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Résumé

La simulation de I’écoulement d’un fluide au sein d’un milieu solide conges-
tionné constitue encore aujourd’hui une problématique scientifique importante
dans certains domaines de recherche, notamment l'ingénierie nucléaire. En
effet, face a un nombre trés important d’interfaces a gérer, les méthodes clas-
siques d’interaction fluide-structure induiraient un cofit de calcul prohibitif.
Cette problématique des interfaces se cumule par ailleurs avec des phénomeénes
multi-échelles, qui trouvent leur origine dans I’écoulement fluide, ainsi que dans
la micro-structure du milieu solide. Face a cette double problématique inter-
faces et multi-échelles, une approche milieu poreux ou homogénéisée peut étre
adoptée.

Dans cet esprit, cette thése met en avant une modélisation multi-échelles et
homogénéisée, en capacité de simuler un écoulement compressible non-visqueux
au sein d'un milieu solide congestionné. Afin de s’affranchir des limitations
rencontrées dans les méthodes multi-échelles et I’homogénéisation (stricte sé-
paration d’échelles, périodicité, traitement des conditions aux limites, linéar-
ité, équation de fermeture micro-macro...), cette nouvelle modélisation met en
avant un formalisme mathématique basé sur la transformée en ondelettes con-
tinue. En appliquant, par le biais d’un produit de convolution, une ondelette
bien choisie sur les équations aux dérivées partielles (EDP) gouvernant le milieu
continu fluide, il est possible d’obtenir des EDPs filtrées décrivant un fluide ho-
mogénéisé. Le processus de convolution proposé est également applicable a des
EDPs génériques. Par ailleurs, grace a la transformée en ondelettes inverse, le
modéle dispose d’une équation de fermeture analytique en capacité de relier les
échelles résolues (i.e. le fluide homogénéisé) et non-résolues (i.e. le fluide réel).
Cette relation de fermeture permet d’une part de transférer rigoureusement les
conditions aux limites du fluide réel dans le fluide homogénéisé, et d’autre part
de traiter explicitement les non-linéarités. Enfin, la résolution numérique des
EDPs du fluide homogénéisé permet de reconstruire, & chaque pas de temps,
le champ de pression au sein du fluide réel, et ainsi de déduire le chargement
dynamique appliqué sur la micro-structure. Cette étape importante, validée
sur des solutions numériques 2D de référence avec micro-structures fixes, ouvre
ainsi la voie a un solveur fluide-structure intégrant le couplage entre les deux
milieux.
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Abstract

Computing a flow within a highly congested solid medium is still nowadays
an important scientific issue in many research fields, such as nuclear engineer-
ing. Indeed, confronted with an overwhelming number of interfaces, the classi-
cal Fluid-Structure Interaction (FSI) approach would inevitably lead to cum-
bersome computations. This important issue of interfaces is also here coupled
with multi-scale phenomena, caused both by the fluid and the solid medium
micro-structure. In order to deal with these interfaces and multi-scale problem-
atics, a more mesoscopic approach, based on porous media or homogenization,
can be put forward.

In this spirit, this work develops a multi-scale and homogenized model able
to account for an inviscid compressible flow within a congested solid medium.
In order to bypass the classical limitations of multi-scale and homogenization
methods (strict scale separation, periodicity, treatment of boundary conditions,
linearity, closure equation between scales), this new model promotes an original
use of Continuous Wavelet Transform. By applying, by means of a convolution
product, a well-designed wavelet to the fluid Partial Differential Equations
(PDEs), the model is able to derive spatially-filtered PDEs governing a ho-
mogenized fluid. This convolution process is also applicable to generic PDEs.
Furthermore, thanks to an inverse wavelet transform, the model benefits from
an analytical closure equation which connects resolved (i.e. the homogenized
fluid) and unresolved (i.e. the real fluid) scales. This wavelet-based closure
equation allows on the one hand, to rigorously transfer the real fluid bound-
ary conditions into the homogenized fluid, and on the other hand to explicitly
handle nonlinearities. Finally, the numerical computation of the homogenized
fluid PDEs allows to reconstruct, at each time step, the pressure field in the
real fluid, which leads to the dynamic load applied to the solid medium micro-
structure. This important step, validated on 2D reference numerical solutions
with steady micro-structures, thus opens the way to a coupled fluid-structure
solver.
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Chapter 1

Introduction

The current work finds its starting point in the study of the mechanical
consequences of accidental scenarios for Pressurized Water Reactors (PWR),
with a focus on the propagation of transverse pressure waves through the fuel
assemblies of a nuclear core. Such a phenomenon, called Loss Of Cooling
Accident (LOCA), originates from a failure in one of the pipes of the pressurized
primary loop (155 bar). An initial plane pressure wave then propagates from
the failure towards the main vessel (see Figure[1.1]), and is expected to undergo
some diffraction at the junction between the 1D pipe and the 3D core. The
first mechanical solicitation on the fuel assemblies (see Figure 2.1H2.2)) located
within the main vessel would then come from the transverse propagation of
a (spherical) pressure wave, followed by a second vertical wave guided by the
axial water flow.

Simplified steam
Reactor pipe generator

loops \ f

Pipe junction
modeling the volute
housing and the pump
exit

1D/3D
junction

Cold leg

? et leg
= 7 Pump model

N _— - e = (one for each
3 /// loop)
¢ \ R() f “U” l
Pl break Cut-view showing / €8
Rs Main 3D the 3D internals ~
break vessel

Figure 1.1: Simplified 1D/3D scheme of a PWR in a Loss Of Cooling Accident
(LOCA) context - reproduced from [Faucher et al., 2014] with permission.




The physics of interest thus requires to compute a compressible flow within
a highly congested solid medium, here the fuel assemblies. Such a computation
is still nowadays an important scientific issue in many industrial or research
fields. It can for instance also relate to flows within biological tissues, or porous
media such as concrete or soil. Confronted with an overwhelming number of
interfaces, the classical Fluid-Structure Interaction (FSI) approach, which re-
lies on an explicit representation of all the interfaces, would inevitably lead to
cumbersome computations. This important issue of interfaces is also here cou-
pled with multi-scale phenomena: a wide range of spatial scales is for instance
contained within a viscous turbulent flow, possibly entangled with the different
spatial scales of the congested solid medium. Thus, in order to tackle both the
interface and multi-scale problematics, a more mesoscopic approach of FSI can
be put forward, inspired by porous media or homogenization theory.

In this spirit, a multi-scale and homogenized modeling is hereafter intro-
duced to account for an inviscid compressible flow within a congested solid
medium. In order to build a self-sustained model, bypassing the classical lim-
itations of multi-scale and homogenization methods (strict scale separation,
periodicity, treatment of boundary conditions, linearity, closure equation be-
tween scales), this work promotes an original use of Continuous Wavelet Trans-
form (CWT). By applying, by means of a convolution product, a well-designed
wavelet (or scaling function) to the fluid Partial Differential Equations (PDEs),
the model results in spatially-filtered PDEs governing a homogenized fluid in
the whole {fluid + solid} domain. Such a convolution process is also applica-
ble to generic PDEs. Furthermore, thanks to an inverse wavelet transform, the
model is able to connect analytically resolved (i.e. the homogenized fluid) and
unresolved (i.e. the real fluid) scales. This wavelet-based closure equation al-
lows on the one hand, to rigorously transfer the real fluid boundary conditions
into the homogenized fluid, and on the other hand to explicitly handle non-
linearities. The numerical computation of the homogenized fluid PDEs then
allows to reconstruct, at each time step, the pressure field in the real fluid,
which leads to the dynamic load applied to the solid medium.

In this work, the choice has been made to focus the homogenization pro-
cess on the fluid, as it occupies a connected domain in the geometry of interest.
Furthermore, CWT is hereafter applied in a 2D formalism. This work indeed
focuses on the propagation of transverse pressure waves through the cross sec-
tion of fuel assemblies, as displayed in Figure 1.2

2 CHAPTER 1. INTRODUCTION Samy Mokhtari
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Figure 1.2: Sketch of a 2D transverse pressure wave propagating through a fuel
assembly cross section.

The following of this manuscript is organized as follows: chapter 2 is ded-
icated to an overview of a wide state of the art, starting with porous media
approaches, homogenization and multi-scale methods. The core of this bibli-
ography chapter then focuses on wavelets theory. This will allow to connect
to chapter 3, which will then thoroughly describe the wavelet-based multi-
scale and homogenized modeling. The model capabilities are then assessed in
chapter 4, with numerical experiments involving 2D shock waves propagating
through different steady solid obstacles. These tests are then supplemented
with some ongoing projects: on the one hand, preliminary experimental data
acquired on a tube bundle specimen within a shock tube facility, and on the
other hand, a first numerical test handling moving solid obstacles. The final
chapter is then dedicated to a conclusion.
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Chapter 2

Overview of the state of the art

2.1 Introduction

This chapter aims at setting the basis for the wavelet-based model at the
core of this work, which comes as a new contribution in an already extensive
state of the art. This overview will thus emphasize some of the key methods
in the literature of porous media, homogenization and multi-scale methods,
with a final and major focus on wavelets. This chapter hereafter emphasizes
"analytical" (as opposed to numerical) methods, i.e. methods acting at the
continuum medium scale, on Partial Differential Equations (PDEs), and mostly
independent from any choice of discretization technique.

The opening section of this chapter presents a porous medium approach
designed to compute Fluid-Structure Interaction (FSI) phenomena, in the
framework of Pressurized Water Reactors (PWR). It will be followed by the
classical literature on homogenization, with its mechanical and mathematical
approaches. The third section will then present two important examples of
multi-scale methods in the framework of turbulent flows, namely explicit fil-
tering and projection-based methods. This literature on homogenization and
multi-scale methods being recalled, the core of this chapter will then be ded-
icated to wavelets theory, with a first and main focus on Continuous Wavelet
Transform (CWT), with its 1D and 2D implementation. The framework of
Discrete Wavelet Transform and Multi-Resolution Analysis (MRA) will then
follow.

Throughout this chapter, it will be emphasized how homogenization and
multi-scale methods struggle with common limitations, among which the treat-
ment of boundary conditions, and the closure equation between resolved and
unresolved scales. This will allow to highlight, especially in chapter 3, how
Continuous Wavelet Transform (CWT) may tackle these important issues.

2.2 FSI and porous medium : the case of PWR

The interaction between a fluid and a highly congested solid medium, at
the core of this work, finds a perfect illustration with the behavior of a French

4



2.2. FSI AND POROUS MEDIUM : THE CASE OF PWR

Pressurized Water Reactor (PWR). As can be seen in Figure 2.1, a PWR core
contains numerous fuel assemblies (up to 157 for a 900 MW reactor) submitted
to the water flow of the primary loop. These assemblies exhibit a beam-like
geometry, with a square cross section (20 cm?x4 m). Their inner structure is
composed of 264 fuel rods (5 mm radius), 5 instrumentation guide thimbles,
and 24 control rod guide thimbles (Figure 2.2a). The latter bring stiffness and
cohesion to the structure thanks to 8 spacer grids (Figure[2.2b]) placed along the
assembly. They can also host the falling control rods (Figure [2.]) in case of an
emergency core stop. The design of spacer grids allows to increase turbulence
within the water flow, which transports the heat, created by the nuclear fission
reaction, towards the steam generators. Under nominal operating conditions,
the water flow is mainly vertical when it runs through the fuel assemblies.
Water is maintained liquid at around 300°C thanks to a 155 bar pressurization
of the primary loop.

Pressurized-water

reactor control rod drive

....... mechanism

overall dimensions
width: 3.5 metres (11.5 feet)
height: 10 metres (33 feet)

coolant outlet coolant outlet

fuel assembly fuel assemblies

upper grid plate

fuel assembly
lower grid plate

© 2012 Encyclopaedia Britannica, Inc.

Figure 2.1: Cutaway of a French PWR core.

(a)
Figure 2.2: Fuel assemblies design: overview (2.2a)) and spacer grid (2.2h)).

Samy Mokhtari CHAPTER 2. STATE OF THE ART 5



2.2. FSI AND POROUS MEDIUM : THE CASE OF PWR

Before introducing the porous medium approach developed to handle FSI
phenomena within a PWR, let us first recall the classical approach, where both
media are modeled at the microscopic scale, with a continuum medium point
of view.

2.2.1 Solid medium modeling at the microscopic scale

In a PWR core, the solid medium occupies a disconnected domain, result-
ing from the reunion of disjoint fuel assemblies. Neglecting body forces, each
fuel assembly satisfies, with a 3D continuum medium modeling, the following
momentum balance equation and dynamic boundary condition on the current
domain (2,(t):

psY = dwv (0_) in 25(1)
Os-Ng = IF—)S + Iimpa.ct on 8Qs(t),

(2.1)
with:

e p, the solid medium density (kg.m*?’);

e 7 the Eulerian acceleration (m.sfz);

A the Cauchy stress tensor (Pa);

e T _ ¢ the stresses applied by the fluid on the interface 0f2; (Pa);

® T, mpact the stresses resulting from impacts with other fuel assemblies (Pa);

e n, the outward unit normal vector on the boundary 0(2;.

The Eulerian acceleration y(z,t) for z € (2,(t) is linked to the Lagrangian
acceleration ['(X,t) for X € 2,(0) via the following equations:

Vt>0,7(z,t) =7 (0 (X,1),1), 2.2
=L['(X,1), (2.3)

FU
_ﬁ(x,t), (24)

where:

e p(-,t) : X+— ¢ (X,t) = z describes the transformation undergone by
the reference domain (2,(0);

o U(X,t)=¢p(X,t) — X denotes the displacement field.

6 CHAPTER 2. STATE OF THE ART Samy Mokhtari



2.2. FSI AND POROUS MEDIUM : THE CASE OF PWR

To solve the problem (2.1I), a closure equation between o, and the displace-
ment U is required. This closure is brought by the mechanical behavior law,
which formally writes:

o, =0, (eU)), (2.5)
where e (U) denotes Green-Lagrange strain tensor, defined by:
1
eU)=5 (YU + "YU + "YU Y U). (2.6)

The variational formulation associated to the problem (2.II) is known as
the Virtual Powers Principle. Given a kinematically admissible and smooth
Eulerian velocity field 7, one can integrate the momentum balance equation
against ¥. Using Green’s formula for integration by parts, it comes:

S

o T= - V7% / ,n,) 3. 2.7
/Qs(t)pl /Qs(t)az LU+t 0f2,(t) (a: n_) v (2.7)

Now, introducing the virtual strain rate tensor d(7) = % (Z 7+ ™Y i),
and using the symmetry of the Cauchy stress tensor, one can write:

T i d@ = [, (Tras+ Tompeee) T (28
/Qs(t)pl y+/ﬂs(t)az 4(2) 895(1&)( Fos T+ Limp t> . (28)

The two terms on the left-hand side represent respectively the virtual pow-
ers of inertial and internal forces. As for the term on the right-hand side, it
represents the virtual power of the external forces applied to the solid medium,
here contact forces applied by the fluid and other fuel assemblies.

Such a modeling of the solid medium at the microscopic scale quickly en-
counters some limitations in the current context. Indeed, as it can be seen in
Figure fuel assemblies exhibit a complex design, with multiple contacts
and friction between inner components, especially within spacer grids. Such
a design results in damping and nonlinearities in their mechanical behavior.
Modeling all these phenomena at the microscopic scale would be too cumber-
some, considering the number of fuel rods and fuel assemblies contained within
a PWR core. Thus, beam models are often preferred to describe the solid
medium kinematics and mechanical law. In [Ricciardi et al., 2009], a Timo-
shenko beam model is chosen, motivated by the low shear modulus of fuel
assemblies. The local damping and nonlinearities are then taken into account
by a global nonlinear visco-elastic behavior of the beam.

In the current work, the choice has been made to focus the homoge-
nized modeling on the fluid, as it occupies a connected domain within the
PWR core. The reader may thus refer to [Fontaine and Politopoulos, 2000],
[Pisapia et al., 2003] and [Ricciardi et al., 2009, Ricciardi, 2016] for further de-
tails on the solid medium modeling.
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2.2.2 Fluid modeling at the microscopic scale

Let us now consider the water flow within a PWR core. It is, under nominal
operating conditions, almost vertical, incompressible and very turbulent, with
a Reynolds number around 10°. Such a flow is governed by Navier-Stokes
equations:

v +div(u®u)] = nAv-Vop+f,
{p[ dw(y() )] = A p+f (2.9)

where p denotes the fluid density (kg.m3), v its velocity (m.s '),  the dynamic
viscosity (Pl = Pa.s), p the pressure (Pa), and f a body force per unit of
volume. These equations translate respectively the conservation of the fluid
momentum and mass. They are completed with a no-slip kinematic boundary
condition:

v—8U = 0 on d;(t)Na(t). (2.10)

As it will be detailed later in this chapter, in the section dedicated to tur-
bulence and Large Eddy Simulation (LES), the Direct Numerical Simulation
(DNS) of a viscous incompressible and turbulent flow (i.e. the direct computa-
tion of Navier-Stokes equations) quickly becomes too cumbersome. Indeed, the
number of degrees of freedom necessary to catch all the spatial scales contained
within the flow increases as a power law of the Reynolds number. Therefore,
as the solid medium, the fluid also requires a more mesoscopic modeling.

2.2.3 Modeling at the mesoscopic scale

As it was just highlighted, a mesoscopic modeling is relevant for both the
fluid and the congested solid medium in order to discard the smallest spa-
tial scales. Furthermore, the classical Fluid-Structure Interaction (FSI) ap-
proach, which can be found in [Faucher and Kokh, 2013 [Faucher et al., 2014]
or [Etienne and Pelletier, 2012, [Yu et al., 2016|, [Yu et al., 2018], is here con-
fronted with an overwhelming number of interfaces. As a consequence,
a homogenized approach of FSI shall be designed to tackle the in-
teraction between the two media. Inspired by works on multiphase
flows [Banerjee and Chan, 1980], [Delhaye et al., 1993], solid-fluid mixtures
[Terada et al., 1998],[Robbe and Bliard, 2002], or Large Eddy Simulation
[Barsamian and Hassan, 1997], porous media models were put forward for
nuclear in-core structures. Such an approach has been implemented in
[Ricciardi et al., 2009| Ricciardi and Boccaccio, 2015|, Ricciardi, 2016] for the
study of a PWR. core dynamics in response to a seismic transient. In such a
context, the fluid forces acting on structures come from the incompressible,
turbulent, and mostly axial flow through the assemblies. Taking advantage
of the quasi-periodicity of the inner components of a PWR. core, this porous
medium approach relies on:
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e the definition of a control domain {2, around each fuel rod, in the spirit
of a Representative Volume Element (RVE):

O ‘‘‘‘‘‘ I Ik
568 1G9
OO0

Figure 2.3: Cutaway of the control domain around a fuel rod.

e the definition of equivalent fluid and solid media (see Figure[2.4]) by means
of a volume averaging of their original PDEs over the control domain:

1
foo =T J, £ av. (2.11)

fluid equivalent fluid

O —>
Qr Q
iﬁ/ S/Iknownsv P unknownsve.,g}x ol

defined in Qf defined in () c

fluid+structure
. unknq
=00 (ﬁ\ SEHICETS equivalent structure Ve}P‘:R}:q
defined in ()
0| °

unknowns U unknowns Ugq
defined in Qs defined in () .

Figure 2.4: Philosophy of the porous medium modeling - reproduced from
[Ricciardi et al., 2009] with permission.

The volume averaging operator defined by (2.I1)) is applied directly onto
the PDEs (23] and (2.9) governing the two media at the microscopic scale.
It allows to derive spatially-filtered PDEs governing the equivalent fluid and
solid media. In the process, it transforms contact forces between the two
media, defined only on the interfaces, into body forces between their equivalent
counterparts. In a second step, the filtered PDEs governing the equivalent solid
medium are reduced into a Timoshenko beam model, as described earlier.

It is important to highlight that the original contact forces between the
two media depend on the original fluid velocity and pressure fields, and on the
original solid medium displacement, which are no longer solved either by the
spatially-filtered fluid or solid equations. In order to solve the porous medium
problem, a closure expression is thus required to connect unresolved and re-
solved scales. This expression shall allow to define the body force interaction
between the equivalent fluid and solid media as a function depending only on
the equivalent fields:
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EF_,S::E(ﬂ,p,Q), (212)
= F9 (Vpg, Deq Usy ) - (2.13)

As no analytical expression is available to define the functional F°? in
equation (2.1I3), an ad hoc closure model has to be implemented. In
[Ricciardi et al., 2009, [Ricciardi, 2016], an empirical model based on the
works of [Taylor, 1952],[Lighthill, 1960, [Lighthill, 1986] and [Paidoussis, 1966,
Paidoussis, 1969, [Paidoussis, 2006] is chosen to represent the forces applied by
a viscous incompressible turbulent flow to a single cylinder rod. In a similar
way, an ad hoc contact model is also needed for the new body force describing
impacts between fuel assemblies.

Beside these first closure expressions, another one is also required to prop-
erly model turbulence effects. Indeed, as it will detailed later when discussing
Large Eddy Simulation (LES), the volume averaging of the nonlinear convec-
tive term div (v ® v) requires to define the impact of the fluctuating component
of the velocity onto its filtered component. This closure expression is classically
defined by means of an ad hoc turbulence model (see [Lesieur, 2008]).

Beside this major issue of closure expressions between resolved and unre-
solved scales, such a porous medium approach also faces, like any other homog-
enization and multi-scale methods, an important issue with the treatment of
boundary conditions. Indeed, in order for the spatially-filtered PDEs to remain
local equations, the control domain (2.(z) shall be defined around each point z
of the total domain 2;U (2. As aresult, when z is located in the vicinity of the
boundary 0 (25 U (2;), the control domain (2.(z) overlaps the complementary
domain R®\ (£2; U (2). This fact requires to extend the initial fields to the
whole space R3, and thus raises the question on how to properly define the
boundary conditions on the equivalent (filtered) fields. It is usually assumed
in literature that the filtered fields share the same boundary conditions than
the original ones.

Finally, it shall be highlighted that such a porous medium or homogenized
modeling for FSI has for now only been applied in the case of a viscous in-
compressible and turbulent flow. To the author’s knowledge, no such work
exists for the case of a compressible flow and a fast transient pressure wave
interacting with a highly congested solid medium. In the PWR framework,
the interaction between a rarefaction wave originating from a pipe break and
the core dynamics is for now studied under some strong simplifications, like
in [Faucher et al., 2014], where fuel assemblies are considered as an equivalent
acoustic impedance, responsible for the global pressure drop through the core.
In such a case, where viscosity and turbulence effects can be neglected consid-
ering the time scale of interest, the proper evaluation of the loading exerted by
the fluid to the solid medium requires to represent pressure gradients within
the flow, at the suitable scale, and especially through the cross-section of fuel
assemblies. In order to better take into account the local geometric details of
the solid medium (without explicitly meshing all interfaces) and their impact
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on the propagation of pressure waves, a homogenized and multi-scale model
shall also be developed for this new physics of interest. This new model shall be
able to deal with the major issues highlighted in the porous medium approach,
and further detailed in the following sections dedicated to homogenization and
multi-scale methods.

2.3 Homogenization in solid mechanics

The keyword homogenization is usually linked to the study of heterogeneous
materials in solid mechanics. The following subsections are dedicated to the two
classical approaches of homogenization, namely mechanical and mathematical.

2.3.1 Mechanical approach

The mechanical approach of homogenization was originally developed in
the framework of linear elasticity. Confronted with a heterogeneous material,
the first step consists in the identification, if possible, of a Representative
Volume Element (RVE). This volume V shall be large compared to the material
microscopic heterogeneities, and small compared to the material size, in order
to allow for spatial averages on the RVE to be considered as local quantities for
the material. This RVE being set, the macroscopic and homogenized stiffness
(fourth-order) tensor gom can be defined, from its microcopic counterpart C,

as follows:

(), = <g £>V, (2.14)
=C" (), (2.15)

where <g>v and <g>v denote the RVE-volume averages of respectively the
Cauchy stress tensor and the linearized strain tensor:

(Fv = %/Vde- (2.16)

In order to estimate the macroscopic stiffness tensor, boundary condi-
tions have to be defined on the RVE. Following the work of [Hill, 1963, it
is known that for uniform stresses (g(z)-n = X-n) or linear displacements
(£(z) = E-z) imposed on the RVE boundary, one has <g>v = E. Moreover,
these specific boundary conditions also allow to estimate bounds on the macro-
scopic stiffness tensor for any other type of boundary condition, as proved by
[Nemat-Nasser and Hori, 1993].

Beside this issue of boundary conditions, a closure equation is also required
between the macroscopic (homogenized) stiffness tensor g’"m and its micro-
scopic counterpart C. This closure relies on the introduction of a fourth-order

concentration tensor A, defined by:
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Vz eV, e(z) = Az) : <g>V. (2.17)

The pioneering work of [Eshelby, 1959] brought theoretical results, known
as Hshelby’s tensor, to determine this concentration tensor, in the frame-
work of an elliptic inclusion embedded in an infinite linear elastic and
homogeneous medium. This early result has then been generalized in
[Tanaka and Mori, 1972] to any general domain {2 contained within two larger
and embedded elliptic domains (2 C &; C &,).

To bypass the strong assumptions required for the computation of the con-
centration tensor A, variational approaches have been proposed in literature

[Hashin and Shtrikman, 1963, [Willis, 1981], to determine, in a different way,
the homogenized properties of a material. Following the principle of minimum
potential energy, the RVE elastic energy density is defined as:

w (€> = mini/vW (g,g) dz, (2.18)

= ecK

where K is the set of kinematically admissible displacements, and W (g, g) the
microscopic elastic energy density of the heterogeneous material. The homog-
enized stress tensor C"°™ is then defined by:

hom

~~
my
N—
Il
| =
Ileny
e
[leny

(2.19)

However, as the minimization problem (2.18) cannot be easily solved, a
reference homogeneous medium is introduced to estimate a lower bound on
w (g) This reference material is chosen so as to satisfy a linear elastic be-
havior, with an additional second-order tensor, known as polarization ten-
sor. This tensor, usually assumed uniform on each phase of the heteroge-
neous material of interest, is then tuned so as to maximise a lower bound
on W (g) This variational approach in linear elasticity has then been ex-
tended to nonlinear elastic composites [Willis, 1981] |[Ponte Castafieda, 1991,
Ponte Castafieda and Suquet, 1998]. A few years later, a somehow similar vari-
ational method has been proposed to deal with nonlinear inelastic composites
[Miehe, 2002], where the micro-structure inelastic behavior is handled with an
incremental variational formulation on the potential associated to microscopic
stresses.

All these works, here included in a mechanical approach of homogenization,
share some strong limitations. Indeed, they often rely on strong assumptions
regarding the heterogeneities geometry, and require a clear scale separation
between the RVE size and the material size. They also face issues with the
treatment of boundary conditions (periodicity or infinite medium assumption),
explained by the fact that once again a RVE-volume averaging operator does
not allow to properly define homogenized fields in the vicinity of the domain
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boundary. Finally, this mechanical approach of homogenization is mostly re-
stricted to solid materials, and highly dependent on the mechanical behavior
law. This is a major drawback to its extension to other types of physics.

2.3.2 Mathematical approach

In parallel with this mechanical literature, mathematicians have also ex-
tensively studied the field of homogenization, with the objective to bring some
theoretical foundations to the approximation of a heterogeneous material by an
equivalent homogeneous one. The mathematical approach of homogenization
deals with phenomena governed by linear elliptic equations (linear elasticity,
stationary heat equation, Poisson equation for the electrical potential...), or
diffusion processes, with mostly periodically oscillating coefficients. For in-
stance, let (2 be a periodic and bounded open set in R™. Let us denote € its
period, which is assumed small compared to the size of the domain. Let A be
a bounded and positive definite second-order tensor. A linear elliptic problem
writes, with Dirichlet boundary conditions:

(2.20)
U = 0 ondf?

{ ~div(A(2)Vu) = f inQ
where u, is the unknown, and f is a source term, usually assumed in L? (£2) to
ensure the well-posedness of the problem.

The mathematical approach of homogenization [Bensoussan et al., 1978|
Sanchez-Palencia, 1980], often referred to as asymptotic or periodic homog-
enization, corresponds to the study of the limit of the problem (2.20) as the
parameter € tends towards zero. The homogenized problem associated to (2.20))
can heuristically be obtained by assuming the following two-scale asymptotic
expansion (ansatz):

u(z) = jf::eiui (g %) , (2.21)

where the functions (z,y) — u;(z, y) are assumed smooth and periodic in y.

Thanks to the linearity of the problem (2.20), this expansion can be used to

obtain a series of equations on the new unknows u,. The homogenized problem

then corresponds to the equation satisfied by ug, which can be shown to only
depend on the variable z:

{ ~div (A'V uo(z)) = f inQ (2.22)

Ug = 0 ondf?

where A* now denotes the homogenized (and uniform) second-order tensor.
The use of the two-scale expansion (2.21]) is supported by theoretical re-
sults on the convergence of the unknown u. as ¢ tends towards zero, known
as the oscillating test function method (or energy method) [Tartar, 1979] and
the two-scale convergence method [Allaire, 1992]. It is noticeable that this
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asymptotic homogenization, while mostly used for periodic materials, can also
be extended to the non-periodic case with the notion of G or H-convergence
[De Giorgi and Spagnolo, 1973, Murat and Tartar, 1997]. However, the deriva-
tion of the homogenized problem is not as straightforward as in the periodic
case.

Finally, it shall be highlighted that, despite their apparent differences, the
mechanical and mathematical approaches of homogenization do share some
common limitations. Indeed, the second one also faces issues with the treat-
ment of boundary conditions, as the periodicity assumption does not stand
anymore in the vicinity of the domain boundary. It is for instance well-known
that asymptotic expansions are not suited for the proper representation of
boundary layers phenomena. Furthermore, the mathematical approach is also
highly dependent on a strong scale separation assumption, as the parameter €
measuring the ratio between the smaller and larger spatial scales shall tends
towards zero. Besides, asymptotic homogenization is mostly applicable to pe-
riodic geometries and linear problems. Linearity is indeed required in order to
inject the two-scale expansion (2.21]) in the problem equation (2.20).

These two major approaches of homogenization being now described, it can
be highlighted that, while not always classified within the same literature, the
theory of homogenization can be embedded in the wide framework of multi-
scale methods. Indeed, homogenization aims at smoothing the microscopic
behavior of a material, i.e. the unresolved scales, in order to compute only the
macroscopic (low-frequency) behavior, i.e. the resolved scales. And like any
multi-scale method, a closure equation is required to describe the interaction
between unresolved and resolved scales (cf. the concentration tensor previously
described for instance). The following section is thus dedicated to some key
examples of multi-scale methods.

2.4 Multi-scale methods

Among the wide family of "analytical" (as opposed to numerical) multi-
scale methods, two different but somehow similar approaches will hereafter
be highlighted, in the framework of turbulent flows: on the one hand (ex-
plicit) filtering methods, such as Large Eddy Simulation, and on the other
hand projection-based methods, which are based on a direct-sum decomposi-
tion between a "coarse-component" space and a "fine-component" space, such
as the Variational Multi-Scale (VMS) method. The framework of Discrete
Wavelet Transform and Multi-Resolution Analysis (MRA), which shares sim-
ilarities with the VMS method, will be discussed in the sections dedicated to
wavelets.

2.4.1 Filtering methods: Large Eddy Simulation

To start with explicit filtering methods and Large Eddy Simulation, let us
first recall that Newtonian viscous and incompressible fluids are governed by
Navier-Stokes equations:
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div(v) = 0. (2.23)

{ plow+div(v@u)] = nAv—Vp,

Within a viscous incompressible flow, turbulence can be witnessed when

the convective component of the flow (pdiv (v ® v)), which is responsible for

kinetic energy transport, becomes significantly more important than the vis-

cous component (nA v), which is responsible for kinetic energy dissipation.

This competition between nonlinear convection and viscous dissipation is mea-
sured by the (dimensionless) Reynolds number:

_ llpdiv (v ® v)||

R.
InA vl

(2.24)

More precisely, if V' denotes the characteristic velocity of the flow, L its
characteristic length, and v = Z the fluid kinematic viscosity (m2.s71), the
Reynolds number can be expressed as:

R, = —. (2.25)

When the Reynolds number satisfies R, < 2000, diffusion dominates con-
vection, and the flow regime is laminar. When the Reynolds number increases
beyond this critical value, the flow progressively becomes turbulent, showing
increasing mixing property and coherent structures such as eddies. These ed-
dies possess a wide range of spatial scales, from the charagcteristic length of

the flow L down to the Kolmogorov scale, defined by LR * in 3D. Thus, the
number of degrees of freedom necessary to catch all the spatial scales contained
in a viscous turbulent flow increases as a power law of the Reynolds number.

To cope with the numerical limitation of DNS, multi-scale methods have
been developed to compute turbulent flows at less expensive cost. The
Reynolds Averaged Navier-Stokes (RANS) method and Large Eddy Simula-
tion (LES) are the most widely used techniques in literature. The first one is
based on a time averaging operator which allows to separate the mean and fluc-
tuating components of the flow. Under a stationarity assumption, the ergodic
theorem ensures that ensemble, time and spatial averaging are equivalent. As
for LES, it relies on a spatial filtering or averaging operator, which allows to
separate large and small scales. The scales larger than the filter cutoff length
are resolved, while the impact of smaller scales is modeled, and thus requires
a closure equation. Given a filter G5, where § > 0 denotes the cutoff length,
the filtered component v of a field v is defined by the following convolution
product:

v(z,t) = /Rd Gs (g - g) v (g, t) dy, (2.26)
= (Gs xv) (z,1). (2.27)
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The filter G5 can for instance be a box or Gaussian filter in physical space,
or a sharp filter in spectral space. The fluctuation v’ of the field v is then
defined so as to satisfy the following decomposition:

v=T+7v". (2.28)

In turbulence literature [Lesieur, 2008]|, it is generally assumed that the
spatial filtering operator commutes with all time and spatial derivatives. Thus,
by applying this operator on Navier-Stokes equations (2.23)), one obtains the
following filtered momentum balance equation:

0
+— [n(0;v; + 0;v;) + pT35], (2.29)

| o 0(vs
Vze{l,z,S},p[ + (”J)F—gf 7
i 3

ot &vj
where T = (T3;), ; is called subgrid-scale tensor, and is defined by:
T;; = U;0; — U;0;. (2.30)

This additional term results from the application of the filter on the non-
linear convective term v ® v. Equation (2.29) now drives only the spatial scales
larger than 4, i.e. the resolved scales. In order to highlight the impact of
smaller scales on this equation, and thus the need of a closure equation be-
tween resolved and unresolved scales, the subgrid-scale tensor can be rewritten
as follows (see [Lesieur, 2008]):

Ti; = vv; — (Vs + v;) (V5 + v5), (2.31)

= (ﬁiﬁj — ﬁiﬁj) — (ﬁi’U; + ’U;ﬁj> — ’U;’U;, (232)

= L;; + Ci; + R;;. (2.33)

Thus, beside the classical Reynolds-stress term R;; = —Tv;, two additional

terms appear in the subgrid-scale tensor compared to the RANS method. This
is explained by the fact that, conversely to time or ensemble averaging, the
spatial filtering operator is not idempotent, that is to say:

747 (2.34)

The first term L,; in equation (2.33), called Leonard’s term, depends only
on the velocity filtered component. However, the cross-term C;; and Reynolds-
stress term R;; both exhibit the velocity fluctuating component, i.e. the unre-
solved scales. In order to solve the filtered equation (2.29) , it is thus necessary
to add a closure equation, as in the theory of homogenization. As no analytical
expression is available to connect unresolved and resolved scales, an ad hoc
model has to be implemented. One of the first and most famous closure model
is Smagorinsky eddy-viscosity model [Smagorinsky, 1963], in which an artificial
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turbulent viscosity is introduced to account for the energy dissipation in the
subgrid scales. In this model, the deviatoric component of the subgrid-scale
tensor is evaluated via the following equations:

— 1
T,;j = _2VtSij + gt’f‘ (T) (5,;_7', (235)

gij = % (8,,3]% + 8zﬁj> , (2.36)

where the eddy-viscosity 14 is defined according to a mixing-length assumption:

v, = (C.Az)* 9], (2.37)
= (C.Az)* /25,55, (2.38)

where Az is the characteristic length of the subgrid scale, and Az ‘? can be
considered as a turbulent velocity. The parameter C; can be tuned depending
on the case at study. A commonly used value is C; = 0.1. The closure equation
being now defined, the spatially-filtered Navier-Stokes equations (2:29) can
then be computed.

Nevertheless, despite its common use, LES, like any other multi-scale or ho-
mogenization method, is still facing some important issues, among which the
treatment of boundary conditions. Indeed, the classical assumption of commu-
tation between the spatial filtering operator and spatial derivatives in the PDEs
does not stand for bounded flows. Moreover, convolution product is not prop-
erly defined on a bounded domain either. The use of a convolution product re-
quires to extend the original fields to the whole space R¢. Furthermore, the spa-
tial filtering process brings the original system boundary conditions within the
newly extended and filtered problem. The only way to avoid this phenomenon
is to decrease the filter cutoff length towards zero near the domain boundaries.
This option, however, significantly changes the derivation process of the fil-
tered equations, as the commutation assumption does not stand either with a
filter with varying cutoff length. The interested reader may refer to the works
of [Ghosal and Moin, 1995, [Fureby and Tabor, 1997, [Vasilyev et al., 1998,
Dunca et al., 2003, Berselli et al., 2006|, Leonard et al., 2007] for further details
on this topic.

Beside this important issue on boundary conditions, LES is also limited
by its need of a turbulence model to close the filtered equations and connect
resolved and unresolved scales. This closure model has a huge impact on the
LES results, especially around obstacles or near the flow boundaries. Such an
ad hoc model is here mandatory because a plain spatial filtering technique does
not offer an inverse formula able to reconstruct, from the filtered component,
the original field. It will be detailed later in this manuscript that, conversely,
Continuous Wavelet Transform (CWT) does offer such a reconstruction for-
mula.
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To conclude this subsection dedicated to filtering methods, it shall be high-
lighted that their use has recently spread in homogenization for solid mechan-
ics as well [Yvonnet and Bonnet, 2014] [Tognevi et al., 2016]. To the author’s
knowledge, such works are still limited to linear problems. Furthermore, similar
challenges are encountered with boundary conditions, and their consequences
on the definition of a closure equation (concentration tensor) between resolved
and unresolved scales.

Let us now turn towards another major approach in multi-scale modeling,
that is to say projection-based methods.

2.4.2 Projection-based methods: Variational Multi-Scale

Beside filtering methods, turbulence literature has also seen the devel-
opment of projection-based methods, such as the Variational Multi-Scale
method (VMS), which has been put forward as an alternative to LES for
the simulation of turbulent flows [Hughes et al., 1998, Hughes et al., 2000,
Hughes et al., 2001}, Bazilevs et al., 2007]. In a will to bypass some of the lim-
itations of spatial filtering operators (non-commutation with spatial deriva-
tives for bounded flows, treatment of boundary conditions), and the need of
a closure model between resolved and unresolved scales (e.g. eddy-viscosity
models), VMS promotes the use of a linear projection operator. The start-
ing point is thus the direct-sum decomposition of a linear subspace V (e.g. a
Hilbert space) into a coarse-scale (finite-dimensional) subspace V and a fine-
scale (infinite-dimensional) subspace V'":

v=VeV. (2.39)

The coarse scale component of a field f € V is then defined by:

f =P, (2.40)

where Py; denotes the projection on V. It can for instance be the L? or H'-
orthogonal projection.

Remark 2.4.1 Whaile the use of such a projection operator is intended
to replace the filtering operator used in LES, it could be argued that a
plain averaging of a T-periodic signal f € L?[0,T] is nothing else than
a L2-orthogonal projection on the linear subspace spanned by the wvector
{t —> ex(t) = T}, for k = 0. Indeed, given the Hermitian inner product
on L?[0,T]:

(0 =7 [ FOat)at (241)

the family (ex),., clearly constitutes an orthonormal basis for L?[0,T].
The L?-orthogonal projection of f on V = Vect{e,} is thus given by:
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Pof — (ﬁt; ﬁZL €0 (2.42)
- (3 [ =msoa)e (249

_ (% / 0 dt) e (2.44)

Thus, the plain averaging operator can also be seen as a projec-
tion operator. In a similar way, filtering a signal by cutting off all
frequencies beyond a value w., can be seem as a L?-orthogonal projec-
tion on Vect{(er)_; cper.}, With 2Zk. < w.. To further highlight this
link between linear projection and filtering, it is noticeable that in
|Koobus and Farhat, 2004, which extends the use of VMS to compress-
ible turbulence on unstructured meshes, a cell agglomeration method and
a plain spatial averaging are used to define the coarse-scale components,
rather than a projection operator.

This remark on linear projection and filtering being stated, VMS relies on
the decomposition of the problem variational formulation into coarse-scale and
fine-scale variational formulations. Starting with Navier-Stokes problem on a
domain {2 C R4, with Dirichlet boundary conditions for the velocity:

p(Ov+(-V)v) = -Vp+nldu+f inf,
dwv (v) = 0 in (2, (2.45)
v = 0 on 912,

the variational formulation writes:

for f € V*(£2), find (v, p) € V(2)xQ({2) such that, V(w, q) € V(£2) x Q(£2):

—p (%%)LQ +77/sz3 Zerp/Q((y-Z)y) -w—/gp div(w)

= <Lg>vw, (2.46)

/Q div (uv) g =0, (2.47)

where V (£2) = [HE (22)]° is a Sobolev space, V* (£2) is the dual space of V (£2),
and Q (2) = L (12). If one introduces the following linear, bilinear and trilinear
forms:

R

H
— (fiw

L :
Wy,

B <

(2.48)
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7~

VXV —
“ (gw) — /oY v: Y w, (2:49)
VxQ — R
b: . 2.50
(y; q) — - qu d'L'U(y), ( )
VXV xV +— R
2.51
(v,w,2) +— pfollv-V)u] -z, (251)
then the variational formulation (2.46H2.47) can be rewritten as:
—p (2, dew) 2 + a(v, w) + b(w, p) + (v, v,w) = L(w), (2.52)
b(v, q) = 0. '

Following [Bazilevs et al., 2007], the coarse and fine scale equations are then
obtained by injecting the decomposition of v and p into (2.52)):

- (ﬂ+yl,at(@+ﬂl))Lz +a(@+2,w+w)

+b(w+w,p+p)+c(@+2, v+, w+w)

I

b(@+v,g+¢)=0. (2.54)

Thanks to the direct-sum V = V @ V', equation (2.53) gives rise to the
following coarse-scale and fine-scale equations:

—(@+v,0@) . +a@+v,w)+b(w@,p+0)+c(@+ v, + v, W)
= L(w), (2.55)

— @+, 0w +a@+ v, W)+ bW, p+p)+c@+ v, T+, w)
L

The fine scale equation (2.56]) can be rewritten as:

— (¢, 6w, +a (¥, w') +bWw,p) +c@, v, w)+c(mv,w)+c(,1,w)
=L(w')+ (T,0w);. —a(g,w') - b(w,p) —c(7,7,w),
= (W, f—p0T+nAT—-VD—p[U-V]D)y.,. (2.57)
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Following [Bazilevs et al., 2007], the term in the right-hand side of equa-
tion Z57) (f —pou+nAu— NV D— p[u-V]¥) can be seen as the residual
Res (U, D) obtained when the coarse-scale components are used to approximate
the solution of Navier-Stokes equations (2.45). Thus, the fine-scale equation
(2.57)) theoretically allows to estimate the fine-scale components (v, p') in terms
of the coarse-scale components (7, ) and the residual Res (T, p):

(v, p') = F'[(v,p), Res (¥, D)] - (2.58)

Equation (2.58) is exactly the (formal) closure equation that allows to solve
the coarse-scale equation (2.55). In LES literature, this closure is brought by
a turbulence model, such as Smagorinsky eddy-viscosity model. Conversely,
VMS philosophy is rather to approximate the closure functional F’. To this
end, it is assumed in [Bazilevs et al., 2007] that, when the residual is small, a
perturbation series can be used to approximate F':

“+ o0
X' =>"€X,, (2.59)
k=1

where X' = (v',p'), X = (v,p) and € = ||Res(X)||..

However, as stated in [Bazilevs et al., 2007], a rigorous justification of the
convergence of this perturbation series is still, to the author’s knowledge, lack-
ing. Furthermore, when used in the fine-scale equation (2.57)), this series re-
sults in a cascade of linear problems, whose solutions require the introduction
of a fine-scale Green’s operator, which itself depends on the classical Green’s
operator, via the projection operator P,,. The computation of this fine-scale
Green’s operator brings additional difficulties and approximations, which, to
the author’s knowledge, still need to be dealt with.

Beside this key issue of closure between resolved and unresolved scales, it
shall also be highlighted that the treatment of boundary conditions is, once
again, raising some questions. Indeed, periodic boundary conditions are par-
tially used in [Hughes et al., 2001), Bazilevs et al., 2007], with an enforcement
of the no-slip condition on the coarse-scale component. In [Hughes et al., 1998],
it is rather assumed in the theory of VMS that the velocity coarse-scale com-
ponent v shares the same boundary conditions as the original velocity v. This
assumption can be questioned as a boundary is by essence a high-frequency
phenomenon. Furthermore, one can expect the coarse-scale component not to
be able to faithfully represent the boundary layer in the vicinity of an obstacle,
or to take into account a boundary rugosity and a logarithmic velocity profile
for instance.

To conclude this section on the VMS method, it can be highlighted that
a similar philosophy using a projection-based partitioning between coarse-
scale and fine-scale components has also been applied in the solid mechanics
community, for the study of heterogeneous structures [Ladevéze et al., 2001
Ladevéze and Nouy, 2003, [Ladevéze, 2004].

This wide state of the art on porous media, homogenization and multi-
scale methods being now recalled, it is high time to tackle the core of this
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chapter, that is to say wavelets literature. The following sections will thus
summarize some of the key concepts about wavelets theory. The focus will
be mainly put on Continuous Wavelet Transform (CWT), with its 1D and
2D implementation. The framework of 1D Discrete Wavelet Transform and
Multi-Resolution Analysis (MRA) will then follow to complete the picture.

2.5 1D Continuous Wavelet Transform

Wavelets theory stands at the crossing of multiple research areas, such as
signal and image processing, harmonic analysis, mathematical physics...While
early works from the 1930’s were already trying to develop new techniques to
cope with the drawbacks of Fourier transform, wavelets theory, in its current
form and denomination, can be tied back to the 1980’s. Indeed, the first or-
thogonal wavelets were introduced by [Stromberg, 1981]. Independently, the
theoretical physics community of Marseille (France) introduced and studied the
concept of Continuous Wavelet Transform (CW'T'), via the reference works of
[Grossmann and Morlet, 1984, |Grossmann et al., 1985] and [Torrésani, 1992,
Gonnet and Torrésani, 1994, [Torrésani, 1995, |Torrésani, 1998]. In paral-
lel with these works, new orthogonal wavelets were put forward by
[Lemarié and Meyer, 1986], followed by the framework of Multi-Resolution
Analysis (MRA) [Mallat, 1989a, [Mallat, 1989b, [Mallat, 1989c], and the work
of [Daubechies, 1988|, who defined the first smooth and compactly-supported
wavelets. For a brief history of wavelets theory and a wide overview of its devel-
opments and applications, especially in the field of MRA, the reader may refer
to [Jawerth and Sweldens, 1994]. The interested reader may also find further
information on general mathematical tools for time-frequency analysis in the
reference works of [Martin and Flandrin, 1985, [Flandrin, 1989, [Flandrin, 1999,
Flandrin, 2018].

To begin this overview of wavelets theory, the focus is here first put on 1D
Continuous Wavelet Transform (CW'T).

2.5.1 A middle ground between time and frequency

Following [Flandrin, 2005], one can motivate the introduction of wavelets
by highlighting the need to find a middle ground between:

e on the one hand, the time representation of a signal f, which formally
writes:

Vo € R, f(to) = [ u(8)f(t)at, (2.60)

where §;,(t) = 6(t — to) denotes Dirac distribution;

e on the other hand, the frequency representation {F[f](w)} which

allows to formally write:

weR?
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Viy € R, f(t) = % [ Fifw)e dw, (2.61)

where F|[f] denotes the Fourier transform of a signal f, defined by:

FIflw) = /R F(t)e~t dt. (2.62)

The time representation {f(¢p)}:cr thus consists in a linear decomposi-
tion of the signal f(t) on the individual atoms {d;, }+,cr, while the frequency
representation {7[f](w)},.p consists in a linear decomposition on the atoms
{w+— e}, . As aresult, the time (respectively frequency) representation
exhibits a perfect localization in the time (respectively frequency) domain.

2.5.2 Analysing wavelet and CWT

In order to bridge the gap between these two representations, and cope
with the poor localization of Fourier transform in the time domain, the idea of
Continuous Wavelet Transform (CWT) is to switch the atoms {w — e®“},
for a new type of functions, called wavelets, which exhibit good localization
properties both in the physical and spectral spaces. In order to be able to
study numerous time instants (or positions), and numerous frequencies, these
wavelets are built by dilations and translations from an original wavelet, called
analysing wavelet. The linear decomposition of a signal f on these wavelets
thus results in a well-localized transform, called Continuous Wavelet Transform
(CWT), which is now able to study a signal frequency spectrum around local
time instants or positions. The mathematical definition of 1D CWT is detailed
below.

Definition 2.5.1 1D Continuous Wavelet Transform (see
|Torrésant, 1995, [Mallat, 2008])

Assume ¥ € L' (R)N L? (R), with real or complex values, and satisfying
the following zero-average condition:

/RW(t) dt =0, (2.63)

or equivalently:
F#)(0) =o0. (2.64)

In the following, it is also assumed that the function ¥ is L?-normalized
i the time domain:

||W||L2(]R) = 1. (2.65)
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Such a function V¥ is called an analysing wavelet. The above require-
ments ensure that ¥ will exhibit good localization properties in both the
physical and spectral spaces. From this original atom, one can build a
famaly of dilated and translated atoms {t — %W(t%‘) " where s 18

a scale parameter, and u a translation parameter.
The Continuous Wavelet Transform (CWT) of a finite-energy signal
f € L? (R) is then defined as the linear decomposition of f on the complez-

conjugates of these atoms (i.e. a L?*-inner product), that is to say:

Vs >0, u€eR,

WIF](s, u) = % [ 5w (%) dt. (2.66)

The (complez) number W]f]|(s,u) is called wavelet coefficient. It is
here evaluated for a giwen scale s > 0 and a time instant u € R. If one
now introduces the notations W,(t) = %Lﬁ (f), and ¥(t) = ¥(—t), the above

definition (2.66) can be rewritten as a convolution product:

WIfI(s,u) = (f * ;) (w), (2.67)

or equivalently, in the frequency domain, as:
FWISI(s, )l (w) = FIfIw) x F [7] (), (2.68)
= F[f)(w) x v/sF [¥] (sw)". (2.69)

To complete this definition of 1D CWT, a few remarks shall be stated:

Remark 2.5.1 e the definition ((2.68), where one can notice the scaling
factor %, 1s referred to as an "energy formulation" of CW'T; the use

of a scaling factor %, referred to as an "amplitude formulation"”, can
also be found in literature. These formulations preserve respectively
the wavelets energy (L*> norm) and amplitude (L' norm), as detailed
below:

OB T P
_ %/RW(T)PsdT, (2.71)
= |77z - (2.72)
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1 /- 1
—w<_) :/_ w(fﬂ dt, (2.73)
S S L1(R) R S S
1
- / w(r)| sdr, (2.74)
S JR
= ||W||L1(]R)‘ (2.75)

e to justify the well-posedness of equation ((2.69), one can put forward
Young’s inequality, which ensures that, given a finite-energy signal
f € L?(R) and a wavelet ¥ € L* (R) N L? (R), the function defined by
u — WIf](s,u) = (f*@:) (u) belongs to L?(R) N L* (R). Thus, it
indeed admats a Fourier transform.

e thanks to the wavelet zero-average condition (2.63), one can also
define the CWT of a constant signal, which does not belong in L? (R).

These definition and remarks being stated, let us now emphasize the local-
ization property of wavelets.

2.5.3 Localization property

Considering the requirements on the analysing wavelet ¥, namely the zero-
average condition F[¥](0) = 0, and the fact that ¥ € L' (R)NL? (R), its Fourier
transform F[¥] also belongs in L? (R), and one can moreover state that:

Jm ()] =0, (2.76)
Jlm P [7 @) =0. (2.77)

As a result, the analysing wavelet ¥ classically exhibits a well-localized
support both in the physical and spectral spaces, with an oscillating behav-
ior in the time domain, and a band-pass behavior in the frequency domain.
Furthermore, all the dilated wavelets {V.} o = {\/%II/ (j>}s>o share a similar
localization property, with a bandwidth which is identical for all wavelets.

Indeed, following [Torrésani, 1995, Mallat, 2008, [Lilly and Olhede, 2009],
the support of a complex and analytic wavelet ¥ (the definition will be de-

tailed later in this section) in the time-frequency plane can be defined by:

e a center in the time domain :

= /Rt|lI/(t)|2 dt; (2.78)

71|22 sy
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e a width in the time domain :

(aty) = / (t —tg) [2(2) d (2.79)

IIWIILz(R)

e a center in the frequency domain :

1 5 )
m/RWpTM (W) dw; (2.80)

e a width in the frequency domain :

wlp:

2 1 2 5
(Awyp) :mé(w—ww> IF [¥] () dw. (2.81)

The wavelet ¥ being L2-normalized in the time domain, Parseval-Plancherel
identity implies that || F []|| oz = v2m. Furthermore, the wavelet ¥ is usually
centered around zero in the time domain (tw =ty = 0). Taking into account

the scale parameter, the wavelet family {¥,},. , is shown to satisfy the following
properties:

Time width ‘ Central frequency ‘ Frequency width

Ay

At&ps = SAtLp Wy, = - Awg,

Table 2.1: Analysing wavelet time-frequency support.

Thus, by filtering a signal through a wavelet family {¥,}, ,, it is possible
to study numerous frequency ranges, while preserving the time (or spatial)
localization via the translation parameter u. The interested reader may refer to
[Torrésani, 1995, Mallat, 2008] for a detailed presentation on wavelet transform,
and to [Lilly and Olhede, 2009] for an overview of the different frequencies
(energy frequency, peak-amplitude frequency, instantaneous frequency) that
can be associated to a complex analytic wavelet.

Speaking of such wavelets, it is now time to properly define the concept of
complex analytic wavelet.

2.5.4 Complex analytic wavelets

Conversely to Fourier transform, where the atoms {w —— e*“}, cr are
complex-valued, the analysing wavelet ¥ can be either:

e complex analytic;

e real and symmetric.
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Let us here start with complex analytic wavelets.
Definition 2.5.2 Complex analytic wavelet

A complez-valued wavelet ¥ € L' (R) N L? (R) is said to be analytic if
and only if:

Vw <0, F V] (w)=0. (2.82)

Let us illustrate this definition with some examples:

Example 2.5.1 Complex analytic wavelets
e Cauchy wavelet of order n € N:
i n+1
W (t) = | —— : 2.83
0= (%) (2.83)
2 _

F¥,|(w) = ﬁw”e “H(w), (2.84)

where H denotes the Heaviside function.

e generalized Morse wavelets: Vo, B > 0,
F Wap] = tapwe™ " Hw), (2.85)

where Q,p = 2 (%)E. The 1interested reader may refer to
|Lilly and Olhede, 2009] for a detailed study of this wavelet family.

e complex Shannon wavelet:

P(t) = 7sin,(t)e™™. (2.86)
e Morlet wavelet:
2 . L2
0, (t) = Ave 7 [ve _ eﬂ , (2.87)
F0)(w) = Ae "7 [L—e ], (2.88)

which 1s only approzimately analytic when the parameter v is large
enough. The parameter A, 1s a normalization constant. Once again,
the interested reader may refer to [Lilly and Olhede, 2009] for more
details on this wavelet.
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e Gabor wavelet (n > 0):

o(t) = g(t)e'™, (2.89)
F ¥ (w) = Flgl(w — ), (2.90)

1

(o2m)3

2 . . .
where g(t) = e 2% 15 a Gaussian window, whose Fourier trans-

form s gwen by Flg](w) = (4%02)%6*#. Thus, when the frequency
w 18 sufficiently far away from m, the wavelet Fourier transform is al-
most zero. Gabor wavelet thus becomes approximately analytic with
a well-chosen parameter 7.

Such complex and analytic wavelets meet a great success in literature. To
emphasize why, some properties on analytic signals and Fourier transform shall
first be recalled.

Remark 2.5.2 Analytic signal, Fourier and wavelet transforms

Any complex analytic signal ¥ € L? (R, C) admits the following decom-
position:

W(t) = R(W)(t) + iH [R(D)] (£), (2.91)
F Y] (w) = F[R(¥)] (w) + sign(w)F [R (V)] (w), (2.92)

where R(V¥) denotes the real part of ¥, and H the Hilbert transform:

W[ () = % v ([ iw(f) ar), (2.93)
—p. [(T — %) \ w] (). (2.94)

In equation (2.94), p.v. denotes the principal value. It is for instance
recalled that the principal value of the function t — % 15 a distribution,
which 1s defined by:

1 . o(t)
Vo € S(R), < V. <—>, > = lim —=dt, 2.95
4 (), (P )% 515 0JR\[-ee 1 (2.95)

where S (R) denotes the Schwartz space (i.e. smooth functions with
fast decay towards zero).

Following equation ((2.92), the Fourier transform of a complez analytic
signal ¥ € L? (R, C) satisfies:
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F 0 (w) :{ 2P IR W) W) A (2.96)

Continuous Wavelet Transform also presents interesting properties
with analytic signals. Indeed, if one considers a real-valued finite-energy
signal f € L? (R,R), and its complez analytic counterpart f, = f + iH[f],
it can be shown that their respective wavelet transform satisfies:

Vs >0, W(f. (s, -) =2WIf](s, -). (2.97)

This remark on analytic signals being stated, it can now be emphasized
how complex analytic wavelets allow to catch instantaneous frequencies within
a real signal.

Remark 2.5.3 Complex wavelets and instantaneous frequencies

The use of a complex analytic wavelet ¥ on a real signal f allows
to obtain compler wavelet coefficients, which offer information via their
modulus and phase. This ability to keep track of the phase of a signal
opens the way to instantaneous frequencies.

Indeed, it has already been underlined that any real signal f € L? (R, R)
can be connected, thanks to Hilbert transform H, to its complexr analytic
counterpart f, € L* (R,C):

fa(8) = £(8) +TH[f] ), (2.98)
= |fa()] e eret=). (2.99)

Thus, a real stgnal f can be linked to the canonical pair (|f.|,arg (f.)),
with arg (f.(t)) € [0,27[. The instantaneous frequency wy of the real signal
f 1s then defined by:

wy(t) = % larg (fa(1))]- (2.100)

Complex wavelets allow to keep track of the phase of the analytic com-
ponent f,. Furthermore, the wavelet coefficients of the analytic signal f,
are closely related to the ones of f, as stated by equation (2.97). As for the
computation of the analytic component f, from the original signal f, it 1s,
i common situations, very easy. Indeed, if the signal f is an asymptotic
signal, 1.e. if it exhibits a single-component oscillatory behavior:

F(t) = A(t) cos(p(2)), (2.101)

with a phase ¢(t) oscillating much faster than the amplitude A(t), then
the following approximation holds:
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falt) m A(t)e™). (2.102)

The interested reader may refer to |Delprat et al., 1992,
Carmona et al., 1994, Carmona et al., 1997, Le and Argoul, 2004|]
for further details on the use of compler analytic wavelets for the study
of asymptotic signals.

Now, depending on the signal at study, one can be more interested in a sym-
metric property of the wavelets, rather than their ability to catch instantaneous
frequencies. In such cases, one can turn towards real wavelets.

2.5.5 Real and symmetric wavelets
Classical real and symmetric wavelets are detailed below:
Example 2.5.2 Real symmetric wavelets

e 1D Mezican hat, obtained by computing the Laplacian of a Gaussian
2

. _ 7
function e 222, 0 > 0:

I(t) = — 2 (1 t2> e (2.103)
= — — | €& 20 , .
mTiy/30 o2
8oaTe o2w?
F(w) = ———we = . (2.104)
V3

U(t) = —e 27 —e 2. (2.105)

Such real and symmetric wavelets are very smooth, and can be used to
detect singularities in signals, or to reqularize non-smooth behaviors.

A common denominator between all the wavelets described until now,
whether they are complex or real, is their band-pass behavior in the frequency
domain. However, it is sometimes more suited to use low-pass filters to catch
simultaneously all the scales or wavelengths beyond a specific cutoff value, as
in Large Eddy Simulation (see [Lesieur, 2008]) for turbulent flows for instance.
By aggregating all dilated wavelets {¥,}, for s > 1, it is possible to build such
a low-pass filter, called the scaling function or father wavelet.
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2.5.6 Scaling function and low-frequency approximation

Given an (admissible) analysing wavelet ¥, one defines its associated scaling
function @ as follows:

Definition 2.5.3 Scaling function (see [Torrésani, 1995, [Mallat, 2008])

If w € L' (R) N L?(R) denotes an (admissible) analysing wavelet, its
assoctated scaling function @ is defined, in the frequency domain, by:

Vw € R, |F ] (W) = /1+°° M ds, (2.106)
_ /w+°° % de. (2.107)

The phase of the Fourier transform F [®| can be chosen arbitrarily. Be-
sides, the scaling function satisfies the same normalization (in L? norm)
as the analysing wavelet.

By aggregating all dilated wavelets {¥}, for s > 1, as shown in equation
(2:107), one gathers all their successive bandwidths, and thus obtains a
low-pass filter.

To complete the above definition of scaling function, a few remarks shall be
stated:

Remark 2.5.4 Admissibility and L?>-normalization

e the convergence of the integral in equation ((2.107) is ensured when
the analysing wavelet ¥ satisfies the following admassibility condition:

Cy:= /R |'7--[Ll|vj]%)|2dw < 400. (2.108)

This admassibility criterion will also be encountered when discussing
verse wavelet transform.

e the definition (2.107) ensures that both the analysing wavelet and
scaling function are L?-normalized in the time domain. Indeed, one
can write, using Fubini’s theorem:

[ 179 ()P dw:/R/jmwdgdw, (2.109)
[ ER@F (e,
_/R : </0 d ) de, (2.110)
:/Rprm ()] de, (2.111)
= or. (2.112)
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Parseval-Plancherel identity then allows to state that ||<P||iz(R) =1.

It is here worth noticing that, conversely to analysing wavelets, scaling func-
tions do not always possess an analytical expression in the time domain. For
the Mexican hat wavelet for instance, an analytical expression is only available
in the spectral domain, as detailed below.

Example 2.5.3 Mexican hat scaling function

The scaling function associated to the 1D Mezican hat wavelet is de-
fined, in the spectral domain, by:

2 % % 1 3 2w
F[o] (w) = U\/g <w2+?>ge ol (2.113)

This low-pass filter being defined, let us now turn towards the low-frequency
approximation of a signal f € L?(R).

Definition 2.5.4 Low-frequency approximation (see [Torrésani, 1995,
Mallat, 2008])

Given an original scaling function & € L' (R) N L? (R), one can build

a family of dilated atoms {%(ﬁ (—)} o The low-frequency approrima-

S

tion L[f] of a finite-energy signal f € L? (R) is then defined as the linear
decomposition of f on the complex-conjugates of these atoms:

Vs >0, ueR,

CIf(s,u) = %/Rf(t)é (t - “) dt. (2.114)

S

Stmalarly to Continuous Wavelet Transform (CWT), this definition
can be rewritten, in the time and frequency domains, as:

Llf)(s,u) = (£ * ) (w), (2.115)
FILIf(s, )] (w) = FIf)(w) x VsFI@)(sw)" (2.116)

Now that both the analysing wavelet ¥ and scaling function ¢ are defined,
it is high time to emphasize why CWT can be a relevant tool to bypass the
limitations of classical homogenization and multi-scale methods, especially the
closure between resolved and unresolved scales, and the treatment of boundary
conditions.

32 CHAPTER 2. STATE OF THE ART Samy Mokhtari



2.56. 1D CONTINUOUS WAVELET TRANSFORM

2.5.7 Inverse wavelet transform

Conversely to classical convolution-based filtering operators, Continuous
Wavelet Transform (CWT) offers an inverse formula, which allows to recover
a high-resolution signal f € L?(R) from its wavelet coefficients W[f](s, -).
The only requirement to fulfill in order to allow for such a reconstruction is to
choose an admissible analysing wavelet, as detailed below.

Theorem 2.5.1 1D reconstruction formula (see [Torrésani, 1995,
Mallat, 2008])

If the analysing wavelet ¥ satisfies the admassibility condition:

:/H%de < too, (2.117)

then the following reconstruction formula holds:

o if ¥ is real, then for all f € L? (R):

f(t) = %}/W (/ WIf](s u)\/gw(t_su) du) %, (2.118)

e if U is complex and analytic, then for all f € L? (R):

f(t)——R(/ (/W 5, 1) <t;u)du>$>. (2.119)

Furthermore, in both cases, the following energy identity holds:

Il =, (LA 0P @) . (2120)

For the sake of completeness, it shall be highlighted that another re-
construction formula can be defined with the scaling function &. Indeed,
if the analysing wavelet ¥ is real, one has, for all f € L? (R):

=2 [ ([ winen () a) &

+ o /R £lfl(s0,w) =t (%) | 2121

where sy 18 a positive scale parameter chosen to compute the low-frequency
approzimation L[f|(so, -). It represents the cutoff scale of the low-pass
filter &g, .
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Thanks to the above reconstruction formula, it is thus possible, with a
well-chosen number of wavelet coefficients (W[f](sk, * ));<r<n» Selected on a
well-chosen scale range [si, sy], to reconstruct, up to an approximation, the
signal f at the microscopic scale. This reconstruction formula thus allows to
connect unresolved and resolved scales without any ad hoc model. It will also
allow, as proven in chapter 3, to properly transfer the boundary conditions of
a microscopic field f into its filtered counterpart W[f](s, -).

Nevertheless, despite this obvious advantage of CWT compared to plain
filtering methods, it is important to highlight that CWT exhibits one main
drawback: redundancy.

2.5.8 CWT and redundancy

Indeed, the use of CWT transforms a one-variable function ¢ — f(t) into
a two-variables function (s,u) — W]f](s,u). Furthermore, correlations be-
tween different wavelets of the family {¥} . ; can be witnessed. This is due to
the fact that the supports of wavelets associated to neighboring scale parame-
ters may overlap. The redundancy of a specific analysing wavelet ¥ is measured
by its reproducing kernel, as detailed in [Torrésani, 1995, [Mallat, 2008].

Definition 2.5.5 Reproducing kernel

The reproducing kernel of a wavelet ¥ is defined by the L?-inner product
between two dilated wavelets:

VSl,SQ & Rj_, U1, Us € R;

K(SI)SQ,HI;IU'Q) — <W52,u2)W51,u1>L2 ) (2122)

_ /]R éw(t;“Q)* \/}W(t—&ul) dt. (2.123)

This expression of the reproducing kernel can be obtained by injecting the
reconstruction formula (2.118) into the CWT definition (2.66):

WIS](s2, us) (2.124)
:/R(%A+“AW[f](sl,ul)j§w(t_31“1) du, i?) \/15&(;2“2)* at,
(2.125)

2 [too 1 t—u 1 t—us\* ds
- —/0 /R /R S1y7 S1 1 SQL[/ Sa 2 a W[f](SI’ul) duls—zl’
Cu ( ver < > ver < > ) (2.1126)
_ Ciw [~ K(sl,SQ,ul,uQ)w[f](sl,ul)duli—?. (2.127)
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In order to bypass the redundancy of CWT, efforts have been made in
the 1980’s and 1990’s to develop (discrete) orthogonal wavelet bases. But be-
fore introducing Discrete Wavelet Transform and orthogonal Multi-Resolution
Analysis (MRA), let us first extend CWT to the 2D case.

2.6 2D Continuous Wavelet Transform

In the 1D case, all the atoms {V;.(t)},.q yer = {\/igllf (’%‘)} “o uer VETE

built by dilations (s) and translations (u) from an analysing wavelet ¥. In the
2D case, one shall now take into account 2 degrees of freedom of translation,

and 1 degree of freedom of rotation. Thus, all the atoms {Lps&,g} 50, weR?, E[0,21]

are now defined, with an energy formulation, as:

Vs uo(Z) = %L” ((ﬁ)l 2 - y) , (2.128)

where u € R? is now a translation vector, and R, € R**? a 2D rotation matrix.

Remark 2.6.1 In 2D, the previous time (t € R) and frequency (w € R)

notations are replaced by respectively a position (z € R?) and a wave vector
(k € R?).

2.6.1 Analysing wavelet and CWT

Based on the atoms (2.128]), the definition of 2D CWT follows the same
spirit as 1D CW'T:

Definition 2.6.1 2D Continuous Wavelet Transform (see
|Gonnet and Torrésani, 1994, |[Antoine and Murenzi, 1996])

Assume ¥ € L' (R*)NL? (R?), with real or complez values, and satisfying
the following zero-average condition:

/ w(z) dz = 0, (2.129)
R2
or equivalently:

F[#](0) = 0. (2.130)

In the following, it is also assumed that the function ¥ is L?-normalized:

1| 2r2y = 1- (2.131)

Gwven this analysing wavelet ¥, the Continuous Wavelet Transform of
a signal f € L?(R?) is defined, with an energy formulation, as follows:
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Vs >0, u € R? 6 €l0,2n],

WIf] (s, u,0) = %/R f(z)ﬂ(ﬁ)‘l = — y) dz. (2.132)

and Yy(z) =V <(ﬁ>_lg), the above definition (2.133) can be rewritten as

follows:

® |18

If one introduces the notations ¥(z) = ¥(—z), ¥, 4(z) = %W((&)d

WIf] (s,u,0) = (f* 7,,) (w), (2.133)
FWIf(s, -,0)] (k) = F[f](k) x sF [¥] (sk)". (2.134)

In the above definitions, the following notations are used:

e 5 is a positive scale parameter, u € R? a vector, and 8 an angle;

e W[fl(s,u,0) is the wavelet coefficitent of f;

. ~ [cos(f) —sin(6)
R (sin(&) cos(6)

> 15 the 2D rotation matriz with respect
ee2)

to the (O,ﬁ/\g) azis, where (ﬁ,@) 15 the orthonormal cartesian
basis of R2.

As in the 1D case, the requirements imposed on the analysing wavelet ¥
ensure that it will exhibit good localization properties both in the physical and
spectral spaces.

Nevertheless, while most properties of CWT naturally extend to the 2D
case, it is worth noticing that it is not the case for complex analytic wavelets.

2.6.2 Complex wavelets: from analytic to directional
wavelets

In 2D, the definition of analytic wavelets does not stand anymore, as it is
no longer possible to properly define and distinguish a positive and a negative
wave vector k € R2. In wavelets literature, the concept of complex directional
wavelets has thus been introduced. Such wavelets possess a Fourier transform
which is essentially supported within a convex cone in the spatial frequency
plane {k € R?}. They thus exhibit an anisotropic behavior, and are especially
suited for the detection of oriented features, such as edges in a picture for
instance. The interested reader may refer to [Gonnet and Torrésani, 1994] and
[Antoine and Murenzi, 1996] for further details on this topic.

Conversely to complex wavelets, 1D real symmetric wavelets are naturally
extended into 2D isotropic functions.
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2.6.3 Real and isotropic wavelets and scaling functions

One of the most widely used real and isotropic wavelet is the 2D Mexican
hat, hereafter defined both in the physical and spectral domains.

Example 2.6.1 2D Mezican hat

Wz) = ﬁ% (1 B ||2g0||22> e 5, (2.135)
FW(k)=0 (2.136)

Such real and isotropic wavelets allow to extend the concept of scaling
function to the 2D case, as detailed below.

Definition 2.6.2 2D real and isotropic scaling function

Ifw e L' (R?)NL? (R?) denotes a real, isotropic and admissible analysing
wavelet, one can define its associated (real and isotropic) scaling function
as follows:

vk € R?, |F[P] (k) / F 7] (3”k||)| ds, (2.137)
_ . [T P (§)|2
- 2/|@| g (2.138)

Once again, the phase of the Fourier transform F [®] can be chosen
arbitrarily. The above definition ensures that the scaling function @ 1s
real and isotropic.

To complete this definition, a few remarks shall be stated:
Remark 2.6.2 Admissibility, L?>-normalization and isotropy
e to ensure the well-posedness of the integral in equation (2.138), the

analysing wavelet ¥ shall satisfy, as in the 1D case, the following 2D
admassibility condition:

Cyp:= /R % dk < +o0. (2.139)

e the definition ([2.138) ensures that both the analysing wavelet ¥ and
scaling function & are L?-normalized. Indeed, one can write, for all
ke R?:
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[ IF@l@P k=2 /Jowdgdk, (2.140)
= 2/027r /:oo (/;m%ds) rdrdf, (2.141)

= 4r /0+oo </r+oo % d§> rdr. (2.142)

Thanks to Fubini’s theorem, one can then write:

/Rzm (&) dk_4/ m(/{) rdr) ¢,  (2.143)

— 4r /0+°°%2 < %d{, (2.144)
=or [ TIF WP ed, (2145)
/ / W] (£)7 € de d, (2.146)
/ ) (k) dk, (2.147)
=47 (2.148)

Parseval-Plancherel identity then allows to state that ||¢||i2(R2) = 1.

e the 1sotropy property of the scaling function results from the isotropy
of the analysing wavelet. Indeed, one can notice that:

Fl(-k) = [ W(x)e™ = dz, (2.149)
ooty e
Fl®)' = [ vle)e® =de, (2.151)
= [ w(-y) et rdy. (2.152)

]R2

Thus, if the analysing wavelet ¥ 1s real and isotropic, one has
lI/(—y>* = W(—y) = Y(y), and its Fourier transform also is real and
1sotropic, t.e. F [V (k)* = F[W|(k) = F[W](—k). As a result, the
Fourier transform F [®|, and the scaling function & itself, share the
same properties.
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As in the 1D case, scaling functions do not always possess an analytical
expression in the physical domain. For the Mexican hat wavelet for instance,
one can only define its 2D scaling function in the spectral domain.

Example 2.6.2 2D Mezican hat scaling function

The 2D scaling function associated to the isotropic Mexican hat wavelet
1s defined, in the spectral domain, by:

1
2 o2kl?

F[®] (k) = 0*V2r <||E||2 + %) e . (2.153)

As stated in the previous remark, one can notice that this scaling func-
tion 1s purely real and isotropic in the spectral domain, and thus also in
the physical domain.

The definition of 2D isotropic scaling functions being now stated, one can
then extend the concept of low-frequency approximation to the 2D case.

Definition 2.6.3 2D low-frequency approximation
Gwven ¥ a real and isotropic analysing wavelet, and ¢ its real and
1sotropic scaling function, one can naturally extend the definition of low-

frequency approximation as follows:

Vs >0, u € R?,

Ll = [ f@e (1) dz, (2.154)

By introducing the notations &,(z) = 1o (%) and &(z) = &(—z), the

S

above definition can be rewritten as follows:

LIf)(s,u) = (£ x®,) (w), (2.155)
FLIf](s, -)) (k) = FIfI(k) x sF[@] (s]|E]]) - (2.156)

Now that both the analysing wavelet ¥ and scaling function ¢ have been
extended to the 2D case, it is high time to also extend the inverse wavelet
transform.

2.6.4 Inverse wavelet transform

Following [Gonnet and Torrésani, 1994, [Antoine and Murenzi, 1996], the
inverse wavelet transform is extended to the 2D case as detailed below:
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Theorem 2.6.1 2D reconstruction formula

If the analysing wavelet ¥ satisfies the admassibility condition

Cyp:= /R % dk < +00, (2.157)

then, the following reconstruction formula and energy identity hold:

1 +o00 27 1 _ _ d
f@):@/o L[ Wil w 0) < o ((Ry) 22 do s,

(2.158)

11 ) = %D/Om L /02” WIF|(s, , 6)[° dedy% (2.150)

If the analysing wavelet ¥ 1s real and isotropic, the reconstruction for-
mula (2.121), which uses the scaling function & and the low-frequency
approzimation L[P](so, -), can naturally be extended to the 2D case.

Now that all the properties of Continuous Wavelet Transform (CWT) have
been extended from the 1D to the 2D case, it is high time to turn towards
Discrete Wavelet Transform and Multi-Resolution Analysis (MRA), which offer
a framework able to bypass the redundancy of CWT.

2.7 1D Discrete Wavelet Transform and Multi-
Resolution Analysis

As already highlighted in the introduction of the previous sections, the
development of orthogonal wavelet bases has benefited from the impor-
tant works of [Stromberg, 1981) Lemarié and Meyer, 1986, Daubechies, 1988,
Mallat, 1989b]. This fairly recent literature expanded the pioneering work of
[Haar, 1910], who designed the first orthogonal wavelets basis, known as the
Haar basis. These early wavelets, however, exhibit a discontinuous behavior,
which limits their use for the numerical computation of PDEs for instance.

Before citing some examples of orthogonal wavelets, it is first important to
recall the theoretical framework of MRA.

Definition 2.7.1 Multi-Resolution Approzimation of L? (R)

The concept of Multi-Resolution Approzimation (MRA) of L? (R) was
first introduced in [Mallat, 1989b]. It is defined as a sequence of closed
subspaces (Vj)jEZ, which satisfies the following properties:
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V] € Z; V} C ‘/3+1;

UjEZ‘/_-j - L2 (R), and mjez‘/:j - {0};

Vz €R, Vj €Z, f(z) €V, < f(2z) € V};1,

Vo €R, Vi, k € Z, f(z) €V; = f(z—277k) € V};

there exists an isomorphism from V, onto 1?(Z), which commutes
with the action of Z;

where 12 (Z) 1is the space of square-summable sequences. The action
of Z over V, 1s defined as the translation of functions f € V, by integer
values, while the action of Z over 12 (Z) is defined as the usual translation.

It is proven in [Mallat, 1989b] that a function ¢ € L?(R) exists, with a
non-vanishing integral, such that for all 5 € Z:

(on,k(rv)),cEZ D= (\/2_1(,0 (2j:c — k>>keZ is an orthonormal basis of V;.
(2.160)

This function ¢ is called an orthogonal scaling function, and is uniquely
characterized by:

e a refinement or dilation equation:
p(z) =2 arp(2z — k), (2.161)
kEZ

where the real sequence (a;)rcz is called a scaling sequence, which satisfies
>okez @k = 15

e and the following normalization:

/Rtp(x) dz = 1. (2.162)

Let us now introduce the complementary space of V; within V;,,, here
denoted W;, which moreover satisfies an orthogonality condition (V; L W;).
One can thus write, for all j € Z, the following direct-sum:

Via =V oW, (2163)

In MRA vocabulary, the space V; is said to contain the information of a
given signal f € L? (R) at the resolution level 27, while W, is said to contain
the details allowing to go from the resolution level 27 to 27*!. The above
direct-sum immediately implies that:

Samy Mokhtari CHAPTER 2. STATE OF THE ART 41



2.7. 1D DISCRETE WAVELET TRANSFORM AND
MULTI-RESOLUTION ANALYSIS

VIEZ V=, W; (2.164)
®;eW; = L* (R). (2.165)

Besides, it is also proven in [Mallat, 1989b] that there exists a function ¢ €
L? (R), called orthogonal wavelet, such that the family (\/2_J¢ (2j T — k>>keZ is
an orthonormal basis of W;, for all 7 € Z. As a consequence:

Y, k(z)). := (V299 (22z — k)) . is an orthonormal basis of L? (R).
Iy 1,kEZ k,jEZ
(2.166)

Remark 2.7.1 It can here be noticed that, conversely to wavelet famalies
(¥s)so in the CWT framework, orthogonal wavelet bases (Yj); o, are now
constructed by means of integer translations and dyadic dilations from an
analysing wavelet 1.

Let us now denote by Q; the orthogonal projection on W; and parallel to
@,.;W,. The direct-sum (2.165]) implies that, for all f € L? (R):

Vz € R, f(z) = ZQj(f)(w), (2.167)
= Z (Vs es F) 2 ¥s(). (2.168)

Equation (2.168)) can be seen as an inverse discrete wavelet transform.

Thus, when going from Continuous Wavelet Transform to Discrete Wavelet

Transform and MRA, one switches the correlated atoms {%Lﬁ( — OweE

orthonormal wavelet bases (\/2_3'(,0 (2j T — k))k - and leaves the "convolution
!]

product" point of view for a "linear projection" point of view. Now, to illustrate
the concept of orthogonal MRA, let us present some examples of orthogonal
wavelets.

Example 2.7.1 Orthogonal wavelets

e Haar analysing wavelet 1s a real, compactly supported, symmetric and
orthogonal wavelet, defined by:

1 o 0<t<i
Yt)y=4q -1 if <t<1 (2.169)
0 otherwise
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Its associated scaling function is the box function:

1 if 0<t<l1

w(t) = { 0 otherwsise (2.170)

Such a wavelet presents a low interest because of its discontinuous
behavior.

e Shannon wavelet 1s a real, symmetric and orthogonal wavelet, defined by:

W(t) = sin(27t) — sin(7rt). (2.171)

7t

Its associated scaling function is defined by:
@(t) = sin.(t). (2.172)

Such a wavelet 1s not compactly supported, and worse, erhibits a slow
decay towards zero when [t| increases.

o Meyer wavelet [Meyer, 1990] is an orthogonal wavelet with a C*® smooth-
ness and a fast decay towards zero,

e Daubechies wavelets [Daubechies, 1988] were the first wavelets to possess
both a high (but finite) smoothness and a compact support. These wavelets
are indezed by a finite but arbitrarily high number of vanishing moments
N € N*, and their support is given by [0,2N — 1].

These examples of orthogonal wavelets being stated, it is worth highlighting
the slighty different framework of bi-orthogonal wavelets.

Remark 2.7.2 Bi-orthogonal wavelets

The construction of orthogonal wavelet bases obviously imposes some
additional restrictions for the design of both the scaling function ¢ and
analysing wavelet ¢, compared to the CWT framework. To soften these
restrictions, bi-orthogonal wavelets have thus been designed. Following
[Jawerth and Sweldens, 1994|], the idea is to no longer tmpose that ¢ and
Y generate orthonormal bases of V; and W; respectively. Thus, if one still
denotes by Q; the projection operator on W;, it can only be stated that,
for all f € L? (R):

Qi(f) = >_ 1 (Qs(£) Y (2.173)
= > (k0 Q) (N5, (2.174)

where:

Samy Mokhtari CHAPTER 2. STATE OF THE ART 43



2.8. WAVELETS AND BOUNDARY CONDITIONS

o (¢Y;r)kez still denotes a (non-orthogonal) basis of W,

e l,0Q; :veEW; — (loQj)(v) € R or C is the unique linear form
on W; satisfying:

VE' € Z, (o Q;) (Wiw) = 68, (2.175)
where 6F denotes the Kronecker symbol.

If one now denotes by (ﬁj,k>kez the dual basis of (Yjk)ey, 1-€- the basis

that generates the dual space W} of Wj, and which moreover satisfies:

vjl)jZ) kl; k2 € Z; <Jj1,k1)¢j2,k2>ll2 — 5;56;3, (2176)

then Riesz representation theorem ensures that for all f € L? (R), 7,k € Z:
(b0 Q) (f) = (Fsp F) L, - (2.177)

This result allows to rewrite the projection of f € L*(R) on W, as
follows:

Qi) =X (Pins f) o Vi (2.178)

keZ

Finally, using the still valid (but no longer orthogonal) direct-sum
(2:163), the following inverse discrete wavelet transform is obtained for
all f € L*(R) :

Vz €R, f(z) = Y ($ip f), Yix(2). (2.179)

J,kEZ

This remark on bi-orthogonal wavelets thus concludes this section dedicated
to Discrete Wavelet Transform and Multi-Resolution Analysis (MRA).

Now, before concluding this bibliography chapter, the next two sections
discuss the issue of "wavelets and boundary conditions", and present some of
the numerous applications of wavelets theory, in fields such as signal processing,
operator analysis and PDEs.

2.8 Wavelets and boundary conditions

Similarly to multi-scale and homogenization methods, MRA and Contin-
uous Wavelet Transform (CWT) also face a challenge with the treatment
of boundary conditions. Indeed, both integer translations and convolution
product require to be defined on the whole real line R. Nevertheless, mo-
tivated by the numerical computation of PDEs, efforts have been made to
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adapt the MRA framework to an interval, and bounded domains in gen-
eral. Intuitive methods such as "zero-padding" or periodizing introduce dis-
continuities and high-frequencies on the boundaries. To prevent such phe-
nomena, constructions of wavelet bases on an interval, based on Daubechies
compactly-supported wavelets, have been put forward in literature. For fur-
ther details on this topic, the interested reader may refer to the works of
[Meyer, 1992, [Auscher, 1993, [Cohen et al., 1994, Monasse and Perrier, 1995],
and [Chiavassa and Liandrat, 1997]. As for Continuous Wavelet Transform,
it will be detailed in chapter 3 how it may take into account PDEs boundary
conditions. But for now, let us turn towards some important applications of
wavelets.

2.9 Wayvelets, signal processing, operator analy-
sis, and PDEs

Wavelets have met an important success in scientific fields such as signal
processing, operator analysis and PDEs.

Indeed, in signal or image processing applications, especially if data com-
pression is not the main objective, Continuous Wavelet Transform (CWT) can
be used, for instance with complex analytic or directional wavelets, to study in-
stantaneous frequencies contained within a signal, or detect edges and oriented
features in a picture. Besides, in the following of this manuscript, it will also be
proven that CWT can be used, with smooth and isotropic real-valued wavelets,
as a regularizing tool to study heterogeneous media or multi-scale phenomena,
leading to a new possible formulation of homogenization and multi-scale meth-
ods. As for MRA, it is of course ideally suited for data compression driven
applications. The JPEG 2000 image compression format is for instance a good
example of the use of orthogonal wavelets.

Beside data compression, orthogonal wavelets have also shown their rele-
vance in operator analysis and PDEs, as they allow to represent, in a sparse
way, linear operators. Indeed, thanks to the inverse discrete wavelet transform
(2168)) detailed earlier in the framework of orthogonal MRA, the action of any
linear operator T' on a function f € L? (R) can be written as follows:

5, kEZ
- Z <¢j,k: f>[,2 (Z <¢i,l; T (¢j,k)>L2 wi,l> , (2.181)
7,kEZ 3,lEZ
- Z ( Z (i1, T (¢j,k)>L2 (W5 ks f>L2> Vi (2.182)
i I€Z \j,kEZ
Following [Beylkin et al., 1991, Beylkin, 1992], the matrix
((z,bi,l,T (Yir)) L2)(i DG is referred to as the standard representation of
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the operator T' in the orthogonal wavelet basis (¥;k);,c;- Ideally, if these
wavelets were eigenvectors of the operator T', this matrix would be diagonal.
In the general case, it is of course not the case. Nevertheless, as detailed in
[Jawerth and Sweldens, 1994], the operator matrix may be considered "almost
diagonal", as off-diagonal elements are quickly becoming small, thanks to the
fast decay (or ideally compact support) of the wavelets 9, ,, which impacts
the decay of T (v;), and thus its L*-inner product with ;.

Such sparse representations of linear operators are of course not something
brand new. Finite difference or finite element methods already allow to solve
sparse linear systems. However, these systems are often ill-conditioned, which
slows down iterative methods. The sparse representation of a linear operator in
a wavelet basis, conversely, allows to decrease the condition number, as detailed
in [Beylkin et al., 1991], which presents the BCR algorithm designed to com-
press Calderon-Zygmund operators into a sparse form. The interested reader
may also refer to [Lazaar et al., 1994, [Tchamitchian, 1996, |Alpert et al., 2002]
and [Piquemal and Liandrat, 2005].

Finally, in the spirit of adaptive grid methods, such as multi-
level adaptive techniques [Brandt, 1977] or adaptive mesh refinement
[Berger and Oliger, 1984], adaptive wavelet methods have been designed for
the computation of PDEs. For an extensive overview of these methods, the
reader may refer to the reference works of [Jaffard, 1991) [Liandrat et al., 1992,
Dahmen, 1997] and [Cohen, 2000]. Basically, such methods mainly spread
into two families: on the one hand, wavelet-based Galerkin methods
for finite element computations, such as in [Frohlich and Schneider, 1997],
[Schneider et al., 2001, [Mehraeen and Chen, 2006], and, on the other
hand, adaptive multi-resolution schemes for finite volume computations,
with numerous works such as the ones of [Berger and Collela, 1989,
Harten, 1994] and [Bihari and Harten, 1995| Bihari and Harten, 1997, or more
recently the works of [Cohen et al., 2003| Miiller, 2003| [Roussel et al., 2003],
[Bramkamp et al., 2004, [Roussel and Schneider, 2005, [Dahmen et al., 2013].
Multi-resolution schemes take advantage of the fact that wavelet coefficients
contain information on the local regularity and local variations of a function.
Indeed, wavelet coefficients tend towards zero in regions where the function is
smooth, and increase in regions of steep gradients. Thus, a coarse grid can be
used to compute the solution where wavelet coefficients are below a given toler-
ance, and dyadic nested refinements can be implemented in other regions. For
general spatial discretizations and meshes, projection and prediction operators
are introduced to go back and forth between each level of the nested grids, in
the spirit of multi-grid methods. In the 1D case, or with 2D Cartesian grids,
the MRA framework previously described can be used to define the operator
going from the grid (s; = 277) to the refined grid (s;,; = 270U*1).

2.10 Conclusion

This chapter presented an overview of the state of the art on porous media
approaches, homogenization and multi-scale methods, with a final major focus

46 CHAPTER 2. STATE OF THE ART Samy Mokhtari



2.10. CONCLUSION

on wavelets theory. Scientific fields such as FSI, heterogeneous materials, tur-
bulence, signal processing and operator analysis were highlighted. Despite their
apparent differences, almost all the methods previously described face similar
limitations. Indeed, the issues of boundary conditions and closure between
resolved and unresolved scales stand out as a common denominator. Plain av-
eraging/filtering methods or asymptotic expansions are indeed ill-posed in the
vicinity of a domain boundary, and always require an ad hoc closure model (cf.
concentration tensor, Smagorinsky eddy-viscosity model, series expansion...).
Furthermore, the homogenization literature was also shown to rely on addi-
tional assumptions such as periodicity, scale separation, and linearity.

Wavelets, conversely, offer a reconstruction formula that allows to connect
resolved and unresolved scales without any ad hoc model. This analytical
closure expression also allows to properly take into account PDEs boundary
conditions, and to handle, if necessary, nonlinearities. To the author’s knowl-
edge, a wavelet-based model able to tackle these major issues would be a brand
new contribution in the literature of homogenization and multi-scale methods.
To reach this goal, the crux of the matter is thus to explain how Continuous
Wavelet Transform (CWT) may be applied onto a continuum medium PDEs,
possibly exhibiting non-smooth solutions, and how the resulting spatially-
filtered PDEs indeed define a homogenized continuum medium. This is the
aim of the following chapter, which is dedicated to the thorough description of
the wavelet-based multi-scale and homogenized model.
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Chapter 3

A wavelet-based multi-scale and
homogenized model

3.1 Introduction
The need for a homogenized approach of FSI...

As already highlighted in the general introduction of this manuscript, this
work deals with a Fluid-Structure Interaction (FSI) phenomenon that involves
numerous interfaces, and multiple spatial scales. The classical FSI approach
would lead, in such a context, to cumbersome computations. To bypass both
the interface and multi-scale problematics, the choice has been made to turn
towards a more mesoscopic approach, in the spirit of porous media, homoge-
nization, and multi-scale methods.

...able to connect resolved and unresolved scales, and to handle bound-
ary conditions.

The previous chapter emphasized how the wide literature on porous media,
homogenization and multi-scale methods is confronted with major challenges.
The issue of closure between resolved and unresolved scales, and the treatment
of boundary conditions, were especially highlighted. Additional limitations
such as scale separation, periodicity and linearity have also been discussed.
Thus, in order to build a self-sustained multi-scale and homogenized model, it
is necessary to first, analytically connect resolved and unresolved scales without
any ad hoc model, and second, handle the PDEs boundary conditions. In the
current work, these boundary conditions play a key role as they focus the
interaction between the fluid and solid media.

Why CWT 1s the right tool to tackle these issues ?

In this quest for a self-sustained multi-scale and homogenized model, able to
account for a compressible flow within a congested solid medium, wavelets and
especially CWT progressively appeared as the right tool for the task. Indeed,
wavelets allow to homogenize the fluid by filtering/smoothing out all interfaces
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and high-frequency phenomena. This filtering process hereafter relies on a
convolution product between an analysing wavelet or scaling function, and the
fluid conservation laws and equation of state. It results in PDEs governing
a homogenized fluid, whose variables are now the wavelet coefficients of the
original fluid variables.

Furthermore, thanks to an inverse wavelet transform, it is now possible to
analytically connect the homogenized fluid (i.e. the resolved scales) to the real
fluid (i.e. the unresolved scales). This also opens the way to a proper transfer
of the real fluid boundary conditions into the homogenized fluid.

Last but not least, the convolution product that is here promoted between a
wavelet (or scaling function) and the PDEs governing an inviscid compressible
fluid, may be extended to generic PDEs.

How to choose the wavelets (or scaling function) scale parameter ?

As described in the previous chapter, wavelets are band-pass filters, while
scaling functions are low-pass filters. When designing a wavelet-based multi-
scale model, one can naturally wonder how to determine the relevant spatial
scales that need to be computed. This is case-dependent, and requires to have
some insights on the spectrum of the quantities of interest. In the current
work, as turbulence effects are neglected, it is expected that the solid medium
will drive the relevant spatial scales. But first, the important point is to check
whether the wavelet-based multi-scale model actually converges towards a high-
resolution computation (e.g. Direct Numerical Simulation) when the wavelets
or scaling function catch all the possible spatial scales, i.e. when the cutoff
scale sy tends towards zero. However, it shall be kept in mind that the wavelet
explicit filtering is not independent from the mesh implicit filtering. Indeed,
one cannot hope to represent all spatial scales by decreasing s, if the mesh size
h is not refined accordingly. Compatibility conditions between s, and h will
moreover be emphasized in order to prevent instabilities and aliasing in the
numerical computations.

Why not use orthogonal wavelet bases to avoid redundancy ?

The wavelets scientific community is known to be divided between advo-
cators of respectively continuous and discrete wavelets. When it comes to the
numerical computation of PDEs, discrete wavelets seem to have taken the up-
per ground. Indeed, the previous chapter underlined how Discrete Wavelet
Transform and orthogonal wavelet bases could be seen as an "improvement"
compared to Continuous Wavelet Transform. These orthogonal bases indeed
discard all redundant information, and can be used to compress linear operators
into a sparse form.

However, it is here important to keep in mind that the current work aims
at deriving PDEs governing an equivalent homogenized fluid, defined at the
continuum medium scale. The homogenization process shall also stay as much
as possible independent from any specific choice of discretization technique.
The framework of Discrete Wavelet Transform and Multi-Resolution Analysis,
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with its integer translations and dyadic refinements, is rather suited to finite-
difference schemes and Cartesian grids.

Furthermore, it will be proven, later in this chapter, that the analysing
wavelet ¥ and scaling function ¢ have to possess a C* smoothness, in order
to properly define a convolution product with the fluid PDEs. Indeed, as com-
pressible flows may exhibit non-smooth solutions (e.g. shock waves), the fluid
equations shall be manipulated in a weak sense. This will require to work
within the mathematical framework of distributions theory. Discrete orthogo-
nal wavelets such as Daubechies’ indeed possess a useful compact support, but
exhibit "only" a C*" smoothness, with u ~ 0.2 and N < +o0.

Finally, the non-redundancy property of orthogonal wavelets, and their re-
sulting ability to compress linear operators into a sparse form with a low con-
dition number (cf. the BCR algorithm highlighted in the previous chapter), is
mostly relevant in the context of iterative methods and implicit schemes. The
current work deals with a fast-transient wave propagation phenomenon, which
is classically computed with explicit schemes. Indeed, as the time step is here
constrained by the wave velocity, whether the scheme is implicit or explicit, the
second option offers the advantage to avoid any matrix inversion process.

Thus, the framework of Continuous Wavelet Transform (CWT) appears
here better suited for the implementation of a homogenization/filtering process.

How to choose between a real and complexr wavelet ?

In parallel with the "continuous VS discrete" debate, one cannot avoid the
discussion between real and complex wavelets. For 1D time signals analysis,
complex analytic wavelets, with their ability to track instantaneous frequencies,
definitly have the upper ground. However, in the current work, CWT aims at
filtering 2D fields that do not possess any oriented feature. Indeed, both the
analysing wavelet and scaling function shall be able to “observe” pressure waves
propagating in different directions simultaneously (reflection/transmission on
obstacles). Furthermore, it will be proven that both the analysing wavelet
and scaling function shall possess a C* smoothness, a good localization in
the spatial domain, and a fast decay towards zero. A real wavelet such as the
isotropic Mexican hat fulfills all these requirements. It also offers the advantage
to lead to spatially-filtered PDEs expressed in the physical domain.

How to implement CWT on the fluud PDEs, or on generic PDEs ?

Now that the important debates on "continuous VS discrete" and "real VS
complex" wavelets have been settled in the current context, one can wonder
how, practically speaking, CWT will hereafter be applied to the fluid PDEs
(or to generic PDEs). As described in the previous chapter, CWT can be seen
as a convolution product between a signal of interest, and an analysing wavelet
or scaling function. To now apply such a convolution product on PDEs which
may exhibit non-smooth solutions, this manuscript puts forward the following
generic procedure:
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o "weak-extension": first, extend, in a weak sense, the original fluid PDEs
to R?; this step is mandatory to ensure the proper definition of convolu-
tion product on R?; this extension will mostly rely on Green’s formula for
integration by parts and distributions theory; the treatment of the fluid
boundary conditions will here play a key role;

e "weak-convolution": second, write, in a weak sense, the convolution prod-
uct between the analysing wavelet or scaling function, and the extended
fluid PDEs; this requires to state all the requirements that the wavelet
and scaling function have to fulfill in order to properly define the convo-
lution with a distribution; this "weak-convolution" will eventually result
in spatially-filtered PDEs governing a homogenized fluid. Its variables
will moreover be expressed as wavelet coefficients of the original fluid
variables.

How a linear transform such as CW'T may handle nonlinearities ?

Last, but not least, one may question the ability of a linear transform
such as CWT to actually handle nonlinearities. There is not any magical
formula allowing to express the wavelet transform of a nonlinear term, here the
convective term (pv ® v), in terms of the wavelet transform of its individual
components p and v. Nevertheless, thanks to the reconstruction property of
CWTT, it is now possible to recover (up to an approximation), at each time step,
the original density p and velocity v from their respective wavelet coefficients
WIp|(s, - ) and W[u](s, -). It is thus possible to compute explicitly the wavelet
coefficients W[pu ® v](s, -) from the reconstructed fields. Such a process is of
course expected to deteriorate the computation time.

In fluid mechanics, the nonlinear convective term is mainly responsible for
turbulence effects, as detailed in the section dedicated to Large Eddy Simula-
tion (LES). The current work considers a fast-transient phenomenon, during
which turbulent dissipation is classically negligible compared to pressure gra-
dients, given the time scale of interest. Thus, the treatment of the nonlinear
convective term will hereafter be simplified, avoiding additional reconstruction
processes.

All these important questions being now answered, it shall here be noted
that the homogenization process will hereafter be applied in a 2D framework.
Indeed, fuel assemblies inner structure needs to be accounted for only in a
transverse section, while the components of the pressure waves along the axial
direction can be described using standard discretization techniques (see Figure
[2.2al for an illustration of a PWR fuel assembly). Spacer grids contribute little
to the response of the assemblies to a transverse wave. Thus, classical regular
and singular head loss models can be implemented to account for these grids,
and for the friction along the rods that may impact the axial component of the
waves.

Besides, as only the fluid occupies a connected domain in the problem of
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interest, the choice has been made to apply the homogenization process only
to the fluid. It will thus focus our modeling efforts. As for the fuel assemblies,
considering the 2D modeling framework, and the focus on transverse pressure
waves, the behavior of their cross section will be modeled, in first approxima-
tion, as a rigid body possessing 2 degrees of freedom, here two translations.
Such an approximation is motivated by the fact that spacer grids tend to main-
tain a constant distance between the individual fuel rods contained within an
assembly.

Throughout this third chapter, the wavelet-based multi-scale and homoge-
nized model will progressively take shape, with the following steps:

the equations of both the solid and fluid media will be recalled at the
microscopic scale;

important mathematical results regarding the non-smooth behavior of the
solutions to the fluid PDEs will be recalled; this behavior will hereafter
require to manipulate the fluid equations in a weak sense;

3.4| wavelet-based homogenization: in order to apply Continuous Wavelet
Transform (CWT) to the fluid equations, the following procedure will
be implemented:

(i) "weak-extension" of the original fluid equations to R?;

(ii) "weak-convolution" product between the extended fluid equations,
and a well-designed wavelet or scaling function;

3.5| boundary conditions, closure, and nonlinearities: the ability of CWT to
deal with these 3 important issues will be emphasized;

3.6| "analytical" accuracy and convergence: the model ability to converge (in
a sense to be specified) towards Direct Numerical Simulation (DNS) will
be discussed;

the analysing wavelet ¥ and scaling function @ will be specified;
all the model assumptions and equations will then be summarized;

numerical methods: finally, the last section will describe the numerical
methods chosen to implement the wavelet-based model; a special focus
will be put on the problematics of stability, which is a critical point for
explicit schemes, and aliasing, which is linked to the numerical imple-
mentation of wavelet transform.

3.2 Modeling at the microscopic scale

To begin this chapter, let us consider the modeling at the microscopic scale.
As an illustration for the problem at study, let us consider the 2D geometry
displayed on the following Figure [3.1k
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Figure 3.1: Illustration of a 2D {fluid + solid} geometry.

The whole {fluid + solid} domain thus contains:

e a fluid domain (2, which is an open bounded and connected space of R?,

e a solid domain (2, which is an open bounded and disconnected space of
R? : .Qs = U; Qs,;) with Qsi ﬂi;,gj -Qsj- = @

It is important to note that no periodicity or scale separation assumption
on the solid domain {2; will be needed in the design of the model.

3.2.1 Solid medium

As illustrated in Figure[3.1] the solid medium of interest is composed of the
disjoint reunion of multiple disks, here arranged in an array representing the
cross section of a fuel assembly. As spacer grids tend to maintain a constant
distance between neighboring disks, the global array will be considered as a
rigid body animated with two degrees of freedom, respectively horizontal and
vertical translations. The behavior of the array will be modeled by a linear
oscillator for each degree of freedom, whose dynamic equilibrium is governed
by the following differential equation:

Vi € {1,2}, mU; + cU; + kU; = Fp_5 - €;, (3.1)

or equivalently:

. ) 1
Vi € {1,2}, U; + 2¢woU; + wU; = — X (Frs-ei), (3.2)

where:

. (ﬁ , Q) is the orthonormal Cartesian basis of R?;

T
o U — (U1 Uz) is the displacement (m);

m is the mass (kg);

c is the friction coefficient (kg.s™');

k is the system stiffness (N.m™' = kg.s ?);

wp is the system eigenfrequency, defined by: wy = \/g (rad.s™1);

[

¢ is the (dimensionless) damping coefficient, defined by: £ = T

Fr_ ¢ is the force (N) applied by the fluid to the whole array of disks.

Samy Mokhtari CHAPTER 3. MODELING 53



3.2. MODELING AT THE MICROSCOPIC SCALE

3.2.2 Fluid

Let us now consider the water flow. Under nominal operating conditions,
the water within a PWR core is purely liquid at around 300°C under 155 bar.
The flow is almost vertical, incompressible and very turbulent, with a Reynolds
number around 10%. However, the current work deals with the propagation of
a transverse pressure wave through the flow and fuel assemblies. The theory of
viscous incompressible flow is therefore no longer relevant. To account for such
a fast-transient phenomenon, the following modeling framework is hereafter
considered:

e monophasic compressible flow;

e inviscid fluid: viscosity and turbulence effects are negligible compared to
pressure gradients;

gravity is negligible compared to pressure gradients;

conduction heat transfer is negligible on the time scale at study;

barotropic fluid;

Based on this modeling framework, the water flow is governed by the fol-
lowing Euler compressible equations:

O:p + div (pv) = 0 in £24(%),
Oy (pv) +div(pr®u) = —V p in 24(t), (3.3)
Oy (pe) +div((pe +p)u) = 0  in 24(2),

where:
e pis the fluid density (kg.m™2);
e v is the velocity field (m.s!);
e p is the pressure field (Pa);

e e is the specific total energy (J.kg™?).

The system (B.3) translates respectively the conservation of mass (p), mo-
mentum (pv) and energy (pe). This system of conservation laws is here closed
by a barotropic equation of state:

P = Pres + Coon (P — Pref) (3-4)

where p,.s is a reference density, p,.; = p(pref) the corresponding reference
pressure, and C,on = 1/0,p the sound velocity in the fluid.
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Regarding now the boundary conditions, the assumption of inviscid fluid
implies:

‘Np_,s = atg'ﬂpl_)s on &Qfﬂa(?s,

v
Unpa = 0 ond\0m, (3:5)

where np_, ¢ and np_, ., denote the outward unit normal vectors on the bound-
ary 02;.

Thus, given an initial data, the pressure wave is completely described by
Euler compressible equations (3.3)), the barotropic equation of state (3.4) and
the kinematic condition (3.5) on the flow boundary.

Now, before starting the wavelet-based homogenization process, the follow-
ing section recalls important mathematical results regarding the non-smooth
behavior of the solutions to the fluid PDEs. The focus is especially put on
the role played by Rankine-Hugoniot condition with regards to the possible
discontinuities.

3.3 Non-smooth behavior of the fluid PDEs

Euler compressible equations ([3.3)) are part of a general class of systems of
PDEs, called hyperbolic systems. With such equations, the global existence
(in time) of the classical solution is not guaranteed in the general case. Hence,
weak solutions shall be considered. Furthermore, as hyperbolic systems may
possess several weak solutions, an entropy function and its conservation law
are generally added in order to select the solution physically relevant. In the
case of an inviscid fluid satisfying a barotropic equation of state, the role of
entropic equation is played by the energy balance equation. The interested
reader may refer to [Godlewski and Raviart, 1996| for a detailed presentation
on hyperbolic systems.

Regarding now the smoothness of this entropic solution, it can be deter-
mined by writing the weak formulation of (3.3) with smooth and compactly-
supported test functions. Starting from an initial data Xy = (po, (pv),, (0€)o)
locally bounded in §2; (L5?.), it can be shown that the entropic solution
X = (p, pv, pe) will possess the same spatial smoothness. Moreover, the
fluid domain (?; being bounded, a L? spatial smoothness is satisfied for all
g € [1,+00]. Nevertheless, it can be noted that, in literature, weak solutions
are generally assumed to be piecewise C' functions in time and space, whose
jumps across surfaces of discontinuity are governed by the Rankine-Hugoniot
condition. Shock waves in compressible flows are a perfect example of such
discontinuities. The framework of piecewise C! solutions will thus be hereafter
considered.

In order to recall Rankine-Hugoniot condition, let us consider the following
generic hyperbolic system of p conservation laws, here written in conservative
form:

du(z, t) + div (G(u)) (z,t) = 0 in R¥x]0, +00], (3.6)
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or equivalently:
d
deu(z,t) + 3 Ou, [9,(w)] (2,1) = 0 inR¥x]0,+o00], (3.7)

Jj=1

where:

T, . .
° U= (u1 u,,) is the vector of unknown conservative variables, for

T
instance u = (p PUz  PUy pe) in the case of 2D Euler compressible
equations;

e G(u)is a (p x d) matrix whose columns are the d flux functions g;:

G]_,]_ ‘e G]_,d

Gu)=| : | (w), (3.8)
Gp’]_ cee Gp,d

- (gj(ﬂ))gjgd' (3-9)

In the case of 2D Euler compressible equations, one has:

T

g9, (u) = (pvr, pvi+p pvu. (pe +p)vz> : (3.10)
T

g,(w) = (pvy puyvs pU; +p (pe +p)'uy> : (3.11)

Following [Godlewski and Raviart, 1996], one can write, for all test func-
tions ¢ € [D (Rdx]o, +oo[)]p, the weak formulation of (3.7) as follows:

<0tu £y, l9,(w)] ,£>

J=1 ,D

DI
+o0 d
:_/0 /R H'8t£+jzlgj(u)-8mjg dzdt
=0. (3.12)

In order to emphasize why weak solutions of such hyperbolic systems have
to satisfy Rankine-Hugoniot condition, one can:

e consider, for simplicity, that the solution w, which is piecewise C' on
R?x]0, +0o[, possesses only a single (smooth) surface Y of discontinuity,
which thus cuts the domain R¢x]0, +00] into two subdomains 2" /2 ;
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e split, thanks to Chasles’ relation, the above weak formulation (3:12]) into
two integrals, one for each subdomain;

e use twice Green’s formula for integration by parts in order to introduce
two integrals on the boundary X,

e use the fact that the solution is smooth on both 2" and 2~, which implies
that it satisfies the hyperbolic system (3.7)) in a strong sense;

e and finally, bring together the two integrals on the boundary Y, in order
to obtain an equation driving the discontinuity jump of the solution across
)/, namely Rankine-Hugoniot condition,;

Before going further, let us introduce some notations:

Notations 3.3.1 e R¥x]0, +oo[= 27U 27, such that 2" N~ =0, and
X =00"Nos;

T
eny = (nt ny ... nd) denotes a mormal vector of the surface X,
oriented from 21 to 2 ;

e [f]" := f"—f denotes the jump of the function f across the surface
of discontinuity X;

o {f} denotes a piecewise continuous function on R%x]0,+oo[ which
coincides with the distribution f on (Rdx]o, +oo[) \ 2.

Step 1 : Chasles’ relation

Following [Godlewski and Raviart, 1996], one can first write, by using
Chasles’ relation:

+oo d
B /0 /]Rd (H 8t£+ Jz::lg](y) ’ 813]9) dz dit
d
B _/Q+ <@'8t£+ > 9,(u) -8mjg> dz dt

a /(2* (y‘atﬂJrigj(u)-é’zJ-g) dzdt. (3.13)

Step 2 : Green’s formula for integration by parts

Then, by using Green’s formula for integration by parts, the integrals on
the two subdomains 2" and {2~ can be rewritten as:
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—/Q ( 8t<p+Zg )dwdt

= iy 10} -0dzdt = [ ut(@)-plelmede+ .3 {0g,00)} -pduct

- /zjz:"jﬂf (u(2)) - p(g)da. (3.14)

(s 000 0) sna
— /Q, {Osu} -ngdt—/xg‘(g) .Q(g)(—n,g)ngr/QJZ::1 {3@2]-(@)} pdadt

- /Ejzd:l(_"j)ﬂf (u(2)) - p(e)de. (3.15)

By adding these last two equations, one obtains:

_/0+°°/Rd (g@tg-i-ig](y)@%g) dz dt
= /{f {&e@-i-]i:lamgj(ﬂ)} -dedt-l-/g, {&e@-i-i:l@wjgj(g)} - pdzdt
- /E ( [l + Zn] [_' = ]+> (g)-p(c)da. (3.16)

Step 3 : the solution is smooth in 2" and (2~

As the solution u is of class C! in both 2" and (2, one can state that
it satisfies the conservation laws of the hyperbolic system (3.7) in a strong
sense within these two subdomains. Thus, the weak formulation of the
hyperbolic system reduces to:

Vo € [D (Rd x [0, +oo[>]p,

/2( +Z"1 l9,(w)] _ >(0) ¥(g)dg =0, (3.17)

which finally leads to the well-known Rankine-Hugoniot condition driving the
discontinuity jump across X"
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Rankine-Hugoniot condition

d +
vgea(@mr+z;n@#4_<@:9. (3.18)
J:
Remark 3.3.1 Following again  [Godlewsk: and Raviart, 1996], if
(nl nd>T # 0, the normal vector ny, can be normalized as:
_ 1 T
iy = - (nt Ny ... nd> , (3.19)
[
R4
= (= »)", (3.20)

where ¢ € R, and v is now a unit vector of R%. This notation allows to
rewrite Rankine-Hugoniot condition as:

clul” =Y v [g,w)]" (3.21)

where ¢ can be considered as the speed of propagation of the discontinuity,
and v its direction of propagation.

This remark thus concludes this section dedicated to the mathematical anal-
ysis of Euler compressible equations. It was here recalled why it is necessary
to manipulate the fluid PDEs in a weak sense. This section also emphasized
how Rankine-Hugoniot condition plays an important role with regards to the
possible discontinuities propagating within a compressible flow.

Let us now turn towards the actual wavelet-based homogenization process.

3.4 Wavelet-based homogenization

The wavelet-based homogenization process, at the core of this model, re-
lies on the application of Continuous Wavelet Transform (CWT) to the fluid
conservation laws and equation of state. The filtered equations governing the
homogenized fluid are thus obtained by writing the convolution products be-
tween a wavelet family (%), ,, or the associated scaling function &,,, and
the (extended) fluid equations, as formally illustrated by equations (3.22H3.23)
below:

B dp + div (pv) = 0
(7))« 0 (ov) +div(pw®v) = -Vp, (3.22)
O (pe) +diwv ((pe +p)uv) = 0O,
l:ﬁ: * {p = Dref + c?on (p - pref)} : (323)
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It shall here be noted that, when studying a barotropic fluid, it is not
necessary to solve the energy balance equation. Thus, only the mass and
momentum balance equations will be hereafter considered.

Before detailing all the mathematical steps required to obtain the filtered
equations governing the homogenized fluid, let us first specify the initial con-
ditions of the problem.

3.4.1 Initial conditions: Riemann problem

As classically done in the study of hyperbolic systems, a Riemann problem
(here with respect to the first component z;) is hereafter considered. In other
words, the following initial discontinuous density field is considered:

o if z<d
V € (24, po(z) = { b if z,>d (3.24)
Vz € (25, (pv)o(z) =0, (3.25)

where p; and p, denote respectively the left and right initial densities, and d
denotes the position of the initial density/pressure discontinuity. It is assumed
that the solid medium is in equilibrium with the fluid, on the right side of the
initial pressure discontinuity : 2,(0) C {z; > d}.

To now implement the wavelet-based homogenization process, the following
steps are required:

(i) extend, in a weak sense, the fluid PDEs and equation of state to R?,

(ii) write, in a weak sense, the convolution product between the wavelet (or
scaling function) and the extended fluid equations.

3.4.2 "Weak-extension" of the fluid PDEs to R?

The extension of the original fluid equations to R? is mandatory in order
to properly define the convolution product with the analysing wavelet ¥ or
scaling function &. As already recalled during the mathematical analysis of
Euler compressible equations (3.3]), the non-smooth behavior of the entropic
solution requires to manipulate the equations in a weak sense. Therefore, the
extension process also has to be done in a weak sense, especially as such an
extension is expected to introduce discontinuities on the boundaries 0f2, and
0025\ 0f2;. Thus, a two-steps procedure is hereafter followed to extend the fluid
equations:

[a] first, extend the conservative fields (p, pv, p) into piecewise C* functions
on R?x]0, +o0[;

@ second, carefully extend the mass and momentum balance equations to
R2x]0, +-00[ in a weak sense.
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The "extended fluid" shall not be mistaken with the yet to come homoge-
nized fluid. It is a first intermediary but also important step, as it will allow
to properly "transfer" the boundary conditions of the real fluid into the future
homogenized fluid.

Hereafter, for simplicity, same notations are used for the original and ex-
tended fields.

Basic requirements for the extension

The extension of the real fluid on 2, and R?\ (2 U £2) has to respect some
conditions:

e the extended fluid has to coincide with the real fluid on (2;

e the extended fluid has to satisfy the barotropic equation of state on R2:

p = pref + cgon (p - pref) in RQX]O) _'_OO[ (326)

e the (real) fluid located within (2; cannot enter the solid domain (2, or
the exterior domain R? \ (£2; U () (cf. kinematic boundary condition);

e the extended fluid located within the solid domain (2, or within the ex-
terior domain R? \ (£2; U (2;) cannot enter the fluid domain (2;, as both
the solid and exterior media are considered as closed systems, which do
not exchange any matter with the real fluid;

e the extended fluid located within (2, respectively R*\ (£2; U £2;), occupies
a constant volume, respectively a fixed geometry, and thus possess a
uniform density, as both the solid and exterior media are here considered
as rigid and homogeneous bodies.

Thus, it can be stated that, for all £ > 0:

p(g,t% = cst in (%), (3.27)

= cst in R?\ (927U ().

As the pressure is directly linked to the density via the barotropic equation
of state (3.26), one also has, for all ¢t > 0:

p(z,t) = cst in 024(t), (3.28)
p(z,t) = cst inR?\ (02;U0). '

Thus, the extended fluid trapped within the solid domain (2, or the exterior
domain R?\ (£2; U (2;) can be considered as an inviscid and incompressible fluid,
governed by the following Euler equations:

pOu+div(u®u)) = 0 inR?\ 2(2),

div (v) — 0 inR2\ 24(t), (3.29)
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and the following no-penetration kinematic conditions:

(v—0U) -ng,rp = 0 on 00(2t)

U NegtF = 0 on 082\ 002. (3.30)

Thus, the value v,(t) = 0,U(%) is an acceptable value for the extended fluid
velocity within the solid domain (2, while v,,, = 0 is an acceptable value
within the exterior domain.

Now, taking into account the fact that the solid medium is initially located
on the right side of the pressure discontinuity, and moreover satisfies an equi-
librium condition, the following extensions of the field (p, v, p) can be defined:

[a] Extension of the fields (p,v,p) to R?

p(z,t) if z € (24(t)
Vz € R?, Vt >0, p(z,t) = o, if z € 2,(t) (3.31)
Pres if QGRZ\(QJCUQS)

v(z,t) if z € (24()
Vz € R? Vt >0, u(z,t) = w,(t) = aU(t) if z € (t) (3.32)
=0 if z€R?\(2;UN)

o(z,t) if z € 24(t)
Vz € R?, Vt >0, p(z,t) = p, if z € ,(t) (3.33)
pref if QGRz\(QfU.QS)

The previous equations thus define piecewise C* fields on R?x]0, +oo[. In
order to now deal with the weak-extension of the mass and momentum bal-
ance equations, an important remark shall first be stated about the different
discontinuities that will affect the extension process.

Remark 3.4.1 Important note on the discontinuities affecting the ex-
tension process

Two different types of discontinuities shall be taken into account during
the extension process:

e on the one hand, the physical discontinuities inherent to the origi-
nal Euler compressible equations and to the Riemann problem, these
discontinuities propagate within the real flutd domain (2¢x]0, 400/,
and are governed by Rankine-Hugoniot condition, as detailed in the
previous section; for stmplicity, 1t 1s again assumed that there is only
one surface X of discontinuity within (2;x]0, +00[;
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e on the other hand, the two discontinuities introduced by the extension
of the fluid fields to R?; conversely to the physical ones, these new
discontinuities do not propagate within the fluid domain: indeed, the
exterior boundary 027 \ 0f2s of the real fluid domain s stationary,

and the inner boundary 02, moves with the same normal velocity
than the fluid.

Before starting the extension of the balance equations, let us first recall and
define some notations:

Notations 3.4.1

o 2 : = (2x]0,+00[, where the domain (2 denotes either the exterior, the
flurd, or the solid domain;

o 00 : = 002x]0, +o00[;

e &= (ag,t), with g € 912, and dg = dodt;

o R?x]0, +00[ : = epe U 25 U 12,;

e X still denotes the unique smooth surface of discontinuity of the weak
solution within §2¢;

e as in the previous section, the normal vectors on each surface of discon-

tinutty will be written in the form n = (—c 2 1/2>T, where ¢ represents
the propagation velocity of the discontinuity, and v its direction of propa-
gation. Taking into account the fact that only the physical discontinuities
assoctated to the original Euler compressible equations and Riemann prob-
lem do propagate within the flurd, one can write:

ﬁF—)ezt - (0 ﬂF—)erzt>T; (334)
Np_ 5= (0 EF—>S)T: (3.35)
iy = (—c vy 1/2> . (3.36)

e {f} denotes a piecewise continuous function on R?x]0, +o0o| which coin-
cides with the distribution f outside of the discontinuities.

e fr, fs and f.,: denote, when used on a boundary, the value of the function
f respectively on the fluid, solid and exterior sides.

e F' refers to the real fluud domawn (2, and °F to the complementary do-
main, i.e. either Qs or R?\ (02; U (2);

o [u]f; : = up — ucp denotes the jump of the function u across the fluid
boundaries 0f2;
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@ Weak-extension of the mass and momentum balance equations

Proposition [3.4.7] and hereafter display the "weak-extension" of both
the mass and momentum balance equations. Each proposition is followed by a
proof, whose key ideas are similar to the proof of Rankine-Hugoniot condition,
that is to say:

e use Chasles’ relation to split the variational formulation into 3 parts,
associated to the 3 subdomains (2.,:, {2y and (2;

e use Green’s formula for integration by parts in order to introduce inte-
grals on the boundaries (‘9fo \ 92,, 002, and X;

e use the fact that the solution is smooth in (2., f?;r, f?;, and (2,, and
satisfies Rankine-Hugoniot condition on X}

e bring together every term, and use the kinematic boundary conditions to
simplify the equation.

Proposition 3.4.1 Extended mass balance equation (weak form)

Vo € D (R*x]0, +00[):

(Oep + div (pv) , ) pr p = — /8@ ()5 (0U(t) -np,5(3)) 0(@)da|  (3.37)

Proof of Proposition 3.4.1 To prove that the weak formulation of the
mass balance equation extended to R* writes as (3.37), let us start with
the definition of the weak formulation:

Vo € D (R?*x]0, +00]):

+oo
(Oep+ div (pv), @) pip = —/0 /11@2 (pO:p + pu -V ) dz dt. (3.38)

Step 1: Chasles’ relation

Thas integral can be divided into three different integrals, as follows:

+oo
—/0 /Rz (pOrp + pu -V @) dzdt
= —/~ (PO + pu -V @) dzdt — /~ (pOrp + pu -V @) dzdt
I(Zacr:lt I(2f

— /(”2 (pOyp + pu -V ) dzdt. (3.39)
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Step 2: Green’s formula for integration by parts

Now, using Green’s formula for each integral, and taking into account
the fact that a surface Y of discontinuity may propagate within the real
flurd domain, it comes:

- /fz (PO + pv -V @) dzdt
ext

= /f)nt {8tp + dwv (py)} @Y dzdt — /8@f\8@s Pezt X 0 x (P(Q) do

B /8:(2f\8f25 (py)eﬁ (Q) Eemt—)F(i)(p(Q) do. (340)

- /fzf (PO + pv -V @) dzdt
= /D;_ {Owp + div (pv)} pdz dt + o {Op + div (pv)} pdz dt
- /2 (—slol* + milova] ™ + valpv,]*) (@) (@) d&
- /mf\m pr(8) x 0 x 9(&)da — [, pu(3) x 0 x p(3) dz

- /mfm (P0)r (&) nr e (@)0(8) 2 ~ [ (p1); (B) -mr-5(2)0(2) A5
(3.41)

- /fz (PO + pu -V ) dzdt
= /Ds {0:p + div (pv)} pdzdt — /GQ ps X 0 x ¢(&)dg

- /afzs (pv)s (8) ns-,r(@)p(8)dE. (3.42)

Step 3: the solution is smooth in (e, f);r, f); and 2, + Rankine-Hugoniot

Now, by adding the last 3 equations, and using the fact the mass balance
equation is satisfied in a strong sense in Qeys, f?;r, D; and 2,, and the fact
that Rankine-Hugoniot condition is satisfied on X, it comes:

(D + div (pv), ©) b p

== /afzf\ o, [(Pee: () - nipsene(@)0(2) - /8@5 [0v]s (8) -nr_.5(8)0(8) dE

(3.43)
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Step 4: simplification with the kinematic boundary conditions

Finally, using the continuity of the normal component of the velocity
across the boundaries, one obtains:

(01 + div (00), @) = = [ (0I5 (DU -nr,5(8)) 0(E) d5.  (3.49)

This concludes the proof for the extension of the mass balance equation.
Let us now turn towards the momentum balance equation.

Proposition 3.4.2 Ezxtended momentum balance equation (weak form)

Ve € [D (R?x]0, +00[)]*:

(0(pv) + div (pu @ v) + ¥ p, 9) D'.D
. /aés 0U(2) -np,5(8)] [ov]§ (8) -¥(?) d&

- @Df[p]fp(i)nwp(i) P(8)ds.| (3.45)

Proof of Proposition 3.4.2 This proof follows the methodology used for
the mass balance equation:

Step 1: Chasles’ relation

Ve € [D (R?x]0, +00[)]>:

(Oulpw) + div (@) + Y 1, %),
_ _/~ v -0+ (u®v) : ¥ ¢ —pdiv(y)| dzdt
~Jp, [0+ (@) : ¥ w—p div(v)] azar

- /fz pu -0+ (pu@v) : ¥ ¢ —p div (y)] dzdt. (3.46)

Step 2: Green’s formula for integration by parts

Thanks to Green’s formula, one can write:

_/fZ pv -0+ (pr®v) : VY ¢ — pdw(¢>] dz dt

- /fz {0:(pv) + div(pp ®v) + ¥ p} ¥ 0 x (p0)eat(3) -9(5) AT

a /&fzf\&f)s
a /8:(2f\8f25 [yeﬁ 'ﬂezt—u?'] (Q) (py)e:z:t (Q) ﬁ(i) do

N /8@]_\8(2 pemt(a)neztﬁF( ) (0') do. (347)
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_/f;f [ov -0+ (u®w) : ¥ ¢ —p div(y)] dzdt

= /ff {0:(pv) + div(pv ® v) + V p} - Y+ [~ {0:(ov) + div(pv ® v) + V p} -9

—/2 <—s[py]+ + 1 [(pvﬁ +p pvyvz)Tr TV {(va”r Uy + P T} +> -9(g)da

)
- /afzf\&@s 0 x (pv)r(2) -9(@)dg — /afzs 0 x (pv)r(3) -9(5) dG
_/8f2f\8f25 [VF " Bpent] (G)(p2)r(T) - %(8) dQ—/aDS vr np_s) (5)(00)r(E) -9(8) d&

- /afzf\afzs Pr(E)nre(d) -¥(8) 42 — /8;25 pr(@)np_.s(3) -$(8)ds. (3.48)

- /@ [ov -0+ (u®w) : ¥ ¢ —p div(y)] dzdt
= [1, {0:ou) + div(pu @ v) + ¥ p} -~ [ 0 (pv)s(5) -$(5) d5

_ /8@5 [us ‘ns_r] (8)(pu)s(E) - ¥ (&) dG — /895 ps(@)ns_p(5) -9 () da.
(3.49)

Step 3/4: the solution is smooth in Qeut, f);r, f);,f)s + R.-H. + B.C.

Now, by adding these last 3 equations, using the fact that the momen-
tum balance equation is satisfied in a strong sense in ey, f2+, 2, and
s, plus the fact that Rankine-Hugoniot (R.-H.) condition s satisfied on
XY, and finally the kinematic boundary conditions (B.C.), it comes:

(0:(pv) + div (pu @ V) + ¥ 1,9, |
= [, () -1 5(@) pu]f @) -9(&) a2
~ oy, Pl @@ -9(@) 02

- /afzs pIs(@)np5(@) - $(5)dE. (3.50)

This concludes the proof for the extension of the momentum balance equa-
tion. Both balance equations are here written in pure Eulerian formulation. In
classical F'SI literature however, one can often find these equations written with
an Arbitrary Lagrangian Eulerian (ALE) formulation. The interested reader
may for instance refer to [Etienne et al., 2009]. The following remark hereafter
details the fluid equations in ALE formulation.
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Remark 3.4.2 Arbitrary Lagrangian Eulerian (ALE) formulation

The extended balance equations (3.37{3.45) could be rewritten in a
more compact form, in the spirit of Arbitrary Lagrangian Eulerian (ALE)
formulation. This can be done by working on the integrals involving the
solid medium wvelocity .U in the right-hand sides of the extended equa-
tions. To this end, let us consider the following extension of the solid
medium velocity 0.0 :

2 U(t) in (2,

vt >0, &Q(-,t)Z{ 0 R\,

(3.51)

With such an extension, the field (p@tQ> 15 uniform within the dis-

connected space (2s (cf. rigid body assumption + uniform extended den-
sity), and zero outside. Now, using once again Green’s formula to de-

fine the distribution div (p&ﬂ) in R?x]0,+oo[, one can write, for all
¢ € D(R?x]0, +00]):
- /fz p0U(z,t) -V o(z)dzdt
= [, _div (p00) (2, t)o(a,t) dedt

- /&f?m Peat(T) 0T (t) - N, p(8)0(8) dT. (3.52)

a /fz p0,U(z,t) -V (z,t)dzdt
= /Df div (p&ﬂ) (z,t)p(z,t)dzdt— /8 PaoD, e (VD) -1p..n,(3)0(5) 5

- /abs pr(2)0:U(t) -np ,s()p(g)da. (3.53)

a /fz p0,U(z,t) -V p(z,t)dzdt
= /f) div (p&ﬂ) (z,t)p(z,t)dzdt — /8@ 0s(B)OU(E) 15 p(&)0(F) d.
(3.54)

As the field (p&ﬂ ) 18 either uniform or zero, one can write, by adding
the last 3 equations:

<di'v (p&ﬂ) ,so>D,’D P=— /0 o /R p0.0(z,t) Y p(z,t)dedt,

— /6@5 (05 (@) (BU(t) -np5(8)) (&) dG. (3.55)
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Following the same methodology, the distribution div (py ® @Q) can be
extended to R? as follows:

vy € [D (R,

<d7/u (pv ® oU ) ,¢>

—+oo
_ _/ (pv®a0)(z,t) - ¥ Y(z,t)dzdt,
0 R -

__/a (BU(t) -1p5(3)) lov]s (8) -9(G)dT. (3.56)

D/

This result is obtained by using the fact that the extended velocity 9,U
is zero outside of 2,, and the fact that the tensor pv ® 8:U is uniform
within the solid domain (2.

Finally, injecting equations (3.55H3.56) into (3.37{3.43), one obtains
the following extended Euler compressible equations written in ALE for-
mulation:

Vo € D (R*x]0, +00[), ¢ € [D (R*x]0, +-00])]?

(0p(-,t) + div (p (v —0:T)) (-,1), <p>D/’D = 0. (3.57)

(@p0)( -, 1) + div (pu® (v - 2.0)) (-,0),9),,
~(Yp¥), ,+ /mf [Pl (8) ¥(8) ‘npr(8)ds. (3.58)

In the following, the fluid extended PDEs will be written in pure Eulerian
formulation, as summarized in the following Proposition [3.4.3l This choice is
motivated by the fact that finite-volume schemes are classically used to solve
such systems of conservation laws.

Proposition 3.4.3 Summary of the extended fluid PDEs (weak form -+
Eulerian formulation)

Ve € D (R?x]0, +oo[), ¢ € [D (R?x]0, +o0])]”

(01 +div (p), @)y o = = [, [0)5 (QU(D) nr ,5(8)) 9(@)d5. | (3.50)

<6t(py) +dw (py ® v) + V p, @D,,D
— /ms 0:U(t) -np_,s(@)] [ou]5 (&) -¥(3) d&

} /afzf Plp(@)npr(8) - $(@)dE.| (3.60)
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Proof of Proposition 3.4.3 Summary of the previous propositions.

The fluid equations being now extended, it is high time to consider their
convolution product with the analysing wavelet ¥ or scaling function ¢. This
second step will result in spatially-filtered equations governing a homogenized
fluid.

3.4.3 "Weak-convolution" wavelets * extended fluid PDEs

As can be seen in Proposition [3.4.3] the extended Euler compressible equa-
tions have to be understood in a weak sense. In order to then properly define a
convolution product with all the distributions present in equations (3.59H3.60),
both the analysing wavelet and scaling function should ideally possess a C*
smoothness and a compact support. However, to the author’s knowledge, such
wavelets do not exist in the CWT framework. One would have to turn to-
wards orthogonal wavelet bases such as Daubechies’ in order to find a compact
support. Nevertheless, as previously highlighted, these wavelets only possess a
CHN smoothness, with x ~ 0.2 and N < +o0.

Fortunately, the notion of compactly-supported distributions here allows
to bypass the non-compact support of the wavelet and scaling function. To
emphasize this point, let us first recall some properties on convolution product,
before discussing compactly-supported distributions.

Properties on convolution product‘

Proposition 3.4.4 Convolution product L' (Rd> x D (Rd>

The convolution product between a function f € Lt (Rd> and a test

function ¢ € D (Rd) results in a C* function.
Proof of Proposition 3.4.4 See appendiz[4A.0 1.

Proposition 3.4.5 Convolution product D' (Rd) x D (Rd>

The convolution product between a distribution T € D' (Rd> and a test

function ¢ € D(Rd> also results in a C* function. Furthermore, the
following equation holds:

VT eD (RY), $,p€D(RY:

(¥ *T,9)p :/ (P*T)e (3.61)
(T,

Vo) - (3.62)

where P(z) = P(—z).
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In the case where the distribution T s a locally integrable function, the
previous result can be obtained with Fubini’s theorem:

(Y*T,0)pp= e (/Rd Y(z —y)T(y) dg) o(z)dz (3.63)
- /]R T(y) < /]R U(y - z)e(z) dz) dy (3.64)
= (T, “’>D1,D (3.65)

Proof of Proposition 3.4.5 See appendiz[4.0.2.

These two propositions being recalled, let us now emphasize how the no-
tion of compactly-supported distributions may allow to define the convolution
product between the extended fluid PDEs and the analysing wavelet or scaling
function.

‘ Compactly-supported distributions‘

Thanks to the previous extension procedure, all the distributions of interest
in the current work possess a compact support. Indeed, for all test functions
¢ € D(R*x]0, +00[) and ¢ € [D(R*x]0, +-oo[)]*, with compact supports in-
cluded in the exterior domain (2., one can write:

+o00
(Ocp + div (pv) , @) prp = — /0 /R L (0O + pu -V ¢) (z,t)dzdt,  (3.66)

—_ /@ (pOvp + pu-Y ), (3.67)
= [, {00+ div (u)} o, (3.68)
= Peat /Qm {div(v)} o, (3.69)
=0. (3.70)

<8t(py) +div(py®v)+ V¥ p, @D, (3.71)

,D

- /o+0o [, (-0 +lpv@s] : Y w+pdiv(y)) (2, t)dzdt, (3.72)

- /fz t (pv-0p+ v @] - ¥ 9 +p div(y)), (3.73)
= /Q {0:(pv) + dwv (pv ® v) + V p} -9, (3.74)
= Pext /Dem {8& + m (y ® y) + p:-mty p} .g, (375)
=0 (3.76)
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The last equality in both equations uses the fact that the fluid located
within the exterior domain (2.,; is considered inviscid and incompressible, and
is thus governed by Euler equations.

The above results immediately imply that the supports of the distributions
of interest are necessarily included in the closed and bounded subspace (2; U (2.
This useful property will allow to cope with the non-compact support of the
analysing wavelet and scaling function, as detailed in the following remarks
and propositions.

Remark 3.4.3 Compactly-supported distributions &' (Rd>

The space of compactly-supported distributions &’ (Rd> offers multiple
advantages. One of them 1is the possibility to now define the action of
such a distribution T € &' (Rd> on a function ¢ € C® (Rd> which does not
possess a compact support. Indeed, one can write:

VT € €& (Rd) , Y EC™ (Rd> :

(T, ¢>g',coo := (T, X¢>D/,D ) (3.77)

where x € D (Rd> 18 a test function which s 1dentically equal to 1 on a
compact neighborhood of the support of the distribution T. Furthermore,
the above definition (3.77) does not depend on the choice of the test func-
tion x. An illustration of such a test function in 1D 1s displayed in Figure
below, where K denotes the compact neighborhood of the support of
the distribution T'.

K

| I~
e B esorediie K

Figure 3.2: Example of a test function for compactly-supported distributions

Following the spirit of equations (3.62]) and (B.77), the convolution product
between the wavelets (or scaling function) and the distributions of interest is
hereafter defined as follows:
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Convolution (wavelets * compactly-supported distributions)

Proposition 3.4.6 Convolution (wavelets x compactly-supported distributions)
In the following:

o T ¢ & (R?) denotes the distributions of interest, each possessing a
compact support satisfying supp(T) C 25 U (2,

e x € D(R?) is a (compactly-supported) test function which is identi-
cally equal to 1 on a compact neighborhood K of (25 U {2, with a fast
decay towards zero outside of K,

o (Us4),, denotes a wavelet family of class C* (R?), with a fast decay
towards zero outside of a well-localized spatial support.

One can write, for all ¢ € D (R?), s >0, 6 € [0, 27[:

(5 7)o To0) = (T (5 ) 20), (079

Furthermore, as the product (xx@:,(,) 1s of class C*® and also

compactly-supported, the distribution ((X X @:9> *T) 18 actually a C*®
function.

Finally, thanks to the properties of the test function x, one can state
that:

vz € R?, (x x ) (z) = { JIS"(’)@) Z zc R%\e fipp(x) (3.79)

~%

Thus, the function (X X @:9> and the wavelet (Ws,g) coincide on the

compact set K, which contains 2;U (2. Outside of K, the difference
between these two functions is expected to be small. Indeed, thanks to
its well-localized spatial support (localization which improves if the scale
parameter decreases), the wavelet is expected to be almost zero outside of
the domawn of wnterest (2 U (2. The same remark goes for the function

(X X @:,9>, thanks to the fast decay of x from 1 to 0.

In conclusion, equation (3.78) allows to rigorously define the con-
volution between a compactly-supported distribution T and the function
(x X @:,9>, which happens to be very close to the wavelet @:,9, as further
detailed 1n Proposition [3.4.7.

Proof of Proposition 3.4.6 The above proposition is just an application

of Proposition [3.4.5.
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Remark 3.4.4 The above proposition also holds with a scaling function of
class C* and exhibiting a fast decay towards zero.

Now, in order for the convolution product (X X @:9> *xT' to define an actual
CWT of the distribution T, one shall prove that, at least within the domain of
interest 2y U (2, the following approximation, or ideally equality, holds:

Vo € 25U, ((x xT,) * f) (@)~ (T, % f) (2)- (3.80)

This point is discussed in the following proposition.
Proposition 3.4.7 Approximation ((X X @:,9) * f) R (@:,9 * f) 2

As there 1s no restriction on the size of the compact domain K on which
the test function x equals 1 (as long as it is a compact neighborhood of
the support of the distribution T' ), it can be stated that:

(X X @:9> xT = @:,9 T 1n supp(T). (3.81)

Proof of Proposition 3.4.7 In order to prove the prorimity, and even
equality, between these two functions, let us consider the following 1D
case:

e f e L. (R) a distribution with a compact support supp(f) = [—a,a],

loc

a>0;

e X € D(R), such that x equals 1 on [—b,b], b > a, and quickly decays
towards zero outside of [—b, b];

e U, s >0, awavelet of class C®, well-localized on [—c;, c5], and quickly
decaying towards zero outside.

The difference between ((X X @:) * f) and (@: * f) can be evaluated as
follows:

Vo €R, [fx(xxF) — f* 7] (z) = f* [(x - DT] (), (3.82)
= [ e~ v (x(v) - VT (v) dy, (3:89)
= [ @ -9 (xw) - DT () dy, (3.89

where I, = {y € R, z —y € [—a,a]}. Thus:

T

P (xxT) - £+ 8] @) = [T e - ) (xw) - DF @)y, (385)

r—
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A3~this proof is~mainly interested in the behavior of the functions
((X X W:) * f) and (W: * f) within the support of f, it is hereafter assumed
that ¢ € [—a,al.

In the following, one shall distinguish two cases:

e if the domawn where the test function x equals 1 is wide enough, i.e.
if b > 2a, one has:

Vz € [—a,a], —b<z—a<z+a<h, (3.86)
Vz € [-a,a], Vy €[z -0,z +a], x(y) = 1. (3.87)

As a consequence, equation (3.83) simplifies into:
Vz € [—a,al, [f * (X X @:) —fx @:] (z) = 0. (3.88)

e if the domawn where the test function x equals 1 1s not wide enough,
r.e. 1f a < b < 2a, then one shall distinguish the inner interval
[a —b,b— a], from the outer intervals [—a,a — b] and [b — a,al:

Ve €la—bb—al,y€lz—a,z+al, [f*(xx@:)—f*ws] (z) =0.

(3.89)
Vz € [—a,a— b, (3.90)
/”“f( ) (x() - )T (v) dy (3.91)
= [ i@ -9 &) - DTy + [ i@ - v) (@) - D) d,
(3.92)
= [ i@ 9) (xw) - D) dy. (3.93)

Thus, when b tends towards 2a, the error between the two functions
of interest is focused in the vicinity of the boundaries of [—a,a]. Be-
sides, as the wavelet W, is well-localized on [—c;, ¢;] and quickly decays
towards zero, the integral in ([3.93) will tend towards zero if b > c;.
Indeed:
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veelaat, |[ 11 ) - DTy (3.99
<[l - VT @ (399)
< max [B)|x [ 1fe-yld,  (9)
< max (T )] < 1 fllgegey (3.97)
< max 17:0)| % |flge) (3.98)

where the mazimum value of the wavelet modulus |V;| on [b, 2a] decays
towards zero when a,b>> c;.

A similar proof holds for the last interval [b — a,a].

In conclusion, as long as the interval [—b,b], on which Xx equals 1,
1s wide enough compared to the support supp(f) = [—a,a], or to the
wavelet localization domain [—cs,c;|, the error between the functions
((X X @:9> *f) and ( 56 *f) 15 either zero or close to zero. Thus, as
there is no restriction on the width of the interval [—b,b] (as long as it is a
compact netghborhood of [—a,a]), it can be stated that, for a well-designed
test function x:

(x xTg)xf = Woxf in supp(f) (3.99)
Remark 3~4 5 It 1s here recalled that the convolution product between the
wavelets (LTIS 9) 06 (respectwely the isotropic scaling function <P ,) and

the function of 'mterest 15 ezactly the wavelet coefficient (2.133) (respec-
tively low-frequency approzimation (2.157))) of the function:

WIfI(s,w,0) = (f % T,) (w), (3.100)
LIf) (s0, ) = (f *®,, ) (w). (3.101)

These propositions and remarks being stated, it is now high time to ex-
plicitly derive the spatially-filtered equations from the extended fluid PDEs

(3.59H3.60). This is done by:

e first, considering the functions ()2 X W:,G) x ( or (52 X (Pjo> x  as test
functions in the extended fluid PDEs (3.59H3.60);

e second, using equation (3.78));

e third, using the fact that convolution product commutes with time and
especially spatial derivatives on R?;

e and finally, using Fubini’s theorem to rewrite the boundary integrals in
the right-hand side of the balance equations.
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Weak-convolution product with the extended fluid PDEs‘

Proposition 3.4.8 Weak-convolution product with the fluid PDEs
Consider T > 0. Vt € [0,T[, s >0, 6 € [0,2n], ¢ € D(R?),¢ € [D(R?)]’:

e mass balance equation:

starting with the left-hand side of equation (3.59), and using equation
(3.78), one can write:

(0up + div (pv), (X x i) » (p> (3.102)
= <(X X @59> * [O:p + div (pv)], <p> (3.103)
= (0 [(x x Ty) ] + (x x T ) * div (pv), (p>D/,D, (3.104)
= (0 [(x x W, ) * p] + div [(x x T 4) * py] ,go>D,’D. (3.105)

In the right-hand side of equation (3.59), the boundary integral can
be rewritten using Fubini’s theorem:

/afzs (015 (BU(t) -mp,s()) [(% x Wip) * 0] () d& (3.108)

_ /0+°° Jog 1915 @U(2) e (e, 1)) ([, (%% 74) (¢~ 2)o(z, 1) dz) do
(3.107)

- /+°° /R2 (/{m Vo (l' —a)lpls (2U(t) -np_s(a,t)) dg) o(z,t)dzdt
(3.108)

- < A o, (X% Te) (- = 0)pJ5 (AU() nps(o,?)) do, <p>D’,D (3.109)

Now, bringing together both sides of the equation, one obtains:

(O[O x Too) o] v |(x x o) xp0] 1 0)

a </ag (X x @:9> (- —9)lols (B:U(2) - np_>5(0 t)) da, ¢>

D'.D
(3.110)

e momentum balance equation:

starting with the left-hand side of equation (3.60), one can write:
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O(py) +div(pr ® v) + V p, (XXLV:9> *¢> (3.111)
(3 % Tup) * [0:(pv) + div (pr @ v) + ¥ 9] ’%,D,

= (0 [(x x Tp) * (p0)] +div [(x x Tp) % (ru@0)] + ¥ [(x x Typ) *1],¥) ,
(3.113)

| | /\

(3.112)

Using once again Fubini’s theorem, the two boundary integrals in the
right-hand side of equation (3.60) can be rewritten as follows:

/ms BU(t) -nps(@)] [oulg (8) - [(% x W) x 9| () d& (3.114)
_ /0+oo [ 0, [UR) mps(e, D] el () - ( [RCETBICEIER O@) dodt,
(3.115)
- /o+oo /]Rz (/a(z (x x Uro) (2 — 0) [BU(2) -np_s5(a, 1)) [pR]§ (o) dg) -p(z, t) dz dt,
(3.116)
= </&Q (X X ‘ﬁ,e) (- — ) [pv]s () [8:U(t) np_s(a,t)] da, g>D/ .
(3.117)
/8(2 (% x 70) % 9] (&) -mpcr(8) dE (3.118)
N /0+°° /&(z PleF (21) ( /Rz (% x %) (@ - )u(z, 1) d@) npep(c,t)dodt,
f (3.119)
= /JF‘”/]Rz </8(2f x X U, )(:c—a) )7 (@, ) ep(a, t)dg> -(z, t) dz dt,
(3.120)
</mf X< Uyg) (- = 0) [Pl (0, 8) “np_cp(c, t) do, ¢>D/D. (3.121)

Now, bringing together both sides of the equation, one obtains:

(0 [(x x W) x (pv)| + div [(x x Typ) * (pw® )| + V [(x Tp) *p], %)

</a(2 X x W) (- = 0)[pv]§ (¢) [OU(t) -np_s(o, 1)) dg,@

D',.D

D'.D

- </an X x V) (- = 0) [Pl (€, t)nper(a, t) dg,g> . (3.122)

D',D
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Proof of Proposition 3.4.8 See Proposition [3.4.6 and equation (3.78).

Remark 3.4.6 Commutation convolution product «— spatial deriva-
tives

Proposition[3.4.8 used the fact that convolution product commutes with
spatial (and time) derivatives on R?. It is important to keep in mind
that such a property is no longer valid on a bounded subset {2 C R2, as
already highlighted in the previous chapter when discussing Large Eddy
Stmulation.

Proposition presented the spatially-filtered equations in a weak
form. Now, using the smoothing property of the convolution product with a
compactly-supported function of class C*°, and equation (3.81), one can write
the spatially-filtered equations in a strong form:

Spatially-filtered PDEs governing the homogenized fluid (strong form)

Proposition 3.4.9 Spatially-filtered PDEs (strong form)

The homogenized flurd, whose conservative variables are the wavelet
T
coefficients (W[p] W]pv,] W[pvy]> (s,u,0,t), is governed by the follow-
ing spatially-filtered PDEs (here written on (25U () :

Consider T > 0. Yu € 2; U 2, Vt € [0,T[, s >0, 6 € [0, 27(:

WIpl(s,u, 8,t) + div (W [pv]) (s, u, 8, t)
=~ [, Toolu— 5 [.U(0) -nrs(o, )] do| - (3.123)

oW [pv] (s,u,6,t) + div (W [pr ® v]) (5,1, 0,t) + YW[p|(s,u, b, t)
= - /8(2)« @:,g(ﬂ - Q) [p]ch (Q; t) 'EF—WF(Q’ t) do

- /895 7, o(u — o) [pu]§ (0) [QU(t) ‘np . s(o,t)] do.| (3.124)

In these PDEs, it 1s important to emphasize the role played by the
function

Fs or(su,68) := = [ To(u—0) [Pl (01) ‘nrep(o,t)do,  (3:125)

which is a body force (per unit of length), defined across the whole space
R2, which represents the resistance that encounters the real fluid when
flowing through the solid medium and impacting the outer boundaries. The
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homogenization process thus transformed contact forces, localized on the
flurd-structure interfaces and outer boundaries, into a body force. It also
transformed PDEs governing the real fluid variables into filtered PDEs
now governing the wavelet coefficients (or low-frequency approrimations)
of the extended fluid variables.

Finally, as the wavelet ¥ (or scaling function @) exhibits a well-localized
support and a fast decay towards zero, it 1s fortunately not necessary to
mesh the whole space R? to compute the homogenized fluid. Indeed, be-
yond a thin layer around the initial domain boundaries O (25U §2;), the
homogenized fields resulting from the convolution products will be almost
constant or zero, given the previous extension of the fields (p, pv, p). Be-
sides, the current work focuses on the behavior of the homogenized fluid
only within the interior domawn (25 U (2.

Proof of Proposition 3.4.9 See Proposition for the justification of
the C*° smoothness.

Remark 3.4.7 The spatially-filtered PDEs presented in Proposition [3.4.9
are also valid for a (real and isotropic) scaling function ®;, of class C*,
with a well-localized support and a fast decay towards zero.

The spatially-filtered Euler compressible equations are completed with the
following equation of state:

Equation of state for the homogenized ﬂuid‘

Proposition 3.4.10 Spatially-filtered equation of state
Starting with the (extended) barotropic equation of state

D= Dref + Coon(0 — Pres), (3.126)

one obtains, with the analysing wavelet ¥, the following spatially-filtered
equation of state:

WIpl(s,u,8,t) = 2, W[pl(s,u,6,t). (3.127)

Now, replacing the analysing wavelet ¥ with an isotropic scaling func-
tion @, the filtered equation of state slightly changes:

LIp)(5, ) = (Pres = Chonrer) s [, (@) dy + EonLlpl(s, 1), (3.128)

Proof of Proposition 3.4.10 Starting with the analysing wavelet ¥, one
can write, by using the linearity of convolution product on equation

(3.126):
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WIRI(5,,6,t) = (Bres — Cionprer) WILI(s,%, 6, ) + 2o, WIpl(5, 0, 6,1),

(3.129)

1 z—u
= (pref sonpref> /2 Sw<2_ S _> dz + cson [p](s,y,e,t).
(3.130)

Introducing the affine function f_

cz — R 4%, whose (2 x 2)
Jacobian matriz 1s gwen by V f (:z:) 1R_9, a change of variable can

be implemented in the integral of equatzon (IM)

/R2 52 det (R GW’(QQ;% dz = /R U(y)" dy. (3.131)

This change of variable then leads to:

WIp|(5,,8,8) = (Bres — Conbrer) S/Rz W(y)* dy + 2, Wipl(s,u,6,), (3.132)
= ConWIPl(s,u,0,t), (3.133)

where the wavelet zero-average condition has been used to simplify the
result.

When considering an isotropic scaling function &, this zero-average
condition no longer holds. One thus obtains:

LIPI(8, 1) = (Pres = Conres) s [ ()" dy + L Llpl(s, ). (3.134)

This last proposition finally concludes the wavelet-based homogenization
process of the fluid. Now, before detailing the analysing wavelet ¥ and scaling
function @, it is of high importance to discuss some of the critical issues associ-
ated to homogenization and multi-scale methods, that is to say the treatment
of boundary conditions, the closure between unresolved and resolved scales,
and nonlinearities.

3.5 Boundary conditions, closure between scales,
and nonlinearities

3.5.1 Boundary conditions and closure between scales

The first step of the homogenization process, which focused on the extension
of the original fluid equations, highlighted the important role played by the real
fluid dynamic (and also kinematic) boundary conditions, through for instance
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the following boundary integral in the extended momentum balance equation

(B50):
= o, 15 (@)meen(2)-4(2) (3.135)

p—p, on 012,

o . F . _ D —
where it is recalled that [p|p : = pr — Dep { p— Dy on 00\ 00,

This boundary integral could be decomposed into a first integral on the
fluid-structure interface 0f2;, and a second integral on the outer boundary
002 \ 0f2;. The current work focuses only on the inner boundaries of the
fluid 0f2;. The second integral will thus be discarded, and classical reflecting
conditions will be used on the outer boundaries.

The second step of the homogenization process, which focused on the actual
filtering of the extended equations, transformed contact forces, defined on the
fluid-structure interfaces, into a body force defined across the whole domain:

Vt € [0,T[, s > 0,0 € [0,27], u € 27 U (2,

Fs_p(s,u,0,t) = - / 7, 4(u— ) [plp (0,t) np_ep(a,t)da.  (3.136)

09,

This body force, applied by the underlying solid obstacles to the homoge-
nized fluid, depends on the real pressure field p, which contains all the possible
spatial scales that could be caught with a DNS computation of the original
fluid PDEs. However, the spatially-filtered PDEs (3.123{3.12413.127)) now only
compute a band-pass W[p|(s, -) or low-pass L[p](s, -) filtering of the original
field p. A closure expression between the unresolved and resolved scales of
the pressure field is thus required, as in any homogenization or multi-scale
method. Conversely to plain filtering or averaging techniques, CWT and its
inverse transform (2.158) bring us an analytical closure expression:

p(z,t)= %/Om ([, /OZWW[p](s,Q,G,t) x %w((ﬁ)_l =2 df)du() jf.)
3.137

If both the analysing wavelet ¥ and its scaling function ¢ are real-valued
and isotropic, the reconstruction formula (3.137) could also be written:

p(z,t) = é—;/oso (/RzW[p](s,y,t) X éw<§;g) dg) ds

83

T 1 T— U
L t)—d|—— ) d 3.138
+ C@S% /R2 [p] (So,y, ) So < So > 8 ( )

where s, denotes the cutoff scale of the low-pass filter &, .
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It is thus possible, thanks to CWT, to reconstruct, at each time step, the
microscopic pressure field on the fluid inner boundaries, and to evaluate the
body force applied by the underlying solid obstacles. In other words, the real
fluid dynamic boundary conditions are transferred into a body force applied to
the homogenized fluid. In a similar way, it is also possible to reconstruct the
real fluid density (p) and momentum (puv) at each time step, which then allow to
compute the boundary integrals associated to the solid medium displacement
U in the filtered mass and momentum balance equations.

Nevertheless, one can immediately notice that, in order to compute the
body force (3.136) for a single scale s > 0, one shall exactly reconstruct the
microscopic pressure field p, and thus compute all its wavelets coefficients
WIp|(s, -), for all scales s > 0. This would of course be too cumbersome,
as it would be equivalent to a DNS computation. To bypass this difficulty, one
can either:

e approximate the reconstruction formula (3:137) by using a "well-chosen"
number of wavelets coefficients (W[p](sk, *));<r<n» Selected on a "well-
chosen" scale range [s;, sn|; o

e discard, in equation (B.138), all wavelet coefficients Wip](s, -) with a
scale s below the cutoff scale sy, thus only taking into account the low-
frequency approximation L£[p](sy, - ) of the pressure field:

Z—uU

p(z) ~ ﬁ/ﬂ{zﬁ[p] (50, %) S—loab (‘ s ) du. (3.139)

Both methods require to possess some a prior: knowledge or insights on
the pressure field wavelengths spectrum. Furthermore, with the approxima-
tion (3.139), the second method can be expected to present a loss of accuracy
compared to the first one. Nevertheless, the computational gain is clear, as
the scaling function allows to compute just once the spatially-filtered PDEs,
for a given cutoff scale s,. Indeed, the low-frequency approximation L[p](so, )
catches simultaneously all scales larger than s,. This also allows to avoid in-
teractions between multiple scales in the spatially-filtered equations associated
to a given scale s;.

Besides, as wavelet coefficients decrease towards zero in regions where the
field of interest is smooth, the velocity of the homogenized pressure waves
could drastically increase in regions where the real fluid density is constant,
thus imposing a very small time step in the numerical method.

In order not to discard the wavelet coefficients in approximation (3.139),
while bypassing very small time steps, one could:

e rewrite the spatially-filtered equations so as to compute the addition
of the wavelet coefficients W[f]|(s, - ) and the low-frequency approxima-
tion L[f](so, - ), with s €]0, so[. This is done by changing the unknowns

(@: * f) into [(@: + fﬁ:o> * f] in equations (3.123{3.124{3.127).
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e compute the unknowns [(@:k + 55:0> * f] = WIf](sk, =) + L[f](S0, -) for
multiple s; €]0, sol;

e compute the low-frequency approximation L£[f](so, -) on its own, and
then deduce the wavelet coefficients by difference:

sk €10, sol, WISfI(sk, -) = WIF1(sk, -) + LIf](s0, )] = LI f](s0, -)-
(3.140)

Such a method would of course imply a significant increase in the com-
putational cost.

Remark 3.5.1 Coupling between the fluid and solid media

The ability to reconstruct, up to an approrimation, the maicroscopic
pressure field p allows to evaluate, at each time step, and without any ad
hoc model, the total force applied by the real (reconstructed) fluid to the
solid medium:

Feos= [, ~p(e,t)ns r(0,t) do. (3.141)

This 1s a mandatory step in the design of a coupled fluid-structure
solver.

3.5.2 Treatment of nonlinearities

Let us now turn towards the question of nonlinearities, i.e. the convective
term in the filtered momentum balance equation (3.124]). It is recalled that the
low-frequency approximation of the convective term writes, with an isotropic
scaling function @:

Lipy @ v](s,u,t) = (5: * (py®y)) (u, t). (3.142)

In LES literature, this nonlinearity is first rewritten as follows:

Lipp ® 1] = L[p]L[v ® 1] (3.143)
= L[p)L[v]) ® L[v] + (L[p)L[v ® v] — L[plLlv] ® L[v]),  (3.144)
where £ here denotes the Favre average:

_ Llpy]
Llp]
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The term (E[p]z[y ® v] — L[p]L[v] ® f[y]) is then transferred into the right-
hand side of the filtered momentum balance equation, and gives rise to the
subgrid-scale tensor, which contains the information about the energy dissipa-
tion induced by turbulence. As the current work focuses on a fast transient
pressure wave within a compressible flow, viscosity and turbulence effects are
considered negligible compared to pressure gradients. In the following, the
nonlinear convective term will thus be approximated as follows:

Llp)Llv ® v] ~ Lp)L[v] ® L[v]. (3.146)

In cases where turbulence effects cannot be neglected, the nonlinear term
L[pyu ® v] can be explicitly computed by reconstructing, at each time step, the
real fluid density p and velocity v via the reconstruction formula (3.139), and
then computing the low-frequency approximation of the convective term prv®u.
This would of course represent a significant computational cost.

To summarize and conclude this section, the use of CWT as homogenization
tool allowed to:

e rigorously derive spatially-filtered PDEs governing an equivalent homog-
enized fluid, whose conservative variables are the wavelets coefficients
WIf](s, -) or the low-frequency approximation L[f](so, - ) of the original
fluid variables;

e transfer the real fluid (inner) dynamic and kinematic boundary conditions
into the homogenized fluid, by means of respectively a body force applied
by the underlying solid obstacles, and boundary integrals in the right-
hand side of the filtered balance equations;

e evaluate, up to an approximation, this body force and these boundary in-
tegrals without any ad hoc model, thanks to an inverse wavelet transform
connecting the unresolved and resolved scales of the fluid variables.

Now, before specifying the analysing wavelet and scaling function chosen
to implement the model, and the numerical methods used for the computation
of the filtered PDEs, some remarks on the model "analytical" convergence and
accuracy can be highlighted.

3.6 Model convergence and accuracy criteria

The aim of this section is to:

e confirm the intuitive idea that, when the number of wavelet coefficients
and the scale range [Smin, Smaz] iNCrease, or equivalently, when the scaling
function cutoff scale s, decreases towards 0, the wavelet-based model
converges towards Direct Numerical Simulation (DNS);
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e identify accuracy criteria to measure the analytical error between the
wavelet-based model and DNS.

To reach these goals, a point-wise convergence is first proven (with respect
to the cutoff scale sy) between the wavelet-based model and DNS. Several
analytical accuracy criteria are then introduced, based on a point-wise error, a
L?-norm error, and a force-wise error.

3.6.1 Convergence towards DNS

To start with the convergence issue, it is recalled that, given a pair of
real isotropic (and admissible) analysing wavelet ¥ and scaling function @, the
error committed in reconstructing a signal f € L? (R?) with its low-frequency
approximation L[f](so, - ), can be evaluated as follows:

Z—uU

1
Vg € Rz, f(&) _ ﬁ /R2 [,[f] (SO;H) S—O@ <_ 5 ) du

(< e (52) ) 8 e

Proposition[3.6.1lthoroughly proves how this error tends towards zero when
the cutoff scale sy, decreases towards zero.

Proposition 3.6.1 Point-wise convergence towards DNS

Consider ¥ an admissible (cf. equation (2.157)) real and isotropic
wavelet, and @ 1ts associated real and isotropic scaling function. For all
f € L?*(R?), one has the following point-wise convergence between the
reconstruction based on the low-frequency approzimation L[f](se, -) and
the function f:

Vz € R?, lim

s0—0

=0. (3.148)

1@ - o [, L1 0) -0 (22 du

Cyss So So

Proof of Proposition 3.6.1 The proof of this point-wise convergence 1s
designed as follows:

e step 1: apply Fourier transform to the right-hand side of equation
; this first requires to justify that this term 1is integrable or
square-integrable in order to possess a Fourier transform;

e step 2: use the wavelet admissibility condition (2.157) to prove that
the obtained Fourier transform indeed converges towards zero when
the cutoff scale sy decreases towards zero;
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e step 3: apply an inverse Fourier transform and use a dominated
convergence theorem to conclude.

Step 1: Fourier transform

The starting point consists in applying Fourier transform to the integral
in the right-hand side of equation (3.147). To this end, let us first notice
that:

WIfl(s,u) = (f * ;) (). (3.149)

Z—Uu
S

/R2 WISl(s,u) x %L"’< ) du = WIf](s, -) * %] (z). (3.150)

As the function f belongs to the Lebesgue space L?(R?) and the
wavelet ¥ to L' (R?)N L? (R?), Young’s inequality ensures that the function
u — WIf](s,u) belongs to L? (R?*)NL* (R?). Applying once again Young’s
inequality allows to state that the function z — [W[f](s, -) * W] (z) also
belongs to L? (R?) N L™ (R?). One can thus apply a Fourier transform to
the right-hand side of equation (3.147), which, thanks to Fubini’s theorem,
formally leads to:

(Lo < r(-5) a) 2|

= | [T vl ) (5] 0

= [ FDVAG, NE x FEIE S (315)

The convergence of the integral in equation (3.151]) will be proven in a
few steps. To this end, one can notice that:

Fw](k) =F EW (;)] (k), (3.152)

= s x F [ (sk). (3.153)

FWIS(s, )l (k) = F [f « T] (k), (3.154)
= FIf1(k) x sF [F'] (sk), (3.155)

= FIfI(k) x sF [#] (sk)", (3.156)

where it is recalled that ¥(z) = ¥(—z). One can now write:
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J:l/oso (/sz[f](s,y)xll]/<' ) du> (::] (k),
= [* FIA®) 2 1FWERE S,
= FAw) x [ Mds. (3.157)

The analysing wavelet being here isotropic, the following change of
variables can be used for all vector k € R?\ {(0,0)}:

;L g, - [ PICIEDE o 159
sol|E|| |_7-‘ W](§)|

_/ o ||k|| as, (3.159)
sol|E|| |_7: Lp](g)|

_/ 3 de. (3.160)

Step 2: wavelet admissibility condition

If k = 0, one has in equation (3.157), thanks to the zero-average con-
dition satisfied by the wavelet, F [¥](0) = 0. Now, using the wavelet ad-
massibility condition (2.157), that is to say:

Al

Cy = /R TR (3.161)
=27 /0+oo W?‘ dr, (3.162)
— o /0+°° M dr, (3.163)
< +o0, (3.164)

2
1t can be stated that the function £ — W%, wisible in equation (3.160),
1s integrable on |0, +oo[. As a consequence, one has, for all k € R?\{(0,0)}:

m [ g@n 4 tim ( [P ifé)' - [ I dg>,

s9—0 s0—0 ollE| 13

(3.165)
— 0. (3.166)
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It is thus proved that, for all k € R2:

lim ]-“[/0 (/R WIf(s, ) x %w( ' ﬂ) dy) g] (k)=0.  (3.167)

so—0 S

Step 3: wnverse Fourier transform + dominating convergence theorem

Now, using an tnverse Fourier transform, one can write for all z € R?:

[ (o= 20 (5%) ) &
e (e (52 ) 2]
= @y o (f i« [+ ZBE ds) e’ =dk. (3.168)

(2)?

It has already been proven that the modulus of the function within the
integral in the right-hand side of equation (3.168) converges towards zero
when the cutoff scale sy tends towards zero. Moreover, one can write,
using again the wavelet admissibility constant Cy, that for all k € R?:

HUCRYN IAGE g g e

[oIEmE

s
0

)

= |FIFI(E)] x

< IFIA®) x SL. (3.169)

The Fourier transform of f is a bounded and continuous function on

R2. It 1s thus integrable on each compact subset of R?. As a consequence,

c
the function k — |F[f](k)| x 2—% s a locally integrable and dominating

function. Thanks to the dominated convergence theorem, one can now
pass the limit within the integral in the right-hand side of equation (3.168):

lim (-F[f] (k) x /Oso 7|}-M(SE)|2 ds) et 2dk

so—0 JR2 S
_ : o | FW](sk)|” iz
=/ (sglﬂo <]—‘[f](&) x /0 S22 as ) e 2 ) ak, (3.170)
which finally leads to the result:
. so 1 T—U ds .
sglﬂ'o ; (/R2 WIfl(s,u) x ;W( . ) dy) == 0. (3.171)

Samy Mokhtari CHAPTER 3. MODELING 89



3.6. MODEL CONVERGENCE AND ACCURACY CRITERIA

This concludes the proof on the "analytical" convergence of the wavelet-
based model towards Direct Numerical Simulation (DNS). It is here worth
noticing that the cutoff scale sy is actually closely linked to the mesh size h.
This link will be especially emphasized when discussing the stability of the
numerical methods, later in this chapter. Thus, in order to decrease s, and
catch all possible wavelengths, the mesh has to be refined accordingly. The
convergence of the reconstruction process based on the low-frequency approx-
imation is thus a convergence with respect to both the cutoff scale sq and the
mesh size h.

Remark 3.6.1 Convergence in L?>-norm

Thanks to the fact that CWT preserves the L?-norm of a finite-energy
signal f € L?>(R?) (cf. energy identity (2.159)), one could also define a
convergence between ||f||r2r2) and [[WIf](s, -)ll12(ge2)-

These propositions and remarks on the model "analytical" convergence be-
ing stated, let us now detail some accuracy criteria that will be used in chapter
4 to assess the model capabilities.

3.6.2 Accuracy criteria

In the following, p..; denotes a reference pressure field defined at the micro-
scopic scale. Let us denote by A,,;, the minimum wavelength contained within
this pressure field, and s,,;, the positive scale parameter such that the cutoff
wavelength of the scaling function ¢ satisfies:

S Amin. (3.173)

Point-wise accuracy

Given the above assumption, the low-frequency approximation
L[p] (Smin, -) thus allows to reach the "best" approximation of the mi-
croscopic pressure field p,.; with equation (3.I39). Thus, thanks to the
reconstruction formula (3.138]), one can state that:

Pref(Z) — Ps,pin (T) (3.174)
T 1 T—u
= — , , o —= Nl

p‘ref(g) C S?nin 42 [»[psmm] (szn;ﬂ) Spin ( P > dy, (3 75)

2T [Smin 1 /z—u ds
-7 oo 1(s,u) x ¥ ([ =—=) du) —, 3.176
o . ([ WIpema(s) x S (B2 du) <5 (3.176)
~ 0. (3.177)
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Then, for any computation of the homogenized fluid at a larger cutoff scale
So > Smin, One can define the point-wise error as follows:

Pref(Z) — Pso(T) (3.178)
T 1 T—Uu
D= - 4 —¢(=—= 1
Per(@) ~ o [ EPenal (02 0 (2 %) qw, (3379
2T [so 1 T—Uu ds
~ 2 oo (s,u) x ¥ (=—=) du) —, 3.180
Cw/sm(/WW[mes w)x (222 du) 5 (3.180)

where the wavelet coefficients W|p;_ . |(s, - ) are not obtained with the compu-
tation of the spatially-filtered PDEs at a given scale s € [Smin, So], but rather
directly computed from the "best" approximation p, _, . One can then study
the behavior of the function

50— é—:;/ (/RzW[psmin](s,g) < %w(g_ y) dg) % (3.181)

Smin S

to see how the point-wise error |p..s(z) — ps,(z)| deteriorates when the cutoff
scale sy increases, i.e. when the smaller wavelengths are progressively dis-
carded.

L? accuracy

Beside this point-wise accuracy, one can also define a L? accuracy. Indeed,
thanks to the energy identity (2.159), one can study the function (here written
with an isotropic wavelet):

ds

2w [so
Wb, (sl 50 (3182)

Sg — ||pref||i2 - C—W Smin

which shall decrease from ||1D,,ef||i2 (So = Smin) to zero (sg — +00).

Force-wise accuracy

One could also define an accuracy with respect to the force applied by the
real fluid to the solid medium:

Vi € {1,2},

‘((Ezms)ref - (EF—>S)50> €| = ‘/&Q — (Pres — Pso) (0, %) (ns_p(0,t) -€;) do|,

(3.183)

< Jopp, |Pres = 9:0) (0,) (ns.p(0 ) -€1)| do
(3.184)
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S0 S0

where we recall that p,, = CLF% Je2 L[ps.,...] (S0, u) =& (2_2> du.

It is also possible to look at the time integration of the force applied by the
real fluid to the solid medium, which contributes to its momentum:

ty 23
‘/t ((EF—LS')ref - (EF—)S)50> = dt‘ S /t ‘((EF%S)ref - (EF—>S)50> €; dt’
’ ) (3.185)
- = H ((EF—>S)ref - (EF—>S)50> “Eil| bt
(3.186)

These different accuracy criteria being stated, let us finally describe the
analysing wavelet and scaling function chosen to implement the model.

3.7 Analysing wavelet and scaling function

In the current work, CWT aims at filtering fields that do not possess any
oriented feature. Indeed, both the analysing wavelet and scaling function shall
be able to “observe” pressure waves propagating in different directions simulta-
neously (reflection/transmission on obstacles). Furthermore, as detailed during
the derivation of the spatially-filtered Euler compressible equations, both the
analysing wavelet and scaling function shall satisfy the following properties:

e C* smoothness;
e good localization in the spatial domain;

e fast decay towards zero.

Thus, the Mexican hat wavelet (Figure [3.3), which is an isotropic, real-
valued wavelet of class C'*°, with a fast decay towards zero, appears perfectly
suited for the model. The definition of the 2D Mexican hat is recalled below,
both in the physical and spectral domains.

Definition 3.7.1 2D Mexican hat wavelet

The Mezican hat wavelet 1s defined, with a L?-normalization in the
physical domain, as follows:

Ha) = % <1 - Hz%';) e (3.187)
F] (k) = 0%/2m| k| Pe 5 (3.188)
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Figure 3.3: Cutaway of the 2D Mexican hat (a) and its Fourier transform (b).

This wavelet is obtained by computing the Laplacian of a Gaussian function,
whose standard deviation is here denoted by o > 0. As any analysing wavelet,
the Mexican hat exhibits a band-pass behavior in the spectral domain, as
detailed in Tables [B.IH3.2] (with a —3 dB bandwidth convention).

Proposition 3.7.1 Filtering properties of the Mexican hat (o = 1)

Peak wave vector Bandwidth - lower bound Bandwidth - upper bound

kgl = ? | &l min ~ 0.875 m™* |Egllmes ~ 2.04 m™*

Table 3.1: Filtering properties of the Mexican hat wavelet (1/2)

Peak wavelength Bandwidth - lower bound Bandwidth - upper bound

Ay = TT/2 (Ap) ~3.08m (\p) ~718m

min

Table 3.2: Filtering properties of the Mexican hat wavelet (2/2)

Proof of Proposition 3.7.1 The above results are obtained by identifying
the —3 dB bandwidth on the curve of the Mezican hat Fourier transform.

Beside its smoothness and isotropy, the Mexican hat wavelet also satisfies
the admissibility condition (2.157]), which is a requirement for the use of an
inverse wavelet transform.

Proposition 3.7.2 2D Mezican hat admassibility constant

The 2D Mezxican hat 1s an admissible wavelet, with:

Cy = 270>, (3.189)
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Proof of Proposition 3.7.2 Straight application of the definition of the
admissibility constant in equation (2.157).

Regarding now the scaling function associated to the Mexican hat, hereafter
displayed in Figure [3.4], it is defined in the spectral domain by:

Definition 3.7.2 2D Mexican hat scaling function

1
5 2
I

Flalk) = o*var (|B|f + Ui) e

2
I

[

[

(3.190)

o
®

Modulus
o o
T £
Modulus

Figure 3.4: Cutaway of the 2D scaling function (a) and its Fourier transf. (b).

As the analysing wavelet ¥, the scaling function & is also isotropic, real-
valued, of class C*°, and exhibits a fast decay towards zero. However, conversely
to the wavelet, it does not possess any analytical formula in the physical do-
main. Its representation in Figure [3.4al can thus only be obtained with an
inverse Fast Fourier Transform (FFT).

Remark 3.7.1 Approximation of the scaling function in the physical
domain

In numerical implementations, 2D FFT/FFT ' algorithms, which
classically rely on successive 1D FFT/FFT! computations, may dete-
riorate the 1sotropy of the scaling function. To prevent this phenomenon,
one can approximate the scaling function behavior in the physical domain
(for ¢ = 1) via the following analytical and isotropic formula:

\/5 ||ZIJ||2 __ll=i?
@a . L £ 2(1.090)2 3.191
ppros(Z) v/1.09 2 (Hssx%)z i ( )
2

As displayed in Figure [3.58, the approzimation defined by equation
(3:191) satisfies the following accuracy result:

1
|Papproe — P| (llz]) < ﬁgb(o)_ (3.192)
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Figure 3.5: Cutaway of the scaling function ¢ and its approximation ®Pgpproz
(a), and their difference @yppror — @ (b).

Finally, conversely to the analysing wavelet ¥, the scaling function is a low-
pass filter. Its characteristics are summarized in Table[3.3/below (with a —3 dB
bandwidth convention).

Proposition 3.7.3 Filtering properties of the scaling function

Cutoff wave vector Cutoff wavelength

kgl < 1.285 m? Ap > 4.85m

Table 3.3: Filtering properties of the scaling function (o = 1)

Proof of Proposition 3.7.3 The above results are obtained by identifying
the —3 dB bandundth on the curve of the scaling function Fourier trans-
form.

Remark 3.7.2 Loss of isotropy caused by directional splitting

It 1s here worth highlighting that the use of finite-volume schemes with
directional splitting may deteriorate the isotropy of the scaling function.
Indeed, with such numerical methods, only filuxes oriented along the Carte-
sian directions are taken into account. The impact of the cells vertices 1s
thus neglected. Therefore, in order to transport a quantity of interest from
the cell c;; ;) to the cell cii1;41), one has to transport this quantity along
each Cartesian direction. If this quantity s filtered with an isotropic filter,
the cutoff frequency or wave vector is thus applied along each direction.
As a consequence, larger frequencies and smaller wavelengths can be taken
into account by the scaling function:

|kplnum = /K2 + K2, (3.193)

= |lkglv2, (3.194)

which leads to the following "numerical"” cutoff values:
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Cutoff wave vector Cutoff wavelength

lkpllnum $1.83m~  (Ag)  >343m

Table 3.4: Scaling function cutoff values with directional splitting (o = 1)

This remark thus concludes the section dedicated to the choice of the
analysing wavelet and scaling function. It is now high time to describe the
numerical methods that will be implemented to solve on the one hand, the
solid medium dynamic equation, and on the other hand, the homogenized
fluid filtered PDEs. To this end, let us first summarize the model assumptions
and equations.

3.8 Summary of the model assumptions and
equations

The wavelet-based homogenized and multi-scale model at the core of this
work has been designed within a 2D framework:

Figure 3.6: Illustration of a 2D {fluid + solid} geometry.

Assumptions on the 2D geometry

e the fluid domain (2, is an open bounded and connected space of R?;

e the solid domain (2, is an open bounded and disconnected space of R? :
s = U; 0, with 25, Ny 25, = 0. No periodicity or scale separation
assumptions are here required.

Assumptions and equations for the solid medium

e the solid medium is composed of the disjoint reunion of multiple disks.
These disks are considered as rigid and homogeneous bodies;

e the distance between neighboring disks, while not necessarily periodic, is
assumed constant (cf. spacer grids in fuel assemblies); this assumption
could be easily bypassed by considering an individual displacement field
for each disk (without impacts), with no change to the wavelet-based
model,;
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e the whole array is modeled as a rigid body animated with two degrees
of freedom (two translations). Its dynamic equilibrium is governed by a
second order linear differential equation:

) : 1
Vi{1,2}, Ui + 26woU; + wilUi = — (Fp_5-€:). (3.195)
= e

Assumptions and equations for the fluid

e compressible single-phase flow;

the real fluid is considered inviscid: viscosity and turbulence effects are
negligible compared to pressure gradients;

gravity is negligible compared to pressure gradients;

conduction heat transfer is negligible on the time scale at study;

the real fluid satisfies a barotropic equation of state.

the homogenized fluid is shown to be governed (in a strong sense) by the
following spatially-filtered Euler compressible equations within the inner
domain (2 U (2, (here written with an isotropic scaling function @):

find the homogenized fluid conservative variables

(L[p](s, ) Llpva](s, -) Lpvyl(s, ))T such that, for all s > O,
u € 25U, and t > 0:

o Lp](s,u,t) + dwv (L[p ]) (s,u,t)
=~ 10, Baw~ D)pl§ [BU(t) -np-s(a, 1)) do, | (3196)

AL [pv] (5,u,t) + div (L [ov ® v]) (5,4,t) + Y (L[p]) (5, u, )
S /8 0, &, (w— ) [Py (2,t) - npep(o,t) do

_/&(zs . (u— ) [pul5 (0) [%:U(2) - nps(a,t)] da.| (3.197)

where it is recalled that L[f](s,u,t) = (f *52) (u,t) denotes the low-
frequency approximation of f.

e the underlying solid obstacles are shown to apply a body force to the
homogenized fluid:

Fo  n(s,u,t) /arzf (- o) [P (0,1) - g er(c, t) do.  (3.198)
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e for the homogenized fluid problem to be well-posed, a closure equation
between resolved and unresolved scales is required for the conservative
variables (p, pu,p). Thanks to an inverse wavelet transform, this ana-
lytical closure equation writes, with only an isotropic scaling function

@:
p(z) ~ C;% /Rzﬁ[p] (0, ) S—losb (QS_OQ) du, (3.199)
~ S F T F LR (so, )] () % 80F (9] (0 x ) (2).|  (3.200)
VAL

e as turbulence is neglected, the treatment of the nonlinear convective term
is simplified into:

Llpv @] : = L[p|L[u ® 1], (3.201)
~ L[plL[v] ® L[], (3.202)

where £ denotes the Favre average.

e the homogenized fluid is shown to satisfy a spatially-filtered barotropic
equation of state (here written with an isotropic scaling function):

LIp)(5, ) = (Prey = Chonrer) s [, (u)" dy + cEon Llpl(s, 1),
(3.203)

e as this work focuses on the behavior of the homogenized fluid within the
inner domain 27 U (2, only the component of the body force (3.198)
associated to the fluid-structure interface 0f2, is hereafter considered.
The other component is discarded, and replaced by classical reflection
conditions on the outer boundary 02 \ 0f2.

All the model assumptions and equations being recalled, let us now detail
the numerical methods.

3.9 Numerical methods

This section presents the numerical methods chosen to solve the solid and
fluid equations, and gives some insights on the major numerical challenges
faced by the wavelet-based model. The current section is thus organized as
followrs:

e the first subsection recalls the classical Newmark algorithm, here chosen
to solve the solid medium linear differential equation,;
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e it is followed by a 1st order finite-volume scheme, here chosen to solve the
homogenized fluid PDEs; this scheme is based on a Godunov’s method
and an explicit time integration, and uses an approximate Riemann solver
(namely Rusanov) to compute the numerical fluxes;

e the third subsection then emphasizes the issue of stability, which is critical
for explicit schemes;

e and finally, the focus is put on the risk of aliasing associated to the use
of FFT algorithms with the scaling function &;,, whose support in the
frequency domain may exceed the range allowed by Nyquist—Shannon
sampling theorem;

3.9.1 Solid medium: Newmark method

In the current work, the solid medium is animated with two degrees of
freedom, i.e. horizontal and vertical translations, which are governed by the
following linear differential equation:

Vi € {1,2}, mU; + cU; + kU; = Fp_ 5 - €;. (3.204)

To simplify notations, we hereafter denote A the acceleration, V' the veloc-
ity, and D the displacement. Equation is classically computed with a
Newmark algorithm:

e the solution being known at ¢t = t", either in acceleration A, or displace-
ment D, one predicts the next values of the displacement and velocity
based on the acceleration profile on the time step [¢", t"!]:

At?
D, 1 = D, + AtV, + — (1 —-2B)A, +2BA, 1], (3.205)
= D1 + BAt? A, 4, (3.206)
Vo1 = Vo + At[(1 —7)A, +7Ani4], (3.207)
= Vo1 + YAt A, (3.208)

where 5n+1 and Vn+1 are the predicted values of the displacement and ve-
locity, and B and vy are two parameters controlling the algorithm stability.
For a displacement-oriented resolution, one can write:

1 —
Apit = TAT (Dat1 = Do), (3.209)
gy 5
Vi = Vs + RY (Dns1 = Do) - (3.210)
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e given the predicted values 5n+1 and Vn+1, the equilibrium equation at
t = t"*! writes:

m ~ 0 ~ B
,BAt2 (Dn—l—l - Dn—l—l) +c <Vn+1 + = ﬂAt (Dn+1 - Dn+1>> +k-Dn+1 — Fn—l—l;
(3.211)
m v ~
—_— k Dn - Fn n n Vn )
lﬂAtQ—i_ﬂAt—i_ ] +1 +1+,5At2 +1+¢ <,3At +1— +1>
(3.212)
or equivalently, in a more compact form:
kD,..=F, .. (3.213)

e once D, is computed from equation (3.213)), one updates the accelera-
tion and velocity at t"*! with equations (3.209H3.210]).

Depending on the values chosen for the parameters v and £, Newmark
algorithm is known to be:

e unconditionally stable if £ <~y < 28;

e stable if ¥ > % and B < 1, under the additional condition:

(.U[)At S

5 (3.214)

The values v = £ and B = ; are commonly used to reach an unconditional
stability.

3.9.2 Homogenized fluid: Godunov’s method

Let us now turn towards the computation of the homogenized fluid PDEs.
All the spatially-filtered equations, written with an isotropic scaling function
@, are recalled below:

e the filtered mass balance equation governing L[p] (s, - ):

0:LIp] (0, ) + 0= (L[p JrZ[m) (50, *) + 0y (LIPIL [v,]) (50, -)
= [, Prala— 250, (1) - nps(e, )] g, (3.215)
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e the filtered momentum balance equation governing £[pv,] (so, - ):

0 (L[p1L[vs]) (50, - )+0s ( IL[wa]” + L[p]) (50, -)+0y (LIPIL[va]Z [1,]) (0, -)
- - /6,(2 (- =) PIf (@) (nrs(es)-ee) do
_/&(2 oo —0) [0:U(t) np_s(o,t)] {pv em] (o,t)da, (3.216)

e the filtered momentum balance equation governing L[pv,] (so, - ):

% (E[Plf[vﬂ) (s0, -)+0: (ﬁ[ Z[v,) [v:]) (s0, )+ (LlAILv ] + LIp]) (s0, -)
== [, Bl D)W @) (nr5(et) &) do

- /&(2 B,(w - 0) [DU() -nrs(e,t)] [pu-e] (0,t) de, (3.217)

e the filtered barotropic equation of state (here normalized with respect to
the mean of the scaling function):

: :
So fRz @(Q)* dgﬁ[p] (SO, ) - (pref - Csonpref>+ @(g)* dgﬁ[p] (30, . ) .

S0 Jre
(3.218)

‘Spatial discretization: 1st order finite-volume scheme‘

As classically done in the study of hyperbolic system of conservation laws,
the homogenized fluid equations will hereafter be discretized in space via a
finite-volume method with directional splitting. Thanks to the homogenization
process, this finite-volume method can be associated to a plain 2D regular
Cartesian grid, as illustrated below.

T, 1

2
cell ¢; ;11
(i, Yj+1)

Yj4i Yj+l
cell ¢;_1; cell ¢; ; cell ¢;y1,
(mi—liyj) (mi’yj) (mi—l—lyyj)

Yi-1 Y;-1

cell Cij—1
(il)i, yj—l)
. 1 xi+%

T3

The unknowns will be approximated by constants on each cell, leading to
a 1st order scheme.
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Time discretization: Euler explicit scheme

As for the time discretization, an Euler explicit scheme is chosen considering
the physics at study. Indeed, for the numerical method to be accurate, the time
step At is first restricted by the pressure waves velocities, in order to prevent
these waves from exiting a cell during a single time step. This restriction on
At allows at the same time to satisfy the Courant-Friedrichs-Lewy (C.F.L.)
condition which ensures the stability of the explicit scheme. The definition of
this C.F.L. condition will be recalled in the following section. Finally, another
advantage of explicit schemes is their ability to avoid any matrix inversion
process.

‘ Godunov’s scheme ‘

Thus, the 1st order finite-volume scheme with Euler explicit time integra-
tion can be summarized into the following Godunov’s scheme:

for each cell c; ;:

n n S
(0= 00y = T (G20 =67 ) — Ty (B~ ) + 20 (5]
2/ ;5
(3319)
where:
e Az/Ay and At denote respectively the spatial and time steps;
e [ denotes the homogenized fluid conservative variables:
L= (Lol Lipw] Llpv,))" (so,-); (3.220)
e G. . Iy and G, denote the horizontal fluxes exchanged at the interfaces

w1th the right and left neighboring cells;

o H,, 4L and H, FEE! 1 denote the vertical fluxes exchanged at the interfaces
with the upper and lower neighboring cells;

T
e S = (So S Sz> is a vector gathering the source terms of each balance
equation.
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Approximate Riemann solver: Rusanov ﬂux‘

In order to compute the numerical fluxes G and H at the interfaces, an
approximate Riemann solver is used, namely Rusanov flux:

_—_— G (L) +G (L2,)
Zitl

57 2
n

= max [ (L5) 10 (L)) 22223, (a.221)

=1,..,

. H(L) +H (L)

S
_11]+§ 2

B kr—na 3 H(Ay)k‘ (LZ) J ((}‘y)k‘ (LZ]'H)] %, (3.222)

with:

e (G and H the exact flux in the PDEs:
G = (L[] LIpElw] +Llpl LlolZlw)Elwa]) 3 (3:229)

H= (Ll Ll Ll + Lo (3.224)

® (Az)icpes and (Ay), .., the eigenvalues associated to the non-
conservative form of the hyperbolic system (z € {z,y}):

(A); = Llvi] = Lcson], (3.225)
(), = L, (3.226)
(A)s = Llvi] + Llcson)- (3.227)

This concludes the numerical methods for both the solid and fluid equations.
The following subsections now emphasize the critical issue of stability, before
underlining the risk of an aliasing phenomenon caused by the scaling function.

3.9.3 Stability: explicit VS implicit filtering

It is well-known that explicit schemes are especially vulnerable to instability.
Indeed, let us consider the classical (1D) linear advection equation

Osu + cOzu = 0, (3.228)

where ¢ > 0 denotes a constant advection velocity. An Euler explicit upwind
scheme
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n+1 n
g Yy
At te Az

U u;f‘—u’?

L =0 (3.229)

is known to be stable under the following Courant-Friedrichs-Lewy (C.F.L.)
condition:

cAt
=—<1 3.230
or equivalently:
A
At < Tx (3.231)

When solving (1D) nonlinear PDEs with such explicit schemes, a safety
margin is usually taken with respect to the C.F.L. condition:

A
At = Cutap—rr' Cutap < 1, (3.232)

mazr

where the constant C,, is commonly chosen equal to 0.8, and c¢,,,, denotes
the maximum velocity over the whole domain.

In the current work, two "spatial steps" coexist:

e first, the cutoff wavelength ()\@%) of the scaling function &, (see

num

Table [3.4)), which satisfies for all sy > O:

(A,,)  =s0x(Ap) (3.233)

and acts directly onto the original Euler compressible equations, at the
continuum medium scale.

e second, the spatial discretization of the 2D regular Cartesian grid:

h = Az = Ay, (3.234)

which then acts in the numerical computation of the spatially-filtered
equations.

Thus, the classical C.F.L. condition associated to the mesh size h coexist
with another characteristic time scale, linked to the scaling function ®,,:

sty = Ol

S0

(3.235)

cmaa:
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Nevertheless, it shall be noticed that, conversely to the scaling function spa-
tial scale, which is isotropic, the distance between two neighboring grid nodes
is not. Thus, in order to preserve the scheme stability, the cutoff wavelength
of the scaling function has to be larger than the maximum distance between
two neighboring grid nodes:

So (A(p)num > dist (node; ;,node; 1 j11), (3.236)
> hv/2, (3.237)

which leads to the following compatibility condition between the scale param-
eter sg and the mesh size h:

J/2

S0 > W % h. (3.238)

The numerical approximation of the compatibility condition (3.238]) is spec-
ified in Table

Stability - cutoff scale VS mesh size

So 2 0.412 x h

Table 3.5: Compatibility condition between the cutoff scale s; and the mesh
size h to ensure the stability of the explicit scheme.

This compatibility condition will be tested in the next chapter dedicated
to the model implementation. But for now, let us turn towards the risk of
aliasing.

3.9.4 Sampling, FFT, and aliasing

The phenomenon of aliasing is known to be explained by Shannon sam-
pling theorem. Indeed, given a mesh size h, one has the following sampling
properties:

Spatial step Spatial sampling frequency Shannon spatial frequency

— — 1
h Oe = o-maa:—ﬁ

S

Table 3.6: Mesh sampling properties.

To satisfy Shannon theorem, the frequency range accessible with the
scaling function should remain within the wave vector range defined by
[=1k||mazs ||El|maz] = [—2TOmazs 2TOmaz]. However, it was previously high-
lighted that, considering the directional splitting used in the finite-volume
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method, the cutoff wave vector of the scaling function is larger than its theo-
retical value: ||kg|lnum = v/2 X ||kgp||. Thus, to ensure that the bandwidth of
the scaling function @, remains within the observable wave vector range, the
cutoff scale parameter s, has to satisfy:

™
5., |0rn < (3.239)
V2 x |lkgll _ 7
ver izl o T 3.240
n Sw (3.240)
2|k
S > % % h. (3.241)

Thus, if the cutoff scale sy is too small, the scaling function bandwidth
will exceed the admissible spatial frequency range, leading to an aliasing phe-
nomenon with the use of FFT algorithms on &,,. The numerical approximation
of equation (3:241]) is detailed in the following Table 3.7t

Aliasing - cutoff scale VS mesh size

S0 > 0,579 X h

Table 3.7: Compatibility condition between the cutoff scale sq and the mesh
size h to prevent aliasing in FF'T computations.

Remark 3.9.1 Aliasing and boundary conditions

The wmpact of aliasing will be mainly focused on the fluid-structure
interfaces. Indeed, the boundary integrals present in the right-hand sides
of the filtered balance equations all require a closure expression between
the resolved and unresolved scales of the fluid variables. This closure is
brought by an inverse wavelet transform, which will be implemented via
FFT and FFT~! algorithms applied to the low-frequency approzimations
L[p](so0, -), L[pv](s0, -), L]P](S0, -) and the scaling function P, itself. As a
consequence, the reconstructed fields on the fluid-structure interfaces wall
ezhibit high-frequency noise if the above compatibility condition (3.241) is
not satisfied.

3.10 Conclusion

These important remarks thus conclude this third chapter dedicated to the
thorough description of the wavelet-based model. This core chapter built step
by step a self-sustained homogenized and multi-scale model, here applied to an
inviscid compressible flow within a congested solid medium. It was proven how
Continuous Wavelet Transform (CWT) can be used to rigorously homogenize,
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at the continuum medium scale, a heterogeneous medium. The homogeniza-
tion process here promoted, which may apply to generic PDEs, relies on a
"weak-extension" of the original fluid PDEs, followed by a "weak-convolution"
with an analysing wavelet or scaling function. To ensure the well-posedness of
this convolution product, a real-valued, isotropic, smooth, well-localized and
admissible wavelet, namely the Mexican hat, has been chosen. With such an
analysing wavelet or scaling function, this wavelet-based convolution product,
which acts as a regularizing and filtering operator, is thus able to deal with
PDEs exhibiting non-smooth weak solutions. This convolution process even-
tually results in spatially-filtered PDEs governing a homogenized fluid, defined
over the whole {fluid + solid} domain. The homogenized fluid variables were
shown to be the wavelet coefficients (or low-frequency approximation) of the
original fluid variables. It was also detailed how the original contact forces
between the fluid and solid media are transformed into body forces defined
within the whole homogenized fluid.

Furthermore, it was emphasized that CWT possesses a key advantage com-
pared to classical homogenization and multi-scale methods, namely its ability
to reconstruct, thanks to an inverse wavelet transform, the fields at the micro-
scopic scale. This crucial point allowed to build a self-sustained model, which
can connect resolved and unresolved scales without any ad hoc model, and
properly treat the original PDEs boundary conditions. This reconstruction
ability can also be used to explicitly compute, if necessary, nonlinear terms.
Besides, the wavelet formalism also allowed to prove an analytical convergence
(either point-wise or in L?-norm) between the homogenized model and Direct
Numerical Simulation (DNS). To the author’s knowledge, it is the first time
that such a self-sustained homogenized and multi-scale model, able to deal
with generic and non-smooth PDEs, closure between resolved and unresolved
scales and boundary conditions (and if necessary nonlinearities), is put for-
ward in literature. This wavelet-based model also bypasses periodicity and
scale separation assumptions.

Finally, the last section of this chapter emphasized some of the challenges
likely to appear during the model numerical implementation, that is to say the
risks of instability and aliasing. Two compatibility conditions underlining the
links between the scaling function cutoff scale sy (i.e. explicit filtering) and the
mesh size h (i.e. implicit filtering), were put forward.

All this theoretical framework being defined, the following chapter shall now
confirm, with numerical tests, these risks of instability and aliasing. These tests
also aim at assessing the model actual convergence towards numerical reference
solutions computed at the DNS scale, and involving 2D transverse pressure
waves propagating through congested solid media composed of multiple disks.

Samy Mokhtari CHAPTER 3. MODELING 107



Chapter 4

Model implementation and analysis

4.1 Introduction

In order to confront the wavelet-based model with the physics of interest,
and assess its ability to tackle the challenges previously highlighted, namely in-
stability, aliasing, and convergence towards DNS, this fourth chapter hereafter
presents several 2D numerical tests, completed with preliminary experimental
data. Throughout this chapter, a special focus will be put on the model ability
to reconstruct 2D pressure fields, and the resulting dynamic load applied to
the solid medium.

The opening section presents a wavelet analysis of a 2D reference pressure
wave propagating through a 10 x 10 steady array of disks. This reference
solution is computed at the DNS scale with EUROPLEXUS software, a fast-
transient dynamics code for fluids and structures. This first study of a reference
solution known at the DNS scale allows to get insights on the pressure field
spectrum, in other words its most relevant wavelet coefficients and spatial
scales. This information will later on guide the direct computation of the
homogenized fluid PDEs.

The second section then presents a preliminary analysis on the numerical
model stability and accuracy. This analysis is performed by directly computing
the spatially-filtered PDEs, with the scaling function @, for a 2D pressure wave
propagating through a 2 x 2 steady array of disks. The focus is especially put
on both the C.F.L. and compatibility conditions between the scaling function
cutoff scale s, and the mesh size h.

In echo with the first wavelet analysis, the third section then presents the
direct computation of a 2D transverse pressure wave propagating through
a 10 x 10 steady array of disks. The model ability to accurately recon-
struct the reference pressure field and the reference force applied to the solid
medium, both computed at the DNS scale with EUROPLEXUS software, will
be evaluated.

Fourth, in order to emphasize the multi-scale component of the model, the
propagation of a 2D transverse pressure wave through different but equivalent
steady array of disks (2 x 2, 4 x4, 10 x 10) is considered. The aim of this test is
to assess whether a more macroscopic modeling of the solid medium, and thus
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a larger mesh size A and cutoff scale sg, allow to reconstruct a similar order of
magnitude for the force applied to the solid medium.

To conclude this chapter, insights on two ongoing projects will be presented.
The first one consists in a first attempt at implementing a nested grids algo-
rithm within the numerical model. Conversely to classical multi-grid methods,
this attempt does not here aim at improving an iterative method by damping
both the high and low-frequency components of the error. The aim is rather
to speed up the computations, by solving the homogenized fluid PDEs on a
coarse grid, while keeping track of the solid medium geometry on a fine grid, in
order to evaluate the different boundary integrals present in the filtered PDEs.
As for the second ongoing project, it is dedicated to the coupling between the
homogenized fluid and the solid medium. Experiments realized with a 10 x 10
array of PMMA cylinder rods submitted to a shock wave will be presented.
This experimental data will be supplemented with a preliminary numerical
test involving a 2 x 2 moving array of disks.

4.2 Wayvelet analysis of a 2D reference pressure
wave

In order to guide the direct computation of the spatially-filtered equations,
and select wisely the cutoff scale parameter sy, or the number of wavelet co-
efficients (W/[f](Sk, - ));<p<n, it 18 necessary to possess some insights on the
pressure field spectrum. To this end, this section presents a wavelet analysis
of a 2D reference pressure wave propagating through a 10 x 10 steady array
of disks. This pressure wave is computed at the microscopic scale with EU-
ROPLEXUS software, a fast-transient dynamics code for fluids and structures,
which solves directly Euler compressible equations. This local solution allows
to compute analytically the pressure field wavelet coefficients, and then fully
assess the accuracy of the reconstruction process with respect to the main
quantity of interest, i.e. the dynamic load applied to the solid medium, which
is directly linked to the pressure gradient. The simulation is designed as shown
in Figure [4.1] below. Such a 2D test case can be seen as a simplified, yet repre-
sentative, version of the actual pressure loading that would impact PWR. fuel
assemblies during a depressurization transient.

150,00 mm

140,00 mm 410,00 mm

Figure 4.1: Geometry of the first reference test case.
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All the simulation parameters are specified in Tables [4.TH4.2H4.3]

Lx Ly Disks radius Dist. consecutive disks Disks position

0.5bm 0.15m 5.10 ° m 5.10 °* m [0.2025 m, 0.3525 m)|

Table 4.1: Geometry - 1st test case.

10 bar zone 1 bar zone Discontinuity «+— 1st disks
[0,0.14m] [0.14 m,0.55 m] 6.75 x 102 m

Table 4.2: Pressure loading - 1st test case.

The fluid is considered compressible, inviscid and isothermal. It satisfies a
barotropic state law:

P = Pres + (P — Pres), (4.1)

with the following numerical values:

Reference Density Reference Pressure Sound Velocity
pres = 1000 kg - m™? Pres = 10° Pa c=1300m s

Table 4.3: Fluid parameters - 1st test case.

As for the solid medium, the disks can here be considered as rigid bodies,
whose centers are kinematically blocked, so that the sum of the reaction forces
to the central blockages directly provides the force applied by the fluid to the
solid obstacles.

The numerical methods used to compute this 2D reference pressure wave
are designed as follows:

e a finite-element method for the (linear elastic and isotropic) solid
medium, with 3-noded triangle elements;

e a 2nd order cell-centered finite volume scheme for the fluid, with quad-
rangle elements, and a H.L.L. (Harten - Lax - van Leer) Riemann solver
for the numerical fluxes;

R R R R

e mesh size: h.pe € {F, 5 15 15> Where R denotes the disks radius;

e EBuler explicit time integration for the fluid.

The reference pressure field, computed on (2, is then extended over the
whole domain (2; U (2, by means of a linear interpolation on a 2D regular
Cartesian grid with half mesh size A = 0.5h,,. Figures [4.2 and display
the resulting pressure field computed with h.p, = % = 1 mm. It can be noted
that, during the interpolation process, the pressure is by default set to zero on
the nodes located outside the fluid domain.
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Figure 4.2: Reference pressure field snapshots every At = 1.1075 s
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10 X190 : .
1 ! —t=0
: : —t=4e-5s
1 | t=1.6e-4s
8r 1 ! —t=24e-4s
\ : - -First rod bundles
—_ ] 1 - -Last rod bundles
] 1 1
a 6 ‘ 1 1
@ | '
s | |
| |
8 4 I I
0:_) 1 1
n_ I I
| |
2; : :
1 1
i i
0 1 1l 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5

X (m)

Figure 4.3: Reference horizontal pressure profile - 10 x 10 array (y = —).

As in a classical shock tube situation, the simulation shows two waves prop-
agating in opposite directions from the initial discontinuity (Figure and
Figure 4.3 at ¢ = 4.10°° s). The left one then bounces back on the left verti-
cal boundary (defined with absorbing conditions) and heads back towards the
solid medium (Figure 43, ¢t = 1.6 x 107* s and ¢t = 2.4 x 107*s). This left
boundary condition, not very familiar in shock tube computations or exper-
iments, does not here affect the propagation of the pressure wave within the
solid medium. Indeed, the simulation stops before the reflected wave hits back
the solid medium. The same is true for the wave bouncing back on the right
vertical boundary.

Now, in order to determine the most relevant wavelengths within this ref-
erence pressure field, let us use some of the accuracy criteria presented in the
previous chapter.

4.2.1 L?-accuracy

In equation (B.182)), the following function was introduced:

2T [so ds
||W[psmin](3’ : )||i2 ?’ (4'2)

S —— ||pref||iz - C—W -

(BT WIpa Gl
= |lpresllze | 1 — 5 ) (4.3)
||pref||L2
= [|Presllz> (1 — B(s0)), (4.4)

where it is recalled that W[p;, , |(s, -) denotes the wavelet coefficients com-
puted with the Mexican hat, and E(sp) is an energy ratio increasing from 0
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(So = Smin) to 1, which measures the percentage of the pressure field L?-energy
that is progressively recovered by adding wavelet coefficients.
The pressure field is discretized on a regular Cartesian grid with mesh size
h = 5.10* m. Furthermore, it is recalled that the Mexican hat exhibits a
band-pass behavior in the spectral domain, with a —3 dB bandwidth located
on [s x 3.08 m, s x 7.18 m]. Thus, the scale parameter s allowing to catch the
minimum spatial scale of the pressure field, either A\, = 5.107* m in the Carte-
sian interpolation, or A.p; = 1.10® m in the EUROPLEXUS computation, is
given by:
A
s> 718" (4.5)

The numerical values associated to the above equation are summarized in
Table [4.4] below.

Cutoff scale associated to A\, Cutoff scale associated to A,

Sp A2 T7.107° Sepr ~ 1.4 x 107*

Table 4.4: Cutoff scale of the Mexican hat wavelet - 1st test case.

These remarks being stated, Figure displays, for two different time in-
stants for which the pressure discontinuity is at different locations within the
array of disks, the evolution of the energy ratio E(sy) for s, € [107°,5.107%].

It appears that for both time instants, the scale range s, € [107°,5.10 %],
which theoretically corresponds to wavelengths starting from A € [3.08 x
1075,7.18 x 107° m] up to A € [1.54 x 1072 m, 3.59 x 10~® m], conveys around
100% of the pressure field L2-energy. Thus, regardless of the location of the
pressure discontinuity within the array of disks, the most energetic scales seem
to be invariant and only constrained by the geometry of the array.

Nevertheless, one can notice that scales below s, = 7.107°, which corre-
sponds to the minimum spatial scale of the pressure field on the Cartesian
grid, still convey around 5% of the pressure field L?-energy. The presence
of scales s belonging to [5.1075,7.10"°] (scales between 107° and 5.107° can
be neglected) is explained by the fact that the amplitude of the Mexican hat
Fourier transform is not immediately "almost zero" outside of its bandwidth.
Thus, even with a small scale parameter s, the tail of the "Gaussian" lobes
of the Mexican hat Fourier transform (cf. Figure [3.3) may catch, with a low
amplitude, the pressure field smallest wavelengths. Fortunately, 95% of the
pressure field L?-energy corresponds to scales s larger than the cutoff value s,.
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(b) t =1.6 x 107%s.

Figure 4.4: Pressure L2-energy recovered - so € [1075,5.107%|

Finally, it can be noted that a decrease in the number of computed wavelet
coefficients N, does not have a significant impact on the L?-energy recovery.
Indeed, the asymptotic value still reaches around 100%, even with only five
wavelet coefficients.

Let us now turn towards another accuracy criterion in order to check
whether similar conclusions are reached regarding the scale range and num-
ber of wavelet coefficients.

4.2.2 Force-wise accuracy

In the previous chapter, a force-wise accuracy criterion was introduced via
equation (3.183). In this subsection, a slightly different version of this criterion
will be used:
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o

(EF—>S)N5 ‘Cz
(Fohes ~ (Frah) w2 = (Fro) vex (1- (P ). o)

= (Epss)yes €2 (1= f(NS)) (4.7)

8

with (Fr_s)y, = [y, —Pn.(c,t)np_s(c)do, and py, an approximate pres-
sure field here reconstructed only with the analysing wavelet ¥, using N,
wavelet coefficients on a scale range [si, sy, ]:

2w SNs

pr (2,8) = = Whpeefl(sw) x v (2 2) au) L 4s)
CL_p/sl </R s < s > >s

Figure shows the evolution of the force ratio f (N;), evaluated on the
whole array, with the number of computed scales N,, and for three different
scale ranges: s € [107°%,5.107%], s € [107®,107%], and s € [107%,107%].

Conversely to the L*-energy criterion, the scale range s € [1075,5.107%|
seems here unsuited to properly reconstruct the force applied to the solid
medium microstructure, as an almost 40% overestimation can be witnessed
for the time instant ¢ = 1.6 x 10 * s. Furthermore, an 8% overestimation is
still visible for the time instant ¢ = 8.10 ° s. This significant difference be-
tween the two time instants can be explained by the following fact: as the
initial pressure wave has almost exited the array of disks for t = 1.6 x 107* s,
wavelengths around 5.1072 m (driven by the distance between two consecutive
disks), which are not taken into account in the scale range s € [107°,5.10 %],
are much more present within the array of disks than for the time instant
t=128.10"%s.

Thus, the wider scale range s € [107°, 107%] allows to better reconstruct the
force for both time instants, with, for instance, an overestimation around 10%
for t = 1.6 x 10~ * s. Additionally, Figure [£.5d proves that the smallest scales
could even be neglected without losing accuracy, thus leading to the range
s € [107*,107?], which contains wavelengths A € [3.08 x 107%,7.18 x 1073 m)].
The clear shift with respect to the scale range previously identified with the
L?-energy criterion ([7.107°,5.107*]) can be explained by the fact that the force
criterion focuses on the pressure values on the fluid-structure interfaces, while
the L?-energy takes into account the whole 2; U 2, domain.

Finally, it can be noticed that N, = 10 wavelet coefficients would already
allow reaching a good accuracy (< 10% overestimation) on the force applied to
the solid medium. The results on the most relevant wavelengths with respect
to this physics-driven criterion are summarized in Table
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Figure 4.5: Evolution of the horizontal force ratio with the number of wavelet
coefficients, for 3 different scale ranges.
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Cutoff scales and number of wavelet coefficients

Smin = 107 N, =10 Smas = 1072
A€ [3.08x10°%, 7.18 x 10 * m] A€ [3.08x 103, 7.18 x 10 % m]

Table 4.5: Cutoff scales and number of wavelet coefficients - 1st test case.

For the sake of completeness, Figure displays the reference and recon-
structed pressure profiles along the medium horizontal axis, while Figure
displays the absolute error between the 2D reference and reconstructed pres-
sure fields. The absolute error is logically located in the vicinity of the disks,
where the reference pressure variations are maximal, but it remains small com-
pared to the reference pressure range (less than 10% for maximum values).
Furthermore, the good results obtained in terms of forces acting on the solid
medium indicate that the pressure gradient is well preserved.
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Figure 4.6: Horizontal pressure profiles (y = —) - s€[107*, 1073
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Figure 4.7: Absolute error |pyes — Precons| (Pa) - Ny =10 - s € [107%,1073].

This first wavelet analysis of a 2D reference pressure wave, which can also be
found in [Mokhtari et al., 2020], thus gave some insights on the most relevant
wavelet coefficients and spatial scales. It appears that a direct computation of
the homogenized fluid PDEs would require, with the Mexican hat analysing
wavelet, 10 different computations to determine 10 wavelet coefficients on the
scale range s € [107%,1073]. This is of course expected to represent a significant
computational cost, especially as these different wavelet coefficients are linked
through the boundary integrals in the right-hand side of the filtered PDEs, and
the necessary closure expressions between the resolved and unresolved scales
of the fluid variables.

In order to bypass this need for multiple computations, the Mexican hat
wavelet is hereafter replaced by its associated scaling function. The computa-
tion of the low-frequency approximation £[f](so, -), at a given cutoff scale sy,
indeed allows us to catch simultaneously all the spatial scales larger than s,.
But before computing a similar 2D pressure wave through a 10 x 10 array of
disks directly with the model equations, the following section first investigates
the numerical model stability and accuracy on a simpler test case.

4.3 Direct computation of the fluid filtered PDEs

4.3.1 Preliminary analysis on stability and accuracy

This preliminary analysis aims at assessing on the one hand, the stability of
the explicit finite-volume scheme ([3.219]) designed to solve the model equations,
and on the other hand, the ability of the wavelet-based model to accurately
reconstruct, from the homogenized fluid, the force applied to the underlying
solid medium. To this end, the propagation of a 2D pressure wave through a
2 x 2 steady array of disks is hereafter considered (see Figure [£.8). The solid
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medium thus only acts, once again, as a boundary condition for the fluid.

24,00 mm

14,00 mm 38,00 mm

Figure 4.8: Scheme of the preliminary test.

The simulation parameters are summarized in Tables [4.6H4.7H4.8H4.9;

Lx Ly Disks radius Dist. consecutive disks

52 mm 24 mm 4 mm 4 mm

Table 4.6: Geometry - 2nd test case.

10 bar zone 1 bar zone Discontinuity «+— 1st disks

0,14 mm| [14 mm, 52 mm] 4 mm

Table 4.7: Pressure loading - 2nd test case.

Reference Density Reference Pressure Sound Velocity

Pres = 1000 kg-m™? Dres = 10° Pa c=1300m-s*

Table 4.8: Fluid parameters - 2nd test case.

Mesh size  Time step  Scale/mesh compatibility

h=1mm At < Cugp— 50 > 0.412x h

Table 4.9: Spatial and time discretization - 2nd test case.
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As aresult of the homogenization process, the interfaces with the underlying
solid obstacles are not taken into account via the mesh, but via a body force
defined across the whole domain (2; U £2;. As can be seen in equation (3.136)),
this body force is expressed as an integral of the pressure on the boundary
0f2,, weighted by the analysing wavelet ¥, or rather the scaling function @
here. Figure illustrates how this weight is well-localized in the vicinity of
the boundary 0.

0.020

_.0.015

m

> 0.010

0.005

0.000
0.00 0.01 0.02 0.03 0.04 0.05

x (m)

Figure 4.9: Visualization of the 2 x 2 array - so = 0.415 X h.

The simulation is initialized as a Riemann problem, with a 10 vs 1 bar
pressure discontinuity, as displayed in Figure [4.10 below. It is recalled that the
solid medium is initially in equilibrium with the surrounding fluid, and thus
"hidden" in the 1 bar zone.

~» O ©

N

0.00 0.01 0.02 0.03 0.04 0.05
x (m)

Figure 4.10: Initial pressure field (10 vs 1 bar).

Conversely to the previous analysis of a 2D reference pressure wave, in which
the Mexican hat wavelet ¥ was used to detect the most relevant wavelengths,
all the results hereafter presented are obtained with the scaling function ¢. All
the reference data used to confront the model is obtained with EUROPLEXUS
software, using the same numerical methods as described in the previous sec-
tion. The reference mesh size is set t0 hep, = % = 1 mm, where R denotes the
disks radius. The reference pressure field is then extended to the whole domain
£2; U2, by means of a linear interpolation on a 2D regular Cartesian grid with
mesh size h = 1 mm (as opposed to 0.5 mm in the previous analysis). It is
recalled that this linear interpolation artificially sets the pressure to zero on
the nodes located outside the fluid domain (2.
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In order to assess the stability of the explicit finite-volume scheme, the
impact of two possible sources of instability are hereafter studied:

e the classical C.F.L. condition between the time step At and mesh size h;

e the scale/mesh compatibility condition with respect to the explicit
scheme stability (3.238)).

To do so, several tests are hereafter presented, depending on the value
chosen for the C.F.L. stability constant C;,, and for the cutoff scale s,.

‘Test #1: Csa =1, and sg = 0.42 X h‘

Let us start with the "worst-case" scenario, where no safety margins are
taken with respect to either the C.F.L. or the scale/mesh compatibility con-
ditions. Figure [4.11] below displays the reference and reconstructed pressure
field, after 29 time steps (At ~ 7.69 x 107 7s).

10
0.020
8
__0.015 -
g 6
> 0.010 - 4
0.005 - 2
0
0.000
0.00 0.01 0.02 0.03 0.04 0.05
10.5
9.0
7.5
6.0
45
3.0
15
0.0
T T
0.00 0.01 0.02 0.03 0.04 0.05
x (m)
(b)

Figure 4.11: Reference (£11a) VS reconstructed (4.11D) pressure fields - sy =
0.42h - Cyap = 1 - t = 2.2284 x 107° s.

The pressure field reconstructed after only 29 time steps is clearly unsatis-
factory. To compare more precisely the reference and reconstructed pressure
fields, Figure displays both horizontal pressure profiles, at ¢ = 0 s and
after 29 times steps. The vertical black lines correspond to the location of the
2 X 2 array of disks.
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(b) t = 2.2301 x 1075 s

Figure 4.12: Reference VS reconstructed pressure profiles (y = 7y> sg = 0.42h
- Cstap = 1

The important oscillatory, yet bounded, behavior that can be witnessed on
the reconstructed pressure field finds its source on the one hand in the aliasing
phenomenon caused by the scaling function &, (cf. equation ), and on
the other hand in the lack of safety margin with respect to both the C.F.L.
and the scale/mesh compatibility conditions (3.238)).

Let us now study independently the role played by the scale/mesh compat-
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ibility and C.F.L. conditions.

| Test # 2: Cyap =1, and 5o = 0.6 x h

For this second test, the C.F.L. stability constant C; is kept equal to
1, but the cutoff scale sy increases. As for the first test, the reference and
reconstructed pressure fields are hereafter displayed in Figure [£.13] and their
horizontal profiles along the medium horizontal axis in Figure [4.14]

Remark 4.3.1 It is recalled that, during the homogenization process, the
flurd artificially located within the solid medium s initially in equilibrium
with the surrounding fluid, in the 1 bar zone. Thus, tdeally, as the real
and artifictal flurd never penetrate or leave the solid medium, the pressure
should ideally remain constant equal to 1 bar within (2.

10
0.020
8
_0.015 -
£ 6
> 0.010 4
0.005 - 2
0
0.000 A
0.00 0.01 0.02 0.03 0.04 0.05
x (m)
(a)
A ) 10.5
0.020 A ‘ - ‘ 9.0
7.5
__0.015 - .
s e
> 0.010 - 4.5
" 3.0
0.005 - ) 15
0.0
0000 n T “ T T
0.00 0.01 0.02 0.03 0.04 0.05
x (m)
(b)

Figure 4.13: Reference (4.13a) VS reconstructed (4.13R) pressure fields - s =
0.6h - Capgp = 1 -t = 2.2284 x 1075 5
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Figure 4.14: Reference VS reconstructed pressure profiles (y = %) - 5o = 0.6h
- Cuap = 1-1t=2.2301 x 1075 s.

The results obtained are clearly much more satisfactory than in the worst-
case scenario. The geometry of the solid obstacles is quite faithfully recon-
structed in Figure[4.13b] with an artificial pressure almost uniform and close to
1 bar within (2;. Furthermore, the pressure profile along the medium horizontal
axis is also much smoother. The small oscillations still visible in Figure [4.14]
have a significantly smaller amplitude than in the previous case. This result
thus supports the fact that the scaling function and the associated scale/mesh
compatibility condition are the main source of instability in the model response.
Such a conclusion could be expected, as the scaling function operates a first
(explicit) spatial filtering of the fields, at the continuum medium scale, before
the discretization step of the filtered PDEs on the 2D Cartesian grid.

‘Test # 3: Csa, = 0.8, and sp = 0.42 X h

For this third test, let us now study the role played by the C.F.L. condition.
A safety margin is thus taken with respect to this condition, with Cy,, equal
to 0.8. Regarding the scale/mesh compatibility condition, the cutoff scale s
is once again chosen close to the critical minimum value.

Figure[4.15 displays the reference and reconstructed pressure field, the latter
being obtained after 36 time steps (At &~ 6.15 x 10" ). Figure compares
both pressure profiles along the medium horizontal axis.
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Figure 4.15: Reference VS reconstructed pressure fields - s = 0.42h - Cyap =
0.8-t=2.2147%x10"°%s
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Figure 4.16: Reference VS reconstructed pressure profiles - s = 0.42h - Csqp =
0.8-t=2.2147x 107%s.
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As can be witnessed in Figure [£.16] the pressure profile along the medium
horizontal axis is even smoother than in the second test, where only a safety
margin with respect to the scale parameter s, was taken into account. Such a
result could be expected. Indeed, by decreasing Cl;.5, the time step At is now
not only below the C.F.L. condition, but also below the characteristic time
scale of the scaling function ([3.235)).

Nevertheless, this improved stability seems to go along with a loss of accu-
racy. Indeed, the "white numerical artefacts" visible within the solid obstacles
in Figure clearly show that the reconstructed pressure deviates from the
ideal 1 bar value within (2.

In order to further investigate this link between stability and accuracy, the
following test hereafter considers a force-wise accuracy criterion.

| Test # 4: 05 < Coop < 1,and 0.42 x h < 59 < h

Figure [£17 displays the time evolution of the horizontal force (per unit of
length) applied to the solid obstacles, with a comparison between the reference
and reconstructed values for sy € [0.42h, h]. The C.F.L. stability constant Cy;qs
is first chosen equal to 1. It can be noticed that, like the pressure signal, the
force exhibits oscillations when the cutoff scale parameter s, decreases towards
its minimum value. These oscillations seem nevertheless less important than
the ones witnessed in the pressure signal itself. This can be explained by the
fact that the force integrates the pressure on the boundaries 0f2;, thus filtering
out the highest frequency components of the oscillations.

Furthermore, one can notice that, for s, > 0.6h, the reconstructed force
tends to deviate from the reference signal, especially downstream each column
of disks.

1.75 222

—— reference
— so=h

1.50 1 o

— s0=0.8h

= Sg= 0.6h

— S = 0.42h

=1

1.25 A

1.00 A

0.75 A

Horizontal force (N.m™%) - Cgap

0.25 050 0.75 100 1.25 150 1.75 2.00 2.25
time (s) le-5

Figure 4.17: Time evolution of the horizontal force applied to the solid medium
- Cstap = 1, 0.42h < 59 < h.
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Let us now keep the cutoff scale parameter sy equal to 0.42x h, and study the
impact of the C.F.L. stability constant. Figure[4.18 displays the time evolution
of the horizontal force (per unit of length) applied to the solid obstacles, with
Cltap € [0.6, 1].

1.75 led

—— reference

1.50 4 = Cstan=1
= Cstan= 0.9
= Cstan= 0.8

1.251 —— Caar= 0.6

1.00 4

0.25 A /

T T T T T T T T T
0.25 050 0.75 1.00 1.25 150 1.75 2.00 2.25
time (s) le-5

Horizontal force (N.m™1) - so= 0.42h

Figure 4.18: Time evolution of the horizontal force applied to the solid medium
- 8o = 0.42h, 0.6 < Clyap < 1.

As already noticed with the pressure signal, when the cutoff scale s, is
near its critical minimum value and the C.F.L. constant C.;,, decreases, the
force signal becomes smoother. Furthermore, it can be noticed that the re-
constructed force signals in Figure are able to follow more faithfully the
reference signal than in the previous case, especially downstream each column
of disks.

Nevertheless, it shall be highlighted that further decreasing the C.F.L. con-
stant Cl,p seems to damage the accuracy of the model response, with both over
and underestimations of the reference force, as can be witnessed on the curve
associated to Cyp, = 0.6. This fact tends to push for a compromise between
stability and accuracy.

In order to further illustrate this duality, let us now consider the force-wise
accuracy criterion introduced in the previous chapter (3.186)):

tp
eF = /f: ((EF—)S)ref - (EF—)S)S(_)) e_fcdt ) (4'9)

t ftb E ref E s emdt

_ b(EF_)S)ref e_zdt‘ % ta (( F'Zs) f ( F—>S) 0) —— ’ (4.10)
ta fta (EF—)S)ref e_mdt
t

— [ (Ers)yes -2 dt| x E. (4.11)
ta -

With 26 time steps on the time range [t,,%] ~ [2.3 x 107% 5,2.23 x 10°° 5],
the numerical value [;* (Fp_s),.; -€:dt ~ 1.45 x 10 ' kgs ' is obtained
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(with a rectangle method) for the time integration of the reference horizon-
tal force.

The following Figure [4.19] displays the evolution of the relative error € on
the horizontal force when decreasing the C.F.L. stability constant Cg;s, for
a mesh size h = 1 mm, and for s, € {0.42h,0.6h}. One can notice that the
relative error € is at least divided by 3 when the cutoff scale sy decreases from
0.6h to 0.42h. This is coherent with the a prior: idea that the best accuracy
is reached when the scaling function is designed so as to catch all the possible
wavelengths that can be represented by the mesh. Thus, with the set of param-
eters (so = 0.42h, Cyqp = 0.9), which seems to be a good compromise between
accuracy and stability, the model responds with a relative error €r below 1%.

Nevertheless, when further decreasing the constant Cy,;, and thus improv-
ing the numerical scheme stability, the accuracy of the model response slightly
deteriorates. This confirms the duality between stability and accuracy.
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o ol
(3) 1.54
—
e
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0.5 \\ ________ -+
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\\ ————
0.0 1 + . . .
1.0 0.9 0.8 0.7 0.6 0.5

decreasing CFL stability constant

Figure 4.19: Evolution of the relative error €z with Cgep - A = 1 mm.

In order to further highlight the important role played by the critical min-
imum value sg ~ 0.412 x h, Figure displays the evolution of the relative
error € with the cutoff scale sy, and for two different mesh sizes : h; = 1 mm,
and h, = 0.5 mm. One can thus distinguish two "regimes":

e when the cutoff scale sy decreases from the minimum value 0.412 x h, the
relative error € increases exponentially when C;q, = 1. This is the result
of both the scaling function aliasing and the numerical scheme lack of sta-
bility, which quickly deteriorate the model accuracy. When Cy,, = 0.9,
the improved stability is able to balance the important oscillations due
to aliasing, thus preventing the relative error from drastically increasing.

e when the cutoff scale sy increases from the minimum value 0.412 x h,
the relative error €r first decreases, as the aliasing phenomenon weak-
ens. However, as the cutoff scale s, keeps on increasing, € progressively
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deteriorates, as the smallest wavelengths accessible with the mesh are
progressively discarded by the scaling function.
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Figure 4.20: Evolution of the relative error €z with the cutoff scale so - A €
{0.5 mm, 1 mm} - Cyq € {0.9,1}.

Finally, to conclude this preliminary analysis on the stability and accuracy
of the numerical model, Figure [4.21] displays the evolution of the relative error
€r with a decreasing mesh size h, for so € {0.585h,0.6h} and Clqp = 1.
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Figure 4.21: Evolution of the relative error €z with the mesh size h - Cypp = 1.
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The accuracy of the force reconstruction thus increases with mesh (and
scale) refinements. This is coherent with the analytical convergence of the
wavelet-based model towards DNS, proved in the previous chapter.

This concludes this preliminary analysis on the numerical model stability
and accuracy, here assessed on a 2 x 2 steady array of disks submitted to
a tranverse pressure wave. In order to now connect to the wavelet analysis
presented in the beginning of this chapter, the following section considers the
propagation of a 2D transverse pressure wave through a 10 x 10 steady array
of disks.

4.3.2 2D pressure wave through a 10 x 10 array of disks

The test case geometry is displayed on Figure below. The simulation
parameters are then summarized in Tables [4.10H4.T1H4.12H4.13.

120,00 mm

150,00 mm 250,00 mm

Figure 4.22: 2D pressure wave through a 10 x 10 steady array of disks.

Lx Ly Disks radius Dist. consecutive disks

400 mm 120 mm 4 mm 4 mm

Table 4.10: Geometry - 3rd test case.

10 bar zone 1 bar zone Discontinuity +— 1st disks

[0,150 mm]| [150 mm, 400 mm] 62 mm

Table 4.11: Pressure loading - 3rd test case.

Reference Density Reference Pressure Sound Velocity

Pres = 1000 kg -m 3 Dres = 10° Pa c=1300m-s*

Table 4.12: Fluid parameters - 3rd test case.
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Mesh size  Time step  Scale/mesh compatibility

h=1mm At< Cstabﬁ 50 > 0.412 x h

Table 4.13: Spatial and time discretization - 3rd test case.

The solid medium is once again taken into account in the homogenized fluid
via a body force, whose maximum amplitude is localized on the fluid-structure
interfaces, as displayed on Figure [4.23 below. The number of Cartesian grid
nodes N used to approximate the boundary of each disk, and to compute the
body force applied to the homogenized fluid (3.198)), is chosen so as to satisfy:

2TR
N<—— 4.12
where ds = +/dz? + dy? denotes the curvilinear discretization step. In the
following, N = 16 nodes are thus used to compute the body force.

0.22 0.24 0.26 0.28 0.30 0.32
x (m)

Figure 4.23: Visualization of the 10 x 10 array of disks.

In order to assess the model capability to reconstruct accurately a 2D pres-
sure wave propagating through such solid obstacles, we hereafter display:

e both the 2D reconstructed and reference pressure fields, for multiple time
steps (see Figure [£.24)); the latter is once again computed with EURO-
PLEXUS software;

e the reconstructed and reference horizontal pressure profiles (see Figure

[4.25]).
e the time evolution of the reconstructed and reference pressure field L?-
1
norm ||plls=(t) = (fio,.0, [p(z, ) dz)’;

e the time evolution of the horizontal force applied to the solid medium,
and the modulus of its Fourier transform.
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Figure 4.24: Reconstructed (left) VS reference (right) pressure fields snapshots
every At = 2.076 x 1075 § - Ctap = 0.9 - 5o = 0.415A
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Figure 4.25: Horizontal pressure profile - 10x 10 array - Cs;qp = 0.9 - s = 0.415h
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The wavelet-based model thus seems able to reconstruct a horizontal pres-
sure profile which closely fits the reference data. Nevertheless, a high frequency
noise can be witnessed within the array of disks, here delimited by the verti-
cal black lines. This phenomenon is explained by the aliasing induced by the
scaling function @,, with the set of parameters (Csias, So) = (0.9,0.415h). The
choice of a cutoff scale s, = 0.415h indeed allows to reach a better accuracy
(while maintaining a stability safety margin with Cy,, = 0.9) but results in
an aliasing phenomenon, as this value does not satisfy the condition (3.241))
which ensures that the scaling function bandwidth remains within the admis-
sible Shannon frequency range.

To further investigate the accuracy of the wavelet-based model, let us now
turn towards the L?-norm accuracy criterion.

1.24 1 —— reference
=—— Csiap= 0.9, 5o= 0.415h
= Csiab = 0.85, 5o = 0.415h

L2-norm of the pressure field
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time (s) le-4

(a) Evolution of the pressure L2-norm
le-2
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—— Cstap = 0.85, 5o = 0.415h
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Figure 4.26: L?-norm accuracy - 10x 10 array - Cys € {0.85,0.9} - s = 0.415h
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Figures display respectively the time evolution of the L2-norm,
for both the reconstructed and reference pressure fields, and the relative error.
Two values for the C.F.L. stability constant C,;., are here tested. The cutoff
scale sq is once again set to 0.415h. It can be witnessed that the model is able
to faithfully reconstruct the reference pressure field L2-norm, with a relative
error below 1.7% for both C,; values. No aliasing phenomenon is here visible.
This is explained by the fact that the L?>-norm (which integrates the square
modulus of the signal over the whole domain) filters out the high frequency
noise visible in the reconstructed pressure field. Nevertheless, despite this
filtering, one can see that the relative error progressively increases when the
wave front propagates through the solid medium. This is not a surprise, as
it has already been noticed that the aliasing deteriorates the accuracy of the
reconstructed pressure field within the array of disks.

To conclude this test, let us finally turn towards the main quantity of in-
terest in the design of a coupled fluid-structure solver, i.e. the force applied
to the solid medium. Figure hereafter displays the time evolution of the
horizontal force applied to the whole array, for both the reference and recon-
structed pressure fields. Two different values are tested for the C.F.L. stability
constant and the cutoff scale: Clq, € {0.85,0.9} and sy € {0.415h,0.585h}.

As expected, the model response shows a better accuracy when the cutoff
scale sy is near its minimum critical value, i.e. so = 0.415Ah. A high frequency
noise (due to aliasing) can once again be witnessed in the reconstructed force.
Its amplitude moreover decreases when the C.F.L. constant C,,; decreases.
This aliasing is characterized by the fact that the frequency of the oscillations
visible in Figure remains equal to the sampling frequency (ﬁ), even
when the time step At decreases with Cga,. The choice of a larger cutoff
scale so = 0.585h, which satisfies the aliasing compatibility condition (3.241]),
allows to completely suppress the high frequency noise, at the cost of a loss of
accuracy.

Table [4.14] summarizes the relative errors obtained on the horizontal force
and the pressure field L2-norm. As the difference between the reference and
reconstructed pressure fields is mainly focused within the array of disks, and
especially in the vicinity of the fluid-structure interfaces, it is not surprising to
see that a better accuracy is reach on the pressure field L?-norm, which takes
into account the whole {fluid + solid} domain.

so = 0.415h | Relative error €z Relative error on ||p||z>

Ctas = 0.9 5.22 x 1072 < 1.5x 1072
Cita = 0.85 3.70 x 1072 < 1.7 x 1072

Table 4.14: Relative errors on the force and pressure field L?-norm.
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It is here recalled that the absolute error er is defined by the time integra-
tion of the horizontal force:

ty
€F = ‘/t‘ ((EF—>S)ref o (EFHS)SO) e_;z:dt‘ . (413)
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Figure 4.27: Force-wise accuracy - 10 x 10 array - Cyqp € {0.85,0.9} - s =
0.415h
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Finally, to conclude this test on a 10 x 10 steady array of disks, it can
be emphasized that the choice of a larger C.F.L. constant C,; allows to bet-
ter identify the solid medium characteristic spatial scale (i.e. the size of the
porous cell), here A = 3R, where R = 4 mm is the disks radius. Indeed, if
Ctqp decreases, the numerical model tends to attenuate all pressure and force
oscillations, whether they are caused by the scaling function aliasing or the
solid medium geometry. This is highlighted in Figure [4.28, which displays the
FFT modulus of the horizontal force. The distance 116 mm corresponds to the
horizontal distance between the first and last disks boundaries.
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Figure 4.28: FFT modulus of the horizontal force (N.m™') - 10 x 10 array

This concludes this first assessment of the model capabilities, here evaluated
for a 2D transverse pressure wave propagating through a 10 x 10 steady array
of disks.

In order to now strengthen the multi-scale component of the model, the
following test investigates whether a more macroscopic representation of the
solid medium (and thus a larger mesh size h and cutoff scale sq) allows to
properly recover the main quantity of interest, here the horizontal force applied
to the whole array. A macroscopic modeling of the solid medium would indeed
allow to represent PWR fuel assemblies as a single beam, without the need to
take into account their inner structure.

4.3.3 Equivalent modeling of a fuel assembly cross section

Three equivalent arrays of disks (2 x 2, 4 x 4, 10 x 10) are hereafter consid-
ered, as displayed in Figure [4.29 The (4 x 4) and (2 x 2) arrays are obtained
from the (10 x 10) array by multiplying the radius and distance between disks
by respectively 2.5 and 5. The mesh size h is adapted to each array so as to
satisfy h = %. Furthermore, the boundary of each disk is approximated by
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using 16 nodes, whether the radius is 4 mm, 10 mm or 20 mm. The C.F.L.
constant Cl,p and the cutoff scale sq are set to (Csias, So) = (0.9, 0.415h).
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(c) 2 x 2 array - radius R =20 mm - A = 5 mm

Figure 4.29: Equivalent arrays of disks (2 x 2, 4 x 4, 10 x 10)

As previously, the propagation of a 2D transverse pressure wave is com-
puted for each array, with a 10 vs 1 bar initial pressure discontinuity, located
at £ = 0.150 m. The distance between the pressure discontinuity and the first
disks is defined, for each array, by d = 0.060 + % (m). As the radius changes
from one array to the other, a small time delay in the pressure and force signals
can be witnessed between each simulation. Figure hereafter displays mul-
tiple snapshots of the reconstructed pressure fields for the (4 x 4) and (2 x 2)
equivalent arrays.
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The following Figure now displays both the time evolution and the
FFT modulus of the horizontal force applied to each array.
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Figure 4.31: Horizontal force (N.m™') and its FFT modulus for equivalent
arrays - Csip = 0.9 - 5o = 0.415h - h € {1 mm, 2.5 mm, 5 mm}
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As expected, one can first notice in Figure [4.31a that the high-frequency
noise brought by the scaling function &, is present for all arrays. Its frequency
of course changes to match the sampling frequency of each simulation.

Furthermore, the size of the different porous cells (respectively 12 mm,
30 mm and 60 mm) is clearly visible in the horizontal force spectrum, as dis-
played in Figure

Finally, each of these equivalent arrays leads to an accurate evaluation of
the time average of the horizontal force applied to the 10 x 10 array, as detailed
in the following Table Such a result thus supports a more macroscopic
modeling of fuel assemblies within a Pressurized Water Reactor (PWR) core,
for instance by simplifying the geometry to a single beam in a 3D framework.

10x10 array 4x4 array 2x2 array

relative error €z | 5.22 x 1072 3.63x 1072 1.94 x 1072

Table 4.15: Relative error on the horizontal force for equivalent arrays.

Now, to conclude this fourth chapter dedicated to the model implementa-
tion, two ongoing projects are hereafter presented:

e the first one consists in a first attempt at implementing a nested grids
algorithm within the numerical model, with the aim of speeding up the
computations;

e the second is dedicated to the coupling between the homogenized fluid
and the solid medium. Experiments realized with a 10 x 10 array of
PMMA cylinder rods submitted to a shock wave will be presented. This
experimental data will be supplemented with preliminary numerical tests
involving a (2 x 2) moving array of disks.

4.4 Ongoing works

4.4.1 First implementation of a nested grids algorithm

As multi-grid methods are generally encountered in the framework of iter-
ative algorithms or implicit schemes, it is worthwhile to first recall the general
philosophy of such methods, before detailing the specific use of nested grids in
the current work.

General remarks on multi-grid methods

Multi-grid methods have been studied by an already exten-
sive literature. Reference works on this subject can be found
in [Brandt, 1977],[Stiiben and Trottenberg, 1982],[Hackbusch, 1985],
[Ruge and Stiiben, 1987], [Wesseling, 1992], [Trottenberg et al., 2001] and
[Wesseling and Oosterlee, 2001]. The development of multi-grid methods
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was motivated by the will to speed up iterative algorithms, such as Jacobi’s
or Gauss-Seidel’s, which are known to quickly reduce the high-frequency
components of the error, but conversely struggle with the low-frequency
components. In order to introduce the basic ideas of multi-grid methods, let
us consider the following linear problem:

Az = f, (4.14)

where:

e A c R™" is a matrix, usually assumed symmetric, positive and definite;
e z € R" is the unknown vector;

e f € R"™is a known vector;

Fixed-point algorithms can be used to solve iteratively equation (4.14).
Jacobi’s method, for instance, considers the decomposition A = D + L + U,
where D is a diagonal matrix, and L and U are respectively stricly lower and
upper triangular matrices. If the diagonal matrix D is invertible (which is true
under the previous assumptions on A), one can inject the decomposition into
equation as follows:

Dz

f—(L+U)z. (4.15)
D'f - D YL+ U)z. (4.16)

Then, starting from an initial guess z°, the iterative algorithm writes:

" = SzF + D7y, (4.17)

or with the damped form (w > 0):

z* = SzF + D'f, (4.18)
h = wr* + (1 — w)zk, (4.19)
where S = —D~!(L + U). One then introduces the error vector e and residual

vector r, defined at each iteration by:

e =z — 2, (4.20)
rk = f — Az". (4.21)
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By applying the matrix S to the error vector e*, one obtains, with equations
(4.16) and (£17), the following iterative equation on e:

SeF = Sz — SzF, (4.22)
= -D YL+ U)z — (z" — D7'f), (4.23)
=D '(f - (L+U)z)— 2", (4.24)
=D 'Dz — zF"? (4.25)
- (4.26)
= eF L. (4.27)

As for the residual vector r, it is governed by the following equation:

r* = f — Az, (4.28)
= A(z — z¥), (4.29)
= AeF. (4.30)

Remark 4.4.1 Working with the residual equation allows to im-
prove the iterative algorithm. Indeed, when the approzimation =¥ is close
to the solution z (for instance after a few iterations of Jacobi’s method
(4:17)), the error eF will be small (in I® norm), and one can thus choose
the zero vector as initial guess to solve iteratively the residual equation

Ae* = r*. (4.31)

With the resulting approzimation & of the error e*, one can then up-
date the unknown vector =¥ as follows:

it = o 4 &*, (4.32)

Iterative algorithms such as (4.I7) are known to converge if and only if the
spectral radius p(S) of the matrix S is strictly below 1. The convergence rate
is also linked to p(S): convergence is slow if p(S) is close to 1, and becomes
faster as p(S) decreases towards zero.

Furthermore, it is well-known that such iterative algorithms, when imple-
mented on a single grid, quickly reduce the high-frequency (non-smooth) com-
ponents of the error e, but exhibit a very low damping on the low-frequency
(smooth) components. The basic idea of (geometric) multi-grid methods is
then to introduce multiple nested grids, so that the low-frequency compo-
nents associated to a fine grid may become high-frequency components when
transferred to a coarser grid. The basic example of multi-grid method is the
following two-level algorithm, where two nested grids of mesh sizes A and 2h
are considered:
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Two-level algorithm:

e smoothing: compute a few iterations of the iterative scheme associated
to A"z" = f* on the fine grid (h); this leads to an approximation Z" in
which the high-frequency components of the error are damped;

e compute, on the fine grid (h), the residual r* = f* — A"Z";

e restriction: project the residual r* on the coarse grid (2h), via a restric-
tion operator R : r* — R(r");

e solve, on the coarse grid (2h), the residual equation A%"e** = R (rh);

this leads to an approximation &%* in which the initial low-frequency

components are now damped as well;

e prolongation: transfer the error 2" on the fine grid (k) via an interpola-
tion operator I : &%* —— I (é’z");

e update the approximation Z" on the fine grid (h) : " «— Z" + I (é’z”).

To apply such a two-level algorithm, one needs to define the restriction R
and interpolation I operators, and also the coarse grid version A%" of the origi-
nal (fine grid) matrix A". When the matrix A" is for instance obtained through
a finite-difference scheme, the construction of A%" is straightforward.

These general remarks on multi-grid methods being stated, let us now turn
towards the specific use of nested grids in the current work.

Specific use of nested grids‘

As detailed above, multi-grid methods are well-designed for (stationary)
linear problems Az = f solved iteratively, or implicit schemes. However, in
the current work, the homogenized fluid equations are solved with an explicit
finite-volume scheme. Thus, multi-grid methods and nested grids are not here
intended to improve the convergence of iterative schemes. The idea is rather
to compute the homogenized fluid equations on a coarse grid, while keeping
track of the rods geometry on the fine grid, in order to properly evaluate all the
boundary integrals in the right-hand side of the equations. The nested grids
computation is thus implemented as follows:

e the homogenized fluid variables are known on the coarse grid (2h) at
t =t

e the real fluid variables are reconstructed on the coarse grid (2h) at t = ¢,

with a scaling function &;,, whose cutoft scale sy, is linked to 2h;

e prolongation: the real pressure field is extended from the coarse grid (2h)
to the fine grid (h);
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e the force applied by the underlying solid medium is computed on the fine
grid (h), with a scaling function @,, whose cutoff scale is linked to h;

e restriction: the force is transferred from the fine grid (h) to the coarse
grid (2h);

e the homogenized fluid variables are then updated at ¢ = ¢"*! with this
source term on the coarse grid (2h).

Let us now specify the interpolation and restriction operators chosen to
implement this nested grids algorithm. To this end, let us first introduce the
following notations:

Notations 4.4.1 ° (uh hereafter denotes the unknowns on the

T “j>pSAjgzn
fine grid, with mesh size h;

o (UZh)
©7/0<4,5<n

mesh size 2h.

hereafter denotes the unknowns on the coarse grid, with

Interpolation operator: bilinear interpolation

The interpolation (or prolongation) operator from the coarse grid to the
fine grid is here defined as a bilinear interpolation, whose action on the coarse

grid unknowns (vf’;) can be summarized into the following symbol:

111
$ 2 4
3 1 3
11
4 2 4

More precisely, the fine grid values (ufj>1<, _,, are obtained from the
’ Styys<an
coarse grid values (vf’;)K, > according to the following equations:
’ <3,7<n

V0o <1,7 <m, Ugi,zj = 'Uzz}_; (4.33)

. . 1
V0<i<n—1,0<5<mub = (vl tolly).  (439)

. . 1
V0<i<n,0<j5<n—1, 11,’22,2].Jrl =5 (vf']‘ + vi’;H) ) (4.35)

o 1

Vo <1,7<mn-1, ugi+1,2j+1 ~ 1 ('Uzz}; + “;’24’:1,]' + “;'Z,?H + “?L,jﬂ) . (4.36)
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Restriction operator: full weighting restriction

Regarding now the restriction operator, the simplest choice would be a
straight injection which copies the values (u’z‘i,zj> onto (vf’;) As such a choice
does not take into account values corresponding to odd indices, a full weighting
restriction is here chosen, whose symbol is defined by:

g|.—‘oo|r—ﬂg|r—ﬂ
00 | =4 |00 | =
l—‘OOli—‘g|i—‘

16

More precisely, the coarse grid values are obtained via the following equa-
tions:

1 1 1 1
v} = Zug@?j + §ugi+1:2j + Eu§i+1,2j+1 + gugi,2j+1 + Eugi71,2j+1
1 1 1 1
+ 5“31'—1,23' + 1_6“31'—1,23'—1 + g“gi,zj—l + 1—6u'§i+1,zj_1- (4.37)
Vi<j<n-1,
1 1 1
vg,hj = Zug,szrl + 5“3,2;’ + Zu’f,zjq, (4.38)
2h 1 h 1 h 1 h
Upj = Zun,2j+1 + Eun’” + Zun,zj—l- (4.39)
Vi<i<n-—1,
1 1 1
'U?,Ié = Zugi—m + Eugi,o + Zugi+1,0’ (4.40)
1 1 1
Uzz’:z = Z’u’gifl,n + Eugi,n + ZU§¢+1,n- (4.41)
vah = ugy, (4.42)
vl =ul o, (4.43)
Vo = Ut am» (4.44)
Vnn = U 2n- (4.45)

These two operators being defined, let us now compare the results obtained
with mono-grid and multi-grid computations.
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Comparison between mono-grid and multi-grid computations‘

The following Figure [4.32] displays the propagation of a 2D transverse pres-
sure wave through a 2 x 2 steady array of disks. Two multi-grid computations
are hereafter considered, respectively 2 mm/1 mm and 1 mm/0.5 mm.
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Figure 4.32: Pressure field snapshots - reference VS model with multi-grid
computations (2/1 mm and 1/0.5 mm)

Figure[4.33 now displays the horizontal force obtained with both mono-grid
and multi-grid computations.
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Figure 4.33: Horizontal force (N.m?!) - multi-grid - Csap = 0.9 - s = 0.415h
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It appears that both multi-grid computations result in a loss of accuracy
on the time average of the horizontal force, as detailed in Table below.
This surprising result requires additional investigations to explain such a phe-
nomenon, especially for the nested grids 1 mm/0.5 mm, for which one would
expect to obtain a better accuracy.

Mono-grid 1 mm 1 mm /0.5 mm 2 mm /1 mm

relative error €z 1.41 x 1072 1.11 x 107t 1.76 x 107!

Table 4.16: Relative error on the horizontal force - multi-grid computations.

These preliminary results thus conclude this first attempt at implementing
a nested grids algorithm within the wavelet-based numerical model. To now
conclude this chapter dedicated to the model implementation, let us finally
focus on the coupling between the homogenized fluid and the solid medium
dynamics.

4.4.2 Towards a coupled fluid-structure solver

‘Experiments on a shock tube facility‘

Until now, the wavelet-based homogenized model has been confronted with
2D reference solutions computed with EUROPLEXUS software, considering
steady solid obstacles. In order to thoroughly assess the model capabilities,
especially with regards to the coupling between the fluid and solid medium
dynamics, an experimental reference solution is also mandatory . To this end,
a collaborative test program has been initiated between the French Energy
Commission (CEA) and the Norwegian University of Science and Technology
(NTNU). This joint project aims at providing a first set of experimental results
regarding transverse pressure waves propagating through a tube bundle. The
SIMlab shock tube facility (SSTF'), hereafter displayed in Figure [£.34], shows
very interesting perspectives in this context, since the dimensions of its cross
section allows implementing a simplified yet representative tube bundle speci-
men. This facility is also capable of generating a well-mastered and measured
pressure wave loading, thus allowing to produce some significant knowledge on
how the pressure signal is modified when travelling through the bundle.

In an effort to find a satisfactory balance between complexity and represen-
tativity, a bundle of 10 x 10 rods has been chosen for this experimental study,
as can be seen in Figure [4.34gl The rods diameter and the spacing between
consecutive rods are close to the regular values for PWR fuel assemblies, the
preservation of the ratio between the two being a priority constraint. Such a
compact test specimen is here required in order to perform 3D detailed sim-
ulations of the test, as well as optical measurements through the windows in
the dedicated section of the shock tube (cf. Figures [4.3414.34g]).
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FIRING SECTION WINDOW SECTION
+ 4:0m + |
s . 2 o /¢ [
DRIVER , DRIVEN ,..[ coo :IQ Z 2 2 il TANK
0:95m \|
P10.01 & P10.02 P07.01 & P07.02
2:02m P08.01 & P08.02 16:08m

Figure 4.34: Experimental setup: sketch of the SSTF (Figure [£.34a)), en-
tire shock tube facility (Figure [4.34h), firing section with diaphragms (Figure
[4.34d)), close-up on camera setup (Figure [£.34d)), open end and internal cross-
section of the driven (Figure [£.34€]), telecentric lense (Figure [4.34f), and tube

bundle specimen (Figure 4:34g). Figures and [£.34d are reprints from
|[Aune et al., 2016].
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The driver section (cf. Figure [4.34a)) is manufactured with a total length of
2.02 m and an inner diameter of 0.331 m. The driver is followed by a 0.14 m-
long firing section which consists in several intermediate pressure chambers
separated by diaphragms (cf. Figures [£.34al and [4.34c]). This enables the to-
tal pressure difference between the driver and driven sections to be achieved
stepwise. The inner cross-section in the driven section starts with a 0.6 m-long
transition region from a circular to a square cross-section (0.3 m x 0.3 m). The
driven section ends with a tank of 5.1 m?, with an 1.6 m internal diameter.

Regarding now the test specimen, hereafter displayed in Figure [4.35, the
diameter and spacing of the rods are representative of a PWR fuel assembly,
in order to limit scaling effects regarding the wave propagation through the
bundle. Both extremities of the rods are inserted into holes in two horizontal
plates. The bottom plate is then clamped on the bottom wall of the shock
tube using dedicated bolts and tapped holes. The top and bottom plates
of the specimen are connected together and supported by two lateral plates
of identical thickness, in which square windows are cut to allow for a direct
optical access to the bundle. Indeed, telecentric lenses are used to provide a
Schlieren representation of the pressure waves and the solid medium motion.

Figure 4.35: Tube bundle test specimen used in SIMlab shock tube facility

This experimental study shall be considered as part of a preliminary work,
whose long-term objectives are:

e to identify experimentally, if possible, a transfer function of the bundle
connecting well-chosen variables upstream and downstream the specimen;

e to see if detailed 3D simulations (i.e. at the DNS scale) are sufficiently
close to the experimental data (both pressure measurements and high-
speed camera images), thus allowing to use 3D simulations as numerical
reference to confront a 3D extension of the wavelet-based homogenized
model,;

e to determine which lessons can be learned from this first series of tests to
improve the experimental basis in the ongoing research dedicated to fuel
assembly modeling in LOCA situation.
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Remark 4.4.2 Conversely to the actual PWR situation, the erperiment
has here been carried out in air given the shock tube technical conditions.
This of course significantly changes the compressibility of the flurd com-
pared to pressurized water.

The experimental tests were operated with a maximum driver length of
2.02 m. The driven section was operated with a length of 16.08 m, with the
first row of tube bundles located in the center of the window section (cf. Fig-
ures [4.341{4.34g)). The loading was varied by changing the initial pressure p,
in the driver section, while the initial pressure in the driven section was oper-
ated at ambient conditions (p; and T7). Two loading are hereafter considered,
namely 2.5 bar and 5 bar overpressure. Table below gives the complete
test matrix, where each test is numbered X-Y, in which X denotes a test with-
out (O) or with tube bundle (B) specimen. Y indicates the firing overpressure
(in bar) in the driver. It is worth noting the good repeatability of the bursting
characteristics of the diaphragms by comparing the firing pressure p, between
tests with the same initial conditions in Table [£.17. The presence of tests
without any tube bundle was intended to provide a comparison point (free of
F'SI phenomena) between the experimental shock wave within the facility and
a numerical shock wave computed with EUROPLEXUS software.

Test Overpressure p, in driver (kPa) Pressure p; in driven (kPa) Temp. 7; (°C)

002 252.08 99.60 21.67
005 517.29 98.50 21.19
B02 255.13 100.12 21.15
B05 516.37 100.02 21.40

Table 4.17: Test matrix including initial conditions for each test. Peak pres-
sures py measured in the driver before venting.

In all tests, six sensors flush mounted in the tube roof measured the pressure
behind the incident and reflected shock wave. The location of each pair of
sensors is displayed in Figure [4.34al A 10 cm spacing was used between each
pair member. Sensors P10 were located 0.97 m and 1.07 m downstream the
diaphragms in the firing section, P08 were located 0.22 m and 0.32 m upstream
the window section, while P07 were located 0.22 m and 0.32 m downstream the
window section. The delay in arrival time at each pair of sensors may then be
used to determine the shock velocity and the corresponding Mach number.

In order to catch the shock wave propagation and the dynamic response of
the bundles, a high-speed camera with a telecentric setup (cf. Figure
4.34g)) was used for Schlieren photography. The sampling rate of the high-
speed camera was 37 kHz. The pressure measurements were also synchronized
with the camera.
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Remark 4.4.3 Failure of the specimen during the 5 bar test

The multiple impacts of pressure waves on the bundle produced ten-
sile stresses in the bottom plate with brittle behaviour. Very small cracks
were already wvisible after the 2.5 bar overpressure test. The second test
destroyed the specimen, starting with a straight crack near the second row
of bolts and continuing with diagonal cracks in the lateral panel, leading
to the release of the rear part of the spectmen holding the rods (see Figure
[4.36). It could fortunately be retrieved quite easily with no damage to the
facility thanks to the knowledge and expertise of the local team operating
the shock tube.

s .

Figure 4.36: Tube bundle specimen after failure during the 5 bar test: released
part (4.36a) and remaning part still connected to the facility (4.36b).

The 2.5 bar test allowed to catch, thanks to the high-speed camera, the tube
bundle dynamic response to the shock wave. Figures [4£.37 and hereafter
display multiple snapshots allowing to witness the impact and reflection of the
shock wave on the test specimen, and the resulting motion of the first cylinder
rods. The rods displacement becomes truly visible in Figure [4.38], where one
can immediately notice impacts between consecutive rods. It is recalled that
such impacts are not taken into account in the current 2D modeling of the solid
medium.
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(a) 7.9375 ms (b) 7.9645 ms (c) 7.9915 ms

(d) 8.0185 ms (e) 8.0456 ms (f) 8.0726 ms

(h) 8.1266 ms (i) 8.1537 ms

(j) 8.1807 ms

(1) 8.2348 ms

(G

(m) 8.2618 ms (n) 8.2888 ms (o) 8.3159 ms

Figure 4.37: Shock wave impacting the first cylinder rods. Time (¢ = 0) is
taken as the arrival of the shock wave at the pressure sensor P10 02.
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(a) 8.4780 ms (b) 9.3699 ms (c) 10.6672 ms

(d) 12.9374 ms (e) 14.1266 ms (f) 14.8293 ms

(g) 15.3699 ms (h) 16.9104 ms (i) 18.0726 ms

() 19.2347 ms (k) 20.8564 ms (1) 22.5320 ms

{

(m) 25.3699 ms (n) 28.0455 ms (0) 51.5861 ms

Figure 4.38: Visualization of the rods displacement. Time (¢ = 0) is taken as
the arrival of the shock wave at the pressure sensor P10 02.
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Given the previous snapshots, the rods displacement is then obtained by
using digital image correlation to track the mid-point of the first cylinder rod
in the 2.5 bars overpressure test, leading to the following curve displayed in
Figure below.

8 T
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()
£
]
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O ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
29 : ‘ s : ‘
0 10 20 30 40 50

Time [ms]

Figure 4.39: Longitudinal displacement of the mid-point of the first rod. Time
(t = 0) is taken as the arrival of the shock wave at Sensor P10 02. Black
markers correspond to the times of interest (TOI) in Figure 4.38

The mid-point of the first row of rods thus exhibit a rapid displacement
from ¢t = 8.4780 ms until the point of maximum deflection at £ = 10.6672 ms.
Then, some elastic vibrations can be witnessed, followed by a significant drop
in the displacement magnitude between ¢ = 22.5320 ms and ¢ = 25.3699 ms.
The rods mid-point then seems to undergo elastic vibrations around a slightly
permanent deformed configuration throughout the remaining of the test.

Now, to go along with this preliminary experimental data, it is now high
time to test the wavelet-based model on a moving array of disks.

Preliminary numerical test with a moving array

For this first assessment of the model capability to treat the coupling with
moving solid obstacles, the propagation of a 2D pressure wave through a 2 x 2
array of disks is here considered. It is recalled that the array is modeled via
a linear oscillator for each degree of freedom, here two translations. Such a
2D computation is not expected to faithfully represent the 3D rods behavior
observed in the shock tube facility. Indeed, impacts between consecutive rods
are for instance not taken into account. The aim is here rather to recover,
with the wavelet-based model equations, the theoretical behavior of a linear
oscillator that would be submitted to the (reconstructed) force applied by the
fluid, thoroughly investigated in the previous tests.

The simulation is designed with a 8 m long shock tube, in order to give time
for the solid medium motion to take place, and also prevent reflected waves on
the outer boundaries from interacting again with the solid medium. An initial
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pressure discontinuity of 2.5 vs 1 bar is located at £ = 3.9 m, as displayed in
Figure [4.40|

2.7
g 3 2.4
| | 2.1

0.04 1.8

y (m)

0.02 0.9

I | | l 0.6

0.00

T T T T T OO
3.86 3.88 390 392 394 3.96 3.98

X (m)

Figure 4.40: Zoom on the initial pressure field (2.5 vs 1 bar) - 2 x 2 moving
array of disks.

0.04

y (m)

0.02

0.00

3.86 3.88 3.90 3.92 3.94 3.96 3.98
x (m)

Figure 4.41: Visualization of the 2 x 2 moving array of disks at ¢ = 0.

All the simulation parameters are summarized in the following Tables [4.18
4. 19H4.2014 . 2114, 22

Lx Ly Disks radius Dist. consecutive disks

8m 6.107°m 1.107° m 1.10° m

Table 4.18: Geometry - 2 X 2 moving array of disks.

2.5 bar zone 1 bar zone Discontinuity <— 1st disks

0, 3.9 m] [3.9 m, 8 m] 5.10°m

Table 4.19: Pressure loading - 2 X 2 moving array of disks.
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Reference Density Reference Pressure Sound Velocity

Pres = 1000 kg -m™2 Dres = 10° Pa c=1300 m-s*

Table 4.20: Fluid parameters - 2 x 2 moving array of disks.

Eigenfrequency Mass Stiffness Damping

Wo=g2T5 80 My =1402x 10 4 kg kuy = 2354 x 102 kgs > £ = 20%

Table 4.21: Solid medium parameters - 2 X 2 moving array of disks.

Mesh size Time step Scale/mesh compatibility

h=1mm Aft=0.9x

so = 0.585 x h

Cmazx

Table 4.22: Spatial and time discretization - 2 x 2 moving array of disks.

In order to be able to witness sufficient displacement of the solid medium
during a limited simulation time, here 6 ms, the solid medium parameters are
chosen as follows:

the (eigen-)period of the linear oscillator is set to 7o = 5 ms;

the associated eigenfrequency is then defined by w, = 3,—: (rad.s™1);

the solid density is set to p, = 1.188 x 10* kg.m™3 (1% of PMMA density);
the disks thickness is set to L = 1072 m;

the resulting mass is defined by my; = 4 X p,mR2L;

@ the stiffness ki is then defined by: kit = W2 X Myor;

the friction coefficient c;; is finally defined by cior = &€ X 24/ ktotMi0t, Where
¢ is the dimensionless damping coefficient.

Remark 4.4.4 Influence of the structural damping

If the damping coefficient £ is chosen too small, the coupled fluid-
structure simulation may exhibit a non-physical behavior. Indeed, an in-
crease of the pressure beyond the initial marimum value of 2.5 bar has
for instance been noticed when decreasing £ below 10%. Such a numerical
phenomenon requires a parametric study on the damping coefficient £ in
order to determine 1its critical minimum value.

These remarks being stated, Figure [4.42] now displays the time evolution of
the longitudinal and transverse displacements.
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Figure 4.42: Displacements U, /U, - 2 x 2 moving array of disks.
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The sinusoidal shape of the displacement U, in Figure [4.42a], with a maxi-
mum displacement of 5.476 mm reached around £ = 1.3845 ms, is coherent with
the linear oscillator modeling. Indeed, the red curve visible in Figure [4.42al cor-
responds to the free theoretical response of a linear oscillator in pseudo-periodic
regime:

U;h,eo = Ke_fa;ot cos ((7}0\/ 1-— £2t + (,0) y (446)
where:

e the damping coefficient ¢ is set to 20%;

e the period T = —2Z _ is set to 6 ms;

w04/ 1-¢
e the phase ¢ is set to —7;

e the constant K is set so that U?*¢° coincides with the maximum displace-
ment U, at ¢t = 1.3845 ms.

During the first phase of the simulation [0,1.3845 ms], where the disks
displacement is mainly driven by the initial shock wave, U,(t) closely fits the
free theoretical response (4.4€). The fact that the longitudinal displacement
first responds with a period close to 6 ms can be tied back to the period of the
pressure loading. Indeed, as the pressure discontinuity is initially located at
z = 3.9 m, at only 5 mm from the first disks, the time T,,,. necessary for a
wave to impact again the disks from left to right can be evaluated as follows:

3.9+ 3.905 0.005

1300 1300
= 6 ms, (4.48)

Twave -

(4.47)

where the velocity of the pressure discontinuity has here been approximated
by the sound velocity in the fluid.

During the second phase [1.3845 ms, 6 ms], the pressure discontinuities are
mostly far away from the array, leading to small pressure forces. The longitu-
dinal displacement U,(t) is thus mainly driven by the restoring elastic force.
Thus, the period of U,(t) decreases from the initial 6 ms wave period to fit its
5 ms eigen-period. Indeed, Figure allows to estimate a period of damped
oscillations around 7" = 5.0879 ms, which is coherent with the previous choices
of parameters. Indeed, the frequency and period of damped oscillations satisfy:

w=wpy/1— &2, (4.49)

Y (4.50)
- .

With ¢ = 20% and Ty — 5 ms, it follows T' &~ 5.103 ms.
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Regarding now the transverse displacement U,, one can notice in Figure
[4.42B) that it is 2 orders of magnitude below the longitudinal displacement.
This is not surprising considering the transverse pressure wave impacting the
solid medium. Furthermore, conversely to U,, the displacement U, does not
at first exhibit a pure sinusoidal shape. The behavior witnessed on the time
interval [0, 3.669 ms]| is here explained by the vertical component of the fluid
pressure forces, which is much smaller than the horizontal component, and
exhibits fluctuations, with possible change of signs. For ¢ > 3.669 ms, after the
disks have reached their maximum transverse displacement, a sinusoidal shape
free of fluctuations is recovered.

Remark 4.4.5 I'mportant note on the way the displacement of the fluid-
structure interfaces 0(2s is taken into account in the boundary integrals
of the model equations

As the homogenized fluid equations are discretized on a 2D regqular
Cartesian grid with mesh size h = 1 mm, the boundary integrals present
in the right-hand sides of the balance equations are updated when the solid
medium displacement reaches integer multiples of h.

To complete the displacements observed in Figure [4.42] let us now turn
towards the pressure fields reconstructed for the beginning and right/left max-
imum positions of the disks, hereafter displayed in Figures [4.43] and [4.44]

One can immediatly notice in Figure[4.43|that the horizontal pressure profile
is almost constant (around 1.75 bar) when the disks reach their maximum
displacement. This is also confirmed by the 2D pressure fields displayed in
Figures Thus, pressure forces applied to the solid medium are
almost zero, and the restoring elastic force can now freely act on the solid
medium. This is coherent with the fact that the solid medium has reached its
maximum displacement and will now head backwards.

Besides, it can also be noticed in Figures that the artificial
pressure within the solid medium remains constant around 1 bar throughout
the simulation. This is coherent with the assumptions at the basis of the
wavelet-based homogenized model (i.e. no matter is exchanged between the
fluid and solid media).

In conclusion, these preliminary results, obtained via a coupling between
a 2D homogenized compressible fluid and a rigid solid medium, are in good
agreement with the theoretical behavior of a linear oscillator.
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Figure 4.43: Horizontal pressure profiles for the initial and maximum positions
of the disks - the vertical dashed lines indicate the position of the array.
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Figure 4.44: Initial and maximum positions of the 2 x 2 moving array of disks
within the reconstructed pressure field (bar).
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4.5 Conclusion

This fourth chapter, dedicated to the model implementation, allowed to
assess its ability to accurately compute the physics of interest, i.e. a 2D
transverse pressure wave propagating through a congested solid medium com-
posed of multiple disks. A wavelet analysis of a reference numerical solution
(10 x 10 steady array), computed at the DNS scale, was first presented. This
first test gave insights on the pressure field spectrum, and underlined the need
to replace the analysing wavelet ¥ by its associated scaling function &, in order
to avoid multiple and cumbersome computations. A second test then confirmed
the impact of both the C.F.L. and the scale/mesh compatibility conditions on
the numerical model stability and accuracy. In echo with the first wavelet anal-
ysis, a 2D pressure wave propagating through a 10 x 10 steady array of disks
was then considered. The wavelet-based model proved its ability to accurately
reconstruct both the pressure field and the horizontal force applied to the solid
medium. To then enhance the multi-scale component of the model, a compari-
son between several equivalent arrays of disks (2 x 2, 4 x 4, 10 x 10) proved that
a more macroscopic modeling of the solid medium, and thus a larger mesh size
h and cutoff scale sy, preserves the accuracy on the main quantity of interest,
i.e. the dynamic load on the solid medium.

Finally, the last sections of this chapter gave some insights on two ongoing
projects. The first one consists in implementing a nested grids algorithm within
the numerical model. While it obviously did speed up the computations, it
also exhibited an unexpected loss of accuracy. These troubling results thus
require further investigations. The second project is dedicated to the design
of a coupled fluid-structure solver. A collaborative test program between the
French Energy Commission (CEA) and the Norwegian University of Science
and Technology (NTNU) was first presented. This joint work allowed to submit
a tube bundle specimen to multiple shock waves within a shock tube facility,
while recording the solid medium longitudinal displacement via high-speed
cameras. In addition to this preliminary experimental data, a first numerical
test involving a 2 x 2 moving array of disks was also presented. A coupled
fluid-structure simulation allowed to recover the theoretical behavior of a linear
oscillator, with its classical sinusoidal displacement. These early results shall
of course be completed with further testing.
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Conclusion

This work put forward a new contribution in the wide literature of porous
media, homogenization and multi-scale methods. Guided by the need to com-
pute transverse pressure waves within congested solid media, such as fuel as-
semblies within Pressurized Water Reactors (PWR), this manuscript thor-
oughly described a homogenized and multi-scale model able to discard all
interfaces and small scale phenomena. In a will to build a self-sustained
model, which can bypass the major limitations encountered in homogenization
theory and multi-scale methods, this work promotes the use of Continuous
Wavelet Transform (CWT). Starting with a 2D rigid and homogeneous solid
medium, and an inviscid compressible fluid, it was thoroughly detailed how this
wavelet formalism can be implemented on the fluid Partial Differential Equa-
tions (PDEs). The method was moreover designed to allow for an extension to
generic PDEs. A two-steps process of "weak-extension" + "weak-convolution"
of the original fluid PDEs with an analysing wavelet (or scaling function) was
shown to result in spatially-filtered PDEs governing a homogenized fluid. The
new conservative variables are moreover defined as the wavelet coefficients (or
low-frequency approximation) of the original variables. In order to ensure the
well-posedness of the convolution product, a real-valued, isotropic, smooth,
well-localized and admissible wavelet has been chosen, namely the Mexican
hat. More importantly, thanks to CWT and its reconstruction formula, the
homogenized model possesses the brand new ability to connect resolved and
unresolved scales without any ad hoc model, and to rigorously handle the
original boundary conditions. It was also emphasized how the reconstruction
formula can be used to explicitly compute, if necessary, nonlinear terms. To
complete the wavelet-based model theoretical framework, a convergence to-
wards Direct Numerical Simulation (DNS) was proved, along with necessary
compatibility conditions between the scaling function cutoff scale s, and the
mesh size h. To the author’s knowledge, it is the first time that such a self-
sustained homogenized and multi-scale model, tackling generic and non-smooth
PDEs, closure between resolved and unresolved scales, boundary conditions,
nonlinearities, periodicity and scale separation is put forward in literature.

In order to confront this theoretical framework with the physics of inter-
est, several 2D numerical tests were considered, with steady micro-structures.
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These tests first allowed to emphasize the impact of both the explicit scheme
C.F.L. condition, and the scaling function cutoff scale, on the numerical model
stability and accuracy. It was then proved, with different steady micro-
structures, that the wavelet-based model is able to accurately reconstruct both
the pressure field, and the dynamic load applied to the solid medium. This
accuracy is even preserved when a more macroscopic modeling is used to rep-
resent the solid medium. Then, in an ongoing work aiming at designing a
coupled fluid-structure solver, preliminary experimental data, involving a tube
bundle specimen submitted to shock waves, was presented. The longitudinal
displacement observed during the experiments was then supplemented by a
preliminary numerical test involving a 2 x 2 moving array of disks. This test,
which did not aim at faithfully representing the 3D solid medium behavior
observed in the shock tube facility, nevertheless allowed to recover the theoret-
ical behavior of a linear oscillator. These early results will be completed with
additional testing in order to build a robust 2D fluid-structure solver.

Finally, there obviously are improvements and challenging perspectives
ahead of this work. Regarding the current vulnerabilities and possible im-
provements, the wavelet-based model is first confronted with risks of instability
and aliasing. Besides, the use of a band-pass analysing wavelet, rather than
a low-pass scaling function, was shown to significantly increase the computa-
tional cost of the method. Now, regarding the perspectives, one may think of
a 3D extension of the wavelet-based homogenized model, using a 3D Contin-
uous Wavelet Transform. Nevertheless, in a context where fuel assemblies are
the solid medium of interest, such a 3D extension could rely on a "2D+1D"
approach, where the homogenization process is only applied through the cross
section, while classical discretization techniques are used to handle the vertical
direction. If the cross section of the 3D fuel assemblies does not undergo any
deformation, the assumptions made on the 2D solid medium could be easily
transposed to the 3D case.

To now widen the perspectives of the current work, one could extend
this wavelet-based multi-scale and homogenized model, here developed in the
framework of Fluid-Structure Interaction (FSI), to other types of physics, such
as heterogeneous materials and turbulence for instance. Indeed, in the spirit
of the wide overview of the state of the art presented in this manuscript, this
work put forward a homogenization process that can deal with generic PDEs,
written at the continuum medium scale, and moreover independent from any
spatial discretization technique.
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Appendix A

Convolution product

Proposition A.0.1 Convolution product L} (Rd> x D (Rd>

The convolution product between a function f € L' (Rd> and a test

function ¢ € D (Rd> results in a C* function.

Proof of Proposition A.0.1 Let us first start with the definition of con-
volution product. For a priori almost all z € R9:

(f9)(@) = [ f(z—y)e()dy, (A1)
=/ Fly-z)e(dy, (A-2)

= . =(N@ew)dy, (A.3)

(A.4)

where f(z) = f(—z), and 7.(f)(-) = f(- — z) denotes a translation of f.
One can first notice that, for all f € L* (Rd>, the function:

o (1) R 1), s

15 continuous. This point 1s proven by using the density of continuous and
compactly-supported functions in the Lebesgue space LP, for 1 < p < +00.
Furthermore, the linear form:

;L (RY) +— R

’ fooo— (o)
18 also continuous. Indeed, since ¢ € D (Rd> C L% (Rd>, Hélder inequality
implies that f x ¢ € L' (R?), and:

(A.6)
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() = | [, 79| (A7)

< [ 1f1x el (A.8)
< llell oo N1 £l - (A.9)

Finally, one can state that for all f € L! (Rd) and ¢ € D (Rd), the
function:

R +— R¢
g — (f*9)(@) = (l,o77) ()

1s continuous. The C* smoothness is then obtained thanks to the the-
orem allowing to differentiate parameter-dependent integrals, with the dif-
ferentiation being applied on the test function .

(A.10)

Proposition A.0.2 Convolution product D' (Rd> x D (Rd>

The convolution product between a distribution T € D' (Rd> and a test

function ¢ € D(Rd) also results in a C* function. Furthermore, the
following equation holds:

VT eD (RY), 9,0 €D (RY:

(¥*T,0)p :/ (W*xT)e (A.11)
(T, ¥xo),, b (A.12)

In the case where the distribution T 1s a locally integrable function, the
previous result can be obtained with Fubini’s theorem:

T olop= [, ([¥e-T@a)e@dz  (a13)

- /Rd T ( /Rd Y(y - z)o(z) dg) dy (A.14)
= (T.¥x9),, (A.15)

D',D

Proof of Proposition A.0.2 With some minor change in the proof[4A.0.1),
one can extend the previous proposition to the convolution product
L} (Rd> * D (Rd>, and then use the fact that L}, (Rd> C D (Rd>.

loc
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