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Abstract

This work, motivated by the recent development of metamaterials, has the double ob-

jective of contributing to the elaboration of elastodynamic homogenization methods for

periodic composite materials and of contributing to the establishment of imperfect elasto-

dynamic interface models for composite materials. The first part of this thesis is concerned

with Willis’ theory of elastodynamic homogenization and the two-scale elastodynamic ho-

mogenization method. In view of the difficulties in obtaining the effective constitutive

laws in Willis’ theory, an efficient iterative method is proposed to obtain precise dispersion

relations and to build the effective constitutive laws in the cases of low frequency and

long wavelength. At the same time, the two-scale homogenization method is developed

with the help of an assumption which allows avoiding the tedious derivation of high-order

asymptotic terms and obtaining a general high-order expression of the effective impedance.

These results are applied and illustrated in the case of laminated composites.

In the second part of the work, imperfect elastodynamic interface models are established

by replacing, in a composite, an interphase of thin uniform thickness with an imperfect

interface of zero thickness satisfying equivalent jump conditions. These models are in fact

an elastodynamic extension of the corresponding imperfect elastostatic ones. Finally, they

are numerically implemented and illustrated by using the Finite Difference Time Domain

(FDTD) and the Explicit Simplified Interface Method (ESIM).

Key words : Composite; Elastodynamics; Homogenization; Asymptotic analysis;

Imperfect interface; Jump condition; Numerical method.
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Résumé

Ce travail de thèse, motivé par le développement récent de métamatériaux, a pour dou-

ble objectif de contribuer à l’élaboration de méthodes d’homogénéisation élastodynamique

pour les matériaux composites périodiques et de contribuer à l’établissement de modèles

d’interface imparfaite élastodynamique pour les matériaux composites. La première partie

de ce travail de thèse s’intéresse à la théorie d’homogénéisation élastodynamique de Willis

et à la méthode d’homogénéisation élastodynamique à deux échelles. Au vu des difficultés

liées à l’obtention des lois constitutives effectives dans la théorie de Willis, une méthode

itérative efficace est proposée pour obtenir des relations de dispersion précises et pour con-

struire les lois constitutives effectives dans les cas à basse fréquence et à grande longueur

d’onde. En même temps, la méthode d’homogénéisation à deux échelles est développée

à l’aide d’une hypothèse permettant d’éviter la dérivation fastidieuse de termes asymp-

totiques d’ordre élevé et d’obtenir une expression générale d’ordre élevé de l’impédance

effective. Ces résultats sont appliqués et illustrés dans le cas des composites stratifiés.

Dans la deuxième partie du travail, des modèles d’interface élastodynamique impar-

faite sont établis en remplaçant, dans un composite, une interphase d’épaisseur uniforme

mince par une interface imparfaite d’épaisseur nulle qui satisfont à des conditions de

saut équivalentes. Ces modèles sont en fait une extension élastodynamique des modèles

d’interface élastostatique imparfaite correspondants. Enfin, ils sont numériquement im-

plantés et illustrés à l’aide du domaine temporel à différence finie (FDTD) et de la méthode

d’interface simplifiée explicite (ESIM).

Mots clés : Composite ; Elastodynamique ; Homogénéisation ; Analyse asymptotique

; Interface imparfaite ; Condition de saut ; Méthode numérique.
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Notations

• Tensor notations

u,u scalar and vector

A,A second-order and fourth-order tensor

⊗ tensor product : (u⊗ v)ij = uivj

⊗s symmetric tensor product : (u⊗s v)ij = 1
2

(uivj + ujvi)

· scalar product : u · v = uivi

: double-dot product : A : B = AijBij

�n n-th dot product : A�2 B = A : B = AijBij

• Common mathematical notations for PART I

〈·〉 volume average operator

u,v displacement vector and velocity vector

σ, ε strain tensor and stress tensor

k, w wave number and angular frequency

E0,f eigenstrain and body force

ρ,C second-orde rmass density tensor and fourth-order stiffness tensor

ρeff ,Ceff effective density tensor and effective elastic tensor

Z effective impedance

Se,T e effective constitutive law components

I, I second-order and fourth-order identity tensor

L,M third-order tensor and second-order tensor to be determined

X , η local tensors (related to the micro variable y)
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• Common mathematical notations for PART II

N ,T normal and tangent projection operators

u,n displacement vector and normal vector interfacial

σ, τ stress tensor and traction vector

G, ρ shear modulus and mass density

R, T reflection coefficient and projection coefficient

P⊥,P‖ fourth-order normal and tangent operators

C,S fourth-order stiffness tensor and compliance tensor

A,B fourth-order tensors to be determined

P ,Q coefficient matrices (related to Taylor expansion and jump conditions)

10



General introduction

Dynamic homogenization methods for periodic com-

posites

Metamaterials and periodic composites

Metamaterials are defined as artificial materials with some physical properties that are

not available in nature. These “abnormal” materials are artificial composites designed to

achieve certain special physical phenomena and applications. The existence of metama-

terials provides a medium for people to explore the connection between the micro-world

and the macro-world, and also makes people realize that even the simple arrangement and

combination of microstructure can greatly affect the macroscopic performance of compos-

ites.

In recent years, research on metamaterials has attracted great interest from researchers.

For instance, the study of optical invisibility cloaks (Chen & Chan, 2010), metamaterials

with negative physical properties (Pendry, 2000; Smith et al., 2000; Fang et al., 2006), and

phononic crystals (Liu et al., 2000) with local resonance at specific frequencies band have

attracted great attention. In fact, it has long been realized that the special microstructure

of metamaterials (such as phononic crystals, photonic crystals) gives rise to unnatural

macroscopic properties (Willis, 1985; Auriault & Bonnet, 1985).

In view of the microscopic periodic arrangement of metamaterials, perturbations with

wavelengths greater than or much greater than the size of their periodic cells will exhibit

frequency dependence. The reason is that under the influence of these fluctuations, the

materials of the cells do not exist independently, but reflect the synergy between each other.

Two intuitive examples are the “negative” effective density exhibited by the local resonance
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of phononic crystals (Liu et al., 2005) and the frequency “band” in the homogenized

dispersion curves of periodic elastic composites (Nemat-Nasser et al., 2011). For such a

periodic structure with very different microscopic properties and macroscopic behaviors, a

reasonable homogenization method can effectively reduce the complicated calculations at

the microscopic scale, thereby reducing computational consumption.

Overview of dynamic homogenization methods

The purpose of the dynamic homogenization method is to predict the macroscopic

properties of the composite material through its microstructure: by “packaging” the rep-

resentative volume element (RVE) to study the dependence of the effective constitutive re-

lationship on frequency and wavelength. In some homogenization theories, the description

of the microscopic physical field is quite innovative. For example, in the dynamic elasticity

problem, the representative result is the “average” description of the displacement field on

the microscopic scale shown in Keller (1960, 1977). The result of this “smooth” description

is the expected value of microscopic local disturbances. In the subsequent research and

development, the definition of “volume average” (or called “ensemble average”) has been

widely used in the homogenization description. In this “average” mechanism, the local

average of microscopic fluctuations is considered to be the homogenization result of the

microstructure response. In addition, there is also some weighted description of “average”

in the work of Milton & Willis (2007).

The establishment of effective constitutive laws can more effectively describe the ho-

mogenization behavior of microstructures. Regarding the research on the macroscopic

effective constitutive law of composites, the dynamic homogenization theory proposed by

Willis is more completed, and more details can be found in the original article Willis

(1997). The initial development of Willis’ theory was to describe the scattering of incident

waves in inclusion problems, such as the introduction of momentum polarization “π” and

stress polarization “τ” to cope with variations in effective density and effective modulus

(Willis, 1980a, 1980b). A complete part of Willis’ theory is presented in Willis (1997),

it presents a coupling relation, which is non-local in space and time, between the local

displacement field and the stress polarization and momentum polarization fields. In some

later examples (Willis, 2009; Willis, 2011; Willis, 2012), Willis’ theory gradually got new
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development.

In the periodic composites that we discussed, the wave response of the macrostructure

is simpler. With the help of Floquet-Bloch wave expansion, the macro wave is treated

separately from the local disturbance of the periodic microstructure. This idea was shown

in Amirkhizi & Nemat-Nasser (2008) for electromagnetic waves and then developed by

others for elastic waves, for instance, over layered elastic composites in Nemat-Nasser

et al. (2011) and Shuvalov et al. (2011); over periodic elastic composites in Nemat-Nasser

& Srivastava (2011, 2013) and Norris et al. (2012). In the research of homogenization

theory in recent years, three application conditions are derived for the homogenization

description of periodic media in Nassar et al. (2015), which present some limitations of

frequencies and wavenumbers. And the application of the Hill-Mandel lemma is also

discussed in Nemat-Nasser & Srivastava (2013) by comparison of the total elastodynamic

energy and the total complementary elastodynamic energy.

Asymptotic methods of dynamic homogenization the-

ory

With the development of the dynamic homogenization theory of composites, some

asymptotic methods have gradually attracted researchers’ attention, such as the asymp-

totic method based on the two-scale description. For the acoustic stage of the dispersion

curves, that is the case of long-wavelength (LW) and low-frequency (LF), the description of

the two-scale of macro and micro scale provides the possibility of analyzing macro behavior

through microstructure. The development of the two-scale description can be traced back

to the work of Bensoussan et al. (2011, reprinting of the 1978 version). The introduction of

the small parameter ε effectively represents the asymptotic expression of the fluctuation of

the macro wave on the microscale. At the same time, the definition of the small parameter

ε also determines the ratio of the microscale to the macroscale, which defines the range

of wavelengths (or wavenumbers) that can be homogenized. The micro-scale definition

provided in the two-scale representation makes the hierarchical equations of the dynamic

equation also satisfy the homogenization condition. A series of asymptotic elastodynamic

homogenization methods were proposed for periodic media with some approximation as-

13



sumptions (e.g. frequencies and wavelengths), for example, some asymptotic analysis

based on the two-scale method for long wavelengths (LW) and low frequencies (LF) cases

were proposed (Boutin, 1996; Smyshlyaev & Cherednichenko, 2000). Subsequently, the

two-scale homogenization description was widely applied (Fish et al., 2002a, 2002b; Wau-

tier & Guzina, 2015). Higher-order series expressions are also used for asymptotic method

(Andrianov et al., 2008; Kalamkarov et al., 2009; Andrianov et al., 2011; Andrianov et al.,

2013). And an asymptotic method up to the 8-th order is applied (Hu & Oskay, 2017,

2018, 2019). As the asymptotic order increases, the effective modulus and effective density

converge to the dynamic homogenization solution.

Thin homogeneous intermediate layer model and equiv-

alent jump conditions

When studying the dynamics of composite materials, if we do not consider the special

interface conditions, we can regard the tightly bonded interface of two materials as a perfect

interface. In the context of mechanics, both the displacement field u and the traction vector

τ = σ · n of the particles at the interface are continuous. In other words, on the perfect

interface, both the tangential component of the strain field and the normal component of

the stress field show continuity (Hadamard, 1903; Hill, 1961). In linear isotropic elastic

materials, the normal and tangential components of the physical field were first introduced

as the “interior” and “exterior” parts (Hill, 1972). This decomposition was later replaced

by two orthogonal fourth-order interfacial operators and extended to general anisotropic

elastic materials (Laws, 1975). This rigorous and elegant algebraic representation has been

widely developed in Walpole (1981) and Hill (1983).

In addition, when dealing with interface problems, the interface is often not suitable

for being considered as being perfect. In this case, it is necessary to introduce an imperfect

interface model in which the physical field satisfies a certain jump relationship. Among

the various imperfect interface models, two typical ones are worth noting: the spring-layer

model and the interface stress model. These two interface models respectively correspond

to the composite materials of two linear elastic materials with a very “soft” or “hard”

thin interphase layer. The first spring-layer model allows the traction vector (the normal
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component of the stress field) to be continuous at the interface, while the displacement field

has a jump relationship that is linear with the traction vectors on both sides of the interface.

The second interface stress model defines that the displacement field is continuous at the

interface, but the traction vector has a discontinuous jump relationship (derived from the

tangential component of the strain field) and satisfies the Young-Laplace equation. The

aforementioned “soft” or “hard” thin interphases are relative to their adjacent materials.

In particular, if there are no extreme properties in the interphase layer, the displacement

field and traction vector of the imperfect interface exhibits a jumping relationship at the

interface. An excellent paper that made a general discussion on this equivalent imperfect

interface is Gu & He (2011). The same problem was also discussed in Benveniste (2006).

The applications of this equivalent imperfect interface can be found, for example, in Gu

et al. (2014), Gu et al. (2015) and Benveniste (2006).

Numerical modeling of interface jump conditions

Considering that the interface connecting different media is perfect, some effective

numerical methods are applied to different domains, such as the finite element method

in the solid-solid dynamic problem, the finite difference and finite volume schemes in the

fluid-solid problem. In this thesis, we do not consider the solid or liquid properties of the

medium, but use the finite difference numerical method to implement the jump conditions

of the thin intermeddle layer model. The purpose is to test the equivalent effect of the

jump conditions model and the effectiveness of the imperfect interface model.

In the development of finite difference schemes, some effective difference schemes such

as the Lax-Wendroff scheme and ADER-K scheme of the first-order hyperbolic equation

deserve attention (see for example Schwartzkopff et al., 2002; Schwartzkopff et al., 2004).

In terms of numerical modeling, the Explicit Simplified Interface Method (ESIM) provides

an effective solution that allows smooth interfaces not to rely on finite difference meshes,

or called an “arbitrary-shaped” interface. (Piraux & Lombard, 2001; Lombard & Piraux,

2004, 2006; Chiavassa & Lombard, 2011). An excellent acoustic wave propagation case

based on ESIM and ADER scheme was demonstrated in Lombard et al. (2017). The

equivalent jump conditions refer to the homogenized middle layer model ( David et al.,
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2012; Marigo & Maurel, 2016, 2017; Marigo et al., 2017) or the resonance model of high-

contrast inclusions (Pham et al., 2017).

In the application of the ESIM in this thesis, we identify several limitations. First,

the radius of curvature of parallel smooth interfaces (boundaries of the thin interphase

layer) needs to be greater than the thickness of the thin interlayer. This requirement is to

ensure that the point on the interface is unique to the virtual point. Second, in order to

ensure the stability of the numerical results, the number of Taylor points on both sides of

the thin interphase layer should be greater than half of the difference-points in the central

difference scheme, which has a similar meaning to the selection of the Taylor series radius

d in Lombard et al. (2017).
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Part I

Elastodynamic homogenization

methods for periodic composites
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Chapter 1

Preliminaries

In this chapter, we mainly introduce some preliminaries of the dynamic homogenization

of periodic composites, such as the Bloch-wave representation, the definition of effective

fields, and the analytical solution of the dispersion relationship of one-dimensional layered

composites. Without loss of generality, all matrix operations and definitions are carried

out in three-dimensional space R3, which will be specifically explained for some 1D and

2D applications.

1.1 Periodic microstructure

1.1.1 Periodic representative volume element

Consider a three-dimensional (3D) periodic medium which is symbolized by Ω and

occupies a 3D vector space E . Let us choose three vectors ei(i = 1, 2, 3) such that they

form a basis for the vector space E . Then, the vector space E can be defined by

E = {x | x = a1e1 + a2e2 + a3e3, ai ∈ R},

where R represents the sets of real numbers. Next, a periodic lattice L , which has the

definition

L = {x ∈ E | x = aiei, ai ∈ Z},
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where Z indicates the sets of integers. In this periodic lattice L , a representative volume

element (RVE) can be defined as the smallest area enclosed by a half distance of adjacent

lattice points:

T = {x ∈ E | ∀r ∈ L − {0}, ‖x‖ 6 ‖x− r‖}.

Assuming that a function φ(x) represents the material properties (such as elastic modulus

and mass density, etc.) of the periodic medium Ω, then φ(x) has to satisfy the following

periodic relationship:

φ(x) = φ(x+ r), x ∈ T, r ∈ L . (1.1)

E

T

L

l

l
→→

e1

e2

(a)

E *

T*

L *

2
π
/l

2π/l

e1*

e2*

→→

(b)

Figure 1.1: (a) A 2D geometrical illustration of the periodic space E and the periodic lattice
L . The representative volume element (RVE) is defined as the smallest area enclosed by a
half distance of adjacent lattice points. (b) The reciprocal model composed by the periodic
space E ∗ and the periodic lattice L ∗, the unit cell T ∗ is defined as the first Brillouin zone
of L ∗.

The reciprocal space of E is denoted by E ∗, which has three base vectors e∗i (i = 1, 2, 3).

There exists a relation between the base vectors of E and E ∗: ei · e∗j = 2πδij, where δij

is the Kronecker’s delta symbol. Similar with the position vector x, the wave number k

plays the same role in reciprocal space E ∗, which can be defined as the combination of the

reciprocal lattice L ∗ and the first Brillouin zone T ∗: E ∗ = L ∗ ∪ T ∗. Fig.(1.1) illustrates

an example of 2D hexagonal periodic RVE T and T ∗.
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1.1.2 Bloch-wave representation

The homogenized descriptions of periodic materials takes into account the different

scale expression. The introduction of the Bloch-wave transformation is to express the

definition of displacements in two scales (microscopic and macroscopic scales). In the

same way, it also shows the result of “localization” and “homogenization” operations. The

Fourier transform of a wave function φ(x) gives

φ(x) =

∫
k∈E ∗

φ̃(k)eik·xdk,

where k represents the wave number. Under the definition of the reciprocal lattice L ∗,

the vector space E ∗ is the space combination of the lattice space L ∗ and the first Brillouin

zone T ∗. Considering the “local” scale for T ∗, the integral of φ̃(k) can be given as

∫
k∈E ∗

φ̃(k)eik·xdk =

∫
k∈L ∗

(∫
ξ∈T ∗

φ̃k(ξ)eiξ·xdξ

)
eik·xdk.

Then Bloch-wave expansion in the series form is shown as

φ(x) =
∑
k∈E ∗

φ̃(k)eik·x =
∑
k∈L ∗

φ̃k(x)eik·x =
∑
k∈L ∗

(∑
ξ∈T ∗

φ̃k(ξ)eiξ·x

)
eik·x.

This benefits from the Bloch-wave transform basis on the superposition for the periodic

field φ̃(k) over the periodic lattice space L ∗. In other words, this is due to the periodic

property of the composite.

In the plane harmonic dynamics problem, we consider the Bloch-wave expansion as

φ(x) = φ̃k(x)ei(k·x−wt),

where φ̃k(x) represents “local” amplitude and k stands for the “macro” wave number,

the portion of e−iwt represents the time dependence of the wave. In order to simplify the

presentation, the time part e−iwt is omitted in all the following contents.
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1.2 Elastodynamics of periodic microstructure

1.2.1 Local dynamic equation

Let u be the displacement field over the periodic medium Ω. The linear constitutive

relation between the stress field σ and the strain field ε, and the linear momentum equation

between the momentum field p and the velocity field v have the following form:

σ = C : ε = C : (∇⊗s u), p = ρv = ρu̇,

where ⊗s represents a symmetric gradient operator, the superscript point of u̇ stands for

the time derivative of u, and the tensor C and ρ are the fourth-order elastic stiffness

tensor and the mass density tensor, respectively. Thanks to the local periodic condition,

the property of tensors (C, ρ) satisfies the periodic condition (1.1).

Let us introduce the volume force f . Using the Bloch-wave representation, we can

write the displacement response of the harmonic volume force f(x) = f̃ke
ik·x as u(x) =

ũk(x)eik·x over the periodic medium Ω. The gradient and divergence fields of u(x) are

expressed as

∇u(x) = (∇+ ik)⊗ ũk(x)eik·x, ∇ · u(x) = (∇+ ik) · ũk(x)eik·x.

Other local fields (like v, ε, p, and σ) also satisfy the Bloch-wave representation and local

periodic condition (1.1). Ignoring the term eik·x, the local dynamic equation can be simply

written as

(∇+ ik) · [C : (∇+ ik)⊗s ũk] + f̃k = −w2ρũk. (1.2)

1.2.2 Effective field description

In the homogenization step of dynamic equations, the effective field is defined as the

volume average over the cell T :

〈φ(x)〉 ≡ 〈φ̃k(x)〉eik·x =

(
1

|T |

∫
T

φ̃k(x)dT

)
eik·x, (1.3)
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where 〈·〉 stands for a local volume average operator. It provides an effective field definition

to describe the local homogenization properties of microwaves. As the local stress field σ̃

satisfies the periodic condition, the divergence of the stress field has a null mean (〈∇ ·σ̃〉 =

0). Then, the homogenized dynamic equation can be expressed as

ik · 〈σ̃〉+ 〈f̃〉 = −iw〈p̃〉. (1.4)

In this effective equation, the exploration of the relationship between the effective fields 〈σ̃〉

and 〈p̃〉, and the solution 〈ũ〉 will become the core purpose. To this end, Willis’ effective

constitutive law perfectly solves this problem. With the introduction of a free-strain field

Ẽ0 (Bloch-wave representation available), the effective constitutive law has the form:

〈σ̃〉
〈p̃〉

 =

Ce Se

T e ρe


(k,w)

〈ε̃〉 − Ẽ0

〈ṽ〉

 , (1.5)

where Ce and ρe represent the elastic stiffness and mass density components, Se and T e

provide a non-local coupling interpretation between the effective fields 〈σ̃〉, 〈ṽ〉 and 〈p̃〉,

〈ε̃〉, respectively. Here, the subscript (k, w) describes a frequency dependence for this

effective constitutive law.

1.3 Dispersion relationship of layered materials

Considering a layered composite, the displacement response ũ is expressed as a solution

to the following local dynamic equation (Bloch-wave representation available):

∇ · σ̃ + f̃ = ρ¨̃u, σ̃ = C : ((∇+ ik)⊗s ũ) . (1.6)

We take a three-phase layered composite as example, which has thickness ratios α1, α2

and α3 (with α1 + α2 + α3 = 1) as shown in Fig.(1.3).
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... ...

l l1 l2 l3

Figure 1.2: Infinite three-phase periodic layered material model and the representative
volume element (RVE) with the thickness ratio of α1 : α2 : α3.

1.3.1 Analytical solution

In order to simplify the problem, we are interested in the case where the dispersion

relationship of the layered composite can be reduced to a 1D case. The local dynamic

equation is then expressed as

(
∂

∂x
+ ik)σ̃ + f̃ = ρ

∂2ũ

∂t2
, σ̃ = E(

∂

∂x
+ ik)ũ, (1.7)

where E and ρ represent the elastic modulus and mass density, respectively. Considering

the Fourier transform of the time derivative, in the frequency domain, the above dynamic

equation can be written as a second-order non-homogeneous equation:

∂2ũ

∂x2
+ 2ik

∂ũ

∂x
+

(
ρw2

E
− k2

)
ũ = − f̃

E
,

and the corresponding equation for the case of f̃ = 0 reads

∂2ũ

∂x2
+ 2ik

∂ũ

∂x
+

(
ρw2

E
− k2

)
ũ = 0.

The general solution ũg(x) can be expressed as

ũg(x) = Aezx +Bez
∗x,

where z, z∗ = −ik ± iw
√
ρ/E are two solutions to the characteristic equation of Eq.(1.7),

A and B are two coefficients to be determined.

We set the size of the periodic representative cell to be l (the thicknesses of the com-

ponents are α1l, α2l and α3l), the continuity conditions of the displacement field ũ and
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1 2 3

Figure 1.3: The 1D equivalent diagrammatic sketch of the three-phase layered composite
RVE with the thickness ratio of α1 : α2 : α3.

traction vector τ̃ = E ∂ũ
∂x

across the perfect interface can be expressed as

ũ1(0) = ũ2(l), ũ1(α1l) = ũ2(α1l), ũ1 ((α1 + α2)l) = ũ2 ((α1 + α2)l) ,

τ̃1(0) = τ̃2(l), τ̃1(α1l) = τ̃2(α1l), τ̃1 ((α1 + α2)l) = τ̃2 ((α1 + α2)l) ,

where l1 = α1l, l2 = (α1 + α2)l and l3 = (α1 + α2 + α3)l = l. With the help of general

solution ũg, we can rewrite the above conditions into a matrix form:



1 1 0 0 −ez3l3 −ez∗3 l3

iwη1 −iwη1 0 0 −iwη3e
z3l3 iwη3e

z∗3 l3

ez1l1 ez
∗
1 l1 −ez2l1 −ez∗2 l1 0 0

iwη1e
z1l1 −iwη1e

z∗1 l1 −iwη2e
z2l1 iwη2e

z∗2 l1 0 0

0 0 ez2l2 ez
∗
2 l2 −ez3l2 −ez∗3 l2

0 0 iwη2e
z2l2 −iwη2e

z∗2 l2 −iwη3e
z3l2 iwη3e

z∗3 l2





A1

B1

A2

B2

A3

B3


=



0

0

0

0

0

0


,

where the impedance ηi =
√
ρiEi, the velocity ci =

√
Ei/ρi and zi, z

∗
i = −ik ± iw/ci for

i = (1, 2, 3).

The above matrix equation contains all the continuous conditions of different media

across the interfaces and the periodic boundary conditions of the RVE. On the one hand,

from a mathematical point of view, in order to ensure that coefficients A and B have

non-zero solutions (or called non-trivial solutions), the coefficient matrix must have a zero

determinant. This condition allows us to determine the dispersion relationship between the

wave number k and the angular frequency w through the definition of the zero determinant

of the coefficient matrix. On the other hand, from a physical point of view, when the

solutions of A and B are both zero, it means that the material has no displacement

response in all material layers. In theory, the result that both A and B are zero will only

appear in the case of infinite stiffness of the material, and this kind of “infinity” stiffness

material is not what we expect to have in this problem. Back to this three-phase layer
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composite model, the zero determinant condition of the coefficient matrix can be simplified

to the following expression:

8η1η2η3cos(kl) = (η1 + η2)(η2 + η3)(η3 + η1)cos

(
wl(

α1

c1

+
α2

c2

+
α3

c3

)

)
− (η1 + η2)(η2 − η3)(−η3 + η1)cos

(
wl(

α1

c1

+
α2

c2

− α3

c3

)

)
− (η1 − η2)(−η2 + η3)(η3 + η1)cos

(
wl(

α1

c1

− α2

c2

+
α3

c3

)

)
− (−η1 + η2)(η2 + η3)(η3 − η1)cos

(
wl(−α1

c1

+
α2

c2

+
α3

c3

)

)
. (1.8)

Obviously, this relationship can be degraded into a two-phase layered composite case by

setting two material properties to be the same. For example, in the two-phase layered

composite model, we can get

4η1η2cos(kl) = (η1 + η2)2cos

(
wl(

α1

c1

+
α2

c2

)

)
− (η1 − η2)2cos

(
wl(

α1

c1

− α2

c2

)

)
. (1.9)

Multi-phase layered composite

Next, we consider a multi-layered periodic composite, we can also solve the analytical

dispersion relation with the aid of the zero-determinant condition mentioned above. For

example, in an n-layer (n > 2) infinitely periodic layered model, the size of the coefficient

matrix formed by the interface continuity condition and the periodic boundary condition

is (2n∗2n). Obviously, solving the zero-determinant relationship of the matrix is a tedious

mathematical task. And in this subsection, we will directly give a simplified expression.

The medium thickness ratio is set to αi, and
∑n

i=1 αi = 1.

Before describing the dispersion relationship of multi-phase layered composites, we

introduce two preliminary coefficients:

P(n) = (η1 + η2)(η2 + η3) . . . (ηn−1 + ηn)(ηn + η1), Q(n) =
α1

c1

+
α2

c2

+ . . .+
αn
cn
.

In addition, we take m elements from a set of n elements and let the matrix R(m)
(n) denote
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the set of all combinations. Therefore, the total number of elements in R(m)
(n) is Cm

n , where

Cm
n =

n!

m!(n−m)!
.

Let ri be the i-th combination in the matrix R(m)
(n) . Next, we mark the η items and α items

of ri combination in P
(ri)
(n) and Q

(ri)
(n) as negative, and the rest as positive. For example, for

n = 4 and m = 2, the combination ri of R(m)
(n) shows

r1 = (1, 2), r2 = (1, 3), r3 = (1, 4),

r4 = (2, 3), r5 = (2, 4), r6 = (3, 4).

Take the combination (ri) = (1, 3) as an example, the parameters P
(ri)
(n) and Q

(ri)
(n) are given

as

P
(1,3)
(4) = (−η1 + η2)(η2 − η3)(−η3 + η4)(η4 − η1), Q

(1,3)
(4) = −α1

c1

+
α2

c2

− α3

c3

+
α4

c4

.

It is worth noting that when m = 0, the combination r1 is an empty set ∅, and the

parameters P
(∅)
(n) = P(n) and Q

(∅)
(n) = Q(n) at this time. Finally, the dispersion relationship

(k − w) of n-phase layered composite can be given as

2n

(
n∏

m=0

ηm

)
cos(kl) =

1

2

n∑
m=0

(
(−1)m

Cmn∑
i=1

P
(ri)
(n) cos

(
Q

(ri)
(n) wl

))
. (1.10)

Obviously, the above expression satisfies the periodic condition, and the wave number

can describe the (k − w) dispersion relationship perfectly only in the stage kl 6 π, which

is consistent with the wave number limitation proposed by Nassar et al. (2015). Similarly,

this general expression can be degenerated to the case of three-layer composites (1.8) or

two-layer composites (1.9) by defining the number of materials n = 3 or n = 2.

1.3.2 Finite Element solution

Using the same description as in the previous subsection, we consider a 1D model to

replace this layered composite. In this problem, the finite element method is considered to
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obtain the numerical results under the corresponding mesh (the accuracy of the numerical

solution depends on the mesh size). Rewrite the local dynamic equation (3.2) in the

frequency domain as

E
∂2ũ

∂x2
+ 2ikE

∂ũ

∂x
+ [E(ik)2 − ρ(iw)2]ũ+ f̃ = 0.

Integrating the above equation on the domain Ω and using a test function δũ (meeting the

periodic conditions), we get

∫
Ω

E
∂2ũ

∂x2
δũdx +

∫
Ω

2ikE
∂ũ

∂x
δũdx +

∫
Ω

[E(ik)2 − ρ(iw)2]ũδũdx +

∫
Ω

f̃ δũdx = 0.

With the help of the divergence theorem and the periodic conditions, the local dynamic

equation can be expressed as the following weak form equation:

−E
∫

Ω

∂ũ

∂x

∂δũ

∂x
dx + 2ikE

∫
Ω

∂ũ

∂x
δũdx + E

∫
Ω

(ik)2ũδũdx − ρ(iw)2

∫
Ω

ũδũdx +

∫
Ω

f̃ δũdx = 0.

Try to rewrite the above equation as the form k(ũ, δũ)−w2m(ũ, δũ) = f(f̃ , δũ), where the

function k(·, ·), m(·, ·) and f(·, ·) are defined by

k(ũ, δũ) = E

∫
Ω

∂ũ

∂x

∂δũ

∂x
dx − 2ikE

∫
Ω

∂ũ

∂x
δũdx − E

∫
Ω

(ik)2ũδũdx,

m(ũ, δũ) = ρ

∫
Ω

ũδũdx,

f(f̃ , δũ) =

∫
Ω

f̃ δũdx.

In the finite element method, the next work is some simple matrix description. With

the help of Lagrangian polynomials (or Cramer’s rule), the displacement interpolation

function can be determined by the value of discrete points. Process all the elements in a

loop, and assemble all the elementary systems to construct a global dynamic equation:

(
[K]− w2[M ]

)
[Ũ ] = [F ].

At the same time, we introduce a matrix relationship [P ][Ũ ] = [0] to describe the interface

continuous condition and the periodic boundary condition of the composite model, where
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[P ] represents the coefficient matrix of discrete points corresponding to the continuity

and periodic conditions. Using the method of Lagrange multipliers and introducing the

Lagrange multiplier λ, we can construct a Lagrangian function

(
[K]− w2[M ]

)
[Ũ ] + λ[P ][Ũ ] = [F ].

The global matrices [K]glob and [M ]glob can be constructed as


[K] [P ]T

∗

[P ] [L]


︸ ︷︷ ︸

[K]glob

− w2

[M ] [0]

[0] [L]


︸ ︷︷ ︸

[M ]glob


[Ũ ]

[Λ̃]

 =

[F ]

[0]

 ,

where [Λ̃] is an additional variable, the conjugate complex transpose superscript T ∗ makes

the global matrix [K]glob satisfy Hermitian symmetry, and the matrix [L] is constructed

as a small parameter diagonal matrix. The matrix [K]glob and [M ]glob are respectively

composed of the elastic module E and the mass density ρ, and include all periodic and

continuous conditions. Since the matrix [K]glob is related to the wave number k, the

dispersion relationship will be determined by the generalized eigenvalues of the matrices

[K]glob and [M ]glob :

[K]glob[v] = λ[M ]glob[v],

where the generalized eigenvalues λ represent the square of the angular frequencies w2, [v]

stand for the generalized eigenvectors.

1.3.3 Numerical example

Considering the quasi-static case, the homogeneous properties depend on the average

material properties of the RVE. The effective elastic tensor Ceff and the mass density ρeff

can be defined by the effective constitutive law and the effective momentum relation:

〈σ̃〉 = 〈C : ε̃〉 ≡ Ceff : 〈ε̃〉, 〈p̃〉 = 〈−iwρ · ũ〉 ≡ −iwρeff · 〈ũ〉.
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Therefore, when we consider a multi-phase layered composite (n-phase) with thickness

ratios αi, in the equivalent 1D model, the average value of Young’s modulus Eeff and

mass density ρeff have

Eeff = (
n∑
i

αi
Ei

)−1, ρeff =
n∑
i

αiρi.

The effective impedance of the quasi-static solution gives Z = iwρeff iw − ikEeff ik. The

dispersion relationship can be given by the zero determinant of the effective impedance

det{Z} = 0.

Next, we give an example of the three-phase layered model described earlier: the ratio

of the media thickness α1, α2 and α3 satisfies α1 : α2 : α3 = 0.52 : 0.23 : 0.25. And

the cell size is set to l = 0.01(m). In addition, the material properties of these three

media are given as: the Young’s modulus E1 = 3.0 × 108(Pa), E2 = 2.0 × 1011(Pa),

and E3 = 1.0 × 1010(Pa); the mass density ρ1 = 1000(kg/m3), ρ2 = 3000(kg/m3), and

ρ3 = 900(kg/m3). The two aforementioned methods (Analytical solution and numerical

Finite Element solution) will be used to determine the (k − w) dispersion relationship of

this 1D equivalent model. Fig.(1.4a) shows the analytical solution (1.8) and the numerical

solution (finite element solution) of the dispersion relationship between wave number k and

angular frequency w. The comparison between the quasi-static dispersion relationship and

the dynamic one is shown in Fig.(1.4b).

Obviously, in the dynamic problem (k is not zero), the dispersion relationship between

k and w is not constant. This will also mean that there is a frequency dependence of

the constitutive law, as shown in Eq.(1.5). It is worth mentioning that the finite element

solution of the dispersion relationship can also be adapted to the general 2D situation, but

its accuracy depends on the mesh size. However, the analytical solution is the limited. For

more complex 2D models, the analytical solution expression does not seem to be easy to

derive. For this reason, in the following two chapters, we will discuss two commonly used

dynamic homogenization methods, namely Willis dynamic homogenization theory and

two-scale asymptotic homogenization method, in the long-wavelength and low-frequency

(LW-LF) cases.
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Figure 1.4: (a) Comparison of the acoustic (the curves on the bottom) and lowest optical
(the curves on the top) dispersion curves for the numerical solution and the analytical
solution, (b) Acoustic branch of dispersion curves for the Quasi-static solution and the
analytical solution.
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Figure 1.5: Non-folding illustration of dispersion curves for the numerical solution and the
analytical solution.
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Figure 1.6: Non-folding illustration of dispersion curves for the quasi-static solution and
the analytical solution.
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Chapter 2

Willis’ elastodynamic

homogenization theory for periodic

composites

This chapter will mainly introduce the Willis dynamic homogenization theory, and

then introduce the numerical scheme to determine the effective constitutive law and the

acoustic dispersion relationship. In dynamic elasticity problems, Willis’ theory provides

an effective constitutive law of the dynamic homogenization for the long-wavelength and

low-frequency waves. In the optical dispersion stage, the numerical scheme shown in this

chapter does not seem to be applicable, so the following main research content is based on

the acoustic dispersion stage.

2.1 Willis’ homogenization description

In this section, we mainly review the localization and homogenization description of

Willis’ theory and the resulting effective constitutive law.

2.1.1 Localization step

In Willis’ elastodynamic homogenization theory presented in his work of 1997 (Willis,

1997), the solution of the local dynamic equation ũ can be expressed as a coupling of the

homogenization solution to the effective strain field 〈ε̃〉 and the effective velocity field 〈ṽ〉,
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that can be expressed as

ũ = 〈ũ〉+A : (〈ε̃〉 − Ẽ0) +B · 〈ṽ〉, (2.1)

where A and B are two localization tensors need to be determined, and the tensor Ẽ0

stands for a free-strain field. As definitions of the effective fields 〈ε̃〉 and 〈ṽ〉, there exist

a relationship between these two effective fields:

−iw〈ε̃〉 = ik ⊗s 〈ṽ〉, (2.2)

where wave number k and angular frequency w satisfy the dispersion relationship of the

homogenized dynamic equation. These two effective fields are not independent of each

other, which makes that the tensors A and B are interrelated.

One approach proposed in Willis’ theory to obtain these two tensors is to introduce

a free-strain field Ẽ0 (Bloch-wave representation available), which is independent of the

effective velocity field. Correspondingly, the local dynamic equation takes the form

(∇+ ik) · {C : [(∇+ ik)⊗s ũ− Ẽ0]}+ f̃ = −w2ρũ, (2.3)

where the local constitutive relationship has σ̃ = C : (ε̃−Ẽ0). Importantly, the free-strain

Ẽ0 and the volume force f̃ have a dual effect in the equation. The Green’s function g is

introduced in order to make the homogenized dynamic equation solvable. It is defined as

the solution of the following equation:

(∇+ ik) · {C : [(∇+ ik)⊗s g(x,x′)]}+ |T |δ(x− x′) = −w2ρg(x,x′), (2.4)

where the variables x and x′ have the same meaning, δ(x − x′) ≡ δ(x − x′)I represents

the product of the Kronecker delta function δ(x− x′) and the identity tensor I.

According to the three necessary conditions for the Willis’ homogenization theory de-

rived in the work of Nassar et al. (2015), the Hill-Mandel lemma gives a virtual work
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equation:

〈|T |δ(x− x′)ũ(x′)〉 = 〈(C : Ẽ0) : [(∇+ ik)⊗s g(x,x′)]∗〉+ 〈f̃g∗(x,x′)〉,

where the superscript symbol ∗ indicates a complex conjugate field. With the help of the

convolution definition, the left part of above equation can be rewritten as

〈|T |δ(x− x′)ũ(x′)〉 =

∫
T

δ(x− x′)ũ(x′)dx′ ≡ |T |ũ(x).

According to the property of the Green’s function: gT (x,x′) = g∗(x,x′), the local dis-

placement field satisfies

ũ(x) = 〈[g(x,x′)⊗s (∇+ ik)∗] : C〉x′ : Ẽ0 + 〈g(x,x′)〉x′ · f̃ , (2.5)

where the operator 〈·〉x′ stands for a volume average of x′ over the REV T .

Since the Green’s function cannot be easily obtained, a feasible method is to set the

solution of the dynamic equation as the following form:

ũ = L : Ẽ0 +M · f̃ , (2.6)

which is equivalent to Eq.(2.5), the tensors L and M are the solutions in which the

dynamic equation satisfies the combination of (Ẽ0 = ei ⊗s ej, f̃ = 0) and (Ẽ0 = 0, f̃ =

ek), respectively. It is worth noting that the matrix L and M are also related to the

Green’s function g and a wave number-frequency combination (k, w). As such, comparing

expressions (2.1) and (2.6), tensors L and M have similar effects with tensors A and B.

Similar to the tensors A and B in equation (2.1), the tensors L and M in (2.6) have

similar roles.

2.1.2 Homogenization step

As mentioned earlier, the effective constitutive law can be expressed as Eq.(1.5). The

component tensors Ce, Se, T e, and ρe depend on the wave number-frequency combination

(k, w), they can all be determined by the tensors L andM . It is easy to give the expression
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of the local fields ε̃, ṽ and the effective fields 〈ε̃〉, 〈ṽ〉:

ε̃
ṽ

 =

(∇+ ik)⊗s L (∇+ ik)⊗sM

−iwL −iwM

Ẽ0

f̃

 .
We notice that the effective field gives 〈(∇ + ik)⊗s L〉 = 〈∇⊗s L〉 + 〈ik ⊗s L〉, and the

first part has a zero-average under the effective definition of periodic cell volume average

(same property for M). Then, the effective fields 〈ε̃〉, 〈ṽ〉 satisfy

〈ε̃〉
〈ṽ〉

 =

ik ⊗s 〈L〉 ik ⊗s 〈M〉

−iw〈L〉 −iw〈M〉

Ẽ0

f̃

 .
Thanks to the effective field definitions: 〈σ̃〉 = 〈C : (ε̃ − Ẽ0)〉 and 〈p̃〉 = 〈ρ · ṽ〉, the

effective constitutive law can be expressed as〈σ̃〉
〈p̃〉

 =

Ce Se

T e ρe

〈ε̃〉 − Ẽ0

〈ṽ〉

 .
Then it follows that the effective tensors Ce, Se, T e and ρe can be determined as

Ce = 〈C〉+ 〈C : [(∇+ ik)⊗sM ]〉〈M〉−1〈L〉 − 〈C : [(∇+ ik)⊗s L]〉 (2.7a)

Se =
1

iw

{
〈C : [I− (∇+ ik)⊗s L]〉 · ik − 〈C : [(∇+ ik)⊗sM ]〉〈M〉−1(I − 〈L〉 · ik)

}
,

(2.7b)

T e = iw(〈ρL〉 − 〈ρM〉〈M〉−1〈L〉), (2.7c)

ρe = 〈ρM〉〈M〉−1(I − 〈L〉 · ik) + 〈ρL〉 · ik. (2.7d)

This result includes the shear wave example in Meng & Guzina (2018). Recalling the

expression of the local displacement field ũ in Willis’ theory, there exists a relationship

between tensors A and B and tensors L and M :

A = M〈M〉−1〈L〉 − L, (2.8a)

B =
1

iw

[
I −M〈M〉−1 +

(
M〈M〉−1〈L〉 − L

)
· ik
]
. (2.8b)
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Similarly, by using the expressions (2.8a) and (2.8b), the same result can be obtained by

the related expression of Green’s function in Nassar et al. (2015):

Ce = 〈C〉+ 〈C : [(∇+ ik)⊗s A]〉,

Se = 〈C : [(∇+ ik)⊗s B]〉,

T e = −iw〈ρA〉,

ρe = 〈ρ〉 − iw〈ρB〉.

2.2 Effective constitutive law

2.2.1 Symmetry of component tensors

In the expression of the effective constitutive law of Willis homogenization theory, the

effective constitutive tensors Ce, ρe exhibit Hermitian symmetry, and the tensors Se, T e

show a negative conjugate equivalent relationship:

Ce = (Ce)∗, ρe = (ρe)∗, Se = −(T e)∗,

where (·)∗ stands for the conjugate operator. These relationships can be proved by a

simple transformation of the expressions (2.7a). Using the displacement expression (2.6),

the effective dynamic equation (2.3) can be rewritten as

ik · 〈C : [(∇+ ik)⊗s (L : Ẽ0 +M · f̃)− Ẽ0]〉+ f̃ = −w2〈ρ · (L : Ẽ0 +M · f̃)〉. (2.9)

Remark. Set the free-strain γ̃ and the volume force f̃ to two eigen models (Ẽ0 = ei ⊗s

ej, f̃ = 0) and (Ẽ0 = 0, f̃ = ek), respectively, in combination with the virtual work

theorem, the tensors L and M have the properties:

(a) : 〈M〉 = 〈M ∗〉, (b) : 〈C : [(∇+ ik)⊗sM ]〉 = 〈L∗〉, (2.10)

(c) : 〈ρL〉 · ik = −ik · 〈ρL〉∗, (d) : 〈C : [(∇+ ik)⊗s L]〉 = 〈C : [(∇+ ik)⊗s L]〉∗,

(2.11)
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where the asterisk symbol stands for the conjugate operator. At the same time, we have

−w2〈ρ ·M〉 = I + ik · 〈L∗〉. (2.12)

Proof. The local effective dynamic equation (2.9) for two eigen models (Ẽ0 = ei⊗sej, f̃ =

0) and (Ẽ0 = 0, f̃ = ek) can be simplified as

ik · 〈C : [(∇+ ik)⊗s L − I]〉 = −w2〈ρ · L〉, (2.13a)

ik · 〈C : (∇+ ik)⊗sM〉+ I = −w2〈ρ ·M〉, (2.13b)

where L and M are kinematically admissible solutions for equation (2.13a) and (2.13b).

With the help of the virtual work principle, there are

0 = 〈C : [(∇+ ik)⊗s L] : [(∇+ ik)⊗sM ]∗〉 − 〈C : [(∇+ ik)⊗sM ]∗〉 − w2〈ρ · L : M ∗〉,

〈L∗〉 = 〈C : [(∇+ ik)⊗sM ] : [(∇+ ik)⊗s L]∗〉 − w2〈ρ ·M : L∗〉.

Due to the Hermitian symmetry of tensor C, it is easy to get 〈C : [(∇+ik)⊗sM ]〉 = 〈L∗〉.

On the other hand, using the virtual work theorem for Eqs.(2.13a) and (2.13b), we have

0 = 〈C : [(∇+ ik)⊗s L] : [(∇+ ik)⊗s L]∗〉 − 〈C : [(∇+ ik)⊗s L]∗〉 − w2〈ρ · L : L∗〉,

〈M〉 = 〈C : [(∇+ ik)⊗sM ] : [(∇+ ik)⊗sM ]∗〉 − w2〈ρ ·M : M ∗〉.

Conjugating them and comparing them, there exist

〈M〉 = 〈M ∗〉, 〈C : [(∇+ ik)⊗s L]〉 = 〈C : [(∇+ ik)⊗s L]∗〉.

Replacing these properties to Eqs.(2.13a) and (2.13b), we can also get

−w2〈ρ · L〉 = w2〈ρ · L∗〉, −w2〈ρ ·M〉 = I + ik〈L∗〉.

According to the properties (2.10), (2.11) and (2.12), the Hermitian symmetry of all

the component tensors Ce, Se, T e and ρe can be proved in the following way:
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The component tensor Ce: With the help of the properties (2.10) and the real tensor

definition of C, we have

Ce = 〈C〉+ 〈C : [(∇+ ik)⊗sM ]〉〈M〉−1〈L〉 − 〈C : [(∇+ ik)⊗s L]〉

= 〈C〉+ 〈L∗〉〈M〉−1〈L〉 − 〈C : [(∇+ ik)⊗s L]〉

= 〈C〉∗ +
(
〈L∗〉〈M〉−1〈L〉

)∗ − 〈C : [(∇+ ik)⊗s L]〉∗

= (Ce)∗,

The component tensor Se and T e: With the help of the properties (2.10), (2.11) and

(2.12), we have

Se =
1

iw

{
〈C : [I− (∇+ ik)⊗s L]〉 · ik − 〈C : [(∇+ ik)⊗sM ]〉〈M〉−1(I − 〈L〉 · ik)

}
=

1

iw

{
(ik · 〈C : [(∇+ ik)⊗s L − I]〉∗)∗ − 〈L∗〉〈M−1〉(I + ik · 〈L∗〉)∗

}
=

1

iw

{
−w2〈ρL〉∗ + w2〈L∗〉〈M−1〉〈ρM〉∗

}
= −

{
iw[〈ρL〉 − 〈ρM〉〈M−1〉〈L〉]

}∗
= −(T e)∗.

The component tensor ρe: With the help of the properties (2.10) and (2.11), we have

ρe = 〈ρM〉〈M〉−1(I − 〈L〉 · ik) + 〈ρL〉 · ik

= −w2〈ρM〉〈M〉−1〈ρM〉∗ + 〈ρL〉 · ik

= −w2[〈ρM〉〈M〉−1〈ρM〉∗]∗ + (〈ρL〉 · ik)∗ = (ρe)∗,

It follows that the Willis effective constitutive law components Ce and ρe exhibit Hermitian

symmetry, and the coupling components Se and T e exhibit negative Hermitian symmetry.

In addition, the proof of these properties through an eigensystem of the dynamic equation

is also presented in Meng & Guzina (2018).
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2.2.2 Effective behavior

As shown in the previous sections, the effective constitutive law under a fixed wave

number-frequency combination (k, w) has been determined. Now, we consider that the

effective impedance Z represents the effective parameter of the system Z〈ũ〉 = f̃ . As

the effective constitutive law shown in Eq.(2.7a), the effective impedance Z exhibits a

correlation with tensor Ce, Se, T e and ρe:

Z = iwρeiw − ik · T eiw + ik · Seiw − ik · Ce · ik. (2.14)

To simplify the description, we try to use a simple linear relationship to represent the

effective constitutive relationship with the effective tensors Ceff and ρeff , rather than a

coupling one:

Σ̃ = Ceff : Ẽ, P̃ = ρeff · Ṽ ,

where

Ceff = Se(ρeff − ρe)−1T e + Ce, ρeff = T e : (Ceff − Ce)−1 : Se + ρe. (2.15)

Subsequently, these two effective tensors Ceff and ρeff associated with (k, w) are intro-

duced to simplify the effective impedance expression, they also make the homogenized

dynamic equation satisfy the form of Z〈ũ〉 = f̃ , there is

Z = iwρeff iw − ik · Ceff · ik. (2.16)

Two feasible expressions of Ceff and ρeff can be determined according to Eq.(2.2). When

we try to define the dispersion relationship as ζ = iw/ik, there are

Ceff = Ce − Se ⊗s ζ, ρeff = ρe − ζ−1 · T e.

In fact, the Eq.(2.2) also shows a dispersion relation between the wave number k and

the frequency w, that is the actual dispersion relation (k, w) of the homogenized dynamic
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Table 2.1: The iterative process of FEM method

Process.

Step. 1 Chose the initial dispersion relation combination (k − wold);
Step. 2 Solve numerically the tensors L and M by two combination of Ẽ0 and f̃ ;
Step. 3 Determine the effective constitutive tensors Ce, Se, T e and ρe;
Step. 4 Get the new version dispersion relation combination (k − wnew) by the

zero-determinant of effective impedance Z;

Step. 5 Test the convergence condition: if the error |wnew−wold||wold|
is small enough, export

the results; if not, return to the Step. 2 by wold = mean{wold, wnew}.

equation.

After solving the effective tensors Ceff and ρeff , a new dispersion relationship can be

obtained from the zero-determinant of the effective impedance Eq.(2.16). In theory, the

exact dispersion relationship can get matching results, that is, the dispersion relationship

before and after calculation is invariable. Therefore, this process can be used to determine

a more accurate solution of a random dispersion relationship combination. It is easy to

think of the whole process as an iterative method, so we can try to perform multiple

iterations on the random initial condition to obtain a near-true dispersion relation and

effective constitutive law. For instance, we take a 1D elastic layered case as an example,

the dispersion relationship ζ can be expressed as the ratio of the effective elastic modulus

Ceff and the effective density ρeff :

ζ(k, w) = { ζ | ζ2 = (
w

k
)2 =

Ceff

ρeff
, kl 6 π},

with a cell size l. With the expression of effective tensors (2.15), it is easy to get

ρeζ2 + (Se − T e)ζ − Ce = 0. (2.17)

In Table (2.1), we summarized a numerical method to determine the dispersion rela-

tionship through Willis’ dynamic homogenization theory. In the first step, in view of the

frequency dependence of the effective constitutive relationship of the homogenized dynamic

equation, we need to determine an initial combination of dispersion relations (k, wold). It
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is worth noting that the choice of the initial dispersion relationship combination greatly

affects the number of numerical calculation iterations. Without loss of generality, we use

the results of the Quasi-static case as initial conditions in this example. In the second

step, we can use two basic combinations of eigenstrain field Ẽ0 and volume force f̃ to

determine tensors L and M . The third step is to determine the components of the effec-

tive constitutive coefficient matrix according to Eqs.(2.7a). Then, in the fourth step, the

zero-determinant of effective impedance (2.14) or (2.16) of the homogenization equation

can give a new dispersion relationship (k, wnew). Finally, in the fifth step, we compare the

updated result of the fourth step with the initial combination in the first step, and then

choose to export the result or redefine the initial combination. Obviously, in this step, we

decided to redefine the mean value of the old and updated result as the initial combination,

that we called “mean value iteration”. Generally, such a definition seems to slow down

the convergence of iterative results. However, this is not the case. The redefinition like

that is to avoid some “rude” fluctuations of iteration results (such as positive and negative

fluctuations), thereby improving the convergence speed.

In summary, the above five steps constitute a complete iterative system for determining

the exact solution of the constitutive relationship and dispersion relationship. In fact, this

iterative scheme is some extensions based on the finite element method, and its significance

lies in providing a reference from a different perspective to the asymptotic method of

dynamic homogenization theory and its numerical simulation.

2.3 Numerical example of 1D shear wave

In this section, we consider the dynamic homogenization of a 1D shear wave in a three-

phase layered composite. The shear wave gives the dynamic equation and constitutive

relationship as

∇ · σ̃ + f̃ = −w2ρũ, σ̃ = G∇ũ,

where G is the shear modulus. The three-phases model gives: the shear modulus G1 =

3.0 × 108(Pa), G2 = 2.0 × 1011(Pa), and G3 = 1.0 × 1010(Pa); the mass density ρ1 =

1000(kg/m3), ρ2 = 3000(kg/m3), and ρ3 = 900(kg/m3). The thicknesses of the compo-
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Figure 2.1: Dispersion curves for Willis’ theory (black line for Quasi-static solution, red
line for Reference solution): Some iterative solutions based on Willis theory (pink line for
first iteration, green line for second iteration and blue asterisk for fourth iteration).

nents satisfy α1l : α2l : α3l = 0.52 : 0.23 : 0.25, and the periodic RVE size is set to

l = 0.01(m).

2.3.1 Dispersion relationship

For the above-layered model, the analytical solution of the dispersion curve has been

solved in chapter 1. In addition, the effective constitutive law can be determined by

Eq.(2.7a). Then, the effective shear modulus Geff and effective density ρeff can be de-

termined according to Eq.(2.16). In this case, the effective dispersion relationship will be

solved by Eq.(2.17).

Fig.(2.1) shows the dispersion curves of the Willis’ theory after first (pink line), second

(green line) and third (blue points) iterations using the quasi-static dispersion relationship

as the initial condition. The reference solution is the finite element numerical solution that

ensures accuracy. In these iterative solutions, the fourth iteration can reduce the error to

0.2%. In fact, in order to get the result of convergence faster, we try to use a “mean value

iteration”, which defines the mean value of the above two iterations as the initial condition

for the next iteration. It turns out that it has excellent effects.
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2.3.2 Effective tensors

According to the expressions (2.7a,b,c,d), the effective constitutive matrix components

Ce, Se, T e and ρe can be determined from the tensors L and M . In this 1D shear

wave case, we can solve the solution L and M of the local dynamic equation (2.9) in two

extremes cases, they can be expressed as the sum of a general solution ũg and a particular

solution upL or upM :

L ⇒ ũg + ũpL, M ⇒ ũg + ũpM ,

where the general solution ũg satisfies the format

ũg(x) = Ae

(
−ik+iw

√
ρ/G

)
x

+Be

(
−ik−iw

√
ρ/G

)
x
,

and the particular solution upL and upM satisfy

ũpL =
ikG

w2ρ− k2G
, ũpM =

−1

w2ρ− k2G
,

where the denominator satisfies w2〈ρ〉 − k2〈G〉 6= 0. Next, we try to determine all compo-

nents (2.7a,b,c,d) in the effective constitutive law. With the help of the properties shown

in (2.10), (2.11) and (2.12), it is easy to calculate:

〈L〉 ⇒ 〈ug〉+ 〈 ikG

w2ρ− k2G
〉, 〈M〉 ⇒ 〈ug〉+ 〈 −1

w2ρ− k2G
〉,

and

〈C : εL〉 ⇒ 〈G(∇+ ik)ug〉 − 〈
k2G2

w2ρ− k2G
〉,

〈C : εM〉 ⇒ 〈G(∇+ ik)ug〉 − 〈
ikG

w2ρ− k2G
〉.

Finally, in this 1D shear wave case, we can give the effective constitutive law〈σ̃〉
〈p̃〉

 =

Ge Se

T e ρe


(k,w)

〈ε̃〉
〈ṽ〉

 .
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Figure 2.2: Effective constitutive components (a) Ge, (b) Se, (c) T e, and (d) ρe: Quasi-
static solution (black rhombus), Reference solution (red line), and Willis 4-th iterative
solution (blue asterisk).

As we know, the components Ge, Se, T e and ρe are calculated based on the combination

(k−w). Therefore, a new (k−w) combination can be obtained by obtaining the coefficients

of the iterative formula (2.17) through a certain initial (k−w) combination (for example,

the Quasi-static case).

For the above-mentioned layered material case, the iterative solution and reference

solution (finite element solution) of each component are shown in Fig.(2.2). It is easy to

find that the absolute values of the components Se and T e both start at 0 (quasi-static

case) and increase with the increase of the wave number, which means that the coupling

effect of the effective strain field and the effective rate field in the dynamic case will enhance

with the increase of wave number.

Next, the effective shear modulus Geff and mass density ρeff can be determined
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Figure 2.3: (a) Effective shear modulus Geff and (b) effective mass density ρeff : Quasi-
static solution (black rhombus), Reference solution (red line), and Willis 4-th iterative
solution (blue asterisk).

by Eqs.(2.15). Compared with the Reference solution (finite element solution), the fre-

quency dependence of the effective shear modulus Geff and effective density ρeff shown in

Fig.(3.5a) and (3.5b). Fig.(3.5a) and (3.5b) show the frequency dependence of the effec-

tive shear modulus Geff and effective density ρeff . Compared with the Reference solution

(finite element solution), the iteration solutions are almost perfectly matched.

2.4 Conclusion

The Willis’ dynamic homogenization method described in this chapter is a formalism

that makes it possible to treat elasticity and electromagnetism problems in a unified way,

which provides a systematic and complete homogenization analysis and points out the non-

local coupling relationship of periodic microstructures and the frequency dependence of

the effective constitutive relationship. In theory, it is not essential to use Green’s function

in Willis’ theory. However, the use of Green’s function for linear problems facilitates

the solution of a large number of problems thanks to the principle of superposition. In

the previous numerical examples, the numerical simulation results have also verified the

accuracy of the Willis’ dynamic homogenization method.

The iterative process introduced in this chapter is developed from the finite element

method. For the general case, this iterative approach allows us to determine the precise
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dispersion relationship through any initial combination (the quasi-static classic results are

considered as initial conditions in our numerical example). It is worth noting that this

iterative method is only a repeated application of the Willis theory, and its results will

eventually converge to the finite element solution in Chapter 1. In short, this iterative

method is not an innovation of homogenization theory or numerical asymptotic methods

but provides ideas for the development of numerical asymptotic methods.
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Chapter 3

Two-scale homogenization method

for periodic composites

In this chapter, we mainly introduce a homogenization method based on two-scale

asymptotic analysis (refer to Bensoussan et al. 2011). The high-order effective constitutive

law and dispersion relationship of the homogenized equation are derived with the help

of the two-scale representation of the local dynamic equation. Subsequently, a general

effective impedance expression was proposed, which allowed the asymptotic expression for

any-order.

3.1 Asymptotic description of local dynamic equa-

tions

3.1.1 Two-scale representation

Two-scale representation was established in Bensoussan et al. (2011, reprint of 1978),

it allows us to research the macroscopic behaviour of a periodic medium by introducing

a small perturbation parameter ε. In the work of Boutin & Auriault (1993), the physical

meaning of the parameter ε was explained as the ratio of the micro-scale characteristic

dimension l to the macroscopic wave length λ in dynamic cases, which gives ε = 2πl/λ 6 1.

In this framework, we consider the propagation of harmonic waves whose wave length λ is

much larger than the characteristic size l of the composite RVE.
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According to the two-scale description, we introduce the macro scale variable x and the

micro scale variable y ∈ T , related by y = ε−1x. Within this framework, the displacement

field u(x) of the periodic medium Ω will have the following definition:

u(x) ≡ u(x,
x

ε
) = u(x,y).

The general dynamic equation can be shown as:

∇ · [C(x,y) : (∇⊗s u(x,y))] + f(x,y) = −w2ρ(x,y) · u(x,y), (3.1)

where the periodic condition of RVE allows the material property tensor to satisfy C(x,y) =

C(y) and ρ(x,y) = ρ(y). Next, we introduce a plane wave volume force f to satisfy the

two scales description f(x,y) = f̃(y)eik·x = f̃eik·x. Let u(x,y) = ũ(y)eik·x be the dis-

placement response of the dynamic equation with the volume force f , then the gradient

operator can be expressed as

∇ ≡∇x +
1

ε
∇x

ε
=∇x +

1

ε
∇y = ik +

1

ε
∇y,

Ignoring the eik·x part of the local dynamic equation, Eq.(3.1) can be converted to

(ik +
1

ε
∇y) · {C(y) : [(ik +

1

ε
∇y)⊗s ũ(y)]}+ f̃ = −w2ρ(y)ũ(y), (3.2)

where the solution ũ(y) is only related to the microscopic scale, which can be interpreted

as the “local part” of u(x,y).

Obviously, the above local dynamic equation (3.2) is similar to the one derived from

Bloch-wave representation in the previous chapter. With the help of Bloch-wave repre-

sentation, the displacement field has the definition u(x) = ũ(x)eik·x, where ũ(x) satis-

fies the periodic conditions. However, the two-scale representation gives the expression

u(x) ≡ u(x, x
ε
) = ũ(x

ε
)eik·x. From a physical point of view, both methods distinguish

the macro waves and periodic micro disturbances and provide the same effect during the

homogenization process.
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3.1.2 Hierarchical dynamic equations

Now we consider the asymptotic expression of the local displacement solution ũ(y)

related to the small parameter ε, which gives the displacement field as the superposition

of multiple perturbed fields:

ũ = ũ0 + εũ1 + ε2ũ2 + ...+ εnũn, n ∈ N, (3.3)

where ũn represents the perturbed displacement field for εn order. Under the two-scaledescription,

the local strain field can be shown as

ε̃ =∇x ⊗s ũ+
1

ε
∇y ⊗s ũ = ik ⊗s ũ+

1

ε
∇y ⊗s ũ,

where the symbol ∇x and ∇y represent the gradient operators of two scales, respectively.

The asymptotic expression of strain field gives:

ε̃ = ε−1ε̃−1 + ε0ε̃0 + ...+ εnε̃n

= ε−1∇y ⊗s ũ0 + ε0(ik ⊗s ũ0 +∇y ⊗s ũ1) + ...+ εn(ik ⊗s ũn +∇y ⊗s ũn+1), n ∈ N.

We consider the effective displacement field as the volume average at the micro scale y.

The effective displacement field is defined as 〈ũ(y)〉 =
∑N

n ε
nŨn, (n ∈ N) with Ũn = 〈ũn〉.

Extending and splitting Eq.(3.2) with different hierarchical equations according to the

power of ε, we have

ε−2 ⇒ ∇y · [C : ε̃−1] = 0,

ε−1 ⇒ ik · [C : ε̃−1] +∇y · [C : ε̃0] = 0,

ε0 ⇒ ik · [C : ε̃0] +∇y · [C : ε̃1] + f̃ = −w2ρ · ũ0,

......

εn ⇒ ik · [C : ε̃n] +∇y · [C : ε̃n+1] = −w2ρ · ũn.

(3.4)

The homogenization description of the dynamic equation needs to be performed for

each hierarchical equation. This allows us to conduct a homogenization analysis for each ε-

order of hierarchical equation. In the following two subsections (3.2) and (3.3), an effective
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asymptotic analysis will be considered in the case of basic dynamic equation (without f̃)

and general dynamic equation (with f̃), respectively.

3.2 Asymptotic description without f̃

In this subsection, we analyze the asymptotic results of the dynamic equation without

the volume force f̃ . These will be used as a basis in the next subsection (3.3). The

dynamic equation is shown as

(ik +
1

ε
∇y) · {C(y) : [(ik +

1

ε
∇y)⊗s ũ(y)]} = −w2ρ(y)ũ(y). (3.5)

We start with the homogenization description of Willis’ theory, the solution of dynamic

equation ũ exhibits a coupling relationship with the effective fields 〈ũ〉, 〈ε̃〉, and 〈ṽ〉.

3.2.1 Localisation of hierarchical equations

As the definition of the effective filed 〈ε̃〉 = ik ⊗s 〈ũ〉 and 〈ṽ〉 = −iw〈ũ〉. In the

following description, we try to replace this relationship with a simple expression

ũ = T : 〈ũ〉 = 〈ũ〉+A : 〈ε̃〉+B · 〈ṽ〉, (3.6)

where T is interpreted as a micro-scale related function of (k, w,y). Similar to the def-

inition of local displacement fields, the tensor T can also be considered as a multi-order

approximate expression

T = T0 + εT1 + ε2T2 + ...+ εnTn, n ∈ N.

It is easy to get the average of the tensor T as an identity tensor by averaging the left and

right sides of Eq.(3.6). Therefore, for any ε order, there exists

〈T0〉 = I, 〈Tn〉 = 0, n > 1.

The ε−2 order equation
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First, considering only the ε−2 order equation, we have

∇y · [C(y) : (∇y ⊗s ũ0)] = 0.

An non-zero auxiliary test function δũ0, which is periodic in the elementary cell, is intro-

duced to solve this second-order partial differential equation. Integrate the above equation

on the REV body T to get the weak form equation

∫
T

∇y · [C(y) : (∇y ⊗s ũ0)]δũ0dT = 0,

which has the same solution as the above equation. According to the divergence theory,

we have

∫
∂T

(C(y) :∇y ⊗s ũ0) · n · δũ0dS =

∫
T

C(y) :∇y ⊗s ũ0 ·∇yδũ0dT .

On the local “small” scale, the displacement field ũ0(y), δũ0 and the stress field σ̃0 satisfy

the periodic condition. Therefore, there is ∇y ⊗s ũ0 = 0 on the right side of the equation

because the periodic boundary condition causes the integral of the left side of the above

equation equals to zero. This conclusion means that ũ0 does not depend on the microscopic

variable y, i.e. ũ0(x,y) = ũ0(x) = 〈ũ0(x)〉y = Ũ0(x), and record the average over the

cell of ũ0 as Ũ0. From a physical standpoint, ũ0 represents the main component of ũ, but

in mathematical terms, it is the lowest-order approximate part of the ũ.

The ε−1 order equation

Next, expanding the ε−1 order equation, we have

ik · [C : (∇y ⊗s ũ0)] +∇y · [C : (ik ⊗s ũ0 +∇y ⊗s ũ1)] = 0,

which can be rewritten as

∇y · [C : (ik ⊗s ũ0 +∇y ⊗s ũ1)] = 0,

Similar to the introduction of δũ0, the non-zero auxiliary test function δũ1 also satisfies
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the periodic boundary conditions. If the ∇y⊗s ũ0 term is omitted, the ε−1 order equation

becomes

∫
∂T

[C : (ik ⊗s ũ0 +∇y ⊗s ũ1)] · n · δũ1d∂T

=

∫
T

[C : (ik ⊗s ũ0 +∇y ⊗s ũ1)] ·∇yδũ1dT .

In addition, the traction vector σ̃0 ·n = C : ε̃0 ·n = [C : (ik ⊗s ũ0 +∇y ⊗s ũ1)]·n exhibits

periodic properties on the boundary, which allows the left side of the above equation to

be zero. In order to solve the above equation, a position-dependent function X (y) is

introduced to represent the correlation of T with the local variable y. For example, when

we set X1 to satisfy

∫
T

C :∇yX1 ·∇yδũ1dT = −
∫
T

C :∇yδũ1dT ,

the solution ũ1 can be expressed as

ũ1 = Ũ1 + X1 : ik ⊗s Ũ0,

where Ũ1 = 〈ũ1〉, so 〈X1〉 = 0. When we only consider first order approximation 〈ũ〉 =

Ũ0 + εŨ1 + o(ε2) and ignore the second order ε2 term. Then, the T1 satisfies

T1 : 〈ũ〉 = X1 : ik ⊗s 〈ũ〉 ≡ X1 · ik · 〈ũ〉,

where X1 is a third-order tensor with minor symmetry, i.e. (X1)jkl = (X1)jlk.

In the same way, for higher order approximation expressions of 〈ũ〉 =
∑n

i ε
iŨi+o(ε

n+1),

it is necessary to add some negligible high-order εn+1 terms. For, an n-th order expres-

sion, the second-order tensors Tn and the (n + 2)-order tensors Xn satisfy the following

relationship

Tn · 〈ũ〉 = [Xn �n−1 (ik)n−1] : ik ⊗s 〈ũ〉, X0 = I, n ∈ N,

where the tensor X0 is defined as an identity second-order tensor, the symbol �n−1 rep-
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resents an (n − 1)-order scalar product, and (ik)n−1 = ik ⊗ ik ⊗ · · · ⊗ ik. Recalling

Eq.(3.6), the tensor T provides an equivalent relationship between ũ and 〈ũ〉. In this way,

we can use the effective displacement instead of the local displacement for homogenization

description. Thereby avoiding the troubles caused by complex calculations of high-order

approximations. For the εn-order hierarchical equation, we have the solution

ũi =
n∑
i=0

[Xi �i−1 (ik)i−1] : ik ⊗s Ũi, X0 = I, (ik)0 = 1, (3.7)

which is equivalent to the result shown in Boutin & Auriault (1993).

3.2.2 Homogenisation of hierarchical equations

In this subsection, we will discuss the application of the above-mentioned effective

displacement field hypothesis in each hierarchical equation. Part of the derivation in this

chapter is omitted. For more derivation details, please refer to Annexe B.

The lowest order homogenized equation

Superimposing the ε−2 and ε−1 equations and considering the zero-order approximation

expression 〈ũ〉 = Ũ0 + o(ε1), the lowest dynamic equation will be

∇y · {C : [ik ⊗X1 +∇y(X2 · ik)]} : ik ⊗s 〈ũ〉

+ik · [C : (X0 ⊗ I +∇yX1)] : ik ⊗s 〈ũ〉 = −w2ρ〈ũ〉.
(3.8)

Averaging the left and right sides of the above equation, the lowest homogenized dynamic

equation takes the form

ik · 〈C : (I ⊗ I +∇yX1)〉 · ik · 〈ũ〉 = −w2〈ρ〉〈ũ〉. (3.9)

Combining Eqs.(3.8) and (3.9), we have

(∇y · C1 · ik + ik · C0 · ik) 〈ρ0〉 = ρ0(ik · 〈C0〉 · ik), (3.10)
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where C0, C1 and ρ0 satisfy the following definitions:

C0 = C : (I ⊗ I +∇yX1), C1 = C : [ik ⊗X1 +∇y(X2 · ik)], ρ0 = ρ .

According to the assumption of the lowest order homogenization: the displacement

field maintains an undisturbed form 〈ũ〉 = Ũ0. This means that we consider that the local

models are undisturbed, that is the dynamic physical properties of different media are

exactly the same (e.g. wave speed, wavelength). Obviously, under dynamic conditions,

this result is true if and only if the local model of composites has the same material (not

applicable to composite materials with different phases). Coincidentally, for the quasi-

static case, there is no frequency dependence of different media in the local model, so the

lowest order homogenization results (3.9) are available.

The first order homogenized equation

With the approximation expression 〈ũ〉 = Ũ0 + εŨ1 + o(ε2), all the ε2 terms are consid-

ered as negligible under this approximation. Combining the lowest order dynamic equation

(3.8), the first dynamic equation can be rewritten as

∇y · [(C1 + εC2) : ik ⊗s 〈ũ〉] + ik · [(C0 + εC1) : ik ⊗s 〈ũ〉] = −w2(ρ0 + ερ1)〈ũ〉, (3.11)

where C2 and ρ1 satisfy the definitions:

C2 = C : {ik ⊗ (X2 · ik) +∇y[X3 : (ik)2]}, ρ1 = ρ(X1 · ik) .

It is worth noting that equation (3.11) only holds when the approximate order is ε2. After

the average operation, the first homogenized dynamic equation is given by

ik · (〈C0〉+ ε〈C1〉) · ik · 〈ũ〉 = −w2 (〈ρ0〉+ ε〈ρ1〉) 〈ũ〉. (3.12)

Note that the necessary condition for the above equation to hold is to limit the asymptotic

order to the εn-order approximation. Thanks to this hypothesis, a relation for solving the

tensor C2 can be derived from the equations (3.11) and (3.12) (only pay attention to all
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terms of ε1):

(∇y · C2 · ik + ik · C1 · ik) 〈ρ0〉+ (∇y · C1 · ik + ik · C0 · ik) 〈ρ1〉

= ρ0 (ik · 〈C1〉 · ik) + ρ1 (ik · 〈C0〉 · ik) .
(3.13)

The n-th order homogenized equation

Superimposing all the previous hierarchical equations and ignoring the εn+1 and higher

order ε terms for the assumption 〈ũ〉 =
∑n

i ε
iŨi + o(εn+1), the εn order dynamic equation

satisfies

∇y ·
(
Chom

[n+1] : ik ⊗s 〈ũ〉
)

+ ik ·
(
Chom
n : ik ⊗s 〈ũ〉

)
= −w2ρhomn 〈ũ〉, (3.14)

with the definitions

Chom
[n+1] = C1 + εC2 + ε2C3 + ...εnCn+1 + o(εn+1), (3.15a)

Chom
n = C0 + εC1 + ε2C2 + ...εnCn + o(εn+1), (3.15b)

ρhomn = ρ0 + ερ1 + ε2ρ2 + ...εnρn + o(εn+1), (3.15c)

where Cn and ρn for n > 1 satisfy the definitions:

Cn = C : {ik ⊗ (Xn �n−1 (ik)n−1) +∇y[Xn+1 �n (ik)n]}, (3.16a)

ρn = ρ[Xn �n−1 (ik)n−1] . (3.16b)

The εn order homogenized dynamic equation is

ik · 〈Chom
n 〉 · ik · 〈ũ〉 = −w2〈ρhomn 〉〈ũ〉. (3.17)

According to Eqs.(3.14) and (3.17), a general relation between Chom and ρhom can be

obtained as

(
∇y · Chom

[n+1] · ik + ik · Chom
n · ik

)
〈ρhomn 〉 = ρhomn (ik · 〈Chom

n 〉 · ik). (3.18)
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Extending the above expression and consider only the terms of εn, we have

n∑
j=0

(∇y · Cn+1−j · ik + ik · Cn−j · ik)〈ρj〉 =
n∑
j=0

ρj(ik · 〈Cn−j〉 · ik). (3.19)

This general solution shows the relationship between all tensors Cn and ρn. That means

the Cn+1 can be easily obtained for any approximate order. According to the definition

of tensors Cn (3.16a) and ρn (3.16b), the more important work is to get the function Xn.

Therefore, the next more important task is to seek for the tensors Xn.

3.2.3 Effective behaviour

Thanks to the method shown in the previous subsection, considering all approximate

order displacement fields as a whole, more complex derivative calculations were successfully

avoided. In fact, this assumption circumvents a “confuse” that exists in the solution process

of ũ. For example, in the ε1 homogenized dynamic equation, we have

ik · 〈C0〉 : ik ⊗s Ũ1 + ik · 〈C1〉 : ik ⊗s Ũ0 = −w2〈ρ0〉Ũ1 − w2〈ρ1〉Ũ0. (3.20)

In this equation, Ũ0 is a necessary condition for obtaining Ũ1, which means that the higher-

order expression can only be obtained in a progressive manner. This will undoubtedly

cost a lot of work. Therefore, by combining the hierarchical equations, the method in

the previous subsection avoids the complexity and tedious derivation work caused by the

relationship between each Un term. Then, Eq.(3.20) can be rewritten as the following

expression that is applicable up to the order ε2:

ik · [(〈C0〉+ ε〈C1〉) : ik ⊗s (Ũ0 + εŨ1)] = −w2(〈ρ0〉+ ε〈ρ1〉)(Ũ0 + εŨ1) +O(ε2),

where the correction O(ε2) = ε2
{
ik · [〈C0〉 :

(
ik ⊗s Ũ1

)
] + w2〈ρ〉Ũ1

}
. Similarly, the n-th

order local homogenized equation (3.17) can be obtained with the definition of 〈ũ〉 =∑n
i ε

iŨi + o(εn+1).

In the general relationship (3.19), the determination of X requires all periodic boundary

conditions and the continuous conditions of the REV. When we consider that all interfaces
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of the composite material are perfect interfaces, the satisfaction of continuous conditions

are necessary on the interface S (two sides of the interface S are denoted as S(−) and S(+)).

At the same time, the periodic conditions must be satisfied on the boundary ∂Ω (two sides

corresponding to the medium Ω are denoted as ∂Ω(−) and ∂Ω(+) with ∂Ω = ∂Ω(−)+∂Ω(+)).

In this elastic problem, the continuous conditions are given on the displacement field ũ

and the traction vector τ̃ = σ̃ · n. There are

� Periodic boundary conditions:

ũn(y ∈ ∂Ω(−)) = ũn(y ∈ ∂Ω(+)), τ̃ n−1(y ∈ ∂Ω(−)) = τ̃ n−1(y ∈ ∂Ω(+));

� Continuous boundary conditions

ũn(y ∈ S(−)) = ũn(y ∈ S(+)), τ̃ n−1(y ∈ S(−)) = τ̃ n−1(y ∈ S(+));

� Zero-average condition: 〈Xn〉 = 0.

After solving the tensors Xn, the perturbation expression of the local displacement field

(3.7) can be solved. The n-th order approximation tensors Chom
n and ρhomn will be deter-

mined by Eqs.(3.15b) and (3.15c). Rewriting the homogenized dynamic equation as the

form Z〈ũ〉 = 0, where Z stands for the effective impedance, the lowest order effective

impedance Z0 reads

Z0 = iw〈ρ〉iw − ik · 〈C : (I ⊗ I +∇yX1)〉 · ik.

It is necessary to state here that the lowest order effective elastic tensor 〈C : (I⊗I+∇yX1)〉

represents the expression of the lowest order asymptotic analysis, which is also the effective

elastic tensor for a “quasi-static” case or non-dynamic homogenization. Eq.(3.17) gives

the n-th order effective impedance

Zn = iwρeff iw − ik · Ceff · ik, (3.21)

where the effective tensors Ceff and effective density ρeff can be obtained by averaging
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the expressions Chom
n and ρhomn shown in Eqs.(3.15b) and (3.15c). Precisely,

Ceff = 〈Chom
n 〉 = 〈C0〉+ ε〈C1〉+ ε2〈C2〉+ ...+ εn−1〈Cn−1〉+ εn〈Cn〉 , (3.22a)

ρeff = 〈ρhomn 〉 = 〈ρ0〉+ ε〈ρ1〉+ ε2〈ρ2〉+ ...+ εn−1〈ρn−1〉+ εn〈ρn〉 . (3.22b)

So far, the only remaining problem is to solve the tensor Xn by using the above boundary

periodic conditions and interface continuity conditions. Once the tensor Xn is determined,

the expressions Chom
n and ρhomn can be obtained according to the expressions (3.22a, 3.22b)

and the definitions (3.16a, 3.16b).

In fact, in the numerical case we found that only the even-numbered items in the above

expressions are real numbers. The reason is that the stiffness tensor C and density ρ of

each phase of composites are real terms, their effective stiffness tensor Ceff and effective

density ρeff expressions contain complex terms that come from the ik odd power items

in the definitions (3.16a, 3.16b). When we only consider the real part of Ceff and ρeff ,

they can be shown as all the even terms (with n = 2m):

Ceff = 〈C0〉+ ε2〈C2〉+ ε4〈C4〉+ ...+ ε2m〈C2m〉 , (3.23a)

ρeff = 〈ρ0〉+ ε2〈ρ2〉+ ε4〈ρ4〉+ ...+ ε2m〈ρ2m〉 . (3.23b)

It is worth mentioning that in the work of many researchers (e.g. Fish et al., 2002a, 2002b;

Wautier & Guzina, 2015), for a two-phase layered composite model, the odd terms are

ignored, because the odd parts 〈Cn〉 and 〈ρn〉 are both zero. But in fact, this result holds

only for the two-phase layered composites, and the result is not absolutely zero for the

more phase layered model. Beyond that, more discussion on the imaginary part of Ceff

and ρeff will be shown in Appendix B and Appendix C.

Thanks to the aforementioned two-scale representation, a clear and general wave number-

dependent effective asymptotic expression can be obtained. Generally, any order effective

impedance expression can be derived using Eq.(3.19). It is worth noting that the accuracy

of the effective impedance in the above equation is directly related to the asymptotic order

n.
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3.3 Asymptotic description with f̃

The free strain Ẽ0 and the volume force f̃ are considered to determine two localization

tensors A and B. The tensors L and M are derived from two extremes combination

modes. The effective impedance expression for the dynamic equation without the volume

force has been obtained in the previous subsection. When considering the general dynamic

equation with the volume force f̃ , it is necessary to rewrite the representation of the local

displacement ũ as

ũ = H : 〈ũ〉+ F · f̃ , (3.24)

where the term of f̃ shows a “independent” effect with 〈ũ〉. When we consider that

the volume force f̃ = 0, this assumption will degenerate into the aforementioned case of

without f̃ . Therefore, the tensors H and F satisfy

〈H〉 = I, 〈F〉 = 0.

The general dynamic equation is expressed as:

(ik +
1

ε
∇y) · [C : ((ik +

1

ε
∇y)⊗s ũ)] + f̃ = −w2ρ · ũ. (3.25)

Similar to the approximate description Eq.(3.3), the tensors H and F also have the ap-

proximate expressions:

H = H0 + εH1 + ε2H2 + ... , F = F0 + εF1 + ε2F2 + ... .

Averaging both sides of Eq.(3.24) yields

〈H0〉 = I, 〈Hn〉 = 0, (n > 1); 〈Fn〉 = 0, (n > 0).

According to the assumption (3.24), the tensor H can be solved in the same way as the

tensor T . Similarly, the tensor F can also be obtained by comparing the hierarchical

equations.
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3.3.1 localisation of hierarchical equations

The ε−2 order equation

First, extend Eq.(3.25) to get the ε−2 order hierarchical equation:

∇y · [C :∇yH0〈ũ〉] +∇y · [C :∇yF0f̃ ] = 0,

where the effective displacement corresponds to the approximation 〈ũ〉 = Ũ0 + o(ε). Con-

sidering the “independent” relationship between the terms of H and F , it follows that

∇y · [C :∇yH0〈ũ〉] = 0, ∇y · [C :∇yF0f̃ ] = 0. (3.26)

The ε−1 order equation

Superimposing the hierarchical equation of ε−2 and ε−1 and append the negligible terms

of ε2, the ε−1 order general dynamic equation reads

∇y · [C : (∇yH1 + ikH0)〈ũ〉] + ik · (C :∇yH0〈ũ〉)

+∇y · [C : (∇yF1 + ikF0)f̃ ] + ik · (C :∇yF0f̃) = 0,

where the effective displacement is of a first order approximation 〈ũ〉 = Ũ0 + εŨ1 + o(ε2).

Its homogenized equations are given by

ik · 〈C :∇yH0〉〈ũ〉 = 0, ik · 〈C :∇yF0〉f̃ = 0. (3.27)

Thanks to the Eqs.(3.26) and (3.27), the tensors H0 and F0 can be determined as H0 = I

and F0 = 0.

3.3.2 Homogenisation of hierarchical equations

The lowest order homogenized equation

Considering the lowest approximation 〈ũ〉 = Ũ0+o(ε), the lowest order general dynamic
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equation can be derived as:

∇y · [C : (∇yH2 + ik ⊗s H1)]〈ũ〉+ ik · [C : (∇yH1 + ik ⊗s H0)]〈ũ〉

+∇y · [C : (∇yF2 + ik ⊗s F1)]f̃ + ik · [C : (∇yF1 + ik ⊗s F0)]f̃ + f̃

= −w2ρH0〈ũ〉 − w2ρF0f̃ .

(3.28)

We know that the first order homogenized dynamic equation takes the form

ik · 〈C : (∇yH1 + ik ⊗s H0)]〉〈ũ〉+ f̃ = −w2〈ρH0〉〈ũ〉. (3.29)

Then,

ik · 〈C : (∇yF1 + ik ⊗s F0)〉f̃ = −w2〈ρF0〉f̃ .

Its easy to get F1 = 0. For the solution of Fn(n ≥ 2), we introduce two polynomial

functions X and η to represent the y-variable correlation portions of the tensors H and

F :

Hn · 〈ũ〉 = (Xn �n−1 (ik)n−1) : ik ⊗s 〈ũ〉, n ≥ 1, X0 = I,

Fnf̃ = ηn �n−2 (ik)n−2f̃ , n ≥ 2, η0 = η1 = 0,

where η, which is similar to X , is an n-th order tensor related to the variable y. The deter-

mination of η also needs to be based on the periodic boundary conditions and continuity

conditions mentioned in the previous section.

With the definition of H and F , the lowest order general dynamic equation can be

written as

∇y · (C1 : ik ⊗s 〈ũ〉) + ik · (C0 : ik ⊗s 〈ũ〉) +∇y · (C :∇yη2) · f̃ + f̃ = −w2ρ〈ũ〉,

and the lowest order homogenized dynamic equation reads

ik · 〈C0〉 · ik · 〈ũ〉+ f̃ = −w2〈ρ0〉〈ũ〉.
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According to Eq.(3.10) and comparing Eqs.(3.28) and (3.29), η2 can be determined to

satisfy the following relationship:

∇y · [C :∇yη2]〈ρ〉 = ρ− 〈ρ〉. (3.30)

The first order homogenized equation

In the same way, combining the lowest order equations and adding some negligible ε2

terms, the first dynamic equation relative to the approximation expression 〈ũ〉 = Ũ0 +

εŨ1 + o(ε2) can be expressed as

∇y · [(C1 + εC2) : ik ⊗s 〈ũ〉] + ik · [(C0 + εC1) : ik ⊗s 〈ũ〉]

+∇y · (Cf
1 + εCf

2) · f̃ + ik · εCf
1 · f̃ + f̃ = −w2(ρ0 + ερ1)〈ũ〉,

(3.31)

where the third-order tensors Cf
1 and Cf

2 are defined by

Cf
1 = C :∇yη2, Cf

2 = C : [η2 +∇y(η3 · ik)].

The first order homogenized dynamic equation is given by

ik · 〈C0 + εC1〉 : ik ⊗s 〈ũ〉+ εik · 〈Cf
1〉 · f̃ + f̃ = −w2〈ρ0 + ερ1〉〈ũ〉. (3.32)

According to Eqs.(3.31), (3.32) and (3.13), the function η3 can be determined by

(
∇y · (Cf

1 + εCf
2) + εik · Cf

1 + I
)
f̃ (〈ρ0〉+ ε〈ρ1〉) = (ρ0 + ερ1)(εik · 〈Cf

1〉)f̃ . (3.33)

Extending the above equation using a constant definition of f̃ , the ε1 order equation gives

(∇y · Cf
2 + ik · Cf

1)〈ρ0〉+ (∇y · Cf
1 + I)〈ρ1〉 = ρ0(ik · 〈Cf

1〉) + ρ1. (3.34)

The n-th order homogenized equation

Consider the approximation 〈ũ〉 =
∑n

i=0 ε
iŨi+o(ε

n+1) and superimpose all hierarchical
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equations to get

(
∇y · Chom

[n+1] + ik · Chom
n

)
: ik ⊗s 〈ũ〉 +

(
∇y · Cf.hom

[n+1] + ik · Cf.hom
n

)
· ik · f̃ + f̃

= −w2ρhomn 〈ũ〉 − w2ρf.homn f̃ ,
(3.35)

where the tensors Cf.hom
[n+1] , Cf.hom

n and ρf.homn satisfy the expressions

Cf.hom
[n+1] · ik = Cf

1 + εCf
2 + ε2Cf

3 + ε3Cf
4 + ...+ εnCf

n+1,

Cf.hom
n ik = εCf

1 + ε2Cf
2 + ε3Cf

3 + ...+ εnCf
n,

ρf.homn = ε2ρf2 + ε3ρf3 + ...+ εnρfn,

where Cf
1 = C :∇yη2 and

Cf
n = C : {[ηn �n−2 (ik)n−2] +∇y[ηn+1 �n−2 (ik)n−2]}, ρfn = ρ[ηn �n−2 (ikn−2)],

for all n > 2. And the homogenized dynamic equation can be expressed as

ik · 〈Chom
n 〉 : ik ⊗s 〈ũ〉+

(
ik · 〈Cf.hom

n 〉 · ik + I
)
f̃

= −w2〈ρhomn 〉〈ũ〉 − w2〈ρf.homn 〉f̃ .
(3.36)

According to Eqs.(3.35), (3.36), (3.18), we have

(
∇y · Cf.hom

[n+1] · ik + ik · Cf.hom
n · ik + I

)
〈ρhomn 〉

= ρhomn

(
ik · 〈Cf.hom

n 〉 · ik + I
)
− w2

(
ρf.homn 〈ρhomn 〉 − 〈ρf.homn 〉ρhomn

)
,

(3.37)

this general expression has the same format as Eq.(3.18), which allows (n + 1)-th order

asymptotic expressions to be solved by solutions of n-order.
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3.3.3 The w-correlation of higher-order expressions

A general relation between Cf
n and ρfn is given by Eq.(3.37). When n = 1 (because η0

and η1 are null), this expression gives

(
∇y · Cf.hom

[2] · ik + ik · Cf.hom
1 · ik + I

)
〈ρhom1 〉 = ρhom1

(
ik · 〈Cf.hom

1 〉 · ik + I
)
,

which is the asymptotic result of the first order dynamic equation. However, when n > 2,

the tensor ρf.homn is not zero (ηn is not null). Therefore, the solution of η is related to

frequency w (or wave number k), and we introduce ξ to represent these terms. Similar

to ηn, the tensors ξn can be determined by periodic boundary conditions and continuity

conditions, and 〈ξn〉 = 0. It is easy to prove that ξ0, ξ1, ξ2 and ξ3 are zero. Then, the

general expression for this case reads

(
∇y · Cfw.hom

[n+1] · ik + ik · Cfw.hom
n · ik + I

)
〈ρhomn 〉 = ρhomn

(
ik · 〈Cfw.hom

n 〉 · ik + I
)

−w2[(ρf.homn + ρfw.homn )〈ρhomn 〉 − ρhomn (〈ρf.homn 〉+ 〈ρfw.homn 〉)],
(3.38)

where

Cfw.hom
[n+1] · ik = ε2Cfw

3 + ε3Cfw
4 + ...εnCfw

n+1,

Cfw.hom
n · ik = ε3Cfw

3 + ε4Cfw
4 + ...εnCfw

n ,

ρfw.homn = ε4ρfw4 + ε5ρfw5 + ...εnρfwn ,

with Cfw
3 = C :∇ξ4 and

Cfw
n = C : {ξn �n−4 (ik)n−4 +∇y[ξn+1 �n−4 (ik)n−4]}, ρfwn = ρ · [ξn �n−4 (ik)n−4],

for all n 6 4. As shown in Eq.(3.38), ∇y ·Cfw.hom
[n+1] is affected by wn. And then, the terms

w2+4nf̃ needs to satisfy:

(
∇y · Cf.hom

[n+1] · ik + ik · Cf.hom
n · ik + I

)
〈ρhomn 〉 = ρhomn

(
ik · 〈Cf.hom

n 〉 · ik + I
)

−w2
(
ρf.homn 〈ρhomn 〉 − ρhomn 〈ρf.homn 〉

)
,
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and the terms w2+4nf̃ also meets the equation:

(
∇y · Cf.hom

[n+1] · ik + ik · Cf.hom
n · ik + I

)
〈ρhomn 〉 = ρhomn

(
ik · 〈Cf.hom

n 〉 · ik + I
)

− w2
(
ρfw.homn 〈ρhomn 〉 − ρhomn 〈ρfw.homn 〉

)
.

That means the solution ξ contains all the w2nf̃ terms. We show each part of ũ0 in a

table (× means in general non zero, ◦ means zero):

ũ0 ũ1 ũ2 ũ3 ũ4 ũ5 ũ6 ũ7 ũ8 ũ9 ũ10 ...

〈ũ〉 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ...

f̃ × × ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ...

w2f̃ × × × × ◦ ◦ ◦ ◦ ◦ ◦ ◦ ...

w4f̃ × × × × × × ◦ ◦ ◦ ◦ ◦ ...

w6f̃ × × × × × × × × ◦ ◦ ◦ ...

w8f̃ × × × × × × × × × × ◦ ...

As shown in the table, for the local displacement ũn, when n > 2, it contains the volume

force terms f̃ , and when n > 4, it contains the frequency-dependent term.

After obtaining all the coefficient matrices Xn, ηn and ξn, the solution of the general

dynamic equation can be expressed as

ũn =
n∑
i=0

[Xi �i−1 (ik)i−1] : ik ⊗s Un−i + [ηn �n−2 (ik)n−2]f̃ + [ξn �n−4 (ikn−4)]f̃ , (3.39)

with η0 = η1 = 0 and ξ0 = ξ1 = ξ2 = ξ3 = 0. In the three parts of this expression, unlike

Xn and ηn, the coefficient ξn provides all frequency-dependent terms. For example, the

local displacement fields ũn are specified by

ũ2 = Ũ2 + X1 : ik ⊗s Ũ1 + (X2 · ik) : ik ⊗s Ũ0 + η2f̃ ,

ũ3 = Ũ3 + X1 : ik ⊗s Ũ2 + (X2 · ik) : ik ⊗s Ũ1 + [X3 : (ik)2] : ik ⊗s Ũ0 + (η3 · ik)f̃ ,

ũ4 = Ũ4 + X1 : ik ⊗s Ũ3 + (X2 · ik) : ik ⊗s Ũ2 + [X3 : (ik)2] : ik ⊗s Ũ1

+ [X4 �3 (ik)3] : ik ⊗s Ũ0 + [η4 : (ik)2]f̃ + ξ4f̃ .
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Obviously, this expression easily degenerates into the classic local asymptotic expression

(3.7) in the case of f̃ = 0.

3.3.4 Effective behavior

According to the general relation Eq.(3.36), the general homogenized dynamic equation

has the following form:

(
iw〈ρhom〉iw − ik · 〈Chom〉 · ik

)
〈ũ〉 = (ik · 〈Cf.hom

n 〉 · ik + I − iw〈ρf.homn 〉iw)f̃ . (3.40)

The tensors X , η and ξ of Chom and ρhom can be obtained through periodic boundary

conditions and interface continuity conditions. In addition, the zero-average conditions

are given as

〈Xn〉 = 0, 〈ηn〉 = 0, 〈ξn〉 = 0.

Rewriting the effective dynamic equation in the form Z〈ũ〉 = f̃ , then the effective

impedance Z is calculated by

Z = (Zfn)−1Zn

where Zn represents the n-th asymptotic expression (3.21) of the effective impedance in the

case of null volume force, and Zfn represents the n-th order asymptotic effective impedance

correction factor including volume force, which is given as

Zf = I + ik · 〈Cf.hom
n 〉 · ik − iw〈ρf.homn 〉iw.

3.4 Numerical example of 1D shear wave

In this section, we consider the shear wave model in the previous chapter. The three-

layer model is specified by the shear modulus G1 = 3.0 × 108(Pa), G2 = 2.0 × 1011(Pa),

and G3 = 1.0 × 1010(Pa); the mass density ρ1 = 1000(kg/m3), ρ2 = 3000(kg/m3), and

ρ3 = 900(kg/m3). The size of the periodic RVE is set to l = 0.01(m), and the thicknesses
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Figure 3.1: 1D three-phase layered composite model.

of the components satisfy α1l : α2l : α3l = 0.52 : 0.23 : 0.25. The effective expressions

(3.23a) and (3.23b) can be used to solve the effective shear modulus Geff and effective

mass density ρeff . Of course, before that, we need to determine the tensor Xn based on

periodic conditions and interface continuity conditions. The shear wave is governed by the

local dynamic equation and constitutive relationship

∇ · σ̃ + f̃ = −w2ρũ, σ̃ = G∇ũ.

The solution ũn has the form (3.39). In this 1D case, we can rewrite the solution as

ũn =
n∑
i=0

Xi(ik)iUn−i + ηn(ik)n−2f̃ + ξn(ik)n−4f̃ ,

where the tensors X , η and ξ are degraded to scalar coefficients. As mentioned earlier,

the effective dispersion relationship of the local equation depends on the results of the

effective tensors Ceff and ρeff . However, these effective tensors are related to the value

of X . Therefore, in the subsequent analysis, we only show the solution for X .

3.4.1 Polynomial asymptotic expression of Xn

According to the properties mentioned in the previous section, the tensor Xn should

satisfy all continuity and periodic conditions. In layered case, we can try to represent Xn
by a polynomial related to the coordinate variable y. Then, we can define Xn (for n > 1,

X0 = 1) as a polynomial function of order yn:

X1 = a1
1y + a0

1,

...

Xn = anny
n + ...+ a1

ny + a0
n,
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Figure 3.2: 1D polynomial approximation function Xn (up to order 10).

where the polynomial coefficients ain(i = 0, 1, ..., n) are the constant vectors to be de-

termined, and the size of the vector ain depends on the number of layers of the layered

composite model.

In numerical applications, the magnitude of the function Xn differs greatly. Therefore,

we consider standardizing it, that is, considering only the changing characteristics of the

function. Fig.(3.2) shows the curves of each order function Xn in this 1D layered case.

As shown by the curves, the functions Xn related to the local coordinate y are always

continuous on each interface.

3.4.2 Dispersion relationship and effective tensors

The dispersion curve can be obtained from the zero determinant of the effective impedance

Z. As shown in Fig.(3.3), the ε2 (pink line) and ε4 (green line) order approximation have

some reluctant results. However, as the asymptotic order increases, the high-order approx-

imation results have an extremely good match (the maximum error is less than 0.01%)

with the reference (analytical) solution (red line).

On the other hand, in order to exhibit the asymptotic error easily, we define the error
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Figure 3.3: Dispersion curves for two-scalemethod (black line for Quasi-static solution, red
line for Reference solution): The asymptotic results of orders ε2, ε4 and ε20 are shown.

function of the dispersion curve as

Err(k, w) =
||w − wnum||
||wnum||

× 100%,

where w and wnum represent asymptotic and numerical results of the angular frequency

when the wave number is k, respectively. The maximum errors of different asymptotic

orders are shown in Fig.(3.4). The maximum error of the dispersion relationship decreases

quickly at the low-order epsilon and stabilizes after a small fluctuation. It is worth noting

that the fluctuations in the error curve do not mean that the higher asymptotic level will

have a better matching result in the higher asymptotic stage (ε4−ε12). On the contrary, the

asymptotic results in the volatility phase may have errors that cannot be ignored. After

numerical verification, the fluctuation stage like that is more obvious for the high-contrast

model.

According to Eqs.(3.23a) and (3.23b), the asymptotic results of Geff and ρeff are

shown in Fig.(3.5) under the normalized wave number (kl). The asymptotic result with a

sufficient order of ε (about ε20) can guarantee a good matching result with the reference

solution (numerical solution determined by the finite element method).
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Figure 3.6: Asymptotic dispersion curves (a) and comparison of complete dispersion curves
(in the double wave number range) (b) for the case of ε = 0.5.

3.4.3 Discussion on the small parameter ε

As previously described, the small parameter ε is defined to be the ratio of the mi-

croscopic characteristic dimension l to the macroscopic characteristic dimension L (or

macroscopic wave length λ). At the same time, we know that the small parameter ε needs

to satisfy the condition ε 6 1. In an extreme case, the smaller parameter ε = 1 means

that the characteristic dimension L is equal to the cell size l, and then the two scales (x

and y) will degenerate to the same scale. Under this assumption, Eq.(3.3) represents the

superposition of perturbation fields of the same scale. For the general case, we define the

size of the RVE as the macroscopic characteristic dimension L, and the value of ε can be

redefined as the ratio of the size of the microscopic characteristic dimension l to the size

of the RVE. Therefore, different small parameter values indicate different RVE sizes. For

example, when we set ε = 0.5, the RVE at this time is defined as two basic cells. In this

case, the wave number range becomes twice the original one, that is, the normalized wave

number k ∗ 2l 6 π, which comes from the wave number limitation in Nassar et al. (2015).

In summary, the value of the small parameter ε determines the degree of homogenization

at the microscale, or it can determine the homogenization effect when the wavelength is

greater than the representative cell size.
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3.5 Conclusion

The advantage of the two-scale description is that it allows analysis of macro-scale

behavior through the micro-scale description of composites. Thanks to the two-scale de-

scription of local dynamic equations and the asymptotic analysis of effective displacement

fields, we obtained a general higher-order asymptotic expression of the effective impedance

through the hierarchical analysis of dynamic equations. Apart from that, this general ex-

pression is verified to be applicable to any asymptotic order.

The hierarchical equations are developed based on the small parameter ε. The definition

of the small parameter and its homogenization effect on the infinite periodic structure

model are explained in this chapter. The final numerical simulation indicates that the

asymptotic performance of the two-scale method in the low-order asymptotic stage (less

than ε12) is not perfect, but after a small fluctuation, the numerical results in the high-

order asymptotic stage (large than ε20) becomes extremely matched. The two-scale method

borrows the asymptotic polynomial of the tensor X , and its results do not depend on the

model mesh, so its numerical calculation cost is lower than the finite element method.

On the other hand, with the help of the analytical solution expressions of the layered

model in chapter 1, we found that the results of the two-scale method in the higher-order

asymptotic stage are even better than those of the finite element method with a sufficiently

dense mesh. Unfortunately, because the current development of the two-scale method is

not profound, we have not applied it to the general 2D situation for the time being. The

core difficulty lies in the 2D solution of the tensor X , which will be considered in future

work.
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Part II

Elastodynamic imperfect interface

models for composites
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Chapter 4

Elastic wave propagation through a

perfect interface

This chapter mainly considers the perfect interface and uses the finite-difference time-

domain method (FDTD) to carry out numerical simulations. The 2D anti-plane shear

wave is taken as a prototype, and the finite difference method relies on the distribution of

difference-points, which is not suitable for general interface shapes. To solve this problem,

the Explicit Simplified Interface Method (ESIM) proposed in the work of Lombard &

Piraux (2004) provides a good matching scheme.

4.1 Interface conditions

4.1.1 Interface geometry

A smooth surface S in a three-dimensional Euclidean space R3 can be defined as a

zero-level set of the function F (x) with x = (x, y, z) ∈ R3:

S = {x ∈ R3|F (x) = 0}.

Taking a point x = (x0, y0, z0) on the surface, the curve Γ(x, y, z) passing the point x

satisfies

x = f1(t), y = f2(t), z = f3(t),
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Figure 4.1: (a) Let x be a point on the smooth surface S, where P and n are the tangent
plane and outer normal. (b) Consider S being the interface of media Ω(1) and Ω(2) in plane
(e1, e2).

where f1, f2 and f3 represent three functions that satisfy F (f1(t), f2(t), f3(t)) = 0, and t is

the variable corresponding to the point on the curve Γ. There are x0 = f1(t0), y0 = f2(t0)

and z0 = f3(t0). Let P be the tangent plane of the smooth surface S at position x, the

expression of the tangent plane P(x) reads

Fx(x0, y0, z0)(x− x0) + Fy(x0, y0, z0)(y − y0) + Fz(x0, y0, z0)(z − z0) = 0.

In addition, the normal vector n and the tangent vector t at the point x are

n(x) =
(Fx(x), Fy(x), Fz(x))

|| (Fx(x), Fy(x), Fz(x)) ||
|x=(x0,y0,z0), t(x) =

(f ′1(t), f ′2(t), f ′3(t))

|| (f ′1(t), f ′2(t), f ′3(t)) ||
|t=t0 ,

where Fx = ∂F
∂x

, and same operations as Fy and Fz.

4.1.2 Two orthogonal projection operators

For any smooth interface or surface, we can introduce two orthogonal projection oper-

ators associated with the normal vector n(x), which are defined as

N = n⊗ n, T = I − n⊗ n,

where I stands for the second-order identity tensor, N and T represent the normal and

tangent projection operators, respectively.

Next, we consider ϕ(x) is a scalar function and φ(x) is a continuously differentiable
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vector function. Their gradient fields admit the following decompositions

∇ϕ =∇ϕ(N + T ) ≡∇nϕ+∇tϕ, ∇φ =∇φ(N + T ) ≡∇nφ+∇tφ,

where the operator ∇n and ∇t are defined as the normal derivative operator and tangent

derivative operator. The normal derivatives are defined by

∇nϕ ≡ (∇ϕ)N = (∇ϕ · n)n, ∇nφ ≡ (∇φ) : N = (∇φ · n)n.

Similarly, the divergence fields of φ(x) and the tensor function τ (x) can be decomposed

as follows :

∇ · φ =∇φ : (N + T ) ≡∇n · φ+∇t · φ, ∇ · τ =∇τ : (N + T ) ≡∇n · τ +∇t · τ ,

where

∇n · φ ≡∇φ : N =∇(φ · n)n, ∇n · τ ≡∇τ : N =∇(τ · n)n.

Let Ω(1) and Ω(2) are the two sub-domains separated by S. Considering a vector

function φ(x) with (x ∈ S) is continuous across S:

φ(1)(x) = φ(2)(x),

where the superscript (·)(1) and (·)(2) represent the value in the sub-domain Ω(1) and Ω(2).

The Hadamard relationship gives

∇φ(2)(x)−∇φ(1)(x) = α⊗ n, ∇ · φ(2)(x)−∇ · φ(1)(x) = α · n.

where α is a constant vector generally different from 0, n is the outer normal vector of S.

It follows from the Hadamard relation that

∇tφ
(1)(x) =∇tφ

(2)(x), ∇t · φ(1)(x) =∇t · φ(2)(x). (4.1)
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4.1.3 Continuous conditions for the perfect interface

Taking a 3D elasticity problem as an example, we denote the displacement field and

the stress field as u and σ, respectively. The following continuity conditions are met on

the perfect interface S at the point x:

u(1)(x) = u(2)(x), ∇u(1)(x) · T =∇u(2)(x) · T , σ(1)(x) ·N = σ(2)(x) ·N ,

where the superscript indicate the physical fields in the media Ω(1) and Ω(2) on both sides

of the interface S. In a 3D elastic case with the base vectors (e1, e2, e3), the displacement

field is given as u(x) = u1(x)e1 + u2(x)e2 + u3(x)e3, and the gradient operator is written

as∇ = ( ∂
∂x
, ∂
∂y
, ∂
∂z

). When we set the normal vector at the point x ∈ S to n(x) = (1, 0, 0),

there exist the continuity conditions:
0 u

(1)
2,1 u

(1)
3,1

0 u
(1)
2,2 u

(1)
3,2

0 u
(1)
2,3 u

(1)
3,3

 =


0 u

(2)
2,1 u

(2)
3,1

0 u
(2)
2,2 u

(2)
3,2

0 u
(2)
2,3 u

(2)
3,3

 ,

σ

(1)
11 0 0

σ
(1)
21 0 0

σ
(1)
31 0 0

 =


σ

(2)
11 0 0

σ
(2)
21 0 0

σ
(2)
31 0 0

 ,

where (u,1, u,2, u,3) represents the partial derivative operator (∂u
∂x
, ∂u
∂y
, ∂u
∂z

), and σij are com-

ponents of σ with (i, j = 1, 2, 3). According to the the small strain hypothesis ε =

1
2
(∇u +∇Tu) and the symmetry property of stress field σ = σT , the continuity condi-

tions of the point x for (x ∈ S) can also be expressed as


0 0 0

0 ε
(1)
22 ε

(1)
32

0 ε
(1)
23 ε

(1)
33

 =


0 0 0

0 ε
(2)
22 ε

(2)
32

0 ε
(2)
23 ε

(2)
33

 ,

σ

(1)
11 σ

(1)
12 σ

(1)
12

σ
(1)
21 0 0

σ
(1)
31 0 0

 =


σ

(2)
11 σ

(2)
12 σ

(2)
12

σ
(2)
21 0 0

σ
(2)
31 0 0

 .

4.1.4 Jump conditions for the imperfect interfaces

In the above elasticity problem, the continuity conditions given by the perfect interface

S can be summarized as the continuity of the displacement field u and traction vector

τ = σ · n (the normal component of the stress field). We denote the difference between

the physical fields on both sides of the interface as [[u]] and [[τ ]] , that is, [[u]] = u(2)−u(1)

and [[τ ]] = τ (2)−τ (1), where the superscripts (1) and (2) indicate the physical fields of the
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materials on both sides. Then, the continuity conditions provided by the perfect interface

can be expressed as [[u]] = 0 and [[τ ]] = 0. Conversely, the imperfect interface does not

provide continuity for both fields, i.e. [[u]] 6= 0 or/and [[τ ]] 6= 0. It is worth discussing

two extreme imperfect interfaces: the spring-layer model and the interface stress model.

The first spring-layer model allows the traction vector to be continuous at the interface

([[τ ]] = 0), while the displacement field has a jump relationship ([[u]] 6= 0) that is linear

with the traction vectors on both sides of the interface. The second interface stress model

defines that the displacement field is continuous at the interface ([[u]] = 0), but the traction

vector has a discontinuous jump relationship ([[τ ]] 6= 0) and satisfies the Young-Laplace

equation.

4.2 Reflection coefficient R and transmission coeffi-

cient T

In this section, we discussed the amplitudes of the reflected and transmitted waves on

both sides of the perfect interface, namely the reflection coefficient R and the transmission

coefficient T . Take an anti-shear plane wave (the SH wave) in the 2D plane (x, y) as an

example, and let u(x, y, t) be the propagation solution of the dynamic equation in the

homogeneous medium, the dynamic equation reads

∇ · σ = ρü, σ = G∇u, (4.2)

where the double dot symbol represents the second derivative of time. In the frequency

domain, the harmonic wave equation reads

∇ · σ = −w2ρu, σ = G∇u,

where w is the angular frequency. The wave number gives k = w/c and the wave velocity

is c =
√
G/ρ. The harmonic displacement solution u(x, y, t) can be split into a time de-

pendence part e−iwt (the time dependence part will be omitted in the following discussion)

and a wave number dependence part eik(x,y).
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4.2.1 Single perfect interface model

2θ

1θ
1θ

ru

11,G 22 ,G

0 x

tu

iu
)1( )2(

y
S

Figure 4.2: A simple bi-phase interface model contains two media Ω(1) (G1, ρ1) and Ω(2)

(G2, ρ2). The interface S has an angle ϕ. The incident, reflected wave in Ω(1) and the
transmitted wave in Ω(2) are denoted as ui, ur and ut, respectively.

We first consider the single perfect interface model shown in Fig.(4.2), which contains

two semi-infinite matrices Ω(1), Ω(2) and a perfect interface S with an angle ϕ. The normal

and tangent vectors of the interface S are n = (cos(ϕ), sin(ϕ)) and t = (−sin(ϕ), cos(ϕ)).

Setting the shear modulus (G1, G2) and the mass density (ρ1, ρ2) for each media (Ω(1),Ω(2)).

The incident wave ui and the reflected wave ur (with the reflection coefficient R) in the

medium Ω(1) and the transmitted wave ut (with the transmission coefficient T ) in the

medium Ω(2) can be respectively represented as

ui = eik1cos(θ1+ϕ)x+ik1sin(θ1+ϕ)y,

ur = Re−ik1cos(θ1−ϕ)x+ik1sin(θ1−ϕ)y,

ut = T eik2cos(θ2+ϕ)x+ik2sin(θ2+ϕ)y,

where θ1 indicates the angle of incidence and reflection in Ω(1), and θ2 represent the trans-

mission angle in Ω(2). Snell’s law gives the relationship k1sin(θ1) = k2sin(θ2).

According to the continuous conditions of the perfect interface [[u]] = 0 and [[τ ]] = 0,

It is easy to get the reflection coefficient R and transmission coefficient T of the wave
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propagating from the medium Ω(1) to the medium Ω(2) as

R =
η1cos(θ1)− η2cos(θ2)

η1cos(θ1) + η2cos(θ2)
, T =

2η1cos(θ1)

η1cos(θ1) + η2cos(θ2)
,

where η represents the impedance, defined as ηi =
√
Giρi for (i = 1, 2).

4.2.2 Double perfect interface model

0

2θ

1θ
1θ

ru

11,G 00 ,G 22 ,G

h

0 x

tu

iu
)1( )0( )2(

y

)1(S
)2(S

Figure 4.3: A simple thin interphase layer model contains a thin layer Ω(0) (G0, ρ0) with
a small thickness h . The parallel interfaces S1 and S2 have an angle ϕ. The incident,
reflected wave in Ω(1) (G1, ρ1) and the transmitted wave in Ω(2) (G2, ρ2) are denoted as
ui, ur and ut, respectively.

Next, we consider a double perfect interface model shown in Fig.(4.3), which contains

two semi-infinite matrices Ω(1), Ω(2) and a homogeneous interphase layer Ω(0) with the

thickness h. The parallel interfaces S(1) and S(2) have an angle ϕ. Similar to the single

interface model, the normal and tangent vectors are the same. The incident wave u1, the

reflected wave ur and the transmitted wave ut can be expressed as

ui = eik1cos(θ1+ϕ)x+ik1sin(θ1+ϕ)y,

ur = Rei∆Φ1−ik1cos(θ1−ϕ)x+ik1sin(θ1−ϕ)y,

ut = T eik0cos(θ0)hei∆Φ4+ik2cos(θ2+ϕ)x+ik2sin(θ2+ϕ)y,

(4.3)
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where θ1 indicates the angle of incidence and reflection in Ω(1), and θ0 and θ2 represent

the transmission angle in Ω(0) and Ω(2), respectively. Snell’s law gives the relationship

k1sin(θ1) = k0sin(θ0) = k2sin(θ2). In the above expressions, ∆Φ1 and ∆Φ4 are two

supplementary terms. They make the reflected and transmitted waves meet the phase-

matching condition at two perfect interfaces (the waves must have the same phase when

passing through a perfect interface).

Multiple reflections of waves between two perfect interfaces

When the incident wave (ui) reaches the left interface S(1) for the first time, it will

generate reflected wave (u
(1)
Lr ) and transmitted wave (u

(1)
Lt ), and then the transmitted wave

(u
(1)
Lt ) reaches the right interface S(2) for the first time, it will also generate reflected wave

(u
(1)
Rr) and transmitted wave (u

(1)
Rt ). In this process, the wave reaches the left and right

interfaces for the first time, which we record the superscript as n = 1. The superscript

(n) indicates that the incident wave reaches the interface for the n-th time after being

transmitted or refracted. Then the reflected wave (u
(1)
Rr) will return to the left interface to

be reflected and transmitted again, and so on (see Fig.(4.4)).



iu

)1(
Ltu

)1(
Lru )2(

Ltu )3(
Ltu )4(

Ltu

)1(
Rtu )2(

Rtu )3(
Rtu )4(

Rtu

)1(
Rru

)2(
Lru )3(

Lru )4(
Lru

)2(
Rru )3(

Rru

)1(

)0(

)2(

)1(S

)2(S

Figure 4.4: A simple double interface model. The incident wave ui passes through the two
interfaces S(1) and S(2) from bottom to top, u

(1)
Lr and u

(n)
Lt (n > 2) generated through the

interface S(1) constitute the reflected wave ur, and u
(n)
Rt (n > 1) through the interface S(2)

constitute the transmitted wave ut.

Set the coordinates of the points where the waves reach the interfaces S(1) and S(2)

are O
(n)
L and O

(n)
R (with the initial point (x1, y1)), their expressions related to n can be
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determined as

O
(n)
L = (x1 + 2(n− 1)∆x, y1 + 2(n− 1)∆y),

O
(n)
R = (x2 + (2n− 1)∆x, y2 + (2n− 1)∆y),

where the coordinates satisfy x2 = x1 +hcos(ϕ) and y2 = y1 +hsin(ϕ), and the differential

distances are defined as ∆x = −htan(θ0)sin(ϕ) and ∆y = htan(θ0)cos(ϕ). The reflection

and transmission coefficients of the perfect interface S(1) (medium Ω(1), Ω(0)) and S(2)

(medium Ω(0), Ω(2)) are given as

R10 =
η1cos(θ1)− η0cos(θ0)

η1cos(θ1) + η0cos(θ0)
, T10 =

2η1cos(θ1)

η1cos(θ1) + η0cos(θ0)
,

R02 =
η0cos(θ0)− η2cos(θ2)

η0cos(θ0) + η2cos(θ2)
, T02 =

2η0cos(θ0)

η0cos(θ0) + η2cos(θ2)
.

Among them, the reflection coefficient satisfies R10 = −R01. At the same time, the

relationships 1 +R10 = T10 and 1 +R02 = T02 are automatically satisfied.


0 x

iu

)1( )0( )2(

y

)1(S
)2(S

h

)(n
LO

)(n
RO

Figure 4.5: The points O
(n)
L (red dots) and O

(n)
R (blue dots) when the incident wave ui

passing through the interfaces S(1) and S(2).

Supplementary terms ∆Φ1 and ∆Φ4

Firstly, we consider the case of n = 1, the incident wave ui = eik1F(θ1+ϕ,x,y), which has
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the definition F(θ1 +ϕ, x, y) = cos(θ1 +ϕ)x+ sin(θ1 +ϕ)y. On the left interface, we have

u
(1)
Lr (x1, y1) = R10e

ik1F(θ1−ϕ,−x1,y1)+i∆φ1 , u
(1)
Lt (x1, y1) = T10e

ik0F(θ0+ϕ,x1,y1)+i∆φ2 .

Considering the phase-matching condition of u
(1)
Lr and u

(1)
Lt , it is easy to get

∆φ1 = k1F(θ1 + ϕ, x1, y1)− k1F(θ1 − ϕ,−x1, y1),

∆φ2 = k1F(θ1 + ϕ, x1, y1)− k0F(θ0 + ϕ, x1, y1).

When the transmitted wave u
(1)
Lt reaches the right interface, we have

u
(1)
Rr(x2) = T10R02e

ik0F(θ0−ϕ,−x2,y2)+i∆φ3 , u
(1)
Rt (x2) = T10T02e

ik2F(θ2+ϕ,x2,y2)+i∆φ4 ,

where the supplementary items ∆φ3 and ∆φ4 satisfy

∆φ3 = k1F(θ1 + ϕ, x1, y1) + k0F(θ0 − ϕ, x2,−y2) + k0hcos(ϕ),

∆φ4 = k1F(θ1 + ϕ, x1, y1)− k2F(θ2 + ϕ, x2, y2) + k0hcos(ϕ).

And then, the reflected wave u
(1)
Rr returns to the left interface for the case of n = 2.

Finally, the general expressions of reflected and transmitted waves for n > 2 can be

determined as

u
(n)
Lt (x1) = T10R02(R02R01)n−2T01e

ik1F(θ1−ϕ,−x1,y1)+i∆φ4n−2 ,

u
(n)
Rt (x2) = T10(R02R01)n−1T02e

ik2F(θ2+ϕ,x2,y2)+i∆φ4n ,

where ∆φ4n−2 and ∆φ4n satisfy

∆φ4n−2 = k1F(θ1 + ϕ, x1, y1)− k1F(θ1 − ϕ,−x1, y1) + 2(n− 1)k0cos(θ0)h,

∆φ4n = k1F(θ1 + ϕ, x1, y1)− k2F(θ2 + ϕ, x2, y2) + (2n− 1)k0cos(θ0)h.

Coefficients R and T
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Integrate all the reflected waves ur(x, y) ((x, y) ∈ Ω(1)) to get

ur(x, y) =
N∑
n=1

u(n)
r (x)

=

[
R01 +

(
N∑
n=2

(
R02R01e

2ik0cos(θ0)h
)n−2

)
T10R02T01e

2ik0cos(θ0)h

]
eik1F(θ1−ϕ,−x,y)+i∆Φ1 ,

(4.4)

where ∆Φ1 = ∆φ1. And the superposition of transmitted waves ut(x, y) ((x, y) ∈ Ω(2))

can be expressed as

ut(x, y) =
N∑
n=1

u
(n)
t (x)

=

[(
N∑
n=1

(
R02R01e

2ik0cos(θ0)h
)n−1

)
T10T02e

ik0cos(θ0)h

]
eik2F(θ2+ϕ,x,y)+i∆Φ4 ,

(4.5)

where ∆Φ4 = ∆φ4 − k0hcos(θ0). The analytical reflection coefficient R and transmission

coefficient T are finally determined as

R = R10 + α(N − 1)T10R02T01e
2ik0cos(θ0)h, T = α(N)T10T02e

ik0cos(θ0)h, (4.6)

where the coefficient α depends on the number of times the waves crosses the left or right

interface, denoted as N . The expression of α is given as

α(0) = 0, α(N) =
N∑
n=1

(R02R01e
2ik0cos(θ0)h)n−1, N ∈ N∗.

Considering the geometric sequence expression of the analytical solution, when N is large

enough, we can get the approximate expression

α(N) =
N∑
n=1

(R02R01e
2ik0cos(θ0)h)n−1 ≈ 1

1−R02R01e2ik0cos(θ0)h
,

where the condition |R02R01e
2ik0cos(θ0)h| < 1 must be guaranteed. Without loss of gen-

erality, for a small thickness h of the interphase layer (less than λ0/4 wavelength in the

medium Ω(0)) according to the Euler’ formula. Then, the approximate reflection coefficient
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R and transmission coefficient T can be derived as

R = R10 +
T10R02T01e

2ik0cos(θ0)h

1−R02R01e2ik0cos(θ0)h
, T =

T10T02e
ik0cos(θ0)h

1−R02R01e2ik0cos(θ0)h
. (4.7)

4.3 Numerical method

In the current 2D anti-plane shear wave problem, we give the second-order hyperbolic

dynamic equation (5.16) as

c2(
∂2

∂x2
+

∂2

∂y2
)u(x, y, t) =

∂2u(x, y, t)

∂t2
, (4.8)

where the wave velocity c =
√
G/ρ, and its value depends on which medium the wave

u(x, y) progresses in. We consider using the finite-difference time-domain (FDTD) method

to implement the numerical modeling of the perfect interface.

4.3.1 Explicit difference scheme

We start with a 1D M -th order Taylor series expansion of the displacement field u(x, t),

which gives

u(x+ p∆x, t) =
M∑
k=0

(p∆x)k

k!

∂ku(x, t)

∂xk
+O(∆xk+1), (4.9)

where ∆x represents the space step, and p is a positive integer. Try to introduce two

vectors U and U , they are defined as

U = [u(x− p∆x, t), ... , u(x, t), ... , u(x+ p∆x, t)]T ,

U = [u(x, t), ∆x
∂u(x, t)

∂x
, ... , ∆xk

∂ku(x, t)

∂xk
]T .

Rewriting the Taylor series expression (4.9) as the form U = E U , where the coefficient

matrix E gives the index form

Eij =
(i− p− 1)j−1

(j − 1)!
,
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The second-order coefficient matrix E have the dimension (2p+1)∗ (m+1). For example,

when we set p = 2, the expression U = E U is written as

u(x− 2∆x, t)

u(x−∆x, t)

u(x, t)

u(x+ ∆x, t)

u(x+ 2∆x, t)


=



1 −2 2 −4
3

2
3

1 −1 1
2
−1

6
1
24

1 0 0 0 0

1 1 1
2

1
6

1
24

1 2 2 4
3

2
3





u(x, t)

∆x∂u(x,t)
∂x

∆x2 ∂
2u(x,t)
∂x2

∆x3 ∂
3u(x,t)
∂x3

∆x4 ∂
4u(x,t)
∂x4


.

Therefore, the Taylor series expression (4.9) can be rewritten as in matrix form as U =

E−1U for M = 2p:

u(x, t)

∆x∂u(x,t)
∂x

∆x2 ∂
2u(x,t)
∂x2

∆x3 ∂
3u(x,t)
∂x3

∆x4 ∂
4u(x,t)
∂x4


=



0 0 1 0 0

1
12

−2
3

0 2
3
− 1

12

− 1
12

4
3
−5

2
4
3
− 1

12

−1
2

1 0 −1 1
2

1 −4 6 −4 1





u(x− 2∆x, t)

u(x−∆x, t)

u(x, t)

u(x+ ∆x, t)

u(x+ 2∆x, t)


.

Taking the k-th order spatial partial derivative as an example, it is expressed as

∆xk
∂kui
∂xk

= ekU,

where ek represents a coefficient vector derived from E−1, which is (k + 1)-th row.

On the other hand, the two K-order Taylor series of the time derivative terms for

solution u(x, y, t) are

u(x, y, t+ ∆t) = u(x, y, t) +
K∑
k=1

∆tk

k!

∂ku(x, y, t)

∂tk
+O(∆tK+1),

u(x, y, t−∆t) = u(x, y, t) +
K∑
k=1

(−∆t)k

k!

∂ku(x, y, t)

∂tk
+O(∆tK+1),

where ∆t is the time step. Summing the above two expressions, it is easy to get the
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second-order time derivative term

u(x, y, t+ ∆t)− 2u(x, y, t) + u(x, y, t−∆t) =

K/2∑
k=1

2∆t2k

(2k)!

∂2ku(x, y, t)

∂t2k
+O(∆tK+1),

where K is an even integer. According to the above expression, we can replace the time

derivative terms in equation (4.8) with space derivative terms. Setting the space step

∆x = ∆y, the explicit time-step difference form (in the order of K) can be expressed as

u(x, y, t+ ∆t) = 2u(x, y, t)− u(x, y, t−∆t)

+

K/2∑
k=1

2

(2k)!

(
∆t

∆x
c

)2k
(

k∑
m=0

L(2m,2k−2m) : U

)
,

(4.10)

where the matrices L and U have definitions

L(2m,2k−2m) = e2m ⊗ e2k−2m, U =


u(x− p∆x, y − p∆y, t) ... u(x+ p∆x, y − p∆y, t)

... ... ...

u(x− p∆x, y + p∆y, t) ... u(x+ p∆x, y + p∆y, t)

 .

The above scheme is similar to the Lax-Wendroff scheme of the first-order 2D linear hy-

perbolic partial differential equations (Lörcher & Munz, 2007). The constant coefficient

matrix L(2m,2k−2m) can be determined according to the accuracy of time steps O(∆tK+1)

and space steps O(∆xM+1). For example, when p = 2, The expressions of the matrix

L(2m,2k−2m) are given as

L(0,2) = e0 ⊗ e2 =



0 0 0 0 0

0 0 0 0 0

− 1
12

4
3
−5

2
4
3
− 1

12

0 0 0 0 0

0 0 0 0 0


, L(0,4) = e0 ⊗ e4 =



0 0 0 0 0

0 0 0 0 0

1 −4 6 −4 1

0 0 0 0 0

0 0 0 0 0


,
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L(2,2) = e2 ⊗ e2 =



1
144

−1
9

5
24

−1
9

1
144

−1
9

16
9
−10

3
16
9
−1

9

5
24
−10

3
25
4
−10

3
5
24

−1
9

16
9
−10

3
16
9
−1

9

1
144

−1
9

5
24

−1
9

1
144


,

Moreover, the matrix L satisfies the symmetrical relationship L(2m,2k−2m) = LT(2k−2m,2m).

4.3.2 Numerical modeling of perfect interface

Considering the explicit central difference scheme mentioned earlier, this section per-

forms numerical simulations on the single perfect interface model and the double perfect

interface model (with a small thickness of h).

Single perfect interface model

Taking the 1D model shown in Fig.(4.6) as an example, the dynamic equation (5.16)

reads

G
∂2u

∂x2
= ρ

∂2u

∂t2
.

The continuity of the displacement field [[u]] = 0 and the continuity of the traction vector

[[τ ]] = 0 at the perfect interface S.

)1( )2(
S

Figure 4.6: 1D perfect interface model: the wave satisfies the displacement field continuous
[[u]] = 0 and the traction vector continuous [[t]] = 0 on the perfect interface S.

Let x be a point located on the interface S, and S(+) and S(−) be two sides of S.

The displacement fields on both sides of the interface are denoted as u(x(+)) and u(x(−)),

respectively. Using the explicit central difference scheme from the previous section, we
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)1( )2(

)(S )(S

Figure 4.7: 1D center difference model: both sides of the perfect interface S are denoted as
S(+) and S(−), and the displacements of the left (orange dot) and right (blue dot) points of
the interface are denoted as u(x(+)) and u(x(−)), respectively. The symbol ∗ represents the
difference grid of the medium Ω(1) (orange) or Ω(2) (blue), and the symbol ⊗ represents
the corresponding virtual point. The black dotted frame represents the five-point difference
stencil of red point.

take p = 2 as an example. According to the continuity conditions [[u]] = 0 and [[τ ]] = 0,

it is easy to prove that

∂2[[u]]

∂t2
= 0 :

∂2u(x(+))

∂t2
=
∂2u(x(−))

∂t2
,

∂4[[u]]

∂t4
= 0 :

∂4u(x(+))

∂t4
=
∂4u(x(−))

∂t4
,

[[τ ]] = 0 : G1
∂u(x(+))

∂x
= G2

∂u(x(−))

∂x
,

∂2[[τ ]]

∂t2
= 0 : G1

∂2

∂t2

(
∂u(x(+))

∂x

)
= G2

∂2

∂t2

(
∂u(x(−))

∂x

)
.

We denote the displacement field of the virtual points as u∗(x(+)+p∆x) and u∗(x(−)−p∆x),

they allow

G1ρ2e2U
+ = G2ρ1e2U

−, G2
1ρ

2
2e4U

+ = G2
2ρ

2
1e4U

−,

G1e1U
+ = G2e1U

−, G2
1ρ2e3U

+ = G2
2ρ1e3U

−,

where

U+ = [u(x(+) − 2∆x), u(x(+) −∆x), u(x(+)), u∗(x(+) + ∆x), u∗(x(+) + 2∆x)]T ,

U− = [u∗(x(−) − 2∆x), u∗(x(−) −∆x), u(x(−)), u(x(−) + ∆x), u(x(−) + 2∆x)]T .
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With help of the Taylor series expansion (4.9) for p = 2, we can get the relation



4γG
3γρ

− γG
12γρ

− 1
12

4
3

−4γ2G
γ2ρ

γ2G
γ2ρ

1 −4

2γG
3

−γG
12

1
12

−2
3

−γ2G
γρ

γ2G
2γρ

−1
2

1

U
∗ =


− γG

12γρ

4γG
3γρ

−5γG
2γρ

−5
2

4
3
− 1

12

γ2G
γ2ρ

−4γ2G
γ2ρ

6γ2G
γ2ρ

6 −4 1

γG
12

−2γG
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where γG = G1

G2
and γρ = ρ1

ρ2
, and

U∗ = [u∗(x(+) + ∆x), u∗(x(+) + 2∆x), u∗(x(−) − 2∆x), u∗(x(−) −∆x)]

U = [u(x(+) − 2∆x), u(x(+) −∆x), u(x(+)), u(x(−)), u(x(−) + ∆x), u(x(−) + 2∆x)].

In this way, the displacement U∗ of the virtual point can be determined by the displacement

U of the difference-point on both sides of the interface S.

Similarly, for the 2D case, the displacement of the virtual point can still be solved by

this scheme. But it is worth noting that in this method, the perfect interface must pass

through the difference-points (like the orange and blue dots in Fig.(4.7)). In the current

work, what we discuss is the continuity conditions of the physical field at the perfect

interface and its numerical modeling. For a more general 2D situation, we will discuss it

in Chapter 6 of this thesis.

Considering a single interface model with the following definition: the incident shear

waves propagate from medium Ω(1) to medium Ω(2), they have the shear modulus G1 =

3.0 × 109(Pa), G2 = 2.5 × 109(Pa) and the mass density ρ1 = 3.0 × 103(Kg/m3), ρ2 =

2.0 × 103(Kg/m3). The incident wave is set as a sinusoidal single-period wave: ui =

−Asin(ik1x − iwt), where A = 1, w = 2πf and k1 = 2π
c1f

with the frequency f = 10(Hz)

and the wave velocity c1 =
√

G1

ρ1
. In the numerical model, the space step and the time step

are set as ∆u = 1.0(m) and ∆t = 0.85(ms). And the Courant–Friedrichs–Lewy (CFL)

condition is γ = 0.95. Fig.(4.8) shows the reflected and transmitted waves of the reference

solution and the numerical solution. The reference solution is the approximate analytical

solution in equations (4.2.2) and (4.2.2), and the numerical solution is determined by

setting p = 2 of the aforementioned differential scheme.

93



0 200 400 600 800 1000
−1.5

−1

−0.5

0

0.5

1

1.5

Propagation distance

A
m

p
lit

u
d
e

Propagation time = 0.75 (s)

 

 

Reference solution
Numerical solution

Figure 4.8: The capture of wave propagation in Single perfect interface model at time
t = 0.75(s). The red line is the reference solution, and the blue point is the numerical
solution (p = 2).

Double perfect interface model

The double perfect interface case is considered in a model with a thin homogeneous

layer Ω(0), whose thickness h is much smaller than the wavelength λ0 of the wave in

the intermediate layer (h ≈ 0.1λ0). Set the shear modulus of medium Ω(0) to G0 =

2.0 × 109(Pa) and the mass density to ρ0 = 1.5 × 103(Kg/m3). The numerical model

parameters are the same as the above case. The comparison between the reference solution

and the numerical solution is shown in Fig.(4.9).
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Figure 4.9: The capture of wave propagation in Double perfect interface model at time
t = 0.75(s). The red line is the reference solution, and the blue point is the numerical
solution (p = 2).
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Chapter 5

Establishment of elastodynamic

imperfect interface models

In this chapter, two interface operators are introduced to explain the continuity of the

physical field at the perfect interface. With the help of these two interface operators,

in the context of the linear elastodynamic problem of composites, we derived the jump

conditions of the perfect interfaces through the thin interphase model and replaced it with

an imperfect interface. The core content of this chapter is developed from the work of Gu

& He (2011).

5.1 Interfacial operators

5.1.1 Two orthogonal interfacial operators

We start with the introduction of two orthogonal plane projection operators N and T

mentioned in chapter 4, which are related to the normal vector n of the perfect interface.

Now we define two fourth-order interfacial operators, namely the fourth-order normal

operator P⊥ and the fourth-order tangent operator P‖:

P⊥ = I⊗N , P‖ = I⊗T ,
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where I is the second-order identity tensor. Their index form is expressed as

(P⊥)ijkl = δikNjl = δiknjnl, (P‖)ijkl = δikTjl = δik(δjl − njnl), (5.1)

where δij is the Kronecker delta.

Remark These two projection operators satisfy the relationships

P⊥ + P‖ = I, P⊥P⊥ = P⊥, P‖P‖ = P‖, P⊥P‖ = P‖P⊥ = O, (5.2)

where I = I⊗I is a fourth-order identity tensor satisfies the index form (I)ijkl = δikδjl,

and O is a fourth-order zero-tensor.

Let u be the response of the dynamic equation for an elastic problem, the dynamic

equation gives

∇ · σ = ρü, σ = C :∇u,

where C and ρ represent the stiffness (elasticity) tensor and the mass density tensor,

respectively, the upper double-dot symbol represents the second derivative of time. The

constitutive law satisfies σ = C :∇u, and its inverse relationship is shown as ∇u = S : σ

, where C : S = I.

Using the definition of two orthogonal operators P⊥ and P‖, the displacement gradient

field ∇u and stress field σ can be split as

∇u = P⊥∇u+ P‖∇u, σ = P⊥σ + P‖σ. (5.3)

Considering the continuity conditions of the perfect interface S of media Ω(1) and Ω(2),

the displacement field u(x) is continuous on the interface x ∈ S, and also the tangential

component of the displacement gradient ∇u and the normal component of the stress field

σ (or traction vector τ ) are continuous:

u(1)(x) = u(2)(x), P⊥σ(1)(x) = P⊥σ(2)(x), P‖∇u(1)(x) = P‖∇u(2)(x), (5.4)
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where the superscripts (1) and (2) represent the physical fields of media Ω(1) and Ω(2), and

P⊥σ = σN = (σ · n)⊗ n = τ ⊗ n.

5.1.2 Continuity conditions of a perfect interface

As mentioned in the previous subsection, some components of the physical field at

the interface satisfy the continuity conditions, such as tangential displacement gradient

component and normal stress field component (or traction vector). Next, we have necessary

to discuss the relationship between the displacement gradient fields∇u or the stress fields

σ on both sides of the interface S.

According to Eq.(5.3) and the constitutive law, we can get the relations

P⊥CP⊥∇u = P⊥σ − P⊥CP‖∇u, P‖SP‖σ = P‖∇u− P‖SP⊥σ, (5.5)

where the part P⊥σ and P‖∇u satisfy the continuous conditions shown in Eq.(5.4). The

normal projection P⊥CP⊥ index form can be simplified as

(P⊥CP⊥)ijkl = (P⊥)ijmn(C)mnpq(P⊥)pqkl = δimnjnnCmnpqδpknqnk

= Cinkqnjnnnlnq = (Cinkqnnnq)njnl,

which gives the result of P⊥CP⊥ = (C:N )⊗N with the definition (C:N )ij = Cimjnnmnn.

The inverse of C:N satisfies (C:N ) · (C:N )−1 = I, where I is the second-order identity

tensor. To simplify the description, we define two second-order tensors as Q = C:N and

Q = (C:N )−1, they satisfy GQ = I. It is easy to prove (G⊗I) (Q⊗I) = I and

(G⊗N ) (Q⊗N ) = (G⊗N ) (Q⊗I) = (G⊗I) (Q⊗N ) = P⊥,

(G⊗T ) (Q⊗T ) = (G⊗T ) (Q⊗I) = (G⊗I) (Q⊗T ) = P‖.

Defining a tensor A = (C:N )−1⊗N , it have following properties

A(P⊥CP⊥) = (P⊥CP⊥)A = P⊥, AP⊥ = P⊥A = A.
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For the tangent part P‖SP‖, we will try to introduce a tensor B, which satisfies

B(P‖SP‖) = (P‖SP‖)B = P‖, BP‖ = P‖B = B.

Thanks to these properties of A and B, the expressions (5.5) can be rewritten as

∇u = AP⊥σ + (I− AC)P‖∇u, σ = BP‖∇u+ (I− BS)P⊥σ. (5.6)

In this way, the displacement gradient field ∇u and the stress field σ are expressed as the

sum of two continuous fields (P‖∇u and P⊥σ) on the perfect interface S. Comparing the

same components of Eq.(5.6) in constitutive law, it is easy to get an identity relationship

CA + BS = AC + SB = I.

Then, the expression of B can be given as B = C− CAC. We have also the relationships

SB = I− AC = P‖ − A(P⊥CP⊥ − P⊥C) = P‖ + ACP‖,

CA = I− BS = P⊥ − B(P‖SP‖ − P‖S) = P⊥ + BSP⊥.

Returning to equation (5.6), the displacement gradient fields and the stress fields across

the interface S satisfy:

∇u(1)(x) = A(1)σ(2)(x) + S(1)B(1)∇u(2)(x), (5.7a)

σ(1)(x) = B(1)∇u(2)(x) + C(1)A(1)σ(2)(x). (5.7b)

5.2 Jump conditions of thin interphase layers and

equivalent imperfect interfaces

In this section, the jump conditions for a homogeneous intermediate layer with two

perfect interfaces and for an equivalent imperfect interface are explained.
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Figure 5.1: Two interface model: (a) A sufficiently thin homogeneous layer is sandwiched
between two semi-infinite domains. (b) The thin interphase layer is simplified to an equiv-
alent imperfect interface.

5.2.1 Analysis for an thin homogeneous interphase layer

Considering a basic model consisting of two materials Ω(1) and Ω(2) and a homogeneous

interphase Ω(0) with the thickness h, two parallel interfaces (they have the same normal

vector n) S1 and S2 are located between the media Ω(1), Ω(0) and Ω(2), Ω(0), respectively.

And the interface S0 is a virtual interface between S1 and S2. Using the Taylor expansions

to extend the displacement field u(x), we have

u(0)(x0) = u(0)(x1) +
h

2
∇u(0)(x1) · n+O(h2),

u(0)(x0) = u(0)(x2)− h

2
∇u(0)(x2) · n+O(h2),

(5.8)

where x0 ∈ S0, x1 ∈ S1 and x2 ∈ S2. The displacement jump condition of two interfaces

S1 and S2 is expressed as [[u]]h = u(2)(x2)−u(1)(x1). Owing to Eqs.(5.4), (5.7) and (5.8),

the displacement jump condition [[u]]h can be expressed as

[[u]]h = h[A(0)〈σ〉h + S(0)B(0)〈∇u〉h] · n+O(h2), (5.9)

where the average operator 〈φ〉h = [φ(1)(x1) + φ(2)(x2)]/2 with φ = σ or ∇u.
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Similarly, the Taylor series expansions of the traction vector τ (x) are given as

τ (0)(x0) = τ (0)(x1) +
h

2
∇τ (0)(x1)n+O(h2),

τ (0)(x0) = τ (0)(x2)− h

2
∇τ (0)(x2)n+O(h2),

(5.10)

where x0 ∈ S0, x1 ∈ S1 and x2 ∈ S2. Using the definition equation∇·σ =∇n ·σ+∇t ·σ,

the normal part ∇n · σ gives

∇n · σ =∇σ : N =∇(σ · n) · n ≡∇τ · n = −∇t · σ + ρü.

Owing to Eqs.(4.1), (5.4), (5.7) and (5.10), the traction jump condition [[τ ]]h = τ (2)(x2)−

τ (1)(x1) can be expressed as

[[τ ]]h = h{ρ(0)〈ü〉h −∇t · [B(0)〈∇u〉h + C(0)A(0)〈σ〉h]}+O(h2), (5.11)

where the average operator 〈φ〉h = [φ(1)(x1) + φ(2)(x2)]/2 with φ = ü, σ or ∇u.

5.2.2 Analysis for an equivalent imperfect interface

Try to replace the thin intermediate layer model of the previous subsection with an

equivalent imperfect model. In this model, we consider the two-phase media Ω(1) and Ω(2)

in two side of the equivalent imperfect interface S0, and the interfaces S1 and S2 are two

virtual perfect interfaces parallel to S0. Let x1, x2, and x0 be the points at which the

normal vectors are located on the three interfaces. Similar to equations (5.8) and (5.9),

the Taylor expansions of u(x) on the interface S1 and S2 have

u(1)(x1) = u(1)(x0)− h

2
∇u(1)(x0) · n+O(h2),

u(2)(x2) = u(2)(x0) +
h

2
∇u(2)(x0) · n+O(h2),

(5.12)

where (·)(1) and (·)(2) represent the fields in media Ω(1) and Ω(2). With the help of equation

(5.9), the displacement jump condition [[u]]0 = u(2)(x0)−u(1)(x0) across the interface S0
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reads

[[u]]0 = [[u]]h − h〈∇u〉0 · n+O(h2),

where 〈∇u〉0 = [∇u(2)(x0) +∇u(1)(x0)]/2. Substitute Eqs.(5.7) and (5.9) into the above

equation, we have

[[u]]0 =
h

2
[∇u(0)(x2) +∇u(0)(x1)] · n− h

2
[∇u(2)(x0) +∇u(1)(x0)] · n+O(h2).

Noticed that the approximation order lock in O(h2), we choose the first-order Taylor

expression

∇u(0)(x2) · n =∇u(0)(x0) · n+O(h), ∇u(0)(x1) · n =∇u(0)(x0) · n+O(h).

They can also be expressed as

∇u(0)(x2) · n = [A(0)σ(2)(x2) + S(0)B(0)∇u(2)(x2)] · n

= [A(0)σ(2)(x0) + S(0)B(0)∇u(2)(x0)] · n,

∇u(0)(x1) · n = [A(0)σ(1)(x1) + S(0)B(0)∇u(1)(x1)] · n

= [A(0)σ(1)(x0) + S(0)B(0)∇u(1)(x0)] · n.

Finally, using Eqs.(5.7) and (5.9), the displacement jump condition [[u]] of the imperfect

interface can be rewritten as

[[u]]0 =
h

2
[(A(0) − A(2))σ(2)(x0) + (S(0)B(0) − S(2)B(2))∇u(2)(x0)] · n

+
h

2
[(A(0) − A(1))σ(1)(x0) + (S(0)B(0) − S(1)B(1))∇u(1)(x0)] · n+O(h2).

(5.13)

Similarly, the Taylor expansions of τ (x) on the interface S1 and S2 have

τ (1)(x1) = τ (1)(x0)− h

2
∇τ (1)(x0) · n+O(h2),

τ (2)(x2) = τ (2)(x0) +
h

2
∇τ (2)(x0) · n+O(h2).
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The traction jump condition [[τ ]]0 = τ (2)(x0)− τ (1)(x0) gives

[[τ ]]0 = [τ (2)(x2)− τ (1)(x1)]− h

2
[∇τ (2)(x0) +∇τ (1)(x0)] · n+O(h2).

Substitute Eqs.(5.7) and (5.11) into above equation, the traction jump condition [[t]] of

the imperfect interface can be rewritten as

[[τ ]]0 =
h

2
[(ρ(0) − ρ(2))ü(2)(x0) + (ρ(0) − ρ(1))ü(1)(x0)]

−h
2
{∇t · [(B(0) − B(2))∇u(2)(x0) + (C(0)A(0) − C(2)A(2))σ(2)(x0)]

+∇t · [(B(0) − B(1))∇u(1)(x0) + (C(0)A(0) − C(1)A(1))σ(1)(x0)]}+O(h2).

(5.14)

Equivalent thickness models of jump conditions

The thin interphase layer are replaced with an equivalent imperfect interface in the

above section. At the same time, we consider also the generality of this idea, that the thin

interphase layer is transformed into another equivalent empty layer with a thickness of a by

repositioning the interfaces S1
a and S2

a . According to the limitation of the aforementioned

jump conditions of the thickness h, the equivalent thickness a can be defined in the interval

[0, 2h], where we choose the maximum value of a equal to 2h to avoid unreasonable errors

caused by large equivalent thickness. Then we introduce a coefficient ε = (h − a)/h, the

jump conditions for this equivalent empty layer related to ε can be expressed as

[[u]]a =
h

2
[(A(0) − εA(2))σ(2)(x∗2) + (S(0)B(0) − εS(2)B(2))∇u(2)(x∗2)] · n

+
h

2
[(A(0) − εA(1))σ(1)(x∗1) + (S(0)B(0) − εS(1)B(1))∇u(1)(x∗1)] · n+O(h2),

(5.15a)

[[τ ]]a =
h

2
[(ρ(0) − ερ(2))ü(2)(x∗2) + (ρ(0) − ερ(1))ü(1)(x∗1)]

−h
2
{∇t · [(B(0) − εB(2))∇u(2)(x∗2) + (C(0)A(0) − εC(2)A(2))σ(2)(x∗2)]

+∇t · [(B(0) − εB(1))∇u(1)(x∗1) + (C(0)A(0) − εC(1)A(1))σ(1)(x∗1)]}+O(h2),

(5.15b)

where x∗1 and x∗2 represent the corresponding points on the virtual interfaces S(1)
a and S(2)

a ,

respectively. Obviously, when we set the equivalent thickness a = 0, these jump conditions

will degenerate into the imperfect interface model in the previous section.
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5.2.3 Two extreme cases of imperfect interfaces

Due to the influence of the interphase layer, the jump conditions of the double perfect

interface with the distance h can be expressed as

[[u]]h =
h

2

(
∇u(0)(x1) +∇u(0)(x2)

)
· n, [[τ ]]h =

h

2
∇
[(
σ0(x1) + σ0(x2)

)
· n
]
· n,

The tensors A and B are two fourth-order tensors related to the stiffness tensor C and the

compliance tensor S. It is easy to think that the jump conditions have two extreme cases

when the properties of the intermediate layer are extremely “hard” or “soft” compared to

the materials on both sides. We can compare these two extreme models by jump conditions

(5.9) and (5.11). The first case is that the interphase is very “hard”, namely C(0) � C(1)

and C(2). That gives
(
∇u(0)(x1) · n,∇u(0)(x2) · n

)
� ∇u(1)(x1) · n and ∇u(2)(x2) · n,

but
(
σ(0)(x1) · n,σ(0)(x2) · n

)
have the same order of magnitude with σ(1)(x1) · n and

σ(2)(x2) · n. Therefore, in the approximate expression, the jump conditions at (h)-order

are given as

[[u]]h =
h

2

(
∇u(0)(x1) +∇u(0)(x2)

)
· n ≈ 0,

[[τ ]]h =
h

2
∇
[(
σ0(x1) + σ0(x2)

)
· n
]
· n

=
h

2
∇
[
C(0) :

(
∇u0(x1) +∇u0(x2)

)
· n
]
· n

=
h

2
{ρ(0) (ü(x1) + ü(x2))−∇t ·

[
C(0) :

(
∇u0(x1) +∇u0(x2)

)]
}.

Conversely, in the second case, the “soft” interphase satisfies C(0) � C(1) and C(2), which

is the opposite of the first one. That gives
(
∇u(0)(x1) · n,∇u(0)(x2) · n

)
�∇u(1)(x) ·n

and ∇u(2)(x) · n. At the same time, the traction vector
(
σ(0)(x1) · n,σ(0)(x2) · n

)
have

the same order of magnitude with σ(1)(x1) · n and σ(2)(x2) · n. However, the gradi-

ent of traction vector satisfies
(
∇
(
σ(0)(x1) · n

)
,∇
(
σ(0)(x2) · n

))
�∇

(
σ(1)(x) · n

)
and

∇
(
σ(1)(x) · n

)
. Therefore, the jump conditions at (h)-order are given as

[[u]]h =
h

2

(
∇u(0)(x1) +∇u(0)(x2)

)
· n =

h

2
S(0)

(
σ(0)(x1) + σ(0)(x2)

)
· n,

[[τ ]]h =
h

2
∇
[(
σ0(x1) + σ0(x2)

)
· n
]
· n ≈ 0.
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In fact, These two interphase layer models correspond to two typical imperfect interface

models: the interface stress model and the spring-layer model. The first model provides

continuity of the displacement field across the interface, but the normal stress field (or

traction vector) satisfies the Young-Laplace equation. The second model is that the normal

stress field (or traction vector) is continuous at the interface, while the displacement field

satisfies the linear relationship between the traction vectors on both sides of the interface.

5.3 Example for 2D anti-plane shear wave

In this section, we consider an anti-plane shear wave (SH wave) propagates in the plane

(x, y), which contains two semi-infinite matrices Ω(1), Ω(2) and a homogeneous interphase

layer Ω(0) with the thickness h. The model has the shear modulus (G1, G2, G0) and the

mass density (ρ1, ρ2, ρ0) for each medium (Ω(1),Ω(2),Ω(0)). Considering the interphase

layer model shown in Fig.(5.2), two parallel perfect interfaces represent the interfaces of

the mediums (Ω(1),Ω(0)) and (Ω(1),Ω(0)). Let u(x, y, t) be the solution of the dynamic

equation

∇ · σ = ρü, σ = G∇u. (5.16)

5.3.1 Equivalent jump conditions

As the dynamic equation of the shear wave shown in Eq.(5.16), the displacement field

u(x, y, t) is a scalar function. Therefore, in the jump conditions shown in Eqs.(5.15a) and

)1( )0( )2(
0 x

y

(a) Heterogeneous interphase layer model

)1( )2(
0 x

y

JCs.

(b) Equivalent jump conditions model

Figure 5.2: Consider a 2D anti-plane shear wave case, comparison with two model: (a) two
semi-matrices Ω1 and Ω2 with a homogeneous interphase layer Ω0, (b) two semi-matrix Ω1

and Ω2 with the equivalent Jump Conditions.
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(5.15b), the tensor C, S, A and B can be greatly simplified to

C⇒ GI, S⇒ G−1I, A⇒ G−1N , B = GT ,

where I is the second-order identity vector, and N and T are two projection operators

defined by N = n⊗ n and T = I −N , respectively. Subsequently, the jump conditions

of this equivalent empty layer model can be simply expressed as

[[u]]a =
h

2
[(
G1

G0

− ε)∇u(x1) · n+ (
G2

G0

− ε)∇u(x2) · n] +O(h2), (5.17a)

[[τ ]]a =
h

2
[G1

(
ρ0

ρ1

− ε
)

∆u(x1) +G2

(
ρ0

ρ2

− ε
)

∆u(x2)]

− h

2
[(G0 − εG1)∆tu(x1) + (G0 − εG2)∆tu(x2)] +O(h2),

(5.17b)

where the Laplace operator is given as ∆u = ∇ · (∇u) and ∆tu = ∇t · (∇tu). (See the

section 4.1.2 for the definition of ∆t.)

5.3.2 Reflection and transmission coefficients for jump condi-

tions

When we consider the model shown in Figs.(5.2), the interfaces S(1) and S(2) have an an-

gle ϕ with the vertical axis. Then, the normal and tangent vectors are n = (cos(ϕ), sin(ϕ))

and t = (−sin(ϕ), cos(ϕ)), respectively. The incident wave ui and the reflected wave ur

(with the reflection coefficient R) in the medium Ω(1) and the transmitted wave ut (with

the transmission coefficient T ) in the medium Ω(2) can be respectively represented as

Eqs.(4.3). The reflection coefficient and transmission coefficient can be easily obtained

through the jump conditions of the homogeneous interphase layer. For the model shown

in Fig.(5.2b) with the thickness a, the jump conditions Eqs.(5.17a) and (5.17b) can be
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rewritten as

[[u]]a =

(
∂

∂x
cos(ϕ) +

∂

∂y
sin(ϕ)

)
(A1u(x1) + A2u(x2)) , (5.18a)

[[τ ]]a =

(
∂2

∂x2
+

∂2

∂y2

)
(B1u(x1) +B2u(x2))

−
(
∂

∂x
sin(ϕ)− ∂

∂y
cos(ϕ)

)2

(C1u(x1) + C2u(x2)) ,

(5.18b)

where the coefficients A, B and C are defined as

A1 =
h

2
(
G1

G0

− ε), B1 =
h

2
G1(

ρ0

ρ1

− ε), C1 =
h

2
(G0 − εG1),

A2 =
h

2
(
G2

G0

− ε), B2 =
h

2
G2(

ρ0

ρ2

− ε), C2 =
h

2
(G0 − εG2).

The above expressions can be degenerated into the jump condition model when ε = 0, or

the imperfect interface model when ε = 1. According to these jump conditions and the

wave expressions (4.3), we have

R =
(1− a2)(b1 + d1)− (1 + a1)(b2 − d2)

(1− a2)(b1 − d1) + (1− a1)(b2 − d2)
, T =

(1 + a1)(b1 − d1) + (1− a1)(b1 + d1)

(1− a2)(b1 − d1) + (1− a1)(b2 − d2)
,

where

a1 = A1ik1cos(θ1), b1 = G1ik1cos(θ1), d1 = (C1sin
2(θ1)−B1)k2

1,

a2 = A1ik2cos(θ2), b2 = G2ik2cos(θ2), d2 = (C2sin
2(θ2)−B2)k2

2.

5.3.3 Numerical examples

Considering a three-phase composite model with a thin interphase layer, the model-

ing parameters are given as: the shear modulus G1 = 3 × 1011(Pa), G2 = 4 × 1011(Pa)

and G0 = 2 × 1011(Pa); the mass density ρ1 = 3000(Kg/m3), ρ2 = 3500(Kg/m3) and

ρ0 = 3300(Kg/m3). The reflection and transmission coefficients of the analytical solution

(with N = 4), approximate solution and equivalent jump conditions of this model will be

compared. As shown in Figs.(5.3), when the ratio of the thickness of interphase layer h to

the wavelength λ0 is small, the equivalent jump conditions have a comfortable equivalent
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(b) Tresmission coefficient T

Figure 5.3: Setting the incident angle θ1 = 0◦, 30◦ and 60◦, the reflection coefficient R
and transmission coefficient T of the analytical solution (point), approximate solution (red
line), and jump conditions solution (blue line) are shown in (a) and (b), respectively.

result with less error. In other words, the influence of the incidence angle θ on the reflec-

tion coefficient and transmission coefficient becomes significant when h/λ0 is greater than

0.1. In addition, the difference between the material’s “hardness” (referred to as acoustic

impedance) of the interphase layer and the materials on both sides affects these errors to

a large extent.

We propose the amplitude errors to show the reflected and transmitted wave intensities

in different cases. These errors are defined as

RErr =
||R(a, θ)−Rref (a, θ)||

||Rref (a, θ)||
, TErr =

||T (a, θ)− Tref (a, θ)||
||Tref (a, θ)||

,

where the reference case is an analytical solution described above. Obviously, the equiv-

alent jump conditions display a lower error when the equivalent thickness a = h, that

is the thickness does not change. Increasing or decreasing the equivalent thickness value

will cause a larger error. As shown in Fig.(5.4), in this model, the reflection coefficient

error reaches 40% when the incident angle θ = 0◦ and the equivalent thickness a = 2h. In

contrast, the transmitted wave error does not change much.
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Figure 5.4: (a) Reflection coefficient R errors and (b) transmission coefficient T errors of
different equivalent thicknesses a (with a = h-asterisk, a = 0-triangle and a = 2h-square
symbol) and different incident angles θ (with θ = 0◦-blue , θ = 30◦-red and θ = 60◦-black
line).

5.4 Conclusion

In general, we consider the interface of the two closely bonded materials as the perfect

interface, that is, the displacement field u and the traction vector τ = σ ·n at the interface

satisfy the continuity in the elastic problem. However, in many cases, the application

conditions of the perfect interface cannot be satisfied. In order to solve the complexity of

the thin interlayer in modeling, we provide two effective interface models: the first one is

the equivalent jump conditions model, which ignores the modeling of the thin interphase

and replace it with two jump conditions of u and τ ; the second one is the equivalent

imperfect interface model, which transforms the thin interphase to an imperfect interface

with equivalent jump conditions of u and τ . The above two equivalent models are derived

from the approximate expression of the Taylor series expansion of the physical field across

the interface, so the applicable conditions of the model are only satisfied with the thin

interphase layer with a small thickness h, which is recommended to be less than 0.1λ0 .

From the comparison of the reflection coefficient R and transmission coefficient T for

the two models and the original one, we find that the equivalent jump conditions model

has a better matching result when the thickness of the thin interlayer h is less than 0.1

times the wavelength in interphase layer λ0. Moreover, the error of the comparison is

not related to the incident angle, which also means that the accuracy of the equivalent
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model is only related to the thickness of the interphase layer. Obviously, in addition to

the jump conditions model which can maintain a low error, the equivalent model with a

thickness changed will greatly increase the error. Consequently, it is necessary to limit

the application of the jump condition model to thin interphase composites with a large

thickness. Moreover, finding more higher-order accuracy jump condition models is also a

valuable subject.
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Chapter 6

Numerical implementation of

elastodynamic imperfect interface

models

This chapter mainly describes a numerical method, which is the Explicit Simplified

Interface Method (ESIM), for implementing the jump conditions of the physics fields on a

smooth interface. This method was proposed to deal with the discontinuity of the physical

field on an interface (Piraux & Lombard, 2001). In the current work, this method is applied

to the second-order hyperbolic dynamic equation. At the same time, the jump conditions

of the thin intermediate layer model and its equivalent thickness model are implemented

by the Lax-Wendroff difference scheme.

6.1 Explicit Simplified Interface Method

Among many numerical methods for implementing interface jump conditions, the Ex-

plicit Simplified Interface Method (ESIM) is a simple and understandable finite difference

method in the time domain. With the help of the Taylor approximation of virtual points

near the interface, the ESIM can be applied to smooth interfaces of general shape. This

makes the interface position independent of the selection of the difference grid, which

is suitable for more general problems. The ESIM describes a numerical method for im-

plementing the jump conditions of the physics fields across the smooth interface. This
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method was proposed to deal with the discontinuity of the physical field across the perfect

interface (Piraux & Lombard, 2001; Lombard & Piraux, 2004). Its advantage is that the

position of the interface does not depend on the selection of the difference grid, which

benefits from the Taylor approximation of the difference-point near the interface. In the

subsequent development, it was applied to the numerical implementation of the equivalent

jump conditions for the imperfect interface and the thin interphase composite.

6.1.1 Geometric construction of virtual points

As shown in Fig.(6.1), we take the virtual point P on the left interface as an example.

The k-order Taylor series expansion of the displacement field u∗ for the virtual point P

can be expressed as

u∗ =
k∑

n=0

(
n∑

m=0

(
(x∗1)n−m(y∗1)m

(n−m)!m!

∂nu(1)

∂xn−m∂ym

))
+O

(
(x∗1)k+1, (y∗1)k+1

)
, (6.1)

where u(1) is the displacement field at the point P (1)(x∗1, y
∗
1). To simplify the description,

we define

E(1)
n =

[
(x∗1)n

n!
, ...,

(x∗1)n−m(y∗1)m

(n−m)!m!
, ...,

(y∗1)n

n!

]
, E (1)

n =

[
∂nu(1)

∂xn
, ...,

∂nu(1)

∂xn−m∂ym
, ...,

∂nu(1)

∂yn

]
,

where (m = 0, ..., n). Then, the expression (6.1) can be simplified to the format u∗ =

P(1)U (1), where P(1) and U (1) have definitions

P(1) =
[
E

(1)
1 , E

(1)
2 , ..., E

(1)
k

]
, U (1) =

[
E (1)
n , E (1)

2 , ..., E (1)
k

]T
.

We note that the dimension of the matrix P(1) is (1× nn) with nn = (k + 1)(k + 2)/2.

On the other hand, we use the Taylor series to approximate the relationship between

the points P (1), P (2) and their surrounding points. These correlation points are denoted

as P
(1)
a and P

(2)
b , and their numbers are na and nb, respectively. All the displacements of

the points P
(1)
a and P

(2)
b constitute the vectors U

(1)
a and U

(2)
b . Therefore, we have na and
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Figure 6.1: A 2D jump conditions model with two parallel smooth interfaces S(1) and S(2).
The symbol ∗ represents the real points in the media O(1) and O(2), and the symbol ⊗ rep-
resents the virtual points outside the interface. The red rectangular dotted domain indicates
the spatial difference area of the red ∗ point. The yellow circular dashed domain indicates
the Taylor approximation area of the points P (1) and P (2) at two interfaces corresponding
to the red ⊗ point P , and these ~ points therein will be used instead of the virtual point
P .
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nb equations

U (1)
a = P (1)

a U (1), U
(2)
b = P (2)

b U
(2),

where U (2) has a similar definition with U (1), and P (1)
a and P (2)

b are two coefficient matrices

with the dimension (na × nn) and (nb × nn).

6.1.2 Implement of jump conditions

Remark. As mentioned in the previous section, the displacement field [[u]] and the

traction vector [[τ ]] show continuity on the perfect interface, i.e.[[u]] = 0 and [[τ ]] =

0. In addition, the tangential component of the displacement gradient field also exhibits

continuity. Another manifestation of this property is Snell’s law. In the current problem,

with the definition of the normal vector n = (cos(ϕ), sin(ϕ)) and the tangent vector t =

(−sin(ϕ), cos(ϕ)), the tangent part of the spatial derivative (the displacement gradient

field) can be expressed as

∇u(x, y, t) · t =

(
− ∂

∂x
sin(ϕ) +

∂

∂y
cos(ϕ)

)
u(x, y, t). (6.2)

On the other hand, the time derivative of the displacement field also shows continuity. The

relationship between the multi-order time derivative and the space derivative can be given

as (take index 2k as an example)

∂2ku(x, y, t)

∂t2k
= c2k

(
∂2

∂x2
+

∂2

∂y2

)k
u(x, y, t). (6.3)

The above expressions (6.2) and (6.3) introduce two higher-order relationships that

are automatically satisfied by the jump conditions of the displacement field [[u]] and the

traction vector [[t]], they can be used to construct multiple jump condition equations.

Considering the limitation of the approximate order K (even number) of Taylor series,

the jump conditions [[u]] and [[t]] can form up to nu and nτ equations, respectively. For

example, for a perfect interface, the number of equations nu = (K + 2)2/4 and nτ =

K(K+2)/4, and the total number njc = nu+nτ = (K+1)(K+2)/2. Similarly, for the jump

conditions shown in Eqs.(5.18a) and (5.18b), the jump condition of the displacement field

116



[[u]] is related to the first-order derivative of the displacement ∇u, and the jump condition

of the traction vector [[τ ]] is related to the second-order derivative of the displacement ∆u.

Then, the maximum number nu and nτ of jump equations satisfy nu = K(K + 2)/4 and

nτ = K2/4, and the total number of equations njc = K(K + 1)/2. For example, when we

set K = 4, we can construct the following jump conditions in this case :

[[u]], [[u]]′, [[u]]′′, [[u]]′′′, [[u]]tt, [[u]]′tt, [[τ ]], [[τ ]]′, [[τ ]]′′, [[τ ]]tt,

where the superscript prime represents the time partial derivative, and the subscript t

represents the tangential component of the gradient field. It is worth noting that [[u]]t and

[[τ ]] have the same physical meaning, so they are not listed repeatedly. Therefore, when

we consider the highest partial derivative order of the jump condition is K, we can get

nj = K(K + 1)/2 equations

Q(1)U (1) =Q(2)U (2),

where Q(1) and Q(2) are two coefficient matrices with the dimension (nj × nn).

6.1.3 Determination of the virtual displacement fields

Recalling the virtual point expression (6.1) constructed previously, the number of co-

efficient matrix P is nn. This means that we need to construct nn equations to solve P .

However, the total number of equations njc that can be constructed for the jump condition

is less than nn. Therefore, in order to make the above relationship solvable, we can de-

fine U (2) =
(
Q(2)

)−1

Q(1)U (1), where
(
Q(2)

)−1

is the least-square pseudo-inverse of Q(2).

Finally, the virtual point P (1) has the displacement field

u∗ = P (1)

 P (1)
a

P (2)
b

(
Q(2)

)−1

Q(1)

−1 U (1)
a

U
(2)
b

 ,
where (·)−1 stands for the least-square pseudo-inverse operator. Returning to Eq.(6.1), all

virtual points in U can be represented by the above expression.

It is worth noting that if the jump conditions are not null, the number of equations

117



is less than the required number, that is njc < nn. Of course, using the least-squares

pseudo-inverse matrix will inevitably make the result inaccurate. We note that for general

jump conditions, the ratio of njc/nn = K/(K+2) will be close to 1 with the increase of K.

This means that a larger k can increase the accuracy of the inverse matrix in this regard.

However, according to expression (6.1), when the value of K increases, the calculation

amount of the spatial difference terms increases. Lombard et al. (2017) also discussed this

phenomenon in the acoustic propagation.

6.2 2D anti-plan shear wave propagation

The effect of errors in reflected and incident waves at different incident angles and dif-

ferent thicknesses of the interphase layer are shown in previous chapter. In this subsection,

we consider the case of 2D shear wave propagation in a three-phase composite containing

a thin interphace layer. The model is defined as: the shear modulus G1 = 2.6× 109(Pa),

G2 = 3.0 × 109(Pa) and G0 = 2.0 × 109(Pa); the mass density ρ1 = 1400(Kg/m3),

ρ2 = 1500(Kg/m3) and ρ0 = 1000(Kg/m3); the wave frequency f = 1000(Hz). In order

to ensure the accuracy and visibility of the numerical results, we set the thickness of the

interphase layer h to 0.1λ0 (λ0 represents the wavelength of the interphase layer).

6.2.1 Normal incidence

We consider a simple normal single-period incident wave propagating across a thin

interphase layer. Fig.(6.2) shows the state of the propagation time t = 0.40(s). The four

blocks from left to right in the figure are the numerical solution, the jump conditions

solution (a = h), the equivalent imperfect interface solution (a = 0), and the double

thickness jump conditions solution (a = 2h).

As shown in the curves of Fig.(6.3), in the jump conditions solution, the reflected wave

is nearly perfectly matched, but the transmitted wave has a slight phase error. Conversely,

in the equivalent imperfect interface solution, the transmitted wave has an ideal result,

but the reflected wave does not match well. In the double equivalent thickness results,

both reflected and transmitted waves have large errors. It is not difficult to find that the

errors of the reflected and transmitted waves in these four models are mainly reflected in
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Figure 6.2: A single-cycle shear wave propagate from the bottom to the top with incident
angle θ1 = 0. The four blocks from left to right in the figure are the simulation results at
time t = 0.40(s) of the numerical solution (a), the jump conditions solution (b), the equiv-
alent imperfect interface solution (c), and the double thickness jump conditions solution
(d).
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Figure 6.3: Amplitude curves of normal incident wave: the numerical solution (red line),
the jump conditions solution (red circle), the equivalent imperfect solution (black line), and
the double thickness jump conditions solution (blue asterisk).
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(a) Numerical solution
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(b) Jump conditions solution

0 1 2 3 4 5 6 7
0

1

2

3

4

Horizontal scale ( λ
1
 )

V
e
rt

ic
a

l 
s
c
a

le
 (

 λ
1
 )

 

 

−1

−0.5

0

0.5

1

(c) Equivalent imperfect interface solution
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(d) Double thickness jump conditions solution

Figure 6.4: Consider a single-period shear wave propagating from the left to the right with
the incident angle θ1 = 30◦. The four blocks in the figure are the simulation results at time
t = 0.55(s) of the numerical solution (a), the jump conditions solution (b), the equivalent
imperfect interface solution (c), and the double thickness jump conditions solution (d).

the wave propagation phase rather than the amplitude.

6.2.2 Oblique incidence

Next, we set the incident angle of the wave to θ1 = 30◦, and also consider the prop-

agation of a single-period wave. As shown in Fig.(6.4), the numerical simulation results

are consistent with the normal incidence case. The reflection wave of the jump conditions

solution and the transmission wave of the equivalent imperfect interface solution have good

matching results, but the double thickness jump conditions solution is not ideal in both

aspects.

Subsequently, we capture the propagation state of the wave at vertical scale 0.5λ1 as
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Figure 6.5: Amplitude curves of oblique incident wave: the numerical solution (red line),
the jump conditions solution (red circle), the equivalent imperfect solution (black line), and
the double thickness jump conditions solution (blue asterisk).

shown in Fig.(6.5). In addition, the propagation state of the wave in the vertical scale of

2.2λ1 is shown in Fig.(6.6). Fig.(6.6) shows some details at the interface in Fig.(6.5). The

jump relationship of the displacement field for each model is clearly displayed.

6.2.3 Point wave source incidence

Finally, we consider a single-period wave source at the central point. The propagation

at the time t = 0.25(s) is shown in Fig.(6.8). The difference between the various models

shown in the figure does not seem to be obvious. The main error is still the difference in

the phase between the reflected wave and the transmitted wave.

Fig.(6.9) and (6.10) show the propagation state of the waves at vertical scales 3.5λ1

and 2.0λ1, respectively.
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Figure 6.6: Amplitude curves of oblique incident wave: the numerical solution (red line),
the jump conditions solution (red circle), the equivalent imperfect solution (black line), and
the double thickness jump conditions solution (blue asterisk).
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Figure 6.7: Amplitude curves of oblique incident wave: the numerical solution (red line),
the jump conditions solution (red circle), the equivalent imperfect solution (black line), and
the double thickness jump conditions solution (blue asterisk).
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(a) Numerical solution
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(b) Jump conditions solution
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(c) Equivalent imperfect interface solution
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(d) Double thickness jump conditions solution

Figure 6.8: Consider a single-period shear wave that spreads from the center. The four
blocks in the figure are the simulation results at time t = 0.25(s) of the numerical solution
(a), the jump conditions solution (b), the equivalent imperfect interface solution (c), and
the double thickness jump conditions solution (d).
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Figure 6.9: Amplitude curves of source incident wave: the numerical solution (red line),
the jump conditions solution (red circle), the equivalent imperfect solution (black line), and
the double thickness jump conditions solution (blue asterisk).
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Figure 6.10: Amplitude curves of source incident wave: the numerical solution (red line),
the jump conditions solution (red circle), the equivalent imperfect solution (black line), and
the double thickness jump conditions solution (blue asterisk).
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6.3 Conclusion

The finite-difference time-domain (FDTD) method presented in this chapter is imple-

mented with the help of the ESIM numerical scheme. Thanks to the application character-

istics of ESIM, which allows the interface to be independent of the grid of difference-point,

we can arbitrarily choose the thickness of h of the intermediate layer. On the other hand,

in order to improve the accuracy of the numerical method, we provide five points or more

finite-difference expressions, which are determined according to the number of forwarding

and backward difference-point. Considering the accuracy of the equivalent models, we

recommend locking the thickness of the intermediate layer within 0.1λ0.

After the comparison, we can get the following conclusions: (1) The reflected wave of

the equivalent jump conditions model and the transmitted wave of the equivalent imperfect

interface model have good matching results, the simulation results of the double-thickness

jump condition model are not ideal; (2) The amplitude curves show that the error of the

jump conditions model with different thickness compared with the original model is mainly

reflected in the phase of the wave.
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Conclusions

The content of this thesis mainly shows the research on two dynamic homogenization

methods of periodic composites (Part I) and the equivalent models of thin interphase layer

composites (Part II). After the following summaries, we put forward the expectations of

related work and possible research directions in the future.

Dynamic homogenization methods for periodic

composites

The first part of this thesis is devoted to advancing the development of two elasto-

dynamic homogenization methods: Willis elastodynamic homogenization theory and the

two-scale homogenization method. Among them, Willis’ theory has been greatly devel-

oped since it was applied to dynamic elasticity problems. The current work does not

fully understand and explain the physical meaning of Willis’ theory, but only uses Willis’

theory to deal with the homogenization process of periodic layered materials in dynamic

cases. At the first, we formulate the effective constitutive law with the help of the virtual

work principle and prove the Hermitian symmetry of the effective modulus in the effective

constitutive law. Secondly, an iterative method for obtaining the dynamic homogenization

equation of periodic layered composites is proposed. This method allows the exact solution

to be obtained through iterative calculations of arbitrary initial dispersion relations. In

addition, the two-scale homogenization method a classic asymptotic method to deal with

the homogenization of composites. The work on the two-scale homogenization method

is mainly to propose a local displacement hypothesis related to effective displacement,

which simplifies the solution of high-order homogenization equation by combining hierar-
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chical equations. And based on the local displacement hypothesis, a high-order general

expression of effective elastic tensor and effective density is derived.

The research on dynamic homogenization of periodic composites is a broad development

domain, but the current research is only applied to some simple dynamic cases. For

example, the Two-scale method mentioned in this thesis is based on the 1D layered model

and a simple 2D model, so for more general 2D models, the application of the Two-scale

method will likely become a good research subject. In addition, the exploration of more

homogenization methods and asymptotic methods is also a possible research direction.

Equivalent models of thin interphase layer composites

The second part of this thesis is mainly to complete the derivation of the jump condi-

tions of the thin interphase layer in the dynamic case, the establishment of its equivalent

imperfect interface model, and their numerical implementations. Firstly, we extend the

static case in the work of Gu & He (2011) to obtain the jump conditions of the displacement

and traction vector of the dynamic equation across the thin homogeneous layer and deter-

mine the jump conditions of the equivalent imperfect interface. Then, several equivalent

models are proposed for comparison to find a suitable equivalent model. After compar-

ison, we find that the equivalent jump condition model has the smallest error. Finally,

in the numerical case chapter, the multi-point central difference expression of the second-

order hyperbolic wave equation is derived from the time-domain central difference scheme,

and the aforementioned equivalent models are implemented through the Explicit Simpli-

fied Interface Method (ESIM). The numerical results show that the reflection wave of the

equivalent jump conditions model and the transmission wave of the equivalent imperfect

interface model have good matching results with the real solution.

The second part of the thesis is mainly devoted to the equivalent treatment of a ho-

mogeneous thin intermeddle layer, but there is a lack of discussion on non-homogeneous

interphase. In recent years, there have been studies on the equivalent jump conditions of

the periodically arranged thin intermeddle layer model by using the Two-scale description,

such as Marigo et al. (2017), Marigo & Maurel (2017) and so on. Therefore, using the

perfect interface to derive the jump conditions of the non-homogeneous thin intermeddle

128



layer model will also be a subject worth studying.
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Annexes

Appendix A: Dispersion relation for Multi-phase lay-

ered periodic composites

In the body of my thesis, we discussed that the dispersion relationship of multilayer

periodic composites satisfies Eq.(1.10). However, for the multi-phase composite, the an-

alytical solution seems extremely complicated. Here I will prove this analytical solution

expression of the dispersion relation for multilayer periodic composites. For example, we

consider a m-phase layered composite with thickness ratio of αn for (n = 1, ...,m). We

can construct the periodic condition matrix (size with 2m× 2m) of the m-layer composite

as the form: 

× × × ×

× × × ×

× × × ×

× × × ×

× × × ×

× × × ×

... ...

... ...

× × × ×

× × × ×

× × × ×

× × × ×



,
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where the cross symbol represents a non-zero value. We try to adjust the last two columns

of the coefficient matrix and move it to the bottom end. Then the following format is

satisfied for the components of (2n− 1) and (2n) columns (the framed components) in the

matrix (we call a cell):


−eznl

∑
αn−1 −ez∗nl

∑
αn−1

−iwηneznl
∑
αn−1 iwηne

z∗nl
∑
αn−1

eznl
∑
αn ez

∗
nl
∑
αn

iwηne
znl
∑
αn −iwηnez

∗
nl
∑
αn

 ,

where α0 = 0, and the coefficient zn, z
∗
n = −ik ± iw/cn. Therefore, it is easy to determine

that the different combinations of the above-mentioned matrices are as follows:

(1, 2) : A = −2iwηne
−2ikl

∑
αn−1 ,

(1, 3) : B1 = 2ie−ikl(
∑
αn+

∑
αn−1)sin

(
wl
αn
cn

)
,

(1, 4) : B2 = 2iwηne
−ikl(

∑
αn+

∑
αn−1)cos

(
wl
αn
cn

)
,

(2, 3) : C1 = −2iwηne
−ikl(

∑
αn+

∑
αn−1)cos

(
wl
αn
cn

)
,

(2, 4) : C2 = 2iw2η2
ne
−ikl(

∑
αn+

∑
αn−1)sin

(
wl
αn
cn

)
,

(3, 4) : D = −2iwηne
−2ikl

∑
αn ,

where 6 combinations are the different cases of the product for the m-th cell. For a m-

phase layered model, the components of the matrix determinant composed of the above

different combinations have N = 2+2m items in total. When solving the zero-determinant

relationship of the coefficient matrix, different combinations of m cells can be simplified

according to Euler’s formula:

eik = cos(k) + i sin(k).

For the convenience of explanation, we take m = 3 as an example to write the combi-
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nation of all the component items of the coefficient matrix:

A(1) ∗ A(2) ∗ A(3) = KMeikl,

B
(1)
1 ∗ C

(2)
1 ∗ C

(2)
2 = KMη3

η1

sin

(
wl
α1

c1

)
cos

(
wl
α2

c2

)
sin

(
wl
α3

c3

)
,

B
(1)
1 ∗ C

(2)
2 ∗B

(3)
2 = −KMη2

η1

sin

(
wl
α1

c1

)
sin

(
wl
α2

c2

)
cos

(
wl
α3

c3

)
,

B
(1)
2 ∗B

(2)
1 ∗ C

(3)
2 = −KMη3

η2

cos

(
wl
α1

c1

)
sin

(
wl
α2

c2

)
sin

(
wl
α3

c3

)
,

B
(1)
2 ∗B

(2)
2 ∗B

(3)
2 = −KMcos

(
wl
α1

c1

)
cos

(
wl
α2

c2

)
cos

(
wl
α3

c3

)
,

C
(1)
1 ∗ C

(2)
1 ∗ C

(3)
1 = KMcos

(
wl
α1

c1

)
cos

(
wl
α2

c2

)
cos

(
wl
α3

c3

)
,

C
(1)
1 ∗ C

(2)
2 ∗B

(3)
1 = KMη2

η3

cos

(
wl
α1

c1

)
sin

(
wl
α2

c2

)
sin

(
wl
α3

c3

)
,

C
(1)
2 ∗B

(2)
1 ∗ C

(3)
1 = KMη1

η2

sin

(
wl
α1

c1

)
sin

(
wl
α2

c2

)
cos

(
wl
α3

c3

)
,

C
(1)
2 ∗B

(2)
2 ∗B

(3)
1 = −KMη1

η3

sin

(
wl
α1

c1

)
cos

(
wl
α2

c2

)
sin

(
wl
α3

c3

)
,

D(1) ∗D(2) ∗D(3) = KMe−ikl,

where the superscript (n) indicates the combination of the (2n− 1)-th and 2n-th columns,

and the coefficients K and M are

K = (−iw)me−2iklγ0 , γ0 =
∑

α1 + ...+
∑

αm−1 +
1

2
,∑

αm = 1, M = 2m

(
m∏
n=1

ηn

)
.

The sign of plus or minus for the combination items depends on the order of the combina-

tion. After confirmation, for all combinations, the coefficients C1 and C2 are negative and

the rest is positive.

Remark: The definition of “the sign of plus or minus depends on the combination

order” comes from the property of the determinant that causes the sign to change when the

row or column is changed (the elementary transformation of the matrix). Therefore,
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for the different combinations of (1, 2, 3, 4), the different combination results are:

(1, 2) : A⇒ +, (1, 3) : B1 ⇒ −, (1, 4) : B2 ⇒ −,

(2, 3) : C1 ⇒ +, (2, 4) : C2 ⇒ +, (3, 4) : D ⇒ +.

So far, we can determine all the component terms of the determinant of the coefficient

matrix. It is also worth mentioning that since we have adjusted the last two columns of

the coefficient matrix, we need to perform negative operations on combinations that do

not contain A and D. Then, the zero-determinant expression of the coefficient matrix can

be expressed as

A(1) ∗ A(2) ∗ A(3) +D(1) ∗D(2) ∗D(3)

+B
(1)
1 ∗ C

(2)
1 ∗ C

(2)
2 −B

(1)
1 ∗ C

(2)
2 ∗B

(3)
2

−B(1)
2 ∗B

(2)
1 ∗ C

(3)
2 +B

(1)
2 ∗B

(2)
2 ∗B

(3)
2

−C(1)
1 ∗ C

(2)
1 ∗ C

(3)
1 + C

(1)
1 ∗ C

(2)
2 ∗B

(3)
1

+C
(1)
2 ∗B

(2)
1 ∗ C

(3)
1 − C

(1)
2 ∗B

(2)
2 ∗B

(3)
1 = 0.

Try to simplify the above expression, we have

2η1η2η3cos(kl)− 2η1η2η3cos(wl
α1

c1

)cos(wl
α2

c2

)cos(wl
α2

c2

)

+ (η2
1η3 + η2

2η3)sin(wl
α1

c1

)sin(wl
α2

c2

)cos(wl
α2

c2

)

+ (η2
1η2 + η2

3η2)sin(wl
α1

c1

)cos(wl
α2

c2

)sin(wl
α2

c2

)

+ (η2
2η1 + η2

3η1)cos(wl
α1

c1

)sin(wl
α2

c2

)sin(wl
α2

c2

) = 0.

Finally, we get the analytical solution of the dispersion relation for three-phase layered

composites. Furthermore, for any multilayer composite material with m > 2, this method

can be used to obtain an analytical solution.
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Appendix B: Properties of the tensor Xn

Based on the new effective displacement field hypothesis proposed in chapter 3, ac-

cording to the two-scale description, we can obtain the effective constitutive relationship

expression. However, this will inevitably bring about a problem: the definition and solu-

tion of tensor X . Regarding the definition of tensor X , we take X1 as an example to give

the definition. We know that the introduction of X1 is to give the expression of ũ1:

ũ1 = Ũ1 + X1 : ik ⊗s Ũ0,

where X1 is introduced as a third-order tensor, and it satisfies an zero-average on the REV.

Apart from that, the tensor X1 should also satisfy minor symmetry (X1)ikl = (X1)ilk, which

gives

(∇y ⊗s X1)ijkl =
1

2
[(∇yX1)ijkl + (∇yX1)jikl].

Then, we have

C : (ik ⊗s Ũ1) = C · ik · Ũ1 ,

C : [∇y ⊗s (X1 : ik ⊗s Ũ0)] = C :∇y ⊗s X1 : (ik ⊗s Ũ0)

= C :∇yX1 · ik · Ũ0 .

According to the above ũ1 expression, the lowest-order homogenized local dynamic equa-

tion is given as

ik · 〈C : (I ⊗ I +∇yX1)〉 : ik ⊗s 〈ũ〉 = −w2〈ρ〉〈ũ〉,

where 〈ũ〉 = U0 +O(ε1). Therefore, the effective impedance can be expressed as:

Z0 = iw〈ρ〉iw − ik · 〈C : (I ⊗ I +∇yX1)〉 · ik.

Generally, the definition of Xn also satisfies minor symmetry symmetry, e.g. the fourth-
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order tensor (X2)ijkl = (X2)ikjl, and

C : {ik ⊗s [X1 : ik ⊗s Ũ1]} = C : (ik ⊗s X1) : (ik ⊗s Ũ1)

= C : (ik ⊗X1) · ik · Ũ1 ,

C : {∇y ⊗s [(X2 : ik) : ik ⊗s Ũ0]} = C :∇y ⊗s (X2 · ik) : (ik ⊗s Ũ0)

= C :∇y(X2 · ik) · ik · Ũ0 .

Similarly, for the n-th tensor Xn, we have

C : {ik ⊗s [
(
Xn−1 �n−2 (ik)n−2

)
: ik ⊗s Ũ1]} = C : {ik ⊗s

(
Xn−1 �n−2 (ik)n−2

)
} : (ik ⊗s Ũ1)

= C : {ik ⊗
(
Xn−1 �n−2 (ik)n−2

)
} · ik · Ũ1 ,

C : {∇y ⊗s [
(
Xn �n−1 (ik)n−1

)
: ik ⊗s Ũ0]} = C : {∇y ⊗s

(
Xn �n−1 (ik)n−1

)
} : (ik ⊗s Ũ0)

= C : {∇y
(
Xn �n−1 (ik)n−1

)
} · ik · Ũ0 .
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Appendix C: Polynomial approximation of the tensor

Xn in layered composite

In the 1D case, we proposed that the tensors Xn are expressed by polynomial functions

related to the micro variable y:

Xn = anny
n + ...+ a1

ny + a0
n,

where a are the coefficient vectors whose size is related to the number of material layers.

At the same time, the function Xn needs to meet the continuity conditions and periodicity

conditions of interfaces, and the zero-average condition (for n > 1).

Analysis of coefficient vectors a in polynomial function Xn

We assume that the representative cell is an m-phase layered model, witch has the

thickness ratio (α1, ..., αm) with
∑m

i=1 αi = 1 and the cell size l. The layered material

properties are given as Young’s modulus E and mass density ρ, and the corresponding

values of different layers are indicated by subscripts. To simplify the expression, we de-

note the two extremes of the n-th layer as α
(−)
n l and α

(+)
n l, respectively. They meet the

definitions:

α(−)
n = α1 + α2 + ...+ αn−1, α(+)

n = α1 + α2 + ...+ αn.

Solution of X1

According to the above continuity and periodicity conditions, we can determine the

coefficient vectors a1
1:

a1
1(n) =

1

PEn
− 1, P =

m∑
i=1

αi
Ei
, n = 1, 2, ...,m.

And the coefficient vectors a0
1 satisfy:

a0
1(n) =

l

P

(
m−1∑
i=n

α
(+)
i

(
1

Ei+1

− 1

Ei

))
+Q, n = 1, 2, ...,m− 1, a0

1(m) = Q,

137



where the intermediate coefficient Q can be determined by

Q =
l

P

m∑
i=1

(
(α

(+)
i )2 − (α

(−)
i )2

2Ei
(PEi − 1)− αi

m−1∑
j=i

α
(+)
j

(
1

Ej+1

− 1

Ej

))
.

It is confirmed that only when m = 2, which is the two-phase layered model, the X1

function satisfies the integral of each layer is zero, we take the n-th layer as an example:

∫ α
(+)
n l

α
(−)
n l

a1
1(n)y + a0

1(n) dy = 0, n = 1, 2. (6.4)

In this case, the effective density 〈ρ1〉 always satisfies

〈ρ1〉 = ik〈ρX1〉 = 0. (6.5)

However, for the case of m > 3, the results can be expressed in the following general

expression

∫ α
(+)
n l

α
(−)
n l

a1
1(n)y + a0

1(n)dy =
∑
(p,q)

εnpq
αnαpαq

4P
(− 1

Ep
+

1

Eq
), n = 1, 2, ...,m, (6.6)

where p and q can represent all combinations of different numbers between 1 and m except

n. In addition, εnpq represents the Levi-Civita symbol of the number n, p and q, that is,

when npq is in order, it is 1, otherwise it is −1. For example, when we set m = 3 and

n = 2, we have ε231 = 1 and ε213 = −1. Then, the effective density 〈ρ1〉 of a three-phase

layered model can be expressed as

〈ρ1〉 = ik〈ρX1〉 = ik
α1α2α3

2P

[
ρ1

(
− 1

E2

+
1

E3

)
+ ρ2

(
− 1

E3

+
1

E1

)
+ ρ3

(
− 1

E1

+
1

E2

)]
,

where ρn represents the density value of the n-th layer medium. Obviously, in general, the

right side of the above expression is not always equal to 0. This means that in general

(except for the two-layer model), we cannot ignore all odd terms (or imaginary parts) in

Eq.(3.15).

Solution of Xn
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For the solution of the higher-order function Xn, we need to use the general relationship

shown in Eq.(3.18), which gives the necessary relation of all higher-order terms between

Xn and Xn−1. Taking X2 as an example, the coefficient a2
2 can be determined by Eq.(3.9).

In addition, the coefficients a1
2 and a0

2 can be solved by the continuity and periodicity

conditions of the displacement field and the traction vector, and the zero-average condition

of X2. After determining the function X2, we verified that ∇X2 has similar properties to

X1: when m = 2 (two-layer composite), we have

∫ α
(+)
n

α
(−)
n

2a2
2(n)y + a1

2(n) dy = 0, n = 1, 2,

that gives the effective stiffness 〈C1〉 = ik〈E(X1 + ∇X2)〉 = 0; however, for the case of

m > 3, the result of 〈∇X2〉 is not always equal to zero. Therefore, we can conclude that for

the two-layer composites, there are always 〈C1〉 = 0 and 〈ρ1〉 = 0, but for the multilayer

case, this conclusion is generally not true (the conclusion depends on the properties of

each layer).

The same method can be used to determine higher-order expressions of X . In addition,

we found that for all odd numbers n, the functions Xn and∇Xn+1 have the same properties

with X1 and ∇X2. This means that for the two-layer composite, all odd-numbered terms

of Chom
n and ρhomn in Eq.(3.15) are zero; but for the multilayer case, these imaginary terms

are generally not zero. Numerical simulation confirms that these Imaginary terms are

much smaller than the corresponding real terms, which makes these imaginary terms still

negligible.
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