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Introduction

In discrete-time complex dynamics, we consider a holomorphic self-map f of a complex
manifold and we study the behavior of the iterates (fn)n≥1. Holomorphic maps are much
more rigid objects than continuous or smooth ones so it is therefore natural to ask the
following two questions:

• What are the constraints on the system induced by the holomorphic condition?

• How much freedoms does this condition leave?

Although very similar, these two questions lead to different approaches. One goal, com-
pared to the former, is to obtain global results that distinguish holomorphic systems from
smooth ones. For the latter, one is rather led to look for examples that exhibit interesting
phenomena. In some sense, these two questions bound, respectively from above and from
below, the complexity that a holomorphic dynamical system can have.

Here are two simple examples.

(1) If f : U → Ck is a holomorphic map defined on a bounded open subset U of Ck
such that f(U) ⊂ U then A := ∩n≥0f

n(U) is a finite union of attracting cycles
and all the orbits of f accumulate on A. This ensures that several local phenomena
which appear in smooth dynamics (during the unfolding of a homoclinic tangency
for example) cannot exist in complex dynamics.

(2) On the other hand, if U ⊂ f(U) then the dynamics of f can be rich. Actually, if f is
a polynomial-like map (i.e. f(U) is convex and f : U → f(U) is proper) which is not
invertible then Dinh-Sibony proved in [DS03] that f possesses a natural invariant
measure µ, called the equilibrium measure, which is mixing, of maximal (and positive)
entropy. In particular, µ has one positive Lyapunov exponent. Nevertheless, it is
still an open problem whether all the Lyapunov exponent of µ have to be positive
or, more simply, if f has to possess a repelling periodic point.

Under a technical assumption on f (“of large/dominant topological degree”) Dinh and
Sibony answer positively to both questions in (2) using several techniques, now called the
“ddc-method”, which heavily rely on pluripotential theory.

My main area of research concerns the dynamics of holomorphic endomorphisms of
the complex projective space Pk of dimension k ≥ 2. This manifold has several advantages
which are not common in the complex world:

• it is compact,

• the dynamics of an endomorphism of Pk is far from being trivial in general,

• its set of endomorphisms is sufficiently large to provide interesting bifurcation phe-
nomena.
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In order to the study such an endomorphism f, one can hope (perhaps naively) that the
space Pk splits into countably many pieces such that

• we have some information on the dynamics on the different pieces,

• the bifurcations of f (i.e. the potential drastic changes in the dynamics when f is
perturbed) come from specific phenomena in some piece that we can understand.

In dimension one, when k = 1, such a decomposition is given by the dichotomy between
the Fatou set and the Julia set. In higher dimension, this Fatou/Julia dichotomy still
exists but the dynamics on these sets is far from being understood, especially on the Julia
set. One can instead consider the partition of Pk into chain recurrence classes and a non-
recurrent set (see Section 1.2 for definitions). The map f always possesses a canonical
“maximal” chain recurrence class. In fact, like in (2), it is possible to construct an
equilibrium measure µ associated to f with several nice properties. Its support, often
called the “small Julia set”, plays a central role and it catches the most chaotic and
most repulsive part of the dynamics. As the measure µ is ergodic, this small Julia set
corresponds to a chain recurrence class but little is known in general about the dynamics
outside this class. One way to study this dynamics (see Section 1.2 for more details) is to
consider an open subset U ( Pk such that f(U) ⊂ U. Although similar to (1), it turns
out that the situation in Pk is much less trivial than in Ck and the dynamics on the set
A := ∩n≥0f(U) can be very rich. However, in [Taf18] I obtain significative restrictions
on the geometry of A and on the dynamics of f|A. The starting point of this study is to
show that, although there is no additional assumption like in (2), the simple inclusion
f(U) ⊂ U in Pk puts geometric contraints on U which allow to adapt the ddc-method of
Dinh-Sibony. An illustration of the results of [Taf18] is the following theorem where the
dynamics on A is assumed to be topologically transitive (i.e. when A is an “attractor”).

Theorem 0.0.1. Let f and A be as above. If f|A is topologically transitive then there
exist two integers 0 ≤ s ≤ k and n0 ≥ 1 such that

• the topological entropy of f|A is s log d,

• A is the disjoint union of connected compact sets A1, . . . , An0 invariant by fn0 ,

• on each Ai, there exists a measures νi which is mixing for fn0 , of maximal entropy
s log(dn0) on Ai and with at least s positive Lyapunov exponents.

As a trivial example, when A is an attractive cycle then s = 0 and n0 is the period of
the cycle.

In general, in the setting of Theorem 0.0.1 the decomposition A = A1 ∪ · · · ∪An0 into
finitely connected components is easy to obtain and it already holds for continuous maps.
However, in [Taf18] I consider a more general type of objects, called quasi-attractors,
where this decomposition still holds on Pk and is a non-trivial fact. The advantage of
this generalization is that some chain recurrence classes (the “minimal” ones) are quasi-
attractors hence the counterpart to Theorem 0.0.1 in that setting puts strong contraints
on these classes which are clearly not satisfy in smooth dynamics. Notice also that the
existence of mixing measures (of maximal entropy or not) for some power of f is not true
for smooth maps (as irrational rotations of the circle).

Like in (2), it would be very satisfying to show that the inclusion f(U) ⊂ U implies
the existence of a hyperbolic measure, or more simply, of a hyperbolic periodic point in U.
Unfortunately, I was not able to prove that the measures νi in Theorem 0.0.1 are always
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hyperbolic (which is very likely). However, in [Taf13] and [DT18a], we put additional
assumptions on the open set U and on the map f (which are more or less satisfied in all
the known examples) which imply in particular that the resulting measures are hyper-
bolic. Moreover, the framework of [DT18a] (originally introduced by Daurat in [Dau14])
is interesting by itself and we show that it is satisfied by a large class of endomorphisms of
Pk (see also [Dau14] when k = 2). In [Taf17], I also provide examples, increasing slightly
the range of the possible attractors in Pk. All this is developed in Chapter 1.

Chapter 2 is about bifurcation theory for endomorphisms of Pk. As mentioned above,
the small Julia set supports the most chaotic part of the dynamics and thus it is natural, at
first, to study bifurcations with respect to this set. Such a theory has been recently devel-
oped by Berteloot-Bianchi-Dupont on Pk for k ≥ 2 and my motivation in this subject is to
exhibit phenomena which distinguish this theory from the more classical theory of Mañé-
Sad-Sullivan and Lyubich when k = 1. In dimension 1, structural stability is always dense
in the parameter space and almost all the different possible types of bifurcations coincide.
In particular, a bifurcation implies that the Julia set does not depend continuously on the
parameter. In [BT17], with Bianchi we study a very specific family of endomorphisms of
P2 where there is an open set of bifurcations and the Julia set depends continuously on
the parameter in the whole family. And my main contribution regarding bifurcation is the
use of objects coming from smooth dynamics called blenders. In fact, Dujardin introduced
them in complex dynamics in order to obtain open sets of bifurcations in the family of all
endomorphisms of Pk, k ≥ 2. In [Taf17], I was able to strengthen his result, proving that
blenders always appear near bifurcations of product maps of C2.

All the examples above, like many others in the recent literature, start from an en-
domorphism of P2 which preserves a fibration. This led us, with Dupont, to study the
dynamics of endomorphisms of Pk which preserve a fibration. The main purpose of [DT18b]
(see Chapter 3) is to generalize Jonsson’s results [Jon99] on polynomial skew products to
a broader framework. In particular, we obtain a structure result for the Green currents
which can be helpful to study specific examples and bifurcation phenomena.
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Chapter 1

Attractors in Pk

This chapter covers the works [Taf13], [DT18a], [Taf18] and some examples contained in
[Taf17]. It deals with different kinds of “attractors” which are natural objects to consider
in a dynamical setting. I start in Section 1.2 with their definitions and with simple
examples in both smooth and complex dynamics. Section 1.3 is devoted to general results
on attractors (or more precisely, on attracting sets and quasi-attractors) of Pk which
can be obtained using pluripotential theory. In particular, it contains the main results of
[Taf18] and a brief summary of the known results when this work began (see Section 1.3.3).
Section 1.4 and Section 1.5 consider the frameworks of [DT18a] and [Taf13] respectively.
Finally, Section 1.6 gives most of the examples I know.

1.1 Prologue
When considering a dynamical system f : X → X, two natural questions arise:

(1) What is the asymptotic behavior of the orbit (fn(x))n≥0 for most of the points
x ∈ X?

(2) What are the effects on the system of a small perturbation of f?

One aspect of the latter is to understand when f is structurally stable, i.e. under which
conditions on f, for each sufficiently small (in a given topology) perturbation fε of f there
exists a homeomorphism hε of X such that f = h−1

ε ◦ fε ◦ hε?
For endomorphisms of the projective space Pk, these two questions are fairly well

understood when k = 1. To a rational mapping f : P1 → P1 is associated a partition

P1 = Ff ∪ Jf

where Ff is the Fatou set of f and Jf its Julia set. On the open set Ff the dynamics is
not chaotic and it can be completely classified (see Section 1.2.3). On the compact set Jf
the dynamics is chaotic but there exist several characterizations of this set giving many
information on the geometry and the dynamics of Jf .

In the same way, if (fλ)λ∈M is a holomorphic family of rational maps then Mañé-Sad-
Sullivan [MSS83] and independently Lyubich [Lyu83b] introduced a partition

M = Stab ∪ Bif.

The set Stab can be defined as the largest open subset of M where fλ restricted to its
Julia set is structurally stable with respect to perturbations in the family (see Section 2.1
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for more details). This is called J-stability. The complementary Bif of Stab is called the
bifurcation locus of the family (fλ)λ∈M . The key result about this partition is that Stab
is always dense in M. Moreover, McMullen and Sullivan [MS98] proved that on an open
and dense subset of Stab the structural stability on Jfλ extends to the whole P1, i.e. in
every family (fλ)λ∈M structural stability is dense.

In higher dimension, the dichotomy between the Fatou set and the Julia set still exists
but several new phenomena appear and a description as detailed as in dimension one is
no longer possible. My approach is based on the following standard objects in smooth
dynamics.

1.2 Attracting sets and chain recurrence classes
Since the beginning of the study of dynamical systems, the different possible notions of
attractors have played a central role (see e.g. [Mil85]). Unlike my work during my thesis
(see [Taf10]), I am now interested in the following topological objects.

Let f : X → X be a continuous self-map of a compact metric space. A non-empty
subset A of X is an attracting set if it admits an open neighborhood U (called a trapping
region) such that

f(U) ⊂ U and A =
⋂
n≥0

fn(U).

In particular, A is a compact invariant set for f, f(A) = A, and all orbits starting in U
accumulate on some subset of A. So, such a set can be seen as a piece of the system and
it is natural to study those which are minimal in some sense: they can be considered as
the most elementary pieces. One way to ensure this is to consider attracting set A such
that f|A is topologically transitive, i.e. f|A has a dense orbit. In this case, A is called an
attractor. Unfortunately, this notion is very strong and many dynamical systems have no
such attractor. Another way is to define, following [Hur82], quasi-attractors as decreasing
intersections of attracting sets. In that setting, theminimal quasi-attractors are simply the
ones which are minimal for the inclusion. Thanks to Zorn’s lemma, any dynamical system
defined on a compact space admits at least one minimal quasi-attractor. Notice that this
terminology is not uniform in the literature. For example, minimal quasi-attractors here
correspond to attractors in Ruelle’s book [Rue89].

These objects are closely related to the chain recurrent set defined by Conley [Con78].
For ε > 0, a sequence (xi)0≤i≤n is called an ε-pseudo-orbit between x and y in X if n ≥ 1,
x0 = x, xn = y and for all 0 ≤ i < n, dist(f(xi), xi+1) < ε. We say that x � y if for
all ε > 0 there exists an ε-pseudo-orbit between x and y. Then, the chain recurrent set is
defined by

R(f) := {x ∈ X |x � x}.

This is a closed invariant set which contains the non-wandering set and thus all the periodic
orbits. Moreover, � is a preorder on R(f) and the equivalence classes associated to it are
called the chain recurrence classes: if x ∈ R(f) then its chain recurrence class [x] consists
of all y ∈ R(f) such that x � y and y � x. The relation � becomes an order on the classes
by saying that [x] � [y] if x � y.

Remark 1.2.1. Another classical closed invariant set is the non-wandering set Ω(f) de-
fined as the set of points x ∈ X such that for every neighborhood V of x there exists n ≥ 1
such that fn(V ) ∩ V 6= ∅. The structural stability restricted to the non-wandering set is
called the Ω-stability. When X is a smooth manifold, it was proven by Smale [Sma65] and
Palis [Pal88] that f is Ω-stable with respect to C1-perturbations if and only if f is Axiom
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A (i.e. Ω(f) is a hyperbolic set for f and the periodic points are dense in Ω(f)) and there
is no cycle in the decomposition of Ω(f) in basic pieces. As observed in [BC04], a simpler
way to state these theorems is

f is Ω-stable in the C1-topology ⇐⇒ R(f) is a hyperbolic set for f

Notice that on P1, the classification of Fatou components implies easily that Ω-stability is
equivalent to J-stability. One major open problem in one variable complex dynamics is
wether this stability implies the hyperbolicity of the dynamics on the Julia set.

The chain recurrence classes are also closed invariant sets and they are related to the
attracting sets and quasi-attractors in the following way. If x ∈ X and ε > 0 then the
open set

Ux,ε := {y ∈ X | there exists an ε-pseudo-orbit between x and y} (1.1)

is a trapping region such that the attracting set Ax,ε := ∩n≥0f
n(Ux,ε) contains all the

chain recurrence classes [y] with x � y (notice that constructions similar to the one of Ux,ε
will play a decisive role in Section 1.3.8). In particular, if x ∈ R(f) then [x] is contained
into the quasi-attractor Ax := ∩ε>0Ax,ε. Moreover, if the basin of an attracting set A is
defined by BA := ∪n≥1f

−n(U) (where U is a trapping region for A) then

[x] = Ax \
(⋃
BA
)
, (1.2)

where the union is taken over all attracting sets A such that x /∈ A. A direct consequence
of these observations is the following important fact:

The minimal quasi-attractors correspond exactly to the chain recurrence classes
minimal for �.

Therefore, as my main results in the subject are about quasi-attractors, they also hold
for minimal chain recurrence classes. But, some of these results are not true for arbitrary
classes and very little is known about them in complex dynamics.

Let me point out that the observations above could be summarized through a Lyapunov
function, i.e. a continuous function φ : X → R which is

• strictly decreasing on the orbits of X \R(f),

• satisfies that for all x, y ∈ R(f), φ(x) = φ(y) is equivalent to [x] = [y],

• and φ(R(f)) is a totally discontinuous compact subset of R.

The sublevel sets of such a function give a family of trapping regions which separate
the different chain recurrence classes. Conley proved in [Con78] that Lyapunov functions
always exist for continuous maps on a compact metric space.

To conclude this part, notice that the objects introduced above are directly related to
the questions starting this section:

• the attracting sets catch a full open set of orbits,

• the ε-pseudo-orbits can be seen as the orbits of a randomly perturbed system.
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1.2.1 Adding machine in smooth dynamics

The most basic examples of attracting sets are the whole space X (as X is compact) and
attracting cycles (i.e. attractive periodic points, also often called sinks). An arbitrary
attracting set can be much more complicated but there exist some basic limitations. In
particular, the inclusion f(U) ⊂ U implies that f admits at most countably many attract-
ing sets and each of them has finitely many connected components. The example below
shows that this is no longer the case for quasi-attractors. As a consequence of Theorem
1.3.1, such an example cannot exist for endomorphisms of Pk.

Let D ⊂ R2 be the open unit disk and let D1, D2 be two topological disks such that
D1 ∪D2 ⊂ D and D1 ∩D2 = ∅. Let f be a continuous self-map of D such that

f(D) ⊂ D, f(D1) ⊂ D2 and f(D2) ⊂ D1.

Thus, D and D1∪D2 are two trapping regions for f. The attracting set associated to D is
connected and the one associated to D1 ∪D2 has two connected components. Moreover,
it is possible to choose f such that, for i ∈ {1, 2}, f2

|Di is conjugated to f|D. In this
situation, f has a decreasing sequence of attracting sets (An)n≥0 such that An has 2n
connected components. The quasi-attractor K := ∩n≥0An has infinitely many connected
components. The map f can be chosen such that these components are points and in this
case, K is a minimal quasi-attractor such that f|K is an adding machine. This implies
that

1) K is a Cantor set,

2) f|K is minimal and uniquely ergodic, in particular it has no periodic orbits,

3) f|K has zero topological entropy,

4) for each n ≥ 1, fn|K has 2n minimal quasi-attractor and there is no mixing measure
for fn|K .

The construction above gives a continuous map. It is possible, even though much more
delicate, to fulfill it for C∞ maps. Finally, observe that if there exists a second pair of
disks B1, B2 ⊂ D such that f(B1) ⊂ B2, f(B2) ⊂ B1, and f2

|Bi is conjugated to f|D then f
admits uncountably many minimal quasi-attractors as above, one for each infinite sequence
in {B,D}. See [BD02a] for the abundance of this phenomenon in the C1 topology.

1.2.2 Attracting sets in Ck

As I said in the Introduction, the only possible attracting sets in Ck are finite unions of
attracting cycles. This can be deduced from [Tsu81] but the proof is elementary. Notice
that one can hope to use similar arguments in the setting of Section 1.3 (attracting sets
in Pk) providing a good counterpart to Montel’s theorem in the space Cp(U) of positive
closed (p, p)-currents in U. However, this last point seems delicate (see Remark 1.3.32).

Proposition 1.2.2. Let U ⊂ Ck be an open set and let f : U → U be a holomorphic map
such that f(U) is a compact subset of U. Then, the attracting set A := ∩n≥0f

n(U) is a
finite union of attracting cycles.

Proof. First, observe that since A is compact, it is contained in a finite union of connected
components of U and if this union is taken to be minimal then f induces of permutation on
this set of components. Hence, possibly by replacing f by a large iterate, we can assume
that U is connected and also bounded since f(U) is bounded.
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Therefore, Montel’s Theorem on uniformly bounded holomorphic functions implies
that the family {fn}n≥1 si normal i.e. every sequence in this family has a subsequence
converging, locally uniformly, to a holomorphic map from U to Ck. Let (fni)i≥1 be such
a sequence converging to g : U → Ck where (ni)i≥1 is increasing. In particular, li :=
ni+1−ni ≥ 1 and by normality, up to a subsequence, we can assume that (f li)i≥1 converge
to a map h : U → Ck. Actually, ni ≥ 1 and li ≥ 1 imply that g(U) and h(U) are contained
in f(U) which is a compact subset of U. Hence, h ◦ g is well defined and satisfies h ◦ g = g
on U, i.e. g(U) is contained in the set of fixed points of h. But this set is a closed analytic
subset of U, contained in the compact set f(U). Thus, it is a compact analytic subset of
Ck and so it is a finite set. As g(U) is connected, g(U) is reduced to a point x0 ∈ U.

Since g commutes with f, f(x0) = f(g(x0)) = g(f(x0)) = x0 and x0 is a fixed point
of f. Therefore, every subsequence of (fn)n≥1, and thus the full sequence, must converge
to the constant function equal to x0. This implies that the differential Dx0f satisfies
limn→∞(Dx0f)n = 0, i.e. x0 is an attractive fixed point and U is contained in its basin.

Notice that the boundedness of f(U) is essential: a complex Hénon maps in C2 pos-
sesses an open set U ⊂ C2 satisfying f(U) ⊂ U while ∩n≥0f

n(U) is not trivial.

1.2.3 Situation on P1

The classification of attracting sets and chain recurrence classes of a rational mapping f
of P1 follows easily from Proposition 1.2.2 and Montel Theorem. It can also be deduced
from the classical Fatou/Julia theory.

For attracting sets, there are two possibilities. If A is an attracting set of P1 with a
trapping region U then either

• A = U = P1,

• or U 6= P1 and f(U) can be seen as a compact set of C and by Proposition 1.2.2, A
is a finite union of attracting cycles.

In particular, all the quasi-attractors are attracting sets. Hence, using (1.2), a chain
recurrence class is either

• an attracting cycle,

• or equal to P1 \ (∪BA) where the union is taken over all attracting cycles.

This last chain recurrence class is actually related to the Fatou/Julia decomposition. Recall
that the Fatou set Ff of f is the largest open set where the family of iterates {fn}n≥1 is
normal (or, equivalently, equicontinuous). Its complementary Jf := P1\Ff is a non-empty
compact set called the Julia set and, by definition, if V is a neighborhood of x ∈ Jf then
the family {fn|V }n≥1 is not normal. This implies, by Montel’s Theorem on holomorphic
maps omitting three values in P1, that P1 \ (∪n≥1f

n(V )) contains at most two points.
Hence, we have the following basic result.

Proposition 1.2.3. If f : P1 → P1 is a rational mapping and x ∈ Jf then for all y ∈ P1,
x � y. In particular, Jf is contained in a unique chain recurrence class [Jf ] := P1 \ (∪BA)
and this class is maximal with respect to � .

In particular, if f has no attracting cycle then [Jf ] = P1 and f is chain transitive, i.e.
f has a unique chain recurrence class which is equal to the whole space.
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Another way to obtain the same result is to use the classification of the dynamics on
Ff . A remarkable theorem of Sullivan [Sul85] states that if Ω is a connected component of
Ff (also called a Fatou component) then there exist p > q ≥ 0 such that fp(Ω) = f q(Ω),
i.e. every Fatou component of a rational mapping of P1 is pre-periodic. Moreover, the
invariant Fatou components are classified. There are four possibilities:

• the basin of an attracting fixed point,

• the basin of a parabolic fixed point,

• a Siegel disk, i.e. a topological disk on which f is conjugated to an irrational rotation,

• a Herman ring, i.e. a topological annulus on which f is conjugated to an irrational
rotation.

On the other hand, the dynamics on Jf is transitive and all parabolic periodic points belong
to Jf . Hence, Jf is contained in a unique class [Jf ] and the other classes are attracting
cycles. The class [Jf ] is equal to the union of Jf and of all the Fatou components eventually
map to a parabolic basin, a Siegel disk or a Herman ring. In particular, [Jf ] 6= Jf when f
has such a component, for example for f(z) = z2 + 1/4.

Example 1.2.4. If f(z) = z2 + c where c ∈ C has sufficiently large modulus then Ff has
only one component which is the basin of ∞ and Jf is a Cantor set. Hence, the chain
recurrent set is R(f) = Jf ∪ {∞}, each piece corresponding to a chain recurrence class.
Observe that the one associated to Jf has infinitely many connected components.

1.3 Quasi-attractors in Pk and attracting currents

The main aim of this section is to explain the results of [Taf18]. Many of these results are
heavily based on pluripotential theory so we start with a “current-free” summary.

1.3.1 Main results without currents

Theorem 1.3.1. Let f be a holomorphic endomorphism of Pk of degree d ≥ 2. If K is a
minimal quasi-attractor of f then there exist two integers 0 ≤ s ≤ k and n0 ≥ 1 such that

• the topological entropy of f|K is s log d,

• K is the disjoint union of connected minimal quasi-attractors K1, . . . ,Kn0 for fn0 ,

• on each Ki, there exists a measures νi which is mixing for fn0 , of maximal entropy
s log(dn0) on Ki and with at least s positive Lyapunov exponents.

Remark 1.3.2. In general, fn0 is not topologically transitive on Ki. Indeed, if f is a
rational mapping of P1 such that all Fatou components are eventually mapped to Siegel
disks then K = P1 is a minimal quasi-attractor such that s = n0 = 1 and f is not
topologically transitive (when the Fatou set is not empty).

Remark 1.3.3. Since minimal chain recurrence classes correspond to minimal quasi-
attractors, Theorem 1.3.1 applies to these classes. In particular, such a class has finitely
many connected components. As Example 1.2.4 shows, this doesn’t hold for an arbitrary
class. I don’t know if it holds for arbitrary quasi-attractors.
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Observe that this theorem is the counterpart for minimal quasi-attractors of Theorem
0.0.1 in the introduction. Indeed, the latter is a direct consequence of the former as an
attractor is a minimal quasi-attractor. However, the finiteness of the number of connected
components n0 is obvious for attractors (and true for continuous maps) while it is an
important point of Theorem 1.3.1.

Another important point is the meaning of the integer s. This invariant was introduced
by Daurat [Dau14] as the dimension of K. Her definition relies on pluripotenrial theory
(see Section 1.3.5) and is independent of f. In particular, the topological entropy of f|K
only depends on the geometry of K and on the degree of f. This dimension can also be
characterized in terme of Julia sets which gives the following consequences.

Corollary 1.3.4. Let f, K and s be as in Theorem 1.3.1.

• If s is maximal (i.e. s = k) then K = Pk.

• If s = 0 (i.e. f|K has zero topological entropy) then K is an attracting cycle.

Here is a less direct consequence of the proof of Theorem 1.3.1 (which is based on the
local finiteness of attracting currents).

Corollary 1.3.5. Let f be a holomorphic endomorphism of Pk. Then, the set of minimal
quasi-attractors of f is at most countable.

This set can be countable when k ≥ 2 as shown the examples of Gavosto [Gav98] (see
also [Buz97]) of endomorphisms of P2 with infinitely many sinks coming from Newhouse
phenomenon. And the minimality assumption in this corollary is important since there
exist endomorphisms with uncountably many quasi-attractors (see Theorem 1.6.8).

All the results above show that minimal quasi-attractors of Pk are subject to much more
constraints that what can happen in smooth dynamics. In particular, the points 1), 3),
4) of Section 1.2.1 on adding machines and uncountable sets of minimal quasi-attractors
cannot exist for holomorphic endomorphisms of Pk.

As we will see in Section 1.3.3, some of the results above, in particular Corollary 1.3.5,
can be deduced when k = 2 from [FW99] using totally different techniques. And a key
inspiration for Theorem 1.3.1 was the work of Dinh [Din07] where he obtained a similar
result for attracting sets possessing a trapping region with special geometric properties.
Before reviewing these works, we need to recall some classical facts about pluripotential
theory and dynamics of holomorphic endomorphisms of Pk.

1.3.2 Basic facts on pluripotential theory and dynamics on Pk

The introduction of pluripotential theory (i.e. plurisubharmonic functions and positive
currents) was a turning point in complex dynamics in several variables (see especially
[BS91a] and [FS95a]). A posteriori, almost thirty years later, the introduction of the
actions of f on currents seems natural. Indeed, it is usual to study the dynamics of
f : X → X through its actions on other spaces (trees, partitions, vector spaces etc.). If
X is a compact complex manifold and f is holomorphic then one can consider the space
of positive currents, on which f acts by push-forward and pull-back. This space is a
convexe cone whose structure is far from being well-understood but it has some good
properties, with respect to compactness in particular. Moreover, these actions (restricted
to closed currents) are related to push-foward and pull-back operators induced by f on
the cohomology groups of X, which are especially simple when X = Pk. More generally,
there are deep interplays between the dynamics of f , the geometry of X and the complex
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analytic tools provide by pluripotential theory. Actually, in the proofs of the results of
this section, the crucial assumption that f is holomorphic will mainly take part by way of
these actions on currents. Here is a brief illustration of how these actions will be used in
what follows.

One feature of ergodic theory is to study Birkhoff sums

1
N

N∑
n=1

(fn)∗δx, (1.3)

(where (fn)∗δx is the push-forward of the Dirac mass at x by fn and is equal to δfn(x))
instead of orbits (fn(x))n≥1. The space of positive measures has good compactness prop-
erties and every limit value ν of (1.3) is invariant, f∗ν = ν. However, apart from this
invariance, almost nothing can be said in general on ν. Positive currents allow to general-
ized this idea to orbits of complex analytic sets. To such a set V is associated a current
of integration on V , denoted by [V ], and we can consider sums of the form

1
N

N∑
n=1

cn(fn)∗[V ], (1.4)

where cn > 0 are well chosen renormalization constants and (fn)∗[V ] is the push-forward
of [V ] by fn (which is often simply [fn(V )]). When V is reduced to the point x, (1.4)
with cn = 1 corresponds exactly to (1.3). Moreover, the space of positive currents has the
same compactness properties than the space of positive measures and every limit value of
(1.4) is a positive current invariant by f∗ (up to a constant). Under some circumstances
(for example if V is a closed analytic set) these limit values are closed as currents. And
positive closed currents (those which are not measures) are very rigid objects. As we
will see later, the simple fact that a subset A ⊂ Pk supports such a current puts strong
geometric contrains on A and on Pk \A and gives tools to study the dynamics on A.

We now give more detailed definitions and results. We refer to [Dem12] for an expo-
sition on pluripotential theory and to [Sib99] and [DS10a] for surveys on its interactions
with complex dynamics.

Positive closed currents

Let X be a complex manifold of dimension k and let 0 ≤ p, q ≤ k be two integers. For the
sequel, we need to defined three notions:

• currents of bidegree (p, q), or equivalently of bidimension (k − p, k − q),

• closed currents,

• positive currents.

(p, q)-currents: A smooth differential form φ of bidegree (p, q) on X (or simply a (p, q)-
form) is a form which can be written in local coordinates (z1, . . . , zk) as

φ =
∑

|I|=p,|J |=q
φI,JdzI ∧ dzJ ,

where φI,J are smooth functions, I = (i1, . . . , ip) (resp. J = (j1, . . . , jq)) is a multi-index
of length p (resp. q) and dzI = dzi1∧· · ·∧dzip , dzJ = dzj1∧· · ·∧dzjq . A current of bidegree
(p, q) (or a (p, q)-current) is a continuous linear form on the space of smooth differential
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forms of bidegree (k−p, k−q) with compact support in X. Such a current S can be written
in local coordinates as

S =
∑

|I|=p,|J |=q
SI,JdzI ∧ dzJ , (1.5)

where the coefficients SI,J are distributions. A form or a current is of bidimension (p, q)
if it is of bidegree (k − p, k − q). As we will see in Example 1.3.6, the bidimension of the
current of integration associated to an analytic subset V ⊂ X of dimension p is (p, p).

The topology that we use on currents is the weak topology: a sequence Sn converges
to S if for every from φ with compact support, 〈Sn, φ〉 converges to 〈S, φ〉.

Closed currents: By definition, a current S of bidegree (p, q) is a pairing φ 7→ 〈S, φ〉
with (k− p, k− q)-forms and we say that S is closed if 〈S, φ〉 = 0 as soon as φ is exact i.e.
φ = dψ for some differential form ψ.

Positive currents: Positivity is only defined for (p, q)-current with symmetric bidegree,
i.e p = q. Roughly speaking, a current S of bidegree (p, p) is positive if for every complex
submanifold V of dimension p, the restriction of S to V is a positive measure. However,
the restriction of a current to a submanifold is not necessarily well-defined and even when
it is the case (for smooth forms for example), the resulting notion is not stable under
wedge products. The above idea corresponds to weak positivity and we need a slightly
stronger notion.

A (p, p)-current S on X is weakly positive if for every family (αj)1≤j≤k−p of (1, 0)-forms
with compact support,

〈S, (iα1 ∧ α1) ∧ · · · ∧ (iαk−p ∧ αk−p)〉 ≥ 0.

A (p, p)-current S is positive if for every weakly positive (k−p, k−p)-form φ with compact
support in X, 〈S, φ〉 ≥ 0.

Notice that in maximal bidegree, a (k, k)-current is always closed and can be identified
to a distribution. In particular, positive (k, k)-currents correspond to positive measures.

Beyond technical definitions, the following example is essential.

Example 1.3.6. Let Y be a closed complex submanifold of X of dimension p and let V be
an open subset of Y. The current of integration [V ] associated to V is a current of bidegree
(k − p, k − p) (and of bidimension (p, p)) defined by

〈[V ], φ〉 :=
∫
V
φ,

for every (p, p)-form φ with compact support. This current is positive and if V = Y (i.e.
V is a closed submanifold) then [V ] is closed as current. This result has been generalized
by Lelong [Lel57] to singular analytic sets: if Y is a closed analytic subset of X of pure
dimension p then the current of integration on the regular part of Y defined a positive
closed current on X, also denoted by [Y ].

All the currents which appear in what follows can be obtained as limits of convex
combinations of such currents. In some sense, the currents that we consider encoded,
locally on each open set, the asymptotic behavior of the volume of a sequence of analytic
subsets.
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Plurisubharmonic functions

Plurisubharmonic functions form an important class of functions in several variables com-
plex analysis. On Riemann surfaces, this class coincides with the one of subharmonic
functions. One way to define a plurisubharmonic function u in higher dimension is that u
restricted to every one-dimensional complex manifold is a subharmonic function. Another
way is to use the ∂∂ operator. For a C2 function u : X → R, plurisubharmonicity simply
means that, in local coordinates (z1, . . . , zk), the form

i∂∂u := i
∑

1≤a,b≤k

∂2u

∂za∂zb
dza ∧ dzb,

is a positive (1, 1)-form, i.e. at every point z the Hermitian matrix (∂2u/∂za∂zb(z)) is
semipositive. The operator ∂∂ can be extended to L1

loc-functions and more generally
to currents. The normalization ddc := i

π∂∂ is often used. And u : X → R ∪ {−∞} is
plurisubharmonic if

• u is upper semicontinuous and u ∈ L1
loc(X),

• ddcu is a positive (1, 1)-current.

Moreover, the converse holds locally: if S is a positive closed (1, 1)-current then on small
open sets S is equal to ddcu where u is plurisubharmonic. One says that u is a local
potential of S. The fact that positive closed (1, 1)-currents have such potentials greatly
simplifies their study. However, in what follows, we will mainly use plurisubharmonic
functions through structural varieties of currents in any bidegree. Roughly speaking, a
structural variety parametrized by a complex manifold M is a familiy of currents (Sθ)θ∈M
such that

θ 7→ 〈Sθ, φ〉

is plurisubharmonic on M as soon as ddcφ is a positive form (see Section 1.3.6 for more
details).

Plurisubharmonic functions have many good properties. In particular, they verify the
maximum principle and the mean value inequality. Rather than making an exhaustive
list, here is a simple result which plays a central role in the study of quasi-attractors.

Lemma 1.3.7. Let (un)n≥0 be a uniformly bounded sequence of subharmonic functions
defined on D which is locally equicontinuous on D∗. Assume that there exists c ∈ R such
that

lim sup
n→∞

un(θ) ≤ c,

for all θ ∈ D and
lim
n→∞

un(0) = c.

Then the sequence (un)n≥0 converges pointwise to the constant function c.

The above result will be combined to the following elementary one.

Lemma 1.3.8. Let (an)n≥0 and (bn)n≥0 be two sequences of real numbers. If there are
two constants c ∈ R and α > 0 such that

lim sup
n→∞

bn ≤ αc, lim sup
n→∞

(an − bn) ≤ (1− α)c and lim
n→∞

an = c

then limn→∞ bn = αc.
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Currents on Pk and dynamics

From now on, f is an endomorphism of Pk of degree d ≥ 2 and 0 ≤ p ≤ k is an integer.
Let ω be the standard Fubini-Study form on Pk normalized such that the volume form

ωk has mass 1. This form gives a way to define the mass of a positive (p, p)-current S on Pk
by ‖S‖ := 〈S, ωk−p〉 and we denote by Cp(Pk) the set of all positive closed (p, p)-currents of
mass 1 on Pk. As for positive measures, thanks to the normalization of the mass, Cp(Pk) is
a compact set. And, for a subset E of Pk we define Cp(E) as the set of currents in Cp(Pk)
which are supported in E.

In what follows, we will extensively study the action by push-forward of f on Cp(E),
for some specific E. The push-forward operator f∗ on currents is simply defined by

〈f∗S, φ〉 := 〈S, f∗φ〉,

where f∗ is the standard pull-back on differential forms. The pull-back of a current is
more delicate to define but this can be done in our setting (see [DS07]). An important
point about these actions is that the masses of f∗S and f∗S can be computed using
cohomology. Actually, since the cohomology groups Hp,p(Pk,R) are unidimensional, the
class of a positive closed current only depends on its mass. Moreover, by Bézout’s Theorem
the action of f∗ on Hp,p(Pk,R) is multiplication by dp and, by duality, the action of f∗ on
Hp,p(Pk,R) is multiplication by dk−p. Hence, d−pf∗ and d−(k−p)f∗ define two operators
from Cp(Pk) to itself.

The dynamics induced by d−pf∗ on Cp(Pk) is quite special. Dinh and Sibony [DS09]
showed that there exists a current T p, called the Green (p, p)-current of f , such that if
S ∈ Cp(Pk) is smooth then

lim
n→∞

1
dpn

(fn)∗S = T p. (1.6)

Moreover, the Green (1, 1)-current T has continuous local potentials so its self-intersection
of order p is well-defined and coincides with T p. The support Jp of T p is called the Julia
set of order p of f and these sets define a filtration

∅ =: Jk+1 ⊂Jk ⊂ · · · ⊂J1 ⊂J0 := Pk.

By a result of Fornæss-Sibony [FS95a] and Ueda [Ued94], J1 is equal to the Julia set Jf
of f, i.e. the complement of the largest open set where the family of iterates (fn)n≥1 is
normal.

The set Jk, sometimes called the small Julia set, is the support of the equilibrium
measure of f, µ := T k, which is the unique measure of maximal entropy k log d of f and
which has many other interesting dynamical properties (see, e.g., [FS94b, BD99, BD01,
DS10b]). However, the measure µ gives no information on proper quasi-attractors since,
by Proposition 1.3.11 below, a quasi-attractor intersecting Jk is automatically equal to
Pk.

1.3.3 Previously known results

Before [Taf18], many other works have been devoted to attractors or quasi attractors of
holomorphic endomorphisms of Pk. However, most of them were aimed at constructing
interesting examples (e.g., [JW00, FS01, Ron12, Dau14, DT18a]) or were working with a
set of assumptions, referred to as (HD) in what follows, first introduced by Dinh [Din07]
(see [Taf13, Dau14, DT18a]). One exception is [FW99] where Fornæss and Weickert
proved, in a rather simple way, the following result.



24 Chapter 1. Attractors in Pk

Theorem 1.3.9 ([FW99]). Let f be a holomorphic endomorphism of Pk. If K is a quasi-
attractor of f which is not a finite union of attracting cycles then K contains an entire
curve, i.e. the image of a non-constant holomorphic map φ : C→ Pk.

As easy consequences, the Hausdorff dimension of such quasi-attractor K is greater
than or equal to 2 and it must intersect the Julia set of f. As we have seen in Theorem
1.3.1, K supports an ergodic measure with at least one positive Lyapunov exponent which
gives an alternative way to obtain entire curves contained in K. Observe that K can be
large enough to contain many entire curves which are not related to the dynamics (see
Theorem 1.6.9 for such an example with K 6= Pk).

When k = 2, using a cohomological argument or the pseudoconvexity of P2 \ φ(C),
Theorem 1.3.9 gives

Corollary 1.3.10 ([FW99]). If f is an endomorphism of P2 then it admits at most one
minimal quasi-attractor K which is not an attracting cycle. In particular, K is a minimal
quasi-attractor for every iterate of f and it is connected. Moreover, P2\K is pseudoconvex.

Notice that Example 1.6.2 shows that this uniqueness result is no longer true in higher
dimension.

Another way to obtained results on quasi-attractors is to use convergences toward the
Green currents similar to (1.6). For example, Fornæss-Sibony [FS94b] proved that almost
every y ∈ Pk satisfy

lim
n→∞

1
dkn

∑
fn(a)=y

δa = µ.

where µ is the equilibrium measure of f. This counterpart in higher dimension to Propo-
sition 1.2.3 follows easily.

Proposition 1.3.11. Let x be in the small Julia set Jk of f. Then for all y ∈ Pk, x � y.
In particular, Jk is contained in a unique chain recurrence class [Jk] and this class is
maximal with respect to � . Moreover, a quasi-attractor intersecting Jk has to be equal
to Pk.

Remark 1.3.12. A non-trivial automorphism of C2 of degree d ≥ 2 also has an equi-
librium measure µ of entropy log d which is mixing so it corresponds to a unique chain
recurrence class [J∗] where J∗ := supp(µ). Bedford and Smilie have proved [BS91b] that
the chain recurrent set of such automorphism is the union of [J∗] with attracting/repelling
cycles.

Another consequence of equidistribution is the following result obtained by Sibony
[Sib99]. It gives a first hint toward the different equivalent formulations of the dimension
of a quasi-attractor given by Daurat (see Section 1.3.4).

Theorem 1.3.13 ([Sib99]). Let K ⊂ Pk be a quasi-attractor for f and let 0 ≤ s ≤ k. If
the Hausdorff dimension of K is strictly smaller than 2s then K ∩Js = ∅.

In particular, if this Hausdorff dimension is strictly smaller than 2 then K is a union
of attracting cycles, which was also a consequence of Theorem 1.3.9.

1.3.4 Main results on attracting currents

The previous section shows that if K ⊂ Pk is a quasi-attractor which is not an attracting
cycle then there are several constraints on the geometry of K and Pk \K. Using the theory
of currents, this section will go further in this direction.
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In [Din07], Dinh constructed, under geometric assumptions which will be referred to
as (HD) is what follows, an attracting current and an equilibrium measure associated to
an attracting set. My main motivation in [Taf18] was to generalize this construction to
all quasi-attractors without any assumption. A first step to this end is to obtained some
geometrical information on quasi-attractors and trapping regions in Pk. This can be done
using the notion of dimension introduced by Daurat [Dau14] for attracting sets.

Definition 1.3.14 ([Dau14]). Let A ⊂ Pk be an attracting set and let 0 ≤ s ≤ k be an
integer. The dimension of A is s if Ck−s(A) 6= ∅ and Ck−s−1(A) = ∅. The dimension of
a trapping region is by definition the dimension of the associated attracting set.

In particular, a result of Federer [Fed69] on the support of flat currents gives the
following lower bound to the Hausdorff dimension dimH (A) of A: if A is an attracting
set of dimension s then dimH (A) is larger than or equal to 2s. However, there is no non-
trivial upper bound to dimH (A). Actually, Theorem 1.6.9 gives an example of an attractor
A ⊂ P2 of dimension 1 with non-empty interior and thus with Hausdorff dimension equal
to 4.

Since a quasi-attractor K is a decreasing intersection of attracting sets (Ai)i≥1, one
can define the dimension of K to be the dimension of Ai, for i large enough. A key point
about this definition is the following equivalent characterization.

Proposition 1.3.15. A quasi-attractor K has dimension s if and only if

K ∩Js 6= ∅ and K ∩Js+1 = ∅.

Although simple, this result is essential since it implies thatK always satisfies one of the
consequence of the assumptions (HD) of Dinh. In Technical words, since K ∩Js+1 = ∅,
the Green current T s+1 belongs to Cs+1(Pk \K) which implies that K is weakly (k − s)-
pseudoconvex (see Section 1.3.6). This will allow us to use the ddc-method developed by
Dinh and Sibony to study the dynamics induced by f on Ck−s(U) for a trapping region U
of dimension s containing K. In particular, we obtain that there exists on each attracting
set at least one current which exhibits equidistribution properties.

Theorem 1.3.16. Let A be an attracting set of dimension s with a trapping region U.
There exist a trapping region Dτ ⊂ U and a current τ in Ck−s(Dτ ) such that

lim
N→∞

1
N

N−1∑
n=0

1
dns

(fn)∗R = τ

for all continuous currents R in Ck−s(Dτ ).

As this type of currents will have a central role in what follows, we coin the following
definition.

Definition 1.3.17. Let V be a trapping region of dimension s. A current S ∈ Ck−s(V ) is
attracting on V if

lim
n→∞

1
N

N−1∑
n=0

1
dns

(fn)∗R = S,

for all continuous form R in Ck−s(V ). A current in Ck−s(Pk) is an attracting current if
it is attracting on some trapping region of dimension s.
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These currents can be considered as attractive periodic points in the set Ck−s(Pk). By
definition, if S ∈ Ck−s(V ) is attracting on V then it is the unique attracting current in
Ck−s(V ). However, there can exist several such currents supported on an attracting set
A and it is not possible to remove the Cesàro mean in the theorem. Here is a trivial
example of this. Let A = {p0, p1, p2} be the union of an attracting fixed point p0 and an
attracting cycle {p1, p2} of period 2. Then A is an attracting set of dimension 0 with two
attracting measures, the Dirac mass δp0 and 2−1(δp1 +δp2). For the latter, if R is a smooth
probability supported in a small neighborhood of p1 then the sequence (fn)∗R has two
different limit values, δp1 and δp2 . However, if we replace f by f2 in this example then
the sequence (fn)∗R converges and we obtain three attracting measures which cannot be
decomposed anymore. On feature of Theorem 1.3.18 below is that this phenomenon still
holds in the general case.

The non-uniqueness of the attracting current in Theorem 1.3.16 is an important issue in
order to study a quasi-attractorK = ∩i≥1Ai. Each attracting set Ai supports an attracting
current but them might be all different. Theorem 1.3.18 also solves this problem.

Theorem 1.3.18. Let A be an attracting set of dimension s. The set of attracting currents
of bidimension (s, s) supported in A is finite. Moreover, there exists an integer n0 ≥ 1
such that if τ is an attracting current of bidimension (s, s) supported in A for fn0 then

lim
n→∞

1
dnn0s

(fnn0)∗R = τ

for all continuous currents R in Ck−s(Dτ ). Here, Dτ is the trapping region associated to
τ and fn0 by Theorem 1.3.16.

Observe that a similar statement doesn’t hold for attracting currents which are not
of maximal bidimension in A. Actually, perturbations of a dissipative Hénon map with a
robust homoclinic tangency give rise to attracting sets of dimension 1 with infinitely many
attracting cycles and thus infinitely many attracting currents of bidimension (0, 0).

The convergence in Theorem 1.3.18 still holds even if R is neither closed nor positive.
However, I have not been able to weaken the (unnatural) continuity assumption on R.
The equidistributions (1.6) towards the Green currents are conjectured to hold for generic
currents but it is known that there exist exceptional currents, i.e. currents S ∈ Cp(Pk)
such that

1
dp
f∗S = S, and S 6= T p.

Hence, in particular d−pn(fn)∗S 9 T p. My feeling about the case of attracting currents is
that there is no exceptional current and the convergence in Theorem 1.3.18 should hold
for all R ∈ Ck−s(Dτ ).

A key ingredient in the proofs of these two theorems is to consider positive closed cur-
rents as geometric objects and to use them in order to build new trapping regions. Indeed,
the construction we use mimics the one in Section 1.2 given by (1.1). A ε-pseudo-orbit of
currents of bidimension (s, s) is a sequence (Si)0≤i≤n such that there exist automorphisms
(σi)0≤i≤n−1 of Pk which are ε-close to the identity and such that

σi∗

( 1
ds
f∗Si

)
= Si+1. (1.7)

As in (1.1), the union NS(ε) of the supports of all ε-pseudo-orbits starting at a given
current S is a trapping region and the weak (k − s)-pseudoconvexity of this region gives
tools to study the dynamics on the currents supported in NS(ε) (see Section 1.3.8 for more
details).
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A consequence of the proof of Theorem 1.3.16 is that attracting currents are extremal
points in the cone of invariant currents. The proof of Theorem 1.3.18 gives the stronger
conclusion that, using the notations of the theorem, the attracting currents of fn0 sup-
ported on A are extremal points in the set of currents Dk−s(A) defined as all the possible
limit values of

1
dsn

fn∗ Sn,

where (Sn)n≥1 is a sequence in Ck−s(A). As a byproduct, we obtain the following result.

Corollary 1.3.19. The support of an attracting current has finitely many connected com-
ponents. In particular, a minimal quasi-attractor has finitely many connected components.

There are other relations between the topology of quasi-attractors and their attracting
currents but they are less neat. From my opinion, their study deserves to be thorough.

My original motivation behind Theorem 1.3.16 and Theorem 1.3.18 was to prove that
every quasi-attractor is actually an attracting set, i.e. every decreasing sequence (Ai)i≥1
of attracting sets is eventually stationary. This would have greatly simplified their study.
However, as shown by Theorem 1.6.8, there exist quasi-attractors in P2 which are not
attracting sets. Nevertheless, a consequence of the finiteness in Theorem 1.3.18 is that,
from the point of view of currents, attracting sets and quasi-attractors are the same.

Corollary 1.3.20. If K is equal to the intersection of a decreasing sequence of attracting
sets (Ai)i≥0 of dimension s then there exists an integer i0 ≥ 0 such that the attracting
currents of Ai are equal to those of Ai0 for all i ≥ i0. Moreover, the minimal elements in
the set of dimension s quasi-attractors are in one-to-one correspondence with the set of
attracting currents in Ck−s(Pk). In particular, a holomorphic endomorphism of Pk admits
at most countably many minimal quasi-attractors.

It is classical (see, e.g., [FS01]) that the intersection of an invariant current with the
appropriate Green current gives an invariant measure. Hence, to an attracting current τ
of bidimension (s, s) is associated an equilibrium measure ντ defined by

ντ := τ ∧ T s.

Using standard techniques ([BS92], [dT08], [Din07]) it is easy to deduce from Theorem
1.3.16 and Theorem 1.3.18 the following properties for ντ .

Corollary 1.3.21. Let A be a quasi-attractor of dimension s for f. If τ is an attracting
current in Ck−s(A) then its equilibrium measure ντ is an ergodic measure of maximal
entropy s log d on A and it has at least s positive Lyapunov exponents. Moreover, if n0
is the integer defined in Theorem 1.3.18 then ντ has at most n0 ergodic components with
respect to fn0 , each of which is mixing.

In particular, if the chain recurrent set of f is not the union of the class [Jk] and
of attracting cycles then there exists a measure ν supported on J1 \Jk with positive
entropy and which is mixing (after replacing f by an iterate). Notice that Theorem 1.3.1
is the combination of Corollary 1.3.19 and Corollary 1.3.21.

Unfortunately, I was not able to prove that ντ is always hyperbolic. It is the case
in all known examples cf. [Taf13], [DT18a]. If the convergence in Theorem 1.3.18 has
exponential speed then the hyperbolicity of ντ would probably follow from an adaptation
of arguments in [dT08], at least on P2. The property of ντ to be hyperbolic would have
several consequences, in particular when k = 2 thanks to this result of Daurat.
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Theorem 1.3.22 ([Dau18]). Let A ⊂ P2 be an attracting set of dimension 1 ans let
τ ∈ C1(A) be an attracting current. If the measure ντ is hyperbolic of saddle type then

• the Green current T is laminar in a neighborhood of supp(ντ ) with a laminar struc-
ture subordinate to the stable manifolds of ντ ,

• for each n ≥ 1 there exists a set of saddle periodic points Pn such that

ντ = lim
n→∞

1
dn

∑
p∈Pn

δp.

Moreover, it seems likely that Pn ⊂ supp(ντ ). Hence, if these equilibrium measures are
always hyperbolic there should not exist quasi-attractors without periodic points in P2.
Notice that [dTN15] adapted the closing lemma of Katok to our setting. It implies that
the support of a hyperbolic measure is always contained in the closure of the set of periodic
points. However, with this approach, it seems difficult to prove that some periodic points
are exactly in the support.

Finally, the hyperbolicity of these measures may help to study the homoclinic classes
which are totally unexplored objects in complex dynamics, except for polynomial auto-
morphisms of C2 where the situation is simple (there exists a unique homoclinic class).

Remark 1.3.23. Polynomial automorphisms of C2 have been extensively studied (see e.g.,
[BS91a] and [BLS93]). In particular, one can associate to such a map filled Julia sets K+,
K−, K = K+ ∩K− and Julia sets J± = ∂K±, J = J+ ∩ J−. Moreover, there exist two
positive closed (1, 1)-currents µ+ and µ− with supp(µ±) = J±. The measure µ := µ+∧µ−
is mixing, hyperbolic, the saddle periodic points equidistribute towards it, its support is
contained in J and is the unique homoclinic class and µ is the unique measure of maximal
entropy log d. It is easy to see that a generic small perturbation of such automorphisms
gives an endomorphism f of P2 which possesses an attracting set A. The map f has
its Green current T whose support is exactly the Julia set Jf and there exists a unique
attracting current τ supported in A. There is a strong analogy between these objects. The
currents T and τ correspond respectively to µ+ and µ−, the sets J+ and K− correspond to
Jf and A. Moreover, in this situation the combination of the results of [Din07], [Dau18],
Theorem 1.3.22 and Theorem 1.4.4 gives that the measure ν := T ∧τ is mixing, hyperbolic,
the saddle periodic points equidistribute towards it and it is the unique measure supported
in A of maximal entropy log d i.e. it can be seen as the continuation of µ for f.

I will now give the main ideas of the proofs of these results. The first step concernes
the dimension of a quasi-attractor.

1.3.5 Dimension of a quasi-attractor and attracting currents

To simplify the notation, for the rest of this chapter s and p will always be integers such
that s+ p = k.

The key point in the proof of Proposition 1.3.15 is that the action of f∗ on Hp,p(Pk,R),
which is multiplication by ds, dominates the action on Hp+1,p+1(Pk,R), which is multi-
plication by ds−1. This gives a way to construct positive closed currents supported in a
trapping region U from positive currents, not necessarily closed, also supported on U. Let
us explain this construction for smooth currents. It will illustrate the role of the Green
current T s and of its support Js.
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Let S ∈ Cp(Pk) be a smooth form and let χ ≥ 0 be a smooth function. The mass of
the push-forwards d−snfn∗ (χS) is〈 1

dsn
fn∗ (χS), ωs

〉
=
〈
χS,

1
dsn

fn∗ωs
〉
.

Since χS is smooth, (1.6) implies that this last terme converges to c := 〈T s, χS〉. In
particular, if c 6= 0 then ‖fn∗ (χS)‖ ∼ cdsn. On the other hand, ddc(χS) is a smooth
(p + 1, p + 1)-form so there exists M > 0 such that −Mωp+1 ≤ ddc(χS) ≤ Mωp+1. The
same argument as above shows that ‖fn∗ ωp+1‖ ∼ d(s−1)n. Thus d−snfn∗ (ddcχS) converges to
0 and every limit value of d−snfn∗ (χS) is ddc-closed. Actually, the smoothness assumption
on S is unnecessary and, using the self-map F of Pk×Pk defined by F (x, y) = (f(x), f(y)),
Dinh proved that the limit values are d-closed [Din07, Proposition 4.7] (see also [FS98,
Proposition 5.4]). Hence we have

Lemma 1.3.24. Let χ be a positive smooth function in Pk. If S is a current in Cp(Pk)
then the sequence d−sn(fn)∗(χS) has bounded mass and each of its limit values is a positive
closed (p, p)-current of Pk of mass c := 〈S ∧ T s, χ〉.

The following result follows then easily and it implies directly Proposition 1.3.15

Proposition 1.3.25. Let A ⊂ Pk be an attracting set for f. For 0 ≤ s, p ≤ k with
s+ p = k, the following properties are equivalent.

(1) A ∩Js 6= ∅,

(2) Cp(A) 6= ∅,

(3) Cs(Pk \A) = ∅.

Proof. Let U be a trapping region associated to A. If A ∩Js 6= ∅ then there exists a
smooth function χ ≥ 0 supported on U such that 〈T s, χωp〉 =: c 6= 0. By Lemma 1.3.24,
the limit values of 1

cdsn (fn)∗(χωp) are in Cp(Pk) and, since f(U) ⊂ U and A = ∩n≥0f
n(U),

they must be supported on A. This give (1) =⇒ (2).
(2) =⇒ (3) simply follows from the fact that, for cohomological reasons, the supports

of S ∈ Cp(Pk) and R ∈ Cs(Pk) must intersect.
Finally, if A ∩Js = ∅ then T s ∈ Cs(Pk \A) and thus Cs(Pk \A) 6= ∅.

As we already said, Jk is the support of the unique measure µ = T k of maximal en-
tropy k log d. The other Julia sets are also related to the topological entropy of f restricted
to compact subsets of Pk (see [Din07] and [dT06]).

Theorem 1.3.26. If K ⊂ Pk is a compact set such that K∩Js+1 = ∅ then the topological
entropy of f restricted to K is smaller than or equal to s log d.

In particular, if K is a quasi-attractor of dimension s then its topological entropy is
smaller than or equal to s log d. The existence of a measure on K with entropy s log d will
show that K has dimension s if and only if its entropy is exactly s log d.

1.3.6 Structural varieties and geometry of the space of currents Cp(U)

A crucial consequence of Proposition 1.3.15 is that a quasi-attractor K of dimension s
verifies the weak p-pseudoconvexity condition (p+ s = k) introduced in [DS09].
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Definition 1.3.27. A compact subset K of a complex manifold X of dimension k is
weakly p-pseudoconvex if there exists a positive smooth (s, s)-form φ such that ddcφ is
strictly positive on K.

In particular, if there is a current S ∈ Cs+1(Pk \K) then there exists a (s, s)-current
φ such that ddcφ = ωs+1 − S and so ddcφ is strictly positive on K. Using a regularization
and adding a large constant times ωs, we can assume that φ is smooth and positive, thus
K is weakly p-pseudoconvex (see [DS09]).

An important point about weakly p-pseudoconvex compact sets in Pk is that a current
of bidegree (p, p) supported on such a set is totally determined by its values on smooth
forms φ with ddcφ ≥ 0.

Lemma 1.3.28. Let U ⊂ Pk be an open set such that U is weakly p-pseudoconvex. Let
R,S ∈ Cp(U). If for every smooth positive (s, s)-form φ on U with ddcφ ≥ 0 there currents
verify

〈R,φ〉 = 〈S, φ〉

then R = S.

The fact that it is enough to test a current on forms φ with ddcφ ≥ 0 becomes crucial
when combined with the following objects.

A structural variety of positive closed (p, p)-currents parametrized by a complex mani-
foldM is a family of currents (Sθ)θ∈M in Cp(Pk) such that the currents Sθ “glue” together
in order to form a closed current in M × Pk. To be more precise, there exists a posi-
tive closed (p, p)-current S on M × Pk such that for every θ ∈ M the slice at θ of S is
equal to Sθ. We refer to [Fed69] for the slicing theory of currents of Federer. Structural
varieties played an important role in the study of horizontal maps (see [Duj04], [DS06],
[DNS08]) and Dinh and Sibony have systematized their use in the theory of super-potential
(see [DS09], [DS10c]). In particular, these authors showed that the function θ 7→ 〈Sθ, φ〉
inherits properties from the test form φ.

Theorem 1.3.29. [DS06, Theorem 2.1][Din07, Proposition A.1] Let U be an open subset
of Pk such that U is weakly p-pseudoconvex. If (Sθ)θ∈M is a structural variety in Cp(U)
and if φ is a real continuous (s, s)-form on U such that ddcφ ≥ 0 (resp. ddcφ = 0, resp.
dφ = 0) then the function h(θ) := 〈Sθ, φ〉 is plurisubharmonic (resp. pluriharmonic, resp.
constant). In particular, the mass of Sθ is independent of θ.

In particular, if U is weakly p-pseudoconvex then the structural varieties in Cp(U) can
be fully studied by the way of plurisubharmonic functions.

All the structural varieties that we consider in what follows can be obtained from this
family of examples using convex combinations and limits.

Example 1.3.30. Let U ⊂ Pk be as in Theorem 1.3.29 and let S ∈ Cp(U). For a holo-
morphic map g : M × U → U , denote by gθ(z) := g(θ, z). The number dg := ‖(gθ)∗S‖ is
independent of θ and if dg 6= 0 then

Sθ := 1
dg

(gθ)∗S

defined a structural variety parametrized by M in Cp(U).

The structural varieties will be used mainly in two ways and in both cases, it will be
sufficient to consider structural disks, i.e. structural varieties parametrized by the unit
disk D of C. If S ∈ Cp(U) then there exist structural varieties
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• (Sθ)θ∈D regularizing S, i.e. S0 = S and Sθ is smooth if θ ∈ D∗,

• and other ones (Rθ)θ∈D which corresponds to pseudo-orbits of length n, i.e. R0 =
d−snfn∗ S and Rθ is the last term of a ε-pseudo-orbit of S as in (1.7), where ε depends
on θ.

We refer to Section 1.3.7 and Section 1.3.8 for more details.

In [Din07], Dinh studies attracting sets associated to trapping regions with the follow-
ing properties.

There exist two linear subspaces I and L of dimension p − 1 and s respectively
such that I ∩U = ∅ and L ⊂ U. Moreover, for each x ∈ L the unique dimension
p linear subspace I(x) containing I and x intersects U in a subset which is star-
shaped with respect to x in I(x) \ I ' Cp.

(HD)

A typical example of an attracting set with a trapping region U satisfying (HD) is the
hyperplane at infinity H∞ in Pk = Ck ∪ H∞ when f is a polynomial endomorphism of
Ck which extends holomorphically to Pk. Observe that these assumptions are only about
trapping regions and that small perturbations of f still admit U as a trapping region. In
this example, the dimension of the attracting set is k − 1 but similar examples of any
dimension 0 ≤ s ≤ k are easy to obtain (see Example 1.6.1).

The main two consequences of (HD) are the following. If U satisfies (HD) then

• [I] ∈ Cs+1(Pk \ U) thus all the compact subsets of U are weakly p-pseudoconvex,

• the set of currents Cp(U) is connected by structural disks.

Let’s give some precisions on this last point. There exist homogeneous coordinates [x0 :
· · · : xk] of Pk such that I = {x0 = · · · = xs = 0} and L = {xs+1 = · · · = xk = 0}. For
each θ ∈ D∗ the self-map ρθ of Pk defined by

ρθ([x0 : · · · : xk]) = [x0 : · · · : xs : 2θxs+1 : · · · : 2θxk]

is an automorphism such that ρ1/2 = Id. The corresponding map for θ = 0 is the projection
of Pk \ I onto L. Therefore, if S ∈ Cp(U) then

Sθ := (ρθ)∗S

is a structural disk such that S1/2 = S and S0 = [L].Moreover, the star-shaped assumption
in (HD) implies that this disk restricted to the parameters |θ| < r, with r > 1/2 small
enough, is a structural disk in Cp(U). In some sense, Cp(U) is star-shaped with respect to
[L].

The following simple example shows that the setting is radically different in general.

Example 1.3.31. Let f be the endomorphism of P2 defined by f([x0 : x1 : x2]) = [x2
1 :

x2
0 : x2

3]. For i ∈ {1, 2, 3}, define Hi = {xi = 0} and let Ui be a small neighborhood of Hi.
These neighborhoods can be chosen such that each of them satisfies (HD) and U := U0∪U1
is a trapping region for f. Then Cp(U) has uncountably many connected components with
respect to structural disks. To be more precise, for t ∈ [0, 1] define Rt := t[H1]+(1−t)[H0].
If t1 6= t2 then Rt1 and Rt2 cannot be joined by a chain of structural disks. Actually, if
S ∈ C1(U2) is smooth and χ is a smooth function such that χ = 1 on U1 ∩ U2 and χ = 0
on U0 then
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• 〈Rt, χS〉 = t and

• by Theorem 1.3.29, θ 7→ 〈Sθ, χS〉 is constant for every structural disk (Sθ)θ∈D in
C1(U) since χS is closed on U.

The same situation happens with a small neighborhood V an attracting cycle of period
2 in P1 but we choose this one in P2 to emphasized that the problem doesn’t come from
the lake of connectedness of V.Moreover, C1(V ) has only two connected components (with
respect to structural disks) containing extremal currents while C1(U) has infinitely many
(consider the normalized current of integration on Xa,b = {xa0xb1 = ε}, a, b ∈ N, which is
in a structural disk with Rt, t = b/(a+ b)).

I finish this section with two remarks about attempts (unsuccessful until now) to put
nice additional structures on Cp(U) in order to have a better understanding of it. Both
these ideas underlie most of the proofs of [Taf18].

The first one is about defining a good distance on Cp(U). The hope is to find conditions
on U which ensure that the iterates fn act equicontinuously on Cp(U), i.e. it can be
considered as a Fatou component in the set of currents.
Remark 1.3.32. In [DS06] Dinh and Sibony defined a Kobayashi pseudo-distance on
Cp(U) mimicking the one on complex manifold. The pseudo-distance between S,R ∈
Cp(U) is the infimum of

∑N
n=1 distD(an, bn) over all the possible chains of structural disks

(Sn,θ)θ∈D in Cp(U), 1 ≤ n ≤ N, with

S = S1,a1 , Sn,bn = Sn+1,an+1 and SN,bN = R.

Here, distD is the Poincaré distance on D. If this pseudo-distance is a distance, it is natural
to say that Cp(U) is Kobayashi hyperbolic. They prove that if U is weakly p-pseudoconvex
then Cp(U) is Brody hyperbolic, i.e. there is no non-constant structural variety in Cp(U)
which is parametrized by C. However, they also show that even in the simple case of
measure on D, C1(D), this pseudo-distance is not a distance. Actually, they show that the
distance between the Dirac mass at 0 and the Lebesgue measure on a circle centered at
0 vanishes. The structural disks they use to this end are similar to the ones in Example
1.3.30 except that the map g is not holomorphic and given by

g(θ, z) = |θ||z|1/n,

for n ≥ 1. Dinh-Sibony present structural varieties as analogs to complex subvarieties in the
infinite dimensional space Cp(U). However, these varieties are rather of plurisubharmonic
nature and they seem too flexible to define a good notion of Kobayashi pseudo-distance.
When U is a trapping region, it should be possible to find a subfamily of structural disks,
stable by the dynamics, such that the Kobayashi pseudo-distance defined with these disks
is a distance on Cp(U).

The pre-order defined in the following remark uses structural disk to compare the
supports of currents. In some sense, the support of a current which is minimal for this
relation can be considered as “irreducible”. This idea, restricted to invariant currents, is
a key ingredient in the proof of Theorem 1.3.18.
Remark 1.3.33. Let R,S ∈ Cp(U). One can say that R ` S if there exists a structural
disk (Rθ)θ∈D in Cp(U) such that R = R0 and supp(S) ⊂ supp(Rθ) for some θ ∈ D. Since
we work on Pk, a equivalent formulation is that there exists a second structural disk (Sθ)θ∈D
such that Rθ ≥ cSθ′ for some θ, θ′ ∈ D and c > 0. If we extend this relation in order to force
transitivity then ` becomes a pre-order. For measures, i.e. p = k, the minimal elements
in Ck(U) corresponds to connected components of U. If U is as in Example 1.3.31 then
C1(U) has 2 minimal classes corresponding to [H0] and [H1].
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1.3.7 Existence and uniqueness of attracting currents under (HD)
In this section we sketch the proof of the main result of [Din07]. We slightly modify one
of the arguments of the original proof in order to be still able to use it later in our more
general setting.

Let U be a trapping region satisfying (HD) and let A = ∩n≥0f
n(U) be the associated

attracting set. As we have seen in Section 1.3.6, the assumptions (HD) on U imply that
if S ∈ Cp(U) then there exists a structural disk (Sθ)θ∈D in Cp(U) such that S1/2 = S and
S0 = [L]. Using convolution, Dinh obtained a disk (Rθ)θ∈D such that

(1) R1/2 = S,

(2) if θ 6= 1/2, then Rθ is a continuous form,

(3) for each compact subset L of D \ {1/2} there exists a constant cL > 0, independent
of S, such that ‖Rθ −Rθ′‖C0 ≤ cL|θ − θ′|, for all θ, θ′ ∈ L,

(4) R0 is independent of S.

The only point that requires (HD) is the last one. We modify it to this more flexible one:

(4’) there exist c > 0 and R̃ ∈ Cp(U) which is strictly positive on a neighborhood of A
such that R0 ≥ cR̃. Both R̃ and c are independent of S.

From this, the proof goes as follows.

Step 0: The set Dp(U).
In order to simplify the notation, denote

Λ := d−sf∗

the push-forward operator associated to f. The set of currents Dp(U) is defined as all the
possible limit values of sequences of the form

ΛnSn

where (Sn)n≥0 is a sequence in Cp(U). In particular, Dp(U) contains all the limit values
of ΛnS with S ∈ Cp(U). Moreover, Dp(U) is compact, all its elements are supported in
A and it is easy to see that S ∈ Dp(U) if and only if there exists Sn ∈ Dp(U) such that
S = ΛnSn.

Step 1: Construction of the attracting current τ.
The set U is weakly p-pseudoconvex thus the currents in Cp(U) are entirely determined

by their values on smooth forms φ ≥ 0 with ddcφ ≥ 0. Let φ be such a form and define

cφ := sup
S∈Dp(U)

〈S, φ〉.

As Dp(U) is compact, there exists S ∈ Dp(U) with 〈S, φ〉 = cφ and as we have said, there
exists Sn ∈ Dp(U) such that S = Λn(Sn). Let (Rn,θ)θ∈D be the structural disk associated
to Sn satisfying the points (1)-(4’). By Theorem 1.3.29, the functions

hn(θ) = 〈Λn(Rn,θ), φ〉

are subharmonic. If θ ∈ D then lim supn→∞ hn(θ) ≤ cφ since all possible limit values
of Λn(Rn,θ) are in Dp(U). Moreover, hn(0) = cφ and the point (3) above implies that



34 Chapter 1. Attractors in Pk

the functions hn are locally equicontinuous on D \ {1/2}. Therefore, by Lemma 1.3.7 the
sequence hn converges pointwise to cφ. In particular,

lim
n→∞

〈Λn(Rn,0), φ〉 = cφ.

On the other hand, Rn,0 ≥ cR̃ thus

lim sup
n→∞

〈Λn(Rn,0 − cR̃), φ〉 ≤ (1− c)cφ and lim sup
n→∞

〈ΛnR̃, φ〉 ≤ cφ.

Hence, Lemma 1.3.8 gives that 〈ΛnR̃, φ〉 converges to cφ. Since R̃ is independent of φ this
implies that ΛnR̃ converges to a current τ such that, for all φ with ddcφ ≥ 0, 〈τ, φ〉 = cφ.

Step 2: Convergence towards τ.
By assumption R̃ is strictly positive on a neighborhood V of A. Hence, for each con-

tinuous form S ∈ Cp(V ) there is c > 0 such that R̃ ≥ cR. The same arguments than above
then imply that, for all φ with ddcφ ≥ 0, 〈ΛnR,φ〉 converges to cφ, i.e. ΛnR converges to
τ. From this, it is not difficult to extend the convergence to all continuous form in Cp(U).

In particular, as the convergence holds for all continuous form in Cp(U), the current τ
is automatically the unique attracting current in Cp(U).

1.3.8 Dynamics in the space of currents

There are several major differences between an arbitrary trapping region and one satisfying
(HD). The first one is that, as shown by the simple example of an attracting 2-cycle, a
sequence of the form ΛnR may not converge in general. Hence, instead of the operators
Λn, we consider their Cesàro means

∆n := 1
n

n∑
i=1

Λi.

All the limit values of ∆nS are in the set Ip(U) of elements of Cp(U) invariant by Λ.
Hence, we restrict ourselves, at least at the beginning, to this set instead of Dp(U).

Another important difficulties is that there might be several attracting currents and
thus they cannot simply be defined by the formula

〈τ, φ〉 := max〈S, φ〉,

where the max is over Dp(U) or Ip(U). To solve this problem, we keep the idea that
an attracting current must maximise test forms φ with ddcφ ≥ 0 but not all at the same
time. To be more precise, let (φn)n≥1 be a dense sequence in the space of test forms φ with
ddcφ ≥ 0. To this sequence we will associated an attracting current and the construction
will depend on the order in the sequence. This construction implies Theorem 1.3.16 and
here are its main steps.

Step 1: Trapping regions associated to invariant currents.
By compactness of Ip(U), there exists S1 ∈ Ip(U) such that

〈S1, φ1〉 = max
S∈Ip(U)

〈S, φ1〉.

Now, we will associate a trapping region to S1. A first important remark is that, since
U is a trapping region for f, there exists an open neighborhood W of the identity in
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Aut(Pk) such that for every σ ∈ W, σ ◦ f(U) ⊂ U. From this, we say that (Ri)0≤i≤n is a
W -pseudo-orbit between S and R if there exists {σ0, . . . , σn−1} ⊂W such that

S = R0, Ri+1 = σi∗(ΛRi) and Rn = R,

or equivalently
R = (σn−1)∗Λ · · · (σ0)∗ΛS. (1.8)

Define NS1 by
NS1 = ∪Rsupp(R),

where the union is over all the currents R such that there exists aW -pseudo-orbit between
S1 and R. The properties of W and the invariance of S1 give easily

• S1 ∈ Cp(NS1),

• NS1 is an open subset of U,

• for every σ ∈W, σ ◦ f(NS1) ⊂ NS1 and in particular f(NS1) ⊂ NS1 .

Step 2: Structural disks and convergence in NS1 .
Possibly by reducing W, we can assume that there exists a biholomorphism ψ between

W and a unit ball B in some CN . This allows us to define, for σ ∈ W and θ ∈ D, the
product θσ := ψ−1(θψ(σ)). From this, we can retract a W -pseudo-orbit between two
currents S and R to an authentic orbit of S using a structural disk. Actually, it is enough
to deform (1.8) by

Rθ := (θσn−1)∗Λ · · · (θσ0)∗ΛS.

This structural disk (parametrized by a slightly larger disk than D) verifies R1 = R and
R0 = ΛnS. In particular, if S is invariant by Λ then R0 = S. Using this kind of disks and
a regularization process, it is easy to show that there exists a structural disk (Rθ)θ∈D in
Cp(NS1) such that R0 = S1 and for every continuous form R ∈ Cp(NS1) there are c > 0
and θ0 ∈ D such that

Rθ0 ≥ cR.

Using similar arguments to those of Section 1.3.7 we then obtain that for every continuous
form R ∈ Cp(NS1) each limit value R∞ of (∆lR)l≥1 must satisfies

〈R∞, φ1〉 = 〈S1, φ1〉.

Step 3: Induction.
To summarize the first step, we started with a trapping region U and an open set W

of Aut(Pk) such that
∀σ ∈W, σ ◦ f(U) ⊂ U.

And we obtained a trapping region NS1 ⊂ U which satisfies

∀σ ∈W, σ ◦ f(NS1) ⊂ NS1 ,

and this without reducing W.
We can now apply the same idea to NS1 instead of U. Namely, there exists S2 ∈

Ip(NS1) such that
〈S2, φ2〉 = max

S∈Ip(NS1 )
〈S, φ2〉.
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In the same way, we obtain a trapping region NS2 ⊂ NS1 such that

∀σ ∈W, σ ◦ f(NS2) ⊂ NS2 .

Applying Step 2 to this trapping region implies that for every continuous form R ∈
Cp(NS2) each limit value R∞ of (∆lR)l≥1 must satisfies

〈R∞, φ2〉 = 〈S2, φ2〉.

But a continuous form in Cp(NS2) is also in Cp(NS1) so

〈R∞, φ1〉 = 〈S1, φ1〉,

i.e. R∞ is an element of Ip(NS2) which maximises both φ1 and φ2. Hence, we can assume
that it is also the case for S2, i.e. 〈S2, φ1〉 = 〈S1, φ1〉.

By induction, this gives a decreasing sequence of trapping regions NSn associated to
invariant currents Sn such that

(1) for all σ ∈W, σ ◦ f(NSn) ⊂ NSn ,

(2) for 1 ≤ i ≤ n,
〈Sn, φi〉 = max

S∈Ip(NSi )
〈S, φi〉,

(3) for all continuous form R in Cp(NSn) each limit value R∞ of (∆lR)l≥1 satisfies

〈R∞, φn〉 = 〈Sn, φn〉.

Step 4: The sequence (NSn)n≥1 is eventually stationary and conclusion.
The key point in Step 3 is that all the trapping regions NSn satisfies

∀σ ∈W, σ ◦ f(NSn) ⊂ NSn ,

where W is independent of n. It is easy to see that there can be only finitely many
attracting sets associated to a decreasing sequence of trapping regions with this property.
In other words, if An := ∩i≥0f

i(NSn) then there exists n0 ≥ 1 such that An = An0 for all
n ≥ n0. In this situation, the construction of NSn implies that NSn = NSn0

. Therefore,
the point (3) in Step 3 implies that if R is a continuous form in Cp(NSn0

) then for each
limit value R∞ of (∆lR)l≥1 and each n ≥ 1

〈R∞, φn〉 = 〈Sn, φn〉.

In particular, it is independent of R and of the choice of the limit value. Using the
density of the sequence (φn)n≥1, this implies that ∆lR converges to a current τ which is
independent of R, i.e. τ is attracting on NSn0

.

This ends the proof of Theorem 1.3.16. When the sequence (φn)n≥0 changes the
construction may give a different attracting current.

Remark 1.3.34. In Example 1.3.31 the open set U = U0 ∪ U1 is a trapping region for
the map f [x0 : x1 : x2] = [xd0 : xd1 : xd2]. It is artificially the union of two trapping
regions U0 and U1 whose associated attracting sets are respectively H0 = {x0 = 0} and
H1 = {x1 = 0}. In the construction above, we have NSn = U until φn0 distinguishes H0
from H1, i.e. 〈[H0], φn0〉 6= 〈[H1], φn0〉. Then, for n ≥ n0, NSn = Ui and τ = [Hi], where
〈[Hi], φn0〉 = maxj=0,1〈[Hj ], φn0〉. A well-chosen permutation of the sequence (φn)n≥1 gives
the other line as an attracting current.
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However, all the resulting trapping regions are still invariant by σ ◦ f for all σ ∈ W.
It is possible to deduce from this that the set of attracting currents in Cp(U) obtained by
this method forms a finite set {τ1, . . . , τm} and if φ is a test form with ddcφ ≥ 0 on U then

max
1≤i≤m

〈τi, φ〉 = max
S∈Ip(U)

〈S, φ〉.

The major issue to prove Theorem 1.3.18 is that there might exist infinitely many currents
which are attracting on trapping regions which are not invariant by σ ◦ f for some σ ∈W.
In [Taf18, Lemma 3.27], which is the key result of the paper, we show that it is not
possible: if a current in Cp(U) is attracting on V then σ◦f(V ) ⊂ V for all σ ∈W. In other
words, the “basin of attraction” of an attracting current in Cp(U) inherits the invariance
properties of U. This implies that the number of attracting currents in Cp(U) is finite,
bounded by a constant depending only on W. In particular, this constant is the same for
all the iterates of f which implies the following result.

Proposition 1.3.35. There exists an integer n0 ≥ 1 such that if we replace f by fn0 then
for all n ≥ 1 the set of attracting currents for fn in Cp(U) is equal to the set of attracting
currents for f in Cp(U).

The last step towards Theorem 1.3.18 is to remove the Cesàro mean in the convergence.
This is done by studying the structure of Dp(U) using techniques similar to those to prove
Theorem 1.3.16. This part heavily relies on Proposition 1.3.35.

From the finiteness of the set of attracting currents supported on an attracting set, it
is easy to obtain results about quasi-attractors.

Theorem 1.3.36. Let K be a minimal element in the set of quasi-attractors of dimension
s. There exists an integer n0 ≥ 1 such that if we replace f by fn0 then K splits into n0
quasi-attractors K = K1 ∪ · · · ∪Kn0 such that each Ki is contained in a trapping region
UKi which supports a unique attracting current τi ∈ Cp(Ki) with

lim
n→∞

1
dns

(fn)∗R = τi

for all continuous currents R in Cp(UKi). In particular, each Ki is minimal in the set of
s-dimensional quasi-attractors of f.

1.3.9 Connected components

One unexpected consequence of the results above concernes the connectivity properties
of minimal quasi-attractors: such a quasi-attractor must have finitely many connected
components. The idea, which is already available for continuous maps, is that a minimal
quasi-attractor which contains an invariant set with finitely many connected components
(a periodic orbit for example) has at most the same number of components. In our
setting, this invariant set will be the support of an attracting current. The fact that it has
finitely many connected components follows from the following extremality result which
is a consequence of the last part of the proof of Theorem 1.3.18.

Corollary 1.3.37. Let τ be a current attracting on a trapping region U. If τ is also
attracting for all the iterates fn then for all test forms φ with ddcφ ≥ 0 on U we have

〈τ, φ〉 = max
S∈Dp(U)

〈S, φ〉.

In particular, τ is extremal in the cone Dp(U).
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Notice that the assumption on τ is not really restrictive since, by Proposition 1.3.35,
any attracting current is an average of finitely many attracting currents for fn0 with this
property. The first part of Corollary 1.3.19 follows easily.

Corollary 1.3.38. Let τ and U be as in Corollary 1.3.37. Then the support of τ is
connected.

Proof. Let X be a connected component of supp(τ) and let 0 ≤ χ ≤ 1 be a smooth
function such that χ = 1 on a small neighborhood of X and supp(χ) ∩ supp(τ) = X. For
n ≥ 0, define the current

Sn := (χ ◦ fn)τ
‖χτ‖

.

It is clear that these currents are positive and they are also of mass 1 since

‖Sn‖ = 〈Sn, T s〉 = 〈T
s ∧ τ, χ ◦ fn〉
〈T s ∧ τ, χ〉

= 1,

since ντ := T s ∧ τ is an invariant measure. Moreover,

ΛnSn = 1
dsn

fn∗ (χ ◦ fnτ) = χ(Λnτ) = χτ = S0.

Finally, we claim that each Sn are closed. This implies that S0 is in Dp(U). If S0 6= τ (i.e.
‖χτ‖ < 1) then the same holds for

R0 := (1− χ)τ
‖(1− χ)τ‖

and thus
τ = ‖χτ‖S0 + ‖(1− χ)τ‖R0

which contradicts to fact that, by Corollary 1.3.37, τ is extremal in Dp(U).
It remains to prove that Sn is closed for each n ≥ 0. Let n ≥ 0 and let x ∈ supp(Sn).

By the definition of Sn, this implies that x ∈ supp(τ) and x ∈ supp(χ ◦ fn). The first
point gives, since supp(τ) is invariant by f, that fn(x) ∈ supp(τ) and the latter that
fn(x) ∈ supp(χ), i.e. fn(x) ∈ supp(τ) ∩ supp(χ) = X. But χ = 1 in a neighborhood of
X and fn is an open mapping thus χ ◦ fn = 1 in a neighborhood of x. Hence, in this
neighborhood Sn coincides with τ and thus is closed.

In order to obtain the second part of Corollary 1.3.19, we prove a slightly stronger
result.

Corollary 1.3.39. Let K be a minimal element in the set of quasi-attractors of dimension
s. Then K has finitely many connected components.

Proof. By Theorem 1.3.36, if we replace f by fn0 thenK is the union of n0 quasi-attractors
Ki each of which supports a unique attracting current satisfying the assumption of Corol-
lary 1.3.38. We will show that each Ki is connected and to simplify the notations, we
assume that n0 = 1 and K = Ki.

Hence, K is a quasi-attractor, minimal in dimension s, which supports an attract-
ing current τ such that supp(τ) is connected. By definition, K is the intersection of a
decreasing family of attracting sets (Ai)i≥1. Each attracting set Ai has finitely many con-
nected components that we denote by Ai,j . Since supp(τ) ⊂ K ⊂ Ai is connected, for
each i ≥ 1 there exists j(i) such that supp(τ) ⊂ Ai,j(i). A first observation is that, since
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the sequence (Ai)i≥1 is decreasing, the same holds for (Ai,j(i))i≥1. On the other hand, the
invariance of supp(τ) implies that f(Ai,j(i)) = Ai,j(i) and it is easy to deduce from this
that Ai,j(i) is an attracting set for f. Hence K ′ := ∩i≥1Ai,j(i) is a quasi-attractor such that
supp(τ) ⊂ K ′ and thus it has dimension s. Since K ′ ⊂ K, the minimality of K implies
that K ′ = K. Finally, K ′ is a decreasing intersection of connected compact sets and thus
it is also connected.

1.4 Attracting sets with small topological degree and gen-
eralizations

The purpose of this section is to investigate whether additional assumptions on the dy-
namics on an attracting set A imply additional properties on its attracting currents and
reciprocally. This study started with the work of Daurat [Dau14] where she introduced
the notion of attracting sets with small topological degree. The idea that discrepancies
between the dynamical degrees have strong effects on the dynamics has a long history
(see e.g. [Gue10] for the global setting of rational maps and [DS03], [Duj04], [DNS08]
for more local settings). Roughly speaking, in dimension 2, when the topological degree
is larger than the first dynamical degree then the dynamics has strong similarities with
the one of holomorphic endomorphisms of P2. When the first dynamical degree is larger
then the dynamics looks like the one of Hénon maps. This last point has been in par-
ticular developed in the works of Diller-Dujardin-Guedj [DDG10a, DDG11, DDG10b] for
meromorphic maps on compact surfaces and Daurat used their ideas and methods in the
semi-local setting of attracting sets [Dau14, Dau18].

Notice that there are differences between the degrees defined on a compact manifold
and those defined in a local setting. In the first case the degrees are mainly related to the
action on the cohomology and can be computed using smooth objects. This cohomological
nature gives strong constraints such as the Khovanskii-Teissier-Gromov log-concavity of
these degrees. In a local setting, the definition can change if we consider smooth or singular
objects.

1.4.1 Local dynamical degrees

Let f be an endomorphism of Pk of degree d ≥ 2. Let U ⊂ Pk be a trapping region of
dimension s. Following [DS03] and [DNS08], define for 0 ≤ l ≤ k the dynamical degrees dl
and d∗l on U by

dl := lim sup
n→∞

(∫
U

(fn∗ωl) ∧ ωk−l
)1/n

and

d∗l := lim sup
n→∞

(
sup

S∈Cl(Pk)
‖fn∗S‖U

)1/n

.

In some sense, d∗l corresponds to the maximal exponential growth of the volume of
f−n(X) ∩ U where X is a codimension l complex submanifold. The degree dl has a
similar interpretation but replacing the maximum by an average.

A first easy observation is that by taking S = ωl we get dl ≤ d∗l . A second one is
that ‖fn∗S‖U ≤ ‖fn∗S‖ = dln, thus d∗l ≤ dl. Finally, since the dimension of U is s, for
all 0 ≤ l ≤ s there exist smooth forms in Ck−l(U) and thus dl = dl. To summarize, if
0 ≤ l ≤ s then

dl = d∗l = dl.



40 Chapter 1. Attractors in Pk

In general, dl and d∗l can differ if l > s. For example, if f [x0 : · · · : xk] = [xd0 : · · · : xdk] and
U is a small neighborhood of A := {xs+1 = · · · = xk = 0} then for s < l ≤ k

dl = 0 and d∗l = dl.

A consequence of the convergence in Theorem 1.3.18 is that, if τ ∈ Cp(U) is attracting on
U then ∫

U
(fn∗ωs+1) ∧ ωp−1 = o(dsn)

and thus ds+1 ≤ ds = ds (see [Din07, Proposition 6.1]). Moreover, if the convergence
in Theorem 1.3.18 has exponential speed, what I conjecture, then ds+1 < ds = ds. This
would have consequences, in particular when s = k − 1 (see Theorem 1.4.4).

1.4.2 Small topological degree

When l = k then it is easy to see that the inequality d∗k < ds corresponds exactly to the
following definition introduced by Daurat [Dau14, Definition 3.1].

Definition 1.4.1. Let U ⊂ Pk be a trapping region of dimension s for f. The endomor-
phism f is said to be asymptotically of small topological degree on U if for all p ∈ U we
have lim supn→∞(card(f−n(p) ∩ U))1/n < ds. In this situation, we say that the attracting
set A := ∩n≥0f

n(U) is of small topological degree.

Daurat proved that this notion is open in the set of endomorphisms and that if f is
asymptotically of small topological degree on U then there exists n0 ≥ 1 such that for
all p ∈ U, the number of preimages of p by fn0 in U is smaller than dn0s. In particular,
an attracting set of small topological degree cannot be algebraic. Hence, the inequality
d∗k < ds gives a simple open condition which ensures that the corresponding attracting
sets are not algebraic. For codimension 1 attracting sets, i.e. s = k − 1, she obtained a
stronger result which was improved in [DT18a].

Theorem 1.4.2 ([Dau14, DT18a]). Let U ⊂ Pk be a trapping region of dimension s = k−1
such that d∗k < ds. Then, every attracting current in C1(U) has continuous local potentials.
In particular, the attracting set associated to U cannot be pluripolar.

Notice that the theorem in [DT18a] was stated under the assumptions of Dinh (HD).
Nevertheless, using results of [Taf18], the proof can be extended to an arbitrary trapping
region. In this proof, we study the potentials un of the push-forward of a smooth form S ∈
C1(U) by fn. An important point, which is a consequence of the codimension 1 assumption,
is that these potentials are functions and not currents of higher bidegree. However, the
key point about this codimension 1 assumption is much more basic. When we evaluate
the function un on a positive measure m, this measure has an obvious decomposition

m = m1 +m2

where m1 and m2 are two positive measures (i.e. positive closed (k, k)-currents) supported
on U and Pk \ U ′ respectively (where U ′ is a small neighborhood of U). Without any
assumption (see Proposition 1.5.2 in Section 1.5), we can obtain good estimates on 〈un,m2〉
and the second part 〈un,m1〉 is handled using the small topological degree assumption.
In codimension p ≥ 2, the potential of a smooth form S ∈ Cp(U) is a (p − 1, p − 1)-form
which can be evaluated on currents R ∈ Ck−p+1(Pk). However, a decomposition

R = R1 +R2
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where R1 and R2 are two positive currents which are closed (or even ddc-closed) supported
respectively on U and Pk \ U ′ seems delicate to obtain when U is an arbitrary trapping
region. We refer to Section 1.4.3 for a reformulation of the difficulties in higher codi-
mensions and to Section 1.5.2 for a setting where the decomposition R = R1 + R2 with
ddcR1 = ddcR2 = 0 holds.

A result similar to Theorem 1.4.2 has been obtained in [DS03] for polynomial-like maps.
Actually, they proved that a similar inequality on degrees is equivalent to a regularity
property of the dynamical object they considered (a measure in their situation). This
equivalent can be extended to the setting of Theorem 1.4.2: if an attracting current
τ ∈ C1(U) has continuous local potentials then there exists an attracting set A′ ⊂ U with
τ ∈ C1(A′) which is of small topological degree.

All this points out the interest of this framework. However, it is not clear how to
obtain examples of attracting sets of small topological degree. One way to do this is
to consider small perturbations of Hénon maps. Another one is given by a very nice
construction of Daurat. In [Dau14], she exhibited algebraic conditions on a family of
maps preserving a pencil of lines which ensure the existence of an attracting set of small
topological degree. To be more precise, let Fd denote the set of pairs f = (f∞, R) where
R is a homogeneous polynomial of degree d in Ck and f∞ = (F0, . . . , Fk−1) is a k-tuple
of homogeneous polynomials of degree d which defines a holomorphic endomorphism of
Pk−1.

Theorem 1.4.3 ([Dau14, DT18a]). Let k, d ≥ 2. There exists a non-empty Zariski open
set Ω ⊂ Fd such that if (f∞, R) ∈ Ω then for ε ∈ C∗ close enough to 0, the map fε given
by

fε[x0 : · · · : xk−1 : xk] = [f∞(x0, . . . , xk−1) : xdk + εR(x0, . . . , xk−1)],

has a codimension 1 attracting set of small topological degree close to the hyperplane {xk =
0}.

This theorem with k = 2 was obtained in [Dau14]. The construction in higher dimen-
sion is exactly the same and the only contribution of [DT18a] is to show that the Zariski
open set Ω is also dense when k ≥ 3 by giving examples.

A particularity of codimension 1 attracting sets of small topological degree is that the
measures obtained in Corollary 1.3.21 are hyperbolic with 1 negative Lyapunov exponent
et k − 1 positive ones. This comes from an easy adaptation of the proof of [dT08] and it
only requires the inequality dk < dk−1.

Theorem 1.4.4 ([DT18a]). Let U be a codimension 1 trapping region. If dk < dk−1 then
for every attracting current τ in C1(U) then the measure ντ := τ ∧T k−1 is hyperbolic with
k − 1 exponents larger than or equal to 1/2 log d and one exponent smaller than or equal
to 1/2 log(dk/dk−1).

1.4.3 Higher codimensions

We conclude this section with a brief remark about attracting sets of higher codimension.
The condition of being of small topological degree is well-adapted to attracting sets of
codimension 1. In general, for a trapping region U of dimension s, the appropriated as-
sumption on degrees in order to obtain regularity properties on attracting currents should
be d∗s+1 < ds. However, there are several difficulties to generalize the results above in this
setting.

The first one is that when s < k − 1 the local potentials of a current τ ∈ Cp(U)
(s+p = k) are (p−1, p−1)-currents which are not functions. Dinh and Sibony developed
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in [DS09] a very nice theory, called super-potential theory, in order to handle this kind
of objects on Pk. In particular, they extended the notion of positive closed (1, 1)-currents
with bounded (resp. continuous) local potentials to every bidegree with the notion of PB
(resp. PC) positive closed (p, p)-currents. However, these definitions are global on Pk and
are not necessarily well-adapted to our semi-local setting, i.e. in a trapping region U. An
attempt of a more local definition is given in [Ahn18] but it doesn’t correspond to our
situation.

Nevertheless, one can show that the inequality d∗s+1 < ds on U implies that the attract-
ing currents in Cp(U) satisfy a local version of PB (or PC). Conversely, if an attracting
current τ satisfies (another) local version of PB (or PC) then d∗s+1 < ds on a trapping
region containing supp(τ). However, on an arbitrary trapping region, it is not clear if
these two local versions of PB/PC are equivalent. One way to prove this is to solve the
∂∂-equation with estimates on U, which seems complicated to obtain in full generality. In
the next section, we will see situations where such estimates hold.

Finally, notice that the lack of Khovanskii-Teissier-Gromov type inequality on the
local dynamical degrees makes the generalization of Theorem 1.4.4 more difficult in higher
codimension. A priori, we shall need the inequality maxs+1≤l≤k dl < ds to use directly the
proof of [dT08].

1.5 Solutions of the ∂∂-equation and small Jacobians
Most of the known examples of attracting sets in P2 (see Section 1.6) are dissipative in
the sense that |Jacf | < 1 on the corresponding trapping regions. We will see in this
section that this simple assumption gives a speed of convergence in Theorem 1.3.18 and
in particular that the attracting current τ is the unique invariant current in its trapping
region Dτ . This can be used to prove that the measure ντ obtained in Corollary 1.3.21 is
the unique measure of maximal entropy in Dτ (see [Dau18]).

Exactly the same proof works for codimension 1 attracting sets in Pk. For attracting
sets of higher codimension, a similar speed of convergence can be obtained but it requires
more involved techniques which necessitates additional assumptions on the geometry of
the trapping region. Actually, we need to solve the ∂∂-equation with estimates on U,
which can be done for example if U verifies a slightly stronger condition than (HD) (see
(HD*)).

In this section, we start with the simpler case of codimension 1 attracting sets and we
explain where our strategy requires a resolution of the ∂∂-equation. Then, we discuss how
the version of Henkin-Leiterer of the theory of q-convex sets of Andreotti-Grauert helps
to solve this equation (this has been done in [Taf13]).

1.5.1 Speed of convergence in codimension 1
In the following theorem, we require that the current τ is attracting for all the iterates of
f. Recall that this is not a restrictive assumption by Proposition 1.3.35 and it is necessary
to have the convergence ΛnR → τ in Theorem 1.3.18. Here, the operator Λ on Cp(Pk) is
defined by Λ := d−sf∗ where s := k − p.

Theorem 1.5.1. Let τ ∈ C1(Pk) be a current attracting on a trapping region U which is
also attracting for all the iterates fn. If |Jacf | < dk−1 on U then there exist constances
c > 0 and 0 < λ < 1 such that

|〈ΛnR− τ, φ〉| ≤ cλn‖φ‖C2
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for every R ∈ C1(U) and every C2-form φ on Pk. In particular, τ is the unique invariant
current in C1(U).

The idea of the proof is very simple. Let l ≥ 1 be an arbitrary integer. If R ∈ C1(U)
and φ is a C2-form then we can write

〈Λ(l+1)nR− τ, φ〉 =
〈

ΛlnR− τ, 1
d(k−1)n f

n∗φ

〉
.

The assumption on the Jacobian of f implies that there exist constances c1 > 0 and
0 < λ1 < 1 such that the C0-norm of 1

d(k−1)n f
n∗(ddcφ) is smaller than c1λ

n
1‖φ‖C2 on U.

From this, there are two main steps.

Step 1: Resolution of the ∂∂-equation with estimates.
Recall that ddc = i

π∂∂. Hence, if we are able to solve the ∂∂-equation on U with good
C0 estimates, there exist forms ψn on U such that

ddcψn = 1
d(k−1)n f

n∗(ddcφ) on U and ‖ψn‖C0,U . c1λ
n
1‖φ‖C2 .

Step 2: Exponential speed of convergence for pluriharmonic observables.
As we have seen in Theorem 1.3.29, if (Rθ)θ∈D is a structural disk in C1(U) and Φ is

a form on U with ddcΦ = 0 then the function

θ 7→ 〈Rθ,Φ〉

is harmonic on D. Harmonic functions have much better compactness properties that
subharmonic ones and each step in the proof of the convergence in Theorem 1.3.18 is easier
when the observable is ddc-closed. Actually, using Harnack’s inequality it is possible to
obtain an exponential speed for this convergence.

Proposition 1.5.2. [Taf18, Proposition 3.37] Let τ and U be as in Theorem 1.5.1. Let
H denote the set of continuous real (k − 1, k − 1)-forms Φ on U such that ddcΦ = 0 and
|〈R− τ,Φ〉| ≤ 1 for all R ∈ C1(U). There exist two constantes c2 > 0 and 0 < λ2 < 1 such
that for all R ∈ C1(U), Φ ∈ H and n ≥ 1 we have

|〈ΛnR− τ,Φ〉| ≤ c2λ
n
2 .

Notice that this result is indeed available for attracting sets of any dimension [Taf18,
Proposition 3.37].

Step 3: End of the proof.
For n ≥ 1, denote φn := 1

d(k−1)n f
n∗(ddcφ) and let ψn be the form obtained in Step 1.

Then for an integer l ≥ 1 we have

〈Λ(l+1)nR− τ, φ〉 = 〈ΛlnR− τ, φn〉
= 〈ΛlnR− τ, φn − ψn〉+ 〈ΛlnR− τ, ψn〉 (1.9)

An easy observation is that there exists a constant M ≥ 1 such that for all continuous
form Φ on Pk we have ‖d−(k−1)f∗Φ‖∞ ≤ M‖Φ‖∞ and thus ‖φj‖∞ ≤ M j‖φ‖∞ for all
j ≥ 1. Hence, since ddc(φn − ψn) = 0, Proposition 1.5.2 implies that

〈ΛlnR− τ, φn − ψn〉 . λln2 Mn‖φ‖∞.
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On the other hand, the estimate ‖ψn‖C0,U . c1λ
n
1‖φ‖C2 implies that

〈ΛlnR− τ, ψn〉 . c1λ
n
1‖φ‖C2 .

Therefore, if l ≥ 1 is large enough then λl2M < 1 and both terms in (1.9) decrease
exponentially fast with n, which implies the desired result. �

It remains to show how to complete Step 1. Actually, for codimension 1 attracting
set, this is very easy. The key point is that ddcφn is a (k, k)-form. Hence, if 0 ≤ χ ≤ 1
is a cut-off function supported in a small neighborhood of U and with χ = 1 on U then
χddcφn is still a closed form and we have good C0 estimates for it on the whole space Pk.
Hence, Step 1 can be archived using a resolution of the ddc-equation on Pk with estimates
(see e.g. [DS09, Lemma 2.3.5] with W ′ = W = Pk). In the general case, if U is a trapping
region of dimension s with s < k − 1 then the test form φ is a (s, s)-form and ddcφ is
a (s + 1, s + 1)-from. Therefore, there is no reason that χddcφ is still a ddc-closed form.
Hence, we need to solve the ddc-equation with estimates directly on U, which is a delicate
subject in general.

1.5.2 q-convex sets and Andreotti-Grauert theory

The goal of this subsection is to prove the following theorem. The strategy will be the
same as the proof of Theorem 1.5.1. The aim of the assumption (*) is to allow us to
complete Step 1. See below for explanations about this assumption.

Theorem 1.5.3. Let τ be a current which is attracting on the codimension p trapping
region U with respect to each iterate of f. Assume that the following conditions are satisfied:

U is strictly (p − 1)-convex and there exist two open sets U1 and U2 such that
U ⊂ U1 ⊂ U2, U1 is a deformation retract of a dimension s complex manifold
L ⊂ U1 and ‖

∧s+1Df(z)‖ < ds for all z ∈ U2.
(*)

Then there exist constants c > 0 and 0 < λ < 1 such that

|〈ΛnR− τ, φ〉| ≤ cλn‖φ‖C2

for all R ∈ Cp(U) and all C2 test form φ. In particular, τ is the unique invariant current
in Cp(U).

The three open sets U, U1 and U2 may coincide but it could be easier to check the three
parts of (*) on three different sets. Although technical, the assumption (*) is satisfied in
all the examples of Section 1.6 except for Theorem 1.6.8 and Theorem 1.6.9. Actually, a
setting where the geometrical assumptions in (*) are verified (with U = U1) is given by
(HD*) below. It is a slight modification of (HD) and the examples of Section 1.6 (except
Theorem 1.6.8) have trapping region with this property. The only difference with (HD)
is that the slices of U have to be strictly convex and not just star-shaped. This was the
framework of [Taf13].

There exist two linear subspaces I and L of dimension p − 1 and s respectively
such that I∩U = ∅ and L ⊂ U. Moreover, for each x ∈ L the unique dimension p
linear subspace I(x) containing I and x intersects U in a subset which is strictly
convex in I(x) \ I ' Cp.

(HD*)

Here are some additional remarks on (*).
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• The condition ‖
∧s+1Df‖ < ds on U2 is the exact counterpart to |Jacf | < dk−1 on

U in Theorem 1.5.1.

• The deformation retraction of U1 is used to solve the d-equation with estimates and
to ensure that Hs,s+1(U1,C) = 0. It should be easy to weaken this condition.

• The strict (p−1)-convexity of U is the more technical part of (*). It is used to solve
the ∂-equation with estimates on U using the results of Henkin-Leiterer [HL88].
However, it turns out that this condition might be always satisfied in a larger trap-
ping region (see (2) in Remark 1.5.6).

We refer to [HL88] and [Dem12] for the precise definition of q-convex sets and for further
developments. We will use the conventions of [HL88] but observe that q-convex domains in
[HL88] correspond to strongly (k−q)-convex ones in [Dem12]. Loosely speaking, a function
u on a complex manifold M is q-convex if at every point there exists a q-dimensional
complex submanifold Y such that u|Y is strictly plurisubharmonic. And the definition of
strictly q-convex domains mimics the one of strictly pseudoconvex domains by replacing
strictly plurisubharmonic functions by (q+1)-convex functions: a relatively compact open
set D ofM is strictly q-convex if there exists a neighborhood Ω of ∂D and a (q+1)-convex
function u on Ω such that

D ∩ Ω = {x ∈ Ω |u(x) < 0}.

When Ω can be chosen to be a neighborhood of D then D is said to be completely strictly
q-convex. For information, notice that Andreotti and Grauert obtained the following
vanishing theorem which generalized in some sense Theorem B of Cartan.

Theorem 1.5.4 ([AG62]). If D is a completely strictly q-convex open subset of Pk with
C2 boundary then Hs,r(D,C) = 0 for any 0 ≤ s ≤ k and k − q ≤ r ≤ k.

Henkin-Leiterer revisited the results of [AG62] in [HL88] using integral representations.
One of the main avantages of [HL88] is that it gives explicit estimates for the ∂-equation.

Theorem 1.5.5. [HL88, Theorem 11.2] Let D be a strictly q-convex open subset of Pk
with C2 boundary. If φ is a continuous ∂-exact form of bidegree (r, s) in a neighborhood
of D with 0 ≤ s ≤ k, k− q ≤ r ≤ k, then there exists a continuous (s, r− 1)-form ψ on D
such that ∂ψ = φ and

‖ψ‖∞,D ≤ C‖φ‖∞,D
for some C > 0 independent of φ.

Using the method of Dinh-Nguyen-Sibony [DNS08, Theorem 2.7], Theorem 1.5.5 and
the others conditions in (*) give a resolution of the ∂∂-equation with estimates which
archives Step 1. The rest of the proof of Theorem 1.5.3 is identical to the one of Theorem
1.5.1.

Remark 1.5.6. (1) Let 0 ≤ p, s ≤ k be such that s + p = k. To an open set U ⊂ Pk it
is possible to associate two open sets Ũ and Û that we call the s-pseudoconcave core of U
and the (p− 1)-pseudoconvex hull of U respectively. The former is defined by

Ũ :=
⋃

S∈Cp(U)
supp(S).

The latter Û is the complement of

∪S∈Cs+1(Pk\U)supp(S).
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They satisfy Ũ ⊂ U ⊂ Û . Both these sets have interesting geometric properties. When
s = 0 then Û is the rationally convex hull of U, see [Gue99] and [DS95]. It is easy to
check that if U is a trapping region of dimension s then this is also the case for both Ũ
and Û . In some sense, the attracting set associated to Ũ can be seen as the part of pure
dimension s of the one associated to U.

(2) It is likely that slight modifications of Û give codimension p trapping region which
are strictly (p − 1)-convex, i.e. the assumption on U in Theorem 1.5.3 should always be
satisfied on a lager trapping region. The idea is the following. It is easy to construct a
current S ∈ Cs+1(Pk) such that Û = Pk \ supp(S). By [FS95b], this gives to Û a convexity
property called (p− 1)-pseudoconvexity. If S can be slightly modified in a current S′ such
that Û ′ := Pk \ supp(S′) has a smooth boundary (which is not totally clear), then Û ′ is
a trapping region and the regularity of the boundary turns the (p − 1)-pseudoconvexity of
Û ′ into (p − 1)-convexity (see [Mat93]). Taking a slightly smaller open set, we obtain a
strictly (p− 1)-convex trapping region which contains U.

1.6 Examples
This section gathers most of the known examples of attracting sets and attractors. Notice
that the inclusion f(U) ⊂ U is stable by small perturbations of f, thus perturbations of
these examples also admits attracting sets. Moreover, by a result of Fakhruddin [Fak14],
these attracting sets are not algebraic for a very generic perturbation. However, with
regards to attractors, the only known examples which are not algebraic are highly non-
generic since they all preserve a fibration. Nevertheless, it is very likely that there exist
open sets of endomorphisms which admit attractors that are not attracting cycles.

The most basic example of an attracting set is the lift of an endomorphism of Ps to
one of Pk, s < k.

Example 1.6.1. Let g be an endomorphism of Ps of degree d ≥ 2 given in homogeneous
coordinates by

g[x0 : · · · : xs] = [G0(x0, . . . , xs) : · · · : Gs(x0, . . . , xs)].

Then, the endomorphism of Pk defined by

f [x0 : · · · : xk] = [G0(x0, . . . , xs) : · · · : Gs(x0, . . . , xs) : xds+1 : · · · : xdk]

admits the linear subspace A = {xs+1 = · · · = xk = 0} as an attracting set of dimension s.
The restriction of f to A corresponds to g and can be chosen to be topologically transitive.
In this case, A is an attractor.

A similar idea can give several disjoint attractors.

Example 1.6.2. Let g be a rational mapping of P1 whose Julia set is the whole space
P1. There exist two homogeneous polynomials P,Q ∈ C[x, y] such that, in homogeneous
coordinates on P1

g[x : y] = [P (x, y) : Q(x, y)].

The self-map f of P3 given by

f [x : y : z : t] = [P (x, y) : Q(x, y) : P (z, t) : Q(z, t)]

is holomorphic and admits the open sets

U1 := {[x : y : z : t] ∈ P3 | max(|x|, |y|) < εmax(|z|, |t|)}
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and
U2 := {[x : y : z : t] ∈ P3 | max(|z|, |t|) < εmax(|x|, |y|)}

as disjoint trapping regions when ε > 0 is small enough. The associated attracting sets
are respectively A1 = {x = y = 0} and A2 = {z = t = 0}. The restriction of f to one
of these sets is given by g and thus is topologically transitive, i.e. A1 and A2 are disjoint
attractors of P3.

On can perturbe maps given in Example 1.6.1 with s = k − 1 in order to have non-
algebraic attractors (see [JW00] and [FS01] for k = 2 and [Ron12] for k ≥ 3).

Theorem 1.6.3. For λ ∈ C, let fλ be the endomorphism of Pk defined by

fλ[z : w1 : · · · : wk−1 : t] = [(z − 2w1)2 : · · · : (z − 2wk−1)2 : z2 : t2 + λz2].

If |λ| 6= 0 is small enough then fλ has a non-algebraic attractor Kλ close to the hyperplane
{t = 0}.

The key point is the proof of the transitivity of (fλ)|Kλ is that fλ preserves the pencil
of lines passing through [0 : · · · : 0 : 1] and acts on it in a transitive way. All the known
examples of non-algebraic attractors use this idea.

Although [Fak14] implies that for a very generic endomorphism of Pk all attracting
sets of dimension s, with 0 < s < k, are Zariski dense, it is not easy to exhibit an explicit
example in codimension larger than 1. This has been done by Daurat.

Theorem 1.6.4. [Dau14, Theorem 5.7] If ε1, ε2 ∈ C∗ are such that |ε2| << |ε1| << 1
then the endomorphism of P3 defined by

f [x : y : z : t] = [x2 + 0.1y2 : y2 : z2 + ε1(x2 + xy) : t2 + ε2(x2 + xy)]

has a Zariski dense attracting set of dimension 1 which is close to the line {z = t = 0}.

Another general way to obtain attracting sets is the following construction, inspired
by [BD02b, Theorem 4.1].

Example 1.6.5. Let g : Ps → Pk be a holomorphic map and define A0 := g(Ps). Let
I ⊂ Pk be a linear subspace of dimension p− 1 such that I ∩A0 = ∅. If L ⊂ Pk is a linear
subspace of dimension s then we can consider the projection π : Pk \ I → L. By identifying
L with Ps we obtain a map f0 := g ◦ π : Pk \ I → Pk with f0(A0) = A0 and which has
rank s. In particular,

∧s+1Df0 = 0 everywhere. A generic small perturbation of f0 gives
a holomorphic map f : Pk → Pk which has an attracting set A near A0.

Observe that for these examples
∧s+1Df is very small on A. It implies easily that the

measure ν obtained by Corollary 1.3.21 is hyperbolic with s positive exponents and p :=
k− s negative ones. Another observation is that if the perturbation of f0 is small enough
then A admits a trapping region which satisfies (HD*). Indeed, if Ω is a small neighborhood
of I then U := Pk \ Ω is a trapping region for f0 and thus for small perturbations of f0.
And, Ω can easily be chosen such that U satisfies (HD*).

Here is an implementation of the construction given in Example 1.6.5 (see [FW99] and
[Dau18]).

Example 1.6.6. Let X be the smooth conic in P2 given by X = {xy = z2}. It is the
image of g[a : b] = [a2 : b2 : ab] and if I = [0 : 0 : 1] and L = {z = 0} then the map f0 in
Example 1.6.5 is

f0[x : y : z] = [x2 : y2 : xy].
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Perturbations of the form

fε[x : y : z] = [x2 : y2 : xy + ε(xy − z2)]

with |ε| 6= 0 small give endomorphisms of P2 admitting X as an attracting set. The induced
map on X ' P1 is [x2 : y2]. If we take g[a : b] = [(a− 2b)2 : a2 : a(a− 2b)] then

fε[x : y : z] = [(x− 2y)2 : x2 : x(x− 2y) + ε(xy − z2)]

admits X as an attractor for |ε| 6= 0 small enough.

A last simple example is given by perturbations of invariant critical hypersurfaces.
They are the counterparts in higher dimension of super-attractive fixed points in dimension
1.

Example 1.6.7. Let f0 be in an endomorphism of Pk. Assume there exists a hypersurface
H which is f0-invariant and included in the critical set of f0. If k = 2 or if H is smooth
then H is an attracting set for f0 by [FS94a, Lemma 7.9] and [Sta06]. In both cases,
Theorem 1.5.1 applies to small perturbations of f0.

The following theorem gives an example of a quasi-attractor K in P2 which is not
an attracting set, i.e. K = ∩n≥0An where (An)n≥0 is a strictly decreasing sequence of
attracting sets (see [Taf17]). Notice that results on attracting currents from [Taf18] imply
that the Hausdorff dimension of An must be larger than or equal to 3. In this example,
each An contains repelling cycles and thus has non-empty interior and Hausdorff dimension
equal to 4. To the best of my knowledge, it is the only known examples of such quasi-
attractors and it turns out that exactly the same maps were consider by Fornæss-Sibony
(see [FS01, Theorem 4.3]).

Theorem 1.6.8. If f0 is a volume increasing polynomial automorphism of C2 with a
robust tangency then a generic (in the sense of Baire category) small perturbation f of
f0 is an endomorphism of P2 possessing uncountably many quasi-attractors which are not
attracting sets. Such a perturbation f also has an attracting set A 6= P2 with infinitely
many repelling periodic points.

A map f0 satisfying these assumptions is given in [Buz97]. The idea of the proof of
Theorem 1.6.8 is very simple. The ingredients are the following.

• f0 is injective on C2,

• all its tangencies lie in a large polydisk B ⊂ C2,

• f0 has an attracting set of dimension 1, usually denoted by K−, which possesses a
trapping region U containing B.

Hence, a small perturbation f of f0 still admits U as a trapping region and is injective
on B. For a generic f, the construction of Newhouse gives infinitely many repelling cycles
in B. The injectivity of f implies that if Ω is a small neighborhood of a finite union of
such cycles then U \ Ω is a trapping region. Taking more and more cycles, we obtain a
strictly decreasing and infinite sequence of attracting sets. Observe that the attracting set
associated to U \ Ω cannot have a trapping region satisfying (HD).

Theorem 1.6.8 gives examples of attracting sets with non-empty interior but they
cannot be minimal as they possess an attracting fixed point near the line at infinity.
Using a totally different method, called blenders, we obtain in [Taf17] an example of an
attractor of P2, distinct from P2, with non-empty interior.
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Theorem 1.6.9. There exists an endomorphism f of P2 which has an attractor A which
contains an algebraic curve in its interior.

In particular, such an attractor is not rigid in the sense of Dinh-Sibony (see [DS14]), i.e.
the set C1(A) contains infinitely many different currents. The blenders used in this con-
struction are called of saddle type in [Taf17] and are indeed very simple objects. Roughly
speaking, a saddle blender corresponds to an open set Z such that

(1) Z ⊂ f(Z),

(2) Λ := ∩n≥0f
−n(Z) is a saddle hyperbolic set.

Their saddle nature allows us to easily find examples of trapping regions U containing
such open set Z. Then the point (1) insures that Z is in the interior of A := ∩n≥0f

n(U).
The rest of the proof of Theorem 1.6.9 is technical but elementary. As a last observation,
note that the point (1) is stable by small perturbations so all the endomorphisms in a
neighborhood of f have a proper attracting set with non-empty interior.
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Bifurcations in complex dynamics

The study of bifurcation phenomena for holomorphic families of rational mappings of P1

is a well-established and rich subject. It started with the seminal papers of Mañé-Sad-
Sullivan [MSS83] and Lyubich [Lyu83b] (see Section 2.1). A nice counterpart in higher
dimension to this theory has been recently obtained by Berteloot-Bianchi-Dupont [BBD18]
(see Section 2.2). My main contributions in this topic have been to exhibit phenomena
appearing only in dimension larger than or equal to 2. In [BT17], I studied with Bianchi
a very specific family of endomorphisms of P2 with two interesting properties regarding
bifurcations (see Section 2.3):

• the Julia set moves continuously on open sets of parameters containing bifurcations,

• the bifurcation locus of this family has non-empty interior.

This answers two questions from [BBD18]. At about the same time, Dujardin gave in
[Duj17] two general mechanisms which lead to open sets of bifurcations in the spaces
Hd(Pk) of all degree d endomorphisms of Pk, k ≥ 2. The first one is based on a topological
argument while the second relies on a construction coming from smooth dynamics called
blender, originally introduced by Bonatti-Díaz in [BD96]. It turns out that, with Bonatti,
we were also working on this question using blenders. This leads to a quick answer in
[Taf17] to a conjecture of Dujardin [Duj17] (see Section 2.4).

Another direction, which will not be mentioned here and which still need to be de-
veloped, is the bifurcations of attracting sets. Some very partial results can be deduced
from the results of Section 1.3 (see [Taf18, Section 5.2]). In particular, the sum of the
Lyapunov exponents of the equilibrium measure supported on an attracting set depends
in a plurisubharmonic way on the parameters. It is then very natural to wonder which
dynamical interpretation can have the current obtained as the ddc of this function.

2.1 Stability and bifurcations on P1

In general, there exists many different ways to detect the lacks of structural stability.
Among them, there are

• a change in the type (attracting, repelling, saddle etc.) of a periodic point,

• a change in the structure of attracting sets,

• a change in other kinds of invariant sets (non-wandering set, supports of measures
of maximal entropy etc.),
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• a change in the critical dynamics (if any).

A remarkable feature of one variable complex dynamics is that (almost) all these types
of bifurcations coincide for all holomorphic families of rational mappings of P1. More
precisely, the study of bifurcations in such families is based on the following result.

Theorem 2.1.1 ([MSS83], [Lyu83b]). Let (fλ)λ∈M be a holomorphic family of rational
mappings of degree d ≥ 2 of P1. Let Ω be a connected open subset of M. The following are
equivalent:

1) for all λ ∈ Ω, the periodic points of fλ can be followed holomorphically in Ω and do
not change type,

2) the number and/or the period of attracting cycles are constant in Ω,

3) the map λ 7→ Jfλ is continuous on Ω with respect to the Hausdorff topology on
compact subsets of P1,

4) there is no Misiurewicz parameter in Ω,

5) for all λ, λ′ ∈ Ω, (fλ)|Jfλ is topologically conjugated to (fλ′)|Jfλ′ .

Definition 2.1.2. Let (fλ)λ∈M be as in Theorem 2.1.1. The union of all the open subsets
of M where the points 1)-5) of this theorem hold is called the stability locus of the family
(fλ)λ∈M and is denoted by Stab. Its complementary Bif := M \ Stab is the bifurcation
locus of the family.

Here, a parameter λ ∈ Ω is called Misiurewicz if fλ possesses a repelling point r which
is in the orbit of a critical point in a non-persistent way, i.e. there exists λ′ ∈ Ω close to λ
such that the holomorphic continuation of r for fλ′ is not in the postcritical set of fλ′ . This
definition corresponds to the one given in [BBD18] for Pk (see Definition 2.2.2). It doesn’t
coincide with the homonymous notion usually used in one variable complex dynamics.

Remark 2.1.3. Misiurewicz parameters correspond to one type of bifurcations in the
dynamics of critical points. There exists other types of bifurcations in the critical dynamics
which can belong to the stability locus. For instance, in the family (fλ)λ∈C defined by
fλ(z) = z2 + λ, the unique critical point is fixed for λ = 0 and has an infinite orbit for
λ 6= 0 close to 0.

Remark 2.1.4. The points 3) and 5) in the theorem are consequences of the fact that
the Julia set moves under a holomorphic motion in Ω. In one complex variable it is easy
to extend a holomorphic motion of a set to its closure and thus this holomorphic motion
of the Julia set can be obtained as the extension of the motion of the repelling points. In
higher dimension, this extension result is no longer available and, as we will see in the
next section, the counterpart to 5) is not known.

The following important result can be deduced form Theorem 2.1.1 and the fact that
fλ has at most 2d− 2 critical points.

Theorem 2.1.5 ([MSS83], [Lyu83b]). For every holomorphic family (fλ)λ∈M of holomor-
phic mappings of P1, the stability locus is dense in M.

As we already mentioned, this result has been improved by McMullen-Sullivan [MS98].
They showed that the only obstructions to extend the conjugation given in Theorem 2.1.1
5) to the whole space P1 are bifurcations in the critical dynamics.
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Theorem 2.1.6 ([MS98]). Let (fλ)λ∈M be as in Theorem 2.1.1. There exists a dense
open subset Xtop of M such that for every λ, λ′ in the same connected component of Xtop

fλ is topologically conjugated to fλ′ .

If f is a rational mapping of P1 of degree d ≥ 2 then Lyubich [Lyu83a] and Mañé
[Mañ83] have independently proved that the equilibrium measure of f is the unique mea-
sure of maximal entropy log d. Since the entropy of a measure is invariant by conjugation,
any conjugation between (fλ)|Jfλ and (fλ′)|Jfλ′ has to map the equilibrium measure of fλ
to the one of fλ′ , i.e. the equilibrium measure is a natural object to consider in the study
of bifurcations. Hence, one can wonder whether there exists an ergodic counterpart to the
points 1)-5) in Theorem 2.1.1. It turns out that DeMarco obtained such a characterization
of the stability locus using the Lyapunov exponent of the equilibrium measure.

Theorem 2.1.7 (DeMarco [DeM03]). Let (fλ)λ∈M be a holomorphic family of rational
mappings of degree d ≥ 2 of P1. Let L(λ) denote the Lyapunov exponent of the equilibrium
measure µλ of fλ. An open subset Ω ⊂M is contained in the stability locus if and only if
λ 7→ L(λ) is pluriharmonic on Ω.

Actually, using the equidistribution of the repelling periodic points of fλ towards µλ
it is easy to see that L(λ) is a plurisubharmonic function on M. Hence, the (1, 1)-current
TBif := ddcL is positive and an equivalent formulation of Theorem 2.1.7 is that supp(TBif)
coincides exactly with the bifurcation locus of the family (fλ)λ∈M . Moreover, this result
allows to study bifurcations using pluripotential methods which look like those used in
higher dimension complex dynamics. This gives rise to a very active and rich field of
research (see e.g. [BB07], [BB09], [DF08], [GOV19]). As we will see in the next section,
Theorem 2.1.7 also gives a indication on a good way to generalize Theorem 2.1.1 in higher
dimension.

2.2 Theory in higher dimension
On Pk, k ≥ 2, the dynamics of a single endomorphism is not well understood thus it
seems unrealistic to attempt a global bifurcation theory. Nevertheless, the properties of
the equilibrium measure are essentially the same in all dimensions. Hence, its support,
the small Julia set Jk, could be a good candidate to replace the Julia set in dimension
one.

For the rest of the section, (fλ)λ∈M is a holomorphic family of endomorphisms of Pk
of degree d ≥ 2. The equilibrium measure of fλ is denoted by µλ and we set Jk(λ) :=
supp(µλ). Briend-Duval had proved [BD99] that the Lyapunov exponents χ1(λ), . . . , χk(λ)
of µλ are all positive and bounded from below by 2−1 log d. By a result of Dinh-Sibony
[DS03] on polynomial-like maps the sum of these exponents

L(λ) :=
k∑
i=1

χi(λ)

defined a plurisubharmonic function on M and thus it is natural to wonder what is the
dynamical interpretation of the positive closed (1, 1)-current ddcL onM. This study started
with the work [BB07] of Bassanelli-Berteloot where they proved that ddcL = 0 when the
repelling cycles move holomorphically. They also obtained formulae expressing L and ddcL
in terms of currents in M ×Pk. Actually, Pham proved independently in [Pha05] that if E
is a positive closed (k, k)-current in M × Pk whose slices over each λ ∈M is µλ then

ddcL := π∗(E ∧ [Cf ]), (2.1)
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where Cf is the critical set of the map (λ, z) 7→ (λ, fλ(z)) and π is to canonical projection
from M × Pk to M. The formula of Bassanelli-Berteloot corresponds to (2.1) with a
particular choice of E .

Amount other things, (2.1) clearly links the current ddcL with interplays between the
critical set and the equilibrium measure. This formula is the key ingredient in the following
theorem of Berteloot-Bianchi-Dupont which can be considered as the founding result in
the theory of bifurcations in Pk.

Theorem 2.2.1 ([BBD18]). Let (fλ)λ∈M be a holomorphic family of endomorphisms of Pk
of degree d ≥ 2 parametrized by a simply connected complex manifoldM. Assume moreover
that

(*) (fλ)λ∈M forms an open subset of the space Hd(Pk) of all degree d endomorphisms
of Pk,

or

(**) k = 2.

Then, the following are equivalent:

1) for all λ ∈M, the repelling periodic points of fλ in Jk(λ) can be followed holomor-
phically in M and do not change type,

2) the function L is pluriharmonic on M (i.e. ddcL = 0 on M),

3) there is no Misiurewicz parameter in M,

4) there exists an equilibrium lamination over M.

The precise definition of a Misiurewicz parameter in this context is the following.

Definition 2.2.2. Let (fλ)λ∈M be a holomorphic family of endomorphisms of Pk of degree
d ≥ 2. We denote by f the self-map of M × Pk defined by f(λ, z) := (λ, fλ(z)) and by Cf
its critical set. A parameter λ0 in M is called Misiurewicz if there exist an integer n0 ≥ 0,
a neighborhood N ⊂M of λ0 and a holomorphic map γ : N → Pk such that:

1. for all λ ∈ N, γ(λ) is a repelling periodic point of fλ belonging to Jk(λ),

2. (λ0, γ(λ0)) belongs to an irreducible component X of fn0(Cf ),

3. the graph of γ is not contained in X.

The bifurcation locus in the sense of Theorem 2.2.1 of the family (fλ)λ∈M can then be
defined as the closure of the Misiurewicz parameters.

We will not give an explicit definition of an equilibrium lamination but in particular
4) implies that for all λ, λ′ ∈M there exists a continuous conjugation between fλ and fλ′
on subsets of full measure for µλ and µλ′ respectively (see [BD17] for a similar result for
polynomial automorphisms of C2). Here are some additional remarks on this theorem.

• The assumptions (*) and (**) are technical and could probably be removed. Some
progresses in that direction have been obtained by Bianchi [Bia19].

• Although the equilibrium lamination gives a conjugation between full measure sub-
sets with respect to the equilibrium measures, it is not known whether or not
(fλ)|Jk(λ) is topologically conjugated to (fλ′)|Jk(λ′) (λ, λ′ ∈ M), even in (a priori)
simpler cases like polynomial skew products of C2.
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• Actually, because of the non-injectivity and of the large critical set, it is not easy
to obtain conjugacies in our context. For example, as shown by Jonsson [Jon98],
a saddle hyperbolic set might not be structurally stable. And it is an open prob-
lem, probably feasible, to exhibit a structurally stable endomorphism in the family
Hd(Pk) of all degree d endomorphisms of Pk, when k ≥ 2.

• Beyond conjugacies, it is natural to wonder whether other one-dimensional results
given in the previous section can still be valid in this context. In particular, the
continuity of λ 7→Jk(λ) in a stable family is obtained in [BBD18] but the converse
is left open. Similarly, it was not known at that time whether the stability locus is
dense in all families. The purpose of [BT17] (see Section 2.3) is to give an explicit
and simple counter-example to both these questions.

• Another natural question is whether stability in the sense of Theorem 2.2.1 is com-
patible with other kinds of bifurcations like Newhouse phenomenon. Dujardin an-
swers this question in [Duj17] by giving a stable open subset of Hd(P2) (with d very
large) with such phenomenon. In particular, bifurcations of repelling periodic points
outside Jk can happen in a stable region in the sense of Theorem 2.2.1.

2.3 The elementary Desboves family
As we already said, the purpose of this section is to give a counter-example to the two
following questions:

• If the small Julia set Jk depends continuously of the parameter in a family, is this
family stable (i.e. satisfies 1)-4) in Theorem 2.2.1)?

• Is the stability locus dense in every holomorphic family of endomorphisms of Pk?

Actually, the counter-example given in [BT17] is a family already studied in [BD02b]
and [BDM07] and these authors referred to it as the elementary Desboves family. They
considered these maps because each of them preserves the Fermat curve

F := {x3 + y3 + z3 = 0}

and some of them possess statistical attractors with intermingled basins (see [BDM07,
Section 6]).

Theorem 2.3.1 ([BT17]). The family of endomorphisms of P2 defined by

fλ[x : y : z] = [−x(x3 + 2z3) : y(z3 − x3 + λ(x3 + y3 + z3)) : z(2x3 + z3)]

with λ ∈ C∗ satisfies the following properties:

• the small Julia set of fλ depends continuously on λ, for the Hausdorff topology,

• the bifurcation locus coincides with C∗ (i.e. the stability locus is empty).

The proof of this result is simple and we now give the main arguments. The first step
is the following result which collects information on the maps in the elementary Desboves
family obtained in [BD02b].

Theorem 2.3.2 ([BD02b]). Let λ ∈ C∗. The map fλ in the elementary Desboves family
satisfies the following properties:
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1. fλ preserves the line Y := {y = 0} and (fλ)|Y is a Lattès map,

2. fλ preserves the pencil of lines passing through the point ρ0 := [0 : 1 : 0] and acts on
it as (fλ)|Y (in particular, transitively),

3. ρ0 is an attracting fixed point and the Fatou set of fλ is reduced to the basin of ρ0,

4. the Julia set and the small Julia set of fλ coincide, i.e. J1(fλ) = J2(fλ).

Proof. The two first points are simple verifications. The third one is a consequence of the
second, i.e. fλ acts in a chaotic way on a pencil of lines so an open subset whose images
by fnλ stay away from the center of the pencil cannot belong to the Fatou set.

The last point is based on the fact that in such fibered situation in P2, the small Julia
set is equal to the closure of the set of repelling points. One inclusion (J2(fλ) is contained
in this closure) is a direct consequence of the equidistribution of repelling periodic points
towards the equilibrium measure obtained in [BD99]. The other inclusion is not true in
general but it has been obtained by Jonsson for polynomial skew products of C2 in [Jon99]
and for the other endomorphisms preserving a pencil of lines in P2 in [Dab00]. A simple
proof of this fact can be deduced from [DT18b] (see Corollary 3.1.3 in Chapter 3). From
this, the rest of the proof goes as follow. If r is one of the three intersection points between
Y and the Fermat curve F := {x3 + y3 + z3 = 0} (for example, r = [1 : 0 : −1]) then it is
easy to check that r is a repelling fixed point. In particular, r ∈J2(fλ). Since (fλ)|Y is a
Lattès map, the preimages of r are dense in Y and thus the totally invariance of J2(fλ)
and its closeness imply that Y ⊂ J2(fλ). Finally, Y is not totally invariant so by the
equidistribution of hypersurfaces towards the Green current [DS08],

J1(fλ) ⊂ ∪n≥1f
−n
λ (Y ) ⊂J2(fλ) ⊂J1(fλ),

which gives the desired result.

Proof of Theorem 2.3.1. A classical fact about the small Julia set is that it depends lower
semi-continuously of the parameter. This is due to the fact that λ 7→ µλ is continuous for
the weak topology of measures and that the support function is lower semi-continuous.
On the other hand, it is a general fact in continuous dynamics that a repeller (i.e. the
complementary of the basin of an attracting set) varies upper semi-continuously with the
parameter. And, by Theorem 2.3.2, in the Desboves family the small Julia set is a repeller
(the complementary of the basin of ρ0). Hence, J2(λ) depends continuously on λ in the
Desboves family.

The proof of the second point is also simple. By Theorem 2.2.1, it is sufficient to prove
that Misiurewicz parameters are dense in C∗. The first observation is that, since each map
fλ in the elementary Desboves family preserves the same pencil of lines, the critical set
Cfλ of fλ is not irreducible. It admits a decomposition

Cfλ = C∞(λ) ∪ Cσ(λ),

where C∞(λ) is fibered by lines of the pencil and Cσ(λ) is generically transverse to the
pencil. Since the action of fλ on the pencil is independent of λ, the sets C∞(λ) and
fnλ (C∞(λ)) are also independent of λ. Hence, the bifurcations in the family cannot come
from this fibered part of the critical set. On the other hand, the points of intersection
of Cσ(λ) with Y := {y = 0} depend on λ and the preimages of the repelling fixed point
r = [1 : 0 : −1] by (fλ)|Y are dense in Y and independent of λ. Hence, for each λ0 ∈ C∗
there exists λ1 arbitrarily close to λ0 and n1 ≥ 1 such that r ∈ fn1

λ1
(Cσ(λ1)). To prove
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that λ1 is a Misiurewicz parameter, it remains to show that r is not in fn1
λ (Cσ(λ)) for all

λ ∈ C∗. In general, such question can be very difficult without an ad-hoc argument. In
[BT17], we use the degenerescence of the maps fλ when λ goes to 0 to prove that such an
intersection cannot be persistent.

We conclude this section with some additional interesting properties of the elementary
Desboves maps.

Remark 2.3.3. 1) It is easy to check that the point [0 : 0 : 1] is fixed by fλ for every λ ∈
C∗. It has one repelling eigenvalue and the other one is equal to 1+λ. Hence, if 1+λ
is of modulus 1 and satisfies the Brjuno arithmetic condition then there exists a one-
dimensional Siegel disk passing through [0 : 0 : 1]. By Theorem 2.3.2, this disk has
to be contained in J2(λ). This was our original motivation to consider this family
of maps since by a result in [BBD18], if the small Julia set moves continuously in a
family with bifurcations it must exist parameters where the small Julia set contains
a Siegel disk.

2) The elliptic curve F = {x3 + y3 + z3 = 0} is invariant by fλ and (fλ)|F is an
expanding map. Moreover, the Lebesgue measure ν on F is ergodic so it must admit
a positive Lyapunov exponent. If the second Lyapunov exponent is negative (and
numerical computations in [BDM07] suggest this is the case for λ ∈ C∗ close enough
to 0) then the union of the stable manifolds of ν has positive Lebesgue measure in
P2. These stable manifolds are contained in J2(λ) by Theorem 2.3.2 and thus, for
these parameters λ, the small Julia set J2(λ) has positive Lebesgue measure.

3) With this parametrization, fλ degenerates to a rational self-map of P2 when λ goes
to 0 (see [BDM07, Remark 6.9] for more properties of f0). If we use a different
parametrization Fλ := (φλ)−1 ◦ fλ3 ◦ φλ where φλ[x : y : z] = [λx : y : λz] then the
family (Fλ)λ∈C∗ extends at 0 and F0 is an endomorphism of P2 with some special
properties. For instance, F0 still satisfies Theorem 2.3.2 and every non-fixed periodic
point in the invariant line Y = {y = 0} has one repelling eigenvalue and the other
one is equal to 1, i.e. J2(F0) contains infinitely many parabolic-repelling periodic
points (and their basins).

4) In the opposite direction, when λ converges to infinity then Favre proved in [Fav16]
that the sum L(λ) of the Lyapunov exponents of the equilibrium measure of fλ sat-
isfies

L(λ) = Lna log |λ|+ o(log |λ|),

where Lna can be interpreted as the sum of the Lyapunov exponents of a non-
Archimedean dynamical system. For the elementary Desboves family, one can prove
that Lna = 1/4.

2.4 Blenders

The purpose of a blender is to “blend” in a robust way different parts of the dynamics.
For instance, it is often used to obtain robust intersections between the stable set W s

Λ1
and the unstable set W u

Λ2
of two hyperbolic sets Λ1,Λ2, while the sum of the dimension of

the stable bundle of Λ1 with the one of the unstable bundle of Λ2 is strictly smaller than
the dimension of the ambiant space. There exist several mechanisms giving such results
but blenders have the advantage to be simple and flexible. On feature of this is the result
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of Bonatti-Díaz [BD08] which shows that blenders always appear in the C1-unfolding of a
heterodimensional cycle and make this cycle robust (under some mild assumptions).

In a holomorphic setting, it seems difficult to obtain such a universal result. However,
my main result in this subject is that blenders always appear near bifurcations of product
maps of C2 and give rise to open sets of bifurcations in Hd(P2) (see [Taf17]). Notice that,
since bifurcations in the sense of [BBD18] are consequences of interplays between the small
Julia set and the postcritical set, blenders will be used in what follows to obtained robust
intersection between these two sets.

Blenders have also been used by Biebler in [Bie16] in order to obtain persistent ho-
moclinic tangencies for polynomial automorphisms of C3 of small degree. And, in his
work on bifurcations of Lattès maps [Bie19], he uses a construction which has the flavor
of “para-blenders” introduced by Berger [Ber16].

2.4.1 Constructions of blenders and a toy model

Unlike the Newhouse phenomenon, the construction of blenders relies on elementary ar-
guments (mainly a covering property combined with the contraction of a cone field) and,
as we will see, simple toy models exist.

Originally, the notion of blenders was introduced (see [BD96]) for diffeomorphisms on
smooth manifolds of dimension larger than or equal to 3 since it needs at least 3 distinct
directions: one strong stable direction, one strong unstable direction and one weak stable
or unstable direction. In our non-invertible setting, the construction can be started in
dimension 2 since the non-injectivity can be considered as an additional stable direction
which is especially strong: the preimages of a point x converge in finite time to x. For
simplicity, in what follows we only consider the 2-dimensional case. Hence, we will obtain
two types of blenders. If the center direction is unstable then the blender will be of
repelling type and if the center direction is stable then it will be of saddle type.

All the maps that we will use are perturbations of product maps of the form

(z, w) 7→ (p(z), q(w)).

Hence, there are two natural directions. The horizontal direction is the one parallel to
{w = c} and the vertical direction is the one parallel to {z = c}. The vertical direction
will always be close to our strong unstable direction.

Roughly speaking, the idea behind blenders of repelling type for a skew product
f(z, w) = (p(z, w), q(w)) of C2 is the following. Let H1, . . . ,HN and V1, . . . , VN be 2N
open sets in C and define H := ∪Ns=1Hs, V := ∪Ns=1Vs and Z := ∪Ns=1Hs × Vs. The set Z
contains a blender of repelling type if for each 1 ≤ s ≤ N

• q is (strongly) expanding on Vs and V ⊂ q(Vs),

• p is (weakly) expanding in the horizontal direction on Hs× Vs and p(Hs × Vs) ⊂ H.

Even if f is repelling on Z, its geometric behavior and its action on the tangent space
(one direction is much more expanded that the other) both mimic those of a saddle set.
And actually, the “local stable set” (given by Λ := ∩n≥0f

−n(Z) and which we refer to as
the blender) of the maximal invariant set of f in Z behaves as a one dimensional stable
manifold: any vertical graph passing through Z has to intersect it (see Example 2.4.1
below for the arguments in a simple setting). Moreover, these properties are stable under
small perturbations. These are the main two properties of a blender of repelling type:
intersection with a family of graphs and robustness.
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Example 2.4.1. Here is an example of a repelling blender coming from [BCDW16]. In
that paper, which focus on diffeomorphisms, it is called a proto-blender since the map is
not injective. By replacing this non-injectivity by a standard strong stable direction, one
obtains a blender for a diffeomorphism in dimension 3.

Figure 2.1 – A repelling blender in R2.

Consider the square S = [0, 1]2 in R2 and two rectangles R1, R2 ⊂ S place as in Figure
2.1. Let f be the map defined on R1∪R2 such that, for s ∈ {1, 2}, f|Rs is affine, preserves
the vertical and horizontal directions and satisfies f(Rs) = S. The important point about
the position of the two rectangles R1 and R2 is that they admit sub-rectangles R′1 and R′2
such that

• the image by f of the leftmost side E1 of R′1 is a vertical segment L1 which intersects
R′1,

• the image by f of the rightmost side E2 of R′2 is a vertical segment L2 which intersects
R′2,

• the other preimage E3 by f of L1 is to the left of the other preimage E4 of L2.

Figure 2.2 – (a) The image of a vertical graph σ0 in R′2 must intersect R′1 or R′2 in a
vertical graph σ1. (b) What could happen without the cone field condition.
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From this, it is easy to check that, if we define H1, H2, V1, V2 such that R′1 = H1 × V1 and
R′2 = H2 × V2 then the map f has a blender of repelling type in Z := R′1 ∪ R′2 as defined
above.

The set Λ := ∩n≥0f
−n(S) is a Cantor set in R2 whose projection on the first coordinates

has non-empty interior. Actually, a must stronger property holds: if σ0 is a vertical path
(i.e. whose tangent vectors are sufficiently vertical) passing through R′2 (or R′1) then its
image must intersect R′1 or R′2 in a vertical graph σ1 (see Figure 2.2). The same holds
for the image of σ1 and by induction, this gives a vertical graph σn contained in fn(σ0).
Hence, the point ∩n≥0f

−n(σn) is in the intersection of σ0 with Λ, i.e. every vertical graph
passing through R′1 or R′2 has to intersect Λ. This is the blender property in the repelling
case. Moreover, this property also holds for small C1 perturbations of f.

Roughly speaking, a blender of saddle type is a blender of repelling type for “f−1”
by taking into account that the non-injectivity can be seen as a strong stable direction.
Notice that, since the contraction in this direction is particularly strong, no cone field
condition is required and a saddle blender is simply a hyperbolic saddle set Λ whose local
unstable set W u

Λ,loc has non-empty interior.
Here is a simple way to obtain blenders (of repelling type or of saddle type) near maps

of the form (z, w) 7→ (z, w4l) with l ≥ 1 large. For these examples, the integer N above is
equal to 3.

Example 2.4.2 (Toy models of blenders in complex dynamics). Let ε > 0 be small and
let α > 0 be much smaller than ε. Let H be the (open) triangle in C with vertices 1, j and
j2 where j := e2iπ/3. For s ∈ {1, 2, 3}, let denote by Hs the image of H by the homothety
of center js and ratio 1 − ε. It is easy to check, since ε > 0 is small, that H = ∪3

s=1Hs.
Moreover, the affine maps

ϕs(z) = (1 + α)(z − εjs) and ψs(z) = (1− α)(z + εjs)

satisfy
ϕs(Hs) ⊂ H and H ⊂ ∪3

s=1ψs(Hs).

(see Figure 2.3 and Figure 2.4). These inclusions persist under small perturbations.
Hence, if for each s ∈ {1, 2, 3} Vs is a very small neighborhood of js and if l ≥ 1 is
large enough in order to have

V1 ∪ V2 ∪ V3 ⊂ q(Vs),

where q(w) := w4l, then the maps

f(z, w) = ((1 + α)(z − εw), w4l) and g(z, w) = ((1− α)(z + εw), w4l)

have a blender of repelling type and a blender of saddle type respectively contained in

Z := ∪3
s=1Hs × Vs.
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Figure 2.3 – The horizontal dynamics in a repelling blender (translation then small ex-
pansion).

Figure 2.4 – The horizontal dynamics in a saddle blender (translation then small contrac-
tion).

2.4.2 Existence near product bifurcations and consequences

The main result of [Taf17] is to show that constructions similar to Example 2.4.2 can be
achieved near (z, w) 7→ (p(z), q(w)), where p, q are two degree d polynomials and p is in
the bifurcation locus.

Theorem 2.4.3. Let d ≥ 2 and let Pd be the family of all one variable degree d polyno-
mials. If p and q are two elements of Pd such that p is in the bifurcation locus of Pd

then the map (p, q) ∈ Hd(P2) can be approximated both by polynomial skew products of
the form (z, w) 7→ (p̃(z, w), q(w)) having an iterate with a blender of repelling type and by
others having an iterate with a blender of saddle type.

It turns out to be quite easy to replace w4l in Example 2.4.2 by a sufficiently large
iterate of q. The role of 1, j, j2 will then be fulfilled by any triplet of distinct repelling
periodic points of q (see [Taf17, Lemma 3.1]). On the other hand, since p is in the
bifurcation locus of Pd, it can be approximated by a polynomial p̂ with a parabolic periodic
point which can be assume, after a change of coordinates, to be at 0. Hence, some iterate
of p̂ satisfies (p̂m)′(0) = 1, i.e. in small neighborhoods of 0 p̂m looks like z 7→ z. Therefore,
it seems reasonable to expect that small perturbations of (z, w) 7→ (p̂ml(z), qml(w)) possess
blenders. All the difficulty in Theorem 2.4.3 is to obtain these perturbations as the (ml)-th
iterate of perturbations of (z, w) 7→ (p̂(z), q(w)) (see [Taf17, Theorem 4.1]).

Observe that blenders by themselves do not create bifurcations as they are hyperbolic
sets. Their existence has important consequences when they “blend” together different
parts of the dynamics. To insure that this happens, we need additional information on
the dynamics. The construction above is explicit and as a corollary (in the repelling case),
we obtain a positive answer to a conjecture of Dujardin [Duj17, Theorem 5.6].
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Corollary 2.4.4. The bifurcation locus of the family Pd×Pd is contained in the closure
of the interior of the bifurcation locus in Hd(P2).

On the other hand, the unstable set of a blender of saddle type has non-empty interior.
Hence, we can use it to obtain large attracting sets.

Corollary 2.4.5. The bifurcation locus of the family Pd×Pd is contained in the closure
of the interior of the set of maps in Hd(P2) possessing a proper attracting set with non-
empty interior.

To the best of my knowledge, no previous example of proper attracting sets with non-
empty interior was known. The result above says that they are abundant. However, as
these attracting sets come from polynomial skew products of C2 they possess an attracting
cycle near the line at infinity and thus they cannot be attractors. Nevertheless, using
blenders of saddle type, it is quite easy to obtain attractors with non-empty interior in P2

(see Theorem 1.6.9 and [Taf17, Theorem 1.5]).
Blenders have been introduced in [BD96] in order to obtain robustly transitive diffeo-

morphisms which are isotopic to the identity on some 3-manifoldsM. A key point (already
use in previous examples) is to create a periodic saddle point p whose stable manifold and
unstable manifold are both dense in M, in a robust way. In dimension 3, one of the in-
variant manifolds (say W s

p ) is 2-dimensional and the other one (W u
p ) is 1-dimensional. In

this situation, the condition W s
p = M is much easier to satisfy than W u

p = M. The idea
in [BD96] is to consider two saddle points, p and q, with different indices (dim(W s

p ) = 2,
dim(W s

q ) = 1), which satisfy (in a robust way)

W s
p = M = W u

q ,

and such that

• q is homoclinically related to a blender Λ of stable index 1,

• the unstable manifold of p intersects robustly the stable manifolds of Λ, thanks to
the blender property.

All this ensure that W s
q = W s

p , i.e. both the stable and unstable manifolds of q are dense
in M.

It is natural to wonder whether such construction can be archived in complex dynamics.
Notice that for endomorphisms of Pk, every repelling periodic point r in the small Julia
set satisfies

W u
r = Pk.

Hence, using the same idea as above, on can hope to construct a saddle point p in P2 such
that

W u
p = P2,

in a robust way. Actually, this is the case for the examples given in the theorem below.
This could be a first step in order to obtain robustly transitive endomorphisms of P2.
However, it seems difficult to construct a saddle point p such that W s

q = P2.

Theorem 2.4.6. There exist d ≥ 2 and an open set Ω ⊂ Hd(P2) which contains skew
products such that Ω ⊂ Bif(Hd(P2)) and each f in Ω possesses a hyperbolic set of saddle
type Λ with positive entropy whose unstable set W u

Λ is a Zariski open set of P2 and

• for each x̂ in the natural extension of Λ, the unstable manifold W u
x̂
is dense in P2,
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• for each x ∈ Λ, the stable manifold W s
x is contained in the small Julia set J2(f).

In particular, we have Λ ⊂J2(f) and the postcritical set of f is dense in P2.

The particularity of this family is to possess two blenders. The first one (of saddle
type) is the hyperbolic set Λ in the statement. The second, Λr, is of repelling type and is
contained in the small Julia set. Moreover, these two blenders form a “heterodimensional
cycle”. In this situation, this simply means that the unstable manifolds of Λ intersect Λr.
Observe that all the properties in Theorem 2.4.6 are all consequences of this intersection.

Notice also that the small Julia set is by definition the support of the equilibrium
measure of f which is of repelling nature (all its Lyapunov exponents are positive [BD99]).
The above statement in the case of repelling hyperbolic sets is classical but this result is
the first example, to the best of my knowledge, of a saddle hyperbolic set which is robustly
contained in the small Julia set. It also provides the first example of an endomorphism of
P2 with a saddle point whose unstable manifold is dense (and moreover in a robust way
in Hd(P2)).





Chapter 3

Dynamics of fibered
endomorphisms

These last years, many new interesting dynamical phenomena in P2 have been exhibited
using polynomial skew products (see e.g. [Duj16], [ABD+16], [Duj17], [Taf17]). Before
these works, a lot of information has been obtained on this type of maps by Jonsson
in [Jon99], helping the future developments. Skew products are particular examples of
endomorphisms of P2 preserving a fibration and, as we have seen in Section 2.3 (see also
[BT17]), other families of endomorphisms with this property can have interesting features.
Hence, it is natural to extend the results of [Jon99] to a broader framework. This is
precisely the motivation of [DT18b] with Dupont. Most of the proofs in this paper are
elementary but its results may be seen as a toolbox which can be useful to study specific
examples.

3.1 Fibered endomorphisms of Pk

An endomorphism f of Pk of degree d ≥ 2 preserves a fibration if there exist a compact
analytic space X of dimension r (1 ≤ r ≤ k−1), a meromorphic dominant map π : Pk → X
and a meromorphic self-map θ of X such that

π ◦ f = θ ◦ π.

When k = 2, the work [FP11] of Favre-Pereira implies that X has to be equal to P1 and
the map θ is holomorphic. In higher dimension, very little is known on the fibrations
preserved by endomorphisms. In particular, are there interesting examples where

• X is singular or,

• θ is not holomorphic or,

• the dimension of the indeterminacy set I(π) of π is larger than the dimension of the
generic fiber (i.e. k − dim(X)) ?

By “interesting”, we want to exclude triplets (π̃, X̃, θ̃) obtained from a standard example
(say X = P2, π : Pk → P2 is the linear fibration) by

π̃ = φ ◦ π, θ̃ = φ ◦ θ ◦ φ−1

where φ : X → X̃ is a bimeromorphic map. Getting a better understanding on the possible
fibrations preserved by endomorphisms of Pk seems to be an interesting algebraic problem,
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which is out of my scope of competence. In [DT18b], we work in the following setting,
which cover the few known examples:

• X = Pr with 1 ≤ r < k,

• θ is holomorphic,

• the indeterminacy set I(π) of π is disjoint from the Julia set Jq(f) of order q := k−r
of f.

This last assumption implies in particular that dim(I(π)) ≤ q − 1. Observe that the
assumption X = Pk is not restrictive as long as X in smooth and dim(I(π)) ≤ q − 1.
Actually, in this situation the restriction of π to a generic linear subspace of dimension
r in Pk gives a surjective holomorphic map from Pr to X. Then by results in [DHP08,
Section 2 & 3], X is projective and then by [Laz84], X is isomorphic to Pr.

As we assume that θ is holomorphic, both f and θ possess Green currents, T if and T jθ
respectively for i ∈ {1, . . . k} and j ∈ {1, . . . , r}. The equilibrium measures of f and θ are
µf := T kf and µθ := T rθ . Since f and θ are semi-conjugated by π, a natural question is
whether there exists a relation between T if and the pull back of Tθ by π. The main result
in [DT18b] gives such a relationship if i > q. More precisely, if we define

S := π∗Tθ
‖π∗Tθ‖

then we have the following result.

Theorem 3.1.1. Let f : Pk → Pk and θ : Pr → Pr be two endomorphisms of degree d ≥ 2.
Assume there exists a dominant rational map π : Pk 99K Pr whose indeterminacy set I(π)
is disjoint from Jq(f) and such that θ ◦ π = π ◦ f. Then for j ∈ {1, . . . , r}, the current
Sj is well-defined, satisfies Sj 6= T jf and T q+jf = T qf ∧ Sj . In particular, µf = T qf ∧ Sr and
π∗µf = µθ.

The proof is simple, it only relies on the properties of the currents Tf and Tθ and is
coordinate free. Here is a brief sketch of it.

Sketch of proof. Since I(π)∩Jq(f) = ∅, there exists a neighborhood U of I(π) such that
U ∩Jq(f) = ∅. If ωPr and ωPk are the Fubini-Study forms on Pr and Pk respectively then
R := π∗(ωPr) is smooth on Pk \ U and there exists C > 0 such that R ≤ CωPk on Pk \ U.
Hence, it follows from U ∩Jq(f) = ∅ that for j ∈ {1, . . . , r}

T qf ∧R
j ≤ Cj(T qf ∧ ω

j
Pk).

By applying d−n(q+j)(fn)∗ on both sides this gives

T qf ∧
( 1
dnj

(fn)∗Rj
)
≤ Cj

(
T qf ∧

( 1
dnj

(fn)∗ωjPk
))

. (3.1)

Standard equidistribution results imply that the right-hand side converges to CjT q+jf . We
also deduce from the relation π ◦ f = θ ◦ π that d−nj(fn)∗Rj = π∗(d−nj(θn)∗ωjPr) which
converges to π∗(T jθ ), i.e. a constant times Sj . All this implies that there exists a constant
C̃ > 0 such that

T qf ∧ S
j ≤ C̃T q+jf .

Moreover, both these currents are totally invariant and T q+jf is an extremal elements in
the cone of such currents (see [DS09, Theorem 5.4.1]). Therefore, T qf ∧ Sj is proportional
to T q+jf and thus they must be equal as they have the same mass.
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Using the classifications obtained in [DJ08] and [FP11], one can check easily that the
assumption Jq(f) ∩ I(π) = ∅ is always satisfied when k = 2, in which case q = 1. This
is also the case when π is the standard linear fibration defined by π[y : z] = [y] with
y := (y0, . . . , yr) ∈ Cr+1 and z := (z0, . . . , zq−1) ∈ Cq. In general, I know no example
where this assumption does not hold.

Remark 3.1.2. Using others results of Dabija-Jonsson [DJ10] and Favre-Pereira [FP15],
one can see that the proof above also applies to endomorphisms of P2 preserving an alge-
braic web. But in some examples, the counterpart of S is equal to Tf .

The main point in Theorem 3.1.1 is the formula µf = T qf ∧ Sr which can be seen as a
generalization of the decomposition of µf obtained by Jonsson [Jon99] for polynomial skew
products of C2. Indeed, for µθ-almost every a ∈ Pr the fiber La := π−1(a) has dimension
q and we can define the probability measure

µa :=
T qf ∧ [La]
‖π∗Tθ‖r

.

Corollary 3.1.3. Let φ : Pk → R be a continuous function. Under the assumptions of
Theorem 3.1.1 we have∫

Pk
φ(x)dµf (x) =

∫
Pr

(∫
La
φ(x)dµa(x)

)
dµθ(a).

In particular, the small Julia set Jk(f) satisfies

Jk(f) = ∪a∈Jr(θ)supp(µa).

In particular, if k = 2 then the small Julia set is exactly equal to the closure of the set
of repelling periodic points (see [Dab00] for another proof of this fact).

The formula µf = T qf ∧ Sr has other consequences. For instance, if µθ is absolutely
continuous with respect to Lebesgue measure (i.e. θ is a Lattès mapping of Pr, see [BD05])
then µf is absolutely continuous with respect to the trace measure σT q

f
:= T qf ∧ ωrPk .

Corollary 3.1.4. Under the assumptions of Theorem 3.1.1, if µθ << ωrPr then µf << σT q
f
.

That applies to the elementary Desboves mappings of P2 considered in Section 2.3
since they induce a Lattès mapping on a pencil of lines. Let us note that when k = 2, the
property µf << σTf implies that the smallest exponent of µf is minimal, equal to 1

2 log d,
see [Duj12, Theorem 3.6]. In particular the Lyapunov exponents of Desboves mappings
are λ1 > λ2 = 1

2 log d, with d = 4. The following Theorem generalizes that semi-extremal
property to fibered endomorphisms satisfying µθ << ωrPr . It is a consequence of π∗µf = µθ
and holds for more general smooth dynamical systems.

Theorem 3.1.5. Let f, π and θ be as in Theorem 3.1.1. If Λ is a Lyapunov exponent of
multiplicity m for µθ then Λ is a Lyapunov exponent of multiplicity at least m of µf .

In particular, the sum Λf (resp. Λθ) of all the Lyapunov exponents of f (resp. θ)
satisfies

Λf = Λθ + Λσ,

where Λσ is the sum of Lyapunov exponents in the direction of the fibers of π. If (fλ)λ∈M
is a family of endomorphisms of Pk which all preserve the same fibration (i.e. π ◦ fλ =
θλ ◦ π where (θλ)λ∈M is a family of endomorphisms of Pr) then the bifurcation current
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TBif(f) := ddcΛf has a decomposition into the sum of two currents TBif(θ) := ddcΛθ and
TBif,σ := ddcΛσ. A natural question is whether the current TBif,σ is positive, i.e. λ 7→ Λσ(λ)
is plurisubharmonic. Moreover, one can expect that this current can be expressed in terms
of currents in the product M × Pk. This seems difficult to archive in full generality (one
difficulty is that the pull back of the critical set of θ by π may not be include in the critical
set of f) but we obtain such results in [DT18b] when π is the linear fibration (see [DT18b,
Theorem 1.7]). Notice that in [AB18] Astorg-Bianchi study the bifurcations in families of
polynomial skew products of C2 in a much deeper way.
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