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Résumé

La simulation de l'éoulement d'un �uide au sein d'un milieu solide onges-

tionné onstitue enore aujourd'hui une problématique sienti�que importante

dans ertains domaines de reherhe, notamment l'ingénierie nuléaire. En

e�et, fae à un nombre très important d'interfaes à gérer, les méthodes las-

siques d'interation �uide-struture induiraient un oût de alul prohibitif.

Cette problématique des interfaes se umule par ailleurs ave des phénomènes

multi-éhelles, qui trouvent leur origine dans l'éoulement �uide, ainsi que dans

la miro-struture du milieu solide. Fae à ette double problématique inter-

faes et multi-éhelles, une approhe milieu poreux ou homogénéisée peut être

adoptée.

Dans et esprit, ette thèse met en avant une modélisation multi-éhelles et

homogénéisée, en apaité de simuler un éoulement ompressible non-visqueux

au sein d'un milieu solide ongestionné. A�n de s'a�ranhir des limitations

renontrées dans les méthodes multi-éhelles et l'homogénéisation (strite sé-

paration d'éhelles, périodiité, traitement des onditions aux limites, linéar-

ité, équation de fermeture miro-maro...), ette nouvelle modélisation met en

avant un formalisme mathématique basé sur la transformée en ondelettes on-

tinue. En appliquant, par le biais d'un produit de onvolution, une ondelette

bien hoisie sur les équations aux dérivées partielles (EDP) gouvernant le milieu

ontinu �uide, il est possible d'obtenir des EDPs �ltrées dérivant un �uide ho-

mogénéisé. Le proessus de onvolution proposé est également appliable à des

EDPs génériques. Par ailleurs, grâe à la transformée en ondelettes inverse, le

modèle dispose d'une équation de fermeture analytique en apaité de relier les

éhelles résolues (i.e. le �uide homogénéisé) et non-résolues (i.e. le �uide réel).

Cette relation de fermeture permet d'une part de transférer rigoureusement les

onditions aux limites du �uide réel dans le �uide homogénéisé, et d'autre part

de traiter expliitement les non-linéarités. En�n, la résolution numérique des

EDPs du �uide homogénéisé permet de reonstruire, à haque pas de temps,

le hamp de pression au sein du �uide réel, et ainsi de déduire le hargement

dynamique appliqué sur la miro-struture. Cette étape importante, validée

sur des solutions numériques 2D de référene ave miro-strutures �xes, ouvre

ainsi la voie à un solveur �uide-struture intégrant le ouplage entre les deux

milieux.
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Abstrat

Computing a �ow within a highly ongested solid medium is still nowadays

an important sienti� issue in many researh �elds, suh as nulear engineer-

ing. Indeed, onfronted with an overwhelming number of interfaes, the lassi-

al Fluid-Struture Interation (FSI) approah would inevitably lead to um-

bersome omputations. This important issue of interfaes is also here oupled

with multi-sale phenomena, aused both by the �uid and the solid medium

miro-struture. In order to deal with these interfaes and multi-sale problem-

atis, a more mesosopi approah, based on porous media or homogenization,

an be put forward.

In this spirit, this work develops a multi-sale and homogenized model able

to aount for an invisid ompressible �ow within a ongested solid medium.

In order to bypass the lassial limitations of multi-sale and homogenization

methods (strit sale separation, periodiity, treatment of boundary onditions,

linearity, losure equation between sales), this new model promotes an original

use of Continuous Wavelet Transform. By applying, by means of a onvolution

produt, a well-designed wavelet to the �uid Partial Di�erential Equations

(PDEs), the model is able to derive spatially-�ltered PDEs governing a ho-

mogenized �uid. This onvolution proess is also appliable to generi PDEs.

Furthermore, thanks to an inverse wavelet transform, the model bene�ts from

an analytial losure equation whih onnets resolved (i.e. the homogenized

�uid) and unresolved (i.e. the real �uid) sales. This wavelet-based losure

equation allows on the one hand, to rigorously transfer the real �uid bound-

ary onditions into the homogenized �uid, and on the other hand to expliitly

handle nonlinearities. Finally, the numerial omputation of the homogenized

�uid PDEs allows to reonstrut, at eah time step, the pressure �eld in the

real �uid, whih leads to the dynami load applied to the solid medium miro-

struture. This important step, validated on 2D referene numerial solutions

with steady miro-strutures, thus opens the way to a oupled �uid-struture

solver.
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Nomenlature
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Chapter 1

Introdution

The urrent work �nds its starting point in the study of the mehanial

onsequenes of aidental senarios for Pressurized Water Reators (PWR),

with a fous on the propagation of transverse pressure waves through the fuel

assemblies of a nulear ore. Suh a phenomenon, alled Loss Of Cooling

Aident (LOCA), originates from a failure in one of the pipes of the pressurized

primary loop (155 bar). An initial plane pressure wave then propagates from

the failure towards the main vessel (see Figure 1.1), and is expeted to undergo

some di�ration at the juntion between the 1D pipe and the 3D ore. The

�rst mehanial soliitation on the fuel assemblies (see Figure 2.1-2.2) loated

within the main vessel would then ome from the transverse propagation of

a (spherial) pressure wave, followed by a seond vertial wave guided by the

axial water �ow.

Figure 1.1: Simpli�ed 1D/3D sheme of a PWR in a Loss Of Cooling Aident

(LOCA) ontext - reprodued from [Fauher et al., 2014℄ with permission.

1



The physis of interest thus requires to ompute a ompressible �ow within

a highly ongested solid medium, here the fuel assemblies. Suh a omputation

is still nowadays an important sienti� issue in many industrial or researh

�elds. It an for instane also relate to �ows within biologial tissues, or porous

media suh as onrete or soil. Confronted with an overwhelming number of

interfaes, the lassial Fluid-Struture Interation (FSI) approah, whih re-

lies on an expliit representation of all the interfaes, would inevitably lead to

umbersome omputations. This important issue of interfaes is also here ou-

pled with multi-sale phenomena: a wide range of spatial sales is for instane

ontained within a visous turbulent �ow, possibly entangled with the di�erent

spatial sales of the ongested solid medium. Thus, in order to takle both the

interfae and multi-sale problematis, a more mesosopi approah of FSI an

be put forward, inspired by porous media or homogenization theory.

In this spirit, a multi-sale and homogenized modeling is hereafter intro-

dued to aount for an invisid ompressible �ow within a ongested solid

medium. In order to build a self-sustained model, bypassing the lassial lim-

itations of multi-sale and homogenization methods (strit sale separation,

periodiity, treatment of boundary onditions, linearity, losure equation be-

tween sales), this work promotes an original use of Continuous Wavelet Trans-

form (CWT). By applying, by means of a onvolution produt, a well-designed

wavelet (or saling funtion) to the �uid Partial Di�erential Equations (PDEs),

the model results in spatially-�ltered PDEs governing a homogenized �uid in

the whole f�uid + solidg domain. Suh a onvolution proess is also applia-

ble to generi PDEs. Furthermore, thanks to an inverse wavelet transform, the

model is able to onnet analytially resolved (i.e. the homogenized �uid) and

unresolved (i.e. the real �uid) sales. This wavelet-based losure equation al-

lows on the one hand, to rigorously transfer the real �uid boundary onditions

into the homogenized �uid, and on the other hand to expliitly handle non-

linearities. The numerial omputation of the homogenized �uid PDEs then

allows to reonstrut, at eah time step, the pressure �eld in the real �uid,

whih leads to the dynami load applied to the solid medium.

In this work, the hoie has been made to fous the homogenization pro-

ess on the �uid, as it oupies a onneted domain in the geometry of interest.

Furthermore, CWT is hereafter applied in a 2D formalism. This work indeed

fouses on the propagation of transverse pressure waves through the ross se-

tion of fuel assemblies, as displayed in Figure 1.2.
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Figure 1.2: Sketh of a 2D transverse pressure wave propagating through a fuel

assembly ross setion.

The following of this manusript is organized as follows: hapter 2 is ded-

iated to an overview of a wide state of the art, starting with porous media

approahes, homogenization and multi-sale methods. The ore of this bibli-

ography hapter then fouses on wavelets theory. This will allow to onnet

to hapter 3, whih will then thoroughly desribe the wavelet-based multi-

sale and homogenized modeling. The model apabilities are then assessed in

hapter 4, with numerial experiments involving 2D shok waves propagating

through di�erent steady solid obstales. These tests are then supplemented

with some ongoing projets: on the one hand, preliminary experimental data

aquired on a tube bundle speimen within a shok tube faility, and on the

other hand, a �rst numerial test handling moving solid obstales. The �nal

hapter is then dediated to a onlusion.
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Chapter 2

Overview of the state of the art

2.1 Introdution

This hapter aims at setting the basis for the wavelet-based model at the

ore of this work, whih omes as a new ontribution in an already extensive

state of the art. This overview will thus emphasize some of the key methods

in the literature of porous media, homogenization and multi-sale methods,

with a �nal and major fous on wavelets. This hapter hereafter emphasizes

"analytial" (as opposed to numerial) methods, i.e. methods ating at the

ontinuummedium sale, on Partial Di�erential Equations (PDEs), and mostly

independent from any hoie of disretization tehnique.

The opening setion of this hapter presents a porous medium approah

designed to ompute Fluid-Struture Interation (FSI) phenomena, in the

framework of Pressurized Water Reators (PWR). It will be followed by the

lassial literature on homogenization, with its mehanial and mathematial

approahes. The third setion will then present two important examples of

multi-sale methods in the framework of turbulent �ows, namely expliit �l-

tering and projetion-based methods. This literature on homogenization and

multi-sale methods being realled, the ore of this hapter will then be ded-

iated to wavelets theory, with a �rst and main fous on Continuous Wavelet

Transform (CWT), with its 1D and 2D implementation. The framework of

Disrete Wavelet Transform and Multi-Resolution Analysis (MRA) will then

follow.

Throughout this hapter, it will be emphasized how homogenization and

multi-sale methods struggle with ommon limitations, among whih the treat-

ment of boundary onditions, and the losure equation between resolved and

unresolved sales. This will allow to highlight, espeially in hapter 3, how

Continuous Wavelet Transform (CWT) may takle these important issues.

2.2 FSI and porous medium : the ase of PWR

The interation between a �uid and a highly ongested solid medium, at

the ore of this work, �nds a perfet illustration with the behavior of a Frenh

4



2.2. FSI AND POROUS MEDIUM : THE CASE OF PWR

Pressurized Water Reator (PWR). As an be seen in Figure 2.1, a PWR ore

ontains numerous fuel assemblies (up to 157 for a 900 MW reator) submitted

to the water �ow of the primary loop. These assemblies exhibit a beam-like

geometry, with a square ross setion (20 m

2

�4 m). Their inner struture is

omposed of 264 fuel rods (5 mm radius), 5 instrumentation guide thimbles,

and 24 ontrol rod guide thimbles (Figure 2.2a). The latter bring sti�ness and

ohesion to the struture thanks to 8 spaer grids (Figure 2.2b) plaed along the

assembly. They an also host the falling ontrol rods (Figure 2.1) in ase of an

emergeny ore stop. The design of spaer grids allows to inrease turbulene

within the water �ow, whih transports the heat, reated by the nulear �ssion

reation, towards the steam generators. Under nominal operating onditions,

the water �ow is mainly vertial when it runs through the fuel assemblies.

Water is maintained liquid at around 300

Æ

C thanks to a 155 bar pressurization

of the primary loop.

Figure 2.1: Cutaway of a Frenh PWR ore.

(a) (b)

Figure 2.2: Fuel assemblies design: overview (2.2a) and spaer grid (2.2b).
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2.2. FSI AND POROUS MEDIUM : THE CASE OF PWR

Before introduing the porous medium approah developed to handle FSI

phenomena within a PWR, let us �rst reall the lassial approah, where both

media are modeled at the mirosopi sale, with a ontinuum medium point

of view.

2.2.1 Solid medium modeling at the mirosopi sale

In a PWR ore, the solid medium oupies a disonneted domain, result-

ing from the reunion of disjoint fuel assemblies. Negleting body fores, eah

fuel assembly satis�es, with a 3D ontinuum medium modeling, the following

momentum balane equation and dynami boundary ondition on the urrent

domain Ω
s

(t):

�

s

 = div

�

�

s

�

in Ω
s

(t)

�

s

·n

s

= T

F!S

+ T

impat

on ∂Ω
s

(t);

(2.1)

with:

� �

s

the solid medium density (kg:m

�3

);

�  the Eulerian aeleration (m:s

�2

);

� �

s

the Cauhy stress tensor (Pa);

� T

F!S

the stresses applied by the �uid on the interfae ∂Ω
s

(Pa);

� T

impat

the stresses resulting from impats with other fuel assemblies (Pa);

� n

s

the outward unit normal vetor on the boundary ∂Ω
s

.

The Eulerian aeleration (x; t) for x 2 Ω
s

(t) is linked to the Lagrangian

aeleration Γ (X; t) for X 2 Ω
s

(0) via the following equations:

8t � 0,  (x; t) = 

�

' (X; t) ; t

�

; (2.2)

= Γ (X; t) ; (2.3)

=

∂
2

U

∂t2
(X; t) ; (2.4)

where:

� ' ( · ; t) : X 7�! ' (X; t) = x desribes the transformation undergone by

the referene domain Ω
s

(0);

� U (X; t) = ' (X; t)�X denotes the displaement �eld.
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2.2. FSI AND POROUS MEDIUM : THE CASE OF PWR

To solve the problem (2.1), a losure equation between �

s

and the displae-

ment U is required. This losure is brought by the mehanial behavior law,

whih formally writes:

�

s

= �

s

�

e (U)

�

; (2.5)

where e (U) denotes Green-Lagrange strain tensor, de�ned by:

e (U) =

1

2

�

r U +

T

r U +

T

r U ·r U

�

: (2.6)

The variational formulation assoiated to the problem (2.1) is known as

the Virtual Powers Priniple. Given a kinematially admissible and smooth

Eulerian veloity �eld

e

v, one an integrate the momentum balane equation

against

e

v. Using Green's formula for integration by parts, it omes:

Z

Ω
s

(t)

�

s

 ·

e

v = �

Z

Ω
s

(t)

�

s

: r

e

v +

Z

∂Ω
s

(t)

�

�

s

·n

s

�

·

e

v: (2.7)

Now, introduing the virtual strain rate tensor d (

e

v) =

1

2

�

r

e

v +

T

r

e

v

�

,

and using the symmetry of the Cauhy stress tensor, one an write:

Z

Ω
s

(t)

�

s

 ·

e

v +

Z

Ω
s

(t)

�

s

: d (

e

v) =

Z

∂Ω
s

(t)

�

T

F!S

+ T

impat

�

·

e

v: (2.8)

The two terms on the left-hand side represent respetively the virtual pow-

ers of inertial and internal fores. As for the term on the right-hand side, it

represents the virtual power of the external fores applied to the solid medium,

here ontat fores applied by the �uid and other fuel assemblies.

Suh a modeling of the solid medium at the mirosopi sale quikly en-

ounters some limitations in the urrent ontext. Indeed, as it an be seen in

Figure 2.2, fuel assemblies exhibit a omplex design, with multiple ontats

and frition between inner omponents, espeially within spaer grids. Suh

a design results in damping and nonlinearities in their mehanial behavior.

Modeling all these phenomena at the mirosopi sale would be too umber-

some, onsidering the number of fuel rods and fuel assemblies ontained within

a PWR ore. Thus, beam models are often preferred to desribe the solid

medium kinematis and mehanial law. In [Riiardi et al., 2009℄, a Timo-

shenko beam model is hosen, motivated by the low shear modulus of fuel

assemblies. The loal damping and nonlinearities are then taken into aount

by a global nonlinear viso-elasti behavior of the beam.

In the urrent work, the hoie has been made to fous the homoge-

nized modeling on the �uid, as it oupies a onneted domain within the

PWR ore. The reader may thus refer to [Fontaine and Politopoulos, 2000℄,

[Pisapia et al., 2003℄ and [Riiardi et al., 2009, Riiardi, 2016℄ for further de-

tails on the solid medium modeling.
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2.2. FSI AND POROUS MEDIUM : THE CASE OF PWR

2.2.2 Fluid modeling at the mirosopi sale

Let us now onsider the water �ow within a PWR ore. It is, under nominal

operating onditions, almost vertial, inompressible and very turbulent, with

a Reynolds number around 10

5

. Suh a �ow is governed by Navier-Stokes

equations:

(

� [∂
t

v + div(v 
 v)℄ = � ∆ v �r p+ f;

div(v) = 0;

(2.9)

where � denotes the �uid density (kg:m

�3

), v its veloity (m:s

�1

), � the dynami

visosity (Pl = Pa:s), p the pressure (Pa), and f a body fore per unit of

volume. These equations translate respetively the onservation of the �uid

momentum and mass. They are ompleted with a no-slip kinemati boundary

ondition:

v � ∂
t

U = 0 on ∂Ω
f

(t) \ ∂Ω
s

(t):
(2.10)

As it will be detailed later in this hapter, in the setion dediated to tur-

bulene and Large Eddy Simulation (LES), the Diret Numerial Simulation

(DNS) of a visous inompressible and turbulent �ow (i.e. the diret omputa-

tion of Navier-Stokes equations) quikly beomes too umbersome. Indeed, the

number of degrees of freedom neessary to ath all the spatial sales ontained

within the �ow inreases as a power law of the Reynolds number. Therefore,

as the solid medium, the �uid also requires a more mesosopi modeling.

2.2.3 Modeling at the mesosopi sale

As it was just highlighted, a mesosopi modeling is relevant for both the

�uid and the ongested solid medium in order to disard the smallest spa-

tial sales. Furthermore, the lassial Fluid-Struture Interation (FSI) ap-

proah, whih an be found in [Fauher and Kokh, 2013, Fauher et al., 2014℄

or [Etienne and Pelletier, 2012, Yu et al., 2016, Yu et al., 2018℄, is here on-

fronted with an overwhelming number of interfaes. As a onsequene,

a homogenized approah of FSI shall be designed to takle the in-

teration between the two media. Inspired by works on multiphase

�ows [Banerjee and Chan, 1980℄, [Delhaye et al., 1993℄, solid-�uid mixtures

[Terada et al., 1998℄,[Robbe and Bliard, 2002℄, or Large Eddy Simulation

[Barsamian and Hassan, 1997℄, porous media models were put forward for

nulear in-ore strutures. Suh an approah has been implemented in

[Riiardi et al., 2009, Riiardi and Boaio, 2015, Riiardi, 2016℄ for the

study of a PWR ore dynamis in response to a seismi transient. In suh a

ontext, the �uid fores ating on strutures ome from the inompressible,

turbulent, and mostly axial �ow through the assemblies. Taking advantage

of the quasi-periodiity of the inner omponents of a PWR ore, this porous

medium approah relies on:
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2.2. FSI AND POROUS MEDIUM : THE CASE OF PWR

� the de�nition of a ontrol domain Ω


around eah fuel rod, in the spirit

of a Representative Volume Element (RVE):

Figure 2.3: Cutaway of the ontrol domain around a fuel rod.

� the de�nition of equivalent �uid and solid media (see Figure 2.4) by means

of a volume averaging of their original PDEs over the ontrol domain:

f

eq

=

1

jΩ


j

Z

Ω


f dV: (2.11)

Figure 2.4: Philosophy of the porous medium modeling - reprodued from

[Riiardi et al., 2009℄ with permission.

The volume averaging operator de�ned by (2.11) is applied diretly onto

the PDEs (2.1) and (2.9) governing the two media at the mirosopi sale.

It allows to derive spatially-�ltered PDEs governing the equivalent �uid and

solid media. In the proess, it transforms ontat fores between the two

media, de�ned only on the interfaes, into body fores between their equivalent

ounterparts. In a seond step, the �ltered PDEs governing the equivalent solid

medium are redued into a Timoshenko beam model, as desribed earlier.

It is important to highlight that the original ontat fores between the

two media depend on the original �uid veloity and pressure �elds, and on the

original solid medium displaement, whih are no longer solved either by the

spatially-�ltered �uid or solid equations. In order to solve the porous medium

problem, a losure expression is thus required to onnet unresolved and re-

solved sales. This expression shall allow to de�ne the body fore interation

between the equivalent �uid and solid media as a funtion depending only on

the equivalent �elds:
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2.2. FSI AND POROUS MEDIUM : THE CASE OF PWR

F

F ! S

: = F (v; p; U) ; (2.12)

= F

eq

�

v

eq

; p

eq

; U

eq

�

: (2.13)

As no analytial expression is available to de�ne the funtional F

eq

in

equation (2.13), an ad ho losure model has to be implemented. In

[Riiardi et al., 2009, Riiardi, 2016℄, an empirial model based on the

works of [Taylor, 1952℄,[Lighthill, 1960, Lighthill, 1986℄ and [Païdoussis, 1966,

Païdoussis, 1969, Païdoussis, 2006℄ is hosen to represent the fores applied by

a visous inompressible turbulent �ow to a single ylinder rod. In a similar

way, an ad ho ontat model is also needed for the new body fore desribing

impats between fuel assemblies.

Beside these �rst losure expressions, another one is also required to prop-

erly model turbulene e�ets. Indeed, as it will detailed later when disussing

Large Eddy Simulation (LES), the volume averaging of the nonlinear onve-

tive term div (v 
 v) requires to de�ne the impat of the �utuating omponent

of the veloity onto its �ltered omponent. This losure expression is lassially

de�ned by means of an ad ho turbulene model (see [Lesieur, 2008℄).

Beside this major issue of losure expressions between resolved and unre-

solved sales, suh a porous medium approah also faes, like any other homog-

enization and multi-sale methods, an important issue with the treatment of

boundary onditions. Indeed, in order for the spatially-�ltered PDEs to remain

loal equations, the ontrol domain Ω


(x) shall be de�ned around eah point x

of the total domain Ω
f

[Ω
s

. As a result, when x is loated in the viinity of the

boundary ∂ (Ω
f

[Ω
s

), the ontrol domain Ω


(x) overlaps the omplementary

domain R3

n (Ω
f

[Ω
s

). This fat requires to extend the initial �elds to the

whole spae R3

, and thus raises the question on how to properly de�ne the

boundary onditions on the equivalent (�ltered) �elds. It is usually assumed

in literature that the �ltered �elds share the same boundary onditions than

the original ones.

Finally, it shall be highlighted that suh a porous medium or homogenized

modeling for FSI has for now only been applied in the ase of a visous in-

ompressible and turbulent �ow. To the author's knowledge, no suh work

exists for the ase of a ompressible �ow and a fast transient pressure wave

interating with a highly ongested solid medium. In the PWR framework,

the interation between a rarefation wave originating from a pipe break and

the ore dynamis is for now studied under some strong simpli�ations, like

in [Fauher et al., 2014℄, where fuel assemblies are onsidered as an equivalent

aousti impedane, responsible for the global pressure drop through the ore.

In suh a ase, where visosity and turbulene e�ets an be negleted onsid-

ering the time sale of interest, the proper evaluation of the loading exerted by

the �uid to the solid medium requires to represent pressure gradients within

the �ow, at the suitable sale, and espeially through the ross-setion of fuel

assemblies. In order to better take into aount the loal geometri details of

the solid medium (without expliitly meshing all interfaes) and their impat
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2.3. HOMOGENIZATION IN SOLID MECHANICS

on the propagation of pressure waves, a homogenized and multi-sale model

shall also be developed for this new physis of interest. This new model shall be

able to deal with the major issues highlighted in the porous medium approah,

and further detailed in the following setions dediated to homogenization and

multi-sale methods.

2.3 Homogenization in solid mehanis

The keyword homogenization is usually linked to the study of heterogeneous

materials in solid mehanis. The following subsetions are dediated to the two

lassial approahes of homogenization, namely mehanial and mathematial.

2.3.1 Mehanial approah

The mehanial approah of homogenization was originally developed in

the framework of linear elastiity. Confronted with a heterogeneous material,

the �rst step onsists in the identi�ation, if possible, of a Representative

Volume Element (RVE). This volume V shall be large ompared to the material

mirosopi heterogeneities, and small ompared to the material size, in order

to allow for spatial averages on the RVE to be onsidered as loal quantities for

the material. This RVE being set, the marosopi and homogenized sti�ness

(fourth-order) tensor C
hom

an be de�ned, from its miroopi ounterpart C,

as follows:

D

�

E

V

=

�

C
:

�

�

V

; (2.14)

= C
hom

:

D

�

E

V

; (2.15)

where

D

�

E

V

and

D

�

E

V

denote the RVE-volume averages of respetively the

Cauhy stress tensor and the linearized strain tensor:

hfi

V

=

1

V

Z

V

f dV: (2.16)

In order to estimate the marosopi sti�ness tensor, boundary ondi-

tions have to be de�ned on the RVE. Following the work of [Hill, 1963℄, it

is known that for uniform stresses (�(x) ·n = Σ ·n) or linear displaements

(�(x) = E ·x) imposed on the RVE boundary, one has

D

�

E

V

= E. Moreover,

these spei� boundary onditions also allow to estimate bounds on the maro-

sopi sti�ness tensor for any other type of boundary ondition, as proved by

[Nemat-Nasser and Hori, 1993℄.

Beside this issue of boundary onditions, a losure equation is also required

between the marosopi (homogenized) sti�ness tensor C
hom

and its miro-

sopi ounterpart C. This losure relies on the introdution of a fourth-order

onentration tensor A, de�ned by:
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2.3. HOMOGENIZATION IN SOLID MECHANICS

8x 2 V , �(x) = A(x) :

D

�

E

V

: (2.17)

The pioneering work of [Eshelby, 1959℄ brought theoretial results, known

as Eshelby's tensor, to determine this onentration tensor, in the frame-

work of an ellipti inlusion embedded in an in�nite linear elasti and

homogeneous medium. This early result has then been generalized in

[Tanaka and Mori, 1972℄ to any general domain Ω ontained within two larger

and embedded ellipti domains (Ω � E
1

� E

2

).

To bypass the strong assumptions required for the omputation of the on-

entration tensor A, variational approahes have been proposed in literature

[Hashin and Shtrikman, 1963, Willis, 1981℄, to determine, in a di�erent way,

the homogenized properties of a material. Following the priniple of minimum

potential energy, the RVE elasti energy density is de�ned as:

f

W

�

e

�

�

= min

�2K

1

V

Z

V

W

�

x; �

�

dx; (2.18)

where K is the set of kinematially admissible displaements, and W

�

x; �

�

the

mirosopi elasti energy density of the heterogeneous material. The homog-

enized stress tensor C
hom

is then de�ned by:

f

W

�

e

�

�

=

1

2

e

� : C
hom

:

e

� : (2.19)

However, as the minimization problem (2.18) annot be easily solved, a

referene homogeneous medium is introdued to estimate a lower bound on

f

W

�

e

�

�

. This referene material is hosen so as to satisfy a linear elasti be-

havior, with an additional seond-order tensor, known as polarization ten-

sor. This tensor, usually assumed uniform on eah phase of the heteroge-

neous material of interest, is then tuned so as to maximise a lower bound

on

f

W

�

e

�

�

. This variational approah in linear elastiity has then been ex-

tended to nonlinear elasti omposites [Willis, 1981, Ponte Castañeda, 1991,

Ponte Castañeda and Suquet, 1998℄. A few years later, a somehow similar vari-

ational method has been proposed to deal with nonlinear inelasti omposites

[Miehe, 2002℄, where the miro-struture inelasti behavior is handled with an

inremental variational formulation on the potential assoiated to mirosopi

stresses.

All these works, here inluded in a mehanial approah of homogenization,

share some strong limitations. Indeed, they often rely on strong assumptions

regarding the heterogeneities geometry, and require a lear sale separation

between the RVE size and the material size. They also fae issues with the

treatment of boundary onditions (periodiity or in�nite medium assumption),

explained by the fat that one again a RVE-volume averaging operator does

not allow to properly de�ne homogenized �elds in the viinity of the domain
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boundary. Finally, this mehanial approah of homogenization is mostly re-

strited to solid materials, and highly dependent on the mehanial behavior

law. This is a major drawbak to its extension to other types of physis.

2.3.2 Mathematial approah

In parallel with this mehanial literature, mathematiians have also ex-

tensively studied the �eld of homogenization, with the objetive to bring some

theoretial foundations to the approximation of a heterogeneous material by an

equivalent homogeneous one. The mathematial approah of homogenization

deals with phenomena governed by linear ellipti equations (linear elastiity,

stationary heat equation, Poisson equation for the eletrial potential...), or

di�usion proesses, with mostly periodially osillating oe�ients. For in-

stane, let Ω be a periodi and bounded open set in Rn

. Let us denote � its

period, whih is assumed small ompared to the size of the domain. Let A be

a bounded and positive de�nite seond-order tensor. A linear ellipti problem

writes, with Dirihlet boundary onditions:

(

�div

�

A

�

x

�

�

r u

�

�

= f in Ω

u

�

= 0 on ∂Ω
(2.20)

where u

�

is the unknown, and f is a soure term, usually assumed in L

2

(Ω) to

ensure the well-posedness of the problem.

The mathematial approah of homogenization [Bensoussan et al., 1978,

Sanhez-Palenia, 1980℄, often referred to as asymptoti or periodi homog-

enization, orresponds to the study of the limit of the problem (2.20) as the

parameter � tends towards zero. The homogenized problem assoiated to (2.20)

an heuristially be obtained by assuming the following two-sale asymptoti

expansion (ansatz):

u

�

(x) =

+1

X

i=0

�

i

u

i

�

x;

x

�

�

; (2.21)

where the funtions (x; y) 7�! u

i

(x; y) are assumed smooth and periodi in y.

Thanks to the linearity of the problem (2.20), this expansion an be used to

obtain a series of equations on the new unknows u

i

. The homogenized problem

then orresponds to the equation satis�ed by u

0

, whih an be shown to only

depend on the variable x:

(

�div

�

A

�

r u

0

(x)

�

= f in Ω

u

0

= 0 on ∂Ω
(2.22)

where A

�

now denotes the homogenized (and uniform) seond-order tensor.

The use of the two-sale expansion (2.21) is supported by theoretial re-

sults on the onvergene of the unknown u

�

as � tends towards zero, known

as the osillating test funtion method (or energy method) [Tartar, 1979℄ and

the two-sale onvergene method [Allaire, 1992℄. It is notieable that this
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asymptoti homogenization, while mostly used for periodi materials, an also

be extended to the non-periodi ase with the notion of G or H-onvergene

[De Giorgi and Spagnolo, 1973, Murat and Tartar, 1997℄. However, the deriva-

tion of the homogenized problem is not as straightforward as in the periodi

ase.

Finally, it shall be highlighted that, despite their apparent di�erenes, the

mehanial and mathematial approahes of homogenization do share some

ommon limitations. Indeed, the seond one also faes issues with the treat-

ment of boundary onditions, as the periodiity assumption does not stand

anymore in the viinity of the domain boundary. It is for instane well-known

that asymptoti expansions are not suited for the proper representation of

boundary layers phenomena. Furthermore, the mathematial approah is also

highly dependent on a strong sale separation assumption, as the parameter �

measuring the ratio between the smaller and larger spatial sales shall tends

towards zero. Besides, asymptoti homogenization is mostly appliable to pe-

riodi geometries and linear problems. Linearity is indeed required in order to

injet the two-sale expansion (2.21) in the problem equation (2.20).

These two major approahes of homogenization being now desribed, it an

be highlighted that, while not always lassi�ed within the same literature, the

theory of homogenization an be embedded in the wide framework of multi-

sale methods. Indeed, homogenization aims at smoothing the mirosopi

behavior of a material, i.e. the unresolved sales, in order to ompute only the

marosopi (low-frequeny) behavior, i.e. the resolved sales. And like any

multi-sale method, a losure equation is required to desribe the interation

between unresolved and resolved sales (f. the onentration tensor previously

desribed for instane). The following setion is thus dediated to some key

examples of multi-sale methods.

2.4 Multi-sale methods

Among the wide family of "analytial" (as opposed to numerial) multi-

sale methods, two di�erent but somehow similar approahes will hereafter

be highlighted, in the framework of turbulent �ows: on the one hand (ex-

pliit) �ltering methods, suh as Large Eddy Simulation, and on the other

hand projetion-based methods, whih are based on a diret-sum deomposi-

tion between a "oarse-omponent" spae and a "�ne-omponent" spae, suh

as the Variational Multi-Sale (VMS) method. The framework of Disrete

Wavelet Transform and Multi-Resolution Analysis (MRA), whih shares sim-

ilarities with the VMS method, will be disussed in the setions dediated to

wavelets.

2.4.1 Filtering methods: Large Eddy Simulation

To start with expliit �ltering methods and Large Eddy Simulation, let us

�rst reall that Newtonian visous and inompressible �uids are governed by

Navier-Stokes equations:
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(

� [∂
t

v + div(v 
 v)℄ = � ∆ v �r p;

div(v) = 0:

(2.23)

Within a visous inompressible �ow, turbulene an be witnessed when

the onvetive omponent of the �ow (�div (v 
 v)), whih is responsible for

kineti energy transport, beomes signi�antly more important than the vis-

ous omponent (�∆ v), whih is responsible for kineti energy dissipation.

This ompetition between nonlinear onvetion and visous dissipation is mea-

sured by the (dimensionless) Reynolds number:

R

e

∼
k�div (v 
 v)k

k�∆ vk

: (2.24)

More preisely, if V denotes the harateristi veloity of the �ow, L its

harateristi length, and � =

�

�

the �uid kinemati visosity (m

2

:s

�1

), the

Reynolds number an be expressed as:

R

e

=

V L

�

: (2.25)

When the Reynolds number satis�es R

e

. 2000, di�usion dominates on-

vetion, and the �ow regime is laminar. When the Reynolds number inreases

beyond this ritial value, the �ow progressively beomes turbulent, showing

inreasing mixing property and oherent strutures suh as eddies. These ed-

dies possess a wide range of spatial sales, from the harateristi length of

the �ow L down to the Kolmogorov sale, de�ned by LR

�

9

4

e

in 3D. Thus, the

number of degrees of freedom neessary to ath all the spatial sales ontained

in a visous turbulent �ow inreases as a power law of the Reynolds number.

To ope with the numerial limitation of DNS, multi-sale methods have

been developed to ompute turbulent �ows at less expensive ost. The

Reynolds Averaged Navier-Stokes (RANS) method and Large Eddy Simula-

tion (LES) are the most widely used tehniques in literature. The �rst one is

based on a time averaging operator whih allows to separate the mean and �u-

tuating omponents of the �ow. Under a stationarity assumption, the ergodi

theorem ensures that ensemble, time and spatial averaging are equivalent. As

for LES, it relies on a spatial �ltering or averaging operator, whih allows to

separate large and small sales. The sales larger than the �lter uto� length

are resolved, while the impat of smaller sales is modeled, and thus requires

a losure equation. Given a �lter G

Æ

, where Æ > 0 denotes the uto� length,

the �ltered omponent v of a �eld v is de�ned by the following onvolution

produt:

v(x; t) =

Z

Rd
G

Æ

�

x� y

�

v

�

y; t

�

dy; (2.26)

= (G

Æ

� v) (x; t): (2.27)
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The �lter G

Æ

an for instane be a box or Gaussian �lter in physial spae,

or a sharp �lter in spetral spae. The �utuation v

0

of the �eld v is then

de�ned so as to satisfy the following deomposition:

v = v + v

0

: (2.28)

In turbulene literature [Lesieur, 2008℄, it is generally assumed that the

spatial �ltering operator ommutes with all time and spatial derivatives. Thus,

by applying this operator on Navier-Stokes equations (2.23), one obtains the

following �ltered momentum balane equation:

8i 2 f1; 2; 3g, �

"

∂v
i

∂t
+

∂ (v
i

v

j

)

∂x
j

#

= �

∂p

∂x
i

+

∂

∂x
j

[� (∂
j

v

i

+ ∂
i

v

j

) + �T

ij

℄ ; (2.29)

where T = (T

ij

)

i;j

is alled subgrid-sale tensor, and is de�ned by:

T

ij

= v

i

v

j

� v

i

v

j

: (2.30)

This additional term results from the appliation of the �lter on the non-

linear onvetive term v
v. Equation (2.29) now drives only the spatial sales

larger than Æ, i.e. the resolved sales. In order to highlight the impat of

smaller sales on this equation, and thus the need of a losure equation be-

tween resolved and unresolved sales, the subgrid-sale tensor an be rewritten

as follows (see [Lesieur, 2008℄):

T

ij

= v

i

v

j

� (v

i

+ v

0

i

)(v

j

+ v

0

j

); (2.31)

= (v

i

v

j

� v

i

v

j

)�

�

v

i

v

0

j

+ v

0

i

v

j

�

� v

0

i

v

0

j

; (2.32)

= L

ij

+ C

ij

+ R

ij

: (2.33)

Thus, beside the lassial Reynolds-stress term R

ij

= �v

0

i

v

0

j

, two additional

terms appear in the subgrid-sale tensor ompared to the RANS method. This

is explained by the fat that, onversely to time or ensemble averaging, the

spatial �ltering operator is not idempotent, that is to say:

v 6= v: (2.34)

The �rst term L

ij

in equation (2.33), alled Leonard's term, depends only

on the veloity �ltered omponent. However, the ross-term C

ij

and Reynolds-

stress term R

ij

both exhibit the veloity �utuating omponent, i.e. the unre-

solved sales. In order to solve the �ltered equation (2.29) , it is thus neessary

to add a losure equation, as in the theory of homogenization. As no analytial

expression is available to onnet unresolved and resolved sales, an ad ho

model has to be implemented. One of the �rst and most famous losure model

is Smagorinsky eddy-visosity model [Smagorinsky, 1963℄, in whih an arti�ial
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turbulent visosity is introdued to aount for the energy dissipation in the

subgrid sales. In this model, the deviatori omponent of the subgrid-sale

tensor is evaluated via the following equations:

T

ij

= �2�

t

S

ij

+

1

3

tr

�

T

�

Æ

ij

; (2.35)

S

ij

=

1

2

�

∂
x

j

v

i

+ ∂
x

i

v

j

�

; (2.36)

where the eddy-visosity �

t

is de�ned aording to a mixing-length assumption:

�

t

= (C

s

∆x)
2

�

�

�S

�

�

� ; (2.37)

= (C

s

∆x)
2

q

2S

ij

S

ij

; (2.38)

where ∆x is the harateristi length of the subgrid sale, and ∆x

�

�

�S

�

�

� an be

onsidered as a turbulent veloity. The parameter C

s

an be tuned depending

on the ase at study. A ommonly used value is C

s

= 0:1. The losure equation

being now de�ned, the spatially-�ltered Navier-Stokes equations (2.29) an

then be omputed.

Nevertheless, despite its ommon use, LES, like any other multi-sale or ho-

mogenization method, is still faing some important issues, among whih the

treatment of boundary onditions. Indeed, the lassial assumption of ommu-

tation between the spatial �ltering operator and spatial derivatives in the PDEs

does not stand for bounded �ows. Moreover, onvolution produt is not prop-

erly de�ned on a bounded domain either. The use of a onvolution produt re-

quires to extend the original �elds to the whole spae Rd

. Furthermore, the spa-

tial �ltering proess brings the original system boundary onditions within the

newly extended and �ltered problem. The only way to avoid this phenomenon

is to derease the �lter uto� length towards zero near the domain boundaries.

This option, however, signi�antly hanges the derivation proess of the �l-

tered equations, as the ommutation assumption does not stand either with a

�lter with varying uto� length. The interested reader may refer to the works

of [Ghosal and Moin, 1995, Fureby and Tabor, 1997, Vasilyev et al., 1998,

Duna et al., 2003, Berselli et al., 2006, Leonard et al., 2007℄ for further details

on this topi.

Beside this important issue on boundary onditions, LES is also limited

by its need of a turbulene model to lose the �ltered equations and onnet

resolved and unresolved sales. This losure model has a huge impat on the

LES results, espeially around obstales or near the �ow boundaries. Suh an

ad ho model is here mandatory beause a plain spatial �ltering tehnique does

not o�er an inverse formula able to reonstrut, from the �ltered omponent,

the original �eld. It will be detailed later in this manusript that, onversely,

Continuous Wavelet Transform (CWT) does o�er suh a reonstrution for-

mula.
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To onlude this subsetion dediated to �ltering methods, it shall be high-

lighted that their use has reently spread in homogenization for solid mehan-

is as well [Yvonnet and Bonnet, 2014, Tognevi et al., 2016℄. To the author's

knowledge, suh works are still limited to linear problems. Furthermore, similar

hallenges are enountered with boundary onditions, and their onsequenes

on the de�nition of a losure equation (onentration tensor) between resolved

and unresolved sales.

Let us now turn towards another major approah in multi-sale modeling,

that is to say projetion-based methods.

2.4.2 Projetion-based methods: Variational Multi-Sale

Beside �ltering methods, turbulene literature has also seen the devel-

opment of projetion-based methods, suh as the Variational Multi-Sale

method (VMS), whih has been put forward as an alternative to LES for

the simulation of turbulent �ows [Hughes et al., 1998, Hughes et al., 2000,

Hughes et al., 2001, Bazilevs et al., 2007℄. In a will to bypass some of the lim-

itations of spatial �ltering operators (non-ommutation with spatial deriva-

tives for bounded �ows, treatment of boundary onditions), and the need of

a losure model between resolved and unresolved sales (e.g. eddy-visosity

models), VMS promotes the use of a linear projetion operator. The start-

ing point is thus the diret-sum deomposition of a linear subspae V (e.g. a

Hilbert spae) into a oarse-sale (�nite-dimensional) subspae V and a �ne-

sale (in�nite-dimensional) subspae V

0

:

V = V � V

0

: (2.39)

The oarse sale omponent of a �eld f 2 V is then de�ned by:

f = P
V

f; (2.40)

where P
V

denotes the projetion on V. It an for instane be the L

2

or H

1

-

orthogonal projetion.

Remark 2.4.1 While the use of suh a projetion operator is intended

to replae the �ltering operator used in LES, it ould be argued that a

plain averaging of a T -periodi signal f 2 L

2

[0; T ℄ is nothing else than

a L

2

-orthogonal projetion on the linear subspae spanned by the vetor

ft 7�! e

k

(t) = e

i

2k�t

T

g, for k = 0. Indeed, given the Hermitian inner produt

on L

2

[0; T ℄:

hf; gi

L

2

=

1

T

Z

T

0

f(t)g(t) dt; (2.41)

the family (e

k

)

k2Z
learly onstitutes an orthonormal basis for L

2

[0; T ℄.

The L

2

-orthogonal projetion of f on V = V etfe

0

g is thus given by:
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P
V

f =

he

0

; fi

L

2

ke

0

k

2

L

2

· e

0

(2.42)

=

 

1

T

Z

T

0

e

0

(t)f(t) dt

!

e

0

(2.43)

=

 

1

T

Z

T

0

f(t) dt

!

e

0

(2.44)

Thus, the plain averaging operator an also be seen as a proje-

tion operator. In a similar way, �ltering a signal by utting o� all

frequenies beyond a value !



an be seen as a L

2

-orthogonal proje-

tion on V etf(e

k

)

�k



�k�k



g, with

2�

T

k



� !



. To further highlight this

link between linear projetion and �ltering, it is notieable that in

[Koobus and Farhat, 2004℄, whih extends the use of VMS to ompress-

ible turbulene on unstrutured meshes, a ell agglomeration method and

a plain spatial averaging are used to de�ne the oarse-sale omponents,

rather than a projetion operator.

This remark on linear projetion and �ltering being stated, VMS relies on

the deomposition of the problem variational formulation into oarse-sale and

�ne-sale variational formulations. Starting with Navier-Stokes problem on a

domain Ω � Rd

, with Dirihlet boundary onditions for the veloity:

8

>

<

>

:

� (∂
t

v + (v ·r) v) = �r p+ �∆ v + f in Ω;

div (v) = 0 in Ω;

v = 0 on ∂Ω;

(2.45)

the variational formulation writes:

for f 2 V

�

(Ω), �nd (v; p) 2 V (Ω)�Q(Ω) suh that, 8(w; q) 2 V (Ω)�Q(Ω):

� �

 

v;

∂w

∂t

!

L

2

+ �

Z

Ω
r v : r w + �

Z

Ω
((v ·r) v) ·w �

Z

Ω
p div(w)

=

D

f; w

E

V

�

;V

; (2.46)

Z

Ω
div (v) q = 0; (2.47)

where V (Ω) = [H

1

0

(Ω)℄
d

is a Sobolev spae, V

�

(Ω) is the dual spae of V (Ω),

andQ (Ω) = L

2

0

(Ω). If one introdues the following linear, bilinear and trilinear

forms:

L :

V 7�! R

w 7�! hf; wi

V

�

;V

;

(2.48)
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a :

V � V 7�! R

(v; w) 7�! �

R

Ωr v : r w;

(2.49)

b :

V �Q 7�! R

(v; q) 7�! �

R

Ω q div(v);
(2.50)

 :

V � V � V 7�! R

(v; w; z) 7�! �

R

Ω [(v ·r)w℄ · z;

(2.51)

then the variational formulation (2.46-2.47) an be rewritten as:

(

�� (v; ∂
t

w)

L

2

+ a(v; w) + b(w; p) + (v; v; w) = L(w);

b(v; q) = 0:

(2.52)

Following [Bazilevs et al., 2007℄, the oarse and �ne sale equations are then

obtained by injeting the deomposition of v and p into (2.52):

� (v + v

0

; ∂
t

(w + w

0

))

L

2

+ a (v + v

0

; w + w

0

)

+ b (w + w

0

; p+ p

0

) +  (v + v

0

; v + v

0

; w + w

0

)

= L (w + w

0

) ; (2.53)

b (v + v

0

; q + q

0

) = 0: (2.54)

Thanks to the diret-sum V = V � V

0

, equation (2.53) gives rise to the

following oarse-sale and �ne-sale equations:

� (v + v

0

; ∂
t

w)

L

2

+ a (v + v

0

; w) + b (w; p+ p

0

) +  (v + v

0

; v + v

0

; w)

= L (w) ; (2.55)

� (v + v

0

; ∂
t

w

0

)

L

2

+ a (v + v

0

; w

0

) + b (w

0

; p+ p

0

) +  (v + v

0

; v + v

0

; w

0

)

= L (w

0

) ; (2.56)

The �ne sale equation (2.56) an be rewritten as:

� (v

0

; ∂
t

w

0

)

L

2

+ a (v

0

; w

0

) + b (w

0

; p

0

) +  (v

0

; v

0

; w

0

) +  (v; v

0

; w

0

) +  (v

0

; v; w

0

)

= L (w

0

) + (v; ∂
t

w

0

)

L

2

� a (v; w

0

)� b (w

0

; p)�  (v; v; w

0

) ;

= hw

0

; f � �∂
t

v + �∆ v �r p� � [v ·r℄ vi

V

�

;V

: (2.57)
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Following [Bazilevs et al., 2007℄, the term in the right-hand side of equa-

tion (2.57) (f � �∂
t

v + �∆ v �r p� � [v ·r℄ v) an be seen as the residual

Res (v; p) obtained when the oarse-sale omponents are used to approximate

the solution of Navier-Stokes equations (2.45). Thus, the �ne-sale equation

(2.57) theoretially allows to estimate the �ne-sale omponents (v

0

; p

0

) in terms

of the oarse-sale omponents (v; p) and the residual Res (v; p):

(v

0

; p

0

) = F

0

[(v; p); Res (v; p)℄ : (2.58)

Equation (2.58) is exatly the (formal) losure equation that allows to solve

the oarse-sale equation (2.55). In LES literature, this losure is brought by

a turbulene model, suh as Smagorinsky eddy-visosity model. Conversely,

VMS philosophy is rather to approximate the losure funtional F

0

. To this

end, it is assumed in [Bazilevs et al., 2007℄ that, when the residual is small, a

perturbation series an be used to approximate F

0

:

X

0

=

+1

X

k=1

�

k

X

0

k

; (2.59)

where X

0

= (v

0

; p

0

), X = (v; p) and � = kRes(X)k

V

�

.

However, as stated in [Bazilevs et al., 2007℄, a rigorous justi�ation of the

onvergene of this perturbation series is still, to the author's knowledge, lak-

ing. Furthermore, when used in the �ne-sale equation (2.57), this series re-

sults in a asade of linear problems, whose solutions require the introdution

of a �ne-sale Green's operator, whih itself depends on the lassial Green's

operator, via the projetion operator P
V

. The omputation of this �ne-sale

Green's operator brings additional di�ulties and approximations, whih, to

the author's knowledge, still need to be dealt with.

Beside this key issue of losure between resolved and unresolved sales, it

shall also be highlighted that the treatment of boundary onditions is, one

again, raising some questions. Indeed, periodi boundary onditions are par-

tially used in [Hughes et al., 2001, Bazilevs et al., 2007℄, with an enforement

of the no-slip ondition on the oarse-sale omponent. In [Hughes et al., 1998℄,

it is rather assumed in the theory of VMS that the veloity oarse-sale om-

ponent v shares the same boundary onditions as the original veloity v. This

assumption an be questioned as a boundary is by essene a high-frequeny

phenomenon. Furthermore, one an expet the oarse-sale omponent not to

be able to faithfully represent the boundary layer in the viinity of an obstale,

or to take into aount a boundary rugosity and a logarithmi veloity pro�le

for instane.

To onlude this setion on the VMS method, it an be highlighted that

a similar philosophy using a projetion-based partitioning between oarse-

sale and �ne-sale omponents has also been applied in the solid mehanis

ommunity, for the study of heterogeneous strutures [Ladevèze et al., 2001,

Ladevèze and Nouy, 2003, Ladevèze, 2004℄.

This wide state of the art on porous media, homogenization and multi-

sale methods being now realled, it is high time to takle the ore of this
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hapter, that is to say wavelets literature. The following setions will thus

summarize some of the key onepts about wavelets theory. The fous will

be mainly put on Continuous Wavelet Transform (CWT), with its 1D and

2D implementation. The framework of 1D Disrete Wavelet Transform and

Multi-Resolution Analysis (MRA) will then follow to omplete the piture.

2.5 1D Continuous Wavelet Transform

Wavelets theory stands at the rossing of multiple researh areas, suh as

signal and image proessing, harmoni analysis, mathematial physis...While

early works from the 1930's were already trying to develop new tehniques to

ope with the drawbaks of Fourier transform, wavelets theory, in its urrent

form and denomination, an be tied bak to the 1980's. Indeed, the �rst or-

thogonal wavelets were introdued by [Strömberg, 1981℄. Independently, the

theoretial physis ommunity of Marseille (Frane) introdued and studied the

onept of Continuous Wavelet Transform (CWT), via the referene works of

[Grossmann and Morlet, 1984, Grossmann et al., 1985℄ and [Torrésani, 1992,

Gonnet and Torrésani, 1994, Torrésani, 1995, Torrésani, 1998℄. In paral-

lel with these works, new orthogonal wavelets were put forward by

[Lemarié and Meyer, 1986℄, followed by the framework of Multi-Resolution

Analysis (MRA) [Mallat, 1989a, Mallat, 1989b, Mallat, 1989℄, and the work

of [Daubehies, 1988℄, who de�ned the �rst smooth and ompatly-supported

wavelets. For a brief history of wavelets theory and a wide overview of its devel-

opments and appliations, espeially in the �eld of MRA, the reader may refer

to [Jawerth and Sweldens, 1994℄. The interested reader may also �nd further

information on general mathematial tools for time-frequeny analysis in the

referene works of [Martin and Flandrin, 1985, Flandrin, 1989, Flandrin, 1999,

Flandrin, 2018℄.

To begin this overview of wavelets theory, the fous is here �rst put on 1D

Continuous Wavelet Transform (CWT).

2.5.1 A middle ground between time and frequeny

Following [Flandrin, 2005℄, one an motivate the introdution of wavelets

by highlighting the need to �nd a middle ground between:

� on the one hand, the time representation of a signal f , whih formally

writes:

8t

0

2 R, f(t
0

) =

Z

R

Æ

t

0

(t)f(t) dt; (2.60)

where Æ

t

0

(t) = Æ(t� t

0

) denotes Dira distribution;

� on the other hand, the frequeny representation fF [f ℄(!)g

!2R
, whih

allows to formally write:
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8t

0

2 R, f(t
0

) =

1

2�

Z

R

F [f ℄(!)e

it

0

!

d!; (2.61)

where F [f ℄ denotes the Fourier transform of a signal f , de�ned by:

F [f ℄(!) =

Z

R

f(t)e

�i!t

dt: (2.62)

The time representation ff(t

0

)g

t

0

2R thus onsists in a linear deomposi-

tion of the signal f(t) on the individual atoms fÆ

t

0

g

t

0

2R, while the frequeny

representation fF [f ℄(!)g

!2R
onsists in a linear deomposition on the atoms

f! 7�! e

it

0

!

g

t

0

2R. As a result, the time (respetively frequeny) representation

exhibits a perfet loalization in the time (respetively frequeny) domain.

2.5.2 Analysing wavelet and CWT

In order to bridge the gap between these two representations, and ope

with the poor loalization of Fourier transform in the time domain, the idea of

Continuous Wavelet Transform (CWT) is to swith the atoms f! 7�! e

it

0

!

g

t

0

2R

for a new type of funtions, alled wavelets, whih exhibit good loalization

properties both in the physial and spetral spaes. In order to be able to

study numerous time instants (or positions), and numerous frequenies, these

wavelets are built by dilations and translations from an original wavelet, alled

analysing wavelet. The linear deomposition of a signal f on these wavelets

thus results in a well-loalized transform, alled Continuous Wavelet Transform

(CWT), whih is now able to study a signal frequeny spetrum around loal

time instants or positions. The mathematial de�nition of 1D CWT is detailed

below.

De�nition 2.5.1 1D Continuous Wavelet Transform (see

[Torrésani, 1995, Mallat, 2008℄)

Assume Ψ 2 L1

(R)\L2

(R), with real or omplex values, and satisfying

the following zero-average ondition:

Z

R

Ψ (t) dt = 0; (2.63)

or equivalently:

F [Ψ℄(0) = 0: (2.64)

In the following, it is also assumed that the funtion Ψ is L

2

-normalized

in the time domain:

kΨk
L

2

(R)
= 1: (2.65)
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Suh a funtion Ψ is alled an analysing wavelet. The above require-

ments ensure that Ψ will exhibit good loalization properties in both the

physial and spetral spaes. From this original atom, one an build a

family of dilated and translated atoms

n

t 7�!

1

p

s

Ψ

�

t�u

s

�o

s>0, u2R
, where s is

a sale parameter, and u a translation parameter.

The Continuous Wavelet Transform (CWT) of a �nite-energy signal

f 2 L

2

(R) is then de�ned as the linear deomposition of f on the omplex-

onjugates of these atoms (i.e. a L

2

-inner produt), that is to say:

8s > 0, u 2 R,

W[f ℄(s; u) =

1

p

s

Z

R

f(t)Ψ

�

t� u

s

�

�

dt: (2.66)

The (omplex) number W[f ℄(s; u) is alled wavelet oe�ient. It is

here evaluated for a given sale s > 0 and a time instant u 2 R. If one

now introdues the notations Ψ
s

(t) =

1

p

s

Ψ

�

t

s

�

, and

eΨ(t) = Ψ(�t), the above

de�nition (2.66) an be rewritten as a onvolution produt:

W[f ℄(s; u) =

�

f �

eΨ
�

s

�

(u); (2.67)

or equivalently, in the frequeny domain, as:

F [W[f ℄(s; · )℄ (!) = F [f ℄(!)�F

h

eΨ
�

s

i

(!);

= F [f ℄(!)�

p

sF [Ψ℄ (s!)
�

:

(2.68)

(2.69)

To omplete this de�nition of 1D CWT, a few remarks shall be stated:

Remark 2.5.1 � the de�nition (2.66), where one an notie the saling

fator

1

p

s

, is referred to as an "energy formulation" of CWT; the use

of a saling fator

1

s

, referred to as an "amplitude formulation", an

also be found in literature. These formulations preserve respetively

the wavelets energy (L

2

norm) and amplitude (L

1

norm), as detailed

below:











1

p

s

Ψ

�

·

s

�











2

L

2

(R)

=

Z

R

�

�

�

�

�

1

p

s

Ψ

�

t

s

�

�

�

�

�

�

2

dt; (2.70)

=

1

s

Z

R

jΨ(� )j
2

s d�; (2.71)

= kΨk
2

L

2

(R)
: (2.72)
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1

s

Ψ

�

·

s

�









L

1

(R)

=

Z

R

1

s

�

�

�

�

Ψ

�

t

s

�

�

�

�

�

dt; (2.73)

=

1

s

Z

R

jΨ(� )j s d�; (2.74)

= kΨk
L

1

(R)
: (2.75)

� to justify the well-posedness of equation (2.69), one an put forward

Young's inequality, whih ensures that, given a �nite-energy signal

f 2 L

2

(R) and a wavelet Ψ 2 L1

(R) \ L2

(R), the funtion de�ned by

u 7�! W[f ℄(s; u) =

�

f �

eΨ
�

s

�

(u) belongs to L

2

(R) \ L1 (R). Thus, it

indeed admits a Fourier transform.

� thanks to the wavelet zero-average ondition (2.63), one an also

de�ne the CWT of a onstant signal, whih does not belong in L

2

(R).

These de�nition and remarks being stated, let us now emphasize the loal-

ization property of wavelets.

2.5.3 Loalization property

Considering the requirements on the analysing wavelet Ψ, namely the zero-

average ondition F [Ψ℄(0) = 0, and the fat that Ψ 2 L1

(R)\L2

(R), its Fourier

transform F [Ψ℄ also belongs in L2

(R), and one an moreover state that:

lim

jtj�!+1

jΨ(t)j = 0; (2.76)

lim

j!j�!+1

jF [Ψ℄ (!)j = 0: (2.77)

As a result, the analysing wavelet Ψ lassially exhibits a well-loalized

support both in the physial and spetral spaes, with an osillating behav-

ior in the time domain, and a band-pass behavior in the frequeny domain.

Furthermore, all the dilated wavelets fΨ
s

g

s>0

=

n

1

p

s

Ψ

�

·

s

�o

s>0

share a similar

loalization property, with a bandwidth whih is idential for all wavelets.

Indeed, following [Torrésani, 1995, Mallat, 2008, Lilly and Olhede, 2009℄,

the support of a omplex and analyti wavelet Ψ (the de�nition will be de-

tailed later in this setion) in the time-frequeny plane an be de�ned by:

� a enter in the time domain :

tΨ =

1

kΨk
2

L

2

(R)

Z

R

t jΨ(t)j
2

dt; (2.78)

Samy Mokhtari CHAPTER 2. STATE OF THE ART 25



2.5. 1D CONTINUOUS WAVELET TRANSFORM

� a width in the time domain :

�

∆tΨ

�

2

=

1

kΨk
2

L

2

(R)

Z

R

�

t� tΨ

�

2

jΨ(t)j
2

dt; (2.79)

� a enter in the frequeny domain :

!Ψ =

1

kF [Ψ℄k
2

L

2

(R)

Z

R

! jF [Ψ℄ (!)j
2

d!; (2.80)

� a width in the frequeny domain :

�

∆!Ψ

�

2

=

1

kF [Ψ℄k
2

L

2

(R)

Z

R

�

! � !Ψ

�

2

jF [Ψ℄ (!)j
2

d!: (2.81)

The wavelet Ψ being L

2

-normalized in the time domain, Parseval-Planherel

identity implies that kF [Ψ℄k
L

2

(R)
=

p

2�. Furthermore, the wavelet Ψ is usually

entered around zero in the time domain

�

tΨ = tΨ
s

= 0

�

. Taking into aount

the sale parameter, the wavelet family fΨ
s

g

s>0

is shown to satisfy the following

properties:

Time width Central frequeny Frequeny width

∆tΨ
s

= s∆tΨ !Ψ
s

=

!

Ψ
s

∆!Ψ
s

=

∆!

Ψ
s

Table 2.1: Analysing wavelet time-frequeny support.

Thus, by �ltering a signal through a wavelet family fΨ
s

g

s>0

, it is possible

to study numerous frequeny ranges, while preserving the time (or spatial)

loalization via the translation parameter u. The interested reader may refer to

[Torrésani, 1995, Mallat, 2008℄ for a detailed presentation on wavelet transform,

and to [Lilly and Olhede, 2009℄ for an overview of the di�erent frequenies

(energy frequeny, peak-amplitude frequeny, instantaneous frequeny) that

an be assoiated to a omplex analyti wavelet.

Speaking of suh wavelets, it is now time to properly de�ne the onept of

omplex analyti wavelet.

2.5.4 Complex analyti wavelets

Conversely to Fourier transform, where the atoms f! 7�! e

it

0

!

g

t

0

2R are

omplex-valued, the analysing wavelet Ψ an be either:

� omplex analyti;

� real and symmetri.
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Let us here start with omplex analyti wavelets.

De�nition 2.5.2 Complex analyti wavelet

A omplex-valued wavelet Ψ 2 L1

(R) \ L2

(R) is said to be analyti if

and only if:

8! < 0, F [Ψ℄ (!) = 0: (2.82)

Let us illustrate this de�nition with some examples:

Example 2.5.1 Complex analyti wavelets

� Cauhy wavelet of order n 2 N:

Ψ
n

(t) =

 

i

t+ i

!

n+1

; (2.83)

F [Ψ
n

℄(!) =

2�

n!

!

n

e

�!

H(!); (2.84)

where H denotes the Heaviside funtion.

� generalized Morse wavelets: 8�; � > 0,

F [Ψ
�;�

℄ = a

�;�

!

�

e

�!

�

H(!); (2.85)

where a

�;�

= 2

�

e�

�

�

�

�

. The interested reader may refer to

[Lilly and Olhede, 2009℄ for a detailed study of this wavelet family.

� omplex Shannon wavelet:

Ψ(t) = � sin



(t)e

i2�t

: (2.86)

� Morlet wavelet:

Ψ
�

(t) = A

�

e

�

t

2

2

�

e

i�t

� e

�

�

2

2

�

; (2.87)

F [Ψ
�

℄ (!) = A

�

e

�

(!��)

2

2

h

1� e

�!�

i

; (2.88)

whih is only approximately analyti when the parameter � is large

enough. The parameter A

�

is a normalization onstant. One again,

the interested reader may refer to [Lilly and Olhede, 2009℄ for more

details on this wavelet.
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� Gabor wavelet (� > 0):

Ψ(t) = g(t)e

i�t

; (2.89)

F [Ψ℄ (!) = F [g℄(! � �); (2.90)

where g(t) =

1

(�

2

�)

1

4

e

�

t

2

2�

2

is a Gaussian window, whose Fourier trans-

form is given by F [g℄(!) = (4��

2

)

1

4

e

�

�

2

!

2

2

. Thus, when the frequeny

! is su�iently far away from �, the wavelet Fourier transform is al-

most zero. Gabor wavelet thus beomes approximately analyti with

a well-hosen parameter �.

Suh omplex and analyti wavelets meet a great suess in literature. To

emphasize why, some properties on analyti signals and Fourier transform shall

�rst be realled.

Remark 2.5.2 Analyti signal, Fourier and wavelet transforms

Any omplex analyti signal Ψ 2 L2

(R;C) admits the following deom-

position:

Ψ(t) = R(Ψ)(t) + iH [R(Ψ)℄ (t); (2.91)

F [Ψ℄ (!) = F [R (Ψ)℄ (!) + sign(!)F [R (Ψ)℄ (!); (2.92)

where R(Ψ) denotes the real part of Ψ, and H the Hilbert transform:

H [Ψ℄ (t) =
1

�

p:v:

�

Z

R

1

t� �

Ψ(� ) d�

�

; (2.93)

= p:v:

��

� 7�!

1

��

�

� Ψ

�

(t): (2.94)

In equation (2.94), p:v: denotes the prinipal value. It is for instane

realled that the prinipal value of the funtion t 7�!

1

t

is a distribution,

whih is de�ned by:

8' 2 S (R) ,

�

p:v:

�

1

t

�

; '

�

S

0

;S

= lim

�!0

Z

Rn[��;�℄

'(t)

t

dt; (2.95)

where S (R) denotes the Shwartz spae (i.e. smooth funtions with

fast deay towards zero).

Following equation (2.92), the Fourier transform of a omplex analyti

signal Ψ 2 L2

(R;C) satis�es:
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F [Ψ℄ (!) =

(

2F [R (Ψ)℄ (!) if ! � 0

0 if ! < 0

(2.96)

Continuous Wavelet Transform also presents interesting properties

with analyti signals. Indeed, if one onsiders a real-valued �nite-energy

signal f 2 L

2

(R;R), and its omplex analyti ounterpart f

a

= f + iH[f ℄,

it an be shown that their respetive wavelet transform satis�es:

8s > 0, W [f

a

℄ (s; · ) = 2W[f ℄(s; · ): (2.97)

This remark on analyti signals being stated, it an now be emphasized

how omplex analyti wavelets allow to ath instantaneous frequenies within

a real signal.

Remark 2.5.3 Complex wavelets and instantaneous frequenies

The use of a omplex analyti wavelet Ψ on a real signal f allows

to obtain omplex wavelet oe�ients, whih o�er information via their

modulus and phase. This ability to keep trak of the phase of a signal

opens the way to instantaneous frequenies.

Indeed, it has already been underlined that any real signal f 2 L

2

(R;R)

an be onneted, thanks to Hilbert transform H, to its omplex analyti

ounterpart f

a

2 L

2

(R;C):

f

a

(t) = f(t) + iH[f ℄(t); (2.98)

= jf

a

(t)j e

i�arg(f

a

(t))

: (2.99)

Thus, a real signal f an be linked to the anonial pair (jf

a

j; arg (f

a

)),

with arg (f

a

(t)) 2 [0; 2�[. The instantaneous frequeny !

f

of the real signal

f is then de�ned by:

!

f

(t) =

d

dt

[arg (f

a

(t))℄ : (2.100)

Complex wavelets allow to keep trak of the phase of the analyti om-

ponent f

a

. Furthermore, the wavelet oe�ients of the analyti signal f

a

are losely related to the ones of f , as stated by equation (2.97). As for the

omputation of the analyti omponent f

a

from the original signal f , it is,

in ommon situations, very easy. Indeed, if the signal f is an asymptoti

signal, i.e. if it exhibits a single-omponent osillatory behavior:

f(t) = A(t) os('(t)); (2.101)

with a phase '(t) osillating muh faster than the amplitude A(t), then

the following approximation holds:
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f

a

(t) � A(t)e

i'(t)

: (2.102)

The interested reader may refer to [Delprat et al., 1992,

Carmona et al., 1994, Carmona et al., 1997, Le and Argoul, 2004℄

for further details on the use of omplex analyti wavelets for the study

of asymptoti signals.

Now, depending on the signal at study, one an be more interested in a sym-

metri property of the wavelets, rather than their ability to ath instantaneous

frequenies. In suh ases, one an turn towards real wavelets.

2.5.5 Real and symmetri wavelets

Classial real and symmetri wavelets are detailed below:

Example 2.5.2 Real symmetri wavelets

� 1D Mexian hat, obtained by omputing the Laplaian of a Gaussian

funtion e

�

t

2

2�

2

, � > 0:

Ψ(t) =
2

�

1

4

p

3�

 

1�

t

2

�

2

!

e

�

t

2

2�

2

; (2.103)

F [Ψ℄ (!) =

p

8�

5

2

�

1

4

p

3

!

2

e

�

�

2

!

2

2

: (2.104)

� di�erene of Gaussian funtions (0 < � < 1):

Ψ(t) =
1

�

2

e

�

kxk

2

2�

2

� e

�

kxk

2

2

: (2.105)

Suh real and symmetri wavelets are very smooth, and an be used to

detet singularities in signals, or to regularize non-smooth behaviors.

A ommon denominator between all the wavelets desribed until now,

whether they are omplex or real, is their band-pass behavior in the frequeny

domain. However, it is sometimes more suited to use low-pass �lters to ath

simultaneously all the sales or wavelengths beyond a spei� uto� value, as

in Large Eddy Simulation (see [Lesieur, 2008℄) for turbulent �ows for instane.

By aggregating all dilated wavelets fΨ
s

g

s

for s � 1, it is possible to build suh

a low-pass �lter, alled the saling funtion or father wavelet.
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2.5.6 Saling funtion and low-frequeny approximation

Given an (admissible) analysing wavelet Ψ, one de�nes its assoiated saling

funtion Φ as follows:

De�nition 2.5.3 Saling funtion (see [Torrésani, 1995, Mallat, 2008℄)

If Ψ 2 L

1

(R) \ L2

(R) denotes an (admissible) analysing wavelet, its

assoiated saling funtion Φ is de�ned, in the frequeny domain, by:

8! 2 R, jF [Φ℄ (!)j
2

=

Z

+1

1

jF [Ψ℄ (s!)j
2

s

ds; (2.106)

=

Z

+1

!

jF [Ψ℄ (�)j
2

�

d�: (2.107)

The phase of the Fourier transform F [Φ℄ an be hosen arbitrarily. Be-

sides, the saling funtion satis�es the same normalization (in L

2

norm)

as the analysing wavelet.

By aggregating all dilated wavelets fΨ
s

g

s

for s � 1, as shown in equation

(2.107), one gathers all their suessive bandwidths, and thus obtains a

low-pass �lter.

To omplete the above de�nition of saling funtion, a few remarks shall be

stated:

Remark 2.5.4 Admissibility and L

2

-normalization

� the onvergene of the integral in equation (2.107) is ensured when

the analysing wavelet Ψ satis�es the following admissibility ondition:

CΨ : =

Z

R

jF [Ψ℄ (!)j
2

j!j

d! < +1: (2.108)

This admissibility riterion will also be enountered when disussing

inverse wavelet transform.

� the de�nition (2.107) ensures that both the analysing wavelet and

saling funtion are L

2

-normalized in the time domain. Indeed, one

an write, using Fubini's theorem:

Z

R

jF [Φ℄ (!)j
2

d! =

Z

R

Z

+1

!

jF [Ψ℄ (�)j
2

�

d� d!; (2.109)

=

Z

R

jF [Ψ℄ (�)j
2

�

 

Z

�

0

d!

!

d�; (2.110)

=

Z

R

jF [Ψ℄ (�)j
2

d�; (2.111)

= 2�: (2.112)
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Parseval-Planherel identity then allows to state that kΦk
2

L

2

(R)
= 1.

It is here worth notiing that, onversely to analysing wavelets, saling fun-

tions do not always possess an analytial expression in the time domain. For

the Mexian hat wavelet for instane, an analytial expression is only available

in the spetral domain, as detailed below.

Example 2.5.3 Mexian hat saling funtion

The saling funtion assoiated to the 1D Mexian hat wavelet is de-

�ned, in the spetral domain, by:

F [Φ℄ (!) =
2�

3

2

�

1

4

p

3

�

!

2

+

1

�

2

�

1

2

e

�

�

2

!

2

2

: (2.113)

This low-pass �lter being de�ned, let us now turn towards the low-frequeny

approximation of a signal f 2 L

2

(R).

De�nition 2.5.4 Low-frequeny approximation (see [Torrésani, 1995,

Mallat, 2008℄)

Given an original saling funtion Φ 2 L1

(R) \ L2

(R), one an build

a family of dilated atoms

n

1

p

s

Φ

�

·

s

�o

s>0

. The low-frequeny approxima-

tion L[f ℄ of a �nite-energy signal f 2 L

2

(R) is then de�ned as the linear

deomposition of f on the omplex-onjugates of these atoms:

8s > 0, u 2 R,

L[f ℄(s; u) =

1

p

s

Z

R

f(t)Φ

�

t� u

s

�

�

dt: (2.114)

Similarly to Continuous Wavelet Transform (CWT), this de�nition

an be rewritten, in the time and frequeny domains, as:

L[f ℄(s; u) =

�

f �

eΦ
�

s

�

(u);

F [L[f ℄(s; · )℄ (!) = F [f ℄(!)�

p

sF [Φ℄(s!)
�

:

(2.115)

(2.116)

Now that both the analysing wavelet Ψ and saling funtion Φ are de�ned,

it is high time to emphasize why CWT an be a relevant tool to bypass the

limitations of lassial homogenization and multi-sale methods, espeially the

losure between resolved and unresolved sales, and the treatment of boundary

onditions.

32 CHAPTER 2. STATE OF THE ART Samy Mokhtari



2.5. 1D CONTINUOUS WAVELET TRANSFORM

2.5.7 Inverse wavelet transform

Conversely to lassial onvolution-based �ltering operators, Continuous

Wavelet Transform (CWT) o�ers an inverse formula, whih allows to reover

a high-resolution signal f 2 L

2

(R) from its wavelet oe�ients W[f ℄(s; · ).

The only requirement to ful�ll in order to allow for suh a reonstrution is to

hoose an admissible analysing wavelet, as detailed below.

Theorem 2.5.1 1D reonstrution formula (see [Torrésani, 1995,

Mallat, 2008℄)

If the analysing wavelet Ψ satis�es the admissibility ondition:

CΨ : =

Z

R

jF [Ψ℄ (!)j
2

j!j

d! < +1; (2.117)

then the following reonstrution formula holds:

� if Ψ is real, then for all f 2 L

2

(R):

f(t) =

2

CΨ

Z

+1

0

 

Z

R

W[f ℄(s; u)

1

p

s

Ψ

�

t� u

s

�

du

!

ds

s

2

; (2.118)

� if Ψ is omplex and analyti, then for all f 2 L

2

(R):

f(t) =

2

CΨ

R

 

Z

+1

0

 

Z

R

W[f ℄(s; u)

1

p

s

Ψ

�

t� u

s

�

du

!

ds

s

2

!

: (2.119)

Furthermore, in both ases, the following energy identity holds:

kfk

2

L

2

(R)
=

2

CΨ

Z

+1

0

�

Z

R

jW[f ℄(s; u)j

2

du

�

ds

s

2

: (2.120)

For the sake of ompleteness, it shall be highlighted that another re-

onstrution formula an be de�ned with the saling funtion Φ. Indeed,

if the analysing wavelet Ψ is real, one has, for all f 2 L

2

(R):

f(t) =

2

CΨ

Z

s

0

0

 

Z

R

W[f ℄(s; u)

1

p

s

Ψ

�

t� u

s

�

du

!

ds

s

2

+

2

CΨs0

Z

R

L[f ℄(s

0

; u)

1

p

s

0

Φ

�

t� u

s

0

�

du; (2.121)

where s

0

is a positive sale parameter hosen to ompute the low-frequeny

approximation L[f ℄(s

0

; · ). It represents the uto� sale of the low-pass

�lter Φ
s

0

.
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Thanks to the above reonstrution formula, it is thus possible, with a

well-hosen number of wavelet oe�ients (W[f ℄(s

k

; · ))

1�k�N

, seleted on a

well-hosen sale range [s

1

; s

N

℄, to reonstrut, up to an approximation, the

signal f at the mirosopi sale. This reonstrution formula thus allows to

onnet unresolved and resolved sales without any ad ho model. It will also

allow, as proven in hapter 3, to properly transfer the boundary onditions of

a mirosopi �eld f into its �ltered ounterpart W[f ℄(s; · ).

Nevertheless, despite this obvious advantage of CWT ompared to plain

�ltering methods, it is important to highlight that CWT exhibits one main

drawbak: redundany.

2.5.8 CWT and redundany

Indeed, the use of CWT transforms a one-variable funtion t 7�! f(t) into

a two-variables funtion (s; u) 7�! W[f ℄(s; u). Furthermore, orrelations be-

tween di�erent wavelets of the family fΨg
s>0

an be witnessed. This is due to

the fat that the supports of wavelets assoiated to neighboring sale parame-

ters may overlap. The redundany of a spei� analysing wavelet Ψ is measured

by its reproduing kernel, as detailed in [Torrésani, 1995, Mallat, 2008℄.

De�nition 2.5.5 Reproduing kernel

The reproduing kernel of a wavelet Ψ is de�ned by the L

2

-inner produt

between two dilated wavelets:

8s

1

; s

2

2 R�

+

, u

1

; u

2

2 R,

K (s

1

; s

2

; u

1

; u

2

) = hΨ
s

2

;u

2

;Ψ
s

1

;u

1

i

L

2

; (2.122)

=

Z

R

1

p

s

2

Ψ

�

t� u

2

s

2

�

�

1

p

s

1

Ψ

�

t� u

1

s

1

�

dt: (2.123)

This expression of the reproduing kernel an be obtained by injeting the

reonstrution formula (2.118) into the CWT de�nition (2.66):

W[f ℄(s

2

; u

2

) (2.124)

=

Z

R

 

2

CΨ

Z

+1

0

Z

R

W[f ℄(s

1

; u

1

)

1

p

s

1

Ψ

�

t� u

1

s

1

�

du

1

ds

1

s

2

1

!

1

p

s

2

Ψ

�

t� u

2

s

2

�

�

dt;

(2.125)

=

2

CΨ

Z

+1

0

Z

R

 

Z

R

1

p

s

1

Ψ

�

t� u

1

s

1

�

1

p

s

2

Ψ

�

t� u

2

s

2

�

�

dt

!

W[f ℄(s

1

; u

1

) du

1

ds

1

s

2

1

;

(2.126)

=

2

CΨ

Z

+1

0

Z

R

K(s

1

; s

2

; u

1

; u

2

)W[f ℄(s

1

; u

1

) du

1

ds

1

s

2

1

: (2.127)
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In order to bypass the redundany of CWT, e�orts have been made in

the 1980's and 1990's to develop (disrete) orthogonal wavelet bases. But be-

fore introduing Disrete Wavelet Transform and orthogonal Multi-Resolution

Analysis (MRA), let us �rst extend CWT to the 2D ase.

2.6 2D Continuous Wavelet Transform

In the 1D ase, all the atoms fΨ
s;u

(t)g

s>0, u2R
=

n

1

p

s

Ψ

�

t�u

s

�o

s>0, u2R
were

built by dilations (s) and translations (u) from an analysing wavelet Ψ. In the

2D ase, one shall now take into aount 2 degrees of freedom of translation,

and 1 degree of freedom of rotation. Thus, all the atoms

n

Ψ
s;u;�

o

s>0, u2R2

, �2[0;2�[

are now de�ned, with an energy formulation, as:

Ψ
s;u;�

(x) =

1

s

Ψ

�

�

R

�

�

�1

x� u

s

�

; (2.128)

where u 2 R2

is now a translation vetor, and R

�

2 R2�2

a 2D rotation matrix.

Remark 2.6.1 In 2D, the previous time (t 2 R) and frequeny (! 2 R)

notations are replaed by respetively a position (x 2 R2

) and a wave vetor

(k 2 R2

).

2.6.1 Analysing wavelet and CWT

Based on the atoms (2.128), the de�nition of 2D CWT follows the same

spirit as 1D CWT:

De�nition 2.6.1 2D Continuous Wavelet Transform (see

[Gonnet and Torrésani, 1994, Antoine and Murenzi, 1996℄)

Assume Ψ 2 L1

(R2

)\L

2

(R2

), with real or omplex values, and satisfying

the following zero-average ondition:

Z

R2

Ψ (x) dx = 0; (2.129)

or equivalently:

F [Ψ℄ (0) = 0: (2.130)

In the following, it is also assumed that the funtion Ψ is L

2

-normalized:

kΨk
L

2

(R2

)

= 1: (2.131)

Given this analysing wavelet Ψ, the Continuous Wavelet Transform of

a signal f 2 L

2

(R2

) is de�ned, with an energy formulation, as follows:
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8s > 0, u 2 R2

, � 2 [0; 2�[,

W[f ℄ (s; u; �) =

1

s

Z

R2

f(x)Ψ

�

�

R

�

�

�1

x� u

s

�

�

dx: (2.132)

If one introdues the notations

eΨ(x) = Ψ(�x), Ψ
s;�

(x) =

1

s

Ψ

�

�

R

�

�

�1

x

s

�

,

and Ψ
�

(x) = Ψ

�

�

R

�

�

�1

x

�

, the above de�nition (2.132) an be rewritten as

follows:

W[f ℄ (s; u; �) =

�

f �

eΨ
�

s;�

�

(u);

F [W[f ℄(s; · ; �)℄ (k) = F [f ℄(k)� sF [Ψ
�

℄ (sk)

�

:

(2.133)

(2.134)

In the above de�nitions, the following notations are used:

� s is a positive sale parameter, u 2 R2

a vetor, and � an angle;

� W[f ℄(s; u; �) is the wavelet oe�ient of f ;

� R

�

=

 

os(�) � sin(�)

sin(�) os(�)

!

(

e

1

;e

2)

is the 2D rotation matrix with respet

to the

�

O; e

1

^ e

2

�

axis, where

�

e

1

; e

2

�

is the orthonormal artesian

basis of R2

.

As in the 1D ase, the requirements imposed on the analysing wavelet Ψ

ensure that it will exhibit good loalization properties both in the physial and

spetral spaes.

Nevertheless, while most properties of CWT naturally extend to the 2D

ase, it is worth notiing that it is not the ase for omplex analyti wavelets.

2.6.2 Complex wavelets: from analyti to diretional

wavelets

In 2D, the de�nition of analyti wavelets does not stand anymore, as it is

no longer possible to properly de�ne and distinguish a positive and a negative

wave vetor k 2 R2

. In wavelets literature, the onept of omplex diretional

wavelets has thus been introdued. Suh wavelets possess a Fourier transform

whih is essentially supported within a onvex one in the spatial frequeny

plane fk 2 R2

g. They thus exhibit an anisotropi behavior, and are espeially

suited for the detetion of oriented features, suh as edges in a piture for

instane. The interested reader may refer to [Gonnet and Torrésani, 1994℄ and

[Antoine and Murenzi, 1996℄ for further details on this topi.

Conversely to omplex wavelets, 1D real symmetri wavelets are naturally

extended into 2D isotropi funtions.
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2.6.3 Real and isotropi wavelets and saling funtions

One of the most widely used real and isotropi wavelet is the 2D Mexian

hat, hereafter de�ned both in the physial and spetral domains.

Example 2.6.1 2D Mexian hat

Ψ(x) =

p

2

�

p

�

 

1�

kxk

2

2�

2

!

e

�

kxk

2

2�

2

; (2.135)

F [Ψ℄ (k) = �

3

p

2�kkk

2

e

�

�

2

kkk

2

2

: (2.136)

Suh real and isotropi wavelets allow to extend the onept of saling

funtion to the 2D ase, as detailed below.

De�nition 2.6.2 2D real and isotropi saling funtion

If Ψ 2 L1

(R2

)\L

2

(R2

) denotes a real, isotropi and admissible analysing

wavelet, one an de�ne its assoiated (real and isotropi) saling funtion

as follows:

8k 2 R
2

, jF [Φ℄ (k)j
2

= 2

Z

+1

1

jF [Ψ℄ (skkk)j
2

s

ds; (2.137)

= 2

Z

+1

kkk

jF [Ψ℄ (�)j
2

�

d�: (2.138)

One again, the phase of the Fourier transform F [Φ℄ an be hosen

arbitrarily. The above de�nition ensures that the saling funtion Φ is

real and isotropi.

To omplete this de�nition, a few remarks shall be stated:

Remark 2.6.2 Admissibility, L

2

-normalization and isotropy

� to ensure the well-posedness of the integral in equation (2.138), the

analysing wavelet Ψ shall satisfy, as in the 1D ase, the following 2D

admissibility ondition:

CΨ : =

Z

R2

jF [Ψ℄ (k)j
2

kkk

2

dk < +1: (2.139)

� the de�nition (2.138) ensures that both the analysing wavelet Ψ and

saling funtion Φ are L

2

-normalized. Indeed, one an write, for all

k 2 R2

:
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Z

R2

jF [Φ℄ (k)j
2

dk = 2

Z

R2

Z

+1

kkk

jF [Ψ℄ (�)j
2

�

d� dk; (2.140)

= 2

Z

2�

0

Z

+1

0

 

Z

+1

r

jF [Ψ℄ (�)j
2

�

d�

!

r dr d�; (2.141)

= 4�

Z

+1

0

 

Z

+1

r

jF [Ψ℄ (�)j
2

�

d�

!

r dr: (2.142)

Thanks to Fubini's theorem, one an then write:

Z

R2

jF [Φ℄ (k)j
2

dk = 4�

Z

+1

0

jF [Ψ℄ (�)j
2

�

 

Z

�

0

r dr

!

d�; (2.143)

= 4�

Z

+1

0

�

2

2

�

jF [Ψ℄ (�)j
2

�

d�; (2.144)

= 2�

Z

+1

0

jF [Ψ℄ (�)j
2

� d�; (2.145)

=

Z

2�

0

Z

+1

0

jF [Ψ℄ (�)j
2

� d� d�; (2.146)

=

Z

R2

jF [Ψ℄ (k)j
2

dk; (2.147)

= 4�

2

: (2.148)

Parseval-Planherel identity then allows to state that kΦk
2

L

2

(R2

)

= 1.

� the isotropy property of the saling funtion results from the isotropy

of the analysing wavelet. Indeed, one an notie that:

F [Ψ℄ (�k) =

Z

R2

Ψ(x)e
ik ·x

dx; (2.149)

=

Z

R2

Ψ

�

�y

�

e

�ik · y

dy: (2.150)

F [Ψ℄ (k)
�

=

Z

R2

Ψ(x)
�

e

ik ·x

dx; (2.151)

=

Z

R2

Ψ

�

�y

�

�

e

�ik · y

dy: (2.152)

Thus, if the analysing wavelet Ψ is real and isotropi, one has

Ψ

�

�y

�

�

= Ψ

�

�y

�

= Ψ(y), and its Fourier transform also is real and

isotropi, i.e. F [Ψ℄ (k)� = F [Ψ℄ (k) = F [Ψ℄ (�k). As a result, the

Fourier transform F [Φ℄, and the saling funtion Φ itself, share the

same properties.
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As in the 1D ase, saling funtions do not always possess an analytial

expression in the physial domain. For the Mexian hat wavelet for instane,

one an only de�ne its 2D saling funtion in the spetral domain.

Example 2.6.2 2D Mexian hat saling funtion

The 2D saling funtion assoiated to the isotropi Mexian hat wavelet

is de�ned, in the spetral domain, by:

F [Φ℄ (k) = �

2

p

2�

�

kkk

2

+

1

�

2

�

1

2

e

�

�

2

kkk

2

2

: (2.153)

As stated in the previous remark, one an notie that this saling fun-

tion is purely real and isotropi in the spetral domain, and thus also in

the physial domain.

The de�nition of 2D isotropi saling funtions being now stated, one an

then extend the onept of low-frequeny approximation to the 2D ase.

De�nition 2.6.3 2D low-frequeny approximation

Given Ψ a real and isotropi analysing wavelet, and Φ its real and

isotropi saling funtion, one an naturally extend the de�nition of low-

frequeny approximation as follows:

8s > 0, u 2 R2

,

L[f ℄(s; u) =

1

s

Z

R2

f(x)Φ

�

x� u

s

�

dx; (2.154)

By introduing the notations Φ
s

(x) =

1

s

Φ

�

x

s

�

and

eΦ(x) = Φ(�x), the

above de�nition an be rewritten as follows:

L[f ℄(s; u) =

�

f �

eΦ
s

�

(u);

F [L[f ℄(s; · )℄ (k) = F [f ℄(k)� sF [Φ℄ (skkk) :

(2.155)

(2.156)

Now that both the analysing wavelet Ψ and saling funtion Φ have been

extended to the 2D ase, it is high time to also extend the inverse wavelet

transform.

2.6.4 Inverse wavelet transform

Following [Gonnet and Torrésani, 1994, Antoine and Murenzi, 1996℄, the

inverse wavelet transform is extended to the 2D ase as detailed below:
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Theorem 2.6.1 2D reonstrution formula

If the analysing wavelet Ψ satis�es the admissibility ondition

CΨ : =

Z

R2

jF [Ψ℄ (k)j
2

kkk

2

dk < +1; (2.157)

then, the following reonstrution formula and energy identity hold:

f (x) =

1

CΨ

Z

+1

0

Z

R2

Z

2�

0

W[f ℄(s; u; �)�

1

s

Ψ

�

�

R

�

�

�1

x� u

s

�

d� du

ds

s

3

;

(2.158)

kfk

2

L

2

(R2

)

=

1

CΨ

Z

+1

0

Z

R2

Z

2�

0

jW[f ℄(s; u; �)j

2

d� du

ds

s

3

: (2.159)

If the analysing wavelet Ψ is real and isotropi, the reonstrution for-

mula (2.121), whih uses the saling funtion Φ and the low-frequeny

approximation L [Φ℄ (s
0

; · ), an naturally be extended to the 2D ase.

Now that all the properties of Continuous Wavelet Transform (CWT) have

been extended from the 1D to the 2D ase, it is high time to turn towards

Disrete Wavelet Transform and Multi-Resolution Analysis (MRA), whih o�er

a framework able to bypass the redundany of CWT.

2.7 1D Disrete Wavelet Transform and Multi-

Resolution Analysis

As already highlighted in the introdution of the previous setions, the

development of orthogonal wavelet bases has bene�ted from the impor-

tant works of [Strömberg, 1981, Lemarié and Meyer, 1986, Daubehies, 1988,

Mallat, 1989b℄. This fairly reent literature expanded the pioneering work of

[Haar, 1910℄, who designed the �rst orthogonal wavelets basis, known as the

Haar basis. These early wavelets, however, exhibit a disontinuous behavior,

whih limits their use for the numerial omputation of PDEs for instane.

Before iting some examples of orthogonal wavelets, it is �rst important to

reall the theoretial framework of MRA.

De�nition 2.7.1 Multi-Resolution Approximation of L

2

(R)

The onept of Multi-Resolution Approximation (MRA) of L

2

(R) was

�rst introdued in [Mallat, 1989b℄. It is de�ned as a sequene of losed

subspaes (V

j

)

j2Z
, whih satis�es the following properties:
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� 8j 2 Z, V
j

� V

j+1

;

� [

j2ZVj = L

2

(R), and \
j2ZVj = f0g;

� 8x 2 R, 8j 2 Z, f(x) 2 V
j

() f(2x) 2 V

j+1

;

� 8x 2 R, 8j; k 2 Z, f(x) 2 V
j

() f

�

x� 2

�j

k

�

2 V

j

;

� there exists an isomorphism from V

0

onto l

2

(Z), whih ommutes

with the ation of Z;

where l

2

(Z) is the spae of square-summable sequenes. The ation

of Z over V

0

is de�ned as the translation of funtions f 2 V

0

by integer

values, while the ation of Z over l

2

(Z) is de�ned as the usual translation.

It is proven in [Mallat, 1989b℄ that a funtion ' 2 L

2

(R) exists, with a

non-vanishing integral, suh that for all j 2 Z:

('

j;k

(x))

k2Z
: =

�

p

2

j

'

�

2

j

x� k

��

k2Z
is an orthonormal basis of V

j

:

(2.160)

This funtion ' is alled an orthogonal saling funtion, and is uniquely

haraterized by:

� a re�nement or dilation equation:

'(x) = 2

X

k2Z

a

k

' (2x� k) ; (2.161)

where the real sequene (a

k

)

k2Z is alled a saling sequene, whih satis�es
P

k2Z ak = 1;

� and the following normalization:

Z

R

'(x) dx = 1: (2.162)

Let us now introdue the omplementary spae of V

j

within V

j+1

, here

denoted W

j

, whih moreover satis�es an orthogonality ondition (V

j

? W

j

).

One an thus write, for all j 2 Z, the following diret-sum:

V

j+1

= V

j

�W

j

: (2.163)

In MRA voabulary, the spae V

j

is said to ontain the information of a

given signal f 2 L

2

(R) at the resolution level 2

j

, while W

j

is said to ontain

the details allowing to go from the resolution level 2

j

to 2

j+1

. The above

diret-sum immediately implies that:
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8J 2 Z, V
J

= �

J�1

j=�1

W

j

; (2.164)

�

j2ZWj

= L

2

(R) : (2.165)

Besides, it is also proven in [Mallat, 1989b℄ that there exists a funtion  2

L

2

(R), alled orthogonal wavelet, suh that the family

�

p

2

j

 

�

2

j

x� k

��

k2Z
is

an orthonormal basis of W

j

, for all j 2 Z. As a onsequene:

( 

j;k

(x))

j;k2Z
: =

�

p

2

j

 

�

2

j

x� k

��

k;j2Z
is an orthonormal basis of L

2

(R) :

(2.166)

Remark 2.7.1 It an here be notied that, onversely to wavelet families

(Ψ
s

)

s>0

in the CWT framework, orthogonal wavelet bases ( 

j;k

)

j;k2Z
are now

onstruted by means of integer translations and dyadi dilations from an

analysing wavelet  .

Let us now denote by Q

j

the orthogonal projetion on W

j

and parallel to

�

i6=j

W

i

. The diret-sum (2.165) implies that, for all f 2 L

2

(R):

8x 2 R, f(x) =
X

j2Z

Q

j

(f)(x);

=

X

j;k2Z

h 

j;k

; fi

L

2

 

j;k

(x):

(2.167)

(2.168)

Equation (2.168) an be seen as an inverse disrete wavelet transform.

Thus, when going from Continuous Wavelet Transform to Disrete Wavelet

Transform and MRA, one swithes the orrelated atoms

n

1

p

s

Ψ

�

·�u

s

�o

s>0;u2R
for

orthonormal wavelet bases

�

p

2

j

 

�

2

j

x� k

��

k;j2Z
, and leaves the "onvolution

produt" point of view for a "linear projetion" point of view. Now, to illustrate

the onept of orthogonal MRA, let us present some examples of orthogonal

wavelets.

Example 2.7.1 Orthogonal wavelets

� Haar analysing wavelet is a real, ompatly supported, symmetri and

orthogonal wavelet, de�ned by:

 (t) =

8

>

<

>

:

1 if 0 � t <

1

2

�1 if

1

2

� t < 1

0 otherwise

(2.169)
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Its assoiated saling funtion is the box funtion:

'(t) =

(

1 if 0 � t < 1

0 otherwise

(2.170)

Suh a wavelet presents a low interest beause of its disontinuous

behavior.

� Shannon wavelet is a real, symmetri and orthogonal wavelet, de�ned by:

 (t) =

sin(2�t)� sin(�t)

�t

: (2.171)

Its assoiated saling funtion is de�ned by:

'(t) = sin



(�t): (2.172)

Suh a wavelet is not ompatly supported, and worse, exhibits a slow

deay towards zero when jtj inreases.

� Meyer wavelet [Meyer, 1990℄ is an orthogonal wavelet with a C

1

smooth-

ness and a fast deay towards zero;

� Daubehies wavelets [Daubehies, 1988℄ were the �rst wavelets to possess

both a high (but �nite) smoothness and a ompat support. These wavelets

are indexed by a �nite but arbitrarily high number of vanishing moments

N 2 N�

, and their support is given by [0; 2N � 1℄.

These examples of orthogonal wavelets being stated, it is worth highlighting

the slighty di�erent framework of bi-orthogonal wavelets.

Remark 2.7.2 Bi-orthogonal wavelets

The onstrution of orthogonal wavelet bases obviously imposes some

additional restritions for the design of both the saling funtion ' and

analysing wavelet  , ompared to the CWT framework. To soften these

restritions, bi-orthogonal wavelets have thus been designed. Following

[Jawerth and Sweldens, 1994℄, the idea is to no longer impose that ' and

 generate orthonormal bases of V

j

and W

j

respetively. Thus, if one still

denotes by Q

j

the projetion operator on W

j

, it an only be stated that,

for all f 2 L

2

(R):

Q

j

(f) =

X

k2Z

l

k

(Q

j

(f)) 

j;k

; (2.173)

=

X

k2Z

(l

k

ÆQ

j

) (f) 

j;k

; (2.174)

where:

Samy Mokhtari CHAPTER 2. STATE OF THE ART 43



2.8. WAVELETS AND BOUNDARY CONDITIONS

� ( 

j;k

)

k2Z still denotes a (non-orthogonal) basis of W

j

;

� l

k

Æ Q

j

: v 2 W

j

7�! (l

k

ÆQ

j

) (v) 2 R or C is the unique linear form

on W

j

satisfying:

8k

0

2 Z, (l
k

ÆQ

j

) ( 

j;k

0

) = Æ

k

0

k

; (2.175)

where Æ

k

0

k

denotes the Kroneker symbol.

If one now denotes by

�

e

 

j;k

�

k2Z
the dual basis of ( 

j;k

)

k2Z
, i.e. the basis

that generates the dual spae W

�

j

of W

j

, and whih moreover satis�es:

8j

1

; j

2

; k

1

; k

2

2 Z,

D

e

 

j

1

;k

1

;  

j

2

;k

2

E

L

2

= Æ

j

2

j

1

Æ

k

2

k

1

; (2.176)

then Riesz representation theorem ensures that for all f 2 L

2

(R) , j; k 2 Z:

(l

k

ÆQ

j

) (f) =

D

e

 

j;k

; f

E

L

2

: (2.177)

This result allows to rewrite the projetion of f 2 L

2

(R) on W

j

as

follows:

Q

j

(f) =

X

k2Z

D

e

 

j;k

; f

E

L

2

 

j;k

: (2.178)

Finally, using the still valid (but no longer orthogonal) diret-sum

(2.165), the following inverse disrete wavelet transform is obtained for

all f 2 L

2

(R) :

8x 2 R, f(x) =
X

j;k2Z

D

e

 

j;k

; f

E

L

2

 

j;k

(x): (2.179)

This remark on bi-orthogonal wavelets thus onludes this setion dediated

to Disrete Wavelet Transform and Multi-Resolution Analysis (MRA).

Now, before onluding this bibliography hapter, the next two setions

disuss the issue of "wavelets and boundary onditions", and present some of

the numerous appliations of wavelets theory, in �elds suh as signal proessing,

operator analysis and PDEs.

2.8 Wavelets and boundary onditions

Similarly to multi-sale and homogenization methods, MRA and Contin-

uous Wavelet Transform (CWT) also fae a hallenge with the treatment

of boundary onditions. Indeed, both integer translations and onvolution

produt require to be de�ned on the whole real line R. Nevertheless, mo-

tivated by the numerial omputation of PDEs, e�orts have been made to
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adapt the MRA framework to an interval, and bounded domains in gen-

eral. Intuitive methods suh as "zero-padding" or periodizing introdue dis-

ontinuities and high-frequenies on the boundaries. To prevent suh phe-

nomena, onstrutions of wavelet bases on an interval, based on Daubehies

ompatly-supported wavelets, have been put forward in literature. For fur-

ther details on this topi, the interested reader may refer to the works of

[Meyer, 1992, Ausher, 1993, Cohen et al., 1994, Monasse and Perrier, 1995℄,

and [Chiavassa and Liandrat, 1997℄. As for Continuous Wavelet Transform,

it will be detailed in hapter 3 how it may take into aount PDEs boundary

onditions. But for now, let us turn towards some important appliations of

wavelets.

2.9 Wavelets, signal proessing, operator analy-

sis, and PDEs

Wavelets have met an important suess in sienti� �elds suh as signal

proessing, operator analysis and PDEs.

Indeed, in signal or image proessing appliations, espeially if data om-

pression is not the main objetive, Continuous Wavelet Transform (CWT) an

be used, for instane with omplex analyti or diretional wavelets, to study in-

stantaneous frequenies ontained within a signal, or detet edges and oriented

features in a piture. Besides, in the following of this manusript, it will also be

proven that CWT an be used, with smooth and isotropi real-valued wavelets,

as a regularizing tool to study heterogeneous media or multi-sale phenomena,

leading to a new possible formulation of homogenization and multi-sale meth-

ods. As for MRA, it is of ourse ideally suited for data ompression driven

appliations. The JPEG 2000 image ompression format is for instane a good

example of the use of orthogonal wavelets.

Beside data ompression, orthogonal wavelets have also shown their rele-

vane in operator analysis and PDEs, as they allow to represent, in a sparse

way, linear operators. Indeed, thanks to the inverse disrete wavelet transform

(2.168) detailed earlier in the framework of orthogonal MRA, the ation of any

linear operator T on a funtion f 2 L

2

(R) an be written as follows:

T (f) =

X

j;k2Z

h 

j;k

; fi

L

2

T ( 

j;k

) ; (2.180)

=

X

j;k2Z

h 

j;k

; fi

L

2

0

�

X

i;l2Z

h 

i;l

; T ( 

j;k

)i

L

2

 

i;l

1

A

; (2.181)

=

X

i;l2Z

0

�

X

j;k2Z

h 

i;l

; T ( 

j;k

)i

L

2

h 

j;k

; fi

L

2

1

A

 

i;l

: (2.182)

Following [Beylkin et al., 1991, Beylkin, 1992℄, the matrix

�

h 

i;l

; T ( 

j;k

)i

L

2

�

(i;l);(j;k)

is referred to as the standard representation of
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the operator T in the orthogonal wavelet basis ( 

j;k

)

j;k2Z
. Ideally, if these

wavelets were eigenvetors of the operator T , this matrix would be diagonal.

In the general ase, it is of ourse not the ase. Nevertheless, as detailed in

[Jawerth and Sweldens, 1994℄, the operator matrix may be onsidered "almost

diagonal", as o�-diagonal elements are quikly beoming small, thanks to the

fast deay (or ideally ompat support) of the wavelets  

j;k

, whih impats

the deay of T ( 

j;k

), and thus its L

2

-inner produt with  

i;l

.

Suh sparse representations of linear operators are of ourse not something

brand new. Finite di�erene or �nite element methods already allow to solve

sparse linear systems. However, these systems are often ill-onditioned, whih

slows down iterative methods. The sparse representation of a linear operator in

a wavelet basis, onversely, allows to derease the ondition number, as detailed

in [Beylkin et al., 1991℄, whih presents the BCR algorithm designed to om-

press Calderon-Zygmund operators into a sparse form. The interested reader

may also refer to [Lazaar et al., 1994, Thamithian, 1996, Alpert et al., 2002℄

and [Piquemal and Liandrat, 2005℄.

Finally, in the spirit of adaptive grid methods, suh as multi-

level adaptive tehniques [Brandt, 1977℄ or adaptive mesh re�nement

[Berger and Oliger, 1984℄, adaptive wavelet methods have been designed for

the omputation of PDEs. For an extensive overview of these methods, the

reader may refer to the referene works of [Ja�ard, 1991, Liandrat et al., 1992,

Dahmen, 1997℄ and [Cohen, 2000℄. Basially, suh methods mainly spread

into two families: on the one hand, wavelet-based Galerkin methods

for �nite element omputations, suh as in [Frohlih and Shneider, 1997℄,

[Shneider et al., 2001, Mehraeen and Chen, 2006℄, and, on the other

hand, adaptive multi-resolution shemes for �nite volume omputations,

with numerous works suh as the ones of [Berger and Collela, 1989,

Harten, 1994℄ and [Bihari and Harten, 1995, Bihari and Harten, 1997℄, or more

reently the works of [Cohen et al., 2003, Müller, 2003, Roussel et al., 2003℄,

[Bramkamp et al., 2004, Roussel and Shneider, 2005, Dahmen et al., 2013℄.

Multi-resolution shemes take advantage of the fat that wavelet oe�ients

ontain information on the loal regularity and loal variations of a funtion.

Indeed, wavelet oe�ients tend towards zero in regions where the funtion is

smooth, and inrease in regions of steep gradients. Thus, a oarse grid an be

used to ompute the solution where wavelet oe�ients are below a given toler-

ane, and dyadi nested re�nements an be implemented in other regions. For

general spatial disretizations and meshes, projetion and predition operators

are introdued to go bak and forth between eah level of the nested grids, in

the spirit of multi-grid methods. In the 1D ase, or with 2D Cartesian grids,

the MRA framework previously desribed an be used to de�ne the operator

going from the grid (s

j

= 2

�j

) to the re�ned grid (s

j+1

= 2

�(j+1)

).

2.10 Conlusion

This hapter presented an overview of the state of the art on porous media

approahes, homogenization and multi-sale methods, with a �nal major fous
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on wavelets theory. Sienti� �elds suh as FSI, heterogeneous materials, tur-

bulene, signal proessing and operator analysis were highlighted. Despite their

apparent di�erenes, almost all the methods previously desribed fae similar

limitations. Indeed, the issues of boundary onditions and losure between

resolved and unresolved sales stand out as a ommon denominator. Plain av-

eraging/�ltering methods or asymptoti expansions are indeed ill-posed in the

viinity of a domain boundary, and always require an ad ho losure model (f.

onentration tensor, Smagorinsky eddy-visosity model, series expansion...).

Furthermore, the homogenization literature was also shown to rely on addi-

tional assumptions suh as periodiity, sale separation, and linearity.

Wavelets, onversely, o�er a reonstrution formula that allows to onnet

resolved and unresolved sales without any ad ho model. This analytial

losure expression also allows to properly take into aount PDEs boundary

onditions, and to handle, if neessary, nonlinearities. To the author's knowl-

edge, a wavelet-based model able to takle these major issues would be a brand

new ontribution in the literature of homogenization and multi-sale methods.

To reah this goal, the rux of the matter is thus to explain how Continuous

Wavelet Transform (CWT) may be applied onto a ontinuum medium PDEs,

possibly exhibiting non-smooth solutions, and how the resulting spatially-

�ltered PDEs indeed de�ne a homogenized ontinuum medium. This is the

aim of the following hapter, whih is dediated to the thorough desription of

the wavelet-based multi-sale and homogenized model.
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Chapter 3

A wavelet-based multi-sale and

homogenized model

3.1 Introdution

The need for a homogenized approah of FSI...

As already highlighted in the general introdution of this manusript, this

work deals with a Fluid-Struture Interation (FSI) phenomenon that involves

numerous interfaes, and multiple spatial sales. The lassial FSI approah

would lead, in suh a ontext, to umbersome omputations. To bypass both

the interfae and multi-sale problematis, the hoie has been made to turn

towards a more mesosopi approah, in the spirit of porous media, homoge-

nization, and multi-sale methods.

...able to onnet resolved and unresolved sales, and to handle bound-

ary onditions.

The previous hapter emphasized how the wide literature on porous media,

homogenization and multi-sale methods is onfronted with major hallenges.

The issue of losure between resolved and unresolved sales, and the treatment

of boundary onditions, were espeially highlighted. Additional limitations

suh as sale separation, periodiity and linearity have also been disussed.

Thus, in order to build a self-sustained multi-sale and homogenized model, it

is neessary to �rst, analytially onnet resolved and unresolved sales without

any ad ho model, and seond, handle the PDEs boundary onditions. In the

urrent work, these boundary onditions play a key role as they fous the

interation between the �uid and solid media.

Why CWT is the right tool to takle these issues ?

In this quest for a self-sustained multi-sale and homogenized model, able to

aount for a ompressible �ow within a ongested solid medium, wavelets and

espeially CWT progressively appeared as the right tool for the task. Indeed,

wavelets allow to homogenize the �uid by �ltering/smoothing out all interfaes
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and high-frequeny phenomena. This �ltering proess hereafter relies on a

onvolution produt between an analysing wavelet or saling funtion, and the

�uid onservation laws and equation of state. It results in PDEs governing

a homogenized �uid, whose variables are now the wavelet oe�ients of the

original �uid variables.

Furthermore, thanks to an inverse wavelet transform, it is now possible to

analytially onnet the homogenized �uid (i.e. the resolved sales) to the real

�uid (i.e. the unresolved sales). This also opens the way to a proper transfer

of the real �uid boundary onditions into the homogenized �uid.

Last but not least, the onvolution produt that is here promoted between a

wavelet (or saling funtion) and the PDEs governing an invisid ompressible

�uid, may be extended to generi PDEs.

How to hoose the wavelets (or saling funtion) sale parameter ?

As desribed in the previous hapter, wavelets are band-pass �lters, while

saling funtions are low-pass �lters. When designing a wavelet-based multi-

sale model, one an naturally wonder how to determine the relevant spatial

sales that need to be omputed. This is ase-dependent, and requires to have

some insights on the spetrum of the quantities of interest. In the urrent

work, as turbulene e�ets are negleted, it is expeted that the solid medium

will drive the relevant spatial sales. But �rst, the important point is to hek

whether the wavelet-based multi-sale model atually onverges towards a high-

resolution omputation (e.g. Diret Numerial Simulation) when the wavelets

or saling funtion ath all the possible spatial sales, i.e. when the uto�

sale s

0

tends towards zero. However, it shall be kept in mind that the wavelet

expliit �ltering is not independent from the mesh impliit �ltering. Indeed,

one annot hope to represent all spatial sales by dereasing s

0

if the mesh size

h is not re�ned aordingly. Compatibility onditions between s

0

and h will

moreover be emphasized in order to prevent instabilities and aliasing in the

numerial omputations.

Why not use orthogonal wavelet bases to avoid redundany ?

The wavelets sienti� ommunity is known to be divided between advo-

ators of respetively ontinuous and disrete wavelets. When it omes to the

numerial omputation of PDEs, disrete wavelets seem to have taken the up-

per ground. Indeed, the previous hapter underlined how Disrete Wavelet

Transform and orthogonal wavelet bases ould be seen as an "improvement"

ompared to Continuous Wavelet Transform. These orthogonal bases indeed

disard all redundant information, and an be used to ompress linear operators

into a sparse form.

However, it is here important to keep in mind that the urrent work aims

at deriving PDEs governing an equivalent homogenized �uid, de�ned at the

ontinuum medium sale. The homogenization proess shall also stay as muh

as possible independent from any spei� hoie of disretization tehnique.

The framework of Disrete Wavelet Transform and Multi-Resolution Analysis,
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with its integer translations and dyadi re�nements, is rather suited to �nite-

di�erene shemes and Cartesian grids.

Furthermore, it will be proven, later in this hapter, that the analysing

wavelet Ψ and saling funtion Φ have to possess a C

1

smoothness, in order

to properly de�ne a onvolution produt with the �uid PDEs. Indeed, as om-

pressible �ows may exhibit non-smooth solutions (e.g. shok waves), the �uid

equations shall be manipulated in a weak sense. This will require to work

within the mathematial framework of distributions theory. Disrete orthogo-

nal wavelets suh as Daubehies' indeed possess a useful ompat support, but

exhibit "only" a C

�N

smoothness, with � � 0:2 and N < +1.

Finally, the non-redundany property of orthogonal wavelets, and their re-

sulting ability to ompress linear operators into a sparse form with a low on-

dition number (f. the BCR algorithm highlighted in the previous hapter), is

mostly relevant in the ontext of iterative methods and impliit shemes. The

urrent work deals with a fast-transient wave propagation phenomenon, whih

is lassially omputed with expliit shemes. Indeed, as the time step is here

onstrained by the wave veloity, whether the sheme is impliit or expliit, the

seond option o�ers the advantage to avoid any matrix inversion proess.

Thus, the framework of Continuous Wavelet Transform (CWT) appears

here better suited for the implementation of a homogenization/�ltering proess.

How to hoose between a real and omplex wavelet ?

In parallel with the "ontinuous VS disrete" debate, one annot avoid the

disussion between real and omplex wavelets. For 1D time signals analysis,

omplex analyti wavelets, with their ability to trak instantaneous frequenies,

de�nitly have the upper ground. However, in the urrent work, CWT aims at

�ltering 2D �elds that do not possess any oriented feature. Indeed, both the

analysing wavelet and saling funtion shall be able to �observe� pressure waves

propagating in di�erent diretions simultaneously (re�etion/transmission on

obstales). Furthermore, it will be proven that both the analysing wavelet

and saling funtion shall possess a C

1

smoothness, a good loalization in

the spatial domain, and a fast deay towards zero. A real wavelet suh as the

isotropi Mexian hat ful�lls all these requirements. It also o�ers the advantage

to lead to spatially-�ltered PDEs expressed in the physial domain.

How to implement CWT on the �uid PDEs, or on generi PDEs ?

Now that the important debates on "ontinuous VS disrete" and "real VS

omplex" wavelets have been settled in the urrent ontext, one an wonder

how, pratially speaking, CWT will hereafter be applied to the �uid PDEs

(or to generi PDEs). As desribed in the previous hapter, CWT an be seen

as a onvolution produt between a signal of interest, and an analysing wavelet

or saling funtion. To now apply suh a onvolution produt on PDEs whih

may exhibit non-smooth solutions, this manusript puts forward the following

generi proedure:
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� "weak-extension": �rst, extend, in a weak sense, the original �uid PDEs

to R2

; this step is mandatory to ensure the proper de�nition of onvolu-

tion produt on R2

; this extension will mostly rely on Green's formula for

integration by parts and distributions theory; the treatment of the �uid

boundary onditions will here play a key role;

� "weak-onvolution": seond, write, in a weak sense, the onvolution prod-

ut between the analysing wavelet or saling funtion, and the extended

�uid PDEs; this requires to state all the requirements that the wavelet

and saling funtion have to ful�ll in order to properly de�ne the onvo-

lution with a distribution; this "weak-onvolution" will eventually result

in spatially-�ltered PDEs governing a homogenized �uid. Its variables

will moreover be expressed as wavelet oe�ients of the original �uid

variables.

How a linear transform suh as CWT may handle nonlinearities ?

Last, but not least, one may question the ability of a linear transform

suh as CWT to atually handle nonlinearities. There is not any magial

formula allowing to express the wavelet transform of a nonlinear term, here the

onvetive term (�v 
 v), in terms of the wavelet transform of its individual

omponents � and v. Nevertheless, thanks to the reonstrution property of

CWT, it is now possible to reover (up to an approximation), at eah time step,

the original density � and veloity v from their respetive wavelet oe�ients

W[�℄(s; · ) andW[v℄(s; · ). It is thus possible to ompute expliitly the wavelet

oe�ients W[�v 
 v℄(s; · ) from the reonstruted �elds. Suh a proess is of

ourse expeted to deteriorate the omputation time.

In �uid mehanis, the nonlinear onvetive term is mainly responsible for

turbulene e�ets, as detailed in the setion dediated to Large Eddy Simula-

tion (LES). The urrent work onsiders a fast-transient phenomenon, during

whih turbulent dissipation is lassially negligible ompared to pressure gra-

dients, given the time sale of interest. Thus, the treatment of the nonlinear

onvetive term will hereafter be simpli�ed, avoiding additional reonstrution

proesses.

All these important questions being now answered, it shall here be noted

that the homogenization proess will hereafter be applied in a 2D framework.

Indeed, fuel assemblies inner struture needs to be aounted for only in a

transverse setion, while the omponents of the pressure waves along the axial

diretion an be desribed using standard disretization tehniques (see Figure

2.2a for an illustration of a PWR fuel assembly). Spaer grids ontribute little

to the response of the assemblies to a transverse wave. Thus, lassial regular

and singular head loss models an be implemented to aount for these grids,

and for the frition along the rods that may impat the axial omponent of the

waves.

Besides, as only the �uid oupies a onneted domain in the problem of
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interest, the hoie has been made to apply the homogenization proess only

to the �uid. It will thus fous our modeling e�orts. As for the fuel assemblies,

onsidering the 2D modeling framework, and the fous on transverse pressure

waves, the behavior of their ross setion will be modeled, in �rst approxima-

tion, as a rigid body possessing 2 degrees of freedom, here two translations.

Suh an approximation is motivated by the fat that spaer grids tend to main-

tain a onstant distane between the individual fuel rods ontained within an

assembly.

Throughout this third hapter, the wavelet-based multi-sale and homoge-

nized model will progressively take shape, with the following steps:

3:2 the equations of both the solid and �uid media will be realled at the

mirosopi sale;

3:3 importantmathematial results regarding the non-smooth behavior of the

solutions to the �uid PDEs will be realled; this behavior will hereafter

require to manipulate the �uid equations in a weak sense;

3:4 wavelet-based homogenization: in order to apply Continuous Wavelet

Transform (CWT) to the �uid equations, the following proedure will

be implemented:

(i) "weak-extension" of the original �uid equations to R2

;

(ii) "weak-onvolution" produt between the extended �uid equations,

and a well-designed wavelet or saling funtion;

3:5 boundary onditions, losure, and nonlinearities: the ability of CWT to

deal with these 3 important issues will be emphasized;

3:6 "analytial" auray and onvergene: the model ability to onverge (in

a sense to be spei�ed) towards Diret Numerial Simulation (DNS) will

be disussed;

3:7 the analysing wavelet Ψ and saling funtion Φ will be spei�ed;

3:8 all the model assumptions and equations will then be summarized;

3:9 numerial methods: �nally, the last setion will desribe the numerial

methods hosen to implement the wavelet-based model; a speial fous

will be put on the problematis of stability, whih is a ritial point for

expliit shemes, and aliasing, whih is linked to the numerial imple-

mentation of wavelet transform.

3.2 Modeling at the mirosopi sale

To begin this hapter, let us onsider the modeling at the mirosopi sale.

As an illustration for the problem at study, let us onsider the 2D geometry

displayed on the following Figure 3.1:
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Figure 3.1: Illustration of a 2D f�uid + solidg geometry.

The whole f�uid + solidg domain thus ontains:

� a �uid domain Ω
f

, whih is an open bounded and onneted spae of R2

;

� a solid domain Ω
s

, whih is an open bounded and disonneted spae of

R2

: Ω
s

= [

i

Ω
s

i

, with Ω
s

i

\

i6=j

Ω
s

j

= ;.

It is important to note that no periodiity or sale separation assumption

on the solid domain Ω
s

will be needed in the design of the model.

3.2.1 Solid medium

As illustrated in Figure 3.1, the solid medium of interest is omposed of the

disjoint reunion of multiple disks, here arranged in an array representing the

ross setion of a fuel assembly. As spaer grids tend to maintain a onstant

distane between neighboring disks, the global array will be onsidered as a

rigid body animated with two degrees of freedom, respetively horizontal and

vertial translations. The behavior of the array will be modeled by a linear

osillator for eah degree of freedom, whose dynami equilibrium is governed

by the following di�erential equation:

8i 2 f1; 2g, m

�

U

i

+ 

_

U

i

+ kU

i

= F

F!S

· e

i

; (3.1)

or equivalently:

8i 2 f1; 2g,

�

U

i

+ 2�!

0

_

U

i

+ !

2

0

U

i

=

1

m

�

�

F

F!S

· e

i

�

; (3.2)

where:

�

�

e

1

; e

2

�

is the orthonormal Cartesian basis of R2

;

� U =

�

U

1

U

2

�

T

is the displaement (m);

� m is the mass (kg);

�  is the frition oe�ient (kg.s

�1

);

� k is the system sti�ness (N.m

�1

= kg.s

�2

);

� !

0

is the system eigenfrequeny, de�ned by: !

0

=

q

k

m

(rad.s

�1

);

� � is the (dimensionless) damping oe�ient, de�ned by: � =



2

p

km

.

� F

F!S

is the fore (N) applied by the �uid to the whole array of disks.
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3.2.2 Fluid

Let us now onsider the water �ow. Under nominal operating onditions,

the water within a PWR ore is purely liquid at around 300

Æ

C under 155 bar.

The �ow is almost vertial, inompressible and very turbulent, with a Reynolds

number around 10

5

. However, the urrent work deals with the propagation of

a transverse pressure wave through the �ow and fuel assemblies. The theory of

visous inompressible �ow is therefore no longer relevant. To aount for suh

a fast-transient phenomenon, the following modeling framework is hereafter

onsidered:

� monophasi ompressible �ow;

� invisid �uid: visosity and turbulene e�ets are negligible ompared to

pressure gradients;

� gravity is negligible ompared to pressure gradients;

� ondution heat transfer is negligible on the time sale at study;

� barotropi �uid;

Based on this modeling framework, the water �ow is governed by the fol-

lowing Euler ompressible equations:

∂
t

�+ div (�v) = 0 in Ω
f

(t);

∂
t

(�v) + div (�v 
 v) = �r p in Ω
f

(t);

∂
t

(�e) + div ((�e+ p) v) = 0 in Ω
f

(t);

(3.3)

where:

� � is the �uid density (kg:m

�3

);

� v is the veloity �eld (m:s

�1

);

� p is the pressure �eld (Pa);

� e is the spei� total energy (J:kg

�1

).

The system (3.3) translates respetively the onservation of mass (�), mo-

mentum (�v) and energy (�e). This system of onservation laws is here losed

by a barotropi equation of state:

p = p

ref

+ 

2

son

(�� �

ref

) ; (3.4)

where �

ref

is a referene density, p

ref

= p (�

ref

) the orresponding referene

pressure, and 

son

=

q

∂
�

p the sound veloity in the �uid.
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Regarding now the boundary onditions, the assumption of invisid �uid

implies:

v ·n

F!S

= ∂
t

U ·n

F!S

on ∂Ω
f

\ ∂Ω
s

;

v ·n

F!ext

= 0 on ∂Ω
f

n ∂Ω
s

;

(3.5)

where n

F!S

and n

F!ext

denote the outward unit normal vetors on the bound-

ary ∂Ω
f

.

Thus, given an initial data, the pressure wave is ompletely desribed by

Euler ompressible equations (3.3), the barotropi equation of state (3.4) and

the kinemati ondition (3.5) on the �ow boundary.

Now, before starting the wavelet-based homogenization proess, the follow-

ing setion realls important mathematial results regarding the non-smooth

behavior of the solutions to the �uid PDEs. The fous is espeially put on

the role played by Rankine-Hugoniot ondition with regards to the possible

disontinuities.

3.3 Non-smooth behavior of the �uid PDEs

Euler ompressible equations (3.3) are part of a general lass of systems of

PDEs, alled hyperboli systems. With suh equations, the global existene

(in time) of the lassial solution is not guaranteed in the general ase. Hene,

weak solutions shall be onsidered. Furthermore, as hyperboli systems may

possess several weak solutions, an entropy funtion and its onservation law

are generally added in order to selet the solution physially relevant. In the

ase of an invisid �uid satisfying a barotropi equation of state, the role of

entropi equation is played by the energy balane equation. The interested

reader may refer to [Godlewski and Raviart, 1996℄ for a detailed presentation

on hyperboli systems.

Regarding now the smoothness of this entropi solution, it an be deter-

mined by writing the weak formulation of (3.3) with smooth and ompatly-

supported test funtions. Starting from an initial data X

0

= (�

0

; (�v)

0

; (�e)

0

)

loally bounded in Ω
f

(L

1

lo

), it an be shown that the entropi solution

X = (�; �v; �e) will possess the same spatial smoothness. Moreover, the

�uid domain Ω
f

being bounded, a L

q

spatial smoothness is satis�ed for all

q 2 [1;+1℄. Nevertheless, it an be noted that, in literature, weak solutions

are generally assumed to be pieewise C

1

funtions in time and spae, whose

jumps aross surfaes of disontinuity are governed by the Rankine-Hugoniot

ondition. Shok waves in ompressible �ows are a perfet example of suh

disontinuities. The framework of pieewise C

1

solutions will thus be hereafter

onsidered.

In order to reall Rankine-Hugoniot ondition, let us onsider the following

generi hyperboli system of p onservation laws, here written in onservative

form:

∂
t

u(x; t) + div

�

G(u)

�

(x; t) = 0 in Rd

�℄0;+1[; (3.6)
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or equivalently:

∂
t

u(x; t) +

d

P

j=1

∂
x

j

h

g

j

(u)

i

(x; t) = 0 in Rd

�℄0;+1[;

(3.7)

where:

� u =

�

u

1

: : : u

p

�

T

is the vetor of unknown onservative variables, for

instane u =

�

� �v

x

�v

y

�e

�

T

in the ase of 2D Euler ompressible

equations;

� G (u) is a (p� d) matrix whose olumns are the d �ux funtions g

j

:

G(u) =

0

B

B

�

G

1;1

: : : G

1;d

.

.

.

.

.

.

G

p;1

: : : G

p;d

1

C

C

A

(u); (3.8)

=

�

g

j

(u)

�

1�j�d

: (3.9)

In the ase of 2D Euler ompressible equations, one has:

g

1

(u) =

�

�v

x

�v

2

x

+ p �v

y

v

x

(�e+ p)v

x

�

T

; (3.10)

g

2

(u) =

�

�v

y

�v

y

v

x

�v

2

y

+ p (�e+ p)v

y

�

T

: (3.11)

Following [Godlewski and Raviart, 1996℄, one an write, for all test fun-

tions ' 2

h

D

�

Rd

�℄0;+1[

�i

p

, the weak formulation of (3.7) as follows:

*

∂
t

u+

d

X

j=1

∂
x

j

h

g

j

(u)

i

; '

+

D

0

;D

= �

Z

+1

0

Z

Rd

0

�

u · ∂
t

'+

d

X

j=1

g

j

(u) ·∂
x

j

'

1

A

dx dt

= 0: (3.12)

In order to emphasize why weak solutions of suh hyperboli systems have

to satisfy Rankine-Hugoniot ondition, one an:

� onsider, for simpliity, that the solution u, whih is pieewise C

1

on

Rd

�℄0;+1[, possesses only a single (smooth) surfae Σ of disontinuity,

whih thus uts the domain Rd

�℄0;+1[ into two subdomains Ω
+

/Ω
�

;
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� split, thanks to Chasles' relation, the above weak formulation (3.12) into

two integrals, one for eah subdomain;

� use twie Green's formula for integration by parts in order to introdue

two integrals on the boundary Σ;

� use the fat that the solution is smooth on both Ω
+

and Ω
�

, whih implies

that it satis�es the hyperboli system (3.7) in a strong sense;

� and �nally, bring together the two integrals on the boundary Σ, in order

to obtain an equation driving the disontinuity jump of the solution aross

Σ, namely Rankine-Hugoniot ondition;

Before going further, let us introdue some notations:

Notations 3.3.1 � Rd

�℄0;+1[= Ω
+

[ Ω
�

, suh that Ω
+

\ Ω
�

= ;, and

Σ = ∂Ω
+

\ ∂Ω
�

;

� nΣ =

�

n

t

n

1

: : : n

d

�

T

denotes a normal vetor of the surfae Σ,

oriented from Ω
+

to Ω
�

;

� [f ℄

+

�

: = f

+

�f

�

denotes the jump of the funtion f aross the surfae

of disontinuity Σ;

� ffg denotes a pieewise ontinuous funtion on Rd

�℄0;+1[ whih

oinides with the distribution f on

�

Rd

�℄0;+1[

�

nΣ.

Step 1 : Chasles' relation

Following [Godlewski and Raviart, 1996℄, one an �rst write, by using

Chasles' relation:

�

Z

+1

0

Z

Rd

0

�

u · ∂
t

'+

d

X

j=1

g

j

(u) ·∂
x

j

'

1

A

dxdt

= �

Z

Ω
+

0

�

u · ∂
t

'+

d

X

j=1

g

j

(u) · ∂
x

j

'

1

A

dx dt

�

Z

Ω
�

0

�

u · ∂
t

'+

d

X

j=1

g

j

(u) · ∂
x

j

'

1

A

dx dt: (3.13)

Step 2 : Green's formula for integration by parts

Then, by using Green's formula for integration by parts, the integrals on

the two subdomains Ω
+

and Ω
�

an be rewritten as:
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�

Z

Ω
+

0

�

u · ∂
t

'+

d

X

j=1

g

j

(u) · ∂
x

j

'

1

A

dx dt

=

Z

Ω
+

f∂
t

ug ·' dx dt�

Z

Σ
u

+

(�) ·'(�)n

t

d� +

Z

Ω
+

d

X

j=1

n

∂
x

j

g

j

(u)

o

·' dxdt

�

Z

Σ

d

X

j=1

n

j

g

+

j

(u(�)) ·'(�) d�: (3.14)

�

Z

Ω
�

0

�

u · ∂
t

'+

d

X

j=1

g

j

(u) · ∂
x

j

'

1

A

dx dt

=

Z

Ω
�

f∂
t

ug ·' dx dt�

Z

Σ
u

�

(�) ·'(�)(�n

t

) d�+

Z

Ω
�

d

X

j=1

n

∂
x

j

g

j

(u)

o

·' dxdt

�

Z

Σ

d

X

j=1

(�n

j

)g

�

j

(u(�)) ·'(�) d�: (3.15)

By adding these last two equations, one obtains:

�

Z

+1

0

Z

Rd

0

�

u · ∂
t

'+

d

X

j=1

g

j

(u) ·∂
x

j

'

1

A

dx dt

=

Z

Ω
+

8

<

:

∂
t

u+

d

X

j=1

∂
x

j

g

j

(u)

9

=

;

·' dxdt+

Z

Ω
�

8

<

:

∂
t

u+

d

X

j=1

∂
x

j

g

j

(u)

9

=

;

·' dxdt

�

Z

Σ

0

�

n

t

[u℄

+

�

+

d

X

j=1

n

j

h

g

j

(u)

i

+

�

1

A

(�) ·'(�) d�: (3.16)

Step 3 : the solution is smooth in Ω
+

and Ω
�

As the solution u is of lass C

1

in both Ω
+

and Ω
�

, one an state that

it satis�es the onservation laws of the hyperboli system (3.7) in a strong

sense within these two subdomains. Thus, the weak formulation (3.12) of the

hyperboli system redues to:

8' 2

h

D

�

Rd

� [0;+1[

�i

p

,

Z

Σ

0

�

n

t

[u℄

+

�

+

d

X

j=1

n

j

h

g

j

(u)

i

+

�

1

A

(�) ·'(�) d� = 0; (3.17)

whih �nally leads to the well-known Rankine-Hugoniot ondition driving the

disontinuity jump aross Σ:
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Rankine-Hugoniot ondition

8� 2 Σ,

0

�

n

t

[u℄

+

�

+

d

X

j=1

n

j

h

g

j

(u)

i

+

�

1

A

(�) = 0: (3.18)

Remark 3.3.1 Following again [Godlewski and Raviart, 1996℄, if

�

n

1

: : : n

d

�

T

6= 0, the normal vetor nΣ an be normalized as:

e

nΣ =

1









�

n

1

: : : n

d

�

T









Rd

�

n

t

n

1

: : : n

d

�

T

; (3.19)

=

�

� �

�

T

; (3.20)

where  2 R, and � is now a unit vetor of Rd

. This notation allows to

rewrite Rankine-Hugoniot ondition as:

 [u℄

+

�

=

d

X

j=1

�

j

h

g

j

(u)

i

+

�

; (3.21)

where  an be onsidered as the speed of propagation of the disontinuity,

and � its diretion of propagation.

This remark thus onludes this setion dediated to the mathematial anal-

ysis of Euler ompressible equations. It was here realled why it is neessary

to manipulate the �uid PDEs in a weak sense. This setion also emphasized

how Rankine-Hugoniot ondition plays an important role with regards to the

possible disontinuities propagating within a ompressible �ow.

Let us now turn towards the atual wavelet-based homogenization proess.

3.4 Wavelet-based homogenization

The wavelet-based homogenization proess, at the ore of this model, re-

lies on the appliation of Continuous Wavelet Transform (CWT) to the �uid

onservation laws and equation of state. The �ltered equations governing the

homogenized �uid are thus obtained by writing the onvolution produts be-

tween a wavelet family (Ψ
s

)

s>0

, or the assoiated saling funtion Φ
s

0

, and

the (extended) �uid equations, as formally illustrated by equations (3.22-3.23)

below:

�

eΨ
�

s

�

�

8

>

<

>

:

∂
t

�+ div (�v) = 0;

∂
t

(�v) + div (�v 
 v) = �r p;

∂
t

(�e) + div ((�e+ p) v) = 0;

(3.22)

eΨ
�

s

�

n

p = p

ref

+ 

2

son

(�� �

ref

)

o

: (3.23)

Samy Mokhtari CHAPTER 3. MODELING 59



3.4. WAVELET-BASED HOMOGENIZATION

It shall here be noted that, when studying a barotropi �uid, it is not

neessary to solve the energy balane equation. Thus, only the mass and

momentum balane equations will be hereafter onsidered.

Before detailing all the mathematial steps required to obtain the �ltered

equations governing the homogenized �uid, let us �rst speify the initial on-

ditions of the problem.

3.4.1 Initial onditions: Riemann problem

As lassially done in the study of hyperboli systems, a Riemann problem

(here with respet to the �rst omponent x

1

) is hereafter onsidered. In other

words, the following initial disontinuous density �eld is onsidered:

8x 2 Ω
f

, �

0

(x) =

(

�

l

if x

1

< d

�

r

if x

1

> d

(3.24)

8x 2 Ω
f

, (�v)

0

(x) = 0; (3.25)

where �

l

and �

r

denote respetively the left and right initial densities, and d

denotes the position of the initial density/pressure disontinuity. It is assumed

that the solid medium is in equilibrium with the �uid, on the right side of the

initial pressure disontinuity : Ω
s

(0) � fx

1

> dg.

To now implement the wavelet-based homogenization proess, the following

steps are required:

(i) extend, in a weak sense, the �uid PDEs and equation of state to R2

;

(ii) write, in a weak sense, the onvolution produt between the wavelet (or

saling funtion) and the extended �uid equations.

3.4.2 "Weak-extension" of the �uid PDEs to R2

The extension of the original �uid equations to R2

is mandatory in order

to properly de�ne the onvolution produt with the analysing wavelet Ψ or

saling funtion Φ. As already realled during the mathematial analysis of

Euler ompressible equations (3.3), the non-smooth behavior of the entropi

solution requires to manipulate the equations in a weak sense. Therefore, the

extension proess also has to be done in a weak sense, espeially as suh an

extension is expeted to introdue disontinuities on the boundaries ∂Ω
s

and

∂Ω
f

n∂Ω
s

. Thus, a two-steps proedure is hereafter followed to extend the �uid

equations:

a �rst, extend the onservative �elds (�; �v; p) into pieewise C

1

funtions

on R2

�℄0;+1[;

b seond, arefully extend the mass and momentum balane equations to

R2

�℄0;+1[ in a weak sense.
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The "extended �uid" shall not be mistaken with the yet to ome homoge-

nized �uid. It is a �rst intermediary but also important step, as it will allow

to properly "transfer" the boundary onditions of the real �uid into the future

homogenized �uid.

Hereafter, for simpliity, same notations are used for the original and ex-

tended �elds.

Basi requirements for the extension

The extension of the real �uid on Ω
s

and R2

n(Ω
f

[ Ω
s

) has to respet some

onditions:

� the extended �uid has to oinide with the real �uid on Ω
f

;

� the extended �uid has to satisfy the barotropi equation of state on R2

:

p = p

ref

+ 

2

son

(�� �

ref

) in R2

�℄0;+1[:
(3.26)

� the (real) �uid loated within Ω
f

annot enter the solid domain Ω
s

or

the exterior domain R2

n (Ω
f

[Ω
s

) (f. kinemati boundary ondition);

� the extended �uid loated within the solid domain Ω
s

or within the ex-

terior domain R
2

n (Ω
f

[ Ω
s

) annot enter the �uid domain Ω
f

, as both

the solid and exterior media are onsidered as losed systems, whih do

not exhange any matter with the real �uid;

� the extended �uid loated withinΩ
s

, respetively R
2

n(Ω
f

[ Ω
s

), oupies

a onstant volume, respetively a �xed geometry, and thus possess a

uniform density, as both the solid and exterior media are here onsidered

as rigid and homogeneous bodies.

Thus, it an be stated that, for all t � 0:

�(x; t) = st in Ω
s

(t);

�(x; t) = st in R2

n (Ω
f

[ Ω
s

) :

(3.27)

As the pressure is diretly linked to the density via the barotropi equation

of state (3.26), one also has, for all t � 0:

p(x; t) = st in Ω
s

(t);

p(x; t) = st in R2

n (Ω
f

[Ω
s

) :

(3.28)

Thus, the extended �uid trapped within the solid domain Ω
s

or the exterior

domainR
2

n(Ω
f

[Ω
s

) an be onsidered as an invisid and inompressible �uid,

governed by the following Euler equations:

� (∂
t

v + div (v 
 v)) = 0 in R2

nΩ
f

(t);

div (v) = 0 in R2

nΩ
f

(t);

(3.29)
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and the following no-penetration kinemati onditions:

(v � ∂
t

U) ·n

S!F

= 0 on ∂Ω
s

(t)

v ·n

ext!F

= 0 on ∂Ω
f

n ∂Ω
s

:

(3.30)

Thus, the value v

s

(t) = ∂
t

U(t) is an aeptable value for the extended �uid

veloity within the solid domain Ω
s

, while v

ext

= 0 is an aeptable value

within the exterior domain.

Now, taking into aount the fat that the solid medium is initially loated

on the right side of the pressure disontinuity, and moreover satis�es an equi-

librium ondition, the following extensions of the �eld (�; v; p) an be de�ned:

a Extension of the �elds (�; v; p) to R2

8x 2 R
2

, 8t � 0, �(x; t) =

8

>

<

>

:

�(x; t) if x 2 Ω
f

(t)

�

r

if x 2 Ω
s

(t)

�

ref

if x 2 R2

n (Ω
f

[ Ω
s

)

(3.31)

8x 2 R
2

, 8t � 0, v(x; t) =

8

>

<

>

:

v(x; t) if x 2 Ω
f

(t)

v

s

(t) = ∂
t

U(t) if x 2 Ω
s

(t)

v

ext

= 0 if x 2 R2

n (Ω
f

[ Ω
s

)

(3.32)

8x 2 R
2

, 8t � 0, p(x; t) =

8

>

<

>

:

p(x; t) if x 2 Ω
f

(t)

p

r

if x 2 Ω
s

(t)

p

ref

if x 2 R2

n (Ω
f

[Ω
s

)

(3.33)

The previous equations thus de�ne pieewise C

1

�elds on R
2

�℄0;+1[. In

order to now deal with the weak-extension of the mass and momentum bal-

ane equations, an important remark shall �rst be stated about the di�erent

disontinuities that will a�et the extension proess.

Remark 3.4.1 Important note on the disontinuities a�eting the ex-

tension proess

Two di�erent types of disontinuities shall be taken into aount during

the extension proess:

� on the one hand, the physial disontinuities inherent to the origi-

nal Euler ompressible equations and to the Riemann problem; these

disontinuities propagate within the real �uid domain Ω
f

�℄0;+1[,

and are governed by Rankine-Hugoniot ondition, as detailed in the

previous setion; for simpliity, it is again assumed that there is only

one surfae Σ of disontinuity within Ω
f

�℄0;+1[;
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� on the other hand, the two disontinuities introdued by the extension

of the �uid �elds to R2

; onversely to the physial ones, these new

disontinuities do not propagate within the �uid domain: indeed, the

exterior boundary ∂Ω
f

n ∂Ω
s

of the real �uid domain is stationary,

and the inner boundary ∂Ω
s

moves with the same normal veloity

than the �uid.

Before starting the extension of the balane equations, let us �rst reall and

de�ne some notations:

Notations 3.4.1

�

eΩ : = Ω�℄0;+1[, where the domain Ω denotes either the exterior, the

�uid, or the solid domain;

� ∂ eΩ : = ∂Ω�℄0;+1[;

�

e

� = (�; t), with � 2 ∂Ω, and d

e

� = d� dt;

� R2

�℄0;+1[ : =

eΩ
ext

[

eΩ
f

[

eΩ
s

;

� Σ still denotes the unique smooth surfae of disontinuity of the weak

solution within

eΩ
f

;

� as in the previous setion, the normal vetors on eah surfae of dison-

tinuity will be written in the form n =

�

� �

1

�

2

�

T

, where  represents

the propagation veloity of the disontinuity, and � its diretion of propa-

gation. Taking into aount the fat that only the physial disontinuities

assoiated to the original Euler ompressible equations and Riemann prob-

lem do propagate within the �uid, one an write:

e

n

F!ext

=

�

0 n

F!ext

�

T

; (3.34)

e

n

F!S

=

�

0 n

F!S

�

T

; (3.35)

e

nΣ =

�

� �

1

�

2

�

: (3.36)

� ffg denotes a pieewise ontinuous funtion on R2

�℄0;+1[ whih oin-

ides with the distribution f outside of the disontinuities.

� f

F

, f

S

and f

ext

denote, when used on a boundary, the value of the funtion

f respetively on the �uid, solid and exterior sides.

� F refers to the real �uid domain Ω
f

, and



F to the omplementary do-

main, i.e. either Ω
s

or R2

n (Ω
f

[ Ω
s

);

� [u℄

F



F

: = u

F

� u



F

denotes the jump of the funtion u aross the �uid

boundaries ∂Ω
f

;
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b Weak-extension of the mass and momentum balane equations

Proposition 3.4.1 and 3.4.2 hereafter display the "weak-extension" of both

the mass and momentum balane equations. Eah proposition is followed by a

proof, whose key ideas are similar to the proof of Rankine-Hugoniot ondition,

that is to say:

� use Chasles' relation to split the variational formulation into 3 parts,

assoiated to the 3 subdomains

eΩ
ext

,

eΩ
f

and

eΩ
s

;

� use Green's formula for integration by parts in order to introdue inte-

grals on the boundaries ∂ eΩ
f

n ∂ eΩ
s

, ∂ eΩ
s

, and Σ;

� use the fat that the solution is smooth in

eΩ
ext

,

eΩ
+

f

,

eΩ
�

f

, and

eΩ
s

, and

satis�es Rankine-Hugoniot ondition on Σ;

� bring together every term, and use the kinemati boundary onditions to

simplify the equation.

Proposition 3.4.1 Extended mass balane equation (weak form)

8' 2 D (R2

�℄0;+1[):

h∂
t

�+ div (�v) ; 'i

D

0

;D

= �

Z

∂ eΩ
s

[�℄

F

S

(∂
t

U(t) ·n

F!S

(

e

�))'(

e

�) d

e

� : (3.37)

Proof of Proposition 3.4.1 To prove that the weak formulation of the

mass balane equation extended to R2

writes as (3.37), let us start with

the de�nition of the weak formulation:

8' 2 D (R2

�℄0;+1[):

h∂
t

�+ div (�v) ; 'i

D

0

;D

: = �

Z

+1

0

Z

R2

(�∂
t

'+ �v ·r ') dxdt: (3.38)

Step 1: Chasles' relation

This integral an be divided into three di�erent integrals, as follows:

�

Z

+1

0

Z

R2

(�∂
t

'+ �v ·r ') dx dt

= �

Z

eΩ
ext

(�∂
t

'+ �v ·r ') dx dt�

Z

eΩ
f

(�∂
t

'+ �v ·r ') dx dt

�

Z

eΩ
s

(�∂
t

'+ �v ·r ') dx dt: (3.39)
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Step 2: Green's formula for integration by parts

Now, using Green's formula for eah integral, and taking into aount

the fat that a surfae Σ of disontinuity may propagate within the real

�uid domain, it omes:

�

Z

eΩ
ext

(�∂
t

'+ �v ·r ') dx dt

=

Z

eΩ
ext

f∂
t

�+ div (�v)g' dx dt�

Z

∂ eΩ
f

n∂ eΩ
s

�

ext

� 0� '(

e

�) d

e

�

�

Z

∂ eΩ
f

n∂ eΩ
s

(�v)

ext

(

e

�) ·n

ext!F

(

e

�)'(

e

�) d

e

�: (3.40)

�

Z

eΩ
f

(�∂
t

'+ �v ·r ') dx dt

=

Z

eΩ
+

f

f∂
t

�+ div (�v)g' dx dt+

Z

eΩ
�

f

f∂
t

�+ div (�v)g' dxdt

�

Z

Σ

�

�s[�℄

+

�

+ �

1

[�v

x

℄

+

�

+ �

2

[�v

y

℄

+

�

�

(

e

�)'(

e

�) d

e

�

�

Z

∂ eΩ
f

n∂ eΩ
s

�

F

(

e

�)� 0� '(

e

�) d� �

Z

∂ eΩ
s

�

F

(

e

�)� 0� '(

e

�) d

e

�

�

Z

∂ eΩ
f

n∂ eΩ
s

(�v)

F

(

e

�) ·n

F!ext

(

e

�)'(

e

�) d

e

� �

Z

∂ eΩ
s

(�v)

F

(

e

�) ·n

F!S

(

e

�)'(

e

�) d

e

�

(3.41)

�

Z

eΩ
s

(�∂
t

'+ �v ·r ') dxdt

=

Z

eΩ
s

f∂
t

�+ div (�v)g' dxdt�

Z

∂ eΩ
s

�

S

� 0� '(

e

�) d

e

�

�

Z

∂ eΩ
s

(�v)

S

(

e

�) ·n

S!F

(

e

�)'(

e

�) d

e

�: (3.42)

Step 3: the solution is smooth in

eΩ
ext

,

eΩ
+

f

,

eΩ
�

f

and

eΩ
s

+ Rankine-Hugoniot

Now, by adding the last 3 equations, and using the fat the mass balane

equation is satis�ed in a strong sense in

eΩ
ext

,

eΩ
+

f

,

eΩ
�

f

and

eΩ
s

, and the fat

that Rankine-Hugoniot ondition is satis�ed on Σ, it omes:

h∂
t

�+ div (�v) ; 'i

D

0

;D

= �

Z

∂ eΩ
f

n∂ eΩ
s

[(�v)℄

F

ext

(

e

�) ·n

F!ext

(

e

�)'(

e

�)�

Z

∂ eΩ
s

[�v℄

F

S

(

e

�) ·n

F!S

(

e

�)'(

e

�) d

e

�

(3.43)

Samy Mokhtari CHAPTER 3. MODELING 65



3.4. WAVELET-BASED HOMOGENIZATION

Step 4: simpli�ation with the kinemati boundary onditions

Finally, using the ontinuity of the normal omponent of the veloity

aross the boundaries, one obtains:

h∂
t

�+ div (�v) ; 'i

D

0

;D

= �

Z

∂ eΩ
s

[�℄

F

S

(∂
t

U(t) ·n

F!S

(

e

�))'(

e

�) d

e

�: (3.44)

This onludes the proof for the extension of the mass balane equation.

Let us now turn towards the momentum balane equation.

Proposition 3.4.2 Extended momentum balane equation (weak form)

8 2 [D (R2

�℄0;+1[)℄

2

:

D

∂
t

(�v) + div (�v 
 v) +r p;  

E

D

0

;D

= �

Z

∂ eΩ
s

[∂
t

U(t) ·n

F!S

(

e

�)℄ [�v℄

F

S

(

e

�) · (

e

�) d

e

�

�

Z

∂ eΩ
f

[p℄

F



F

(

e

�)n

F!



F

(

e

�) · (

e

�) d

e

�: (3.45)

Proof of Proposition 3.4.2 This proof follows the methodology used for

the mass balane equation:

Step 1: Chasles' relation

8 2 [D (R2

�℄0;+1[)℄

2

:

D

∂
t

(�v) + div (�v 
 v) +r p;  

E

D

0

;D

= �

Z

eΩ
ext

h

�v · ∂
t

 + (�v 
 v) : r  � p div

�

 

�i

dxdt

�

Z

eΩ
f

h

�v · ∂
t

 + (�v 
 v) : r  � p div

�

 

�i

dxdt

�

Z

eΩ
s

h

�v · ∂
t

 + (�v 
 v) : r  � p div

�

 

�i

dx dt: (3.46)

Step 2: Green's formula for integration by parts

Thanks to Green's formula, one an write:

�

Z

eΩ
ext

h

�v · ∂
t

 + (�v 
 v) : r  � p div

�

 

�i

dx dt

=

Z

eΩ
ext

f∂
t

(�v) + div(�v 
 v) +r pg · �

Z

∂ eΩ
f

n∂ eΩ
s

0� (�v)

ext

(

e

�) · (

e

�) d

e

�

�

Z

∂ eΩ
f

n∂ eΩ
s

[v

ext

·n

ext!F

℄ (

e

�) (�v)

ext

(

e

�) · (

e

�) d

e

�

�

Z

∂ eΩ
f

n∂ eΩ
s

p

ext

(

e

�)n

ext!F

(

e

�) · (

e

�) d

e

�: (3.47)
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�

Z

eΩ
f

h

�v · ∂
t

 + (�v 
 v) : r  � p div

�

 

�i

dx dt

=

Z

eΩ
+

f

f∂
t

(�v) + div(�v 
 v) +r pg · +

Z
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�

f

f∂
t

(�v) + div(�v 
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Z
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y
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x

�
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�

+ �
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�
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y

v

x
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2

y
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�

T

�

+

�

!
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e
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e

�

�

Z

∂ eΩ
f

n∂ eΩ
s

0� (�v)

F
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e
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e
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e

� �

Z

∂ eΩ
s

0� (�v)

F

(

e

�) · (

e

�) d

e

�

�

Z

∂ eΩ
f

n∂ eΩ
s

[v

F

·n

F!ext

℄ (

e
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F

(

e

�) · (

e

�) d

e

��

Z

∂ eΩ
s
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F

·n

F!S

℄ (

e
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F

(

e

�) · (

e

�) d

e

�

�

Z

∂ eΩ
f

n∂ eΩ
s

p

F

(

e

�)n

F!ext

(

e
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e

�) d

e

� �

Z

∂ eΩ
s

p

F

(

e

�)n

F!S

(

e

�) · (

e

�) d

e

�: (3.48)

�

Z
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s

h

�v · ∂
t

 + (�v 
 v) : r  � p div

�

 

�i

dx dt

=

Z

eΩ
s

f∂
t

(�v) + div(�v 
 v) +r pg · �

Z

∂ eΩ
s

0� (�v)

S

(

e

�) · (

e

�) d

e

�

�

Z

∂ eΩ
s

[v

S

·n

S!F

℄ (

e

�)(�v)

S

(

e

�) · (

e

�) d

e

� �

Z

∂ eΩ
s

p

S

(

e

�)n

S!F

(

e

�) · (

e

�) d

e

�:

(3.49)

Step 3/4: the solution is smooth in

eΩ
ext

,

eΩ
+

f

,

eΩ
�

f

,

eΩ
s

+ R.-H. + B.C.

Now, by adding these last 3 equations, using the fat that the momen-

tum balane equation is satis�ed in a strong sense in

eΩ
ext

,

eΩ
+

,

eΩ
�

, and

eΩ
s

, plus the fat that Rankine-Hugoniot (R.-H.) ondition is satis�ed on

Σ, and �nally the kinemati boundary onditions (B.C.), it omes:

D

∂
t

(�v) + div (�v 
 v) +r p;  

E

D

0

;D

= �

Z

∂ eΩ
s

[∂
t

U(t) ·n

F!S

(

e

�)℄ [�v℄

F

S

(

e

�) · (

e

�) d

e

�

�

Z

∂ eΩ
f

n∂ eΩ
s

[p℄

F

ext

(

e

�)n

F!ext

(

e

�) · (

e

�) d

e

�

�

Z

∂ eΩ
s

[p℄

F

S

(

e

�)n

F!S

(

e

�) · (

e

�) d

e

�: (3.50)

This onludes the proof for the extension of the momentum balane equa-

tion. Both balane equations are here written in pure Eulerian formulation. In

lassial FSI literature however, one an often �nd these equations written with

an Arbitrary Lagrangian Eulerian (ALE) formulation. The interested reader

may for instane refer to [Etienne et al., 2009℄. The following remark hereafter

details the �uid equations in ALE formulation.
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Remark 3.4.2 Arbitrary Lagrangian Eulerian (ALE) formulation

The extended balane equations (3.37-3.45) ould be rewritten in a

more ompat form, in the spirit of Arbitrary Lagrangian Eulerian (ALE)

formulation. This an be done by working on the integrals involving the

solid medium veloity ∂
t

U in the right-hand sides of the extended equa-

tions. To this end, let us onsider the following extension of the solid

medium veloity ∂
t

e

U :

8t � 0, ∂
t

e

U( · ; t) =

(

∂
t

U(t) in Ω
s

0 in R2

nΩ
s

(3.51)

With suh an extension, the �eld

�

�∂
t

e

U

�

is uniform within the dis-

onneted spae Ω
s

(f. rigid body assumption + uniform extended den-

sity), and zero outside. Now, using one again Green's formula to de-

�ne the distribution div

�

�∂
t

e

U

�

in R2

�℄0;+1[, one an write, for all

' 2 D (R2

�℄0;+1[):

�

Z

eΩ
ext

�∂
t

e

U(x; t) ·r '(x) dxdt

=

Z

eΩ
ext

div

�

�∂
t

e

U

�

(x; t)'(x; t) dxdt

�

Z

∂ eΩ
ext

�

ext

(

e

�)∂
t

e

U(t) ·n

ext!F

(

e

�)'(

e

�) d

e

�: (3.52)

�
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eΩ
f
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e

U(x; t) ·r '(x; t) dxdt

=

Z

eΩ
f

div

�

�∂
t

e

U

�

(x; t)'(x; t) dxdt�

Z

∂ eΩ
f

n∂ eΩ
s

�

F

(

e

�)∂
t

e

U(t) ·n

F!ext

(

e

�)'(

e

�) d

e

�

�

Z

∂ eΩ
s

�

F

(

e

�)∂
t

U(t) ·n

F!S

(

e

�)'(

e

�) d

e

�: (3.53)

�

Z

eΩ
s

�∂
t

e

U(x; t) ·r '(x; t) dxdt

=

Z

eΩ
s

div

�

�∂
t

e

U

�

(x; t)'(x; t) dxdt�

Z

∂ eΩ
s

�

S

(

e

�)∂
t

U(t) ·n

S!F

(

e

�)'(

e

�) d

e

�:

(3.54)

As the �eld

�

�∂
t

e

U

�

is either uniform or zero, one an write, by adding

the last 3 equations:

D

div

�

�∂
t

e

U

�

; '

E

D

0

;D

: = �

Z

+1

0

Z

R2

�∂
t

e

U(x; t) ·r '(x; t) dxdt;

= �

Z

∂ eΩ
s

[�℄

F

S

(

e

�) (∂
t

U(t) ·n

F!S

(

e

�))'(

e

�) d

e

�: (3.55)
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Following the same methodology, the distribution div

�

�v 
 ∂
t

e

U

�

an be

extended to R2

as follows:

8 2 [D (R2

)℄

2

,

D

div

�

�v 
 ∂
t

e

U

�

;  

E

D

0

;D

: = �

Z

+1

0

Z

R2

�

�v 
 ∂
t

e

U

�

(x; t) : r  (x; t) dxdt;

= �

Z

∂ eΩ
s

(∂
t

U(t) ·n

F!S

(

e

�)) [�v℄

F

S

(

e

�) · (

e

�) d

e

�: (3.56)

This result is obtained by using the fat that the extended veloity ∂
t

e

U

is zero outside of Ω
s

, and the fat that the tensor �v 
 ∂
t

e

U is uniform

within the solid domain Ω
s

.

Finally, injeting equations (3.55-3.56) into (3.37-3.45), one obtains

the following extended Euler ompressible equations written in ALE for-

mulation:

8' 2 D (R2

�℄0;+1[) ;  2 [D (R2

�℄0;+1[)℄

2

:

D

∂
t

�( · ; t) + div

�

�

�

v � ∂
t

e

U

��

( · ; t); '

E

D

0

;D

= 0: (3.57)

D

∂
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(�v)( · ; t) + div

�

�v 


�

v � ∂
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e

U
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E

D

0

;D
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D
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E
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0
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+

Z

∂Ω
f

[p℄



F

F

(

e

�)  (

e

�) ·n

F!



F

(

e

�) d

e

�: (3.58)

In the following, the �uid extended PDEs will be written in pure Eulerian

formulation, as summarized in the following Proposition 3.4.3. This hoie is

motivated by the fat that �nite-volume shemes are lassially used to solve

suh systems of onservation laws.

Proposition 3.4.3 Summary of the extended �uid PDEs (weak form +

Eulerian formulation)

8' 2 D (R
2

�℄0;+1[) ;  2 [D (R
2

�℄0;+1[)℄

2

:

h∂
t

�+ div (�v) ; 'i

D

0

;D

= �

Z

∂ eΩ
s

[�℄

F

S

(∂
t

U(t) ·n

F!S

(

e

�))'(

e

�)d

e

�: (3.59)
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U(t) ·n

F!S

(
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F
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(

e
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�) d

e
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∂ eΩ
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F

(

e

�)n
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(

e

�) · (

e
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e

�: (3.60)
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Proof of Proposition 3.4.3 Summary of the previous propositions.

The �uid equations being now extended, it is high time to onsider their

onvolution produt with the analysing wavelet Ψ or saling funtion Φ. This

seond step will result in spatially-�ltered equations governing a homogenized

�uid.

3.4.3 "Weak-onvolution" wavelets � extended �uid PDEs

As an be seen in Proposition 3.4.3, the extended Euler ompressible equa-

tions have to be understood in a weak sense. In order to then properly de�ne a

onvolution produt with all the distributions present in equations (3.59-3.60),

both the analysing wavelet and saling funtion should ideally possess a C

1

smoothness and a ompat support. However, to the author's knowledge, suh

wavelets do not exist in the CWT framework. One would have to turn to-

wards orthogonal wavelet bases suh as Daubehies' in order to �nd a ompat

support. Nevertheless, as previously highlighted, these wavelets only possess a

C

�N

smoothness, with � � 0:2 and N < +1.

Fortunately, the notion of ompatly-supported distributions here allows

to bypass the non-ompat support of the wavelet and saling funtion. To

emphasize this point, let us �rst reall some properties on onvolution produt,

before disussing ompatly-supported distributions.

Properties on onvolution produt

Proposition 3.4.4 Convolution produt L

1

�

Rd

�

�D

�

Rd

�

The onvolution produt between a funtion f 2 L

1

�

Rd

�

and a test

funtion ' 2 D

�

Rd

�

results in a C

1

funtion.

Proof of Proposition 3.4.4 See appendix A.0.1.

Proposition 3.4.5 Convolution produt D

0

�

R
d

�

�D

�

R
d

�

The onvolution produt between a distribution T 2 D

0

�

Rd

�

and a test

funtion ' 2 D

�

R
d

�

also results in a C

1

funtion. Furthermore, the

following equation holds:

8 T 2 D

0

�

Rd

�

,  ; ' 2 D

�

Rd

�

:

h � T; 'i

D

0

;D

: =

Z

Rd
( � T )'; (3.61)

=

D

T;

e

 � '

E

D

0

;D

; (3.62)

where

e

 (x) =  (�x).
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In the ase where the distribution T is a loally integrable funtion, the

previous result an be obtained with Fubini's theorem:

h � T; 'i

D

0

;D

=

Z

Rd

�

Z

Rd
 (x� y)T (y) dy

�

'(x) dx (3.63)

=

Z

Rd
T (y)

�

Z

Rd

e

 (y � x)'(x) dx

�

dy (3.64)

=

D

T;

e

 � '

E

D

0

;D

(3.65)

Proof of Proposition 3.4.5 See appendix A.0.2.

These two propositions being realled, let us now emphasize how the no-

tion of ompatly-supported distributions may allow to de�ne the onvolution

produt between the extended �uid PDEs and the analysing wavelet or saling

funtion.

Compatly-supported distributions

Thanks to the previous extension proedure, all the distributions of interest

in the urrent work possess a ompat support. Indeed, for all test funtions

' 2 D (R2

�℄0;+1[) and  2 [D (R2

�℄0;+1[)℄

2

, with ompat supports in-

luded in the exterior domain

eΩ
ext

, one an write:

h∂
t

�+ div (�v) ; 'i

D

0

;D

= �

Z

+1

0

Z

R2

(�∂
t

'+ �v ·r ') (x; t) dxdt; (3.66)

= �

Z

eΩ
ext

(�∂
t

'+ �v ·r ') ; (3.67)

=

Z

eΩ
ext

f∂
t

�+ div (�v)g'; (3.68)

= �

ext

Z

eΩ
ext

fdiv(v)g'; (3.69)

= 0: (3.70)

D

∂
t

(�v) + div (�v 
 v) +r p;  

E

D

0

;D

(3.71)

= �

Z

+1

0

Z

R2

�

�v · ∂
t

 + [�v 
 v℄ : r  + p div( )

�

(x; t) dxdt; (3.72)

= �

Z

eΩ
ext

�

�v · ∂
t

 + [�v 
 v℄ : r  + p div( )

�

; (3.73)

=

Z

eΩ
ext

f∂
t

(�v) + div (�v 
 v) +r pg · ; (3.74)

= �

ext

Z

eΩ
ext

(

∂
t

v + div (v 
 v) +

1

�

ext

r p

)

· ; (3.75)

= 0: (3.76)
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The last equality in both equations uses the fat that the �uid loated

within the exterior domain

eΩ
ext

is onsidered invisid and inompressible, and

is thus governed by Euler equations.

The above results immediately imply that the supports of the distributions

of interest are neessarily inluded in the losed and bounded subspae Ω
f

[ Ω
s

.

This useful property will allow to ope with the non-ompat support of the

analysing wavelet and saling funtion, as detailed in the following remarks

and propositions.

Remark 3.4.3 Compatly-supported distributions E

0

�

Rd

�

The spae of ompatly-supported distributions E

0

�

Rd

�

o�ers multiple

advantages. One of them is the possibility to now de�ne the ation of

suh a distribution T 2 E

0

�

R
d

�

on a funtion  2 C

1

�

R
d

�

whih does not

possess a ompat support. Indeed, one an write:

8T 2 E

0

�

Rd

�

,  2 C

1

�

Rd

�

:

hT;  i

E

0

;C

1

: = hT; � i

D

0

;D

; (3.77)

where � 2 D

�

Rd

�

is a test funtion whih is identially equal to 1 on a

ompat neighborhood of the support of the distribution T . Furthermore,

the above de�nition (3.77) does not depend on the hoie of the test fun-

tion �. An illustration of suh a test funtion in 1D is displayed in Figure

3.2 below, where K denotes the ompat neighborhood of the support of

the distribution T .

Figure 3.2: Example of a test funtion for ompatly-supported distributions

Following the spirit of equations (3.62) and (3.77), the onvolution produt

between the wavelets (or saling funtion) and the distributions of interest is

hereafter de�ned as follows:
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Convolution (wavelets � ompatly-supported distributions)

Proposition 3.4.6 Convolution (wavelets � ompatly-supported distributions)

In the following:

� T 2 E

0

(R
2

) denotes the distributions of interest, eah possessing a

ompat support satisfying supp(T ) � Ω
f

[Ω
s

;

� � 2 D (R2

) is a (ompatly-supported) test funtion whih is identi-

ally equal to 1 on a ompat neighborhood K of Ω
f

[Ω
s

, with a fast

deay towards zero outside of K;

� (Ψ
s;�

)

s;�

denotes a wavelet family of lass C

1

(R
2

), with a fast deay

towards zero outside of a well-loalized spatial support.

One an write, for all ' 2 D (R2

), s > 0, � 2 [0; 2�[:

D�

��

eΨ
�

s;�

�

� T; '

E

D

0

;D

=

D

T;

�

e

�� Ψ
�

s;�

�

� '

E

D

0

;D

: (3.78)

Furthermore, as the produt

�

��

eΨ
�

s;�

�

is of lass C

1

and also

ompatly-supported, the distribution

��

��

eΨ
�

s;�

�

� T

�

is atually a C

1

funtion.

Finally, thanks to the properties of the test funtion �, one an state

that:

8x 2 R
2

,

�

��

eΨ
�

s;�

�

(x) =

(

eΨ
�

s;�

(x) if x 2 K

0 if x 2 R
2

n supp(�)

(3.79)

Thus, the funtion

�

��

eΨ
�

s;�

�

and the wavelet

�

eΨ
�

s;�

�

oinide on the

ompat set K, whih ontains Ω
f

[ Ω
s

. Outside of K, the di�erene

between these two funtions is expeted to be small. Indeed, thanks to

its well-loalized spatial support (loalization whih improves if the sale

parameter dereases), the wavelet is expeted to be almost zero outside of

the domain of interest Ω
f

[ Ω
s

. The same remark goes for the funtion

�

��

eΨ
�

s;�

�

, thanks to the fast deay of � from 1 to 0.

In onlusion, equation (3.78) allows to rigorously de�ne the on-

volution between a ompatly-supported distribution T and the funtion

�

��

eΨ
�

s;�

�

, whih happens to be very lose to the wavelet

eΨ
�

s;�

, as further

detailed in Proposition 3.4.7.

Proof of Proposition 3.4.6 The above proposition is just an appliation

of Proposition 3.4.5.
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Remark 3.4.4 The above proposition also holds with a saling funtion of

lass C

1

and exhibiting a fast deay towards zero.

Now, in order for the onvolution produt

�

��

eΨ
�

s;�

�

�T to de�ne an atual

CWT of the distribution T , one shall prove that, at least within the domain of

interest Ω
f

[Ω
s

, the following approximation, or ideally equality, holds:

8x 2 Ω
f

[Ω
s

,

��

��

eΨ
�

s;�

�

� f

�

(x) �

�

eΨ
�

s;�

� f

�

(x): (3.80)

This point is disussed in the following proposition.

Proposition 3.4.7 Approximation

��

��

eΨ
�

s;�

�

� f

�

�

�

eΨ
�

s;�

� f

�

?

As there is no restrition on the size of the ompat domain K on whih

the test funtion � equals 1 (as long as it is a ompat neighborhood of

the support of the distribution T ), it an be stated that:

�

��

eΨ
�

s;�

�

� T =

eΨ
�

s;�

� T in supp(T ): (3.81)

Proof of Proposition 3.4.7 In order to prove the proximity, and even

equality, between these two funtions, let us onsider the following 1D

ase:

� f 2 L

1

lo

(R) a distribution with a ompat support supp(f) = [�a; a℄,

a > 0;

� � 2 D (R), suh that � equals 1 on [�b; b℄, b � a, and quikly deays

towards zero outside of [�b; b℄;

� Ψ
s

, s > 0, a wavelet of lass C

1

, well-loalized on [�

s

; 

s

℄, and quikly

deaying towards zero outside.

The di�erene between

��

��

eΨ
�

s

�

� f

�

and

�

eΨ
�

s

� f

�

an be evaluated as

follows:

8x 2 R,

h

f �

�

��

eΨ
�

s

�

� f �

eΨ
�

s

i

(x) = f �

h

(�� 1)

eΨ
�

s

i

(x); (3.82)

=

Z

R

f(x� y) (�(y)� 1)

eΨ
�

s

(y) dy; (3.83)

=

Z

I

x

f(x� y) (�(y)� 1)

eΨ
�

s

(y) dy; (3.84)

where I

x

= fy 2 R, x� y 2 [�a; a℄g. Thus:

h

f �

�

��

eΨ
�

s

�

� f �

eΨ
�

s

i

(x) =

Z

x+a

x�a

f(x� y) (�(y)� 1)

eΨ
�

s

(y) dy: (3.85)
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As this proof is mainly interested in the behavior of the funtions

��

��

eΨ
�

s

�

� f

�

and

�

eΨ
�

s

� f

�

within the support of f , it is hereafter assumed

that x 2 [�a; a℄.

In the following, one shall distinguish two ases:

� if the domain where the test funtion � equals 1 is wide enough, i.e.

if b � 2a, one has:

8x 2 [�a; a℄, � b � x� a � x+ a � b; (3.86)

8x 2 [�a; a℄, 8y 2 [x� a; x+ a℄, �(y) = 1: (3.87)

As a onsequene, equation (3.85) simpli�es into:

8x 2 [�a; a℄,

h

f �

�

��

eΨ
�

s

�

� f �

eΨ
�

s

i

(x) = 0: (3.88)

� if the domain where the test funtion � equals 1 is not wide enough,

i.e. if a � b < 2a, then one shall distinguish the inner interval

[a� b; b� a℄, from the outer intervals [�a; a� b℄ and [b� a; a℄:

8x 2 [a� b; b� a℄, y 2 [x� a; x+ a℄,

h

f �

�

��

eΨ
�

s

�

� f �

eΨ
�

s

i

(x) = 0:

(3.89)

8x 2 [�a; a� b℄, (3.90)

Z

x+a

x�a

f(x� y) (�(y)� 1)

eΨ
�

s

(y) dy (3.91)

=

Z

�b

x�a

f(x� y) (�(y)� 1)

eΨ
�

s

(y) dy +

Z

x+a

�b

f(x� y) (�(y)� 1)

eΨ
�

s

(y) dy;

(3.92)

=

Z

�b

x�a

f(x� y) (�(y)� 1)

eΨ
�

s

(y) dy: (3.93)

Thus, when b tends towards 2a, the error between the two funtions

of interest is foused in the viinity of the boundaries of [�a; a℄. Be-

sides, as the wavelet Ψ
s

is well-loalized on [�

s

; 

s

℄ and quikly deays

towards zero, the integral in (3.93) will tend towards zero if b� 

s

.

Indeed:
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8x 2 [�a; a� b℄,

�

�

�

�

�

Z

�b

x�a

f(x� y) (�(y)� 1)

eΨ
�

s

(y) dy

�

�

�

�

�

(3.94)

�

Z

�b

x�a

�

�

�f(x� y) (�(y)� 1)

eΨ
�

s

(y)

�

�

� dy; (3.95)

� max

y2[x�a;�b℄

�

�

�

eΨ
�

s

(y)

�

�

��

Z

�b

x�a

jf(x� y)j dy; (3.96)

� max

y2[�2a;�b℄

�

�

�

eΨ
�

s

(y)

�

�

�� kfk

L

1

(R)
; (3.97)

� max

y2[b;2a℄

jΨ
�

s

(y)j � kfk

L

1

(R)
; (3.98)

where the maximum value of the wavelet modulus jΨ
s

j on [b; 2a℄ deays

towards zero when a; b� 

s

.

A similar proof holds for the last interval [b� a; a℄.

In onlusion, as long as the interval [�b; b℄, on whih � equals 1,

is wide enough ompared to the support supp(f) = [�a; a℄, or to the

wavelet loalization domain [�

s

; 

s

℄, the error between the funtions

��

��

eΨ
�

s;�

�

� f

�

and

�

eΨ
�

s;�

� f

�

is either zero or lose to zero. Thus, as

there is no restrition on the width of the interval [�b; b℄ (as long as it is a

ompat neighborhood of [�a; a℄), it an be stated that, for a well-designed

test funtion �:

�

��

eΨ
�

s;�

�

� f =

eΨ
�

s;�

� f in supp(f) (3.99)

Remark 3.4.5 It is here realled that the onvolution produt between the

wavelets

�

eΨ
�

s;�

�

s>0;�2R
(respetively the isotropi saling funtion

eΦ
�

s

0

) and

the funtion of interest is exatly the wavelet oe�ient (2.132) (respe-

tively low-frequeny approximation (2.154)) of the funtion:

W[f ℄(s; u; �) =

�

f �

eΨ
�

s;�

�

(u); (3.100)

L[f ℄ (s

0

; u) =

�

f �

eΦ
�

s

0

�

(u): (3.101)

These propositions and remarks being stated, it is now high time to ex-

pliitly derive the spatially-�ltered equations from the extended �uid PDEs

(3.59-3.60). This is done by:

� �rst, onsidering the funtions

�

e

�� Ψ
�

s;�

�

� ' or

�

e

�� Φ
�

s

0

�

� ' as test

funtions in the extended �uid PDEs (3.59-3.60);

� seond, using equation (3.78);

� third, using the fat that onvolution produt ommutes with time and

espeially spatial derivatives on R2

;

� and �nally, using Fubini's theorem to rewrite the boundary integrals in

the right-hand side of the balane equations.
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Weak-onvolution produt with the extended �uid PDEs

Proposition 3.4.8 Weak-onvolution produt with the �uid PDEs

Consider T > 0. 8t 2 [0; T [, s > 0, � 2 [0; 2�[, ' 2 D (R
2

) ;  2 [D (R
2

)℄

2

:

� mass balane equation:

starting with the left-hand side of equation (3.59), and using equation

(3.78), one an write:

D

∂
t

�+ div (�v) ;

�

e

�� Ψ
�

s;�

�

� '

E

D

0

;D

(3.102)

=

D�

��

eΨ
�

s;�

�

� [∂
t

�+ div (�v)℄ ; '

E

D

0

;D

; (3.103)

=

D

∂
t

h�

��

eΨ
�

s;�

�

� �

i

+

�

��

eΨ
�

s;�

�

� div (�v) ; '

E

D

0

;D

; (3.104)

=

D

∂
t

h�

��

eΨ
�

s;�

�

� �

i

+ div

h�

��

eΨ
�

s;�

�

� �v

i

; '

E

D

0

;D

: (3.105)

In the right-hand side of equation (3.59), the boundary integral an

be rewritten using Fubini's theorem:

Z

∂ eΩ
s

[�℄

F

S

(∂
t

U(t) ·n

F!S

(

e

�))

h�

e

�� Ψ
�

s;�

�

� '

i

(

e

�) d

e

� (3.106)

=

Z

+1

0

Z

∂Ω
s

[�℄

F

S

(∂
t

U(t) ·n

F!S

(�; t))

�

Z

R2

�

e

�� Ψ
�

s;�

�

(� � x)'(x; t) dx

�

d� dt;

(3.107)

=

Z

+1

0

Z

R2

�

Z

∂Ω
s

�

��

eΨ
�

s;�

�

(x� �)[�℄

F

S

(∂
t

U(t) ·n

F!S

(�; t)) d�

�

'(x; t) dxdt

(3.108)

=

�

Z

∂Ω
s

�

��

eΨ
�

s;�

�

( · � �)[�℄

F

S

(∂
t

U(t) ·n

F!S

(�; t)) d�; '

�

D

0

;D

(3.109)

Now, bringing together both sides of the equation, one obtains:

D

∂
t

h�

��

eΨ
�

s;�

�

� �

i

+ div

h�

��

eΨ
�

s;�

�

� �v

i

; '

E

D

0

;D

= �

�

Z

∂Ω
s

�

��

eΨ
�

s;�

�

( · � �)[�℄

F

S

(∂
t

U(t) ·n

F!S

(�; t)) d�; '

�

D

0

;D

:

(3.110)

� momentum balane equation:

starting with the left-hand side of equation (3.60), one an write:
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D

∂
t

(�v) + div (�v 
 v) +r p;

�

e

�� Ψ
�

s;�

�

�  

E

D

0

;D

(3.111)

=

D�

��

eΨ
�

s;�

�

� [∂
t

(�v) + div (�v 
 v) +r p℄ ;  

E

D

0

;D

; (3.112)

=

D

∂
t

h�

��

eΨ
�

s;�

�

� (�v)

i

+ div

h�

��

eΨ
�

s;�

�

� (�v 
 v)

i

+r

h�

��

eΨ
�

s;�

�

� p

i

;  

E

D

0

;D

:

(3.113)

Using one again Fubini's theorem, the two boundary integrals in the

right-hand side of equation (3.60) an be rewritten as follows:

Z

∂ eΩ
s

[∂
t

U(t) ·n

F!S

(

e

�)℄ [�v℄

F

S

(

e

�) ·

h�

e

�� Ψ
�

s;�

�

�  

i

(

e

�) d

e

� (3.114)

=

Z

+1

0

Z

∂Ω
s

[∂
t

U(t) ·n

F!S

(�; t)℄ [�v℄

F

S

(�) ·

�

Z

R2

�

e

�� Ψ
�

s;�

�

(� � x) (x; t) dx

�

d� dt;

(3.115)

=

Z

+1

0

Z

R2

�

Z

∂Ω
s

�

��

eΨ
�

s;�

�

(x� �) [∂
t

U(t) ·n

F!S

(�; t)℄ [�v℄

F

S

(�) d�

�

· (x; t) dxdt;

(3.116)

=

�

Z

∂Ω
s

�

��

eΨ
�

s;�

�

( · � �) [�v℄

F

S

(�) [∂
t

U(t) ·n

F!S

(�; t)℄ d�;  

�

D

0

;D

:

(3.117)

Z

∂ eΩ
f

[p℄

F



F

(

e

�)

h�

e

�� Ψ
�

s;�

�

�  

i

(

e

�) ·n

F!



F

(

e

�) d

e

� (3.118)

=

Z

+1

0

Z

∂Ω
f

[p℄

F



F

(�; t)

�

Z

R2

�

e

�� Ψ
�

s;�

�

(� � x) (x; t) dx

�

·n

F!



F

(�; t) d� dt;

(3.119)

=

Z

+1

0

Z

R2

 

Z

∂Ω
f

�

��

eΨ
�

s;�

�

(x� �) [p℄

F



F

(�; t)n

F!



F

(�; t) d�

!

· (x; t) dxdt;

(3.120)

=

*

Z

∂Ω
f

�

��

eΨ
�

s;�

�

( · � �) [p℄

F



F

(�; t) ·n

F!



F

(�; t) d�;  

+

D

0

;D

: (3.121)

Now, bringing together both sides of the equation, one obtains:

D

∂
t

h�

��

eΨ
�

s;�

�

� (�v)

i

+ div

h�

��

eΨ
�

s;�

�

� (�v 
 v)

i

+r

h�

�

eΨ
�

s;�

�

� p

i

;  

E

D

0

;D

= �

�

Z

∂Ω
s

�

��

eΨ
�

s;�

�

( · � �) [�v℄

F

S

(�) [∂
t

U(t) ·n

F!S

(�; t)℄ d�;  

�

D

0

;D

�

*

Z

∂Ω
f

�

��

eΨ
�

s;�

�

( · � �) [p℄

F



F

(�; t)n

F!



F

(�; t) d�;  

+

D

0

;D

: (3.122)
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Proof of Proposition 3.4.8 See Proposition 3.4.6 and equation (3.78).

Remark 3.4.6 Commutation onvolution produt  ! spatial deriva-

tives

Proposition 3.4.8 used the fat that onvolution produt ommutes with

spatial (and time) derivatives on R2

. It is important to keep in mind

that suh a property is no longer valid on a bounded subset Ω � R2

, as

already highlighted in the previous hapter when disussing Large Eddy

Simulation.

Proposition 3.4.8 presented the spatially-�ltered equations in a weak

form. Now, using the smoothing property of the onvolution produt with a

ompatly-supported funtion of lass C

1

, and equation (3.81), one an write

the spatially-�ltered equations in a strong form:

Spatially-�ltered PDEs governing the homogenized �uid (strong form)

Proposition 3.4.9 Spatially-�ltered PDEs (strong form)

The homogenized �uid, whose onservative variables are the wavelet

oe�ients

�

W[�℄ W[�v

x

℄ W[�v

y

℄

�

T

(s; u; �; t), is governed by the follow-

ing spatially-�ltered PDEs (here written on Ω
f

[ Ω
s

) :

Consider T > 0. 8u 2 Ω
f

[ Ω
s

, 8t 2 [0; T [, s > 0, � 2 [0; 2�[:

∂
t

W[�℄(s; u; �; t) + div (W [�v℄) (s; u; �; t)

= �

Z

∂Ω
s

eΨ
�

s;�

(u� �)[�℄

F

S

[∂
t

U(t) ·n

F!S

(�; t)℄ d�: (3.123)

∂
t

W [�v℄ (s; u; �; t) + div (W [�v 
 v℄) (s; u; �; t) +rW[p℄(s; u; �; t)

= �

Z

∂Ω
f

eΨ
�

s;�

(u� �) [p℄

F



F

(�; t) ·n

F!



F

(�; t) d�

�

Z

∂Ω
s

eΨ
�

s;�

(u� �) [�v℄

F

S

(�) [∂
t

U(t) ·n

F!S

(�; t)℄ d�: (3.124)

In these PDEs, it is important to emphasize the role played by the

funtion

e

F

S�!F

(s; u; �; t) : = �

Z

∂Ω
f

eΨ
�

s;�

(u� �) [p℄

F



F

(�; t) ·n

F!



F

(�; t) d�; (3.125)

whih is a body fore (per unit of length), de�ned aross the whole spae

R2

, whih represents the resistane that enounters the real �uid when

�owing through the solid medium and impating the outer boundaries. The
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homogenization proess thus transformed ontat fores, loalized on the

�uid-struture interfaes and outer boundaries, into a body fore. It also

transformed PDEs governing the real �uid variables into �ltered PDEs

now governing the wavelet oe�ients (or low-frequeny approximations)

of the extended �uid variables.

Finally, as the wavelet Ψ (or saling funtion Φ) exhibits a well-loalized

support and a fast deay towards zero, it is fortunately not neessary to

mesh the whole spae R2

to ompute the homogenized �uid. Indeed, be-

yond a thin layer around the initial domain boundaries ∂ (Ω
f

[Ω
s

), the

homogenized �elds resulting from the onvolution produts will be almost

onstant or zero, given the previous extension of the �elds (�, �v, p). Be-

sides, the urrent work fouses on the behavior of the homogenized �uid

only within the interior domain Ω
f

[ Ω
s

.

Proof of Proposition 3.4.9 See Proposition 3.4.6 for the justi�ation of

the C

1

smoothness.

Remark 3.4.7 The spatially-�ltered PDEs presented in Proposition 3.4.9

are also valid for a (real and isotropi) saling funtion Φ
s

0

of lass C

1

,

with a well-loalized support and a fast deay towards zero.

The spatially-�ltered Euler ompressible equations are ompleted with the

following equation of state:

Equation of state for the homogenized �uid

Proposition 3.4.10 Spatially-�ltered equation of state

Starting with the (extended) barotropi equation of state

p = p

ref

+ 

2

son

(�� �

ref

); (3.126)

one obtains, with the analysing wavelet Ψ, the following spatially-�ltered

equation of state:

W[p℄(s; u; �; t) = 

2

son

W[�℄(s; u; �; t): (3.127)

Now, replaing the analysing wavelet Ψ with an isotropi saling fun-

tion Φ, the �ltered equation of state slightly hanges:

L[p℄(s; u; t) =

�

p

ref

� 

2

son

�

ref

�

s

Z

R2

Φ(y)
�

dy + 

2

son

L[�℄(s; u; t): (3.128)

Proof of Proposition 3.4.10 Starting with the analysing wavelet Ψ, one

an write, by using the linearity of onvolution produt on equation

(3.126):
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W[p℄(s; u; �; t) =

�

p

ref

� 

2

son

�

ref

�

W[1℄(s; u; �; t) + 

2

son

W[�℄(s; u; �; t);

(3.129)

=

�

p

ref

� 

2

son

�

ref

�

Z

R2

1

s

Ψ

�

R

��

x� u

s

�

�

dx+ 

2

son

W[�℄(s; u; �; t):

(3.130)

Introduing the a�ne funtion f

s;u;�

: x 7�! R

��

x�u

s

, whose (2 � 2)

Jaobian matrix is given by r f

s;u;�

(x) =

1

s

R

��

, a hange of variable an

be implemented in the integral of equation (3.130):

Z

R2

1

s

2

�

�

�det

�

R

��

�

�

�

�Ψ

�

R

��

x� u

s

�

�

dx =

Z

R2

Ψ(y)
�

dy: (3.131)

This hange of variable then leads to:

W[p℄(s; u; �; t) =

�

p

ref

� 

2

son

�

ref

�

s

Z

R2

Ψ(y)
�

dy + 

2

son

W[�℄(s; u; �; t); (3.132)

= 

2

son

W[�℄(s; u; �; t); (3.133)

where the wavelet zero-average ondition has been used to simplify the

result.

When onsidering an isotropi saling funtion Φ, this zero-average

ondition no longer holds. One thus obtains:

L[p℄(s; u; t) =

�

p

ref

� 

2

son

�

ref

�

s

Z

R2

Φ(y)
�

dy + 

2

son

L[�℄(s; u; t): (3.134)

This last proposition �nally onludes the wavelet-based homogenization

proess of the �uid. Now, before detailing the analysing wavelet Ψ and saling

funtion Φ, it is of high importane to disuss some of the ritial issues assoi-

ated to homogenization and multi-sale methods, that is to say the treatment

of boundary onditions, the losure between unresolved and resolved sales,

and nonlinearities.

3.5 Boundary onditions, losure between sales,

and nonlinearities

3.5.1 Boundary onditions and losure between sales

The �rst step of the homogenization proess, whih foused on the extension

of the original �uid equations, highlighted the important role played by the real

�uid dynami (and also kinemati) boundary onditions, through for instane
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the following boundary integral in the extended momentum balane equation

(3.60):

�

Z

∂ eΩ
f

[p℄

F



F

(

e

�)n

F!



F

(

e

�) · (

e

�) d

e

�; (3.135)

where it is realled that [p℄

F



F

: = p

F

� p



F

=

(

p� p

r

on ∂Ω
s

p� p

ref

on ∂Ω
f

n ∂Ω
s

.

This boundary integral ould be deomposed into a �rst integral on the

�uid-struture interfae ∂Ω
s

, and a seond integral on the outer boundary

∂Ω
f

n ∂Ω
s

. The urrent work fouses only on the inner boundaries of the

�uid ∂Ω
s

. The seond integral will thus be disarded, and lassial re�eting

onditions will be used on the outer boundaries.

The seond step of the homogenization proess, whih foused on the atual

�ltering of the extended equations, transformed ontat fores, de�ned on the

�uid-struture interfaes, into a body fore de�ned aross the whole domain:

8t 2 [0; T [, s > 0; � 2 [0; 2�[, u 2 Ω
f

[Ω
s

,

e

F

S�!F

(s; u; �; t) = �

Z

∂Ω
f

eΨ
�

s;�

(u� �) [p℄

F



F

(�; t) ·n

F!



F

(�; t) d�: (3.136)

This body fore, applied by the underlying solid obstales to the homoge-

nized �uid, depends on the real pressure �eld p, whih ontains all the possible

spatial sales that ould be aught with a DNS omputation of the original

�uid PDEs. However, the spatially-�ltered PDEs (3.123-3.124-3.127) now only

ompute a band-pass W[p℄(s; · ) or low-pass L[p℄(s; · ) �ltering of the original

�eld p. A losure expression between the unresolved and resolved sales of

the pressure �eld is thus required, as in any homogenization or multi-sale

method. Conversely to plain �ltering or averaging tehniques, CWT and its

inverse transform (2.158) bring us an analytial losure expression:

p (x; t) =

1

CΨ

Z

+1

0

�

Z

R2

Z

2�

0

W[p℄(s; u; �; t)�

1

s

Ψ

�

�

R

�

�

�1

x� u

s

�

d� du

�

ds

s

3

:

(3.137)

If both the analysing wavelet Ψ and its saling funtion Φ are real-valued

and isotropi, the reonstrution formula (3.137) ould also be written:

p(x; t) =

2�

CΨ

Z

s

0

0

�

Z

R2

W[p℄(s; u; t)�

1

s

Ψ

�

x� u

s

�

du

�

ds

s

3

+

�

CΨs
2

0

Z

R2

L[p℄ (s

0

; u; t)

1

s

0

Φ

�

x� u

s

0

�

du; (3.138)

where s

0

denotes the uto� sale of the low-pass �lter Φ
s

0

.
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It is thus possible, thanks to CWT, to reonstrut, at eah time step, the

mirosopi pressure �eld on the �uid inner boundaries, and to evaluate the

body fore applied by the underlying solid obstales. In other words, the real

�uid dynami boundary onditions are transferred into a body fore applied to

the homogenized �uid. In a similar way, it is also possible to reonstrut the

real �uid density (�) and momentum (�v) at eah time step, whih then allow to

ompute the boundary integrals assoiated to the solid medium displaement

U in the �ltered mass and momentum balane equations.

Nevertheless, one an immediately notie that, in order to ompute the

body fore (3.136) for a single sale s > 0, one shall exatly reonstrut the

mirosopi pressure �eld p, and thus ompute all its wavelets oe�ients

W[p℄(s; · ), for all sales s > 0. This would of ourse be too umbersome,

as it would be equivalent to a DNS omputation. To bypass this di�ulty, one

an either:

� approximate the reonstrution formula (3.137) by using a "well-hosen"

number of wavelets oe�ients (W[p℄(s

k

; · ))

1�k�N

, seleted on a "well-

hosen" sale range [s

1

; s

N

℄;

� disard, in equation (3.138), all wavelet oe�ients W[p℄(s; · ) with a

sale s below the uto� sale s

0

, thus only taking into aount the low-

frequeny approximation L[p℄(s

0

; · ) of the pressure �eld:

p(x) �

�

CΨs
2

0

Z

R2

L[p℄ (s

0

; u)

1

s

0

Φ

�

x� u

s

0

�

du: (3.139)

Both methods require to possess some a priori knowledge or insights on

the pressure �eld wavelengths spetrum. Furthermore, with the approxima-

tion (3.139), the seond method an be expeted to present a loss of auray

ompared to the �rst one. Nevertheless, the omputational gain is lear, as

the saling funtion allows to ompute just one the spatially-�ltered PDEs,

for a given uto� sale s

0

. Indeed, the low-frequeny approximation L[p℄(s

0

; · )

athes simultaneously all sales larger than s

0

. This also allows to avoid in-

terations between multiple sales in the spatially-�ltered equations assoiated

to a given sale s

i

.

Besides, as wavelet oe�ients derease towards zero in regions where the

�eld of interest is smooth, the veloity of the homogenized pressure waves

ould drastially inrease in regions where the real �uid density is onstant,

thus imposing a very small time step in the numerial method.

In order not to disard the wavelet oe�ients in approximation (3.139),

while bypassing very small time steps, one ould:

� rewrite the spatially-�ltered equations so as to ompute the addition

of the wavelet oe�ients W[f ℄(s; · ) and the low-frequeny approxima-

tion L[f ℄(s

0

; · ), with s 2℄0; s

0

[. This is done by hanging the unknowns

�

eΨ
�

s

� f

�

into

h�

eΨ
�

s

+

eΦ
�

s

0

�

� f

i

in equations (3.123-3.124-3.127).

Samy Mokhtari CHAPTER 3. MODELING 83



3.5. BOUNDARY CONDITIONS, CLOSURE BETWEEN SCALES, AND

NONLINEARITIES

� ompute the unknowns

h�

eΨ
�

s

k

+

eΦ
�

s

0

�

� f

i

= W[f ℄(s

k

; · ) + L[f ℄(s

0

; · ) for

multiple s

k

2℄0; s

0

[;

� ompute the low-frequeny approximation L[f ℄(s

0

; · ) on its own, and

then dedue the wavelet oe�ients by di�erene:

8s

k

2℄0; s

0

[, W[f ℄(s

k

; · ) = [W[f ℄(s

k

; · ) + L[f ℄(s

0

; · )℄� L[f ℄(s

0

; · ):

(3.140)

Suh a method would of ourse imply a signi�ant inrease in the om-

putational ost.

Remark 3.5.1 Coupling between the �uid and solid media

The ability to reonstrut, up to an approximation, the mirosopi

pressure �eld p allows to evaluate, at eah time step, and without any ad

ho model, the total fore applied by the real (reonstruted) �uid to the

solid medium:

F

F!S

=

Z

∂Ω
s

�p(�; t)n

S!F

(�; t) d�: (3.141)

This is a mandatory step in the design of a oupled �uid-struture

solver.

3.5.2 Treatment of nonlinearities

Let us now turn towards the question of nonlinearities, i.e. the onvetive

term in the �ltered momentum balane equation (3.124). It is realled that the

low-frequeny approximation of the onvetive term writes, with an isotropi

saling funtion Φ:

L[�v 
 v℄(s; u; t) =

�

eΦ
�

s

� (�v 
 v)

�

(u; t): (3.142)

In LES literature, this nonlinearity is �rst rewritten as follows:

L[�v 
 v℄ = L[�℄

e

L[v 
 v℄ (3.143)

= L[�℄

e

L[v℄


e

L[v℄ +

�

L[�℄

e

L[v 
 v℄� L[�℄

e

L[v℄


e

L[v℄

�

; (3.144)

where

e

L here denotes the Favre average:

e

L[v℄ =

L[�v℄

L[�℄

: (3.145)
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The term

�

L[�℄

e

L[v 
 v℄� L[�℄

e

L[v℄


e

L[v℄

�

is then transferred into the right-

hand side of the �ltered momentum balane equation, and gives rise to the

subgrid-sale tensor, whih ontains the information about the energy dissipa-

tion indued by turbulene. As the urrent work fouses on a fast transient

pressure wave within a ompressible �ow, visosity and turbulene e�ets are

onsidered negligible ompared to pressure gradients. In the following, the

nonlinear onvetive term will thus be approximated as follows:

L[�℄

e

L[v 
 v℄ � L[�℄

e

L[v℄


e

L[v℄: (3.146)

In ases where turbulene e�ets annot be negleted, the nonlinear term

L[�v
 v℄ an be expliitly omputed by reonstruting, at eah time step, the

real �uid density � and veloity v via the reonstrution formula (3.139), and

then omputing the low-frequeny approximation of the onvetive term �v
v.

This would of ourse represent a signi�ant omputational ost.

To summarize and onlude this setion, the use of CWT as homogenization

tool allowed to:

� rigorously derive spatially-�ltered PDEs governing an equivalent homog-

enized �uid, whose onservative variables are the wavelets oe�ients

W[f ℄(s; · ) or the low-frequeny approximation L[f ℄(s

0

; · ) of the original

�uid variables;

� transfer the real �uid (inner) dynami and kinemati boundary onditions

into the homogenized �uid, by means of respetively a body fore applied

by the underlying solid obstales, and boundary integrals in the right-

hand side of the �ltered balane equations;

� evaluate, up to an approximation, this body fore and these boundary in-

tegrals without any ad ho model, thanks to an inverse wavelet transform

onneting the unresolved and resolved sales of the �uid variables.

Now, before speifying the analysing wavelet and saling funtion hosen

to implement the model, and the numerial methods used for the omputation

of the �ltered PDEs, some remarks on the model "analytial" onvergene and

auray an be highlighted.

3.6 Model onvergene and auray riteria

The aim of this setion is to:

� on�rm the intuitive idea that, when the number of wavelet oe�ients

and the sale range [s

min

; s

max

℄ inrease, or equivalently, when the saling

funtion uto� sale s

0

dereases towards 0, the wavelet-based model

onverges towards Diret Numerial Simulation (DNS);
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� identify auray riteria to measure the analytial error between the

wavelet-based model and DNS.

To reah these goals, a point-wise onvergene is �rst proven (with respet

to the uto� sale s

0

) between the wavelet-based model and DNS. Several

analytial auray riteria are then introdued, based on a point-wise error, a

L

2

-norm error, and a fore-wise error.

3.6.1 Convergene towards DNS

To start with the onvergene issue, it is realled that, given a pair of

real isotropi (and admissible) analysing wavelet Ψ and saling funtion Φ, the

error ommitted in reonstruting a signal f 2 L

2

(R2

) with its low-frequeny

approximation L[f ℄(s

0

; · ), an be evaluated as follows:

8x 2 R
2

, f(x)�

�

CΨs
2

0

Z

R2

L[f ℄ (s

0

; u)

1

s

0

Φ

�

x� u

s

0

�

du

=

2�

CΨ

Z

s

0

0

�

Z

R2

W[f ℄(s; u)�

1

s

Ψ

�

x� u

s

�

du

�

ds

s

3

: (3.147)

Proposition 3.6.1 thoroughly proves how this error tends towards zero when

the uto� sale s

0

dereases towards zero.

Proposition 3.6.1 Point-wise onvergene towards DNS

Consider Ψ an admissible (f. equation (2.157)) real and isotropi

wavelet, and Φ its assoiated real and isotropi saling funtion. For all

f 2 L

2

(R
2

), one has the following point-wise onvergene between the

reonstrution based on the low-frequeny approximation L[f ℄(s

0

; · ) and

the funtion f :

8x 2 R
2

, lim

s

0

!0

�

�

�

�

�

f(x)�

�

CΨs
2

0

Z

R2

L[f ℄ (s

0

; u)

1

s

0

Φ

�

x� u

s

0

�

du

�

�

�

�

�

= 0: (3.148)

Proof of Proposition 3.6.1 The proof of this point-wise onvergene is

designed as follows:

� step 1: apply Fourier transform to the right-hand side of equation

(3.147); this �rst requires to justify that this term is integrable or

square-integrable in order to possess a Fourier transform;

� step 2: use the wavelet admissibility ondition (2.157) to prove that

the obtained Fourier transform indeed onverges towards zero when

the uto� sale s

0

dereases towards zero;
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� step 3: apply an inverse Fourier transform and use a dominated

onvergene theorem to onlude.

Step 1: Fourier transform

The starting point onsists in applying Fourier transform to the integral

in the right-hand side of equation (3.147). To this end, let us �rst notie

that:

W[f ℄(s; u) =

�

f �

eΨ
�

s

�

(u): (3.149)

Z

R2

W[f ℄(s; u)�

1

s

Ψ

�

x� u

s

�

du = [W[f ℄(s; · ) � Ψ
s

℄ (x): (3.150)

As the funtion f belongs to the Lebesgue spae L

2

(R2

) and the

wavelet Ψ to L

1

(R2

)\L

2

(R2

), Young's inequality ensures that the funtion

u 7�! W[f ℄(s; u) belongs to L

2

(R2

)\L

1

(R2

). Applying one again Young's

inequality allows to state that the funtion x 7�! [W[f ℄(s; · ) � Ψ
s

℄ (x) also

belongs to L

2

(R2

) \ L

1

(R2

). One an thus apply a Fourier transform to

the right-hand side of equation (3.147), whih, thanks to Fubini's theorem,

formally leads to:

F

"

Z

s

0

0

�

Z

R2

W[f ℄(s; u)�

1

s

Ψ

�

· � u

s

�

du

�

ds

s

3

#

(k)

= F

"

Z

s

0

0

(W[f ℄(s; · ) � Ψ
s

) ( · )

ds

s

3

#

(k);

=

Z

s

0

0

F [W[f ℄(s; · )℄ (k)� F [Ψ
s

℄ (k)

ds

s

3

: (3.151)

The onvergene of the integral in equation (3.151) will be proven in a

few steps. To this end, one an notie that:

F [Ψ
s

℄ (k) = F

�

1

s

Ψ

�

·

s

��

(k); (3.152)

= s�F [Ψ℄ (sk): (3.153)

F [W[f ℄(s; · )℄ (k) = F

h

f �

eΨ
�

s

i

(k); (3.154)

= F [f ℄(k)� sF

h

eΨ
�

i

(sk); (3.155)

= F [f ℄(k)� sF [Ψ℄ (sk)
�

; (3.156)

where it is realled that

eΨ(x) = Ψ(�x). One an now write:
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F

"

Z

s

0

0

�

Z

R2

W[f ℄(s; u)�

1

s

Ψ

�

· � u

s

�

du

�

ds

s

3

#

(k);

=

Z

s

0

0

F [f ℄(k)� s

2

jF [Ψ℄(sk)j
2

ds

s

3

;

= F [f ℄(k)�

Z

s

0

0

jF [Ψ℄(sk)j
2

s

ds: (3.157)

The analysing wavelet being here isotropi, the following hange of

variables an be used for all vetor k 2 R2

n f(0; 0)g:

Z

s

0

0

jF [Ψ℄(sk)j
2

s

ds =

Z

s

0

0

jF [Ψ℄ (skkk)j
2

s

ds; (3.158)

=

Z

s

0

kkk

0

jF [Ψ℄(�)j
2

�

kkk

1

kkk

d�; (3.159)

=

Z

s

0

kkk

0

jF [Ψ℄(�)j
2

�

d�: (3.160)

Step 2: wavelet admissibility ondition

If k = 0, one has in equation (3.157), thanks to the zero-average on-

dition satis�ed by the wavelet, F [Ψ℄ (0) = 0. Now, using the wavelet ad-

missibility ondition (2.157), that is to say:

CΨ : =

Z

R2

jF [Ψ℄(kkk)j
2

kkk

2

dk; (3.161)

= 2�

Z

+1

0

jF [Ψ℄(r)j
2

r

2

r dr; (3.162)

= 2�

Z

+1

0

jF [Ψ℄(r)j
2

r

dr; (3.163)

< +1; (3.164)

it an be stated that the funtion � 7�!

j

F

[

Ψ
℄

(�)

j

2

�

, visible in equation (3.160),

is integrable on ℄0;+1[. As a onsequene, one has, for all k 2 R2

nf(0; 0)g:

lim

s

0

�!0

Z

s

0

kkk

0

jF [Ψ℄(�)j
2

�

d� = lim

s

0

!0

 

Z

+1

0

jF [Ψ℄(�)j
2

�

d� �

Z

+1

s

0

kkk

jF [Ψ℄(�)j
2

�

d�

!

;

(3.165)

= 0: (3.166)
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It is thus proved that, for all k 2 R2

:

lim

s

0

�!0

F

"

Z

s

0

0

�

Z

R2

W[f ℄(s; u)�

1

s

Ψ

�

· � u

s

�

du

�

ds

s

3

#

(k) = 0: (3.167)

Step 3: inverse Fourier transform + dominating onvergene theorem

Now, using an inverse Fourier transform, one an write for all x 2 R2

:

Z

s

0

0

�

Z

R2

W[f ℄(s; u)�

1

s

Ψ

�

x� u

s

�

du

�

ds

s

3

= F

�1

"

F

"

Z

s

0

0

�

Z

R2

W[f ℄(s; u)�

1

s

Ψ

�

· � u

s

�

du

�

ds

s

3

#

( · )

#

(x)

=

1

(2�)

2

Z

R2

 

F [f ℄(k)�

Z

s

0

0

jF [Ψ℄(sk)j
2

s

ds

!

e

ik ·x

dk: (3.168)

It has already been proven that the modulus of the funtion within the

integral in the right-hand side of equation (3.168) onverges towards zero

when the uto� sale s

0

tends towards zero. Moreover, one an write,

using again the wavelet admissibility onstant CΨ, that for all k 2 R2

:

�

�

�

�

�

F [f ℄(k)�

Z

s

0

0

jF [Ψ℄(sk)j
2

s

ds� e

ik ·x

�

�

�

�

�

= jF [f ℄(k)j �

Z

s

0

0

jF [Ψ℄(sk)j
2

s

ds;

� jF [f ℄(k)j �

CΨ

2�

: (3.169)

The Fourier transform of f is a bounded and ontinuous funtion on

R2

. It is thus integrable on eah ompat subset of R2

. As a onsequene,

the funtion k 7�! jF [f ℄(k)j �

C

Ψ
2�

is a loally integrable and dominating

funtion. Thanks to the dominated onvergene theorem, one an now

pass the limit within the integral in the right-hand side of equation (3.168):

lim

s

0

�!0

Z

R2

 

F [f ℄(k)�

Z

s

0

0

jF [Ψ℄(sk)j
2

s

ds

!

e

ik ·x

dk

=

Z

R2

 

lim

s

0

�!0

 

F [f ℄(k)�

Z

s

0

0

jF [Ψ℄(sk)j
2

s

ds

!

e

ik ·x

!

dk; (3.170)

whih �nally leads to the result:

lim

s

0

�!0

Z

s

0

0

�

Z

R2

W[f ℄(s; u)�

1

s

Ψ

�

x� u

s

�

du

�

ds

s

3

= 0: (3.171)
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This onludes the proof on the "analytial" onvergene of the wavelet-

based model towards Diret Numerial Simulation (DNS). It is here worth

notiing that the uto� sale s

0

is atually losely linked to the mesh size h.

This link will be espeially emphasized when disussing the stability of the

numerial methods, later in this hapter. Thus, in order to derease s

0

and

ath all possible wavelengths, the mesh has to be re�ned aordingly. The

onvergene of the reonstrution proess based on the low-frequeny approx-

imation is thus a onvergene with respet to both the uto� sale s

0

and the

mesh size h.

Remark 3.6.1 Convergene in L

2

-norm

Thanks to the fat that CWT preserves the L

2

-norm of a �nite-energy

signal f 2 L

2

(R2

) (f. energy identity (2.159)), one ould also de�ne a

onvergene between kfk

L

2

(R2

)

and kW[f ℄(s; · )k

L

2

(R2

)

.

These propositions and remarks on the model "analytial" onvergene be-

ing stated, let us now detail some auray riteria that will be used in hapter

4 to assess the model apabilities.

3.6.2 Auray riteria

In the following, p

ref

denotes a referene pressure �eld de�ned at the miro-

sopi sale. Let us denote by �

min

the minimum wavelength ontained within

this pressure �eld, and s

min

the positive sale parameter suh that the uto�

wavelength of the saling funtion Φ satis�es:

�

utoff

(Φ
s

min

) = s

min

� �

utoff

(Φ) ; (3.172)

. �

min

: (3.173)

Point-wise auray

Given the above assumption, the low-frequeny approximation

L[p℄ (s

min

; · ) thus allows to reah the "best" approximation of the mi-

rosopi pressure �eld p

ref

with equation (3.139). Thus, thanks to the

reonstrution formula (3.138), one an state that:

p

ref

(x)� p

s

min

(x) (3.174)

: = p

ref

(x)�

�

CΨs
2

min

Z

R2

L[p

s

min

℄ (s

min

; u)

1

s

min

Φ

�

x� u

s

min

�

du; (3.175)

=

2�

CΨ

Z

s

min

0

�

Z

R2

W[p

s

min

℄(s; u)�

1

s

Ψ

�

x� u

s

�

du

�

ds

s

3

; (3.176)

� 0: (3.177)
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Then, for any omputation of the homogenized �uid at a larger uto� sale

s

0

� s

min

, one an de�ne the point-wise error as follows:

p

ref

(x)� p

s

0

(x) (3.178)

: = p

ref

(x)�

�

CΨs
2

0

Z

R2

L[p

s

min

℄ (s

0

; u)

1

s

0

Φ

�

x� u

s

0

�

du; (3.179)

�

2�

CΨ

Z

s

0

s

min

�

Z

R2

W[p

s

min

℄(s; u)�

1

s

Ψ

�

x� u

s

�

du

�

ds

s

3

; (3.180)

where the wavelet oe�ients W[p

s

min

℄(s; · ) are not obtained with the ompu-

tation of the spatially-�ltered PDEs at a given sale s 2 [s

min

; s

0

℄, but rather

diretly omputed from the "best" approximation p

s

min

. One an then study

the behavior of the funtion

s

0

7�!

2�

CΨ

Z

s

0

s

min

�

Z

R2

W[p

s

min

℄(s; u)�

1

s

Ψ

�

x� u

s

�

du

�

ds

s

3

(3.181)

to see how the point-wise error jp

ref

(x)� p

s

0

(x)j deteriorates when the uto�

sale s

0

inreases, i.e. when the smaller wavelengths are progressively dis-

arded.

L

2

auray

Beside this point-wise auray, one an also de�ne a L

2

auray. Indeed,

thanks to the energy identity (2.159), one an study the funtion (here written

with an isotropi wavelet):

s

0

7�! kp

ref

k

2

L

2

�

2�

CΨ

Z

s

0

s

min

kW[p

s

min

℄(s; · )k

2

L

2

ds

s

3

; (3.182)

whih shall derease from kp

ref

k

2

L

2

(s

0

= s

min

) to zero (s

0

�! +1).

Fore-wise auray

One ould also de�ne an auray with respet to the fore applied by the

real �uid to the solid medium:

8i 2 f1; 2g,

�

�

�

�

(F

F!S

)

ref

� (F

F!S

)

s

0

�

· e

i

�

�

� =

�

�

�

�

Z

∂Ω
s

� (p

ref

� p

s

0

) (�; t) (n

S!F

(�; t) · e

i

) d�

�

�

�

�

;

(3.183)

�

Z

∂Ω
s

j(p

ref

� p

s

0

) (�; t) (n

S!F

(�; t) · e

i

)j d�;

(3.184)
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where we reall that p

s

0

=

�

C

Ψ
s

2

0

R

R2

L[p

s

min

℄ (s

0

; u)

1

s

0

Φ

�

x�u

s

0

�

du.

It is also possible to look at the time integration of the fore applied by the

real �uid to the solid medium, whih ontributes to its momentum:

�

�

�

�

Z

t

b

t

a

�

(F

F!S

)

ref

� (F

F!S

)

s

0

�

· e

i

dt

�

�

�

�

�

Z

t

b

t

a

�

�

�

�

(F

F!S

)

ref

� (F

F!S

)

s

0

�

· e

i

�

�

� dt;

(3.185)

: =







�

(F

F!S

)

ref

� (F

F!S

)

s

0

�

· e

i







L

1

[t

a

;t

b

℄

:

(3.186)

These di�erent auray riteria being stated, let us �nally desribe the

analysing wavelet and saling funtion hosen to implement the model.

3.7 Analysing wavelet and saling funtion

In the urrent work, CWT aims at �ltering �elds that do not possess any

oriented feature. Indeed, both the analysing wavelet and saling funtion shall

be able to �observe� pressure waves propagating in di�erent diretions simulta-

neously (re�etion/transmission on obstales). Furthermore, as detailed during

the derivation of the spatially-�ltered Euler ompressible equations, both the

analysing wavelet and saling funtion shall satisfy the following properties:

� C

1

smoothness;

� good loalization in the spatial domain;

� fast deay towards zero.

Thus, the Mexian hat wavelet (Figure 3.3), whih is an isotropi, real-

valued wavelet of lass C

1

, with a fast deay towards zero, appears perfetly

suited for the model. The de�nition of the 2D Mexian hat is realled below,

both in the physial and spetral domains.

De�nition 3.7.1 2D Mexian hat wavelet

The Mexian hat wavelet is de�ned, with a L

2

-normalization in the

physial domain, as follows:

Ψ(x) =

p

2

�

p

�

 

1�

kxk

2

2�

2

!

e

�

kxk

2

2�

2

;

F [Ψ℄ (k) = �

3

p

2�kkk

2

e

�

�

2

kkk

2

2

:

(3.187)

(3.188)
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Figure 3.3: Cutaway of the 2D Mexian hat (a) and its Fourier transform (b).

This wavelet is obtained by omputing the Laplaian of a Gaussian funtion,

whose standard deviation is here denoted by � > 0. As any analysing wavelet,

the Mexian hat exhibits a band-pass behavior in the spetral domain, as

detailed in Tables 3.1-3.2 (with a �3 dB bandwidth onvention).

Proposition 3.7.1 Filtering properties of the Mexian hat (� = 1)

Peak wave vetor Bandwidth - lower bound Bandwidth - upper bound

kkΨk =

p

2

�

kkΨkmin

� 0:875 m

�1

kkΨkmax

� 2:04 m

�1

Table 3.1: Filtering properties of the Mexian hat wavelet (1/2)

Peak wavelength Bandwidth - lower bound Bandwidth - upper bound

�Ψ = ��

p

2

�

�Ψ

�

min

� 3:08 m

�

�Ψ

�

max

� 7:18 m

Table 3.2: Filtering properties of the Mexian hat wavelet (2/2)

Proof of Proposition 3.7.1 The above results are obtained by identifying

the �3 dB bandwidth on the urve of the Mexian hat Fourier transform.

Beside its smoothness and isotropy, the Mexian hat wavelet also satis�es

the admissibility ondition (2.157), whih is a requirement for the use of an

inverse wavelet transform.

Proposition 3.7.2 2D Mexian hat admissibility onstant

The 2D Mexian hat is an admissible wavelet, with:

CΨ = 2�

2

�

2

: (3.189)
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Proof of Proposition 3.7.2 Straight appliation of the de�nition of the

admissibility onstant in equation (2.157).

Regarding now the saling funtion assoiated to the Mexian hat, hereafter

displayed in Figure 3.4, it is de�ned in the spetral domain by:

De�nition 3.7.2 2D Mexian hat saling funtion

F [Φ℄(k) = �

2

p

2�

�

kkk

2

+

1

�

2

�

1

2

e

�

�

2

kkk

2

2

: (3.190)
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Figure 3.4: Cutaway of the 2D saling funtion (a) and its Fourier transf. (b).

As the analysing wavelet Ψ, the saling funtion Φ is also isotropi, real-

valued, of lass C

1

, and exhibits a fast deay towards zero. However, onversely

to the wavelet, it does not possess any analytial formula in the physial do-

main. Its representation in Figure 3.4a an thus only be obtained with an

inverse Fast Fourier Transform (FFT).

Remark 3.7.1 Approximation of the saling funtion in the physial

domain

In numerial implementations, 2D FFT/FFT

�1

algorithms, whih

lassially rely on suessive 1D FFT/FFT

�1

omputations, may dete-

riorate the isotropy of the saling funtion. To prevent this phenomenon,

one an approximate the saling funtion behavior in the physial domain

(for � = 1) via the following analytial and isotropi formula:

Φ
approx

(x) =

p

2

p

1:09

0

B

�

1�

kxk

2

2

�

1:785�1:09�

p

2

�

2

1

C

A

e

�

kxk

2

2(1:09�)

2

: (3.191)

As displayed in Figure 3.5b, the approximation de�ned by equation

(3.191) satis�es the following auray result:

jΦ
approx

� Φj (kxk) �
1

100

Φ(0): (3.192)
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Figure 3.5: Cutaway of the saling funtion Φ and its approximation Φ
approx

(a), and their di�erene Φ
approx

� Φ (b).

Finally, onversely to the analysing wavelet Ψ, the saling funtion is a low-

pass �lter. Its harateristis are summarized in Table 3.3 below (with a �3 dB

bandwidth onvention).

Proposition 3.7.3 Filtering properties of the saling funtion

Cuto� wave vetor Cuto� wavelength

kkΦk . 1:285 m

�1

�Φ & 4:85 m

Table 3.3: Filtering properties of the saling funtion (� = 1)

Proof of Proposition 3.7.3 The above results are obtained by identifying

the �3 dB bandwidth on the urve of the saling funtion Fourier trans-

form.

Remark 3.7.2 Loss of isotropy aused by diretional splitting

It is here worth highlighting that the use of �nite-volume shemes with

diretional splitting may deteriorate the isotropy of the saling funtion.

Indeed, with suh numerial methods, only �uxes oriented along the Carte-

sian diretions are taken into aount. The impat of the ells verties is

thus negleted. Therefore, in order to transport a quantity of interest from

the ell 

(i;j)

to the ell 

(i+1;j+1)

, one has to transport this quantity along

eah Cartesian diretion. If this quantity is �ltered with an isotropi �lter,

the uto� frequeny or wave vetor is thus applied along eah diretion.

As a onsequene, larger frequenies and smaller wavelengths an be taken

into aount by the saling funtion:

kkΦknum =

q

k

2

x

+ k

2

y

; (3.193)

= kkΦk
p

2; (3.194)

whih leads to the following "numerial" uto� values:
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Cuto� wave vetor Cuto� wavelength

kkΦknum . 1:83 m

�1

�

�Φ

�

num

& 3:43 m

Table 3.4: Saling funtion uto� values with diretional splitting (� = 1)

This remark thus onludes the setion dediated to the hoie of the

analysing wavelet and saling funtion. It is now high time to desribe the

numerial methods that will be implemented to solve on the one hand, the

solid medium dynami equation, and on the other hand, the homogenized

�uid �ltered PDEs. To this end, let us �rst summarize the model assumptions

and equations.

3.8 Summary of the model assumptions and

equations

The wavelet-based homogenized and multi-sale model at the ore of this

work has been designed within a 2D framework:

Figure 3.6: Illustration of a 2D f�uid + solidg geometry.

Assumptions on the 2D geometry

� the �uid domain Ω
f

is an open bounded and onneted spae of R2

;

� the solid domain Ω
s

is an open bounded and disonneted spae of R2

:

Ω
s

= [

i

Ω
s

i

, with Ω
s

i

\

i6=j

Ω
s

j

= ;. No periodiity or sale separation

assumptions are here required.

Assumptions and equations for the solid medium

� the solid medium is omposed of the disjoint reunion of multiple disks.

These disks are onsidered as rigid and homogeneous bodies;

� the distane between neighboring disks, while not neessarily periodi, is

assumed onstant (f. spaer grids in fuel assemblies); this assumption

ould be easily bypassed by onsidering an individual displaement �eld

for eah disk (without impats), with no hange to the wavelet-based

model;
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� the whole array is modeled as a rigid body animated with two degrees

of freedom (two translations). Its dynami equilibrium is governed by a

seond order linear di�erential equation:

8if1; 2g,

�

U

i

+ 2�!

0

_

U

i

+ !

2

0

U

i

=

1

m

�

F

F!S

· e

i

�

: (3.195)

Assumptions and equations for the �uid

� ompressible single-phase �ow;

� the real �uid is onsidered invisid: visosity and turbulene e�ets are

negligible ompared to pressure gradients;

� gravity is negligible ompared to pressure gradients;

� ondution heat transfer is negligible on the time sale at study;

� the real �uid satis�es a barotropi equation of state.

� the homogenized �uid is shown to be governed (in a strong sense) by the

following spatially-�ltered Euler ompressible equations within the inner

domain Ω
f

[Ω
s

(here written with an isotropi saling funtion Φ):

�nd the homogenized �uid onservative variables

�

L[�℄(s; · ) L[�v

x

℄(s; · ) L[�v

y

℄(s; · )

�

T

suh that, for all s > 0,

u 2 Ω
f

[ Ω
s

, and t � 0:

∂
t

L[�℄(s; u; t) + div (L [�v℄) (s; u; t)

= �

Z

∂Ω
s

eΦ
�

s

(u� �)[�℄

F

S

[∂
t

U(t) ·n

F!S

(�; t)℄ d�; (3.196)

∂
t

L [�v℄ (s; u; t) + div (L [�v 
 v℄) (s; u; t) +r (L[p℄) (s; u; t)

= �

Z

∂Ω
f

eΦ
�

s

(u� �) [p℄

F



F

(�; t) ·n

F!



F

(�; t) d�

�

Z

∂Ω
s

eΦ
�

s

(u� �) [�v℄

F

S

(�) [∂
t

U(t) ·n

F!S

(�; t)℄ d�: (3.197)

where it is realled that L[f ℄(s; u; t) =

�

f �

eΦ
�

s

�

(u; t) denotes the low-

frequeny approximation of f .

� the underlying solid obstales are shown to apply a body fore to the

homogenized �uid:

e

F

S�!F

(s; u; t) = �

Z

∂Ω
f

eΦ
�

s

(u� �) [p℄

F



F

(�; t) ·n

F!



F

(�; t) d�: (3.198)
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� for the homogenized �uid problem to be well-posed, a losure equation

between resolved and unresolved sales is required for the onservative

variables (�; �v; p). Thanks to an inverse wavelet transform, this ana-

lytial losure equation writes, with only an isotropi saling funtion

Φ:

p(x) �

�

CΨs
2

0

Z

R2

L[p℄ (s

0

; u)

1

s

0

Φ

�

x� u

s

0

�

du;

�

�

CΨs
2

0

F

�1

[F [L[p℄ (s

0

; · )℄ ( · )� s

0

F [Φ℄ (s
0

� · )℄ (x):

(3.199)

(3.200)

� as turbulene is negleted, the treatment of the nonlinear onvetive term

is simpli�ed into:

L[�v 
 v℄ : = L[�℄

e

L[v 
 v℄;

� L[�℄

e

L[v℄


e

L[v℄;

(3.201)

(3.202)

where

e

L denotes the Favre average.

� the homogenized �uid is shown to satisfy a spatially-�ltered barotropi

equation of state (here written with an isotropi saling funtion):

L[p℄(s; u; t) =

�

p

ref

� 

2

son

�

ref

�

s

Z

R2

Φ(y)
�

dy + 

2

son

L[�℄(s; u; t):

(3.203)

� as this work fouses on the behavior of the homogenized �uid within the

inner domain Ω
f

[ Ω
s

, only the omponent of the body fore (3.198)

assoiated to the �uid-struture interfae ∂Ω
s

is hereafter onsidered.

The other omponent is disarded, and replaed by lassial re�etion

onditions on the outer boundary ∂Ω
f

n ∂Ω
s

.

All the model assumptions and equations being realled, let us now detail

the numerial methods.

3.9 Numerial methods

This setion presents the numerial methods hosen to solve the solid and

�uid equations, and gives some insights on the major numerial hallenges

faed by the wavelet-based model. The urrent setion is thus organized as

follows:

� the �rst subsetion realls the lassial Newmark algorithm, here hosen

to solve the solid medium linear di�erential equation;
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� it is followed by a 1st order �nite-volume sheme, here hosen to solve the

homogenized �uid PDEs; this sheme is based on a Godunov's method

and an expliit time integration, and uses an approximate Riemann solver

(namely Rusanov) to ompute the numerial �uxes;

� the third subsetion then emphasizes the issue of stability, whih is ritial

for expliit shemes;

� and �nally, the fous is put on the risk of aliasing assoiated to the use

of FFT algorithms with the saling funtion Φ
s

0

, whose support in the

frequeny domain may exeed the range allowed by Nyquist�Shannon

sampling theorem;

3.9.1 Solid medium: Newmark method

In the urrent work, the solid medium is animated with two degrees of

freedom, i.e. horizontal and vertial translations, whih are governed by the

following linear di�erential equation:

8i 2 f1; 2g, m

�

U

i

+ 

_

U

i

+ kU

i

= F

F!S

· e

i

: (3.204)

To simplify notations, we hereafter denote A the aeleration, V the velo-

ity, and D the displaement. Equation (3.204) is lassially omputed with a

Newmark algorithm:

� the solution being known at t = t

n

, either in aeleration A

n

or displae-

ment D

n

, one predits the next values of the displaement and veloity

based on the aeleration pro�le on the time step [t

n

; t

n+1

℄:

D

n+1

= D

n

+∆tV
n

+

∆t2

2

[(1� 2�)A

n

+ 2�A

n+1

℄ ; (3.205)

=

f

D

n+1

+ �∆t
2

A

n+1

; (3.206)

V

n+1

= V

n

+∆t [(1� )A
n

+ A

n+1

℄ ; (3.207)

=

e

V

n+1

+ ∆tA
n+1

; (3.208)

where

f

D

n+1

and

e

V

n+1

are the predited values of the displaement and ve-

loity, and � and  are two parameters ontrolling the algorithm stability.

For a displaement-oriented resolution, one an write:

A

n+1

=

1

�∆t2

�

D

n+1

�

f

D

n+1

�

; (3.209)

V

n+1

=

e

V

n+1

+



�∆t

�

D

n+1

�

f

D

n+1

�

: (3.210)
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� given the predited values

f

D

n+1

and

e

V

n+1

, the equilibrium equation at

t = t

n+1

writes:

m

�∆t2

�

D

n+1

�

f

D

n+1

�

+ 

 

e

V

n+1

+



�∆t

�

D

n+1

�

f

D

n+1

�

!

+kD

n+1

= F

n+1

;

(3.211)

"

m

�∆t2
+

 

�∆t
+ k

#

D

n+1

= F

n+1

+

m

�∆t2
f

D

n+1

+ 

 



�∆t

f

D

n+1

�

e

V

n+1

!

;

(3.212)

or equivalently, in a more ompat form:

e

kD

n+1

=

e

F

n+1

: (3.213)

� one D

n+1

is omputed from equation (3.213), one updates the aelera-

tion and veloity at t

n+1

with equations (3.209-3.210).

Depending on the values hosen for the parameters  and �, Newmark

algorithm is known to be:

� unonditionally stable if

1

2

�  � 2�;

� stable if  �

1

2

and � <



2

, under the additional ondition:

!

0

∆t �

s

2

 � 2�

: (3.214)

The values  =

1

2

and � =

1

4

are ommonly used to reah an unonditional

stability.

3.9.2 Homogenized �uid: Godunov's method

Let us now turn towards the omputation of the homogenized �uid PDEs.

All the spatially-�ltered equations, written with an isotropi saling funtion

Φ, are realled below:

� the �ltered mass balane equation governing L[�℄ (s

0

; · ):

∂
t

L[�℄ (s

0

; · ) + ∂
x

�

L[�℄

e

L [v

x

℄

�

(s

0

; · ) + ∂
y

�

L[�℄

e

L [v

y

℄

�

(s

0

; · )

= �

Z

∂Ω
s

eΦ
�

s

0

(u� �)[�℄

F

S

(�; t) [∂
t

U(t) ·n

F!S

(�; t)℄ d�; (3.215)
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� the �ltered momentum balane equation governing L[�v

x

℄ (s

0

; · ):

∂
t

�

L[�℄

e

L[v

x

℄

�

(s

0

; · )+∂
x

�

L[�℄

e

L[v

x

℄

2

+ L[p℄

�

(s

0

; · )+∂
y

�

L[�℄

e

L[v

x

℄

e

L [v

y

℄

�

(s

0

; · )

= �

Z

∂Ω
s

eΦ
�

s

0

( · � �) [p℄

F

S

(�; t)

�

n

F!S

(�; t) · e

x

�

d�

�

Z

∂Ω
s

eΦ
�

s

0

(u� �) [∂
t

U(t) ·n

F!S

(�; t)℄

h

�v · e

x

i

F

S

(�; t) d�; (3.216)

� the �ltered momentum balane equation governing L[�v

y

℄ (s

0

; · ):

∂
t

�

L[�℄

e

L[v

y

℄

�

(s

0

; · )+∂
x

�

L[�℄

e

L[v

y

℄

e

L [v

x

℄

�

(s

0

; · )+∂
y

�

L[�℄

e

L[v

y

℄

2

+ L[p℄

�

(s

0

; · )

= �

Z

∂Ω
s

eΦ
�

s

0

( · � �) [p℄

F

S

(�; t)

�

n

F!S

(�; t) · e

y

�

d�

�

Z

∂Ω
s

eΦ
�

s

0

(u� �) [∂
t

U(t) ·n

F!S

(�; t)℄

h

�v · e

y

i

F

S

(�; t) d�; (3.217)

� the �ltered barotropi equation of state (here normalized with respet to

the mean of the saling funtion):

1

s

0

R

R2

Φ(x)� dx
L[p℄ (s

0

; · ) =

�

p

ref

� 

2

son

�

ref

�

+



2

son

s

0

R

R2

Φ(x)� dx
L[�℄ (s

0

; · ) :

(3.218)

Spatial disretization: 1st order �nite-volume sheme

As lassially done in the study of hyperboli system of onservation laws,

the homogenized �uid equations will hereafter be disretized in spae via a

�nite-volume method with diretional splitting. Thanks to the homogenization

proess, this �nite-volume method an be assoiated to a plain 2D regular

Cartesian grid, as illustrated below.

x

i�

1

2

x

i+

1

2

ell 

i;j+1

(x

i

; y

j+1

)

y

j+

1

2

y

j+

1

2

ell 

i�1;j

ell 

i;j

ell 

i+1;j

(x

i�1

; y

j

) (x

i

; y

j

) (x

i+1

; y

j

)

y

j�

1

2

y

j�

1

2

ell 

i;j�1

(x

i

; y

j�1

)

x

i�

1

2

x

i+

1

2

The unknowns will be approximated by onstants on eah ell, leading to

a 1st order sheme.
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Time disretization: Euler expliit sheme

As for the time disretization, an Euler expliit sheme is hosen onsidering

the physis at study. Indeed, for the numerial method to be aurate, the time

step ∆t is �rst restrited by the pressure waves veloities, in order to prevent

these waves from exiting a ell during a single time step. This restrition on

∆t allows at the same time to satisfy the Courant-Friedrihs-Lewy (C.F.L.)

ondition whih ensures the stability of the expliit sheme. The de�nition of

this C.F.L. ondition will be realled in the following setion. Finally, another

advantage of expliit shemes is their ability to avoid any matrix inversion

proess.

Godunov's sheme

Thus, the 1st order �nite-volume sheme with Euler expliit time integra-

tion an be summarized into the following Godunov's sheme:

for eah ell 

i;j

:

(L)

n+1

i;j

= (L)

n

i;j

�

∆tn

∆x

�

G

n

i+

1

2

;j

� G

n

i�

1

2

;j

�

�

∆tn

∆y

�

H

n

i;j+

1

2

�H

n

i;j�

1

2

�

+∆t
n

0

B

�

S

0

S

1

S

2

1

C

A

n

i;j

;

(3.219)

where:

� ∆x=∆y and ∆t denote respetively the spatial and time steps;

� L denotes the homogenized �uid onservative variables:

L =

�

L[�℄ L[�v

x

℄ L[�v

y

℄

�

T

(s

0

; · ); (3.220)

� G

i+

1

2

;j

and G

i�

1

2

;j

denote the horizontal �uxes exhanged at the interfaes

with the right and left neighboring ells;

� H

i;j+

1

2

and H

i;j�

1

2

denote the vertial �uxes exhanged at the interfaes

with the upper and lower neighboring ells;

� S =

�

S

0

S

1

S

2

�

T

is a vetor gathering the soure terms of eah balane

equation.
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Approximate Riemann solver: Rusanov �ux

In order to ompute the numerial �uxes G and H at the interfaes, an

approximate Riemann solver is used, namely Rusanov �ux:

G

n

i+

1

2

;j

=

G

�

L

n

i;j

�

+G

�

L

n

i+1;j

�

2

� max

k=1;:::;3

h

j(�

x

)

k

j

�

L

n

i;j

�

; j(�

x

)

k

j

�

L

n

i+1;j

�i

L

n

i+1;j

� L

n

i;j

2

; (3.221)

H

n

i;j+

1

2

=

H

�

L

n

i;j

�

+H

�

L

n

i;j+1

�

2

� max

k=1;:::;3

h

�

�

�(�

y

)

k

�

�

�

�

L

n

i;j

�

;

�

�

�(�

y

)

k

�

�

�

�

L

n

i;j+1

�i

L

n

i;j+1

� L

n

i;j

2

; (3.222)

with:

� G and H the exat �ux in the PDEs:

G =

�

L[�℄

e

L [v

x

℄ L[�℄

e

L[v

x

℄

2

+ L[p℄ L[�℄

e

L[v

y

℄

e

L [v

x

℄

�

T

; (3.223)

H =

�

L[�℄

e

L [v

y

℄ L[�℄

e

L[v

x

℄

e

L [v

y

℄ L[�℄

e

L[v

y

℄

2

+ L[p℄

�

T

; (3.224)

� (�

x

)

1�k�3

and (�

y

)

1�k�3

the eigenvalues assoiated to the non-

onservative form of the hyperboli system (i 2 fx; yg):

(�

i

)

1

=

e

L[v

i

℄� L[

son

℄; (3.225)

(�

i

)

2

=

e

L[v

i

℄; (3.226)

(�

i

)

3

=

e

L[v

i

℄ + L[

son

℄: (3.227)

This onludes the numerial methods for both the solid and �uid equations.

The following subsetions now emphasize the ritial issue of stability, before

underlining the risk of an aliasing phenomenon aused by the saling funtion.

3.9.3 Stability: expliit VS impliit �ltering

It is well-known that expliit shemes are espeially vulnerable to instability.

Indeed, let us onsider the lassial (1D) linear advetion equation

∂
t

u+ ∂
x

u = 0; (3.228)

where  > 0 denotes a onstant advetion veloity. An Euler expliit upwind

sheme
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u

n+1

j

� u

n

j

∆t
+ 

u

n

j

� u

n

j�1

∆x
= 0 (3.229)

is known to be stable under the following Courant-Friedrihs-Lewy (C.F.L.)

ondition:

� : =

∆t

∆x
� 1; (3.230)

or equivalently:

∆t �
∆x



: (3.231)

When solving (1D) nonlinear PDEs with suh expliit shemes, a safety

margin is usually taken with respet to the C.F.L. ondition:

∆t = C

stab

∆x



max

, C

stab

� 1; (3.232)

where the onstant C

stab

is ommonly hosen equal to 0:8, and 

max

denotes

the maximum veloity over the whole domain.

In the urrent work, two "spatial steps" oexist:

� �rst, the uto� wavelength

�

�Φ
s

0

�

num

of the saling funtion Φ
s

0

(see

Table 3.4), whih satis�es for all s

0

> 0:

�

�Φ
s

0

�

num

= s

0

�

�

�Φ

�

num

; (3.233)

and ats diretly onto the original Euler ompressible equations, at the

ontinuum medium sale.

� seond, the spatial disretization of the 2D regular Cartesian grid:

h = ∆x = ∆y; (3.234)

whih then ats in the numerial omputation of the spatially-�ltered

equations.

Thus, the lassial C.F.L. ondition assoiated to the mesh size h oexist

with another harateristi time sale, linked to the saling funtion Φ
s

0

:

∆tΦ
s

0

=

�

�Φ
s

0

�

num



max

: (3.235)
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Nevertheless, it shall be notied that, onversely to the saling funtion spa-

tial sale, whih is isotropi, the distane between two neighboring grid nodes

is not. Thus, in order to preserve the sheme stability, the uto� wavelength

of the saling funtion has to be larger than the maximum distane between

two neighboring grid nodes:

s

0

�

�Φ

�

num

� dist (node

i;j

; node

i+1;j+1

) ; (3.236)

� h

p

2; (3.237)

whih leads to the following ompatibility ondition between the sale param-

eter s

0

and the mesh size h:

s

0

�

p

2

�

�Φ

�

num

� h: (3.238)

The numerial approximation of the ompatibility ondition (3.238) is spe-

i�ed in Table 3.5:

Stability - uto� sale VS mesh size

s

0

& 0:412� h

Table 3.5: Compatibility ondition between the uto� sale s

0

and the mesh

size h to ensure the stability of the expliit sheme.

This ompatibility ondition will be tested in the next hapter dediated

to the model implementation. But for now, let us turn towards the risk of

aliasing.

3.9.4 Sampling, FFT, and aliasing

The phenomenon of aliasing is known to be explained by Shannon sam-

pling theorem. Indeed, given a mesh size h, one has the following sampling

properties:

Spatial step Spatial sampling frequeny Shannon spatial frequeny

h �

e

=

1

h

�

max

=

1

2h

Table 3.6: Mesh sampling properties.

To satisfy Shannon theorem, the frequeny range aessible with the

saling funtion should remain within the wave vetor range de�ned by

[�kkk

max

; kkk

max

℄ = [�2��

max

; 2��

max

℄. However, it was previously high-

lighted that, onsidering the diretional splitting used in the �nite-volume
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method, the uto� wave vetor of the saling funtion is larger than its theo-

retial value: kkΦknum =

p

2 � kkΦk. Thus, to ensure that the bandwidth of

the saling funtion Φ
s

0

remains within the observable wave vetor range, the

uto� sale parameter s

0

has to satisfy:





kΦ
s

0







num

�

�

h

; (3.239)

p

2� kkΦk

s

0

�

�

h

; (3.240)

s

0

�

p

2kkΦk

�

� h: (3.241)

Thus, if the uto� sale s

0

is too small, the saling funtion bandwidth

will exeed the admissible spatial frequeny range, leading to an aliasing phe-

nomenon with the use of FFT algorithms on Φ
s

0

. The numerial approximation

of equation (3.241) is detailed in the following Table 3.7:

Aliasing - uto� sale VS mesh size

s

0

& 0; 579� h

Table 3.7: Compatibility ondition between the uto� sale s

0

and the mesh

size h to prevent aliasing in FFT omputations.

Remark 3.9.1 Aliasing and boundary onditions

The impat of aliasing will be mainly foused on the �uid-struture

interfaes. Indeed, the boundary integrals present in the right-hand sides

of the �ltered balane equations all require a losure expression between

the resolved and unresolved sales of the �uid variables. This losure is

brought by an inverse wavelet transform, whih will be implemented via

FFT and FFT

�1

algorithms applied to the low-frequeny approximations

L[�℄(s

0

; · ), L[�v℄(s

0

; · ), L[p℄(s

0

; · ) and the saling funtion Φ
s

0

itself. As a

onsequene, the reonstruted �elds on the �uid-struture interfaes will

exhibit high-frequeny noise if the above ompatibility ondition (3.241) is

not satis�ed.

3.10 Conlusion

These important remarks thus onlude this third hapter dediated to the

thorough desription of the wavelet-based model. This ore hapter built step

by step a self-sustained homogenized and multi-sale model, here applied to an

invisid ompressible �ow within a ongested solid medium. It was proven how

Continuous Wavelet Transform (CWT) an be used to rigorously homogenize,
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at the ontinuum medium sale, a heterogeneous medium. The homogeniza-

tion proess here promoted, whih may apply to generi PDEs, relies on a

"weak-extension" of the original �uid PDEs, followed by a "weak-onvolution"

with an analysing wavelet or saling funtion. To ensure the well-posedness of

this onvolution produt, a real-valued, isotropi, smooth, well-loalized and

admissible wavelet, namely the Mexian hat, has been hosen. With suh an

analysing wavelet or saling funtion, this wavelet-based onvolution produt,

whih ats as a regularizing and �ltering operator, is thus able to deal with

PDEs exhibiting non-smooth weak solutions. This onvolution proess even-

tually results in spatially-�ltered PDEs governing a homogenized �uid, de�ned

over the whole f�uid + solidg domain. The homogenized �uid variables were

shown to be the wavelet oe�ients (or low-frequeny approximation) of the

original �uid variables. It was also detailed how the original ontat fores

between the �uid and solid media are transformed into body fores de�ned

within the whole homogenized �uid.

Furthermore, it was emphasized that CWT possesses a key advantage om-

pared to lassial homogenization and multi-sale methods, namely its ability

to reonstrut, thanks to an inverse wavelet transform, the �elds at the miro-

sopi sale. This ruial point allowed to build a self-sustained model, whih

an onnet resolved and unresolved sales without any ad ho model, and

properly treat the original PDEs boundary onditions. This reonstrution

ability an also be used to expliitly ompute, if neessary, nonlinear terms.

Besides, the wavelet formalism also allowed to prove an analytial onvergene

(either point-wise or in L

2

-norm) between the homogenized model and Diret

Numerial Simulation (DNS). To the author's knowledge, it is the �rst time

that suh a self-sustained homogenized and multi-sale model, able to deal

with generi and non-smooth PDEs, losure between resolved and unresolved

sales and boundary onditions (and if neessary nonlinearities), is put for-

ward in literature. This wavelet-based model also bypasses periodiity and

sale separation assumptions.

Finally, the last setion of this hapter emphasized some of the hallenges

likely to appear during the model numerial implementation, that is to say the

risks of instability and aliasing. Two ompatibility onditions underlining the

links between the saling funtion uto� sale s

0

(i.e. expliit �ltering) and the

mesh size h (i.e. impliit �ltering), were put forward.

All this theoretial framework being de�ned, the following hapter shall now

on�rm, with numerial tests, these risks of instability and aliasing. These tests

also aim at assessing the model atual onvergene towards numerial referene

solutions omputed at the DNS sale, and involving 2D transverse pressure

waves propagating through ongested solid media omposed of multiple disks.
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Chapter 4

Model implementation and analysis

4.1 Introdution

In order to onfront the wavelet-based model with the physis of interest,

and assess its ability to takle the hallenges previously highlighted, namely in-

stability, aliasing, and onvergene towards DNS, this fourth hapter hereafter

presents several 2D numerial tests, ompleted with preliminary experimental

data. Throughout this hapter, a speial fous will be put on the model ability

to reonstrut 2D pressure �elds, and the resulting dynami load applied to

the solid medium.

The opening setion presents a wavelet analysis of a 2D referene pressure

wave propagating through a 10 � 10 steady array of disks. This referene

solution is omputed at the DNS sale with EUROPLEXUS software, a fast-

transient dynamis ode for �uids and strutures. This �rst study of a referene

solution known at the DNS sale allows to get insights on the pressure �eld

spetrum, in other words its most relevant wavelet oe�ients and spatial

sales. This information will later on guide the diret omputation of the

homogenized �uid PDEs.

The seond setion then presents a preliminary analysis on the numerial

model stability and auray. This analysis is performed by diretly omputing

the spatially-�ltered PDEs, with the saling funtion Φ, for a 2D pressure wave

propagating through a 2� 2 steady array of disks. The fous is espeially put

on both the C.F.L. and ompatibility onditions between the saling funtion

uto� sale s

0

and the mesh size h.

In eho with the �rst wavelet analysis, the third setion then presents the

diret omputation of a 2D transverse pressure wave propagating through

a 10 � 10 steady array of disks. The model ability to aurately reon-

strut the referene pressure �eld and the referene fore applied to the solid

medium, both omputed at the DNS sale with EUROPLEXUS software, will

be evaluated.

Fourth, in order to emphasize the multi-sale omponent of the model, the

propagation of a 2D transverse pressure wave through di�erent but equivalent

steady array of disks (2�2, 4�4, 10�10) is onsidered. The aim of this test is

to assess whether a more marosopi modeling of the solid medium, and thus
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a larger mesh size h and uto� sale s

0

, allow to reonstrut a similar order of

magnitude for the fore applied to the solid medium.

To onlude this hapter, insights on two ongoing projets will be presented.

The �rst one onsists in a �rst attempt at implementing a nested grids algo-

rithm within the numerial model. Conversely to lassial multi-grid methods,

this attempt does not here aim at improving an iterative method by damping

both the high and low-frequeny omponents of the error. The aim is rather

to speed up the omputations, by solving the homogenized �uid PDEs on a

oarse grid, while keeping trak of the solid medium geometry on a �ne grid, in

order to evaluate the di�erent boundary integrals present in the �ltered PDEs.

As for the seond ongoing projet, it is dediated to the oupling between the

homogenized �uid and the solid medium. Experiments realized with a 10� 10

array of PMMA ylinder rods submitted to a shok wave will be presented.

This experimental data will be supplemented with a preliminary numerial

test involving a 2� 2 moving array of disks.

4.2 Wavelet analysis of a 2D referene pressure

wave

In order to guide the diret omputation of the spatially-�ltered equations,

and selet wisely the uto� sale parameter s

0

, or the number of wavelet o-

e�ients (W[f ℄(s

k

; · ))

1�k�N

, it is neessary to possess some insights on the

pressure �eld spetrum. To this end, this setion presents a wavelet analysis

of a 2D referene pressure wave propagating through a 10 � 10 steady array

of disks. This pressure wave is omputed at the mirosopi sale with EU-

ROPLEXUS software, a fast-transient dynamis ode for �uids and strutures,

whih solves diretly Euler ompressible equations. This loal solution allows

to ompute analytially the pressure �eld wavelet oe�ients, and then fully

assess the auray of the reonstrution proess with respet to the main

quantity of interest, i.e. the dynami load applied to the solid medium, whih

is diretly linked to the pressure gradient. The simulation is designed as shown

in Figure 4.1 below. Suh a 2D test ase an be seen as a simpli�ed, yet repre-

sentative, version of the atual pressure loading that would impat PWR fuel

assemblies during a depressurization transient.

1
5
0
,0

0
 m

m

140,00 mm 410,00 mm

Figure 4.1: Geometry of the �rst referene test ase.
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All the simulation parameters are spei�ed in Tables 4.1-4.2-4.3.

Lx Ly Disks radius Dist. onseutive disks Disks position

0:55 m 0:15 m 5:10

�3

m 5:10

�3

m [0:2025 m; 0:3525 m℄

Table 4.1: Geometry - 1st test ase.

10 bar zone 1 bar zone Disontinuity  ! 1st disks

[0; 0:14 m℄ [0:14 m; 0:55 m℄ 6:75� 10

�2

m

Table 4.2: Pressure loading - 1st test ase.

The �uid is onsidered ompressible, invisid and isothermal. It satis�es a

barotropi state law:

p = p

ref

+ 

2

(�� �

ref

); (4.1)

with the following numerial values:

Referene Density Referene Pressure Sound Veloity

�

ref

= 1000 kg ·m

�3

p

ref

= 10

5

Pa  = 1300 m · s

�1

Table 4.3: Fluid parameters - 1st test ase.

As for the solid medium, the disks an here be onsidered as rigid bodies,

whose enters are kinematially bloked, so that the sum of the reation fores

to the entral blokages diretly provides the fore applied by the �uid to the

solid obstales.

The numerial methods used to ompute this 2D referene pressure wave

are designed as follows:

� a �nite-element method for the (linear elasti and isotropi) solid

medium, with 3-noded triangle elements;

� a 2nd order ell-entered �nite volume sheme for the �uid, with quad-

rangle elements, and a H.L.L. (Harten - Lax - van Leer) Riemann solver

for the numerial �uxes;

� mesh size: h

epx

2 f

R

5

;

R

8

;

R

10

;

R

12

g, where R denotes the disks radius;

� Euler expliit time integration for the �uid.

The referene pressure �eld, omputed on Ω
f

, is then extended over the

whole domain Ω
f

[ Ω
s

by means of a linear interpolation on a 2D regular

Cartesian grid with half mesh size h = 0:5h

epx

. Figures 4.2 and 4.3 display

the resulting pressure �eld omputed with h

epx

=

R

5

= 1 mm. It an be noted

that, during the interpolation proess, the pressure is by default set to zero on

the nodes loated outside the �uid domain.
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Figure 4.2: Referene pressure �eld snapshots every ∆t = 1:10

�5

s
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Figure 4.3: Referene horizontal pressure pro�le - 10� 10 array

�

y =

L

y

2

�

.

As in a lassial shok tube situation, the simulation shows two waves prop-

agating in opposite diretions from the initial disontinuity (Figure 4.2 and

Figure 4.3 at t = 4:10

�5

s). The left one then bounes bak on the left verti-

al boundary (de�ned with absorbing onditions) and heads bak towards the

solid medium (Figure 4.3, t = 1:6 � 10

�4

s and t = 2:4 � 10

�4

s). This left

boundary ondition, not very familiar in shok tube omputations or exper-

iments, does not here a�et the propagation of the pressure wave within the

solid medium. Indeed, the simulation stops before the re�eted wave hits bak

the solid medium. The same is true for the wave bouning bak on the right

vertial boundary.

Now, in order to determine the most relevant wavelengths within this ref-

erene pressure �eld, let us use some of the auray riteria presented in the

previous hapter.

4.2.1 L

2

-auray

In equation (3.182), the following funtion was introdued:

s

0

7�!kp

ref

k

2

L

2

�

2�

CΨ

Z

s

0

s

min

kW[p

s

min

℄(s; · )k

2

L

2

ds

s

3

; (4.2)

= kp

ref

k

2

L

2

0

B

�

1�

2�

C

Ψ

R

s

0

s

min

kW[p

s

min

℄(s; · )k

2

L

2

ds

s

3

kp

ref

k

2

L

2

1

C

A

; (4.3)

= kp

ref

k

2

L

2

(1� E(s

0

)) ; (4.4)

where it is realled that W[p

s

min

℄(s; · ) denotes the wavelet oe�ients om-

puted with the Mexian hat, and E(s

0

) is an energy ratio inreasing from 0
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(s

0

= s

min

) to 1, whih measures the perentage of the pressure �eld L

2

-energy

that is progressively reovered by adding wavelet oe�ients.

The pressure �eld is disretized on a regular Cartesian grid with mesh size

h = 5:10

�4

m. Furthermore, it is realled that the Mexian hat exhibits a

band-pass behavior in the spetral domain, with a �3 dB bandwidth loated

on [s� 3:08 m; s� 7:18 m℄. Thus, the sale parameter s allowing to ath the

minimum spatial sale of the pressure �eld, either �

p

= 5:10

�4

m in the Carte-

sian interpolation, or �

epx

= 1:10

�3

m in the EUROPLEXUS omputation, is

given by:

s �

�

7:18

: (4.5)

The numerial values assoiated to the above equation are summarized in

Table 4.4 below.

Cuto� sale assoiated to �

p

Cuto� sale assoiated to �

epx

s

p

� 7:10

�5

s

epx

� 1:4� 10

�4

Table 4.4: Cuto� sale of the Mexian hat wavelet - 1st test ase.

These remarks being stated, Figure 4.4 displays, for two di�erent time in-

stants for whih the pressure disontinuity is at di�erent loations within the

array of disks, the evolution of the energy ratio E(s

0

) for s

0

2 [10

�5

; 5:10

�4

℄.

It appears that for both time instants, the sale range s

0

2 [10

�5

; 5:10

�4

℄,

whih theoretially orresponds to wavelengths starting from � 2 [3:08 �

10

�5

; 7:18� 10

�5

m℄ up to � 2 [1:54� 10

�3

m; 3:59� 10

�3

m℄, onveys around

100% of the pressure �eld L

2

-energy. Thus, regardless of the loation of the

pressure disontinuity within the array of disks, the most energeti sales seem

to be invariant and only onstrained by the geometry of the array.

Nevertheless, one an notie that sales below s

p

= 7:10

�5

, whih orre-

sponds to the minimum spatial sale of the pressure �eld on the Cartesian

grid, still onvey around 5% of the pressure �eld L

2

-energy. The presene

of sales s belonging to [5:10

�5

; 7:10

�5

℄ (sales between 10

�5

and 5:10

�5

an

be negleted) is explained by the fat that the amplitude of the Mexian hat

Fourier transform is not immediately "almost zero" outside of its bandwidth.

Thus, even with a small sale parameter s, the tail of the "Gaussian" lobes

of the Mexian hat Fourier transform (f. Figure 3.3) may ath, with a low

amplitude, the pressure �eld smallest wavelengths. Fortunately, 95% of the

pressure �eld L

2

-energy orresponds to sales s larger than the uto� value s

p

.
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Figure 4.4: Pressure L

2

-energy reovered - s

0

2 [10

�5

; 5:10

�4

℄

Finally, it an be noted that a derease in the number of omputed wavelet

oe�ients N

s

does not have a signi�ant impat on the L

2

-energy reovery.

Indeed, the asymptoti value still reahes around 100%, even with only �ve

wavelet oe�ients.

Let us now turn towards another auray riterion in order to hek

whether similar onlusions are reahed regarding the sale range and num-

ber of wavelet oe�ients.

4.2.2 Fore-wise auray

In the previous hapter, a fore-wise auray riterion was introdued via

equation (3.183). In this subsetion, a slightly di�erent version of this riterion

will be used:
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�

(F

F!S

)

ref

� (F

F!S

)

N

s

�

· e

x

= (F

F!S

)

ref

· e

x

 

1�

(F

F!S

)

N

s

· e

x

(F

F!S

)

ref

· e

x

!

; (4.6)

= (F

F!S

)

ref

· e

x

(1� f (N

s

)) (4.7)

with (F

F!S

)

N

s

=

R

∂Ω
s

�p

N

s

(�; t)n

F!S

(�) d�, and p

N

s

an approximate pres-

sure �eld here reonstruted only with the analysing wavelet Ψ, using N

s

wavelet oe�ients on a sale range [s

1

; s

N

s

℄:

p

N

s

(x; t) =

2�

CΨ

Z

s

N

s

s

1

�

Z

R2

W[p

ref

℄(s; u)�

1

s

Ψ

�

x� u

s

�

du

�

ds

s

3

: (4.8)

Figure 4.5 shows the evolution of the fore ratio f (N

s

), evaluated on the

whole array, with the number of omputed sales N

s

, and for three di�erent

sale ranges: s 2 [10

�5

; 5:10

�4

℄, s 2 [10

�5

; 10

�3

℄, and s 2 [10

�4

; 10

�3

℄.

Conversely to the L

2

-energy riterion, the sale range s 2 [10

�5

; 5:10

�4

℄

seems here unsuited to properly reonstrut the fore applied to the solid

medium mirostruture, as an almost 40% overestimation an be witnessed

for the time instant t = 1:6 � 10

�4

s. Furthermore, an 8% overestimation is

still visible for the time instant t = 8:10

�5

s. This signi�ant di�erene be-

tween the two time instants an be explained by the following fat: as the

initial pressure wave has almost exited the array of disks for t = 1:6� 10

�4

s,

wavelengths around 5:10

�3

m (driven by the distane between two onseutive

disks), whih are not taken into aount in the sale range s 2 [10

�5

; 5:10

�4

℄,

are muh more present within the array of disks than for the time instant

t = 8:10

�5

s.

Thus, the wider sale range s 2 [10

�5

; 10

�3

℄ allows to better reonstrut the

fore for both time instants, with, for instane, an overestimation around 10%

for t = 1:6� 10

�4

s. Additionally, Figure 4.5 proves that the smallest sales

ould even be negleted without losing auray, thus leading to the range

s 2 [10

�4

; 10

�3

℄, whih ontains wavelengths � 2 [3:08� 10

�4

; 7:18� 10

�3

m℄.

The lear shift with respet to the sale range previously identi�ed with the

L

2

-energy riterion ([7:10

�5

; 5:10

�4

℄) an be explained by the fat that the fore

riterion fouses on the pressure values on the �uid-struture interfaes, while

the L

2

-energy takes into aount the whole Ω
f

[Ω
s

domain.

Finally, it an be notied that N

s

= 10 wavelet oe�ients would already

allow reahing a good auray (� 10% overestimation) on the fore applied to

the solid medium. The results on the most relevant wavelengths with respet

to this physis-driven riterion are summarized in Table 4.5.
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Figure 4.5: Evolution of the horizontal fore ratio with the number of wavelet

oe�ients, for 3 di�erent sale ranges.
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Cuto� sales and number of wavelet oe�ients

s

min

= 10

�4

N

s

= 10 s

max

= 10

�3

� 2 [3:08� 10

�4

, 7:18� 10

�4

m℄ � 2 [3:08� 10

�3

, 7:18� 10

�3

m℄

Table 4.5: Cuto� sales and number of wavelet oe�ients - 1st test ase.

For the sake of ompleteness, Figure 4.6 displays the referene and reon-

struted pressure pro�les along the medium horizontal axis, while Figure 4.7

displays the absolute error between the 2D referene and reonstruted pres-

sure �elds. The absolute error is logially loated in the viinity of the disks,

where the referene pressure variations are maximal, but it remains small om-

pared to the referene pressure range (less than 10% for maximum values).

Furthermore, the good results obtained in terms of fores ating on the solid

medium indiate that the pressure gradient is well preserved.

0 0.1 0.2 0.3 0.4 0.5

x (m)

0

2

4

6

8

10

P
re

s
s

u
re

 (
P

a
)

10
5

reference

Ns=5

Ns=10

First rods

Last rods

(a) t = 8:10

�5

s.

0 0.1 0.2 0.3 0.4 0.5

x (m)

0

2

4

6

8

10

P
re

s
s

u
re

 (
P

a
)

10
5

reference

Ns=5

Ns=10

First rods

Last rods

(b) t = 1:6 � 10

�4

s.

Figure 4.6: Horizontal pressure pro�les

�

y =

L

y

2

�

- s 2 [10

�4
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�3

℄
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(a) t = 8:10

�5

s.

(b) t = 1:6� 10

�4

s.

Figure 4.7: Absolute error jp

ref

� p

reons

j (Pa) - N

s

= 10 - s 2 [10

�4

; 10

�3

℄.

This �rst wavelet analysis of a 2D referene pressure wave, whih an also be

found in [Mokhtari et al., 2020℄, thus gave some insights on the most relevant

wavelet oe�ients and spatial sales. It appears that a diret omputation of

the homogenized �uid PDEs would require, with the Mexian hat analysing

wavelet, 10 di�erent omputations to determine 10 wavelet oe�ients on the

sale range s 2 [10

�4

; 10

�3

℄. This is of ourse expeted to represent a signi�ant

omputational ost, espeially as these di�erent wavelet oe�ients are linked

through the boundary integrals in the right-hand side of the �ltered PDEs, and

the neessary losure expressions between the resolved and unresolved sales

of the �uid variables.

In order to bypass this need for multiple omputations, the Mexian hat

wavelet is hereafter replaed by its assoiated saling funtion. The omputa-

tion of the low-frequeny approximation L[f ℄(s

0

; · ), at a given uto� sale s

0

,

indeed allows us to ath simultaneously all the spatial sales larger than s

0

.

But before omputing a similar 2D pressure wave through a 10 � 10 array of

disks diretly with the model equations, the following setion �rst investigates

the numerial model stability and auray on a simpler test ase.

4.3 Diret omputation of the �uid �ltered PDEs

4.3.1 Preliminary analysis on stability and auray

This preliminary analysis aims at assessing on the one hand, the stability of

the expliit �nite-volume sheme (3.219) designed to solve the model equations,

and on the other hand, the ability of the wavelet-based model to aurately

reonstrut, from the homogenized �uid, the fore applied to the underlying

solid medium. To this end, the propagation of a 2D pressure wave through a

2 � 2 steady array of disks is hereafter onsidered (see Figure 4.8). The solid
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medium thus only ats, one again, as a boundary ondition for the �uid.

14,00 mm 38,00 mm

2
4
,0

0
 m

m

Figure 4.8: Sheme of the preliminary test.

The simulation parameters are summarized in Tables 4.6-4.7-4.8-4.9:

Lx Ly Disks radius Dist. onseutive disks

52 mm 24 mm 4 mm 4 mm

Table 4.6: Geometry - 2nd test ase.

10 bar zone 1 bar zone Disontinuity  ! 1st disks

[0; 14 mm℄ [14 mm; 52 mm℄ 4 mm

Table 4.7: Pressure loading - 2nd test ase.

Referene Density Referene Pressure Sound Veloity

�

ref

= 1000 kg ·m

�3

p

ref

= 10

5

Pa  = 1300 m · s

�1

Table 4.8: Fluid parameters - 2nd test ase.

Mesh size Time step Sale/mesh ompatibility

h = 1 mm ∆t � C
stab

h



max

s

0

& 0:412� h

Table 4.9: Spatial and time disretization - 2nd test ase.
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As a result of the homogenization proess, the interfaes with the underlying

solid obstales are not taken into aount via the mesh, but via a body fore

de�ned aross the whole domain Ω
f

[Ω
s

. As an be seen in equation (3.136),

this body fore is expressed as an integral of the pressure on the boundary

∂Ω
s

, weighted by the analysing wavelet Ψ, or rather the saling funtion Φ

here. Figure 4.9 illustrates how this weight is well-loalized in the viinity of

the boundary ∂Ω
s

.
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Figure 4.9: Visualization of the 2� 2 array - s

0

= 0:415� h.

The simulation is initialized as a Riemann problem, with a 10 vs 1 bar

pressure disontinuity, as displayed in Figure 4.10 below. It is realled that the

solid medium is initially in equilibrium with the surrounding �uid, and thus

"hidden" in the 1 bar zone.
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Figure 4.10: Initial pressure �eld (10 vs 1 bar).

Conversely to the previous analysis of a 2D referene pressure wave, in whih

the Mexian hat wavelet Ψ was used to detet the most relevant wavelengths,

all the results hereafter presented are obtained with the saling funtion Φ. All

the referene data used to onfront the model is obtained with EUROPLEXUS

software, using the same numerial methods as desribed in the previous se-

tion. The referene mesh size is set to h

epx

=

R

4

= 1 mm, where R denotes the

disks radius. The referene pressure �eld is then extended to the whole domain

Ω
f

[Ω
s

, by means of a linear interpolation on a 2D regular Cartesian grid with

mesh size h = 1 mm (as opposed to 0:5 mm in the previous analysis). It is

realled that this linear interpolation arti�ially sets the pressure to zero on

the nodes loated outside the �uid domain Ω
f

.
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In order to assess the stability of the expliit �nite-volume sheme, the

impat of two possible soures of instability are hereafter studied:

� the lassial C.F.L. ondition between the time step ∆t and mesh size h;

� the sale/mesh ompatibility ondition with respet to the expliit

sheme stability (3.238).

To do so, several tests are hereafter presented, depending on the value

hosen for the C.F.L. stability onstant C

stab

and for the uto� sale s

0

.

Test # 1 : C

stab

= 1, and s

0

= 0:42� h

Let us start with the "worst-ase" senario, where no safety margins are

taken with respet to either the C.F.L. or the sale/mesh ompatibility on-

ditions. Figure 4.11 below displays the referene and reonstruted pressure

�eld, after 29 time steps (∆t � 7:69� 10

�7

s).
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Figure 4.11: Referene (4.11a) VS reonstruted (4.11b) pressure �elds - s

0

=

0:42h - C

stab

= 1 - t = 2:2284� 10

�5

s.

The pressure �eld reonstruted after only 29 time steps is learly unsatis-

fatory. To ompare more preisely the referene and reonstruted pressure

�elds, Figure 4.12 displays both horizontal pressure pro�les, at t = 0 s and

after 29 times steps. The vertial blak lines orrespond to the loation of the

2� 2 array of disks.
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Figure 4.12: Referene VS reonstruted pressure pro�les
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y =

L

y
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�

- s

0

= 0:42h

- C

stab

= 1

The important osillatory, yet bounded, behavior that an be witnessed on

the reonstruted pressure �eld �nds its soure on the one hand in the aliasing

phenomenon aused by the saling funtion Φ
s

0

(f. equation (3.241)), and on

the other hand in the lak of safety margin with respet to both the C.F.L.

and the sale/mesh ompatibility onditions (3.238).

Let us now study independently the role played by the sale/mesh ompat-
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ibility and C.F.L. onditions.

Test # 2 : C

stab

= 1, and s

0

= 0:6� h

For this seond test, the C.F.L. stability onstant C

stab

is kept equal to

1, but the uto� sale s

0

inreases. As for the �rst test, the referene and

reonstruted pressure �elds are hereafter displayed in Figure 4.13, and their

horizontal pro�les along the medium horizontal axis in Figure 4.14.

Remark 4.3.1 It is realled that, during the homogenization proess, the

�uid arti�ially loated within the solid medium is initially in equilibrium

with the surrounding �uid, in the 1 bar zone. Thus, ideally, as the real

and arti�ial �uid never penetrate or leave the solid medium, the pressure

should ideally remain onstant equal to 1 bar within Ω
s

.
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Figure 4.13: Referene (4.13a) VS reonstruted (4.13b) pressure �elds - s

0

=

0:6h - C

stab

= 1 - t = 2:2284� 10

�5

s

Samy MokhtariCHAPTER 4. MODEL IMPLEMENTATION 123



4.3. DIRECT COMPUTATION OF THE FLUID FILTERED PDES

0.00 0.01 0.02 0.03 0.04 0.05

x (m )

1

2

3

4

5

6

�

8

�

�
�
 
!
!
"
�
 

 m

 
#
$"

m
 %

&
�
$'
&
(
)
*
+  

*

x
$!

 (
,
*
�

) -./

m01.2

Figure 4.14: Referene VS reonstruted pressure pro�les
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y
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�

- s
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- C

stab

= 1 - t = 2:2301� 10

�5

s.

The results obtained are learly muh more satisfatory than in the worst-

ase senario. The geometry of the solid obstales is quite faithfully reon-

struted in Figure 4.13b, with an arti�ial pressure almost uniform and lose to

1 bar withinΩ
s

. Furthermore, the pressure pro�le along the medium horizontal

axis is also muh smoother. The small osillations still visible in Figure 4.14

have a signi�antly smaller amplitude than in the previous ase. This result

thus supports the fat that the saling funtion and the assoiated sale/mesh

ompatibility ondition are the main soure of instability in the model response.

Suh a onlusion ould be expeted, as the saling funtion operates a �rst

(expliit) spatial �ltering of the �elds, at the ontinuum medium sale, before

the disretization step of the �ltered PDEs on the 2D Cartesian grid.

Test # 3 : C

stab

= 0:8, and s

0

= 0:42� h

For this third test, let us now study the role played by the C.F.L. ondition.

A safety margin is thus taken with respet to this ondition, with C

stab

equal

to 0:8. Regarding the sale/mesh ompatibility ondition, the uto� sale s

0

is one again hosen lose to the ritial minimum value.

Figure 4.15 displays the referene and reonstruted pressure �eld, the latter

being obtained after 36 time steps (∆t � 6:15� 10

�7

s). Figure 4.16 ompares

both pressure pro�les along the medium horizontal axis.
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Figure 4.15: Referene VS reonstruted pressure �elds - s
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Figure 4.16: Referene VS reonstruted pressure pro�les - s
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As an be witnessed in Figure 4.16, the pressure pro�le along the medium

horizontal axis is even smoother than in the seond test, where only a safety

margin with respet to the sale parameter s

0

was taken into aount. Suh a

result ould be expeted. Indeed, by dereasing C

stab

, the time step ∆t is now

not only below the C.F.L. ondition, but also below the harateristi time

sale of the saling funtion (3.235).

Nevertheless, this improved stability seems to go along with a loss of au-

ray. Indeed, the "white numerial artefats" visible within the solid obstales

in Figure 4.15b learly show that the reonstruted pressure deviates from the

ideal 1 bar value within Ω
s

.

In order to further investigate this link between stability and auray, the

following test hereafter onsiders a fore-wise auray riterion.

Test # 4 : 0:5 � C

stab

� 1, and 0:42� h � s

0

� h

Figure 4.17 displays the time evolution of the horizontal fore (per unit of

length) applied to the solid obstales, with a omparison between the referene

and reonstruted values for s

0

2 [0:42h; h℄. The C.F.L. stability onstant C

stab

is �rst hosen equal to 1. It an be notied that, like the pressure signal, the

fore exhibits osillations when the uto� sale parameter s

0

dereases towards

its minimum value. These osillations seem nevertheless less important than

the ones witnessed in the pressure signal itself. This an be explained by the

fat that the fore integrates the pressure on the boundaries ∂Ω
s

, thus �ltering

out the highest frequeny omponents of the osillations.

Furthermore, one an notie that, for s

0

� 0:6h, the reonstruted fore

tends to deviate from the referene signal, espeially downstream eah olumn

of disks.
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Figure 4.17: Time evolution of the horizontal fore applied to the solid medium

- C

stab

= 1, 0:42h � s

0

� h.

126 CHAPTER 4. MODEL IMPLEMENTATIONSamy Mokhtari



4.3. DIRECT COMPUTATION OF THE FLUID FILTERED PDES

Let us now keep the uto� sale parameter s

0

equal to 0:42�h, and study the

impat of the C.F.L. stability onstant. Figure 4.18 displays the time evolution

of the horizontal fore (per unit of length) applied to the solid obstales, with

C

stab

2 [0:6; 1℄.
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Figure 4.18: Time evolution of the horizontal fore applied to the solid medium

- s

0

= 0:42h, 0:6 � C

stab

� 1.

As already notied with the pressure signal, when the uto� sale s

0

is

near its ritial minimum value and the C.F.L. onstant C

stab

dereases, the

fore signal beomes smoother. Furthermore, it an be notied that the re-

onstruted fore signals in Figure 4.18 are able to follow more faithfully the

referene signal than in the previous ase, espeially downstream eah olumn

of disks.

Nevertheless, it shall be highlighted that further dereasing the C.F.L. on-

stant C

stab

seems to damage the auray of the model response, with both over

and underestimations of the referene fore, as an be witnessed on the urve

assoiated to C

stab

= 0:6. This fat tends to push for a ompromise between

stability and auray.

In order to further illustrate this duality, let us now onsider the fore-wise

auray riterion introdued in the previous hapter (3.186):
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With 26 time steps on the time range [t

a

; t

b

℄ � [2:3� 10

�6

s; 2:23� 10

�5

s℄,

the numerial value

R

t

b

t

a

(F

F!S

)

ref

· e

x

dt � 1:45 � 10

�1

kg:s

�1

is obtained
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(with a retangle method) for the time integration of the referene horizon-

tal fore.

The following Figure 4.19 displays the evolution of the relative error

e

e

F

on

the horizontal fore when dereasing the C.F.L. stability onstant C

stab

, for

a mesh size h = 1 mm, and for s

0

2 f0:42h; 0:6hg. One an notie that the

relative error

e

e

F

is at least divided by 3 when the uto� sale s

0

dereases from

0:6h to 0:42h. This is oherent with the a priori idea that the best auray

is reahed when the saling funtion is designed so as to ath all the possible

wavelengths that an be represented by the mesh. Thus, with the set of param-

eters (s

0

= 0:42h;C

stab

= 0:9), whih seems to be a good ompromise between

auray and stability, the model responds with a relative error

e

e

F

below 1%.

Nevertheless, when further dereasing the onstant C

stab

, and thus improv-

ing the numerial sheme stability, the auray of the model response slightly

deteriorates. This on�rms the duality between stability and auray.
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Figure 4.19: Evolution of the relative error

e

e

F

with C

stab

- h = 1 mm.

In order to further highlight the important role played by the ritial min-

imum value s

0

� 0:412� h, Figure 4.20 displays the evolution of the relative

error

e

e

F

with the uto� sale s

0

, and for two di�erent mesh sizes : h

1

= 1 mm,

and h

2

= 0:5 mm. One an thus distinguish two "regimes":

� when the uto� sale s

0

dereases from the minimum value 0:412�h, the

relative error

e

e

F

inreases exponentially when C

stab

= 1. This is the result

of both the saling funtion aliasing and the numerial sheme lak of sta-

bility, whih quikly deteriorate the model auray. When C

stab

= 0:9,

the improved stability is able to balane the important osillations due

to aliasing, thus preventing the relative error from drastially inreasing.

� when the uto� sale s

0

inreases from the minimum value 0:412 � h,

the relative error

e

e

F

�rst dereases, as the aliasing phenomenon weak-

ens. However, as the uto� sale s

0

keeps on inreasing,

e

e

F

progressively
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deteriorates, as the smallest wavelengths aessible with the mesh are

progressively disarded by the saling funtion.
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Figure 4.20: Evolution of the relative error
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Finally, to onlude this preliminary analysis on the stability and auray

of the numerial model, Figure 4.21 displays the evolution of the relative error

e

e

F

with a dereasing mesh size h, for s

0

2 f0:585h; 0:6hg and C

stab

= 1.
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Figure 4.21: Evolution of the relative error
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with the mesh size h - C

stab

= 1.
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The auray of the fore reonstrution thus inreases with mesh (and

sale) re�nements. This is oherent with the analytial onvergene of the

wavelet-based model towards DNS, proved in the previous hapter.

This onludes this preliminary analysis on the numerial model stability

and auray, here assessed on a 2 � 2 steady array of disks submitted to

a tranverse pressure wave. In order to now onnet to the wavelet analysis

presented in the beginning of this hapter, the following setion onsiders the

propagation of a 2D transverse pressure wave through a 10� 10 steady array

of disks.

4.3.2 2D pressure wave through a 10 x 10 array of disks

The test ase geometry is displayed on Figure 4.22 below. The simulation

parameters are then summarized in Tables 4.10-4.11-4.12-4.13.

1
2

0
,0

0
 m

m

150,00 mm ¥¦§¨§§ mm

Figure 4.22: 2D pressure wave through a 10� 10 steady array of disks.

Lx Ly Disks radius Dist. onseutive disks

400 mm 120 mm 4 mm 4 mm

Table 4.10: Geometry - 3rd test ase.

10 bar zone 1 bar zone Disontinuity  ! 1st disks

[0; 150 mm℄ [150 mm; 400 mm℄ 62 mm

Table 4.11: Pressure loading - 3rd test ase.

Referene Density Referene Pressure Sound Veloity

�

ref

= 1000 kg ·m

�3

p

ref

= 10

5

Pa  = 1300 m · s

�1

Table 4.12: Fluid parameters - 3rd test ase.
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Mesh size Time step Sale/mesh ompatibility

h = 1 mm ∆t � C
stab

h



max

s

0

& 0:412� h

Table 4.13: Spatial and time disretization - 3rd test ase.

The solid medium is one again taken into aount in the homogenized �uid

via a body fore, whose maximum amplitude is loalized on the �uid-struture

interfaes, as displayed on Figure 4.23 below. The number of Cartesian grid

nodes N used to approximate the boundary of eah disk, and to ompute the

body fore applied to the homogenized �uid (3.198), is hosen so as to satisfy:

N �

2�R

ds

; (4.12)

where ds =

p

dx

2

+ dy

2

denotes the urvilinear disretization step. In the

following, N = 16 nodes are thus used to ompute the body fore.

0.22 0.24 0.26 0.©8 0.ª0 0.ª©
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Figure 4.23: Visualization of the 10� 10 array of disks.

In order to assess the model apability to reonstrut aurately a 2D pres-

sure wave propagating through suh solid obstales, we hereafter display:

� both the 2D reonstruted and referene pressure �elds, for multiple time

steps (see Figure 4.24); the latter is one again omputed with EURO-

PLEXUS software;

� the reonstruted and referene horizontal pressure pro�les (see Figure

4.25).

� the time evolution of the reonstruted and referene pressure �eld L

2

-

norm kpk

L

2

(t) =

�

R

Ω
f

[Ω
s

jp(x; t)j

2

dx

�

1

2

;

� the time evolution of the horizontal fore applied to the solid medium,

and the modulus of its Fourier transform.
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Figure 4.24: Reonstruted (left) VS referene (right) pressure �elds snapshots
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= 0:9 - s

0

= 0:415h
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Figure 4.25: Horizontal pressure pro�le - 10�10 array - C

stab

= 0:9 - s

0

= 0:415h
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The wavelet-based model thus seems able to reonstrut a horizontal pres-

sure pro�le whih losely �ts the referene data. Nevertheless, a high frequeny

noise an be witnessed within the array of disks, here delimited by the verti-

al blak lines. This phenomenon is explained by the aliasing indued by the

saling funtion Φ
s

0

with the set of parameters (C

stab

; s

0

) = (0:9; 0:415h). The

hoie of a uto� sale s

0

= 0:415h indeed allows to reah a better auray

(while maintaining a stability safety margin with C

stab

= 0:9) but results in

an aliasing phenomenon, as this value does not satisfy the ondition (3.241)

whih ensures that the saling funtion bandwidth remains within the admis-

sible Shannon frequeny range.

To further investigate the auray of the wavelet-based model, let us now

turn towards the L

2

-norm auray riterion.
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Figures 4.26a-4.26b display respetively the time evolution of the L

2

-norm,

for both the reonstruted and referene pressure �elds, and the relative error.

Two values for the C.F.L. stability onstant C

stab

are here tested. The uto�

sale s

0

is one again set to 0:415h. It an be witnessed that the model is able

to faithfully reonstrut the referene pressure �eld L

2

-norm, with a relative

error below 1:7% for both C

stab

values. No aliasing phenomenon is here visible.

This is explained by the fat that the L

2

-norm (whih integrates the square

modulus of the signal over the whole domain) �lters out the high frequeny

noise visible in the reonstruted pressure �eld. Nevertheless, despite this

�ltering, one an see that the relative error progressively inreases when the

wave front propagates through the solid medium. This is not a surprise, as

it has already been notied that the aliasing deteriorates the auray of the

reonstruted pressure �eld within the array of disks.

To onlude this test, let us �nally turn towards the main quantity of in-

terest in the design of a oupled �uid-struture solver, i.e. the fore applied

to the solid medium. Figure 4.27 hereafter displays the time evolution of the

horizontal fore applied to the whole array, for both the referene and reon-

struted pressure �elds. Two di�erent values are tested for the C.F.L. stability

onstant and the uto� sale: C

stab

2 f0:85; 0:9g and s

0

2 f0:415h; 0:585hg.

As expeted, the model response shows a better auray when the uto�

sale s

0

is near its minimum ritial value, i.e. s

0

= 0:415h. A high frequeny

noise (due to aliasing) an one again be witnessed in the reonstruted fore.

Its amplitude moreover dereases when the C.F.L. onstant C

stab

dereases.

This aliasing is haraterized by the fat that the frequeny of the osillations

visible in Figure 4.27b remains equal to the sampling frequeny

�

1

2∆t

�

, even

when the time step ∆t dereases with C

stab

. The hoie of a larger uto�

sale s

0

= 0:585h, whih satis�es the aliasing ompatibility ondition (3.241),

allows to ompletely suppress the high frequeny noise, at the ost of a loss of

auray.

Table 4.14 summarizes the relative errors obtained on the horizontal fore

and the pressure �eld L

2

-norm. As the di�erene between the referene and

reonstruted pressure �elds is mainly foused within the array of disks, and

espeially in the viinity of the �uid-struture interfaes, it is not surprising to

see that a better auray is reah on the pressure �eld L

2

-norm, whih takes

into aount the whole f�uid + solidg domain.

s

0

= 0:415h Relative error

e

e

F

Relative error on kpk

L

2

C

stab

= 0:9 5:22� 10

�2 . 1:5� 10

�2

C

stab

= 0:85 3:70� 10

�2 . 1:7� 10

�2

Table 4.14: Relative errors on the fore and pressure �eld L

2

-norm.
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It is here realled that the absolute error e

F

is de�ned by the time integra-

tion of the horizontal fore:

e

F

=

�

�

�

�

Z

t

b

t

a

�

(F

F!S

)

ref

� (F

F!S

)

s

0

�

· e

x

dt

�

�

�

�

: (4.13)
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Finally, to onlude this test on a 10 � 10 steady array of disks, it an

be emphasized that the hoie of a larger C.F.L. onstant C

stab

allows to bet-

ter identify the solid medium harateristi spatial sale (i.e. the size of the

porous ell), here � = 3R, where R = 4 mm is the disks radius. Indeed, if

C

stab

dereases, the numerial model tends to attenuate all pressure and fore

osillations, whether they are aused by the saling funtion aliasing or the

solid medium geometry. This is highlighted in Figure 4.28, whih displays the

FFT modulus of the horizontal fore. The distane 116 mm orresponds to the

horizontal distane between the �rst and last disks boundaries.
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Figure 4.28: FFT modulus of the horizontal fore (N:m

�1

) - 10� 10 array

This onludes this �rst assessment of the model apabilities, here evaluated

for a 2D transverse pressure wave propagating through a 10� 10 steady array

of disks.

In order to now strengthen the multi-sale omponent of the model, the

following test investigates whether a more marosopi representation of the

solid medium (and thus a larger mesh size h and uto� sale s

0

) allows to

properly reover the main quantity of interest, here the horizontal fore applied

to the whole array. A marosopi modeling of the solid medium would indeed

allow to represent PWR fuel assemblies as a single beam, without the need to

take into aount their inner struture.

4.3.3 Equivalent modeling of a fuel assembly ross setion

Three equivalent arrays of disks (2� 2, 4� 4, 10� 10) are hereafter onsid-

ered, as displayed in Figure 4.29. The (4� 4) and (2� 2) arrays are obtained

from the (10� 10) array by multiplying the radius and distane between disks

by respetively 2:5 and 5. The mesh size h is adapted to eah array so as to

satisfy h =

R

4

. Furthermore, the boundary of eah disk is approximated by
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using 16 nodes, whether the radius is 4 mm, 10 mm or 20 mm. The C.F.L.

onstant C

stab

and the uto� sale s

0

are set to (C

stab

; s

0

) = (0:9; 0:415h).
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Figure 4.29: Equivalent arrays of disks (2� 2, 4� 4, 10� 10)

As previously, the propagation of a 2D transverse pressure wave is om-

puted for eah array, with a 10 vs 1 bar initial pressure disontinuity, loated

at x = 0:150 m. The distane between the pressure disontinuity and the �rst

disks is de�ned, for eah array, by d = 0:060 +

R

2

(m). As the radius hanges

from one array to the other, a small time delay in the pressure and fore signals

an be witnessed between eah simulation. Figure 4.30 hereafter displays mul-

tiple snapshots of the reonstruted pressure �elds for the (4� 4) and (2� 2)

equivalent arrays.
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The following Figure 4.31 now displays both the time evolution and the

FFT modulus of the horizontal fore applied to eah array.
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As expeted, one an �rst notie in Figure 4.31a that the high-frequeny

noise brought by the saling funtion Φ
s

0

is present for all arrays. Its frequeny

of ourse hanges to math the sampling frequeny of eah simulation.

Furthermore, the size of the di�erent porous ells (respetively 12 mm,

30 mm and 60 mm) is learly visible in the horizontal fore spetrum, as dis-

played in Figure 4.31b.

Finally, eah of these equivalent arrays leads to an aurate evaluation of

the time average of the horizontal fore applied to the 10�10 array, as detailed

in the following Table 4.15. Suh a result thus supports a more marosopi

modeling of fuel assemblies within a Pressurized Water Reator (PWR) ore,

for instane by simplifying the geometry to a single beam in a 3D framework.

10�10 array 4�4 array 2�2 array

relative error

e

e

F

5:22� 10

�2

3:63� 10

�2

1:94� 10

�2

Table 4.15: Relative error on the horizontal fore for equivalent arrays.

Now, to onlude this fourth hapter dediated to the model implementa-

tion, two ongoing projets are hereafter presented:

� the �rst one onsists in a �rst attempt at implementing a nested grids

algorithm within the numerial model, with the aim of speeding up the

omputations;

� the seond is dediated to the oupling between the homogenized �uid

and the solid medium. Experiments realized with a 10 � 10 array of

PMMA ylinder rods submitted to a shok wave will be presented. This

experimental data will be supplemented with preliminary numerial tests

involving a (2� 2) moving array of disks.

4.4 Ongoing works

4.4.1 First implementation of a nested grids algorithm

As multi-grid methods are generally enountered in the framework of iter-

ative algorithms or impliit shemes, it is worthwhile to �rst reall the general

philosophy of suh methods, before detailing the spei� use of nested grids in

the urrent work.

General remarks on multi-grid methods

Multi-grid methods have been studied by an already exten-

sive literature. Referene works on this subjet an be found

in [Brandt, 1977℄,[Stüben and Trottenberg, 1982℄,[Hakbush, 1985℄,

[Ruge and Stüben, 1987℄, [Wesseling, 1992℄, [Trottenberg et al., 2001℄ and

[Wesseling and Oosterlee, 2001℄. The development of multi-grid methods
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was motivated by the will to speed up iterative algorithms, suh as Jaobi's

or Gauss-Seidel's, whih are known to quikly redue the high-frequeny

omponents of the error, but onversely struggle with the low-frequeny

omponents. In order to introdue the basi ideas of multi-grid methods, let

us onsider the following linear problem:

Ax = f; (4.14)

where:

� A 2 Rn�n

is a matrix, usually assumed symmetri, positive and de�nite;

� x 2 Rn

is the unknown vetor;

� f 2 Rn

is a known vetor;

Fixed-point algorithms an be used to solve iteratively equation (4.14).

Jaobi's method, for instane, onsiders the deomposition A = D + L + U ,

where D is a diagonal matrix, and L and U are respetively strily lower and

upper triangular matries. If the diagonal matrix D is invertible (whih is true

under the previous assumptions on A), one an injet the deomposition into

equation (4.14) as follows:

Dx = f � (L+ U)x: (4.15)

x = D

�1

f �D

�1

(L+ U)x: (4.16)

Then, starting from an initial guess x

0

, the iterative algorithm writes:

x

k+1

= Sx

k

+D

�1

f; (4.17)

or with the damped form (! � 0):

x

�

= Sx

k

+D

�1

f; (4.18)

x

k+1

= !x

�

+ (1� !)x

k

; (4.19)

where S = �D

�1

(L+ U). One then introdues the error vetor e and residual

vetor r, de�ned at eah iteration by:

e

k

= x� x

k

; (4.20)

r

k

= f � Ax

k

: (4.21)
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By applying the matrix S to the error vetor e

k

, one obtains, with equations

(4.16) and (4.17), the following iterative equation on e:

Se

k

= Sx� Sx

k

; (4.22)

= �D

�1

(L+ U)x� (x

k+1

�D

�1

f); (4.23)

= D

�1

(f � (L+ U)x)� x

k+1

; (4.24)

= D

�1

Dx� x

k+1

(4.25)

= x� x

k+1

; (4.26)

= e

k+1

: (4.27)

As for the residual vetor r, it is governed by the following equation:

r

k

= f �Ax

k

; (4.28)

= A(x� x

k

); (4.29)

= Ae

k

: (4.30)

Remark 4.4.1 Working with the residual equation (4.30) allows to im-

prove the iterative algorithm. Indeed, when the approximation x

k

is lose

to the solution x (for instane after a few iterations of Jaobi's method

(4.17)), the error e

k

will be small (in l

1

norm), and one an thus hoose

the zero vetor as initial guess to solve iteratively the residual equation

Ae

k

= r

k

: (4.31)

With the resulting approximation

e

e

k

of the error e

k

, one an then up-

date the unknown vetor x

k

as follows:

x

k+1

= x

k

+

e

e

k

: (4.32)

Iterative algorithms suh as (4.17) are known to onverge if and only if the

spetral radius �(S) of the matrix S is stritly below 1. The onvergene rate

is also linked to �(S): onvergene is slow if �(S) is lose to 1, and beomes

faster as �(S) dereases towards zero.

Furthermore, it is well-known that suh iterative algorithms, when imple-

mented on a single grid, quikly redue the high-frequeny (non-smooth) om-

ponents of the error e, but exhibit a very low damping on the low-frequeny

(smooth) omponents. The basi idea of (geometri) multi-grid methods is

then to introdue multiple nested grids, so that the low-frequeny ompo-

nents assoiated to a �ne grid may beome high-frequeny omponents when

transferred to a oarser grid. The basi example of multi-grid method is the

following two-level algorithm, where two nested grids of mesh sizes h and 2h

are onsidered:
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Two-level algorithm:

� smoothing: ompute a few iterations of the iterative sheme assoiated

to A

h

x

h

= f

h

on the �ne grid (h); this leads to an approximation

e

x

h

in

whih the high-frequeny omponents of the error are damped;

� ompute, on the �ne grid (h), the residual r

h

= f

h

� A

h

e

x

h

;

� restrition: projet the residual r

h

on the oarse grid (2h), via a restri-

tion operator R : r

h

7�! R(r

h

);

� solve, on the oarse grid (2h), the residual equation A

2h

e

2h

= R

�

r

h

�

;

this leads to an approximation

e

e

2h

in whih the initial low-frequeny

omponents are now damped as well;

� prolongation: transfer the error

e

e

2h

on the �ne grid (h) via an interpola-

tion operator I :

e

e

2h

7�! I

�

e

e

2h

�

;

� update the approximation

e

x

h

on the �ne grid (h) :

e

x

h

 �

e

x

h

+ I

�

e

e

2h

�

.

To apply suh a two-level algorithm, one needs to de�ne the restrition R

and interpolation I operators, and also the oarse grid version A

2h

of the origi-

nal (�ne grid) matrix A

h

. When the matrix A

h

is for instane obtained through

a �nite-di�erene sheme, the onstrution of A

2h

is straightforward.

These general remarks on multi-grid methods being stated, let us now turn

towards the spei� use of nested grids in the urrent work.

Spei� use of nested grids

As detailed above, multi-grid methods are well-designed for (stationary)

linear problems Ax = f solved iteratively, or impliit shemes. However, in

the urrent work, the homogenized �uid equations are solved with an expliit

�nite-volume sheme. Thus, multi-grid methods and nested grids are not here

intended to improve the onvergene of iterative shemes. The idea is rather

to ompute the homogenized �uid equations on a oarse grid, while keeping

trak of the rods geometry on the �ne grid, in order to properly evaluate all the

boundary integrals in the right-hand side of the equations. The nested grids

omputation is thus implemented as follows:

� the homogenized �uid variables are known on the oarse grid (2h) at

t = t

n

;

� the real �uid variables are reonstruted on the oarse grid (2h) at t = t

n

,

with a saling funtion Φ
s

2h

whose uto� sale s

2h

is linked to 2h;

� prolongation: the real pressure �eld is extended from the oarse grid (2h)

to the �ne grid (h);
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� the fore applied by the underlying solid medium is omputed on the �ne

grid (h), with a saling funtion Φ
s

h

whose uto� sale is linked to h;

� restrition: the fore is transferred from the �ne grid (h) to the oarse

grid (2h);

� the homogenized �uid variables are then updated at t = t

n+1

with this

soure term on the oarse grid (2h).

Let us now speify the interpolation and restrition operators hosen to

implement this nested grids algorithm. To this end, let us �rst introdue the

following notations:

Notations 4.4.1 �

�

u

h

i;j

�

0�i;j�2n

hereafter denotes the unknowns on the

�ne grid, with mesh size h;

�

�

v

2h

i;j

�

0�i;j�n

hereafter denotes the unknowns on the oarse grid, with

mesh size 2h.

Interpolation operator: bilinear interpolation

The interpolation (or prolongation) operator from the oarse grid to the

�ne grid is here de�ned as a bilinear interpolation, whose ation on the oarse

grid unknowns

�

v

2h

i;j

�

an be summarized into the following symbol:

0

B

�

1

4

1

2

1

4

1

2

1

1

2

1

4

1

2

1

4

1

C

A

:

More preisely, the �ne grid values

�

u

h

i;j

�

1�i;j�2n

are obtained from the

oarse grid values

�

v

2h

i;j

�

1�i;j�n

aording to the following equations:

80 � i; j � n, u

h

2i;2j

= v

2h

i;j

: (4.33)

80 � i � n� 1, 0 � j � n, u

h

2i+1;2j

=

1

2

�

v

2h

i;j

+ v

2h

i+1;j

�

: (4.34)

80 � i � n, 0 � j � n� 1, u

h

2i;2j+1

=

1

2

�

v

2h

i;j

+ v

2h

i;j+1

�

: (4.35)

80 � i; j � n� 1, u

h

2i+1;2j+1

=

1

4

�

v

2h

i;j

+ v

2h

i+1;j

+ v

2h

i;j+1

+ v

2h

i+1;j+1

�

: (4.36)
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Restrition operator: full weighting restrition

Regarding now the restrition operator, the simplest hoie would be a

straight injetion whih opies the values

�

u

h

2i;2j

�

onto

�

v

2h

i;j

�

. As suh a hoie

does not take into aount values orresponding to odd indies, a full weighting

restrition is here hosen, whose symbol is de�ned by:

0

B

�

1

16

1

8

1

16

1

8

1

4

1

8

1

16

1

8

1

16

1

C

A

:

More preisely, the oarse grid values are obtained via the following equa-

tions:

81 � i; j � n� 1,

v

2h

i;j

=

1

4

u

h

2i;2j

+

1

8

u

h

2i+1;2j

+

1

16

u

h

2i+1;2j+1

+

1

8

u

h

2i;2j+1

+

1

16

u

h

2i�1;2j+1

+

1

8

u

h

2i�1;2j

+

1

16

u

h

2i�1;2j�1

+

1

8

u

h

2i;2j�1

+

1

16

u

h

2i+1;2j�1

: (4.37)

81 � j � n� 1,

v

2h

0;j

=

1

4

u

h

0;2j+1

+

1

2

u

h

0;2j

+

1

4

u

h

1;2j�1

; (4.38)

v

2h

n;j

=

1

4

u

h

n;2j+1

+

1

2

u

h

n;2j

+

1

4

u

h

n;2j�1

: (4.39)

81 � i � n� 1,

v

2h

i;0

=

1

4

u

h

2i�1;0

+

1

2

u

h

2i;0

+

1

4

u

h

2i+1;0

; (4.40)

v

2h

i;n

=

1

4

u

h

2i�1;n

+

1

2

u

h

2i;n

+

1

4

u

h

2i+1;n

: (4.41)

v

2h

0;0

= u

h

0;0

; (4.42)

v

2h

n;0

= u

h

2n;0

; (4.43)

v

2h

0;n

= u

h

0;2n

; (4.44)

v

2h

n;n

= u

h

2n;2n

: (4.45)

These two operators being de�ned, let us now ompare the results obtained

with mono-grid and multi-grid omputations.
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Comparison between mono-grid and multi-grid omputations

The following Figure 4.32 displays the propagation of a 2D transverse pres-

sure wave through a 2� 2 steady array of disks. Two multi-grid omputations

are hereafter onsidered, respetively 2 mm=1 mm and 1 mm=0:5 mm.
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Figure 4.32: Pressure �eld snapshots - referene VS model with multi-grid

omputations (2=1 mm and 1=0:5 mm)

Figure 4.33 now displays the horizontal fore obtained with both mono-grid

and multi-grid omputations.
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It appears that both multi-grid omputations result in a loss of auray

on the time average of the horizontal fore, as detailed in Table 4.16 below.

This surprising result requires additional investigations to explain suh a phe-

nomenon, espeially for the nested grids 1 mm=0:5 mm, for whih one would

expet to obtain a better auray.

Mono-grid 1 mm 1 mm / 0.5 mm 2 mm / 1 mm

relative error

e

e

F

1:41� 10

�2

1:11� 10

�1

1:76� 10

�1

Table 4.16: Relative error on the horizontal fore - multi-grid omputations.

These preliminary results thus onlude this �rst attempt at implementing

a nested grids algorithm within the wavelet-based numerial model. To now

onlude this hapter dediated to the model implementation, let us �nally

fous on the oupling between the homogenized �uid and the solid medium

dynamis.

4.4.2 Towards a oupled �uid-struture solver

Experiments on a shok tube faility

Until now, the wavelet-based homogenized model has been onfronted with

2D referene solutions omputed with EUROPLEXUS software, onsidering

steady solid obstales. In order to thoroughly assess the model apabilities,

espeially with regards to the oupling between the �uid and solid medium

dynamis, an experimental referene solution is also mandatory . To this end,

a ollaborative test program has been initiated between the Frenh Energy

Commission (CEA) and the Norwegian University of Siene and Tehnology

(NTNU). This joint projet aims at providing a �rst set of experimental results

regarding transverse pressure waves propagating through a tube bundle. The

SIMlab shok tube faility (SSTF), hereafter displayed in Figure 4.34, shows

very interesting perspetives in this ontext, sine the dimensions of its ross

setion allows implementing a simpli�ed yet representative tube bundle spei-

men. This faility is also apable of generating a well-mastered and measured

pressure wave loading, thus allowing to produe some signi�ant knowledge on

how the pressure signal is modi�ed when travelling through the bundle.

In an e�ort to �nd a satisfatory balane between omplexity and represen-

tativity, a bundle of 10� 10 rods has been hosen for this experimental study,

as an be seen in Figure 4.34g. The rods diameter and the spaing between

onseutive rods are lose to the regular values for PWR fuel assemblies, the

preservation of the ratio between the two being a priority onstraint. Suh a

ompat test speimen is here required in order to perform 3D detailed sim-

ulations of the test, as well as optial measurements through the windows in

the dediated setion of the shok tube (f. Figures 4.34f-4.34g).

148 CHAPTER 4. MODEL IMPLEMENTATIONSamy Mokhtari



4.4. ONGOING WORKS

DRIVEN

F	
	�G S�CT 	O�

TANK

2:02m 16:08m

�����

P0� 01 & P0� 02

P08 01 & P08 02

P10 01 & P10 02

4:0m

0:95m

W 	��OW S�CT 	O�

(a)

(b) ()

(d) (e)

(f) (g)

Figure 4.34: Experimental setup: sketh of the SSTF (Figure 4.34a), en-

tire shok tube faility (Figure 4.34b), �ring setion with diaphragms (Figure

4.34), lose-up on amera setup (Figure 4.34d), open end and internal ross-

setion of the driven (Figure 4.34e), teleentri lense (Figure 4.34f), and tube

bundle speimen (Figure 4.34g). Figures 4.34b and 4.34 are reprints from

[Aune et al., 2016℄.
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The driver setion (f. Figure 4.34a) is manufatured with a total length of

2:02 m and an inner diameter of 0:331 m. The driver is followed by a 0:14 m-

long �ring setion whih onsists in several intermediate pressure hambers

separated by diaphragms (f. Figures 4.34a and 4.34). This enables the to-

tal pressure di�erene between the driver and driven setions to be ahieved

stepwise. The inner ross-setion in the driven setion starts with a 0:6 m-long

transition region from a irular to a square ross-setion (0:3 m�0:3 m). The

driven setion ends with a tank of 5:1 m

3

, with an 1:6 m internal diameter.

Regarding now the test speimen, hereafter displayed in Figure 4.35, the

diameter and spaing of the rods are representative of a PWR fuel assembly,

in order to limit saling e�ets regarding the wave propagation through the

bundle. Both extremities of the rods are inserted into holes in two horizontal

plates. The bottom plate is then lamped on the bottom wall of the shok

tube using dediated bolts and tapped holes. The top and bottom plates

of the speimen are onneted together and supported by two lateral plates

of idential thikness, in whih square windows are ut to allow for a diret

optial aess to the bundle. Indeed, teleentri lenses are used to provide a

Shlieren representation of the pressure waves and the solid medium motion.

(a)

(b)

Figure 4.35: Tube bundle test speimen used in SIMlab shok tube faility

This experimental study shall be onsidered as part of a preliminary work,

whose long-term objetives are:

� to identify experimentally, if possible, a transfer funtion of the bundle

onneting well-hosen variables upstream and downstream the speimen;

� to see if detailed 3D simulations (i.e. at the DNS sale) are su�iently

lose to the experimental data (both pressure measurements and high-

speed amera images), thus allowing to use 3D simulations as numerial

referene to onfront a 3D extension of the wavelet-based homogenized

model;

� to determine whih lessons an be learned from this �rst series of tests to

improve the experimental basis in the ongoing researh dediated to fuel

assembly modeling in LOCA situation.
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Remark 4.4.2 Conversely to the atual PWR situation, the experiment

has here been arried out in air given the shok tube tehnial onditions.

This of ourse signi�antly hanges the ompressibility of the �uid om-

pared to pressurized water.

The experimental tests were operated with a maximum driver length of

2:02 m. The driven setion was operated with a length of 16:08 m, with the

�rst row of tube bundles loated in the enter of the window setion (f. Fig-

ures 4.34f-4.34g). The loading was varied by hanging the initial pressure p

4

in the driver setion, while the initial pressure in the driven setion was oper-

ated at ambient onditions (p

1

and T

1

). Two loading are hereafter onsidered,

namely 2:5 bar and 5 bar overpressure. Table 4.17 below gives the omplete

test matrix, where eah test is numbered X-Y, in whih X denotes a test with-

out (O) or with tube bundle (B) speimen. Y indiates the �ring overpressure

(in bar) in the driver. It is worth noting the good repeatability of the bursting

harateristis of the diaphragms by omparing the �ring pressure p

4

between

tests with the same initial onditions in Table 4.17. The presene of tests

without any tube bundle was intended to provide a omparison point (free of

FSI phenomena) between the experimental shok wave within the faility and

a numerial shok wave omputed with EUROPLEXUS software.

Test Overpressure p

4

in driver (kPa) Pressure p

1

in driven (kPa) Temp. T

1

(

Æ

C)

O02 252.08 99.60 21.67

O05 517.29 98.50 21.19

B02 255.13 100.12 21.15

B05 516.37 100.02 21.40

Table 4.17: Test matrix inluding initial onditions for eah test. Peak pres-

sures p

4

measured in the driver before venting.

In all tests, six sensors �ush mounted in the tube roof measured the pressure

behind the inident and re�eted shok wave. The loation of eah pair of

sensors is displayed in Figure 4.34a. A 10 m spaing was used between eah

pair member. Sensors P10 were loated 0:97 m and 1:07 m downstream the

diaphragms in the �ring setion, P08 were loated 0:22 m and 0:32 m upstream

the window setion, while P07 were loated 0:22 m and 0:32 m downstream the

window setion. The delay in arrival time at eah pair of sensors may then be

used to determine the shok veloity and the orresponding Mah number.

In order to ath the shok wave propagation and the dynami response of

the bundles, a high-speed amera with a teleentri setup (f. Figure 4.34d-

4.34f-4.34g) was used for Shlieren photography. The sampling rate of the high-

speed amera was 37 kHz. The pressure measurements were also synhronized

with the amera.
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Remark 4.4.3 Failure of the speimen during the 5 bar test

The multiple impats of pressure waves on the bundle produed ten-

sile stresses in the bottom plate with brittle behaviour. Very small raks

were already visible after the 2.5 bar overpressure test. The seond test

destroyed the speimen, starting with a straight rak near the seond row

of bolts and ontinuing with diagonal raks in the lateral panel, leading

to the release of the rear part of the speimen holding the rods (see Figure

4.36). It ould fortunately be retrieved quite easily with no damage to the

faility thanks to the knowledge and expertise of the loal team operating

the shok tube.

(a)

(b)

Figure 4.36: Tube bundle speimen after failure during the 5 bar test: released

part (4.36a) and remaning part still onneted to the faility (4.36b).

The 2:5 bar test allowed to ath, thanks to the high-speed amera, the tube

bundle dynami response to the shok wave. Figures 4.37 and 4.38 hereafter

display multiple snapshots allowing to witness the impat and re�etion of the

shok wave on the test speimen, and the resulting motion of the �rst ylinder

rods. The rods displaement beomes truly visible in Figure 4.38, where one

an immediately notie impats between onseutive rods. It is realled that

suh impats are not taken into aount in the urrent 2D modeling of the solid

medium.
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(a) 7:9375 ms (b) 7:9645 ms

() 7:9915 ms

(d) 8:0185 ms (e) 8:0456 ms

(f) 8:0726 ms

(g) 8:0996 ms (h) 8:1266 ms (i) 8:1537 ms

(j) 8:1807 ms (k) 8:2077 ms (l) 8:2348 ms

(m) 8:2618 ms

(n) 8:2888 ms (o) 8:3159 ms

Figure 4.37: Shok wave impating the �rst ylinder rods. Time (t = 0) is

taken as the arrival of the shok wave at the pressure sensor P10_02.
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(a) 8:4780 ms (b) 9:3699 ms

() 10:6672 ms

(d) 12:9374 ms

(e) 14:1266 ms

(f) 14:8293 ms

(g) 15:3699 ms (h) 16:9104 ms

(i) 18:0726 ms

(j) 19:2347 ms (k) 20:8564 ms (l) 22:5320 ms

(m) 25:3699 ms (n) 28:0455 ms (o) 51:5861 ms

Figure 4.38: Visualization of the rods displaement. Time (t = 0) is taken as

the arrival of the shok wave at the pressure sensor P10_02.
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Given the previous snapshots, the rods displaement is then obtained by

using digital image orrelation to trak the mid-point of the �rst ylinder rod

in the 2:5 bars overpressure test, leading to the following urve displayed in

Figure 4.39 below.

Figure 4.39: Longitudinal displaement of the mid-point of the �rst rod. Time

(t = 0) is taken as the arrival of the shok wave at Sensor P10_02. Blak

markers orrespond to the times of interest (TOI) in Figure 4.38.

The mid-point of the �rst row of rods thus exhibit a rapid displaement

from t = 8:4780 ms until the point of maximum de�etion at t = 10:6672 ms.

Then, some elasti vibrations an be witnessed, followed by a signi�ant drop

in the displaement magnitude between t = 22:5320 ms and t = 25:3699 ms.

The rods mid-point then seems to undergo elasti vibrations around a slightly

permanent deformed on�guration throughout the remaining of the test.

Now, to go along with this preliminary experimental data, it is now high

time to test the wavelet-based model on a moving array of disks.

Preliminary numerial test with a moving array

For this �rst assessment of the model apability to treat the oupling with

moving solid obstales, the propagation of a 2D pressure wave through a 2� 2

array of disks is here onsidered. It is realled that the array is modeled via

a linear osillator for eah degree of freedom, here two translations. Suh a

2D omputation is not expeted to faithfully represent the 3D rods behavior

observed in the shok tube faility. Indeed, impats between onseutive rods

are for instane not taken into aount. The aim is here rather to reover,

with the wavelet-based model equations, the theoretial behavior of a linear

osillator that would be submitted to the (reonstruted) fore applied by the

�uid, thoroughly investigated in the previous tests.

The simulation is designed with a 8 m long shok tube, in order to give time

for the solid medium motion to take plae, and also prevent re�eted waves on

the outer boundaries from interating again with the solid medium. An initial
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pressure disontinuity of 2:5 vs 1 bar is loated at x = 3:9 m, as displayed in

Figure 4.40.

� .86 � .88 � .90 � .92 � .94 � .96 � .98

�  (m )
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�

 �
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�
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0.�
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1.2

1.5

1.8

2.1

2.4

2.7

Figure 4.40: Zoom on the initial pressure �eld (2.5 vs 1 bar) - 2 � 2 moving

array of disks.
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Figure 4.41: Visualization of the 2� 2 moving array of disks at t = 0.

All the simulation parameters are summarized in the following Tables 4.18-

4.19-4.20-4.21-4.22.

Lx Ly Disks radius Dist. onseutive disks

8 m 6:10

�2

m 1:10

�2

m 1:10

�2

m

Table 4.18: Geometry - 2� 2 moving array of disks.

2.5 bar zone 1 bar zone Disontinuity  ! 1st disks

[0; 3:9 m℄ [3:9 m; 8 m℄ 5:10

�3

m

Table 4.19: Pressure loading - 2� 2 moving array of disks.
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Referene Density Referene Pressure Sound Veloity

�

ref

= 1000 kg ·m

�3

p

ref

= 10

5

Pa  = 1300 m · s

�1

Table 4.20: Fluid parameters - 2� 2 moving array of disks.

Eigenfrequeny Mass Sti�ness Damping

!

0

=

2�

5:10

�3

s

�1

m

tot

= 1:492� 10

�4

kg k

tot

= 2:354� 10

2

kg:s

�2

� = 20%

Table 4.21: Solid medium parameters - 2� 2 moving array of disks.

Mesh size Time step Sale/mesh ompatibility

h = 1 mm ∆t = 0:9�

h



max

s

0

= 0:585� h

Table 4.22: Spatial and time disretization - 2� 2 moving array of disks.

In order to be able to witness su�ient displaement of the solid medium

during a limited simulation time, here 6 ms, the solid medium parameters are

hosen as follows:

1 the (eigen-)period of the linear osillator is set to T

0

= 5 ms;

2 the assoiated eigenfrequeny is then de�ned by !

0

=

2�

T

0

(rad:s

�1

);

3 the solid density is set to �

s

= 1:188�10

1

kg:m

�3

(1% of PMMA density);

4 the disks thikness is set to L = 10

�2

m;

5 the resulting mass is de�ned by m

tot

= 4� �

s

�R

2

L;

6 the sti�ness k

tot

is then de�ned by: k

tot

= !

2

0

�m

tot

;

7 the frition oe�ient 

tot

is �nally de�ned by 

tot

= ��2

p

k

tot

m

tot

, where

� is the dimensionless damping oe�ient.

Remark 4.4.4 In�uene of the strutural damping

If the damping oe�ient � is hosen too small, the oupled �uid-

struture simulation may exhibit a non-physial behavior. Indeed, an in-

rease of the pressure beyond the initial maximum value of 2:5 bar has

for instane been notied when dereasing � below 10%. Suh a numerial

phenomenon requires a parametri study on the damping oe�ient � in

order to determine its ritial minimum value.

These remarks being stated, Figure 4.42 now displays the time evolution of

the longitudinal and transverse displaements.
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Figure 4.42: Displaements U

x

=U

y

- 2� 2 moving array of disks.
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The sinusoidal shape of the displaement U

x

in Figure 4.42a, with a maxi-

mum displaement of 5:476 mm reahed around t = 1:3845 ms, is oherent with

the linear osillator modeling. Indeed, the red urve visible in Figure 4.42a or-

responds to the free theoretial response of a linear osillator in pseudo-periodi

regime:

U

theo

x

= Ke

��e!

0

t

os

�

e

!

0

q

1� �

2

t+ '

�

; (4.46)

where:

� the damping oe�ient � is set to 20%;

� the period

e

T =

2�

e!

0

p

1��

2

is set to 6 ms;

� the phase ' is set to �

�

2

;

� the onstant K is set so that U

theo

x

oinides with the maximum displae-

ment U

x

at t = 1:3845 ms.

During the �rst phase of the simulation [0; 1:3845 ms℄, where the disks

displaement is mainly driven by the initial shok wave, U

x

(t) losely �ts the

free theoretial response (4.46). The fat that the longitudinal displaement

�rst responds with a period lose to 6 ms an be tied bak to the period of the

pressure loading. Indeed, as the pressure disontinuity is initially loated at

x = 3:9 m, at only 5 mm from the �rst disks, the time T

wave

neessary for a

wave to impat again the disks from left to right an be evaluated as follows:

T

wave

=

3:9 + 3:905

1300

�

0:005

1300

(4.47)

= 6 ms; (4.48)

where the veloity of the pressure disontinuity has here been approximated

by the sound veloity in the �uid.

During the seond phase [1:3845 ms; 6 ms℄, the pressure disontinuities are

mostly far away from the array, leading to small pressure fores. The longitu-

dinal displaement U

x

(t) is thus mainly driven by the restoring elasti fore.

Thus, the period of U

x

(t) dereases from the initial 6 ms wave period to �t its

5 ms eigen-period. Indeed, Figure 4.42a allows to estimate a period of damped

osillations around T = 5:0879 ms, whih is oherent with the previous hoies

of parameters. Indeed, the frequeny and period of damped osillations satisfy:

! = !

0

q

1� �

2

; (4.49)

T =

T

0

p

1� �

2

: (4.50)

With � = 20% and T

0

= 5 ms, it follows T � 5:103 ms.
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Regarding now the transverse displaement U

y

, one an notie in Figure

4.42b that it is 2 orders of magnitude below the longitudinal displaement.

This is not surprising onsidering the transverse pressure wave impating the

solid medium. Furthermore, onversely to U

x

, the displaement U

y

does not

at �rst exhibit a pure sinusoidal shape. The behavior witnessed on the time

interval [0; 3:669 ms℄ is here explained by the vertial omponent of the �uid

pressure fores, whih is muh smaller than the horizontal omponent, and

exhibits �utuations, with possible hange of signs. For t � 3:669 ms, after the

disks have reahed their maximum transverse displaement, a sinusoidal shape

free of �utuations is reovered.

Remark 4.4.5 Important note on the way the displaement of the �uid-

struture interfaes ∂Ω
s

is taken into aount in the boundary integrals

of the model equations

As the homogenized �uid equations are disretized on a 2D regular

Cartesian grid with mesh size h = 1 mm, the boundary integrals present

in the right-hand sides of the balane equations are updated when the solid

medium displaement reahes integer multiples of h.

To omplete the displaements observed in Figure 4.42, let us now turn

towards the pressure �elds reonstruted for the beginning and right/left max-

imum positions of the disks, hereafter displayed in Figures 4.43 and 4.44.

One an immediatly notie in Figure 4.43 that the horizontal pressure pro�le

is almost onstant (around 1:75 bar) when the disks reah their maximum

displaement. This is also on�rmed by the 2D pressure �elds displayed in

Figures 4.44b-4.44. Thus, pressure fores applied to the solid medium are

almost zero, and the restoring elasti fore an now freely at on the solid

medium. This is oherent with the fat that the solid medium has reahed its

maximum displaement and will now head bakwards.

Besides, it an also be notied in Figures 4.44b-4.44 that the arti�ial

pressure within the solid medium remains onstant around 1 bar throughout

the simulation. This is oherent with the assumptions at the basis of the

wavelet-based homogenized model (i.e. no matter is exhanged between the

�uid and solid media).

In onlusion, these preliminary results, obtained via a oupling between

a 2D homogenized ompressible �uid and a rigid solid medium, are in good

agreement with the theoretial behavior of a linear osillator.
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Figure 4.43: Horizontal pressure pro�les for the initial and maximum positions

of the disks - the vertial dashed lines indiate the position of the array.
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Figure 4.44: Initial and maximum positions of the 2� 2 moving array of disks

within the reonstruted pressure �eld (bar).
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4.5 Conlusion

This fourth hapter, dediated to the model implementation, allowed to

assess its ability to aurately ompute the physis of interest, i.e. a 2D

transverse pressure wave propagating through a ongested solid medium om-

posed of multiple disks. A wavelet analysis of a referene numerial solution

(10 � 10 steady array), omputed at the DNS sale, was �rst presented. This

�rst test gave insights on the pressure �eld spetrum, and underlined the need

to replae the analysing wavelet Ψ by its assoiated saling funtion Φ, in order

to avoid multiple and umbersome omputations. A seond test then on�rmed

the impat of both the C.F.L. and the sale/mesh ompatibility onditions on

the numerial model stability and auray. In eho with the �rst wavelet anal-

ysis, a 2D pressure wave propagating through a 10� 10 steady array of disks

was then onsidered. The wavelet-based model proved its ability to aurately

reonstrut both the pressure �eld and the horizontal fore applied to the solid

medium. To then enhane the multi-sale omponent of the model, a ompari-

son between several equivalent arrays of disks (2�2, 4�4, 10�10) proved that

a more marosopi modeling of the solid medium, and thus a larger mesh size

h and uto� sale s

0

, preserves the auray on the main quantity of interest,

i.e. the dynami load on the solid medium.

Finally, the last setions of this hapter gave some insights on two ongoing

projets. The �rst one onsists in implementing a nested grids algorithmwithin

the numerial model. While it obviously did speed up the omputations, it

also exhibited an unexpeted loss of auray. These troubling results thus

require further investigations. The seond projet is dediated to the design

of a oupled �uid-struture solver. A ollaborative test program between the

Frenh Energy Commission (CEA) and the Norwegian University of Siene

and Tehnology (NTNU) was �rst presented. This joint work allowed to submit

a tube bundle speimen to multiple shok waves within a shok tube faility,

while reording the solid medium longitudinal displaement via high-speed

ameras. In addition to this preliminary experimental data, a �rst numerial

test involving a 2 � 2 moving array of disks was also presented. A oupled

�uid-struture simulation allowed to reover the theoretial behavior of a linear

osillator, with its lassial sinusoidal displaement. These early results shall

of ourse be ompleted with further testing.
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Chapter 5

Conlusion

This work put forward a new ontribution in the wide literature of porous

media, homogenization and multi-sale methods. Guided by the need to om-

pute transverse pressure waves within ongested solid media, suh as fuel as-

semblies within Pressurized Water Reators (PWR), this manusript thor-

oughly desribed a homogenized and multi-sale model able to disard all

interfaes and small sale phenomena. In a will to build a self-sustained

model, whih an bypass the major limitations enountered in homogenization

theory and multi-sale methods, this work promotes the use of Continuous

Wavelet Transform (CWT). Starting with a 2D rigid and homogeneous solid

medium, and an invisid ompressible �uid, it was thoroughly detailed how this

wavelet formalism an be implemented on the �uid Partial Di�erential Equa-

tions (PDEs). The method was moreover designed to allow for an extension to

generi PDEs. A two-steps proess of "weak-extension" + "weak-onvolution"

of the original �uid PDEs with an analysing wavelet (or saling funtion) was

shown to result in spatially-�ltered PDEs governing a homogenized �uid. The

new onservative variables are moreover de�ned as the wavelet oe�ients (or

low-frequeny approximation) of the original variables. In order to ensure the

well-posedness of the onvolution produt, a real-valued, isotropi, smooth,

well-loalized and admissible wavelet has been hosen, namely the Mexian

hat. More importantly, thanks to CWT and its reonstrution formula, the

homogenized model possesses the brand new ability to onnet resolved and

unresolved sales without any ad ho model, and to rigorously handle the

original boundary onditions. It was also emphasized how the reonstrution

formula an be used to expliitly ompute, if neessary, nonlinear terms. To

omplete the wavelet-based model theoretial framework, a onvergene to-

wards Diret Numerial Simulation (DNS) was proved, along with neessary

ompatibility onditions between the saling funtion uto� sale s

0

and the

mesh size h. To the author's knowledge, it is the �rst time that suh a self-

sustained homogenized and multi-sale model, takling generi and non-smooth

PDEs, losure between resolved and unresolved sales, boundary onditions,

nonlinearities, periodiity and sale separation is put forward in literature.

In order to onfront this theoretial framework with the physis of inter-

est, several 2D numerial tests were onsidered, with steady miro-strutures.
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These tests �rst allowed to emphasize the impat of both the expliit sheme

C.F.L. ondition, and the saling funtion uto� sale, on the numerial model

stability and auray. It was then proved, with di�erent steady miro-

strutures, that the wavelet-based model is able to aurately reonstrut both

the pressure �eld, and the dynami load applied to the solid medium. This

auray is even preserved when a more marosopi modeling is used to rep-

resent the solid medium. Then, in an ongoing work aiming at designing a

oupled �uid-struture solver, preliminary experimental data, involving a tube

bundle speimen submitted to shok waves, was presented. The longitudinal

displaement observed during the experiments was then supplemented by a

preliminary numerial test involving a 2� 2 moving array of disks. This test,

whih did not aim at faithfully representing the 3D solid medium behavior

observed in the shok tube faility, nevertheless allowed to reover the theoret-

ial behavior of a linear osillator. These early results will be ompleted with

additional testing in order to build a robust 2D �uid-struture solver.

Finally, there obviously are improvements and hallenging perspetives

ahead of this work. Regarding the urrent vulnerabilities and possible im-

provements, the wavelet-based model is �rst onfronted with risks of instability

and aliasing. Besides, the use of a band-pass analysing wavelet, rather than

a low-pass saling funtion, was shown to signi�antly inrease the omputa-

tional ost of the method. Now, regarding the perspetives, one may think of

a 3D extension of the wavelet-based homogenized model, using a 3D Contin-

uous Wavelet Transform. Nevertheless, in a ontext where fuel assemblies are

the solid medium of interest, suh a 3D extension ould rely on a "2D+1D"

approah, where the homogenization proess is only applied through the ross

setion, while lassial disretization tehniques are used to handle the vertial

diretion. If the ross setion of the 3D fuel assemblies does not undergo any

deformation, the assumptions made on the 2D solid medium ould be easily

transposed to the 3D ase.

To now widen the perspetives of the urrent work, one ould extend

this wavelet-based multi-sale and homogenized model, here developed in the

framework of Fluid-Struture Interation (FSI), to other types of physis, suh

as heterogeneous materials and turbulene for instane. Indeed, in the spirit

of the wide overview of the state of the art presented in this manusript, this

work put forward a homogenization proess that an deal with generi PDEs,

written at the ontinuum medium sale, and moreover independent from any

spatial disretization tehnique.
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Appendix A

Convolution produt

Proposition A.0.1 Convolution produt L

1

�

Rd

�

�D

�

Rd

�

The onvolution produt between a funtion f 2 L

1

�

R
d

�

and a test

funtion ' 2 D

�

Rd

�

results in a C

1

funtion.

Proof of Proposition A.0.1 Let us �rst start with the de�nition of on-

volution produt. For a priori almost all x 2 R
d

:

(f � ') (x) : =

Z

Rd
f

�

x� y

�

'(y) dy; (A.1)

=

Z

Rd

e

f

�

y � x

�

'(y) dy; (A.2)

=

Z

Rd
�

x

(

e

f)(y)'(y) dy; (A.3)

=

D

'; �

x

(

e

f)

E

; (A.4)

where

e

f(x) = f(�x), and �

x

(

e

f)( · ) =

e

f( · � x) denotes a translation of f .

One an �rst notie that, for all f 2 L

1

�

Rd

�

, the funtion:

�

e

f

:

�

Rd

; k · kRd

�

7�! (L

1

; k · k

L

1

)

x 7�! �

x

(

e

f)

; (A.5)

is ontinuous. This point is proven by using the density of ontinuous and

ompatly-supported funtions in the Lebesgue spae L

p

, for 1 � p < +1.

Furthermore, the linear form:

l

'

:

L

1

�

Rd

�

7�! Rd

f 7�! h'; fi

(A.6)

is also ontinuous. Indeed, sine ' 2 D

�

Rd

�

� L

1

�

Rd

�

, Hölder inequality

implies that f � ' 2 L

1

�

Rd

�

, and:
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jl

'

(f)j : =

�

�

�

�

Z

Rd
f'

�

�

�

�

(A.7)

�

Z

Rd
jf j � j'j; (A.8)

� k'k

L

1

kfk

L

1

: (A.9)

Finally, one an state that for all f 2 L

1

�

Rd

�

and ' 2 D

�

Rd

�

, the

funtion:

Rd

7�! Rd

x 7�! (f � ') (x) =

�

l

'

Æ �

e

f

�

(x)

(A.10)

is ontinuous. The C

1

smoothness is then obtained thanks to the the-

orem allowing to di�erentiate parameter-dependent integrals, with the dif-

ferentiation being applied on the test funtion '.

Proposition A.0.2 Convolution produt D

0

�

Rd

�

�D

�

Rd

�

The onvolution produt between a distribution T 2 D

0

�

R
d

�

and a test

funtion ' 2 D

�

Rd

�

also results in a C

1

funtion. Furthermore, the

following equation holds:

8 T 2 D

0

�

R
d

�

,  ; ' 2 D

�

R
d

�

:

h � T; 'i

D

0

;D

: =

Z

Rd
( � T )'; (A.11)

=

D

T;

e

 � '

E

D

0

;D

: (A.12)

In the ase where the distribution T is a loally integrable funtion, the

previous result an be obtained with Fubini's theorem:

h � T; 'i

D

0

;D

=

Z

Rd

�

Z

Rd
 (x� y)T (y) dy

�

'(x) dx (A.13)

=

Z

Rd
T (y)

�

Z

Rd

e

 (y � x)'(x) dx

�

dy (A.14)

=

D

T;

e

 � '

E

D

0

;D

(A.15)

Proof of Proposition A.0.2 With some minor hange in the proof A.0.1,

one an extend the previous proposition to the onvolution produt

L

1

lo

�

Rd

�

�D

�

Rd

�

, and then use the fat that L

1

lo

�

Rd

�

� D

0

�

Rd

�

.
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