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Résumé

L’approximation géométrique d’objets urbains avec une représentation com-
pacte et précise est un problème difficile en vision par ordinateur et en in-
fographie. La littérature existante se concentre principalement sur la recon-
struction à partir de nuages de points de haute qualité obtenus par balayage
laser qui sont trop coûteux pour de nombreux scénarios pratiques. Ceci
motive l’investigation du problème d’approximation géométrique à partir de
données image. La reconstruction dense à partir d’une collection d’images est
rendue possible par les progrès récents des techniques de stéréoscopie multi-
vues, mais le nuage de points résultant est souvent trop imparfait pour créer
un modèle compact. En particulier, nous visons à décrire la scène capturée
avec une représentation compacte et précise.

Dans cette thèse, nous proposons deux algorithmes génériques qui abor-
dent différents aspects de l’approximation géométrique basée image. Dans
un premier temps, nous présentons un algorithme d’extraction et de vec-
torisation d’objets dans des images avec des polygones. Dans un second
temps, nous présentons un algorithme de recalage global à partir de don-
nées géométriques multimodales, typiquement des nuages de points 3D et
des maillages surfaciques. Les deux approches exploitent la détection de
primitives géométriques pour approcher soit des formes 2D avec des poly-
gones formés à partir de segments de ligne, soit des ensembles de points
3D avec une collection de formes planes. Les algorithmes proposés peuvent
être utilisés de manière séquentielle pour former une chaîne de traitement
pour l’approximation géométrique d’un objet urbain à partir d’un ensemble
de données d’image, composé d’une prise de vue aérienne pour l’extraction
de modèles grossiers et de données stéréo multi-vues pour la génération de
nuages de points. Nous démontrons la robustesse et l’évolutivité de nos méth-
odes pour les scènes et objets structurés, ainsi que le potentiel applicatif pour
les objets de forme libre.

Mots clés: Partitionnement d’images, extraction d’objets, approximation
de forme, minimisation de l’énergies, recalage global, nuage de points, mail-
lage polygonal, primitives géométriques
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Abstract

Geometric approximation of urban objects with compact and accurate rep-
resentation is a challenging problem that concerns both computer vision and
computer graphics communities. Existing literature mainly focuses on recon-
struction from high-quality point clouds obtained by laser scanning which
are too costly for many practical scenarios. This motivates the investigation
into the problem of geometric approximation from low-budget image data.
Dense reconstruction from a collection of images is made possible by recent
advances in multi-view stereo techniques, yet the resulting point cloud is of-
ten far from perfect for generating a compact model. In particular, our goal
is to describe the captured scene with a compact and accurate representation.

In this thesis, we propose two generic algorithms which address different
aspects of image-based geometric approximation. First, we present an algo-
rithm for extracting and vectorizing objects in images with polygons. Sec-
ond, we present a global registration algorithm from multi-modal geometric
data, typically 3D point clouds and surface meshes. Both approaches exploit
detection of linear geometric primitives to approximate either 2D silhouettes
with polygons consisting of line segments, or 3D point sets with a collection
of planar shapes. The proposed algorithms could be used sequentially to
form a pipeline for geometric approximation of an urban object from a set
of image data, consisting of an overhead shot for coarse model extraction
and multi-view stereo data for point cloud generation. We demonstrate the
robustness and scalability of our methods for structured scenes and objects,
as well as applicative potential for free-form objects.

Keywords: Image partitioning, object contouring, shape approxima-
tion, energy minimization, global registration, point cloud, polygon mesh,
geometric primitives
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Chapter 1

Introduction

1.1 Context and motivations

Obtaining simple geometric models of structured objects and scenes is a
long-standing topic in the fields of computer vision and computer graphics.
It has a wide range applications in rendering and simulation where some
tasks can be processed more efficiently using simplified representations of
the objects whenever exact accuracy is not necessary. It has attracted a
significant amount of attention from the research community and researchers
have attempted the problem from different perspectives.

The simplified geometric models provide a clean representation of the
underlying objects. Unlike a dense mesh which often contains redundant
information, a simplified model represents the same shape with a low bud-
get on the number of constituent elements while preserving salient geomet-
ric features. Level of Detail (LOD) is concerned with the use of different
representations of a geometric object having different levels of abstraction
(Figure 1.1). The desired level of accuracy and complexity depends on the
application, e.g. physical simulation and virtual reality benefit more from
simplified models as they can accelerate the handling of complex models by
omitting unessential computation steps, energy-related assessments concerns
with the volume and surface area of a building and can achieve sufficiently
accurate results with an LOD2 model [GP12]. Typically, a simplified model
can be stored as a mesh, consisting of a set of vertices, edges and faces, or a
CAD model, defined as an assemblage of parametric geometric shapes such
as curves, surface primitives and volumes. These models exhibit interesting
properties:

• Compactness. Simplified models are compact in terms of the num-
ber of geometric elements. The proper level of compactness is scene-
dependent, e.g. man-made objects are usually more suitable for a com-
pact representation while free-form shapes often need more elements
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LOD0 LOD1 LOD2 LOD3

Figure 1.1: Four LODs of a building used by CityGML. Each LOD is suitable
for different purpose. Image taken from [VLA15].

to be accurately described. Compactness is crucial for reducing mem-
ory consumption and improving computational efficiency for practical
applications.

• Editability. Simplified models retain connectivity and topological con-
straints between constituent elements. This property makes it easy for
the users to make modifications to the models, e.g. reshaping a part of
the model, and adding texture.

Simplified models have found applications in both scientific and industrial
fields. For instance, rendering 3D models at sufficient frame rates is crucial
in many practical situations where direct manipulation of the objects and
interactive camera control are required. Simple scenes in 3D video-games
may only have a few hundred textured polygons, which is often not the
case for raw scientific data that involve scenes of widely varying complexity,
sometimes up to millions of faces. The complexity and characteristics of the
model is a key factor for the rendering cost. Simulating the propagation
of acoustic or electromagnetic waves in urban areas also requires modeling
of the surrounding environment. The high cost of simulation poses specific
constraints on the accuracy and complexity of the 3D models in order to
achieve a balance between the computational resources and the accuracy of
results. 3D urban modeling from remote sensing data aims at parsing urban
scenes consisting of buildings, roads and vegetation at a large scale. In
order to efficiently store and visualize objects over large areas on the Earth’s
surface, the models need to have low complexity (often saved in different
LODs) and the requirement on accuracy can be relaxed.

Depending on the types of input data, there exist various approaches
for geometric approximation of objects. Creation of compact models from
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a dense mesh or a point cloud can be done by experienced experts using
interactive softwares, yet it requires tedious operations and domain-specific
knowledge depending on the types of objects and scenes to be considered.
For large-scale applications, interactive techniques are not adapted to process
large amounts of data due to limitations on time and human labor. The
majority of existing works on automatic geometric approximation focus on
direct simplification of meshes or reconstruction from point clouds. Despite
the prevailance of using a single mesh or a point cloud as input, the usage
of extra data can sometimes provide auxiliary information and is therefore
worth exploration. For instance, a family of approaches that is less discussed
yet achieves the same goal is fitting a predefined template model to the
observed scene, often represented as a point cloud. This typically propose
a two-step pipeline consisting of selection of a candidate template from the
predefined collection of objects, followed by alignment of the template to the
real scene. Image data can also be utilized for several purposes. Semantic
information retrieved from the image which can assist the selection of suitable
parameters. In some specific applications like building extraction, it is even
feasible to generate a coarse model from a single aerial shot of the building
[QZF21].

Motivated by the success of previous works, this thesis experiments on
image-based geometric approximation and also attempts to link models gen-
erated from different data sources.

1.2 Data types

Various data types can be considered for generating 3D models of urban
objects or scenes. In this section, we discuss two families of data types: 3D
point clouds and images. Table 1.1 summarizes characteristics of each data
types.

1.2.1 Lidar scans.

First introduced in 1961, Lidar [Cra07], an acronym of "light detection and
ranging", is an active remote sensing method for sensing distances by mea-
suring the time of flight of a laser. At close range, Lidar is commonly used for
navigation and control in robotics and autonomous driving systems, for sup-
porting augmented reality applications on mobile devices, as well as for en-
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(a) Laser [KPZK17] (b) RGB-D [CDF+17] (c) MVS [NW17]

Figure 1.2: Sources of point cloud data.

(a) (b)

Figure 1.3: Sources of overhead images. (a) An orthophoto of a house. Image
taken from dronegenuity.com. (b) A floor plan image. Image taken from
roomsketcher.com.

hancing imaging quality of cameras by improving focus accuracy and speed.
At long range, it is used for creating high-resolution maps in land surveying,
and for profiling clouds and quantifying various atmospheric components in
meteorologic applications.

A Lidar instrument consists of a laser emitter that generates beams of
light for illuminating the object of interest, a scanner that directs the beams
to scan the target area, and a photodetector that receives the reflected light
pattern and converts it to an electric impulse. In a pulse-based system,
the laser is emitted in the form of short pulses and the device measures
the time between the moment of emission and the moment the pulse is
returned to the sensor. In a phase-based system, the distances is measured
via interferometry, i.e. by using the phase of a modulated laser beam to
calculate the distance as a fraction of the signal’s wavelength. This type
of system is more precise but less energy efficient, and is mainly used for
short-range scanning such as the indoor scenario.

dronegenuity.com
roomsketcher.com
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Noise Outliers Range Uniformity Reconstruction LOD
Lidar point cloud Low Low High High High
RGB-D point cloud High High Low Low Median
MVS point cloud High High Median Low Median
Overhead image Low Low High Median Low

Table 1.1: Qualitative assessment of characteristics of different types of data
measurements.

Different types of Lidar systems differ in three aspects: wavelength, size
of footprint, and positional alignment. Wavelengths of Lidar instruments
vary to suit the absorption and backscattering properties of the target ma-
terial: from about 10 micrometers to approximately 250 nanometers. For
instance, topographic Lidar surveys the land typically using near-infrared
light, while bathymetric Lidar opts for water-penetrating green light to mea-
sure seafloor and riverbed elevations. The footprint of Lidar is modeled as
a Gaussian distribution on the horizontal plane. Small footprint Lidar, typ-
ically at the scale of centimeters, is more commonly used today for airborne
and terrestrial Lidar due to its accuracy. The lateral resolution of Lidar
data is determined by the footprint spacing, which is the nominal distance
between the centers of consecutive beams along and between the scanning
lines, as well as the beam divergence, which refers to the increase in beam
diameter as the distance between the laser source and the target lateral
plane increases. Depending on its positional alignment, Lidar scanners can
be categorized into two families.

Terrestrial Lidar. A stationary terrestrial Lidar sits on a tripod and scans
the hemisphere. It is particularly suitable for scanning buildings and indoor
scenes. A laser scanner can also be mounted on a ground-based moving plat-
form, like a vehicle for instance, or even on mobile devices. Due to occlusions
and limitations on the scanning range, absence of points in some areas is one
of the typical issues in the data acquisition process. For terrestrial Lidar
scans, the sampling density is usually from 100 up to thousands of points
per squared meter, with a precision at the scale of millimeters.

Airborne Lidar. An airborne Lidar can be mounted on airplanes or drones.
It is particularly suitable for surveying large-scale scenes like cities and land-
scapes. Since the airborne Lidar scans the scene from a top-down view with a
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typical scanning angle no more than 15 degrees, the point density on sloping
surfaces is much lower than on the horizontal planes, e.g. sparse or missing
points on the sides of a building. The density of points clouds acquired in
airborne Lidar scans is lower than those in terrestrial scans, as its spatial
resolution varies between 1 and 50 points per square meter. The precision
also decreases at the scale of decimeters.

1.2.2 RGB-D sensors.

Affordable consumer RGB-D cameras emerged in 2010, featuring Microsoft
Kinect and Asus Xtion PRO sensors. The basic principle of this per-pixel
depth sensing technology is as follows: An infrared light pattern is first
projected onto the target scene. The deformed pattern is captured by an
infrared camera, and compared part-by-part to reference patterns which are
previously recorded at known depths and stored in the device. The per-
pixel depth is then determined based on the matches between the projected
pattern and the reference patterns. Finally, the depth data recorded by the
infrared sensor is correlated to an RGB camera to yield an RGB-D image.
Additionally, approximated surface normals can also be stored at each point
in the image.

Images recorded by consumer RGB-D cameras usually comprises more
than one million pixels. The accuracy of the depth data deteriorates as
the distance between the sensor and the objects in the scene increases. For
instance, the depth resolution of Microsoft Kinect varies from 0.2 cm to 7
cm for a depth range from 0.5 m to 5 m [KE12].

RGB-D sensors are widely applicable to many scenarios. On a large
scale, RGB-D sensors can be integrated into robotic systems for the map-
ping of unknown environments, formally known as simultaneous localization
and mapping (SLAM), which is of great importance for building efficient
indoor navigation systems. RGB-D streams can also be used on a much
smaller scale to create more detailed reconstructions of objects in smaller
environments. The most well-known reconstruction framework is Kinect-
Fusion [IKH+11], which employs a volumetric representation of data, where
each voxel stores the running average of its distance to an assumed object. A
typical reconstruction pipeline from RGB-D images involve a loop consisting
of: conversion from depth maps to point clouds, estimation of camera poses
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with respect to the so-far reconstructed model, mapping of 3D points into
the global coordinate system.

Reconstruction from properly acquired RGB-D data nowadays yields 3D
models with a good level of detail, with an average reconstruction error of
a few millimeters. However the meshes generated by these techniques are
generally complex and require post-processing.

1.2.3 MVS point clouds/meshes.

Reconstruction of a 3D plausible geometry of an object from images alone is
a classic problem of great interest for the computer vision community. The
problem is formulated as the estimation of the most likely 3D shape that
explains the input images.

A generic MVS pipeline consists of two stages. Over the first phase,
the camera intrinsic and extrinsic parameters are recovered for each image
using a Structure-from-Motion (SfM) algorithm which relies on matching
2D features across images. The camera parameters are often refined by a
bundle adjustment step which minimizes camera reprojection error. The
second phase is the reconstruction of the 3D geometry from the image and
the corresponding camera parameters using a set of consistency metrics.
The output of the MVS pipeline is usually a dense point cloud (and the
camera parameters of each input image as output by the SfM step). It
can optionally output a mesh surface by combining with a post-processing
surface reconstruction step.

Image acquisition is the first critical step for MVS reconstruction. Gen-
eral guidelines for successful image acquisition involves: accuracy of the cam-
era model whose reprojection error should be ideally sub-pixel, image quality
concerning high-resolution, noise-free and well-focused capture with stable
illumination, image overlap which requires each 3D point to be observed
by at least three images for robustness, image baseline in the range of 5-15
degrees from a 3D point to input camera locations.

Based on the scale of the scene, MVS data capture setups can be classified
into three categories: small-scale indoor scene capture, small-scale outdoor
scene capture, and large-scale scene capture using fleets or crowd-sourcing,
e.g. cars, drones, and internet images. Generation of point clouds from
community photo collections is out of the scope of this thesis. It typically
concerns images taken at different times by more than one camera devices
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with different intrinsic parameters, and often involves an extra view selection
step to identify good groups of images on which to run dense reconstruction.
Specifically, the thesis concerns 3D points reconstructed from a collection of
images taken from a single calibrated camera.

1.2.4 Overhead images.

Recent years have witnessed the increase in the amount of attention in the
computer vision community towards acquiring geometric information from a
single image. Different types of input images have been considered for this
relatively new task.

Aerial photography. Aerial photography is the taking of photographs
from flying objects for acquiring data of urban scenes for geometric model-
ing. It consists in mounting a digital camera onto a drone, an aircraft or a
balloon that goes over an area following a predefined flight map, and taking
images satisfying certain overlapping constraints. The images taken can be
further processed by photogrammetry softwares for the generation of 2D or
3D digital models. Oblique aerial photography, taken at an angle relative
to the Earth’s surface, is useful for power line inspection and surveillance.
Vertical aerial photography, taken from a straight down angle, is commonly
used for topographic maps and land-use planning. Vertical images are often
used to create orthophotos, which are simulations of images taken from an
infinite distance without perspective. Orthophotos, having been geometri-
cally corrected so as to be usable as a map, have applications in geographic
information systems (GIS), and are useful for extracting building footprints
and road networks. This thesis concerns orthophotos as a way of collecting
overhead images of the scene.

Floor plan images. A floor plan is a measured drawing to scale of the
layout of a floor in a building, showing relationships between rooms, spaces,
walls, and other physical features. The orientation of the view is downward
from above, similar to a map. A plan is drawn as a orthogonally projected
plane cut at the typical four foot height above the floor level. The purpose
of floor plans is to depict 3D layouts in a 2D manner, and it is possible to
convert a 2D floor plan back to a 3D model with various processing tools.
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1.3 Problem description

This thesis addresses the problem of relating a set of images to a coarse
model for the building exterior and interior. We consider input composed of
one overhead image of the target scene, which allows extraction of a coarse
model of the object via contour approximation, and a series of Multi-View
Stereo (MVS) images, which are used for generating an MVS point cloud
representation. In the context of building exterior, the overhead image can
come from an aerial photo containing the target building (Figure 1.3 (a)).
In the context of indoor scenes, the floor plan image of the site (Figure 1.3
(b)) is considered as the overhead image. The output is a coarse model of
the target object with a set of images registered to its coordinate system.
The algorithms are designed with the following objectives:

• Fidelity. The output should conform to the observed data. Specifically,
the coarse model should be a reasonable approximation of the under-
lying object, and the registration should recover the ground truth pose
of the object.

• Simplicity. The coarse models should contain as small number of geo-
metric elements as possible. The desired level of simplicity is dependent
on the scene types, as well as the fidelity requirement.

• Automation. The algorithms should achieve a high level of automation
and only take limited user input, i.e. ideally a few user-specified pa-
rameters. This is a necessary condition for many practical applications
with large amounts of data involved.

• Applicability. Although the overall pipeline is proposed for the context
of urban objects due to the fact that a 2.5D representation does not
exist for all objects, individual components should be applicable to
other types of objects and scenes.

1.4 Challenges

The geometric approximation of structured objects and scenes is a difficult
problem that poses scientific challenges which we explore below:
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Low-cost devices. Expensive laser scanners are not widely available for
many applications constrained with a low-budget constraint. One of the
challenges is to develop algorithms that are suitable for low-cost data such
as sparse and noisy MVS point clouds reconstructed from image sequences
instead of high-quality scanned point cloud. Unlike dense and accurate point
clouds produced by high-cost laser scanners, generating a compact geometric
model from MVS point clouds without additional prior information is often
problematic due to several problems, e.g. low point density, non-uniform
sampling, absence of data points in textureless regions, missing data due
to occlusions, and the presence of noise and outliers. This suggests the
introduction of additional information on the object which can come from
alternative image data sources.

Data defects. Images captured from the real world are often corrupted
by defects. The most typical issue is noise, which is a direct consequence of
the physical acquisition process. Blur is another important factor that sig-
nificantly reduces the image quality, resulting in ambiguity on the position
of object boundaries, which impact the accuracy of segmentation of the ob-
ject from the background. Presence of unwanted objects such as vegetation,
pedestrians or cars in the case of urban scenes are also frequent. The light-
ing condition is another factor that significantly affects the image quality, as
shadows and overexposure may result in loss of information and hinder the
processing of the affected regions of data. These defects in images directly
affect both coarse model extraction and point cloud generation. Finally,
imperfections in the point cloud also pose specific problems for developing
robust applications for registration of this type of data.

Heterogeneous data sources. Registering MVS images to a coarse model
involves processing of data gathered from different sources, one being point
sets generated from images and the other being a clean yet much simplified
model. The differences in characteristics such as data density, accuracy and
levels of details constitute a challenge for processing such data, meaning that
different treatment is necessary for heterogeneous data. Ambiguity of scales
may exist for geometric data acquired from different modalities. For exam-
ple, while laser-scanned point clouds come with a innate absolute notion of
distance, MVS point clouds represent the scenes up to an unknown scale.
The coarse model estimated from the overhead image also lack the notion
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of its absolute size. This naturally gives rise to the requirement for relative
scale estimation in order to register data from different sources.

Level of automation. The ultimate goal of geometric approximation is to
provide efficient and fully automatic algorithms. Given the capacities of the
start-of-the-art of automatic techniques, interactive techniques is typically
considered for some specific fields, like in architecture or in the entertainment
industry where the expected quality of the models is still beyond the reach.
Interactive techniques are incapable of processing of large amounts of data,
such as in remote sensing where the industry and academia aim at parsing
objects at the scale of an entire city or even the entire Earth’s surface. For
the purpose of practical applications at a large scale where the quest for
accuracy is typically relaxed, the algorithms are required to reach ideally
full automation and adapt automatically to various types of objects and
scenes.

Scalability. Scalability of the algorithms is also concerned. Existing meth-
ods typically perform well on small scenes or simple objects. The styles of
buildings and indoor scenes may vary greatly from one location to another.
Even within a small scene, very different objects can be found in terms of
shapes and appearances. One of the challenges is to design methods which
are not limited to only certain types of scenes. Some geometric approxima-
tion techniques for urban environments rely on strong geometric assumptions
on for example the regularity of the objects, and the parallel/orthogonal re-
lations present in the objects such as the Manhattan World assumption, but
these approaches have difficulty generalizing to scenes with different charac-
teristics. On the other hand, assumption-free approaches are more flexible,
but the results tend to be less structured. The requirement for the applica-
bility to urban scenes with different styles and levels of complexity indicates
exploration of more general characteristics of the objects, aiming to achieve
a good balance between the strength of assumptions and the diversity of
scenes.

1.5 Our contributions

The traditional geometric modeling pipeline in the context of urban scenes,
typically consisting of the acquisition of dense point clouds and the recon-
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Figure 1.4: Overview of our proposed pipeline for generating a compact
model of the building interior. On the top, the input floor plan image is
first converted to a vectorized form. The 2.5D model can be generated by
extruding the floor with an estimated height. On the bottom part, a point
cloud is generated from an input image sequence of the environment via
SfM followed by MVS reconstruction. Finally, the model is registered to the
point cloud to output an aligned model. Optionally, texture can be added
to the model by projecting color from the registered raster images, or from
the colored point cloud.

struction of 3D models from such point clouds, is not effective for addressing
our problem for the following reasons: (1) Point clouds generated from MVS
images are often sparse, and corrupted by noise and other defects like outliers
and absence of points in some surfaces due to lack of texture, which makes
it difficult for surface reconstruction methods to produce satisfactory re-
sults. (2) The reconstructed 3D models, often with high complexity, are not
necessarily at the desired LOD for the application purpose, e.g. low-LOD
representation is sometimes useful for representing large-scale city scenes
[VLA15, BLS16].

In this thesis, we present two generic and scalable algorithms for polygo-
nization of objects of interest in images, and 3D registration of multi-modal
geometric data. When combined together, they form a pipeline for geo-
metric approximation of urban objects (e.g. floors and buildings) from a
set of images consisting of an overhead image and a sequence of multi-view
images. In order to address the aforementioned challenges of traditional
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reconstruction-and-simplification pipelines, our pipeline directly estimates a
low LOD model from the auxiliary overhead image of the target scene. The
MVS image sequence is registered to the model via a point-cloud-to-model
registration step. Our key contributions are summarized below:

1.5.1 Polygonal image segmentation

Our first contribution is an algorithm for capturing objects of interest in
images by compact floating polygons, as detailed in chapter 3. From a general
point of view, this algorithm provides a way to approximate 2D free-form
shapes with a compact representation as opposed to traditional pixel-wise
segmentation. In the context of urban environments, it is possible to generate
coarse models for some objects from a single input image, e.g. an aerial shot
of a residence house (Figure 1.3 (a)), and a photo of the floor plan of a
building (Figure 1.3 (b)).

We design a novel iterative approach which optimizes the configuration
of a polygonal partition in a discrete fashion. First, we design an energy
function to measure the quality of a polygonal partition by taking into ac-
count both the fidelity to input data (image and semantic information)and
the complexity of the output polygons. Second, we propose an efficient opti-
mization scheme to minimize that energy. We explore the solution space by
splitting and merging cells within the polygonal partition. The mechanism is
controlled by a priority queue that sorts the operations that are most likely
to decrease the energy.

Our algorithm features another key ingredient, the kinetic data structure,
that enables the proposal of candidate polygonal partitions. We propose to
exploit the kinetic data structure for the splitting of an existing polygon into
sub-polygons, given a set of detected line segment as the geometric primitives
that propagate across time. Unlike previous works that define the boundary
to be a regular shape, in our work the primitives are allowed propagate
within an arbitrary region enclosed represented by nested polygons.

1.5.2 Registration of multi-modal geometric data

Our second contribution is an algorithm for 3D registration of multi-modal
geometric data, i.e. point clouds or meshes obtained from different sources,
as detailed in chapter 4. Multi-modal registration is an increasingly common
issue when working with 3D objects, e.g. registering a low-resolution point
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set to a high-resolution mesh with large variations in detail, scale and cover-
age. Bringing such data into the same coordinate system is essential before
visualizing, comparing and archiving them. Our algorithm consists in, first,
a rotational alignment that analyses the surface-normal distributions of the
planar shapes detected from the input, and then a local refinement based on
continuous optimization.

We propose a novel way of utilizing planar primitives for 3D registra-
tion. The motivation lies in three aspects. First, planar shape detection
methods offer robustness to noise, outliers and varying sampling density, as
opposed to directly working with raw point clouds. Second, it gives a natu-
ral approximation of the distance field of the underlying surface of the point
cloud. Third, the surface-normal representation is invariant to scaling and
translation, which enables the estimation of the initial rotation matrix in a
decoupled fashion.

In contrary to previous works, We formulate scale estimation as a part
of the continuous optimization problem, without the need of an accurate
initial guess for the relative scale between the source and the target surfaces.
Our non-feature-based approach is robust to variations of levels of details,
noise and point density across different types of inputs, and is suitable for
processing large point clouds.

The algorithm is not limited to just urban objects. It is capable of regis-
tering generic point cloud to a predefined model, or to another point cloud.
A typical application of our algorithm is the localization of cameras to an
existing compact 3D model in a multi-view stereo setup, which follows as a
direct consequence from the registration of the associated MVS point cloud
to the model. In particular, this is useful for transferring pixel or point at-
tributes (color, label etc.) to the model.

In addition to our two contributions, we propose a pipeline for generat-
ing a coarse floor model from input consisting of a floor plan image and a
multi-view image sequence of the building interior, as outlined in Figure 1.4.
Starting from an overhead image of the floor, e.g. a floor plan image, the first
step is to extract the object of interest, i.e. the wall structure in a floor plan,
in terms of a polygonal representation. Provided with a height, the extracted
2D polygonal representation can be lifted into a 2.5D coarse model. In the
end, the coarse model can be registered to the MVS point cloud generated
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from the remaining set of captured images. The aligned coarse model can
be converted into a textured model by projecting color from raster images
onto the model, or even simpler, by taking color from closest points in the
point cloud.

In chapter 5, we demonstrate the efficacy of the pipeline on real-world
data from existing datasets, providing visualization of the output mesh. The
proposed pipeline can also be extended to building model generation when
used in conjunction with an algorithm for roof model generation. To this
end, the input should consist of an orthophoto of the building and images of
the building exterior.

1.6 Outline

The structure of this thesis is organized as follows:
Chapter 2 covers the related works of these problems.
In chapters 3 and 4, we present our algorithms for polygonal image seg-

mentation and multi-modal 3D registration.
In chapter 5, we show the applicative potential of the proposed methods

by applying it to the vectorization of floor plans and the generation of coarse
floor models from input floor plans and MVS point clouds. In chapter 6, the
conclusion of our works is drawn.





Chapter 2

Literature review

In this chapter, we review the literature related to two aspects of our pro-
posed pipeline: generation of compact 3D models, and 3D geometry regis-
tration.

In this thesis, we do not bring contribution to the problem of point cloud
reconstruction from multi-view images. Instead, we assume as input an MVS
point cloud of the target scene, with estimated camera poses associated to
the point cloud. We identify difficulties in directly processing a reconstructed
point cloud into a coarse mesh for buildings and indoor scenes, and propose
to fit to the point cloud a pre-built coarse template from alternative sources.
The strategy of using a pre-built template is suited for large-scale reconstruc-
tion where a shape may appear repeatedly in the whole scene, e.g. multiple
residential buildings sharing the same geometry in the neighborhood.

2.1 Generation of compact 3D models

Compact polygonal mesh representation for 3D scenes can be generated from
point clouds or images.

2.1.1 Compact polygonal meshes from point clouds

We summarize the methods for converting a point cloud into a compact
polygonal mesh in two categories.

2.1.1.1 Approximation methods

The most straightforward strategy is a two-step approach: a reconstruct-
ing step followed by a simplification step. The reconstruction step esti-
mates a smooth surface from the point cloud using existing reconstruction
algorithms such as Poisson surface reconstruction [KBH06]. The second
step simplifies the dense triangle mesh into a coarser mesh. A first way
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for mesh decimation is the edge collapse method, which consists of itera-
tively replacing an edge with a single vertex based on various cost strategies
[DEGN98, GH97b, LT98], removing 2 triangles per operation. Several costs
has been proposed for better approximating piece-wise planar structures dur-
ing the edge collapse process [SLA15, CSaLM13]. These methods have two
limitations: First, the decimation approach is unlikely to produce exactly
coplanar facets on planar parts of the object. Second, despite its effective-
ness on clean input that are both geometrically and topologically accurate, it
often fail to deliver faithful results on real-world data corrupted with defects.

Another class of work reduces the search space of the mesh generation
problem by imposing geometric assumptions on the output shapes. For in-
stance, the Manhattan-World assumption [CY01] restricts output facets to
only three orthogonal directions, therefore enforces the generation of poly-
cubes [FCSS09a, HJS+14, IYF15] which is suited to simple architectural
structures. More relaxed assumptions such as parallelism, orthogonality,
and z-vertical are also explored for urban scenes [VLA15, FPH21]. However,
such geometric assumptions are only relevant for specific scenes and lack
generalization ability to diverse domains.

2.1.1.2 Shape assembling methods

Another line of work for approximating shapes with compact meshes consists
in extracting a collection of planar shapes from the input point cloud, and
assembling them into a final polygonal mesh.

Planar shape detection. The representation of 3D data as a set of basic
shapes brings simplicity to large-scale data and robustness to commonly seen
defects in real-world data such as noise, outliers or nonuniform sampling den-
sity. The intermediate level of abstraction in the form of 3D line-segments,
planes, cylinders and cuboids has shown effectiveness in many geometry-
related vision applications such as scene reconstruction or recognition. In
particular, we focus on recent planar shape detection methods for unstruc-
tured point clouds.

The RANSAC paradigm is a conceptually simple technique for plane
detection. The RANSAC-based plane detection algorithms [FB81, RL93]
extract planes by randomly proposing plane hypotheses on minimal sets and
testing against all data points to determine the inlier sets. After a given
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number of trials, the plane hypothesis with the most inlier points is added
to the output set. These methods are non-deterministic, and its high com-
putational cost requires the design of optimized algorithms. Improvements
have been proposed for improving its robustness [TZ00], adapting to lo-
cal geometric complexity [GLCV19], and reducing its computational cost to
achieve real-time performance requirements [Nis03, SWK07a, SWWK08].

Region growing [MLM01, RVDHV06, OLA16] is an alternative approach
which consists in continuously propagating a local hypothesis from an initial
seed point to fit neighboring points and testing its validity according to a
threshold on the minimal number of inlier points covered. The regularities of
extracted shapes can be improved by considering parallel and orthogonal re-
lationships between clusters of planes during the detection process [OLA16],
or by post-processing optimization [BL20, VLA15]. Different levels of detail
can be reached by tuning the parameters of the extraction process [FLD18].
The region growing methods are by design slower than RANSAC, but offers
improved robustness of the shape detection process.

Learning-based approaches have also been introduced for shape detection
from point clouds. One strategy consists in learning local shape properties in
a supervised fashion and extract planes accordingly [GKOM18]. 3D-PRNN
[ZYY+17] is a recurrent neural network which generates a set of piece-wise
planar primitives to the input depth map. The supervised learning technique
can also be applied to fitting different types of geometric primitives such as
cylinders [LSD+19].

Polygonal mesh generation. Connectivity-based methods extract ver-
tices, edges and facets of the output mesh through analyzing the adjacency
relation between the detected planar shapes [CC08, SWF11, VKVLV11,
ASF+13, FL20]. Although these methods are fast, they suffer from a lack of
robustness to defect-laden data, in particular to over- and under-detection
of primitives or erroneous adjacency graphs.

Space partitioning is another technique for surface reconstruction. Sev-
eral works are based on a 3D Delaunay triangulation from the point cloud
[VKVLV13, LA13]. These methods require a dense point cloud and are prone
to noise. Another class of approaches utilize space partitions by propagating
planar primitives. Slicing techniques [BDLGM14, OLA14, MMP16, NW17]
decompose a bounding volume into polyhedral cells by the supporting planes
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of detected planar shapes, or decompose a bounding area into polygonal
facets by the projected supporting planes in a 2D space [FLPH21]. The sur-
face is extracted by assigning inside or outside labels to the cells, which is a
discrete optimization problem with high algorithmic complexity. The large
number of polyhedrons can be significantly reduced by introducing a kinetic
data structure into the space partitioning step [BL20]. BSP-Net [CTZ20]
is a neural network approach which integrates the BSP tree data structure.
The network groups the half-spaces to create a collection of convex shape
parts that are assembled to reconstruct the overall object, but is constraint
to a fixed number of slicing planes.

2.1.2 Compact model from a single image

In this thesis, we focus on generating coarse 3D models from a single image
in the context of urban scenes, including buildings and floor layout.

(a) (b) (c) (d)

Figure 2.1: An example of roof generation from the building footprint by the
straight skeleton method. (a) Input aerial image with annotated building
polygon. (b) Polygons shrinking process. (c) The straight skeleton structure
obtained by the shrinking process. (d) Generated roof model with added
texture. Image taken from [SK18].

2.1.2.1 Generation of building models

Reconstruction of buildings from single aerial image input is a challenging
task. We categorize existing approaches in two classes according to the
formulation of the sub-tasks.
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(a) (b) (c)

Figure 2.2: An example of building height estimation method from aerial
imagery. (a) Aerial image as input, and Lidar data as ground truth reference
for training. (b) A neural network with an encoder–decoder architecture. (c)
Output digital surface model (DSM) image. Image taken from [LKK+20].

Building height estimation. A typical pipeline [AA19, LKK+20, MPBF20]
concerns the inference of building heights, with which a 2D footprint can be
lifted into a digital surface model (DSM). Supervised learning is a popular
strategy for this task. The challenge of these learning methods lies in the
acquisition of high-quality training data with accurate ground truth depth
and low misalignment with the input, as well as the diversity of scenes for
generalizability of the model.

Roof model reconstruction. Another interesting line of work consists in
constructing 3D roof models from building footprints, which lifts the 2.5D
model into an enriched 3D model. Weighted straight polygons [BHH+15],
as an extension to the straight polygon algorithm [AA96, SK13], has been
utilized to construct realistic polyhedral roofs of houses [LD03, KW11]. The
straight skeleton is a wavefront process emanated from the polygon, and
the wavefront traces out a roof shape. These methods require as input a
geometrically correct graph that describes the building footprint. RoofGAN
[QZF21]) is a generative adversarial network that generates roof structures
as a fixed number of roof primitives and their relationships. This generative
approach by design can not produce output model conforming to a specified
image.
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Figure 2.3: An example of the floor plan vectorization method. The input
floor plan image is converted to the vectorized output via two intermediate
representation layers, with one determining the junction types and locations,
and the other determining a set of primitives that represent walls, opennings
and icons. Image taken from [LWKF17].

2.1.2.2 Generation of floor layout

A long line of work exists on coarse 3D layout estimation from a single per-
spective image [LHK09, RPJT13, ML15, LBMR17] or a panorama [ZSTX14,
ZCSH18, SHSC19, YWP+19], under Manhattan world assumptions. Exist-
ing approaches generate layout hypothesis on the basis of orientation maps
[LHK09], line segments corresponding to vanishing points [HHF09], geomet-
ric context [HEH07], and junctions [RPJT13]. More recent techniques train
neural networks for the prediction of corners [LBMR17], layout surfaces
(wall, floor, ceiling) [YWP+19], boundary maps for floor-wall and ceiling-
wall boundaries [SHSC19], or a combination [ZCSH18]. These methods are
limited to the inference of the layout of a single room. House-scale estima-
tion is discussed in some work [FCSS09b, CF14], but multiple images are
required as input.

Several methods are proposed for converting the raster floor plan image
into a vectorized format which provides an accurate representation of the
floor layout. In particular, Raster-to-Vector [LWKF17] trained a convolu-
tional neural network (CNN) to identify junction points in a floor plan image
and connected the junctions to locate walls. A fully convolutional network
(FCN) can be trained to label the pixels in a floor plan with several classes
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[YZT18]. Deep floor plan recognition [ZLYF19] enriches the output by rec-
ognizing additional elements including doors, windows and types of rooms.
These methods are constraint to certain types of structures or dependent
on the diversity of the training set. In contrast, our formulate floor plan
vectorization as a polygonal image segmentation problem which generalizes
better to different types of layout. The vector floor plan can be further pro-
cessed into a textured 3D geometry, given a set of photos assigned to the
corresponding rooms [VWF+21].

2.1.2.3 Polygonal image segmentation

Different from traditional pixel-wise segmentation, polygonal image segmen-
tation represents the segmented objects with polygonal shapes. We distin-
guish four families of existing, related methods.

Vectorization pipelines. The most popular strategy consists in extract-
ing the object contours by chains of pixels that are then simplified into poly-
gons. Contour extraction can be performed by various methods such as Grab-
cut [RKB04], superpixel grouping [LSD10] or the popular object saliency
detection algorithms [CMH+15, LY16, WWL+16]. The subsequent simplifi-
cation step traditionally relies upon the Douglas-Peucker algorithm [WM03]
or mechanisms that simplify Delaunay triangulations [DDS09, DGCSAD11].
Because these algorithms only measure the geometric deviation from an ini-
tial configuration of highly complex polygons, their output can easily drift
from the object silhouettes, leading to high accuracy loss in practice.

(a) (b) (c) (d)

Figure 2.4: An example of assembling methods based on geometric prim-
itives. (a) Aerial image. (b) Detected line segments. (c) Assigned graph
nodes and edge weights. (d) Assembled polygonal objects. Image taken
from [SCF14].
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Primitive assembling methods. Another strategy consists in detecting
geometric primitives such as line segments in the input image and assemble
them into closed contours. The assembling step can be performed by ana-
lyzing an adjacency graph between line segments [SCF14], or by gap filling
reasoning [ZFW+12]. These algorithms however do not guarantee the output
polygons to be intersection-free. Polygonal Markov random fields [KvLS07]
are an alternative to sample polygons from images directly. But this model
is very slow to simulate in practice and operates on simple synthetic im-
ages only. Delaunay point process [FLBA20] allows the sampling of vertices
within a Delaunay triangulation while grouping the triangulation facets into
polygons.

(a) pixel-wise segmentation (b) direct extraction of polygons

Figure 2.5: Pixel-wise vs. polygonal segmentation of aerial images based
on NN architectures. (a) Pixel-wise segmentation buildings, predicted by
[LQQ+18]. Vectorizing contours of the predicted building masks requires
numerous approximations and the output may drift from the building sil-
houettes. (b) Direct extraction of polygons using [LDWL19]. Image taken
from [LDWL19].

NN architectures. Polygon-RNN [CKUF17] and its improved version
[ALKF18] offer a semi-automatic object annotation with polygons. These
models produce polygons with possible self-intersections and overlaps, let
alone because the RNN-decoders considers only three preceding vertices
when predicting the next vertex at each time step. PolyMapper [LDWL19]
proposes a more advanced solution based on CNNs and RNNs with convo-
lutional long-short term memory modules. In contrast, PolyCNN [GT18]
is a CNN-based architecture that avoids self-intersections. It is however
restricted to output simple polygons with only four vertices. Curve-GCN
[LGK+19] alleviates the sequential nature of Polygon-RNN and predicts all
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SNIC[AS17] SNICPOLY[AS17] CONPOLY[DL15]

Figure 2.6: An example of superpixels by SNIC and polygonal partitions by
SNICPOLY and CONPOLY. Image taken from [AS17].

vertices simultaneously, given a predefined number of control points. In
practice, these deep learning techniques give good results for extracting poly-
gons with a low number of edges, typically residential buildings from remote
sensing images. However, extracting more complex shapes with potentially
hundred of edges per polygon is still a challenging issue.

Methods based on polygonal partitions. A last strategy consists in
over-segmenting an image into polygonal cells, and then grouping them to
approximate the object silhouettes. The vectorization of superpixels [AS17]
is a straightforward way to create a polygonal partition, that is however com-
posed of non-convex cells whose spatial connection is not clearly defined.
Polygonal partitions can be more robustly created by fitting a geometric
data structure on the input image. Many methods have been built upon
the Line Segment Detector [VGJMR10] to geometrically characterize object
contours with a set of disconnected line segments. The latter are then used
for constructing a Voronoi diagram whose edges conform to these line seg-
ments [DL15], a convex mesh with constrained edges [FKF16], or a planar
graph using a kinetic framework [BL18]. The cells of such polygonal parti-
tions are then grouped to form polygons, either by graph-cut [BL18] or other
aggregation mechanisms [LZMC12, RS13]. This strategy delivers accurate
results when the polygonal partition fits well the input image, which is rarely
the case in practice. Unfortunately, the refinement of polygonal partitions
has not been deeply explored in the literature. The only solution proposed
to our knowledge consists in a splitting phase which incrementally refines a
Delaunay triangulation before merging the triangles [GS97]. Unfortunately,
handling triangular cells does not allow to produce compact polygons.
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point-to-point point-to-plane point-to-projection

Figure 2.7: Illustration of the three categories of the ICP registration tech-
niques. Image taken from [CWP13].

2.2 3D geometry registration

3D geometry registration aims to align multiple sets of 3D data in a common
reference coordinate system. This thesis concerns the registration of rigid
objects.

2.2.1 Methods with known scale

The majority of existing works focus on the registering a pair of point clouds
at the same scale. We give a brief discussion on these methods:

Local registration. ICP [BM92] is the best-known algorithm for finding
the SE(3) transformation between rigid objects. Variants of ICP [Fit01,
Rus19, RL01, SHT09, BTP13, ZYD21] are proposed to address different
issues, such as radius of convergence, computational efficiency, noise, par-
tiality and sparsity. Probabilistic approaches as the EM-ICP [GP02] and
Gaussian Mixture Model methods [JV11, EKT+15, EH18, GT19] are intro-
duced for robustness to noise and outliers. Another branch of work concerns
direct matching of the distance functions of input surfaces [PRR02, CSL13,
BSKK13, SKNI16], which is more accurate and robust than ICP given a
sufficient voxel grid resolution.

Global registration. A popular family of methods involve establishing
feature correspondences [SWK07b, RBB09, HIT+15]. Fast Global Regis-
tration (FGR) [ZPK16] improves the inlier ratio of the correspondence set
effectively by simple tests without recomputation. 4PCS [AMCO08] and
Super4PCS [MAM14] effectively lower the complexity of RANSAC by ex-
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Feature Matching

Outlier Filtering

Transformation Estimation

Fine-tuning

Figure 2.8: Typical pipeline for feature-based registration methods. Left:
pipeline overview. Right: correspondences computed from FCGF features.
Image adapted from [CDK20].

ploring the motion space by matching co-planar 4-point quadrilaterals. An-
other family of methods use a branch-and-bound (BnB) strategy to exhaus-
tively explore the solution space for a good optimum, but suffer from slow
convergence (Go-ICP [YLJ13], GOSMA [CPK+19]). Fast rotation search
algorithm with a new bounding function for BnB has been introduced for
acceleration [PBCE+16]. Eckart et al. [EKK18] propose a multi-scale point
matching process using a hierarchy of Gaussian Mixtures. Another family of
methods utilize the Fourier transform to decouple rotation and translation
[KSA06, BB13], but is sensitive to the voxel resolution.

Learning-based methods. Recent advances in deep learning lead to the
development of several neural networks for point cloud registration. The
models can be roughly categorized as non-iterative and iterative methods.
Non-iterative models have a natural speed advantage. Deep Closest Point
[WS19a] utilizes a transformer network for feature matching coupled with
SVD for point-to-point registration. DeepGMR [YEK+20] avoids point-to-
point matches by integrating the network inside a probabilistic registration
paradigm for lower complexity and improved robustness. Iterative methods
are believed to be more robust to partially overlapping inputs [AGASL19,
WS19b, LZX+20, CDK20]. In particular, PointNetLK [AGASL19] adapts
PointNet into the Lucas-Kanade algorithm. PRNet [WS19b] extends DCP
to an iterative pipeline with keypoint detection designed for partial-to-partial
registration. IDAM [LZX+20] proposes a distance-aware similarity matrix
convolution for finding correspondences. Deep Global Registration [CDK20]



28 Chapter 2. Literature review

is an end-to-end 6D ConvNet built upon FCGF [FA20] and works well on
real-world dataset. MS-SVConv [HDG21] proposes a multi-scale network to
improve the generalizability of U-Net architectures for point cloud registra-
tion.

2.2.2 Methods with relative scale estimation

The registration of multi-modal geometric data often involves estimating the
relative scale between different types of data, e.g. when aligning a CADmodel
to a point cloud scan. Please refer to Saiti et al. [ST20] for a survey covering
issues and methods related to this task. The most straightforward method
which simply normalizes scales in pre-processing [HZF+17] is unsuitable for
partially overlapping and noisy data. Extensions of ICP integrate scale factor
estimation by including a separate minimization step [ZSN05, Rus19], by
incorporating a bounded scale matrix [DZY+07], by registering cumulative
contribution rate curves [LTR+13], and by using the maximum correntropy
criterion [WCD+19]. Coherent Point Drift [MS10] and its extensions [Hir20b,
Hir20a] formulate the task as a probability density estimation problem and
re-parametrizes GMM centroids with rigid parameters including the scale.
Corsini et al. [CDG+13] extend 4PCS and propose a method for point-cloud-
to-3D-model registration. Bulow et al. [BB18] extend The Fourier transform
approach to incorporate scale estimation. Paudel et al. [PHDV15] formulate
the task as a point-to-plane assignement problem utilizing a plane-based
assumption of the 3D scene. Mellado et al. [MDS16] introduce a descriptor
based on Growing Least Squares for scale-invariant matching.

Another sub-family of methods concern aligning CAD models from a
collection of prespecified categories to depth scans. These approaches deter-
mine the scale via object detection in terms of 3D bounding boxes, there-
fore are limited to training categories. Among these studies, Song et al.
[SX14] assume that the gravity direction is known and estimate rotation only
around the gravity axis. Gupta et al. [GAGM15] rely on traditional ICP
for aligning the input point set and the point set rendered from the model.
Izadinia et al. [IS20] proposes a learning-based ICP approach which formu-
lates the rotation estimation problem as a policy learning task for viewpoint
prediction. Deformation of the CAD model is considered by a few works
[NXS12, ADD+19, IBA+20] for better fitting. Our approach differs from the
above pipelines by integrating scale, rotation and translation into a single
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Figure 2.9: An example of CAD model alignment against input depth scans
via a 3D CNN approach, which predicts heatmap correspondences between
the scan and the CAD model. Image taken from [ADD+19].

optimization framework.





Chapter 3

Polygonal image segmentation

3.1 Introduction

Extracting objects in images is traditionally operated at the pixel scale, one
object being represented as a group of pixels. Such a resolution-dependent
representation is often not adapted to the end-users. In many application
scenarios as urban mapping or sketching, objects need to be captured with
more compact and editable vector representations. In particular, polygons
with floating coordinates allow both the approximation of free-form shapes,
e.g., organic objects, and the fine description of piecewise-linear structures,
e.g., buildings and many other man-made objects.

We consider the task of capturing objects in images by polygons with
three objectives. First, fidelity : the output polygons should approximate
well the object silhouettes in the input image. Second, complexity : the
output polygons should be composed of a small number of edges to offer a
compact and editable representation. Last, geometric guarantees: the output
polygons should be intersection-free, closed, potentially with holes, and form
an image partition.

The simplest way to capture the silhouette of an object as a polygon is
to vectorize a chain of pixels representing the object contours [DGCSAD11,
DDS09, WM03]. While the complexity of the polygon can be easily con-
trolled, these simplification processes do not take into account structural
information contained in the input image. Consequently, output polygons
are often imprecise, typically with edges that do not fit accurately the ob-
ject silhouettes. Recent works on the partitioning of images into polygonal
cells [AS17, BL18, DL15, FKF16] suggest that grouping cells from these
partitions can produce more accurate results than traditional vectorization
methods. This strategy however suffers from imprecise partitions, typically
with some polygonal cells overlapping two different objects. Existing works
in the field focus on merging polygonal cells only and omit the necessity of
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Figure 3.1: Goal of our approach. Our algorithm takes as input an image
with a rough semantic probability map and outputs a set of low-complexity
polygons capturing accurately the objects of interest, here dogs and cats.

splitting operations to deliver more precise results.
In this work, we propose an algorithm to capture objects by compact

floating polygons. Inspired by mesh deformation techniques in Geometry
Processing, the main idea consists in refining the geometry of an imprecise
polygonal partition while labeling each cells by a semantic class. Our algo-
rithm produces a compact representation for objects while offering geomet-
ric guarantees including self-intersection-free and overlap-free polygons. We
demonstrate the potential of our method on different types of scenes, from
organic shapes to man-made objects through aerial images and line-drawing
sketches, and show its efficiency with respect to existing vectorization ap-
proaches.

3.2 Background on kinetic data structures

In this section, we introduce kinetic data structures, which are the fundamen-
tal data structures used for maintaining the geometry of polygonal partitions
during the refinement process of the proposed algorithm.

A kinetic data structure [BGH99, Gui04] is defined as a data structure
implemented to track an attribute of a geometric system consisting of a set
of geometric primitives whose coordinates are continuous functions of time.
In contrast to static geometric data structures that divide the continuous
spatial domain into a discrete set of combinatorial structures of geometric
objects, kinetic data structures divide the continuous time domain into a
set of disjoint intervals. In each interval the combinatorial structure built
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on top of the geometric primitives does not change. The validity of the
combinatorial structure within an interval can be verified by checking a finite
number of certificates of the geometric primitives.

As primitives move, events may occur when certificates become invalid,
e.g. collision between primitives. Kinetic data structures maintain a global
event queue which is ordered dynamically according to the times of occur-
rences of the events. When an event occurs, the geometric objects responsible
for the certificate failures as well as the queue ifself are updated, therefore the
combinatorial structure remains valid. A key insight of kinetic data struc-
tures is that, by looking at a small time interval into the future, the queued
events correspond to possible combinatorial changes involving a constant and
typically small number of geometric objects each.

Kinetic data structures have been applied to many applications includ-
ing dynamic Delaunay triangulations for moving vertices [AGG+10], polyg-
onal partitioning of images [BL18], and polyhedral surface reconstruction
[BBPDM08, BL20]. As a part of this work, we design a kinetic data struc-
ture for the propagation of a collection of line-segments inside 2D nested
polygons. Please refer to the appendix for a detailed description of the prop-
agation and a pseudo-code.

3.3 Algorithm

The algorithm takes as input an image and an associated probability map
that estimates the probability of each pixel to belong to the different classes
of interest. This probability map is typically generated by state-of-the-art
semantic segmentation methods or saliency detection algorithms.

The algorithm departs from a polygonal partition generated by kinetic
propagation of line segments [BL18]. Each cell of this partition is enriched
by a semantic label chosen as the class of interest with the highest mean over
the inside pixels in the probability map. The goal of our algorithm is then
to refine this semantic polygonal partition by splitting and merging cells in
tandem. These refinement operations are guided by an energy that accounts
for both fidelity to input data and complexity of output.

The algorithm ends when no splitting or merging operations can decrease
the energy anymore. Each cell in the output is a polygon associated with a
class of interest, as illustrated in Fig. 3.1. By construction, the set of output
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polygons is guaranteed to recover the entire image domain without overlaps,
to be closed and intersection-free, and does not contain edge-adjacent cells
with the same semantic label.

We denote a semantic polygonal partition by x = (m, l) where m defines
a 2D polygon mesh on the image domain while l represents the semantic
labels associated to the facets of m. We denote by Fx (respectively Ex) the
set of facets (resp. non-border edges) of the polygon mesh m.

3.3.1 Energy formulation

We measure the quality of a semantic polygonal partition x with an energy
function U of the form:

U(x) = (1− λ)Ufidelity(x) + λUcomplexity(x) (3.1)

The first term Ufidelity measures the coherence of the configuration x with
the input data while Ucomplexity encourages low-complexity outputs. These
two terms, that are balanced by a model parameter λ∈ [0, 1], are typically
expressed with local energies on the edges and facets of the mesh m.

Fidelity term Ufidelity has two objectives: (i) encouraging the semantic
label of each facet to be coherent with the probability map, and (ii) encour-
aging edges to align with high gradients of the input image. These objectives
are balanced by parameter β, set to 10−3 in our experiments:

Ufidelity(x) =
∑
f∈Fx

−wf logPmap(lf ) + β
∑
e∈Ex

weA(e) (3.2)

where wf is the ratio of the area of facet f to the area of the whole image
domain, Pmap(lf ) is the mean of the probability map for class lf over the
pixels inside facet f , and we is the inverse of the length of the image diagonal
if the two adjacent facets f and f ′ of edge e have different labels lf 6= lf ′ ,
and 0 otherwise. Finally, A(e) is a function measuring the alignment of edge
e with image gradients:

A(e) =
∑
i∈Ne

ri
[
1− F̂ (mi) exp

(
− ∆θi

2

2σ2

)]
(3.3)
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λ = 10−6

6 polygons

157 vertices

λ = 10−5

5 polygons

94 vertices

λ = 10−4

4 polygons

62 vertices

Figure 3.2: Trade-off between fidelity to data and complexity to output poly-
gons. Increasing λ gives more compact, yet less accurate, output polygons.
Objects of interest: horses, persons and cars.

where Ne is the set of pixels that overlap with
edge e, ri is the inverse of the number of edges
that overlap pixel i, ∆θi is the angular differ-
ence between the gradient direction at pixel i
and the normal vector of edge e, and σ is a
model parameter set to π

8 in our experiments.
Denoting F̂ the empirical cumulative density
distribution of gradient magnitudes over the in-
put image, F̂ (mi) is the probability that the
gradient magnitude of a random pixel in the in-
put image is smaller than the gradient magnitude mi at pixel i. Note that,
instead of image gradients, more sophisticated discontinuity maps such as
[IZKA14, DZ13] could be used by modifying the density distribution F̂ in
Eq. (3.3).

Complexity term Ucomplexity penalizes a complex polygon mesh with
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the number of edges (the lower, the better):

Ucomplexity(x) = |Ex| (3.4)

As illustrated in Figure 3.2, the model parameter λ is a trade-off between
fidelity to input data and complexity of the output polygons. Note that
our data term measures data fidelity independently of polygon complexity.
In particular, A(e) is designed as a linear function so that, if an edge e is
composed of two collinear edges e1 and e2, then A(e) = A(e1) +A(e2). The
linearity of A(e) requires that each gradient pixel should not contribute mul-
tiple times to the total energy, which explains the factor ri in Eq. (3.3).

3.3.2 Exploration mechanism

Both continuous variables for representing the polygon mesh and discrete
semantic labels are involved in the minimization of the (non-convex) energy
U . Inspired by edge contraction algorithms for simplifying triangle meshes
[BKP+10, GH97a], we explore efficiently such a large solution space via an
iterative mechanism based on local operators that split and merge facets of
the polygon mesh m. Starting from an initial configuration, we compute the
energy variations for splitting each facet as well as the energy variations for
merging each pair of adjacent facets. All the energy variations (values to
add to the energy if performing the corresponding operation) are sorted and
saved into a priority queue in ascending order, i.e., with more negative en-
ergy variations first. The exploration mechanism then consists in operating
the splitting or merging at the top of the priority queue, i.e., the operation
that gives the highest energy decrease. This modification is followed by an
update of the priority queue. A pseudo-code of the exploration mechanism
is given in Algorithm 1. We also provide visualization of the iteration pro-
cess in Figure 3.3. The numbers of merging and splitting operated per one
hundred iterations indicates that the splitting operations are dominating at
the beginning and is taken over by merging as the process continues. We
now detail the main components of this algorithm.

Initialization. Because the exploration mechanism finds a local mini-
mum, a good initial configuration is required. In our experiments, we build
the initial semantic polygonal partition using the kinetic partitioning method
proposed in [BL18]. It produces in a fast and scalable manner a partition of
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Algorithm 1 Pseudo-code of exploration mechanism
1: Initialize the semantic polygonal partition x

2: Initialize the priority queue Q
3: while the top operation i of Q decreases energy U do
4: Update x with the merging or splitting operation i
5: Update Q
6: end while

Figure 3.3: The iteration process on a foreground extraction example. The
snapshots are taken at the initial configuration, then at every 200 iterations,
and finally when the algorithm terminates. The boundary edges between the
object of interest and the background is highlighted with red, and the other
edges are in white. On the right, the plot records the portions of merging
and splitting operations for each interval of 100 iterations.

polygonal cells that captures well the homogeneous regions in images. This
partition is turned into a 2D polygon mesh. We then assign to each facet
the semantic label that returns the highest mean over the inside pixels in the
probability map. The impact of initialization is illustrated in Figure 3.4.

Merging operator. The merging operator merges two facets with at
least one edge in common into a single facet. The update consists in re-
moving all common edges in between the two original facets as illustrated in
Figure 3.5. In case of the occurance of vertices of valence 2 whose incident
edges are collinear, these vertices is also removed. The semantic label of the
new, merged facet is chosen as the most probable label with respect to the
probability map.
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Image domain Voronoi partition Kinetic partition Image domain +
simulated annealing

Figure 3.4: Initialization. The top (resp. bottom) row shows the initial par-
titions (resp. output polygons). Objects of interest are persons and bikes.
Starting the exploration mechanism from a partition composed of one rect-
angular facet (column 1) typically produces results with missing objects such
as the bike. An initial Voronoi partition [DL15] (column 2) is too fragmented
to output low complexity polygons. Our algorithm performs best from ki-
netic partitions [BL18] (column 3) with a good trade-off between accuracy
and polygon complexity. This option returns similar results than a simulated
annealing exploration (column 4) but with processing times reduced by two
orders of magnitude. For clarity reasons, here and in the following figures,
we do not display the background polygons (at the image border) in the
visual results.

Splitting operator. The splitting operator divides a facet into a num-
ber of new facets by inserting new edges and vertices. We first detect a set
of cutting directions inside the original facet. These directions are found
by fitting line segments to the input image with a region growing algo-
rithm [OVJ+18]. To avoid detecting line segments overlapping the edges
of the facet, only pixels inside the facet shrunk by 2 pixels are considered
for the fitting (see the set of pink pixels inside the red facet in the inset).
The detected line segments are then propagated
until they collide with each other or the out-
side edges of the original facet, as illustrated in
Figure 3.5. The geometric structure through-
out the propagation inside arbitrary polygonal
boundaries is maintained by adapting a kinetic
data structure [BGH99]. The collision points
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(respectively the prolonged line segments) cor-
respond to new vertices (resp. edges) inserted in the 2D polygon mesh. For
each new facet, we associate the most probable semantic label with respect
to the probability map. If two new adjacent (sub)facets have the same se-
mantic label, they are immediately merged, as part of the splitting operation.

splitting

merging

Figure 3.5: Merging and splitting operators. The merging operator merges
two adjacent facets with different semantic labels by removing the common
edges (top). The splitting operator divides one facet into multiple facets that
have different semantic labels (bottom). The black dashed lines indicates the
cutting directions detected in the input image (bottom left).

Priority queue. After a configuration x is modified, the priority queue
must be updated. We first remove from the priority queue the current op-
eration and all the merging or splitting operations concerning the modified
facets. We then compute the energy variations of all possible operations that
can affect the new facets and insert them in the priority queue, appropriately
sorted. Because the energy is formulated as the sum of local terms and a
global complexity term, these variations are not costly to compute. When
a split occurs, only the parent facet, its new split facets and the edges com-
posing these facets are involved in the energy updates of the priority queue.
These updates are fast and local; they do not propagate through the whole
mesh. In our experiments, the average number of facets created per split is
2.1 and the average number of updated edges is 7.2.

Stopping criterion. The exploration mechanism ends when the energy
variations sorted in the priority queue become all positive, i.e., when no first-
order operation can decrease the energy anymore. Note that this criterion
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Figure 3.6: Evolution of energy U during our exploration mechanism (red
curve) and a simulated annealing optimization (SA, blue curve). While the
two optimization techniques converge towards a similar energy, our explo-
ration mechanism requires two orders of magnitude less iterations than the
simulated annealing.

guarantees the exploration mechanism to converge quickly without bumping
effects or getting trapped in loops. Besides, the final solution cannot contain
two edge-adjacent polygons with the same semantic class, as merging them
necessarily decreases the energy (lower Ufidelity, thanks to the convexity of
− log, and lower Ucomplexity).

Details for speeding-up the exploration. The exploration mecha-
nism is local. This choice is motivated by low running time and the presence
of good initial configurations. (An alternative could be to use a non-local
optimization algorithm such as the simulated annealing, cf. Figure 3.6.) Ob-
serving that a complex initial partition often over-segments the probability
map, we initially (before exploration) merge all adjacent facets that contain
only pixels classified with the same label. This highly reduces the processing
time without affecting the results.

To reduce the time for detecting line segments when new splitting opera-
tions are considered, we allow a merged facet to inherit the already-detected
line segments of its parent facets. We detect new line segments only in the
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Figure 3.7: Vectorization of linear structures. Our algorithm can be used to
vectorize line-drawings. While thin, these linear structures can be captured
by compact polygons with a good accuracy (see closeups).

area around the removed edges. In addition to time savings, this allows us
to refine the edges between two adjacent facets by operating a merging and
then a splitting on the same facet.

3.4 Experiments

Our algorithm has been implemented in C++ using the Computational Ge-
ometry Algorithms Library (CGAL) [The]. All experiments have been done
on a single computer with Intel Core i7 processor clocked at 2.4GHz.

Parameters. We have 3 model parameters λ, β, σ, that are set respec-
tively to 10−5, 10−3, π8 in all experiments, despite the dataset variety. (Note
that our algorithm does not need any threshold to stop the exploration.) The
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values of λ and β were chosen based on a grid search; σ was set to roughly
model the standard deviation of gradient directions.

3.4.1 Flexibility and robustness.

Our algorithm has been tested on different types of scenes and objects.
Piecewise-linear structures such as buildings are captured with fine details
as long as probability maps have a good accuracy. Organic shapes such as
humans and animals are approximated by low complexity polygons. In ad-
dition to the silhouettes of objects in images, our algorithm can also be used
to vectorize line-drawing sketches. This applications usually require the use
of specialized methods to detect, filter and connect strokes into a network
of parametric curves [FLB16]. In contrast, our algorithm finely reconstructs
these linear structures, as illustrated in Figure 3.7. Our algorithm offers a
good robustness to imprecise probability maps thanks to the second part of
the data term that favors the alignment of edges with image discontinuities.
As illustrated in Figure 3.8, the output polygons can accurately capture the
silhouette of objects even if the probability map is ambiguous where different
objects meet.

3.4.2 Ablation study

As semantic maps sometimes suffer
from ambiguities at object bound-
aries, using only the first data term
yields polygons that do not contour
well the objects, as illustrated in the
inset. This result, obtained with
β=0, must be compared with the re-
sults obtained in Figure 3.8 in the
same initial conditions but with β 6=0.

3.4.3 Quantitative evaluation.

We compared our algorithm to state-of-the-art methods on three different
datasets.

We first tested our algorithm on the HKU-IS dataset [LY16] designed
to evaluate salient object detection methods. We computed the probability
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Figure 3.8: Vectorization of multi-class objects. Probability maps are often
ambiguous and only roughly indicate the shape of the objects (see colors for
different classes). Our algorithm captures the silhouette of theses objects
with low-complexity polygons with a good precision. Note in particular how
the polygons nicely delineate close objects, such as the lady face and the
couch (see closeups). A failure case is shown in the bottom right example
where the quality of the probability map is too poor to capture the underlying
object. Images are from the PASCAL VOC2012 dataset.

map for each image using the algorithm of Li and Yu [LY16]. We compared
our algorithm to two vectorization pipelines in which the same saliency maps
[LY16] are binarized before chaining and simplifying the pixels on the object
contours, either by the popular Douglas-Peucker algorithm [WM03] or by
polyline decimation [DDS09]. We also compared to two cell grouping algo-
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Douglas-Peucker Polyline Voronoi Kippi Ours

Figure 3.9: Visual comparisons at two compression ratios: 10 (top) and 33
(bottom). While the vectorization pipelines Polyline and, to a lesser extent,
Douglas-Peucker yield accurate polygons at low compression, their precision
drops at high compression, with polygons not aligning well with silhouettes
anymore (cf. closeups). The cell-grouping algorithms Voronoi and Kippi are
less accurate on such free-form shapes where cells often overlap several object
classes. In contrast, we accurately capture the elephants at both compression
ratios.

rithms that generate a polygonal partition by Voronoi diagram construction
[DL15] or by kinetic propagation of line segments [BL18]. The polygons
are then extracted from these partitions by thresholding the saliency map
averaged over each cell. We denote these methods respectively by Voronoi
and Kippi. The accuracy is measured using Intersection-over-Union of our
pixelized output polygons against the ground truth. We also measure com-
pression as the ratio of the number of pixels of the ground truth region
boundary to the number of polygon vertices. In practice, we produce poly-
gons at different complexity by varying λ, as shown in Figure 3.2.

Table 3.1 shows the evolution of accuracy against compression on the
HKU-IS dataset. While all methods exploit the same saliency maps, only
our algorithm maintains high accuracy at high compression ratios, i.e., when
the output polygons have a very low number of vertices. Fig. 3.9 shows
visual comparisons of the methods at low and high compression. At low
compression, the vectorization pipelines Douglas-Peucker and Polyline pro-
duce accurate polygons, similarly to our algorithm. Because these pipelines
simplify the geometry of polygons without taking into account consistency
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Compression ratio
Method 10 15 20 25 33 50
Voronoi [DL15] 77.7 75.2 71.6 68.2 64.1 57.5
Kippi [BL18] 79.2 77.1 72.8 69.5 65.6 62.1
Douglas-Peucker [WM03] 83.8 83.3 81.2 79.4 76.0 65.7
Polyline [DDS09] 83.9 83.7 82.5 81.2 77.5 69.0
Ours 84.1 84.0 83.7 83.1 81.3 77.0

Table 3.1: Accuracy (%) vs compression on HKU-IS.

Compression ratio
Method 10 15 20 25 33 50
Voronoi [DL15] 87.9 86.4 83.6 81.3 77.7 74.3
Kippi [BL18] 88.9 87.6 85.4 83.0 79.5 75.2
Douglas-Peucker [WM03] 91.2 90.9 90.1 88.8 86.6 79.8
Polyline [DDS09] 91.2 91.1 90.6 89.9 88.1 85.8
Ours 91.7 91.6 91.5 91.4 91.2 89.7

Table 3.2: Accuracy (%) vs compression on PASCAL VOC2012.

the image, their accuracy significantly drops for higher compression ratios,
typically from 25. Cell grouping methods Voronoi and Kippi suffer from im-
perfect polygonal partitions where cells often overlap several types of objects.
In contrast, the merging and splitting operations of our algorithm allow us
to refine cells with respect to the probability map and the input image.

We also tested our algorithm on the Pascal VOC2012 dataset [EVGW+]
designed for multi-class segmentation tasks. This dataset contains 20 object
classes and 1 background class. The evaluation was performed on the vali-
dation set. We compared our algorithm to the same four methods (Douglas-
Peucker, Polyline, Voronoi and Kippi) with the same accuracy and compres-
sion metrics. Probability maps were generated by the DeepLab algorithm
[CZP+18] by taking the output layer before the final argmax operation over
class channels. Table 3.2 shows the evolution of accuracy against compres-
sion for the five algorithms. Similarly to the quantitative results obtained on
the HKU-IS dataset, our algorithm outclasses the other methods, in partic-
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Method AP AP50 AP75 AR AR50 AR75

R-CNN [HGDG17] 41.9 67.5 48.8 47.6 70.8 55.5
PANet [LQQ+18] 50.7 73.9 62.6 54.4 74.5 65.2
PolyMapper[LDWL19] 55.7 86.0 65.1 62.1 88.6 71.4
Ours 65.8 87.6 73.4 78.7 94.3 86.1

Table 3.3: Performance on the CrowdAI mapping challenge dataset. Average
precision (AP) and average recall (AR) in %.

ular with a significant accuracy gain at high compression. Figure 3.8 shows
visual results obtained by our algorithm on different object classes.

We finally tested our algorithm on the CrowdAI mapping challenge dataset
[Moha] which is composed of ∼60k satellite images of urban landscapes.
Probability maps were generated using a U-Net variant [CKPT18]. We fol-
lowed the same experimental protocol than in [LDWL19] for extracting the
contours of buildings from this dataset. In particular, we used the same aver-
age precision (AP) and average recall (AR) metrics. We compared our algo-
rithm with the deep learning methods PolyMapper [LDWL19], Mask R-CNN
[HGDG17] based on the implementation of [Mohb], and PANet [LQQ+18].
Table 3.3 presents the quantitative results on these four methods. Our al-
gorithm obtains the best average precision and average recall scores. In
particular, our algorithm outclasses Polymapper with significant gains. This
difference is partly explained by the iterative mechanism of vertex insertion
of Polymapper whose efficiency decreases for complex shapes. By refining
polygonal cells on a topologically-valid partition, our algorithm does not suf-
fer from this problem. Figure 3.10 shows visual results on an urban scene of
the Inria Aerial Image Labeling dataset [MTCA17].

3.4.4 Performance.

Figure 3.6 shows that our exploration mechanism reaches similar energies as
a non-local simulated annealing while being two orders of magnitude faster.
Our exploration mechanism is inspired by edge contraction algorithms for
mesh simplification. While local, greedy and old, such algorithms, e.g.,
[BKP+10, GH97a], are still very popular and commonly used in the field.
As shown in the inset, our algorithm typically requires a few seconds for a
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Figure 3.10: Extraction of buildings from satellite images with our algorithm:
1,178 buildings of a half square kilometer area of Chicago, USA, are extracted
with low complexity polygons (8,683 vertices). While compact, the polygons
capture some fine details (see closeups).

100K-pixel image and about 2 min for a 10M-pixel image. Note that our
code has not been optimized (beyond the general strategy expressed at the
end of Sect. 3.3.2). In particular, the exploration mechanism runs sequen-
tially on CPU (no parallelization). The most time-consuming operation is
the update of the priority queue, and especially the simulation of splitting
operations for the new large facets. If the initial partition contains Nf facets
and Ne non-border edges, the priority queue is constructed by sorting the
energy variations of the Nf possible splits and Ne possible merges; the run-
ning time for this is negligible (< 0.1% of total time). Last, the computation
of cutting directions depends on the number of image pixels. It is very fast
and performed only once at priority queue initialization. Getting split di-
rections from the input image lowers the dependency on the initial partition
and allows larger solution space explorations.
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Figure 3.11: Processing time against number of pixels in the input image.

3.4.5 Limitations.

As energy U(x) is not convex and as our exploration mechanism is local,
results depend on the quality of the initial partition. As shown in Fig. 3.4,
splits provide robustness to a range of under-segmentations; yet, an initial
partition that over-segments well the image leads to more accurate results.
If a good initial partition cannot be provided or guaranteed, simulated an-
nealing can be a better choice regarding accuracy, but not running time (cf.
Fig. 3.6).

Thanks to the gradient alignment term in Ufidelity, our algorithm is robust
to some level of error or ambiguity in semantic maps, in particular at object
border; see, e.g., the polygons capturing the lady’s face and the couch from
the blurry semantic map in Fig. 3.8. Yet, the class probability of most pixels
has to be correct, as is also the case for shape grammar parsers. Note
that depending on external methods (initial partition, semantic map) is a
strength: our performance will improve along with the related state of the
art.

Also, while parameter λ balances data fidelity and output complexity, it
does not allow to control the exact number of output vertices, contrary to
vectorization pipelines.

3.5 Conclusion

We proposed an algorithm for extracting and vectorizing objects in images
with low-complexity polygons. Our algorithm refines the geometry of an
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initial polygonal partition while labeling its cells by a semantic class. Based
on local merging and splitting of cells, the underlying mechanism is simple,
efficient and guaranteed to deliver intersection-free polygons. We demon-
strated the robustness and the flexibility of our algorithm on a variety of
scenes from organic shapes to man-made objects through floor maps and
line-drawing sketches. We also showed on different datasets that it outper-
forms the state-of-the-art vectorization methods.





Chapter 4

3D registration of multi-modal
geometry

4.1 Introduction

3D registration of multi-modal data is a long-standing challenge when work-
ing with real-world 3D objects. Geometric data obtained from different ac-
quisition modalities (e.g. laser scans, multi-view stereo reconstruction) or cre-
ated by modeling tools are represented in various forms, i.e. as point clouds
or meshes, and exhibit different geometric properties in terms of noise, res-
olution or the scale. Classical problems in multi-modal registration involve
registering a low-quality point cloud to a high-quality mesh, and registering
a dense point cloud to a simplified mesh model.

Challenges in multi-modal registration arise from several aspects. Im-
perfection in data acquisition includes occlusions and non-uniform sampling
density. Different surface representations, i.e. meshes and point clouds, of-
ten have different levels of detail and accuracy, making both traditional
feature-based methods [SWK07b, RBB09, HIT+15, ZPK16] and deep learn-
ing architectures [AGASL19, WS19a, WS19b, CDK20, LZX+20] unsuited
for this task. Variation in acquisition modalities can lead to scale ambigu-
ity, e.g. multi-view stereo generates data in an unknown scale, which fur-
ther complicates the problem. The majority of existing methods [BM92,
YLJ13, MAM14, PBCE+16, CPK+19, ZYD21] focus on aligning 3D mod-
els to depth scans under the assumption that the model and the depth
scan are already at the same scale. This is not the case for many real-
world scenarios, where either the collected data or the 3D object model
may have no absolute scale associated. Simple pre-processing by estimating
and correcting the scale before calling the registration step often fails for
non-uniformly sampled data or partially overlapping data. Several works
[CDG+13, GAGM15, MDS16, EKK18, IBA+20] have considered relative
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scale estimation. These methods treat the scale estimation as a separate
step, therefore there lacks a unified formulation that simultaneously solve
for the scale, rotation and translation.

In this work, we present a global registration algorithm from multi-modal
geometric data, typically 3D point clouds and meshes. Existing feature-
based methods and recent deep learning based approaches typically rely upon
point-to-point matching strategies that often fail to deliver accurate results
from defect-laden data. In contrast, we reason at the scale of planar shapes
whose detection from input data offers robustness on a range of defects,
from noise to outliers through heterogeneous sampling. The detected planar
shapes are projected into an accumulation space from which a rotational
alignment is operated. A second step then refines the result with a local
continuous optimization which also estimates the scale. We demonstrate the
robustness and efficacy of our algorithm on challenging real-world data. In
particular, we show that our algorithm competes well against state-of-the-art
methods, especially on piece-wise planar objects and scenes.

4.2 Background on Lie groups for Sim(3)

In this section, we introduce Lie groups and Lie algebras for 3D transforma-
tions, which are the fundamental representation that enables our continuous
optimization step.

A Lie group is a continuous group that is also a differentiable manifold,
in which the group operations of multiplication and inversion are smooth
maps. Associated with every Lie group is a Lie algebra, which is the tangent
space around the identity element of the group. It has become the building
block for SLAM frameworks [Sel04, ZXB+19, DS20], as it addresses essential
operations including composition, inversion, differentiation and interpolation
for spatial transformations. A complete introduction of Lie groups and Lie
algebras can be found in [Kir08].

Transformations in 2D and 3D space can be represented as Lie groups. In
particular, the similarity transform matrix belongs to the Sim(3) Lie group.
Similarity transformations are combinations of rigid transformation and scal-
ing. When the scale s = 1, the transformation becomes rigid and belongs
to the SE(3) group. The associated Lie algebra sim(3) of the Sim(3) group
is a vector space of dimension 7, which is the same as the number of de-
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grees of freedom of similarity transformations. The basis element of the Lie
algebra are called generators. The generators of sim(3) correspond to dif-
ferential translations (G1, G2, G3), derivatives of rotation around the each of
the standard axes (G4, G5, G6), and the derivative of scale change (G7):

G1 =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 , G2 =


0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

 ,G3 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 ,

G4 =


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 , G5 =


0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

 ,G6 =


0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 ,

G7 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −1


(4.1)

An element of sim(3) is represented as a linear combination of generators,

u1G1 + u2G2 + u3G3 + ω1G4 + ω2G5 + ω3G6 + λG7 ∈ sim(3)

where (u; ω; λ) ∈ R7.
(4.2)

From now on we denote ξ = (u; ω; λ) ∈ sim(3) for convenience. The
Lie algebra is linked to the Lie group by an exponential map which is a
bijective function converting any element in the tangent space to exactly
one transformation in the group. Specifically, the exponential map from
sim(3) to Sim(3) is the matrix exponential given by

exp (ξ) = exp

[
ω∧ u

0T −λ

]

= I +

[
ω∧ u

0T −λ

]
+

1

2!

[
(ω∧)2 ω∧u− λu

0T λ2

]
+ ...

=

[
exp (ω∧) v

0T exp (−λ)

]
∈ Sim(3)

(4.3)

where ω∧ is the skew-symmetric matrix associated to vector ω, exp (ω∧) is
the rotation matrix, v denotes the translation component and exp (−λ) is
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Figure 4.1: Overview of the proposed method. Planar shapes are first ex-
tracted from the input point cloud and surface mesh. From the surface-
normal distribution of planar shapes (green corresponds to a high portion of
planar area with normal pointing towards the arrow direction), three dom-
inant directions are estimated, called a 3-frame. The 3-frames are aligned
between the source and the target, leading to 24 possible rotations (only
three are represented here). The refinement step takes each candidate ro-
tation and estimate a final similarity transform. The alignment with the
minimal loss is kept as the final result (see red frame).

the scale change. For S ∈ Sim(3) and a point p ∈ R3, differentiation of Sp

by ξ is performed by implicitly left multiplying the transformation by the
generators representing infitesimal perturbations.

4.3 Algorithm

We consider as input a pair of 3D data composed of a surface mesh and a
point cloud which we denote by the source and the target respectively. The
relative scale between them is unknown and the overlap can be partial. The
goal is to determine the parameters of a similarity transformation S which
best aligns the source against the target,

S =

[
sR t

0T 1

]
∈ R4×4 (4.4)

where s ∈ R, R ∈ R3×3 and t ∈ R3 are the scale factor, the rotation matrix
and the translation vector respectively.
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The application of distance function representation removes the need for
explicitly solving for correspondences. At first glance, it is intuitive to formu-
late the task as a least squares problem in the same way as rigid registration
[Fit01] using the distance field. Let {di}nd

1 be a set of nd points from the
source, and Dm : p ∈ R3 7→ d ∈ R be the distance field of the target surface,
which maps a 3D point p to its Euclidean distance d to the closest point on
the surface. Simple adaptation of the rigid registration formulation leads to
a loss function given by

U(S) =

nd∑
i=1

|Dm(Sdi)|2 (4.5)

where conversion from homogeneous coordinates to Cartesian coordinates is
omitted for simplicity of notations. The above formulation, however, has
an infinite number of global minima U = 0 at scale factor s = 0, where
the source simply shrinks to a single point on the target. These undesirable
global minima result from the difference between Euclidean transformation
and similarity transformation.

We propose an improved formulation by considering also the distance
field Dd of the underlying surface of the source. Let {mi}nm

1 denote a set of
nm points sampled from the target. The proposed loss is given by

U(S) =
1

nd

nd∑
i=1

|Dm(Sdi)|2 +
1

nm

nm∑
j=1

|sDd(S
−1mj)|2 (4.6)

where S−1 is the inverse of S. The distance field Dd is rescaled by the scale
factor s. The purpose of rescaling is to balance the losses contributed by the
two distance fields. The final loss is a symmetric measure of fit between the
source and the target, which eliminates undesirable global minima. In order
to minimize the proposed loss, we propose a two-step pipeline which consists
in a rotational alignment followed by a local refinement. Figure 4.1 shows
an overview of our method.

4.3.1 Planar shape based alignment

The first step of our method consists in aligning the orientations of the source
and target in a simple yet effective manner. The method generates a set of
candidate rotation matrices, which will be refined in the later refinement
step. First, a set of planar shapes are detected on the point cloud via region
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growing [LM12], with fixed parameters for all experiments. This step helps
filtering out noisy points in the point cloud and yields an as clean as possible
representation of the actual shapes, similar to the idea of Corsini et al.
[CDG+13] who uses Variational Shape Approximation [CSAD04] to partition
the point cloud into planar regions. From now on, we will discard the original
point cloud and use the clean subset instead.

We propose to initialize the rotation matrix by aligning surface normals
of the planar shapes of the source and the target. The alignment of normal
vectors is invariant to scale and translation, which offers a more robust es-
timation. Our approach shares similarity with Stata Center World (SCW)
[TBD05] and the Manhattan Frame [SRF+14], which analyze the surface-
normal distributions of a single input. In our setup, we focus on the rela-
tionship between the surface-normal distributions of the source and target.
As shown in Figure 4.1, we first cluster the normal vectors of each set of
planar shapes to find 3 major axes (not necessarily orthogonal), which from
now on will be called a 3-frame. A 3-frame represents the component means
of a weighted-data Gaussian mixture model. In case of the point cloud, the
data points are the alpha-shapes of the detected planes, weighted by their
areas. In case of the surface mesh, they are the polygonal facets of the mesh,
weighted by their areas. The distance metric of data points is defined on the
unit sphere, where each axis includes both positive and negative directions.
More specifically, a 3-frame can be represented as columns in

A =
[
u1 −u1 u2 −u2 u3 −u3

]
, ui ∈ R3. (4.7)

We use the absolute cosine similarity metric instead of the Euclidean distance
for measuring the distance between two normal vectors on the spherical
surface, i.e.

d(v1,v2) =
|v1 · v2|
‖v1‖‖v2‖

. (4.8)

We use the weighted Expectation-Maximization (EM) algorithm [GAPFH16]
to solve for the cluster means and variances. Same is done to the normal vec-
tors of the target surface. The proposed approach is based on the assumption
that, for the same underlying scene, there exists some column permutation P
such that the 3-frames of different representations are aligned via a rotation
R,

A2 = RP (A1). (4.9)
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For a given permutation Pi, the rotation matrix is computed as the solution
to the orthogonal Procrutes problem

Ri =argminΩ‖ΩPi(A1)−A2‖F
subject to ΩTΩ = I and det(Ω) = 1,

where ‖ · ‖F denotes the Frobenius norm. The solution for R is obtained by
only allowing orthogonal matrices with determinant 1, and is given by Ri =

UΣ′V T , where A2Pi(A1)T = UΣV T is the singular value decomposition and
Σ′ is a modified Σ with the smallest singular value replaced by det(UV T ), and
other singular values replaced by 1. The output of the rotational alignment
step is a list of rotation matrices {Ri}24

i=1. This is done by aligning the 3-
frames with all permutations of the three axes (3! in total) and combinations
of the orientation of each axis (23 in total). Simple application of the right-
hand rule (or left-hand rule) for a consistent orientation of axes can eliminate
half of the candidates, giving a final number of 24. Figure 4.2 shows the
complete list of rotational initilization.

4.3.2 Refinement

The results of the rotational alignment are now refined using local continuous
optimization. For the input point cloud, the detected alpha shapes from the
previous step are used to generate its distance field Dd. In order to solve
the minimization problem locally, we rewrite the transformation matrix as
S = exp(ξ) where ξ = (u; ω; λ) ∈ R7 is the corresponding element in Lie
algebra. We denote exp(ξ) as Sξ from now on, and let sξ be the associated
scale factor. The optimization objective becomes

min
ξ
U(ξ) =

1

nd

nd∑
i=1

|Dm(Sξdi)|2 +
1

nm

nm∑
j=1

|sξDd(S
−1
ξ mj)|2. (4.10)

The derivative of the loss is thus

dU

dξ
=

2

nd

nd∑
i=1

Dm(Sξdi)∇Dm(Sξdi)
dSξdi
dξ

+

2

nm

nm∑
j=1

sξDd(S
−1
ξ mj)

(dsξ
dξ

Dd(S
−1
ξ mj) + sξ∇Dd(S

−1
ξ mj)

dS−1
ξ mj

dξ

)
(4.11)



58 Chapter 4. 3D registration of multi-modal geometry

6.34\5.70 1.89\1.47 7.58\6.76 3.10\2.45

8.37\4.75 7.52\6.66 6.54\5.97 2.88\2.54 7.75\7.02

3.43\2.60 8.39\7.90 7.57\3.41 6.33\5.83 2.40\1.70

7.65\2.52 3.51\3.09 8.33\8.07 7.55\2.67 6.48\2.50

2.66\2.42 7.67\2.48 3.27\2.90 8.14\1.69 7.51\2.80

Figure 4.2: Demonstration of the 24 initial rotations and the corresponding
output after local refinement. The input point cloud and the mesh are shown
on the left, together with their 3-frames (red and blue, respectively). For
each initial rotation, the alignment after applying the rotation matrix is
shown on the top-left frame, and the final refinement output is shown at the
bottom right. The RMSE (×10−2) values before and after refinement are
shown below. The best path is indicated by a red arrow.

where ∇Dm(p) is the gradient vector of the distance field at point p. We
have, for any point,

dSξp

dξ
=

[
I −q′∧ q′

0T 0T 0

]
∈ R4×7, (4.12)

dS−1
ξ p

dξ
=
dS−ξp

dξ
, (4.13)

dsξ
dξ

=
[
0T exp (λ)

]
∈ R1×7 (4.14)
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where q′ denotes the Cartesian representation of the homogeneous coordi-
nates Sξp, and q′∧ is the skew-symmetric matrix associated with vector q′.
Note that S−ξ = exp(−ξ) = S−1

ξ . Trust region methods, such as Levenberg-
Marquardt and Dogleg, can be used for optimization. In our experiments,
we use the Dogleg algorithm.

In our implementation, note that AABB tree is used for fast distance
queries against sets of plane objects. Each query returns a closest point p

on the set of planes to the query point q. It also allows efficient computa-
tion of distance field gradient, as the gradient of a distance field always has
magnitude 1 and has the same direction as q− p whenever only one closest
point exists.

4.4 Experiments

Our algorithm is implemented in C++ using the Computational Geometry
Algorithms Library (CGAL) [The21] and the Ceres library [AMO]. For all
experiments, the parameters of the region growing step for shape detection
are fixed and set as follows: The Euclidean distance threshold is set to 4µ,
where µ is the mean of K nearest neighbor distances of the point cloud. The
normal threshold is set to 35 degrees. The minimum number of points per
planar shape is 40.

4.4.1 Dataset and error metrics

Dataset. Existing datasets for rigid registration consist of point cloud pairs
obtained from the same acquisition modality, which does not offer differences
in terms of levels of detail and defects. Also, there is often no associated
mesh data of the captured scene. Synthetic range data from meshes do
not simulate well defects of real-world acquisition systems. To this end,
we evaluate and compare our approach with state-of-the-art methods on a
collection of 13 real-world point sets that differ in terms of shape complexity,
size, and acquisition characteristics, provided in [BL20], together with their
corresponding simplified 3D models. The point sets are acquired via different
modalities, i.e. multi-view stereo, and laser scanner. Additionally, we include
synthetic data consisting of point sets sampled from 6 shapes, and their
simplified models computed using [BL20]. The simplified 3D models are
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Figure 4.3: Visualization of our registration results on a regular object (barn)
and a free-form object (horse). For each object, Gaussian noise is added to
create a noisy version. The top row shows the mesh and the point cloud to
be aligned, as well as their 3-frames (drawn in blue and red, respectively).
The best initial rotation is shown in the middle row, with the aligned result
at bottom. The RMSE (×10−2) values are shown.

compact mesh representations of the objects, which differ from the point
sets in terms of detail, noise and outliers. The models are set to different
scales in the experiments. The dataset is divided into two categories: free-
form objects and regular objects. We consider an object to be regular if it
exhibits a high degree of organization in the form of large planar structures,
e.g. buildings and furniture. The rest are considered as free-form objects.
Figure 4.4 visualizes our results on all 19 pairs of objects in the dataset.

Metrics. We use two metrics for quantitative evaluation: root mean square
error (RMSE) and α-recall. We compute the RMSE between the estimated
transformation S = (s,R, t) from the ground-truth transformation S∗ =

(s∗, R∗, t∗):

ε =

√√√√ 1

nd

nd∑
i=1

min
j
‖sRdi + t− s∗R∗dj − t∗‖22 (4.15)

It is worth noting that, the distance is computed against the nearest neigh-
bor in the ground-truth. Unlike previous works, we do not directly com-
pare against the ground-truth transformation nor on the distance between
ground-truth correspondences in order to eliminate ambiguity for shapes
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capron horse ignatius m60 dragon

bunny hand rocker eight cottage

chair bldgA room block temple

barn euler hilbert dice

Figure 4.4: Visualization of our results on 19 examples from the dataset,
with random perturbations in rotation between 90◦ and180 ◦, in translation
between 0 and 100% of the diameter, and in scaling between 0.25 and 2.
Regular objects are shown after free-form objects. For each example, the
input point cloud and mesh are shown on the top (gray region), with the
alignment output at the bottom.
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with rotational symmetry, where multiple ground truths exist. α-recall is
defined as the ratio of successful pairwise registrations, where a registration
is considered successful if its RMSE is smaller than a certain threshold α

[ZPK16]. For both metrics, the RMSE unit is the diameter of the target.
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Figure 4.5: The mean (bold curve) and standard deviation (shaded region)
of the RMSE of each method on different perturbations to the ground-truth
alignment. Lower is better.

4.4.2 Robustness

Figure 4.3 shows our registration results for regular and free-form objects.
To demonstrate robustness to noise, 3D Gaussian noise is added to the MVS
point cloud of each object (2nd and 4th columns). Comparing the 3-frames
of point clouds with and without added noise, it can be seen that estimation
of 3-frames is robust to noise, especially for the case of regular objects. Thus
our method is able to generate good initial rotations, which are refined to
recover the final alignment.

We also investigate robustness to each type of perturbation (rotation,
translation and scale). The results are shown in Figure 4.5. In the first two
experiments, the source is perturbed from the ground-truth alignment with
varying degrees of rotation (or translation, resp.), keeping the ground-truth
translation (or rotation, resp.) and scale. In the third experiment, the source
is resized by a specific amount each time and undergoes randomly generated
small rotations and translations. As illustrated in Figure 4.5, our algorithm
show competitive stability to all three types of perturbations.

4.4.3 Comparisons

We compare with both local and global methods. The local methods include
SICP [ZSN05], SymmICP [Rus19], CPD [MS10], BCPD++ [Hir20a] and Fil-
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terReg [GT19], while the global methods are FGR [ZPK16], DCP [WS19a],
and DGR [CDK20]. In our experiment, all local methods are combined with
a RANSAC initialization. Some methods have a built-in scale estimation
component and are labeled as joint in Table 4.1. The others assume a given
scale as input and are labeled as two-step. For these two-step methods, we
provide an estimated scale factor from a bounding box based estimation
method which can provide a good estimate given sufficient overlap between
input [CDG+13, MAM14]. For all data tested in Table 4.1, the error is
around 2.5% from the ground truth scale. Details of the scale estimation
method can be found in appendix A.3.

Visual comparison. Figure 4.7 visualizes the registration results of
each method on two types of examples. The input point clouds are signif-
icantly perturbed from the ground-truth alignment. For local methods, we
show both results with and without an FPFH-based RANSAC initialization.
Classical feature-based global methods like FGR do not offer enough robust-
ness to variations in the shape characteristics. On the free-form object (top),
the family of probabilistic approaches (CPD, BCPD++, and FilterReg) ben-
efits more from the RANSAC initialization than the ICP approaches. Point-
based learning method DCP fails to register point clouds with large numbers
of points, due to its high memory consumption. Volumetric learning-based
approach DGR is able to produce more accurate correspondences, but re-
quires accurate estimation of the relative scale as a pre-processing step. Our
method recovers well the alignment for both types of objects, achieving sat-
isfying accuracy.

Quantitative comparison. Our algorithm performs best on regular
objects and scenes as they are well described by piecewise-planar geometry.
As shown in the right part of Table 4.1, our method reaches significantly
lower average RMSE in 8 out of 10 objects, while retaining errors reasonably
close to the best baseline in the remaining 2 cases. In addition, our method
achieves the lowest maximal RMSE for almost half of the tested objects,
exhibiting a low failure rate comparable to the others. On the contrary, the
best performing baseline, DGR, is less robust as its maximal RMSE tends
to be off by a large amount when it fails, e.g. on cottage, hilbert and dice.
Figure 4.6 (b) shows the α-recall rate of all methods on all tests done on the
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Figure 4.6: α-recall curve of each method on free-form objects (a) and regular
objects (b). In particular, our approach outperforms existing methods on
regular objects, and achieves competitive results as compared to the best
baselines on free-form objects.

free-form objects. Our algorithm achieves a 0.02-recall of 99%, significantly
higher than the other algorithms, with DGR reaching 88%. For free-form
objects, as indicated by the left part of Table 4.1 as well as Figure 4.6 (a),
our method matches the accuracy achieved by state-of-the-art methods.

4.4.4 Performances

The planar shape-based alignment typically requires a few seconds to one
minute depending on the size of the input point cloud (that ranges from
150K to 3M points). This corresponds to the processing time for detecting
planar shapes, clustering being negligible. The refinement step is also a few
seconds for each rotational initialization from our non-optimized sequential
implementation of the algorithm.

4.4.5 Limitations

Our algorithm, which is designed to perform on regular scenes, is less com-
petitive on free-form objects. The detection of planar shapes on such objects
often gives a rough and arbitrary approximation of their curved surfaces. Our
method is also not designed to the registration of 3D data with a very low
overlap ratio.
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4.5 Conclusion

We proposed a global registration algorithm for multi-modal geometric data
which differs in terms of noise, detail, and scales. Our algorithm performs a
planar shape based alignment to recover candidate rotations independent of
scale and translation, followed by a refinement step with a local continuous
optimization. We demonstrated the robustness and efficacy of our algorithm
on defect-laden real-world data, as well as it competitiveness against state-
of-the-art methods, especially on objects and scenes that can be described
with a piece-wise planar geometry.
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Figure 4.7: Visualization of results registered by each method on a free-form
object (top) and a regular object (bottom). The 3-frames of the input point
cloud and the mesh are shown (red and blue, respectively). Our method
achieves satisfying alignment for both types of objects under large transfor-
mation.





Chapter 5

Application to floor modeling

In this chapter, we show a potential application of our algorithms presented
in the previous two chapters, by combining them into a vectorization-then-
registration pipeline for generating a compact model for building interiors.
While existing geometric modeling approaches mainly focus on generating a
3D model of the target scene from a single type of data (e.g. RGB-D scans
[DST+21], a point cloud [STM+21], a single image [RPJT13] or panorama
[YWP+19], or multi-view images [CF14]), the proposed pipeline explores the
possibility of utilizing multi-modal data in the intermediate steps.

5.1 Principle

Our pipeline receives as input a floor plan image, and a multi-view image
sequence of the building interior. The output is a 2.5D floor model with
cameras aligned. An overview of the pipeline is shown in Figure 5.1. We
assume that the point cloud (and camera parameters relative to the point
cloud) is already computed by off-the-shelf reconstruction systems such as
COLMAP [SF16, SZPF16], as the reconstruction of point cloud is not the
focus of this thesis. Now we detail main components that constitute the
pipeline.

First, our polygonal image segmentation algorithm presented in chapter
3 can be used to vectorize floor map images. Existing pipeline for this
application usually requires the use of specialized methods to detect, filter
and connect corner points into a floor map [LWKF17]. In contrast, our
algorithm finely approximates linear structures with polygons. The input is
a rasterized floor plan. The probability map is estimated using color cues
in the floor plan. For a grayscale floor plan where walls are typically black,
the probability map is simply computed by inverting and rescaling the pixel
values to the [0, 1] range. Erosion and dilation are used to remove thin
lines representing doors and windows. For a color floor plan, a naive two-
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...

floor plan image

polygonal
segmentation

vectorized floor plan

extrusion

extruded mesh
registration

image sequence

MVS

point cloud aligned mesh

Figure 5.1: Overview of our pipeline. The floor plan image is first converted
to a vectorized form, where the interior region is indicated in gray. The
2.5D model is generated by extruding polygons corresponding to the interior
region given an estimated height. Finally, the model is registered to the point
cloud, computed from the image sequence, to output an aligned model.

step method is used for estimation of the probability map. First, the pixel
colors are clustered by k-means clustering, given a user-specified number of
desirable clusters. In our experiment, the number of clusters is set to 20.
For each of the resulting clusters, a class label (wall, room type 1, room
type 2, other etc) is assigned by the user. Second, following a similar idea of
[FLBA20], the probability of a pixel i belonging to class mf is assigned as
its normalized RGB distance to the closest color in the set of cluster centers
that corresponds to mf , that is,

P (i|mf ) =
minj∈Smf

‖I(i)− Cj‖
minj∈Smf

‖I(i)− Cj‖+ minj /∈Smf
‖I(i)− Cj‖

(5.1)

where I(i) is the color at pixel i, Smf
is the set of clusters labeled as mf ,

and Cj is the center of cluster j. Note that more sophisticated approaches
could be used for predicting the probability map, but are beyond the scope
of this thesis.

Our algorithm is capable of processing floor plans of different styles
and complexity, as demonstrated in Figure 5.2. In contrast to the previ-
ous method [LWKF17] which relies on integer programming for recovering
a geometrically consistent result, our iterative approach is scalable for com-
plex floor plans and captures well the detailed structures. Figure 5.3 shows
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Figure 5.2: Vectorization of floor plans. The first row shows the input floor
plan photographs, and the second row shows the vectorized output. Our
algorithm captures well the thin linear structures by compact polygons (see
closeups in the last two rows).

an example of generating a 2.5D model from the vectorized output by sim-
ply extruding wall polygons. Alternatively, we could extrude the interior
polygons representing the rooms.

The second step is the alignment of the point cloud with respect to the
vectorized floor plan. In contrast to existing geometric modeling pipelines
which directly estimates a surface mesh from the point cloud, we are able to
generate a compact 2.5D representation of the building interior, thanks to
the floor plan. The model is created from the vectorized floor plan by extrud-
ing the interior region. It is done by inserting boundaries (possibly nested)
into a constrained Delaunay triangulation and marking the triangle facets
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rasterized input vectorized output 2.5D model

Figure 5.3: Illustration of generating a 2.5D model from a rasterized floor
plan. The rasterized floor plan is first converted into a vectorized form by
our algorithm. The mesh is created by extruding wall polygons from the
vectorized floor plan.

of the region of interest, followed by an extrusion step. A height value is
provided to the extrusion algorithm as a ratio against the diagonal of the 2D
bounding box of the vectorized floor plan. The height can be user-specified,
or estimated from the oriented bounding box of the point cloud. In our
experiments, we estimated the height by computing the oriented bounding
box of the point cloud after first filtering out noise and outliers. The mesh
generated by extruding the interior region is a more accurate approximation
to the point cloud than the one created by extruding wall polygons, as the
latter contains no part corresponding to the floor or the ceiling. The regis-
tration step is done by the multi-modal registration algorithm presented in
chapter 4. The algorithm is suited for registering point clouds to compact
mesh models for buildings and indoor scenes, as both are well described by
planar shapes.

We color the aligned model for visualization purposes. For a point on the
mesh, the color is simply determined by the color of the nearest point in the
point cloud, constraint by a distance threshold. The surface regions with no
neighboring points inside the threshold sphere are painted black. Note that
more advanced texturing method [WMG14] could be deployed to create a
better texture map.



5.1. Principle 73

#vertices = 138

#vertices = 120

#vertices = 312

Figure 5.4: Results of our pipeline for building interiors. For each scene, the
first column shows the input consisting of a rasterized floor plan and a point
cloud. The second column visualizes the 2.5D floor model by extruding the
vectorized floor plan, and the alignment result to the point cloud. The last
column is the visualization of the aligned floor model.
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5.2 Experiments

We demonstrate our pipeline on example scenes from the Tanks and Temples
dataset [KPZK17], and the Matterport3D dataset [CDF+17].

Our method produces visually satisfactory results for simple floors where
the ground truth can be well approximated by a 2.5D representation, such as
the bottom examples in Figure 5.4. In the more complex case where the floor
contains rooms with different heights or has a non-trivial ceiling structure,
texturing the inconsistent region of the 2.5D model becomes challenging. For
instance, the top example in Figure 5.4 contains side rooms which are lower
than the central part of the floor, and the middle example in Figure 5.4 has
a complicated ceiling which is in fact the interior part of the roof.

The proposed pipeline provides a compact model for the floor. Our out-
put typically consists of a few dozens to a few hundreds of vertices, as in-
dicated in Figure 5.4 and Figure 5.6, whereas Poisson reconstructed meshes
could contain hundreds of thousands of vertices.

We test the impact of defects in the input point cloud, by simulating ran-
dom noise and incomplete acquisition in the scene. As shown in Figure 5.5,
the registration step is more robust to random noise on point locations, but
tends to fail in case of low overlap between the input pair. In contrary, the
simple coloring strategy is able to produce reasonable output in the case of
incomplete point cloud, given sufficient amount of overlap with the mesh. It
is more sensitive to noisy point clouds, resulting in undesirable artifacts in
the texture even in the presence of a relatively low amount of noise. Using
more sophisticated texturing techniques, such as methods based on registered
raster images, could be the way to address the issue.

Our pipeline is also applicable to building exteriors. An illustrative ex-
ample is shown in Figure 5.6. Ideally the overhead image should be an or-
thophoto of the building, however, due to the lack of data we are limited to
the floor plan as input. As compared to the indoor case, the reconstructed
point clouds from outdoor scenes may contain certain building structures
that are absent from the floor plan. For instance, the roof structure cannot
be inferred from the floor plan.
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(a) (b) (c) (d) (e)

Figure 5.5: Impact of defects in the point cloud. (a) Original input. (b)
Points perturbed by noise with std = 0.3% of the mesh diameter. (c) Points
perturbed by noise with std = 1% of the mesh diameter. (d) Partial point
cloud with 90% overlap. (e) Partial point cloud with 70% overlap. From
top to bottom: input point cloud, alignment result with color-coded point-
wise distance from the point cloud to the mesh, output model (inner view),
output model (outer view), closeups.

5.3 Limitations

While simple grayscale floor plans can be vectorized in a fully automatic
fashion, the vectorization of color floor plans still requires human in the loop
(for assigning class labels to clusters). The quality of the vectorized floor
plan is reliant on the accuracy of the input probability map. In particular,
our naive approach for estimating the probability map is limited to floor
plans with strong color cues.

The quality of the reconstructed floor model is affected by the presence of
rooms with heterogeneous heights, and by the existence of sloped ceilings in
the scene. One possible way of addressing this issue is to estimate a height
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floor plan image
vectorized floor plan

(2.5D model)

#vertices = 28

colored model (view 1)

point cloud aligned model colored model (view 2)

Figure 5.6: Result of our pipeline for a building exterior.

map for the floor. Such a height map can be utilized to guide the mesh
extrusion step for creating models with more complex styles.

When extended to building exteriors, the absence of roof structures in
the floor plan results in discrepancy between the extruded model and the
point cloud. This indicates the need of adding to the pipeline a roof genera-
tion step, which can be realized by the weighted straight skeleton algorithm
[BHH+15] for polyhedral roofs.



Chapter 6

Conclusion and perspectives

6.1 Conclusion

In this thesis, we investigated the problem of geometric approximation of
urban objects from images in the form of compact and accurate meshes.
We presented two generic algorithms, one for approximation of 2D object
contours with floating polygons, another for 3D alignment of multi-modal
geometric data. We also demonstrated the applicative potential of these
algorithms by incorporating them into a pipeline for generating textured
model for indoor scenes.

The key contribution of this thesis is the novel way of reasoning at the
scale of geometric primitives for refining polygonal partitions of 2D domains
to improve the quality of the object contouring results, and for robust esti-
mation of the rotational transformation between the pair of input geometry.
In chapter 3, we developed an iterative algorithm for refining image parti-
tions through a sequence of merging and splitting operations that correct
oversegmentation of objects, and misdetection or absence of primitives. Ex-
periments on images demonstrate that our merging-and-splitting refinement
strategy offers reduced segmentation errors, as well as more accurate object
contours as compared to vectorization and cell grouping baselines. In chap-
ter 4, we proposed to represent the surface-normal distributions of detected
planar primitives with a mixture model, from which a set of hypotheses for
the rotational alignment are produced and later refined to output a final
transformation. Experiments on challenging real-world data demonstrate
the robustness and efficacy of our algorithm. Our method is shown to com-
pete well against existing feature-based approaches, especially on piece-wise
planar objects and scenes. The use of geometric primitives also brings com-
putational efficiency. Our algorithms are capable of processing megapixel
images and large-scale point clouds with millions of points in a few minutes.

Secondary contributions of our work include the design of an energy func-
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tion that measures the quality of polygonal partitions for guiding a discrete
optimization scheme, and a continuous optimization formulation for accurate
estimation of similarity transformations. For the polygonal segmentation al-
gorithm, our proposed energy takes into account both the fidelity to the
input data, by encoding semantic penalization on facets and image gradient
penalization on edges, and the complexity of the output polygons. The de-
sign of the energy as the sum of local fidelity terms and a global complexity
term makes it computationally efficient to evaluate its variations when local
operations are applied. For the 3D registration algorithm, we designed a
symmetric energy for avoiding undesirable global minima incurred due to
object scale variations. Thus we could formulate an optimization problem
that jointly updates rotation, translation and scale. Representing similarity
transformation as elements in the Lie algebra, gradient based optimization
can be used for minimizing the energy.

We also designed kinetic data structures for the partition of 2D domains
with non-trivial boundaries, i.e. domains bounded by nested polygons, in-
stead of a simple rectangle. The resulting partition supports complex output
including nested polygons. Kinetic data structures for space partitioning of-
fer fast computation and flexible termination criteria, as opposed to exhaus-
tive approaches.

Our algorithms are applicable to different types of scenes, from organic
shapes to man-made objects. In particular, we demonstrated a potential
application in modeling of indoor scenes by introducing a vectorization-
then-registration pipeline. Provided proper semantic information (e.g. by
pretrained neural networks for semantic segmentation) and a point set recon-
struction method, our pipeline achieves a high level of automation, requiring
only a few user-specified parameters.

6.2 Perspectives

This thesis constitutes a tiny step towards the automation of object model-
ing with compact representations. Our work suffers from some weaknesses.
Specifically, the accuracy of our algorithms significantly depend on how well
the primitives approximate the underlying object. The quality of meshes
generated by our system is still far from the ones created by human ex-
perts. User interactions are still required for vectorization of challenging
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input (color floor plans without input semantic information). Now we dis-
cuss some perspectives that could be explored for future research.

Control of shape complexity. Our polygonal segmentation algorithm
provides a parameter that implicitly affects the number of output vertices.
Direct user control of the complexity of output shapes is desirable in some
practical situations. One way could be to design an additional operator that
removes and adds relevant vertices in the partition.

Refining a mesh to observations. As mentioned before, our current
extrusion strategy is limited to produce 2.5D building models with uniform
height. Several directions could be considered for generating refined meshes.
The most straightforward improvement could be to introduce height map
prediction for creating meshes with non-uniform height across the top sur-
face. It can be achieved in conjunction with the 3D registration step in
an iterative manner, where we could alternate between point-cloud-to-mesh
alignment given the current mesh and height map prediction given the cur-
rent alignment. Another possible extension to our system is the modeling
of building components other than walls and floors. Roof model generation,
for instance, is an important component for lifting the 2.5D representation
into a realistic 3D building model. Finally, recent advances in differential
rendering techniques open a new way for fitting a mesh to visual observa-
tions. Vertices of the mesh, once roughly registered to input images, can
be relocated to optimize the visual consistency between the geometry and
photometric information.

Generalization to free-form shapes. A natural extension of this work
would be to support more complex objects including curved shapes. Our al-
gorithms focus on linear geometric primitives, i.e. lines and planes, which de-
scribe well man-made structures. The introduction of Bezier cycles (polygons
where two successive vertices are connected by a Bezier curve) or NURBS
elements would bring more versatility to the shape representation. Detecting
different types of primitives and designing a unified framework for analyzing
their geometric properties and relationships is the key challenge to be ad-
dressed. These techniques would allow us to capture free-form shapes with
a better complexity-distortion trade-off.
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Generalization to incomplete data. Our system is proposed under the
assumption that the object of interest is well captured by the set of im-
ages. In particular, our registration algorithm assumes a sufficient amount
of overlap between the input pair of geometry. However, constraint by the
data acquisition techniques, sometimes only a part of the object is available,
e.g. an incomplete point cloud reconstruction. Adapting our algorithm to
the partial-to-partial alignment case will open up new application fields for
our pipeline. One way could be to design a confidence estimation method
for weighing each data point. The weight can be assigned according to the
likelihood of having the point also contained in the other input.

Attribute transfer. In this thesis, we presented a pipeline that gener-
ates a compact textured mesh by transferring color information from images
acquired from different data sources. More advanced texture computation
techniques could be explored for better quality of visualization. For instance,
differential rendering provides an optimization framework for estimating the
texture map given a set of images registered to the mesh. Moreover, our
pipeline could be utilized for transferring other attributes from the image do-
main to the mesh surface, i.e. mapping and aggregating pixel-wise features
(material traits, semantic labels etc.) to produce facets with rich proper-
ties. The key problem involves resolving ambiguities that arise from errors
in camera parameters, and the inconsistency between high-resolution image
data and the coarse mesh representation.

Semantic scene understanding. Our representation can be enriched by
introducing semantic labels to the geometric model. A direct improvement to
the current pipeline is to design more advanced methods for classifying pixels
in floor plans for generating semantic maps. It could benefit the vectorization
of floor plans with various styles. Another way could be to integrate an object
detection component for separating objects from the building interior, before
projecting pixels onto the mesh. This technique allows generating a cleaner
texture for the floor model, with the option for adding furniture later.

Panoptic scene modeling. Automatic reconstruction of a whole build-
ing including exterior structures, interior layout and even furniture inside is
one of the most challenging problems in small-scale urban modeling. This
requires the design and integration of specialized pipelines for outdoor and
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indoor scenes in a single consistent framework. The main challenge lies in
the geometric and photometric differences between the indoor and the out-
door models. One possible direction is to detect structures (e.g. windows)
that are present in both models, and estimate correspondences by utilizing
these structures [DVM21].
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Appendix A

Appendix

This appendix provides pseudo-codes illustrating the kinetic propagation
step of the polygon approximation algorithm presented in chapter 3, and
the surface-normal clustering step of the registration algorithm presented
in chapter 4. Supplementary experiment information for chapter 4 is also
included.

A.1 Polygonal image segmentation: a pseudo-code
for kinetic propagation inside a nested polygon

Notations. Let:

• P be a nested polygon, with outer boundary defined as a set of edges
{eout
i }, and inner boundary defined by another set of edges {eini }.

• {sk}Nk=1 be a set of line-segments inside the polygon.

• {rk(t)}2Nk=1 be a set of rays created from the above line-segments. For
each line-segment, two opposite rays are created, representing propa-
gation from the two ends of the line-segment.

The algorithm partitions a nested polygon by propagating a set of rays.
Note that the inner boundary and the outer boundary of the polygon are
treated differently. A ray stops immediately when colliding with the outer
boundary, whereas it continues to propagate when colliding with the inner
boundary. This is to avoid the creation of sub-polygons with duplicated
edges, therefore maintains a valid geometric structure of the polygonal par-
tition. Stopping criteria of ray propagation can be defined by a maximal
number of collisions. The pseudo-code is given in Algorithm 2.
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Algorithm 2 Kinetic propagation of line-segments inside a nested polygon
Input: P , {sk}Nk=1

Output: a partition of the input polygon P

1: Initialize a polygonal partition xP with {eout
i } and {eini }

2: Initialize rays {ri(t)}2Nk=1 from {sk}Nk=1

3: Initialize t0 := −∞, t1 := T

4: while rays not all stopped do
5: Schedule events within time window [t0, t1], and store in a priority

queue Q
6: while Q not empty do
7: Pop the top event i of Q
8: Update xP by building edges and vertices
9: if collision with the outer boundary then
10: Stop the ray
11: else if collision between rays then
12: Update status of rays according to the stopping criteria
13: end if
14: Update Q
15: end while
16: Update t0 := t1, and t1 := t1 + T

17: end while
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A.2 3D registration of multi-modal geometry: a
pseudo-code for clustering surface-normals of
planar shapes

Notations. Let:

• ni ∈ R3 be the surface normal of the i-th planar shape.

• N = {n1, ...,nm} be the set of surface normals.

• ai ∈ R be the surface area of the i-th planar shape.

• wi = f(ai) ∈ R be a non-negative weight assigned to the i-th planar
shape. In this thesis, we simply define the function f as f : x ∈ R 7→
x ∈ R such that the weight is proportional to the shape area.

• W = {w1, ..., wm} be the set of weights.

• θk = {µk,Σk} be the parameters defining the k-th Gaussian compo-
nent, with mean µk ∈ R3 and covariance Σk ∈ R3×3.

• p(x|θ) = Ng(x;µ,Σ) be the probability density of a multivariate Gaus-
sian distribution at x, under a distance metric defined by the function
g : R3 × R3 → R.

• {π1, ..., πK} be mixture coefficients, where πk ≤ 0 is the coefficient for
the k-th Gaussian component, satisfying

∑K
k=1 πk = 1.

The algorithm clusters the surface-normals of a set of planar shapes into
K clusters, under the Gaussian mixture model assumption for weighted data.
The distance metric is the absolute cosine similarity metric (see Eq. 4.8) in-
stead of the Euclidean distance for measuring the distance between two nor-
mal vectors on the spherical surface. The pseudo-code is given in Algorithm
3.
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Algorithm 3 Weighted-data clustering with the EM algorithm
Input: N = {n1, ...,nm}, W = {w1, ..., wm}
Output: {π1, ..., πK}, {µ1,Σ1, ...,µK ,ΣK}

1: Initialize πk, µk, Σk for all k
2: while not converging do

3: p(zi = k|ni;θ, wi) :=
πkNg(ni;θk,

1
wi

Σk)∑K
j=1 πjNg(ni;θj ,

1
wi

Σj)

4: πk := 1
m

∑m
i=1 p(zi = k|ni;θ, wi)

5: µk :=
∑m

i=1 wip(zi=k|ni;θ,wi)ni∑m
i=1 wip(zi=k|ni;θ,wi)

6: Normalize µk
7: Σk :=

∑m
i=1 wip(zi=k|ni;θ,wi)(ni−µk)(ni−µk)T∑m

i=1 p(zi=k|ni;θ,wi)

8: end while
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raw with outlier filtering

Figure A.1: Illustration of estimated bounding boxes without and with out-
lier filtering. Left: bounding box estimated on the raw point cloud. Right:
bounding box estimated on the filtered point cloud.

A.3 3D registration of multi-modal geometry: scale
estimation for two-step baselines

Existing two-step pipelines for model-to-scene alignment has shown that
bounding boxes provide a good estimate for the relative scale between ob-
jects with sufficient overlap [CDG+13, MDS16], which can be used for a later
6-DoF alignment step [GAGM15, IS20]. We adopt the bounding box based
method for estimating a relative scale, which consists of an outlier filtering
step and a bounding box estimation step. Outlier filtering is done with the
KNN algorithm as the following: First compute for each point the mean
distance to its K nearest neighbors. Average KNN distances for all points
give a distribution with a sample mean µ and sample standard deviation σ.
All points with a mean KNN distance greater than µ + 2σ are classified as
outliers, which approximately corresponds to an outlier ratio of 2.3% under
the normal distribution assumption. The effectiveness of outlier filtering is
illustrated in Fig. A.1. Optimal bounding boxes are estimated using the
algorithm of Chang et al.[CGM11]. Let Bd and Bm denote the bounding
boxes of the source and the target, respectively. The scale is computed as
the ratio between the lengths of the bounding box diagonals,

s =
Diagonal(Bm)

Diagonal(Bd)
. (A.1)
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