized over the whole structure leading to a reduction of the confinement

effect. Putting it simply the electrons have more space and thus can occupied a larger volume.

When many QDs are coupled together in a QD array, their electronic coupling leads to the

formation of bands [?].

Figure 1.6: Illustration of the mechanical quantum coupling. Schematic representation of the ground state

wavefunctions of two QDs: not coupled (A) and coupled with delocalization over the two QD(B). (C) Illustration of

the hybridization when the electron wavefunction is delocalized over the QD dimer.

These QD solid thin films are of great interest for optoelectronic and charge transport ap-

plications. But their performances are limited by the nature, height and size of the energy

barrier between two neighboring QDs. Thus the geometry of the QDs, the capping molecules,

the distance between QDs and the disorder in the assembly of QDs can strongly interfere with

the collective transport properties of a QD solid film.

In the case of PbSe, the large exciton Bohr radius lead to stronger confinement regime and

more significant function overlap within the QD array. This should lead to stronger coupling

between the QDs, which is favorable for a better transport of the carrier across the device.

1.4 Synthesis of colloidal quantum dots

Colloidal QDs are composed of two mains parts. The first is an inorganic core that confers to

the QD its optical and electronic properties and on which it will be possible to tune and adjust

these properties. It can be made of a single material or a combination of two or more materials

just like PbSe. The second part are the surfactants molecules, often called ligands. They are

amphiphilic organic molecules and are composed of a polar head and of a non polar part. The

polar head, the binding group, can attach the undercoordinated surface atom. The non polar

part consists in a long alkyl chain. Ligands are an important aspect of the colloidal QD [?] as

they are used to control the QD growth during the synthesis. Ligands are important to keep

the QDs stabilized in the solution preventing the aggregation and are also used to passivate

the surface of the QDs. In the case of PbSe QDs, typical ligands are oleic acid (C18H34O2) and

oleylamine (C18H35NH2).
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Figure 1.7: Schematic representation of a colloidal QD showing the crystalline and multifaceted nature of the

inorganic core. The monolayer of amphiphilic organic molecules (the ligand shell) bound to the surface is also

schematized.

1.4.1 Colloidal nanocrystal synthesis

Synthesis of colloidal QDs allows chemists to create nanometric crystals while precisely con-

trolling their size and shape. The QDs exhibit very few defects which is an asset for avoiding

non radiative recombination processes. In order to benefit from the quantum confinement

effect in QDs a meticulous, controllable procedure that can be stopped when the desired di-

mensions are reached is required.

Colloidal QDs are fabricated by injecting precursors containing metal and chalcogendide

(usually inorganic salt or organometallic compounds) at high temperature and high concentra-

tion within a high boiling point solvent containing coordinating ligands. The organic ligands

are used to mediate the QD growth and stabilize it in the colloidal dispersion. Following the

injection, the precursors decompose in the solvent resulting in a high concentration of metal

and chalcogenide ions over a short period of time. This leads to the nucleation event and the

latter the growth of the nuclei. Two approaches are possible to achieve such chemical reaction.

In the first method, named ’hot injection’, one of the precursors is rapidly injected in a hot apo-

lar solvent (from 100°C to 300°C) already containing the other precursors [?, ?]. Subsequently,

a quick and sudden increase in the total precursor concentration is observed. The second pro-

cess is the ’heating-up’ method. Every components of the reaction are loaded in a single flask

and the temperature is quickly increased. This is done in order to realize a sudden nucle-

ation [?, ?]. PbSe QDs are synthesized by rapidly injecting lead oleate and trioctylphosphine

selenide (TOPSe) dissolved in trioctylphosphine into diphenylether solvent at 150°C. The re-

action temperature is adjusted in the range of 90-220°C to obtain different sizes of PbSe QD [?].

The method develop in 1993 by Bawendi et al [?] was based upon the work of LaMer and
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Dinegar in 1950 about colloid formation [?]. They reported a method for the synthesis of

nanoparticles of CdSe based on the high-temperature nucleation and growth of nanoparticles

from organometallic precursors. The synthesis of monodisperse QDs is achieved by separating

the nucleation and the growth stages of the formation of the QDs. In the LaMer model three

different regimes can be observed (see Figure ??) :

Induction regime : The first regime, the induction of the reaction, starts with the injection

of precursors and ends when small nuclei are formed. Monomers are formed thanks to the

addition of precursors. When the concentration of these monomers starts increasing, small but

unstable atomic clusters start to form.

Nucleation regime : The second regime corresponds to the nucleation period during which

the nuclei become large enough to grow rather than redissolve into the solvent. This happens

above a certain radius rc corresponding to the critical QD radius. This is the radius at which

the probabilities of growth and dissolution become equal (see Fig.??b). The nucleation stage

is thus the time period where a single step nucleation event occurs. The nuclei only reach the

critical radius rc at a critical concentration of monomer cc, where the solution is supersaturated.

This supersaturation is the crucial parameter and can be obtained by the sudden increase of

monomers, by rapidly injecting precursors at high temperature.

Figure 1.8: (a) La Mer diagram representing the stages of the QD nucleation and growth: The induction or

generation of atoms regime (stage I), the self-nucleation regime (stage II) and the growth regime (stage III) . The

red area in the curve show the range where the supersaturated solution has a concentration higher than the critical

concentration Cmax. This is where the growth of the dot is favored over dissolution. Figure taken from [?]. (b)

Evolution of the Gibbs free energy during the formation of the nuclei. The critical radius rc is the threshold below

which the QD redissolve. Above this radius the QD grows in solution. This critical radius originates from the

balance between the surface ∆Gs and volume energies ∆Gv.

Growth regime : The last regime is the growth of the crystal nuclei via the addition of

monomer units and aggregation of smaller clusters already formed. In general, the growth
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regime is stopped before an equilibrium state is reached in order to prevent Ostwald ripening.

Ostwald ripening corresponds to the growth of larger QDs at the expense of the smaller ones

which tend to lead to a broadening of the size distribution. Therefore Ostwald ripening must

be as short as possible to synthesized monodisperse solution of QDs.

The nucleation of the colloidal QD can be explained by the classical nucleation theory

(CNT) developed by Becker and Döring. This model uses the fact that a thermodynamic sys-

tem tends to minimize its Gibbs free energy. It describes the nucleation with two Gibbs energy

terms, a volume and a surface term [?, ?, ?] :

∆Gtot = ∆Gvol +∆Gsurf = −4
3
πr3ρ∆µ+ 4πr2γ (1.5)

Where r is the crystal nucleus radius, ρ the density of the crystalline phase, γ the interfacial

tension between the developing crystal and the supersaturated solution, and ∆µ represents

the chemical potential difference between the nuclei and the monomers in solution. Creating

volume is energetically favorable because it decreases the system total free energy, hence the

negative sign of ∆Gvol. ∆Gsurf is positive because the surface atoms will not have saturated

bonds. Because ∆Gvol and ∆Gsurf have opposite sign and different dependence in size, ∆Gtot

reaches a maximum when the nuclei reaches the critical radius.

Figure 1.9: Monolayer of 4,8 nm CdSe dots at (A) low magnification (scale bar = 20 nm) and at (B) higher

magnification (scale bar = 8 nm). The space beteween the dots is due to the presence of the native ligands. (C)

Schematic representation of the local arrangement of the QDs ordered in an array with ligands in between them.

R stands for the radius of the QD, N −N for the nearest neighbor distance and d is the inter-particle separation

between dots in the solid. Figure taken and adapted from [?].

1.5 Array of coupled nanocrystals

Aside from their individual electronic and optical properties, the colloidal QDs have been used

to create 2D and 3D self-assembled superlattices in a bottom-up approach. QD solids can be

divided in two categories : (1) QD arrays consisting of individual QDs with an inorganic core
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plus an organic surrounding, but without direct contact between the neighboring QDs and (2)

high ordered QD superlattice where the QDs are directly connected through atomic bridges,

called neck.

1.5.1 Self-assembly of quantum dots with inorganic capping

In the first class of QDs solid, each particle is stabilized in the matrix thanks to the use of

surface ligands (see Figure ??). The organic core allows for precise tuning of the discrete elec-

tronic states by adjusting precisely the size of the QDs. This size dependence originates from

the strength of the quantum confinement. The ligands capping the core are used to control the

growth during synthesis, passivate the surface dangling bonds and stabilize the QDs into the

array. As mentioned above, one of the first synthesis of single-component self-assembly was

reported on CdSe dots by Murray et al. [?] in 1995.

Figure 1.10: a) Schematic representation of X- and L-type ligands and their exchange for ligands of the same type.

b, e) Schematic of solid-state ligand exhange (b) and solution-phase ligand exchange (e). c, d) TEM images of 6 nm

PbSe QD films before (c) and after (d) solid-state exchange of long-chain oleate for compact, thiocyanate ligands.

Scale bars, 20 nm. f) SEM image of solution-deposited, thiocyanate-exchanged 3.9 nm CdSe QD films. Scale bar,50

nm. Figures taken and adapted from [?]. g) Carrier mobility as function of ligand size in ambipolar PbSe (6.1 nm)

QD field-effect transistors. Extracted from [?]. d) Effect of the various ligand size on the carrier mobility length of

a 3.9 nm PbSe QD solid. Extracted from [?]

Unfortunately, the long organic ligands have quickly been problematic for charge transport

applications. Because of their length and insulating behavior, the long ligands introduce large

interdot distance and prevent strong electronic coupling between the neighboring QDs. In-

stead the carriers are forced to move trough interdot tunneling across the film. The transport
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behavior of these materials is well described by variable range hopping [?]. As a result, very

low mobilities have been reported (from 10−12 to 10−4 cm2/(Vs)) [?, ?, ?].

In order to tackle this problem, chemical methods have been introduced to exchange the

long native ligand with shorter organic [?, ?, ?, ?] and inorganic ligands [?]. The typical ligands

exchange takes place when the native ligands are replaced by shorter ligands with head group

providing the same type of binding (see Fig. ??a). The ligand exchange can be performed by

a ’solid exchange’ technique. It starts with the deposition of the QDs on a substrate in order

to form a QD solid. Then the substrate with the QD film is immersed in a new solution where

the exchange happens (Fig ?? b). A second method, called the ’solution exchange’ consists in

exchanging the long native ligands with more compact ligands in solution (Fig ?? e). This al-

lows the deposition of dense and close-packed QD assemblies. The large area coating enabled

by the ’solution exchange’ process is of great interest for the integration in solution-deposited

QDs devices.

The effect of the decreasing ligand size on the mobility in QD film is shown in Fig ?? (g)

where an increase in the mobility over three decades (from 10−4 to 10−1 cm2/(Vs)) is observed

for PbSe QD based-FET. Similarly, Fig ?? (h) shows the increase in mobility over 2 decades

for similar devices using the time resolved microwave conductivity technique (TRMC). The

highest mobility is peaked at 2 cm2/(Vs). Unfortunately the ligand volume lost in the ’solid

exchange’ can compromise the order of the QD film and often causes the formation of voids

and cracks [?, ?]. The ’solution exchange’ process damages the geometry of the self-assembly

leading to a lack of long range order in these samples [?], as shown in Fig.?? f. Thus, band

formation only happens when the coupling energy overcomes the energetic and translational

inherent disorder of these systems. The decreasing ligand size coupled with the doping of col-

loidal QDs used to control the carrier statistics and Fermi energy in a semiconductor has led

to significant increase in the devices performances. But in contrast with bulk semiconductor,

doping in colloidal semiconductor QDs is rather complicated due to the difficulty to incorpo-

rate foreign atoms of different size inside the QD small volume. These difficulties are often

attributed to ’self-purification’, an intrinsic mechanism whereby impurities are expelled from

the QDs [?, ?].

Throughout the years many studies on group III-V, II-VI, IV-VI semiconductors have been

reported using different types of ligands and processes, in order to increase the mobility in QD

film. Examples of the highest mobilities reported in the litterature on self-assembled QD solids

prepared with organic ligands are listed in Table 1.1. While most studies report mobilities in

the range ∼ 0.1 cm2/(V.s), the best examples of chemical engineering of the exchange ligand

process and doping of QDs have increased the mobilities up to 5 - 27 cm2/(V.s). An exception-

ally high mobility, over 400 cm2/(V.s) has been reported by the Talapin group upon sintering

colloidal CdSe QDs. Achieving such mobilities approaching the bulk mobilities makes QD

solid film viable for optoelectronics applications.
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Material Treatment QD diameter
(nm)

mobility
(cm2 V−1 s−1)

measurement
technique

Ref.

InP Sn2S4−
6 , 350°C RTA 3.8 µn = 0.09 FET [?]

InAs Cu7S−4 , 350°C RTA 4.5 µn = 16 FET [?]

Sn2S4−
6 , 350°C RTA 4.5 µn = 3.96 FET [?]

InSb S2− 4.5 µn = 1.5 × 10−4 FET [?]

µp = 6.0 × 10−4

CdSe In2Se−2
4 , 200°C anneal 3.9 µn = 16 FET [?]

SCN, In-doped, 250°C anneal 3.9 µn = 27 FET [?]

[Cd2Se3]2−, 350°C anneal 4.7 µn = 400 FET [?, ?]

PbS N2H4 8.5 µn = 0.1 FET [?]

CH3NH3I + PN2I 3 µn = 0.1 FET [?]

SCN, 150°C anneal 6.3 µn = 0.33 FET [?]

µp = 0.13

PbSe N2H4 9.2 µn = 0.95 FET [?]

N2H4 5.7 µn = 29.4 THz [?]

NaOH 5.7 µn = 35 THz [?]

2DA 5.7 µn = 47 THz [?]

SCN−, Pb-doped 6 µn = 10 FET [?]

SCN−, Se-doped 6 µp = 0.5 FET [?]

S2−, PbCl2 6 µn = 7 FET [?]

S2−, ALD Al2O3 75°C 6.3 µn = 7 FET [?]

Na2Se,PbCl2 6.5 µn = 4.5 FET [?]

PbTe NH4SCN 3.9 µn = 2.8 Hal [?]

Table 1.1: Electron or hole mobilities reported in thin films of semiconductor QDs measured

with different techniques. Field-effect transistor (FET) measurements (FET), terahertz spec-

troscopy (THz) measurements and Hall measurements (Hal).

1.5.2 Epitaxially connected quantum dot superlattices

Formation of the network

The intense research on overcoming the limitations stated above have mainly focused on ex-

changing the native ligands with shorter organic or inorganic substitutive ligands. These ap-

proaches, described in the previous section, also led to the discovery of new methods for the

creation of QD superlattices where each QD is epitaxially connected through covalent bonds.
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The synthesis of epitaxially connected QDs in a superlattice with long range order has the

potential to improve the device performances drastically. Moreover, theoretical investigations

including atomic thigh binding calculation, have predicted the appearance of electronic mini-

bands with unique structures, including a Dirac cone and topological gaps in the case of a

honeycomb shaped superlattice [?, ?, ?, ?]. The synthesis of this new class of materials has been

pioneered by the group of D.Vanmaekelbergh with PbSe QD superlattices consisting of the

square or honeycomb geometry [?, ?].

Figure 1.11: High angle annular dark field scanning electron transmission (HAADF-STEM) image of the square

(A) and (B) honeycomb structure. The equilateral triangle shows the long-range ordering of the structure. Scale bar

is 50 nm. Figure taken from [?, ?]. Square lattice based on the 2D self-assembly of colloidal semiconductor QDs.

Figure taken and adapted from [?].

In order to synthesize such highly ordered 2D superlattices, a dispersion of QDs in a non-

polar solvent (usually toluene) is dropcasted onto a surface of an immiscible liquid, ethylene

glycol in this case. Then the toluene is evaporated in a nitrogen purged glovebox. During this

evaporation, the QDs concentrate over time and a mono-layer of a square lattice (visible in

Figure ??) is formed at the air-liquid interface. The detachment of the capping molecules from

specific facets (here the {100} facets) and their dissolution in ethylene glycol drives the crystal

attachment. This structure can later be transformed into 2D CdSe lattices through cation-
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exchange that keeps the whole geometry intact [?]. A few other studies have managed epitaxial

connection of QDs through other chemical processes. Both for PbS and CdSe QDs, initially

separate QDs were successfully connected together after exposure to ammonium sulfide [?].

Similarly, epitaxially connected patch of PbS QDs with square geometry were fabricated by

treating thin films of QDs using dimethylformamide [?]. Unfortunately, the resulting arrays

only showed very local connectivity and lacked of long range order or did not yield dense

superlattices. But recently new chemical process involving injection of sodium sulfide or amine

based groups such as aniline have been able to trigger the epitaxial connection of PbSe and PbS

QDs into a square superlattice with long range order [?].

Figure 1.12: (a) A schematic representation of the experimental method used for the synthesis of QD super-

lattices. (b) Model showing two mechanisms to trigger the epitaxial connection of the QDs. (c) PbSe superlattices

formed with aniline starting from 7.8 nm QDs with partial ligand shell. (d) HRTEM image showing the high degree

of epitaxial connections. Figure taken and adapted from [?]

Predicted band structure of quantum dot superlattices

Due to the epitaxial connection of the QDs, a strong interdot coupling in this type of QD solid

is expected. For example, band structure of a honeycomb CdSe superlattice predicted the exis-

tence of Dirac cones using atomistic tight binding method calculations [?]. The band structure

of such graphene-type honeycomb lattice made of CdSe QDs is shown in Figure ?? (A,B) where

(A) shows the conduction band and (B) the valence band. The associated theoretical model of

the QD honeycomb structure with the QDs connected through their (110) facets is shown in

Figure ?? (C). The conduction band is constituted of two envelops with two and six bands. At

the K and K’ points, two Dirac cones with a linear dispersion relation similar to the graphene

band structure are predicted. Additionally, flat bands are predicted as a result of the absence

of hybridization between the 1S and 1P states of the QDs under the effect of the strong quan-

tum confinement. Similar features have been predicted in the case of HgTe QDs with the same

honeycomb geometry [?].
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Figure 1.13: Theoretical calculations of the conduction (A) and valence (B) bands for a planar honeycomb struc-

ture composed of CdSe QDs. The calculations were made for a model where the QDs are fused following their (110)

facets. Figures taken and adapted from [?]. Calculated conduction bands structures (E) and (G) and valence bands

structures (F) and (H) for a PbSe square superlattice and for two different number n of {100} biplanes ((E) and (F)

: even; (G) and (H) : odd) composing the neck between two fused QDs. The model for this square superlattice is

shown in (D). Figures taken and adapted from [?].

In the case of square superlattices composed of QDs with atomically bonded facets, the the-

oretical calculations predict electronic bands structures composed of successive band [?]. This

is due to the strong coupling between the wave functions of the nearest-neighbor QDs. In the

case of PbSe superlattices, the position in k space of the conduction and valence band edges

depends on whether the number of biplanes of atoms in the QDs is odd (Figure ?? (E) and (F))

or even (Figure ?? (G) and (H)).

The coupling of the wavefunction between QDs, and thus the width of the bands, strongly

depends on the necking between QDs, i.e., the number of atoms at the QD bonding plane.

This is illustrated in Figure ??. The square superlattices where modeled with 2D lattices of

<001>-oriented CdSe QDs attached via perpendicular {100} facets. Each QD has the form of a

truncated cube (see Figure ?? (D)) with a truncation factor q. In Figure ?? (a) and (d) the band

structure for q = 0 (a homogeneous 2D film) is shown and compared with the corresponding

electronic structure of a QD superlattice with q = 0.45 (Figure ?? (b) and (e)) as well as that

of individual NCs with the same truncation (Figure ?? (c) and (f)). It is clear that the 2D film

presents very dispersive bands (because carriers are free to move in two directions) in com-

parison to the truncated superlattice. In the latter case, the truncation creates an opening of

the band gap induce by the periodic scattering of the electronic waves. Therefore, the band

structures predicted by the theoretical calculations should lead to high charge carrier mobility

in the epitaxially connected QDs superlattices.
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Figure 1.14: (a) Conduction and (d) valence band for uniform 2D (zero truncation) film composed of CdSe QDs.

(b) and (e) : Similar plots for a 2D superlattice composed of truncated CdSe QDs (q = 0.45) and for an isolated

truncated (q = 0.45) CdSe QD ((c) and (f)). Figures taken and adapted from [?].

Transport properties

Balazs et al synthesized PbSe superlattices following the method described above but per-

formed ligands exchange using ethanedithiol (EDT) and ethylenediamine (EDA) [?]. Follow-

ing this treatment, the samples were characterized with ion-gel-gated-field-effect transistors

(IGFETs). The EDA treated samples exhibited stronger necking between the QDs yielding an

average two-terminal electron mobility of 13 cm2/(V.s) and contactless mobility of 24 cm2/(V.s).

The average mobility value is consistent with the DC mobility measured by Evers et al [?]

on similar PbSe superlattice (but without ligand exchange). In this case, multi-probe scan-

ning tunneling microscopy was used to determine the mobility of the 2D PbSe network. The

tips were set in a square configuration with a tip separation of 500nm. A mobility of 12 or 3

cm2/(V.s) was found depending on the direction of the electron flow with respect to the crack

inside the network. By contrast, Terahertz spectroscopy techniques lead to much higher mo-

bilities (around 260 cm2/(V.s)) than standard DC techniques on the very same sample. This

striking difference lays in the size of the area probed by the different techniques: 500 nm for

DC techniques and less than 50 nm for THz spectroscopy. These results suggest the presence

of long-range disorder that strongly affect the coupling between QDs, thereby the mobility of

the charge carrier. Alimoradi Jazi et al. used liquid electrolyte gating to study the injection of

carriers. Hall bars were fabricated enabling the study of four-probe conductance. Out of these

experiments over 13 devices, a mean mobility of 3.8 cm2/(V.s) with a maximum mobility of 18

cm2/(V.s) was measured [?]. A similar low mobility of 1.5 cm2/(V.s) was measured by the same

group using the same liquid electrolyte gating on a 2D PbSe superlattice with a honeycomb

structure [?]. Surprisingly, low mobility values were also reported on similar superlattices de-
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spite the strong fusion of the QDs facets and the high order of the array. Whitham et al reported

mobilities of 0.54 cm2/(V.s) for holes and 0.2 cm2/(V.s) for electron [?] and Walravens et al re-

ported hole mobility of 1.9 × 10−2 cm2/(V.s) [?]. A summary of the different mobilities found

in the literature is listed in Table 1.2.

Geometry QD diameter
(nm)

mobility
(cm2 V−1 s−1)

measurement
technique

Ref.

Square 5.2 µn = 13 (avg) - 24(best) FET [?]

Square 5.8 µn = 2 - 13 Multi tips STM [?]

Square 5.8 µn = 260 THz [?]

Square 5.5 µn = 3.8 (avg) - 18(best) EGT [?]

Square 6.5 µn = 0.2 FET [?]

Square 6 µn = 1.9× 10−2 FET [?]

Square 5.5 µn = 2.6 TRMC [?]

Square 6.5 µn = 2.6 FET [?]

Square 6.5 µn = 2.6 FET [?]

Honeycomb 6.15 µn = 1.5 EGT [?]

Honeycomb 6.15 µn = 1.5 THz [?]

Table 1.2: Electron or hole mobilities measured in two-dimensional QD superlattices. FET,

field-effect transistor measurements; THz, terahertz spectroscopy measurements; EGT, Elec-

trolyte gated transistor; TRMC, Time Resolved Microwave Conductivity

Disorder and defects in expitaxial superlattices

Despite their epitaxial connection which should drastically increase the interdots coupling

and their high degree of order, the epitaxial superlattices have yet to surpass the charge trans-

port properties of the self-assembly QD solid prepared with organic ligands. In addition, the

predicted band-like transport and other Dirac point (in the case of the honeycomb structure)

have not been observed. Indeed, the epitaxial connection usually generates crystal defects

that reduce atomic lattice coherence. Whitham et al attributed the poor transport properties

to different sources of disorder such as dispersion in size, coupling energy disorder (due to

the variation of the connection width) and missing connections [?]. The combined effect of

all these sources of disorder have a deleterious influence on the transport properties. A small

defect concentration restricts the localization length to less than 10 nm [?].
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Figure 1.15: (A) Schematic representation of the process leading to perfect attachment of PbTe nanocrystals

on (100) facets and (B) corresponding experimental HRTEM image and FFT of three PbTe nanocrystals with per-

fectly attached 100 facets. (C) Schematic representation of a step edge leading to an edge dislocation during the

attachment of PbTe nanocrystals on (100) facets. (D) Experimental HRTEM image and corresponding FFT of PbTe

nanocrystals imperfectly attached on (100) facets. Figure taken and adapted from [?]. Example of QDs (E) aligned

in the out-of-plane direction, (F) rotated toward 〈110〉, or (G) rotated toward 〈111〉. Figure taken and adapted from

[?]

Defects can arise during the QDs attachment like step edge leading to edge dislocation (see

Figure ?? c-d), twin boundaries or stacking faults [?], even when the QDs have the same out of

plane alignment. In PbSe superlattices the QDs are attached along the (100) facets. Thus it is

expected that the 〈100〉 direction should be the predominant out of plane orientation. McCray

et al. reported that only 28.1% (over 1823 particles) of the QDs had this out plane orientation

(Figure ?? e) while 47.4% of the QDs were tilted toward the 〈110〉 direction (Figure ?? f) and

16.8% tilted over the 〈111〉 direction [?] (Figure ?? g). This rotational misorientation prevents

the QDs to get perfectly aligned with their neighbors. While it has been reported that ther-

mal treatment of the superlattice could arrange the interfacial state of the QDs connection by

decreasing the density of points defects and edge dislocations, the associated mobilities after

annealing were still low[?]. This indicates that other sources of disorder are still involved in the

limitation of charge transport. These persistent defects are challenging to remove [?]. More-

over, surface traps states are known to arise in colloidal QDs due to the removal of ligands

from the surface [?, ?, ?]. These undesirable states are usually strongly localized with an energy

position deep inside the band gap (see Figure ??). They are also responsible for the weak trans-

port properties in the QDs solid film. Strategies to passivate the surface and eliminate such

traps have shown to be efficient in increasing the performance of QDs based devices [?].
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Figure 1.16: Structures of PbS QDs used in calculations with corresponding projected densities of states and

spatial charge densities of the lowest energy state on the conduction band side: (a) electronically balanced dot,

(b) doped dot due to removal of halide ligands from (110) facets (darkgreen) resulting in formation of Pb dimers

(purple) and related localization of charge at its surface (right panel). Figure taken and adapted from [?].

1.6 Conclusion

The recent preparation of atomically connected QDs superlattices led to the elimination of

any tunnelling barrier between adjacent QDs in QD solid thin film. Thanks to these atomic

necking, these QD films were expected to yield high mobility and band-like charge transport.

Unfortunately, charge transport experiments have reported poor transport properties with mo-

bilities lower than expected. Therefore, new insights into structural and electronic structure in

QD thin films through careful experimental investigations are needed to understand this sur-

prisingly low transport properties. While structural disorder has been investigated to explain

the low transport properties, the electronic structure of the superlattice still lacks of exper-

imental studies. Optical spectroscopy techniques (such as absorption or photoluminescence

spectroscopy) may bring information in this regard but has limitation as it does not investi-

gate separately electron and hole but involves transitions between two states. On the other

hand, scanning tunneling spectroscopy (STS) is not affected by this limitation and has showed

to be a viable tool to probe individual energy levels of semiconductors colloidal QDs [?, ?, ?].

Moreover, STS offers two other unique aspects. It allows to first access information about the

topographic structure of the film. Thus, it enables interesting correlation between the physi-

cal characteristics of the QD and its structure. Second, STS is able to measure the electronic

structure of an individual QD and not average values coming from an ensemble of QDs, which

is crucial to investigation electronic properties of QD array. By bringing information on the

density of states of a material on a local scale STS is a suitable technique to provide unique
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information on the electronic properties of the epitaxial superlattice. In this work, STS was

used to investigate PbSe QDs superlattice. Also, we tried to correlate the electronic structure

of individual QDs to the electronic structure of QD superlattices.
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Chapter 2

Experimental Techniques

2.1 Scanning Tunneling Microscopy

2.1.1 Introduction

In the past forty years, science and technology has turned toward the production, investigation

and manipulation of smaller and smaller objects. Unfortunately, optical microscopy is limited

due to the diffraction limits of optical wavelengths. Therefore scientists had to develop new

techniques relying on other particles than photons to improve or surpass the maximum res-

olution achievable by optical microscopes. It is this motivation that leads to the invention of

the Scanning Tunneling Microscopy (STM) [?, ?]. Initially developed in 1981 at the IBM Zurich

Research Laboratories in Switzerland by Gerd Binnig and Heinrich Roher, the STM is a power-

ful experimental method used for the investigation and characterization of conductive surfaces

(thus metal and semiconductor) with sub-nanometer resolution. Due to the incredible break-

through this invention has been for the scientific community, his inventors, Roher and Binnig,

were rewarded with a Nobel Prize in 1986 [?].

The next section will be dedicated to the study of each aspect of the working principle of a

STM, starting with the theoretical basis of the Tunnel Effect. Then the basis of the operation of

the STM will be developed to explain the atomic resolution.

2.1.2 The rectangular potential barrier and the transmission coefficient

The tunnel effect is a pure quantum effect in which a particle of energy E gains the ability to

cross a thin potential barrier of higher energy (Φ0 > E), which would normally be impossible

according to classical physics. This counterintuitive effect originates directly from the wave-

particle duality, another fundamental quantum concept.

Figure ?? represents a schematic vision of a potential barrier in one dimension. Two metallic

electrodes are separated by a vacuum region. The potential barrier is characterized by its

width d and its height Φ0. Φ0 depends on the work functions of both electrodes, which will
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Figure 2.1: Schematic view of a 1D tunnel barrier along the axis x. An incident electronic plane wave of amplitude

A1 and energy E moves toward the barrier. A part of this initial wave is transmitted at the first interface (A2) while

the other part is reflected (B1). This transmitted wave is again partially reflected (B2). The transmitted part of A2

finally reach the other side of the tunnel barrier (A3).

be assumed equal here. An electron of mass m and of energy E < Φ0, possesses different wave

functions ψi (i = 1,2,3) for each region of space (see Figure ??). These wave functions are all

solutions of the time-independent Schrödinger equation :

Hψ(x) =
[
−~2

2m
∂2

∂x2 +V (x)
]
ψ(x) = Eψ(x) (2.1)

Where H is the Hamiltonian, ~ =
h

2π
is the reduced Planck constant, m and E the mass and

the energy of the particle respectively. The first term of the Hamiltonian corresponds to the

kinetic energy and the second term, V (x), is the potential variation along the x axis. V (x) can

be represented as a Heaviside step function where V (x) = 0 for x < 0 and x > d, and V (x) = Φ0

for 0 < x < d. As the barrier divides the space into three parts, the eq.?? change for each of

region :

−~2

2m
∂2ψ1

∂x2 = Eψ1 x < 0

−~2

2m
∂2ψ2

∂x2 +Φ0ψ2 = Eψ2 0 < x < d

−~2

2m
∂2ψ3

∂x2 = Eψ3 x > d

(2.2)

Therefore the general solutions of each of these equations are :

ψ1(x) = A1e
iαx +B1e

−iαx x < 0

ψ2(x) = A2e
kx +B2e

−kx 0 < x < d

ψ3(x) = A3e
iαx x > d

(2.3)
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where Ai and Bi correspond here to the incident and reflected part in the different regions (i =

1,2,3) with the wave numbers α =
√

2m
~2 E and k =

√
2m
~2 (Φ0 −E) because the energy of the parti-

cle is below the barrier height (E < Φ0).

Because each wave functions and their derivatives have to be continuous everywhere, we

can deduce the coefficients Ai and Bi from the boundary conditions in x = 0 and x = d. Then

we obtain a system of four equations :

A1 +B1 = A2 +B2 A1 −B1 = − ik
α

(A2 −B2)

A2e
kd +B2e

−kd = A3e
iαd A2e

kd −B2e
−kd =

ik
α
A3e

iαd
(2.4)

Resolving this system yield the probability T (E), which is the probability for an electron to

cross the barrier. T (E) is given by the following expression :

T (E) =
∣∣∣∣∣A3

A1

∣∣∣∣∣2 =
1

1 +
Φ2

0
4E(Φ0 −E)

sinh2(kd)

(2.5)

From the above equation we can observe that T (E) is never null, revealing that electrons

always have a small probability to cross the barrier because of their wave–particle nature.

Figure 2.2: Plot of the Equation ?? (red curve) and the Equation ?? (black curve) representing the Transmission

coefficient as function of the barrier thickness for an electron energy of 0.1 eV and Φ0 = 4.5 eV (work function of

the tungsten).

Tungsten tips are often used as metallic electrodes in STM. Thus we consider a tungsten

electrode with a work function Φ0 = 4.5 eV and an electron of energy E = 0.1 eV. Figure ??
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shows the evolution of T (E) as function of the barrier thickness for these two parameters. From

the grey dashed lines, it is clear that increasing the barrier thickness by 3 �A induces a drop in

the transmission coefficient by almost three decades. Therefore, by considering a large barrier

of a few angstroms and an electron of small energy (kd >> 1), the function sinh2 dominates the

expression 1/(1 + sinh2) and thus we can approximate T (E) as :

T (E) ' 16E(Φ0 −E)

Φ2
0

e−2kd (2.6)

If the number of electrons tunneling from the right to the left is the same as the number of

electrons flowing in the other direction, these two flows will compensate each other resulting

in the absence of a measurable current. Therefore, the tunneling barrier needs to be polar-

ized so that a current flows between the electrodes. In STM experiments the two electrodes

used to apply bias are the tip and the substrate where the ground reference is usually the sub-

strate. When a bias eV is applied across the junction, the barrier takes a trapezoidal form (see

Fig.??). But if eV is small enough compared to the height of the barrier then we can make the

approximation that the barrier is still a square (red dashed line in Fig.??) of height Φ :

Φ =
Φtip +Φsample

2
− eV

2
(2.7)

where Φtip and Φsample are the work function of the tip and the sample, respectively.

Figure 2.3: Schematic representation of a tunnel junction. When no bias is applied the barrier looks like a

rectangle of height Φ =
Φsample +ΦTip

2
, which is the mean value of the work functions of the electrodes. If a bias

is applied then the barrier becomes trapezoidal. But if eV is small enough with respect to Φ , the barrier can be

approximated as a rectangle (red dashed line).
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Despite this change of the barrier height, the calculation of T (E) is still valid. Therefore,

the probability for an electron to cross the barrier becomes :

T (E,V ,d) ' 16(E − eV )(Φ − (E − eV ))
Φ2 exp

(
− 2d

√
2m
~2 (Φ − (E − eV ))

)
(2.8)

2.1.3 The tunnel current

The previous section discussed the tunnel effect and the calculation of the coefficient of trans-

mission for an electron to cross a rectangular potential barrier when a bias is applied. Now an

expression of the tunneling current is needed to be able to understand what information is ob-

tained. In this section a general formula for elastic tunneling will be derived. The transmission

rate from a state |i〉 to a final state |f 〉 is given by the Fermi’s Golden rule [?], written as :

Wi→f =
2π
~

∣∣∣Mf i

∣∣∣2δ(Ei −Ef ) (2.9)

where Mf i is the transition matrix element between the two orbitals ψt and ψs in the tip and

the sample, and where the term δ(Ei − Ef ) only allows tunneling between electron level with

the same energy, hence ensuring energy conservation. Thus by summing-up all the transition

rates between the wavefunctions of the different energy levels one can write the current flowing

from the tip to the sample and correspondingly from the sample to the tip as :

It→s =
2πe
~

∫ ∞
0

∣∣∣Mts

∣∣∣2ft(E − eV )[1− fs(E)]ρt(E − eV )ρs(E)dE (2.10)

Is→t =
2πe
~

∫ ∞
0

∣∣∣Mts

∣∣∣2fs(E)[1− ft(E − eV )]ρt(E − eV )ρs(E)dE (2.11)

where f (E) is the well-known Fermi-Dirac distribution and ρ(E) is the density of states of either

the tip or the sample. An electron of the tip in an occupied state (ρt , ft) will be able to tunnel

into an unoccupied state of the sample (ρs, (1−fs)). Here the Fermi level of the sample is chosen

as the reference, and therefore the tip Fermi level will be shifted by ∆E = eV . The total current

flowing between the sample and the tip can take the following expression :

I = It→s − Is→t =
2πe
~

∫ ∞
0

∣∣∣Mts

∣∣∣2[fs(E)− ft(E − eV )
]
ρt(E − eV )ρs(E)dE (2.12)

The Fermi-Dirac distribution is known to be a simple step function for temperature of T = 0K.

By putting ourselves in the approximation of the low temperature (T = 0K) the above equation

can be simplified to :

I(T = 0K) =
2πe
~

∫ EF+eV

EF

∣∣∣Mts

∣∣∣2ρt(E − eV )ρs(E)dE (2.13)

The difficulty of the above equation is the calculation of the transition matrix element∣∣∣Mts

∣∣∣2. In 1961, Bardeen [?] showed that this element could be determined by considering the
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overlap of the surface wave functions of two subsystems, sample+vacuum and tip+vacuum and

applying the time dependent perturbation theory to the system. The total separation of the tip

and sample systems leads to two independent Schrodinger equations. The matrix is a surface

integral of the wave functions (and its normal derivatives) of the sample and tip evaluated at

the separation surface S and is given by :

Mts =
~2

2m

∫
(ψ∗s∇ψt −ψt∇ψ∗s)dS (2.14)

In the case of a one dimensional rectangular barrier the matrix element
∣∣∣Mts

∣∣∣2 can be re-

placed by the transmission coefficient T (E,V ,d) from Equation ?? [?]. Then Equation ?? can be

rewritten :

I =
2πe
~

∫ EF+eV

EF

T (E,V ,d)ρt(E − eV )ρs(E)dE (2.15)

As we have seen, the transmission coefficient is not a constant and depends on the applied bias

voltage and the energy of the tunneling electrons. However, for small tunneling voltages eV

in comparison of the mean height of the barrier Φ (see Figure ??), the transmission coefficient

T (E,V ,d) can be assumed constant in the energy range between EF and EF + eV . In this, ap-

proximation, the transmission factor T (d) is independent of the energy E and the voltage V .

Therefore, the tunneling current can be written as :

I =
2πe
~
T (d)

∫ EF+eV

EF

ρt(E − eV )ρs(E)dE (2.16)

Therefore the tunneling current is proportional, to the combined density of states of the tip and

the sample at a given bias eV and the transmission coefficient at a certain distance d. Usually

the tip density of states can be considered constant and put in front of the integral :

I ≈ 2πe
~
T (d)ρt(eV )

∫ EF+eV

EF

ρs(E)dE (2.17)

When the density of states of the sample consists of discrete energy levels, as it is the case

for QDs, the I(V) curves will show a succession of steps, each step corresponding to the transfer

of electrons from the tip to a new energy level. Therefore, the tunneling current can provide a

direct measurement of the density of states. Later, we will give more details about tunneling

spectroscopy, which is associated with scanning tunneling microscopy.

2.2 The microscope

The STM is based on the tunnel effect, between two conductive electrodes. In the STM one

electrode will be the substrate and the other one a sharp metallic tip used as a probe. This

creates a tunneling junction as the one showed in Figure ??. We will now discuss the microscope

and its operating principle starting with lateral resolution.
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2.2.1 The operating principles

Figure ?? illustrates a STM scanner and its associated electronic circuit allowing the operator

to control the movement of the scanner. In inset, the representation of a tip scanning an atomic

surface with a schematized electron flow is showed. The scanner allowing the tip to move freely

and precisely in space is made of a piezo-electric material. Here the piezoelectric material is a

ceramic of the PZT [?] (lead zirconate titanate) family as this material has a large piezoelectric

constant. The piezoelectric material is arranged in a tube scanner where the electrodes are

attached to the side of the tube, segmenting it in vertical quarters (+x, -x, +y, -y) while a last

electrode is attached to the center of the tube to allow z motion (see Figure ??). When an electric

field is applied to the piezoelectric transducer, the transducer will expands or contract. These

nanometric deformations will enable the tip to move laterally and vertically along the surface.

This type of scanner allows to scan from a few angstroms to hundred of microns.

Figure 2.4: Sketch of the tunneling junction and the feedback controlling circuit in scanning tunneling mi-

croscopy. The tip is represented as atomically sharp and ideal conic shape. The piezoelectric tube is coupled to

the tip and controlled by the electrical circuit. A voltage bias is applied between the tip and the sample and the

resulting current is collected from the tip and amplified. After the current is compared in the feedback controller

circuit, a voltage is applied to the piezo tube to change the tip-sample distance and to maintain a constant current.

The tip is mounted on the extremity of the piezo tube. The polarization of the tip is ap-

plied through the input Vbias with the sample as the ground electrode. If the tip is brought in

proximity of the surface and moved laterally at a constant distance and a constant voltage then

every morphological change in the surface will result in an increase/decrease between the tip

and the surface. Therefore every change tip-sample distance will result in a change in the tun-

nel current. The detected tunnel current will be amplified by a current amplifier and converted

into voltage (thank to a current-voltage converter). Thus the change in the current can produce

a realistic image of the surface when transformed into height thanks to Eq.??. This mode is
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called constant height mode. Unfortunately the sample is always slightly sloped with respect

to the scanning plane of the tip, plus the surface is unknown and sudden and big changes of

morphology can result in a crash of the tip.

Using a feedback system, allowing the operator to control the tip-to-sample distance, one

can force the tip to retract when it is too close to the surface. In this case, the tunnel current

is compared to a reference I0 (the setpoint current). Then the error signal I − I
0

will be used as

a setpoint for a digital or analog PID controller (Proportional Integrator Derivative controller)

which will attempt to maintain the measured current constant. Thus, every time current varia-

tions are detected during the scanning of the tip, the tip-sample distance is modified to return

to the setpoint current. This mode is called constant current mode.

Figure 2.5: Evolution of the various parameters in the constant current topographic mode of the STM. The

sample voltage V is kept constant. Thanks to a feedback loop, the tunnel current I is regulated such that it remains

constant throughout the scan while the tip-to-sample distance is changed. Therefore, the vertical displacement

of the scanner (feedback signal Z) reflects the surface topography. Right : STM image of a PbSe QD superlattice

acquired for a setpoint current of 50pA and a voltage of +2.5V. Scale bar is 5 nm.

2.2.2 Lateral resolution of the STM

The tunneling current shows an exponential dependence. We can reasonably assume that it is

only the very last atom of the tip that contributes to the tunneling process. If the atom wave

function is a s wave, the square of the wave function in the barrier is :

∣∣∣ψ∣∣∣2 ∼ e−2kr

r2 (2.18)

Where r is equal to r =
√
x2 + z2 as shown in Fig.??. As z� x, we can write r as :

r ' z+
x2

2z
(2.19)
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Figure 2.6: Visualization of the lateral resolution of the STM

Injecting Eq.?? inside Eq.??, we obtain :

∣∣∣ψ∣∣∣2 ' e2kz

z2 e
−k
x2

z (2.20)

We can recognize a Gaussian function with a Full Width Hall Maximum (FWHM) of :

∆x '
√

2z
k

(2.21)

Then the height of the tip is given by :

z = R+ d (2.22)

where R is the tip radius and d the tip-sample distance (as illustrated on Fig.??). In the past,

controlled contact experiment has been done in order to estimate the real tip-sample distance

and showed the that distance in scanning tunneling experiment is comprised between d = 4 �A
and d = 8 �A [?, ?, ?]. In the case of a tungsten tip, k ' 1 �A−1. According to Tersoff and Hamann

[?], the height of the tip can be considered equal to the radius of curvature of the tip R (usually

equal to a few nanometers), compared to the tip-sample separation (a few angstrom). Based on

these values, we deduce:

∆x ' 1.4
√
R (2.23)

If we consider a tip having a radius of R = 100 �A, then a resolution ∆x of 14 �A is obtained, which

in theory cannot provide the expected atomic resolution. In reality, the atomic resolution is

obtained thanks to some protrusions at the very end of the tip from which the tunnel current

occurs. In this conditions, we can assume the radius of the protrusions to be around R = 5 �A
and thus a resolution of ∆x = 4.4 �A is achieved.
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2.2.3 The Omicron LT-STM

The apparatus used for the investigation of the samples studied in this work is a commercial

Low-Temperature Scanning Tunneling Microscope (LT-STM) from the company Omicron, now

ScientaOmicron. This microscope is divided in three main stainless steel vacuum chambers

(see Fig.??). The analysis chamber and the preparation chamber are kept under Ultra High

Vacuum (UHV) thanks to the combination of a turbomolecular pump, an ion ion-getter pump

and a titanium sublimation pump (TSP). The Load Lock is pumped with a turbo molecular

pump coupled to a primary pump.

Figure 2.7: Presentation of the Omicron Low Temperature STM.

The Load Lock : This element can be considered as the gate of the STM that allows to load

or withdraw samples and tips from the UHV chamber. There are three slots on the magnetic

sliding transfer rod, allowing to transfer several tips/sample. The samples are loaded through

a viewport that is close using a copper gasket usually (sometimes it can be viton gasket). When

entering new elements into the STM, this load lock is pumped (for 9h usually overnight) with

the turbo pump of the preparation chamber while being heated up to 120°C to remove con-

taminant like water. This allows to reach pressure of P ' 10−8 Torr at best.

Preparation chamber : This part of the chamber is where tips and samples are being pre-

pared before entering the analysis chamber for STM experiment. It also can be used to store

tips/samples thanks to the presence of five slots on a storage compartment. The magnetic rod
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allows to move samples/tips inside the analysis chamber or to place them on the manipulator.

This is the central element of this chamber. It consists in a 3D movable heating stage able to

rotate around its axis, with one slot to place the sample. Thanks to a resistive heater consisting

of a tungsten filament that can be heated and a thermocouple, the sample temperature can be

increased by thermal contact while controlling it. Furthermore, a top contact placed above the

manipulator slot can be connected to tip in order to heat it by applying a DC current. Indeed,

the polycrystalline tungsten tips used in our experiments must be heated to remove the oxide

layer present on their surface. By applying a DC current, the tips are heated by Joule effect

at high temperature until a orange color is obtained (∼ 1000K). This is usually achieved by

applying a current of about 2 to 3 amperes.

Analysis chamber : The biggest part of the STM is the analysis chamber. This is where the

STM stage is placed. The tip/sample are brought from the preparation chamber and placed

on a carousel with six slots. A wobblestick is used to transfer the tip or sample from the

carousel to the STM stage. The sample is mounted on a fixed slot. The tip in mounted on this

stage with the help of a magnet placed on top of a piezo-ceramic tube supporting the tip and

below the sample. The tip can be moved with the coarse approach, achieved thanks to slip-

stick inertial sliders. This is used for large movement (5mm in XY and 10mm in Z). The fine

approach of the tip to the surface and the image scans are made with the piezo-eletric tube.

At room temperature, the piezo can scan over an area of 10×10µm. But as the temperature

decreases so the piezo sensitivity and a smaller area can be covered. At 4K, the tube scan area

is reduced to 1.8×1.8µm. The whole system is suspended with metallic springs in order to

reduce vibration from outside and increase the mechanical stability. The STM stage is placed

inside two cryostats connected to the STM for cooling down the system. There is one outer

cryostat that completely covers the STM to shield it thermally. A smaller one is placed directly

in contact with the STM stage to cool it down. The outter cryostat can be filled with liquid

nitrogen to reach a temperature down to 77K. The inner crysotat can be filled with nytrogen

and liquid helium to cool the STM down to 4K.

2.2.4 Scanning Tunneling Spectroscopy (STS)

In the above section the focus was made on the topographical mode of the STM allowing the

study of structural and morphological properties of surfaces. But it is also possible to obtain

information about the electronic structure of a sample. From Eq.??, the parameter on which

the tunnel current depends are the voltage V and the tip-sample distance d. In the topographic

mode the voltage V was fixed while the current I was regulated against d by the feedback loop.

In the spectroscopic mode, the tip is kept upon an area of interest on the sample. Then to

access the electronic properties of the samples the voltage is swept while the feedback loop is

open (see Figure ??). This way the empty and filled states of the sample can be probed.
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Figure 2.8: Evolution of the different parameters of the tunneling junction during a STS experiment. The tip-

sample distance Z is fixed and the feedback loop is open. The bias V is ramped while the current I the measured.

At the same time, the derivative (dI/dV ) of the current is recorded thanks to a lock in amplifier.

If the density of states of the tip is assumed constant, then the tunneling current can be

written:

I ∝ ρt(E)
∫ ev

0
ρs(E)T (E,V ,d)dE (2.24)

By keeping the tip at distance d fixed (by opening the feedback loop) and changing progres-

sively the bias from positive to negative values, the Fermi level of the tip will be shifted up or

down compared to the Fermi level of the sample. At positive bias, an electron will tunnel from

the tip to the sample (see Fig.??) giving a tunnel current proportional to the empty density of

states of the sample. At negative bias, it is the electron from the filled states of the sample that

tunnels to the tip and the tunnel current yields the filled states of the sample. One of the first

report of this study has been done by Feenstra and al [?].

Thanks to a lock-in amplifier, we can modulate the voltage and get a direct measurement

of dI/dV . The main interest of the dI/dV over the basic I(V) curve, is that the dI/dV is directly

proportional to the LDOS. Thus from Eq.?? we have :

dI
dV

= eρtρs(eV )T (eV ,eV ) + eρt

∫ eV

0
ρs(E)

d
d(eV )

(T (E,eV ))dE (2.25)

Since ρt is considered as a constant, dI/dV is dependent of the variation of the density of

state of the sample ρs. As T (E,eV ) is an exponential function it induces a larger contribution

of the states lying at higher energy from the Fermi level. Thus, the signal of dI/dV increase

exponentially too and may become significant at higher bias in semiconductor. It has been

shown by Feenstra et al [?][?] that this ’parasite’ dependence could be cancelled by normalizing
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the differential conductance by a factor I/V :

∂I
∂V
I
V

∝
ρs(eV ) +

∫ eV
0

∂
∂eV (T (E,eV )) ρs(E

T (eV ,eV )dE

1
eV

∫ eV
0

T (E,eV )
T (eV ,eV )ρs(E)dE

(2.26)

The second term of the numerator is a slowly decaying background term. From this observation

we can conclude that the main dependence of ∂I
∂V /

I
V come from the LDOS of the sample ρs(eV ).

Thus one can write :

∂I
∂V
I
V

∝ ρs(eV ) (2.27)

This type of spectroscopy gives us information about the density of states in a very localized

manner. Coupled with the high resolution of the topographical mode, one can search from

structure and precisely characterize its electronic properties at the nanoscale.

Lock In Amplifier

While acquiring an I(V) curve may be a relatively easy thing to do, getting access to the dI/dV

signal is trickier. One could say that it could be accessible by averaging multiple I(V) curves

and using the numerical derivative of the current. Unfortunately, due to the current fluctua-

tion (due to mechanical instability, electronic noise in the junction and in the instruments, for

example) this method has a poor signal-to-noise ratio, making the spectroscopic features hard

to distinguish. A better alternative is to use a Lock-In amplifier instead.

A Lock-In amplifier use a phase sensitive detection and it allows to measure the amplitude of

an AC signal even in presence of strong noise. The noisy signal can be written as :

Vs(t) = A.cos(2πfst +θs) (2.28)

If this signal is modulated by a reference :

Vr(t) = B.cos(2πfrt) (2.29)

Then we obtain :

Vs(t)×Vr(t) =
1
2
AB(cos(fr − fs +θ) + cos(fr + fs +θ)) (2.30)

By artfully selecting fr = fs , then the product transforms into 2 terms : a phase dependent

term 1/2ABcos(θ), and an oscillating term at the sum of the frequency 1/2ABcos(2fr +θ). The

constant term can be selected by applying a low pass filter with a threshold lower than fr . This

way the output signal contains information about the phase and the amplitude of both signals.

In the case of STM, a small high-frequency sinusoidal signal Vmod sin(ωmodt +θ) is used to
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modulate the bias voltage at the frequency ωmod . Thus, in case of small modulation Vmod , the

tunnel current can be expanded in a Taylor series :

I(Vbias+Vmod sin(ωt +θ)) ' I(Vbias)+
d
dV

I(Vbias)Vmod sin(ωt +θ)+
d2

dV 2 I(Vbias)V
2
mod sin(ωt +θ)+...

(2.31)

As explained above a reference signal Asin(ωmodt +θr ) at the same frequency ωmod is used to

modulate the current through a multiplier circuit. The mixed signal is composed of a constant

term,1/2A dI
dVbias

cos(θ −θr ), and several harmonics that can be removed with a low pass filter.

In order to optimize the phase difference and get a higher amplitude with respect to the mod-

ulated signal the Lock-In also possessed a phase shifter. As a result, the output of the lock-in

amplifier provides the quantity dI(V )/dV .

2.2.5 The spectroscopy technique applied to semiconductor colloidal quantum
dots

A large part of this work relies on the study of colloidal quantum dot (QD) by STS. As the

QDs are usually not grounded and deposited on a substrate, the interpretation of the STS data

requires additional explanations.

Double Tunneling Barrier Junction

The QDs have to be deposited on a flat and conducting substrate either by binding the QDs

to the substrate using chemical linkers, or by drop casting the suspension on a clean surface

resulting in a close-packed array. Then, STM can be performed to characterize the QD indi-

vidual shape or their packing when arranged in an assembly. The electronic structure of a

QD is obtained by stabilizing the STM tip above a selected QD and the current is acquired

as function of the bias applied between the tip and the substrate. In this case, the system

Tip/QD/substrate form the so-called Double Barrier Tunnel Junction (DBTJ) [?], as shown in

Fig.?? (A). The tip-QD junction consists of a vacuum gap, whereas the junction between the

particle and the substrate is mainly due to ligands.

Voltage distribution in the double-barrier tunnel junction : In the case of a DBTJ, the ap-

plied voltage will be distributed over the two barriers. The distribution of this voltage over

the DBTJ is characterized by the lever arm η. From an electrical point of view, the DTBJ can

be modeled as two capacitors in series according to the equivalent circuit shown in Figure ??B.

The total applied voltage Vtot is distributed over the capacitors with one fraction dropping over

the QD-substrate junction :

VQD/sub = Vtot
C1

C1 +C2
(2.32)

and the other over the tip-QD junction :

Vtip/QD = Vtot
C2

C1 +C2
(2.33)
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Figure 2.9: A) Schematic representation of a DBTJ configuration. B) Equivalent circuit of the DTBJ system. C)

Electron tunneling through the lowest conduction level e1 at positive bias. D) Hole tunneling at the highest valence

level h1 at negative. The effect of the bias positive (negative) voltage on the energetic position of the QD discrete

states is illustrated by the shift upward (downward) from the solid lines to the dashed lines.

The lever arm η is defined as the fraction of the voltage applied between the tip and the

substrate that drops between the QD and the tip, thus :

η =
Vtip/QD

Vtot
(2.34)

Thus the effective potential at the QD will not be the same as the total applied bias when

η < 1. In this case the discrete states of the QD will shift with the applied bias Vtot from their

zero-bias position (Figure ??(C) and (D)) because a higher bias Vtot has to be applied to the

DBTJ in order to provide to the charge carrier enough energy to tunnel into the QD. Therefore,

resonance peaks corresponding to the energies of levels relative to the Fermi level e1 and h1

will occur at specific voltages Ve+
1

and Vh−1 which depend of the lever arm η [?].

In addition the tunneling rate of the electrons across the two barriers needs to be taken into

account. Tunneling spectroscopy on QD is based on resonant tunneling of electrons (holes)

across the DTBJ, as shown in Figure ??(B) and (C). It involve two processes, tunneling from

the tip and the QD at the rate Γin, and tunneling from the QD to the substrate at the rate Γout.

The first one (Γin) can be modified by changing the width of the tip/QD barrier (by moving

the tip closer for example) but the second one (Γout) is fixed. The ratio of these rates, Γin/Γout,

will determine the electron occupation in the QD. This refers to the number of electrons added

inside the QD. It will play a key role in the interpretation of tunneling spectra. Mainly, two

tunneling regimes can be identified depending on the Γin/Γout ratio.

Shell Tunneling regimes

When Γin � Γout, the so-called shell-tunneling regime occurs and no more than one electron

(hole) can be present at a time in the QD. When one electron is injected from the tip it is
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evacuated trough the substrate by the time a second electron arrives from the tip [?, ?]. In this

regime, the peaks on both sides of the zero conductance gap are related to the electrons and

the holes [?]. The voltages at which the resonances through the quantum states e1 and h1 occur

can be written :
V +
e1 =

e1 +Σe

ηe
(electron) V −h1 =

h1−Σh
ηe

(hole) (2.35)

Here Σe and Σh stand for the polarization energy of the hole and the electron, i.e., the energy

needed to inject an electron (hole) inside a QD while the polarization charge left behind in the

electrode still interact with the electron (hole). As mentioned above the value of these voltages

is strongly related to the lever arm η and thus to the nature of the DBJT. The polarization

energy depends on the dielectric mismatch between the QD core and its surrounding [?, ?] :

Σ =
1
2

e2

4πε0R
(

1
εout
− 1
εin

) +
0.47e2

4πε0εinR
(
εin − εout
εin + εout

) (2.36)

Where R is the radius of the QD, εin the dielectric constant of the QD and εout the effective

dielectric constant of the environment of the QD. The zero conductance gap ∆VSTM = V +
e1−V

−
h1

measured in STS experiments (see Figure ?? C and D) is then related to the real band gap (e1−h1)

by the separation between the electron and hole resonances and the polarization energy :

ηe∆VSTM = ηe(V +
e1 −V

−
h1) = e1− h1 +Σh +Σe ≈ e1− h1 + 2Σ (2.37)

where the approximation Σh + Σe ≈ 2Σ is good as the polarization energy is not sensitive to

the exact shape of the wavefunction. The dI/dV spectra directly reflect the LDOS of the QD

because electron-electron interaction are not present in the shell-tunneling regime. All the

features of this regime are showed in Figure ?? (C) where a CdSe QD is measured under shell-

tunneling condition [?].

Shell filling regime

When Γin� Γout, it becomes possible to fill the QD with two electrons (holes) at the same time.

This leads to the splitting of the first resonance peak because of electron-electron repulsion.

Hence, the voltage at which the resonance through the first electron level e1 can be re-written :

V +
2e1 =

e1 +Σe + Je−e
ηe

(2 electrons in the dot) (2.38)
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Figure 2.10: Illustration of the two different regimes in tunneling spectroscopy on isolated QD. The experimental

result for shell tunneling regime acquired on CdSe QD [?] is shown in (c) while shell filling experimental spectrum

of an InAs QD [?] is shown in (d). Figures taken and adapted from [?] and [?]

Where Je−e correspond to the electron-electron repulsion [?, ?] :

Je−e =
e2

4πε0R

(
1
εout

+
0.79
εin

)
(2.39)

Just like the polarization energy, Je−e depends on the mismatch between the dielectric constant

of the QD (εin) and the effective dielectric constant of the surrounding (εout). The characteristic

features of the shell-filling regime is visible in the Figure ?? (d), which shows experimental

results on an InAs QD [?]. The doubling of the first peak above the zero conductance gap at

positive bias on this spectra illustrates the splitting of the first electronic level because of the

electron-electron interaction.

Electron or hole transport on both sides of the gap

In the case of colloidal QD with long native ligands or having core-shell heterostructure, a

more symmetric potential distribution over the DBTJ happens, leading to a lever arm with

value around η = 0.5. Moreover, the Fermi level is not always positioned midgap and lies

closer to the valence or conduction band. If these two effects combine then it is possible that
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tunneling of electrons (holes) on both sides of the zero conductance gap occurs. For example,

at negative bias, it is possible that before the tip Fermi level reaches resonance with the first

valence level of QD, the substrate Fermi level becomes resonant with a conduction band level,

resulting in tunneling through this level. In this case, the zero conductance region ∆VSTM is

not related to the separation between the first conduction and valence level. ∆VSTM is smaller

than the actual gap, leading to misleading interpretation of the gap value. If holes tunnel on

both sides of the zero conductance region, ∆VSTM is given by :

∆VSTM =
1

η(1− η)
(h1 −Σh) (2.40)

For the electron this relation changes to :

∆VSTM =
1

η(1− η)
(e1 +Σe) (2.41)

In the case of tunneling through the electron level e1, this results in a conductance peak at a

Figure 2.11: (a) and (b) panels show schematics of tunneling of holes through the h1 valence level both at (a)

negative and (b) positive bias. (c) and (d) panels show schematics of tunneling of electron through the e1 valence

level both at (c) negative and (d) positive bias. In the schematic diagrams, the position of the Fermi level of the

substrate is kept constant. Figures taken and adapted from [?]

negative bias V −e1
given by :

V −e1
= − e1 +Σe

e(1− η)
(2.42)

Alternatively, in the case of tunneling through hole level h1, the conductance peak occurs at a

positive bias V +
h1

given by :

V +
h1

= − h1 −Σh
e(1− η)

(2.43)

By combining the two above equations, an expression of the lever arm for unipolar transport

can be found for both hole and electron unipolar transports :

η =
V +
h1

V +
h1
−V −h1

(hole) η =
V −e1

V −e1 −V
+
e1

(electron) (2.44)
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The easiest way to identify the nature of the peaks at positive and negative bias in a STM

spectra is by looking at the shift in the peaks voltages as function of the setpoint current.

Indeed, by increasing the setpoint current, the tip-QD distance changes, modifying the lever

arm. At positive bias, V +
e1

will increase while V +
h1

will decrease and shift toward negative bias as

the lever arm is reduced. At negative bias, on the other hand, the opposite happens where V −e1

will move toward positive bias and V −h1
will shift toward negative bias when reducing η. This

behavior will be important to detect in order to identify the nature of the peaks measured in

chapter 3.

2.3 MultiProbe Scanning Tunneling Microscopy

The goal of the former section was to present scanning tunneling microscopy. The main ad-

vantages of this technique are also its worst drawbacks. Indeed, the information about the

electronic structure or the topography only relies on a very local, nanometric scale. However,

the integration of nano-object and nano-devices into more complex systems requires the study

of collective phenomena of conduction inside these structures. Most of the time, the transport

properties of material are investigated with the help of lithographed contacts. But that method

is very intrusive as it involves many technological processes on the sample. Moreover it does

not allow much flexibility as the contact cannot be moved once deposited (for varying the dis-

tance between contact for example). On the other hand, MultiProbe STM is an experimental

technique allowing to investigate transport properties on length from hundred of microns to

hundred of nanometers under ultra high vacuum condition. The MultiProbe STM possess four

independent STM tips that are used to contact the sample and measure its resistivity by vary-

ing the intertip distance. The addition of a SEM above the four STM tips allow to selectively

choose any area of interest on the sample. The MultiProbe allows for flexible and non destruc-

tive resistance measurements that lithography cannot provide.

2.3.1 Electrical transport measurements

Principle of the four-point measurement

In order to characterize objects of small dimensions, the tips of the microscope are used as

contact electrodes. The easiest way to get information about the resistance of a sample is to

perform two-point resistance measurement, as shown in Fig. ?? (a). In this configuration the

two tips are used to inject the current and to probe the voltage as well. Therefore the measured

resistance Rmeasured = V/I does not only include the contribution of the measured sample, but

also the one of the parasitic resistance that come from the contact of the tip with the sample

Rmeasured = 2RContact + Rsample ( the contact resistances are assumed to have the same value

here). It should be noticed that in macroscopic measurements the contact resistance can often

be neglected. But since the STM tip is usually small and sharp, the contact area with the

sample is very small, leading to a large resistance contact. In the case of very good conductors
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the contact resistance will dominate [?]. Therefore, four-point measurements are mandatory

for contacting nano-scale object.

Figure 2.12: Two-tip resistance measurement in which the contact resistance influences the measured total re-

sistance. Four-point resistance measurement, on the contrary, excludes the influence induced by the contact resis-

tances.

The four-point measurement circuit is showed in Fig.?? (b). Here, two tips are used to

inject and collect the current into the sample while the two central tips are used as probes to

measure the potential drop induced by the injection of the current. The current injected inside

the sample is independent of the contact resistance at the source and drain tips. If the voltage

measurement is performed with a large internal resistance such as RV � Rsample + 2Rcontact

then the contribution of the contact resistance to the measured resistance can be neglected [?].

Four-point measurement at the small dimension

At the macroscopic scale, the current flowing through a semiconductor during a four-point

measurement can pass trough different channels, like the surfaces states (that can be associated

with particular atomic reconstruction [?]), through space-charge layer (which can be caused by

the pinning of the Fermi level at the surface of the semiconductor for example) and finally

by the states from the bulk, independent of the surface [?]. Depending on the tip distance,

the number of accessible channels can be varied. For example, at small tip separation, the

current lines will stay shallow and the major contribution arises from the surface conductivity.

These different conduction channels are illustrated on Figure ??. Figure ?? shows the four-point

resistance as function of the distance d between the tip is show for a clean Si wafer, i.e. with a

Si(111)-7×7 surface, and for the same wafer with the
√

3×
√

3 - Ag-Si(111) structure prepared.

The four-point measurements are carried out with the four tips in the linear and equidistant

configuration. The two different behaviors of the Si(111)-7×7 and
√

3×
√

3 - Ag-Si(111) surfaces

can be explained by considering the different channels discussed above.
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Figure 2.13: Four-point transport measurement on a surface at the a) macroscopic scale b) microscopic scale.

The distribution of current flowing therough the sample is schematically drawn. Figure taken from [?].

For a sample considered like a tridimensional and homogeneous resistive material, then

the measured resistance as function of the probe spacing is [?]:

R
4p
3D(d) =

ρ3D

2πd
(2.45)

Where ρ3D is the resistivity of a 3D sample. The tilted blue band in Figure ?? represents the

four-point measurement expected for a semi-infinite crystal following the above equation. But

it only fits the experimental data for the sample with the 7×7 surface and for probe spacing

between 10µm and 100µm. The central inset of Fig ?? (a) shows that the field lines are not

disturbed by the crystal geometry in this case. On the contrary, when the probe spacing d

exceed 100µm, the current cannot spread out due to the finite thickness of the sample. Thus

the current distribution becomes compressed by the sample geometry as depicted by the right

inset of Fig ?? (a). On the other hand, for small probe spacings (d¡10µm), a huge increase of

the resistivity is measured. This is due to the special atomic reconstruction of the Si(111)-7×7

surface that creates dangling bonds at the surface. Because of this reconstruction, a Fermi level

pinning in the middle of the gap is observed, creating a space charging region close to the

surface with a low carrier density. As symbolized by the left inset of Figure ?? (a) the current

only flows near the surface and does not reach the bulk. Therefore, the increase in resistivity

is explained by a transport in this space-charge layer which, in this case, consists in a poorer

conductor than the bulk.

The Si(111) -
√

3 ×
√

3 - Ag surface exhibits a very different behavior. For this system the

resistance shows a monotonous but small dependence on the probe spacing d. That is because

this sample possesses a bi-dimensional free electron gas at the surface. Therefore the transport

is dominated by this surface transport with a conductivity well above the bulk conductivity. In

this case, the resistance does not depend on the probe spacing d [?] :

R
4p
2D =

ρ2D

π
ln(2) (2.46)
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Figure 2.14: a) Four-point transport measurement on a Si(111) -
√

3×
√

3 - Ag surface (blue square) and a Si(111)-

7×7 surface (red square) at the macroscopic scale and microscopic scale. The distribution of current flowing through

the sample is schematically drawn. Figure taken from [?]. b) Voltage V(r )and current density J(r) profiles for a semi-

infinite 3D material and infinite 2D sheet. Figure taken and adapted from [?].

However the resistance measured by the four-point method is not a fundamental property

of the material, as it depends on the position of the tips on the samples. The equation above

shows how to extract the resistivity of the sample for the simplest probe configuration, the

collinear equidistant arrangement with a constant probe spacing d. But other configurations

exist and require corrections to get access to the resistivity or conductivity of the samples.

The different tip configurations

In the above section, the equations allowing us to extract the resistivity of a sample were valid

for equidistant configuration of the tips. Now, we will discuss different other configurations.

Depending on the sample configuration or on the tip shape, collinear equidistant arrangement

is not always easy to implement. In this case, the most general non-linear probe arrangement

equation can be used to access the sample resistivity (see Figure ?? (a)).

Thus, in the most general case (Fig ?? (a)), the current is injected by tip 1 and collected by

tip 4 while voltage is probed by tips 2 and 3. The Ohm law for the 3D case results in :

R
4p
3D(
−→
d1 ,
−→
d2 ,
−→
d3 ,
−→
d4 ) = −

ρ3D

2π
.

[
1

|
−→
d3 −

−→
d1 |
− 1

|
−→
d3 −

−→
d4 |
− 1

|
−→
d2 −

−→
d1 |

+
1

|
−→
d2 −

−→
d4 |

]
(2.47)
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Figure 2.15: Tip configurations for a four-probe measurement. (a) Most general non-linear probe arrangement.

(b) Linear equidistant probe arrangement. (c) Linear not equidistant probe arrangement with three tips spaced

equally by the distance s and one distance x being not equidistant. (d) Square probe arrangement with which an

anisotropy of the resistivity can be detected. From [?]

And for the 2D case :

R
4p
2D(
−→
d1 ,
−→
d2 ,
−→
d3 ,
−→
d4 ) = −

ρ2D

2π
ln

[
|
−→
d3 −

−→
d4 |.|
−→
d2 −

−→
d1 |

|
−→
d3 −

−→
d1 |.|
−→
d2 −

−→
d4 |

]
(2.48)

Linear non-equidistant configuration : An interesting configuration is the linear non-equidistant

configuration, showed in Figure ??). Indeed, this method allows to perform resistance mea-

surements while moving only one tip. One can see that this is easily the most convenient and

efficient way to perform four-point measurement as function of the distance. Therefore only

one tip distance, labeled x in Figure ?? is changed while the two other tip distances, labeled d,

are fixed. In this case, the 3D equation becomes :

R
4p
3D(d,x) =

ρ3D

2π
.

[
1
x

+
1

2d
− 1
d + x

]
(2.49)

and the 2D case :

R
4p
2D(d,x) =

ρ2D

2π
.

[
ln(

2d
x

)− ln(
d

x+ d
)
]

(2.50)
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Figure 2.16: Tip configurations for a four-probe measurement. Linear not equidistant probe arrangement with

three tips spaced equally by the distance s and one distance x being not equidistant.

Square Configuration : Until now we assumed that the sample exhibited isotropic conduc-

tivity. But in many cases it may not be the case and the standard in line configuration cannot

bring information about the anysotropy of the conductivity. For a bi-dimensional transport

on an infinite surface, the result of a four-point measurement with an equidistant spacing d

between the tip in linear configuration is given by [?] :

Rlinear =
1

π
√
σxσy

ln(2) (2.51)

This equation is similar as Eq.?? where R does not depend on the tip spacing d. For the same

resistance measurement with the tip aligned with y axis, the conductivities σx and σy need

to be permuted. This does not change the result and thus it is not possible to differentiate

σx from σy . It turns out that the linear four-point measurement is not sensitive to a two-

dimensional conductance anisotropy. However, the square configuration (also called van der

Pauw configuration,[?]), showed in Figure ?? (d), is more suitable because it is sensitive to this

anisotropic surface change in the conductivity. Here the tips on one side (for example 1 and 2)

inject and drain the current and the other two (3 and 4) probe the voltage. Thus four rotation

angles can be measured for one fixed orientation of the square, by assigning different probes

as current and voltage probes. For the square configuration the resistance becomes :

Rsquare =
1

2π√σxσy
× ln

(
1 +

σy
σx

)
(2.52)

In this case a rotation of 90° implies a permutation of σx and σy in the above equation. There-

fore the measured resistance changes if the sample exhibits a conductance anisotropy. By ro-

tation of the square by an angle θ, multiple directions can be probed on the same area. The

four-point resistance resulting from such a measurement configuration, determined by Poisson
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equation becomes [?, ?] :

Rθ =
1

2π√σxσy
× ln


(
σx

σ y
+ 1)2 − 4cos2θ sin2θ(

σx

σ y
− 1)2

(sin2θ +
σx

σ y
cos2θ)2

 (2.53)

Figure 2.17: SEM images of rotational square four-point resistance measurements with 60 µm probe spacing,

at (a) θ = 30, (b) θ = 45°, (c) θ = 60°, and (d) θ = 90°. (e) Angle dependence of the measured resistance of the

single-domain 4 × 1-In surface. Experimental data are fitted by Eq.??. Figures taken and adapted from [?]

An example of an angle dependence measurement of the four-point resistance is shown in

Figure??. Here the four-point measurement reveals an anisotropic conductance in the surface

reconstruction of a 4×1-In layer formed on a Si(111)-7×7 wafer. The fit visible in Figure?? (e)

corresponds to the equation ??.

2.3.2 The Nanoprobe, A multiprobe STM

Presentation of the microscope

The Nanoprobe (Omicron) is a sophisticated instrument that allows for local and non-destructive

four-point resistance measurements. In that regard, it is more accurate to see it non as a stan-

dard STM but a multimeter specially designed for the investigation of electrical properties of

materials down to the nanoscale.

Figure ?? shows a picture of the Omicron Nanoprobe. Just as the Omicron LT-STM de-

scribed earlier, the UHV system consists of preparation chamber (red box), load lock (yellow

box), an analysis chamber (blue box) and a SEM (green box). The first two elements are similar

to the Omicron LT-STM and therefore won’t be described again here. On top of the analysis

chamber the column of the SEM is placed just above the sample and the tips. The presence

of this additional microscope is central as it allows for probe positioning on the sample, espe-

cially when the probe spacing reachs sub-micron distances. The analysis chamber is isolated
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from the preparation chamber. It contains the characterization platform and a storage carousel

which possesses 10 slots.

Figure 2.18: The Omicron 4-probes STM chamber (blue box), SEM (green box), preparation chamber (red box)

and load lock (yellow box).

The Figure ?? shows the platform containing the four STM scanners labeled as Tip 1 to

4. The scanners are divided in two types, three Low Resolution (LR) tube scanners and one

High Resolution (HR) stack of piezoceramics. For the latter one, the tip is closer from the

sample and thus less sensitive to mechanical vibrations. This increase of stability is essential

to image the atomic structures of clean and well-ordered surfaces. With the help of the SEM a

’rough’ approach of the tips to the surface can be performed with sliders for coarse positioning

while making sure the tips does not touch each other. Once this is done, a finer approach is

performed thanks to the piezoelectric tube scanner or the pizeoelectric stack actuator.

Figure 2.19: Left : Picture of the platform with the four independent STM scanners. The one labeled as Tip 3 is

a High Resolution (HR) scanner while the three others are Low Resolution (LR) scanner. A sample is also visible on

the platform. Right : SEM image of four sharp STM tips above a surface.
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Tips preparation

All the tips used in the different STM experiments were home made tungsten tips. The pro-

cedure to prepare these tips involves an electrochemical etching of a thin polycristalline wire

of tungsten. The tungsten wire is immersed into a sodium hydroxide (NaOh) solution sur-

rounded by a circular electrode and a DC voltage is applied between the tip and the solution.

The reaction governing this electrochemical process is :

cathode : 6H2O + 6e− → 3H2(g) + 6OH−

anode : W(s) + 8OH− → WO2−
4 + 4H2O+ 5e−

full reaction : W(s) + 2OH− + 2H2O → WO2−
4 + 3H2(g)

(2.54)

The ionic current etches the dived part of the wire. At the meniscus formed by the wire and

the solution a dense layer WO2−
4 is formed. Under the effect of gravity, this layer drops and

protect the bottom part of the wire. At the bottom of the wire (see Figure ??). This leads to a

faster etching of the wire at the menicus (see Figure ?? (c)). After a while the wire becomes so

thin that its tensile strength cannot sustain the weight of the lower part leading to the splitting

of the two part. This technique allows for the preparation of sharp tips, which is very important

in order to have good and localized contact in the four-points measurements.

Figure 2.20: Illustration of the tip etching method. a) shows the formation of the meniscus. b) illustrate the flow

of WO2−
4 towards the lower end of the wire leading to the formation of dense layer of WO2−

4 around the bottom of

the wire and the necking phenomenon. f) shows the step where the lower part breaks off.

After the electrochimical etching, an oxide layer forms at the tips surface. It is necessary

to remove this oxide because it degrades the quality of contacts. Once the tips have been

transferred into the UHV chamber, the tips are put in contact with a tantale electrode and a

current is injected through the tip in order to anneal it thanks to Joule effect. Typically, tips
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are annealed for 45 minutes and currents as high as 2 or 3 amperes are needed to remove

completely the oxide layer.

Working principle

The STM technique is very useful for acquiring high resolution images but paradoxically this

asset may be a drawback. Indeed, the STM always operates at high resolution making it use-

less to selectively look for nanostructures that are dispersed over very large areas without being

very time consuming [?]. For this reason the Nanoprobe is coupled with a SEM placed above

the sample and the four tips. Therefore, the low magnification of the SEM allows the direct

observation of the tips and their position in real time, avoiding any collision between the dif-

ferent tips. It is also possible to have a quick overview of the sample surface and search for

areas of interest whereas STM takes much longer for a single scan with limited sizes of 1 to

2 microns at most. Finally, it makes it possible to look at the shape of the tips used for the

contact. As the tips are the central elements of the four-point measurement, their shape may

greatly influence the quality of the contact (a big, curved tip may not provide a good ohmic

contact). The SEM also facilitates the approach procedure of the tips. In this regard, two steps

are required to approach safely the tips on a surface :

Coarse approach : The four tips are first brought (by eyes or thanks to a CCD camera) under

the SEM. Subsequently, the tips are approached with the help of the electronic system while

visually controlling their position with the SEM. The control of the tip-sample distance is made

by manipulating the working distance of the SEM, thus by focusing the electron beam on the

tips, and comparing it to the working distance of the sample. With this approach, the tips

can quickly be approached at a distance of 50 µm maximum. Under this distance the risk of

crashing the tips becomes too high.

Fine approach : Once the tips are sufficiently close to the surface, the final approach is made

thanks to the STM control system. The user sets the feedback loop parameters and polarizes

the tip. If the tip is too far from the surface no tunnel current can be detected. When the fine

approach is launched, the piezo tube along the z axis lowers the tip until a tunnel current is

detected. If the piezo reaches its maximum extension without detecting any current, the piezo

withdraws the tip and the feedback loop is turned off. Then the STM controller lowers the

tip with the coarse motors on a distance smaller than the minimum to the piezo extension in

order to avoid any risk of collision between the tip and the surface. After this the feedback

loop is reactivated and the piezo lowers the tip again. This procedure is repeated until a tunnel

current is detected allowing for a safe and controlled approach of the tips.
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Figure 2.21: (a) SEM image (5mum × 4 µm; 5 kV) of Sr3V2O8 nanorods grown on the SVO matrix together with

two STM probes. (b) STM image (-1.5 V, 600 pA) of the area highlighted by a square in the SEM image. (c) I(V)

curves taken with a tip in contact with the SVO matrix (blue) or on a Sr3V2O8 nanorod (red). For each measurement

the reference ground was fixed by an additional probe connected to the SVO matrix. Figures taken and adapted

from [?].

Contact of the STM tips on a nanostructure : The combination of the MEB/STM is nicely

illustrated by Figure ??(a) where nanostructures of Sr3V2O8 grown upon a strontium vanadate

perovskite (SVO) matrix are investigated. The SEM allows to approach the tips without dam-

aging them and to place them over a selected nanorod above the surface. Then the tips are

brought in the proximity of the surface. Subsequently, a STM image is performed in order

to precisely select one nanostructure (Figure??(b)), position the tip above the nanostructure

and contact it. Thank to this approach the electrical behavior of one individual nanostruc-

ture can be investigated (Figure??(c)). This example illustrates the capability of the Nanoprobe

to investigate the transport properties of nanostructures. While only two tips where used in

this example, usually four tips are used to performed four-point measurement in any area of

interest of the sample.

Figure 2.22: a) SEM images of two tips above a metallic surface. The left tip shows a sharp shape adequate

for resistance measurement while the right is too big. b) Example of bended and twisted tips. c) SEM images of

tips that crashed into the surface and bent. Because they are bent it is difficult to identify which part of the tip is

contacting the surface.

Control of the tip shape : As mentioned above the SEM allows for a direct control of the

tip shape. This point is crucial in order to perform good resistance measurements. Figure ??
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(a) shows two tips with significantly different apex diameter. The right tip is clearly too big,

making it inadequate perform four-point measurements with small probe spacing. If the tips

are too severely damaged it becomes impossible to perform good ohmic contact between them

and the surface. Figure ?? (b) and (c) show examples of twisted tips. In Figure ?? (c) the two

tips are in contact with the surface, but because they are damaged it is difficult to accurately

identify the are of the tips that is contacting the surface.

2.4 Conclusion

This chapter discussed the basic principles and operating of the STM. Theoretical background

describing the quantum tunnelling effect between two electrodes has been introduced. The

exponential dependence of the tunelling current with the tip-sample distance make possible

the acquisition of STM images with atomic resolution. STS technique allowing to probes the

density of states and electronic configuration of a sample was presented. In a second step,

the principle of the four-point measurement and its variation at the small dimension were

discussed as well the different possible tip configurations, before presenting the multi-probe

STM technique.
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Chapter 3

Scanning tunneling spectroscopy of
square PbSe QD superlattice on gold
substrate

Quantum dots (QDs) solids composed of colloidal nanocrystals have been extensively investi-

gated in the past decade. These artificial solids are of high interest due to the use of QDs as

elementary building blocks in the composition of ordered assemblies [?]. Many types of QDs,

with different composition, size or shape, can be incorporated in a QDs solid. Moreover by

adapting the QD size one can change the band gap providing this class of material consid-

erable tunability and versatility. In these solids, the QDs are usually separated by inorganic

capping molecules that create a tunneling barrier limiting the mobility of the charge carrier [?].

Chemical strategies such as ligands exchange have been implemented to reduce the ligands size

improving the carrier mobility up to 5 - 20 cm2/(V.s) [?, ?, ?, ?]. But, so far, the deposition tech-

niques such as spin-coating or dropcasting have led to the formation of disordered arrays of

QD, lacking long range order [?].

More recently, superlattice of QDs with individual dots epitaxially connected through co-

valent bonds have been synthesized. These superlattices exhibit long range order over hundred

of nanometers [?, ?]. But surprisingly, mobilities as low as 2× 10−2 - 0.1 cm2/(V.s) [?, ?] have

been reported in such materials. Whitham et al showed that carrier transport in epitaxial super-

lattice of PbSe QDs still involves hopping of localized carriers from dot tot dot due to disorder

inherent in such self-assembly of QDs [?].

Structural analysis of epitaxial superlattice has been reported to explain the underlying

mechanism that linked disorder on the local arrangement of the QD and the superlattice dis-

order [?]. But experimental evidence and characterization of the local electronic properties of

these materials are still lacking. While optical spectroscopy may give some information in that

regard, it is still limited as it inherently involves transitions between two energy levels and
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does not individual energy levels. On the other Scanning Tunneling Spectroscopy (STS) can

provide these information. It has showed to be a reliable technique to investigate the proper-

ties of individual [?, ?] and arrays of QDs [?, ?].

Recently, Walravens et al [?] showed that the mobility and overall structural order of epi-

taxial superlattice of PbSe QDs could be greatly improved by thermally treating the QD film.

Following this procedure, we investigate by STM and STS the local electronic properties of

PbSe QDs superlattice, before and after annealing it.

A solution of nearly monodisperse PbSe QDs with a truncated shape and a 5.8 nm diameter

was prepared by reacting lead oleate and trioctylphosphine selenium according to literature

procedure [?]. In a second step, the superlattice formation was triggered at the ethylene glycol-

air interface by the injection of aniline into the subphase (see Figure ??). This step induces a

striping of all the native Pb-oleate ligands from the (100) facets of the QDs, thus exposing the

underlying stoichiometric PbSe facets. This leads to the epitaxial connection of the QDs and

to the formation of a square geometry superlattice [?]. The reaction occurs within 30 minutes

at room temperature. Then the as-synthetised superlattice was transferred to a gold substrate

or a carbon grid by the Langmuir-Schaeffer deposition technique (see Figure ??). The samples

were synthesized and provided by the group of Zeger Hens at Ghent university.

Gold substrat

STM

Carbon grid

STEM

Ethylene glycol

PbSe QDs

+ aniline

PbSe QDs

superlattice

Figure 3.1: Illustration of the superlattice formation and of its transfer on various substrates

3.1 Scanning Transmission Electron Microscopy (STEM) images of
PbSe QDs superlattice

In order to check the arrangement of QDs, the QDs superlattice was deposited on a STEM grid

and investigated by Scanning Transmission Electron Microscopy (STEM). The STEM images

were recorded with a FEI Titan Themis operated at 300kV. The STEM images were obtained

by Ahmed Addad at UMET (Lille University). In STEM, an electron beam is accelerated with a
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high voltage (300 kV in our case) and focused on the sample thanks to magnetic scanning coils.

The electron beam crosses the sample and images are formed by collecting scattered electrons

with an annular dark-field detector. It is also possible to perform Electron Energy Loss Spec-

troscopy (EELS) mapping of the superlattice as shown in Figure ??.

Figure ?? A confirms the epitaxial connections of PbSe QDs through the (100) facets, creat-

ing a superlattice with a square geometry. This is consistent with the ligand stripping triggered

by the addition of aniline during the synthesis. The EELS mapping (Figure ?? (B) and (C)) shows

the distribution of lead and selenium atoms over a few connected QDs. The two elements are

equally distributed over the core of the QDs and the atomic bridge (necking) connecting the

QDs. Figure ?? (A) shows the STEM image of three perfectly attached QDs with full and ho-

mogeneous atomic bridges between the QDs. On these high-angle annular dark-field imaging

(HAADF) STEM images, each white dot corresponds to an atomic column. Here they are sepa-

rated by 6.12 Åwhich corresponds to the atomic lattice of PbSe. We attribute the blurry area on

the side of the QDs to the remaining ligands still attached on the (111) facets. The interaction

between the focused electron beam and these inorganic and non crystalline species results in

these blurry stains.

Figure 3.2: STEM High-angle annular dark-field imaging (HAADF) images of 5.8 nm PbSe QDs after aniline

treatment (A). (B) and (C) Electron Energy Loss Spectroscopy (EELS) mapping of on the same area as (A) revealing

the equal distribution of Pb and Se over the superlattice. (D) overlay of lead and selenium mapping. Scales bar are

5 nm.

Unfortunately, the perfect alignment showed in Figure ?? (A) is not systematic to the su-

perlattice. Typically, self assembly of QDs into a superlattice gives rise to structural disorder
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of various nature. In Figure ?? are shown recurrent defects, such as the missing connection

between the dots (red arrow in Figure ?? (A)). Poor alignment of the atomic lattice of the QDs

during the formation of the superlattice can lead to the formation of dislocations. This is shown

in Figure ?? (B) where the atomic lattice orientation of the QDs on the right does not align with

the atomic lattice of their left neighbors. This results in a dislocation in the superlattice and a

strain into the QDs at the grain boundary. Size dispersion can also be a factor of disorder as it

may lead to voids in the arrays and create missing connections between QDs as illustrated in

Figure ?? (C).

Figure 3.3: STEM High-angle annular dark-field imaging (HAADF) images of 5.8 nm PbSe QDs after aniline

treatment. (A) Example of perfectly connected QDs. Scale bar is 2 nm. (B) Dislocation in the superlattice originating

from the misalignment of the atomic lattice of the QD. Scale bar is 5 nm. (C) Example of a significantly smaller QD

leading to missed connections. Scale bar is 5 nm.

Moreover at the opposite of Figure ?? (A) the atomic column are not always visible on STEM.

Indeed, when the QDs are slightly tilted at least partially toward the 〈110〉 directions, it results

in a loss of periodicity in one direction in the atomic resolution STEM image.
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Figure 3.4: Disorder in the atomic lattice of QD superlattice. QDs are either aligned in the out-of-plane direction

(A) or tilted toward <111> (B) or rotated toward <110> (C). (D) show the connection between two QDs at a grain

boundary. The two atomic lattices are clearly misaligned.

The QDs can also be tilted from the out-of-plane direction by rotating toward the <111> or

the <110> directions. This is illustrated in Figure ?? where three QDs STEM images and their

associated Fast Fourier Transform (FFT) are shown. Figure ?? (D) illustrates the misalignment

of the atomic lattice between two QDs. The FFT clearly shows two orientations separated by a

small angle.

Figure 3.5: STEM High-angle annular dark-field imaging (HAADF) images of 5.8 nm PbSe QDs after aniline

treatment. Left : STEM image of the as-synthesized array and its associated Fast Fourier Transform (FFT). Right :

STEM of the annealed array and its associated FFT.

In order to improve the structural properties of the superlattice, the sample has been an-

nealed for one hour at 120°C. Two STEM images, taken before and after the annealing, are

shown in Figure ??. The STEM images of the as-synthesized sample exhibits an important

disorder and a plethora of structural defects such as defects in the necking between QDs, mis-

alignement of the atomic plane, or random orientation of the QDs are visible. Moreover, the

associated FFT clearly shows a strong dispersion of the QDs orientation. On the other hand, the

STEM image of the annealed superlattice taken on another region shows significant improve-

ment in the overall order the QDs, as shown by the FFT. Unfortunately, missing connection
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and tilted QDs are still present after annealing the sample.

3.2 STM images of PbSe QDs superlattice

Following the synthesis, the sample was loaded into an ultra high vacuum (UHV) system con-

taining a low-temperature scanning tunneling microscope and characterized at nitrogen tem-

perature (77K). Sharp tungsten tips obtained via chemical etching of a tungsten wire in NaOH

solution were used. STM images of the QDs were acquired in constant-current mode with

typical sample bias voltages and tunneling currents in the range of +2.5-5 V and 5-50 pA.

The differential conductance spectra were acquired by positioning the tip above a selected QD

after imaging the superlattice (see Figure ??(A)). Subsequently, the STS measurements were

performed by recording the current and its associated derivative dI/dV while the tip-substrate

voltage is swept with the feedback loop open. The dI/dV spectra were acquired using a Sig-

nal Recovery lock-in amplifier with a frequency of 480 Hz, a variable modulating amplitude

between 7 and 9 mV/RMS and a variable RC time constant between 10 and 20 ms. A large

number of curves with identical spectroscopic parameters were acquired (typically 100 spec-

tra) for each QD probed, attesting the excellent stability of the measurements. After this exper-

iment the sample was annealed at 150°C for 1 hour and new measurements were performed

subsequently.
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Figure 3.6: (A) Schematic of the sample and the experiment configuration. On the right the equivalent circuit of

the Double Barrier Tunneling Junction (DBTJ) related to the tip/QD/substrate system is shown. (B)STM image of

the PbSe nanocrystal superlattice transferred onto an Au substrate by the Langmuir-Schaeffer deposition technique

after annealing. (Set-point current 10 pA and bias voltage +5V). Scale bar is 20 nm.

Images of the superlattice were successfully acquired using STM. It was easier to perform

STM scan after the sample was annealed. This may be due to the desorption of ligands when

heating the sample under UHV. For example, a constant current height images of a monolayer

of PbSe QDs superlattice with square geometry after being annealed is shown in Figure ??
(B). From the STEM images shown previously it is clear that the QDs were connected with

atomic bridge with no ligands in between them. Thus the center-to-center spacing of the FFT

associated with the STM image (Figure ?? (B)), yields a direct measurement of the average QD
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size. An average center-to-center spacing (or dot-to-dot distance) of 5.81 nm is found. This

value is consistent with the mean size obtained by STEM. Therefore, it is possible to determine

the size of an individual QD directly from a high resolution STM image, since there is no free

space between the QDs. For example, Figure ?? (C) shows a single QD with its size directly

obtained from the height profile of Figure ?? (D).

3.3 STS measurements on as-synthesized PbSe QD superlattice

After imaging the superlattice by STM, the tip can be positioned above any selected PbSe QD.

STS measurements are done first on the as-synthesized sample right after introducing it in the

UHV chamber. Differential conductance spectra taken on five different QDs across the arrays

are shown in Figure ??. The spectrum shown in Figure ?? (A) exhibits classic characteristics of

a single QD with discrete peaks on both side of a Zero Conductance Region (ZCR) with the

Fermi level positioned in the middle of this ZRC. However, the others spectra shown in Figure

??, present more diversity in their electronic features, such as the position of the Fermi level,

the ZCR or the peaks voltage positions. For example, (B) and (E) spectra have their respective

Fermi level close to the peaks at positive bias, but in spectra (C) and (D) the Fermi level lies

closer to peaks at negative bias. Moreover, if spectra (A) exhibits a clean ZCR, the spectra (D)

and (E) reveal a series of peaks inside this region. These in-gap states most probably originate

from trap states.
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Figure 3.7: Different differential conductance spectra acquired on five different QDs across the as-synthesized

array at a temperature of T = 77K. The diversity in the QDs spectra is representative of the inhomogeneous overall

behavior of the sample.

The as-synthesized sample reveals plethora of different spectra and an inhomogeneous

overall behavior. From the STEM images previously shown, we attribute this variability to

the observed disorder, especially the faulted interfaces of some QDs necking (see Figure ?? (D))

and other defects that could lead to the creation of trap for the charge carriers. Figure ?? shows

two examples of trap states in STS spectra acquired on two different QDs. The I(V) curve of Fig-

ure ?? (A) exhibits a peak inside what should normally be the ZCR, near +0.3V. The associated

differential conductance shows a negative differential behavior indicating transport through a
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single quantum states. Such a state could be caused by a trap residing at the surface of the QD

[?]. On the dI/dV spectra of Figure ?? (B) we can easily identify the two peaks surrounding the

usual ZCR around +0.45V and -0.3V. But a careful inspection of the ZCR reveals the presence

of smalls peaks within this region. Figure ?? (C) shows a zoom of the ZCR of Figure ?? (B)

where such mid-gap states are visible, suggesting again the presence of deep trap states..

The presence of numerous traps states within the gap of the QDs could originate from

surface traps due to the removal of the remaining surface Pb-oleate ligands from the (111)

facets or could be caused by defects at the interface between two misaligned QDs (see Figure ??
(D)). However, Walraven et al showed that careful thermal treatment of these QDs superlattice

could improve faulty interfaces and increase the carrier mobility by one order of magnitude

[?]. In that regard, we investigated the electronic properties of the QDs in the same sample

after annealing it at 120°C for one hour in UHV.
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Figure 3.8: Current-Bias curves and their associated differentials conductance spectra measured on two different

QDs. The I(V) curve in (A) exhibits a clear peak around 0.3V. (C) shows a zoom in the gap region of the I(V) and

dI/dV of (B). The peaks present in (C) are attributed to trap states. The different peaks in the band gap are pointed

out by arrows.

3.4 STS characterization of annealed PbSe QD superlattice

After annealing the sample shows a much steadier and reproducible behavior. For a large

majority of the spectra a ZCR surrounded by sequence of peaks at positive and negative bias

have been observed. A representative example is given in Figure ??. These conductance peaks

are caused by the charge carriers through the discrete levels of the QD. This behavior is char-

acteristic of isolated QDs [?] or weakly coupled QDs and contrasts with the predicted band

formation [?] that would have rather given rise to step like DOS. The spectra shown in this fig-

ure was obtained by averaging over one hundred spectra as a mean to reduce the signal to noise

ratio. All these spectra are shown in Figure ?? (B), where a two dimensional representation of
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the one hundred consecutive spectra is presented. This illustrates the stable and reproducible

behavior of the tunneling resonances.

Moreover, this behavior was found to be very reproducible across the PbSe superlattice.

In order to illustrate this fact, six spectra acquired on QDs located in different areas of the

sample are shown. The high number of QDs exhibiting the same behavior (see Figure ?? (C))

contrasts with the inhomogeneous behavior of the as-synthesized sample previously studied.

This confirms that annealing the superlattice leads to a more homogeneous overall behavior in

the electronic properties of the QDs.

In order to get quantitative information about the broadening of the tunneling resonances

and determine if coupling does indeed occur between the QDs in the superlattice, we need to

determine the nature of these resonances and calculate the lever arm characterizing the voltage

distribution across the DBTJ. In this regard, two spectra have been acquired on the same QD

with increasing setpoint currents (see Figure ?? (A)). All the peaks, on both sides of the ZCR,

clearly shift towards negative voltage. Each peak at positive bias shifts towards lower voltage

value, unlike what is normally expected if electron tunnel through the ground state of the

conduction band [?]. Thus we can identify the two peaks surrounding the ZCR as the hole

ground state h1 contributing on both sides of the ZCR.
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Figure 3.9: (A) Tunneling spectrum measured on a QD with a diameter of 5.8 nm. (B) Two dimensional visual-

ization of the one hundred consecutive spectra averaged to obtain the spectrum in (A), demonstrating the stability

of the measurement. (C) Tunneling spectra acquired on six different QDs , with the same setpoint current of 200 pA

at a bias voltage of +0.8V. These spectra present a clear ZCR with peaks on both sides, showing the characteristic

behavior of an isolated QD.

The peculiar tunneling regime where the hole ground state contributes to tunneling on both

sides of the ZCR is call unipolar hole tunneling. This regime occurs in the case of a symmetric

double tunneling barrier junction [?], where the capacitance C2 of the tip-QD junction is of the

same order of magnitude as C1 the capacitance of the QD-substrate junction. It means that the

lever arm η characterizing the DTBJ approaches 0.5. Moreover, if the Fermi level in the QD

is not positioned midgap, then the same state can contributes on both sides of the ZCR. Here

the Fermi level lies close to the valence states suggesting a p-type doping. This observation is

consistent with transport measurements reported on similar superlattices [?]. The tunneling

processes occurring in this system are depicted in the Figure ?? (C) and (D) where the tunnel-

ing trough the first hole level at positive and negative bias are schematized. At negative bias

(Figure ?? (C)) hole tunneling through the valence level happens. At positive voltage the hole

ground state moves above the substrate Fermi level, before the electron ground state becomes

aligned with the tip Fermi level. (Figure ?? (D)). Therefore it contributes a second time to a

tunneling resonance but this time, at positive bias.
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Figure 3.10: (A) Scanning tunneling spectroscopy measurements acquired on the same QD at two different

setpoint currents. The shift towards negative bias of all the peaks at higher setpoint current indicates the presence

of a hole tunneling on both sides of the gap.(B) Variation of the peak position as function of the lever arm η. We

assume a QD with a diameter of 5.8 nm, yielding a band gap of 0.68 eV. This band gap correspond to the apparent

band gap measured at a lever arm of 1. V +
h1

and V −h1
correspond to the hole ground state at positive and negative

bias, V +
h2

and V −h2
to the hole first excited level and V +

e1 and V −e1 to the electron ground state. The black curve

correspond to the peak caused by the charging of the hole ground state, V +
2h1

and V −2h1
. The vertical dashed lines

corresponds to the lever arm obtained for the setpoint currents of 50 and 100 pA. The two down panels show

schematics of the tunneling process trough the first level of the valence band at negative (C) and positive (D) bias.

Quantitatively, the variation of the peak position with the setpoint current depends on sev-

eral parameters such as the lever arm η or the polarization energy Σ. Typically, η has to be

calculated which introduces some uncertainties. But in the particular case of unipolar tunnel-

ing, the lever arm can be accurately determined experimentally. It is experimentally deduced

thanks to the equation 1.44 of chapter 2 [?] :

η =
V +
h1

V +
h1
−V −h1

(3.1)

Thus a lever arm of 0.58 for the lowest setpoint is found. Then the lever arm decreases down to

0.51 for the highest setpoint. The voltage at which the resonances occur with the hole ground
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level h1 at negative and positive bias are :

V −h1
=

h1 −EF −Σ
eη

V +
h1

= −h1 −EF −Σ
e(1− η)

(3.2)

Similarly, the voltage corresponding to the resonance with the electronic ground level e1 are :

V −e1
= −e1 −EF +Σ

e(1− η)
V +
e1

=
e1 −EF +Σ

eη
(3.3)

Where Σ is the polarization energy and EF is the Fermi level.

Figure 3.11: (a) Evolution of the polarization energy Σ as function of the external dielectric constant εout . The

horizontal dashed lines correspond to values of εout typically used in literature, εout = 2 (Ligand capping [?]) and

εout = 10.75 (CdSe shell [?]).
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Figure 3.12: ((A) Two spectra measured on the same QD for different current setpoints. From STM image the

QD diameter was found to be 5.7 nm. Inset : STM image of the probed QD, (highlighted by the cross); Parameters

: +2.5V, 5 pA. (B) Simulated variation the voltage peak position measured in tunneling spectroscopy as function of

the lever arm. Calculation are performed for an external dielectric constant εout of 70, i.e., a polarization energy Σ

of 3 meV. In parallel, band gap of 0.680 eV was calculated for a PbSe QD with a diameter of 5.8 nm [?].

Knowing the diameter of the QD from the topographic STM image, we determine the the-

oretical band gap based on tight binding calculations [?]. For a PbSe QD with a diameter of

5.7 nm, the band gap is 0.68 eV [?]. In order to calculate the voltage positions of the peaks, we

need to take into account the polarization energy Σ, which is the energy needed to put an addi-

tional charge in the valence and conduction levels. This energy is determined by the difference

between the dielectric constant of the QD and the dielectric constant of its surrounding, εin

and εout, respectively. Based on equation 1.36 of chapter 2, this energy can be written:

Σ =
1
2

e2

4πε0R
(

1
εout
− 1
εin

) +
0.47e2

4πε0εinR
(
εin − εout
εin + εout

) (3.4)

While εin is known in the case of PbSe with εin = 227, evaluating εout in the present case is

challenging since the QDs are surrounded by others QDs, vacuum and remaining ligands. For

an isolated PbSe QD with a size of 5.8nm covered with its native inorganic ligands (εout = 2 [?])

the polarization energy can be calculated to be 125 meV. On the other hand, an isolated PbSe

QD with similar diameter but covered with a thin CdSe shell (εout = 10.75 [?]), Σ is estimated

to be 23 meV. In our system, the PbSe QDs are located inside an array of other PbSe QDs on

a metallic surface. Therefore, the dielectric mismatch should be far less important than in the

two cases mentioned above, leading to a smaller polarization energy. The evolution of the po-

larization energy as function of the external dielectric constant is plotted in Figure ??(A) for

a PbSe QD (εin = 227). We start by considering QDs with a non truncated cube shape with

six facets. In this case two facets are exposed to the vacuum while the four others facets are

exposed to the neighboring PbSe QDs. This yields a mean external dielectric constant εout =
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(4/6) × 227 = 151. In our experiment however, the QDs have a truncated cube shape with a

relative neck width of 0.6 [?, ?] which lowers the εout mean value. From this simple model we

estimate an external dielectric constant εout = 151 × 0.6 = 90.

We tried to estimate a value of εout more precisely. In this regard, a set of spectra, shown

in Figure ?? (A) were acquired on the same QD for an increased setpoint current. The peak

positions of V −h1
and V +

h1
were measured from Figure?? (A). Subsequently the lever arm was

calculated from equation ??. Then equation ?? was used to determine the evolution of the ZCR

as function of the lever arm for different εout. A good agreement was found between equation

?? and V −h1
and V +

h1
for an external dielectric constant εout of 70. This high dielectric constant

value is reasonable considering our system, as described above. Moreover this value is close

to the one estimated from the simple geometrical model used previously. The result is shown

in Figure ??(B). For this value of εout a polarization energy value of 3 meV is calculated from

equation ??.

Since the value of the lever arm clearly indicates a symmetric Double Tunneling Barrier

Junction, shell-filling should occurs. The energy needed to inject another electron inside the

QD (also called repulsion energy Je−e) depends on the external dielectric constant εout. Based

on equation 1.39 of chapter 2, this energy is written :

Je−e =
e2

4πε0R

(
1
εout

+
0.79
εin

)
(3.5)
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Figure 3.13: Set of 60 spectra taken in a row above a QD in the array. A charging event of the QD occur (red

curve) after a while but the charge is released and the QD comes back to its initial state (grey curve).
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With our estimation of a large εout, this repulsion energy has a low value (Je−e = 9 meV for

εout = 70). Thus, the dielectric mismatch between the internal and external dielectric constant

being far less important than in the isolated QD case, it it favorable to inject a new electron

without too much energy. Surprisingly, the spectra does not show any doubling of the peak,

hallmark of the injection of a second charge carrier inside the QD, characteristic of the shell-

filling regime. This means that two carriers are never simultaneously present inside the QD.

Therefore, in addition to evacuate the charge carrier through the substrate, the charge carrier

must find an other way to leave the QD. A likely path could be the hopping to the next neigh-

bors suggesting again a coupling between the QDs.

One could argue that the low Je−e energy is below the resolution limit achievable in STS

because the peak-peak voltage modulation is larger than 9meV in our experiments. The peak

in Figure ?? with negative polarization is, for example, very wide and could contain two very

close peaks. However, because the DTBJ is symmetric (η ∼0.5), Je−e have the same value for

the two peaks on both sides of the ZCR. If some charging were to occur, the peaks at positive

and negative bias should have similar width since they would both contain two unresolved

peaks. However, from Figure ?? it is clear that the peak at positive bias is systematically and

significantly thinner. Thus the broadening of the peak with negative polarization cannot origi-

nate from the presence of two unresolved peaks due to the injection of a second hole in the QD.

Occasionally we could find temporary charging of the QDs as illustrated in Figure ?? where

a second charge carrier becomes trapped inside the QD but manages to escape after a while.

The doubling of the lowest peak at positive bias is a sign of the presence of a second charge

carrier in the quantum state. This charging locally modify the potential resulting in a shift of

40 mV between the red end grey curves (see dashed lines on the left panel of Figure ??). The

splitting voltage on the lowest peak at positive bias ∆E is also of 40 mV. By converting this

repulsion energy by the lever arm and using Equation ?? an external dielectric constant of εout

= 27 is found. This value is lower than our estimation. We attribute this lower εout to missing

connections of this QD with its neighbors modifying the surrounding of the QD (see Figure ??
(C)). This would also explain why the QD is charging since the charge has more difficulties to

escape by hopping to the nearest neighbors. This εout value is still very high in comparison of

the literature value cited earlier, confirming the lower dielectric mismatch in our system. The

explanation of charging occurs at positive bias only is given in the following section.
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Figure 3.14: (A) Full Width Half Maximum of the peaks Vh1+ and Vh1− were obtained by fitting the resonance

peaks with gaussian functions. (B) Statistical graph of FWHM normalized by the lever arm of the first level at

positive bias (V +
h1) and at negative bias (V −h1) for a tenth of QDs. The blue line represents the FWHM of V −h1 for an

isolated PbSe QD with a diameter of 5.8 nm (from [?]). (C) STM image acquired for a bias of +2V and a setpoint

current of 10 pA. (D) dI/dV spectra (Iset = 100 pA) of the 3 individual QDs shown in the STM image in (C). Vertical

dash line are guide for the eyes.

In order to determine the degree of coupling between the QDs and get a quantitative mea-

sure of the broadening of the density of states, Gaussian functions were fitted to the peaks of

the spectra (Figure ?? (A)). Then we use the value of the lever arm calculated earlier to convert

the Full Width Half Maximum (FWHM) of the peaks into energy. Because there is some un-

certainty in fitting the higher order resonances, we only use the first resonance to determine

the coupling strength. The FWHM of the two peaks surrounding the ZCR were extracted for a

dozen of QDs. We only measured the FWHM for QDs which exhibited a clean ZCR, similar to

the spectra shown in Figure ??. The FWHM for an isolated QD of 5.8 nm diameter is 50 meV

for h1 [?] and is represented by a blue line in Figure ?? (B). The first valence resonance V −h1
is

found to be significantly larger than the isolated case. The FWHM of these peaks are found to
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range between 100 meV to 70 meV. The broadening of V −h1
indicates that quantum mechanical

coupling occurs between the valence states of the nearest QDs. On the other hand the lowest

peak at positive bias V +
h1

has a similar width as the isolated QD. This indicates that at positive

bias the electron tunnels through a decoupled, discrete state. At positive bias, due to the p-type

doping level, the stronger electric field which is applied to reach h1, electrostatically decouples

the first valence state. This explains why the charging shown in Figure ?? occurs in the first

peak at positive bias. Therefore the difference of broadening of the two peaks surrounding the

ZCR gives us a clear validation of the coupling of the valence level in our sample. While a

few QDs exhibit a coupling strength (defined as the extra broadening of the density of states)

around 50 meV, others show moderate coupling with a coupling strength between 20-30 meV.

Sometimes, QD spectra exhibit the characteristic signs of a band transport hence very

strong coupling over several QDs. Figure ?? (C) shows the STM images of such QDs. Examples

of spectra with step-like features are shown in Figure ?? (D) where the peaks at negative bias

are significantly broadened. Remarkably, all the QDs display the same feature in the STS spec-

tra that consists in a clear step-like DOS in the valence band. It strongly suggests the formation

of a band within this cluster of QDs. Thus very locally the QDs can connect in such a way that

their respective quantum states couple and allow the delocalization of the electron over a few

QDs. Unfortunately these spectra were clearly observed in minority. Nevertheless, this proves

that band-like transport occurs on the local scale and that strong coupling between QDs could

be enhanced by thermal treatment of the superlattice.

A second behavior was also observed among the QDs as shown in Figure ??. A set of six

spectra acquired on six different QDs over the superlattice (Figure ?? (A)) attests of the repro-

ducible occurrence of a peak just above the Fermi level. The peak is positioned around +0.07V.

For every spectrum, over one hundred consecutive spectra were averaged as depicted in Figure

?? (C). Again the whole spectrum structure is very stable and reproducible, even for the in-gap

state clearly indicating that this is not an artifact. The nature of this peak can be attributed to

surface traps originating from the removal of surface Pb-oleate ligands from the (111) facets

of the QDs. The (100) facets are stochiometric and it has been shown that these facets do not

bear dangling bond states in the energy gap due to the p-like nature of the electronic states [?].

In contrast, the (111) facets are not stochiometric and thus the removal of ligands can lead to

surface trap states. The removal of the Pb-oleate could also explain why the sample is heavily

p-doped. This interpretation of the trap nature of in-gap state could explain the low mobility

reported on similar PbSe QDs superlattice [?]. However, since the Fermi is still close to the

valence band, at this stage, we cannot rule out the possibility that this state originates from the

degeneracy of the hole ground state with the Fermi level penetrating inside the valence band.
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Figure 3.15: (A) Tunneling spectra acquired on six different QDs, all exhibiting peak in the gap around +0.07V.

The spectra were acquired with the same setpoint current 200 pA at a bias of +0.7V (B) Tunneling spectrum mea-

sured on PbSe QD obtain after averaging the one hundred spectra show in (B).

3.5 Conclusion

In this chapter the electronic properties of PbSe superlattice were investigated before and after

thermal treatment of the sample. The as-synthesized sample exhibits the presence of a large

variety of spectra. The peaks seen around zero volt are attributed to traps states inside the gap

of the QDs, . We believe that they are caused by strong structural disorder. Indeed the square

symmetry of the superlattice is far from being perfect with misalignment of the QDs, result-

ing in the formation of dislocations and missing connections. These misalignments also create

faulty interfaces which we assumed to be responsible for most of the trap states. Annealing at

120°C allows to cure the QDs since it clearly improves the homogeneity of the spectra. Mea-

surements of the electronic structure of the superlattice demonstrate that quantum mechanical

coupling occurs between the valence states of one QD and its neighbors. Moreover band-like

features has been observed in a few spectra showing that strong coupling occurs very locally.

These results are encouraging and demonstrate the necessity of a better understanding of the

underlying mechanism leading to the formation of the superlattice.
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Chapter 4

Scanning tunneling spectroscopy
characterization of PbSe QD
superlattice deposited on silica
substrate

In the previous chapter, STS measurements have been performed on a PbSe QDs superlattice

deposited on a gold substrate. Two reproducible behaviors were observed among the annealed

QD superlattice. While most of the studied QDs exhibited a clean zero conductance region, a

minority showed a peak localized inside this zero conductance region near the Fermi level. So

far, the origin of the peak is unsettled. It could be caused by trap states in the gap of the QDs

or could arise from a higher doping level in some QDs. In such a case, the Fermi level would be

positioned in the valence band and as a result would contribute to the signal at small positive

sample bias, giving rise to a peak above the Fermi level. In this chapter we address the exact

nature of this peak by changing the host substrate, so that the double tunnel barrier junction

becomes more asymmetric, enabling us to reverse the potential distribution across the junction

in comparison with the gold substrate. In such a way, the lever arm reaches values below 0.5

and allows to expand the energy scale to get more insight into the origin of the peak.

4.1 Experimental details

The QDs superlattice studied in this section were prepared in Ghent based on the synthesis

method previously described in Chapter 3. For this experiment, the QD superlattice was sub-

sequently deposited on a silicon substrate thanks to the Langmuir-Schaeffer deposition tech-

nique. Prior to the deposition of the superlattice, a thin film of 1 ∼ 2 nm of SiO2 was deposited

on the wafer. This thin oxide layer was added in order to increase the potential drop between

the QDs and the substrate. Due to this important modification of the potential distribution

among the DTBJ, a very small lever arm can be reached. It is therefore possible to dilate the
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energy scale and get a higher resolution when performing STS experiments, enabling in depth

investigation of the nature of the in-gap states shown in the previous chapter. The superlattices

were additionally treated after deposition on the SiO2 surface, in order to remove any residual

ligands. This was done by exposing the sample to butylamine solutions. This ligand strip-

ping was performed to allow a better stability of the STM tip and make the STM experiments

less challenging. An illustration of the sample geometry is shown in Figure ?? (A). The lever

arm was estimated from the equivalent circuit model shown in Figure?? (A). The lever arm is

defined by η = C2/( C1 + C2). Therefore, by taking a tip-QD distance of 3 - 4Å and a silica

dielectric constant of εSiO2 = 3.9, a lever of 0.36 is estimated.

V
Tip

A (100)

5.8 nm

(111)

SiO2

Silicon p-doped

B

C1

Tip

C2

Figure 4.1: A) Scheme of an individual QD where facets are indicated and principle of the STM imaging of PbSe

superlattice deposited on a silicon substrate with a 1 nm silica layer on top. On the right the equivalent circuit of

the DBTJ related to the tip/QD/substrate system is shown. B) STM image (Iset = 25 pA; V = +2.5V) of a superlattice

showing the close-packing of PbSe QDs in a square superlattice. The scale bar is 5 nm.

Immediately after sample preparation, the sample was transferred into the UHV system

of the LT-STM. The sample was characterized at helium temperature (T = 5K). We used elec-

trochemically etched tungsten tips, annealed in the UHV preparation to get clean and stable

STM apex. The topographic images were acquired in constant current mode (see Figure ?? (B)),

with typical feedback loop parameters being : a setpoint current in the range 10-50 pA and a

sample voltage between +1.5 and +2.5 V. Similarly to the previous chapter STS experiments

were performed by first scanning an area of interest and subsequently placing the STM tip

above the desired QD. Then the voltage sample was swept with the feedback loop open while

the tunnel current I was measured as function of the voltage V . The differential conductance

spectra were simultaneously measured using a lock-in, amplifier, with a variable modulation

amplitude between 7 and 9 mV/RMS at a frequency of 480 Hz.
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4.2 STM images of the PbSe QD superlattice

Despite a small oxide barrier, STM images of the PbSe superlattice were successfully acquired.

These images are obtained in the constant current mode so the tunneling current is maintained

by adjusting the height, z, of the tip by a feedback loop. In Figure ??, a STM image of the QD

array (150 × 150 nm2) is shown. The visible square packing of the the QDs was found to be

consistent over the whole image. From the STEM images shown in the previous chapter it

was demonstrated that the QDs were atomically connected and that no ligands remained in-

between the QDs. Therefore the average dot-to-dot distance (or center-to-center spacing) can

be deduced from the FFT shown in the inset of Figure ??. An average dot-to-dot distance of

5.81 nm was found, which is consistent with the QD size found in the previous chapter. We

note some disorder on the local scale, as vacancy or missing connection between QDs (see red

circles in Figure ??). A careful inspection of the color contrast reveals height variation (between

0.8 to 1.4 nm, see height profile in Figure ??). While most of these height difference originate

from size dispersion of the building blocks, we find that the variation of the contrast cannot be

explained by a change of size only.
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Figure 4.2: Large scale STM images of the PbSe superlattice. The superlattice shows a square geometry extending

over 150 nm. The red circles highlight defects in the superlattice such as missing connections and vacancy in

the array. Bottom: height profile taken along the black segment. Inset : FFT of the STM image. Feedback loop

parameters : Iset = 50 pA; V = +2 V. The scale bar is 25 nm.
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Figure 4.3: (A) High resolution STM images of the PbSe superlattice showing four epitaxially connected QDs.

Feedback loop parameters : Iset = 25 pA; V = +2.5 V. The scale bar is 2 nm. (B), (C) and (D) relative height profile

taken along the different color line in shown in the STM image. (E) Schematic representation of a faulty connection

between QDs in the vertical axis.

Figure ??(A) shows a STM image of four QDs. The top left QD is clearly higher than the

others QDs. Since ligands were removed from the QDs surface, the height profile directly

gives the height difference between two QD neighbors. The height difference between the top

left QD and its nearest neighbors are shown in Figure ?? (B) and (C). From this height profile,

height differences of 0.8 and 0.9 nm are found. In comparison, the profile shown in Figure ??
(D) clearly shows two QDs with similar height. In order to determine if this difference is caused

by a size difference, we also measured the QD diameter. This is possible because there is no

free space between the QDs. As a result, the diameter corresponds to the separation between

opposite necks from the profile in Figure ??(B). The size of the two QDs are 5.6 and 5.3 nm re-

spectively, which yields a size difference of 0.3 nm. Similarly the profile in Figure ?? (C) yields
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a size difference of 0.2 nm. These size differences are not sufficient to explain the height dif-

ference. Although the left top QD is bigger and could have more electronic states contributing

to the tunneling current, implying a larger tip-QD distance in the constant current image, we

made sure to image the QDs at a bias high enough so that the variation of the density of states

between the QDs is negligible [?]. In both cases the height difference is found to be around 0.6

nm which is close to the lattice constant of PbSe (6.12 Å). It means that PbSe QDs does not

necessarily attach in perfect, symmetric way. Instead the QDs can connect to each other with a

small vertical shift as schematized in Figure ?? (E). Therefore, the height information brought

by STM topographic mode revealed a new inhomogeneity in the QD coupling that could not

be seen in STEM.
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Figure 4.4: (A) Large scale STM images of the PbSe superlattice. Feedback loop parameters : Iset = 50 pA; V =

+2.5V. The scale bar is 200 nm. (B) Height profile taken along the red line denoted in the topography image.
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Zooming out allows to scan over much wider areas in comparison with the gold substrate.

We attribute this increased stability to the absence of ligands. The large scale STM image shown

in Figure ?? taken over a micron attests of the striking improvement in the scanning conditions

compared to the previous chapter. Both monolayer and bilayer are visible in this image. This

is confirmed in the height profile (Figure ?? B) taken along the line in the topographic images,

where a height of 6nm is found between the brightest and the second layers. This height

definitely corresponds to an average QD size of ∼ 6 nm. This is in good agreement with the

QDs size found from the FFT (see the inset of Figure ??). While the superlattice still exhibits

locally the square geometry (as shown in Figure ??) it clearly lacks true long range order. This

is due to the dislocations visible in Figure ?? (A) and the cracks in the superlattice. But it

can also be due to size and shape dispersion of the QD building blocks and probably also to

orientational disorder of the individual QDs. This dispersion in the QD orientation is clearly

visible in the FFT (inset of Figure ?? A).

4.3 STS characterization of the superlattice
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Figure 4.5: (A) Tunneling spectrum measured on a PbSe QD with a diameter of 5.8 nm. Feedback parameters

: Bias V = +1.35V; setpoint current I = 100 pA. (B) 100 consecutive dI/dV spectra concatenated into a color map.

Vertical dashed lines are guide for the eyes. (C) I(V) curve associated to the differential conductance spectrum.

The spectra were acquired on the QD monolayer. The spectra were found to be reproducible

as a hundred of spectra with similar features could be acquired upon a single QD. We note
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the existence of small glitches, that do not hinder the averaging process. Figure ?? (A) shows a

representative dI/dV spectrum averaged on more than 100 consecutive spectra (see the color

map in Figure ?? (B)). The positions of the peaks (and notably the central one) are found to

be reproducible. Interestingly the spectrum does not reveal any ZCR. Instead the spectrum

exhibits a broad peak located above the Fermi level, centered around +0.2V. Then, a peak is

visible near +0.9V.
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Figure 4.6: (A) Tunneling spectra measured on a PbSe QD with a diameter of 5.8 nm on : (a) and (b) the gold

substrate, (c) the silicon substrate. Feedback loop parameters : (a) Iset = 100 pA, V = +0.7V; (b) Iset = 200 pA, V

= +0.8V; (c) Iset = 600 pA, V = +2V. (B) Tunneling spectra acquired on six different QDs, with the same setpoint

current of 100 pA at a bias voltage of +1.4V. These spectra all present a clear peak near the Fermi level.

Figure ?? (B) shows a set of six spectra acquired on different QDs that show similar fea-

tures. The main peak above the Fermi level is measured, confirming the reproducible behavior

of these spectra. Another example is shown in Figure ??(A)(c). It is interesting to compare this

spectrum with the typical ones measured on the gold substrate (see Figure ?? (A) (a) and (b)).

While spectrum (b) shows a clear ZCR, spectrum (a) exhibits a very similar shape and common

features with spectrum (c). The same peak located near the Fermi level is present in both spec-

tra while a doublet of peaks is visible at higher voltage. However the energy level separation

appears to be much smaller in the case of spectrum (a).

We attribute this difference to the oxide layer between the QD and the substrate. Indeed,

the oxide modifies the potential distribution across the two tunneling junctions. Due to the

thick tunneling barrier between the QD and the substrate, the voltage dropping over the QD-
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substrate junction becomes larger than the ones dropping over the tip-QD junction leading

to an asymmetric DTBJ. The lever arm η that characterized the potential distribution is thus

expected to become smaller that the one encountered for the gold substrate.
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Figure 4.7: Spatially-resolved tunneling spectra of a QDs superlattice area. The spectra were acquired for a

setpoint current Iset = 200 pA and a bias V = +1.4V. The scale bar is 5 nm.

While the set of spectra shown in Figure ?? were randomly acquired, we also performed

spatially resolved tunneling spectra. In Figure ?? a set of five adjacent QDs was probed. All the

spectra were acquired with the same sample voltage (V = +1.4V) and the same setpoint cur-

rent (Iset = 200 pA). Apart from minor differences, all the dI/dV spectra interestingly show the

same characteristics, with a peak positioned around + 0.3 V, close to zero bias, corresponding

to the Fermi level of the sample. Then a second peak is positioned around +1.1 V. These char-

acteristics are similar to the spectra already shown in Figure ??, confirming the reproducible

behavior of these spectra over the sample. However, one can notice that the shape of the central

peak slightly differs from one QD to another. For example, the red spectra exhibits a narrower

peak than the blue and violet ones. The two top spectra (blue and violet) show a sequence of

additional small peaks superimposed to the main one. Moreover the position of this central

peak also differs slightly. This is visible by looking at the dashed line in Figure ??. The peak

of the green spectrum is localized at lower voltage while the top violet one is shifted at higher

bias. The position of the second peak, around +1.1 V, also varies slightly from one spectrum

to another (see solid line in Figure ?? ). Surprisingly, the position of both peaks seems to be

correlated. Indeed, looking at the green spectra, both peaks are positioned at slightly lower

voltages than the other spectra. This is the opposite in the case of the top violet spectra.
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Figure 4.8: Spectra acquired on the same QD at two different setpoint current of 200 pA and 1 nA. The orange

and blue spectra were obtained by averaging over 100 curves while the green spectra represents a single spectrum.

This shows the sharpness and spacing of the smaller peaks between 0V and +0.5V.

Spectra acquired on the same QD for two different setpoint currents are shown in Figure

??. At high setpoint current, additional oscillations are visible in the +0.5V - +1V range. More-

over, the central peak located around +0.4V seems to shift towards positive bias, indicating

an electron transport through the state, in contrast with the peak seen above +1 V, which cor-

responds to a hole transport. Remarkably, the progression of smaller peaks between 0V and

+0.5V shows equally spacing. They strongly resemble the expected response when the elec-

tron level is coupled to phonon modes [?, ?]. The interaction between the confined electron

and the lattice vibration leads to the formation of a polaronic DOS. Indeed, in the case of po-

laronic state, theory predicts a series of equally spaced peaks with a spacing corresponding of

the vibrationnally excited states separated by the phonon energy ~ω[?, ?].
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Figure 4.9: Example of three STS spectra acquired on different QDs for a high setpoint current. Each spectrum

exhibits small and equally spaced series of peaks attributed to polaron eigenstates. In inset are shown the STM

images of the corresponding QDs.

Three examples of spectra showing such polaronic states are represented in Figure ??. The

peaks spacing is found to be dependent of the setpoint current. This is due to the change in the

lever arm since the tip to QD distance is not always the same and we expect some fluctuations

of the SiO2 thickness. In PbSe, the energy of the LO phonons modes is about 17 meV [?, ?].

Therefore, by measuring the peak spacing from Figure ?? and comparing to this LO modes

enrergy, ones can find the lever arm :

η =
ELO
ESTM

(4.1)

From the above equation a lever arm ranging between 0.17 and 0.21 was calculated for the

two different setpoint currents. This estimation of a very low lever arm is coherent with our

geometry.
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The measurement of vibronic states usually takes place for very localized states that are

electronically isolated from the electrodes. Therefore, we believe that the peak measured be-

tween 0.0 and +1.0 V corresponds to a trap state on or in the PbSe QDs. As it is found for

every QDs and the main difference of the QDs with the previous chapter is the lack of ligands,

we believe that the trap state are created at the surface due to the removal of the ligands. The

vibronic states are clearly resolved in the measurements of PbSe QDs on the SiO2/Si surface

for three reasons. First, the substrate is not metallic. At the energy of the trap state, there is

no available states in the Si substrate to ensure an elastic transfer of the tunneling electrons.

As a result, the electrons can only dissipate part of their kinetic energy before they relax to a

state aligned with the unoccupied valence band of the degenerated p-type doped Si substrate

or recombine with a hole in the superlattice. Then, the use of a thick SiO2 layer favors a large

potential drop across the QD-substrate junction, yielding a small lever arm, that significantly

expands the energy scale, allowing the detection of the whole progression. Finally, given that

most of the remaining ligands were stripped thanks to the exposure to additional chemicals,

the trapped electron cannot relax its energy by interacting with the softer vibrational modes

of the ligands. Therefore, the charge carriers confined in this localized state interact prefer-

ably with the lattice vibrations leading to an enhancement in the electron-phonon coupling.

Because the transfer rate to evacuate the electron is weak, a negative potential repulsion takes

place so that the next energy level occurs at higher energy. So far, we do not have gained enough

statistic to know if the peak seen at an energy corresponding to the conduction band edge of

the silicon susbtrate correspond to a hole level or electron levels of the QDs. For sure, when the

energy levels of the QDs become aligned with the conduction band states of the Si substrate,

elastic tunneling is allowed and accounts for a significant increase of the signal above 1 V.
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Figure 4.10: (A) Topography associated to the CITS. (B) Two classes of spectra measured among the QDs. (C)

and (D) dI/dV maps of the studied area taken at +0.375V and +1.05V respectively.

83



As the central peak is observed everywhere in the superlattice and has been found to spa-

tially shift between QDs, local spectra measured at constant-tip sample separation were ac-

quired consecutively, following a grid of pixel in a STM image. This technique, called Current

Imaging Tunneling Spectroscopy (CITS) allows to spatially resolved the DOS of a sample. This

method was performed by acquiring a grid of 64 × 64 grid of spectra simultaneously with

the STM images consisting of a grid of 256 × 256 pixels. To ensure the stability of the tip, a

constant stabilization voltage was applied to the sample while re-activating the feedback loop.

This way the tip height was adjusted to maintain the tunneling current and safely moved to

the next pixel.

The result from the CITS is shown in Figure ??. Here, the CITS was performed on a region of

50 × 50 nm. The topographic STM image is shown in Figure ?? (A). Almost 70 QDs were studied

during this experiment. Every single QDs probed during this experiment exhibited a similar

shape as the spectrum showed in Figure ?? (B) with a peak close to the zero bias and a second

at higher bias near +1V. Interestingly, two trends were observed among the probed QDs. The

grey spectrum from Figure ?? (B) exhibited two peaks in the gap and a peak around +1.1 V. The

second red spectrum resembles the previous one but with a smaller in-gap peak and another

one at +1 V, thus at lower bias than for the previous spectrum. dI/dV maps at +0.375 V (the

top of the in-gap paek) and at +1.05V are shown in Figure ?? (C) and (D) respectively. The

spatial distribution of the two classes of QDs showed that the QDs formed small equipotential

clusters. Therefore the distribution of the trap states in the QDs superlattice creates another

source of energetic disorder. We attribute this variation of potential to residual charges in the

surroundings, in particular at the surface of the SiO2 surface, that rigidly shift the energy levels

of the QDs, likewise for graphene flakes deposited on SiO2 [?].

Conclusion

In this chapter the topographic and electronic properties of a PbSe QD superlattice deposited

on a silicon substrate were investigated. The nature of the in-gap state observed in the previous

chapter was analysed revealing the presence of a strongly localized state in the band gap of the

PbSe QDs. This trap state most likely arises from the removal of the ligands. The (100) facets

of PbSe QDs does not induce in-gap state even when stripped of all there ligands (see previous

chapter). Therefore we conclude that these trap states originate from the (111), non stochio-

metric facets of the QDs which are, without ligands and thus non passivated. We found that

the trap states can be used as a sensor of the electrostatic fluctuations at the SiO2 surface. In

order to improve the electronic coupling between the QDs, such fluctuations must be reduced

and call for more controlled insulating layers as tunneling barriers. One solution could consist

of using thin boron-nitride layers that are known to be much more homogeneous.

84



Chapter 5

Transport properties of PbSe QDs
square superlattice by Multiprobe STM

Early QD solid consisted in QD assembled in a solid phase with each QDs separated from

their nearest neighbors by the native surface ligands which cover the QDs during the synthe-

sis. However most organic native ligands act as insulating barrier between the QDs leading

to highly insulating QD solid with conductivity of σ ∼ 10−12 - 10−9Ω−1.cm−1 [?]. Recently,

expitaxially connected QDs superlattice have been prepared. These atomic connections be-

tween QDs remove any tunnel barrier between QDs. Therefore, a spectacular enhancement

of the charge carrier mobility was expected. Morevoer theoretical calculations have predicted

band structure in these materials. Therefore these superlattices promise to combine the tun-

able optical properties and processability of QDs with the high-efficiency band-like transport

of bulk semiconductors. However, charge transport studies have so far failed to demonstrate

band-like transport [?, ?, ?]. While missed connection, inhomogeneous coupling between QDs,

grain boundary or other structural disorder have been invoked to explain this poor transport

properties [?, ?], the problem may arise from the integration of the superlattice into FET device.

Indeed, the integration of the QD array to a FET devices is not always perfectly controlled. This

results in problematic channel-electrode contact due to the 150 nm height difference between

the top of the electrode and the channel (see Figure ??). This surely induces undesirable strain

in the QD superlattice that may have a deleterious effect on the transport. Moreover, cracks

can appear in the QD thin film, reducing the transport properties.

In order to access the local transport properties of the QD superlattice without being af-

fected by such undesirable problems, we used MultiProbe Scanning Tunneling Microscope

(MultiProbe-STM) to study the superlattices in a non-destructive way. The technique relies on

a distance-dependent method between the probes in order to measure the four-point resistance

of the sample and extract the conductivity of the PbSe superlattice. By considering different ar-

rangement between the probes, we also study the conductance anisotropy in the sample. Based

on the structural morphology of the superlattice which is obtained from high resolution SEM,

the origin of this conductance anisotropy is explained by the presence of elongated regions of
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missing QDs called crack in the QD array. Finally, we quantified the influence of the cracks vis-

ible in the QD film by disentangling the crack-free surface resistivity from the crack-induced

resistivity.

Figure 5.1: (A) SEM image of a single monolayer QD superlattice as FET channel. The white arrows indicate

macroscopic defects such as cracks in the QD superlattice and problematic channel-electrode contact due to the 150

nm height difference. Figure taken and adapted from [?]. (B) Electrode designs used for four-probe measurements.

Figure taken and adapted from [?].

5.1 Experimental details

The synthesis and the formation of the QD superlattice are based on the methods already

described in the chapter 3. The superlattice studied in this chapter consists of PbSe QDs atom-

ically connected covered with their native Pb-oleate ligands on their (111) facets. The mean

diameter of the QDs is 5.8 nm. For this experiment, the QD array was transferred onto a heavily

p-doped silicon wafer with a resitivity of 0.01-0.05 Ω.cm thanks to the Langmuir-Schaeffer de-

position technique. Prior to the deposition of the superlattice, a thin film of 80 nm of SiO2 was

deposited on the wafer. The addition of this oxide layer avoids any current leakage through the

substrate while performing four-point measurements. This way the current is forced to flow in-

side the QD array. An illustration of the experimental setup and the four-point measurement

is shown in Figure ??. The source tip is used to inject charge carrier inside the superlattice.

Then the current flows inside the arrays and is collected by the drain tip in contact with the

superlattice. The two internal probes are used to measure the potential drop induced by the

electrical resistance of the superlattice. As explained in Chapter 2.3.1, the ratio between the

potential drop and the current yields a direct access to the conductivity in the superlattice.
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Figure 5.2: Schematics of the experimental setup. The superlattice was transferred to a silicon wafer where a 80

nm silica layer was first deposited. The four tips are brought in contact with the QDs and one of the external tip is

set as the source in order to inject charge carriers inside the superlattice. Then the current flows in the QD array

(green arrows) and is collected by the drain tip. Thanks to the oxide, the current cannot leak through the substrate

(red arrow) and is forced to run through the QDs in the superlattice. The drop in voltage across the superlattice is

measured by the two inner probes.

Following the synthesis, the sample was placed on a sample holder. Two beryllium wires

connected to the sample holder were used to top contact the sample. Subsequently, the sample

was quickly loaded into Ultra High Vacuum (UHV) system containing a MultiProbe Scanning

Tunneling Microscope (MultiProbe-STM, Omicron Nanotechnology). In these experiments, the

tips were made by chemically etching a polycrystalline tungsten wire with a NaOH solution,

similarly to the previous STM experiments. Images of the four tips are presented in Figure ??.

Measurements have been carried out on the as-synthesized sample at room temperature after

loading it in UHV. Remarkably, it was possible to approach the four STM tips in the vicinity

of the surface by tunneling approach. In order to perform this tunnel approach despite the

oxide layer, the tips were approached with a high bias (5 to 10V) and a small setpoint (sim 10

pA) current in a region close to the contact. In this way, the current detected by the tip when

approaching the tunnel did not pass through the thick oxide barrier, but passed through the

superlattice straight to contact. This was made possible thanks to the high conductive nature

of the sample. This approach allows for controlled contact of the tips with the superlattice, any

damage of the superlattice and the probes. After contacting the superlattice, the quality of the

contact was checked by performing an I(V) curve between the contacted tip and the beryllium

contact (used as the ground electrode). A typical I(V) characteristic for a good tip/sample

contact is shown in Figure ??. The linear behavior in the I(V) curve is representative of a
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good Ohmic contact. Once each of the four tips was contacted properly, following the above

procedure, four-point measurements were performed.
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Figure 5.3: Example an I(V) curve characteristic of a good tip/sample contact.

5.2 Surface conductivity of PbSe superlattice

The standard four-point measurement procedure involves four tips placed in line with an

equidistant spacing between them. In this work we preferentially use a linear nonequidis-

tant configuration where three tips remain at a fixed mutual distance d while the fourth one

is allowed to move. Its separation with its neighbor tip, labelled x, is varied (see Figure ??).

We choose this configuration in order to minimize the number of tips to be moved and reposi-

tioned. This configuration is both convenient and efficient since it also prevents modification

of the contact resistance of the three remaining tips between the measurements.

In the case of the classic linear equidistant probe spacing, the relationships between the

measured four-point resistance and the resistivity of a 3D sample ρ3D or the sheet resistivity of

2D sample ρ2D [?] are given by the equations 1.45 and 1.46 of chapter 2 :

R3D =
ρ3D

2πd
(3D) R2D =

ρ2D

π
ln(2) (2D) (5.1)
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Figure 5.4: Nonequidistant tips configuration of a four-probe measurement. Three tips are placed with equidis-

tant spacing d (here d = 5 µm). Only the last tip is moved to change the distance x. In our experiments, x can be

varied from 25 µm down to 75 nm. The figure shows two x spacings of 4 µm and 750 nm.

The 3D case exhibits a dependence with the spacing d. On the contrary, the equation for

a current flowing in a 2D layer leads to a constant four-point resistance, independent of the

probe spacing. For the nonequidistant configuration, the signature of a 2D transport, namely

the constant four-point resistance, is lost. Equation ?? needs to be modified as follow (equation

1.5 from chapter 2) [?, ?, ?] :

R
4p
2D(d,s) =

ρ2D

2π

[
ln

(
2d
x

)
− ln

(
d

x+ d

)]
(5.2)

The four-point resistances measured on the PbSe QD superlattice are shown in Figure ??.

These resistances are directly extracted from the four-point V(I) curves shown in the inset of

Figure ??. Four-point measurements have been performed with a nonequidistant configuration

for x ≤ d = 15 µm, and with the equidistant configuration for distance x = d ≥ 15 µm. For the

linear equidistant configuration (right half of Figure ??) the resistance shows no dependence

with the probe spacing and exhibits a constant behavior. This clearly indicates a pure 2D trans-

port. From Equation ??, the constant resistance measured with the equidistant configuration

yields a sheet conductivity σ2D of 4.16 ×10−5 Ω−1/�. For the nonequidistant probe configura-

tion, the best fit of our experimental data is obtained with Equation ?? (see red curves on left

part of Figure ??). It yields a sheet conductivity σ2D of 4.54 ×10−5 Ω−1/�. The values found

with these two different techniques are in good agreement, confirming the two dimensional

behavior of the transport in the PbSe superlattice.

Note that the four-point resistance measured by the equidistant probe spacing is only 5 kΩ.

For comparison, previous four-probe measurements performed on similar PbSe superlattice

with identical probe spacings gave resistances in the range between 15 and 287 kΩ [?]
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Figure 5.5: Four-point resistances measured on the PbSe superlattice as function of the probe distance d and x.

The four-point resistances were measured for two configurations, the equidistant (right half) and the nonequidis-

tant (left half). The red solid line on the left half shows the best fit obtained from Equation ?? for the 2D case while

the red line on the right part shows the fit obtained from Equation ??. The blue curve shows the best fit obtained

from Equation ?? for the 3D case. In both cases these equations represent the expected behavior for a pure 2D

conductance. The corresponding conductivities σ2D yield consistent values of 4.16 ×10−5 Ω−1/� and 4.54 ×10−5

Ω−1/� for the left and right parts, respectively. In the inset the raw four-point measurement data are shown.

Additional four-point measurements have been performed solely with the nonequidistant

configuration for different equidistant probe spacings d of 5 and 25 µm. The corresponding

four-point measurements are shown in Figure ??. The data fitted nicely with Equation ??, re-

vealing again a 2D transport. We find slightly lower sheet conductivities values σ2D = 3.125

×10−5 Ω−1/� and σ2D = 3.225 ×10−5 Ω−1/� for the probe spacing d of 5 and 25 µm, respec-

tively. These measurements were performed in other regions of the sample with similar tip

orientation. We will show in the next section that this small changes in the sheet conductiv-

ity can be attributed to an anisotropic conductance induced by the existence of cracks in the

superlattice.
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Figure 5.6: Four-point resistances of an epitaxilly connected QD superlattice as function of the probe distance x

for nonequidistant spacing. The four-point resistance has been measured for two different probe spacings d = 25µm

(a) and d = 5µm (b). The red solid line represents the best fit of the data obtained by Equation ??. It represents

the expected behavior for a pure 2D conductance. The corresponding sheet conductivities σ2D are of 3.125 ×10−5

Ω−1/� and 3.225 ×10−5 Ω−1/� for d = 25µm and d = 5 µm, respectively. Insets : raw V(I) four-point measurement

data.

5.3 Conductance anisotropy and influence of the cracks in the trans-
port across the PbSe superlattice

Figure 5.7: Square tips configuration of a four-probe measurement. The four tips are placed with equidistant

spacing d (here d = 5 µm). For one fixed orientation of the probes four different rotation angles can be realized by

successively assigning different probes as current and voltage probes. This is illustrated by the different colored

lines (red, green, blue and black) on the figure. Subsequently, the tip square is rotated by an angle θ.

The distance-dependent linear configuration was a powerful technique to access the sheet con-

ductivity of the sample and disentangle the 3D transport from the 2D transport. Unfortunately,

this method is not suitable to measure the conductance anisotropy of a sample. On the other
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hand, the Van der Pauw configuration of the tips, shown in Figure ??, can measure the four-

point resistance along different orientations. In this particular configuration, the tips are in

contact with the sample in a square configuration. Similar to the linear configuration, two tips

positioned at one side of the square are configured to inject and collect the current. The two

remaining tips, on the other side, are used as potential probing tips. Thanks to this tip arrange-

ment, it is possible to determine if a sample exhibits an anisotropic transport behavior. The

electrical conductivity in the case of an anisotropic material is no longer a scalar but becomes

a conductivity tensor with different components σi,j representing the conductivities along the

different directions of the solid. These anisotropic conductivities can be accessed by rotating

the square tip arrangement by an angle θ and performing four-point measurements for each

angle (see Figure ??).
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Figure 5.8: V(I) curves obtained with a square configuration with a probe spacing of d = 5 µm. The inset shows

the STM tips in a Van der Pauw configuration with the tips 1 and 2 set as the injection and collection probes

while the tips 3 and 4 are the voltage probes. The red curve corresponds to the measure performed with this tip

configuration ∆V12/I34. The green curve corresponds to the ∆V14/I23 configuration.

Figure ?? shows V(I) curves measured with the square configuration for a probe spacing d

of 5 µm. ∆Vij corresponds to the voltage drop between tip i and probe j while the current Ik,l
is injected and collected by tips k and l, as shown in the inset of Figure ??. The resistances

were extracted thanks to a linear fit of the data (black solid lines on Figure ??). From these

measurements, we show that a change of the combination of source-drain and voltage probes
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has a significant impact on the measured resistances : ∆V14/I23 = 6400 Ω (green) and ∆V12/I34

= 2500 Ω (red). The resistances measured along two orthogonal directions exhibit two distinct

trends revealing the presence of an anisotropy in the conductance of the superlattice.

Figure 5.9: SEM images of the superlattice. Acceleration voltage : 5 kV. The red arrows indicate the major

direction for the propagation of the cracks. The green circle highlight crack that are not aligned with the major

crack orientation.

High resolution SEM images taken at the same position on the sample reveal the presence

of cracks in the superlattice. The major cracks, visible in Figure ??, show dimensions of 20

to 50 nm in width and of hundred of nanometers to few microns in length. The cracks are

somewhat well ordered as they seem to be parallel between them and are pointed toward one

direction (see the red arrow in Figure ??). This observation explains the anisotropy measured

with the transport experiment as the cracks prevent the current to flow homogeneously in the

superlattice along the direction of the cracks. The presence of cracks in this type of material is

known to limit the transport in PbSe superlattices [?, ?].

In principle, the resistances obtained from the measurements in Figure ?? could allow us

to derive σ‖ and σ⊥ separately. But in order to further quantify the crack-induced conductance

anisotropy and improve the measurement precision, the square formed by the tips was rotated

successively by an angle θ relative to the cracks propagation direction. This way, the four-point

resistance is measured in every directions in the plane of the superlattice. The measured four-

point resistances as a function of the rotation angle θ are shown in Figure ?? for a probe spacing

d of 5 µm. For one fixed orientation of the four tips in the square configuration, four different

rotation angles can be realized by successively assigning different tips as current and voltage

probes. These four different combinations correspond to the different colored data points in

Figure ??. The angle dependence of the square configuration on the four-point resistance can

be obtained from the solution of the Poisson equation for an anisotropic 2D sheet (equation
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1.53 from chapter 2) [?, ?] :

Rθ = C ln


(
σ ‖

σ⊥
+ 1)2 − 4cos2θ sin2θ(

σ ‖

σ⊥
− 1)2

(sin2θ +
σ ‖

σ⊥
cos2θ)2

 (5.3)

where C = 1/(4π
√
σ ‖σ⊥). By fitting this equation to the results of an angle-dependent measure-

ment one can determines the components σ⊥ and σ‖ of a sample with anisotropic conductivity.
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Figure 5.10: Angle dependence of the measured four-point measured resistance with a square configuration and

a tip spacing d = 5 µm. The experimental data are fitted by Equation ?? (see red curve). The colored data points

correspond to the four directions accessible by changing the source-drain combination of the probes.

The results reported in Figure ?? show the dependence of the conductance as function of

the angle θ. Equation ?? was used to fit the experimental data (see red curves in Figure ??).

The fit from the data yields parallel conductivity of σ ‖ = 4.54 ×10−5Ω−1/� and perpendicular

conductivity of σ⊥ = 2.07 ×10−5Ω−1/�. The anisotropy measured in this case σ ‖/σ⊥ is found

to be 2.4, meaning that the cracks only induce a moderate modification of the conductivity of

the sample. While the experimental behavior seems to be in good agreement with the theory,

the measured resistance does not reach the expected minimum around 0° and 180°. A slight

bump at the expected minimum resistance is observed instead. This can be explained by the
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distribution of the cracks. While the majority of the cracks are pointed toward the same direc-

tion and have the similar length, some smaller cracks, placed in between the main ones, follow

different orientations (see green circle in Figure ??). When the square angle is aligned with the

main cracks the contribution to the resistance from the main cracks is minimum. In this case,

the contribution from the smaller cracks becomes dominant, explaining this slight increase in

the resistance. This means that performing an angle-dependent four-point measurement with

a smaller probe spacing d should eliminate this artifact.
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Figure 5.11: Angle dependence of the measured four-point measured resistance with a square configuration and

a tip spacing d = 500 µm. The experimental data are fitted by Equation ?? (see red curve). The colored data point

corresponds to the four directions accessible by changing the source-drain combination of the probes.

Therefore, we performed angle-dependence four-point measurement for a square with probe

spacing of d = 500 nm. In this case, the fit of the experimental data by the Equation ?? gives

a value for the parallel σ⊥ and perpendicular σ ‖ conductivities of 1.62 ×10−5Ω−1/� and 3.5

×10−5Ω−1/�, respectively. The measured anisotropy
√
σ ‖σ⊥ is 2.2 which is very similar to the

value given by the previous angle-dependent measurement over 5 µm. No bump around the

minimum value of the resistance is visible here unlike the previous measurement. This con-

firms the assumption previously made about the influence of the smaller, misaligned cracks.

From the angle-dependent square configuration, we can extract the geometric mean con-
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ductivity
√
σ ‖σ⊥. We found a value of

√
σ ‖σ⊥ = 3.06 ×10−5Ω−1/� for d = 5 µm and

√
σ ‖σ⊥

= 2.41 ×10−5Ω−1/� for d = 500 nm. These conductivities are found to have nearly the same

value as the previously measured sheet conductivities with the linear nonequidistant config-

uration. Therefore, by using two independent methods, namely, the angle dependent square

configuration and the nonequidistant linear distance dependent configuration, similar results

were obtained for the surface conductivity. A summary of all the sheet conductivity values on

the PbSe superlattice measured by MultiProbe STM is presented in Table 1.1.

In Line configuration
(Probes spacing)

Conductivity
σ2D (Ω−1/� )

Square configuration
(Probes spacing)

Conductivity
σ⊥ (Ω−1/� )

Conductivity
σ‖ (Ω−1/� )

Geometric mean value√
σ ‖σ⊥(Ω−1/� )

25 µm 3.125 ×10−5 5 µm 2.07 ×10−5 4.54 ×10−5 3.06 ×10−5

15 µm 4.16 ×10−5 500 nm 1.62 ×10−5 3.5 ×10−5 2.41 ×10−5

5 µm 3.225 ×10−5

Table 5.1: Sheet conductivities measured with the different probes configuration

In order to fully quantify the cracks influence, the sheet resistivity of the crack-free surface

ρsurf must be disentangled from the resistivity induced by a single crack ρcrack. The conductiv-

ity measured in the direction parallel to the cracks by the angle-dependence square configura-

tion corresponds directly to the crack-free conductivity :

1
σ ‖

= ρ‖ = ρsurf (5.4)

Figure 5.12: Illustration of the current distribution induced by the two current probes around a single crack.

In a second step the resistivity induced by a single crack is estimated. A crack corresponds

to a void in the superlattice, an elongated region empty of any QDs. Usually, these crack have

an elongated shape with width wcrack and a length lcrack. In order to estimate the resistance

induced by a single crack we considered a model were the cracks simply blocks the field lines.

By solving a simple Poisson equation it has been shown that that almost 90% of the surface
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current was spread over twice the length of the current probe spacing 3d in a direction per-

pendicular to the probe alignment for a line configuration [?]. This current enter in the void

related to the crack. It passes through a limited region extending over 2×3d − lcrack. Therefore,

if the length of the crack, lcrack, is of the order of 3d, it adds a significant resistance to the

measured resistance. Indeed, the resistance is the product of ρsurf with wcrack divided by lcrack.

As a result, the resistance of the stripe of width d and length 6d − l is :

Rcrack =
ρsurf ×wcrack

6d − lcrack
(5.5)

When compared with the resistance of the same stripe without the crack, then :

R =
Rsurf

1− l
6d

(5.6)

For the tip separation is larger than the length of the crack, the crack increases the resistance

only slightly. However, for a tip separation of 500 nm and a crack with a length of 500 nm,

as shown in Figure 5.5, then the resistance of stripe the can be multiplied by a factor of 2,

accounting for the ratio found for the conductivity between both directions.
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5.4 Influence of bigger cracks on transport
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Figure 5.13: Four-point resistances of an epitaxilly connected QDs superlattice as function of the probe distance

x for nonequidistant spacing. The four-point resistance was measured for a probe spacing d = 15 µm. The red solid

line represents the fit of the data by Equation 1.2 plus an offset corresponding to the crack induced resistance. Inset

: SEM image of the crack and a SEM image of the STM tip positioned around the crack.

While cracks investigated in the previous section had a width of approximately 30 to 50 nanome-

ters, larger ones can be encountered in the superlattice. For example, a crack with a width 3 µm

is shown in the inset of Figure ??. The linear configuration was used to performed four-point

measurements with the two voltage probing tips placed on both sides of the crack. In this way

the increase of the resistance induced by the large crack could be measured (see lower inset of

Figure ??). The measured resistance for the equidistant linear configuration with a distance d

of 15 µm, is found to yield 145 000 Ω. This a 30 fold compared to the resistance value (R =

5000Ω) found above for similar measurements with the same probes spacing (see Figure ??).

We considered that the contribution of the crack to the total measured resistance could be ex-

pressed as a resistance in series. In order to fit Equation ?? to the experimental data, an offset of

137500 Ω, corresponding to the resistance induced by the crack, was added. Therefore, bigger

cracks induce huge limitation for the transport of charge carriers in the superlattices.
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5.5 Estimation of the mobility

A key parameter for potential applications is the mobility. This intrinsic quantity of the mate-

rial can be deduced from the expression of the resistivity :

ρ =
1
µne
⇒ µ =

1
ρne

(5.7)

From the above experiments the crack-free resistivity was measured. The charge carrier con-

centration p can be deduced from :

p =NV e

−(EV −EF)
kBT (5.8)

Where NV is the effective density of states, kB the Boltzmann constant, T the temperature, and

EV − EF the energy difference between the Fermi level and the valence band of the material.

From the STS spectra measured on similar superlattice in Chapter 3, the valence level of the

QDs was found to be very close from the Fermi level (see Figure ??). The difference between

the onset of the bias at negative bias corresponding to the top of the valence band and the zero

gives values between 50 and 80 mV. Subsequently, the lever arm calculated in Chapter 3 was

used in order to convert the bias difference in energy. Thus, EV −EF was found to range between

30 and 50 meV.
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Figure 5.14: A and B : Example of I(V) measured with STS on the PbSe superlattice studied in chapter 3. The

vertical line indicates the position of the top of the valence band.

Since the superlattice can be considered as a thin film the two dimensional effective density

of states was calculated from the following expression :

NV =
m∗hkBT

π~2 (5.9)

Where m∗h is the hole effective mass in PbSe. In the case of PbSe, the effective masses of

holes and electrons are similar m∗h ≈ m
∗
e [?]. Therefore, the hole effective mass in PbSe is 0.16
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[?]. From the two above equations the charge carrier concentration was estimated to range

between 2.55 × 10−11cm−2 and 5.52 × 10−11cm−2. By considering this hole concentration and

the crack-free resistivity of the superlattice (ρ2D= 22 kΩ.�) the superlattice mobility was esti-

mated to yields between 508 cm2/(V.s) and 1101 cm2/(V.s). These high mobility are found to

be of the same order of magnitude as the ones measured in bulk PbSe at room temperature [?].

In a second approximation, the charge carrier concentration was calculated from the sur-

face density of QDs. In the literature, the QD surface density was estimated from TEM images.

For QDs with a diameter close to 5.8 nm this surface density was found to yields around 2.3

-2.9 × 1012cm2 [?, ?, ?]. In good agreement with previous transport measurement [?] our STS

experiments showed that QDs superlattice were p-doped. In the past, the charge concentration

per QD of n-doped superlattice had been estimated to be 1 electron/QD [?]. Assuming a charge

concentration per QD of 1 hole per QD. The previously measured conductivity σ textsurf yields

the mobility around 120 cm2/(V.s). While this new estimation is lower than the previous ones,

it is still one order of magnitude than the higher mobility reported in the literature thanks to

an ion-gel FET [?] .

Conclusion

The transport properties of a PbSe QDs solid were the QDs are attached through epitaxial con-

nections were investigated in this chapter. We use a distance-dependent linear configuration

for both the equidistant and nonequidistant probes spacings to unveil the 2D nature of the

transport. The sheet conductivity was measured and found consistent for two different probe

spacing in the 1 ×10−5 - 5 ×10−5 Ω−1/� range. In a second time, an angle-dependent square

configuration was used to show the influence of cracks present in the superlattice on the trans-

port properties. The anisotropy induced by the cracks yields a ratio σ ‖/σ⊥ ' 2.4, which can be

explained by the choice of the probe spacing with respect to the length of the major cracks in

the superlattice. While the cracks obviously reduce the electrical transport in the superlattice,

their existence is common to all the studies published in the literature so far. Therefore, the

low resistivity that we measure should arise from a better coupling of the QDs. Despite the

lack of an estimation of the carrier mobility has been performed based on the position of the

Fermi level found in the tunneling spectra of the previous chapter. A mobility in the range

of hundreds of cm2/(V.s) has been estimated, highlighting the benefit of fusing the facets to

improve the transport of charge carriers in the superlattice.
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Conclusion

Advances in terms of chemical synthesis now allow to prepare 2D structures using colloidal

quantum dots as building blocks. These materials have many advantages in term of cost and

flexibility, making them very attractive from a scientific and technological point of view. The

aim of this thesis was to study the electronic structure and transport properties of novel col-

loidal QD superlattice with epitaxial connections. For this purpose, scanning tunnelling mi-

croscopy and spectroscopy was used to access local information about the individual behaviour

of QDs in the superlattice.

Thanks to its ability to acquire high-resolution image, scanning tunnelling microscopy was

used to image a PbSe QD superlattice deposited on a gold substrate. Then spectroscopy was

performed on an individual QD in the array to measure the quantum energy levels of individ-

ual QDs. We performed STS on the as-synthesized sample revealing a lack of homogeneity in

the measured spectra. We showed that annealing the superlattice to 120°C led to a stable and

reproducible spectroscopy of the QDs across the superlattice. The STS performed on more than

25 individual QDs showed a systematic p-doping, likely due to the Pb-oleate ligand removal

at the surface of the QDs. Moreover, the analysis of the width of the peaks shows a more or less

pronounced coupling of the valence band states.

As a minority of QDs shows a peak in the band gap, a deeper understanding of this peak led

is us to study. The topographic and electronic properties of PbSe QDs superlattice deposited

on a silicon substrate. The state observed in the STS spectra revealed to be a strongly localized

state in the band gap of the PbSe QD. From the absence of ligands in our system we conclude

that this trap state originate from the (111), non stochiometric facets of the QDs which are non

passivated. We found that the trap states can be used as a sensor of the electrostatic fluctua-

tions at the SiO2 surface.

The transport properties of the PbSe QDs superlattice with a square geometry where the

(111) facets were passivated, were investigated by multi-probe STM. We first unveiled the two

dimensional nature of the transport by using distance-dependent linear probes configuration.

Subsequently, we measured the electrical sheet resistivity of the sample. Thanks to an angle-

dependent square configuration, the influence of cracks present in the QD array was quanti-

fied. Surprisingly, the conductance anisotropy induced by this cracks only moderately influ-
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ence the current propagation into the superlattice. We estimated the mobility of the charge

carriers in this sample and found record values that need to be confirmed with gate transport

measurements. Such a result demonstrates the potential of assemblies of fused QDs to ensure

good performances in electronic QD-based devices.
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Bruno Grandidier, Guy Allan, and Daniël Vanmaekelbergh. Density of States Measured

by Scanning-Tunneling Spectroscopy Sheds New Light on the Optical Transitions in

PbSe Nanocrystals. Physical Review Letters, 95(8):086801, August 2005.

[3] Joshua J. Choi, Yee-Fun Lim, Mitk’El B. Santiago-Berrios, Matthew Oh, Byung-Ryool

Hyun, Liangfeng Sun, Adam C. Bartnik, Augusta Goedhart, George G. Malliaras,
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[115] L. Limot, J. Kröger, R. Berndt, A. Garcia-Lekue, and W. A. Hofer. Atom Transfer and

Single-Adatom Contacts. Physical Review Letters, 94(12):126102, April 2005.
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Liljeroth. Orbital and Charge-Resolved Polaron States in CdSe Dots and Rods Probed by

Scanning Tunneling Spectroscopy. Physical Review Letters, 102(19):196401, May 2009.

[151] Ned S. Wingreen, Karsten W. Jacobsen, and John W. Wilkins. Inelastic scattering in

resonant tunneling. Physical Review B, 40(17):11834–11850, December 1989.

[152] Yang Ai-Ling, Wu Hui-Zhen, Li Zhi-Feng, Qiu Dong-Jiang, Chang Yong, Li Jian-Feng,

P J McCann, and X M Fang. Raman Scattering Study of PbSe Grown on (111) BaF 2

Substrate. Chinese Physics Letters, 17(8):606–608, August 2000.

[153] L. Jdira, K. Overgaag, R. Stiufiuc, B. Grandidier, C. Delerue, S. Speller, and D. Van-

maekelbergh. Linewidth of resonances in scanning tunneling spectroscopy. Physical
Review B, 77(20):205308, May 2008.

116



[154] A. Deshpande, W. Bao, F. Miao, C. N. Lau, and B. J. LeRoy. Spatially resolved spec-

troscopy of monolayer graphene on SiO2. Physical Review B, 79(20):205411, May 2009.

arXiv: 0812.1073.

[155] J.W. Wells, J.F. Kallehauge, and Ph. Hofmann. Surface-sensitive conductance measure-

ments on clean and stepped semiconductor surfaces: Numerical simulations of four

point probe measurements. Surface Science, 602(10):1742–1749, May 2008.

[156] J. W. Wells, K. Handrup, J. F. Kallehauge, L. Gammelgaard, P. Bøggild, M. B. Balslev, J. E.

Hansen, P. R. E. Petersen, and Ph. Hofmann. The conductivity of Bi(111) investigated

with nanoscale four point probes. Journal of Applied Physics, 104(5):053717, September

2008.

[157] Iwao Matsuda, Masashi Ueno, Toru Hirahara, Rei Hobara, Harumo Morikawa, Canhua

Liu, and Shuji Hasegawa. Electrical Resistance of a Monatomic Step on a Crystal Surface.

Physical Review Letters, 93(23):236801, November 2004.
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