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Cosmic web environments: identi�cation, characterisation, and
quanti�cation of cosmological information

Abstract: The late-time matter distribution depicts a complex pattern commonly called the
cosmic web. In this picture, the spatial arrangement of matter is that of dense anchors, the
nodes, linked together by elongated bridges of matter, the �laments, found at the intersec-
tion of thin mildly-dense walls, themselves surrounding large empty voids. This distribution,
shaped by gravitational forces since billions of years, carries crucial information on the un-
derlying cosmological model and on the evolution of the large-scale structures. Detecting
and studying elements of cosmic web, playing also a key role in the formation and evolution
of galaxies, are challenging tasks requiring the elaboration of optimised methods to handle
the intrinsic complexity of the pattern made of multi-scale structures of various shapes and
densities.

With the aim of identifying and characterising the cosmic web environments, we pro-
pose several approaches to analyse spatially structured point-cloud datasets, not restricted to
cosmological ones, by means of unsupervised machine learning methods based on mixture
models. In particular, we use principles emanating from statistical physics to get a better
understanding of the learning dynamics of a clustering algorithm and expose how statistical
physics can be used to explore the data distribution and obtain key insights on its structure. In
order to identify the �lamentary part of the pattern, its most prominent feature, we propose
a regularisation of the clustering procedure to iteratively learn a non-linear representation
of structured datasets, assuming it was generated by an underlying one-dimensional mani-
fold. The method models this latent structure as a graph embedded as a prior in the Bayesian
formulation of the problem to estimate a principal graph passing in the ridges of the matter
distribution as traced by galaxies or halos. We show that this formulation is especially well-
suited for the description of the �laments since it allows the description of their geometrical
properties (lengths, widths, etc.) and associates to each tracer a probability of residing in a
given �lament. The resulting algorithm is successfully used to detect �laments in state-of-
the-art numerical simulations. It also allows us to study the relation between the connectivity
of galaxy clusters to the cosmic web and their dynamical and morphological properties. Fi-
nally, based on a large suite of N -body simulations, we perform a comprehensive analysis of
the cosmological information content based on the two-point statistics derived in the cosmic
web environments (nodes, �laments, walls and voids). We show that they can break some
degeneracies among key parameters of the model making them a suitable alternative probe to
signi�cantly improve the constraints on cosmological parameters obtained by standard ana-
lyses.

Keywords: Cosmology: Large-scale structure of Universe, Cosmic web; Methodology: Stat-
istical methods, Pattern analysis, Unsupervised machine learning, Mixture models.
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Les environnements de la toile cosmique : identi�cation,
caractérisation et quanti�cation de l’information cosmologique

Résumé : La distribution de matière dans l’Univers se présente sous une structure complexe
que l’on appelle la toile cosmique. Dans cette disposition spatiale, des régions denses, les nœuds
de la toile cosmique, sont reliés par des ponts de matière, les �laments, qui se trouvent à
l’intersection de structures planaires moyennement denses appelées murs qui dé�nissent eux-
mêmes les bords de vastes régions vides. Cette distribution, façonnée par la gravité depuis
des milliards d’années, contient de précieuses informations sur le modèle cosmologique sous-
jacent mais également sur les conditions initiales de l’Univers et son évolution. La détection
et l’étude des éléments de la toile cosmique, qui jouent également un rôle fondamental dans la
formation et l’évolution des galaxies, constituent de véritables dé�s nécessitant la conception
d’outils sophistiqués pour traiter la complexité des structures multi-échelles qui la compose.

Avec pour ambition d’identi�er et de caractériser les di�érents environnements, cette thèse
propose plusieurs approches pour analyser des jeux de données spatialement organisés au
moyen de méthodes d’apprentissage non supervisé fondées sur les modèles de mélanges. En
particulier, des principes dérivés de la physique statistique sont utilisés pour mieux appré-
hender et comprendre la dynamique d’apprentissage d’un algorithme de classi�cation non
supervisé. Nous exposons comment utiliser ce parallèle avec la physique statistique a�n d’exp-
lorer le jeu de données et obtenir des informations sur sa structure. A�n d’identi�er la struc-
ture �lamentaire de la toile cosmique, nous construisons ensuite une version régularisée de la
procédure de classi�cation pour apprendre itérativement une représentation du jeu de don-
nées, que l’on suppose généré par une structure uni-dimensionnelle sous-jacente. La méthode
modélise cette structure latente par un graphe qui est intégré comme un a priori dans la for-
mulation Bayésienne du problème menant à l’estimation d’un graphe principal passant au
centre de la distribution de matière tracée par les galaxies. Nous montrons que cette for-
mulation est particulièrement adaptée à la description des �laments cosmiques puisqu’elle
permet la description de leurs propriétés géométriques (longueurs, épaisseurs, etc.) ainsi
que l’association, pour les traceurs (galaxies, halos), d’une probabilité d’appartenir à un �l-
ament donné. L’algorithme proposé dans la thèse est appliqué avec succès à des simulations
numériques. Ces applications ont notamment permis l’étude des relations entre la connectivité
des amas de galaxies dans la toile cosmique et leurs propriétés dynamiques et morphologiques.
En�n, nous réalisons, à partir d’un ensemble de simulations àN -corps, une étude approfondie
de l’information cosmologique contenue dans les environnements de la toile cosmique (nœuds,
�laments, murs et vides). Il est notamment montré que l’analyse des environnements permet
de lever les dégénérescences entre certains des paramètres du modèle faisant de la toile cos-
mique une sonde alternative permettant d’améliorer signi�cativement les contraintes sur les
paramètres cosmologiques vis-à-vis des analyses conventionnelles.

Mots-clefs : Cosmologie: Structures grandes échelles de l’Univers, Toile cosmique; Méthodes:
Méthodes statistiques, Reconnaissance de motifs, Apprentissage automatique non supervisé,
Modèles de mélange.
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Introduction

“Accepte-la, cette thèse.”

A. Doyen

Cosmology in the era of data science

The �rst mappings of galaxies in the sky [Joeveer et al., 1978; Einasto et al., 1980; de Lappar-
ent et al., 1987] together with �rst simulations [Zel’dovich, 1970; Doroshkevich & Shandarin,
1978] show that today’s matter, may it be dark or baryonic, is not �lling the Universe uni-
formly. Instead, it is spreading over a gigantic well-organised structure shaped by billion years
of gravitational forces. This pattern, commonly referred to as the cosmic web [Bond et al.,
1996], exhibits massive nodes that are linked together by uni-dimensional bridges of matter,
the �laments, themselves found at the intersection between thin and mildly-dense planes of
matter labelled walls forming the vast shells enclosing underdense volumes almost devoided
from galaxies called voids. This complex spatial pattern provides a rich amount of information
about the content of the Universe but also contains an imprint on its history, how it formed
and evolved through time. One of the aims of modern cosmology is to understand this spatial
distribution and extract all the possible information to link it with theoretical principles. To
do so, the e�ort of various communities is being put together that allows: (i) deeper, wider and
always more complete observations of di�erent matter tracers [e.g. York et al., 2000; Colless
et al., 2001; Driver et al., 2009; Laureijs et al., 2011; Abbott et al., 2016]; (ii) accurate simulations
of the Universe and its evolution from large to small scales enabling to model the physics of
stars and galaxies to clusters and �lament [e.g. Springel et al., 2005; Vogelsberger et al., 2014;
Dubois et al., 2014; Nelson et al., 2019; Villaescusa-Navarro et al., 2020]; (iii) the development
of state-of-the-art methods and algorithms to analyse the large amount of data (web �nd-
ers [see the review of Libeskind et al., 2017, and reference therein], statistical descriptors of
non-Gaussian �elds [e.g. Hahn et al., 2020; Cheng et al., 2020], robust and accurate cosmo-
logical constraints etc.). All these analyses then provide paramount information to confront
to theory thus validating or invalidating some models on the formation and evolution of the
Universe itself and its components at all scales.

As such, data analysis is a pillar of modern observational cosmology since its beginning.
The interplay between the two �elds is even more emphasised by the recent and upcoming
collections of always larger and more complex datasets allowing the measurement of cosmolo-
gical quantities with an unprecedented accuracy. New galaxy surveys such as Euclid [Laureijs
et al., 2011], the Vera Rubin Observatory [Collaboration et al., 2009] or the Dark Energy Survey
Instrument [DESI, Levi et al., 2013] and upcoming observations of physical quantities like the
cosmic microwave background with the Simons Observatory [Ade et al., 2019] or the 21cm
neutral Hydrogen line with the Square Kilometer Array will require the development and ap-
plication of state-of-the-art methods to analyse and interpret the huge amount of complex data.
By providing orders of magnitudes more data than previous generations, this soon-available
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�ood of data is a double challenge in both designing the right tools to deliver meaningful and
precise cosmological analyses but also in their optimisation to obtain reasonable time com-
plexity. Standard statistics, for instance based on the n-point correlations, are heavy to derive
for such large datasets and require computational enhancements [see e.g. Philcox & Eisenstein,
2020; Philcox, 2021]. In parallel, the growth of machine learning algorithms of the past decade
proposes a unique opportunity to handle such data. Their �rst applications in astrophysics
showed outstanding results in many tasks, ranging from the re�nement of redshift estimates
in photometric surveys [e.g. Carrasco Kind & Brunner, 2013] to the encoding of high-order
information [e.g. Cheng et al., 2020; Allys et al., 2020] and constraining cosmological paramet-
ers [e.g. Ribli et al., 2019]. Despite these successes, it is essential that, when applied to physics,
machine-learning-based algorithms, and in particular deep-learning ones, are well-controlled
and understood. Beyond the fact that machine learning can be particularly opaque to the user
in the way it learns a representation of a dataset, a special attention must be drawn on the in-
clusion of errors and uncertainties on the estimated quantities. Understanding the features of
importance for the learning, the biases that can be induced when models are trained from pre-
de�ned datasets and how to exploit correctly the output of such algorithms are key questions
to which several communities are jointly trying to answer.

With the motivation of enriching our knowledge on large-scale structures of the Universe
for cosmological analyses, we will explore, throughout this thesis, these two linked facets of
data science and cosmology. The work presented in the manuscript is in particular addressing
two main questions that are:

1. How can the matter distribution at present time be used to identify and characterise
cosmic web environments?

2. What is the cosmological information contained in the cosmic web environments?

In the corpus of the manuscript, the context of the �rst question is made broader than the
cosmological one and can be formulated, in a data science point of view, as ”How can we
e�ciently extract meaningful representations of spatially structured point-cloud datasets?”
Point-cloud data are indeed ubiquitous in many �elds of science and even though cosmolo-
gical datasets representing the large-scale matter distribution are the main object of study, we
include the presented work in its larger context of data science when necessary.

Organisation of the manuscript
To distinguish the di�erent contributions, the manuscript is divided into three parts. The �rst
one is dedicated to the presentation of the cosmological context of the thesis by �rst focusing
on the theory of structure formation in Chapter 1. Building-up on this theoretical introduc-
tion, we introduce in Chapter 2 the manifestation of cosmic structures in data and simulations,
and we discuss the di�culty of linking observable quantities with theoretical predictions and
cosmological models. This chapter also sets up the astrophysical and cosmological interests of
identifying the di�erent components of the cosmic web with a particular emphasis on the cent-
ral role of �laments. Finally, it also discusses the di�culties of carrying an e�cient extraction
of structures from both simulated and observed data.

The second part of the manuscript exposes the methods developed to tackle the extraction
of patterns and features from generic point-cloud datasets. Chapter 3 �rst analyses a statistical
physics formulation of a machine learning procedure to gain a physical insight on the struc-
ture of point-cloud data. The associated developments and results led to a published article
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(T. Bonnaire, A. Decelle & N. Aghanim, Cascade of phase transitions for multiscale clustering,
Phys. Rev. E 103 012105 (2020) [arXiv:2010.07955]). Chapter 4 introduces a new formulation
of the principal graph learning problem presented in T. Bonnaire, A. Decelle & N. Aghanim
(Regularisation of Mixture Models for Robust Principal Graph Learning, under review in IEEE
Tran. Pattern Anal. Mach. Intell. [arXiv:2106.09035]). This formulation provides the statist-
ical formalism of the actual method allowing the extraction of a continuous one-dimensional
structure from a given dataset. This method, named T-ReX, was also presented in T. Bon-
naire, N. Aghanim, A. Decelle & M. Douspis (T-ReX: a graph-based �lament detection method,
Astron. Astrophys. 337 A18 (2020) [arXiv:1912.00732]).

In the third and last part of the manuscript, we propose to analyse the cosmic web pat-
tern by �rst exploiting the previously-mentioned principal graph formulation to represent the
�lamentary part of the pattern in Chapter 5. In particular, we focus on the structural prop-
erties of �laments and we investigate in C. Gouin, T. Bonnaire & N. Aghanim (Shape and
connectivity of groups and clusters: Impact of dynamical state and accretion history, Accepted
for publication in Astron. Astrophys. [arXiv:2101.04686]) the impact of the �lamentary pat-
tern on the physical properties of astrophysical objects like galaxy clusters. Finally, Chapter 6
presents a comprehensive analysis aiming at theoretically quantifying the statistical inform-
ation contained in the di�erent cosmic web environments in order to constrain cosmological
parameters. This work will be published in a forthcoming article T. Bonnaire et al., (in prep).

https://link.aps.org/doi/10.1103/PhysRevE.103.012105
https://arxiv.org/abs/2010.07955
https://arxiv.org/abs/2106.09035
https://doi.org/10.1051/0004-6361/201936859
https://arxiv.org/abs/1912.00732
https://arxiv.org/abs/2101.04686




Part I

Emergence of large-scale structures





Chapter 1.

Structure formation in the Universe

“Ce week-end, je me suis rendu compte que la
structure de l’univers est quand même vachement

compliquée.”
T. Perdereau

1.1 The homogeneous universe . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.1 Distances in an expanding universe . . . . . . . . . . . . . . . . . . . 11
1.1.2 The dynamics of the homogeneous Universe . . . . . . . . . . . . . . 12

1.2 The birth of large-scale structures . . . . . . . . . . . . . . . . . . . . . 13
1.2.1 Linear perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.2 Zel’dovich formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Statistical descriptions of the matter distribution . . . . . . . . . . . . 16
1.3.1 Discrete random �elds . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.2 Correlation functions and poly-spectra . . . . . . . . . . . . . . . . . 16

1.4 The ΛCDMmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.1 Presentation of the model . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.2 Cosmological parameters and matter power spectrum . . . . . . . . 19

This �rst chapter brie�y presents the theoretical context of large-scale structure formation
in cosmology. It exposes the ideal setup of linear theory describing the evolution of matter
perturbations at the largest scales of the Universe and the mathematical representations of
common cosmological observables like the density �eld. Finally, it introduces the current
favoured theoretical model of the Universe, the Lambda cold dark matter cosmological model,
review its successes and main parameters. Of course, the chapter only introduces the headlines
of these rich topics and do not constitute a thorough theoretical introduction. For a more
detailed presentation of the cosmological context, the interested reader is referred to seminal
text books such as Peebles [1980] or to articles such as Bernardeau et al. [2002].

1.1 The homogeneous universe

1.1.1 Distances in an expanding universe

As observed locally around us, the Universe appears highly inhomogeneous with small-scales
structures made of stars and galaxies. However, when averaged over large scales, its struc-
ture is relatively "simple" and nearly homogeneous. Said di�erently, by smoothing the matter
distribution at large enough scales, it appears �at with no strong dominant structures. This
statement is partly at the foundation of theoretical cosmology and is expressed as the cosmo-
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logical principle describing the Universe as statistically homogeneous and isotropic at large
scales. This principle was initially introduced as a philosophical concept by arguing that our
position in the Universe has nothing special and that there should not be preferred directions
for the distribution of matter. The incredible advances in observing the sky, and particularly
the tiny anisotropies detected in the cosmic microwave background [CMB, Smoot et al., 1992],
however brought evidences supporting this principle.

Under these assumptions, the mathematical framework o�ered by general relativity, al-
lowing to describe the evolution of the matter, energy and geometry of the Universe, lead to
solutions of Einstein’s �eld equations known as the Friedmann-Lemaître-Robertson-Walker
metric [FLRW, Friedmann, 1922; Lemaitre, 1931; Robertson, 1935; Walker, 1937]. This metric
describes the way to compute distances in a Universe that is statistically isotropic and homo-
geneous, and leads to

ds2 = c2dt2 − a(t)2dχ2, (1.1)

where c is the speed of light in vacuum, dχ the comoving distance independent of how the
Universe expands or contracts, and a(t) is the scale factor1 normalised such that today, a(t0) =
a0 = 1. In our expanding universe [Hubble, 1929], it is indeed convenient to rely on distances
between objects that are independent of the Universe global �ow. The proper distance d(t) of
a source and its comoving counterpart are linked by the scale factor as d(t) = a(t)

∫
dχ. In Eq.

(1.1), the squared distance element dχ2 can take di�erent forms depending on the geometry
and curvature of the Universe. For instance, in Cartesian coordinates and assuming a �at
universe, it simply reduces to dx2 + dy2 + dz2. More generally expressed in terms of spherical
polar coordinates (noting r the radial distance and Ω the solid angle) and with a curvature
term, we have dχ2 = dr2/ (1− kr2) + r2dΩ2, with k = {−1, 0, 1} representing the sign of
the spatial curvature. Considering the light emitted by a given source at time tem following a
null geodesic with ds2 = 0, we have from Eq. (1.1)

χ(tem) =

∫ tem

0

c dt

a(t)
. (1.2)

Due to the expansion, the observed wavelength λobs appears however larger than the emitted
one λem, which de�nes the redshift z as

λobs

λem

=
1

a(tem)
= 1 + z, (1.3)

which also allows us to exhibit the relation between the redshift and the scale factor as a =
(1 + z)−1.

1.1.2 The dynamics of the homogeneous Universe
Now equipped with a means of computing distances by the metric (1.1), the dynamics of the
Universe can be described by the Friedmann equations linking its expansion with its energy
content. By assuming that the Universe is �lled with perfect �uid, the �rst Friedmann equation
reads

H2 =
8πG

3
ρ+

Λc2

3
− kc2

a2
, (1.4)

where G is the gravitational constant, Λ is the cosmological constant, ρ is the mass density of
considered �uid and H(t) := ȧ(t)/a(t) is the Hubble parameter characterising the expansion

1That we sometimes unrigorously write a for convenience.
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rate of the Universe at time t. Assuming energy conservation and taking the time derivative
of Eq. (1.4), we obtain the second Friedmann equation

ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

Λc2

3
, (1.5)

where p is the pressure. The Universe is in fact assumed to �lled with a mixture of perfect �uids
made of matter and radiation leading to ρ = ρm + ρr. Similarly, Λ can be interpreted as a �uid
with density ρΛ = Λc2/8πG and k as a �uid of curvature with density ρk = −3kc2/8πGa2.
Assuming equations of state of the form ρ = wp for �uids, we get wr = 1/3 for the radiation
component, wm = 0 for the pressureless matter, wΛ = −1 for the cosmological constant and
wk = −1/3 for the curvature. Introducing further the critical density de�ned as ρcrit(t) =
3H(t)2/8πG, the �uid densities can be expressed in terms of the critical one, also known as
the density parameters Ωi(t) = ρi(t)/ρcrit(t), where i designates either radiation, matter, Λ or
curvature. Note that, in the rest of the thesis, when referring to an energy density Ω without
specifying a precise time, we refer to the one at present time, t0. Under these notations, the �rst
Friedmann equation (1.4) reads Ωr(t)+Ωm(t)+ΩΛ(t)+Ωk(t) = 1 and explicitly expresses the
conservation of the matter-energy content in the Universe. By deducing a time evolution of
the matter densities for each component using the �rst law of thermodynamics and coupling
it back with the Friedmann equations, it yields

H(t) = H0

√
Ωr,0

a(t)4
+

Ωm,0

a(t)3
+

Ωk,0

a(t)2
+ ΩΛ,0, (1.6)

with Ωi,0 = Ωi(t0) denoting the energy density of component i at the present time t0 and H0

the value of the Hubble parameter at present time. This simple paradigm of a homogeneous
Universe already highlights the importance of the cosmological density parameters and gives
an idea of the interplay between the dynamics of the Universe and its content. By knowing
the energy density values at the present time, one gets crucial information on the evolution
of the Universe, and on how it expanded through H(t).

1.2 The birth of large-scale structures
The homogeneous model presented in the previous section brought tremendous knowledge
on the evolution the Universe but also allows the computation of distances from the redshift of
a source or the notion of horizon. Despite these achievements, the assumption of a homogen-
eous and isotropic Universe is only valid at large scales, above roughly 100 Mpc2 [Yadav et al.,
2005] and, by de�nition, does not predict the formation of structures at smaller ones. Astro-
nomers, striving to map objects in the sky however depict a Universe made of a multitude of
structures at di�erent scales, with stars, galaxies, but also clusters of galaxies at larger scales.
At even larger one is drawn an interconnected network of galaxies forming oriented structures
in space that we call �laments found at the border of gigantic quasi-empty regions called voids.
This non-uniform distribution is shown in the �rst mappings of galaxies for instance reported
in Fig. 1.1. All these hierarchical structures suggest the presence of inhomogeneities in the
matter distribution. The current leading theory of structure formation assumes that the seeds
of these density perturbations have a quantum origin which led to the small inhomogeneit-
ies observed in the initial matter distribution. These small �uctuations of densities evolved

2The parsec (pc) is a unit of distance used in astronomy and 1 pc = 3.0857× 1016 m.
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Fig. 1.1. Galaxy distribution from the Center for Astrophysics Redshift Survey [CfA, de Lap-
parent et al., 1987]. A galaxy cluster at the center is connected by elongated �laments.

through time and gravity to the rich structures that are observed today. In this section, we
brie�y expose3 this scenario of gravitational instability.

1.2.1 Linear perturbation theory
In general, the introduction of �uctuations in the matter distribution makes the equations gov-
erning the dynamical evolution of the �uid not analytically tractable. Restricting the analysis
to small amplitude �uctuations is already instructive and known as the linear perturbation
theory leading, as we will see, to their growth. The perturbations can be characterised by the
density contrast de�ned as

δ(x) =
ρ(x)− ρ̄

ρ̄
, (1.7)

where x is a spatial location and ρ̄ is the mean density. We focus in this section on perturba-
tions that have small amplitudes |δ| � 1. In addition, we restrict the analysis on a Universe
made of matter only4 where the matter component is the dominant one. modeled as a per-
fect �uid and making use of Newtonian dynamics. Naturally, this single-�ow �uid descrip-
tion is expected to break at small-scales where the interactions and crossings between matter
particles occur, that is, at scales where cosmic environments like �laments or dark matter halos
are formed.

The three equations governing the motion of the �uid are given by the continuity, the
Euler and the Poisson equations that we can respectively write, in comoving coordinatesx and
linearised considering at the same time small perturbations in the density and small velocities
with respect to the Hubble parameter H(t),

∂δ(x, t)

∂t
+

1

a
∇x · v(x, t) = 0, (1.8)

∂v(x, t)

∂t
+
ȧ

a
v(x, t) = −1

a
∇Φ(x, t), (1.9)

∆xΦ(x, t) = 4πρ̄Gδ(x, t), (1.10)
3For a complete review of the topic, we refer to Bernardeau et al. [2002].
4Which is a valid assumption for a wide range of timescales from the epoch of recombination (3.8×105 years

after the Big Bang, z ∼ 1100), to z ∼ 2
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where v is the �uid peculiar velocity (independent from the expansion of the Universe) and
Φ is the gravitational potential. The �rst equation is the conservation of matter, the second
one is the Euler equation of motion stating that changes in the velocity �ow are caused by the
gravitational acceleration and the last one is the Poisson equation linking the gravitational
potential Φ to the overdensity δ through the Laplacian ∆. The equations leads to the linear
homogeneous second order di�erential equation describing the time evolution of the density
perturbation δ,

∂2δ(x, t)

∂t2
+ 2H

∂δ(x, t)

∂t
− 3

2
H2Ωm(t)δ(x, t) = 0, (1.11)

in which we note the absence of spatial derivatives with respect to x. The solution can hence
be expressed as the linear combination of two independent solutions, one leading to a growing
and the other a decaying perturbation, δ(x, t) = D+(t)δ+(x, 0) + D−δ−(x, 0) in which we
decoupled the spatial and time evolution of the perturbation. At the considered linear scales,
where interactions between matter particles can be neglected, the matter distribution at time
t can thus be described by multiplying the initial distribution by the growth factor D±(t).

1.2.2 Zel’dovich formalism
We have seen that an initial small perturbation in the matter distribution can either grow or
vanish at linear scales. This already powerful description of the matter distribution at any time
is useful for theoretical predictions but, for scales of few tenth of Mpc, we need to resort to
the non-linear versions of the continuity and Euler equations (1.8) and (1.9). Zel’dovich [1970]
proposes to describe the evolution of perturbations using a Lagrangian description of the �uid.
This leads, in particular, to re-write Eq. (1.11) in terms of a displacement �eld encoding the
information of how a particle moved from its initial position. Focusing only the growing mode,
Zel’dovich �nds that the perturbation grows such that

1 + δ(x, t) =
1

[1− λ1D+(t)] [1− λ2D+(t)] [1− λ3D+(t)]
, (1.12)

where λ1 > λ2 > λ3 are the eigenvalues of a deformation tensor of the displacement �eld.
In contrast to the linear evolution of perturbations from Sect. 1.2.1, the overdensity in the
Zel’dovich approximation is evolving depending on the local properties of the matter distribu-
tion. It hence allows to describe the evolution of a perturbation in the mildly non-linear regime
and predict the collapse of matter forming the locally anisotropic structures that are observed
today and that form the cosmic web. If all eigenvalues are negatives in Eq. (1.12), then the
density �eld is deformed to create a locally underdense region called a void, while if λ1 is pos-
itive, then the collapse occurs in a preferential direction forming a locally 2D structure named
a wall. Following this reasoning, if λ1 and λ2 are positive, we end up with a two-dimensional
contraction creating tubular-like structures called �laments while a quasi-isotropic collapse
(λ1 ' λ2 ' λ3 and all positive) forms the nodes of the cosmic web.

This Lagrangian description is very powerful to understand how initial seeds of inhomo-
geneities in the matter distribution give birth to the diversity of structures that are observed
in data and simulations (that we will more precisely discuss in the Chapter 2). The collapse
takes place at di�erent scales, along di�erent directions and at di�erent times as cadenced by
the amplitude of the eigenvalues. Even though very powerful, this �rst order Lagrangian ap-
proximation also assumes that particles are not interacting which breaks at small scales and
cannot represent accurately the formation of bounded structures. Several ways to improve
the model have been proposed, such as the introduction of a viscosity term to the Euler equa-
tion (1.9) which led to the adhesion model [Kofman & Shandarin, 1988; Kofman et al., 1992].
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Alternatively, the study of non-linear scales can be performed through numerical simulations
that we discuss in the forthcoming Sect. 2.1.

1.3 Statistical descriptions of the matter distribution
One way to treat mathematically observables like the matter distribution in cosmology is to
consider the �uctuations δ(x) as a random variable and the observed overdensity �eld as a
realisation of a spatial process that is called a random �eld.

1.3.1 Discrete random �elds

Putting ourselves in a discrete setup where the space can be regularly gridded such that a value
of the studied quantity δ can be measured at a location x ∈ RD, a random �eld is de�ned
as the collection of random variables {δ(xi)}i∈{1,...,n} and associates to a given realisation a
probability to occur. Taking the simple example of an image, one can consider that an R-
valued random variable is associated to each pixel, making the entire image the set of random
variables constituting one realisation of the random �eld. In the �nite case, the random �eld
is described by the joint probability density function (pdf) of the n discrete random variables
p(δ(x1), . . . , δ(x1)).

The cosmological principle, stating that the distribution of matter in the Universe is, at
large scales, homogeneous and isotropic (see Sect. 1.1), has a direct implication on the math-
ematical properties of the considered �elds. The �rst is statistically expressed as the stationar-
ity of the associated random process yielding that the joint pdf is invariant under translations
(i.e. not a function of the spatial index set). The isotropy in turn induces the �eld to be invari-
ant under rotation relieving the statistics from any preferential direction. Such invariant �elds,
widely used in cosmology are also a key element in many mathematical formulations in other
�elds of physics and applied mathematics. When equipped with additional local properties,
they are for instance called Markovian and are at the basis of many developments in image
processing such as texture recognition, classi�cation and synthesis [see e.g. Efros & Leung,
1999; Varma & Zisserman, 2009].

In statistics, a common one-point summary of a probability distribution is given by the
ensemble average over many realisations. One thing that makes cosmology a special science
is that the object of study, the Universe, is the only realisation5 we have access to. By invok-
ing ergodicity, cosmologists however are able to assimilate ensemble and volume averages to
extend the statistical properties of the uniquely observed Universe. As an example, the mean
matter density in the Universe that we denoted ρ̄ in Sect. 1.2.1 can be seen as the average
over a su�ciently large volume of the observed density, without requiring other samples of
the Universe.

1.3.2 Correlation functions and poly-spectra

The natural way to describe centred �elds with 〈δ〉 = 0 is through the next non-vanishing
moment, the covariance function, also called the two-point correlation function, de�ned at a
given time t as

ξ(r, t) := 〈δ(x, t)δ(x+ r, t)〉, (1.13)
5Although simulations can help in computing ensemble averages by providing many realisations of a same

universe, as we will see in the Chapter 6.
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where r = ‖r‖. The dependency of this function on the norm of the separation only comes
from the assumed statistical isotropy and homogeneity of the Universe.

By the Wiener-Khinchin theorem [Wiener, 1930; Khintchine, 1934], the Fourier transform
of the two-point correlation function de�nes the power spectrum, as

P (k, t) =

∫
ξ(r, t) exp (ik · r) d3r, (1.14)

also de�ned as the covariance of Fourier modes, which can be expressed, for a statistically
homogeneous and isotropic �eld, as

P (k, t)δD(k1 + k2) =
1

(2π)3 〈δ̃(k1, t)δ̃(k2, t)〉, (1.15)

where δ̃(k, t) denotes the Fourier transform of the �eld δ(x, t) and δD the Dirac delta distri-
bution. In this latter expression, the assumed statistical properties of the overdensity �eld δ
are expressed in the dependence on the norm k only in P (k) for the isotropy and in the Dirac
delta for the translation invariance.

One case of particular importance is the Gaussian random �eld [for a review, see Adler &
Taylor, 2007] which has the particularity of being fully de�ned by its two �rst moments that
are the average and the correlation function. Mathematically, a random �eld is said Gaussian if
the joint probability of any subset of �eld points {x1, . . . ,xn} follows a multivariate Gaussian
distribution

p(δ |µ,Σ) =
1

2π|Σ|
exp

(
−1

2
[δ − µ]T Σ−1 [δ − µ]

)
, (1.16)

with δ := {δ(xi)}ni=1, µ and Σ are the sets of the n averages and covariances respectively.
For centred �elds6 like the matter overdensity δ, the Gaussian random �eld is characterised
by the sole knowledge of the covariance function. Indeed, by Wick’s theorem, all the higher-
order moments can be expressed as products of two-point functions summed over all possible
pairings. Therefore, all the information is indeed contained in the covariance of the �eld Σ.
In cosmology, the Gaussian random �eld, beyond its appealing mathematical tractability, is
also representing to great accuracy the density perturbations arising after the cosmic in�ation
as observed by the CMB [Planck Collaboration VII et al., 2020; Planck Collaboration IX et al.,
2020]. The corresponding power spectrum of these primordial �uctuations, noted P0(k) is
known to be scale invariant, usually expressed as P (k, 0) = As(k/k∗)

ns−1, with k∗ a pivot
scale. In the context of linear theory exposed in Sect. 1.2.1, the matter power spectrum of the
density �uctuations can be simply expressed as the product of P (k, 0) and the growth factor
D+(t) responsible for the growth of perturbations. This is particularly powerful since we are
hence able, at least at large enough scales, to describe the matter power spectrum based only on
the knowledge of the initial one. The gravitational evolution of the instabilities however leads
to a distribution that is not well-represented by a Gaussian anymore with a pdf that is mostly
skewed towards higher density contrast and better represented by a log-normal distribution
[Peacock, 1998]. In such cases, there is a leak of information into higher-order moments that
can be expressed similarly to Eq. (1.13). For instance, the three-point correlation function can
be written

ζ(r12, r13, r23, t) = 〈δ(x1, t)δ(x2, t)δ(x3, t)〉, (1.17)
6Even if the �eld is not centred, one can always study the random variable de�ned subtracting the mean

which is now centred.
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where rij is the norm of the vector xj −xi. The three-point correlation function can equival-
ently be expressed in Fourier space and is known as the bispectrum. Such summary statistics
are at the basis of statistical analyses of large-scale structure datasets. Using higher order es-
timators of course bring more information about the underlying cosmology but also comes
with a higher computational cost that innovative works try to circumvent [see e.g. Philcox,
2021].

1.4 The ΛCDMmodel
The current favoured theory for modelling the Universe and its evolution is called the Lambda
Cold Dark Matter (ΛCDM) model. In this section, we review its main parameters, its main
successes explaining why it stands as the “standard” model and introduce in a general manner
the way cosmological parameters are constrained.

1.4.1 Presentation of the model
In its simplest form, the ΛCDM rely on a set of six cosmological parameters among which two
are related to the physical density of baryons and dark matter, obtained by multiplying the
density parameters and the reduced Hubble parameter de�ned as h := H0/100 km s−1 Mpc−1,
namely Ωbh

2 and Ωmh
2. Two parameters are then describing the amplitude and tilt of the

power spectrum of the primordial matter �uctuations, As and ns. Finally, one parameter ac-
counts for the geometry of the Universe, and the last one is linked with the reionisation era of
the Universe at which the �rst stars are formed. This minimalist set of six cosmological para-
meters together with theoretical equations governing the dynamics of the Universe assuming
the cosmological principle partly exposed in Sect. 1.1 is the most simple one agreeing remark-
ably well with observations that made its supremacy. This is the reason why the ΛCDM model
is also sometimes referred to as the concordance model of cosmology. Among all the observa-
tional evidences of the ΛCDM paradigm, perhaps the most important is the direct detection of
the CMB [Smoot et al., 1992; Komatsu et al., 2011; Planck Collaboration I et al., 2016] consti-
tuting the �rst emitted light in the Universe that probes the existence of hot photons emitted
at the recombination (t ∼ 3.8 × 105) that cooled down while travelling to us. The apparent
isotropy of the emission argue in favour of the cosmological principle and the small temper-
ature �uctuations advocates for small inhomogoneities in the initial matter distribution at the
origin of the large-scale structures, as exposed in Sect. 1.2.1.

In the ΛCDM model, the Universe is born nearly 13.8 billion years ago from a singularity
and, as indicated by its name, is made of three main components that are: (i) the cold dark
matter (CDM) thought to be made of unrelativistic particles interacting only by gravity; (ii) the
dark energy coming from the Λ cosmological parameters and responsible for the late-time
acceleration of the Universe expansion; and (iii) the baryons composing the observable part
of the matter like dust, stars and galaxies. The re�ned measurements provided by Planck
Collaboration XIII et al. [2016] report that 25.8% of the total mass/energy inventory of the
Universe is brought by the CDM and 69.4% which are actually associated to the dark energy.
Even though �lling most of the energy content of the Universe, the nature of the dark energy
component remains unknown nowadays and is at the heart of many cosmological experiments
trying to improve our understanding of this mysterious ingredient like Euclid [Laureijs et al.,
2011] or the Dark Energy Survey [Abbott et al., 2016]. More importantly, this leaves us with
only less than 5% of baryonic, visible matter which are distributed to form galaxies and over
di�erent gas phases [see for instance Fig. 8 from de Graaf et al., 2019]. Of course, several
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Table 1.1. Proportion of the three main components of the ΛCDM model as measured by
Planck Collaboration XIII et al. [2016].

Component Mass-Energy proportion
Baryons 4.9
Cold dark matter 26.8
Dark energy 68.3

alternatives have been proposed for instance introducing dark energy in a di�erent way, to
extend the model accounting for additional free parameters like the summed neutrino mass
Mν or to modify general relativity [see e.g. Milgrom, 1983; Di Valentino et al., 2012, 2017;
Maeder, 2017; Capparelli et al., 2018].

1.4.2 Cosmological parameters and matter power spectrum
Note that the six previous cosmological parameters were the fundamental ones describing the
ΛCDM but some others are �xed or can be derived, including the Hubble constant H0 and the
density parameters Ωm, Ωb, ΩΛ and ρcrit already encountered in Sect. 1.1.2. Another common
parameter of interest, equivalent to �xing the amplitude of the primordial spectrum As, is σ8

which corresponds to the variance of the late-time matter �uctuations smoothed at a scale of
8 Mpc/h. Among the goals of observational cosmology are to test the validity of the ΛCDM
model but also to provide accurate measurements its parameters. To do so, cosmologists rely
on statistical representations such as the two-point correlation function of cosmological ob-
servables like the galaxy distribution, as discussed in Sect. 1.3. The cosmological parameter
values can then be estimated by �tting parameters of the model to the observed statistics. By
combining the information provided by di�erent observables, the community was for instance
able to draw a picture of the 3D matter power spectrum matching with precision the one from
the linear matter prediction. This is shown in Fig. 1.2 where the solid line represents the best �t
of ΛCDM linear theory and the coloured points are measurement provided by several probes,
like the CMB to constrain the largest scales (low values of k), the galaxy distribution for the
intermediate scales [such as data from Reid et al., 2016] and Lyman-α clustering [from quasar
surveys like Abolfathi et al., 2018] for the smallest scales. These data agree remarkably well
with the linear matter power spectrum obtained from the Planck18 cosmology [Planck Collab-
oration VI et al., 2020], showing again the good agreement between ΛCDM and observations.
Some parameters can however have similar impacts on the two-point matter clustering, like
variations in σ8 and Ωm, leading to strong degeneracies and invoking the need of combining
multiple information to break them. This can be done by using di�erent probes like super-
novae [see e.g. Abbott et al., 2019] or cluster analysis in Sunyaev Zel’dovich e�ect [see e.g.
Salvati et al., 2018]. In Chapter 6, we shall also see how cosmic web environments can be used
to constrain cosmological parameters of the ΛCDM model.

In this chapter, we have built the theoretical context of the large-scale structures forma-
tion. Starting from weak initial matter �uctuations and in the framework of �rst-order ap-
proximations, we were able to draw a picture of the late-time distribution of matter in which
perturbations grow in an anisotropic way. This gives rise to the cosmic web [Bond et al., 1996]
made of gravitationally collapsed structures in one, two or three spatial directions forming
respectively the walls, �laments and nodes in the matter distribution. We have seen that such
�elds of �uctuations around the average noted δ can be represented by means of the random
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Fig. 1.2. The 3D linear matter power spectrum at z = 0 drawn from di�erent observables. The
solid black line is the theoretical expectation given the best-�t Planck Collaboration VI et al.
[2020] cosmology while the dotted line is the non-linear power spectrum. Figure reproduced
from Chabanier et al. [2019].

�eld theory and derived statistics like the n-point correlation functions are keystones that cos-
mologists seek to measure in order to enrich their knowledge about the Universe. Indeed, the
power spectrum of the matter distribution provides a wealth of information on the cosmolo-
gical model and its parameters that are themselves describing the dynamics of the observed
Universe.



Chapter 2.

Large-scale structures manifestation

“Je préfère vivre dans le monde des simulations.”

C. Gouin
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Building upon the theoretical prescriptions of structure formation presented in Chapter
1, the current one supplies the complementary view of the large-scale structures provided by
simulations and observations. We �rst introduce and motivate the central place of simulations
for the study of non-linear physical processes and then focus on the di�culties induced by real-
world observations of the cosmic web pattern. We �nally emphasise through many previous
works the importance of detecting cosmic structures and carry on an extended review of the
current literature for doing so.

2.1 Large-scale structures in simulations

2.1.1 First exhibitions

Even with the limited computational resources available in the 70s, numerical simulations
quickly appeared as an indispensable tool to study the evolution of the density �eld in the
non-linear regime where |δ| � 0. By resorting to approximations allowing the inclusion
of the growth of non-linear structures through a �rst order approximation of perturbations,
theory predicts the birth of structures depending on the eigenvalues of the local deformation
tensor as exposed in Sect. 1.2.2 [Zel’dovich, 1970; Doroshkevich & Shandarin, 1978; Klypin &
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Fig. 2.1. The sophistication of simulations from the seventies to nowadays. (left) 2D distribu-
tion of points moved according �rst non-linear approximations in cosmological simulations.
Image from [Doroshkevich & Shandarin, 1978]. (right) A 2D slice of the dark matter density
�eld from the Illustris simulation [Vogelsberger et al., 2014].

Shandarin, 1983]. The left panel of Fig. 2.1 shows these early simulations of the formation
of “dense pancake-shaped” structures [Doroshkevich & Shandarin, 1978] drawing for the �rst
time what will be called later the “Cosmic Web” [Bond et al., 1996].

2.1.2 Dark matter only and hydrodynamical simulations
Early developments of simulations were based on the dark matter only evolution of the density
�eld including solely the e�ect of gravity (also called N -body simulations). Starting from a
set of initial conditions at very high redshift, usually taken from a Gaussian random �eld1,
the main idea is to dynamically evolve a set of N particles by solving the Vlasov-Poisson
system of equations and iteratively move particles. Solving equations of motion for large N
is a computationally heavy task and require N2 operations at each timestep for which several
sophisticated techniques emerged allowing a more e�cient processing [Efstathiou et al., 1985;
Springel, 2005]. The right panel of Fig. 2.1 shows the overdensity �eld computed in 2014 from
a set of N = 18203 particles by the Illustris collaboration2 showing the evolution made in this
domain the past decades.

One of the main achievements of these N -body simulations is to allow the analysis of
the density �eld at both large and small scales, reproducing accurately its statistics. Figure
2.2 shows for instance the power spectrum computed from one box of the Quijote simulation
[Villaescusa-Navarro et al., 2020] and the one predicted by linear theory. We can see the
deviation between the two at k ∼ 0.15 h/Mpc showing the incapacity of using such theoretical
modelling at small scales. In principle, elements can be added to the linear theory to allow
the description of smaller scales. Yet they are still limited, reaching the percent accuracy

1Some “constrained simulations” propose to tune the initial conditions of the simulation to reproduce the
observed local Universe in a Bayesian framework and studies the properties of the time evolving reconstructed
matter density �eld [see e.g., Kolatt et al., 1996; Jasche & Wandelt, 2013; Sorce et al., 2016].

2https://www.illustris-project.org/

https://www.illustris-project.org/
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at a mildly-non linear scales of k ∼ 0.3 h/Mpc [Carrasco et al., 2012] which is already an
achievement but is not su�cient to carry out precise cosmological analyses and to understand
the physical processes occurring at smaller scales (galaxy evolution, baryonic physics, etc.).
Simulations are thus indispensable for the accurate assessment and analysis of gravitational
dynamics at small scales, but also for the development of statistical tools used for the study
of future large-volume surveys like Euclid [Laureijs et al., 2011] or Vera Rubin Observatory
[Collaboration et al., 2009]. As an example, simulations are particularly interesting to assess
how a statistics derived from an observable varies with cosmological parameters, or to build
accurate covariance matrices, problems encountered in Chapter 6. For all these reasons, dark
matter only simulations strive pushing further the scale limit by using always larger volume
and �ner resolutions, as for instance Millenium [Angulo et al., 2012], MultiDark [Klypin et al.,
2016] or Quijote [Villaescusa-Navarro et al., 2020]. Beyond statistical analysis of the matter
distribution, N -body simulations are also particularly interesting to study collapsed objects
like halos identi�ed by means of post-processing to re�ne predictions of their number counts
or density pro�les [Tinker et al., 2008; More et al., 2011].

However, the dark matter is not directly observable and, with the interest of reaching
smaller and smaller scales, grew that of including baryonic matter in the simulations. Mod-
elling the complex non-linear interactions between baryons, gas, stars, black holes and dark
matter happening at all scales in cosmological volumes is one of the goals of hydrodynam-
ical simulations. For that precise purpose, the inclusion of additional equations of motion is
required which increases even more the complexity of the computation, hence requiring trade-
o�s between mass/volume resolutions and computational time of such simulations. Even with
those di�culties, many large-scale hydrodynamical simulations were developed to study the
role of baryonic physics in the evolution of large-scale structures, like Horizon-AGN [Dubois
et al., 2014], EAGLE [Schaye et al., 2015], Illustris [Vogelsberger et al., 2014] or Illustris-TNG
[Nelson et al., 2019]. As such, hydrodynamical simulations enlighten our understanding of
structure formation and evolution of individual objects like galaxies or stars that can then
be tested against astrophysical observations to support or refute the proposed models [Pearce
et al., 2001; Dubois et al., 2014; Schaye et al., 2015; Crain et al., 2015; Nelson et al., 2019; Donnari
et al., 2019].

2.2 From darkness to light: cosmic web and galaxies

2.2.1 Galaxy surveys

The �rst observations of the large-scale distribution of galaxies were made soon after the de-
piction of the �lamentary pattern in simulations using the �rst available mappings of galaxies
such as the Palomar Observatory Sky Survey [Joeveer et al., 1978] or the CfA survey show
in Fig. 1.1. Since then, astronomers carried out extensive surveys to map as precisely as pos-
sible the galaxies observed in the sky and trace the �lamentary pattern of the cosmic web. For
that purpose, the past twenty years witnessed the succession of numerous surveys like the
Sloan Digital Sky Survey [SDSS, York et al., 2000], the 2 Degree Field Galaxy Redshift Survey
[2dFGRS, Colless et al., 2001], the Galaxy and Mass Assembly survey [GAMA, Driver et al.,
2009] or the Dark Energy Survey [DES, Abbott et al., 2016]. This �ood of spectroscopic and
photometric surveys aim at both covering the largest portion of the sky and have the deepest
possible observations. This race to the most accurate mapping is being still pursued nowadays
and for the forthcoming years with surveys like the Vera Rubin Observatory’s Large Synoptic
Survey Telescope [LSST, Collaboration et al., 2009], Euclid [Laureijs et al., 2011] or the Dark
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Fig. 2.2. Illustration of the crucial role of simulations for statistical analyses at small scales. The
red dashed line shows the power spectrum computed from linear theory while the black one
is the average computed from 7, 000 realisations of the Quijote simulation. The grey shaded
area shows the 1-σ interval around the mean. Both agree at the percent level below the grey
vertical dashed line at k = 0.1455 h/Mpc.

Energy Spectroscopic Instrument [DESI, Levi et al., 2013].

2.2.2 Observational e�ects

In addition to the general e�ects that one can expect from observations, like uncertainty on
the estimated quantities, outliers and Poisson noise emerging from the discrete sampling of
galaxies, cosmology is subject to additional e�ects related to the physics of the Universe and
of the observed objects. In this section, we review the main observational e�ects and discuss
their practical impact on the observation of large-scale structures.

Redshift-space distortions

When dealing with real-world observations, the redshift is used as a measure of the distance.
However, this quantity is the linear combination of two contributions: the �rst one corres-
ponding to the motion of the source (such as a galaxy) due to its peculiar velocity and the
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another one due to the expanding universe. Considering x the source position in the comov-
ing space, r its position in the redshift space, v its peculiar velocity and n̂ a unit vector in the
line of sight (LoS) direction, it holds the mapping relation

r = x+

(
v · n̂
aH(z)

)
n̂, (2.1)

with a the scale factor andH(z) the Hubble parameter. It is worth mentioning that this e�ect,
even though corrupting the position of observed objects along the LoS, also carries cosmolo-
gical and astrophysical information about both the dynamics of galaxies and the expansion
of the Universe. In particular, it is nowadays well established that redshift-space distortions
(RSDs) provide key information on the growth rate of structures, denoted f , which scales with
the matter density Ωm(z)γ and can be used to study dark energy as well as alternative gravity
models [Hamilton, 1998; Linder, 2005].

The fact that observations are carried out in redshift space has a direct implication on
the collected data. More speci�cally, the spatial distribution of matter is distorted with over-
dense clustered regions appearing elongated in the LoS direction due to the high velocity of
sources describing the overdensity. This e�ect is called “Finger-of-god” [Jackson, 1972] and is
illustrated schematically in the right part of Fig. 2.3 where the peculiar velocities of the two
sources having a non-zero velocity component with respect to the LoS elongate the shape of
the spherical overdensity in this direction. At larger scales is observed a squashing e�ect of
dense regions along the LoS [Kaiser, 1987] as shown in the left part of Fig 2.3. All these e�ects
can be visually appreciated in the right panel of Fig. 2.4 where RSDs have been simulated by
assuming the Z axis as the LoS and moving dark matter particles using Eq. (2.1).

One of the keystone of cosmology is the assumption of statistical homogeneity and iso-
tropy of the Universe at large scales which makes the overdensity �eld δ a homogeneous ran-
dom �eld invariant to rotations and translations. As depicted in Sect. 1.3, cosmological �elds
are statistically described by quantities derived from their correlations functions, or Fourier-
equivalent poly-spectra. By breaking the isotropy, RSDs are breaking the rotation invariance
of δ used for the establishment of some estimated statistics such as the matter power spectrum.
This is more precisely described in Sect. 6.3.2.

Alcock-Paczynski e�ect

When working with observed objects, the translation of the estimated redshift zs of a source
into a physical distance ds is expressed as

ds =

∫ zs

0

c

H(z)
dz, (2.2)

and requires the assumption of a cosmological model for H(z), the evolution of the Hubble
expansion with redshift. Models of H(z) vary depending on the mass Ωm, curvature Ωk and
dark energy ΩΛ densities in the Universe. The di�erence between the assumed model and the
truth induces some geometrical e�ects in the observed matter distribution known as Alcock-
Paczynski distortions [Alcock & Paczynski, 1979]. In particular, it modi�es the ratio between
the radial extent and the angular size of an observed object (like clusters) making them either
elongated or squashed along the LoS depending on the mismodelling of cosmology. As for
RSDs, the Alcock-Paczynski e�ect turns out to be a way to assess cosmological models, and
more precisely the expansion and geometry of the Universe by measuring the induced distor-
tions when disentangled from the dynamical ones [López-Corredoira, 2014].
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Fig. 2.3. Schematic illustration of the e�ect of redshift space distortions for spherical overdens-
ities (represented as the black circles) at large and small scales. RSDs only alter the position of
objects that have a non-zero velocity component along the line of sight (coloured points only).

0 100 200 300 400
X [h 1Mpc]

0

50

100

150

200

250

300

350

400

Z
[h

1 M
pc

]

0 100 200 300 400
X [h 1Mpc]

Fig. 2.4. E�ect of redshift-space distortions in N -body simulations. (left) Representation of
log10 (2 + δ) in real space on a 2D slice of the Quijote simulation. (right) Same in redshift
space, assuming Z as the line of sight and displacing particles according Eq. (2.1) with a = 1
and H = H0.
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2.2.3 Galaxy bias

As presented in Chapter 1, the dark matter is the dominating matter component in the Uni-
verse which consequently rules the formation and evolution of gravitational potential. It is
also on the dark matter overdensity �eld δ that most of the theoretical predictions are based
in cosmology, such as the commonly used power spectrum of today’s matter. The real-life
observation of the large-scale structure is however performed through the luminous matter
made, for instance, of galaxies. In theory, galaxies are the result of the non-linear evolution
of dark matter creating potential wells in which baryons fall to form them and consequently
trace preferentially overdense regions of the dark matter [Bardeen et al., 1986; Mo & White,
1996]. When one wants to link observations made from galaxies and the extracted statist-
ics with theory, it is hence crucial to know how this statistics is actually linked with the one
that would be derived directly from dark matter. This e�ect, called “bias”, appears whenever a
tracer di�erent from the dark matter itself is used. The current literature hence provides a rich
amount of information on the handling of bias induced by galaxies but also by other tracers of
the matter distribution like quasars, voids or galaxy clusters, to name only a few. Accounting
for this e�ect requires the understanding of how the spatial distribution of tracers is linked
with the one of dark matter and can be studied either theoretically or numerically, with the
above-mentioned observational e�ects complicating even more the picture. The simplest bias
form implies a linear relation [Kaiser, 1984] between the overdensity �eld of tracers δtracer and
of dark matter δ

δtracer(k, z) = b(z) δ(k, z), (2.3)

with b(z) the linear bias factor. In the case of the power spectrum, this translates into a con-
stant b(z)2 factor between the two spectra [Mo & White, 1996], only impacting its amplitude
and inducing no shape dependencies. This simple linear bias model has shown great con-
cordance for large and linear scales but more sophisticated bias models were investigated,
accounting, for instance, for the tidal and environmental e�ects [Yang et al., 2017; Paranjape
et al., 2018b]. In practical applications to real surveys, this bias is one of the biggest contribu-
tions to errors and is simply due to the lack of understanding of the tracers which appear as
a set of “nuisance parameters” in the analyses. For a complete review on this rich topic, we
refer the reader to Desjacques et al. [2019].

2.3 Motivations for cosmic web classi�cation

2.3.1 The limitations of statistical analyses

Statistical representations of random �elds based on the �rst orders of poly-spectra decompos-
ition are limited in their representation of non-Gaussian patterns. In particular, most cosmo-
logical analyses of the matter distribution are based on the evaluation of the power spectrum
which is completely insensitive to the texture of the cosmic web. Since P (k) is only taking
into account the modulus of the random �eld in the Fourier space, it omits the information
contained in the phase. This is illustrated in Fig. 2.5 where the two �elds have the exact same
power spectrum, yet showing very di�erent structural information, easily captured by eye.
The inclusion of a sensitivity to this pattern in the analyses requires the evaluation of higher
order statistics becoming already computationally hardly tractable at the order three with
the bispectrum and come with a theoretical expression of the uncertainty which involves the
fourth moment. The measure of such �rst high-order statistics also require many datapoints
to be accurate.
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Fig. 2.5. The limitation of power spectrum analyses. (left) Overdensity �eld log10 (2 + δ) of a
2.77 Mpc/h depth slice from aN -body simulation. (right) Random phase reshu�ing of the left
panel. Both �elds have the exact same evaluation of the power spectrum since P (k) is blind
from phase information.

As a consequence, many works try to identify the best way to reduce the information con-
tained in these non-Gaussian �elds, which remains one of the biggest challenge of modern
cosmology. The fair representation of such �elds should ideally satisfy three constraints: i)
include, in some ways, higher-than-two orders information to go beyond the Gaussian repres-
entations; ii) be as compressed as possible such that only few coe�cients are needed to store
most of the information; iii) be physically interpretable, at least giving, in an empirical way,
an idea of the information stored. To extract partial information from higher-order statistics,
solutions based on topological criteria were for instance proposed back in the eighties [Gott
et al., 1986; Mecke et al., 1994]. Using a set of topological invariants relying on Euler character-
istics, Betti numbers and Minkowski functionals to describe non-Gaussian �elds like the late-
time matter distribution or weak lensing convergence maps has indeed successfully shown to
encode higher-order information [Kratochvil et al., 2012; Shirasaki & Yoshida, 2014]. For the
task of representing and analysing astronomical data, wavelet decomposition has also been
extensively used. The �rst surveys were for instance quantitatively analysed by means of the
wavelet transform [Martinez et al., 1993] which was also used to detect voids in the �rst galaxy
catalogues [Slezak et al., 1993]. Later were formulated wavelets speci�cally sensitive to the
di�erent cosmic environments that are �laments and walls with the 3D ridgelets and beamlets
[Starck et al., 2005; Woiselle et al., 2010]. This interest of statistically representing the matter or
galaxy distributions never vanished and, still nowadays, recent developments improve the e�-
ciency of the computation and analysis of the third order statistics at non-linear scales [Philcox
& Eisenstein, 2020; Philcox, 2021; Hahn et al., 2020; Hahn & Villaescusa-Navarro, 2021] or ex-
ploit the additional information contained in velocities [Kuruvilla & Aghanim, 2021]. The rise
of data science also led some older descriptions of non-Gaussian �elds to be redesigned based
on machine-learning derived tools. In that sense, the wavelet scattering transform [Mallat,
2012] mixes elements from convolutional neural networks [LeCun et al., 1999] and wavelet
decomposition to compute a set of representative coe�cients exploiting the invariance under
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rotation and translation of the �eld at hand. The resulting summary is shown to be sensitive
to higher-than-two points features in 2D cosmological �elds in Cheng et al. [2020] and Allys
et al. [2020]. Similarly, topological data analysis and persistent homology [see Edelsbrunner
& Harer, 2008; Bubenik, 2015; Chazal & Michel, 2017] are extending the previous topological
de�nitions by studying the properties of the topological features over a range of di�erent spa-
tial scales (which can be seen as a continuous analogous to the discrete scale-space analysis).
The analysis of such topological features is also a promising way to encode non-Gaussian cos-
mic information, as shown in Wilding et al. [2020]. Even though interesting for the building
of summary statistics taking into account the textural information, most of these statistical
representation do not directly allow the possibility of a spatial identi�cation nor extraction of
cosmic structures.

2.3.2 The cosmological sensitivity of environments

Since the resulting pattern of the cosmic web is mainly driven by gravitational dynamics, the
extraction of quantitative information from the observed structures provides key insights on
the underlying cosmological model and enlighten our understanding of dark matter and dark
energy. The �rst extensive and quantitative analyses of the multi-scale cosmic web in simula-
tions suggests that each individual environment span a broad range of densities [see the right
panel from Fig. 2.6, reproduced from Cautun et al., 2014] which in turn advocates for di�er-
ent cosmological histories. One could hence expect that individual environments inherit from
di�erent imprints and may show dissimilar behaviours with respect to cosmological models
and parameters. As an example, voids are believed to be pristine environments, only little de-
formed by gravity and free from complex multi-streaming thus providing a perfect playground
for the study of dark energy [Lee & Park, 2009; Lavaux & Wandelt, 2012; Hamaus et al., 2014,
2015; Pisani et al., 2015] or for constraining neutrino mass [Massara et al., 2015]. In the oppos-
ite way, clusters are highly non-linear objects with high over-density enclosing a large fraction
of the mass for a small part of the volume. The statistics of these peaks (number, distribution
with redshift) in the density �eld have been shown to be particularly sensitive to some cosmo-
logical parameters like the normalisation of the matter power spectrum or the matter density
[Bahcall et al., 1997; Bahcall & Fan, 1998; Holder et al., 2001]. They are also unique laborator-
ies to constrain the baryon gas fraction [White & Frenk, 1991; White et al., 1993] and to study
the evolution of galaxies [Butcher & Oemler, A., 1984; Baldry et al., 2006]. This relationship
between the di�erent environments of the cosmic web and the cosmological parameters of the
ΛCDM model is an aspect that we will develop in Chapter 6 using the two-point statistics of
the di�erent environments.

2.3.3 The role of the environment in shaping galaxies and clusters

At the astrophysics level, detecting cosmic structures may also help in proposing scenarios for
the formation and evolution of galaxies. The �rst hints of environmental e�ects on galaxies
were reported in [Oemler, 1974] showing that the densest regions of the Universe were more
likely hosting elliptical than spiral galaxies. These observations were then re�ned with the
recrudescence and availability of web �nder algorithms. In particular, the most prominent
structure, also traced in observations, is the �lamentary part of the pattern. These massive
bridges act like highways in the cosmic web, allowing the transport of the matter. In this
picture, galaxies escape low-density regions and travel along the network being carried by
the �ow of matter in �laments towards the most massive parts of the web, the nodes [Aragon
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Calvo et al., 2019; Cadiou et al., 2020]. This journey leaves an imprint on galaxy properties and
revealing the �lamentary pattern of the cosmic web in data and simulations hence o�ers the
possibility to study the in�uence of the environment on the formation and evolution of galax-
ies. This topic has received a considerable interest these past years showing many correlations
between the physical properties of galaxies (e.g. their mass, shape, luminosity, orientation or
ability to form stars) or halos and those of the underlying web or related tidal anisotropies
[Kau�mann et al., 2004; Hahn et al., 2007; Martinez et al., 2016; Kuutma et al., 2017; Malavasi
et al., 2017; Laigle et al., 2018; Ganeshaiah Veena et al., 2018; Sarron et al., 2019]. For instance,
it has been shown that galaxies closer to the spine of �lament are more likely to be red and
massive while it gets bluer and lighter when the radial distance is larger [e.g. Bonjean et al.,
2020]. Some studies also draw a correlation between the orientation of galaxies and the dir-
ection of the �lament they are hosted in [Ganeshaiah Veena et al., 2018, 2019; Kraljic et al.,
2020].

The insightful analysis of the cosmic web in large-scale simulations carried out by Cautun
et al. [2014] teaches us that the �lamentary structure contains half of the dark matter mass of
the Universe at the present time for only few percents of the total volume. By also hosting
halos of various masses, typically from 1010 M�/h to roughly 1013 M�/h, �laments are the
ideal place to study collapsed objects like galaxies. Numerous works, based on simulations
or observations, additionally show that a considerable fraction of baryons are hidden in the
form of hot gas in �laments [Cen & Ostriker, 2006; Martizzi et al., 2019; Tanimura et al., 2020a;
Galárraga-Espinosa et al., 2021] hence emphasising the crucial role this particular environ-
ment is playing in baryonic processes shaping the formation and evolution of galaxies. These
�ndings highlight the importance of detecting the �lamentary pattern both to improve the
quality of the predictions in simulations and to discover new correlations with hosted tracers.

Galaxy clusters are massive biased tracers of the underlying matter observed both in sim-
ulations and surveys. It is now well-established that studying their properties like shapes,
masses and redshift is a wealthy source of information on how they structure and evolve with
time and on the underlying cosmological model [Yoshida et al., 2000; Peter et al., 2013; Sereno
et al., 2018]. These properties have also been shown to be in�uenced by the local environment
of halos and clusters and how they are locally embedded in the cosmic web [Poudel et al., 2017;
Darragh Ford et al., 2019; Gouin et al., 2020]. In particular, Musso et al. [2018] expect that low-
mass halos are more likely lying inside �laments while massive halos are found to be closer
to nodes. cosmic web anisotropies are hence indicators of halo assembly bias and therefore
strongly correlated with halo properties [Paranjape et al., 2018a; Ramakrishnan et al., 2019].
At a topological level, the number of �lament a node, or massive cluster, is connected to, a
quantity called the connectivity, is expected to depend on the growth factor hence allowing to
put constraints on dark energy [Gay et al., 2012; Codis et al., 2018]. These relations between
nodes and their local environments of the cosmic web will be investigated in more details in
Chapter 5, Sect. 5.5.

2.4 Challenges in detecting cosmic �laments

Several di�culties make the detection of cosmic structures like �laments a challenging task.
In this section, we discuss the main obstacles and review the several de�nitions adopted for
cosmic �laments in the past and current literature.
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Fig. 2.6. Illustration of the complexity of cosmic web pattern. (left) The �lamentary structure
detected by NEXUS+ in the EAGLE [Schaye et al., 2015] simulation. Image from Fig. 1 of
Cautun et al. [2014]. (right) Density PDF in each environment of the cosmic web as detected
by NEXUS+. Plot from Fig. 13 of Cautun et al. [2014].

2.4.1 Structural complexity of the pattern

Cautun et al. [2014] draw a multi-scale picture of �laments probing several order of magnitudes
in densities, from tenuous �laments of δ ∼ 0.1 to dense bridges of matter with overdensities
of few hundreds, as shown in the right panel of Fig. 2.6. This large range implies overlapping
in densities between the several environments and suggests the use of more re�ned methods
than simple density thresholds. It is also shown that �laments are spreading over a wide range
of widths with densities above the background from few to tenth of megaparsecs around the
spine [Cautun et al., 2014; Galárraga-Espinosa et al., 2020], as illustrated in the �lamentary
structure depicted by the NEXUS+ algorithm [Cautun et al., 2013] in the left panel of Fig. 2.6.
Designing methods applicable for data surveys also makes the picture more complex. Indeed,
the incompleteness of the galaxy samples at all masses shows a pattern traced by the most
luminous objects only and prevents an accurate sampling (illustrated in Fig. 2.7). Additionally,
the redshift-space distortions induced by the peculiar velocities of galaxies alter the pattern
drawn by the tracers. In particular, we have seen in Sect. 2.2.2, and illustrated by Fig. 2.4,
that it makes clustered regions appear elongated along the line-of-sight and may hence create
“fake �laments” [Malavasi et al., 2020a]. Finally, galaxy surveys are usually subject to holes
in the observations with complex spatial selection functions creating absence of data in large
portions of the sky. All these e�ects are, in addition to the natural complexity of the cosmic
web pattern, creating further di�culties that the developed methods should take into account,
either intrinsically or using appropriate pre- or post-processing.

2.4.2 Non-unicity of the de�nition

Section 2.3 emphasise how essential is the detection of cosmic environments for both improv-
ing our cosmological and astrophysical understanding of the Universe. However, there is no
consensus on the de�nition of web elements and, these past decades have seen the emergence
of many algorithms to identify structures with their own mathematical de�nition. Since �la-
ments are of particular interest for astrophysics purposes and because these have been one of



2.4. CHALLENGES IN DETECTING COSMIC FILAMENTS 32

the main topics of this thesis, we will discuss in detail the several de�nitions provided for this
precise environment. A non-exhaustive list is reported in Table 2.1 together with the de�ni-
tion adopted for �laments in each case. For a more detailed view of classi�cation schemes, we
refer the interested reader to Libeskind et al. [2017] or to individual references mentioned in
Table 2.1. Broadly speaking, there are six families of methods proposed for detecting cosmic
web �laments:

Graph-based. The �rst representations of the �lamentary pattern by Barrow et al. [1985]
were carried out using a tool coming from graph theory called “the minimum spanning tree”
that links galaxies together with the minimum total Euclidean distance to do so (discussed in
more detailed in Sect. 4.2). In an attempt to extract quantitative information from it, Colberg
[2007] and Alpaslan et al. [2014b,a] propose post-processing operations of the graph by cutting
short edges or removing spurious ones to de�ne �laments as branches of the tree structure.
Thanks to its ability to easily capture the pattern with no parameter and by relying directly on
the position of galaxies, the minimum spanning tree is still used today and extended to obtain
smooth �laments, passing in the middle of the distribution of galaxies they host [Bonnaire
et al., 2020, 2021b; Pereyra et al., 2020b,a]. At the interface between graph-based methods
and point-based geometric ones, Chapters 4 and 5 will present ways to incorporate ideas of
smoothness and robustness while learning a graph structure into a single formulation under
the �ag of principal graphs.

Point-based geometric. Also addressing the detection from the observational point of view
by directly relying on discrete input, Stoica et al. [2005a, 2007] introduce a stochastic formalism
based on the point-process theory de�ning �laments as a set of random connected and aligned
cylinders paving the galaxy distribution and ful�lling some criteria based on sizes and local
densities. The application of this latter, named the Bisous model in current surveys were
later carried out by Tempel et al. [2014, 2016]. Alternatively, the FINE algorithm proposed in
González & Padilla [2010], by considering physical principles based on the mass of halos or
galaxies, is extracting �laments between two node tracers as the shortest line following the
local highest density. In the same spirit, Genovese et al. [2014] and Chen et al. [2014] use a
principal curve formulation to de�ne �laments as the set of projected points standing on the
ridge passing in the middle of galaxies in 2D datasets in the Subspace Constraint Mean-Shift
algorithm [SCMS, Ozertem & Erdogmus, 2011]. Duque et al. [2021] recently proposed a way to
overcome the hand-tuning of the �xed scale in the SCMS algorithm by using machine learning
based combination of multiple scales.

Hessian-based. With the evolution of simulation accuracy and availability, a class of method
based on a smooth estimate of the density �eld traced by dark matter particles emerged using
the Hessian matrix of either the density [Aragon-Calvo et al., 2007; Cautun et al., 2013] or tidal
[Hahn et al., 2007; Forero-Romero et al., 2009; Kitaura, 2013] �eld to classify cells according to
their level of local anisotropy measured by the number of eigenvalues below a given threshold.
The Multi-scale Morphology Filter [MMF, Aragon-Calvo et al., 2007] and NEXUS+ [Cautun
et al., 2013] methods are carrying their analysis using the joint analysis of the curvature within
a range of various Gaussian smoothing scales thus highlighting features of di�erent sizes in
the smooth �eld. Note that these classi�ers provide a segmentation at the cell level but do not
allow the identi�cation of single objects like a �lament without post-processing of the output.

Topological. In parallel to hessian-based methods were proposed descriptions of the density
�eld invoking topological criteria [Sousbie et al., 2008; Pogosyan et al., 2009]. Topology is at
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the heart of cosmological analyses of the large-scale galaxy distribution since its �rst observa-
tion [Gott et al., 1986; Mecke et al., 1994]. By describing the density �eld through the Discrete
Morse Theory, the Discrete Persistent Structures Extractor [DisPerSE, Sousbie, 2011] proposes
a mathematically elegant formulation of the cosmic network using prescriptions from com-
putational geometry and persistent homology as the set of constant gradient lines connecting
saddles and maxima. Such topological arguments coupled with watershed transform based
methods, originally used for the detection of voids [Platen et al., 2007], led Aragón-Calvo et al.
[2010] to de�ne �laments as the intersections between three or more watershed basins in the
SpineWeb algorithm.

Phase-space. Speci�cally dedicated to simulations, phase-space methods rely on the addi-
tional information of velocities to describe the structures using the full 6D information. By
tracking the �ow of matter escaping from empty regions to reach the cosmic network, Lavaux
& Wandelt [2010] proposed a way to identify voids that Ramachandra & Shandarin [2015] ex-
tends to study all environments by counting the number of streams in the density �eld and,
in particular, attribute to �laments those with more than 17 streams. A similar formalism,
proposed by Falck et al. [2012], and followed-up by Falck & Neyrinck [2015] to identify voids,
propose to count the number of orthogonal directions along which a shell-crossing occurs,
which, for �laments, is two. Even though anchored in physical principles and useful to study
the dynamics of the cosmic web, the intrinsic de�nition of this class of method makes them
hardly applicable to real-world datasets since velocities of individual sources are only partly
and di�culty measured.

Supervised Machine Learning. More recently, some attempts to apply supervised machine
learning algorithms like the U-net architecture were initiated by Aragon Calvo et al. [2019]. By
training the deep-learning model on a set of outputs obtained from the MMF method [Aragon-
Calvo et al., 2007] or Voronoi mock dataset, it can then predict the class of a given overdensity
cell. In the same vein, Buncher & Carrasco Kind [2020] train a Random Forest from local
indicators of anisotropies and densities using k-nearest-neighbours and principal component
analysis. However, the unavailability of ground truth training data strongly limits their ap-
plication, even though the work of Aragon Calvo et al. [2019] suggests that it can generalise
the results and identify structures like tenuous �laments beyond those of the training set.

2.5 Conclusions and perspectives for the thesis
The comparison of this landscape of methods is not easy and heavily depends on the targeted
application and underlying goals. Eventually, there is no best de�nition for cosmic envir-
onments and each method come with its own caveats which point the user to a particular
algorithm depending on the application. As a matter of fact, some algorithms, mainly those
from the two �rst categories have been developed targeting point-based real-data applications
by relying on matter tracers like galaxies. Other methods, usually requiring continuous input,
have been mainly designed to be applied on simulations with dark matter particles as input to
obtain an accurate estimate of the density �eld δ. These di�erent inputs are illustrated in Fig.
2.7 showing in the bottom panel the galaxy distribution, visible counterpart of the dark matter
density �eld tracing with much more details the cosmic web in the top panel. Even in the
absence of other observational e�ects, the sparse sampling of the distribution complicates the
task of extracting accurately the web-like pattern. Several applications of procedures based on
continuous inputs on survey data have however been carried out with the DisPerSE algorithm
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Table 2.1. A non-exhaustive list of the existing procedures to extract cosmic �laments. Table
extended from Libeskind et al. [2017]. Algorithms whose names are tagged with an asterisk
∗ are those requiring a continuous input, usually involving a pre-processing step to estimate
the density �eld δ from the set of given particles.

Type Method Filament de�nition References

Graphs

Adapted MST Branches of a
post-processed MST Alpaslan et al. [2014a,b]

Semita Branches of a MST
smoothed with splines Pereyra et al. [2020b]

T-ReX Branches of a
principal graph

Bonnaire et al. [2020],
Chapter 4 and 5

Point-based
geometric

Bisous Connected and
aligned cylinders

Stoica et al. [2007],
Tempel et al. [2016]

FINE Lines linking
two tracer nodes González & Padilla [2010]

SCMS Ridges of the
distribution

Chen et al. [2014, 2015]
Duque et al. [2021]

Supervised
Machine
Learning

U-net∗ Tag cells with a U-net
trained on MMF outputs Aragon-Calvo [2019]

Random Forest Tag particles with RF
based on knn and PCA Buncher & Carrasco Kind [2020]

Hessian

T-web∗,
CLASSIC∗

Cells with local
tidal anisotropies

Hahn et al. [2007],
Kitaura & Angulo [2012]

MMF∗,
NEXUS+∗

Cells with multi-scale
local anisotropies of δ

Aragon-Calvo et al. [2007],
Cautun et al. [2013]

Topology
Spineweb∗ Intersections between

3 watershed basins Aragón-Calvo et al. [2010]

DisPerSE∗ Constant gradient lines
between critical points of δ

Sousbie [2011]
Sousbie et al. [2011]

Phase-space
ORIGAMI Particles that have undergone

shell-crossings along 2 axes Falck et al. [2012]

MSWA Regions with more
than 17 streams Ramachandra & Shandarin [2015]
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Fig. 2.7. (top) A slice from the Illustris simulation showing the estimated density �eld δ drawn
from dark matter particles. (bottom) The galaxy counterpart. The sparse sampling of the pat-
tern by the visible matter makes the extraction of the pattern more complicated in observations
than in simulations where the full information is available.
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[e.g. Malavasi et al., 2017; Laigle et al., 2018; Kraljic et al., 2020], and imply the computation of
δ directly from the observed galaxy distribution. The accurate estimate of δ is hence an addi-
tional di�culty that needs to be tackled and for which several algorithms have been proposed,
like the Delaunay Tessellation Field Estimator [DTFE, Schaap & Weygaert, 2000] or B-spline
interpolation schemes [Hockney & Eastwood, 1981; Jing, 2005]. To alleviate the requirement
of methods based on smooth �eld inputs, one could use jointly sophisticated reconstruction
algorithms like BORG [Jasche & Wandelt, 2013; Leclercq et al., 2013] or Barcocde [Bos et al.,
2014] providing a Bayesian estimate of the full underlying dark matter density �eld from its
visible counterpart only (galaxies or clusters respectively). However, in direct applications,
e�ects like masking or RSDs, are usually easier to handle in formalisms relying directly on
discrete inputs like the MST [Alpaslan et al., 2014a]. They also generally allow the de�nition
of �laments as continuous one-dimensional objects standing in the cloud of galaxies, which
is not the case for other classi�ers like NEXUS+ or T-web that need post-processing to obtain
individual object detection.

Despite all these e�ects and the di�erent de�nitions for the cosmic web that do not always
agree one with each other [Libeskind et al., 2017], it is remarkable to see the many results
obtained both in simulations and observations. In addition to the achievements listed in Sect.
2.3.3 on the interplay between the physical properties of �laments and galaxies, the detec-
tion of large-scale �laments in other wavelengths have been made possible with the recent
advances in observational astronomy. This usually involves stacking methods to increase the
signal after their detection via the distribution of galaxies. The observation of the �lament-
ary pattern is hence currently performed and used in di�erent observables like X-ray [Dietrich
et al., 2012; Eckert et al., 2015; Nicastro et al., 2018; Tanimura et al., 2020b], weak lensing [Gouin
et al., 2017; Epps & Hudson, 2017; Tanimura et al., 2020c] or through the Sunyaev-Zel’dovich
e�ect [Bonjean et al., 2018; Tanimura et al., 2019; de Graaf et al., 2019; Tanimura et al., 2020c].
Yet, the observable that traces best the web-like pattern is the galaxy distribution from which
�laments are �rst extracted to then study their properties in other wavelengths and this is why
numerous works are providing catalogues of �laments to the community [e.g. Tempel et al.,
2014; Chen et al., 2016; Malavasi et al., 2020b].

One of the aim of this manuscript is to propose ways to analyse such complex spatial
patterns such as the one depicted by the spatial matter distribution. In particular, in Chapter
4, we present a method for the learning of a principal graph that extends some algorithms
of the graph-based category. We then discuss the interest of the method for cosmological
purposes and apply it to related datasets in Chapter 5.
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Chapter 3.

Statistical physics for clustering

“De mon point de vue, si on arrive à comprendre,
c’est toujours bien...”

A. Decelle
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This chapter is based on the results from Bonnaire et al. [2021a]. As the �rst chapter of the
second part of the manuscript, it sets up the general context of machine learning and statistical
methods of the thesis and discusses some of its caveats for applications in science, and more
precisely in physics. It also introduces a generic formulation of the unsupervised optimisation
problems encountered throughout the manuscript and the required knowledge about mixture
models and the expectation-maximisation algorithm, two concepts exploited in the present
and forthcoming chapters. Finally, the chapter exposes how a statistical physics formulation
of an unsupervised machine learning task, the clustering, can be utilised to obtain an insight
on the learning dynamics of the classes during the iterative procedure providing information
about the structure of the data.

3.1 Context and motivations
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3.1.1 Machine learning and physics

The incredible advances of Machine Learning (ML) we witnessed the past decade made it an
indispensable tool embedded in our daily life through our smartphones, the software we use
and even our cars. Beyond these industrial successes and thanks to its ability to extract in-
formation from huge amount of data, ML also sparked the interest of researchers in a large
variety of domains ranging from physics to biology. Perhaps one of the most common applic-
ations to various �elds is the image processing in which ML algorithms, and more precisely
deep learning ones, have shown an unprecedented power in the learning of relevant features
from large labelled databases [LeCun et al., 2015]. Astrophysics and cosmology were no ex-
ception and even showed themselves to be particularly interesting for the application of ML
algorithms. The recent availability of data in cosmology, such as larger and larger simula-
tions with various cosmologies (see Sect. 2.1) for instance paved the way for the estimation of
cosmological parameters [Ravanbakhsh et al., 2017; Ribli et al., 2019; Cheng et al., 2020; Allys
et al., 2020] or for the mapping of the dark matter and its visible counterpart [Zhang et al.,
2019; Hong et al., 2021] using deep-learning-based architectures. The use of such methods
also led to promising results in providing fast and accurate alternatives to the computation-
ally costly N -body simulations [Rodríguez et al., 2018; He et al., 2019; Ullmo et al., 2021]. For
observational tasks, ML-based algorithms also allowed the automatic classi�cation of galaxies
morphology based on optical data [see Barchi et al., 2020, for a review], the improvement of
redshift estimation from photometric surveys [Carrasco Kind & Brunner, 2013] or the predic-
tion of unknown galaxy properties like their masses, star formation rates or full spectra based
on their photometry [Bonjean et al., 2019; Mucesh et al., 2021]. All these successes rely on
di�erent learning schemes that fall into three categories:

Supervised Learning in which is learnt a function mapping an input to an output
based on paired examples. This goal can be achieved using various methods such as
the random forest [Ho, 1995] or derived from neural-network architectures [Rosenblatt,
1959; Rumelhart et al., 1986], to cite only the most popular ones.
Unsupervised Learning methods that aim at identifying hidden structures or patterns
in a given dataset without requiring labels. Usually based on the learning of the probab-
ility distribution (de�ned explicitly or not) that most probably generated a given dataset,
famous algorithms of this category are generative models like Generative-Adversarial
Networks [Goodfellow et al., 2014] and derived models [Mirza & Osindero, 2014; Radford
et al., 2016; Arjovsky et al., 2017], Restricted Boltzmann Machines [Smolensky, 1986] or
Variational Auto-Encoder [Kingma & Welling, 2013]. All the studied mathematical prob-
lems we will encounter in this part of the manuscript fall in this family, may it be the
clustering or the principal graph learning presented in Chapter 4.
Reinforcement Learning [see Sutton & Barto, 2018, for an extensive introduction]
is the task of learning multiple functions, called agents, to predict an output based on
environmental information (for instance from sensors) in order to maximise a reward
function. A famous example of algorithm in this category is the AlphaGo program [Sil-
ver et al., 2016] that learnt how to play Go against itself.

Despite their increasing popularity in physics applications and the performance they can
achieve, ML approaches, in their fundamental idea of automatically “learning” a model from
the sole information of the data remain very opaque. Particularly true in the case of deep
learning, the learnt models and the features that were used to build them are generally not
exploitable to understand the underlying phenomena, which is precisely what physics aims
at. This opacity has led researchers to address questions like “Can we ourselves interpret the
models learnt by the machine?” or “What are the important features in the data?”. To an-
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swer these questions but also more fundamental ones on the unusual generalisation abilities
of deep learning models [Zhang et al., 2016; Hastie et al., 2019; Advani et al., 2020; D’Ascoli
et al., 2020], the joint e�ort of various communities from computer science, mathematics and
physics is being put together. Such answers are essential to provide prescriptions for the de-
veloped algorithms, their range of optimality but also increase their interpretability. For that
purpose, leads can be found in the application of theoretical physics to ML algorithm. Back in
the eighties already, the learning dynamics of the �rst neural networks [Little, 1974; Little &
Shaw, 1978; Hop�eld, 1982] were analysed by means of spin-glass models from statistical phys-
ics [Amit et al., 1985]. In a shameful attempt to give, in a few lines, an intuition on the connec-
tions between the two �elds (and leave to Nishimori [2001] the task of giving the reader a more
rigorous exposition), let us consider the case of the famous Convolutional Neural Networks
[CNN, LeCun et al., 1999]. Taken individually, each component of the procedure is “simple”,
with linear operations (here, convolutions) interwined with somehow simplistic non-linear
activation functions (like sigmoids). Parameters of the full resulting model (�lter weights and
biases) are estimated iteratively using gradient-descent-based algorithms minimising a quad-
ratic cost functions. This composition of basic mathematical operations allows the modelling
of complex functions and led to the best known results in numerous applications, as exposed
above. On the other hand, statistical physics, in its most fundamental de�nition, is aiming at
describing the microscopic interactions between simple elementary components of a system
and understanding how complex behaviours can macroscopically emerge from it. In physical
systems, statistical physics usually deals with a large number of particles and hence omits the
individual characteristics to rather focus on the average properties of the entire system. In
this analogy, the overall model learnt by the CNN is the macroscopic system while the many
parameters are the particles composing it. Global characteristics of the model like its ability
to generalise are analogous to macroscopic properties of the system. By setting themselves in
idealised setups where the learning is “controlled”, statistical physicists shown numerous ana-
logies with ML – or related – algorithms allowing new theoretical insights and prescriptions
[see Zdeborova & Krzakala, 2016, for a review]. In particular, many optimisation and inference
problems have shown an equivalent formulation in statistical physics [Mezard & Montanari,
2009] that allowed a brand-new look at some long-standing problems and improved the un-
derstanding of complex algorithms [Mézard & Mora, 2009]. As an example, the identi�cation
of the phase diagram and phase transitions of a model can bring interesting insights such as
knowing under what conditions a given algorithm is optimal or if a given information can
be retrieved from the model and dataset at hand [such as Decelle et al., 2011; Lesieur et al.,
2016; Tubiana & Monasson, 2017; Decelle & Furtlehner, 2021]. Such insights on the developed
algorithms are precious, both in supervised and unsupervised contexts, since they provide key
information on what matters during the learning process at di�erent levels, from the topology
of the cost function to be optimised [Choromanska et al., 2015; Spigler et al., 2019; D’Ascoli
et al., 2020] to the impact of the data structure itself [Goldt et al., 2019].

In what follows, we give a general formulation of the optimisation problems that we will
be focusing on in this part of the manuscript and introduce the concept of regularisation right
before drawing the purpose and drawbacks of clustering algorithms this chapter is analysing.

3.1.2 Optimisation problems and regularisation

Inference (or learning) problems often come as the minimisation of an energy function (also
called cost or loss function depending on the community) [see for instance Vapnik, 1998].
To keep the formulation general, let us consider two sets of points, a dataset {xi}Ni=1 with
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xi ∈ X and {yk}Kk=1 with yk ∈ Y such that {f(yk)} builds a representation of the data,
with f : Y → X a mapping function between the two spaces. Calling F the set of all such
mappings, many mathematical problems in machine learning and inference contexts come
formulated as

argmin
f∈F

N∑
i=1

min
y
E(xi, f(y)), (3.1)

where E(xi, f(y)) is the data �delity term quantifying the energy cost of representing xi by
f(y). As an example, one can express the empirical mean as the one-point representation of
the dataset resulting from Eq. (3.1) under a quadratic energy cost with K = 1 and F the set
of constant functions, leading to �nd y minimising

∑N
i=1‖xi − y‖2

2. In the special context
of statistics, one can see equivalently the maximisation of the log-likelihood function as the
minimisation of an energy cost between the observed data and a model. The widely known
and studied problematic of supervised machine learning can also be expressed in a similar
manner. Supervised machine learning aims at �nding the mapping f drawn from a set of
tuples (yi,xi) encoding a signal and its label. A popular form of the cost function in these
contexts is a quadratic energy cost E(xi, f(yi)) = ‖xi − f(yi)‖2

2. Note that this is also the
cost emerging when assuming Gaussian additive noise in the error of the representation of xi
by f(yi), i.e. a Gaussian likelihood in a probabilistic setting.

When the mathematical problem is inherently ill-posed and solutions exist only for a subset
ofF , one can constrain the form of the solution, may it be to penalise its complexity or because
of prior knowledge, by adding a regularisation term leading to

argmin
f∈F

[
N∑
i=1

min
y
E(xi, f(y)) + λR(f)

]
, (3.2)

where R is a functional penalising the solution and λ a parameter acting like a trade-o�
between the two terms. The introduction of such a penalty in the optimisation scheme is
very popular in the machine learning community to avoid the over-�tting of the learnt mod-
els [Kukačka et al., 2017], but also in signal processing to relax some reconstruction problems
[Jalalzai, 2012]. One of the common choices for R is an L2 norm1 hence penalising unsmooth
functions leading to Tikhonov-like estimators [Tikhonov & Arsenin, 1977]. Under these as-
sumptions of Gaussian distributed errors and quadratic regularisation, equivalent to a bounded
L2 norm constrained optimisation, the typical problem one has to solve is thus

argmin
f∈F

[
1

2

N∑
i=1

min
y
‖xi − f(y)‖2

2 +
λ

2
‖f‖2

]
, (3.3)

which will be the generic form of most formulations we shall encounter in this part of the
manuscript, like the clustering studied in this chapter or the principal graph in Chapter 4.
Note that this choice of quadratic regularisation is not innocuous. From a Bayesian point of
view, this is the form arising when imposing a Gaussian prior2 distribution. Equation (3.3)
thus corresponds to the maximisation of a log-posterior with a Gaussian log-likelihood and
a Gaussian prior distribution. Thereby, λ can be seen as the ratio of variances between the

1L1 regularisation is also very famous and known in the context of regression as the Lasso [Tibshirani, 1996].
This regularisation is used to build sparse representations of signals, forcing some coe�cients to 0, a vast topic
discussed in more details by Starck et al. [2010].

2Similarly, if we use an L1 regularisation, optimisation problem (3.3) can be seen as the maximisation of a
Gaussian likelihood with a Laplace prior distribution.



43 CHAPTER 3. STATISTICAL PHYSICS FOR CLUSTERING

Fig. 3.1. Illustration of the purpose of clustering. Given a set of collected points in an arbitrary
space (here the two-dimensional dataset in the left panel), one wants to identifyK = 3 clusters
(shown as coloured points in the right panel). Note that the choice of K is application- and
user- dependent and that we could have chosen to identify only two clusters as well.

two Gaussian laws. Note also that, when maximising Eq. (3.3) with λ = 0, the variance of
the likelihood does not play any role and is coupled with the variance of the prior distribution
when λ > 0.

3.1.3 Clustering and its drawbacks
Clustering is a one of the most ancient unsupervised tasks of ML aiming at identifying a parti-
tion of a given dataset into multiple groups called “clusters”. Figure 3.1 illustrates this objective
in a 2D case where the aim is to go from the left panel to the right one, by attributing a class
to each input datapoint. The common ground to many methods that have been proposed
these past decades [MacKay, 2002] is that they all embed, in some ways, a measure of the
“similarity” between datapoints living inside the same cluster. The simplest way of thinking
this is a measure based on the Euclidean distance leading to representations in which “close”
datapoints more likely fall into the same cluster while distant ones should reside in di�erent
clusters. The prototypical method to partition a D-dimensional dataset into K clusters is the
K-means algorithm [MacQueen, 1967]. Taking back the general formulation of optimisation
problems of Sect 3.1.2, we can write the K-means goal as �nding the set of points minimising
the sum of squared distances between datapoints and cluster centres. We end up in a setting
seeking to �nd the set of points µ = {µ1, . . . ,µk}T minimising

N∑
i=1

min
k∈{1,...,K}

‖xi − µk‖2
2. (3.4)

The K-means algorithm solves this optimisation problem in a simple way. Starting from a
set of initial positions µ(0), it assigns to each datapoint xi the closest (in the sense of the
Euclidean distance) centroid among µ, noted µ(xi), and moves µk accordingly to the average
of all datapoints projecting on it, namely µ(t+1)

k = E(xi |µ(xi) = µ
(t)
k ). As we can see, this

formulation assigns a single centroid to a datapoint without any level of uncertainty, making
it a “hard” version of clustering. In case of overlapping clusters, such as the two on the left of
Fig. 3.1, it is however natural to think that datapoints living at the border could be either in
the blue or the orange cluster. Also, because the association energy appearing in Eq. (3.4) is
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based on the Euclidean distance, it tends to generate spherical groups. These restrictions of the
K-means algorithm later led to the Gaussian mixture model formulation of the clustering that
we will present in this chapter. This latter introduces a fuzziness by assigning a probability
to each datapoint of being generated by one the K clusters but also extends the de�nition to
anisotropic clusters of various densities.

Thanks to their ability to describe clustered patterns by grouping datapoints without prior
information, clustering algorithms naturally found many applications in science [see Saxena
et al., 2017, for a review]. In the particular context of astrophysics and cosmology, they found
applications in the identi�cation of astronomical sources (stars, quasars, galaxies, etc.) to-
gether with their morphological properties to complete and improve survey catalogues [see
e.g. Aghanim et al., 2015; Barchi et al., 2016; Logan & Fotopoulou, 2020]. Despite their attract-
ive data-driven and unsupervised foundations3, clustering algorithms are not free of �aws and,
in addition to speci�c drawbacks proper to each method, most of them come with the require-
ment of inputting a number of cluster K to identify in the dataset. They also usually act as
opaque boxes and the clustering procedure only outputs a partition of the dataset without any
information on what has been “learnt” from their separation. For a successful application of
most clustering procedures, one hence needs to have strong priors on the wanted clusters,
such as their number, and a broad idea of the family of datapoints that need to be grouped
together, even if not labelled, to assess the result of the clustering.

The aim of the rest of the chapter is to expose precepts originating from statistical phys-
ics to obtain a physical insight on what happens during the clustering procedure when
carried out using the Gaussian mixture model and the Expectation-Maximisation pro-
cedure to optimise the log-likelihood. After having introduced both concepts, we will
show that, in the context of deterministic simulated annealing, we are witnessing a
cascade of phase transitions and that we can study the linear stability of the iterative
scheme of the Expectation-Maximisation algorithm to derive theoretical thresholds at
which these transitions occur. More importantly, we show that, by tracking empirically
some physically relevant quantities related to the size of the clusters being learnt by
the model, we end up with crucial information on the number of structures at a given
scale, their hierarchy (i.e., how they are embedded in space with respect to each other),
and their size. This is done without relying on prior knowledge, such as the number
of components usually required by clustering methods. All the physical transitions are
visible in a two-dimensional diagram which allows the extraction of the structural in-
formation, even in high dimensions when visualisation is not possible, hence opening
the path for the exploration of complex high-dimensional datasets.

3.2 Mixture models

3.2.1 General formalism
Real-life data often come as drawn from probability distributions with complex shapes and
multiple modes that cannot be satisfactorily described by a single well-known probability dis-
tribution. Mixture models [see McLachlan & Krishnan, 1997; Bishop, 2006] propose to model
this complexity by using a linear combination of K known laws. Figure 3.2 illustrates this

3In fact, some clustering approaches are not fully unsupervised and exploit partial pre-classi�ed data to guide
the overall clustering, making them semi-supervised [see e.g. Grira et al., 2004; Bair, 2013].
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Fig. 3.2. Illustration of the interest of mixture models. Black dots are datapoints generated by
three Gaussian clusters. Green, orange and blue ellipses are 1-σ con�dence ellipses assuming
a Gaussian mixture model with K = 3 while the black ellipse is obtained by maximising a
Gaussian likelihood from the data. Discussed in Sect. 3.2.

need on a multi-modal 2D distribution of points. Although easy to study, a single Gaussian
component (grey ellipse) do not explain the non-Gaussian dataset while a linear combination
of three Gaussian (coloured ellipses) leads to a better representation. This idea of combination
of known laws, despite its conceptual simplicity, can lead to accurate representations of highly
complex density distributions. This is in particular why mixture distributions are nowadays
at the basis of many mathematical tools like kernel density estimation [Parzen, 1962; Li & Bar-
ron, 2000], clustering [Jain et al., 2000] or mixture density networks [Bishop, 1994] in machine
learning.

Keeping the formulation as general as possible, a mixture distribution is the linear combin-
ation of K probability distributions {fk} with parameters θk. The probability of a datapoint
x being generated by the model is hence

p(x |Θ) =
K∑
k=1

πkfk(x,θk), (3.5)

with Θ = {π1, . . . , πK ,θ1, . . . ,θK} the set of model parameters, πk the mixing coe�cient
(also called amplitude) of component k. Note that, given the properties of probability dis-
tributions, amplitudes are normalised and positive by de�nition, namely

∑K
k=1 πk = 1 and

∀k ∈ {1, . . . , K}, πk ≥ 0.
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3.2.2 The Gaussian case
A particular class of mixture model is the Gaussian case, where ∀k ∈ {1, . . . , K},
fk(x,θk) = N (x,θk), with

N (x,θk) =
exp
{
−1

2
(x− µk)T Σ−1

k (x− µk)
}

(2π)D/2|Σk|1/2
, (3.6)

the Gaussian probability distribution with parameter θk = {µk,Σk}, respectively corres-
ponding to the average of the kth Gaussian component and its covariance matrix. The partic-
ular Gaussian formulation of mixture models has been extensively used in machine learning,
mainly for density estimation and clustering purpose.

3.3 Expectation-Maximisation algorithm

3.3.1 Introduction through Mixture Models
In a parametric setup, one can estimate the optimal set of parameters Θ of a model by max-
imising the log-likelihood function log p(X |Θ). Assuming a mixture model as de�ned in Eq.
(3.5), we get

log p(X |Θ) =
N∑
i=1

log

(
K∑
k=1

πkfk(xi,θk)

)
. (3.7)

This function cannot be analytically maximised because of the sum inside the logarithm func-
tion. To circumvent this issue, the Expectation-Maximisation algorithm [EM, Dempster et al.,
1977] allows the optimisation of the log-likelihood of models with latent variables. To re-
formulate the mixture model in terms of latent variables, we �rst introduce a set of random
variables Z = {zi}Ni=1 with zi ∈ {1, . . . , K}. Z represents the partition of the dataset and zi
denotes by which of the K component the datapoint xi has been generated from. By doing
so, the log-likelihood from Eq. (3.7) can be written as the marginal distribution

log p(X |Θ) = log
∑
Z

p(X,Z |Θ), (3.8)

where the joint probability distribution log p(X,Z |Θ) is often referred to as the “completed
log-likelihood” of the model in the sense that the joint knowledge of datapoints and latent
variables {X,Z} is the “completed dataset”. It can be expressed as

log p(X,Z |Θ) =
N∑
i=1

log (πzi f(xi,θzi)) . (3.9)

The key idea of EM is that the log-likelihood of {X,Z} is easier to maximise than the one
of Eq. (3.7): if we knew the vector Z , we could easily maximise Eq. (3.9) and �nd parameters
Θ of the model. Unfortunately, Z are unknown hidden variables that we need to estimate,
in addition to Θ. For this precise purpose, EM provides a procedure with two alternating
maximisation steps to iteratively estimate both quantities. The presented formalism is more
general than the context of mixture models and Eq. (3.8) remains true for any model with
latent variables. In this section, if not clearly stated, we consider a general log-likelihood,
without referring to the particular one of Eq. (3.7).
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3.3.2 Iterative scheme
From the observation that the completed log-likelihood log p(X,Z |Θ) is easier to maximise,
the goal is thus to obtain an estimate of the probability distribution over the latent variables.
Jensen’s inequality4, from the concavity of the logarithm function, together with Eq. (3.8)
allow us to write, for any normalised distribution q(Z) over the latent variables,

log p(X |Θ) ≥ L(q,Θ) :=
∑
Z

q(Z) log

[
p(X,Z |Θ)

q(Z)

]
. (3.10)

Hence, the log-likelihood of the model is bounded below by L(q,Θ). If easier to handle, max-
imising this quantity could help maximising log p(X |Θ). We can re-write this lower-bound,
using the normalisation of q(Z) and the decomposition p(X,Z |Θ) = p(Z |X,Θ)p(X |Θ),
as

L(q,Θ) = −DKL(q, p(Z |X,Θ)) + log p(X |Θ), (3.11)
where DKL(q, p) :=

∑
q log q/p ≥ 0 is the Kullback-Leibler divergence [Kullback & Leibler,

1951]. To maximise the lower-bound L(q,Θ), the Kullback-Leibler term, at the origin of the
inequality in Eq. (3.10), has to cancel out, hence leading to estimate the probability distribution
of the latent variables. To this end, the current values of the parameters, Θ(t), are used to
compute q̂(Z) = p(Z |X,Θ(t)) that is then exploited to obtain the lower-bound L(q̂,Θ(t)).
This step is called the “E-step” as a reference to “Expectation” because the lower-bound can
be written, using Eq. (3.10), as

L(q̂,Θ) = EZ |X,Θ(t){log p(X,Z |Θ)} −
∑
Z

q̂(Z) log q̂(Z),

:= Q(Θ,Θ(t)) +H(Θ(t)), (3.12)

where Q is the expectation of the complete log-likelihood over the latent variables and H is
the negative log-entropy of the latent variables distribution q̂(Z).

In a second step, the values of the parameters are updated by maximising the lower-bound
over Θ,

Θ(t+1) = argmax
Θ

L(q̂,Θ),

= argmax
Θ

Q(Θ,Θ(t)). (3.13)

This step is the M-step, standing for “Maximisation”. The full EM algorithm, by alternating
between E and M steps, iteratively maximises the log-likelihood of the model through the
double maximisation of a lower-bound, �rst over the distribution of latent variables and then
over the parameters of the model, Θ.

One of the key advantages of EM, beyond its tractability, is its guaranteed convergence
towards a local maximum of the log-likelihood through successive monotonic increases [Wu,
1983; McLachlan & Krishnan, 1997]. To give an intuition of that, it is straightforward to write
L(q̂,Θ(t)) = log p(X |Θ(t)) from Eq. (3.11). Then, Θ(t+1) is chosen such that maximising
L(q̂,Θ) which yields L(q̂,Θ(t+1)) ≥ L(q̂,Θ(t)). Since L(q̂,Θ) is a lower-bound of the log-
likelihood, increasing it guarantees the increase of the log-likelihood, which in fact increases
by an amount of DKL(q, p(Z |X,Θ)), as suggested by Eq. (3.11). To better visualise this
property, Fig. 3.3 illustrates one iteration of the algorithm.

4Stating that, for any random variable X and convex function f , f(E{X}) ≤ E{f(X)} [Jensen, 1906].
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Fig. 3.3. Schematic view of one iteration of the Expectation-Maximisation procedure. The
grey dot represents an iteration t. By applying the E and M steps, one moves to the black
dot, climbing the log-likelihood towards the local maximum. Starting from another point (red
one) would however lead the optimisation to converge to a lower value of the log-likelihood.
Details can be found in Sect. 3.3.2.

Despite these mathematically appealing characteristics, some of the main drawbacks of the
EM algorithm are found in its convergence properties, mainly because of its slow convergence
rate [Wu, 1983] and its dependency on the initialisation [Kloppenburg & Tavan, 1997; Ueda &
Nakano, 1998]. Indeed, the direct application of the procedure is known to be easily trapped in
local maxima of multi-modal likelihoods leading to variability in the provided results depend-
ing on the initialisation of the algorithm. This can be intuited from Fig. 3.3 where starting
from di�erent points (grey or red) will irremediably lead to one of the two modes of the log-
likelihood. When used in practice, it is hence natural to start from several random locations
and keep the realisation with the highest value of the �nal log-likelihood (as implemented in
Pedregosa et al. [2011] for instance).

3.3.3 The particular case of Gaussian mixtures
When considering a mixture model (see Sect. 3.2), the log-likelihood and the completed log-
likelihood are respectively given by Eq. (3.7) and Eq. (3.9). In this scenario, we can derive,
in the E-step, the probability of the latent variables given the observed data and the current
parameters of the model, also called responsibilities, pik := p(zi = k |xi,Θ(t)) using Bayes’
theorem,

pik =
πk f(xi,θ

(t)
k )∑K

j=1 πj f(xi,θ
(t)
j )

. (3.14)

This estimation is then used in the M-step to evaluate the �rst term of the lower-bound through
Eq. (3.12) (the other one being independant of Θ) as

Q(Θ,Θ(t)) =
N∑
i=1

K∑
k=1

pik log [πk f(xi,θk)] , (3.15)

and update the parameters through Eq. (3.13) by maximising over Θ. Note that, in this equa-
tion, parameter values referring to time t are hidden in the responsibilities pik of Eq. (3.14).
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In the case of a Gaussian mixture model (GMM, see Sect. 3.2.2), we have fk(xi,θk) =
N (xi,θk), with θk = {µk,Σk}. The M-step consists then in solving

argmax
Θ

N∑
i=1

K∑
k=1

pik

[
log πk −

1

2
log Σk −

1

2
(xi − µk)T Σk (xi − µk)

]
, (3.16)

where we can recognise a relaxed version of the general form of Eq. (3.2) with λ = 0 (no
prior). Indeed, compared to the rigid K-means formulation of Eq. (3.4) in which a datapoint is
associated to a unique cluster, the GMM method not only includes a parameter for the shape
of the cluster through Σk but also quanti�es the probability of a datapointxi to be represented
by a given cluster k through the responsibility pik.

From Eq. (3.16), it is possible to derive an update equation for each parameter of Θ(t+1) as

π
(t+1)
k =

1

N

N∑
i=1

pik,

µ
(t+1)
k =

∑N
i=1 xi pik∑N
i=1 pik

,

Σ
(t+1)
k =

∑N
i=1 pik(xi − µk)(xi − µk)T∑N

i=1 pik
.

(3.17)

Note that, if we consider spherical Gaussian clusters only, meaning that ∀k ∈ {1, . . . , K},Σk =
σ2
kID, the sum of weighted covariances to update Σk simply reduces to the one of L2 norms
‖xi − µk‖2

2.

3.4 Phase transitions in Gaussian mixtures

3.4.1 Statistical physics formulation of clustering
In the context of clustering, it has been demonstrated that the GMM can be formulated as a
statistical mechanics problem [Rose et al., 1990; Akaho & Kappen, 2000] where the negative
log-likelihood can be interpreted as a free energy. We review here the main steps establishing
this analogy that we will exploit in the next sections. Assuming that the clustering aims at
identifying a partition Z of the data into K clusters with centres {µk}, the average energy
cost of a given con�guration can be written

E(Z) =
N∑
i=1

K∑
k=1

p(zi = k |xi,µk)Ek(xi,µk), (3.18)

where Ek(xi,θk) is the energy cost of the association of xi to the cluster k. Under a quadratic
energy cost Ek(xi,µk) = ‖xi−µk‖2

2, the direct minimisation of the total energy E(Z) leads
to the K-means clustering of Eq. (3.4) and associates hard probabilities for the associations,
i.e. 0 or 1 by simply attributing to datapoints the closest cluster in the sense of the distance
measurement provided byEk(xi,µk). Instead, we can introduce a level of uncertainty through
a temperature in the associations by maximising the free energy F = H − βE(Z) where H
is the entropy of the system [Shannon, 1948] and β acts like the inverse temperature of the
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analogue physical system. For low temperatures β →∞, we retrieve the hard solution while
�nite values lead to a fuzzy association of datapoints to clusters.

The distribution p(Z |X,µ) maximising the entropy under the constraint of Eq. (3.18) is,
by invoking the principle of maximum entropy [Jaynes & Rosenkrantz, 1983], the Boltzmann
distribution, hence reading

p(zi = k |xi,µk) =
exp{−βEk(xi,θk)}

ξ(xi)
, (3.19)

where ξ(xi) =
∑K

k=1 exp{−βEk(xi,µk)} is the individual partition function. For non-interacting
systems, the partition function is hence Ξ =

∏N
i=1 ξ(xi) (usually denoted Z but that we mod-

i�ed to avoid confusion with the partition of the dataset). The free energy can hence be equi-
valently written

F = − 1

β
log Ξ,

= − 1

β

N∑
i=1

log
K∑
k=1

exp{−βEk(xi,µk)}. (3.20)

Assuming a quadratic energy cost for Ek(xi,µk), we recognise the negative log-likelihood
from Eq. (3.7) under the spherical and equal variances and uniform amplitudes assumptions,
meaning that ∀k ∈ {1, . . . , K},Σk = σ2ID and πk = 1/K . As such, this formulation of
the clustering is equivalent to the one of a mixture model with a set of parameters reduced
to Θ = {µ1, . . . ,µK}. In the model, the clusters variance is thus playing the role of the
temperature of the system 1/β = 2σ2. EM update equations, thanks to this analogy, can be
used to minimise the free energy F . The Boltzmann distribution of Eq. (3.19) is exactly the
responsibility obtained in the E-step

pik = p(zi |xi,θk) =
exp{−‖xi − µk‖2

2/2σ
2}∑K

j=1 exp{−‖xi − µj‖2
2/2σ

2}
. (3.21)

The M-step then re�nes the position of cluster’s centres based on the current values of pik to
minimise F as

µ
(t+1)
k =

∑N
i=1 pikxi
Nk

(3.22)

where Nk =
∑N

i=1 pik stands for the number of datapoints associated with the cluster k and
with parameters not indexed by iteration are relative to time (t). By applying iteratively Eq.
(3.21) and Eq. (3.22), one gets the set of positions maximising the log-likelihood, or negative
free energy, of the model. In the context of clustering, it means that one hence gets a set of
K positions {µk} and variances {σk} corresponding to the center and extensions of the K
clusters. If a new datapoint is given and one wants to predict its belonging, Eq. (3.21) provides
exactly the probability of it having been generated by the several detected clusters under the
assumptions of the model.

3.4.2 From paramagnetic to condensation phase
At very high values of σ2 (high temperatures), the responsibilities (3.21) are uniformly distrib-
uted with ∀i ∈ {1, . . . , N}, pik = 1/K . A given datapoint xi has hence an equal probability
to be attributed to any of the K clusters. Injecting this result in the update equation of cluster
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positions (3.22) yields µk =
∑N

i=1 xi/N meaning that they are all collapsed at the center of
mass of the dataset. This phase is called the paramagnetic phase as an analogy to the Ising
model phases, and is, for instance, illustrated in the top left panel of Fig. 3.4.

We are now interested in deriving the transition value of the temperature σ2
c at which the

centres split into several subgroups. Without any loss of generality, the dataset is considered
centred, with

∑N
i=1 xi = 0D where 0D is the D-dimensional zero vector. Linearly Taylor

expanding the expression of pik given by Eq. (3.21) for small perturbations µk ≈ 0D gives

pik =
1

K

[
1 +

1

σ2
k

xTi µk

]
+ o(µk). (3.23)

Re-writing the update equation with this expansion leads to study the stability of a dynamical
linear system whose evolution is governed by the matrix [Rose et al., 1990]

M =
1

σ2
c

[
1

N

N∑
i=1

xix
T
i

]
, (3.24)

where we recognise C = 1/N
∑N

i=1 xix
T
i , the data covariance matrix. Consequently, the

system leaves stability and enters the condensation phase when the spectral radius of M is
strictly greater than 1, meaning that the stability is governed by the maximum eigenvalue of
theM . In that phase the position of the means starts to be correlated with the position of the
clusters. More speci�cally, {µk}Kk=1 move away from the centre of mass when σ2

c < Γ, where
Γ is the largest eigenvalue of C .

Since we are focusing on datasets supposed to be clustered, with multiple groups span-
ning a D-dimensional space, we can expect to see successive transitions when a Gaussian
component of the model is describing the local size of a subgroup in the data. This idea is
the one explored in the forthcoming sections in the context of simulated annealing where the
temperature is decreased progressively.

3.4.3 Hard annealing
Cascade of phase transitions

The combination of the previously exposed drawback of the EM algorithm, namely the trap-
ping in local maxima of multi-modal likelihoods and the one of clustering with the choice of
the number of components to model the data, makes parametric mixture models very sensitive
to the initialisation and the choice of hyper-parameters [Ueda & Nakano, 1998]. In that regard,
the statistical physics formulation of clustering established in Sect. 3.4.1 helped to overcome
these issues by making use of deterministic simulated annealing. In particular, it allows the
relaxation of the non-convex optimisation problem by solving it iteratively while the temper-
ature, or equivalently in our our case, the variance of all components σ2, is controlled and
slowly reduced [Kirkpatrick et al., 1983]. The idea behind these approaches is to smooth out
the likelihood by starting with a very high variance leading to a concave function. Decreasing
it slowly leads to a �ner and �ner description of the dataset hence resulting in a more com-
plex likelihood function with multiple modes appearing. In cosmological analyses, simulated
annealing is for instance used successfully for the optimisation of the energy function in the
Bisous model used to extract cosmic �laments from galaxies in Stoica et al. [2004, 2005a,b] and
Tempel et al. [2016].

In Sect. 3.4.2, we focused on the range of temperatures σ2 for which the likelihood is
concave and hence for which all of the K components are collapsed into a single location
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Fig. 3.4. (left) Four con�gurations of the system for di�erent values of the temperature during
the annealing procedure. Black points are datapoints, coloured crosses are positions of cluster
centres. From top left to bottom right, σ2 = {33.59, 13.76, 0.76, 0.10}. Grey shaded areas
correspond to 1-σ circles. (right) Evolution of the average energy E(Z) of Eq. (3.18) of the
system as a function of the temperature σ2. The black dashed dotted line corresponds to
the critical temperature T hard

c = 26.87 while the grey ones illustrate the temperatures of the
successive further transitions.

centred at 1/N
∑N

i=1 xi. We shown that the critical quantity above which this behaviour is
observed, that we note T hard

c , is the maximum eigenvalue Γ of the data covariance matrix C
[see also Rose et al., 1990]. Figure 3.4 displays the centres position for an arti�cial dataset
with �ve Gaussian clusters at di�erent temperatures. When σ2 > T hard

c (top left panel), even
though K = 25 components are used in the model, they are all collapsed as Kr = 1 physical
cluster at the center of mass of the dataset (here chosen to be 0). When σ2 becomes slightly
smaller than T hard

c (top right panel), the likelihood is deformed [see Ueda & Nakano, 1998,
for illustrations and discussions about the likelihood point of view] and centres get aligned
with the �rst principal direction given by the data covariance matrix C . When σ2 continues
to decrease, the dataset description becomes more and more detailed and Kr takes increasing
values (bottom panels of left part of Fig. 3.4).

These transitions are physically relevant of the underlying structure of the data by occur-
ring at variances related to the local size of the sub-system being represented. We hence argue
that it is possible to extract information on the structure of a dataset from the clustering during
the annealing procedure. This can be achieved by tracking the evolution of the physical size
represented by a given component k through the maximum eigenvalue Γk of its weighted cov-
ariance matrix, namely Σk = 1/Nk

∑N
i=1 pik(xi−µk)(xi−µk), that is the quantity governing

the successive transitions.
The right panel of Fig. 3.5 illustrates the evolution of the ratio Γk/σ

2 during the annealing
for the same arti�cial dataset as Fig. 3.4 coloured by their end-point cluster. In the left panel of
Fig. 3.5, we see the cascade of transitions and successive splitting of centres when σ2 decreases.
When two or more centres collapse, they share similar values of µk and pik leading to similar
evaluations of Γk. This is why all lines are superimposed for σ2 > T hard

c in the right panel.
Each time a curve reaches the horizontal unit line, one of theKr sub-systems made of collapsed
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Fig. 3.5. (left) Displacement of K = 25 centres during the annealing procedure for a dataset
with �ve spherical Gaussian clusters. Colours indicate in which �nal cluster the center ends.
(right) Evolution of the ratio Γk/σ

2 as a function of σ2. Black stars correspond to the scales
of successive transitions, the black vertical line to T hard

c and coloured ones indicate the size
of the clusters as de�ned by the maximum eigenvalue of the empirical covariance. The black
dashed curve shows to the evolution of Q as de�ned in Eq. (3.25) that we identify as an order
parameter. This quantity is not represented for σ ≤ 1 since the number of physical clusters
Kr begins to be higher than the number of generated clusters q.

components reached the temperature of the sub-dataset it represents, namely σ2 ' Γk. From
there, we observe either a bounce or a cross of the line. When bouncing, there is a split between
two populations of centres that were representing the same part of the dataset but that will,
from now on, take di�erent paths. Centres thus move towards a smaller cluster and the value
of Γk decreases. Crossing the line occurs when centres split inside an individual cluster due to
its inner random structure. In that case, the imposed variance gets smaller than the physical
one. Since the transitions are ruled by the maximum eigenvalues of the empirical covariance
matrices, it is this quantity that is used to measure the size of spherical clusters and plotted
as vertical lines on the �gures. Note however that if we use instead the empirical variance σ̂2

k

as a measure of the cluster sizes, transitions would be shifted since σ̂2
k = Tr{Σk}/D is the

average of all eigenvalues of Σk. In this case, transitions would thereby occur at a di�erent
temperature in the annealing than the estimated variances of the cluster because they are
driven by Γk.

Following a posteriori the several curves and the successive transitions in the right panel
of Fig. 3.5 provides an informative insight on the structure of the dataset. In particular, it
allows to visualise the evolution of the local size representation of the data and the interac-
tions between centres. For instance, we clearly see that the {purple, red, green} sets of centres
represent the same information when σ2 > 9 and then split into {purple} and {red, green}.
This indicates the presence of a sub-system made of two clusters. Later, we observe a cross-
ing of the horizontal line for the {purple} centres before splitting again after crossing. This
indicates that the e�ective variance of the cluster is larger than the one �xed by the anneal-
ing and, therefore, that these centres now describe �uctuations within a “true” cluster. The
{red, green} sets of centres split at lower σ2 followed as well by a crossing of the line at the
scale of individual cluster sizes (indicated as coloured dashed vertical lines on the �gure).

Successive transitions can be computed in two steps: �rst by identifying the Kr macro-
components resulting from the collapse of centres based on their positions and then by assign-
ing to each datapoint (black dots in the left panel of Fig. 3.5) the label of the macro-component
that most probably generated it. We are thus assuming, at a given iteration, a GMM with
Kr components to compute responsibilities from Eq. (3.21). Thereby, we can group together
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Fig. 3.6. Ratio between the estimated variances σ̂2 obtained when freezing theK = 25 centres
when Γk/σ

2 ' 1 and the empirical ones σ2
true from data of Fig. 3.5 for several values of ρ, the

fraction of datapoints kept for the computation.

datapoints with identical labels and compute the next transition as the maximum eigenvalue
of the covariance matrix for each sub-system. These quantities, basically corresponding to
successive evaluations of the critical temperature in sub-systems, can be approximated during
the annealing and are shown as black stars in the right panel of Fig. 3.5.

We identify the overlap Q, de�ned as the quality of the data classi�cation at each temper-
ature, as an order parameter whose value changes throughout the several phases during the
annealing. Formally,

Q ({ẑi}, {zi}) =
maxπ∈Π

∑
i δ

K
ẑi,π(zi)

/N − 1/q

1− 1/q
, (3.25)

where δK is the Kronecker delta, Π denotes all the possible permutations of the set {1, . . . , q}
with q the true number of clusters used to generate the data and ẑi = argmaxk pik the estim-
ated latent variable for the a�liation of the datapoint xi. Q is based on the responsibilities
pik, all being 1/K for a random assignation giving Q = 0 and taking value 1 when ∀i, ẑi = zi.
By doing so, Q is zero when σ2 > T hard

c and undergoes successive transitions as the system
is cooled down, as illustrated by the black dashed curve of the left panel in Fig. 3.5. During
the annealing, Q remains at 1 for the range of σ2 between the last split of centres between
two true clusters and before the �rst split due to the inner random structure of the largest of
them. Note that this metric is meaningless when Kr > q since the dataset is partitioned into
more clusters than actually used for the generation, and this is why the curve is not shown
for σ2 ≤ 1.

To further assess the robustness and accuracy of the transitions with the density of input
points, we use the dataset from Fig. 3.5 where only a fraction ρ of the datapoints is randomly
kept for the computation. During the annealing, we freeze all the K = 25 centres at the
last split before reaching Γk/σ

2 = 1 and then let variances evolve freely hence providing
an estimate for each detected cluster that we note σ̂2. Figure 3.6 shows that the retrieved
variances are, even in highly sparse sampling settings, with ρ ≤ 30%, close to the true ones of
the clusters. It is worth emphasising that all �ve clusters are always correctly identi�ed and
that the value of Q is always close to 1 at the end of the process, showing the ability of the
method to highlight structures, even in sparse con�gurations.
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Fig. 3.7. (left) Displacement of K = 25 centres during the annealing procedure for a data-
set made of ten 5D spherical Gaussian clusters visualised in the plane of the two �rst prin-
cipal components. Colours depend on the macro-cluster the component stands in at the last
iteration. (right) Evolution of the ratio Γk/σ

2 as a function of σ2, the hard annealing para-
meter. Coloured vertical lines indicate the actual size of the corresponding Gaussian cluster or
macro-cluster (grey dashed lines, �rst from the right in each panel) as de�ned by the maximum
eigenvalue of the empirical covariance.

Higher dimensions and nested representations

As exposed in Sect. 3.1.3, usual applications of GMMs for clustering are performed blindly
by inputting the desired K to obtain a classi�cation making use of all components. Some cri-
teria, based on information theory [Akaike, 1974; Oliver et al., 1996] or Bayesian approaches
[Schwarz, 1978; Roeder & Wasserman, 1997], were proposed to overcome this major draw-
back of unsupervised clustering. Here, we propose an approach to avoid such a K-dependent
unique solution. A key aspect of the annealing is the collapse of {µk}Kk=1 at the center of
mass of successive sub-datasets providing a hierarchical view of clustering with an increasing
number of physical clusters. The proposed 2D diagram enables to capture this set of nested
representations by catching the several transitions, even if the input space is of high dimen-
sions. Figure 3.7 represents an application for a 5D arti�cial dataset made of ten Gaussian
clusters, spatially appearing as three clusters at larger scale. Transitions occurring at large
scales in each panel (grey vertical dashed lines) clearly indicate that the dataset is described as
three di�erent physical clusters. Pursuing the decrease of variances leads to a �ner descrip-
tion where each of the three macro-clusters splits into smaller ones that still have physical
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interpretations5. Such information on the spatial organisation of the dataset are of crucial im-
portance when having no prior idea of its structure nor the number of underlying components.
The method hence allows a hierarchical view of clustering at di�erent scales as proposed by
hierarchical clustering methods [Murtagh & Contreras, 2012]. Because sometimes there is not
a unique solution for the number of clusters depending on what they physically represent for
the application at hand, the proposed way to explore the data can be of interest before running
any kind of blind clustering algorithm.

3.4.4 Soft annealing
When the dataset is more complex with nested structures or overlapping clusters of di�er-
ent sizes, the previously presented analysis is not suitable. Multiple scales cannot be rep-
resented at the same time, hence biasing those of embedded structures towards higher val-
ues. To overcome this, we relax the equal variance assumption considered until now for the
GMM, the parameter set including thereby both the positions and variances of components
Θ = {θ1, . . . ,θK}, with θk = (µk, σk). Under these circumstances, EM update equations are

µ
(t+1)
k =

∑N
i=1 pikxi
Nk

, (3.26)

σ
(t+1)
k =

[∑N
i=1 pik‖xi − µk‖2

2

DNk

]1/2

. (3.27)

Keeping the idea of a temperature being slowly reduced, we propose a modi�ed annealing
acting on the mode of an a priori distribution on each σ2

k allowing the representation of mul-
tiple size in the same time. In particular and to obtain a closed-form expression of the posterior
distribution, we use the conjugate prior for variances, namely an inverse-Gamma distribution,
with shape parameter 1 + λσ and scale parameter λσσ2 so that the distribution has a mode at
the position σ2. Formally, it reads

ln p(σ2
k) = −λσ

[
lnσ2

k +
σ2

σ2
k

]
+ cst, (3.28)

where the constant comes from the normalisation of the probability distribution. Introducing
such a prior modi�es the update Eq. (3.27) for variances as

σ2
k =

∑N
i=1 pik‖xi − µk‖2

2 + 4λσσ
2

D
∑N

i=1 pik + 4λσ
. (3.29)

Consequently, when λσ → 0, the prior, and hence the annealing, has no e�ect and components
update their variances as Eq. (3.27). Inversely, for a large enough value of λσ, σ2

k will be close
to σ2 resulting in the classical hard annealing procedure discussed in Sect. 3.4.3. Choosing
intermediate values for λσ imposes a broad trend for all components but lets each of them
correct the prior by the actual value of the neighbouring covariance. In what follows, we refer
to this procedure as “soft annealing” that we distinguish from the “hard annealing” to describe
the classical procedure acting directly on the variance parameter. There is no general rule to
�x the hyper-parameter λσ and, in this work, we adopt6 λσ = 2.

5The separation in three panels with di�erent colours is for visualisation purposes. No prior knowledge was
used in the analysis.

6In our experiments, keeping λσ ≈ O(1) did not change the results quantitatively.
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Similarly as in the hard annealing case (see Sect. 3.4.2), we can compute the threshold
value T soft

c such that all components are collapsed at the centre of mass when σ2 > T soft
c .

In the context of soft annealing, we however deal with two sets of parameters that are the
position of Gaussian components and their associated variances which leads us to study the
stability of the joint perturbations over the two sets. Still considering a centred dataset, we
propose in a �rst place to derive the �xed-point variance σ2

0 of all centres when σ2 � T soft
c

assuming that σ2 > T soft
c =⇒ ∀k ∈ {1, . . . , K}, σ2

k = σ2
0 . Injecting the linearly Taylor

expanded expression of responsibilities (3.23) in the update equation (3.29) gives

σ2
0 =

4λσKσ
2 +

∑N
i=1 x

T
i xi

ND + 4λσK
. (3.30)

This equation links σ2
0 , the actual variance attributed to all Gaussian components, to σ2, the

inverse of the annealing temperature and is valid in the large σ2 limit. Taking now into ac-
count both parameters hence considering perturbations εk and δk, respectively around the
�xed points µk = 0D and σ2

k = σ2
0 , we can derive the set of equations for the vectorised per-

turbations ε =
(
εT0, . . . , ε

T
K

)T ∈ RKD×1 and δ = (δ0, . . . , δK) ∈ RK×1. Responsibilities can
be Taylor expanded as

pik '
1

K

[
1 +

1

σ2
0

xTi εk +
δk

2σ4
0

‖xi‖2
2 −

1

Kσ2
0

xTi
∑
l

εl −
‖xi‖2

2

2Kσ4
0

∑
l

δl

]
, (3.31)

which, when combined with the update equations (3.26) and (3.27) lead to the system of per-
turbations in positions and variances

ε(t+1) =
1

σ2
0

(U ⊗C) ε(t) + (U ⊗ a)T δ(t),

δ(t+1) = (U ⊗ b) ε(t) + cUδ(t),

(3.32)

where ⊗ denotes the Kronecker product, U =
(
IK − 1

K
JK
)

with IK is the K ×K identity
matrix, JK the K ×K all-ones matrix, and

a =
∑
i

‖xi‖2
2x

T
i

2Nσ4
0

, (3.33)

b =
∑
i

‖xi‖2
2x

T
i

mσ2
0

, (3.34)

c =
1

2σ2
0m

(∑
i

‖xi‖4
2

σ2
0

−D
∑
i

‖xi‖2
2

)
, (3.35)

withm = ND+4λσK . Putting it all together leads to the matrix representation of the system
perturbations η =

(
ε, δ
)
∈ RK(D+1)×1

η(t+1) = (U ⊗M )η(t), (3.36)

withM the squared block matrix of order D + 1

M =


C/σ2

0 aT

b c

 , (3.37)
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Fig. 3.8. (left) Arrows indicate the displacement of K = 25 centres during the soft annealing
procedure for a dataset made of six spherical Gaussian clusters (black points). Colours relate
to the cluster in which the component ends. Red crosses and grey dashed circles respectively
indicate the positions and variances �xed a posteriori when the center undergoes its last split
before remaining above the Γk/σ

2
k = 1 line. (right) Evolution of the ratio Γk/σ

2
k as a function

of σ2. The vertical black line corresponds to T soft
c . The inset �gure shows the evolution of the

ratios maxQ/Qth and σ̂2/σ2
true, when varying the contrast between the two nested clusters.

where C is the data covariance matrix. Since the eigenvalues of the Kronecker product are
given by the product of all individual eigenvalues of the two matrices involved and thatU has
eigenvalues 0 or 1, we can only restrict the analysis to those ofM . Therefore, the value of σ2

at which the �rst transition occurs, namely T soft
c , can be derived as the value of σ2 such that

the spectral radius ofM is 1, leading to instabilities in the dynamic of the system (3.32).
The left panel of Fig. 3.8 illustrates the result of the soft annealing procedure on an arti�cial

dataset made of six clusters similar to Fig. 3.5 but with more complexity such as overlapping
(the two clusters on the left) and nested clusters (the two bottom right clusters). The right
panel focuses on the evolution of the ratio between the size of the represented sub-system by
a given component and its actual variance, namely Γk/σ

2
k. This is the same physical quantity

as in the hard annealing case, except that we relax the constraint on σ2
k which is now varying

for each component. In this soft con�guration, all the µk are collapsed for σ2 > T soft
c followed

by steep transitions when σ2 decreases. This relaxed annealing is especially useful for the
representation of the two nested clusters. Even though we would learn that those structures
are encapsulated, reaching an accurate size description for the smallest nested component
would not be possible in hard annealing because its variance would be boosted by neighbour-
ing datapoints of the surrounding cluster. The left panel of Fig. 3.8 illustrates positions (red
crosses) and variances (grey dashed circles) of allK = 25 components when �xing parameters
a posteriori at the value they had during the annealing at their last transition point just before
crossing the line Γk/σ

2
k = 1. Although K = 25 components are used, we correctly identify

Kr = 7 physical clusters with their variances and means.
To assess the robustness of the soft annealing procedure in clustering complex datasets,

we focus on a setup restricted to the two nested clusters of Fig. 3.8 in the bottom right part of
the left panel. We dilute the small one by varying its number of sampling pointsN . This trans-
lates into a decreasing contrast between the signal to noise ratios σ/

√
N of the two clusters.

The inset of the right panel of Fig. 3.8 shows the evolution of the ratio between the maximum
overlap value Q obtained during the annealing and Qth, the theoretical overlap computed us-
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ing the ground truth parameters as a function of the contrast. It can be seen that both clusters
are recovered when the contrast is su�ciently high (above 1.5 in practice) while below, there
is not the necessary information for the model to retrieve it. The ratio between the estimated
variances is also shown to and we observe an overestimated variance at lower and lower con-
trast which explains the decreasing maxQ/Qth ratio. This e�ect can partly be explained by
the uniform weights hypothesis being less and less true when the contrast decreases.

3.4.5 Graph-regularised mixture model

In Chapter 4, we shall introduce a method to learn a smooth graph representation from point-
cloud distributions. For the purpose of studying the transitions of the model, we set ourselves
in a simpler context than the one presented in Chapter 4. We hence consider that the learning
of the graph structure is done through a regularised mixture model with �xed-variance. The
regularisation term acts on component averages and constrains the graph smoothness through
the Laplacian de�ned as

‖µ‖2
G =

K∑
i=1

K∑
j=1

aij‖µi − µk‖2
2, (3.38)

where aij is an element of A, the adjacency matrix taking value 1 when centres i and j are
linked and 0 otherwise. This added term on the log-likelihood acts as an attractive quadratic
interactions of centres connected on the graph A. As for the soft annealing case, the intro-
duction of a prior in EM equations only impacts the M-step update of center positions of Eq.
(3.26) as

µ
(t+1)
k =

∑N
i=1 xipik/σ

2 + 2λµ
∑K

j=1 akjµ
(t+1)
j∑N

i=1 pik/σ
2 + 2λµ

∑K
j=1 akj

. (3.39)

As done for previous iterative learning models, it is possible to compute the value of σ2 for
which the high-temperature system becomes unstable, noted T graph

c considering perturbations
around the �xed pointµk = 0D. Analogous derivations as in Sect. 3.4.4 shows that the system
is unstable when the maximum eigenvalue ofM is greater than 1, with

M =

[(
IK −

1

K
JK

)
⊗C

] [
σ2IKD +

2λµKσ
4

N
L⊗ ID

]−1

, (3.40)

where L the Laplacian matrix de�ned as L = D − A with D the diagonal K × K degree
matrix with dkk =

∑
i aik.

The graph prior in Eq. (3.40) is expressed through L and, in a �rst place, we propose to
solve analytically the simple case of a complete graph prior in which a node is connected to
all other nodes. For more general cases, the threshold depends on the form of the Laplacian
and is computed numerically depending on the graph and the data at hand. Using a complete
graph prior, the temperature can be computed with A = JK and D = (K − 1) IK , leading
to solve a second degree equation in T graph

c with a unique non-negative solution for λµ > 0
given by

T graph
c =

−1 +
√

1 + 8ΓλµK2/N

4λµK2/N
. (3.41)

This simple case shows how the critical temperature varies with λµ. The limit λµ → 0 and Eq.
(3.40) with λµ = 0 lead to T graph

c = Γ, the absence of regularisation being equivalent to the
hard annealing case. When λµ increases, the threshold is shifted towards lower temperatures,
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Fig. 3.9. Evolution of T graph
c as a function of λµ in case of a complete graph prior given by

Eq. (3.41). The grey dashed horizontal line represents Γ, the maximum eigenvalue of the data
covariance matrix C .

as illustrated in Fig. 3.9 showing the evolution of T graph
c given by the relation (3.41). Physically,

since the prior is basically pulling adjacent centres, increasing λµ increases the strength of the
bonds between nodes of the graph.

In Fig. 3.10 is shown the result of an annealing procedure for K = 100 components, λµ =
300 and using a graph prior given by the minimum spanning tree construction [Borůvka, 1926]
assuming that centres are all linked together with the minimum total length (see Sect. 4.2.3
for a more detailed presentation of graph constructions). In this case, the graph is computed
from the random set of initial nodes and is updated at each iteration of the EM procedure
when the temperature of the annealing is below the critical one, σ2 < T graph

c . When paving
a continuously structured data distribution with Gaussian clusters standing on a prior graph
structure as proposed by the regularised mixture model, the scale of interest is the local width
of the elongated structure. This size is given locally, in our 2D case, by the minimum eigenvalue
γk of the weighted covariance Σk that we now follow during the transitions As predicted by
linear stability, centres are �rst aligned with the principal axis of the dataset at the beginning
of the annealing and then spread over the structure to pave it more precisely, as shown on
the top left panel of Fig. 3.10. By tracking the evolution of the ratio γk/σ2 in the bottom
panel, we clearly distinguish four types of behaviours, signature of four distinct scales for
structures in the dataset. It is also interesting to observe the absence of sharp phase transitions
or splits within this continuous dataset tending to smooth out the evolution of the energy
when the temperature is decreasing. By imposing, for each component, the variance σ2 during
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Fig. 3.10. (top left) Displacement of K = 100 components during the hard annealing of a tree
branches dataset with di�erent sampling standard deviations. Black dashed line corresponds
to the �rst principal direction. Colours refer to branches in which centres end. (top right)
Learned structure when stopping the annealing for components reaching the temperature
σ2 ' γk. Red lines are edges of the graph and grey shaded areas are 1-σk circles. (bottom)
Evolution of the ratio γk/σ2 as a function of σ2. Vertical lines indicate the used variance for
the generation of branches. The black vertical line corresponds to the value of T graph

c predicted
by the linear stability analysis of the model in Eq. (3.40).

the annealing at the moment γk ' σ2, we obtain the graph of the top right panel of Fig.
3.10, showing multiple adaptive scales, even though branches have one order of magnitude
di�erence in sampling standard deviation.

3.5 Summary and prospects

In this chapter, we introduced the rich context of machine learning and discussed its applic-
ability and interpretability for physical sciences. We saw that various communities were ad-
dressing such questions and that statistical physics was one of the promising lead to do so.
After exhibiting some connections between the two �elds, we introduced the clustering aim-
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ing at identifying, in an unsupervised way, some subgroups in the data. For that purpose, we
saw that mixture models can be used together with the Expectation-Maximisation algorithm
to estimate parameters of the model with latent variables.

We then established a statistical physics formulation of the clustering procedure and
showed that it was equivalent to a particular case of mixture models which can be solved
by the EM algorithm. We used this physical analogy to study the learning dynamics of
the clustering scheme in the context of deterministic simulated annealing. In particular,
we observed and characterised the cascade of phase transitions occurring when tracking
the evolution of eigenvalues of the successive covariance matrices of mixture compon-
ents in multiple cases. We showed that the thresholds at which the �rst transition occurs
can be computed analytically by studying the linear stability of the �xed-point iterat-
ive scheme and that we can approximate the next ones during the annealing based on
the current estimate of the responsibilities. The proposed way to use these transitions
to explore the data and build a hierarchical description independent from K provides
a qualitative and quantitative insight on the structure of the dataset at di�erent scales
and without requiring any prior knowledge. The 2D diagram representing the evol-
ution of the physical size of the represented clusters with the annealing temperature
allows an analysis independent from the data dimensionality and highlights character-
istic scales at which physical transitions occur. This diagram carries information about
the number of components, their scale and hierarchy that can be used a posteriori for
data exploration before running blind clustering methods.

Interestingly, we saw that the latent variables of the GMM are directly related to the values
taken by the order parameter in Eq. (3.25). Since the GMM can be recast as a particular case of
Restricted Boltzmann Machines [RBM, Smolensky, 1986] using a soft-max prior on the hidden
nodes, making it a particular type of auto-encoder [Bourlard & Kamp, 1998], the presented
work can be seen as the learning of a latent representation of the phase transitions, as is
discussed in Van Nieuwenburg et al. [2017] and Wetzel [2017]. Intriguingly, we also witnessed
a complex dynamical behaviour in the learning of a simple algorithm of clustering with a
restricted number of parameters and putting ourselves in a simplistic setup with uniform and
spherical Gaussian mixtures. This says long on the di�culty of handling overparametrised
deep neural models in such setups, a vast current topic of research [Bahri et al., 2020]. One
of the aspects I personally would be interested to explore is the relation between the data
structure and the learning dynamics in more generic distributional learning approaches. As a
starting point, the RBM is the perfect candidate since it extends the GMM formulation but it
is also a simple version of a neural network with a single hidden layer that aims at learning
a statistical representation of the data. The statistical physics analysis of the RBM through
spin-glass analogies and mean-�eld approximations already led to the characterisation of the
phase diagram of the model in many cases [see Decelle & Furtlehner, 2021, for a review].
Mixing this more general version of the GMM and the hidden manifold model proposed in
Goldt et al. [2020], meant to study the learning of two-layer networks when high-dimensional
data are embedded onto a submanifold of smaller dimension, is a promising way to build a
framework enabling the understanding of relationship between the data structure and the
learning dynamics in unsupervised setups.

Among the di�erent and numerous applications of clustering, the task of segregating data-
points in di�erent classes is a long-standing problem in astrophysics with for instance the
galaxy morphological classi�cation (elliptic, spiral, etc.) based on optical data [Weinmann
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et al., 2006; Shamir, 2009] or the classi�cation of gas phases based on gas properties (temper-
ature, density, etc.) [see e.g. Martizzi et al., 2019; Galárraga-Espinosa et al., 2021]. By including
the identi�cation of hierarchical structures, it may help in de�ning the classes in a physically
motivated way. It could also tackle the problem of detecting subhalos in simulations based
on discrete particle positions as an alternative to the SubFind algorithm [Springel et al., 2001;
Dolag et al., 2009]. By proposing a non-unique solution to clustering, it also o�ers the possibil-
ity to explore the di�erent relevant substructures. Applications of such a clustering procedure
are hence of interest in these contexts to study the link between the di�erent possible physical
and spatial structural information of a cluster (may it be through its dark or baryonic matter
composition) and how it correlates with those of the neighbouring �lamentary structure.
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This chapter is presenting the results from Bonnaire et al. [2021b] and partially those from
Bonnaire et al. [2020]. In Chapter 3, we mainly studied some datasets appearing as split into
multiple groups that we wished to identify. With the same interest for the spatial structure
of datasets, we aim at learning non-linear representations of continuously structured data
assuming as standing on one-dimensional underlying manifolds. The goal of this chapter is to
expose an alternative formulation of the principal curve problem that overcome some of the
drawbacks of the existing de�nitions. In particular, we focus on establishing a procedure that
allows the handling of outliers and variations in the local size of the sampling noise in view
of applying it to the detection of the �lamentary pattern depicted by matter tracers (halos or
galaxies) in Chapter 5. To do so, we �rst review some basic elements of graph theory and mix
them with the mixture model (see Sect. 3.2) framework to propose a formulation in which the
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graph is modelling the underlying 1D manifold. After a comparison to other ridge �nders,
we discuss several technical aspects of the algorithm, like its convergence properties and time
complexity before using the detection of roads from noisy GPS measurements as a showcase.

4.1 Context

4.1.1 Spatially structured point-cloud data

Many datasets come as a set of discrete D-dimensional datapoints X = {xi}i=0,...,N with
xi ∈ X ⊂ RD sampled from an unknown probability distribution. These datapoints are
usually not spreading uniformly over the entire RD space but often result from the sampling of
a lower dimensional manifold whose topology and characteristics are linked with the process
that generated the data. Taking the example of the famous MNIST dataset, in which datapoints
correspond to images of 28 × 28 pixels digits, making it a 784 dimensional dataset, there is
only a very restricted volume in this space that would generate images that actually look like
a digit [Hein & Audibert, 2005; Facco et al., 2017]. Capturing this information, may it be for
visual, geometrical or topological analyses of the dataset requires the application of non-linear
methods that are parts of the manifold learning �eld [Roweis & Saul, 2000; Belkin & Niyogi,
2003; van der Maaten & Geo�rey, 2008; Van Der Maaten et al., 2009]. In some applications, data
even appear as standing on a continuous one-dimensional structure. It is for instance the case
for GPS measurements collected by vehicles standing on the road network [Ahmed et al., 2015],
vessel networks transporting blood through the human body [Moccia et al., 2018] but also for
the large-scale matter distribution describing the �lamentary structure of the cosmic web, as
seen in Chapter 2 illustrated for instance by the left panel of Fig. 2.6. As part of unsupervised
machine learning methods (see Sect. 3.1.1 for a discussion on categories of machine learning
approaches), one of the key aspects of pattern analysis is to extract from such inputs, with
the least prior knowledge, the su�cient information to build a meaningful representation of
the data to understand the underlying structure that generated it, build models and make
predictions.

4.1.2 Principal curves

The problem of estimating an one-dimensional manifold approximating the underlying distri-
bution of X is a particular case of dimensionality reduction also known as ridge detection or
principal curve extraction. The seminal work of Hastie & Stuetzle [1989] provides an intuitive
de�nition of a principal curve as the line passing in “the middle” of the point cloud distri-
bution hence providing a non-linear generalisation of principal components. More formally,
in this early formulation, a principal curve is a self-consistent smooth non-intersecting line
with �nite length. Self-consistency is maybe the most important property and implies that
each point of the curve corresponds to the average of the datapoints projecting right on it,
i.e. f(y) = E(X | yf (X) = y), with yf (x) the projection index of a datapoint x on the curve
f (see Fig. 4.1 for an illustration). The self-consistency property is also shared by principal
components to which principal curves are a relaxation of the straight line condition and can
be seen as what local regression is to linear regression. Exactly as principal components, prin-
cipal curves can be written as the minimisation of the quadratic sum of projected distances.
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In that regard, it can be formulated in the general form (3.1)

argmin
f∈F

N∑
i=1

‖xi − f(yf (xi))‖2
2. (4.1)

which, under the constraint that F is the set of linear relations f(y) = f0y, is solved by the
straight line in the direction of the �rst principal component. If F is more generally the set
of continuous functions, optimisation problem (4.1) de�nes the principal curve formulation
proposed by Hastie & Stuetzle [1989]. Figure 4.1 illustrates the �rst principal component of a
2D non-linear dataset and a principal curve. Although well-de�ned for the principal compon-
ent case, the minimisation of problem (4.1) in its most general form do not lead to “principal
curves”. A simple way to see that is to imagine the curve passing exactly on every datapoints,
hence minimising the total cost but which is not a principal curve. One way to take into ac-
count that prior knowledge is to include regularisation terms (see Sect. 3.1.2) to penalise the
set F and constrain the solution f . In Kegl et al. [2000] is for instance proposed an algorithm
�xing the overall length of the curve while Smola et al. [2001] propose more general smooth-
ness constraints. Since the work of Hastie & Stuetzle [1989], several studies followed to extend
these de�nitions to higher dimensions (principal surface or volume) or to give more suitable
de�nitions of principal curves as ridges of a probability density [e.g. Tibshirani, 1992; Ozertem
& Erdogmus, 2011].

To allow the description of more �exible structures than those imposed by curves and to
bypass their inability to represent self-intersecting or cycling topologies, a formulation re-
lying on graph theory to model the one-dimensional structure was introduced in Gorban &
Zinovyev [2005] and extended in Gorban & Zinovyev [2009]. This latter is based on prede�ned
rules for growing the graph and includes regularization terms to limit its complexity. However,
this model come with a large number of parameters and with no guaranteed convergence to
which the double optimization scheme of Mao et al. [2015] o�ers an alternative for the learning
of a tree structure. In this landscape of methods, only a few address the problem of estimating
a principal graph with a proper handling of outliers, which considerably complicates the learn-
ing of the graph structure. A built-in robustness to outliers is proposed in Gorban et al. [2016]
and Albergante et al. [2020] by discarding from the update of a node position all datapoints
beyond a robustness radius R0. However, the choice of R0 is not trivial, scale-dependent and
require a careful tuning to deal with uniform background noise [Albergante et al., 2020].

The aim of the chapter is to combine mixture models presented in Sect. 3.2 to ap-
proximate the underlying data distribution and regularise it over a graph structure
to constrain Gaussian centroids to pave the approximation of the manifold given by
the graph. The method extends the original presentation of Tibshirani [1992] which is
making use of smooth di�erentiable curves to a more general representation given by
a graph structure that acts like a topological prior in the Bayesian model turning the
problem into a maximum a posterior estimation. We will see that the proposed formu-
lation through mixture models naturally allows the learning of the local width of the
represented one-dimensional structure with robustness to outliers hence freeing it from
heavy pre-processing, as opposed to the previous principal curve or graph algorithms.
It also comes with guaranteed convergence to a local maximum of the log-posterior
inherited from the Expectation-Maximisation algorithm.
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Fig. 4.1. Illustration of a principal curve for a non-linear dataset. The principal curve (in
red), minimising the total sum of squared projection distances of all datapoints under some
smoothness constraints generalise the straight line principal component analysis (dashed blue
line).

4.2 Elements of graph theory
Graph theory is a branch of mathematics that became popular in many �elds of science such
as social science [Borgatti et al., 2009], biology [Koutrouli et al., 2020] and physics [Estrada,
2013]. For this latter use, it has been exploited in �elds ranging from quantum physics for
the propagation of waves [Kuchment, 2008; Berkolaiko, 2017] to cosmology for the study of
the galaxy distribution [Barrow et al., 1985; Colberg, 2007; Coutinho et al., 2016]. Widely
known for their great representative power of relationships between objects, graphs became
also a keystone of computational geometry by allowing the representation of non-Euclidean
geometries. This section hence aims at providing the required formal background of graph
theory that is of importance to establish and understand the method proposed in this manu-
script. For a more complete introduction to graph theory, we refer the reader to the book of
Bondy & Murty [2008].

4.2.1 Introduction and de�nitions
In simple terms, a graph is a collection of nodes with edges linking them together. Nodes
can represent physical observables, like galaxies in astrophysics, towns and cities in the road
network, human beings in a social network or URL addresses in the internet. Edges indic-
ate a physical or conceptual relation between two vertices, linking them if they share some
similarities. In the case of a social network, they can be thought as a connection between two
individuals if they know each other while, in the road network, two cities can be linked if there
is a route to travel from one to the other. Edges usually come with a weight that encodes the
similarity measurement or the cost of associating two nodes and depend on the application.
Taking back the example of roads, they could be a measure of the geodesic distance between
two linked cities. Mathematically, we write G = (V , E ,W), where V is the set of K := |V|



69 CHAPTER 4. PRINCIPAL GRAPH LEARNING

nodes, E ⊂ {1, . . . , K} × {1, . . . , K} is a set of tuples of two vertices that are linked and
W = {wij}(i,j)∈V2 is the set of edge weights such that ∀(i, j) ∈ V2, wij ≥ 0 being non-zero
when (i, j) ∈ E . If E is an unordered (resp. ordered) set, the graph is said undirected (resp.
directed), meaning that the link between two nodes i and j is reciprocal and wij = wji (resp.
not reciprocal and, in general, wij 6= wji). In the example of the internet network, a URL
address can refer to another one while it might not be the case in the other way, making it a
directed network.

All of the graphs discussed in this manuscript are parts of the undirected and simple graphs
family, meaning that they exhibit no self-loop (i.e., no node i such that (i, i) ∈ E ) and no
multiple edges (i.e., each association (i, j) ∈ E is unique in E ). Although one can de�ne many
characteristics for nodes in a graph, we only restrict ourselves to the introduction of the degree
deg(i), which is the number of individual edges incident with the node indexed i.

Moreover, in all the applications presented in this thesis, graphs are considered as objects
embedded in RD, whose nodes have a spatial position, making them “spatial graphs”. As for
any other graphs, the weights {wij} associated to nodes pairs are still measuring a similarity
but based on their spatial proximity. More precisely, for a graph with K nodes with positions
{µk}, we will consider weights corresponding to the Euclidean distance, wij = ‖µi − µj‖2 if
nodes indexed i and j are linked.

4.2.2 Linear algebra representations

To any graph G is associated a K × K matrix A fully encoding the graph information by
embedding the relations between nodes. Such a matrix representation is called the adjacency
matrix and is particularly useful in linear algebra contexts to have tractable representation of
the graph. Elements ofA are de�ned as

aij =

{
1 if (i, j) ∈ E ,
0 otherwise. (4.2)

One can note that summing over the ith row gives the degree of the node i, meaning that
deg(i) =

∑K
j=1 aij and that

∑
i

∑
j aij = 2|E|. In the particular case of simple graphs, A has

the additional properties of being symmetric and has a zero-valued diagonal from the absence
of loops. If weights are incorporated into the adjacency matrix thenW fully characterises the
graph G including node connections and the associated weights.

A second possible matrix representation is provided by the discrete graph Laplacian de�ned
as the symmetric and semi-positive de�nite matrix

L := D −A, (4.3)

whereD is a K×K diagonal matrix with dii = deg(i) andA is the adjacency matrix de�ned
above. This algebraic representation has led to numerous studies and is even at the origin of
a sub�eld of research called “spectral graph theory” [see Chung, 1999; Brouwer & Haemers,
2012, for reviews]. The Laplacian matrix is hence a central operator whose eigenvalues are
closely related with the macroscopic properties of the graph. For instance, the smallest ei-
genvalue of L is 0 and its multiplicity is associated to the number of connected subgraphs
in G [Hagen & Kahng, 1992]. Based on extensions of this result, many e�cient clustering al-
gorithms emerged to partition a graph [see e.g. Alpert et al., 1999; Nascimento & De Carvalho,
2011; Saade et al., 2014] or to build projection of high-dimensional dataset in lower dimension
[Belkin & Niyogi, 2001, 2003; Hein & Markus, 2007]. These last examples are based on the
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established analogy between graphs and manifolds [Chung, 1999] that we will be exploiting
in Sect. 4.3.1 to constrain the smoothness of the estimated principal graph in the proposed
framework.

4.2.3 Some graph constructions

There are multiple ways to build a graph from a given set of spatial nodes µ = {µi}Ki=1. We
review below some remarkable graph topologies that are being used throughout this manu-
script.

Complete graph. The complete graph is represented by a plain adjacency matrix, ∀(i, j) ∈
{1, . . . , K}2, aij = 1, meaning that all possible pairs of nodes are linked together. Even though
weights can be chosen to stress more local relations based on the proximity of nodes, this graph
encodes a lot of redundant paths and do not emphasise a particular one in the data. Moreover,
even if dense graphs have interesting properties (like robustness), this construction induces a
plain adjacency matrix which, for applications including a large number of nodes (i.e. galaxies
for instance), becomes quickly hardly tractable in both time and memory.

ε-neighbourhood. Two nodes i and j are linked together if ‖µi − µj‖2 < ε (see illustra-
tion in the left panel of Fig. 4.2). Despite its natural de�nition, where close nodes are linked
together, one of the main drawbacks of this graph construction is that the represented pattern
highly depends on the choice of ε that can be arbitrary and scale-dependant.

k-nearest neighbours. The k-neighbourhood (k-nn) of a node i is de�ned as the set of k
nodes that are the closest in terms of the Euclidean norm. In this construction, two nodes i
and j are hence linked together if i is in the k-neighbourhood of j or reciprocally. The choice
of k is easier than in the ε-neighbourhood case but the k-nn has the disadvantage of creating
long-range links for datapoints standing in almost-empty areas (as illustrated on the middle
panel of Fig. 4.2).

MinimumSpanningTree. Let us �rst de�ne a subgraphH = (VH, EH,WH) of an arbitrary
graph G = (V , E ,W) as the graph such that VH ⊂ V and EH ⊂ E . We call a spanning tree a
particular type of subgraph in which the set of vertices is the same as the original one but with
the minimum number of edges. That is, the graph G admits a spanning tree T = (V , ET ,WT )
with |ET | = |V| − 1 linking all nodes of V together. Building on that knowledge, a minimum
spanning tree [MST, Borůvka, 1926] is a spanning tree with the minimum total weighted length∑

i

∑
j wij . The MST is, by de�nition, a simple graph and is unique only if all weights are

di�erent. This de�nition can be rephrased in terms of an integer programming problem aiming
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at �nding the adjacency matrixAMST such that

AMST = argmin
A

K∑
i=1

K∑
j=1

aijwij (4.4)

s.t.



A = AT ,

aij ∈ {0, 1},∑K
i=1

∑K
j=1 aij = 2 (K − 1) ,

∀k ∈ {1, . . . , K}, akk = 0,

∀S ⊆ V ,
∑

i∈S
∑

j∈S aij ≤ |S| − 1,

The �rst two constraints encode the undirected graph de�nition, the third one denotes a graph
withK−1 edges, the fourth the absence of self loops in the structure and the last one requires
that any subset of |S| vertices has at most |S|−1 edges. By relaxing the integer constraint
to aij > 0, the problem can be solved in quasi-linear time with the number of edges using
Kruskal’s algorithm [Kruskal, 1956].

As pointed out in its de�nition, the MST is a subgraph, meaning that it is built from the
set of nodes, edges and weights of another graph. When considering a complete spatial graph
embedded in RD and weights {wij} based on the Euclidean distance, the MST is called Euc-
lidean and is linking all the input points together with the minimum total Euclidean distance
to do so. Because in applications including a large number of graph nodes K , the use of a
complete graph can make the computation of the MST costly, we rely on a graph built from
the Delaunay Triangulation [Cavendish, 1974] from which the MST is theoretically a subgraph
[Aurenhammer et al., 2013]. In particular, since the Kruskal algorithm has a time complexity
of O(|E| log|E|), reducing the number of edges to explore from the complete graph with K2

edges to the O(K) of the Delaunay Triangulation allow to maintain an overall complexity of
O(K logK) for the computation of the Euclidean MST.

The Euclidean MST (that we simply call MST in the rest of the manuscript) graph construc-
tion has the advantage of being scale-independant and parameter-free. These properties made
it an especially well-suited tool to study the �lamentary part of the cosmic web in the past dec-
ades [Barrow et al., 1985; Colberg, 2007; Alpaslan et al., 2014b; Bonnaire et al., 2020; Pereyra
et al., 2020a]. The right panel of Fig. 4.2 allows to appreciate the preferred path obtained for
the “S” shape and gives a good intuition that, by post-processing it with simple operations
(like pruning), the main underlying structure can be obtained, even though locally spiky. The
main focus of the next section is precisely to obtain a locally smooth representation of the
graph structure by embedding it into the probabilistic framework of mixture models (see Sect.
3.2). The limited tree topology of the MST for the representation of cycles will be the topic
of Sect. 4.4 in which we present how to extend it by combining several MSTs obtained from
random sub-samplings.

4.3 Graph regularised mixture models

4.3.1 Full model and formalism

We assume in this section that we are given a dataset X ∈ RN×D, resulting from the noisy
sampling of a continuous unknown one-dimensional manifold. As previously exposed, the
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-neighbourhood k-nn, k = 6 MST

Fig. 4.2. Several graphs built from the set of datapoints in black showing a noisy “S” shape
with N = 220 points among which 20 are outliers. From left to right: the ε-neighbourhood
with ε visually shown, the k-nearest-neighbours (k = 6) and the minimum spanning tree.

direct application of a graph construction may not represent the topological and geometrical
properties of the underlying pattern. To build a coherent-with-data graph representation, we
seek to combine the mixture model formalism (Sect. 3.2) with a graph representation of the
manifold, hence assuming a given topology, to extract a principal graph from the data (as
illustrated in Fig. 4.3).

The data generation model

We �rst model the data using a mixture model with a set of K Gaussian clusters with their
own centres µk and covariances Σk. Figure 4.3 illustrates the proposed model of the data
distribution with spherical Gaussian clusters Σk = σ2

kID hence assuming that the sampling
noise around the 1D manifold is Gaussian and isotropic. The isotropy is characteristic of the
tubular structures observed in many datasets like blood vessels or �laments and this spherical
assumption will hold for the rest of the dissertation.

One of the drawbacks of the principal curves formulation presented in Sect. 4.1.2 is their
sensitivity to outliers tending to bias the curve estimation. Real-world datasets, however, often
come with outliers or noisy measurements that are not part of the underlying pattern that gen-
erated the data we aim to extract. In the mixture model formalism, we can tackle this problem
by directly assuming an explicit distribution for the outliers. The choice of this distribution
can be speci�c to the problem at hand and adapted depending on the knowledge one has on
their generation. In the present work, we consider a uniform distribution of outliers over the
data support volume. Hence, in addition to theK Gaussian clusters paving the distribution, we
make use of a uniform background component to take into account observations that should
not be part of the pattern of interest. The full mixture model can hence be written

p(x|Θ) =
K∑
k=1

πkN (x,θk) + αρ(x), (4.5)

with Θ = {π1, . . . , πK , α,θ1, . . . ,θK} the set of all parameters of the model with normalised
and non-negative amplitudes

∑K
k=1 πk + α = 1 and ρ(x) =

[∫
RD 1X (x)

]−1. Consequently,
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data
{ k}

Fig. 4.3. Schematic view of the principal graph modelling proposed in this work. Datapoints
are in black and represent a noisy heteroscedastic sampling of an underlying sinewave shown
in dashed red. The model we propose is based on a coupling between a mixture model and a
graph G linking Gaussian clusters together with an MST topology prescription. Blue crosses
are averages of Gaussian {µk} and grey shaded areas are the associated spherical covariance
matrices {Σk}. Edges of the MST linking Gaussian clusters are shown in dark blue.

the only information required to handle the outliers is the inverse of the data support volume,
its amplitude being part of the parameters Θ, adjusted during the learning. In practice, ρ(x)
is estimated as the inverse volume of the convex hull of the input dataset. One of the key
advantage of the proposed formulation is that outliers do not need to be removed in a pre-
processing step as it is for instance the case in Chen et al. [2014] in which an arbitrary density
threshold over a kernel-density estimate of the probability distribution is used. The proposed
idea of built-in robustness is also explored in Gorban et al. [2016] and Albergante et al. [2020],
who propose to discard from the update of a node position all datapoints beyond a robustness
radius R0. Still, the choice of R0 is not trivial, scale-dependant and require a careful tuning to
deal with uniform background noise [Albergante et al., 2020]. In our formulation, the para-
meters related to outliers, α and ρ(x), are fully part of the model and do not require any heavy
prior information nor �ne-tuning to deal with uniformly distributed outliers.

Graphs as approximations of manifolds

As of now, we simply modelled the data generation process through a mixture model and wrote
its likelihood. However, we additionally assume that theD-dimensional datasetX is lying on
an one-dimensional Riemannian manifoldM. In simple words, manifolds extend the notion of
curves, surfaces and volumes to any dimensions. When locally Euclidean and equipped with
a metric, they are called Riemannian which allows for the de�nition of common geometric
notions such as lengths, areas, volumes or curvatures. To avoid over-�tting and to get a smooth
estimate of the manifold, we can use a quadratic regularisation term, as exposed in Sect. 3.1.2.
Ideally, we would directly try to identify the continuous manifoldM that generated the dataset
and constrain its smoothness through the Laplace-Beltrami operator ∆M. In practice,M is
not known and because of the �nite nature of the considered datasets at hand, we need to
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resort to an approximation. Instead, we model it as a graph structure G and the Laplacian of
the graph can be seen as a discrete approximation of the Laplace-Beltrami operator de�ned on
the manifold [Chung, 1999; Belkin & Niyogi, 2001]. Noting µ := (µ1, . . . ,µK)T ∈ RK×D, we
therefore constrain the graph smoothness through

‖µ‖2
G =

K∑
i=1

K∑
j=1

aij‖µi − µj‖2
2

= 2 Tr{µTLµ}, (4.6)

which converges to
∫
M‖∇µ‖

2, a measure of the manifold smoothness, in the in�nite data
limit [Hein et al., 2005; Singer, 2006]. This quantity can also be seen as the total length of the
graph since ‖µ‖2

G =
∑K

i,j=1 wij . Minimising ‖µ‖2
G together with a data-driven term would

hence intuitively lead to a shorter and smoother graph, similarly to what is done in Kegl et al.
[2000] but without strictly �xing the length during the optimisation.

Regularisation terms

Early formulations of principal curves, based on the minimisation of the mean-squared pro-
jected distance, already suggested the need of regularisation [Hastie & Stuetzle, 1989]. In par-
ticular, Duchamp & Stuetzle [1996] show that principal curves in the plane are saddle points
of the mean-squared objective function, making regularisation an indispensable way to con-
strain the form of the solution (see Sect. 3.1.2) when this kind of cost function is used1. In the
present probabilistic formulation, the “curve” is introduced as a graph prior structure embed-
ded through the regularisation term. It imposes a constraint on the behaviour of the average
position of Gaussian clustersµ through the graph smoothness de�ned by Eq. (4.6) to be added
to the log-likelihood. This prior allows the inclusion of the geometric assumption has about
the observed distribution of being generated by an underlying one-dimensional structure. In
a Bayesian setup, this term can also be seen as a prior distribution over the parameter space,
and more precisely as a Gaussian prior on the graph weights through the interactions between
parameters of the model µk,

log p(µ) = −λµ
2
‖µ‖2

G, (4.7)

with λµ the precision parameter of the Gaussian prior distribution. We later refer to this
parameter either as the precision of the prior on µ or as a regularisation term on the log-
likelihood, the two being equivalent. As we saw previously, this term corresponds to the
length of the graph and will be added to the log-likelihood that we aim at maximising. It
is hence equivalent to a soft minimisation of the total length of the graph structure. In the
elastic map formulation of Gorban & Zinovyev [2005], a physics analogy is proposed in which
Eq. (4.7) can also be seen as a stretching energy. In this analogy, graph nodes are considered
as linked together by elastic bonds with elasticity coe�cients λ. Such a formulation of the
principal graph problem alleviates some of the drawbacks of the principal curve in which self-
intersecting curves are not allowed [Hastie & Stuetzle, 1989; Kegl et al., 2000]. By restricting
the graph to a chain topology with elements of the Laplacian matrix given by lij = 2δK

i,i −
δK
i,j+1 − δK

i,j−1, with δK
i,j the Kronecker delta function, we can also derive the same type of

curve constraints as in Yuille [1990] and Tibshirani [1992], making the graph formulation
more general in terms of handled topologies.

1See Gerber & Whitaker [2013] for a regularisation-free formulation of the principal curve in which an al-
ternative of the mean-squared projection distance cost is proposed.
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The direct application of the EM procedure to maximise the regularised log-likelihood
de�ned by the sum of the log-likelihood and Eq. (4.7) leads to an estimate of Θ. In this setup,
the variances learnt by the procedure would depend only on the local distribution of data-
points. However, natural manifestations of heteroscedastic patterns, such as trees or blood
vessels, exhibit a linear evolution of the sampling size without sudden variations. For in-
stance, the width of a tree is continuously expanding from small branches to the trunk and the
size of the vessel network is smoothly enlarging from capillaries to wide arteries. For these
physically motivated reasons, the local size of the underlying continuous structure as meas-
ured by the variances of the model can be considered to evolve smoothly along the graph.
To incorporate this idea in the formalism, we use again the non-Euclidean proximity meas-
ures on the graph structure for variances update. To this end, an additional prior distribution
on variances is used, based on the local neighbourhood of a node. To obtain a closed-form
expression of the new update equation, we use the conjugate prior for variances of a Gaus-
sian likelihood.Formally, we rely on the inverse-Gamma distribution distribution with shape
parameter 1 + λσ and scale parameter λσσ2

Nk de�ned such that the mode of the distribution
is located at the mean variance of the neighbouring nodes, namely σ2

Nk = 1/|Nk|
∑

i∈Nk σ
2
i

with Nk = {i | aik = 1} and |Nk| = dkk the degree of node k. Mathematically, we write

log p(σ2
k) = −λσ

[
log σ2

k + σ2
Nk/σ

2
k

]
+ cst, (4.8)

the prior distribution for the σ2
k parameter and use the same λσ ≥ 0 to constrain all Gaussian

components.
Finally, a prior distribution is added for mixing coe�cients to avoid singular solutions

to happen when a node of the graph is paving an underdense region, like galaxies standing
in voids for instance, making its amplitude going to 0. This can be achieved by assuming a
Gaussian prior centred on uniform coe�cients on the set of datapoints not represented by the
background noise, namely (1− α) /K . Hence, we have

log p(πk) = −λπ
2

[
1− α
K
− πk

]2

+ cst, (4.9)

where λπ ≥ 0 controls the force of this prior.

The regularised mixture model

The full prior distribution on the parameter set Θ can be written as the summation of all
individual terms,

log p(Θ) = log p(µ) +
K∑
k=1

log p(σ2
k) +

K∑
k=1

log p(πk). (4.10)

As we saw in Sect. 3.3, the optimal values of parameters can be estimated using the
EM algorithm allowing the maximisation of log-likelihood in an alternating procedure. In
the context of the proposed graph regularised mixture model (GRMM), we aim at maxim-
ising the log-posterior (that we equivalently call regularised log-likelihood) log p(Θ |x) ∝
log p(x |Θ) + log p(Θ). For this purpose of maximum a posteriori estimation, EM can still
be used with only minor changes to the introduced equations (3.12) and (3.13). Note that the
E-step remains unchanged since the added term only depends on Θ and that this �rst step is
a maximisation of the lower bound over the latent variables only. In the M-step, we now seek
to solve

Θ(t+1) = argmax
Θ

Q(Θ,Θ(t)) + log p(Θ), (4.11)
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where Q(Θ,Θ(t)) is de�ned through Eq. (3.12) as the expectation of the completed log-
likelihood over the latent variable distribution p(Z |X,Θ). We recognise here the general
form for optimisation problems teased in Eq. (3.3) of Sect. 3.1.2 with the quadratic association
cost hidden in the logN (xi,θk) term of the log-likelihood and where log p(Θ) constrains the
form of the solution with strengths {λµ, λσ, λπ}.

For the log-likelihood as de�ned by the particular mixture model of Eq. (4.5) and the prior
de�ned by Eq. (4.10), responsibilities of Gaussian and uniform background components, re-
spectively noted pik and pbkg

i , can be computed during the E-step as p(Z |X,Θ(t)) using Bayes’
theorem and the current parameter values Θ(t)


p

bkg
i =

αρ(xi)∑K
j=1 πj N (xi |θj) + αρ(xi)

,

pik =
πkN (xi |θk)∑K

j=1 πj N (xi |θj) + αρ(xi)
.

(4.12)

Update equations for each parameter are then derived during the M-step of Eq. (4.11) as

α(t+1) =
1

N

N∑
i=1

p
bkg
i ,

π
(t+1)
k =

1/N
∑N

i=1 pik + λπ
(
1− α(t+1)

)
/K

1 + λπ
,

µ
(t+1)
k =

∑N
i=1 xi pik/σ

2
k + 2λµ

∑K
j=1 akjµ

(t+1)
j∑N

i=1 pik/σ
2
k + 2λµ

∑K
j=1 akj

,

σ
(t+1)
k =

[∑N
i=1 pik‖xi − µk‖2

2 + 4λσσ
2
Nk

D
∑N

i=1 pik + 4λσ

]1/2

.

(4.13)

When not speci�ed, parameters not indexed by time correspond to time t. This is especially
important in the E-step in which all parameters are expressed at time t and in the computation
ofµ(t+1)

k . It is indeed interesting to note the contribution of allµ(t+1)
j in the update ofµ(t+1)

k in
Eq. (4.13). It is hence more convenient to write this update equation matricially forµ ∈ RK×D.

µ(t+1) =
[
ΓS−1 + 2λµL

]−1
S−1RTX, (4.14)

whereS is a diagonalK×K matrix with skk = σ2
k, Γ a diagonalK×K matrix of average data-

points explained by the kth component, i.e. γkk =
∑N

i=1 pik andR ∈ RN×K the responsibility
matrix for Gaussian components such that rik = pik.

4.3.2 Algorithm and illustrative results
Algorithm (1) sums up all the steps for the learning of the proposed principal graph from a
given set of measurementsX and a graph construction priorG. It extends the GMM by embed-
ding a topological prior through G constraining the position of centres, propose an handling
of outliers and the learning of the local width of structures. In this model, the topology of
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Algorithm 1 Graph regularised mixture model (GRMM)
Input: Data: X ∈ RN×D, hyper-parameters: Y = {λµ, λσ, λπ}, initialisation: Θ(0), G(0).
Output: Θ(t) and G(t).
whileRt ≥ ε do

Compute the adjacency matrixA of G(t)

E-step: Compute responsibilities pik and pbkg
i using equations (4.12)

M-step: Compute new parameters Θt based on responsibilities using equations (4.13)
and (4.14)

Compute the increment in log-posteriorRt = log p(Θ(t) |X)− log p(Θ(t−1) |X)
Optional: Update graph topology by recomputing G(t) on the new set {µk}Kk=1

end while

0

1

2

3
GRMM

0 2 40

1

2

3
SimplePPT ElPiGraph

R0 = 0.20
R0 = 0.30
R0 = 0.40

Fig. 4.4. Illustrative comparison of three procedures to learn a principal graph on an arti�cial
dataset made of N = 2666 datapoints with three branches of linearly evolving standard devi-
ations converging to a spherical Gaussian cluster shown in the top left panel. Top right is the
principal graph learned by the proposed GRMM algorithm (1) with K = 100 initialized ran-
domly over X , Y = {5/σ2

0, 10, 1} and σ2
0 = 0.01. Bottom left is the one from the SimplePPT

algorithm [Mao et al., 2015, 2017] with σ = σ0 and identical initialisation nodes. In both cases,
the shaded areas correspond to the 1-σk circles centred on µk. The bottom right panel is the
result from the ElPiGraph procedure [Albergante et al., 2020] with 100 nodes initialized with
70 taken randomly over X and for di�erent values of the trimming radius R0 with the same
elasticity parameters λ = 0.01, the length constraint and µ = 0.01 the bending constraint.
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the graph can be either �xed or updated during the optimization. This is particularly import-
ant since the prior approximation on the noisy pattern with outliers may not be suitable to
describe the �nal smooth underlying structure. For instance, a bifurcation in the prior graph
may not be relevant in the �nal one. Consequently, it may be useful to update the topological
prior based on the current estimate of {µ}Kk=1. When updating the topology at each iteration,
A cannot be understood as a prior anymore but has to be included as a parameter in the model
making the chosen graph construction itself acting like a prior. In the case of �tting an MST
topology, we can embed the integer programming optimization problem de�nition of the MST
from Eq. (4.4) in the regularized log-likelihood hence leading to estimate both Θ andA in the
M-step which simply involves computing the new graph Gt at iteration t given a graph con-
struction process and the positions {µ}Kk=1. When re�ning the graph, update equation for µk
of the SimplePPT algorithm proposed in Mao et al. [2015] can be derived from Eq. (4.14) by
considering �xed variances, no outlier distribution and an MST prior.

Figure 4.4 provides an illustrative comparison of several algorithms to identify a principal
graph in point-cloud datasets. The top right panel of Fig. 4.4 shows the graph learned by
the GRMM Algorithm (1) for a dataset made of three branches with linearly evolving stand-
ard deviations σ ∈ [0.015, 0.15] and 25% background noise uniformly added in the square.
The bottom left panel of Fig. 4.4 illustrates the principal graph learned by the SimplePPT
algorithm on the same dataset and using the same parameters and initialisation as our con-
struction. Many branches are falling in the background noise and, because of its �xed-variance
scheme, it fails at capturing the ridges of both the large and small variance branches. Choosing
a large value for σ2

0 biases the graph in the small branch, while a low one irremediably creates
a lot of spurious branches in the large-variance part of the pattern, even in the absence of
outliers. With its contracting iterative scheme, the Subspace Constrained Mean Shift [SCMS,
Ozertem & Erdogmus, 2011; Genovese et al., 2014; Chen et al., 2014] algorithm would su�er
less from the latter exposed problem. Yet, it does not provide a properly-speaking curve, but
a set of independant projected points that are to be linked a posteriori and the SCMS is also
usually used together with a pre-processing step to �lter datapoints standing in low-dense
areas such as proposed in Chen et al. [2015] hence involving an additional non-trivial para-
meter impacting the quality of the result. The sensitivity of the graph to outliers is handled
by the ElPiGraph framework [Albergante et al., 2020] through a trimming radius R0 discard-
ing distant datapoints from the update of a node position. In the bottom right panel of Fig.
4.4 can be found three realisations of this algorithm with di�erent values of R0, showing the
robustness of ElPiGraph to uniform background noise with a �ne-tuned value. The choice of
R0 however remains scale-dependent and can alter the recovered structures in case of hetero-
scedastic patterns. It is also not obvious to tune in real applications and comes in addition to
other hyper-parameters already complex to choose. Moreover, the resulting graph do not em-
bed a description of the local width as opposed to the GRMM which �ts all parts of the pattern
in its center. Note nonetheless that the ElPiGraph algorithm handles better the dense area at
the center of the dataset when R0 = 0.3 with a single bifurcation thanks to an added terms
to the cost function minimising the overall graph complexity. The algorithm we develop here
[Bonnaire et al., 2021b], by unifying all these aspects of robustness and local size description
in a single formulation, is able to provide a principal graph that visually shows a smoothly
evolving adaptive scale along the graph structure. Even though the graph is initialized with
only K = 100 nodes taken randomly over X with variances ∀k, σ(0)

k = 0.08, there are no
�nal nodes standing outside of the pattern and the resulting estimate of the background level
is 25%. Note also that, on patterns showing no outliers and with branches of the same sizes, all
algorithms provide similar results with a smooth graph passing in the middle of the structure.
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-neighbourhood k-nn, k = 6 MST

Fig. 4.5. The regularised versions of the graph priors shown in Fig. 4.2 obtained from Al-
gorithm (1) with K = N = 220, Y = {0.5/σ2

0, 0, 0} and σ2
0 = 0.1. From left to right: the

ε-neighbourhood with ε visually shown, the k-nearest-neighbours (k = 6) and the minimum
spanning tree.

4.4 About graph priors

4.4.1 Basic graph constructions

The choice of the prior graph construction depends on the guess of the underlying manifold
topology on which the data presumably live. Manifolds learning techniques for dimensionality
reduction based on graphs usually rely either on a complete graph with weights obtained from
a heat-kernel wij = exp{‖µi − µj‖2

2/s} with the choice of s being data-dependant Belkin &
Niyogi [2003], either on a k-nearest neighbours graph. Such constructions are convenient for
the precise purpose of dimensionality reduction in which the mapping between the high and
low dimensional spaces is supposed to preserve the local neighbourhood of the data, assuming
the manifold to be locally Euclidean [Belkin & Niyogi, 2003]. In our context of ridge estimation,
we �nd that such local constructions, in addition to depend on a free parameter, are also
creating a lot of redundant and spurious edges hence degrading the pattern extracted from
Algorithm (1), as shown in the middle panel of Fig. 4.5 where the “S” shape of the pattern is
not correctly extracted. Note however that, with a proper post-processing of the graph prior,
pre-processing of the input dataset, or �ne-tuning of the parameter for the graph prescription
(ε or k), we could end up with a clean estimate of the ridge. The MST prior, on the other hand,
is �tting well the expected underlying shape and has the advantage of being parameter-free,
scale-free and can handle general patterns by assuming a tree-like topology.

4.4.2 The average graph prior

Although the minimum spanning tree exhibits some nice features discussed above, it has a
limited representative power for general datasets due to this latter-mentioned tree topology
that cannot represent cycles, as shown in the top left panel of Fig. 4.6. By using a non-cycling
topology, the regularised graph becomes even more inaccurate if the data embeds holes be-
cause of the optimisation tending to shorten graph extremities hence emphasising the absence
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MST(X) MST(Xb)
Xb

MST(Xb)
Xb

AGP(X)

Fig. 4.6. Illustration of the interest of combining MSTs obtained from random sub-samplings of
the data. (top left) The regularised MST computed over the all the input datapoints. (top right)
The regularised MST computed over a random sub-sampling of the input with N/Nb = 0.75
(black crosses). Grey datapoints are those not used. (bottom left) Same as top right for another
sub-sampling realisation. (bottom right) The graph obtained using the average graph prior.
The two circles in the top right and bottom left panels illustrate that the hole not captured by
the MST varies with the sub-samplings. This instability is exploited in the average graph prior
to obtain a cycling topology.

of cycles. Several graph constructions allow such a feature, as for instance the k-nearest neigh-
bours graph. This solution, in addition to create long-range edges for isolated nodes that would
turn in branches reaching outliers or spurious cycles, is not based on an optimisation of the
total length of the graph, which is convenient for convergence properties of the algorithm
when updating the prior (see Sect. 4.5).

Because the MST results from a global minimization of the total Euclidean distance as
can be seen in Eq. (4.4), the obtained preferred path is very sensitive to random removals
of datapoints (see top right and bottom left panels of Fig. 4.6). We exploit this particular
aspect by merging the idea of a graph with the minimum total length and the handling of
one-dimensional holes in the dataset to propose an empirical construction based on the com-
putation of MSTs obtained from a set of B realisations of random sub-samplings of the set
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of nodes. Formally, the average adjacency matrix is Ā =
∑B

b=1Ab/B, where Ab is the adja-
cency matrix of the MST computed the bth random sub-sampling ofµ using a fractionKb/K of
points. This approach, proposed in the context of pattern extraction to provide an uncertainty
measurement [Chen et al., 2014; Bonnaire et al., 2020; Albergante et al., 2020], is exploited in
the present case to combine all the realizations to obtain a single graph construction. This
operation is also done a priori on non-regularized MSTs hence reducing the computational
cost by avoiding the need of running Algorithm (1) multiple times.

The average adjacency matrix Ā represents the frequency of appearance of an edge during
B realisations of MST and hence the probability, for each pair of centres, to be linked. To
illustrate the method, we build a discrete Voronoi dataset consisting of intersecting straight
lines surrounding low-density areas visible on the top panel of Fig. 4.7. Such a dataset aims at
visually reproducing the cosmic web with elongated intersecting 1D structures and was used
to assess the quality of the detected structures in Aragón-Calvo et al. [2010] or Chen et al.
[2015] but also to train a U-net architecture in Aragon-Calvo [2019]. The bottom panel shows
the distribution of edge probabilities for several ratios Kb/K . For a large range of values of
this ratio, we clearly distinguish two populations of edges: those with high probabilities and
those with almost-zero probabilities. In the high probability population, we retrieve, in the
three cases, all K − 1 edges of the original MST computed over µ plus 27 new ones which
correspond to the exact number of closed cycles in the arti�cial dataset. These additional
edges are shown in bold blue in the top panel of Fig. 4.7. When the ratio Kb/K becomes
smaller, the high probability mode tends to be centred at lower and lower probability until
the pattern is so much altered by the sub-sampling that it is not retrieved and the distribution
becomes centred at low probability. The proposed method hence allows to take advantage of
the inherent instability of the MST to recover additional edges inducing cycles independently
of their scale. It solely and indirectly depends on the edge length required to close the cycle
without imposing neither a formal de�nition for the cycle nor a hard threshold in edge length.

Even though observed in the example of Fig. 4.7, the retrieval of all the K − 1 edges of
the MST is not theoretically guaranteed. To ensure it, the resulting set of edges is obtained by
the union of all MST edges and those in the high probability mode leading to the non-singular
symetric adjacency matrix

(A)ij = max
(

(AMST)ij ,
(
Ā>m

)
ij

)
, (4.15)

with Ā>m the thresholded average adjacency matrix Ā at levelm such that it isolates the high
probability mode only. By doing so, the proposed graph construction is an extension of the
MST containing all its edges with additional ones sharing similar probabilities of appearance
during all the random computations.

For the sake of illustrative comparison, we add, as the turquoise blue line of the top panel
of Fig. 4.7, the result of the cycling topology as de�ned by the framework of persistent homo-
logy Edelsbrunner et al. [2002]. In particular, we use the 1D-homologically persistent skeleton
(HoPeS) of Kurlin [2015] built as the MST completed with edges that are creating persistent
1D homologies in the dataset. After the extraction of those critical edges, it is not trivial to
obtain a persistence threshold that captures the desired cycles. Here, we rely on the bootstrap
procedure that, together with the stability of the persistence diagram allow a statistically well-
de�ned computation of a threshold [Chazal et al., 2018]. We see that some additional edges are
creating high-scale cycles due to the noisy datapoints leading to inaccuracies in the represent-
ation of the underlying pattern. Even though these undesired cycles could be handled using
the sub-level sets analysis of the distance-to-measure function of Chazal et al. [2011, 2018],
it does not allow an easy extraction of a graph on the inputted datapoints as required by our
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application. A pre-processing of the data by removing points in low-density areas or a careful
�ne-tuning of the persistence threshold are also possible but this is at odds with the proposed
formalism supposed to handle such datapoints. One hint that these spurious branches come
from the noisy measurements is that, when varying the randomness of the sampling, we end
up with a di�erent pattern (plotted as the orange line on the top panel of Fig. 4.7) while the
one traced by the proposed average graph remains the same. It is also worth emphasising
that, in both realisations of the 1D persistent skeleton, the two small-scale cycles at the cen-
ter of the dataset are not captured because of the too high persistence threshold imposing a
lower-bound on the scale of the detected cycles while they are observed in our average graph
prior.

4.5 Convergence and time complexity

4.5.1 Convergence analysis

Convergence towards a local maximum and monotonic increase of the log-posterior through
iterations are guaranteed by the EM procedure when �xing ∀t,Gt = G0 [see McLachlan &
Krishnan, 1997, for a detailed analysis of EM convergence properties]. When updating the
topology at each iteration and using a prior based on the MST, convergence as well as mono-
tonic increase of the regularised likelihood are still guaranteed [Mao et al., 2017], but it does
not remain true for any general graph construction if not based on optimisation procedures
such as de�ned by Eq. (4.4). The left panel of Fig. 4.8 shows the convergence for the learn-
ing of the principal graph from Fig. 4.4. We see that the regularised log-likelihood given
by log p(X |Θ) + log p(Θ)2 is getting maximised during the procedure, as theoretically pre-
dicted by EM. Since this quantity can be computationally costly to evaluate, we can also rely
on the increment in parameter values as a stopping criterion. As an example, the evolution
of ‖µ(t) − µ(t−1)‖2 is shown in dashed red on the left panel of Fig. 4.8, indicating that nodes
of the graph are not signi�cantly moving after roughly 50 iterations, which is also where the
regularised log-likelihood gets stable.

4.5.2 Time complexity

The E-step equation (4.12) requires the computation of the responsibilities taking O(NDK)
operations to complete while the M-step equations (4.13) respectively requireO(NK),O(NK),
O(K3) and O(NKD) operations. The added term on the log-likelihood hence leads to an in-
crease of the complexity upon the usual EM update of center means. Considering T iterations
for the algorithm to converge and a complexity of CG for the graph structure computation,
Algorithm (1) needs O (T [K3 +NKD + CG]) operations. CG acts on K and can take very
di�erent forms depending on the used topological approximation. For the minimum spanning
tree, it takes O(K logK) operations to build the Delaunay Tessellation and O(K1+D/2 logK)
to �nd the MST with Kruskal’s algorithm. Naturally, the proposed average graph being ob-
tained from B random sub-samplings of the MST, it requires O (B CMST(Kb) + CMST(K)) op-
erations, with CMST(K) the complexity of getting an MST over K vertices.

2The �rst term is computed through Eq. (4.5) and the second one is the prior from Eq. (4.10).
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Fig. 4.7. Illustration and comparison of the average graph prior. (top) Black points and grey
crosses are two sampling realisations of an arti�cial 2D dataset obtained from a Voronoi pat-
tern. Red edges are those from the MST and bold dark blue ones are those added by the high
probability mode with B = 500, Kb/K = 0.75 and thresholded at m = 0.35. The turquoise
blue and orange lines are the set of edges from the regularised graph obtained with a prior
given by the 1D-homologically persistent skeleton [Kurlin, 2015] with the two realisations of
the dataset. When not explicitly visible, it means that the three lines overlap perfectly. (bottom)
Probability distributions of edge probabilities
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ij

for several ratios Kb/K .
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Fig. 4.8. (left) Convergence of the regularised log-likelihood (plain black) and of graph node
positions (dashed red) with the iterations to obtain the principal graph from Fig. 4.4. (right)
Runtimes from the Python implementation of Algorithm (1) for several values of N (black
solid line) with �xed K = 1000 nodes and for several values of K (red dashed line) at �xed
N = 10000. Runs have been carried out on 2D Voronoi-like mock data already used in Sect.
4.4 and shown on Fig. 4.7.

4.5.3 Runtimes

A Python implementation3 of the proposed Algorithm (1) provides the principal graph from
Fig. 4.7 in less than three minutes on a modern laptop with our single-core implementation.
Figure 4.8 quanti�es the evolution of the runtime for di�erent number of input points, with
�xed K = 1000 nodes in black and the evolution with K for �xed input N = 10000 in
red. Using the MST prior computed using the Kruskal algorithm applied on the Delaunay
Tessellation yields a fast algorithm, able to deal with large-scale datasets, as it can be the case in
cosmological applications. The implementation additionally exploits adapted data structures
to encode the sparse matrices encountered in the algorithm, like the adjacency or Laplacian
matricesA and Lmaking it also e�cient from a memory point of view. Besides, it makes use
of binary search tree structures [Bentley, 1975] to optimise the computation of responsibilities
requiring the evaluation of squared distances ‖xi − µk‖2

2 under our assumption of spherical
covariance matrices in the Gaussian mixture model.

4.6 Hyper-parameters and initialisation

4.6.1 The impact of parameters

Hyper-parameters of the full model are K and Y = (λµ, λσ, λπ). K denotes the number of
Gaussian components used in the mixture model while λµ, λσ, λπ are all related with shapes
of prior distributions on the parameter indicated as subscripts.

3Available at https://git.ias.u-psud.fr/ tbonnair/ t-rex.

https://git.ias.u-psud.fr/tbonnair/t-rex
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Fig. 4.9. Illustration of the impact of hyper-parameters Y = {λµ, λσ, λπ} in Algorithm (1)
for an arti�cial dataset made of three branches with linearly evolving standard deviations
converging to a spherical Gaussian cluster. In all cases, K = 350 nodes are used with the
same random initialisation over X . Black dots are datapoints, coloured lines are the set of
edges learned by Algorithm (1) and gray shaded areas correspond to the 1-σk circles centred
on µk. (top row) From left to right, quadrants corresponds to several values of λµ, λσ and λπ.
(bottom row) Probability distributions of the impacted parameters. From left to right: edge
weights wij = ‖µi − µj‖2, variances of components σ2

k, and mixing coe�cients πk.

E�ect of λµ. λµ controls the force of smoothness constraint and corresponds to the precision
of the prior Gaussian distribution put on edge weights. From Eq. (4.7), and emphasised by the
upper left quadrant of Fig. 4.9 showing regularized graphs obtained with increasing values of
λµ from 0 to 200/σ2

0 , we see that the higher λµ, the more {µk}Kk=1 are pulling themselves along
the graph structure leading to constrain the graph length

∑
ij wij by shortening its extremities.

The bottom left panel of Fig. 4.9 shows the �nal distribution of edge weights, in other words
the distances between linked nodes in the graph, wij . We clearly observe the mode of the
distribution being translated to lower values when λµ increases, indicating lower and lower
distances between connected nodes.

E�ect of K. At a �xed value of λµ, a large increase of the number of nodes K can induce
over-�tting. Sticking with a similar extracted pattern would hence require the increase of λµ.
This is for instance illustrated when comparing Fig. 4.4 obtained with K = 100 and Fig. 4.9
with K = 350 and required a larger value of λµ to provide a similar pattern. One way to
reduce the interlink between these two parameters and the dependency of the pattern onK is
the growing grammar proposed in Gorban & Zinovyev [2009] and followed-up by Albergante
et al. [2020] in which the graph is initialized with a small value of K to then add some nodes
iteratively using prede�ned rules. It also comes with a way to penalise “complex” graphs by
adding a term to the log-likelihood and has the advantage to diminish the computational cost
at early iterations.
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E�ect of λσ. λσ acts on the shape of the inverse-Gamma prior distribution of Gaussian
variances σ2

k. Equation (4.13) teaches us that, as for other hyper-parameters, when λσ → 0,
the prior is cancelled and variances are updated through the usual EM equation. When λσ
increases, the shape of the inverse-Gamma law is more and more constrained leading σ2

k to
be updated mainly through σ2

Nk and, ∀k, σ2
k ' σ2

0 with σ2
0 the value used to initialise the al-

gorithm. Eventually, a high enough value for this parameter thus leads to a �xed scale version
of the algorithm, similar as those presented in Mao et al. [2017] and Bonnaire et al. [2020], as
shown in the middle bottom panel of Fig. 4.9 where the distribution of log10 σ

2
k is more and

more centred around log10 σ
2
0 . As illustrated in the upper middle quadrant of Fig. 4.9, when

λσ increases, the structure shows a smoothly evolving variance along the graph structure
with multiple scales described at the same time. This is also highlighted by the lower panel
where the variance distributions obtained from regularized graphs with small values of λσ are
spreading over several order of magnitudes and show three distinct modes corresponding to
the characteristic scales of the three branches in the dataset. These estimates tend to be more
and more biased toward σ0 when λσ increases.

E�ect of λπ. Finally, λπ is acting on the amplitude πk, corresponding to the proportion
of points being represented by the Gaussian component k and is controlling the force of the
prior of uniformly distributed Gaussian mixtures. This parameter has a very low impact on the
overall result but can avoid singular solutions to happen in very low-density regions paved
by graph nodes. The upper right panel of Fig. 4.9 shows the low impact of the parameter
despite a large range of tested values, from 0 to 10. Although the obtained distributions of
mixing weights πk are clearly di�erent, as seen in the lower right panel tending to be centred
at (1− α) /K when λπ increases, the obtained graph structure remain unchanged, so as the
local extent measured by the variances.

Even though the impact of these hyper-parameters is interpretable and that there is a wide
range of values providing similar results, the “quality” of the obtained graph still depends on
the settings, and, to the best of our knowledge, there is no well-de�ned method to choose reg-
ularisation parameters independently from user tests or external information. In that regard,
the theoretical work of Gerber & Whitaker [2013] in which is proposed a modi�cation of the
L2-form of the objective function of the principal curve formulation. By minimising this new
cost, from which admissible principal curves are minima, they are freed from any regularisa-
tion parameter and can hence be of interest to alleviate the complexity of the model selection
process.

4.6.2 Initialisation
Initialisation rules

There are four sets of parameters to initialise, namely {µk}Kk=1, {σk}Kk=1, {πk}Kk=1 and α. A
simple and direct strategy to initialise positions of Gaussian components is to choose µ(0) =
X . By doing so, we ensure that the observed point cloud distribution is well paved by centres.
Note however that, from Sect. 4.5, when K ' N , the complexity scales with N3. For large
datasets, it may be interesting to �rst reduce the complexity by initialising the model with
K � N using for instance sub-samplings, noise reduction techniques or simple clustering
methods like the K-Means or �ducial GMM algorithms as the case K = N will generally
produce more clusters than needed to pave the dataset. When no prior knowledge on the
local size of structures, variances can be initialized as ∀k ∈ {1, . . . , K}, σ(0)

k = σ
(0)
0 . In this
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context, σ(0)
0 can be chosen as a prior guess on the average size of structures or through rules

borrowed from density estimation methods [Heidenreich et al., 2013]. In practice, we can
choose σ(0)

0 using a modi�ed version of the Silverman’s rule [Silverman, 1986] as

σ
(0)
0 = A0 [N(D + 2)]

−1
D+4 σmin, (4.16)

where A0 is a constant, N is the number of datapoints, D is the dimension of the data and
σmin is the minimum standard deviation over all directions. Taking A0 = 1 leads to the Silver-
man’s rule and is the optimal estimate for an underlying Gaussian distribution. As argued by
Chen et al. [2015], when the data are not Gaussian anymore, A0 should be optimised as a free
parameter.

The α parameter is the evaluation of the level of outliers in the dataset that should not be
paved by the Gaussian components. Its value depends on the application and data at hand.
In our experiments, we �x α(0) = 0.10 and then let it adjust itself during the learning. As
an example, results from Fig. 4.9 were obtained by starting with this guess and then quickly
converges towards a value numerically indistinguishable from 0. Finally, mixing coe�cients
are initially assumed to be uniformly distributed and ∀k ∈ {1, . . . , K}, π(0)

k =
(
1− α(0)

)
/K .

Impact of the initialisation on the learning

Because the proposed algorithm relies on the EM procedure to maximise the log-posterior, it
shares the same drawbacks, namely the convergence towards a local maximum, as exposed
in Sect. 3.3. This makes, in principle, the full optimisation scheme dependant on the initial-
isation of Θ. One way to obtain a graph independant from the initialisation is to use the
prescriptions from statistical physics established in Sect. 3.4. As already stated in Chapter 3,
such simulated annealing approaches were introduced to track the global maximum of the log-
likelihood [Kirkpatrick et al., 1983; Ueda & Nakano, 1998]. This solution however comes with
a sizeable increase of the computational cost and, in all our experiments, did not signi�cantly
improve the quality of the extracted pattern.

4.7 Illustrative application: Road network
In Chapter 5, we shall see the application of the proposed method for the detection of the
�lamentary pattern of the cosmic web based on halos or galaxies. In this section, the context
of road network detection from noisy GPS measurement is used as a showcase. The detection
of roads is usually carried on images acquired by satellites, a task for which many algorithms
have been proposed [see for instance Merlet & Zerubia, 1996; Stoica et al., 2004; Wang et al.,
2016]. However, with the expansion of GPS technologies and their integration in smartphones,
the update of maps obtained by satellite imaging techniques became possible at small cost. One
of the objective of map reconstruction methods is to produce street maps from a set of sampled
positions collected by travelling vehicles (like taxis or volunteers). Reaching this goal requires
sophisticated algorithms to be deployed to handle the complex patterns observed, the high
level of noise and outliers present in these datasets but also the uneven sampling of several
trajectories. Main roads are indeed traced by hundreds of trajectories, while some low-level
ones are traced only by a few, as illustrated in the top left panel of Fig. 4.10.

When applying our Algorithm (1) with the average graph prior on the 67 193 datapoints
Berlin dataset, we obtain the graph from the top right panel of Fig. 4.10. Note that no pre-
processing of the dataset nor post-processing of the resulting graph structure have been car-
ried out. We see that the principal graph could use some topological re�nements to make
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Fig. 4.10. Application of the principal graph learning to the extraction of road network from
vehicle positions. (top left) The 67 193 input datapoints of the Berlin dataset. (top right) Black
lines are edges of the regularized graph of Algorithm (1) overplotted on the raw datapoints.
The graph was obtained using the average graph topology with K = 7300 and σ0 = 0.003,
Y = (10/σ2

0, 5, 1). Red circles highlight features that could not be caught by a non-cycling
topology. (bottom left) Same as for the top panel, but overplotted on the ground truth map
extracted from OpenStreetMap. (bottom right) Probability distributions of variances for nodes
in the corresponding circled coloured regions of the top panel.
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it look smoother, removing waving branches and closing some of the remaining dangling
branches. For more details about particular processing of inputs and outputs in the context
of graph structure learning for road networks, see [Huang et al., 2018]. The obtained graph
passes through the entire dataset, correctly paving regions with both high and low densit-
ies. We can also observe that the proposed algorithm recovers a large variety of cycle sizes,
from very small ones, as for instance in the red shaded region with intersections or round-
abouts, but also larger ones, as in the top-left corner. When comparing it with the ground
truth map obtained from OpenStreetMap4 in the bottom left panel, we clearly distinguish that
some roads are not well-traced with several datapoints completely out with respect to the road
map due to the poor quality of sampled data, as it is the case in the top right corner. However,
the algorithm succeeds in proposing a robust version that do not take into account all such
datapoints.

The proposed algorithm o�ers the possibility to estimate the local variance around the
inferred principal graph. In the present dataset for instance, it is possible to investigate further
small portions of roads where the estimated σ(t)

k is high or has a broad distribution to spot roads
that are either wider or noisier than others. The bottom right panel of Fig. 4.10 reports the
distribution of variances for nodes standing in rectangular regions of the top panel. When
using variances of Gaussian clusters as a proxy of the road width, we conclude that main
roads with multiple lanes like those in the green or purple rectangles have larger sampling
standard deviation, by up to a factor of two, than the low-level road in the blue rectangle.
These estimates of road widths however, depend on the quality of the sampling and some roads
can appear wider than they actually are because of spurious points arti�cially increasing the
estimate locally or at the extremities of some branches of the graph. This can be seen when
inspecting the variance of the σ(t)

k distributions where the purple one is much larger than
the others because of the local noise in the sampling. Finally, the proposed cycling graph
captures correctly some topological features of the road network, such as the most prominent
roundabouts or road intersections highlighted in shaded reddish areas on the two top panels of
Fig. 4.10. The representation of such features would not be permitted by tree-based topologies.

4.8 Summary and prospects

In the present chapter, we merged concepts from mixture models and graph theory to build a
new framework for principal curve estimation that alleviates some drawbacks of the existing
de�nitions.

In summary, the proposed formulation:

1. Provides a natural connection of the points through a graph structure, as opposed
to several ridge �nders, that only results in a set of projected points stands linked
a posteriori such as in the SCMS algorithm.

2. Embeds a built-in robustness to outliers of the pattern. Most of the algorithms
require a pre-processing step [Stanford & Raftery, 2000; Ozertem & Erdogmus,
2011] to remove outliers exhibited by real-world datasets. Here, this di�culty
is circumvented by directly handling outliers in the mixture model through an
added uniform component.

4https://www.openstreetmap.org/

https://www.openstreetmap.org/
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3. Is able to learn the local size of the one-dimensional structure through the vari-
ance of the Gaussian clusters making it a heteroscedastic version of the SimplePPT
algorithm proposed in Mao et al. [2015, 2017]. In particular, we showed that the
same update equations for nodes can be derived as a particular case of the pro-
posed formalism.

4. Can work with any prior topology given by a graph construction. We additionally
propose a graph that includes cycles of various scales and compare it with the
mathematically well-de�ned framework of persistent homology [Edelsbrunner
et al., 2002; Kurlin, 2015].

5. Relies on simple, fast and well-established procedures such as the Kruskal and EM
algorithms making it suitable for handling a large number of datapoints.

By combining mixture models and graph theory, we have been able to take advantage of
the probabilistic formulation to get a description of the local size of the sampling around the
approximated one-dimensional manifold. One of the interesting perspectives of this work will
be to extend the formalism for the detection of d-dimensional structures in R>d datasets with
for instance applications to the detection of walls in the cosmic web that are 2D structures
embedded in a 3D space. Leads of extensions in that direction may be found in the use of
more general graph topologies, like those based on k-nearest-neighbours, and by relaxing
the spherical assumption for Gaussian clusters used in the present version of the algorithm.
These extensions may also trigger the need to adapt the cost function to constrain the full
surface/volume of the data rather than solely the nodes of the graph.

The overall optimisation scheme of the proposed algorithm may be another avenue of fu-
ture work. We have shown that it exhibits a stable behaviour for a large range of model’s
hyper-parameters and initialisation giving freedom to the user to retrieve the underlying pat-
terns without requiring a cautious �ne-tuning. The current optimisation, based on the tuning
of free regularisation parameters, makes the extraction of a satisfactory pattern dependent on
multiple trials and heuristics. Recent literature [Fischetti & Stringher, 2019] propose ways of
alleviating these limitations by resorting to simulated annealing (also discussed in 4.3.1).

Finally, the proposed algorithm was devised for the speci�c task of detecting the �lament-
ary pattern of the cosmic web. Even though these data show a high level of complexity with
di�erent local sampling densities, loops of various sizes, features of di�erent scales, the pro-
posed algorithm requires no pre-processing to remove spurious measurements and provides a
global description of the pattern including properties such as local length or width. In Chapter
5, we will see how this algorithm was compared to other web-�nder methods and used to build
a graph representation of the cosmic web through the distribution of galaxies in simulations.
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Chapter 5.

The principal graph of the Cosmic Web

“A quoi bon faire des maths appliquées si c’est pour
ne pas les appliquer ?”

V. Bonjean
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In this chapter, we present how the algorithm developed in Chapter 4 can be used for the
identi�cation of the principal graph of the cosmic web. It partly exposes results from Bonnaire
et al. [2020] and some from Gouin et al. [2021]. We show how the graph can be post-processed
to identify the �lamentary pattern as a whole together with an estimate of the positional un-
certainty of the spine, but also to extract individual �laments and their properties for carrying
statistical analyses. We apply and compare the �laments obtained from the galaxies of several
large-scale hydrodynamical simulations, namely EAGLE, IllustrisTNG and Magneticum and
then focus on the role of �laments in shaping galaxy clusters in simulations.

5.1 Context and motivations

We have stressed in Sect. 2.3 the primordial role of the cosmic web �lamentary structure and
Sect. 2.4 focused on the inherent challenges of carrying out an accurate detection of cosmic
web elements. The sparse sampling of galaxies in observation is also an additional di�culty
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that comes with its own systematic e�ects and limitations (like the completeness and spatial
coverage of the survey). It is however essential to be able to extract cosmic web environments
in both data and simulations to get a better understanding of how the large-scale structures
formed and evolved through time. Because they are easier to detect, the nodes were the �rst
to draw researchers’ attention which led to a rather clear picture of their average properties
like galaxy content, density pro�les and gas content based on several catalogues [e.g. Abell
et al., 1989; Ryko� et al., 2014] but also on their information content in terms of cosmological
parameters [Yoshida et al., 2000; Peter et al., 2013]. Filaments on the other hand received an
attention only more lately, permitted by the evolution of wide spectroscopic surveys [such as
York et al., 2000; Colless et al., 2001] and by the elaboration of sophisticated tools to identify
components other than nodes in the cosmic web. Filaments, acting like cosmic highways
linking together large overdense nodes, play a key role in the dynamics of the Universe but
also in shaping the evolution of galaxies that has been studied in both data and simulations.
While the local density-mass relation between a tracer of the matter distribution and its en-
vironment is now well-established, making galaxies (or halos in simulations) more massive in
dense environments like clusters [Dressler, 1980; Kau�mann et al., 2004; Baldry et al., 2006],
the relationship between other properties of both tracers and large-scale structures is still un-
der investigation. Many recent studies for instance point out that galaxies are less e�cient in
forming stars in the core of �laments than in their periphery [Alpaslan et al., 2016; Malavasi
et al., 2017; Kraljic et al., 2018; Bonjean et al., 2020] suggesting a particular process occurring
when a galaxy enters a �lament. This result also matches a local density in�uence as �laments
have been shown denser in their inner regions [Bonjean et al., 2020; Galárraga-Espinosa et al.,
2020]. Beyond density, the local orientation of �laments has also an impact on the spin of
galaxies reported by many works in both data and simulations [Hahn et al., 2007; Codis et al.,
2012, 2015; Ganeshaiah Veena et al., 2018, 2019; Kraljic et al., 2020].

All these observations and conclusions allowing to push forward our understanding of the
complex statistical interplay between matter tracers, like galaxies, and the large-scale struc-
tures predominantly made of nodes and �laments have only been possible thanks to the detec-
tion of such objects in the galaxy distribution [e.g. Abell et al., 1989; Ryko� et al., 2014; Tempel
et al., 2014; Chen et al., 2016; Rost et al., 2020; Malavasi et al., 2020b; Duque et al., 2021]. It is
however crucial, given the di�erent results provided by many methods to identify �laments
[Libeskind et al., 2017], to corroborate the correlations observed in various datasets and by
several methodologies in order to avoid any bias induced by the de�nition of �laments and by
the choice of the algorithm.

In this chapter, we �rst present T-ReX, a �lament detection method based on the math-
ematical formulation exposed in Chapter 4. In the cosmological context of the detection
of the �lamentary pattern drawn from subhalos or galaxies, we begin by extracting the
overall spine of the �lamentary structure together with its spatial uncertainty. We as-
sess the robustness of the method to sparse sampling, in addition to provide comparis-
ons with other web-�nders applied on same datasets. We then explain how individual
�laments can be de�ned from the learnt principal graph to build catalogues gathering
their positions with some geometrical properties like their lengths, curvatures, local
and averaged widths. The proposed algorithm is also able to associate to each input
datapoint (galaxy or halo) a probability to reside in a given �lament. This association is
successfully compared to the one provided by a physical rather than geometrical web
�nder (see Sect. 2.4.2) applied on the full dark matter distribution. T-ReX is able to re-
trieve 80% of the galaxies as belonging similarly to �laments, even though with a much
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smaller number density of tracers as input. We then carry out a comparison of the prop-
erties of �laments identi�ed individually from di�erent samples of galaxies in several
simulations that are EAGLE, IllustrisTNG and Magneticum. Finally, T-ReX is applied
to the large-scale simulation of galaxies IllustrisTNG and is used to study the interplay
between the nodes of the cosmic web and their surrounding �lamentary pattern. In
particular, we focus on the correlations between the connectivity of galaxy clusters and
their physical and dynamical properties.

5.2 Filamentary pattern detection
In this �rst section, we focus on the detection of the �lamentary pattern as a whole and explain
how the algorithm presented in Chapter 4 can be used through multiple realisations based on
random sub-samplings of the input dataset to obtain a picture of the �lamentary structure of
a dataset together with a spatial uncertainty.

5.2.1 T-ReX: Tree-based Ridge eXtractor

The minimum spanning tree (MST) is a graph with a tree topology that is linking all the input
points together with the minimum total distance (see Sect. 4.2 for a more formal introduction).
It has a long history in cosmology and has been the �rst method to exhibit the �lamentary
structure of the cosmic web in early galaxy distributions mapped in the sky by Barrow et al.
[1985]. Among its most appealing features are its unicity, the absence of free-parameter, its
scale-invariance but also its easiness to compute since it relies on fast and well-established
methods like the Kruskal algorithm. All these features make the MST a well-suited tool for
the study of the large-scale distribution of matter in the Universe as proposed by numerous
papers on the topic [Pearson & Coles, 1995; Bhavsar & Splinter, 1996; Colberg, 2007; Park &
Lee, 2009; Alpaslan et al., 2014b,a, 2016; Naidoo et al., 2020; Bonnaire et al., 2020; Pereyra et al.,
2020b,a]. However, one of the main drawbacks of the MST formulation is that, by linking
all datapoints, it results in a locally spiky geometry, as can be seen in the right panel of Fig.
5.1, that several works recently propose to alleviate. Pereyra et al. [2020b] for instance used
a post-processing of the MST in which an ad hoc selection of tree branches are smoothed by
means of a B-spline interpolation while Bonnaire et al. [2020, 2021b] and related Chapter 4
present a way of incorporating the MST in an optimisation scheme embedding the graph as
a prior. In the cosmological context, the algorithm established in Chapter 4 is entitled T-ReX
standing for “Tree-based Ridge eXtractor”. Let us recall the main components of the model,
the optimisation problem solved by the algorithm and how these can be interpreted in the
context of cosmological datasets.

In the mixture model framework, the probability that a matter tracer stands at a position
xi is given by

p(xi |Θ) =
K∑
k=1

πkN (xi,θk) + αρ(xi), (5.1)

where Θ is the set of model’s parameters,N (xi,θk) is the Gaussian probability density func-
tion centred on xi − µk with variance σ2

k, ρ(xi) is the uniform distribution over the convex
hull of the point-cloud distribution. The �rst term of this equation models the graph nodes
standing on the �lamentary pattern, paving the distribution while the second one handles
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Fig. 5.1. Di�erences between the classical MST (middle panel) and the optimised one obtained
from the T-ReX algorithm (right panel) with λµ = 5, λσ = 0, λπ = 0, σ0 = 1 Mpc/h and
under a �xed-variance scheme. Both algorithms are applied on the 2D subhalos distribution
of the Illustris simulation shown in the left panel.

datapoints that are not part of it, standing outside the pattern, in voids or walls embodied by
a uniform distribution. We have seen in Sect. 4.3 that a double maximisation procedure can
be used to estimate the smooth graph solving in particular

Θ(t+1) = argmax
Θ

−
N∑
i=1

K∑
k=1

pik
‖xi − µk‖2

2

σ2
k︸ ︷︷ ︸

data �delity term

−λµ
K∑
i=1

K∑
j=1

aij‖µi − µj‖2
2︸ ︷︷ ︸

graph smoothness term

+ . . . 1, (5.2)

whereA encodes the graph adjacency and λµ is the strength of the prior. More precisely, λµ
regulates the trade-o� between the data �delity term representing how much the graph should
pass close to the galaxies and how much it should be short and smooth. The T-ReX algorithm
1 exposed in Chapter 4 can be used to obtain the best possible2 graph given an initialisation and
a set of hyper-parameters λµ, λσ and λπ. The application of T-ReX is shown in right panel of
Fig. 5.1 based on the input datapoints shown in the left one. The obtained graph has a smooth
adaptive behaviour, especially visible in the zoom regions when compared to the crude MST
shown in the middle panel that is reaching all datapoints.

To summarise, the T-ReX algorithm keeps the fundamental idea of the MST-based approach
by representing the topology of the cosmic web as an interconnected network based on discrete
representation of tracers but provides additional features not allowed by previous de�nitions
that are: (i) a smooth version of the MST incorporated in the core of the formalism; (ii) a
handling of outliers to represent datapoints outside the �lamentary pattern; (iii) a description

1Additional terms include the priors on uniform weights with strength λπ , smooth evolution of variances
along the graph with strength λσ , uniform background noise and weights πk .

2In the sense of the local maximum a posteriori.
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of the local width of �laments through variances σ2
k learnt during the optimisation; and (iv) the

probabilistic association of tracers to individual �laments (see Sect. 5.3.3 for a more detailed
presentation of this feature).

To initialise graph nodes in the algorithm, we use in the entire section a pruned version
of the initial MST using all the input datapoints. It consists in a simple denoising operation
cutting all the nodes standing in branches of the tree at a level l. Strictly speaking, we iterat-
ively remove all nodes of degree one in the graph structure, similarly to Barrow et al. [1985]
or Colberg et al. [2005]. By doing so, we remove the most spurious parts of the structure cor-
responding to nodes that are more likely to be found in physically irrelevant regions for the
underlying pattern (i.e. underdense regions). This approach is iterative, meaning that a prun-
ing at level l removes iteratively nodes of degree 1 a total of l times. To give a representative
image of this procedure, it acts like the iterative peeling of an onion, attributing to each node
a depth in terms of layers to peel before we reach it and starting from extremities [Hébert-
Dufresne et al., 2016]. Note that, even though we prune the tree to initialise the number K
and positions µ(0) of graph nodes, they are still used in the full optimisation and contribute to
the shaping of the �nal smooth version of the graph.

Previous MST-based methods usually perform, in addition to this pruning, a removal of
all edges above a given physical length. In our case, this operation is not applied to avoid
the introduction of a new parameter that is not easy to tune, but also because we argue that
all connections, even ’long’ ones, can provide information about the underlying structure. Of
course, as a result, if two unconnected parts of a network are given as an input to the presented
method, they will end up connected.

In summary, the T-ReX method estimates a smooth MST and relies on the set of parameters
that are: l the pruning level to initialise the graph which implicitly de�nes K the number of
nodes and their initial position, Y = (λµ, λσ, λπ) the prior strengths and σ(0)

k , the standard
deviations of Gaussian graph nodes3.

5.2.2 Filamentary pattern extraction from Illustris subhalos

In the rest of the section, we make use of the Illustris simulation outputs4 [Vogelsberger et al.,
2014]. It consists in a set of large-scale hydrodynamical simulations with di�erent resolutions
in which an initial set of particles distributed over a 75 Mpc/h box is evolved forward in time
from high redshift to z = 0. From the resulting distribution at z = 0, halos of dark matter
are identi�ed using a Friend-of-Friend algorithm [FoF, Davis et al., 1985]. To mimic a galaxy
survey, we consider structures inside halos, the subhalos, identi�ed with the Sub�nd algorithm
[Springel et al., 2008] and provided within the Illustris package. In the left panel of Fig. 5.1 is
shown a thin 5 Mpc/h slice of the subhalo distribution obtained from the Illustris-3 simulation.

As previously mentioned, the MST highlights one particular path linking datapoints to-
gether but does not provide any idea of its uncertainty or reliability. It is also restricted by its
tree topology that has no loops and cannot represent holes but only connected components in
the cosmic web. Both of these issues can be overcome by introducing a robust representation
that takes into account the variations in the input distribution. To do so, we build B di�erent
samples {Xb}Bb=1 from the initial one X and compute the regularised MST for each of them
in a similar fashion as in bootstrap approaches, also evoked in Sect. 4.4.2.

From theB realisations of regularised MSTs, one can construct a map I characterising the
3Which appears as a parameter in the �xed-variance scheme, but as an initialisation when the variance is

learnt during the optimisation.
4http://www.illustris-project.org/data/

http://www.illustris-project.org/data/
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Fig. 5.2. (left) Probability map I obtained from subhalos displayed in the left panel of Fig. 5.1
with B = 100 and Nb = 0.75. The resolution of the probability map is 250Kpc/h. (right) Su-
perlevel set Γ0.25(I) (red squares) overplotted on the DM distribution together with subhalos
(black dots).

probability, in a frequentist meaning, of a position xg on a grid to be crossed by a realisation
of a tree:

i(x) =
1

B

B∑
b=1

1Hb(xg)=1, (5.3)

where 1A is the indicator function and Hb is the binary histogram obtained from the graph
nodes µb. The random nature of I thus comes from the random sub-sampling of X and not
from Algorithm 1 that is a deterministic optimisation step.

The left panel of Fig. 5.2 shows a probability map obtained from a 5 Mpc/h depth slice in
which the intensity of each pixel corresponds to the frequency that an edge of the MST crossed
it. This way, we quantify the reliability of the various paths in the input domain. In practice, to
build I(xg), we use both the graph nodesµb and the set of edges linking vertices encoded that
contains information on the paths used and consequently should be taken into account in the
�nal distribution. Edges are thus sampled and counted in the computation ofHb for Eq. (5.3).
In what follows, we may refer to a quantity called the superlevel set of those maps de�ned as
Γp(I) = {xg | i(xg) ≥ p}. Those sets are used to threshold the probability maps and keep
only regions with a probability higher than p. We can see, in the right panel of Fig. 5.2, that
the highly probable regions of the map are �tting what one would expect for the underlying
distribution while the overlap of the superlevel set Γ0.25(I) with the DM distribution allows
us to see that high probability paths (above 0.25 in this case) are tracing the most prominent
part of the network. It is worth noting that the agreement is particularly interesting given that
the input of the algorithm are subhalos and not DM particles. The zoomed-in region clearly
shows that small scales are also recovered where high probability paths follow the ridge in the
DM distribution.
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Fig. 5.3. Probability maps with increasing mass threshold M cut. From left to right, M cut =
{0, 0.85, 1.35, 3.22, 11} × 1010M�/h corresponding, respectively, to 100%, 83%, 60%, 31%,
and 10% of the total subhalos in the slice.

5.2.3 Performance evaluation

Robustness to sparse samplings

In order to assess the robustness of the method against the datapoint sampling density used for
the detection of ridges, we reduce the number of subhalos in the initial dataset by keeping only
those with a mass M ≥ M cut. In practice, we investigate how the original �lamentary map
is spatially close to the recovered ones when M cut varies. Figure 5.3 shows probability maps
obtained for increasing values of M cut leading to sparser and sparser input, namely 100%,
83%, 60%, 31% and 10% of the initial subhalos in the slice respectively corresponding to
M cut = {0, 0.85, 1.35, 3.22, 11}× 1010M�/h. Visually, probability maps show a nice stability,
even when the sparsity is high: patterns are pretty much the same when we keep at least 60%
of the most massive objects hence recovering the essential part of the structure.

In Fig. 5.4 is exhibited the spatial proximity between the di�erent maps by representing, for
each IJ , where J denotes the fraction of galaxies we kept to compute the map, the cumulative
distribution of {dJx}x∈Γ0.25(I100) de�ned, for a position x in the set Γ0.25(I100), as

dJx = min
x′∈Γ0.25(IJ )

‖x− x′‖2. (5.4)

Hence dJx corresponds to the closest distance from a position x in the original skeleton ob-
tained by keeping all subhalos, namely Γ0.25(I100), to a given thresholded map Γ0.25(IJ). This
way, the distribution of dJx measures how far the original pattern is from the one obtained
with J% of the datapoints.

In more than 95% of the cases, the original pattern �nds a closest point in the 83% and the
60% maps at less than 1.8 Mpc/h, showing that structures found in the three maps are spatially
close and about the thickness of typical �laments [Cautun et al., 2014]. When M cut increases,
the �lamentary pattern traces the most prominent parts of the structure with a loss of some
small scales and hence highlights coarser and coarser structures. Even though the pattern is
rough with only 31% of the datapoints used, we still observe a correlation with previous maps
highlighting coherent structures with 90% of the original pattern being retrieved at less than
3 Mpc/h. As expected, an unrealistic scenario where we use only 10% of the datapoints asso-
ciated with the most massive subhalos degrades the reconstruction of the �lamentary pattern.
Yet, the recovered structures show a coarse but coherent connectivity between regions. This
illustrates the ability of T-ReX to recover the underlying structure with high stability with
respect to missing information in the input distribution of datapoints.
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Fig. 5.4. Cumulative distribution of distances {dJx} between positions of the binary maps
Γ0.25(I100) obtained with increasing mass thresholdM cut to the one with J% of the datapoints.
M cut = {0.85, 1.35, 3.22, 11}× 1010M�/h leading respectively to 83%, 60%, 31% and 10% of
the total number of subhalos in the slice.

Comparison with other algorithms

In this section, we apply T-ReX on the 3D distribution of halos obtained from a 200 Mpc/h
Gadget-2 simulation5 and compare our results with some other existing procedures. These
have also been run on the same dataset in a review by Libeskind et al. [2017] to propose
a comparison of the main existing procedures to classify elements of the cosmic web using
either dark matter particles or halos as inputs. Although the review considers a dozen of
di�erent methods, we focus the comparison on three procedures, namely Nexus+, DisPerSE
and Bisous, so that we have a broad set of di�erent approaches using respectively scale-space
representation, topological considerations, or stochastic approach to recover the �lamentary
pattern. Nexus+ [Cautun et al., 2013] is a classi�cation algorithm inspired by image processing
and based on �ltering techniques leading to state-of-the-art environment classi�cation able to
identify clusters, �laments and walls. The main idea is to assume that the local morphology
of the density �eld fully encodes the environmental information. Eigenvalues of the Hessian
of the density �eld are thus used to compute an environmental signature in each voxel of
the smoothed �eld. The key idea is to compute this signature for a set of smoothed �elds
with a log-Gaussian �lter over a range of di�erent scales to highlight structures of di�erent
sizes. Physically motivated criteria are then used to threshold signature values and attribute
a classi�cation to each volume element. Bisous [Stoica et al., 2007] is a publicly available6

stochastic method based on halo positions that identi�es the �lamentary structure using a
set of random parametric cylinders. Filaments are modelled as aligned and contiguous small
cylinders of a given size in the galaxy distribution. The Bisous model generates two maps

5http://data.aip.de/ tracingthecosmicweb/doi:10.17876/data/2017_1
6https://www.ascl.net/1512.008

http://data.aip.de/tracingthecosmicweb/doi:10.17876/data/2017_1
https://www.ascl.net/1512.008
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allowing to extract �laments spine; one characterising the probability to �nd a �lament at a
given position called the visit map and an other one corresponding to the �lament orientation
�eld. This way, spines are de�ned as dense regions and are aligned with the axis of the di�erent
cylinders.

Note that not only these methods have very di�erent mathematical de�nitions for what
they all call clusters, �laments, and walls, but they also have been run with di�erent input,
using either DM particles or halos. We applied T-ReX to the full halo distribution of the 3D
simulated box (281 465 halos in total) and built a 100×100×100 grid map like other methods.
For T-ReX, this means that the �nal probability map is computed over a 1003 grid in which all
visited voxels are considered part of the �lamentary structure. As T-ReX is using 1D objects
(segments of the smooth graph) sampled over the input space, it is preferable, for illustration
and comparison, to give its �lamentary pattern a ’thickness’ by smoothing the obtained prob-
ability map. Whenever a voxel is classi�ed as part of the �lamentary structure, a smoothing
is thus performed over its 26 direct neighbours. In what follows, we call this version T-ReXs

while the original result is referred to as T-ReXus.
For illustration, following Libeskind et al. [2017], we show in Fig. 5.5 the results of the

classi�cation provided by each method for a 2 Mpc/h depth slice from which FoF halos were
extracted (top left panel of Fig. 5.5). We note that all methods have been run over the full 3D
cube and this is a projected slice of the detection. It is also worth noting that T-ReX identi�es
the �lamentary pattern as a whole and does not classify the environment into clusters, �la-
ments and walls as Nexus+ and DisPerSE do. To perform the comparison, we must look at the
full pattern provided by each method and compare it with our extracted skeleton. We observe
that T-ReX provides a satisfactory connectivity of the halos through the slice. In its smoothed
version, it leads to thicker �laments compared to the results of Nexus+ and Bisous but thin-
ner ones than Disperse, and retrieves most of the structures (�laments, walls, and clusters)
obtained by the Nexus+ algorithm.

Even though these methods have been developed with di�erent approaches, it is interest-
ing to see whether they agree or not in the detection of the �lamentary pattern. To do so in
a quantitative way, we could use the proximity measurement of Eq. (5.4) but as the resulting
patterns are presented on a 2 Mpc/h grid, the distance between them would not be accurate.
Hence, we introduce a similarity measurement as follows: considering the answers provided
by two detection methods, H1 and H2, such that H•(x) = 1 if the cell centred at xg is part of
the �lamentary structure and 0 otherwise, the similarity measurement is de�ned as:

S(H1, H2) =
|H1 ∩H2|
|H1|

, (5.5)

where |Hi| denotes the cardinal of Hi de�ned as
∑

x 1Hi(x)=1 and |H1 ∩H2| is the cardinal
of the intersection between H1 and H2 detections de�ned as

∑
x 1H1(x)=11H2(x)=1. Hence,

S(H1, H2) measures the proportion of H1 detections that are contained in H2 and is thus
asymmetric. In other words, if we consider H2 as a reference, S(H1, H2) represents the pro-
portion of true detections provided by H1. Of course, such a simple metric does not provide
the full information on the similarity between the considered patterns. This measure must
then be used in tandem with others, or with visual inspection, as we have done here.

Table 5.1 shows the similarity indices between all considered methods for the entire 3D
cube. We observe that 85% of the detections provided by the unsmoothed version T-ReXus are
contained in the Nexus+ skeleton and 81% of the Nexus+ detections are found by the smoothed
version of T-ReX. This indicates that the smoothed version of T-ReX contains a large part of the
Nexus+ skeleton but with a larger amount of the volume detected, explained by the smoothing
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Table 5.1. Similarity index S(H1, H2) as de�ned in eq. (5.5) between the considered methods
applied on the entire 3D cube. T-ReXus refers to the unsmoothed version of the detection while
T-ReXs refers to the smoothed one over the 26 neighboring voxels.

H1

H
2

T-ReX us

T-ReX s

Nexu
s+

DisP
erS

E

Biso
us

T-ReXus 1 1 0.85 0.62 0.37
T-ReXs 0.48 1 0.62 0.62 0.24
Nexus+ 0.53 0.81 1 0.62 0.30
DisPerSE 0.22 0.46 0.35 1 0.12
Bisous 0.66 0.87 0.86 0.62 1

leading to a thicker �lamentary pattern. The same tendency is observed concerning Bisous
for which the detections are mostly contained in other skeletons (last row of Table 5.1) but
not reciprocally (last column). This is due to the sparse and unconnected detection provided
by the Bisous method. The thick skeleton of DisPerSE also tends to contain a large fraction of
other skeletons (fourth column of Table 5.1) but it �lls so much volume that it is not contained
in the latter (fourth line).

5.3 Identi�cation of individual �laments
In the previous section, we have shown how the detection of the overall �lamentary structure
can be done with the graph-based algorithm and that the identi�cation agrees with some other
de�nitions. The gridded output representing the probability of a cell belonging to the pattern
can be of interest for using it as a mask in large scale cross-correlation analyses. However, it
is not trivial to de�ne individual objects that are �laments from such an output. One way to
achieve this is to use and post-process the principal graph learnt from the application of the
T-ReX algorithm on the full dataset made of the N tracers at positionsX = {xi}Ni=1.

5.3.1 A graph-based de�nition for �laments

In a graph, one can associate to each node i a degree deg(i) corresponding to the number
of direct neighbours (see Sect. 4.2). Naturally, three types of nodes can be distinguished: i)
Extremity nodes with deg(i) = 1; ii) Junction nodes with deg(i) = 2; and iii) Bifurcation
nodes with deg(i) > 2. One simple way to de�ne �laments based on the MST is hence to use
branches of the graph, a branch being the set of connected edges linking an extremity node to
a bifurcation or a bifurcation to a bifurcation as illustrated in the left panel of Fig 5.6.

5.3.2 Characteristics of individual �laments

At this stage, we consider an individual �lament as a set of M nodes which are actually Gaus-
sian components and a subset of the K centres µ. Centres composing a �lament are found at
positions F = {fm}m=1...M with F ∈ RM×D, a subset of the set of graph nodes µ ∈ RK×D

where fk ∈ RD andM−1 edges forming a branch of the resulting regularised graph provided
by T-ReX. To each edge linking two nodes fi and fj is associated a weight corresponding to the
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Fig. 5.5. Identi�cation results provided by four detection methods on a randomly chosen 2
Mpc/h depth slice of the full 3D detection for each method. Green pixels are walls, blue are
�laments, red are clusters and white are voids or unclassi�ed regions.

Euclidean distancewij = ‖fi−fj‖2. Let us also de�neR the ridge of the �lament correspond-
ing to the one dimensional piecewise linear line connecting nodes. Filaments characteristics
that can be extracted from the graph are listed and de�ned below.

Geodesic length. The geodesic length L of the �lament is de�ned as the sum of all edge
weights forming the ridge,

L =
M∑
i,j=1

wij. (5.6)

Inspecting the left panel of Fig. 5.6, the length of a �lament is for instance given by summing
all edges of same colour.

Curvature. The simple proxy we use to describe the shape of the �lament ridge is how much
the geodesic length di�er from the Euclidean length. The curvature is thus de�ned as

γ = 1− ‖f1 − fM‖2

L
, (5.7)

with f1 and fM the two extremities of the branch, i.e. a node of degree 1 or higher than 2,
as illustrated in left panel of Fig. 5.6. Consequently, γ ∈ [0; 1] and the closest it is to one, the
more the �lament deviates from a straight line.
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Local width. The local width of a �lament is de�ned by the set of variances of the Gaussian
component composing the graph nodes paving its ridge, {σ2

k}Mk=1. A one-point summary of
this distribution can be the average of standard deviations leading to an estimate of the average
radius of the �lament, noted

r =
M∑
m=1

3σm/M, (5.8)

such that locally, the radius is chosen to be represented by three times the standard deviation
of the Gaussian cluster paving the ridge. Note that this de�nition of radius for �lament takes
into account the spatial variations in the extension of the �lament through the local variances
of Gaussian graph nodes and is not a �xed-length de�nition.

Radial distance. It is possible to de�ne for each galaxy in the catalog a projected distance to
the ridgeR of the �lament. This distance is what we call the radial distance and corresponds,
for a datapoint at position xi, to

∆i = d(xi,R) = min
x′∈R
‖xi − x′‖2. (5.9)

This measurement can be used to provide either the full distribution of datapoint distances
around the �lament or as a proxy to the radial extension of the �lament using the mean of the
distribution, that we note ∆̄, alternative to the previous de�nition of r.

Positional uncertainty. In Sect. 5.2.2, we used multiple realisations of the algorithm to
obtain an estimate of the positional uncertainty of the ridge. We can nonetheless still obtain
an idea of the uncertainty at the graph nodes level. AssumingB regularised graph realisations,
we can associate to each node k of the full graph an uncertainty in the form of a con�dence
sphereB(fk, hk) centred at position fk and with radius hk, similarly to what was done in Chen
et al. [2015]. Radii of the uncertainty spheres are provided by the mean projected distance of
a given node k to the ridge for each bootstrap realisation that we can write

h2
k =

1

B

B∑
b=1

d2(fk,Rb). (5.10)

It is noteworthy to specify that, in practice, this step is realised before any �lament extraction
and is independant from it, operating on the full �lamentary pattern. Thus, in Eq. (5.10), the k
index refers to any node in the graph and Rb to the full 1d ridge of the �lamentary pattern of
the realisation b. Hence, the positional uncertainty of graph nodes can be de�ned as the union
of all uncertainty spheres

U(p) =
K⋃
k=1

B(fk, phk), (5.11)

where p indicates the level of the uncertainty band, similarly to a p-sigma uncertainty.

5.3.3 Association of galaxies
T-ReX provides a probabilistic version of the regularised graph in which each node of the �l-
ament ridge is actually a Gaussian cluster with mean µk and variance σ2

k. It is also equipped
with a robustness to outliers handled by an added uniform background distribution. In the
EM procedure, we compute what is called the responsibility pik (see more details in Sect. 3.3
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Fig. 5.6. Illustration of the de�nition of individual �laments on a toy dataset. (left) Black
points are datapoints and coloured ones are those from the smooth graph structure of T-ReX.
Filaments are de�ned as the branches linking bifurcations and extremities in the graph as
discussed in Sect. 5.3.1. (right) Illustration of associated datapoints to each individual �lament
(coloured datapoints) or to the detected uniform background (grey datapoints) depending on
the graph (black line) and associated variances (not represented) as exposed in Sect. 5.3.3.

and Sect. 4.3.1) characterising the probability that a given tracer xi is drawn from a partic-
ular component of the mixture model, hence made of K Gaussian clusters and one uniform
background component. Mathematically, we recall that we can write

p
bkg
i = p(zi = K + 1 |xi,Θ) =

αρ(xi)∑K
j=1 πj N (xi |θj) + αρ(xi)

,

pik = p(zi = k |xi,Θ) =
πkN (xi |θk)∑K

j=1 πj N (xi |θj) + αρ(xi)
,

where θj =
(
µj, σ

2
j

)
encodes the parameter of the Gaussian indexed j and zi is the latent

variable encoding the cluster attribution of datapoint xi. What hence interests us is to �nd the
most probable value of this assignation for each datapoint. First, a datapoint can be attributed
either to the overall �lamentary pattern or to the background, namely if

∑K
k=1 pik > p

bkg
i

(resp. <), the tracer i has a higher probability of being generated by the Gaussian components
(i.e. the �laments) than the background noise. We have seen that a �lament can be de�ned
as the set of graph nodes linking two extremities or bifurcations. A datapoint belonging to
the �lamentary structure can then be uniquely associated to the �lament hosting the graph
node maximising the probability pik over all nodes, namely ẑi = argmax pik. For a given
�lament, we can thus derive a set of galaxies associated to graph nodes that are forming the
ridge R. Such points are shown as coloured datapoints in the right panel of Fig. 5.6 while
those associated with the background are in grey.

Until now, the procedure was focused on associating a datapoint either to a �lament or
to the background. However, the graph can also be used to investigate a possible de�nition
for nodes. These latter are de�ned in the cosmic web as dense regions linked together by �la-
ments. In the graph, these may be represented as dense bifurcations, meeting points of several
branches. To investigate further this hypothesis and to assess the overall environment classi-
�cation scheme, we perform a comparison with a physical web �nder, Nexus+ [Cautun et al.,
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2013], applied on the EAGLE hydrodynamical simulation [Schaye et al., 2015]. The Nexus+
algorithm was run (Marius Cautun, private communication) on the dark matter density �eld
and the classi�cation was then propagated at the level of galaxies depending on the cell en-
vironment (node, �lament, wall or void) they belong to. On the other side, T-ReX was run
using as an input the set of galaxies with stellar mass M? > 107M� which yields a total of
Ngal = 142 392 galaxies in the L = 100 Gpc length box of EAGLE. We then extracted the �la-
ments and bifurcations in the regularised graph computed with parameters l = 25, λµ = 100,
λσ = 5 and λπ = 1. Note that the high value of λµ is required given the low stellar mass
threshold used to trace the pattern with which we expect to �nd a large number of galaxies in
walls and voids. We hence use a high pulling prior to avoid the detection of spurious �laments,
even though it may prevent the algorithm from �nding the most tenuous ones.

The bifurcations in the graph are de�ned as nodes with degree ≥ 3 and we additionally
compute a local density for each of them de�ned as the number of galaxies residing in the 3σk
region around their centre, with σk the learnt variance of the bifurcation divided by the en-
closed volume of 4π (3σk)

3 /3. This results in a total of 285 bifurcations with various densities
nbif . We can expect that only dense bifurcations trace nodes of the cosmic web. De�ning the
mean number density of galaxies n̄g = Ngal/L

3 ' 0.143, we explore three density thresholds
factors of n̄g, one keeping almost all bifurcations, even low dense ones, one intermediate and
one very restrictive keeping only 10% of them, respectively given by 5n̄g, 30n̄g and 100n̄g.
The obtained classi�cations compared to the Nexus+ ones are shown in Table 5.2. We see that
for a low value of the number density threshold (i.e. keeping almost all bifurcations), we re-
trieve most of the galaxies classi�ed as belonging to nodes by Nexus+ as well (99.4%) but with
a 26.5% contamination of galaxies standing in �laments according to the Nexus+ algorithm.
These values tend to both decrease when the density threshold increases. These results illus-
trate the ability of T-ReX to identify nodes and galaxies residing in them as bifurcations in the
graph structure. The �lament classi�cation in T-ReX is the result of galaxies satisfying the
criterion

∑K
k=1 pik > p

bkg
i , meaning that they have a higher probability of being part of the

�lamentary pattern than being in the uniform background, and that are not already classi�ed
as being in nodes, with nbif > 30n̄g. We see that with this de�nition, we retrieve 70.2% of
the galaxies classi�ed as in �laments by Nexus+ and 34.3% of galaxies in walls. The missed
galaxies in �laments can be explained by the high value of λµ hence leading to a graph where
the tenuous �laments are missing because they are not well-traced by galaxies, but also by the
density threshold for nodes galaxies in which 13% of them are classi�ed in nodes. Exploring
further the walls contamination shows that 74% (resp. 95%) of the galaxies identi�ed by T-
ReX in �laments are actually standing at less than 0.5 Mpc (resp. 2 Mpc) from a galaxy tagged
as �lament by Nexus+. It means that the “misclassi�cation”7 is only locally induced by the
borders of walls close to �laments which are not precisely detected by T-ReX when using the
galaxies.

We conclude that both methods agree well in classifying the galaxies in the di�erent en-
vironments, even though T-ReX do not, by construction, distinguish between voids and walls
and simply attribute the datapoint to the “background” component. Focusing on galaxies in
�laments and nodes, Fig. 5.7 visually support the good agreement between the T-ReX and
Nexus+ classi�cations in the 3D disposition of galaxies in the simulation (galaxies in �laments
and nodes are respectively in green and red). The Nexus+ distribution of nodes is quite sparse,
and this is the reason we did not follow the density threshold giving the smallest contamin-
ation to assign galaxies in �laments. It is also remarkable to recall that the T-ReX results are
obtained using solely the galaxies to trace the pattern and do not resort to the dark matter

7Considering Nexus+ as a ground truth.
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Table 5.2. Proportion of galaxies in the Nexus+ categories as identi�ed in T-ReX as being in
either nodes or �laments depending on the density of the bifurcation considered as nodes.
Filaments classi�cation are obtained with nbif > 30n̄g.

Nexus+
T-

Re
X

Nodes
nbif > 5n̄g

Nodes
nbif > 30n̄g

Nodes
nbif > 100n̄g

Filaments

Nodes 0.994 0.963 0.962 0.037
Filaments 0.265 0.130 0.056 0.702
Walls 0.035 0.004 0.001 0.343
Voids 0.004 0.000 0.000 0.086

Fig. 5.7. Galaxy distribution of the EAGLE simulation coloured by their environments by T-
ReX (left panel) and Nexus+ (right panel). Galaxies in green are those standing in �laments
while red ones are found in nodes. Note also that we only show the galaxies classi�ed in these
environments, showing only around 65% of the galaxies in both cases.

particles which number density is nearly 24 000 times larger.

5.4 Filaments characteristics in simulations

In this section, we propose to study the statistical characteristics of �laments as de�ned in
Sect. 5.3.2 obtained from the set of galaxies in three hydrodynamical simulations. In addition of
di�erent recipes for baryonic processes, these simulations have also di�erent mass and volume
resolutions consequently drawing di�erent pictures of the cosmic web. The assessment of
�laments characteristics is hence of importance to calibrate as well as possible the simulations
with respect to observations and improve the quality of the physics governing the formation
and evolution of galaxies.
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5.4.1 Simulations and principal graphs

We use multiple datasets to compute several principal graphs, extract the corresponding �la-
ments and their characteristics. These simulations are brie�y described below, together with
the parameters used for the running of the T-ReX algorithm to obtain the analysed �laments.

EAGLE. As already presented, EAGLE [Schaye et al., 2015] is a (100Gpc)3 box hydrodynam-
ical simulation. The cosmological parameters used to evolve the simulation are consistent
with Planck15 results [Planck Collaboration XIII et al., 2016] with ΩΛ = 0.693, Ωm = 0.307,
Ωb = 0.04825, σ8 = 0.8288, ns = 0.9611 and h = 0.6777. We use the identi�ed galaxies
with stellar mass M∗ > 107M� yielding a total of 142 392 galaxies and consequently, a mean
number density of galaxies of n̄g ' 0.142. The catalogue of �laments is obtained by running
T-ReX in initialised with a pruned MST with l = 25, and σ(0)

k = 1 Mpc. Values of the hyper-
parameters are λµ = 100, λσ = 5 and λπ = 1. We discard from the analysis all the small
branches with L < 2σ

(0)
k Mpc which leads to a total of 572 �laments in the catalogue.

IllustrisTNG. The suite of hydrodynamical cosmological simulations IllustrisTNG [Nelson
et al., 2019] follows the evolution of dark matter, gas, stars, and black holes on a moving mesh
from redshift z = 127 to z = 0. The input cosmology of the simulation is consistent with the
Planck15 one as well with ΩΛ = 0.6911, Ωm = 0.3089, Ωb = 0.0486, σ8 = 0.8159, ns = 0.9667
and h = 0.6774. We use here the largest simulation box IllustrisTNG300-1 with a size length
of 302.6 Mpc. Galaxies are identi�ed by means of the SubFind algorithm [Springel et al., 2001]
and we restrict the analysis using galaxies with M∗ ≥ 108M�, to highlight a di�erent setup
and number density than the EAGLE case. In total, we get 603 630 galaxies leading to a mean
number density n̄g ' 0.0218 which is hence almost 5 times smaller than the EAGLE sample.
The T-ReX algorithm is consequently run using l = 15, σ(0) = 1 Mpc and with λµ = 30,
λσ = 5 and λπ = 1. Note that these values are lower than in the EAGLE case due to the lower
number density of galaxies and higher mass threshold which hence require less smoothing
and denoising of the initial structure. Using the same threshold of L > 2σ(0), we end up with
a total of 5 492 �laments identi�ed.

Magneticum. As a last sample of galaxies, we use the z = 0.066 snapshot of the Magne-
ticum simulation Box2/hr [Hirschmann et al., 2014] with a size of 500 Mpc. The simulation
uses the cosmological parameters consistent with WMAP7 data [Komatsu et al., 2011] with
ΩΛ = 0.728, Ωm = 0.272, Ωb = 0.0456, σ8 = 0.809, ns = 0.963 and h = 0.704. Similarly
to the case of IllustrisTNG, we restrict the analysis to the set of galaxies with M∗ ≥ 108M�
leading to a total of 1 363 468 galaxies and a mean number density n̄g = 0.011, a value twice as
small as that of IllustrisTNG. The used parameters are exactly the same as in the IllustrisTNG
case leading to 11 675 �laments.

5.4.2 Comparison of �laments characteristics

From each obtained principal graph, we extract individual �laments together with their char-
acteristics as de�ned in Sect. 5.3.2. The probability distribution functions of some of these
properties are displayed in Fig. 5.8. The top left panel is focusing on the length L of �laments,
which is showing an exponential tail also reported by many previous �ndings [such as Bond
et al., 2010; Galárraga-Espinosa et al., 2020; Malavasi et al., 2020b; Rost et al., 2020]. At small
lengths, all the samples provide similar distributions with a peak of the distribution around
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5 Mpc, as also reported in Galárraga-Espinosa et al. [2020]. At larger lengths, the di�erences
between the simulations can be attributed to their di�erent volumes which is indeed larger
for Magneticum than for TNG which in turn is also larger than the EAGLE simulation, hence
allowing for longer �laments. The curvature distribution are closely similar with a large num-
ber of low-curvature �laments in all considered catalogues and only few highly curved ones,
as shown in the top right panel of Fig. 5.8. In addition to the previous quantities for �laments,
we also compute the mean galaxy density of each �lament de�ned as ρf = nf/ (Lπ4r2), where
nf is the number of galaxies associated individually to the �lament. In the bottom left panel,
we show the distribution of �lament overdensities de�ned as ρf/n̄g where n̄g is the average
number density of galaxies in the overall input volume depending on the simulation box. The
density of �laments spans a broad range in all cases, from tenuous ones with galaxy overdens-
ities close to 0 and up to∼ 100 for dense bridges of matter also drawn in dark matter analyses
of the cosmic web like Cautun et al. [2014]. In the bottom right panel, we can also see that the
radii as de�ned by Eq. (5.8) are distributed over few Mpc around the �lament spine in all the
simulations with a peak slightly below 2.5 Mpc for TNG and EAGLE and around 2.8 Mpc for
Magneticum. Even though depending on the de�nition used to de�ne the width, these results
are also consistent with previous measurements of �lament extensions in simulations exhibit-
ing peak of the radii distribution between 2 and 3 Mpc [Colberg et al., 2005; Bond et al., 2010;
Cautun et al., 2014] using the dark matter. The di�erences between the three distributions are
mainly due to the number density of objects that is higher for EAGLE than for TNG and Mag-
neticum, this latter having the smallest. Note also that the radius of �laments has been shown
highly sensitive to the time-evolution of structures with thinner �laments at low redshift as
a result of the gravitational collapse and that Magneticum has a slightly higher redshift than
the two other ones. These results on the spatial radial extent of �laments are also consistent
with the observational �ndings of Bonjean et al. [2019] with a characteristic radius of 7.5 Mpc.

When investigating further the relations between individual properties of �laments, we
�nd strong dependencies on the curvature and densities with the spatial extent of the �la-
ment. In the left panel of Fig. 5.9 is shown the evolution of the curvature γ with the length
L while the right panel displays the evolution of the �laments overdensities ρf/ρb. All the
�laments in the studied simulations show the same trends with shorter �laments appearing,
on average, straighter and denser than their longer counterparts. This result is in line with
those of Galárraga-Espinosa et al. [2020] who identify two populations of �laments with short
ones mainly standing in overdense regions and longer ones connecting lower density regions
in the Universe. We hence additionally show that small bridges connecting dense clusters are
also respectively straighter than the long �laments. Note also that, even though the trends
are similar for the di�erent simulations, the absolute values of the quantities vary. This may
be due to the di�erent baryonic physics models that are impacting the distribution of matter
around �lament, as shown by Galárraga-Espinosa et al. [2020]. This work constitutes a very
�rst step in studying the statistical properties of �laments drawn from di�erent simulations.
However, the end goal is to apply the identi�cation tool on actual galaxy surveys. To do so,
several observational e�ects must be taken into account that we leave for future investigations.

5.5 The impact of the cosmic web on cluster properties in
simulations

In Sect. 5.3.3, we introduced a de�nition of nodes in the cosmic web as bifurcations in the
graph structure based on the assumption that nodes can be found at the densest intersections



5.5. THE IMPACT OF THE COSMIC WEB ON CLUSTER PROPERTIES IN SIMULATIONS 110

0 25 50 75 100
L [Mpc]

10-6

10-3

p
d
f

0.0 0.2 0.4 0.6
γ

10-4

10-2

100

p
d
f

0 2 4
log10(ρf/ng)

0.0

0.2

0.4

0.6

p
d
f

0 5 10
r [Mpc]

0.0

0.1

0.2

0.3
p
d
f

EAGLE TNG Magneticum

Fig. 5.8. Probability distribution functions of several quantities extracted from the three cata-
logues of �laments. Are shown the length L (top left), the curvature γ (top right), the over-
density ρf/ρb (bottom left) and the radii as de�ned by Eq. 5.8 (bottom right) of �laments.

100 101 102

L [Mpc]

0.00

0.05

0.10

0.15

0.20

γ

EAGLE
TNG
Magneticum

100 101 102

L [Mpc]

101

102

103

ρ
f/
n

b

Fig. 5.9. Evolution of the average curvature (left panel) and density (right panel) of �laments
as a function of their length L for the three catalogues. Error bars are the 68% bootstrap
con�dence interval on the mean in each length bin.



111 CHAPTER 5. THE PRINCIPAL GRAPH OF THE COSMIC WEB

between �laments. The local topology and geometry of the density �eld near these massive
halos can be probed by the connectivity, a quantity encoding the number of �laments a node
is connected to. The connectivity of halos must decrease with the cosmic time due to the Uni-
verse accelerated expansion which disconnects cosmic nodes from the network of �laments
[Pichon et al., 2010]. Therefore, the statistics of halo connectivity is expected to depend on
the growth factor and hence constitute a topological constraint on dark energy [Codis et al.,
2018]. On the the other hand, the �lamentary pattern surrounding the nodes (quanti�ed by
the connectivity) can heavily impacts their characteristics such as their internal properties
and density pro�les [see e.g. Contigiani et al., 2021]. In this section, we summarise our in-
vestigation of the impact of the connectivity on the physical properties of galaxy clusters
(morphology, dynamical state, and mass assembly history), detailed in Gouin et al. [2021].

5.5.1 Data, �lamentary pattern and connectivity

For this analysis, we use the set of halos detected from the largest resolution of the IllustrisTNG
simulations [Nelson et al., 2019] with a box size of 302.6 Mpc (see Sect. 5.4.1). Groups and
halos are detected in the simulation by means of the FoF algorithm [Davis et al., 1985] with
a linking length of 0.2 Mpc/h. To trace the �lamentary pattern, we additionally make use of
the set of subhalos identi�ed with the Sub�nd algorithm to detect substructures inside host
halos [Springel et al., 2001]. From the set of FoF sample, we select 2522 halos representing
galaxy groups and clusters with masses M200 ≥ 1 × 1013M�/h at z = 0. We de�ne R200 as
the radius enclosing a mass ofM200 characterising a mean overdensity of 200 times the critical
background density. Notice also that we discard 79 halos that are less distant than 3R200 from
the edges of the simulation box to focus our analysis on the large-scale environments around
halos.

The anisotropy in the large-scale environment of groups and clusters is quanti�ed by the
local number of �laments that are connected to them, the so-called connectivity κ. This proxy
is a powerful tool to understand the geometry of the underlying density �eld, as discussed
in Codis et al. [2018]. To detect the �laments in the simulation, we use the T-ReX algorithm
applied on the set of subhalos with M∗ ≥ 109M�, following Galárraga-Espinosa et al. [2020,
2021]. From the output graph, we associate to each group and cluster the closest node of
the graph, and the local connectivity κ is the number of intersecting �laments in a sphere
of 1.5R200 radius around the graph node (a similar de�nition adopted in previous works like
Darragh Ford et al. [2019]; Sarron et al. [2019]). In addition to the 79 previously removed
halos, we remove 24 more that are low-mass groups considered as standing too far away
from the graph in terms of projected distance (> 1 Mpc/h). As a result, our �nal sample of
groups and clusters consists of 2419 halos, for which we estimate the connectivity. The cluster
connectivity is illustrated in Fig. 5.10, and one can see that the T-ReX �lamentary structure
(computed from the galaxy distribution) traces well the DM distribution around halos. In ad-
dition, Fig. 5.11 shows the probability distribution function of the connectivity for four mass
bins. The distribution of massive clusters (M200 > 1014M�/h) peaks around κ ∼ 3, 4 mean-
ing that they are mostly connected to around three or four �laments, and is spread over large
κ values (up to κ = 6). In contrast, the connectivity statistics of the lowest mass groups
(1013M�/h < M200 < 2 × 1013M�/h) strongly peaks at κ = 2, suggesting that low-mass
groups are preferentially located inside �laments, whereas massive clusters are more likely
located at the nodes of cosmic web, connecting more than two �laments. This thus con�rms
that massive structures have a higher connectivity than low-mass ones, as also found by pre-
vious works such as Aragon-Calvo et al. [2010]; Codis et al. [2018]; Darragh Ford et al. [2019];
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Fig. 5.10. Illustration of the ellipsoidal shapes and large-scale environments of four simulated
galaxy clusters. The blue ellipsoids are computed by calculated the mass tensor of DM distri-
bution, following [Jing & Suto, 2002]. The red lines represent cosmic �laments reconstructed
by the T-ReX algorithm from the galaxy distribution. Yellow spheres have a radius of 1.5R200.

Sarron et al. [2019]; Malavasi et al. [2020b]. In practice, the connectivity of low-mass groups
with M200 ∈ [1013; 1013.5]M�/h is low with nearly 80% of the objects standing in a �lament
or at its extremity with κ < 2 while the most massive ones withM200 > 1014.2M�/h are more
connected with κ > 3.

5.5.2 Impact of connectivity on the growth and shapes of clusters

It is already well known that the mass of halos are strongly correlated with their shape [Aragon-
Calvo et al., 2010; Codis et al., 2018; Darragh Ford et al., 2019; Sarron et al., 2019; Malavasi
et al., 2020b]. Beyond the driving mass e�ect, we investigate the in�uence of the large-
scale cosmic web environment on the shape of the mass distribution in clusters. Their mor-
phology, as de�ned by the ellipticity ε, measures the local anisotropy traced by the dark
matter particles. Similarly to Jing & Suto [2002], we compute the ellipticity ε as the ratio
(λ1 − λ3) / (λ1 + λ2 + λ3) where λi is the ith largest eigenvalue of the local mass tensor. Start-
ing from a sphere, the procedure is made iterative, shrinking the axes, such that the ellipsoid
encloses a total mass ofM200. An illustration of the resulting ellipsoids is shown in Fig. 5.10 for
four clusters. The �rst row of Table 5.3 quanti�es the correlation between κ and ε through the



113 CHAPTER 5. THE PRINCIPAL GRAPH OF THE COSMIC WEB

1 2 3 4 5 6
0

1

2

3

4

5

pd
f(

)

1 × 1013 < M200[M /h] < 2 × 1013

2 × 1013 < M200[M /h] < 5 × 1013

5 × 1013 < M200[M /h] < 1 × 1014

M200[M /h] > 1 × 1014

Fig. 5.11. Probability distribution function of groups and clusters connectivity, κ, for four mass
bins.

Spearman rank correlation coe�cients ρsp for two sets of clusters. The correlation coe�cient
increases when the mass increases and reaches ρsp ∼ 0.24 when M200 ≥ 1014M�/h, hence
stressing that the connectivity is also closely linked to the ellipticity, beyond the e�ect of the
mass dependence. This is also shown in the left panel of Fig. 5.12 in which, in a given mass bin,
groups with a high connectivity are more elliptical on average than low-connectivity groups
and clusters.

The observed impact of �lamentary structure on the cluster shape must be the result of
di�erent accretion phases and it is natural to think that the connectivity is also closely linked
to the way clusters accrete matter. To con�rm this assumption, we compare the connectivity
to a proxy of the accretion of a halo at z ∼ 0. We therefore introduce the instantaneous mass
accretion rate de�ned as (

dM200

dt

)
z∼0

=
M200(t+ dt)−M200(t)

dt
. (5.12)

To compute it, we use the ten last snapshots of the simulation and perform a linear regression
to obtain the value of dM200/dt. We show in the right panel of Fig. 5.12 the evolution of the the
instantaneous mass accretion rate at z = 0 as a function of mass for three bins of connectivity
(low connectivity with κ < 3, mildly connected with κ = 3 and highly connected with κ > 3).
We see that, at �xed mass, highly connected clusters tend to grow faster than low-connectivity
groups and clusters, also emphasised by the Spearman correlation coe�cients from the second
row of Table 5.3. Intuitively, one can assume that more mass is feeding a cluster when this
latter is connected to a larger number of �laments.

These results hence highlight that the halo environment in the cosmic web is impacting
its shape, independently of its mass: highly connected clusters accrete more matter and this
fast accretion must disturb their mass distribution consequently increasing their ellipticity.

5.5.3 Impact of cluster dynamical states on the connectivity

Beyond the shape of a cluster as traced by its ellipticity, we can focus on the correlation
between the connectivity of a node in the cosmic web and its dynamical state. We quantify
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M200 > 1× 1013M�/h M200 > 5× 1013M�/h

ρsp p-value ρsp p-value
ε and κ 0.11 2.15× 10−7 0.17 5× 10−4

κ and dM/dtz∼0 0.33 3.8× 10−60 0.35 4× 10−13

κ and χDS −0.13 4.6× 10−11 −0.17 5× 10−4

Table 5.3. Spearman rank correlation coe�cients ρsp and corresponding p-values between
halo properties and the connectivity for all the groups and clusters in the sample (M200 >
1× 1013M�/h), and for the 408 most massive groups and clusters (M200 > 5× 1013M�/h).

Fig. 5.12. (left) Ellipticity ε as a function of the group mass for three bins of connectivity:
κ = {1, 2}, κ = 3 and κ > 3. (right) Mean instantaneous mass growth dM/dt computed at
z ' 0 as a function of the group mass for three same bins of connectivity. Error bars are the
68% errors on the mean, derived from bootstrap resampling.

the level of dynamical relaxation, called the relaxedness, de�ned by [Haggar et al., 2020] as

χDS =

√
3(

∆r

0.07

)2
+
(
fsub
0.1

)2
+
(
η−1
0.15

)2
, (5.13)

where ∆r is the centre of mass o�set between the density peak and the barycentre of the mass
distribution in the halo, divided by the virial radius, fsub the subhalo mass fraction de�ned
as
∑
Msub/Mtot where

∑
Msub is the sum of the subhalo masses except the most massive

one, and η is the virial ratio characterising the level of virialisation of the halo de�ned as η =
2T/|W |, with T andW the kinetic and gravitational potential energy respectively. Intuitively,
a cluster that has a low value of fsub < 0.1 (few substructures), a low o�set of the centre of
mass ∆r < 0.07 and that is close to virial equilibrium with |η−1| < 0.15 can be considered as
relaxed, leading to χDS ≥ 1 [Kuchner et al., 2020]. Groups and clusters that do not ful�l this
criterion are considered as unrelaxed ones.

It is admitted that the mass is also driving the relaxedness of clusters with more massive
ones being less relaxed on average [see e.g. Power et al., 2012; Kuchner et al., 2020] since they
formed later and are still in their formation phase. Beyond this mass dependence, we show in
the left panel of Fig. 5.13 the evolution of the connectivity as a function of the mass for the
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Fig. 5.13. (left) Evolution of the connectivity as a function of mass for relaxed and unrelaxed
clusters. (right) Evolution of the connectivity as a function of mass for relaxed and unrelaxed
clusters for three subsamples with di�erent mass assembly histories. Error bars are the 68%
errors on the mean, derived from bootstrap resampling.

two categories of relaxed and unrelaxed clusters. At a �xed mass bin, we see that unrelaxed
clusters are more connected to the cosmic web than relaxed ones, a result which appears in
the last row of Table 5.3 as a weakly-negative correlation between the two quantities whose
absolute value grows with the mass threshold. This shows that independently of the mass, the
connectivity is impacting the dynamical state of groups and clusters.

5.5.4 The in�uence of mass growth history

In addition to the higher accretion rate of high-connectivity clusters shown in Sect. 5.5.2,
we exhibited in Sect. 5.5.3 that these latter are also less relaxed on average. All these res-
ults suggest that the connectivity is actually tracing di�erent mass assembly histories (MAH)
of clusters. Previous works already point out a relation between dynamical state and MAH
[Power et al., 2012; Mostoghiu et al., 2019]. Therefore, we wish to investigate how a cluster
large-scale environment in the cosmic web in�uences its MAH. In addition to the relaxedness,
we focus here on two quantities linked with the MAH of clusters given by the formation red-
shift zf at which the halo reached half of its M200 mass at z = 0 [Cole & Lacey, 1996] and
the continuous mass accretion rate Γ200 = ∆ logM200/∆ log a, with a the scale factor. In
the right panel of Fig. 5.13 we show the evolution of the connectivity for three subsamples
of clusters with di�erent MAH: (i) the early-formed, relaxed and slowly-accreting clusters (in
orange); (ii) the early-formed, unrelaxed and fast-accreting clusters (in yellow); and (iii) the
lately-formed, unrelaxed and fast-accreting clusters (in blue). We observe that older and more
relaxed clusters are weakly-connected, while the unrelaxed ones are more connected to the
cosmic web at �xed mass. Finally, the young and unrelaxed population of clusters in blue are
signi�cantly more connected to the cosmic web. These objects are strongly a�ected by the
infalling matter and can be thought as the result of recent merger events disturbing the mat-
ter distribution and increasing the connectivity [Klypin et al., 2016; Darragh Ford et al., 2019;
Vallés-Pérez et al., 2020].
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All these observations advocate for a strong impact between the mass assembly history
of clusters and the way they are embedded in the cosmic web. Old relaxed clusters are more
spherical and slowly accreting matter with a small value of the connectivity while young and
still in formation clusters are unrelaxed, more elliptical and connected in the cosmic web by
numerous �laments feeding them abundantly.

5.6 Summary and perspectives
Given the primordial role of �laments in the cosmic web, we investigated in this chapter a pos-
sible de�nition based on the principal graph formulation established in Chapter 4 not only for
the �laments but also for the nodes of the cosmic web. We particularly showcased two possible
applications of the proposed method, entitled T-ReX, aiming either at detecting the �lament-
ary structure as a whole, together with a positional uncertainty of the ridge, or at de�ning
individual �laments as branches of the principal graph. We showed that this de�nition based
on the probabilistic framework of T-ReX allowed the derivations of many interesting charac-
teristics for the statistical analyses of �laments that we carried out from multiple samples of
galaxies in simulations. Finally, we used the smooth graph learnt by the algorithm to perform
a thorough analysis of the properties of galaxy clusters depending on their spatial embedding
in the cosmic web as measured by the connectivity.

In this chapter, we covered several topics related to the �lamentary structure of the
cosmic web and, more precisely:

1. We showed that the T-ReX algorithm performs as good as other web �nders for
the detection of �lament ridges but adding the information of the uncertainty
on the ridge and using only a sparse distribution of the input traced by halos in
simulations.

2. We exposed how the principal graph can be used to identify the cosmic web ele-
ments that contain the largest mass fraction, namely nodes and �laments, as dense
bifurcations and branches in the graph structure respectively. By deriving from
the obtained graph di�erent characteristics for �laments, we were able to exhibit
an exponential tail in the distribution of their length and their curvature. The
radii of �laments resulting from local measurements in the T-ReX algorithm are
spread over few Mpc with a peak between 2 and 3 Mpc. All these results were
shown to be in agreement with previous �ndings of �laments statistics.

3. The galaxies used to determine the graph can be associated consistently with each
individual �lament, to nodes, or to the background in a probabilistic setup. This
association was compared to a physical web �nder extracting multi-scale �la-
ments and we �nd a very good agreement with the advantage of having at hand
a method relying on a much sparser sampling of the matter distribution.

4. By studying the connectivity of clusters in the cosmic web, we con�rmed the
mass-connectivity relation exhibited by previous works. We also showed that
the cosmic environment around clusters signi�cantly impact their shapes and the
way they accrete matter such that, at �xed mass, halos in nodes (with high con-
nectivities) have a larger accretion rate than those standing in �laments (weakly-
connected). These results led us to study multiple scenarios of mass assembly his-
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tory for galaxy clusters and how they connect to the cosmic web. In particular, old
relaxed groups and clusters have a small connectivity while young, fast-accreting
and unrelaxed galaxy clusters have more surrounding �laments on average.

We sketched an analysis of the �laments properties traced by the distribution of galaxies
in hydrodynamical simulations. The natural next step will be to study such characteristics as
extracted from actual galaxy surveys like the Sloan Digital Sky Surveys [York et al., 2000] or
the Dark Energy Survey [Abbott et al., 2016], in a similar manner to [Malavasi et al., 2020b;
Rost et al., 2020]. Samples of reliably detected �laments with their characteristics (size, radius,
curvature, etc.) have already proven to be crucial for the study of the distribution of baryons
in �laments [e.g. Tanimura et al., 2020a] or study their properties in other observables like
Sunayev Zel’dovich e�ect or X-rays [e.g. Tanimura et al., 2020c,b]. However, constructing
samples of reliable �laments necessitates to overcome some observational complications. The
two main di�culties being that (i) most of the large-scale galaxy surveys are photometric
observations with relatively large errors on the estimated redshift; and (ii) observations are
carried out in redshift-space inducing some distortions of the spatial distribution of galaxies
(see Sect. 2.2.2). Both of these issues create elongations of the distribution along the line-of-
sight (LoS) that could be handled in the T-ReX formalism by allowing the spherically Gaussian
components composing the graph nodes to be elongated in the LoS direction. This proposed
modi�cation could result in a built-in approach to reduce the e�ect redshift-space distortions
and the blurring induced by photometric redshift measurements produced on the extracted
�lamentary pattern. Note however that this would come with an increase of the computational
cost since the responsibilities from the Expectation-Maximisation procedure will require the
full computation of Mahalanobis distances (xi − µk)T Σ−1

k (xi − µk) instead of isotropic L2

norm which can easily be optimised.
In addition to the previously-mentioned interests, the detection of reliable �laments and

their characteristics is key to improve our understanding of the structure formation. As we
have seen, the connectivity in simulations is strongly correlated with the physical properties of
clusters and has also been shown to depend on the underlying cosmology and on the redshift
of the data distribution in Codis et al. [2018]. A further analysis of how such an information
perform and how it can be combined with existing probes to constrain cosmological models
is also an interesting perspective that matches the scienti�c question of the next Chapter 6.

Finally, in the T-ReX formalism, the �lamentary structure is modelled as a graph, and
we exploit only partially the graph information to constrain the overall smoothness of the
resulting structure. However, the graph encodes much more information at the nodes and
edges level. Assigning for instance local physical properties to graph nodes (like densities,
masses, etc.) may o�er the opportunity to link the topology of the cosmic web to the physics
of tracers, similarly to Coutinho et al. [2016]. Additionally, the statistics of edges in the MST
was found sensitive to cosmology in previous works [Hong & Dey, 2015; Hong et al., 2016;
Naidoo et al., 2020], showing the ability of graph-derived statistics to encode a signi�cant
amount of information about the underlying cosmological model.





Chapter 6.

Constraining cosmological parameters with cos-
mic environments

“It should be quite straightforward.”
J. Kuruvilla
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Chapter 5 investigated a possible de�nition of the cosmic environments that are nodes and
�laments from a distribution of matter tracers (galaxies or halos) and studies their physical
properties through a graph framework. In this chapter, we make use of cosmic environments
de�ned physically through the eigenvalues of the Hessian matrix of the gravitational potential
and traced in simulations by the full dark matter distribution. Focusing on the two-point
statistics derived from the environments and carried out in both real and redshift spaces, we
present the �rst quantitative measurement of the informative power of the di�erent cosmic
environments about the underlying cosmological parameters as compared to the analysis of
the matter power spectrum.

6.1 Context and introduction

6.1.1 The matter power spectrum as a cosmological probe

The most basic statistics that one can build from centred cosmological �elds such as the over-
density �eld δ or convergence maps are based on the two-point correlation function or its
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Fourier-equivalent, the power spectrum. This latter summary statistics quantitatively ex-
presses the covariance between Fourier modes of the �eld (see Sect. 1.3.2). Beyond its sim-
plicity, the two-point statistics fully encodes the information of Gaussian random �elds, par-
ticularly well describing some cosmological �elds, like the early distribution of matter. The-
oretical predictions, allowed for instance by linear perturbation theory, depicts the late-time
matter power spectrum as depending on the initial one with great accuracy at large scales
(k < 0.15 h/Mpc, see Fig. 2.2 and related discussion). In particular, the linear theory permits
to describe the impact of each cosmological parameter of the ΛCDM model on the late-time
matter power spectrum based on the one from the initial density �eld at the linear scales. As
such, the interpretability of the two-point statistics is well-known and well-understood at lin-
ear scales [Heath, 1977; Peebles, 1980], even for non-Gaussian overdensity �elds, making the
matter power-spectrum a keystone for the statistical analysis of large-scale structures since
their �rst observations in the early 80s.

6.1.2 The cosmic environments as an alternative probe

When the �eld is non-Gaussian, such as the late-time matter distribution in the Universe, the
two-point statistics is not carrying all the information about the underlying �eld. Even though
still informative, the matter power spectrum is subject to degeneracies among parameters
of the ΛCDM model which prevent it from fully constraining di�erent values. For instance,
changes in the matter density Ωm, in the normalisation of the power spectrum σ8 and in the
summed neutrino massMν are known to produce similar e�ects on the matter power spectrum
over a wide range of scales.

In Sect. 2.3.1, we discussed several statistics derived from topological de�nitions of the
matter distribution or based on machine-learning data compression methods to incorporate
the information that leaked into higher-than-two order moments. Alternatively, cosmic en-
vironments also exhibit particular dependencies with cosmological parameters. The hierarch-
ical formation of structures makes nodes a wealthy source of information [White & Frenk,
1991] depending on the matter and dark energy contents of the Universe but also on the amp-
litude of the initial density �uctuations [for a review, see Allen et al., 2011]. Their number
counts, shapes, mass pro�les and evolution with redshift have been shown particularly e�-
cient in partially breaking the degeneracy between Ωm and σ8 occurring in a matter power
spectrum analysis [Bahcall et al., 1997; Bahcall & Fan, 1998; Holder et al., 2001]. The always
larger and more complete availability of cluster samples obtained from di�erent observables
like optical, X-rays and millimetre wavelengths enabled to considerably improve the cosmo-
logical constraints derived from these statistics [see e.g. Mantz et al., 2015; Salvati et al., 2018;
DES Collaboration et al., 2020; Corasaniti et al., 2021]. In Costanzi et al. [2013] is also shown
that varying Mν induces di�erent abundances of massive clusters at �xed primordial condi-
tions and Villaescusa-Navarro et al. [2014] exhibit a scale-dependence of the bias for those
massive tracers in Universe with massive neutrinos. Voids, on their side, are objects of low-
density making them the component of the cosmic web the least a�ected by the non-linear
collapse of matter. This property is particularly interesting to probe the accelerated expansion
of the Universe and study the dark energy [Lee & Park, 2009; Lavaux & Wandelt, 2012; Pis-
ani et al., 2015]. The measure of their sizes, shapes, counts and corresponding evolution with
redshift are key quantities related to the underlying cosmology [van de Weygaert & Platen,
2011; Hamaus et al., 2014, 2015]. Numerous works also point out the interest of studying the
e�ect Mν in voids since the large thermal velocities of neutrinos, coupled with the volume-
dominating property of voids, make neutrinos contribute to a large extent to the overall mass
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voids enclose. In particular, voids have been measured smaller and denser when Mν increases
in massive neutrino simulations [Villaescusa-Navarro et al., 2013; Massara et al., 2015; Kre-
isch et al., 2019]. The constraints brought by these two extreme environments that are voids
and nodes are combined by Bayer et al. [2021] who show that the combination of information
provided by the halo mass function and the void size function leads to considerable improve-
ment over the matter power spectrum constraints in real space. Kreisch et al. [2021] recently
shown that using the same statistics derived from halos in the simulations also yields sizeable
gains.

In an attempt to incorporate local information about the underlying pattern into the two-
point analysis, several works rely on a weighted version of the matter clustering in which
a mark is assigned to each source, based for instance on the local luminosity [Beisbart &
Kerscher, 2000; Sheth et al., 2005] or density [White, 2016]. This latter version, the marked-
by-density power spectrum up-weights the low-density parts of the �eld and is of particular
interest for discriminating between several cosmologies [Valogiannis & Bean, 2018; Armijo
et al., 2018] and constraining cosmological parameters in real-space [Massara et al., 2021].

In this picture, the di�erent components of the cosmic web, from its densest to its emptiest
parts are a promising way to provide complementary information about the underlying cos-
mological model. They show their own sensitivities to some cosmological parameters whose
e�ects are limiting the constraints obtained from the matter power spectrum. We hence seek
to quantify the information brought by the combination of low, intermediary and high dens-
ity environments represented respectively by voids, walls, �laments and nodes that should be
able to break some degeneracies among parameters allowing to improve the constraints over
a direct analysis of the matter clustering.

In this chapter, we undertake, using large N -body simulations, a quantitative analysis
of the cosmological information content of all cosmic environments at linear and non-
linear scales (up to k ∼ 0.5 h/Mpc) and in both real and redshift spaces. After intro-
ducing the N -body simulations from the Quijote suite and how the environments are
theoretically and practically de�ned through the local tidal anisotropies, we explain in
what manner the Fisher formalism can be used to assess the constraining power of a
statistical representation of an observable.
Equipped with these methodological aspects, we show that the information carried by
the two-point statistics of the cosmic environments is superior to a matter power spec-
trum analysis both in real and redshift spaces leading to a sizeable gain in the constraints
put on cosmological parameters of the underlying model. In particular, the combina-
tion of the di�erent environmental sensitivities breaks some key degeneracies in several
planes and mostly between matter-related parameters like Mν–σ8 or Mν–Ωm.
After drawing these conclusions, we expose some caveats of the proposed study and
discuss their potential impact on the presented results together with how they may
limit the perspective of applying such an analysis to observational data.

6.2 Data & Methodology
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Table 6.1. Speci�cation of the simulations from the Quijote suite with their denomination and
the number of realisations. Underlined values are those changing from the �ducial setup. 2LPT
stands for 2nd order Lagrangian Perturbation Theory and ZA for Zel’dovich approximation.

Name Ωm Ωb h ns σ8 Mν ICs # of real.
Fiducial 0.3175 0.049 0.6711 0.9624 0.834 0 2LPT 15000

Ω+
m 0.3275 0.049 0.6711 0.9624 0.834 0 2LPT 500

Ω−m 0.3075 0.049 0.6711 0.9624 0.834 0 2LPT 500
Ω+
b 0.3175 0.051 0.6711 0.9624 0.834 0 2LPT 500

Ω−b 0.3175 0.047 0.6711 0.9624 0.834 0 2LPT 500
h+ 0.3175 0.049 0.6911 0.9624 0.834 0 2LPT 500
h− 0.3175 0.049 0.6511 0.9624 0.834 0 2LPT 500
n+

s 0.3175 0.049 0.6711 0.9824 0.834 0 2LPT 500
n−s 0.3175 0.049 0.6711 0.9424 0.834 0 2LPT 500
σ+

8 0.3175 0.049 0.6711 0.9624 0.849 0 2LPT 500
σ−8 0.3175 0.049 0.6711 0.9624 0.819 0 2LPT 500
M0

ν 0.3175 0.049 0.6711 0.9624 0.834 0 ZA 500
M+

ν 0.3175 0.049 0.6711 0.9624 0.834 0.1 ZA 500
M++

ν 0.3175 0.049 0.6711 0.9624 0.834 0.2 ZA 500
M+++

ν 0.3175 0.049 0.6711 0.9624 0.834 0.4 ZA 500

6.2.1 The Quijote suite of simulations

Quijote [Villaescusa-Navarro et al., 2020] is a publicly available1 large suite of N -body simu-
lations. With 44 100 simulations spanning more than a thousand cosmological models, each
with multiple realisations, it is the ideal dataset to perform statistical cosmological analyses
as it allows to build accurate covariance matrices and compute derivatives for any cosmolo-
gical representation. Each simulation consists of a set of 5123 particles (and 5123 neutrinos
in massive neutrinos cases) that are evolved forward in time from z = 127 to z = 0 using a
tree-PM Gadget-3 code [Springel, 2005] in a L = 1 Gpc/h size box. The �ducial cosmology is a
�at ΛCDM cosmology with parameters consistent with Planck Collaboration VI et al. [2020]:
Ωm = 0.3175, Ωb = 0.049, h = 0.6711, ns = 0.9624 and σ8 = 0.834. With these parameters,
and assuming a zero mass for neutrinos (Mν = 0), 15, 000 random realisations are computed.
The Quijote suite then provides 500 realisations by varying individually each parameter, �xing
the others at their �ducial values. The stepsizes are: dΩm = 0.010, dΩb = 0.002, dh = 0.020,
dns = 0.020, and dσ8 = 0.015. Additionally, 500 realisations using several sum of neutri-
nos mass are also computed, with Mν =

∑
mν = {0.1, 0.2, 0.4} eV, that we will refer to as

M+
ν ,M

++
ν , andM+++

ν cosmologies respectively. All these information about the Quijote suite
of simulations are summarised in Table 6.1.

In the present analysis, we aim at studying quantitatively the cosmological constraints
obtained from the two-point summary statistics derived in the di�erent cosmic web environ-
ments in both real and redshift spaces. To do so, we mimick RSDs (see Sect. 2.2.2) in every
simulations by displacing all particles (dark matter particles and neutrinos if any) through Eq.
(2.1) along the third Cartesian axis of the box hence assuming the plane parallel approximation.

1https://quijote-simulations.readthedocs.io/ en/ latest/

https://quijote-simulations.readthedocs.io/en/latest/
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6.2.2 Cosmic web segmentation
In this theoretical work, we make use of the T-web algorithm introduced in Hahn et al. [2007],
and later extended by Forero-Romero et al. [2009] to identify cosmic environments through the
tidal tensor T . Using prescriptions originating from the linear growth of perturbations in the
Zel’dovich approximation [Zel’dovich, 1970], this web �nder de�nes environments in a phys-
ical way based on the local level of tidal anisotropy. From the discrete set of particle positions,
we �rst rely on a B-spline interpolation scheme [Hockney & Eastwood, 1981; Sefusatti et al.,
2016] to estimate the density �eld ρ(x) on an N3

g regular grid. For our purpose, we adopt an
interpolation at the order four, namely the Piecewise-Cubic Spline (PCS) scheme, in which the
mass of a particle is spread over the 43 = 64 closest cells. By noting d = Ng‖x−xp‖2/Lwith
x the center of a grid cell, xp the particle position and L the size of the box length (assuming
a cubic box), PCS weights are given by

(4− 6d2 + 3d3)/6 if d ∈ [0, 1[ ,

(2− d)3/6 if d ∈ [1, 2[ ,

0 otherwise.
(6.1)

This choice of interpolation order represents a good trade-o� between the accuracy of the
reconstructed �eld and its computational time.

From ρ, one can derive the gravitational potential Φ by solving the Poisson equation

∆Φ(x) = 4πGρ(x), (6.2)

where ∆ is the Laplacian operator and G the gravitational constant. It is convenient to write
this equation in terms of the reduced potential Φr(x) = Φ(x)/4πGρ̄ so that the Eq. (6.2)
satis�es ∆Φr(x) = δ(x), with δ(x) = ρ(x)/ρ̄− 1 the overdensity. Solving this reduced ver-
sion of the Poisson equation in Fourier space using a discrete approximation of the Laplacian
operator (in our case, a 7-point approximation) holds an estimate of Φ(x) on the grid. From
the gravitational potential, the tidal tensor can be obtained in each grid cell x as

Ti,j(x) =
∂2Φ(x)

∂xi∂xj
, (6.3)

leading to the �eld of eigenvalues λ1(x) ≤ λ2(x) ≤ λ3(x). The cosmic environment asso-
ciated with a grid cell x is obtained depending on the number of eigenvalues below a given
threshold λth as de�ned in Table 6.2.

The T-web algorithm hence segments the density �eld at the cell level. To build individual
overdensity �elds for each environment, we simply propagate the classes at the particle level
by assigning the same environment signature to all hosted particles in a given cell. From these
four disjoint sets of particles, we build four corresponding overdensity �elds {δV, δW, δF, δN}
estimated with the PCS interpolation scheme. The full density �eld δ is hence decomposed
into the four environmental �elds and respects the linear combination

δ = fV δV + fW δW + fF δF + fN δN, (6.4)

where fα denotes the mass fraction of the environment α, namely Nα/N , with N the total
number of particles2. In Fig. 6.1 is shown this decomposition with the contribution of each

2Note that we express here the mass fractions in terms of number of particles since they all have the same
mass in the N -body simulations.
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Table 6.2. Cosmic web classi�cation rules in the cell x depending on the eigenvalues λ1 ≤
λ2 ≤ λ3 of the tidal tensor.

Environment Condition
Void λ1, λ2, λ3 < λth

Wall λ1, λ2 < λth, λ3 > λth

Filament λ1 < λth, λ2, λ3 > λth

Node λ1, λ2, λ3 > λth

environments to the overall matter density �elds displayed in the top panel for a thin 2.77
Mpc/h depth slice. As expected, nodes describe a discrete set of dense objects found at the
extremities of �laments and intersection of walls while voids show large low-density areas
covering most of the surface.

In our implementation of the T-web formalism, the potential is being smoothed at a scale
of σN Mpc/h before the classi�cation, resulting in three parameters for the full segmentation
procedure that are: Ng, the total number of grid cells, λth the threshold for the eigenvalues of
the tidal tensor and σN . After assessment of the e�ect of each parameter on the classi�cation
in a physically reasonable range (from 1 to 3 Mpc/h), we concluded that the smoothing scale
and the number of cells were not of great impact on both the mass and volume fractions of the
resulting environments. We consequently adopt for this work σN = 2 Mpc/h and Ng = 360
leading to a grid size of 2.77 Mpc/h. The λth parameter, however, has a signi�cant e�ect on
the classi�cation, both in terms of volume and mass fractions in the di�erent environments
[Forero-Romero et al., 2009]. The impact of this parameter is illustrated in Fig. 6.2 in which
are displayed the averaged mass fractions 〈fα〉 for each cosmic environment as drawn by the
T-web algorithm with three values of λth that are {λ−th, λfid

th , λ
+
th} = {0.2, 0.3, 0.4}. The �ducial

value of 0.3 is the one corresponding roughly to the threshold at which voids percolate for our
cosmological volume of 1 (Gpc/h)3 [Forero-Romero et al., 2009]. It is also the value adopted in
many other works for classi�cation by means of the T-web prescriptions such as Martizzi et al.
[2019]. The left (resp. right) panel of Fig. 6.2 focuses on the real-space (resp. redshift-space)
case where an increasing value of λth from 0.2 to 0.4 is attributing more particles in voids
and less in �laments and nodes. Comparing the two panels also illustrates that more mass is
being associated with �laments and less in nodes in the redshift space. This is mainly due to
the Finger-of-God distortions squashing clustered regions and breaking their isotropic nature
making them appearing elongated in the line-of-sight direction (see Sect. 2.2.2). Quantitat-
ively, varying the threshold in eigenvalues from 0.2 to 0.4 yields a factor of two between the
obtained mass fractions in voids in both real and redshift spaces. Consequently, in order to de-
rive constraints from environments that are robust to uncertainties in the identi�cation of the
environments and also indirectly to changes in the de�nitions o�ered by the variety of meth-
ods [see e.g. Libeskind et al., 2017], we embed λth as a nuisance parameter in the formalism
such that all presented constraints are marginalised over it.

6.3 Environments sensitivity to cosmology

6.3.1 Cosmic fractions as a function of cosmological parameters
The broad range of densities probed by the di�erent environments at z = 0 hinted by Fig.
6.1 and pointed out more quantitatively by other works [Forero-Romero et al., 2009; Cautun
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et al., 2014; Libeskind et al., 2017] re�ects their di�erent gravitational histories (see also Sect.
2.4.1). Voids are for instance environments of low-density spanning most of the volume while
nodes are highly non-linear and dense objects enclosing a similar value of the mass as voids
but in only few percents of the volume. Filaments span a broad range of densities from long
and tenuous arteries to small and dense bridges linking clusters together. Figure 6.3 shows the
ratio between the average mass fractions in each environment when a cosmological parameter
varies and the average obtained with the �ducial cosmology. The error bars (represented as the
bars around points and crosses and as the grey shaded area for �ducial simulations) are the 3σ
con�dence intervals. Many parameters are causing sizeable changes in these proportions and,
unsurprisingly, parameters related to matter density, like σ8 and Ωm, have the largest impact.
The most important variations are induced by σ8, for which an increase (resp. decrease) is
leading to a larger (resp. smaller) mass fraction in dense environments. This is in agreement
with the de�nition of σ8 that is measuring how matter clusters at a scale of 8 Mpc/h. The
impact of neutrino mass, even though smaller in comparison, is still signi�cant and fraction
ratios lie outside the 3σ con�dence regions. When Mν increases, it basically leads to make
dense environments more massive, similarly to σ8. All these di�erent e�ects observed in the
mass fractions already suggest that each cosmological parameter has a di�erent impact on the
environments that will be even more re�ned when inspecting the clustering statistics in each
environment through the power spectra.

6.3.2 Power spectra in cosmic environments

The auto power spectrumPαα(k) is de�ned as the covariance of Fourier modes (see Sect. 1.3.2)
of the density �eld δα, with α ∈ {V,W, F,N} denoting a given environment. More generally,
for two overdensity �elds δα and δβ , the cross power spectrum is given by

Pαβ(k)δD(k1 + k2) =
1

(2π)3 〈δ̃α(k1)δ̃β(k2)〉, (6.5)
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with k = ‖k1‖2, and δ̃ referring to the Fourier transform of δ. In redshift space, the peculiar
velocities of sources is causing a dependence of the power-spectrum with the line-of-sight
inducing a breaking of the density �eld isotropy property which consequently alters the spatial
pattern (see Sect. 2.2.2). This e�ect can be taken into account using a multipole expansion of
the power spectrum expressed as

P s,αβ
` (k) =

2`+ 1

2

∫ 1

−1

Pαβ(k, µ)L`(µ)dµ, (6.6)

with µ = k · n̂/k, the angle with the line of sight, Pαβ(k, µ) the 2D power spectrum obtained
by binning both in k andµ, andL` the Legendre polynomials. In this work, we rely on the three
�rst non-zero multipoles of the power spectrum in redshift-space,P s,αβ

`=0 (k), P s,αβ
`=2 (k), P s,αβ

`=4 (k),
respectively called monopole, quadrupole and hexadecapole. These ` ≤ 4 orders are the only
non-vanishing moments in the linear approximation of the distortions and encode the full 2D
information at linear scales [Kaiser, 1987]. The corresponding Legendre polynomials are

L`(µ) =


1 if ` = 0,

(3µ2 − 1) /2 if ` = 2,

(35µ4 − 30µ2 + 3) /8 if ` = 4.

(6.7)

Note that Eq. (6.6) generalises Eq. (6.5) and, under isotropy conditions for the overdensity
�elds, all poles P`(k) with ` > 0 are exactly 0. To avoid confusion, we refer to the real-space
monopole as simplyP (k) and leave the subscript ` for redshift-space spectra, in addition to the
superscript s. In the present study, in expressions (6.5) and (6.6) is in fact not directly appearing
the overdensity �eld δ but its deconvolved evaluation. Indeed, since δ is estimated by the PCS
smoothing interpolation scheme, it deforms the shape of the estimated power spectrum [Jing,
2005]. To correct for this e�ect, we �rst deconvolve the �elds δα by applying the window
function in Fourier space

W (k) =

[∏
i

(
1− 4

3
si +

2

5
s2
i −

4

315
s3
i

)]−1

, (6.8)

with si = sin
(
πki/2kNyq

)
and kNyq = πNg/L the Nyquist frequency. Additionally, to avoid

any bias induced by aliasing e�ects, we restrict the analysis to the modes of P (k) below half
of the Nyquist frequency, kNyq/2 = 0.57 h/Mpc. In our case, kmax = 0.5 h/Mpc, allowing us to
take into account both large-scales and non-linear ones in a robust manner. Finally, because
of the discrete nature of the input, namely the dark matter particles, we also subtract the shot
noise from power spectra estimated (6.5) and (6.6). Even though the number of particles is
very large and we expect the shot noise contribution to be small at the scales of interest, auto-
spectra Pαα (including also Pmm) are subtracted by the quantity 1/n̄α where n̄α = Nα/V .

6.4 Constraining power of cosmic environments

6.4.1 Fisher formalism for information content quanti�cation

Considering a set of model parameters θ ∈ Rd (in our case, cosmological parameters), we as-
sume that the vector s(X) ∈ Rn is a statistic built from an observable (here, the binned power
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spectra drawn from the overdensity �elds) following a Gaussian distribution s ∼ N (s̄,Σ). Its
log-likelihood can hence be written

log p(s |θ) = −1

2
(s− s̄)TΣ−1(s− s̄)− 1

2
log |Σ|+ cst, (6.9)

where the constant comes from the normalisation of the distribution. A general way to quantify
the information carried by s on θ is to use the Fisher information matrix I(θ). From the
Fréchet-Darmois-Cramér-Rao inequality, its inverse I(θ)−1 corresponds to a lower-bound on
the variance of any unbiased estimator drawn from s hence assessing the e�ciency of the
representation. Elements of the Fisher matrix are de�ned as the variance of the derivative of
the log-likelihood, namely

I(θ)i,j = Eθ

[(
∂ log p(s |θ)

∂θi

)T(
∂ log p(s |θ)

∂θj

)]
, (6.10)

which can also be written in terms of the 2nd derivative of the log-likelihood under some
smoothness constraints (which are ful�lled in the Gaussian case),

I(θ)i,j = −Eθ
[
∂2 log p(s |θ)

∂θi∂θj

]
, (6.11)
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where Eθ is the expectation taken over the distribution p(s |θ). This latter equation is intuit-
ively explaining how the amount of information is measured. A sharp log-likelihood around
θ implies a huge increase with small changes of the parameters, making the representation
s very sensitive to variations dθ. On the other hand, a weakly-curved log-likelihood with a
locally �at behaviour advocates for a poor description since its sensitivity with changes in the
parameters is small. Under the Gaussian assumption described above and by further consider-
ing a covariance matrix Σ independant from cosmological parameters θ, mainly because this
contribution is expected to be small and source of underestimation of errors [Carron, 2013;
Kodwani et al., 2019], it yields

I(θ)i,j =

(
∂s̄

∂θi

)T

Σ−1

(
∂s̄

∂θj

)
. (6.12)

The non-linear operation of the inversion to compute the precision matrix Σ−1 is actually
leading to a biased estimate, even though the covariance may be computed using the clas-
sical unbiased estimation. Still under the previously-established Gaussian assumptions, the
unbiased estimate of the precision matrix is given by [Kaufman, 1964; Hartlap et al., 2007]

Σ−1 =
Nfid − n− 2

Nfid − 1
Σ̂−1, (6.13)

where Nfid is the number simulations at the �ducial cosmology, n is the length of the sum-
mary statistics vector s and Σ̂ = (s− s̄) (s− s̄)T / (Nfid − 1) is the unbiased estimate of the
covariance matrix.

The partial derivatives of the summary statistics with respect to parameters of the model
can be computed using the variations of cosmologies provided by the Quijote suite of sim-
ulations. Considering the set of studied cosmological parameters {Ωm,Ωb, h, ns, σ8}, we can
estimate numerically

∂s̄

∂θi
' s̄(θi + dθi)− s̄(θi − dθi)

2dθi
. (6.14)

In the case of massive neutrino simulations, Mν ≥ 0 with a �ducial value at 0.0 eV. For this
parameter, we thus cannot rely on Eq. (6.14) and instead estimate the derivative using the
four-point forward approximation

∂s̄

∂Mν

' s̄(4M+
ν )− 12s̄(2M+

ν ) + 32s̄(M+
ν )− 21s̄(Mν = 0.0)

12M+
ν

. (6.15)

Because massive neutrino simulations in Quijote are initialised using the Zel’dovich approx-
imation and �ducial ones using the 2nd order Lagrangian perturbation theory, the quantity
s̄(Mν = 0.0) is computed using the �ducial simulations initialised with the Zel’dovich ap-
proximation also. In all the presented results, if not mentioned otherwise, the numerical es-
timation of derivatives and covariances have been respectively made with Nderiv = 500 and
Nfid = 7000 realisations. In Sect. 6.4.4, we discuss the impact of these numbers and assess the
numerical stability of the results.

6.4.2 Real-space auto-spectra
We �rst study the constraining power of summary statistics derived from the set of power
spectra in distinct environments PVV, PWW, PFF, PNN and their combination, P comb, for
cosmological models in real space. The two key ingredients of the Fisher-based quanti�cation
of information appear in Eq. (6.12) as:
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(i) The partial derivatives of the statistics with respect to the cosmological parameters.
Intuitively, a summary presenting large variations with parameters of the model carries
more information than if it barely varies;

(ii) The covariance matrix Σ measuring the relations between elements of the summary
statistics. Naturally, having elements varying the same way limits the overall informat-
ive power of the summary.

Figure 6.5 shows the �rst constituent, the derivatives ∂Pαα(k)/∂θi while Fig. 6.6 plots
a proxy of the second ingredient through the normalised version of the covariance matrix,
namely the correlation matrix C , whose elements are de�ned as

Cij =
Σij√
ΣiiΣjj

. (6.16)

The �rst striking observation when inspecting the correlation matrix for Pmm is that it quickly
becomes highly non-diagonal with correlation coe�cients Cij = 0.5 at scales of∼ 0.3 h/Mpc.
Such high couplings between scales are expected at low redshifts, Fourier modes being more
and more correlated with time, as a result of the non-linear evolution of the matter distribu-
tion [Blot et al., 2015]. These non-diagonal terms are intrinsically reducing the representative
power of the matter power spectrum to constrain cosmological parameters, independently of
how it varies with these latter. This insu�ciency of Pmm(k) is also marked by the shape of
the derivatives, quite monotonous with similar structures for most parameters, except Ωm, Ωb

and Mν where the wiggles are signatures of an impact on the baryonic acoustic oscillations.
On the opposite side, spectra drawn from cosmic environments are showing di�erent patterns
in the derivatives. Taking the example of the Ωm parameter in the top left panel of Fig. 6.5, the
change of sign occurs at di�erent scales, which seem to follow the order of average density,
namely from void to node. This pattern is also observed for other parameters like Ωb, h, ns or
Mν . The correlation coe�cients of the environmental statistics visible in the bottom panel of
Fig. 6.6 also display less o�-diagonal cross-correlation coe�cients of high values, at the ex-
ception of the node-node case. Indeed, PNN Fourier modes are highly correlated with values
Ck1k2 ∼ 0.5 for k1, k2 ∼ 0.2 h/Mpc, which is a signature of the highly non-linear environment
it represents.

These overall observations suggest that the environments bring di�erent information on
the set of cosmological parameters, and that, when combined together, they may break degen-
eracies and allow to put tighter constraints on the underlying cosmological model. One way
to quantify this gain is the Fisher formalism in which the marginalised 1σ con�dence ellipses
can be obtained from the information matrices (6.12). These latter are shown in Fig. 6.7 when
using the statistics of the matter power spectrum or the one from each environment either
individually or combined all together. Table 6.3 delivers the complementary information of
the marginalised σθi constraints obtained in the di�erent cases and de�ned as

σθi =
1√

[I(θ)−1]ii
, (6.17)

where Iii is the ith diagonal element of the Fisher information matrix. As already hinted by the
analysis of the partial derivatives and the correlation matrix, the marginalised errors obtained
from the matter-matter power spectrum Pmm are high. The corner plot especially shows us
the degeneracies among parameters in almost all panels, observed for instance in the Mν–σ8

panel for which the matter power spectrum behaves similarly when varying either Mν or σ8,
making it di�cult for the Pmm statistics to disentangle the two e�ects. When inspecting the
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ellipses obtained from the individual spectra from the environments, we clearly distinguish
di�erent orientations for several parameters, such as the void and �lament environments in
the Mν–Ωm, Mν–σ8 or Mν–Ωb projected spaces. This observation is emphasised by Fig. 6.8
in which we show a zoom over the Mν–Ωm and Mν–σ8 planes. This suggest a di�erent type
of information delivered by the two environments, which, when combined all together, tight-
ens up the constraints as quantitatively shown in Table 6.3 with improvement factors from
4.5 to 17.1 for all the �ve cosmological parameters considered and 15 for the sum of neutrino
mass. Unsurprisingly, the constraints put by individual environments are, to a lesser extent,
also better than a matter power spectrum analysis in real space. As discussed previously, we
however see the broad ellipses and hence poor constraints obtained from the node environ-
ment due to the high level of correlations between the PNN coe�cients, which, together with
the parameter degeneracies, lead to high errors on cosmological parameters. Focusing on Mν ,
we also see that the best constraints are obtained by the void environment, as theoretically
expected and stated in previous works [Pisani et al., 2015; Massara et al., 2015; Kreisch et al.,
2019].

In White [2016] is exposed a way to build an estimate of the matter power spectrum
weighted by the local density as

m(x, R, p, ρ?) =

[
1 + ρ?

ρ? + ρR(x)

]p
, (6.18)

where ρR is the density �eld smoothed by a top-hat �lter of radius R, p the factor of en-
hancement of low (resp. high) density areas if p > 0 (resp. p < 0) and ρ? a density para-
meter to tune. Confronting results from Table 6.3 to those obtained with the marked power
spectrum analysis of Massara et al. [2021] in real-space shows that the combination of auto-
spectra in cosmic environments yields similar constraints for all the studied parameters of
the simulation. Similarly, Bayer et al. [2021] constrains the same set of cosmological para-
meters using the real-space matter power spectrum from Quijote together with the void size
and halo mass functions (respectively VSF and HMF). They report 1σ marginalised errors
of {0.0063, 0.037, 0.23, 0.10, 0.0069, 0.096} on the set of parameters {Ωm,Ωb, h, ns, σ8,Mν}
meaning that the combination of auto-spectra in environments performs better in most cases
with improvement factors of {0.5, 4.1, 3.0, 3.4, 3.5, 1.6} compared to the VSF+HMF statistics
in real space. It is also noteworthy that λth is set free in the analysis and Fig. 6.7 shows that this
parameter is well-constrained by most environments. Quantitatively, voids, walls, �laments,
nodes and their combination are respectively leading to marginalised error over the threshold
of σλth = {0.0046, 0.0090, 0.0071, 0.0100, 0.0006}, indicating that the results are robust to
changes in this threshold. Even though λth may in�uence the identi�ed cosmic structures, it
does not much a�ect the constraints. This is also encouraging in the sense that it leaves room
to other de�nitions of cosmic environments to be applied and still ending up with similar
results.

These obtained constraints are nonetheless dependant on the maximum scale involved
for the power spectra coe�cients kmax. Figure 6.9 illustrates this dependency by showing
the evolution of σθi for all the parameters and derived statistics with the value of kmax. The
�rst conclusion that we can draw is that the information extracted from Pmm is saturating
when kmax increases. This saturation when going to smaller scales, pointed out by previous
analyses [Takahashi et al., 2010; Blot et al., 2015; Chan & Blot, 2017], is mostly induced by
the degeneracies among parameters for this precise summary statistics which do not lead to
any further improvement on the constraints at mildly non-linear scales when kmax > 0.25
h/Mpc. The individually smaller errors obtained in the environments are not observed at all
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Table 6.3. Marginalised 1-σ constraints obtained from the power spectrum in di�erent envir-
onments for all cosmological parameters.

Statistics σΩm σΩb
σh σns σσ8 σMν

Pmm 0.0967 0.0412 0.5128 0.4998 0.013 0.8857

PVV 0.0327 (3.0) 0.0184 (2.2) 0.1960 (2.6) 0.1244 (4.0) 0.0204 (0.6) 0.3695 (2.4)

PWW 0.0392 (2.5) 0.0199 (2.1) 0.1800 (2.8) 0.0796 (6.3) 0.0258 (0.5) 0.9938 (0.9)

PFF 0.0322 (3.0) 0.0190 (2.2) 0.2399 (2.1) 0.0223 (2.2) 0.0225 (0.6) 0.4392 (2.0)

PNN 0.0872 (1.1) 0.0473 (0.9) 0.6117 (0.8) 0.6005 (0.8) 0.1208 (0.1) 0.5427 (1.6)

P comb 0.0122 (8.0) 0.0091 (4.5) 0.0766 (6.7) 0.0292 (17.1) 0.0020 (6.5) 0.0592 (15.0)

scales. In particular, when restricting the analysis to kmax < 0.2 h/Mpc, environments are
not individually constraining better the set of cosmological parameters, even though their
combination still lead to an improvement over the matter-matter analysis, for all considered
values of kmax. It is however interesting to note the better performance of the mass-dominating
environment, the �laments, that are, at large scales kmax < 0.2 h/Mpc, bringing the tightest
constraints for almost all parameters. When going to smaller scales, �laments start to saturate
and the volume-dominating environments, namely voids and walls are providing similar, if
not tighter, constraints for most of the studied parameters.

Another quantity of interest to measure the power of a representation is given by the
signal-to-noise ratio (hereafter SNR) that describes the reachable accuracy of the statistics
measurement given the covariance matrix. In general, the SNR of a summary statistic s ∈ Rn

is de�ned as
SNR(s) =

√
sTΣ−1s, (6.19)

with Σ−1 the corresponding precision matrix de�ned by Eq. (6.13). Figure 6.10 shows the
evolution of the SNR for the matter and environmental power spectra as a function of the
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Fig. 6.9. Evolution of the marginalised constraint σθi put on cosmological parameters
{Ωm,Ωb, h, ns, σ8} and the sum of neutrino mass Mν in real space with the maximum scale
used for the Fisher analysis, namely kmax.

maximum scale kmax. We again observe the �attening when kmax approaches non-linear scales
at 0.25 h/Mpc for SNR(Pmm). Although environment-dependent spectra also suggest such a
plateau, it happens at much lower scales and higher values of the SNR, except for nodes again
which saturate at the lowest value among all of the studied statistics. The shapes of the SNR
evolution with kmax from environments combination also suggest that there is room left for a
further increase when going to even smaller scales, where the matter analysis will not be able
to improve. Quantitatively, the SNR obtained from the combination of environments is eight
times higher than the one from the matter auto-spectrum at kmax = 0.5 h/Mpc and explains
also partly the better constraints put on cosmological parameters from Fig. 6.9 and Table 6.3.

6.4.3 Redshift-space auto-spectra

The real-space results demonstrate the power of the cosmic web in breaking degeneracies
among cosmological parameters to bring, at all scales, signi�cant improvements over the mat-
ter power spectrum constraints. This latter shows quick saturation at mildly non-linear scales
which limits the e�ciency of this statistics in constraining parameters of the model, even when
pushing the analysis to small scales. Observations however usually rely on sources mapped in
the sky and for which the redshift is used as a measure of distance. The so-called redshift space
is well-known to have a signi�cant impact on the matter clustering statistics. The two main
di�erences between the real monopole P (k) and its redshift-space counterpart P s,mm

`=0 (k) are
(see Fig. 2.3 for an illustration): (i) a power boost at large scales due to the coherent motion of
matter escaping from voids and moving towards dense regions [Kaiser, 1987]; (ii) a decrease of
power at small scales where Finger-of-God e�ect is spreading particles around initially resid-
ing in a spherical overdensity [Jackson, 1972]. These two e�ects are clearly observed when
comparing the redshift and real space matter power spectra shown in Fig. 6.11. Spectra de-
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Fig. 6.10. Evolution of the SNR with the maximum scale for the power spectra used in the
Fisher analysis in real space, namely kmax.

rived from cosmic environments in redshift space, obtained by applying the same procedure
as in real space with identical parameters, are shifted at large scales. This shift appears as a
power boost for �laments and walls and as a decrease of power for voids and nodes with re-
spect to their real-space counterparts. These two latter environments are the most subject to
the decrease of power at all scales. Unexpectedly, the node environment is the most a�ected
by RSDs at small scales, with a considerable power decrease due to the Finger-of-God e�ect,
while the damping is much less marked and occurs at smaller scales for �laments and walls.
It is also particularly emphasised for nodes since they may also be more di�cult to detect by
the classi�cation procedure since they now appear as elongated structures in the line-of-sight
(see for instance Fig. 2.4 and corresponding discussion). The individual impact of each cos-
mological parameter on the matter power spectrum is also di�erent in redshift space. As an
example, due to the distortions in the line-of-sight direction, a higher value of σ8 is not imply-
ing a simple shift of the spectrum as in real space. Instead, it suppresses additional power at
small-scales (large k) due to the Finger-of-God distortions inside non-linear clustered struc-
tures. It has been shown that the e�ect of massive neutrinos can be mimicked by a decrease of
σ8 on the redshift-space monopole [see e.g. Villaescusa-Navarro et al., 2018; Hahn et al., 2020],
which in turn has a similar impact as a shift of Ωm. This is illustrated in the left panel of Fig.
6.12 showing the residuals P s,mm

`=0 (k)θi/P s,mm
`=0 (k)fid − 1 with θi being either σ−8 , Ω−m or M+

ν .
The shape dependencies of the matter power spectrum for variations of σ8 and Mν have been
shown similar at scales k > 0.1 h/Mpc in Villaescusa-Navarro et al. [2018] and it is possible
to �nd a value of σ8 �tting at some percent levels the spectrum obtained for M+

ν . Monopoles
obtained in the cosmic environments however show various dependencies for changes in σ8

and Mν , as delineated in the right panel of Fig. 6.12. Consequently, a change in σ8 cannot
reproduce the e�ect of massive neutrinos in all environments, inducing a breaking of degen-
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eracy between the two parameters. The di�erences between real and redshift monopoles can
be appreciated when comparing the derivatives respectively in Fig. 6.5 and in the top panel
of Fig. 6.13. Notable changes are observed in the σ8 and Mν panels in which the matter spec-
trum P s,mm

`=0 (k) is showing a broader range of amplitudes suggesting more changes with these
parameters in redshift than in real space and hence di�erent constraints obtained for it. The
monopoles of the environments, on their side, are still showing di�erent shapes from each
other, highlighting di�erent variations with cosmological parameters. These various e�ects
illustrate the ability of statistics built from the combination of the spectra from di�erent envir-
onments to break degeneracies between cosmological parameters and subsequently improve
the constraints over the sole information from the matter power spectrum. The second in-
gredient of the Fisher analysis, the correlation coe�cients between wavenumbers of the mat-
ter and environmental monopoles Ck1,k2 de�ned in Eq. (6.16), are respectively shown in the
bottom-left block-submatrices of the left and right panels of Fig. 6.14. Compared to the real-
space matrices obtained in Fig. 6.6, the redshift-space case show much less high-amplitudes
o�-diagonal terms. Taking the same example as in real-space, Ck1,k2 ∼ 0.20 for k1, k2 ∼ 0.30
h/Mpc. This phenomenon is also visible for the environment-dependent spectra, and more
particularly in the case of nodes where the correlation between modes is also reduced.

All the discussed e�ects on the matter power spectrum P s,mm
`=0 in redshift space are leading

to tighter constraints on cosmological parameters shown in the �rst row of Table 6.4. Almost
all parameters are getting considerable gain over the monopole of the real-space analysis, ex-
cept σσ8 which remains roughly at the same value. As we have been arguing in the previous
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Table 6.4. Marginalised 1-σ constraints obtained from the analysis of power spectra monopoles
and quadrupoles computed in the di�erent environments for all cosmological parameters.

Statistics σΩm σΩb
σh σns σσ8 σMν

P s,mm
`=0 0.0079 0.0144 0.1485 0.0794 0.0123 0.3876

P s,VV
`=0 0.0307 (0.3) 0.0192 (0.7) 0.1998 (0.7) 0.1128 (0.7) 0.0158 (0.8) 0.3289 (1.2)

P s,WW
`=0 0.0260 (0.3) 0.0224 (0.6) 0.2164 (0.7) 0.1786 (0.4) 0.0332 (0.4) 0.9826 (0.4)

P s,FF
`=0 0.0187 (0.4) 0.0182 (0.8) 0.2175 (0.7) 0.1740 (0.5) 0.0291 (0.4) 0.3401 (1.1)

P s,NN
`=0 0.0340 (0.2) 0.0272 (0.5) 0.3596 (0.4) 0.3944 (0.2) 0.0963 (0.1) 1.1548 (0.3)

P s,comb
`=0 0.0051 (1.6) 0.0104 (1.4) 0.0839 (1.8) 0.0348 (2.3) 0.0033 (3.8) 0.0709 (5.5)

P s,mm
`={0,2} 0.0048 0.0133 0.1391 0.0716 0.0020 0.0838

P s,VV
`={0,2} 0.021 (0.2) 0.0143 (0.9) 0.1316 (1.1) 0.0801 (0.9) 0.0093 (0.2) 0.0984 (0.9)

P s,WW
`={0,2} 0.0130 (0.4) 0.0213 (0.6) 0.1921 (0.7) 0.0766 (0.9) 0.0146 (0.1) 0.1449 (0.6)

P s,FF
`={0,2} 0.0093 (0.5) 0.0158 (0.8) 0.1844 (0.8) 0.1283 (0.6) 0.0084 (0.2) 0.1825 (0.5)

P s,NN
`={0,2} 0.0126 (0.4) 0.0210 (0.6) 0.2378 (0.6) 0.1553 (0.5) 0.0140 (0.1) 0.5322 (0.2)

P s,comb
`={0,2} 0.0034 (1.4) 0.0097 (1.4) 0.0761 (1.8) 0.0306 (2.3) 0.0020 (1.0) 0.0349 (2.4)
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Fig. 6.13. Partial derivatives ∂Pαα(k)/∂θi for the di�erent environmental auto-spectra and
for each studied parameters {Ωm,Ωb, h, ns, σ8,Mν}. Dashed (resp. plain) lines correspond to
negative (resp. positive) values of the derivative. The grey area depicts the range of k > kmax
excluded from the analysis.
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paragraph, the various sensitivity of cosmic environments to some cosmological parameters
are still leading to a sizeable decrease of the marginalised errors σθi when all of them are
combined together. Even though they perform individually worse than the matter two-point
analysis, their combination is allowing, by breaking some degeneracies, to bring improvement
factors of 1.4 to 3.8 on cosmological parameters and 5.5 on Mν . Adding the next non-zero
multipole order in the matter analysis, namely the quadrupole P s,mm

`=2 , is not changing sig-
ni�cantly the constraints on Ωb, h and ns but improves drastically those on Ωm, σ8 and Mν

respectively with factors 1.6, 6.2 and 4.6, as shown in the bottom-half part of Table 6.4. These
tighter constraints obtained by the matter power spectrum in redshift space are explained by
the breaking of degeneracies in the Mν–σ8 plane allowed by the quadrupole. Note however
that the absolute value of these constraints are optimistic since our analysis rely on dark mat-
ter particles. Using tracers like halos or galaxies would considerably reduce the constraining
power of the two-point statistics [see for instance Table 2 of Hahn et al., 2020]. This improve-
ment is highlighted by much more features observed in the derivatives of the quadrupole
with parameters like σ8 and Mν of the bottom part of Fig. 6.13. In this case, the 320 Fourier
coe�cients resulting from the combination of monopoles and quadrupoles in cosmic environ-
ments lead to improvement factors of 1.0 to 2.3 for cosmological parameters and 2.4 for the
summed neutrino mass. In particular, we denote no further improvement of the error on σ8,
already well-constrained by the P s,mm

`=0 + P s,mm
`=2 statistics. This is also illustrated in the 1σθi

marginalised con�dence ellipses presented in Fig. 6.15 where the ellipses from environmental
combination are superimposed on the matter ones for almost all paired parameters with σ8.
We still observe, however, some di�erent orientations for ellipses in several planes like the
Mν–σ8 or Ωm–ns which are at the origin of the non-negligible improvements for the con-
straints on Mν and ns over the matter monopole and quadrupole analysis. Exactly as for the
real-space case, these gains are observed for all considered kmax ∈ [0.11, 0.5] h/Mpc scales, as
shown in Fig. 6.16 and especially marked by a larger improvement factor when considering
only the largest scales kmax < 0.20 h/Mpc. It is also interesting to note the saturation of the
void environment at roughly 0.20 h/Mpc which then sees its constraining power improving
again at scales of 0.35 h/Mpc. Overall, while the matter power spectrum shows a plateau for
all parameters, the combination of environments still suggest further improvement when go-
ing to smaller scales for some parameters like Ωm,Ωb, or h. Finally, in Fig. 6.17 are shown the
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Fig. 6.16. Evolution of the marginalised constraint σθ put on cosmological parameters
{Ωm,Ωb, h, ns, σ8} and the sum of neutrino mass Mν in redshift space with the maximum
scale used for the Fisher analysis, namely kmax.

evolution of the SNRs with the maximum scale kmax for the monopole-only analysis in dotted
line and the one adding the quadrupole in solid line. The �rst remarkable feature is the satura-
tion of information for P s,mm

`=0 which slowly increases from 0.20 to 0.50 h/Mpc while increases
much faster when adding the quadrupole. This is coherent with the observed constraints by
the Fisher analysis. On the other hand, the environmental SNR are not changing much when
adding the quadrupole, except for nodes which show a regain at small scales. Quantitatively,
the SNR of the combined environmental clustering statistics is twice the one of the matter at
all scales when using both monopoles and quadrupoles. Finally, adding the information of the
next non-zero multipole ` = 4 in the analysis does not improve further the constraints at the
considered scale of 0.5 h/Mpc, both for the matter power spectrum and the ones obtained in
the cosmic environments.

6.4.4 Stability and convergence analysis

In this Fisher forecast, we resort to numerical computations of the precision matrices de�ned
in Eq. (6.13) but also of the derivatives from Eq. (6.14) and (6.15). To avoid biased results
induced by a non-convergence of these quantities, it is essential to check the stability of the
derived constraints under reduction of both Nfid, the number of simulations used to com-
pute the covariances and Nderiv, the number of simulations for the derivatives. We focus here
on the convergence of the constraints σθi derived from the combination of power spectra in
all environments yielding the maximum length among all the studied statistical summaries
with n = 160 in real space and n = 320 when combining the monopole and quadrupole in
redshift space. Note that the convergence of the matter power spectrum is already studied in
Villaescusa-Navarro et al. [2020]. Figures 6.18 and 6.19 show how the marginalised constraints
σθi individually behave respectively in real and redshift space when varying Nfid and Nderiv.
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Fig. 6.17. Evolution of the SNR with the maximum scale for the power spectra used in the
Fisher analysis in redshift space, namely kmax, for the monopoles P s

`=0 only (dashed lines) and
monopoles plus quadrupoles P s

`=0 + P s
`=2 (plain lines).

We see that, for all parameters, convergence at a ±1% level is obtained when Nfid ∼ 5000
and Nderiv ∼ 300 in real space while these values are respectively shifted to 5250 and 350 in
redshift space. These results show the good convergence properties of the analysed statistics,
excluding any bias induced by numerical instabilities in the computation of Fisher constraints.

6.5 Conclusion and perspectives

In this work, we have carried out the �rst quantitative analysis of the cosmological inform-
ation content of all cosmic web environments based on the two-point clustering statistics in
Fourier space. The auto-spectra derived from environments were computed from individual
density �elds identi�ed with the T-web formalism which relies on the local curvature of the
gravitational potential to depict nodes, �laments, walls and voids. Using the large suite of
Quijote simulations, we were able to carry out a Fisher analysis by computing the partial de-
rivatives and the covariance matrix of the extracted statistics in a statistically robust manner in
the non-linear regime with kmax ≈ 0.5 h/Mpc. We compared the constraints put by the envir-
onments upon the matter power spectrum analysis on the set of �ve cosmological parameters
{Ωm,Ωb, h, ns, σ8} and the summed neutrino mass Mν .
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±1% variations in the marginalised constraints.
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In particular, we �nd that

• The power spectra computed in the cosmic web environments show di�erent
shape dependencies when varying some cosmological parameters such as Mν ,
Ωm and σ8 in real and redshift spaces that are not simple translations of the mat-
ter power spectrum. These variations originate from the intrinsic di�erences in
densities and hence evolution histories of each environment, where the observed
structures at z = 0 are imprinted di�erently depending on the cosmology.

• From a quantitative point of view, the combination of power spectra in the envir-
onments at linear and non-linear scales (kmax = 0.5 h/Mpc) leads to the pos-
sibility of breaking some key degeneracies between parameters of the model
which consequently allows to tighten the constraints with improvement factors
of {8.0, 4.5, 6.7, 17.1, 6.5, 15} respectively on parameters {Ωm,Ωb, h, ns, σ8,Mν}
over the power spectrum in real space. Redshift-space constraints, although
already narrowed down when using the joint analysis of the matter monopoles
and quadrupoles, are getting even tighter when combining the environmental
auto-spectra allowing factors of improvements up to 2.3 on ns and 2.4 on the
sum of neutrino mass.

• The constraints obtained from the combination of two-point statistics in Fourier
space in the cosmic environments are superior for the whole range of maximum
scales analysed kmax ∈ [0.11, 0.5] h/Mpc and this statistics yields a 8 (resp. 2)
times higher signal-to-noise ratio than the matter power spectrum in real space
(resp. redshift space).

The matter component used in this analysis, the cold dark matter, is however not a direct
observable. Observational analyses rely on statistics derived from biased and visible tracers
of the matter, such as galaxies. The �rst issue of handling such biased tracers is that they
may trace di�erently the cosmic environments. For instance, using the halos of the Quijote
simulations with the same mass threshold as used in Hahn et al. [2020], namely M > 3.2 ×
1013M�/h, would considerably alter the detection of low-density environments like voids or
walls that we do not expect to host halos of such mass [Cautun et al., 2014]. It is then necessary
to infer the underlying dark matter clustering taking this bias e�ect into account (see Sect.
2.2.2). Bias usually comes in the analysis as an additional nuisance parameter that needs to be
inferred from the data itself, thus contributing to increase of the size of the parameter space
and may also lead to additional degeneracies among parameters reducing consequently the
constraining power of the statistics. In our case, assuming a linear biasing scheme, we would
need to take an individual bias term into account for each environment {bV, bW, bF, bN}.

It is also well-known that adding constraints on the cosmological parameters from the
independant cosmic microwave background measurements as a prior in such analyses of the
matter power spectrum can considerably reduce the obtained errors. In this work, we however
did not consider additional priors given that the aim was to carry a theoretical quanti�cation
of the information content of cosmic environments only. Adding such priors could however
be of interest when targeting real observations, together with matter tracers, which will be
the purpose of future works.

The estimates of the matter power spectrum weighted by the local density proposed by
White [2016] yields a non-linear transform of the overdensity �eld that we exposed in Eq.
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(6.18). Such a weighted version of the power spectrum has been shown to contain more in-
formation than the standard matter power spectrum in real-space by Massara et al. [2021].
It is however well-established that cosmic environments are complex objects and cannot be
uniquely described in terms of density thresholds [see e.g. Cautun et al., 2014; Libeskind et al.,
2017]. In this context, it would be interesting to link the presently exposed analysis of the en-
vironments with a mark depending on both the density and the level of local tidal anisotropy.
This would have the vast advantage of relieving the analysis from detecting the environments
with a pre-�xed de�nition.

In conclusion, we have shown that there is signi�cantly more information contained in
the density �eld when analysing independently the cosmic environments and then using their
combination rather than directly relying on the matter density �eld summarised by solely its
power spectrum, as it is traditionally done. The sizeable improvements in the constraints on
all cosmological parameters brought by our environment-dependent analysis, even in the ideal
case addressed in the present study, opens up the possibility to take advantage of the spectra
and cross spectra in environments for the optimal exploitation of future large galaxy surveys
such as DESI [Levi et al., 2013] or Euclid [Laureijs et al., 2011].



Conclusion

“On n’aura pas de poste permanent, mais on aura
bien rigolé.”
V. Bonjean

The initial matter distribution, a nearly-Gaussian density �eld, evolved through billions of
years under the e�ect of gravity eventually drawing the complex picture of the cosmic web
that astronomers, astrophysicists and cosmologists are together trying to observe, describe
and model. Throughout this thesis, we explored multiple facets of the cosmic web with, as
underlying guideline, the extraction of relevant physical or cosmological information from
cosmological datasets of the large-scale structures.

Naturally, such a question is tightly coupling multiple research �elds among which are
data science and statistics. This is hence by �rst taking a step back from the cosmological
questions that we proposed to build representations of generic point-cloud datasets. By re-
sorting to a statistical physics reformulation of the clustering, we were able to improve our
understanding of how the structure of a dataset is driving the partitioning of datapoints into
multiple groups. The identi�cation and follow-up of successive phase transitions occurring
during a simulated annealing allowed us to extract information about the number, sizes, and
hierarchical embeddings of the multiple sub-structures in the data. We showed, for di�erent
regularised models, that the quantity at the origin of the transitions can explicitly be derived
and exactly computed for the �rst transition and approximated for the following ones.

Building upon this clustering procedure, we have established a graph regularised model
to represent continuously-structured datasets. By assuming that the data are living on a lat-
ent one-dimensional manifold, and modelling this latter as a graph, we built a new frame-
work for the estimation of principal graphs. Taking advantage of probabilistic foundations,
the algorithm we proposed was shown particularly e�cient to unveil the pattern in complex
datasets with multiple scales and high levels of noise and outliers. Beyond its mathematically
appealing properties, such as a guaranteed convergence towards a local maximum during the
optimisation, it is also fast, making it suitable for the description of large datasets.

Such multi-dimensional datasets in which a representation must be learnt to allow further
scienti�c analyses can arise in various �elds, ranging from biology to cosmology. In our case,
we used the previously-exposed principal graph method, T-ReX, to carry out an in-depth ana-
lysis of the �lamentary structure of the cosmic web as depicted by galaxies in hydrodynam-
ical simulations. We exposed how the graph representation of the interconnected network
of galaxies can be used to de�ne individual �laments. By focusing on a set of three simula-
tions, we established the main properties of the �laments statistics such as their length and
curvature distributions with their characteristic exponential tails showing only rare long and
highly-curved �laments. In this intricated cosmic network, a special focus was put on �la-
ments themselves but also in the way they interact with nodes of the cosmic web. We showed
that these anchors can be readily expressed in the T-ReX formalism as dense bifurcations,
leading to the identi�cation of the environments of galaxies in agreement with the physical
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de�nition of locally isotropic regions in the matter density �eld. The connectivity of nodes,
quantifying their local embedding in the cosmic web, was also shown to be particularly sens-
itive to the assembly history of clusters. In particular, we provided evidences for a scenario in
which early-formed and unrelaxed clusters are, on average, more connected to the �lamentary
pattern than old and relaxed clusters.

All these results emphasise the importance of identifying reliably the di�erent environ-
ments to make the best use of cosmological observables in order to understand the formation
of structures at all scales, from galaxies to clusters and how the cosmic web is shaping these
elements of the Universe. By undertaking a thorough quantitative analysis of the two-point
information in the cosmic web environments, we showed that the combined use of nodes, �l-
aments, walls and voids e�ciently breaks degeneracies between cosmological parameters to
which these environments have di�erent sensitivities. We thus tightened the constraints on
cosmological parameters, over the use of the full matter power spectrum, by up to one order
magnitude. We thus pictured the cosmic environments as a gold mine of information about
the Universe itself, able to bring tremendous knowledge about the underlying cosmological
model.

This thesis was conducted in the perspective of optimising the modelling, the character-
isation and the utilisation of large-scale structure datasets for cosmological analyses. In this
context, more and more importance is particularly given to topological and geometrical rep-
resentations of the cosmic web enabling new insights in the study of the structure formation
and evolution at multiple scales. This growing interest is obviously fuelled by the considerable
advances from the observational, theoretical and statistical communities. On the observational
side, the next generation of large-scale surveys will map the large-scale matter distribution at
all wavelengths from the optical to the radio with Euclid, the Vera Rubin Observatory, DESI
and SKA. These new data, their cross-correlations and combinations, will not only allow us
to constrain the cosmological parameters of the standard cosmological model with accuracies
orders of magnitudes better than what is currently achieved but they will also allow the testing
of alternative theoretical models proposed to explain the Universe formation and evolution. It
is paramount that the scienti�c exploitation of these surveys is accompanied with an extens-
ive e�ort aiming at devising optimised methods to extract meaningful information and hence
address the cosmological questions.

The work presented in the thesis mainly targeted the topological representation of the cos-
mic web as a graph structure, focusing of the global characteristics of the matter distribution
and at present time. Graphs built from the spatial proximity of galaxies are a promising way to
build new summary statistics based on quantities derived from graph theory such as the degree
(the number of edges connecting a given galaxy), the assortativity (the correlation between
linked galaxies) or the shortest paths (set of shortest geodesic paths on the graph linking two
galaxies) that have already been shown to encode cosmological information [Hong & Dey,
2015; Hong et al., 2016; Naidoo et al., 2020]. Studying the correlations between the physical
properties of graph nodes (galaxies) and graph properties (degree, assortativity, length, etc.)
also o�er a unique opportunity to link the topology of the cosmic web to the physics of tracers.

Another avenue of research interesting to follow is the study of both the evolution and dy-
namics of the large-scale �lamentary pattern as the temporal morphism of the extracted graph
structures. Indeed, whilst the proposed work, as well as the current literature gives import-
ance to the pattern at present time, or studies it independently at several time snapshots, only
few works address the time evolution as a set of successive events. This could in particular
allow the interpretation of the topological modi�cations of the graph structure, i.e. the local
variations in the number of branches and the related size of cycles in the topology, as thermo-
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dynamic events of the cosmic pattern. By building a model bringing key information of the
time evolution of the �lamentary pattern as viewed by the successive merging of primordial
�laments, it would provide a perfect playground for the testing of hypotheses, such as the
cosmic web detachment and other environmental quenching e�ects argued by several works
[see e.g. Aragon Calvo et al., 2019].

The complexity of datasets encountered in cosmology, involving a wide range of scales,
linear and non-linear physics, makes it an adapted �eld to apply and develop machine learning
methods, which were shown particularly e�cient in solving problems intractable so far based
on such large and complex data in reasonable times. The outstanding results obtained by
the �rst applications of deep learning methods in astrophysics are however often limited by
the di�culties in interpreting the obtained models. It is only with the joint e�ort of various
communities, notably from computer science and statistical physics that these problems could
be readily tackled. In particular, the structure of the data and how this latter is embedded
in space (symmetries, lower-dimensional manifolds, etc.) is expected to play a major role in
the learning dynamics [see e.g. Goldt et al., 2020]. The work presented in this thesis explored
this aspect in the simple context of clustering. An exciting perspective would be to develop
more fundamental relations between the data structure and the features that are learnt in the
context of simple neural networks model to better understand what makes them particularly
successful for certain tasks.

On the application side of the machine learning, many recent works investigate the possib-
ility to recover the early and/or late time large-scale dark matter distribution from the obser-
vation of sparse tracers like halos, galaxies or clusters at redshift z = 0 [see for instance Jasche
& Wandelt, 2013; Leclercq et al., 2015; Schmittfull et al., 2017]. This mapping problem is made
complex by the non-linear relation between the non-Gaussian density �eld and its sparse dis-
crete representation by the distribution of galaxies. For the purpose of inferring non-linear
relations between two or three dimensional �elds, machine learning have already been shown
particularly powerful. The recent availability of large amount of simulations targetting the
speci�c needs to perform statistical analyses and machine learning applications like Quijote
[Villaescusa-Navarro et al., 2020] makes it now possible to explore deep learning methods for
such cosmological investigations. Coupled to the previous point on their interpretability, such
models, if well-understood, could help improving our knowledge on the interplay between
dark and baryonic matter but more so on the evolution of the Universe.
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Titre : Les environnements de la toile cosmique : identification, caractérisation et quantification
de l’information cosmologique
Mots clés : Cosmologie: Structures grandes échelles de l’Univers, Toile cosmique; Méthodes: Méthodes stat-
istiques, Analyse de motifs, Apprentissage automatique non supervisé, Modèles de mélange.
Résumé : La distribution de matière dans l’Univers
se présente sous une structure complexe que l’on appelle
la toile cosmique. Dans cette disposition spatiale, des ré-
gions denses, les nœuds de la toile cosmique, sont reliés
par des ponts de matière, les filaments, qui se trouvent
à l’intersection de structures planaires moyennement
denses appelées murs qui définissent eux-mêmes les bords
de vastes régions vides. Cette distribution, façonnée
par la gravité depuis des milliards d’années, contient
de précieuses informations sur le modèle cosmologique
sous-jacent mais également sur les conditions initiales de
l’Univers et son évolution. La détection et l’étude des élé-
ments de la toile cosmique, qui jouent également un rôle
fondamental dans la formation et l’évolution des galax-
ies, constituent de véritables défis nécessitant la concep-
tion d’outils sophistiqués pour traiter la complexité des
structures multi-échelles qui la compose.

Avec pour ambition d’identifier et de caractériser les
différents environnements, cette thèse propose plusieurs
approches pour analyser des jeux de données spatiale-
ment organisés au moyen de méthodes d’apprentissage
non supervisé fondées sur les modèles de mélanges. En
particulier, des principes dérivés de la physique stat-
istique sont utilisés pour mieux appréhender et com-
prendre la dynamique d’apprentissage d’un algorithme
de classification non supervisé. Nous exposons com-
ment utiliser ce parallèle avec la physique statistique
afin d’explorer le jeu de données et obtenir des inform-
ations sur sa structure. Afin d’identifier la structure fil-
amentaire de la toile cosmique, nous construisons en-

suite une version régularisée de la procédure de clas-
sification pour apprendre itérativement une représenta-
tion du jeu de données, que l’on suppose généré par une
structure uni-dimensionnelle sous-jacente. La méthode
modélise cette structure latente par un graphe qui est
intégré comme un a priori dans la formulation Bayési-
enne du problème menant à l’estimation d’un graphe
principal passant au centre de la distribution de matière
tracée par les galaxies. Nous montrons que cette for-
mulation est particulièrement adaptée à la description
des filaments cosmiques puisqu’elle permet la description
de leurs propriétés géométriques (longueurs, épaisseurs,
etc.) ainsi que l’association, pour les traceurs (galax-
ies, halos), d’une probabilité d’appartenir à un filament
donné. L’algorithme proposé dans la thèse est appliqué
avec succès à des simulations numériques. Ces applica-
tions ont notamment permis l’étude des relations entre la
connectivité des amas de galaxies dans la toile cosmique
et leurs propriétés dynamiques et morphologiques. En-
fin, nous réalisons, à partir d’un ensemble de simulations
à N -corps, une étude approfondie de l’information cos-
mologique contenue dans les environnements de la toile
cosmique (nœuds, filaments, murs et vides). Il est not-
amment montré que l’analyse des environnements per-
met de lever les dégénérescences entre certains des para-
mètres du modèle faisant de la toile cosmique une sonde
alternative permettant d’améliorer significativement les
contraintes sur les paramètres cosmologiques vis-à-vis
des analyses conventionnelles.

Title: Cosmic web environments: identification, characterisation, and quantification of cosmo-
logical information
Keywords: Cosmology: Large-scale structure of Universe, Cosmic Web; Methodology: Statistical Methods,
Pattern analysis, Unsupervised Machine Learning, Mixture models.

Abstract: The late-time matter distribution depicts
a complex pattern commonly called the cosmic web. In
this picture, the spatial arrangement of matter is that of
dense anchors, the nodes, linked together by elongated
bridges of matter, the filaments, found at the intersection
of thin mildly-dense walls, themselves surrounding large
empty voids. This distribution, shaped by gravitational
forces since billions of years, carries crucial information
on the underlying cosmological model and on the evolu-
tion of the large-scale structures. Detecting and study-
ing elements of cosmic web, playing also a key role in
the formation and evolution of galaxies, are challenging
tasks requiring the elaboration of optimised methods to
handle the intrinsic complexity of the pattern made of
multi-scale structures of various shapes and densities.

With the aim of identifying and characterising the
cosmic web environments, we propose several approaches
to analyse spatially structured point-cloud datasets, not
restricted to cosmological ones, by means of unsuper-
vised machine learning methods based on mixture mod-
els. In particular, we use principles emanating from stat-
istical physics to get a better understanding of the learn-
ing dynamics of a clustering algorithm and expose how
statistical physics can be used to explore the data dis-
tribution and obtain key insights on its structure. In
order to identify the filamentary part of the pattern, its

most prominent feature, we propose a regularisation of
the clustering procedure to iteratively learn a non-linear
representation of structured datasets, assuming it was
generated by an underlying one-dimensional manifold.
The method models this latent structure as a graph em-
bedded as a prior in the Bayesian formulation of the
problem to estimate a principal graph passing in the
ridges of the matter distribution as traced by galaxies or
halos. We show that this formulation is especially well-
suited for the description of the filaments since it allows
the description of their geometrical properties (lengths,
widths, etc.) and associates to each tracer a probability
of residing in a given filament. The resulting algorithm
is successfully used to detect filaments in state-of-the-
art numerical simulations. It also allows us to study the
relation between the connectivity of galaxy clusters to
the cosmic web and their dynamical and morphological
properties. Finally, based on a large suite of N -body
simulations, we perform a comprehensive analysis of the
cosmological information content based on the two-point
statistics derived in the cosmic web environments (nodes,
filaments, walls and voids). We show that they can break
some degeneracies among key parameters of the model
making them a suitable alternative probe to significantly
improve the constraints on cosmological parameters ob-
tained by standard analyses.
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