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Abstract

Recently, the phase-field method has been intensively developed to model and simulate the nu-

cleation and propagation of cracks in materials and structures in a variety of situations. In this

development, many questions remain still open and a lot of problems have to be solved. Concern-

ing brittle and quasi-brittle materials, one of the main difficulties comes from the fact that these

materials behave differently in tension and in compression. To overcome this difficulty, the strain

tensor is usually decomposed directly into a tensile part and a compressive part, while arguing that

damage in brittle and quasi-brittle materials is essentially controlled by the tensile part. However,

this direct decomposition is not consistent from an energy point of view, in particular when elas-

tically anisotropic materials are in question. Another important problem in using the phase-field

method and the finite element method to deal with cracks is that the mesh size must be sufficiently

small in any zone where a crack is located or expected to be nucleated/ propagated, so that the

resulting computational cost is high. The present work aims at contributing to the development of

the phase-field method in modelling and simulating cracks in both isotropic and anisotropic brittle/

quasi-brittle materials. A novel family of degradation functions is used and implemented for these

materials. New decompositions of the strain tensor based on an elastic energy preserving trans-

formation are also employed and implemented for isotropic and anisotropic damage. Both bulk

damage and interfacial damage are investigated. The proposed methods are systematically illus-

trated by numerical examples. The obtained results are compared with and validated by relevant

available experimental/ numerical ones.

Key-words: Phase-field method; Damage; Crack; Fracture; Interfacial damage; Brittle materials;

Isotropy; Anisotropy; Unilateral effects; Strain decomposition.
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Résumé
Récemment, la méthode de champ de phase a été intensivement développée pour modéliser et

simuler la nucléation et la propagation de fissures dans des matériaux et des structures dans di-

verses situations. Dans ce développement, de nombreuses questions restent encore ouvertes et de

nombreux problèmes sont à résoudre. Concernant les matériaux fragiles et quasi-fragiles, l’une

des principales difficultés vient du fait que ces matériaux se comportent différemment en traction

et en compression. Pour surmonter cette difficulté, le tenseur des déformations est habituellement

décomposé directement en une partie tendue et une partie compressive, tout en avançant l’argument

que l’endommagement des matériaux fragile et quasi-fragile est essentiellement contrôlé par la par-

tie tendue. Cependant, cette décomposition directe n’est pas cohérente d’un point de vue énergé-

tique, en particulier lorsqu’il s’agit de matériaux élastiquement anisotropes. Un autre problème im-

portant lié à l’utilisation de la méthode de champ de phase et de la méthode des éléments finis pour

traiter les fissures est que le maillage doit être suffisamment fin dans toute zone où une fissure est

située ou devrait être nuclée/ propagée, de sorte que le coût de calcul résultant est élevé. Le présent

travail vise à contribuer au développement de la méthode de champ de phase dans la modélisation

et la simulation de fissures dans les matériaux fragiles/ quasi-fragiles isotropes et anisotropes. Une

nouvelle famille de fonctions de dégradation est utilisée et implémenté pour ces matériaux. De

nouvelles décompositions du tenseur des déformations basées sur une transformation préservant

l’énergie élastique sont également employées et implémentées pour l’endommagement isotrope et

l’endommagement anisotrope. Les endommagements volumiques et interfacials sont étudiés. Les

méthodes proposées sont systématiquement illustrées par des exemples numériques. Les résultats

obtenus sont comparés avec et validés par des résultats expérimentaux/ numériques disponibles.

Mots-clés: Méthode champ de phase; Endommagement ; Fissure ; Fracture ; Endommagement

d’interface; Matériaux fragiles ; Isotropie ; Anisotropie ; Effets unilatéraux ; Décomposition des

déformations.
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General introduction

The problems related to the initiation and propagation of cracks in materials and structures are of

prominent importance to engineering and, in particular, to civil engineering. The classical Linear

Elastic Fracture Mechanics (LEFM) is based on the well-known work of Griffith [7] and Irwin et

al. [40]. Apart from theoretical and analytical approaches developed to treat cracks in materials

and structures, numerical methods have been proposed and have turned out to be indispensable and

powerful when situations of practical interest are concerned. In particular, the eXtended Finite Ele-

ment Method (XFEM) (see, e.g., Moes et al. [79] and Sukumar et al. [67]), capable of overcoming

the difficulty of mesh dependence, is very efficient fornumerically solving crack problems. The

Cohesive Zone Model (CZM), which is popular and based on the pioneer works of Barenblatt [62]

and Dugdale [63], has also been adopted and implemented within the framework of FEM (see, e.g.,

Tvergaard and Hutchinson [64], Xu and Needleman [65], Verhoosel and de Borst [66]). One main

drawback of these methods is that they are in general unable to simulate crack nucleation and crack

paths in complex situations, for example in three-dimensional cases.

Recently, the phase-field method has been widely developed to handle the nucleation and propaga-

tion of crack in many kinds of materials. This method relies on the pioneer work of Francfort and

Marigo [8] on the variational formulation of crack problems (see, e.g., also Bourdin et al.[20, 31])

and finds its mathematical justification in Mumford and Shah [9]. Up to now, the phase-field

method has been applied to: (i) describe very complex cracks topologies via a scalar damage vari-

able (see e.g.,[8, 13, 14, 15, 16, 18, 20, 34, 82, 83, 84, 85]); (ii) simulate quasi-static fracture (see

e.g.,[15, 16, 18, 86, 55, 82]); (iii) deal with dynamic crack propagation (see e.g.,[1, 2, 3, 4, 84]);

(iv) treat cohesive fracture (see e.g.,[5, 66, 19, 81]; (v) investigate fracture in anisotropic materials

cohesive fracture (see e.g.,[56, 57, 58, 59, 81]).

In the development of the phase-field method, many problems remain to be solved. The present

work aims to contribute to solving some of them. In the phase-field method, a regularization length

is involved. Most of the works dedicated to the phase-field method interpret it as a material pa-

rameter. The requirement that the regularization length be small makes that the mesh discretization
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in FEM must be very small so that the computational cost is high. Recently, Sargado et al.[6]

provided a conceptual explanation of how the choice of a length scale can result in either delay or

acceleration of failure under quasi-static conditions, and introduced a new family of degradation

functions capable of correctly reproducing the onset of failure for a wide range of values of the

regularization parameter. This new family of degradation functions, adopted and implemented in

the present work, allows us to increase the mesh size in the area where a crack is expected to spread

and thus reduce the computational cost.

Another important problem which remains to be solved is related to modelling and simulating

cracks in brittle and quasi-brittle materials, such as ceramics, rocks and concrete. These materials of

engineering importance behave differently in tension and in compression. It is commonly admitted

that the initiation and propagation of cracks in these materials are controlled by tensile strains. How

to define "tensile strains" in two- and three-dimensional cases is still an open problem, especially

when anisotropic materials are in question. The usual way of directly decomposing the strain tensor

into a tensile (or positive) part and a compressive (or negative) part is not consistent from the elastic

energy point of view. Indeed, the tensile and compressive parts of the strain tensor obtained by the

direct decomposition are not orthogonal in the sense of the inner product where the elastic stiffness

(or compliance) tensor acts as the measure tensor; thus, the elastic energy cannot be split into two

parts involving, respectively, the tensile and compressive parts of the strain tensor. In a recent work

of He [39], a novel decomposition of the strain tensor into a tensile part and a compressive part

was proposed. This decomposition, which is orthogonal in the sense of the inner product involving

the elastic stiffness tensor, is adopted and implemented within the framework of the finite element

method and the phase-field method.

This thesis is structured as follows. In chapter 1, the classical phase-field method is introduced

in detail. Then, the steps toward building a new family of degradation functions are described.

The quadratic degradation function and the new family of degradation functions are used in the

classical phase-field method so as to predict the crack nucleation and propagation. The numerical

results are compared with available experimental ones. In particular, we show the advantage of

the method through several numerical examples: the regularization length does not depend on the

mesh size. In chapter 2, the phase-field method is used to compute crack paths in isotropic and

anisotropic materials. The aforementioned orthogonal strain decomposition of He [39] is adopted

and implemented. Through proposing two solutions, we improve the accuracy of the phase-field

methods in simulating the mechanical behavior of brittle and quasi-brittle materials. In addition,

only one damage variable is employed instead of multiple ones in some previous works. In chapter
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3, the phase-field method is extended so as to account for interfacial damage. This allows the

modelling and simulation of cracks in complex multiphase materials and microstructures obtained

by microtomography. Once more, the orthogonal strain decomposition of He [39] is applied to

describe the bulk material behavior. Several examples are given, and the obtained numerical results

are compared with some solutions of reference. In chapter 4, the damage of composite materials

is investigated by the phase-field method. In particular, interfacial damage is taken into account.

The interface effect on the propagation direction of cracks in a structure consisting of two different

orthotropic materials connected by an adhesive layer is studied. Numerical examples are provided

to illustrate the efficiency of the proposed solutions. Finally, some conclusions are drawn and a few

perspectives are given.
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Notations and table of abbreviations

• Tensor notations

a scalar, a vector,

A second-order tensor, ⊗ tensor product,

A fourth-order tensor, ⊗s symmetric tensor product,

I second-order identity tensor, δij Kronecker symbol,

I fourth-order identity tensor, n normal vector.

• Tensor calculus

a.b = aibi, (Ab)i=Aijbj , (AB)ij=Aikbkj ,

A : B = AijBij , (AB)ij=AijklBkl, (AB)ijkl=AijmnBmnkl,

(a⊗ b)ij = aibj , (A⊗ B)ijkl=AijBkl, (A⊗B)ijkl=1
2
(AikBjl + AilBjk).

• Table of abbreviations in chapter 1, 2, 3, 4

d phase field variable

l regularization length

E total energy of the body

W free energy

γ crack density function

gc fracture toughness

u displacement vector

ε strain tensor

Γ total crack length

g(d) degradation function
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A thermodynamic force associated with d

λ Lamé’s coefficient

µ shear coefficient

κ bulk modulus of the material

H strain history functional

• Table of abbreviations in chapter 1, 2

Wu elastic strain energy density function

σ Cauchy stress tensor

Ψ+ strain energy density function associated with extension mode

Ψ− strain energy density function associated with compression mode

ε+ extension part of the strain tensor

ε− compression part of the strain tensor

ε̃ bulk strain tensor which satisfies ε̃+ be orthogonal to ε̃−(in chapter 2)

• Table of abbreviations in chapter 3, 4

β fixed scalar phase field variable at the interface

lβ regularization length of material at the interface

ld regularization length of smeared crack

W e
u bulk strain energy density function

Ψ+
e bulk strain energy density function associated with extension mode

Ψ−e bulk strain energy density function associated with compression mode

gIc fracture toughness at the interface

w displacement jump approximation

χ history parameter of displacement jump across the interface

σe Cauchy stress tensor

α angle of fiber respect to the horizontal direction (in chapter 2 and 4)

ΨI strain energy density function depending on the displacement jump across the interface

γd crack density function

γβ crack density function at the interface
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εe bulk strain tensor

ε̄ strain tensor induced by the smoothed jump at the interface

ε̃e bulk strain tensor which satisfies ε̃+
e be orthogonal to ε̃−e

C fourth-order elastic tensor

L fourth-order elastic compliance tensor
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Chapter 1

Phase-field modeling of the nucleation and

propagation of cracks by using a new family

of degradation functions for the

experimental validation

1.1 Abstract

The phase-field method, also referred to as the gradient damage or smeared crack method is a

framework for modeling and simulating the initiation and propagation of complex crack networks.

Most of the previous works require that the regularization length be interpreted as a material pa-

rameter. This problem makes the mesh discretization in the structure is very small and thus, the

computational costs increase. In this work, we use a quadratic degradation function as Nguyen et

al. [18] and a new family of degradation functions introduced by Sargado et al. [6] into the elastic

strain energy density function to describe the damage state as well as predict critical loads associ-

ated with crack nucleation and propagation in plaster compression tests. The mesh size in the area

where the crack passes through is coarser, thus the calculation cost is reduced without changing the

path of the crack as well as the global and local mechanical behaviors in the structure. The classi-

cal phase field method using the proposed degradation function is compared with the one using the

quadratic degradation function through several numerical examples. These numerical results are

validated with the experimental ones in [36] and [37].
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1.2 Introduction

The accurate simulation by computational method of crack initiation and propagation in brittle and

quasi-brittle materials, such as concrete, cement, plaster or rocks, is necessary to predicting the

strength and durability of structures made of these materials.

Linear Elastic Fracture Mechanics (LEFM) is based on the thermodynamic principles given by

Griffith [7]. Elastic energy and damage dissipation are competing a novel variational approach

generalizing Griffith’s idea was elaborated by Francfort and Marigo [8].

The works [9, 10, 11, 12, 13, 14, 15, 16, 17] have proposed the phase field method based on a regu-

larized description of discontinuities. This method allows an accurate prediction of the propagation

of cracks in complex materials such as plaster, concrete [18, 19].

Bourdin et al. [20] have introduced an important parameter in the phase field method, i.e. is the

regularization length l. The works [21, 22, 23] have studied the effects of this parameter so as to

determine the convergence in the sense of Γ− convergence. In [24, 25], the gradient damage models

with the regularization parameter l have been proposed. In [26, 27, 28, 29, 30], the regularization

parameter l as a material’s internal length, which is kept fixed. In [31, 32], it is shown that the

regularization parameter l and mesh size are related to the relationship between the critical stress

and toughness criterion for crack initiation.

The length parameter l related to the regularized representation of a crack is required in the phase

field method. This regularization parameter often depends on the material parameters, and choosing

the value of this parameter l greatly affects the peak load value. In [33, 34, 35], it has been shown

that a relationship between l and at least two other material parameters need to be identified.

The work [6] has conceptually explained how the choice of the length scale parameter can result in

either delay or acceleration of failure under quasi-static conditions and introduced a new family of

degradation functions allowing exact reproduction of the beginning of fracture for arbitrary values

of the length parameter l.

In the present work, we use is made of the phase-field modeling proposed in the work of [18]

together with the new degradation function introduced by [6]. It aims at increasing the accuracy of

the phase-field method in predicting crack nucleation and propagation in experimental materials.

The main advantages of the proposed method are listed as follows: (a) the regularization length is

independent of the material parameters, so that mesh size can be coarser; (b) linear elastic behavior

is preserved before damage even when applied to experimental materials; (c) the peak load and the

crack path are accurately described in the experimental materials; (d) it is applied with respect to

experimental materials both regarding global and local mechanical response.
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To demonstrate the above advantages, in each numerical example, we choose several mesh size

values in the expected crack propagation zone of a structure (the choice of mesh size is detailed

in Section 1.3). Then, the simulation results are compared with the experimental results of [36].

Experimental parameters provided in [36] are used in all numerical examples. Several advantages

are also given in comparison with [34].

This chapter is organized as follows: In Section 1.3, we introduce the phase-field method and a

new degradation function. In Section 1.4, the influences of the main material parameters in the

numerical modeling are investigated and the determination of the relationship between the regular-

ization parameter l with some material parameters is carried out when using the new degradation

function. In Section 1.5, several numerical examples are presented and the corresponding results

are compared with available experimental results. Finally, conclusions and perspectives are given

in Section 1.6.

1.3 Review of the phase field method

In this section, we give a review of the phase-field method as presented in [13, 14, 15, 16, 17, 18]

together with the degradation functions of [6] and the quadratic degradation function in [18].

1.3.1 Regularized representation of free discontinuities

Let Ω ∈ RD be an open domain occupied by a damaged solid, with D ∈ [2; 3] being the space

dimension and ∂Ω ∈ RD−1 is the external boundary of Ω. Let Γ be the crack which spreads within

Ω. Within a smeared framework, the discontinuity is approximated by a regularized representation

obtained by a phase-field scalar variable d(x) with x ∈ Ω. We can determine the damage variable

d(x) by solving the following equations in Ω (see e.g. [16]):


d− l2∆d = 0 in Ω

d(x) = 1 on Γ

∇d(x) · n = 0 on ∂Ω

(1.1)

where ∆d is the Laplacian, l is the length parameter, and n is the unit normal vector to the external

boundary ∂Ω. Eq.(1.1) can be seen as the Euler-Lagrange expression related to the variational

problem

d(x, t) = Arg {infd∈SdΓ(d)} , Γ(d) =

∫
Ω

γ(d,∇d)dΩ, (1.2)
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where Sd = {d|d(x) = 1 on Γ, ∀x ∈ Γ} and Γ represents the total crack length per unit area in

the two-dimensional case and total crack area of per unit volume in the three-dimensional case. In

(1.2), γ(d,∇d) is defined by

γ(d,∇d) =
d2

2l
+
l

2
∇d · ∇d. (1.3)

1.3.2 Energy functional

The total energy of the solid body is introduced as follows:

E(u, d) =

∫
Ω

Wu(ε(u), d)dΩ +

∫
Ω

gcγ(d,∇d)dΩ (1.4)

where gc is the fracture toughness and the total energy is set as E =
∫

Ω
WdΩ in which:

W (u, d) = Wu(ε(u), d) + gcγ(d,∇d). (1.5)

The free energy W in (1.5) can be written as:

Wu(ε(u), d) = Ψ+(ε(u)){g(d) + k}+ Ψ−(ε(u)). (1.6)

In this work, we choose the split proposed in [16]:

Ψ±(ε(u)) =
λ

2
(〈Tr(ε)〉±)2 + µTr{(ε±)2} (1.7)

The strain is decomposed into the positive and negative parts corresponding to the extensive and

compressive parts as:

ε = ε+ + ε− (1.8)

and

ε± =
D∑
i=1

〈εi〉±ni ⊗ ni (1.9)

In (1.7) and (1.9), 〈x〉± = (x± | x |)/2, εi and ni are the eigenvalues and unit eigenvectors of ε,

respectively. In (1.7), λ and µ are initial Lamé coefficients and, in (1.6) k is a very small value to

maintain the well-posedness of structure behaviors.

Here, we used two types of degradation function: first, the quadratic degradation function as in [18]

takes the form:

g1(d) = (1− d)2 (1.10)

second, the new family of degradation functions introduced in [6] is specified by:

g2(d;n,w) = (1− w)
1− e−m(n)(1− d)n

1− e−m(n)
+ wfc(d) (1.11)
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where m, n and w are real numbers such that m > 0, n ≥ 2 and w ∈ [0, 1].

In addition,

m(n) =
(n− 2)d∗ + 1

nd∗(1− d∗)n
(1.12)

where

d∗ =

 1
3

if n=2,
−(n+1)+

√
5n2−6n+1

2(n2−2n)
otherwise,

(1.13)

and

fc(d) = a2(1− d)2 + a3(1− d)3 (1.14)

In order to fully determine the constants a2 and a3, we impose two conditions. The first is that

fc(d
∗)− d∗f ′′c(d∗) = 0 in order to retain validity of expressions obtained based on d∗. The second

is that fc(0) = 1. This yields the following expressions for the constants:

a2 =
3(d∗)2 − 3

3(d∗)2 − 1
; a3 =

2

3(d∗)2 − 1
. (1.15)

We note that fc(d) itself is not a degradation function since for sufficiently large d∗, it may be

that fc(d) > 0 at certain values of d. Thus w should be kept small to remain elastic linear before

damage. Here, we set w = 0.1 to have a sufficient residual in the gradient of g2(d). The resulting

plots for g2(d), g′2(d) and g′′2 (d) are detailed in Fig. 1.1.

A reduced Clausius-Duhem inequality expression for the evolution of the scalar variable d can be

written as follows:

Aḋ ≥ 0 and A = −∂W
∂d

(1.16)

An assumption of a threshold function F(A) such that no damage occurs can be written as:

F(A) = A ≤ 0 (1.17)

The concept of maximum dissipation requires that expression Aḋ must be satisfied the condition

ḋ > 0 and F = 0, it means:

F = −∂W
∂d

= −∂Wu

∂d
− gcδdγ(d) = 0 (1.18)

with the functional derivative

δdγ(d,∇d) =
d

l
− l∆d (1.19)
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Figure 1.1: Plots of: (a) the new degradation function g(d), (b) the first-order derivative g
′
(d), (c)

the second-order derivative g
′′
(d) for different values of n in the influence of the correction term

fc(d).

It follows that, when ḋ > 0 , then

F = −∂W
∂d

= −g′(d)Ψ+ − gcδdγ(d) = 0 (1.20)

To handle loading and unloading process, the strain history function introduced in the works [16]

is adopted:

H = max
τ∈[0,t]

{Ψ+(x, τ)}. (1.21)

From (1.20) and (1.21), we have

g′(d)H + gcδdγ(d) = 0. (1.22)

1.3.3 Phase field and displacement problems

Weak form of the phase field problem

Using (1.19) and (1.22), the evaluation of the damage variable d(x, t) can be formulated as the

following phase field problem:
g′(d)H + gc

l
(d− l2∆d) = 0 in Ω

d(x) = 1 on Γ

∇d(x) · n = 0 on δΩ

(1.23)
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From [6], we have the second-order derivative g′′(d) = −g′(d)
(1−d)

and using (1.23), the weak form of

the phase-field problem can be written as:∫
Ω

{(
g′′(d)Hn +

gc
l

)
dnδd+ gcl∇dn+1∇(δd)

}
dΩ =

∫
Ω

g′′(d)HnδddΩ (1.24)

FEM discretization of the phase field problem

Using FEM, the phase-field as well as its gradient are approximated by

d(x) = {Nd(x)}{d} and ∇d(x) = [Bd(x)]{d}, (1.25)

δd(x) = {Nd(x)}{δd} and ∇δd(x) = [Bd(x)]{δd}, (1.26)

where Nd(x) and Bd(x) are the matrix of shape functions and the matrix of shape function deriva-

tives, respectively. Introducing (1.25) and (1.26) into the weak form (1.24), we obtain:

The stiffness matrix is determined:

[Kd] =

∫
Ω

{(gc
l

+ g′′(d)Hn

)
{Nd}T{Nd}+ gcl[Bd]

T [Bd]
}
dΩ (1.27)

The force vector is written as:

{Fd} =

∫
Ω

g′′(d){Nd}THndΩ (1.28)

And the solution for the nodal values of the damage variable:

{d} = [Kd]
−1 · {Fd} (1.29)

Weak form of the displacement problem

Using the variational principle for minimizing the total energy E with respect to the displacement

u, the weak form for the displacement problem can be formulated as

∫
Ω

∂Wu

∂ε
: ε(δu)dΩ =

∫
Ω

f · δudΩ +

∫
∂ΩF

F̄ · δudΓ (1.30)

where f and F̄ are the body forces and the prescribed traction over the boundary ∂ΩF .

With the aforementioned expression of the strain energy function, the Cauchy stress now reads

σ =
∂Wu

∂ε
= {g(d) + k}{λ〈Trε〉+1 + 2µε+}+ λ〈Trε〉−1 + 2µε− (1.31)

where 〈Trε〉± = R±(Trε) (see, e.g., [18]).
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FEM discretization of the displacement problem

We use FEM approximations for the displacement problem:

u(x) = [N]{u} and ε(u) = [B]{u} (1.32)

δu = [N]{δu} and ε(δu) = [B]{δu} (1.33)

where N and B are the matrix of shape function and the matrix of shape functions derivatives for

displacement vector, respectively. Inserting (1.32) and (1.33) into the weak form (1.31), we obtain:

The stiffness matrix is written as follows:

[K1(dn+1,un)] =

∫
Ω

[B]T{g(d) + k}{λR+
n [1]T [1] + 2µP+

n }[B]dΩ (1.34)

[K2(dn+1,un)] =

∫
Ω

[B]T{λR−n [1]T [1] + 2µP−n }[B]dΩ (1.35)

with R± = 1
2
{sign{±Tr(ε)}+ 1} and P± = ∂ε±

∂ε
(see,e.g., [18]).

The force vector is obtained:

{F}n+1 =

∫
Ω

[N]T{f}dΩ +

∫
∂ΩF

[N]T{F̄}n+1dΓ (1.36)

And the nodal displacements are solved:

{u}n+1 = {[K1] + [K2]}−1 · {F}n+1 (1.37)

1.4 Influence of input parameters in the numerical simulations

In this section, we investigate the influences of the numerical parameters on the simulation results

as in [34] while using the degradation function suggested in [6]. We study the effects of three

important parameters: (a) the regularization parameter l in (1.1), (b) the mesh size of structure and

(c) the loading increments. For this purpose, we use a sample containing a hole as in Fig. 1.2

undergoing compression. In all examples of the present work, the triangle elements are used. The

material parameters have been chosen from the experimental values as E = 12GPa, ν = 0.3, gc =

1.4N/m and σc= 3.9MPa provided in [36]. Plane strain assumption is adopted.
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Figure 1.2: Analyze the influence of numerical parameters on the simulation by the compression

test of the sample containing a hole: geometry and boundary conditions.

1.4.1 Determination of the regularization parameter l

We consider a bar under uniaxial tension. In this configuration and in the absence of initial defects,

the damage distribution is assumed to be homogeneous, i.e. ∇d(x) = 0. For uniaxial tension, and

assuming k ' 0, from (1.31) we have:

σ = g(d)Eε, Ψ+ =
Eε2

2
, (1.38)

with the degradation functions from (1.10) and (1.11). Then using (1.19) and (1.20), we have the

relation:
g′(d)Eε2

2
= −gcd

l
(1.39)

From (1.39) we obtain

ε =

√
−2d

g′(d)

√
gc
lE

(1.40)

And then

σ = g(d)Eε = g(d)

√
−2d

g′(d)

√
Egc
l

(1.41)

From (1.40) and (1.41) we have the Fig. 1.3. Next, we find the maximum value of the stress with

respect to d is given by

σc = Arg
{

supd∈[0;1]σ(d, l)
}

= Arg

{
supd∈[0;1]

(
g(d)

√
−2d

g′(d)

√
Egc
l

)}
(1.42)

The critical value of the stress σc is reached when d corresponds to the maximum value of σ
√

l
Egc

obtained (see Fig. 1.3b). Thus we use the quadratic degradation function as (1.10), the value of

35



d
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ε√

(E
l/
g c
)

0

2

4

6

8

10

12

14

16

18

20

n=2.5

n=3.0

n=3.5

n=4.0

n=4.5

n=5.0

n=5.5

n=6.0

n=6.5

n=7.0

n=8.0

n=9.0

n=10.0

quadratic

(a)

d
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

σ

√

l/
E
g c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

n=2.5

n=3.0

n=3.5

n=4.0

n=4.5

n=5.0

n=5.5

n=6.0

n=6.5

n=7.0

n=8.0

n=9.0

n=10.0

quadratic

(b)

Figure 1.3: Uniaxial tension test of a 1-dimensional homogeneous bar: dependence on the phase-

field variable d when using the new family of degradation functions g(d) of (a) strain and (b) stress.

d = 1
4

corresponds to the critical stress σc, and we have the regularization length l as in Nguyen et

al. [34]:

l =
27Egc

256(σc)2
(1.43)

We can utilize a dimensionless function of σnd = σc
√
l/Egc which is given by fitting a function to

numerical evaluations of the peak stress for different values of n from Fig. 1.3b. The function of n,

which depends on σnd, is provided by

n(σnd) = c0 +
c1

σnd
+

c2

σnd2
+

c3

σnd3
(1.44)

From (1.44), given four values of σnd which are found in Fig. 1.3b and four corresponding values

of n, we can determine the values of the coefficients c0 to c3 as follows:



c0 = −1.9683716827

c1 = 3.0725412764

c2 = −0.1019957566

c3 = 0.0071948119

(1.45)

and we have the σnd - n curve as plotted in Fig. 1.4.

In the first test, we use the mesh size hmin = 0.01mm around the hole and in the expected crack

propagation zone where the cracks should initiate and propagate, and the mesh size hmax =1mm

in the remaining zone, such that mesh size ensures numerical convergence of the computations for

all values of l considered. The displacement increment is chosen as ∆u = −10−4 mm. With the
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Figure 1.5: Convergence of the solution corresponds to the regularization parameter l: (a) Load-

displacement curve; (b) σ∗ for different values of l

new degradation function, we take six values of parameters n = 10, 7, 5.8, 5, 3.6 and 2.6, and we

calculate the corresponding values of the regularization lengths l = 0.06mm, 0.1mm, 0.15mm,

0.2mm, 0.3mm and 0.45mm based on (1.44) and (1.45) as well as Fig. 1.4. In Fig. 1.5a, we can

see the preservation of linear elastic response in the bulk material before fracture, and the peak

loads are relatively similar when using six above values of l. In Fig. 1.5b, we show the related

convergence: the variation of σ∗ is 0.5%, 4.5%, 11.1%, and 17%, respectively, for l ≤ 0.15mm,
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Figure 1.6: Convergence of the solution corresponds to the different values of mesh size.

0.2mm, 0.3mm and 0.45mm. Here, the numerical critical axial stress σ∗ is taken as the ratio of

the vertical component of the resultant force prescribed at the upper side of the sample to the area

of its upper side, when damage reaches the value d = 1 for the first load increment at some node

in the mesh (i.e. stress associated to the onset of the first crack). These results are acceptable in

comparison with the quadratic degradation function.

1.4.2 Influence of the mesh size

In the second test, we investigate the convergence of the mechanical response with respect to mesh

size. Here, it is made of the values of l and n: l= 0.1mm and n= 7; l= 0.2mm and n = 5; l= 0.3mm

and n= 3.6 together with the new degradation function. The constant compressive displacement

increment of ∆u = −10−4 mm is prescribed for 250 load increments. Then we perform several

simulations using refined meshes, where the mesh sizes in expected crack propagation zone change

from hmin = 0.01mm to hmin = 0.2mm.

We show in Fig.1.6 the convergence of this quantity with respect to the mesh size. A clear conver-

gence is observed, with results becoming mesh independent when condition hmin ≤ l/2 is fulfilled

with all of values of l. In other words, the convergence of σ∗ is obtained with hmin ≤ 0.15mm

when l = 0.3mm, hmin ≤ 0.1mm when l = 0.2mm and hmin ≤ 0.05mm when using l = 0.1mm.

This confirms the results of [16]. Note that, when l= 0.1mm, 0.2mm and 0.3mm, the corresponding

convergence values of σ∗ are 5.28 MPa, 5.51MPa and 5.94MPa. We can see that the variation of

convergence values σ∗ is about 11.1 %. These variations are acceptable when the minimal element
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Figure 1.7: Convergence of the solution corresponds to the displacement increments: (a) load-

displacement curve; (b) σ∗ for different displacement increments ∆u

size in the expected fracture propagation zone is increased by three times.

1.4.3 Influence of the displacement increments

In the next test, we investigate the influence of the displacement increment ∆u during the numerical

simulation on the mechanical behavior while using the new degradation function of [6]. Here,

we use l = 0.2mm, n = 5 and several displacement increments from ∆u = −5x10−3mm to

∆u = −3x10−5mm. Results are presented in Fig.1.7. The displacement-load curves are shown in

Fig1.7a. We can see the peak loads are relatively similar when ∆u ≥ −2x10−4mm. In Fig.1.7b,

we study the evolution of σ∗ with respect to ∆u and can see that the corresponding variations of σ∗

is below 2% when the increment goes from −5x10−5 to −3x10−5mm. This confirms the results of

[34] where l = 0.1mm. Thus, the larger displacement increments cause the hardening phenomena

of material mechanical behavior and increase the peak load of a structure during the simulation.

The content of chapter 1 is summarized as the algorithm provided in the Appendix B.1

1.5 Numerical examples

1.5.1 Experimental validation: three-point bending test of un-notched beam

Now, we use the phase-field method together with the quadratic degradation function as (1.10) and

the new family of degradation functions as (1.11) to determine the numerical critical stress σnumc
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Figure 1.8: Symmetric three-point bending test of un-notched beam: Geometry and boundary con-

ditions.

for the three-point bending test of an un-notched beam. And then, we compare the result with

the experimental critical stress σexpc obtained in the work of [36]. The geometric setup and the

displacement conditions are depicted in Fig.1.8. The left bearing is fixed in two directions, while

the vertical displacement of the right bearing is blocked, and the horizontal displacement is free.

The constant compression displacement increments of ∆u = −5x10−4mm at the center of the

beam on the upper side are for 120 increments.
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Figure 1.9: Symmetric three-point bending test of un-notched beam: (a) Load-displacement curves;

(b) Critical value of the tensile stress σc for the different values of l

The numerical critical stress σnumc is defined as the maximal stress of the critical element at the

center of the beam on the lower end in Fig.1.9b. With the new degradation functions in [6], use is

made of four values of parameters n = 3, 5, 6 and 7 corresponding to the four values of the regular-

ization lengths l = 0.4mm, 0.2mm, 0.14mm, and 0.1mm. In Fig.1.9, we observe the preservation
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of linear elastic response in the bulk material prior to fracture. In Fig.1.9a, the load-displacement

curves are similar when the values of regularization length l change. Next, in Fig1.9b, we show

the numerical values of σnumc which are 4.26MPa, 4.13MPa, 4.19MPa, 4.17MPa corresponding the

above four values of l, and 4.1MPa when using l=0.1mm with the quadratic degradation function

as (1.10). We have the experimental stress value reported in [36]: σexpc = 3.9MPa. It is seen that the

variation of σnumc with σexpc is below 8%. In this example, the numerical critical stresses by using

the different values of l are relatively similar to the experimental stress value.

1.5.2 Experimental validation: single-hole plate compression test

65D

5050

D

X

Y U

D

Figure 1.10: Compression test of the sample containing a hole whose diameter D changes: geom-

etry and boundary conditions

This example aims to numerically determine the critical axial stress σ∗ of the compression test of a

plaster plate containing a hole whose diameter changes fromD = 3mm toD = 6mm. The numerical

results obtained will be compared with experimental results in [36]. Moreover, we shall investigate

the crack onset direction in the plaster sample. The geometry and boundary conditions of the plate

are shown in Fig.1.10. The dimensions of the plate are 100x65mm. On the lower end, the vertical

displacements are fixed, while the horizontal displacements are free and the left bottom nodes are

fixed. On the upper end, the horizontal displacements are free, while the vertical displacements are

prescribed via the displacement increments of ∆u during the simulation. Constant compression

displacement increments of ∆u =−10−4mm are imposed for first load increments until d reaches

0.9 at the expected crack onset element, and then we use ∆u=−2x10−5mm until full fracture. We

use element size hmin = 0.05mm around the hole and the expected crack propagation zone, and

hmax =0.25mm in the rest of zone.
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(a) (b) (c) (d)

Figure 1.11: Crack onset of plaster sample containing one hole whose diameter D changes with

using a pair of l=0.1mm and n=7: (a) D=3mm, U=0.055mm; (b) D=4mm, U=0.051mm; (c)

D=5mm, U=0.041mm; (d) D=6mm, U=0.036mm

In Fig. 1.11, we show the crack onset image of the plaster sample with different diameters D=3mm

to D=6mm in the simulation while using l=0.1mm and n=7. It can be seen that the stress state

around the hole varies with the hole diameter.
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Figure 1.12: Critical axial tress σ∗ when the cracks onset corresponds to the hole diameter: com-

parison between experimental results and numerical results

Comparison of the numerical stress values of σ∗ with the experimental ones in [36] is shown in

Fig.1.12. In the simulation, use is made of several pairs of l and n (l =0.1mm, n=7; l =0.14mm,

n=6; l =0.2mm, n=5) for each hole diameter of the plate. All values of σ∗ in simulation are seen

to be within the experimental values in [36]. This implies that the present numerical method is
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relatively reliable for determining the critical stress σ∗ in single-hole plate compression tests.

65

X

Y U

100

21

12

(a)

65

X

Y U

100

18

10

(b)

Figure 1.13: Compression test of a plate containing a periodic distribution of the holes: geometry

and boundary conditions (a) containing 45 holes with the surface fraction 12.2% and (b) containing

60 holes with surface fraction 13.5% (in [37])

(a) (b)

(c) (d)

Figure 1.14: Compression test of a plate containing a periodic distribution of 45 holes (surface

fraction 12.2%): evolution of the crack onset in the first hole for the different regularization lengths

l: (a) l=0.1mm, U=0.0456mm;(b) l=0.14mm , U=0.044mm; (c) l=0.16mm, U=0.0439mm; (d)

l=0.2mm, U=0.0446mm
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1.5.3 Experimental validation: compression test of a plate containing a pe-

riodic distribution of cylindrical holes

(a) (b)

(c) (d)

Figure 1.15: Compression test of a plate containing a periodic distribution of 45 holes (a

surface fraction 12.2%): Propagation of the crack for the different regularization lengths l:

(a) l=0.1mm, U=0.0470mm;(b) l=0.14mm , U=0.0464mm; (c) l=0.16mm, U=0.0465mm; (d)

l=0.2mm, U=0.0465mm

The purpose of this example is to determine the numerical critical stress σ∗ as well as the crack paths

relative to the compression tests of a plate containing a periodic distribution of cylindrical holes.

These numerical results will be compared with the experimental results in [37] and the numerical

ones in [34]. The geometry and boundary conditions of the plate are presented in Fig.1.13a with 45

holes corresponding to a volume fraction of 12.2%, and in Fig.1.13b with 60 holes corresponding

to a volume fraction of 13.5%. The dimensions of the plate are 100x65mm. The loading conditions

are similar to those of the example 1.5.2. Monotonic compression displacement increments of ∆u

=−10−4mm are prescribed until d reaches 0.9 at the expected crack onset element, and then we

impose ∆u=−2x10−5mm until full fracture. The element size hmin = 0.05mm is applied around

the hole and in the expected crack propagation zone while the element size hmax =0.5mm prevails

in the remaining zone. Four pairs of values are employed for l and n: l =0.1mm, n=7; l =0.14mm,

n=6; l =0.16mm, n=5.5 and l =0.2mm, n=5.
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(a) (b)

(c) (d)

(e)

Figure 1.16: Compression test of a plate containing a periodic distribution of 45 holes (a

surface fraction 12.2%): Propagation of the crack for the different regularization lengths l:

(a) l=0.1mm, U=0.0545mm;(b) l=0.14mm , U=0.0542mm; (c) l=0.16mm, U=0.0534mm; (d)

l=0.2mm, U=0.0530mm; (e) [34].

The evolutions of microcracking onset in the first holes for different values of l within the plate

with 45 holes are depicted from Fig.1.14a to Fig.1.14d and those within the plate containing 60

holes are shown from Fig.1.19a to Fig.1.19d. In these plates, the cracks are initiated first from the

holes near two free lateral sides of the plates and then from the holes in the central zone. This is

probably because of the deformations near the left and right sides are larger than in the remaining

zone. As can be seen, the directions of the cracks tend to develop vertically from holes, as shown

in Fig.1.15 with the plate containing 45 holes and in Fig.1.20 with the plate containing 60 holes.

Next, we analyze the cracks propagate until full fracture in the plate containing 45 holes. In Fig.1.16
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(e)

Figure 1.17: Compression test of a plate containing a periodic distribution of 45 holes (sur-

face fraction 12.2%): Propagation of the crack for the different regularization lengths l: (a)

l=0.1mm, U=0.056mm;(b) l=0.14mm , U=0.0552mm; (c) l=0.16mm, U=0.055mm; (d) l=0.2mm,

U=0.0543mm; (e) [34].

and Fig.1.17, the microcrack propagation with the different values of l are similar to those reported

by [34], which are depicted in Fig.1.16e and Fig.1.17e. But, when l=0.2mm, damage around holes

propagates faster in comparison with the cases associated to the remaining values of l depicted in

Fig. 16d and Fig.1.17d. This phenomenon also occurs similarly in the plate containing 60 holes

(see in Fig.1.20 and Fig.1.21, respectively). The results in the Fig.1.20a to Fig.1.20d with the

proposed numerical method are in very good agreement with the results of [34] in Fig.1.20e and

digital image obtained of [37] in Fig.1.20f.
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Figure 1.18: Compression test of a plate containing a periodic distribution of 45 holes (surface

fraction 12.2%): Load- displacement curves for the different regularization length l

(a) (b)

(c) (d)

Figure 1.19: Compression test of a plate containing a periodic distribution of 60 holes ( surface

fraction 13.5%): evolution of the crack onset in the first hole for the different regularization lengths

l: (a) l=0.1mm, U=0.0442mm;(b) l=0.14mm , U=0.0443mm; (c) l=0.16mm, U=0.0450mm; (d)

l=0.2mm, U=0.0452mm
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(a) (b)

(c) (d)

(e) (f)

Figure 1.20: Compression test of a plate containing a periodic distribution of 60 holes (sur-

face fraction 13.5%): Propagation of the crack for the different regularization lengths l: (a)

l=0.1mm, U=0.049mm;(b) l=0.14mm , U=0.049mm; (c) l=0.16mm, U=0.049mm; (d) l=0.2mm,

U=0.0485mm; (e) [34]; (f) provided in [37].

The load-displacement curves for different values of l are presented in Fig.1.18 for the specimen

containing 45 holes and in Fig.1.22 for the specimen containing 60 holes. We can observe that the

material mechanical behaviors are linearly elastic until the first crack appears. Then, the overall

mechanical properties of the structure are reduced through the inclination angle α2 of the second

part of the load-displacement curve (α2 < α1). In other words, after the appearance of the first

crack, the deformations of the structure during the loading process increase faster until full damage.

These phenomena are relatively similar when using the different values of l.

Finally, we compare the numerical stress values of σ∗ for two samples containing 45 holes and 60
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(a) (b)

(c) (d)

Figure 1.21: Compression test of a plate containing a periodic distribution of 60 holes (surface

fraction 13.5%): evolution of the crack for the different regularization lengths l: (a) l=0.1mm,

U=0.0517mm;(b) l=0.14mm , U=0.0515mm; (c) l=0.16mm, U=0.0515mm; (d) l=0.2mm,

U=0.0515mm;.
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Figure 1.22: Compression test of a plate containing a periodic distribution of 60 holes (surface

fraction 13.5%): Load- displacement curves for the different regularization lengths l
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Figure 1.23: Critical axial tress σ∗ when the cracks onset: comparison between experimental values

and numerical values for two surface fractions of the holes (12.2% and 13.5%)

holes with the relevant experimental results provided in [37]. In the numerical simulations, use

is made of four pairs of l and n for each sample. We can see that all the numerical values of σ∗

obtained are in good agreement with the experimental values in [37]. Comparisons are provided

in Fig.1.23. This demonstrates the present numerical method is valid for the samples containing a

periodic distribution of holes.

1.5.4 Compression test of a microstructure with uniformly distributed holes

In the last example, the length parameter l is considered as a pure numerical parameter of the reg-

ularized model of brittle fracture instead of a material parameter for a gradient damage model.

This consists in taking l as small as possible to fit the selected mesh size. For this purpose, we

consider a microstructure whose dimensions are 3x2mm with the material parameters are provided
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Figure 1.24: Compression test of a plate with uniformly distributed holes: geometry and loading

conditions.

(a) (b) (c)

Figure 1.25: Compression test of a plate with uniformly distributed holes: evolution of the crack

onset in the first hole: (a) l=0.012mm, n=7, U=0.0053mm; (b) l=0.012mm, the quadratic degra-

dation function, U=0.0055mm;(c) [18]

in [36] and [37]. This structure contains 23 holes of diameter D=0.2mm and the boundary con-

ditions of the structure are presented in Fig.1.24. Constant compression displacement increments

of ∆u=−10−4mm are prescribed until d reaches 0.9 at the expected crack onset element, and then

we use ∆u=−3x10−5mm until full fracture. The element sizes vary from hmin = 0.006mm to hmax

=0.01mm. Here, the value of l =0.012mm, n=7 for the new degradation functions and l=0.012mm

for the quadratic degradation function.

The crack nucleation and propagation are shown in Fig.1.25 to Fig.1.27 with the comparison of the

crack paths when using the new degradation functions in [6], the quadratic degradation function in
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(a) (b)
(c)

Figure 1.26: Compression test of a plate with uniformly distributed holes: propagation of the

crack: (a) l=0.012mm, n=7, U=0.0068mm; (b) l=0.012mm, the quadratic degradation function,

U=0.0068mm; (c) [18]

(a) (b)
(c)

(d)

Figure 1.27: Compression test of a plate with uniformly distributed holes: Propagation of the

crack: (a) l=0.012mm, n=7, U=0.00872mm; (b) l=0.012mm, the quadratic degradation function,

U=0.008mm; (c) in [18]; (d) solved by MFPA2D simulation in [38]

[34] and the results in [18]. In particular, the results of three numerical modelings are compared to

the MFPA2D simulation result in [38] (see Fig.1.27).

Fig.1.28 displays the load-displacement curves for l =0.012mm, n=7 with the marked points cor-

responding to the steps depicted in Fig.1.25, Fig.1.26 and Fig.1.27. As expected the mechanical
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Figure 1.28: Compression test of a plate with uniformly distributed holes: Load- displacement

curves with a pair of l=0.012mm, n=7

response is linearly elastic until the appearance of the first crack and the peak loads are similar to

the relevant results reported in [37].

1.6 Conclusions

In this chapter, we use the phase-field method in combination with the new family of degradation

functions in [6] to determine the regularization length l on the basis of the experimental results re-

ported in [36] and [37]. Through several examples, the effects of the numerical parameters (loading

step, mesh size) are studied. The determined values of l together with the specified parameters n

give rise to relatively good convergent behavior.

By others examples such as three point bending un-notched beam and drilled holes samples of

plaster in compression, with l satisfied l ≥ 0.1mm, we have obtained the critical stresses and crack

propagation similar to those in [34] and in good agreement with the experimental results [36] and

[37]. Note that, in [34], only one value l = 0.1mm was used. The greater value of l without

affecting the material response allows saving computational time.

Thus, the phase-field method with the new family of degradation functions in [6] turns out to be

efficient for predicting the initiation and propagation of cracks in brittle heterogeneous materials.
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Chapter 2

Phase-field modeling with strain orthogonal

decompositions for the modeling and

simulation of isotropic and anisotropic

damage

2.1 Abstract

The phase-field method is able to model and simulate complex cracks initiation, branching and

propagation in solids. Concerning brittle and quasi-brittle materials, an important problem is to

decompose the strain tensor into a positive part and a negative part so as to account the fact that

they behave differently in tension and compression. To handle this problem, recent works have

proposed some methods of splitting the total strain into two parts. But these decompositions have

the shortcoming that they are not orthogonal in the sense of the strain-energy norm, even when

the elastic tensor is isotropic. This problem leads, in particular, to the inaccuracy in modeling and

simulating the damaged material mechanical response. To solve the problem, a recent theoretical

study of He [39] proposed novel orthogonal decompositions for the strain and stress tensor, which

preserve the strain- or stress-energy. Adopting the approach of He [39], we develop the phase

field method so as to thoroughly solve the afoementioned drawback. In the present work, two

proposed solutions related to the strain orthogonal decompositions are presented to model isotropic

and anisotropic fracture through several numerical examples.
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2.2 Introduction

Brittle and quasi-brittle materials constitute an important class of materials for civil engineering.

Determination of the strength, as well as the initiation and propagation of cracks in these materials

is very important.

Fracture mechanics, based on the pioneer work of Griffith [7] was in particularly developed by Irwin

[40] and Rice [41]. The phase-field method proposed in the works such as [9, 10, 11, 13, 14, 15, 16]

rely on a regularized description of discontinuities. The variational principle of fracture is based on

a global minimization of the total free energy of materials with cracks proposed by Francfort and

Marigo [8].

The length parameter l in the smeared approximation of discontinuities was proposed and deter-

mined in the works [20, 24, 25, 27, 34, 35]. The influence of length parameter l on the mechanical

behavior of materials was studied. In [6, 16, 42, 43], the degradation functions were introduced to

improve the accuracy of the phase-field method in predicting critical stress and crack nucleation in

solid.

In fact, brittle and quasi-brittle materials in tension and compression behave differently in tension

and compression. This problem appear clearly in masonry-like and ceramics-like materials [44, 45]

and composite media such as glass-epoxy, graphite-epoxy composites [46, 47] as well as carbon-

epoxy ones [48, 49]. Moreover, this tension-compression asymmetry is observed in other materials

such as bones [50, 51], concrete [19, 52, 53], coke blend [54].

To model the asymmetric tension-compression behavior, decomposing the strain (or stress) tensor

into a positive part and a negative part has been suggested in the recent works. In [33, 55], decom-

position of the strain tensor into deviatoric and spheric parts was adopted. Precisely, this means

that it mean when crack growth is driven also by the positive spherical part of the strain tensor.

Typically, within the linear elasticity framework, the strain energy density function Ψ of a material

at an undamaged state takes the classical form:

Ψ(ε) =
1

2
ε : (Cε) =

1

2
εij : (Cijklεkl) (2.1)

where ε is the infinitesimal strain tensor and C is the forth-order elastic stiffness tensor of the

undamaged material, which has the minor and major symmetries. Decomposition of the strain

tensor ε into a positive part ε+ and a negative part ε− gives:

ε = ε+ + ε− (2.2)

Introducing the decomposition (2.2) into (2.1) and accounting for the major symmetry of the elastic

tensor of C, we obtain
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Ψ(ε) = Ψ(ε+ + ε−) =
1

2
ε+ : (Cε+) +

1

2
ε− : (Cε−) + ε+ : (Cε−). (2.3)

From (2.3), it follows immediately that the strain energy decomposition

Ψ(ε) = Ψ+(ε) + Ψ−(ε) = Ψ(ε+) + Ψ(ε−) =
1

2
ε+ : (Cε+) +

1

2
ε− : (Cε−) (2.4)

holds if and only if

ε+ : (Cε−) = 0 or (C1/2ε+) : (C1/2ε−) = 0 (2.5)

shows that (2.4) is satisfied if and only if ε+ is orthogonal to ε− in the sense of the inner product

with C acting as a metric tensor. Next, using a scalar phase-field variable d to describe the damage

state of the material (see,e.g., [16]), the elastic strain energy density function Wu of the damaged

material can be written as

Wu(ε, d) = Ψ+(ε){g(d) + k}+ Ψ−(ε) = Ψ(ε+){g(d) + k}+ Ψ(ε−) (2.6)

where g(d) = (1 − d)2 is the damage degradation function in the phase field methods for fracture

and k is a very small value to maintain the well-posedness of the problem.

In most of the recent works of phase-field method on brittle and quasi-brittle materials (see, e.g.,[8,

9, 10, 11, 13, 14, 15, 16, 18]), the decomposition of the strain tensor into a positive part and a

negative part does not verify the orthogonality condition (2.5), even when the elastic stiffness tensor

C is isotropic. Further, when the elastic stiffness tensor C is anisotropic (see, e.g., [56, 57, 58, 59]),

few additive decompositions of ε into ε+ and ε− have been proposed in the literature, and the

orthogonality condition (2.5) is not verified in this case.

The principal features of the present work are listed as follows: (a) the orthogonality condition

(2.5) holds: in the elastic isotropic case, and in the orthotropic case; (b) only one damage variable

d instead of multiple damage variables di for anisotropic materials; (c) the crack patterns which are

described by the phase field variable d are stable due to its inherent gradient-based expression.

The present chapter is organized as follows: Section 2.3 presents the phase-field method which

is employed to simulate the crack propagation in isotropic and anisotropic materials. In Section

2.4, several numerical examples are provided. Finally, conclusions and perspectives are given in

Section 2.5.
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2.3 Phase-field modeling for the fracture of brittle and quasi-

brittle materials

In this section, we describe the phase-field method for modeling and simulating the crack nucle-

ation and propagation in isotropic and anisotropic materials with the use of the strain orthogonal

decomposition method of [39].

2.3.1 Smeared approximation of free discontinuities

Let Ω ∈ RD be an open domain describing a cracked solid, with D ∈ [2, 3] being the space

dimension and ∂Ω ∈ RD−1 the external boundary of Ω. Let Γ be the crack propagating within

Ω (see., Fig.2.1 and Fig.2.2). In a regularized framework, the geometry of a propagating crack is

approximated by a scalar parameter d(x), with x ∈ Ω. The scalar field d(x) is governed by the

following equations defined in Ω (see e.g. [16]):

F F

d(x)

(a) (b)

U U

F F

U U

GW W

W W

W W

Figure 2.1: Regularized representation of a crack: two-dimensional case: (a) sharp crack model;

(b) regularized representation through phase field.


d− l2∆d = 0 in Ω

d(x) = 1 on Γ

∇d(x) · n = 0 on ∂Ω

(2.7)

where ∆d is the Laplacian operator, l is the length parameter, and n is the unit outward normal vec-

tor to the external boundary ∂Ω. Equations (2.7) can be seen as the Euler-lagrange ones associated
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X

Y

a

d(x)
W W

Y

(b)

U

X

(a)

a

Figure 2.2: Regularized representation of a crack: (a) sharp cracks in an orthotropic material

(dashed lines indicate material orthotropy direction), (b) regularized representation through phase

field.

with the variational problem

d(x, t) = Arg{infd∈SdΓ(d)}, Γ(d) =

∫
Ω

γ(d,∇d,ω)dΩ, (2.8)

Above, Γ(d) is the total crack length per unit area in the two-dimensional case (the 2D case) and

total crack surface area per unit volume in the three-dimensional case (the 3D case), and Sd =

{d|d(x) = 1 on Γ, ∀x ∈ Γ}. In (2.8), γ(d,∇d,ω) is the crack surface density function of per unit

volume defined by

γ(d,∇d,ω) =
d2

2l
+
l

2
ω : (∇d⊗∇d). (2.9)

where ω is a second-order orientation tensor defined by

ω = I + η(I−m⊗m) (2.10)

here, ω is calculated from (2.10) corresponding to each preferential cleavage plane (depending on

the unit vector normal m and anisotropic coefficient η), I = 1⊗1 with 1 is the identity tensor.

Here, η � 0 is used to penalize the damage on planes not normal to m in the anisotropic material.

Therefore, when let η = 0, we have the isotropic material.

2.3.2 Phase field and displacement problems

Energy functional

The total energy of the solid body is defined by:
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E(u, d) =

∫
Ω

Wu(ε(u), d)dΩ +

∫
Ω

gcγ(d,∇d,ω)dΩ (2.11)

where gc is the fracture toughness. The total energy can be rewritten as E =
∫

Ω
WdΩ with

W (u, d) = Wu(ε(u), d) + gcγ(d,∇d,ω). (2.12)

The strain energy function Wu in (2.12) is given by:

Wu(ε(u), d) = Ψ+(ε){g(d) + k}+ Ψ−(ε) = Ψ(ε+){g(d) + k}+ Ψ(ε−) (2.13)

To satisfy the orthogonal condition (2.5), we shall use the general approach proposed recently [39].

Let the transformed strain space Ẽ be split into two convex subsets K̃+ and K̃− such that

Ẽ = K̃+ ⊕ K̃− (2.14)

This means that any element ε̃ ∈ Ẽ can be decomposed into a positive part ε̃+ ∈ K̃+ and a negative

part ε̃− ∈ K̃− such that

ε̃ = ε̃+ + ε̃− (2.15)

ε̃+ : ε̃− = 0. (2.16)

Moreover, we require that ε̃+ and ε̃− be the projections of a given ε̃ ∈ Ẽ on K̃+ and K̃− in the

variational sense that

‖ε̃− ε̃±‖2 = minι̃∈K̃±(ε̃− ι̃) : (ε̃− ι̃). (2.17)

The convex subsets K̃+ and K̃− in the right part of (2.14) are not unique and have to be chosen

according to what we mean by "tension" and "compression" in the two- or three-dimensional case.

We consider two following cases:

Case 1 : K̃+ and K̃− are defined by:

K̃+ = {ε̃ ∈ Ẽ|Tr(ε̃) ≥ 0} and K̃− = {ε̃ ∈ Ẽ|ε̃ = a1, a ≤ 0} (2.18)

It can be shown from (2.17) and (2.18) that

ε̃+ =
1

D
〈Tr(ε̃)〉+1 + ε̃D, ε̃−e =

1

D
〈Tr(ε̃)〉−1 (2.19)

where 1 denotes the D−dimensional identity tensor, 〈x〉± = (x± | x |)/2 and the deviatoric strain

tensor is defined by

ε̃D = ε̃− 1

D
Tr(ε̃)1. (2.20)
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Once ε̃+ and ε̃− have been obtained, ε+ and ε− can be directly determined by

ε+ = C−1/2ε̃+, ε− = C−1/2ε̃− (2.21)

and we obtain

Ψ+(ε+) =
1

2
C : ε+ : ε+ =

1

2

{
1

D
〈Tr(ε̃)〉+1 + ε̃D

}
:

{
1

D
〈Tr(ε̃)〉+1 + ε̃D

}
, (2.22)

Ψ−(ε−) =
1

2
C : ε− : ε− =

1

2

{
1

D
〈Tr(ε̃)〉−1

}
:

{
1

D
〈Tr(ε̃)〉−1

}
. (2.23)

where, C is the elastic stiffness matrix form corresponding to the tensor C. In our present work,

we use matrix C which respects to the Voigt notation.

Here, we have the relation between strain and stress tensor, i.e., σ = C : ε or ε = L : σ, with

L is the elastic compliance matrix. Matrix C or matrix L is determined depending on the types of

material as follows:

• Isotropic case

In the 3D case, the elastic stiffness matrix C is defined by:



σ11

σ22

σ33

σ23

σ13

σ12


=



λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ





ε11

ε22

ε33

2ε23

2ε13

2ε12


(2.24)

In the 2D case, the elastic stiffness matrix C is obtained:


σ11

σ22

σ12

 =


λ+ 2µ λ 0

λ λ+ 2µ 0

0 0 µ




ε11

ε22

2ε12

 (2.25)

Here, λ and µ are Lamé’s coefficients.

• Orthotropic case

In the 3D case, the elastic compliance matrix L is determined:
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

ε11

ε22

ε33

2ε23

2ε13

2ε12


=



1
E1

−ν21
E2
−ν31

E3
0 0 0

−ν12
E1

1
E2

−ν32
E3

0 0 0

−ν13
E1
−ν23

E2

1
E3

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G12





σ11

σ22

σ33

σ23

σ13

σ12


(2.26)

In the 2D case, the elastic compliance matrix L is written:


ε11

ε22

2ε12

 =


1
E1

−ν21
E2

0

−ν12
E1

1
E2

0

0 0 1
G12



σ11

σ22

σ12

 (2.27)

In the orthotropic case, the elastic compliance matrix is written with respect to the symmetry

planes defined by their unit normal vectors e1, e2 and e3. Here, in the case of a unidirectional

fiber-reinforced composite ply (see., Fig.2.2), E1, E2 and E3 are the Young moduli along with the

directions e1, e2 and e3, respectively; νij are the Poisson’s ratios and Gij are the shear moduli.

According to [60], the transformation matrix P in the 3D case is written:

P =



c2 s2 0 0 0 2cs

s2 c2 0 0 0 −2cs

0 0 1 0 0 0

0 0 0 c −s 0

0 0 0 s c 0

−cs cs 0 0 0 c2 − s2


(2.28)

And the matrix P in the 2D case is set as:

P =


c2 s2 2cs

s2 c2 −2cs

−cs cs c2 − s2

 (2.29)

with c = cos(α), s = sin(α) and α is the angle of fiber in the orthotropic material. Then,

C = Cα = P.C0.P
T (2.30)

Next, we can write the spectral decomposition

C =
n∑
i=1

ξiai ⊗ ai =
n∑
i=1

ξiAi (2.31)
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Here, ξi ≥ 0 (i = 1, 2, ..., n) are the ordered eigenvalues of C; ai are orthonormal eigenvectors

of C associated with ξi, respectively, and Ai = ai ⊗ ai are eigenprojectors, n is the ordre of the

matrix C.

The elastic compliance matrix decomposition L associated with the tensor L is defined by

L = C−1 = ξ−1
i ai ⊗ ai =

n∑
i=1

ξ−1
i Ai (2.32)

and

C1/2 =
n∑
i=1

ξ
1/2
i Ai (2.33)

C−1/2 =
n∑
i=1

ξ
−1/2
i Ai (2.34)

Case 2 : K̃+ and K̃− such that:

K̃+ = {ε̃ ∈ Ẽ|x.(ε̃x) ≥ 0, ∀x ∈ RD}; and K̃− = {ε̃ ∈ Ẽ|x.(ε̃x) ≤ 0, ∀x ∈ RD} (2.35)

ε̃ = C1/2ε = ε̃+ + ε̃− (2.36)

Since (2.17) and (2.35), it can be demonstrated that

ε̃± =
D∑
i=1

〈ε̃i〉±ñi ⊗ ñi (2.37)

where ε̃i and ñi with i = 1, ...,D are the ordered eigenvalues and unit eigenvectors of ε̃ such that

ε̃1 ≤ ε̃2 ≤ ... ≤ ε̃D and 〈ε̃i〉± = (ε̃i± | ε̃i |)/2. This yields

Ψ+(ε) =
1

2
ε̃+ : ε̃+ =

1

2
Tr[(ε̃+)2] (2.38)

Ψ−(ε) =
1

2
ε̃− : ε̃− =

1

2
Tr[(ε̃−)2] (2.39)

A reduced Clausius-Duhem inequality expression associated with the evolution of the scalar vari-

able d can be written as follows:

Aḋ ≥ 0 and A = −∂W
∂d

(2.40)

An assumption of a threshold function F(A) within no damage occurs is written:

F(A) = A ≤ 0 (2.41)

It can be shown that the conditionAḋ ≥ 0 will be satisfied if either F < 0 and ḋ = 0 or F = 0 and

ḋ > 0. More precisely, the later condition leads that, when ḋ > 0, we have
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F = −∂W
∂d

= −∂Wu

∂d
− gcδdγ(d,∇d,ω) = 0 (2.42)

where the functional derivative δdγ(d) is defined

δdγ(d,∇d,ω) =
d

l
− l{∆d(1 + η)− ηm⊗m : ∇∇d} (2.43)

Eq. (2.42) is now rewritten as follows:

F = −∂W
∂d

= 2(1− d)Ψ+ − gcδdγ(d,∇d,ω) = 0 (2.44)

To deal with loading and unloading process, the strain history functional introduced in the works

[18] is employed here:

H = max
τ∈[0,t]

{Ψ+(x, τ)} (2.45)

and (2.44) is substituted by

2(1− d)H− gcδdγ(d,∇d,ω) = 0. (2.46)

Weak form of the phase field problem

Using (2.44), the evaluation of the damage variable d(x, t) can be formulated as the following phase

field problem: 
2(1− d)H− gcδdγ(d,∇d,ω) = 0 in Ω

d(x) = 1 on Γ

∇d(x) · n = 0 on δΩ

(2.47)

The associated weak form is obtained as∫
Ω

{(
2Hn +

gc
l

)
dn+1δd+ gcl∇dn+1ω∇(δd)

}
dΩ =

∫
Ω

2HnδddΩ. (2.48)

FEM discretization for the phase-field problem

Use FEM, the phase-field as well as phase-field gradient defined over element are approximated

by:

d(x) = {Nd(x)}{d} and ∇d(x) = [Bd(x)]{d} (2.49)

δd(x) = {Nd(x)}{δd} and ∇δd(x) = [Bd(x)]{δd} (2.50)

where Nd(x) and Bd(x) are the matrices of shape functions and of shape function derivatives

associated to the phase-field variable. Inserting (2.49) and (2.50) into the weak form (2.48), we

have:
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the rigid matrix is determined as:

[Kd] =

∫
Ω

{(gc
l

+ 2Hn

)
{Nd}T{Nd}+ gcl[Bd]

Tω[Bd]
}
dΩ. (2.51)

the vector of force given by:

{Fd} =

∫
Ω

2{Nd}THndΩ. (2.52)

Formally, the solution is provided by:

{d} = [Kd]
−1 · {Fd}. (2.53)

Weak form of the displacement problem

Using the variational principle for minimizing the total energy E with respect to the displacement

u, the weak form for the displacement problem can be written as:

∫
Ω

∂Wu

∂ε
: ε(δu)dΩ =

∫
Ω

f · δudΩ +

∫
∂ΩF

F̄ · δudΓ (2.54)

where f and F̄ are the body forces and the prescribed traction vector on the part ∂ΩF of the external

boundary.

With the aforementioned expression of the elastic strain energy density function, we have:

Case 1, from (2.22), we have:

Ψ+(ε+) =
1

2

{
1

D
R̃+[Tr(ε̃)][1] +

(
ε̃− [Tr(ε̃)][1]

D

)}{
1

D
R̃+[Tr(ε̃)][1] +

(
ε̃− [Tr(ε̃)][1]

D

)}
(2.55)

Ψ+(ε+) =
1

2

{
R̃+

D
[1]T [1] +

(
I− [1]T [1]

D

)}
: C :

{
R̃+

D
[1]T [1] +

(
I− [1]T [1]

D

)}
: ε2

(2.56)

and from (2.23), we obtain:

Ψ−(ε−) =
1

2

{
1

D
R̃−[Tr(ε̃)][1]

}{
1

D
R̃−[Tr(ε̃)][1]

}
(2.57)

Ψ−(ε−) =
1

2

{
R̃−

D
[1]T [1]

}
: C :

{
R̃−

D
[1]T [1]

}
: ε2 (2.58)

we introduce: R+ =
{

R̃+

D [1]T [1] +
(
I− [1]T [1]

D

)}
and R− =

{
R̃−

D [1]T [1]
}

with R̃± = 1
2
{sign{±Tr(ε̃)}+ 1} and 〈Tr(ε̃)〉± = R̃±Tr(ε̃) (see [18]).

We have the Cauchy stress as:

σ = {g(d) + k}∂Ψ+(ε+)

∂ε
+
∂Ψ−(ε−e )

∂ε
(2.59)
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σ =
{
{g(d) + k}R+ : C : R+ + R− : C : R−

}
: ε = C(d) : ε (2.60)

Case 2, from (2.38) and (2.39), we have:

Ψ+(ε+) =
1

2
ε̃+ : ε̃+ =

1

2

(
P̃+ : C1/2

)
:
(
P̃+ : C1/2

)
: ε2 (2.61)

Ψ−(ε−) =
1

2
ε̃− : ε̃− =

1

2

(
P̃− : C1/2

)
:
(
P̃− : C1/2

)
: ε2 (2.62)

Here, P̃± = ∂ε̃±

∂ε̃
can be expressed by [18]

Similar to (2.59), the Cauchy stress now can be analyzed such as:

σ =
{
{g(d) + k}

(
P̃+ : C1/2

)
:
(
P̃+ : C1/2

)
+
(
P̃− : C1/2

)
:
(
P̃− : C1/2

)}
: ε = C(d) : ε

(2.63)

FEM discretization for the mechanical problem

Similarly, we use FEM approximations for the displacement problem in one element:

u(x) = [N]{u} and ε(u) = [B]{u} (2.64)

δu = [N]{δu} and ε(δu) = [B]{δu} (2.65)

where N and B are the matrices of shape functions and of shape functions derivatives associated

for the displacement vector. Introducing (2.64) and (2.65) into the weak form (2.60) for case 1 and

(2.63) for case 2, we have:

For case 1:

The rigid matrix:

[K1(dn+1,un)] =

∫
Ω

[B]T
{
{g(d) + k}R+

n : C : R+
n

}
[B]dΩ (2.66)

[K2(dn+1,un)] =

∫
Ω

[B]T
{
R−n : C : R−n

}
[B]dΩ (2.67)

For case 2:

The rigid matrix:

[K1(dn+1,un)] =

∫
Ω

[B]T
{
{(1− d)2 + k}

(
P̃+
n : C1/2

)
:
(
P̃+
n : C1/2

)}
[B]dΩ (2.68)

[K2(dn+1,un)] =

∫
Ω

[B]T
{(

P̃−n : C1/2
)

:
(
P̃−n : C1/2

)}
[B]dΩ (2.69)

65



The force vector:

{F}n+1 =

∫
Ω

[N]T{f}dΩ +

∫
∂ΩF

[N]T{F̄}n+1dΓ (2.70)

The solution is formally given by:

{u}n+1 = {[K1] + [K2]}−1 · {F}n+1 (2.71)

The content of chapter 2 is summarized as the algorithm provided in Appendix B.2

2.4 Numerical examples

U

X

Y

0.5

0.5 0.5

0.5

Figure 2.3: Single edge notched tension test: geometry and boundary conditions.

2.4.1 Single edge notched tension test

(a) (b) (c)

Figure 2.4: Single edge notched tension test: a) solution 1; b) solution 2; c) Miehe et al. [16]

The principal purpose of the first example is to predict the crack propagation in isotropic material

by the two solutions of strain decompositions (2.18) and (2.35). For this purpose, we consider

the problem introduced in [16]. A square domain contains an initial crack, the geometric setup
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Figure 2.5: Single edge notched tension test: comparison of the load-displacement curves with the

length scale l=0.015mm between solution 1, solution 2 and Miehe et al. [16].

being depicted in Fig.2.3. On the lower side, the vertical displacements are blocked while the

displacements of horizontal direction are free and the bottom left corner of the domain is blocked in

two directions. On the upper side, the uniform vertical displacements are increased with time while

the horizontal displacements are also free. Due to this tension loading, a curved crack nucleates

and propagates. The mesh is refined in the expected crack propagation zone with 21684 elements.

The typical size of an element is about hmin = 0.001mm in the crack propagation zone and about

hmin = 0.02mm in the rest of the domain. Plane strain assumption is adopted. The plate is assumed

to consist of an isotropic homogeneous material with Lamé’s constants properties λ = 121.15GPa

and µ = 80.77GPa. From (2.25), we have the elastic stiffness matrix as:

C =


282.66 121.15 0

121.15 282.66 0

0 0 80.77

GPa. (2.72)

The fracture toughness is gc = 0.0027 kN/mm. Two displacement increments ∆u=10−5 in the first

500 loading steps and ∆u=10−6mm in the next time steps are prescribed. The regularization length

parameter is chosen as l = 0.015 mm. The crack initiation and propagation during the simulations

with solution 1, solution 2 and [16] are shown in Fig.2.4a, Fig.2.4b, and Fig.2.4c, respectively.

To demonstrate the strain orthogonal decomposition method, we have compared the two solutions

provided by the two schemes defined in (2.18) and (2.35) with the solution provided in [16]. Then,

we have shown the load - displacement curves of the two mentioned solutions (see Fig.2.5). We

can note that when two mentioned solutions are used, the corresponding results are in agreement
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with the reference result of [16].

2.4.2 Single edge notched shear test

U

X
Y

0.5

0.5 0.5

0.5

Figure 2.6: Single edge notched shear test: geometry and boundary conditions.

(a) (b) (c)

Figure 2.7: Single edge notched shear test: a) solution 1; b) solution 2; c) Miehe et al. [16]

In this example, we check the two solutions defined by the strain decompositions (2.18) and (2.35)

for a plate undergoing pure shear. In this example, we are interested in the problem of crack nu-

cleation and propagation of a single edge notched domain shear test as in [16]. The geometric

setup is shown in Fig.2.6. The lower end is fixed in both directions. On the upper end, the dis-

placements along vertical direction are fixed to zero, while the uniform horizontal displacements

of ∆u=10−5mm are imposed. The crack initiates and propagates due to this shear loading. The

domain contains 33245 triangle elements of two mesh sizes: hmin = 0.002mm in the crack propa-

gation zone and hmin = 0.02mm in the remaining domain. Plane strain is assumed. The material

properties in this problem are similar to the example 2.4.1: λ = 121.15GPa, µ = 80.77GPa and

the fracture toughness is gc = 0.0027 kN/mm. We use also the length parameter l = 0.015 mm.

The evolutions of the crack of solution 1, solution 2 and [16] are shown in Fig.2.7a, Fig.2.7b,
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Figure 2.8: Single edge notched shear test: comparison of the load-displacement curves with the

length scale l=0.015mm between solution 1, solution 2 and Miehe et al. [16].

and Fig.2.7c, respectively. The load - displacement curves of our solutions and [16] are shown in

Fig.2.8. We can see that, the crack propagation and material behavior curves of the two proposed

solutions and the solution of [16] are the same.

2.4.3 Symmetric three point bending test of a 3D beam

4
4

44

Thickness: B= 0.5

P

0.2

0.4

2

Figure 2.9: Symmetric three point bending test of a 3D beam (thickness B=0.5mm): geometry and

boundary conditions.

We investigate the crack propagation in a three-point bending test of a 3D beam while using two

aforementioned solutions in (2.18) and (2.35). The geometry as well as the loading conditions

are depicted in Fig.2.9. In the present example, we consider a 3D beam whose dimensions as

LxHxB=8x2x0.5mm while in [16] use was made of a 2D beam with the dimensions LxH=8x2mm.

The tetrahedral elements are adopted. The discretization is refined with the mesh size of hmin =
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Figure 2.10: Symmetric three point bending test of a 3D beam: a) solution 1; b) solution 2; c) [16]
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Figure 2.11: Symmetric three point bending test of a 3D beam: comparison of the load-

displacement curves between solution 1, solution 2 and [16].

0.001mm in the expected crack propagation zone. The material properties are as follows: the elastic

Lamé’s constants are λ = 12 GPa and µ = 8 GPa. The corresponding stiffness matrix is given by:

C =



28 12 12 0 0 0

12 28 12 0 0 0

12 12 28 0 0 0

0 0 0 8 0 0

0 0 0 0 8 0

0 0 0 0 0 8


GPa. (2.73)

The fracture toughness is equal to gc = 0.0005 kN/mm. The displacement increment ∆u=10−4mm
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is imposed in the first 360 loading steps while ∆u=10−6mm is prescribed in the remaining time

steps. The length parameter of l = 0.06 mm is chosen. The progresses of the crack computed with

the two present solutions and [16] are shown in Fig.2.10a, Fig.2.10b and Fig.2.10c, respectively.

The behavior curves are presented in Fig.2.11. We can see that, the results obtained by the two

proposed solutions are in good agreement with the one of [16].

2.4.4 Single edge notched shear test for an orthotropic material plate

e1

U

XY

500

500 500

500
a

Figure 2.12: Single-edge-notched shear test for orthotropic material plate: geometry and boundary

conditions.

The purpose of this sub-section is to investigate the crack propagation in an orthotropic single-edge-

notched plate undergoing shear loading when changing the privileged directions α of the plate. We

use the strain orthogonal decompositions proposed in (2.18) and (2.35) and only a unique damage

variable d instead of multiple damage variables di. For this purpose, we consider the problem of

crack propagation studied in [61]. In [61], use was made of a longitudinal damage variable d1

and a transverse damage variable d2 in to simulate the crack propagation in an orthotropic material

plate. The geometric dimensions of the plate and the loading conditions are shown in Fig.2.12.

The lower end is fixed in both directions. On the upper end, the displacement along the vertical

direction is equal to zero, while the uniform horizontal displacement is prescribed. Due to this

shear loading, the development of cracks depends on the change of fiber direction in the plate. The

material parameters are: E1 = 150GPa, E2 = 10GPa, G12 = 5GPa, ν12 = ν13 = ν23 = 0.25.

The toughness is gc=200N/m. The elastic compliance matrix L is defined by (2.27). Then, we can

determine the elastic stiffness matrix according to the 0o direction as C0 = L−1:
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Figure 2.13: Comparison of the crack path which depends on the orthotropic direction orientations

α for shear test: (a) with α = −45o (d) with α = 0o (g) with α = 45o solution 1; (b) with α = −45o

(e)with α = 0o (h) with α = 45o solution 2; (c) with α = −45o (f) with α = 0o (i) with α = 45o

[61].

C0 =


150.63 2.51 0

2.51 10.04 0

0 0 5

GPa (2.74)

Then, we can determine the elastic matrix C in relation to the angle α of one privileged direction by

(2.30) (see e.g. fiber direction), where the transformation matrix P is defined through (2.29). In this

example, the value of the anisotropy coefficient is given by η = 20. The regularization length pa-

rameter is chosen as l = 10mm. The constant displacement increment is equal to ∆u = 0.001mm.

In this example, we vary the angle α with respect to the horizontal direction (see Fig.2.12).

The crack propagations for α = −45o, α = 0o and α = 45o given by the two proposed solution,

and [61] shown in Fig.2.13. We can see, in the results of [61], Fig.2.13c and Fig.2.13f corresponds

to α = −45o and α = 0o, the crack direction is preferred according to the longitudinal damage
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variable d1 and when α = 45o, the crack direction is preferred according to the transverse damage

variable d2. We note the our results involving only one damage variable d and concerning, the

crack propagation directions in the orthotropic plate are similar to those of [61] where two damage

variables d1 and d2 are used.

2.4.5 Single edge notched tension test for an orthotropic material plate

e1
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U

X

Y

500

500 500

500

Figure 2.14: Single-edge-notched tension test for orthotropic material plate: geometry and bound-

ary conditions.

(a) (b) (c)

(d) (e) (f)

Figure 2.15: Comparison of the crack path which depends on the orthotropic direction orientations

α for tension test: (a) with α = 0o (d) with α = 30o solution 1; (b) with α = 0o (e)with α = 30o

solution 2; (c) with α = 0o (f) with α = 30o [61].

73



(a) (b) (c)

(d) (e) (f)

Figure 2.16: Comparison of the crack path which depends on the orthotropic direction orientations

α for tension test: (a) with α = 78o (d) with α = 90o solution 1; (b) with α = 78o (e)with α = 90o

solution 2; (c) with α = 78o (f) with α = 90o [61].

We now investigate the same square plate as in the example 2.4.4 for a tension test. The plate

dimensions and the applied load are illustrated in Fig.2.14. The boundary conditions are as follows:

on the lower end, the vertical displacements are fixed, while the horizontal displacements are free

and the left bottom node is fixed. On the upper end, the horizontal displacements are free, while the

vertical displacements are prescribed with an increasing constant value of ∆u = 0.001mm during

the simulation. The material parameters are as example 2.4.4. We use the value of the anisotropy

coefficient η = 20. The length parameter of l is set to 10mm. Here, we adopt only one damage

variable d instead of two damage variables d1 and d2 as [61]. We use also the values of α as in [61].

The comparisons of the crack propagation directions between our results and and those of [61]

are shown in Fig.2.15 and Fig.2.16. In [61], Fig.2.15c and Fig.2.15f corresponds to α = 0o and

α = 30o, and the crack direction is developed according to the longitudinal damage variable d1,

when α = 78o and α = 90o the crack propagation and directions are governed by the transverse

damage variable d2 (see Fig.2.16c and Fig.2.16f). Thus, we can see, when α ≥ 78o, the crack

tend to propagate in the direction perpendicular to the fiber direction and when α < 78o the crack

develop almost in the direction parallel to the fiber direction. From the obtained results, we see

that, when using the two present solutions in (2.18) and (2.35) combined with only one damage

variable d, the prediction of the crack development in the tension test problem for an orthotropic

material plate is quite well.
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2.4.6 Bi-axial tension test of an orthotropic material plate made of a Glass-

epoxy composite and containing an initial crack

e2
e1
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Y

3

X

3

3

3

kT
a

R=2

2

2

Figure 2.17: Tension test in two directions of an orthotropic plate: geometry and boundary condi-

tions.

Figure 2.18: Crack extension angle θ0 vs. crack inclination angle α for various values of biaxial

load parameter for the orthotropic material of Glass-epoxy (this figure in [47])

An orthotropic glass-epoxy plate contains an initial crack which forms an angle α with respect to

the horizontal direction and this initial crack is orientated along the fiber direction. The initial crack

length is set to 4mm. This plate is pulled in both horizontal and vertical directions. The geometry

and the boundary conditions are described in Fig.2.17. The boundary conditions are as follows: on
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Figure 2.19: Crack extension angle θ0 vs. crack inclination angle α=0o for various values of biaxial

load parameter for Glass-epoxy by phase field method of solution 1: a) k = 0.1, b) k = 0.5, c)

k = 1, d) k = 3.
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Figure 2.20: Crack extension angle θ0 vs. crack inclination angle α=0o for various values of biaxial

load parameter for Glass-epoxy by phase field method of solution 2: a) k = 0.1, b) k = 0.5, c)

k = 1, d) k = 3.
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Figure 2.21: Crack extension angle θ0 vs. crack inclination angle α=30o for various values of

biaxial load parameter for Glass-epoxy by phase field method of solution 1: a) k = 0.1, b) k = 0.5,

c) k = 1, d) k = 3.
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Figure 2.22: Crack extension angle θ0 vs. crack inclination angle α=30o for various values of

biaxial load parameter for Glass-epoxy by phase field method of solution 2: a) k = 0.1, b) k = 0.5,

c) k = 1, d) k = 3.
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Figure 2.23: Crack extension angle θ0 vs. crack inclination angle α=45o for various values of

biaxial load parameter for Glass-epoxy by phase field method of solution 1: a) k = 0.1, b) k = 0.5,

c) k = 1, d) k = 3.
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Figure 2.24: Crack extension angle θ0 vs. crack inclination angle α=45o for various values of

biaxial load parameter for Glass-epoxy by phase field method of solution 2: a) k = 0.1, b) k = 0.5,

c) k = 1, d) k = 3.
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Figure 2.25: Crack extension angle θ0 vs. crack inclination angle α=60o for various values of

biaxial load parameter for Glass-epoxy by phase field method of solution 1: a) k = 0.1, b) k = 0.5,

c) k = 1, d) k = 3.
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Figure 2.26: Crack extension angle θ0 vs. crack inclination angle α=60o for various values of

biaxial load parameter for Glass-epoxy by phase field method of solution 2: a) k = 0.1, b) k = 0.5,

c) k = 1, d) k = 3.
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Figure 2.27: Crack extension angle θ0 vs. crack inclination angle α=90o for various values of

biaxial load parameter for Glass-epoxy by phase field method of solution 1: a) k = 0.1, b) k = 0.5,

c) k = 1, d) k = 3.
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Figure 2.28: Crack extension angle θ0 vs. crack inclination angle α=90o for various values of

biaxial load parameter for Glass-epoxy by phase field method of solution 2: a) k = 0.1, b) k = 0.5,

c) k = 1, d) k = 3.
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Figure 2.29: Comparison between the analytical method in [47] and the proposed solutions of the

crack extension angles θ0 which depends on the initial crack direction α with Glass-epoxy material

the lower end, the vertical displacements are fixed, while the horizontal displacements are free and

one node at the lower end is fixed in both directions. On the upper end, the horizontal displacements

are free, while the vertical displacements are prescribed with an increasing uniform value of ∆uy.

On the left end, the horizontal displacements are fixed, while the vertical displacements are free. On

the right end, the vertical displacements are free, while the horizontal displacements are prescribed

with an increasing uniform value of ∆ux. Four corners of the plate are rounded with a radius

of R = 2mm to avoid concentration stress when tension in two dimensions. The computation is

performed in a monotonic displacement increments ∆uy and ∆ux = k1∆uy to have Tx = kTy. For

each specific value of α, we use the different values of ∆uy and coefficients k1 to obtain the values

of k = 0.1, 0.5, 1 and 3, respectively.

The glass-epoxy material parameters (see [46]) are as: E1 = 42.8GPa, E2 = 9.9GPa, G12 =

3.7GPa, ν12 = ν13 = 0.27, ν31 = ν21 = E2

E1
ν12, ν23 = 0.34. The toughness is gc=0.2N/mm.

Similarly, the elastic compliance matrix L is written as (2.27). Then, we can determine the elastic

stiffness matrix according to the 0o direction as C0 = L−1:

C0 =


45.1 4.27 0

4.27 11.6 0

0 0 3.7

GPa (2.75)

We can also determine the elastic matrix C according to the angle α of the fiber as (2.30) where

the matrix P is defined by (2.29). The anisotropy coefficient η = 20 and the length parameter

l = 0.1mm are taken.
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Here, we use only a unique damage variable d and the strain orthogonal decompositions in (2.18)

and (2.35). We use several values of angle α to determine the development direction of the crack

when the displacements are applied along two directions at the plate sides.

In the work of [47], the analytical results of crack extension angle θ0 with the angle of initial crack

α with several various values of k of biaxial load ratio in the orthotropic material of glass-epoxy

are shown in Fig.2.18.

The resulting crack propagations for the values of α which change from 0o to 90o and some values

of k vary change from 0.1 to 3 are shown in from Fig.2.19 to Fig.2.28.

Concerning the crack extension angle θ0 comparison between the analytical results of [47] and the

simulation results according to the two present solutions as in Fig.2.29. We can see, the results of

two solutions are in good agreement with the analytical results of [47]. Thus, the present solutions

are able to predict very well the crack propagation of the orthotropic plate containing an initial

crack when the plate is pulled in two directions.

2.4.7 Bi-axial tension test of an orthotropic material 3D plate made of a

Glass-epoxy composite and containing an initial crack

The purpose of this example is to extend the example 2.4.6 by modeling the structure in the 3D case.

The dimensions of plate in the (e1, e2) plane and the boundary conditions are given in Fig.2.17 with

the thickness of plate according to the direction e3 which is perpendicular to the (e1, e2) plane as

B=0.5mm. In particular, the Young’s moduli associated with any direction in the (e2, e3) plane is

the same, E = E2 = E3 = 9.9GPa, and the Poisson’s ratio ν = ν23 = ν32 = 0.34. In addition,

E1 = 42.8GPa, ν12 = ν13 = 0.27 and ν1 = ν31 = ν21 = E
E1
ν12. From (2.26), we can determine the

elastic compliance matrix L in the 3D case. Then, we can find the elastic stiffness 3D matrix of 0o

orientation C0 = L−1 as follows:

C0 =



45.1 4.27 4.27 0 0 0

4.27 11.6 4.21 0 0 0

4.27 4.21 11.6 0 0 0

0 0 0 3.69 0 0

0 0 0 0 3.7 0

0 0 0 0 0 3.7


(2.76)

Then, we can determine the elastic matrix C relative to the angle α of the fiber as (2.30). Here, the

transformation matrix is determined according by (2.28).
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Figure 2.30: Crack extension angle θ0 vs. crack inclination angle α=30o for various values of

biaxial load parameter for Glass-epoxy by phase field method of solution 1: a) k = 0.1, b) k =

0.5, c) k = 1, d) k = 3 (in the 3D case). Note that, the load-displacement curves are drawn

corresponding to the displacement values of the vertical direction.

The toughness gc=0.2N/mm, the anisotropy coefficient η = 20 and the length parameter l = 0.1

mm. We use the two proposed solutions to investigate the direction of the crack propagation with

only one value of α = 30o and the values of coefficient k = 0.1, 1 and 3 in the relation Tx = kTy.

The resulting crack propagations for these values with the two present solutions are shown in

Fig.2.30 to Fig.2.31, respectively.

It can be seen that the results of the solutions in the 3D case are similar to the results in the 2D case

as well as the analytical results of [47]. This proves that the two proposed solutions work weel for
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Figure 2.31: Crack extension angle θ0 vs. crack inclination angle α=30o for various values of

biaxial load parameter for Glass-epoxy by phase field method of solution 2: a) k = 0.1, b) k =

0.5, c) k = 1, d) k = 3 (in the 3D case). Note that, the load-displacement curves are drawn

corresponding to the displacement values of the vertical direction.

solving the problem of predicting crack propagation in orthotropic materials.

2.4.8 Bi-axial tension test of an orthotropic material plate made of a Graphite-

epoxy composite and containing an initial crack

An orthotropic Graphite-epoxy plate is pulled in both horizontal direction and vertical direction.

The geometric dimentions as well as the loading conditions are also depicted in Fig.2.17.

The Graphite-epoxy material parameters (see [46]) are as: E1 = 160GPa, E2 = 15.5GPa, G12 =
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Figure 2.32: Crack extension angle θ0 vs. crack inclination angle α for various values of biaxial

load parameter for the orthotropic material of Graphite-epoxy (this figure in [47])

5.6GPa, ν12 = ν13 = 0.34, ν31 = ν21 = E2

E1
ν12, ν23 = 0.43. The toughness is gc=0.2N/mm.

Similarly, from the equation (2.27) and the relation C0 = L−1, we have:

C0 =


166.5 9.62 0

9.62 19.57 0

0 0 5.6

GPa (2.77)

From (2.30), we have the elastic matrix C according to the angle α of the fiber and P is specified

as (2.29). The anisotropy coefficient η = 20 and the length parameter l = 0.1 mm. During the

simulation progress, we use a monotonic displacement driven loading with constant displacement

increments ∆uy and ∆ux = k1∆uy to create the effect of force Tx = kTy. In this problem, we use

also one damage variable d and the strain orthogonal decomposition in (2.18) and (2.35).

Fig.2.32 shows the analytical results of the crack extension angle θ0 for the angle of initial crack α

and several various values of the biaxial load ratio k in the orthotropic Graphite-epoxy material in

[47].

The resulting crack propagations for the different values of α and k with the two present solutions

are shown in Fig.2.33 to Fig.2.42, respectively.

Similarly, for the crack extension angle θ0, we make comparisons between the analytical results of

[47] and the simulation results obtained by the two proposed solutions as in Fig.2.43 with graphite-

epoxy material. From this table, we note that, the results of the two present solutions and [47] are

the same.
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Figure 2.33: Crack extension angle θ0 vs. crack inclination angle α=0o for various values of biaxial

load parameter for Graphite-epoxy by phase field method of solution 1: a) k = 0.1, b) k = 0.5, c)

k = 1, d) k = 3.
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Figure 2.34: Crack extension angle θ0 vs. crack inclination angle α=0o for various values of biaxial

load parameter for Graphite-epoxy by phase field method of solution 2: a) k = 0.1, b) k = 0.5, c)

k = 1, d) k = 3.
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Figure 2.35: Crack extension angle θ0 vs. crack inclination angle α=30o for various values of

biaxial load parameter for Graphite-epoxy by phase field method of solution 1: a) k = 0.1, b)

k = 0.5, c) k = 1, d) k = 3.
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Figure 2.36: Crack extension angle θ0 vs. crack inclination angle α=30o for various values of

biaxial load parameter for Graphite-epoxy by phase field method of solution 2: a) k = 0.1, b)

k = 0.5, c) k = 1, d) k = 3.
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Figure 2.37: Crack extension angle θ0 vs. crack inclination angle α=45o for various values of

biaxial load parameter for Graphite-epoxy by phase field method of solution 1: a) k = 0.1, b)

k = 0.5, c) k = 1, d) k = 3.
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Figure 2.38: Crack extension angle θ0 vs. crack inclination angle α=45o for various values of

biaxial load parameter for Graphite-epoxy by phase field method of solution 2: a) k = 0.1, b)

k = 0.5, c) k = 1, d) k = 3.
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Figure 2.39: Crack extension angle θ0 vs. crack inclination angle α=60o for various values of

biaxial load parameter for Graphite-epoxy by phase field method of solution 1: a) k = 0.1, b)

k = 0.5, c) k = 1, d) k = 3.
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Figure 2.40: Crack extension angle θ0 vs. crack inclination angle α=60o for various values of

biaxial load parameter for Graphite-epoxy by phase field method of solution 2: a) k = 0.1, b)

k = 0.5, c) k = 1, d) k = 3.
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Figure 2.41: Crack extension angle θ0 vs. crack inclination angle α=90o for various values of

biaxial load parameter for Graphite-epoxy by phase field method of solution 1: a) k = 0.1, b)

k = 0.5, c) k = 1, d) k = 3.
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Figure 2.42: Crack extension angle θ0 vs. crack inclination angle α=90o for various values of

biaxial load parameter for Graphite-epoxy by phase field method of solution 2: a) k = 0.1, b)

k = 0.5, c) k = 1, d) k = 3.

90



Figure 2.43: Comparison between the analytical method in [47] and the proposed solutions of

the crack extension angles θ0 which depends on the initial crack direction α with Graphite-epoxy

material.

2.5 Conclusions

In the present work, the strain orthogonal decompositions of [39], successfully applied in the phase

field modeling to model and simulate isotropic and orthotropic damage.

The first three examples in both 2D and 3D cases for the modeling and simulation of the crack

propagation in isotropic material. We can see that two proposed solutions give the very reliable

results and they are good tools to predict the crack evolution.

Next, the two aforementioned solutions by using only one damage variable d instead of multiple

damage variables di and using the strain orthogonal decompositions to model the crack path in

orthotropic material through the next some numerical results. Our present solutions are able to

provide the good results which respect to the reference ones.
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Chapter 3

Modeling and simulation of crack

propagation in heterogeneous materials by

phase-field method with interfacial damage

The phase-field method has become a robust tool to describe the complex crack nucleation and

propagation in heterogeneous materials. In these materials, an interaction between bulk brittle

damage and interfacial damage through the splitting the strain tensor into a bulk strain part and a

jump strain part at the interfaces introduced in Nguyen et al. [19]. Moreover, the material response

of the heterogeneous materials in tension and compression, the bulk strain part needs to be decom-

posed into a positive part and a negative part (see, e.g, [19]). Most of the previous works, these

decompositions do not verify the negative part be orthogonal the positive part, which lead to the in-

accuracy in the material mechanical behavior. To solve the shortcomings, a recent theoretical study

of He [39] proposed the strain orthogonal decompositions problem that is applied to decompose

the bulk strain in our work. In the present work, we combine the phase-field modeling taking into

account interfacial damage with the problem of the bulk strain orthogonal decompositions by two

proposed solutions. The successful prediction of the crack propagation for two phases materials

and X-ray microtomography image-based multi-phases materials by the proposed solutions will be

demonstrated in several numerical examples.

3.1 Introduction

One of the main objectives of fracture mechanics is to predict the crack nucleation and propagation

of materials. Many previous works have been done in both experimental and numerical approaches
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to reach this goal. Griffith [7] and Irwin [40] have placed an important milestone in the problem of

predicting the crack nucleation by developing the Linear Elastic Fracture Mechanic (LEFM) theory

in which the stress field is calculated using the theory of elasticity. From the stress field obtained,

the stress intensity factor (SIF) is defined and the crack will grow when this stress intensity factor

exceeds the material fracture toughness. Based on this theory, Francfort and Marigo [8] and Bour-

din et al. [20] proposed the variational approach to fracture relative to a global minimization of

the total energy allowing to numerically solve the problem determining the crack nucleation and

propagation for complex structures. Then, Pham et al. [27] used the variational framework for

brittle fracture with the principles of irreversibility, stability and energy balance into the phase-field

method to solve a homogeneous one-dimensional bar. Next, the authors of the works [9, 10, 11, 16]

proposed a regularized description of discontinuities to replace the surface of the crack to improve

the phase-field modeling.

In multi-phase materials, in ordre to model the spread of complex cracks, especially in the inter-

facial zone between two phases, many previous studies have been given the Cohesive Zone Model

(CZM) concept which was proposed in first by Barenblatt [62] and Dugdale [63]. Then, in the

works [64, 65, 66], the CZM have been applied into Finite Element Method (FEM) to handle the

fracture at the crack tip in brittle and ductile materials. In the CZM framework, one of the soften-

ing curves describing the relation between the traction and displacement jump across the cohesive

surface as linear, exponential, hyperbolic and Cornelissen’s curves can be used to determine the

separation state of the cohesive surface.

To simulate a network of the complex cracks as well as the interface between the matrix and in-

clusion phases, we need to smooth the mesh size to determine accuracy the direction of the normal

vectors at the nodes of elements. Several methods can find and refine the mesh size at the interfa-

cial zone while the remaining zone can place the coarser meshes by additional functions such as

viewpoint method presented in [67] and Extended Isogeometric Analysis (XIGA) in [68].

In the materials which have the highly complex microstructures and the random distribution of the

multi-phases, the problem of determining the interfaces between the phases is necessary to identify

their phase components. An experimental method based on the pixel-image as X-ray microtomog-

raphy is widely applied to solve this problem (see, e.g, [69, 70, 71, 72, 73, 74, 75, 76, 77]). The

phase-field modeling proposed by [19] to predict the crack propagation in realistic microstructures

obtained by X-ray microtomography gave the very reliable results.

In a recent theoretical study presented in [39], the authors proposed the strain decomposition into a

negative and positive parts which are orthogonal in the sense of an inner product where the elastic
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stiffness tensor acts as a metric tensor. This described realistic and accuracy in mechanical be-

haviors of materials. In this work, we used the strain decomposition proposed in [39] associated

with the work [19] to improve accuracy in terms of mechanical behaviors into account interfacial

damage. The principal advantages of this method are: (a) the orthogonality condition is satisfied in

the bulk strain decomposition; (b) multiple complex crack nucleation and propagation can be easily

solving without mesh independent; (c) two solutions based on orthogonality condition are applied

for numerical simulation.

The overview of the chapter is as follows: Section 3.2 gives the detailed phase-field framework

taking into account the interfacial damage associated with the strain orthogonal decompositions.

The FEM discretization for the phase-field problem and for the displacement problem are detailed.

In Section 3.3, several numerical examples using two solutions are presented. Finally, conclusions

and perspectives are drawn in Section 3.4.

3.2 Phase-field modeling of bulk crack and interfaces

In this section, we introduce a numerical modeling based on the phase-field modeling taking into

account the interfacial damage. The combination allows predicting crack propagations and im-

proving the accuracy in the mechanical response of heterogeneous materials. The main concept is

introduced in the following.

3.2.1 Regularized representation of free discontinuous field

We consider a domain Ω ∈ RD occupied by a heterogeneous solid, with D ∈ [2, 3] being the

space dimension and ∂Ω ∈ RD−1 is the external boundary of domain Ω. The interface between

the component phases of Ω ∈ RD is denoted by ΓI and the crack surface is denoted by Γ (see

Fig. 3.1a). In a regularized framework, the geometry of interface between different phases is

described by a fixed scalar parameter β(x) (see Fig. 3.1b), and the geometry of propagating crack

is approximately defined by a scalar parameter d(x, t), with x ∈ Ω (see Fig. 3.1c). Here, ld and

lβ are the regularization lengths describing the actual widths of the smeared cracks and material

interfaces, respectively. In what follows, we make the assumption that l = ld = lβ for the sake of

simplicity in the simulation. In the initial state, i.e. t = 0, the phase-field d(x) = d(x, 0) can be

obtained by solving the following equations in Ω (see, e.g, [16]):
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Figure 3.1: Regularized representation of a crack and an interface: (a) Solid containing an inter-

face and a crack; (b) Regularized representation of the interface; (c) Regularized representation of

the crack.


d− l2∆d = 0 in Ω

d(x) = 1 on Γ

∇d(x) · n = 0 on ∂Ω

(3.1)

where ∆d is the Laplacian operator, when l→ 0 which will lead to the exact sharp crack on Γ; and

n is the unit normal vector to the external boundary ∂Ω. The problem described by Eq. (3.1) is

equivalent to the following variational problem:

d(x) = Arg{infd∈SdΓd(d)} with Γd(d) =

∫
Ω

γd(d,∇d)dΩ, (3.2)

where Sd = {d(x) | d(x) = 1,∀x ∈ Γ}; Γd represents the total crack length per unit area in the

two-dimensional case and total crack area of per unit volume in the three-dimensional case, and

γd(d,∇d) is defined by

γd(d,∇d) = γ(d,∇d) =
d2

2l
+
l

2
∇d∇d. (3.3)

The interface phase-field β(x) describing the damage of interfaces is obtained by:
β(x)− l2∆β(x) = 0 in Ω

β(x) = 1 on ΓI

∇β(x) · n = 0 on ∂Ω

(3.4)

Moreover, it can be shown that Eq. (3.4) corresponds to the Euler-Lagrange expression related to

the variational problem as follows:

β(x, t) = Arg{infβ∈SβΓβ(β)} with Γβ(β) =

∫
Ω

γβ(β,∇β)dΩ, (3.5)
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where Sβ = {β(x) | β(x) = 1, ∀x ∈ ΓI} and Γβ represents the total interface length per unit area

in the two-dimensional case and total interface area of per unit volume in the three-dimensional

case, and γβ(β,∇β) is defined by

γβ(β,∇β) =
β2

2l
+
l

2
∇β∇β. (3.6)

It is important to notice that, unlike the crack phase-field d(x, t), the value of the interface phase-

field β(x) does not evolve during the simulation.

An approximation for the displacement jump at the interfaces is proposed by using the Taylor’s

expansion of the displacement field around a point x located on the interface:

Ju(x)K ' w(x) = u

(
x +

h

2
nI
)
− u

(
x− h

2
nI
)

= h∇u(x)
∇φ(x)

‖∇φ(x)‖
(3.7)

where w(x) denotes the smoothed displacement jump approximation; nI(x) is an approximation

of the normal to the interface ΓI at the point x; and φ(x) is the level-set function which is used to

describe the interface ΓI(see e.g. [19, 66]).

3.2.2 Energy functional

The total energy in the cracked solid containing interfaces can be expressed by:

E(u, d) =

∫
Ω

W e
u(εe(u), d)dΩ +

∫
Ω

{1− β(x)}gcγ(d,∇d)dΩ +

∫
Ω

ΨI(w(u),χ)γβ(β,∇β)dΩ

(3.8)

where gc is the fracture toughness, ΨI is a strain density function related to the displacement jump

across the interface ΓI and χ is a history parameter. The strain tensor ε(u(x)) is split into two

parts, εe and ε̄(w(x)), corresponding to the strain tensor of the bulk and the strain tensor induced

by the smoothed jump at the interfaces such that ε̄→ 0 away from the interfaces (see e.g. [19]):

ε(u(x)) = εe(u(x)) + ε̄(w(x)) (3.9)

From Eq. (3.8), the total free energy W can be written therefore as follows:

W (u, d) = W e
u(εe(u), d) + {1− β(x)}gcγ(d,∇d) + ΨI(w(u),χ)γβ(β,∇β) (3.10)

By accounting for the asymmetric tensile-compressive behavior, the strain tensor is now decom-

posed into a positive part and negative part and the damage is assumed to be only developed by the

positive part. Following the work of [39], the bulk strain εe is decomposed as follows:

εe = εe
+ + εe

− (3.11)
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and the elastic energy function at the undamaged state is written as:

Ψe(εe) = Ψe(εe
+ + εe

−) =
1

2
εe

+ : (Cεe+) +
1

2
εe
− : (Cεe−) + εe

+ : (Cεe−). (3.12)

From (3.12), we have immediately that the elastic energy decomposition

Ψe(εe) = Ψ+
e (εe

+) + Ψ−e (εe
−) (3.13)

with

Ψ+
e (εe

+) =
1

2
εe

+ : (Cεe+) and Ψ−e (εe
−) =

1

2
εe
− : (Cεe−), (3.14)

holds if and only if

εe
+ : (Cεe−) = 0. (3.15)

This necessary and sufficient condition is satisfied if εe+ be orthogonal to εe− in the sense of the

inner product with C acting as a metric tensor. Next, by choosing the scalar phase-field d to describe

the damage state of the material, the elastic energy function W e
u of the damaged material becomes

W e
u(εe(u), d) = {g(d) + k}Ψ+

e (εe
+) + Ψ−e (εe

−) (3.16)

where the degradation function g(d) in phase-field method takes the form of g(d) = (1− d)2 (see,

e.g., [16]) and k is a very small value to maintain the well-posedness of the structure behaviors.

To satisfy the orthogonal condition (3.15), the general approach proposed recently in [39] is adopted.

By defining the transformed strain space Ẽe of the strain space Ee such as Ẽe = {ε̃e | ε̃e =

C1/2εe,∀εe ∈ Ee}, this transformed strain space Ẽe is now separated into two convex subsets K̃e
+

and K̃e
−

such that

Ẽe = K̃e
+ ⊕ K̃e

−
. (3.17)

Thus, any element ε̃e ∈ Ẽe can be split into a positive part ε̃+
e ∈ K̃+

e and a negative part ε̃−e ∈ K̃−e
such that

ε̃e = ε̃+
e + ε̃−e (3.18)

and

ε̃+
e : ε̃−e = 0. (3.19)

Moreover, we demande that ε̃+
e and ε̃−e correspond therefore the projections of a given ε̃e ∈ Ẽe on

K̃e
+

and K̃e
−

in the variational sense that

‖ε̃e − ε̃±e ‖2 = min
ι̃∈K̃e

±(ε̃e − ι̃) : (ε̃e − ι̃). (3.20)

The choice of the convex subsets K̃e
+

and K̃e
−

is not unique. We now consider two following

cases:

97



Case 1: The choice for K̃e
+

and K̃e
−

is such as:

K̃e
+

= {ε̃e ∈ Ẽe|Tr(ε̃e) ≥ 0} and K̃e
−

= {ε̃e ∈ Ẽe|ε̃e = a1, a ≤ 0}. (3.21)

It can be shown from (3.20) and (3.21) that

ε̃+
e =

1

D
〈Tr(ε̃e)〉+1 + ε̃De , ε̃−e =

1

D
〈Tr(ε̃e)〉−1 (3.22)

where 1 denotes the D−dimensional identity tensor, 〈x〉± = (x± | x |)/2 and the deviatoric strain

tensor is defined by

ε̃De = ε̃e −
1

D
Tr(ε̃e)1. (3.23)

Once ε̃+
e and ε̃−e have been obtained, ε+

e and ε−e can be directly determined by

ε+
e = C−1/2ε̃+

e , ε−e = C−1/2ε̃−e (3.24)

and we obtain

Ψ+
e (εe

+) =
1

2
C : ε+

e : ε+
e =

1

2

{
1

D
〈Tr(ε̃e)〉+1 + ε̃De

}
:

{
1

D
〈Tr(ε̃e)〉+1 + ε̃De

}
, (3.25)

Ψ−e (εe
−) =

1

2
C : ε−e : ε−e =

1

2

{
1

D
〈Tr(ε̃e)〉−1

}
:

{
1

D
〈Tr(ε̃e)〉−1

}
. (3.26)

Case 2: The choice for K̃e
+

and K̃e
−

is such as:

K̃e
+

= {ε̃e ∈ Ẽe|x(ε̃ex) ≥ 0 ,∀x ∈ RD} and K̃e
−

= {ε̃e ∈ Ẽe|x(ε̃ex) ≤ 0 ∀x ∈ RD}.

(3.27)

Since (3.20) and (3.27), it can be demonstrated that

ε̃±e =
D∑
i=1

〈ε̃ie〉±ñi ⊗ ñi (3.28)

where ε̃ie and ñi with i = 1, ...,D are the ordered eigenvalues and eigenvectors of ε̃e such that

ε̃1
e ≤ ε̃2

e ≤ ... ≤ ε̃De and 〈ε̃ie〉± = (ε̃ie± | ε̃ie |)/2. This yields

Ψ+
e (εe

+) =
1

2
ε̃+
e : ε̃+

e =
1

2
Tr[(ε̃+

e )2] (3.29)

Ψ−e (εe
−) =

1

2
ε̃−e : ε̃−e =

1

2
Tr[(ε̃−e )2]. (3.30)

The evolution of the scalar phase-field variable d must satisfy the following reduced Clausius-

Duhem inequality:

Aḋ ≥ 0 and A = −∂W
∂d

. (3.31)
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An assumption of a threshold function F(A) within no damage occurs is expressed as:

F(A) = A ≤ 0. (3.32)

It can be shown that the conditionAḋ ≥ 0 will be satisfied if either F < 0 and ḋ = 0 or F = 0 and

ḋ > 0. More precisely, the latter condition leads that, when ḋ > 0, we have

F = −∂W
∂d

= 2(1− d)Ψ+
e − (1− β)gcδdγ(d,∇d) = 0 (3.33)

where the functional derivative δdγ(d) is defined by (see, e.g., [18])

δdγ(d,∇d) =
d

l
− l∆d. (3.34)

By introducing the strain history function introduced (see e.g. [19])

He(x, t) = max
τ∈[0,t]

{Ψ+
e (x, τ)} (3.35)

Eq. (3.33) is now rewritten as follows:

2(1− d)He − (1− β)gcδdγ(d,∇d) = 0. (3.36)

Finally, the crack field d(x, t) can be computed by solving the following phase field problem:
2(1− d)He − gc

l
(1− β)(d− l2∆d) = 0 in Ω;

d(x) = 1 on Γ;

∇d(x) · n = 0 on ∂Ω.

(3.37)

3.2.3 Resolution of the phase-field problem

Weak form of the phase-field problem

To compute the scalar phase-filed parameter d(x, t), a temporal discretization is carried out at

times 0, t1, ..., tn, tn+1, .... By assuming that, at time t = tn, the scalar phase-filed parameter dn =

d(x, tn) is known, the weak form used to compute dn+1 = d(x, tn+1) is expressed as follows:∫
Ω

{(
2He

n + (1− β)
gc
l

)
dn+1δd+ (1− β)gcl∇dn+1∇(δd)

}
dΩ =

∫
Ω

2He
nδddΩ. (3.38)

FEM discretization of the phase-field problem

By applying the FEM, the phase field as well as the phase-field gradient are approximatively cal-

culated by:

d(x) = {Nd(x)}{d} and ∇d(x) = [Bd(x)]{d} (3.39)
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δd(x) = {Nd(x)}{δd} and ∇δd(x) = [Bd(x)]{δd} (3.40)

where Nd(x) and Bd(x) are the matrix of shape function and matrix of shape function derivative

associated with phase-field variable, respectively. By introducing the aforementioned FEM dis-

cretization into the weak form (3.38), the phase-field variable dn+1 = d(x, tn+1) can be calculated

by:

{d} = [Kd]
−1 · {Fd} (3.41)

where the rigid matrix is determined by

[Kd] =

∫
Ω

{(gc
l

(1− β) + 2He
n

)
{Nd}T{Nd}+ gcl(1− β)[Bd]

T [Bd]
}
dΩ (3.42)

and the force vector is defined by

{Fd} =

∫
Ω

2{Nd}THe
ndΩ. (3.43)

3.2.4 Resolution of the displacement problem

Weak form of the displacement problem

Using the variational principle for minimizing the total energy E with respect to the displacement

u, the weak form associated with the displacement problem can be formulated as∫
Ω

∂W e
u

∂εe
: εe(δu)dΩ +

∫
Ω

∂ΨI(w,χ)

∂w
δwγβ(β,∇β)dΩ =

∫
Ω

f · δudΩ +

∫
∂ΩF

F̄ · δudΓ (3.44)

The detail about the weak form of the displacement problem, the FEM discretization of the dis-

placement problem and the numerical framework are presented in Appendix A.1. The algorithm

used in chapter 3 is summarized and provided in Appendix B.3.

3.3 Numerical examples

3.3.1 Symmetric three-point bending test

This example aims to study the crack propagation within a beam during a three-point bending

test. Furthermore, two solutions of strain decompositions (3.21) and (3.27) are investigated in
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Figure 3.2: Symmetric three-point bending test: geometry and boundary conditions.
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Figure 3.3: The evolution of the crack in symmetric three-point bending test: (a), (b) and (c) crack

initiation and crack propagation for solution 1 corresponding to U = 0 mm, U = 0.25 mm, and

U = 0.35 mm, respectively; (d), (e) and (f) crack initiation and crack propagation for solution 2

corresponding to U = 0 mm, U = 0.25 mm, and U = 0.35 mm, respectively; Figs. (g), (h) and (i)

crack initiation and crack propagation presented in Nguyen et al. [19] corresponding to U = 0 mm,

U = 0.25 mm, and U = 0.35 mm, respectively

this study. The beam under consideration in this study is assumed to have the same dimensions

as the one used in [19] and [78]. The geometry of the structure and the loading conditions are

depicted in Fig.3.2. The domain has an initial cohesive interface to validate the cohesive model.

The dimensions of the beam are 10x3mm. The domain occupied by the beam is uniformly meshed

into 200x60 quadrilateral elements. The boundary conditions are as follows: the left bottom corner
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Figure 3.4: Symmetric three-point bending test: comparison of the load-displacement curves be-

tween Wells et al.[78] with two solutions of strain decompositions (3.21) and (3.27).

is fixed in two directions, while the right bottom corner the vertical displacement is fixed, and the

horizontal displacement is free. The displacement is prescribed at the center on the upper end of

the beam with monotonic increments of the displacement ∆u=−0.005mm for 170 load increments.

The material properties of the beam are chosen as E = 100MPa, ν = 0.3, the fracture toughness

gc = gIc = 0.1 N/mm and the fracture strength tu = 1 MPa. The regularization parameter l is

chosen as l = 0.15mm. The plane strain assumption is adopted in our calculations.

By applying two solutions of strain decompositions (3.21) and (3.27), the evolutions of the crack

are shown in Fig. 3.3(a-c) and Fig. 3.3(d-f) with different values of the prescribed displacement at

the center on the upper end of the beam. These crack evolutions obtained in the work [19] are also

presented in Fig. 3.3(g-i). The comparison of the load-displacement curves between two solutions

of strain decompositions (3.21) and (3.27) with the result derived in [78] is shown in Fig. 3.4.

In Nguyen et al. [19], we can find the comparison of the behavior curves between [19] and [78].

From the comparison of both the evolution of the crack and the mechanical behavior in Fig. 3.3

and Fig. 3.4, we can see that our computations with two proposed strain decompositions (3.21) and

(3.27) are practically efficient and accurate to simulate the crack propagation taking into account

the interfacial damage.
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3.3.2 Delamination peel test

U
Adhesive layer

1

0.5

10

Initial crack

U

Figure 3.5: Geometry and boundary conditions of the delamination peel test.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.6: The crack evolution in the delamination peel test: (a), (b) and (c) crack nucleation and

propagation for solution 1 of strain decomposition corresponding to U = 0 mm, U = 0.4 mm, and

U = 1 mm, respectively;(d), (e) and (f) crack nucleation and propagation for solution 2 of strain

decomposition corresponding to U = 0 mm, U = 0.4 mm, and U = 1 mm, respectively; (g), (h) and

(i) crack nucleation and propagation in the work Nguyen et al. [19] corresponding to U = 0 mm,

U = 0.4 mm, and U = 1 mm, respectively

The purpose of this example is to investigate the crack propagation during a peel test in which

two cantilever elastic beams are assembled together via an adhesive layer. In this example, two

solutions of strain decompositions (3.21) and (3.27) are used. The geometry of cantilever elastic
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Figure 3.7: Delamination peel test: comparison of the load-displacement curves between Verhoosel

et al. [66], Nguyen et al. [19] and two solutions of strain decompositions (3.21) and (3.27).

beams and the boundary conditions are described in Fig. 3.5. The dimensions of each beam are

10x0.5mm with over 90 % of the length is connected. Each beam is uniformly meshed into 400x20

quadrilateral elements. The left end of cantilever elastic beams is fixed in two directions. The

displacement is prescribed at the right upper end and right bottom end of structure with monotonic

increments of ∆u = 0.005mm. The material properties are chosen as follows: E = 100 MPa and

Poisson’s ratio ν = 0.3. The fracture strength are taken as tu = 1 MPa and gc = gIc = 0.1 N/mm,

respectively. The length scale parameter l is chosen as l = 0.05 mm. The plane strain assumption

is considered. The evolutions of the interfacial damage with two solutions of strain decompositions

(3.21) and (3.27) as well as the results provided in [19] are shown in Fig. 3.6(a-c), Fig. 3.6(d-f) and

Fig.3.6(g-i), respectively. We compare in Fig. 3.7 the load-displacement curves for two solutions

of strain decompositions (3.21) and (3.27) with the results obtained and presented in [19] and [66].

From these comparisons, we can see that the crack propagation and the load-displacement relation

with two solutions of strain decompositions (3.21) and (3.27) exhibit a good agreement with ones

provided in [19] and [66].
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Figure 3.8: Tension test of a plate containing a complex inclusion: geometry and boundary condi-

tions.

3.3.3 Tension test of a plate with a complex inclusion

In the example, we consider a plate containing an inclusion with complex geometry. In order to

describe interfacial damage and bulk damage, two solutions of strain decompositions (3.21) and

(3.27) are employed. Fig. 3.8 show the geometry and loading conditions applied to the plate under

consideration. The dimensions of the plate are 1x1mm and the inclusion has the diameter D =

0.2mm. On the lower end, the vertical displacements are fixed, while the horizontal displacements

are free and the left bottom node is fixed. On the upper end, the horizontal displacements are free,

while the vertical displacements are prescribed to an increasing constant value of ∆u = 0.0001mm

during the simulation process.

The plane strain condition is assumed in this study. The material properties of the inclusion

phase are chosen as: Ei = 52 GPa and νi = 0.3 while the material properties of the matrix phase

are Em = 10.4 GPa and νm = 0.3. The fracture toughness is gc=gIc=0.1 N/mm and the fracture

strength tu=0.01 GPa. The plate is uniformly meshed into 400x400 quadrilateral elements. The

regularization parameter l is chosen as l = 0.005 mm.

The evolutions of crack in the plate with two solutions of strain decompositions (3.21) and (3.27)

and the results provided in [19] are shown in Fig. 3.9(a-c), Fig. 3.9(d-f) and Fig. 3.9(g-i), re-

spectively. We can see that, in all of these models, the cracks appear initially at the interface and

propagate then into the matrix until the full damage during the increment of the prescribed dis-

placement. The load-displacement curves are presented in Fig. 3.10.
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(d) (e) (f)

(g) (h) (i)

Figure 3.9: Tension test of a plate containing a complex inclusion: crack propagation. (a), (b)

and (c) crack initiation and propagation for solution 1 of strain decomposition corresponding to

U = 0.008 mm, U = 0.01 mm, and U = 0.012 mm, respectively;(d), (e) and (f) crack initiation

and propagation for solution 2 of strain decomposition corresponding to U = 0.008 mm, U = 0.01

mm, and U = 0.012 mm, respectively; (g), (h) and (i) crack initiation and propagation obtained by

Nguyen et al. [19] corresponding to U = 0.008 mm, U = 0.01 mm, and U = 0.012 mm, respectively

From the results observed in Fig. 3.9 and Fig. 3.10, two proposed strain decompositions (3.21) and

(3.27) seem to be very efficient and accurate to predict the crack propagation related to interfacial

damage in the plate containing a complex inclusion.
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Figure 3.10: Tension test of a plate containing a complex inclusion: comparison of the load-

displacement curves between Nguyen et al. [19] with two solutions of strain decompositions (3.21)

and (3.27).
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Figure 3.11: Traction test of a microstructure containing randomly distributed inclusions: geometry

and boundary conditions.
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Figure 3.12: Crack evolution for 15 realizations of the microstructures containing randomly dis-

tributed inclusions (part 1): (a), (b) and (c) depict crack propagation of realization 1 corresponding

to solutions 1 and 2 of strain decomposition (3.21) and (3.27), and Nguyen et al. [19], respectively;

(d), (e) and (f) depict crack propagation of realization 2 corresponding to solutions 1 and 2 of strain

decomposition (3.21) and (3.27), and Nguyen et al. [19], respectively; (g), (h) and (i) depict crack

propagation of realization 3 ccorresponding to solutions 1 and 2 of strain decomposition (3.21)

and (3.27) and Nguyen et al. [19], respectively

3.3.4 Tension test of a plate containing randomly distributed inclusions

This example aims to simulate the development of the interfacial damage situated between the

randomly distributed inclusions and matrix phases. For this purpose, we use a plate containing 9

randomly distributed circular inclusions whose volume fraction is equal to 0.07 (see., Fig. 3.11).

The dimensions of the plate are 1x1mm. The material properties of the matrix and inclusion phases
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Figure 3.13: Crack evolution for 15 realizations of the microstructures containing randomly dis-

tributed inclusions (part 2): (a), (b) and (c) depict crack propagation of realization 4 corresponding

to solutions 1 and 2 of strain decomposition (3.21) and (3.27), and Nguyen et al. [19], respectively;

(d), (e) and (f) depict crack propagation of realization 5 corresponding to solutions 1 and 2 of strain

decomposition (3.21) and (3.27), and Nguyen et al. [19], respectively; (g), (h) and (i) depict crack

propagation of realization 6 corresponding to solutions 1 and 2 of strain decomposition (3.21) and

(3.27), and Nguyen et al. [19], respectively

are chosen such as Ei = 52 GPa, νi = 0.3, Em = 10.4 GPa, νm = 0.3, tu = 0.01 GPa. The tough-

nesses of both phases are taken as gc = 0.27 N/mm and gIc = gc. The boundary conditions are

identical to the previous example. The plane strain assumption is considered. On the upper end, the

vertical displacements are prescribed in such a way that their values increase monotonically with

∆u = 0.00005mm during 200 load increments. The structure is discretized into 300x300 quadri-
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Figure 3.14: Crack evolution for 15 realizations of the microstructures containing randomly dis-

tributed inclusions (part 3): (a), (b) and (c) depict crack propagation of realization 7 corresponding

to solutions 1 and 2 of strain decomposition (3.21) and (3.27), and Nguyen et al. [19], respectively;

(d), (e) and (f) depict crack propagation of realization 8 corresponding to solutions 1 and 2 of strain

decomposition (3.21) and (3.27), and Nguyen et al. [19], respectively; (g), (h) and (i) depict crack

propagation of realization 9 corresponding to solutions 1 and 2 of strain decomposition (3.21) and

(3.27), and Nguyen et al. [19], respectively

lateral elements. The regularization parameter is chosen as l = 0.0075 mm. The microcracking

propagations in the plate containing randomly distributed inclusions with 15 realizations are shown

in Fig. 3.12-3.16. It can be seen that, the evolutions of the crack are very various: when the inclu-

sions in contact with each other, the crack path is formed between the inclusions where mechanical

behavior seems to be the weakest, in the contrast when the inclusions are not in contact, the crack
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Figure 3.15: Crack evolution for 15 realizations of the microstructures containing randomly dis-

tributed inclusions (part 4): (a), (b) and (c) depict crack propagation of realization 10 corre-

sponding to solutions 1 and 2 of strain decomposition (3.21) and (3.27), and Nguyen et al. [19],

respectively; (d), (e) and (f) depict crack propagation of realization 11 corresponding to solutions

1 and 2 of strain decomposition (3.21) and (3.27), and Nguyen et al. [19], respectively; (g), (h)

and (i) depict crack propagation of realization 12 corresponding to solutions 1 and 2 of strain

decomposition (3.21) and (3.27), and Nguyen et al. [19], respectively

path can be created at the interface between the matrix and the inclusions, and then propagate into

the matrix until the full rupture.

The force-displacement curves are plotted in Fig. 3.17a, Fig. 3.17b and Fig. 3.17c for 15 realiza-

tions. The average of these curves for 15 realizations is shown in red line. From the obtained results

of both the crack propagation and the mechanical behaviors in the simulation for 15 realizations,

111



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.16: Crack evolution for 15 realizations of the microstructures containing randomly dis-

tributed inclusions (part 5): (a), (b) and (c) depict crack propagation of realization 13 corre-

sponding to solutions 1 and 2 of strain decomposition (3.21) and (3.27), and Nguyen et al. [19],

respectively; (d), (e) and (f) depict crack propagation of realization 14 corresponding to solutions

1 and 2 of strain decomposition (3.21) and (3.27), and Nguyen et al. [19], respectively; (g), (h)

and (i) depict crack propagation of realization 15 corresponding to solutions 1 and 2 of strain

decomposition (3.21) and (3.27), and Nguyen et al. [19], respectively

two proposed solutions of strain decompositions can provide a promising tool to investigate the

damage of more complex structures.
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Figure 3.17: Traction test of a plate containing randomly distributed inclusions with interfacial

damage (the red curve denotes the average response): a) load-displacement curve for 15 realiza-

tions with solution 1 of strain decomposition (3.21); b) load-displacement curve for 15 realizations

with solution 2 of strain decomposition (3.27); c) load-displacement curve for 15 realizations with

Nguyen et al. [19]

3.3.5 Tension test of a realistic microstructure obtained by X-ray microto-

mography image

(a)

  Y

37.2 U

37.2   X

(b)

37.2

U

37.2

  X

  Y

(c)

Figure 3.18: Tension test of a realistic microstructure obtained by X-ray microtomography: geom-

etry and loading conditions; a) X-ray microtomography image in Ren et al. [53], b) horizontal

tension test, c) vertical tension test

In this example, we use two proposed strain decompositions (3.21) and (3.27), to predict the

microcrack propagation with both interfacial damage and bulk damage of a realistic microstruc-

ture obtained by X-ray microtomography image. We consider a 2D microstructure of dimensions
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Figure 3.19: Tension test of a realistic microstructure obtained by X-ray microtomography: a)

zero isovalue of the constructed level-set, b) geometry of the domain after solve: mortar (blue),

aggregates (black) and pores (white).

(a) (b)
(c)

Figure 3.20: Horizotal tension test: cracks nucleation and propagation: (a), (b) and (c) depict

crack propagation corresponding to two solutions of strain decompositions (3.21) and (3.27), and

Ren et al. [53], respectively

(a) (b) (c)

Figure 3.21: Vertical tension test: cracks nucleation and propagation: (a), (b) and (c) depict crack

propagation corresponding to two solutions of strain decompositions (3.21) and (3.27), and Ren et

al. [53], respectively
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37.2x37.2mm. By using the microtomography image of a real cementitious material provided in

[53], the geometry of this structure is described in Fig. 3.18a. The real material consists three

phases: mortar (grey), gravel aggregates (black) and pore (white). The loading conditions in the

horizontal and vertical directions are illustrated in Fig. 3.18b and Fig. 3.18c, respectively. A nu-

merical technique such as a level set function is used to determine the interface of the aggregate

and mortar. The interface shapes after the processing are shown in Fig. 3.19a. The shapes of three

phases after the processing: mortar (blue), gravel aggregates (black) and pore (white) are presented

in Fig. 3.19b.

After mesh smoothing by the numerical technique, the corresponding volume fractions of pores,

aggregates and cement paste are 0.48%, 51.27% and 48,25%, which are within the range of the vol-

ume fractions from 0.47% to 0.50% for pores, from 50.72% to 51.84% for aggregates, and 48.81%

to 47.66% for cement paste in [53]. These values are acceptable to simulate the crack propagation

in the microstructure. The material parameters of aggregate and mortar are Ei = 70 GPa, νi = 0.2,

Em = 25 GPa and νm = 0.2. The toughness gc = 30 N/m is assumed to be identical for the

different phases and gIc = gc. The fracture strength is taken as tu = 3 MPa (see in [53]). We can

choose the very compliant properties for the pore as Ep = 10−6 GPa, νp = 0.3. Each simulation

is carried out with constant displacement increments ∆u= 10−6 mm during 240 load increments.

The structure is discretized into 600x600 quadrilateral elements. The regularization parameter is

chosen as l = 0.12mm. The evolutions of crack for the horizontal tension test with two solutions

of strain decompositions (3.21) and (3.27) and the ones obtained in [53] are shown in Fig. 3.20a,

Fig. 3.20b and Fig. 3.20c, respectively. The crack evolutions for the vertical tension test are pre-

sented in Fig. 3.21. We can see that, with two proposed strain decompositions (3.21) and (3.27),

several cracks nucleate at the pores, while another cracks initiate at the interface of the phases and

then spread into the matrix until the full damage during the displacement increments. The obtained

results are very similar to the experimental results presented in [53]. This demonstrates the present

numerical models are the robust tools to predict the complex crack paths in the interaction of the

microcrack taking into account interfacial damage in the realistic microstructure obtained by X-ray

microtomography with heterogeneous material and very complex shapes of the interfaces.

3.4 Conclusions

In this work, the strain decomposition into a negative part and a positive part which are orthogonal

in the sense of an inner product where the elastic stiffness tensor acts as a metric role is successfully
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applied in the phase-field modeling taking into account interfacial damage to simulate the fracture

in the very complex and heterogeneous material.

Starting firstly with some examples in which the shape of the interface between two structures or

between two phases is assumed to be simple and smooth, the simulation of the crack nucleation

and propagation obtained seems to be very efficient and accurate.

In the structure containing randomly distributed inclusions, due to the various shapes of the in-

terface and their randomly occurrence densities, the microcrack is created not only by interfacial

damage and but also by the bulk damage. The simulation of the crack nucleation and propagation

with two solutions of strain decompositions shows that they are good tools to predict the crack

propagation in composites with complex microstructures.

In the last example, a realistic microstructure obtained by X-ray microtomography and containing

multi-phases: mortar, aggregate, and pore is studied. A numerical technique such as a level set

function is used to determine the arbitrary shape of the interfaces. Moreover, we demonstrated the

capability of two solutions of strain decompositions in the simulation of crack propagation in the

heterogeneous material with both interfacial and bulk damage through the simulation results.
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Chapter 4

Modeling and simulation of crack

propagation in anisotropic two-phase

composite materials by phase-field method

with interfacial damage

4.1 Phase-field modeling for anisotropic two-phase composite

materials

We consider in this chapter a composite structure consisting of two anisotropic phases (Fig. 4.1).

The interface between these two component phases is denoted by ΓI while the crack surface is de-

noted by Γ (see Fig. 4.1a). In a regularized framework, as presented in Chapter 3 that the geometry

of interface between the component phases of the composite material is described by a fixed scalar

parameter β(x) (see Fig. 4.1b) and the geometry of propagating crack is approximately defined by

a scalar parameter d(x, t) (see Fig. 4.1c).

In the case where the component phases of the composite under consideration are anisotropic, Eq.

(3.3) is rewritten by replacing γd(d,∇d) by an anisotropic crack surface density function defined

by:

γ(p)(d,∇d,ω(p)) =
d2

2l
+
l

2
ω(p) : (∇d⊗∇d) (4.1)

where p = 1 or 2 denotes the phase 1 or 2 and ω(p) is a second-order orientation tensor defined by

ω(p) = I + η(p)(I−m(p) ⊗m(p)) (4.2)
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Figure 4.1: Regularized representation of crack and interface in a composite: (a) composite mate-

rial consisting of two anisotropic materials with interface ΓI and crack Γ; (b) Regularized repre-

sentation the interface ΓI; (c) Regularized representation of the crack Γ

where m(p) and η(p) characterize the preferential cleavage plane of phase p. In particular, η(p) = 0

corresponds to the case of isotropic material. The total crack length in phase p of the composite

material is rewritten as:

Γ
(p)
d (d,ω(p)) =

∫
Ω(p)

γ(p)(d,∇d,ω(p))dΩ. (4.3)

where the functional derivative δdγ(p)(d,∇d,ω(p)) is determined by

δdγ
(p)(d,∇d,ω(p)) =

d

l
− l{∆d(1 + η(p))− η(p)m(p) ⊗m(p) : ∇∇d} (4.4)

Although in the rest of this Chapter, we consider the 2D case in which the two component phases of

the composites under investigation are assumed to be both orthotropic. More precisely, associated

with the orthonormal basis {e1, e2} whose the basis vectors e1 and e2 coincide with the privileged

directions of materials, the strain matrix components and the stress matrix components are related

by the following 2D Hooke law
ε11

ε22

2ε12

 = L0


σ11

σ22

σ12

 or


σ11

σ22

σ12

 = C0


ε11

ε22

2ε12

 (4.5)
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where C0 and L0 are respectively the elastic stiffness and compliance matrices which are given by

L0 = (C0)−1 =


1
E1

−ν21
E2

0

−ν12
E1

1
E2

0

0 0 1
G12

 . (4.6)

Here, E1 and E2 are respectively the Young modulus associated with the fibrous and transversal

directions, ν12 and ν21 are the Poisson’s ratios and G12 denotes the shear modulus. In the case of

unidirectional fiber-reinforced composite ply (see., Fig.4.1), since the fact that the fracture occurs

within the matrix phase, the only fracture toughness gc and only the fracture energy contribution

of the matrix phase are taken into account. When the fiber direction of composite makes an angle

α with the basis vector e1, relative to the orthonormal basis {e1, e2}, the elastic stiffness matrix is

expressed in the form

C = PC0P
T (4.7)

where

P =


c2 s2 2cs

s2 c2 −2cs

−cs cs c2 − s2

 (4.8)

with c = cos(α) and s = sin(α).

Next, applying the resolution of the phase-field problem and the resolution of the displacement

problem which have been presented in Chapter 3 and in Appendix A.2 allows us to predict the

crack nucleation and propagation of the anisotropic two-phase composite material under consider-

ation. The algorithm is provided in Appendix B.3.

4.2 Numerical examples

4.2.1 Tension test of composites with two identical material phases and ad-

hesive interface

By applying two solutions of strain decompositions (3.21) and (3.27) and by taking into account

interfacial damage into an anisotropic phase-field modeling, this first numerical example aims to

predict the crack evolution during the tension test of two identical material phases containing an

adhesive layer. In addition, we use only one damage variable d for the preferential cleavage direc-

tion instead of using multiple damage variables di for this problem. The geometry of the domain

occupied by the composite is described in Fig.4.2. In addition, the domain of dimensions 1x1mm
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Figure 4.2: Geometry and boundary condition of tension tests for composites with two identical

material phases and adhesive interface.

(a) (b) (c)
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Figure 4.3: Tension test of composites with two identical material phases and adhesive interface:

crack evolution due to bulk fracture and interfacial fracture with U = 0.0105mm: (a) and (d)

solution 1 of strain decomposition (3.21) with ϕ = 0o,−20o; (b) and (e) solution 2 of strain

decomposition (3.27) with ϕ = 0o,−20o; c) f) Nguyen et al. [81] with ϕ = 0o,−20o.

has an initial crack with length of 0.2mm and contains two subdomains consisting of the same

material. The interface between two phases is described by an adhesive layer. This domain is uni-

formly meshed into 200x200 quadrilateral elements. The boundary and loading conditions are as

follows: on the bottom side, the vertical displacement is fixed while the horizontal displacement is

120



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.4: Tension test of composites with two identical material phases: crack evolution due to

bulk fracture and interfacial fracture with U = 0.0105mm: a) d) g) solution 1 of strain decompo-

sition (3.21) with ϕ = −40o,−60o,−90o; b) e) h) solution 2 of strain decomposition (3.27) with

ϕ = −40o,−60o,−90o; c) f) i) Nguyen et al. [81] with ϕ = −40o,−60o,−90o

free and the left bottom node is fixed. On the top side, the horizontal displacement is free, while

the vertical displacement is prescribed to an increasing constant value of ∆u = 0.0001mm for 120

load increments. The plane strain assumption is assumed. The elastic stiffness matrix for the case

of α = 0o is:

C0 =


280 120 0

120 280 0

0 0 80

GPa (4.9)

Then, we can determine by using Eq. (4.7) the elastic stiffness matrix C corresponding to the angle

α with respect to e1. The fracture strength is set to be tu = 0.1 GPa at the interface. The fracture

toughness within the interface and in the bulk material are given by gIc = 1.45 N/mm and gc = 1.5
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Figure 4.5: Tension test of composites with two identical material phases: comparison of the stress-

displacement curves with ϕ = −45o between two solutions of strain decompositions (3.21) and

(3.27) and the results obtained in Nguyen et al. [81]

N/mm. The preferential cleavage direction is oriented at −45o with respect to the horizontal axis

in the upper domain, while in the lower domain, the preferential direction ϕ is set to vary from

0o to −90o to study the influence of preferential orientation and interfacial damage on the globe

fracture. In this example, the value of the anisotropic coefficient is chosen such as η = 20. The

regularization length is set to be as l = lβ = 0.012mm.

The evolutions of the crack for the case of ϕ = 0o and ϕ = −20o with U = 0.0105mm and with two

solutions of strain decompositions (3.21) and (3.27) are shown in Fig. 4.3. Similarly, the evolutions

of the crack with ϕ = −40o, ϕ = −60o and α = −90o and U = 0.0105mm are presented in Fig.

4.4. We can see that the crack propagations corresponding to two solutions of strain decompositions

(3.21) and (3.27) are similar to the ones observed in the work [81].

The comparison of the force-displacement curves between two solutions of strain decompositions

(3.21) and (3.27) and the work [81] with ϕ = −45o is shown in Fig. 4.5. We can see that the results

provided from two solutions of strain decompositions (3.21) and (3.27) are good agreement with

the ones derived in [81].

4.2.2 Tension test of a polycrystalline microstructure containing 50 grains

In this example, we solve the fracture problem with interfacial damage and bulk damage in a poly-

crystalline microstructure. We consider a domain whose dimensions are 10x10 µm. This domain
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Figure 4.6: Tension test of a polycrystalline microstructure containing 50 grains: geometry and

boundary conditions with dimensions in µm

(a) (b) (c)

Figure 4.7: Tension test of a polycrystalline microstructure: crack evolution with a) solution 1 of

strain decomposition (3.21), b) solution 2 of strain decomposition (3.27) and c) results of Nguyen

et al. [81]

contains 50 grains and an initial crack on the left side. The geometric setup and the loading con-

ditions are represented in Fig. 4.6 or in [81]. The left bottom node is fixed in two directions.

The remaining points of the bottom side are fixed in the vertical direction, while the horizontal

direction is free. The points of the top side are prescribed with constant displacement increment

∆u = 6 × 10−7mm during 130 load increments. The microstructure is uniformly discretized into

460x460 quadrilateral elements. In each grain, both directions of anisotropy and preferential dam-

age are generated randomly. The elastic stiffness matrix corresponding to α = 0o is given by:

C0 =


320 110 0

110 320 0

0 0 120

MPa (4.10)
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Figure 4.8: Tension test of a polycrystalline microstructure: comparison of the stress-displacement

curves between two solutions of strain decomposition (3.21) and (3.27) and Nguyen et al. [81]

The elastic stiffness matrix C corresponding to an arbitrary angle α is related to C0 by Eq. (4.7).

The fracture strength is tu= 1.5 MPa at the interface. The fracture toughness at the grain boundaries

and in the bulk material are gIc = 0.09 N/m and gc = 0.1 N/m. The anisotropy coefficient is chosen

η = 50 as in [81] to promote for the bulk damage in the grains. The regularization length parameter

is set to be as l = lβ = 0.03µm.

The evolution of the crack during the tension test with two solutions of strain decompositions (3.21)

and (3.27) are shown in Fig. 4.7a, 4.7b and 4.7c. It can be seen from these figures that the crack

initiates at the initial crack, then passes the grain boundary to propagate within the grain until the

full fracture. The crack paths in two solutions of strain decomposition (3.21) and (3.27) are good

agreement with the results in [81].

The curves of the displacement-stress relations are compared in Fig. 4.8. The values of the peak

stress and the displacement when the full damage occurs are similar in all cases. Thus, the phase-

field method taking into account the two solutions of strain decompositions (3.21) and (3.27) can

be considered as an efficient and accurate tool to solve the fracture problem of polycrystalline

microstructure where the interaction between interfacial fracture and grains fracture is very strong.
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4.2.3 Tension test of composites with two different orthotropic phases and

adhesive interface

U
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Figure 4.9: Tension test of composites with two different orthotropic phases and adhesive interface:

geometry, boundary condition and preferential orientation for each material.

Unlike the example presented in Section 4.2.1, we consider in this example a tension test of a

composite with two different orthotropic phases and adhesive interface. The geometric setup and

the loading conditions are shown in Fig. 4.9. The domain of dimensions 1x1mm occupied by the

composite possesses an initial crack of length 0.2mm. The domain is divided into two equal parts

where each part is made of a different orthotropic material. The interface between two parts is

described by an adhesive layer to illustrate the interfacial damage. The domain is meshed with

200x200 uniform quadrilateral elements. On the upper end and the vertical displacements are

prescribed to an increasing monotonic value of ∆u = 0.0001mm during the simulation. The

material parameters of the upper part are provided by [49] as follows: E1 = 150GPa, E2 = 11GPa,

G12 = 6GPa, ν12 = ν13 = 0.25, ν31 = ν21 = E2ν12/E1, ν23 = 0.25. The fracture toughness of

this material is gc1=0.352N/mm. The elastic compliance matrix LM
0 is written as (4.6). The elastic

stiffness matrix corresponding to α = 0o is determined by CM
0 = (LM

0 )−1 and given by

CM
0 =


150.69 2.76 0

2.76 11.05 0

0 0 6

GPa. (4.11)
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Figure 4.10: Tension test of composites with two Carbon-epoxy materials used by De Morais et

al. [49] and Robinson et al. [48]: a) d) crack evolution with solution 1 of strain decomposition

(3.21) and ϕ = −30o,−45o; b) e) crack evolution with solution 2 of strain decomposition (3.27)

and ϕ = −30o,−45o; c) f) comparisons of the stress-displacement curves

The material parameters of the lower part are provided by [48] as follows: E1 = 115GPa, E2 =

8.5GPa, G12 = 4.5GPa, ν12 = ν13 = 0.29, ν31 = ν21 = E2ν12/E1, ν23 = 0.3. The toughness

is gc2 = 0.33 N/mm. The elastic compliance matrix LR
0 is expressed as (4.6). The elastic stiffness

matrix corresponding to α = 0o is calculated by CR
0 = (LR

0 )−1 and provided by :

CR
0 =


115.72 2.48 0

2.48 8.55 0

0 0 4.5

GPa. (4.12)

The elastic stiffness matrices CR and CM with an arbitrary angle α of the fiber direction with

respect to the direction e1 can be determined by using Eq. (4.7). The fracture strength is tu=

0.01 GPa at the interface and the fracture toughness is given by gIc = gc2 = 0.33 N/mm. The

preferential cleavage direction is oriented at −45o in the upper part, while in the lower part, the

preferential direction ϕ takes different values such as −30o, −45o, −60o and −90o to investigate

the influences of preferential orientation and interfacial damage on the global fracture. In this

example, we takes the value of the anisotropic coefficient as η = 20. The regularization length

is chosen as l = lβ = 0.012 mm. The evolutions of the crack and the comparison of the force-

displacement curves for the solutions of ϕ = −30o and ϕ = −45o, with two solutions of strain
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Figure 4.11: Tension test of composites with two Carbon-epoxy materials used by De Morais et

al. [49] and Robinson et al. [48]: a) d) crack evolution with solution 1 of strain decomposition

(3.21) and ϕ = −60o,−90o; b) e) crack evolution with solution 2 of strain decomposition (3.27)

and ϕ = −60o,−90o; c) f) comparisons of the stress-displacement curves.
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Figure 4.12: Symmetric three-point bending test of a composite beam consisting of two identical

materials with adhesive interface: geometry, boundary condition and preferential orientation for

each material.

decompositions (3.21) and (3.27) are presented in Fig. 4.10. And, the evolutions of the crack and

the comparison of the force-displacement curves for the cases of ϕ = −60o and ϕ = −90o are

detailed in Fig. 4.11. We can see from Figs. 4.10 and 4.11 that the crack propagation and the
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force-displacement behavior of the solution 1 with (3.21) are similar to the ones of the solution 2

with (3.27). The crack nucleates at the initial crack and propagates within the material 1 respect to

the preferential direction of −45o, then crosses the interface to spread within the material 2 respect

to the preferential direction of ϕ when ϕ = −30o,−45o and −60o. For ϕ = −90o, the crack cannot

cross the interface and it propagates along this interface (see Fig. 4.11d and Fig. 4.11e).

4.2.4 Symmetric three-point bending test of a composite beam consisting of

two identical materials with adhesive interface
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Figure 4.13: Symmetric three-point bending test of a composite beam consisting of two identical

materials with adhesive interface: a) d) g) crack evolution with solution 1 of strain decomposition

(3.21) and ϕ = 0o, 30o, 45o; b) e) h) crack evolution with solution 2 of strain decomposition (3.27)

and ϕ = 0o, 30o, 45o; c) f) i) comparison of the load-displacement curves.
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In this example, we consider a damage problem in which a symmetric three-point bending test of

a beam consisting of two layers made of two identical materials. These two layers are connected

via an adhesive layer as shown in Fig. 4.12. The dimensions of each layer are chosen as 3x0.5mm.

Each layer is meshed into 75x450 uniform quadrilateral elements. The lower layer contains an

initial crack whose length is 0.3mm. The boundary conditions are described as follows: the left

bottom corner is blocked in two directions, the vertical displacement of the right bottom node is

blocked while its horizontal displacement is free. At the center on the upper end, the displacement

is prescribed with constant displacement increment ∆u = −0.0005mm during the simulation. The

fracture strength is tu= 0.1GPa. The values of the fracture toughness are gIc = 1.45 N/mm and

gc = 1.5 N/mm. The elastic stiffness matrix corresponding to the case of α = 0o is given by

C0 =


280 120 0

120 280 0

0 0 80

GPa. (4.13)
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Figure 4.14: Symmetric three-point bending test of a composite beam consisting of two identical

materials with adhesive interface: a) d) g) crack evolution with solution 1 of strain decomposition

(3.21) and ϕ = 60o, 90o; b) e) h) crack evolution with solution 2 of strain decomposition (3.27) and

ϕ = 60o, 90o; c) f) i) comparison of the load-displacement curves.

The value of the anisotropy coefficient is chosen as η = 20. The length scale parameter is taken as

l = lβ = 0.015 mm. The preferential direction of lower layer is set to be equal to 45o, while the
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Figure 4.15: Symmetric three-point bending test of a composite beam consisting of two identical

materials with adhesive interface: a) d) g) crack evolution with solution 1 of strain decomposition

(3.21) and ϕ = 120o, 135o, 150o; b) e) h) crack evolution with solution 2 of strain decomposition

(3.27) and ϕ = 120o, 135o, 150o; c) f) i) comparison of the load-displacement curves..

preferential directions ϕ of upper layer is set to vary from 0o to 150o. The evolution of the crack

and the comparison of the force-displacement curves for the cases of ϕ = 0o, ϕ = 30o and ϕ = 45o,

with two proposed strain decompositions (3.21) and (3.27) are presented in Fig. 4.13. Similarly,

the evolutions of the crack and the comparison of the force-displacement curves when ϕ = 60o and

ϕ = 90o are detailed in Fig. 4.14. For ϕ = 120o and ϕ = 135o and ϕ = 150o, the evolutions of the

crack and the comparison of the force-displacement curves are shown in Fig. 4.15.

It can be seen from Figs. 4.13, 4.14 and 4.15, the crack propagation and the force-displacement

behavior obtained in two solutions of strain decompositions are similar. More precisely, the crack

nucleates at the initial crack and propagates within the lower layer respect to the preferential direc-
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tion of 45o, when ϕ = 0o the crack only propagates along the interface between two layers without

causing damage to the upper layer (see Fig. 4.13a and Fig. 4.13b), while for remaining cases, the

crack continues to cross the interface to spread within the upper layer respect to the preferential

directions of ϕ. For the ϕ = 0o case, two layers of the composite beam seem to be detached at the

interface when the load is increased. At this time, the interfacial damage is promoted in the com-

petition with the bulk damage. This demonstrates the role of computational modeling taking into

account interfacial fracture which is used with two proposed strain decompositions. It is important

to observe from the force-displacement curve that the values of the peak load are almost the same

in all cases. This may be due to the globe behavior of the structure related to the formation of the

first crack.

4.2.5 Symmetric three-point bending test of a composite beam consisting of

two different anisotropic materials with adhesive interface
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Figure 4.16: Symmetric three-point bending test of a composite beam consisting of two different

anisotropic materials with adhesive interface

We consider in this example a beam which is similar to the one presented in Section 4.2.4. However,

in this example, the beam under consideration is assumed to be made of two different orthotropic

materials. The dimensions of each layer are 3x0.5mm. Each layer is also uniformly discretized

into 75x450 quadrilateral elements. The geometric setup and the loading conditions are described

in Fig.4.16. More precisely, the left bottom corner is blocked in two directions, the vertical dis-

placement of the right bottom node is blocked while its horizontal displacement is free. The com-

putation is carried out with constant displacement increment ∆u = −0.0005mm prescribed at the

center of the upper end. The fracture strength is given as tu= 0.01 GPa. The material properties of
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Figure 4.17: Symmetric three-point bending test of a composite beam consisting of two Carbon-

epoxy materials used by De Morais et al. [49] and Robinson et al. [48]: a) d) g) crack evolution

corresponding to solution 1 of strain decomposition (3.21) with ϕ = 0o, 30o, 45o; b) e) h) crack

evolution corresponding to solution 2 of strain decomposition (3.27) with ϕ = 0o, 30o, 45o; c) f) i)

comparison of the load-displacement curves.

the lower layer are chosen as in the work of De Morais et al. [49] withE1 = 150GPa, E2 = 11GPa,

G12 = 6GPa, ν12 = ν13 = 0.25, ν31 = ν21 = E1ν12/E2 and ν23 = 0.25. The fracture toughness of

this material is given as gc1=0.352N/mm. By using the elastic compliance matrix LM
0 as in (4.6),

the elastic stiffness matrix corresponding to α = 0o can be calculated with CM
0 = (LM

0 )−1 and

given by

CM
0 =


150.69 2.76 0

2.76 11.05 0

0 0 6

GPa. (4.14)
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Figure 4.18: Symmetric three-point bending test of a composite beam consisting of two Carbon-

epoxy materials used by De Morais et al. [49] and Robinson et al. [48]: a) d) g) crack evolu-

tion corresponding to solution 1 of strain decomposition (3.21) with ϕ = 60o, 90o; b) e) h) crack

evolution corresponding to solution 2 of strain decomposition (3.27) with ϕ = 60o, 90o; c) f) i)

comparison of the load-displacement curves.

For the upper layer, we use the material properties which have been used by Robinson et al. [48] as

E1 = 115GPa, E2 = 8.5GPa, G12 = 4.5GPa, ν12 = ν13 = 0.29, ν31 = ν21 = E1ν12/E2, ν23 = 0.3.

The toughness is gc2=0.33N/mm. Similarly, the elastic stiffness matrix according to the 0o direction

is calculated by using CR
0 = (LR

0 )−1 and provided by:

CR
0 =


115.72 2.48 0

2.48 8.55 0

0 0 4.5

GPa. (4.15)

The elastic stiffness matrices CR and CM with an arbitrary angle α of the fiber can be determined

by applying Eq. (4.7). The fracture toughness at the interface is given by gIc = 0.33N/mm and the

anisotropic coefficient is set to be equal to η = 20 and l = lβ = 0.015mm. In order to investigate

the influence of preferential direction on the fracture response, we set the preferential direction of

the lower layer is fixed as 45o while the preferential directions ϕ of the upper layer is set to vary

from 0o to 150o. The evolutions of the crack and the comparison of the force-displacement curves

when the values of ϕ change from 0o to 150o with two solutions of strain decompositions (3.21)
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Figure 4.19: Symmetric three-point bending test of a composite beam consisting of two Carbon-

epoxy materials used by De Morais et al. [49] and Robinson et al. [48]: a) d) g) crack evolution

corresponding to solution 1 of strain decomposition (3.21) with ϕ = 120o, 135o, 150o; b) e) h) crack

evolution corresponding to solution 2 of strain decomposition (3.27) with ϕ = 120o, 135o, 150o; c)

f) i) comparison of the load-displacement curves.

and (3.27) are illustrated in Figs. 4.17, 4.18 and 4.19. We can see that the results obtained with

two solutions of strain decompositions are relatively similar. When ϕ = 0o, the crack propagates

within the lower layer and continues to spread along the interface, while in the remaining cases,

the crack crosses the interface and propagates into the upper layer. It can be observed from the

force-displacement curves that the value of peak load increases when the value of ϕ increases from

0o to 90o. In contrary, the value of the peak load decreases when the value of ϕ increases from 90o

to 150o. Thus, the peak load achieves the maximum value when ϕ = 90o.
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4.3 Conclusions

In this chapter, we demonstrate that the phase-field method, with interfacial damage and with or-

thogonal strain decompositions, developed in Chapter 3 is not only applicable to composite ma-

terials consisting of isotropic phases but can be extended also to the case of composite materials

made of anisotropic multiphase. Moreover, unlike phase-field methods reported in the literature to

model anisotropic materials in which multiple phase-field variables di has been introduced in the

formulation, the phase-field method proposed in this chapter use only one damage variable d. Dif-

ferent numerical examples show that the phase-field method proposed is an efficient and accurate

numerical tool capable of modeling and simulation of crack propagation in anisotropic multiphase

composite materials.

135



Conclusions and perspectives

• Conclusions

The present thesis has contributed to developing the phase-field method by solving some open prob-

lems in modelling and simulating the initiation and propagation of cracks in brittle and quasi-brittle

materials. Both bulk damage and interfacial damage have been taken into account, while consid-

ering isotropic and anisotropic multi-phase materials with realistic microstructure. The obtained

numerical results have been compared with available experimental data.

First, we have adopted and implemented a new family of degradation functions in the phase-field

method. In particular, we have shown that the regularization length does not depend on the mesh

size in FEM. Second, the novel strain decompositions of He [39], which are orthogonal in the

sense of the inner product with the elastic stiffness tensor as the measure, have been used and

implemented in the phase-field method while accounting for bulk damage and interfacial damage.

A number of numerical examples have been provided to illustrate the correctness and efficiency of

the method developed. Finally, we have shown that it is possible to use a single damage variable

instead of multiple ones to correctly model and simulate the crack path in strongly anisotropic

materials.

• Perspectives

However, all the numerical examples given in this thesis are two-dimensional, and the materials

considered are brittle or quasi-brittle. In principle, the methods developed in this thesis are valid in

the three-dimensional situation but this should be carried out in a near future. The extension of our

work beyond brittle or quasi-brittle materials necessitates more effort. For example, considering

viscoelasticity and plasticity is challenging, especially in the anisotropic case.
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Appendix A

A.1 Details about the solution of the displacement problem

• Weak form of the displacement problem

Using the variational concept for minimizing the total energy of the solid E with respect to the

displacement u, the weak form corresponding to the displacement problem can be written as:∫
Ω

∂W e
u

∂εe
: εe(δu)dΩ +

∫
Ω

∂ΨI(w,χ)

∂w
δwγβ(β,∇β)dΩ =

∫
Ω

f · δudΩ +

∫
∂ΩF

F̄ · δudΓ (A.1)

In the absence of body forces, Equation (A.1) can be rewritten as

∫
Ω

σe : εe(δu)dΩ +

∫
Ω

t(w,χ)δwγβ(β,∇β)dΩ−
∫

Ω

σe : ∇sδudΩ = 0 (A.2)

where f and F̄ body forces and prescribed traction over the boundary ∂Ω. And σe = ∂W e
u

∂εe
is the

Cauchy stress and t(w,χ) = ∂ΨI(w,χ)
∂w

is the traction vector acting on the interface ΓI oriented by

nI and δw = h∇(δu)nI . Using σen = t, the aforementioned expression can be now described

as:

∫
Ω

σe : {εe(δu) + n⊗wγβ(β,∇β)−∇sδu}dΩ (A.3)

which is satisfied for a following strain tensor:

εe = ∇su− n⊗s wγβ(β,∇β) (A.4)

where (∇su)ij = (ui,j+uj,i)/2 and (n⊗sw)ij = (niwj+njwi). From (A.4), we set ε̄ = n⊗swγβ
Case 1, from (3.25), we have:

Ψ+
e (ε+

e ) =
1

2

{
1

D
R̃+
e [Tr(ε̃e)][1] +

(
ε̃e −

[Tr(ε̃e)][1]

D

)}{
1

D
R̃+
e [Tr(ε̃e)][1] +

(
ε̃e −

[Tr(ε̃e)][1]

D

)}
(A.5)
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Ψ+
e (ε+

e ) =
1

2

{
R̃e

+

D
[1]T [1] +

(
I− [1]T [1]

D

)}
: C :

{
R̃e

+

D
[1]T [1] +

(
I− [1]T [1]

D

)}
: ε2

e

(A.6)

and from (3.26), we obtain:

Ψ−e (ε−e ) =
1

2

{
1

D
R̃−e [Tr(ε̃e)][1]

}{
1

D
R̃−e [Tr(ε̃e)][1]

}
(A.7)

Ψ−e (ε−e ) =
1

2

{
R̃e
−

D
[1]T [1]

}
: C :

{
R̃e
−

D
[1]T [1]

}
: ε2

e (A.8)

we introduce: Re
+ =

{
R̃e

+

D [1]T [1] +
(
I− [1]T [1]

D

)}
and Re

− =
{

R̃e
−

D [1]T [1]
}

, with R̃±e =

1
2
{sign{±Tr(ε̃e)}+ 1} and 〈Tr(ε̃e)〉± = R̃±e Tr(ε̃e) (see [18]).

We have the Cauchy stress as:

σe = {g(d) + k}∂Ψ+
e (ε+

e )

∂εe
+
∂Ψ−e (ε−e )

∂εe
(A.9)

σe =
{
{g(d) + k}Re

+ : C : Re
+ + Re

− : C : Re
−} : εe = C(d) : εe (A.10)

Case 2, from (3.29) and (3.30), we have:

Ψ+
e (εe

+) =
1

2
ε̃+
e : ε̃+

e =
1

2

(
P̃e

+
: C1/2

)
:
(
P̃e

+
: C1/2

)
: ε2

e (A.11)

Ψ−e (εe
−) =

1

2
ε̃−e : ε̃−e =

1

2

(
P̃e
−

: C1/2
)

:
(
P̃e
−

: C1/2
)

: ε2
e (A.12)

Here, P̃e
±

= ∂ε̃±e
∂ε̃e

can be expressed by [18]

Similar to (A.9), the Cauchy stress now can be analyzed such as:

σe =
{
{g(d) + k}

(
P̃e

+
: C1/2

)
:
(
P̃e

+
: C1/2

)
+
(
P̃e
−

: C1/2
)

:
(
P̃e
−

: C1/2
)}

: εe = C(d) : εe

(A.13)

• Model for interface damage

The general form of the traction vector t(w,χ) in Equation (A.2) is given by

t(w,χ) = [tn(wn, χn), tt(wt, χt)]
T (A.14)

where, tn and tt are the normal part and tangential part of the traction vector t across the interface

oriented by its normal vector nI . Here, we use a simplified nonlinear elastic cohesive model for the

interface by taking into account the normal traction only, t(w,χ).nI = tn(wn, χn). The cohesive

law in the work of [19] is written as:

tn(wn) = gIc
wn

δn
exp

(
−wn

δn

)
(A.15)
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where wn = w.nI ; δn = gIc
tue

, and e = exp(1), the fracture toughness gIc at the interfaces (defined

as the total area of the traction-opening curve, see in [19]), and tu is the fracture strength.

The expression of the traction at the interface is given e.g. for the normal traction by

tn(w,χ) =

 (A.15) if wn(x, t) ≥ χn(t)

tn(χn(x,t))wn
χn(x,t)

if wn(x, t) < χn(t),
(A.16)

And, we set:

KI =
∂t(w,χ)

∂w
=

 ∂tn(w,χ)
∂wn

0

0 0

 (A.17)

where χ(x, t) = maxτ∈[0,t] {w(x, τ)} = [χn(x, t), χt(x, t)]
T .

• FEM discretization of the displacement problem

Even though the phase field problem is linear in the staggered scheme, ie, for a fixed value to u,

it should be mentioned that for a fixed crack phase field value d, the mechanical problem (A.1)

is nonlinear since the computation of eigenvalues of the bulk strain εe and the interface cohesive

model in (A.16). A linear procedure to solve this nonlinear problem by the Newton method is

introduced in the following. From (A.1), (A.10) and (A.13), the balance equation can be rewritten

as

R =

∫
Ω

σe : εe(δu)dΩ +

∫
Ω

γβ(x)t(w,χ) · δwdΩ−
∫

Ω

f · δudΩ−
∫
∂ΩF

F̄ · δudΓ = 0 (A.18)

where εe(δu) = ∇sδu − n ⊗s δwγβ . In the Newton method, we solve the following tangent

equation by updating the displacement for each loading as:

D∆uR(uk, d) = −R(uk, d) (A.19)

where uk is the displacement solution from the kth iteration. The displacements at the current

iteration are rewritten by

uk+1 = uk + ∆uk+1 (A.20)

From (A.19), we obtain

D∆uR(uk) =

∫
Ω

∂σe
∂εe

: εe(∆ε) : εe(δε)dΩ +

∫
Ω

γβ(x)
∂t(w,χ)

∂w
: ∆w : δwdΩ (A.21)

with

∆w(x) = h∇∆u(x)
∇φ(x)

‖∇φ(x)‖
= h∇∆u(x)nI (A.22)

Similarly, we use FEM approximations for the displacement problem in one element:

u = [N]{ui}, δu = [N]{δui}, ∆u = [N]{∆ui} (A.23)
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where N denotes the shape functions matrix associated to displacement variables and ui and ∆ui

are nodal displacement components and nodal incremental displacement components in one ele-

ment. Furthermore, we have:

[ε](∆u) = [B]{∆ui}, [ε](δu) = [B]{δui} (A.24)

where B is a shape function matrix derivatives. The diffuse jump approximation vector and its

incremental counterparts can be discretized as:

w = h[N ][B̃]{ui}, ∆w = h[N ][B̃]{∆ui}, δw = h[N ][B̃]{δui} (A.25)

where

[N ] =

 n1 n2 0 0

0 0 n1 n2

 (A.26)

[B̃]{ui} =
[

∂u1
∂x1

∂u1
∂x2

∂u2
∂x1

∂u2
∂x2

]T
=

 ∂
∂x1

∂
∂x2

0 0

0 0 ∂
∂x1

∂
∂x2

T [N]{ui} (A.27)

and n1 and n2 are the horizontal component and vertical component of the normal vector nI . The

smoothed jump strain at the interfaces is defined by:

[ε̄] =


ε̄11

ε̄22

√
2ε̄12

 = γβ(x)


w1n1

w2n2

(w1n2 + w2n1)/
√

2

 (A.28)

Then, it yields

[ε̄(∆u)] = hγβ(x)[M][B̃]{∆ui}, (A.29)

with

[M] =


n1 0

0 n2

1√
2
n2

1√
2
n1

 [N ] =


n2

1 n1n2 0 0

0 0 n1n2 n2
2

1√
2
n1n2

1√
2
n2

2
1√
2
n2

1
1√
2
n1n2

 (A.30)

From (A.19) and the aforementioned FEM discretization, the linear tangent problem reduces to the

following linear system of algebraic equations:

D∆uR(uik) = [Ktan]{∆uik+1} = −{R(uik)} (A.31)

[Ktan] =

∫
Ω

{
[BT ]− hγβ(x)[B̃T ][MT ]

}
[C(d)]

{
[B]− hγβ(x)[M][B̃]

}
dΩ

+

∫
Ω

h2γβ(x)[B̃T ][N T ][KI ][N ][B̃]dΩ (A.32)
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and

{R(uik)} =

∫
Ω

{
[BT ]− hγβ(x)[B̃T ][MT ]

}
[C(d)]

{
[B]− hγβ(x)[M][B̃]

}
{uik}dΩ

+

∫
Ω

hγβ(x)[B̃T ][N T ]{t(wk)}dΩ−
∫

Ω

{f}[NT ]dΩ−
∫
∂ΩF

{F̄}[NT ]dΓ (A.33)

With C(d) = ∂σe
∂εe

is the matrix form corresponding to the fourth-order tensor C.

And then, we solve the following problem:

{∆uik+1} = −[Ktan]−1 · {R(uik)} (A.34)

A.2 The solution of the phase field problem in Chapter 4

• Basics of thermodynamics and evolution of phase field

It can be shown that the conditionAḋ ≥ 0 will be satisfied if either F < 0 and ḋ = 0 or F = 0 and

ḋ > 0. More precisely, the latter condition leads that, when ḋ > 0, we have

F = −∂W
∂d

= 2(1− d)Ψ+
e − (1− β)gcδdγ

(p)(d,∇d,ω(p)) = 0 (A.35)

the strain history function introduced in the works [19] is employed, here:

He = max
τ∈[0,t]

{Ψ+
e (x, τ)} (A.36)

and (A.37) is substituted by

2(1− d)He − (1− β)gcδdγ(d,∇d,ω(p)) = 0 (A.37)

• Weak form of the phase field problem

To compute the scalar phase-filed parameter d(x, t), a temporal discretization is carried out at

times 0, t1, ..., tn, tn+1, .... By assuming that, at time t = tn, the scalar phase-filed parameter dn =

d(x, tn) is known. Using (A.37) and (4.4), the weak form used to compute dn+1 = d(x, tn+1) is

expressed as follows:∫
Ω

{(
2He

n + (1− β)
gc
l

)
dn+1δd+ (1− β)gcl∇dn+1ω

(p)∇(δd)
}
dΩ =

∫
Ω

2He
nδddΩ (A.38)

Using FEM, the phase field as well as the phase-field gradient are approximated by:

d(x) = {Nd(x)}{d} and ∇d(x) = [Bd(x)]{d} (A.39)

δd(x) = {Nd(x)}{δd} and ∇δd(x) = [Bd(x)]{δd} (A.40)
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where Nd(x) and Bd(x) are the matrix of shape function and matrix of shape function derivative

associated with phase-field variable, respectively. By introducing the aforementioned FEM dis-

cretization into the weak form (A.38), the phase-field variable dn+1 = d(x, tn+1) can be calculated

{d} = [Kd]
−1 · {Fd} (A.41)

where the rigid matrix is determined by

[Kd] =

∫
Ω

{(gc
l

(1− β) + 2He
n

)
{Nd}T{Nd}+ gcl(1− β)[Bd]

Tω(p)[Bd]
}
dΩ (A.42)

and the force vector is defined by

{Fd} =

∫
Ω

2{Nd}THe
ndΩ. (A.43)
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Appendix B

B.1 Algorithm in chapter 1

1. Set the initial displacement field u0(x), the phase field d0(x) and the strain-history functionH0.

2. FOR all displacement increments: (at each time step tn+1), given dn, un andHn.

. (a) Determine the new family of degradation functions according to (1.11):

. (i) Determine the value of n according to (1.44) or Fig. 1.4

. (ii) Determine the value of m(n) according to (1.12)

. (b) Compute the history functionHn+1 according to (1.21).

. (c) Compute the phase field dn+1(x) according to (1.29).

. (d) Compute the displacement field un+1(x) according to (1.37).

. (e) (•)n ← (•)n+1 and go to (a).

END

B.2 Algorithms in chapter 2

1. Set the initial displacement field u0(x), the phase field d0(x) and the strain-history functionH0.

2. FOR all displacement increments: (at each time step tn+1), given dn, un andHn.

. (a) Compute the history function Hn+1 that satisfies the condition of the strain orthogonal de-

compositions according to (2.45) is computed such as:

. (i) Equation (2.22) for case 1 .

. (ii) Equation (2.38) for case 2.

. (b) Compute the phase field dn+1(x) according to (2.53).

. (c) Compute the displacement field un+1(x) according to (2.71).

. (d) (•)n ← (•)n+1 and go to (a).

END
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B.3 Algorithm in chapter 3 and chapter 4

1. Set the initial displacement field u0(x), the phase field d0(x) and the strain-history functionHe
0.

2. Compute the interfacial phase field β(x) according to (3.4)

3. FOR all displacement increments: (at each time step tn+1), given dn, un andHe
n.

. (a) Compute the history function He
n+1 that satisfies the condition of the bulk strain orthogonal

decompositions according to (3.35) with Ψ+
e is computed such as:

. (i) Equation (3.25) for case 1

. (ii) Equation (3.29) for case 2

. (b) Compute the phase field dn+1(x) according to (3.41) (in chapter 3) or (A.41) (in chapter 4).

. (c) Compute the displacement field un+1(x):

. Initialize uk = un

. WHILE ‖∆uk+1‖ > ε, ε� 1 :

. (i) Compute ∆uik+1 by (A.34).

. (ii) Update uk+1 = uk + ∆uik+1.

. (iii) (•)n ← (•)n+1 and go to (i).

. END

END
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