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Résumé

La simulation de l'é
oulement d'un �uide au sein d'un milieu solide 
onges-

tionné 
onstitue en
ore aujourd'hui une problématique s
ienti�que importante

dans 
ertains domaines de re
her
he, notamment l'ingénierie nu
léaire. En

e�et, fa
e à un nombre très important d'interfa
es à gérer, les méthodes 
las-

siques d'intera
tion �uide-stru
ture induiraient un 
oût de 
al
ul prohibitif.

Cette problématique des interfa
es se 
umule par ailleurs ave
 des phénomènes

multi-é
helles, qui trouvent leur origine dans l'é
oulement �uide, ainsi que dans

la mi
ro-stru
ture du milieu solide. Fa
e à 
ette double problématique inter-

fa
es et multi-é
helles, une appro
he milieu poreux ou homogénéisée peut être

adoptée.

Dans 
et esprit, 
ette thèse met en avant une modélisation multi-é
helles et

homogénéisée, en 
apa
ité de simuler un é
oulement 
ompressible non-visqueux

au sein d'un milieu solide 
ongestionné. A�n de s'a�ran
hir des limitations

ren
ontrées dans les méthodes multi-é
helles et l'homogénéisation (stri
te sé-

paration d'é
helles, périodi
ité, traitement des 
onditions aux limites, linéar-

ité, équation de fermeture mi
ro-ma
ro...), 
ette nouvelle modélisation met en

avant un formalisme mathématique basé sur la transformée en ondelettes 
on-

tinue. En appliquant, par le biais d'un produit de 
onvolution, une ondelette

bien 
hoisie sur les équations aux dérivées partielles (EDP) gouvernant le milieu


ontinu �uide, il est possible d'obtenir des EDPs �ltrées dé
rivant un �uide ho-

mogénéisé. Le pro
essus de 
onvolution proposé est également appli
able à des

EDPs génériques. Par ailleurs, grâ
e à la transformée en ondelettes inverse, le

modèle dispose d'une équation de fermeture analytique en 
apa
ité de relier les

é
helles résolues (i.e. le �uide homogénéisé) et non-résolues (i.e. le �uide réel).

Cette relation de fermeture permet d'une part de transférer rigoureusement les


onditions aux limites du �uide réel dans le �uide homogénéisé, et d'autre part

de traiter expli
itement les non-linéarités. En�n, la résolution numérique des

EDPs du �uide homogénéisé permet de re
onstruire, à 
haque pas de temps,

le 
hamp de pression au sein du �uide réel, et ainsi de déduire le 
hargement

dynamique appliqué sur la mi
ro-stru
ture. Cette étape importante, validée

sur des solutions numériques 2D de référen
e ave
 mi
ro-stru
tures �xes, ouvre

ainsi la voie à un solveur �uide-stru
ture intégrant le 
ouplage entre les deux

milieux.

ii Samy Mokhtari



Abstra
t

Computing a �ow within a highly 
ongested solid medium is still nowadays

an important s
ienti�
 issue in many resear
h �elds, su
h as nu
lear engineer-

ing. Indeed, 
onfronted with an overwhelming number of interfa
es, the 
lassi-


al Fluid-Stru
ture Intera
tion (FSI) approa
h would inevitably lead to 
um-

bersome 
omputations. This important issue of interfa
es is also here 
oupled

with multi-s
ale phenomena, 
aused both by the �uid and the solid medium

mi
ro-stru
ture. In order to deal with these interfa
es and multi-s
ale problem-

ati
s, a more mesos
opi
 approa
h, based on porous media or homogenization,


an be put forward.

In this spirit, this work develops a multi-s
ale and homogenized model able

to a

ount for an invis
id 
ompressible �ow within a 
ongested solid medium.

In order to bypass the 
lassi
al limitations of multi-s
ale and homogenization

methods (stri
t s
ale separation, periodi
ity, treatment of boundary 
onditions,

linearity, 
losure equation between s
ales), this new model promotes an original

use of Continuous Wavelet Transform. By applying, by means of a 
onvolution

produ
t, a well-designed wavelet to the �uid Partial Di�erential Equations

(PDEs), the model is able to derive spatially-�ltered PDEs governing a ho-

mogenized �uid. This 
onvolution pro
ess is also appli
able to generi
 PDEs.

Furthermore, thanks to an inverse wavelet transform, the model bene�ts from

an analyti
al 
losure equation whi
h 
onne
ts resolved (i.e. the homogenized

�uid) and unresolved (i.e. the real �uid) s
ales. This wavelet-based 
losure

equation allows on the one hand, to rigorously transfer the real �uid bound-

ary 
onditions into the homogenized �uid, and on the other hand to expli
itly

handle nonlinearities. Finally, the numeri
al 
omputation of the homogenized

�uid PDEs allows to re
onstru
t, at ea
h time step, the pressure �eld in the

real �uid, whi
h leads to the dynami
 load applied to the solid medium mi
ro-

stru
ture. This important step, validated on 2D referen
e numeri
al solutions

with steady mi
ro-stru
tures, thus opens the way to a 
oupled �uid-stru
ture

solver.

Samy Mokhtari iii
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Chapter 1

Introdu
tion

The 
urrent work �nds its starting point in the study of the me
hani
al


onsequen
es of a

idental s
enarios for Pressurized Water Rea
tors (PWR),

with a fo
us on the propagation of transverse pressure waves through the fuel

assemblies of a nu
lear 
ore. Su
h a phenomenon, 
alled Loss Of Cooling

A

ident (LOCA), originates from a failure in one of the pipes of the pressurized

primary loop (155 bar). An initial plane pressure wave then propagates from

the failure towards the main vessel (see Figure 1.1), and is expe
ted to undergo

some di�ra
tion at the jun
tion between the 1D pipe and the 3D 
ore. The

�rst me
hani
al soli
itation on the fuel assemblies (see Figure 2.1-2.2) lo
ated

within the main vessel would then 
ome from the transverse propagation of

a (spheri
al) pressure wave, followed by a se
ond verti
al wave guided by the

axial water �ow.

Figure 1.1: Simpli�ed 1D/3D s
heme of a PWR in a Loss Of Cooling A

ident

(LOCA) 
ontext - reprodu
ed from [Fau
her et al., 2014℄ with permission.
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The physi
s of interest thus requires to 
ompute a 
ompressible �ow within

a highly 
ongested solid medium, here the fuel assemblies. Su
h a 
omputation

is still nowadays an important s
ienti�
 issue in many industrial or resear
h

�elds. It 
an for instan
e also relate to �ows within biologi
al tissues, or porous

media su
h as 
on
rete or soil. Confronted with an overwhelming number of

interfa
es, the 
lassi
al Fluid-Stru
ture Intera
tion (FSI) approa
h, whi
h re-

lies on an expli
it representation of all the interfa
es, would inevitably lead to


umbersome 
omputations. This important issue of interfa
es is also here 
ou-

pled with multi-s
ale phenomena: a wide range of spatial s
ales is for instan
e


ontained within a vis
ous turbulent �ow, possibly entangled with the di�erent

spatial s
ales of the 
ongested solid medium. Thus, in order to ta
kle both the

interfa
e and multi-s
ale problemati
s, a more mesos
opi
 approa
h of FSI 
an

be put forward, inspired by porous media or homogenization theory.

In this spirit, a multi-s
ale and homogenized modeling is hereafter intro-

du
ed to a

ount for an invis
id 
ompressible �ow within a 
ongested solid

medium. In order to build a self-sustained model, bypassing the 
lassi
al lim-

itations of multi-s
ale and homogenization methods (stri
t s
ale separation,

periodi
ity, treatment of boundary 
onditions, linearity, 
losure equation be-

tween s
ales), this work promotes an original use of Continuous Wavelet Trans-

form (CWT). By applying, by means of a 
onvolution produ
t, a well-designed

wavelet (or s
aling fun
tion) to the �uid Partial Di�erential Equations (PDEs),

the model results in spatially-�ltered PDEs governing a homogenized �uid in

the whole f�uid + solidg domain. Su
h a 
onvolution pro
ess is also appli
a-

ble to generi
 PDEs. Furthermore, thanks to an inverse wavelet transform, the

model is able to 
onne
t analyti
ally resolved (i.e. the homogenized �uid) and

unresolved (i.e. the real �uid) s
ales. This wavelet-based 
losure equation al-

lows on the one hand, to rigorously transfer the real �uid boundary 
onditions

into the homogenized �uid, and on the other hand to expli
itly handle non-

linearities. The numeri
al 
omputation of the homogenized �uid PDEs then

allows to re
onstru
t, at ea
h time step, the pressure �eld in the real �uid,

whi
h leads to the dynami
 load applied to the solid medium.

In this work, the 
hoi
e has been made to fo
us the homogenization pro-


ess on the �uid, as it o

upies a 
onne
ted domain in the geometry of interest.

Furthermore, CWT is hereafter applied in a 2D formalism. This work indeed

fo
uses on the propagation of transverse pressure waves through the 
ross se
-

tion of fuel assemblies, as displayed in Figure 1.2.
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Figure 1.2: Sket
h of a 2D transverse pressure wave propagating through a fuel

assembly 
ross se
tion.

The following of this manus
ript is organized as follows: 
hapter 2 is ded-

i
ated to an overview of a wide state of the art, starting with porous media

approa
hes, homogenization and multi-s
ale methods. The 
ore of this bibli-

ography 
hapter then fo
uses on wavelets theory. This will allow to 
onne
t

to 
hapter 3, whi
h will then thoroughly des
ribe the wavelet-based multi-

s
ale and homogenized modeling. The model 
apabilities are then assessed in


hapter 4, with numeri
al experiments involving 2D sho
k waves propagating

through di�erent steady solid obsta
les. These tests are then supplemented

with some ongoing proje
ts: on the one hand, preliminary experimental data

a
quired on a tube bundle spe
imen within a sho
k tube fa
ility, and on the

other hand, a �rst numeri
al test handling moving solid obsta
les. The �nal


hapter is then dedi
ated to a 
on
lusion.

Samy Mokhtari CHAPTER 1. INTRODUCTION 3



Chapter 2

Overview of the state of the art

2.1 Introdu
tion

This 
hapter aims at setting the basis for the wavelet-based model at the


ore of this work, whi
h 
omes as a new 
ontribution in an already extensive

state of the art. This overview will thus emphasize some of the key methods

in the literature of porous media, homogenization and multi-s
ale methods,

with a �nal and major fo
us on wavelets. This 
hapter hereafter emphasizes

"analyti
al" (as opposed to numeri
al) methods, i.e. methods a
ting at the


ontinuummedium s
ale, on Partial Di�erential Equations (PDEs), and mostly

independent from any 
hoi
e of dis
retization te
hnique.

The opening se
tion of this 
hapter presents a porous medium approa
h

designed to 
ompute Fluid-Stru
ture Intera
tion (FSI) phenomena, in the

framework of Pressurized Water Rea
tors (PWR). It will be followed by the


lassi
al literature on homogenization, with its me
hani
al and mathemati
al

approa
hes. The third se
tion will then present two important examples of

multi-s
ale methods in the framework of turbulent �ows, namely expli
it �l-

tering and proje
tion-based methods. This literature on homogenization and

multi-s
ale methods being re
alled, the 
ore of this 
hapter will then be ded-

i
ated to wavelets theory, with a �rst and main fo
us on Continuous Wavelet

Transform (CWT), with its 1D and 2D implementation. The framework of

Dis
rete Wavelet Transform and Multi-Resolution Analysis (MRA) will then

follow.

Throughout this 
hapter, it will be emphasized how homogenization and

multi-s
ale methods struggle with 
ommon limitations, among whi
h the treat-

ment of boundary 
onditions, and the 
losure equation between resolved and

unresolved s
ales. This will allow to highlight, espe
ially in 
hapter 3, how

Continuous Wavelet Transform (CWT) may ta
kle these important issues.

2.2 FSI and porous medium : the 
ase of PWR

The intera
tion between a �uid and a highly 
ongested solid medium, at

the 
ore of this work, �nds a perfe
t illustration with the behavior of a Fren
h

4



2.2. FSI AND POROUS MEDIUM : THE CASE OF PWR

Pressurized Water Rea
tor (PWR). As 
an be seen in Figure 2.1, a PWR 
ore


ontains numerous fuel assemblies (up to 157 for a 900 MW rea
tor) submitted

to the water �ow of the primary loop. These assemblies exhibit a beam-like

geometry, with a square 
ross se
tion (20 
m

2

�4 m). Their inner stru
ture is


omposed of 264 fuel rods (5 mm radius), 5 instrumentation guide thimbles,

and 24 
ontrol rod guide thimbles (Figure 2.2a). The latter bring sti�ness and


ohesion to the stru
ture thanks to 8 spa
er grids (Figure 2.2b) pla
ed along the

assembly. They 
an also host the falling 
ontrol rods (Figure 2.1) in 
ase of an

emergen
y 
ore stop. The design of spa
er grids allows to in
rease turbulen
e

within the water �ow, whi
h transports the heat, 
reated by the nu
lear �ssion

rea
tion, towards the steam generators. Under nominal operating 
onditions,

the water �ow is mainly verti
al when it runs through the fuel assemblies.

Water is maintained liquid at around 300

Æ

C thanks to a 155 bar pressurization

of the primary loop.

Figure 2.1: Cutaway of a Fren
h PWR 
ore.

(a) (b)

Figure 2.2: Fuel assemblies design: overview (2.2a) and spa
er grid (2.2b).
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2.2. FSI AND POROUS MEDIUM : THE CASE OF PWR

Before introdu
ing the porous medium approa
h developed to handle FSI

phenomena within a PWR, let us �rst re
all the 
lassi
al approa
h, where both

media are modeled at the mi
ros
opi
 s
ale, with a 
ontinuum medium point

of view.

2.2.1 Solid medium modeling at the mi
ros
opi
 s
ale

In a PWR 
ore, the solid medium o

upies a dis
onne
ted domain, result-

ing from the reunion of disjoint fuel assemblies. Negle
ting body for
es, ea
h

fuel assembly satis�es, with a 3D 
ontinuum medium modeling, the following

momentum balan
e equation and dynami
 boundary 
ondition on the 
urrent

domain Ω
s

(t):

�

s


 = div

�

�

s

�

in Ω
s

(t)

�

s

·n

s

= T

F!S

+ T

impa
t

on ∂Ω
s

(t);

(2.1)

with:

� �

s

the solid medium density (kg:m

�3

);

� 
 the Eulerian a

eleration (m:s

�2

);

� �

s

the Cau
hy stress tensor (Pa);

� T

F!S

the stresses applied by the �uid on the interfa
e ∂Ω
s

(Pa);

� T

impa
t

the stresses resulting from impa
ts with other fuel assemblies (Pa);

� n

s

the outward unit normal ve
tor on the boundary ∂Ω
s

.

The Eulerian a

eleration 
(x; t) for x 2 Ω
s

(t) is linked to the Lagrangian

a

eleration Γ (X; t) for X 2 Ω
s

(0) via the following equations:

8t � 0, 
 (x; t) = 


�

' (X; t) ; t

�

; (2.2)

= Γ (X; t) ; (2.3)

=

∂
2

U

∂t2
(X; t) ; (2.4)

where:

� ' ( · ; t) : X 7�! ' (X; t) = x des
ribes the transformation undergone by

the referen
e domain Ω
s

(0);

� U (X; t) = ' (X; t)�X denotes the displa
ement �eld.
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2.2. FSI AND POROUS MEDIUM : THE CASE OF PWR

To solve the problem (2.1), a 
losure equation between �

s

and the displa
e-

ment U is required. This 
losure is brought by the me
hani
al behavior law,

whi
h formally writes:

�

s

= �

s

�

e (U)

�

; (2.5)

where e (U) denotes Green-Lagrange strain tensor, de�ned by:

e (U) =

1

2

�

r U +

T

r U +

T

r U ·r U

�

: (2.6)

The variational formulation asso
iated to the problem (2.1) is known as

the Virtual Powers Prin
iple. Given a kinemati
ally admissible and smooth

Eulerian velo
ity �eld

e

v, one 
an integrate the momentum balan
e equation

against

e

v. Using Green's formula for integration by parts, it 
omes:

Z

Ω
s

(t)

�

s


 ·

e

v = �

Z

Ω
s

(t)

�

s

: r

e

v +

Z

∂Ω
s

(t)

�

�

s

·n

s

�

·

e

v: (2.7)

Now, introdu
ing the virtual strain rate tensor d (

e

v) =

1

2

�

r

e

v +

T

r

e

v

�

,

and using the symmetry of the Cau
hy stress tensor, one 
an write:

Z

Ω
s

(t)

�

s


 ·

e

v +

Z

Ω
s

(t)

�

s

: d (

e

v) =

Z

∂Ω
s

(t)

�

T

F!S

+ T

impa
t

�

·

e

v: (2.8)

The two terms on the left-hand side represent respe
tively the virtual pow-

ers of inertial and internal for
es. As for the term on the right-hand side, it

represents the virtual power of the external for
es applied to the solid medium,

here 
onta
t for
es applied by the �uid and other fuel assemblies.

Su
h a modeling of the solid medium at the mi
ros
opi
 s
ale qui
kly en-


ounters some limitations in the 
urrent 
ontext. Indeed, as it 
an be seen in

Figure 2.2, fuel assemblies exhibit a 
omplex design, with multiple 
onta
ts

and fri
tion between inner 
omponents, espe
ially within spa
er grids. Su
h

a design results in damping and nonlinearities in their me
hani
al behavior.

Modeling all these phenomena at the mi
ros
opi
 s
ale would be too 
umber-

some, 
onsidering the number of fuel rods and fuel assemblies 
ontained within

a PWR 
ore. Thus, beam models are often preferred to des
ribe the solid

medium kinemati
s and me
hani
al law. In [Ri

iardi et al., 2009℄, a Timo-

shenko beam model is 
hosen, motivated by the low shear modulus of fuel

assemblies. The lo
al damping and nonlinearities are then taken into a

ount

by a global nonlinear vis
o-elasti
 behavior of the beam.

In the 
urrent work, the 
hoi
e has been made to fo
us the homoge-

nized modeling on the �uid, as it o

upies a 
onne
ted domain within the

PWR 
ore. The reader may thus refer to [Fontaine and Politopoulos, 2000℄,

[Pisapia et al., 2003℄ and [Ri

iardi et al., 2009, Ri

iardi, 2016℄ for further de-

tails on the solid medium modeling.
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2.2. FSI AND POROUS MEDIUM : THE CASE OF PWR

2.2.2 Fluid modeling at the mi
ros
opi
 s
ale

Let us now 
onsider the water �ow within a PWR 
ore. It is, under nominal

operating 
onditions, almost verti
al, in
ompressible and very turbulent, with

a Reynolds number around 10

5

. Su
h a �ow is governed by Navier-Stokes

equations:

(

� [∂
t

v + div(v 
 v)℄ = � ∆ v �r p+ f;

div(v) = 0;

(2.9)

where � denotes the �uid density (kg:m

�3

), v its velo
ity (m:s

�1

), � the dynami


vis
osity (Pl = Pa:s), p the pressure (Pa), and f a body for
e per unit of

volume. These equations translate respe
tively the 
onservation of the �uid

momentum and mass. They are 
ompleted with a no-slip kinemati
 boundary


ondition:

v � ∂
t

U = 0 on ∂Ω
f

(t) \ ∂Ω
s

(t):
(2.10)

As it will be detailed later in this 
hapter, in the se
tion dedi
ated to tur-

bulen
e and Large Eddy Simulation (LES), the Dire
t Numeri
al Simulation

(DNS) of a vis
ous in
ompressible and turbulent �ow (i.e. the dire
t 
omputa-

tion of Navier-Stokes equations) qui
kly be
omes too 
umbersome. Indeed, the

number of degrees of freedom ne
essary to 
at
h all the spatial s
ales 
ontained

within the �ow in
reases as a power law of the Reynolds number. Therefore,

as the solid medium, the �uid also requires a more mesos
opi
 modeling.

2.2.3 Modeling at the mesos
opi
 s
ale

As it was just highlighted, a mesos
opi
 modeling is relevant for both the

�uid and the 
ongested solid medium in order to dis
ard the smallest spa-

tial s
ales. Furthermore, the 
lassi
al Fluid-Stru
ture Intera
tion (FSI) ap-

proa
h, whi
h 
an be found in [Fau
her and Kokh, 2013, Fau
her et al., 2014℄

or [Etienne and Pelletier, 2012, Yu et al., 2016, Yu et al., 2018℄, is here 
on-

fronted with an overwhelming number of interfa
es. As a 
onsequen
e,

a homogenized approa
h of FSI shall be designed to ta
kle the in-

tera
tion between the two media. Inspired by works on multiphase

�ows [Banerjee and Chan, 1980℄, [Delhaye et al., 1993℄, solid-�uid mixtures

[Terada et al., 1998℄,[Robbe and Bliard, 2002℄, or Large Eddy Simulation

[Barsamian and Hassan, 1997℄, porous media models were put forward for

nu
lear in-
ore stru
tures. Su
h an approa
h has been implemented in

[Ri

iardi et al., 2009, Ri

iardi and Bo

a

io, 2015, Ri

iardi, 2016℄ for the

study of a PWR 
ore dynami
s in response to a seismi
 transient. In su
h a


ontext, the �uid for
es a
ting on stru
tures 
ome from the in
ompressible,

turbulent, and mostly axial �ow through the assemblies. Taking advantage

of the quasi-periodi
ity of the inner 
omponents of a PWR 
ore, this porous

medium approa
h relies on:

8 CHAPTER 2. STATE OF THE ART Samy Mokhtari



2.2. FSI AND POROUS MEDIUM : THE CASE OF PWR

� the de�nition of a 
ontrol domain Ω



around ea
h fuel rod, in the spirit

of a Representative Volume Element (RVE):

Figure 2.3: Cutaway of the 
ontrol domain around a fuel rod.

� the de�nition of equivalent �uid and solid media (see Figure 2.4) by means

of a volume averaging of their original PDEs over the 
ontrol domain:

f

eq

=

1

jΩ



j

Z

Ω



f dV: (2.11)

Figure 2.4: Philosophy of the porous medium modeling - reprodu
ed from

[Ri

iardi et al., 2009℄ with permission.

The volume averaging operator de�ned by (2.11) is applied dire
tly onto

the PDEs (2.1) and (2.9) governing the two media at the mi
ros
opi
 s
ale.

It allows to derive spatially-�ltered PDEs governing the equivalent �uid and

solid media. In the pro
ess, it transforms 
onta
t for
es between the two

media, de�ned only on the interfa
es, into body for
es between their equivalent


ounterparts. In a se
ond step, the �ltered PDEs governing the equivalent solid

medium are redu
ed into a Timoshenko beam model, as des
ribed earlier.

It is important to highlight that the original 
onta
t for
es between the

two media depend on the original �uid velo
ity and pressure �elds, and on the

original solid medium displa
ement, whi
h are no longer solved either by the

spatially-�ltered �uid or solid equations. In order to solve the porous medium

problem, a 
losure expression is thus required to 
onne
t unresolved and re-

solved s
ales. This expression shall allow to de�ne the body for
e intera
tion

between the equivalent �uid and solid media as a fun
tion depending only on

the equivalent �elds:
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2.2. FSI AND POROUS MEDIUM : THE CASE OF PWR

F

F ! S

: = F (v; p; U) ; (2.12)

= F

eq

�

v

eq

; p

eq

; U

eq

�

: (2.13)

As no analyti
al expression is available to de�ne the fun
tional F

eq

in

equation (2.13), an ad ho
 
losure model has to be implemented. In

[Ri

iardi et al., 2009, Ri

iardi, 2016℄, an empiri
al model based on the

works of [Taylor, 1952℄,[Lighthill, 1960, Lighthill, 1986℄ and [Païdoussis, 1966,

Païdoussis, 1969, Païdoussis, 2006℄ is 
hosen to represent the for
es applied by

a vis
ous in
ompressible turbulent �ow to a single 
ylinder rod. In a similar

way, an ad ho
 
onta
t model is also needed for the new body for
e des
ribing

impa
ts between fuel assemblies.

Beside these �rst 
losure expressions, another one is also required to prop-

erly model turbulen
e e�e
ts. Indeed, as it will detailed later when dis
ussing

Large Eddy Simulation (LES), the volume averaging of the nonlinear 
onve
-

tive term div (v 
 v) requires to de�ne the impa
t of the �u
tuating 
omponent

of the velo
ity onto its �ltered 
omponent. This 
losure expression is 
lassi
ally

de�ned by means of an ad ho
 turbulen
e model (see [Lesieur, 2008℄).

Beside this major issue of 
losure expressions between resolved and unre-

solved s
ales, su
h a porous medium approa
h also fa
es, like any other homog-

enization and multi-s
ale methods, an important issue with the treatment of

boundary 
onditions. Indeed, in order for the spatially-�ltered PDEs to remain

lo
al equations, the 
ontrol domain Ω



(x) shall be de�ned around ea
h point x

of the total domain Ω
f

[Ω
s

. As a result, when x is lo
ated in the vi
inity of the

boundary ∂ (Ω
f

[Ω
s

), the 
ontrol domain Ω



(x) overlaps the 
omplementary

domain R3

n (Ω
f

[Ω
s

). This fa
t requires to extend the initial �elds to the

whole spa
e R3

, and thus raises the question on how to properly de�ne the

boundary 
onditions on the equivalent (�ltered) �elds. It is usually assumed

in literature that the �ltered �elds share the same boundary 
onditions than

the original ones.

Finally, it shall be highlighted that su
h a porous medium or homogenized

modeling for FSI has for now only been applied in the 
ase of a vis
ous in-


ompressible and turbulent �ow. To the author's knowledge, no su
h work

exists for the 
ase of a 
ompressible �ow and a fast transient pressure wave

intera
ting with a highly 
ongested solid medium. In the PWR framework,

the intera
tion between a rarefa
tion wave originating from a pipe break and

the 
ore dynami
s is for now studied under some strong simpli�
ations, like

in [Fau
her et al., 2014℄, where fuel assemblies are 
onsidered as an equivalent

a
ousti
 impedan
e, responsible for the global pressure drop through the 
ore.

In su
h a 
ase, where vis
osity and turbulen
e e�e
ts 
an be negle
ted 
onsid-

ering the time s
ale of interest, the proper evaluation of the loading exerted by

the �uid to the solid medium requires to represent pressure gradients within

the �ow, at the suitable s
ale, and espe
ially through the 
ross-se
tion of fuel

assemblies. In order to better take into a

ount the lo
al geometri
 details of

the solid medium (without expli
itly meshing all interfa
es) and their impa
t
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on the propagation of pressure waves, a homogenized and multi-s
ale model

shall also be developed for this new physi
s of interest. This new model shall be

able to deal with the major issues highlighted in the porous medium approa
h,

and further detailed in the following se
tions dedi
ated to homogenization and

multi-s
ale methods.

2.3 Homogenization in solid me
hani
s

The keyword homogenization is usually linked to the study of heterogeneous

materials in solid me
hani
s. The following subse
tions are dedi
ated to the two


lassi
al approa
hes of homogenization, namely me
hani
al and mathemati
al.

2.3.1 Me
hani
al approa
h

The me
hani
al approa
h of homogenization was originally developed in

the framework of linear elasti
ity. Confronted with a heterogeneous material,

the �rst step 
onsists in the identi�
ation, if possible, of a Representative

Volume Element (RVE). This volume V shall be large 
ompared to the material

mi
ros
opi
 heterogeneities, and small 
ompared to the material size, in order

to allow for spatial averages on the RVE to be 
onsidered as lo
al quantities for

the material. This RVE being set, the ma
ros
opi
 and homogenized sti�ness

(fourth-order) tensor C
hom


an be de�ned, from its mi
ro
opi
 
ounterpart C,

as follows:

D

�

E

V

=

�

C
:

�

�

V

; (2.14)

= C
hom

:

D

�

E

V

; (2.15)

where

D

�

E

V

and

D

�

E

V

denote the RVE-volume averages of respe
tively the

Cau
hy stress tensor and the linearized strain tensor:

hfi

V

=

1

V

Z

V

f dV: (2.16)

In order to estimate the ma
ros
opi
 sti�ness tensor, boundary 
ondi-

tions have to be de�ned on the RVE. Following the work of [Hill, 1963℄, it

is known that for uniform stresses (�(x) ·n = Σ ·n) or linear displa
ements

(�(x) = E ·x) imposed on the RVE boundary, one has

D

�

E

V

= E. Moreover,

these spe
i�
 boundary 
onditions also allow to estimate bounds on the ma
ro-

s
opi
 sti�ness tensor for any other type of boundary 
ondition, as proved by

[Nemat-Nasser and Hori, 1993℄.

Beside this issue of boundary 
onditions, a 
losure equation is also required

between the ma
ros
opi
 (homogenized) sti�ness tensor C
hom

and its mi
ro-

s
opi
 
ounterpart C. This 
losure relies on the introdu
tion of a fourth-order


on
entration tensor A, de�ned by:

Samy Mokhtari CHAPTER 2. STATE OF THE ART 11
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8x 2 V , �(x) = A(x) :

D

�

E

V

: (2.17)

The pioneering work of [Eshelby, 1959℄ brought theoreti
al results, known

as Eshelby's tensor, to determine this 
on
entration tensor, in the frame-

work of an ellipti
 in
lusion embedded in an in�nite linear elasti
 and

homogeneous medium. This early result has then been generalized in

[Tanaka and Mori, 1972℄ to any general domain Ω 
ontained within two larger

and embedded ellipti
 domains (Ω � E
1

� E

2

).

To bypass the strong assumptions required for the 
omputation of the 
on-


entration tensor A, variational approa
hes have been proposed in literature

[Hashin and Shtrikman, 1963, Willis, 1981℄, to determine, in a di�erent way,

the homogenized properties of a material. Following the prin
iple of minimum

potential energy, the RVE elasti
 energy density is de�ned as:

f

W

�

e

�

�

= min

�2K

1

V

Z

V

W

�

x; �

�

dx; (2.18)

where K is the set of kinemati
ally admissible displa
ements, and W

�

x; �

�

the

mi
ros
opi
 elasti
 energy density of the heterogeneous material. The homog-

enized stress tensor C
hom

is then de�ned by:

f

W

�

e

�

�

=

1

2

e

� : C
hom

:

e

� : (2.19)

However, as the minimization problem (2.18) 
annot be easily solved, a

referen
e homogeneous medium is introdu
ed to estimate a lower bound on

f

W

�

e

�

�

. This referen
e material is 
hosen so as to satisfy a linear elasti
 be-

havior, with an additional se
ond-order tensor, known as polarization ten-

sor. This tensor, usually assumed uniform on ea
h phase of the heteroge-

neous material of interest, is then tuned so as to maximise a lower bound

on

f

W

�

e

�

�

. This variational approa
h in linear elasti
ity has then been ex-

tended to nonlinear elasti
 
omposites [Willis, 1981, Ponte Castañeda, 1991,

Ponte Castañeda and Suquet, 1998℄. A few years later, a somehow similar vari-

ational method has been proposed to deal with nonlinear inelasti
 
omposites

[Miehe, 2002℄, where the mi
ro-stru
ture inelasti
 behavior is handled with an

in
remental variational formulation on the potential asso
iated to mi
ros
opi


stresses.

All these works, here in
luded in a me
hani
al approa
h of homogenization,

share some strong limitations. Indeed, they often rely on strong assumptions

regarding the heterogeneities geometry, and require a 
lear s
ale separation

between the RVE size and the material size. They also fa
e issues with the

treatment of boundary 
onditions (periodi
ity or in�nite medium assumption),

explained by the fa
t that on
e again a RVE-volume averaging operator does

not allow to properly de�ne homogenized �elds in the vi
inity of the domain
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boundary. Finally, this me
hani
al approa
h of homogenization is mostly re-

stri
ted to solid materials, and highly dependent on the me
hani
al behavior

law. This is a major drawba
k to its extension to other types of physi
s.

2.3.2 Mathemati
al approa
h

In parallel with this me
hani
al literature, mathemati
ians have also ex-

tensively studied the �eld of homogenization, with the obje
tive to bring some

theoreti
al foundations to the approximation of a heterogeneous material by an

equivalent homogeneous one. The mathemati
al approa
h of homogenization

deals with phenomena governed by linear ellipti
 equations (linear elasti
ity,

stationary heat equation, Poisson equation for the ele
tri
al potential...), or

di�usion pro
esses, with mostly periodi
ally os
illating 
oe�
ients. For in-

stan
e, let Ω be a periodi
 and bounded open set in Rn

. Let us denote � its

period, whi
h is assumed small 
ompared to the size of the domain. Let A be

a bounded and positive de�nite se
ond-order tensor. A linear ellipti
 problem

writes, with Diri
hlet boundary 
onditions:

(

�div

�

A

�

x

�

�

r u

�

�

= f in Ω

u

�

= 0 on ∂Ω
(2.20)

where u

�

is the unknown, and f is a sour
e term, usually assumed in L

2

(Ω) to

ensure the well-posedness of the problem.

The mathemati
al approa
h of homogenization [Bensoussan et al., 1978,

San
hez-Palen
ia, 1980℄, often referred to as asymptoti
 or periodi
 homog-

enization, 
orresponds to the study of the limit of the problem (2.20) as the

parameter � tends towards zero. The homogenized problem asso
iated to (2.20)


an heuristi
ally be obtained by assuming the following two-s
ale asymptoti


expansion (ansatz):

u

�

(x) =

+1

X

i=0

�

i

u

i

�

x;

x

�

�

; (2.21)

where the fun
tions (x; y) 7�! u

i

(x; y) are assumed smooth and periodi
 in y.

Thanks to the linearity of the problem (2.20), this expansion 
an be used to

obtain a series of equations on the new unknows u

i

. The homogenized problem

then 
orresponds to the equation satis�ed by u

0

, whi
h 
an be shown to only

depend on the variable x:

(

�div

�

A

�

r u

0

(x)

�

= f in Ω

u

0

= 0 on ∂Ω
(2.22)

where A

�

now denotes the homogenized (and uniform) se
ond-order tensor.

The use of the two-s
ale expansion (2.21) is supported by theoreti
al re-

sults on the 
onvergen
e of the unknown u

�

as � tends towards zero, known

as the os
illating test fun
tion method (or energy method) [Tartar, 1979℄ and

the two-s
ale 
onvergen
e method [Allaire, 1992℄. It is noti
eable that this
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asymptoti
 homogenization, while mostly used for periodi
 materials, 
an also

be extended to the non-periodi
 
ase with the notion of G or H-
onvergen
e

[De Giorgi and Spagnolo, 1973, Murat and Tartar, 1997℄. However, the deriva-

tion of the homogenized problem is not as straightforward as in the periodi



ase.

Finally, it shall be highlighted that, despite their apparent di�eren
es, the

me
hani
al and mathemati
al approa
hes of homogenization do share some


ommon limitations. Indeed, the se
ond one also fa
es issues with the treat-

ment of boundary 
onditions, as the periodi
ity assumption does not stand

anymore in the vi
inity of the domain boundary. It is for instan
e well-known

that asymptoti
 expansions are not suited for the proper representation of

boundary layers phenomena. Furthermore, the mathemati
al approa
h is also

highly dependent on a strong s
ale separation assumption, as the parameter �

measuring the ratio between the smaller and larger spatial s
ales shall tends

towards zero. Besides, asymptoti
 homogenization is mostly appli
able to pe-

riodi
 geometries and linear problems. Linearity is indeed required in order to

inje
t the two-s
ale expansion (2.21) in the problem equation (2.20).

These two major approa
hes of homogenization being now des
ribed, it 
an

be highlighted that, while not always 
lassi�ed within the same literature, the

theory of homogenization 
an be embedded in the wide framework of multi-

s
ale methods. Indeed, homogenization aims at smoothing the mi
ros
opi


behavior of a material, i.e. the unresolved s
ales, in order to 
ompute only the

ma
ros
opi
 (low-frequen
y) behavior, i.e. the resolved s
ales. And like any

multi-s
ale method, a 
losure equation is required to des
ribe the intera
tion

between unresolved and resolved s
ales (
f. the 
on
entration tensor previously

des
ribed for instan
e). The following se
tion is thus dedi
ated to some key

examples of multi-s
ale methods.

2.4 Multi-s
ale methods

Among the wide family of "analyti
al" (as opposed to numeri
al) multi-

s
ale methods, two di�erent but somehow similar approa
hes will hereafter

be highlighted, in the framework of turbulent �ows: on the one hand (ex-

pli
it) �ltering methods, su
h as Large Eddy Simulation, and on the other

hand proje
tion-based methods, whi
h are based on a dire
t-sum de
omposi-

tion between a "
oarse-
omponent" spa
e and a "�ne-
omponent" spa
e, su
h

as the Variational Multi-S
ale (VMS) method. The framework of Dis
rete

Wavelet Transform and Multi-Resolution Analysis (MRA), whi
h shares sim-

ilarities with the VMS method, will be dis
ussed in the se
tions dedi
ated to

wavelets.

2.4.1 Filtering methods: Large Eddy Simulation

To start with expli
it �ltering methods and Large Eddy Simulation, let us

�rst re
all that Newtonian vis
ous and in
ompressible �uids are governed by

Navier-Stokes equations:
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(

� [∂
t

v + div(v 
 v)℄ = � ∆ v �r p;

div(v) = 0:

(2.23)

Within a vis
ous in
ompressible �ow, turbulen
e 
an be witnessed when

the 
onve
tive 
omponent of the �ow (�div (v 
 v)), whi
h is responsible for

kineti
 energy transport, be
omes signi�
antly more important than the vis-


ous 
omponent (�∆ v), whi
h is responsible for kineti
 energy dissipation.

This 
ompetition between nonlinear 
onve
tion and vis
ous dissipation is mea-

sured by the (dimensionless) Reynolds number:

R

e

∼
k�div (v 
 v)k

k�∆ vk

: (2.24)

More pre
isely, if V denotes the 
hara
teristi
 velo
ity of the �ow, L its


hara
teristi
 length, and � =

�

�

the �uid kinemati
 vis
osity (m

2

:s

�1

), the

Reynolds number 
an be expressed as:

R

e

=

V L

�

: (2.25)

When the Reynolds number satis�es R

e

. 2000, di�usion dominates 
on-

ve
tion, and the �ow regime is laminar. When the Reynolds number in
reases

beyond this 
riti
al value, the �ow progressively be
omes turbulent, showing

in
reasing mixing property and 
oherent stru
tures su
h as eddies. These ed-

dies possess a wide range of spatial s
ales, from the 
hara
teristi
 length of

the �ow L down to the Kolmogorov s
ale, de�ned by LR

�

9

4

e

in 3D. Thus, the

number of degrees of freedom ne
essary to 
at
h all the spatial s
ales 
ontained

in a vis
ous turbulent �ow in
reases as a power law of the Reynolds number.

To 
ope with the numeri
al limitation of DNS, multi-s
ale methods have

been developed to 
ompute turbulent �ows at less expensive 
ost. The

Reynolds Averaged Navier-Stokes (RANS) method and Large Eddy Simula-

tion (LES) are the most widely used te
hniques in literature. The �rst one is

based on a time averaging operator whi
h allows to separate the mean and �u
-

tuating 
omponents of the �ow. Under a stationarity assumption, the ergodi


theorem ensures that ensemble, time and spatial averaging are equivalent. As

for LES, it relies on a spatial �ltering or averaging operator, whi
h allows to

separate large and small s
ales. The s
ales larger than the �lter 
uto� length

are resolved, while the impa
t of smaller s
ales is modeled, and thus requires

a 
losure equation. Given a �lter G

Æ

, where Æ > 0 denotes the 
uto� length,

the �ltered 
omponent v of a �eld v is de�ned by the following 
onvolution

produ
t:

v(x; t) =

Z

Rd
G

Æ

�

x� y

�

v

�

y; t

�

dy; (2.26)

= (G

Æ

� v) (x; t): (2.27)
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The �lter G

Æ


an for instan
e be a box or Gaussian �lter in physi
al spa
e,

or a sharp �lter in spe
tral spa
e. The �u
tuation v

0

of the �eld v is then

de�ned so as to satisfy the following de
omposition:

v = v + v

0

: (2.28)

In turbulen
e literature [Lesieur, 2008℄, it is generally assumed that the

spatial �ltering operator 
ommutes with all time and spatial derivatives. Thus,

by applying this operator on Navier-Stokes equations (2.23), one obtains the

following �ltered momentum balan
e equation:

8i 2 f1; 2; 3g, �

"

∂v
i

∂t
+

∂ (v
i

v

j

)

∂x
j

#

= �

∂p

∂x
i

+

∂

∂x
j

[� (∂
j

v

i

+ ∂
i

v

j

) + �T

ij

℄ ; (2.29)

where T = (T

ij

)

i;j

is 
alled subgrid-s
ale tensor, and is de�ned by:

T

ij

= v

i

v

j

� v

i

v

j

: (2.30)

This additional term results from the appli
ation of the �lter on the non-

linear 
onve
tive term v
v. Equation (2.29) now drives only the spatial s
ales

larger than Æ, i.e. the resolved s
ales. In order to highlight the impa
t of

smaller s
ales on this equation, and thus the need of a 
losure equation be-

tween resolved and unresolved s
ales, the subgrid-s
ale tensor 
an be rewritten

as follows (see [Lesieur, 2008℄):

T

ij

= v

i

v

j

� (v

i

+ v

0

i

)(v

j

+ v

0

j

); (2.31)

= (v

i

v

j

� v

i

v

j

)�

�

v

i

v

0

j

+ v

0

i

v

j

�

� v

0

i

v

0

j

; (2.32)

= L

ij

+ C

ij

+ R

ij

: (2.33)

Thus, beside the 
lassi
al Reynolds-stress term R

ij

= �v

0

i

v

0

j

, two additional

terms appear in the subgrid-s
ale tensor 
ompared to the RANS method. This

is explained by the fa
t that, 
onversely to time or ensemble averaging, the

spatial �ltering operator is not idempotent, that is to say:

v 6= v: (2.34)

The �rst term L

ij

in equation (2.33), 
alled Leonard's term, depends only

on the velo
ity �ltered 
omponent. However, the 
ross-term C

ij

and Reynolds-

stress term R

ij

both exhibit the velo
ity �u
tuating 
omponent, i.e. the unre-

solved s
ales. In order to solve the �ltered equation (2.29) , it is thus ne
essary

to add a 
losure equation, as in the theory of homogenization. As no analyti
al

expression is available to 
onne
t unresolved and resolved s
ales, an ad ho


model has to be implemented. One of the �rst and most famous 
losure model

is Smagorinsky eddy-vis
osity model [Smagorinsky, 1963℄, in whi
h an arti�
ial

16 CHAPTER 2. STATE OF THE ART Samy Mokhtari



2.4. MULTI-SCALE METHODS

turbulent vis
osity is introdu
ed to a

ount for the energy dissipation in the

subgrid s
ales. In this model, the deviatori
 
omponent of the subgrid-s
ale

tensor is evaluated via the following equations:

T

ij

= �2�

t

S

ij

+

1

3

tr

�

T

�

Æ

ij

; (2.35)

S

ij

=

1

2

�

∂
x

j

v

i

+ ∂
x

i

v

j

�

; (2.36)

where the eddy-vis
osity �

t

is de�ned a

ording to a mixing-length assumption:

�

t

= (C

s

∆x)
2

�

�

�S

�

�

� ; (2.37)

= (C

s

∆x)
2

q

2S

ij

S

ij

; (2.38)

where ∆x is the 
hara
teristi
 length of the subgrid s
ale, and ∆x

�

�

�S

�

�

� 
an be


onsidered as a turbulent velo
ity. The parameter C

s


an be tuned depending

on the 
ase at study. A 
ommonly used value is C

s

= 0:1. The 
losure equation

being now de�ned, the spatially-�ltered Navier-Stokes equations (2.29) 
an

then be 
omputed.

Nevertheless, despite its 
ommon use, LES, like any other multi-s
ale or ho-

mogenization method, is still fa
ing some important issues, among whi
h the

treatment of boundary 
onditions. Indeed, the 
lassi
al assumption of 
ommu-

tation between the spatial �ltering operator and spatial derivatives in the PDEs

does not stand for bounded �ows. Moreover, 
onvolution produ
t is not prop-

erly de�ned on a bounded domain either. The use of a 
onvolution produ
t re-

quires to extend the original �elds to the whole spa
e Rd

. Furthermore, the spa-

tial �ltering pro
ess brings the original system boundary 
onditions within the

newly extended and �ltered problem. The only way to avoid this phenomenon

is to de
rease the �lter 
uto� length towards zero near the domain boundaries.

This option, however, signi�
antly 
hanges the derivation pro
ess of the �l-

tered equations, as the 
ommutation assumption does not stand either with a

�lter with varying 
uto� length. The interested reader may refer to the works

of [Ghosal and Moin, 1995, Fureby and Tabor, 1997, Vasilyev et al., 1998,

Dun
a et al., 2003, Berselli et al., 2006, Leonard et al., 2007℄ for further details

on this topi
.

Beside this important issue on boundary 
onditions, LES is also limited

by its need of a turbulen
e model to 
lose the �ltered equations and 
onne
t

resolved and unresolved s
ales. This 
losure model has a huge impa
t on the

LES results, espe
ially around obsta
les or near the �ow boundaries. Su
h an

ad ho
 model is here mandatory be
ause a plain spatial �ltering te
hnique does

not o�er an inverse formula able to re
onstru
t, from the �ltered 
omponent,

the original �eld. It will be detailed later in this manus
ript that, 
onversely,

Continuous Wavelet Transform (CWT) does o�er su
h a re
onstru
tion for-

mula.
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To 
on
lude this subse
tion dedi
ated to �ltering methods, it shall be high-

lighted that their use has re
ently spread in homogenization for solid me
han-

i
s as well [Yvonnet and Bonnet, 2014, Tognevi et al., 2016℄. To the author's

knowledge, su
h works are still limited to linear problems. Furthermore, similar


hallenges are en
ountered with boundary 
onditions, and their 
onsequen
es

on the de�nition of a 
losure equation (
on
entration tensor) between resolved

and unresolved s
ales.

Let us now turn towards another major approa
h in multi-s
ale modeling,

that is to say proje
tion-based methods.

2.4.2 Proje
tion-based methods: Variational Multi-S
ale

Beside �ltering methods, turbulen
e literature has also seen the devel-

opment of proje
tion-based methods, su
h as the Variational Multi-S
ale

method (VMS), whi
h has been put forward as an alternative to LES for

the simulation of turbulent �ows [Hughes et al., 1998, Hughes et al., 2000,

Hughes et al., 2001, Bazilevs et al., 2007℄. In a will to bypass some of the lim-

itations of spatial �ltering operators (non-
ommutation with spatial deriva-

tives for bounded �ows, treatment of boundary 
onditions), and the need of

a 
losure model between resolved and unresolved s
ales (e.g. eddy-vis
osity

models), VMS promotes the use of a linear proje
tion operator. The start-

ing point is thus the dire
t-sum de
omposition of a linear subspa
e V (e.g. a

Hilbert spa
e) into a 
oarse-s
ale (�nite-dimensional) subspa
e V and a �ne-

s
ale (in�nite-dimensional) subspa
e V

0

:

V = V � V

0

: (2.39)

The 
oarse s
ale 
omponent of a �eld f 2 V is then de�ned by:

f = P
V

f; (2.40)

where P
V

denotes the proje
tion on V. It 
an for instan
e be the L

2

or H

1

-

orthogonal proje
tion.

Remark 2.4.1 While the use of su
h a proje
tion operator is intended

to repla
e the �ltering operator used in LES, it 
ould be argued that a

plain averaging of a T -periodi
 signal f 2 L

2

[0; T ℄ is nothing else than

a L

2

-orthogonal proje
tion on the linear subspa
e spanned by the ve
tor

ft 7�! e

k

(t) = e

i

2k�t

T

g, for k = 0. Indeed, given the Hermitian inner produ
t

on L

2

[0; T ℄:

hf; gi

L

2

=

1

T

Z

T

0

f(t)g(t) dt; (2.41)

the family (e

k

)

k2Z

learly 
onstitutes an orthonormal basis for L

2

[0; T ℄.

The L

2

-orthogonal proje
tion of f on V = V e
tfe

0

g is thus given by:
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P
V

f =

he

0

; fi

L

2

ke

0

k

2

L

2

· e

0

(2.42)

=

 

1

T

Z

T

0

e

0

(t)f(t) dt

!

e

0

(2.43)

=

 

1

T

Z

T

0

f(t) dt

!

e

0

(2.44)

Thus, the plain averaging operator 
an also be seen as a proje
-

tion operator. In a similar way, �ltering a signal by 
utting o� all

frequen
ies beyond a value !





an be seen as a L

2

-orthogonal proje
-

tion on V e
tf(e

k

)

�k




�k�k




g, with

2�

T

k




� !




. To further highlight this

link between linear proje
tion and �ltering, it is noti
eable that in

[Koobus and Farhat, 2004℄, whi
h extends the use of VMS to 
ompress-

ible turbulen
e on unstru
tured meshes, a 
ell agglomeration method and

a plain spatial averaging are used to de�ne the 
oarse-s
ale 
omponents,

rather than a proje
tion operator.

This remark on linear proje
tion and �ltering being stated, VMS relies on

the de
omposition of the problem variational formulation into 
oarse-s
ale and

�ne-s
ale variational formulations. Starting with Navier-Stokes problem on a

domain Ω � Rd

, with Diri
hlet boundary 
onditions for the velo
ity:

8

>

<

>

:

� (∂
t

v + (v ·r) v) = �r p+ �∆ v + f in Ω;

div (v) = 0 in Ω;

v = 0 on ∂Ω;

(2.45)

the variational formulation writes:

for f 2 V

�

(Ω), �nd (v; p) 2 V (Ω)�Q(Ω) su
h that, 8(w; q) 2 V (Ω)�Q(Ω):

� �

 

v;

∂w

∂t

!

L

2

+ �

Z

Ω
r v : r w + �

Z

Ω
((v ·r) v) ·w �

Z

Ω
p div(w)

=

D

f; w

E

V

�

;V

; (2.46)

Z

Ω
div (v) q = 0; (2.47)

where V (Ω) = [H

1

0

(Ω)℄
d

is a Sobolev spa
e, V

�

(Ω) is the dual spa
e of V (Ω),

andQ (Ω) = L

2

0

(Ω). If one introdu
es the following linear, bilinear and trilinear

forms:

L :

V 7�! R

w 7�! hf; wi

V

�

;V

;

(2.48)

Samy Mokhtari CHAPTER 2. STATE OF THE ART 19



2.4. MULTI-SCALE METHODS

a :

V � V 7�! R

(v; w) 7�! �

R

Ωr v : r w;

(2.49)

b :

V �Q 7�! R

(v; q) 7�! �

R

Ω q div(v);
(2.50)


 :

V � V � V 7�! R

(v; w; z) 7�! �

R

Ω [(v ·r)w℄ · z;

(2.51)

then the variational formulation (2.46-2.47) 
an be rewritten as:

(

�� (v; ∂
t

w)

L

2

+ a(v; w) + b(w; p) + 
(v; v; w) = L(w);

b(v; q) = 0:

(2.52)

Following [Bazilevs et al., 2007℄, the 
oarse and �ne s
ale equations are then

obtained by inje
ting the de
omposition of v and p into (2.52):

� (v + v

0

; ∂
t

(w + w

0

))

L

2

+ a (v + v

0

; w + w

0

)

+ b (w + w

0

; p+ p

0

) + 
 (v + v

0

; v + v

0

; w + w

0

)

= L (w + w

0

) ; (2.53)

b (v + v

0

; q + q

0

) = 0: (2.54)

Thanks to the dire
t-sum V = V � V

0

, equation (2.53) gives rise to the

following 
oarse-s
ale and �ne-s
ale equations:

� (v + v

0

; ∂
t

w)

L

2

+ a (v + v

0

; w) + b (w; p+ p

0

) + 
 (v + v

0

; v + v

0

; w)

= L (w) ; (2.55)

� (v + v

0

; ∂
t

w

0

)

L

2

+ a (v + v

0

; w

0

) + b (w

0

; p+ p

0

) + 
 (v + v

0

; v + v

0

; w

0

)

= L (w

0

) ; (2.56)

The �ne s
ale equation (2.56) 
an be rewritten as:

� (v

0

; ∂
t

w

0

)

L

2

+ a (v

0

; w

0

) + b (w

0

; p

0

) + 
 (v

0

; v

0

; w

0

) + 
 (v; v

0

; w

0

) + 
 (v

0

; v; w

0

)

= L (w

0

) + (v; ∂
t

w

0

)

L

2

� a (v; w

0

)� b (w

0

; p)� 
 (v; v; w

0

) ;

= hw

0

; f � �∂
t

v + �∆ v �r p� � [v ·r℄ vi

V

�

;V

: (2.57)
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Following [Bazilevs et al., 2007℄, the term in the right-hand side of equa-

tion (2.57) (f � �∂
t

v + �∆ v �r p� � [v ·r℄ v) 
an be seen as the residual

Res (v; p) obtained when the 
oarse-s
ale 
omponents are used to approximate

the solution of Navier-Stokes equations (2.45). Thus, the �ne-s
ale equation

(2.57) theoreti
ally allows to estimate the �ne-s
ale 
omponents (v

0

; p

0

) in terms

of the 
oarse-s
ale 
omponents (v; p) and the residual Res (v; p):

(v

0

; p

0

) = F

0

[(v; p); Res (v; p)℄ : (2.58)

Equation (2.58) is exa
tly the (formal) 
losure equation that allows to solve

the 
oarse-s
ale equation (2.55). In LES literature, this 
losure is brought by

a turbulen
e model, su
h as Smagorinsky eddy-vis
osity model. Conversely,

VMS philosophy is rather to approximate the 
losure fun
tional F

0

. To this

end, it is assumed in [Bazilevs et al., 2007℄ that, when the residual is small, a

perturbation series 
an be used to approximate F

0

:

X

0

=

+1

X

k=1

�

k

X

0

k

; (2.59)

where X

0

= (v

0

; p

0

), X = (v; p) and � = kRes(X)k

V

�

.

However, as stated in [Bazilevs et al., 2007℄, a rigorous justi�
ation of the


onvergen
e of this perturbation series is still, to the author's knowledge, la
k-

ing. Furthermore, when used in the �ne-s
ale equation (2.57), this series re-

sults in a 
as
ade of linear problems, whose solutions require the introdu
tion

of a �ne-s
ale Green's operator, whi
h itself depends on the 
lassi
al Green's

operator, via the proje
tion operator P
V

. The 
omputation of this �ne-s
ale

Green's operator brings additional di�
ulties and approximations, whi
h, to

the author's knowledge, still need to be dealt with.

Beside this key issue of 
losure between resolved and unresolved s
ales, it

shall also be highlighted that the treatment of boundary 
onditions is, on
e

again, raising some questions. Indeed, periodi
 boundary 
onditions are par-

tially used in [Hughes et al., 2001, Bazilevs et al., 2007℄, with an enfor
ement

of the no-slip 
ondition on the 
oarse-s
ale 
omponent. In [Hughes et al., 1998℄,

it is rather assumed in the theory of VMS that the velo
ity 
oarse-s
ale 
om-

ponent v shares the same boundary 
onditions as the original velo
ity v. This

assumption 
an be questioned as a boundary is by essen
e a high-frequen
y

phenomenon. Furthermore, one 
an expe
t the 
oarse-s
ale 
omponent not to

be able to faithfully represent the boundary layer in the vi
inity of an obsta
le,

or to take into a

ount a boundary rugosity and a logarithmi
 velo
ity pro�le

for instan
e.

To 
on
lude this se
tion on the VMS method, it 
an be highlighted that

a similar philosophy using a proje
tion-based partitioning between 
oarse-

s
ale and �ne-s
ale 
omponents has also been applied in the solid me
hani
s


ommunity, for the study of heterogeneous stru
tures [Ladevèze et al., 2001,

Ladevèze and Nouy, 2003, Ladevèze, 2004℄.

This wide state of the art on porous media, homogenization and multi-

s
ale methods being now re
alled, it is high time to ta
kle the 
ore of this
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hapter, that is to say wavelets literature. The following se
tions will thus

summarize some of the key 
on
epts about wavelets theory. The fo
us will

be mainly put on Continuous Wavelet Transform (CWT), with its 1D and

2D implementation. The framework of 1D Dis
rete Wavelet Transform and

Multi-Resolution Analysis (MRA) will then follow to 
omplete the pi
ture.

2.5 1D Continuous Wavelet Transform

Wavelets theory stands at the 
rossing of multiple resear
h areas, su
h as

signal and image pro
essing, harmoni
 analysis, mathemati
al physi
s...While

early works from the 1930's were already trying to develop new te
hniques to


ope with the drawba
ks of Fourier transform, wavelets theory, in its 
urrent

form and denomination, 
an be tied ba
k to the 1980's. Indeed, the �rst or-

thogonal wavelets were introdu
ed by [Strömberg, 1981℄. Independently, the

theoreti
al physi
s 
ommunity of Marseille (Fran
e) introdu
ed and studied the


on
ept of Continuous Wavelet Transform (CWT), via the referen
e works of

[Grossmann and Morlet, 1984, Grossmann et al., 1985℄ and [Torrésani, 1992,

Gonnet and Torrésani, 1994, Torrésani, 1995, Torrésani, 1998℄. In paral-

lel with these works, new orthogonal wavelets were put forward by

[Lemarié and Meyer, 1986℄, followed by the framework of Multi-Resolution

Analysis (MRA) [Mallat, 1989a, Mallat, 1989b, Mallat, 1989
℄, and the work

of [Daube
hies, 1988℄, who de�ned the �rst smooth and 
ompa
tly-supported

wavelets. For a brief history of wavelets theory and a wide overview of its devel-

opments and appli
ations, espe
ially in the �eld of MRA, the reader may refer

to [Jawerth and Sweldens, 1994℄. The interested reader may also �nd further

information on general mathemati
al tools for time-frequen
y analysis in the

referen
e works of [Martin and Flandrin, 1985, Flandrin, 1989, Flandrin, 1999,

Flandrin, 2018℄.

To begin this overview of wavelets theory, the fo
us is here �rst put on 1D

Continuous Wavelet Transform (CWT).

2.5.1 A middle ground between time and frequen
y

Following [Flandrin, 2005℄, one 
an motivate the introdu
tion of wavelets

by highlighting the need to �nd a middle ground between:

� on the one hand, the time representation of a signal f , whi
h formally

writes:

8t

0

2 R, f(t
0

) =

Z

R

Æ

t

0

(t)f(t) dt; (2.60)

where Æ

t

0

(t) = Æ(t� t

0

) denotes Dira
 distribution;

� on the other hand, the frequen
y representation fF [f ℄(!)g

!2R
, whi
h

allows to formally write:
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8t

0

2 R, f(t
0

) =

1

2�

Z

R

F [f ℄(!)e

it

0

!

d!; (2.61)

where F [f ℄ denotes the Fourier transform of a signal f , de�ned by:

F [f ℄(!) =

Z

R

f(t)e

�i!t

dt: (2.62)

The time representation ff(t

0

)g

t

0

2R thus 
onsists in a linear de
omposi-

tion of the signal f(t) on the individual atoms fÆ

t

0

g

t

0

2R, while the frequen
y

representation fF [f ℄(!)g

!2R

onsists in a linear de
omposition on the atoms

f! 7�! e

it

0

!

g

t

0

2R. As a result, the time (respe
tively frequen
y) representation

exhibits a perfe
t lo
alization in the time (respe
tively frequen
y) domain.

2.5.2 Analysing wavelet and CWT

In order to bridge the gap between these two representations, and 
ope

with the poor lo
alization of Fourier transform in the time domain, the idea of

Continuous Wavelet Transform (CWT) is to swit
h the atoms f! 7�! e

it

0

!

g

t

0

2R

for a new type of fun
tions, 
alled wavelets, whi
h exhibit good lo
alization

properties both in the physi
al and spe
tral spa
es. In order to be able to

study numerous time instants (or positions), and numerous frequen
ies, these

wavelets are built by dilations and translations from an original wavelet, 
alled

analysing wavelet. The linear de
omposition of a signal f on these wavelets

thus results in a well-lo
alized transform, 
alled Continuous Wavelet Transform

(CWT), whi
h is now able to study a signal frequen
y spe
trum around lo
al

time instants or positions. The mathemati
al de�nition of 1D CWT is detailed

below.

De�nition 2.5.1 1D Continuous Wavelet Transform (see

[Torrésani, 1995, Mallat, 2008℄)

Assume Ψ 2 L1

(R)\L2

(R), with real or 
omplex values, and satisfying

the following zero-average 
ondition:

Z

R

Ψ (t) dt = 0; (2.63)

or equivalently:

F [Ψ℄(0) = 0: (2.64)

In the following, it is also assumed that the fun
tion Ψ is L

2

-normalized

in the time domain:

kΨk
L

2

(R)
= 1: (2.65)
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Su
h a fun
tion Ψ is 
alled an analysing wavelet. The above require-

ments ensure that Ψ will exhibit good lo
alization properties in both the

physi
al and spe
tral spa
es. From this original atom, one 
an build a

family of dilated and translated atoms

n

t 7�!

1

p

s

Ψ

�

t�u

s

�o

s>0, u2R
, where s is

a s
ale parameter, and u a translation parameter.

The Continuous Wavelet Transform (CWT) of a �nite-energy signal

f 2 L

2

(R) is then de�ned as the linear de
omposition of f on the 
omplex-


onjugates of these atoms (i.e. a L

2

-inner produ
t), that is to say:

8s > 0, u 2 R,

W[f ℄(s; u) =

1

p

s

Z

R

f(t)Ψ

�

t� u

s

�

�

dt: (2.66)

The (
omplex) number W[f ℄(s; u) is 
alled wavelet 
oe�
ient. It is

here evaluated for a given s
ale s > 0 and a time instant u 2 R. If one

now introdu
es the notations Ψ
s

(t) =

1

p

s

Ψ

�

t

s

�

, and

eΨ(t) = Ψ(�t), the above

de�nition (2.66) 
an be rewritten as a 
onvolution produ
t:

W[f ℄(s; u) =

�

f �

eΨ
�

s

�

(u); (2.67)

or equivalently, in the frequen
y domain, as:

F [W[f ℄(s; · )℄ (!) = F [f ℄(!)�F

h

eΨ
�

s

i

(!);

= F [f ℄(!)�

p

sF [Ψ℄ (s!)
�

:

(2.68)

(2.69)

To 
omplete this de�nition of 1D CWT, a few remarks shall be stated:

Remark 2.5.1 � the de�nition (2.66), where one 
an noti
e the s
aling

fa
tor

1

p

s

, is referred to as an "energy formulation" of CWT; the use

of a s
aling fa
tor

1

s

, referred to as an "amplitude formulation", 
an

also be found in literature. These formulations preserve respe
tively

the wavelets energy (L

2

norm) and amplitude (L

1

norm), as detailed

below:
















1

p

s

Ψ

�

·

s

�
















2

L

2

(R)

=

Z

R

�

�

�

�

�

1

p

s

Ψ

�

t

s

�

�

�

�

�

�

2

dt; (2.70)

=

1

s

Z

R

jΨ(� )j
2

s d�; (2.71)

= kΨk
2

L

2

(R)
: (2.72)
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1

s

Ψ

�

·

s

�













L

1

(R)

=

Z

R

1

s

�

�

�

�

Ψ

�

t

s

�

�

�

�

�

dt; (2.73)

=

1

s

Z

R

jΨ(� )j s d�; (2.74)

= kΨk
L

1

(R)
: (2.75)

� to justify the well-posedness of equation (2.69), one 
an put forward

Young's inequality, whi
h ensures that, given a �nite-energy signal

f 2 L

2

(R) and a wavelet Ψ 2 L1

(R) \ L2

(R), the fun
tion de�ned by

u 7�! W[f ℄(s; u) =

�

f �

eΨ
�

s

�

(u) belongs to L

2

(R) \ L1 (R). Thus, it

indeed admits a Fourier transform.

� thanks to the wavelet zero-average 
ondition (2.63), one 
an also

de�ne the CWT of a 
onstant signal, whi
h does not belong in L

2

(R).

These de�nition and remarks being stated, let us now emphasize the lo
al-

ization property of wavelets.

2.5.3 Lo
alization property

Considering the requirements on the analysing wavelet Ψ, namely the zero-

average 
ondition F [Ψ℄(0) = 0, and the fa
t that Ψ 2 L1

(R)\L2

(R), its Fourier

transform F [Ψ℄ also belongs in L2

(R), and one 
an moreover state that:

lim

jtj�!+1

jΨ(t)j = 0; (2.76)

lim

j!j�!+1

jF [Ψ℄ (!)j = 0: (2.77)

As a result, the analysing wavelet Ψ 
lassi
ally exhibits a well-lo
alized

support both in the physi
al and spe
tral spa
es, with an os
illating behav-

ior in the time domain, and a band-pass behavior in the frequen
y domain.

Furthermore, all the dilated wavelets fΨ
s

g

s>0

=

n

1

p

s

Ψ

�

·

s

�o

s>0

share a similar

lo
alization property, with a bandwidth whi
h is identi
al for all wavelets.

Indeed, following [Torrésani, 1995, Mallat, 2008, Lilly and Olhede, 2009℄,

the support of a 
omplex and analyti
 wavelet Ψ (the de�nition will be de-

tailed later in this se
tion) in the time-frequen
y plane 
an be de�ned by:

� a 
enter in the time domain :

tΨ =

1

kΨk
2

L

2

(R)

Z

R

t jΨ(t)j
2

dt; (2.78)

Samy Mokhtari CHAPTER 2. STATE OF THE ART 25



2.5. 1D CONTINUOUS WAVELET TRANSFORM

� a width in the time domain :

�

∆tΨ

�

2

=

1

kΨk
2

L

2

(R)

Z

R

�

t� tΨ

�

2

jΨ(t)j
2

dt; (2.79)

� a 
enter in the frequen
y domain :

!Ψ =

1

kF [Ψ℄k
2

L

2

(R)

Z

R

! jF [Ψ℄ (!)j
2

d!; (2.80)

� a width in the frequen
y domain :

�

∆!Ψ

�

2

=

1

kF [Ψ℄k
2

L

2

(R)

Z

R

�

! � !Ψ

�

2

jF [Ψ℄ (!)j
2

d!: (2.81)

The wavelet Ψ being L

2

-normalized in the time domain, Parseval-Plan
herel

identity implies that kF [Ψ℄k
L

2

(R)
=

p

2�. Furthermore, the wavelet Ψ is usually


entered around zero in the time domain

�

tΨ = tΨ
s

= 0

�

. Taking into a

ount

the s
ale parameter, the wavelet family fΨ
s

g

s>0

is shown to satisfy the following

properties:

Time width Central frequen
y Frequen
y width

∆tΨ
s

= s∆tΨ !Ψ
s

=

!

Ψ
s

∆!Ψ
s

=

∆!

Ψ
s

Table 2.1: Analysing wavelet time-frequen
y support.

Thus, by �ltering a signal through a wavelet family fΨ
s

g

s>0

, it is possible

to study numerous frequen
y ranges, while preserving the time (or spatial)

lo
alization via the translation parameter u. The interested reader may refer to

[Torrésani, 1995, Mallat, 2008℄ for a detailed presentation on wavelet transform,

and to [Lilly and Olhede, 2009℄ for an overview of the di�erent frequen
ies

(energy frequen
y, peak-amplitude frequen
y, instantaneous frequen
y) that


an be asso
iated to a 
omplex analyti
 wavelet.

Speaking of su
h wavelets, it is now time to properly de�ne the 
on
ept of


omplex analyti
 wavelet.

2.5.4 Complex analyti
 wavelets

Conversely to Fourier transform, where the atoms f! 7�! e

it

0

!

g

t

0

2R are


omplex-valued, the analysing wavelet Ψ 
an be either:

� 
omplex analyti
;

� real and symmetri
.
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Let us here start with 
omplex analyti
 wavelets.

De�nition 2.5.2 Complex analyti
 wavelet

A 
omplex-valued wavelet Ψ 2 L1

(R) \ L2

(R) is said to be analyti
 if

and only if:

8! < 0, F [Ψ℄ (!) = 0: (2.82)

Let us illustrate this de�nition with some examples:

Example 2.5.1 Complex analyti
 wavelets

� Cau
hy wavelet of order n 2 N:

Ψ
n

(t) =

 

i

t+ i

!

n+1

; (2.83)

F [Ψ
n

℄(!) =

2�

n!

!

n

e

�!

H(!); (2.84)

where H denotes the Heaviside fun
tion.

� generalized Morse wavelets: 8�; � > 0,

F [Ψ
�;�

℄ = a

�;�

!

�

e

�!

�

H(!); (2.85)

where a

�;�

= 2

�

e�

�

�

�

�

. The interested reader may refer to

[Lilly and Olhede, 2009℄ for a detailed study of this wavelet family.

� 
omplex Shannon wavelet:

Ψ(t) = � sin




(t)e

i2�t

: (2.86)

� Morlet wavelet:

Ψ
�

(t) = A

�

e

�

t

2

2

�

e

i�t

� e

�

�

2

2

�

; (2.87)

F [Ψ
�

℄ (!) = A

�

e

�

(!��)

2

2

h

1� e

�!�

i

; (2.88)

whi
h is only approximately analyti
 when the parameter � is large

enough. The parameter A

�

is a normalization 
onstant. On
e again,

the interested reader may refer to [Lilly and Olhede, 2009℄ for more

details on this wavelet.
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� Gabor wavelet (� > 0):

Ψ(t) = g(t)e

i�t

; (2.89)

F [Ψ℄ (!) = F [g℄(! � �); (2.90)

where g(t) =

1

(�

2

�)

1

4

e

�

t

2

2�

2

is a Gaussian window, whose Fourier trans-

form is given by F [g℄(!) = (4��

2

)

1

4

e

�

�

2

!

2

2

. Thus, when the frequen
y

! is su�
iently far away from �, the wavelet Fourier transform is al-

most zero. Gabor wavelet thus be
omes approximately analyti
 with

a well-
hosen parameter �.

Su
h 
omplex and analyti
 wavelets meet a great su

ess in literature. To

emphasize why, some properties on analyti
 signals and Fourier transform shall

�rst be re
alled.

Remark 2.5.2 Analyti
 signal, Fourier and wavelet transforms

Any 
omplex analyti
 signal Ψ 2 L2

(R;C) admits the following de
om-

position:

Ψ(t) = R(Ψ)(t) + iH [R(Ψ)℄ (t); (2.91)

F [Ψ℄ (!) = F [R (Ψ)℄ (!) + sign(!)F [R (Ψ)℄ (!); (2.92)

where R(Ψ) denotes the real part of Ψ, and H the Hilbert transform:

H [Ψ℄ (t) =
1

�

p:v:

�

Z

R

1

t� �

Ψ(� ) d�

�

; (2.93)

= p:v:

��

� 7�!

1

��

�

� Ψ

�

(t): (2.94)

In equation (2.94), p:v: denotes the prin
ipal value. It is for instan
e

re
alled that the prin
ipal value of the fun
tion t 7�!

1

t

is a distribution,

whi
h is de�ned by:

8' 2 S (R) ,

�

p:v:

�

1

t

�

; '

�

S

0

;S

= lim

�!0

Z

Rn[��;�℄

'(t)

t

dt; (2.95)

where S (R) denotes the S
hwartz spa
e (i.e. smooth fun
tions with

fast de
ay towards zero).

Following equation (2.92), the Fourier transform of a 
omplex analyti


signal Ψ 2 L2

(R;C) satis�es:
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F [Ψ℄ (!) =

(

2F [R (Ψ)℄ (!) if ! � 0

0 if ! < 0

(2.96)

Continuous Wavelet Transform also presents interesting properties

with analyti
 signals. Indeed, if one 
onsiders a real-valued �nite-energy

signal f 2 L

2

(R;R), and its 
omplex analyti
 
ounterpart f

a

= f + iH[f ℄,

it 
an be shown that their respe
tive wavelet transform satis�es:

8s > 0, W [f

a

℄ (s; · ) = 2W[f ℄(s; · ): (2.97)

This remark on analyti
 signals being stated, it 
an now be emphasized

how 
omplex analyti
 wavelets allow to 
at
h instantaneous frequen
ies within

a real signal.

Remark 2.5.3 Complex wavelets and instantaneous frequen
ies

The use of a 
omplex analyti
 wavelet Ψ on a real signal f allows

to obtain 
omplex wavelet 
oe�
ients, whi
h o�er information via their

modulus and phase. This ability to keep tra
k of the phase of a signal

opens the way to instantaneous frequen
ies.

Indeed, it has already been underlined that any real signal f 2 L

2

(R;R)


an be 
onne
ted, thanks to Hilbert transform H, to its 
omplex analyti



ounterpart f

a

2 L

2

(R;C):

f

a

(t) = f(t) + iH[f ℄(t); (2.98)

= jf

a

(t)j e

i�arg(f

a

(t))

: (2.99)

Thus, a real signal f 
an be linked to the 
anoni
al pair (jf

a

j; arg (f

a

)),

with arg (f

a

(t)) 2 [0; 2�[. The instantaneous frequen
y !

f

of the real signal

f is then de�ned by:

!

f

(t) =

d

dt

[arg (f

a

(t))℄ : (2.100)

Complex wavelets allow to keep tra
k of the phase of the analyti
 
om-

ponent f

a

. Furthermore, the wavelet 
oe�
ients of the analyti
 signal f

a

are 
losely related to the ones of f , as stated by equation (2.97). As for the


omputation of the analyti
 
omponent f

a

from the original signal f , it is,

in 
ommon situations, very easy. Indeed, if the signal f is an asymptoti


signal, i.e. if it exhibits a single-
omponent os
illatory behavior:

f(t) = A(t) 
os('(t)); (2.101)

with a phase '(t) os
illating mu
h faster than the amplitude A(t), then

the following approximation holds:
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f

a

(t) � A(t)e

i'(t)

: (2.102)

The interested reader may refer to [Delprat et al., 1992,

Carmona et al., 1994, Carmona et al., 1997, Le and Argoul, 2004℄

for further details on the use of 
omplex analyti
 wavelets for the study

of asymptoti
 signals.

Now, depending on the signal at study, one 
an be more interested in a sym-

metri
 property of the wavelets, rather than their ability to 
at
h instantaneous

frequen
ies. In su
h 
ases, one 
an turn towards real wavelets.

2.5.5 Real and symmetri
 wavelets

Classi
al real and symmetri
 wavelets are detailed below:

Example 2.5.2 Real symmetri
 wavelets

� 1D Mexi
an hat, obtained by 
omputing the Lapla
ian of a Gaussian

fun
tion e

�

t

2

2�

2

, � > 0:

Ψ(t) =
2

�

1

4

p

3�

 

1�

t

2

�

2

!

e

�

t

2

2�

2

; (2.103)

F [Ψ℄ (!) =

p

8�

5

2

�

1

4

p

3

!

2

e

�

�

2

!

2

2

: (2.104)

� di�eren
e of Gaussian fun
tions (0 < � < 1):

Ψ(t) =
1

�

2

e

�

kxk

2

2�

2

� e

�

kxk

2

2

: (2.105)

Su
h real and symmetri
 wavelets are very smooth, and 
an be used to

dete
t singularities in signals, or to regularize non-smooth behaviors.

A 
ommon denominator between all the wavelets des
ribed until now,

whether they are 
omplex or real, is their band-pass behavior in the frequen
y

domain. However, it is sometimes more suited to use low-pass �lters to 
at
h

simultaneously all the s
ales or wavelengths beyond a spe
i�
 
uto� value, as

in Large Eddy Simulation (see [Lesieur, 2008℄) for turbulent �ows for instan
e.

By aggregating all dilated wavelets fΨ
s

g

s

for s � 1, it is possible to build su
h

a low-pass �lter, 
alled the s
aling fun
tion or father wavelet.
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2.5.6 S
aling fun
tion and low-frequen
y approximation

Given an (admissible) analysing wavelet Ψ, one de�nes its asso
iated s
aling

fun
tion Φ as follows:

De�nition 2.5.3 S
aling fun
tion (see [Torrésani, 1995, Mallat, 2008℄)

If Ψ 2 L

1

(R) \ L2

(R) denotes an (admissible) analysing wavelet, its

asso
iated s
aling fun
tion Φ is de�ned, in the frequen
y domain, by:

8! 2 R, jF [Φ℄ (!)j
2

=

Z

+1

1

jF [Ψ℄ (s!)j
2

s

ds; (2.106)

=

Z

+1

!

jF [Ψ℄ (�)j
2

�

d�: (2.107)

The phase of the Fourier transform F [Φ℄ 
an be 
hosen arbitrarily. Be-

sides, the s
aling fun
tion satis�es the same normalization (in L

2

norm)

as the analysing wavelet.

By aggregating all dilated wavelets fΨ
s

g

s

for s � 1, as shown in equation

(2.107), one gathers all their su

essive bandwidths, and thus obtains a

low-pass �lter.

To 
omplete the above de�nition of s
aling fun
tion, a few remarks shall be

stated:

Remark 2.5.4 Admissibility and L

2

-normalization

� the 
onvergen
e of the integral in equation (2.107) is ensured when

the analysing wavelet Ψ satis�es the following admissibility 
ondition:

CΨ : =

Z

R

jF [Ψ℄ (!)j
2

j!j

d! < +1: (2.108)

This admissibility 
riterion will also be en
ountered when dis
ussing

inverse wavelet transform.

� the de�nition (2.107) ensures that both the analysing wavelet and

s
aling fun
tion are L

2

-normalized in the time domain. Indeed, one


an write, using Fubini's theorem:

Z

R

jF [Φ℄ (!)j
2

d! =

Z

R

Z

+1

!

jF [Ψ℄ (�)j
2

�

d� d!; (2.109)

=

Z

R

jF [Ψ℄ (�)j
2

�

 

Z

�

0

d!

!

d�; (2.110)

=

Z

R

jF [Ψ℄ (�)j
2

d�; (2.111)

= 2�: (2.112)
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Parseval-Plan
herel identity then allows to state that kΦk
2

L

2

(R)
= 1.

It is here worth noti
ing that, 
onversely to analysing wavelets, s
aling fun
-

tions do not always possess an analyti
al expression in the time domain. For

the Mexi
an hat wavelet for instan
e, an analyti
al expression is only available

in the spe
tral domain, as detailed below.

Example 2.5.3 Mexi
an hat s
aling fun
tion

The s
aling fun
tion asso
iated to the 1D Mexi
an hat wavelet is de-

�ned, in the spe
tral domain, by:

F [Φ℄ (!) =
2�

3

2

�

1

4

p

3

�

!

2

+

1

�

2

�

1

2

e

�

�

2

!

2

2

: (2.113)

This low-pass �lter being de�ned, let us now turn towards the low-frequen
y

approximation of a signal f 2 L

2

(R).

De�nition 2.5.4 Low-frequen
y approximation (see [Torrésani, 1995,

Mallat, 2008℄)

Given an original s
aling fun
tion Φ 2 L1

(R) \ L2

(R), one 
an build

a family of dilated atoms

n

1

p

s

Φ

�

·

s

�o

s>0

. The low-frequen
y approxima-

tion L[f ℄ of a �nite-energy signal f 2 L

2

(R) is then de�ned as the linear

de
omposition of f on the 
omplex-
onjugates of these atoms:

8s > 0, u 2 R,

L[f ℄(s; u) =

1

p

s

Z

R

f(t)Φ

�

t� u

s

�

�

dt: (2.114)

Similarly to Continuous Wavelet Transform (CWT), this de�nition


an be rewritten, in the time and frequen
y domains, as:

L[f ℄(s; u) =

�

f �

eΦ
�

s

�

(u);

F [L[f ℄(s; · )℄ (!) = F [f ℄(!)�

p

sF [Φ℄(s!)
�

:

(2.115)

(2.116)

Now that both the analysing wavelet Ψ and s
aling fun
tion Φ are de�ned,

it is high time to emphasize why CWT 
an be a relevant tool to bypass the

limitations of 
lassi
al homogenization and multi-s
ale methods, espe
ially the


losure between resolved and unresolved s
ales, and the treatment of boundary


onditions.
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2.5.7 Inverse wavelet transform

Conversely to 
lassi
al 
onvolution-based �ltering operators, Continuous

Wavelet Transform (CWT) o�ers an inverse formula, whi
h allows to re
over

a high-resolution signal f 2 L

2

(R) from its wavelet 
oe�
ients W[f ℄(s; · ).

The only requirement to ful�ll in order to allow for su
h a re
onstru
tion is to


hoose an admissible analysing wavelet, as detailed below.

Theorem 2.5.1 1D re
onstru
tion formula (see [Torrésani, 1995,

Mallat, 2008℄)

If the analysing wavelet Ψ satis�es the admissibility 
ondition:

CΨ : =

Z

R

jF [Ψ℄ (!)j
2

j!j

d! < +1; (2.117)

then the following re
onstru
tion formula holds:

� if Ψ is real, then for all f 2 L

2

(R):

f(t) =

2

CΨ

Z

+1

0

 

Z

R

W[f ℄(s; u)

1

p

s

Ψ

�

t� u

s

�

du

!

ds

s

2

; (2.118)

� if Ψ is 
omplex and analyti
, then for all f 2 L

2

(R):

f(t) =

2

CΨ

R

 

Z

+1

0

 

Z

R

W[f ℄(s; u)

1

p

s

Ψ

�

t� u

s

�

du

!

ds

s

2

!

: (2.119)

Furthermore, in both 
ases, the following energy identity holds:

kfk

2

L

2

(R)
=

2

CΨ

Z

+1

0

�

Z

R

jW[f ℄(s; u)j

2

du

�

ds

s

2

: (2.120)

For the sake of 
ompleteness, it shall be highlighted that another re-


onstru
tion formula 
an be de�ned with the s
aling fun
tion Φ. Indeed,

if the analysing wavelet Ψ is real, one has, for all f 2 L

2

(R):

f(t) =

2

CΨ

Z

s

0

0

 

Z

R

W[f ℄(s; u)

1

p

s

Ψ

�

t� u

s

�

du

!

ds

s

2

+

2

CΨs0

Z

R

L[f ℄(s

0

; u)

1

p

s

0

Φ

�

t� u

s

0

�

du; (2.121)

where s

0

is a positive s
ale parameter 
hosen to 
ompute the low-frequen
y

approximation L[f ℄(s

0

; · ). It represents the 
uto� s
ale of the low-pass

�lter Φ
s

0

.
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Thanks to the above re
onstru
tion formula, it is thus possible, with a

well-
hosen number of wavelet 
oe�
ients (W[f ℄(s

k

; · ))

1�k�N

, sele
ted on a

well-
hosen s
ale range [s

1

; s

N

℄, to re
onstru
t, up to an approximation, the

signal f at the mi
ros
opi
 s
ale. This re
onstru
tion formula thus allows to


onne
t unresolved and resolved s
ales without any ad ho
 model. It will also

allow, as proven in 
hapter 3, to properly transfer the boundary 
onditions of

a mi
ros
opi
 �eld f into its �ltered 
ounterpart W[f ℄(s; · ).

Nevertheless, despite this obvious advantage of CWT 
ompared to plain

�ltering methods, it is important to highlight that CWT exhibits one main

drawba
k: redundan
y.

2.5.8 CWT and redundan
y

Indeed, the use of CWT transforms a one-variable fun
tion t 7�! f(t) into

a two-variables fun
tion (s; u) 7�! W[f ℄(s; u). Furthermore, 
orrelations be-

tween di�erent wavelets of the family fΨg
s>0


an be witnessed. This is due to

the fa
t that the supports of wavelets asso
iated to neighboring s
ale parame-

ters may overlap. The redundan
y of a spe
i�
 analysing wavelet Ψ is measured

by its reprodu
ing kernel, as detailed in [Torrésani, 1995, Mallat, 2008℄.

De�nition 2.5.5 Reprodu
ing kernel

The reprodu
ing kernel of a wavelet Ψ is de�ned by the L

2

-inner produ
t

between two dilated wavelets:

8s

1

; s

2

2 R�

+

, u

1

; u

2

2 R,

K (s

1

; s

2

; u

1

; u

2

) = hΨ
s

2

;u

2

;Ψ
s

1

;u

1

i

L

2

; (2.122)

=

Z

R

1

p

s

2

Ψ

�

t� u

2

s

2

�

�

1

p

s

1

Ψ

�

t� u

1

s

1

�

dt: (2.123)

This expression of the reprodu
ing kernel 
an be obtained by inje
ting the

re
onstru
tion formula (2.118) into the CWT de�nition (2.66):

W[f ℄(s

2

; u

2

) (2.124)

=

Z

R

 

2

CΨ

Z

+1

0

Z

R

W[f ℄(s

1

; u

1

)

1

p

s

1

Ψ

�

t� u

1

s

1

�

du

1

ds

1

s

2

1

!

1

p

s

2

Ψ

�

t� u

2

s

2

�

�

dt;

(2.125)

=

2

CΨ

Z

+1

0

Z

R

 

Z

R

1

p

s

1

Ψ

�

t� u

1

s

1

�

1

p

s

2

Ψ

�

t� u

2

s

2

�

�

dt

!

W[f ℄(s

1

; u

1

) du

1

ds

1

s

2

1

;

(2.126)

=

2

CΨ

Z

+1

0

Z

R

K(s

1

; s

2

; u

1

; u

2

)W[f ℄(s

1

; u

1

) du

1

ds

1

s

2

1

: (2.127)
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In order to bypass the redundan
y of CWT, e�orts have been made in

the 1980's and 1990's to develop (dis
rete) orthogonal wavelet bases. But be-

fore introdu
ing Dis
rete Wavelet Transform and orthogonal Multi-Resolution

Analysis (MRA), let us �rst extend CWT to the 2D 
ase.

2.6 2D Continuous Wavelet Transform

In the 1D 
ase, all the atoms fΨ
s;u

(t)g

s>0, u2R
=

n

1

p

s

Ψ

�

t�u

s

�o

s>0, u2R
were

built by dilations (s) and translations (u) from an analysing wavelet Ψ. In the

2D 
ase, one shall now take into a

ount 2 degrees of freedom of translation,

and 1 degree of freedom of rotation. Thus, all the atoms

n

Ψ
s;u;�

o

s>0, u2R2

, �2[0;2�[

are now de�ned, with an energy formulation, as:

Ψ
s;u;�

(x) =

1

s

Ψ

�

�

R

�

�

�1

x� u

s

�

; (2.128)

where u 2 R2

is now a translation ve
tor, and R

�

2 R2�2

a 2D rotation matrix.

Remark 2.6.1 In 2D, the previous time (t 2 R) and frequen
y (! 2 R)

notations are repla
ed by respe
tively a position (x 2 R2

) and a wave ve
tor

(k 2 R2

).

2.6.1 Analysing wavelet and CWT

Based on the atoms (2.128), the de�nition of 2D CWT follows the same

spirit as 1D CWT:

De�nition 2.6.1 2D Continuous Wavelet Transform (see

[Gonnet and Torrésani, 1994, Antoine and Murenzi, 1996℄)

Assume Ψ 2 L1

(R2

)\L

2

(R2

), with real or 
omplex values, and satisfying

the following zero-average 
ondition:

Z

R2

Ψ (x) dx = 0; (2.129)

or equivalently:

F [Ψ℄ (0) = 0: (2.130)

In the following, it is also assumed that the fun
tion Ψ is L

2

-normalized:

kΨk
L

2

(R2

)

= 1: (2.131)

Given this analysing wavelet Ψ, the Continuous Wavelet Transform of

a signal f 2 L

2

(R2

) is de�ned, with an energy formulation, as follows:
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8s > 0, u 2 R2

, � 2 [0; 2�[,

W[f ℄ (s; u; �) =

1

s

Z

R2

f(x)Ψ

�

�

R

�

�

�1

x� u

s

�

�

dx: (2.132)

If one introdu
es the notations

eΨ(x) = Ψ(�x), Ψ
s;�

(x) =

1

s

Ψ

�

�

R

�

�

�1

x

s

�

,

and Ψ
�

(x) = Ψ

�

�

R

�

�

�1

x

�

, the above de�nition (2.132) 
an be rewritten as

follows:

W[f ℄ (s; u; �) =

�

f �

eΨ
�

s;�

�

(u);

F [W[f ℄(s; · ; �)℄ (k) = F [f ℄(k)� sF [Ψ
�

℄ (sk)

�

:

(2.133)

(2.134)

In the above de�nitions, the following notations are used:

� s is a positive s
ale parameter, u 2 R2

a ve
tor, and � an angle;

� W[f ℄(s; u; �) is the wavelet 
oe�
ient of f ;

� R

�

=

 


os(�) � sin(�)

sin(�) 
os(�)

!

(

e

1

;e

2)

is the 2D rotation matrix with respe
t

to the

�

O; e

1

^ e

2

�

axis, where

�

e

1

; e

2

�

is the orthonormal 
artesian

basis of R2

.

As in the 1D 
ase, the requirements imposed on the analysing wavelet Ψ

ensure that it will exhibit good lo
alization properties both in the physi
al and

spe
tral spa
es.

Nevertheless, while most properties of CWT naturally extend to the 2D


ase, it is worth noti
ing that it is not the 
ase for 
omplex analyti
 wavelets.

2.6.2 Complex wavelets: from analyti
 to dire
tional

wavelets

In 2D, the de�nition of analyti
 wavelets does not stand anymore, as it is

no longer possible to properly de�ne and distinguish a positive and a negative

wave ve
tor k 2 R2

. In wavelets literature, the 
on
ept of 
omplex dire
tional

wavelets has thus been introdu
ed. Su
h wavelets possess a Fourier transform

whi
h is essentially supported within a 
onvex 
one in the spatial frequen
y

plane fk 2 R2

g. They thus exhibit an anisotropi
 behavior, and are espe
ially

suited for the dete
tion of oriented features, su
h as edges in a pi
ture for

instan
e. The interested reader may refer to [Gonnet and Torrésani, 1994℄ and

[Antoine and Murenzi, 1996℄ for further details on this topi
.

Conversely to 
omplex wavelets, 1D real symmetri
 wavelets are naturally

extended into 2D isotropi
 fun
tions.
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2.6.3 Real and isotropi
 wavelets and s
aling fun
tions

One of the most widely used real and isotropi
 wavelet is the 2D Mexi
an

hat, hereafter de�ned both in the physi
al and spe
tral domains.

Example 2.6.1 2D Mexi
an hat

Ψ(x) =

p

2

�

p

�

 

1�

kxk

2

2�

2

!

e

�

kxk

2

2�

2

; (2.135)

F [Ψ℄ (k) = �

3

p

2�kkk

2

e

�

�

2

kkk

2

2

: (2.136)

Su
h real and isotropi
 wavelets allow to extend the 
on
ept of s
aling

fun
tion to the 2D 
ase, as detailed below.

De�nition 2.6.2 2D real and isotropi
 s
aling fun
tion

If Ψ 2 L1

(R2

)\L

2

(R2

) denotes a real, isotropi
 and admissible analysing

wavelet, one 
an de�ne its asso
iated (real and isotropi
) s
aling fun
tion

as follows:

8k 2 R
2

, jF [Φ℄ (k)j
2

= 2

Z

+1

1

jF [Ψ℄ (skkk)j
2

s

ds; (2.137)

= 2

Z

+1

kkk

jF [Ψ℄ (�)j
2

�

d�: (2.138)

On
e again, the phase of the Fourier transform F [Φ℄ 
an be 
hosen

arbitrarily. The above de�nition ensures that the s
aling fun
tion Φ is

real and isotropi
.

To 
omplete this de�nition, a few remarks shall be stated:

Remark 2.6.2 Admissibility, L

2

-normalization and isotropy

� to ensure the well-posedness of the integral in equation (2.138), the

analysing wavelet Ψ shall satisfy, as in the 1D 
ase, the following 2D

admissibility 
ondition:

CΨ : =

Z

R2

jF [Ψ℄ (k)j
2

kkk

2

dk < +1: (2.139)

� the de�nition (2.138) ensures that both the analysing wavelet Ψ and

s
aling fun
tion Φ are L

2

-normalized. Indeed, one 
an write, for all

k 2 R2

:
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Z

R2

jF [Φ℄ (k)j
2

dk = 2

Z

R2

Z

+1

kkk

jF [Ψ℄ (�)j
2

�

d� dk; (2.140)

= 2

Z

2�

0

Z

+1

0

 

Z

+1

r

jF [Ψ℄ (�)j
2

�

d�

!

r dr d�; (2.141)

= 4�

Z

+1

0

 

Z

+1

r

jF [Ψ℄ (�)j
2

�

d�

!

r dr: (2.142)

Thanks to Fubini's theorem, one 
an then write:

Z

R2

jF [Φ℄ (k)j
2

dk = 4�

Z

+1

0

jF [Ψ℄ (�)j
2

�

 

Z

�

0

r dr

!

d�; (2.143)

= 4�

Z

+1

0

�

2

2

�

jF [Ψ℄ (�)j
2

�

d�; (2.144)

= 2�

Z

+1

0

jF [Ψ℄ (�)j
2

� d�; (2.145)

=

Z

2�

0

Z

+1

0

jF [Ψ℄ (�)j
2

� d� d�; (2.146)

=

Z

R2

jF [Ψ℄ (k)j
2

dk; (2.147)

= 4�

2

: (2.148)

Parseval-Plan
herel identity then allows to state that kΦk
2

L

2

(R2

)

= 1.

� the isotropy property of the s
aling fun
tion results from the isotropy

of the analysing wavelet. Indeed, one 
an noti
e that:

F [Ψ℄ (�k) =

Z

R2

Ψ(x)e
ik ·x

dx; (2.149)

=

Z

R2

Ψ

�

�y

�

e

�ik · y

dy: (2.150)

F [Ψ℄ (k)
�

=

Z

R2

Ψ(x)
�

e

ik ·x

dx; (2.151)

=

Z

R2

Ψ

�

�y

�

�

e

�ik · y

dy: (2.152)

Thus, if the analysing wavelet Ψ is real and isotropi
, one has

Ψ

�

�y

�

�

= Ψ

�

�y

�

= Ψ(y), and its Fourier transform also is real and

isotropi
, i.e. F [Ψ℄ (k)� = F [Ψ℄ (k) = F [Ψ℄ (�k). As a result, the

Fourier transform F [Φ℄, and the s
aling fun
tion Φ itself, share the

same properties.
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As in the 1D 
ase, s
aling fun
tions do not always possess an analyti
al

expression in the physi
al domain. For the Mexi
an hat wavelet for instan
e,

one 
an only de�ne its 2D s
aling fun
tion in the spe
tral domain.

Example 2.6.2 2D Mexi
an hat s
aling fun
tion

The 2D s
aling fun
tion asso
iated to the isotropi
 Mexi
an hat wavelet

is de�ned, in the spe
tral domain, by:

F [Φ℄ (k) = �

2

p

2�

�

kkk

2

+

1

�

2

�

1

2

e

�

�

2

kkk

2

2

: (2.153)

As stated in the previous remark, one 
an noti
e that this s
aling fun
-

tion is purely real and isotropi
 in the spe
tral domain, and thus also in

the physi
al domain.

The de�nition of 2D isotropi
 s
aling fun
tions being now stated, one 
an

then extend the 
on
ept of low-frequen
y approximation to the 2D 
ase.

De�nition 2.6.3 2D low-frequen
y approximation

Given Ψ a real and isotropi
 analysing wavelet, and Φ its real and

isotropi
 s
aling fun
tion, one 
an naturally extend the de�nition of low-

frequen
y approximation as follows:

8s > 0, u 2 R2

,

L[f ℄(s; u) =

1

s

Z

R2

f(x)Φ

�

x� u

s

�

dx; (2.154)

By introdu
ing the notations Φ
s

(x) =

1

s

Φ

�

x

s

�

and

eΦ(x) = Φ(�x), the

above de�nition 
an be rewritten as follows:

L[f ℄(s; u) =

�

f �

eΦ
s

�

(u);

F [L[f ℄(s; · )℄ (k) = F [f ℄(k)� sF [Φ℄ (skkk) :

(2.155)

(2.156)

Now that both the analysing wavelet Ψ and s
aling fun
tion Φ have been

extended to the 2D 
ase, it is high time to also extend the inverse wavelet

transform.

2.6.4 Inverse wavelet transform

Following [Gonnet and Torrésani, 1994, Antoine and Murenzi, 1996℄, the

inverse wavelet transform is extended to the 2D 
ase as detailed below:
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Theorem 2.6.1 2D re
onstru
tion formula

If the analysing wavelet Ψ satis�es the admissibility 
ondition

CΨ : =

Z

R2

jF [Ψ℄ (k)j
2

kkk

2

dk < +1; (2.157)

then, the following re
onstru
tion formula and energy identity hold:

f (x) =

1

CΨ

Z

+1

0

Z

R2

Z

2�

0

W[f ℄(s; u; �)�

1

s

Ψ

�

�

R

�

�

�1

x� u

s

�

d� du

ds

s

3

;

(2.158)

kfk

2

L

2

(R2

)

=

1

CΨ

Z

+1

0

Z

R2

Z

2�

0

jW[f ℄(s; u; �)j

2

d� du

ds

s

3

: (2.159)

If the analysing wavelet Ψ is real and isotropi
, the re
onstru
tion for-

mula (2.121), whi
h uses the s
aling fun
tion Φ and the low-frequen
y

approximation L [Φ℄ (s
0

; · ), 
an naturally be extended to the 2D 
ase.

Now that all the properties of Continuous Wavelet Transform (CWT) have

been extended from the 1D to the 2D 
ase, it is high time to turn towards

Dis
rete Wavelet Transform and Multi-Resolution Analysis (MRA), whi
h o�er

a framework able to bypass the redundan
y of CWT.

2.7 1D Dis
rete Wavelet Transform and Multi-

Resolution Analysis

As already highlighted in the introdu
tion of the previous se
tions, the

development of orthogonal wavelet bases has bene�ted from the impor-

tant works of [Strömberg, 1981, Lemarié and Meyer, 1986, Daube
hies, 1988,

Mallat, 1989b℄. This fairly re
ent literature expanded the pioneering work of

[Haar, 1910℄, who designed the �rst orthogonal wavelets basis, known as the

Haar basis. These early wavelets, however, exhibit a dis
ontinuous behavior,

whi
h limits their use for the numeri
al 
omputation of PDEs for instan
e.

Before 
iting some examples of orthogonal wavelets, it is �rst important to

re
all the theoreti
al framework of MRA.

De�nition 2.7.1 Multi-Resolution Approximation of L

2

(R)

The 
on
ept of Multi-Resolution Approximation (MRA) of L

2

(R) was

�rst introdu
ed in [Mallat, 1989b℄. It is de�ned as a sequen
e of 
losed

subspa
es (V

j

)

j2Z
, whi
h satis�es the following properties:
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� 8j 2 Z, V
j

� V

j+1

;

� [

j2ZVj = L

2

(R), and \
j2ZVj = f0g;

� 8x 2 R, 8j 2 Z, f(x) 2 V
j

() f(2x) 2 V

j+1

;

� 8x 2 R, 8j; k 2 Z, f(x) 2 V
j

() f

�

x� 2

�j

k

�

2 V

j

;

� there exists an isomorphism from V

0

onto l

2

(Z), whi
h 
ommutes

with the a
tion of Z;

where l

2

(Z) is the spa
e of square-summable sequen
es. The a
tion

of Z over V

0

is de�ned as the translation of fun
tions f 2 V

0

by integer

values, while the a
tion of Z over l

2

(Z) is de�ned as the usual translation.

It is proven in [Mallat, 1989b℄ that a fun
tion ' 2 L

2

(R) exists, with a

non-vanishing integral, su
h that for all j 2 Z:

('

j;k

(x))

k2Z
: =

�

p

2

j

'

�

2

j

x� k

��

k2Z
is an orthonormal basis of V

j

:

(2.160)

This fun
tion ' is 
alled an orthogonal s
aling fun
tion, and is uniquely


hara
terized by:

� a re�nement or dilation equation:

'(x) = 2

X

k2Z

a

k

' (2x� k) ; (2.161)

where the real sequen
e (a

k

)

k2Z is 
alled a s
aling sequen
e, whi
h satis�es
P

k2Z ak = 1;

� and the following normalization:

Z

R

'(x) dx = 1: (2.162)

Let us now introdu
e the 
omplementary spa
e of V

j

within V

j+1

, here

denoted W

j

, whi
h moreover satis�es an orthogonality 
ondition (V

j

? W

j

).

One 
an thus write, for all j 2 Z, the following dire
t-sum:

V

j+1

= V

j

�W

j

: (2.163)

In MRA vo
abulary, the spa
e V

j

is said to 
ontain the information of a

given signal f 2 L

2

(R) at the resolution level 2

j

, while W

j

is said to 
ontain

the details allowing to go from the resolution level 2

j

to 2

j+1

. The above

dire
t-sum immediately implies that:
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8J 2 Z, V
J

= �

J�1

j=�1

W

j

; (2.164)

�

j2ZWj

= L

2

(R) : (2.165)

Besides, it is also proven in [Mallat, 1989b℄ that there exists a fun
tion  2

L

2

(R), 
alled orthogonal wavelet, su
h that the family

�

p

2

j

 

�

2

j

x� k

��

k2Z
is

an orthonormal basis of W

j

, for all j 2 Z. As a 
onsequen
e:

( 

j;k

(x))

j;k2Z
: =

�

p

2

j

 

�

2

j

x� k

��

k;j2Z
is an orthonormal basis of L

2

(R) :

(2.166)

Remark 2.7.1 It 
an here be noti
ed that, 
onversely to wavelet families

(Ψ
s

)

s>0

in the CWT framework, orthogonal wavelet bases ( 

j;k

)

j;k2Z
are now


onstru
ted by means of integer translations and dyadi
 dilations from an

analysing wavelet  .

Let us now denote by Q

j

the orthogonal proje
tion on W

j

and parallel to

�

i6=j

W

i

. The dire
t-sum (2.165) implies that, for all f 2 L

2

(R):

8x 2 R, f(x) =
X

j2Z

Q

j

(f)(x);

=

X

j;k2Z

h 

j;k

; fi

L

2

 

j;k

(x):

(2.167)

(2.168)

Equation (2.168) 
an be seen as an inverse dis
rete wavelet transform.

Thus, when going from Continuous Wavelet Transform to Dis
rete Wavelet

Transform and MRA, one swit
hes the 
orrelated atoms

n

1

p

s

Ψ

�

·�u

s

�o

s>0;u2R
for

orthonormal wavelet bases

�

p

2

j

 

�

2

j

x� k

��

k;j2Z
, and leaves the "
onvolution

produ
t" point of view for a "linear proje
tion" point of view. Now, to illustrate

the 
on
ept of orthogonal MRA, let us present some examples of orthogonal

wavelets.

Example 2.7.1 Orthogonal wavelets

� Haar analysing wavelet is a real, 
ompa
tly supported, symmetri
 and

orthogonal wavelet, de�ned by:

 (t) =

8

>

<

>

:

1 if 0 � t <

1

2

�1 if

1

2

� t < 1

0 otherwise

(2.169)
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Its asso
iated s
aling fun
tion is the box fun
tion:

'(t) =

(

1 if 0 � t < 1

0 otherwise

(2.170)

Su
h a wavelet presents a low interest be
ause of its dis
ontinuous

behavior.

� Shannon wavelet is a real, symmetri
 and orthogonal wavelet, de�ned by:

 (t) =

sin(2�t)� sin(�t)

�t

: (2.171)

Its asso
iated s
aling fun
tion is de�ned by:

'(t) = sin




(�t): (2.172)

Su
h a wavelet is not 
ompa
tly supported, and worse, exhibits a slow

de
ay towards zero when jtj in
reases.

� Meyer wavelet [Meyer, 1990℄ is an orthogonal wavelet with a C

1

smooth-

ness and a fast de
ay towards zero;

� Daube
hies wavelets [Daube
hies, 1988℄ were the �rst wavelets to possess

both a high (but �nite) smoothness and a 
ompa
t support. These wavelets

are indexed by a �nite but arbitrarily high number of vanishing moments

N 2 N�

, and their support is given by [0; 2N � 1℄.

These examples of orthogonal wavelets being stated, it is worth highlighting

the slighty di�erent framework of bi-orthogonal wavelets.

Remark 2.7.2 Bi-orthogonal wavelets

The 
onstru
tion of orthogonal wavelet bases obviously imposes some

additional restri
tions for the design of both the s
aling fun
tion ' and

analysing wavelet  , 
ompared to the CWT framework. To soften these

restri
tions, bi-orthogonal wavelets have thus been designed. Following

[Jawerth and Sweldens, 1994℄, the idea is to no longer impose that ' and

 generate orthonormal bases of V

j

and W

j

respe
tively. Thus, if one still

denotes by Q

j

the proje
tion operator on W

j

, it 
an only be stated that,

for all f 2 L

2

(R):

Q

j

(f) =

X

k2Z

l

k

(Q

j

(f)) 

j;k

; (2.173)

=

X

k2Z

(l

k

ÆQ

j

) (f) 

j;k

; (2.174)

where:
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� ( 

j;k

)

k2Z still denotes a (non-orthogonal) basis of W

j

;

� l

k

Æ Q

j

: v 2 W

j

7�! (l

k

ÆQ

j

) (v) 2 R or C is the unique linear form

on W

j

satisfying:

8k

0

2 Z, (l
k

ÆQ

j

) ( 

j;k

0

) = Æ

k

0

k

; (2.175)

where Æ

k

0

k

denotes the Krone
ker symbol.

If one now denotes by

�

e

 

j;k

�

k2Z
the dual basis of ( 

j;k

)

k2Z
, i.e. the basis

that generates the dual spa
e W

�

j

of W

j

, and whi
h moreover satis�es:

8j

1

; j

2

; k

1

; k

2

2 Z,

D

e

 

j

1

;k

1

;  

j

2

;k

2

E

L

2

= Æ

j

2

j

1

Æ

k

2

k

1

; (2.176)

then Riesz representation theorem ensures that for all f 2 L

2

(R) , j; k 2 Z:

(l

k

ÆQ

j

) (f) =

D

e

 

j;k

; f

E

L

2

: (2.177)

This result allows to rewrite the proje
tion of f 2 L

2

(R) on W

j

as

follows:

Q

j

(f) =

X

k2Z

D

e

 

j;k

; f

E

L

2

 

j;k

: (2.178)

Finally, using the still valid (but no longer orthogonal) dire
t-sum

(2.165), the following inverse dis
rete wavelet transform is obtained for

all f 2 L

2

(R) :

8x 2 R, f(x) =
X

j;k2Z

D

e

 

j;k

; f

E

L

2

 

j;k

(x): (2.179)

This remark on bi-orthogonal wavelets thus 
on
ludes this se
tion dedi
ated

to Dis
rete Wavelet Transform and Multi-Resolution Analysis (MRA).

Now, before 
on
luding this bibliography 
hapter, the next two se
tions

dis
uss the issue of "wavelets and boundary 
onditions", and present some of

the numerous appli
ations of wavelets theory, in �elds su
h as signal pro
essing,

operator analysis and PDEs.

2.8 Wavelets and boundary 
onditions

Similarly to multi-s
ale and homogenization methods, MRA and Contin-

uous Wavelet Transform (CWT) also fa
e a 
hallenge with the treatment

of boundary 
onditions. Indeed, both integer translations and 
onvolution

produ
t require to be de�ned on the whole real line R. Nevertheless, mo-

tivated by the numeri
al 
omputation of PDEs, e�orts have been made to
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adapt the MRA framework to an interval, and bounded domains in gen-

eral. Intuitive methods su
h as "zero-padding" or periodizing introdu
e dis-


ontinuities and high-frequen
ies on the boundaries. To prevent su
h phe-

nomena, 
onstru
tions of wavelet bases on an interval, based on Daube
hies


ompa
tly-supported wavelets, have been put forward in literature. For fur-

ther details on this topi
, the interested reader may refer to the works of

[Meyer, 1992, Aus
her, 1993, Cohen et al., 1994, Monasse and Perrier, 1995℄,

and [Chiavassa and Liandrat, 1997℄. As for Continuous Wavelet Transform,

it will be detailed in 
hapter 3 how it may take into a

ount PDEs boundary


onditions. But for now, let us turn towards some important appli
ations of

wavelets.

2.9 Wavelets, signal pro
essing, operator analy-

sis, and PDEs

Wavelets have met an important su

ess in s
ienti�
 �elds su
h as signal

pro
essing, operator analysis and PDEs.

Indeed, in signal or image pro
essing appli
ations, espe
ially if data 
om-

pression is not the main obje
tive, Continuous Wavelet Transform (CWT) 
an

be used, for instan
e with 
omplex analyti
 or dire
tional wavelets, to study in-

stantaneous frequen
ies 
ontained within a signal, or dete
t edges and oriented

features in a pi
ture. Besides, in the following of this manus
ript, it will also be

proven that CWT 
an be used, with smooth and isotropi
 real-valued wavelets,

as a regularizing tool to study heterogeneous media or multi-s
ale phenomena,

leading to a new possible formulation of homogenization and multi-s
ale meth-

ods. As for MRA, it is of 
ourse ideally suited for data 
ompression driven

appli
ations. The JPEG 2000 image 
ompression format is for instan
e a good

example of the use of orthogonal wavelets.

Beside data 
ompression, orthogonal wavelets have also shown their rele-

van
e in operator analysis and PDEs, as they allow to represent, in a sparse

way, linear operators. Indeed, thanks to the inverse dis
rete wavelet transform

(2.168) detailed earlier in the framework of orthogonal MRA, the a
tion of any

linear operator T on a fun
tion f 2 L

2

(R) 
an be written as follows:

T (f) =

X

j;k2Z

h 

j;k

; fi

L

2

T ( 

j;k

) ; (2.180)

=

X

j;k2Z

h 

j;k

; fi

L

2

0

�

X

i;l2Z

h 

i;l

; T ( 

j;k

)i

L

2

 

i;l

1

A

; (2.181)

=

X

i;l2Z

0

�

X

j;k2Z

h 

i;l

; T ( 

j;k

)i

L

2

h 

j;k

; fi

L

2

1

A

 

i;l

: (2.182)

Following [Beylkin et al., 1991, Beylkin, 1992℄, the matrix

�

h 

i;l

; T ( 

j;k

)i

L

2

�

(i;l);(j;k)

is referred to as the standard representation of
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the operator T in the orthogonal wavelet basis ( 

j;k

)

j;k2Z
. Ideally, if these

wavelets were eigenve
tors of the operator T , this matrix would be diagonal.

In the general 
ase, it is of 
ourse not the 
ase. Nevertheless, as detailed in

[Jawerth and Sweldens, 1994℄, the operator matrix may be 
onsidered "almost

diagonal", as o�-diagonal elements are qui
kly be
oming small, thanks to the

fast de
ay (or ideally 
ompa
t support) of the wavelets  

j;k

, whi
h impa
ts

the de
ay of T ( 

j;k

), and thus its L

2

-inner produ
t with  

i;l

.

Su
h sparse representations of linear operators are of 
ourse not something

brand new. Finite di�eren
e or �nite element methods already allow to solve

sparse linear systems. However, these systems are often ill-
onditioned, whi
h

slows down iterative methods. The sparse representation of a linear operator in

a wavelet basis, 
onversely, allows to de
rease the 
ondition number, as detailed

in [Beylkin et al., 1991℄, whi
h presents the BCR algorithm designed to 
om-

press Calderon-Zygmund operators into a sparse form. The interested reader

may also refer to [Lazaar et al., 1994, T
hamit
hian, 1996, Alpert et al., 2002℄

and [Piquemal and Liandrat, 2005℄.

Finally, in the spirit of adaptive grid methods, su
h as multi-

level adaptive te
hniques [Brandt, 1977℄ or adaptive mesh re�nement

[Berger and Oliger, 1984℄, adaptive wavelet methods have been designed for

the 
omputation of PDEs. For an extensive overview of these methods, the

reader may refer to the referen
e works of [Ja�ard, 1991, Liandrat et al., 1992,

Dahmen, 1997℄ and [Cohen, 2000℄. Basi
ally, su
h methods mainly spread

into two families: on the one hand, wavelet-based Galerkin methods

for �nite element 
omputations, su
h as in [Frohli
h and S
hneider, 1997℄,

[S
hneider et al., 2001, Mehraeen and Chen, 2006℄, and, on the other

hand, adaptive multi-resolution s
hemes for �nite volume 
omputations,

with numerous works su
h as the ones of [Berger and Collela, 1989,

Harten, 1994℄ and [Bihari and Harten, 1995, Bihari and Harten, 1997℄, or more

re
ently the works of [Cohen et al., 2003, Müller, 2003, Roussel et al., 2003℄,

[Bramkamp et al., 2004, Roussel and S
hneider, 2005, Dahmen et al., 2013℄.

Multi-resolution s
hemes take advantage of the fa
t that wavelet 
oe�
ients


ontain information on the lo
al regularity and lo
al variations of a fun
tion.

Indeed, wavelet 
oe�
ients tend towards zero in regions where the fun
tion is

smooth, and in
rease in regions of steep gradients. Thus, a 
oarse grid 
an be

used to 
ompute the solution where wavelet 
oe�
ients are below a given toler-

an
e, and dyadi
 nested re�nements 
an be implemented in other regions. For

general spatial dis
retizations and meshes, proje
tion and predi
tion operators

are introdu
ed to go ba
k and forth between ea
h level of the nested grids, in

the spirit of multi-grid methods. In the 1D 
ase, or with 2D Cartesian grids,

the MRA framework previously des
ribed 
an be used to de�ne the operator

going from the grid (s

j

= 2

�j

) to the re�ned grid (s

j+1

= 2

�(j+1)

).

2.10 Con
lusion

This 
hapter presented an overview of the state of the art on porous media

approa
hes, homogenization and multi-s
ale methods, with a �nal major fo
us
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on wavelets theory. S
ienti�
 �elds su
h as FSI, heterogeneous materials, tur-

bulen
e, signal pro
essing and operator analysis were highlighted. Despite their

apparent di�eren
es, almost all the methods previously des
ribed fa
e similar

limitations. Indeed, the issues of boundary 
onditions and 
losure between

resolved and unresolved s
ales stand out as a 
ommon denominator. Plain av-

eraging/�ltering methods or asymptoti
 expansions are indeed ill-posed in the

vi
inity of a domain boundary, and always require an ad ho
 
losure model (
f.


on
entration tensor, Smagorinsky eddy-vis
osity model, series expansion...).

Furthermore, the homogenization literature was also shown to rely on addi-

tional assumptions su
h as periodi
ity, s
ale separation, and linearity.

Wavelets, 
onversely, o�er a re
onstru
tion formula that allows to 
onne
t

resolved and unresolved s
ales without any ad ho
 model. This analyti
al


losure expression also allows to properly take into a

ount PDEs boundary


onditions, and to handle, if ne
essary, nonlinearities. To the author's knowl-

edge, a wavelet-based model able to ta
kle these major issues would be a brand

new 
ontribution in the literature of homogenization and multi-s
ale methods.

To rea
h this goal, the 
rux of the matter is thus to explain how Continuous

Wavelet Transform (CWT) may be applied onto a 
ontinuum medium PDEs,

possibly exhibiting non-smooth solutions, and how the resulting spatially-

�ltered PDEs indeed de�ne a homogenized 
ontinuum medium. This is the

aim of the following 
hapter, whi
h is dedi
ated to the thorough des
ription of

the wavelet-based multi-s
ale and homogenized model.
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Chapter 3

A wavelet-based multi-s
ale and

homogenized model

3.1 Introdu
tion

The need for a homogenized approa
h of FSI...

As already highlighted in the general introdu
tion of this manus
ript, this

work deals with a Fluid-Stru
ture Intera
tion (FSI) phenomenon that involves

numerous interfa
es, and multiple spatial s
ales. The 
lassi
al FSI approa
h

would lead, in su
h a 
ontext, to 
umbersome 
omputations. To bypass both

the interfa
e and multi-s
ale problemati
s, the 
hoi
e has been made to turn

towards a more mesos
opi
 approa
h, in the spirit of porous media, homoge-

nization, and multi-s
ale methods.

...able to 
onne
t resolved and unresolved s
ales, and to handle bound-

ary 
onditions.

The previous 
hapter emphasized how the wide literature on porous media,

homogenization and multi-s
ale methods is 
onfronted with major 
hallenges.

The issue of 
losure between resolved and unresolved s
ales, and the treatment

of boundary 
onditions, were espe
ially highlighted. Additional limitations

su
h as s
ale separation, periodi
ity and linearity have also been dis
ussed.

Thus, in order to build a self-sustained multi-s
ale and homogenized model, it

is ne
essary to �rst, analyti
ally 
onne
t resolved and unresolved s
ales without

any ad ho
 model, and se
ond, handle the PDEs boundary 
onditions. In the


urrent work, these boundary 
onditions play a key role as they fo
us the

intera
tion between the �uid and solid media.

Why CWT is the right tool to ta
kle these issues ?

In this quest for a self-sustained multi-s
ale and homogenized model, able to

a

ount for a 
ompressible �ow within a 
ongested solid medium, wavelets and

espe
ially CWT progressively appeared as the right tool for the task. Indeed,

wavelets allow to homogenize the �uid by �ltering/smoothing out all interfa
es
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and high-frequen
y phenomena. This �ltering pro
ess hereafter relies on a


onvolution produ
t between an analysing wavelet or s
aling fun
tion, and the

�uid 
onservation laws and equation of state. It results in PDEs governing

a homogenized �uid, whose variables are now the wavelet 
oe�
ients of the

original �uid variables.

Furthermore, thanks to an inverse wavelet transform, it is now possible to

analyti
ally 
onne
t the homogenized �uid (i.e. the resolved s
ales) to the real

�uid (i.e. the unresolved s
ales). This also opens the way to a proper transfer

of the real �uid boundary 
onditions into the homogenized �uid.

Last but not least, the 
onvolution produ
t that is here promoted between a

wavelet (or s
aling fun
tion) and the PDEs governing an invis
id 
ompressible

�uid, may be extended to generi
 PDEs.

How to 
hoose the wavelets (or s
aling fun
tion) s
ale parameter ?

As des
ribed in the previous 
hapter, wavelets are band-pass �lters, while

s
aling fun
tions are low-pass �lters. When designing a wavelet-based multi-

s
ale model, one 
an naturally wonder how to determine the relevant spatial

s
ales that need to be 
omputed. This is 
ase-dependent, and requires to have

some insights on the spe
trum of the quantities of interest. In the 
urrent

work, as turbulen
e e�e
ts are negle
ted, it is expe
ted that the solid medium

will drive the relevant spatial s
ales. But �rst, the important point is to 
he
k

whether the wavelet-based multi-s
ale model a
tually 
onverges towards a high-

resolution 
omputation (e.g. Dire
t Numeri
al Simulation) when the wavelets

or s
aling fun
tion 
at
h all the possible spatial s
ales, i.e. when the 
uto�

s
ale s

0

tends towards zero. However, it shall be kept in mind that the wavelet

expli
it �ltering is not independent from the mesh impli
it �ltering. Indeed,

one 
annot hope to represent all spatial s
ales by de
reasing s

0

if the mesh size

h is not re�ned a

ordingly. Compatibility 
onditions between s

0

and h will

moreover be emphasized in order to prevent instabilities and aliasing in the

numeri
al 
omputations.

Why not use orthogonal wavelet bases to avoid redundan
y ?

The wavelets s
ienti�
 
ommunity is known to be divided between advo-


ators of respe
tively 
ontinuous and dis
rete wavelets. When it 
omes to the

numeri
al 
omputation of PDEs, dis
rete wavelets seem to have taken the up-

per ground. Indeed, the previous 
hapter underlined how Dis
rete Wavelet

Transform and orthogonal wavelet bases 
ould be seen as an "improvement"


ompared to Continuous Wavelet Transform. These orthogonal bases indeed

dis
ard all redundant information, and 
an be used to 
ompress linear operators

into a sparse form.

However, it is here important to keep in mind that the 
urrent work aims

at deriving PDEs governing an equivalent homogenized �uid, de�ned at the


ontinuum medium s
ale. The homogenization pro
ess shall also stay as mu
h

as possible independent from any spe
i�
 
hoi
e of dis
retization te
hnique.

The framework of Dis
rete Wavelet Transform and Multi-Resolution Analysis,
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with its integer translations and dyadi
 re�nements, is rather suited to �nite-

di�eren
e s
hemes and Cartesian grids.

Furthermore, it will be proven, later in this 
hapter, that the analysing

wavelet Ψ and s
aling fun
tion Φ have to possess a C

1

smoothness, in order

to properly de�ne a 
onvolution produ
t with the �uid PDEs. Indeed, as 
om-

pressible �ows may exhibit non-smooth solutions (e.g. sho
k waves), the �uid

equations shall be manipulated in a weak sense. This will require to work

within the mathemati
al framework of distributions theory. Dis
rete orthogo-

nal wavelets su
h as Daube
hies' indeed possess a useful 
ompa
t support, but

exhibit "only" a C

�N

smoothness, with � � 0:2 and N < +1.

Finally, the non-redundan
y property of orthogonal wavelets, and their re-

sulting ability to 
ompress linear operators into a sparse form with a low 
on-

dition number (
f. the BCR algorithm highlighted in the previous 
hapter), is

mostly relevant in the 
ontext of iterative methods and impli
it s
hemes. The


urrent work deals with a fast-transient wave propagation phenomenon, whi
h

is 
lassi
ally 
omputed with expli
it s
hemes. Indeed, as the time step is here


onstrained by the wave velo
ity, whether the s
heme is impli
it or expli
it, the

se
ond option o�ers the advantage to avoid any matrix inversion pro
ess.

Thus, the framework of Continuous Wavelet Transform (CWT) appears

here better suited for the implementation of a homogenization/�ltering pro
ess.

How to 
hoose between a real and 
omplex wavelet ?

In parallel with the "
ontinuous VS dis
rete" debate, one 
annot avoid the

dis
ussion between real and 
omplex wavelets. For 1D time signals analysis,


omplex analyti
 wavelets, with their ability to tra
k instantaneous frequen
ies,

de�nitly have the upper ground. However, in the 
urrent work, CWT aims at

�ltering 2D �elds that do not possess any oriented feature. Indeed, both the

analysing wavelet and s
aling fun
tion shall be able to �observe� pressure waves

propagating in di�erent dire
tions simultaneously (re�e
tion/transmission on

obsta
les). Furthermore, it will be proven that both the analysing wavelet

and s
aling fun
tion shall possess a C

1

smoothness, a good lo
alization in

the spatial domain, and a fast de
ay towards zero. A real wavelet su
h as the

isotropi
 Mexi
an hat ful�lls all these requirements. It also o�ers the advantage

to lead to spatially-�ltered PDEs expressed in the physi
al domain.

How to implement CWT on the �uid PDEs, or on generi
 PDEs ?

Now that the important debates on "
ontinuous VS dis
rete" and "real VS


omplex" wavelets have been settled in the 
urrent 
ontext, one 
an wonder

how, pra
ti
ally speaking, CWT will hereafter be applied to the �uid PDEs

(or to generi
 PDEs). As des
ribed in the previous 
hapter, CWT 
an be seen

as a 
onvolution produ
t between a signal of interest, and an analysing wavelet

or s
aling fun
tion. To now apply su
h a 
onvolution produ
t on PDEs whi
h

may exhibit non-smooth solutions, this manus
ript puts forward the following

generi
 pro
edure:
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� "weak-extension": �rst, extend, in a weak sense, the original �uid PDEs

to R2

; this step is mandatory to ensure the proper de�nition of 
onvolu-

tion produ
t on R2

; this extension will mostly rely on Green's formula for

integration by parts and distributions theory; the treatment of the �uid

boundary 
onditions will here play a key role;

� "weak-
onvolution": se
ond, write, in a weak sense, the 
onvolution prod-

u
t between the analysing wavelet or s
aling fun
tion, and the extended

�uid PDEs; this requires to state all the requirements that the wavelet

and s
aling fun
tion have to ful�ll in order to properly de�ne the 
onvo-

lution with a distribution; this "weak-
onvolution" will eventually result

in spatially-�ltered PDEs governing a homogenized �uid. Its variables

will moreover be expressed as wavelet 
oe�
ients of the original �uid

variables.

How a linear transform su
h as CWT may handle nonlinearities ?

Last, but not least, one may question the ability of a linear transform

su
h as CWT to a
tually handle nonlinearities. There is not any magi
al

formula allowing to express the wavelet transform of a nonlinear term, here the


onve
tive term (�v 
 v), in terms of the wavelet transform of its individual


omponents � and v. Nevertheless, thanks to the re
onstru
tion property of

CWT, it is now possible to re
over (up to an approximation), at ea
h time step,

the original density � and velo
ity v from their respe
tive wavelet 
oe�
ients

W[�℄(s; · ) andW[v℄(s; · ). It is thus possible to 
ompute expli
itly the wavelet


oe�
ients W[�v 
 v℄(s; · ) from the re
onstru
ted �elds. Su
h a pro
ess is of


ourse expe
ted to deteriorate the 
omputation time.

In �uid me
hani
s, the nonlinear 
onve
tive term is mainly responsible for

turbulen
e e�e
ts, as detailed in the se
tion dedi
ated to Large Eddy Simula-

tion (LES). The 
urrent work 
onsiders a fast-transient phenomenon, during

whi
h turbulent dissipation is 
lassi
ally negligible 
ompared to pressure gra-

dients, given the time s
ale of interest. Thus, the treatment of the nonlinear


onve
tive term will hereafter be simpli�ed, avoiding additional re
onstru
tion

pro
esses.

All these important questions being now answered, it shall here be noted

that the homogenization pro
ess will hereafter be applied in a 2D framework.

Indeed, fuel assemblies inner stru
ture needs to be a

ounted for only in a

transverse se
tion, while the 
omponents of the pressure waves along the axial

dire
tion 
an be des
ribed using standard dis
retization te
hniques (see Figure

2.2a for an illustration of a PWR fuel assembly). Spa
er grids 
ontribute little

to the response of the assemblies to a transverse wave. Thus, 
lassi
al regular

and singular head loss models 
an be implemented to a

ount for these grids,

and for the fri
tion along the rods that may impa
t the axial 
omponent of the

waves.

Besides, as only the �uid o

upies a 
onne
ted domain in the problem of
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interest, the 
hoi
e has been made to apply the homogenization pro
ess only

to the �uid. It will thus fo
us our modeling e�orts. As for the fuel assemblies,


onsidering the 2D modeling framework, and the fo
us on transverse pressure

waves, the behavior of their 
ross se
tion will be modeled, in �rst approxima-

tion, as a rigid body possessing 2 degrees of freedom, here two translations.

Su
h an approximation is motivated by the fa
t that spa
er grids tend to main-

tain a 
onstant distan
e between the individual fuel rods 
ontained within an

assembly.

Throughout this third 
hapter, the wavelet-based multi-s
ale and homoge-

nized model will progressively take shape, with the following steps:

3:2 the equations of both the solid and �uid media will be re
alled at the

mi
ros
opi
 s
ale;

3:3 importantmathemati
al results regarding the non-smooth behavior of the

solutions to the �uid PDEs will be re
alled; this behavior will hereafter

require to manipulate the �uid equations in a weak sense;

3:4 wavelet-based homogenization: in order to apply Continuous Wavelet

Transform (CWT) to the �uid equations, the following pro
edure will

be implemented:

(i) "weak-extension" of the original �uid equations to R2

;

(ii) "weak-
onvolution" produ
t between the extended �uid equations,

and a well-designed wavelet or s
aling fun
tion;

3:5 boundary 
onditions, 
losure, and nonlinearities: the ability of CWT to

deal with these 3 important issues will be emphasized;

3:6 "analyti
al" a

ura
y and 
onvergen
e: the model ability to 
onverge (in

a sense to be spe
i�ed) towards Dire
t Numeri
al Simulation (DNS) will

be dis
ussed;

3:7 the analysing wavelet Ψ and s
aling fun
tion Φ will be spe
i�ed;

3:8 all the model assumptions and equations will then be summarized;

3:9 numeri
al methods: �nally, the last se
tion will des
ribe the numeri
al

methods 
hosen to implement the wavelet-based model; a spe
ial fo
us

will be put on the problemati
s of stability, whi
h is a 
riti
al point for

expli
it s
hemes, and aliasing, whi
h is linked to the numeri
al imple-

mentation of wavelet transform.

3.2 Modeling at the mi
ros
opi
 s
ale

To begin this 
hapter, let us 
onsider the modeling at the mi
ros
opi
 s
ale.

As an illustration for the problem at study, let us 
onsider the 2D geometry

displayed on the following Figure 3.1:
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Figure 3.1: Illustration of a 2D f�uid + solidg geometry.

The whole f�uid + solidg domain thus 
ontains:

� a �uid domain Ω
f

, whi
h is an open bounded and 
onne
ted spa
e of R2

;

� a solid domain Ω
s

, whi
h is an open bounded and dis
onne
ted spa
e of

R2

: Ω
s

= [

i

Ω
s

i

, with Ω
s

i

\

i6=j

Ω
s

j

= ;.

It is important to note that no periodi
ity or s
ale separation assumption

on the solid domain Ω
s

will be needed in the design of the model.

3.2.1 Solid medium

As illustrated in Figure 3.1, the solid medium of interest is 
omposed of the

disjoint reunion of multiple disks, here arranged in an array representing the


ross se
tion of a fuel assembly. As spa
er grids tend to maintain a 
onstant

distan
e between neighboring disks, the global array will be 
onsidered as a

rigid body animated with two degrees of freedom, respe
tively horizontal and

verti
al translations. The behavior of the array will be modeled by a linear

os
illator for ea
h degree of freedom, whose dynami
 equilibrium is governed

by the following di�erential equation:

8i 2 f1; 2g, m

�

U

i

+ 


_

U

i

+ kU

i

= F

F!S

· e

i

; (3.1)

or equivalently:

8i 2 f1; 2g,

�

U

i

+ 2�!

0

_

U

i

+ !

2

0

U

i

=

1

m

�

�

F

F!S

· e

i

�

; (3.2)

where:

�

�

e

1

; e

2

�

is the orthonormal Cartesian basis of R2

;

� U =

�

U

1

U

2

�

T

is the displa
ement (m);

� m is the mass (kg);

� 
 is the fri
tion 
oe�
ient (kg.s

�1

);

� k is the system sti�ness (N.m

�1

= kg.s

�2

);

� !

0

is the system eigenfrequen
y, de�ned by: !

0

=

q

k

m

(rad.s

�1

);

� � is the (dimensionless) damping 
oe�
ient, de�ned by: � =




2

p

km

.

� F

F!S

is the for
e (N) applied by the �uid to the whole array of disks.
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3.2.2 Fluid

Let us now 
onsider the water �ow. Under nominal operating 
onditions,

the water within a PWR 
ore is purely liquid at around 300

Æ

C under 155 bar.

The �ow is almost verti
al, in
ompressible and very turbulent, with a Reynolds

number around 10

5

. However, the 
urrent work deals with the propagation of

a transverse pressure wave through the �ow and fuel assemblies. The theory of

vis
ous in
ompressible �ow is therefore no longer relevant. To a

ount for su
h

a fast-transient phenomenon, the following modeling framework is hereafter


onsidered:

� monophasi
 
ompressible �ow;

� invis
id �uid: vis
osity and turbulen
e e�e
ts are negligible 
ompared to

pressure gradients;

� gravity is negligible 
ompared to pressure gradients;

� 
ondu
tion heat transfer is negligible on the time s
ale at study;

� barotropi
 �uid;

Based on this modeling framework, the water �ow is governed by the fol-

lowing Euler 
ompressible equations:

∂
t

�+ div (�v) = 0 in Ω
f

(t);

∂
t

(�v) + div (�v 
 v) = �r p in Ω
f

(t);

∂
t

(�e) + div ((�e+ p) v) = 0 in Ω
f

(t);

(3.3)

where:

� � is the �uid density (kg:m

�3

);

� v is the velo
ity �eld (m:s

�1

);

� p is the pressure �eld (Pa);

� e is the spe
i�
 total energy (J:kg

�1

).

The system (3.3) translates respe
tively the 
onservation of mass (�), mo-

mentum (�v) and energy (�e). This system of 
onservation laws is here 
losed

by a barotropi
 equation of state:

p = p

ref

+ 


2

son

(�� �

ref

) ; (3.4)

where �

ref

is a referen
e density, p

ref

= p (�

ref

) the 
orresponding referen
e

pressure, and 


son

=

q

∂
�

p the sound velo
ity in the �uid.
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Regarding now the boundary 
onditions, the assumption of invis
id �uid

implies:

v ·n

F!S

= ∂
t

U ·n

F!S

on ∂Ω
f

\ ∂Ω
s

;

v ·n

F!ext

= 0 on ∂Ω
f

n ∂Ω
s

;

(3.5)

where n

F!S

and n

F!ext

denote the outward unit normal ve
tors on the bound-

ary ∂Ω
f

.

Thus, given an initial data, the pressure wave is 
ompletely des
ribed by

Euler 
ompressible equations (3.3), the barotropi
 equation of state (3.4) and

the kinemati
 
ondition (3.5) on the �ow boundary.

Now, before starting the wavelet-based homogenization pro
ess, the follow-

ing se
tion re
alls important mathemati
al results regarding the non-smooth

behavior of the solutions to the �uid PDEs. The fo
us is espe
ially put on

the role played by Rankine-Hugoniot 
ondition with regards to the possible

dis
ontinuities.

3.3 Non-smooth behavior of the �uid PDEs

Euler 
ompressible equations (3.3) are part of a general 
lass of systems of

PDEs, 
alled hyperboli
 systems. With su
h equations, the global existen
e

(in time) of the 
lassi
al solution is not guaranteed in the general 
ase. Hen
e,

weak solutions shall be 
onsidered. Furthermore, as hyperboli
 systems may

possess several weak solutions, an entropy fun
tion and its 
onservation law

are generally added in order to sele
t the solution physi
ally relevant. In the


ase of an invis
id �uid satisfying a barotropi
 equation of state, the role of

entropi
 equation is played by the energy balan
e equation. The interested

reader may refer to [Godlewski and Raviart, 1996℄ for a detailed presentation

on hyperboli
 systems.

Regarding now the smoothness of this entropi
 solution, it 
an be deter-

mined by writing the weak formulation of (3.3) with smooth and 
ompa
tly-

supported test fun
tions. Starting from an initial data X

0

= (�

0

; (�v)

0

; (�e)

0

)

lo
ally bounded in Ω
f

(L

1

lo


), it 
an be shown that the entropi
 solution

X = (�; �v; �e) will possess the same spatial smoothness. Moreover, the

�uid domain Ω
f

being bounded, a L

q

spatial smoothness is satis�ed for all

q 2 [1;+1℄. Nevertheless, it 
an be noted that, in literature, weak solutions

are generally assumed to be pie
ewise C

1

fun
tions in time and spa
e, whose

jumps a
ross surfa
es of dis
ontinuity are governed by the Rankine-Hugoniot


ondition. Sho
k waves in 
ompressible �ows are a perfe
t example of su
h

dis
ontinuities. The framework of pie
ewise C

1

solutions will thus be hereafter


onsidered.

In order to re
all Rankine-Hugoniot 
ondition, let us 
onsider the following

generi
 hyperboli
 system of p 
onservation laws, here written in 
onservative

form:

∂
t

u(x; t) + div

�

G(u)

�

(x; t) = 0 in Rd

�℄0;+1[; (3.6)
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or equivalently:

∂
t

u(x; t) +

d

P

j=1

∂
x

j

h

g

j

(u)

i

(x; t) = 0 in Rd

�℄0;+1[;

(3.7)

where:

� u =

�

u

1

: : : u

p

�

T

is the ve
tor of unknown 
onservative variables, for

instan
e u =

�

� �v

x

�v

y

�e

�

T

in the 
ase of 2D Euler 
ompressible

equations;

� G (u) is a (p� d) matrix whose 
olumns are the d �ux fun
tions g

j

:

G(u) =

0

B

B

�

G

1;1

: : : G

1;d

.

.

.

.

.

.

G

p;1

: : : G

p;d

1

C

C

A

(u); (3.8)

=

�

g

j

(u)

�

1�j�d

: (3.9)

In the 
ase of 2D Euler 
ompressible equations, one has:

g

1

(u) =

�

�v

x

�v

2

x

+ p �v

y

v

x

(�e+ p)v

x

�

T

; (3.10)

g

2

(u) =

�

�v

y

�v

y

v

x

�v

2

y

+ p (�e+ p)v

y

�

T

: (3.11)

Following [Godlewski and Raviart, 1996℄, one 
an write, for all test fun
-

tions ' 2

h

D

�

Rd

�℄0;+1[

�i

p

, the weak formulation of (3.7) as follows:

*

∂
t

u+

d

X

j=1

∂
x

j

h

g

j

(u)

i

; '

+

D

0

;D

= �

Z

+1

0

Z

Rd

0

�

u · ∂
t

'+

d

X

j=1

g

j

(u) ·∂
x

j

'

1

A

dx dt

= 0: (3.12)

In order to emphasize why weak solutions of su
h hyperboli
 systems have

to satisfy Rankine-Hugoniot 
ondition, one 
an:

� 
onsider, for simpli
ity, that the solution u, whi
h is pie
ewise C

1

on

Rd

�℄0;+1[, possesses only a single (smooth) surfa
e Σ of dis
ontinuity,

whi
h thus 
uts the domain Rd

�℄0;+1[ into two subdomains Ω
+

/Ω
�

;
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� split, thanks to Chasles' relation, the above weak formulation (3.12) into

two integrals, one for ea
h subdomain;

� use twi
e Green's formula for integration by parts in order to introdu
e

two integrals on the boundary Σ;

� use the fa
t that the solution is smooth on both Ω
+

and Ω
�

, whi
h implies

that it satis�es the hyperboli
 system (3.7) in a strong sense;

� and �nally, bring together the two integrals on the boundary Σ, in order

to obtain an equation driving the dis
ontinuity jump of the solution a
ross

Σ, namely Rankine-Hugoniot 
ondition;

Before going further, let us introdu
e some notations:

Notations 3.3.1 � Rd

�℄0;+1[= Ω
+

[ Ω
�

, su
h that Ω
+

\ Ω
�

= ;, and

Σ = ∂Ω
+

\ ∂Ω
�

;

� nΣ =

�

n

t

n

1

: : : n

d

�

T

denotes a normal ve
tor of the surfa
e Σ,

oriented from Ω
+

to Ω
�

;

� [f ℄

+

�

: = f

+

�f

�

denotes the jump of the fun
tion f a
ross the surfa
e

of dis
ontinuity Σ;

� ffg denotes a pie
ewise 
ontinuous fun
tion on Rd

�℄0;+1[ whi
h


oin
ides with the distribution f on

�

Rd

�℄0;+1[

�

nΣ.

Step 1 : Chasles' relation

Following [Godlewski and Raviart, 1996℄, one 
an �rst write, by using

Chasles' relation:

�

Z

+1

0

Z

Rd

0

�

u · ∂
t

'+

d

X

j=1

g

j

(u) ·∂
x

j

'

1

A

dxdt

= �

Z

Ω
+

0

�

u · ∂
t

'+

d

X

j=1

g

j

(u) · ∂
x

j

'

1

A

dx dt

�

Z

Ω
�

0

�

u · ∂
t

'+

d

X

j=1

g

j

(u) · ∂
x

j

'

1

A

dx dt: (3.13)

Step 2 : Green's formula for integration by parts

Then, by using Green's formula for integration by parts, the integrals on

the two subdomains Ω
+

and Ω
�


an be rewritten as:
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�

Z

Ω
+

0

�

u · ∂
t

'+

d

X

j=1

g

j

(u) · ∂
x

j

'

1

A

dx dt

=

Z

Ω
+

f∂
t

ug ·' dx dt�

Z

Σ
u

+

(�) ·'(�)n

t

d� +

Z

Ω
+

d

X

j=1

n

∂
x

j

g

j

(u)

o

·' dxdt

�

Z

Σ

d

X

j=1

n

j

g

+

j

(u(�)) ·'(�) d�: (3.14)

�

Z

Ω
�

0

�

u · ∂
t

'+

d

X

j=1

g

j

(u) · ∂
x

j

'

1

A

dx dt

=

Z

Ω
�

f∂
t

ug ·' dx dt�

Z

Σ
u

�

(�) ·'(�)(�n

t

) d�+

Z

Ω
�

d

X

j=1

n

∂
x

j

g

j

(u)

o

·' dxdt

�

Z

Σ

d

X

j=1

(�n

j

)g

�

j

(u(�)) ·'(�) d�: (3.15)

By adding these last two equations, one obtains:

�

Z

+1

0

Z

Rd

0

�

u · ∂
t

'+

d

X

j=1

g

j

(u) ·∂
x

j

'

1

A

dx dt

=

Z

Ω
+

8

<

:

∂
t

u+

d

X

j=1

∂
x

j

g

j

(u)

9

=

;

·' dxdt+

Z

Ω
�

8

<

:

∂
t

u+

d

X

j=1

∂
x

j

g

j

(u)

9

=

;

·' dxdt

�

Z

Σ

0

�

n

t

[u℄

+

�

+

d

X

j=1

n

j

h

g

j

(u)

i

+

�

1

A

(�) ·'(�) d�: (3.16)

Step 3 : the solution is smooth in Ω
+

and Ω
�

As the solution u is of 
lass C

1

in both Ω
+

and Ω
�

, one 
an state that

it satis�es the 
onservation laws of the hyperboli
 system (3.7) in a strong

sense within these two subdomains. Thus, the weak formulation (3.12) of the

hyperboli
 system redu
es to:

8' 2

h

D

�

Rd

� [0;+1[

�i

p

,

Z

Σ

0

�

n

t

[u℄

+

�

+

d

X

j=1

n

j

h

g

j

(u)

i

+

�

1

A

(�) ·'(�) d� = 0; (3.17)

whi
h �nally leads to the well-known Rankine-Hugoniot 
ondition driving the

dis
ontinuity jump a
ross Σ:
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Rankine-Hugoniot 
ondition

8� 2 Σ,

0

�

n

t

[u℄

+

�

+

d

X

j=1

n

j

h

g

j

(u)

i

+

�

1

A

(�) = 0: (3.18)

Remark 3.3.1 Following again [Godlewski and Raviart, 1996℄, if

�

n

1

: : : n

d

�

T

6= 0, the normal ve
tor nΣ 
an be normalized as:

e

nΣ =

1













�

n

1

: : : n

d

�

T













Rd

�

n

t

n

1

: : : n

d

�

T

; (3.19)

=

�

�
 �

�

T

; (3.20)

where 
 2 R, and � is now a unit ve
tor of Rd

. This notation allows to

rewrite Rankine-Hugoniot 
ondition as:


 [u℄

+

�

=

d

X

j=1

�

j

h

g

j

(u)

i

+

�

; (3.21)

where 
 
an be 
onsidered as the speed of propagation of the dis
ontinuity,

and � its dire
tion of propagation.

This remark thus 
on
ludes this se
tion dedi
ated to the mathemati
al anal-

ysis of Euler 
ompressible equations. It was here re
alled why it is ne
essary

to manipulate the �uid PDEs in a weak sense. This se
tion also emphasized

how Rankine-Hugoniot 
ondition plays an important role with regards to the

possible dis
ontinuities propagating within a 
ompressible �ow.

Let us now turn towards the a
tual wavelet-based homogenization pro
ess.

3.4 Wavelet-based homogenization

The wavelet-based homogenization pro
ess, at the 
ore of this model, re-

lies on the appli
ation of Continuous Wavelet Transform (CWT) to the �uid


onservation laws and equation of state. The �ltered equations governing the

homogenized �uid are thus obtained by writing the 
onvolution produ
ts be-

tween a wavelet family (Ψ
s

)

s>0

, or the asso
iated s
aling fun
tion Φ
s

0

, and

the (extended) �uid equations, as formally illustrated by equations (3.22-3.23)

below:

�

eΨ
�

s

�

�

8

>

<

>

:

∂
t

�+ div (�v) = 0;

∂
t

(�v) + div (�v 
 v) = �r p;

∂
t

(�e) + div ((�e+ p) v) = 0;

(3.22)

eΨ
�

s

�

n

p = p

ref

+ 


2

son

(�� �

ref

)

o

: (3.23)
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It shall here be noted that, when studying a barotropi
 �uid, it is not

ne
essary to solve the energy balan
e equation. Thus, only the mass and

momentum balan
e equations will be hereafter 
onsidered.

Before detailing all the mathemati
al steps required to obtain the �ltered

equations governing the homogenized �uid, let us �rst spe
ify the initial 
on-

ditions of the problem.

3.4.1 Initial 
onditions: Riemann problem

As 
lassi
ally done in the study of hyperboli
 systems, a Riemann problem

(here with respe
t to the �rst 
omponent x

1

) is hereafter 
onsidered. In other

words, the following initial dis
ontinuous density �eld is 
onsidered:

8x 2 Ω
f

, �

0

(x) =

(

�

l

if x

1

< d

�

r

if x

1

> d

(3.24)

8x 2 Ω
f

, (�v)

0

(x) = 0; (3.25)

where �

l

and �

r

denote respe
tively the left and right initial densities, and d

denotes the position of the initial density/pressure dis
ontinuity. It is assumed

that the solid medium is in equilibrium with the �uid, on the right side of the

initial pressure dis
ontinuity : Ω
s

(0) � fx

1

> dg.

To now implement the wavelet-based homogenization pro
ess, the following

steps are required:

(i) extend, in a weak sense, the �uid PDEs and equation of state to R2

;

(ii) write, in a weak sense, the 
onvolution produ
t between the wavelet (or

s
aling fun
tion) and the extended �uid equations.

3.4.2 "Weak-extension" of the �uid PDEs to R2

The extension of the original �uid equations to R2

is mandatory in order

to properly de�ne the 
onvolution produ
t with the analysing wavelet Ψ or

s
aling fun
tion Φ. As already re
alled during the mathemati
al analysis of

Euler 
ompressible equations (3.3), the non-smooth behavior of the entropi


solution requires to manipulate the equations in a weak sense. Therefore, the

extension pro
ess also has to be done in a weak sense, espe
ially as su
h an

extension is expe
ted to introdu
e dis
ontinuities on the boundaries ∂Ω
s

and

∂Ω
f

n∂Ω
s

. Thus, a two-steps pro
edure is hereafter followed to extend the �uid

equations:

a �rst, extend the 
onservative �elds (�; �v; p) into pie
ewise C

1

fun
tions

on R2

�℄0;+1[;

b se
ond, 
arefully extend the mass and momentum balan
e equations to

R2

�℄0;+1[ in a weak sense.
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The "extended �uid" shall not be mistaken with the yet to 
ome homoge-

nized �uid. It is a �rst intermediary but also important step, as it will allow

to properly "transfer" the boundary 
onditions of the real �uid into the future

homogenized �uid.

Hereafter, for simpli
ity, same notations are used for the original and ex-

tended �elds.

Basi
 requirements for the extension

The extension of the real �uid on Ω
s

and R2

n(Ω
f

[ Ω
s

) has to respe
t some


onditions:

� the extended �uid has to 
oin
ide with the real �uid on Ω
f

;

� the extended �uid has to satisfy the barotropi
 equation of state on R2

:

p = p

ref

+ 


2

son

(�� �

ref

) in R2

�℄0;+1[:
(3.26)

� the (real) �uid lo
ated within Ω
f


annot enter the solid domain Ω
s

or

the exterior domain R2

n (Ω
f

[Ω
s

) (
f. kinemati
 boundary 
ondition);

� the extended �uid lo
ated within the solid domain Ω
s

or within the ex-

terior domain R
2

n (Ω
f

[ Ω
s

) 
annot enter the �uid domain Ω
f

, as both

the solid and exterior media are 
onsidered as 
losed systems, whi
h do

not ex
hange any matter with the real �uid;

� the extended �uid lo
ated withinΩ
s

, respe
tively R
2

n(Ω
f

[ Ω
s

), o

upies

a 
onstant volume, respe
tively a �xed geometry, and thus possess a

uniform density, as both the solid and exterior media are here 
onsidered

as rigid and homogeneous bodies.

Thus, it 
an be stated that, for all t � 0:

�(x; t) = 
st in Ω
s

(t);

�(x; t) = 
st in R2

n (Ω
f

[ Ω
s

) :

(3.27)

As the pressure is dire
tly linked to the density via the barotropi
 equation

of state (3.26), one also has, for all t � 0:

p(x; t) = 
st in Ω
s

(t);

p(x; t) = 
st in R2

n (Ω
f

[Ω
s

) :

(3.28)

Thus, the extended �uid trapped within the solid domain Ω
s

or the exterior

domainR
2

n(Ω
f

[Ω
s

) 
an be 
onsidered as an invis
id and in
ompressible �uid,

governed by the following Euler equations:

� (∂
t

v + div (v 
 v)) = 0 in R2

nΩ
f

(t);

div (v) = 0 in R2

nΩ
f

(t);

(3.29)
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and the following no-penetration kinemati
 
onditions:

(v � ∂
t

U) ·n

S!F

= 0 on ∂Ω
s

(t)

v ·n

ext!F

= 0 on ∂Ω
f

n ∂Ω
s

:

(3.30)

Thus, the value v

s

(t) = ∂
t

U(t) is an a

eptable value for the extended �uid

velo
ity within the solid domain Ω
s

, while v

ext

= 0 is an a

eptable value

within the exterior domain.

Now, taking into a

ount the fa
t that the solid medium is initially lo
ated

on the right side of the pressure dis
ontinuity, and moreover satis�es an equi-

librium 
ondition, the following extensions of the �eld (�; v; p) 
an be de�ned:

a Extension of the �elds (�; v; p) to R2

8x 2 R
2

, 8t � 0, �(x; t) =

8

>

<

>

:

�(x; t) if x 2 Ω
f

(t)

�

r

if x 2 Ω
s

(t)

�

ref

if x 2 R2

n (Ω
f

[ Ω
s

)

(3.31)

8x 2 R
2

, 8t � 0, v(x; t) =

8

>

<

>

:

v(x; t) if x 2 Ω
f

(t)

v

s

(t) = ∂
t

U(t) if x 2 Ω
s

(t)

v

ext

= 0 if x 2 R2

n (Ω
f

[ Ω
s

)

(3.32)

8x 2 R
2

, 8t � 0, p(x; t) =

8

>

<

>

:

p(x; t) if x 2 Ω
f

(t)

p

r

if x 2 Ω
s

(t)

p

ref

if x 2 R2

n (Ω
f

[Ω
s

)

(3.33)

The previous equations thus de�ne pie
ewise C

1

�elds on R
2

�℄0;+1[. In

order to now deal with the weak-extension of the mass and momentum bal-

an
e equations, an important remark shall �rst be stated about the di�erent

dis
ontinuities that will a�e
t the extension pro
ess.

Remark 3.4.1 Important note on the dis
ontinuities a�e
ting the ex-

tension pro
ess

Two di�erent types of dis
ontinuities shall be taken into a

ount during

the extension pro
ess:

� on the one hand, the physi
al dis
ontinuities inherent to the origi-

nal Euler 
ompressible equations and to the Riemann problem; these

dis
ontinuities propagate within the real �uid domain Ω
f

�℄0;+1[,

and are governed by Rankine-Hugoniot 
ondition, as detailed in the

previous se
tion; for simpli
ity, it is again assumed that there is only

one surfa
e Σ of dis
ontinuity within Ω
f

�℄0;+1[;
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� on the other hand, the two dis
ontinuities introdu
ed by the extension

of the �uid �elds to R2

; 
onversely to the physi
al ones, these new

dis
ontinuities do not propagate within the �uid domain: indeed, the

exterior boundary ∂Ω
f

n ∂Ω
s

of the real �uid domain is stationary,

and the inner boundary ∂Ω
s

moves with the same normal velo
ity

than the �uid.

Before starting the extension of the balan
e equations, let us �rst re
all and

de�ne some notations:

Notations 3.4.1

�

eΩ : = Ω�℄0;+1[, where the domain Ω denotes either the exterior, the

�uid, or the solid domain;

� ∂ eΩ : = ∂Ω�℄0;+1[;

�

e

� = (�; t), with � 2 ∂Ω, and d

e

� = d� dt;

� R2

�℄0;+1[ : =

eΩ
ext

[

eΩ
f

[

eΩ
s

;

� Σ still denotes the unique smooth surfa
e of dis
ontinuity of the weak

solution within

eΩ
f

;

� as in the previous se
tion, the normal ve
tors on ea
h surfa
e of dis
on-

tinuity will be written in the form n =

�

�
 �

1

�

2

�

T

, where 
 represents

the propagation velo
ity of the dis
ontinuity, and � its dire
tion of propa-

gation. Taking into a

ount the fa
t that only the physi
al dis
ontinuities

asso
iated to the original Euler 
ompressible equations and Riemann prob-

lem do propagate within the �uid, one 
an write:

e

n

F!ext

=

�

0 n

F!ext

�

T

; (3.34)

e

n

F!S

=

�

0 n

F!S

�

T

; (3.35)

e

nΣ =

�

�
 �

1

�

2

�

: (3.36)

� ffg denotes a pie
ewise 
ontinuous fun
tion on R2

�℄0;+1[ whi
h 
oin-


ides with the distribution f outside of the dis
ontinuities.

� f

F

, f

S

and f

ext

denote, when used on a boundary, the value of the fun
tion

f respe
tively on the �uid, solid and exterior sides.

� F refers to the real �uid domain Ω
f

, and




F to the 
omplementary do-

main, i.e. either Ω
s

or R2

n (Ω
f

[ Ω
s

);

� [u℄

F




F

: = u

F

� u




F

denotes the jump of the fun
tion u a
ross the �uid

boundaries ∂Ω
f

;
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b Weak-extension of the mass and momentum balan
e equations

Proposition 3.4.1 and 3.4.2 hereafter display the "weak-extension" of both

the mass and momentum balan
e equations. Ea
h proposition is followed by a

proof, whose key ideas are similar to the proof of Rankine-Hugoniot 
ondition,

that is to say:

� use Chasles' relation to split the variational formulation into 3 parts,

asso
iated to the 3 subdomains

eΩ
ext

,

eΩ
f

and

eΩ
s

;

� use Green's formula for integration by parts in order to introdu
e inte-

grals on the boundaries ∂ eΩ
f

n ∂ eΩ
s

, ∂ eΩ
s

, and Σ;

� use the fa
t that the solution is smooth in

eΩ
ext

,

eΩ
+

f

,

eΩ
�

f

, and

eΩ
s

, and

satis�es Rankine-Hugoniot 
ondition on Σ;

� bring together every term, and use the kinemati
 boundary 
onditions to

simplify the equation.

Proposition 3.4.1 Extended mass balan
e equation (weak form)

8' 2 D (R2

�℄0;+1[):

h∂
t

�+ div (�v) ; 'i

D

0

;D

= �

Z

∂ eΩ
s

[�℄

F

S

(∂
t

U(t) ·n

F!S

(

e

�))'(

e

�) d

e

� : (3.37)

Proof of Proposition 3.4.1 To prove that the weak formulation of the

mass balan
e equation extended to R2

writes as (3.37), let us start with

the de�nition of the weak formulation:

8' 2 D (R2

�℄0;+1[):

h∂
t

�+ div (�v) ; 'i

D

0

;D

: = �

Z

+1

0

Z

R2

(�∂
t

'+ �v ·r ') dxdt: (3.38)

Step 1: Chasles' relation

This integral 
an be divided into three di�erent integrals, as follows:

�

Z

+1

0

Z

R2

(�∂
t

'+ �v ·r ') dx dt

= �

Z

eΩ
ext

(�∂
t

'+ �v ·r ') dx dt�

Z

eΩ
f

(�∂
t

'+ �v ·r ') dx dt

�

Z

eΩ
s

(�∂
t

'+ �v ·r ') dx dt: (3.39)
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Step 2: Green's formula for integration by parts

Now, using Green's formula for ea
h integral, and taking into a

ount

the fa
t that a surfa
e Σ of dis
ontinuity may propagate within the real

�uid domain, it 
omes:

�

Z

eΩ
ext

(�∂
t

'+ �v ·r ') dx dt

=

Z

eΩ
ext

f∂
t

�+ div (�v)g' dx dt�

Z

∂ eΩ
f

n∂ eΩ
s

�

ext

� 0� '(

e

�) d

e

�

�

Z

∂ eΩ
f

n∂ eΩ
s

(�v)

ext

(

e

�) ·n

ext!F

(

e

�)'(

e

�) d

e

�: (3.40)

�

Z

eΩ
f

(�∂
t

'+ �v ·r ') dx dt

=

Z

eΩ
+

f

f∂
t

�+ div (�v)g' dx dt+

Z

eΩ
�

f

f∂
t

�+ div (�v)g' dxdt

�

Z

Σ

�

�s[�℄

+

�

+ �

1

[�v

x

℄

+

�

+ �

2

[�v

y

℄

+

�

�

(

e

�)'(

e

�) d

e

�

�

Z

∂ eΩ
f

n∂ eΩ
s

�

F

(

e

�)� 0� '(

e

�) d� �

Z

∂ eΩ
s

�

F

(

e

�)� 0� '(

e

�) d

e

�

�

Z

∂ eΩ
f

n∂ eΩ
s

(�v)

F

(

e

�) ·n

F!ext

(

e

�)'(

e

�) d

e

� �

Z

∂ eΩ
s

(�v)

F

(

e

�) ·n

F!S

(

e

�)'(

e

�) d

e

�

(3.41)

�

Z

eΩ
s

(�∂
t

'+ �v ·r ') dxdt

=

Z

eΩ
s

f∂
t

�+ div (�v)g' dxdt�

Z

∂ eΩ
s

�

S

� 0� '(

e

�) d

e

�

�

Z

∂ eΩ
s

(�v)

S

(

e

�) ·n

S!F

(

e

�)'(

e

�) d

e

�: (3.42)

Step 3: the solution is smooth in

eΩ
ext

,

eΩ
+

f

,

eΩ
�

f

and

eΩ
s

+ Rankine-Hugoniot

Now, by adding the last 3 equations, and using the fa
t the mass balan
e

equation is satis�ed in a strong sense in

eΩ
ext

,

eΩ
+

f

,

eΩ
�

f

and

eΩ
s

, and the fa
t

that Rankine-Hugoniot 
ondition is satis�ed on Σ, it 
omes:

h∂
t

�+ div (�v) ; 'i

D

0

;D

= �

Z

∂ eΩ
f

n∂ eΩ
s

[(�v)℄

F

ext

(

e

�) ·n

F!ext

(

e

�)'(

e

�)�

Z

∂ eΩ
s

[�v℄

F

S

(

e

�) ·n

F!S

(

e

�)'(

e

�) d

e

�

(3.43)
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Step 4: simpli�
ation with the kinemati
 boundary 
onditions

Finally, using the 
ontinuity of the normal 
omponent of the velo
ity

a
ross the boundaries, one obtains:

h∂
t

�+ div (�v) ; 'i

D

0

;D

= �

Z

∂ eΩ
s

[�℄

F

S

(∂
t

U(t) ·n

F!S

(

e

�))'(

e

�) d

e

�: (3.44)

This 
on
ludes the proof for the extension of the mass balan
e equation.

Let us now turn towards the momentum balan
e equation.

Proposition 3.4.2 Extended momentum balan
e equation (weak form)

8 2 [D (R2

�℄0;+1[)℄

2

:

D

∂
t

(�v) + div (�v 
 v) +r p;  

E

D

0

;D

= �

Z

∂ eΩ
s

[∂
t

U(t) ·n

F!S

(

e

�)℄ [�v℄

F

S

(

e

�) · (

e

�) d

e

�

�

Z

∂ eΩ
f

[p℄

F




F

(

e

�)n

F!




F

(

e

�) · (

e

�) d

e

�: (3.45)

Proof of Proposition 3.4.2 This proof follows the methodology used for

the mass balan
e equation:

Step 1: Chasles' relation

8 2 [D (R2

�℄0;+1[)℄

2

:

D

∂
t

(�v) + div (�v 
 v) +r p;  

E

D

0

;D

= �

Z

eΩ
ext

h

�v · ∂
t

 + (�v 
 v) : r  � p div

�

 

�i

dxdt

�

Z

eΩ
f

h

�v · ∂
t

 + (�v 
 v) : r  � p div

�

 

�i

dxdt

�

Z

eΩ
s

h

�v · ∂
t

 + (�v 
 v) : r  � p div

�

 

�i

dx dt: (3.46)

Step 2: Green's formula for integration by parts

Thanks to Green's formula, one 
an write:

�

Z

eΩ
ext

h

�v · ∂
t

 + (�v 
 v) : r  � p div

�

 

�i

dx dt

=

Z

eΩ
ext

f∂
t

(�v) + div(�v 
 v) +r pg · �

Z

∂ eΩ
f

n∂ eΩ
s

0� (�v)

ext

(

e

�) · (

e

�) d

e

�

�

Z

∂ eΩ
f

n∂ eΩ
s

[v

ext

·n

ext!F

℄ (

e

�) (�v)

ext

(

e

�) · (

e

�) d

e

�

�

Z

∂ eΩ
f

n∂ eΩ
s

p

ext

(

e

�)n

ext!F

(

e

�) · (

e

�) d

e

�: (3.47)
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�

Z

eΩ
f

h

�v · ∂
t

 + (�v 
 v) : r  � p div

�

 

�i

dx dt

=

Z

eΩ
+

f

f∂
t

(�v) + div(�v 
 v) +r pg · +

Z

eΩ
�

f

f∂
t

(�v) + div(�v 
 v) +r pg · 

�

Z

Σ

 

�s[�v℄

+

�

+ �

1

�

�

�v

2

x

+ p �v

y

v

x

�

T

�

+

�

+ �

2

�

�

�v

y

v

x

�v

2

y

+ p

�

T

�

+

�

!

· (

e

�) d

e

�

�

Z

∂ eΩ
f

n∂ eΩ
s

0� (�v)

F

(

e

�) · (

e

�) d

e

� �

Z

∂ eΩ
s

0� (�v)

F

(

e

�) · (

e

�) d

e

�

�

Z

∂ eΩ
f

n∂ eΩ
s

[v

F

·n

F!ext

℄ (

e

�)(�v)

F

(

e

�) · (

e

�) d

e

��

Z

∂ eΩ
s

[v

F

·n

F!S

℄ (

e

�)(�v)

F

(

e

�) · (

e

�) d

e

�

�

Z

∂ eΩ
f

n∂ eΩ
s

p

F

(

e

�)n

F!ext

(

e

�) · (

e

�) d

e

� �

Z

∂ eΩ
s

p

F

(

e

�)n

F!S

(

e

�) · (

e

�) d

e

�: (3.48)

�

Z

eΩ
s

h

�v · ∂
t

 + (�v 
 v) : r  � p div

�

 

�i

dx dt

=

Z

eΩ
s

f∂
t

(�v) + div(�v 
 v) +r pg · �

Z

∂ eΩ
s

0� (�v)

S

(

e

�) · (

e

�) d

e

�

�

Z

∂ eΩ
s

[v

S

·n

S!F

℄ (

e

�)(�v)

S

(

e

�) · (

e

�) d

e

� �

Z

∂ eΩ
s

p

S

(

e

�)n

S!F

(

e

�) · (

e

�) d

e

�:

(3.49)

Step 3/4: the solution is smooth in

eΩ
ext

,

eΩ
+

f

,

eΩ
�

f

,

eΩ
s

+ R.-H. + B.C.

Now, by adding these last 3 equations, using the fa
t that the momen-

tum balan
e equation is satis�ed in a strong sense in

eΩ
ext

,

eΩ
+

,

eΩ
�

, and

eΩ
s

, plus the fa
t that Rankine-Hugoniot (R.-H.) 
ondition is satis�ed on

Σ, and �nally the kinemati
 boundary 
onditions (B.C.), it 
omes:

D

∂
t

(�v) + div (�v 
 v) +r p;  

E

D

0

;D

= �

Z

∂ eΩ
s

[∂
t

U(t) ·n

F!S

(

e

�)℄ [�v℄

F

S

(

e

�) · (

e

�) d

e

�

�

Z

∂ eΩ
f

n∂ eΩ
s

[p℄

F

ext

(

e

�)n

F!ext

(

e

�) · (

e

�) d

e

�

�

Z

∂ eΩ
s

[p℄

F

S

(

e

�)n

F!S

(

e

�) · (

e

�) d

e

�: (3.50)

This 
on
ludes the proof for the extension of the momentum balan
e equa-

tion. Both balan
e equations are here written in pure Eulerian formulation. In


lassi
al FSI literature however, one 
an often �nd these equations written with

an Arbitrary Lagrangian Eulerian (ALE) formulation. The interested reader

may for instan
e refer to [Etienne et al., 2009℄. The following remark hereafter

details the �uid equations in ALE formulation.
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Remark 3.4.2 Arbitrary Lagrangian Eulerian (ALE) formulation

The extended balan
e equations (3.37-3.45) 
ould be rewritten in a

more 
ompa
t form, in the spirit of Arbitrary Lagrangian Eulerian (ALE)

formulation. This 
an be done by working on the integrals involving the

solid medium velo
ity ∂
t

U in the right-hand sides of the extended equa-

tions. To this end, let us 
onsider the following extension of the solid

medium velo
ity ∂
t

e

U :

8t � 0, ∂
t

e

U( · ; t) =

(

∂
t

U(t) in Ω
s

0 in R2

nΩ
s

(3.51)

With su
h an extension, the �eld

�

�∂
t

e

U

�

is uniform within the dis-


onne
ted spa
e Ω
s

(
f. rigid body assumption + uniform extended den-

sity), and zero outside. Now, using on
e again Green's formula to de-

�ne the distribution div

�

�∂
t

e

U

�

in R2

�℄0;+1[, one 
an write, for all

' 2 D (R2

�℄0;+1[):

�

Z

eΩ
ext

�∂
t

e

U(x; t) ·r '(x) dxdt

=

Z

eΩ
ext

div

�

�∂
t

e

U

�

(x; t)'(x; t) dxdt

�

Z

∂ eΩ
ext

�

ext

(

e

�)∂
t

e

U(t) ·n

ext!F

(

e

�)'(

e

�) d

e

�: (3.52)

�

Z

eΩ
f

�∂
t

e

U(x; t) ·r '(x; t) dxdt

=

Z

eΩ
f

div

�

�∂
t

e

U

�

(x; t)'(x; t) dxdt�

Z

∂ eΩ
f

n∂ eΩ
s

�

F

(

e

�)∂
t

e

U(t) ·n

F!ext

(

e

�)'(

e

�) d

e

�

�

Z

∂ eΩ
s

�

F

(

e

�)∂
t

U(t) ·n

F!S

(

e

�)'(

e

�) d

e

�: (3.53)

�

Z

eΩ
s

�∂
t

e

U(x; t) ·r '(x; t) dxdt

=

Z

eΩ
s

div

�

�∂
t

e

U

�

(x; t)'(x; t) dxdt�

Z

∂ eΩ
s

�

S

(

e

�)∂
t

U(t) ·n

S!F

(

e

�)'(

e

�) d

e

�:

(3.54)

As the �eld

�

�∂
t

e

U

�

is either uniform or zero, one 
an write, by adding

the last 3 equations:

D

div

�

�∂
t

e

U

�

; '

E

D

0

;D

: = �

Z

+1

0

Z

R2

�∂
t

e

U(x; t) ·r '(x; t) dxdt;

= �

Z

∂ eΩ
s

[�℄

F

S

(

e

�) (∂
t

U(t) ·n

F!S

(

e

�))'(

e

�) d

e

�: (3.55)
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Following the same methodology, the distribution div

�

�v 
 ∂
t

e

U

�


an be

extended to R2

as follows:

8 2 [D (R2

)℄

2

,

D

div

�

�v 
 ∂
t

e

U

�

;  

E

D

0

;D

: = �

Z

+1

0

Z

R2

�

�v 
 ∂
t

e

U

�

(x; t) : r  (x; t) dxdt;

= �

Z

∂ eΩ
s

(∂
t

U(t) ·n

F!S

(

e

�)) [�v℄

F

S

(

e

�) · (

e

�) d

e

�: (3.56)

This result is obtained by using the fa
t that the extended velo
ity ∂
t

e

U

is zero outside of Ω
s

, and the fa
t that the tensor �v 
 ∂
t

e

U is uniform

within the solid domain Ω
s

.

Finally, inje
ting equations (3.55-3.56) into (3.37-3.45), one obtains

the following extended Euler 
ompressible equations written in ALE for-

mulation:

8' 2 D (R2

�℄0;+1[) ;  2 [D (R2

�℄0;+1[)℄

2

:

D

∂
t

�( · ; t) + div

�

�

�

v � ∂
t

e

U

��

( · ; t); '

E

D

0

;D

= 0: (3.57)

D

∂
t

(�v)( · ; t) + div

�

�v 


�

v � ∂
t

e

U

��

( · ; t);  

E

D

0

;D

= �

D

r p;  

E

D

0

;D

+

Z

∂Ω
f

[p℄




F

F

(

e

�)  (

e

�) ·n

F!




F

(

e

�) d

e

�: (3.58)

In the following, the �uid extended PDEs will be written in pure Eulerian

formulation, as summarized in the following Proposition 3.4.3. This 
hoi
e is

motivated by the fa
t that �nite-volume s
hemes are 
lassi
ally used to solve

su
h systems of 
onservation laws.

Proposition 3.4.3 Summary of the extended �uid PDEs (weak form +

Eulerian formulation)

8' 2 D (R
2

�℄0;+1[) ;  2 [D (R
2

�℄0;+1[)℄

2

:

h∂
t

�+ div (�v) ; 'i

D

0

;D

= �

Z

∂ eΩ
s

[�℄

F

S

(∂
t

U(t) ·n

F!S

(

e

�))'(

e

�)d

e

�: (3.59)

D

∂
t

(�v) + div (�v 
 v) +r p;  

E

D

0

;D

= �

Z

∂ eΩ
s

[∂
t

U(t) ·n

F!S

(

e

�)℄ [�v℄

F

S

(

e

�) · (

e

�) d

e

�

�

Z

∂ eΩ
f

[p℄

F




F

(

e

�)n

F!




F

(

e

�) · (

e

�) d

e

�: (3.60)
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Proof of Proposition 3.4.3 Summary of the previous propositions.

The �uid equations being now extended, it is high time to 
onsider their


onvolution produ
t with the analysing wavelet Ψ or s
aling fun
tion Φ. This

se
ond step will result in spatially-�ltered equations governing a homogenized

�uid.

3.4.3 "Weak-
onvolution" wavelets � extended �uid PDEs

As 
an be seen in Proposition 3.4.3, the extended Euler 
ompressible equa-

tions have to be understood in a weak sense. In order to then properly de�ne a


onvolution produ
t with all the distributions present in equations (3.59-3.60),

both the analysing wavelet and s
aling fun
tion should ideally possess a C

1

smoothness and a 
ompa
t support. However, to the author's knowledge, su
h

wavelets do not exist in the CWT framework. One would have to turn to-

wards orthogonal wavelet bases su
h as Daube
hies' in order to �nd a 
ompa
t

support. Nevertheless, as previously highlighted, these wavelets only possess a

C

�N

smoothness, with � � 0:2 and N < +1.

Fortunately, the notion of 
ompa
tly-supported distributions here allows

to bypass the non-
ompa
t support of the wavelet and s
aling fun
tion. To

emphasize this point, let us �rst re
all some properties on 
onvolution produ
t,

before dis
ussing 
ompa
tly-supported distributions.

Properties on 
onvolution produ
t

Proposition 3.4.4 Convolution produ
t L

1

�

Rd

�

�D

�

Rd

�

The 
onvolution produ
t between a fun
tion f 2 L

1

�

Rd

�

and a test

fun
tion ' 2 D

�

Rd

�

results in a C

1

fun
tion.

Proof of Proposition 3.4.4 See appendix A.0.1.

Proposition 3.4.5 Convolution produ
t D

0

�

R
d

�

�D

�

R
d

�

The 
onvolution produ
t between a distribution T 2 D

0

�

Rd

�

and a test

fun
tion ' 2 D

�

R
d

�

also results in a C

1

fun
tion. Furthermore, the

following equation holds:

8 T 2 D

0

�

Rd

�

,  ; ' 2 D

�

Rd

�

:

h � T; 'i

D

0

;D

: =

Z

Rd
( � T )'; (3.61)

=

D

T;

e

 � '

E

D

0

;D

; (3.62)

where

e

 (x) =  (�x).
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In the 
ase where the distribution T is a lo
ally integrable fun
tion, the

previous result 
an be obtained with Fubini's theorem:

h � T; 'i

D

0

;D

=

Z

Rd

�

Z

Rd
 (x� y)T (y) dy

�

'(x) dx (3.63)

=

Z

Rd
T (y)

�

Z

Rd

e

 (y � x)'(x) dx

�

dy (3.64)

=

D

T;

e

 � '

E

D

0

;D

(3.65)

Proof of Proposition 3.4.5 See appendix A.0.2.

These two propositions being re
alled, let us now emphasize how the no-

tion of 
ompa
tly-supported distributions may allow to de�ne the 
onvolution

produ
t between the extended �uid PDEs and the analysing wavelet or s
aling

fun
tion.

Compa
tly-supported distributions

Thanks to the previous extension pro
edure, all the distributions of interest

in the 
urrent work possess a 
ompa
t support. Indeed, for all test fun
tions

' 2 D (R2

�℄0;+1[) and  2 [D (R2

�℄0;+1[)℄

2

, with 
ompa
t supports in-


luded in the exterior domain

eΩ
ext

, one 
an write:

h∂
t

�+ div (�v) ; 'i

D

0

;D

= �

Z

+1

0

Z

R2

(�∂
t

'+ �v ·r ') (x; t) dxdt; (3.66)

= �

Z

eΩ
ext

(�∂
t

'+ �v ·r ') ; (3.67)

=

Z

eΩ
ext

f∂
t

�+ div (�v)g'; (3.68)

= �

ext

Z

eΩ
ext

fdiv(v)g'; (3.69)

= 0: (3.70)

D

∂
t

(�v) + div (�v 
 v) +r p;  

E

D

0

;D

(3.71)

= �

Z

+1

0

Z

R2

�

�v · ∂
t

 + [�v 
 v℄ : r  + p div( )

�

(x; t) dxdt; (3.72)

= �

Z

eΩ
ext

�

�v · ∂
t

 + [�v 
 v℄ : r  + p div( )

�

; (3.73)

=

Z

eΩ
ext

f∂
t

(�v) + div (�v 
 v) +r pg · ; (3.74)

= �

ext

Z

eΩ
ext

(

∂
t

v + div (v 
 v) +

1

�

ext

r p

)

· ; (3.75)

= 0: (3.76)
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The last equality in both equations uses the fa
t that the �uid lo
ated

within the exterior domain

eΩ
ext

is 
onsidered invis
id and in
ompressible, and

is thus governed by Euler equations.

The above results immediately imply that the supports of the distributions

of interest are ne
essarily in
luded in the 
losed and bounded subspa
e Ω
f

[ Ω
s

.

This useful property will allow to 
ope with the non-
ompa
t support of the

analysing wavelet and s
aling fun
tion, as detailed in the following remarks

and propositions.

Remark 3.4.3 Compa
tly-supported distributions E

0

�

Rd

�

The spa
e of 
ompa
tly-supported distributions E

0

�

Rd

�

o�ers multiple

advantages. One of them is the possibility to now de�ne the a
tion of

su
h a distribution T 2 E

0

�

R
d

�

on a fun
tion  2 C

1

�

R
d

�

whi
h does not

possess a 
ompa
t support. Indeed, one 
an write:

8T 2 E

0

�

Rd

�

,  2 C

1

�

Rd

�

:

hT;  i

E

0

;C

1

: = hT; � i

D

0

;D

; (3.77)

where � 2 D

�

Rd

�

is a test fun
tion whi
h is identi
ally equal to 1 on a


ompa
t neighborhood of the support of the distribution T . Furthermore,

the above de�nition (3.77) does not depend on the 
hoi
e of the test fun
-

tion �. An illustration of su
h a test fun
tion in 1D is displayed in Figure

3.2 below, where K denotes the 
ompa
t neighborhood of the support of

the distribution T .

Figure 3.2: Example of a test fun
tion for 
ompa
tly-supported distributions

Following the spirit of equations (3.62) and (3.77), the 
onvolution produ
t

between the wavelets (or s
aling fun
tion) and the distributions of interest is

hereafter de�ned as follows:
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Convolution (wavelets � 
ompa
tly-supported distributions)

Proposition 3.4.6 Convolution (wavelets � 
ompa
tly-supported distributions)

In the following:

� T 2 E

0

(R
2

) denotes the distributions of interest, ea
h possessing a


ompa
t support satisfying supp(T ) � Ω
f

[Ω
s

;

� � 2 D (R2

) is a (
ompa
tly-supported) test fun
tion whi
h is identi-


ally equal to 1 on a 
ompa
t neighborhood K of Ω
f

[Ω
s

, with a fast

de
ay towards zero outside of K;

� (Ψ
s;�

)

s;�

denotes a wavelet family of 
lass C

1

(R
2

), with a fast de
ay

towards zero outside of a well-lo
alized spatial support.

One 
an write, for all ' 2 D (R2

), s > 0, � 2 [0; 2�[:

D�

��

eΨ
�

s;�

�

� T; '

E

D

0

;D

=

D

T;

�

e

�� Ψ
�

s;�

�

� '

E

D

0

;D

: (3.78)

Furthermore, as the produ
t

�

��

eΨ
�

s;�

�

is of 
lass C

1

and also


ompa
tly-supported, the distribution

��

��

eΨ
�

s;�

�

� T

�

is a
tually a C

1

fun
tion.

Finally, thanks to the properties of the test fun
tion �, one 
an state

that:

8x 2 R
2

,

�

��

eΨ
�

s;�

�

(x) =

(

eΨ
�

s;�

(x) if x 2 K

0 if x 2 R
2

n supp(�)

(3.79)

Thus, the fun
tion

�

��

eΨ
�

s;�

�

and the wavelet

�

eΨ
�

s;�

�


oin
ide on the


ompa
t set K, whi
h 
ontains Ω
f

[ Ω
s

. Outside of K, the di�eren
e

between these two fun
tions is expe
ted to be small. Indeed, thanks to

its well-lo
alized spatial support (lo
alization whi
h improves if the s
ale

parameter de
reases), the wavelet is expe
ted to be almost zero outside of

the domain of interest Ω
f

[ Ω
s

. The same remark goes for the fun
tion

�

��

eΨ
�

s;�

�

, thanks to the fast de
ay of � from 1 to 0.

In 
on
lusion, equation (3.78) allows to rigorously de�ne the 
on-

volution between a 
ompa
tly-supported distribution T and the fun
tion

�

��

eΨ
�

s;�

�

, whi
h happens to be very 
lose to the wavelet

eΨ
�

s;�

, as further

detailed in Proposition 3.4.7.

Proof of Proposition 3.4.6 The above proposition is just an appli
ation

of Proposition 3.4.5.
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Remark 3.4.4 The above proposition also holds with a s
aling fun
tion of


lass C

1

and exhibiting a fast de
ay towards zero.

Now, in order for the 
onvolution produ
t

�

��

eΨ
�

s;�

�

�T to de�ne an a
tual

CWT of the distribution T , one shall prove that, at least within the domain of

interest Ω
f

[Ω
s

, the following approximation, or ideally equality, holds:

8x 2 Ω
f

[Ω
s

,

��

��

eΨ
�

s;�

�

� f

�

(x) �

�

eΨ
�

s;�

� f

�

(x): (3.80)

This point is dis
ussed in the following proposition.

Proposition 3.4.7 Approximation

��

��

eΨ
�

s;�

�

� f

�

�

�

eΨ
�

s;�

� f

�

?

As there is no restri
tion on the size of the 
ompa
t domain K on whi
h

the test fun
tion � equals 1 (as long as it is a 
ompa
t neighborhood of

the support of the distribution T ), it 
an be stated that:

�

��

eΨ
�

s;�

�

� T =

eΨ
�

s;�

� T in supp(T ): (3.81)

Proof of Proposition 3.4.7 In order to prove the proximity, and even

equality, between these two fun
tions, let us 
onsider the following 1D


ase:

� f 2 L

1

lo


(R) a distribution with a 
ompa
t support supp(f) = [�a; a℄,

a > 0;

� � 2 D (R), su
h that � equals 1 on [�b; b℄, b � a, and qui
kly de
ays

towards zero outside of [�b; b℄;

� Ψ
s

, s > 0, a wavelet of 
lass C

1

, well-lo
alized on [�


s

; 


s

℄, and qui
kly

de
aying towards zero outside.

The di�eren
e between

��

��

eΨ
�

s

�

� f

�

and

�

eΨ
�

s

� f

�


an be evaluated as

follows:

8x 2 R,

h

f �

�

��

eΨ
�

s

�

� f �

eΨ
�

s

i

(x) = f �

h

(�� 1)

eΨ
�

s

i

(x); (3.82)

=

Z

R

f(x� y) (�(y)� 1)

eΨ
�

s

(y) dy; (3.83)

=

Z

I

x

f(x� y) (�(y)� 1)

eΨ
�

s

(y) dy; (3.84)

where I

x

= fy 2 R, x� y 2 [�a; a℄g. Thus:

h

f �

�

��

eΨ
�

s

�

� f �

eΨ
�

s

i

(x) =

Z

x+a

x�a

f(x� y) (�(y)� 1)

eΨ
�

s

(y) dy: (3.85)
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As this proof is mainly interested in the behavior of the fun
tions

��

��

eΨ
�

s

�

� f

�

and

�

eΨ
�

s

� f

�

within the support of f , it is hereafter assumed

that x 2 [�a; a℄.

In the following, one shall distinguish two 
ases:

� if the domain where the test fun
tion � equals 1 is wide enough, i.e.

if b � 2a, one has:

8x 2 [�a; a℄, � b � x� a � x+ a � b; (3.86)

8x 2 [�a; a℄, 8y 2 [x� a; x+ a℄, �(y) = 1: (3.87)

As a 
onsequen
e, equation (3.85) simpli�es into:

8x 2 [�a; a℄,

h

f �

�

��

eΨ
�

s

�

� f �

eΨ
�

s

i

(x) = 0: (3.88)

� if the domain where the test fun
tion � equals 1 is not wide enough,

i.e. if a � b < 2a, then one shall distinguish the inner interval

[a� b; b� a℄, from the outer intervals [�a; a� b℄ and [b� a; a℄:

8x 2 [a� b; b� a℄, y 2 [x� a; x+ a℄,

h

f �

�

��

eΨ
�

s

�

� f �

eΨ
�

s

i

(x) = 0:

(3.89)

8x 2 [�a; a� b℄, (3.90)

Z

x+a

x�a

f(x� y) (�(y)� 1)

eΨ
�

s

(y) dy (3.91)

=

Z

�b

x�a

f(x� y) (�(y)� 1)

eΨ
�

s

(y) dy +

Z

x+a

�b

f(x� y) (�(y)� 1)

eΨ
�

s

(y) dy;

(3.92)

=

Z

�b

x�a

f(x� y) (�(y)� 1)

eΨ
�

s

(y) dy: (3.93)

Thus, when b tends towards 2a, the error between the two fun
tions

of interest is fo
used in the vi
inity of the boundaries of [�a; a℄. Be-

sides, as the wavelet Ψ
s

is well-lo
alized on [�


s

; 


s

℄ and qui
kly de
ays

towards zero, the integral in (3.93) will tend towards zero if b� 


s

.

Indeed:
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8x 2 [�a; a� b℄,

�

�

�

�

�

Z

�b

x�a

f(x� y) (�(y)� 1)

eΨ
�

s

(y) dy

�

�

�

�

�

(3.94)

�

Z

�b

x�a

�

�

�f(x� y) (�(y)� 1)

eΨ
�

s

(y)

�

�

� dy; (3.95)

� max

y2[x�a;�b℄

�

�

�

eΨ
�

s

(y)

�

�

��

Z

�b

x�a

jf(x� y)j dy; (3.96)

� max

y2[�2a;�b℄

�

�

�

eΨ
�

s

(y)

�

�

�� kfk

L

1

(R)
; (3.97)

� max

y2[b;2a℄

jΨ
�

s

(y)j � kfk

L

1

(R)
; (3.98)

where the maximum value of the wavelet modulus jΨ
s

j on [b; 2a℄ de
ays

towards zero when a; b� 


s

.

A similar proof holds for the last interval [b� a; a℄.

In 
on
lusion, as long as the interval [�b; b℄, on whi
h � equals 1,

is wide enough 
ompared to the support supp(f) = [�a; a℄, or to the

wavelet lo
alization domain [�


s

; 


s

℄, the error between the fun
tions

��

��

eΨ
�

s;�

�

� f

�

and

�

eΨ
�

s;�

� f

�

is either zero or 
lose to zero. Thus, as

there is no restri
tion on the width of the interval [�b; b℄ (as long as it is a


ompa
t neighborhood of [�a; a℄), it 
an be stated that, for a well-designed

test fun
tion �:

�

��

eΨ
�

s;�

�

� f =

eΨ
�

s;�

� f in supp(f) (3.99)

Remark 3.4.5 It is here re
alled that the 
onvolution produ
t between the

wavelets

�

eΨ
�

s;�

�

s>0;�2R
(respe
tively the isotropi
 s
aling fun
tion

eΦ
�

s

0

) and

the fun
tion of interest is exa
tly the wavelet 
oe�
ient (2.132) (respe
-

tively low-frequen
y approximation (2.154)) of the fun
tion:

W[f ℄(s; u; �) =

�

f �

eΨ
�

s;�

�

(u); (3.100)

L[f ℄ (s

0

; u) =

�

f �

eΦ
�

s

0

�

(u): (3.101)

These propositions and remarks being stated, it is now high time to ex-

pli
itly derive the spatially-�ltered equations from the extended �uid PDEs

(3.59-3.60). This is done by:

� �rst, 
onsidering the fun
tions

�

e

�� Ψ
�

s;�

�

� ' or

�

e

�� Φ
�

s

0

�

� ' as test

fun
tions in the extended �uid PDEs (3.59-3.60);

� se
ond, using equation (3.78);

� third, using the fa
t that 
onvolution produ
t 
ommutes with time and

espe
ially spatial derivatives on R2

;

� and �nally, using Fubini's theorem to rewrite the boundary integrals in

the right-hand side of the balan
e equations.
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Weak-
onvolution produ
t with the extended �uid PDEs

Proposition 3.4.8 Weak-
onvolution produ
t with the �uid PDEs

Consider T > 0. 8t 2 [0; T [, s > 0, � 2 [0; 2�[, ' 2 D (R
2

) ;  2 [D (R
2

)℄

2

:

� mass balan
e equation:

starting with the left-hand side of equation (3.59), and using equation

(3.78), one 
an write:

D

∂
t

�+ div (�v) ;

�

e

�� Ψ
�

s;�

�

� '

E

D

0

;D

(3.102)

=

D�

��

eΨ
�

s;�

�

� [∂
t

�+ div (�v)℄ ; '

E

D

0

;D

; (3.103)

=

D

∂
t

h�

��

eΨ
�

s;�

�

� �

i

+

�

��

eΨ
�

s;�

�

� div (�v) ; '

E

D

0

;D

; (3.104)

=

D

∂
t

h�

��

eΨ
�

s;�

�

� �

i

+ div

h�

��

eΨ
�

s;�

�

� �v

i

; '

E

D

0

;D

: (3.105)

In the right-hand side of equation (3.59), the boundary integral 
an

be rewritten using Fubini's theorem:

Z

∂ eΩ
s

[�℄

F

S

(∂
t

U(t) ·n

F!S

(

e

�))

h�

e

�� Ψ
�

s;�

�

� '

i

(

e

�) d

e

� (3.106)

=

Z

+1

0

Z

∂Ω
s

[�℄

F

S

(∂
t

U(t) ·n

F!S

(�; t))

�

Z

R2

�

e

�� Ψ
�

s;�

�

(� � x)'(x; t) dx

�

d� dt;

(3.107)

=

Z

+1

0

Z

R2

�

Z

∂Ω
s

�

��

eΨ
�

s;�

�

(x� �)[�℄

F

S

(∂
t

U(t) ·n

F!S

(�; t)) d�

�

'(x; t) dxdt

(3.108)

=

�

Z

∂Ω
s

�

��

eΨ
�

s;�

�

( · � �)[�℄

F

S

(∂
t

U(t) ·n

F!S

(�; t)) d�; '

�

D

0

;D

(3.109)

Now, bringing together both sides of the equation, one obtains:

D

∂
t

h�

��

eΨ
�

s;�

�

� �

i

+ div

h�

��

eΨ
�

s;�

�

� �v

i

; '

E

D

0

;D

= �

�

Z

∂Ω
s

�

��

eΨ
�

s;�

�

( · � �)[�℄

F

S

(∂
t

U(t) ·n

F!S

(�; t)) d�; '

�

D

0

;D

:

(3.110)

� momentum balan
e equation:

starting with the left-hand side of equation (3.60), one 
an write:
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D

∂
t

(�v) + div (�v 
 v) +r p;

�

e

�� Ψ
�

s;�

�

�  

E

D

0

;D

(3.111)

=

D�

��

eΨ
�

s;�

�

� [∂
t

(�v) + div (�v 
 v) +r p℄ ;  

E

D

0

;D

; (3.112)

=

D

∂
t

h�

��

eΨ
�

s;�

�

� (�v)

i

+ div

h�

��

eΨ
�

s;�

�

� (�v 
 v)

i

+r

h�

��

eΨ
�

s;�

�

� p

i

;  

E

D

0

;D

:

(3.113)

Using on
e again Fubini's theorem, the two boundary integrals in the

right-hand side of equation (3.60) 
an be rewritten as follows:

Z

∂ eΩ
s

[∂
t

U(t) ·n

F!S

(

e

�)℄ [�v℄

F

S

(

e

�) ·

h�

e

�� Ψ
�

s;�

�

�  

i

(

e

�) d

e

� (3.114)

=

Z

+1

0

Z

∂Ω
s

[∂
t

U(t) ·n

F!S

(�; t)℄ [�v℄

F

S

(�) ·

�

Z

R2

�

e

�� Ψ
�

s;�

�

(� � x) (x; t) dx

�

d� dt;

(3.115)

=

Z

+1

0

Z

R2

�

Z

∂Ω
s

�

��

eΨ
�

s;�

�

(x� �) [∂
t

U(t) ·n

F!S

(�; t)℄ [�v℄

F

S

(�) d�

�

· (x; t) dxdt;

(3.116)

=

�

Z

∂Ω
s

�

��

eΨ
�

s;�

�

( · � �) [�v℄

F

S

(�) [∂
t

U(t) ·n

F!S

(�; t)℄ d�;  

�

D

0

;D

:

(3.117)

Z

∂ eΩ
f

[p℄

F




F

(

e

�)

h�

e

�� Ψ
�

s;�

�

�  

i

(

e

�) ·n

F!




F

(

e

�) d

e

� (3.118)

=

Z

+1

0

Z

∂Ω
f

[p℄

F




F

(�; t)

�

Z

R2

�

e

�� Ψ
�

s;�

�

(� � x) (x; t) dx

�

·n

F!




F

(�; t) d� dt;

(3.119)

=

Z

+1

0

Z

R2

 

Z

∂Ω
f

�

��

eΨ
�

s;�

�

(x� �) [p℄

F




F

(�; t)n

F!




F

(�; t) d�

!

· (x; t) dxdt;

(3.120)

=

*

Z

∂Ω
f

�

��

eΨ
�

s;�

�

( · � �) [p℄

F




F

(�; t) ·n

F!




F

(�; t) d�;  

+

D

0

;D

: (3.121)

Now, bringing together both sides of the equation, one obtains:

D

∂
t

h�

��

eΨ
�

s;�

�

� (�v)

i

+ div

h�

��

eΨ
�

s;�

�

� (�v 
 v)

i

+r

h�

�

eΨ
�

s;�

�

� p

i

;  

E

D

0

;D

= �

�

Z

∂Ω
s

�

��

eΨ
�

s;�

�

( · � �) [�v℄

F

S

(�) [∂
t

U(t) ·n

F!S

(�; t)℄ d�;  

�

D

0

;D

�

*

Z

∂Ω
f

�

��

eΨ
�

s;�

�

( · � �) [p℄

F




F

(�; t)n

F!




F

(�; t) d�;  

+

D

0

;D

: (3.122)
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Proof of Proposition 3.4.8 See Proposition 3.4.6 and equation (3.78).

Remark 3.4.6 Commutation 
onvolution produ
t  ! spatial deriva-

tives

Proposition 3.4.8 used the fa
t that 
onvolution produ
t 
ommutes with

spatial (and time) derivatives on R2

. It is important to keep in mind

that su
h a property is no longer valid on a bounded subset Ω � R2

, as

already highlighted in the previous 
hapter when dis
ussing Large Eddy

Simulation.

Proposition 3.4.8 presented the spatially-�ltered equations in a weak

form. Now, using the smoothing property of the 
onvolution produ
t with a


ompa
tly-supported fun
tion of 
lass C

1

, and equation (3.81), one 
an write

the spatially-�ltered equations in a strong form:

Spatially-�ltered PDEs governing the homogenized �uid (strong form)

Proposition 3.4.9 Spatially-�ltered PDEs (strong form)

The homogenized �uid, whose 
onservative variables are the wavelet


oe�
ients

�

W[�℄ W[�v

x

℄ W[�v

y

℄

�

T

(s; u; �; t), is governed by the follow-

ing spatially-�ltered PDEs (here written on Ω
f

[ Ω
s

) :

Consider T > 0. 8u 2 Ω
f

[ Ω
s

, 8t 2 [0; T [, s > 0, � 2 [0; 2�[:

∂
t

W[�℄(s; u; �; t) + div (W [�v℄) (s; u; �; t)

= �

Z

∂Ω
s

eΨ
�

s;�

(u� �)[�℄

F

S

[∂
t

U(t) ·n

F!S

(�; t)℄ d�: (3.123)

∂
t

W [�v℄ (s; u; �; t) + div (W [�v 
 v℄) (s; u; �; t) +rW[p℄(s; u; �; t)

= �

Z

∂Ω
f

eΨ
�

s;�

(u� �) [p℄

F




F

(�; t) ·n

F!




F

(�; t) d�

�

Z

∂Ω
s

eΨ
�

s;�

(u� �) [�v℄

F

S

(�) [∂
t

U(t) ·n

F!S

(�; t)℄ d�: (3.124)

In these PDEs, it is important to emphasize the role played by the

fun
tion

e

F

S�!F

(s; u; �; t) : = �

Z

∂Ω
f

eΨ
�

s;�

(u� �) [p℄

F




F

(�; t) ·n

F!




F

(�; t) d�; (3.125)

whi
h is a body for
e (per unit of length), de�ned a
ross the whole spa
e

R2

, whi
h represents the resistan
e that en
ounters the real �uid when

�owing through the solid medium and impa
ting the outer boundaries. The
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homogenization pro
ess thus transformed 
onta
t for
es, lo
alized on the

�uid-stru
ture interfa
es and outer boundaries, into a body for
e. It also

transformed PDEs governing the real �uid variables into �ltered PDEs

now governing the wavelet 
oe�
ients (or low-frequen
y approximations)

of the extended �uid variables.

Finally, as the wavelet Ψ (or s
aling fun
tion Φ) exhibits a well-lo
alized

support and a fast de
ay towards zero, it is fortunately not ne
essary to

mesh the whole spa
e R2

to 
ompute the homogenized �uid. Indeed, be-

yond a thin layer around the initial domain boundaries ∂ (Ω
f

[Ω
s

), the

homogenized �elds resulting from the 
onvolution produ
ts will be almost


onstant or zero, given the previous extension of the �elds (�, �v, p). Be-

sides, the 
urrent work fo
uses on the behavior of the homogenized �uid

only within the interior domain Ω
f

[ Ω
s

.

Proof of Proposition 3.4.9 See Proposition 3.4.6 for the justi�
ation of

the C

1

smoothness.

Remark 3.4.7 The spatially-�ltered PDEs presented in Proposition 3.4.9

are also valid for a (real and isotropi
) s
aling fun
tion Φ
s

0

of 
lass C

1

,

with a well-lo
alized support and a fast de
ay towards zero.

The spatially-�ltered Euler 
ompressible equations are 
ompleted with the

following equation of state:

Equation of state for the homogenized �uid

Proposition 3.4.10 Spatially-�ltered equation of state

Starting with the (extended) barotropi
 equation of state

p = p

ref

+ 


2

son

(�� �

ref

); (3.126)

one obtains, with the analysing wavelet Ψ, the following spatially-�ltered

equation of state:

W[p℄(s; u; �; t) = 


2

son

W[�℄(s; u; �; t): (3.127)

Now, repla
ing the analysing wavelet Ψ with an isotropi
 s
aling fun
-

tion Φ, the �ltered equation of state slightly 
hanges:

L[p℄(s; u; t) =

�

p

ref

� 


2

son

�

ref

�

s

Z

R2

Φ(y)
�

dy + 


2

son

L[�℄(s; u; t): (3.128)

Proof of Proposition 3.4.10 Starting with the analysing wavelet Ψ, one


an write, by using the linearity of 
onvolution produ
t on equation

(3.126):
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W[p℄(s; u; �; t) =

�

p

ref

� 


2

son

�

ref

�

W[1℄(s; u; �; t) + 


2

son

W[�℄(s; u; �; t);

(3.129)

=

�

p

ref

� 


2

son

�

ref

�

Z

R2

1

s

Ψ

�

R

��

x� u

s

�

�

dx+ 


2

son

W[�℄(s; u; �; t):

(3.130)

Introdu
ing the a�ne fun
tion f

s;u;�

: x 7�! R

��

x�u

s

, whose (2 � 2)

Ja
obian matrix is given by r f

s;u;�

(x) =

1

s

R

��

, a 
hange of variable 
an

be implemented in the integral of equation (3.130):

Z

R2

1

s

2

�

�

�det

�

R

��

�

�

�

�Ψ

�

R

��

x� u

s

�

�

dx =

Z

R2

Ψ(y)
�

dy: (3.131)

This 
hange of variable then leads to:

W[p℄(s; u; �; t) =

�

p

ref

� 


2

son

�

ref

�

s

Z

R2

Ψ(y)
�

dy + 


2

son

W[�℄(s; u; �; t); (3.132)

= 


2

son

W[�℄(s; u; �; t); (3.133)

where the wavelet zero-average 
ondition has been used to simplify the

result.

When 
onsidering an isotropi
 s
aling fun
tion Φ, this zero-average


ondition no longer holds. One thus obtains:

L[p℄(s; u; t) =

�

p

ref

� 


2

son

�

ref

�

s

Z

R2

Φ(y)
�

dy + 


2

son

L[�℄(s; u; t): (3.134)

This last proposition �nally 
on
ludes the wavelet-based homogenization

pro
ess of the �uid. Now, before detailing the analysing wavelet Ψ and s
aling

fun
tion Φ, it is of high importan
e to dis
uss some of the 
riti
al issues asso
i-

ated to homogenization and multi-s
ale methods, that is to say the treatment

of boundary 
onditions, the 
losure between unresolved and resolved s
ales,

and nonlinearities.

3.5 Boundary 
onditions, 
losure between s
ales,

and nonlinearities

3.5.1 Boundary 
onditions and 
losure between s
ales

The �rst step of the homogenization pro
ess, whi
h fo
used on the extension

of the original �uid equations, highlighted the important role played by the real

�uid dynami
 (and also kinemati
) boundary 
onditions, through for instan
e
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the following boundary integral in the extended momentum balan
e equation

(3.60):

�

Z

∂ eΩ
f

[p℄

F




F

(

e

�)n

F!




F

(

e

�) · (

e

�) d

e

�; (3.135)

where it is re
alled that [p℄

F




F

: = p

F

� p




F

=

(

p� p

r

on ∂Ω
s

p� p

ref

on ∂Ω
f

n ∂Ω
s

.

This boundary integral 
ould be de
omposed into a �rst integral on the

�uid-stru
ture interfa
e ∂Ω
s

, and a se
ond integral on the outer boundary

∂Ω
f

n ∂Ω
s

. The 
urrent work fo
uses only on the inner boundaries of the

�uid ∂Ω
s

. The se
ond integral will thus be dis
arded, and 
lassi
al re�e
ting


onditions will be used on the outer boundaries.

The se
ond step of the homogenization pro
ess, whi
h fo
used on the a
tual

�ltering of the extended equations, transformed 
onta
t for
es, de�ned on the

�uid-stru
ture interfa
es, into a body for
e de�ned a
ross the whole domain:

8t 2 [0; T [, s > 0; � 2 [0; 2�[, u 2 Ω
f

[Ω
s

,

e

F

S�!F

(s; u; �; t) = �

Z

∂Ω
f

eΨ
�

s;�

(u� �) [p℄

F




F

(�; t) ·n

F!




F

(�; t) d�: (3.136)

This body for
e, applied by the underlying solid obsta
les to the homoge-

nized �uid, depends on the real pressure �eld p, whi
h 
ontains all the possible

spatial s
ales that 
ould be 
aught with a DNS 
omputation of the original

�uid PDEs. However, the spatially-�ltered PDEs (3.123-3.124-3.127) now only


ompute a band-pass W[p℄(s; · ) or low-pass L[p℄(s; · ) �ltering of the original

�eld p. A 
losure expression between the unresolved and resolved s
ales of

the pressure �eld is thus required, as in any homogenization or multi-s
ale

method. Conversely to plain �ltering or averaging te
hniques, CWT and its

inverse transform (2.158) bring us an analyti
al 
losure expression:

p (x; t) =

1

CΨ

Z

+1

0

�

Z

R2

Z

2�

0

W[p℄(s; u; �; t)�

1

s

Ψ

�

�

R

�

�

�1

x� u

s

�

d� du

�

ds

s

3

:

(3.137)

If both the analysing wavelet Ψ and its s
aling fun
tion Φ are real-valued

and isotropi
, the re
onstru
tion formula (3.137) 
ould also be written:

p(x; t) =

2�

CΨ

Z

s

0

0

�

Z

R2

W[p℄(s; u; t)�

1

s

Ψ

�

x� u

s

�

du

�

ds

s

3

+

�

CΨs
2

0

Z

R2

L[p℄ (s

0

; u; t)

1

s

0

Φ

�

x� u

s

0

�

du; (3.138)

where s

0

denotes the 
uto� s
ale of the low-pass �lter Φ
s

0

.
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It is thus possible, thanks to CWT, to re
onstru
t, at ea
h time step, the

mi
ros
opi
 pressure �eld on the �uid inner boundaries, and to evaluate the

body for
e applied by the underlying solid obsta
les. In other words, the real

�uid dynami
 boundary 
onditions are transferred into a body for
e applied to

the homogenized �uid. In a similar way, it is also possible to re
onstru
t the

real �uid density (�) and momentum (�v) at ea
h time step, whi
h then allow to


ompute the boundary integrals asso
iated to the solid medium displa
ement

U in the �ltered mass and momentum balan
e equations.

Nevertheless, one 
an immediately noti
e that, in order to 
ompute the

body for
e (3.136) for a single s
ale s > 0, one shall exa
tly re
onstru
t the

mi
ros
opi
 pressure �eld p, and thus 
ompute all its wavelets 
oe�
ients

W[p℄(s; · ), for all s
ales s > 0. This would of 
ourse be too 
umbersome,

as it would be equivalent to a DNS 
omputation. To bypass this di�
ulty, one


an either:

� approximate the re
onstru
tion formula (3.137) by using a "well-
hosen"

number of wavelets 
oe�
ients (W[p℄(s

k

; · ))

1�k�N

, sele
ted on a "well-


hosen" s
ale range [s

1

; s

N

℄;

� dis
ard, in equation (3.138), all wavelet 
oe�
ients W[p℄(s; · ) with a

s
ale s below the 
uto� s
ale s

0

, thus only taking into a

ount the low-

frequen
y approximation L[p℄(s

0

; · ) of the pressure �eld:

p(x) �

�

CΨs
2

0

Z

R2

L[p℄ (s

0

; u)

1

s

0

Φ

�

x� u

s

0

�

du: (3.139)

Both methods require to possess some a priori knowledge or insights on

the pressure �eld wavelengths spe
trum. Furthermore, with the approxima-

tion (3.139), the se
ond method 
an be expe
ted to present a loss of a

ura
y


ompared to the �rst one. Nevertheless, the 
omputational gain is 
lear, as

the s
aling fun
tion allows to 
ompute just on
e the spatially-�ltered PDEs,

for a given 
uto� s
ale s

0

. Indeed, the low-frequen
y approximation L[p℄(s

0

; · )


at
hes simultaneously all s
ales larger than s

0

. This also allows to avoid in-

tera
tions between multiple s
ales in the spatially-�ltered equations asso
iated

to a given s
ale s

i

.

Besides, as wavelet 
oe�
ients de
rease towards zero in regions where the

�eld of interest is smooth, the velo
ity of the homogenized pressure waves


ould drasti
ally in
rease in regions where the real �uid density is 
onstant,

thus imposing a very small time step in the numeri
al method.

In order not to dis
ard the wavelet 
oe�
ients in approximation (3.139),

while bypassing very small time steps, one 
ould:

� rewrite the spatially-�ltered equations so as to 
ompute the addition

of the wavelet 
oe�
ients W[f ℄(s; · ) and the low-frequen
y approxima-

tion L[f ℄(s

0

; · ), with s 2℄0; s

0

[. This is done by 
hanging the unknowns

�

eΨ
�

s

� f

�

into

h�

eΨ
�

s

+

eΦ
�

s

0

�

� f

i

in equations (3.123-3.124-3.127).
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� 
ompute the unknowns

h�

eΨ
�

s

k

+

eΦ
�

s

0

�

� f

i

= W[f ℄(s

k

; · ) + L[f ℄(s

0

; · ) for

multiple s

k

2℄0; s

0

[;

� 
ompute the low-frequen
y approximation L[f ℄(s

0

; · ) on its own, and

then dedu
e the wavelet 
oe�
ients by di�eren
e:

8s

k

2℄0; s

0

[, W[f ℄(s

k

; · ) = [W[f ℄(s

k

; · ) + L[f ℄(s

0

; · )℄� L[f ℄(s

0

; · ):

(3.140)

Su
h a method would of 
ourse imply a signi�
ant in
rease in the 
om-

putational 
ost.

Remark 3.5.1 Coupling between the �uid and solid media

The ability to re
onstru
t, up to an approximation, the mi
ros
opi


pressure �eld p allows to evaluate, at ea
h time step, and without any ad

ho
 model, the total for
e applied by the real (re
onstru
ted) �uid to the

solid medium:

F

F!S

=

Z

∂Ω
s

�p(�; t)n

S!F

(�; t) d�: (3.141)

This is a mandatory step in the design of a 
oupled �uid-stru
ture

solver.

3.5.2 Treatment of nonlinearities

Let us now turn towards the question of nonlinearities, i.e. the 
onve
tive

term in the �ltered momentum balan
e equation (3.124). It is re
alled that the

low-frequen
y approximation of the 
onve
tive term writes, with an isotropi


s
aling fun
tion Φ:

L[�v 
 v℄(s; u; t) =

�

eΦ
�

s

� (�v 
 v)

�

(u; t): (3.142)

In LES literature, this nonlinearity is �rst rewritten as follows:

L[�v 
 v℄ = L[�℄

e

L[v 
 v℄ (3.143)

= L[�℄

e

L[v℄


e

L[v℄ +

�

L[�℄

e

L[v 
 v℄� L[�℄

e

L[v℄


e

L[v℄

�

; (3.144)

where

e

L here denotes the Favre average:

e

L[v℄ =

L[�v℄

L[�℄

: (3.145)
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The term

�

L[�℄

e

L[v 
 v℄� L[�℄

e

L[v℄


e

L[v℄

�

is then transferred into the right-

hand side of the �ltered momentum balan
e equation, and gives rise to the

subgrid-s
ale tensor, whi
h 
ontains the information about the energy dissipa-

tion indu
ed by turbulen
e. As the 
urrent work fo
uses on a fast transient

pressure wave within a 
ompressible �ow, vis
osity and turbulen
e e�e
ts are


onsidered negligible 
ompared to pressure gradients. In the following, the

nonlinear 
onve
tive term will thus be approximated as follows:

L[�℄

e

L[v 
 v℄ � L[�℄

e

L[v℄


e

L[v℄: (3.146)

In 
ases where turbulen
e e�e
ts 
annot be negle
ted, the nonlinear term

L[�v
 v℄ 
an be expli
itly 
omputed by re
onstru
ting, at ea
h time step, the

real �uid density � and velo
ity v via the re
onstru
tion formula (3.139), and

then 
omputing the low-frequen
y approximation of the 
onve
tive term �v
v.

This would of 
ourse represent a signi�
ant 
omputational 
ost.

To summarize and 
on
lude this se
tion, the use of CWT as homogenization

tool allowed to:

� rigorously derive spatially-�ltered PDEs governing an equivalent homog-

enized �uid, whose 
onservative variables are the wavelets 
oe�
ients

W[f ℄(s; · ) or the low-frequen
y approximation L[f ℄(s

0

; · ) of the original

�uid variables;

� transfer the real �uid (inner) dynami
 and kinemati
 boundary 
onditions

into the homogenized �uid, by means of respe
tively a body for
e applied

by the underlying solid obsta
les, and boundary integrals in the right-

hand side of the �ltered balan
e equations;

� evaluate, up to an approximation, this body for
e and these boundary in-

tegrals without any ad ho
 model, thanks to an inverse wavelet transform


onne
ting the unresolved and resolved s
ales of the �uid variables.

Now, before spe
ifying the analysing wavelet and s
aling fun
tion 
hosen

to implement the model, and the numeri
al methods used for the 
omputation

of the �ltered PDEs, some remarks on the model "analyti
al" 
onvergen
e and

a

ura
y 
an be highlighted.

3.6 Model 
onvergen
e and a

ura
y 
riteria

The aim of this se
tion is to:

� 
on�rm the intuitive idea that, when the number of wavelet 
oe�
ients

and the s
ale range [s

min

; s

max

℄ in
rease, or equivalently, when the s
aling

fun
tion 
uto� s
ale s

0

de
reases towards 0, the wavelet-based model


onverges towards Dire
t Numeri
al Simulation (DNS);
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� identify a

ura
y 
riteria to measure the analyti
al error between the

wavelet-based model and DNS.

To rea
h these goals, a point-wise 
onvergen
e is �rst proven (with respe
t

to the 
uto� s
ale s

0

) between the wavelet-based model and DNS. Several

analyti
al a

ura
y 
riteria are then introdu
ed, based on a point-wise error, a

L

2

-norm error, and a for
e-wise error.

3.6.1 Convergen
e towards DNS

To start with the 
onvergen
e issue, it is re
alled that, given a pair of

real isotropi
 (and admissible) analysing wavelet Ψ and s
aling fun
tion Φ, the

error 
ommitted in re
onstru
ting a signal f 2 L

2

(R2

) with its low-frequen
y

approximation L[f ℄(s

0

; · ), 
an be evaluated as follows:

8x 2 R
2

, f(x)�

�

CΨs
2

0

Z

R2

L[f ℄ (s

0

; u)

1

s

0

Φ

�

x� u

s

0

�

du

=

2�

CΨ

Z

s

0

0

�

Z

R2

W[f ℄(s; u)�

1

s

Ψ

�

x� u

s

�

du

�

ds

s

3

: (3.147)

Proposition 3.6.1 thoroughly proves how this error tends towards zero when

the 
uto� s
ale s

0

de
reases towards zero.

Proposition 3.6.1 Point-wise 
onvergen
e towards DNS

Consider Ψ an admissible (
f. equation (2.157)) real and isotropi


wavelet, and Φ its asso
iated real and isotropi
 s
aling fun
tion. For all

f 2 L

2

(R
2

), one has the following point-wise 
onvergen
e between the

re
onstru
tion based on the low-frequen
y approximation L[f ℄(s

0

; · ) and

the fun
tion f :

8x 2 R
2

, lim

s

0

!0

�

�

�

�

�

f(x)�

�

CΨs
2

0

Z

R2

L[f ℄ (s

0

; u)

1

s

0

Φ

�

x� u

s

0

�

du

�

�

�

�

�

= 0: (3.148)

Proof of Proposition 3.6.1 The proof of this point-wise 
onvergen
e is

designed as follows:

� step 1: apply Fourier transform to the right-hand side of equation

(3.147); this �rst requires to justify that this term is integrable or

square-integrable in order to possess a Fourier transform;

� step 2: use the wavelet admissibility 
ondition (2.157) to prove that

the obtained Fourier transform indeed 
onverges towards zero when

the 
uto� s
ale s

0

de
reases towards zero;
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� step 3: apply an inverse Fourier transform and use a dominated


onvergen
e theorem to 
on
lude.

Step 1: Fourier transform

The starting point 
onsists in applying Fourier transform to the integral

in the right-hand side of equation (3.147). To this end, let us �rst noti
e

that:

W[f ℄(s; u) =

�

f �

eΨ
�

s

�

(u): (3.149)

Z

R2

W[f ℄(s; u)�

1

s

Ψ

�

x� u

s

�

du = [W[f ℄(s; · ) � Ψ
s

℄ (x): (3.150)

As the fun
tion f belongs to the Lebesgue spa
e L

2

(R2

) and the

wavelet Ψ to L

1

(R2

)\L

2

(R2

), Young's inequality ensures that the fun
tion

u 7�! W[f ℄(s; u) belongs to L

2

(R2

)\L

1

(R2

). Applying on
e again Young's

inequality allows to state that the fun
tion x 7�! [W[f ℄(s; · ) � Ψ
s

℄ (x) also

belongs to L

2

(R2

) \ L

1

(R2

). One 
an thus apply a Fourier transform to

the right-hand side of equation (3.147), whi
h, thanks to Fubini's theorem,

formally leads to:

F

"

Z

s

0

0

�

Z

R2

W[f ℄(s; u)�

1

s

Ψ

�

· � u

s

�

du

�

ds

s

3

#

(k)

= F

"

Z

s

0

0

(W[f ℄(s; · ) � Ψ
s

) ( · )

ds

s

3

#

(k);

=

Z

s

0

0

F [W[f ℄(s; · )℄ (k)� F [Ψ
s

℄ (k)

ds

s

3

: (3.151)

The 
onvergen
e of the integral in equation (3.151) will be proven in a

few steps. To this end, one 
an noti
e that:

F [Ψ
s

℄ (k) = F

�

1

s

Ψ

�

·

s

��

(k); (3.152)

= s�F [Ψ℄ (sk): (3.153)

F [W[f ℄(s; · )℄ (k) = F

h

f �

eΨ
�

s

i

(k); (3.154)

= F [f ℄(k)� sF

h

eΨ
�

i

(sk); (3.155)

= F [f ℄(k)� sF [Ψ℄ (sk)
�

; (3.156)

where it is re
alled that

eΨ(x) = Ψ(�x). One 
an now write:
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F

"

Z

s

0

0

�

Z

R2

W[f ℄(s; u)�

1

s

Ψ

�

· � u

s

�

du

�

ds

s

3

#

(k);

=

Z

s

0

0

F [f ℄(k)� s

2

jF [Ψ℄(sk)j
2

ds

s

3

;

= F [f ℄(k)�

Z

s

0

0

jF [Ψ℄(sk)j
2

s

ds: (3.157)

The analysing wavelet being here isotropi
, the following 
hange of

variables 
an be used for all ve
tor k 2 R2

n f(0; 0)g:

Z

s

0

0

jF [Ψ℄(sk)j
2

s

ds =

Z

s

0

0

jF [Ψ℄ (skkk)j
2

s

ds; (3.158)

=

Z

s

0

kkk

0

jF [Ψ℄(�)j
2

�

kkk

1

kkk

d�; (3.159)

=

Z

s

0

kkk

0

jF [Ψ℄(�)j
2

�

d�: (3.160)

Step 2: wavelet admissibility 
ondition

If k = 0, one has in equation (3.157), thanks to the zero-average 
on-

dition satis�ed by the wavelet, F [Ψ℄ (0) = 0. Now, using the wavelet ad-

missibility 
ondition (2.157), that is to say:

CΨ : =

Z

R2

jF [Ψ℄(kkk)j
2

kkk

2

dk; (3.161)

= 2�

Z

+1

0

jF [Ψ℄(r)j
2

r

2

r dr; (3.162)

= 2�

Z

+1

0

jF [Ψ℄(r)j
2

r

dr; (3.163)

< +1; (3.164)

it 
an be stated that the fun
tion � 7�!

j

F

[

Ψ
℄

(�)

j

2

�

, visible in equation (3.160),

is integrable on ℄0;+1[. As a 
onsequen
e, one has, for all k 2 R2

nf(0; 0)g:

lim

s

0

�!0

Z

s

0

kkk

0

jF [Ψ℄(�)j
2

�

d� = lim

s

0

!0

 

Z

+1

0

jF [Ψ℄(�)j
2

�

d� �

Z

+1

s

0

kkk

jF [Ψ℄(�)j
2

�

d�

!

;

(3.165)

= 0: (3.166)
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It is thus proved that, for all k 2 R2

:

lim

s

0

�!0

F

"

Z

s

0

0

�

Z

R2

W[f ℄(s; u)�

1

s

Ψ

�

· � u

s

�

du

�

ds

s

3

#

(k) = 0: (3.167)

Step 3: inverse Fourier transform + dominating 
onvergen
e theorem

Now, using an inverse Fourier transform, one 
an write for all x 2 R2

:

Z

s

0

0

�

Z

R2

W[f ℄(s; u)�

1

s

Ψ

�

x� u

s

�

du

�

ds

s

3

= F

�1

"

F

"

Z

s

0

0

�

Z

R2

W[f ℄(s; u)�

1

s

Ψ

�

· � u

s

�

du

�

ds

s

3

#

( · )

#

(x)

=

1

(2�)

2

Z

R2

 

F [f ℄(k)�

Z

s

0

0

jF [Ψ℄(sk)j
2

s

ds

!

e

ik ·x

dk: (3.168)

It has already been proven that the modulus of the fun
tion within the

integral in the right-hand side of equation (3.168) 
onverges towards zero

when the 
uto� s
ale s

0

tends towards zero. Moreover, one 
an write,

using again the wavelet admissibility 
onstant CΨ, that for all k 2 R2

:

�

�

�

�

�

F [f ℄(k)�

Z

s

0

0

jF [Ψ℄(sk)j
2

s

ds� e

ik ·x

�

�

�

�

�

= jF [f ℄(k)j �

Z

s

0

0

jF [Ψ℄(sk)j
2

s

ds;

� jF [f ℄(k)j �

CΨ

2�

: (3.169)

The Fourier transform of f is a bounded and 
ontinuous fun
tion on

R2

. It is thus integrable on ea
h 
ompa
t subset of R2

. As a 
onsequen
e,

the fun
tion k 7�! jF [f ℄(k)j �

C

Ψ
2�

is a lo
ally integrable and dominating

fun
tion. Thanks to the dominated 
onvergen
e theorem, one 
an now

pass the limit within the integral in the right-hand side of equation (3.168):

lim

s

0

�!0

Z

R2

 

F [f ℄(k)�

Z

s

0

0

jF [Ψ℄(sk)j
2

s

ds

!

e

ik ·x

dk

=

Z

R2

 

lim

s

0

�!0

 

F [f ℄(k)�

Z

s

0

0

jF [Ψ℄(sk)j
2

s

ds

!

e

ik ·x

!

dk; (3.170)

whi
h �nally leads to the result:

lim

s

0

�!0

Z

s

0

0

�

Z

R2

W[f ℄(s; u)�

1

s

Ψ

�

x� u

s

�

du

�

ds

s

3

= 0: (3.171)
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This 
on
ludes the proof on the "analyti
al" 
onvergen
e of the wavelet-

based model towards Dire
t Numeri
al Simulation (DNS). It is here worth

noti
ing that the 
uto� s
ale s

0

is a
tually 
losely linked to the mesh size h.

This link will be espe
ially emphasized when dis
ussing the stability of the

numeri
al methods, later in this 
hapter. Thus, in order to de
rease s

0

and


at
h all possible wavelengths, the mesh has to be re�ned a

ordingly. The


onvergen
e of the re
onstru
tion pro
ess based on the low-frequen
y approx-

imation is thus a 
onvergen
e with respe
t to both the 
uto� s
ale s

0

and the

mesh size h.

Remark 3.6.1 Convergen
e in L

2

-norm

Thanks to the fa
t that CWT preserves the L

2

-norm of a �nite-energy

signal f 2 L

2

(R2

) (
f. energy identity (2.159)), one 
ould also de�ne a


onvergen
e between kfk

L

2

(R2

)

and kW[f ℄(s; · )k

L

2

(R2

)

.

These propositions and remarks on the model "analyti
al" 
onvergen
e be-

ing stated, let us now detail some a

ura
y 
riteria that will be used in 
hapter

4 to assess the model 
apabilities.

3.6.2 A

ura
y 
riteria

In the following, p

ref

denotes a referen
e pressure �eld de�ned at the mi
ro-

s
opi
 s
ale. Let us denote by �

min

the minimum wavelength 
ontained within

this pressure �eld, and s

min

the positive s
ale parameter su
h that the 
uto�

wavelength of the s
aling fun
tion Φ satis�es:

�


utoff

(Φ
s

min

) = s

min

� �


utoff

(Φ) ; (3.172)

. �

min

: (3.173)

Point-wise a

ura
y

Given the above assumption, the low-frequen
y approximation

L[p℄ (s

min

; · ) thus allows to rea
h the "best" approximation of the mi-


ros
opi
 pressure �eld p

ref

with equation (3.139). Thus, thanks to the

re
onstru
tion formula (3.138), one 
an state that:

p

ref

(x)� p

s

min

(x) (3.174)

: = p

ref

(x)�

�

CΨs
2

min

Z

R2

L[p

s

min

℄ (s

min

; u)

1

s

min

Φ

�

x� u

s

min

�

du; (3.175)

=

2�

CΨ

Z

s

min

0

�

Z

R2

W[p

s

min

℄(s; u)�

1

s

Ψ

�

x� u

s

�

du

�

ds

s

3

; (3.176)

� 0: (3.177)
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Then, for any 
omputation of the homogenized �uid at a larger 
uto� s
ale

s

0

� s

min

, one 
an de�ne the point-wise error as follows:

p

ref

(x)� p

s

0

(x) (3.178)

: = p

ref

(x)�

�

CΨs
2

0

Z

R2

L[p

s

min

℄ (s

0

; u)

1

s

0

Φ

�

x� u

s

0

�

du; (3.179)

�

2�

CΨ

Z

s

0

s

min

�

Z

R2

W[p

s

min

℄(s; u)�

1

s

Ψ

�

x� u

s

�

du

�

ds

s

3

; (3.180)

where the wavelet 
oe�
ients W[p

s

min

℄(s; · ) are not obtained with the 
ompu-

tation of the spatially-�ltered PDEs at a given s
ale s 2 [s

min

; s

0

℄, but rather

dire
tly 
omputed from the "best" approximation p

s

min

. One 
an then study

the behavior of the fun
tion

s

0

7�!

2�

CΨ

Z

s

0

s

min

�

Z

R2

W[p

s

min

℄(s; u)�

1

s

Ψ

�

x� u

s

�

du

�

ds

s

3

(3.181)

to see how the point-wise error jp

ref

(x)� p

s

0

(x)j deteriorates when the 
uto�

s
ale s

0

in
reases, i.e. when the smaller wavelengths are progressively dis-


arded.

L

2

a

ura
y

Beside this point-wise a

ura
y, one 
an also de�ne a L

2

a

ura
y. Indeed,

thanks to the energy identity (2.159), one 
an study the fun
tion (here written

with an isotropi
 wavelet):

s

0

7�! kp

ref

k

2

L

2

�

2�

CΨ

Z

s

0

s

min

kW[p

s

min

℄(s; · )k

2

L

2

ds

s

3

; (3.182)

whi
h shall de
rease from kp

ref

k

2

L

2

(s

0

= s

min

) to zero (s

0

�! +1).

For
e-wise a

ura
y

One 
ould also de�ne an a

ura
y with respe
t to the for
e applied by the

real �uid to the solid medium:

8i 2 f1; 2g,

�

�

�

�

(F

F!S

)

ref

� (F

F!S

)

s

0

�

· e

i

�

�

� =

�

�

�

�

Z

∂Ω
s

� (p

ref

� p

s

0

) (�; t) (n

S!F

(�; t) · e

i

) d�

�

�

�

�

;

(3.183)

�

Z

∂Ω
s

j(p

ref

� p

s

0

) (�; t) (n

S!F

(�; t) · e

i

)j d�;

(3.184)

Samy Mokhtari CHAPTER 3. MODELING 91



3.7. ANALYSING WAVELET AND SCALING FUNCTION

where we re
all that p

s

0

=

�

C

Ψ
s

2

0

R

R2

L[p

s

min

℄ (s

0

; u)

1

s

0

Φ

�

x�u

s

0

�

du.

It is also possible to look at the time integration of the for
e applied by the

real �uid to the solid medium, whi
h 
ontributes to its momentum:

�

�

�

�

Z

t

b

t

a

�

(F

F!S

)

ref

� (F

F!S

)

s

0

�

· e

i

dt

�

�

�

�

�

Z

t

b

t

a

�

�

�

�

(F

F!S

)

ref

� (F

F!S

)

s

0

�

· e

i

�

�

� dt;

(3.185)

: =










�

(F

F!S

)

ref

� (F

F!S

)

s

0

�

· e

i










L

1

[t

a

;t

b

℄

:

(3.186)

These di�erent a

ura
y 
riteria being stated, let us �nally des
ribe the

analysing wavelet and s
aling fun
tion 
hosen to implement the model.

3.7 Analysing wavelet and s
aling fun
tion

In the 
urrent work, CWT aims at �ltering �elds that do not possess any

oriented feature. Indeed, both the analysing wavelet and s
aling fun
tion shall

be able to �observe� pressure waves propagating in di�erent dire
tions simulta-

neously (re�e
tion/transmission on obsta
les). Furthermore, as detailed during

the derivation of the spatially-�ltered Euler 
ompressible equations, both the

analysing wavelet and s
aling fun
tion shall satisfy the following properties:

� C

1

smoothness;

� good lo
alization in the spatial domain;

� fast de
ay towards zero.

Thus, the Mexi
an hat wavelet (Figure 3.3), whi
h is an isotropi
, real-

valued wavelet of 
lass C

1

, with a fast de
ay towards zero, appears perfe
tly

suited for the model. The de�nition of the 2D Mexi
an hat is re
alled below,

both in the physi
al and spe
tral domains.

De�nition 3.7.1 2D Mexi
an hat wavelet

The Mexi
an hat wavelet is de�ned, with a L

2

-normalization in the

physi
al domain, as follows:

Ψ(x) =

p

2

�

p

�

 

1�

kxk

2

2�

2

!

e

�

kxk

2

2�

2

;

F [Ψ℄ (k) = �

3

p

2�kkk

2

e

�

�

2

kkk

2

2

:

(3.187)

(3.188)
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Figure 3.3: Cutaway of the 2D Mexi
an hat (a) and its Fourier transform (b).

This wavelet is obtained by 
omputing the Lapla
ian of a Gaussian fun
tion,

whose standard deviation is here denoted by � > 0. As any analysing wavelet,

the Mexi
an hat exhibits a band-pass behavior in the spe
tral domain, as

detailed in Tables 3.1-3.2 (with a �3 dB bandwidth 
onvention).

Proposition 3.7.1 Filtering properties of the Mexi
an hat (� = 1)

Peak wave ve
tor Bandwidth - lower bound Bandwidth - upper bound

kkΨk =

p

2

�

kkΨkmin

� 0:875 m

�1

kkΨkmax

� 2:04 m

�1

Table 3.1: Filtering properties of the Mexi
an hat wavelet (1/2)

Peak wavelength Bandwidth - lower bound Bandwidth - upper bound

�Ψ = ��

p

2

�

�Ψ

�

min

� 3:08 m

�

�Ψ

�

max

� 7:18 m

Table 3.2: Filtering properties of the Mexi
an hat wavelet (2/2)

Proof of Proposition 3.7.1 The above results are obtained by identifying

the �3 dB bandwidth on the 
urve of the Mexi
an hat Fourier transform.

Beside its smoothness and isotropy, the Mexi
an hat wavelet also satis�es

the admissibility 
ondition (2.157), whi
h is a requirement for the use of an

inverse wavelet transform.

Proposition 3.7.2 2D Mexi
an hat admissibility 
onstant

The 2D Mexi
an hat is an admissible wavelet, with:

CΨ = 2�

2

�

2

: (3.189)
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Proof of Proposition 3.7.2 Straight appli
ation of the de�nition of the

admissibility 
onstant in equation (2.157).

Regarding now the s
aling fun
tion asso
iated to the Mexi
an hat, hereafter

displayed in Figure 3.4, it is de�ned in the spe
tral domain by:

De�nition 3.7.2 2D Mexi
an hat s
aling fun
tion

F [Φ℄(k) = �

2

p

2�

�

kkk

2

+

1

�

2

�

1

2

e

�

�

2

kkk

2

2

: (3.190)
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Figure 3.4: Cutaway of the 2D s
aling fun
tion (a) and its Fourier transf. (b).

As the analysing wavelet Ψ, the s
aling fun
tion Φ is also isotropi
, real-

valued, of 
lass C

1

, and exhibits a fast de
ay towards zero. However, 
onversely

to the wavelet, it does not possess any analyti
al formula in the physi
al do-

main. Its representation in Figure 3.4a 
an thus only be obtained with an

inverse Fast Fourier Transform (FFT).

Remark 3.7.1 Approximation of the s
aling fun
tion in the physi
al

domain

In numeri
al implementations, 2D FFT/FFT

�1

algorithms, whi
h


lassi
ally rely on su

essive 1D FFT/FFT

�1


omputations, may dete-

riorate the isotropy of the s
aling fun
tion. To prevent this phenomenon,

one 
an approximate the s
aling fun
tion behavior in the physi
al domain

(for � = 1) via the following analyti
al and isotropi
 formula:

Φ
approx

(x) =

p

2

p

1:09

0

B

�

1�

kxk

2

2

�

1:785�1:09�

p

2

�

2

1

C

A

e

�

kxk

2

2(1:09�)

2

: (3.191)

As displayed in Figure 3.5b, the approximation de�ned by equation

(3.191) satis�es the following a

ura
y result:

jΦ
approx

� Φj (kxk) �
1

100

Φ(0): (3.192)
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Figure 3.5: Cutaway of the s
aling fun
tion Φ and its approximation Φ
approx

(a), and their di�eren
e Φ
approx

� Φ (b).

Finally, 
onversely to the analysing wavelet Ψ, the s
aling fun
tion is a low-

pass �lter. Its 
hara
teristi
s are summarized in Table 3.3 below (with a �3 dB

bandwidth 
onvention).

Proposition 3.7.3 Filtering properties of the s
aling fun
tion

Cuto� wave ve
tor Cuto� wavelength

kkΦk . 1:285 m

�1

�Φ & 4:85 m

Table 3.3: Filtering properties of the s
aling fun
tion (� = 1)

Proof of Proposition 3.7.3 The above results are obtained by identifying

the �3 dB bandwidth on the 
urve of the s
aling fun
tion Fourier trans-

form.

Remark 3.7.2 Loss of isotropy 
aused by dire
tional splitting

It is here worth highlighting that the use of �nite-volume s
hemes with

dire
tional splitting may deteriorate the isotropy of the s
aling fun
tion.

Indeed, with su
h numeri
al methods, only �uxes oriented along the Carte-

sian dire
tions are taken into a

ount. The impa
t of the 
ells verti
es is

thus negle
ted. Therefore, in order to transport a quantity of interest from

the 
ell 


(i;j)

to the 
ell 


(i+1;j+1)

, one has to transport this quantity along

ea
h Cartesian dire
tion. If this quantity is �ltered with an isotropi
 �lter,

the 
uto� frequen
y or wave ve
tor is thus applied along ea
h dire
tion.

As a 
onsequen
e, larger frequen
ies and smaller wavelengths 
an be taken

into a

ount by the s
aling fun
tion:

kkΦknum =

q

k

2

x

+ k

2

y

; (3.193)

= kkΦk
p

2; (3.194)

whi
h leads to the following "numeri
al" 
uto� values:

Samy Mokhtari CHAPTER 3. MODELING 95



3.8. SUMMARY OF THE MODEL ASSUMPTIONS AND EQUATIONS

Cuto� wave ve
tor Cuto� wavelength

kkΦknum . 1:83 m

�1

�

�Φ

�

num

& 3:43 m

Table 3.4: S
aling fun
tion 
uto� values with dire
tional splitting (� = 1)

This remark thus 
on
ludes the se
tion dedi
ated to the 
hoi
e of the

analysing wavelet and s
aling fun
tion. It is now high time to des
ribe the

numeri
al methods that will be implemented to solve on the one hand, the

solid medium dynami
 equation, and on the other hand, the homogenized

�uid �ltered PDEs. To this end, let us �rst summarize the model assumptions

and equations.

3.8 Summary of the model assumptions and

equations

The wavelet-based homogenized and multi-s
ale model at the 
ore of this

work has been designed within a 2D framework:

Figure 3.6: Illustration of a 2D f�uid + solidg geometry.

Assumptions on the 2D geometry

� the �uid domain Ω
f

is an open bounded and 
onne
ted spa
e of R2

;

� the solid domain Ω
s

is an open bounded and dis
onne
ted spa
e of R2

:

Ω
s

= [

i

Ω
s

i

, with Ω
s

i

\

i6=j

Ω
s

j

= ;. No periodi
ity or s
ale separation

assumptions are here required.

Assumptions and equations for the solid medium

� the solid medium is 
omposed of the disjoint reunion of multiple disks.

These disks are 
onsidered as rigid and homogeneous bodies;

� the distan
e between neighboring disks, while not ne
essarily periodi
, is

assumed 
onstant (
f. spa
er grids in fuel assemblies); this assumption


ould be easily bypassed by 
onsidering an individual displa
ement �eld

for ea
h disk (without impa
ts), with no 
hange to the wavelet-based

model;
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� the whole array is modeled as a rigid body animated with two degrees

of freedom (two translations). Its dynami
 equilibrium is governed by a

se
ond order linear di�erential equation:

8if1; 2g,

�

U

i

+ 2�!

0

_

U

i

+ !

2

0

U

i

=

1

m

�

F

F!S

· e

i

�

: (3.195)

Assumptions and equations for the �uid

� 
ompressible single-phase �ow;

� the real �uid is 
onsidered invis
id: vis
osity and turbulen
e e�e
ts are

negligible 
ompared to pressure gradients;

� gravity is negligible 
ompared to pressure gradients;

� 
ondu
tion heat transfer is negligible on the time s
ale at study;

� the real �uid satis�es a barotropi
 equation of state.

� the homogenized �uid is shown to be governed (in a strong sense) by the

following spatially-�ltered Euler 
ompressible equations within the inner

domain Ω
f

[Ω
s

(here written with an isotropi
 s
aling fun
tion Φ):

�nd the homogenized �uid 
onservative variables

�

L[�℄(s; · ) L[�v

x

℄(s; · ) L[�v

y

℄(s; · )

�

T

su
h that, for all s > 0,

u 2 Ω
f

[ Ω
s

, and t � 0:

∂
t

L[�℄(s; u; t) + div (L [�v℄) (s; u; t)

= �

Z

∂Ω
s

eΦ
�

s

(u� �)[�℄

F

S

[∂
t

U(t) ·n

F!S

(�; t)℄ d�; (3.196)

∂
t

L [�v℄ (s; u; t) + div (L [�v 
 v℄) (s; u; t) +r (L[p℄) (s; u; t)

= �

Z

∂Ω
f

eΦ
�

s

(u� �) [p℄

F




F

(�; t) ·n

F!




F

(�; t) d�

�

Z

∂Ω
s

eΦ
�

s

(u� �) [�v℄

F

S

(�) [∂
t

U(t) ·n

F!S

(�; t)℄ d�: (3.197)

where it is re
alled that L[f ℄(s; u; t) =

�

f �

eΦ
�

s

�

(u; t) denotes the low-

frequen
y approximation of f .

� the underlying solid obsta
les are shown to apply a body for
e to the

homogenized �uid:

e

F

S�!F

(s; u; t) = �

Z

∂Ω
f

eΦ
�

s

(u� �) [p℄

F




F

(�; t) ·n

F!




F

(�; t) d�: (3.198)
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� for the homogenized �uid problem to be well-posed, a 
losure equation

between resolved and unresolved s
ales is required for the 
onservative

variables (�; �v; p). Thanks to an inverse wavelet transform, this ana-

lyti
al 
losure equation writes, with only an isotropi
 s
aling fun
tion

Φ:

p(x) �

�

CΨs
2

0

Z

R2

L[p℄ (s

0

; u)

1

s

0

Φ

�

x� u

s

0

�

du;

�

�

CΨs
2

0

F

�1

[F [L[p℄ (s

0

; · )℄ ( · )� s

0

F [Φ℄ (s
0

� · )℄ (x):

(3.199)

(3.200)

� as turbulen
e is negle
ted, the treatment of the nonlinear 
onve
tive term

is simpli�ed into:

L[�v 
 v℄ : = L[�℄

e

L[v 
 v℄;

� L[�℄

e

L[v℄


e

L[v℄;

(3.201)

(3.202)

where

e

L denotes the Favre average.

� the homogenized �uid is shown to satisfy a spatially-�ltered barotropi


equation of state (here written with an isotropi
 s
aling fun
tion):

L[p℄(s; u; t) =

�

p

ref

� 


2

son

�

ref

�

s

Z

R2

Φ(y)
�

dy + 


2

son

L[�℄(s; u; t):

(3.203)

� as this work fo
uses on the behavior of the homogenized �uid within the

inner domain Ω
f

[ Ω
s

, only the 
omponent of the body for
e (3.198)

asso
iated to the �uid-stru
ture interfa
e ∂Ω
s

is hereafter 
onsidered.

The other 
omponent is dis
arded, and repla
ed by 
lassi
al re�e
tion


onditions on the outer boundary ∂Ω
f

n ∂Ω
s

.

All the model assumptions and equations being re
alled, let us now detail

the numeri
al methods.

3.9 Numeri
al methods

This se
tion presents the numeri
al methods 
hosen to solve the solid and

�uid equations, and gives some insights on the major numeri
al 
hallenges

fa
ed by the wavelet-based model. The 
urrent se
tion is thus organized as

follows:

� the �rst subse
tion re
alls the 
lassi
al Newmark algorithm, here 
hosen

to solve the solid medium linear di�erential equation;
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� it is followed by a 1st order �nite-volume s
heme, here 
hosen to solve the

homogenized �uid PDEs; this s
heme is based on a Godunov's method

and an expli
it time integration, and uses an approximate Riemann solver

(namely Rusanov) to 
ompute the numeri
al �uxes;

� the third subse
tion then emphasizes the issue of stability, whi
h is 
riti
al

for expli
it s
hemes;

� and �nally, the fo
us is put on the risk of aliasing asso
iated to the use

of FFT algorithms with the s
aling fun
tion Φ
s

0

, whose support in the

frequen
y domain may ex
eed the range allowed by Nyquist�Shannon

sampling theorem;

3.9.1 Solid medium: Newmark method

In the 
urrent work, the solid medium is animated with two degrees of

freedom, i.e. horizontal and verti
al translations, whi
h are governed by the

following linear di�erential equation:

8i 2 f1; 2g, m

�

U

i

+ 


_

U

i

+ kU

i

= F

F!S

· e

i

: (3.204)

To simplify notations, we hereafter denote A the a

eleration, V the velo
-

ity, and D the displa
ement. Equation (3.204) is 
lassi
ally 
omputed with a

Newmark algorithm:

� the solution being known at t = t

n

, either in a

eleration A

n

or displa
e-

ment D

n

, one predi
ts the next values of the displa
ement and velo
ity

based on the a

eleration pro�le on the time step [t

n

; t

n+1

℄:

D

n+1

= D

n

+∆tV
n

+

∆t2

2

[(1� 2�)A

n

+ 2�A

n+1

℄ ; (3.205)

=

f

D

n+1

+ �∆t
2

A

n+1

; (3.206)

V

n+1

= V

n

+∆t [(1� 
)A
n

+ 
A

n+1

℄ ; (3.207)

=

e

V

n+1

+ 
∆tA
n+1

; (3.208)

where

f

D

n+1

and

e

V

n+1

are the predi
ted values of the displa
ement and ve-

lo
ity, and � and 
 are two parameters 
ontrolling the algorithm stability.

For a displa
ement-oriented resolution, one 
an write:

A

n+1

=

1

�∆t2

�

D

n+1

�

f

D

n+1

�

; (3.209)

V

n+1

=

e

V

n+1

+




�∆t

�

D

n+1

�

f

D

n+1

�

: (3.210)
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� given the predi
ted values

f

D

n+1

and

e

V

n+1

, the equilibrium equation at

t = t

n+1

writes:

m

�∆t2

�

D

n+1

�

f

D

n+1

�

+ 


 

e

V

n+1

+




�∆t

�

D

n+1

�

f

D

n+1

�

!

+kD

n+1

= F

n+1

;

(3.211)

"

m

�∆t2
+


 


�∆t
+ k

#

D

n+1

= F

n+1

+

m

�∆t2
f

D

n+1

+ 


 




�∆t

f

D

n+1

�

e

V

n+1

!

;

(3.212)

or equivalently, in a more 
ompa
t form:

e

kD

n+1

=

e

F

n+1

: (3.213)

� on
e D

n+1

is 
omputed from equation (3.213), one updates the a

elera-

tion and velo
ity at t

n+1

with equations (3.209-3.210).

Depending on the values 
hosen for the parameters 
 and �, Newmark

algorithm is known to be:

� un
onditionally stable if

1

2

� 
 � 2�;

� stable if 
 �

1

2

and � <




2

, under the additional 
ondition:

!

0

∆t �

s

2


 � 2�

: (3.214)

The values 
 =

1

2

and � =

1

4

are 
ommonly used to rea
h an un
onditional

stability.

3.9.2 Homogenized �uid: Godunov's method

Let us now turn towards the 
omputation of the homogenized �uid PDEs.

All the spatially-�ltered equations, written with an isotropi
 s
aling fun
tion

Φ, are re
alled below:

� the �ltered mass balan
e equation governing L[�℄ (s

0

; · ):

∂
t

L[�℄ (s

0

; · ) + ∂
x

�

L[�℄

e

L [v

x

℄

�

(s

0

; · ) + ∂
y

�

L[�℄

e

L [v

y

℄

�

(s

0

; · )

= �

Z

∂Ω
s

eΦ
�

s

0

(u� �)[�℄

F

S

(�; t) [∂
t

U(t) ·n

F!S

(�; t)℄ d�; (3.215)
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� the �ltered momentum balan
e equation governing L[�v

x

℄ (s

0

; · ):

∂
t

�

L[�℄

e

L[v

x

℄

�

(s

0

; · )+∂
x

�

L[�℄

e

L[v

x

℄

2

+ L[p℄

�

(s

0

; · )+∂
y

�

L[�℄

e

L[v

x

℄

e

L [v

y

℄

�

(s

0

; · )

= �

Z

∂Ω
s

eΦ
�

s

0

( · � �) [p℄

F

S

(�; t)

�

n

F!S

(�; t) · e

x

�

d�

�

Z

∂Ω
s

eΦ
�

s

0

(u� �) [∂
t

U(t) ·n

F!S

(�; t)℄

h

�v · e

x

i

F

S

(�; t) d�; (3.216)

� the �ltered momentum balan
e equation governing L[�v

y

℄ (s

0

; · ):

∂
t

�

L[�℄

e

L[v

y

℄

�

(s

0

; · )+∂
x

�

L[�℄

e

L[v

y

℄

e

L [v

x

℄

�

(s

0

; · )+∂
y

�

L[�℄

e

L[v

y

℄

2

+ L[p℄

�

(s

0

; · )

= �

Z

∂Ω
s

eΦ
�

s

0

( · � �) [p℄

F

S

(�; t)

�

n

F!S

(�; t) · e

y

�

d�

�

Z

∂Ω
s

eΦ
�

s

0

(u� �) [∂
t

U(t) ·n

F!S

(�; t)℄

h

�v · e

y

i

F

S

(�; t) d�; (3.217)

� the �ltered barotropi
 equation of state (here normalized with respe
t to

the mean of the s
aling fun
tion):

1

s

0

R

R2

Φ(x)� dx
L[p℄ (s

0

; · ) =

�

p

ref

� 


2

son

�

ref

�

+




2

son

s

0

R

R2

Φ(x)� dx
L[�℄ (s

0

; · ) :

(3.218)

Spatial dis
retization: 1st order �nite-volume s
heme

As 
lassi
ally done in the study of hyperboli
 system of 
onservation laws,

the homogenized �uid equations will hereafter be dis
retized in spa
e via a

�nite-volume method with dire
tional splitting. Thanks to the homogenization

pro
ess, this �nite-volume method 
an be asso
iated to a plain 2D regular

Cartesian grid, as illustrated below.
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j+
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ell 


i�1;j


ell 


i;j
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i+1;j

(x

i�1

; y

j

) (x

i

; y

j

) (x

i+1

; y

j

)

y

j�

1

2

y

j�

1

2


ell 


i;j�1

(x

i

; y

j�1

)

x

i�

1

2

x

i+

1

2

The unknowns will be approximated by 
onstants on ea
h 
ell, leading to

a 1st order s
heme.
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Time dis
retization: Euler expli
it s
heme

As for the time dis
retization, an Euler expli
it s
heme is 
hosen 
onsidering

the physi
s at study. Indeed, for the numeri
al method to be a

urate, the time

step ∆t is �rst restri
ted by the pressure waves velo
ities, in order to prevent

these waves from exiting a 
ell during a single time step. This restri
tion on

∆t allows at the same time to satisfy the Courant-Friedri
hs-Lewy (C.F.L.)


ondition whi
h ensures the stability of the expli
it s
heme. The de�nition of

this C.F.L. 
ondition will be re
alled in the following se
tion. Finally, another

advantage of expli
it s
hemes is their ability to avoid any matrix inversion

pro
ess.

Godunov's s
heme

Thus, the 1st order �nite-volume s
heme with Euler expli
it time integra-

tion 
an be summarized into the following Godunov's s
heme:

for ea
h 
ell 


i;j

:

(L)

n+1

i;j

= (L)

n

i;j

�

∆tn

∆x

�

G

n

i+

1

2

;j

� G

n

i�

1

2

;j

�

�

∆tn

∆y

�

H

n

i;j+

1

2

�H

n

i;j�

1

2

�

+∆t
n

0

B

�

S

0

S

1

S

2

1

C

A

n

i;j

;

(3.219)

where:

� ∆x=∆y and ∆t denote respe
tively the spatial and time steps;

� L denotes the homogenized �uid 
onservative variables:

L =

�

L[�℄ L[�v

x

℄ L[�v

y

℄

�

T

(s

0

; · ); (3.220)

� G

i+

1

2

;j

and G

i�

1

2

;j

denote the horizontal �uxes ex
hanged at the interfa
es

with the right and left neighboring 
ells;

� H

i;j+

1

2

and H

i;j�

1

2

denote the verti
al �uxes ex
hanged at the interfa
es

with the upper and lower neighboring 
ells;

� S =

�

S

0

S

1

S

2

�

T

is a ve
tor gathering the sour
e terms of ea
h balan
e

equation.
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Approximate Riemann solver: Rusanov �ux

In order to 
ompute the numeri
al �uxes G and H at the interfa
es, an

approximate Riemann solver is used, namely Rusanov �ux:

G

n

i+

1

2

;j

=

G

�

L

n

i;j

�

+G

�

L

n

i+1;j

�

2

� max

k=1;:::;3

h

j(�

x

)

k

j

�

L

n

i;j

�

; j(�

x

)

k

j

�

L

n

i+1;j

�i

L

n

i+1;j

� L

n

i;j

2

; (3.221)

H

n

i;j+

1

2

=

H

�

L

n

i;j

�

+H

�

L

n

i;j+1

�

2

� max

k=1;:::;3

h

�

�

�(�

y

)

k

�

�

�

�

L

n

i;j

�

;

�

�

�(�

y

)

k

�

�

�

�

L

n

i;j+1

�i

L

n

i;j+1

� L

n

i;j

2

; (3.222)

with:

� G and H the exa
t �ux in the PDEs:

G =

�

L[�℄

e

L [v

x

℄ L[�℄

e

L[v

x

℄

2

+ L[p℄ L[�℄

e

L[v

y

℄

e

L [v

x

℄

�

T

; (3.223)

H =

�

L[�℄

e

L [v

y

℄ L[�℄

e

L[v

x

℄

e

L [v

y

℄ L[�℄

e

L[v

y

℄

2

+ L[p℄

�

T

; (3.224)

� (�

x

)

1�k�3

and (�

y

)

1�k�3

the eigenvalues asso
iated to the non-


onservative form of the hyperboli
 system (i 2 fx; yg):

(�

i

)

1

=

e

L[v

i

℄� L[


son

℄; (3.225)

(�

i

)

2

=

e

L[v

i

℄; (3.226)

(�

i

)

3

=

e

L[v

i

℄ + L[


son

℄: (3.227)

This 
on
ludes the numeri
al methods for both the solid and �uid equations.

The following subse
tions now emphasize the 
riti
al issue of stability, before

underlining the risk of an aliasing phenomenon 
aused by the s
aling fun
tion.

3.9.3 Stability: expli
it VS impli
it �ltering

It is well-known that expli
it s
hemes are espe
ially vulnerable to instability.

Indeed, let us 
onsider the 
lassi
al (1D) linear adve
tion equation

∂
t

u+ 
∂
x

u = 0; (3.228)

where 
 > 0 denotes a 
onstant adve
tion velo
ity. An Euler expli
it upwind

s
heme
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u

n+1

j

� u

n

j

∆t
+ 


u

n

j

� u

n

j�1

∆x
= 0 (3.229)

is known to be stable under the following Courant-Friedri
hs-Lewy (C.F.L.)


ondition:

� : =


∆t

∆x
� 1; (3.230)

or equivalently:

∆t �
∆x




: (3.231)

When solving (1D) nonlinear PDEs with su
h expli
it s
hemes, a safety

margin is usually taken with respe
t to the C.F.L. 
ondition:

∆t = C

stab

∆x




max

, C

stab

� 1; (3.232)

where the 
onstant C

stab

is 
ommonly 
hosen equal to 0:8, and 


max

denotes

the maximum velo
ity over the whole domain.

In the 
urrent work, two "spatial steps" 
oexist:

� �rst, the 
uto� wavelength

�

�Φ
s

0

�

num

of the s
aling fun
tion Φ
s

0

(see

Table 3.4), whi
h satis�es for all s

0

> 0:

�

�Φ
s

0

�

num

= s

0

�

�

�Φ

�

num

; (3.233)

and a
ts dire
tly onto the original Euler 
ompressible equations, at the


ontinuum medium s
ale.

� se
ond, the spatial dis
retization of the 2D regular Cartesian grid:

h = ∆x = ∆y; (3.234)

whi
h then a
ts in the numeri
al 
omputation of the spatially-�ltered

equations.

Thus, the 
lassi
al C.F.L. 
ondition asso
iated to the mesh size h 
oexist

with another 
hara
teristi
 time s
ale, linked to the s
aling fun
tion Φ
s

0

:

∆tΦ
s

0

=

�

�Φ
s

0

�

num




max

: (3.235)
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Nevertheless, it shall be noti
ed that, 
onversely to the s
aling fun
tion spa-

tial s
ale, whi
h is isotropi
, the distan
e between two neighboring grid nodes

is not. Thus, in order to preserve the s
heme stability, the 
uto� wavelength

of the s
aling fun
tion has to be larger than the maximum distan
e between

two neighboring grid nodes:

s

0

�

�Φ

�

num

� dist (node

i;j

; node

i+1;j+1

) ; (3.236)

� h

p

2; (3.237)

whi
h leads to the following 
ompatibility 
ondition between the s
ale param-

eter s

0

and the mesh size h:

s

0

�

p

2

�

�Φ

�

num

� h: (3.238)

The numeri
al approximation of the 
ompatibility 
ondition (3.238) is spe
-

i�ed in Table 3.5:

Stability - 
uto� s
ale VS mesh size

s

0

& 0:412� h

Table 3.5: Compatibility 
ondition between the 
uto� s
ale s

0

and the mesh

size h to ensure the stability of the expli
it s
heme.

This 
ompatibility 
ondition will be tested in the next 
hapter dedi
ated

to the model implementation. But for now, let us turn towards the risk of

aliasing.

3.9.4 Sampling, FFT, and aliasing

The phenomenon of aliasing is known to be explained by Shannon sam-

pling theorem. Indeed, given a mesh size h, one has the following sampling

properties:

Spatial step Spatial sampling frequen
y Shannon spatial frequen
y

h �

e

=

1

h

�

max

=

1

2h

Table 3.6: Mesh sampling properties.

To satisfy Shannon theorem, the frequen
y range a

essible with the

s
aling fun
tion should remain within the wave ve
tor range de�ned by

[�kkk

max

; kkk

max

℄ = [�2��

max

; 2��

max

℄. However, it was previously high-

lighted that, 
onsidering the dire
tional splitting used in the �nite-volume
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method, the 
uto� wave ve
tor of the s
aling fun
tion is larger than its theo-

reti
al value: kkΦknum =

p

2 � kkΦk. Thus, to ensure that the bandwidth of

the s
aling fun
tion Φ
s

0

remains within the observable wave ve
tor range, the


uto� s
ale parameter s

0

has to satisfy:








kΦ
s

0










num

�

�

h

; (3.239)

p

2� kkΦk

s

0

�

�

h

; (3.240)

s

0

�

p

2kkΦk

�

� h: (3.241)

Thus, if the 
uto� s
ale s

0

is too small, the s
aling fun
tion bandwidth

will ex
eed the admissible spatial frequen
y range, leading to an aliasing phe-

nomenon with the use of FFT algorithms on Φ
s

0

. The numeri
al approximation

of equation (3.241) is detailed in the following Table 3.7:

Aliasing - 
uto� s
ale VS mesh size

s

0

& 0; 579� h

Table 3.7: Compatibility 
ondition between the 
uto� s
ale s

0

and the mesh

size h to prevent aliasing in FFT 
omputations.

Remark 3.9.1 Aliasing and boundary 
onditions

The impa
t of aliasing will be mainly fo
used on the �uid-stru
ture

interfa
es. Indeed, the boundary integrals present in the right-hand sides

of the �ltered balan
e equations all require a 
losure expression between

the resolved and unresolved s
ales of the �uid variables. This 
losure is

brought by an inverse wavelet transform, whi
h will be implemented via

FFT and FFT

�1

algorithms applied to the low-frequen
y approximations

L[�℄(s

0

; · ), L[�v℄(s

0

; · ), L[p℄(s

0

; · ) and the s
aling fun
tion Φ
s

0

itself. As a


onsequen
e, the re
onstru
ted �elds on the �uid-stru
ture interfa
es will

exhibit high-frequen
y noise if the above 
ompatibility 
ondition (3.241) is

not satis�ed.

3.10 Con
lusion

These important remarks thus 
on
lude this third 
hapter dedi
ated to the

thorough des
ription of the wavelet-based model. This 
ore 
hapter built step

by step a self-sustained homogenized and multi-s
ale model, here applied to an

invis
id 
ompressible �ow within a 
ongested solid medium. It was proven how

Continuous Wavelet Transform (CWT) 
an be used to rigorously homogenize,
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at the 
ontinuum medium s
ale, a heterogeneous medium. The homogeniza-

tion pro
ess here promoted, whi
h may apply to generi
 PDEs, relies on a

"weak-extension" of the original �uid PDEs, followed by a "weak-
onvolution"

with an analysing wavelet or s
aling fun
tion. To ensure the well-posedness of

this 
onvolution produ
t, a real-valued, isotropi
, smooth, well-lo
alized and

admissible wavelet, namely the Mexi
an hat, has been 
hosen. With su
h an

analysing wavelet or s
aling fun
tion, this wavelet-based 
onvolution produ
t,

whi
h a
ts as a regularizing and �ltering operator, is thus able to deal with

PDEs exhibiting non-smooth weak solutions. This 
onvolution pro
ess even-

tually results in spatially-�ltered PDEs governing a homogenized �uid, de�ned

over the whole f�uid + solidg domain. The homogenized �uid variables were

shown to be the wavelet 
oe�
ients (or low-frequen
y approximation) of the

original �uid variables. It was also detailed how the original 
onta
t for
es

between the �uid and solid media are transformed into body for
es de�ned

within the whole homogenized �uid.

Furthermore, it was emphasized that CWT possesses a key advantage 
om-

pared to 
lassi
al homogenization and multi-s
ale methods, namely its ability

to re
onstru
t, thanks to an inverse wavelet transform, the �elds at the mi
ro-

s
opi
 s
ale. This 
ru
ial point allowed to build a self-sustained model, whi
h


an 
onne
t resolved and unresolved s
ales without any ad ho
 model, and

properly treat the original PDEs boundary 
onditions. This re
onstru
tion

ability 
an also be used to expli
itly 
ompute, if ne
essary, nonlinear terms.

Besides, the wavelet formalism also allowed to prove an analyti
al 
onvergen
e

(either point-wise or in L

2

-norm) between the homogenized model and Dire
t

Numeri
al Simulation (DNS). To the author's knowledge, it is the �rst time

that su
h a self-sustained homogenized and multi-s
ale model, able to deal

with generi
 and non-smooth PDEs, 
losure between resolved and unresolved

s
ales and boundary 
onditions (and if ne
essary nonlinearities), is put for-

ward in literature. This wavelet-based model also bypasses periodi
ity and

s
ale separation assumptions.

Finally, the last se
tion of this 
hapter emphasized some of the 
hallenges

likely to appear during the model numeri
al implementation, that is to say the

risks of instability and aliasing. Two 
ompatibility 
onditions underlining the

links between the s
aling fun
tion 
uto� s
ale s

0

(i.e. expli
it �ltering) and the

mesh size h (i.e. impli
it �ltering), were put forward.

All this theoreti
al framework being de�ned, the following 
hapter shall now


on�rm, with numeri
al tests, these risks of instability and aliasing. These tests

also aim at assessing the model a
tual 
onvergen
e towards numeri
al referen
e

solutions 
omputed at the DNS s
ale, and involving 2D transverse pressure

waves propagating through 
ongested solid media 
omposed of multiple disks.
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Chapter 4

Model implementation and analysis

4.1 Introdu
tion

In order to 
onfront the wavelet-based model with the physi
s of interest,

and assess its ability to ta
kle the 
hallenges previously highlighted, namely in-

stability, aliasing, and 
onvergen
e towards DNS, this fourth 
hapter hereafter

presents several 2D numeri
al tests, 
ompleted with preliminary experimental

data. Throughout this 
hapter, a spe
ial fo
us will be put on the model ability

to re
onstru
t 2D pressure �elds, and the resulting dynami
 load applied to

the solid medium.

The opening se
tion presents a wavelet analysis of a 2D referen
e pressure

wave propagating through a 10 � 10 steady array of disks. This referen
e

solution is 
omputed at the DNS s
ale with EUROPLEXUS software, a fast-

transient dynami
s 
ode for �uids and stru
tures. This �rst study of a referen
e

solution known at the DNS s
ale allows to get insights on the pressure �eld

spe
trum, in other words its most relevant wavelet 
oe�
ients and spatial

s
ales. This information will later on guide the dire
t 
omputation of the

homogenized �uid PDEs.

The se
ond se
tion then presents a preliminary analysis on the numeri
al

model stability and a

ura
y. This analysis is performed by dire
tly 
omputing

the spatially-�ltered PDEs, with the s
aling fun
tion Φ, for a 2D pressure wave

propagating through a 2� 2 steady array of disks. The fo
us is espe
ially put

on both the C.F.L. and 
ompatibility 
onditions between the s
aling fun
tion


uto� s
ale s

0

and the mesh size h.

In e
ho with the �rst wavelet analysis, the third se
tion then presents the

dire
t 
omputation of a 2D transverse pressure wave propagating through

a 10 � 10 steady array of disks. The model ability to a

urately re
on-

stru
t the referen
e pressure �eld and the referen
e for
e applied to the solid

medium, both 
omputed at the DNS s
ale with EUROPLEXUS software, will

be evaluated.

Fourth, in order to emphasize the multi-s
ale 
omponent of the model, the

propagation of a 2D transverse pressure wave through di�erent but equivalent

steady array of disks (2�2, 4�4, 10�10) is 
onsidered. The aim of this test is

to assess whether a more ma
ros
opi
 modeling of the solid medium, and thus
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a larger mesh size h and 
uto� s
ale s

0

, allow to re
onstru
t a similar order of

magnitude for the for
e applied to the solid medium.

To 
on
lude this 
hapter, insights on two ongoing proje
ts will be presented.

The �rst one 
onsists in a �rst attempt at implementing a nested grids algo-

rithm within the numeri
al model. Conversely to 
lassi
al multi-grid methods,

this attempt does not here aim at improving an iterative method by damping

both the high and low-frequen
y 
omponents of the error. The aim is rather

to speed up the 
omputations, by solving the homogenized �uid PDEs on a


oarse grid, while keeping tra
k of the solid medium geometry on a �ne grid, in

order to evaluate the di�erent boundary integrals present in the �ltered PDEs.

As for the se
ond ongoing proje
t, it is dedi
ated to the 
oupling between the

homogenized �uid and the solid medium. Experiments realized with a 10� 10

array of PMMA 
ylinder rods submitted to a sho
k wave will be presented.

This experimental data will be supplemented with a preliminary numeri
al

test involving a 2� 2 moving array of disks.

4.2 Wavelet analysis of a 2D referen
e pressure

wave

In order to guide the dire
t 
omputation of the spatially-�ltered equations,

and sele
t wisely the 
uto� s
ale parameter s

0

, or the number of wavelet 
o-

e�
ients (W[f ℄(s

k

; · ))

1�k�N

, it is ne
essary to possess some insights on the

pressure �eld spe
trum. To this end, this se
tion presents a wavelet analysis

of a 2D referen
e pressure wave propagating through a 10 � 10 steady array

of disks. This pressure wave is 
omputed at the mi
ros
opi
 s
ale with EU-

ROPLEXUS software, a fast-transient dynami
s 
ode for �uids and stru
tures,

whi
h solves dire
tly Euler 
ompressible equations. This lo
al solution allows

to 
ompute analyti
ally the pressure �eld wavelet 
oe�
ients, and then fully

assess the a

ura
y of the re
onstru
tion pro
ess with respe
t to the main

quantity of interest, i.e. the dynami
 load applied to the solid medium, whi
h

is dire
tly linked to the pressure gradient. The simulation is designed as shown

in Figure 4.1 below. Su
h a 2D test 
ase 
an be seen as a simpli�ed, yet repre-

sentative, version of the a
tual pressure loading that would impa
t PWR fuel

assemblies during a depressurization transient.

1
5
0
,0

0
 m

m

140,00 mm 410,00 mm

Figure 4.1: Geometry of the �rst referen
e test 
ase.
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All the simulation parameters are spe
i�ed in Tables 4.1-4.2-4.3.

Lx Ly Disks radius Dist. 
onse
utive disks Disks position

0:55 m 0:15 m 5:10

�3

m 5:10

�3

m [0:2025 m; 0:3525 m℄

Table 4.1: Geometry - 1st test 
ase.

10 bar zone 1 bar zone Dis
ontinuity  ! 1st disks

[0; 0:14 m℄ [0:14 m; 0:55 m℄ 6:75� 10

�2

m

Table 4.2: Pressure loading - 1st test 
ase.

The �uid is 
onsidered 
ompressible, invis
id and isothermal. It satis�es a

barotropi
 state law:

p = p

ref

+ 


2

(�� �

ref

); (4.1)

with the following numeri
al values:

Referen
e Density Referen
e Pressure Sound Velo
ity

�

ref

= 1000 kg ·m

�3

p

ref

= 10

5

Pa 
 = 1300 m · s

�1

Table 4.3: Fluid parameters - 1st test 
ase.

As for the solid medium, the disks 
an here be 
onsidered as rigid bodies,

whose 
enters are kinemati
ally blo
ked, so that the sum of the rea
tion for
es

to the 
entral blo
kages dire
tly provides the for
e applied by the �uid to the

solid obsta
les.

The numeri
al methods used to 
ompute this 2D referen
e pressure wave

are designed as follows:

� a �nite-element method for the (linear elasti
 and isotropi
) solid

medium, with 3-noded triangle elements;

� a 2nd order 
ell-
entered �nite volume s
heme for the �uid, with quad-

rangle elements, and a H.L.L. (Harten - Lax - van Leer) Riemann solver

for the numeri
al �uxes;

� mesh size: h

epx

2 f

R

5

;

R

8

;

R

10

;

R

12

g, where R denotes the disks radius;

� Euler expli
it time integration for the �uid.

The referen
e pressure �eld, 
omputed on Ω
f

, is then extended over the

whole domain Ω
f

[ Ω
s

by means of a linear interpolation on a 2D regular

Cartesian grid with half mesh size h = 0:5h

epx

. Figures 4.2 and 4.3 display

the resulting pressure �eld 
omputed with h

epx

=

R

5

= 1 mm. It 
an be noted

that, during the interpolation pro
ess, the pressure is by default set to zero on

the nodes lo
ated outside the �uid domain.
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Figure 4.2: Referen
e pressure �eld snapshots every ∆t = 1:10

�5

s
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Figure 4.3: Referen
e horizontal pressure pro�le - 10� 10 array

�

y =

L

y

2

�

.

As in a 
lassi
al sho
k tube situation, the simulation shows two waves prop-

agating in opposite dire
tions from the initial dis
ontinuity (Figure 4.2 and

Figure 4.3 at t = 4:10

�5

s). The left one then boun
es ba
k on the left verti-


al boundary (de�ned with absorbing 
onditions) and heads ba
k towards the

solid medium (Figure 4.3, t = 1:6 � 10

�4

s and t = 2:4 � 10

�4

s). This left

boundary 
ondition, not very familiar in sho
k tube 
omputations or exper-

iments, does not here a�e
t the propagation of the pressure wave within the

solid medium. Indeed, the simulation stops before the re�e
ted wave hits ba
k

the solid medium. The same is true for the wave boun
ing ba
k on the right

verti
al boundary.

Now, in order to determine the most relevant wavelengths within this ref-

eren
e pressure �eld, let us use some of the a

ura
y 
riteria presented in the

previous 
hapter.

4.2.1 L

2

-a

ura
y

In equation (3.182), the following fun
tion was introdu
ed:

s

0

7�!kp

ref

k

2

L

2

�

2�

CΨ

Z

s

0

s

min

kW[p

s

min

℄(s; · )k

2

L

2

ds

s

3

; (4.2)

= kp

ref

k

2

L

2

0

B

�

1�

2�

C

Ψ

R

s

0

s

min

kW[p

s

min

℄(s; · )k

2

L

2

ds

s

3

kp

ref

k

2

L

2

1

C

A

; (4.3)

= kp

ref

k

2

L

2

(1� E(s

0

)) ; (4.4)

where it is re
alled that W[p

s

min

℄(s; · ) denotes the wavelet 
oe�
ients 
om-

puted with the Mexi
an hat, and E(s

0

) is an energy ratio in
reasing from 0
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(s

0

= s

min

) to 1, whi
h measures the per
entage of the pressure �eld L

2

-energy

that is progressively re
overed by adding wavelet 
oe�
ients.

The pressure �eld is dis
retized on a regular Cartesian grid with mesh size

h = 5:10

�4

m. Furthermore, it is re
alled that the Mexi
an hat exhibits a

band-pass behavior in the spe
tral domain, with a �3 dB bandwidth lo
ated

on [s� 3:08 m; s� 7:18 m℄. Thus, the s
ale parameter s allowing to 
at
h the

minimum spatial s
ale of the pressure �eld, either �

p

= 5:10

�4

m in the Carte-

sian interpolation, or �

epx

= 1:10

�3

m in the EUROPLEXUS 
omputation, is

given by:

s �

�

7:18

: (4.5)

The numeri
al values asso
iated to the above equation are summarized in

Table 4.4 below.

Cuto� s
ale asso
iated to �

p

Cuto� s
ale asso
iated to �

epx

s

p

� 7:10

�5

s

epx

� 1:4� 10

�4

Table 4.4: Cuto� s
ale of the Mexi
an hat wavelet - 1st test 
ase.

These remarks being stated, Figure 4.4 displays, for two di�erent time in-

stants for whi
h the pressure dis
ontinuity is at di�erent lo
ations within the

array of disks, the evolution of the energy ratio E(s

0

) for s

0

2 [10

�5

; 5:10

�4

℄.

It appears that for both time instants, the s
ale range s

0

2 [10

�5

; 5:10

�4

℄,

whi
h theoreti
ally 
orresponds to wavelengths starting from � 2 [3:08 �

10

�5

; 7:18� 10

�5

m℄ up to � 2 [1:54� 10

�3

m; 3:59� 10

�3

m℄, 
onveys around

100% of the pressure �eld L

2

-energy. Thus, regardless of the lo
ation of the

pressure dis
ontinuity within the array of disks, the most energeti
 s
ales seem

to be invariant and only 
onstrained by the geometry of the array.

Nevertheless, one 
an noti
e that s
ales below s

p

= 7:10

�5

, whi
h 
orre-

sponds to the minimum spatial s
ale of the pressure �eld on the Cartesian

grid, still 
onvey around 5% of the pressure �eld L

2

-energy. The presen
e

of s
ales s belonging to [5:10

�5

; 7:10

�5

℄ (s
ales between 10

�5

and 5:10

�5


an

be negle
ted) is explained by the fa
t that the amplitude of the Mexi
an hat

Fourier transform is not immediately "almost zero" outside of its bandwidth.

Thus, even with a small s
ale parameter s, the tail of the "Gaussian" lobes

of the Mexi
an hat Fourier transform (
f. Figure 3.3) may 
at
h, with a low

amplitude, the pressure �eld smallest wavelengths. Fortunately, 95% of the

pressure �eld L

2

-energy 
orresponds to s
ales s larger than the 
uto� value s

p

.
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Figure 4.4: Pressure L

2

-energy re
overed - s

0

2 [10

�5

; 5:10

�4

℄

Finally, it 
an be noted that a de
rease in the number of 
omputed wavelet


oe�
ients N

s

does not have a signi�
ant impa
t on the L

2

-energy re
overy.

Indeed, the asymptoti
 value still rea
hes around 100%, even with only �ve

wavelet 
oe�
ients.

Let us now turn towards another a

ura
y 
riterion in order to 
he
k

whether similar 
on
lusions are rea
hed regarding the s
ale range and num-

ber of wavelet 
oe�
ients.

4.2.2 For
e-wise a

ura
y

In the previous 
hapter, a for
e-wise a

ura
y 
riterion was introdu
ed via

equation (3.183). In this subse
tion, a slightly di�erent version of this 
riterion

will be used:
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�

(F

F!S

)

ref

� (F

F!S

)

N

s

�

· e

x

= (F

F!S

)

ref

· e

x

 

1�

(F

F!S

)

N

s

· e

x

(F

F!S

)

ref

· e

x

!

; (4.6)

= (F

F!S

)

ref

· e

x

(1� f (N

s

)) (4.7)

with (F

F!S

)

N

s

=

R

∂Ω
s

�p

N

s

(�; t)n

F!S

(�) d�, and p

N

s

an approximate pres-

sure �eld here re
onstru
ted only with the analysing wavelet Ψ, using N

s

wavelet 
oe�
ients on a s
ale range [s

1

; s

N

s

℄:

p

N

s

(x; t) =

2�

CΨ

Z

s

N

s

s

1

�

Z

R2

W[p

ref

℄(s; u)�

1

s

Ψ

�

x� u

s

�

du

�

ds

s

3

: (4.8)

Figure 4.5 shows the evolution of the for
e ratio f (N

s

), evaluated on the

whole array, with the number of 
omputed s
ales N

s

, and for three di�erent

s
ale ranges: s 2 [10

�5

; 5:10

�4

℄, s 2 [10

�5

; 10

�3

℄, and s 2 [10

�4

; 10

�3

℄.

Conversely to the L

2

-energy 
riterion, the s
ale range s 2 [10

�5

; 5:10

�4

℄

seems here unsuited to properly re
onstru
t the for
e applied to the solid

medium mi
rostru
ture, as an almost 40% overestimation 
an be witnessed

for the time instant t = 1:6 � 10

�4

s. Furthermore, an 8% overestimation is

still visible for the time instant t = 8:10

�5

s. This signi�
ant di�eren
e be-

tween the two time instants 
an be explained by the following fa
t: as the

initial pressure wave has almost exited the array of disks for t = 1:6� 10

�4

s,

wavelengths around 5:10

�3

m (driven by the distan
e between two 
onse
utive

disks), whi
h are not taken into a

ount in the s
ale range s 2 [10

�5

; 5:10

�4

℄,

are mu
h more present within the array of disks than for the time instant

t = 8:10

�5

s.

Thus, the wider s
ale range s 2 [10

�5

; 10

�3

℄ allows to better re
onstru
t the

for
e for both time instants, with, for instan
e, an overestimation around 10%

for t = 1:6� 10

�4

s. Additionally, Figure 4.5
 proves that the smallest s
ales


ould even be negle
ted without losing a

ura
y, thus leading to the range

s 2 [10

�4

; 10

�3

℄, whi
h 
ontains wavelengths � 2 [3:08� 10

�4

; 7:18� 10

�3

m℄.

The 
lear shift with respe
t to the s
ale range previously identi�ed with the

L

2

-energy 
riterion ([7:10

�5

; 5:10

�4

℄) 
an be explained by the fa
t that the for
e


riterion fo
uses on the pressure values on the �uid-stru
ture interfa
es, while

the L

2

-energy takes into a

ount the whole Ω
f

[Ω
s

domain.

Finally, it 
an be noti
ed that N

s

= 10 wavelet 
oe�
ients would already

allow rea
hing a good a

ura
y (� 10% overestimation) on the for
e applied to

the solid medium. The results on the most relevant wavelengths with respe
t

to this physi
s-driven 
riterion are summarized in Table 4.5.
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Figure 4.5: Evolution of the horizontal for
e ratio with the number of wavelet


oe�
ients, for 3 di�erent s
ale ranges.
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Cuto� s
ales and number of wavelet 
oe�
ients

s

min

= 10

�4

N

s

= 10 s

max

= 10

�3

� 2 [3:08� 10

�4

, 7:18� 10

�4

m℄ � 2 [3:08� 10

�3

, 7:18� 10

�3

m℄

Table 4.5: Cuto� s
ales and number of wavelet 
oe�
ients - 1st test 
ase.

For the sake of 
ompleteness, Figure 4.6 displays the referen
e and re
on-

stru
ted pressure pro�les along the medium horizontal axis, while Figure 4.7

displays the absolute error between the 2D referen
e and re
onstru
ted pres-

sure �elds. The absolute error is logi
ally lo
ated in the vi
inity of the disks,

where the referen
e pressure variations are maximal, but it remains small 
om-

pared to the referen
e pressure range (less than 10% for maximum values).

Furthermore, the good results obtained in terms of for
es a
ting on the solid

medium indi
ate that the pressure gradient is well preserved.
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Figure 4.6: Horizontal pressure pro�les
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(a) t = 8:10

�5

s.

(b) t = 1:6� 10

�4

s.

Figure 4.7: Absolute error jp

ref

� p

re
ons

j (Pa) - N

s

= 10 - s 2 [10

�4

; 10

�3

℄.

This �rst wavelet analysis of a 2D referen
e pressure wave, whi
h 
an also be

found in [Mokhtari et al., 2020℄, thus gave some insights on the most relevant

wavelet 
oe�
ients and spatial s
ales. It appears that a dire
t 
omputation of

the homogenized �uid PDEs would require, with the Mexi
an hat analysing

wavelet, 10 di�erent 
omputations to determine 10 wavelet 
oe�
ients on the

s
ale range s 2 [10

�4

; 10

�3

℄. This is of 
ourse expe
ted to represent a signi�
ant


omputational 
ost, espe
ially as these di�erent wavelet 
oe�
ients are linked

through the boundary integrals in the right-hand side of the �ltered PDEs, and

the ne
essary 
losure expressions between the resolved and unresolved s
ales

of the �uid variables.

In order to bypass this need for multiple 
omputations, the Mexi
an hat

wavelet is hereafter repla
ed by its asso
iated s
aling fun
tion. The 
omputa-

tion of the low-frequen
y approximation L[f ℄(s

0

; · ), at a given 
uto� s
ale s

0

,

indeed allows us to 
at
h simultaneously all the spatial s
ales larger than s

0

.

But before 
omputing a similar 2D pressure wave through a 10 � 10 array of

disks dire
tly with the model equations, the following se
tion �rst investigates

the numeri
al model stability and a

ura
y on a simpler test 
ase.

4.3 Dire
t 
omputation of the �uid �ltered PDEs

4.3.1 Preliminary analysis on stability and a

ura
y

This preliminary analysis aims at assessing on the one hand, the stability of

the expli
it �nite-volume s
heme (3.219) designed to solve the model equations,

and on the other hand, the ability of the wavelet-based model to a

urately

re
onstru
t, from the homogenized �uid, the for
e applied to the underlying

solid medium. To this end, the propagation of a 2D pressure wave through a

2 � 2 steady array of disks is hereafter 
onsidered (see Figure 4.8). The solid
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medium thus only a
ts, on
e again, as a boundary 
ondition for the �uid.

14,00 mm 38,00 mm

2
4
,0

0
 m

m

Figure 4.8: S
heme of the preliminary test.

The simulation parameters are summarized in Tables 4.6-4.7-4.8-4.9:

Lx Ly Disks radius Dist. 
onse
utive disks

52 mm 24 mm 4 mm 4 mm

Table 4.6: Geometry - 2nd test 
ase.

10 bar zone 1 bar zone Dis
ontinuity  ! 1st disks

[0; 14 mm℄ [14 mm; 52 mm℄ 4 mm

Table 4.7: Pressure loading - 2nd test 
ase.

Referen
e Density Referen
e Pressure Sound Velo
ity

�

ref

= 1000 kg ·m

�3

p

ref

= 10

5

Pa 
 = 1300 m · s

�1

Table 4.8: Fluid parameters - 2nd test 
ase.

Mesh size Time step S
ale/mesh 
ompatibility

h = 1 mm ∆t � C
stab

h




max

s

0

& 0:412� h

Table 4.9: Spatial and time dis
retization - 2nd test 
ase.
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As a result of the homogenization pro
ess, the interfa
es with the underlying

solid obsta
les are not taken into a

ount via the mesh, but via a body for
e

de�ned a
ross the whole domain Ω
f

[Ω
s

. As 
an be seen in equation (3.136),

this body for
e is expressed as an integral of the pressure on the boundary

∂Ω
s

, weighted by the analysing wavelet Ψ, or rather the s
aling fun
tion Φ

here. Figure 4.9 illustrates how this weight is well-lo
alized in the vi
inity of

the boundary ∂Ω
s

.
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Figure 4.9: Visualization of the 2� 2 array - s

0

= 0:415� h.

The simulation is initialized as a Riemann problem, with a 10 vs 1 bar

pressure dis
ontinuity, as displayed in Figure 4.10 below. It is re
alled that the

solid medium is initially in equilibrium with the surrounding �uid, and thus

"hidden" in the 1 bar zone.
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Figure 4.10: Initial pressure �eld (10 vs 1 bar).

Conversely to the previous analysis of a 2D referen
e pressure wave, in whi
h

the Mexi
an hat wavelet Ψ was used to dete
t the most relevant wavelengths,

all the results hereafter presented are obtained with the s
aling fun
tion Φ. All

the referen
e data used to 
onfront the model is obtained with EUROPLEXUS

software, using the same numeri
al methods as des
ribed in the previous se
-

tion. The referen
e mesh size is set to h

epx

=

R

4

= 1 mm, where R denotes the

disks radius. The referen
e pressure �eld is then extended to the whole domain

Ω
f

[Ω
s

, by means of a linear interpolation on a 2D regular Cartesian grid with

mesh size h = 1 mm (as opposed to 0:5 mm in the previous analysis). It is

re
alled that this linear interpolation arti�
ially sets the pressure to zero on

the nodes lo
ated outside the �uid domain Ω
f

.
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In order to assess the stability of the expli
it �nite-volume s
heme, the

impa
t of two possible sour
es of instability are hereafter studied:

� the 
lassi
al C.F.L. 
ondition between the time step ∆t and mesh size h;

� the s
ale/mesh 
ompatibility 
ondition with respe
t to the expli
it

s
heme stability (3.238).

To do so, several tests are hereafter presented, depending on the value


hosen for the C.F.L. stability 
onstant C

stab

and for the 
uto� s
ale s

0

.

Test # 1 : C

stab

= 1, and s

0

= 0:42� h

Let us start with the "worst-
ase" s
enario, where no safety margins are

taken with respe
t to either the C.F.L. or the s
ale/mesh 
ompatibility 
on-

ditions. Figure 4.11 below displays the referen
e and re
onstru
ted pressure

�eld, after 29 time steps (∆t � 7:69� 10

�7

s).
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Figure 4.11: Referen
e (4.11a) VS re
onstru
ted (4.11b) pressure �elds - s

0

=

0:42h - C

stab

= 1 - t = 2:2284� 10

�5

s.

The pressure �eld re
onstru
ted after only 29 time steps is 
learly unsatis-

fa
tory. To 
ompare more pre
isely the referen
e and re
onstru
ted pressure

�elds, Figure 4.12 displays both horizontal pressure pro�les, at t = 0 s and

after 29 times steps. The verti
al bla
k lines 
orrespond to the lo
ation of the

2� 2 array of disks.
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Figure 4.12: Referen
e VS re
onstru
ted pressure pro�les

�

y =

L

y

2

�

- s

0

= 0:42h

- C

stab

= 1

The important os
illatory, yet bounded, behavior that 
an be witnessed on

the re
onstru
ted pressure �eld �nds its sour
e on the one hand in the aliasing

phenomenon 
aused by the s
aling fun
tion Φ
s

0

(
f. equation (3.241)), and on

the other hand in the la
k of safety margin with respe
t to both the C.F.L.

and the s
ale/mesh 
ompatibility 
onditions (3.238).

Let us now study independently the role played by the s
ale/mesh 
ompat-
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ibility and C.F.L. 
onditions.

Test # 2 : C

stab

= 1, and s

0

= 0:6� h

For this se
ond test, the C.F.L. stability 
onstant C

stab

is kept equal to

1, but the 
uto� s
ale s

0

in
reases. As for the �rst test, the referen
e and

re
onstru
ted pressure �elds are hereafter displayed in Figure 4.13, and their

horizontal pro�les along the medium horizontal axis in Figure 4.14.

Remark 4.3.1 It is re
alled that, during the homogenization pro
ess, the

�uid arti�
ially lo
ated within the solid medium is initially in equilibrium

with the surrounding �uid, in the 1 bar zone. Thus, ideally, as the real

and arti�
ial �uid never penetrate or leave the solid medium, the pressure

should ideally remain 
onstant equal to 1 bar within Ω
s

.
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Figure 4.13: Referen
e (4.13a) VS re
onstru
ted (4.13b) pressure �elds - s

0

=

0:6h - C

stab

= 1 - t = 2:2284� 10

�5

s
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Figure 4.14: Referen
e VS re
onstru
ted pressure pro�les

�

y =

L

y

2

�

- s

0

= 0:6h

- C

stab

= 1 - t = 2:2301� 10

�5

s.

The results obtained are 
learly mu
h more satisfa
tory than in the worst-


ase s
enario. The geometry of the solid obsta
les is quite faithfully re
on-

stru
ted in Figure 4.13b, with an arti�
ial pressure almost uniform and 
lose to

1 bar withinΩ
s

. Furthermore, the pressure pro�le along the medium horizontal

axis is also mu
h smoother. The small os
illations still visible in Figure 4.14

have a signi�
antly smaller amplitude than in the previous 
ase. This result

thus supports the fa
t that the s
aling fun
tion and the asso
iated s
ale/mesh


ompatibility 
ondition are the main sour
e of instability in the model response.

Su
h a 
on
lusion 
ould be expe
ted, as the s
aling fun
tion operates a �rst

(expli
it) spatial �ltering of the �elds, at the 
ontinuum medium s
ale, before

the dis
retization step of the �ltered PDEs on the 2D Cartesian grid.

Test # 3 : C

stab

= 0:8, and s

0

= 0:42� h

For this third test, let us now study the role played by the C.F.L. 
ondition.

A safety margin is thus taken with respe
t to this 
ondition, with C

stab

equal

to 0:8. Regarding the s
ale/mesh 
ompatibility 
ondition, the 
uto� s
ale s

0

is on
e again 
hosen 
lose to the 
riti
al minimum value.

Figure 4.15 displays the referen
e and re
onstru
ted pressure �eld, the latter

being obtained after 36 time steps (∆t � 6:15� 10

�7

s). Figure 4.16 
ompares

both pressure pro�les along the medium horizontal axis.
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Figure 4.15: Referen
e VS re
onstru
ted pressure �elds - s
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Figure 4.16: Referen
e VS re
onstru
ted pressure pro�les - s

0
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As 
an be witnessed in Figure 4.16, the pressure pro�le along the medium

horizontal axis is even smoother than in the se
ond test, where only a safety

margin with respe
t to the s
ale parameter s

0

was taken into a

ount. Su
h a

result 
ould be expe
ted. Indeed, by de
reasing C

stab

, the time step ∆t is now

not only below the C.F.L. 
ondition, but also below the 
hara
teristi
 time

s
ale of the s
aling fun
tion (3.235).

Nevertheless, this improved stability seems to go along with a loss of a

u-

ra
y. Indeed, the "white numeri
al artefa
ts" visible within the solid obsta
les

in Figure 4.15b 
learly show that the re
onstru
ted pressure deviates from the

ideal 1 bar value within Ω
s

.

In order to further investigate this link between stability and a

ura
y, the

following test hereafter 
onsiders a for
e-wise a

ura
y 
riterion.

Test # 4 : 0:5 � C

stab

� 1, and 0:42� h � s

0

� h

Figure 4.17 displays the time evolution of the horizontal for
e (per unit of

length) applied to the solid obsta
les, with a 
omparison between the referen
e

and re
onstru
ted values for s

0

2 [0:42h; h℄. The C.F.L. stability 
onstant C

stab

is �rst 
hosen equal to 1. It 
an be noti
ed that, like the pressure signal, the

for
e exhibits os
illations when the 
uto� s
ale parameter s

0

de
reases towards

its minimum value. These os
illations seem nevertheless less important than

the ones witnessed in the pressure signal itself. This 
an be explained by the

fa
t that the for
e integrates the pressure on the boundaries ∂Ω
s

, thus �ltering

out the highest frequen
y 
omponents of the os
illations.

Furthermore, one 
an noti
e that, for s

0

� 0:6h, the re
onstru
ted for
e

tends to deviate from the referen
e signal, espe
ially downstream ea
h 
olumn

of disks.
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Figure 4.17: Time evolution of the horizontal for
e applied to the solid medium

- C

stab

= 1, 0:42h � s

0

� h.
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Let us now keep the 
uto� s
ale parameter s

0

equal to 0:42�h, and study the

impa
t of the C.F.L. stability 
onstant. Figure 4.18 displays the time evolution

of the horizontal for
e (per unit of length) applied to the solid obsta
les, with

C

stab

2 [0:6; 1℄.

0.25 0.50 0.75 1.00 1.�5 1.50 1.75 �.00 �.�5

� �m� (s) 1�� 5

0.00

0.�5

0.50

0.75

1.00

1.�5

1.50

1.75

�
�
��
�
�
�
��
�  

��
��
�

 (

�

.
m

�

1
) 

�  
s

0

�

0
.�

�
�

1��

���������

�s ¡¢ £ 1

�s ¡¢ £ 0.¤

�s ¡¢ £ 0.8

�s ¡¢ £ 0.6

Figure 4.18: Time evolution of the horizontal for
e applied to the solid medium

- s

0

= 0:42h, 0:6 � C

stab

� 1.

As already noti
ed with the pressure signal, when the 
uto� s
ale s

0

is

near its 
riti
al minimum value and the C.F.L. 
onstant C

stab

de
reases, the

for
e signal be
omes smoother. Furthermore, it 
an be noti
ed that the re-


onstru
ted for
e signals in Figure 4.18 are able to follow more faithfully the

referen
e signal than in the previous 
ase, espe
ially downstream ea
h 
olumn

of disks.

Nevertheless, it shall be highlighted that further de
reasing the C.F.L. 
on-

stant C

stab

seems to damage the a

ura
y of the model response, with both over

and underestimations of the referen
e for
e, as 
an be witnessed on the 
urve

asso
iated to C

stab

= 0:6. This fa
t tends to push for a 
ompromise between

stability and a

ura
y.

In order to further illustrate this duality, let us now 
onsider the for
e-wise

a

ura
y 
riterion introdu
ed in the previous 
hapter (3.186):

e

F

=

�

�

�

�

Z

t

b

t

a

�

(F

F!S

)

ref

� (F

F!S

)

s

0

�

· e

x

dt

�

�

�

�

; (4.9)

=

�

�

�

�

Z

t

b

t

a

(F

F!S

)

ref

· e

x

dt

�

�

�

�

�

�

�

�

�

�

�

R

t

b

t

a

�

(F

F!S

)

ref

� (F

F!S

)

s

0

�

· e

x

dt

R

t

b

t

a

(F

F!S

)

ref

· e

x

dt

�

�

�

�

�

�

; (4.10)

=

�

�

�

�

Z

t

b

t

a

(F

F!S

)

ref

· e

x

dt

�

�

�

�

�

e

e

F

: (4.11)

With 26 time steps on the time range [t

a

; t

b

℄ � [2:3� 10

�6

s; 2:23� 10

�5

s℄,

the numeri
al value

R

t

b

t

a

(F

F!S

)

ref

· e

x

dt � 1:45 � 10

�1

kg:s

�1

is obtained
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(with a re
tangle method) for the time integration of the referen
e horizon-

tal for
e.

The following Figure 4.19 displays the evolution of the relative error

e

e

F

on

the horizontal for
e when de
reasing the C.F.L. stability 
onstant C

stab

, for

a mesh size h = 1 mm, and for s

0

2 f0:42h; 0:6hg. One 
an noti
e that the

relative error

e

e

F

is at least divided by 3 when the 
uto� s
ale s

0

de
reases from

0:6h to 0:42h. This is 
oherent with the a priori idea that the best a

ura
y

is rea
hed when the s
aling fun
tion is designed so as to 
at
h all the possible

wavelengths that 
an be represented by the mesh. Thus, with the set of param-

eters (s

0

= 0:42h;C

stab

= 0:9), whi
h seems to be a good 
ompromise between

a

ura
y and stability, the model responds with a relative error

e

e

F

below 1%.

Nevertheless, when further de
reasing the 
onstant C

stab

, and thus improv-

ing the numeri
al s
heme stability, the a

ura
y of the model response slightly

deteriorates. This 
on�rms the duality between stability and a

ura
y.
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Figure 4.19: Evolution of the relative error

e

e

F

with C

stab

- h = 1 mm.

In order to further highlight the important role played by the 
riti
al min-

imum value s

0

� 0:412� h, Figure 4.20 displays the evolution of the relative

error

e

e

F

with the 
uto� s
ale s

0

, and for two di�erent mesh sizes : h

1

= 1 mm,

and h

2

= 0:5 mm. One 
an thus distinguish two "regimes":

� when the 
uto� s
ale s

0

de
reases from the minimum value 0:412�h, the

relative error

e

e

F

in
reases exponentially when C

stab

= 1. This is the result

of both the s
aling fun
tion aliasing and the numeri
al s
heme la
k of sta-

bility, whi
h qui
kly deteriorate the model a

ura
y. When C

stab

= 0:9,

the improved stability is able to balan
e the important os
illations due

to aliasing, thus preventing the relative error from drasti
ally in
reasing.

� when the 
uto� s
ale s

0

in
reases from the minimum value 0:412 � h,

the relative error

e

e

F

�rst de
reases, as the aliasing phenomenon weak-

ens. However, as the 
uto� s
ale s

0

keeps on in
reasing,

e

e

F

progressively
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deteriorates, as the smallest wavelengths a

essible with the mesh are

progressively dis
arded by the s
aling fun
tion.
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Figure 4.20: Evolution of the relative error

e

e

F

with the 
uto� s
ale s

0

- h 2

f0:5 mm; 1 mmg - C

stab

2 f0:9; 1g.

Finally, to 
on
lude this preliminary analysis on the stability and a

ura
y

of the numeri
al model, Figure 4.21 displays the evolution of the relative error

e

e

F

with a de
reasing mesh size h, for s

0

2 f0:585h; 0:6hg and C

stab

= 1.
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Figure 4.21: Evolution of the relative error

e

e

F

with the mesh size h - C

stab

= 1.
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The a

ura
y of the for
e re
onstru
tion thus in
reases with mesh (and

s
ale) re�nements. This is 
oherent with the analyti
al 
onvergen
e of the

wavelet-based model towards DNS, proved in the previous 
hapter.

This 
on
ludes this preliminary analysis on the numeri
al model stability

and a

ura
y, here assessed on a 2 � 2 steady array of disks submitted to

a tranverse pressure wave. In order to now 
onne
t to the wavelet analysis

presented in the beginning of this 
hapter, the following se
tion 
onsiders the

propagation of a 2D transverse pressure wave through a 10� 10 steady array

of disks.

4.3.2 2D pressure wave through a 10 x 10 array of disks

The test 
ase geometry is displayed on Figure 4.22 below. The simulation

parameters are then summarized in Tables 4.10-4.11-4.12-4.13.

1
2

0
,0

0
 m

m

150,00 mm ¥¦§¨§§ mm

Figure 4.22: 2D pressure wave through a 10� 10 steady array of disks.

Lx Ly Disks radius Dist. 
onse
utive disks

400 mm 120 mm 4 mm 4 mm

Table 4.10: Geometry - 3rd test 
ase.

10 bar zone 1 bar zone Dis
ontinuity  ! 1st disks

[0; 150 mm℄ [150 mm; 400 mm℄ 62 mm

Table 4.11: Pressure loading - 3rd test 
ase.

Referen
e Density Referen
e Pressure Sound Velo
ity

�

ref

= 1000 kg ·m

�3

p

ref

= 10

5

Pa 
 = 1300 m · s

�1

Table 4.12: Fluid parameters - 3rd test 
ase.
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Mesh size Time step S
ale/mesh 
ompatibility

h = 1 mm ∆t � C
stab

h




max

s

0

& 0:412� h

Table 4.13: Spatial and time dis
retization - 3rd test 
ase.

The solid medium is on
e again taken into a

ount in the homogenized �uid

via a body for
e, whose maximum amplitude is lo
alized on the �uid-stru
ture

interfa
es, as displayed on Figure 4.23 below. The number of Cartesian grid

nodes N used to approximate the boundary of ea
h disk, and to 
ompute the

body for
e applied to the homogenized �uid (3.198), is 
hosen so as to satisfy:

N �

2�R

ds

; (4.12)

where ds =

p

dx

2

+ dy

2

denotes the 
urvilinear dis
retization step. In the

following, N = 16 nodes are thus used to 
ompute the body for
e.

0.22 0.24 0.26 0.©8 0.ª0 0.ª©
x (m )

0.00

0.0©

0.04

0.06

0.08

0.10

«  
(m

)

Figure 4.23: Visualization of the 10� 10 array of disks.

In order to assess the model 
apability to re
onstru
t a

urately a 2D pres-

sure wave propagating through su
h solid obsta
les, we hereafter display:

� both the 2D re
onstru
ted and referen
e pressure �elds, for multiple time

steps (see Figure 4.24); the latter is on
e again 
omputed with EURO-

PLEXUS software;

� the re
onstru
ted and referen
e horizontal pressure pro�les (see Figure

4.25).

� the time evolution of the re
onstru
ted and referen
e pressure �eld L

2

-

norm kpk

L

2

(t) =

�

R

Ω
f

[Ω
s

jp(x; t)j

2

dx

�

1

2

;

� the time evolution of the horizontal for
e applied to the solid medium,

and the modulus of its Fourier transform.
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Figure 4.24: Re
onstru
ted (left) VS referen
e (right) pressure �elds snapshots

every ∆t = 2:076� 10

�5

s - C

stab

= 0:9 - s

0

= 0:415h
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Figure 4.25: Horizontal pressure pro�le - 10�10 array - C

stab

= 0:9 - s

0

= 0:415h
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The wavelet-based model thus seems able to re
onstru
t a horizontal pres-

sure pro�le whi
h 
losely �ts the referen
e data. Nevertheless, a high frequen
y

noise 
an be witnessed within the array of disks, here delimited by the verti-


al bla
k lines. This phenomenon is explained by the aliasing indu
ed by the

s
aling fun
tion Φ
s

0

with the set of parameters (C

stab

; s

0

) = (0:9; 0:415h). The


hoi
e of a 
uto� s
ale s

0

= 0:415h indeed allows to rea
h a better a

ura
y

(while maintaining a stability safety margin with C

stab

= 0:9) but results in

an aliasing phenomenon, as this value does not satisfy the 
ondition (3.241)

whi
h ensures that the s
aling fun
tion bandwidth remains within the admis-

sible Shannon frequen
y range.

To further investigate the a

ura
y of the wavelet-based model, let us now

turn towards the L

2

-norm a

ura
y 
riterion.
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2

-norm a

ura
y - 10�10 array - C

stab

2 f0:85; 0:9g - s

0

= 0:415h
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Figures 4.26a-4.26b display respe
tively the time evolution of the L

2

-norm,

for both the re
onstru
ted and referen
e pressure �elds, and the relative error.

Two values for the C.F.L. stability 
onstant C

stab

are here tested. The 
uto�

s
ale s

0

is on
e again set to 0:415h. It 
an be witnessed that the model is able

to faithfully re
onstru
t the referen
e pressure �eld L

2

-norm, with a relative

error below 1:7% for both C

stab

values. No aliasing phenomenon is here visible.

This is explained by the fa
t that the L

2

-norm (whi
h integrates the square

modulus of the signal over the whole domain) �lters out the high frequen
y

noise visible in the re
onstru
ted pressure �eld. Nevertheless, despite this

�ltering, one 
an see that the relative error progressively in
reases when the

wave front propagates through the solid medium. This is not a surprise, as

it has already been noti
ed that the aliasing deteriorates the a

ura
y of the

re
onstru
ted pressure �eld within the array of disks.

To 
on
lude this test, let us �nally turn towards the main quantity of in-

terest in the design of a 
oupled �uid-stru
ture solver, i.e. the for
e applied

to the solid medium. Figure 4.27 hereafter displays the time evolution of the

horizontal for
e applied to the whole array, for both the referen
e and re
on-

stru
ted pressure �elds. Two di�erent values are tested for the C.F.L. stability


onstant and the 
uto� s
ale: C

stab

2 f0:85; 0:9g and s

0

2 f0:415h; 0:585hg.

As expe
ted, the model response shows a better a

ura
y when the 
uto�

s
ale s

0

is near its minimum 
riti
al value, i.e. s

0

= 0:415h. A high frequen
y

noise (due to aliasing) 
an on
e again be witnessed in the re
onstru
ted for
e.

Its amplitude moreover de
reases when the C.F.L. 
onstant C

stab

de
reases.

This aliasing is 
hara
terized by the fa
t that the frequen
y of the os
illations

visible in Figure 4.27b remains equal to the sampling frequen
y

�

1

2∆t

�

, even

when the time step ∆t de
reases with C

stab

. The 
hoi
e of a larger 
uto�

s
ale s

0

= 0:585h, whi
h satis�es the aliasing 
ompatibility 
ondition (3.241),

allows to 
ompletely suppress the high frequen
y noise, at the 
ost of a loss of

a

ura
y.

Table 4.14 summarizes the relative errors obtained on the horizontal for
e

and the pressure �eld L

2

-norm. As the di�eren
e between the referen
e and

re
onstru
ted pressure �elds is mainly fo
used within the array of disks, and

espe
ially in the vi
inity of the �uid-stru
ture interfa
es, it is not surprising to

see that a better a

ura
y is rea
h on the pressure �eld L

2

-norm, whi
h takes

into a

ount the whole f�uid + solidg domain.

s

0

= 0:415h Relative error

e

e

F

Relative error on kpk

L

2

C

stab

= 0:9 5:22� 10

�2 . 1:5� 10

�2

C

stab

= 0:85 3:70� 10

�2 . 1:7� 10

�2

Table 4.14: Relative errors on the for
e and pressure �eld L

2

-norm.
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It is here re
alled that the absolute error e

F

is de�ned by the time integra-

tion of the horizontal for
e:

e

F

=

�

�

�

�

Z

t

b

t

a

�

(F

F!S

)

ref

� (F

F!S

)

s

0

�

· e

x

dt

�

�

�

�

: (4.13)
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Figure 4.27: For
e-wise a

ura
y - 10 � 10 array - C

stab

2 f0:85; 0:9g - s

0

=
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Finally, to 
on
lude this test on a 10 � 10 steady array of disks, it 
an

be emphasized that the 
hoi
e of a larger C.F.L. 
onstant C

stab

allows to bet-

ter identify the solid medium 
hara
teristi
 spatial s
ale (i.e. the size of the

porous 
ell), here � = 3R, where R = 4 mm is the disks radius. Indeed, if

C

stab

de
reases, the numeri
al model tends to attenuate all pressure and for
e

os
illations, whether they are 
aused by the s
aling fun
tion aliasing or the

solid medium geometry. This is highlighted in Figure 4.28, whi
h displays the

FFT modulus of the horizontal for
e. The distan
e 116 mm 
orresponds to the

horizontal distan
e between the �rst and last disks boundaries.
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Figure 4.28: FFT modulus of the horizontal for
e (N:m

�1

) - 10� 10 array

This 
on
ludes this �rst assessment of the model 
apabilities, here evaluated

for a 2D transverse pressure wave propagating through a 10� 10 steady array

of disks.

In order to now strengthen the multi-s
ale 
omponent of the model, the

following test investigates whether a more ma
ros
opi
 representation of the

solid medium (and thus a larger mesh size h and 
uto� s
ale s

0

) allows to

properly re
over the main quantity of interest, here the horizontal for
e applied

to the whole array. A ma
ros
opi
 modeling of the solid medium would indeed

allow to represent PWR fuel assemblies as a single beam, without the need to

take into a

ount their inner stru
ture.

4.3.3 Equivalent modeling of a fuel assembly 
ross se
tion

Three equivalent arrays of disks (2� 2, 4� 4, 10� 10) are hereafter 
onsid-

ered, as displayed in Figure 4.29. The (4� 4) and (2� 2) arrays are obtained

from the (10� 10) array by multiplying the radius and distan
e between disks

by respe
tively 2:5 and 5. The mesh size h is adapted to ea
h array so as to

satisfy h =

R

4

. Furthermore, the boundary of ea
h disk is approximated by
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using 16 nodes, whether the radius is 4 mm, 10 mm or 20 mm. The C.F.L.


onstant C

stab

and the 
uto� s
ale s

0

are set to (C

stab

; s

0

) = (0:9; 0:415h).

0.0 0.1 0.2 0.Ú 0.4

Û  (m )

0.00

0.05

0.10

Ü

 (
m

)

(a) 10 � 10 array - radius R = 4 mm - h = 1 mm

0.0 0.1 0.2 0.Ý 0.4

Þ  (m )

0.00

0.05

0.10

ß

 (
m

)

(b) 4� 4 array - radius R = 10 mm - h = 2:5 mm

0.0 0.1 0.2 0.à 0.4

á  (m )

0.00

0.05

0.10

â

 (
m

)

(
) 2� 2 array - radius R = 20 mm - h = 5 mm

Figure 4.29: Equivalent arrays of disks (2� 2, 4� 4, 10� 10)

As previously, the propagation of a 2D transverse pressure wave is 
om-

puted for ea
h array, with a 10 vs 1 bar initial pressure dis
ontinuity, lo
ated

at x = 0:150 m. The distan
e between the pressure dis
ontinuity and the �rst

disks is de�ned, for ea
h array, by d = 0:060 +

R

2

(m). As the radius 
hanges

from one array to the other, a small time delay in the pressure and for
e signals


an be witnessed between ea
h simulation. Figure 4.30 hereafter displays mul-

tiple snapshots of the re
onstru
ted pressure �elds for the (4� 4) and (2� 2)

equivalent arrays.
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Figure 4.30: Re
onstru
ted pressure �eld - equivalents arrays (4 � 4, 2 � 2)

- h 2 f2:5 mm, 5 mmg - C

stab
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0

= 0:415h - snapshots every ∆t =
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The following Figure 4.31 now displays both the time evolution and the

FFT modulus of the horizontal for
e applied to ea
h array.
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As expe
ted, one 
an �rst noti
e in Figure 4.31a that the high-frequen
y

noise brought by the s
aling fun
tion Φ
s

0

is present for all arrays. Its frequen
y

of 
ourse 
hanges to mat
h the sampling frequen
y of ea
h simulation.

Furthermore, the size of the di�erent porous 
ells (respe
tively 12 mm,

30 mm and 60 mm) is 
learly visible in the horizontal for
e spe
trum, as dis-

played in Figure 4.31b.

Finally, ea
h of these equivalent arrays leads to an a

urate evaluation of

the time average of the horizontal for
e applied to the 10�10 array, as detailed

in the following Table 4.15. Su
h a result thus supports a more ma
ros
opi


modeling of fuel assemblies within a Pressurized Water Rea
tor (PWR) 
ore,

for instan
e by simplifying the geometry to a single beam in a 3D framework.

10�10 array 4�4 array 2�2 array

relative error

e

e

F

5:22� 10

�2

3:63� 10

�2

1:94� 10

�2

Table 4.15: Relative error on the horizontal for
e for equivalent arrays.

Now, to 
on
lude this fourth 
hapter dedi
ated to the model implementa-

tion, two ongoing proje
ts are hereafter presented:

� the �rst one 
onsists in a �rst attempt at implementing a nested grids

algorithm within the numeri
al model, with the aim of speeding up the


omputations;

� the se
ond is dedi
ated to the 
oupling between the homogenized �uid

and the solid medium. Experiments realized with a 10 � 10 array of

PMMA 
ylinder rods submitted to a sho
k wave will be presented. This

experimental data will be supplemented with preliminary numeri
al tests

involving a (2� 2) moving array of disks.

4.4 Ongoing works

4.4.1 First implementation of a nested grids algorithm

As multi-grid methods are generally en
ountered in the framework of iter-

ative algorithms or impli
it s
hemes, it is worthwhile to �rst re
all the general

philosophy of su
h methods, before detailing the spe
i�
 use of nested grids in

the 
urrent work.

General remarks on multi-grid methods

Multi-grid methods have been studied by an already exten-

sive literature. Referen
e works on this subje
t 
an be found

in [Brandt, 1977℄,[Stüben and Trottenberg, 1982℄,[Ha
kbus
h, 1985℄,

[Ruge and Stüben, 1987℄, [Wesseling, 1992℄, [Trottenberg et al., 2001℄ and

[Wesseling and Oosterlee, 2001℄. The development of multi-grid methods
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was motivated by the will to speed up iterative algorithms, su
h as Ja
obi's

or Gauss-Seidel's, whi
h are known to qui
kly redu
e the high-frequen
y


omponents of the error, but 
onversely struggle with the low-frequen
y


omponents. In order to introdu
e the basi
 ideas of multi-grid methods, let

us 
onsider the following linear problem:

Ax = f; (4.14)

where:

� A 2 Rn�n

is a matrix, usually assumed symmetri
, positive and de�nite;

� x 2 Rn

is the unknown ve
tor;

� f 2 Rn

is a known ve
tor;

Fixed-point algorithms 
an be used to solve iteratively equation (4.14).

Ja
obi's method, for instan
e, 
onsiders the de
omposition A = D + L + U ,

where D is a diagonal matrix, and L and U are respe
tively stri
ly lower and

upper triangular matri
es. If the diagonal matrix D is invertible (whi
h is true

under the previous assumptions on A), one 
an inje
t the de
omposition into

equation (4.14) as follows:

Dx = f � (L+ U)x: (4.15)

x = D

�1

f �D

�1

(L+ U)x: (4.16)

Then, starting from an initial guess x

0

, the iterative algorithm writes:

x

k+1

= Sx

k

+D

�1

f; (4.17)

or with the damped form (! � 0):

x

�

= Sx

k

+D

�1

f; (4.18)

x

k+1

= !x

�

+ (1� !)x

k

; (4.19)

where S = �D

�1

(L+ U). One then introdu
es the error ve
tor e and residual

ve
tor r, de�ned at ea
h iteration by:

e

k

= x� x

k

; (4.20)

r

k

= f � Ax

k

: (4.21)
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By applying the matrix S to the error ve
tor e

k

, one obtains, with equations

(4.16) and (4.17), the following iterative equation on e:

Se

k

= Sx� Sx

k

; (4.22)

= �D

�1

(L+ U)x� (x

k+1

�D

�1

f); (4.23)

= D

�1

(f � (L+ U)x)� x

k+1

; (4.24)

= D

�1

Dx� x

k+1

(4.25)

= x� x

k+1

; (4.26)

= e

k+1

: (4.27)

As for the residual ve
tor r, it is governed by the following equation:

r

k

= f �Ax

k

; (4.28)

= A(x� x

k

); (4.29)

= Ae

k

: (4.30)

Remark 4.4.1 Working with the residual equation (4.30) allows to im-

prove the iterative algorithm. Indeed, when the approximation x

k

is 
lose

to the solution x (for instan
e after a few iterations of Ja
obi's method

(4.17)), the error e

k

will be small (in l

1

norm), and one 
an thus 
hoose

the zero ve
tor as initial guess to solve iteratively the residual equation

Ae

k

= r

k

: (4.31)

With the resulting approximation

e

e

k

of the error e

k

, one 
an then up-

date the unknown ve
tor x

k

as follows:

x

k+1

= x

k

+

e

e

k

: (4.32)

Iterative algorithms su
h as (4.17) are known to 
onverge if and only if the

spe
tral radius �(S) of the matrix S is stri
tly below 1. The 
onvergen
e rate

is also linked to �(S): 
onvergen
e is slow if �(S) is 
lose to 1, and be
omes

faster as �(S) de
reases towards zero.

Furthermore, it is well-known that su
h iterative algorithms, when imple-

mented on a single grid, qui
kly redu
e the high-frequen
y (non-smooth) 
om-

ponents of the error e, but exhibit a very low damping on the low-frequen
y

(smooth) 
omponents. The basi
 idea of (geometri
) multi-grid methods is

then to introdu
e multiple nested grids, so that the low-frequen
y 
ompo-

nents asso
iated to a �ne grid may be
ome high-frequen
y 
omponents when

transferred to a 
oarser grid. The basi
 example of multi-grid method is the

following two-level algorithm, where two nested grids of mesh sizes h and 2h

are 
onsidered:
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Two-level algorithm:

� smoothing: 
ompute a few iterations of the iterative s
heme asso
iated

to A

h

x

h

= f

h

on the �ne grid (h); this leads to an approximation

e

x

h

in

whi
h the high-frequen
y 
omponents of the error are damped;

� 
ompute, on the �ne grid (h), the residual r

h

= f

h

� A

h

e

x

h

;

� restri
tion: proje
t the residual r

h

on the 
oarse grid (2h), via a restri
-

tion operator R : r

h

7�! R(r

h

);

� solve, on the 
oarse grid (2h), the residual equation A

2h

e

2h

= R

�

r

h

�

;

this leads to an approximation

e

e

2h

in whi
h the initial low-frequen
y


omponents are now damped as well;

� prolongation: transfer the error

e

e

2h

on the �ne grid (h) via an interpola-

tion operator I :

e

e

2h

7�! I

�

e

e

2h

�

;

� update the approximation

e

x

h

on the �ne grid (h) :

e

x

h

 �

e

x

h

+ I

�

e

e

2h

�

.

To apply su
h a two-level algorithm, one needs to de�ne the restri
tion R

and interpolation I operators, and also the 
oarse grid version A

2h

of the origi-

nal (�ne grid) matrix A

h

. When the matrix A

h

is for instan
e obtained through

a �nite-di�eren
e s
heme, the 
onstru
tion of A

2h

is straightforward.

These general remarks on multi-grid methods being stated, let us now turn

towards the spe
i�
 use of nested grids in the 
urrent work.

Spe
i�
 use of nested grids

As detailed above, multi-grid methods are well-designed for (stationary)

linear problems Ax = f solved iteratively, or impli
it s
hemes. However, in

the 
urrent work, the homogenized �uid equations are solved with an expli
it

�nite-volume s
heme. Thus, multi-grid methods and nested grids are not here

intended to improve the 
onvergen
e of iterative s
hemes. The idea is rather

to 
ompute the homogenized �uid equations on a 
oarse grid, while keeping

tra
k of the rods geometry on the �ne grid, in order to properly evaluate all the

boundary integrals in the right-hand side of the equations. The nested grids


omputation is thus implemented as follows:

� the homogenized �uid variables are known on the 
oarse grid (2h) at

t = t

n

;

� the real �uid variables are re
onstru
ted on the 
oarse grid (2h) at t = t

n

,

with a s
aling fun
tion Φ
s

2h

whose 
uto� s
ale s

2h

is linked to 2h;

� prolongation: the real pressure �eld is extended from the 
oarse grid (2h)

to the �ne grid (h);
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� the for
e applied by the underlying solid medium is 
omputed on the �ne

grid (h), with a s
aling fun
tion Φ
s

h

whose 
uto� s
ale is linked to h;

� restri
tion: the for
e is transferred from the �ne grid (h) to the 
oarse

grid (2h);

� the homogenized �uid variables are then updated at t = t

n+1

with this

sour
e term on the 
oarse grid (2h).

Let us now spe
ify the interpolation and restri
tion operators 
hosen to

implement this nested grids algorithm. To this end, let us �rst introdu
e the

following notations:

Notations 4.4.1 �

�

u

h

i;j

�

0�i;j�2n

hereafter denotes the unknowns on the

�ne grid, with mesh size h;

�

�

v

2h

i;j

�

0�i;j�n

hereafter denotes the unknowns on the 
oarse grid, with

mesh size 2h.

Interpolation operator: bilinear interpolation

The interpolation (or prolongation) operator from the 
oarse grid to the

�ne grid is here de�ned as a bilinear interpolation, whose a
tion on the 
oarse

grid unknowns

�

v

2h

i;j

�


an be summarized into the following symbol:

0

B

�

1

4

1

2

1

4

1

2

1

1

2

1

4

1

2

1

4

1

C

A

:

More pre
isely, the �ne grid values

�

u

h

i;j

�

1�i;j�2n

are obtained from the


oarse grid values

�

v

2h

i;j

�

1�i;j�n

a

ording to the following equations:

80 � i; j � n, u

h

2i;2j

= v

2h

i;j

: (4.33)

80 � i � n� 1, 0 � j � n, u

h

2i+1;2j

=

1

2

�

v

2h

i;j

+ v

2h

i+1;j

�

: (4.34)

80 � i � n, 0 � j � n� 1, u

h

2i;2j+1

=

1

2

�

v

2h

i;j

+ v

2h

i;j+1

�

: (4.35)

80 � i; j � n� 1, u

h

2i+1;2j+1

=

1

4

�

v

2h

i;j

+ v

2h

i+1;j

+ v

2h

i;j+1

+ v

2h

i+1;j+1

�

: (4.36)
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Restri
tion operator: full weighting restri
tion

Regarding now the restri
tion operator, the simplest 
hoi
e would be a

straight inje
tion whi
h 
opies the values

�

u

h

2i;2j

�

onto

�

v

2h

i;j

�

. As su
h a 
hoi
e

does not take into a

ount values 
orresponding to odd indi
es, a full weighting

restri
tion is here 
hosen, whose symbol is de�ned by:

0

B

�

1

16

1

8

1

16

1

8

1

4

1

8

1

16

1

8

1

16

1

C

A

:

More pre
isely, the 
oarse grid values are obtained via the following equa-

tions:

81 � i; j � n� 1,

v

2h

i;j

=

1

4

u

h

2i;2j

+

1

8

u

h

2i+1;2j

+

1

16

u

h

2i+1;2j+1

+

1

8

u

h

2i;2j+1

+

1

16

u

h

2i�1;2j+1

+

1

8

u

h

2i�1;2j

+

1

16

u

h

2i�1;2j�1

+

1

8

u

h

2i;2j�1

+

1

16

u

h

2i+1;2j�1

: (4.37)

81 � j � n� 1,

v

2h

0;j

=

1

4

u

h

0;2j+1

+

1

2

u

h

0;2j

+

1

4

u

h

1;2j�1

; (4.38)

v

2h

n;j

=

1

4

u

h

n;2j+1

+

1

2

u

h

n;2j

+

1

4

u

h

n;2j�1

: (4.39)

81 � i � n� 1,

v

2h

i;0

=

1

4

u

h

2i�1;0

+

1

2

u

h

2i;0

+

1

4

u

h

2i+1;0

; (4.40)

v

2h

i;n

=

1

4

u

h

2i�1;n

+

1

2

u

h

2i;n

+

1

4

u

h

2i+1;n

: (4.41)

v

2h

0;0

= u

h

0;0

; (4.42)

v

2h

n;0

= u

h

2n;0

; (4.43)

v

2h

0;n

= u

h

0;2n

; (4.44)

v

2h

n;n

= u

h

2n;2n

: (4.45)

These two operators being de�ned, let us now 
ompare the results obtained

with mono-grid and multi-grid 
omputations.
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Comparison between mono-grid and multi-grid 
omputations

The following Figure 4.32 displays the propagation of a 2D transverse pres-

sure wave through a 2� 2 steady array of disks. Two multi-grid 
omputations

are hereafter 
onsidered, respe
tively 2 mm=1 mm and 1 mm=0:5 mm.
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Figure 4.32: Pressure �eld snapshots - referen
e VS model with multi-grid


omputations (2=1 mm and 1=0:5 mm)

Figure 4.33 now displays the horizontal for
e obtained with both mono-grid

and multi-grid 
omputations.
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It appears that both multi-grid 
omputations result in a loss of a

ura
y

on the time average of the horizontal for
e, as detailed in Table 4.16 below.

This surprising result requires additional investigations to explain su
h a phe-

nomenon, espe
ially for the nested grids 1 mm=0:5 mm, for whi
h one would

expe
t to obtain a better a

ura
y.

Mono-grid 1 mm 1 mm / 0.5 mm 2 mm / 1 mm

relative error

e

e

F

1:41� 10

�2

1:11� 10

�1

1:76� 10

�1

Table 4.16: Relative error on the horizontal for
e - multi-grid 
omputations.

These preliminary results thus 
on
lude this �rst attempt at implementing

a nested grids algorithm within the wavelet-based numeri
al model. To now


on
lude this 
hapter dedi
ated to the model implementation, let us �nally

fo
us on the 
oupling between the homogenized �uid and the solid medium

dynami
s.

4.4.2 Towards a 
oupled �uid-stru
ture solver

Experiments on a sho
k tube fa
ility

Until now, the wavelet-based homogenized model has been 
onfronted with

2D referen
e solutions 
omputed with EUROPLEXUS software, 
onsidering

steady solid obsta
les. In order to thoroughly assess the model 
apabilities,

espe
ially with regards to the 
oupling between the �uid and solid medium

dynami
s, an experimental referen
e solution is also mandatory . To this end,

a 
ollaborative test program has been initiated between the Fren
h Energy

Commission (CEA) and the Norwegian University of S
ien
e and Te
hnology

(NTNU). This joint proje
t aims at providing a �rst set of experimental results

regarding transverse pressure waves propagating through a tube bundle. The

SIMlab sho
k tube fa
ility (SSTF), hereafter displayed in Figure 4.34, shows

very interesting perspe
tives in this 
ontext, sin
e the dimensions of its 
ross

se
tion allows implementing a simpli�ed yet representative tube bundle spe
i-

men. This fa
ility is also 
apable of generating a well-mastered and measured

pressure wave loading, thus allowing to produ
e some signi�
ant knowledge on

how the pressure signal is modi�ed when travelling through the bundle.

In an e�ort to �nd a satisfa
tory balan
e between 
omplexity and represen-

tativity, a bundle of 10� 10 rods has been 
hosen for this experimental study,

as 
an be seen in Figure 4.34g. The rods diameter and the spa
ing between


onse
utive rods are 
lose to the regular values for PWR fuel assemblies, the

preservation of the ratio between the two being a priority 
onstraint. Su
h a


ompa
t test spe
imen is here required in order to perform 3D detailed sim-

ulations of the test, as well as opti
al measurements through the windows in

the dedi
ated se
tion of the sho
k tube (
f. Figures 4.34f-4.34g).
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DRIVEN

F	
	�G S�CT 	O�

TANK

2:02m 16:08m


�����

P0� 01 & P0� 02

P08 01 & P08 02

P10 01 & P10 02

4:0m

0:95m

W 	��OW S�CT 	O�

(a)

(b) (
)

(d) (e)

(f) (g)

Figure 4.34: Experimental setup: sket
h of the SSTF (Figure 4.34a), en-

tire sho
k tube fa
ility (Figure 4.34b), �ring se
tion with diaphragms (Figure

4.34
), 
lose-up on 
amera setup (Figure 4.34d), open end and internal 
ross-

se
tion of the driven (Figure 4.34e), tele
entri
 lense (Figure 4.34f), and tube

bundle spe
imen (Figure 4.34g). Figures 4.34b and 4.34
 are reprints from

[Aune et al., 2016℄.
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The driver se
tion (
f. Figure 4.34a) is manufa
tured with a total length of

2:02 m and an inner diameter of 0:331 m. The driver is followed by a 0:14 m-

long �ring se
tion whi
h 
onsists in several intermediate pressure 
hambers

separated by diaphragms (
f. Figures 4.34a and 4.34
). This enables the to-

tal pressure di�eren
e between the driver and driven se
tions to be a
hieved

stepwise. The inner 
ross-se
tion in the driven se
tion starts with a 0:6 m-long

transition region from a 
ir
ular to a square 
ross-se
tion (0:3 m�0:3 m). The

driven se
tion ends with a tank of 5:1 m

3

, with an 1:6 m internal diameter.

Regarding now the test spe
imen, hereafter displayed in Figure 4.35, the

diameter and spa
ing of the rods are representative of a PWR fuel assembly,

in order to limit s
aling e�e
ts regarding the wave propagation through the

bundle. Both extremities of the rods are inserted into holes in two horizontal

plates. The bottom plate is then 
lamped on the bottom wall of the sho
k

tube using dedi
ated bolts and tapped holes. The top and bottom plates

of the spe
imen are 
onne
ted together and supported by two lateral plates

of identi
al thi
kness, in whi
h square windows are 
ut to allow for a dire
t

opti
al a

ess to the bundle. Indeed, tele
entri
 lenses are used to provide a

S
hlieren representation of the pressure waves and the solid medium motion.

(a)

(b)

Figure 4.35: Tube bundle test spe
imen used in SIMlab sho
k tube fa
ility

This experimental study shall be 
onsidered as part of a preliminary work,

whose long-term obje
tives are:

� to identify experimentally, if possible, a transfer fun
tion of the bundle


onne
ting well-
hosen variables upstream and downstream the spe
imen;

� to see if detailed 3D simulations (i.e. at the DNS s
ale) are su�
iently


lose to the experimental data (both pressure measurements and high-

speed 
amera images), thus allowing to use 3D simulations as numeri
al

referen
e to 
onfront a 3D extension of the wavelet-based homogenized

model;

� to determine whi
h lessons 
an be learned from this �rst series of tests to

improve the experimental basis in the ongoing resear
h dedi
ated to fuel

assembly modeling in LOCA situation.
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Remark 4.4.2 Conversely to the a
tual PWR situation, the experiment

has here been 
arried out in air given the sho
k tube te
hni
al 
onditions.

This of 
ourse signi�
antly 
hanges the 
ompressibility of the �uid 
om-

pared to pressurized water.

The experimental tests were operated with a maximum driver length of

2:02 m. The driven se
tion was operated with a length of 16:08 m, with the

�rst row of tube bundles lo
ated in the 
enter of the window se
tion (
f. Fig-

ures 4.34f-4.34g). The loading was varied by 
hanging the initial pressure p

4

in the driver se
tion, while the initial pressure in the driven se
tion was oper-

ated at ambient 
onditions (p

1

and T

1

). Two loading are hereafter 
onsidered,

namely 2:5 bar and 5 bar overpressure. Table 4.17 below gives the 
omplete

test matrix, where ea
h test is numbered X-Y, in whi
h X denotes a test with-

out (O) or with tube bundle (B) spe
imen. Y indi
ates the �ring overpressure

(in bar) in the driver. It is worth noting the good repeatability of the bursting


hara
teristi
s of the diaphragms by 
omparing the �ring pressure p

4

between

tests with the same initial 
onditions in Table 4.17. The presen
e of tests

without any tube bundle was intended to provide a 
omparison point (free of

FSI phenomena) between the experimental sho
k wave within the fa
ility and

a numeri
al sho
k wave 
omputed with EUROPLEXUS software.

Test Overpressure p

4

in driver (kPa) Pressure p

1

in driven (kPa) Temp. T

1

(

Æ

C)

O02 252.08 99.60 21.67

O05 517.29 98.50 21.19

B02 255.13 100.12 21.15

B05 516.37 100.02 21.40

Table 4.17: Test matrix in
luding initial 
onditions for ea
h test. Peak pres-

sures p

4

measured in the driver before venting.

In all tests, six sensors �ush mounted in the tube roof measured the pressure

behind the in
ident and re�e
ted sho
k wave. The lo
ation of ea
h pair of

sensors is displayed in Figure 4.34a. A 10 
m spa
ing was used between ea
h

pair member. Sensors P10 were lo
ated 0:97 m and 1:07 m downstream the

diaphragms in the �ring se
tion, P08 were lo
ated 0:22 m and 0:32 m upstream

the window se
tion, while P07 were lo
ated 0:22 m and 0:32 m downstream the

window se
tion. The delay in arrival time at ea
h pair of sensors may then be

used to determine the sho
k velo
ity and the 
orresponding Ma
h number.

In order to 
at
h the sho
k wave propagation and the dynami
 response of

the bundles, a high-speed 
amera with a tele
entri
 setup (
f. Figure 4.34d-

4.34f-4.34g) was used for S
hlieren photography. The sampling rate of the high-

speed 
amera was 37 kHz. The pressure measurements were also syn
hronized

with the 
amera.
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Remark 4.4.3 Failure of the spe
imen during the 5 bar test

The multiple impa
ts of pressure waves on the bundle produ
ed ten-

sile stresses in the bottom plate with brittle behaviour. Very small 
ra
ks

were already visible after the 2.5 bar overpressure test. The se
ond test

destroyed the spe
imen, starting with a straight 
ra
k near the se
ond row

of bolts and 
ontinuing with diagonal 
ra
ks in the lateral panel, leading

to the release of the rear part of the spe
imen holding the rods (see Figure

4.36). It 
ould fortunately be retrieved quite easily with no damage to the

fa
ility thanks to the knowledge and expertise of the lo
al team operating

the sho
k tube.

(a)

(b)

Figure 4.36: Tube bundle spe
imen after failure during the 5 bar test: released

part (4.36a) and remaning part still 
onne
ted to the fa
ility (4.36b).

The 2:5 bar test allowed to 
at
h, thanks to the high-speed 
amera, the tube

bundle dynami
 response to the sho
k wave. Figures 4.37 and 4.38 hereafter

display multiple snapshots allowing to witness the impa
t and re�e
tion of the

sho
k wave on the test spe
imen, and the resulting motion of the �rst 
ylinder

rods. The rods displa
ement be
omes truly visible in Figure 4.38, where one


an immediately noti
e impa
ts between 
onse
utive rods. It is re
alled that

su
h impa
ts are not taken into a

ount in the 
urrent 2D modeling of the solid

medium.
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(a) 7:9375 ms (b) 7:9645 ms

(
) 7:9915 ms

(d) 8:0185 ms (e) 8:0456 ms

(f) 8:0726 ms

(g) 8:0996 ms (h) 8:1266 ms (i) 8:1537 ms

(j) 8:1807 ms (k) 8:2077 ms (l) 8:2348 ms

(m) 8:2618 ms

(n) 8:2888 ms (o) 8:3159 ms

Figure 4.37: Sho
k wave impa
ting the �rst 
ylinder rods. Time (t = 0) is

taken as the arrival of the sho
k wave at the pressure sensor P10_02.
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(a) 8:4780 ms (b) 9:3699 ms

(
) 10:6672 ms

(d) 12:9374 ms

(e) 14:1266 ms

(f) 14:8293 ms

(g) 15:3699 ms (h) 16:9104 ms

(i) 18:0726 ms

(j) 19:2347 ms (k) 20:8564 ms (l) 22:5320 ms

(m) 25:3699 ms (n) 28:0455 ms (o) 51:5861 ms

Figure 4.38: Visualization of the rods displa
ement. Time (t = 0) is taken as

the arrival of the sho
k wave at the pressure sensor P10_02.
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Given the previous snapshots, the rods displa
ement is then obtained by

using digital image 
orrelation to tra
k the mid-point of the �rst 
ylinder rod

in the 2:5 bars overpressure test, leading to the following 
urve displayed in

Figure 4.39 below.

Figure 4.39: Longitudinal displa
ement of the mid-point of the �rst rod. Time

(t = 0) is taken as the arrival of the sho
k wave at Sensor P10_02. Bla
k

markers 
orrespond to the times of interest (TOI) in Figure 4.38.

The mid-point of the �rst row of rods thus exhibit a rapid displa
ement

from t = 8:4780 ms until the point of maximum de�e
tion at t = 10:6672 ms.

Then, some elasti
 vibrations 
an be witnessed, followed by a signi�
ant drop

in the displa
ement magnitude between t = 22:5320 ms and t = 25:3699 ms.

The rods mid-point then seems to undergo elasti
 vibrations around a slightly

permanent deformed 
on�guration throughout the remaining of the test.

Now, to go along with this preliminary experimental data, it is now high

time to test the wavelet-based model on a moving array of disks.

Preliminary numeri
al test with a moving array

For this �rst assessment of the model 
apability to treat the 
oupling with

moving solid obsta
les, the propagation of a 2D pressure wave through a 2� 2

array of disks is here 
onsidered. It is re
alled that the array is modeled via

a linear os
illator for ea
h degree of freedom, here two translations. Su
h a

2D 
omputation is not expe
ted to faithfully represent the 3D rods behavior

observed in the sho
k tube fa
ility. Indeed, impa
ts between 
onse
utive rods

are for instan
e not taken into a

ount. The aim is here rather to re
over,

with the wavelet-based model equations, the theoreti
al behavior of a linear

os
illator that would be submitted to the (re
onstru
ted) for
e applied by the

�uid, thoroughly investigated in the previous tests.

The simulation is designed with a 8 m long sho
k tube, in order to give time

for the solid medium motion to take pla
e, and also prevent re�e
ted waves on

the outer boundaries from intera
ting again with the solid medium. An initial
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pressure dis
ontinuity of 2:5 vs 1 bar is lo
ated at x = 3:9 m, as displayed in

Figure 4.40.

� .86 � .88 � .90 � .92 � .94 � .96 � .98

�  (m )

0.00

0.02

0.04

�

 �

m

�

0.0

0.�

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

Figure 4.40: Zoom on the initial pressure �eld (2.5 vs 1 bar) - 2 � 2 moving

array of disks.

� .86 � .88 � .90 � .92 � .94 � .96 � .98

�  �m �
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�

 �

m

�

Figure 4.41: Visualization of the 2� 2 moving array of disks at t = 0.

All the simulation parameters are summarized in the following Tables 4.18-

4.19-4.20-4.21-4.22.

Lx Ly Disks radius Dist. 
onse
utive disks

8 m 6:10

�2

m 1:10

�2

m 1:10

�2

m

Table 4.18: Geometry - 2� 2 moving array of disks.

2.5 bar zone 1 bar zone Dis
ontinuity  ! 1st disks

[0; 3:9 m℄ [3:9 m; 8 m℄ 5:10

�3

m

Table 4.19: Pressure loading - 2� 2 moving array of disks.
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Referen
e Density Referen
e Pressure Sound Velo
ity

�

ref

= 1000 kg ·m

�3

p

ref

= 10

5

Pa 
 = 1300 m · s

�1

Table 4.20: Fluid parameters - 2� 2 moving array of disks.

Eigenfrequen
y Mass Sti�ness Damping

!

0

=

2�

5:10

�3

s

�1

m

tot

= 1:492� 10

�4

kg k

tot

= 2:354� 10

2

kg:s

�2

� = 20%

Table 4.21: Solid medium parameters - 2� 2 moving array of disks.

Mesh size Time step S
ale/mesh 
ompatibility

h = 1 mm ∆t = 0:9�

h




max

s

0

= 0:585� h

Table 4.22: Spatial and time dis
retization - 2� 2 moving array of disks.

In order to be able to witness su�
ient displa
ement of the solid medium

during a limited simulation time, here 6 ms, the solid medium parameters are


hosen as follows:

1 the (eigen-)period of the linear os
illator is set to T

0

= 5 ms;

2 the asso
iated eigenfrequen
y is then de�ned by !

0

=

2�

T

0

(rad:s

�1

);

3 the solid density is set to �

s

= 1:188�10

1

kg:m

�3

(1% of PMMA density);

4 the disks thi
kness is set to L = 10

�2

m;

5 the resulting mass is de�ned by m

tot

= 4� �

s

�R

2

L;

6 the sti�ness k

tot

is then de�ned by: k

tot

= !

2

0

�m

tot

;

7 the fri
tion 
oe�
ient 


tot

is �nally de�ned by 


tot

= ��2

p

k

tot

m

tot

, where

� is the dimensionless damping 
oe�
ient.

Remark 4.4.4 In�uen
e of the stru
tural damping

If the damping 
oe�
ient � is 
hosen too small, the 
oupled �uid-

stru
ture simulation may exhibit a non-physi
al behavior. Indeed, an in-


rease of the pressure beyond the initial maximum value of 2:5 bar has

for instan
e been noti
ed when de
reasing � below 10%. Su
h a numeri
al

phenomenon requires a parametri
 study on the damping 
oe�
ient � in

order to determine its 
riti
al minimum value.

These remarks being stated, Figure 4.42 now displays the time evolution of

the longitudinal and transverse displa
ements.
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0 1 2 3 4 5 6
time (s) 1e−3
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m
)

1e−3

model
free oscillations
t= 1.3845 ms
t= 3.8767 ms
t= 5.0879 ms
Ux = 5.476 mm
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(a) Displa
ement U

x
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Di
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m
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t U
y (

m
)

1e−5
t= 3.669 ms
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Uy = − 5.735x10−2 mm

(b) Displa
ement U

y

Figure 4.42: Displa
ements U

x

=U

y

- 2� 2 moving array of disks.
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The sinusoidal shape of the displa
ement U

x

in Figure 4.42a, with a maxi-

mum displa
ement of 5:476 mm rea
hed around t = 1:3845 ms, is 
oherent with

the linear os
illator modeling. Indeed, the red 
urve visible in Figure 4.42a 
or-

responds to the free theoreti
al response of a linear os
illator in pseudo-periodi


regime:

U

theo

x

= Ke

��e!

0

t


os

�

e

!

0

q

1� �

2

t+ '

�

; (4.46)

where:

� the damping 
oe�
ient � is set to 20%;

� the period

e

T =

2�

e!

0

p

1��

2

is set to 6 ms;

� the phase ' is set to �

�

2

;

� the 
onstant K is set so that U

theo

x


oin
ides with the maximum displa
e-

ment U

x

at t = 1:3845 ms.

During the �rst phase of the simulation [0; 1:3845 ms℄, where the disks

displa
ement is mainly driven by the initial sho
k wave, U

x

(t) 
losely �ts the

free theoreti
al response (4.46). The fa
t that the longitudinal displa
ement

�rst responds with a period 
lose to 6 ms 
an be tied ba
k to the period of the

pressure loading. Indeed, as the pressure dis
ontinuity is initially lo
ated at

x = 3:9 m, at only 5 mm from the �rst disks, the time T

wave

ne
essary for a

wave to impa
t again the disks from left to right 
an be evaluated as follows:

T

wave

=

3:9 + 3:905

1300

�

0:005

1300

(4.47)

= 6 ms; (4.48)

where the velo
ity of the pressure dis
ontinuity has here been approximated

by the sound velo
ity in the �uid.

During the se
ond phase [1:3845 ms; 6 ms℄, the pressure dis
ontinuities are

mostly far away from the array, leading to small pressure for
es. The longitu-

dinal displa
ement U

x

(t) is thus mainly driven by the restoring elasti
 for
e.

Thus, the period of U

x

(t) de
reases from the initial 6 ms wave period to �t its

5 ms eigen-period. Indeed, Figure 4.42a allows to estimate a period of damped

os
illations around T = 5:0879 ms, whi
h is 
oherent with the previous 
hoi
es

of parameters. Indeed, the frequen
y and period of damped os
illations satisfy:

! = !

0

q

1� �

2

; (4.49)

T =

T

0

p

1� �

2

: (4.50)

With � = 20% and T

0

= 5 ms, it follows T � 5:103 ms.
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Regarding now the transverse displa
ement U

y

, one 
an noti
e in Figure

4.42b that it is 2 orders of magnitude below the longitudinal displa
ement.

This is not surprising 
onsidering the transverse pressure wave impa
ting the

solid medium. Furthermore, 
onversely to U

x

, the displa
ement U

y

does not

at �rst exhibit a pure sinusoidal shape. The behavior witnessed on the time

interval [0; 3:669 ms℄ is here explained by the verti
al 
omponent of the �uid

pressure for
es, whi
h is mu
h smaller than the horizontal 
omponent, and

exhibits �u
tuations, with possible 
hange of signs. For t � 3:669 ms, after the

disks have rea
hed their maximum transverse displa
ement, a sinusoidal shape

free of �u
tuations is re
overed.

Remark 4.4.5 Important note on the way the displa
ement of the �uid-

stru
ture interfa
es ∂Ω
s

is taken into a

ount in the boundary integrals

of the model equations

As the homogenized �uid equations are dis
retized on a 2D regular

Cartesian grid with mesh size h = 1 mm, the boundary integrals present

in the right-hand sides of the balan
e equations are updated when the solid

medium displa
ement rea
hes integer multiples of h.

To 
omplete the displa
ements observed in Figure 4.42, let us now turn

towards the pressure �elds re
onstru
ted for the beginning and right/left max-

imum positions of the disks, hereafter displayed in Figures 4.43 and 4.44.

One 
an immediatly noti
e in Figure 4.43 that the horizontal pressure pro�le

is almost 
onstant (around 1:75 bar) when the disks rea
h their maximum

displa
ement. This is also 
on�rmed by the 2D pressure �elds displayed in

Figures 4.44b-4.44
. Thus, pressure for
es applied to the solid medium are

almost zero, and the restoring elasti
 for
e 
an now freely a
t on the solid

medium. This is 
oherent with the fa
t that the solid medium has rea
hed its

maximum displa
ement and will now head ba
kwards.

Besides, it 
an also be noti
ed in Figures 4.44b-4.44
 that the arti�
ial

pressure within the solid medium remains 
onstant around 1 bar throughout

the simulation. This is 
oherent with the assumptions at the basis of the

wavelet-based homogenized model (i.e. no matter is ex
hanged between the

�uid and solid media).

In 
on
lusion, these preliminary results, obtained via a 
oupling between

a 2D homogenized 
ompressible �uid and a rigid solid medium, are in good

agreement with the theoreti
al behavior of a linear os
illator.
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Figure 4.43: Horizontal pressure pro�les for the initial and maximum positions

of the disks - the verti
al dashed lines indi
ate the position of the array.
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(b) Right maximum position.

9 .86 9 .88 9 .90 9 .92 9 .94 9 .96 9 .98

:  ;m <

0.00

0.02

0.04

>

 ?

m

@

0.0

0.9

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

(
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Figure 4.44: Initial and maximum positions of the 2� 2 moving array of disks

within the re
onstru
ted pressure �eld (bar).
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4.5 Con
lusion

This fourth 
hapter, dedi
ated to the model implementation, allowed to

assess its ability to a

urately 
ompute the physi
s of interest, i.e. a 2D

transverse pressure wave propagating through a 
ongested solid medium 
om-

posed of multiple disks. A wavelet analysis of a referen
e numeri
al solution

(10 � 10 steady array), 
omputed at the DNS s
ale, was �rst presented. This

�rst test gave insights on the pressure �eld spe
trum, and underlined the need

to repla
e the analysing wavelet Ψ by its asso
iated s
aling fun
tion Φ, in order

to avoid multiple and 
umbersome 
omputations. A se
ond test then 
on�rmed

the impa
t of both the C.F.L. and the s
ale/mesh 
ompatibility 
onditions on

the numeri
al model stability and a

ura
y. In e
ho with the �rst wavelet anal-

ysis, a 2D pressure wave propagating through a 10� 10 steady array of disks

was then 
onsidered. The wavelet-based model proved its ability to a

urately

re
onstru
t both the pressure �eld and the horizontal for
e applied to the solid

medium. To then enhan
e the multi-s
ale 
omponent of the model, a 
ompari-

son between several equivalent arrays of disks (2�2, 4�4, 10�10) proved that

a more ma
ros
opi
 modeling of the solid medium, and thus a larger mesh size

h and 
uto� s
ale s

0

, preserves the a

ura
y on the main quantity of interest,

i.e. the dynami
 load on the solid medium.

Finally, the last se
tions of this 
hapter gave some insights on two ongoing

proje
ts. The �rst one 
onsists in implementing a nested grids algorithmwithin

the numeri
al model. While it obviously did speed up the 
omputations, it

also exhibited an unexpe
ted loss of a

ura
y. These troubling results thus

require further investigations. The se
ond proje
t is dedi
ated to the design

of a 
oupled �uid-stru
ture solver. A 
ollaborative test program between the

Fren
h Energy Commission (CEA) and the Norwegian University of S
ien
e

and Te
hnology (NTNU) was �rst presented. This joint work allowed to submit

a tube bundle spe
imen to multiple sho
k waves within a sho
k tube fa
ility,

while re
ording the solid medium longitudinal displa
ement via high-speed


ameras. In addition to this preliminary experimental data, a �rst numeri
al

test involving a 2 � 2 moving array of disks was also presented. A 
oupled

�uid-stru
ture simulation allowed to re
over the theoreti
al behavior of a linear

os
illator, with its 
lassi
al sinusoidal displa
ement. These early results shall

of 
ourse be 
ompleted with further testing.
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Chapter 5

Con
lusion

This work put forward a new 
ontribution in the wide literature of porous

media, homogenization and multi-s
ale methods. Guided by the need to 
om-

pute transverse pressure waves within 
ongested solid media, su
h as fuel as-

semblies within Pressurized Water Rea
tors (PWR), this manus
ript thor-

oughly des
ribed a homogenized and multi-s
ale model able to dis
ard all

interfa
es and small s
ale phenomena. In a will to build a self-sustained

model, whi
h 
an bypass the major limitations en
ountered in homogenization

theory and multi-s
ale methods, this work promotes the use of Continuous

Wavelet Transform (CWT). Starting with a 2D rigid and homogeneous solid

medium, and an invis
id 
ompressible �uid, it was thoroughly detailed how this

wavelet formalism 
an be implemented on the �uid Partial Di�erential Equa-

tions (PDEs). The method was moreover designed to allow for an extension to

generi
 PDEs. A two-steps pro
ess of "weak-extension" + "weak-
onvolution"

of the original �uid PDEs with an analysing wavelet (or s
aling fun
tion) was

shown to result in spatially-�ltered PDEs governing a homogenized �uid. The

new 
onservative variables are moreover de�ned as the wavelet 
oe�
ients (or

low-frequen
y approximation) of the original variables. In order to ensure the

well-posedness of the 
onvolution produ
t, a real-valued, isotropi
, smooth,

well-lo
alized and admissible wavelet has been 
hosen, namely the Mexi
an

hat. More importantly, thanks to CWT and its re
onstru
tion formula, the

homogenized model possesses the brand new ability to 
onne
t resolved and

unresolved s
ales without any ad ho
 model, and to rigorously handle the

original boundary 
onditions. It was also emphasized how the re
onstru
tion

formula 
an be used to expli
itly 
ompute, if ne
essary, nonlinear terms. To


omplete the wavelet-based model theoreti
al framework, a 
onvergen
e to-

wards Dire
t Numeri
al Simulation (DNS) was proved, along with ne
essary


ompatibility 
onditions between the s
aling fun
tion 
uto� s
ale s

0

and the

mesh size h. To the author's knowledge, it is the �rst time that su
h a self-

sustained homogenized and multi-s
ale model, ta
kling generi
 and non-smooth

PDEs, 
losure between resolved and unresolved s
ales, boundary 
onditions,

nonlinearities, periodi
ity and s
ale separation is put forward in literature.

In order to 
onfront this theoreti
al framework with the physi
s of inter-

est, several 2D numeri
al tests were 
onsidered, with steady mi
ro-stru
tures.
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These tests �rst allowed to emphasize the impa
t of both the expli
it s
heme

C.F.L. 
ondition, and the s
aling fun
tion 
uto� s
ale, on the numeri
al model

stability and a

ura
y. It was then proved, with di�erent steady mi
ro-

stru
tures, that the wavelet-based model is able to a

urately re
onstru
t both

the pressure �eld, and the dynami
 load applied to the solid medium. This

a

ura
y is even preserved when a more ma
ros
opi
 modeling is used to rep-

resent the solid medium. Then, in an ongoing work aiming at designing a


oupled �uid-stru
ture solver, preliminary experimental data, involving a tube

bundle spe
imen submitted to sho
k waves, was presented. The longitudinal

displa
ement observed during the experiments was then supplemented by a

preliminary numeri
al test involving a 2� 2 moving array of disks. This test,

whi
h did not aim at faithfully representing the 3D solid medium behavior

observed in the sho
k tube fa
ility, nevertheless allowed to re
over the theoret-

i
al behavior of a linear os
illator. These early results will be 
ompleted with

additional testing in order to build a robust 2D �uid-stru
ture solver.

Finally, there obviously are improvements and 
hallenging perspe
tives

ahead of this work. Regarding the 
urrent vulnerabilities and possible im-

provements, the wavelet-based model is �rst 
onfronted with risks of instability

and aliasing. Besides, the use of a band-pass analysing wavelet, rather than

a low-pass s
aling fun
tion, was shown to signi�
antly in
rease the 
omputa-

tional 
ost of the method. Now, regarding the perspe
tives, one may think of

a 3D extension of the wavelet-based homogenized model, using a 3D Contin-

uous Wavelet Transform. Nevertheless, in a 
ontext where fuel assemblies are

the solid medium of interest, su
h a 3D extension 
ould rely on a "2D+1D"

approa
h, where the homogenization pro
ess is only applied through the 
ross

se
tion, while 
lassi
al dis
retization te
hniques are used to handle the verti
al

dire
tion. If the 
ross se
tion of the 3D fuel assemblies does not undergo any

deformation, the assumptions made on the 2D solid medium 
ould be easily

transposed to the 3D 
ase.

To now widen the perspe
tives of the 
urrent work, one 
ould extend

this wavelet-based multi-s
ale and homogenized model, here developed in the

framework of Fluid-Stru
ture Intera
tion (FSI), to other types of physi
s, su
h

as heterogeneous materials and turbulen
e for instan
e. Indeed, in the spirit

of the wide overview of the state of the art presented in this manus
ript, this

work put forward a homogenization pro
ess that 
an deal with generi
 PDEs,

written at the 
ontinuum medium s
ale, and moreover independent from any

spatial dis
retization te
hnique.
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Appendix A

Convolution produ
t

Proposition A.0.1 Convolution produ
t L

1

�

Rd

�

�D

�

Rd

�

The 
onvolution produ
t between a fun
tion f 2 L

1

�

R
d

�

and a test

fun
tion ' 2 D

�

Rd

�

results in a C

1

fun
tion.

Proof of Proposition A.0.1 Let us �rst start with the de�nition of 
on-

volution produ
t. For a priori almost all x 2 R
d

:

(f � ') (x) : =

Z

Rd
f

�

x� y

�

'(y) dy; (A.1)

=

Z

Rd

e

f

�

y � x

�

'(y) dy; (A.2)

=

Z

Rd
�

x

(

e

f)(y)'(y) dy; (A.3)

=

D

'; �

x

(

e

f)

E

; (A.4)

where

e

f(x) = f(�x), and �

x

(

e

f)( · ) =

e

f( · � x) denotes a translation of f .

One 
an �rst noti
e that, for all f 2 L

1

�

Rd

�

, the fun
tion:

�

e

f

:

�

Rd

; k · kRd

�

7�! (L

1

; k · k

L

1

)

x 7�! �

x

(

e

f)

; (A.5)

is 
ontinuous. This point is proven by using the density of 
ontinuous and


ompa
tly-supported fun
tions in the Lebesgue spa
e L

p

, for 1 � p < +1.

Furthermore, the linear form:

l

'

:

L

1

�

Rd

�

7�! Rd

f 7�! h'; fi

(A.6)

is also 
ontinuous. Indeed, sin
e ' 2 D

�

Rd

�

� L

1

�

Rd

�

, Hölder inequality

implies that f � ' 2 L

1

�

Rd

�

, and:
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(A.7)

�

Z

Rd
jf j � j'j; (A.8)

� k'k

L

1

kfk

L

1

: (A.9)

Finally, one 
an state that for all f 2 L

1

�

Rd

�

and ' 2 D

�

Rd

�

, the

fun
tion:

Rd

7�! Rd

x 7�! (f � ') (x) =

�

l

'

Æ �

e

f

�

(x)

(A.10)

is 
ontinuous. The C

1

smoothness is then obtained thanks to the the-

orem allowing to di�erentiate parameter-dependent integrals, with the dif-

ferentiation being applied on the test fun
tion '.

Proposition A.0.2 Convolution produ
t D
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The 
onvolution produ
t between a distribution T 2 D
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�
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also results in a C
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tion. Furthermore, the

following equation holds:
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D

0
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In the 
ase where the distribution T is a lo
ally integrable fun
tion, the

previous result 
an be obtained with Fubini's theorem:

h � T; 'i

D

0

;D

=

Z

Rd

�
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 (x� y)T (y) dy

�

'(x) dx (A.13)
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e
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dy (A.14)

=

D
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e

 � '
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D

0

;D

(A.15)

Proof of Proposition A.0.2 With some minor 
hange in the proof A.0.1,

one 
an extend the previous proposition to the 
onvolution produ
t

L

1

lo


�

Rd

�

�D

�

Rd

�

, and then use the fa
t that L

1

lo
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Rd

�

� D

0

�

Rd

�

.
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