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Abstract

In this thesis, we study optimal control problems of partial differential equations with
an application to the selective laser melting process. The thesis consists of four chapters.
In chapter 1, we introduce the topic of the thesis and we present the main results.
Chapter 2 deals with an optimal control problem of the heat equation with non-convex
constraints on the control. The problem corresponds to laser path optimization in the
selective laser melting process. First, we introduce this technology and the control
problem. The laser path is the control. Then we show existence of optimal controls and
we deduce a first order necessary optimality condition. The difficulty in discretizing the
non-convex constraints leads us to introduce another constraint on the control, being
non differentiable we treat it by penalization. In chapter 3, we study the existence of
local solutions for the heat-Maxwell coupled system, the permittivity dependent on
the temperature. The model describes the diffusion of heat with volumic heat source
induced by electromagnetic waves. The model being nonlinear, we first show that
Maxwell’s equations are well posed using the theory of evolution systems (theory of T.
Kato) in the hyperbolic case. Then, we show the existence of local solutions for the
coupled problem using the Schauder’s fixed point theorem. Finally in chapter 4, we
study an optimal control problem related to external electromagnetic source. The state
equation is the heat-Maxwell system presented in chapter 3 but with a permittivity
independent of the temperature. The control is the external electromagnetic source
and could be the electric field of lasers. We show the well posedness of the state
equation then we prove existence of optimal controls. At last, a first-order necessary
condition for a control to be optimal is then derived in the form of a variational inequality.

Key words: Heat Equation, Maxwell’s equations, heat-Maxwell coupled system, laser
path optimization, optimal control, non convex constraints, first-order necessary optimal-
ity condition.
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Résumé. Dans cette thèse, nous étudions quelques problèmes de contrôle optimal
des équations aux dérivées partielles avec appliqués au procédé de fusion sélective par
laser. La thèse se compose de quatre chapitres. Dans le chapitre 1, nous introduisons
le sujet de la thèse et nous présentons les principaux résultats obtenus. Le chapitre 2
traite un problème de contrôle optimal de l’équation de la chaleur avec des contraintes
non convexes sur le contrôle. Le problème correspond à l’optimisation de la trajectoire
du laser dans le procédé de fusion sélective par laser. Tout d’abord, nous présentons
cette technologie et le problème de contrôle optimal étudié. Le contrôle est la trajectoire
du laser. Ensuite, nous montrons l’existence d’un contrôle optimal et nous en déduisons
une condition d’optimalité nécessaire du premier ordre. La difficulté à discrétiser les con-
traintes non convexes nous amènent à introduire une autre contrainte géométrique sur la
trajectoire du laser, étant non différentiable nous la traitons par pénalisation. Dans le
chapitre 3, nous étudions l’existence de solutions locales pour le système couplé chaleur-
Maxwell, la permittivité dépendante de la température. Le modèle décrit la diffusion de
la chaleur avec une source de chaleur volumique induite par des ondes électromagnétiques.
Le modèle étant non linéaire, nous montrons d’abord que les équations de Maxwell sont
bien posées en utilisant la théorie des systèmes d’évolution (théorie de T. Kato) dans
le cas hyperbolique. Puis, nous montrons l’existence de solutions locales pour le prob-
lème couplé en utilisant le théorème du point fixe de Schauder. Enfin au chapitre 4,
nous étudions un problème de contrôle optimal lié à la source électromagnétique externe.
L’équation d’état est le système chaleur-Maxwell présenté au chapitre 3 mais avec une
permittivité indépendant de la température. Le contrôle est la source électromagnétique
externe et pourrait être le champ électrique des lasers. Nous montrons que l’équation
d’état est bien posé puis nous prouvons l’existence d’un contrôle optimal. Enfin, une
condition nécessaire du premier ordre pour qu’un contrôle soit optimal est alors dérivée
sous la forme d’une inégalité variationnelle.
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Chapter 1

Introduction

1.1 Aim and motivation

Additive manufacturing technologies (AMT), including 3D printing, have undergone con-
siderable development during the last decade. It differs from traditional material removal
processes like milling, turning, and spark erosion, because this technology family creates
metal components by incremental addition of material instead of removal of chips. Start-
ing from a three-dimensional CAD (computer aided design) representation of an object,
the object is virtually "sliced" into a set of two-dimensional layers. These layers are then
successively fused and consolidated on top of each other to recreate the three-dimensional
object. AM technologies using laser avoid the need for toolings such as jigs, molds, and
fixtures. Also, fabrication of optimized and complex patterns that are especially applica-
ble in automotive, aerospace, and biomedical products becomes much easier. Specifically,
AM can manufacture complex geometries which are hard or impossible to fabricate by
conventional cutting tools and technologies. Moreover, it is economical to use AM for
ranges of low to large batches in a short period with low material waste and low residual
stress.

Laser sintering is a process in which a high energy laser beam scans the surface of
a powder bed (the powder can be metal, polymer or ceramics) and the melted powder
solidifies to form the bulk part. Selective Laser Melting (SLM) is the most commonly
used terminology to describe laser sintering of metals. SLM makes it possible to create
fully functional parts directly by melting metallic powder by a layer-by-layer technology
without using any intermediate binders or any additional processing steps after the laser
melting operation. Laser sintering is very complicated because of its fast laser scan rates
and material transformations (solidification and liquefaction) in a very short time frame.
The temperature field was found to be inhomogeneous by many previous researchers
[57][30][61]. Meanwhile, the temperature evolution history in laser sintering has signif-
icant effects on the quality of the final parts, such as density, dimensions, mechanical
properties, microstructure, etc. For metals, rapid repeated heating and cooling cycles of
successive layers of the powder feedstock during SLM build process is responsible for large
temperature gradients, as a consequence high residual stresses and deformation appear,
and may even lead to crack formation in the fabricated part. Thermal distortion of the
fabricated part is one serious problem in SLM [16].

Our aim in this thesis is to study two main problems in SLM. The first one is presented
in chapter 2, where a laser path optimization problem in SLM is proposed and studied. In
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6 CHAPTER 1. INTRODUCTION

fact, laser scanning strategies in SLM influence temperature distribution. Indeed highly
localized heat inputs may result in large temperature gradient and thus lead to deforma-
tions during SLM process. Our aim in Chapter 2 is to propose a mathematical model to
find an optimal trajectory minimizing thermal gradients within the produced part using
optimal control theory of PDE’s. The second problem studied in this thesis is the interac-
tion between the laser and the heat in the heated medium. This is a heat-diffusion system
that involves a laser beam source irradiating locally a three dimensional medium. This
technique is used in laser melting process for additive metallic manufacturing. To model
accurately the laser interaction with the medium, we consider the coupling between the
heat diffusion equation and Maxwell’s equations. We also take into account, the tempera-
ture dependence of the electric permittivity of the medium inside the domain. In chapter
3 we prove existence of local solutions for the non-linear coupled Heat-Maxwell system.
In chapter 4 we study an optimal control problem of the external electromagnetic source.

1.2 Chapters content and manuscrit organization

1.2.1 Laser path optimization

Chapter 2 concerns a problem arising with selective laser melting. First, we explain the
physical problem in section 2.1. In section 2.2 we give the system that we will study.
The problem depends on the function γ, that represents the displacement of the laser
beam on the top layer Γ1, and the goal is to find γ satisfying constraints related to the
problem: the laser beam has to cover in some way the surface Γ1, and additionnally the
gradient of the temperature inside the layer Ω is the smallest possible. We translate this
in the following optimal control problem:

The state equation is given by

(1.1)


ρ c ∂ty − κ∆y = 0 in Q = Ω× ]0, T [ ,

−κ∂y
∂ν

= h y − gγ on Σ1 = Γ1 × ]0, T [ ,

−κ ∂y
∂ν

= h y on Σ2 = Γ2 × ]0, T [ ,

−κ∂y
∂ν

= h (y − yB) on Σ3 = Γ3 × ]0, T [ ,
y(x, 0) = y0(x) for x ∈ Ω.

Here y(x, t) denotes the temperature at point x ∈ Ω and time t ∈]0, T [, y0 is the initial
temperature, while yB ∈ L2(Γ3) corresponds to the temperature at the top of the previous
layer. Here, Ω ⊂ R3 is a bounded and simply connected domain with a connected Lipschitz
boundary Γ, that is supposed to be split up

Γ = Γ1 ∪ Γ2 ∪ Γ3,

where Γi, i = 1, 2, 3, are disjoint open disjoint subsets of Γ. In the SLM process, Γ1

corresponds to the upper surface of the added layer and is supposed to be included in
a plane, that without loss of generality we assume to be R2. By ν(x), we denote the
outward normal direction at the point x ∈ Γ. The heat source gγ is of the form

(1.2) gγ(x, t) = α
2P

πR2
exp

(
−2
| x− γ(t) |2

R2

)
, for all (x, t) ∈ Σ1.

The parameters ρ, c, κ, h, α, P and R are positive constants. The control γ : t ∈ [0, T ]→
Γ1 represents the displacement of the laser beam center on Γ1 with respect to time.
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The cost functional is defined by

J(y, γ) :=
1

2

∫ T

0

∫
Ω

| ∇y(x, t) |2 dx dt+
λQ
2

∫ T

0

∫
Ω

| y(x, t)− yQ(x, t) |2 dx dt

+
λγ
2
‖ γ ‖2

H1(0,T ;R2),

(1.3)

where λQ ≥ 0 and λγ > 0 are constants, while yQ ∈ L2(Q) is a given function.
Our aim is to solve the following problem:

(OCP) min
γ∈Uad

J(y(γ), γ),

where y(γ) denotes the weak solution of problem (1.1) associated with the control γ, and
the set of admissible controls Uad ⊂ H1(0, T ; R2) is defined as follows. For ε ≥ R, and a
fixed positive constant c, Uad is defined by

Uad := {γ ∈ H1(0, T ; R2); R(γ) ⊂ Γ1,−ε, Rε(γ) = Γ1

and | γ′(t) |≤ c a.e. t ∈ [0, T ]}, (1.4)

where R(γ) := γ([0, T ]),

Γ1,−ε = {x ∈ Γ1; dist (x, ∂Γ1) ≥ ε} , (1.5)

and
Rε(γ) = {x ∈ Γ1; dist (x,R(γ)) ≤ ε}. (1.6)

The link between our non convex set of admissible controls and laser trajectory in SLM
process is explained in section 2.2. In subsection 2.2.1 we prove that the optimal control
problem has at least one optimal control. In subsection 2.2.2, we prove the differentiability
of the control-to-state mapping, result from which we infer the differentiability of the
reduced cost functional. In subsection 2.2.3, the adjoint state is introduced which allow
us to compute the Fréchet derivative of this reduced cost functional.

The constraints on the displacement γ make the displacement space Uad nonconvex,
and that brings difficulties, that we overcome using Kuhn-Tucker conditions in subsection
2.2.3. Then we find a necessary condition that an optimal control satisfies. The proofs
are classical and follow from usual stategies in optimal control theory [28, 53]. Section
2.2 corresponds to the paper [2] in collaboration with Serge Nicaise and Luc Paquet.

The two constraints R(γ) ⊂ Γ1,−ε, Rε(γ) = Γ1 are strong, and do not seem appropriate
for discretization. Hence, in section 2.3 we intend to replace the previous nonconvex
constraints by other conditions on the trajectory γ, by adding a penalization term to the
cost functional (1.3). Namely, given θ > 0 a penalization parameter, we add to J(y(γ), γ),
the term

1

θ2

(
2R

∫ T

0

√
| γ′(t) |2 +θ2dt− | Γ1 |

)2

.

Formally as θ is close to zero, this will force the control to satisfy

2R

∫ T

0

| γ′(t) | dt '| Γ1 |, (1.7)
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which means that the area covered by the laser is close to the area of Γ1. We consider
the penalized optimal control problems: Given θ > 0, find γ̄θ ∈ Uad such that

(OCPθ) Jθ(y(γ̄θ), γ̄θ) = min
γ∈Upad

Jθ(y(γ), γ),

with,

Jθ(y(γ), γ) := J(y(γ), γ) +
1

θ2

(
2R

∫ T

0

√
| γ′(t) |2 +θ2dt− | Γ1 |

)2

, (1.8)

where

J(y(γ), γ) :=
1

2

∫ T

0

∫
Ω

| ∇y(γ)(x, t) |2 dx dt+
λQ
2

∫ T

0

∫
Ω

| y(γ)(x, t)− yQ(x, t) |2 dx dt

+
λγ
2
‖ γ ‖2

H2(0,T ;R2) .

(1.9)

Here, we assume that Γ1 is a convex subset of R2. If ε ≥ R the set of admissible controls

Up
ad = {γ ∈ H2(0, T ; Γ1); ∃ c > 0 s.t | γ′(t) |≤ c a.e. t ∈ [0, T ]

and 2R

∫ T

0

| γ′(t) | dt ≤| Γ1 | +2εdiam(Γ1)}
(1.10)

will be convex. The choice of the control space H2(0, T ; R2) is made for two main reasons:
the first one is to guarantee the existence of an optimal control and the second one
is to obtain smoother laser paths. From an industrial point of view, we believe that
the use of C1 curves will be more efficient than C0 curves since smoother curves will
diminish thermal gradients. Furthermore this kind of paths has been used in many
additive manufacturing technologies [26, 63].

In subsection 2.3.1 we prove existence of at least one optimal control. In subsection
2.3.2 and 2.3.3 we derive the necessary optimality condition the optimal control satisfies,
and we also determine explicitly ∇H2 Ĵ the gradient of the reduced cost functional in
H2(0, T ; R2).

Section 2.4 is devoted to the discrete penalized optimal control problem (OCPθ). In
subsection 2.4.1 we present the main optimization algorithms useful for our study. The
two dimensional setup which we discretize is presented in subsection 2.4.2. In subsec-
tion 2.4.3 the parametrization of the laser path is introduced. We describe the path γ
using cubic Hermite spline basis where the degree of freedom are both the value and the
derivative at each value:

γ(t) =

(
α1
k−1

α2
k−1

)
H0(t(k)(t)) + ∆0

(
β1
k−1

β2
k−1

)
Ĥ0(t(k)(t))

+

(
α1
k

α2
k

)
H1(t(k)(t)) + ∆0

(
β1
k

β2
k

)
Ĥ1(t(k)(t)), for all t ∈ [tk−1, tk], k = 1 · · · , N.

(1.11)

Here, ∆0 = T
N

is the step size of the uniform subdivision t0 = 0 < t1 < · · · < tN = T
of the time interval [0, T ]. In subsection 2.4.4 we perform preliminary simulations to
show how we coupled the Heat equation to the parametrized path. We discretize the two
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dimensional heat equation by using the P1-finite element method in space and the implicit
Euler method in time. In order to avoid the use of too many optimization parameters
but to have a good approximation of the solution of the heat equation, we have decided
to use a finer parametrization (tjk), 1 ≤ k ≤ N , 1 ≤ j ≤ n, for the use of Euler’s scheme.
We consider the uniform subdivision t0 = 0 < t1 < · · · < tnN = T of the time interval
[0, T ] with step size ∆1 = ∆0

n
where n represents the number of points in which we want

to simulate the temperature between the time interval [tk−1, tk] for all k = 1, · · · , N .
The discrete optimization problem is presented without constraint in subsection 2.4.5

to show how we handled the discretisation of the associated adjoint problem and the
necessary optimality conditions in presence of the parametrized path. The adjoint system
associated to the two dimensional heat equation is discretized using the P1-finite element
method in space and the Euler implicit backward scheme in time. Similarly to the discrete
state equation we have used a finer paramatrization (tjk), 1 ≤ k ≤ N , 1 ≤ j ≤ n for the
Euler’s scheme with step size ∆1. ∇H2 Ĵ is the sum of a solution of an ODE and γ. In
order to compute its discrete form we will solve the ODE using Hermite finite elements
in one dimension. This finite element space is the same as the one used for the discrete
curves which allow us to compute ∇H2 Ĵ by adding the solution of the ODE and γ in the
same discrete functional space without passing by a transfer matrix.

In subsection 2.4.6 the fully constrained optimization problem is discretised: Firstly,
by adding box constraints on the points (α1, · · · , αN) of γ to keep the path inside Ω.
Secondly, by adding the geometric constraint (1.7) on the path γ.

Finally in section 2.5, we discuss another parametrization of the path γ using Bézier
curves. In the end of this section we present ideas about how to control the power [14, 39]
in the selective laser melting process.

For further information about laser path optimization in additive manufaturing with
laser powder bed fusion and to consider a second numerical approach for path optimiza-
tion, the reader is warmly invited to further look into the Allaire’s and Boissier’s work
especially in [8] and [9].

1.2.2 Heat diffusion equations with volumic heat source induced
by electromagnetic waves

In chapter 3 we are interested in heat diffusion equations with volumic heat source induced
by electromagnetic waves. A typical heat-diffusion system involves a laser beam source
irradiating locally a three dimensional medium Ω. This technique is used in laser melting
process for additive metallic manufacturing [6, 62]. In [1], Maxwell’s equations have also
been considered to model accurately the interaction of the laser beam with biological
tissues preferably to Beer’s law or to the radiative transfer equation. To model accurately
the laser interaction with the medium Ω, we consider in Ω the coupling between the heat
diffusion equation and Maxwell’s equations. In [59], time-harmonic electric and magnetic
fields of some fixed frequency are considered, but the derived equations [59, Eq.(2.1)-(2.5)]
lead to a contradiction as explained in [59, Remark 2.1].

Let us now describe our model. Let us fix some T > 0, we consider in the space-time
cylinder Q = Ω×]0, T [, the 3-dimensional parabolic initial-boundary value problem:
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
∂ty − div (α∇y) = S(y) in Q,
−α ∂y

∂n
= h(y − yb) on Σ,

y(·, 0) = y0 in Ω.
(1.12)

Here, y denotes the temperature, α the thermal diffusivity constant, n the outward
unit normal vector field along the boundary Γ of Ω, h > 0 the heat transfer coefficient
and yb the temperature of the surrounding medium (air). By Σ = Γ×]0, T [, we denote
the lateral boundary of the space-time cylinder Q. The heat source function S(y) in
(1.12), represents the volumic power absorbed by the medium Ω from the electromagnetic
field generated in Ω by an external source e.g. a laser beam. S(y)(x, t) is defined as the
multiplication of the absorption coefficient µa depending on x ∈ Ω and on the temperature
y(x, t), with the electric field intensity weighted around x:

S(y)(x, t) := µa(x, y(x, t)) | (E(y) ∗ ϕa)(x, t) |2, for all (x, t) ∈ Q. (1.13)

ϕa ∈ C1
c (R3) represents a weight function which is supposed to be at least of class C1

on R3 and with compact support. In formula (1.13), E represents the electric field in Ω
solution of the following Maxwell’s equations:

∂t(ε(·, y)E)− curlH + σE = 0 in Q,
∂t(µH) + curlE = 0 in Q,
div (µH) = 0 in Q,
E× n = Eext × n on Σ,
H · n = 0 on Σ,
E(·, 0) = E0, H(·, 0) = H0 in Ω.

(1.14)

In these equations, H denotes the magnetic component of the electromagnetic field (E,H)
in Ω, σ the electrical conductivity, µ the magnetic permeability, ε(x, y(x, t)) the electric
permittivity depending on the space and on the temperature y. Eext denotes the electric
field irradiating the boundary of Ω due to an external source. The first equation in the
Maxwell system (1.14) is coupled to the heat diffusion initial boundary value problem
(1.12) by the dependence of the permittivity ε with respect to the temperature y, and
the heat diffusion initial boundary value problem (1.12) is coupled to the Maxwell system
(1.14) by the right-hand side into the heat equation (1.12), the heat source term S(y)
(1.13) depending on the electric field E(y).

We begin by recalling the following standard functional spaces:

H(curl ,Ω) = {ϕ ∈ L2(Ω); curlϕ ∈ L2(Ω)},

H(div ,Ω) = {ψ ∈ L2(Ω); divψ ∈ L2(Ω)},

H0(curl ,Ω) = {ϕ ∈ L2(Ω); curlϕ ∈ L2(Ω), ϕ× n = 0 on Γ},
H0(div ,Ω) = {ψ ∈ L2(Ω); divψ ∈ L2(Ω), ψ · n = 0 on Γ},
Jn(Ω, µ) = {ψ ∈ L2(Ω); div (µψ) = 0, ψ · n = 0 on Γ}.

J1
n(Ω, µ) = H(curl ,Ω) ∩ Jn(Ω, µ),

W 2,1
p (Q) ={u ∈ Lp(Q) :

∂u

∂xi
∈ Lp(Q),

∂2u

∂xi∂xj
∈ Lp(Q), i, j = 1, 2, 3

and
∂u

∂t
∈ Lp(Q)} 1 < p < +∞.

Our hypothesis on the coefficients appearing in (1.12), (1.13), and (1.14) are the following
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• We assume that y0 ∈ C4
b (Ω). We assume α ∈ C3

b (Ω), α > 0 on Ω̄, h ∈ C1(∂Ω),
h > 0 on Γ and that yb ∈ C2(Σ̄). We assume that the absorption coefficient
µa(., .) ∈ C2

b (Ω × R) and ϕa ∈ C2
c (R3). Here, Ck

b (Ω) is the space of bounded
continous functions with derivatives up to the order k bounded and continuous.
Ck
c (Ω) is the space of compactly supported continuous functions with derivatives

up to the order k compactly supported and continuous.

• The function (x, y) 7→ ε(x, y) is real valued, positive, continuous on Ω̄×R with first
order partial derivatives with respect to the variables xi (i = 1, 2, 3) and y, also
continuous on Ω̄× R. Also, there exist positive constants ε1, ε0 such that:

0 < ε0 ≤ ε(x, y) ≤ ε1, for all (x, y) ∈ Ω× R.

• σ ∈ L∞(Ω) and the function µ ∈ W 1,∞(Ω). There are positive constants µ0 and µ1

such that:
0 < µ0 ≤ µ(x) ≤ µ1, for all x ∈ Ω.

We suppose that Ω is a bounded domain of R3 with a boundary of class C2. On Γ we
have the boundary condition E× n = Eext × n. Under the following hypothesis on Eext

and (E0,H0)

• (E0,H0) ∈ H(curl ,Ω) × J1
n(Ω, µ) and Eext ∈ C2([0, T ];H1(R3 \ Ω̄)) such that

curlEext · n|Σ = 0, Eext(., 0)× n|Γ = E0 × n|Γ ,

we construct an extension W of Eext to Ω. Introducing the new variable E := E −W,
problem (1.14) is reduced to the following Maxwell system with homogeneous boundary
conditions of solutions (E ,E). To alleviate the notations, E is denoted by E:



∂tE− ε̂(·, y) curlH + ε̂(·, y)(σ + ∂yε(·, y)∂ty)E = G1(t) in Q,
∂tH + µ̂ curlE = G2(t) in Q,
E× n = 0 on Σ,
H · n = 0 on Σ,
div (µH) = 0 in Q,
E(·, 0) = E0, H(·, 0) = H0 in Ω,

(1.15)

with a right-hand side G = (G1,G2) and (E0,H0) ∈ H0(curl ,Ω)× J1
n(Ω, µ). Here

ε̂(x, z(x, t)) :=
1

ε(x, z(x, t))
, and µ̂(x) :=

1

µ(x)
, for all x ∈ Ω.

Moreover, supposing that the permittivity is independent of the temperature near the
boundary of Ω, we may assume that the right-hand sides in the Maxwell system do not
depend on the temperature.

This is for problem (1.15), coupled with the heat diffusion equation (1.12)-(1.13), that
we want to prove the existence of a local solution. Firstly we consider in section 3.2 the
Maxwell system (1.15), with a fixed distribution of temperature

z ∈ C1([0, T ];C1(Ω̄)). (1.16)
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Consequently in (1.15), the permittivity depends not only on the space variable but
also on the time variable, through its dependence with respect to the distribution of
temperature z. In subsection 3.2.2, we apply the method of evolution systems in the
hyperbolic case [44, Chapter 5, pp. 126-149] to establish the well posedness of our initial
boundary value problem (1.15). Maxwell’s system (1.15) (with z instead of y) can be
written as an abstract Cauchy problem

d
dt

(
E
H

)
(t) = (Az(t) +Mz(t))

(
E(t)
H(t)

)
+ G(t)(

E
H

)
(0) =

(
E0

H0

) (1.17)

where the operator Az(t) andMz(t) in the real Hilbert space

H = L2(Ω)× Jn(Ω, µ), (1.18)

are defined as follow. For all φ = (ϕ, ψ) belonging to the domain independent of t

D(Az) := H0(curl ,Ω)× J1
n(Ω, µ), (1.19)

we set
Az(t)φ = {ε̂(·, z(·, t)) curlψ,−µ̂ curlϕ} ∈ H, (1.20)

Mz(t)φ = {−ε̂(·, z(·, t))(σ + ∂zε(·, z(·, t))∂tz)ϕ, 0}, (1.21)

with
ε̂(x, z(x, t)) :=

1

ε(x, z(x, t))
, and µ̂(x) :=

1

µ(x)
, for all x ∈ Ω. (1.22)

In subsection 3.2.1, we prove that for each t ∈ [0, T ], Az(t) generates a C0 − group
of unitary operators in the Hilbert space Ht: H endowed with the time dependent inner
product with weights ε := ε(·, z(·, t)) and µ := µ(·) [40]

(

(
ϕ1

ψ1

)
,

(
ϕ2

ψ2

)
)Ht =

∫
Ω

{ε(x, z(x, t))ϕ1(x) · ϕ2(x) + µ(x)ψ1(x) · ψ2(x)}dx. (1.23)

We then prove that the family of operators (Az(t) +Mz(t))t∈[0,T ] verifies the hypotheses
from [44].

Consequently, by [44, Theorem 4.6, p.143] there exists a unique evolution system
Uz(t, s), 0 ≤ s ≤ t ≤ T in H. Also, for every initial condition (E0;H0) ∈ Y := D(Az)
and every right-hand side G ∈ C([0, T ];Y ), the initial value problem (1.17) possesses a
unique Y -valued solution given by

(
E
H

)
(t) = Uz(t, 0)

(
E0

H0

)
+

t∫
0

Uz(t, r)G(r)dr. (1.24)

By a Y -valued solution, we mean that

(E,H) ∈ C([0, T ];Y ) ∩ C1([0, T ];H),
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verifies (1.17) such that (E0,H0) ∈ Y . Moreover in subsection 3.2.3, we show that for
G ∈ C1([0, T ];H) this latest result remains true.

In section 3.3, we go back to the coupled problem (1.12)-(1.13)-(1.15). In subsection
3.3.1, we study the boundedness properties with respect to z of the evolution systems
(Uz(t, s))0≤s≤t≤T generated by the family of operators

(Az(t) +Mz(t))0≤t≤T for z ∈ B̄(0, R) ⊂ C1([0, T ];C1(Ω̄)), R > 0.

We find consequently that

‖ (Ez,Hz) ‖C([0,T ];Y )≤ C(R) (1.25)

and
‖ d

dt
(Ez,Hz) ‖C([0,T ];H)≤ C(R). (1.26)

From these bounds, we deduce that the family {(Ez;Hz)}z∈B(0,R) is bounded in C([0, T ];
Y ) and the family of their time derivatives in C([0;T ];H). Then, we study the continuity
properties of the heat source term S(z) in the heat equation (1.12), and of its time
derivative dS(z)

dt
as a function of z from C1([0, T ];C1(Ω̄)) into the space Lp(0, T ;C(Ω̄)),

for any p ∈]1,+∞[.
In subsection 3.3.2, our purpose is to prove that the initial nonlinear boundary value

problem for the heat equation (1.12) admits at least one local solution. Firstly, we reduce
our nonlinear initial non-homogeneous boundary value problem for the heat equation
(1.12), to the homogeneous nonlinear initial boundary value problem with zero initial
condition 

∂ty̆ − div (α∇y̆) = S(y̆ + ω) in Q,
α ∂y̆
∂n

+ hy̆ = 0 on Σ,
y̆(·, 0) = 0 in Ω,

(1.27)

with y̆ := y − ω, where ω ∈ C1([0, T ];C1(Ω̄)) is solution of the auxilary linear initial
boundary value problem for the heat equation (1.12)

∂tω − div (α∇ω) = 0 in Q,
α∂ω
∂n

+ h ω = h yb on Σ,
ω(·, 0) = y0 in Ω.

(1.28)

To prove the existence of a local solution to (1.27), we introduce the linear problem
∂ty̆z − div (α∇y̆z) = S(z + ω) in Q,
α∂y̆z
∂n

+ hy̆z = 0 on Σ,
y̆z(·, 0) = 0 in Ω,

(1.29)

by fixing the distribution of temperature in the right-hand side to some arbitrary z ∈
B̄(0;R) ⊂ C1([0, T ];C1(Ω̄)) such that z(0) = 0. (1.29) admits a solution in W 2,1

p (Q)
[32, Ch.IV-Sec.9, VII-Sec.10] (p > 5) which is denoted by y̆z. For this last problem, we
consider also its derivated problem with respect to time

∂tv − div (α∇v) = d
dt

(S(z + ω)) in Q,
α ∂v
∂n

+ hv = 0 on Σ,
v(·, 0) = µa(·, y0(·)) | (E0 ∗ ϕa)(·) |2 on Ω,

(1.30)
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for which its solution is d
dt
y̆z [32]. From the continuous embedding of the Sobolev space

[32, Lemma 3.3 p.80]

W 2,1
p (Q) ↪→ C([0, T ];C1(Ω̄)) for p > 5,

it then follows that y̆z ∈ C1([0, T ];C1(Ω̄)). But, the closed convex subset

K(0;R) := B̄(0;R) ∩ {z ∈ B̄(0;R); z(0) = 0} ⊂ C1([0, T ];C1(Ω̄))

is not stable by the mapping
z 7→ y̆z,

so we can not apply to this mapping the Schauder fixed point theorem. In order to define
an operator from K(0;R) ⊂ C1([0, T ];C1(Ω̄)) into itself, we will need firstly to restrict
y̆z to some fixed subinterval [0, tf ] (tf > 0) of [0, T ] of sufficiently small length and then
to extend y̆z|[0,tf ] appropriately to the whole interval [0, T ] in order to obtain an element
of C1([0, T ];C1(Ω̄)) corresponding to z of norm less than or equal to R. This extension,
denoted ˜ , is built. For R sufficiently large we prove, that there exists tf ∈]0, T/2] such
that

˜(y̆z|[0,tf ]) ∈ K(0;R) for all z ∈ K(0;R) :

Using the boundedness and continuity properties established in subsection 3.3.1, we prove
that the mapping which sends

z ∈ K(0;R) 7→ ˜(y̆z|[0,tf ]) ∈ K(0;R)

is continuous and that its range is a relatively compact subset in C1([0, T ];C1(Ω̄)), so it
possesses a fixed point ζ by Schauder’s point fix theorem. By the “causality principle”, its
restriction to the time interval [0, tf ] is a solution to the homogeneous nonlinear initial
boundary value problem (1.27) on the time interval [0, tf ]. Adding ω solution of (1.28)
restricted to the interval [0, tf ] to ζ|[0,tf ], we obtain a solution to the nonlinear initial
boundary value problem (1.12) on [0, tf ].

Finally in subsection 3.3.3, we consider the case of a right-hand side in C1([0, T ];H).
We prove that the estimates (1.25) and (1.26) remain valid in this case. Also, all the
reasonings of subsections 3.3.1 and 3.3.2 which follow from the estimates (1.25) and (1.26)
remain valid. Consequently, the existence of a local weak solution to our coupled nonlinear
initial boundary value problem (1.12) between the heat equation and the Maxwell system
(1.17) is also valid when the right-hand side G = (G1,G2) in the Maxwell system (1.17)
belongs to C1([0, T ];H).

In conclusion, the main result we have proved in chapter 3 is that for every

(y0,E0,H0) ∈ C4
b (Ω)× Y and G ∈ C1([0, T ];H)

the initial boundary value problem (1.12)-(1.13)-(1.15) admits a local solution

(y,E,H) ∈ C1([0, tf ];C
1(Ω̄))× (C([0, tf ];Y ) ∩ C1([0, tf ];H)).

Chapter 3 corresponds to the paper [3] in collaboration with Luc Paquet.
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1.2.3 Controlling the electromagnetic external source

In chapter 4, we study a related optimal control problem to the Heat-Maxwell coupled
system studied in chapter 3. To simplify matters, we suppose that the permittivity ε
depends only on the space and not on the temperature. Consequently, the electric field
E does not depend on the temperature y.

We suppose that the electric field Eext of the exterior electromagnetic field (Eext,Hext)
hitting Ω is in the complementary of Ω, R3 \ Ω, of the form

Eext(x, t) =

j=N∑
j=1

fj(t)eext,j(x, t), N ≥ 1, (1.31)

where
eext,j ∈ C1,1([0, T ];H(curl ,R3 \ Ω)) (1.32)

for j = 1, . . . , N are such that
(curl eext,j) · ~n = 0 (1.33)

on the boundary Γ of Ω. Ω is supposed to be an open bounded subset of R3 with
Lipschitz boundary. fj for j = 1, . . . , N are given real-valued functions depending of the
time variable t only. Our optimal control problem is the following:

min J(y, v) :=
1

2

∫ T

0

∫
Ω

| ∇y(x, t) |2 dx dt+

j=M∑
j=1

λj,Q
2

∫ Tj,2

Tj,1

∫
Ωj

| y(x, t)

− yj,Q(x, t) |2 dx dt+
λΩ

2

∫
Ω

| y(x, T )− yd(x) |2 dx+
λ

2

k=N∑
k=1

∫ T

0

|vk(t)|2dt,

(1.34)

with Ωj ⊂ Ω, Tj,1 ≤ Tj,2 , [Tj,1, Tj,2] ⊂ [0, T ], λj,Q ≥ 0 (j = 1, . . . ,M), λΩ ≥ 0, λ > 0,
subject the following Heat-Maxwell system:

∂ty − div (α∇y) = S(y) in Q,
−α ∂y

∂n
= h(y − yb) on Σ,

y(·, 0) = y0 in Ω,
(1.35)

where the heat source S(y) is defined by (1.13) and E the electric field in Ω is solution
of the Maxwell system: 

∂t(εE)− curlH + σE = 0 in Q,
∂tH + µ̂ curlE = 0 in Q,
E× n = Eext × n on Σ,
H · n = 0 on Σ,
E(·, 0) = E0, H(·, 0) = H0 in Ω,

(1.36)

where α > 0 belongs to C(Ω̄), h > 0 belongs to C(Γ), ε ≥ ε0 > 0 belongs to L∞(Ω), ε̂ :=
1
ε
∈ L∞(Ω), σ ≥ 0 belongs to L∞(Ω), µ ≥ µ0 > 0 belongs to L∞(Ω) and µ̂ := 1

µ
∈ L∞(Ω)

are only functions of x. We assume that the absorption coefficient µa ∈ C1
b (Ω̄ × R) is

monotone decreasing with respect to y. The initial condition y0 ∈ C(Ω̄) and yb ∈ C(Σ).
Eext is given by (1.31), such that
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
−f ′′j + fj = vj in ]0, T [,
fj(0) = fj,0 ,
f ′j(0) = fj,1 ,

(1.37)

where v = (vj)
N
j=1 ⊂ U are the controls belonging to the control space U := [L2(0, T )]N .

The set of admissible controls is the closed convex subset Uad :=
N∏
j=1

Uad,j ⊂ U , where for

j = 1, . . . , N :

Uad,j = {vj ∈ L2(0, T ); vj,a ≤ vj(t) ≤ vj,b a.e. t ∈ [0, T ]}. (1.38)

The numbers fj,0 ∈ R and fj,1 ∈ R will remain fixed. yj,Q in the cost functional (1.34) is
a given template temperature distribution in L2(Q).

Here, we have considered a more general cost functional than previously in chapter 2
by replacing the term

λQ
2

∫ T

0

∫
Ω

| y(x, t)− yQ(x, t) |2 dx dt

by the more flexible expression

M∑
j=1

λj,Q
2

∫ Tj,2

Tj,1

∫
Ωj

| y(x, t)− yj,Q(x, t) |2 dx dt,

the idea being that it is not clear how to choose adequaltly the function yQ. For the
functions yj,Q defined on Ωj×[Tj,1, Tj,2], we could choose for example yj,Q equals to a fixed
temperature a little greater than the temperature of fusion of the powder e.g. 1600 0C
[54] as we want the powder to have fused everywhere during a certain subinterval of the

time of treatment. It seems also natural to require that
N⋃
j=1

Ωj = Ω and the different

pieces Ωj to overlap near their boundaries to glue perfectly together.
Our aim in section 4.2 is to prove the well posedness of the heat-Maxwell system. To

do this, the steps of the proof are shown in what follow. Under hypothesis (1.32) and
(1.33) on eext and

E0 × n =

j=N∑
j=1

fj,0 eext,j(0)× n on Γ, (1.39)

we reduce the Maxwell problem (1.36) to an intial homogeneous boundary value problem
by extending eext,j to Ω in a vector field

ej ∈ C1,1([0, T ];H(curl ,Ω))

such that
ej × ~n = eext,j × ~n and (curl ej) · ~n = 0 on Γ.

The new couple of vector fields (E ,H) is solution of the following intial homogeneous
boundary value problem
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

∂tE − ε̂ curlH + ε̂σ E = −
j=N∑
j=1

(f ′jej + fje
′
j + ε̂σfjej) in Q,

∂tH + µ̂ curl E = −µ̂
j=N∑
j=1

fj curl ej in Q,

E × n = 0 on Σ := Γ×]0, T [,
H · n = 0 on Σ,

E(0) = E0 −
j=N∑
j=1

fj,0ej(0), H(0) = H0 in Ω.

(1.40)

The new vector field E is given by

E(x, t) = E(x, t)−
j=N∑
j=1

fj(t)ej(x, t), for all (x, t) ∈ Ω× [0, T ].

We also suppose that H0 ∈ J1
n(Ω, µ).

Consequently, the initial condition (E0,H0) to our initial boundary value problem
(1.40) belongs to the domain D(A) (given by (1.19)) of the infinitesimal generator
A = A +M in the Hilbert space H (given by (1.18)). The operators A, M are given
respectively by (1.20) and (1.21), with one difference that ε̂ depends only on the space.
We prove that the right hand side of (1.40)

G : t ∈ [0, T ] 7→ G(t) := (−
j=N∑
j=1

(f ′j(t)ej(t) + fj(t)e
′
j(t) + ε̂σfj(t)ej(t)),

− µ̂
j=N∑
j=1

fj(t) curl ej(t)) ∈ H

(1.41)

is a Lipschitz continuous function.
Using the theory of semi-groups [44, Corollary 2.11 p.109], we prove that the initial

boundary value problem for the Maxwell’s equations (1.36) possesses one and only one
strong solution (E,H) for any given control v = (vj)

N
j=1 ∈ Uad, and any given initial

condition (E0,H0) ∈ H(curl ,Ω) × J1
n(Ω, µ) verifying (1.39), Eext being given by (1.31)

and (1.37) i.e. possesses one and only one function

(E,H) ∈ W 1,1(0, T ;H) := {U ∈ L1(0, T ;H) such that
dU

dt
∈ L1(0, T ;H)}

verifying (E,H)(0) = (E0,H0) and equations (1.36) for a.e. t ∈ [0, T ]. This solution is
given by

(E,H)(t) = (E(t) +

j=N∑
j=1

fj(t)ej(t),H(t)) for all t ∈ [0, T ],

where (E(t),H(t)) is given by the equation:

(E(t),H(t)) = Tt (E0,H0) +

∫ t

0

Tt−sG(s)ds, (1.42)
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with (Tt)t≥0 the semigroup generated by the operator A = A +M in H, G given by
(1.41), a Lipschitz continuous function, and

E0 := E0 −
j=N∑
j=1

fj,0ej(0) ∈ H0(curl ,Ω). (1.43)

We prove that the semilinear parabolic initial boundary value problem (1.35) with electro-
magnetic heat source (1.13), possesses a unique weak solution y ∈ W (0, T )∩C(Q̄) using
[53, Theorem 5.5 p.268] about existence and uniqueness of the weak solution of general
semilinear parabolic initial-boundary value problems of the form [53, (5.1) p.265]:

∂ty − div (α∇y) + d(x, t, y) = 0 in Q := Ω×]0, T [,

α ∂y
∂ν

+ b(x, t, y) = g on Σ := Γ×]0, T [,
y(·, 0) = y0 in Ω.

(1.44)

Thus, we first check that the nonlinear term

d(x, t, y) := −S(x, t, y) = −µa(x, y) |(E ∗ ϕa)(x, t)|2,

is monotone increasing with respect to y and locally Lipschitz continuous with respect
to y for almost every (x, t) ∈ Q. Furthermore, d satisfies for a positive constant K the
boundedness condition

| d(x, t, 0) |≤ K (x, t) ∈ Σ. (1.45)

Then we prove that the boundary term

b(x, t, y) := h(x)(y − yb(x, t)),

satisfies the same properties as d. Consequently, the semi-linear parabolic initial boundary
value problem (1.35), (1.13) has a unique weak solution y ∈ W (0, T ) ∩ C(Q̄) for any
E ∈ C([0, T ];L2(Ω)3), any yb ∈ C(Σ̄) and any initial condition y0 ∈ C(Ω̄). Moreover for
any r > 2.5 and any s > 4, there exists a constant C(r, s) such that

‖y‖W (0,T ) + ‖y‖C(Q̄) ≤C(r, s)(
∥∥µa(·, 0)|E ∗ ϕa|2(·, ·)

∥∥
Lr(Q)

+ ‖h(·)yb(·, ·)‖Ls(Σ) + ‖y0‖C(Ω̄)).
(1.46)

Let us point out that the temperature y depends on the electric field E, which depends
on Eext, thus on f = (fj)

N
j=1 ∈ L

2(0, T )N which itself depends on the control v = (vj)
N
j=1 ∈

Uad.
In section 4.3 we prove existence of an optimal control v = (vj)

N
j=1 ∈ Uad. We indicate

this dependence of the temperature y with respect to the control v, by writing yv. Let
us introduce the reduced cost functional:

Ĵ : Uad → R : v 7→ J(yv, v).

The idea of the proof is to show that Ĵ is weakly lower semi-continuous. More precisely,
let us consider a minimizing sequence (v(k))k≥0 in Uad, such that

Ĵ(v(k))→ inf
v∈Uad

Ĵ(v),
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we can prove that the sequence (Ev(k))k≥0 is bounded in C([0, T ];L2(Ω)), so that
(Ev(k) ∗ ϕa)k≥0 is bounded in C([0, T ];C(Ω̄)) = C(Q̄). Therefore this latest result with
estimate (1.46) show us, that (yv(k))k≥0 is bounded in W (0, T ). Modulo extracting a new
subsequence, we prove that (yv(k))k≥0 converges weakly in W (0, T ). By the compact em-
bedding from H1(Ω) into Lp(Ω) for 1 < p < 6 and the Lions-Aubin compactness lemma
[47, p.106], (yv(k))k≥0 is strongly convergent in L2(Q). In conclusion we have existence of
an optimal control, v̄ such that

Ĵ(v̄) = inf
w∈Uad

Ĵ(w).

In order to determine a first order necessary optimality condition for our problem, we
prove in section 4.4 that the reduced cost functional Ĵ is Fréchet differentiable. The proof
reduces essentially to show that the control-to-state mapping is Fréchet differentiable. We
find that the control-to-state mapping

S : L2(0, T )N → W (0, T ) ∩ C(Q̄) (1.47)

which sends v = (vj)
N
j=1 ∈ L2(0, T )N onto y weak solution of the semilinear initial

parabolic boundary value problem (1.35)-(1.13), is Fréchet differentiable at any point
v = (vj)

N
j=1 ∈ L

2(0, T )N . Its Fréchet derivative at the point v = (vj)
N
j=1 ∈ L

2(0, T )N is
the linear continuous mapping

DS(v) : δv = (δvj)
N
j=1 ∈ L

2(0, T )N 7→ δy ∈ W (0, T ) ∩ C(Q̄) (1.48)

where δy is a solution of the linear initial boundary value problem
∂δy
∂t
− div(α∇δy)− ∂µa

∂y
(·, y)|E ∗ ϕa|2δy

= 2µa(·, y) (E ∗ ϕa) · (δE ∗ ϕa) in Q,

α∂δy
∂n

+ hδy = 0 on Σ,
δy(·, 0) = 0 in Ω.

(1.49)

with (δE, δH) ∈ W 1,1(0, T ;H) strong solution of (1.36)-(1.37). The Fréchet derivative of
Ĵ is

DĴ(v)δv =

T∫
0

∫
Ω

∇yv(x, t) · ∇(DS(v)δv)(x, t) dxdt

+
M∑
j=1

λj,Q

Tj,2∫
Tj,1

∫
Ωj

(yv(x, t)− yj,Q(x, t))(DS(v)δv)(x, t) dxdt

+λΩ

∫
Ω

(yv(x, T )− yd(x))(DS(v)δv)(x, T ) dx+ λ
N∑
k=1

T∫
0

vk(t)δvk(t)dt.

(1.50)

The adjoint system for our problem presented in section 4.5 is the following

∂p
∂t

+ div(α∇p) + ∂µa
∂yv

(x, y)|E ∗ ϕa|2p =

∆yv −
M∑
j=1

λj,Q(yv − yj,Q)1Ωj×]Tj,1,Tj,2[ in Q,

α ∂p
∂n

+ hp = ∂yv
∂n

on Σ,
p(·, T ) = λΩ(yv(., T )− yd) on Ω,

(1.51)
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By a weak solution p ∈ W (0, T ) of the backward parabolic boundary value problem
(1.51), we mean that for every ϕ ∈ L2(0, T ;H1(Ω)) :∫ T

0

∫
Ω

∂p
∂t

(x, t)ϕ(x, t)dxdt−
∫ T

0

∫
Ω

α(x)∇p(x, t)∇ϕ(x, t)dxdt

+

∫ T

0

∫
Ω

∂µa
∂yv

(x, y(x, t))|E ∗ ϕa|2(x, t)p(x, t)ϕ(x, t)dxdt

= −
∫ T

0

∫
Ω

∇y(x, t)∇ϕ(x, t)dxdt−
M∑
j=1

λj,Q

∫ Tj,2

Tj,1

∫
Ωj

(yv − yj,Q)(x, t)ϕ(x, t)dxdt

+

∫ T

0

∫
Γ

h(x)p(x, t)ϕ(x, t)dS(x)dt,

(1.52)

and
p(x, T ) = λΩ(yv(x, T )− yd(x)), for a.e. x ∈ Ω. (1.53)

By formulas (1.48), (1.50) and (1.52), we can determine the first order necessary
condition. If v̄ ∈ Uad is an optimal control, then

2

∫ T

0

∫
Ω

µa(x, ȳv(x, t))p̄(x, t)(Ē ∗ ϕa)(x, t) · (δE ∗ ϕa)(x, t) dxdt

+λ
N∑
k=1

∫ T

0

v̄k(t)δvk(t)dt ≥ 0,
(1.54)

for all δv = v − v̄, v ∈ Uad, δE being deduced from δv by solving (1.36)-(1.37).



Chapter 2

Laser path optimization in the selective
laser melting process (SLM) using
optimal control theory

2.1 Introduction

Selective laser melting (SLM) is an Additive Layer Manufacturing process used to produce
three-dimensional objects from metal powders by melting the material in a layer-by-layer
manner. First, a thin layer of powder is spread onto a build platform and simultaneously
levelled or compacted to the required thickness. The laser beam scans the powder surface
at an appropriate speed, heating the surface according to the desired scanning pattern
and part profile. The mechanisms of SLM have been discussed in [29, 52, 48].

Thermal distortion of the fabricated part is one serious problem in SLM process [16],
because of its fast laser scan rates and material transformations (solidification and liquifa-
tion) in a very short time frame. The temperature field was found to be inhomogeneous
by many previous researchers [57, 61]. Meanwhile, the temperature evolution history in
SLM process has significant effects on the quality of the final parts, such as density, di-
mensions, mechanical properties, microstructure, etc. For metals, rapid repeated heating
and cooling cycles of the powder during SLM build process is responsible for large tem-
perature gradients resulting in hight residual stresses and deformations, and may even
lead to crack formation in the fabricated part.

Our aim in this chapter is to propose a laser path optimization model minimizing
thermal gradients in SLM. First we will perform a litterature survey on the effect of
scanning strategy (laser trajectory) on temperature gradients and residual stresses (since
large temperature gradient generates residual stresses and cracks) in SLM. In subsection
2.1.1, we will discuss temperature distribution in SLM and we will present the thermal
model coupled with the laser trajectory which we adopted in our study. In subsection
2.1.2, we will mention some works whose authors have noticed and tested the effect of
laser scanning strategy in SLM, even with random trajectories. In section 2.4.4, we
will present preliminary results on the effect of parametric curves on the distribution of
temperature and thermal gradient in SLM. In section 2.2 we will study mathematically
the laser path optimization model using optimal control theory. In section 2.3, we will
present a penalized optimization model related to the problem presented in section 2.2
but with different interpretation of the laser path constraints. Section 2.4 will be devoted

21
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to present the discretization of our optimization model.

2.1.1 Temperature distribution

Since temperature distribution in laser sintering is important, many researchers have
put their efforts toward understanding the SLM process and formulating models to de-
scribe SLM thermal evolution. The laser scans on the top of the powder bed following
a prescribed scan pattern. The heat transfer process consists of powder bed radiation,
convection between the powder bed and environment, and heat conduction inside the
powder bed and between the powder bed and substrate. The latent heat of fusion is large
in SLM. The complexity brought about by the powder phase change and the correspond-
ing variation of the thermal properties during SLM also complicates the heat transfer
problem. In order to better reflect the SLM process, a lot of research on key process
variables such as laser beam characteristics and powder thermal properties has been con-
ducted. The simplest laser beam has been assumed to be a point source which is not
in conjunction with reality. It has been found that the laser beam can be characterized
using three parameters namely diameter, power, and intensity distribution. The most
widely adopted model in literature is the Gaussian laser beam model [17]:

q(r) :=
2P

πR2
e
−2r2

R2 (2.1)

where P is the laser power, R the spot radius and r the radial distance.

The thermal model that describes the propagation of heat through a single layer of
powder irradiated by the laser is the following one [31, 18, 54, 50]. Let Ω ⊂ R3 be a layer
of thickness δ and boundary Γ = Γ1 ∪ Γ2 ∪ Γ3. The thermal balance in Ω is described by
the following heat equation (see figure 2.1):

ρ(y) c(y) ∂ty − div(κ(y)∇y) = 0 in Q = Ω× ]0, T [ ,

−κ(y)∂y
∂ν

= h(y) (y − yex) + ε(y)σSB (y4 − y4
ex)− gγ(y) on Σ1 = Γ1 × ]0, T [ ,

−κ(y) ∂y
∂ν

= h(y) (y − yex) on Σ2 = Γ2 × ]0, T [ ,
y = yex on Σ3 = Γ3 × ]0, T [ ,
y(x, 0) = y0(x) for x ∈ Ω.

(2.2)
More precisely, Ω is a Lipschitz bounded open set of R3, with boundary Γ devided in

three parts Γ1, Γ2 and Γ3.

• y := y(x, t) the temperature,

• y0 the initial temperature,

• yex the ambient temperature,

• Γ1 the part of the boundary irradiated by the laser,

• Γ2 the part of the boundary on which the convection is only applied,

• Γ3 the part of the boundary in contact with the built platform or with the previous
layer, on which a constant temperature yex is applied

• ρ the density,
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• c the calorific capacity,

• κ the thermal conductivity,

• gγ(y) := α(y) qγ the Gaussian laser flux model where α is the absorbance of the
material and

qγ(x, t) =
2P

πR2
exp

(
−2
| x− γ(t) |2

R2

)
, for all (x, t) ∈ Σ1

P is the laser power, R is the radius of the laser spot, x = (x1, x2) ∈ Γ1 the surface
irradiated by the laser and γ : t ∈ [0, T ] → Γ1 the laser path which represents the
displacement of the laser beam center with respect to time,

• h the heat exchange coefficient,

• σSB the Stefan Bolzman constant (5.67036× 10−8W ·m−2 ·K−4),

• ε the material emissivity,

• ν the outgoing normal of Γ,

• h(y) (y − yex) the surface convection heat loss described using Newton’s law of
cooling,

• ε(y)σSB (y4 − y4
ex) the power radiation described using Stefan-Boltzmann law.

Remark 1. From the heating of metal powders above their melting temperature, and
subsequent cooling, result big variations of material thermal properties with respect to
temperature, so that we consider that ρ, c, κ, h and ε depend on temperature.

Remark 2. Note that in (2.2) the boundary condition on Σ3 can be replaced by a Robin
type boundary condition

−κ(y)
∂y

∂ν
= h(y) (y − yex) on Σ3.

Remark 3. A two-dimensional version of (2.2) with volumic Gaussian laser source also
exists, see [9, 38, 43, 51, 55], and can be treated with similar arguments used here.

In appendix A we have studied the existence of solutions to the non linear thermal
model (2.2).

2.1.2 Effect of scanning strategies in SLM

Our main interest is to prove that laser scanning strategies influence temperature dis-
tribution. Indeed highly localized heat inputs may result in large temperature gradient
and thus lead to deformations during SLM process. We will briefly discuss some results
in literature describing the relation between scan strategies and thermal distribution in
SLM.
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Figure 2.1: One layer Ω of thickness δ with boundary Γ = Γ1 ∪ Γ2 ∪ Γ3.

In [54], six laser paths were compared: a continuous round-trip trajectory of the laser
(denoted by AR), a spaced round-trip trajectory (referred to as ARE), a spiral trajectory
that runs from the corner of the piece towards the inside of this one (noted SPI) and
another going from the center of the piece towards the outside (noted SPE), a trajec-
tory in zigzag (noted ZZ) and a last point-by-point (noted PP) where one merges the
material by spaced points on the surface of the powder (figure 2.2 shows the different
laser paths studied in [54]). The simulation results show that thermal gradients are very
disparate from one type of trajectory to another, as well as the maximum temperatures
reached. The point-by-point manufacturing strategy has lower temperature levels than
in the other cases. These temperatures depend strongly on the position of the laser, they
will be all more important as the laser heats areas closer and closer. For example, the
temperature reached at the point of impact of the laser for the zigzag trajectory is around
1815◦C. For the point-by-point trajectory, it reaches 1500◦C. For the point by point path,
temperature gradients and the maximum amplitude of the temperatures reached are the
lowest compared to the other cases. The simulation results in [54] of the cumulative
plastic deformation fields in the parts at the end of the process for the 6 laser trajectories
shows that the point-by-point scanning of the laser generates the least amount of plastic
deformation. On the contrary, the spiral-shaped trajectories, inwards (SPI), is the one
that leads to the highest plastic deformation.

Also Nickel [41] and Klingbeil [30], studied the metal deposition process for three
laser scanning strategies including a round trip trajectory (AR), a spiral inward (SPI)
and another outward (SPE). Their results show that spiral trajectories are the ones
that induce the most deformation. From their results we can deduce that the paths
which contributes to large temperature gradient also lead to hight residual stresses and
deformations.

Cheng et al. [12] also investigate the influence of scanning strategies on temperature
gradient. They studied six scanning strategies with distinct difference between each other.
They have been summarized in figure 2.3; Case (a) is a random island scanning, the whole
scanning domain has been divided into 9 islands and with a scanning direction rotation
process on the subsequent layer, the completion sequence of the single island is randomly
selected. A prime degree rotation is used to avoid repeated scan vector in just a few
layers, e.g., the scanning vector will be exactly the same after 4 layers for 90◦ rotation
angle.

The temperature distribution contours for laser scanning on the third layer have been
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Figure 2.2: Cartographies of temperature fields for different laser paths at time t studied
in [54].

Figure 2.3: The different laser paths studied in [12].

collected in [12] at the time point which is half of the total time needed for one layer
scanning, and are shown in figure 2.3. The minimum temperature of part substrate did
not maintain at room temperature of 20◦C. It reached to around 300◦C when laser beam
traveled on the third layer for all cases because of small part size and high beam power.
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It is noticed that the three line scanning cases have comparatively lower minimum sub-
strate temperature while the island scanning case has the highest minimum substrate
temperature. Since the island scanning case needs comparatively more time to complete
a layer, more heat is introduced to the substrate. The maximum temperatures of different
scanning strategies are also different from each other at this time point. Generally speak-
ing, the island scanning case has the highest maximum temperature which is caused by
residual heat effect from short scanning path in a single island. In addition, steady state
maximum temperature is very hard to reach in these cases due to frequently change of
scanning direction, path angle and length. Concerning residual stresses and deformations
Cheng et al. [12] have found that the out-in scanning case has the maximum stresses
while the 45◦ inclined scanning case can reduce residual stress in both directions among
all tested cases. The 45◦ inclined scanning case has a smaller deformation while the in-out
scanning case has a larger deformation in build direction than other cases.

In mathematical analysis, a space-filling curve is a curve whose range contains the
entire 2-dimensional unit square (or more generally an n-dimensional unit hypercube).
Giuseppe Peano (1858-1932) was the first to discover one, space-filling curves in the 2-
dimensional plane are sometimes called Peano curves. It was Hilbert (1891) who first
popularized their existence and gave an insight into their generation. Space filling curves
belong to the class of FASS curves; an acronym for space-filling, self-avoiding, simple,
and self-similar. In [37] and [11], fractal scanning strategies based upon mathematical fill
curves, namely the Hilbert and Peano-Gosper curve were explored.

In [37] a comparision between S scanning and Fractal scanning (figure 2.4 ) to inves-
tigate the effect of laser scanning patterns on temperature, residual thermal stresses and
distortion. It was shown that the stresses of a layer processed by a moving laser beam
is decreased with fractal scanning pattern. Compared to the S scanning pattern, much
more symmetrical temperature field and smaller distortion can be gained with the fractal
scanning pattern.

In [11] an island scan sample was used for comparison with fractal scan strategies
based upon Hilbert and Peano-Gosper curves (figure 2.5). The result shows that Fractal
scanning reduce cracking when compared to the island scanning but fractal scan strategies
have limited scope for optimisation, relying on laser power and scan speed.
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Figure 2.4: S scanning pattern and fractal scanning pattern based upon Hilbert curve
studied in [37].

Figure 2.5: Illustration of island scan control sample and scan strategies generated using
(a) Hilbert and (b) Peano-Gosper mathematical space filling curves as studied in [11].

2.2 The optimal control problem

In this section we present a model incorporating trajectory optimization to minimize
thermal gradients in SLM. Our aim is to propose a mathematical model to find an optimal
trajectory minimizing thermal gradients within the produced part using optimal control
theory of PDE’s. Thus, we introduce the appropriate cost functional and the set of
admissible controls taking into account the constraints on laser trajectory. To the best
of our knowledge, we know only one recent paper and thesis dealing with this topic using
shape optimization tools [9, 8]. The main difference between our model and [9] is that our
approach is based on geometry: the geometrical constraint is imposed on the trajectories
to cover the built structure, the optimal arbitrary and parametrizable trajectories being
chosen to minimize the gradient temperature, while their approach is based on physics:
the minimization functional is chosen in order that the temperature must attain a melting
value and the paths are broken lines. As mentioned in [9] such an optimization could
seem too costly to be used straightly in the industry but it may give some intuitions
about an optimal path satisfying the industrial constraints, validating some patterns or
proposing new ones. Furthermore, using a parametrizable control trajectories allow us to
use different types of initial curves (for instance the ones employed by industry), hence
the chosen algorithm will furnish different ”optimal” curves that can be compared in order
to chose the best one.

We consider the optimal control of a linear heat equation that models the distribution
of temperature within one layer Ω heated on its upper surface by a Gaussian laser beam
[31, 18, 54] with a linear heat transfer with the bottom layer:
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
ρ c ∂ty − κ∆y = 0 in Q = Ω× ]0, T [ ,

−κ∂y
∂ν

= h y − gγ on Σ1 = Γ1 × ]0, T [ ,

−κ ∂y
∂ν

= h y on Σ2 = Γ2 × ]0, T [ ,

−κ∂y
∂ν

= h (y − yB) on Σ3 = Γ3 × ]0, T [ ,
y(x, 0) = y0(x) for x ∈ Ω.

(2.3)

These equations are the linear version of (2.2). Here y(x, t) denotes the temperature
at point x ∈ Ω and time t ∈]0, T [, y0 is the initial temperature, while yB ∈ L2(Γ3)
corresponds to the temperature at the top of the previous layer. We may always suppose
that the ambient temperature yex is zero by taking as new dependent variable y − yex so
that we are led to the system (2.3). Here, Ω ⊂ R3 is a bounded and simply connected
domain with a connected Lipschitz boundary Γ, that is supposed to be split up

Γ = Γ1 ∪ Γ2 ∪ Γ3,

where Γi, i = 1, 2, 3, are disjoint open disjoint subsets of Γ. In the SLM process, Γ1

corresponds to the upper surface of the added layer and is supposed to be included in
a plane, that without loss of generality we assume to be R2. By ν(x), we denote the
outward normal direction at the point x ∈ Γ. The heat source gγ is of the form

gγ(x, t) = α
2P

πR2
exp

(
−2
| x− γ(t) |2

R2

)
, for all (x, t) ∈ Σ1. (2.4)

The parameters ρ, c, κ, h, α, P and R are positive constants. The control γ : t ∈ [0, T ]→
Γ1 represents the displacement of the laser beam center on Γ1 with respect to time. Note
that gγ depends nonlinearly on γ.

We have chosen the Robin type boundary condition on Σ3 rather than a non-
homogeneous Dirichlet boundary condition (see problem (2.2)) because it is more realistic
in the practical point of view.

As suggested before, our main goal is to find a trajectory γ (the control) in such a
way as to minimize temperature gradients inside the layer Ω with the constraints that the
laser beam runs over the whole surface Γ1 and does not leave it. From a mathematical
point of view, these constraints lead to a non convex admissible set of controls, which is
the main difficulty to overcome.

The outline of this section is as follows. In subsection 2.2.1, we introduce the optimal
control problem. We explain the link between our non convex set of admissible controls
and laser trajectory in SLM process. Then we prove existence of a solution to the optimal
control problem. In subsection 2.2.2, we prove the differentiability of the control-to-state
mapping, result from which we infer the differentiability of the reduced cost functional.
In subsection 2.2.3, the adjoint state is introduced which allow us to compute the Fréchet
derivative of this reduced cost functional. Therefore, we derive a first order necessary
condition for a control to be optimal in the form of a variational inequality. The main
difficulty is in the non convex constraints required on the control γ.

2.2.1 Existence of an optimal control

For further purposes, we introduce the following (Hilbert) space:

W (0, T ) := {u ∈ L2(0, T ;H1(Ω)) such that
du

dt
∈ L2(0, T ; (H1(Ω))∗)}.
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Recall that by Theorem 3.12 in [53], if y0 belongs to L2(Ω), yB ∈ L2(Σ3) and γ ∈
H1(0, T ; R2) then the initial-boundary value problem (2.3) has a unique solution y in
W (0, T ) ∩ L∞(0, T ;L2(Ω)) in the sense that

ρ c

∫ T

0

〈dy
dt

(·, t) , ϕ(·, t)〉(H1(Ω))∗,H1(Ω) dt+ κ

∫ T

0

∫
Ω

∇y(x, t) · ∇ϕ(x, t) dx dt

+ h

∫ T

0

∫
Γ

y(x, t)ϕ(x, t) dS(x) dt−
∫ T

0

∫
Γ3

hyB(x, t)ϕ(x, t) dS(x) dt

−
∫ T

0

∫
Γ1

gγ(x, t)ϕ(x, t) dS(x) dt = 0,

(2.5)

for all ϕ ∈ L2(0, T ;H1(Ω)).
Our goal is to find a trajectory γ (a control) in such a way as to minimize the tem-

perature gradient inside the layer Ω. We also want to allow the control to be chosen
in such a way that the corresponding temperature distribution y in Q (the state) is the
best possible approximation to a given temperature distribution yQ ∈ L2(Q). To meet
all requirements, we define the following cost functional

J(y, γ) :=
1

2

∫ T

0

∫
Ω

| ∇y(x, t) |2 dx dt+
λQ
2

∫ T

0

∫
Ω

| y(x, t)− yQ(x, t) |2 dx dt

+
λγ
2
‖ γ ‖2

H1(0,T ;R2),

(2.6)

where λQ ≥ 0 and λγ > 0 are constants, while yQ ∈ L2(Q) is a given function. Note
that λγ is a regularization parameter and that if λQ = 0, the only goal is to minimize the
temperature gradient. The optimal control problem is

(OCP) min
γ∈Uad

J(y(γ), γ),

where y(γ) denotes the weak solution of problem (2.3) associated with the control γ, and
the set of admissible controls Uad ⊂ H1(0, T ; R2) is defined as follows. For ε ≥ R, and a
fixed positive constant c, Uad is defined by

Uad := {γ ∈ H1(0, T ; R2); R(γ) ⊂ Γ1,−ε, Rε(γ) = Γ1

and | γ′(t) |≤ c a.e. t ∈ [0, T ]}, (2.7)

where R(γ) := γ([0, T ]),

Γ1,−ε = {x ∈ Γ1; dist (x, ∂Γ1) ≥ ε} , (2.8)

and
Rε(γ) = {x ∈ Γ1; dist (x,R(γ)) ≤ ε}. (2.9)

Note that the condition dist(x, ∂Γ1) ≥ ε has a physical meaning because the control
t 7→ γ(t) is nothing else than the path traced by the laser beam center which has R for
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radius. Practically, ε should be chosen in function of R. The constraint R(γ) ⊂ Γ1,−ε
is chosen to describe that γ must stay from an ε distance from the boundary of Γ1.
Moreover, Rε(γ) = Γ1 is to constrain γ to cover Γ1. Note that Uad is not convex due
to the two constraints R(γ) ⊂ Γ1,−ε and Rε(γ) = Γ1 (see figure 2.6). By the theory of
"tubes" [7], if ∂Γ1 ∈ C2(R2), Uad will be non void if ε > 0 is chosen sufficently small and
the constant c in definition (2.7) is chosen large enough.

Γ1

Γ1,−ε

ε
γ

R

Figure 2.6: The surface Γ1 scanned by the laser

Let us prove some preliminary results that will allow us to show that (OCP) has at
least one optimal control.

Proposition 1. Uad is a weakly closed subset of H1(0, T ; R2).

Proof. Let (γn)n∈N ⊂ Uad be a weakly convergent sequence in H1(0, T ; R2) and let us
call γ its weak limit. As the embedding from H1(0, T ; R2) into C([0, T ]; R2) is compact,
the weak convergence in H1(0, T ; R2) of (γn)n∈N to γ implies the strong convergence of
(γn)n∈N in C([0, T ]; R2).

Given x ∈ Γ1, there exists (tn)n∈N ⊂ [0, T ] such that

γn(tn) ∈ Γ1,−ε for every n ∈ N,

|x− γn(tn)| ≤ ε for every n ∈ N.

As [0, T ] is compact there exists a subsequence (tnj)j∈N ⊂ [0, T ] convergent to some
t ∈ [0, T ].
Thus we have

| γnj(tnj)− γ(t) | 6| γnj(tnj)− γ(tnj) | + | γ(tnj)− γ(t) |
6‖ γnj − γ ‖∞ + | γ(tnj)− γ(t) | −→ 0 as j −→∞.

(2.10)

This implies that |x− γ(t)| ≤ ε. Thus, Rε(γ) = Γ1 and R(γ) ⊂ Γ1,−ε (recalling that Γ1,−ε
is closed) .

Using Mazur’s theorem [60], for all j ∈ N∗ there exists a convex combination

unj =

nj∑
k=1

αkγk,

(
αk ≥ 0,

nj∑
k=1

αk = 1

)
, such that ‖ γ − unj ‖H1(0,T ;R2)≤

1

j
.
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This implies that
‖ γ′ − u′nj ‖L2(0,T ;R2)→ 0 as j →∞.

In particular, there exists a subsequence (u′njk)k∈N such that

u′njk(t)→ γ′(t) as k →∞ for a.e. t ∈ [0, T ].

As | u′njk(t) |≤ c for a.e. t ∈ [0, T ], then also

| γ′(t) |≤ c for a.e. t ∈ [0, T ].

Thus γ ∈ Uad.

Proposition 2. The control-to-state mapping G : γ ∈ Uad 7−→ y(γ) ∈ W (0, T ) is weakly
sequentially continuous.

Proof. Let (γn)n∈N ⊂ Uad be a weakly convergent sequence in H1(0, T ; R2) and let
γ ∈ Uad its weak limit. By the compact embedding from H1(0, T ; R2) into C([0, T ]; R2),
(γn)n∈N strongly converges to γ in C([0, T ]; R2). From Theorem 3.13 in [53] it follows
that the sequence (y(γn))n∈N is a bounded sequence in the space W (0, T ). Consequently,
it possesses a weakly convergent subsequence (y(γnj))j∈N in the space W (0, T ). Let y be
the weak limit of (y(γnj))j∈N.

For 1
2
< ε < 1, the embedding fromW (0, T ) into L2(0, T ;Hε(Ω)) is a linear continuous

compact mapping by the Lions-Aubin compactness Lemma [34, p.57]. The trace mapping

L2(0, T ;Hε(Ω)) −→ L2(0, T ;Hε−1/2(Γ))
y 7−→ y|Σ.

is linear and continuous [35], and thus the trace mapping from L2(0, T ;Hε(Ω)) into
L2(Σ) = L2(0, T ;L2(Γ)) is also linear and continuous. This implies that the sequence of
traces on Σ of (y(γnj))j∈N strongly converges to y|Σ in L2(Σ).

Now we recall that each y(γnj) satisfies the equivalent weak formulation of problem
(2.3), namely

ρ c

∫ T

0

〈dy
dt

(γnj)(., t) , v〉(H1(Ω))∗,H1(Ω) ϕ(t)dt+ κ

∫ T

0

∫
Ω

∇y(γnj)(x, t) · ∇v(x)ϕ(t) dx dt

+h

∫ T

0

∫
Γ

y(γnj)(x, t) v(x)ϕ(t) dS(x) dt− h
∫ T

0

∫
Γ3

yB(x, t) v(x)ϕ(t) dS(x)dt

− α 2P

πR2

∫ T

0

∫
Γ1

exp

(
−2
| x− γnj(t) |2

R2

)
v(x)ϕ(t) dS(x) dt = 0,

for all v ∈ H1(Ω), and all ϕ ∈ L2(0, T ).

By the Lebesgue convergence theorem we have,

∫ T

0

∫
Γ1

exp

(
−2
| x− γnj(t) |2

R2

)
v(x)ϕ(t)dS(x)dt −→∫ T

0

∫
Γ1

exp

(
−2
| x− γ(t) |2

R2

)
v(x)ϕ(t)dS(x)dt
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as j →∞, for all v ∈ H1(Ω) and all ϕ ∈ L2(0, T ).

Using all the previous convergence properties to pass to the limit in the above equation
as j → ∞, we obtain y = y(γ). Thus (y(γnj))j∈N weakly converges to y(γ) in W (0, T ).
Therefore any subsequence of (y(γn))n∈N contains a further subsequence which converges
weakly to y(γ) in W (0, T ). This implies that the whole sequence itself (y(γn))n∈N con-
verges weakly to y(γ) in W (0, T ). This proves the proposition.

Definition 3. The reduced cost functional is defined by

Ĵ : Uad −→ R
γ 7−→ J(G(γ), γ).

We are ready to prove our main result, namely the existence of at least one optimal
control.

Theorem 4 (Existence of an optimal control). Supposing Uad 6= ∅, then the optimal
control problem (OCP) admits at least one optimal control γ̄ ∈ Uad.

Proof. Since Ĵ(γ) ≥ 0, the infimum

L := inf
γ∈Uad

Ĵ(γ),

exists and there is a sequence (γn)n∈N ⊂ Uad such that Ĵ(γn)→ L as n→ +∞.
The sequence (γn)n∈N ⊂ Uad is bounded in H1(0, T ; R2), because ‖γn‖2

H1(0,T ;R2) ≤
2
λγ
Ĵ(γn) for all n ∈ N. Hence, it possesses a subsequence (γnj)j∈N weakly convergent to

some element γ̄ ∈ Uad. This implies that

‖ γ̄ ‖H1(0,T ;R2)6 lim
j→∞

inf ‖ γnj ‖H1(0,T ;R2)≤

√
2L

λγ
. (2.11)

By proposition 2 G(γnj) ⇀ G(γ̄) in W (0, T ) which implies that G(γnj) ⇀ G(γ̄) in
L2(0, T ;H1(Ω)), and thus

‖ G(γ̄) ‖L2(0,T ;H1(Ω))6 lim inf
j→∞

‖ G(γnj) ‖L2(0,T ;H1(Ω)) . (2.12)

The embedding from W (0, T ) into L2(0, T ;L2(Ω)) being compact [34, p.57], the se-
quence G(γnj) also strongly converges to G(γ̄) in L2(0, T ;L2(Ω)).

Using all the previous convergence properties and formula (2.6) we have

L >
1

2
lim inf
j→∞

∫ T

0

∫
Ω

| ∇G(γnj)(x, t) |2 dx dt+
λQ
2

lim inf
j→∞

‖ G(γnj)− yQ ‖2
L2(Q)

+
λγ
2

lim inf
j→∞

‖ γnj ‖2
H1(0,T ;R2)> Ĵ(γ̄).

By the definition of L we have also that L 6 Ĵ(γ̄). Thus L = Ĵ(γ̄).
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2.2.2 Differentiability of the control-to-state mapping.

Our aim is to derive necessary optimality conditions for an admissible control to be
optimal. We first have to discuss the differentiability of the control-to-state mapping.

Lemma 5. The mapping

G : Uad −→ L2(0, T ;H1(Ω))
γ 7−→ y(γ)

is Fréchet differentiable.

Proof. We can write G as the restriction to Uad of the composition of the Fréchet differ-
entiable mappings w, g and q, where w, g and q are defined as follows:

w : H1(0, T ; R2) −→ C(Γ̄1 × [0, T ])
γ 7−→ −cR | γ̃(γ) |2 (2.13)

where cR = 2
R2 and γ̃(γ)(x, t) := x− γ(t), ∀(x, t) ∈ Γ̄1 × [0, T ],

g : C(Γ̄1 × [0, T ]) −→ L2(Σ1)
u 7−→ a exp(u)

(2.14)

where a = α 2P
πR2 , and

q : L2(Σ1) −→ L2(0, T ;H1(Ω))
g 7−→ y

(2.15)

where y denotes the weak solution of the initial boundary value problem:
ρ c ∂ty − κ∆y = 0 in Q,

−κ∂y
∂ν

= h y − g on Σ1,

−κ ∂y
∂ν

= h y on Σ2,

−κ∂y
∂ν

= h (y − yB) on Σ3,
y(x, 0) = y0(x) for x ∈ Ω,

(2.16)

y0 ∈ L2(Ω) denoting a fixed initial condition.

• We start by proving that w is Fréchet differentiable, when C(Γ̄1 × [0, T ]) is en-
dowed with its natural norm ‖ u ‖∞:= sup(x,t)∈Γ̄1×[0,T ] |u(x, t)|. For all δγ ∈ H1(0, T ; R2)
we have:

[w(γ + δγ)− w(γ)] (x, t) = −cR [ | x− (γ + δγ)(t) |2 − | x− γ(t) |2 ]

= cR δγ(t) · (2x− 2γ(t)− δγ(t))

= 2 cR (x− γ(t)) · δγ(t)− cR | δγ(t) |2 , ∀(x, t) ∈ Γ̄1 × [0, T ],
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where · denotes here the inner product in R2. Using the fact that H1(0, T ; R2) ↪→
C([0, T ]; R2), there exists a constant η ≥ 0 such that

‖| δγ |2‖∞
‖ δγ ‖H1(0,T ;R2)

≤ η
‖ δγ ‖2

H1(0,T ;R2)

‖ δγ ‖H1(0,T ;R2)

= η ‖ δγ ‖H1(0,T ;R2)→ 0 as ‖ δγ ‖H1(0,T ;R2)→ 0.

Hence, w is Fréchet differentiable with Fréchet derivative

Dw(γ) · δγ = 2 cR γ̃(γ) · δγ, for all δγ ∈ H1(0, T ; R2).

• The mapping q is Fréchet differentiable being an affine mapping and continuous by
[53, (3.26) p.140]. The mapping g being a superposition operator (also called Nemytskii
operator) is known to be Fréchet differentiable by [53, p.202] or [4]. We therefore skip
the details and only give their Fréchet derivatives, which are respectively given by

Dq(g̃) = τ, for all g̃ ∈ L2(Σ1),

with

τ : L2(Σ1) −→ L2(0, T ;H1(Ω))
g 7−→ τ(g) := y2,

where y2 is the unique solution of
ρ c ∂ty2 − κ∆y2 = 0 in Q,

−κ∂y2

∂ν
= hy2 − g on Σ1,

−κ ∂y2

∂ν
= hy2 on Σ2 ∪ Σ3,

y2(·, 0) = 0 in Ω.

(2.17)

and
Dg(u) · δu = a exp(u)δu, for all δu ∈ C(Γ̄1 × [0, T ]).

In conclusion, G is Fréchet differentiable with Fréchet derivative

DG(γ) · δγ = D(q ◦ g ◦ w)(γ) · δγ
= Dq(g(w(γ))) · (D(g ◦ w)(γ) · δγ)

= (Dq(g(w(γ))) ◦Dg(w(γ))) · (Dw(γ) · δγ)

= τ((Dg(w(γ)) ◦Dw(γ)) · δγ)

= 2acR τ(exp(w(γ)) γ̃(γ) · δγ), for all δγ ∈ H1(0, T ; R2).

From the previous lemma and by composition we deduce that the reduced cost func-
tional γ ∈ H1(0, T ; R2) 7→ J(G(γ), γ) ∈ R is Fréchet differentiable. Let us denote by

v(γ, δγ) := 2acR τ(exp(w(γ)) γ̃(γ) · δγ) (2.18)

the Fréchet derivative of the control-to-state mapping γ ∈ Uad 7→ G(γ) ∈ L2(0, T ;H1(Ω)).
Using the previous result, we obtain
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DĴ(γ) · δγ =

∫ T

0

∫
Ω

∇G(γ)(x, t) · ∇v(γ, δγ)(x, t) dxdt+ λQ (G(γ)− yQ, v(γ, δγ))L2(Q)

+ λγ (γ, δγ)H1(0,T ;R2) =

∫ T

0

∫
Ω

∇G(γ)(x, t) · ∇v(γ, δγ)(x, t) dxdt

+ λQ

∫ T

0

∫
Ω

G(γ)(x, t) v(γ, δγ)(x, t) dxdt− λQ
∫ T

0

∫
Ω

yQ(x, t) v(γ, δγ)(x, t) dxdt

+ λγ

∫ T

0

γ(t) · δγ(t) dt+ λγ

∫ T

0

γ′(t) · δγ′(t) dt, for all δγ ∈ H1(0, T ; R2).

(2.19)

2.2.3 Adjoint equation and necessary optimality conditions

It is well known that an optimal control γ̄ minimizing Ĵ in Uad has to obey the variational
inequality

DĴ(γ̄)(γ − γ̄) ≥ 0 for all γ ∈ Uad, (2.20)
provided that Ĵ is Gâteaux differentiable at γ̄ and Uad convex. In our case Ĵ is Fréchet
differentiable but Uad is not convex, thus (2.20) is no more true. Therefore, we introduce
at any point γ ∈ Uad the cone of admissible directions and we use the Kuhn-Tucker
conditions. More precisely, we recall from [15, p.211] the following definition and result.

Definition 6. Let V a normed vector space and Uad a non-empty subset of V . For every
γ ∈ Uad, the cone of admissible directions at γ is

C(γ) := {0} ∪ {w ∈ V \ {0}; ∃(γk)k>0 ⊂ Uad, γk 6= γ ∀k ≥ 0 s.t. lim
k→∞

γk = γ and

lim
k→∞

γk − γ
‖ γk − γ ‖

=
w

‖ w ‖
}.

(2.21)

Theorem 7 (Kuhn-Tucker). Let V be a normed vector space and Uad a non-empty subset
of V . Let J : O ⊂ V → R, a function defined on an open set O of V such that Uad ⊂ O.
If J has at γ̄ ∈ Uad a relative minimum compared to the subset Uad, and if J is Fréchet
differentiable at γ̄ then

DJ(γ̄) · (δγ̄) ≥ 0 for every δγ̄ ∈ C(γ̄), (2.22)
i.e. DJ(γ̄) belongs to the dual cone of the cone of admissible directions C(γ̄) at γ̄.

Since Ĵ is Fréchet differentiable, Theorem 7 and (2.19) allow us to derive a necessary
condition for an admissible control to be optimal. However, this necessary condition
would not be practical due to the appearance of v(γ̄, δγ̄) in (2.19) which should be com-
puted by solving the initial boundary value problem (2.17) for g = exp(w(γ̄)) γ̃(γ̄) · δγ̄
each time we consider another δγ̄ ∈ C(γ̄) to check if the necessary condition (2.22) is
true at γ̄. To resolve this difficulty, it is classical to introduce the “adjoint system” whose
solution is called the adjoint state [53]. We claim that the adjoint system for our problem
is the following linear backward boundary value problem

ρ c ∂tp+ κ∆p = ∆G(γ̄)− λQ(G(γ̄)− yQ) in Q,

κ ∂p
∂ν

+ h p = ∂G(γ̄)
∂ν

on Γ×]0, T [,
p(., T ) = 0 in Ω.

(2.23)
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Definition 8. Let γ̄ be an optimal control of (OCP) with associated state G(γ̄). A
function p ∈ W (0, T ) is said to be a weak solution to (2.23) if p(·, T ) = 0 in Ω and

− ρc
∫ T

0

< ∂tp(·, t), ϕ(·, t) >H1(Ω)∗,H1(Ω) dt+ κ

∫ T

0

∫
Ω

∇p(x, t) · ∇ϕ(x, t)dxdt

+ h

∫ T

0

∫
Γ

p(x, t)ϕ(x, t)dS(x)dt =

∫ T

0

∫
Ω

∇G(γ̄)(x, t)∇ϕ(x, t)dxdt

+ λQ

∫ T

0

∫
Ω

(G(γ̄)− yQ)(x, t)ϕ(x, t)dxdt

(2.24)

for every ϕ ∈ L2(0, T ;H1(Ω)).

Let us notice that (2.23) admits a unique weak solution in W (0, T ), see [19, pp.
512-513] for instance.

Theorem 9. If γ̄ ∈ Uad is an optimal control of (OCP) with associated state G(γ̄),
and p ∈ W (0, T ) the corresponding adjoint state that solves (2.23), then the variational
inequality

λγ

∫ T

0

γ̄(t) · (δγ̄)(t)dt+ λγ

∫ T

0

γ̄′(t) · (δγ̄)′(t)dt

+2acR

∫ ∫
Σ1

exp(w(γ̄)(x, t))γ̃(γ̄)(x, t) · (δγ̄)(t)p(x, t)dS(x)dt ≥ 0
(2.25)

holds for all δγ̄ ∈ C(γ̄).

Proof. If γ̄ is an optimal control for the problem (OCP) then by Theorem 7

DĴ(γ̄) · (δγ̄) ≥ 0 for all δγ̄ ∈ C(γ̄).

By (2.19) and (2.24) we have

DĴ(γ̄) · (δγ̄) = −ρc
∫ T

0

< ∂tp(·, t), v(γ̄, δγ̄)(·, t) >H1(Ω)∗,H1(Ω) dt

+ κ

∫ T

0

∫
Ω

∇p(x, t) · ∇v(γ̄, δγ̄)(x, t)dxdt+ h

∫ T

0

∫
Γ

p(x, t)v(γ̄, δγ̄)(x, t)dS(x)dt

+ λγ̄

∫ T

0

γ̄(t) · (δγ̄)(t) dt+ λγ̄

∫ T

0

γ̄′(t) · (δγ̄)′(t) dt

(2.26)

where we recall that v(γ̄, δγ̄) given by (2.18) is the weak solution of


ρ c ∂tv(γ̄, δγ̄)− κ∆v(γ̄, δγ̄) = 0 in Q,

κ∂v(γ̄,δγ̄)
∂ν

+ h v(γ̄, δγ̄) = 2acR exp(w(γ̄))γ̃(γ̄) · δγ̄ on Σ1,

κ ∂v(γ̄,δγ̄)
∂ν

+ h v(γ̄, δγ̄) = 0 on Σ2 ∪ Σ3,
v(γ̄, δγ̄)(x, 0) = 0 for x ∈ Ω,

(2.27)

and p is the weak solution of (2.23). Using the fact that v(γ̄, δγ̄) is the weak solution of
(2.27), taking p(·, ·) as test function in the weak formulation of (2.27) and using the inte-
gration by parts formula in W (0, T ) [53, p.148] taking into account that v(γ̄, δγ̄)(·, 0) = 0
and p(·, T ) = 0, we obtain:
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− ρc
∫ T

0

< ∂tp(·, t), v(γ̄, δγ̄)(·, t) >H1(Ω)∗,H1(Ω) dt+ κ

∫ T

0

∫
Ω

∇p(x, t) · ∇v(γ̄, δγ̄)(x, t)dxdt

+ h

∫ T

0

∫
Γ

p(x, t)v(γ̄, δγ̄)(x, t)dS(x)dt

= 2acR

∫ T

0

∫
Γ1

exp(w(γ̄)(x, t))γ̃ (γ̄) (x, t) · (δγ̄)(t)p(x, t)dS(x)dt.

By replacing this last identity in (2.26) we get

DĴ(γ̄) · (δγ̄) = 2acR

∫ ∫
Σ1

exp(w(γ̄)(x, t))γ̃ (γ̄) (x, t) · (δγ̄)(t)p(x, t)dS(x)dt

+λγ

∫ T

0

γ̄(t) · (δγ̄)(t)dt+ λγ

∫ T

0

γ̄′(t) · (δγ̄)′(t)dt ≥ 0.

This concludes the proof of the Theorem.

2.3 The penalized control problem
The previous approach has two drawbacks: First the set of admissible controls is not
convex. Secondly the constraints on the control R(γ) ⊂ Γ1,−ε, Rε(γ) = Γ1 do not seem
appropriate for discretization. Therefore, in this section we intend to replace the previous
nonconvex constraints by other conditions on the trajectory γ, by adding a penalization
term to the cost functional (2.6). Namely, given θ > 0 a penalization parameter, we add
to J(y(γ), γ), the term

1

θ2

(
2R

∫ T

0

√
| γ′(t) |2 +θ2dt− | Γ1 |

)2

.

Formally as θ is close to zero, this will force the control to satisfy

2R

∫ T

0

| γ′(t) | dt '| Γ1 |, (2.28)

which means that the area covered by the laser is close to the area of Γ1.

2.3.1 Existence of an optimal control

We consider the penalized optimal control problem: Given θ > 0, find γ̄θ ∈ Up
ad such that

(OCPθ) Jθ(y(γ̄θ), γ̄θ) = min
γ∈Upad

Jθ(y(γ), γ),

with,

Jθ(y(γ), γ) := J(y(γ), γ) +
1

θ2

(∫ T

0

√
| γ′(t) |2 +θ2dt− | Γ1 |

)2

, (2.29)
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where we take here

J(y(γ), γ) :=
1

2

∫ T

0

∫
Ω

| ∇y(γ)(x, t) |2 dx dt+
λQ
2

∫ T

0

∫
Ω

| y(γ)(x, t)− yQ(x, t) |2 dx dt

+
λγ
2
‖ γ ‖2

H2(0,T ;R2) .

(2.30)

In this section, we assume that Γ1 to be a convex subset of R2. If ε ≥ R the set of
admissible controls

Up
ad = {γ ∈ H2(0, T ; Γ1); ∃ c > 0 s.t | γ′(t) |≤ c a.e. t ∈ [0, T ]

and 2R

∫ T

0

| γ′(t) | dt ≤| Γ1 | +2εdiam(Γ1)}
(2.31)

will be convex.

Proposition 10. Up
ad is closed.

Proof. Let (γn)n∈N ⊂ H2(0, T ; R2) be a convergent sequence in Up
ad and let us call γ its

limit. This implies that γ′n converge to γ′ in L2(0, T ; R2), so that there exists a subsequence

γ′nk −→ γ′ as k →∞ a.e. (2.32)

As | γ′nk(t) |≤ c for almost every t ∈ [0, T ], by passing to the limit we obtain

| γ′(t) |≤ c for almost every t ∈ [0, T ]. (2.33)

Also, we have that γ′n → γ′ in L1(0, T ; R2) so we can pass to the limit in the second
constraint defining Up

ad obtaining that

2R

∫ T

0

| γ′(t) | dt ≤| Γ1 | +2ε diam(Γ1). (2.34)

It is clear that since Up
ad is convex and closed that it is weakly closed.

Proposition 11. The control-to-state mapping γ ∈ Uad 7−→ y(γ) ∈ W (0, T ) is weakly
sequentially continuous.

Proof. Similar to the proof of proposition 2.

The reduced cost functional Ĵθ(·), is now defined by

Ĵθ(γ) := Ĵ(γ) +
1

θ2

(
2R

∫ T

0

√
| γ′(t) |2 +θ2dt− | Γ1 |

)2

. (2.35)

Theorem 12 (Existence of an optimal control). The optimal control problem (OCPθ)
admits at least one optimal control γ̄θ ∈ Up

ad.
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Proof. Since Ĵθ(γ) ≥ 0, the infimum

Lθ := inf
γ∈Upad

Ĵθ(γ),

exists and there is a minimizing sequence (γn)n∈N ⊂ Up
ad such that Ĵ(γn)→ Lθ as n→∞.

The sequence (γn)n∈N ⊂ Up
ad being bounded in H2(0, T ; R2) it posseses a subsequence

(γnj)j∈N weakly convergent to some element γ̄θ ∈ Up
ad. This implies

‖ γ̄θ ‖H2(0,T ;R2)6 lim
j→∞

inf ‖ γnj ‖H2(0,T ;R2)≤

√
2Lθ

λγ
. (2.36)

Since H2(0, T ; R2) is compactly embedded in C1([0, T ]; R2) then (γnj)j∈N strongly con-
verges to γ̄θ ∈ C1([0, T ]; R2). This implies (γ′nj)n∈N converges uniformly to γ̄θ′ on [0, T ],
and thus that ∫ T

0

√
| γ′nj(t) |2 +θ2dt→

∫ T

0

√
| γ′(t) |2 +θ2dt as j → +∞.

By the previous proposition y(γnj) ⇀ y(γ̄θ) in W (0, T ) this implies that y(γnj) ⇀ y(γ̄θ)
in L2(0, T ;H1

Γ3
(Ω)) thus

‖ y(γ̄θ) ‖L2(0,T ;H1
Γ3

(Ω))6 lim inf
j→∞

‖ y(γnj) ‖L2(0,T ;H1
Γ3

(Ω)) . (2.37)

The embedding fromW (0, T ) into L2(0, T ;L2(Ω)) being compact [34], the sequence y(γnj)
also converge strongly to y(γ̄θ) in L2(0, T ;L2(Ω)).

Using all the previous convergence properties we have

Lθ > lim inf
j→∞

‖ y(γnj) ‖2
L2(0,T ;H1

Γ3
(Ω)) +

λd
2

lim
j→∞
‖ y(γnj)− yd ‖2

L2(Q)

+ lim
j→∞

inf ‖ γnj ‖H2(0,T ;R2)

+
1

θ2

(
2R

∫ T

0

lim
j→∞

√
| γ′nj(t) |2 +θ2dt− | Γ1 |)

)2

> Ĵ(γ̄θ)

and by the definition of Lθ we have Lθ 6 Ĵ(γ̄θ). Thus Lθ = Ĵ(γ̄θ).

Proposition 13. Let (θj)j∈N a sequence of positive numbers tending to 0. Let γ̄θj be an
optimal control of the penalized control problem (OCPθj). If there exists γ1 ∈ Uad and a
constant c independant of θj such that Ĵθj(γ1) ≤ c, then there is a subsequence (γ̄θjk )k∈N

such that γ̄θjk converges strongly to some γ ∈ H1(0, T ; R2) as k → +∞ and

2R

∫ T

0

| γ′(t) | dt =| Γ1 | .

Proof. Since γ̄θj is a minimum then

Ĵθj(γ̄θj) ≤ Ĵθj(γ1) ≤ c, (2.38)

hence
‖ γ̄θj ‖H2(0,T ;R2)≤ Ĵθj(γ̄θj) ≤ c. (2.39)
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γ̄θj being bounded in H2(0, T ; R2) it possesses a subsequence (γ̄θjk )k∈N weakly convergent
to some element γ in H2(0, T ; R2). Since H2(0, T ; R2)

c
↪→ C1([0, T ]; R2) then (γ̄θjk )k∈N

converges strongly to γ in C1([0, T ]; R2) and therefore in H1(0, T ; R2). Now multiplying
Ĵθj(γ̄θjk ) by θ2

jk
we get(

2R

∫ T

0

√
| γ̄θjk ′(t) |2 +θ2

jk
dt− | Γ1 |

)2

≤ θ2
jk
c, (2.40)

by tending k to +∞ we get

2R

∫ T

0

| γ′(t) | dt =| Γ1 | . (2.41)

2.3.2 Differentiability of the control-to-state mapping.

Lemma 14. The mapping

G : H2(0, T ; R2) −→ L2(0, T ;H1(Ω))
γ 7−→ y(γ)

is Fréchet differentiable.

Proof. It is the same proof of Lemma 5. It is sufficient to notice that G can be written
as a composition of the Fréchet differentiable mappings w, g and q (see [33, p.262]), where
w, g and q are defined as follows:

w : H2(0, T ; R2) −→ C(Γ̄1 × [0, T ])
γ 7−→ −cR | γ̃(γ) |2 (2.42)

where cR = 2
R2 and γ̃(γ)(x, t) := x− γ(t), ∀(x, t) ∈ Γ̄1 × [0, T ],

g : C(Γ̄1 × [0, T ]) −→ L2(Σ1)
u 7−→ a exp(u)

(2.43)

where a = α 2P
πR2 , and

q : L2(Σ1) −→ L2(0, T ;H1(Ω))
g 7−→ y

(2.44)

where y denotes the weak solution of the initial boundary value problem:
ρ c ∂ty − κ θy = 0 in Q,

−κ∂y
∂ν

= h y − g on Σ1,

−κ ∂y
∂ν

= h y on Σ2,
y = 0 on Σ3,
y(x, 0) = y0(x) for x ∈ Ω,

(2.45)
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y0 ∈ L2(Ω) denoting a fixed initial condition. Therefore we can conclude that

DG(γ) · δγ = D(q ◦ g ◦ w)(γ) · δγ
= v(γ, δγ), for all δγ ∈ H2(0, T ; R2),

where v(γ, δγ) is a solution of (2.27).

Lemma 15. The mapping

l : γ ∈ H1(0, T ; R2) 7→
∫ T

0

√
| γ′(t) |2 +θ2dt (2.46)

is Fréchet differentiable.

Proof. We firstly prove that the mapping l is Gâteaux differentiable at every point
γ ∈ H1(0, T ; R2). Let δγ ∈ H1(0, T ; R2) and h > 0

l(γ + hδγ)− l(γ)

h
=

∫ T

0

√
| γ′(t) + hδγ′(t) |2 +θ2 −

√
| γ′(t) |2 +θ2

h
dt

=

∫ T

0

| γ′(t) + hδγ′(t) |2 − | γ′(t) |2

h
(√
| γ′(t) + hδγ′(t) |2 +θ2 +

√
| γ′(t) |2 +θ2

)dt
=

∫ T

0

2hγ′(t) · δγ′(t) + h2 | δγ′(t) |2

h
(√
| γ′(t) + hδγ′(t) |2 +θ2 +

√
| γ′(t) |2 +θ2

)dt
=

∫ T

0

2γ′(t) · δγ′(t) + h | δγ′(t) |2√
| γ′(t) + hδγ′(t) |2 +θ2 +

√
| γ′(t) |2 +δ2

dt.

(2.47)

We have that

h

∫ T

0

| δγ′(t) |2√
| γ′(t) + hδγ′(t) |2 +θ2 +

√
| γ′(t) |2 +θ2

≤ h

θ

∫ T

0

| δγ′(t) |2 dt

≤ h

θ
‖ δγ ‖H1(0,T ;R2)→ 0 as h→ 0+.

(2.48)

Let (hn)n∈N such that hn → 0+, since γ′ and δγ′ ∈ L2(0, T ; R2) then by Cauchy-Schwartz
we have

γ′ · δγ′√
| γ′ + hnδγ′ |2 +θ2 +

√
| γ′ |2 +θ2

≤ 1

θ
| γ′ · δγ′ |∈ L1(0, T ),

thus by the dominated Lebesgue’s convergence theorem we have

2

∫ T

0

γ′(t) · δγ′(t)dt√
| γ′(t) + hnδγ′(t) |2 +θ2 +

√
| γ′(t) |2 +θ2

→
∫ T

0

γ′(t) · δγ′(t)√
| γ′(t) |2 +θ2

as n→ +∞.

Therefore the Gâteau derivative of l is

l′(γ; δγ) =

∫ T

0

γ′(t) · δγ′(t)√
| γ′(t) |2 +θ2

dt, (2.49)
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as it is a continuous linear form in δγ on H1(0, T ; R2).
Let us prove that γ ∈ H1(0, T ; R2) 7→ l′(γ; ·) ∈ (H1(0, T ; R2))∗ is continuous. This

will implies that l is Fréchet differentiable [27]. Let (γn)n∈N a sequence of H1(0, T ; R2)
convergent to γ. In fact

sup
‖δγ‖H1(0,T ;R2)≤1

∣∣∣∣∣
∫ T

0

γ′n(t) · δγ′(t)√
| γ′n(t) |2 +θ2

dt−
∫ T

0

γ′(t) · δγ′(t)√
| γ′(t) |2 +θ2

dt

∣∣∣∣∣
≤ sup
‖δγ‖H1(0,T ;R2)≤1

∥∥∥∥∥ γ′n√
| γ′n |2 +θ2

− γ′√
| γ′ |2 +θ2

∥∥∥∥∥
L2(0,T ;R2)

.

(2.50)

By the hypothesis on (γn)n∈N and the dominated convergence theorem we have∥∥∥∥∥ γ′n√
| γ′n |2 +θ2

− γ′√
| γ′ |2 +θ2

∥∥∥∥∥
2

L2(0,T ;R2)

≤

∥∥∥∥∥ γ′n√
| γ′n |2 +θ2

− γ′√
| γ′n |2 +θ2

∥∥∥∥∥
2

L2(0,T ;R2)

+

∥∥∥∥∥ γ′√
| γ′n |2 +θ2

− γ′√
| γ′ |2 +θ2

∥∥∥∥∥
2

L2(0,T ;R2)

≤ 1

θ2
‖ γn − γ ‖H1(0,T ;R2) +

∫ T

0

∣∣∣∣∣ 1√
| γ′n |2 +θ2

− 1√
| γ′ |2 +θ2

∣∣∣∣∣
2

| γ′(t) |2 dt

→ 0 as n→ +∞.
(2.51)

Therefore by (2.50) and (2.51) l′(γn, ·) → l′(γ, ·) in H1(0, T ; R2)∗. Thus l is Fréchet
differentiable.

Lemma 16. The mapping

q : γ ∈ H2(0, T ; R2) 7→ 1

θ2
(2R

∫ T

0

√
| γ′(t) |2 +θ2dt− | Γ1 |)2 (2.52)

is Fréchet differentiable.

Proof. We can write q as the composition of the Fréchet differentiable mappings w and
q defined as follow:

w : H2(0, T ; R2) −→ R
γ 7−→ 2R

∫ T
0

√
| γ′(t) |2 +θ2dt− | Γ1 |,

(2.53)

and

g : R −→ R
u 7−→ 1

θ2u
2. (2.54)



2.3. THE PENALIZED CONTROL PROBLEM 43

w is Fréchet differentiable by the previous lemma and its Fréchet derivative is given by
(2.49).

For all δu ∈ R
(u+ δu)2 = u2 + δu2 + 2u δu, (2.55)

so it is clear that
Dg(u) · δu =

2

θ2
u δu. (2.56)

Thus
Dq(γ) · δγ = D(g ◦ w)(γ) · δγ

= Dg(w(γ)) ·Dw(γ) · δγ

=
2

θ2

(
2R

∫ T

0

√
| γ′(t) |2 +θ2dt− | Γ1 |

)(
2R

∫ T

0

γ′(t) · δγ′(t)√
| γ′(t) |2 +θ2

dt

) (2.57)

Using the previous lemmas, we obtain:

DĴθ(γ) · δγ =

∫ T

0

∫
Ω

∇G(γ)(x, t) · ∇v(γ, δγ)(x, t) dxdt

+ λQ

∫ T

0

∫
Ω

G(γ)(x, t) v(γ, δγ)(x, t) dxdt− λQ
∫ T

0

∫
Ω

yQ(x, t) v(γ, δγ)(x, t) dxdt

+ λγ

∫ T

0

γ(t) · δγ(t) dt+ λγ

∫ T

0

γ′(t) · δγ′(t) dt+ λγ

∫ T

0

γ′′(t) · δγ′′(t)dt,

+
2

θ2

(
2R

∫ T

0

√
| γ′(t) |2 +θ2dt− | Γ1 |

)(
2R

∫ T

0

γ′(t) · δγ′(t)√
| γ′(t) |2 +θ2

dt

)
.

(2.58)

where v(γ, δγ) is a solution of (2.27).

2.3.3 Adjoint equation and necessary optimality conditions

The adjoint system of our problem is the following linear backward boundary value prob-
lems 

ρ c ∂tp+ κ∆p = ∆G(γ̄θ)− λd(G(γ̄θ)− yQ) in Q,

κ ∂p
∂ν

+ h p = ∂G(γ̄θ)
∂ν

on Γ×]0, T [,
p(., T ) = 0 in Ω.

(2.59)

Theorem 17. If γ̄θ ∈ Uad is an optimal control of (OCPθ) with associated state G(γ̄θ),
and p ∈ W (0, T ) the corresponding adjoint state that solves (2.59), then the variational
inequality

DĴθ(γ) · δγ = λγ

∫ T

0

γ̄θ(t) · (δγ)(t)dt+ λγ

∫ T

0

(γ̄θ)′(t) · (δγ)′(t)dt+ λγ

∫ T

0

(γ̄θ)′′(t) · (δγ)′′(t)dt,

+
2

θ2

(
2R

∫ T

0

√
| (γ̄θ)′(t) |2 +θ2dt− | Γ1 |

)(
2R

∫ T

0

(γ̄θ)′(t) · (δγ)′(t)√
| (γ̄θ)′(t) |2 +θ2

dt

)
+ 2acR

∫ ∫
Σ1

exp(w(γ̄θ)(x, t))γ̃(γ̄θ)(x, t) · (δγ)(t)p(x, t)dS(x)dt ≥ 0

(2.60)
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holds for all δγ ∈ Uad.

Proof. For the proof see theorem 9.

DĴθ(γ) is a continuous linear mapping on H2(0, T ; R2). Thus by Riesz representation
theorem it is the scalar product by a unique element of H2(0, T ; R2) that we denote by
∇H2 Ĵ(γ):

DĴθ(γ) · δγ = (∇H2 Ĵθ(γ), δγ)H2(0,T ;R2) for all δγ ∈ H2(0, T ; R2).

Proposition 18. ∇H2 Ĵθ(γ) can be obtained by solving the following boundary value prob-
lem on the time interval (0, T )

v(4)(t)− v′′(t) + v(t) = f(t)
v′(0) = v(3)(0),
v′(T ) = v(3)(T ),
v′′(0) = 0,
v′′(T ) = 0.

(2.61)

and 
u(4)(t)− u′′(t) + u(t) = −q′′(t)
−u′(0) + u(3)(0) = −q′(0),
−u′(T ) + u(3)(T ) = −q′(T ),

u′′(0) = 0,
u′′(T ) = 0.

(2.62)

with

f(t) = 2acR

∫
Γ1

exp(w(γ)(x, t))γ̃(γ)(x, t)p(x, t)dS(x) (2.63)

and

q′(t) =
2

θ2

(
2R

∫ T

0

√
| (γ̄θ)′(t) |2 +θ2dt− | Γ1 |

)(
2R

(γ̄θ)′(t)

(
√
| (γ̄θ)′(t) |2 +θ2

)
. (2.64)

Then ∇H2 Ĵθ(γ) = v + u+ λγγ.

Proof. Let us set

J̃ : Uad → R : γ 7→ 1

2

∫ ∫
Q

| ∇y(γ) |2 (x, t)dxdt+
λQ
2

∫ ∫
Q

| y(γ)− yQ |2 (x, t)dxdt

(2.65)
By formula (2.60)

DJ̃(γ) · δγ = 2acR

∫ T

0

∫
Γ1

exp(w(γ)(x, t))γ̃(γ)(x, t) · (δγ)(t)p(x, t)dS(x)dt, (2.66)

for all δγ ∈ H2(0, T ; R2). This latest expression shows immediately that J̃ ′(γ) ·δγ is equal
to the L2-scalar product of δγ ∈ H2(0, T ; R2) ⊂ L2(0, T ; R2) with the square integrable
function on the time interval (0, T )

f : t 7→ 2acR

∫
Γ1

exp(w(γ)(x, t))γ̃(γ)(x, t)p(x, t)dS(x). (2.67)
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Now, we want to write δγ 7→ J̃ ′(γ) ·δγ as the H2(0, T ; R2)-scalar product of δγ with some
H2(0, T ; R2)-function v. Thus we must have

(v, δγ)H2(0,T ;R2) = (f, δγ)L2(0,T ;R2), ∀δγ ∈ H2(0, T ; R2) (2.68)

i.e. ∫ T

0

v(t) · δγ(t)dt+

∫ T

0

v′(t) · δγ′(t)dt+

∫ T

0

v′′(t) · δγ′′(t) =

∫ T

0

f(t)δγ(t)dt (2.69)

for all δγ ∈ H2(0, T ; R2). That v exists and is unique folllows from the Riesz representa-
tion theorem. Taking δγ ∈ C∞c (0, T ; R2) and integrating by parts, we obtain

v(4) − v′′ + v = f. (2.70)

f being a square integrable function on (0, T ), it follows from (2.70) that v ∈ H4(0, T ; R2).
Making an integration by part in (2.69), we obtain that

v′(0) = v(3)(0),

v′(T ) = v(3)(T ),

v′′(0) = 0,

v′′(T ) = 0.

(2.71)

Thus J̃ ′(γ) · δγ = (v, δγ)H2(0,T ;R2).
Let us set

q′(t) =
2

θ2

(
2R

∫ T

0

√
| (γ̄θ)′(t) |2 +θ2dt− | Γ1 |

)(
2R

(γ̄θ)′(t)

(
√
| (γ̄θ)′(t) |2 +θ2

)
. (2.72)

We want to find u ∈ H2(0, T ; R2) such that

(u, δγ)H2(0,T ;R2) = (q′(t), δγ′)L2(0,T ;R2). (2.73)

Taking δγ ∈ C∞c (0, T ; R2), we obtain

u(4)(t)− u′′(t) + u(t) = −q′′(t)
in the weak sense q′′ being square integrable on (0, T ). This implies that u ∈ H4(0, T ; R2).
Performing an integration by parts in (2.73) we obtain the boundary conditions

−u′(0) + u(3)(0) = −q′(0),
−u′(T ) + u(3)(T ) = −q′(T ),

u′′(0) = 0,
u′′(T ) = 0.

(2.74)

Knowing that

Ĵθ(γ) := J̃(γ) +
λγ
2
‖ γ ‖2

H2(0,T ;R2) +
1

θ2

(∫ T

0

√
| γ′(t) |2 +θ2dt− | Γ1 |

)2

,

we have

DĴθ(γ) · δγ = DJ̃(γ) · δγ + λγ(γ, δγ)H2(0,T ;R2) + (u, δγ)H2(0,T ;R2)

= (v + u+ λγγ, δγ)H2(0,T ;R2).

Thus
∇H2 Ĵθ = v + u+ λγγ.
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2.4 Numerical approximations

This section is devoted to the discretization of the penalized optimal control problem
(OCPθ). In subsection 2.4.1 we present the main optimization algorithms useful for
our study. Our numerical tests are in a two dimensional setup which is presented in
subsection 2.4.2. In subsection 2.4.2 the parametrization of the laser path is introduced.
In subsection 2.4.4 , we perform preliminary simulations to show how we coupled the Heat
equation to the parametrized path. The discretization optimization problem is presented
without constraint in subsection 2.4.5 to show how we handled the discretisation of the
associated adjoint problem and the necessary optimality condition in presence of the
parametrized path. Finally, in subsection 2.4.6 the fully constrained optimization problem
is discretized.

2.4.1 Optimization algorithms

In this section we recall the main optimization algorithms we have used. We will not
discuss convergence analysis for these algorithms. Details about these methods can be
found in the following references: [28, Chapter 2], [42, Chapter 17].

The gradient descent algorithm

We present a descent method for simply constrained problem of the form

min
x∈U

f(x)

with U = Rn, f : U → R continuously Fréchet differentiable. We know in order to
minimize a convex function, we need to find a stationary point. One possible approach is
to start at an arbitrary point, and move in the opposite side of the gradient at that point
towards the next point, and repeat until converging to a stationary point. In general,
one can consider a search for a stationary point as having two components: the direction
and the step size. The direction decides which direction we search next, and the step size
determines how far we go in that particular direction. Such methods can be generally
described as starting at some arbitrary point x0 and then at every step k ≥ 0 iteratively
moving in the direction dk by step size σk to the next point, xk+1 = xk+σkdk. In gradient
descent, the direction is the negative gradient at the point, i.e. d = −∇f(x). Thus, the
iterative search of gradient descent can be described through the following recursive rule:

xk+1 = xk − σk∇f(xk).

Since our objective is to minimize the function, one reasonable approach is to choose the
step size in manner that will deminish the value at the new point, i.e. find the step size
that minimizes f(xk+1). Namely, choose a descent direction σk such that

f(xk+1 + σkdk) < f(xk).
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Formally, given a desired precision ε > 0, we define the gradient descent algorithm as
described below.

Algorithm 1: Gradient descent
0. Choose an initial point x0 ∈ U ;
while ‖ ∇f(xk) ‖≥ ε do

1. Set dk = −∇f(xk);
2. Choose σk > 0 such that f(xk + σkdk) < f(xk);
3. Set xk+1 = xk + σkdk;
4. k ← k + 1;

end
5. return xk;

The projected gradient algorithm

We now present a descent method for simply constrained problem of the form
min
x∈U

f(x),

subject to a ≤ x ≤ b,

with U = Rn, f : U → R is a Fréchet differentiable function and a, b ∈ Rn, a ≤ b are
positive constants. The presence of the constraint set [a, b] requires to take care that
we stay feasible with respect to [a, b]. The projected gradient descent algorithm uses
an initial point x0, and then updates it for k = 1, 2, 3, · · · by first performing gradient
descent on the current solution and then projecting it back onto the constraint set. This
can be expressed as

xk+1 = P[a,b](xk + σkdk)

where P[a,b] is the corresponding orthogonal projection into [a, b]:

P[a,b](y) = max(a,min(y, b)). (2.75)

Formally, given a desired precision ε > 0, we define the gradient descent algorithm as
described below.

Algorithm 2: Projected Gradient descent
0. Choose an initial point x0 ∈ U ;
while ‖ xk − P[a,b](xk + σkdk) ‖≥ ε do

1. Set dk = −∇f(xk);
2. Choose σk > 0 such that f(xk + σkdk) < f(xk);
3. Set xk+1 = P[a,b](xk + σkdk);
4. k ← k + 1;

end
5. return xk;

Remark 4. The motivation of the stopping criterium in algorithm 2, is that if xk would
be equal to P[a,b](xk + σkdk), this would mean that

(∇f(xk), y − xk)R ≥ 0, for all y ∈ U such that y ∈ [a, b].

This is an approximation of the necessary condition f ′(x̄)(y − x) ≥ 0 for all y ∈ [a, b],
that every local minimum x̄ must satisfy.
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The augmented-Lagrangian algorithm

Augmented Lagrangian methods are a certain class of algorithms for solving constrained
optimization problems. They have similarities to quadratic penalty methods in that they
replace a constrained optimization problem by a series of unconstrained problems and add
a penalty term to the objective. Namely, the unconstrained objective is the Lagrangian
of the constrained problem, with an additional penalty term (the augmentation). The
augmented-Lagrangian method reduces the possibility of ill conditioning of the subprob-
lems that are generated in the quadratic penalty approach (see section 17.1 and 17.4 of
[42] for more explanation about the ill conditioning). We are interesred in the following
optimization problem with inequalities constraint.

min
x∈U

f(x),

subject to c(x) ≥ 0,

with U = Rn and the functions f : U → R, c : U → R are Fréchet differentiable. We
consider the Lagrangian function

L : (U,R,R+) −→ R
(x, λ;µ) 7−→ L(x, λ;µ) := f(x) + ψ(c(x), λ;µ)

with

ψ(c(x), λ;µ) =

{
λc(x) + 1

2µ
(c(x))2, if −c(x)− µλ ≤ 0
µ
2
(λ)2, otherwise.

(2.76)

We want to solve the following unconstrained optimization problem:

min
x
L(x, λ;µ). (2.77)

Once the approximate solution xk is obtained, we use the following formulas to update
the Lagrange multipliers

λk+1 = max(λk − c(xk)/µk, 0), (2.78)

Algorithm 4 gives the augmented Lagrangian method used in this section.

Algorithm 3: Augmented Lagrangian
0. Choose an initial point xs0 ∈ U , µ0 > 0, tolerance τ > 0 and λk > 0 ;
for k = 0, 1, 2, · · · do

1. Starting from xsk, use the gradient descent minimization algorithm 1 to
find an approximate minimizer xk of L(·, λk;µk) ;
if ‖ ∇xL(xk, λk;µk) ‖≤ τ then

iteration accepted STOP with approximate solution xk;
else

2. Update Lagrange multiplier by formula (2.78);
3. Choose new penalty parameter µk+1 ∈ (0, µk);
4. Set starting point for the next iteration with xsk+1 = xk;

end
end
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The Lancelot algorithm

We consider an optimization problem of the form

min
x∈U

f(x),

subject to c(x) ≥ 0 and a ≤ x ≤ b,

with U = Rn, the function f : U → R, c : U → R are Fréchet differentiable functions and
a, b are positive constants. The algorithm designed to solve this optimization problem
is a combination between the projected gradient descent algorithm 2 and the augmented
Lagrangien algorithm 4.

Algorithm 4: Augmented Lagrangian
0. Choose an initial point xs0 ∈ U , µ0 > 0, tolerance τ > 0 and λk > 0 ;
for k = 0, 1, 2, · · · do

1. Starting from xsk, use the projected gradient descent minimization
algorithm 2 to find an approximate minimizer xk of L(·, λk;µk) ;
if ‖ ∇xL(xk, λk;µk) ‖≤ τ then

iteration accepted STOP with approximate solution xk;
else

2. Update Lagrange multiplier by formula (2.78);
3. Choose new penalty parameter µk+1 ∈ (0, µk);
4. Set starting point for the next iteration to xsk+1 = xk;

end
end

2.4.2 Two dimensional laser path optimization model

In order to simplify the numerical tests we restrict ourselves to the two dimensional model
proposed in [9, 38] with a slight difference that we have considered non-homogenous
Robin boundary condition on Γ to take into account heat exchange with the exterior
environment. The model describing temperature distribution within a single layer of
thickness δ is given by:

ρ c ∂ty − κ∆y = −h
δ

(y − y0) + gγ
δ

in Q = Ω× ]0, T [ ,

−κ∂y
∂ν

= h
δ

(y − y0) on Σ = Γ× ]0, T [ ,
y(x, 0) = y0(x) for x ∈ Ω,

(2.79)

Here Ω is supposed to be equal to [0, 1]2 and gγ represents the Gaussian laser beam given
by:

gγ(x, t) = α
2P

πR2
exp

(
−2
| x− γ(t) |2

R2

)
, for all (x, t) ∈ Ω× [0, T ], (2.80)

where γ : t ∈ [0, T ]→ Ω represents the displacement of the laser beam center on Ω with
respect to time. We want to compute the discrete solution of the following optimization
problem.

Given θ > 0, we want to find a discrete solution of the following minimization problem

min
γ∈Upad

Ĵθ(γ). (2.81)
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where,

Ĵθ(γ) :=
1

2

∫ T

0

∫
Ω

| ∇y(γ)(x, t) |2 dx dt+
1

θ2

(
2R

∫ T

0

√
| γ′(t) |2 +θ2dt− | Ω |

)2

+
λγ
2
‖ γ ‖2

H2(0,T ;R2),

(2.82)

and Up
ad is given (2.31). The existence of an optimal control and the determination

of the first order optimality condition can be done using the same arguments as those
mentionned in section 2.3. We give the adjoint equation and the first order necessary
optimality condition without proofs.

The adjoint system of (2.79) is the following linear backward boundary value problem
ρ c ∂tp+ κ∆p = −h

δ
(p− y0) + ∆y(γ̄θ) in Q,

∂y(γ̄θ)
∂ν
− κ ∂p

∂ν
= h

δ
(p− y0) on Σ,

p(., T ) = 0 in Ω,

(2.83)

where G(γ̄θ) is the associated state to an optimal control γ̄θ ∈ Uad.
If γ̄θ ∈ Up

ad is an optimal control with associated state y(γ̄θ), and p ∈ W (0, T ) the
corresponding adjoint state that solves (2.83), then the variational inequality

DĴθ(γ) · δγ = λγ

∫ T

0

γ̄θ(t) · (δγ)(t)dt+ λγ

∫ T

0

(γ̄θ)′(t) · (δγ)′(t)dt+ λγ

∫ T

0

(γ̄θ)′′(t) · (δγ)′′(t)dt,

+
2

θ2

(
2R

∫ T

0

√
| (γ̄θ)′(t) |2 +θ2dt− | Γ1 |

)(
2R

∫ T

0

(γ̄θ)′(t) · (δγ)′(t)√
| (γ̄θ)′(t) |2 +θ2

dt

)
+ 2acR

∫ ∫
Ω

exp(w(γ̄θ)(x, t))γ̃(γ̄θ)(x, t) · (δγ)(t)p(x, t)dS(x)dt ≥ 0

(2.84)

holds for all δγ ∈ Up
ad.

Therefore, we can now compute ∇H2 Ĵθ(γ) which is given by

∇H2 Ĵθ(γ) = v + u+ λγγ, (2.85)

where v is a solution of (2.61) ans u is a solution of (2.62).

2.4.3 Path and Heat equation discretization

To parametrize the laser path we use cubic Hermite spline basis. This choice will allow us
to obtain smoother laser paths and therefore to have control on the path derivative. From
an industrial point of view, we believe that the use of C1 curves will be more efficient
than C0 curves since smoother curves will diminish thermal gradients. Furthermore this
kind of paths has been used in many additive manufacturing technologies [26, 63].

We start by recalling the cubic Hermite spline basis on the unit interval [0, 1]. Given
a starting point p0 at t = 0 and an ending point p1 at t = 1 with starting tangent m0 at
t = 0 and ending tangent m1 at t = 1, the polynomial of interpolation is given by

P (t) = H0(t)p0 + Ĥ0(t)m0 +H1(t)pk + Ĥ1(t)m1, (2.86)

where H refers to the basis functions (see figure 2.7):
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• H0(t) = 2t3 − 3t2 + 1,

• Ĥ0(t) = t3 − 2t2 + t,

• H1(t) = −2t3 + 3t2,

• Ĥ1(t) = t3 − t2.

1

1

0
t

H0

H1

Ĥ0

Ĥ1

Figure 2.7: Hermite basis functions.

Interpolation in an arbitrary interval [tk−1, tk] is done using the following formula [22]

P (t) =H0(t(k)(t))pk−1 + Ĥ0(t(k)(t))(tk − tk−1)mk−1 +H1(t(k)(t))pk

+ Ĥ1(t(k)(t))(tk − tk−1)mk,
(2.87)

with
t(k)(t) =

(t− tk−1)

(tk − tk−1)
for all t ∈ [tk−1, tk], (2.88)

pk−1 = P (tk−1), pk = P (tk), mk−1 = P ′(tk−1), mk = P ′(tk). (2.89)

Let us consider the uniform subdivision t0 = 0 < t1 < · · · < tN = T of the time
interval [0, T ] with uniform step size ∆0 = T

N
. We describe the path γ using cubic

Hermite spline basis where the degree of freedom are both the value and the derivative
at each value:

γ(t) =

(
α1
k−1

α2
k−1

)
H0(t(k)(t)) + ∆0

(
β1
k−1

β2
k−1

)
Ĥ0(t(k)(t))

+

(
α1
k

α2
k

)
H1(t(k)(t)) + ∆0

(
β1
k

β2
k

)
Ĥ1(t(k)(t)), for all t ∈ [tk−1, tk], k = 1 · · · , N.

(2.90)

Then we discretize (2.79) by using, the P1-finite element method in space and the implicit
Euler method in time. Let us consider the uniform subdivision t0 = 0 < t1 < · · · < tnN =
T of the time interval [0, T ] with step size ∆1 = ∆0

n
where n represents the number of

points in which we want to simulate the temperature between the time interval [tk−1, tk]
for all k = 1, · · · , N . In order to avoid to use too many optimization parameters but to
have a good approximation of the solution of the heat equation, we have decided to use
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a rough paramatrization tk, 1 ≤ k ≤ N , for the path and a finer parametrization (tjk),
1 ≤ k ≤ N , 1 ≤ j ≤ n, for the use of Euler’s scheme. We then discretize (2.79) using the
implicit Euler method where we denote by:

Y j ' y(x, j∆1) , (2.91)

where ∂y
∂t

(x, j∆1) is replaced by
Y j − Y j−1

∆1

we are reduced to find Y j For given ((α1
k, α

2
k, β

1
k , β

2
k))k∈{1,··· ,N} using the path γ given by

formula (2.90) then we find Y j solution of


ρ c Y

j−Y j−1

∆1
− κ∆Y j = −h

δ
(Y j − Y0) + gγ

δ
(x, j∆1) for all j = 1, · · · , nN,

−κ∂Y j
∂ν

= h
δ

(Y j − Y0) for all j = 1, · · · , nN,
Y 0 = y0.

(2.92)

Considering a regular family of triangulation (Th)h>0 on Ω̄, using the P1- finite element
method we arrive at the fully discrete approximation of (2.79). Find Y j

h ∈ Vh solution of

ρ c

∫
Ω

Y j
h vhdx+ ∆1κ

∫
Ω

∇Y j
h · ∇vhdx+ ∆1

h

δ

∫
Ω

(Y j
h − Y0,h) vhdx

+ ∆1
h

δ

∫
Γ

(Y j
h − Y0,h) vhdS −∆1

∫
Ω

gγ
δ

(x, j∆1) vhdS

− ρ c
∫

Ω

Y j−1
h vhdx = 0 for all vh ∈ Vh,

(2.93)

where the subset Vh is a conforming approximation of H1(Ω).

Remark 5. The choice of the implicit Euler method is to avoid a CFL condition, thus
the error will only depend on the time and space step size.

2.4.4 Preliminary numerical results

Our aim is to study the influence of some parametric curves on the distribution of tem-
perature and thermal gradient in the selective laser melting process. Namely, given a
parametric curve in the right hand side of the heat equation we compute the maximum
temperature reached during the process and the L2 norm of the temperature gradient.

For the thermal properties we have used the data mentionned in [12], where they used
Titanium Alloy Ti6Al4V powder (see table 2.1).

We have tested four types of paths given by (2.90), we mention in table 2.2 all the
data used for the FEM and the geometry. The numerical tests presented in this chap-
ter are performed with the help of Python [56] and the open-source software package
Netgen/NGSolve [46], a FEM library with Python interface.

When we compare the result presented in table 2.3, we can conclude that the spiral
paths has the largest maximum temperature while the interior spiral path induce the most
important thermal gradients. On the other hand we notice that the basic path has the
lowest maximum temperature and the zigzag path induce the lowest thermal gradients.
Therefore these results are coherent with those presented by Vanbelle et al. [55, 54] and
Cheng et al. [12].
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Titanium Alloy Ti6Al4V
Laser power P = 200W
Laser velocity 1m.s−1

Laser radius R = 50× 10−6m
Layer thickness δ = 40× 10−6m
Initial temperature y0 = 273◦C
Heat exchange coefficient h = 10W.m−2.◦C
Powder density ρ = 4000 kg.m−3

Thermal conductivity κ = 0.25W.m−1.◦C−1

Calorific capacity c = 450J.kg−1.◦C−1

Table 2.1: Thermal parameters.

FEM & Geometry
Fem step size h = 2

100

Number of points N = 50
Number of intermediate points n = 10
Final time tf = 1
Dimension of Ω [0, 1]× [0, 1]

Table 2.2: Data used for the FEM and the geometry.

Figure 2.8: Basic path at time t = 0.87.

2.4.5 Discretization of the unconstraint optimization problem

In order to explain how we discretize the adjoint equation and ∇H2 Ĵ we will consider the
optimization problem presented in subsection 2.4.2 without the constraints on γ and the
geometrical constraint

1

θ2

(
2R

∫ T

0

√
| γ′(t) |2 +θ2dt− | Ω |

)2

, θ > 0.

The control space U := H2(0, T ; R2) is discretized using the cubic Hermite spline basis .
Let us consider the uniform subdivision t0 = 0 < t1 < · · · < tN = T of the time interval
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Path max. temperature ‖ ∇y ‖L2(Ω)

Basic (figure 2.8) 2446 258485
Interior spiral (figure 2.9) 2763 326636
Exterior spiral (figure 2.10) 2745 276869
Zigzag (figure 2.11) 2714 234869

Table 2.3: Different paths tested.

Figure 2.9: Interior spiral path at time t=0.87.

Figure 2.10: Exterior spiral path at time t=0.87.

[0, T ].
We replace U by

UN :={γ ∈ C1([0, T ]; R2); γ(t) is given by (2.90) ; ((α1
k, α

2
k, β

1
k , β

2
k))k∈{1,··· ,N} ⊂ R4N}.

(2.94)

The adjoint system associated to (2.79) is discretized using the P1-finite element method
in space and the Euler implicit backward scheme in time. Similarly to the discrete state
equation (2.92) we have used a finer paramatrization (tjk), 1 ≤ k ≤ N , 1 ≤ j ≤ n for the
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Figure 2.11: Zigzag path at time t = 0.87.

Euler’s scheme. We denote by
P j ' p(x, j∆1).

∂p
∂t

(x, j∆1) is replaced by
P j+1 − P j

∆1

.

For given Y j solution of (2.92), we want to find P j solution to


ρ c P

j+1−P j
∆1

+ κ∆P j = −h
δ

(P j − Y0) + ∆Y j for all j = 1, · · · , nN,
∂Y j

∂ν
− κ∂P j

∂ν
= h

δ
(P j − Y0) for all j = 1, · · · , nN,

P T = 0.

(2.95)

Considering a regular family of triangulation (Th)h>0 on Ω̄, using the P1- finite element
method we arrive at the fully discrete approximation of (2.95). Find P j

h ∈ Vh solution of

ρ c

∫
Ω

P j+1
h vhdx−∆1κ

∫
Ω

∇P j
h · ∇vhdx+ ∆1

h

δ

∫
Ω

(P j
h − Y0,h) vhdx

− ρ c
∫

Ω

P j−1
h vhdx+

∫
Ω

∇Y j
h∇vhdx

−∆1
h

δ

∫
Γ

(P j
h − Y0,h) vhdS(x) = 0 for all vh ∈ Vh,

(2.96)

where the subset Vh is a conforming approximation of H1(Ω). In order to compute the
discrete form of

∇H2 Ĵ(γ) = v + λγγ

with v solution of (2.61) we will solve (2.61) using Hermite finite elements in one dimen-
sion. We therefore build a mesh of [0, T ] corresponding to a division into N elements.
An Hermite finite element is a triplet (K,Σ, P ) where the reference finite element triad
(K̂, Σ̂, P̂ ) is defined by

K̂ = [0, 1],

Σ̂ = {P (0), P (1), P ′(0), P ′(1)},
P̂ = P3.
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Therefore, this approximation uses two degrees of freedom per node: for each node k of
coordinate tk these are the nodal value of the function vk = vh(tk) and the nodal value of
the derivative dvk = dvh

dt
(tk). This makes it possible to uniquely define the approximation

vh, which therefore has 2N degrees of freedom (the values at node k = 0 and k = T are
imposed by the boundary condition (2.71)). This finite element space is a conforming
approximation of H2(0, T ). This approximation is written as a linear combination of
the nodal values of the function and of its derivative. By noting Φk(t) the base functions
associated with the nodal values of the function vk and Ψk(t) the base functions associated
with the nodal values of the derivative dvk defined as follow (see figure 2.12)

Φk(t) = 1[tk−1,tk[(t)(H
1(t(k)(t)) + 1[tk,tk+1[(t)(H

0(t(k+1)(t)),

Ψk(t) = 1[tk−1,tk[(t)((tk − tk−1)Ĥ1(t(k)(t)) + 1[tk,tk+1[(t)((tk+1 − tk)Ĥ0(t(k+1)(t)),
(2.97)

where

t(k)(t) =
(t− tk−1)

(tk − tk−1)
for all t ∈ [tk−1, tk]. (2.98)

1

tk−1 tk tk+1

Φk

Ψk

t

Figure 2.12: Hermite element finite basis functions.

Thus, a function vh in this finite element space is written by:

vh(t) =
N∑
k=1

vkΦk(t) +
N∑
k=1

dvkΨk(t).

On an element [tk−1, tk], this approximation is written:

vh(t) = vk−1Φk−1(t) + dvk−1Ψk−1(t) + vkΦk(t) + dvkΨk(t)

vh is a Hermite polynomial of degree 3, the four associated shape functions, which are Her-
mite polynomials of degree 3 are given by H0(t(k)(t)), Ĥ0(t(k)(t)), H1(t(k)(t)), Ĥ1(t(k)(t))
already defined in subsection 2.4.2.

Remark 6. This finite element space is the same as the one used for the discrete curves
which allow us to compute ∇H2 Ĵ by adding v and γ in the same discrete functional space
without passing by a transfer matrix.
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Algorithm 5: Unsconstrained optimization
0. Initial path γ0, ε = 0.1 ;
1. Computation of an approximated solution of the heat equation and the
adjoint equations along the path γ0;

2. Computation of the objective function Ĵ and ∇H2 Ĵ along the path γ0;
while ‖ ∇H2 Ĵ(γk) ‖≥ ε do

3. Set dk = −∇H2 Ĵ(γk);
4. Choose σk > 0 such that

Ĵ(γk + σkdk) < Ĵ(γk) (2.99)

;
5. Set γk+1 = γk + σkdk;
6. Computation of an approximated solution of the heat and the adjoint
equations along the new path γk+1;

7. Update Ĵ and ∇H2 Ĵ ;
8. k ← k + 1;

end
9. return γk;

Figure 2.13: Initial and optimized path

A preliminary test has been carried out. The initial curve is given by figure 2.13 and
it is composed of nine optimization points. The thermal properties we used are given by
table 2.1. The finite elements and geometry data we used are given by table 2.2. We
have chosen λγ = 10−5 and σk in algorithm 5 was computed by solving the minimisation
problem (2.99). After 200 iterations we obtain the optimized path which go out of the
domain (the red point show the location of the initial path) which is quite consistent since
we have no constraints on the path and we demand to minimize ‖ ∇y(γ) ‖L2 . Further,
the temperature in the domain for the optimized path is 265◦C. After 100 iterations, we
may notice that ‖ ∇y(γ) ‖L2 and Ĵ(γ) remains almost 0. Let us stress that without the
term λγ ‖ γ ‖H2(0,T ;R2) in the cost functional (2.82) we could not achieve convergence.
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Figure 2.14: Evolution of thermal gradients and cost functional

2.4.6 Discretization of the constraint optimization problem

Box constraints

In order to keep the path inside Ω = [0, 1] × [0, 1] we add the following box constraints
on the points (α1, · · · , αN) of γ.

0 ≤ α1
k ≤ 1 for k = 1, · · · , N,

0 ≤ α2
k ≤ 1 for k = 1, · · · , N,

(2.100)

To handle these box constraints we will apply the projected gradient algorithm where the
projection is defined as follows

P[0,1]2N : R2N −→ [0, 1]2N

(α1, · · · , αN) 7−→ (c1, · · · , cN)

for αj =
(
α1
j , α

2
j

)
∈ R2, cj =

(
c1
j , c

2
j

)
∈ [0, 1]2 is given by

cj =


αj if 0 ≤ αj ≤ 1,

0 if αj < 0,
1 if αj > 1,

= max(0,min(αj, 1)).

(2.101)

Remark 7. The constraint (2.100) is not enough to justify that the curve remains inside
Ω. In fact the derivatives can let the curves go out of the domain. But as a first
approximation the constraints (2.100) seem sufficient to force the curve to stay inside the
domain. In subsection 2.5.1 we propose an improvement of this constraints by using the
fact that any Bézier curve is fully contained within the convex hull of its control polygon.
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Algorithm 6: Box constrained optimization
0. Initial path γ0, ε = 0.1 ;
1. Computation of an approximated solution of the heat equation and the
adjoint equations along the path γ0;

2. Computation of the objective function Ĵ and ∇H2 Ĵ along the path γ0;
while ‖ γk − P[0,1]2N (γk + σkdk) ‖R2N≥ ε do

3. Set dk = −∇Ĵ(γk);
4. Choose σk > 0 such that Ĵ(γk + σkdk) < Ĵ(γk);
5. Compute P[0,1]2N (γk + σkdk) using formula (2.101) and set
γk+1 = P[0,1]2N (γk + σkdk);
6. Update Ĵ and ∇H2 Ĵ ;
7. k ← k + 1;

end
8. return γk;

Inequality constraints and perspectives

To make the laser path cover the area of the domain Ω we add the following geometrical
constraint:

c(γ) := 2R

∫ T

0

‖ γ′(t) ‖ dt− | Ω |≥ 0

= 2R

∫ T

0

‖
N∑
k=1

1[tk−1,tk](

(
α1
k−1

α2
k−1

)
H0′(t(k)(t)) + ∆0

(
β1
k−1

β2
k−1

)
Ĥ0′(t(k)(t))

+

(
α1
k

α2
k

)
H1′(t(k)(t)) + ∆0

(
β1
k

β2
k

)
Ĥ1′(t(k)(t))) ‖ dt− | Ω |≥ 0.

(2.102)

To solve this optimization problem with inequalities constraint we will use the aug-
mented Lagrangian method [42]. We recall from [42] the Lagrangien:

L(γ, λk;µ0) := Ĵδ(γ) +
4∑
j=1

N∑
k=1

ψ(ckj (γ), λki ;µ0) + ψ(c5(γ), λN+1
i ;µ0), (2.103)

where ckj (γ) represents the five constraints for all k = 0, · · · , N . Let us define for j ∈ [1, 5],
k = 1, · · · , N

ψ(ckj (γ), λki ;µk) =

{
λki c

k
j (γ) + 1

2µ0
(ckj (γ))2, if −cji (γ)− µ0λ

k
i ≤ 0

µ0

2
(λki )

2, otherwise.
(2.104)

We want to solve the following optimization problem:

min
γ
L(γ, λk;µk). (2.105)

We are currently working on the inequality constraints and its related numerical tests are
in progress and will be available soon.
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2.5 Discussions and outlook
The prospects for laser path optimization are numerous. We mention in what follows
some ideas that we will study in a further work.

2.5.1 Simplified computation of optimal trajectories using Bézier
curve parametrization

In order to guarantee that the path stay inside the domain, we propose to use Bézier
curve parametrization (see remark 7). We will go back to the three dimensional settings
to describe the discrete control space.

We suppose that
Γ1 = [a, b]× [c, d] ,

−∞ < a < b < +∞, −∞ < c < d < +∞ be a rectangle in the plane R2. Let us consider

Γ1,−ε = [a+ ε, b− ε]× [c+ ε, d− ε]

formed by the points of Γ1 whose distance to the boundary ∂Γ1 of Γ1 is larger or equal
to ε, ε ∈]0,min( b−a

2
, d−c

2
)[.

Let us consider the uniform subdivision t0 = 0 < t1 < · · · < tN = T of the time
interval [0, T ] with uniform step size ∆0 = T

N
. The cubic Hermite parametrized path

given by (2.90) can be equivalently written as a cubic Bézier curve [22] on [tk−1, tk] for
all k = 1, · · · , N :

γ(t) = B0(t(k)(t))b3k−3 +B1(tk(t))b3k−2 +B2(t(k)(t))b3k−1 +B3(t(k)(t))b3k, (2.106)

where t(k)(t) is given by (2.98) and

• B0(t(k)(t)) = (1− t(k)(t))3,

• B1(t(k)(t)) = 3t(k)(t)(1− t(k)(t))2,

• B2(t(k)(t)) = 3t(k)(t)2(1− t(k)(t)),

• B3(t(k)(t)) = t(k)(t)3,

are the Bernstein basis of degree 3.
Namely, we can express b3k−3, b3k−2, b3k−1, b3k in term of the points and the derivatives

at tk−1 and tk. For each time interval [tk−1, tk], k = 1, · · · , N , we have

• γ(tk−1) = b3k−3,

• γ(tk) = b3k,

• γ′(tk−1) = 3
tk−tk−1

(b3k−2 − b3k−3) thus b3k−2 = γ(tk−1) + tk−tk−1

3
γ′(tk−1),

• γ′(tk) = 3
tk−tk−1

(b3k − b3k−1) thus b3k−1 = γ(tk)− tk−tk−1

3
γ′(tk).

Replacing b3k−3, b3k−2, b3k−1, b3k in (2.106) by these latest formulas we obtain the cubic
Hermite parametrization of γ given by (2.90). b3k−3, b3k−2, b3k−1, b3k are the control
points of the curve γ(t) for every t ∈ [tk−1, tk] [22, pp.71-75] (see figure 2.15).
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b3k−3 b3k

b3k−2 b3k−1

tk−1 tk

Figure 2.15: Bézier curve on [tk−1, tk]

Corollary 19. For all t ∈ [tk−1, tk], γ(t) belongs to the closed convex hull of the four
points b3k−3, b3k−2, b3k−1 and b3k.

Proof. For all t ∈ [tk−1, tk], tk(t) ∈ [0, 1], the four coefficients B0(tk(t)), B1(tk(t)),
B2(tk(t)), B3(tk(t)) are non-negative. Moreover, the sum of these four coefficients is
equal to 1. Thus on each time interval [tk−1, tk], γ is a convex combination of b3k−3, b3k−2,
b3k−1 and b3k.

The discrete set of admissible controls is given by

Udiscret
ad = {(b0, . . . , b3N); b0, . . . , b3N ∈ Γ1,−ε} = Γ3N+1

1,−ε ⊂ (R2)3N+1, (2.107)

under the form of box constraints. Therefore, in order to keep the curve inside the
domain it will be interesting to use cubic Bézier curve parametrization. Instead of putting
constraints on the points and their associated derivatives, we put them on its control
polygone. By corrollary 19 the path will remain inside Γ1.

2.5.2 Power control in SLM

In the previous sections we have presented optimization models controlling the laser
path in additive manufacturing. In this section we will present preliminaries optimal
control models about power optimization in SLM. In the litterature we can find some
new engineering work discussing the effect of laser power on the fabricated part and the
material [14, 39]. In the following we will present three ways to control the power in
SLM. The first idea is to only control the laser power by considering it as a L2-control,
the second one is to control the power by only manipulating the laser path based on the
theoritical results presented in sections 2.2 and 2.3 and the third one is to combine laser
path and laser power optimization based on the latest two ideas.

The ideas presented in this section results from a joined work with Grégoire Allaire and
Mathilde Boissier, from the Centre de Mathématiques appliquées (CMAP), in Palaiseau,
France. In [8], numerical approaches were conducted to optimize the power, force its
bang-bang properties and control its number of variations, also a coupled power and
laser path optimization model is given. In [9, 8] a second numerical approach for path
optimization is presented.

P ∈ L2(0,T, [0,Pmax])

Our aim is to find an optimal laser power minimizing temperature gradient in SLM. In
what follows we use the same theoretical setting as in section 2.2. Therefore the state
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equation is given by (2.3) with

gγ(x, t) = α
2P (t)

πR2
exp

(
−2
| x− γ(t) |2

R2

)
, for all (x, t) ∈ Σ1, (2.108)

where
P : t ∈ [0, tf ]→ R (2.109)

is the laser power and γ ∈ H1(0, T ; R2) is a given laser path which could also be the
optimal control computed by solving (OCPθ). We define the following cost functional

J(y, P ) :=
1

2

∫ T

0

∫
Ω

| ∇y(x, t) |2 dx dt+
λQ
2

∫ T

0

∫
Ω

| y(x, t)− yQ(x, t) |2 dx dt

+
λP
2
‖ P ‖2

L2(0,T ;R),

(2.110)

where λQ ≥ 0 and λP > 0 are constants, while yQ ∈ L2(Q) is a given function. The
optimal control problem is

min
P∈UP

J(y(P ), P ), (2.111)

where UP is the set of admissible controls

UP := {P ∈ L2(0, T ; R)such that 0 ≤ P (t) ≤ Pmax}.

Theorem 20 (Existence of an optimal control). Supposing UP 6= ∅, then the optimal
control problem (2.111) admits at least one optimal control P̄ ∈ UP .

Proof. The proof is based on the same technics used in the theorem 4.

Theorem 21. If P ∈ UP is an optimal control of (2.111) with associated state y(P̄ ),
and p ∈ W (0, T ) the corresponding adjoint state that solves (2.23), then the variational
inequality

DJ(y(P̄ ), P̄ ) · δP = λP

∫ T

0

P̄ (t) · (δP̄ )(t)dt

+2acR

∫ T

0

(δP̄ )(t)

∫
Σ1

α
2P̄ (t)

πR2
exp

(
−2
| x− γ(t) |2

R2

)
p(x, t)dS(x)dt ≥ 0

(2.112)

holds for all δP̄ ∈ Uad.

Corollary 22. One can check that

P̄ (t) =



Pmax if λP P̄ (t) +
∫

Σ1
α 2P̄ (t)
πR2 exp

(
−2 |x−γ(t)|2

R2

)
p(x, t)dS(x) < 0

∈ [0, Pmax] if λP P̄ (t) +
∫

Σ1
α 2P̄ (t)
πR2 exp

(
−2 |x−γ(t)|2

R2

)
p(x, t)dS(x) = 0

0 if λP P̄ (t) +
∫

Σ1
α 2P̄ (t)
πR2 exp

(
−2 |x−γ(t)|2

R2

)
p(x, t)dS(x) > 0
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Controlling the power by controlling the path

An alternative approach to avoid laser power to induce important thermal distortions
when the acceleration of the path is important is to replace (2.108) by

gγ(x, t) = α
2(P ∗ ϕε)(| γ′′(t) |2)

πR2
exp

(
−2
| x− γ(t) |2

R2

)
, for all (x, t) ∈ Σ1, (2.113)

where for all t ∈ [0, tf ]

P (| γ′′(t) |2) =

{
Pmax if | γ′′(t) |2< s

0 if | γ′′(t) |2≥ s.

Pmax is a positive constant that represents laser power and (ϕε)ε∈N ⊂ C∞c (R) is a sequence
of mollifiers [10, p. 108] and s is a threshhold. One can check that

(P ∗ ϕε)(| γ′′(t) |2) =


Pmax if | γ′′(t) |2< s− ε

∈ ]0, Pmax[ if s− ε ≤| γ′′(t) |2< s+ ε.

0 if | γ′′(t) |2≥ s+ ε.

In this way we have only one variable of optimization which is γ. Here we link the power
and the curvature of γ. Indeed in additive manufacturing machines, speed and curvature
are linked so if we want to scan homogeneously, it can be interesting to vary the power
as a function of the curvature. The optimization problem is the following:

min
γ∈Uad

J(y(γ), γ), (2.114)

with J is given by (2.6) and Uad defined by (2.7). The study of this problem can be done
using the same steps presented in section 2.2 and will be investigated in a further work.

Controlling the path and the power

We consider the optimal control problem

min
P∈UP ,γ∈Uad

J(y, P, γ) :=
1

2

∫ T

0

∫
Ω

| ∇y(x, t) |2 dx dt+
λQ
2

∫ T

0

∫
Ω

| y(x, t)− yQ(x, t) |2 dx dt

+
λP
2
‖ P ‖2

L2(0,T ;R) +λγ ‖ γ ‖H1(0,T,R2)

(2.115)

subject to the state equation (2.3) with gγ given by (2.108) and to the two set of admissible
controls UP and Uad. The study of this problem is based on same technics presented in
[53, Chapter 3].

The disadvantages of these three models is that in the industrial applications the
power cannot for the moment really vary continuously.
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Chapter 3

Existence of local solutions for the
coupled Heat-Maxwell’s equations with
temperature dependent permittivity

3.1 Introduction
We are interested in heat diffusion equations with volumic heat source induced by electro-
magnetic waves. A typical heat-diffusion system involves a laser beam source irradiating
locally a three dimensional medium Ω. This technique is used in laser melting process
for additive metallic manufacturing [62, 6]. In chapter 2, we have simply considered the
heat diffusion equation in Ω with a inhomogeneous Robin boundary condition on some
part of its boundary irradiated the absorbed part of a laser beam energy. In chapter 2,
we wanted to control the temperature and its gradient inside Ω during the processing
time interval [0, T ], T fixed. In this chapter, to model accurately the laser interaction
with the medium Ω, we consider in Ω the coupling between the heat diffusion equation
and Maxwell’s equations. We also take into account, the temperature dependence of the
electric permittivity of the medium inside Ω. In [1], Maxwell’s equations have also been
considered to model accurately the interaction of the laser beam with biological tissues
preferably to Beer’s law or to the radiative transfer equation. In [59], time-harmonic elec-
tric and magnetic fields of some fixed frequency are considered, but the derived equations
[59, Eq.(2.1)-(2.5)] lead to a contradiction as explained in [59, Remark 2.1]. The tem-
perature solution of [59, (2.2)-(2.4)-(2.5)] which appears in the permittivity coefficient is
not even necessary periodic in time, thus the electric and magnetic fields could not be
time-harmonic. Therefore the choice of time-harmonic Maxwell’s equations in [59] is not
appropriate.

Let us now describe our model. Let us fix some T > 0, we consider in the space-time
cylinder Q = Ω×]0, T [, the 3-dimensional parabolic initial-boundary value problem:

∂ty − div (α∇y) = S(y) in Q,
−α ∂y

∂ν
= h(y − yb) on Σ,

y(·, 0) = y0 in Ω.
(3.1)

Here, y denotes the temperature, α the thermal diffusivity constant, n the outward
unit normal vectorfield along the boundary Γ of Ω, h > 0 the heat transfer coefficient
and yb the temperature of the surrounding medium (air). By Σ = Γ×]0, T [, we denote

65
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the lateral boundary of the space-time cylinder Q. The heat source function S(y) in
(3.1), represents the volumic power absorbed by the medium Ω from the electromagnetic
field generated in Ω by an external source e.g. a laser beam. S(y)(x, t) is defined as the
multiplication of the absorption coefficient µa depending on x ∈ Ω and on the temperature
y(x, t), with the electric field intensity weighted around x:

S(y)(x, t) := µa(x, y(x, t)) | (E(y) ∗ ϕa)(x, t) |2, for all (x, t) ∈ Q. (3.2)

ϕa ∈ C1
c (R3) represents a weight function which is supposed to be at least of class C1

on R3 and with compact support. In formula (3.2), E represents the electric field in Ω
solution of the following Maxwell’s equations:

∂t(ε(·, y)E)− curlH + σE = 0 in Q,
∂t(µH) + curlE = 0 in Q,
div (µH) = 0 in Q,
E× n = Eext × n on Σ,
H · n = 0 on Σ,
E(·, 0) = E0, H(·, 0) = H0 in Ω.

(3.3)

In these equations, H denotes the magnetic component of the electromagnetic field (E,H)
in Ω, σ the electrical conductivity, µ the magnetic permeability, ε(x, y(x, t)) the electric
permittivity dependant on the space and the temperature y. Eext denotes the electric
field irradiating the boundary of Ω due to an external source. The first equation in the
Maxwell system (3.3) is coupled to the heat diffusion initial boundary value problem (3.1)
by the dependence of the permittivity ε with respect to the temperature y, and the heat
diffusion initial boundary value problem (3.1) is coupled to the Maxwell system (3.3) by
the right-hand side into the heat equation (3.1), the heat source term S(y)(x, t) (3.2)
depending on the electric field E(y). Our hypotheses on the coefficients appearing in
(3.1), (3.2), and (3.3) will be precised further.

Our purpose is to establish the existence of local solutions to this coupled problem.
First, we fix the temperature distribution, we study the Maxwell system by using the
theory of evolution systems (section 3.2), the difficulty being due to the dependence of
the permittivity with respect to the temperature and consequently to time. Next, we
study the coupled problem (section 3.3) by introducing a fixed point problem in the
closed convex set K(0;R) := B̄(0;R) ∩ {z ∈ B̄(0;R); z(0) = 0} of the Banach space
C1([0, T ];C1(Ω̄)) and proving that the hypotheses of Schauder’s theorem are verified for
R sufficiently large. The construction of the fixed point problem is nontrivial as we need
K(0;R) to be stable.

3.2 Maxwell’s equations with temperature dependent
permittivity

In this section, we fix the distribution of temperature appearing in the permittivity
coefficient of the Maxwell system (3.3) decoupling in this way Problem (3.3) from the
Heat initial boundary value problem (3.1). The resulting problem is thus a Maxwell initial
boundary value problem with time dependent permittivity through the distribution of
temperature.
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3.2.1 Preliminaries

Throughout this chapter, Ω is always assumed to be a bounded domain in R3 and its
boundary Γ to be of class C2. We set L2(Ω) := L2(Ω)3 and H1(Ω) := H1(Ω)3. We begin
by defining the following standard functional spaces:

H(curl ,Ω) = {ϕ ∈ L2(Ω); curlϕ ∈ L2(Ω)},

H(div ,Ω) = {ψ ∈ L2(Ω); divψ ∈ L2(Ω)},

H0(curl ,Ω) = {ϕ ∈ L2(Ω); curlϕ ∈ L2(Ω), ϕ× n = 0 on Γ},

H0(div ,Ω) = {ψ ∈ L2(Ω); divψ ∈ L2(Ω), ψ · n = 0 on Γ},

Jn(Ω, µ) = {ψ ∈ L2(Ω); div (µψ) = 0, ψ · n = 0 on Γ}.

J1
n(Ω, µ) = H(curl ,Ω) ∩ Jn(Ω, µ),

We make the following assumptions on the coefficients and data of the Maxwell prob-
lem (3.3):

(H1) The function (x, y) 7→ ε(x, y) is real valued, positive, continuous on Ω̄×R with first
order partial derivatives with respect to the variables xi (i = 1, 2, 3) and y, also
continuous on Ω̄× R. Also, there exist positive constants ε1, ε0 such that:

0 < ε0 ≤ ε(x, y) ≤ ε1, for all (x, y) ∈ Ω× R.

(H2) σ ∈ L∞(Ω) and the function µ ∈ W 1,∞(Ω). There are positive constants µ0 and µ1

such that:
0 < µ0 ≤ µ(x) ≤ µ1, for all x ∈ Ω.

(H3) (E0,H0) ∈ H(curl ,Ω) × J1
n(Ω, µ) and Eext ∈ C2([0, T ];H1(R3 \ Ω̄)) such that

curlEext · n|Σ = 0, Eext(., 0)× n|Γ = E0 × n|Γ .

Remark 8. By identifying Eext with the time-dependent differential form of degree 1 on
R3 \ Ω̄: Eext,1dx

1 +Eext,2dx
2 +Eext,3dx

3, the hypothesis curlEext ·n|Σ = 0 on Eext in (H3),
amounts to assume that at any time t ∈ [0, T ], the exterior derivative on Γ of its trace
on Γ is equal to 0 [49, p.136].

Remark 9. - By assumption (H2) on µ and the standard formula

div (µψ) = µdivψ +∇µ · ψ = 0 for all ψ ∈ Jn(Ω, µ), (3.4)

we have divψ = − 1
µ
∇µ · ψ ∈ L2(Ω), and therefore Jn(Ω, µ) ⊂ H0(div ,Ω).

- Consequently: J1
n(Ω, µ) ⊂ H0(div ,Ω) ∩H(curl ,Ω) ↪→ H1(Ω) [24, p.44].

Proposition 23. Jn(Ω, µ) is a closed subspace of L2(Ω).

Proof. Let us consider a sequence (ψk)k∈N ⊂ Jn(Ω, µ) converging to some ψ ∈ L2(Ω).
div (µψk) = 0 in Ω implies that∫

Ω

µψk · ∇ϕdx = 0 for all ϕ ∈ D(Ω) := C∞c (Ω).
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Since ψk → ψ in L2(Ω), as k → +∞, we have also that∫
Ω

µψ · ∇ϕdx = 0 for all ϕ ∈ D(Ω),

which implies that div (µψ) = 0 in the weak sense. By assumption (H2) and the standard
formula

div (µψ) = µ divψ +∇µ · ψ,

we get
µ divψ = − ∇µ︸︷︷︸

∈L∞(Ω)

· ψ ∈ L2(Ω).

Thus div ψ ∈ L2(Ω) and thus ψ ∈ H(div ; Ω). Consequently the normal trace ψ ·n|Γ of ψ
has sense, and ψ · n|Γ ∈ H

−1/2(Γ). As (ψk)k∈N converges to ψ in L2(Ω), it follows that:

div ψk = − 1

µ
∇µ · ψk → −

1

µ
∇µ · ψ = divψ in L2(Ω), k → +∞.

Therefore ψk → ψ in H(div ; Ω) so that ψ · n|Γ = 0 since ψk · n|Γ = 0, for all k ∈ N. We
have therefore proved that div (µψ) = 0 and that ψ ·n|Γ = 0 on Γ. Thus ψ ∈ Jn(Ω, µ).

We will need the following lemma in the proof of Proposition 25.

Lemma 24. If ϕ1, ϕ2 ∈ H(curl ,Ω) such that ϕ1 × n|Γ = ϕ2 × n|Γ, then curlϕ1 · n|Γ =
curlϕ2 · n|Γ. In particular, if ϕ ∈ H0(curl ,Ω), then curlϕ · n|Γ = 0.

Proof. Let ψ ∈ H(curl ,Ω). Using Green’s formulas, firstly for the divergence operator
and afer for the curl operator [24, p.34], we obtain that for all v ∈ C∞(Ω̄):∫

Γ

curlψ(x) · n(x) v(x)dS(x) =

∫
Ω

div (v curlψ)(x) dx

=

∫
Ω

v(x)(div curlψ)(x)dx+

∫
Ω

curlψ(x) · ∇v(x)dx

=

∫
Ω

curlψ(x) · ∇v(x)dx =

∫
Ω

ψ(x) · curl ∇v(x)dx

+

∫
Γ

ψ × n(x)∇v(x)dS(x) =

∫
Γ

(ψ × n)(x)∇v(x)dS(x).

(3.5)

Let us precise that the boundary integrals appearing in (3.5) must be considered as
bracket of dualities∫

Γ

curlψ(x) · n(x) v(x)dS(x) :=< (v curlψ) · n, 1Γ >H−1/2(Γ),H1/2(Γ)

and ∫
Γ

(ψ × n)(x)∇v(x)dS(x) :=< ψ × n,∇v >H−1/2(Γ),H1/2(Γ) .

Thus for all v ∈ C∞(Ω̄)∫
Γ

curlψ(x) · n(x) v(x)dS(x) =

∫
Γ

(ψ × n)(x) · ∇v(x)dS(x). (3.6)



3.2. MAXWELL’S EQUATIONS WITH TEMPERATURE DEPENDENT PERMITTIVITY 69

Applying (3.6) to ϕ1 and ϕ2, and using our hypothesis that ϕ1×n|Γ = ϕ2×n|Γ , we obtain
that for all v ∈ C∞(Ω̄)∫

Γ

curlϕ1(x) · n(x) v(x)dS(x) =

∫
Γ

curlϕ2(x) · n(x) v(x)dS(x). (3.7)

Consequently curlϕ1 · n|Γ = curlϕ2 · n|Γ .

In the following we fix the distribution of temperature y to

z ∈ C1([0, T ];C1(Ω̄)), (3.8)

in the permittivity coefficient of the Maxwell-Ampère equation (4.7)(i). In doing so,
we obtain the following linear initial nonhomogeneous boundary value problem for the
Maxwell’s equations:

∂tE− 1
ε(·,z)curlH + 1

ε(·,z)σE + ∂zε(·,z)∂tz
ε(·,z) E = 0 in Q,

∂tH + 1
µ
curlE = 0 in Q,

div (µH) = 0 in Q,
E× n = Eext × n on Σ,
H · n = 0 on Σ,
E(·, 0) = E0, H(·, 0) = H0 in Ω.

(3.9)

Let us note in the first equation, that the coefficients are time dependent due to the
presence of z; moreover in the last coefficient appears also ∂z

∂t
. To reduce problem (3.9) to

a linear initial homogeneous boundary value problem, we must construct an appropriate
extension of Eext to Ω.

Proposition 25. Under assumption (H3), there exists a vectorial function W ∈
C2([0, T ];H1(Ω)) such that

W × n = Eext × n on Σ,
curl W · n = 0 on Σ,
W(., 0)× n = E0 × n on Γ.

(3.10)

Proof. As Tr(Eext) ∈ C2([0, T ];H1/2(Γ)) (Tr(.) denotes the trace operator), there exists
W ∈ C2([0, T ];H1(Ω)) such that for all t ∈ [0, T ]

W1(., t)|Γ = Eext1(., t)|Γ ,

W2(., t)|Γ = Eext2(., t)|Γ ,

W3(., t)|Γ = Eext3(., t)|Γ .
(3.11)

Since the boundary of Ω is of class C2, ni ∈ C1(Γ), i = 1, 2, 3 and

W × n =

n3W2 − n2W3

n1W3 − n3W1

n2W1 − n1W2


= Eext × n, on Σ.

(3.12)
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By hypothesis (H3): Eext(., 0)× n|Γ = E0 × n|Γ so that W(., 0)× n|Γ = E0 × n|Γ . By
formula (3.6):∫

Γ

curlW(x, t) · n(x) v(x)dS(x) =

∫
Γ

(W × n)(x, t) · ∇v(x)dS(x), (3.13)

for all v ∈ C∞(R3). By similar reasonings on R3 \ Ω̄ as those made on Ω to establish
formula (3.6), we have also that for all v ∈ C∞(R3):∫

Γ

curlEext(x, t) · n(x) v(x)dS(x) =

∫
Γ

(Eext × n)(x, t) · ∇v(x)dS(x). (3.14)

Thus by (3.12), (3.13) and (3.14), we have that curlW(., t) · n = curlEext(., t) · n, on Γ.
By hypothesis (H3) on Eext, curlEext(., t) · n = 0 on Γ. Thus curlW(., t) · n = 0 on Γ,
for all t ∈ [0, T ], so that (3.10)(ii) is also true.

Introducing the new variable E := E−W, problem (3.9) is reduced to the following
problem with homogeneous boundary conditions:

∂tE − ε̂(·, z) curlH + ε̂(·, z)(σ + ∂zε(·, z)∂tz)E =
−∂tW − ε̂(·, z)(σ + ∂zε(·, z)∂tz)W in Q,
∂tH + µ̂ curl E = −µ̂ curlW in Q,
E × n = 0 on Σ,
H · n = 0 on Σ,
div (µH) = 0 in Q,
E(·, 0) = E0 −W(., 0), H(·, 0) = H0 in Ω,

(3.15)

where

ε̂(x, z(x, t)) :=
1

ε(x, z(x, t))
, and µ̂(x) :=

1

µ(x)
, for all x ∈ Ω. (3.16)

Let us set:

G(t) = (G1(t),G2(t))

:= (−∂tW(·, t)− ε̂(·, z(·, t))(σ + ∂zε(·, z(·, t))∂tz(·, t))W(·, t),−µ̂curlW(·, t)),
(3.17)

for all t ∈ [0, T ].
Let us introduce the Hilbert space

H = L2(Ω)× Jn(Ω, µ). (3.18)

Remark 10. The condition div (µH(., t)) = 0 and the boundary condition H(., t) ·n = 0
in the Maxwell’s equations (3.9) follow from the requirement that (E(t),H(t)) belongs to
H.

Unless otherwise specified, we consider on H the scalar product induced by L2(Ω)×
L2(Ω). The corresponding norm will be denoted by ‖ · ‖H or ‖ · ‖0,Ω. By Proposition 23,
H is a closed subspace of L2(Ω)× L2(Ω).

Proposition 26. 1. G(t) ∈ H, for a.e. t ∈ [0, T ].
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2. Supposing that the permittivity ε(x, z) does not depend on z but only on x in a
neighborhood Ω̄ \ K of the boundary of Ω, K compact set of Ω, replacing W by
ηW where η is a C∞ function on Ω̄ equals to 1 in a neighborhood of Γ and 0 on
a neighborhood of K, thus still satisfying the three conditions (3.10), we obtain a
right-hand side G ∈ C1([0, T ];H) and independent of z.

Proof. 1. From formula (3.17) and W ∈ C2([0, T ];H1(Ω)) follows that G1(t) ∈ L2(Ω)
for a.e. t ∈ [0, T ]. By (3.10)(ii) follows that G2(t) ∈ Jn(Ω, µ) for a.e. t ∈ [0, T ].
2. Replacing in equations (3.15)(i) and (3.15)(ii), W by η(.)W, we obtain:

G1(t) = −η(.)
∂W

∂t
(·, t)− σ(η ε̂)(·)W(·, t) and G2(t) = −µ̂ curl (η(.)W(·, t))

which are clearly independent of z. By Proposition 25, dW
dt

belongs to C1([0, T ];H1(Ω))
and thus a fortiori to C1([0, T ];L2(Ω)). Using hypotheses (H1) and (H2), it follows that
G1 ∈ C1([0, T ];L2(Ω)). By W ∈ C2([0, T ];H1(Ω)) and hypotheses (H2), it is clear that
G2 ∈ C2([0, T ];L2(Ω)). A fortiori G2 ∈ C1([0, T ];L2(Ω)) and as G2(t) belongs to the
closed subspace Jn(Ω, µ) of L2(Ω) for a.e. t ∈ [0, T ], G2 ∈ C1([0, T ];Jn(Ω, µ)).

In conclusion G = (G1,G2) ∈ C1([0, T ];H) and is independent of z.

Let us observe also that E(., 0) = E0 −W(., 0) ∈ H0(curl ,Ω). Renaming E by E, we
will study thus in the following, the well posedness of the Maxwell initial value problem
with homogeneous boundary conditions:



∂tE− ε̂(·, z) curlH + ε̂(·, z)(σ + ∂zε(·, z)∂tz)E = G1(t) in Q,
∂tH + µ̂ curlE = G2(t) in Q,
E× n = 0 on Σ,
H · n = 0 on Σ,
div (µH) = 0 in Q,
E(·, 0) = E0, H(·, 0) = H0 in Ω,

(3.19)

with a right-hand side G = (G1,G2) belonging to C1([0, T ];H) and an initial condition
(E0,H0) ∈ H0(curl ,Ω)× J1

n(Ω, µ).

In our study, we will need also to endow

H = L2(Ω)× Jn(Ω, µ), (3.20)

with other scalar products than the scalar product induced by L2(Ω)× L2(Ω) on H.
We will also consider on H the scalar product with weights ε := ε(·, z(·, t)) and

µ := µ(·) :

(

(
ϕ1

ψ1

)
,

(
ϕ2

ψ2

)
)Ht =

∫
Ω

{ε(x, z(x, t))ϕ1(x) · ϕ2(x) + µ(x)ψ1(x) · ψ2(x)}dx, (3.21)

for all (ϕ1, ϕ2), (ψ1, ψ2) ∈ H. When H is endowed with this scalar product it will be
denoted by Ht.
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Remark 11. Due to assumptions (H1)-(H2), the norms ‖ · ‖Ht and ‖ · ‖H are equivalent:

min(ε0, µ0)

[∫
Ω

(|ϕ(x)|2 + |ψ(x)|2)dx

]
≤
∫

Ω

(ε(x, z(x, t))|ϕ(x)|2 + µ(x)|ψ(x)|2)dx

≤ max(ε1, µ1)

[∫
Ω

(|ϕ(x)|2 + |ψ(x)|2)dx

] (3.22)

for all (ϕ, ψ) ∈ H.

To rewrite the initial value problem (3.19) in the form of an abstract Cauchy problem,
we now define two families of operators in the real Hilbert space H. For t ∈ [0, T ], we
firstly define the unbounded operator A(t) in H. Its domain D(A(t)) being independent
of t, we denote it D(A), where

D(A) = H0(curl ,Ω)× J1
n(Ω, µ). (3.23)

For all φ = (ϕ, ψ) ∈ D(A), we set

A(t)φ = {ε̂(·, z(·, t)) curlψ,−µ̂ curlϕ} ∈ H. (3.24)

We also define the bounded operator in H:

M(t)φ = {−ε̂(·, z(·, t))(σ + ∂zε(·, z(·, t))∂tz)ϕ, 0}. (3.25)

Having introduced these operators A(t) and M(t), the initial value problem (3.19)
may be rewritten in the form of the following abstract Cauchy problem: given G =
(G1,G2) belonging to C([0, T ];D(A)) or C1([0, T ];H) and an initial condition (E0,H0) ∈
D(A), find (E,H) ∈ C([0, T ];D(A)) ∩ C1([0, T ];H) such that for all t ∈ [0, T ]

d
dt

(
E
H

)
(t) = (A(t) +M(t))

(
E(t)
H(t)

)
+ G(t),(

E
H

)
(0) =

(
E0

H0

)
.

(3.26)

Proposition 27. 1. The common domain D(A) of the linear operators A(t) is dense
in H.

2. A(t) is a closed linear operator in H.

3. D(A) endowed with the graph norm is a separable Hilbert space.

4. For every t ∈ [0, T ], A(t) and −A(t) are maximal dissipative operators in Ht i.e

(A(t)φ, φ)Ht = 0 for all φ ∈ D(A), (3.27)

and the range of the linear operator (A(t) ± λI) is equal to H for all λ > 0. In
particular, for all t ∈ [0, T ], A(t) generates a C0-group of unitary operators in Ht

[44, (6.2) pp. 22-23].

Proof. 1. J1
n(Ω, µ) is dense in Jn(Ω, µ) [40, Lemma 2.3]. The density of H0(curl,Ω) in

L2(Ω) is due to the fact that

D(Ω)3 ⊂ H0(curl,Ω) ⊂ L2(Ω) and D(Ω)3 is dense in L2(Ω),
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where D(Ω) := C∞c (Ω). It follows that D(A) is dense in H.

2. Let us fix t ∈ [0, T ]. If (φk := (ϕk, ψk))k∈N ⊂ D(A) such that φk → φ in H
and A(t)φk → Ψ in H, we have then

ϕk → ϕ, ψk → ψ in L2(Ω),

and (curlψk)k∈N, (curlϕk)k∈N converge in L2(Ω). But curlψk → curlψ in D′(Ω)3,
curlϕk → curlϕ in D′(Ω)3, so that curlψk → curlψ in L2(Ω) and curlϕk → curlϕ
in L2(Ω). Also div (µψk)(= 0) → div (µψ) in D′(Ω). Therefore curlϕ ∈ L2(Ω),
curlψ ∈ L2(Ω), div (µψ) = 0 and

ϕk → ϕ in H(curl ,Ω),

ψk → ψ in H(div ,Ω) ∩H(curl ,Ω).

This implies that
ϕk × n(= 0)→ ϕ× n in H−1/2(Γ)3

and
ψk · n(= 0)→ ψ · n in H−1/2(Γ).

Therefore ϕ × n = 0 and ψ · n = 0 on Γ. We conclude that φ ∈ D(A) and Ψ = A(t)φ.
Consequently, A(t) is a closed operator in H.

3. D(A) endowed with the graph norm may be seen as a subspace of H0(curl; Ω)×H1(Ω)
[24, p.54] and is thus separable [20, (3.10.9)].

4. The proof is done in [40, Lemma 3.1].

Corollary 28. 1. For each t ∈ [0, T ], A(t) is an infinitesimal generator of a C0-
semigroup (Pt(s))s≥0 of contractions on Ht.

2. For each t ∈ [0, T ], A(t) +M(t) is the infinitesimal generator of a C0 semigroup
(Tt(s))s≥0 on Ht satisfying

‖ Tt(s) ‖L(Ht)≤ e s‖M(t)‖L(Ht) , for all s ≥ 0. (3.28)

Proof. 1. From Proposition 27 follows that A(t) is an infinitesimal generator of a
C0-semigroup (Pt(s))s≥0 of contractions on Ht.

2. As M(t) is a bounded linear operator on Ht, by Theorem 1.1 in [44, p. 76],
A(t) +M(t) is also the infinitesimal generator of a C0 semigroup on Ht satisfying
moreover the growth bound (3.28).

Corollary 29. A∗(t) = −A(t) in H endowed with the scalar product (·, ·)Ht, for all
t ∈ [0, T ]. In particular D(A∗(t)) = D(A) for all t ∈ [0, T ].

Proof. The proof is a consequence of Stone’s Theorem [44, p. 41] that we recall below:
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Theorem 30 (Stone’s theorem). A is the infinitesimal generator of a C0-group of unitary
operators on a Hilbert space H if and only if A∗ = −A.

By Proposition 27 and [44, (6.2) p. 23], A(t) satisfies the hypothesis of Stone’s
Theorem in the real Hilbert space H endowed with the scalar product (·, ·)Ht . Thus
A(t)∗ = −A(t), for all t ∈ [0, T ].

3.2.2 Well posedness of Maxwell’s equations using evolution sys-
tems theory

In appendix B, we have proved the existence of a weak solution to the linear Maxwell’
system by using Galerkin’s method like in [21], but we are not able to prove its uniqueness
like in [21] due to the dependence of the permittivity coefficient with respect to the
temperature and thus a fortiori with respect to time. Also, in our coupled nonlinear
problem with the heat equation, to prove the existence of local solutions, we will need
information on the dependence of the solution to the Maxwell’ system with tespect to
the temperature.

Consequently, in this subsection, we will use rather the method of evolution systems
in the hyperbolic case [44, Chapter 5, pp.126-149] to establish the well posedness of our
initial boundary value problem (3.26). We must thus verify hypothesis (H1) in [44, p.135]
i.e. that {A(t) +M(t)}t∈[0,T ] [44, p.130] is a stable family of infinitesimal generators [44,
p.130], hypotheses (H2)+ in [44, p.142] and (H3) in [44, p.135]:

(H2)+ There is a family {Q(t)}t∈[0,T ] of isomorphisms of Y := D(A) onto H such that for
every Y , Q(t)v is continuously differentiable in H on [0, T ] and

Q(t)A(t)Q(t)−1 = A(t) +B(t)

where B(t), 0 ≤ t ≤ T , is a strongly continuous family of bounded operators on H.

(H3) For t ∈ [0, T ], A(t) is a bounded operator from Y into H and t→ A(t) is continuous
in the L(Y,H) (linear continuous form from Y to H).

Firstly, concerning the stability of the family of infinitesimal generators {A(t)}t∈[0,T ],
we have the following proposition:

Proposition 31. The family {A(t)}t∈[0,T ] of infinitesimal generators of the C0 semigroups
(Pt(s))s≥0 is stable on H. More precisely, there is a constant M ≥ 1 such that:

‖
k∏
j=1

Ptj(sj) ‖L(H)≤M, for all sj ≥ 0, j = 1, · · · , k (3.29)

and any finite sequence 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ T , k = 1, 2, · · · .

Remark 12. For any finite sequence 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk of real numbers, prod-
ucts like

∏k
j=1 Ptj(sj) means Ptk(sk)Ptk−1

(sk−1) · · ·Pt2(s2)Pt1(s1). We say that they are
“time-ordered” [44, p.130]. This is important because in general such products are non-
commutative.

The proof of Proposition 31 requires the following lemma:
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Lemma 32. Let q(t) =
∫

Ω
(ε(x, z(x, t))|ϕ(x)|2 +µ(x)|ψ(x)|2)dx, for all (ϕ, ψ) ∈ H. Then

there exists c0 > 0 (3.32) such that√
q(t) ≤ e

c0
2

(t−s)
√
q(s), for all t ≥ s. (3.30)

Proof. By assumption (H1) and (3.8), we have,
dq

dt
(t) =

∫
Ω

dz

dt
(x, t)εz(x, z(x, t))|ϕ(x)|2dx

≤ ‖dz
dt
‖∞,Q̄‖εz‖∞,Ω×R

{∫
Ω

|ϕ(x)|2 + |ψ(x)|2dx
}

≤ c0 q(t),

(3.31)

with
c0 =

1

min(ε0, µ0)
‖dz
dt
‖∞,Q̄‖εz‖∞,Ω×R. (3.32)

Then
d

dt
[ln q(t)] ≤ c0.

If we integrate from s to t in the above inequality, we obtain

q(t) ≤ q(s)ec0(t−s),

and therefore the requested estimate is proved.

Proof. (of Proposition 31) First of all note that (Pt(s))s≥0 is a C0 semigroup of con-
tractions in Ht for all t ∈ [0, T ] i.e. that

‖ Pt(s) ‖L(Ht)≤ 1 for all s ≥ 0.

Let us set c1 = (max(ε1, µ1))1/2. Then by Lemma 32:

‖
k∏
j=1

Ptj(sj)v ‖H :=‖ Ptk(sk) · · ·Pt1(s1)v ‖H

≤ c1 ‖ Ptk(sk) · · ·Pt1(s1)v ‖Htk
≤ c1 ‖ Ptk(sk) ‖L(Htk )‖ Ptk−1

(sk−1) · · ·Pt1(s1)v ‖Htk
≤ c1 e

c0
2

(tk−tk−1) ‖ Ptk−1
(sk−1) · · ·Pt1(s1)v ‖Htk−1

≤ c1 e
c0
2

(tk−tk−1) ‖ Ptk−1
(sk−1) ‖L(Htk−1

)‖ Ptk−2
(sk−2) · · ·Pt1(s1)v ‖Htk−1

≤ c1 e
c0
2

(tk−tk−1)ec0(tk−1−tk−2) ‖ Ptk−2
(sk−2) · · ·Pt1(s1)v ‖Htk−2

...

≤ c1e
c0
2

(tk−t1) ‖ v ‖Ht1
≤ c2

1e
c0
2
T ‖ v ‖H .

(3.33)

Since A(t), for all t ∈ [0, T ] is a C0 semigroup of contractions in Ht, then by the Hille-
Yosida Theorem [44, p. 8], the resolvent set ρ(A(t)) contains R∗+, i.e. ρ(A(t)) ⊃]0,∞[ for
all t ∈ [0, T ]. Also by the last inequality in (3.33), inequality (2.4) of Theorem 2.2 of [44,
p.131] is verified with M = c2

1e
c0
2
T (3.32) and ω = 0, proving the stability of {A(t)}t∈[0,T ].
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SinceM(t) is a bounded linear operator for all t ∈ [0, T ], by Theorem 1.1 in [44, p. 76],
A(t)+M(t) is also the infinitesimal generator of a C0 semigroup on the real Hilbert space
H. Concerning the stability of the family of infinitesimal generators {A(t) +M(t)}t∈[0,T ]

, we have the following proposition:

Corollary 33. {A(t) +M(t)}t∈[0,T ] is a stable family of infinitesimal generators of C0

semigroups (Tt(s))s≥0 on H with stablity constants M and KM , where K is any constant
such that ‖ M(t) ‖L(H)≤ K for all t ∈ [0, T ].

Proof. For each t ∈ [0, T ], let us denote by (Tt(s))s≥0 the C0 semigroup generated by
the operator A(t) +M(t). By the previous Lemma {A(t)}t∈[0,T ] is stable with stability
constants M and 0. Then by Theorem 2.3 in [44, p. 132], {A(t) +M(t)}t∈[0,T ] is a stable
family of infinitesimal generators with stablity constants M and KM i.e

‖
k∏
j=1

R(λj;A(tj) +M(tj)) ‖L(H)≤
M∏k

j=1(λj −KM)
for all λj > KM (3.34)

and

‖
k∏
j=1

Ttj(sj) ‖L(H)≤MeKM
∑k
j=1 sj for all sj ≥ 0, (3.35)

with any finite sequence 0 ≤ t1 ≤ · · · ≤ tk ≤ T , k = 1, 2, 3, · · · .

Thus the family {A(t) +M(t)}t∈[0,T ] of infinitesimal generators on H verifies hypoth-
esis (H1) in [44, p.135].

In the following, according with the notations of [44, Chapter 5, pp.126-149], we will
denote by Y the domain of the operator A(t) which is also the domain of the operator
A(t) +M(t). The domains of these operators do not depend on t. For this reason Y has
also been denoted previously by D(A) (4.12).

Proposition 34. Y is A(t) +M(t) admissible (see Definition 5.3 in [44, p.122] or [44,
p.135]) for all t ∈ [0, T ] i.e. Y is an invariant subspace of (Tt(s))s≥0. Moreover the C0

semigroup generated by the operator A(t) +M(t), and the restriction of (Tt(s))s≥0 to Y
is a C0 semigroup in Y (i.e. it is a strongly continuous semigroup for the graph norm
‖ · ‖Y ).

Proof. Since Y is the domain ofA(t)+M(t), then Y is stable by the semigroup (Tt(s))s≥0

whose generator is A(t) +M(t) for all t ∈ [0, T ]. Let us now check that

Tt(s)|Y : Y → Y (3.36)

is a C0 semigroup on Y endowed with the graph norm. Let v ∈ Y , we observe that

(A(t) +M(t))Tt(s)v = Tt(s)(A(t) +M(t))v, (3.37)

then by (3.35)

‖ (A(t) +M(t))Tt(s)v ‖H≤MeKMs(‖ A(t)v ‖H +K ‖ v ‖H).
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Due to the stability of (Tt(s))s≥0 and to the last inequatlity we obtain

‖ A(t)Tt(s)v ‖H ≤MeKMs(‖ A(t)v ‖H +K ‖ v ‖H) +K ‖ Tt(s)v ‖H
≤MeKMs(‖ A(t)v ‖H +K ‖ v ‖H) +KMeKMs ‖ v ‖H
≤ 2KMeKMs ‖ v ‖H +MeKMs ‖ A(t)v ‖H .

This implies

‖ Tt(s)v ‖Y :=‖ A(t)Tt(s)v ‖H + ‖ Tt(s)v ‖H
≤M(2K + 1)eKMs ‖ v ‖H +MeKMs ‖ A(t)v ‖H
≤M(2K + 1)eKMs(‖ v ‖H + ‖ A(t)v ‖H).

Therefore (A.6) follows. Furthermore recalling (3.37)

‖ A(t)(Tt(s)v − v) ‖H=‖ Tt(s)(A(t) +M(t))v −M(t)Tt(s)v −A(t)v ‖H
=‖ Tt(s)(A(t) +M(t))v − (A(t) +M(t))v +M(t)(v − Tt(s)v) ‖H
=‖ (Tt(s)− I)(A(t) +M(t))v ‖H + ‖ M(t) ‖L(H)‖ v − Tt(s)v ‖H
→ 0 as s→ 0+.

(3.38)

Thus ‖ Tt(s)v − v ‖Y→ 0 as s→ 0+.

Proposition 34 is a part of hypothesis (H2) in [44, p.135]. But we will now prove
rather that {A(t) +M(t)}t∈[0,T ] verifies the stronger hypothesis (H2)+ in [44, p.142]. In
fact, as we already know that the stability hypothesis (H1) in [44, p.135] is verified by
the family {A(t) +M(t)}t∈[0,T ], this will imply that hypothesis (H2) in [44, p.135] is also
verified consequently to [44, Lemma 4.4 p.142]). By showing that {A(t) +M(t)}t∈[0,T ]

verifies hypotheses (H1), (H3) [44, p.135], and hypothesis (H2)+ in [44, p.142] instead
of simply hypotheses (H1), (H2), (H3) [44, p.135], we will obtain that the generated
evolution system U(t, s), 0 ≤ s ≤ t ≤ T , by {A(t) +M(t)}t∈[0,T ] satisfies properties (E1),
(E2), (E3) in [44, p.135]:

(E1) ‖ U(t, s) ‖≤M exp{ω(t− s)} for 0 ≤ s ≤ t ≤ T .

(E2) ∂+

∂t
U(t, s)v |t=s= {A(s) +M(s)}v for v ∈ Y, 0 ≤ s ≤ T .

(E3) ∂
∂s
U(t, s)v = −U(t, s){A(s) +M(s)}v for v ∈ Y, 0 ≤ s ≤ t ≤ T ,

(E4) U(t, s)Y ⊂ Y for 0 ≤ s ≤ t ≤ T ,

(E5) for v ∈ Y , U(t, s)v is continuous in Y for 0 ≤ s ≤ t ≤ T

where the derivative from the right in (E2) and the derivative in (E3) are in the strong
sense in H. These properties are essentials to solve our inhomogeneous initial value
problem (3.26) [44, Theorem 5.2 p.146]. To achieve that purpose, we will need a stronger
hypothesis on the conductivity σ than made previously in subsection 3.2.1. We suppose
in the following that
(H4)

σ ∈ W 1,∞(Ω). (3.39)

We define Q(t) := I − A(t) for all t ∈ [0, T ]. (Q(t))t∈[0,T ] is a family of isomorphisms of
Y onto H. We firstly check that (H2)+ in[44, p.142] is true :
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Proposition 35. For every v = (φ, ψ) ∈ Y , the mapping t 7→ Q(t)v is continuously
differentiable in H on [0, T ]. Denoting by d

dt
Q(t) the mapping Y → H : v 7→ d

dt
(Q(t)v),

the mapping t ∈ [0, T ]→ d
dt
Q(t) ∈ L(Y,H) is also continuous.

Proof. Let us first show that the mapping v ∈ Y 7→ d
dt
Q(t)v ∈ H is linear and bounded.

By assumptions (H1) and (3.8), we have:

‖ d

dt
Q(t)v ‖H =‖ ∂ε̂

∂z
(·, z(·, t))∂z

∂t
(·, t)curlψ ‖L2(Ω)

≤‖ ∂ε̂
∂z

(·, z(·, t))∂z
∂t

(·, t) ‖∞,Ω̄‖ v ‖Y .
(3.40)

Furthermore, for all v ∈ Y , using assumptions (H1) and (3.8), the mapping t ∈ [0, T ] 7→
d
dt
Q(t)v ∈ H is continuous:

‖ (
d

dt
Q(t)v)t=t2 − (

d

dt
Q(t)v)t=t1 ‖H

≤‖ ∂ε̂
∂z

(·, z(·, t2))
∂z

∂t
(·, t2)− ∂ε̂

∂z
(·, z(·, t1))

∂z

∂t
(·, t1) ‖∞,Ω̄‖ v ‖Y

≤ O(|t2 − t1|) ‖ v ‖Y ,

(3.41)

for all 0 ≤ t1 ≤ t2 ≤ T . We have:

‖ d

dt
Q(t2)− d

dt
Q(t1) ‖L(Y,H)≤ O(|t2 − t1|)→ 0 as | t2 − t1 |→ 0, (3.42)

proving that the mapping [0, T ]→ L(Y,H) : t 7→ d
dt
Q(t) is also continuous.

To prove hypothesis (H2)+ in [44, p.142] is true in our context, it remains to prove
that

Q(t)(A(t) +M(t))Q(t)−1 = (A(t) +M(t)) +B(t)

where
B : [0, T ]→ L(H) : t 7→ B(t)

is a strongly continuous family of bounded linear operators on H to be defined later.
To prove the following proposition, we need a stronger hypothesis on the permittivity
ε(x, z) than we have made previously in subsection 3.2.1. In the following, we suppose
moreover on the permittivity ε(x, z) that:

(H5) ∂2ε
∂z2 and ∂2ε

∂xk∂z
(k = 1, 2, 3) exist and are continuous and bounded.

Proposition 36. For all t ∈ [0, T ], we have

M(t)Y ⊂ Y. (3.43)

Proof. Let ϕ ∈ H0(curl ,Ω) we will prove that ε̂(·, z(·, t))(σ + ∂zε(·, z(·, t))∂tz)ϕ ∈
H0(curl ,Ω). We use the standard formula

curl ((ε̂(·, z(·, t))(σ + ∂zε(·, z(·, t))∂tz(·, t)))ϕ)(x)

= ε̂(x, z(x, t))(σ + ∂zε(x, z(x, t))∂tz(x, t))curlϕ(x)

+∇x(ε̂(·, z(·, t))(σ + ∂zε(·, z(·, t))∂tz(·, t)))(x)× ϕ(x), for all x ∈ Ω.

(3.44)
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By assumptions (H1), (H5) and (H4) on ε, z, ∂tz and σ, we have:

‖ (x, t) 7→ ε̂(x, z(x, t))(σ + ∂zε(x, z(x, t))∂tz(x, t)) ‖∞,Q̄< +∞

and
‖ (x, t) 7→ ∇x(ε̂(·, z(·, t))(σ + ∂zε(·, z(·, t))∂tz(·, t)))(x) ‖∞,Q̄< +∞.

Therefore

curl ((ε̂(·, z(·, t))(σ + ∂zε(·, z(·, t))∂tz(·, t)))ϕ) ∈ L2(Ω).

Also [ε̂(·, z(·, t))(σ + ∂zε(·, z(·, t))∂tz(., t))ϕ]× n|Γ = 0. This concludes the proof.

It is now easy to verify that the domain of definition of the operator Q(t)(A(t) +
M(t))Q(t)−1 is Y . Thus Q(t)(A(t) + M(t))Q(t)−1 and A(t) + M(t) have the same
domain of definition Y . Also the domain of definition of Q(t)A(t)Q(t)−1 is Y . Thus

Q(t)(A(t) +M(t))Q(t)−1 = A(t) +Q(t)M(t)Q(t)−1

= (A(t) +M(t)) +Q(t)M(t)Q(t)−1 −M(t),
(3.45)

for all t ∈ [0, T ].

To prove that hypothesis (H2)+ in [44, p.142] is true in our context, it remains
thus to prove that the mapping

t ∈ [0, T ] 7→ B(t) := Q(t)M(t)Q(t)−1 −M(t) ∈ L(H),

is a strongly continuous family of bounded operators on H.

Lemma 37. The mapping [0, T ] → L(Y,H) : t 7→ A(t) is continuous. Consequently the
mapping [0, T ]→ L(Y,H) : t 7→ Q(t) is also continuous.

Proof. Let (ϕ, ψ) ∈ Y = H0(curl,Ω)× J1
n(Ω, µ). By the definition of the operator A(t),

we have A(t) (ϕ, ψ) = (ε̂(., z(., t)) curlψ,−µ̂ curl(ϕ)) ∈ H. Then for t1, t2 ∈ [0, T ],

(A(t2)−A(t1)) (ϕ, ψ) = ((ε̂(., z(., t2))− ε̂(., z(., t1))) curlψ, 0) .

Thus

‖(A(t2)−A(t1)) (ϕ, ψ)‖H ≤ ‖ε̂(., z(., t2))− ε̂(., z(., t1))‖∞,Ω ‖(ϕ, ψ)‖Y .

The function t 7→ ε̂(., z(., t)) is uniformly continuous from the closed interval [0, T ] into
C(Ω̄). Thus

‖(A(t2)−A(t1)) (ϕ, ψ)‖H ≤ O(|t2 − t1|) ‖(ϕ, ψ)‖Y ,∀ (ϕ, ψ) ∈ Y.

Consequently
‖(A(t2)−A(t1))‖L(Y,H) ≤ O(|t2 − t1|).

The second assertion follows immediately from the definition of Q(t).

Corollary 38. The mapping [0, T ]→ L(H, Y ) : t 7→ Q(t)−1 is also continuous.
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Proof. The set of linear invertible continuous mapping from Y into H is an open subset
denoted by A of L(Y,H) and the mapping from A into L(H, Y ) which sends S ∈ A
onto its inverse S−1 is continuous [20, (8.3.2)]. Thus the result follows by composition of
continous mappings.

For the mapping t 7→ M(t) , one has the following lemma:

Lemma 39. The mapping [0, T ] → L(H) : t 7→ M(t) is continuous. A fortiori, it is
continuous as a mapping from [0, T ]→ L(Y,H). It is also continuous as a mapping from
[0, T ]→ L(Y ).

Proof. Let(ϕ, ψ) ∈ Y . By the definition of the operatorM(t), we have for t1, t2 ∈ [0, T ]:

(M(t2)−M(t1)) (ϕ, ψ) = (−[ε̂(., z(., t2))(σ(.) +
∂ε

∂z
(., z(., t2))

∂z

∂t
(., t2))

− ε̂(., z(., t1))(σ(.) +
∂ε

∂z
(., z(., t1))

∂z

∂t
(., t1))]ϕ, 0).

(3.46)

z ∈ C1([0, T ], C1(Ω̄)) implies that the functions t 7→ z(., t) and t 7→ ∂z
∂t

(., t) are uniformly
continuous from [0, T ] into C(Ω̄). Thus

‖(M(t2)−M(t1)) (ϕ, ψ)‖H ≤ O(|t2 − t1|) ‖(ϕ, 0)‖H , for all (ϕ, ψ) ∈ H.

Consequently
‖(M(t2)−M(t1))‖L(H) ≤ O(|t2 − t1|).

From formula (3.44) and z ∈ C1([0, T ], C1(Ω̄)), follows also

‖(M(t2)−M(t1))‖L(Y ) ≤ O(|t2 − t1|).

Corollary 40. The mapping B : [0, T ] → L(H) : t 7→ Q(t)M(t)Q(t)−1 −M(t) is a
strongly continuous family of bounded linear operators on H.

Proof. Let v := (ϕ, ψ) ∈ H. The mapping [0, T ] → H : t 7→ M(t)v is continuous.
The mapping [0, T ] → Y : t 7→ Q(t)−1v is also continuous. t 7→ M(t) ∈ L(Y ) being
continuous, the mapping [0, T ]→ Y : t 7→ M(t)Q(t)−1v is also continuous. The mapping

[0, T ]→ L(Y,H) : t 7→ Q(t)

being also continuous, the mapping [0, T ]→ H : t 7→ Q(t)M(t)Q(t)−1v is also continuous.
Thus, the mapping

[0, T ]→ H : t 7→ Q(t)M(t)Q(t)−1v −M(t)v

is also continuous.

As a consequence, hypothesis (H2)+ in [44, p.142] is verified. Also, from Lemma 37 and
Lemma 39 follows, that the mapping [0, T ]→ L(Y,H) : t 7→ A(t) +M(t) is continuous.
Thus, hypothesis (H3) in [44, p.135] is also verified. Hypothesis (H1) in [44, p.135] follows
from Corollary 33. Consequently, by Theorem 4.6 in [44, p.143], there exists a unique
evolution system U(t, s), 0 ≤ s ≤ t ≤ T in H satisfying properties (E1) − (E5) listed in
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[44]. Also, by [44, Theorem 5.2, pp.146-147] for every G = (G1,G2) ∈ C([0, T ];Y ) and
every (E0, H0) ∈ Y , the initial value problem

d
dt

(
E
H

)
(t) = (Az(t) +Mz(t))

(
E(t)
H(t)

)
+ G(t)(

E
H

)
(0) =

(
E0

H0

) (3.47)

possesses a unique Y -valued solution given by the formula:

(E,H) (t) = Uz(t, 0) (E0H0) +

t∫
0

Uz(t, s)G(s)ds. (3.48)

We have considered a right-hand side G ∈ C([0, T ];Y ), but we will prove in Proposition
41, that this is true also for a right-hand side G ∈ C1([0, T ];H). By a Y -valued solution,
we mean that

(E,H) ∈ C([0, T ];Y ) ∩ C1([0, T ];H),

verifies
d

dt

(
E
H

)
(t) = (Az(t) +Mz(t))

(
E(t)
H(t)

)
+ G(t)

at every point t ∈ [0, T ] and (E,H) (0) = (E0,H0) ∈ Y. We have added the subscript z
to A(t),M(t) and U(t, s) to underline their dependence with respect to the distribution
of temperature z through the permittivity coefficient ε(·, z(·, t)) in the Maxwell equations
(3.19) : 

∂tE = ε̂(·, z) curlH− ε̂(·, z)(σ + ∂zε(·, z)∂tz)E + G1(t) in Q,
∂tH = −µ̂ curlE + G2(t) in Q,
E× n = 0 on Σ,
H · n = 0 on Σ
div (µH) = 0 in Q
E(·, 0) = E0, H(·, 0) = H0 in Ω.

(3.49)

Thus, the unbounded operator Az(t) in the space H with domain of definition Y ≡
D(A) is defined by formula (3.24) and the linear bounded operator Mz(t) in the space
H, by formula (3.25). In formula (3.48), (Uz(t, s))0≤s≤t≤T denotes the evolution system
generated by the family of operators (Az(t) +Mz(t))0≤t≤T [44, p.135].

3.2.3 The inhomogeneous Cauchy problem with a r.h.s. G ∈
C1([0, T ];H)

Previously we have considered in the abstract Cauchy problem for Maxwell’s equations
(3.47), a right-hand side (r.h.s.) G = (G1,G2) belonging to C([0, T ];Y ). We want now
to consider the case of a right-hand side G ∈ C1([0, T ];H):

Theorem 41. For every G = (G1,G2) ∈ C1([0, T ];H), and every

(E0H0) ∈ Y,
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the initial value problem
d
dt

(
E
H

)
(t) = (Az(t) +Mz(t))

(
E(t)
H(t)

)
+ G(t)(

E
H

)
(0) =

(
E0

H0

) (3.50)

possesses a unique Y -valued solution given by the formula:

(
E
H

)
(t) = Uz(t, 0)

(
E0

H0

)
+

t∫
0

Uz(t, r)G(r)dr. (3.51)

As explained at the end of the previous subsection, the subscript z indicates that
the quantity under consideration depends on z. In particular Qz(t) = I −Az(t). In the
present subsection, when indicated, the subscript z is rather superflous, as the distribution
of temperature z is fixed in this subsection. But it will be no more the case in section
3.3. Before going into the proof of Theorem 41, we give some lemmas

Lemma 42. For every f ∈ C([0, T ];H), the mapping

hz : [0, T ]→ Y : t 7→ Qz(t)
−1f(t) (3.52)

is continuous.

Proof. Let t0 ∈ [0, T ],

‖hz(t)− hz(t0)‖Y =
∥∥Qz(t)

−1f(t)−Qz(t0)−1f(t0)
∥∥
Y

≤
∥∥Qz(t)

−1f(t)−Qz(t)
−1f(t0)

∥∥
Y

+
∥∥Qz(t)

−1f(t0)−Qz(t0)−1f(t0)
∥∥
Y

≤
(

sup
0≤s≤T

∥∥Qz(s)
−1
∥∥
L(H;Y )

)
‖f(t)− f(t0)‖H +

∥∥Qz(t)
−1 −Qz(t0)−1

∥∥
L(H;Y )

‖f(t0)‖H

≤
∥∥Qz(·)−1

∥∥
C([0,T ];L(H;Y ))

‖f(t)− f(t0)‖H +
∥∥Qz(t)

−1 −Qz(t0)−1
∥∥
L(H;Y )

‖f(t0)‖H .
(3.53)

f being continuous, ‖ f(t) − f(t0) ‖H→ 0 as t → t0. By Corollary 38, the mapping
[0, T ]→ L(H, Y ) : t 7→ Qz(t)

−1 is continuous, and thus ‖ Qz(t)
−1 −Qz(t0)−1 ‖L(H;Y )→ 0

as t → t0. Thus by the previous inequality hz(t) → hz(t0) as t → t0. Therefore hz is
continuous at point t0. t0 being arbitrary in [0, T ], the lemma follows.

Lemma 43. For every f ∈ C1([0, T ];H), the mapping

hz : [0, T ]→ Y : t 7→ Qz(t)
−1f(t) (3.54)

is continuously differentiable. Its derivative is given by the formula:

h′z(t) = −Qz(t)
−1Q̇z(t)Qz(t)

−1f(t) +Qz(t)
−1f ′(t) = Qz(t)

−1(f ′(t)− Q̇z(t)Qz(t)
−1f(t)),

for any t ∈ [0, T ], where Q̇z(t) := d
dt
Qz(t).

Proof. Let us write the mapping hz : [0, T ] → Y as the composition of the following
mappings:
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• U : [0, T ]→ L(Y,H)×H : t 7→ (Qz(t), f(t)),

• V : O ×H → L(H, Y )×H : (B, g) 7→ (B−1, g) where

O := {B ∈ L(Y,H);∃B−1 ∈ L(H, Y )},

• W : L(H, Y )×H → Y : (S, g) 7→ Sg.

We have for all t ∈ [0, T ]: hz(t) =W ◦ V ◦ U(t). Now:

1. The mapping U is continuously differentiable as it is easily seen that the map-
ping [0, T ] → L(Y,H) : t 7→ Qz(t) = I − Az(t) is continuously differentiable
by inspection of the explicit form of the operator Az(t) : Y → H : (ϕ, ψ) 7→
(ε̂(., z(., t)) curlψ,−µ̂ curlϕ).

2. The mapping V is continuously differentiable by [20, (8.3.2)] and its derivative at
the point (B, g) is the linear continuous mapping

DV(B, g) : L(Y,H)×H → L(H, Y )×H : (δB, δg) 7→ (−B−1δB B−1, δg)

3. The mapping W is a bilinear continuous mapping. It is thus continuously differen-
tiable by [20, (8.1.4)] and its derivative at the point (S, g) is the linear continuous
mapping

DW(S, g) : L(H, Y )×H → Y : (δS, δg) 7→ (δS)g + S(δg).

By [20, (8.2.1), (8.4.1)], we have that

h′z(t) = (DW(Qz(t)
−1, f(t)) ◦DV(Qz(t), f(t))).(Q̇z(t), f

′(t)).

Replacing in that formula by the above expressions for the derivatives, we obtain the
result.

Lemma 44. Let g be any continuous function from [0, T ] into Y , continuously differen-
tiable as a function from [0, T ] into H. Then for every t ∈ [0, T ], the mapping

kt : [0, t]→ Y : r 7→ Uz(t, r)g(r)

is continuously differentiable. Its derivative is given by the formula:

dkt
dr

(r) = −Uz(t, r)Az(r)g(r) + Uz(t, r)g
′(r), (0 ≤ r ≤ t ≤ T )

where in the present context Az(r) := Az(r) +Mz(r).

Proof. Let r ∈ [0, t] and ∆r ∈ R \ {0} such that r + ∆r ∈ [0, t],

Uz(t, r + ∆r)g(r + ∆r)− Uz(t, r)g(r)

∆r
= Uz(t, r + ∆r)

g(r + ∆r)− g(r)

∆r

+
Uz(t, r + ∆r)− Uz(t, r)

∆r
g(r).

(3.55)
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As g(r) ∈ Y , the second term in the right-hand side tends to −Uz(t, r)Az(r)g(r) [44,
p.135] as ∆r → 0. For the first term in the right-hand side:∥∥∥∥Uz(t, r + ∆r)

g(r + ∆r)− g(r)

∆r
− Uz(t, r)g′(r)

∥∥∥∥
≤
∥∥∥∥Uz(t, r + ∆r)(

g(r + ∆r)− g(r)

∆r
− g′(r))

∥∥∥∥+ ‖(Uz(t, r + ∆r)− Uz(t, r))g′(r)‖

≤ Cst

∥∥∥∥g(r + ∆r)− g(r)

∆r
− g′(r)

∥∥∥∥+ ‖(Uz(t, r + ∆r)− Uz(t, r))g′(r)‖ → 0

(3.56)

as ∆r → 0. Summarizing:

Uz(t, r + ∆r)g(r + ∆r)− Uz(t, r)g(r)

∆r
→ Uz(t, r)g

′(r)− Uz(t, r)Az(r)g(r),

as ∆r → 0.

We now give the proof of Theorem 41; we follow the proof of Theorem 5.3 of [44, p.147]
but taking into account that in our context Qz(t) := I−Az(t) and not I−Az(t)−Mz(t):

Proof. (of Theorem 41) Let us set

wz(t) :=

t∫
0

Uz(t, r)G(r)dr.

By hypothesis G ∈ C1([0, T ];H). By Lemma 43, the function r 7→ Qz(r)
−1G(r) is

continuously differentiable from [0, T ] into Y . By the preceding lemma applied with the
function r 7→ Qz(r)

−1G(r), we get:

∂

∂r
(Uz(t, r)Qz(r)

−1G(r)) = Uz(t, r)[−(Az(r) +Mz(r))Qz(r)
−1G(r) +Qz(r)

−1gz(r)],

where by Lemma 43: gz(r) := G′(r)− Q̇z(r)Qz(r)
−1G(r). Recalling that in our context

Qz(t) := I −Az(t), we get:

∂

∂r
(Uz(t, r)Qz(r)

−1G(r)) = Uz(t, r)G(r) + Uz(t, r)Qz(r)
−1(gz(r)−G(r))

− Uz(t, r)Mz(r)Qz(r)
−1G(r).

(3.57)

Let us integrate both sides of this equality from r = 0 to r = t. We obtain: wz(t) =
Qz(t)

−1G(t)− vz(t), where

vz(t) := Uz(t, 0)Qz(0)−1G(0)+

t∫
0

Uz(t, r)[Qz(r)
−1(gz(r)−G(r))−Mz(r)Qz(r)

−1G(r)]dr.

Now, what can we say about vz(t): The function

r ∈ [0, T ] 7→ Qz(r)
−1(gz(r)−G(r))−Mz(r)Qz(r)

−1G(r) ∈ Y

is continuous. Let us explain why. By Corollary 38, the mapping from

r[0, T ] 7→ Qz(r)
−1 ∈ L(H, Y )
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is continuous. Also, by Lemma 39, the mapping

r ∈ [0, T ] 7→ Mz(r) ∈ L(Y )

is continuous. Thus the mapping

r ∈ [0, T ] 7→ Mz(r)Qz(r)
−1G(r) ∈ Y

is continuous. On the other hand, from the explicit expression of Az(r), it follows easily
that the mapping from

r ∈ [0, T ] 7→ Q̇z(r) ∈ L(Y,H)

is continuous. As
gz(r) := G′(r)− Q̇z(r)Qz(r)

−1G(r),

it is now clear that gz is a continuous mapping from [0, T ] into H, so that the mapping

r ∈ [0, T ] 7→ Qz(r)
−1(gz(r)−G(r)) ∈ Y

is continuous. Therefore, we obtain that the mapping

r ∈ [0, T ] 7→ Qz(r)
−1(gz(r)−G(r))−Mz(r)Qz(r)

−1G(r) ∈ Y

is continuous. Also,
vz(0) = Qz(0)−1G(0) ∈ Y.

Thus by [44, Theorem 5.2. p.146], the mapping vz from [0, T ] into Y is the Y -solution of
the initial value problem:{

dvz
dt

(t) = (Az(t) +Mz(t))vz(t) +Qz(t)
−1(gz(t)−G(t))−Mz(t)Qz(t)

−1G(t)
vz(0) = Qz(0)−1G(0)

(3.58)

We have dwz
dt

(t) = d
dt
Q−1
z (t)G(t)− dvz

dt
(t), so that:

dwz
dt

(t) =
d

dt
Qz(t)

−1G(t)− dvz
dt

(t) = Qz(t)
−1(G′(t)− Q̇z(t)Qz(t)

−1G(t))− dvz
dt

(t)

= Qz(t)
−1(G′(t)− Q̇z(t)Qz(t)

−1G(t))− (Az(t) +Mz(t))vz(t)

−Qz(t)
−1(gz(t)−G(t)) +Mz(t)Qz(t)

−1G(t)

= Qz(t)
−1(G′(t)− Q̇z(t)Qz(t)

−1G(t))− (Az(t) +Mz(t))vz(t)−Qz(t)
−1G′(t)

+Qz(t)
−1Q̇z(t)Qz(t)

−1G(t) +Qz(t)
−1G(t) +Mz(t)Qz(t)

−1G(t)

= −(Az(t) +Mz(t))vz(t) +Mz(t)Qz(t)
−1G(t) +Qz(t)

−1G(t)

= (Az(t) +Mz(t))wz(t)− (Az(t)
+Mz(t))Qz(t)

−1G(t) +Mz(t)Qz(t)
−1G(t) +Qz(t)

−1G(t)

= (Az(t) +Mz(t))wz(t)−Qz(t)
−1G(t) + G(t) +Qz(t)

−1G(t)

= (Az(t) +Mz(t))wz(t) + G(t).

(3.59)

Consequently the mapping [0, T ]→ Y : t 7→ wz(t) +Uz(t, 0)

(
E0

H0

)
is the Y -solution of

the initial value problem (3.50).
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3.3 Existence of a local solution to the coupled problem

In this section, we want to prove that the coupled problem between Maxwell’s equations
(3.49)≡ (3.19) with z := y, and the heat equation (3.1) with the heat source (3.2), has a
local solution. By a local solution we mean a solution on a time interval [0, tf ] with tf > 0
and tf ≤ T . In that purpose, we will define a fixed point problem between Maxwell’s
equations (3.49) with z ∈ B̄(0;R) ⊂ C1([0, T ];C1(Ω̄)) and the heat equation (3.1) but
with the heat source S(z) . In the following subsections 3.3.1 and 3.3.2, we suppose that
the right-hand side G = (G1,G2) in the Maxwell system (3.50) belongs to C([0, T ];Y ).

Later, in subsection 3.3.3, we will consider the case of a right-hand side G = (G1,G2)
in the Maxwell system (3.50) in C1([0, T ];H).

3.3.1 Boundedness and continuity results

Firstly, we study the boundedness properties of the evolution systems (Uz(t, s))0≤s≤t≤T
generated by the family of operators (Az(t) +Mz(t))0≤t≤T for z ∈ B̄(0;R) ⊂ C1([0, T ];
C1(Ω̄)), R > 0 fixed, of the (Ez,Hz) in C([0, T ];Y ) and of their time derivatives(
Ėz, Ḣz

)
:= d

dt
(Ez,Hz) in C([0, T ];H). Then, we study the continuity properties of

the heat source term (3.2): S(z) := µa(., z(., .)) | (E(z) ∗ϕa)(., .) |2 and of its time deriva-
tive, as a function of z from the space C1([0, T ];C1(Ω̄)) into the space Lp(0, T ;C(Ω̄)3),
for any p ∈]1,+∞[. These results will be needed to be allowed to apply Schauder’s fixed
point theorem to prove the existence of a local solution to our coupled problem (3.1)-(3.2):
see Propositions 68, 69.

Proposition 45. Let ϕa ∈ C1
c (R3), then for all 1 < p <∞:

E ∈ Lp(0, T ;L2(Ω)) 7→ E ∗ ϕa ∈ Lp(0, T ;C1(Ω̄)3)

is linear continuous, and

‖ E ∗ ϕa ‖Lp(0,T ;C1(Ω̄)3) . ‖ E ‖Lp(0,T ;L2(Ω))‖ ϕa ‖C1(Ω̄) .

.

Proof. Let us first prove that for all ϕa ∈ C1
c (R3), E ∈ L2(Ω) 7→ E ∗ ϕa ∈ C1(Ω̄)3 is

linear continuous. By Cauchy-Schwarz’s inequality, we have ∀x ∈ R3:

| (E ∗ ϕa)(x) | =|
∫

Ω

E(y)ϕa(x− y)dy |

≤
(∫

Ω

| E(y) |2 dy
) 1

2
(∫

Ω

| ϕa(x− y) |2 dy
) 1

2

≤
(∫

Ω

| E(y) |2 dy
) 1

2
(∫

R3

| ϕa(x− y) |2 dy
) 1

2

≤‖ E ‖2,Ω‖ ϕa ‖2,R3 .

(3.60)

Thus,
‖ E ∗ ϕa ‖∞,R3≤‖ E ‖2,Ω‖ ϕa ‖2,R3 .
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If we take (ψn)n∈N ⊂ Cc(Ω)3 such that ψn → E in L2(Ω) as n → ∞, then by (3.60)
ψn ∗ ϕa converges uniformly to E ∗ ϕa on R3. From (ψn ∗ ϕa)|Ω̄ ∈ C(Ω̄)3, it then follows
that E ∗ ϕa ∈ C(Ω̄)3.

It is clear that ∂xk(E ∗ ϕa)(x) = (E ∗ ∂xkϕa)(x) for all x ∈ R3, k = 1, 2, 3. Then also
by the same argument ∂xk(E ∗ ϕa) ∈ C(Ω̄)3. Therefore E ∗ ϕa ∈ C1(Ω̄)3.

Now, let us consider E ∈ Lp(0, T ;L2(Ω)). Then, for almost every t ∈ [0, T ], E(·, t) ∈
L2(Ω), E(·, t) ∗ ϕa ∈ C1(Ω̄)3 and

‖ E(·, t) ∗ ϕa ‖C1(Ω̄)3 . ‖ E(·, t) ‖2,Ω‖ ϕa ‖C1(Ω̄) .

Hence

‖ E ∗ ϕa ‖Lp(0,T ;C1(Ω̄)3) .

(∫ T

0

‖ E(·, t) ‖pL2(Ω) dt

) 1
p

‖ ϕa ‖C1(Ω̄) .

Proposition 46. For z ∈ B̄(0;R) ⊂ C1([0, T ];C1(Ω̄)), the families of evolution operators
(Uz(t, s))0≤s≤t≤T , are uniformly bounded in L(H) by a constant C(R) independent of z,
depending only on R.

Proof. We know by Corollary 33, that {Az(t) +Mz(t)}t∈[0,T ] is a stable family of in-
finitesimal generators with stablity constantsM and KM , so that by Theorem 3.1 of [44,
p.135]

‖ Uz(t, s) ‖L(H)≤MeKM(t−s) ≤ MeKMT .

Looking to the proof of Corollary 33, it appears that M = c2
1e

(c0/2)T (3.33) with c2
1 =

max(ε1, µ1), c0 = 1
min(ε0,µ0)

‖ dz
dt
‖∞,Q‖ ∂ε

∂z
‖∞,Ω̄×R (3.32) and K = sup0≤t≤T ‖Mz(t)‖L(H).

Thus, clearly M ≤ C(R). In view of the definition ofMz(t) (3.25) and hypotheses (H1),
(H2) of our paper (see subsection 3.2.1), it is clear that ‖ Mz(t) ‖L(H)≤ C(R) where
C(R) denotes a constant depending only on R. Thus ‖ Uz(t, s) ‖L(H) ≤ C(R).

Using the previous proposition, it follows immediately from formula (3.48), the fol-
lowing H-estimate on the solution of the initial boundary value problem (3.47) for z in
the ball B̄(0;R) ⊂ C1([0, T ];C1(Ω̄)).

Corollary 47. For every fixed
(E0,H0) ∈ Y,

and every fixed G = (G1,G2) ∈ C([0, T ];Y ), the Y-valued solution

(Ez,Hz) : [0, T ]→ Y : t 7→ (Ez,Hz) (t)

of the initial boundary value problem (3.47) with z ∈ B̄(0;R) ⊂ C1([0, T ];C1(Ω̄)), defined
by formula (3.48) satisfies the inequality:

‖(Ez,Hz) (t)‖H ≤ C(R)(‖(E0,H0)‖H + sup
0≤s≤T

‖G(s)‖H t) (3.61)

≤ C(R)(‖(E0,H0)‖H + sup
0≤s≤T

‖G(s)‖H T ). (3.62)

In particular the solution (Ez,Hz) ∈ C([0, T ];H) and is uniformly bounded in this space
by a constant C(R) depending only on the radius of the ball B̄(0;R) ⊂ C1([0, T ];C1(Ω̄)).
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But, we need also a Y -estimate on the solution of the initial boundary value problem
(3.47) for z in the ball B̄(0;R) ⊂ C1([0, T ];C1(Ω̄)). Firstly, we need to establish that
‖ Uz(t, s)|Y ‖L(Y ) ≤ C(R). We have the following propostion similar to Propostion 46,
but in the space Y :

Proposition 48. For z ∈ B̄(0;R) ⊂ C1([0, T ];C1(Ω̄)), the families of evolution operators
(Uz(t, s)|Y )0≤s≤t≤T , are uniformly bounded in L(Y ) by a constant Cst(R) independent of
z, depending only on R in fact.

Proof. By Theorem 4.6 of [44, (4.15) p. 143], we have:

Uz(t, s) = Qz(t)
−1Wz(t, s)Qz(s), (3.63)

where Wz(t, s) is the unique solution of the integral equation:

Wz(t, s)x = Uz(t, s)x+

t∫
s

Wz(t, r)[Bz(r) + Cz(r)]Uz(r, s)x dr, ∀x ∈ H.

Cz(r) := Q̇z(r)Qz(r)
−1. Bz(r) has been defined in Corollary 40. We have written Bz(r)

(resp. Cz(r)) instead of B(r) (resp. C(r)) to underline the dependence with respect to
z(., r) of B(r) (resp. C(r)). It is clear from the definition of the operator Az(s), from
Qz(s) := I −Az(s), and hypothesis (H1), that ‖Qz(s)‖L(Y,H) ≤ Cst(R) independent of z
and s. From Ascoli’s theorem [20, (7.5.7)], it follows that the embedding of B̄(0;R) ⊂
C1([0, T ];C1(Ω̄)) into the space C(Q̄) is relatively compact. This implies that {z(., s); z ∈
B̄(0;R), s ∈ [0, T ]} is relatively compact in C(Ω̄). The mapping

ξ ∈ C(Ω̄ 7→ Qξ ∈ L(Y,H)

is continuous so that {Qz(s) ∈ L(Y,H); z ∈ B̄(0;R), s ∈ [0, T ]} is relatively compact in
G the open set of linear invertible mappings G ⊂ L(Y,H). The mapping mappings

U ∈ G ⊂ L(Y,H) 7→ U−1 ∈ L(H, Y )

being continuous, it follows also that {Qz(s)
−1 ∈ L(H, Y ); z ∈ B̄(0;R), s ∈ [0, T ]} is a

relatively compact subset in L(H, Y ) so that ‖Qz(s)
−1‖L(H,Y ) ≤ Cst(R) independent of

z and s. From {z(., s); z ∈ B̄(0;R), s ∈ [0, T ]} relatively compact in C(Ω̄), hypothesis
(H1), and ‖ ż(., s) ‖≤ Cst(R) , we have also that

∥∥∥Q̇z(s)
∥∥∥
L(Y,H)

≤ Cst(R) independent

of z. Consequently
‖ Cz(s) ‖L(H)≤ Cst(R).

Now let us recall that

Bz(t) := Qz(t)Mz(t)Qz(t)
−1 −Mz(t) ∈ L(H).

Looking to formula (3.44) in the proof of Proposition 36, we deduce that

‖ Mz(t) ‖L(Y )≤ Cst(R).

It follows that
‖ Bz(t) ‖L(H)≤ Cst(R)
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and
‖ Bz(t) + Cz(t) ‖L(H)≤ Cst(R).

From Proposition 46 and

‖ Bz(t) + Cz(t) ‖L(H)≤ Cst(R)

follows by inequality (4.11) in [44, p.142], that

‖ Wz(t) ‖L(H)≤ Cst(R).

From formula (3.63),
‖Qz(s)‖L(Y,H) ≤ Cst(R)

and ∥∥Qz(s)
−1
∥∥
L(H,Y )

≤ Cst(R),

now follows
‖ Uz(t, s)|Y ‖L(Y )≤ Cst(R).

We have now a similar estimate to (3.62) but in the space Y on the solution of the
initial boundary value problem (3.47) for z in the ball B̄(0;R) ⊂ C1([0, T ];C1(Ω̄)). Its
proof follows immediately from the previous proposition and formula (3.48):

Corollary 49. For every fixed
(E0,H0) ∈ Y,

and every fixed G = (G1,G2) ∈ C([0, T ];Y ), the Y-valued solution (Ez,Hz) : [0, T ]→ Y :
t 7→ (Ez,Hz) (t) of the initial value problem (3.47) with z ∈ B̄(0;R) ⊂ C1([0, T ];C1(Ω̄)),
defined by formula (3.48) satisfies the inequality:

‖(Ez,Hz) (t)‖Y ≤ C(R)(‖(E0,H0)‖Y + sup
0≤s≤T

‖(G(s))‖Y t) (3.64)

≤ C(R)(‖(E0,H0)‖Y + sup
0≤s≤T

‖(G(s))‖Y T ). (3.65)

In particular the solution (Ez,Hz) ∈ C([0, T ];Y ) and is uniformly bounded in this space
by a constant C(R) depending only on the radius of the ball B̄(0;R) ⊂ C1([0, T ];C1(Ω̄)).

By the equation of evolution (3.47), ‖ Az(t) ‖L(Y,H)≤ C(R), ‖ Mz(t) ‖L(Y,H)≤ C(R)
and estimate (3.65), we have the following H-estimate, on the time derivative of the
solution to the initial boundary value problem (3.47):

Corollary 50. For every fixed
(E0,H0) ∈ Y,

and every fixed G = (G1,G2) ∈ C([0, T ];Y ), the time-derivative of the Y-valued solution
(Ez,Hz) : [0, T ] → Y : t 7→ (Ez,Hz) (t) of the initial value problem (3.47) with z ∈
B̄(0;R) ⊂ C1([0, T ];C1(Ω̄)), defined by formula (3.48) satisfies the inequality:∥∥∥(Ėz, Ḣz

)
(t)
∥∥∥
H
≤ C(R)(‖(E0,H0)‖Y + sup

0≤s≤T
‖G(s)‖Y t)+ ‖ G(t) ‖H (3.66)

≤ C(R)(‖(E0,H0)‖Y + sup
0≤s≤T

‖G(s)‖Y T )+ ‖ G(t) ‖H .(3.67)(
Ėz, Ḣz

)
∈ C([0, T ];H) and is uniformly bounded in this space by a constant C(R)

depending only on the radius of the ball B̄(0;R) ⊂ C1([0, T ];C1(Ω̄)).
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In particular, from Corollary 49 and Corollary 50 follow the inequalities:

‖ (Ez,Hz) ‖C([0,T ];Y )≤ C(R) (3.68)

and
‖
(
Ėz, Ḣz

)
‖C([0,T ];H)≤ C(R). (3.69)

But the spaces C([0, T ];Y ) and the space C([0, T ];H) are not reflexive. So we will consider
rather (Ez,Hz) and

(
Ėz, Ḣz

)
in the spaces Lp(0, T ;Y ) (1 < p < +∞) and Lp(0, T ;H)

(1 < p < +∞) respectively, spaces which are reflexive. As a first continuity result, we
want to prove that:

Proposition 51. If (zn)n∈N ⊂ C1([0, T ];C1(Ω̄)) converges to z in C1([0, T ];C1(Ω̄)) then
(Ezn ,Hzn)n∈N converges weakly to (Ez,Hz) in Lp(0, T ;Y ) and

(
Ėzn , Ḣzn

)
n∈N

converges

weakly to
(
Ėz, Ḣz

)
in Lp(0, T ;H), for any p ∈]1,+∞[.

To prove this continuity result, we need to introduce the notion of regular solution
to the initial boundary value problem (3.47) and we will prove the uniqueness of regular
solutions. In particular, we will show that every Y -solution is a regular solution in that
sense.

Definition 52. We will say that U = (E,H) ∈ L2(0, T ;Y ) such that d
dt

(E,H) ∈
L2(0, T ;H) is a regular solution to the initial boundary value problem (3.47) with
G ∈ L2(0, T ;H) and

U0 = (E0,H0) ∈ H, (3.70)

if and only if∫ T

0

[−(U(t),
∂φ(t)

∂t
)Ht + (U(t),Az(t)φ(t))Ht − (Bz(t)U(t), φ(t))Ht

− (Mz(t)U(t), φ(t))Ht ]dt =

∫ T

0

(G(t), φ(t))Htdt+ (U0, φ(0))H0

(3.71)

for all
φ ∈ L2(0, T ;Y ) such that

dφ

dt
∈ L2(0, T ;H) and φ(T ) = 0, (3.72)

where
Bz(t)U(t) := {ε̂(·, z(·, t))∂zε(·, z(·, t))∂tz(·, t)E(t), 0}. (3.73)

Remark 13. 1. Let us remark that U := (E,H) ∈ L2(0, T ;Y ) and d
dt

(E,H) ∈
L2(0, T ;H), implies that (E,H) ∈ C([0, T ];H). In particular U(0) has sense and
belongs to H.

2. Let us observe that

(Bz(t) +Mz(t))U(t) = (−ε̂(·, z(·, t))σE,0) . (3.74)

Proposition 53. Let U := (E,H) be a regular solution to the initial boundary value
problem (3.47) in the sense of the preceding definition. Then for every y ∈ Y , the
function ‘ t 7→ (U(t), y)Ht’ ∈ H1(0, T ) and verifies for a.e. t ∈]0, T [:

d

dt
(U(t), y)Ht = −(U(t),Az(t)y)Ht + ((Bz(t) +Mz(t))U(t), y)Ht + (G(t), y)Ht . (3.75)

Moreover U(0) = U0.
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Proof. Let us take φ(t) = θ(t)y in (3.71) where θ ∈ D([0, T [) and y ∈ Y . We obtain:∫ T

0

[−(U(t), y)Htθ
′(t) + (U(t),Az(t)y)Htθ(t)− ((Bz(t) +Mz(t))U(t), y)Htθ(t)]dt

=

∫ T

0

(G(t), y)Htθ(t)dt+ (U0, y)H0θ(0).

(3.76)
Now, the function

t 7→ −(U(t),Az(t)y)Ht + ((Bz(t) +Mz(t))U(t), y)Ht + (G(t), y)Ht

belongs to L2(0, T ). If we restrict us in (3.76) to functions in D(]0, T [), the last term
in the right-hand side of (3.76) disappears and (3.76) impies that for every y ∈ Y , the
function ‘t 7→ (U(t), y)Ht ’ ∈ H1(0, T ) and verifies for a.e. t ∈]0, T [ (3.75).

Now, let us suppose that our function θ in (3.76) belongs to D([0, T [), and knowing
that ‘t 7→ (U(t), y)Ht ’ ∈ H1(0, T ), let us integrate by parts the first term in the left-hand
side in (3.76). We obtain:∫ T

0

[ d
dt

(U(t), y)Ht ]θ(t)dt+ (U(0), y)H0θ(0) =∫ T

0

[−(U(t),Az(t)y)Ht + ((Bz(t) +Mz(t))U(t), y)Ht + (G(t), y)Ht ]θ(t)dt

+(U0, y)H0θ(0).

Using (3.75), after simplifying it remains: (U(0), y)H0 = (U0, y)H0 . By the density of Y
into H, we obtain U(0) = U0.

Proposition 54. Every regular solution to the initial boundary value problem (3.47) with
initial condition U0 = (E0,H0) ∈ H is unique.

Proof. Let U := (E,H) = U1 − U2 where U1 and U2 are two regular solutions for
the initial boundary value problem (3.47). Thus, in view of the previous definition and
proposition, U := (E,H) verifies U(0) = 0 and:∫ T

0

[−(U(t),
∂φ(t)

∂t
)Ht + (U(t),Az(t)φ(t))Ht − (Bz(t)U(t), φ(t))Ht

− (Mz(t)U(t), φ(t))Ht ]dt = 0,

(3.77)

for all
φ ∈ L2(0, T ;Y ) such that

dφ

dt
∈ L2(0, T ;H) and φ(T ) = 0. (3.78)

Our aim is to prove that U = 0. Let us choose for test function φ in (3.77), the
function

φ : t 7→ φ(t) = (T − t)nU(t). (3.79)

We obtain:∫ T

0

[−(U(t),
∂(T − t)nU(t)

∂t
)Ht + (U(t),Az(t)(T − t)nU(t))Ht−

(Bz(t)U(t), (T − t)nU(t))Ht − (Mz(t)U(t), (T − t)nU(t))Ht ]dt = 0.

(3.80)
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Let us first notice that:∫ T

0

−(U(t),
∂(T − t)nU(t)

∂t
)Htdt =

−
∫
Q

[
ε(x, z(x, t))E(x, t)

∂

∂t
((T − t)nE(x, t)) + µ(x)H(x, t)

∂

∂t
((T − t)nH(x, t))

]
dxdt

= −1

2

∫
Q

[
ε(x, z(x, t))(

∂

∂t
| E(x, t) |2)(T − t)n + µ(x)

∂

∂t
| H(x, t) |2 (T − t)n

]
dxdt

+

∫
Q

[
ε(x, z(x, t)) | E(x, t) |2 n(T − t)n−1 + µ(x) | H(x, t) |2 n(T − t)n−1

]
dxdt

=
1

2

∫
Q

[
ε(x, z(x, t)) | E(x, t) |2 n(T − t)n−1 + µ(x) | H(x, t) |2 n(T − t)n−1

]
dxdt

+
1

2

∫
Q

∂ε

∂z
(x, z(x, t))

∂z

∂t
(x, t) | E(x, t) |2 (T − t)ndxdt,

(3.81)

having performed at the end two integration by parts with respect to the time t. By
assumption (H1) on ε and (3.8) we have the bound on the last term in (3.81):

| 1

2

∫
Q

∂ε

∂z
(x, z(x, t))

∂z

∂t
(x, t) | E(x, t) |2 (T − t)ndxdt |

≤ 1

2
‖ ∂zε ‖∞,Ω̄×z(Q̄)‖ ∂tz ‖∞,Q

∫
Q

| E(x, t) |2 (T − t)ndxdt

≤
T ‖ ∂zε ‖∞,Ω̄×z(Q̄)‖ ∂tz ‖∞,Q

2nε0

∫
Q

ε(x, z(x, t)) | E(x, t) |2 n(T − t)n−1dxdt.

(3.82)

On the other hand by Green’s formula for the curl operator [24, Theorem 2.11], the fact
that E(., t) ∈ H0(curl ; Ω), H(., t) ∈ H(curl ; Ω) and the density of D(Ω̄)3 in H(curl ; Ω)
[24, p.34]:

(U(t),Az(t)(T − t)nU(t))Ht =

∫
Ω

E(x, t) · curl ((T − t)nH(x, t))dx

−
∫

Ω

H(x, t) · curl ((T − t)nE(x, t))dx = 0

(3.83)

for all t ∈ [0, T ]. Thus
∫ T

0
(U(t),Az(t)(T − t)nU(t))Htdt = 0. By (3.74), assumption (H1)

on ε and assumption (H2) on σ, we have the following bound:

|
∫ T

0

((Mz(t) + Bz(t))U(t), (T − t)nU(t))Htdt |≤∫
Q

| σ(x) | | E(x, t |2 (T − t)ndxdt ≤

2 ‖ σ ‖∞,Ω T
n

∫
Ω

1

2
| E(x, t) |2 n(T − t)n−1dxdt ≤

2 ‖ σ ‖∞,Ω T
nε0

∫
Ω

1

2
ε(x, z(x, t)) | E(x, t) |2 n(T − t)n−1dxdt.

(3.84)
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From (3.80), (3.81), (3.82), (3.83) and (3.84) follows that

0 =

∫ T

0

[
−(U(t),

∂

∂t
(T − t)nU(t)) + (U(t),Az(t)(T − t)nU(t))Htdt

]
−
∫ T

0

[((Mz(t) + Bz(t))U(t), (T − t)nU(t))Ht ] dt

≥ 1

2
(1− cT

n
)

∫
Q

[
ε(x, z(x, t)) | E(x, t) |2 n(T − t)n + µ(x) | H(x, t) |2 n(T − t)n−1

]
dxdt

≥ 1

2

∫
Q

[
ε(x, z(x, t)) | E(x, t) |2 n(T − t)n−1 + µ(x) | H(x, t) |2 n(T − t)n−1

]
dxdt,

(3.85)

for n sufficiently large which implies that U = (E,H) = 0 i.e. U1 = U2.

Proposition 55. Every Y -valued solution to the initial boundary value problem (3.47)
with (E0,H0) ∈ Y is a regular solution.

Proof. Let (E,H) ∈ C([0, T ];Y )∩C1([0, T ];H) a Y -valued solution to the initial bound-
ary value problem (3.47). If we multiply (3.47) by φ = (ϕ, ψ) ∈ L2(0, T ;Y ) (Y = D(A))
such that dφ

dt
= (dϕ

dt
, dψ
dt

) ∈ L2(0, T ;H) and (ϕ(T ), ψ(T )) = 0, we get:∫
Q

[
ε(x, z(x, t))

dE

dt
(x, t) · ϕ(x, t)− curlH(x, t) · ϕ(x, t) + µ(x)

dH

dt
(x, t) · ψ(x, t)

]
dxdt

+

∫
Q

[
curlE(x, t) · ψ(x, t) + (σ +

∂ε

∂z
(x, z(x, t))

∂z

∂t
(x, t))E(x, t) · ϕ(x, t)

]
dxdt

=

∫
Q

[ε(x, z(x, t))G1(x, t) · ϕ(x, t) + µ(x)G2(x, t) · ψ(x, t)] dxdt,

(3.86)

Integrating by parts in t on [0, T ] and using the fact that a fortiori (ϕ, ψ) ∈
H1(0, T ;H), we obtain after simplification:

−
∫
Q

ε(x, z(x, t))E(x, t)
∂ϕ

∂t
(x, t)dxdt−

∫
Q

µ(x)H(x, t)
∂ψ

∂t
(x, t)dxdt

+

∫
Q

curlE(x, t) · ψ(x, t)dxdt−
∫
Q

curlH(x, t) · ϕ(x, t)dxdt

+

∫
Q

σE(x, t) · ϕ(x, t)dxdt

=

∫
Q

[ε(x, z(x, t))G1(x, t) · ϕ(x, t) + µ(x)G2(x, t) · ψ(x, t)] dxdt

+

∫
Ω

[ε(x, z(x, 0))E(x, 0) · ϕ(x, 0) + µ(x)H(x, 0) · ψ(x, 0)] dx.

(3.87)

Using now Green’s formula for the curl operator [24, Theorem 2.11], the fact that E(., t) ∈
H0(curl ; Ω), ϕ(., t) ∈ H0(curl ; Ω) and the density of D(Ω̄)3 in H(curl ; Ω) [24, p.34], we
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obtain from the previous equation:

−
∫
Q

ε(x, z(x, t))E(x, t)
∂ϕ

∂t
(x, t)dxdt−

∫
Q

µ(x)H(x, t)
∂ψ

∂t
(x, t)dxdt

+

∫
Q

E(x, t) · curlψ(x, t)dxdt−
∫
Q

H(x, t) · curlϕ(x, t)dxdt

+

∫
Q

σE(x, t) · ϕ(x, t)dxdt

=

∫
Q

[ε(x, z(x, t))G1(x, t) · ϕ(x, t) + µ(x)G2(x, t) · ψ(x, t)] dxdt

+

∫
Ω

[ε(x, z(x, 0))E(x, 0) · ϕ(x, 0) + µ(x)H(x, 0) · ψ(x, 0)] dx,

(3.88)

for all φ = (ϕ, ψ) ∈ L2(0, T ;Y ) such that dφ
dt

= (dϕ
dt
, dψ
dt

) ∈ L2(0, T ;H) and (ϕ(T ), ψ(T )) =
0. Comparing (3.88) with (3.71), taking into account (3.74), it follows that U = (E,H)
is a regular solution.

We now give the proof of Proposition 51:

Proof. Being convergent, the sequence (zn)n∈N is contained in a certain ball
of radius R in C1([0, T ];C1(Ω̄)). Consequently, by Corollary 49, the sequence
((Ezn ,Hzn))n∈N is bounded in Lp(0, T ;Y ) and by Corollary 50, the sequence of its
time-derivatives ((Ėzn , Ḣzn))n∈N is bounded in Lp(0, T ;H). There exists thus a sub-
sequence ((Eznk

,Hznk
))k∈N weakly convergent in the space Lp(0, T ;Y ) to some element

(E,H) ∈ Lp(0, T ;Y ) such that the sequence of its time derivatives ((Ėznk
, Ḣznk

))k∈N con-
verges weakly to some element

(
Ě, Ȟ

)
∈ Lp(0, T ;H), for every 1 < p < +∞ (it is easy to

see considering an increasing sequence of real numbers pn ∈]1,+∞[ tending to +∞ and
using the Cantor diagonal process of extraction of a subsequence, that the limits of the
two sequences ((Eznk

,Hznk
))k∈N and ((Ėznk

, Ḣznk
))k∈N are independent of p ∈]1,+∞[).

Firstly, we must prove that (Ě, Ȟ) = d
dt

(E,H) in the sense of distributions on ]0, T [ with
range in H. Let ϕ ∈ D(]0, T [):

<
d

dt
(Eznk

,Hznk
), ϕ > = − < (Eznk , Hznk

), ϕ′ >

= −

 T∫
0

Eznk
(t)ϕ′(t) dt,

T∫
0

Hznk
(t)ϕ′(t) dt

 .
(3.89)

Let us observe that the left-hand side in the previous equality belongs to H and the
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right-hand side in Y ⊂ H. Let (ϕ∗, ψ∗) ∈ H∗ ↪→ Y ∗. On one side:

− <

(∫ T

0

Eznk
(t)ϕ′(t) dt,

∫ T

0

Hznk
(t)ϕ′(t) dt

)
, (ϕ∗, ψ∗) >H,H∗

= −
∫ T

0

< Eznk
(t), ϕ∗ > ϕ′(t) dt+

∫ T

0

< Hznk
(t), ψ∗ > ϕ′(t) dt

= −
∫ T

0

<
(
Eznk

,Hznk

)
(t), (ϕ∗, ψ∗) >Y,Y ∗ ϕ

′(t) dt

→ −
∫ T

0

< (E,H) (t), (ϕ∗, ψ∗) >Y,Y ∗ ϕ
′(t) dt as k → +∞,

= − <

∫ T

0

(E,H) (t)ϕ′(t) dt, (ϕ∗, ψ∗) >
Y,Y ∗ ,

= − <

∫ T

0

(E,H) (t)ϕ′(t) dt, (ϕ∗, ψ∗) >H,H∗ ,

and on the other side

<

∫ T

0

(
Ėznk

, Ḣznk

)
(t)ϕ(t) dt, (ϕ∗, ψ∗) >H,H∗

=

∫ T

0

<
(
Ėznk

, Ḣznk

)
(t), (ϕ∗, ψ∗) >H,H∗ ϕ(t) dt

→
∫ T

0

<
(
Ě, Ȟ

)
, (ϕ∗, ψ∗) >H,H∗ ϕ(t) dt as k → +∞.

=<

∫ T

0

(
Ě, Ȟ

)
(t)ϕ(t) dt, (ϕ∗, ψ∗) >H,H∗ .

Thus <
∫ T

0

(
Ě, Ȟ

)
(t)ϕ(t) dt, (ϕ∗, ψ∗) >H,H∗= − <

∫ T
0

(E,H) (t)ϕ′(t) dt, (ϕ∗, ψ∗) >H,H∗ ,
for all (ϕ∗, ψ∗) ∈ H∗. Therefore:∫ T

0

(
Ě, Ȟ

)
(t)ϕ(t) dt = −

∫ T

0

(E,H) (t)ϕ′(t) dt, ∀ϕ ∈ D(]0, T [).

We have thus proved that
(
Ě, Ȟ

)
= d

dt
(E,H) in the sense of distributions.

Now, we must prove that (E,H) = (Ez,Hz). It suffices for that to prove that (E,H) is
a regular solution of the initial boundary value problem (3.47) i.e. satisfies (3.71) so that
by uniqueness, we will have (E,H) = (Ez,Hz) . What we have mentioned previously in
the proof is valid for any p ∈]1,+∞[; thus we may choose p = 2. For all k ∈ N, (Enk ,Hnk),
(E,H) ∈ L2(0, T ;Y ) and

(
Ėnk , Ḣnk

)
,
(
Ė, Ḣ

)
∈ L2(0, T ;H). Unk := (Enk ,Hnk) satisfies

the variational equation:∫ T

0

[−(Unk(t),
∂φ(t)

∂t
)Hznk (.,t)

+ (Unk(t),Aznk (t)φ(t))Hznk (.,t)
− (Bznk (t)Unk(t), φ(t))Hznk (.,t)

− (Mznk
(t)Unk(t), φ(t))Hznk (.,t)

]dt =

∫ T

0

(G(t), φ(t))Hznk (.,t)
dt+ (U0, φ(0))Hznk (.,0)

(3.90)

for each

φ ∈ L2(0, T ;Y ) such that
dφ

dt
∈ L2(0, T ;H) and φ(T ) = 0. (3.91)
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We have written Hznk (.,t) (resp. Hznk (.,0)) instead of Ht (resp.H0) in equation (3.90)
to avoid confusion as this scalar product (3.21) on H depends in fact of znk(., t) (resp.
znk(., 0)), so that we must be more precise than previously in our notations. We must
now pass to the limit as k → +∞ in equation (3.90). In that purpose let us firstly
remark, using the definition of the Hznk (.,t)-scalar product (3.21), that equation (3.90) is
equivalent to

−
∫ T

0

∫
Ω

(ε(x, znk(x, t))Eznk
(x, t).

∂ϕ

∂t
(x, t) + µ(x)Hznk

(x, t).
∂ψ

∂t
(x, t))dx dt

+

∫ T

0

∫
Ω

(Eznk
(x, t). curl(ψ)(x, t)−Hznk

(x, t). curl(ϕ)(x, t))dx dt

+

∫ T

0

∫
Ω

σ(x)Eznk
(x, t).ϕ(x, t)dx dt

=

∫ T

0

∫
Ω

{ε(x, znk(x, t))G1(x, t).ϕ(x, t) + µ(x)G2(x, t).ψ(x, t)}dx dt

+

∫
Ω

ε(x, znk(x, 0))E0(x).ϕ(x, 0)dx+

∫
Ω

µ(x)H0(x).ψ(x, 0)dx

(3.92)

for all φ = (ϕ, ψ) ∈ L2(0, T ;Y ) such that dφ
dt

= (dϕ
dt
, dψ
dt

) ∈ L2(0, T ;H) and φ(T ) = 0.
Concerning the first term in the left-hand side of equation (3.92), we have the following
inequality:∣∣∣∣∫ T

0

∫
Ω

ε(x, znk(x, t))Eznk
(x, t).

∂ϕ

∂t
(x, t)dx dt−

∫ T

0

∫
Ω

ε(x, z(x, t))E(x, t).
∂ϕ

∂t
(x, t)dx dt

∣∣∣∣
≤
∣∣∣∣∫ T

0

∫
Ω

(ε(x, znk(x, t))− ε(x, z(x, t)))Eznk
(x, t).

∂ϕ

∂t
(x, t)dx dt

∣∣∣∣
+

∣∣∣∣∫ T

0

∫
Ω

ε(x, z(x, t))(Eznk
(x, t)− E(x, t)).

∂ϕ

∂t
(x, t)dx dt

∣∣∣∣
≤ C sup

(x,t)∈Q̄
|ε(x, znk(x, t))− ε(x, z(x, t))|

∥∥∥∥dϕdt
∥∥∥∥
L2(0,T ;L2(Ω)3)

+

∣∣∣∣< Eznk
− E, ε(., z(., .))

dϕ

dt
>L2(0,T ;L2(Ω)3),L2(0,T ;L2(Ω)3)

∣∣∣∣ ,
(3.93)

as
∥∥Eznk

∥∥
L2(0,T ;L2(Ω)3)

≤ C a constant independent of k, the sequence (Eznk
)k∈N being

weakly convergent in L2(0, T ;L2(Ω)3) and thus bounded. The sequence of functions
(znk(., .))k∈N converging uniformly on Q̄ to z(., .) and the permittivity function ε(., .)
being supposed to be a continuous function (hypothesis (H1)), the first term in the right
hand side of inequality (3.93) tends to 0 as k → +∞. The sequence (Eznk

)k∈N being
weakly convergent in L2(0, T ;L2(Ω)3) and ε(., z(., .))dϕ

dt
belonging to L2(0, T ;L2(Ω)3), the

second term in the right-hand side of inequality (3.93) tends to 0 as k → +∞. Thus, the
lefthand side of inequality (3.93) tends to 0 as k → +∞ so that the first term in the left
hand side of equation (3.92):

−
∫ T

0

ε(x, znk(x, t))Eznk
(x, t).

∂ϕ

∂t
(x, t)dx dt→ −

∫ T

0

ε(x, z(x, t))E(x, t).
∂ϕ

∂t
(x, t)dx dt
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as k → +∞. Let us now consider the second term in the left hand side of equation (3.92):∫ T

0

∫
Ω

µ(x)Hznk
(x, t).

∂ψ

∂t
(x, t)dx dt.

As dψ
dt
∈ L2(0, T ;L2(Ω)3) and µ ∈ L∞(Ω), µdψ

dt
belongs also to L2(0, T ;L2(Ω)3).

The sequence (Hznk
)k∈N converging weakly to H in L2(0, T ;L2(Ω)3), it follows that:

−
T∫

0

∫
Ω

µ(x)Hznk
(x, t).∂ψ

∂t
(x, t)dx dt → −

T∫
0

∫
Ω

µ(x)H(x, t).∂ψ
∂t

(x, t)dx dt as k → +∞.

It is the same kind of argument for the third and fourth term in the left hand side of
equation (3.92). σ ∈ L∞(Ω) by hypothesis (H2), it is also straightforward to pass to the
limit in the last term of the left hand side of equation (3.92). Passing to the limit in the
first term of the right-hand side of equation (3.92) results from the Lebesgue dominated
convergence theorem and the convergence of the uniformly bounded sequence of func-
tions (ε(., znk(., .)))k∈N to ε(., z(., .)) uniformly on Q̄ to z(., .) (punctly would suffice). To
pass to the limit in the third term of the right-hand side of equation (3.92), we remark
that from φ ∈ H1(0, T ;H) follows that ϕ(., 0) ∈ L2(Ω)3. Also, E0 ∈ L2(Ω)3. On the
other hand, our hypothesis (H1) on the permittivity ε and znk(., 0) → z(., 0) uniformly
on Ω as k → +∞, implies that ε(., znk(., 0)) → ε(., z(., 0)) uniformly on Ω. Thus by

the Lebesgue dominated convergence theorem
∫
Ω

ε(x, znk(x, 0))E0(x).ϕ(x, 0)dx tends to∫
Ω

ε(x, z(x, 0))E0(x).ϕ(x, 0)dx as k → +∞. Passing to the limit in equation (3.92), we

obtain:

−
∫ T

0

∫
Ω

(ε(x, z(x, t))E.
∂ϕ

∂t
(x, t) + µ(x)H(x, t).

∂ψ

∂t
(x, t))dx dt

+

∫ T

0

∫
Ω

(E(x, t). curl(ψ)(x, t)−H(x, t). curl(ϕ)(x, t))dx dt

+

∫ T

0

∫
Ω

σ(x)E(x, t).ϕ(x, t)dx dt

=

∫ T

0

∫
Ω

{ε(x, z(x, t))G1(x, t).ϕ(x, t) + µ(x)G2(x, t).ψ(x, t)}dx dt

+

∫
Ω

ε(x, z(x, 0))E0(x).ϕ(x, 0)dx+

∫
Ω

µ(x)H0(x).ψ(x, 0)dx.

(3.94)

(E,H) is thus the unique regular solution of the variational equation (3.94). But (Ez,Hz)
being the Y -solution of (3.47) is also a regular solution of the variational equation (3.94).
So, by uniqueness, we have: (E,H) = (Ez,Hz). Thus, the subsquence

(
Eznk

,Hznk

)
k∈N

converges weakly to (Ez,Hz) in Lp(0, T ;Y ) and
(
Ėznk

, Ḣznk

)
k∈N

converges weakly to(
Ėz, Ḣz

)
in Lp(0, T ;H). But any subsequence of the sequence (Ezn ,Hzn)n∈N possesses a

further subsequence with that property. Thus the sequence itself has this property. This
concludes the proof of Proposition 51.

We have now the following corollary to Proposition 51.
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Corollary 56. If (zn)n∈N ⊂ C1([0, T ];C1(Ω̄)) converges to z in C1([0, T ];C1(Ω̄)), then
(Ezn ∗ ϕa)n∈N (resp. (Ėzn ∗ ϕa)n∈N) converges weakly to Ez ∗ ϕa (resp. Ėz ∗ ϕa) in
Lp(0, T ;C1(Ω̄)3) for any p ∈]1,+∞[. Moreover (Ezn ∗ϕa)n∈N converges strongly to Ez∗ϕa
in Lp(0, T ;C(Ω̄)3) for any p ∈]1,+∞[.

Proof. From Proposition 51 follows that the sequences (Ezn)n∈N (resp. (Ėzn)n∈N) con-
verges weakly to Ez (resp. Ėz) in Lp(0, T ;L2(Ω)3). The mapping

Lp(0, T ;L2(Ω)3)→ Lp(0, T ;C1(Ω̄)3) : J 7→ J ∗ ϕa

being linear and continuous, we have also that (Ezn∗ϕa)n∈N (resp. (Ėzn∗ϕa)n∈N) converges
weakly to Ez ∗ ϕa (resp. Ėz ∗ ϕa) in Lp(0, T ;C1(Ω̄)3). Now, the embedding from

Lp(0, T ;C1(Ω̄)3) ↪→ Lp(0, T ;W 1,q(Ω)3)

being continuous for any q ∈]1,+∞[, so that (Ezn∗ϕa)n∈N converges also weakly to Ez∗ϕa
in Lp(0, T ;W 1,q(Ω)3). The embedding from Lp(0, T ;C1(Ω̄)3) ↪→ Lp(0, T ;L2(Ω)3) being
continuous, (Ėzn ∗ϕa)n∈N converges weakly to Ėz ∗ϕa in Lp(0, T ;L2(Ω)3). The embedding
from W 1,q(Ω)3 ↪→ C(Ω̄)3 is compact for q > 3, and the embedding from C(Ω̄)3 ↪→ L2(Ω)3

is continuous. Moreover, the Banach spaces W 1,q(Ω)3 and L2(Ω)3 are reflexive Banach
spaces. Thus, we are in the setting of the Lions-Aubin compacity Lemma [47, p.106],
which tells us that the embedding

{f ∈ Lp(0, T ;W 1,q(Ω)3); f ′ ∈ Lp(0, T ;L2(Ω)3)} ↪→ Lp(0, T ;C(Ω̄)3)

is compact for q > 3, so that (Ezn ∗ ϕa)n∈N strongly converges to Ez ∗ ϕa in the space
Lp(0, T ;C(Ω̄)3).

We now study the continuity with respect to z of the heat source term (3.2):

S(z)(x, t) := µa(x, z(x, t)) | (E(z) ∗ ϕa)(x, t) |2, ∀(x, t) ∈ Q, (3.95)

in the right hand side of our heat equation (3.1) and also of its time derivative dS(z)
dt

. This
heat source term may also be equivalently written in the form:

S(z)(x, t) := µa(x, z(x, t))((E(z) ∗ ϕa)(x, t) | (E(z) ∗ ϕa)(x, t))R3 , (3.96)

∀(x, t) ∈ Q, where (. | .)R3 denotes the scalar product in R3.

In the study of the continuity properties of S(z) and dS(z)
dt

with respect to
z, we will need the following hypothesis on the absorption coefficient µa(., .):

(H6) We suppose that the absorption coefficient µa(., .) in formula (3.95) for S
belongs to the Banach space C1

b (Ω̄× R).

This hypothesis is implicitely assumed in the following. Firstly, we prove
the following continuity result for S(z) in z:

Proposition 57. If the sequence (zn)n∈N ⊂ C1([0, T ];C1(Ω̄)) converges to z in
C1([0, T ];C1(Ω̄)), then (S(zn))n∈N converges strongly to S(z) in Lp(0, T ;C(Ω̄)), for all
p ∈]1,+∞[.
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Proof. Corollary 56 implies a fortiori that for any p ∈]1,+∞[, the sequence (Ezn ∗ ϕa)n∈N

converges strongly to Ez ∗ ϕa in the Banach space L2p(0, T ;C(Ω̄)3) as n→ +∞ .∣∣|Ezn ∗ ϕa|
2 (x, t)− |Ez ∗ ϕa|2 (x, t)

∣∣
= ||Ezn ∗ ϕa| (x, t)− |Ez ∗ ϕa| (x, t)| × ||Ezn ∗ ϕa| (x, t) + |Ez ∗ ϕa| (x, t)| .

(3.97)

Thus: ∥∥|Ezn ∗ ϕa|
2 (., t)− |Ez ∗ ϕa|2 (., t)

∥∥
∞,Ω

≤ ‖|Ezn ∗ ϕa| (., t)− |Ez ∗ ϕa| (., t)‖∞,Ω×
(‖|Ezn ∗ ϕa| (., t)‖∞,Ω + ‖|Ez ∗ ϕa| (., t)‖∞,Ω).

(3.98)

Consequently: T∫
0

∥∥|Ezn ∗ ϕa|
2 (., t)− |Ez ∗ ϕa|2 (., t)

∥∥p
∞,Ω dt

1/p

≤

 T∫
0

‖(Ezn ∗ ϕa)(., t)− (Ez ∗ ϕa)(., t)‖2p
∞,Ω dt

1/2p

×

 T∫
0

(‖|Ezn ∗ ϕa| (., t)‖∞,Ω + ‖|Ez ∗ ϕa| (., t)‖∞,Ω)2pdt

1/2p

≤ ‖Ezn ∗ ϕa − Ez ∗ ϕa‖L2p(0,T ;C(Ω̄)3)

× 2
(
‖Ezn ∗ ϕa‖L2p(0,T ;C(Ω̄)3) + ‖Ez ∗ ϕa‖L2p(0,T ;C(Ω̄)3)

)
→ 0 as n→ +∞.

(3.99)

Thus |Ezn ∗ ϕa|
2 → |Ez ∗ ϕa|2 in the space Lp(0, T ;C(Ω̄)) as n → +∞. Using hy-

pothesis (H6), we have also that the sequence (µa(., zn(., .)))n∈N converges uniformly to
µa(., z(., .)) as n → +∞. So, it now follows immediately that the sequence (S(zn))n∈N

converges strongly to S(z) as n→ +∞ in the space Lp(0, T ;C(Ω̄)) as n→ +∞.

For the sequence of its time derivatives, we have the following result:

Proposition 58. If the sequence (zn)n∈N ⊂ C1([0, T ];C1(Ω̄)) converges to z in
C1([0, T ];C1(Ω̄)), then the sequence of the time derivatives ( d

dt
S(zn))n∈N converges weakly

to d
dt
S(z) in Lp(0, T ;C(Ω̄)), ∀p ∈]1,+∞[.

Firstly, we need to prove the following lemmas:

Lemma 59. If (zn)n∈N ⊂ C1([0, T ];C1(Ω̄)) converges to z in C1([0, T ];C1(Ω̄)), then for
i = 1, 2, 3 and for all s ∈]1,+∞[,

(
((Ezn)i ∗ ϕa) .

(
∂(Ezn )i

∂t
∗ ϕa

))
n∈N

converges weakly to

((Ez)i ∗ ϕa) .
(
∂(Ez)i
∂t
∗ ϕa

)
in the Banach space Ls(0, T ;C(Ω̄)).

Proof. In the following, to alleviate the notations, the i − th component (Ezn)i of Ezn

(resp. (Ez)i of Ez), will be denoted Ezn,i (resp. Ez,i) (i = 1, 2, 3). The sequence(
∂Ezn,i
∂t
∗ ϕa

)
n∈N

being weakly convergent in Lr(0, T ;C(Ω̄)), is bounded in Lr(0, T ;C(Ω̄))
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for any r ∈]1,+∞[. We know also that the sequence (Ezn,i ∗ ϕa)n∈N strongly converges
in Lp(0, T ;C(Ω̄)) to Ez,i ∗ ϕa, for all p ∈]1,+∞[. Thus:∥∥∥∥(Ezn,i ∗ ϕa − Ez,i ∗ ϕa)

(
∂Ezn,i

∂t
∗ ϕa

)∥∥∥∥
Ls(0,T ;C(Ω̄))

≤ ‖Ezn,i ∗ ϕa − Ez,i ∗ ϕa‖Lp(0,T ;C(Ω̄))

∥∥∥∥∂Ezn,i

∂t
∗ ϕa

∥∥∥∥
Lr(0,T ;C(Ω̄))

→ 0 as n→ +∞ for
1

s
=

1

p
+

1

r
by the generalized Hölder’s inequality.

A fortiori (
(Ezn,i ∗ ϕa − Ez,i ∗ ϕa)

(
∂Ezn,i

∂t
∗ ϕa

))
n∈N

converges weakly to 0 as n→ +∞ in Ls(0, T ;C(Ω̄)) as n→ +∞.
On the other hand, ∂Ezn,i

∂t
∗ ϕa − ∂Ez,i

∂t
∗ ϕa converges weakly to 0 as n → +∞ in

Lr(0, T ;C(Ω̄)) and we may view Ez,i ∗ ϕa ∈ Lp(0, T ;C(Ω̄)) as the linear continuous
operator:

Lr(0, T ;C(Ω̄))→ Ls(0, T ;C(Ω̄)) : k 7→ (Ez,i ∗ ϕa).k.
Thus the sequence (

(Ez,i ∗ ϕa).(
∂Ezn,i

∂t
∗ ϕa −

∂Ez,i

∂t
∗ ϕa)

)
n∈N

converges weakly to 0 as n→ +∞ in Ls(0, T ;C(Ω̄)). Adding both sequences, we obtain
the result.

Let us set

gn :=
i=3∑
i=1

(Ezn,i ∗ ϕa)
(
∂Ezn,i

∂t
∗ ϕa

)
and

g :=
i=3∑
i=1

(Ez,i ∗ ϕa)
(
∂Ez,i

∂t
∗ ϕa

)
.

We have also that the sequence (gn)n∈N converges weakly to g as n → +∞ in
Ls(0, T ;C(Ω̄)).

Lemma 60. The sequence (µa(., zn(., .))gn)n∈N converges weakly to µa(., z(., .))g as n→
+∞ in Ls(0, T ;C(Ω̄)), for all s ∈]1,+∞[.

Proof. We notice that

µa(., zn(., .))gn − µa(., z(., .))g = [µa(., zn(., .))− µa(., z(., .))] gn + µa(., z(., .)) [gn − g] .

By the preceding lemma, the sequence (gn − g)n∈N converges weakly to 0 in the Banach
space Ls(0, T ;C(Ω̄)). Now, µa(., z(., .)) ∈ C(Q̄), so that it defines a linear and contin-
uous multiplication operator in Ls(0, T ;C(Ω̄)). Consequently, (µa(., z(., .)) [gn − g])n∈N

converges also weakly to 0 in Ls(0, T ;C(Ω̄)). On the other hand, the weak convergence
of (gn)n∈N in Ls(0, T ;C(Ω̄)), implies that (gn)n∈N is bounded in Ls(0, T ;C(Ω̄)). The se-
quence (µa(., zn(., .))− µa(., z(., .)))n∈N converging uniformly to 0 in C(Q̄), ([µa(., zn(., .))
−µa(., z(., .))]gn)n∈N converges strongly to 0 in Ls(0, T ;C(Ω̄)), and thus a fortiori weakly.
To sum up, the sequence (µa(., zn(., .))gn − µa(., z(., .))g)n∈N converges weakly to 0 in
Ls(0, T ;C(Ω̄)).
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Lemma 61. The sequence
(
∂µa(.,zn(.,.))

∂u
∂zn
∂t
|Ezn ∗ ϕa|

2
)
n∈N

strongly converges and thus

a fortiori weakly to ∂µa(.,z(.,.))
∂y

∂z
∂t
|Ez ∗ ϕa|2 in the Banach space Lp(0, T ;C(Ω̄)), for all

p ∈]1,+∞[.

Proof. We have seen in the proof of Proposition 57 that the sequence (|Ezn ∗ ϕa|2)n∈N

strongly converges to |Ez ∗ ϕa|2 in Lp(0, T ;C(Ω̄)) as n → +∞, and thus is a fortiori
bounded in Lp(0, T ;C(Ω̄)). The sequence (zn)n∈N tends to z in C1([0, T ];C1(Ω̄)) as
n → +∞, it follows using hypothesis (H1), that the sequence

(
∂µa(.,zn(.,.))

∂y
∂zn
∂t

)
n∈N

tends

to ∂µa(.,z(.,.))
∂y

∂z
∂t

in C(Q̄) as n→ +∞. These two facts imply the result.

Proof. We give now the proof of Proposition 58. We have:

d

dt
S(zn) =

∂µa(., zn(., .))

∂y

∂zn
∂t
|Ezn ∗ ϕa|

2 + 2µa(., zn(., .))gn. (3.100)

By the preceding lemma, the first term in the righthand side of formula (3.100) con-
verges weakly to ∂µa(.,z(.,.))

∂y
∂z
∂t
|Ez ∗ ϕa|2 in Lp(0, T ;C(Ω̄)). By Lemma 60, the second term

2µa(., zn(., .))gn converges weakly to 2µa(., z(., .))g in Lp(0, T ;C(Ω̄)). Thus ( d
dt
S(zn))n∈N

converges weakly to d
dt
S(z) in Lp(0, T ;C(Ω̄)), for all 1 < p < +∞. This proves Proposi-

tion 58.

3.3.2 Solving the coupled heat equation in C1([0, T ];C1(Ω̄))

In this subsection, we want to prove that the initial nonlinear boundary value problem
for the coupled heat equation (3.1):

∂ty − div (α∇y) = S(y) in Q,
α ∂y
∂n

+ hy = hyb on Σ,
y(·, 0) = y0 in Ω,

(3.101)

admits at least one local solution i.e. a solution on a time interval [0, tf ], with
0 < tf ≤ T .

(H7) We assume our initial condition y0 to belong to C4
b (Ω). We assume

α ∈ C3
b (Ω), α > 0 on Ω̄, h ∈ C1(∂Ω), h > 0 on ∂Ω and that yb ∈ C2(Σ̄). In particular, it

is assumed that the functions α and h do not depend on the time variable t. We assume
that our absorption coefficient µa(., .) appearing in formula (3.95) for the heat source
term S(.) belongs to the Banach space C2

b (Ω×R). Finally, we assume that ϕa ∈ C2
c (R3).

In this subsection we will need the following Sobolev spaces [25, 32], for 5 < p < +∞:

W 2−2/p
p (Ω) := {u ∈ Lp(Ω);

∂u

∂xi
∈ Lp(Ω), and

∫ ∫
Ω×Ω

| ∂u
∂xi

(x)− ∂u
∂xi

(y) |p

| x− y |1+p
dxdy < +∞,

i = 1, · · · , 3},

W 1−3/p
p (∂Ω) := {u ∈ Lp(∂Ω);

∫ ∫
∂Ω×∂Ω

| u(x)− u(y) |p

| x− y |p−1
dS(x)dS(y) < +∞},
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W 2,1
p (Q) :={u ∈ Lp(Q); ‖ u ‖W 2,1

p (Q)= ‖u‖p,Q +
3∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥
p,Q

+

∥∥∥∥∂u∂t
∥∥∥∥
p,Q

+
3∑
i=1

3∑
j=1

∥∥∥∥ ∂2u

∂xi∂xj

∥∥∥∥
p,Q

< +∞},

W 1−1/p,1/2−1/2p
p (Σ) := {u ∈ Lp(Σ) such that inf{‖ v ‖W 2,1

p (Q); v|Σ = u} < +∞}.

Firstly, in view to reduce us from problem (3.101) to a problem with homogeneous
boundary condition and zero initial condition, we introduce the auxilary linear initial
boundary value problem for the heat equation:

∂tω − div (α∇ω) = 0 in Q,
α∂ω
∂n

+ h ω = h yb on Σ,
ω(·, 0) = y0 in Ω.

(3.102)

Proposition 62. Assuming p > 5 and that the compatibility conditions

α
∂y0

∂n
+ hy0 = h yb(., 0), (3.103)

and
α
∂

∂n
(div(α∇y0)) + h div(α∇y0) = h ẏb(., 0), (3.104)

are satisfied in the sense of traces in W 1−3/p
p (∂Ω), problem (3.102) possesses one and only

one solution ω in C1([0, T ];C1(Ω̄)).

Proof. By the compatibility condition (3.103), it follows from [32] that problem (3.103)
possesses one and only one solution in W 2,1

p (Q) (see (3.121)). Thus, we consider the
derivated problem with respect to time:

∂tv − div (α∇v) = 0 in Q,
α ∂v
∂n

+ hv = hẏb on Σ,
v(·, 0) = div (α∇y0) in Ω.

(3.105)

From our hypotheses (H7) follows that ẏb ∈ W
1−1/p,1/2−1/2p
p (Σ) and div (α∇y0) ∈

W
2−2/p
p (Ω) for any p ∈]5,+∞[. By the compatibility condition (3.104), it still follows

from [32] that the inhomogeneous initial boundary value problem (3.105) possesses a
unique solution v in W 2,1

p (Q) for any p > 5 (the same). By [32, Lemma II.3.3 p.80], v
and its first order derivatives with respect to the “spatial variables” x1, x2, x3 are Hölder
continuous functions in Q̄. Thus, a fortiori, v ∈ C([0, T ];C1(Ω̄)). Let us now set:

ω(x, t) = y0(x) +

t∫
0

v(x, s) ds, ∀t ∈ [0, T ], ∀x ∈ Ω. (3.106)

One verifies easily that ω ∈ C1([0, T ];C1(Ω̄)) and is solution of equation (3.102)(i). That ω
verifies boundary condition (3.102)(ii) follows by using the compatibility condition (3.103).
Thus ω defined by formula (3.106) is the solution of the linear initial boundary value
problem (3.102).
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Now, setting y̆ := y − ω, we are reduced to prove that the initial nonlinear boundary
value problem: 

∂ty̆ − div (α∇y̆) = S(y̆ + ω) in Q,
α ∂y̆
∂n

+ hy̆ = 0 on Σ,
y̆(·, 0) = 0 in Ω,

(3.107)

admits at least one local solution. To prove this, given any p > 5, let us introduce the
following “fixed point problem”: to z ∈ B̄(0, R) ⊂ C1([0, T ];C1(Ω̄)) such that z(0) = 0,
we associate y̆z ∈ W 2,1

p (Q), solution of the linear initial boundary value problem [32]:
∂ty̆z − div (α∇y̆z) = S(z + ω) in Q,
α∂y̆z
∂n

+ hy̆z = 0 on Σ,
y̆z(·, 0) = 0 in Ω.

(3.108)

p being greater than 5, W 2,1
p (Q) ↪→ C([0, T ];C1(Ω̄)) [32]. As d

dt
(S(z + ω)) ∈

Lp(0, T ;C(Ω̄)), and thus a fortiori to Lp(Q), we may consider the derivated problem
with respect to time:

∂tv − div (α∇v) = d
dt

(S(z + ω)) in Q,
α ∂v
∂n

+ hv = 0 on Σ,
v(·, 0) = µa(·, y0(·)) | (E0 ∗ ϕa)(·) |2 on Ω.

(3.109)

To guarantee the existence and uniqueness of a solution in W 2,1
p (Q) to the derivated

problem (3.109), we suppose that its initial condition µa(·, y0(·)) | (E0 ∗ ϕa)(·) |2 is
admissible [32] i.e. verifies on Γ :

α
∂

∂n
(µa(·, y0(·)) | (E0 ∗ ϕa) (·) |2) + h µa(·, y0(·)) | (E0 ∗ ϕa)(·) |2= 0, (3.110)

in the sense of traces in the space W 1−3/p
p (Γ). By an argument similar to (3.106), using

the fact that z(0) = 0, one deduces easily that the solution v of the derivated problem
(3.109) is v = dy̆z

dt
. To alleviate the notations, we will denote dy̆z

dt
rather ˙̆yz. Thus ˙̆yz is

solution of: 
∂t ˙̆yz − div (α∇ ˙̆yz) = d

dt
(S(z + ω)) in Q,

α∂
˙̆yz
∂n

+ h ˙̆yz = 0 on Σ,
˙̆yz(·, 0) = µa(·, y0(·)) | (E0 ∗ ϕa)(·) |2 on Ω.

(3.111)

The operator which sends z ∈ C1([0, T ];C1(Ω̄)) such that z(0) = 0 onto y̆z, does not leave
the closed convex subsetK(0;R) := B̄(0;R)∩{z ∈ B̄(0;R); z(0) = 0} of C1([0, T ];C1(Ω̄))
stable, so that we can not apply to it the Schauder’s fixed point theorem. In order to
define an operator from the nonvoid closed convex subsetK(0;R) of C1([0, T ];C1(Ω̄)) into
itself, we will need firstly to restrict y̆z to a fixed subinterval [0, tf ] of [0, T ] of sufficiently
small length and then to extend its restriction appropriately to the whole interval [0, T ]
in order to obtain an element of C1([0, T ];C1(Ω̄)) corresponding to z of norm less than
or equal to R. This extension will be made using the following lemma:

Lemma 63. Let X be a Banach space and C1([0, T ];X) the Banach space of C1-functions
on the interval [0, T ] with values in X endowed with its usual norm (in the application
we have in mind, X will be C1(Ω̄)). Let tf ∈]0, T/2] and θ(tf ; ·) ∈ C∞([0, T ]; R) such
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that 0 ≤ θ(tf ; ·) ≤ 1, θ(tf ; ·)|[0,tf ] = 1 and θ(tf ; t) = 0 if t ≥ 1.5 tf . For f ∈ C1([0, tf ];X)

such that f(0) = 0, we define its extension f̃(tf ; ·) to the interval [0, T ] by

f̃ ′(tf ; t) =

{
f ′(t), if 0 ≤ t ≤ tf
2f ′(tf )θ(tf ; t)− f ′(2tf − t)θ(tf ; t), if tf ≤ t ≤ T,

(3.112)

and f̃(tf ; t) =

t∫
0

f̃ ′(tf ; ξ) dξ, for all t ∈ [0, T ].

Then:

1.
∥∥∥f̃ ′(tf ; ·)∥∥∥

C([0,T ];X)
≤ 3 ‖f ′‖C([0,tf ];X) ;

2.
∥∥∥f̃(tf ; ·)

∥∥∥
C([0,T ];X)

≤ 3T ‖f ′‖C([0,tf ];X) ;

3.
∥∥∥f̃(tf ; ·)

∥∥∥
C1([0,T ];X)

≤ 3(T + 1) ‖f ′‖C([0,tf ];X) ≤ 3(T + 1) ‖f‖C1([0,tf ];X) .

The proof is elementary and may be left to the reader. In formula (3.112), the
product f ′(2tf − t)θ(tf ; t) must be understood as being equal to 0 in case t would be
greater than 2tf . Using the third assertion of the lemma, it follows that the extension
operator f 7→ f̃(tf ; ·) is a linear continuous operator from the Banach space C1([0, tf ];X)
into the Banach space C1([0, T ];X).

If we apply the preceding lemma to the restriction to the interval [0, tf ] of the
function

f : [0, T ]→ C1(Ω̄)) : t 7→ y̆z(t)− ˙̆yz(0)t

nul at t = 0 and belonging to the Banach space C1([0, T ];C1(Ω̄)), we obtain by linearity
of the extension operator (y̆z(0) = 0) the function:

f̃(tf ; .) : [0, T ]→ C1(Ω̄)) : t 7→ ˜(y̆z|[0,tf ])(tf ; t)− ˙̆yz(0)

t∫
0

θ(tf ; ξ) dξ.

We have that f̃(tf ; .)|[0,tf ] = f |[0,tf ]. Let us define the function

f̆0(tf ; ·) : [0, T ]→ C1(Ω̄)) : t 7→ ˙̆y(0)

t∫
0

θ(tf ; ξ) dξ . (3.113)

˙̆yz(0) does not depend on z as ˙̆yz(0) = µa(·, y0(·)) | (E0 ∗ ϕa)(·) |2 on Ω, so that we have
denoted it simply ˙̆y(0) in formula (3.113). But the function f̆0(tf ; ·) depends on tf : it is
the reason of our notation. However as ˙̆

f0(tf ; 0) = µa(·, y0(·)) | (E0 ∗ ϕa)(·) |2, ˙̆
f0(tf ; 0)

does not depend on tf also.
The following lemma shows that if we take the radius R > 0 of our closed ball

B̄(0;R) in the Banach space C1([0, T ];C1(Ω̄)) sufficiently large, then the function f̆0(tf ; ·)
will be contained in its interior and also in the interior of K(0;R) := B̄(0;R) ∩ {z ∈
B̄(0;R); z(0) = 0} for any tf ∈]0, T

2
].
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Lemma 64. Whatever is tf ∈]0, T
2
] in Lemma 63, the norm of f̆0(tf ; ·) in

C1([0, T ];C1(Ω̄)) satisfies always the following inequality:

‖ f̆0(tf ; ·) ‖C1([0,T ];C1(Ω̄))≤‖ µa(·, y0(·)) | (E0 ∗ ϕa)(·) |2‖C1(Ω̄)) (1 + T ). (3.114)

Moreover:

‖ ˜(y̆z|[0,tf ])− f̆0(tf ; ·) ‖C1([0,T ];C1(Ω̄))

≤ 3(T + 1) ‖ (y̆z|[0,tf ])
′ − µa(·, y0(·)) | (E0 ∗ ϕa)(·) |2‖C0([0,tf ];C1(Ω̄)) .

(3.115)

The proof of (3.114) follows immediately from the definition by formula (3.113) of
the function f̆0(tf ; ·). The proof of (3.115) follows from the definition of f̃ and the third
point of the previous extension lemma, Lemma 63.

Let us set
UB(y0,E0) :=‖ µa(·, y0(·)) | (E0 ∗ ϕa)(·) |2‖C1(Ω̄)) . (3.116)

Let us observe that ‖ f̆0(tf ; ·) ‖C1([0,T ];C1(Ω̄)) satisfies the inequality:

‖ f̆0(tf ; ·) ‖C1([0,T ];C1(Ω̄))≤ (1 + T )UB(y0,E0),

whatever is tf ∈]0, T/2].

We want to prove that for R > 3(T + 1)UB(y0,E0), there exists tf ∈]0, T/2]

such that for all z ∈ B̄(0;R) ⊂ C1([0, T ];C1(Ω̄)) satisfying z(0) = 0: ˜(y̆z|[0,tf ]) ∈ B̄(0;R).
To prove that, we will need the following bounds on y̆z and their time derivatives:

Lemma 65. Let us fix some p ∈]5,+∞[. For every R > 0 fixed, there exists some
constant C(R) > 0 depending only on R such that for all z ∈ B̄(0;R) ⊂ C1([0, T ];C1(Ω̄))
satisfying z(0) = 0:

‖y̆z‖W 2,1
p (Q) ≤ C(R, p),

and ∥∥∥ ˙̆yz

∥∥∥
W 2,1
p (Q)

≤ C(R, p).

Proof. We know from the results in [32, Ch.IV-Sec.9, Ch.VII-Sec.10] about general
boundary value problems for parabolic equations applied to the homogeneous Robin
boundary value problem (3.108) (resp.(3.111) with the compatibility condition (3.110)),
that

‖y̆z‖W 2,1
p (Q) ≤ C(p) ‖S(z + ω)‖Lp(Q) , (3.117)

and:∥∥∥ ˙̆yz

∥∥∥
W 2,1
p (Q)

≤ C(p)

(∥∥∥∥ ddtS(z + ω)

∥∥∥∥
Lp(Q)

+
∥∥µa(·, y0(·)) | (E0 ∗ ϕa)(·) |2

∥∥
W

2−2/p
p (Ω)

)
.

(3.118)
From Corollary 49, Corollary 50 and using our Proposition 45, it follows for any p ∈
]1,+∞[, the following inequalities:

‖ Ez ∗ ϕa ‖Lp(0,T ;C1(Ω̄)3)≤ C(R, p)
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and
‖ Ėz ∗ ϕa ‖Lp(0,T ;C1(Ω̄)3)≤ C(R, p).

Using now our hypothesis (H6) that the absorption coefficient µa(., .) ∈ C1
b (Ω̄ × R), it

follows from these inequalities that for any p ∈]1,+∞[:

‖ S(z) ‖Lp(0,T ;C1(Ω̄))≤ C(R, p)

and
‖ Ṡ(z) ‖Lp(0,T ;C1(Ω̄))≤ C(R, p).

A fortiori for any p ∈]1,+∞[:

‖ S(z) ‖Lp(Q)≤ C(R, p)

and
‖ Ṡ(z) ‖Lp(Q)≤ C(R, p).

Now, for z in the closed ball B̄(0;R) of radius R with centrum at the origin of the Banach
space C1([0, T ];C1(Ω̄)), z + ω ∈ B̄(0;R+ ‖ ω ‖C1([0,T ];C1(Ω̄))) so that a fortiori

‖S(z + ω)‖Lp(Q) ≤ C(R, p)

and ∥∥∥∥ ddtS(z + ω)

∥∥∥∥
Lp(Q)

≤ C(R, p).

Using now the inequalities (3.117) and (3.118), the result follows.

Theorem 66. Let us suppose that we have choosen

R > 3(T + 1)UB(y0,E0), (3.119)

where UB(y0,E0) has been defined in formula (3.116). Then, there exists tf ∈]0, T/2]
such that ∀z ∈ B̄(0;R) ⊂ C1([0, T ];C1(Ω̄)) satisfying z(0) = 0:

˜(y̆z|[0,tf ]) ∈ B̄(0;R).

Proof. ∀z ∈ B̄(0;R) ⊂ C1([0, T ];C1(Ω̄)) satisfying z(0) = 0:

‖y̆z‖W 2,1
p (Q) ≤ C(R, p),

and ∥∥∥ ˙̆yz

∥∥∥
W 2,1
p (Q)

≤ C(R, p).

Let us consider ρ > 0 such that ρ ≤ R−3(T+1)UB(y0,E0)
3(T+1)

. B̄(f̆0(tf ; ·); ρ) ⊂ B̄(0; R
3(T+1)

) for
every tf ∈]0, T/2]. As a consequence of [32, Lemma 3.3 p.80, second inequality], we have
that W 2,1

p (Q) ↪→ Cα([0, T ];C1(Ω̄)) for α = 1
2
(1− 5

p
). Thus:

‖y̆z‖Cα([0,T ];C1(Ω̄)) ≤ C(R, p),

and ∥∥∥ ˙̆yz

∥∥∥
Cα([0,T ];C1(Ω̄))

≤ C(R, p).
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As y̆z(0) = 0, from the first inequality results that choosing tf > 0 sufficiently small, we
will have ∀t ∈ [0, tf ]:

‖y̆z(., t)‖C1(Ω̄)) ≤
ρ

4
,

for all z ∈ B̄(0;R) ⊂ C1([0, T ];C1(Ω̄)) satisfying z(0) = 0. Similarly, as ˙̆yz(0) =
˙̆
f0(tf ; 0) = µa(·, y0(·)) | (E0 ∗ ϕa)(·) |2 (in particular is independent of tf and z), from
the second inequality results that choosing tf > 0 smaller if necessary, we will have
∀t ∈ [0, tf ]: ∥∥∥ ˙̆yz(., t)− ˙̆

f0(tf ; 0)
∥∥∥
C1(Ω̄))

≤ ρ

4
,

for all z ∈ B̄(0;R) ⊂ C1([0, T ];C1(Ω̄)) satisfying z(0) = 0.

Now, f̆0(tf ; t) = µa(·, y0(·)) | (E0 ∗ ϕa)(·) |2
t∫

0

θ(tf ; ξ) dξ so that

∥∥∥f̆0(tf ; t)
∥∥∥
C1(Ω̄))

≤
∥∥µa(·, y0(·)) | (E0 ∗ ϕa)(·) |2

∥∥
C1(Ω̄))

tf

for all t ∈ [0, tf ], so that reducing still tf if necessary, we will have for all t ∈ [0, tf ]:∥∥∥f̆0(tf ; t)
∥∥∥
C1(Ω̄))

≤ ρ
4
. Thus:∥∥∥y̆z(., t)− f̆0(tf ; t)

∥∥∥
C1(Ω̄))

≤ ‖y̆z(., t)‖C1(Ω̄)) +
∥∥∥f̆0(tf ; t)

∥∥∥
C1(Ω̄))

so that for all t ∈ [0, tf ]: ∥∥∥y̆z(., t)− f̆0(tf ; t)
∥∥∥
C1(Ω̄))

≤ ρ

2
.

On the other hand ˙̆
f0(., t) =

˙̆
f0(., 0), for all t ∈ [0, tf ] so that∥∥∥ ˙̆yz(., t)− ˙̆

f0(tf ; t)
∥∥∥
C1(Ω̄))

≤
∥∥∥ ˙̆yz(., t)− ˙̆

f0(tf ; 0)
∥∥∥
C1(Ω̄))

≤ ρ

4
.

BY Summing these two last inequalities, we obtain:∥∥∥y̆z|[0,tf ] − f̆0(tf ; ·)|[0,tf ]

∥∥∥
C1([0,tf ];C1(Ω̄))

≤ 3ρ

4
≤ ρ.

By lemma 63: ∥∥∥∥˘̃yz|[0,tf ] − ˜f̆0(tf ; ·)|[0,tf ]

∥∥∥∥
C1([0,T ];C1(Ω̄))

≤ 3(T + 1)ρ.

and ∥∥∥∥ ˜(f̆0(tf ; ·)|[0,tf ])

∥∥∥∥
C1([0,T ];C1(Ω̄))

≤ 3(T + 1)
∥∥∥f̆0(tf ; ·)′|[0,tf ]

∥∥∥
C([0,tf ];C1(Ω̄))

≤ 3(T + 1)UB(y0,E0).

Thus ∥∥∥˘̃yz|[0,tf ]

∥∥∥
C1([0,T ];C1(Ω̄))

≤ 3(T + 1)(ρ+ UB(y0,E0)).

As 3(T + 1)(ρ+ UB(y0,E0)) ≤ R, it follows that ˘̃yz|[0,tf ] ∈ B̄(0;R).
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Lemma 67. For p > 5, the embedding from W 2,1
p (Q) into C([0, T ];C1(Ω̄)) is a linear

compact mapping.

Proof. By the inequality [32, p.343, top], we have for all p > 5 that:

|y|(2−5/p) ≤ c ‖y‖(2)
p,Q , ∀y ∈ W

2,1
p (Q). (3.120)

We have written this inequality following the notations of [32]. Let us explain these

notations. Firstly, ‖y‖(2)
p,Q =

2∑
j=0

〈〈y〉〉(j)p,Q, where 〈〈y〉〉
(j)
p,Q =

∑
2r+s=j

‖Dr
tD

s
xy‖p,Q [32, p.5].

Consequently:

‖y‖(2)
p,Q = ‖y‖p,Q +

3∑
i=1

∥∥∥∥ ∂y∂xi
∥∥∥∥
p,Q

+

∥∥∥∥∂y∂t
∥∥∥∥
p,Q

+
3∑
i=1

3∑
j=1

∥∥∥∥ ∂2y

∂xi∂xj

∥∥∥∥
p,Q

= ‖y‖W 2,1
p (Q) . (3.121)

On the other hand [32, p.7], |y|(2−5/p) means as 1 < 2− 5
p
< 2 for p > 5:

|y|(2−5/p) = ‖y‖∞,Q +
3∑
i=1

∥∥∥ ∂y
∂xi

∥∥∥
∞,Q

+ sup
(x,t),(x,t′)∈Q̄

|y(x,t)−y(x,t′)|

|t−t′|1−
5
2p

+
3∑
i=1

{
sup

(x,t),(x,t′)∈Q̄

| ∂y
∂xi

(x,t)− ∂y
∂xi

(x,t′)|

|x−x′|1−
5
p

+ sup
(x,t),(x,t′)∈Q̄

| ∂y
∂xi

(x,t)− ∂y
∂xi

(x,t′)|

|t−t′|
1
2 (1− 5

p )

}
.

Let us consider now a bounded set E inW 2,1
p (Q). There exists thus a real number R > 0,

such that for all y ∈ E : ‖y‖W 2,1
p (Q) ≤ R. As a consequence of inequality (3.120), the fam-

ilies of continuous functions on Q̄:
{
y ∈ C(Q̄); y ∈ E

}
,
{
∂y
∂xi
∈ C(Q̄); y ∈ E

}
(i = 1, 2, 3)

are equicontinous families in C(Q̄) endowed with the supremum norm. Also for every
fixed (x, t) ∈ Q̄, the sets {y(x, t); y ∈ E},

{
∂y
∂xi

(x, t); y ∈ E
}

(i = 1, 2, 3) are relatively

compact subsets of R. Thus by Ascoli’s theorem [20, (7.5.7)], the sets
{
y ∈ C(Q̄); y ∈ E

}
,{

∂y
∂xi
∈ C(Q̄); y ∈ E

}
(i = 1, 2, 3) are relatively compact subsets of C(Q̄). But the map-

ping

C([0, T ];C1(Ω̄))→ C(Q̄)4 : y 7→ (y,
∂y

∂x1

,
∂y

∂x2

,
∂y

∂x3

)

is an isometry onto the closed subspace

{(y, y1, y2, y3) ∈ C(Q̄)4; y1 =
∂y

∂x1

, y2 =
∂y

∂x2

, y3 =
∂y

∂x3

}

of C(Q̄)4. The set
{

(y, ∂y
∂x1
, ∂y
∂x2
, ∂y
∂x3

) ∈ C(Q̄)4; y ∈ E
}
is relatively compact in that closed

subspace of C(Q̄)4 being the intersection of the cartesian product

{
y ∈ C(Q̄); y ∈ E

}
×

3∏
i=1

{
∂y

∂xi
∈ C(Q̄); y ∈ E

}
relatively compact subset of C(Q̄)4 with that closed subspace of C(Q̄)4. By the previous
isometry

{
y ∈ C([0, T ];C1(Ω̄)); y ∈ E

}
is a relatively compact subset C([0, T ];C1(Ω̄)).
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Proposition 68. Let us denote by K(0;R) := {z ∈ B̄(0;R) ⊂ C1([0, T ];C1(Ω̄)); z(0) =
0}. Supposing that R > 0 satisfies condition (3.119), then the range of the mapping
from the closed convex set K(0;R) ⊂ C1([0, T ];C1(Ω̄)) into C1([0, T ];C1(Ω̄)) which sends
z ∈ K(0;R) onto ˜(y̆z|[0,tf ]) is a relatively compact subset in C1([0, T ];C1(Ω̄)).

Proof. By Lemma 65, we know that

‖y̆z‖W 2,1
p (Q) ≤ C(R, p),

and ∥∥∥ ˙̆yz

∥∥∥
W 2,1
p (Q)

≤ C(R, p).

Thus, a fortiori, the image of K(0;R) by the mapping z 7→ (y̆z|[0,tf ]), ˙̆yz|[0,tf ]) in
W 2,1
p (Qtf ) × W 2,1

p (Qtf ) is bounded, where we have set Qtf := Ω×]0, tf [. As p > 5,
by Lemma 67 applied to Qtf , the embedding from W 2,1

p (Qtf ) into C([0, tf ];C
1(Ω̄))

is a linear compact mapping. It follows that the image of K(0;R) by the mapping
z 7→ (y̆z|[0,tf ]), ˙̆yz|[0,tf ]) in C([0, tf ];C

1(Ω̄))× C([0, tf ];C
1(Ω̄)) is a relatively compact sub-

set. Being contained in the closed subspace

E :=
{

(y, v) ∈ C([0, tf ];C
1(Ω̄))× C([0, tf ];C

1(Ω̄)); v = ẏ
}

of C([0, tf ];C
1(Ω̄))× C([0, tf ];C

1(Ω̄)), it is also a relatively compact subset of E (in the
definition of E, v = ẏ must be understood in the sense of distributions on ]0, tf [ with values
in C1(Ω̄)). Now, E is isomorphic to C1([0, tf ];C

1(Ω̄)). Thus the image of K(0;R) by the
mapping z 7→ y̆z|[0,tf ] is a relatively compact subset of the Banach space C1([0, tf ];C

1(Ω̄)).
By Lemma 63, the mapping from C1([0, tf ];C

1(Ω̄)) into C1([0, T ];C1(Ω̄)) which sends f
onto its extension f̃ is linear and continuous. Consequently, the image of K(0;R) by the
mapping z 7→ ˜(y̆z|[0,tf ]) is also a relatively compact subset of C1([0, T ];C1(Ω̄)).

Proposition 69. Supposing that R > 0 satisfies condition (3.119), then the the mapping
from the closed convex set K(0;R) ⊂ C1([0, T ];C1(Ω̄)) into C1([0, T ];C1(Ω̄)) which sends
z ∈ K(0;R) onto ˜(y̆z|[0,tf ]) is a continuous mapping.

Proof. Let us consider a sequence (zn)n∈N in K(0;R) converging to z ∈ K(0;R) for
the norm of C1([0, T ];C1(Ω̄)). It follows from Propositions 57 and 58 that the sequence
(S(zn +ω))n∈N converges strongly to S(z+ω) in Lp(0, T ;C(Ω̄)) and that the sequence of
the time derivatives ( d

dt
S(zn + ω))n∈N converges weakly to d

dt
S(z + ω) in Lp(0, T ;C(Ω̄)).

By inequality (3.118) the solution of Problem (3.111) being an affine continuous mapping
of the right-hand side, the sequence ( ˙̆yzn)n∈N is weakly convergent to ˙̆yz in W 2,1

p (Q) but
due to the compact embedding fromW 2,1

p (Q) into C([0, T ];C1(Ω̄)) by Lemma 67, strongly
convergent in C([0, T ];C1(Ω̄)). Also by inequality (3.117), the solution of Problem (3.108)
being a continuous mapping of the right-hand side, the sequence (y̆zn)n∈N is strongly
convergent to y̆z in C([0, T ];C1(Ω̄)). In conclusion, the sequence (y̆zn)n∈N is strongly
convergent to y̆z in C1([0, T ];C1(Ω̄)). A fortiori, the sequence (y̆zn|[0,tf ])n∈N is strongly
convergent to y̆z|[0,tf ] in C1([0, tf ];C

1(Ω̄)). From Lemma 63 now follows, that the sequence

(˘̃yzn|[0,tf ])n∈N strongly converges to ˘̃yz|[0,tf ] in C1([0, T ];C1(Ω̄)). So, the result follows.

We come now to our existence theorem of a local solution to our nonlinear initial
boundary value problem (3.101):
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Theorem 70. Let us suppose that R > 0 has been choosen such that

R > 3(T + 1)UB(y0,E0) (3.122)

where UB(y0,E0) has been defined in formula (3.116). Then, there exists tf ∈]0, T/2]
such that the mapping from the closed convex set K(0;R) ⊂ C1([0, T ];C1(Ω̄)), which sends
z ∈ K(0;R) to ˜(y̆z|[0,tf ]) ∈ C1([0, T ];C1(Ω̄)), has a fixed point ζ ∈ K(0;R). Consequently
ζ|[0,tf ] + ω|[0,tf ] ∈ C1([0, tf ];C

1(Ω̄)) is a weak solution of our nonlinear initial boundary
value problem (3.101).

Proof. By Theorem 66, and the hypothesis (3.122) on R, there exists tf ∈]0, T
2
] such that

for every z ∈ K(0;R), ˜(y̆z|[0,tf ]) ∈ K(0;R). By Proposition 69, the mapping from K(0;R)

into K(0;R) which sends z ∈ K(0;R) onto ˜(y̆z|[0,tf ]) is a continuous mapping. By Propo-
sition 68, its range is a relatively compact subset in the Banach space C1([0, T ];C1(Ω̄)).
Thus by the Schauder fixed point theorem [23, p.171], this mapping has a fixed point
ζ whose restriction to the time interval [0, tf ] is a weak solution of the nonlinear initial
boundary value problem (3.108) by the “causality principle”. Adding to ζ|[0,tf ], ω|[0,tf ] weak
solution on the time interval [0, tf ] of the auxilary non-homogeneous linear initial bound-
ary value problem (3.102), we obtain a weak solution of our nonlinear non-homogeneous
initial boundary value problem (3.101) on the time interval [0, tf ] (tf > 0).

3.3.3 Case of a right-hand side G ∈ C1([0, T ];H)

To prove that Theorem 70 is also true when the right-hand side G = (G1,G2) in the
Maxwell system (3.50) belongs to C1([0, T ];H), we have basically to prove that the bounds
(3.68) and (3.69) remain valid in the case G ∈ C1([0, T ];H).

Proposition 71. For every fixed (E0,H0) ∈ Y , and every fixed G = (G1,G2) ∈
C1([0, T ];H), the Y-valued solutions (Ez,Hz) : [0, T ] → Y : t 7→ (Ez,Hz) (t) of the
initial value problem (3.50) given by formula (3.51) for z running over B̄(0;R) ⊂
C1([0, T ];C1(Ω̄)) have uniformly bounded norms in the Banach space C([0, T ];Y ) by a
constant C(R) depending only on the radius R of the ball B̄(0;R) ⊂ C1([0, T ];C1(Ω̄)).

Proof. It suffices to prove that the norm of the mappings wz : [0, T ] → Y : t 7→

wz(t) :=

t∫
0

Uz(t, r)G(r)dr in C([0, T ];Y ) are uniformly bounded by a constant C(R)

for z ∈ B̄(0;R) ⊂ C1([0, T ];C1(Ω̄)). By the proof of Proposition 41, we know that
wz(t) = Qz(t)

−1G(t)− vz(t), where

vz(t) := Uz(t, 0)Qz(0)−1G(0) +

t∫
0

Uz(t, r)[Qz(r)
−1(gz(r)−G(r))−Mz(r)Qz(r)

−1G(r)]dr,

(3.123)
with gz(r) := G′(r)− Q̇z(r)Qz(r)

−1G(r).

1. We have shown in the proof of Proposition 48, that ‖Qz(t)
−1‖L(H,Y ) ≤ C(R) in-

dependent of z and t for z ∈ B̄(0;R) ⊂ C1([0, T ];C1(Ω̄)) and t ∈ [0, T ]. G(.)
belonging a fortiori to C([0, T ];H) is bounded. Thus ‖ Qz(t)

−1G(t) ‖Y ≤ C(R).
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2. Taking t = 0 in the preceding point, we get: ‖ Qz(0)−1G(0) ‖Y ≤ C(R). Propo-
sition 48, implies in particular that the families of operators (Uz(t, 0)|Y )0≤t≤T
are uniformly bounded in L(Y ) by a constant C(R) for z ∈ B̄(0, R), so that
‖ Uz(t, 0)Qz(0)−1G(0) ‖Y≤ C(R) for all t ∈ [0, T ].

3. Let us now consider the third term −
t∫

0

Uz(t, r)Mz(r)Qz(r)
−1G(r)dr in the right-

hand side of (3.123). We want to bound its norm in the Banach space Y by a
constant depending only on R. By Proposition 48: ‖ Uz(t, r)|Y ‖L(Y )≤ C(R). By
the first point ‖ Qz(r)

−1G(r) ‖Y ≤ C(R). Looking to formula (3.44) in the proof
of Proposition 36, we deduce that ‖ Mz(r) ‖L(Y )≤ C(R). Thus

‖ −
t∫

0

Uz(t, r)Mz(r)Qz(r)
−1G(r)dr ‖Y≤ C(R).

4. Finally, let us consider the second term
t∫

0

Uz(t, r)Qz(r)
−1(gz(r) −G(r))dr in the

righthand side of (3.123). We want also to bound its norm in the Banach space Y .
In view of the reasonings already made in the two preceding points, it suffices still
to prove that the norm of gz(r) in the Banach space H is bounded by a constant
depending only on R. gz(r) = G′(r) − Q̇z(r)Qz(r)

−1G(r). Recalling, that G
belongs to C1([0, T ];H), we have only to prove that ‖ Q̇z(r) ‖L(Y ;H) is bounded by
a constant depending only on R. From the explicit expression of Q̇z(r):

Q̇z(r)

(
ϕ
ψ

)
=

(
− ∂ε̂
∂z

(., z(., r))∂z
∂t

(., r) curlψ
0

)
, for all (ϕ, ψ) ∈ Y,

the definitions of Y and H and z ∈ B̄(0;R) ⊂ C1([0, T ];C1(Ω̄)) it is clear.

From wz(t) = Qz(t)
−1G(t) − vz(t), formula (3.123), and the four preceding points, it is

now clear that ‖ wz ‖C([0,T ];Y ) is uniformly bounded by a constant C(R) depending only
on the radius R of the ball B̄(0;R) for z ∈ B̄(0;R) ⊂ C1([0, T ];C1(Ω̄)).

Thus bound (3.68) is still valid. Now, we want to prove that bound (3.69) remains
also valid for a right-hand side G ∈ C1([0, T ];H):

Proposition 72. For every fixed (E0,H0) ∈ Y , and every fixed G = (G1,G2) ∈
C1([0, T ];H), the time derivatives of the Y-valued solutions (Ez,Hz) : [0, T ] → Y : t 7→
(Ez,Hz) (t) of the initial value problem (3.50) given by formula (3.51), for z running over
the closed ball B̄(0;R) ⊂ C1([0, T ];C1(Ω̄)), belong to C([0, T ];H), and have their norms
in this space uniformly bounded by a constant C(R) depending only on the radius of the
ball B̄(0;R) ⊂ C1([0, T ];C1(Ω̄)).

Proof. wz : [0, T ]→ Y : t 7→ wz(t) :=

t∫
0

Uz(t, r)G(r)dr is solution of:

dwz
dt

(t) = (Az(t) +Mz(t))wz(t) + G(t). (3.124)
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From Proposition 71, we know that ‖ wz ‖C([0,T ];Y ) is uniformly bounded by a con-
stant C(R) depending only on the radius R of the ball B̄(0;R) for z ∈ B̄(0;R) ⊂
C1([0, T ];C1(Ω̄)). From (4.12),(3.20),(3.24),(3.25), it is clear that ‖ Az(t)+Mz(t) ‖L(Y ;H)

is uniformly bounded by a constant C(R) depending only on the radius R of the ball
B̄(0;R) for z ∈ B̄(0;R) ⊂ C1([0, T ];C1(Ω̄)). Thus from formula (3.124), follows now that
‖ dwz

dt
‖C([0,T ];H) is uniformly bounded by a constant C(R) depending only on the radius

R of the ball B̄(0;R) for z ∈ B̄(0;R) ⊂ C1([0, T ];C1(Ω̄)). On the other hand

‖ Uz(t, 0) (E0,H0) ‖Y ≤ ‖ Uz(t, 0)|Y ‖L(Y ) ‖ (E0,H0) ‖Y ≤ C(R) ‖ (E0,H0) ‖Y

by Proposition 48. Thus

‖ (Az(t) +Mz(t))Uz(t, 0) (E0,H0) ‖H ≤‖ Az(t) +Mz(t) ‖L(Y ;H)‖ Uz(t, 0) (E0,H0) ‖Y
≤ C(R) ‖ (E0,H0) ‖Y .

(3.125)

In conclusion

‖ d

dt
(Ez,Hz) ‖C([0,T ];H) =‖ d

dt
( Uz(., 0) (E0,H0)) +

dwz
dt
‖C([0,T ];H)

≤‖ d

dt
( Uz(., 0) (E0,H0)) ‖C([0,T ];H) + ‖ dwz

dt
‖C([0,T ];H)

(3.126)

is uniformly bounded by a constant C(R) depending only on the radius R of the ball
B̄(0;R) for z ∈ B̄(0;R) ⊂ C1([0, T ];C1(Ω̄)).

Thus, we know now, that the basic estimates (3.68) and (3.69) remain valid for right-
hand sides G ∈ C1([0, T ];H) in the Maxwell system (3.50). Also, all the reasonings of
subsections 3.1 and 3.2 which follow the estimates (3.68) and (3.69) remain valid. Con-
sequently, Theorem 70 on the existence of a local weak solution to our coupled nonlinear
initial boundary value problem (3.101) between the heat equation and the Maxwell sys-
tem (3.50) with z = y, is also valid when the right-hand side G = (G1,G2) in the Maxwell
system (3.50) belongs to C1([0, T ];H).



Chapter 4

Optimal electromagnetic external
source field in the Heat-Maxwell
coupled system

4.1 Introduction
In this chapter, we want to study a related optimal control problem to the Heat-Maxwell
coupled system studied in chapter 3. To simplify matters, we suppose here that the
permittivity ε depends only on the space and not on the temperature. Consequently, the
electric field E does not depend on the temperature y.

We suppose that the electric field Eext of the exterior electromagnetic field (Eext,Hext)
hitting Ω is in the complementary of Ω, R3 \ Ω, of the form

Eext(x, t) =
N∑
j=1

fj(t)eext,j(x, t), N ≥ 1, (4.1)

where
eext,j ∈ C1,1([0, T ];H(curl ,R3 \ Ω)) (4.2)

for j = 1, . . . , N are such that

(curl eext,j) · n = 0 on Γ. (4.3)

Ω is supposed to be an open bounded subset of R3 with Lipschitz boundary. fj for
j = 1, . . . , N are given real-valued functions depending of the time variable t only. Our
optimal control problem is the following:

min J(y, v) :=
1

2

∫ T

0

∫
Ω

| ∇y(x, t) |2 dx dt+
M∑
j=1

λj,Q
2

∫ Tj,2

Tj,1

∫
Ωj

| y(x, t)− yj,Q(x, t) |2 dx dt

+
λΩ

2

∫
Ω

| y(x, T )− yd(x) |2 dx+
λ

2

N∑
k=1

∫ T

0

|vk(t)|2dt,

(4.4)

with Ωj ⊂ Ω, Tj,1 ≤ Tj,2 , [Tj,1, Tj,2] ⊂ [0, T ], λj,Q ≥ 0 (j = 1, . . . ,M), λ > 0, λΩ ≥ 0,
subject the following Heat-Maxwell system:

113
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
∂ty − div (α∇y) = S(y) in Q := Ω×]0, T [,

−α ∂y
∂n

= h(y − yb) on Σ := Γ×]0, T [,
y(·, 0) = y0 in Ω,

(4.5)

where the heat source is defined by

S(y)(x, t) := µa(x, y(x, t)) | (E ∗ ϕa)(x, t) |2, for all (x, t) ∈ Q, (4.6)

We assume that the absorption coefficient µa ∈ C1
b (Ω̄ × R) is monotone decreasing

with respect to y, this condition will be necessary to prove the well posedness of (4.5) in
the sense of [53, Theorem 5.5 p.268]. The initial condition y0 ∈ C(Ω̄) and yb ∈ C(Σ). ϕa
being a given regularization function in C1

c (R3) and E the electric field in Ω solution of
the following Maxwell system:

∂t(εE)− curlH + σE = 0 in Q.
∂tH + µ̂ curlE = 0 in Q,
E× n = Eext × n on Σ,
H · n = 0 on Σ,
E(·, 0) = E0, H(·, 0) = H0 in Ω,

(4.7)

where α > 0 belongs to C(Ω̄), h > 0 belongs to C(Γ), ε ≥ ε0 > 0 belongs to L∞(Ω),
ε̂ := 1

ε
∈ L∞(Ω), σ ≥ 0 belongs to L∞(Ω), µ ≥ µ0 > 0 belongs L∞(Ω) and µ̂ := 1

µ
∈ L∞(Ω)

are only functions of x with Eext given by (4.1), such that
−f ′′j + fj = vj in ]0, T [,
fj(0) = fj,0 ,
f ′j(0) = fj,1 ,

(4.8)

where v = (vj)
N
j=1 ∈ U are the controls belonging to the control space U := [L2(0, T )]N .

The set of admissible controls is the closed convex subset Uad :=
N∏
j=1

Uad,j ⊂ U , where for

j = 1, . . . , N :

Uad,j = {vj ∈ L2(0, T ); vj,a ≤ vj(t) ≤ vj,b a.e. t ∈ [0, T ]}. (4.9)

The numbers fj,0 ∈ R and fj,1 ∈ R will remain fixed. yj,Q in the cost functional (4.4) is a
given template temperature distribution in L2(Q) and yd ∈ L2(Ω).

Remark 14. We have considered a more general cost functional than previously in
chapter 2 by replacing the term

λQ
2

∫ T

0

∫
Ω

| y(x, t)− yQ(x, t) |2 dx dt

by the more flexible expression

M∑
j=1

λj,Q
2

∫ Tj,2

Tj,1

∫
Ωj

| y(x, t)− yj,Q(x, t) |2 dx dt,

the idea being that it is not clear how to choose adequately the function yQ. We could
choose for example yj,Q equals to a fixed temperature a little greater than the temperature
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of fusion of the powder e.g. 1600 0C [54] as we want the powder to have fused everywhere
during a certain subinterval of the time of treatment. It seems also natural to require that
N⋃
j=1

Ωj = Ω and the different pieces Ωj to overlap near their boundaries to glue perfectly

together .

In [58] an optimal control problem for microwave heating was studied, where the
electric and magnetic fields are time harmonic, with fixed frequency.

4.2 Well posednes of the heat-Maxwell system
Similarly, as we have made in chapter 3, we reduce our Maxwell problem (4.7) to an intial
homogeneous boundary value problem by extending eext,j to Ω in a vector field

ej ∈ C1,1([0, T ];H(curl ,Ω))

such that
ej × n = eext,j × n and (curl ej) · n = 0 on Γ.

Then, we introduce the new vector field E on Ω by

E(x, t) = E(x, t)−
N∑
j=1

fj(t)ej(x, t), for all (x, t) ∈ Ω× [0, T ].

The new couple of vector fields (E ,H) is solution of the following intial homogeneous
boundary value problem for the Maxwell’s equations:

∂tE − ε̂ curlH + ε̂σ E = −
N∑
j=1

(f ′jej + fje
′
j + ε̂σfjej) in Q,

∂tH + µ̂ curl E = −µ̂
N∑
j=1

fj curl ej in Q,

E × n = 0 on Σ,
H · n = 0 on Σ,

E(0) = E0 −
N∑
j=1

fj,0ej(0), H(0) = H0 in Ω.

(4.10)

Supposing that

E0 × n =
N∑
j=1

fj,0 eext,j(0)× n on Γ, (4.11)

we have that E(0)× n = 0 on Γ and thus that

E0 := E0 −
N∑
j=1

fj(0)ej(0) ∈ H0(curl ,Ω).

We also suppose that H0 ∈ J1
n(Ω, µ). Consequently, the initial condition (E0,H0) to our

initial boundary value problem (4.10) belongs to the domain

D(A) = H0(curl ,Ω)× J1
n(Ω, µ) (4.12)
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of the infinitesimal generator A = A+M in the Hilbert space

H = L2(Ω)× Jn(Ω, µ).

Let us recall from chapter 3, that

Aφ := (ε̂ curlψ,−µ̂ curlϕ), for all φ = (ϕ, ψ) ∈ D(A) (4.13)

and that

Mφ = (−ε̂σϕ, 0) for all φ = (ϕ, ψ) ∈ H. (4.14)

Lemma 73. There exists a constant C(|fj,0|, |fj,1|,max(|vj,a|, |vj,b|)) > 0, such that for
every vj ∈ Uad,j, the solution fj ∈ C1([0, T ]) of the Cauchy problem (4.8), satisfies the
following bound:

‖fj‖∞,[0,T ] +

∥∥∥∥dfjdt
∥∥∥∥
∞,[0,T ]

≤ C(|fj,0|, |fj,1|,max(|vj,a|, |vj,b|)). (4.15)

Proof. Applying the method of variation of arbitrary constants to solve nonhomogeneous
second-order linear differential equations as explained in [45, par. 23, pp.92-93], f can be
easily computed:

fj(t) = fj,0 cosh(t) + fj,1 sinh(t) +

t∫
0

sinh(y − t)vj(y)dy. (4.16)

From that formula follows immediately that

‖fj‖∞,[0,T ] ≤ C(|fj,0|+ |fj,1|+ max(|vj,a|, |vj,b|)). (4.17)

Differentiating with respect to t formula (4.16), we obtain

dfj
dt

(t) = fj,0 sinh(t) + fj,1 cosh(t)−
t∫

0

cosh(y − t)vj(y)dy. (4.18)

From that formula for dfj
dt

follows immediately also that∥∥∥∥dfjdt
∥∥∥∥
∞,[0,T ]

≤ C(|fj,0|, |fj,1|,max(|vj,a|, |vj,b|)). (4.19)

Summing inequalities (4.17) and (4.18), we obtain (4.15).

Corollary 74. For vj ∈ Uad,j, fj and dfj
dt

are lipschitzian functions on [0, T ].

Proof. • Let t1, t2 ∈ [0, T ] we have

fj(t2)− fj(t1) =

t2∫
t1

dfj
dt

dt,

and by (4.19),
∥∥∥dfjdt ∥∥∥∞,[0,T ]

is bounded by C(|fj,0|, |fj,1|,max(|vj,a|, |vj,b|)) . Thus

|fj(t2)− fj(t1)| ≤ C(|fj,0|, |fj,1|,max(|vj,a|, |vj,b|)) |t2 − t1| .
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• We have
− f ′′j + fj = vj. (4.20)

Let t1, t2 ∈ [0, T ]. Integrating both sides from t1 to t2 in (4.20), we obtain

dfj
dt

(t1)− dfj
dt

(t2) +

t2∫
t1

fj(t) dt =

t2∫
t1

vj(t) dt.

By the previous result, fj is bounded. Also vj, as vj ∈ Uad,j. Thus, by the previous
equation: ∣∣∣∣dfjdt (t2)− dfj

dt
(t1)

∣∣∣∣ ≤ C(|fj,0|, |fj,1|,max(|vj,a|, |vj,b|)) |t2 − t1| ,

proving that dfj
dt

is also lipschitzian.

From the previous corollary, it follows immediately:

Corollary 75. G : t ∈ [0, T ] 7→ G(t) ∈ H where

G(t) := (−
N∑
j=1

(f ′j(t)ej(t) + fj(t)e
′
j(t) + ε̂σfj(t)ej(t)),−µ̂

N∑
j=1

fj(t) curl ej(t)), (4.21)

is a Lipschitz continuous function.

We will use the following functional space:

W 1,1(0, T ;H) := {u ∈ L1(0, T ;H) such that
du

dt
∈ L1(0, T ;H)}.

We want to prove that the intial homogeneous boundary value problem for the
Maxwell’s equations (4.10) possesses a unique strong solution on the time interval [0, T ]
by using theorem [44, Corollary 2.11 p.109]:

Theorem 76. (Abstract Cauchy Problem) Let X be a reflexive Banach space and let A be
the infinitesimal generator of a C0 semigroup (Tt)t≥0 on X. If f : [0, T ]→ X is Lipschitz
continuous on [0, T ], then for every x ∈ D(A) the initial value problem{

dw
dt

(t) = Aw(t) + f(t), t > 0,
w(0) = x,

(4.22)

has a unique strong solution w on [0, T ] i.e. w ∈ W 1,1(0, T ;X), w(0) = x, w(t) ∈ D(A)
for a.e. t ∈ [0, T ], and w′(t) = Aw(t) + f(t) for a.e. t ∈ [0, T ]. This solution is given by

w(t) = Ttx+

∫ t

0

Tt−sf(s)ds, t ∈ [0, T ]. (4.23)

Let us denote by (Tt)t≥0 the semigroup generated by the operator A = A+M in the
Hilbert space H = L2(Ω) × Jn(Ω, µ) with domain D(A). Applying theorem 76 to the
abstract Cauchy problem defined by the infinitesimal generator A in the Hilbert space
H, the righthand side G and the initial condition (E0,H0), we obtain:
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Theorem 77. The initial boundary value problem for the Maxwell’s equations (4.7) pos-
sesses one and only one strong solution (E,H) for any given control v = (vj)

N
j=1 ∈ Uad,

and any given initial condition (E0,H0) ∈ H(curl ,Ω) × J1
n(Ω, µ) verifying (4.11), Eext

being given by (4.1) and (4.8) i.e. possesses one and only one function (E,H) ∈
W 1,1(0, T ;H) verifying (E,H)(0) = (E0,H0) and equations (4.7) for a.e. t ∈ [0, T ].
This solution is given by

(E,H)(t) = (E(t) +
N∑
j=1

fj(t)ej(t),H(t)) for all t ∈ [0, T ], (4.24)

where (E(t),H(t)) is given by the equation:

(E(t),H(t)) = Tt (E0,H0) +

∫ t

0

Tt−sG(s)ds, (4.25)

with G given by formula (4.21) and

E0 ∈ H0(curl ,Ω). (4.26)

Now, that we know that the initial boundary value problem for the Maxwell’s
equations (4.7) , possesses a unique strong solution for any given initial condition
(E0,H0) ∈ H(curl ,Ω)×J1

n(Ω, µ) and any given v ∈ Uad, we will prove that the semilinear
parabolic initial boundary value problem for the heat equation (4.5) with electromagnetic
heat source (4.6), possesses a unique weak solution y ∈ W (0, T ) ∩ C(Q̄).

Remark 15. In chapter 3, we have supposed that ϕa ∈ C1
c (R3), but in the present

chapter, as we have supposed the electric permittivity ε independent of the temperature
y, we will need only for our following reasonings that ϕa ∈ L2(R3). As we know by the
above semi-group theory, that E ∈ C([0, T ];L2(Ω)), it follows from proposition 51 in
chapter 3 that E ∗ ϕa ∈ C(Q̄) = C([0, T ];C(Ω̄)). This will suffice us here. Examples of
functions ϕa ∈ L2(R3), could be e.g. ϕa = 1B(0;r) or ϕa (·) = e−( ·

r
)2 [55, p.1522,(2)] for a

small r > 0.

To prove that, we are going to use [53, Theorem 5.5 p.268] about existence and
uniqueness of the weak solution of general semilinear parabolic initial-boundary value
problems of the form [53, (5.1)p.265]:

∂ty − div (α∇y) + d(x, t, y) = 0 in Q,
α ∂y
∂ν

+ b(x, t, y) = g on Σ,
y(·, 0) = y0 in Ω.

(4.27)

To apply theorem [53, Theorem 5.5 p.268] we recall that d and b must satisfy the following
assumptions:

• d : Q× R→ R is measurable with respect to (x, t) ∈ Q for any fixed y ∈ R.

• b : Σ× R→ R is measurable with respect to (x, t) ∈ Σ for any fixed y ∈ R.

• d and b are monotone increasing with respect to y for almost every (x, t) ∈ Q and
(x, t) ∈ Σ, respectively [53, Assumption 5.1 p.266].
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• d and b satifies the boundedness condition

| d(x, t, 0) |≤ K and b(x, t, 0) ≤ K ′ for a.e. (x, t) ∈ Q respectively ∈ Σ, (4.28)

K and K ′ are positive constants [53, Assumption 5.2 p.266].

• For every (x, t) ∈ Q locally Lipschitz continuous with respect to y, that is, for any
M > 0 there is some L(M) > 0 such that

| d(x, t, y1)− d(x, t, y2) |≤ L(M) | y1 − y2 | for all yi ∈ R, (4.29)

with | yi |≤ M, i = 1, 2. The same is assumed to hold for b on Σ [53, Assumption
5.2 p.266].

We have now to check the above hypotheses on the semilinear parabolic partial differential
equation (4.5). Firstly, let us check the hypotheses on the nonlinear term

d(x, t, y) = −S(x, t, y) = −µa(x, y) |(E ∗ ϕa)(x, t)|2.

• So that
d(x, t, 0) = −µa(x, 0) |(E ∗ ϕa)(x, t)|2,

where E ∗ ϕa ∈ C(Q̄) and µa ∈ C1
b (Ω̄ × R) and thus is a fortiori bounded. Conse-

quently, |d(x, t, 0)| is uniformly bounded on Q.

• Moreover

|d(x, t, y1)− d(x, t, y2| = |µa(x, y1)− µa(x, y2)| |(E ∗ ϕa)(x, t)|2.

But µa ∈ C1
b (Ω̄× R) which implies that

|µa(x, y1)− µa(x, y2)| ≤ C|y1 − y2|

so that
|d(x, t, y1)− d(x, t, y2| ≤ C|y1 − y2|.

Due the hypothesis on the absorption coefficient µa, d is monotone increasing with
respect to y.

Secondly, let us check the hypothesis on the boundary condition. In the present case:

b(x, t, y) = h(x)(y − yb(x, t)).

• We have
b(x, t, 0) = −h(x)yb(x, t).

Thus
|b(x, t, 0)| ≤ K := sup

x∈Γ
h(x) sup

(x,t)∈Σ

|yb(x, t)|.

Let us recall that h > 0 and belongs to C1(∂Ω).
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• Also, we have that

|b(x, t, y1)− b(x, t, y2)| = h(x)|y1 − y2| ≤ (sup
x∈Γ

h(x))|y1 − y2|,

for all y1, y2 ∈ R.

As h > 0 belongs to C(Γ), b(x, t, y) is monotone increasing with respect to y.
Also, as the coefficient α > 0 belongs to C(Ω̄) implies that the partial differential
operator −div (α∇·) verifies the hypotheses [53, pp.37-38] i.e. satisfy the condition
of uniform ellipticity: the hypotheses made on α implies in particular [53, (2.20)p.37]
(also the conormal derivative [53, p.37] is in the present case α ∂

∂n
and α is continuous

and strictly positive on ∂Γ).

We are thus allowed to apply [53, Theorem 5.5 p.268], so that, consequently:

Theorem 78. The semi-linear parabolic initial boundary value problem (4.5), (4.6) has
a unique weak solution y ∈ W (0, T )∩C(Q̄) for any E ∈ C([0, T ];L2(Ω)), any yb ∈ C(Σ)
and any initial condition y0 ∈ C(Ω̄). Moreover for any r > 5/2 and any s > 4, there
exists a constant C(r, s) such that

‖y‖W (0,T ) + ‖y‖C(Q̄) ≤C(r, s)(
∥∥µa(·, 0)|E ∗ ϕa|2(·, ·)

∥∥
Lr(Q)

+ ‖h(·)yb(·, ·)‖Ls(Σ) + ‖y0‖C(Ω̄)).
(4.30)

Here W (0, T ) is defined by

W (0, T ) := {u ∈ L2(0, T ;H1(Ω)) such that
du

dt
∈ L2(0, T ; (H1(Ω))∗)}.

Let us point out that the temperature y depends on the electric field E (4.5)(4.6),
wich depends on Eext (4.7), thus on f = (fj)

N
j=1 ∈ L

2(0, T )N which itself depends on the
control v = (vj)

N
j=1 ∈ Uad (4.8).

4.3 Existence of an optimal control

Now, we want to prove the existence of an optimal control v = (vj)
N
j=1 ∈ Uad. We indicate

this dependence of the temperature y with respect to the control v, by writing yv. Let
us introduce the reduced cost functional:

Ĵ : Uad → R : v 7→ J(yv, v).

Let us consider a minimizing sequence (v(k))k≥0 as k → +∞ in Uad, such that

Ĵ(v(k))→ inf
v∈Uad

Ĵ(v).

From the definition of the cost functional (4.4), and of the reduced cost functional, fol-
lows immediately that the sequence (v(k))k≥0 is bounded in L2([0, T ])N . By (4.21), the
right-hand side corresponding to v(k) in the auxilary intial homogeneous boundary value
problem for the Maxwell’s equations (4.10) is:

G(k)(t) =
N∑
j=1

(−f ′(k)

j (t)ej(t)− f (k)
j (t)e

′

j(t)− ε̂σf
(k)
j (t)ej(t),−µ̂f (k)

j (t)curl ej(t)), (4.31)
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where f (k)
j is the solution of the Cauchy problem (4.8) with right-hand side v(k)

j . From
(4.15) and the boundedness of (v(k))k≥0 in L2([0, T ])N follows that (f (k))k≥0 and (f ′

(k)
)k≥0

are bounded in C([0, T ])N . A fortiori the sequence (f (k))k≥0 is bounded in H1([0, T ])N .
Also, as the sequence (v(k))k≥0 is bounded in L2([0, T ])N , it follows by (4.8) that the
sequence (f ′

(k)
)k≥0 is also bounded in H1([0, T ])N . Modulo, extracting subsequences, we

may suppose that the sequence (v(k))k≥0 is weakly convergent in L2([0, T ])N and that the
sequences (f (k))k≥0 and (f ′

(k)
)k≥0 are weakly convergent in H1([0, T ])N . By the compact

embedding ofH1([0, T ])N into C([0, T ])N , follows that (f (k))k≥0 and (f ′(k))k≥0 are strongly
convergent in C([0, T ])N . Consequently, (f (k))k≥0 is strongly convergent to some function
f in C1([0, T ])N corresponding by (4.8) to the weak limit v of the sequence (vk)k≥0 in
L2([0, T ])N . From (4.31), follows that

G
(k)
1 =

N∑
j=1

(−f ′(k)

j (t)ej(t)− f (k)
j (t)e′j(t)− ε̂σf

(k)
j (t)ej(t))

converges to

N∑
j=1

(−f ′j(t)ej(t)− fj(t)e′j(t)− ε̂σfj(t)ej(t)) in C([0, T ];L2(Ω)) as k → +∞,

and

G
(k)
2 =

N∑
j=1

(−µ̂f (k)
j curl ej)

to
N∑
j=1

(−µ̂fjcurl ej) in C([0, T ];Jn(Ω, µ)) as k → +∞.

We have thus that
G(k) → G in C([0, T ];H) as k → +∞. (4.32)

Let us consider (Ev(k) ,Hv(k)) solution of (4.7) with

E
(k)
ext(x, t) =

N∑
j=1

f
(k)
j (t)eext,j(x, t), (x, t) ∈ Σ.

We recall that

(Ev(k)(t),Hv(k)(t)) = (Ev(k)(t) +
N∑
j=1

f
(k)
j (t)ej(·, t),H(k)(t)), (4.33)

with

(Ev(k)(t),Hv(k)(t)) = Tt (E0,H0) +

∫ t

0

Tt−sG
(k)(s)ds, (4.34)

for every t ∈ [0, T ]. Passing to the limit as k → +∞ in (4.33) and (4.34), it is clear by
(4.25), that

(Ev(k) ,Hv(k))→ (E,H) in C([0, T ];H) as k → +∞.
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Let us now denote by yv(k) , the weak solution in W (0, T ) ∩ C(Q̄) of
∂tyv(k) − div (α∇yv(k)) = S(yv(k)) in Q,
−α∂yv(k)

∂n
= h(yv(k) − yb) on Σ,

yv(k)(·, 0) = y0 in Ω,

(4.35)

with

S(yv(k))(x, t) := µa(x, yv(k)(x, t)) | (Ev(k) ∗ ϕa)(x, t) |2, for all (x, t) ∈ Q. (4.36)

We know by Theorem 78, that this weak solution exists and is unique and satisfies

‖yv(k)‖W (0,T ) + ‖yv(k)‖C(Q̄) ≤C(r, s)(
∥∥µa(·, 0)|Ev(k) ∗ ϕa|2(·, ·)

∥∥
Lr(Q)

+ ‖h(·)yb(·, ·)‖Ls(Σ) + ‖y0‖C(Ω̄)),
(4.37)

for any r > 5/2 and any s > 4.
The sequence (Ev(k))k≥0 is bounded in C([0, T ];L2(Ω)), so that (Ev(k) ∗ ϕa)k≥0 is

bounded in C([0, T ];C(Ω̄)) = C(Q̄). Therefore this latest result with estimate (4.37)
show us, that (yv(k))k≥0 is bounded in W (0, T ). Modulo extracting a new subsequence,
we may prove that (yv(k))k≥0 converges weakly in W (0, T ). By the compact embedding
from H1(Ω) into Lp(Ω) for 1 < p < 6 and the Lions-Aubin compactness lemma [47,
p.106], (yv(k))k≥0 is strongly convergent in L2(Q).

Proposition 79. The sequence (yv(k))k≥0 converges weakly to yv in W (0, T ).

Proof. Let us call y the weak limit in W (0, T ) of (yv(k))k≥0. yv(k) is the weak solution of
the parabolic initial boundary value problem:

∂y
v(k)

∂t
− div(α∇yv(k))− µa(·, yv(k))|Ev(k) ∗ ϕa)|2 = 0 in Q,

α
∂y
v(k)

∂n
+ hyv(k) = hyb on Γ,

yv(k)(·, 0) = y0 in Ω,

i.e. verifies [53, p.140]:
for every φ ∈ W 1,1

2 (Q) := L2(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)) such that φ(·, T ) = 0

−
∫∫

Q

yv(k)(x, t)∂φ∂t (x, t)dx dt+

∫∫
Q

α(x)∇yv(k)(x, t) · ∇φ(x, t)dx dt

+

∫∫
Σ

h(x)yv(k)(x, t)φ(x, t)dS(x) dt =

∫∫
Σ

h(x)yb(x, t)φ(x, t)dS(x) dt

+

∫
Ω

y0(x)φ(x, 0)dx+

∫∫
Q

µa(x, yv(k)(x, t))|(Ev(k) ∗ ϕa)(x, t)|2φ(x, t)dx dt.

(4.38)

We want to pass to the limit in (4.38). We have seen previously, that (yv(k))k≥0 converges
a fortiori strongly to y in L2(Q). We know also that ∂φ

∂t
∈ L2(Q). Thus, the first term in

the left-hand side of (4.38)

−
∫∫

Q

yv(k)(x, t)
∂φ

∂t
(x, t)dx dt→ −

∫∫
Q

y(x, t)
∂φ

∂t
(x, t)dx dt as k → +∞.

As (yv(k))k≥0 converges weakly to y in W (0, T ), a fortiori (yv(k))k≥0 converges weakly to
y in L2(0, T ;H1(Ω)) implying that ∇yv(k) converges weakly to ∇y in L2(Q). ∇φ belongs
also to L2(Q). Thus the second term in the left-hand side of (4.38)∫∫

Q

∇yv(k)(x, t) · ∇φ(x, t)dx dt→
∫∫

Q

∇y(x, t) · ∇φ(x, t)dx dt as k → +∞.
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The weak convergence of yv(k) to y in L2(0, T ;H1(Ω)), implies that the traces yv(k) |Σ
converge to y|Σ in L2(Σ), so that the third term in the left-hand side of (4.38)∫∫

Σ

h(x)yv(k)(x, t)φ(x, t)dS(x) dt→
∫∫

Σ

h(x)y(x, t)φ(x, t)dS(x) dt as k → +∞.

In the right-hand side of (4.38),

Ev(k) ∗ ϕa → Ev ∗ ϕa in C
(
Q̄
)3 as k → +∞,

and
µa(x, yv(k)(x, t))→ µa(x, y(x, t)) as k → +∞,

so that by the Lebesgue bounded convergence theorem:∫∫
Q

µa(x, yv(k)(x, t))|(Ev(k) ∗ ϕa)(x, t)|2φ(x, t)dx dt→∫∫
Q

µa(x, y(x, t))|(Ev ∗ ϕa)(x, t)|2φ(x, t)dx dt as k → +∞.

So, we are allowed to pass to the limit in (4.38), and we obtain:

−
∫∫

Q

y(x, t)∂φ
∂t

(x, t)dx dt+

∫∫
Q

∇y(x, t) · ∇φ(x, t)dx dt

+

∫∫
Σ

h(x)y(x, t)φ(x, t)dS(x) dt =

∫∫
Σ

h(x)yb(x, t)φ(x, t)dS(x) dt

+

∫
Ω

y0(x)φ(x, 0)dx+

∫∫
Q

µa(x, y(x, t))|(Ev ∗ ϕa)(x, t)|2φ(x, t)dx dt,

which means that y is the weak solution in W (0, T ) of
∂y
∂t
− div(α∇y)− µa(·, y)|(Ev ∗ ϕa)|2 = 0 in Q,

α ∂y
∂n

+ hy = hyb on Σ,
y(·, 0) = y0(·) on Ω.

Therefore y = yv.

Corollary 80. Ĵ(v) = inf
w∈Uad

Ĵ(w).

Proof. We know that (yv(k))k≥0 converges weakly to yv in W (0, T ). This implies by the
Lions-Aubin compactness lemma [47, p.106],

yv(k) − yQ → yv − yQ in L2(Q) as k → +∞.

This implies the strong convergence of

(yv(k) − yQ) .1[Tj,1,Tj,2]×Ωj → (yv − yQ) .1[Tj,1,Tj,2]×Ωj in L
2([Tj,1, Tj,2]× Ωj)

as k → +∞. Thus

‖yv − yQ‖2
L2([Tj,1,Tj,2]×Ωj)

= lim
k→+∞

‖yv(k) − yQ‖2
L2([Tj,1,Tj,2]×Ωj)

. (4.39)
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yv ∈ W (0, T ) 7→ ∇yv ∈ L2(0, T ;L2(Ω)) being a linear continuous mapping, it follows that
(∇yv(k))k≥0 converges weakly to ∇yv in L2(0, T ;L2(Ω)). The function ‖·‖2

L2(0,T ;L2(Ω)) is
convex and continuous [5, p.71] and thus weakly lower semi-continuous [53, p.47]. Thus

‖∇yv‖2
L2(0,T ;L2(Ω)) ≤ lim inf

k→+∞
‖∇yv(k)‖2

L2(0,T ;L2(Ω)) . (4.40)

By the linear continuous injection from W (0, T ) into C([0, T ];L2(Ω)) follows that
(yv(k))k≥0 converges also weakly to yv in C([0, T ];L2(Ω)). Considering the linear contin-
uous mapping

y ∈ C([0, T ];L2(Ω)) 7→ y(·, T ) ∈ L2(Ω),

it follows that yv(k)(·, T ) converges also weakly to yv(·, T ) in L2(Ω). Thus yv(k)(·, T )− yd
converges also weakly to yv(·, T )− yd in L2(Ω). Moreover, the function ‖·‖2

L2(Ω) is convex
and continuous [5, p.71] and thus weakly lower semi-continuous [53, p.47], so that

‖yv(·, T )− yd‖2
L2(Ω) ≤ lim inf

k→+∞
‖yv(k)(·, T )− yd‖2

L2(Ω) . (4.41)

Concerning the last term in the definition of the cost functional (4.4) ,
(
v(k)
)
k≥0

converges
weakly to v ∈ L2([0, T ])N and the function ‖·‖2

L2([0,T ])N is convex and continuous [5, p.71]
and thus weakly lower semi-continuous [53, p.47]. Thus, we have also:

‖v‖2
L2([0,T ])N ≤ lim inf

k→+∞

∥∥v(k)
∥∥2

L2([0,T ])N
. (4.42)

In conclusion

Ĵ(yv) ≤ lim inf
k→+∞

1

2

∫ T

0

∫
Ω

| ∇yv(k)(x, t) |2 dx dt+
M∑
j=1

λj,Q
2

lim inf
k→+∞

∫ Tj,2

Tj,1

∫
Ωj

| yv(k)(x, t)

− yj,Q(x, t) |2 dx dt+
λΩ

2
lim inf
k→+∞

‖yv(k)(·, T )− yd‖2
L2(Ω) +

λ

2
lim inf
k→+∞

∥∥v(k)
∥∥2

L2([0,T ])N

≤ lim inf
k→+∞

[
1

2

∫ T

0

∫
Ω

| ∇yv(k)(x, t) |2 dx dt+
M∑
j=1

λj,Q
2

∫ Tj,2

Tj,1

∫
Ωj

| yv(k)(x, t)

− yj,Q(x, t) |2 dx dt+
λΩ

2
‖yv(k)(·, T )− yd‖2

L2(Ω) +
λ

2

∥∥v(k)
∥∥2

L2([0,T ])N
]

= lim inf
k→+∞

Ĵ(yv(k)) = inf
w∈Uad

Ĵ(w).

(4.43)

We have thus proved, the existence of at least one optimal control.

4.4 Differentiability of the control to space mapping

Our purpose now is to prove that the reduced cost functional Ĵ is Fréchet differentiable.
The proof reduces essentially to prove that the control-to-state mapping is Fréchet dif-
ferentiable.

Theorem 81. The mapping

E ∈ L∞(0, T ;L2(Ω)) 7→ y ∈ W (0, T ) ∩ C(Q̄),
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y, weak solution of the semilinear initial parabolic boundary value problem (4.5)- (4.6), is
Fréchet differentiable at any point E ∈ L∞(0, T ;L2(Ω)). Its Fréchet derivative at point E
is the linear continuous mapping

δE ∈ L∞(0, T ;L2(Ω)) 7→ δy ∈ W (0, T ) ∩ C(Q̄),

δy, solution of the linear initial parabolic boundary value problem
∂δy
∂t

(x, t)− div(α∇δy)(x, t)− ∂µa
∂y

(x, y(x, t))|E ∗ ϕa|2R3(x, t)δy(x, t)

= 2µa(x, y(x, t)) (E ∗ ϕa) (x, t) · (δE ∗ ϕa) (x, t), in Q,

α∂δy
∂n

(x, t) + hδy(x, t) = 0, on Σ,
δy(·, 0) = 0, in Ω.

(4.44)

The proof of Theorem 81 will follow from Lemma 82, and Proposition 85 presented
below.

Lemma 82. The mapping

E ∈ L∞(0, T ;L2(Ω)) 7→ |E ∗ ϕa|2R3 ∈ L∞(Q)

is continuously Fréchet differentiable and its Fréchet derivative at the point E ∈
L∞(0, T ;L2(Ω)) is the linear continuous mapping

δE 7→ 2 (E ∗ ϕa) · (δE ∗ ϕa) .

Proof. • The mapping

E ∈ L∞(0, T ;L2(Ω)) 7→ E ∗ ϕa(x, t) =

∫
Ω

E(y, t)ϕa(x− y)dy ∈ L∞(Q)

is linear, and continuous due to the estimate:

|(E ∗ ϕa)(x, t)| ≤
∫
Ω

|E(y, t)ϕa(x− y)|dy

≤

∫
Ω

|E(y, t)|2dy

1/2∫
Ω

|ϕa(x− y)|2dy

1/2

≤ ‖E‖L∞(0,T ;L2(Ω)3) ‖ϕa‖L2(R)3 ,

which implies
‖E ∗ ϕa‖L∞(Q) ≤ ‖ϕa‖L2(R) ‖E‖L∞(0,T ;L2(Ω)) .

Its Fréchet derivative at any point E ∈ L∞(0, T ;L2(Ω)) is the linear continuous
mapping

δE ∈ L∞(0, T ;L2(Ω)) 7→ δE ∗ ϕa ∈ L∞(Q).
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• The mapping
H ∈ L∞(Q) 7→ (H,H) ∈ L∞(Q)× L∞(Q)

is linear and continuous. Therefore its Fréchet derivative at any point H ∈ L∞(Q)
is itself.

• The mapping
(F,G) ∈ L∞(Q)× L∞(Q) 7→ F ·G ∈ L∞(Q)

is bilinear and continuous. Thus it is continuously Fréchet differentiable and its
Fréchet derivative at the point (F,G) is the linear continuous mapping

(δF, δG) ∈ L∞(Q)× L∞(Q) 7→ F · δG + δF ·G ∈ L∞(Q).

The result follows by the chain rule for the Fréchet derivative of a composite mapping.

We consider now the mapping which sends f ∈ L∞+ (Q) onto the solution of the
semilinear parabolic initial boundary value problem

∂ty − div (α∇y)− fµa(., y) = 0 in Q := Ω×]0, T [,

α ∂y
∂n

+ hy = hyb on Σ := Γ×]0, T [,
y(·, 0) = y0 in Ω,

(4.45)

(in view of (4.5)-(4.6), the particular case is when f = |E ∗ ϕa|2R3). L∞+ (Q) is defined by

L∞+ (Q) := {u ∈ L∞(Q) such that u ≥ 0 a.e. in Q}.

Firstly, we must prove that problem (4.45) possesses one and only one weak solution. This
time, d(x, t, y) = −f(x, t)µa(x, y). As f ≥ 0, and µa(x, y) is decreasing as y is increasing,
d(x, t, y) is increasing as y is increasing. Thus d(x, t, y) is monotically increasing with y.
Also

|d(x, t, 0)| = |f(x, t)|µa(x, 0)

is bounded as f and µa are bounded. Moreover as

|d(x, t, y1)− d(x, t, y2)| = |f(x, t)||µa(x, y1)− µa(x, y2)| ≤‖ f ‖∞
∥∥∥∥∂µa∂y

∥∥∥∥
∞
|y1 − y2|,

d is uniformly lipschitzian in y. We are thus allowed to apply [53, Theorem 5.5 p.268], so
that, consequently:

Proposition 83. The semi-linear parabolic initial boundary value problem (4.45) has a
unique weak solution y ∈ W (0, T ) ∩ C(Q̄) for any f ∈ L∞+ (Q), any yb ∈ C(Σ̄) and any
initial condition y0 ∈ C(Ω̄). Moreover there exists a constant C > 0 such that

‖y‖W (0,T ) + ‖y‖C(Q̄) ≤ C(‖fµa(·, 0)‖L∞(Q)

+ ‖h(·)yb(·, ·)‖L∞(Σ) + ‖y0‖C(Ω̄)).
(4.46)
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In fact, this proposition remains true for any f ∈ L∞(Q). Let us multiply both sides
of equation (4.45)(i): ∂ty − div (α∇y)− fµa(., y) = 0 by eλt. We obtain:

∂t(e
λty)− div (α∇(eλty))− eλt(fµa(., e−λt(eλty)) + λy) = 0. (4.47)

Considering as new unknown y := eλty, this semilinear parabolic equation [53, (5.1)p.265]
is of the form (4.27)(i) with

d(x, t, y) = −eλt(f(x, t)µa(x, e
−λty) + λe−λty).

Now
∂d

∂y
(x, t, y) = −eλt(f(x, t)e−λt

∂µa
∂y

(x, e−λty) + λe−λt).

Let us consider λ ≤ 0, then

∂d

∂y
(x, t, y) = |λ| − f(x, t)

∂µa
∂y

(x, e−λty) ≥ |λ|− ‖ f ‖∞,Q‖
∂µa
∂y
‖∞,Ω̄×R

which will be positive if we choose λ “sufficiently negative ”. In that case d is monotonically
increasing with y, so that [53, Assumption 5.1, p.266] is verified. We have

|d(x, t, 0)| = eλt|f(x, t)|µa(x, 0) ≤ ‖fµa(·, 0)‖L∞(Q) ≤‖ f ‖∞,Q‖ µa(·, 0) ‖∞,Ω̄ .

Moreover

|d(x, t, y1)− d(x, t, y2)| ≤ (‖ f ‖∞,Q‖
∂µa
∂y
‖∞,Ω̄×R +|λ|) |y1 − y2|

so that the mapping y 7→ d(x, t, y) is uniformly lipschitzian in y. Thus [53, Assumption
5.2, p.266] is also verified. Consequently:

Proposition 84. The previous proposition remains true for f ∈ L∞(Q).

Proof. For |λ| >‖ f ‖∞,Q‖ ∂µa
∂y
‖∞,Ω̄×R, we have by [53, inequality (5.6) p.268]:∥∥eλty∥∥

W (0,T )
+
∥∥eλty∥∥

C(Q̄)
≤ C(r, s)(

∥∥eλtfµa(., 0)
∥∥
L∞(Q)

+
∥∥h(·)eλtyb(·, ·)

∥∥
L∞(Σ)

+ ‖y0‖C(Ω̄)).
(4.48)

λ being fixed, we have∥∥eλty∥∥
W (0,T )

≈
∥∥eλty∥∥

L2(0,T ;H1(Ω))
+
∥∥λeλty + eλt dy

dt

∥∥
L2(0,T ;H1(Ω)∗)

≈ ‖y‖L2(0,T ;H1(Ω)) +
∥∥dy
dt

∥∥
L2(0,T ;H1(Ω)∗)

≈ ‖y‖W (0,T ) ,

and thus inequality (4.48) implies inequality (4.46).

Let us now increment f in equation (4.45)(i) by δf ∈ L∞(Q), f + δf still belongs to
L∞(Q), so that by the previous proposition, the initial boundary value problem (4.45)
with f replaced by f+δf still possesses one and only one solution y+δy inW (0, T )∩C(Q̄).
The difference δy = (y + δy)− y is solution of the semilinear parabolic initial boundary
value problem

∂tδy − div (α∇δy)− f.(µa(., y + δy)− µa(., y))− µa(., y + δy)δf = 0 in Q,
α∂δy
∂n

+ hδy = 0 on Σ,
δy(·, 0) = 0 in Ω.

(4.49)
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(4.49) may be rewritten:
∂tδy − div (α∇δy)− f.(µa(., y + δy)− µa(., y)) = µa(., y + δy)δf in Q,
α∂δy
∂n

+ hδy = 0 on Σ,
δy(·, 0) = 0 in Ω.

(4.50)

Applying[53, inequality (5.6) p.268], we have:

‖ δy ‖.‖ δf ‖ . (4.51)

Let us introduce dy the weak solution of the linear parabolic initial boundary value
problem: 

∂tdy − div (α∇dy)− f ∂µa
∂y

(., y)dy = µa(., y)δf in Q,
α∂dy
∂n

+ h dy = 0 on Σ,
dy(·, 0) = 0 in Ω.

(4.52)

Subtracting (4.52) from (4.49), we obtain:
∂t(δy − dy)− div (α∇(δy − dy))− f ∂µa

∂y
(., y)(δy − dy) = h in Q,

α∂(δy−dy)
∂n

+ h(δy − dy) = 0 on Σ,
(δy − dy)(·, 0) = 0 in Ω.

(4.53)

where h := f.(µa(., y + δy)− µa(., y)− ∂µa
∂y

(., y)(δy)) + (µa(., y + δy)− µa(., y))δf .

h = f (µa(., y + δy)− µa(., y)− ∂µa
∂y

(., y)δy) + (µa(., y + δy)− µa(., y))δf

= f

∫ y+δy

y

(y + δy − v)∂
2µa
∂v2 (., v)dv +

∫ y+δy

y

∂µa
∂v

(., v)dv δf

= f

∫ δy

0

(δy − w)∂
2µa
∂v2 (., y + w)dw +

∫ δy

0

∂µa
∂v

(., y + w)dw δf .

Assuming that the absorption coefficient µa ∈ C2
b (Ω × R) like in [3, hypothesis (H7)],

it follows that ‖ h ‖∞. (‖ f ‖∞‖ δy ‖2
∞ + ‖ δy ‖∞‖ δf ‖∞). By inequality (4.51),

now follows: ‖ h ‖∞.‖ δf ‖2
∞, so that by the linear parabolic initial boundary value

problem (4.53) (the coefficient of the 0-order term of equation (4.53)(i): −f ∂µa
∂y

(., y) is
nonnegative):

‖ δy − dy ‖W (0,T )∩C(Q̄) . ‖ δf ‖2
∞ . (4.54)

We have thus proved:

Proposition 85. The mapping which sends f ∈ L∞(Q) to y ∈ W (0, T ) ∩ C(Q̄) the
unique weak solution of the semilinear parabolic initial boundary value problem (4.45) is
Fréchet differentiable and its Fréchet derivative at point y ∈ W (0, T ) ∩ C(Q̄) is given by
the linear continuous mapping from L∞(Q) to W (0, T )∩C(Q̄) which sends δf ∈ L∞(Q)
to δy ∈ W (0, T ) ∩ C(Q̄) solution of the linear parabolic initial boundary value problem
(4.52).

Proof. (of Theorem 81) The proof follows from Lemma 82, and Proposition 85 by the
chain’s rule formula for the derivation of a composite function.

We now consider the mapping

v = (vj)
N
j=1 ∈ L

2(0, T )N 7→ E ∈ L2(0, T ;L2(Ω)).



4.4. DIFFERENTIABILITY OF THE CONTROL TO SPACE MAPPING 129

Proposition 86. We suppose (4.11). Then, the mapping which sends v = (vj)
N
j=1 ∈

L2(0, T )N onto (E,H) ∈ W 1,1(0, T ;H) the strong solution of (4.7) with

Eext =
N∑
j=1

fjeext,j × n,

the fj solutions of (4.8) (j = 1, . . . , N), is affine and continuous from L2(0, T )N into
C([0, T ];H). Its Fréchet derivative at any point v = (vj)

N
j=1 ∈ L

2(0, T )N is the linear part
of this mapping i.e. the linear continuous mapping from L2(0, T )N into C([0, T ];H) which
sends δv = (δvj)

N
j=1 onto (δE, δH) ∈ W 1,1(0, T ;H) ↪→ C([0, T ];H) the strong solution of

∂t(εδE)− curl δH + σδE = 0 in Q,
∂tδH + µ̂ curl δE = 0 in Q,

δE× n =
N∑
j=1

δfjeext,j × n on Σ := Γ×]0, T [,

δH · n = 0 on Σ,
δE(·, 0) = 0, δH(·, 0) = 0 in Ω.

(4.55)

with the δfj (j = 1, . . . , N) solution of the two-point homogeneous boundary value prob-
lems: 

−δf ′′j + δfj = δvj in ]0, T [,
δfj(0) = 0 ,
δf ′j (0) = 0 .

(4.56)

Proof. By formulas (4.8) and (4.21), the mapping which sends v = (vj)
N
j=1 onto G from

L2([0, T ])N into C([0, T ];H) is affine; it is also continuous by (4.32). By formula (4.25),
the mapping from C([0, T ];H) into C([0, T ];H) which sends G onto (E ,H) is also affine
and continuous. By formula (4.24), the mapping from C([0, T ];H) into C([0, T ];H) which
sends G onto (E,H) is also affine and continuous. So, the composite function which sends
v = (vj)

N
j=1 onto (E,H) from L2([0, T ])N into C([0, T ];H) is affine and continuous.

Corollary 87. The control-to-state mapping

S : L2(0, T )N → W (0, T ) ∩ C(Q̄) (4.57)

which sends v = (vj)
N
j=1 ∈ L2(0, T )N onto y weak solution of the semilinear ini-

tial parabolic boundary value problem (4.5)-(4.6), is Fréchet differentiable at any point
v = (vj)

N
j=1 ∈ L

2(0, T )N . Its Fréchet derivative at the point v = (vj)
N
j=1 ∈ L

2(0, T )N is
the linear continuous mapping from the space L2(0, T )N into W (0, T )∩C(Q̄) which sends
δv = (δvj)

N
j=1 ∈ L

2(0, T )N onto δy ∈ W (0, T )∩C(Q̄) solution of the linear initial bound-
ary value problem (4.44) with (δE, δH) ∈ W 1,1(0, T ;H) strong solution of (4.55)-(4.56).
Proof. The proof follows from Proposition 86 and Theorem 81 by the chain’s rule formula
for the derivation of a composite function.

Let us recall the type of cost functional that we consider in this paper (4.4):

J(y, v) := 1
2

∫ T

0

∫
Ω

| ∇y(x, t) |2 dx dt+
M∑
j=1

λj,Q
2

∫ Tj,2

Tj,1

∫
Ωj

| y(x, t)− yj,Q(x, t) |2 dx dt

+λΩ

2

∫
Ω
| y(x, T )− yd(x) |2 dx+ λ

2

N∑
k=1

∫ T
0
|vk(t)|2dt,

(4.58)
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with Ωj ⊂ Ω, Tj,1 ≤ Tj,2 , [Tj,1, Tj,2] ⊂ [0, T ], λj,Q ≥ 0 (j = 1, . . . ,M).
We now consider its corresponding reduce cost functional:

Ĵ(v) = J(yv, v) = J(S(v), v), (4.59)

where S denotes the control-to-state mapping (4.57). Let us compute its Fréchet deriva-
tive at the given point v ∈ L2(0, T )N :

DĴ(v)δv = Jy(y, v)DS(v)δv + Jv(y, v)δv. (4.60)

J being given by formula (4.58), we have:

DĴ(v)δv =

T∫
0

∫
Ω

∇y(x, t) · ∇(DS(v)δv)(x, t) dxdt

+
M∑
j=1

λj,Q

Tj,2∫
Tj,1

∫
Ωj

(y(x, t)− yj,Q(x, t))(DS(v)δv)(x, t) dxdt

+λΩ

∫
Ω

(y(x, T )− yd(x))(DS(v)δv)(x, T ) dx+ λ
N∑
k=1

T∫
0

vk(t)δvk(t)dt.

(4.61)

4.5 First order necessary optimality condition
Let us now introduce the adjoint problem associated to (4.5) :

∂p
∂t

+ div(α∇p) + ∂µa
∂y

(x, y)|E ∗ ϕa|2p = ∆y −
M∑
j=1

λj,Q(y − yj,Q)1Ωj×]Tj,1,Tj,2[ in Q,

α ∂p
∂n

+ hp = ∂y
∂n

on Σ,
p(·, T ) = λΩ(y(., T )− yd) on Ω,

(4.62)
By a weak solution p ∈ W (0, T ) of the backward parabolic boundary value problem,

(4.62), we mean that for every ϕ ∈ L2(0, T ;H1(Ω)) :∫ T

0

∫
Ω

∂p
∂t

(x, t)ϕ(x, t)dxdt−
∫ T

0

∫
Ω

α(x)∇p(x, t)∇ϕ(x, t)dxdt

+

∫ T

0

∫
Ω

∂µa
∂y

(x, y(x, t))|E ∗ ϕa|2(x, t)p(x, t)ϕ(x, t)dxdt

= −
∫ T

0

∫
Ω

∇y(x, t)∇ϕ(x, t)dxdt−
M∑
j=1

λj,Q

∫ Tj,2

Tj,1

∫
Ωj

(y − yj,Q)(x, t)ϕ(x, t)dxdt

+

∫ T

0

∫
Γ

h(x)p(x, t)ϕ(x, t)dS(x)dt,

(4.63)

and
p(x, T ) = λΩ(y(x, T )− yd(x)), for a.e. x ∈ Ω. (4.64)

Proposition 88.

DĴ(v)δv =2

∫ T

0

∫
Ω

µa(x, y(x, t))p(x, t)(E ∗ ϕa)(x, t) · (δE ∗ ϕa)(x, t) dxdt

+ λ

N∑
k=1

∫ T

0

vk(t)δvk(t)dt,

(4.65)
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δE being deduced from δv by solving the linear problem (4.55)-(4.56) independent of v.

Proof. By formulas (4.61), (4.63), and S ′(v)δv = dy (4.52) with

f : (x, t) 7→ |E ∗ ϕa|2(x, t),

we get:

DĴ(v)δv =

∫ T

0

∫
Γ

h(x)p(x, t)dy(x, t) dS(x)dt−
∫ T

0

∫
Ω

∂p

∂t
(x, t)dy(x, t) dxdt

+

∫ T

0

∫
Ω

α(x)∇p(x, t)∇dy(x, t)dxdt−
∫ T

0

∫
Ω

∂µa
∂y

(x, y(x, t))|E ∗ ϕa|2(x, t)p(x, t)dy(x, t)dxdt

+ λΩ

∫
Ω

(y(x, T )− yd(x))dy(x, T )dx+ λ

N∑
k=1

∫ T

0

vk(t)δvk(t)dt.

(4.66)

Let us note that the formel integral −
∫ T

0

∫
Ω

∂p
∂t

(x, t)dy(x, t) dxdt must be understood in

the sense −
∫ T

0

< ∂p
∂t

(·, t), dy(·, t) >(H1(Ω))∗,H1(Ω) dt. By the formula of integration by

parts in W (0, T ) [53, p.148], dy(·, 0) = 0 and (4.64), we have:

−
∫ T

0

<
∂p

∂t
(·, t), dy(·, t) >H1(Ω)∗,H1(Ω) dt =

∫ T

0

<
∂dy

∂t
(·, t), p(·, t) >H1(Ω)∗,H1(Ω) dt

− λΩ

∫
Ω

(y(x, T )− yd(x))dy(x, T )dx.

(4.67)

As dy is the weak solution of the linear parabolic initial boundary value problem (4.52),
we have in particular that:

T∫
0

< ∂dy
∂t

(·, t), p(·, t) >H1(Ω)∗,H1(Ω) dt = −
∫ T

0

∫
Ω

α(x)∇p(x, t)∇dy(x, t)dxdt

+

∫ T

0

∫
Ω

∂µa
∂y

(x, y(x, t))|E ∗ ϕa|2(x, t)p(x, t)dy(x, t)dxdt

+

∫ T

0

∫
Ω

µa(x, y(x, t))δf(x, t)p(x, t)dxdt−
∫ T

0

∫
Γ

h(x)dy(x, t)p(x, t)dS(x)dt.

(4.68)

From (4.66), (4.67), (4.68) and δf(x, t) = 2 (E ∗ ϕa) · (δE ∗ ϕa), we get

Corollary 89. (first order necessary condition) If v̄ ∈ Uad is an optimal control, then

2

∫ T

0

∫
Ω

µa(x, ȳ(x, t))p̄(x, t)(Ē ∗ ϕa)(x, t) · (δE ∗ ϕa)(x, t) dxdt

+λ
N∑
k=1

∫ T

0

v̄k(t)δvk(t)dt ≥ 0,
(4.69)

for all δv = v − v̄, v ∈ Uad, δE being deduced from δv by solving (4.55)-(4.56).
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4.6 Discussion and outlook
This chapter deals with an optimal control problem related to the coupled heat-Maxwell
system studied in chapter 3. Here, we have considered the permittivity independent of
the temperature to simplify matters. We have also considered in this chapter a more
general type of cost functional, more flexible for concrete applications, the choice of yQ
being in practice not obvious. The perspectives we want to consider for this work are the
following:

• Our immediate priority will be to improve the variational inequality (4.69). In fact
the variational inequality we derived depend on δE which means that for every
δv we have to solve (4.55)-(4.56). We would like to find a variational inequality
independant of δE.

• Furthermore, we would like to consider the same optimal control problem presented
in this chapter but with the heat-Maxwell system studied in chapter 3 i.e with a
temperature dependent permittivity.



Appendix A

Mathematical study of the nonlinear
thermal model in the selective laser
melting process

We want to prove existence of a solution to problem (2.2). For simplicity, we consider
the following initial boundary value problem.


c(y) ∂ty − div(κ(y)∇y) = 0 in Q,

−κ(y)∂y
∂ν

= h(y) (y − yex) + ε(y)σSB (y4 − y4
ex)− α(y)I(., .) on Σ1

∂y
∂ν

= 0 on Σ2,
y(x, 0) = y0(x) in Ω.

(A.1)

We make the following assumptions:
(H1) c et κ are real function belonging to C1(R) and satisfy :

0 < c1 ≤ c(s) ≤ c2 <∞ for all s ∈ R,

0 < κ1 ≤ κ(s) ≤ κ2 <∞ for all s ∈ R.

We have neglected here the density ρ(y).
(H2) h, α et ε are real positive function, continuous and increasing. Moreover,

0 < α(s) < 1 for all s ∈ R

(H3) I ∈ L∞(Σ1), I(x, t) ≥ 0 for a.e. (x, t) ∈ Σ1

(H4) y0 ∈ L∞(Ω) and y0 ≥ yex > 0 a.e. in Ω

Let us set β(s) = h(y) · (y− yex) + ε(y) ·σSB · (y4− y4
ex) if s ≥ yex and β(s) = 0 if s ≤ yex.

It results from this latest hypothesis that β is a real continuous, positive and increasing
function. Note that β(yex) = 0. We suppose:

(H5) β is a Lipschitz function and bounded. This last assumption is justified by
the fact that the temperature in Ω̄ cannot exceed a certain constant depending on the
data.

We want to examinate the following problem:

133
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
c(y) ∂ty − div(κ(y)∇y) = 0 in Q,

−κ(y)∂y
∂ν

= β(y)− α(y)I(., .) on Σ1,
∂y
∂ν

= 0 on Σ2,
y(x, 0) = y0(x) in Ω,

(A.2)

We will use the first two changes of variables made in the thesis of Jean-Marc Talbot at
pages 15-16 [50]. We then obtain the following equations:

∂
∂t

(b(v))−∆v = 0 in Q,
−∂v
∂ν

= (β ◦ g)(v)− (α ◦ g)(v)I(., .) on Σ1,
∂v
∂ν

= 0 on Σ2,
v(x, 0) = G(y0(x)) in Ω.

(A.3)

Here, G(s) =

∫ s

yex

κ(ν)dν is the Kirchoff transformation. It follows from (H1) that G is

a continuously differentiable function, with strictly positive derivative and therefore G is
invertible. We will denote by g its inverse which is itself continuously differentiable and
strictly increasing from R in R. In the initial boundary value problem (A.3): v = G(y)

and therefore y = g(v). b(s) :=

s∫
0

ρ(ξ) dξ, where ρ : R → R is a continuous function

defined by

ρ(s) =
(c ◦ g)(s)

(κ ◦ g)(s)
, ∀s ∈ R,

which satisfies
0 <

c1

κ2

≤ ρ(s) ≤ c2

κ1

< +∞ ∀s ∈ R

Therefore, b(.) Is a strictly increasing continuous function of R in R, and therefore in-
vertible. Denote by d its inverse i.e. d = b−1. According to the hypotheses below we
have that ρ ∈ C1(R) et b ∈ C2(R). We now introduce the new variable ω = b(v), so ∆v
becomes:

∆v = d′(ω)∆ω + d
′′
(ω)|∇ω|2,

and ∂v
∂ν

becomes:
∂v

∂ν
= d′(ω)

∂ω

∂ν

Then (A.3) becomes:
∂ω
∂t
− d′(ω)∆ω − d′′(ω)|∇ω|2 = 0 in Q,

−d′(ω)∂ω
∂ν

= (β ◦ g ◦ d)(ω)− (α ◦ g ◦ d)(ω)I(., .) on Σ1,
∂ω
∂ν

= 0 on Σ2,

ω(x, 0) = (b ◦G)(y0(x)) in Ω.

(A.4)

in addition, since d is the inverse function of b:

d′(ω) =
1

b′(b−1(ω))
(A.5)

and
d
′′
(ω) = − b

′′
(b−1(ω))

[b′(b−1(ω))]3
. (A.6)
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From (A.5) and (A.6) we have that d ∈ C2(R). Now we can still transform the equation
(A.4) (i) observing that:

d′(ω)∆ω + d
′′
(w)|∇ω|2 = div(d′(ω)∇ω). (A.7)

Therefore the initial boundary value problem (A.4), can be written as:
∂ω
∂t
− div(d′(ω)∇ω) = 0 in Q,

−d′(ω)∂ω
∂ν

= (β ◦ g ◦ d)(ω)− (α ◦ g ◦ d)(ω)I(., .) on Σ1,
∂ω
∂ν

= 0 on Σ2,
ω(x, 0) = (b ◦G)(y0(x)) in Ω.

(A.8)

To prove that this problem possesses a unique weak solution, we are going to adapt
to our problem (A.8), the proof given in the book of F. Chipot ([13], pp.207-214), by
replacing in his proof of the existence of a weak solution, the space L2(0, T ;L2(Ω)) by
the space L2(0, T ;Hε(Ω)), 1

2
< ε < 1. Thus given y ∈ L2(0, T ;Hε(Ω)), we consider

ω ∈ W (0, T ) := {u ∈ L2(0, T ;H1(Ω));
du

dt
∈ L2(0, T ;H1(Ω)∗)}, (A.9)

the weak solution of the nonhomogeneous linear initial boundary value problem:
∂ω
∂t
−

3∑
i=1

∂
∂xi

(d′(y) ∂ω
∂xi

) = 0 in Q,

−d′(y)∂ω
∂ν

= (β ◦ g ◦ d)(y)− (α ◦ g ◦ d)(y)I(., .) on Σ1,
∂ω
∂ν

= 0 on Σ2,
ω(x, 0) = (b ◦G)(y0(x)) for x ∈ Ω,

(A.10)

and we have to prove that the mapping y 7→ ω operates in the closed convex set

B = {y ∈ L2(0, T ;Hε(Ω)); ‖y‖L2(0,T ;Hε(Ω)) ≤ C}

for C a well choosen strictly positive constant and possesses a fixed point in B by using
Schauder’s fixed point theorem. Let us note that:

1◦) the embedding fromW (0, T ) := {y ∈ L2(0, T ;H1(Ω)); dy
dt
∈ L2(0, T ;H1(Ω)∗)} into

L2(0, T ;Hε(Ω)) is a linear continous compact mapping by the Compacity Lemma ([34],
pp.57-60);

2◦) The trace mapping y 7→ y|Σ is a linear and continuous mapping from
L2(0, T ;Hε(Ω)) into L2(0, T ;Hε−1/2(∂Ω) [35], and thus a fortiori from L2(0, T ;Hε(Ω))
into L2(Σ) = L2(0, T ;L2(∂Ω)).

These latest two ingredients will be used in the proof.
In [50], J.-M. Talbot makes the hypothesis that β : R → R is a lipschitzian function;

we will suppose moreover that this function is bounded, setting to which we can reduce us
by considering inf(sup(−n, β), n) for some large n ∈ N. This hypothesis can be supported
by thermal considerations showing that the temperature in Ω̄ can not execeed a certain
bound depending on the data. Now, let us introduce the new unknown:

ωλ(x, t) := e−λtω(x, t).
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The equations (A.10), for the new unknown ωλ(., .) become:
∂ωλ
∂t

+ λωλ(x, t)−
3∑
i=1

∂
∂xi

(d′(eλtyλ)
∂ωλ
∂xi

) = 0 in Q,

−d′(eλtyλ)∂ωλ∂ν = e−λt(β ◦ g ◦ d)(eλtyλ)− e−λt(α ◦ g ◦ d)(eλtyλ)I(., .) on Σ1,
∂ωλ
∂ν

= 0 on Σ2,
ωλ(x, 0) = (b ◦G)(y0(x)) for x ∈ Ω,

(A.11)

here we have introduced yλ(x, t) := e−λty(x, t), for some λ > 0. Now let us write, what is
a weak solution of our new fixed point problem (A.11). Let us consider a “test function”
ϕ ∈ H1(Ω). Multiplying, both sides of equation (A.11) by ϕ ∈ H1(Ω), and integrating
over Ω:∫

Ω

∂ωλ
∂t

(x, t)ϕ(x)dx+ λ

∫
Ω

ωλ(x, t)ϕ(x)dx+

∫
Ω

d′((eλtyλ)(x, t))∇ωλ(x, t)∇ϕ(x)dx

= −
∫
Γ1

e−λt(β ◦ g ◦ d)((eλtyλ)(x, t))ϕ(x)dS(x)

+

∫
Γ1

e−λt(α ◦ g ◦ d)((eλtyλ)(x, t))I(x, t)ϕ(x)dS(x).

(A.12)

Definition 90. By a weak solution of the nonhomogeneous linear initial boundary value
problem (A.11), we mean a function ωλ ∈ W (0, T ), such that the variational equation
(A.12) is satisfied ∀ϕ ∈ H1(Ω), and such that ωλ(., 0) = (b◦G)(y0(.)). This last condition
has sense since W (0, T ) ↪→ C([0, T ];L2(Ω)).

Let us suppose that I ∈ L2(Σ1). Then the r.h.s. in the variational equation (A.12)
defines an element of L2(0, T ; (H1(Ω))∗). Also the initial condition (b ◦G)(y0(.)) ∈ L2(Ω)
because b ◦ G : R → R is a strictly increasing function and we have supposed that
y0 ∈ L∞(Ω), so that (b ◦G)(y0(.)) ∈ L∞(Ω) ⊂ L2(Ω). Thus by Theorem 1 and Theorem
2 of [19], pp.512-513, the variational equation (A.12) possesses one and only one weak
solution ωλ in W (0, T ).

Let us consider as test functions: ϕ := ωλ(., t). By the variational equation (A.12):

1
2

∫
Ω

∂ω2
λ

∂t
(x, t)dx+ λ

∫
Ω

ωλ(x, t)
2dx+

∫
Ω

d′((eλtyλ)(x, t)) |∇ωλ(x, t)|2 dx

=

∫
Γ1

e−λt(α ◦ g ◦ d)((eλtyλ)(x, t))I(x, t)ωλ(x, t)dS(x)

−
∫
Γ1

e−λt(β ◦ g ◦ d)((eλtyλ)(x, t))ωλ(x, t)dS(x).

(A.13)

Thus:

1
2
d
dt
‖ωλ(., t)‖2

L2(Ω) + λ ‖ωλ(., t)‖2
L2(Ω) +

∫
Ω

d′((eλtyλ)(x, t)) |∇ωλ(x, t)|2 dx

=

∫
Γ1

e−λt(α ◦ g ◦ d)((eλtyλ)(x, t))I(x, t)ωλ(x, t)dS(x)

−
∫
Γ1

e−λt(β ◦ g ◦ d)((eλtyλ)(x, t))ωλ(x, t)dS(x).

(A.14)
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Integrating both sides from 0 to T , we have:

1
2
‖ωλ(., T )‖2

L2(Ω) −
1
2
‖ωλ(., 0)‖2

L2(Ω) + λ

T∫
0

∫
Ω

ωλ(x, t)
2dx dt

+

T∫
0

∫
Ω

d′((eλtyλ)(x, t)) |∇ωλ(x, t)|2 dx dt

=

T∫
0

∫
Γ1

e−λt(α ◦ g ◦ d)((eλtyλ)(x, t))I(x, t)ωλ(x, t)dS(x)dt

−
T∫

0

∫
Γ1

e−λt(β ◦ g ◦ d)((eλtyλ)(x, t))ωλ(x, t)dS(x)dt.

(A.15)

By (B.1) and (1.11) page 15 [13], b′ ≥ k2

c1
, so that for a constant c(λ) > 0, we have for all

ε > 0:

1
2
‖ωλ(., T )‖2

L2(Ω) + c(λ) ‖ωλ‖2
L2(0,T ;H1(Ω)) ≤ ‖I(., .)‖L2(Σ1) ‖ωλ‖L2(Σ1)

+ ‖β‖L∞(R) |Σ1|1/2 ‖ωλ‖L2(Σ1) + 1
2
‖b ◦G ◦ y0‖2

L2(Ω) ≤
ε2

2
‖ωλ‖2

L2(Σ1) + 1
2ε2
‖I(., .)‖2

L2(Σ1)

+ ‖β‖L∞(R) |Σ1|1/2 ε2

2
‖ωλ‖2

L2(Σ1) + ‖β‖L∞(R) |Σ1|1/2 1
2ε2

+ 1
2
‖b ◦G ◦ y0‖2

L2(Ω)

≤ ε2

2
(1 + ‖β‖L∞(R) |Σ1|1/2)γ2 ‖ωλ‖2

L2(0,T ;H1(Ω)) + 1
2ε2
‖I(., .)‖2

L2(Σ1) + 1
2
‖b ◦G ◦ y0‖2

L2(Ω) ,

(A.16)
where γ denotes the norm of the trace operator from L2(0, T ;H1(Ω)) into

L2(0, T ;L2(Σ1)). By choosing ε > 0 strictly smaller than
√

2c(λ)

(1+‖β‖L∞(R)|Σ1|1/2)γ2
, it fol-

lows from the previous inequality that there exists a constant c̃(λ) > 0 such that

‖ωλ‖L2(0,T ;H1(Ω)) ≤ c̃(λ)(‖I(., .)‖L2(Σ1) + ‖b ◦G ◦ y0‖L2(Ω)), (A.17)

and thus ‖ωλ‖L2(0,T ;H1(Ω)) is bounded independently of y. Now, multiplying both sides of
the variational equation (A.12), by an arbitrary function ξ(.) ∈ L2(0, T ), we obtain:

T∫
0

∫
Ω

∂ωλ
∂t

(x, t)ϕ(x)ξ(t)dxdt+ λ

T∫
0

∫
Ω

ωλ(x, t)ϕ(x)ξ(t)dxdt

+

T∫
0

∫
Ω

d′((eλtyλ)(x, t))∇ωλ(x, t)∇ϕ(x)ξ(t)dxdt

= −
T∫

0

∫
Γ1

e−λt(β ◦ g ◦ d)((eλtyλ)(x, t))ϕ(x)ξ(t)dS(x)dt

+

T∫
0

∫
Γ1

e−λt(α ◦ g ◦ d)((eλtyλ)(x, t))I(x, t)ϕ(x)ξ(t)dS(x)dt.

(A.18)
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Using the density of H1(Ω)× L2(0, T ) into L2(0, T ;H1(Ω)), it follows that:

T∫
0

∫
Ω

∂ωλ
∂t

(x, t)ψ(x, t)dxdt+ λ

T∫
0

∫
Ω

ωλ(x, t)ψ(x, t)dxdt

+

T∫
0

∫
Ω

d′((eλtyλ)(x, t))∇ωλ(x, t)∇ψ(x, t)dxdt

= −
∫
Σ1

e−λt(β ◦ g ◦ d)((eλtyλ)(x, t))ψ(x, t)dS(x)dt

+

∫
Σ1

e−λt(α ◦ g ◦ d)((eλtyλ)(x, t))I(x, t)ψ(x, t)dS(x)dt, ∀ψ ∈ L2(0, T ;H1(Ω)).

(A.19)

Thus: ∥∥∂ωλ
∂t

∥∥
L2(0,T ;H1(Ω)∗)

≤ λ ‖ωλ‖L2(0,T ;H1(Ω)) + k2

c1
‖ωλ‖L2(0,T ;H1(Ω))

+ ‖β‖L∞(R) |Σ1|1/2 γ + ‖I(., .)‖L2(Σ1) γ.
(A.20)

By inequalities (A.17) and (A.20), we have thus proved the following proposition:

Proposition 91. For every y ∈ L2(0, T ;Hε(Ω)), the norm in the space W (0, T ) of the
weak solution ωλ of the nonhomogeneous linear initial boundary value problem (A.11), in
the sense of the variational equality (A.12), is bounded by a constant independent of y.

So let us consider now

B = {yλ ∈ L2(0, T ;Hε(Ω)); ‖yλ‖L2(0,T ;Hε(Ω)) ≤ C},

where C > 0 is the constant mentioned in the above proposition. B is a closed convex
subset of L2(0, T ;Hε(Ω)). Moreover, the mapping which sends yλ ∈ L2(0, T ;Hε(Ω)) onto
ωλ ∈ W (0, T ) weak solution of the nonhomogeneous linear initial boundary value problem
(A.11), in the sense of the variational inequality (A.12). Let us call this mapping Φ. By
the compacity of the embedding from W (0, T ) into L2(0, T ;Hε(Ω)) ([34], pp.57-60), the
range of Φ is relatively compact in B. Thus, to apply Schauder’s fixed theorem, we must
prove the continuity of the mapping Φ.

We need to show that Φ is continuous on B. So let us consider a sequence yn,λ ∈ B
such that

yn,λ → yλ in B as n→ +∞ (A.21)

we want to proof that

ωn,λ = φ(yn,λ)→ φ(yλ) in B as n→ +∞

where ωn,λ = φ(yn,λ) denotes the weak solution to (A.11) corresponding to yλ = yn,λ.
(A.21) implies that

yn,λ → yλ in L2(Q) as n→ +∞

and by the reciproque of Lebesgue’s Dominated Convergence theorem there exist a sub-
sequence still labeled by n such that

yn,λ → yλ a.e in Ω×]0, T [ as n→ +∞. (A.22)
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By proposition 91, ωn,λ is bounded in W (0, T ) and by the compacity of the embedding
from W (0, T ) into L2(0, T ;Hε(Ω)) we can extract from n a subsequence, still labeled by
n, such that

ωn,λ → ω∞ in L2(0, T ;Hε(Ω)),

ωn,λ ⇀ ω∞ in L2(0, T ;H1(Ω)),

∂ωn,λ
∂t

⇀ ∂ω∞
∂t

in L2(0, T ; (H1(Ω))∗),

∂ωn,λ
∂xi

⇀ ∂ω∞
∂xi

in L2(0, T ;L2(Ω)),

(A.23)

as n→ +∞, where ω∞ ∈ L2(0, T ;H1(Ω)) ⊂ L2(0, T ;Hε(Ω)). From (A.12) we deduce
that for all ϕ ∈ H1(Ω), for all ξ ∈ D(0, T )∫ T

0

− (ωn,λ(t), ϕ)ξ′(t) dt+ λ

∫ T

0

∫
Ω

ωn,λ(x, t)ϕ(x)ξ(t) dxdt

+

∫ T

0

∫
Ω

d′((eλtyn,λ)(x, t))∇ωn,λ(x, t) · ∇ϕ(x) ξ(t) dxdt

= −
∫ T

0

∫
Γ1

e−λt(β ◦ g ◦ d)((eλtyn,λ)(x, t))ϕ(x)ξ(t)dS(x)dt

+

∫ T

0

∫
Γ1

e−λt(α ◦ g ◦ d)((eλtyn,λ)(x, t))I(x, t)ϕ(x)ξ(t)dS(x)dt.

(A.24)

where
(ωn,λ(t), ϕ) =

∫
Ω

ωn,λ(x, t)ϕ(x)dx.

Recalling the continuity of d′, β ◦ g ◦ d and α ◦ g ◦ d, by (A.22) we have

d′((eλtyn,λ)(x, t))∇ϕ(x) ξ(t)→ d′((eλtyλ)(x, t))∇ϕ(x) ξ(t),

e−λt(β ◦ g ◦ d)((eλtyn,λ)(x, t))ϕ(x)ξ(t)→ e−λt(β ◦ g ◦ d)((eλtyλ)(x, t))ϕ(x)ξ(t),

e−λt(α ◦ g ◦ d)((eλtyn,λ)(x, t))I(x, t)ϕ(x)ξ(t)→ e−λt(α ◦ g ◦ d)((eλtyλ)(x, t))I(x, t)ϕ(x)ξ(t),

as n→ +∞, we have also

| d′((eλtyn,λ)(x, t))∇ϕ(x) ξ(t) |≤ κ2

c1
| ∇ϕ(x) ξ(t) |, (x, t) ∈ Q,

| e−λt(β ◦ g ◦ d)((eλtyn,λ)(x, t))ϕ(x)ξ(t) |≤‖ β ‖∞,R| ϕ(x)ξ(t) |, (x, t) ∈ Σ1,

| e−λt(α ◦ g ◦ d)((eλtyn,λ)(x, t))I(x, t)ϕ(x)ξ(t) |≤| I(x, t)ϕ(x)ξ(t) |, (x, t) ∈ Σ1,

By the Lebesgue dominated convergence theorem we have

d′((eλtyn,λ)(x, t))∇ϕ(x) ξ(t)→ d′((eλtyλ)(x, t))∇ϕ(x) ξ(t) in L2(Q),

e−λt(β ◦ g ◦ d)((eλtyn,λ)(x, t))ϕ(x)ξ(t)→ e−λt(β ◦ g ◦ d)((eλtyλ)(x, t))ϕ(x)ξ(t) in L2(Σ1),

e−λt(α ◦ g ◦ d)((eλtyn,λ)(x, t))I(x, t)ϕ(x)ξ(t)→ e−λt(α ◦ g ◦ d)((eλtyλ)(x, t))I(x, t)ϕ(x)ξ(t),
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in L2(Σ1). Passing to the limit in (A.24) leads to

d
dt

(ω∞, ϕ) + λ

∫
Ω

ω∞(x, t)ϕ(x)dx+

∫
Ω

d′((eλtyλ)(x, t))∇ω∞(x, t)∇ϕ(x)dx

= −
∫
Γ1

e−λt(β ◦ g ◦ d)((eλtyλ)(x, t))ϕ(x)dS(x)

+

∫
Γ1

e−λt(α ◦ g ◦ d)((eλtyλ)(x, t))I(x, t)ϕ(x)dS(x) in D′(0, T ).

(A.25)

As ω∞ ∈ W (0, T ) we have

ω∞ ∈ L2(0, T ;H1(Ω)),
d ω∞
dt
∈ L2(0, T ; (H1(Ω))∗). (A.26)

Now, by the theorem 11.6 in [13] page 191 we can write for a.e. t ∈ (0, T ), for all

ϕ ∈ H1(Ω)

(ωn,λ(t), ϕ)− (ωλ(0), ϕ) =

∫ t

0

d

dt
(ωn,λ, ϕ)dt =

∫ t

0

〈y(n,λ)t , ϕ〉dt (A.27)

By (A.23), and W (0, T ) ↪→ C(0, T ;L2(Ω)) we have

| 〈ω′n,λ, ϕ〉(H1(Ω))∗,H1(Ω) | ≤‖ ω′n,λ(t) ‖(H1(Ω))∗‖ ϕ ‖H1(Ω)

≤‖ ω′n,λ(t) ‖L2(Ω)‖ ϕ ‖H1(Ω)

≤‖ ω′n,λ ‖C((0,T ;L2(Ω))‖ ϕ ‖H1(Ω)

≤‖ ω′n,λ ‖L2(0,T ;H1(Ω))‖ ϕ ‖H1(Ω)

≤ C ‖ ϕ ‖H1(Ω) .

By Lebesgue dominated convergence we pass to the limit in (A.27) we get

(ω∞(t), ϕ)− (ωλ(0), ϕ) =

∫ t

0

〈ω∞t , ϕ〉dt = (ω∞(t), ϕ)− (ω∞(0), ϕ)

a.e. t ∈, for all ϕ ∈ H1(Ω). Thus

ωλ(x, 0) = ω∞(x, 0) for x ∈ Ω. (A.28)

By (A.25), (A.26),(A.28) one sees that ω∞ the limit of ωn,λ = φ(yn,λ) in L2(0, T ;Hε(Ω))
is a weak solution of the nonhomogenous linear initial boundary value problem (A.11),
in the sense of the definition (90). Thus ω∞ = ωλ = φ(yλ) since ωn,λ has only φ(yλ) as
possible limit in L2(0, T ;Hε(Ω)).
Since any subsequence of ωn,λ have the same limit

ωn,λ = φ(yn,λ)→ ωλ = φ(yλ) in L2(0, T ;Hε(Ω)) as n→ +∞.

This complete the proof of the continuity of φ and the condition to apply Schauder
theorem are satisfied.



Appendix B

Existence of weak solutions for the
linear Maxwell’s equations

We prove in this appendix the existence of weak solutions for the initial boundary problem
(3.15).

Definition 92. We say a function

U = (E , H) ∈ L∞(0, T ;H) (B.1)

is a weak solution of the hyperbolic initial boundary-value problem (3.15) provided

∫ T

0

[−(U(t),
∂φ(t)

∂t
)Ht − (U(t),A(t)φ(t))Ht − (B(t)U(t), φ(t))Ht

+ (M(t)U(t), φ(t))Ht ]dt =

∫ T

0

(G(t), φ(t))Htdt+ (U0, φ(0))H0

(B.2)

for each

φ ∈ L2(0, T ;D(A)) such that
dφ

dt
∈ L2(0, T ;H) and φ(T ) = 0, (B.3)

where
B(t)U(t) = {ε̂(·, z(·, t))∂zε(·, z(·, t))∂tz(·, t)E , 0}, (B.4)

A(t),M(t) and G(t) are respectively given by (3.24), (3.25) and (3.17).

U0 = (E0, H0) ∈ H. (B.5)

Remark 16. −B(t)U(t) +M(t)U(t) = {ε̂(·, z(·, t))σE , 0}

We will start first by constructing solutions of certain finite-dimensional approxima-
tions to (3.15) and then passing to limits. More precisely, since D(A) is separable, let
{φi}∞i=1 be an orthonormal basis in D(A) endowed with the graph norm. For arbitrary
but fixed m ∈ N, we now determine approximations Um := Um(x, t) through the ansatz

Um(x, t) =
m∑
i=1

dim(t)φi(x) (B.6)

141
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with unkonwn functions dmi : [0, T ]→ C, i = 1, · · · ,m such that

dim(0) = (U0, φi)H0 (i = 1, · · · ,m) (B.7)

and

(U ′m(t), φi)Ht + (A(t)Um(t), φi)Ht + (M(t)Um(t), φi)Ht
= (G(t), φi)Ht (0 ≤ t ≤ T, i = 1, · · · ,m)

(B.8)

Theorem 93 (Construction of approximate solutions). For each integer m = 1, 2, · · ·
there exists a unique function Um of the form (B.6) satisfying (B.7), (B.8).

Proof. Assuming Um has the structure (B.6), we first note that

(U ′m(t), φi)Ht =
m∑
l=1

(φi, φl)Htd
l
m

′
(t) = A(t).(d1

m
′
(t), · · · , dmm

′(t))ᵀ, (B.9)

where A(t) := ((φi, φl)Ht)il (i, l = 1, · · · ,m), positive-definite matrix due to assump-
tions (H1) and Remark 2 .

Furthermore

(A(t)Um(t), φi)Ht + (M(t)Um(t), φi)Ht =
m∑
l=1

[(A(t)φi, φl)Ht + (M(t)φi, φl)Ht ]d
l
m(t)

= B(t).(d1
m(t), · · · , dmm(t))ᵀ,

(B.10)

for B(t) := ((A(t)φi, φl)Ht + (M(t)φi, φl)Ht)il (i, l = 1, · · · ,m). Let us further write
Gi(t) := (G(t), φi)Ht (i = 1, · · · ,m). Then (B.8) becomes the linear system of ODEs

(d1
m
′
(t), · · · , dmm

′(t))ᵀ + A(t)−1B(t)(d1
m(t), · · · , dmm(t))ᵀ = A(t)−1(G1(t), · · · ,Gm(t))ᵀ

(B.11)
subject to the initial condition (B.7). Thus, there exists a unique absolutely continuous
function t 7→ (d1

m(t), · · · , dmm(t)) satisfying (B.8) and (B.7) for a.e. 0 ≤ t ≤ T . And then
Um defined by (B.6)-(B.7) solves (B.8) for a.e. 0 ≤ t ≤ T .

We propose now to send m to infinity and to show a subsequence of our solutions Um
of the approximate problem (B.7), (B.8) converges to a weak solution of (3.15).

Theorem 94 (Existence of weak solution). There exists a weak solution of (3.15).

Proof. First, we need some energy estimates. We multiply equation (B.8) by dim(t) and
sum over i = 1, · · · ,m; it follows according to (B.6) that

(U ′m(t), Um(t))Ht + (A(t)Um(t), Um(t))Ht + (M(t)Um(t), Um(t))Ht = (G(t), Um(t))Ht
(B.12)

for a.e 0 ≤ t ≤ T .
We consider the real part of (B.12); taking account of

R(A(t)Um(t), Um(t))Ht = 0 for a.e 0 ≤ t ≤ T

and the fact that
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R(U ′m(t), Um(t))Ht =
1

2

d

dt
‖ Um(t) ‖2

Ht −
1

2

∫
Ω

∂ε

∂z
(x, z(x, t))

dz

dt
(x, t)Um(x, t)2dx, (B.13)

for a.e 0 ≤ t ≤ T, according to assumptions (H1)-(H2) and (3.8) there exist C1 > 0
and C2 > 0 such that

1

2

d

dt
(‖ Um(t) ‖2

Ht) ≤ C1 ‖ Um(t) ‖2
Ht + ‖ G(t) ‖Ht‖ Um(t) ‖Ht

≤ C1 ‖ Um(t) ‖2
Ht +

1

2
‖ G(t) ‖2

Ht +
1

2
‖ Um(t) ‖2

Ht

≤ C1 ‖ Um(t) ‖2
Ht +C2 ‖ G(t) ‖2

Ht .

(B.14)

Now we write
η(t) :=‖ Um(t) ‖2

Ht (B.15)

and
ξ(t) :=‖ G(t) ‖2

Ht . (B.16)

Then (B.14) implies

η′(t) ≤ C1η(t) + C2ξ(t) (B.17)

for a.e. 0 ≤ t ≤ T . Thus the differential form of Gronwall’s inequality yields the estimate

η(t) ≤ eC1t

(
η(0) + C2

∫ t

0

ξ(s)ds

)
for a.e. 0 ≤ t ≤ T. (B.18)

Since η(0) =‖ Um(0) ‖2
H0
≤ C3 ‖ U0 ‖2

H by (B.7), we obtain from (B.15)-(B.16)-(B.18)
and Remark 11 :

‖ Um(t) ‖2
H≤ constant, independent of m. (B.19)

According to (B.19), Um is bounded in L∞(0, T ;H) = dual of L1(0, T ;H). Thus, there
exists a subsequence (Umk)k∈N∗ such that

Umk
∗
⇀ U weakly star in L∞(0, T ;H). (B.20)

Equivalently
< Umk ,Ψ >→< U,Ψ > for a.e Ψ ∈ L1(0, T ;H), (B.21)

< ·, · > being the pairing of L∞(0, T ;H) and L1(0, T ;H). We next fix an integer N and
choose a function V ∈ C1([0, T ], D(A)) having the form

V (t) =
N∑
i=1

di(t)φi (B.22)

where {di(t)}Ni=1 are given smooth functions such that di(T ) = 0.

We choose m ≥ N , multiply (B.8) by di(t), sum i = 1, · · · , N , and then integrate
with respect to t to find
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∫ T

0

[(U ′m(t), V (t))Ht + (A(t)Um(t), V (t))Ht + (M(t)Um(t), V (t))Ht ]dt

=

∫ T

0

(G(t), V (t))Ht dt.

(B.23)

We set m = mk and we integrate over [0, T ] by parts in (B.23), to find∫ T

0

[−(Umk(t),
dV (t)

dt
)Ht − (Umk(t),A(t)V (t))Ht + (M(t)Umk(t), V (t))Ht ]dt

= (B(t)Umk(t), φ(t))Ht +

∫ T

0

(G(t), V (t))Htdt+ (Umk(0), V (0))H0 .

(B.24)

Due to (B.20), since Umk(0) → U0 in L2(0, T ;H), we can pass to the limit in (B.24).
Thus we obtain the existence of a U which satisfies (B.1) and (B.2) for every φ = V of
the form (B.22).

But, due to [36, Theorem 2.1 p.11] if φ is given with (B.3), we can find a sequence
{Vj}j∈N of functions of the form (B.22) such that

Vj → φ in L2(0, T ;D(A)),

and
dVj
dt
→ dφ

dt
in L2(0, T ;H).

We conclude that (B.2) holds for every φ satisfying (B.3).
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