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Introduction

Contents

1.1 From curse to blessing of dimensionality . . . . . . . . . . . . . . 1

1.2 The blessing of dimensionality applied to the estimation of the
distance between covariance matrices problem . . . . . . . . . . . 6
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1.4 Outline and contributions of the thesis . . . . . . . . . . . . . . . 9

1.1 From curse to blessing of dimensionality

The “curse of dimensionality”. Most signal processing and machine learning methods
(e.g. statistical tests, parameter estimators, classification, regression, etc) are based on
non-trivial functionals of n observed random signal vectors. Under the assumption that
the number of available data n is overwhelmingly larger than their dimension p, some
theoretical results and insights can be derived because a deterministic behavior sometimes
arises when n→∞, which simplifies the problem as exemplified by the celebrated law of
large numbers and the central limit theorem. However, as already shown in the literature
(Wigner, 1958; Marc̆enko & Pastur, 1967), some long-held beliefs supported by classical
results (and intuitions) break down when n, p are comparably large, a problem often
referred to as “curse of dimensionality”. Under the current big data paradigm which sees
loads of data being produced, exchanged and stored, we constantly face the situation
where not only the size n but also the dimension of the data p are large.

On the other hand, the last decade has seen a vast increase both in the diversity of
applications to which machine learning is applied (transfer learning, privacy, fairness,
etc) and to the practical deployment of these applications. Therefore, machine learning
is no longer just the engine behind ad placement and spam filters: it is now used to filter
loan applicants (Fernández, 2019), deploy police officers (Rudin, 2013), make decision in
criminal justice (Berk & Hyatt, 2015), etc making rapid headway into socio-technical
systems. Algorithmic biases and misunderstood algorithms are one of the biggest risks of
failure because it compromises the very purpose of machine learning since there has been
heightened public concern about the impact of digital technology on society.

Random Matrix Theory as a solution. Understanding the resulting impact of
popular statistical learning methods when n and p are both large and comparable is
becoming a growing research concern in modern statistic. Despite the expected challenges

1



CHAPTER 1. INTRODUCTION 2

and difficulties in analyzing statistical methods in this high-dimensional setting, recent
evidences, which we will further develop in the present manuscript, suggest that Random
Matrix Theory (Random Matrix Theory (RMT)) provides the necessary tools to handle
such a framework. The sample covariance matrix, being a dominant object of study
in most of the multivariate analyses, is a suitable object to illustrate this “curse of
dimensionality” paradigm. Let us consider a p-dimensional random vector x with zero-
mean E[x] = 0 and covariance Σ = E[xxT]. Many topics in multivariate analysis (e.g.,
principal component analysis, factor analysis, multidimensional scaling, etc) deal with
the study of functionals (trace, log determinant, etc) or spectral properties (eigenvalues,
eigenvectors) of Σ.

Typically, Σ is unknown, and so has to be estimated using a sample of data. Given
a sequence of independent random vectors X = [x1, . . . , xn] drawn from the same
distribution as x, the usual estimate of the population covariance matrix Σ is the sample
covariance matrix Σ̂ defined as:

Σ̂ =
1

n

n∑
i=1

xix
T
i =

1

n
XXT.

For fixed p and n→∞, the sample covariance matrix is a consistent estimator for
the population covariance matrix. If we denote λ1 ≥ . . . ≥ λp the eigenvalues of Σ

and λ̂1 ≥ . . . ≥ λ̂p the eigenvalues of Σ̂, Anderson et al. (1958, Theorem 13.5.1) proves

more specifically, that if x ∼ N(0,Σ), for 1 ≤ j ≤ p, the sample eigenvalues λ̂j ’s are
asymptotically distributed according to:

√
n(λ̂j − λj)→N(0, 2λ2

j ) as n→∞. (1.1)

This result shows that when n→∞, p fixed, the j-th sample eigenvalue λ̂j is a consistent
estimator of the j-th population eigenvalue λj . However, this result doesn’t apply when
p, n are both large. A typical question would be to study the eigenvalue distribution
of Σ̂ in order to quantify its “deviation” from the eigenvalue distribution of the true
covariance matrix Σ in the large dimensional setting of n, p both large.

The first result on the spectral behavior of sample covariance matrices is due to the
seminal work of Marčenko and Pastur in 1967 (Marc̆enko & Pastur, 1967) where they
obtained a self-consistent equation for the spectrum of Σ̂ given Σ = Ip as p, n go to
infinity.

Theorem 1. Suppose that X is a p × n matrix with i.i.d. real- or complex-valued
entries with mean 0 and variance 1. Then, as n, p→∞ such that p/n ≡ c0 → c∞0 , the
empirical spectral measure µΣ̂ = 1

p

∑p
i=1 δλ̂i of the eigenvalues λ̂1 ≥ . . . ≥ λ̂p of 1

nXX
T,

converges weakly, with probability one, towards a non-random distribution, known as

the Marčenko–Pastur law and denoted by µ
c∞0
MP . If c∞0 ∈ (0, 1), µ

c∞0
MP has the probability

density function:

µ
c∞0
MP (dx) =

√
(λ+ − x)(x− λ−)

2πc∞0 x
dx
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where λ± = (1±
√
c∞0 )2. If c∞0 ∈ (1,∞), then µMP is a mixture of a point mass 0 and

the pdf µ
1
c∞0
MP with weights 1− 1

c∞0
and 1

c∞0
.

In particular, the influence of c∞0 appears precisely. Indeed, in the regime of p fixed
and n→∞, the result of (Anderson et al., 1958) showing that the sample eigenvalues
converge to the population eigenvalues, is recovered by the Marčenko-Pastur formula
for c∞0 → 0. However, when c∞0 = O(1), the same formula shows that all the sample
eigenvalues become noisy estimators of the eigenvalues of the identity matrix no matter
how large n is. More precisely, the distortion of the spectrum of Σ̂ compared to the “true”
one becomes more and more substantial as c∞0 becomes large (see Figure 1.1).

0 1 2 3

0

0.5
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ty
µ

(λ
) δ1

µΣ̂
µMP

0 1 2 3 4
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c∞0 = 0.1
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Figure 1.1: (Left) Spectral distribution of the empirical covariance matrix with p = 1000,
n = 2000 versus the Marčenko-Pastur law with c∞0 = 0.5. (Right) Marčenko-Pastur law
for different values of c∞0 .

The heuristic behind this phenomenon is as follows. When the sample size n is very
large, each individual coefficient of the population covariance matrix Σ can be estimated
with negligible errors. But if p is also large and of the order of n, as is often the case in
many situations, the sample estimator Σ̂ becomes inconsistent. More specifically, the
large number of simultaneous noisy coefficients of the sample covariance matrix creates
important systematic errors in the computation of the eigenvalues of the matrix.

The Marčenko-Pastur result had a tremendous impact on the understanding of the
“curse of dimensionality”. This observation is the very essence of many applications
in principal component analysis (Johnstone, 2001), sphericity test (Yuan et al., 2021),
statistical inference (Mestre & Lagunas, 2008), etc.

To illustrate this “curse of dimensionality” paradigm, we present one of the important
consequences of this deviation in the study of the sample generalized variance log(|Σ̂|)
appearing in many statistical methods (Quadratic Discriminant Analysis (Tharwat, 2016),
hypothesis tests in multivariate statistic (Anderson et al., 1958), differential entropy in
probability and information theory (Srivastava & Gupta, 2008), etc). These aspects are
closely related to one of the topics covered in this thesis (Chapter 3).
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Implications on a hypothesis test problem. An important statistic in multivariate
analysis is the sample generalized variance:

L̂n = log(|Σ̂|) =

p∑
j=1

log
(
λ̂j

)
.

When the dimension size p is fixed, for Σ = Ip, λ̂j → 1 almost surely, as n→∞ and thus

L̂n → 0. Further, by taking a Taylor expansion of log(1 + x), one can show from (1.1)

that
√

n
p L̂n → N(0, 2). This suggests the possibility that L̂n remains asymptotically

Gaussian for large p provided that p = O(n). However, when p/n ≡ c0 → c∞0 ∈ (0, 1) as
n→∞, using results on the limiting spectral distribution of Theorem 1, we have (see
the computation of the integral in (Bai & Silverstein, 2008)[Section 5]):

1

p
L̂n →

∫ λ+

λ−

log(x)

2πıxc∞0

√
(λ+ − x)(λ− − x)dx ≡ d(c∞0 ) =

c∞0 − 1

c∞0
log(1− c∞0 )− 1 < 0

where λ− = (1−
√
c∞0 )2 and λ+ = (1 +

√
c∞0 )2.

This shows that almost surely
√

n
p L̂n ∼ d(c∞0 )

√
pn → −∞. Thus the classical

estimate
√

n
p L̂n is biased and will induce serious issues when implemented in hypothesis

test problem.

The necessity of a new set of tools. Another problem of the classical regime (p
fixed, n→∞) concerns the intricate nature of the random objects of interest in machine
learning and signal processing algorithms which has sometimes limited the capability of
learning theory in this regime to explain and predict the properties and the behavior of
these algorithms. We illustrate this with the ridge regression problem for classification.
Suppose a statistician observes n training examples (xi, yi) ∈ Rp×Y, and wants to find a
rule for predicting y on future unlabeled draws x. In other words, the statistician seeks a
function h : Rp →Y, h(x) = g(ωTx) for which E[`(y, h(x))] is small where `(., .) is a loss
function; in regression Y = R and in binary classification Y ∈ {−1, 1}. Such prediction
problems lie at the heart of several scientific and industrial endeavors. The ridge regression
problem consists in taking `(y, h(x)) = ‖y−h(x)‖2. Using a linear function g(x) = x and
normalizing the data matrix X = [x1, . . . , xn] by

√
n1, the regression parameter vector ω

is chosen in order to minimize the residual error in the training dataset X as:

min
ω
‖y − XT

√
n
ω‖2 + λ‖ω‖2 (1.2)

where y = [y1, . . . , yn]T ∈ Rn and λ is the regularization parameter which controls the
complexity of the model. Taking the derivative with respect to ω and setting it to zero,

1This normalization is carried out to prevent performance from diverging when n, p tends to infinity
(See more details in (Louart & Couillet, 2018))
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we get
1

n
XXTω − 1√

n
Xy + λω = 0. (1.3)

Therefore the optimal regression parameter vector can be computed by

ω =

(
1

n
XXT + λIp

)−1 X√
n
y. (1.4)

For a new test data x, the decision is based on the sign of the test score :

g(x) = ωT x√
n

=
1

n
xT

(
1

n
XXT + λIp

)−1

Xy. (1.5)

Even under a Gaussian mixture model for the data matrix X, to the best of our knowledge,
there exist few theoretical works (Tsigler & Bartlett, 2020) in the classical regime that
can study the statistical behavior of the random quantity g(x) since it involves complex

dependency in X in particular arising in the inverse matrix
(

1
nXX

T + λIp
)−1

. In Chapter
2, we will see that this object is natural and classical to study under the large dimensional

setting of p and n both large. The quantity
(

1
nXX

T + λIp
)−1

called the resolvent of
the matrix 1

nXX
T is at the heart of Random Matrix Theory (RMT) tools and will be

discussed at length in this thesis.

Summarizing the “curse of dimensionality” paradigm and moving towards the
“blessing of dimensionality” through RMT. This section discusses two problems
induced by classical asymptotic in multivariate analysis:

1. Tools from Multivariate Analysis in classical statistic are not always sufficient to
deal with the increasingly complex random objects appearing in machine learning
and signal processing. This has been illustrated through the popular and simple
ridge regression problem.

2. For the few methods that can be analyzed, classical asymptotic approximations
based on the “fixed dimension, large sample size” regime are inadequate in capturing
the effects of dimensionality when the data dimension p is not small compared to
the sample size. The spectral behavior of the sample covariance matrix illustrates
this phenomenon with consequences shown on the study of the sample generalized
variance.

The “curse of dimensionality” initially introduced by Bellman (Bellman, 1966) in relation
to complications occurring in dynamic programming has now become a common name
for issues of theoretical nature arising in high dimensions. The recent advances in
large dimensional random matrix theory have raised much interest for problems in
statistic and signal processing under the assumption of large but similar population
dimension p and sample size n. The “curse of dimensionality” can then be turned into
the blessing of dimensionality using Random Matrix Theory as a consequence of the
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measure concentration phenomena arising for high dimensional data. Therefore, large
dimensional setting should not be feared or avoided: it just has to be used properly.

More specifically, we will show that by being a little too ”stubborn” to assume n� p
even when it is not true, we can generate dramatic errors. Furthermore, one may wonder
for which value of n, p, we start observing the curse of dimensionality. In fact, the n, p� 1
regime already occurs when n, p are rather small. By exploiting both randomness in p
and n, the speed of convergence of many functionals discussed in this manuscript can
be as high as O(1/

√
pn) (unlike the classical Central Limit Theorem (CLT) which goes

in O(1/
√
n)). For example, one could believe that n = 100p with p� 1 is a ”classical”

regime, when in fact the RMT tools explain the phenomena better even in this case, and
following the n� p path to obtain intuitions when n, p� 1 is a bad strategy. The curse
of dimensionality remains in fact true: the intuitions coming from n � p are simply
wrong; one has to wipe the slate clean, start on a radically different approach, which is
what RMT offers. A major consequence is that one will get in this thesis new ”intuitions”
which, at first sight, are in fact rather very counter-intuitive.

In this thesis, we leverage the capability of random matrix theory to overcome
the technical difficulties involved in recent machine learning algorithms and to deeply
understand limitations and possible corrections of such “large p, large n” systems.
Specifically, we will use the opportunity offered by random matrix tools to understand
and improve two problems of great interest in machine learning and signal processing
(distance between covariance matrices and Multi-Task Learning).

Before delving into the technical details, we next motivate the interest into these two
problems starting with the estimation of distances between covariance matrices.

1.2 The blessing of dimensionality applied to the estima-
tion of the distance between covariance matrices prob-
lem

Motivation of covariance matrix distance estimation problem. Similarities
between covariance matrices are objects of interest for many engineering applications,
among which machine learning problems (for instance, covariance-based data clustering
regularly used in synthetic aperture radar, hyperspectral imaging (Chang, 2003), or
EEG datasets (Richiardi et al., 2013)), dimensionality reduction (Carter, 2009), portfolio-
optimization and asset clustering in finance (Tola et al., 2008), etc.

State-of-the-art estimation procedure. Depending on context and application,
various metrics are available in the literature to compare semi-definite positive matrices
(the Frobenius norm, the Fisher Information metric (Costa et al., 2015), the Bhattacharyya
distance (Bhattacharyya, 1943), the Rényi or Kullback-Leibler divergence, the Wasserstein
distance, etc.). If we define by Σ1 and Σ2 two covariance matrices of size p× p, all these
distances, which we will denote generically D(Σ1,Σ2), can be expressed as functionals of
the eigenvalues of the matrix Σ−1

1 Σ2 (Fisher distance, Bhattacharyya distance, Kullback-
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Leibler divergence, or Rényi divergence between centered Gaussians) or eigenvalues of
the matrix Σ1Σ2 (Wasserstein distance between two centered Gaussians). Assuming
that the number of samples n1 and n2 of data having Σ1 and Σ2 for covariance is
very large compared to p, the law of large numbers guarantees that D(Σ̂1, Σ̂2) is a

consistent estimator for D(Σ1,Σ2) with Σ̂a = 1
na

∑na
i=1 x

(a)
i x

(a)T
i for a ∈ {1, 2} the

empirical covariance matrix of the na centered samples x
(a)
i with x

(a)
i = Σ

1
2
a z

(a)
i and z

(a)
i

i.i.d. random vectors of zero mean and unit variance entries.

Inconsistency of the classical estimate. However, the classical estimator is strongly
biased when n1, n2 ∼ p as shown in the middle column of Table 1.1. Using tools from

p DF(Σ1,Σ2) Classical Proposed

2 0.0980 0.1002 0.0973
4 0.1456 0.1520 0.1461
8 0.1694 0.1820 0.1703

16 0.1812 0.2081 0.1845
32 0.1872 0.2363 0.1886
64 0.1901 0.2892 0.1920

128 0.1916 0.3955 0.1934
256 0.1924 0.6338 0.1942
512 0.1927 1.2715 0.1953

(error > 50%) (error > 100%) (error > 500%)

Table 1.1: Proposed versus classical estimator for the Fisher distance between Σ1 and

Σ2 with [Σ
− 1

2
1 Σ2Σ

− 1
2

1 ]ij = .3|i−j|, x
(a)
i ∼N(0,Σa); n1 = 1024 and n2 = 2048 for different

values of p. Averaged over 10 000 trials.

random matrix theory, this thesis proposes a general formula for a “ universal ” distance
estimator D(Σ1,Σ2) which is consistent within the limit where p, n1, n2 → ∞ with
p/n1 → c1 > 0 and p/n2 → c2 > 0, the estimated outputs of which are displayed in the
rightmost column of Table 1.1. These aspects are investigated in Chapter 3.

Covariance matrices are at the heart of most statistical and machine learning methods
and therefore knowing how to manage, estimate and understand covariance functions is
central in Machine Learning (ML) since it allows for the efficient use of estimators when
we have to manage several covariance matrices. These covariance matrix models, one
way or another, are indirectly exploited in many machine learning algorithms. Large
dimensional statistics have thus naturally provided new results to better understand,
analyze and improve these algorithms, yet so far for ”bottom of the shelf” algorithms
(classical Support Vector Machine (SVM) (Liao & Couillet, 2019), spectral clustering
(Couillet et al., 2016), graph-based Semi-Supervised Learning (SSL) (Mai & Couillet,
2018)). The richer and more complex methods such as multi-task learning, transfer
learning, learning with fairness, privacy and safety in machine learning, etc which involve
multiple biases that are difficult to trace (too many parameters, too much heterogeneity
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in the data, etc.) are finally those that can gain the most from exploiting the RMT,
which will identify these biases. We show that this is indeed the case, that there are
multiple biases especially in the case of Multi-Task Learning, but that the RMT cleans
them up one by one, while maintaining a remarkable algorithmic simplicity.

1.3 The blessing of dimensionality applied to Multi-Task
Learning

From single to multiple task learning. The most advanced supervised machine
learning algorithms generally require a large number of labeled training samples to achieve
high levels of accuracy. Deep learning models are prototypical in their sometimes requiring
millions of labeled samples for efficient training. In many (if not most) applications
(say, for instance, medical imaging (Abdullah-Al-Zubaer Imran & Terzopoulos, 2019;
Imran et al., 2020)), this is often too demanding, labeled samples being hard to collect.
MTL (Caruana, 1997; Zhang & Yang, 2018, 2021), an offspring of which is better known
as transfer learning, provides a potent workaround by appending the available small
training dataset of interest with additional somewhat similar datasets on which similar
(classification or regression) tasks can be performed; the additional data possibly being
of a different nature, MTL effectively solves multiple tasks in parallel while exploiting
task relatedness to enforce collaborative task learning.

How does MTL work? Precisely, multi-task learning simultaneously solves multiple
related tasks and introduces shared hyperparameters or feature space, optimized to
improve the performance of the individual tasks. The crux of the various multi-task
learning algorithms lies in the means to both enforce and, most importantly, evaluate task
relatedness: this is in general highly non-trivial as this implies to theoretically understand
what common features of the parallel datasets can be adequately exploited by the MTL
algorithm – the latter generally deriving from a classical single-task algorithm (such as a
mere support vector machine). Several heuristics have been proposed which may be split
into two groups: parameter-based versus feature-based MTL. In the parameter-based
MTL approach, the tasks are assumed to share some common hyperparameters (Evgeniou
& Pontil, 2004; Xu et al., 2013) (e.g., the hyperplanes separating each class in a support
vector machine flavor) or that these hyperparameters have a common prior distribution
(Zhang & Yeung, 2012, 2014). Classical learning mechanisms (such as support vector
machines (SVM), logistic regression, etc.) can then be appropriately adapted and turned
into a multi-task version by enforcing these parameter relatedness assumptions. In this
context, (Evgeniou & Pontil, 2004; Xu et al., 2013; Parameswaran & Weinberger, 2010)
respectively adapt the SVM, least square-Support Vector Machine (SVM) (LS-SVM), and
large margin nearest neighbor (LMNN) methods into a MTL paradigm. In the feature-
based MTL approach, the tasks data are instead assumed to share a low-dimensional
common representation. In this context, most of the works aim at determining a mapping
of the ambient data space into a low-dimensional subspace (through sparse coding, deep
neural network embeddings, principal component analysis, etc.) in which the tasks have
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high similarity (Argyriou et al., 2008; Maurer et al., 2013; Zhang et al., 2016; Pan et al.,
2010); other works simply use a feature selection method by merely extracting a subset of
the original feature space (Obozinski et al., 2006; Wang & Ye, 2015; Gong et al., 2012).

The negative transfer plague. The strong underlying limitation of all these methods
is their lack of theoretical tractability: as a result, many of the biases inherent to the
base methods (SVM, LS-SVM, deep nets) are exacerbated in a multi-task setting. As
a striking consequence, many of these heuristic MTL algorithms suffer from negative
transfer, which corresponds to scenarios where the multi-task setup performs worse than
a single-task approach (Rosenstein et al., 2005; Long et al., 2013); this is particularly the
case when task relatedness is weaker than assumed so that the MTL method enforces
fictitious similarities, thereby inducing strong biases.

A large dimensional analysis to redesign MTL. In this thesis, we focus on a very
elementary (yet, as we shall see, already quite powerful) LS-SVM-based MTL approach
and provide a thorough theoretical analysis from which we manage to automatically
discard the negative transfer limitation. Specifically, placing ourselves under a large
dimensional data setting, we exploit modern tools from large dimensional statistics (here
random matrix theory) to theoretically investigate the key components that determine
whether tasks interfere constructively or destructively under the MTL framework. This
analysis provides powerful insight into the inner workings of the method and allows for a
fundamental adaptation of the method which provably avoids all sorts of biases and most
importantly discards the problem of negative transfer altogether. Methodologically, in its
simplest approach, MTL algorithms can be obtained from a mere extension of support
vector machines (SVM), accounting for more than one task. That is, instead of finding
the hyperplane (through its normal vector ω) best separating the two classes of a unique
dataset, (Evgeniou & Pontil, 2004) proposes to produce best separating hyperplanes (or
normal vectors) ω1, . . . , ωk for each pair of data classes of k tasks, with the additional
constraint that the normal vectors take the form ωi = ω0 + vi for some common vector
w0 and dedicated vectors vi. The amplitude of the vectors vi is controlled (through an
additional hyperparameter) to enforce or relax task relatedness. We study this approach
in chapter 4.

The conclusions drawn in this chapter thus allow for an optimal use of MTL LS-SVM
with performance-maximizing hyperparameters and strong theoretical guarantees. As
such, the work performed in Chapter 4 offers through MTL LS-SVM a viable fully-
controlled (even better performing) alternative to state-of-the-art MTL.

1.4 Outline and contributions of the thesis

The classical asymptotic based on “n � p” hypothesis is not just “incorrect”, it also
induces terrible biases that completely destroy the functioning of the algorithms; the
thesis proposes to shed light on this by showing the dramatic consequences that these
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biases can induce. Furthermore, independently of its correctness or not, the n � p
hypothesis is often not enough to understand the behavior of the algorithms; the thesis
shows that, paradoxically, the n, p→∞ hypothesis gives rise to analytically accessible
expressions; the only difficulty is technical: it requires mastering the RMT tools and
forgetting our reflexes and small dimensional biases. Particularly, the thesis is based
on the fact that when p, n→∞, the statistics of the functionals of interest of the data
(scores, performances, thresholds) depend only on first and second-order statistics (means
and covariance matrices); this makes in particular the covariance matrices extremely rich
objects that need to be understood.

This thesis first shows how classical estimates can destroy algorithms by introducing
biases that are difficult to clean, whereas a consistent RMT estimation of the functionals
of interest avoids biases. Furthermore, we illustrate how classical biases induced in
“‘bottom of the shelf” algorithms such as Support Vector Machine, Semi-Supervised
Learning, etc are exacerbated in more involved algorithms like multi-task and transfer
learning schemes. To that end:

• In Chapter 2, we introduce the necessary tools from Random Matrix Theory to
grasp the technical ideas required for understanding the thesis. To that end, we
consider two applications close to Chapters 3 and 4 of this thesis. In particular,
we will look at how RMT works through simple examples that are closely related
to the specific problems of this thesis. These examples will illustrate very simply
the key problems evoked in the introductory chapter, in particular the curse of
dimensionality and its cure through the RMT. These examples namely the spectral
statistic estimation of the population covariance matrix and the asymptotic of ridge
regression in the context of classification require to introduce some basic notions
of RMT in particular the generalized Marčenko Pastur law which will begin the
chapter.

• After having illustrated by the spectral statistical estimation of the population
covariance matrix the limits of the classical asymptotic (n � p) and provided a
consistent estimation by RMT, we will be able to introduce in the chapter 3, the
problem of estimating the distance between covariance matrices while providing
consistent estimators for these distances. An application to clustering of covariance-
based dataset as well as an application to the covariance matrix estimation problem
are provided. This chapter is the result of several contributions that started with
the estimation of the most usual covariance matrices distances (Fisher distance,
Battacharrya distance, Kullback-Leibler divergence for Gaussian). These distances
can be expressed as eigenvalues functionals of the Fisher matrix Σ−1

1 Σ2 for two
population covariance matrices Σ1 and Σ2 to compare. This leads to the first
contributions of this project:

Journals:

1. Romain Couillet, Malik Tiomoko, Steeve Zozor and Eric Moisan, “Ran-
dom matrix-improved estimation of covariance matrix distances,” Journal of
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Multivariate Analysis, no. 174, pp. 104531, November 2019.

Conferences:

1. Malik Tiomoko, Romain Couillet, Steeve Zozor, and Eric Moisan, “Improved
Estimation of the Distance between Covariance Matrices,” in IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP’19),
Brighton, UK, May 2019.

Although this family of metrics covered a plethora of distances used in signal
processing, we realized that several distances of interest, notably the Wasserstein
distance used in optimal transport, did not appear in this first class of distances. A
study similar to the first one allowed us to cover this important case of distances that
involve eigenvalues functionals of the matrix Σ1Σ2 among which are the Frobenius
distance and the Wasserstein distance.

Conferences:

1. Malik Tiomoko, and Romain Couillet, “Random Matrix-Improved Estima-
tion of the Wasserstein Distance between two Centered Gaussian Distributions,”
in European Signal Processing Conference (EUSIPCO’19), A Coruna, Spain,
2019, A Coruna, Spain, 2019, Best Student Paper Award.

Having a generic framework to consistently estimate all distances between covari-
ance matrices, we develop a framework on the covariance matrix estimation itself
based on an optimization problem involving distances between covariance matrices.
Concretely, the estimation procedure consists in (i) writing the covariance matrix
Σ as the solution to arg minM�0D(M,Σ) for a wide range of metrics D (Fisher,
Batthacharyya, Stein’s loss, Wasserstein, etc.), (ii) based on Couillet et al. (2018),
using the fact that D(M,Σ)− D̂(M,X)→ 0 for some consistent estimator D̂, valid
for all deterministic M and samples X = [x1, . . . , xn] ∈ Rp×n having zero mean and
covariance Σ, and (iii) proceeding to a gradient descent on D̂ rather than on the
unknown D itself. This forms the basis of the following contribution and can be
seen as an application of the two previous contributions:

Conferences:

1. Malik Tiomoko, Florent Bouchard, Guillaume Ginholac, and Romain Couil-
let, “Random Matrix Improved Covariance Estimation for a Large Class of
Metrics,” in International Conference on Machine Learning (ICML’19), Long
Beach, USA, 2019, Long Beach, USA, June 2019.

One of the major limitations of the three previous works was that they were only
valid when the number of samples was larger than the feature size, which was a
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real handicap for real applications. We therefore analyzed and understood this
important problem and proposed solutions to solve it. This work has been done in
the following contribution.

Conferences:

1. Malik Tiomoko, and Romain Couillet, “Estimation of Covariance Matrix
Distances in the High Dimension Low Sample Size Regime,” in IEEE Inter-
national Workshop on Computational Advances in Multi-Sensor Adaptive
Processing (CAMSAP’19), Guadeloupe, France, 2019.

• Having a generic framework for consistent estimates of distances between covariance
matrices, we show in Chapter 4 how problems as complex as multi-task learning
also depend on mean and covariance functionals that can be estimated consistently.
But beyond that, the theoretical analysis highlights deep insights into the inner
working of these algorithms and opens the way to improvements of the method. The
project starts by deriving and analyzing a first simple algorithm based on the ridge
regression problem. We provide in the following contribution a first asymptotic
behavior of the latter. The main contributions of this work were technical to show
that RMT can not only handle simple algorithms like spectral clustering, SVM,
but also advanced machine learning methods such as MTL.

Conferences:

1. Malik Tiomoko, Cosme Louart and Romain Couillet, “Large Dimensional
Asymptotics of Multi-Task Learning,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP’20), Barcelona, Spain, May
2020.

This work led furthermore to a simplification and more interpretable formulas for
the large dimensional analysis and most importantly to an improvement of the
Multi-Task Learning schemes performed in the following contributions.

Journals:

1. Malik Tiomoko, Romain Couillet, and Hafiz Tiomoko, “Large Dimensional
Analysis and Improvement of Multi-Task Learning,”Journal of Machine Learn-
ing Research, submitted September 2020.

Conferences:

1. Malik Tiomoko, Hafiz Tiomoko Ali and Romain Couillet, “Deciphering and
Optimizing Multi-Task Learning: a Random Matrix approach ,” (submitted) in
International Conference on Learning Representations (ICLR’21), Spotlight
Article.
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• Chapter 5 lists several perspectives following the work performed in this thesis.



Chapter 2

Basics of Random Matrix Theory

Contents

2.1 Large dimensional spectral behavior of the sample covariance
matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Linear spectral statistic . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Deterministic equivalent of random matrices . . . . . . . . . . . . 27

The goal of this chapter is to introduce the necessary tools required to tackle the
covariance matrix distance estimation problem and the Multi-Task Learning framework.
In particular, these make respectively use of linear spectral statistic (discussed in Section
2.2) and of deterministic equivalent (discussed in Section 2.3) of random matrices. But
they both rely on a fundamental result in Random Matrix Theory (the generalized
Marčenko-Pastur law) introduced in Section 2.1 of this chapter. Two simple examples
(estimation of the population generalized variance and ridge regression problem) are used
to illustrate the utility of the linear spectral statistic and of the deterministic equivalent.

The interest of looking at two simple and classical problems of statistics is twofold:
(i) it allows to illustrate on concrete examples the severe limitations of the classical
asymptotic (n � p) highlighted in an abstract way in the introduction and to show
how RMT allows to understand and correct them; (ii) these problems being simpler,
they allow to highlight the main tools which will be used in this thesis. These examples
have not been chosen randomly, especially as they are closely related to the problems of
interest in Chapters 3 and 4.

2.1 Large dimensional spectral behavior of the sample co-
variance matrix

Setting the stage. Covariance matrices are ubiquitous in many machine learning and
signal processing methods. They are used in several classical methods such as Principal
Component Analysis (PCA), Canonical Correlation Analysis (CCA), etc. More specifically,
they are at the heart of the objects that characterize the asymptotic performance of
the algorithms studied in this thesis. The ability to understand the properties of the
covariance matrix Σ that is typically unknown depends on the quality of the estimator.
As mentioned in the introduction, the standard maximum likelihood estimator is the
sample covariance matrix Σ̂. A thorough understanding of the behavior and limitations
of the methods developed in this thesis requires a good understanding of the spectral
properties of Σ̂.

14
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There is a large body of work concerned with the limiting behavior of the eigenvalues
of the sample covariance matrix Σ̂ when p and n both go to ∞; it constitutes an
important subset of Random Matrix Theory. The goal of this section is to introduce a
fundamental result, the Marčenko-Pastur equation, that relates the asymptotic behavior
of the eigenvalues of the sample covariance matrix to that of the population covariance
matrix in the “large n, large p” asymptotic setting.

One of the practical uses of the asymptotic results in RMT is their universality with
respect to the distribution of the matrix entries. This makes Marčenko-Pastur’s result
even more interesting for this thesis1 than some results such as the Wishart distribution
(Wishart, 1928) which characterizes the joint distribution of the eigenvalues of the sample
covariance matrix Σ̂ in the case of Gaussian data. Note that most of the methods of
interest in this thesis are function of the global behavior of the spectrum of the covariance
matrix, therefore at the difference of other results on the spectral behavior of the sample
covariance matrix Σ̂ (Wishart distribution (Wishart, 1928) for the joint distribution of
the eigenvalues of Σ̂, Tracy Widow law (Tracy & Widom, 1996) for the behavior of the
largest eigenvalue of Σ̂, etc), the Marčenko Pastur law (describing the global behavior
of the limiting eigenvalue distribution) is sufficient for understanding the methods of
interest in this thesis. Specifically, we are not interested by the joint distribution of the
eigenvalues as well as their local behavior but rather by their behavior as a whole. This
makes Marčenko-Pastur’s law an indispensable and necessary tools for understanding the
techniques in this thesis. However its formulation requires to introduce some concepts
and notations.

Going from vectors to measures. One of the first problems to tackle is to find an
efficient way to express the limit of a vector (the p eigenvalues λ̂1 ≥ . . . ≥ λ̂p) whose size
grows to ∞. A natural way to do so is to associate to any vector a probability measure.
This leads to introducing the notion of Empirical Spectral Distribution which associates
to any vector containing the eigenvalues of a target matrix a probability measure.

Empirical and Limiting Spectral Distribution. The Empirical Spectral Distribu-
tion (Empirical Spectral Distribution (ESD)) of a random matrix M ∈ Rp×p is defined
as

µM (t) =
1

p

p∑
j=1

δ (t− λj(M)) , (2.1)

where δ is the Dirac delta function and λj(M)’s denote the p eigenvalues of M , including
the multiplicity. The ESD is the normalized counting measure of the eigenvalues of M ,
i.e., the probability distribution that put mass 1/p at each one of the p eigenvalues of
M . In general, the ESD is a probability measure on C; it has support in R (resp. in
R+) if M is Hermitian (resp. non-negative definite Hermitian). In this thesis, we are

1Since this thesis focuses on universal methods with respect to the data distribution and needs to
be robust for real-world applications, a result on the spectral behavior of Σ̂ independently of the data
distribution is of particular interest.
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mainly concerned by covariance matrices and since there are Hermitian and non-negative
definite, the corresponding ESD’s will have support on R+. In the rest of the thesis, the
support of the probability measure µM will be denoted Supp(µM ).

As p, n → ∞ with constant ratio p/n ≡ c0 → c∞0 , the eigenvalues of the sequence
of sample covariance matrices Σ̂ ∈ Rp×p are random variables and the corresponding
ESD’s µΣ̂ are random probability measures on R+. A fundamental question in random
matrix theory is about whether the sequence µΣ̂ (sometimes written µp when there are
no ambiguities about the matrix under investigation) has a limit (in probability or almost
surely). The Limiting Spectral Distribution (Limiting Spectral Distribution (LSD)) of
M denoted µ∞ is defined as the limit of (2.1) as n, p → ∞ if it exists. In the rest of
the thesis, the Empirical Spectral Distribution of the sample covariance matrix will be
denoted by µp and its LSD will be denoted by µ. As for the sample covariance matrix,
the ESD and LSD of the population covariance matrix Σ will be denoted respectively
νp and ν. An important area of RMT is concerned with understanding the properties
of µ as function of ν. To that end, we do not work directly with the LSD µ but with a
tool that is similar in flavor to the characteristic function of a distribution: the “Stieltjes
transform” of a measure.

Resolvent and Stieltjes transform. The resolvent of a random matrix M ∈ Rp×p

is defined ∀z ∈ C \ Supp(µM ) as

Q(z) = (M − zIp)−1.

This quantity displays several interesting properties, making it the relevant object to
manipulate. First, it is a continuous function of z and it is easy to differentiate (compared
to working directly on the ESD), providing a well-defined tool for mathematical analysis.
Furthermore if M is symmetric, it contains the complete information about the eigenvalues
λj ’s and the eigenvectors uj ’s of the symmetric matrix M since it can be rewritten as:

Q(z) =

p∑
j=1

uju
T
j

λj − z
.

It is easy to see that the number of singularities of the resolvent is equal to the
number of eigenvalues of M . While the statistics of the eigenvectors are an interesting
and non-trivial subject in itself, we focus for now on the statistics of the eigenvalues
through the ESD. For this aim, we define the normalized trace of the resolvent

mµM (z) =
1

p
trQ(z).

We shall skip the index M and replace it by p as soon as there is no confusion about the
matrix we are dealing with. As p→∞,

mµp(z)
a.s.−→ mµ(z), mµ(z) =

∫
µ(dt)

t− z
(2.2)

which is known as the Stieltjes transform of µ.
The Stieltjes transform has a lot of interesting properties among which
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1. mµ(z) is holomorphic on C \ Supp(µ)

2. If z ∈ C+ then mµ(z) ∈ C+

3. If Supp(µ) ⊂ R+ and z ∈ C+, then zmµ(z) ∈ C+,

where we recall that Supp(µ) is the support of the distribution µ and we note C+ = {z ∈
C, Im(z) > 0} with Im(z) the imaginary part of the complex number z.

An appealing feature of the Stieltjes transform is its analyticity which implies that its
local knowledge leads to its knowledge everywhere else. Furthermore if µ has bounded
support, the Stieltjes transform can be equivalently be rewritten as

mµ(z) = −
∞∑
n=0

1

zn+1

∫
λndµ(λ).

Therefore the Stieltjes transform also known as the Cauchy transform is the generating
function of the moments of the measure µ, (i.e., it is a power series in 1/z whose
coefficients are the moments of µ). The spectral distribution can be recovered from the
Stieltjes transform using the inversion formula:

µ({x}) = − 1

π
lim
ε→0+

Im [mµ (x+ iε)] . (2.3)

This important feature states that Stieltjes transform mµ(z) and probability measure µ
are one-to-one corresponding to each other.

Of particular interest, the Stieltjes transform can be connected to Cauchy’s integral
formula.

Theorem 2 (Cauchy’s integral formula). For Γ ⊂ C a positively (i.e., counterclockwise)
oriented closed curve and a complex function f(z) analytic in a region containing Γ and
its inside, then {

1
2πı

∮
Γ
f(z)
z−z0 = f(z0) , if z0 ∈ C is enclosed by Γ

1
2πı

∮
Γ
f(z)
z−z0 = 0 , otherwise

Generalized Marčenko-Pastur distribution. In the study of covariance matrices,
a fundamental result exists that describes the limiting behavior of the empirical spectral
distribution µ, in terms of the limiting behavior of the population spectral distribution
ν. The connection between these two measures is made through an equation that links
the Stieltjes transform of the empirical spectral distribution to an integral against the
population spectral distribution (Silverstein & Bai, 1995).

Theorem 3. Suppose that the entries of the p×n matrix X are complex random variables
that are independent identically distributed which satisfy E[X11] = 0, E[|X11|2] = 1
and E[|X11|4] < ∞. Also, assume that Σ = diag(λ1, . . . , λp), where λj ∈ R?+ and the
distribution function of {λ1, . . . , λp} converges almost surely to a probability distribution
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function ν as p→∞. Let Σ̃ = 1
nX

?ΣX. Then as n, p→∞ such that p
n ≡ c0 → c∞0 , the

ESD µ̃p of Σ̃ converges to a non-random distribution µ̃ , where, for any z ∈ C \ Supp(µ̃)
, its Stieltjes transform m̃ = mµ̃(z) is the unique solution in C+ of the equation

z = − 1

m̃
+ c∞0

∫
tdν(t)

1 + m̃t
, (2.4)

which gives an explicit inverse for mµ̃(z). Defining m(z) = 1
c∞0

(
m̃(z) +

1−c∞0
z

)
and

noticing that the nonzero eigenvalues of 1
nΣ

1
2XX?Σ

1
2 coincide with those of 1

nX
?ΣX, it

can be easily deduced that the ESD µp of the sample covariance matrix Σ̂ converges to a
non-random distribution µ almost surely, where the Stieltjes transform m = mµ(z) of µ
is the unique solution in C+ of

m =

∫
dν(t)

t(1− c∞0 − c∞0 zm)− z
. (2.5)

Equation (2.5) can be conveniently rewritten as:

mν

(
− 1

mµ̃(z)

)
= −zmµ(z)mµ̃(z). (2.6)

We should note that the assumption of the bounded fourth moment entries of X in the
theorem, i.e., E[|X11|4] < ∞ ensures from (Silverstein & Bai, 1995) that the limiting
distribution µ has bounded support.

Under the assumptions put forth in Theorem 3, the spectral distribution of the sample
covariance matrix is asymptotically non-random. Furthermore, it is fully characterized by
the true population spectral distribution, through the equation (2.5). A particular case
of equation (2.5) is often of interest: the situation when all the population eigenvalues are
equal to 1. In this case, ν = δ1 and we recover the Marčenko-Pastur law introduced in
Theorem 1. We should stress that Equation (2.6) is remarkable and extremely powerful.
Indeed let’s recall due to the inversion formula of the Stieltjes transform that the unique
link between the measure µ and its Stieltjes transform mµ(z) allows one to work with
either. It turns out that the Stieltjes transform is more convenient and Equation (2.6)
thus indirectly links µ and ν through an ”explicit” link between mν and mµ. This is an

extremely powerful relationship which plays the role of µ→ ν (i.e., λ̂i → λi) in the case
of the classical regime (n→∞, p fixed).

In many applications, the population covariance Σ itself may not be the object of
central interest. One is often rather interested in scalar functionals of Σ such as linear
functionals of its eigenvalues. Based on the global knowledge of the LSD of the sample
covariance matrix through the Marčenko-Pastur law, Random-matrix improved estimates
of these functionals can be derived. To better introduce the random matrix improved
estimate of the distance between covariance matrices in chapter 3, we present in the
following section linear spectral statistic of random matrices in particular covariance
matrices. An application to the estimation of the logarithm determinant of the population
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covariance matrix (population generalized variance) already introduced in Chapter 2
will be taken as a preliminary example to tackle the more involved distance between
covariance matrices in Chapter 3.

2.2 Linear spectral statistic

Setting the stage. We introduce previously the population covariance matrix Σ, the
Fisher matrix Σ−1

1 Σ2, and the matrix Σ1Σ2 appearing in the distance between two
covariance matrices Σ1 and Σ2. Let M be one of these matrices. In one-sample and
two-sample multivariate analysis, many statistics are functions of the eigenvalues {λj}pj=1

of the matrix M of the form

L =
1

p

p∑
j=1

f(λj) =

∫
f(x)dµM (x) (2.7)

for any function f smooth and bounded over {z ∈ C,R[z] > 0}. Such statistic is called a
linear spectral statistic of the matrix M .

The generalized variance: a linear spectral statistic example. For example,
the so-called generalized variance introduced previously and discussed also later in this
chapter, is

L =
1

p
log(|Σ|) =

1

p

p∑
j=1

log(λj). (2.8)

So this particular L is a linear spectral statistic of the population covariance matrix Σ
with function f(x) = log(x). In two-sample multivariate analysis with say covariance
matrices Σ1 and Σ2, a lot of distances between Σ1 and Σ2 will still be of the previous
form in (2.7), where however the eigenvalues λj will be those of the so-called Fisher
matrix Σ−1

1 Σ2 or Σ1Σ2 depending on the considered metric. Linear spectral statistic of
these matrices is at the heart of the statistical tools developed in the first part of this
thesis and more generally in modern statistic.

Therefore, understanding the asymptotic properties of eigenvalue statistics such as
L above has paramount importance in data analysis when the dimension p is getting
large with respect to the sample size n. In order to explain the methodology to deal
with such quantity in random matrix theory, we will focus on the spectral statistic of
the covariance matrix in this introductory part which has found several applications in
signal processing and machine learning. In practice, one often estimates the covariance
matrix using the sample covariance matrix Σ̂ = 1

nXX
T first and then uses it to compute

the log-determinant. This estimate is known as the sample generalized variance.

Consistency of the sample generalized variance. Let λ̂1, . . . , λ̂p the eigenvalues
of the sample covariance Σ̂ and λ1, . . . , λp the eigenvalues of the population covariance
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Σ. The sample generalized variance is defined as

L̂n =
1

p
log(|Σ̂|) =

1

p

p∑
j=1

log
(
λ̂j

)
.

We show in the introductory part that when the dimension size p is fixed, for Σ = Ip,

λ̂j → 1 almost surely as n→∞ and thus L̂n → 0. Therefore, L̂n is a good estimator for
the logarithm determinant of the population covariance matrix. However, when p, n→∞
with p/n ≡ c0 → c∞0 ∈ (0, 1), since the limiting spectrum of Σ̂ is almost surely bounded
away from zero and upper-bounded, we have with probability 1 (see more details in (Bai
& Silverstein, 2008)),

L̂n →
∫ λ+

λ−

log(x)

2πıxc∞0

√
(λ+ − x)(λ− − x)dx =

c∞0 − 1

c∞0
log(1− c∞0 )− 1 < 0 (2.9)

where λ− = (1−
√
c∞0 )2 and λ+ = (1 +

√
c∞0 )2. This shows that the classical estimator

is biased (except for c∞0 = 0).
This is due to the fact that since the eigenvalues of Σ̂ follow asymptotically the

Marčenko-Pastur Law discussed previously, the limiting spectrum is spread around 1.
Therefore, taking the logarithm of such eigenvalues may lead to dramatic errors.

The solution of the real integral presented in Equation (2.9) has been derived using
Poisson’s integral formula (see more details in (Bai & Silverstein, 2008)[Section 5]). The
methodology is not anymore applicable for more general spectral distributions and more
complex functionals as will be the case in Chapter 3 of this thesis. Therefore, we present
in the following a quite general methodology for recovering the n, p-consistent estimate
of 1

p

∑p
j=1 f(λj).

Design of n, p-consistent estimators. To that end, we recall the definition of the
population and empirical eigenvalue distributions:

µp =
1

p

p∑
i=1

δλi(Σ̂), νp =
1

p

p∑
i=1

δλi(Σ).

As p, n → ∞ with p/n ≡ c0 → c∞0 ∈ (0,∞), µp
a.s.−→ µ and νp

a.s.−→ ν and we have the

convergence of the corresponding Stieltjes transforms (mµp
a.s.−→ mµ and mνp

a.s.−→ mν).

Instead of using the classical asymptotic result µp
a.s.−→ νp (only valid when p is fixed

and n→∞), the main idea of the estimation procedure consists in relating
∫
fdνp, to

the Stieltjes transform mνp using the Cauchy’s integral theorem. Using furthermore
the relation between the Stieltjes transforms of the limiting empirical and population
spectral distributions mµ and mν from the generalized Marčenko-Pastur law,

∫
fdνp can

be expressed as function of the Stieltjes transform of the limiting spectral distribution of
the sample covariance matrix mµ. It then remains to use the convergence νp → ν and

mµp
a.s.−→ mµ, along with the fact that the eigenvalues of Σ̂ almost surely do not escape
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the limiting support µ as p→∞. This is ensured from (Bai & Silverstein, 1998a), by
assuming lim

p→∞
max(‖Σ‖, ‖Σ−1‖) <∞ with ‖.‖ the operator norm.

The detailed steps are summarized as follows.

1. Express 1
p

∑p
j=1 f(λj) as function of the Stieltjes transform mνp of the empirical

spectral distribution of the matrix Σ using Cauchy’s integral formula:

1

p

p∑
j=1

f(λj) =

∫
f(t)dνp(t) =

1

2πı

∫ [∮
Γν

f(ω)

ω − t
dω

]
dνp(t)

=
−1

2πı

∮
Γν

f(ω)mνp(ω)dω

with Γν a contour surrounding the limiting spectral distribution of Σ.

2. Relate the Stieltjes transform mν of the limiting spectrum of the population covari-
ance matrix Σ to the Stieltjes transform mµ of the limiting eigenvalue distribution
of the sample covariance matrix Σ̂ using the Marčenko-Pastur law given in equation
(2.6) that we recall for convenience ∀z ∈ C \ Supp(µ):

mν

(
− 1

mµ̃(z)

)
= −zmµ(z)mµ̃(z).

3. Deduce the expression of 1
p

∑p
j=1 f(λj) as function of the Stieltjes transform mµp

of the empirical spectral distribution of the matrix Σ̂. To that end, we need to
proceed to the change of variable ω = −1

mµ̃(z) which ends up to

1

p

p∑
j=1

f(λj) = − 1

2πı

∮
Γµ

f

(
− 1

mµ̃(z)

)
mν

(
− 1

mµ̃(z)

)
m
′
µ̃(z)

mµ̃(z)2
dz

=
1

2πı

∮
Γµ

f

(
− 1

mµ̃(z)

)
zmµ̃(z)mµ(z)

m
′
µ̃(z)

mµ̃(z)2
dz

=
1

2πc∞0 ı

∮
Γµ

f

(
− 1

mµ̃(z)

)
zm

′
µ̃(z)dz.

Letting g(z) = f(1/z) and G(z) such that G′(z) = g(z), integration by parts of the
above expression along with mµ̃p

a.s.−→ mµ̃ further gives

1

p

p∑
j=1

f(λj) =
1

2πc0ı

∮
Γµ

G
(
−mµ̃p(z)

)
dz + o(1). (2.10)

We need furthermore to ensure that the change of variable performed brings any
contour Γµ surrounding the support of µ to a contour Γν surrounding only the
support of ν (and not additional points such as singular point 0 in order to ensure
that Cauchy’s integral formula of step (1) still remains valid). We will show that
this happens to be true only under the condition c∞0 < 1. In Chapter 3, these
aspects are revisited and a solution is proposed to mitigate this important case.
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4. Find if possible the solution of the complex integral in closed form using complex
integration techniques.

Before going into the details of the integration contour determination, we handle step
(4), by introducing some basics of integration in complex analysis.

Background on complex analysis for integration

Definition 1. A function f(z) is said to be analytic in a region R of the complex plane
if f(z) has a unique derivative at each point of R and if f(z) is single valued.

Note that in Definition 1, the definition of the differentiation of a complex function
f(z) at a point z0 is defined similarly as in the real case as

f ′(z0) = lim
δz→0

f(z0 + δz)− f(z0)

δz
.

To be differentiable, it is important that the limit be the same whichever direction we
approach. Points at which a function f(z) is not analytic are called singular points or
singularities of f(z). There are two different types of singular points:

• if there exists an integer n such that the product (z − a)nf(z) is analytic at z = a,
then f(z) has a pole of order n at z = a, if n is the smallest such integer. Example:
f(z) = 1/z2 has a pole of order 2 at z = 0.

• When f(z) is a multivalued function, any point which is not in the region of
definition of the single-valued branch of f(z) is a singular branch point. Example:
f(z) =

√
z − a, f(z) = log(z − a) have a branch point at z = a. The set of all

branch points are called branch cuts.

Cauchy’s residue theorem which is an extension of Cauchy’s integral formula allows to
compute a complex integral where the contour encloses several poles.

Theorem 4 (Cauchy’s residue theorem). Let Γ be a closed path within and on which f
is analytic except for m poles ξ1, . . . , ξm. Then

1

2πı

∮
Γ
f(z)dz =

m∑
j=1

Resξjf (2.11)

where the residue Resξjf of the pole ξj of order n is defined as Resξjf = lim
z→ξj

1
(n−1)!

dn−1

dzn−1 [(z − ξj)nf(z)].

In the cases where the contour encloses not only poles but also branch points, it is
mandatory to define an auxiliary contour to exclude them from the interior of the initial
contour and try to relate the integral on the new contour to the integral on the initial
one. The main guidelines to solve complex integrals can be summarized as follows.

• Determine the poles and the branch points of the integrand function.
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• In case of branch points, deform the initial contour in order to exclude the branch
points from the interior of the contour.

• Express the integral over the new contour as function of the integral over the initial
contour and potentially other integrals which are evaluated by either applying
residue Cauchy theorem (when surrounding poles) or by computing real integrals.

This procedure is applied to compute the complex integral in (2.10) for f(z) = log(z). For
this choice of function, the corresponding function G is defined as G(z) = z (log(z)− 1).
The branch points of log(z) are defined as z ∈ R such that R(z) < 0 where R(z) denotes
the real part of the complex value z. Therefore, the branch cuts of the integrand are
defined as the z’s such that mµ̃p(z) ≥ 0.

We recall from the definition of the Stieltjes transform that

mµ̃p(z) =
c0

p

p∑
i=1

1

λ̂i − z
+

1− c0

z
. (2.12)

From equation (2.12), mµ̃p(z) is a rational function, therefore it can be written as

mµ̃p(z) =

p∏
i=1

(z − ζi)

z
p∏
i=1

(λ̂i − z)
, (2.13)

with ζ1 < . . . < ζp the zeros of mµ̃p(z) and λ̂1 < . . . < λ̂p the eigenvalues of Σ̂. Equations
(2.12) and (2.13) will be important for future simplifications in the calculation of complex
integrals. In particular, we have that:

lim
z→λ̂j

(λ̂j − z)mµ̃p(z) =
c0

p

p∑
i=1

log

(
ζi

λ̂i

)
= lim

z→0
log
(
−zmµ̃p(z)

)
= log(1− c0)

From equation (2.13), the branch cuts B are defined as B = [ζ1, λ̂1]∪ . . .∪ [ζp, λ̂p] as
represented in Figure 2.1. These segments lie inside the integration contour Γ, which
needs to be modified for proper integration; the new contour, denoted Γn is depicted
in Figure 2.1. The complex integral defined in (2.10) over the contour Γn is the sum of
several integrals, subdivided into four types:

• Integrals I1 over the circles surrounding {ζj}pj=1 which, thanks to the variable

change z = ζj + ε eıθ, reduce to limε→0

∫ 2π−ε
ε

G(−mµ̃p (ζj+ε eıθ))
2πıc0

ıε eıθ dθ which leads
for G(z) = z(log(z)− 1) to:

−1

2πıc0
lim
ε→0

∫ 2π−ε

ε
mµ̃p(ζj + ε eıθ)

(
log
(
−mµ̃p(ζj + ε eıθ)

)
− 1
)
ıε eıθ dθ = 0.
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Figure 2.1: Contour deformation

• Integrals I2 over the circles surrounding the poles {λ̂j}pj=1 of order 1 which can be
computed by using the residue theorem:

I2 =
1

c0

p∑
j=1

lim
z→λ̂j

G
(
−mµ̃p(z)

) (
z − λ̂j

)
=
−1

c0

p∑
j=1

lim
z→λ̂j

(z − λ̂j)mµ̃p(z)
(
log
(
−mµ̃p(z)

)
− 1
)

=
1

p

p∑
j=1

lim
z→λ̂j

(
log
(
−mµ̃p(z)

)
− 1
)

=
−1

p

p∑
j=1

log(λ̂j) +
1

p

p∑
i=1

p∑
j=1

lim
ε→0

log

(
λ̂j − ζi + ε

λ̂i − λ̂j + ε

)
− 1.

• Real integrals I3 over the segments [ζj , λ̂j ] which can be computed by remarking
that the log function has a discontinuity of 2ıπ at the branch cut.

I3 =
−1

2ıπc0

p∑
j=1

∫ λ̂j−ε

ζj+ε
mµ̃p(z)

(
log
(
|mµ̃p(z)|

)
+ ıπ − log

(
|mµ̃p(z)|

)
+ ıπ

)
dz

=
−1

c0

p∑
j=1

∫ λ̂j−ε

ζj+ε
mµ̃p(z)dz

=
−1

c0

p∑
j=1

∫ λ̂j−ε

ζj+ε

(
c0 − 1

z
+
c0

p

p∑
i=1

1

λ̂i − z

)
dz
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=

p∑
j=1

[
1− c0

c0
log(z) +

1

p

p∑
i=1

log(λ̂i − z)

]λ̂j−ε
ζj+ε

=
1− c0

c0

p∑
j=1

log(
λ̂j
ζj

) + lim
ε→0

1

p

p∑
i=1

p∑
j=1

log

(
λ̂j − λ̂i + ε

λ̂i − ζj + ε

)

=
c0 − 1

c0
log(1− c0)− 1

p

p∑
i=1

p∑
j=1

lim
ε→0

log

(
λ̂i − ζj + ε

λ̂j − λ̂i + ε

)

where in the last equality we used, among other algebraic simplifications, the fact

that
p∑
j=1

log
(
ζj

λ̂j

)
= lim

z→0
log
(
−zmµ̃p(z)

)
= log(1− c0).

• The sought for integral I4 over Γ for ε→ 0.

Since the contour Γn doesn’t contain any poles or branch points, the sum of the four
above integrals reduces to zero. Combining these integrals then yields to the solution of
the integral over the contour Γ denoted I4:

I4 =
1

p
log(|Σ̂|) +

1− c0

c0
log(1− c0) + 1,

where we retrieve the result of (Bai & Silverstein, 2008).

Integration contour determination. As already anticipated in Step (3) of the
procedure, we need to ensure that the change of variable performed in Step (3) moves
any complex contour closely encircling the support of µ onto a valid contour encircling
the support of ν; we will in particular be careful that the resulting contour, in addition to
encircling the support of ν, does not encircle additional values possibly bringing undesired
residues (such as 0). We will proceed by showing that a contour encircling µ results on
a contour encircling ν. These details rely heavily on the works of (Silverstein & Choi,
1995) and follow similar ideas as in e.g., (Couillet et al., 2011).

Let us consider a first contour Γµ closely around the support of µ (in particular not
containing 0). We have to prove that any point z of this contour is mapped to a point ω
of a contour Γν closely around the support of ν.

The change of variable performed in Step (3) of the proposed methodology reads, for
all z ∈ C \ Supp(µ),

ω ≡ ω(z) =
−1

mµ̃(z)
.

It therefore remains to show that real z’s (outside the support of µ) project onto
properly located real ω’s (i.e., on either side of the support of ν). This conclusion
follows from the seminal work (Silverstein & Choi, 1995) on the spectral analysis of
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z−

z+

ω− ω+

Supp(µ)

Supp(ν)

ω

z◦(ω)

Figure 2.2: Variable change ω 7→ z◦(ω) = ω + c∞0
∫ tν(dt)

1−t/ω . Supp(θ) is the support of the
probability measure θ.

sample covariance matrices. The essential idea is to note that, due to (2.4), the relation
ω(z) = −1/mµ̃(z) can be inverted as

z ≡ z(ω) = − 1

mµ̃
+ c∞0

∫
tν(dt)

1 + tmµ̃
= ω + c∞0

∫
tν(dt)

1− t
ω

.

In (Silverstein & Choi, 1995), it is proved that the image by z(·) of ω(R \ Supp(ν))
coincides with the increasing sections of the function z◦ : R \ Supp(ν) → R, ω 7→ z(ω).
The latter being an explicit function, its functional analysis is simple and allows in
particular to properly locate the real pairs (z, ω). Details of this analysis are provided in
(Silverstein & Choi, 1995), which shall not be recalled here. The function z◦ is depicted
in Figure 2.2 in the case of c∞0 < 1. In the case of c∞0 > 1, some undesired effects appear;
these are discussed more in details in Chapter 3.

Summarizing and introducing Chapter 3. This section shows through the statis-
tical estimation of log(|Σ|), how and why classical estimates fail and how Random Matrix
Theory can be used to mitigate this problem. In chapter 3 of this thesis, we will go
beyond this simple case. Specifically, we will be interested in computing the distance
between two covariance matrices let’s say Σ1 and Σ2 which can be expressed as a linear
spectral statistic of the matrix Σ−1

1 Σ2 or Σ1Σ2. Such distances will induce two technical
issues compared to the previous case:

• The matrix of interest will not be a single matrix Σ but a more involved matrix
Σ−1

1 Σ2 known as F-matrix or Σ1Σ2 for which asymptotic spectral distribution
should be derived.

• The complex integral obtained from Cauchy’s integral will involve non-trivial real
integrals.
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These aspects will be discussed in detail in Chapter 3.
Beyond the eigenvalue functionals of the covariance matrix studied so far, some

machine learning methods involve more complex functionals that involve the eigenvectors
of the covariance matrix as will be the case in multi-task learning. Thus, it is important to
introduce the tools necessary to characterize the general behavior of covariance matrices.
Deterministic equivalents are tools that aim at this goal. This tool will be important to
explain the behavior of algorithms such as ridge regression, multi-task learning, etc and
is introduced next.

2.3 Deterministic equivalent of random matrices

Setting the stage. We previously raised in the introduction that most of the quan-
tities involved in signal processing and machine learning applications involve complex
dependency which limits the capability of classical learning theory to provide theoretical
analysis. The example of ridge regression (close to the Least Square Support Vector Ma-
chine Multi-Task Learning tackled in Chapter 4) sounds particularly appealing. Indeed,
the decision score for a new test data x is given from 1.4 by

g(x) =
1√
n
ωTx =

1

n
xT

(
1

n
XXT + λIp

)−1

Xy (2.14)

which involves a bilinear form of
(

1
nXX

T + λIp
)−1

.
We should mention here that in the context of classification, the data matrix X will

not be assumed anymore to be of zero-mean. We should therefore distinguish between the
generalized population covariance matrix defined as C = E[ 1

nXX
T] from the population

covariance matrix Σ = E[ 1
n (X − E[X]) (X − E[X])T] except for zero-mean data. We

define similarly the generalized sample covariance matrix Ĉ = 1
nXX

T and define its

resolvent as Q(z) =
(
Ĉ − zIp

)−1
.

Beyond the eigenvalues of Ĉ (which are globally the same as those of Σ̂) treated for now
in the context of linear spectral statistic, our interest will also be on bilinear functionals

of Q(z) =
(
Ĉ − zIp

)−1
therefore involving possibly the eigenvectors of Q(z). As such,

beyond studying the trace of the resolvent Q(z), our interest is also on characterizing
Q(z) itself.

Precisely, we shall study so-called deterministic equivalents of Q(z), the precise
definition of which is given in Definition 2 and that can be described as deterministic
matrices Q̄ verifying trA

(
Q(z)− Q̄(z)

) a.s.−→ 0 when A has unit norm. Note that if we con-
trol tr

(
A(Q(z)− Q̄(z))

)
, we also control uTQ(z)v = tr

(
vuTQ(z)

)
for two deterministic

vectors u, v ∈ Rp with unit norm.

Definition 2 (Deterministic equivalents). A deterministic equivalent, say F̄ ∈ Rn×p, of
a given random matrix F ∈ Rn×p, denoted F ↔ F̄ , is defined by the fact that, for any
deterministic linear functional f : Rn×p → R, f(F − F̄ )→ 0 almost surely (for instance,
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for u, v of unit norm, uT(F − F̄ )v → 0 and, for A ∈ Rp×n deterministic of bounded
operator norm, 1

ntrA(F − F̄ )→ 0).

In the following lines, for the sake of simplicity and in order to better grasp the main
ideas of the derivation, we provide a high-level proof for the deterministic equivalent of
the generalized sample covariance matrix Ĉ.

Deterministic equivalent of Q(z). First, let us note that a naive deterministic

equivalent for
(
Ĉ − zIp

)−1
would be (C − zIp)−1. This turns out to be incorrect under

p, n → ∞. Instead, letting Q̄(z) = (C̄ − zIp)−1 where C̄ is some deterministic matrix
to determine. To that end, we may first compute the difference using in particular the
identity A−1 −B−1 = A−1(B −A)B−1 for invertible matrix A and B:

Q̄− E[Q] = E[Q(
1

n
XXT − C̄)Q̄] =

1

n

n∑
i=1

E[Q(xix
T
i − C̄)Q̄]

where we recall that xi is the i-th column of X.
Here, to go further, we need to make explicit the dependence between xi and the

matrix Q in order to evaluate the expectation of the product Qxi. Let us denote
X−i ∈ Rp×(n−1), the matrix X deprived of its i-th column, which leads us to define the
matrices Ĉ−i = 1

nX−iX
T
−i and Q−i = (Ĉ−i − zIp)−1.

To handle the dependence between xi and Q, we will exploit the classical Schuur
identities (Sherman-Morrison identity for example):

Q = Q−i −
1

n

Q−ixix
T
i Q−i

1 + 1
nx

T
i Q−ixi

, and Qxi =
Q−ixi

1 + 1
nx

T
i Q−ixi

.

The second inequality allows us to disentangle the relation between Q and xi in the
product Qxi with a similar but easier to apprehend product Q−ixi and a factor 1

1+ 1
n
xTi Q−ixi

easily controllable term. This leads us to

Q̄− E[Q] =
1

n

n∑
i=1

E

[
Q−i

(
xix

T
i

1 + 1
nx

T
i Q−ixi

− C̄

)
Q̄

]
+

1

n2

n∑
i=1

E

[
Q−ixix

T
i Q−iC̄Q̄

1 + 1
nx

T
i Q−ixi

]
.

(2.15)
Due to the supplementary factor 1

n and under appropriate assumption on the data
matrix X, the norm of the rightmost random matrix is negligible (see more details in
(Louart & Couillet, 2018)). Thus, if one assumes, say, that the random vectors {xi}ni=1

follow the same law, one would choose naturally C̄ = C
1+δ , with δ = 1

nE[xTi Q−ixi] =
1
ntr
(
E[Q−i]E[xix

T
i ]
)

= 1
ntr
(
CQ̄
)
. One may establish an implicit equation for δ not

involving expectations over Q (or Q−i). The deterministic equivalent is given by (Louart
& Couillet, 2018).

Theorem 5. Let a data matrix X = [x1, ..., xn] ∈ Rp×n be distributed as a mixture of
concentrated random vectors as per definition 3 in Appendix. Then the resolvent of
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the generalized sample covariance matrix defined as Q(z) =
(

1
nXX

T − zIp
)−1

admits a
deterministic equivalent Q̄(z) given by

Q(z)↔ Q̄(z) =

(
C

1 + δ(z)
− zIp

)−1

where δ(z) is the unique solution to the fixed point equation defined as

δ(z) =
1

n
tr

(
C

(
C

1 + δ(z)
− zIp

)−1
)
.

As introduced before, the interest of the deterministic equivalent is to allow to
compute bilinear forms involving the random matrix Q(z). In particular, 1

ptrQ(z) −
mµ(z) → 0 (where we retrieve the Generalized Marčenko-Pastur distribution) and
aTQ(z)b− aTQ̄(z)b→ 0 for deterministic a, b ∈ Rp of bounded Euclidean norm.

Universality. Theorem 5 has been proved in (Louart & Couillet, 2018) under a mixture
of concentrated random vectors. The concentrated random vector assumption (introduced
rigorously in definition 3 in Appendix) better models realistic datasets by imposing very
little structure on the data. Exactly, it only constrains all Lipschitz functionals Rp×n → R
of X (i.e., its typical observations) to satisfy a concentration inequality; while this
may seem demanding, the family of concentrated random vectors in fact contains all
Lipschitz generative models (for instance neural networks) fed by Gaussian inputs (such
as Generative Adversarial Network (GAN)s (Goodfellow et al., 2014)), as well as all
further Lipschitz transformations of these vectors (for instance, features extracted by
pretrained neural networks). It naturally comes that most derivations performed in
Chapter 4 are universal in the sense of its being robust to a broad range of very realistic
random data.

Revisiting the ridge regression. Let’s consider data distributed in two classes C1

and C2 with opposite means and isotropic covariances. Specifically, we consider a data

matrix X = [X(1), X(2)] with data of class `, X(`) = [x
(`)
1 , . . . , x

(`)
n` ] ∈ Rp×n` , such that for

x
(`)
i ∈ C` for ` ∈ {1, 2},

x
(`)
i = (−1)`µ+ ω`i , ω`i ∼N(0, Ip)

where µ ∈ Rp with limp→∞ ‖µ‖ <∞. Let’s suppose that the data are arranged in classes
in the data matrix X and denoting y = [1n1 ,−1n2 ]T. Under this setting, the goal is to
study the statistical behavior of the test score g(x) for a new test data x ∼ N(µx, Ip)
independent from X:

g(x) =
1

n
xT

(
1

n
XXT + λIp

)−1

Xy =
1

n
xTQ(−λ)Xy.
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First, it can easily be proved by conditioning on the training data X that g(x) is
asymptotically Gaussian as the scalar product of a deterministic vector with a Gaussian
isotropic vector. Moreover, the mean can be computed as follows given that x ∈ C`:

E[g(x)] = EX [Ex[g(x)|X]] = EX

[
n∑
i=1

(−1)`

n
µTQ(−λ)xiyi

]

where we recall that Q(−λ) =
(

1
nXX

T + λIn
)−1

. We shall write sometimes for simplicity
Q instead of Q(z) when there are no ambiguities.

The above expectation requires to manage the statistical dependencies between Q
and xi, which can be handled using:

Qxi =
Q−ixi

1 + 1
nx

T
i Q−ixi

. (2.16)

As already seen in the derivation of the deterministic equivalent, the quadratic term
1
nx

T
i Q−ixi

a.s.−→ δ(−λ). Therefore following the same line of reasoning as in (Seddik et al.,
2020, Proposition A.3),

E[g(x)] = E

[
1

n

n∑
i=1

(−1)`

1 + δ
µTQ−ixiyi

]
+O

(√
log p

p

)

=
1

n

(−1)`

1 + δ

n∑
i=1

µTQ̄E[xi]yi +O

(√
log p

p

)
(2.17)

where Q̄ is the deterministic equivalent of Q.
As for the mean, the variance σ2 can be computed as follows:

σ2 = E
[
(g(x)− E[g(x)])2

]
=

1

n2
E

[
yTXT

(
1

n
XXT + λIp

)−2

Xy

]

=
1

n
E

[
yT
(

1

n
XTX + λIn

)−2 XTX

n
y

]

=
1

n
E

[
yT
(

1

n
XTX + λIn

)−1

y − λyT
(

1

n
XTX + λIn

)−2

y

]
=

1

n
E
[
yTQ̃y − λyTQ̃2y

]
(2.18)

where Q̃ =
(

1
nX

TX + λIn
)−1

.

We therefore need a deterministic equivalent of Q, Q̃ and Q̃2 given by Corollary 1 as
a consequence of Theorem 5.
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Corollary 1 (Deterministic equivalents for Q(z), Q̃(z) and Q̃(z)2). Under the setting
described above, deterministic equivalents of Q(z), Q̃(z) and Q̃2(z) are given by:

Q(z)↔ m(z)Ip −
m(z)2

1 + (c0 + ‖µ‖2)m(z)
µµT

Q̃(z)↔ m̃(z)In −
m̃(z)2‖µ‖2

1 + (1 + ‖µ‖2)m̃(z)
yyT

Q̃(z)2 ↔ m̃′(z)In −
2m̃′(z)m̃(z)‖µ‖2 + m̃′(z)m̃(z)2‖µ‖2(1 + ‖µ‖2)

(1 + (1 + ‖µ‖2)m̃(z))2 yyT

where

m(z) =
1− c0 − z +

√
(1− c0 − z)2 − 4zc0

2zc0

m̃(z) =
−1 + c0 − z +

√
(1− c0 − z)2 − 4zc0

2z

and m̃′(z) is the derivative of m(z).

Corollary 1 is a special case of Theorem 5 for C = Ip +µµT (see details in Appendix).
Using the deterministic equivalents in Corollary 1, Theorem 6 unfolds directly.

Theorem 6 (Asymptotics of g(x)). Under the Gaussian mixture model introduced above,
for x ∼N(µx, Ip) with µx = µ`, as p, n→∞

g(x)−G` → 0, G` ∼N((−1)`m, σ2)

in distribution where

m =
m(−λ)‖µ‖2

(1 + (c0 + ‖µ‖2)m(−λ)))

σ2 =
(1 + m̃(−λ))2 (m̃(−λ)− λm̃′(−λ)) + m̃2(−λ)‖µ‖2 (1 + m̃(−λ)− λm̃′(−λ))

(1 + (1 + ‖µ‖2)m̃(−λ))2 .

Since g(x) has a Gaussian limit centered about ±m, the (asymptotic) standard
decision for x to be allocated to Class 1 (x→ C1) or Class 2 (x→ C2) is obtained by
the “averaged-mean” test

g(x)
C1

≷
C2

0 (2.19)

the classification error rate ε ≡ 1
2P (x→ C2|x ∈ C1) + 1

2P (x→ C1|x ∈ C2) of which is
then

ε ≡ P
(
g(x)

C1

≷
C2

0

)
= Q

(m
σ

)
+ o(1) (2.20)
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Figure 2.3: (Left) Score distribution [empirical histogram vs. theory in solid lines] for
x of C1 (red) or Class C2 (blue) in a 2-class setting of isotropic balanced Gaussian
mixtures. p = 500, n = 600, λ = 1 and µ ∼ 1

10N(0, Ip) (Right) Theoretical and Empirical
classification error averaged over 1000 test samples for the same setting as function of λ.

with Q(t) = 1√
2π

∫∞
t e−x

2
dx.

The close fit between the theoretical and the empirical prediction is illustrated in
Figure 2.3.

This section illustrates that Random Matrix Theory provides the tools to predict
theoretically the statistical behavior of g(x) and therefore potentially to understand
and optimize the ridge regression scheme. In chapter 4, the idea is to exploit these
powerful tools to understand the functioning of more complex algorithms, closer to the
reality of modern machine learning problems like multi-task learning with the following
consequences:

• Multi-Task Learning is of huge interest in machine learning since it helps to leverage
scarce labeled sample from similar tasks to help for the generalization performance.
Since Transfer Learning phenomenon is prone to negative transfer, the proper
understanding of their inner working mechanisms is of particular interest.

• From a technical point of view, in the multi-task learning framework, the data matrix
X will be extended to a block diagonal matrix Z and therefore the Marčenko-Pastur
law will not be applicable.
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3.1 Motivation and main findings

Motivation. Evaluating the distance between covariance matrices is at the core of
many machine learning and signal processing applications. They are notably used for
covariance features-based classification (for instance in brain signal or hyperspectral
image classification), as well as for dimensionality reduction and representation of high
dimensional points. Denote Σ1,Σ2 ∈ Rp×p two large dimensional covariance matrices for
which we would like to compute the distance D(Σ1,Σ2) based on few (p-dimensional)
sample vectors. We assume that D can be written as a linear functional 1

p

∑p
i=1 f (λi)

of the eigenvalue distribution of either Σ−1
1 Σ2 (λi = λi(Σ

−1
1 Σ2)) (as with the Fisher,

Battacharrya, Kullback Leibler, Rényi divergences) or Σ1Σ2 (λi = λi(Σ1Σ2)) (for the
Wasserstein distance, Frobenius distance).

Classical estimate. Based on a simple law-of-large-numbers argument, these metrics
are commonly estimated from a simple replacement of the genuine p × p-dimensional
matrices Σ1 and Σ2 by their sample covariance estimates Σ̂1 and Σ̂2. Such estimates, as
shall be shown next, are however bound to sometimes extremely severe errors, particularly

33
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when the respective numbers n1 and n2 of samples to estimate Σ1 and Σ2 are not large
compared to p. This scenario is however frequently met in practice (short-time brain
activity scans with high resolution EEG, large number of shortly-stationary assets in
finance, high-resolution hyperspectral imaging, etc.) and therefore induces possibly weak
data processing performances.

RMT-consistent estimates and main findings. To tackle these problems, in this
work, we provide a random matrix improved consistent estimates for D(Σ1,Σ2) for all
aforementioned metrics. Technically speaking, our results rely on the following approach
already introduced in chapter 2 in the simple case of the linear spectral statistic of
the covariance matrix. We express a generic form of the metric under study under
the form of a complex integral involving the Stieltjes transform of the (population)
eigenvalue distribution of Σ−1

1 Σ2 or Σ1Σ2. As the latter distribution is not accessible,
we then link it to the (sample) eigenvalue distribution of Σ̂−1

1 Σ̂2 (or Σ̂1Σ̂2), through a
functional equation relating the Stieltjes transforms of population and empirical eigenvalue
distribution similarly as in the generalized Marčenko-Pastur law. This results, through
an appropriate change of variable, to a complex integral involving only the eigenvalues of
Σ̂−1

1 Σ̂2 (or Σ̂1Σ̂2), which may finally be evaluated using complex analysis techniques.
This approach already described in the linear spectral statistic of the covariance

matrix in chapter 2 is notably inspired by the seminal work of Mestre (Mestre, 2008b)
(see also (Couillet et al., 2011)) where functional estimates of the eigenvalue distribution
of a single covariance matrix Σ is performed similarly from the corresponding eigenvalue
distribution of the sample estimate Σ̂. Aside from the more involved statistical models
Σ̂−1

1 Σ̂2 and Σ̂1Σ̂2, the originality of the present work mostly lies in that the family of
metrics involve non-smooth complex functionals (in particular logarithms and square
roots) that result in more advanced technical considerations from real and complex
analysis than in (Mestre, 2008b).

Moreover, although consistent for n1, n2 ∼ p, these improved estimators still demand
that n1, n2 > p for all functions f(z) having a singularity at z = 0 (e.g., 1/z, log(z),
log2(z),

√
z). Based on a polynomial approximation of the functions of interest, we

furthermore propose to retrieve consistent estimates for the challenging n2 < p scenario.

Chapter organization. The chapter is organized as follows. Section 3.2 introduces the
main model and assumptions, Section 3.3 provides the general idea of the estimation and
the problem induced by the challenging case n1 < p and n2 < p as well as a solution based
on polynomial approximation. In Section 3.4, closed-form and numerically convenient
expressions of the proposed estimators are derived for all functions of interest. Section
3.5 proposes a practical application to covariance matrix estimation and covariance-based
feature classification.
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Metrics λi f(z)

d2
F λ−i log2(z)
d2

B λ−i −1
4 log(z) + 1

2 log(1 + z)− 1
2 log(2)

δKL λ−i
1
2z −

1
2 log(z)− 1

2
δαR λ−i

−1
2(α−1) log(α+ (1− α)z) + 1

2 log(z)

dW λ+
i −2

√
z

dFro λ+
i −2z

Table 3.1: Metrics and associated functions.

3.2 Models and Assumptions

For a ∈ {1, 2}, let Xa = [x
(a)
1 , . . . , x

(a)
na ] be na independent and identically distributed

random vectors with x
(a)
i = Σ

1
2
a x̃

(a)
i , where x̃

(a)
i ∈ Rp has zero-mean, unit variance and

finite fourth-order moment entries. This holds in particular for x
(a)
i ∼N(0,Σa). In order

to control the growth rates of n1, n2, p, we make the following assumption:

Assumption 1 (Growth Rates). As na →∞, p/na ≡ ca → c∞a ∈ (0,∞) and lim supp max{‖Σ−1
a ‖, ‖Σa‖} <

∞ for ‖ · ‖ the operator norm.

We should point out that the hypothesis lim supp max{‖Σ−1
a ‖, ‖Σa‖} < ∞ ensures

that the limiting spectral distribution of the matrix of interest Σ−1
1 Σ2 has bounded

support away from zero. This will be particularly important to ensure that the limiting
distribution of Σ̂−1

1 Σ̂2 has bounded support which we will be used in particular to relate
the non-asymptotic complex integral to their asymptotic counterpart. We define the
sample covariance estimate Σ̂a of Σa as

Σ̂a ≡
1

na
XaX

T
a =

1

na

na∑
i=1

x
(a)
i x

(a)T
i .

Our objective is to estimate the distance D(Σ1,Σ2) between the covariance matrices
Σ1 and Σ2 of the form:

D(Σ1,Σ2) =
1

p

p∑
i=1

f (λi)

where λi = λ−i are the eigenvalues of Σ−1
1 Σ2 or λi = λ+

i are the eigenvalues of Σ1Σ2.
This form comprises, among others, the Fisher d2

F , Frobenius dFro, Wasserstein dW and
Battacharrya distances d2

B, along with the Kullbach-Liebler δKL and Rényi divergences
δαR as shown in details in table 3.1. The Wasserstein distance dW between two zero-mean
Gaussian distributions with covariances Σ1 and Σ2, respectively, assumes the form (Peyré

& Cuturi, 2019, Remark 2.31): dW = tr(Σ1) + tr(Σ2) − 2tr

[
(Σ

1
2
1 Σ2Σ

1
2
1 )

1
2

]
. It is easily

shown that, under Assumption 1, 1
ptrΣ̂a − 1

ptrΣa → 0 almost surely. But estimating
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−2tr

[
(Σ

1
2
1 Σ2Σ

1
2
1 )

1
2

]
is more involved and is the focus of this work. This explains why the

corresponding function in the table is −2
√
z. The same holds for the Frobenius distance

dFro = tr
(
Σ2

1 + Σ2
2

)
− 2tr (Σ1Σ2) for which the corresponding function of interest is −2z

since tr
(
Σ2
i

)
can be estimated consistently (see more details in (Tiomoko & Couillet,

2019b)). The proposed estimate relies on random matrix theory tools developed in
chapter 2 and particularly on the Stieltjes transform mθ(z) of a probability distribution
θ that we recall for convenience as:

mθ : C \ supp(θ)→ C, z 7→
∫

(λ− z)−1dθ(λ).

The Stieltjes transform is here used to create a link between the population covari-
ance eigenvalue distribution νp and the sample eigenvalue distribution µp (similarly as
performed in the generalized Marčenko-Pastur law) defined by:

νp =
1

p

p∑
i=1

δλi , µp =
1

p

p∑
i=1

δλ̂i

where λ̂i = λ̂−i are the eigenvalues of Σ̂−1
1 Σ̂2 or λ̂i = λ̂+

i are the eigenvalues of Σ̂1Σ̂2.
Similarly,

ν±p =
1

p

p∑
i=1

δλ±i
, µ±p =

1

p

p∑
i=1

δλ̂±i

and the corresponding Stieltjes transforms read in particular as

mνp(z) =
1

p

p∑
i=1

1

λi − z
, mµp(z) =

1

p

p∑
i=1

1

λ̂i − z

for µp = µ±p and νp = ν±p .

3.3 Improved estimate of the distance between covariance

Under the aforementioned setting, Theorem 7 provides a random matrix consistent
estimate of these distances in the “easy” regime where lim p/na < 1.

Theorem 7. Let f : C→ C be analytic on a contour Γµ ⊂ {z ∈ C,R[z] > 0} surrounding
µp. Then under Assumption 1,∫

fdνp −
1

2πi

∮
Γµ

f

(
ϕp(z)

ψp(z)

)[
ψ′p(z)

ψp(z)
−
ϕ′p(z)

ϕp(z)

]
ψp(z)dz

c2

a.s.−→ 0

where

ϕp(z) =

{
z(1 + c1zmµp(z)), µp = µ−p

z
1−c1−c1zmµp (z) , µp = µ+

p

ψp(z) = 1− c2 − c2zmµp(z).
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The result of Theorem 7 has the strong advantage to be flexible to any smooth function
f over {z ∈ C,R[z] > 0}, so in particular to f(z) = logk(z) or f(z) = logk(1 + αz),
which commonly appear in the distance between covariance matrices and divergences.
The constraint c2 < 1 is however mandatory and cannot be relaxed, unless f is analytic
on all C (which fails for logarithm functions). Remark 2 also discusses these aspects (see
also Section 6.2.2 for more details) and a solution is furthermore proposed in (Tiomoko
& Couillet, 2019a) that we describe briefly in the end of the section.

Before getting to the proof, note that the formulation of Theorem 7 exhibits two
important quantities, the functions ϕp and ψp, which both relate to the eigenvalue
distribution of Σ̂−1

1 Σ̂2 or Σ̂1Σ̂2 respectively through c1 and c2; each function therefore
emphasizes the impact of the restricted number of data with respect to the dimension p.

We subsequently provide a sketch of proof of Theorem 7 (here for µp = µ−p ). The
detailed proofs are deferred into Section 6.2.1 in Appendix.

Sketch of Proof. Using the Cauchy integral formula similarly as in Step (1) of the pro-
cedure described in the linear spectral statistic of the population covariance matrix of
Chapter 2, we have

D(Σ1,Σ2) =
1

p

p∑
i=1

f (λi) =

∫
f(t)νp(dt) (3.1)

=
1

2πı

∫ [∮
Γν

f(z)

z − t

]
νp(dt) =

−1

2πı

∮
Γν

f(z)mνp(z)dz.

Thus, estimating D(Σ1,Σ2) is equivalent to relating mνp to mµp . Since X1 and X2 are
independent, we can condition first on X2. By Theorem 3 given in chapter 2, the limiting
eigenvalue distribution of Σ2Σ̂−1

1 , denoted ζ, can be written as a function of the limiting
eigenvalue distribution of Σ2Σ−1

1 , and similarly for the limiting eigenvalue distributions
of Σ̂2Σ̂−1

1 and Σ2Σ̂−1
1 . This entails the two equations:

zmµp(z) = ϕp(z)mζp (ϕp(z)) + op(1) (3.2)

mνp (z/ψp(z)) = mζp(z)ψp(z) + op(1). (3.3)

where we follow the convention to use op(1) for a sequence of random variables that
convergences to zero in probability. Through the changes of variable z → ϕp(z) and
ω → ψp(ω) applied in

∮
Γν
f(z)mνp(z)dz, the result follows.

Remark 1 (Known Σ1). For Σ1 known (which would mean that Σ̂1 = Σ1 valid for p
fixed and n1 →∞), Theorem 7 is particularized by taking the limit c1 → 0, i.e.,∫

fdνp −
1

2πı

∮
Γµ

f

(
z

ψp(z)

)(
−1

z
+
ψ′p(z)

ψp(z)

)
ψp(z)

c2
dz

a.s.−→ 0

where now mµp(z) = 1
p

∑p
i=1

1
λi(Σ

−1
1 Σ̂2)−z

and m′µp(z) = 1
p

∑p
i=1

1
(λi(Σ

−1
1 Σ̂2)−z)2

. Basic

algebraic manipulations allow for further simplification, leading up to∫
fdνp −

−1

2πıc2

∮
Γµ

f

(
−1

mµ̃p(z)

)
m′µ̃p(z)zdz

a.s.−→ 0
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where µ̃p = c2µp + (1 − c2)δ0 is the eigenvalue distribution of 1
n2
XT

2 Σ−1
1 X2 (and thus

mµ̃p(z) = c2mµp(z)− (1− c2)/z). Letting g(z) = f(1/z) and G(z) such that G′(z) = g(z),
integration by parts of the above expression further gives∫

fdνp −
1

2πıc2

∮
Γµ

G
(
−mµ̃p(z)

)
dz

a.s.−→ 0.

For instance, for f(z) = log2(z), G(z) = z(log2(z)− 2 log(z) + 2).

We then retrieve the random matrix estimate of the population covariance matrix
derived in chapter 2 for Σ1 = Ip.

Remark 2 (On the need for n2 > p and n1 > p in Theorem 7). Since distances involving
the eigenvalues of Σ−1

1 Σ2 are estimated from the empirical matrix Σ̂−1
1 Σ̂2, the constraint

n1 > p is inevitable to ensure the existence of Σ̂−1
1 . The requirement for n2 > p is less

immediate. The two variable changes discussed in the proof of Theorem 7 are only licit
if they realize a mapping from a contour Γµ enclosing the limiting support Supp(µ) of
µp to a valid contour Γν enclosing the limiting support Supp(ν) of νp while enclosing
no additional singular points of the function f(z) (otherwise the Cauchy formula used
in (3.1) is incorrect). But for n2 < p, it can be proved (see details in Section 6.2.2 of
the appendix) that the pre-image of Γµ by the variable changes wraps around Supp(ν)
and around zero (with leftmost real crossing depending on the ratio n2/p). This is a
problem for all functions f(z) singular at z = 0. In particular, 1/z, log(z), log2(z)
and

√
z are examples of such invalid functions which, for some, additionally have a

branch-cut terminating at zero (that no valid contour may cross). This discussion is most
conveniently illustrated in Figure 3.1. In this figure, we represent in blue the support of
the distribution of µ (left) and ν (right). The branch cuts of the integrand are represented
in red. For proper integration, the integration contour represented in green needs to
encircle all the support Sµ while avoiding the branch cuts in red. For n2 > p, this happens
to be possible (top figure) while for n2 < p (bottom figure), this is impossible.

Unfortunately, there seems to be no simple workaround to this situation. We (partially)
solve in (Tiomoko & Couillet, 2019a) the problem by introducing entire functions (thus
analytical over C) as substitutes for the locally non-analytic functions log(z), log2(z) and√
z intervening in the distance D(Σ1,Σ2) formulation.

Our approach to extend the work to p ≥ n2 consists in approximating (arbitrarily
closely) the analytic functions f under study that present singularities around zero
by entire functions, and particularly degree-N polynomials f̃N (z) defined by f̃N (z) =∑N

n=0 anz
n.

Our central argument relies in the fact that, since ‖Σa‖ and ‖Σ−1
a ‖ are bounded (as

per Assumption 1), the limiting support Supp(ν) of νp is a compact set strictly away
from zero. As such, one needs not approximate f on the whole R+ half-line (which would
still pose problems in the vicinity of zero) but only on a subset [a, b] ⊂ (0,∞) over which
polynomials are universal approximators.

This gives rise to the extension of Theorem 7 provided in (Tiomoko & Couillet, 2019a).
For simplicity for the rest of this chapter, we will mostly focus on the case p < n2 and
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Γµ
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Sν

Γν
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Γµ

R
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Figure 3.1: Illustration of the contours maps Γµ 7→ Γν (from right to left) by the variable
changes leading up to Theorem 7. (Top) n2 > p. (Bottom) n2 < p. For n2 < p, the left
real crossing of Γν is necessarily negative (even if the mass at {0} of Supp(µ) were not
included in Γµ). In case of singularities or branch-cuts (shown in red for the log(z) and√
z functions), the contours are invalid.
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p < n1. The interested reader can refer to (Tiomoko & Couillet, 2019a) for more details.
We should however stress that (Tiomoko & Couillet, 2019a) only extends the result to
p > n2. The case p > n1 is still an open research question.

3.4 Special cases

While Theorem 7 holds for all well-behaved f on Γµ, a numerical complex integral is
required in practice to estimate

∫
fdνp. It is convenient, when feasible, to assess the

approximating complex integral in closed form, which is the objective of this section.
When f is analytic in the inside of Γµ, the integral can be estimated merely through a
residue calculus. This is the case notably of polynomials f(t) = tk. If instead f exhibits
singularities in the inside of Γµ, as for f(t) = logk(t), more advanced contour integration
arguments are required. These arguments (branch cuts in particular) were introduced in
Chapter 2 and detailed for the generalized variance estimation problem. For the sake
of readability, we briefly mention the technical difficulties involved for the current cases
of interest and defer all the cumbersome algebraic simplifications in Section 6.2.3 in
appendix.

Importantly, Theorem 7 is linear in f . Consequently, the contour integral calculus for
elaborate functions f , such as met in most metrics of practical interest, can be reduced
to the integral calculus of its linear components.

In the remainder of this section, we focus on the integral calculus for the atomic
functions f listed in Table 3.1.

Corollary 2 (Case f(t) = t and µp = µ−p ). Under the conditions of Theorem 7,∫
tdνp(t)− (1− c1)

∫
tdµp(t)

a.s.−→ 0.

and in the case where c1 → 0, this is simply
∫
tdνp(t)−

∫
tdµp(t)

a.s.−→ 0.

As such, the classical sample covariance matrix estimator
∫
tdµp(t) needs only be

corrected by a product with (1− c1). This result unfolds from Theorem 7 via a simple
residue calculus.

Corollary 3 (Case f(t) = log(t) and µp = µ−p ). Under the conditions of Theorem 7,∫
log(t)dνp(t)−

[∫
log(t)dµp(t)−

1− c1

c1
log(1− c1) +

1− c2

c2
log(1− c2)

]
a.s.−→ 0.

When c1 → 0,
∫

log(t)dνp(t)−
[∫

log(t)dµp(t) + 1−c2
c2

log(1− c2) + 1
]

a.s.−→ 0.

Note interestingly that, for f(t) = log(t) and c1 = c2, the standard estimator is
asymptotically p, n1, n2-consistent. This is no longer true though for c1 6= c2 but only
a fixed bias is induced. This result is less immediate as the complex extension of the
logarithm function is multi-form, causing the emergence of branch-cuts inside the contour.
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We evaluate the integral here, and in the subsequent corollaries, by means of a careful
contour deformation subsequent to a thorough study of the function log(ϕp(z)/ψp(z))
and to the identification of its branch-cut locations as performed in Chapter 2.

Corollary 4 (Case f(t) = log(1 + st) and µp = µ−p ). Under the conditions of Theorem 7,

let s > 0 and denote κ0 the unique negative solution to 1 + s
ϕp(x)
ψp(x) = 0. Then we have∫

log(1 + st)dνp(t)−
[
c1 + c2 − c1c2

c1c2
log

(
c1 + c2 − c1c2

(1− c1)(c2 − sc1κ0)

)
+

1

c2
log (−sκ0(1− c1)) +

∫
log

(
1− t

κ0

)
dµp(t)

]
a.s.−→ 0.

In the case where c1 → 0, this is simply∫
log(1 + st)dνp(t)−

[
1 + sκ0 + log(−sκ0)

c2
+

∫
log

(
1− t

κ0

)
dµp(t)

]
a.s.−→ 0.

The proof of Corollary 4 follows closely the proof of Corollary 3, yet with a fundamental
variation on the branch-cut locations as the singularities of log(1 + sϕp(z)/ψp(z)) differ
from those of log(ϕp(z)/ψp(z)).

As opposed to the previous scenarios, for the case f(t) = log2(t), the exact form
of the integral from Theorem 7 is non-trivial and involves dilogarithm functions (see
its expression in (6.16) in the Appendix) which originate from numerous real integrals
of the form

∫
log(x− a)/(x− b)dx appearing in the calculus. This involved expression

can nonetheless be significantly simplified using a large-p approximation, resulting in an
estimate only involving usual functions, as shown subsequently.

Corollary 5 (Case f(t) = log2(t) and µp = µ−p ). Let 0 < η1 < . . . < ηp be the

eigenvalues of Λ−
√
λ̂
√
λ̂
T

p−n1
and 0 < ζ1 < . . . < ζp the eigenvalues of Λ−

√
λ̂
√
λ̂
T

n2
, where

λ̂ = (λ̂1, . . . , λ̂p)
T, Λ = diag(λ̂), and

√
λ̂ is understood entry-wise. Then, under the

conditions of Theorem 7,∫
log2(t)dνp(t)

−

[
1

p

p∑
i=1

log2((1− c1)λ̂i) + 2
c1 + c2 − c1c2

c1c2

{(
∆η
ζ

)T
M
(

∆η

λ̂

)
+ (∆η

λ̂
)Tr

}
−2

p

(
∆η
ζ

)T
N1p − 2

1− c2

c2

{
1

2
log2((1− c1)(1− c2)) + (∆η

ζ )
Tr

}]
a.s.−→ 0

where we defined ∆b
a the vector with (∆b

a)i = bi − ai and, for i, j ∈ {1, . . . , p}, ri =
log((1−c1)λ̂i)

λ̂i
and

Mij =


λ̂i
λ̂j
−1−log

(
λ̂i
λ̂j

)
(λ̂i−λ̂j)2

, i 6= j
1

2λ̂2i
, i = j

, Nij =


log

(
λ̂i
λ̂j

)
λ̂i−λ̂j

, i 6= j
1
λ̂i

, i = j.
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In the limit c1 → 0 (i.e., for Σ1 known), this becomes∫
log2(t)dνp(t)−

[
1

p

p∑
i=1

log2(λ̂i) +
2

p

p∑
i=1

log(λ̂i)−
2

p

(
∆λ̂
ζ

)T
Q1p

−2
1− c2

c2

{
1

2
log2(1− c2) +

(
∆λ̂
ζ

)T
q

}]
a.s.−→ 0

with

Qij =


λ̂i log

(
λ̂i
λ̂j

)
−(λ̂i−λ̂j)

(λ̂i−λ̂j)2
, i 6= j

1
2λ̂i

, i = j

, and qi =
log(λ̂i)

λ̂i
.

Corollary 6 (Case f(t) =
√

(t) and µp = µ+
p ). Let λ̂1 ≤ . . . ≤ λ̂p, with λ̂i ≡ λi(Σ̂1Σ̂2),

and define {ξi}pi=1 and {ηi}pi=1 the (increasing) eigenvalues of Λ− 1
n1

√
λ̂
√
λ̂
T

and Λ−
1
n2

√
λ̂
√
λ̂
T

, respectively, where λ̂ =
(
λ̂1, . . . , λ̂p

)T
, Λ = diag(λ̂) and

√
. is understood

entry-wise. Then, under Assumption 1,∫ √
(t)dνp(t)− D̂(X1, X2;

√
·) a.s.−→ 0

where, if n1 6= n2,

D̂(X1, X2;
√
·) = 2

√
n1n2

1

p

p∑
j=1

√
λ̂j

+
2n2

πp

p∑
j=1

∫ ηj

ξj

√
−ϕp(x)

ψp(x)
ψ′p(x)dx

with ϕp, ψp defined in Theorem 7 and, if n1 = n2,

D̂(X1, X2;
√
·) =

2n1

p

p∑
j=1

(√
λ̂j −

√
ξj

)
.

While still assuming an integral form (when n1 6= n2), this formulation no longer
requires the arbitrary choice of a contour Γµ and significantly reduces the computational
time to estimate D(Σ1,Σ2,

√
·). For n1 = n2, the expression is completely explicit and

computationally only requires to evaluate the eigenvalues ξj of Λ − 1
n1

√
λ̂
√
λ̂
T

. The
latter being a (negative definite) rank-1 perturbation of Λ, by Weyl’s interlacing lemma
(Franklin, 2012), the ξj ’s are interlaced with the λ̂j ’s as

ξ1 ≤ λ̂1 ≤ ξ2 ≤ . . . ≤ ξp ≤ λ̂p.

As the λ̂j ’s are of order O(1) with respect to p, |λ̂j−ξj | ≤ |λ̂j− λ̂j−1| = O(p−1), therefore
explaining why the expression of D̂(X1, X2;

√
·) is of order O(1).
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3.5 Applications

3.5.1 Confirmation of our results on synthetic data

In this section, we compare the Fisher distance estimate from Corollary 5 to the classical
“plug-in” estimator 1

p

∑p
i=1 log2(λ̂i).

We first report in Table 3.2 the genuine versus estimated values of the Fisher distance
on a synthetic setting (details in caption). A first surprising observation is that the plug-in
estimator is extremely unfit to large values of p/n1, p/n2, bringing up to 500% error for
n1 = 2p; the proposed estimator is instead resilient to large p. Possibly more surprisingly,
while Corollary 5 provably holds for asymptotically large p, n1, n2, our estimator already
outperforms the standard approach for p = 2. This may be explained by the fact that the
proposed approach essentially exploits randomness both from the size and the number
of the dataset, with accuracies provably of order O(1/

√
pn) thereby already reaching

accurate values for not too large p (note that this in particular implies central limit
theorems and thus convergence speed quadratically faster than in the large-n1, n2 alone
setting).

p DF(Σ1,Σ2) Classical Proposed

2 0.0980 0.1002 0.0973
4 0.1456 0.1520 0.1461
8 0.1694 0.1820 0.1703

16 0.1812 0.2081 0.1845
32 0.1872 0.2363 0.1886
64 0.1901 0.2892 0.1920

128 0.1916 0.3955 0.1934
256 0.1924 0.6338 0.1942
512 0.1927 1.2715 0.1953

(error > 50%) (error > 100%) (error > 500%)

Table 3.2: Proposed versus classical estimator for the Fisher distance between Σ1 and

Σ2 with [Σ
− 1

2
1 Σ2Σ

− 1
2

1 ]ij = .3|i−j|, x
(a)
i ∼N(0,Σa); n1 = 1024 and n2 = 2048 for different

values of p. Averaged over 10 000 trials.

3.5.2 Application to covariance features-based classification

In this section, we develop a practical application of our theoretical findings to the machine
learning context of kernel spectral clustering (Von Luxburg, 2007). In several application
domains, such as in brain signal processing (Rodrigues et al., 2018) or hyperspectral
imaging (Chang, 2003), the relevant discriminative data “features” are the population
covariance matrices of the data vectors (p-sensor brain activities, p-frequency spectra).
Classification in these contexts is thus performed by comparing the distances between
the population covariance matrices for each data-pair. Not being directly accessible, the
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population covariances are classically substituted by their sample estimates. We will
show here that this method has strong limitations that our proposed improved distance
estimates overcome.

Specifically, we consider m = 200 data X1, . . . , Xm to be clustered. Datum Xi is
a p× ni independent generation of ni independent p-dimensional zero mean Gaussian

samples Xi = [x
(i)
1 , . . . , x

(i)
ni ] ∈ Rp×ni . Half of the samples have covariance E[x

(i)
j x

(i)T
j ] =

E[ 1
ni
XiX

T
i ] = C1 (they will be said to belong to class 1) and half have covariance C2

(they belong to class 2). For clarity, let us say that E[x
(i)
j x

(i)T
j ] = C1 for i ≤ m/2 and

E[x
(i)
j x

(i)T
j ] = C2 for i > m/2. We then define the kernel matrix K ∈ Rm×m by

Kij ≡ exp(−1

2
D̂F(Xi, Xj)

2)

with D̂F either the classical (naive) estimator of DF or our proposed random matrix-
improved estimator. The purpose of spectral clustering is to retrieve the mapping
between data indices and classes. It can be shown (see e.g., (Von Luxburg et al., 2008)
but more fundamentally (Couillet et al., 2016) in this large dimensional context) that,
for sufficiently distinct classes (so here covariance matrices), the eigenvectors v1 and v2

of K associated to its largest two eigenvalues are structured according to the classes.
Thus, the classes can be read out of a two-dimensional display of v2 versus v1. This is
our procedure in what follows.

A fundamental, but at first unsettling, outcome arises as we let n1 = . . . = nm. In
this case, for all tested values of p and m, the eigenvectors of K for either choice of D̂F

are extremely similar. Consequently, spectral clustering performs the same, despite the
obvious inaccuracies in the estimations of DF. This result can be explained from the
following fact: spectral clustering is of utmost interest when C1 and C2 are close matrices;
in this case, the classical estimator for DF is systematically biased by a constant, almost
irrespective of the covariance (since both are essentially the same). This constant bias
does affect K but not its dominant eigenvectors.

This observation collapses when the values of the ni’s differ. This is depicted in
Figure 3.2. The top display provides a scatter plot of the dominant eigenvectors v2 versus
v1 of K under the same conditions as above but now with ni chosen uniformly at random
in [2p, 4p], with p = 128, m = 200, C1 = Ip and [C2]ij = .05|i−j|. There, for the classical
estimator, we observe a wide spreading of the eigenvector entries and a smaller inter-class
spacing. This suggests poor clustering performance. On the opposite, the well-centered
eigenvectors achieved by the proposed estimator imply good clustering performances. In
a likely more realistic setting in practice, the bottom display considers the case where
n1 = . . . = nm−1 = 512 and nm = 256. This situation emulates a data retrieval failure
for one observation (only half of the samples are seen). In this scenario, the classical
estimator isolates one entry-pair in (v1, v2) (corresponding to their last entries). This is
quite expected. However, more surprisingly, the presence of this outlier strongly alters
the possibility to resolve the other data. This effect is further exacerbated when adding
more outliers (not displayed here). This most likely follows from an adversarial effect
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between the outliers and the genuine clusters, which all tend to “drive” the dominant
eigenvectors.

eigv 1

eigv 2 Class 1 (proposed)

Class 2 (proposed)

Class 1 (classical)

Class 2 (classical)

far outlier

eigv 1

eigv 2

Figure 3.2: First and second eigenvectors of K for the traditional estimator (red circles)
versus the proposed one (blue crosses); (top) random number of snapshots ni; (bottom)
n1 = . . . = nm−1 = 512 and nm = 256.

3.5.3 Application to covariance matrix estimation

In this section we start presenting the covariance matrix estimation procedure for the
family of metrics expressed as linear spectral statistic of Σ−1

1 Σ2. We then furthermore
explain the adaptations needed to handle the Wasserstein distance.

Estimation Method

In summary, our objective is to estimate Σ2 as:

Σ̌2 = arg min
M

h(M) (3.4)

h(M) = D̂(M,X2; f(·))2, (3.5)

where D̂(M,X2; f(·))2 is the random-matrix estimate of the distance between any pos-
itive definite matrix M and the sought-for covariance matrix Σ2 denoted D(M,Σ2) =∑p

j=1 f(λj(M
−1Σ2)).

We solve (3.4) via a gradient descent algorithm on the Riemannian manifold S++
p of

positive definite p× p matrices.
The Riemannian gradient ∇h(M) of h at M ∈ S++

p is defined via the directional
derivative Dh(M)[ξ] of the functional h : S++

p → R+, at position M ∈ S++
p and in the

direction of ξ ∈ Sp (the vector space of symmetric p× p matrices), by (Absil et al., 2009)

Dh(M)[ξ] = 〈∇h(M), ξ〉S
++
p

M

where 〈·, ·〉S
++
p
. is the Riemannian metric defined through

〈η, ξ〉S
++
p

M = tr
(
M−1ηM−1ξ

)
.
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f(z) G(z)

log2(z) z
(
log2(z)− 2 log(z) + 2

)
log(z) −z log(z) + z
log(1 + sz) s log(s+ z) + z log

(
s+z
z

)
z log(z)

f(z) F (z)

log2(z) z
(
log2(z)− 2 log(z) + 2

)
log(z) z log(z)− z
log(1 + sz)

(
1
s + z

)
log(1 + sz)− z

z 1
2z

2

Table 3.3: G(z) and F (z) for “atomic” f(z) functions used in most distances and
divergences under study; here s > 0 and z ∈ C.

Differentiating D̂2(M,X2) at M in the direction ξ yields:

Dh(M)[ξ]

=
−D̂(M,X2)

πic2

∮
Γ
g(−mµ̃p (z,M))Dmµ̃p (z,M) [ξ]dz.

where Γ̂ is a contour surrounding the support of the almost sure limiting eigenvalue
distribution of M−1Σ̂2. By using the fact that

Dmµ̃p (z,M) [ξ]

=
c2

p
Dtr

([
M−1Σ̂2 − zIp

]−1
)

[ξ]

=
c2

p
tr

(
M−1Σ̂2

[
M−1Σ̂2 − zIp

]−2
M−1ξ

)
=

〈
c2

p
sym

(
Σ̂2

[
M−1Σ̂2 − zIp

]−2
)
, ξ

〉S++
p

M

where sym(A) = 1
2(A+AT) is the symmetric part of A ∈ Rp×p, we retrieve the gradient

of h(M) as

− ıπp ∇h(M)

D̂(M,X2)

=

∮
Γ̂
g
(
−mµ̃p(z;M)

)
sym

(
Σ̂2(M−1Σ̂2 − zIp)−2

)
dz (3.6)

(recall that the right-hand side still depends on X2 implicitly through µ̃p and Σ̂2).

Once ∇h estimated, every gradient descent step in S++
p corresponds to a small

displacement on the geodesic starting at M and towards −∇h(M), defined as the curve

R+ → S++
p
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t 7→M
1
2 exp

(
−tM−

1
2∇h(M)M−

1
2

)
M

1
2

where, for A = UΛUT ∈ S++
p in its spectral decomposition, exp(A) ≡ U exp(Λ)UT (with

exp understood here applied entry-wise on the diagonal elements of Λ).
That is, letting M0,M1, . . . and t0, t1, . . . be the successive iterates and step sizes of

the gradient descent, we have, for some given initialization M0 ∈ S++
p ,

Mk+1 = M
1
2
k exp

(
−tkM

− 1
2

k ∇h(Mk)M
− 1

2
k

)
M

1
2
k . (3.7)

Our proposed method is summarized as Algorithm 1.

Algorithm 1 Proposed estimation algorithm.

Require M0 ∈ S++
p .

Repeat M ← M
1
2 exp

(
−tM−

1
2∇h(M)M−

1
2

)
M

1
2 with t either fixed or optimized by

backtracking line search.
Until Convergence1

Return M .

Estimation of Σ−1
2

In our framework, estimating Σ−1
2 rather than Σ2 can be performed by minimizing

D(M,Σ−1
2 ) instead of D(M,Σ2). In this case, under Assumption 1,

D(M,Σ−1
2 )− D̂inv(M,X2)→ 0

almost surely, for every deterministic M of bounded operator norm, where

D̂inv(M,X2) ≡ 1

2πıc2

∮
Γ̂
F
(
−mµ̃invp

(z;M)
)
dz

for F such that F ′(z) ≡ f(z), where Γ̂ is a contour surrounding the support of the almost
sure limiting eigenvalue distribution of M Σ̂2 and µ̃inv

p = p
n2
µinv
p + (1 − p

n2
)δ0, where

µinv
p ≡ 1

p

∑p
i=1 δλi(MΣ̂2). The cost function to minimize under this setting is now given

by hinv(M) ≡ (D̂inv(M,X2))2 with gradient ∇hinv(M) satisfying

ıπp
∇hinv(M)

D̂inv(M,X2)
=∮

Γ̂
f
(
−mµ̃invp

(z;M)
)

sym
(
M Σ̂2(M Σ̂2 − zIp)−2M

)
dz.

With these amendments, Algorithm 1 can be adapted to the estimation of Σ−1
2 . Table 3.3

provides the values of F for the atomic functions f of interest.

1convergence reached whether one of the following conditions met: (i)Cost tolerance reached;
(ii)Gradient norm tolerance reached; (iii)Maximum user time exceeded; (iv) Maximum iteration count
reached
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Application to Explicit Metrics

Algorithm 1 is very versatile as it merely consists in a gradient descent method for
various metrics f through adaptable definitions of the function h(M) = D̂(M,X2)2

and its resulting gradient. Yet, because of the integral form assumed by the gradient
(Equation (3.6)), a possibly computationally involved complex integration needs to be
numerically performed at each gradient descent step.

In this section, we specify closed-form expressions for the gradient for the atomic f
functions of Table 3.3 (which is enough to cover the list of divergences in Table 3.1).

Let us denote

∇h(M) ≡ 2D̂(M,X2) · sym
(

Σ̂2 · V Λ∇V
−1
)

where V are the eigenvectors of M−1Σ̂2 and Λ∇ is to be determined for each f .
For readability in the following, let us denote λ̂i ≡ λi(M

−1Σ̂2), i ∈ {1, . . . , p}, the

eigenvalues of the matrix M−1Σ̂2 and ξ1, . . . , ξp the eigenvalues of Λ− 1
n2

√
λ̂
√
λ̂
T

with Λ =

diag(λ̂1, . . . , λ̂p) and λ̂ = (λ̂1, . . . , λ̂p)
T. Finally, for s > 0, let κs ∈ (−1/(s(1− p/n2)), 0)

be the unique negative number t solution of the equation (see Section 6.2.3 of the appendix
for details) mµ̃p(t) = −s.

With these notations at hand, following the derivations in Section 6.2.3 of the appendix,
we have the following determinations for Λ∇.

Proposition 1 (Case f(t) = t).

[Λ∇]kk = − 1

c2
+

1

p

p∑
i=1

1

m′µ̃p(ξi)
(
λ̂k − ξi

)2

with m′µ̃p the derivative of mµ̃p.

Proposition 2 (Case f(t) = log(t)). [Λ∇]kk = −1
pλ̂k

.

Proposition 3 (Case f(t) = log(1 + st)). For s > 0,

[Λ∇]kk =
−1

p(λ̂k − κs)
.

Proposition 4 (Case f(t) = log2(t)). For f(t) = log2(t),

[Λ∇]kk =
2

p
log
(
λ̂k

) p∑
i=1

1

λ̂k − ξi
−

p∑
i=1
i 6=k

1

λ̂k − λ̂i
− 1

λ̂k


− 2

p

p∑
i=1

log(ξi)

λ̂k − ξi
+

2

p

p∑
i=1
i 6=k

log(λ̂i)

λ̂k − λ̂i
− 2− 2 log(1− c2)

pλ̂k
.

These results unfold from residue calculus for entire functions f or advanced complex
integration tools for logarithmic functions which is described in Section 6.2.4.
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The Wasserstein case We obtain the relation of the gradient for the Wasserstein
distance (1

ptr(M + Σ̂2)− 2D̂(M,X2;
√
·)) similarly as provided previously.

πıp
∇h(M)

2
√
h(M)

=
1

p
M2

+

p∑
j=1

∫ λ̂j

ξj

√
1

mµ̃p(x)
sym

(
M Σ̂2(M Σ̂2 − xIp)−2M

)
dx

where sym(A) = 1
2(A+AT) is the symmetric part of A ∈ Rp×p and where the definition

of ξj and λ̂j is given in Corollary 6. We can write the latter as:

∇h(M) = 2
√
h(M)

[
sym

(
V Λ∇V

−1
)

+
1

p
M2

]
where V is the orthogonal matrix of the eigenvectors of M Σ̂2 and Λ∇ is the diagonal
matrix with

[Λ∇]kk =
1

πp

∑
j 6=k

∫ λ̂j

ξj

√
1

mµ̃p(x)

1

(λ̂k − x)2
dx

+
1

πp

∑
j 6=k

∫ λ̂k

ξk

√
1

mµ̃p(x)

1

(λ̂j − x)2
dx.

Experiments on the Wasserstein distance

Figure 3.3 depicts the results of the algorithm. There is displayed the Wasserstein distance
DW (Σ2, ·) between a matrix Σ2 having four distinct eigenvalues of equal multiplicity
(precisely, νp = 1

4(δ.1 + δ3 + δ4 + δ5)) and various estimators of Σ2: the sample covariance
matrix (SCM), the state-of-the-art “non-linear shrinkage” estimators QuEST1 (Ledoit &
Wolf, 2015) (based on a Frobenius distance minimization) and QuEST2 (Ledoit et al.,
2018) (based on a Stein loss minimization), and the result of the gradient descent approach
proposed in this section. For fair comparison, the iterative QuEST1, QuEST2 and our
proposed method are all initialized at M0 the linear shrinkage estimator from (Ledoit
& Wolf, 2004). Note that our proposed choice of Σ2 is particularly suited to mimick
an “optimal transport” problem of displacing the eigenvalues of M0 to the discrete four
positions of the eigenvalues of Σ2.

In addition to the computational simplicity of our gradient-descent approach with
respect to the QuEST estimators (see the numerical method details in (Ledoit & Wolf,
2017)), the figure demonstrates significant gains brought by our proposed approach for
large values of p/n2, where the SCM particularly fails.

3.6 Concluding Remarks

Conclusion. The present study has revealed a strong lack of consistency for the
traditional “plug-in” covariance matrix-distance (and divergence) estimators, when the
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Figure 3.3: Wasserstein distance DW (Σ2, ·) between Σ2 with νp = 1
4(δ.1 + δ3 + δ4 + δ5)

and (green) our proposed estimator, (blue) the sample covariance matrix, (red) and (light
blue) the QuEST estimators proposed in (Ledoit et al., 2018; Ledoit & Wolf, 2015); for
p = 100 and varying number of samples n2 averaged over 10 realizations.

data dimension p is not small. This is particularly dramatic as p and the number of
snapshots n are close. We provided a consistent solution to recover consistency, exploiting
random matrix tools.

Importantly, by exploiting both randomness in p and n, our estimator converges as
fast as O(1/

√
pn), but a more precise central limit analysis is required to exactly assess

confidence intervals, which is yet another avenue of research.
But the real strength and robustness of the proposed estimator will only be demon-

strated when applied to real (non Gaussian) datasets and more exotic applications. Brain
signal processing (or human-machine interaction) and radar imaging (Synthetic Aperture
Radar (SAR) or hyperspectral) are both interesting application candidates that shall be
investigated in the future.

Introducing the Multi-Task Learning analysis. Many analyses of machine learn-
ing algorithms have been conducted recently in high-dimensional statistics, but so far
limited to“simple” algorithms (classical support vector machine (SVM) (Liao & Couillet,
2019), spectral clustering (Couillet et al., 2016), semi-supervised graph learning (SSL)
(Mai & Couillet, 2018)). These studies have highlighted the prominent and unique role of
means and covariance matrices in the understanding of these algorithms. This emphasizes
once again the need for a thorough understanding of covariance functionals which has
been the focus of the present chapter. However, richer and more complex methods such as
multi-task learning, transfer learning, fairness learning, privacy and security in machine
learning, etc. that involve multiple biases that are difficult to trace (too many parameters,
too much heterogeneity in the data, etc.) are ultimately the ones that can gain the most
from leveraging RMT, which will identify these biases. We show that this is indeed the
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case, that there are multiple biases especially in the case of multi-task learning, but that
the RMT cleans them one by one, while keeping a remarkable algorithmic simplicity.
This is the focus and goal of the next chapter.
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4.1 Motivation and main findings

Multi-Task Learning motivation. The methodology for a long time considered in
machine learning has consisted in tackling each given (classification, regression, estimation)
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problem, hereafter referred to as a task, independently. This approach is in general
counterproductive as it automatically discards a potentially rich source of data often
available to perform more or less similar tasks. Multi-Task Learning (MTL) precisely aims
to handle this deficiency by connecting datasets and tasks so to improve the generalization
performance of one or several specific target tasks. This framework has recently gained
renewed interest (Yang et al., 2020; Caruana, 1997; Collobert & Weston, 2008), given
the availability of gigantic datasets (such as huge prelabeled image databases) and costly
trained learning machines (such as deep neural nets), which must be useful to help solve
learning tasks involving much fewer labeled data. Beyond this resurgence, numerous
applications inherently benefit from an MTL approach, of which we may cite a few
examples: prediction of student test results for a collection of schools (Aitkin & Longford,
1986), patient survival estimates in different clinics (Harutyunyan et al., 2017; Caruana
et al., 1996), values of possibly related financial indicators (Allenby & Rossi, 1998),
preference modeling of many individuals in a marketing context (Greene, 2000), etc.

Task relatedness modeling in MTL. Carefully modeling the relatedness between
tasks has long been claimed to be the most critical determinant of the MTL algorithm
performance. Several such models have been considered in the literature: task relatedness
can be modeled by assuming that the parameters relating the tasks lie on a low dimensional
manifold (Argyriou et al., 2007; Agarwal et al., 2010); these relating parameters may
alternatively be assumed to be close in norm (Evgeniou & Pontil, 2004; Xu et al., 2013)
or be distributed according to similar priors (Xue et al., 2007; Yu et al., 2005). However,
for all these models, a failure in properly matching the task parameters is often likely to
induce possibly severe cases of negative learning, that is occurrences where additional
tasks play against rather than in favor of the target task objective. These cases of
negative learning are difficult to anticipate as few theoretical works are amenable to
prepare the experimenter to these scenarios. In the present work, we adopt a similar
strategy as in (Evgeniou & Pontil, 2004), but with a strong theoretical background which
will automatically eliminate the risks of negative learning.

A parameter-based modeling approach. In detail, the article (Evgeniou & Pontil,
2004), the spirit of which is followed here, is inspired by the natural extension of support
vector machines (SVMs) (Vapnik, 2005) to a multiple, say k, task setting, by paralleling k
SVMs but constraining their parameters (specifically, the k separating hyperplane normal
vectors ω1, . . . , ωk) to be “close” to each other. This is enforced by simply imposing that
ωi = ω0 + vi for some common hyperplane normal vector ω0 and dedicated hyperplane
normal vectors vi. The norm of the vectors vi is controlled through an additional
hyperparameter λ to strengthen or relax task relatedness. This is the approach followed
in this chapter, to the noticeable exception that the fully explicit least-square SVM
(LS-SVM) (Xu et al., 2013) rather than a margin-based SVM is considered. In addition
to only marginally altering the overall behavior of the MTL algorithm of (Evgeniou &
Pontil, 2004), the LS-SVM approach entails more explicit, more tractable, as well as
more insightful results, let alone numerically cheaper implementations. As a matter of
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fact, by a now well-established universality argument of large dimensional statistics, it
has been shown in closely related works (Mai & Liao, 2019) that quadratic (least-square)
cost functions are asymptotically optimal (as the data dimension and number increase)
and uniformly outperform alternative costs (such as margin-based methods or logistic
approaches) in terms of 0 − 1 classification error, even in a classification setting; this
argument further motivates to consider first and foremost the least square version of
MTL-SVM.

Main findings and chapter contributions. This chapter develops a theoretical
framework to exhaustively study the behavior and maximize the performance of a k-task
m-class MTL LS-SVM framework, under the regime of numerous (n) and large (p) data,
i.e., n, p → ∞ with n/p → c0 ∈ (0,∞). The data are here modeled as a mixture of
km concentrated random vectors, i.e., for x a data of class j (j ∈ {1, . . . ,m}) for Task i
(i ∈ {1, . . . , k}), x ∼Lij(µij ,Σij), where Lij(µ,Σ) is the law of a Lipschitz-concentrated
random vector (Ledoux, 2001) with statistical mean µ ∈ Rp and covariance Σ ∈ Rp×p.
For instance, x = ϕij(z) for z ∼ N(0, Iq), ϕij : Rq → Rp a 1-Lipschitz function and
lim q/p ∈ (0,∞). The statistical modeling for the data considered here has been briefly
mentioned in chapter 2 as one of the big advantage of RMT tools in the sense that the
theoretical insights and conclusions are robust to real data.

The main results and practical consequences of the chapter may be summarized as
follows:

• we exhibit sufficient statistics, which concretely enable task comparison in the MTL
LS-SVM algorithm; we show that, even when data are of large dimensions (p� 1),
these statistics remain small dimensional (they only scale with the number k of
tasks);

• while it is conventional to manually set labels associated to each dataset within
{−1, 1}, we prove that this choice is largely suboptimal and may even cause MTL
to severely fail (causing “negative transfer”); we instead provide the optimal values
for the labels of each dataset, which depend on the sought-for objective: these
optimal values are furthermore easily estimated from very few training data (i.e.,
no cross-validation is needed);

• for unknown new data x, the MTL LS-SVM algorithm allocates a class based on
the comparison of a score g(x) to a threshold ζ, usually set to zero. We prove that,
depending on the statistics and number of elements of the training dataset, a bias
is naturally induced that makes ζ = 0 a largely suboptimal choice in general. We
provide a correction for this bias, which again can be estimated from the training
data alone;

• we demonstrate on popular real datasets that our proposed optimized MTL LS-SVM
is both resilient to real data and also manages, despite its not being a best-in-class
MTL algorithm, to rival and sometimes largely outperform competing state-of-the-
art algorithms.
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In a nutshell, by exploiting random matrix theory tools explained in Section 2.3 (i,e,.
deterministic equivalents of random matrices), the work provides a modern vision to
multi-task and transfer learning. This vision is here turned into an elementary but cost-
efficient algorithm, which relies on base principles, but which both largely outperforms
competing (sometimes complex) methods and provides strong theoretical guarantees. As
a side note, we must insist that our present objective is to study and improve “data-
generic” multi-task learning mechanisms under no structural assumption on the data;
this is quite unlike recent works exploiting convolutive techniques in deep neural nets to
perform transfer or multi-task learning mostly for computer vision-oriented tasks, as in
e.g., (Zhuang et al., 2020; Krishna & Kalluri, 2019).

Chapter organization. In order to best capture the main intuitions drawn from
the large dimensional analysis, after a rigorous introduction of the multi-task learning
framework in Section 4.2, a first highlight of our main contributions under the qualitatively
more telling setting of binary tasks (m = 2) with data of equal identity covariance
(Σij = Ip) is proposed in Section 4.3. The technical details under the most generic
data modeling setting as well as the most general technical result are then provided
in Section 4.4. A broad series of applications is provided in Section 4.5. Extensive
simulations are then proposed in Section 4.6, which corroborate our theoretical findings
and show their resilience and compatibility to real data settings.

Notation. e
[n]
m ∈ Rn is the canonical vector of Rn with [e

[n]
m ]i = δmi. Moreover,

e
[2k]
ij = e

[2k]
2(i−1)+j . Similarly, E

[n]
ij ∈ Rn×n is the matrix with [E

[n]
ij ]ab = δiaδjb. The

notations A⊗B and A�B for matrices or vectors A,B are respectively the Kronecker
and Hadamard products. Dx is the diagonal matrix containing on its diagonal the
elements of the vector x and Ai· is the i-th row of A. The notation Å is used when
a centering operation is performed on the matrix or vector A. Uppercase calligraphic
letters (A,K,Γ,M, V,...) are used for deterministic small dimensional matrices. Finally,
1m and Im are respectively the vector of all one’s of dimension m and the identity matrix
of dimension m×m. The index pair i, j generally refers to Class j in Task i.

4.2 The Multi-Task Learning Framework

4.2.1 The deterministic setting

Let X ∈ Rp×n be a collection of n independent data vectors of dimension p. The
data are divided into k subsets attached to individual “tasks”, each task consisting
of an m-class classification problem (m being the same for each task). Specifically,
letting X = [X1, . . . , Xk], Task i is a classification problem from the training samples

Xi = [X
(1)
i , . . . , X

(m)
i ] ∈ Rp×ni with X

(j)
i = [x

(j)
i1 , . . . , x

(j)
inij

] ∈ Rp×nij the nij vectors of

class Cj , j ∈ {1, . . . ,m}, for Task i. In particular, n =
∑k

i=1 ni and ni =
∑m

j=1 nij for
each i ∈ {1, . . . , k}.
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To each datum x
(j)
il ∈ Rp of the training set is attached a corresponding output

vector (or score) y
(j)
il ∈ Rm. Correspondingly to the notation X, Xi and X

(j)
i , let

Y = [Y T
1 , . . . , Y

T
k ]T ∈ Rn×m be the matrix of the m-dimensional outputs of all data,

where Yi = [Y
(1)T
i , . . . , Y

(m)T
i ]T ∈ Rni×m and Y

(j)
i = [y

(j)
i1 , . . . , y

(j)
inij

]T ∈ Rnij×m the matrix
of all outputs for Task i.

In the standard MTL learning approach (Evgeniou & Pontil, 2004; Xu et al., 2013),

one would naturally set y
(j)
il = e

[m]
j , i.e., all data of class Cj are affected a hot-bit in

position j. As claimed in the introduction and as we shall see, this hot-bit allocation
approach is at the source of deleterious performances, such as negative transfer effects,

and we thus voluntarily do not enforce any constraint on the vector y
(j)
il at this point.

Before inserting the data-score pairs (X,Y ) into the MTL LS-SVM framework, it is
convenient to “center” the data X to eliminate additional sources of bias. This centering
operation could be performed either on the whole dataset X, or task-wise on each Xi, or

even class-wise on each X
(j)
i . In (Evgeniou & Pontil, 2004; Xu et al., 2013) this centering

operation is not performed (which essentially boils down to centering X itself). We
choose here to center the data task-wise, and this, for two reasons: (i) centering the whole
dataset induces dependencies across tasks so that, even by enforcing the hyperplane
controlling factor λ to decorrelate the tasks (i.e., λ→∞; see next), residual dependence
must remain and negative transfer can still appear, (ii) class-wise centering has the
double deleterious effect of canceling an important discrimination factor of the classes
(i.e., their difference in statistical mean) and of necessitating a complex treatment to
classify new (unlabeled) input data. Inappropriate centering choices would induce biases
and undesired residual terms in our theoretical derivation, which further justifies our
present task-wise centering choice (see e.g., Remark 4). Specifically, the MTL LS-SVM
algorithm studied here is based, not on the data Xi but on their centered version

X̊i = Xi

(
Ini −

1

ni
1ni1

T
ni

)
, ∀i ∈ {1, . . . , k},

and we will systematically consider the data-score pair (X̊, Y ), where X̊ = [X̊1, . . . , X̊k]
rather than (X,Y ).

Having pre-treated the input data, we are in position to introduce the MTL LS-SVM
framework. The MTL LS-SVM algorithm aims to predict, relative to each task i, an
output score vector yi ∈ Rm for any new input vector x ∈ Rp. To this end, MTL LS-SVM
determines k “hyperplane normal-vector” matrices W = [W1,W2, . . . ,Wk] ∈ Rp×km which
take the form Wi = W0 + Vi for some common W0 and individual task-wise matrices
V = [V1, . . . , Vk] and biases b = [bT1 , b

T
2 , . . . , b

T
k ]T ∈ Rk×m. These parameters are set to

minimize the objective function

min
(W0,V,b)∈Rp×m×Rp×km×Rk×m

J(W0, V, b) (4.1)
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where

J(W0, V, b) ≡
1

2λ
tr
(
WT

0 W0

)
+

1

2

k∑
i=1

tr
(
V T
i Vi

)
γi

+
1

2

k∑
i=1

tr
(
ξTi ξi

)
ξi = Yi − (

X̊T
i Wi√
kp

+ 1nib
T
i ), ∀i ∈ {1, . . . , k}.

This is a classical LS-SVM formulation in which the quadratic cost tr(ξTi ξi) replaces the
boundary constraint of margin-based SVM and where the costs tr(WT

0 W0) and tr(V T
i Vi)

are reminiscent of the hyperplane normal-vector norm minimization of classical SVM.
What is specific to the MTL approach is first the hyperparameter λ which enforces

or relaxes the relatedness between tasks and the introduction of k extra parameters
γ1, . . . , γk which enforce a correct classification of the data in their respective classes.
Similarly to (Evgeniou & Pontil, 2004), we place the hyperparameters γi as a prefactor
of tr(V T

i Vi), rather than as a prefactor of tr(ξTi ξi); this differs from the normalization
scheme proposed in (Xu et al., 2013). This choice is more flexible in the following sense:
for a fixed value of λ, increasing all ratios λ

γi
“blurs” the difference between tasks and

thus turns the optimization scheme into a single-task SVM (because the optimal Vi’s
need then be set to zero in the limit); for fixed values of the γi’s instead, small ratios λ

γi
decorrelate the tasks (the optimal W0 being close to zero). Note however that, unlike in
(Evgeniou & Pontil, 2004), we choose to use here one hyperparameter γi per task instead
of a common one. As will be seen next, this choice is more meaningful and of course
offers more flexibility.

In passing, remark that the linear common-hyperplane condition Wi = W0 + Vi,
imposes by definition that all Vi’s be of the same size Rp×m: this severely constrains
(i) the data in each task to be of the same dimension p and (ii) the number of classes
per task to be the same (m). Further linear or even non-linear relaxation schemes for
Wi of the type Wi = Vi + fi(W0) for some operator fi could be envisioned to relax this
constraint. This however goes beyond the scope of the chapter, which seeks to provide
insights and optimality into a simplified (yet already non-trivial) form of MTL LS-SVM.

As for the choice of the hyperparameters λ, γ1, . . . , γk, as well as of the score matrix
Y which we recall was left open, it is treated independently and is dictated, not by
the present optimization scheme, but by an ultimate objective, such as minimizing the
misclassification rate for a specific target class. These more applied considerations will
be made in Section 4.5.

Remark 3 (LS-SVM classification versus regression). It may be disputed that the opti-
mization framework (4.1) takes a regression rather than a classification form. It appears
that, under a binary-class LS-SVM framework with scores yi ∈ {±1}, the classification
constraint (of the form yi(W

Txi + bi)− 1 = ξi) or the regression constraint (of the form
yi − W Txi + bi = ξi) are associated to the same losses, thereby leading to the same
classification solution and performance. Yet, as will become clear in the following, in
addition for the solution of (4.1) to be explicit and theoretically tractable (which is not
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the case of alternative schemes such as margin-based SVM, logistic regression, Adaboost,
etc.), the aforementioned flexibility in the score matrix Y largely outbalances the “failure”
of treating a classification problem by means of a regression optimization scheme. Besides,
under the large dimensional theoretical framework presently studied, recent works in
related problems (Mai & Liao, 2019) forcefully suggest that the square loss is optimal to
deal with large dimensional data as it uniformly outperforms all alternative cost functions
in terms of 0− 1 classification error.

Being a quadratic cost optimization under linear constraints, (4.1) is easily solved
using its dual formulation by introducing Lagrangian parameters αi ∈ Rni×m for each
task i (see details in Section 6.3.1). The solution is explicit and is as follows.

Proposition 5. The solution to (4.1) is given by

W0 =
(

1T
k ⊗ λIp

) Z√
kp
α

Wi =

(
e

[k]
i

T
⊗ Ip

)
A

Z√
kp
α

b = (PTQP )−1PTQY

where

Z =

X̊1
. . .

X̊k

 ∈ Rkp×n

A =
(
Dγ + λ1k1

T
k

)
⊗ Ip ∈ Rkp×kp

α = Q(Y − Pb), Q =

(
1

kp
ZTAZ + In

)−1

∈ Rn×n

P =

1n1
. . .

1nk

 ∈ Rn×k.

Despite the apparent intricate expression ofWi, it must be stressed thatWi “essentially”
takes the form of the standard solution to a ridge regression considered in chapter 2 (or
regularized least-square) problem as the term AZQY (in which Q = ( 1

kpZ
TAZ + In)−1)

appearing in the expended form of Wi confirms. From a technical standpoint, the large
dimensional statistical behavior of the matrix Q, known as the resolvent of 1

kpZ
TAZ in

random matrix theory as defined in chapter 2, plays a central role in the analysis. More
specific to the MTL framework, note the interesting isolation of the data subsets X̊i in
the data matrix Z (it is not possible, to the best of our knowledge, to “linearly” express
Wi as a function of X̊ itself); the elements X̊i are then “mixed” by the term λ1k1T

k

appearing in matrix A, from which it naturally comes that, in the limit λ → 0, MTL
LS-SVM boils down to k independent LS-SVMs with Dγ imposing weights γ1, . . . , γk on
each data subset.
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From Proposition 5, for any new data point x ∈ Rp, the classification score vector
gi(x) ∈ Rm for Task i, is then defined by the linear model considered previously

gi(x) =
1√
kp
WT
i x̊ + bi =

1

kp
αTZTA

(
e

[k]
i ⊗ x̊

)
+ bi (4.2)

where x̊ = x− 1
ni
Xi1ni is a centered version of x with respect to the training dataset for

Task i.
This formulation, along with the next remark, confirm again the relevance of a

task-wise, rather than class-wise, centering of the data X, which allows for a well-defined
expression of x̊.

Remark 4 (Shift invariance of the scores). If the columns of Yi ∈ Rni×m are shifted by
some constant vector PȲ for some (small dimensional) matrix Ȳ ∈ Rk×m, i.e., if all
data of the same task are affected by the same shift of their scores (or labels), then we
find that the Lagrangian parameter αshift after the shift is

αshift = Q
(
In − P (PTQP )−1PTQ

)
(Y + PȲ) = α.

As such, the matrix Wi = (e
[k]T
i ⊗ Ip)A Z√

kp
α and, consequently, the performance of MTL

LS-SVM are insensitive to a simultaneous shift of all the scores of each task.

4.2.2 Statistical modeling and the large dimensional setting

In order to draw insights into the behavior of MTL LS-SVM and evaluate its performance,
we propose to first model the dataset X as a mixture of concentrated random vectors
and then to assume the dimensions p, n of X to be sufficiently large for deterministic
(and predictable) concentration behavior to occur.

Assumption 2 (Distribution of X and x). There exist two constants C, c > 0 (indepen-
dent of n, p) such that, for any 1-Lipschitz function f : Rp×n → R,

∀t > 0, P(|f(X)− E[f(X)]| ≥ t) ≤ Ce−(t/c)2

We further impose that the columns of X be independent and that the x
(j)
il , for l ∈

{1, . . . , nij}, be distributed according to the same law Lij . These conditions guarantee
the existence of a mean and covariance for the columns of X and we denote, for all
l ∈ {1, . . . , nij},

µij ≡ E[x
(j)
il ]

Σij ≡ Cov[x
(j)
il ].

Furthermore, the dummy variable x ∈ Rp used for testing is independent of X, and
distributed according to one of the laws Lij .
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Assumption 2 notably encompasses the following scenarios: the x
(j)
il ’s are (i) indepen-

dent Gaussian random vectors N(µij ,Σij), (ii) independent random vectors uniformly
distributed on the Rp sphere of radius

√
p and, most importantly, (iii) any 1-Lipschitz

transformation ϕij(z
(j)
il ) with z

(j)
il itself a concentrated random vector. Scenario (iii) is

particularly relevant to model very realistic data by means of advanced non-linear gener-
ative models, as recently demonstrated in (Seddik et al., 2019) in the specific example
of generative adversarial networks (GANs). As such, Assumption 2 offers the flexibility
to assume either synthetic Gaussian mixture models, or very realistic and advanced
generative data models. A core result of the chapter consists in showing that, for n, p
large, either scenario leads to the same asymptotic performance for MTL LS-SVM (which
thus only depends on the statistical means and covariances of the data).

Since all data x
(j)
il , l ∈ {1, . . . , nij}, are identically distributed, we will further impose

that their associated scores y
(j)
il ∈ Rm be identical. That is, y

(j)
i1 = . . . = y

(j)
inij
≡ Yij

within every class j of each task i. The score matrix Y ∈ Rn×k may then be reduced
under the form

Y =
[
Y111T

n11
, . . . ,Ykm1T

nkm

]T
∈ Rn×m

for Y = [Y11, . . . ,Ykm]T ∈ Rkm×m. From Remark 4, it is also clear that, the performances
of MTL LS-SVM being insensitive to a constant shift in the scores Yi1, . . . ,Yim in every
given task i, the centered version Y̊ = [Y̊11, . . . ,Y̊km]T of Y, where

Y̊ij ≡Yij −
m∑
j=1

nij
ni

Yij ,

will naturally appear at the core of the upcoming results.

Although practical data will of course be considered to be of finite dimension p and
number n, it will indeed be convenient, for technical reasons, to work under the following
large dimensional random matrix assumption.

Assumption 3 (Growth Rate). As n→∞, n/p→ c0 ∈ (0,∞) and, for 1 ≤ i ≤ k, 1 ≤
j ≤ m, nij/n→ cij ∈ (0, 1). We further denote ci =

∑k
j=m cij and c = [c1, . . . , ck]T ∈ Rk.

With these notations and assumptions in place, we are in position to present the main
results of the chapter. Yet, before entering the technical details of the large dimensional
analysis of the performance of the MTL LS-SVM framework, the next section first
provides a highlight of the main contributions and intuitions drawn by the analysis. To
this end, it is convenient to temporarily restrict the setting to binary classes (m = 2)
and to an isotropic mixture model for the data X, i.e., Σij = Ip for each measure Lij .
The most general and slightly more technical setting (m ≥ 2 and non-isotropic mixture
data modeling) is considered in full in Section 4.4.
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4.3 Highlights of the main results

To simplify the exposition of our main results, without impacting their core conclusions,
in this section, Assumptions 2–3 are further restricted to the binary-classification setting
(m = 2) and to measures Lij of equal covariance Σij = Ip, for all i, j.

The advantage of the isotropic (Σij = Ip) condition is that all asymptotic results
can be expressed under the form of low-dimensional matrix formulations (of size scaling
with k but not with p, n). Adjoined to the m = 2 assumption, the isotropic model
further guarantees a simplified form for (i) the (asymptotically) optimal labels Y , (ii) the
optimal decision thresholds ζi, and (iii) the asymptotic performances of MTL LS-SVM,
all of which can be estimated consistently as p, n → ∞. Consequently, this simplified
setting has the strong benefit to give rise to a first cost-efficient and robust multi-task
classification algorithm (Algorithm 2) which, for practical data, makes the approximation
that Σij ∝ Ip.

The binary setting does not a priori alter any of the previously introduced notations
which stand with m = 2. Yet, it is particularly convenient in this setting to recast the

score vectors y
(j)
il ∈ Rm into scalar scores y

bin(j)
il ∈ R. In a standard classification context,

this would correspond to turning a two-dimensional hot-bit vector e
[2]
j into a signed

scalar ±1; as we recall that y
(j)
il is here considered as a real score (rather than a binary

label) vector, to us this is equivalent to turning a score vector into a scalar score. Matrix
Y ∈ Rn×m similarly now becomes a score vector ybin ∈ Rn, and in particular we define
ẙbin = [ẙbin

11 , . . . , ẙ
bin
k2 ]T ∈ R2k with

ẙbin
ij ≡ ybin

ij −
(
ni1
ni

ybin
i1 +

ni2
ni

ybin
i2

)
∈ R

where ybin
ij ≡ ybin

i1
(j)

= . . . = ybin
inij

(j) ∈ R is the common score assigned to the identically

distributed data of class j for Task i. Correspondingly, the sought-for (Wi, bi) collection
of m hyperplanes of (4.1) becomes a single hyperplane (wbin

i , bbin
i ) with wbin

i ∈ Rp and
bbin
i ∈ R. Yet, our present interest is only on the resulting score vector gi(x) which,

replacing Y by ybin in its expression (Equation 4.2), becomes the scalar test score

gbin
i (x) ≡ 1

kp
(ybin − Pb)TQZTA

(
e

[k]
i ⊗ x̊

)
+ [(PTQP )−1PTQybin]i ∈ R.

4.3.1 Theoretical analysis and large dimensional intuitions

Under the isotropic and binary-class setting, as n, p → ∞ according to Assumption 3,
the theoretical performance of MTL LS-SVM explicitly depends on two fundamental and
isolated quantities: the data-related matrix M ∈ R2k×2k and the hyperparameter matrix
A ∈ Rk×k:

M =

k∑
i,i′=1

∆µTi ∆µi′
(
E

[k]
ii′ ⊗ cic

T
i′

)
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A =

(
Ik + D

− 1
2

δ[k]

(
Dγ + λ1k1

T
k

)−1
D
− 1

2

δ[k]

)−1

where we introduced the shortcut notations

∆µi ≡ µi1 − µi2, ci ≡
√
ci1/ci

√
ci2/ci

[ √
ci2/ci

−
√
ci1/ci

]
and where δ[k] = [δ

[k]
1 , . . . , δ

[k]
k ]T are the unique positive solutions to the implicit system

of k equations

δ
[k]
i =

ci
c0
−Aii, i ∈ {1, . . . , k}. (4.3)

In anticipation of future needs, it is convenient to further introduce the 2k-dimensional

variant δ[2k] = [δ
[2k]
11 , . . . , δ

[2k]
k2 ]T ∈ R2k where

δ
[2k]
ij = c0

cij
ci

δ
[k]
i . (4.4)

The asymptotic performances of MTL LS-SVM will be shown to solely depend on X
through the matrices M and A, which thus play the role of (asymptotically) sufficient
statistics. It is particularly important to stress that, despite the quite generic concentration
assumption on X (Assumption 2), when Σij = Ip, only the k2 inner products ∆µTi ∆µi′

and the 2k class-wise dimensionality ratios cij/ci intervene in the expression of M – so
in particular none of the higher order moments of X are accounted for, nor the absolute
task-wise dimension ratios ci. As for A, it captures instead the information about the
impact of the hyperparameters λ, γ1, . . . , γk as well as the task-wise dimensionality ratios
c1, . . . , ck and the data number-to-dimension ratio c0. In the expression of the MTL
LS-SVM performance, these two matrices combine into the core matrix ∈ R2k×2k

Γ =
(
I2k +

(
A ⊗ 121T

2

)
�M

)−1
(4.5)

where we recall that ‘�’ is the Hadamard (element-wise) matrix product.

Theorem 8 (Asymptotics of gbin
i (x)). Under Assumptions 2–3, with m = 2 and Σij = Ip,

for a test data x with E[x] = µij and Cov[x] = Ip, as p, n→∞,

gbin
i (x)−Gij

a.s.−→ 0, Gij ∼N(mij , σ
2
i )

in distribution, where, letting m = [m11, . . . ,mk2]T and the normalized forms ybin ≡
D

1
2

δ[2k]
ybin, ẙbin = D

1
2

δ[2k]
ẙbin, m = D

1
2

δ[2k]
m, and σ2

i = δ
[k]
i σ

2
i ,

m = ybin − Γẙbin

σ2
i = (ẙbin)TΓViΓẙ

bin

with

Vi = DKT
i.⊗12

+
(
AD

KT
i·+e

[k]
i

A ⊗ 121T
2

)
�M

K =
c0

k
[A �A]

(
Dc −

c0

k
[A �A]

)−1
.
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Theorem 8 interestingly indicates that the (asymptotic) statistics of the classification
scores gbin

i (x), for 1 ≤ i ≤ k, reduce to a mere functional of 2k-dimensional deterministic
vectors and matrices. In particular, gbin

i (x) depends on the data statistical means µi′j′ ,
1 ≤ i′ ≤ k, 1 ≤ j′ ≤ 2, and on the hyperparameters λ and γ1, . . . , γk mostly through the
2k-dimensional matrix Γ (and more marginally through Vi and K for the variances).

Another non-trivial point to note is that, being in general non-diagonal, Γ acts on the
centered scores (labels) ẙbin

i′j′ of all classes j′ and tasks i′ which, therefore, all influence
the performances. It can thus be anticipated that, for the decision on a particular Task i
to be successful, not only the scores ybin

i1 and ybin
i2 , but in fact all scores ybin

i′j′ across all
classes and tasks, must be appropriately tuned.

Remark also that, in this isotropic (Σi′j′ = Ip) setting, the variance σ2
i of the score

gbin
i (x) with E[x] = µij only depends on i, and not on j. This is particularly convenient,

as shown next, to devise an optimal decision rule for classification into class 1 or 2 for
Task i.

From a more technical standpoint, comparing the exact expression of gi(x) in (4.2)
and that of mij (i.e., the large dimensional approximation of E[gi(x)]), we may interpret
the matrix Γ ∈ R2k×2k as a “condensed” form of Q ∈ Rn×n. From the expression
(I2k + A ⊗ 121T

2 )−1 �M, observe that: (i) if λ� 1, then A is diagonal dominant and
thus “filters out” in the Hadamard product all off-diagonal entries of M – that is, all the
cross-terms ∆µTi ∆µj for i 6= j –, therefore refusing to exploit the correlation between
tasks; (ii) if instead λ ∼ 1, then A may be developed (using the Sherman-Morrison matrix
inverse formulas) as the sum of a diagonal matrix, which again filters out the ∆µTi ∆µj
for i 6= j, and of a rank-one matrix which instead performs a weighted sum (through the

γi and the δ
[k]
i ) of the entries of M; specifically, letting γ−1 = (γ−1

1 , . . . , γ−1
k )T, we have(

Dγ + λ1k1
T
k

)−1
= D−1

γ −
λγ−1(γ−1)T

1 + λ 1
k

∑k
i=1 γ

−1
i

.

As such, letting aside the regularization effect of the δ
[k]
i ’s, the off-diagonal ∆µTi ∆µj

term intervening in the expression of M is weighted by a coefficient (γiγj)
−1: the impact

of the γi′ ’s is thus strongly associated to the relevance of the correlation between tasks,
and not only to the individual performances of the k isolated LS-SVM tasks.

Section 4.4 provides a more general version (Theorem 9) of Theorem 8 for m ≥ 2
classes per task and generic Σij . The technical derivation of these two results, of limited
interest at this point, is also deferred to Section 4.4.

4.3.2 Decision threshold and label optimization

Since gbin
i (x) has a Gaussian limit centered about mij and with equal variance for j = 1

and j = 2, the (asymptotically) optimal decision for x to be allocated to class C1 or
class C2 for Task i, i.e., the decision minimizing the averaged error probability under the
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prior P(x ∈ C1) = P(x ∈ C2), is obtained by the “averaged-mean” test

gbin
i (x)

C1

≷
C2

ζi ≡
1

2
(mi1 + mi2) (4.6)

the associated misclassification rate being

εi1 ≡ P

(
gbin
i (x) ≥ mi1 + mi2

2

∣∣∣x ∈ C1

)
= Q

(
mi1 −mi2

2σi

)
+ o(1) (4.7)

with mij , σi as in Theorem 8 and Q(t) = 1√
2π

∫∞
t e−

u2

2 du.

It is of utmost interest at this point to recall that the asymptotics of gbin
i (x) from

Theorem 8 (as from the more generic Theorem 9) depend in an elegant and simple manner

on the training data scores ybin = D
− 1

2

δ[2k]
ybin. Using again the independence of σ2

i on

the genuine class of x, the vector ybin? minimizing the misclassification rate for Task i
simply reads:

ybin? = arg max
ybin∈R2k

(mi1 −mi2)2

σ2
i

= arg max
ybin∈R2k

‖(ybin)T(I2k − Γ)D
− 1

2

δ[2k]
(e

[2k]
i1 − e

[2k]
i2 )‖2

(ybin)TΓViΓybin

for which the solution is explicitly defined, up to an arbitrarily multiplicative constant
(as it maximizes a ratio) and up to an arbitrary additive constant (as per Remark 4), by:

ybin? = Γ−1V−1
i [(A⊗121T

2 )�M]D
− 1

2

δ[2k]
(e

[2k]
i1 − e

[2k]
i2 ). (4.8)

and, for this choice of ybin?, the corresponding (asymptotically) optimal classification
error εi1 defined in (4.7) is then

ε?i1 = Q

(
1

2

√
(e

[2k]
i1 − e

[2k]
i2 )TG(e

[2k]
i1 − e

[2k]
i2 )

)
(4.9)

for G = D
1
2

δ[2k]
[(A⊗121T

2 ) �M]V−1
i [(A⊗121T

2 ) �M]D
1
2

δ[2k]
. Of course, by symmetry,

εi2 ≡ P (gbin
i (x) ≤ mi1+mi2

2 |x ∈ C2) has the same limiting optimal value ε?i2 = ε?i1.

The only non-diagonal matrices in (4.8) are Γ and Vi in which M plays the role of
a “variance profile” matrix. In particular, assume ∆µTi ∆µi′ = 0 for all i′ 6= i, i.e., the
differences in statistical means of all tasks are orthogonal to those of Task i. Then the
two rows and columns of M associated to Task i are all zero but on the 2× 2 diagonal
block. Therefore, ybin? will have all zero entries but on its Task i two elements. All
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other choices for the null entries of ybin? (such as the usual ybin = [1,−1, . . . , 1,−1]T)
would be suboptimal and (possibly severely) detrimental to the classification performance
of Task i, not by altering the means mi1,mi2 but by increasing the variance σ2

i . This
extreme example strongly suggests that, in order to maximize the MTL performance
on a targeted Task i, one must impose low absolute scores ybin

i′j to all Tasks i′ strongly
different from Task i.

The choice ybin = [1,−1, . . . , 1,−1]T can also be very detrimental when ∆µTi ∆µi′ < 0
for some pair i, i′: that is, when the mapping of the two classes within each task is
reversed (e.g., if class C1 in Task 1 is closer to class C2 than class C1 in Task 2). In this
setting, it is easily seen that ybin = [1,−1, . . . , 1,−1]T works against the classification
and performs much worse than a single-task LS-SVM.

Another interesting conclusion arises from the simplified setting of equal number of

samples per task and per class, i.e., n11 = . . . = nk2. In this case, δ
[k2]
11 = . . . = δ

[k2]
k2 and,

since ybin? is defined up to a multiplicative constant, we have

ybin? = Γ−1V−1
i

(
(A ⊗ 121T

2 )�M
)

(e
[2k]
i1 − e

[2k]
i2 )

in which all matrices are organized in 2×2 blocks of equal entries. This immediately implies
that ybin

i′1
?

= −ybin
i′2

?
for all i′. So in particular, the detection threshold 1

2(mi1 + mi2) of
the averaged-mean test (4.6) is zero (as conventionally assumed). In all other settings for
the ni′j ’s, it is very unlikely that ybin

i1
?

= −ybin
i2

?
and the optimal decision threshold must

also be estimated. As a matter of fact, following up on Remark 4, the aforementioned
optimal value ybin? for ybin is not unique and could be shifted by any constant vector.
This extra degree of freedom will be of much relevance in the application Section 4.5, as
commented in the following remark.

Remark 5 (Setting the decision threshold to zero). As per Remark 4, the addition of a
constant term to ybin does not affect the ultimate performance of MTL LS-SVM. Yet, it
affects the value of the limiting means mij of gbin

i (x), so in particular the value of the
limiting optimal threshold 1

2(mi1 + mi2). Specifically, one may shift all entries of ybin in
such a way that 1

2(mi1 + mi2) = 0 and thus recenter the decision threshold to zero. For
ȳ ∈ R this constant shift, this boils down to solving in the variable ȳ the equation

0 =
1

2
(mi1 + mi2) =

1

2
(ybin + ȳe

[k]
i ⊗ 12)TD

1
2

δ[2k]
(I2k −ZeΓ) (e

[2k]
2(i−1)+1 + e

[2k]
2i )

where Ze = I2k −
∑k

i′=1E
[k]
i′i′ ⊗ ci′ and ci′ = 12

[ ni′1
ni′

ni′2
ni′

]
. Similarly, one may instead

impose that mi1 = 0: this will appear to be fundamental to align classifiers in the multi-
class “one-versus-all” extension of the present binary classification scheme (see details in
Section 4.5.2).

Remark 6 (Tuning the hyperparameters). The previous section provided a high-level
interpretation for the impact of the vector parameter γ ∈ Rk and the scalar parameter
λ ∈ R, the effect of which is to respectively regularize LS-SVM learning and to set the
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throttle between individual versus collective learning. These hyperparameters intervene
deeply inside our theoretical formulas (so far in Theorem 8 but later in Theorem 9)
and are not amenable to simple optimization. Yet, as will be confirmed by experiments
(see in particular Figure 4.3), the proposed optimization of the input scores ybin partly
compensates for suboptimal choices in γ, λ. As such, an “informed guess”, based on our
previous discussion of the effects of these parameters, is in general sufficient for highly
performing MTL LS-SVM. A further gradient descent operation (or local grid search) on
the theoretical performance approximation, initialized at the informed guess values, can
further improve the overall learning performance.

4.3.3 Practical implementation of improved MTL LS-SVM

As already pointed out, a fundamental aspect of Theorem 8 lies in the performances
of the large dimensional (n, p � 1) classification problem at hand boiling down to
2k-dimensional statistics. More importantly from a practical perspective, these 2k-
dimensional “sufficient statistics” are easily amenable to fast and efficient estimation: it
indeed only requires a few training data samples to estimate all quantities involved in
the theorem (which, as a corollary, lets one envision the possibility of efficient transfer
learning methods based on very scarce data samples).

Remark 7 (On the estimation of mij and σi). All quantities defined in Theorem 8

are a priori known, apart from the quantities M ≡
∑
i,i′

∆µTi ∆µi′
(
E

[k]
ii′ ⊗ cicTi′

)
and most

specifically the inner products ∆µTi ∆µi′ . For these, define, for j = 1, 2, two sets Sij ,S
′
ij ⊂

{1, . . . , nij} and the corresponding indicator vectors jij , j′ij ∈ Rni with [jij ]a = δa∈Sij and
[j′ij ]a = δa∈S′ij . We further impose that S′ij ∩ Sij = ∅. Then, for i 6= i′, the following

estimates hold:

∆µTi ∆µi′ −
(

ji1
|Si1|

− ji2
|Si2|

)T

X̊T
i X̊i′

(
ji′1
|Si′1|

− ji′2
|Si′2|

)
= O

(
(p min

l∈{1,2}
{|Sil|, |Si′l|})−

1
2

)
∆µTi ∆µi −

(
ji1
|Si1|

− ji2
|Si2|

)T

X̊T
i X̊i

(
j′i1
|S′i1|

− j′i2
|S′i2|

)
= O

(
(p min

l∈{1,2}
{|Sil|, |S′il|})−

1
2

)
.

Observe in particular that a single sample (two when i = i′) per task and per class
(|Sil| = 1) is sufficient to obtain a consistent estimate for all quantities, so long that p
is large. In a transfer learning setting where some tasks may contain few labeled data,
it is thus still possible to optimize the MTL algorithm. Of course, when more data are
available, under our assumption that p ∼ n, taking all samples in the averaging, the
convergence speed is of order O(1/

√
np) = O(1/n), which is a quadratic increase in the

speed of the usual central-limit theorem.
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Estimating mij and σi not only allows one to anticipate theoretical performances
but also enables the actual estimation of the decision threshold 1

2(mi1 + mi2) of the test
(4.6) and, as shown previously, opens the possibility to largely optimize MTL LS-SVM
through an (asymptotically) optimal choice of the training scores ybin.

The series of theoretical and practical results of this section may be synthetized under
the form of Algorithm 2.

Algorithm 2 Proposed binary Multi-Task Learning algorithm.

Input: Training samples X = [X1, . . . , Xk] with Xi′ = [X
(1)
i′ , X

(2)
i′ ] and test data x.

Output: Estimated class ĵ ∈ {1, 2} of x for target Task i.
Center and normalize data per task: for all i′ ∈ {1, . . . , k},

• X̊i′ ← Xi′

(
Ini′ −

1
ni′

1ni′1
T
ni′

)
• X̊i′ ← X̊i′/

1
ni′p

tr(X̊i′X̊
T
i′ )

Estimate: Matrix M from Remark 7 and δ[k] by solving (4.3).
Create scores ybin = ybin? according to (4.8).
Compute the threshold ζi from (4.6), with mij defined in Theorem 8 for ybin = ybin?.

(Optional) Estimate the theoretical classification error εi1 = εi1(λ, γ) from (4.7) and
minimize over (λ, γ).1

Compute classification score gi(x) according to (4.2).

Output: ĵ such that gi(x)
ĵ=1

≷
ĵ=2

ζi.

4.3.4 Empirical evidence

This section shortly illustrates the ideas and intuitions developed so far (such as the
relevance of an optimal choice of the data labels and decision threshold) through the
performances of Algorithm 2 on a transfer learning benchmark application. Sections 4.5–
4.6 will cover a much larger spectrum of applications and experiments, under the most
general data setting discussed in the subsequent sections.

For optimal comparison, we consider here the standard Office+Caltech256 real image
classification benchmark (Saenko et al., 2010; Griffin et al., 2007), consisting of four
tasks and m = 10 categories shared by all tasks. The dataset X consists here of the
VGG features of size p = 4096 extracted from these images. We place ourselves under
a k = 2 transfer learning setting where Task 1 is the source task and Task 2 is the
target task (the performance of which we aim to optimize), taken from two of the four

1As per Remark 6, this operation involves reevaluating δ[k] and thus y?, and thus m for each (λ, γ).
It can be performed either on a static grid or by gradient descent until a local minimum is reached.
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tasks of the dataset (Caltech, Webcam, Amason, dslr). For testing, the samples of the
target task are randomly selected from the test dataset of Office+Caltech256 and the
classification accuracy is averaged over 20 trials. Table 4.1 reports the accuracy for all
possible pairs (4× 3 = 12 of them) of source and transfer tasks, obtained by Algorithm 2
(Ours) versus the non-optimized LS-SVM of (Xu et al., 2013) (LS-SVM) and versus
other state-of-the-art transfer learning algorithms: the max-margin domain transform
of (Hoffman et al., 2013) (MMDT) which seeks a linear transform to match the source
data to the target data and then applies an SVM on the resulting target domain; the
cross-domain landmark selection (CDLS) of (Hubert Tsai et al., 2016), which learns a
feature subspace which matches the cross-domain data distribution and eliminates the
domain differences; and the invariant latent space (ILS) of (Herath et al., 2017), which,
similar to MMDT, learns an invariant latent space in which the discrepancy between
source and target is minimized. As already pointed out in introduction, since we aim to
propose an improved classification algorithm independent of the feature representation,
it is fair to compare it to methods which use the same data features. The algorithms
compared in the table all systematically use VGG features. It would be unfair to compare
these against ”end to end” MTL learning methods including a (explicit or implicit) step
of feature learning like recent deep neural networks methods(Zhuang et al., 2020; Krishna
& Kalluri, 2019).

Since m = 10 here, Algorithm 2 cannot rigorously be used as it stands. We apply
instead a naive “one-versus-all” extension consisting in running in parallel m = 10 times
Algorithm 2 by considering, for each class Cj of Task i, 1 ≤ j ≤ m, a binary setting
where the fictitious “Class C̃1” coincides with Cj and the second fictitious “Class C̃2” is
the union of all Cj′ for j′ 6= j. Following up on Remark 5, each classifier ` ∈ {1, . . . ,m}
can be set in such a way that E[gbin

i (x; `)] = 0 when x ∈ C`. For a new datum x, of all
m classifiers gbin

i (x; 1), . . . , gbin
i (x;m), the one reaching the greatest score is the selected

allocation class for x.
Table 4.1 demonstrates that our proposed improved MTL LS-SVM, despite its

simplicity and unlike the competing methods used for comparison, has stable performances
and is extremely competitive. It either outperforms all other methods or is second-to-
best. But, most importantly, the method comes along with performance predictions and
guarantees, which none of the competing works are able to provide.2

These preliminary results are already very conclusive and reveal the strength of our
proposed methodology. Yet, the assumptions in place so far are restricted to random
concentrated data with identity covariance and to a binary classification setting (which,
as already observed, needs be adapted to account for more than two classes per task). The
next sections elaborate on the more generic setting of m ≥ 2 classes per task with more
realistic data models. The theoretical results no longer reduce to compact expressions as

2In the present context of the naive “one-versus-all”, this claim should be taken with care: the
performance can indeed be predicted provided the binary class model N(µi1, Ip) versus N(µi2, Ip)
correctly matches the actual data distribution; this is likely not the case here as the collected fictitious
“C̃2” is rather a mixture of Gaussian rather than a unique Gaussian. In Section 4.5.2, a more elaborate,
and theoretically better supported, version of the one-versus-all approach will be discussed.
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Table 4.1: Classification accuracy over Office+Caltech256 database. c(Caltech),
w(Webcam), a(Amazon), d(dslr), for different “Source to target” task pairs (S → T )
based on VGG features. Best score in boldface, second-to-best in italic.

S/T c→
w

w→
c

c→
a

a→
c

w→
a

a→
d

d→
a

w→
d

c→
d

d→
c

a→
w

d→
w

Mean
score

LS-SVM 96.69 89.90 92.90 90.00 93.80 78.70 93.50 95.00 85.00 90.20 94.70 100 91.70
MMDT 93.90 87.05 90.83 84.40 94.17 86.25 94.58 97.50 86.25 87.23 92.05 97.35 90.96
ILS 77.89 73.55 86.85 76.22 86.22 71.34 74.53 82.80 68.15 63.49 78.98 92.88 77.74
CDLS 97.60 88.30 93.54 88.30 93.54 92.50 93.54 93.75 93.75 88.30 97.35 96.70 93.10

Ours 98.68 89.90 94.40 90.60 94.40 93.80 94.20 100 92.50 89.90 98.70 99.30 94.70

in the previous sections but are easily understood having already delineated the main
take-away messages and ideas.

4.4 The General Framework

The results from the previous section are extended here to the more realistic setting
where the data arise from a mixture of m ≥ 2 concentrated random vectors with generic
covariance Σij . New insights, and most importantly, more general and application-driven
algorithms will be introduced. In addition, the results are presented here with a sketched
development of their main technical arguments, the full proofs being deferred to the
appendix.

4.4.1 Main ideas

Taking for the moment for granted the Gaussian limit for gi(x) ∈ Rm as p, n → ∞
(for 1 ≤ i ≤ k), the main technical task to obtain our main result (Theorem 9, which
generalizes the already introduced Theorem 8) is to evaluate the large dimensional
behavior mij and σij of the statistical mean E[gi(x)] = mij + o(1) and covariance matrix
Cov[gi(x)] = σij + o(1) of the classification score gi(x) in (4.2) for data vectors x in class
Cj (i.e., such that E[x] = µij and Cov[x] = Σij), respectively given from (4.2) by:

mij = E

[
1

kp
(Y − Pb)TZTA

1
2 Q̃A

1
2

(
e

[k]
i ⊗ µij

)
+ bi

]
(4.10)

σij = E

[
1

(kp)2
(Y − Pb)TZTA

1
2 Q̃A

1
2SijA

1
2 Q̃A

1
2Z(Y − Pb)

]
(4.11)

with Sij = e
[k]
i e

[k]
i

T
⊗ Σij and Q̃ =

(
A

1
2ZZTA

1
2

kp + Ikp

)−1

.

Our technical approach to evaluate these terms, in the large dimensional regime of
Assumption 3 and for data distributed as per Assumption 2, consists in determining
deterministic equivalents for the matrices Q̃, Q̃A

1
2Z, ZTA

1
2 Q̃A

1
2SijA

1
2 Q̃A

1
2Z which are

at the core of the formulation of mij and σij .
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Lemma 5, deferred to Section 6.3.2 of the appendix (as the result in itself does not bring
any deep insight worth discussing here), provides the necessary deterministic equivalents
for these matrices. It is interesting to point out though that, from a technical standpoint,
the block structure followed by the core data matrix Z introduced in Proposition 5
makes the large dimensional random matrix analysis more challenging and the result
less straightforward than in similar previous works (Mai & Liao, 2019; Liao & Couillet,
2019) and in Section 2.3 for the ridge regression problem. Even in the simplest setting

where the x
(j)
il would be vectors of i.i.d. N(0, 1) entries, the matrix Z is not a matrix of

i.i.d. entries (due to precisely located blocks of zeros) and the singular values of Z do
not asymptotically follow the popular Marc̆enko-Pastur distribution, as was the case in
Section 2.3.

The main information to be extracted from Lemma 5 (again, see its complete form in
the appendix) is the central role played by the deterministic matrices

M =
(
e

[k]
1 ⊗ [µ11, . . . , µ1m], . . . , e

[k]
k ⊗ [µk1, . . . , µkm]

)
Cij = A

1
2

(
e

[k]
i e

[k]
i

T
⊗ (Σij + µijµ

T
ij)

)
A

1
2

which generalize the matrices M and A discussed at length in Section 4.3 when Σij = Ip.
While gaining in genericity, unlike M, the matrices M and Cij preserve their large
dimensions: this is the main price paid by the generalization to Σij 6= Ip. Yet, the central
small dimensional matrix Γ defined in (4.5) remains small and now becomes

Γ =
(
Imk + MT ¯̃Q0M

)−1

¯̃Q0 =

 k∑
i=1

m∑
j=1

(Dγ + λ1k1k)
1
2 e

[k]
i e

[k]
i

T
(Dγ + λ1k1k)

1
2 ⊗ δ

[mk]
ij Σij + Ikp

−1

M = A
1
2MD

1
2

δ[mk]

and the mk scalars δ
[mk]
ij are the unique positive solutions of the fixed point equations

δ
[mk]
ij =

cij

c0

(
1 + 1

kptr(Cij
¯̃Q)
)

¯̃Q =

 k∑
i=1

m∑
j=1

δ
[mk]
ij Cij + Ikp

−1

.

Here, ¯̃Q is a deterministic equivalent of Q̃. Finally, the matrix K appearing in the
variance term of Theorem 8 now becomes

K = c0T̄ (Dc − c0T)−1
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T̄ij,i′j′ =
δ

[mk]
ij δ

[mk]
i′j′

kp
tr
(
Ci′j′

¯̃QA
1
2SijA

1
2

¯̃Q
)

Tij,i′j′ =
δ

[mk]
ij δ

[mk]
i′j′

kp
tr(Cij

¯̃QCi′j′
¯̃Q)

where T̄ij,i′j′ is the element at row m(i − 1) + j and column m(i′ − 1) + j′ of T̄ (and
similarly for T) and κij,. ∈ Rmk represents the m(i− 1) + j row of matrix κ ∈ Rmk×mk.

With these technical elements at hand, we are in position to enunciate the main result
of the chapter.

4.4.2 Classification score asymptotics

Theorem 9. Under Assumptions 2 and 3, for a test data x with E[x] = µij and
Cov[x] = Σij, as p, n→∞,

gi(x)−Gij → 0, Gij ∼N(mij ,σij)

in law where, letting m = [m11, . . . ,mkm]T ∈ Rkm×m and the normalized forms Y ≡
D

1
2

δ[mk]
Y, Y̊ = D

1
2

δ[mk]
Y̊, m = D

1
2

δ[mk]
m,

m = Y − ΓY̊ ∈ Rm

σij = Y̊
T

ΓVijΓY̊ ∈ Rm×m

with

Vij = Dκij,. + MT ¯̃Q0Vij
¯̃Q0M

Vij = A
1
2SijA

1
2 +

k∑
i′=1

m∑
j′=1

δ
[mk]
i′j′ κij,i′j′A

1
2Si′j′A

1
2

κij,i′j′ =
Kij,i′j′

δ
[mk]
ij

.

Proof. See Section 6.3.4 of the appendix.

In the particular case of Σij = Ip and m = 2, Theorem 9 reduces to Theorem 8 (see

details in Section 6.3.4 of the appendix) by remarking that MT ¯̃Q0M =
(
A ⊗ 1k1T

k

)
�M

and MT ¯̃Q0Vij
¯̃Q0M =

(
AD

κi+e
[k]
i

A ⊗ 1k1T
k

)
�M which, as already pointed out, have the

advantage to be defined as the product of exclusively small dimensional matrices. Still,
although more technical, Theorem 9 follows the same structure as Theorem 8.

Before concretely applying the result of Theorem 9 to practical learning problems
(multi-task, transfer learning, hypothesis testing), a few comments and immediate corol-
laries are in order.
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Remark 8 (Optimization of ybin for m = 2 and generic Σij). As suggested in Section 4.3,
for binary classification (m = 2), it is particularly convenient to recast the score vectors

y
(j)
il ∈ Rm into scalar scores y

bin(j)
il ∈ R (this being irrespective of the nature of Σij).

Inspired by Section 4.3, one can trivially extend Theorem 9 to this binary setting. In
this case, gi(x) ∈ Rm is now turned into a scalar gbin

i (x) ∈ R well approximated by

N(mij ,σij) where now mij and σij are scalar, obtained by simply replacing y
(j)
il ∈ Rm

by y
bin(j)
il ∈ R in their respective expressions.
With these notations, setting the decision threshold of gbin

i (x) to ζ ∈ R and assuming
equal prior probability for the genuine class of x, the classification error rate for a target
task i is

E =
1

2
Q

(
ζ −mi1√

σi1

)
+

1

2
Q

(
ζ −mi2√

σi2

)
.

As in Section 4.3, if Σi1 = Σi2, then σi1 = σi2 ≡ σi and the decision threshold ζ
minimizing the classification error is

ζ? =
mi1 + mi2

2

from which the optimal vector ybin for Task i is computed as

ybin? = arg max
ybin∈R2k

(mi1 −mi2)2

σi

= D
− 1

2

δ[2k]
Γ−1V−1

ij MT ¯̃Q0MD
− 1

2

δ[2k]
(e

[2k]
i1 − e

[2k]
i2 ). (4.12)

It is important to recall here that, while ybin? expresses here solely as a function of terms
involving the index i, all other statistics of the tasks i′ 6= i are in fact “embedded” inside
these terms and are thus, of course, accounted for in the optimization.

When σi1 6= σi2 (which is the case in general), one may minimize E by resorting to
numerical optimization techniques. We suggest to use a gradient descent method initialized
to the expression obtained in (4.12). So long that Σi1 and Σi2 are not drastically different,
this approach shows good performances (see our results in Section 4.6).

This said, the specific setting of binary classification may in practice be one of
hypotheses testing. Under this scenario, one may not demand that the average error E
be minimized (i.e., that data from either class is equally well identified) but rather that
the probability of misclassification of a given class (say, a Type-I error) be bounded to
some η > 0 while minimizing the error rate for the other class (Type-II error). In this
context, if, say, one fixes Q( ζ−mi1√

σi1
) ≡ η, then the classification error for the second class

Q( ζ−mi2√
σi2

) is minimized by now choosing

ybin? = arg max
ybin∈R2k

(
√
σi1Q

−1(η) + mi1 −mi2)2

σi2

where Q−1 is the inverse function of the Q function. This again can be solved using
numerical convex optimization initialized at the value of (4.12). More details on this
hypothesis testing setting, along with concrete experiments, are developed in Section 4.6.
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Remark 9 (Estimation of mij and σij). In order to anticipate the performances and
best set the decision thresholds for classification, one needs to access all quantities arising
in Theorem 9. Yet, as opposed to Remark 7, where the low dimensional quantities of
interest (mainly the inner products between statistical means) are easily estimated, the
low dimensional quantities involved in Theorem 9 are less convenient to estimate, this
being due to the presence of the a priori unknown covariance matrices Σij. We propose
here two strategies:

1. either make the assumption that Σij ' αijIp with αij estimated by 1
pnij

trX̊
(j)
i X̊

(j)T
i ;

then normalize the data as X̊
(j)
i ← X̊

(j)
i / 1

pnij
trX̊

(j)
i X̊

(j)T
i in the spirit of Algorithm 2.

This places the experimenter under an isotropic data setting for all classes and
tasks, from which the considerations of Section 4.3 (possibly generalized to m > 2)
apply.

2. either estimate Σij by means of the sample covariance matrix 1
nij
X̊

(j)
i X̊

(j)T
i ; this

procedure is known to be biased, particularly so if nij is not large compared to p;
yet, as demonstrated in our experiments in Section 4.6, this only marginally (if not
at all) alters the performance of our proposed algorithms.3

The choice of strategy mainly depends on the belief from the experimenter that the genuine
covariance matrices are “well-conditioned” (i.e., their eigenvalues do not spread much)
in which case Option 1 would be favored or “ill-conditioned” (typically when the space
spanned by the data is much lower than p) in which case Option 2 would be more
appropriate.

Remark 10 (On universality). As pointed out in the introduction, the input data
X follows a very generic concentrated random vector assumption (Assumption 2).
This choice provides both a technical, but most importantly, a fundamentally practical,
advantage:

1. from a technical standpoint, the concentration of measure phenomenon provides
efficient and fast mathematical tools (Louart & Couillet, 2018; Ledoux, 2001) to
analyze the random quantities appearing in the classification test scores gi(x) of
MTL LS-SVM (which, in essence, is a mere functional Rp×n → R of the random
input data X). More specifically, alternative random matrix tools based on Gaussian
(Pastur & Shcherbina, 2011) or independent entries assumptions (Bai & Silverstein,
2009) of X would both be less general (at least for our machine learning purpose)
and more computationally intense;

2. on the practical side, as underlined in Section 4.2.2, the concentrated random vector
assumption better models realistic datasets by imposing very little structure on the

3It must be pointed out that similar random matrix-based studies propose consistent estimates for low
dimensional quantities such as those met in Theorem 9; however, these would assume cumbersome forms
which, we believe, go against our present request for simple, intuitive but well parameterized algorithms
for multi-task and transfer learning.
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data. Exactly, it only constrains all Lipschitz functionals Rp×n → R of X (i.e.,
its typical observations) to satisfy a concentration inequality; while this may seem
demanding, the family of concentrated random vectors in fact contains all Lipschitz
generative models (for instance neural networks) fed by Gaussian inputs (such as
GANs (Goodfellow et al., 2014)), as well as all further Lipschitz transformations
of these vectors (for instance, features extracted by pretrained neural networks). As
such, provided that the assumption of a common statistical mean and covariance
per class and per task is reasonable, Theorem 9 ensures for instance that the
performance of MTL LS-SVM applied to classes of the popular VGG or ResNet
representations of GAN images is predictable. From this remark, it naturally comes
that the proposed method is universal in the sense of its being robust to a broad range
of very realistic random data, and it is not daring to claim that it is equally valid
on genuinely real data. This is confirmed by our numerical results of Section 4.6.

With these elements in place, we are in position to apply our findings to a host of
applications in statistical learning and to test the resulting algorithms against state-of-
the-art alternatives.

4.5 Applications

This section provides various applications and optimizations of the proposed MTL
LS-SVM framework based on the findings of the previous sections in the context of
multi-class classification.

Having access to the large dimensional behavior of the classification test score in
Theorem 9 (i.e., for m ≥ 2 classes per task) is more fundamental than one may think. It
indeed allows for a fine-tuning of the hyperparameters to be set to extend the usually
considered binary MTL framework of (Evgeniou & Pontil, 2004; Xu et al., 2013) to a
multiclass-per-task MTL.

4.5.1 Multi-class classification preliminary

The literature (Bishop, 2006; Rocha & Goldenstein, 2013) describes broad groups of
approaches for dealing with m > 2 classes. We focus here on the most common methods,
namely one-versus-all, one-versus-one, and one hot encoding. Being so far theoretically
intractable, these methods inherently suffer from sometimes severe limitations; these are
partly tackled by adapting the theoretical results discussed in Section 4.4:

1. one-versus-all: in this method, focusing on Task i, m individual binary classifiers
gbin
i (`) for ` = 1, . . . ,m are trained, each of them separating Class C` from the other
m− 1 classes C`′ , `

′ 6= `. Each test sample is then allocated to the class with the
highest score among the m classifiers. Although quite used in practice, the approach
first suffers a severe data unbalancing effect when using binary (±1) labels as the set
of negative labels in each binary classification is on average m− 1 times larger than
the set of positive labels, and also suffers a centering-scale issue when ultimately
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comparing the outputs of the m decision functions gbin
i (x; `), ` = 1, . . . ,m, whose

average locations and ranges may greatly differ; these issues lead to undesirable
effects, as reported in (Bishop, 2006, section 7.1.3)).

In Section 4.5.2, these problems are simultaneously addressed: specifically, having
access to the theoretical statistics of the classification scores allows us to appro-
priately center and scale the scores. Moreover, each binary classifier is optimized
by appropriately choosing the class labels (no longer binary) so to minimize the
resulting classification error (see Figure 4.1 for an illustration of the improvement
induced by the proposed approach).

2. one-versus-one: here, 1
2m(m− 1) binary classifiers are trained (one for each pair

j, j′ of classes, solving a binary classification). For each test sample, each binary
classifier decides on – or “votes” for – the more relevant class. The test sample is
then attributed to the class having the majority of votes. Although the number of
binary classifiers is greater than in the one-versus-all approach, the training process
for each classifier is faster since the training database is much smaller for each
binary classifier. Besides, the method is more robust to class imbalances (since only
pairwise comparisons are made) but suffers from an undecidability limitation in
the case of equal numbers of majority votes for two or more classes.

In Section 4.5.3, each binary classifier will be optimized according to Algorithm 2
by choosing appropriate labels and appropriate decision thresholds, thereby largely
improving over the basal classifier performance.

3. one-hot encoding approach, also known as one-per-class coding: in this ap-
proach, each class is encoded using the m-dimensional canonical vector of the class
(the code vector for class j has a 1 at position j and 0’s elsewhere). When testing
an unknown sample x, the index of the encoding output vector gi(x) ∈ Rm with
maximum value is selected as the class of x.

Exploiting the asymptotic performance of this approach from Theorem 9 allows
us to derive a different label (or score) encoding for each class which theoretically
minimizes the classification error. This is developed in detail in Section 4.5.4.

In the remainder of the section, each of the three classifiers is studied, optimized
and their asymptotic performances are analyzed according to our previous results except
for one-versus-one classification which involves difficult combinatorial aspects. While
this does not provide a definite and general answer as to which of the three classifiers
is best, it however provides an accurate assessment of their asymptotic performances;
most importantly, these performances may be evaluated before running the classifier,
thereby helping practitioners to anticipate and optimize the method best suited for the
application at hand, without resorting to any cross-validation procedure.

Let us finally insist that, for the two multi-class extensions based on binary classifiers
(one-versus-one, one-versus-all), each binary classifier will be optimized independently

following Remark 8: i.e., by recasting the score vectors y
(j)
il ∈ Rm into scalar scores
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y
bin(j)
il ∈ R. As such, from now on, for each binary classifier `, gi(x; `) ∈ Rm will be

systematically turned into a scalar gbin
i (x, `) ∈ R well approximated by N(mij ,σij) where

now mij and σij are scalar, obtained by simply replacing y
(j)
il (`) ∈ Rm by y

bin(j)
il (`) ∈ R

in their respective expressions.

4.5.2 One-versus-all multi-class classification

For every Task i, the one-versus-all approach solves m binary MTL LS-SVM algorithms
with target class C`, for each ` ∈ {1, . . . ,m}, versus all other classes C`′ , `

′ 6= `. Calling
gbin
i (x; `) the output of the classifier ` for a new datum x, the class allocation decision

is traditionally based on the largest among all scores gbin
i (x; 1), . . . , gbin

i (x;m). This
approach generalizes the naive, yet simpler, method proposed in Algorithm 2 which,
despite its good performances (recall Table 4.1), is fundamentally “incorrect” in its
assuming that, for each `, all classes C`′ (`′ 6= `) have the same statistics.

However, this presumes that the distribution of the scores gbin
i (x; 1) when x ∈ C1,

gbin
i (x; 2) when x ∈ C2, etc., have more or less the same mean and variance. This is not

the case in general, as depicted in the first column of Figure 4.1, where data from class
C1 are more likely to be allocated to class C3 (compare the red curves).

By providing an accurate estimate of the distribution of the scores gbin
i (x; `) for all

` and all genuine classes of x, Theorem 9 allows us to predict the various positions of
the Gaussian curves in Figure 4.1. In particular, exploiting the theorem along with
Remark 5, it is possible, for binary classifier ` to shift the corresponding input scores
ybin(`) by a constant term ȳ(`) ∈ R in such a way that Ex∈C` [g

bin
i (x; `)] 'mi`(`) = 0

and Varx∈C` [g
bin
i (x; `)] ' Ci`(`) = 1. This operation prevents the centering and scale

problems depicted in the first column of Figure 4.1, the result being visible in the second
column of Figure 4.1.

This first improvement step simplifies the algorithm which still boils down to deter-
mining the largest gbin

i (x; `), ` ∈ {1, . . . ,m}, output but now limiting the risks induced
by the inherent centering and scale issues previously discussed.

This being said, our theoretical analysis further allows to adapt the input scores ybin(`)
in such a way to optimize the expected output. Ideally, assuming x genuinely belongs to
class `, one may aim at increasing the distance between the output score gbin

i (x; `) and
the other output scores gbin

i (x; `′) for `′ 6= `. This however demands to simultaneously
adapt all input scores ybin(1), . . . ,ybin(m). Instead, we resort to maximizing the distance
between the output score gbin

i (x; `) for x ∈ C` and the scores gbin
i (x; `) for x 6∈ C`. By

“mechanically” pushing away all wrong decisions, this ensures that, when x ∈ C`, g
bin
i (x; `)

is greater than gbin
i (x; `′) for `′ 6= `. This is visually seen in the third column of Figure 4.1,

where the distances between the rightmost Gaussians and the other two is increased
when compared to the second column, and we retrieve the desired behavior.

Specifically, our proposed score optimization consists in solving, for each i ∈ {1, . . . , k}
and each ` ∈ {1, . . . ,m} the optimization problems:

ybin?(`) = arg min
ybin(`)∈Rkm

max
j 6=`

Q

(
mi`(`)−mij(`)√

σtj

)
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= arg min
ybin(`)∈Rkm

max
j 6=`

Q

ybin(`)T
(
Imk −D

− 1
2

δ[mk]
ΓD

1
2

δ[mk]

)
(e

[mk]
m(i−1)+` − e

[mk]
m(i−1)+j)√

ybin(`)TD
1
2

δ[mk]
ΓVijΓD

1
2

δ[mk]
ybin(`)


(4.13)

with Q the Gaussian q-function.
Being a non-convex and non-differentiable (due to the max) optimization, Equa-

tion 4.13 cannot be solved straightforwardly. An approximated solution consists in relaxing
the max operator max(x1, . . . , xn) into the differentiable operator 1

γn log(
∑n

j=1 exp(γxj))
for some γ > 0, and use a standard gradient descent optimization scheme here initialized
at ybin(`) ∈ Rmk filled with 1’s at every m(i′ − 1) + `, for i′ ∈ {1, . . . ,m}, and with −1’s
everywhere else.

In effect, the optimized vector ybin?(`) is evaluated first before the constant shift
scalar ȳ (ensuring that Ex∈C` [g

bin
i (x; `)] is close to zero) is added to ybin?(`). This order

of treatment is mandatory as Ex∈C` [g
bin
i (x; `)] depends explicitly on the value of the

input score vector ybin. This global procedure is described in Algorithm 3 below.

Algorithm 3 Proposed one-versus-all multi-task learning algorithm.

Input: Training samples X = [X1, . . . , Xk] with Xi = [X
(1)
i , . . . , X

(m)
i ], X

(j)
i ∈ Rp×nij

and test data x.
Output: Estimated class ˆ̀∈ {1, . . . ,m} of x for Task i.
for ` = 1 to m do

Center and normalize data per task: for all i′ ∈ {1, . . . , k},

• X̊i′ ← Xi′

(
Ini′ −

1
ni′

1ni′1
T
ni′

)
• X̊i′ ← X̊i′/

1
ni′p

tr(X̊i′X̊
T
i′ ).

Estimate: MT ¯̃Q0M and Vi` according to Remark 9.
Create scores ybin?(`) by numerically solving (4.13) (see discussion following (4.13)).

Shift scores ybin?(`) according to Remark 5.
Estimate σi`(`) from Theorem 9 and Remark 9.
Compute classification scores gbin

i (x; `) according to (4.2).
end for

Output: ˆ̀= arg max`∈{1,...,m}

{
gbini (x;`)√

σi`(`)

}
.

As an immediate corollary of Theorem 9, for large dimensional data, the classification
accuracy of Algorithm 3 can be precisely estimated, as follows.

Proposition 6. Under the notations of Theorem 9, the probability of correct classification
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P
(j)
i (x) for Task i of a test data x ∈ Cj is given by

P
(j)
i (x) =

∫
· · ·
∫ ∞

0︸ ︷︷ ︸
m−1

1√
(2π)m−1|σ(j)|

exp

(
−1

2
(x− µ(j))Tσ(j)−1(x− µ(j))

)
dx+ o(1)

where µ(j) = Y−j(Imk−D
− 1

2
δ ΓD

1
2
δ )e

[mk]
m(i−1)+j ∈ Rm−1 and σ(j) = Y−jD

1
2
δ ΓVijΓD

1
2
δY

T
−j ∈

R(m−1)×(m−1), with Y−j = {ybin(j)T − ybin(j′)T}j′ 6=j ∈ R(m−1)×km.

Figure 4.1, succinctly introduced above, illustrates the successive improvements of the
proposed algorithms. Specifically, it shows the gains of the centering-scaling operation
on the input and output scores (2nd column) and of the optimization of the input scores
(3rd column) when compared with the standard approach (1st column). Here synthetic
data arising from a Gaussian mixture model are considered in a two-task (k = 2) and

three-class (m = 3) setting in which x
(j)
1l ∼ N(µ1j , Ip) and x

(j)
2l ∼ N(µ2j , Ip), where

µ2j = βµ1j +
√

1− β2µ⊥1j , with µ1j = 2e
[p]
j and µ⊥1j = e

[p]
p−j . Here p = 200, β = 0.2,

[n11, n12, n13, n21, n22, n23] = [393, 309, 394, 20, 180, 480] and the optimization framework
used for input score (label) ybin optimization is a standard interior point method (Boyd
& Vandenberghe, 2004).4

4.5.3 One-versus-one multi-class classification

For a given Task i, the one-versus-one multi-class method trains 1
2m(m − 1) binary

classifiers for each pair j 6= j′ ∈ {1, . . . ,m}. As intensively discussed in the previous
section, as well as in Section 4.3 and Remark 8, each resulting binary classifier gbin

i (x; j, j′)
can be optimized by choosing optimal input labels ybin(j, j′). This leads to Algorithm 4
described below.

In order to derive the asymptotic correct classification of class ` based on Algorithm 4,
it is necessary to enumerate all scenarios which lead to the prediction of the class `.
Although this could be done in theory, the combinatorics, already for three classes, are
cumbersome and not worth developing here. For the specific one-versus-one setting, we
therefore do not provide a theoretical performance analysis.

4.5.4 One-hot encoding approach

For a given Task i in a one-hot encoding approach, using the canonical vector encoding

for each class (i.e., Yij = e
[m]
j encodes all training input data x

(j)
il of class Cj), the class

allocated to an unknown test sample x is the index of the output vector gi(x) ∈ Rm with
maximum value.

We disrupt here from this approach by explicitly not imposing a one-hot encoding
for Yij . Instead we consider a generic encoding Y ∈ Rkm×m, which will be optimized in
such a way to maximize the classification accuracy.

4Here we use the fmincon function implemented in Matlab.
5The mode of a set of indices is defined as the most frequent value. When multiple indices occur

equally frequently, the smallest of those indices is considered by convention.
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Figure 4.1: Test score distribution in a 2-task and 3 classes-per-task setting, using
a one-versus-all multi-class classification. Every graph in row ` depicts the limiting
distributions of gi(x; `) for x in different classes. Column 1 (Classical) is the standard
implementation of the one-versus-all approach. Column 2 (Scaled scores) is the output
for centered and scaled gi(x; `) for x ∈ C`. Column 3 (Optimized labels) is the same
as Column 2 but with optimized input scores (labels) ybin?(`). Under the “classical”
approach, data from C1 (red curves) will often be misclassified as C2. With “optimized
labels”, the discrimination of scores for x in either class C2 or C3 is improved (blue curve
in 2nd row further away from blue curve in 1st row; and similarly for green curve in 3rd
versus 1st row).
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Algorithm 4 Proposed one-versus-one multi-task learning algorithm.

Input: Training samples X = [X1, . . . , Xk] with Xi = [X
(1)
i , . . . , X

(m)
i ], X

(j)
i ∈ Rp×nij

and test data x.
Output: Estimated class ˆ̀∈ {1, . . . ,m} of x for Task i.
Center and normalize data per task: for all i′ ∈ {1, . . . , k},

• X̊i′ ← Xi′

(
Ini′ −

1
ni′

1ni′1
T
ni′

)
• X̊i′ ← X̊i′/

1
ni′p

tr(X̊i′X̊
T
i′ ).

for j = 1 to m do
for j′ ∈ {1, . . . ,m} \ {j′} do

Estimate: MT ¯̃Q0M and Vij according to Remark 9.
Create optimal scores ybin?(j′, j) according to Remark 8.
Compute classification scores according to (4.2) and deduce the predicted class
c(j, j′) = j or c(j, j′) = j′ based on the decision rule in (4.6).

end for
end for
Output: ĵ = mode

j′,j∈{1,...,m}
{c(j, j′)}.5

Proposition 7. Under a “one-hot encoding” scheme with generic Y, the probability of

correct classification P
(j)
i (x) for Task i of a test data x ∈ Cj is given by

P
(j)
i (x) =

∫
· · ·
∫ ∞

0︸ ︷︷ ︸
m−1

1√
(2π)m−1|σ(j)|

exp

(
−1

2
(x− µ(j))Tσ(j)−1(x− µ(j))

)
dx,

where µ(j) = EjY
T

(
Imk −D

1
2
δ ΓD

1
2
δ

)
e

[km]
(m(i−1)+j) ∈ Rm−1 and σ(j) = EjY

TD
1
2
δ ΓVijΓD

1
2
δYET

j ∈

R(m−1)×(m−1) with Ej = {(e(m)
j − e(m)

j′ )T}j 6=j′ ∈ R(m−1)×m.

A natural objective is to set Y so to maximize the average correct classification

accuracy 1
m

∑m
j=1 P

(j)
i (x) (under assumed uniform prior on x). This form again is not

convex in Y but may be approximated by gradient descent starting from the one-hot
encoding solution, as described in Algorithm 5.

4.6 Experiments

This section has a double objective. The first part (Section 4.6.1) devises numerical
experiments on binary classification settings to corroborate the theoretical analyses and
conclusions drawn in this previous section. Here, the target is threefold: (i) empirically
illustrate the effects of the bias in the threshold decision and in the label optimization
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Algorithm 5 Proposed “one-hot encoding” multi-task learning algorithm.

Input: Training samples X = [X1, . . . , Xk] with Xi = [X
(1)
i , . . . , X

(m)
i ], Xj

i ∈ Rp×nij

and test data x.
Output: Estimated class ˆ̀∈ {1, . . . ,m} of x for target Task i.
Center and normalize data per task: for all i′ ∈ {1, . . . , k},

• X̊i′ ← Xi′

(
Ini′ −

1
ni′

1ni′1
T
ni′

)
• X̊i′ ← X̊i′/

1
ni′p

tr(X̊i′X̊
T
i′ ).

Estimate Matrix MTQ̃0M and Vij according to Remark 9.
Compute the theoretical score µ(j) and covariance σ(j) and derive the asymptotic

classification accuracy Pi(x) = 1
m

m∑
j=1

P
(j)
i (x).

Create optimal scores Y? = arg maxY Pi(x).
Compute classification scores gi(x) according to (4.2).
Output: ˆ̀= arg max`∈{1,...,m} gi(x; `).

scheme discussed in Section 4.3, (ii) discuss the impact of numerous tasks (k > 2) in
the binary class setting, thereby emphasizing the effects of negative transfer and its
correction through input score (label) optimization, and (iii) exemplify the relevance of
our theoretical findings to a specific application to hypothesis testing in a multi-task
setting.

In a second part (Section 4.6.2), experiments on both synthetic and real data for
multi-class classification are realized, which demonstrate, even for real data: (i) the
extreme accuracy of the theoretical performance predictions of Propositions 6–7 against
empirical data and (ii) the large performance gains induced by the various improvements
introduced at length in Section 4.5.

4.6.1 Experiments on binary classification

Effect of input score (label) choice

In the present experiment, the effects of the bias in the decision threshold (in general not
centered on zero) and of the input score (label) optimization are demonstrated on both
synthetic data and real data.

Specifically, MTL LS-SVM is first applied to the following two-task (k = 2) and

two-class (m = 2) setting: for Task 1, x
(j)
1l ∼N((−1)jµ1, Ip) (evenly distributed in both

classes) and for Task 2, x
(j)
2l ∼N((−1)jµ2, Ip) (evenly distributed in both classes), where

µ2 = βµ1 +
√

1− β2µ⊥1 and µ⊥1 is any vector orthogonal to µ1 and β ∈ [0, 1]. This setting
allows us to tune, through β, the similarity between tasks. For four different values of
β, Figure 4.2 depicts the distribution of the binary output scores gbin

i (x) both for the
classical MTL LS-SVM (top displays) and for our proposed random matrix improved
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Figure 4.2: Score distribution for new datum x of Class C1 (red) and Class C2 (blue)
for Task 2 in a 2-task (k = 2) and 2 class-per-task (m = 2) setting of isotropic Gaussian
mixtures for: (top) classical MTL LS-SVM with no optimization and a threshold assumed
at ζ = 0; (bottom) proposed optimized MTL LS-SVM with estimated threshold ζ;
decision thresholds ζ represented in dashed vertical lines; differently related tasks (β = 0
for orthogonal means, β > 0 for positively correlated means and β < 0 for negatively
correlated means), p = 100, [c11, c12, c21, c22] = [0.3, 0.4, 0.1, 0.2], γ = 12, λ = 10.
Histograms drawn from 1 000 test samples of each class. The figure clearly depicts the
deviation from 0 of the decision threshold in unbalanced classes and the deleterious effect
of “negative transfer” when β is small; these problems are well handled by the proposed
optimized scheme.

scheme, with optimized input labels (bottom display).
As a first remark, note that both theoretical prediction and empirical outputs closely

fit for all values of β, thereby corroborating our theoretical findings. In practical terms,
the figure supports (i) the importance to estimate the threshold decision which is non-
trivial (not always close to zero) and (ii) the relevance of an appropriate choice of the
input labels to improve the discrimination performance between both classes, especially
when the two tasks are not quite related. In effect, the entries of ybin? naturally drop
to zero for all unrelated tasks and classes, thereby discarding the undesired use of the
latter; the classical binary input labels instead inappropriately exploit these data and
induce a negative learning effect, sometimes to such an extent to completely switch the
final decision (as here when β = −1).

For experiments on real data, the MNIST dataset (Deng, 2012) is considered. Specif-
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ically, the setting is that of a binary classification for two tasks, mimicking a transfer
learning setting: there, the “target” Task 2 aims to discriminate Class C1 and Class
C2 respectively composed of images of digit 1 and digit 4. The “source” Task 1 is here
used as a support for classification in the target task, and consists of the classification of
other pairs of digits: either (5, 9), (9, 5), (6, 2) or (8, 3) (we recall that the order of the set
of digits (X,Y ) is important for the non-optimized MTL LS-SVM since the source and
target tasks labels are “paired”; thus (5, 9) or (9, 5) digits for the source task will bring
different results). We compare here again the non-optimized MTL LS-SVM with labels
ybin = [−1, 1,−1, 1]T to our proposed optimized scheme (as detailed in Remark 8). For
both methods, the optimal theoretical threshold decision ζ is used (rather than ζ = 0
for the non-optimized setup) in order to emphasize the influence of input score (label)
optimization.

Figure 4.3 depicts the performance for both methods as a function of the hyper-
parameter λ. We recall that, as λ → 0, the multi-task scheme becomes equivalent to
independent single-task classifiers, while as λ → ∞, both source and target tasks are
considered together as one task. Figure 4.3 raises the stability of optimal input labeling
with respect to λ: this is explained by the fact that ybin? is a function of λ and thus
adapts to each value of λ, even if suboptimal. Besides, for appropriate values of λ, the
proposed improved labeling can largely outperform the non-optimized setting, even here
on real data.

Table 4.2 complements the figure by effectively displaying the optimal vectors ybin?

at the optimal value for λ. The table demonstrates the appropriate adjustment of the

labels to the data correlation
∆µT1∆µ2
‖∆µ2‖2 . Specifically, for a negative correlation between

the classes of both tasks, the method naturally “switches” the labels (the input data
scores) by opposing the signs of ybin? in entries 1, 3 (Class C1 in each task) and 2, 4
(Class C2 in each task). For rather orthogonal tasks (here typically (8, 3)), the entries
of ybin? corresponding to the source task (entries 1 and 2) are almost zero, thereby
discarding the source data and avoiding negative transfer. It is also interesting to note
that, for moderately correlated tasks (here for the source digits (5, 9)), despite the fact
that the source task offers ten times more data (n1j = 100, n2j = 10) and is thus deemed
trustworthy for classification, the corresponding entries 1 and 2 in ybin? are much smaller
than the entries 3, 4 corresponding to the target task: the algorithm thus judges the few
target data more relevant to target classification than the many related source tasks.

Analysis of increasing number of tasks

This next experiment illustrates the effect of adding more tasks for the transfer learning
setting on synthetic and MNIST datasets. For synthetic data, Gaussian classes with
mean µij = βµi1 +

√
1− β2µ⊥i1 and various values of β are successively added. For the

MNIST dataset, different classifications of digits are added progressively to help classify
the specific pair of digits (1, 4) . Figure 4.4 depicts the classification error after each
new task addition, both for a classical binary input label choice and for the proposed
optimized input labels. The figure forcefully illustrates that our proposed framework
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Figure 4.3: Classification error of digit pair (1, 4) with different source training pairs for
classical LS-SVM and optimized LS-SVM. n11 = n12 = 100, n21 = n22 = 10 and γ = 12.
A PCA preprocessing is performed on each image to extract their p = 100 principal
components; the accuracy is performed over ntest = 1 135 test samples. The proposed
method shows a low sensitivity to λ.

[Source] (9,5) (5,9) (6,2) (8,3)
∆µT1∆µ2
‖∆µ2‖2 -0.2450 0.2450 -0.1670 -0.0818

ybin? =


ybin

11
?

ybin
12

?

ybin
21

?

ybin
22

?



−0.2808
0.2808
0.6489
−0.6489




0.2808
−0.2808
0.6489
−0.6489



−0.2879
0.2879
0.6459
−0.6459



−0.0400
0.0400
0.7060
−0.7060


Table 4.2: Optimal input label ybin? as a function of the source data pair in the (λ-optimal)
configuration of Figure 4.3.
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Figure 4.4: Classification accuracy for increasing number of tasks. (Left) Syn-
thetic data with task correlations β = 1, .9, .5, .2, .8 in this order, p = 100 and
c = [.07, .11, .10, .10, .06, .08, .09, .12, .10, .11, .03, .03]T; accuracy evaluated out of 10 000
test samples. (Right) MNIST dataset with digits (1, 4) as target task, each added task
being shown in x-axis; 100 training samples are used for each class of the source tasks
and 10 training samples for each class of the target class; HOG features with p = 144 for
each image digit; accuracy evaluated out of ntest = 1 135 test samples. For both setting,
γ = 1k and λ = 10. The optimized scheme avoids negative transfer by systematically
benefiting from additional tasks.

avoids negative transfer, as the classification error of MTL never increases as the number
of tasks grows. This is quite unlike the non-optimized scheme which severely suffers from
negative transfer.

Hypothesis testing

The next experiments, on synthetic data, apply the results of MTL LS-SVM to a
hypothesis test on a target Task t based on training samples both from a source Task s
and the target Task t. For data x in the target task, the test

gbin
t (x)

H1

≷
H0

ζ

is performed, where H0 is the null hypothesis (say, Class 2) and H1 the alternative (say,
Class 1) and ζ = ζ(η) is a decision threshold here selected in such a way to enforce
the false alarm rate constraint P (gt(x) ≥ ζ(η) | x ∈ H0) ≤ η, for a given η ∈ (0, 1).
The objective is then to maximize over the input scores ybin the correct detection rate
P (gbin

t (x) ≥ ζ(η) | x ∈H1): this induces a different value for the optimal scores ybin?

than proposed in (4.12), which can be constructed following Remark 8.
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Figure 4.5: ROC curve for proposed optimized versus standard MTL LS-SVM. Synthetic
data with p = 128, n11 = 384, n12 = 256, n21 = 64, n22 = 40, µ11 = −µ12 = [1, 0, . . . , 0]T,
µ21 = −µ22 = [.87, .5, 0, . . . , 0]T. The accuracy of the theoretical anticipation is remark-
able and allows for a precise setting of the decision threshold ensuring a desired false
alarm rate.

The experimental synthetic data is here a two-task (k = 2) setting in which x1j ∼
N(±µ11, Ip) (i.e., µ12 = −µ11) and x2j ∼N(±µ21, Ip), where µ21 = βµ11 +

√
1− β2µ⊥11,

µ11 is a unit-norm vector and µ⊥11 any unit-norm vector orthogonal to µ11. We take here
β = 0.5, so that both tasks are “slightly” correlated.

Figure 4.5 depicts the algorithm performance through a receiver-operating curve
(ROC) for false alarm rates η on synthetic data. Both theoretical (Th) asymptotics (used
to set the decision threshold ζ) and actual performances (Sim) are displayed, for the
optimal (Opt) choice of ybin (Opt) and for ybin = [−1, 1,−1, 1]T (Non-Opt).

Figure 4.5 confirm, here under the hypothesis testing problem, the large superiority
of our proposed optimized MTL LS-SVM over the standard non-optimized alternative.
Besides, the theoretical classification error prediction is an accurate fit to the actual
empirical performance, even for not so large values of p and the nij ’s, and even for small
error values.6 This remark is here all the more fundamental that, in practice, η can be
set a priori, using Theorem 9 with no need for heavy, unreliable, and data-consuming
cross-validation procedures.

6Since our main result (Theorem 9) is a central limit theorem, it is not expected to be particularly
accurate in the “tails” of the distribution of the output scores gbini (x); as such, the observed high accuracy
for small error values is remarkable.
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4.6.2 Experiments on multi-class classification

We here consider the complete setting of a k ≥ 2, m > 2 multi-class learning scenario,
first on synthetic and then on real image datasets.

Experiments on synthetic dataset

In the synthetic data experiment, the scenario is a two-task (k = 2) setting in which

x
(j)
1l ∼N(µ1j , Ip) and x

(j)
2l ∼N(µ2j , Ip), where µ2j = βµ1j+

√
1− β2µ⊥1j , with µ1j = 2e

[p]
j

and µ⊥1j = e
[p]
p−j , and β varies from 0.1 to 0.8.

Table 4.3 provides the empirical classification accuracy achieved by one-versus-all
(Algorithm 3), one-versus-one (Algorithm 4) and one-hot (Algorithm 5) learning versus
their standard (non-optimized) algorithm equivalent on 10 000 test samples. The table
also reports the theoretical classification accuracies predicted by the empirical estimation
of the quantities involved in Propositions 6–7 (therefore without any cross-validation) for
the one-versus-all and one-hot methods.

Table 4.3: Classification accuracy for synthetic data x
(j)
1l ∼ N(µ1j , Ip) and x

(j)
2l ∼

N(µ2j , Ip), µ2j = βµ1j +
√

1− β2µ⊥1j , for different values of the data-correlation β > 0
and various multi-class learning algorithms. Theoretical performance predictions are
provided in parentheses. Here m = 5, p = 100, c1j = .16, c2j = .04, for j ∈ {1, . . . , 5},
λ = 1 and γ = 1k. The performance gains of the proposed optimal scheme is particularly
clear in tasks with low correlation.

β Method one-vs-all one-vs-one one-hot

β = 0.1
Classical 61.43 (59.87) 65.31 65.61 (64.35)

Optimized 67.63 (67.57) 74.98 67.63 (67.55)

β = 0.5
Classical 65.47 (66.00) 71.30 67.41 (67.90)

Optimized 68.00 (68.52) 76.31 68.03 (68.48)

β = 0.8
Classical 71.16 (70.63) 78.20 70.97 (70.58)

Optimized 71.19 (70.76) 78.55 71.14 (70.67)

The output performance scores naturally show an improvement using the proposed
MTL LS-SVM framework and confirm again the extremely accurate prediction of per-
formance by the theoretical formulas. Most importantly, the table reveals that the gap
between the non-optimized and optimized schemes is all the more important that the
correlation between task (through the parameter β) is small; this indicates that the
optimized MTL LS-SVM learning framework better exploits the (even little) correlation
arising between tasks or, alternatively, that the non-optimized scheme suffers from nega-
tive learning when “over-emphasizing” the weight of data from the other task (through
the binary input labels Y).

As for the comparison of the three classification methods (one-versus-all, one-versus-
one and one-hot), it shows here an overall superiority of the one-versus-one approach.
This result should nonetheless be interpreted with extreme care as no optimization over
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the hyperparameters γ, λ is conducted in any scenario.

Image classification

Similarly as in Section 4.3, we now turn to the popular Office+Caltech256 multi-task
image classification benchmark (Saenko et al., 2010; Griffin et al., 2007) often exploited
for transfer learning. The overall database consists of 10 categories shared by both Office
and Caltech256 datasets. As in Table 4.1, we consider in sequence the transfer learning
of one out of four possible source tasks, each of which consisting in classifying data from
one sub-database (images issued from the Caltech set (c), Webcam images (w), Amazon
pictures (a) or dslr images (d)), towards another task; this boils down to 4× (4− 1) = 12
source-target comparison pairs.)

The results in Table 4.1 using VGG features for the image representations are extremely
close to 100%, already for the “naive” approach consisting in a simplified one-versus-all
extension of Algorithm 2. Little would be gained (at least not in computational efforts)
by running the more involved Algorithm 3 on the same database. For this reason, for the
present experiment, we compare the more challenging (since less discriminative) p = 800
SURF-BoW features of the Office+Caltech256 images instead of their VGG features.

Half of the samples of the target task are randomly selected as test data and the
accuracy is evaluated over 20 independent trials. For complexity reasons, as in Section 4.3,
for each experiment, the naive version of the one-versus-all algorithm is run 10 times,
considering a fictitious two-class C̃1-versus-C̃2 setting where, for the classifier focusing
on class C`, class C̃1 = C` while class C̃2 is the union of all other classes C`′ , `

′ 6= `.

Table 4.4 reports the accuracy obtained by the algorithm (Proposed) versus the non-
optimized MTL LS-SVM from (Xu et al., 2013) (LS-SVM) and state-of-the-art transfer
learning algorithms already introduced in Section 4.3. Table 4.4 again demonstrates that
our proposed improved MTL LS-SVM, despite its simplicity and unlike the competing
methods used for comparison, has stable performances and is highly competitive.

Table 4.4: Classification accuracy for transfer learning on the Office+Caltech256 database,
against state-of-the-art alternatives. Here with c(Caltech), w(Webcam), a(Amazon),
d(dslr) based on SURF-BoW features. Our proposed approach is systematically best or
second to best and best on average.

S/T c→
w

w→
c

c→
a

a→
c

w→
a

a→
d

d→
a

w→
d

c→
d

d→
c

a→
w

d→
w

Mean
score

LS-SVM 79.47 47.70 68.10 49.65 68.13 57.50 70.00 73.75 67.50 46.45 74.83 84.11 65.60
MMDT 69.47 42.55 68.95 39.70 65.24 59.50 62.16 86.06 56.94 27.92 68.54 87.88 61.24
ILS 24.5 20.92 25.21 21.10 22.92 26.25 27.08 43.75 30.00 26.95 15.23 57.62 28.46
CDLS 82.28 54.21 73.75 54.49 71.52 68.56 70.54 69.44 69.44 53.86 81.59 82.78 69.37

Ours 86.09 49.65 75.00 50.35 68.83 73.75 71.25 72.50 77.50 48.05 80.13 85.43 69.88
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4.7 Concluding remarks

Through the example of multi-task learning, as well as its particularization to transfer
learning, we demonstrate the ability of random matrix theory to predict the performance
of advanced machine learning schemes (here based on an extension of LS-SVM) and most
importantly to propose improved learning mechanisms, which are competitive with, if
not largely outperforming, elaborate state-of-the-art alternatives.

Interestingly, as already reported in recent works (Mai & Couillet, 2018; Mai et al.,
2019), the proposed random-matrix-optimized framework is largely counter-intuitive and
comes along with novel insights on the overall learning mechanisms of large dimensional
data classification. Here specifically, the proposed input score (label) optimization is at
odds with the conventional binary input label insights of most machine learning schemes,
but is key to optimize the exploitation of other tasks and to discard altogether the long
standing problem of negative transfer.

The random-matrix framework also draws a significant advantage in its being universal
to data distributions. As shown here, our main results (Theorem 9) are valid for data
modeled as mixtures of concentrated random vectors which go quite beyond the usually
assumed Gaussian mixtures, as they encompass extremely realistic synthetic data models
(such as GAN images). This universality phenomenon, possible surprising at first, in
fact holds for a wide range of large dimensional “dense” (as opposed to sparse) data
representation vectors, encompassing not only images but also likely other forms of data
representations, such as word embeddings in natural language processing, vectors of
moments of graphons in statistical graph analysis, etc.

To conclude, we importantly emphasize a fundamental underlying take-away message
of the present work: recalling that LS-SVM is nothing but an explicit and computationally-
cheap linear regression method, the fact that it competes or even outperforms elaborate
MTL methods testifies of the possibility, when dealing with large dimensional data, to
design highly performing elementary and cost-efficient random-matrix-based learning
schemes. This remark is in line with the recent parallel analysis of information-theoretic
bounds on the performances of machine learning problems, such as in (Lelarge & Miolane,
2019) for semi-supervised learning (SSL); similar to the present work, in (Mai & Couillet,
2018), the authors propose a random-matrix-based optimization of standard graph SSL
learning which they demonstrate to tightly reach the information-theoretic upper bound of
(Lelarge & Miolane, 2019). This strongly suggests the practical relevance of “reinvesting”
research efforts in simple, cost-efficient, theoretically tractable, controllable, and usually
more stable machine learning schemes, rather than in complex and theoretically intractable
techniques.
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5.1 Short-term perspectives related to chapters 3 and 4

The analyses carried out throughout this thesis provide a theoretical understanding and
corrections of learning schemes involving covariance matrices as well as theoretical and
practical insights into Multi-Task and Transfer Learning algorithms. However, some
research directions which are discussed next will enable the work to have a significant
societal and broader impact.

Application to real data. The random matrix improved estimation of the distance
between covariance matrices has been applied to a covariance-based feature classification
but the real strength and robustness of the proposed estimator will only be demonstrated
when applied to real (non-Gaussian) datasets and more exotic applications (brain signal
classification, hyperspectral image classification, etc). Moreover, the random matrix
improved estimation scheme proposed can be used in the context of testing the equality
of population covariance matrix widely used in signal processing (Krzanowski, 1979; Boik,
1988; Schott, 1991). This would however need to access the fluctuations of the random
matrix estimator proposed in theorem 7. More concretely, it would be convenient to
obtain a result similar to (Yao et al., 2012) in the present context, that is a central limit
theorem for the fluctuations of the estimator of Theorem 7. This would allow in addition
to the applications mentioned previously to access both a consistent estimator for their
sought-for matrix distance as well as a confidence margin. This investigation demands
even more profound calculi (as can be seen from the detailed derivations of (Yao et al.,
2012)).

On the other hand, for the metrics we are dealing with, it is crucial that the smallest
eigenvalue of the covariance matrices Σ1 and Σ2 does not tend to 0 as p→∞ which leads to
singularities of the covariance matrices in the Positive Semi-Definite Riemannian manifold.
This happens quite often in over-parametrized settings as in Electroencephalography
(EEG) datasets (Rodrigues et al., 2017). The randomness involved in the measurements
exacerbates the singularities of the sample covariance matrices Σ̂1, Σ̂2 and makes even
more challenging the estimation procedure. A first step to tackle this problem may

90
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consist to consider instead the regularized population covariance matrices Σ1 + λ1Ip and
Σ2 +λ2Ip for some constants λ1, λ2 > 0. Several questions, therefore, need to be properly
addressed. What is the loss incurred by the regularization scheme as function of the
strength of λ1 and λ2? Is there an optimal value of λ1 and λ2 as function of the spectrum
of Σ1 and Σ2?

The High Dimension Low Sample Size Regime. We point out the difficulty to
handle the high dimension low sample size regime (i.e the regime ni ≤ p). It is important
to note that this regime is very common in real-life applications where data collection is
often difficult and the dimensions are relatively large. Managing this critically important
setting will help to get closer to real-life problems. We propose one solution with
polynomial approximation in (Tiomoko & Couillet, 2019a) which only handles partially
the case n2 < p. Random projections and regularization methods can be alternative
methods to tackle this scenario, however possibly to the detriment of the estimator
consistency. More concretely, relying on the random projection approach one would
wonder for a random matrix W ∈ Rp×q, what would be the loss induced by projecting
the covariance matrices Σ1 and Σ2 in the q-dimensional space generated by the columns
of W? In other words, this consists to study the statistical behavior of the random
quantity D(WTΣ1W,W

TΣ2W ) −D(Σ1,Σ2) as p, n → ∞. This would be adequate in
the case of p > n1, n2 to choose q < n1, n2 and then apply the estimation framework
derived in this thesis and one would furthermore quantify the loss incurred as the ratio
q/p decreases. From a technical point of view, this requires choosing an appropriate
model for the random matrix W (Haar random matrix, Gaussian matrix,...) and to
deal with the asymptotic eigenvalue distribution of (WTΣ1W )−1WTΣ2W which can be
quite involved due to the inverse matrix. Free probability theory (Mingo & Speicher,
2017) can be an adequate tool to handle such asymptotic eigenvalue distribution since
it allows for computing the asymptotic eigenvalue distribution of rational functions of
random matrices. But a first step would rather consider the family metric involving the
eigenvalue distribution of WTΣ1WWTΣ2W .

Towards an understanding of covariance matrix estimation scheme. We pro-
posed a generic framework to estimate the covariance matrix Σ under different metrics.
For the subsequent discussion, we briefly recall the estimation procedure which is based on
remarking that Σ ≡ arg minM�0D(M,Σ), for some distance between any deterministic
matrix M and the sought-for covariance matrix Σ. Relying on the proposed improved
estimate D̂(M,X) for D(M,Σ) based on samples X = [x1, . . . , xn] (of zero mean and
covariance matrix Σ), the optimization problem introduced above can be approximated as
Σ̌ ≡ arg minM�0 hX(M) with hX(M) = D̂(M,X)2 and solved using a gradient descent
algorithm.

Since each distance (Fisher distance, Wasserstein distance, ...) leads to a different
estimate, the natural question would be to compare the different estimators in order
to give which suits for a specific application. This however requires to understand
theoretically the gradient descent step performed which is quite involved and sub-optimal.
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Indeed, the considered approach suffers a profound limitation: D̂(M,X) only estimates
D(M,Σ) for M independent of X. This poses a formal problem when implemented in
a gradient descent. More concretely, in chapter 3, it is precisely shown that, for every
deterministic sequence of matrices {M (p), p = 1, 2, . . .} and {Σ(p), p = 1, 2, . . .}, with
M (p),Σ(p) ∈ Rp×p and max(‖Σ(p)‖, ‖M (p)‖) < K for some constant K independent of p,

we have that, for X(p) = [x
(p)
1 , . . . , x

(p)
n ] with x

(p)
i = Σ(p) 1

2 z
(p)
i and z

(p)
i i.i.d. vectors of

i.i.d. zero mean and unit variance entries,

D(M (p),Σ(p))− D̂(M (p), X(p))→ 0

almost surely as n, p→∞ and p/n→ c0 ∈ (0, 1). If we denote Mk the matrix obtained
at the iteration k of the gradient descent step, the proposed methodology supposes
that D̂(Mk, X) is a good approximation for the sought-for D(Mk,Σ). This, however,
only holds true so long that Mk is independent of X which clearly does not stand
when proceeding to successive gradient descent steps in the direction of ∇hX(M) which
depends explicitly on X. As such, while initializations with, say, M0 = Ip, allow for a
close approximation of D(Mk,Σ) in the very first steps of the descent, for larger values
of k, the descent is likely to drive the optimization in less accurate directions. This needs
be tackled: (i) either by estimating the introduced bias so to infer the loss incurred or,
better, (ii) by accounting for the dependence to provide a further estimator D̂(M(X), X)
of D(M(X),Σ) for all X-dependent matrices M(X) following a specific form.

Furthermore, if we denote by U and Û respectively the eigenvectors of the population
covariance matrix Σ and the sample covariance matrix Σ̂, we can prove that the set of
covariance matrix estimators H = {ÛDÛT | D diagonal} is a stable set of Algorithm 1 in
the sense thatMk ∈H ⇒Mk+1 ∈H. One may thus wonder if H is also a global attractor:
i.e., does every trajectory {M1,M2, . . .} necessarily converge to H? Extensive simulations
initialized randomly (say with M0 a random Wishart matrix) indeed suggest that, after
a few iterates, the eigenvectors of Mk do converge to those of Σ̂. This is, however, not
everywhere true. Indeed, in the extreme scenario where M0 = Σ, 0 = D(Σ,Σ) ' D̂(Σ, X)
which consistently estimates zero for large n, p (and irrespective of n/p), the gradient
descent does not progress much from M0 and is thus unlikely converging within H (which
would mean the existence of a D such that |D̂(UDUT, X)| < |D̂(Σ, X)|). These aspects
need to be clarified and well-understood. Indeed, in the absence of any a priori knowledge
about the structure of Σ, such as sparseness or a factor model, several authors (Ledoit
& Wolf, 2020; Karoui, 2008; Mestre, 2008a) argue that it is natural to only consider
estimators of Σ that are rotation-equivariant (that belong to H). Therefore, one could
ask if the estimation scheme proposed does at least better than the rotation-equivariant
estimators? If not we should gain more to restrict the estimation procedure to a non-
linear shrinkage of the eigenvalues of the sample covariance matrix, that is, to first
consistently estimate D(ÛDÛ,Σ) for deterministic diagonal matrices D and perform a
gradient descent step on D.

Unifying feature-based and parameter-based MTL approaches. MTL approaches
are usually divided into parameter-based versus feature-based learning schemes. In the
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parameter-based MTL approach, the tasks are assumed to share some parameters (e.g.,
the hyperplanes best separating each class) as discussed in chapter 4 of the present
work. In the feature-based MTL approach, the tasks data are instead assumed to share
a low-dimensional common representation. In this context, most of the works aim to
determine a mapping of the ambient data space into a low-dimensional subspace (through
sparse coding, deep neural networks, principal component analysis, etc.) in which the
tasks have high similarity (Argyriou et al., 2007; Maurer et al., 2013; Zhang et al., 2016;
Pan et al., 2010).

We should note that every year the literature on transfer learning evolves at an
incredible speed with new methods that complement the previous long list of existing
algorithms. In this context, the practitioner is often confused as to which method to
consider. Due to the lack of theoretical understanding, most of these schemes are over-
parametrized and difficult to tune for practitioners and the optimality of the algorithms is
difficult to prove. The work carried out in Chapter 4 is part of this deeper understanding
of the methods developed so far in order to identify their similarities, give the user-specific
instructions on how to use them since the underlying idea is generally pertinent and
should not necessarily be discarded.

Using Random Matrix theory, it will be interesting to completely address MTL learn-
ing scheme by studying feature-based methods in order to understand from a statistical
point of view the difference between the two approaches, to assess the conditions where
one approach is better than the other in order to provide theoretical guidelines for
practitioners. In this context, the Principal Component Analysis (PCA), the Transfer
Component Analysis (TCA)(Pan et al., 2010) and the sparse coding may be theoreti-
cally investigated using Random Matrix Theory. The ultimate goal is to fully control
the dimensionality reduction-based transfer learning problem and to improve them by
providing theoretical guidelines for the choice of some hyperparameters (number of
the components to extract,...). The idea is to understand the interplay between the
generally huge amount of hyperparameters and the sufficient statistics so that to make
the method optimal with respect to the theoretic information bounds and at the same
time decrease the computational cost by discarding redundant hyperparameters. More
concretely, any practitioner would be able to identify which algorithm of transfer learning
fits its application based on its optimality or not with respect to a theoretical bound, its
computational advantage and be able to use efficiently the chosen algorithm by a proper
understanding of its inner working statistics and the guidelines for the hyperparameter
tuning.

Task relatedness assumption. Furthermore, as pointed in the introduction, the
relatedness assumption is central in the multi-task learning schemes. In chapter 4, we
use a relatedness assumption on the separating hyperplane of the SVM. One interesting
question could be to try to derive other relatedness assumptions mostly regarding the
data. An idea could try to find a projection matrix that should be optimized so that the
projected data for source tasks and target tasks have a low discrepancy in the projected
space. Concretely, the approach should search for two matrices A and B such that
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f(A,B) = D(AX1, BX2) is as low as possible where D(AX1, BX2) refers to a distance
function between the data AX1 and BX2 with X1 and X2 the samples of task 1 and 2.
Subsequent learning schemes can then be applied on the optimal low dimensional space.
In this setting, one would rather be interested in the theoretical analysis of traditional
learning schemes (SVM, Empirical risk minimizers, ...) in the aforementioned optimal
subspace and what would be the impact of the dimension of the subspace. To that end,
it is of particular interest for tractability to choose a convex function f(A,B). Further
constraints on the structure of the matrix A and B can be added to the optimization
problem depending on the context.

Towards optimal real-world multi-class algorithms. The improvements performed
in Chapter 4 were mainly concerned with the binary classification and the optimality
of the algorithm can only be proved for binary classification. This is due to the fact
that the support vector machine algorithm was introduced to solve binary classification
problems. The treatment of multi-class classification is always tricky and potentially
sub-optimal. Generally, we rely on splitting the multi-class classification into several
binary classifiers or relying on a one-hot encoding approach. The results obtained by the
different extensions as provided in chapter 4 are generally different. Therefore, several
questions naturally arise. Are we making optimal use of the improvement achieved in
the binary case when building multi-classifiers? To answer this question, one would have
to derive theoretical bounds on multi-class classification, compare different multi-class
learning algorithms, and choose/design the optimal algorithm or at least quantify the
sub-optimality of each multi-class extension. Some attempts to compare existing schemes
(one-versus-all, one-versus-one, one-shot coding) have been proposed in the literature,
but they are mainly based on experimental studies (see for example (Rifkin & Klautau,
2004)). This discussion stems from the overriding importance of multi-class classifica-
tion in real-world applications compared to binary classification and especially because
multi-class classification is by far more difficult than the binary case.

On the other hand, in some real-world problems, data are usually missing and contain
outliers that need to be handled properly. More concretely, suppose we have missing data
in the dataset inputs and we want to evaluate the capability of the imputation strategies
to recover the classes with the least amount of defects.

A possible elementary model to study is the kernel matrix

1

p
(X � S +A)T(X � S +A)

with X = [x1, . . . , xn], S the missing values matrix, and A the imputation matrix (with
non-zero values a priori on the same locations as those of S.

An interesting study could try to access the performance of multi-task learning
schemes under this model and to choose potentially the optimal imputation strategy.
More concretely assuming that S has a simple statistical model (e.g. with Bernoulli i.i.d.
inputs), what are the performances (in terms of classification error) obtained by specific
simple imputation models for A (e.g., A = α(11T−S) is constant over the set of non-zero
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inputs of S, or Aij is chosen as an average of the non-zero inputs of Xi,..., etc). A similar
study has been performed in (Seddik et al., 2020) in the single task to characterize the
performance in terms of phase transition and can be inspiring for the proposed study.

We conclude this part by pointing out that class imbalance problems have drawn
growing interest recently because of their classification difficulty. Class imbalance learning
refers to a type of classification problem, where some classes are highly underrepresented
compared to other classes. The skewed distribution makes many conventional machine
learning algorithms less effective, especially in predicting minority class examples. The
learning objective can be generally described as obtaining a classifier that will provide
high accuracy for the minority class without severely impacting the accuracy of the
majority class. In this case, the least-square loss is generally known to perform poorly.
Instead, several adaptations have been proposed ((Tang et al., 2008; Zheng et al., 2015))
using classical asymptotic heuristics. Random Matrix Theory analysis can be performed
to take this important case into account.

The thesis and the perspectives proposed below are part of an urgent need to adapt
to the new challenges of the modern world. We propose in the following section a modern
vision of machine learning that we believe is possible and of which this thesis could be
one of the founding ideas.

5.2 Towards an efficient, low-cost, controllable and Green
AI

The traditional vision in machine learning. The classical methodology in machine
learning and signal processing is to consider that the number of samples is very large
compared to the dimension of the samples. As we have shown in this thesis, this induces
many biases that lead to dramatic and unexpected behavior in the algorithms. The
traditional explanation for such a failure is often and systematically attributed to the
small number of samples. Therefore, the natural solution that follows from this analysis
is to increase the number of samples and the model parameters (generally making the
model more complex and “black-boxed”), as is generally the case in methods such as
neural networks, ensemble learning, etc. The consequences of such approaches can be
dramatic in the sense that the price to reach a given performance is excessively high
(lots of computational units, lots of data with the carbon footprint, and the dramatic
environmental consequences that this induces).

Towards a modern vision of machine learning. For the sake of efficiency, it would
make more sense to (i) determine the best performance that would be induced by the
a priori knowledge of the problem and (ii) determine algorithms whose performance
is predictable and that are demonstrably optimal with respect to this bound. This
approach to the problem ensures that the resources are used sparingly, efficiently, and
more interestingly that we deeply understand the model parameter behind the problem
so as to connect the intrinsic physical model of the problem with the model learned by
the algorithm. More concretely, this would allow us to determine the minimum resources
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needed to achieve a given performance and thus build low-cost algorithms that achieve
this bound or at least quantify how far the proposed algorithm is from the optimal one.
Indeed, the knowledge of the theoretical bound allows to know in addition the gap between
the proposed algorithm and the optimal one, allowing to evaluate the sub-optimality of
the designed algorithm versus the gain induced by the reduced computational cost. This
reflection is in line with the increasingly urgent need to use data/resources smartly in
our daily life.

What can Random Matrix Theory do? Random matrix Theory tools are part of
this logic since they allow to analyze and control machine learning algorithms. Although
the performance is determined asymptotically, the analyses remain true even for settings
that were traditionally considered to be in the classical regime and for finite dimensions.
This thesis proposes through random matrix theory a deeper understanding of the
functionals of covariance matrices by exploiting randomness both in the sample size and
in the dimension size. The improved scheme has important environmental consequences.
To illustrate that, let’s assume we want to estimate the Fisher distance between two

covariance matrices Σ1 and Σ2 denoted DF (Σ1,Σ2) with [Σ
− 1

2
1 Σ2Σ

− 1
2

1 ]ij = .3|i−j| based

on na samples x
(a)
i ∼N(0,Σa) for p = 64 and a ∈ {1, 2}. Using n1 = n2 = 128 samples,

a relative error of ∼ 5% could be achieved using the proposed scheme while with 100×
samples more (n1 = n2 = 12, 800), only ∼ 6% relative error can be achieved using the
classical asymptotic. This example illustrates that to achieve the same relative error,
one needs to collect more than 100× more samples with the carbon footprint that this
induces. Even though experimental, this example illustrates how Random matrix Theory
can be part of this change in the field of artificial intelligence to meet the new challenges
of the world.

Regarding the Multi-Task Learning Least Square Support Vector Machine analyzed in
chapter 4, the classical training cost involved by setting the hyperparameters λ and γi’s
which traditionally relies on cross-validation is time and data consuming since it involves
making a grid search over ∼ 1000 hyperparameter candidates. Moreover, to evaluate
the pertinence of the different candidates, one needs furthermore to dedicate a specific
number of training samples for the validation. This induces training at a small number of
samples and therefore achieves low performance. The proposed learning approach instead
relies on an explicit expression of the optimal labels which, when optimized, lead to a low
sensitivity of the hyperparameters as illustrated in chapter 4. Due to the aforementioned
reasons, the carbon footprint of the proposed method is likely lower than the one of the
classical method. Furthermore, as will be discussed next, the proposed algorithm has
been proven in a preliminary work to be optimal with respect to information-theoretic
bound.

The new challenges. Based on this strategy of designing theoretical bounds given a
problem, it would be interesting to use Bayesian and Information theory tools to derive
theoretical bounds that any algorithm can achieve given the a priori knowledge of the
problem (sparsity, feature-based covariance model, etc). This study, already conducted
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for learning domains such as semi-supervised learning and specific model for the data
(Gaussian mixture model) (Lelarge & Miolane, 2019) which paradoxically did not bring
much attention, could be applied to transfer learning and compared to the algorithm
proposed in this thesis. This work has already been preliminarily tackled (on-going
research) and has shown promising results in the sense that it is possible to prove that the
optimized method proposed in Chapter 4 of this thesis is close to optimal with respect to
this bound. In the same vein of idea, regarding the covariance feature-based algorithm,
an optimal bound on the classification algorithm could be designed and compared with
the proposed algorithm in Chapter 3. On the other hand, Semi-supervised multi-task
learning which has the advantage of using not only unlabeled data (which are easier to
obtain than labeled data) but also data belonging to other tasks is another promising
research direction. Similar to the information-theoretic bounds provided in (Lelarge &
Miolane, 2019) for semi-supervised single-task learning, theoretical bounds of multi-task
semi-supervised learning can be derived using statistical physics tools. Furthermore,
using the preliminary results of (Mai & Liao, 2019), a graph-based algorithm can be
derived which reaches this bound.

However, the information-theoretic bounds using information theory and the algo-
rithms derived using the random matrix theory do not take for now into account the
structure of the data (images, text, time series, sparse data, etc). A very interesting
approach would be to incorporate the a priori (sparse data, images, text) in the knowledge
for deriving the theoretical bounds and design data-dependent algorithms. This will
prevent the use of features generally extracted by hand (SIFT features, neural networks,
etc). Practically, it would be possible to design a theoretical bound given that the means
of the data are sparse (as for MNIST data) or that the covariance matrix presents a
specific structure (sparse inverse as in the case of brain applications(Cai et al., 2018), etc).
The introduction of such a priori will also allow reaching higher performances at lower
costs. This study will however require relevant modeling of the data. Several models can
be used as starting point as (Peyré, 2009) for a manifold model for images, (Gerber et al.,
2010) for a manifold of brain population analysis, (Cross & Jain, 1983) for a random
Markov field model for images, (Dong et al., 2009) for a hidden Markov model for time
series, etc. But the main technical difficulty will be the theoretical tractability of the
introduction of such models into the information-theoretic analysis.

On the other hand, in this learning perspective at lower cost, an idea would be,
given a ML question, to determine the minimal information to keep in order to reach a
certain level of performance and to derive the optimal feature selection to remove the
redundant information through “sparsification”, multiplication by random matrices, etc
as preliminary proposed in recent works (Couillet et al., 2021; Dall’Amico et al., 2021,
2020). These ideas can lead to a modern vision for machine learning integrating the new
economical and environmental challenges.
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6.4 Synthèse de la thèse en français . . . . . . . . . . . . . . . . . . . . 148

6.1 Appendix for Chapter 2

Definition 3 (Mixture of Concentrated random vector(Louart & Couillet, 2018)). Let
X = [x1, . . . , xn] ∈ Mp,n be a data matrix which is constituted of n random vectors
distributed on k different classes C1, . . . ,Ck such that the data classes are characterized
by the moments, for xi ∈ C`

E[xi] = µ`, E[xix
T
i ] = Σ` + µ`µ

T
`

In particular the data matrix X satisfy a concentration assumption in the sense that for
any 1-Lipschitz function f : Mp,n → R with Mp,n enrolled by the Frobenius norm ‖‖F ,
for q > 0, there exists C, σ > 0 independent of p and n such that

∀t > 0, P (‖f(X)− E[f(X)]‖ ≥ t) ≤ Ce−(t/σ)q

98
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6.1.1 Proof of corollary 1

In this section, we provide the proof of Corollary 1 which finds the deterministic equivalents
of Q(z), Q̃(z) and Q̃(z)2 as a consequence of Theorem 5 in the particular case of
C = Ip + µµT.

We recall from Theorem 5 that the resolvent of the generalized sample covariance

matrix defined as Q(z) =
(

1
nXX

T − zIp
)−1

admits a deterministic equivalent Q̄(z) given
by

Q(z)↔ Q̄(z) =

(
C

1 + δ(z)
− zIp

)−1

(6.1)

where δ(z) is the unique solution to the fixed point equation defined as

δ(z) =
1

n
tr

(
C

(
C

1 + δ(z)
− zIp

)−1
)
. (6.2)

Plugging in C = Σ + µµT in Equation (6.1) and applying Sherman Morrison identity

matrix i.e., (A+ uuT)−1 = A−1 − A−1uuTA−1

1+uTA−1u
for any invertible matrix A and any vector

u, we obtain

Q̄(z) = m(z)Ip −
m(z)2

1 + δ(z) +m(z)‖µ‖2

where m(z) ≡
(

1
1+δ(z) − z

)−1
. Further, in order to find an explicit expression of δ(z),

we rely on the following rank-1 perturbation lemma for the resolvent of a matrix M .

Lemma 1 (Perturbation lemma (Silverstein & Bai, 1995)). Let A,M ∈ Rp×p some
symmetric and non negative definite matrices, u ∈ Rp, λ > 0 and z < 0, then,

|trA
(
M + λuuT − zIp

)−1
− trA (M − zIp)−1 | ≤ ‖A‖

|z|
.

Note that the bound in Lemma 1 does not depend on ‖u‖. In particular denoting

δ(z) =
1

n
tr

(
(Ip + µµT)

(
Ip + µµT

1 + δ(z)
− zIp

)−1
)
, δ

′
(z) =

1

n
tr

(
1

1 + δ(z)
Ip − zIp

)−1

,

we obtain ∀z < 0,
δ(z) = δ

′
(z) +O(n−1).

Therefore as p, n → ∞ with p/n ≡ c0 → c∞0 , particularizing to C = Ip + µµT (or
equivalently to C = Ip following Lemma 1), Equation (6.2) has an explicit expression
uniquely defined (using the definition of the Stieltjes transform) as:

δ(z) =

√
(c0 + z − 1)2 − 4c0z − (c0 + z − 1)

2z
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The expression of m(z) is retrieved by using the relation m(z) =
(

1
1+δ(z) − z

)−1
. We

conclude by remarking that δ(z) = c0m(z).
Similarly as for Q(z), the deterministic equivalent of Q̃(z) is retrieved from Theorem 5

for C = In+‖µ‖2yyT. Finally, the deterministic equivalent of Q̃(z)2 follows by remarking
that Q̃(z)2 = ∂

∂z Q̃(z).

6.2 Appendix for Chapter 3

We provide here the technical developments for the proof of Theorem 7 as well as all
subsequent corollaries (Corollaries 2–5) for the family of metrics expressed as linear
spectral statistic of Σ−1

1 Σ2 for simplicity.
The appendix is structured as follows: Appendix 6.2.1 provides the proof of Theorem 7

following the same approach as in (Couillet et al., 2011), relying mostly on the results from
(Silverstein & Bai, 1995; Silverstein & Choi, 1995). Appendix 6.2.2 discusses in detail the
question of the position of the complex contours when affected by change of variables.
Appendix 6.2.3 then provides the technical details of the calculi behind Corollaries 2–5;
this is undertaken through a first thorough characterization of the singular points of ϕp
and ψp and functionals of these (these singular points are hereafter denoted λ̂i, ηi, ζi and
κi), allowing for a proper selection of the integration contour, and subsequently through
a detailed calculus for all functions f(t) under study. Appendix 6.2.4 provides the details
framework for the covariance matrix estimation as well as with the technical arguments.

6.2.1 Integral Form

Relating mν to mµ

We start by noticing that we may equivalently assume the following setting:

• x
(1)
1 , . . . , x

(1)
n1 ∈ Rp vectors of i.i.d. zero-mean and unit variance entries

• x
(2)
1 , . . . , x

(2)
n2 ∈ Rp of the form x

(2)
i = Σ

1
2 x̃

(2)
i with x̃

(2)
i ∈ Rp a vector of i.i.d.

zero-mean and unit variance entries

where Σ ≡ Σ
− 1

2
1 Σ2Σ

− 1
2

1 .

Indeed, with our first notations, Σ̂−1
1 Σ̂2 = 1

n1
Σ
− 1

2
1 X̃1X̃

T
1 Σ
− 1

2
1

1
n2

Σ
1
2
2 X̃2X̃

T
2 Σ

1
2
2 (here

X̃a = [x̃
(a)
1 , . . . , x̃

(a)
na ]), the eigenvalue distribution of which is the same as that of the

matrix ( 1
n1
X̃1X̃

T
1 )( 1

n2
Σ
− 1

2
1 Σ

1
2
2 X̃2X̃

T
2 Σ

1
2
2 Σ
− 1

2
1 ) and we may then consider that the x

(1)
i ’s

actually have covariance Ip, while the x
(2)
i ’s have covariance Σ = Σ

− 1
2

1 Σ2Σ
− 1

2
1 , without

altering the spectra under study. With these new definitions, we first condition with

respect to the x
(2)
i ’s, and study the spectrum of Σ̂−1

1 Σ̂2, which is the same as that of

Σ̂
1
2
2 Σ̂−1

1 Σ̂
1
2
2 . A useful remark is the fact that Σ̂

1
2
2 Σ̂−1

1 Σ̂
1
2
2 is the “inverse spectrum” of
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Σ̂
− 1

2
2 Σ̂1Σ̂

− 1
2

2 , which is itself the same spectrum as that of 1
n1
XT

1 Σ̂−1
2 X1 except for n1 − p

additional zero eigenvalues.
Denoting µ̃−1

p the eigenvalue distribution of 1
n1
X̃T

1 Σ̂−1
2 X̃1, we first know from (Sil-

verstein & Bai, 1995) that, under Assumption 1, as p→∞, µ̃−1
p

a.s.−→ µ̃−1, where µ̃−1 is
the probability measure with Stieltjes transform mµ̃−1 defined as the unique (analytical
function) solution to

mµ̃−1(z) =

(
−z + c∞1

∫
tdξ−1

2 (t)

1 + tmµ̃−1(z)

)−1

with ξ2 the almost sure limiting spectrum distribution of Σ̂2 and mξ2 its associated Stieltjes
transform (note importantly that, from (Silverstein & Bai, 1995) and Assumption 1, ξ2

has bounded support and is away from zero). Recognizing a Stieltjes transform from the
right-hand side integral, this can be equivalently written

mµ̃−1(z) =

(
−z +

c∞1
mµ̃−1(z)

− c∞1
mµ̃−1(z)2

mξ−1
2

(
− 1

mµ̃−1(z)

))−1

. (6.3)

Accounting for the aforementioned additional zero eigenvalues, µ̃−1 is related to µ−1,

the almost sure limiting spectrum distribution of Σ̂
−1/2
2 Σ̂1Σ̂

−1/2
2 , through the relation

µ̃−1 = c∞1 µ
−1 + (1− c∞1 )δ0 with δx the Dirac measure at x and we have

mµ̃−1(z) = c∞1 mµ−1(z)− (1− c∞1 )
1

z
.

Plugging this last relation in (6.3) leads then to

mξ−1
2

(
z

1− c∞1 − c∞1 zmµ−1(z)

)
= mµ−1(z)

(
1− c∞1 − c∞1 zmµ−1(z)

)
. (6.4)

Now, with the convention that, for a probability measure θ, θ−1 is the measure defined
through θ−1 ([a, b]) = θ

(
[ 1
a ,

1
b ]
)
, we have the Stieltjes transform relation

mθ−1(z) = −1

z
− 1

z2
mθ

(
1

z

)
.

Using this relation in (6.3), we then deduce

zmµ(z) = (z + c∞1 z
2mµ(z))mξ2(z + c∞1 z

2mµ(z))

= ϕ(z)mξ2(ϕ(z)) (6.5)

where we recall that ϕ(z) = z(1 + c∞1 zmµ(z)). It will come in handy in the following to
differentiate this expression along z to obtain

m′ξ2(ϕ(z)) =
1

ϕ(z)

(
mµ(z) + zm′µ(z)

ϕ′(z)
−mξ2(ϕ(z))

)
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which might be conveniently rewritten as

m′ξ2(ϕ(z)) =
1

ϕ(z)

(
− ψ′(z)

c∞2 ϕ
′(z)
−mξ2(ϕ(z))

)
. (6.6)

We next determine mξ2 as a function of ν. Since Σ̂2 is itself a sample covariance
matrix, we may apply again the results from (Silverstein & Bai, 1995). Denoting ξ̃2 the
almost sure limiting spectrum distribution of 1

n2
X̃T

2 ΣX̃2, we first have

mξ̃2
(z) =

(
−z + c∞2

∫
tddν(t)

1 + tmξ̃2
(z)

)−1

. (6.7)

Similar to previously, we have the Stieltjes transform relation mξ̃2
(z) = c∞2 mξ2(z)− (1−c∞2 )

z
which yields, when plugged in (6.7)

mν

(
− z

c∞2 zmξ2(z)− (1− c∞2 )

)
= −mξ2(z) (c∞2 zmξ2(z)− (1− c∞2 )) . (6.8)

The two relations (6.5) and (6.7) will be instrumental to relating
∫
fdν to the

observation measure µp, as described in the next section.

Remark 11 (The case c∞2 > 1). The aforementioned reasoning carries over to the case
c∞2 > 1. Indeed, since the equation (6.3) is now meaningless (as the support of ξ2 contains
the atom {0}), consider the model Σ̂−1

1 (Σ̂2 + εIp) = Σ̂−1
1 Σ̂2 + εΣ̂−1

1 for some small ε > 0.
Then (6.5) holds with now ξ2 the limiting empirical spectral distribution of Σ̂2 + εIp. Due
to ε, Equation (6.7) now holds with mξ̃2

(z) replaced by mξ̃2
(z + ε). By continuity in the

small ε limit, we then have that (6.5) and (6.8) still hold in the small ε limit. Now, since
Σ̂−1

1 (Σ̂2 + εIp)− Σ̂−1
1 Σ̂2 = εΣ̂−1

1 , the operator norm of which almost surely vanishes as
ε → 0 (as per the almost sure boundedness of lim supp ‖Σ̂−1

1 ‖), we deduce that µp → µ
defined through (6.5) and (6.8), almost surely, also for c∞2 > 1.

Integral formulation over mν

With the formulas above, we are now in position to derive the proposed estimator. We
start by using Cauchy’s integral formula to obtain∫

fdν = − 1

2πı

∮
Γν

f(z)mν(z)dz

for Γν a complex contour surrounding the support of ν but containing no singularity of
f in its inside. This contour is carefully chosen as the image of the mapping ω 7→ z =
−ω/(c∞2 ωmξ2(ω)− (1− c∞2 )) of another contour Γξ2 surrounding the limiting support of
ξ2; the details of this (non-trivial) contour change are provided in Appendix 6.2.2 (where
it is seen that the assumption c∞2 < 1 is crucially exploited). We shall admit here that
this change of variable is licit.
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Operating the aforementioned change of variable gives

∫
fdν =

1

2πı

∮
Γξ2

f
(

−ω
c∞2 ωmξ2 (ω)−(1−c∞2 )

)
mξ2(ω)

(
c∞2 ω

2m′ξ2(ω) + (1− c∞2 )
)

c∞2 ωmξ2(ω)− (1− c∞2 )
dω (6.9)

where we used (6.8) to eliminate mν .
To now eliminate mξ2 and obtain an integral form only as a function of mµ, we next

proceed to the variable change u 7→ ω = ϕ(u) = u + c∞1 u
2mµ(u). Again, this involves

a change of contour, which is valid as long as Γξ2 is the image by ϕ of a contour Γµ
surrounding the support of µ, which is only possible if c∞1 < 1 (see Appendix 6.2.2
for further details). With this variable change, we can now exploit the relations (6.5)
and (6.6) to obtain, after basic algebraic calculus (using in particular the relation
umµ(u) = (−ψ(u) + 1− c∞2 )/c∞2 )∫
fdν =

1

2πı

∮
Γµ

f

(
ϕ(u)

ψ(u)

)
ψ(u)

c∞2

[
ϕ′(u)

ϕ(u)
− ψ′(u)

ψ(u)

]
du− 1− c∞2

c∞2

1

2πı

∮
Γµ

f

(
ϕ(u)

ψ(u)

)[
ϕ′(u)

ϕ(u)
− ψ′(u)

ψ(u)

]
du.

Performing the variable change backwards (u 7→ z = ϕ(u)
ψ(u)), the rightmost term is

1

2πı

∮
Γµ

f

(
ϕ(u)

ψ(u)

)[
ϕ′(u)

ϕ(u)
− ψ′(u)

ψ(u)

]
du =

1

2πı

∮
Γµ

f

(
ϕ(u)

ψ(u)

)
ψ(u)

ϕ(u)

(
ϕ(u)

ψ(u)

)′
du =

1

2πı

∮
Γν

f(z)

z
dz = 0,

since Γν ⊂ {z ∈ C,R[z] > 0}. Note that if Γν were to contain 0 (which occurs when

c∞2 > 1), then an additional residue equal to −1−c∞2
c∞2

f(0) would have to be accounted for.

We conclude that∫
fdν =

1

2πı

∮
Γµ

f

(
ϕ(u)

ψ(u)

)
ψ(u)

c∞2

[
ϕ′(u)

ϕ(u)
− ψ′(u)

ψ(u)

]
du.

To ensure that mµ can be replaced by mµp in the the above expression, one however
needs to ensure that dominated convergence on the compact set Γµ holds. For this, two

ingredients are needed: (i) First we need to guarantee that the convergence mµp
a.s.−→ mµ

is uniform on Γµ, which easily follows from the analytic nature of Stieltjes transforms, and

most importantly (ii) prove that f
(
ϕp(u)
ψp(u)

)
ψp(u)
c2

[
ϕ′p(u)

ϕp(u) −
ψ′p(u)

ψp(u)

]
is uniformly bounded

on Γµ. This second item follows from (Bai & Silverstein, 1998b) which prove that
the eigenvalues of Σ̂−1

1 Σ̂2 are asymptotically assembled in contiguous bulks and almost
surely do not escape the limiting support µ as p → ∞ under the condition that the
fourth moment of the entries of the matrices X̃1 and X̃2 is finite and that the limiting
spectrum ν of Σ−1

1 Σ2 has bounded support away from zero (due to the assumption
lim supp max{‖Σ−1

a ‖, ‖Σa‖} < ∞) along with the analyticity of the involved functions
inside the contour. This allows to retrieve Theorem 7 by uniform convergence on the
compact contour (see also (Couillet et al., 2011) for a similar detailed derivation).



CHAPTER 6. APPENDIX 104

Remark 12 (Case Σ1 known). The case where Σ1 is known is equivalent to setting
c1 → 0 above, leading in particular to mµ = mξ2 and to the unique functional equation

mν

(
z

1− c∞2 − c∞2 zmµ(z)

)
= mν(z) (1− c∞2 − c∞2 zmν(z)) .

In particular, if Σ1 = Σ2, this reduces to

1 = −mµ(z)(z − ψ(z))

with ψ(z) = 1− c∞2 − c∞2 zmµ(z), which is the functional Stieltjes-tranform equation of
the popular Marc̆enko–Pastur law (Marc̆enko & Pastur, 1967).

6.2.2 Integration contour determination

This section details the complex integration steps sketched in Appendix 6.2.1. These
details rely heavily on the works of (Silverstein & Choi, 1995) and follow similar ideas as
in e.g., (Couillet et al., 2011).

Our objective is to ensure that the successive changes of variables involved in Ap-
pendix 6.2.1 move any complex contour closely encircling the support of µ onto a valid
contour encircling the support of ν; we will in particular be careful that the resulting
contour, in addition to encircling the support of ν, does not encircle additional values
possibly bringing undesired residues (such as 0). We will proceed in two steps, first
showing that a contour encircling µ results on a contour encircling ξ2 and a contour
encircling ξ2 results on a contour encircling ν.

Let us consider a first contour Γξ2 closely around the support of ξ2 (in particular not
containing 0). We have to prove that any point ω of this contour is mapped to a point of
a contour Γν closely around the support of ν.

The change of variable performed in (6.8) reads, for all ω ∈ C \ Supp(ξ2),

z ≡ z(ω) =
−ω

−(1− c∞2 ) + c∞2 ωmξ2(ω)
=

−1

mξ̃2
(ω)

where we recall that ξ̃2 = c∞2 ξ2 + (1− c∞2 )δ0. Since =[ω]=[mξ̃2
(ω)] > 0 for =[ω] 6= 0, we

already have that =[z]=[ω] > 0 for all non-real ω.
It therefore remains to show that real ω’s (outside the support of ξ2) project onto

properly located real z’s (i.e., on either side of the support of ν). This conclusion
follows from the seminal work (Silverstein & Choi, 1995) on the spectral analysis of
sample covariance matrices. The essential idea is to note that, due to (6.7), the relation
z(ω) = −1/mξ̃2

(ω) can be inverted as

ω ≡ ω(z) = − 1

mξ̃2

+ c∞2

∫
tdν(t)

1 + tmξ̃2

= z + c∞2

∫
tdν(t)

1− t
z

.



CHAPTER 6. APPENDIX 105

ω−

ω+

z− z+

Sξ2

Sν

z

ω◦(z)

ω−

ω+

z− z+

Sξ2

Sν

z

ω◦(z)

Figure 6.1: Variable change z 7→ ω◦(z) = z + c∞2
∫ zdν(t)

z−t for c∞2 < 1 (left) and c∞2 > 1
(right). Sθ is the support of the probability measure θ. For 0 < ω− = ω(z−) < inf Supp(ν),
the pre-image z− is necessarily negative for c∞2 > 1.

In (Silverstein & Choi, 1995), it is proved that the image by ω(·) of z(R \ Supp(ξ2))
coincides with the increasing sections of the function ω◦ : R \ Supp(ν) → R, z 7→ ω(z).
The latter being an explicit function, its functional analysis is simple and allows in
particular to properly locate the real pairs (ω, z). Details of this analysis are provided
in (Silverstein & Choi, 1995) as well as in (Couillet et al., 2011), which shall not be
recalled here. The function ω◦ is depicted in Figure 6.1; we observe and easily prove that,
for c∞2 < 1, any two values z− < inf(Supp(ν)) ≤ sup(Supp(ν)) < z+ have respectively
images ω− and ω+ satisfying w− < inf(Supp(ξ2)) ≤ sup(Supp(ξ2)) < w+ as desired. This
is however not the case for c∞2 > 1 where {z−, z+} enclose not only Supp(ν) but also 0
and therefore do not bring a valid contour. This essentially follows from the fact that
(ϕp/ψp)

′(0) is positive for c∞2 < 1 and negative for c∞2 > 1. Even though in Figure 6.1
the support µ is considered compact of one component, the analysis and conclusions
remains true even for several disjoint supports.

The same reasoning now holds for the second variable change. Indeed, note that here

ω = u(1 + c∞1 umµ(u)) = u

(
1− c∞1 −

c∞1
u
mµ−1

(
1

u

))
= −mµ̃−1

(
1

u

)
.

Exploiting (6.3) provides, as above, a functional inverse given here by

u ≡ u(ω) =

(
1

ω
+ c∞1

∫
dξ2(t)

t− ω

)−1

the analysis of which follows the same arguments as above (see display in Figure 6.2 of
the extension to u◦(ω) = u(ω) for all ω ∈ R \ Supp(ξ2)).
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u−

u+

ω− ω+

Sµ

Sξ2

ω

u◦(ω)

u+

u−

ω− ω+

Sµ

Sξ2

ω

u◦(ω)

Figure 6.2: Variable change u◦(ω) = ( 1
ω + c∞1

∫
1
t−ωdξ2(t))−1 for c∞2 < 1 (left) and c∞2 > 1

(right). Sθ is the support of the probability measure θ.

6.2.3 Integral Calculus

To compute the complex integral in theorem 7, note first that, depending on f , several
types of singularities in the integral may arise. Of utmost interest (but not always
exhaustively, as we shall see for f(t) = log(1 + st)) are: (i) the eigenvalues λ̂i of Σ̂−1

1 Σ̂2,
(ii) the non-null values ηi such that ϕp(ηi) = 0, (iii) the values ζi such that ψp(ζi) = 0.

In the following, we first introduce a sequence of intermediary results of interest for
most of the integral calculi.

Rational expansion

At the core of the subsequent analysis is the function
(
ϕ′p(z)

ϕp(z) −
ψ′p(z)

ψp(z)

)
ψp(z)
c2

. As this is a

rational function, we first obtain the following important partial fraction decomposition,
that will be repeatedly used in the sequel:(

ϕ′p(z)

ϕp(z)
−
ψ′p(z)

ψp(z)

)
ψp(z)

c2
(6.10)

=

(
1

p
− c1 + c2 − c1c2

c1c2

) p∑
j=1

1

z − λ̂j
+

1− c2

c2

1

z
+
c1 + c2 − c1c2

c1c2

p∑
j=1

1

z − ηj
.

This form is obtained by first observing that the λ̂j ’s, ηj ’s and 0 are the poles of the

left-hand side expression. Then, pre-multiplying the left-hand side by (z − λ̂j), z, or
(z − ηj) and taking the limit when these terms vanish, we recover the right-hand side,
using in particular the following estimates (which easily entail from the definitions of ϕp
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and ψp):

ϕp(z) =
c1

p

λ̂2
i

λ̂i − z
− 2c1

λ̂i
p

+ λ̂i +
c1

p

∑
j 6=i

λ̂2
i

λ̂j − λ̂i
+O(λ̂i − z)

ϕ′p(z) =
c1

p

λ̂2
i

(λ̂i − z)2
+O(1)

ψp(z) = −c2

p

λ̂i

λ̂i − z
+
c2

p
+ 1− c2 −

c2

p

∑
j 6=i

λ̂i

λ̂j − λ̂i
+O(λ̂i − z)

ψ′p(z) = −c2

p

λ̂i

(λ̂i − z)2
+O(1)

in the vicinity of λ̂i, along with ψp(ηi) = c1+c2−c1c2
c1

and ψp(0) = 1− c2.
To retrieve the constant term of the partial fraction decomposition, we further compute

lim
z→∞

(
ϕ′p(z)

ϕp(z) −
ψ′p(z)

ψp(z)

)
ψp(z)
c2

which is shown to be zero by using the expressions of ϕp(z)

and ψp(z).

From this expression, we have the following immediate corollary.

Remark 13 (Residue for f analytic at λ̂i). If f ◦ (ϕp/ψp) is analytic in a neighborhood

of λ̂i, i.e., if f is analytic in a neighborhood of −(c1/c2)λ̂i, then λ̂i is a first-order pole
for the integrand, leading to the residue

Res(λ̂i) = −f
(
−c1

c2
λ̂i

)[
c1 + c2 − c1c2

c1c2
− 1

p

]
.

Characterization of ηi and ζi, and ϕp/ψp

First note that the ηi (the zeros of ϕp(z)) and ζi (the zeros of ψp(z)) are all real as one
can verify that, for =[z] 6= 0, =[ϕp(z)]=[z] > 0 and =[ψp(z)]=[z] < 0.

Before establishing the properties of ϕp and ψp in the vicinity of ηi and ζi, let us first
locate these values. A study of the function Mp : R→ R, x 7→ xmµp(x) (see Figure 6.3)

reveals that Mp is increasing (since x/(λ̂i − x) = −1 + 1/(λ̂i − x)) and has asymptotes

at each λ̂i with limx↑λ̂iMp(x) =∞ and limx↓λ̂iMp(x) = −∞. As a consequence, since

ϕp(x) = 0 ⇔ Mp(x) = − 1
c1
< −1, there exists exactly one solution to ϕp(x) = 0 in

the set (λ̂i, λ̂i+1). This solution will be subsequently called ηi. Since Mp(x) → −1 as

x → ∞, there exists a last solution to ϕp(x) = 0 in (λ̂p,∞), hereafter referred to as
ηp. Similarly, ψp(x) = 0 ⇔ Mp(x) = (1 − c2)/c2 > 0 and thus there exists exactly one

solution, called ζi in (λ̂i−1, λ̂i). When x → 0, Mp(x) → 0 so that a further solution is

found in (0, λ̂1), called ζ1. Besides, due to the asymptotes at every λ̂i, we have that
ζ1 < λ̂i < η1 < ζ2 < . . . < ηp.

As such, the set Γ defined in Theorem 7 exactly encloses all ηi, λ̂i, and ζi, for
i = 1, . . . , p, possibly to the exception of the leftmost ζ1 and the rightmost ηp (as
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Figure 6.3: Visual representation of x 7→ Mp(x) = xmµp(x); here for p = 4, n1 = 8,
n2 = 16. Solutions to Mp(x) = −1/c1 (i.e., ηi’s) and to Mp(x) = (1− c2)/c2 (i.e., ζi’s)
indicated in red crosses. Green solid lines indicate sets of negative ϕp/ψp.

those are not comprised in a set of the form [λ̂i+1, λ̂i]). To ensure that the latter do
asymptotically fall within the interior of Γ, one approach is to exploit Theorem 7 for the
elementary function f(t) = 1. There we find that

1

2πı

∮
Γν

mν(z)dz − 1

2πı

∮
Γ

(
ϕ′p(z)

ϕp(z)
−
ψ′p(z)

ψp(z)

)
ψp(z)

c2
dz

a.s.−→ 0.

The left integral is easily evaluated by residue calculus and equals −1 (each λi(Σ
−1
1 Σ2),

1 ≤ i ≤ p, is a pole with associated residue −1/p), while the right integral can be computed
from (6.10) again by residue calculus and equals −1 + c1+c2−c1c2

c1c2
(p−#{ηi ∈ Γ◦}) with

Γ◦ the “interior” of Γ. As such, since both integrals are (almost surely) arbitrarily close
in the large p limit, we deduce that #{ηi ∈ Γ◦} = p for all large p and thus, in particular,
ηp is found in the interior of Γ. To obtain the same result for ζ1, note that, from the

relation ψp(z) = c1+c2−c1c2
c1

− c2
c1

ϕp(z)
z along with the fact that

ϕ′p(z)

ϕp(z) −
ψ′p(z)

ψp(z) is an exact

derivative (of log(ϕp/ψp)), the aforementioned convergence can be equivalently written

1

2πı

∮
Γν

mν(z)dz − −1

2πı

∮
Γ

(
ϕ′p(z)

ϕp(z)
−
ψ′p(z)

ψp(z)

)
ϕp(z)

zc1
dz

a.s.−→ 0.

Reproducing the same line of argument (with an expansion of (
ϕ′p(z)

ϕp(z) −
ψ′p(z)

ψp(z))
ϕp(z)
zc1

equivalent to (6.10)), the same conclusion arises and we then proved that both ζ1
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Figure 6.4: Visual representation of the signs of ϕp and ψp around singularities.

and ηp (along with all other ζi’s and ηi’s) are asymptotically found within the interior of
Γ.

One can also establish that, on its restriction to R+, ϕp is everywhere positive but on

the set ∪pi=1(λ̂i, ηi). Similarly, ψp is everywhere positive but on the set ∪pi=1(ζi, λ̂i). As a
consequence, the ratio ϕp/ψp is everywhere positive on R+ but on the set ∪pi=1(ζi, ηi).

These observations are synthesized in Figure 6.4.

In terms of monotonicity on their restrictions to the real axis, since ψp(x) = 1 −
c2

∫
t

t−xdµp(t), ψp is decreasing. As for ϕp, note that

ϕ′p(x) = 1 + 2c1

∫
x

t− x
dµp(t) + c1

∫
x2

(t− x)2
dµp(t)

=

∫
t2 − 2(1− c1)xt+ (1− c1)x2

(t− x)2
dµp(t).

Since c1 < 1, we have 1− c1 > (1− c1)2, and therefore

ϕ′p(x) >

∫
(t− (1− c1)x)2

(t− x)2
dµp(t) > 0

ensuring that ϕp is increasing on its restriction to R.
Showing that x 7→ ϕp(x)/ψp(x) is increasing is important for the study of the case

f(t) = log(1 + st) but is far less immediate. This unfolds from the following remark, also
of key importance in the following.

Remark 14 (Alternative form of ϕp and ψp). It is interesting to note that, in addition
to the zero found at z = 0 for ϕp, we have enumerated all zeros and poles of the rational
functions ϕp and ψp (this can be ensured from their definition as rational functions) and
it thus comes that

ϕp(z) = (1− c1)z

∏p
j=1(z − ηj)∏p
j=1(z − λ̂j)

(6.11)

ψp(z) =

∏p
j=1(z − ζj)∏p
j=1(z − λ̂j)

(6.12)
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where the constants 1 − c1 and 1 are found by observing that, as z = x ∈ R → ∞,
ϕp(x)/x→ 1− c1 and ψp(x)→ 1. In particular

ϕp(z)

ψp(z)
= (1− c1)z

∏p
j=1(z − ηj)∏p
j=1(z − ζj)

. (6.13)

A further useful observation is that the ηi’s are the eigenvalues of

Λ− 1

p− n1

√
λ̂
√
λ̂
T

where Λ = diag({λ̂i}pi=1) and λ̂ = (λ̂1, . . . , λ̂p)
T. Indeed, these eigenvalues are found by

solving

0 = det

Λ−

√
λ̂
√
λ̂
T

p− n1
− xIp


= det(Λ− xIp) det

Ip − (Λ− xIp)−1

√
λ̂
√
λ̂
T

p− n1


= det(Λ− xIp)

(
1− 1

p− n1

√
λ̂
T

(Λ− xIp)−1
√
λ̂

)
= det(Λ− xIp)

(
1− 1

p− n1

p∑
i=1

λ̂i

λ̂i − x

)

which, for x away from the λ̂i (not a solution to ϕp(x) = 0), reduces to 1
p

∑p
i=1

λ̂i
λ̂i−x

=

1− 1
c1

, which is exactly equivalent to mµp(x) = − 1
c1x

, i.e., ϕp(x) = 0.
Similarly, the ζi’s are the eigenvalues of the matrix

Λ− 1

n2

√
λ̂
√
λ̂
T

.

These observations allow for the following useful characterization of ϕp/ψp:

ϕp(z)

ψp(z)
= (1− c1)z

det

(
zIp − Λ− 1

n1−p

√
λ̂
√
λ̂
T
)

det

(
zIp − Λ + 1

n2

√
λ̂
√
λ̂
T
)

= (1− c1)z

(
1− n1 + n2 − p

n2(n1 − p)

√
λ̂
T
(
zIp − Λ +

1

n2

√
λ̂
√
λ̂
T
)−1√

λ̂

)
(after factoring out the matrix in denominator from the determinant in the numerator)
the derivative of which is, after simplification,(

ϕp(z)

ψp(z)

)′
= (1− c1)

(
1 +

n1 + n2 − p
n2(n1 − p)

√
λ̂
T

Q

(
Λ− 1

n2

√
λ̂
√
λ̂
T
)
Q
√
λ̂

)
.
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Figure 6.5: Example of visual representation of ϕp/ψp : R → R, x 7→ ϕp(x)/ψp(x);
here for p = 4, n1 = 8, n2 = 16. In green solid lines are stressed the sets over which
ϕp(x)/ψp(x) < 0 (which correspond to branch cuts in the study of f(z) = logk(z)).
Possible real crossings of the contour Γ are indicated, notably showing that no branch
cut is passed through when f(z) = logk(z).

for Q = (zIp−Λ+ 1
n2

√
λ̂
√
λ̂
T

)−1. Since Λ− 1
n2

√
λ̂
√
λ̂
T

is positive definite (its eigenvalues
being the ζi’s), on the real axis the derivative is greater than 1− c1 > 0 and the function
x 7→ ϕp(x)/ψp(x) is therefore increasing.

Figure 6.5 displays the behavior of ϕp/ψp when restricted to the real axis.

Since we now know that the contour Γ from Theorem 7 encloses exactly all ηi’s and
ζi’s, it is sensible to evaluate the residues for these values when f(z) is analytic in their
neighborhood.

Remark 15 (Residue for f analytic at ηi and ζi). If f is analytic with no singularity at
zero, then the integral has a residue at ηi easily found to be

Res(ηi) = f(0)
c1 + c2 − c1c2

c2
.

Similarly, if f(ω) has a well defined limit as |ω| → ∞, then no residue is found at ζi.

As a consequence of Remarks 13 and 15, we have the following immediate corollary.

Remark 16 (The case f(t) = t). In the case where f(t) = t, a singularity appears at ζi,
which is nonetheless easily treated by noticing that the integrand then reduces to

f

(
ϕp(z)

ψp(z)

)(
ϕ′p(z)

ϕp(z)
−
ψ′p(z)

ψp(z)

)
ψp(z)

c2
=
ϕ′p(z)

c2
−
ψ′p(z)ϕp(z)

c2ψp(z)
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and thus, with ψp(z) = (z − ζi)ψ′p(ζi) +O((z − ζi)2), we easily find the residue

Res{f(t)=t}(ζi) = −ϕp(ζi)
c2

= −ζi
c1 + c2 − c1c2

c2
2

.

Together with Remarks 13 and 15, along with the fact that Γ encloses all ηi and λ̂i, for
i = 1, . . . , p, we then find that∫

tdνp(t)−

[
c1 + c2 − c1c2

c2
2

p∑
i=1

(λ̂i − ζi)−
c1

c2

1

p

p∑
i=1

λ̂i

]
a.s.−→ 0.

By then noticing that
∑

i ζi = tr(Λ− 1
n2

√
λ̂
√
λ̂
T

) = (1− c2/p)
∑

i λ̂i, we retrieve Corol-
lary 2.

Development for f(t) = log(t)

The case f(t) = log(t) leads to an immediate simplification since, then, log det(Σ̂−1
1 Σ̂2) =

log det(Σ̂2)−log det(Σ̂1); one may then use previously established results from the random
matrix literature (e.g., the G-estimators in (Girko, 1987) or more recently (Kammoun
et al., 2013)) to obtain the sought-for estimate. Nonetheless, the full explicit derivation
of the contour integral in this case is quite instructive and, being simpler than the
subsequent cases where f(t) = log2(t) or f(t) = log(1 + st) that rely on the same key
ingredients, we shall here conduct a thorough complex integral calculus.

For z ∈ C, define first f(z) = log(z) where log(z) = log(|z|)ei arg(z), with arg(z) ∈
(−π, π]. For this definition of the complex argument, since ϕp(x)/ψp(x) is everywhere
positive but on ∪pi=1(ζi, ηi), we conclude that arg(ϕp(z)/ψp(z)) abruptly moves from π
to −π as z moves from x + 0+ı to x + 0−ı for all x ∈ ∪pi=1(ζi, ηi). This creates a set
of p branch cuts [ζi, ηi], i = 1, . . . , p as displayed in Figure 6.5. This naturally leads to
computing the complex integral estimate of

∫
fdν based on the contour displayed in

Figure 6.6, which avoids the branch cuts.
This contour encloses no singularity of the integrand and therefore has a null integral.

With the notations of Figure 6.6, the sought-for integral (over Γ) therefore satisfies

0 =

∮
Γ

+

p∑
i=1

(∫
IAi

+

∫
IBi

+

∫
ICi

+

∫
IDi

+

∫
IEi

)
.

We start by the evaluation of the integrals over IBi and IDi , which can be similarly
handled. To this end, note that, since arg(

ϕp
ψp

) moves from π to −π across the branch
cut, we have

1

2πı

∫
IBi

=
1

2πı

∫ λ̂i−ε

ζi+ε

[
log

(
−ϕp(x)

ψp(x)

)
+ ıπ − log

(
−ϕp(x)

ψp(x)

)
+ ıπ

]
×
(
ϕ′p(x)

ϕp(x)
−
ψ′p(x)

ψp(x)

)
ψp(x)

c2
dx
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Figure 6.6: Chosen integration contour. The set IBi is the disjoint union of the segments
[ζi + ε + 0+ı, λ̂i − ε + 0+ı] and [ζi + ε + 0−ı, λ̂i − ε + 0−ı]. Similarly the set IDi is the
disjoint union of the segments [λ̂i + ε+ 0+ı, ηi − ε+ 0+ı] and [λ̂i + ε+ 0−ı, ηi − ε+ 0−ı].
The sets IAi , ICi and IEi are the disjoint unions of semi-circles (in the upper- or lower-half
complex plane) of diameters ε surrounding ζi, λ̂i and ηi respectively.

=

∫ λ̂i−ε

ζi+ε

(
ϕ′p(x)

ϕp(x)
−
ψ′p(x)

ψp(x)

)
ψp(x)

c2
dx.

We first exploit the rational form expansion (6.10) of (
ϕ′p(z)

ϕp(z) −
ψ′p(z)

ψp(z))
ψp(x)
c2

to obtain

the integral over IBi

1

2πı

∫
IBi

=

(
1

p
− c1 + c2 − c1c2

c1c2

)∑
j 6=i

log

∣∣∣∣∣ λ̂i − λ̂jζi − λ̂j

∣∣∣∣∣+ log

∣∣∣∣ ε

ζi − λ̂i

∣∣∣∣


+
1− c2

c2
log

λ̂i
ζi

+
c1 + c2 − c1c2

c1c2

p∑
j=1

log

∣∣∣∣∣ λ̂i − ηjζi − ηj

∣∣∣∣∣+ o(ε).

The treatment is similar for the integral over IDi which results, after summation of
both integrals, to

1

2πı

∫
IBi ∪IDi

=

(
1

p
− c1 + c2 − c1c2

c1c2

) p∑
j=1

log

∣∣∣∣∣ηi − λ̂jζi − λ̂j

∣∣∣∣∣+
1− c2

c2
log

ηi
ζi

+
c1 + c2 − c1c2

c1c2

∑
j 6=i

log

∣∣∣∣ηi − ηjζi − ηj

∣∣∣∣+ log

∣∣∣∣ ε

ζi − ηi

∣∣∣∣
+ o(ε).

Note here the asymmetry in the behavior of the integrand in the neighborhood of ζi (+ε)
and ηi (−ε); in the former edge, the integral is well defined while in the latter it diverges
as log ε which must then be maintained.
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Summing now over i ∈ {1, . . . , p}, we recognize a series of identities. In particular,
note that from the product form (6.13),

p∑
j=1

p∑
i=1

log

∣∣∣∣∣ηi − λ̂jζi − λ̂j

∣∣∣∣∣ =

p∑
j=1

log

∣∣∣∣∣∣
ψp
ϕp

(λ̂j)

(1− c1)λ̂j

∣∣∣∣∣∣
= log

(
c1

c2(1− c1)

)
p∑
j=1

log
ηi
ζi

= lim
z→0

log

 ψp
ϕp

(z)

(1− c1)z


= − log ((1− c1)(1− c2))

p∑
i=1

∑
j 6=i

log

∣∣∣∣ηi − ηjζi − ηj

∣∣∣∣+

p∑
i=1

log

∣∣∣∣ 1

ζi − ηi

∣∣∣∣ = lim
z→ηi

p∑
j=1

log

∣∣∣∣∣∣
ψp
ϕp

(z)

(1− c1)z(z − ηj)

∣∣∣∣∣∣
=

p∑
j=1

log

∣∣∣∣∣∣∣
(
ψp
ϕp

)′
(ηj)

(1− c1)ηj

∣∣∣∣∣∣∣ .
As such, we now find that

1

2πı

p∑
i=1

∫
IBi ∪IDi

= log

(
c1

c2(1− c1)

)
− 1− c2

c2
log ((1− c1)(1− c2))

− c1 + c2 − c1c2

c1c2

p log

(
c1

c2(1− c1)

)
−

p∑
j=1

log

∣∣∣∣∣∣∣
(
ψp
ϕp

)′
(ηj)

(1− c1)ηj

∣∣∣∣∣∣∣


+
c1 + c2 − c1c2

c1c2
p log ε+ o(ε).

The diverging term in log ε is compensated by the integral over IEi . Indeed, letting
z = ηi + εeiθ, we may write

1

2πı

∫
IEi

log

(
ϕp(z)

ψp(z)

)(
ϕ′p(z)

ϕp(z)
−
ψ′p(z)

ψp(z)

)
ψ(z)

c2
dz

=
ε

2πc2

[∫ 0+

π
+

∫ −π
0−

]
log

(
(1− c1)(ηi + εeiθ)

∏p
j=1(ηi − ηj + εeiθ)∏p
j=1(ηi − ζj + εeiθ)

)

×

 p∑
j=1

1
p −

c1+c2−c1c2
c1c2

ηi + εeıθ − λ̂j
+

1−c2
c2

ηi + εeıθ
+

p∑
j=1

c1+c2−c1c2
c1c2

ηi + εeıθ − ηj

 eiθdθ.

To evaluate the small ε limit of this term, first remark importantly that, for small ε, the
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term in the logarithm equals

(1− c1)
ηi

ηi − ζi

∏
j 6=i(ηi − ηj)∏
j 6=i(ηi − ζj)

εeiθ + o(ε)

the argument of which equals that of θ. As such, on the integral over (π, 0), the log term
reads log | · |+ ıθ + o(ε), while on (0,−π), it reads log | · | − ıθ + o(ε). With this in mind,
keeping only the non-vanishing terms in the small ε limit (that is: the term in log ε and
the term in 1

ε ) leads to

1

2πı

∫
IEi

log

(
ϕp(z)

ψp(z)

)(
ϕ′p(z)

ϕp(z)
−
ψ′p(z)

ψp(z)

)
ψ(z)

c2
dz

=
c1 + c2 − c1c2

c1c2
log ε+

c1 + c2 − c1c2

c1c2
log

∣∣∣∣(ϕpψp
)′

(ηi)

∣∣∣∣+ o(ε)

where we used the fact that limε→0
1
εeıθ

(
ϕp
ψp

)
(ηi + εeıθ) =

(
ϕp
ψp

)′
(ηi).

We proceed similarly to handle the integral over ICi

1

2πı

∫
ICi

log

(
ϕp(z)

ψp(z)

)(
ϕ′p(z)

ϕp(z)
−
ψ′p(z)

ψp(z)

)
ψ(z)

c2
dz

=
ε

2πc2

[∫ 0+

π
+

∫ −π
0−

]
log

(
(1− c1)(λ̂i + εeiθ)

∏p
j=1(λ̂i − ηj + εeiθ)∏p
j=1(λ̂i − ζj + εeiθ)

)

×

 p∑
j=1

1
p −

c1+c2−c1c2
c1c2

λ̂i + εeıθ − λ̂j
+

1−c2
c2

λ̂i
+ εeıθ +

p∑
j=1

c1+c2−c1c2
c1c2

λ̂i + εeıθ − ηj

 eiθdθ.

Here, for small ε, the angle of the term in the argument of the logarithm is that of

ϕp
ψp

(λ̂i) +

(
ϕp
ψp

)′
(λ̂i)εe

ıθ + o(ε)

= −c1

c2
λ̂i + εeıθ

c1

c2

(
p
c1 + c2 − c1c2

c1c2
− 1

)
+ o(ε).

That is, for all large p, the argument equals π + o(ε) < π uniformly on θ ∈ (0, π)
and −π + o(ε) > −π uniformly on θ ∈ (−π, 0); thus the complex logarithm reads
log | · |+ ıθ + o(ε) on (π, 0), while on (0,−π), it reads log | · | − ıθ + o(ε). Proceeding as
previously for the integral over IEi , we then find after calculus that

1

2πı

∫
ICi

log

(
ϕp(z)

ψp(z)

)(
ϕ′p(z)

ϕp(z)
−
ψ′p(z)

ψp(z)

)
ψ(z)

c2
dz

=

(
c1 + c2 − c1c2

c1c2
− 1

p

)
log

(
c1

c2
λ̂i

)
.
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Figure 6.7: Visual representation of the signs of ϕp and ψp around singularities for the

function f(t) = log(1 + st). Left: case where κi > λ̂i. Right: case where κi > λ̂i.

Note that this expression is reminiscent of a “residue” at λ̂i (with negatively oriented
contour), according to Remark 13, however for the function log | · | and not for the
function log(·), due to the branch cut passing through λ̂i.

The final integral over IAi is performed similarly. However, here, it is easily observed
that the integral is of order O(ε log ε) in the small ε limit, and thus vanishes.

Finally, summing up all contributions, we have

1

2πı

∮
Γ

= −
p∑
i=1

1

2πı

(∫
IAi

+

∫
IBi

+

∫
ICi

+

∫
IDi

+

∫
IEi

)

= − log

(
c1(1− c2)

c2

)
+

1

c2
log((1− c1)(1− c2)) +

1

p

p∑
i=1

log

(
c1

c2
λ̂i

)

− c1 + c2 − c1c2

c1c2

(
p log(1− c1) +

p∑
i=1

log λ̂i −
p∑
i=1

log((1− c1)ηi)

)

= − log(1− c2) +
1

c2
log((1− c1)(1− c2)) +

1

p

p∑
i=1

log λ̂i

+
c1 + c2 − c1c2

c1c2

p∑
i=1

log

(
ηi

λ̂i

)

=
1

p

p∑
i=1

log λ̂i +
1− c2

c2
log(1− c2)− 1− c1

c1
log(1− c1)

where in the last equality we used, among other algebraic simplifications, the fact that∑p
i=1 log( ηi

λ̂i
) = limx→0 log(

ψp(x)
(1−c1)x) = − log(1− c1). This is the sought-for result.

Development for f(t) = log(1 + st)

The development for f(t) = log(1 + st) is quite similar to that of f(t) = log(t), with
some noticeable exceptions with respect to the position of singularity points.

A few important remarks are in order to start with this scenario. First note from
Figure 6.4 and the previous discussions that the function z 7→ log(1+sϕp(z)/ψp(z)) has a
singularity at z = κi, i = 1, . . . , p, for some κi ∈ (ζi, ηi) solution to 1 + sϕp(x)/ψp(x) = 0
(indeed, ϕp(x)/ψp(x) is increasing on (ζi, ηi) with opposite asymptotes and thus κi exists
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and is uniquely defined). In addition, log(1 + sϕp(z)/ψp(z)) has a further singularity
satisfying 1 + sϕp(x)/ψp(x) = 0 in the interval (−∞, 0) which we shall denote κ0.

A few identities regarding κi are useful. Using the relation between ϕp and ψp, we
find in particular that

ϕp(κi) = −1

s

c1 + c2 − c1c2

c2

κi

−1
s + c1

c2
κi

ψp(κi) =
c1 + c2 − c1c2

c2

κi

−1
s + c1

c2
κi

(ψp + sϕp)

(
c2

c1s

)
=
c1 + c2 − c1c2

c1
.

With the discussions above, we also find that

1 + s
ϕp(z)

ψp(z)
= (1− c1)s(z − κ0)

∏p
i=1(z − κi)∏p
i=1(z − ζi)

(6.14)

ψp(z) + sϕp(z) = s(1− c1)(z − κ0)

∏p
i=1(z − κi)∏p
i=1(z − λ̂i)

. (6.15)

Note now importantly that λ̂i >
c1
c2s

is equivalent to − c2
c1
λ̂i < −1

s which is also

ϕp(λ̂i)/ψp(λ̂i) < ϕp(κi)/ψp(κi); then, as ϕp/ψp is increasing, λ̂i >
c1
c2s

is equivalent to

λ̂i < κi. On the opposite, for λ̂i <
c1
c2s

, we find λ̂i > κi. As such, to evaluate the contour
integral in this setting, one must isolate two sets of singularities (see Figure 6.7): (i) those
for which κi > λ̂i (which are all the largest indices i for which λ̂i >

c1
c2s

) and (ii) those

for which κi < λ̂i. This affects the relative position of the branch cut with respect to λ̂i
and therefore demands different treatments. In particular, the integrals over IBi and IDi
may be restricted to integrals over shorter (possibly empty) segments. Nonetheless, the
calculus ultimately reveals that, since the branch cut does not affect the local behavior of
the integral around λ̂i, both cases entail the same result. In particular, in case (i) where
λ̂i > κi, recalling (6.10), one only has to evaluate∫ κi−ε

ζi+ε

(
ϕ′p(x)

ϕp(x)
−
ψ′p(x)

ψp(x)

)
ψp(x)

c2
dx

=

∫ κi−ε

ζi+ε

(
1

p
− c1 + c2 − c1c2

c1c2

) p∑
j=1

1

x− λ̂j
+

1− c2

c2

1

x

+
c1 + c2 − c1c2

c1c2

p∑
j=1

1

x− ηj
dx

=
1

p

p∑
j=1

log

∣∣∣∣∣κi − λ̂jζi − λ̂j

∣∣∣∣∣+
c1 + c2 − c1c2

c1c2

p∑
j=1

(
log

∣∣∣∣∣κi − ηjκi − λ̂j

∣∣∣∣∣− log

∣∣∣∣∣ ζi − ηjζi − λ̂j

∣∣∣∣∣
)

+
1− c2

c2
log

∣∣∣∣κiζi
∣∣∣∣+ o(ε).
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In case (ii), subdividing the integral as
∫ λ̂i−ε
ζi+ε

+
∫ κi−ε
λ̂i+ε

brings immediate simplification of

the additional terms in λ̂i and thus the result remains the same.
The integral over ICi is slightly more delicate to handle. In case (i), in the limit of

small ε,

1 + s
ϕp
ψp

(λ̂i + εeiθ) = 1− sc1

c2
λ̂i + εs

c1

c2

(
p
c1 + c2 − c1c2

c1c2
− 1

)
eiθ + o(ε)

the angle of which is 0 + o(ε) uniformly on θ ∈ (−π, π] (since 1− s c1c2 λ̂i > 0). As such,
for all small ε, the sum of the integrals over (−π, 0) and (0, π] reduces to the integral
over (−π, π], leading up to a mere residue calculus, and

1

2πı

∮
ICi

log

(
1 + s

ϕp(z)

ψp(z)

)(
ϕ′p(z)

ϕp(z)
−
ψ′p(z)

ψp(z)

)
ψp(z)

c2
dz

= log

(
1− sc1

c2
λ̂i

)(
c1 + c2 − c1c2

c1c2
− 1

p

)
+ o(ε).

In case (ii), 1 − s c1c2 λ̂i < 0 and thus the angle of 1 + s
ϕp
ψp

(λ̂i + εeiθ) is close to π; for

θ ∈ (0, π), this leads to an argument equal to π + o(ε) < π and for θ ∈ (−π, 0) to an
argument equal to −π+o(ε) > −π. All calculus made, we then find that in either case (i)
or (ii)

1

2πı

∮
ICi

log

(
1 + s

ϕp(z)

ψp(z)

)(
ϕ′p(z)

ϕp(z)
−
ψ′p(z)

ψp(z)

)
ψp(z)

c2
dz

= log

∣∣∣∣1− sc1

c2
λ̂i

∣∣∣∣ (c1 + c2 − c1c2

c1c2
− 1

p

)
+ o(ε).

As in the case of f(t) = log(t), the integral over IAi is of order o(ε) and vanishes. As
a consequence, summing over i ∈ {1, . . . , p}, we find that

1

2πı

∮
Γ

= −1

p

p∑
i,j=1

log

∣∣∣∣∣κi − λ̂jζi − λ̂j

∣∣∣∣∣− 1− c2

c2

p∑
i=1

log
κi
ζi

+
c1 + c2 − c1c2

c1c2

p∑
i,j=1

(
log

∣∣∣∣∣ ζi − ηjζi − λ̂j

∣∣∣∣∣− log

∣∣∣∣∣κi − ηjκi − λ̂j

∣∣∣∣∣
)

−
(
c1 + c2 − c1c2

c1c2
− 1

p

) p∑
i=1

log

∣∣∣∣1− sc1

c2
λ̂j

∣∣∣∣+ o(ε).

Before reaching the final result, note that, from (6.14),

p∑
i=1

1

p

p∑
j=1

log
|κi − λ̂j |
|ζi − λ̂j |
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=
1

p

p∑
j=1

log

∣∣∣∣∣
(

1 + s
ϕp(λ̂j)

ψp(λ̂j)

)
1

λ̂j − κ0

1

(1− c1)s

∣∣∣∣∣
=

1

p

p∑
j=1

log

∣∣∣∣1− c1

c2
sλ̂i

∣∣∣∣− 1

p

p∑
j=1

log(λ̂j − κ0)− log((1− c1)s)

and similarly

p∑
i,j=1

log

∣∣∣∣∣ ζi − ηjζi − λ̂j

∣∣∣∣∣ =

p∑
i=1

log

∣∣∣∣ ϕp(ζi)

(1− c1)ζi

∣∣∣∣ = p log

∣∣∣∣c1 + c2 − c1c2

c2(1− c1)

∣∣∣∣
p∑

i,j=1

log

∣∣∣∣∣κi − ηjκi − λ̂j

∣∣∣∣∣ =

p∑
i=1

log

∣∣∣∣ ϕp(κi)

(1− c1)κi

∣∣∣∣ =

p∑
i=1

log

∣∣∣∣∣c1 + c2 − c1c2

c2(1− c1)

1

1− c1
c2s
κi

∣∣∣∣∣
p∑
i=1

log
κi
ζi

= log

(
1 + s

ϕp
ψp

(0)

−(1− c1)sκ0

)
= − log (−(1− c1)sκ0) .

Using now (6.15), we find that

p∑
i=1

log

(
1− s c1c2 λ̂i
1− s c1c2κi

)
=

p∑
i=1

log

(
c2
c1s
− λ̂i

c2
c1s
− κi

)
= log

ψp
(
c2
c1s

)
+ sϕp

(
c2
c1s

)
s(1− c1)

(
c2
c1s
− κ0

)


= log

 c1 + c2 − c1c2

sc1(1− c1)
(
c2
c1s
− κ0

)
 .

Combining the previous results and remarks then leads to

1

2πı

∮
Γ

=
c1 + c2 − c1c2

c1c2
log

(
c1 + c2 − c1c2

(1− c1)(c2 − sc1κ0)

)
+

1− c2

c2
log (−sκ0(1− c1)) + log((1− c1)s) +

1

p

p∑
i=1

log(λ̂i − κ0)

=
c1 + c2 − c1c2

c1c2
log

(
c1 + c2 − c1c2

(1− c1)(c2 − sc1κ0)

)
+

1

c2
log (−sκ0(1− c1))

+
1

p

p∑
i=1

log

(
1− λ̂i

κ0

)
.

This concludes the proof for the case c1 > 0. In the limit where c1 → 0, it suffices to
use the Taylor expansion of the leftmost logarithm in the small c1 limit (i.e., log(c2(1−
c1) + c1) ∼ log(c2(1 − c1)) + c1/(c2(1 − c1)) and log(c2(1 − c1) − sc1κ0(1 − c1)) ∼
log(c2(1− c1))− sc1κ0/c2).
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Development for f(t) = log2(t)

The function f(t) = log2(t) is at the core of the Fisher distance and is thus of prime
importance in many applications. The evaluation of the complex integral in Theorem 7
for this case is however quite technical and calls for the important introduction of the
dilogarithm function. We proceed with this introduction first and foremost.

The dilogarithm function The (real) dilogarithm is defined as the function

Li2(x) = −
∫ x

0

log(1− u)

u
du.

for x ∈ (−∞, 1].
The dilogarithm function will intervene in many instances of the evaluation of the

contour integral of Theorem 7, through the subsequently defined function F (X,Y ; a).
This function assumes different formulations depending on the relative position of X,Y, a
on the real axis.

Lemma 2 (Dilogarithm integrals). We have the following results and definition

(X,Y ≥ a > 0)

∫ X

Y

log(x− a)

x
dx ≡ F (X,Y ; a)

= Li2

( a
X

)
− Li2

( a
Y

)
+

1

2

[
log2(X)− log2(Y )

]
(X,Y > 0 > a)

∫ X

Y

log(x− a)

x
dx ≡ F (X,Y ; a)

= −Li2

(
X

a

)
+ Li2

(
Y

a

)
+ log

(
X

Y

)
log(−a)

(a > X, Y, 0 & XY > 0)

∫ X

Y

log(a− x)

x
dx ≡ F (−X,−Y ;−a)

= −Li2

(
X

a

)
+ Li2

(
Y

a

)
+ log

(
X

Y

)
log(a)

(X,Y > 0)

∫ X

Y

log(x)

x
dx ≡ F (X,Y ; 0)

=
1

2
log2(X)− 1

2
log2(Y ).

Lemma 3 (Properties of Dilogarithm functions (Zagier, 2007, Section I-2)). The following
relations hold

(x < 0) Li2

(
1

x

)
+ Li2(x) = −1

2
log2(−x)− π2

6

(0 < x < 1) Li2(1− x) + Li2(x) = − log(x) log(1− x) +
π2

6
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(0 < x < 1) Li2(1− x) + Li2

(
1− 1

x

)
= −1

2
log2(x).

Besides, for x < 1 and ε > 0 small,

Li2(x+ ε) = Li2(x)− ε log(1− x)

x
+ ε2 (1− x) log(1− x) + x

2(1− x)x2
+O(ε3).

Integral evaluation As in the case where f(t) = log(t), we shall evaluate the complex
integral based on the contour displayed in Figure 6.6. The main difficulty here arises in
evaluating the real integrals over the segments IBi and IDi .

Again, we start from the Equation (6.10). In particular, the integral over IBi reads

1

2πı

∫
IBi

log2

(
ϕp(z)

ψp(z)

)(
ϕ′p(z)

ϕp(z)
−
ψ′p(z)

ψp(z)

)
ψp(z)

c2
dz

= 2

∫ λ̂i−ε

ζi+ε
log

(
−ϕp(x)

ψp(x)

)(
ϕ′p(x)

ϕp(x)
−
ψ′p(x)

ψp(x)

)
ψp(x)

c2
dx

= 2

∫ λ̂i−ε

ζi+ε

(
log(1− c1) + log(x) +

∑
l<i

log(x− ηl)

+
∑
l>i

log(ηl − x) + log(ηi − x)−
∑
l≤i

log(x− ζl)−
∑
l>i

log(ζl − x)


×

(1

p
− c1 + c2 − c1c2

c1c2

) p∑
j=1

1

x− λ̂j
+

1− c2

c2

1

x
+
c1 + c2 − c1c2

c1c2

p∑
j=1

1

x− ηj

 dx.

Note that above we have specifically chosen to write the logarithms in such a way that
every integral is a well-defined real integral.

Using now the fact that∫ X

Y

log(x− a)

x− b
dx = F (X − b, Y − b; a− b),

∫ X

Y

log(a− x)

x− b
dx = F (b−X, b− Y ; b− a)

that we apply repetitively (and very carefully) to the previous equality, we find that the
sum of the integral of IBi and IDi gives

1

2πı

[∫
IBi

+

∫
IDi

]
log2

(
ϕp(z)

ψp(z)

)(
ϕ′p(z)

ϕp(z)
−
ψ′p(z)

ψp(z)

)
ψp(z)

c2
dz

= 2

[∫ λ̂i−ε

ζi+ε
+

∫ ηi−ε

λ̂i+ε

]
log

(
−ϕp(x)

ψp(x)

)(
ϕ′p(x)

ϕp(x)
−
ψ′p(x)

ψp(x)

)
ψp(x)

c2
dx

= 2

(
1

p
− c1 + c2 − c1c2

c1c2

)log(1− c1)
∑
j 6=i

log

∣∣∣∣∣ηi − λ̂jζi − λ̂j

∣∣∣∣∣
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+F (−ε, ζi − λ̂i + ε;−λ̂i) + F (ηi − λ̂i − ε, ε;−λ̂i)

+
∑
j 6=i

F (ηi − λ̂j , ζi − λ̂j ;−λ̂j)

+
∑
l<i

∑
j 6=(i,l)

F (ηi − λ̂j , ζi − λ̂j ; ηl − λ̂j)− F (ηi − λ̂j , ζi − λ̂j ; ζl − λ̂j)

+
∑
l<i

F (ηi − λ̂l, ζi − λ̂l; ηl − λ̂l)− F (ηi − λ̂l, ζi − λ̂l; ζl − λ̂l)

+
∑
l<i

F (−ε, ζi − λ̂i + ε; ηl − λ̂i) + F (ηi − λ̂i − ε, ε; ηl − λ̂i)

−
∑
l<i

F (−ε, ζi − λ̂i + ε; ζl − λ̂i) + F (ηi − λ̂i − ε, ε; ζl − λ̂i)

+
∑
l>i

∑
j 6=(i,l)

F (−ηi + λ̂j ,−ζi + λ̂j ;−ηl + λ̂j)− F (−ηi + λ̂j ,−ζi + λ̂j ;−ζl + λ̂j)

+
∑
l>i

F (−ηi + λ̂l,−ζi + λ̂l;−ηl + λ̂l)− F (−ηi + λ̂l,−ζi + λ̂l;−ζl + λ̂l)

+
∑
l>i

F (ε,−ζi + λ̂i − ε;−ηl + λ̂i) + F (−ηi + λ̂i + ε,−ε;−ηl + λ̂i)

−
∑
l>i

F (ε,−ζi + λ̂i − ε;−ζl + λ̂i) + F (−ηi + λ̂i + ε,−ε;−ζl + λ̂i)

+
∑
j 6=i

F (−ηi + λ̂j ,−ζi + λ̂j ;−ηi + λ̂j)− F (ηi − λ̂j , ζi − λ̂j ; ζi − λ̂j)

+F (ε, λ̂i − ζi − ε; λ̂i − ηi) + F (λ̂i − ηi + ε,−ε; λ̂i − ηi)

−F (−ε, ζi − λ̂i + ε; ζi − λ̂i)− F (ηi − λ̂i − ε, ε; ζi − λ̂i)
)

+ 2
1− c2

c2

(
log(1− c1) log

(
ηi
ζi

)
+ F (ηi, ζi; 0) + F (−ηi,−ζi;−ηi)− F (ηi, ζi; ζi)

+
∑
l<i

F (ηi, ζi; ηl)− F (ηi, ζi; ζl) +
∑
l>i

F (−ηi,−ζi;−ηl)− F (−ηi,−ζi;−ζl)

)

+ 2
c1 + c2 − c1c2

c1c2

log(1− c1)
∑
j 6=i

log

(
ηi − ηj
ζi − ηj

)
+
∑
j 6=i

F (ηi − ηj , ζi − ηj ;−ηj)

+
∑
j 6=(i,l)

∑
l<i

F (ηi − ηj , ζi − ηj ; ηl − ηj) +
∑
j 6=(i,l)

∑
l>i

F (−ηi + ηj ,−ζi + ηj ;−ηl + ηj)

+
∑
j 6=i

F (−ηi + ηj ,−ζi + ηj ;−ηi + ηj)−
∑
j 6=(i,l)

∑
l<i

F (ηi − ηj , ζi − ηj ; ζl − ηj)

−
∑
j 6=(i,l)

∑
l>i

F (−ηi + ηj ,−ζi + ηj ;−ζl + ηj)−
∑
j 6=i

F (ηi − ηj , ζi − ηj ; ζi − ηj)
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+ log(1− c1) log

(
ε

ηi − ζi

)
+
∑
l<i

F (−ε, ζi − ηi + ε; ηl − ηi)− F (−ε, ζi − ηi + ε; ζl − ηi)

+
∑
l>i

F (ε, ηi − ζi − ε; ηi − ηl)− F (ε, ηi − ζi − ε; ηi − ζl)

+F (ε,−ζi + ηi − ε, ε)− F (−ε, ζi − ηi + ε, ζi − ηi) + F (−ε, ζi − ηi + ε,−ηi)

+
∑
l<i

F (ηi − ηl, ζi − ηl; 0) +
∑
l>i

F (−ηi + ηl,−ζi + ηl; 0)

−
∑
l<i

F (ηi − ηl, ζi − ηl; ζl − ηl)−
∑
l>i

F (−ηi + ηl,−ζi + ηl;−ζl + ηl)

)

+ 2

(
1

p
− c1 + c2 − c1c2

c1c2

)
log(1− c1) log

(
ηi − λ̂i
λ̂i − ζi

)
+ oε(1).

To retrieve the expression above, particular care was taken on the relative positions of
the λ̂i,j,l, ηi,j,l and ζi,j,l to obtain the proper form of the F function; besides, to avoid
further complications, a small ε approximation was used whenever the F function has a
finite limit when ε→ 0 (hence the trailing oε(1) in the formula).

To go further, we now make use of the following additional identities obtained from
Lemma 3 (these are easily proved).

Lemma 4 (Properties of the function F ). We have the following properties of the
function F :

(X ≥ Y > 0) F (−X,−Y ;−X)− F (X,Y ;Y ) =
1

2
log2

(
X

Y

)
(Y ≥ X > 0) F (X,Y ;X)− F (−X,−Y ;−Y ) =

1

2
log2

(
X

Y

)
(X,Y > 0) F (−X + ε,−ε;−X) + F (ε, Y − ε;−X)

− F (X − ε, ε;−Y )− F (−ε,−Y + ε;−Y )

= −π
2

2
+

1

2
log2

(
X

Y

)
+ oε(1)

(T,Z ≥ X,Y > 0) F (−ε,−Y + ε;−T ) + F (X − ε, ε;−T )

− F (−ε,−Y + ε;−Z)− F (X − ε, ε;−Z)

+ F (T,Z;−X)− F (T,Z;Y )

= log

(
X

Y

)
log

(
T

Z

)
+ oε(1)

(T,Z ≥ X,Y > 0) F (ε,−Y − ε;−T ) + F (−X + ε,−ε;−T )

− F (ε,X − ε;−Z)− F (−Y + ε,−ε;−Z)

+ F (T,Z;X)− F (T,Z;−Y )

= log

(
X

Y

)
log

(
T

Z

)
+ oε(1)
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(X,Y, Z, T > 0) F (X,Y ;T ) + F (T,Z;X)− F (X,Y ;Z)− F (T,Z;Y )

= log

(
X

Y

)
log

(
T

Z

)
(XY > 0 & ZT > 0) F (X,Y ;−Z) + F (Z, T ;−X)− F (X,Y ;−T )− F (Z, T ;−Y )

= log

(
X

Y

)
log

(
T

Z

)
(Y,Z > 0 & εX > 0) F (ε,X;−Y ) + F (ε,X;−Z)− F (Y,Z;−X)

= log
( ε
X

)
log

(
Y

Z

)
+

1

2
log2(Z)− 1

2
log2(Y ).

Exploiting the relations from the previous lemma, we have the following first result:

p∑
i=1

F (−ε, ζi − λ̂i + ε;−λ̂i) + F (ηi − λ̂i − ε, ε;−λ̂i)

=

p∑
i=1

Li2

(
1− ζi

λ̂i

)
− Li2

(
1− ηi

λ̂i

)
+ log(λ̂i) log

(
ηi − λ̂i
λ̂i − ζi

)

The terms involving double or triple sums (over i, l or i, j, l) are more subtle to handle.
By observing that

∑
i

∑
l>iGil =

∑
l

∑
i<lGil which, up to a switch in the notation (i, l)

into (l, i), is the same as
∑

i

∑
l<iGli, we have that∑

i

∑
l>i

Gil +
∑
i

∑
l<i

Gil =
∑
i

∑
l>i

Gil +Gli.

Using this observation to gather terms together, we find notably from Lemma 4 that∑
i

∑
l<i

∑
j 6=(i,l)

F (ηi − λ̂j , ζi − λ̂j ; ηl − λ̂j)− F (ηi − λ̂j , ζi − λ̂j ; ζl − λ̂j)

+
∑
i

∑
l>i

∑
j 6=(i,l)

F (−ηi + λ̂j ,−ζi + λ̂j ;−ηl + λ̂j)− F (−ηi + λ̂j ,−ζi + λ̂j ;−ζl + λ̂j)

=
∑
i

∑
l<i

∑
j 6=(i,l)

log

(
λ̂j − ηi
λ̂j − ζi

)
log

(
λ̂j − ηl
λ̂j − ζl

)

=
1

2

∑
i

∑
l 6=i

∑
j 6=(i,l)

log

(
λ̂j − ηi
λ̂j − ζi

)
log

(
λ̂j − ηl
λ̂j − ζl

)

Similarly,∑
i

∑
l<i

F (−ε, ζi − λ̂i + ε; ηl − λ̂i) + F (ηi − λ̂i − ε, ε; ηl − λ̂i)

−
∑
i

∑
l<i

F (−ε, ζi − λ̂i + ε; ζl − λ̂i) + F (ηi − λ̂i − ε, ε; ζl − λ̂i)
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+
∑
i

∑
l>i

F (−ηi + λ̂l,−ζi + λ̂l;−ηl + λ̂l)− F (−ηi + λ̂l,−ζi + λ̂l;−ζl + λ̂l)

=
∑
i

∑
l<i

F (−ε, ζi − λ̂i + ε; ηl − λ̂i) + F (ηi − λ̂i − ε, ε; ηl − λ̂i)

−
∑
i

∑
l<i

F (−ε, ζi − λ̂i + ε; ζl − λ̂i) + F (ηi − λ̂i − ε, ε; ζl − λ̂i)

+
∑
i

∑
l<i

F (−ηl + λ̂i,−ζl + λ̂i;−ηi + λ̂i)− F (−ηl + λ̂i,−ζl + λ̂i;−ζi + λ̂i)

=
∑
i

∑
l<i

log

(
ηi − λ̂i
ζi − λ̂i

)
log

(
λ̂i − ηl
λ̂i − ζl

)
+ oε(1)

and, symmetrically,∑
i

∑
l>i

F (ε,−ζi + λ̂i − ε;−ηl + λ̂i) + F (−ηi + λ̂i + ε,−ε;−ηl + λ̂i)

−
∑
i

∑
l>i

F (ε,−ζi + λ̂i − ε;−ζl + λ̂i) + F (−ηi + λ̂i + ε,−ε;−ζl + λ̂i)

+
∑
i

∑
l<i

F (ηi − λ̂l, ζi − λ̂l; ηl − λ̂l)− F (ηi − λ̂l, ζi − λ̂l; ζl − λ̂l)

=
∑
i

∑
l>i

F (ε,−ζi + λ̂i − ε;−ηl + λ̂i) + F (−ηi + λ̂i + ε,−ε;−ηl + λ̂i)

−
∑
i

∑
l>i

F (ε,−ζi + λ̂i − ε;−ζl + λ̂i) + F (−ηi + λ̂i + ε,−ε;−ζl + λ̂i)

+
∑
i

∑
l>i

F (ηl − λ̂i, ζl − λ̂i; ηi − λ̂i)− F (ηl − λ̂i, ζl − λ̂i; ζi − λ̂i)

=
∑
i

∑
l>i

log

(
ηi − λ̂i
ζi − λ̂i

)
log

(
λ̂i − ηl
λ̂i − ζl

)
+ oε(1).

Also, using Items 1 and 2 of Lemma 4, we find∑
i

∑
j 6=i

F (−ηi + λ̂j ,−ζi + λ̂j ;−ηi + λ̂j)− F (ηi − λ̂j , ζi − λ̂j ; ζi − λ̂j)

=
∑
i

∑
j 6=i

1

2
log2

(
λ̂j − ηi
λ̂j − ζi

)
.

Again from Lemma 4, we also have

F (ε, λ̂i − ζi − ε; λ̂i − ηi) + F (λ̂i − ηi + ε,−ε; λ̂i − ηi)
− F (−ε, ζi − λ̂i + ε; ζi − λ̂i)− F (ηi − λ̂i − ε, ε; ζi − λ̂i)

= −π
2

2
+

1

2
log2

(
ηi − λ̂i
λ̂i − ζi

)
.
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Before going further, remark that the last four established relations can be assembled to
reach∑

j 6=i
F (ηi − λ̂j , ζi − λ̂j ;−λ̂j) +

∑
l<i

∑
j 6=(i,l)

F (ηi − λ̂j , ζi − λ̂j ; ηl − λ̂j)

−F (ηi − λ̂j , ζi − λ̂j ; ζl − λ̂j)

+
∑
l<i

F (ηi − λ̂l, ζi − λ̂l; ηl − λ̂l)− F (ηi − λ̂l, ζi − λ̂l; ζl − λ̂l)

+
∑
l<i

F (−ε, ζi − λ̂i + ε; ηl − λ̂i) + F (ηi − λ̂i − ε, ε; ηl − λ̂i)

−
∑
l<i

F (−ε, ζi − λ̂i + ε; ζl − λ̂i) + F (ηi − λ̂i − ε, ε; ζl − λ̂i)

+
∑
l>i

∑
j 6=(i,l)

F (−ηi + λ̂j ,−ζi + λ̂j ;−ηl + λ̂j)− F (−ηi + λ̂j ,−ζi + λ̂j ;−ζl + λ̂j)

+
∑
l>i

F (−ηi + λ̂l,−ζi + λ̂l;−ηl + λ̂l)− F (−ηi + λ̂l,−ζi + λ̂l;−ζl + λ̂l)

+
∑
l>i

F (ε,−ζi + λ̂i − ε;−ηl + λ̂i) + F (−ηi + λ̂i + ε,−ε;−ηl + λ̂i)

−
∑
l>i

F (ε,−ζi + λ̂i − ε;−ζl + λ̂i) + F (−ηi + λ̂i + ε,−ε;−ζl + λ̂i)

+
∑
j 6=i

F (−ηi + λ̂j ,−ζi + λ̂j ;−ηi + λ̂j)− F (ηi − λ̂j , ζi − λ̂j ; ζi − λ̂j)

+F (ε, λ̂i − ζi − ε; λ̂i − ηi) + F (λ̂i − ηi + ε,−ε; λ̂i − ηi)
−F (−ε, ζi − λ̂i + ε; ζi − λ̂i)− F (ηi − λ̂i − ε, ε; ζi − λ̂i)

=
1

2
p log2

(
c1

c2(1− c1)

)
+ oε(1).

Next, we have

F (ηi, ζi; 0) =
1

2
log2(ηi)−

1

2
log2(ζi)

and, again by Lemma 4,∑
i

∑
l 6=i

F (ηi, ζi; ηl)− F (ηi, ζi; ζl)

=
∑
i>l

F (ηi, ζi; ηl) + F (ηl, ζl; ηi)− F (ηi, ζi; ζl)− F (ηl, ζl; ζi)

=
∑
i>l

log

(
ηi
ζi

)
log

(
ηl
ζl

)
=

1

2

∑
i

∑
l 6=i

log

(
ηi
ζi

)
log

(
ηl
ζl

)
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∑
i

F (−ηi,−ζi;−ηi)− F (ηi, ζi; ζi) =
1

2

∑
i

log2

(
ηi
ζi

)
so that ∑

i

∑
l 6=i

F (ηi, ζi; ηl)− F (ηi, ζi; ζl) +
∑
i

F (−ηi,−ζi;−ηi)− F (ηi, ζi; ζi)

=
1

2

(∑
i

log

(
ηi
ζi

))2

.

Recall now the already established identity
∑

i log(ηiζi ) = − log((1 − c1)(1 − c2)) from
which ∑

i

∑
l 6=i

F (ηi, ζi; ηl)− F (ηi, ζi; ζl) +
∑
i

F (−ηi,−ζi;−ηi)− F (ηi, ζi; ζi)

=
1

2
log2((1− c1)(1− c2)).

Continuing, we also have

∑
j 6=i

log

(
ηi − λ̂j
ζi − λ̂j

)
= log

(
− c1

c2(1− c1)

)
− log

(
ηi − λ̂i
ζi − λ̂i

)
= log

(
c1

c2(1− c1)

ηi − λ̂i
λ̂i − ζi

)
.

By Lemma 4 again, we next find∑
i

∑
l>i

F (−ηi,−ζi;−ηl)− F (−ηi,−ζi;−ζl) +
∑
l<i

F (ηi, ζi; ηl)− F (ηi, ζi; ζl)

=
∑
i

∑
l<i

log

(
ηi
ζi

)
log

(
ηl
ζl

)
from which we deduce that∑

i

F (−ηi,−ζi,−ηi)− F (ηi, ζi; ζi) +
∑
i

∑
l>i

F (−ηi,−ζi;−ηl)

− F (−ηi,−ζi;−ζl) +
∑
l<i

F (ηi, ζi; ηl)− F (ηi, ζi; ζl)

=
1

2

∑
i,l

log

(
ηi
ζi

)
log

(
ηl
ζl

)
=

1

2
log2 ((1− c1)(1− c2)) .

The next term also simplifies through the definition of ϕp/ψp:∑
i

∑
j 6=i

log

∣∣∣∣ηi − ηjζi − ηj

∣∣∣∣ =
∑
j

log

(
c1

c1 + c2 − c1c2
ϕ′p(ηj)

(ζj − ηj)
(1− c1)ηj

)
.
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Still from Lemma 4 and with the same connection to ϕp/ψp, we have∑
j

∑
l<i

F (ηi − ηj , ζi − ηj ; ηl − ηj) +
∑
j

∑
l>i

F (−ηi + ηj ,−ζi + ηj ;−ηl + ηj)

+
∑
j 6=i

F (−ηi + ηj ,−ζi + ηj ;−ηi + ηj)−
∑
j

∑
l<i

F (ηi − ηj , ζi − ηj ; ζl − ηj)

−
∑
j

∑
l>i

F (−ηi + ηj ,−ζi + ηj ;−ζl + ηj)−
∑
j 6=i

F (ηi − ηj , ζi − ηj ; ζi − ηj)

=
∑
i

∑
j 6=(i,l)

∑
l<i

log

(
ηi − ηj
ζi − ηj

)
log

(
ηl − ηj
ζl − ηj

)
+

1

2
log2

(
ηj − ηi
ηj − ζi

)

=
1

2

∑
i

∑
j 6=(i,l)

∑
l 6=i

log

(
ηi − ηj
ζi − ηj

)
log

(
ηl − ηj
ζl − ηj

)
+

1

2
log2

(
ηj − ηi
ηj − ζi

)

=
1

2

∑
i

∑
l

∑
j 6=(i,l)

log

(
ηi − ηj
ζi − ηj

)
log

(
ηl − ηj
ζl − ηj

)

=
1

2

∑
j

log2

(
c1

c1 + c2 − c1c2
ϕ′(ηj)

(ζj − ηj)
(1− c1)ηj

)
.

Again from Lemma 4, we next have∑
i

∑
l<i

F (−ε, ζi − ηi + ε; ηl − ηi)− F (−ε, ζi − ηi + ε; ζl − ηi)

−
∑
l>i

F (−ηi + ηl,−ζi + ηl;−ζl + ηl)

=
∑
i

∑
l<i

log

(
ε

ηi − ζi

)
log

(
ηi − ηl
ηi − ζl

)
− 1

2
log2(ηi − ηl) +

1

2
log2(ηi − ζl) + oε(1).

We also have the following relations∑
i

∑
l>i

F (ε, ηi − ζi − ε; ηi − ηl)− F (ε, ηi − ζi − ε; ηi − ζl)

−
∑
l<i

F (ηi − ηl, ζi − ηl; ζl − ηl)

=
∑
i

∑
l>i

1

2
log2(ζl − ηi)−

1

2
log2(ηl − ηi) + log

(
ηl − ηi
ζl − ηi

)
log

(
ε

ηi − ζi

)
+ oε(1)

and∑
l<i

F (−ε, ζi − ηi + ε; ηl − ηi)− F (−ε, ζi − ηi + ε; ζl − ηi)

−
∑
l>i

F (−ηi + ηl,−ζi + ηl;−ζl + ηl)
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=
∑
i

∑
l<i

log

(
ε

ηi − ζi

)
log

(
ηi − ηl
ηi − ζl

)
− 1

2
log2(ηi − ηl) +

1

2
log2(ηi − ζl) + oε(1)

which together gives∑
i

∑
l>i

F (ε, ηi − ζi − ε; ηi − ηl)− F (ε, ηi − ζi − ε; ηi − ζl)

−
∑
l<i

F (ηi − ηl, ζi − ηl; ζl − ηl) +
∑
l<i

F (−ε, ζi − ηi + ε; ηl − ηi)

− F (−ε, ζi − ηi + ε; ζl − ηi)−
∑
l>i

F (−ηi + ηl,−ζi + ηl;−ζl + ηl)

=
∑
i

∑
l 6=i

log

(
ε

ηi − ζi

)
log

(
ηi − ηl
ηi − ζl

)
.

The next term is

F (ε,−ζi + ηi − ε, ε)− F (−ε, ζi − ηi + ε, ζi − ηi) =
1

2
log2

(
ε

ηi − ζi

)
and finally the last term gives∑

l<i

F (ηi − ηl, ζi − ηl; 0) +
∑
l>i

F (−ηi + ηl,−ζi + ηl; 0)

=
1

2

∑
i

∑
l 6=i

log2 |ηi − ηl| − log2 |ζi − ηl| .

Putting all results above together, we obtain

p∑
i=1

2

[∫ λ̂i−ε

ζi+ε
+

∫ ηi−ε

λ̂i+ε

]
log

(
−ϕp(x)

ψp(x)

)(
ϕ′p(x)

ϕp(x)
−
ψ′p(x)

ψp(x)

)
ψp(x)

c2
dx

= 2

(
1

p
− c1 + c2 − c1c2

c1c2

)(
p log(1− c1) log

(
c1

c2(1− c1)

)
+
∑
i

Li2

(
1− ζi

λ̂i

)

−Li2

(
1− ηi

λ̂i

)
+ log(λ̂i) log

(
ηi − λ̂i
λ̂i − ζi

)

+
∑
i

∑
j 6=i

F (ηi − λ̂j , ζi − λ̂j ;−λ̂j) +
1

2
p log2

(
c1

c2(1− c1)

)
− π2

2
p


+ 2

1− c2

c2

(
− log(1− c1) log ((1− c1)(1− c2)) +

∑
i

1

2
log2(ηi)

−1

2
log2(ζi) +

1

2
log2 ((1− c1)(1− c2))

)
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+ 2
c1 + c2 − c1c2

c1c2

log(1− c1)
∑
i

∑
j 6=i

log

(
ηi − ηj
ζi − ηj

)
+
∑
i

∑
j 6=i

F (ηi − ηj , ζi − ηj ;−ηj)

+
1

2

∑
i

∑
l

∑
j 6=(i,l)

log

(
ηi − ηj
ζi − ηj

)
log

(
ηl − ηj
ζl − ηj

)
+
∑
i

log(1− c1) log

(
ε

ηi − ζi

)

+
∑
i

∑
l 6=i

log

∣∣∣∣ηl − ηiζl − ηi

∣∣∣∣ log

∣∣∣∣ ε

ηi − ζi

∣∣∣∣
+
∑
i

Li2

(
1− ζi

ηi

)
+ log

(
ε

ηi − ζi

)
log(ηi) +

∑
i

1

2
log2

(
ε

ηi − ζi

)
− pπ

2

6

)
+ oε(1).

The integral over the contour IEi can be computed using the same reasoning as for
the f(t) = log(t) function and is easily obtained as

1

2πı

∫
IEi

=
c1 + c2 − c1c2

c1c2

(
− log2

(
ϕ′p(ηi)

c1

c1 + c2 − c1c2

)
− log2(ε)

−2 log(ε)

[(
ϕ

ψ

)′
(ηi)

]
− π2

3

)
+O(ε log2(ε)).

Adding up the “residue” at λ̂i (i.e., the integral over ICi ), we end up with the following
expression for the sought-for integral

1

2πı

∮
Γ

log2

(
ϕp(z)

ψp(z)

)(
ϕ′p(z)

ϕp(z)
−
ψ′p(z)

ψp(z)

)
ψp(z)

c2
dz

= −2

(
1

p
− c1 + c2 − c1c2

c1c2

)(
p log(1− c1) log

(
c1

c2(1− c1)

)
+
∑
i

Li2

(
1− ζi

λ̂i

)
− Li2

(
1− ηi

λ̂i

)
+ log(λ̂i) log

(
ηi − λ̂i
λ̂i − ζi

)

+
∑
i

∑
j 6=i

F (ηi − λ̂j , ζi − λ̂j ;−λ̂j) + p log2

(
c1

c2(1− c1)

)
− π2

2
p


− 2

1− c2

c2

(
− log(1− c1) log ((1− c1)(1− c2)) +

∑
i

1

2
log2(ηi)−

1

2
log2(ζi)

+
1

2
log2 ((1− c1)(1− c2))

)

− 2
c1 + c2 − c1c2

c1c2

log(1− c1)
∑
j

log

(
c1

c1 + c2 − c1c2
ϕ′(ηj)

(ζj − ηj)
(1− c1)ηj

)
+
∑
i

∑
j 6=i

F (ηi − ηj , ζi − ηj ;−ηj)
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1

2

∑
j

log2

(
c1

c1 + c2 − c1c2
ϕ′(ηj)

(ζj − ηj)
(1− c1)ηj

)
+
∑
i

Li2

(
1− ζi

ηi

)

+
∑
i

log

[(
ϕ

ψ

)′
(ηi)

]
log

∣∣∣∣ ε

ηi − ζi

∣∣∣∣+ log(ηi − ζi) log

∣∣∣∣ ε

ηi − ζi

∣∣∣∣
+
∑
i

1

2
log2

(
ε

ηi − ζi

)
− π2

6

)
+ oε(1)

+
∑
i

c1 + c2 − c1c2

c1c2

(
− log2

(
ϕ′p(ηi)

c1

c1 + c2 − c1c2

)
− log2(ε)

−2 log(ε) log

[(
ϕ

ψ

)′
(ηi)

]
− π2

3

)
+
∑
i

(
log2

(
c1

c2
λ̂i

)
− π2

)[
c1 + c2 − c1c2

c1c2
− 1

p

]
+ oε(1).

which, in the limit of small ε, can be simplified as

1

2πı

∮
Γ

log2

(
ϕp(z)

ψp(z)

)(
ϕ′p(z)

ϕp(z)
−
ψ′p(z)

ψp(z)

)
ψp(z)

c2
dz

= −2

(
1

p
− c1 + c2 − c1c2

c1c2

)(
p log(1− c1) log

(
c1

c2(1− c1)

)
+
∑
i

Li2

(
1− ζi

λ̂i

)
− Li2

(
1− ηi

λ̂i

)
+ log(λ̂i) log

(
ηi − λ̂i
λ̂i − ζi

)

+
∑
i

∑
j 6=i

F (ηi − λ̂j , ζi − λ̂j ;−λ̂j) + p log2

(
c1

c2(1− c1)

)
− 2

1− c2

c2

(
− log(1− c1) log ((1− c1)(1− c2)) +

∑
i

1

2
log2(ηi)−

1

2
log2(ζi)

+
1

2
log2 ((1− c1)(1− c2))

)

− 2
c1 + c2 − c1c2

c1c2

log(1− c1)
∑
j

log

(
c1

c1 + c2 − c1c2
ϕ′(ηj)

(ζj − ηj)
(1− c1)ηj

)
+
∑
i

∑
j 6=i

F (ηi − ηj , ζi − ηj ;−ηj)

−
∑
i

log

[(
ϕ

ψ

′
(ηi)

)]
log (ηi − ζi) +

∑
i

Li2

(
1− ζi

ηi

)
− 1

2
log2 (ηi − ζi)

)

−
∑
i

c1 + c2 − c1c2

c1c2

(
− log2

(
ηi − ζi

(1− c1)ηi

)
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+2 log

(
ηi − ζi

(1− c1)ηi

)
log

(
c1

c1 + c2 − c1c2
ϕ′(ηi)

(ζi − ηi)
(1− c1)ηi

))
−
∑
i

log2

(
c1

c2
λ̂i

)[
c1 + c2 − c1c2

c1c2
− 1

p

]
.

After further book-keeping and simplifications, we ultimately find:

1

2πı

∮
Γ

log2

(
ϕp(z)

ψp(z)

)(
ϕ′p(z)

ϕp(z)
−
ψ′p(z)

ψp(z)

)
ψp(z)

c2
dz (6.16)

=
c1 + c2 − c1c2

c1c2

[
p∑
i=1

{
log2 ((1− c1)ηi)− log2

(
(1− c1)λ̂i

)}

+2
∑

1≤i,j≤p

{
Li2

(
1− ζi

λ̂j

)
− Li2

(
1− ηi

λ̂j

)
+ Li2

(
1− ηi

ηj

)
− Li2

(
1− ζi

ηj

)}
− 1− c2

c2

[
log2(1− c2)− log2(1− c1) +

p∑
i=1

{
log2 (ηi)− log2 (ζi)

}]

− 1

p

2
∑

1≤i,j≤p

{
Li2

(
1− ζi

λ̂j

)
− Li2

(
1− ηi

λ̂j

)}
−

p∑
i=1

log2
(

(1− c1)λ̂i

)
which provides an exact, yet rather impractical (the expression involves the evaluation
of O(p2) dilogarithm terms which may be computationally intense for large p), final
expression for the integral.

At this point, it is also not easy to fathom why the retrieved expression would remain
of order O(1) with respect to p. In order to both simplify the expression and retrieve a
visually clear O(1) estimate, we next proceed to a large p Taylor expansion of the above
result. In particular, using the last item in Lemma 3, we perform a (second-order) Taylor
expansion of all terms of the type Li2(1−X) above in the vicinity of λ̂i/λ̂j . This results
in the following two relations

∑
i,j

Li2

(
1− ζi

λ̂j

)
− Li2

(
1− ηi

λ̂j

)
+ Li2

(
1− ηi

ηj

)
− Li2

(
1− ζi

ηj

)
= (∆η

ζ )
TM(∆η

λ̂
) + op(1)

1

p

∑
i,j

Li2

(
1− ζi

λ̂j

)
− Li2

(
1− ηi

λ̂j

)

= −1

p
(∆η

ζ )
TN1p + op(1)

with ∆b
a, M and N defined in the statement of Corollary 5.
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With these developments, we deduce the final approximation

1

2πı

∮
Γ

log2

(
−ϕp(z)
ψp(z)

)(
ϕ′p(z)

ϕp(z)
−
ψ′p(z)

ψp(z)

)
ψp(z)

c2
dz

= 2
c1 + c2 − c1c2

c1c2

(∆η
ζ

)T
M
(

∆η

λ̂

)
+
∑
i

log
(

(1− c1)λ̂i

)
λ̂i

(
ηi − λ̂i

)
− 2

p

(
∆η
ζ

)T
N1p +

1

p

∑
i

log2
(

(1− c1)λ̂i

)
− 2

1− c2

c2

(
1

2
log2 (1− c2)− 1

2
log2 (1− c1) +

∑
i

(ηi − ζi)
log(λ̂i)

λ̂i

)
+ op(1).

For symmetry, it is convenient to finally observe that log(1 − c1)
∑

i(ηi − ζi)/λ̂i ∼
log(1− c1)

∑
i log(ηi/ζi) = − log2(1− c1); replacing in the last parenthesis provides the

result of Corollary 5 for c1 > 0.

To determine the limit as c1 → 0, it suffices to remark that in this limit ηi =
λ̂i + c1

p λ̂i + o(c1) (this can be established using the functional relation ϕp(ηi) = 0 in the
small c1 limit). Thus it suffices to replace in the above expression the vector η − ζ by
the vector η − λ̂, the vector c1+c2−c1c2

c1c2
(η − λ̂) by the vector 1

p λ̂, and taking c1 = 0 in all
other instances (where the limits for c1 → 0 are well defined).

6.2.4 Gradient calculus

The main concern is to find an analytical expression of the gradient defined as:

∇hX(M) =
−D̂(M,X)

πıp

∮
Γ̂
g
(
−mµ̃p(z;M)

)
sym

(
Σ̂(M−1Σ̂− zIp)−2

)
dz. (6.17)

Equation (6.17) can be written as:

∇hX(M) =
−D̂(M,X)

πıp
sym

(
Σ̂U

(∮
Γ̂
g
(
−mµ̃p(z;M)

)
(Λ− zIp)−2dz

)
UT

)
. (6.18)

where M−1Σ̂ = UΛUT in its spectral decomposition. Our main focus is on the diagonal
matrix

A≡ 1

2ıπ

∮
Γ̂
g
(
−mµ̃p(z;M)

)
(Λ− zIp)−2dz

and particularly on its k-th diagonal element

Akk =
1

2ıπ

∮
Γ̂

g
(
−mµ̃p(z;M)

)
(λ̂k − z)2

dz (6.19)
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with Λ = diag(λ̂1, . . . , λ̂p).
To solve (6.19), we use elementary properties of the rational function mµ̃p(z;M) that

we recall is defined as

mµ̃p(z;M) =
c

p

p∑
i=1

1

λ̂i − z
+

1− c
z

.

Remarking that the poles of mµ̃p(z;M) are {λ̂i}pi=1 and 0, and that {ξi}pi=1 are the zeros
of mµ̃p(z;M) (see Section 6.2.3 of the appendix for details), we have :

mµ̃p(z;M) =

∏p
i=1 (z − ξi)

z
∏p
i=1

(
z − λ̂i

) .
With these ingredients, we can evaluate Akk for various functions f (recall that

g(z) = f(1/z)).

Case f(t) = t For this case, g(t) = 1
t , and thus the integrand of Akk is

I =

z
∏p
i=1
i 6=k

(
z − λ̂i

)
(z − λ̂k)

∏p
i=1 (z − ξi)

.

Under this rational form, Akk is easy to evaluate since it only requires to evaluate the
residue for each pole of I:

• the first-order pole λ̂k for which the residue R1 is given by

R1 = lim
z→λ̂k

z
∏p
i=1
i 6=k

(
z − λ̂i

)
∏p
i=1 (z − ξi)

= lim
z→λ̂k

1

(z − λ̂k)mµ̃p(z)

= −p
c

• and the first-order poles ξj , j ∈ {1, . . . , p} for which the residue R2 is given by:

R2 =

p∑
j=1

lim
z→ξj

z
∏p
i=1

(
z − λ̂i

)
(z − λ̂k)2

∏p
i=1
i 6=j

(z − ξi)

=

p∑
j=1

1

(ξj − λ̂k)2
lim
z→ξj

z − ξj
mµ̃p(z)

=

p∑
j=1

1

(ξj − λ̂k)2m
′
µ̃p

(ξj)
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Figure 6.8: Contour deformation

Putting the p+ 1 residues together then yields:

Akk = −p
c

+

p∑
j=1

1

(ξj − λ̂k)2m
′
µ̃p

(ξj)
.

Case f(t) = log(t) For this case, g(t) = − log(t) and therefore the integrand of Akk
becomes

I = −
log

( ∏p
i=1(z−ξi)

z
∏p
i=1(z−λ̂i)

)
(λ̂k − z)2

Elementary functional analysis allows us to find the discontinuities of this multi-valued
function (the z’s for which the argument of the logarithm function is negative). This set
of points, or branch cuts, are exactly the segments [ξi, λ̂i], i = 1, . . . , p. These segments
lie inside the integration contour Γ, that needs be modified for proper integration; the
new contour, denoted Γn is depicted in Figure 6.8.

The complex integral over the contour Γn, is the sum of several integrals, subdivided
in four types:

• integrals over the circles surrounding {ξj}pj=1 which, thanks to the variable change

z = ξj + ε eıθ, reduce to

lim
ε→0
−
∫ 2π−ε

ε

log

ε eıθ

∏p

i=1
i 6=j

(ξj+ε eıθ −ξi)

(ξj+ε eıθ)
∏p
i=1(ξj+ε eıθ −λ̂i)


(λ̂k − ξj − ε eıθ)2

ıε eıθ = 0

• integrals over the circles surrounding {λ̂i}pi=1
i 6=k

which are null following the same line

of reasoning as for ξi.
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• real integrals over the segments [ξi, λ̂i] which can be computed by remarking that
the log function has a discontinuity of 2ıπ at the branch cut.

1

2ıπ

p∑
j=1

∫ λ̂j−ε

ξj+ε

log
(
|mµ̃p |

)
+ ıπ − log

(
|mµ̃p |

)
+ ıπ

(λ̂k − z)2

=

p∑
j=1

∫ λ̂j−ε

ξj+ε

1

(λ̂k − z)2

=

p∑
j=1

lim
z→λ̂j

1

(λ̂k − z)
− 1

(λ̂k − ξj)

=

p∑
j=1
j 6=k

1

(λ̂k − λ̂j)
−

p∑
j=1

1

(λ̂k − ξj)
+ lim
z→λ̂k

1

(λ̂k − z)

• the integral over the circle surrounding λ̂k computed by remarking that λ̂k is a
second-order pole

lim
z→λ̂k

∂

∂z

(
log
(
−mµ̃p(z;M)

))
= lim

z→λ̂k

p∑
j=1

1

z − ξj
− 1

z
−

p∑
j=1

1

z − λ̂j

=

p∑
j=1

1

λ̂k − ξj
− 1

λ̂k
−

p∑
j=1
j 6=k

1

λ̂k − λ̂j
− lim
z→λ̂k

1

z − λ̂k

where the second line is obtained remarking that:

m
′
µ̃p

(z;M)

mµ̃p(z;M)
=

p∑
j=1

1

z − ξj
− 1

z
−

p∑
j=1

1

z − λ̂j
.

Combining these integrals then yields to the solution of the integral:

Akk = − 1

λ̂k
.

Case f(t) = log(1 + st) For this case, the integrand of Akk can be derived similarly as
in the case of the logarithm by noting that the argument of the logarithm (1− s/mµ̃p(z))

is a polynomial for which the poles are λ̂i and 0. The zeros are in number p + 1 and
denoted κi, i = 0, . . . , p with κ0 < 0 < κ1 < . . . < κp; in particular, only κ1, . . . , κp are
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inside the integration contour (see Section 6.2.3 of the appendix for details). Therefore,
the integrand is written similarly as for the log function as:

I = −
log

( ∏p
i=0(z−κi)

z
∏p
i=1(z−λ̂i)

)
(λ̂k − z)2

.

The integration contour can be deformed as for the log function. Using similar integration
techniques, the calculus then yields to the solution derived in Section 3.5.3.

Case f(t) = log2 (t) Here g(t) = f(t) = log2(t) and the integrand for this case is simply

I = −
log2

( ∏p
i=1(z−ξi)

z
∏p
i=1(z−λ̂i)

)
(λ̂k − z)2

.

Again, we use here exactly the same line of work performed on the log(t) and log(1 + st)
functions. Technical difficulties however arise when addressing the real integrals which
involve products of logarithms and rational functions. These difficulties are mostly
cumbersome calculus which are addressed similar to 6.2.3.

6.3 Appendix for Chapter 4

6.3.1 Solution of MTL LS-SVM

The Lagrangian of the constrained optimization problem using the relatedness assumption
(Wi = W0 + Vi) reads:

L(ω0, vi, ξi, αi, bi) =
1

2λ
tr
(
WT

0 W0

)
+

1

2

k∑
i=1

tr
(
V T
i Vi

)
γi

+
1

2

k∑
i=1

tr
(
ξTi ξi

)
+

k∑
i=1

tr

(
αT
i

(
Yi −

X̊T
i W0√
kp
− X̊T

i Vi√
kp
− 1nib

T
i − ξi

))

with αi ∈ Rni×m the Lagrangian parameter attached to task i.
Differentiating with respect to the unknowns W0, Vi, ξi, αi, and bi leads to the

following system of equations:

1

λ
W0 −

k∑
i=1

X̊i√
kp
αi = 0 (6.20)

1

γi
Vi −

X̊i√
kp
αi = 0 (6.21)

ξi − αi = 0 (6.22)
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Yi −
X̊T
i W0√
kp
− X̊T

i Vi√
kp
− 1nib

T
i − ξi = 0 (6.23)

αT
i 1ni = 0. (6.24)

Plugging the expression of W0 (Equation (6.20)), Vi (Equation (6.21)) and ξi (Equa-
tion (6.22)) into Equation (6.23) leads to:

Yi = (λ+ γi)
X̊T
i X̊i

kp
αi + λ

∑
j 6=i

X̊T
i X̊j

kp
αj + 1nib

T
i + αi

1T
niαi = 0.

With Y = [Y T
1 , . . . , Y

T
k ]T ∈ Rn, α = [αT

1 , . . . , α
T
k ]T ∈ Rn, Z =

∑k
i=1 e

[k]
i e

[k]
i

T
⊗ X̊i ∈

Rkp×n and P ∈ Rn×k such that the j-th column is P.j = [0T
n1+...+nj−1

,1T
nj ,0

T
nj+1+...+nk

]T,
this system of equations can be written under the following compact matrix form:

Pb+Q−1α = Y

PTα = 0k

with Q =
(
ZTAZ
kp + In

)−1
∈ Rn×n, and A =

(
Dγ + λ1k1T

k

)
⊗ Ip ∈ Rkp×kp.

Solving for α and b then gives:

α = Q(Y − Pb)
b = (PTQP )−1PTQY.

Moreover, using Wi = W0 + Vi and Equations (6.20) and (6.21), the expression of Wi

becomes:

Wi =

(
e

[k]
i

T
⊗ Ip

)
A

Z√
kp
α.

6.3.2 Calculus of deterministic equivalents

Lemma 5 (Deterministic equivalents). Define, for class Cj in Task i, the data deter-
ministic matrices

M =
(
e

[k]
1 ⊗ [µ11, . . . , µ1m], . . . , e

[k]
k ⊗ [µk1, . . . , µkm]

)
Cij = A

1
2

(
e

[k]
i e

[k]
i

T
⊗ (Σij + µijµ

T
ij)

)
A

1
2 .

Then we have the deterministic equivalents of first-order

Q̃↔ ¯̃Q ≡

 k∑
i=1

m∑
j=1

δ
[mk]
ij Cij + Ikp

−1
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A
1
2 Q̃A

1
2Z ↔ A

1
2

¯̃QA
1
2MδJ

T

and of second-order

Q̃A
1
2SijA

1
2 Q̃↔ Bij

ZTA
1
2 Q̃A

1
2SijA

1
2 Q̃A

1
2Z ↔ JMT

δ A
1
2 (BijA

1
2MδJ

T − ¯̃QA
1
2MδWij) + Fij

in which we defined

Wij = [w11, . . . , wkm]T, wsl =

[
0T
n11+...+n(s−1)l

,
2δ

[mk]
sl tr (BijCsl)

nsl
1T
nsl
,0T

n(s+1)l+...+nkm

]T

Fij =
∑
i′,j′

c2
0δ

[mk]
i′j′

2

c2
i′j′

tr(Ci′j′Bij)e
[mk]
i′j′ e

[mk]
i′j′

T

Bij = ¯̃QA
1
2SijA

1
2

¯̃Q+

k∑
i′=1

2∑
j′=1

di′j′Tij,i′j′ [
¯̃QCi′j′

¯̃Q]

D =
∑
i,j

dije
[mk]
ij e

[mk]
ij

T
, dij =

c0

cij
δ

[mk]
ij

2

J = [j11, . . . , jkm],

jlm =
(

0Tn11+...+n(i−1)m
, 1T
nij , 0

T
n(i+1)1+...+nkm

)T
,

Mδ = M
∑
ij

c0

cij
δ

[mk]
ij e

[mk]
ij e

[mk]T
ij

Sij = e
[k]
i e

[k]
i

T
⊗ Σij

T = T̄ (Ik −DT)−1, Tij,i′j′ =
1

kp
tr(Cij

¯̃QCi′j′
¯̃Q), T̄ij,i′j′ =

1

kp
tr
(
Ci′j′

¯̃QA
1
2SijA

1
2

¯̃Q
)

and the (δ
[mk]
11 , . . . , δ

[mk]
km ) are the unique positive solutions of

δ
[mk]
ij =

cij

c0

(
1 + 1

kptr(Cij
¯̃Q)
) , ∀i, j.

6.3.3 Proof of Lemma 5

First-order deterministic equivalent. A deterministic equivalent for Q̃ is retrieved
similarly as provided in (Louart & Couillet, 2018). Our objective is then to find, based

on this result, a deterministic equivalent for the random matrix A
1
2 Q̃A

1
2Z. To this end,

we evaluate the scalar quantity E[uTA
1
2 Q̃A

1
2Zv] for any deterministic vector u ∈ Rkp and

v ∈ Rn such that ‖u‖ = 1 and ‖v‖ = 1, which we can write

E
[
uTA

1
2 Q̃A

1
2Zv

]
=

n∑
i=1

viE
[
uTA

1
2 Q̃A

1
2 zi

]
. (6.25)
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Furthermore, let us define for convenience the matrix Z−i, which is the matrix
Z with a vector of 0 on its i-th column such that ZZT = Z−iZ

T
−i + ziz

T
i . Using the

Sherman-Morrison matrix inversion lemma (i.e., (A+ uvT)−1 = A−1 − A−1uvTA−1

1+vTA−1u
), we

find:

Q̃ =

(
A

1
2ZZTA

1
2

kp
+ Ikp

)−1

= Q̃−i −
1

kp

Q̃−iA
1
2 ziz

T
i A

1
2 Q̃−i

1 + 1
kpz

T
i A

1
2 Q̃−iA

1
2 zi

(6.26)

with Q̃−i = (
A

1
2Z−iZT

−iA
1
2

kp + Ikp)
−1. Furthermore,

Q̃A
1
2 zi =

Q̃−iA
1
2 zi

1 + 1
kpz

T
i A

1
2 Q̃−iA

1
2 zi

. (6.27)

Plugging Equation (6.27) into Equation (6.25) leads to

E
[
uTA

1
2 Q̃A

1
2Zv

]
=

n∑
i=1

viE

uT A
1
2 Q̃−iA

1
2 zi

1 + 1
kpz

T
i A

1
2 Q̃−iA

1
2 zi

 . (6.28)

Moreover, following the same line of reasoning as in (Seddik et al., 2020, Proposition A.3),
based on Assumption 2 and tools from the concentration of measure theory (see also
(Ledoux, 2001; Louart et al., 2018)), one can show that:

n∑
i=1

viE

uT A
1
2 Q̃−iA

1
2 zi

1 + 1
kpz

T
i A

1
2 Q̃−iA

1
2 zi

 =

n∑
i=1

viE

[
uT
A

1
2 Q̃−iA

1
2 zi

1 + δij

]
+O

(√
log p

p

)
(6.29)

with δij ≡ E
[

1
kpz

T
i A

1
2 Q̃−iA

1
2 zi

]
. Note that δij can be estimated as the solution of the

fixed point equation

δij =
1

kp
E
[
tr
(
A

1
2 ziz

T
i A

1
2 Q̃−i

)]
=

1

kp
tr
(
Cij

¯̃Q
)

+O

(
1
√
p

)
since zi’s are independent of Q̃−i.

We then conclude that:

E
[
uTA

1
2 Q̃A

1
2Zv

]
=

n∑
i=1

viu
T

E
[
A

1
2 Q̃−iA

1
2 zi

]
1 + δij

+O

(√
log p

p

)
= uTA

1
2

¯̃QA
1
2Mδv +O

(√
log p

p

)

where in the last equality, we used the fact that Q̃−i is independent from zi. This
concludes the proof.
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Second-order deterministic equivalent We aim in the following section to prove
that

ZTA
1
2 Q̃A

1
2SijA

1
2 Q̃A

1
2Z ↔ JMT

δ A
1
2 (BijA

1
2MδJ

T − ¯̃QA
1
2MδWij) + Fij .

Let us define for convenience C(i) the class of the i-th sample. Similarly as done for the

first-order deterministic equivalents, the focus will be on E[uTZTA
1
2 Q̃A

1
2SijA

1
2 Q̃A

1
2Zv].

In order to obtain an estimate of this bilinear form, or equivalently here a deterministic
equivalent for ZTA

1
2 Q̃A

1
2SijA

1
2 Q̃A

1
2Z, one must isolate the contribution of the off-

diagonal versus diagonal elements of the latter matrix. Starting with the off-diagonal
elements, using successively Equation (6.26) and Equation (6.29) on i and j , we have

n∑
i′,j′=1
i′ 6=j′

ui′vj′E
[
zTi A

1
2 Q̃A

1
2SijA

1
2 Q̃A

1
2 zj′

]

=
n∑

i′,j′=1
i′ 6=j′

ui′vj′E

[
zTi′A

1
2 Q̃−i′A

1
2SijA

1
2 Q̃−j′A

1
2 zj′

(1 + δC(i′))(1 + δC(j′))

]
+O

(√
log p

p

)

=

n∑
i′,j′=1
i′ 6=j′

ui′vj′E

z
T
i′A

1
2 Q̃−i′
−j′
A

1
2SijA

1
2 Q̃−j′
−i′
A

1
2 zj′

(1 + δC(i′))(1 + δC(j′))
−
zTi′A

1
2 Q̃−i′
−j′
A

1
2SijA

1
2 Q̃−j′
−i′
A

1
2 zi′z

T
i′A

1
2 Q̃−j′A

1
2 zj′

kp(1 + δC(i′))(1 + δC(j′))

−
zTi′A

1
2 Q̃−i′
−j′
A

1
2 zj′z

T
j′A

1
2 Q̃−i′A

1
2SijA

1
2 Q̃−j′A

1
2 zj′

kp(1 + δC(i′))(1 + δC(j′))

+O

(√
log p

p

)

=
n∑

i′,j′=1
i′ 6=j′

ui′vj′E

z
T
i′A

1
2 Q̃−i′
−j′
A

1
2SijA

1
2 Q̃−j′
−i′
A

1
2 zj′

(1 + δC(i′))(1 + δC(j′))
−
zTi′A

1
2 Q̃−i′
−j′
A

1
2SijA

1
2 Q̃−j′
−i′
A

1
2 zi′z

T
i′A

1
2 Q̃−j′
−i′
A

1
2 zj′

kp(1 + δC(i′))(1 + δC(j′))(1 + δC(i′))

−
zTi′A

1
2 Q̃−i′
−j′
A

1
2 zj′z

T
j′A

1
2 Q̃−i′
−j′
A

1
2SijA

1
2 Q̃−j′
−i′
A

1
2 zj′

kp(1 + δC(i′))(1 + δC(j′))(1 + δC(j′))

+
1

(kp)2

zTi′A
1
2 Q̃−i′
−j′
A

1
2 zj′z

T
j′A

1
2 Q̃−i′A

1
2SijA

1
2 Q̃−j′
−i′
A

1
2 zi′z

T
i′A

1
2 Q̃−j′
−i′
A

1
2 zj′

(1 + δC(i′))(1 + δC(j′))(1 + δC(i′))

+O

(√
log p

p

)

=

n∑
i′,j′=1
i′ 6=j′

ui′vj′E

z
T
i′A

1
2 Q̃−i′
−j′
A

1
2SijA

1
2 Q̃−j′
−i′
A

1
2 zj′

(1 + δC(i′))(1 + δC(j′))
−
zTi′A

1
2 Q̃−i′
−j′
A

1
2SijA

1
2 Q̃−j′
−i′
A

1
2 zi′z

T
i′A

1
2 Q̃−j′
−i′
A

1
2 zj′

kp(1 + δC(i′))(1 + δC(j′))(1 + δC(i′))
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−
zTi′A

1
2 Q̃−i′
−j′
A

1
2 zj′z

T
j′A

1
2 Q̃−i′
−j′
A

1
2SijA

1
2 Q̃−j′
−i′
A

1
2 zj′

kp(1 + δC(i′))(1 + δC(j′))(1 + δC(j′))

+O

(√
log p

p

)
.

where the term

1

(kp)2

zTi′A
1
2 Q̃−i′
−j′
A

1
2 zj′z

T
j′A

1
2 Q̃−i′A

1
2SijA

1
2 Q̃−j′
−i′
A

1
2 zi′z

T
i′A

1
2 Q̃−j′
−i′
A

1
2 zj′

(1 + δC(i′))(1 + δC(j′))(1 + δC(i′))

is proved to be of order O( 1√
p) using (Seddik et al., 2020, Lemma A.2).

As such, the “sub-deterministic equivalent” for the matrix ZTA
1
2 Q̃A

1
2SijA

1
2 Q̃A

1
2Z

with diagonal elements discarded is JMT
δ A

1
2BijA

1
2MδJ

T − JMT
δ A

1
2

¯̃QA
1
2MδWij , with

A
1
2 Q̃A

1
2SijA

1
2 Q̃A

1
2 ↔ Bij

Wij = [w11, . . . , wkm]T, wsl =

[
0T
n11+...+n(s−1)l

,
2tr (BijCsl)

kp(1 + δsl)
1T
nsl
,0T

n(s+1)l+...+nkm

]T
(note that this matrix estimator of the off-diagonal elements is not zero on the diagonal;
however its diagonal elements vanish as n, p→∞ and may thus be maintained without
affecting the final result).

We next need to handle the contribution of the diagonal elements. These are obtained
similarly as the off-diagonal elements and lead to the deterministic diagonal matrix
equivalent

Fij =
∑
i′,j′

tr(Ci′j′Bij)

(1 + δi′j′)2
e

[mk]
i′j′ e

[mk]
i′j′

T
.

Put together, the complete deterministic equivalent is then:

JMT
δ A

1
2BijA

1
2MδJ

T − JMT
δ A

1
2

¯̃QA
1
2MδWij +

∑
i′,j′

tr(Ci′j′Bij)

(1 + δi′j′)2
e

[mk]
i′j′ e

[mk]
i′j′

T
.

This proves that ZTA
1
2 Q̃A

1
2SijA

1
2 Q̃A

1
2Z ↔ JMT

δ A
1
2 (BijA

1
2MδJ

T − ¯̃QA
1
2MδWij) + Fij .

Calculus of Bij. To conclude the proof of Lemma 5, it then remains to find a de-

terministic equivalent for Q̃A
1
2SijA

1
2 Q̃ which we denote by Bij . Similar derivations

and results are provided in detail in (Louart et al., 2018). For conciseness, we sketch
the most important elements of the proof. The interested reader can refer to (Louart

et al., 2018, Section 5.2.3). Let us evaluate E[uTQ̃A
1
2SijA

1
2 (Q̃− ¯̃Q)v] for any determin-

istic vector u ∈ Rn and v ∈ Rn such that ‖u‖ = 1 and ‖v‖ = 1 by using successively
Equations (6.29) and (6.26):

E
[
uTQ̃A

1
2SijA

1
2 (Q̃− ¯̃Q)v

]
= E

[
uTQ̃A

1
2SijA

1
2 Q̃(−A

1
2ZZTA

1
2

kp
+ Cδ)

¯̃Qv

]
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= − 1

kp

∑
i′

E

[
uTQ̃A

1
2SijA

1
2 Q̃−i′A

1
2 zi′z

T
i′A

1
2

¯̃Qv

1 + δi′j

]
+ E

[
uTQ̃A

1
2SijA

1
2 Q̃−i′Cδ

¯̃Qv
]

− 1

kp
E
[
uTQ̃A

1
2SijA

1
2 Q̃−i′A

1
2 zi′z

T
i′A

1
2 Q̃Cδ

¯̃Qv
]

+O

(√
log p

p

)

where Cδ =
∑
ij

cij
c0

Cij
1+δij

. Using Assumption 2 and following the work of (Louart & Couillet,

2018),
1

kp
E
[
uTQ̃A

1
2SijA

1
2 Q̃−i′A

1
2 zi′z

T
i′A

1
2 Q̃Cδ

¯̃Qv
]

= O(
1

p
).

Furthermore,

E
[
uTQ̃A

1
2SijA

1
2 (Q̃− ¯̃Q)v

]
= − 1

kp

∑
i′

E

[
uTQ̃−i′A

1
2SijA

1
2 Q̃−i′A

1
2 zi′z

T
i′A

1
2

¯̃Qv

1 + δi′j

]

+
1

kp

∑
i′

E

[
uTQ̃−i′A

1
2 zi′z

T
i′A

1
2 Q̃−i′A

1
2SijA

1
2 Q̃−i′A

1
2 zi′z

T
i′A

1
2

¯̃Qv

kp(1 + δi′j)2

]

+ E
[
uTQ̃A

1
2SijA

1
2Q−i′Cδ

¯̃Qv
]

+O

(√
log p

p

)

=
1

kp

∑
i′

E
tr
(
CC(i′)Q̃A

1
2Si′jA

1
2 Q̃
)

(1 + δC(i′))2
E
[
uT ¯̃QCC(i′)

¯̃Qv
]

+O

(√
log p

p

)

where − 1
kp

∑
i E[

uTQ̃−i′A
1
2 SijA

1
2 Q̃−i′ziz

T
i

¯̃Qv

1+δi′j
] + E[uTQ̃−i′A

1
2SijA

1
2QCδ

¯̃Qv] = O
(

1√
p

)
, follow-

ing again (Louart & Couillet, 2018).
Let us next denote dab = nab

kp(1+δab)2
. We then have the following identity for

E[Q̃A
1
2SijA

1
2 Q̃]:

E[Q̃A
1
2SijA

1
2 Q̃] = ¯̃QA

1
2SijA

1
2

¯̃Q+
k∑

i′=1

m∑
j′=1

di′j′

kp
E
[
tr
(
Ci′j′Q̃A

1
2SijA

1
2 Q̃
)]

¯̃QCi′j′
¯̃Q+O‖·‖

(√
log p

p

)
(6.30)

Further introduce the two matrices T̄ and T defined as: T̄ab,ij = 1
kptr(Cab

¯̃QA
1
2SijA

1
2

¯̃Q)
and

Tij,i′j′ = 1
kpE[tr

(
Ci′j′Q̃A

1
2SijA

1
2 Q̃
)

]. These satisfy the following equations (i.e., by

right multiplying Equation (6.30) by Ci′j′ and taking the trace)

T
(ij)
i′j′ = T̄ij,i′j′ +

k∑
e=1

m∑
f=1

defTef,ijTi′j′,ef ,
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so that T = T̄ (Ik −DT)−1 where D = D[d11,...,dkm]T and Tef,i′j′ = 1
kptr(Cef

¯̃QCi′j′
¯̃Q).

Finally,

Q̃A
1
2SijA

1
2 Q̃↔ ¯̃QA

1
2SijA

1
2

¯̃Q+
k∑

i′=1

m∑
j′=1

di′j′T
(ij)
i′j′ E[ ¯̃QCi′j′

¯̃Q] (6.31)

with T = T̄ (Ik −DT)−1.

6.3.4 Proof of Theorem 9

Proof of the convergence in distribution. Under a Gaussian mixture assumption
for the input data X, the convergence in distribution of the statistics of the classification
score gi(x) is identical to the central limit theorem derived in (Liao & Couillet, 2019,
Appendix B) by writing the classification score gi(x) in polynomial form of a Gaussian
vector and by resorting to the Lyapounov central limit theorem (Billingsley, 2008).

Since conditionally on the training data X, the classification score g(x) is expressed
as the projection of the deterministic vector W on the concentrated random vector x,
the CLT for concentrated vector unfolds by proving that projections of deterministic
vector on concentrated random vector is asymptotically gaussian. This is ensured by the
following result.

Theorem 10 (CLT for concentrated vector (Klartag, 2007; Fleury et al., 2007)). If x is
a concentrated random vector with E[x] = 0, E[xxT] = Ip with an observable diameter of
order O(1) and σ be the uniform measure on the sphere Sp−1 ⊂ Rp of radius 1, then for
any integer k, small compared to p, there exist two constants C, c and a set Θ ⊂ (Sp−1)k

such that σ ⊗ . . .⊗ σ︸ ︷︷ ︸
k

(Θ) ≥ 1−√pCe−c
√
p and ∀θ = (θ1, . . . , θk) ∈ Θ,

∀a ∈ Rk : sup
t∈R
|P(aTθTx ≥ t)−G(t)| ≤ Cp−

1
4 .

with G(t) the cumulative distribution function of N(0, 1)

Then the result unfolds naturally.

Statistical mean of the classification scores. Using the definition of the score in
(4.2), the average output score gi(x) for x ∈ Cj is

E[gi(x)] = E

[
1

kp

(
e

[k]
i ⊗ µij

)T
A

1
2 Q̃A

1
2Z(Y − Pb)

]
+ bi.

Using Lemma 5, this can be further developed as:

E[gi(x)] =
1

kp

(
e

[k]
i ⊗ µij

)T
A

1
2

¯̃QA
1
2MδJ

T(Y − P b̄) + bi + o(1). (6.32)
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Since Cij = A
1
2 (e

[k]
i e

[k]
i

T
⊗ (Σij +µijµ

T
ij))A

1
2 is a finite rank update of Σij , one can further

use Woodbury identity matrix (i.e., (A+ UCV )−1 = A−1 +A−1UC(I + V A−1U)V A−1

for invertible square A) to write ¯̃Q = ¯̃Q0 − ¯̃Q0M(Ikm + MT ¯̃Q0M)−1MT ¯̃Q0, with

¯̃Q0 =

 k∑
i=1

m∑
j=1

(Dγ + λ1k1k)
1
2 eie

T
i (Dγ + λ1k1k)

1
2 ⊗ δ[mk]

ij Σij + Ikp

−1

M = A
1
2MD

1
2

δ[mk]

with δ[mk] = [δ
[mk]
i1 , . . . , δ

[mk]
mk ] for δ

[mk]
ij =

cij

c0(1+δ
[mk]
ij )

. Plugging the expression of ¯̃Q in

Equation (6.32), we obtain

E[gi(x)] = eTijD
− 1

2

δ[mk]
MT ¯̃QMD

1
2

δ[mk]
Y̊ + bi + o(1)

= eTijD
− 1

2

δ[mk]
(Imk − Γ)D

1
2

δ[mk]
Y̊ + bi + o(1)

with Γ = (Imk + MT ¯̃Q0M)−1 and e
[mk]
ij is the canonical vector. Finally, to be exhaustive

without going into the technical details,1 let us conclude by remarking that one can
show using the deterministic equivalent for Q provided in (Louart & Couillet, 2018) that

bi =
1T
ni
Yi

ni
+O(p−

1
2 ) = Y − Y̊ +O(p−

1
2 ).

Finally, letting mij be the above expression of E[gi(x)] without the trailing o(1) and
m = [m11, . . . ,mkm]T, one concludes using the notations of Theorem 9 that

m = Y −D
− 1

2

δ[mk]
ΓD

1
2

δ[mk]
Y̊

as desired.

Variance of the classification score. Using Equation (4.2), for x ∈ Cj , the covari-
ance of the score gi(x) is given by

Cov[gi(x)] = E

[
1

(kp)2
(Y − Pb)TZTA

1
2 Q̃A

1
2SijA

1
2 Q̃A

1
2Z(Y − Pb)

]
Using the deterministic equivalent of ZTA

1
2 Q̃A

1
2SijA

1
2 Q̃A

1
2Z in Lemma 1, the expression

further reads

Cov[gi(x)] = =
1

(kp)2
(Y − P b̄)T

(
JMT

δ A
1
2BijA

1
2MδJ + Fij

)
(Y − P b̄)

− 1

p2
(Y − P b̄)TJMT

δ A
1
2

¯̃QA
1
2MδWij(Y − P b̄).

1Due to Remark 4, bi can take any arbitrary value since only the decision threshold but not the
performance is sensitive to a shift of Y .
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Similarly to the calculus performed for E[gi(x)], using again ¯̃Q = ¯̃Q0 − ¯̃Q0M(Ikp + MT ¯̃Q0M)−1MT ¯̃Q0,
similar algebraic manipulations lead to:

Cov[gi(x)] = = Y̊TD
1
2

δ[mk]
MTBijMD

1
2

δ[mk]
Y̊ + Y̊TD

1
2

δ[mk]
Dκij,.D

1
2

δ[mk]
Y̊ − Y̊TD

1
2

δ[mk]
MT ¯̃QMD κij,.

δ[mk]
D

1
2

δ[mk]
Y̊

= YTD
1
2

δ[mk]
ΓMT ¯̃Q0Vij

¯̃Q0MΓD
1
2

δ[mk]
Y +YTD

1
2

δ[mk]
(I − Γ)Dκij,.(I − Γ)+

Y̊TD
1
2

δ[mk]
Dκij,.D

1
2

δ[mk]
Y̊ − 2Y̊TD

1
2

δ[mk]
(I − Γ)Dκij,.D

1
2

δ[mk]
Y̊

= YTD
1
2

δ[mk]

(
ΓDκij,.Γ + ΓMT ¯̃Q0Vij

¯̃Q0MΓ
)
D

1
2

δ[mk]
Y

with Vij = A
1
2SijA

1
2 +

k∑
i′=1

m∑
j′=1

δ
[mk]
i′j′ κij,i′j′A

1
2Si′j′A

1
2 and κij,. = [κij,11, . . . , κij,k2] with

κij,i′j′ = di′j′Tij,i′j′/δ
[mk]
i′j′ .

Particular Case

In the case of binary classification (m = 2) and for Σij = Ip, we have the simplification:

M =
∑
i,j

(
Dγ + λ1k1

T
k

) 1
2
e

[k]
i e

[k]
i

T
⊗
√
δ̃iµ̊ij

=
∑
i

(
Dγ + λ1k1

T
k

) 1
2
e

[k]
i e

[k]
i

T
⊗


[
ci2
√
ci1

ci
,− ci1

√
ci2

ci

]
c0(1 + δi)

⊗∆µi

 .

Moreover, ¯̃Q0 = [(Dγ + λ1k1T
k )

1
2Dδ̃

(
Dγ + λ1k1T

k

) 1
2 + Ik]

−1 ⊗ Ip, so that

MT ¯̃Q0M =
∑
i,j

e
[k]
i e

[k]
i

T
[
Ik + D

− 1
2

δ̃

(
Dγ + λ1k1

T
k

)−1
D
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2

δ̃

]−1

e
[k]
j e

[k]
j

T
∆µTi ∆µj ⊗ cic

T
j

=
∑
i,j

Aij∆µ
T
i ∆µje
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i e

[k]
j

T
⊗ cic

T
j

=
(
A ⊗ 1k1

T
k

)
�M
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M ≡
∑
i,j

∆µTi ∆µj

(
E

[k]
ij ⊗ cic

T
j

)

ci ≡

 ci2
ci

√
ci1
ci

− ci1
ci

√
ci2
ci


A ≡

[
Ik + D

− 1
2

δ̃

(
Dγ + λ1k1

T
k

)−1
D
− 1

2

δ̃

]−1

.
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As for the covariance terms,

MT ¯̃Q0Vij
¯̃Q0M =
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i,j
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i e
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[k]
i e

[k]
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T
j

=
∑
i,j

[
AD

− 1
2

δ̃

(
e

[k]
i e

[k]
i

T
+ Dκi�δ̃

)
D
− 1

2

δ̃
A

]
ij

∆µTi ∆µje
[k]
i e

[k]
j

T
⊗ cic

T
j

=

(
AD

− 1
2

δ̃

(
e

[k]
i e

[k]
i

T
+ Dκi�δ̃

)
D
− 1

2

δ̃
A ⊗ 1k1

T
k

)
�M

=
1

δ
[k]
i

(
AD

Ki+e
[k]
i

A ⊗ 1k1
T
k

)
�M

with Kia = δ̃iκia. Using Equation (6.31), after algebraic manipulations, we finally obtain
the compact form

K =
c0

k
[A �A]

(
Dc −

c0

k
[A �A]

)−1
. (6.33)

6.3.5 Proof of Propositions 6–7

One-versus-all

The probability of correct classification for Task i and for a test data x ∈ Cj reads

P

(
gbin
i (x; j) > max

j′ 6=j
{gbin
i (x; j′)}

)
= P

(
gbin
i (x; j)−max

j′ 6=j
{gbin
i (x; j′)} > 0

)
.

Since by definition (Equation (4.2))

gbin
i (x; j) =

1

kp
ẙ(j)TJTQZTA

(
e

[k]
i ⊗ x̊

)
+ bi, (6.34)

we have that gbin
i (x, j)1m−1 −

{
gbin
i (x; j′)

}
j′ 6=j = 1

kpY−jJ
TQZTA

(
e

[k]
k ⊗ x̊

)
, where

Y−j = (ẙ(j)T −
[
ẙ(j′)T

]
j′ 6=j) ∈ R(m−1)×km. Using Theorem 9 with Y replaced by Y−j ,

gbin
i (x, j)1m−1− gbin

i (x; j′)j′ 6=j ∈ Rm−1 is asymptotically a multivariate Gaussian random
vector with statistics detailed in the theorem statement. Proposition 6 then unfolds triv-
ially by remarking that gbin

i (x; j) > maxj′ 6=j g
bin
i (x; j′)⇔ ∀j′ 6= j, gbin

i (x; j)−gbin
i (x; j′) ≥

0.

One Hot encoding

The proof is similar to the one-versus-all case.
The probability of correct classification for a test data x ∈ Cj is

P

(
gbin
i (x; j) > max

j′ 6=j
{gbin
i (x; j′)}

)
= P

(
gbin
i (x; j)−max

j′ 6=j
{gbin
i (x; j′)} > 0

)
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where

gbin
i (x; j) =

1

kp
e

[k]
j

T
Y̊TJTQZTA

(
e

[k]
i ⊗ x̊

)
+ bi. (6.35)

Therefore gbin
i (x; j)1m−1 − {(gi(x; j′))}j′ 6=j = 1

kpEjY̊
TJTQZTA(e

[k]
k ⊗ x̊), with Ej =

{(e(m)
j − e(m)

j′ )T}j 6=j′ ∈ R(m−1)×m. By Theorem 9 with Y̊ replaced by ET
j Y̊

T, this vector
is asymptotically normally distributed and Proposition 7 unfolds immediately using again
the fact that gbin

i (x; j) > maxj′ 6=j g
bin
i (x; j′)⇔ ∀j′ 6= j, gbin

i (x; j)− gbin
i (x; j′j) ≥ 0.

6.4 Synthèse de la thèse en français

La plupart des méthodes de traitement du signal et d’apprentissage automatique (par
exemple, les tests statistiques, l’estimation de paramètres, la classification, la régression,
etc.) sont basées sur des fonctionnelles non triviales de n vecteurs aléatoires de dimension
p. Dans l’hypothèse où le nombre n de ces données disponibles est largement supérieur à
leur dimension p, certains résultats théoriques peuvent être obtenus, car un comportement
déterministe apparâıt parfois lorsque n→∞, ce qui simplifie le problème comme l’illustre
par exemple la célèbre loi des grands nombres et le théorème central limite. Cependant,
comme déjà montré dans la littérature (Wigner, 1958; Marc̆enko & Pastur, 1967), certains
résultats et intuitions basés sur des asymptotiques classiques (n→∞ et dimension des
données p fixe) s’effondrent lorsque la taille des données est comparable à la dimension des
données, un problème souvent apparenté à la ”malédiction de la dimensionnalité”. Dans
le cadre du paradigme actuel des données grandissantes, où des masses de données sont
produites, échangées et stockées, nous sommes constamment confrontés à une situation
où non seulement la taille mais aussi la dimension des données sont importantes.

D’un autre côté, la dernière décennie a vu une augmentation considérable de la diver-
sité des applications auxquelles l’apprentissage automatique est appliqué (apprentissage
par transfert, confidentialité des données, équité, etc). Par conséquent, l’apprentissage au-
tomatique n’est plus seulement utilisé pour le placement des publicités et l’implémentation
de filtres antispam : il est désormais utilisé pour filtrer les demandes de prêt (Fernández,
2019), déployer les forces de police (Rudin, 2013), prendre des décisions dans le domaine
de la justice pénale (Berk & Hyatt, 2015), etc., faisant ainsi rapidement son entrée
dans les systèmes socio-techniques. Les biais algorithmiques et les algorithmes mal
compris sont l’un des plus grands risques d’échec car ils compromettent l’objectif même
de l’apprentissage automatique depuis que l’opinion publique s’inquiète de l’impact de la
technologie sur la société.

Il est donc important de considérer des asymptotiques où le nombre de données n
et leur dimension p sont du même ordre de grandeur tout en fournissant un ensemble
d’outils adaptés dans ce régime pour analyser, comprendre et améliorer les problèmes
de l’apprentissage automatique et de traitement du signal. Cette réflexion a permis
l’émergence de nouvelles théories généralement encapsulées sous la dénomination de
“statistiques en grande dimension” dont fait partie la théorie des matrices aléatoires. Un
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ensemble d’outils ont été développés pour analyser les objets statistiques communément
rencontrés dans le domaine des télécommunications (Couillet & Debbah, 2011), de la
finance (Bouchaud & Potters, 2009), de la physique (Guhr et al., 1998) pour ne citer
que quelques-uns. Seulement récemment, des études utilisant la théorie des matrices
aléatoires (Ali, 2018; Mai & Couillet, 2018; Liao & Couillet, 2019; Seddik et al., 2020;
Deng et al., 2019; Elkhalil, 2019) se sont focalisées sur des algorithmes d’apprentissage
automatique. De façon spécifique, ces travaux ont permis d’analyser, de comprendre et
d’améliorer certains algorithmes simples (machine à vecteurs de support, regroupement
spectral, etc). Ces travaux ont mis en particulier en évidence le rôle prépondérant de
la moyenne et de la matrice de covariance des données, ce qui en fait des objets qui
méritent une compréhension approfondie. Cette thèse s’appuie sur cette importante
conclusion pour montrer comment un traitement empirique de la matrice de covariance
des données peut avoir des conséquences dramatiques sur des applications de traitement
du signal. Nous montrons ensuite comment la moyenne et la matrice de covariance
des données interviennent dans la performance d’algorithmes d’apprentissage d’intérêt
moderne comme l’apprentissage par transfert et l’apprentissage multi-tâche.

De façon plus détaillée, dans une première partie, la thèse montre en se reposant sur
des outils avancés de la théorie des matrices aléatoires comment les estimateurs classiques
de distance entre matrices de covariance induisent des biais importants et fournit des
estimateurs consistents pour une grande famille de métrique. Ainsi, si on définit par
Σ1 et Σ2 deux matrices de covariance de taille p × p, on constate que la plupart des
distances usuelles, que l’on dénotera génériquement D(Σ1,Σ2), s’expriment comme des
fonctionnelles des valeurs propres de la matrice Σ−1

1 Σ2 (distance de Fisher, distance de
Bhattacharyya, divergence de Kullback Leibler ou de Rényi entre gaussiennes centrées) ou
des valeurs propres de la matrice Σ1Σ2 (distance de Wasserstein entre deux gaussiennes
centrées). Dans l’hypothèse où le nombre d’échantillons n1 et n2 de données ayant Σ1

et Σ2 pour covariance est très grand devant p, la loi des grands nombres garantit que

D(Σ̂1, Σ̂2) est un estimateur consistent pour D(Σ1,Σ2) avec Σ̂a = 1
na

∑na
i=1 x

(a)
i x

(a)T
i

pour a ∈ {1, 2} la matrice de covariance empirique des na échantillons centrés x
(a)
i .

Cependant, cet estimateur est fortement biaisé lorsque n1, n2 ∼ p. À l’aide d’outils de la
théorie des matrices aléatoires, cette thèse propose une formule générale d’un estimateur
“universel” des distances D(Σ1,Σ2) qui est consistent dans la limite où p, n1, n2 → ∞
avec p/n1 → c1 > 0 et p/n2 → c2 > 0. Ces résultats s’inspirent des travaux de Mestre
Mestre (2008a) sur l’estimation de fonctionnelles des valeurs propres 1

p

∑p
i=1 f(λi(Σ)) de

matrices de covariance Σ. La procédure que nous suivons ici est la suivante: (i) la quantité
d’intérêt D(Σ1,Σ2) est exprimée comme une intégrale complexe faisant intervenir la
transformée de Stieltjes de la mesure des valeurs propres de Σ−1

1 Σ2 (ou Σ1Σ2); (ii) cette

mesure est reliée asymptotiquement à la mesure limite des valeurs propres de Σ̂1
−1

Σ̂2

(ou Σ̂1Σ̂2) en utilisant les travaux de Silverstein & Bai (1995); (iii) on obtient alors un
estimateur sous forme d’intégrale complexe qu’il s’agit d’évaluer pour chaque fonction f
d’intérêt. Cependant, au contraire de Mestre (2008a) qui s’intéresse à des fonctions f
simples, les distances D(Σ1,Σ2) d’intérêt ici impliquent des logarithmes et racines carrées
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qui demandent un travail fin d’analyse complexe (notamment un traitement précis des
“coupures”).

La deuxième partie de la thèse montre encore une fois que les statistiques de premier
ordre (moyenne et covariance des données) sont les statistiques suffisantes d’algorithmes
plus complexes et d’intérêt plus pratique comme l’apprentissage multi-tâche et par
transfert. L’analyse théorique d’un algorithme d’apprentissage multi-tâche basé sur les
machines à vecteurs de support révèle d’abord les ”statistiques suffisantes” exploitées par
l’algorithme et leur interaction. Ces résultats démontrent, que l’approche standard de
l’étiquetage des données est largement sous-optimale, peut conduire à de graves effets de
transfert négatif, mais que ces déficiences sont facilement corrigées. Ces corrections sont
transformées en un algorithme amélioré qui ne fait que bénéficier de données et tâches
supplémentaires, et dont la performance théorique est également parfaitement comprise.
Comme cela a été démontré et soutenu théoriquement dans de nombreux travaux récents,
ces résultats de grande dimension sont robustes à de larges gammes de distributions de
données, ce que nos expériences corroborent. Plus précisément, l’étude fait état d’un
comportement systématiquement proche entre les performances théoriques et empiriques
sur des bases de données populaires, ce qui suggère fortement l’applicabilité de la méthode
proposée, soigneusement réglée, à une grande variété de données réelles. Ce réglage fin est
entièrement basé sur l’analyse théorique et ne nécessite en particulier aucune procédure
de validation croisée. En outre, les performances rapportées sur des ensembles de données
réelles surpassent presque systématiquement les méthodes d’apprentissage multi-tâches
et de transfert de l’état de l’art, beaucoup plus élaborées et moins intuitives.
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Titre: Méthodes avancées de la théorie des matrices aléatoires pour l’apprentissage automatique.

Mots clés: Théorie des Matrices Aléatoires, Matrices de covariance, Apprentissage par transfert, Ap-
prentissage Multi-tâche, Compréhension théorique de l’apprentissage automatique.

Résumé: L’apprentissage automatique a permis
de résoudre de nombreuses applications du monde
réel, allant des tâches supervisées à des tâches non
supervisées, grâce au développement d’algorithmes
puissants (machine à vecteurs de support, réseaux
neuronaux profonds, regroupement spectral, etc).
Ces algorithmes sont basés sur des méthodes
d’optimisation motivées par des intuitions de petites
dimensions qui s’effondrent en grande dimension, un
phénomène connu sous le nom de “malédiction de
la dimensionnalité”. Néanmoins, en supposant que
la dimension des données et leur nombre sont à la
fois grands et comparables, la théorie des matrices
aléatoires fournit une approche systématique pour
évaluer le comportement (statistique) de ces grands
systèmes d’apprentissage, afin de bien les compren-
dre et de les améliorer lorsqu’ils sont appliqués à des
données de grande dimension.

Les analyses précédentes de la théorie des matri-
ces aléatoires (Mai & Couillet, 2018; Liao & Couillet,

2019; Deng et al., 2019) ont montré que les perfor-
mances asymptotiques de la plupart des méthodes
d’apprentissage automatique et de traitement du sig-
nal ne dépendent que des statistiques de premier
et de second ordre (moyennes et matrices de covari-
ance des données). Ceci fait des matrices de covari-
ance des objets extrêmement riches qui doivent être
“bien traités et compris”. La thèse démontre d’abord
comment un traitement empirique et näıf de la ma-
trice de covariance peut détruire le comportement
d’algorithmes d’apprentissage automatique en intro-
duisant des biais difficiles à supprimer, alors qu’une
estimation cohérente des fonctionnelles d’intérêt en
utilisant la théorie des matrices aléatoires évite les bi-
ais. Nous montrons ensuite comment les moyennes
et les matrices de covariance sont suffisantes (par
le biais de fonctionnelles simples) pour traiter le
comportement d’algorithmes d’intérêt moderne, tels
que les méthodes d’apprentissage multi-tâches et par
transfert.

Title: Advanced Random Matrix Methods for Machine Learning.

Keywords: Random Matrix Theory, Covariance matrices, Transfer Learning, Multi-Task Learning,
Theory of machine learning.

Abstract: ML has been quite successful to solve
many real-world applications going from supervised
to unsupervised tasks due to the development of
powerful algorithms (SVM, Deep Neural Network,
Spectral Clustering, etc). These algorithms are
based on optimization schemes motivated by low di-
mensional intuitions which collapse in high dimen-
sion, a phenomenon known as the “curse of dimen-
sionality”. Nonetheless, by assuming the data dimen-
sion and their number to be both large and compa-
rable, RMT provides a systematic approach to as-
sess the (statistical) behavior of these large learning
systems, to properly understand and improve them
when applied to large dimensional data. Previous
random matrix analyses (Mai & Couillet, 2018; Liao
& Couillet, 2019; Deng et al., 2019) have shown that
asymptotic performances of most machine learning

and signal processing methods depend only on first
and second-order statistics (means and covariance
matrices of the data). This makes covariance ma-
trices extremely rich objects that need to be ”well
treated and understood”. The thesis demonstrates
first how poorly naive covariance matrix processing
can destroy machine learning algorithms by intro-
ducing biases that are difficult to clean, whereas con-
sistent random-matrix estimation of the functionals
of interest avoids biases. We then exemplify how
means and covariance matrix statistics of the data
are sufficient (through simple functionals) to handle
the statistical behavior of even quite involved algo-
rithms of modern interest, such as multi-task and
transfer learning methods. The large dimensional
analysis allows furthermore for an improvement of
multi-task and transfer learning schemes
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