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Introduction 

Wireless localization is the process of determining the coordinates of an object in a 2D or 3D physical 

space. The outdoor wireless localization, represented mainly by the Global Positioning System (GPS), has 

experienced a great success since its birth in the 1990s. The enormous potential applications make the 

indoor wireless localization also becoming an attractive field of study in recent years. In healthcare, 

positioning can be used to track and authenticate moving people or objects to reduce risks to patients. In 

smart environments, positioning can be applied to monitoring and alarm systems adapted to accidents and 

theft, automatically switching to save energy and monitor machines, thus improving the automation of 

industrial installations. In the field of smart entertainment, smart games use localization to adapt the 

player's condition by detecting its position, motion, and acceleration. The indoor localization is expected 

replicate the success of the outdoor location. 

Among all the current localizing technologies, time-based localization with Ultra-Wideband (UWB) is 

among the most accurate, especially thanks to its capabilities to discriminate multipath. The 60 GHz 

frequency band, with up to 8.64 GHz bandwidth, is expected to combine accurate UWB localization and 

high-speed wireless communication in 5G. One of the bottlenecks in wireless localization is due to the 

complex phenomenon taking place in the environment (such as reflection, diffraction, etc.) within which 

electromagnetic waves propagate. Indeed, the bias induced by the multipath is the principal source of error 

for localization. Especially, when the direct path, i.e., the Line-Of-Sight (LOS), is blocked, the transmission 

becomes Non-Line-Of-Sight (NLOS), in which the absence of the information about the true distance and 

direction leads the localizing system to be entirely invalid. Unfortunately, the blockage of 60 GHz direct 

path is extremely frequent because of the high directivity of such communication, impacting hardly the 

quality and security of millimeter wave wireless communication.  

For communication purpose, LOS blockage is typically mitigated thanks to beam steering capability. 

Indeed, at 60 GHz, directional antennas are considered in order to mitigate the large free space attenuation 

and to overcome blockage scenario. Tx and/or Rx antennas scan the angular space in order to find the best 

suitable link, e.g., leading to the highest received power, which may occur either on a LOS or an NLOS 

path. This process is known as beam training. Nevertheless, if the communication uses an NLOS link and if 

this later is used to estimate the range and the direction of the receiver with respect to the transmitter for 

instance, a large bias is therefore introduced. Consequently; the knowledge of whether the communication 

takes place on a LOS or on an NLOS component is an important feature. It can provide the system with an 

indicator that informs if the current position is likely to be well estimated (LOS case) or not (NLOS case). 

More than simply offering a confidence indicator, it can also be used to mitigate NLOS effect. So, 

identifying NLOS transmission appears to be an important step towards accurate positioning.  

This work considers that the beam training process makes readily available the angular channel 

knowledge at Tx and/or Rx in the form of a 2D power angular spectrum. Using this spectrum, the different 

angular clusters are first identified. Then, high-order statistics moments are calculated for each cluster in 

order to classify them. In particular, it has been found that the kurtosis enables discriminating LOS from 
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NLOS clusters with promising probabilities. The LOS-NLOS identification in the 60 GHz band is thus the 

objective of this thesis and the main contributions are twofold: 

 Design an efficient clustering method, inspired from image processing, to statistically analyze power 

angular spectrum while preserving angular cluster shapes; 

 Classify and identify LOS and NLOS clusters within the channel using its statistics. 

The thesis is organized as follow:  

1. In the first chapter, the background of this study is introduced. The potential applications and current 

technologies of wireless localization are briefly summarized. The trends of 5G wireless communication 

and the advantages of 60 GHz spectrum are highlighted. After introducing the basic theory of radio 

channel modeling, current studies on the blockage of direct path for millimeter wave communication 

are presented, including the blockages caused by outdoor buildings and indoor human activities. 

2. In chapter 2, the state of the art regarding NLOS identification is introduced. After briefly exploring 

the aim of current NLOS identification, the statistical differences between LOS and NLOS 

transmission are summarized. The current metrics for identification are reviewed in details. The 

parametric and non-parametric method of identification methods are both reviewed. Clustering is also 

an important step of NLOS identification and channel modeling. Two classes of clustering algorithms, 

hierarchical and partitional method, are presented. Then, issues encountered with the widely used 

K-Power-Means algorithm are highlighted. 

3. In chapter 3, the principle of an original spatial clustering method, based on watershed segmentation, is 

presented in details. Indeed, a clustering method that conserves intact the angular shape of clusters is of 

utmost importance in the LOS/NLOS identification performed. Furthermore, to obtain meaningful 

results, a large number of channels is to be analyzed, thereby necessitating to perform clustering many 

times as well. Consequently, a fast method is required. The watershed segmentation, introduced in this 

chapter 3 to group power clusters within the power angular spectrum, is a method inspired from image 

processing. To validate the feasibility of the proposed approach, simulations are performed based on 

the data generated by the IEEE 802.11ad 60 GHz standard. To evaluate the performance, segmentation 

by watershed is compared to K-Power-Means and a modified version of K-Power-Means. 

4. In chapter 4, the NLOS identification is achieved in both simulation and measurement. According to 

the 60 GHz channel space-time structure, NLOS clusters are identified after spatial clustering. With the 

help of antenna directional radiation properties, the symmetry of the cluster in terms of power, 

time-domain kurtosis, and frequency autocorrelation are introduced as suitable identification metrics. 

Maximum likelihood Ratio and Artificial Neural Network are used as identification methods. 

Simulation results are obtained based on the PAS generated by the IEEE 802.11ad channel model, 

while the measurements are conducted in a laboratory scenario. The performance is evaluated with the 

error probability of identification. 

5. A general conclusion and perspectives end this report.  
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1.1 Introduction 

The huge potential of new applications provided by the next millimeter wave 5G standard, and 

particularly the accurate localization function which is built in the system, appeal to new solutions to cope 

with the main drawbacks generally associated with the indoor positioning system. After a brief presentation 

of the context dealing with communication and/or localization-based applications, we present the required 

scientific and technical backgrounds, in terms of relevant metrics, and in terms of channel modeling, to 
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handle such a study, and we discuss the current wireless localization technologies, operating in 60 GHz 

band.  We conclude this chapter by highlighting the main objectives we target. 

1.2 Indoor Wireless Localization 

1.2.1 Potential applications of indoor wireless localization 

Wireless localization is the process of determining the coordinates of an object by detecting 

electromagnetic waves. Depending on the scenarios of application, it can be divided into outdoor and 

indoor localization. The outdoor wireless localization represented mainly by Global Positioning System 

(GPS) has taken a great success since its birth in the 1990s: the navigation for aviation, marine, and driving, 

geographic information for agriculture and environment protection, localization for disaster relief and 

personal recreation, all relay on GPS [1]. 

(a) (b)

 

Figure 1.1 Current application of indoor localization: (a) transport robot in factory; (b) Amazon Go convenience store without 

checkout. 

The potential applications of indoor wireless positioning are also very abundant. In healthcare, 

location can be used to track and authenticate moving people or objects to reduce risks to patients. In smart 

environments, location can be applied to monitoring and alarm systems adapted to accidents and theft, 

automatically switching to save energy and monitor machines, thus improving the automation of industrial 

installations. In the field of smart entertainment, smart games use localization to adapt the player's 

condition by detecting position, motion, and acceleration [2]. Recently, transport robots in factories and 

Amazon Go convenience store without checkout have been achieved as shown in Figure 1.1. All the above 

applications need a precise location of users. The indoor localization will replicate the success of the 

outdoor location. The opportunity for indoor location is attractive: market research shows that the global 

market for indoor positioning represented approximately US$5.22 billion in 2016, and is expected to reach 

US$40.99 billion in 2022, compound annual growth rate (composite between 2017-2022) is 42.0% [3].  
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1.2.2 Wireless localization techniques 

There are two important metrics to evaluate a localization performance: accuracy and precision. 

Accuracy is the degree to which the measurement is close to the correct value. Precision is the repeatability 

of the measurement. The two factors can be used as indicators to evaluate the errors of a positioning system. 

In addition to the accuracy and precision, the complexity of a localization algorithm, the robustness and 

scalability of the system, and the cost are also metrics usually considered for localization system design. 

The performance metrics benchmarking for indoor wireless localization are listed in Table 1.1.  

Table 1.1 Performance metrics benchmarking for indoor wireless localization 

Accuracy 
Mean distance error is the average Euclidean distance between the estimated location and the 
actual location. The accuracy can be considered to be a potential bias or systematic effect/offset 
of a positioning system. 

Precision 
Evaluate how consistently the system works and reveals the variation in its performance over 
many trials. The cumulative probability functions (CDF) of the distance error is used for 
measuring the precision of a system. 

Complexity Computing complexity of the positioning algorithm. 

Robustness 
High robustness makes the localization performs normally even when some signals are not 
available, or when some of the signal features have never be seen before 

Scalability 

The scalability of a system ensures a normal positioning operation when the positioning scope 
gets large. A location system may need to scale on two axes: geography and density. Geographic 
scale means that the area or volume is covered. Density means the number of units located per 
unit geographic area/space per period. 

Cost 
The cost of a positioning system may depend on many important factors, including money, time, 
space, weight, and energy. 

Localization can utilize almost all of the existing technologies of wireless communication. The 

mainstream indoor localizing technologies are GPS, cellular localization, Radio-Frequency Identification 

(RFID), Wireless Local Area Network (WLAN), Bluetooth, Ultra-wide Band (UWB). According to the 

above six evaluation criteria, these localization technologies have their advantages and disadvantages. GPS 

is the most robust positioning system, but the blockage of the satellite signal by the buildings can 

drastically reduce its coverage, accuracy, and robustness. Positioning systems based on existing 

telecommunications infrastructure are highly robust and cost-effective. However, indoor localization using 

outdoor equipment exhibits the same problem of coverage and accuracy as GPS. RFID is widely used for 

the identification of objects thanks to its low cost, low complexity, high flexibility, and high scalability. 

However, the range of passive RFID is limited. The essence of active RFID is part of WLAN. WLAN and 

Bluetooth are the most popular for indoor public hotspots because of low cost. The accuracy can be 

improved by increasing the bandwidth and modifying the positioning method — the wideband of UWB 

systems exhibits to high accuracy (< 10m). 

However, the wideband makes the dispersion caused by the multipath phenomena, and the 

corresponding positive bias become significant [4]. The performance of these technologies is summarized 

in Table 1.2. According to the performance summary, UWB is an ideal candidate for excellent positioning 
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accuracy and accuracy. In practice, the combination of UWB and WLAN is a potential direction for future 

indoor positioning. However, UWB operating band of 3.1 GHz - 10 GHz is in practice more limited, 

especially in Europe, due to spectrum regulation mask. Waveform with a 500 MHz bandwidth are therefore 

typically used in commercial UWB systems such as Ubisense, BeSpoone, Decawave… 

Table 1.2 Performance of current technologies of localization from review references [5-9] 

 Accuracy Precision Complexity Scalability Robustness Cost 

GPS 5-50m 99% within 10m High Good 2D/3D Poor High 

Cellular 5-20m 99.8% within 10m Medium Good 2D/3D Medium Medium 

RFID 10-15cm 99% within 0.3m Low Good 2D Medium Low 

WLAN 15cm-5m 90% within 5m Low Good 2D/3D Good Low 

Bluetooth 2-5m 95% within 2m Medium Good 2D Poor Low 

UWB 10cm 99% within 0.3m Medium Good 2D/3D Poor Medium  

1.2.3 The basic theory of triangulation-based localization 

There are two types of radio-localization. The first type is scene-based localization, such as 

fingerprinting [10]. This approach performs well but necessitates a priori knowledge regarding the spatial 

propagation channel which is not easy to obtain in practice and to update as the environments varies. The 

second type of positioning is triangulation. The process is divided into three steps. In the first step, the 

distance information between the transmitter and the receiver is extracted from specific characteristic 

parameters of the received signal, such as received signal strength (RSS), angle of arrival (AOA), or time 

of arrival (TOA). Since the purpose of this step is to obtain the distance between the terminal and the base 

station, in other words, the possible range in which the terminal near the base station exists, this step is 

called "ranging." The second step is to find the coordinates of the terminal through geometric relationships, 

which is "positioning" the terminal. Because of the error in the measured distance, the coordinates obtained 

from the measured distance are not accurate. Therefore, the third step is to mitigate the error and 

statistically estimate the relatively accurate coordinates, which is "error estimation". The procedure of 

localization is shown in Figure 1.2. UWB localization is mainly used with the triangulation method [11]. 

Ranging Positioning
Received 

signal
Coordinates

Error 
estimation

 

Figure 1.2 Procedure of localization 

1.2.3.1   Ranging 

There are four kinds of ranging methods: RSS, AOA, TOA, and Time Difference of Arrival (TDOA). 

The principles of the methods are shown in Figure 1.3. If the relationship between distance and power loss 

is known, the distance between the base station (BS) and the user equipment (UE) can be estimated from 
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the received signal strength. As shown in Figure 1.3 (a), the possible range between the two nodes in a 

plane is the curve of the circle in which the UEs locate. The relation about the RSS is the path loss 

modeling as presented following. 

BS UE

TOA

d

(c)

BS UE

RSS

d

(a) (d)

UE

BS 1 BS 2

d1 d1

θ
l

l

l

(b)
d

 

Figure 1.3 Schematic of ranging methods: (a) RSS; (b) AOA; (c) TOA; (d) TDOA 
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Where P(d) is a function of the average received power to distance d in dB; P0 is the received power at the 

reference distance d0; χ is an unbiased variance caused by the shadowing effect, which is difficult to know a 

priori. 

The antenna array-based localization commonly uses AOA-based methods. The distance between 

adjacent antennas array elements is known. If the BS-UE distance d is large enough, the received wave can 

be assumed to be a plane wave so that the AOA at each element in the array is the same. As shown in 

Figure 1.3 (b), the delay of each component is: 

 
sini

i
ld

c c


     (1.2) 

Where the indication i is the element index, li is the space between the neighboring elements, θ is the AOA. 

The propagation distance is proportional to the propagation time. So the delay of the signal can be 

used to evaluate the distance, as shown in Figure 1.3 (c). 

 
d

c
    (1.3) 

Where   is the propagation delay between UE and BS, and c  is the speed of light in free space.  

The TDOA method is another method based on time estimation. Unlike the estimation of the absolute 

propagation time of the TOA, the TDOA compares the difference of delay between the signals received 

from two BSs. 

 1 2
1 2 =

d d

c
  


     (1.4) 
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The delay difference forms a curve from which the distance from a point on the curve to two BSs is 

constant. So this curve in a plane is an hyperbola shown in Figure 1.3 (d). The relative delay between the 

two signals can be obtained by correlating the received signal with a reference signal for instance. 

Compared to the TOA, the transmitter and the receiver do not need synchronization with each other. 

Among these four methods, the attenuation severely influences RSS, and accuracy performance is usually 

less than angle and time-based methods. 

1.2.3.2   Positioning 

The purpose of the positioning is to find the intersection of the ranging curves obtained by base 

stations. UE coordinate, (x, y), can be calculated with each coordinate of the i-th BS, (xi, yi), and the 

corresponding BS-UE distance di. For RSS and TOA, di is calculate with:  

    2 2
i i id x x y y      (1.5) 

For AOA, the AOA directions are: 

 1 2
1 2

1 2

tan ,   tan
y y y y

x x x x
 

 
 

 
 (1.6) 

For TDOA, di is calculate with:  

        2 2 2 2
0 0 0 0i i i id d d x x y y x x y y             (1.7) 

With N base stations, equations with the variable of the UE coordinates are established. For positioning the 

2D UE coordinates, at least 2 BS are needed to solve equations with two variables x and y; while, to 

determine the 3D UE coordinate (x, y, z), at least 3 BS are necessary.  

1.2.3.3   Errors in time-based localization 

∆θ 
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Figure 1.4 Error source of localization 



Chapter 1  Context and Background 

9 

In addition to the errors caused by the thermal noise of the receiver, the main errors in localization are 

caused by multipaths, which are the reflected paths and the diffracted paths. The reflected path is longer 

than the direct path, so the signal transmitted along the indirect path reaches the UE later than the direct 

path, as shown in Figure 1.4 (a). The delay of the indirect path causes the paths to overlap. If the direct path 

is obstructed, the signal of the direct path will be attenuated such that the direct path signal at the first peak 

is weaker than the nest peak, as shown in Figure 1.4 (b).  

d1

d2

d3

b2

b1

b3

True di Bias bi

Standard 
deviation ni 

UEBS Located UE

P
ro

ba
bi

lit
y 

de
ns

it
y

d1

d2

d3

 

Figure 1.5 Bias and variation induced by the multi-indirect paths 

Since both TOA and TDOA are classically based on the measurement of the strongest pulse delay, the 

misjudgment on the peak cause a possible large deviation on the estimated distance. Furthermore, indirect 

path with a TOA close to the direct path typically induces inaccuracy in the TOA estimation. The influence 

of the indirect path on ranging error is shown in Figure 1.5.  

The estimated distance ˆ
id  between the terminal and each of the base station is the sum of the real 

distance di, bias bi, and standard deviation ni as the following formula: 

 ˆ
i i i id d b n     (1.8) 

The multipath causing bi, and ni should be mitigated to enhance the ranging accuracy. Direct path 

transmission is called Line of Sight (LOS) transmission. If the direct path is blocked and only the indirect 

path is reserved, all received signal will travel along a larger distance than the actual one between the 

transmitter and receiver without carrying any information about the exact distance. The transmission of no 

direct path between the BS and the UE is called Non-Line of Sight (NLOS) transmission. Since there is no 

information about the exact distance, localization cannot be performed accurately. For AOA and RSS, 

errors are introduced with a similar principle: the estimated positions follow a biased distribution with a 

variance.  
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1.3 Millimeter-Wave Localization and Communication 

1.3.1 Wireless communication in the millimeter band 

Millimeter-wave frequency bands have become popular recently as large bandwidth from 500 MHz up 

to a few Gigahertz are typically available, which enables high data rates. However, operating at mm-wave 

frequency requires to deal with large free-space attenuation and link blockage. Directional transmission 

techniques, such as beamforming, can steer the beam away from obstacles, providing extra spatial gain to 

overcome high attenuation. Beamforming increases the output power by shifting the signal phase of each 

antenna element to combine low power beams into a beam pointing in a particular direction. With a 

directional antenna, the typical coverage range of millimeter waves in outdoor situations can be increased 

to 200 m without interruption [12]. With beamforming, 500 Mbs communication links can be achieved at 

28 GHz carrier frequency and 500 MHz bandwidth even in outdoor situations [13]. Based on beamforming, 

standardization organizations have considered millimeter waves as candidates for the 5G spectrum. 

Meanwhile, it is potentially used in indoor environments for wireless backhaul and cellular access [14]. 

1.3.2 Advantages of millimeter band for 5G 

The fifth generation of wireless networks (5G) is the next-generation wireless communication that 

satisfies the requirements of ultra-high-speed and robustness of communication. Compared to 4G, 5G 

system performance and user experience are expected to be significantly improved. The leading indicators 

of wireless communication are data rate, robustness, latency, power consumption, and cost. The total data 

rate and peak rate evaluate the transmission rate; the edge rate characterizes robustness. The Next 

Generation Mobile Network (NGMN) defines the following requirements that the 5G standard should meet 

[15]: the data rate per thousand users is 10 Mbps; the data rate in large cities is 100 Mbps; in the office 

environment, the transmission rate is more than 1 Gbps for multiple users; the real-time wireless sensor 

connection number is more than thousands. Compared with 4G, the spectrum efficiency is much improved, 

the coverage is improved, the signaling efficiency is enhanced, and the delay is significantly reduced 

compared with Long Term Evolution (LTE). Based on these requirements, mainstream standardization 

organizations have released their plans or frameworks. In 2018-2019, 3GPPP released the 15th version 

standard for 5G radio [16]. In the United States, the Institute of Electrical and Electronics Engineers (IEEE) 

released the white paper of 5G [17] to stimulate industry dialogue to address all issues of 5G development 

in 2020 simultaneously. In China, IMT-2020 (5G) published a white paper for the 5G network architecture 

design [18]. 

To address the requirements, especially in terms of data rate, 5G considers the use of millimeter wave 

bands. So far, the spectrum above 24 GHz an up to 52.6 GHz has been given considerations in the 3GPP to 

support broadband communications. Frequency band ranging such as 24.25-29.5 GHz and 37-40 GHz has 

been identified for instance. In the release 17 currently under discussions, the spectrum above 52.6 GHz is 

investigated and the 60 GHz license-free band is given full consideration. Indeed, one interesting feature of 
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5G is to enable the use of license-free bands along with classical dedicated bands (such as the LTE or the 

5G-dedicated 3.5 GHz band for instance). 

Interference between users is one of the critical problems in dense networks. Low 

Signal-to-Interference-plus-Noise Ratio (SINR) and corresponding security risks are the problems in 5G 

[19]. In 5G, massive Multiple-Input Multiple-Output (MIMO) is induced to facilitate spatial multiplexing 

and coherent beamforming for multi-users to reduce interference. The base station receives the pilots 

transmitted by the UE through the uplink to estimate the channel in Time Division Duplex (TDD), or ask 

for the channel estimate from the UE in Frequency Division Duplexing (FDD), both TDD and FDD modes 

being considered in 5G. After obtaining the transfer function of the channel, precoding such as zero forced 

equalization is implemented to generate a beam space orthogonal to the spatial channel: directional beams 

pointing to a particular target UEs are transmitted to reduce interference between the UEs.  

This procedure requires each element in the base station’s antenna array to be connected to a full 

radiofrequency chain including Analog-to-Digital Convertor (ADC) and Digital-to-Analog Convertor 

(DAC). While this approach is considered in the sub-6 GHz band, a number of issues such as power 

consumption and cost raise in the millimeter-wave band since the number of array elements becomes 

extremely large (large gain is required to face the severe free-space attenuation). Consequently, hybrid 

antenna array mixing analog and digital parts are considered [20], the goal being to reduce the number of 

ADC/DAC thanks to analog beamformers. By doing so, it is no more possible to generate any precoding 

(such as zero-forcing for instance) and codebook precoders are instead used. Each code word from a given 

codebook can be seen as a beamforming vector creating a beam toward a given direction. Spanning all the 

codeworks of the codebook enables to angularly span a whole cell. This so-called beam-grid concept [21] 

involves a different way of performing the channel estimation. Indeed, the MIMO channel matrix 

knowledge is no more possible, so the base station needs to sweep through all possible codebooks to 

identify the best precoder (if the UE is equipped with multiple antennas too, it has to perform the same 

process). This process is known as beam-training and was already considered in indoor mm-wave 

communications in 60 GHz standards or instance (see next section). 

1.3.3 60 GHz band for indoor communication 

Due to the small size of the antenna, 60 GHz is suitable for embedded devices based indoor 

applications, also being a license-free band across a large number of countries. The attenuation in the 60 

GHz band caused by atmospheric and molecular absorption in free space exceeds 10 dB/km [22], which 

prevents its use for outdoor long-range communication. In indoor scenes with high terminal density, the 

wall-blockage of 60 GHz waves avoids interference from other users and protects the security of 

information. On the other hand, thanks to the development of the CMOS process, 60 GHz devices can be 

integrated into a limited on-chip space [23]. Therefore, portable devices can use a 60 GHz antenna array for 

beamforming and consume very low energy.  

Four standards using the 60 GHz band have been released. ECMA 387 [24], IEEE 802.15.3c [25], 

IEEE 802.11ad [26-28], and WirelessHD [20]. All allocate the band of 57.24 GHz to 65.88 GHz into 4 
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channels with central frequencies as 58.32 GHz, 60.48 GHz, 62.64 GHz, 64.80 GHz respectively and 

bandwidth of 2.16 GHz. The different methods of modulation lead to different data transmission rates. For 

example, in IEEE 802.15.3c, IEEE 802.11ad, WirelessHD, and ECMA, QPSK offers 2.695 Gbps, 2.079 

Gbps, 2.379 Gbps, and 2.016 Gbps, respectively. The standards are summarized in Table 1.3. All the 

mappings use OFDM modulation. A following-up standard IEEE 802.11ay [29] is hoped to bond 4 of the 

channels of IEEE 802.11ad together to get a maximum bandwidth of 8.64 GHz and higher transmission 

rate.  

Table 1.3 Typical parameters of 60 GHz standards [20, 24, 25, 28] 

Standard Central frequency (GHz) Bandwidth (GHz) 
Max data rate with OFDM (Gbps) 

Range (m) 
QPSK 16QAM 64QAM 

IEEE 802.15.3c 

58.32, 60.48, 62.64, 64.80 2.16 

2.695 5.390 5.775 

10 
IEEE 802.11ad 2.079 4.505 6.757 

WirelessHD 2.379 4.759 7.138 

ECMA 387 2.016 4.032 -- 

Similarly to 5G, millimeter-wave beamforming is achieved by codebook-based beam training [30]. 

IEEE 802.11ad includes a beam training protocol [28]. The protocol is modified with Multiple Sector ID 

Capture (MIDC) [31]. Beam training must be repeated throughout the movement of the terminal. In order 

to solve this problem, positioning-based beam tracking [32] is attracting more and more attention as a 

strategy of beamforming [33]. In beam tracking, the beam of the BS tracks the AOA of UE when the 

terminal moves to a new location. When the direct link is blocked, beam training will be performed to 

search for new links. The identification of obstacles is a crucial issue in the conversion of beam tracking 

and training [7]. Compressive sensing [34] is a potential approach to make the millimeter-wave sparse 

channel estimation more efficient. 

1.3.4 Compatible communication and localization in millimeter  

In addition to enable high data rates for 5G, mm-wave can achieve high accuracy in positioning 

systems thanks to small wavelength and/or a large bandwidth. In [35], accuracy of position error less than 

0.01m and orientation error less than 1o is reported for vehicular networks using 5G mm-wave technology. 

Several general problems in the domain of mm-wave localization have been studied, such as waveform and 

ranging feature. Gaussian Raised-Cosine Pulse (RCP), Gaussian pulse, and Sinc-RCP impulse radio 

waveforms have been identified as suitable waveforms for 5G mm-wave localization [36]. It has been 

found in [37] that a combination of Time Of Flight (TOF) and AOA signal features can yield decimeter 

level accuracy for mm-wave localization. In [38], the Cramér-Rao bound (CRB) on position and rotation 

angle estimation uncertainty is theoretically derived for 5G mm-wave MIMO systems. In [39], a typical 

communication problem, the comparison between beamforming and MIMO techniques, is studied for 

localization as well. The study manifests that, thanks to the diversity gain exploitable for retrieving 

positioning information, MIMO outperforms beamforming in terms of localization and orientation 

performance. Meanwhile, the adoption of massive antenna arrays makes the positioning insensitive to 
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multipath for most of geometric configurations regardless the SNR regime.  

However, in the 60 GHz band, few works regarding localization have been reported. A 60 GHz 

transmitter for indoor localization is published in [40] and the measured positioning error is lower than 

3 mm within a 5 m distance. A method of localization using a 60 GHz OFDM spectrum was presented in 

[41, 42] to make the localization compatible with the expected waveform for 5G WLAN. The channel in 

the residential scenario of IEEE 802.15.3c was used to simulate the millimeter-wave positioning [43], and 

the mean absolute error of time of arrival (TOA) was lower than 10 ns. The other simulation with a channel 

of IEEE 802.15.3c [44] in the residential scenario showed the average error of positioning with 60 GHz 

impulse was lower than 0.1 m. An interferometry UWB system estimates the TDOA for 60-GHz OFDM 

communication System in [45] with average errors from 0.18 m to 0.61 m in an indoor scenario. Time 

reversal technology is used to enhance the positioning accuracy of a 60 GHz communication-localization 

system in [46] which operates at 200 Mbps and achieves 0.0124 m mean positioning error. A 

triangulate-validate based algorithm [47] is developed for 60 GHz positioning system and achieves 

sub-meter accuracy. These studies manifested the high accuracy of positioning and the feasibility of the 

implementation of a 60 GHz band, including in the frame of 5G.  

The 8.64 GHz bandwidth of 60 GHz makes delay-based 60 GHz positioning accurate. The large 

attenuation helps in reducing communication interference, but it also causes the blockage of the direct path, 

useful for localization. When the direct path is blocked, the beam training strategy will scan the space to 

look for new links with a sufficiently high SNR above the threshold. The above beam training strategy can 

guarantee the required Bit Error Rate (BER) wince relatively strong NLOS paths can provide an acceptable 

SNR. While, blockage of the direct path will result in a larger transmission distance than the actual distance 

between the transmitter and receiver. 

1.4 Millimeter-Wave Channel Modeling 

Millimeter-wave wireless communication has its inherent characteristics. The propagation loss and 

precipitation attenuation of millimeter waves in the atmosphere are typically less than a few dB per 

kilometer. The attenuation of the mm-wave prevents the signal from penetrating well through most of the 

solid materials. The Root Mean Square (RMS) of the Power Delay Profile (PDP) of the millimeter-wave 

channel in an urban environment is usually a few nanoseconds; the coherence bandwidth of the channel is 

less than few hundreds of MHz [48]. 

1.4.1 General channel characteristics 

Signal transmission severely affects the performance of 5G wireless communications. The physical 

transmitting media is the radio channel for communication. The influence of the transmission channel for 

communication is decisive, so the mathematical modeling of the transmission channel is one of the core 

tasks for wireless communication research. The channel profile includes small scale and large scale features 

[49]. Small-scale features typically represent the temporal and spatial dispersion caused by the multipath 
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propagation of radio waves in space. Small-scale fading results in frequency selectivity in the frequency 

domain as well as corresponding signal distortion and crosstalk in the time domain. In a linear Single-Input 

Single-Output (SISO) system between a pair of antennas, small-scale fading in the Spatial Channel Model 

(SCM) is described by the channel impulse response (CIR): a combination of L impulses with variables of 

time t, Time of Arrival (TOA) τ, Angle of Departure (AOD) θAOD, and Angle of Arrival (AOA) θAOA.  
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Extending the SISO system to the MIMO system, the CIR between the antenna arrays becomes a matrix as 

following: 
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Every element of the channel matrix hij is the CIR between the i-th component of the receiver antenna array 

and the j-th component of the transmitter antenna array.  

The large-scaled shadowing fading is the power loss caused by the attenuation of the radio passing 

through the obstructers. The shadowing effect reduces the coverage area of transmitters for a given output 

power. The radar function describes the scattering by a scatterer, and allows to express the received power 

Pr as :  
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Figure 1.6 illustrates the principle of the radar equation. The radio with a wavelength λ and power Pt is 

emitted by the transmitter (Tx) antenna whose gain is Gt. After the transmission through a distance dts from 

the transmitter to the scatterer, the radio is scattered by the scatterer with a Radar Cross Section (RCS) σs. 

The scattered wave propagated through distance drs, then received by the receiver (Rx) antenna whose gain 

is Gr. In the absence of scatterer, the radar equation becomes a Friis’s equation expressed in free space as: 
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The linear Friis’s function is usually converted into logarithm and expressed as a path loss (PL) for the 

propagating distance dtr from a transmitter to a receiver with the loss factor a: 
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Figure 1.6 Radio diffusing scattered by a scatter with RCS σs 

1.4.2 Cluster-scattered plane wave-based channel model 

The CIR is related to the physical process of radio wave scattering. Most of the current channel 

models, such as the temporal Saleh-Valenzuela (S-V) model [50] for indoor SISO channels or the 3GPP 

SCM [51] for outdoor MIMO channels, are based on the same physical CIR model: group-distributed 

scatterers scatter the transmitted beams between BS and UE antennas in space. Therefore, the CIR is 

simplified into two parts: the grouping action of clusters and impulses spread behavior inside clusters. In a 

general expression, each of the N scattering clusters has M components inside: 
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Where tnm, τnm and θnm are the time, delay and angle inside clusters respectively, while Am is the amplitude 

of each path. The channel model in the 60 GHz narrow band standard, IEEE 802.11ad [28], is based on the 

cluster-scattered plane wave as well. The IEEE 802.11ad channel model [52] is illustrated in Figure 1.7. 

Between the i-th Rx antenna and j-th Tx antenna, the transmitted beam is scattered by N clusters of 

scatterers, each one having M scattering components distributed in space and time. The distance between 

Tx and Rx antennas is d. The two antennas exhibit in the directions θn,m 
AOD and θn,m 

AOA gains of GR(θn,m 
AOD) and 

GT(θn,m 
AOA) respectively, where θn,m 

AOA and θn,m 
AOD are AOA and AOD, respectively, of the m-th path in the n-th 

cluster. The CIR between the two antennas is modeled as a linear combination of plane waves scattered by 

a total of N clusters.  
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Figure 1.7 A beam scattered by a cluster of the scatterer  

The clusters in IEEE 802.11ad channel model are classified as LOS and NLOS. In the situation where 

Tx and Rx antennas are pointing to each other without any blockage, i.e., at θ0, the LOS channel is 

expressed as: 
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Where λ is the wavelength of the carrier. When the wall, ceiling, or ground reflects a beam between Tx and 

Rx, the CIR is a combination of N paths in the NLOS scenario:  
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Where τn is the TOA of the n-th cluster. Cn is the amplitude combining total M paths inside the n-th cluster:  
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Where τnm is the TOA of the m-th path inside the n-th cluster. φnm is a random phase. Here, the impulse 

response is modeled like a Rayleigh according to Poisson process TOA τm with a scale parameter γ. The 

AOA and AOD are distributed with piecewise functions in different angle ranges. 

1.4.3 Parameterizing the statistical model 

The geometrical clusters of scatterers are stochastically distributed in the physical space. The 

corresponding parameters of the above channel model, τn,m, θn,m 
AOD, and θn,m 

AOA, are therefore also statistical. So 

channel modeling is to determine the statistical distribution of the parameters in the cluster-scattering 

channel model. To simplify the statistical modeling, Wide-Sense Stationary Uncorrelated Scattering 
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(WSSUS) channel is assumed with two reasonable assumptions: the radio channel is stationary in a broad 

sense, and the scattering with different path delays are uncorrelated. The assumptions in the WSSUS 

channel make the channel parameters independently and identically distributed (i.i.d.). The statistical PDF 

of the channel can be parameterized with the expectations and root mean square (RMS) spreads. The 

expectation of TOA τ
_

, RMS spread of TOA τRMS, expectation of AOA / AOD θ
_

, and θRMS are: 

 
 

 
0

0

0

,  ,  first peak time

T

h

a aT

h

P d
t t

P d

  
   

 
    



  (1.19) 

 
   

 

2

0

0

T

a h

RMS T

h

P d

P d

    


 

 




  (1.20) 

 
 

 

h

h

P d

P d








  


 









  (1.21) 

 
   

 

h

RMS

h

P d

P d








   


 










  (1.22) 

Where T is the length of the time series; Power Delay Profile (PDP) Ph(τ) and Power Angular Spectrum 

(PAS) Ph(θ) are the quantities to measure: 
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Figure 1.8 The general procedure of a statistical channel modeling  
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A typical process to model the cluster-based channel involves four steps [53]: collecting the scattered 

signal, extracting the above channel parameters (e.g., τ
_

, τRMS, θ
_

, θRMS), grouping the parameters as clusters, 

and fitting the clusters with statistical models. The scattered signal can be collected with physical 

measurement or numerical experiments, such as ray tracing, in different scenarios. The channel parameters 

(τ, θ) are extracted from the PDP and PAS with an estimation of statistical parameters. The most efficient 

algorithms fall into two categories: subspace and maximum likelihood. The single variable in the channel is 

usually estimated with subspace-based methods: MUltiple SIgnal Classification (MUSIC) [54] and 

Estimation of Signal Parameters via Rotational Invariance Technology (ESPRIT) [55]. The 

maximum-likelihood based estimation method in the channel model is Space Alternating Generalized 

Expectation-maximization (SAGE) [56, 57] to estimate multi-variables. Then, the estimated parameters are 

grouped with a clustering algorithm. The most widely used clustering method for channel modeling is 

K-Power-Means [55]. Finally, the distribution of the discrete parameter points inside clusters is fitted with 

an assumed statistical model. The procedure is summarized in Figure 1.8. Following the above procedure, 

the 60 GHz [58-63] and 28 GHz [64-66] bands were modeled with physical measurements in the indoor 

scenario. The 3GPP channel modeling of 28 GHz and 73 GHz bands in outdoor [67, 68] were achieved 

with the same procedure as well.  

Depending on the application, the procedure is usually applied in different radio propagation scenarios. 

For instance, for indoor transmission in the 60 GHz band, the typical measurement campaign considers 

specific scenarios, such as a conference room [58], office [59], residential [62], and corridor [60, 63]. 

Summarizing the references, a typical procedure is presented as following. A Rx is placed at a corner or 

beside a wall of a room as BS. Many Tx locations are selected on tables or in corridors to imitate the UEs. 

LOS and NLOS transmissions were determined before measurements. In the LOS transmission, the links 

between Tx and Rx are unobstructed; while, in the NLOS transmission, the links are obstructed with 

blockers such as computer screens or partitioning panels between office cubicles. Antenna arrays or horn 

antennas swept in azimuth and elevation directions in the entire space to get the PAS. In terms of measuring 

instruments, the synchronization and the connecting loss between the transmitter and the receiver are 

critical considerations. For short-distance indoor measurements, a Vector Network Analyzer (VNA) can be 

used to guarantee the high synchronization and low connecting loss. After collecting the signal, the 

parameters are estimated with the SAGE and clustering with K-Power-Means. Finally, inter and intracluster 

delay and direction spreads are fitted with specific PDFs.  

Reflections from walls, ceiling, and ground are the characteristics distinguishing from outdoor 

scenarios. The regular architectural structure makes the reflections from walls predictable through 

numerical experiments, such as ray tracing [69]. Ray tracing approximates the full-wave propagation and 

scattering to ray-like emission and reflection, which is consistent with the high directionality of 

millimeter-wave while saving simulating time. The effectiveness of ray tracing to model the inter-wall 

reflection channel was verified to model 60 GHz band propagation [60]. According to the validation, the 

ray tracing is introduced into IEEE 802.11ad to simplify the channel among walls [52]. The estimating and 

clustering post-treatment steps were replaced with two discriminated measurement steps. The antennas 

were artificially pointed at the target cluster direction which was calculated with ray tracing. Then the 

intracluster configuration was directly measured. 
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Figure 1.9 3D schematic diagram of the IEEE 802.11ad channel model in a scenario of conference room [52] 

Numerical experiments collected the intra-cluster scattering data. The Tx and Rx are both placed on 

the table with deterministic distance d. The TOAs (τn), AODs (θn
AOD), and AOAs (θn

AOA) inter clusters are 

gathered with the numerical simulation of ray tracing. The IEEE 802.11ad channel is derived for three 

kinds of scenarios: conference room, office, living room. For example, the conference scenario channel 

model is shown in Figure 1.9. The length, width, and height of the conference room are 4.5 m × 3 m × 3 m. 

A conference table is located at the center of the room. The distance from the table to the walls and the 

ground are both 1 m. In the simulation, five types of path are considered: LOS, first-order reflections from 

walls, second-order reflection between two walls, first-order reflection from the ceiling, second-order 

reflections between wall and ceiling. The statistical characteristics of the cluster parameters were collected 

using the Monte Carlo method by randomly selecting the locations of Rx and Tx in the simulation. The 

parameters were fitted with empirical PDFs of the piecewise function. 

Tx horn 
antenna

Rx horn 
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Illuminated 
scattering cluster 
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Figure 1.10 Schematic diagram of local scattering cluster illuminated by beams 

The intracluster CIRs were grabbed with physical measurements [70] in several similar conference 

rooms like the scenario plotted in Figure 1.9. Two horn antennas with both 20o half-power beamwidth were 

used for Rx and Tx. The antennas were mechanically rotated with servo motors. The clustered scattering by 

walls was measured in the ray directions calculated with ray tracing, as shown in Figure 1.10. The 

measurement was operated in the frequency domain to obtain the Channel Transfer Function (CTF) of each 

cluster scattering. Then the frequency domain CTFs were Fourier transformed to PDP Ph(τm) in the time 
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domain. 
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The sampled Ph and τm are fitted with a Rayleigh decaying and a Poisson distribution, with respectively, as 

shown in Figure 1.11.  

τ 

exp(- | τm | / σb )exp(| τm | / σf )
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: amplitude follows a 
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: delay follows a Poission distribution  

Figure 1.11 The time-domain model intracluster [52] 

The variances of the Rayleigh distribution is obtained from the RMS variance of intercluster TOA, τm 
RMS:  
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The RMS variances for the uphill and downhill of the intracluster are notated as σf and σb respectively. The 

spatial characteristics of the cluster were not extracted because the mechanical angular sweeping with the 

horn antenna provided a low spatial resolution. Based on an assumption of entirely random scattering, the 

AODs (θnm 
AOD) and AOAs (θnm 

AOA) of ray inside clusters were fitted by non-basis Gaussian distribution. 
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The phase φ uniformly distributes from –180o to 180o. 

1.4.4 Modeling blockage for millimeter band channel 

The IEEE 802.11ad channel model does not sufficiently consider the attenuation caused by large-scale 

shadowing. The attenuation of the millimeter-wave is severe. The metal and wood blockage with the wedge, 

edge, cylinder shapes was studied in 60 GHz band with the Uniform Geometrical Theory of Diffraction 

(UTD) [71] and validated with measurement. The study manifests that the path loss of 60 GHz radio waves 

in the NLOS area is higher from 15 dB to 25 dB than the path loss in the LOS area. Meanwhile, the 

diffraction is so weak that negligible in the indoor transmission [72]. Besides, the blockage of the human 

body contributes a power loss of no less than 20dB to more than 40dB [73-76]. The weak diffraction causes 

the millimeter radio waves to propagate in directional beams. Widely spread blockers attenuate the 

concentrated beams in the indoor scenario. The above two factors aggravate the problem of 

millimeter-wave blockage: the signal coverage range and spectrum efficiency are shrined [77]. The 

received power Pi of the i-th link can be estimated by with the transmittance ratio Γij of power by the j-th 

scatterer or blocker, the power fading gi, and the path loss PL of free space as follow:  
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Where Ni is the number of blockers located across the i-th link. So the Signal Interference Ratio (SIR) can 

be calculated as: 
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Then the coverage of cellular can be estimated by the coverage probability as p(SIR > SIRthre). Meanwhile 

the spectrum efficiency can be estimated as ηf = E[log2(1 + SIR)]. Because the transmittance ratio has been 

proven very low, the coverage and spectrum suffered from the increasing of the blocker number. Therefore, 

the blockage is an indispensable component in the millimeter band channel model.  

1.4.4.1   The outdoor blockage 

The attenuation is assessed with path loss. The probability of LOS transmissions is considered in the 

outdoor 3GPP channel model [78]. A series of outdoor channels for 28 GHz and 73 GHz were measured to 

study the LOS probability of millimeter band transmission [67]. The modeling procedure follows a 

simplified procedure of channel modeling, as shown in Figure 1.12: indiscriminate measurement, clustering, 

PDF fitting. The purpose of the above measurement activities is to mimic the behavior of BS and EU in 

actual communication. The receivers were placed on the ground and in the low-rise buildings. The 

transmitters were located on the rooftops of high buildings. The transmitter antennas were swept obliquely 



Chapter 1  Context and Background 

22 

at a particular solid angle to the position of the receiver. The receiver swept across the entire solid angle. 

The power threshold was set to be 20 dB below the maximum power level. Due to the high directionality of 

the radio beam and the high attenuation, the effective scatterer in the outdoor scenario is very spare. So, the 

received signal was discrete. The step of estimation in the typical modeling procedure was therefore 

omitted. LOS was defined as a transmission in which the received power was above a certain threshold.  
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Figure 1.12 Modeling procedure of 3GPP outdoor 28 GHz channel [67] 

After clustering the data set, the parameters of the 3GPP channel model were fitted with statistical 

distributions. In the model, the situations of LOS, NLOS, and outage were modeled with probability 

functions pLOS, pNLOS, and pout. They are exponential functions for the distance d between the transmitter 

and receiver, with parameters aout, bout and alos: 

    max 0,1 expout out outp d a d b        (1.32) 

      1 expLOS out losp d p d a d       (1.33) 

      1NLOS LOS outp d p d p d     (1.34) 

The experiments manifested pLOS, and pNLOS exponentially decreased with increasing the distance. At 

locations farther than 200 m from the transmitter, no signal was detected by the receiver, which means pLOS 

+ pNLOS ≈ 0 at locations with d > 200 m. 

The actual condition limits the number of samples in physical measurement. A ray-tracing based on 

the 2D Google map was simulated [79] with the Monte Carlo method to enhance the sampling number. 

Receivers were uniformly arranged in circles around a transmitter with a 5 m increment of the radius. If a 
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line connected the TX and RX was not blocked by any part of the buildings, the type of transmission was 

confirmed as LOS. Then, by counting the number of unblocked links, the result verified the exponential 

relationship between the LOS probability and Tx-Rx distance. The stochastic geometry theory is induced to 

generalize the LOS probability model [55] further. The buildings were modeled as rectangles, under the 

following assumptions: 

 The blockers were non-overlapped rectangular buildings; 
 Base stations were independent Poisson Point Process (PPP) points; 
 The centers, directions, length, and width of the blockers were independent from each other. 

All of the rectangles around the same pair of Tx-Rx are in the same direction and with 
the same diagonal length; 

 The centers of the blockers were independent PPP points; 
 Orientations of rectangular blockers were uniformly distributed in the range of 0,2 ; 

If the Rx falls into the shadowing domain, the link is blocked. Since the blocking rectangles around the 

Tx-Rx links are assumed the same size, the maximum width of the shadowing domain was the width of 

blockers as the yellow domain in Figure 1.13. The trajectory of rectangle centroid formed the boundary of 

the LOS domain. 
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LOS domain d

 

Figure 1.13 The shadowing domain of a Tx-Rx link from an outdoor building 

The assumption that the centers of the blocker are PPP implies that the probability of the center falls into a 

domain is proportional to the area of the domain. After the derivation based on the above assumptions, the 

expectation of the LOS domain area is: 

  E S d     (1.35) 

Where d is the distance between two buildings; α and β are the sums and the multiplication of the 

expectations of building width and length, respectively.  

    E W E L     (1.36) 
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    E W E L    (1.37) 

Because the number of a center falling into the shadowing domain follows PPP, the LOS probability is the 

probability of no building falling into the LOS domain: 

    expLOSp d d        (1.38) 

The outdoor experiments validated the exponential LOS probability function. A similar Poisson process is 

used to model the LOS/NLOS clusters [80]. 

1.4.4.2   The indoor blockage 

The blockage of the human body for 60 GHz propagation in the indoor scenario can also be modeled 

as cluster-based small-scale channel characteristics [81]. The grouped human activity causes clustered 

fading. Instead of CIR clusters, the fading cluster with an attenuation higher than a certain threshold of CIR 

was used to describe the blockage. The characteristics of the fading cluster were measured following the 

typical modeling procedure. A fundamental assumption is that the room is humanly crowded so that the 

process of human blockage is stationary. This assumption means that the distribution of the process is 

time-invariant. With such an assumption, the transmission link is spread through the whole office so the 

human groups can efficiently influence the links. The signal is then recorded in the time slot where humans 

are always active to capture blocking events. Seven signal parameters were extracted to define the 

characteristics of a link blocking event: attenuation A(τ), fading F(τ), duration D, average attenuation`A, 

maximum attenuation Amax, the pseudo period T(n) and rising time trise: 
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      1b bT n n n      (1.44) 
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   arg 1rise thre bt A dB


     (1.45) 

Where Pt
h(τ) and Pr

h(τ) are the PDPs of the transmitted and received signal. With the threshold of thermal 

noise Athre, the fading cluster F(τ) caused by the blockage is identified. τb and τe are the positive and 

negative instants of a threshold crossing to record the range of attenuation cluster in order to get the 

duration D of a fading cluster. `A, Amax, and trise were used for the description of the fading clusters. The 

results showed that T and D matched lognormal distributions, which means the LOS probabilities inside 

and outside the fading clusters were exponential functions to the length of the link. 

Like the outdoor scenario, the LOS probability was also modeled with stochastic geometry theory as 

well [82]. The events of human body blockage are assumed to be independent and modeled as a PPP. So the 

human activity is implicitly assumed ungrouped and passing through the direct link with uniform 

probability. Human bodies were modeled as cylinders with diameter W. A similar blocking event like the 

outdoor environment is shown as Figure 1.14. It is at the cross-section of the model. The boundary of the 

LOS domain is the trajectory of the body center. 
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Figure 1.14 The shadowing domain of a Tx-Rx link from an indoor human body 

The average area of the shadowing domain is:  

       21

4
E S RE W E W       (1.46) 

So, after a similar derivation as the outdoor blockage, the LOS probability is obtained: 

    expLOSp d d        (1.47) 

Where  

  E W    (1.48) 
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   21

4
E W       (1.49) 

1.4.5 The solution for blockage 

Blockage is one of the critical issues in millimeter band communications. The most practical solution 

to circumvent this issue is a combination of hybrid beamforming and beam training. Beamforming is a 

spatial matched filter to shape the radiation pattern using an antenna array typically. In order to cope with 

the high path loss, the beamforming is used in millimeter band to create a high-gain highly directional 

beam and to steer it towards desired directions (e.g., towards the strongest path). Assuming narrow-band 

operation so that antenna the response is not time-dependent across the bandwidth of the signal, the 

receiver signal x(t) is then obtained from the weighted transmitted signal s(t) by the steering vector a(θ) of 

the antenna: 

        , ,x t s t t   a n   (1.50) 

         1,exp sin ,exp 2 sin , ,exp 1 sinc c cjk d jk d N jk d         a   (1.51) 

Where n(t) is the Additive White Gaussian Noise (AWGN). The distance determines the steering vector a(θ) 

among element d and the center frequency fc. The beamforming is achieved with shifting the individual 

phase with a weighting vector w:   

            2
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T T H H H
xP y t dt t x t x t t dt

T T
       w w w R w   (1.52) 

Where P(θ) is the power angular spectrum (PAS); So to maximize the antenna pattern at direction θ:  

  max max H
x

w w
P     w R w   (1.53) 

The Rx is the spatial covariance matrix of the received signal 
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Because the noise is white, the optimization problem is solved as a matched filter [49]: 
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  (1.55) 

The antenna pattern P(θ) is maximized in the expected direction: 
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Figure 1.15 Digital beamforming: (a) architecture of receiver and (b) channel estimation 

So to apply the precoding/decoding vector w, beamforming can use an full-digital architecture for the 

transmitter and receiver [30]. Taking the receiver as an example, the received signal x(t) of each antenna 

element is amplified and down-converted before the digital weight wn is applied, as shown in Figure 1.15 

(a). The independent RF front-end of each chain makes receiving more flexible, enabling MIMO channel 

estimations in configurations shown as in Figure 1.15 (b). Consequently, the AOA and AOD can be 

estimated with spatial estimators such as MUSIC. However, there are two hardware constraints for 

full-digital beamforming. First, the RF chain has to be associated with an antenna element. The on-chip 

space limits the package of the entire chain. Second, the data speed is usually very high (in the Gbps regime) 

in the millimeter band, so the power consumption is stringent in DAC/ADC components.  
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Figure 1.16 Analog beamforming: (a) architecture of receiver and (b) beam training 

The second type of beamforming is full-analog. The analog phase-shifter weight the phase of the 

signal. All of the antennas share a unique RF chain, as presented in Figure 1.16 (a). The power 

consumption is reduced thanks to only one ADC and fewer components are required. However, only one 

beam is typically generated due to the lack of information of the MIMO channel. Here, only a SISO 

channel, already precoded with the vector w is available. Since spatial channel estimation is not feasible, 

beamforming is combined with beam training: sweeping the beam over the space to find high SNR links as 
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shown in Figure 1.16 (b). 
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Figure 1.17 Beam training protocol in IEEE 802.11ad: (a) SLS; (b) BRP; (c) BT 

In IEEE 802.11ad, a protocol of beam training strategy [28], as shown in Figure 1.17 is proposed. In 

the Sector Level Sweep (SLS), a beam sweep at Txis performed with quasi-omni antenna pattern used at 

Rx to search for the best antenna sector. Then, in the Beam Refinement Phase (BRP) step, a finer beam 

pattern pair is selected. In the Beam Tracking (BT) step, an adjustment is operated for channel changes. 
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Figure 1.18 Architecture of hybrid beamforming receiver 

Since analog beamforming strategy reserves only one beam, it cannot be used for simulating 

multi-user situation. Therefore, hybrid beamforming is also developed in the millimeter band [83]. The 

massive antenna array is separated into sub-arrays as shown in Figure 1.18. Each sub-array searches for 

links with the analog beamforming strategy. The whole antenna array is connected with the digital 

framework, as shown in Figure 1.18.  
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1.5 Objectives of the Thesis 

The effectiveness of the unblocking by codebook based hybrid beamforming has been validated [84]. 

However, the current beamforming is not compatible with localization. NLOS transmission is the main 

error source for localization, but the identification of NLOS transmission lacks in the current beamforming 

strategy. If the direct path is obstructed, the reflected links with high SNR support the communication with 

a low bit error rate (BER) in the coverage range of transmitters. Nevertheless, the indirect path propagates 

extra distance and delay. The transmission accurately provides the TOA for positioning only in the LOS 

scenario, as shown in Figure 1.19. Therefore, the NLOS identification needs to be studied and added to the 

current beam training framework, to indicate to the system whether the established link can be used for 

accurate positioning (depending on its nature: LOS or NLOS) 
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Figure 1.19 The different performance of beam training for communication and localization  

In the upcoming work, the NLOS identification will be studied. The chapters are organized as follows. 

In chapter 2, the state-of-the-art for NLOS identification is investigated. The basic theory of the identified 

methods is discussed. In chapter 3, the identification will be studied using simulation, which is based on the 

IEEE 802.11ad channel model. In chapter 4, the simulations are validated with measurements in indoor 

environment. 

1.6 Conclusion 

In this chapter, the context and the scientific and technical backgrounds of the study are presented and 

discussed. The indoor localization is attracting attention because of the abundant applications. Compared 

with other technologies, the triangulation based UWB ranging, especially the TOA and TDOA based 

ranging, provides higher accuracy for localization. NLOS transmission is one of the significant error 

sources. The millimeter band is an excellent candidate for indoor localization because of its inherent 

wideband. The millimeter band takes advantage of the MIMO communication for 5G due to the capacity of 

interference mitigation in dense networks. Unfortunately, blockage remains a critical issue. This is typically 

overcome using beamforming and beam training to establish a radio link between Tx and Rx based on an 

NLOS path. In these situations, the accuracy of positioning is considerably decreased and the goal of this 

thesis is consequently to propose a methodology to efficiently identify when a communication is being 
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performed with an NLOS rather than with a LOS path. 
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2.1 Introduction 

Performing accurate localization supposes mandatory the existence of LOS signal. Otherwise large 

location errors may occur making the localization process very sensitive to the environment and to the 

quality and integrity of the processed signal. It hence seems clear that prior to any signal processing, one 

must state on the validity of the signal by seeking the presence and the assesment of LOS contribution.   

In this chapter, the NLOS identification are investigated. The theoretical frame of NLOS identification 

and the main works available in the literature are analyzed in detail. Clustering methods are also reviewed 

as they appear to be a necessary step towards NLOS identification. 
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2.2 NLOS Identification 

The distinction between LOS and NLOS components is a problem of supervised pattern recognition 

[1]. According to the general procedure of pattern recognition, a typical procedure of NLOS identification 

is shown in Figure 2.1. NLOS identification is a process of understanding the inherent physical 

characteristics of different transmissions, mathematically modeling the physical features and then 

statistically deciding the type of transmission from a series of received signals, based on the metrics 

extracted from the mathematical model.  
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Figure 2.1 Procedure of NLOS identification 

The training data supervise testing identification. The performance of the identification involves three 

factors: the correct recognition for the natural feature of the physical phenomenon, the appropriate selection 

of the metrics describing the feature, effective statistical method for classifying the different metrics set. 

The above factors in the current NLOS identification studies will be separately investigated in this section.  

2.2.1 Survey of current NLOS identification in the litterature 

The physical natural difference between NLOS and LOS transmissions is related to the scattering 

process. It typically influences wireless transmissions, and channel modeling is usually performed in order 

to assesss communications schemes. It has furthermore a strong influence on localization process and 

NLOS identification has been therefore been studied for this purpose. However, as mentioned in chapter 1, 

relatively few works on localization in the millimeter band are reported. Most of the work about indoor 

localization is in the UWB (3.1-10.6 GHz) and WLAN (2.4 GHz) bands [2]. The WLAN localization is 

mainly performed using fingerprint [3] instead of triangular geometry. Due to the high positioning accuracy 

offered by wideband signals, most of the current works of triangular geometry-based localization 

concentrates on the low-frequency UWB band [4, 5]. Consequently, the studies of NLOS identification 

mainly focused on UWB as well [6]. The propagation characteristics of UWB are very different from those 

of the millimeter-wave band. The result of numerical simulations with the Geometrical Theory of 

Diffraction (GTD) [7] manifested that the attenuation in UWB between the first, second, and third 

diffraction is 4.04 dB, 9.96 dB, and 11 dB, repectively, for an incident angle of 60°. Because of strong 

diffraction effects, the multipath phenomenon in the UWB band is significant [8]. Different from the sparse 

mm-wave channel, the received multipath components are plentiful, even if the antenna used is a 
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directional antenna pattern [9]. Constrained by the above propagating conditions, a physical model of 

current NLOS identification in the UWB is defined as identifying which BS in the transmitting 

environment is unobstructed, as shown in Figure 2.2. In a cellular network, many BSs locate around a UE. 

The antenna patterns of all the BSs and UE are simplified as omnidirectional. Besides the direct path, the 

transmitting paths are constructed with abundant indirect paths, as well. If at least one direct path is not 

obstructed, the scenario is defined as a LOS scenario. The unblocked BS is the LOS station, as shown in 

Figure 2.2 (a). In contrast, in a NLOS scenario, all the direct path are blocked, that means all the BS are 

NLOS stations for the UE, as presented in Figure 2.2 (b). The target work of NLOS identification is to 

distinguish the LOS and NLOS stations by measurement, and then to recognize the NLOS scenario. The 

above-mentionned works typically use statistical differences in channel features to distinguish LOS from 

NLOS situations. These methods of identification are discussed in the following. 

UE
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Figure 2.2 Target scenario to identify: (a) LOS scenario; (b) NLOS scenario 

2.2.2 Statistical differences between LOS and NLOS 

In order to determine the metrics for statistical recognition, the scattering process needs to be 

mathematically modeled. Because of the strong diffraction and rich multipath components, statistical 

differences between LOS and NLOS transmission in the UWB band primarily occur in the time domain 

rather than in the space domain (e.g., power angular spectrum…). The channel model in IEEE 802.15.4a 

[10, 11] for UWB is a cluster-based channel model of Saleh-Valenzuela type. It is a time-domain channel 

model without spatial descriptions such as AOA and DOA. The channel model consists of eight scenarios: 

residential, office, outdoor, and industrial, all considering both LOS and NLOS scenarios,. The 

measurement scenario is labeled as LOS or NLOS before the measurement. The path loss, the means (μm 

and μrms) and variances (σm and σrms) of mean excess delay`τ and RMS delay spread τrms given in the IEEE 

802.15.4a channel model [10, 12] are listed in Table 2.1. Due to the scattering attenuation, the path loss of 

the NLOS transmission is generally much more significant than the LOS transmission in the same scenario. 

Also, the mean values of mean excess delay and RMS delay spread both appear higher in the NLOS 
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scenarios than in the LOS scenarios. Large values of NLOS μm are related to long average length of the 

transmitting path caused by reflections. Large values of NLOS μrms indicate that the multipath components 

are generated by multiple reflections and exhibit a slow decay. On the other hand, the variances σm and σrms, 

in LOS scenarios are higher than NLOS scenarios. For LOS transmission, the contribution of the direct 

path is much larger than indirect paths and greatly depends on the individual distances between Tx and Rx. 

In contrast, the construction among multipath is related to the scattering environment, thus with a small 

depedency upon the distance between Tx and Rx. Therefore, the variance in the NLOS scenario is 

relatively stable. The above discussion illustrates how the mathematical channel model of IEEE 802.15.4a 

can adequately reflect the physical difference between the LOS and NLOS transmissions. 

Table 2.1 Path loss, mean excess delay and RMS delay spread in the channel model of IEEE 802.15.4a [12] 

Channel Scenario 

Path loss (PL) 

[dB] 

Mean excess delay (`τ ) RMS delay spread (τrms) 

μm[ns] σm[ns] μrms[ns] σrms[ns] 

CM-1 Residential (LOS) 43.9 2.6685 0.4837 2.7676 0.3129 

CM-2 Residential (NLOS) 48.7 3.3003 0.3843 2.9278 0.1772 

CM-3 Office (LOS) 35.4 2.0993 0.3931 2.2491 0.3597 

CM-4 Office (NLOS) 57.9 2.7756 0.1770 2.5665 0.1099 

CM-5 Outdoor (LOS) 45.6 3.0864 0.4433 3.3063 0.2838 

CM-6 Outdoor (NLOS) 73.0 4.6695 0.4185 4.2967 0.3742 

CM-7 Industrial (LOS) 56.7 1.3845 0.9830 1.9409 0.7305 

CM-8 Industrial (NLOS) 56.7 4.7356 0.0225 4.4872 0.0164 

2.2.3 Metrics of identification 

A metric is an indicator that determines the type of transmission in the statistical decision algorithms. 

NLOS identification typically uses three kinds of metrics. The first type, as discussed in chapter 1, is the 

variance σ
 ̭

2 of range distances d̂i estimated for a set of N measurements can be directly used as a metric to 

identify the NLOS transmission.  
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The second type of metric is the channel parameters discussed in the previous section. The channel 

parameters are valid indicators of the LOS and NLOS. Because the transmission conditions are labeled 

before the measurement during channel modeling, these parameters can be measured from the received CIR 

and be related to the type of signal transmission. This offers interesting insights as whether a given metrics 
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can be useful for LOS/NLOS identification The channel parameters commonly used to identify the type of 

transmission in reported works are the total energy E, mean excess delay`τ, and the RMS delay spread τRMS: 
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Some extra parameters of CIR are also used, such as the maximum power Pmax, the amplitude of the first 

peak in Pfirst, and the rise time of the first peak trise: 
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The third type of metric is the variables to quantify the shape of the PDF of the received CIR. As 

discussed in chapter 1, the direct path produces a sharp peak, and the dispersion caused by multipath 

generates small peaks spread over the CIR. The peak generated by the LOS path tends to produce sharp 

PDFs. A metric to quantify the “sharpness” of the CIR PDF is the kurtosis κ which is defined as the 

standard moment of the fourth-order for the CIR sequence:  
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2.2.4 Statistical decision methods 

NLOS identification is statistically seen as a problem of hypothesis testing. The null hypothesis is 

LOS transmission, and the alternative hypothesis is NLOS transmission. The statistical descriptions of LOS 

and NLOS transmission features, such as PDF are first obtained using training data (large sample set). The 

testing is achieved with testing data (small sample set). If the testing data verify the statistical descriptions 

of the null hypothesis, the null hypothesis cannot be rejected; otherwise, the alternative hypothesis must be 

accepted. In the reported studies, both parametric and nonparametric methods are used to distinguish 

transmission types. The performance of the hypothesis testing is evaluated with the probability of type I 

and type II error. Type I error is the rejection of a true null hypothesis, while type II error is the acceptance 

of a false alternative hypothesis.  

2.2.4.1 Parametric testing 

The parametric hypothesis testing, such as Maximum Likelihood Ratio (MLR) testing is used both for 

the ranging-based [13] and channel features-based [12] identifications. In ranging-based identification, the 

testing feature is the measured distance. As discussed in chapter 1, the ranging error is induced by multipath. 

Multipath can be described with a cluster-based model. Probabilty of parameters such as Time-Of-Arrival 

(TOA), Angle-Of-Arrival (AOA), and Angle-Of-Departure (AOD), that described the clusters, are 

distributed with a certain intracluster statistical model, such as Gaussian, exponential, etc. Therefore, the 

received signal is a combination of many grouped paths. If the antenna pattern is omnidirectional like in 

Figure 2.2, the wave propagates through any corner of the space so that the number of reflections is very 

large. In that case, according to the central limit theorem, no matter the intra-cluster distribution, the 

parameters to describe the combination of the path clusters follow a Gaussian distribution fluctuation [ref]. 

Therefore, the distances d̂ estimated with the channel parameters are also following a Gaussian distributed 

fluctuation with a bias μ and a variance σ2, n ~  (μ, σ2).  For LOS transmission, the distance can be 

estimated from the direct path, and the distribution is therefore unbiased (μlos = 0). The distance estimated 

in the NLOS transmission is biased (μnlos > 0), and the NLOS variance σ2
nlos is much larger than the LOS 

variance σ2
los. Thus, the estimated distance d̂ can be expressed by the following mathematical expression: 

 d̂ d n    (2.11) 

where d is the actual distance between a pair of Rx and Tx, and n is a normally distributed fluctuation for 

the measured distance d̂. In NLOS transmissions, nnlos ~  (μnlos, σ2
nlos), and in the LOS transmission nlos ~ 

(0, σ2
los), with σ2

nlos > σ2
los. Therefore, under the condition of actual distance d, the estimated 

distance d̂ follows the distribution given by (2.11): 
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Where fnlos(d̂ | d) and flos(d̂ | d) are the posterior PDFs under the condition of actual d with NLOS and LOS 

transmission respectively. The parameters of the PDFs, μlos, σlos, and σnlos, are obtained with a set of 

measurements with N samples {di}, i = 1, 2, … N, under a reasonable assumption of i.i.d. measurements. 

The joint PDF of N samples is: 
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Introducing a measurement distances array d̂ = [d̂1, d̂2, … d̂i, …, d̂N]T , i = 1, 2, … N, the above 

multi-variables PDFs are derived as: 
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 With the trained PDFs of ranging distance, the hypothesis testing is described as: if the ranging 

distance is sampled from the distribution flos(d̂ | σlos), the null hypothesis (H0) of LOS transmission cannot 

be rejected; if it is sampled from fnlos(d̂ | μnlos, σnlos), the alternative hypothesis (H1) of NLOS transmission 

has to be accepted:  
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MLR testing is an effective method to implement the hypothesis testing. If the LOS likelihood (σ
 ̭

los; d̂) is 

larger than the NLOS likelihood (μ
 ̭

nlos, σ
 ̭

nlos; d̂) of measurement, the null hypothesis is accepted. In 

general, the log likelihood function for both LOS and NLOS are in the form of: 
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The parameter μ and σ are estimated by maximizing the likelihood function at the zero point of the 

first-order derivative: 
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Solve the above equations with a condition μ
 ̭

los = 0, the hypothesis testing becomes: 
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After derivation, the likelihood ratio L(d̂) is expressed as: 
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For the channel feature-based identification, the hypothesis is regarding the mean excess delay`τ, the 

RMS delay spread τRMS, and the kurtosis κ:  
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The corresponding likelihood of GLRT is a multiplication of the above three likelihood ratios:  
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The mean excess delay τ
_
, the RMS delay spread τRMS, and kurtosis κ are fitted with log-normal PDFs in 

both LOS and NLOS transmission. The difference of the three features between LOS and NLOS 

transmission was validated with the channel model of IEEE 802.15.4a, as shown in Table 2.1 and Table 2.2. 
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Table 2.2 Kurtosis calculated with the channel model of IEEE 802.15.4a [12] 

Channel Scenario μκ σκ 

CM-1 Residential (LOS) 4.6631 0.5770 

CM-2 Residential (NLOS) 3.6697 0.4886 

CM-3 Office (LOS) 4.4744 0.4579 

CM-4 Office (NLOS) 2.8154 0.3459 

CM-5 Outdoor (LOS) 4.4509 0.5163 

CM-6 Outdoor (NLOS) 4.8886 0.4497 

CM-7 Industrial (LOS) 4.2637 0.7447 

CM-8 Industrial (NLOS) 2.1141 0.1487 

Table 2.3 Probability of correct testing by MLR with the channel model of IEEE 802.15.4a [12] 

Channel Scenario Kurtosis mean excess delay RMS delay spread Joint 

CM-1 Residential (LOS) 78.6% 74.3% 61.7% 81.8% 

CM-2 Residential (NLOS) 83.2% 77.9% 76.1% 84.3% 

CM-3 Office (LOS) 99.0% 88.5% 73.6% 97.9% 

CM-4 Office (NLOS) 96.7% 86.3% 89.0% 95.9% 

CM-5 Outdoor (LOS) 66.3% 98.2% 93.9% 98.9% 

CM-6 Outdoor (NLOS) 71.4% 95.2% 92.7% 97.8% 

CM-7 Industrial (LOS) 98.3% 88.3% 98.3% 88.2% 

CM-8 Industrial (NLOS) 98.4% 100% 100% 99.9% 

The performance of the MLR is listed in Table 2.3. The different metric provides different 

performance, i.e., the probabilities of correct testing between scenarios are different. The testing with RMS 

delay spread in the LOS Residential scenario gives the lowest correct identification probability 61.7%, 

while it provides 100% identification in NLOS Industrial scenario. It is interesting to note that the joint use 

of different features for testing does not necessarly lead to better performance than the use of a single 

feature. 

2.2.4.2 Non-parametric testing 

Currently, non-parametric testing is mainly used for identifying the channel feature in NLOS 

transmission. In the channel model, the transmission characteristics are parametrized as statistical features. 

These statistical features are the metrics to define the class of transmission. The nonparametric classifiers 

for the NLOS identification map an n-metric ℝ set into a set of binary LOS/NLOS labels: ℝn→{LOS, 

NLOS}. The structure of the classifier is usually a weighing network of feature-contribution to the output 
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label. The constructing process of a classifier is to train the weights of the classifiers with the input metric 

data by minimizing the total residual from the output labels to the a priori known labels. Two 

nonparametric methods of testing are typically used for the identification of transmission: the artificial 

neural network (ANN) and support vector machine (SVM).  

NLOS

LOS

xj

xi

Boundary planes
Partition plane

 

Figure 2.3 Schematic diagram of SVM to distinguish the LOS and NLOS transmission with a hyperplane wTx
 ̭
 + b = 0 

SVM [14] is a linear classifier to partition a p-dimensional parameter space into domains by many (p - 

1)-dimensional hyperplanes, in order to make each domain containing one and only one cluster of data. The 

principle of partitioning is to maximize the distance between the separation hyperplane and the nearest data 

point of any cluster. In that case, the training generalization error is minimized. The above problem is 

equivalent to look for pairs of paralleled boundary planes of clusters with the largest distances between 

them. An optimized partitioning plane is one equidistant to the two boundaries, as shown in Figure 2.3. For 

the LOS/NLOS binary classification, the dimensions xi of the parameter space are the metrics of channel 

features, such as total energy E, mean excess delay`τ, RMS delay spread τRMS, maximum power Pmax, 

amplitude of the first peak in Pfirst, rise time of the first peak trise, and kurtosis κ. The input data is the input 

metric vector x
 ̭
 = [x

 ̭
1, x

 ̭
2, …, x

 ̭
N] T. The data belongs to two clusters: LOS and NLOS. The boundary 

planes of the clusters passed at least one data of the associated cluster and expressed as wTx
 ̭
 + b =1. The 

LOS data are in the domain of wTx
 ̭
 + b > +1, and the NLOS data are in the domain of wTx

 ̭
 + b < -1. By 

defining the label of classification y as a binary set y = {−1, +1}, the LOS/NLOS hypotheses can be 

expressed with the above domain relation:  
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ˆ: 1,  if 1,  LOS transmission

ˆ: 1,  if 1,  NLOS transmission
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SVM aims to look for boundaries which have maximum distance between them. In mathematics, the 

searching process is to optimize the weight matrix w and bias b of the boundaries wTx
 ̭
 + b = 1 to 

maximize the distance 2 / wTw while ensuring the hypothesis testing (2.25) correct. The correct testing 

condition of (2.25) is y(wTx
 ̭
 + b)  1. Consequently, the LOS and NLOS metric clusters are distinguished 
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by a hyperplane wTx
 ̭
 + b = 0 at the equidistant position, as shown in Figure 2.3. The above optimization 

problem can be expressed as:  
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Introducing a tolerance vector e, the constraint of inequality is transformed into equality: 
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where γ = {0, 1The optimizing problem can be solved by the Lagrange multipliers method. Constraining 

optimization becomes: 
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Where the Lagrange duality with a Lagrange multiplier vector λ = [λ1, λ2, …, λN] is: 
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The analyzed maxima are at the zero points of the first-order derivative of the Lagrange duality. However, 

the problem is usually complex. In that case, the problem is solved by iteration of steepest descent.  

Table 2.4 Errors of testing by SVM using measurement data [14] 

Metrics Type I Type II Average 

rmax 0.137 0.123 0.130 

rmax, trise 0.092 0.109 0.100 

Pmax, trise, κ 0.082 0.090 0.086 

Pmax, rmax, trise, κ 0.082 0.090 0.086 

Pmax, rmax, trise, τ
_

, κ 0.086 0.090 0.088 

Pmax, rmax, trise, τ
_

, τRMS, κ 0.092 0.090 0.091 

The performance of the SVM is a list in Table 2.4. Generally, more metric provides a lower probability 

of error. However, considering all features does no mean the lowest error. Redundant information leads to 

wrong identification. The performance of identification or classification is evaluated by the probability of 
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type I and II. For null hypothesis testing, the error type I is the case that rejecting the null hypothesis when 

it is true. The type II error is the case of accepting the alternative hypothesis. In NLOS identification, the 

null hypothesis is the LOS transmission, and the alternative hypothesis is the NLOS transmission. 

The same metrics of channel features are used in the identification with ANN in [15] as well. The 

hypothesis of ANN is: 
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The schematic diagram of ANN with one output is shown in Figure 2.4. The whole procedure of ANN is a 

mixture of linear transformation and binary texting: the 3 continuous input variables are weighted by w1
ij 

and summed up, then they are tested by gi and converted to binary variables in the hidden layer. A similar 

procedure is repeated in the output layer. 

g1

g1

g2

1

1

1

w2
ijw1

ij

Hidden layer Output layerInput layer

… 

… 

N nodes y

Ê
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Figure 2.4 Schematic diagram of ANN with a hidden layer of N nodes to identify the LOS transmission 

In a matrix form, the above schematic diagram of ANN is expressed as the two times of linear 

transform and binary testing with weight matrices W1 and W2, and binary testing functions g1 and g2, 

respectively: 

    2 2 1 1ˆ ˆW Wy g g   x x  (2.31) 

Where the input vector of ANN is a set of sampled vector x
 ̭
 = [E

 ̭
, τ

 ̭
RMS, P

 ̭
firstτ

 ̭
first]T. The weight matrices of 

the hidden and output layers are W1 and W2, with the corresponding entries w1
ij and w2

ij. The output vector 

is y∈{0,1}. The testing function g1 is a sigmoid smoothing function to avoid the sharply jumping by the 

binary sign function: 
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And the testing in the output layer: 

  2g x x  (2.33) 
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The optimizing process is minimizing the error of the output. The priorly labeled vector y identifies the 

direct path as output “1” and the indirect paths as “0”. The total error is expressed as a loss function. The 

total error is expressed as a loss function:  

    2
0 0L y,y = y - y  (2.34) 

Based on (2.31), the loss function is with a form of multiplication of wij. ANN finds a set of wij to minimize 

L.  
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L w  (2.35) 

The optimization is implemented with gradient descent to update the components of the weight matrix 
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Considering the g1 form of (2.32):  
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The loss function L converges to a local minima when the residual ∆w = w’ij − wij is smaller than a 

threshold. 

Table 2.5 Probability of correct testing by ANN [15] 

Metrics Correct probability 

RRMS 72.40% 

Ptot 78.30% 

Joint 85.48% 

The performance of the ANN is a list in Table 2.5. Similar to MLR and SVM, the joint metric testing 

performs better. 

The above state-of-the-art regarding NLOS identification with parametric and non-parametric 

hypothesis testing is summarized in  
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Table 2.6.  

 

 

Table 2.6 Current studies on NLOS identification 

Reference Metric Method Work 

[13] 
Distance 

variance 
GLRT Providing a framework for LOS/NLOS distinction 

[16] 
Distance 

variance 
Fixed threshold 

In a two stages Kalman filter, the NLOS transmission is online identified and 

mitigated with first-stage linear filter of distance estimation.  

[17] 
Distance 

residual 
Fixed threshold Introducing kurtosis into distance identification. 

[18] 
Distance 

residual 
HPFF Hybrid Particle/finite impulse response (FIR) Filter (HPFF) is induced. 

[19] 
Position 

variance 
BST 

A Bayesian Sequential Testing (BST) is induced to identify the NLOS 

transmission for the Kalman filter. 

[20] 
Channel 

feature 

CDF 

comparison 

Validating the kurtosis to identifying the NLOS transmission. The IEEE 802.15 

3a is used as the data source. 

[12] 
Channel 

features 
GLRT 

NLOS is identified with the UWB channel model of IEEE 802.15 4a. Mean 

excess delay, RMS delay spread, and kurtosis of CIR are used. 

[21] 
Channel 

feature 
Fixed threshold Joint conditional testing with RSS, TOA, and RMS delay spread. 

[22] 
Channel 

feature 

Metric 

comparison 

A validation of kurtosis to identify the NLOS transmission of the MIMO channel. 

The kurtosis is extracted from the average CIR of MIMO channels. 

[23] 
Channel 

feature 
ML testing 

A joint TOA/AOA NLOS identification. The AOA is calculated from the 

assumed Gaussian distributed position. The AOA spread is the metric. 

[14] 
Channel 

feature 
SVM 

The NLOS transmission is identified based on the measured UWB CIR. The 

measuring environment is the whole floor scenario. 

[24] 
Chanel 

feature 
RVM 

The identification is achieved with simulation by the channel model of IEEE 

802.15.4-2011. The Relative Vector Machine (RVM) performed better than 

SVM. 

[15] 
Channel 

feature 

ANN and 

GLRT 

A hypothesis testing is implemented with on hybrid Weibull distributed RSS and 

normally distributed RMS delay spread. The ANN was performed better than 

hypothesis testing. 

[25] 
Channel 

feature 
LS-SVM Inducing RSS and Least-square SVM (LS-SVM). 

[26] 
Channel 

feature 
Fixed threshold Inducing AOA, AOD, and TOA to identify NLOS transmission. 

[27] 
Channel 

feature 

CDF 

comparison 
Channel Frequency Response (CFR) is induced. 

[28] Channel Deep Learning Induce deep learning to NLOS identfication 
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feature 

[29] CSI SVM Induced the CSI as the feature 

 

2.2.5 The problem in the current studies 

The current works are mostly focusing on the time domain CIR or corresponding frequency domain 

CFR. The CIR signal sampling is valid if the antenna is omnidirectional. This assumption is reasonable for 

the low-frequency UWB band since the multipath scattering environment is very strong and most of the 

UWB antennas are omnidirectional. Even when the antennas have a certain directivity, the channel impulse 

response remains heavily affected by numerous multipath. However, as previously discussed, the multipath 

effect in millimeter channel is sparse. Furthermore, antennas in the millimeter-wave band are typically 

highly directional to compensate for the free-space. The above two factors make the spatial distribution of 

the NLOS transmission unique: in one direction, the transmission is LOS, while in the other directions, the 

transmissions are NLOS. Classical indentification methods based on time features are more likely to fail as 

the CIRs in millimeter-wave band with directional antennas contain less multipath diversity. 

TX

NLOS 
cluster

LOS cluster
 

Figure 2.5 Identification of LOS and NLOS cluster in the frame of beam training 

In the direction-based identification, the strategy of angular-sweeping in the measurement influences 

the way one should try to distinguish LOS from NLOS components. Since in most of the current 60 GHz 

standard, such as IEEE 802.11ad, analog beamforming induces a discrete beam training codebook, the 

direct path and multipath are not to be received together, but more likely separated (with different 

codebooks, i.e., different beam configurations), as shown in Figure 2.5. Furthremore, the Rx sweeping over 

the space according to a discrete codebook, the beam near the direct path might jump over the LOS path, 

thereby making the direct path lost. In that case, the NLOS identification means to identify the NLOS 

cluster. Thereby, the LOS/NLOS cluster discrimination is the target in the millimeter band. 

2.3 Clustering Methods 
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The clustered-based extracted metrics are fundamental in the procedure of channel modeling. The 

discrete beam training strategy makes the NLOS/LOS discrimination transforming into a cluster-based 

identification as well. Therefore, the clustering method is one of the critical issues and are given full 

consideration in this section. 

2.3.1 Clustering algorithms 

The purpose of clustering is to discover the natural groupings of unlabeled objects with similarities. 

According to the pattern recognition [1], the clustering problem is unsupervised, which is different from the 

previous supervised identification (supervised with a pre-marked data set by the training process). A typical 

clustering process is an optimizing problem: modifying the association relationship between the elements 

and clusters, then updating the value of dissimilarity among clusters, until the dissimilarity between clusters 

reaches a global maxima meanwhile the similarity inside clusters reaches a global minima. According to 

the implementation, the clustering method is divided into two types: down-top hierarchical clustering and 

top-down partitional clustering [30]. If the input data set is a matrix X = {x1, x2, …, xN} with individual 

components xj = [xj1, xj2, …, xjN]T, the clustering algrithm search for K clusters C = {C1, C2 … CK}. A 

hierarchical clustering process constructs a tree-like set structure H of X:  

  1 2, ,MH H H H M N   (2.38) 

in order to make two subsets Hm and Hl (m > l) agglomerate the data points in the form of: 

         and  or i m j l i j i jC H C H C C C C      (2.39) 

In contrast, a partitional clustering process starts with partitioned initializing clusters and then modifies the 

components of each cluster to seek the subset Ci (partition) with: 

 
1

, 1 , | , , X
K

i i i i i
i

C C i K K N C C C C


 
       
 

    (2.40) 

The signal- and complete-linkages are the most known hierarchical methods. K-means is a widely used 

partitional clustering method. 

2.3.1.1 The measure of similarity 

Since the clustering algorithm is looking for similar components, the measure of similarity or 

dissimilarity is the critical consideration. The similarity is defined as a mapping d from the data set X to the 

positive real set, d: X × X → [0, +∞). A widely used linear measure is Minkowski distance [30] between 

the component xi and xj in the l-th cluster: 



Chapter 2  NLOS Identification: State of The Art 

53 

 

1

1

N mm

ij il jl
l

d x x


   
 
  (2.41) 

According to the selection of index m, the Minkowski distance is specified as Euclidean (m = 2), city-block 

(m = 1), and sup (m = ∞) distance. Inducing the correlation between xi and xj, the Minkowski distance 

transforms into a Mahalanobis distance with the covariance matrix S within the cluster: 

      
1/2

1, S
T

i j i jd i j      
x x x x  (2.42) 

where the covariance matrix S is: 

        cov ,
T

S X X E X E X X E X    
 

 (2.43) 

A deformation of Mahalanobis is Pearson correlation: 
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 



 
 (2.44) 

2.3.1.2 Hierarchical clustering 

The hierarchical clustering algorithm updates the Lance-Williams dissimilarity [31, 32] between two 

data points: if two data points with index i and j are agglomerated into a cluster i∪j, the Minkowski 

distance between the new cluster and other points k is:  

Table 2.7 Specification of different types of hierarchical clustering [31] 

Clustering method α β γ 

Single linkage 0.5 0 -0.5 

Complete linkage 0.5 0 0.5 

UPGMA 
| |

| | | |

i

i j
 0 0 

WPGMA 0.5 0 0 

WPGMC 0.5 -0.25 0.5 
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UPGMC 
| |

| | | |

i

i j
 

 2

| || |

| | | |

i j

i j



 0 

Minimum variance 
| | | |

| | | | | |

i k

i j k


 

 
| |

| | | | | |

k

i j k


 
 0 

            , , , , , ,i jd i j k d i k d j k d i j d i k d j k         (2.45) 

According to the coefficients α, β, γ, the hierarchical clustering can be specified as different types: single 

linkage, complete linkage, average linkage (UPGMA), weighted linkage (WPGMA), median linkage 

(WPGMC), centroid linkage (UPGMC), and minimum variance, as shown in Table 2.7.  

For the usually used Euclidean distance criterion, the Lance-Williams dissimilarity is: 

   2 222 1 1 1
,

2 2 4i k j k i jd i j k       x x x x x x  (2.46) 

The principle of the single linkage method is selecting the data points with minimum distance into a cluster. 

   2min , : ,d i j i A j B   (2.47) 

Take the single linkage as an example, the algorithm of a typical hierarchical clustering algorithm is shown 

in Algorithm 2.1. 

Algorithm 2.1 Flow of single linkage hierarchical clustering algorithm [33] 

1. Calculate the distance d(i, j) for all pairs (xi, xj) of the elements in the data set X. 

2. Find xi, xj∈X make for all xi’, xj’∈X: d(i, j) ≤ d(i’, j’) 

3. For the pair (xi, xj)  

Generate a new cluster c = xi∪xj 

Update X = X – C, C = {c} 

4. If X = ∅, stop 

5. Calculate the distances between all the existing classes xi∈X and the new cluster C. with a 

recursion of Lance-Williams distance：d(i, c) 

6. Update X = X ∪ C, go to 2 
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Figure 2.6 Generation of hierarchical clustering: (a) initial data points; (b) hierarchical clusters; (c) binary tree of clusters 

The above process is a process of constructing a binary tree. A specific example is shown in Figure 2.6. The 

nearest neighbor pairs {i, j}, {k, h}, {g} are generated directly from the initial data set. The nearest cluster 

neighbors are grouped in further until all of the elements are grouped. The data points finally aggregate into 

a binary tree of two clusters {i, j} and {k, h, g}. 

2.3.1.3 Partitional clustering 

K-means is a typical and simple partitional clustering algorithm. K-means aims to minimize the sum 

of the error between the centroid and the components in all of the clusters [34]. K-means minimizes the 

average Euclidean distance between data points within a cluster and the mean of the cluster. The algorithm 

of K-means is shown as Algorithm 2.2. 

Algorithm 2.2 Flow of K-means clustering algorithm 

1. Randomly choose K initial centroid positions (0) (0)
1 , , Kc c  

2. For i = 1 to MaxIterations 

a. Assign MPCs to cluster centroids and store indices ( )i
l : 

   ( ) ( 1)arg min ,i i
ll k

k
d  x c  (2.48) 

  ( ) ( ) ( ) ( )( )
1 ,  indicesi i i ii

L k l
l

k          (2.49) 

b. Recalculate cluster centroids ( )i
kc  from the allocated distance to coincide with the 

clusters’ centers of gravity: 

 
( )

( )
i

k
jji

k M



 x

c


 (2.50) 

c. If ( ) ( 1)i i
k k

c c for all 1, ,k K  , then GoTo 3.  

Else Next i 

3. Return ( )( ) , ii
K k

    
c   

The specific process is shown in Figure 2.7. The input data set of x is shown in Figure 2.7 (a). The 

positions of initially partitioned clusters are randomly selected in (b). Then, the centroids and distances are 

updated, until a global minima of intracluster distance is reached. 



Chapter 2  NLOS Identification: State of The Art 

56 

x

centroids

d

Inside dminNew 
centroids

(a) (b) (c) (d)

 

Figure 2.7 Process of K-means algorithm: (a) initial data set; (b) initial clusters; (c) update centroids; (d) calculate distance. 

The aim of K-means is looking for global minima, but it is straightforward to fall into local minima 

due to two factors: initial seed and number of repetitions. To avoid the result that K-means fall into local 

minima, the k-means++ [35] was used to initialize the centroid of the cluster randomly. The algorithm 

generates the next initial centroid with a probability that is proportional to the Euclidean distance of the 

previous centroid. The optimized number of clusters is estimated with specific algorithms, such as 

silhouettes [36], for which the distances among data points in one cluster are minimized, and the distances 

among clusters are maximized. 

2.3.2 Clustering method for the channel model 

Most of the current propagation channel model studies use K-means algorithm as the clustering 

method. The channel parameter set, {AOA, AOD, TOA}, is typically extracted using an antenna array by 

MUSIC estimation  (for unique spatial variable AOA/AOD) or SAGE estimation (for multi-variable, e.g., 

AOA + TOA), and is then used as input data for K-means. The power of CIR is used as a weight for the 

clustering. An improved version of K-mean, K-Power-Means [37], is also used in standard channel 

modeling procedures. During the iterative process, the standard K-Power-Means minimizes the sum of 

power-weighted distances of parameter points to the centroid associated with the parameter point. The flow 

chart of K-Power-Means is shown in Algorithm 2.3.  

Algorithm 2.3 Flow of K-Power-Means clustering algorithm 

1. Randomly choose K initial centroid positions (0) (0)
1 , , Kc c  

2. For i = 1 to MaxIterations 

a. Assign MPCs to cluster centroids and store indices ( )i
l : 

   ( ) ( 1)arg min MCD ,i i
l ll k

k
P   x c  (2.51) 

  ( ) ( ) ( ) ( )( )
1 ,  indicesi i i ii

L k l
l

k          (2.52) 

b. Recalculate cluster centroids ( )i
kc  from the allocated MPCs to coincide with the 

clusters’ centers of gravity: 
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 (2.53) 

c. If ( ) ( 1)i i
k k

c c for all 1, ,k K  , then GoTo 3.  
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Else Next i 

3. Return ( )( ) , ii
K k

    
c   

The Multipath Component Distance (MCD) in the flow chart is the Euclidean distance used to evaluate the 

difference between individual multipath components in the parameter space [38, 39]. So the MCD between 

the i-th and j-th angular points in the Cartesian coordinate system is expressed as: 
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 (2.54) 

The MCD for the TOA between the i-th and j-th temporal points is: 

 ,
max max

i j std
TOA ijMCD

  
 


 

 
 (2.55) 

Where 

  max
,

max i j
i j

      (2.56) 

The total distance is  

 
2 2 2

, , ,ij AOA ij AOD ij TOA ijMCD MCD MCD MCD    (2.57) 

2.3.3 The problem of K-means frame 

The K-means clustering has intrinsic weaknesses: first, the number of clusters has to be assumed 

before the operation. In order to get the correct number of cluster, k-means has to be repeated several times. 

Second, an inappropriate initial cluster will lead to a local minima. To solve the initializing problem, the 

K-means++ algorithm [35] was introduced. Third, K-means treats all the features equally, regardless of the 

actual correlation among the features. Therefore, the physical shape of the cluster cannot be preserved. The 

third problem leads to the fact that the channel cluster in the time domain cannot reflect accurately the 

exponential fading shape for instance [36]. To solve the problem, the CIR has to be fitted with a priory 

known exponential function [40]. However, the a priory function destroys the unsupervised nature of 

K-means. Furthermore, the shape of the channel clusters is not always obtainable. The local scattering 

characteristics determine spatial distribution. The directional antenna pattern of beamforming in the 

millimeter band enormously intensifies the local charactersitics of scattering. The narrow beam makes the 

CIR only influenced by a few path of a local scattering in a narrow domain; by omnidirectional antenna, 
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lots of path in a large range are illuminated, so local characteristics are not obvious.  In that case, the 

shape of the spatial cluster is entirely unknown and cannot be predefined. The feature weighting method 

attempts to solve the problem fundamentally [41]. However, the weighting coefficients are estimated 

empirically. Despite this, the weighting method still performs much unsatisfactory for spatial identification 

in V-band or higher frequency band [42]. It still cannot preserve the shape of the scattering cluster.  

2.4 Conclusion 

Most of the current studies on NLOS identification are in the sub-6 GHz band. The low attenuation, 

strong diffraction, and omnidirectional antenna pattern typically encountered in this band make the 

resulting channel between a transmitter and a receiver experiencing strong multipath effects. Therefore, 

features in the CIR are typically used to differenciate between LOS and NLOS transmissions. For instance, 

the large scattering range leads to TOA spreads much broader in NLOS than in LOS transmission. The 

ranged distance and other channel features are also used to distinguish LOS and NLOS situations as 

summarized in  

 

Table 2.6. Parametric and non-parametric hypothesis testing are both used to statistically determine the 

transmission scenario. NLOS identification in the millimeter-wave band has not being paid much interest in 

the literature so far. Furthermore, millimeter-wave channel, being higly sparse, exhibits different behaviors 

than in the sub-6 GHz region. Consequently, this PhD work intends to tackle this issue and will specifically 

use angular spatial features of the channel rather than of the CIR in order to perform NLOS identification. 

This work is detailed in the chapter 4 of this manuscript. To do so, clustering is an essential step. Among 

current clustering methods, the current channel modeling widely uses the partitional clustering method, 

K-Power-Means. The problem of shape-preservation of K-Power-Means remains unsolved so far, and is of 

utmost importance for NLOS identification in the millimeter-wave band as we intend to use the angular 

cluster shapes as a feature for classification. Consequently, the next chapter 3 introduces our new clustering 

method, which appears well suited for millimeter-wave band NLOS identification and also well-suited to 

handle a big volume of data. 
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3.1 Introduction 

As discussed in chapter 1, beam training is a strategy to search for available links in space. The 

protocol in the channel model of IEEE 802.11ad divides the beam training into three steps, Sector Level 

Sweep (SLS), Beam Refinement Phase (BRP), and Beam Tracking (BT). In the SLS step, the receiver 

beam sweeps over the whole space in both azimuth and elevation directions, while the transmitter pattern is 

kept as quasi-omnidirectional. The sweeping is performed according to a fixed codebook, in which the 

angular sweeping is done using approximately equal intervals throughout the entire space. In that case, the 

measured power distribution forms a grid along the azimuth and elevation angles. Every square is a 

sampling cell. The generated grid is a Power Angular Spectrum (PAS) of Angle of Arrival (AOA), as shown 

in Figure 3.1. The clusters in PAS in Figure 3.1 (b) can be generated in simulation by the convolution 

between the spatial clustered scattering impulses and the antenna beam patterns used in Figure 3.1 (a). The 
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PAS clusters inherit the stochastic scattering characteristics of the corresponding geometrical clusters. 

Therefore, the shape of the PAS cluster is an effective feature to distinguish the LOS and NLOS clusters. 

Furthermore, this information is available as soon as a beam training process is performed. This offers 

consequently a potential to identify NLOS clusters at a moderate additional complexity cost. 
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Figure 3.1 The generation of PAS with beam training: (a) SLS step of beam training; (b) PAS generated by beam training. 
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Figure 3.2 Procedure of purposed NLOS identification with the features of PAS cluster 

The NLOS identification we propose (see Figure 3.2), using the features of PAS clusters, is somewhat 

similar to the supervised classification used in the temporal NLOS discrimination in UWB in chapter 2. 

The transmission characteristics of the 60 GHz channel are acquired with angular sweeping during the 

beam training process and mapped onto a spatial spectrum in the form of PAS. PAS is distributed in sparse 

clusters (the sparsity being inherent to millimeter-wave communications [1]), and the background is 

removed. The background typically corresponds to the noise of the receiver. The shape features of PAS 

clusters are extracted as metrics to evaluate the transmission situation. Then, the likelihood of LOS and 

NLOS are compared to identify the transmission type in particular beam directions. In these steps, in order 

to evaluate the shape associated with the transmission situation, the shape of each PAS cluster needs to be 

extracted well-preserved. As discussed in chapter 2, the currently widely used K-Power-Means method is 

ineffective for shape preservation. To solve this problem, a clustering method which can preserve the 

shapes is needed. 

In this chapter, the shape-preserving method we propose for channel clustering is detailed. Unlike 

common discrete channel parameters that are usually spread onto a non-uniform grid such in time or 

angular domain, the equal-angular-interval PAS is more similar to a grayscale image. In a digital grayscale 

image, the pixels are arranged sequentially with each other. The discrete value (integers from 0 to 255) of 
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each pixel represents the brightness. In another word, a grayscale image is a grid carried discrete intensity 

information. The power intensity can be regarded as a continuous gray value. The relatively high power 

constitutes a cluster-like bright foreground, while the lower power range serves as a dark background. The 

sampling cells are pixels. By analogy, the clustering of PAS can actually take inspiration from the 

clustering methods in the image processing field. In image processing, the clustering operation is called 

segmentation, which means a set of operation partitioning a digital image into several segments. In contrast 

to the global segmentation methods such as Kmeans, the local image processing method, mathematical 

morphology, can avoid the weakness of neglecting the correlation among neighbor pixels, thereby 

preserving the shape characteristics of each cluster. If regarding the entire dark background as a cluster, it 

can achieve the two main targets of clustering for continuous field: extracting illuminated clusters from the 

dark background and separating the adjacent clusters. This chapter will study the application of 

mathematical morphology for the PAS clustering.  

3.2 Watershed Segmentation 

3.2.1 Imaging processing with mathematical morphology 

Mathematical morphology (MM) is an imaging processing method to extract information from the 

response of various nonlinear transformations, based on set theory and lattice theory. A grayscale image is 

regarded as a function f(x) that maps a set of 2D coordinate x (pixel position) to a surface extended to the 

third dimension (pixel value). In the situation in Figure 3.1 (b), the variable x is the angle vector (ϕ, θ) 

sampled during beam training, where ϕ is the azimuth angle, and θ is the elevation angle. The function f(x) 

maps the whole angular plane to the received power, f(x): X2 → Y. Where, x  X2, X2 is a 2D coordinate 

set of the whole angular plane: 

    2 , | , , ,
2 2

X
                 

x  (3.1) 

The generated 3D space is defined with a set X2  Y.  

    2 +, , | , , , ,
2 2

X Y P P
                  

  (3.2) 

Where y  Y. The idea of MM is remodeling 3D space of an image with other local functions, which are 

called structuring elements. A structuring element is also a mapping to angular plane, g(x): Xg
2 → Y, where 

Xg
2  X2. The reconstruction is achieved with some basic operations that are defined below. 

Operation 1: dilation [2] f  g: X2  Xg
2 → Y is used to extend the local spaces. It extracts the maximum 

value of the sum of f and g at each sliding position of f:  
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        sup ' 'f g f g   x x x x  (3.3) 

Operation 2: erosion [2] f ○– g: X2 ○– Xg
2 → Y is used to shrink the local image spaces. It extracts the 

minimum value of the difference of f and g at each negatively sliding position of f:  

        inf ' 'f g f g  x x + x x  (3.4) 

A simple illustration of operations 1 and 2 is shown in Figure 3.3. A polyline f(x) represents the image. 

According to (3.3) and (3.4), a simple horizontal line structuring element g(x) slides along f (above f for 

dilation and below f for erosion). The supremum of the sliding trajectory is the result of dilation as shown 

in Figure 3.3 (a); The erosion extracts the infimum of the trajectory as shown in Figure 3.3 (b) 
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Figure 3.3 schematic diagrams of the operation of (a) dilation and (b) erosion for the image f(x) with g(x) 

Operation 3: opening removes bright peaks that are small in size and break narrow connections between 

two bright peaks with dilation and erosion: 

  f g f g g    (3.5) 

Operation 4: closing preserves small peaks which are brighter than the background and fills the small gaps 

between bright peaks with dilation and erosion: 

  f g f g g    (3.6) 

The combination of dilation and erosion seen in Figure 3.3 generates opening and closing as shown in 

Figure 3.4. Small and insolated particles are removed by the opening operation, while the closing operation 

fills small and isolated holes. Therefore, those two operations are denoising operations. 
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Figure 3.4 schematic diagrams of the operation of (a) open and (b) close for the image f(x) with g(x) 

Operation 5: Euclidean distance transformation [3] d(x, x’) is an operation for a binary image. It assigns 

the value of each pixel x in a subset A of the whole image with the Euclidean distance between x and the 

nearest nonzero pixel x’ : 

   2 2, inf | , , , 0i j Ad ' ' A X ' A P
      
 

x x x x x x  (3.7) 

Operation 6: geodesic distance [4] dA(x, x’) is also on the plane X2. It is the length of the shortest path 

linked two pixels x and x’ in a connected space A, as shown in Figure 3.5 (a). 

   2 2, inf | , , ,  is connectedA i jd ' ' A X A ' A A
      
 

x x x x x x  (3.8) 

A geodesic ball [5] Ω with a center x and radius λ is defined as a domain set {x’} whose geodesic distance 

to x is not larger than λ 
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Figure 3.5 (a) geodesic distance: the shortest distance between two points; (b) geodesic ball created with two sets, A and x ≤ λ 

     2, ' | , , , 'A AA A X A d      x x x x x  (3.9) 
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According to (3.9), it is the intersection domain between the connected set A and a circle set with radius λ, 

which is presented in Figure 3.5 (b). 

Operation 7: Geodesic dilation [5] is the intersection between the geodesic ball Ω and a mark domain B: 

     2 2' | , , , ,A AB A A X B X A B        x x x  (3.10) 

Consider (3.9), it can be transformed as [6]:  

     ' | , 'A AB A d B   x x  (3.11) 

It can be extended into the geodesic dilation for the grayscale images f under the image g, f < g, in the 

direction of y  Y: 

     | ,g gf y P d f y     (3.12) 

For digital grayscale images, λ  ℕ and λ = [0, 255]. For continuous PAS, λ  ℝ+. 

Operation 8: Reconstruction [6] is a process of reshaping. If f and g are two grayscale images defined on 

the same domain and f < g, reconstruction iterates repeating geodesic dilation until convergence:  

    
0

g gf f


 


   (3.13) 

Reconstruction removes the peaks of the marked image, as shown in Figure 3.6.  
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Figure 3.6 schematic diagram of reconstruction: (a) initial functions f and g; (b) result of reconstruction. 

Operation 9: Based on (3.13), regional maxima [7] extracts a domain Dmax(f) with a power tolerance ε, as 

shown in Figure 3.7. 

    max fD f f f     (3.14) 



Chapter 3  Spatial Clustering 

68 

y

x

f

ε

ε

ε
Dmax

 

Figure 3.7 schematic diagram of regional maxima  

Operation 10: Gradient filters (1st order derivative), external gradient, and internal gradients are 

calculated with dilation and erosion [6]: 

 f f g f g      (3.15) 

 f f g f     (3.16) 

 f f f g     (3.17) 

Operation 11: with (3.15) to (3.17), Laplacian filter (2nd order derivative) [8] is: 

 2 f f f      (3.18) 

3.2.2 Watershed segmentation 

Similar to the case of discrete clustering, image segmentation aims to find the regions with similar 

properties as well. As described in chapter 2, the similarity measure of discrete clustering is the Minkowski 

distance. In a continuous and differentiable field, if the elements in a domain have local similarity, the 

gradient of some features in the domain is low, or the divergence in the domain will have the same tendency. 

Here, the features that is considered is the Laplacian of the 2D angular mapintensity, 2f, defined as (3.18)  

A segment is defined as the valley of a second-order derivative of a field for a convex hull of the 

origin field. Valleys can be segmented with the central minima and around local maxima. This is the idea of 

watershed segmentation: watershed segmentation is to find the local minima centers and local maxima 

boundaries of clusters. It can be linked to a problem of damming watersheds at the maxima to avoid 

flooding the low basin. The domains enclosed by the watersheds are the target segments, which form the 

cluster for the channel model. It is the origin of the name “watershed segmentation”.  
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3.2.2.1 The flow of watershed segmentation 

The aim of watershed segmentation is presented with an example shown in Figure 3.8. The original 

image function f is a 3D surface defined in a X2Y space, which in our case it the PAS. The projection of f 

onto the x-y plane is shown in Figure 3.8 (a) and the projection onto the angular plane to form a contour 

pattern of power in Figure 3.8 (c). Here, for sake of illustration, y represents the field intensity. However 

later on, for the actual clustering, y will represent the Laplacian of that field intensity. Segmentation aims to 

separate the different valleys s1 to s4 by creating watersheds segments (WS) at every local maximum, as 

shown in Figure 3.8 (b). The valleys can be then identified as segments (i.e., clusters in PAS).  

y
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Figure 3.8 schematic diagram of watersheds segmentation: (a) projection of the original image function f, a 3D surface, on 

x-y plane; (b) vertical cross-section of segmentation s1 to s4 which are separated with watersheds WS; (c) projecting 3D 

surface f on to a contour line on angular plane; (d) horizontal cross-section at y = λi. 

The idea is to pour water progressively onto the y function. The level of water λ continuously rises 

from 0 to λmax. The surface of the water so poured is represented by the intersection of the cross-section 

plane Xλ
2
 at level λ with the function surface f as shown in Figure 3.8 (d). This intersection plane X2 

λ  is then 

separated into isolated domains K1 to K4. Here, Ki and Kj are unconnected (isolated): Ki ∩ Kj = ∅. To 

achieve the clustering, i.e., to find out the watersheds, the plane X2 

λ  horizontally intersects the curve f at 

level λ = 0, continuously rising to level λ = λmax. Since the valley is narrow at the bottom and broad at the 

top, during the level rising, the domains Ki in the cross-section plane X2 

λ  extend and are reshaped with the 

reconstruction operation (3.13) until adjacent to each other (or reach the top level to stop). When this so 

occurs, the boundaries are stored as watersheds. The critical point of watershed is therefore to find out the 

boundaries between neighbor basins when the basins extend from low level to high level. 
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Figure 3.9 update Zone of Influence (IZ): connected domains on (a) X2 

λi-1, (b) X2 

λi  and (c) X2 

λi+1; (d) X2 

λi  and X2 

λi+1 to create IZ. 

The flow of watershed corresponding to Figure 3.8 is shown in Figure 3.9. The figures (a) to (c) 

corresponds to the cross-sections at level y = λi-1 , y = λi, and y = λi+1 in Figure 3.8 (b). When the water 

reaches y = λi-1, the basins S1, S2, and S4 are flooded. The flooded domains are the three domains K1, K2, and 

K4 in Figure 3.9 (a). The flooded domain is denoted as Wi =  Kj. When the sampling plane moves to y = λi, 

a new domain K3 is flooded in Figure 3.9 (b). It is the minima of the basin S3. When the plane moves from 

level y = λi to y = λi+1, S2 and S3 combine so that a new domain G appears in Figure 3.9 (c). The new 

domain G in Figure 3.9 corresponds to a combination of segments S2 and S3 so G needs to be separated 

according to K2 and K3 (S2 and S3 represent two different clusters that need to be uniquely distinguished). 

To achieve this, two concepts are defined. The geodesic balls of Ki, Z 
Xλ
(Ki), are called the Zone of Influence 

(IZ), as defined in (3.19). The boundary enclosing those IZ is called Skeleton by Zone of Influence (SKIZ) 

S(K, X2 

λ ), as defined in (3.20). The generation of S(K, X2 
λi+1

) is here created with K2 and K3.  

Operation 12: Zone of Influence (IZ) [9, 10] Zxλ(Ki) is the subset of points in Xλ
2
 at a finite geodesic 

distance from Ki and closer to Ki than any other Kj.  

  
 
   

2
, ,

, , ,

X i

X i
X i X j

d K
Z K X

j i d K d K





 



     
    

x
x

x x
 (3.19) 

Operation 13: Skeleton by Zone of Influence (SKIZ) [9, 10] S(K, G) is the complement set of all the IZ 

with:  

    ; X i
i

S K G G Z K


   (3.20) 

In Figure 3.9 (d), Z 
Xλ
(K2) is the domain closest to K2 rather than K3: 
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       2 2 3, ,X X XZ K G d K d K
  

  x x x  (3.21) 

While, Z 
Xλ
(K3) is the domain closest to K3 rather than K2:  

       3 3 2, ,X X XZ K G d K d K
  

  x x x  (3.22) 

Therefore, SKIZ is the bound equidistance to K2 and K3 :  

           2 3 3 2; + , ,X X X XS K G G Z K Z K G d K d K
   

       x x x  (3.23) 

It is the difference of the connected domain G and the sum of all IZ inside G. The other extended domains 

K1 and K4 are the new local minima of 2f at current level, which are isolated with other Kj. They are 

reconstructed from the λi by (1.13) to create the set of the minima mi at the level y = λi+1. The flooded 

domain at this level is Wi+1 =  ZX
 

λi+1
(Kj)  Kj. The above process repeats until the maximum level is reach. 

At the end of the process, the different isolated domains K and the zones of influences Z represent the 

clusters as (3.26). The watershed WS is the complement of the flooded domain at level λN: WS = WC 
N= X2 

λN
 – 

WN as (3.27). The full flow of watershed is shown in Algorithm 3.1. 

Algorithm 3.1 The general flow watershed segmentation 

4. Initialize the flooded domain W1 = ∅. 

5. For i = 1 to Max λN 

a. Creates new minima mi+1(f) at level λi with reconstruction ρg(f) (3.13):  

    11 i
i

i K
m f K    (3.24) 

Where 

 

2
i

i
j

j X

K K



 
 
 
 
  (3.25) 

b. Create IZ with (3.19). 

c. Update the flooded domain Wi:  

  +1 +1
i

i X j i

j

W IZ K m


 
 
 
 
   (3.26) 

Next i 

6. Extract the final SKIZ with (3.20) at the top level:  

 2=
N

c
N NW XW WS    (3.27) 

7. Return SKIZ and WN 

The K-Power-Means introduced in chapter 2 looks for a global minimum. The procedure of watershed 
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transformation illustrates that it is a local method. The extension of IZ boundaries is operated by 

reconstructing adjacent IZ in x direction at the level λi and λi+1. The reconstruction smoothing operation 

here is to avoid the singularities at the boundaries. It is the essential difference between K-Power-Means 

and watershed segmentation. 

3.2.2.2 The solution of the over-segmentation problem 

One of the critical problems of watershed segmentation is the sensitivity regarding the fluctuations 

around the cluster. The micro-concave domains will be incorrectly divided into clusters and small pieces 

nearby clusters. Furthermore, isolated weak pulses need to be removed from the whole PAS. In simulation, 

the isolated pulse are rays generated away from the main cluster because of the tail of the AoA/AoD PDF. 

Interestingly, as seen in the next chapter, isolated pulses do also exist in experimental results as spread 

distributed speckles. Two operations are used to mitigate this issue: a speckle removal operation and 

cluster-vicinity over-segmentation removal. 

3.2.2.2.1 Speckle removal 

A denoising filter is used to remove the isolated noise pixels in the background. To do so, image 

processing operations are applied: a combination of opening (3.5) and closing (3.6) operations and then a 

process of smoothing using restructuration (3.13). The results can be seen in Figure 3.10. Compared with 

the original PAS in Figure 3.10 (a), the CIR generates spread distributed speckles in Figure 3.10 (b). Those 

isolated noise pixels are removed in Figure 3.10 (c). 

 

Figure 3.10 PAS with (a) no noise; (b) AWGN noise on CIR and isolated pulse noise on PAS; (c) denoised of (b) 
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3.2.2.2.2 Cluster-vicinity over-segmentation removal 

Even with the isolated pulse removed, over-segmentation still occurs in the vicinity of clusters, due to 

their large fluctuation. One example of such an over-segmentation is shown onto the PAS in Figure 3.11. 

The over-segmentation can be observed with both beam widths of 5° and 20°. It is therefore a general issue 

for PAS segmentation. In Figure 3.11 (a), obvious fine divided clusters generated with beam with 5o 

concentrated in the top-left corner. For larger beam with of 20o, the fine clusters over-segmented revolve 

the actual clusters in Figure 3.11 (b).  

 

Figure 3.11 Over-segmentation of the PAS with beam width of (a) 5o and (b) 20o. 

The watershed algorithm in Figure 3.8 contains two stages: extension of IZ and extracting IZ. One 

constraint of IZ extraction is that it is limited within a “connected domain G” as in Figure 3.9 (d). Therefore, 

the boundaries of clusters and background can be used to mitigate the over-segmentation, as Figure 3.12. 

Generalizing the SKIZ extraction operation, the general extension of isolated domain can be view as an 

extraction of SKIZ with an absence of dual domain and outbound of G, as the disappearing of K2 in Figure 

3.12 (a). Therefore, the extension in Figure 3.12 (a) is a SKIZ extraction within the whole cross-section 

plane X2 

λi
. In Figure 3.12 (b) the free space is an overlapped domain of ZI domains ZX

 

λi
(K1) and ZX

 

λi
(K2). In 

this case, no SKIZ can be extracted from the absence G, until K1 and K2 extend enough to touch each other 

and extracting SKIZ between them. All of the clusters will be identified without any constraint, even the 

fluctuated small clusters in over-segmentation. 
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To avoid that, the minima regions of the gradient field are first extracted through the maximum 

regions of the PAS field with eq.(3.14) and are selected as markers. The IZ containing one and only one 

marker is regarded as a segment while the over-segments of the background ought to be merged into a 

whole. To do so, the background is marked with the watershed of the Euclidean distance, using (3.7), as G1 

(see Figure 3.12 (c)) The Euclidean distance as specified in (3.7) is the distance between each pixel and the 

nearest zero pixel in the foreground markers. G2 as well, the watershed extraction is constrained again with 

boundaries G1 and G2. In that case, only the watersheds of marked domain K2 in Figure 3.12 (c) can be 

preserved by extracting the equidistance boundaries as the definition of watershed (3.19). Unmarked 

clusters like the K1 will be ignored since the equidistance cannot be evaluated due to the lack of markers 

(boundary G2 for K2).  

Marker of cluster: 
boundary G2

ϕ 

θ

Marker of background: 
boundary G1

Fluctuating cluster

2
i

X

(d)

(b)(a)

G1

G2 K2

K1

S(K; G)

 1
i

XZ K


 2
i

XZ K


K1

(c)

ϕ 

θ

 2
i

XZ K


G1

K2

S(K; G) G2

K1

2
i

X

ϕ 

θ
K2

K1

   1 2,  
i i

X XZ K Z K
 

2
i

X

 

Figure 3.12 Mechanism to mitigate over-segmentation by markers: (a) open-bound SKIZ extraction; (b) segmentation 

without markers; (c) keeping clusters by adding makers of clusters and background as the boundaries; (d) role of makers to 

cover over-segmentation. 

Algorithm 3.2 Flow of watershed segmentation solving the over-segmentation problem  

1. Extract gradient field: calculate the curvature with the Laplacian filter 2f (3.18). 

2. Extract the mark of foreground: Removing the isolated points with a combination of 

opening (3.5) and closing (3.6). Then smooth it with restructuration (3.13). Get locations of 

N regional power maxima of the foreground as centroid positions with (3.14). 

3. Extract the mark of background: the marks are the curves equidistant to the clusters in the 

foreground. The distances of every point in the foreground marker are calculated (3.7). Then 

the markers of the background are the watershed line built with watershed transformation 

Algorithm 3.1.  

4. Group clusters: combining the foreground, local maxima, and marker of background, the 

indices are assigned with watershed transformation Algorithm 3.1.  

A modified watershed segmentation flow which can achieved what is illustrated in in Figure 3.12 (d) 
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is presented in Algorithm 3.2.  

3.3 PAS Simulated with 60 GHz Channel Model 

To validate the feasibility of segmentation for 60 GHz PAS with the watershed method, simulations 

are performed based on the angular power data obtained from the channel model of IEEE 802.11ad in the 

conference scenario. 

3.3.1 Model of AOA in IEEE 802.11ad 

The channel model in IEEE 802.11ad has been obtained by Monte Carlo sampling of ray tracing data. 

A schematic diagram of AOA and AOD is shown in Figure 3.13. A pair of Rx and Tx is placed on a table in 

the center of a conference room. The LOS beam is transmitted directly from Tx to Rx, while walls and the 

ceiling reflect the NLOS transmission paths. The table obstructs the beam focusing toward the ground. In 

order to get the angular coordinate in the PAS in Figure 3.1 (b), the positive and negative axes of azimuth 

and elevation are defined. The AOA and AOD of LOS beams are defined as ϕ = θ = 0°. The direction of the 

antenna beam at ϕ = θ = 0° is defined as the positive direction. As shown in Figure 3.13 (a), the 

counterclockwise rotating direction of the radio beam is defined as the negative axis of azimuth for both 

AOA and AOD; the elevation is positive at the upper hemisphere and negative at the lower hemisphere. is 

considered as the positive axis of elevation in Figure 3.13 (b).  
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Figure 3.13 AOA and AOD in (a) top view and (b) front view of IEEE 802.11ad channel model in the conference scenario. 

AOA and AOD in IEEE 802.11ad are cluster-based. Eighteen intra-cluster angles are considered, 

Gaussian distributed. The statistical distributions of the seventeen clusters are empirical piecewise 

functions. Only the first and second reflections are considered in the model. For the four first-reflection 

clusters reflected by walls, the AOA and AOD azimuths (path A and B) reflected by orthogonal walls are 

correlated with each other. Their relation in the positive and negative azimuth angle are: 
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The distribution of one elevation angle cluster contributed by the first-order reflections from the ceiling is: 
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The distribution of four elevation angle clusters contributed by the second-order reflections from walls and 

ceiling is: 
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The AOA and AOD elevation clusters of the second-order reflections from walls are correlated. The 

distributions are divided into eight segments: 
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 (3.31) 

Where u1 to u8 are i.i.d. variables uniformly distributed in the range of [0, 1]. The PDF generated with (3.28) 

to (3.31) are shown in Figure 3.14.  
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Figure 3.14 Statistical characteristic of AOA and AOD: (a) relation between azimuth clusters created by the first-order 

reflection by walls; (b) PDF of elevation with the first-order reflection by ceiling; (c) PDF of elevation with the first-order 

reflection between ceiling and walls; (d) relation between azimuth AOA and AOD of clusters. 

The antenna beam is modeled with a combination of Gaussian-shaped main lobe and constant-leveled 

side lobe. The circularly symmetric Gaussian function of the main lobe is:  

    2 2
0, exp +G G         (3.32) 
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θhpbw is the 3dB Half Power Beam Width (HPBW). The side lobe is the pattern larger than 2.6θhpbw. 

Integration of the antenna gain over the whole solid angle results in unity, the side lobe is set as 

  10[ ] 0.4111 log 10.597hpbwG dB      (3.35) 

As an example, the antenna pattern model creates a normalized antenna pattern of HPBW = 10o as shown 

in Figure 3.15.  

 

Figure 3.15 Normalized antenna pattern of 10o created with the channel model of IEEE 802.11ad. 

3.3.2 Simulation parameters 

 

Figure 3.16 Normalized PAS created with 5 o beam width 

One thousand realizations are generated to verify watershed segmentation. While using an 

omnidirectional Tx antenna, the Rx directional beam scans across the angular space. The scanning interval 

is 1o in order to obtain a high spatial resolution. In order to study the influence of beam width on the 

watershed segmentation method, the beamwidth of the Rx antenna varies in a range of 5o to 29o with a 2o 

sampling step. An oversampling factor of 8 is selected to increase the time resolution. A PAS example 

generated with a 5 o beam width is shown in Figure 3.16.  

 

 

LOS 
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3.4 Clustering for 60 GHz Channel by Watershed 

3.4.1 Intermediate results of watershed algorithm 

 

Figure 3.17 Result of the watershed algorithm at different steps: (a) gradient field; (b) local maxima as front markers; (c) 

maximum distance curves as backmarkers; (d) clusters marked with different colors. 

Figure 3.17 presents the intermediate results of the watershed segmentation of the noiseless PAS 

shown in Figure 3.16. According to Algorithm 3.2, this example illustrates the results of four steps for 

watershed segmentation. Without loss of generality, the PAS is normalized to its peak value. A Laplacian 

filter extracts the gradient field of the original PAS as shown in Figure 3.17 (a). The marker of the 

illuminated foreground is the local maxima in Figure 3.17 (b) whereas the background is marked with the 

watershed curves of the Euclidean distance field determined with (3.7) in Figure 3.17 (c). Finally, the PAS 

clusters in Figure 3.17 (d) are obtained with the watershed segmentation. The watershed transformation 

acts on the combination of gradient field, foreground, and background. Comparing the original PAS in 

Figure 3.16 with the clusters in Figure 3.17 (d), Algorithm 3.1 meets the original expectation in the 

schematic diagram of watershed segmentation in Figure 3.8. One important parameter in the process is the 

shape of the marker g in (3.3) and (3.4), that influences the denoising and smoothing operation. A g is a n  

n matrix with values to make the matrix like disk, square, diamond. In this study, a 3 3 matrix has been 

found to perform well, although depending on the angular step of the PAS 2D map, this operator may be 

adjusted to obtained optimal clustering performance. 

 

(a) (b) 

(c) (d) 



Chapter 3  Spatial Clustering 

80 

3.4.2 Comparing methods 

Because watershed segmentation aims to solve the problem in K-Power-Means, K-Power-Means is 

one of the methods we should benchmark our approach with. Besides, in order to investigate the influence 

of the pretreatments in modified watershed transformation, such as the markers of foreground and 

background in Algorithm 3.2, the same pretreatments are introduced in the standard K-Power-Means as 

another benchmarking method. First, fixed local maxima replace the iterative searching for centroids. 

Opening and closing operations are used to remove the isolated point noise the field similarly to watershed 

segmentation. Second, since the background marker is hard to accomplish, a threshold is used to remove 

the background directly. The threshold is selected using Otsu’s method [11]. Otsu’s method distinguishes 

the foreground and background of a high-contrast image by finding the maximum separation of the 

intensity histogram. The flowchart of the modified K-Power-Means algorithm is shown in Algorithm 3.3. 

Algorithm 3.3 Flowchart of modified K-Power-Means algorithm  

1. Extract locations of N local maxima power as centroid positions c1
(0), … , cN

(0). Remove the 

isolated point noise with a combination of opening (3.5) and closing (3.6), then smooth it 

with restructuration (3.13). 

2. Remove the background with a threshold Pthre which is the first bin of total M bins pi(Pl) in 

the power intensity histogram with the N components in the field:  

  argmaxthre i l
i

P p P  (3.36) 

3. Assign MPCs to cluster centroids and store indices l
(i) 

   ( ) ( 1)arg min MCD ,i i
l l nl

n
P   x c  (3.37) 

  ( ) ( ) ( ) ( )( )
1 ,  indicesi i i ii

L k l
l

k          (3.38) 

4. Return n = [ (i), cn
(i)] 

3.4.3 Simulation results 

3.4.3.1 Results of watershed segmentation  

Figure 3.18 shows the result of watershed segmentation for the PAS with beam widths of 5o, 13o, 21o, 

and 29o. White closed curves are the labels for illuminated foreground clusters. The dark blue domain is the 

background domain. Cluster labels clearly distinguish adjacent foreground domains. Most of the power in 

the foreground is gathered into clusters, and the background with week power intensity is clearly excluded 

from clusters. Intuitively, the watershed segmentation achieves the two main purposes of clustering: 

extracting the illuminated foreground from the dark background, and distinguishing different illuminated 

domains. Furthermore, clustering can clearly be achieved with different beam widths. Another important 

observation is that the cluster shapes are well preserved. 
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Figure 3.18 Result of segmentation with watershed transformation with beam width of (a) 5o; (b) 13o; (c) 21o; (d) 29o 

3.4.3.2 Results of standard K-Power-Means  

  

  

Figure 3.19 Result of segmentation with standard K-Power-Means with beam width of (a) 5o; (b) 13o; (c) 21o; (d) 29o 

Using the standard K-Power-Means method, the entire angular space is divided into several polygons 

bounded by white straight lines, as shown in Figure 3.19. In the example in Figure 3.19 (a), the illuminated 

foreground is roughly divided into large ranges, without distinguishing adjacent clusters in detail. Even 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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worse, parts of the dark background are also enclosed into clusters. As the beam width increases in Figure 

3.19 (b), (c), and (d), complete high-power-intensity regions are split and arranged into different clusters. 

The above phenomena manifest that the standard K-Power-Means method is not sensitive to the correlation 

between adjacent regions. The shape of the cluster is not a polygon. So the polygon division results in 

either the power leaking from the cluster into the adjacent domain, or the dark background is circled into 

the cluster. It is consistent with the conclusions of the state-of-the-art in chapter 2. So from these results, we 

can intuitively anticipate that K-power-means will not performed well in clustering PAS, especially for 

studying the statistics of the clusters’ shapes as we intend to do for NLOS identification.  

3.4.3.3 Results of modified K-Power-Means  

  

  

Figure 3.20 Result of segmentation with modified K-Power-Means with beam width of (a) 5o; (b) 13o; (c) 21o; (d) 29o 

The result of modified K-Power-Means clustering is shown in Figure 3.20. With a narrow beamwidth 

of 5o in Figure 3.20 (a), most clusters of the illuminated foreground can be identified, and the dark 

background is eliminated. However, as the beam width increase to 13o, 21o, and 29o in Figure 3.20 (b), (c), 

and (d), respectively, the foreground markers do not improve the straight boundaries of the polygons in the 

original K-Power-Means. Introduced foreground markers can find the location of certain clusters and 

thresholds can remove part of the background. However, part of the background is still enclosed into 

clusters, even in narrow beam transmission. In that case, the shapes of the clusters are only the shape of a 

uniform threshold instead of the individual cluster shapes. In the case of wide beam, the effect of threshold 

disappears. Without the individual description of the cluster shape by the watershed transform, the adjacent 

clusters cannot be distinguished robustly and clearly for a wide beam. Therefore, while the preprocessing 

step introduced in this modified version improves the classical, it fails in accurate PAS clustering for wide 

beams. So, although this modified version outperforms the classical K-power-means algorithm, the 

(a) (b) 

(c) (d) 
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watershed approach appears much more robust in keeping intact the shapes of the cluster and removing the 

background. 

3.5 Performance of Clustering 

In addition to the above intuitive comparison among K-Power-Means, modified K-Power-Means, and 

watershed transformation clustering methods, the performance of four aspects need also to be evaluated: 

the number of obtained clusters, the separation between foreground and background, the distinction among 

adjacent clusters, and the running time of the algorithm.  

 

Figure 3.21 Performance of clustering methods 

Clusters in the continuous field are generated with Gaussian distributed channel clusters. Therefore, 

we evaluate the number of clusters with the following ratio: the number of clusters estimated with 
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clustering algorithm over the number of clusters generated with by channel model：  

 
    

     

Number of estimated clusters

Number of cluster generated by channel
 (3.39) 

The performance is shown in Figure 3.21 (a). The three algorithms have the same trend. The narrow beam 

provides higher spatial resolution, so a larger number of clusters can be distinguished. As the beam width 

increases, the clusters become larger, and the corresponding number of clusters decreases. In wide beam 

transmission, the number of clusters provided by the watershed algorithm is closer to the number of 

channel clusters than the other two methods. It is also interesting to observe that all three algorithms 

overestimate the number of clusters when the beamwidth is narrow. Indeed, each cluster contains a few 

rays only, and for a given channel realization, a cluster can easily be interpreted as several clusters if the 

rays are sparsely angularly separated. 

The separation between the foreground and background can be evaluated with a ratio: the power 

density of all clusters over the power density of the whole angular plane:  

 
    

     

power density of grouped cluster

power density of whole angular plane


 (3.40) 

The performance is presented in Figure 3.21 (b). K-Power-Means cannot remove the background. The 

power of the entire PAS is brought into the foreground, which is the sum of all clusters. Therefore, the ratio 

of the power sum of all clusters to the power sum of the entire PAS is one and is always one regardless of 

the beamwidth. After adding the threshold, the background can be partially removed, and the curve rises. 

However, because background components cannot be entirely removed and some background power is also 

included in the cluster, the ratio is not the highest. Watershed segmentation provides the most significant 

separation between the three algorithms. However, for wide beams, the power density ratio decreases as the 

clustered power density is diluted into the background. 

K-Power-Means and modified K-Power-Means often split clusters, which is an undesirable effect and 

the integrity of clusters should be therefore assessed. To assess this effect, the metric we use is the ratio of 

the power in the preserved illuminated cluster over the power in the damaged illuminated cluster. So, the 

first step is to determine a practical definition of a preserved cluster. 

For continuous PAS 2D map, the elements of a cluster are pixels, whose values depend on the field 

intensity within that cluster. A cluster is therefore a set of pixels with similar intensity compared with the 

neighbor domain. Because the field is continuous and derivative, the 2nd order derivative field exists. So, a 

cluster is enclosed by the edge of a slope. Therefore, the edge are the elements pixels at the boundary with 

highest 2nd order derivative. Because the intensity cluster is a continuous domain, the 2nd order derivative 

forms a continuous closed edge. So, the pixels inside this closed edge belong to a preserved cluster. Pixels 

belonging to cluster with discontinuous 2nd order derivative edge belong to damaged clusters. We 

subsequently define the following metric: 
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As shown in Figure 3.21 (c), the ratio of watershed segmentation is almost one, which means that almost all 

of the clusters are completely preserved. In contrast, the ratios of K-Power-Means and modified 

K-Power-Means are very close to zero: the two clustering algorithms destroy most of the clusters. 

Finally, the algorithm running time is assessed. With ray tracing tools being more and more advanced, 

they can be used for channel modeling. This means that a large number of channel realizations need to be 

generated and analyzed, generating a hugh volume of data. Consequently, a fast clustering method is highly 

desirable. The theoretical time complexity of K-Means is O(ndkt), where n is the number of the data points, 

d is the number of dimensions, k is the number of clusters and t is the number of iterations. The simulations 

have been run with a laptop (CPU 2.60 GHz, RAM 8.00 GB) and the obtained logarithmic running time is 

shown in Figure 3.21 (d). When the beam is wide, the number of clusters decreases, so the required 

calculation time reduces acordingly. Standard K-Power-Means takes multiple iterations to avoid local 

minima, so it needs two to three orders of magnitude of simulation time than the modified K-Power-Means 

or watershed segmentation. While iteration is not necessary for the modified K-Power-Means, it still needs 

to compute the random initial centroids, which is time consuming. The watershed segmentation appears as 

the fastest method among the three. 

3.6 Conclusion 

In this chapter, an original clustering method proposed that is based on an image processing approach. 

In particular, the clustering of PAS is studied with the watershed segmentation method. In millimeter-wave 

communications, the beam training strategy that scans the whole angular space to identify a strong enough 

link makes the PAS readily available at Tx and Rx ends. The obtained 2D angular map represents a 

continuous field-amplitude, which needs to be clustered for channel modeling, or for NLOS identification 

as it is the case in this thesis. In this chapter, we have shown that watershed transformation, which locally 

reconstructs the gradient field, is more suitable than classical techniques such as the well-known K-mean 

algorithm to extract illuminated clusters from the dark background and separate the adjacent clusters in the 

PAS. Furthermore, simulations with the IEEE 802.11ad channel model manifested that watershed 

segmentation preserves the shapes of clusters. However, the standard K-Power-Means ignores the 

correlation between adjacent elements and therefore fails to preserve the shape of clusters. To benchmark 

our watershed-based clustering method, we also proposed a modified K-power-mean algorithm. Here also, 

it has been found that our proposed method outperforms the K-power-mean algorithm, especially to 

preserve the shape of the cluster, which is an essential criterion for the NLOS identification that is proposed 

and investigated in chapter 4. 
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4.1 Introduction 

In this chapter, the space-time structure of the channel is used to identify NLOS transmissions. It 

consists in a 4D space composed of Angle-Of-Arrival (AOA) in elevation (θ) and in azimuth (ϕ), of excess 

delay, and power. An example of a channel parameter space created by a realization of the IEEE 802.11ad 

channel model is shown in Figure 4.1 where power dimension is always represented in a color scale. The 

azimuth AOA-excess delay-power 3D space in Figure 4.1 (a), the elevation AOA- excess delay -power 3D 

space in Figure 4.1 (b), and the azimuth AOA-elevation AOA- excess delay -power 4D space in Figure 4.1 

(d) illustrate a noticeable spread of parameter points along excess delay direction. However, in spatial 

evaluation, they are mostly grouped as clusters in the azimuth AOA-elevation AOA 2D space as seen in 

Figure 4.1 (c). Intuitively, relationship between time and space cannot be observed: the temporal and spatial 

characteristics look independent from each other. Therefore, it is reasonable to group the clusters spatially, 

and then to classify different statistical intra-cluster features in time domain, in frequency domain, and in 

angular domain. Because the beam training strategy searches the highest power links, the space-time 

structure of the channel is clustered by power as well.  

    

 

Figure 4.1 Temporo-spatial channel parameter points in (a) azimuth AOA-excess delay, (b) elevation AOA- excess delay, (c) 

azimuth AOA- elevation AOA and (d) azimuth AOA- elevation AOA - excess delay relations. 

The flow of spatial NLOS identification that is investigated in this chapter is shown in Figure 4.2. The 

PAS is generated with Monte Carlo simulations or actual measurements. If the channel parameter space is 

discrete (such as obtained with the IEEE 802.11ad channel model), it is clustered with the K-Power-Means 

algorithm. If the channel parameter space is continuous (such as obtained either with the IEEE 802.11ad 

channel model convolved with antenna radiation pattern or with measurements), it is clustered with the 

watershed algorithm. The intra-cluster power/time/frequency kurtosis in spatial domain is introduced as a 
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useful metric for identifying the type of transmission in this chapter. The statistical features such 

Probability Density Function (PDF) and Cumulative Distribution Function (CDF) are then fitted with 

appropriate functions and maximum Likelihood Ratio (MLR) testing and Artificial Neural Network (ANN) 

are used to classify the types of transmission. The feasibility of the above flow is tested with the IEEE 

802.11ad channel model and is then validated with experiments in an actual laboratory scenario. 

PAS 
segmentation

Generate PAS
Extract 

cluster features
Statistic 

description
Classify 
features

 

Figure 4.2 Flow of spatial NLOS identification 

4.2 Methods of Identification 

4.2.1 Metric of identification 

4.2.1.1 Features in time and frequency domain  

 

Figure 4.3 (a) CIR and (b) CFR of the LOS and NLOS clusters of PAS generated by the IEEE 802.11ad channel model. 

As seen earlier, the LOS transmission cluster can be jointly identified in time and space domains. An 

example of the Channel Impulse Response (CIR) in power and the Channel Frequency response (CFR) is 

shown in Figure 4.3. In the time domain, the first peak in the LOS CIR is much stronger than the other 

peaks. However, the second peak in the NLOS CIR cluster is stronger. In general, the LOS CIR fluctuates 

less than NLOS CIRs, which implies that the shape of the Probability Density Functions (PDFs) of LOS 

cluster would be typically narrower than the PDF of NLOS clusters for instance. In the frequency domain, 
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the selective behavior of the channel can be observed in the CFR. The LOS CFR is flat, while the NLOS 

CFR exhibits fluctuations. Since the transmission in the IEEE 802.11ad channel modeling was measured in 

a narrow band of 800 MHz, the frequency selectivity is not very serious. Even so, the coherence of the CFR 

can still provide useful information regarding NLOS clusters.  

So, based on this reflection, the feature we intend to analyze as a possible signature of the channel 

nature is the power, and more specifically its variation in time, frequency, and later on in angular domain. 

To do so, the CIR peaks in Figure 4.3 (a) can be characterized with kurtosis, while the frequency 

fluctuation in the CFR can be identified with the coherence bandwidth. The metrics to identify the above 

features are a critical issue. The metrics used to identify the types of transmission should intrinsically be 

able to model the scattering dispersion resulting effects in the CIR/CFR while being independent with 

respect to the distance between Rx and Tx. The strong CIR peak is a characteristic of LOS transmission in 

Figure 4.3. However, a strong power peak appears not only in the LOS transmission but also in NLOS 

transmission at short Rx-Tx distance for instance. Different from the distance-related metrics such as total 

received energy and excess delay, the standard moment is an intrinsic characteristic independent from the 

Rx-Tx location. Standard moments are the center moment (higher than 2nd order) normalized by the k 

power of standard deviation: 
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Where μX is the mean of variable X. The Kurtosis is the 4-th order standard moment to evaluate the PDF. 

High order moments are sensitive to the fluctuation of data, while lower order standard moment is more 

robust. The Kurtosis is the lowest order standard moment. The kurtosis of CIR h(τ) is:  
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  (4.2) 

The kurtosis given in equation (1.40) is therefore the feature that will be used later on to characterize the 

behavior power in the time domain. 

In frequency domain, the selectivity of the CFR H(f) is characterized by the coherence bandwidth. 

This feature is calculated by the autocorrelation between the frequency transfer function H(f) and itself with 

a lag of frequency difference Δf in frequency domain, within the transmitted bandwidth B:  

      
0

1 B
R f H f H f f df

B
     (4.3) 

The coherence bandwidth is then defined as the bandwidth for the first cross-zero point of the above 
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frequency autocorrelation (4.3) to evaluate the bandwidth over which the channel can be considered flat. 

However, the direct autocorrelation is weighted by the power level of the received signal. Therefore, the 

difference between LOS and NLOS is typically not strong as illustrated in Figure 4.4 (a).  

  

Figure 4.4 Autocorrelation of H(f) (a) with and (b) without mean value 

To mitigate the influence of power, the mean value μH of H(f) is first subtracted as:  

        
0

1
- -

B

H HR f H f H f f df
B

      (4.4) 

With the highly directional antenna pattern, the ideal LOS signal only randomly fast fluctuates because of 

the thermal noise at the receiver. Therefore, after removing the mean value, the LOS autocorrelation is 

equal to 1 only when Δf = 0 and almost vanishes for any other Δf  0, as shown in Figure 4.4 (b). However, 

the NLOS signal is resulting from some reflection and scattering process. So its frequency selective 

behavior is also manifested in the frequency domain as shown in Figure 4.4 (b) with the autocorrelation 

slow fluctuation. The above difference can be quantified by the average autocorrelation given by (4.5) and 

will be used as a feature for NLOS identification later on. 

  
0

1 B

fR R f d f
B

    (4.5) 

4.2.1.2 Feature variations in angular domain  

In the angular spatial domain, limited by the capacity of the beam training strategy, the coarse spatial 

sampling and the limited selectivity of antenna beams make difficult the accurate evaluation of spatial PDF. 

As an alternative, the shape of the angular clusters in the PAS 2D map is an effective way to investigate the 

characteristics of the scattering behaviors in LOS or NLOS transmission. A canonical example is shown in 
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Figure 4.5 where the phenomenon occurring within the channel can be observed on the received PAS 

within a given cluster (results are obtained with a developed code base on Method-of-Moment as detailed 

in Annex I). The Tx pattern in the beam training is here omnidirectional while the Rx pattern formed by the 

antenna array is almost rotational symmetric. In Figure 4.5 (a), the transmitted power pattern is preserved 

due to the absence of scattering objects in the LOS transmission. Thus, the PAS within this LOS cluster 

exhibits an almost rotational symmetric, identical to the Rx radiation pattern. However, in Figure 4.5 (b), 

the PAS is randomly deformed by the stochastically distributed scatterers. Even when reflected by smooth 

reflectors, NLOS clusters are affected. Indeed, the PAS of a cluster reflected by the curvature of a reflector 

surface is also deformed as seen in Figure 4.5 (c). This illustrates the motivation of our work. Although the 

capacity of spatially classifying the clusters is limited by the resolution of beam training, the identification 

could still be achieved. Consequently, in this chapter, we intend to analyze deeper the clustered PAS 

features in order to assess their suitability for NLOS identification. 

Tx RxLOS

Random scattering 

reflection by structures

S

S

(a)

(b)

(c)

Antenna 
pattern

Scattering 
cluster  

Figure 4.5 Deformation of scattering cluster due to: (a) LOS transmission; (b) random scattering; (c) mirror-like reflection 

(details regarding the numerical simulations are to be found in Annex I) 

After clustering the PAS at the Rx using the method described in chapter 3, cluster shapes in the PAS 

need to be analyzed using some metrics, similarly to what has been done in the previous section in time and 

frequency domain. Specifically, we have found that the kurtosis matrix used to evaluate PDF shape in the 

previous section is also efficient in describing the cluster in the spatial domain such as in Figure 4.5. The 

stochastic variable X is now the angular coordinate (ϕ, θ), where ϕ is the azimuth angle and θ is the 

elevation angle. The probability is substituted by P(ϕi, θi) which is either the power calculate with (4.6): 

    
0

1
, , ,

T
P h d

T
        (4.6) 

where T is the channel duration, the time-domain kurtosis (i.e., kurtosis of the CIR, eq. (4.2)), or the 

frequency autocorrelation (eq. (4.4)) within clusters. (P(ϕi, θi) is obtained from the channel when the 



Chapter 4  Spatial NLOS Identification 

94 

antenna beam is directed towards the angle (ϕi, θi), but ray contributions within the whole beam are 

naturally taken into account to determine the features). Because of 2D angular space, the shape of a cluster 

is evaluated with a P (power, time kurtosis or frequency autocorrelation)-weighted co-kurtosis matrix:  
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Where the elements kij are the weighted co-kurtosis with respect to azimuth and elevation angles:  
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with σ is the azimuth or elevation standard deviation weighted with P being either power, time-domain 

kurtosis, or frequency autocorrelation:  
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The weighted symmetry is an interesting feature to represent the shape of clusters. The ratio of minimum 

and maximum eigenvalues (principal component analysis) of the co-kurtosis matrix can be used to 

characterize the spatial symmetry of the kurtosis of the different clusters’ features P. The principal 

component analysis is performed by calculating the ratio R
 ̭

 of the minimum over the maximum 

eigenvalues through the decomposition of the co-kurtosis matrix (4.7) as:  
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where λ1 and λ2 are the two eigenvalues with the corresponding eigenvectors P1 and P2.  

4.2.2 Methods of Feature classification 

In our work, three features can describe a PAS, namely, the power matrix eigen ratio R
 ̭

P, the 

time-domain kurtosis matrix eigen ratio R
 ̭

t, and the frequency autocorrelation matrix eigen ratio R
 ̭

f. 

Therefore, the features construct a data point (R
 ̭

P, R
 ̭

t, R
 ̭

f) or each cluster in the parameter space. Since LOS 

transmission are beneficial for localization, it is therefore defined as the null hypothesis, H0, of the 

hypothesis testing, while the alternative hypothesis, H1, is the NLOS transmission: 
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4.2.2.1 Maximum Likelihood Ratio testing 

Two classifiers are investigated for hypothesis testing: Maximum Likelihood Ratio (MLR) testing and 

Artificial Neural Network (ANN). The aim of MLR is testing the probability distribution from which the 

likelihood of the observations is sampled. Therefore, the features are generally evaluated by the probability 

density function f(R | θlos) and f(R | θnlos) with parameter vectors θlos and θnlos, and the hypotheses in (4.15) 

are adjusted to: 
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With the estimated parameters, the likelihood ratio of certain distribution of the eigen value ratio (R
 ̭

P, R
 ̭

t, R
 ̭

f) with the condition of distribution parameter θ for the testing cluster feature x
 ̭
 is 
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Where, (θ
 ̭
; x

 ̭
) is a likelihood function. The parameter vector of the likelihood functions, θ

 ̭
, is the one 

optimized by maximum likelihood estimation. Therefore, the joint likelihood ratio of power matrix eigen 

ratio R
 ̭

P, temporal kurtosis matrix eigen ratio R
 ̭

t, and frequency autocorrelation matrix eigen ratio R
 ̭

f  is 

given by:  
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4.2.2.2 Artificial Neural Network 
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Figure 4.6 Architecture of the Artificial Neural Network used for NLOS identification 

The second method to classify the features is ANN. The ANN for NLOS identification is constructed 

with one input layer, two hidden layers, and one output layer, as shown in Figure 4.6. In general, the output 

vector of the (k+1)-th layer ak+1 is a linear transfer of the input vector from the (k)-th layer ak, then 

modulated by an activation function f: 

  1 1,k k k k kf  a W a b  (4.19) 

Specific to the ANN in Figure 4.6, the whole network can be expressed as:  

    3 32 21 21 1 1 2 3sig sig sig     a LW LW IW P b b b  (4.20) 

The input is the parameter vector P1 = [R
 ̭

P, R
 ̭

t, R
 ̭

f]T. There are ten neurons in all the hidden layers. The 

input matrix in the first hidden layer IW11 is a 103 matrix. The 1010 matrix LW21 in the hidden layer and 

102 matrix LW 32 in the output layer are the weight matrices. b1, b 2 and b 3 are the bias vectors in the layer 

1, 2, and 3, respectively. An activation function maps the input set to an output set. For null hypothesis 

testing, the output set of the whole network ought to be {-1, 1}, while the output of the linear weighted 

combination part is a real set. Therefore, the activation of output is a map ℝ  {-1, 1}. The simplest 

activation function is a step function. But the step function induces a singularity at the origin and 

underivative. To avoid this issue, the activation functions in the hidden layers are both nonlinear tangent 

sigmoid function sig(x) = 2 / (1 + e-2x) – 1 whose curve is plotted in Figure 4.7. The curve linearly increases 

in the range of [-1, 1], while approximately being constant to +1 at the top bound and to -1 at the bottom 

bound. The activation function of the output layer is a normalization function sig(x) = exp(x) / exp(x). It 

proportionally maps an input vector into a range of [0, 1]. The normalization function makes the output 

label of ANN into a hypothesis testing result in the range a3  [0, 1].  
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Figure 4.7 Tangent sigmoid function 

ANN training aims to optimize the weight matrices in order to minimize the error between the training 

result a3 and the label y: 

  23 e y a  (4.21) 

To achieve the above aim, a training process of ANN is implemented with the back-propagation algorithm 

[6]: the error propagates from the output back the input to optimize the weight matrices so that reaching an 

error threshold. The i-th output and bias at the k-th layer are ak 
i and bk 

i , with a weight factor wk 
ij to evaluate 

the input from the j-th neuron aj. Then, the element of (4.19) in every layer is:  
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The iteration updates the weight wk 
ij towards the direction of error gradient for the weight wk 
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The gradient is 
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Where sig’(x) is the derivative of the tangent sigmoid function: 
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The training starts to iterate at an initial condition of uniform distributed wk 
ij, and achieve convergence when 

it matches the converging condition. There are two converging conditions in training: the cross-entropy 

constraint that -a3 ∙log(y) < 0.1, or reaching the maximum iterative number 1000. ANN repeats 20 pieces 

of training to avoid the local minima in the optimization process. Those numbers are empirically chosen. 

4.3 Numerical simulation 

With the channel model of IEEE 802.11ad, the feasibility of NLOS identification is tested. As a first 

validation step, the NLOS identification methodology is firstly implemented directly on the discrete data 

obtained by the IEEE 802.11ad channel model using the angular variations of the power feature only. Then, 

as a second step, the Rx PAS is obtained by convolving the discrete channel angular response with the 

antenna pattern. The NLOS identification is then applied on these PAS by analyzing the angular variations 

of all three features, namely, the power, the time-domain kurtosis (i.e., kurtosis of the CIR), and the 

frequency autocorrelation. 

4.3.1 Identification on clustered discrete channel angular 

response 

The clusters nature is here evaluated using the angular variations of the power feature using the 

discrete channel response created by the IEEE 802.11ad channel model. First, the channel needs to be 

grouped angularly into clusters. An implementation example of a clustered two-dimensional discrete 

angular power distribution map is shown in Figure 4.8. Clustering is achieved by the standard 

K-Power-Means method. Four scenarios are considered in the model: a conference scenario where the Rx 

and Tx antennas are placed on a table, a conference scenario where a Rx antenna is arranged on a table and 

Tx antenna is suspended from the ceiling, a working cubicle scenario in an office, and a living room 

scenario. In the working cubicle scenario, the Rx is the laptop placed on a working desk, while the Tx is 

hanging from the ceiling. In the living room scenario, the Rx is placed on a TV set against a wall, while the 

Tx is randomly placed in the central region of the living room. The LOS component, indicated by an arrow 

in the figures, is generated by a single ray in the channel model. Different multipath clusters are labeled 

with distinguishable markers. The clusters grouped by the k-means algorithm are represented by the 

different colors. One obvious result is that the clusters grouped by K-Power-Means are not precisely the 

same as the channel model generated clusters. Notably, the points arrowed in (a) to (d) in Figure 4.8 are the 

direct paths generated by the channel model. The direct paths are grouped into LOS clusters with nearby 

indirect paths by K-Power-Means. Furthermore, when NLOS clusters are close to each other, the 

K-Power-Means algorithm cannot distinguish them and will be therefore treated as a single cluster in the 

following LOS/NLOS kurtosis calculation. The above inconsistency comes from the nature of the 

cluster-based channel model and cluster grouping method. As discussed in chapter 1 and 3, the channel 

model generates clusters according to statistical distribution without considering the correlation among the 

elements inside a cluster. Unfortunately, the connections between adjacent elements are also neglected by 

searching the local minima of the distance between the centroid and the elements inside each cluster with 
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K-Power-Means presented in chapter 2. It especially makes the direct path location arbitrary within the 

LOS cluster, instead of at the center of the cluster. It influences the statistical symmetry of the cluster to be 

estimated and will ultimately affect the performance of LOS/NLOS identification. 

 

Figure 4.8 AOA clustering (different colors) using k-means algorithm: (a) conference scenario with 2 antennas on a table; (b) 

conference scenario with Rx antenna on a table and Tx antenna hanging from the ceiling; (c) working cubicle scenario; (d) 

living room scenario. 
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Figure 4.9 Schematic diagram of LOS and NLOS rays blocked by the working cubic  

According to 1.4.3 in chapter 1, the clustering results in Figure 4.8 (a) and (b) are based on an hybrid 

model of intercluster distribution simulated by ray-tracing and measured intracluster distribution  in a 

conference room, which is relatively empty compared to the other two scenarios in the model. The 

LOS ray 

LOS ray 

LOS ray 

LOS ray 
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distributions are illustrated in 3.3.1 chapter 3. The sparse furniture allows the wave propagating over a long 

distance with few obstructions so that reflections are more likely to occur on the walls and the ceiling. 

Because the walls and ceiling enclosed the entire indoor space, the reflection is uniformly distributed, 

instead of being selective towards any particular directions. Therefore, clusters and ray components inside 

them are both abundant and spread widely in the upper-half space (the table blocks the reflection paths in 

the lower half-space). However, the spatial arrangements in scenarios in Figure 4.8 (c) and Figure 4.8 (d) 

are different. In the working cubic scenario, the Tx is hung under the ceiling, so the LOS path is at 90o 

elevation angle. The working cubic almost surrounds the laptop Rx so it will most likely block the indirect 

paths, as shown in Figure 4.9. Thereby the number of clusters reduces as in Figure 4.8 (c). In the living 

room, the furniture and appliances exist almost everywhere. On the one hand, small objects massively 

diffuse the wave in all directions, meanwhile, on the other hand, large reflectors partition the space and 

obstructs the path scatted from other directions. Therefore, the clusters in Figure 4.8 (d) concentrate within 

a particular domain. 

Based on the above clustered results, the power kurtosis is calculated to evaluate the shape of these 

clusters, i.e., using (4.7) to (4.13) with P(θi, ϕi) being the channel power for a given direction (θi, ϕi). PDF 

and Cumulative Distribution Function (CDF) results of the eigenvalue-ratio of the kurtosis matrix as (4.14) 

determined from angular clusters are shown in Figure 4.11. They statistically describe the symmetry of the 

cluster shapes. When the ratio close to 1, the kurtosis of the cluster shape is more symmetric between 

elevation and azimuth planes. From Figure 4.11, it can be observed that LOS clusters are much less 

symmetric than NLOS clusters as the ratio of minimum over maximum eigenvalues is statistically much 

larger in the LOS case than in the NLOS case. This result comes from the clustering method itself rather 

than from the physical phenomenon involved in the channel. Indeed, as discussed in chapter 3, 

K-Power-Means does not consider the correlation between adjacent elements. So instead of being fixed at 

the cluster center, the direct ray can be randomly assigned into a cluster with any indirect ray component. In 

general, the intensity of the direct ray in LOS clusters is much stronger than indirect rays. When the direct 

ray is being located at the edge of a LOS cluster by K-Power-Means, the power-weighted kurtosis becomes 

very large. The bias in the kurtosis matrix becomes therefore significant. After randomly initializing the 

centroids by kmeans++, the K-Power-Means searches for the local minima of each cluster but ignores the 

correlation between the elements inside clusters. After clustering, the positions of the direct ray inside the 

LOS cluster are much different: if it is at the center of the cluster in Figure 4.10 (a), the similarity of LOS 

cluster will be very high; otherwise, when it is at the edge in Figure 4.10 (b), the cluster is asymmetrical. 

  

Figure 4.10 Direct ray clustered at (a) center and (b) edge of LOS clusters 

LOS LOS 
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Figure 4.11 PDF and CDF of Ratios of minimum over maximum eigenvalues: (a) conference scenario with 2 antennas on a table; (b) conference scenario with Rx antenna on a table and the Tx 

antenna is hanging from the ceiling; (c) working cubicle scenario; (d) living room scenario. 
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So, if the direct path cannot be hold at the center in order to preserve the shape of the cluster, the 

clusters are statistically biased. From the statistical results of 250 samples, the clustering algorithm, by not 

preserving the shapes of clusters, causes the biases to be random. Thus, LOS clusters statistically exhibit 

weak symmetry. For instance, in the first scenario (Figure 4.11 (a)), there is a 90% probability that the 

min/max ratio is less than 0.02 for LOS clusters, while the probability is only 12.5% for NLOS clusters. 

According to the above discussion, K-Power-Means has difficulty to maintain the shapes of clusters. In the 

conference scenario, a higher LOS ratio than NLOS ratios in Figure 4.11 (a) and (b) manifest higher 

asymmetricity in LOS kurtosis than in NLOS kurtosis. The relative empty conference room makes the 

scattering in this scenario caused mainly by the reflection on the surfaces of the walls and ceiling. The 

shape of the cluster is mainly formed by the layered structure and roughness of the wall surfaces. The 

geometric features of the layered and roughness reflectors are irregular, therefore scattering inside clusters 

is uniform. In this case, the kurtosis of the corresponding NLOS clusters is stochastic as well. Besides, the 

sparse furniture makes the clusters spread widely and abundantly distributed, which further disperses the 

distribution of NLOS clusters. The above factors make the NLOS clusters more symmetrical than the LOS 

clusters. In contrast, in the office scenario, working cubicles obstructs most reflection paths. The rays 

diffused by the edges of the working cubicles contribute to the main components inside clusters. The 

diffracting rays are directionally selective, which aggravates the bias of the NLOS kurtosis matrix. 

Therefore, the asymmetry of the NLOS clusters is more similar to that of LOS clusters in Figure 4.11 (c). 

Similar to the office scenario, in the living room, NLOS clusters carry more regular geometric information 

about objects. The large obstructers partition the space and filter the NLOS clusters in further, which 

intensify the geometry selective of NLOS clusters. Therefore, the NLOS clusters are more asymmetric, as 

shown in Figure 4.11 (d). This analysis further justifies to study the NLOS identification based directly on 

the PAS rather than on the discrete angular channel response. 

4.3.2 Identification on PAS 

The NLOS identification based on the PAS follows the flow-chart given in Figure 4.2. The PAS is 

firstly obtained by convolving the discrete IEEE 802.11ad channel with antenna radiation pattern. The PAS 

is then segmented with the watershed algorithm. The cluster features are then extracted and statistically 

described in order to finally identify whether a cluster is LOS or NLOS. 

Monte Carlo simulations are performed to obtain sufficient amount of data for a statistical description 

of the performance. The scenario is as per as the beam training strategy described in the section 1.4.5 of 

chapter 1: the Tx antenna is omnidirectional, while the directional Rx antenna rotates across the whole 

angular space. The scanning step is 1o. The beam pattern of the antenna model is a single main lobe with a 

symmetric Gaussian shape, in order to evaluate the deformation of the cluster by the scattering. The 

half-power beamwidth of the Rx antenna is taken as 5o (this value is chosen to allow for comparison with 

the actual antenna used in the measurement in the next section). An oversampling factor of 8 is used in the 

IEEE 802.11ad channel model generation to increase the time resolution. 250 simulations are typically 

realized, unless otherwise stated, which take approximately 7 hours on a computer with a 4 core CPU 

3.4 GHz (only to generate the channels). 



Chapter 4  Spatial NLOS Identification 

103 

4.3.2.1 Power angular clustering 

An example of 5o-HPBW PAS clustered with the watershed algorithm is shown in Figure 4.12. The 

continuous PAS corresponds to the channels in the different scenarios in Figure 4.8. The results of 

continuous clusters segmented by watersheds are different from the discrete clustering results by 

K-Power-Means. One reason is that, due to the channel spatial convolution by the beam pattern, the 

positions of the PAS clusters are different from the discrete channel. The other reason is the difference 

between the two clustering algorithms: K-Power-Means is influenced by the random initial condition, while, 

the watershed is relative deterministic. 

   

 

Figure 4.12 5o-HPBW PAS (in dB) clustering using watershed algorithm: (a) conference scenario with 2 antennas on a table; 

(b) conference scenario with Rx antenna on a table and Tx antenna hanging from the ceiling; (c) working cubicle scenario; (d) 

living room scenario. 

4.3.2.2 Statistical characteristics inside a cluster 

4.3.2.2.1 Statistical features extraction procedure 

Firstly, the statistical features of the minimum eigenvalue over the maximum eigenvalue ratio in PAS 

clusters are described with PDF and CDF. The sample-set is constructed with 250 simulation 

implementations sampled by the Monte Carlo method, repeated for four different indoor scenarios in the 

IEEE 802.11ad channel model, namely, conference scenario with 2 antennas on a table, conference scenario 

with Rx antenna on a table and Tx antenna is hanging from the ceiling, working cubicle scenario, and 

living room scenario. 
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Secondly, the PDF and CDF are then fitted with Beta distributions in order to obtain reference 

parameters that will be used for classification in the next section. To be consistent with the min/max eigen 

value ratio range from 0 to 1, the PDF of Beta distribution is defined within an interval [0, 1]. The PDF of 

Beta distribution [7] is a normalized linear combination of two power functions with two decisive 

parameters:  
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Where B(a, b) is the Beta function expressed as: 
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The parameters a and b are obtained with maximum likelihood estimation. The log-likelihood function of 

Beta distribution for N i.i.d. samples (x1, x2 … xN) is: 
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Then, the maxima of likelihood function are estimated as the zero point of the first order deviation with 

respect to the parameters a and b:  
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Where (α) is the digamma function, defined as the logarithmic derivative of the gamma function Γ(a): 

    ln a
a

a


 



 (4.31) 

Considering an approximation of (a
 ̭
) ≈ ln(a

 ̭
 – 0.5) with an assumption that a and b are not too small, the 

parameters can be estimated [7] by the measured samples x
 ̭
 to maximize the likelihood function with (4.29) 

and (4.30) [2]:  
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The general fit goodness is tested with Kolmogorov–Smirnov testing. Kolmogorov–Smirnov testing is a 

robust hypothesis testing with a null hypothesis that the two sets of data are sampled from the same 

distribution. The principle of Kolmogorov–Smirnov testing evaluates the maximum distance D between the 

empirical CDF Fn(x) of sample sets and the target statistical model CDF F(x) [8] :  

    sup n
x

D F x F x   (4.34) 

According to law of large numbers, no matter specific F(x), if F(x) is continuous and the sampling number 

n goes to infinite, G(x) = | Fn(x) – F(x) | becomes a Weiner process. Notice the random variable | Fn(x) – F(x) 

|[0, 1], therefore G(x) is notated with a Brownian bridge B(t): {Wt | W0 = WT = 0, t[0, T]} (a Weiner 

process Wt in the range of [0, 1] and with a constraint of zero W0 = 0 and WT = 0 at the ends of the time 

series t = 0 and t = T). Then, the maximum distance is: 

   lim supn
n x

D nD B F x


   (4.35) 

The supremum of Brownian bridge is with Kolmogorov–Smirnov distribution. The CDF of 

Kolmogorov–Smirnov distribution is: 
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Which can be approximately by [9].  
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Where h [0, 1]. Therefore, the evaluation of fitting goodness becomes a hypothesis testing with the 

maximum distance following the Kolmogorov–Smirnov distribution.  

4.3.2.2.2 Angular behavior of power features 

The statistical features of the minimum eigenvalue over the maximum eigenvalue ratio in PAS clusters 

are shown in the Figure 4.13. Both PDF and CDF from Monte Carlo simulations and Beta distributions 

from fitting approach can be observed. A fair agreement exists between Monte Carlo results and Beta 

distributions for all scenarios, especially on PDF curves and on NLOS CDF. A good agreement is more 

difficult to obtain for LOS curves that are relatively discontinuous. It can be qualitatively observed here 

that the LOS clusters exhibit a large symmetry in all scenarios as the PDFs tend to rapidly grow when the 

min/max eigen value ratios reach 1. In particular, it is observed that 90 % of the min/max eigen value ratios 

in LOS transmission are concentrated in a range from 0.5 to 1. For NLOS clusters, PDFs appear more 

uniformly distributed and that there is no specific tendency for min/max eigen value ratios to be equal to 1. 

This shows that NLOS clusters exhibit statistically less symmetry. The LOS cluster behavior is also 

observed in the LOS CDF curves, where an exponential-like increase occurs as ratios get close to 1. The 

wide min/max eigen value ratios spread observed in the NLOS PDF is represented by the almost linear 

behavior of the NLOS CDF curves. These results mean that, as expected, statistically, the LOS clusters 

preserve the symmetry of the antenna pattern while the shapes of NLOS clusters are stochastically 

deformed by the random scattering. Also, the LOS and NLOS CDF curves are clearly separated from each 

other in all of the four scenarios which indicates that it is a promising indicator for LOS/NLOS 

discrimination. The symmetries (b) and (c) are slightly more preserved than the other two scenarios. The Tx 

antennas in (b) and (c) hang from the ceiling and are therefore much higher than surrounding scattering 

objects. Hence the LOS transmission is less influenced by the scattering in the environment. In contrast, in 

the living room ((d)), the LOS transmission is more likely influenced by many scattering objects. For this 

reason, the symmetry of LOS clusters in the living room is weaker than others. 

4.3.2.2.3  Angular behavior of time-domain kurtosis feature 

The statistical ratios of time-domain kurtosis matrix and Beta distribution-fitted curves are shown in 

Figure 4.14. It is the PDF and CDF sampled by the Monte Carlo method, and fitted curve with the Beta 

distribution of LOS and NLOS transmission: minimum eigenvalue over maximum eigenvalue ratio of 

power kurtosis matrix. Different from the power matrix ratio, here 90% of the ratios are generally within a 

narrow range from 0.9 to 1 in all four scenarios. In the conference room, 100% of the ratio of temporal 

kurtosis for the LOS cluster concentrates in the range of [0.6, 1], while, in the living room, the 100% range 

is [0.7, 1]. Consequently, it appears that the difference between LOS and NLOS CDF with time-domain 

kurtosis is larger than with the angular domain power feature. The reason is that, compared with the power 

metric in the pure spatial domain, the temporal dispersion provides an additional dimension of information 

about the difference between the LOS and NLOS transmission. Strong dispersion in the complex scattering 

environment enlarges the difference between the LOS and NLOS clusters, which is highly noticeable in 

temporal kurtosis.  
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Figure 4.13 The PDF and CDF sampled by Monte Carlo method, and fitted curve with Beta distribution of LOS and NLOS transmission: minimum eigenvalue over maximum eigenvalue ratio 

of power kurtosis matrix in (a) conference scenario with 2 antennas on a table; (b) conference scenario with Rx antenna on a table and Tx antenna is hanging from the ceiling; (c) working 

cubicle scenario; (d) living room scenario. 
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Figure 4.14 The PDF and CDF sampled by Monte Carlo method, and fitted curve with Beta distribution of LOS and NLOS transmission: minimum eigenvalue over maximum eigenvalue ratio 

of time-domain kurtosis matrix in (a) conference scenario with 2 antennas on a table; (b) conference scenario with Rx antenna on a table and Tx antenna is hanging from the ceiling; (c) 

working cubicle scenario; (d) living room scenario. 
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Figure 4.15 The PDF and CDF sampled by Monte Carlo method, and fitted curve with Beta distribution of LOS and NLOS transmission: minimum eigenvalue over maximum eigenvalue ratio 

of frequency kurtosis matrix in (a) conference scenario with 2 antennas on a table; (b) conference scenario with Rx antenna on a table and Tx antenna is hanging from the ceiling; (c) working 

cubicle scenario; (d) living room scenario. 
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Naturally, the sampling frequency plays here an important role in the performance of this feature to 

identify LOS from NLOS. Indeed, the sampling frequency, hence the sampling time step, influences the 

capacity to discriminate multipath, and multipath effect is what give the unique signature in LOS and 

NLOS clusters. In these simulations, the symbol rate is 800106symbol/sec and an oversampling factor of 

8 is used. So, the sampling frequency is fs = 6.4 GHz, which is very high.  

4.3.2.2.4 Frequency domain features 

The statistical ratios of mean frequency autocorrelation kurtosis matrix and the Beta distribution-fitted 

curves are shown in Figure 4.15. Similar to the power and time domain metrics, a clear distinction between 

LOS and NLOS PDF and CDF can be observed for all four scenarios. The statistical behavior is also 

similar: LOS clusters exhibit more symmetry than NLOS clusters. However, the large differences between 

LOS and NLOS noticed in the time domain are not so reflected in this frequency domain feature.  

4.3.2.2.5 Fitting agreement discussion 

Table 4.1 Parameters of Beta distribution and RMSE between fitted and empirical CDF 

CM 
Power eigen ratio Time eigen ratio Frequency eigen ratio 

a b RMSE K-S p a b RMSE K-S p a b RMSE K-S p 

L
O

S 

1 1.20 0.09 0.09 4.7710-12 3.87 0.08 0.07 3.8810-6 1.28 0.09 0.10 2.0810-9 

2 1.81 0.27 0.07 3.0910-9 24.86 0.34 0.09 1.9110-9 1.69 0.24 0.08 9.1010-10 

3 1.71 0.20 0.08 0 23.27 0.31 0.09 1.0910-15 1.59 0.18 0.08 5.4210-11 

4 1.96 0.10 0.12 0 10.12 0.09 0.07 2.0810-10 2.08 0.10 0.14 0 

N
L

O
S 

5 2.26 1.36 0.03 0 2.38 1.13 0.01 2.4010-6 2.30 1.38 0.03 0 

6 2.36 1.49 0.03 0 2.42 1.13 0.01 2.5610-5 2.40 1.50 0.03 0 

7 1.73 1.10 0.06 0 1.90 0.87 0.04 1.4710-13 1.78 1.13 0.06 0 

8 2.34 1.16 0.02 1.4210-11 2.48 0.98 0.01 0.03 2.40 1.19 0.02 1.0410-9 

The parameters of the Beta distribution and the Root Mean Squared Error (RMSE) between fitted and 

empirical CDF for eight channels are listed in Table 4.1. The eight channels CM1 to CM8 are respectively: 

LOS transmission in a conference scenario with two antennas are on a table (CM1), LOS transmission in a 

conference scenario with Rx antenna is on a table and the Tx antenna is hanging on the ceiling (CM2), LOS 

transmission in a working cubicle scenario (CM3), LOS transmission in a living room (CM4), NLOS 

transmission in a conference scenario with two antennas are on a table (CM5), NLOS transmission in a 

conference scenario with Rx antenna is on a table and the Tx antenna is hanging on the ceiling (CM6), 

NLOS transmission in a working cubicle scenario (CM7), NLOS transmission in a living room (CM8). The 

usual evaluation of goodness-of-fit, p-values of almost all the Kolmogorov–Smirnov testing, are nearly 

zero. In the Figure 4.15, the deviation between the fitted and twisting Monte Carlo sampled LOS CDF is 

very serious. On the other hand, the very concentrate LOS PDF makes the tail of CDF very sharp. A little 

bias will lead to a massive distance between the fitted and sampled curve. The piecewise function 

describing the AOA in the IEEE 802.11ad channel model leads to a large trail in the CDF. Although the 

smooth Beta function matches the condition of continuous CDF function in the Kolmogorov–Smirnov 
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goodness of fit testing, the step and large trail empirical CDF still makes the p-value of 

Kolmogorov–Smirnov testing very small. Despite the low fitting goodness, the fitted Beta model can still 

be used in the maximum likelihood ratio testing, thanks to the enormous difference between the LOS and 

NLOS CDF. We however calculated the RMSE between the fitted and empirical CDF as listed in Table 4.1. 

The RMSE of NLOS CDF fitting is generally lower than 0.06, while, the RMSE of LOS CDF fitting is in 

the range from 0.07 to 0.14. Altough RMSE of LOS fitting is higher than NLOS fitting, most of the LOS 

RMSE is lower than 0.1. So, the LOS fitting is still efficient for the hypothesis testing.  

4.3.2.3 Performance of NLOS identification Features classification 

As discussed in the state of the art in chapter 2, the NLOS identification is a classification problem to 

decide whether the transmission is LOS or NLOS. The aim of classification problem is to find suitable 

metrics and classifiers so that probability of incorrect decision for any individual identification event can be 

decreased. The first step is training the statistical model. The statistical model, in the form of MLR and 

ANN classifiers, is fitted with the training data set to obtain the parameters, such as the parameter of 

statistical distribution PDF and weighted matrix of ANN. Due to the channel data in the form of time-space 

separation, the features are extracted in the spatial cluster. The features are power integrated the CIR 

calculated with (4.6), time-domain kurtosis calculated with (4.2), and average frequency auto-correlation 

calculated with (4.5). Then spatial metrics about the above features are R
 ̭

P, R
 ̭

t, and R
 ̭

f, which are the ratio 

of minimum over maximum eigenvalue of the kurtosis matrix calculated with (4.14) in the angular domain. 

The above three metrics are combined as a sample point, (R
 ̭

P, R
 ̭

t, and R
 ̭

f). 250 samples, i.e., channel 

realizations, are used to train the parameters of the classifiers. For MLR, the parameters are a and b of Beta 

distribution (4.26); for ANN, the parameters are the weighted matrices w and linear bias vectors b in (4.20). 

Then, as the second step, the trained classifiers are used to identify the individual testing sample, in other 

words, classify the set of transmission which the testing data point belongs to. Another 250 samples are 

used to test the classifiers. The testing step aims to evaluate the performance and chose a suitable classifier. 

Each testing sample is used as the input of the trained classifiers. For MLR, a training sample is used to 

calculate the likelihood function (4.28) of each of the three metrics. Then, the likelihood functions are used 

to calculate the joint maximum likelihood ratio (4.18). By comparing the likelihood of LOS and NLOS 

transmission, a decision of the type of transmission can be obtained. For ANN, a training sample is used at 

the network’s input layer, then the decision, +1 (LOS) or -1 (NLOS), is obtained from the output layer of 

the network. Any individual decision can be correct or incorrect.  

Therefore, the performance of the classifiers is evaluated with the probability of incorrect decisions 

for a set of testing data. According to statistical decision theory, for a null hypothesis testing, the error can 

be classified as two types: type I error (reject the true null hypothesis H0) and type II error (non-reject the 

false alternative hypothesis H1). According to (4.15), for NLOS identification, the null hypothesis is the 

LOS transmission, while the alternative hypothesis is the NLOS transmission. So, type I error is that a LOS 

transmission is identified as NLOS transmission, and type II error is that a NLOS transmission is classified 

as LOS transmission. Thereby, the error is evaluated by comparing the decided type of transmission by the 

classifiers, and the actual type of transmission of the sample data. By counting the number of the above two 

types of error, the probabilities of errors are obtained. The probabilities of the two types error are shown in 
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Table 4.2 for the four LOS channels. The errors of different scenarios and the method of classification are 

distinct. In general, MLR provides a much higher type I error than type II. Most of the type I error 

probability tested by MLR is higher than 0.1, especially when the Rx and Tx antennas are both on the table 

in a conference scenario (CM-1), the type I error is higher than 0.2. One reason for the errors is that the 

goodness of fit limits the testing performance of joint MLR for the above small probability events. The 

LOS CDF of fitted power matrix ratio in CM-1 is generally lower than the simulated CDF. Therefore, the 

likelihood value calculated by the fitted LOS PDF is underestimated. While, in other scenarios, the fitted 

CDF fluctuates around the simulated CDF. So, the tested type II errors are not very high. Both types of 

errors tested by ANN are much lower than the results of MLR in all scenarios. Especially in the CM-1 and 

CM-3 scenario, the type I error of ANN is only 1/4 and 1/15 of the results of MLR. ANN estimates the 

linear structure of three features, thus distinguishes the transmissions better than only with the 

multiplication PDF by MLR. In summary, the ANN performs much better than MLR for NLOS 

identification. 

Table 4.2 Probabilities of error tested by MLR and ANN for NLOS identification 

Channel 
Maximum Likelihood Ratio Artificial Neural Network 

R
 ̭

P R
 ̭

t R
 ̭

f R
 ̭

PR
 ̭

tR
 ̭

f (R
 ̭

P, R
 ̭

t, R
 ̭

f)  

CM-1 
Type I 0.3052 0.1408 0.2441 0.2113 0.0512 

Type II 0.0634 0.0685 0.0682 0.0668 0.0616 

CM-2 
Type I 0.2074 0.0691 0.2166 0.1567 0.0865 

Type II 0.1457 0.1172 0.1392 0.1305 0.0398 

CM-3 
Type I 0.1600 0.0550 0.1600 0.1550 0.0096 

Type II 0.0905 0.1007 0.0861 0.0871 0.0576 

CM-4 
Type I 0.1972 0.0394 0.1362 0.0640 0.0421 

Type II 0.0570 0.0693 0.0594 0.0583 0.0472 

Average 
Type I 0.2175 0.0761 0.1892 0.1467 0.0473 

Type II 0.0891 0.0889 0.0882 0.0857 0.0515 

4.4 Experimental validation 

4.4.1 Conditions of experiments 

4.4.1.1 Measurement environment of laboratory scenario 

To verify the effectiveness of the above method for NLOS identification, an experimental validation is 

conducted in a laboratory environment. Measurements are performed in a quasi-rectangle room in a 

microwave wireless facilities lab at Sorbonne University. The size of the room is approximately 10.25 m  

7.52 m. The distance between the ground and the ceiling is 2.93 m. The floor plan and the real scene of the 

measuring environment are illustrated in Figure 4.16. Five glass windows in front of the room occupy more 
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than half of a wall and directly contact with the ceiling. The wall below the windows is metallic. The other 

three walls are constructed with aerated concrete and covered with plaster plates. Mineral fiber ceiling 

boards constitute the ceiling. Metallic lightboxes and ventilations are regularly arranged on the ceiling. An 

almost cubic anechoic chamber in a Faraday cage is placed along a wall. The chamber is fabricated with 

dense copper mesh in order to isolate the electromagnetic wave between the inner and outer environments. 

The 3D near-field scanner located by the windows is constructed with an aluminum alloy frame and a 

foamed plastic open square cavity. Tables for experiments are placed along the other walls. Most of the 

objects on the tables are electronic instruments and computers. This furniture arrangement in this 

environment can be considered as an approximation to the situation in the open office and conference room 

scenarios investigated in the IEEE802.11ad channel model. Measurements are randomly implemented in 

the zones which are marked as closed circles in the floor plane (both Tx and Rx being in the same zone for 

a given set of experiments with distance between Tx and Rx ranging from 0.5 to 2.5 meters). 

7.52 m

10
.2

5 
m

(a) (b)

faraday 
anechoic 
chamber

3D near-field 
scanner

measuring zones

 

Figure 4.16 (a) The floor plane and (b) the real scene of the measuring scenario. 

4.4.1.2 Measurement system 

The measurement configuration set-up aims at emulating a beam training strategy and is illustrate in 

Figure 4.17 (c) and (d). In order to obtain the PAS, a Vector Network Analyzer (VNA) fabricated by Rohde 

& Schwarz Inc. is used to measure the scattering parameter S21, i.e., the propagation channel, between Tx 

and Rx antennas. The VNA maximum output power is 4 dBm at 60 GHz [10]. The Tx antenna is a dipole 

antenna produced by Flann Microwave Ltd. It has an omnidirectional pattern of 360o azimuth coverage and 

60o elevation coverage [11]. The nominal gain is 2 dB. A pyramid horn antenna fabricated by QuinStar 

Technology Inc. is used to generate a directional Rx pattern. The Rx pattern is quasi-symmetric with 10.1o 

3-dB beamwidth in E-plane and 13.1o 3-dB beamwidth in H-plane [12]. The mid-band gain is 24 dB. The 

angular scanning of the Rx antenna in the beam training strategy is achieved by the cooperating rotation 

between horizontally and vertically rotating motors. The azimuth rotating motor is a rotation stage using a 

stepper Motor produced by Newport Inc. with a resolution of ±20 μ-degrees [13]. The elevation rotating 

motor is a piezo-driven motor fabricated by SmarAct Inc. and its resolution as a rotation stage is ±15 
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μ-degrees [14]. The adjustable angular velocity of SmarAct motor is a benefit to resist the gravity of the 

horn antenna, thereby provides a robust angular resolution during the vertical rotation. All motors and the 

VNA are controlled by a desktop computer using Matlab. 
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Figure 4.17 (a) The schematic; (b) the real system of the measuring system; (c) plastic fixed holder of Tx dipole antenna; (d) 

elevation motor of Rx horn antenna . 

The above components compose the measuring system as shown in Figure 4.17: the VNA, the 

elevation motor control unit, and the desktop computer is placed on a mobile workbench. The dipole Tx 

antenna is fixed at one end of a plastic-based support rod. A lift is connected to the other end of the rod to 

adjust the height of the antenna. The stand of the dipole antenna is made of plastic to limit strong 

interaction with the antenna pattern. The horizontal and vertical motor is installed at the two ends of 

another plastic support rod. The two antennas are connected to VNA with two 1.5 m cables. A set of 

MATLAB code drives the measuring system. The Tx omnidirectional dipole antenna is fixed on a plastic 

holder to avoid the reflection by the metal holder, as shown in Figure 4.17 (c). The plastic holder is 

manufactured by 3D printing. The elevation motor of the Rx horn antenna is shown in Figure 4.17 (d). The 

motor is fixed with a metal holder. Because the pattern of horn antenna is directional with low side lobes 
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and the output port is far away from the holder, the radiated field is not much reflected by the metal holder. 

4.4.1.3 Measurement strategy 

The S21 parameter measurements are performed over the full bandwidth of 8.64 GHz considered in the 

IEEE 802.11ad standard, from 57.24 GHz to 65.88 GHz. Similar to the measurements performed during the 

IEEE 802.11ad channel modeling, the first-order and second-order reflections are guaranteed to be received 

in the experiment. This means that twice the diagonal distance of the cubic room, i.e., d = 26.1 m, is the 

maximum distance range in order to guarantee that all first and second-order reflections are captured in the 

CIR. So, the corresponding frequency interval is set to f = 11.5 MHz, thereby 752 frequency points being 

sampled within the band. The IF bandwidth is fixed to 1 kHz, as a tradeoff between SNR performance and 

acquisition time. The frequency sweeping is operated three times over the whole band for each angular 

sample at the same Tx-Rx location, then taking the average over the three measurements to reduce the 

thermal noise of the receiver. The spatial sampling range is from -180o to 180o in the azimuth direction. 

Since the holder limits the rotation of the vertical motor in the negative elevation direction, the range is -45o 

to 90o in the elevation direction. The parameters of the measurements are summarized in Table 4.3 as well 

as those used for modeling the IEEE 802.11ad channel. The measurement in this study uses a smaller 

angular step and a larger bandwidth. Besides, by using an omnidirectional antenna at Tx, the measurement 

in this study is also more similar to the beam training scenario. Therefore, the proposed experimental set-up 

has the capacity to validate the results previously identified by simulation with the IEEE 802.11ad channel 

model. Totally 150 Rx-Tx location pairs are randomly sampled in the measuring zones. The Rx-Tx 

distances are randomly selected in a range from 0.5 m to 2.5 m. To form the training set, 100 samples are 

randomly selected from the 150 measurements set. Then, another 100 samples are randomly selected to 

form the testing set. This operation is performed three times and the average error probability is then 

calculated. This approach somehow compensates for the issue of small set learning. 

Table 4.3 Comparation between the parameters of the purposed measurement and IEEE 802.11ad measurement 

Parameters Proposal measurement IEEE 802.11ad measurement 

Bandwidth 8.64 GHz 800 MHz 

Time resolution 0.12 ns 1.25 ns 

Frequency sample number 752 52 

Frequency resolution 11.5 MHz 12.5 MHz 

Transmit power 4 dBm 2 dBm 

Rx beam width (E/H plane) 10.1o / 13.1o 40o / 40o 

Tx beam width (E/H plane) 360 o / 60 o 40o / 40o 

Tx antenna gain 2 dB 18 dB 

Rx antenna gain 24 dB 18 dB 

Sampling range in azimuth [-180o, 180 o] [-180o, 180 o] 

Sampling range in elevation [-45 o, 90 o] [-90 o, 90 o] 

Spatial sampling interval 5o 10o 
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4.4.2 Measurement Results 

4.4.2.1 Results in time and frequency domain 

  

Figure 4.18 (a) CIR and (b) CFR of the LOS and NLOS signal measured in the laboratory scenario. 

 

Figure 4.19 Autocorrelation of H(f) (a) with and (b) without mean value 

An example of the measured CFR and the CIR inverse Fourier transformed from CFR is shown in 

Figure 4.18. Similar to simulated CIR in Figure 4.3, there are two sharp side peaks beside the peak of 

NLOS CIR. While the simulated LOS CFR in Figure 4.3 is very flat, the measured one fluctuates much 

more. This is due to the fact that even when the Rx beam is aligned with the LOS towards the Tx antenna in 
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the measurement setup, the Rx radiation pattern having a certain beam width (not being a Dirac-type shape), 

it can collect multipath as well as the LOS. Furthermore, multiple reflections in between Tx and Rx 

antennas can occur. Finally, it is to be noted that the measuring band is here 8.64 GHz, which is much 

broader than the 800 MHz band in the simulation. Therefore, it is anticipated that the difference between 

measured LOS and NLOS frequency autocorrelation PDF will be weaker than with simulation results. The 

autocorrelations are shown in Figure 4.19. 

4.4.2.2 Results in space domain 

 

Figure 4.20 PAS measured in different Rx-Tx places with a Rx-antenna rotating interval of (a) 5o and (b) 1o. 

The PAS measured with different rotating steps (for 2 different Rx-Tx places) is shown in Figure 4.20. 

The PAS is obtained by: 

    21
0

1
, , ,

B
P S f df

B
      (4.39) 

Where, S21(f, , ) is the S-Parameter describing the power transformed from port 1 to port 2, B is the 

sampling band, f is the frequency,  and  are the azimuth and elevation angles. The shapes of clusters 

sampled with 5o intervals are in the form of a polygon while the PAS generated with 1o step is much 

smoother than the PAS of 5o step. However, entirely sampling such a 2D-PAS map with a 1o step needs 

more than 60 hours with our current setup. In actual wireless communication systems, although the 

scanning time is much less than in our experiments thanks to electronic beam scanning capabilities, 

scanning with very small angular step size is also too time-resource-consuming. That means PAS with low 
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resolution is (or will be) a common situation in most millimeter-wave wireless systems.  

In both PAS in Figure 4.20, it can be noticed that there are spread distributed speckles which are 

granular interference stochastically distributed in PAS. It is an inherent characteristic of images detected by 

the wave coherence, such as radar and ultrasound detector. The speckles are typically generated by the 

random coherence of the wave scattered by the objects spread wider than the concentrated reflectors or 

grouped scatterers. The wider spread scattering is view as a type of backscattering. The received 

backscattering signal can be viewed as the incoherent sum of N backscattered waves: 

    
1

exp exp
N

i i
i

A j A j 


  (4.40) 

Where phases φi of each scattering component is uniformly distributed in (-π, π) and independent from 

amplitude Ai. If the number of scatterers is sufficiently high, the central limit theorem leads to a complex 

form: 

   1 2expA j z jz    (4.41) 

Where, the real and image part z1 and z2 are independent and identically distributed zero-biased Gaussian 

variables with variance σ / 2. Physical meaning of σ is the Radar Cross Section (RCS) of the observed 

resolution cell. The joint probability density function (PDF) of the two parts is [15] : 

  
2 2
1 2

1 2
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, exp
z z

p z z
 

 
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 
 (4.42) 

Then, the PDF of power intensity I = A2 = z2 
1 + z2 

2  is: 

   1
exp

I
p I

 
   
 

 (4.43) 

Here, the mean of the intensity is equal to σ. The intensity carries information about the average 

backscattering coefficient related to the resolution cell. Therefore, they are one type of noise for the 

clustering and therefore need to be removed by a smoothing method. In the following identification, the 

speckles are removed with the open and close operation described in chapter 3. The size of the opening and 

closing marker should be determined according to the RCS of the observed resolution cell. In this study, a 

basic 33 matrix is empirically used as the marker. 3-pixel is the minimum size of the maker. Here, 3-pixel 

is used to minimize the influence of the marker to the actual scattering clusters. 
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4.4.3 Identification on PAS 

4.4.3.1 Power angular clustering 

 

Figure 4.21 Measured PAS clustering using watershed algorithm: (a) LOS; (b) NLOS. 

The clusters segmented by the watershed method are shown in Figure 4.21. The performance of 

watershed segmentation for measured PAS is lower than with simulated PAS: the shape of the clusters 

appears to be less preserved. In simulation, the PAS is generated by the convolution between the discrete 

spatial channel and the Gaussian antenna pattern model whose edge is sharp, as shown in Figure 4.22 (a). 

The sharp edges of the clusters make the 2nd order derivative of the power angular field enclosing the 

power cluster perfectly along the edges of the clusters. The clear gradient field leads to a watershed 

segmentation that well preserves the shapes of clusters. In the actual measurement, the PAS is detected by 

the physical antenna pattern. The physical pattern is smooth, which brings the smooth clusters. The edges 

of the valleys in the gradient field is deformed from the edges of clusters in Figure 4.22 (b). The 2nd order 

derivative of PAS is not obvious. Hence, the shapes of clusters cannot be preserved by watershed 

segmentation as well as in simulation. 
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Figure 4.22 Comparation between (a) simulated and (b) measured PAS 

4.4.3.2 Statistical characteristics inside cluster 

The PDF and CDF of power, temporal, and frequency kurtosis min/max eigen value ratio are shown in 

Figure 4.23. It means that the statistical difference between LOS and NLOS features is less significant than 

with the simulation situation. The weak distinction between LOS and NLOS features could be somehow 

qualitatively predicted by observing the signals in Figure 4.18. We empirically found that the PDFs of the 

three features can be fitted with Generalized Extreme Value (GEV) distribution. The PDF of GEV is given 

by:  

  
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 (4.44) 

Where γ, μ, and σ are parameters. The log-likelihood function of GEV distribution for N i.i.d. samples (x1, 

x2 … xN) is: 
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Figure 4.23 Measured PDF and CDF and the curve-fitted with generalized extreme value distribution of LOS and NLOS transmission: minimum eigen value over maximum eigen value ratio 

of (a) power kurtosis matrix; (b) temporal kurtosis matrix; (c) frequency kurtosis matrix.
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Due to the complex expression, an analytical solution of the first-order deviation equations is hard to find. 

Instead of an analytical solution, the minima of the above likelihood can be solved with the 

Newton-Raphson method [16]. Defining the parameters as a vector θ = [γ, μ, σ]T, the iterative formula to 

update the parameter vector in the direction of the log-likelihood gradient lnG(θ; x) is : 

    -11 ln ;i i
GI x      =  (4.46) 

Where I(θ) is a 3x3 Fisher information matrix: 
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with the following matrix elements: 
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where, with the gamma function Γ(α) and (α) are in the form of (4.31), and where the parameters p and q 

are: 
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Table 4.4 Parameters of GEV and p-value of Kolmogorov–Smirnov goodness of fit testing 

Features 
Power eigen ratio Temporal kurtosis eigen ratio Frequency correlation eigen ratio 

LOS NLOS LOS NLOS LOS NLOS 

γ -0.5960 -0.2464 -0.6062 -0.2148 -0.5451 -0.1942 

μ 0.6083 0.4252 0.60813 0.4143 0.5936 0.4055 

σ 0.2309 0.1896 0.2250 0.1874 0.2314 0.1841 

K-S p-value 0.9070 0.3961 0.7082 0.4304 0.5541 0.5708 

The parameters of the GEV and the p-values of the Kolmogorov–Smirnov testing at a significant level 

of 0.05 for the three statistical features are shown in Table 4.4. The goodness of fitting for the measured 

PDF is very high. Compared with the fitting for simulated PDF, all of the measured p-values are higher 

than the significance of 0.05, even near to 1 for the LOS power eigen ratio.  
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4.4.3.3 Features classification 

To evaluate the performance of classification such as done with the simulation result in section 4.3, the 

probabilities of type I and type II errors are shown in Table 4.5. Due to the weak difference between the 

LOS and NLOS CDF of features in Figure 4.23, the performance of MLR is much worse than in the 

simulation performance. The type I error is near 1/3. Even the type II is also near 0.3. To enhance the 

classification performance, the number of neurons for each ANN layer and the number of raining reputation 

have been both increased to 100, while keeping the number of hidden layers as 2. The minimum 
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probabilities of type I and II are both limited below 0.2, which is somewhat acceptable and much better 

than the performance of MLR.  

Table 4.5 Probabilities of error tested by MLR and ANN with measured features 

Error 
Maximum Likelihood Ratio Artificial Neural Network 

R
 ̭

P R
 ̭

t R
 ̭

f R
 ̭

PR
 ̭

tR
 ̭

f (R
 ̭

P, R
 ̭

t, R
 ̭

f) 

Type I 0.3713 0.3832 0.4371 0.3533 0.1548 

Type II 0.2892 0.2827 0.2885 0.2878 0.1627 

4.5 Conclusion 

In this chapter, the space-time structure of transmission channel is used to perform LOS/NLOS 

identification. Using the 2D power angular spectrum (PAS) obtained over the 57-66 GHz band at Rx after 

the first stage of a beam training process, a 3D space composed of Angle-Of-Arrival (AOA) in elevation (θ) 

and in azimuth (ϕ) and of excess delay is generated. After a clustering process performed in the 2D angular 

space using the image-processing method described in chapter 3, intra-cluster statistical features are 

determined. It has been found that power kurtosis in the time/frequency/space domain is a promising metric 

in order to discriminate LOS from NLOS. In particular, the min/max ratio of eigen values obtained by a 

decomposition of the co-kurtosis matrix, i.e., principal component analysis, has been found to be a 

sufficient criterion to discriminate LOS from NLOS clusters. This ratio corresponds to a weighted 

symmetry, and it appears that LOS clusters exhibit much less symmetry than NLOS clusters. These 

findings came from extensive simulations using the IEEE802.11ad channel model, to which antenna 

radiation pattern effect has been introduced. Identification has been then performed using Artificial Neural 

Network (ANN) and Maximum Likelihood Ratio (MLR) in both simulation and experiments. Under the 

evaluation of Type I and II errors, the performance of identification with ANN has been found to 

outperform MLR in all investigated scenarios in identifying NLOS from LOS clusters. Out of the 26230 

NLOS clusters investigated in the four simulation scenarios, 94.85% have been correctly identified as 

NLOS and out of the 1000 testing LOS clusters, 95.27% have been correctly identified as LOS. In 

measurements, out of the 1212 NLOS clusters investigated in the four simulation scenarios, 84.52% have 

been correctly identified as NLOS and out of the 150 testing LOS clusters, 83.73% have been correctly 

identified as LOS. 
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Conclusion and Perspective 

To help reducing the positioning error introduced in rich indoor multipath transmissions, this thesis 

solves the identification of Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) problem and hence 

contributes to provide accurate 60 GHz localization systems.  

Compared with other radio-based technologies, the triangulation based UWB ranging, especially the 

TOA and TDOA based ranging, provides theoretically very high accuracy for localization. Due to its wide 

band, the millimeter band is hence an excellent candidate for indoor localization, and particularly the 

unlicensed 60 GHz with an available bandwidth close to 8.64 GHz. The millimeter band takes advantage of 

the MIMO communication for 5G due to its capacity of interference mitigation in dense networks. 

Unfortunately, blockage remains a critical issue. This is typically overcome using beamforming and beam 

training to establish a radio link between Tx and Rx based on an NLOS path. However, NLOS transmission 

is one of the significant error sources in indoor localization, due to the longer propagating distance 

compared with the actual distance between the transmitter and receiver. Unfortunately, the serious 

attenuation or even blockage in millimeter wave band makes NLOS transmission quite common situations. 

In these situations, the accuracy of positioning is considerably decreased and the goal of this thesis is 

consequently to propose a methodology to efficiently identify when a communication is being performed 

with a NLOS path rather than a LOS path. 

Most of the current studies on NLOS identification are in the sub-6 GHz band. The low attenuation, 

strong diffraction, and omnidirectional antenna pattern typically encountered in this band make the 

resulting channel between a transmitter and a receiver experiencing strong multipath effects. Therefore, 

features in the Channel Impulse Response (CIR) are typically used to differentiate between LOS and NLOS 

transmissions. The ranged distance and other channel features are also used to distinguish LOS and NLOS 

situations. Parametric and non-parametric hypothesis testing are both used to statistically determine the 

transmission scenario. NLOS identification in the millimeter-wave band has not being paid much interest in 

the literature so far. Furthermore, millimeter-wave channel, being highly sparse, exhibits different 

behaviors than in the sub-6 GHz region. Angular spatial features of the channel rather than of the CIR are 

used in order to perform NLOS identification. To do so, clustering is an essential step. Among current 

clustering methods, the current channel modeling widely uses the partitional clustering method, 

K-Power-Means. The problem of shape-preservation of K-Power-Means remains unsolved so far, and is of 

utmost importance for NLOS identification in the millimeter-wave band as we intend to use the angular 

cluster shapes as a feature for classification. 

To extract the clustered feature in mm-wave band, the clustering of PAS is studied with the watershed 

segmentation method. In millimeter-wave communications, the beam training strategy that scans the whole 

angular space to identify a strong enough link makes the PAS readily available at Tx and Rx ends. The 

obtained 2D angular map represents a continuous field-amplitude, which needs to be clustered for channel 

modeling, or for NLOS identification as it is the case in this thesis. Watershed transformation, which 

locally reconstructs the gradient field, is more suitable than classical techniques such as the well-known 
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K-mean algorithm to extract illuminated clusters from the dark background and separate the adjacent 

clusters in the PAS. Indeed, simulations with IEEE 802.11ad channel model manifested that watershed 

segmentation preserves the shapes of clusters. However, the standard K-Power-Means ignores the 

correlation between adjacent elements and therefore fails to preserve the shape of clusters. Through the 

pretreatment by operations of mathematical morphology benefits to promote the performance, global 

optimization to look for the global minima limits the K-Power-means. It is the essential difference between 

watershed and K-Power-Means. To benchmark our watershed-based clustering method, we also proposed a 

modified K-power-mean algorithm. Here also, it has been found that our proposed method outperforms the 

K-power-mean algorithm, especially to preserve the shape of the cluster. The power density in the clusters 

segmented by watershed method is much higher than the ordinary modified K-Power-Means methods. The 

running time of the watershed method is lower than the K-Power-Means methods. 

The space-time structure of transmission channel is used to perform LOS/NLOS identification. Using 

the 2D power angular spectrum (PAS) obtained over the 57.24 GHz to 65.88 GHz band at Rx after the first 

stage of a beam training process, a 3D space composed of Angle-Of-Arrival (AOA) in elevation (θ) and in 

azimuth (ϕ) and of excess delay is generated. After a clustering process performed in the 2D angular space 

using the watershed segmentation method, intra-cluster statistical features are determined. It has been found 

that kurtosis matrix in the time/frequency/space domain is a promising metric in order to discriminate LOS 

from NLOS. In particular, the minimum over maximum ratio of eigen values obtained by a decomposition 

of the co-kurtosis matrix, i.e., principal component analysis, has been found to be a sufficient criterion to 

discriminate LOS from NLOS clusters. This ratio corresponds to a weighted symmetry, and it appears that 

LOS clusters exhibit much less symmetry than NLOS clusters. The deformed symmetry is generated by the 

stochastically scattering by the randomly distributed particular structure in the space. The physical process 

is illustrated by the electromagnetic simulation with Method of Moment (MOM). These findings came 

from extensive simulations using the IEEE 802.11ad channel model including the effect of antenna 

radiation pattern. Identification has been then performed using Artificial Neural Network (ANN) and 

Maximum Likelihood Ratio (MLR) in both simulations and experiments. For MLR, the Probability Density 

Function (PDF) of the metrics is fitted with Beta distribution with different parameters while the ANN 

structure is composed of two hidden layers. Under the evaluation of Type I and II errors, the performance 

of identification with ANN has been found to outperform MLR in all investigated scenarios in identifying 

NLOS from LOS clusters. The simulation is validated in a laboratory scenario. Driven by a Vector 

Network Analyzer (VNA), the signal is transmitted by an omnidirectional dipole Tx antenna and received 

by a directional horn Rx antenna. According to the beam training strategy, the Rx antenna is rotated with 

motors in both azimuth and elevation. The obtained samples are also hypothesis tested with MLR and ANN. 

Generalized Extreme Value (GEV) is used to fit the PDF of measured metrics. Out of the 26230 NLOS 

clusters investigated in the four simulation scenarios, 94.85% have been correctly identified as NLOS and 

out of the 1000 testing LOS clusters, 95.27% have been correctly identified as LOS. In measurements, out 

of the 1212 NLOS clusters investigated in the four simulation scenarios, 84.52% have been correctly 

identified as NLOS and out of the 150 testing LOS clusters, 83.73% have been correctly identified as LOS. 

The performance of ANN still outperforms MLR. The measurement validates therefore the simulation. 

This work can be furtherly studied in several aspects. First, except the power, time-domain kurtosis, 

and frequency autocorrelation, more physical features can be introduced to assess the nature of NLOS 
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transmissions, specially by investigation the random dispersion. Indeed, the typical deterministic scattering 

by walls, ceiling, ground, etc. is well studied in the literature while the dispersion caused by random 

scattering from furniture and human motion have not been given much interest so far. Based on those 

specific physical signatures, more mathematical metrics, such as non-stationary dynamic of statistical 

parameters, could also be used for identification. Also, with the advance of machine learning field, more 

classification methods could be tested. For instance, Convolutional Neural Network (CNN) and Generative 

Adversarial Network (GAN), used for image and speech signal processing, are recently attracting a lot of 

attention because of its high capacity of classification, particularly valuable to study NLOS identification. 

Finally, the NLOS identification is to be embedded in current wireless communication systems. To achieve 

this aim, more effective beam training strategy and spatial signal estimation method with high resolution 

are also necessary research targets.  



Conclusion and Perspective 

129 



Appendix A  Physical Mechanism of Identification 

130 

Appendix A  

Physical Mechanism of Identification 

Contents 

A.1 Brief Introduction of MOM ......................................................................................................... 130 

A.1.1 Continuous integral equations ................................................................................................. 130 

A.1.2 Discrete linear equations ......................................................................................................... 132 

A.2 Typical Geometrical Structures for Indoor Scenarios ................................................................. 135 

A.3 Dielectric Properties of Materials ................................................................................................ 136 

A.4 Simulation result ......................................................................................................................... 137 

References ............................................................................................................................................... 141  

As the discussion in chapter 2, NLOS identification is a recognition of the physical characteristics of 

radio scattering. As discussed in chapter 1, for the 60 GHz indoor NLOS identification, three characteristics 

different from the low-frequency outdoor identification: high material attenuation and high directional 

antenna pattern to take over the high attenuation. After clustering with watershed segmentation, the 

intracluster scattering characteristics are the identifying features. In the IEEE 802.11ad model, the simplest 

clusters are generated by two typical structures for the indoor scenarios, layered wall, and rough surface. To 

further clarify the intracluster physical mechanism, the scattering is simulated with a full-wave 

electromagnetic simulation method, Method of Moment (MOM), to solve the scattering of the two 

particular geometrical structures.  

A.1 Brief Introduction of MOM 

MOM is an integral equation (IE) method. The advantage of IE is the simulation in the large and open 

domain. In this study, it is used to simulate the scattering for a particular structure in the indoor scenario. 

A.1.1 Continuous integral equations  

The wave equations from the Maxwell equation in the frequency domain are: 

 0j  E H   (A.1) 

 j  H J E  (A.2) 
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Where H is the magnetic field vector and E is the electric field vector. ω is the angular frequency. ε is the 

complex permittivity and μ is the permeability. The boundary conditions between two media Ω0 and Ω1 are: 

  0 1ˆ 0  n E E  (A.3) 

  0 1ˆ 0  n H H  (A.4) 

Where n
 ̭
 is the normal vector of the boundary surface. Without loss of generality, the simulation is 

constrained in the 2D (x, z) plane. The reflection of TE and TM incident wave at a surface S between two 

media Ω0 and Ω1 are shown in Figure A.1. The incident wave vector ki with incident angle i is reflected by 

the surface as reflected wave vector kr with reflecting angle r, and transmitted wave vector kt with the 

transmitted angle t.  
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Figure A.1 Reflection of (a) TE and (b) TM waves at a surface S 

In Figure A.1 (a), E = ϕ(r)y
 ̭
. In Figure A.1 (b) , H = ϕ(r)y

 ̭
. Therefore, with 0ik    , the vector 

Maxwell equations (A.1) and (A.2) are simplified as scalar Helmholtz equations in 2D:  

    2 2 0,i i i ik r    r r  (A.5) 

The vector boundary conditions (A.3) and (A.4) are simplified as a scalar boundary condition of TE and 

TM in Figure A.1:  
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For TE polarization, ρ01 = 1; for TM polarization, ρ01 = ε0/ε1.  

For a linear system, the response of a source is a linear combination of the responses of an impulse 

point source. The response at position r’ of an impulse point source δ(r – r’) at position r can be described 

with the Green function g(r, r’) for Helmholtz equations: 

      2 2, , , ,i i i ig ' k g ' ' '    r r r r r r r r  (A.7) 

For 2D problem, the Green function in the i-th media is 

    (1)
0, ' '

4i i
j

g H k r r r r  (A.8) 

where H(1) 
0  is the zeroth-order Hankel function of the first kind. By the Huygens principle, the boundary C 

of domain Ω is considered as a concentration of the point sources. The field in domain Ω can be 

transformed into radiation of the boundary C under an incident field, which is achieved with considering 

the Green theorem: 

    2 2
1 2 2 1 1 2 2 1

C
f f f f dr f f f f d


       S   (A.9) 

The scalar integral equations are obtained by (A.5), (A.6), (A.7) and (A.9) [1]:  

            0 0
0 0 0

, '1
' ' , '

2inc
C C

g
P dS g dS

n n


  

 
  

  
r r r

r r r r r  (A.10) 

          1 0
0 0 1

01

, '1 1
0 ' , '

2 C C

g
P dS g dS

n n


 


 

   
  
r r r

r r r r  (A.11) 

Where P means Cauchy principal value. Therefore, the field ϕ(r’) can be expressed as the combination of 

impulse radiation of surface point currents ϕ(r) and ϕ(r) / n, under the incident field ϕinc(r’). It matches 

the requirement of the linear system. The first and second terms of (A.10) and (A.11) are the Neumann 

boundary condition, while the third terms are the Dirichlet boundary conditions. The unknown variables are 

the surface currents ϕ(r) and ϕ(r) / n. 

A.1.2 Discrete linear equations 

The linear IE of (A.10) and (A.11) in form (f) = g can be solved with discrete equations. Where  is 

the integral equation operator, f is the unknown function and u is the known function. An approximate 

solution of f is expending the unknown variables with N bias functions f1, f2, …, fn: 
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

  (A.12) 

Therefore, IE is discretized with a residual ε as: 

      
1

ˆ
N

n n
n

f f a f u


       (A.13) 

To minimize the residual ε, inducing M weighting functions w1, w2, …, wM, to make each wm orthogonal to 

the residual <wm, ε> = 0:  

    
1

ˆ, , ,
N

m n m n m
n

w f a w f w u


    (A.14) 

Therefore, the EI (f) = u is discrete as linear equations: 

 Z x b  (A.15) 

The element of the impedance matrix Z and excitation vector b are Zmn = <wm, (fn)> and bm=< wm, u>. 

MOM select the weight function by a point-matching method with wm = δ(x - xm). Therefore, the elements 

become: 

  mn n mZ f x     (A.16) 

  m mb u x  (A.17) 

The discretization of IEs (A.10) and (A.11) is the discretization of the boundary surface into elements. 

Then the field of each point in the domain can be solved by a linear combination of the radiations by the 

surface currents on all of the surface elements, according to discrete equations (A.15). The essence of IEs 

(A.10) and (A.11) are the combinations of Neumann and Dirichlet boundary conditions. So, specifying the 

equation (A.15) for parts of Neumann boundary conditions in (A.10) and (A.11) : 

  
2/2

/2
1 , '

L

L

dz
g dx

dx

    
  r r  (A.18) 

 
 

f
n





r

 (A.19) 



Appendix A  Physical Mechanism of Identification 

134 

Or for parts of Dirichlet boundary conditions: 
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r r

 (A.20) 

  f  r  (A.21) 

And the unknown function is the incident wave u = ϕinc(r). After derivation, a general impedance matrix Z 

with mixed boundary conditions is obtained [1]: 
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 (A.22) 

Where the elements for the blocks ZNeu with Neumann boundary condition are: 
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 (A.23) 

The elements for the blocks ZDir with Dirichlet boundary condition are: 
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 (A.24) 

Where, γn = dzn / dxn and Δn = βn - αn  λ0 / 10. For ZNeu,k0 k1, the Cauchy principal value is 0.5, while, it is 

-0.5 for ZNeu The excitation vector b on the N discrete surface elements is: 

      1 2, , , ,0,0, ,0
T

inc inc inc N      b r r r  (A.25) 

The unknown variable vector x of the N discrete surface elements is: 

            00 1 0 2
0 1 0 2 0, , , , , , ,

T
N

N n n n

 
  
  

     
 

rr r
x r r r  (A.26) 

Then, the specific form of equations (A.15) can be solved with general methods, such as LU 
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decomposition. 

A.2 Typical Geometrical Structures for Indoor Scenarios 

As discussed in chapters 1 and 2, the simplest clustered channel of IEEE 802.11ad is formed by the 

reflections of the walls in the conference room. There are two particular structures of the walls: layered 

structures and rough surfaces. The two structures mainly generate the intra-cluster radio propagating feature. 

A typical interior wall of an office scenario is with a layered structure [2], as shown in Figure A.2. An 

aerated concrete wall body is covered with two plaster planes. The standard thickness of the plaster plane is 

12 mm. The air gap is assumed to be 10 mm. The thickness of the aerated concrete wall body is 55 mm. 

The total 100 mm thickness is measured in a microwave wireless facilities lab at Sorbonne University.  

Air gapAerated 
concrete

Plaster 
plane

12 mm

10 mm

10 mm

12 mm

55 mm

Air

Air
 

Figure A.2 Layered structure of walls 

The second type of structure is the rough surface. The rough surface for 2D MOM is a 1D 

autocorrelated random line. The height profile cz(x) is the autocorrelation between two heights on the 

surface of position x1 and x2:  

          1 1 1 1 1
0

1 L

zc x z x z x x z x z x x dx
L

     (A.27) 

The random heights z is a convolution between cz(x) and random numbers s, which can be obtained by 

inverse Fourier transformation [3]: 

       1* =z zz c x s C k S k      (A.28) 

Where Cz(k) is the Power Spectral Density (PSD) of z(x). S(k) = [s]. To make z is real, there is a constraint 

S*(-k) = S(k). A Gaussian white process s matches this constraint, and provide a power spectrum of unitary 

variance Cs(k) = 1. The Fourier transform of the Gaussian process is also a Gaussian process. The 

Probability Density Function (PDF) of the Gaussian spatial distribution is: 
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Where σz is the standard deviation. The autocorrelation cz(x) can be Gaussian: 
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Where Lc is the correlation length. The corresponding PSD are 
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Figure A.3 Local graph of rough surface  

With typical parameters for plaster surface Lc = 1.7 mm and σz = 0.15 mm [4], the random surface is 

generated for simulation as shown in Figure A.3. 

A.3 Dielectric Properties of Materials 

A material model suggested by the International Telecommunication Union (ITU) is used in this 

simulation. The complex relative permittivity is 
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'r r j
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Where the relative permittivity εr and electric conductivity σ are [5] 

 b
r af   (A.33) 

 dcf   (A.34) 

Table A.1 Parameters in ITU material model [5] 

 a b c d 

Air 1 0 0 0 

Plaster 2.94 0 0.0116 0.7076 

Concrete 5.31 0 0.0326 0.8095 

Brick 3.75 0 0.038 0 

  

Figure A.4 (a) Real and (b) imaginary part of the complex relative permittivity 

The parameters a and b are listed in Table A.1. The real and complex relative permittivity for air, 

plaster, and concrete with the ITU material model are listed in Figure A.4. In the simulation, the parameters 

of brick are used to replace concrete for aerated concrete.  

A.4 Simulation result 

With the above material characteristics, the scattering by the above structure is simulated. The antenna 

pattern of IEEE 802.11ad is the Gaussian model. The antenna pattern and the near-field of 45o incident 

beam for both TE and TM wave are shown in Figure A.5.  
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Figure A.5 (a) Near-field of 45o incident beam with (b) ideal Gaussian antenna pattern of 5o HPBW. 

Apart from the near-field scattering, the far-field scattering is more valuable to evaluate to the 

scattering characteristics. The far-field scattering is indicated with the Radar Cross Section (RCS):  

 
'
lim 2 ' sca

r
inc

RCS r





  (A.35) 

Where ϕsca and ϕinc are near-field scattering and incident field. Inducing a far-field approximation when r’ 

 , |r – r’| ≈ r’ – ksca ∙ r, the Green function is simplified as: 
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Considering the IE (A.10) as well, the RCS is derived as: 
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Figure A.6 (a) Near-field scattering and (b) far-field RCS of TE wave incident on a layered wall. 

 

Figure A.7 (a) Near-field scattering and (b) far-field RCS of TM wave incident on a layered wall. 

The near-field and far-field scattering of TE and TM incident wave for the layered wall are shown in 

Figure A.6 and Figure A.7. Both the near-fields mainly scattering in the direction of 45o. Weak scattering 

side-lobs are below -100 dB. Instead of breaking into pieces, the scattering beams preserved as whole 

clusters in the far-field RCS. Comparing with the ideal Gaussian antenna pattern in Figure A.5 (b), the 

shapes of the RCS clusters are deformed by the coherence inside the geometrical structure. 
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Figure A.8 (a) Near-field scattering and (b) far-field RCS of TE wave incident on a rough plaster surface. 

 

Figure A.9 (a) Near-field scattering and (b) far-field RCS of TM wave incident on a rough plaster surface. 

The near-field and far-field scattering of TE and TM incident wave for rough plaster surface are 

shown in Figure A.8 and Figure A.9. Different from the shape-preservation of the scattering by the layered 

wall, the incident beam shape breaks into pieces in far-field RCS. The side-lobes are higher than -80 dB 

and almost comparable with the main lobs. With the scattering by the rougher severe surface or randomly 

distributed independent objects, the scattering in far-field will be more spread. Therefore, the widespread 

spatial clusters are an apparent physical feature for NLOS identification.  
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Figure A.10 Deformation of scattering cluster due to: (a) LOS transmission; (b) random scattering; (c) particular structures. 

Based on the result of simulation with MOM, a physical feature for the NLOS identification with 

narrow beams is obvious. The shape of the angular clusters in the PAS 2D map is an effective way to 

investigate the characteristics of the scattering behaviors in LOS or NLOS transmission. A canonical 

example is shown in Figure A.10 where the phenomenon occurring within the channel can be observed on 

the received PAS within a given cluster. The Tx pattern in the beam training is here omnidirectional while 

the Rx pattern formed by the antenna array is almost rotational symmetric. In Figure A.10 (a), the transmitted 

power pattern is preserved due to the absence of scattering objects in the LOS transmission. Thus, the PAS 

within this LOS cluster exhibits an almost rotational symmetric, identical to the Rx radiation pattern. 

However, in Figure A.10 (b), the PAS is randomly deformed by the stochastically distributed scatterers. Even 

when reflected by smooth reflectors, NLOS clusters are affected. Indeed, the PAS of a cluster reflected by 

particular complex structure a reflector surface, such as multi-layer, is also deformed as seen in Figure A.10 

(c). This illustrates the motivation of our work. Although the capacity of spatially classifying the clusters is 

limited by the resolution of beam training, the identification could still be achieved. Consequently, in this 

thesis, we intend to analyze deeper the clustered PAS features in order to assess their suitability for NLOS 

identification. 
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1. Contexte et Historique 

1.1. Introduction 

Avec l’émergence des objets connectés, de l’IoT et de la nouvelle norme de communication 5G, les 

applications potentielles requérant la localisation indoor ou la continuité de localisation réapparaissent et 

suscitent, depuis quelques années déjà, de nombreuses études et recherches.  

Avec une fréquence centrale de 60 GHz et une bande passante de 8,64 GHz la norme IEEE 802.11ad 

est un candidat potentiel pour résoudre le problème de localisation tout en assurant simultanément une 

communication très haut débit. Cette capacité de localiser avec précision un objet communicant est liée 

d’une part à la fréquence porteuse qui permet, par traitement de la phase du signal, une résolution 

millimétrique, mais aussi à la bande passante qui permet, par traitement des temps d’arrivées, outre une 

résolution centimétrique, de s’affranchir des trajets multiples notamment liés au contexte indoor.  
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Cette norme prometteuse pose toutefois un problème lié au caractère directionnel de la propagation 

dans le domaine millimétrique, et qui est donc particulièrement sujette au blocage des ondes directes. En 

effet aucun calcul de coordonnées spatio-temporelles ne peut être entrepris si les signaux d’intérêt traités ne 

proviennent pas d’une propagation en ligne directe (LOS pour Line Of Sight) entre l’objet à localiser et le 

(ou les) site(s) de référence. Cette limitation induit par conséquent une nouvelle problématique dans le 

domaine de la localisation qui consiste à s’assurer, dans les signaux en jeu, de la présence de la composante 

liée à l’existence d’un trajet direct. Cela revient aussi à identifier, dans ces signaux, les composantes NLOS 

issues principalement des réflexions multiples. L’objectif de ce mémoire est d’identifier, dans la bande 

centrée autour de 60GHz, les composantes LOS et NLOS et d’atténuer les effets de ces dernières pour ne 

laisser subsister, dans le calcul de la localisation, que la composante directe.                     

1.2. Localisation à l'Intérieur 

La localisation sans fil est le processus qui consiste à déterminer, principalement par les techniques de 

triangulation ou de « fingerprinting », les coordonnées spatiales d'un objet en détectant les ondes 

électromagnétiques. En extérieur, elle est représentée principalement par le très populaire système de 

positionnement global (GPS). En « indoor », ses applications potentielles, très nombreuses et variées, 

peuvent l’amener au même niveau de popularité que le GPS.  

Le processus de localisation fondée sur la triangulation est divisé en trois étapes. Dans la première 

étape, les informations de distance entre l'émetteur et le récepteur sont extraites des paramètres 

caractéristiques du signal reçu, tels que l'intensité du signal reçu (RSS : Received Signal Strenght), l'angle 

d'arrivée (AOA : Angle Of Arrival) et le temps d'arrivée (TOA : Time Of Arrival). La deuxième étape 

consiste à trouver les coordonnées du terminal par le biais de relations géométriques. En raison des erreurs 

systématiques ou aléatoires dans la distance mesurée, les coordonnées obtenues à partir de la distance 

mesurée ne sont, par nature, pas très précises. Par conséquent, la troisième étape consiste à réduire ces 

erreurs et à estimer, en se fondant sur une approche statistique les coordonnées de l’objet connecté. 

Dans la majorité des situations rencontrées, la CIR (Channel Impulse Response) exhibe des pics dont 

l’intensité est en lien direct avec les temps d’arrivée du signal direct et des différentes répliques. Le premier 

pic correspond donc au chemin direct et les pics suivants aux contributions de trajets multiples. Toutefois si 

le chemin direct est obstrué, il en résulte une confusion quant à la classification des pics de la CIR qui se 

révèle être préjudiciable pour la localisation basée sur la TOA. Pour les autres métriques comme l’AOA et 

le RSS, les erreurs introduites obéissent aux mêmes règles. Il en résulte dans tous les cas, des positions 

estimées qui suivent une distribution statistique biaisée admettant une variance plus au moins grande en 

fonction de la proportion des trajets multiples relativement à celle du trajet direct. 

1.3. Localisation et Communication par Ondes Millimétriques 

La cinquième génération de réseaux sans fil (5G) est la prochaine génération de communication sans 

fil qui répond entr’autres aux exigences de l'ultra-haut débit et de la robustesse. Grâce à la formation de 
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faisceaux, apportée par les techniques massive MIMO (Multiple Input Multiple Output), et aux solutions 

qu’elle induit en termes de portée et de connexité, les organismes de normalisation considèrent les ondes 

millimétriques comme un excellent candidat pour répondre aux exigences de la norme 5G. Par ailleurs, en 

raison de la faible taille de l'antenne, la bande considérée convient aux applications intérieures basées sur 

des dispositifs intégrés, d’autant qu’elle ne nécessite pas de licence particulière dans un grand nombre de 

pays. Parmi les normes utilisant la fréquence de 60 GHz, citons la norme IEEE 802.11ad, qui attribue la 

bande comprise entre 57,24 GHz et 65,88 GHz. Toutes ces potentialités aident à réduire les interférences 

entre les utilisateurs (ISI), et à améliorer le gain spatial de la liaison radioélectrique.  

Par conséquent, du point de la communication, un chemin direct bloqué n’est pas rédhibitoire. En effet 

grâce à la stratégie de formation de voies, d’autres chemins sont explorés pour rétablir la liaison et 

maintenir une bonne qualité de service en termes de SNR ou de BER. Cette solution n’est naturellement 

d’aucun secours pour la localisation. Il convient donc de proposer des modélisations ou caractérisations de 

canal qui mettent l’accent sur la probabilité de présence d’un trajet direct.  

1.4. Modélisation du Canal à Ondes Millimétriques 

Le profil typique d’un canal comprend des caractéristiques à petite échelle et des caractéristiques à 

grande échelle. Les caractéristiques à petite échelle représentent généralement les dispersions temporelle et 

spatiale causées par la propagation par trajets multiples des ondes radio dans l'espace. Elles entraînent une 

sélectivité en fréquence, ainsi qu'une distorsion du signal et une diaphonie. L'évanouissement à grande 

échelle est la fluctuation de la puissance moyenne du signal mesuré sur de grandes distances (plusieurs 

dizaines de longueurs d’onde). Les effets d'ombrage et d’affaiblissement résultant réduisent la zone de 

couverture. 

La plupart des modèles de canaux actuels, les canaux SISO (Single Input-Single Output) en intérieur 

ou les canaux MIMO en extérieur, sont basés sur le même modèle physique de CIR : les diffuseurs répartis 

par groupes rétrodiffusent les faisceaux émis entre les stations de base (BS) et les antennes UE (User 

Equipment) dans l'espace. Par conséquent, le CIR est simplifié en deux parties : le comportement des 

groupes et le comportement à l'intérieur des groupes. La CIR est modélisée comme une combinaison 

linéaire d'ondes planes diffusées par un groupe. Les clusters dans le modèle de canal IEEE 802.11ad sont 

classés comme LOS et NLOS. Les amas géométriques de diffuseurs sont distribués de façon stochastique 

dans l'espace physique. Les paramètres correspondants du modèle de canal ci-dessus, TOA, AOA et AOD 

(Angle of Departure), sont donc également statistiques. Ainsi, la modélisation des canaux consiste à 

déterminer la distribution statistique des paramètres dans le modèle des canaux de diffusion en grappes.  

Un processus typique de modélisation du canal à base de grappes comprend quatre étapes : la collecte 

du signal diffusé, l'extraction des paramètres du canal, le regroupement des paramètres en grappes et 

l'ajustement des grappes avec les modèles statistiques. Le signal diffusé peut être collecté par des mesures 

physiques ou des expériences numériques, telles que le tracé de rayons. Les paramètres du canal sont 

extraits du profil de retard de puissance (PDP) et du spectre angulaire de puissance (PAS) avec une 

estimation des paramètres statistiques. Les paramètres estimés sont regroupés à l'aide d'un algorithme de 
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regroupement, comme K-Power-Means. Enfin, la distribution des points de paramètres discrets à l'intérieur 

des grappes est ajustée à l'aide d'un modèle statistique. En raison de la faible probabilité de présence du 

trajet direct dans le canal 60 GHz, le tracé de rayon est introduit dans la norme IEEE 802.11ad pour 

collecter, numériquement, les données du signal. Les étapes de post-traitement d'estimation et de mise en 

grappes ont été remplacées par deux étapes de mesure discriminante. Les antennes sont pointées 

artificiellement vers la direction du faisceau cible, qui a été calculée à l'aide du tracé de rayon. Ensuite, la 

configuration intra-classe est directement mesurée avec l'antenne cornet.  

Le modèle de canal IEEE 802.11ad ne prend pas suffisamment en compte l'atténuation causée par 

l'ombrage à grande échelle, en particulier la transmission distincte LOS et NLOS. Dans le scénario 

extérieur, les expériences ont montré que les probabilités de transmission LOS et NLOS diminuent de façon 

exponentielle avec l'augmentation de la distance. Par conséquent, le modèle de canal extérieur à ondes 

millimétriques, les transmissions LOS et NLOS ont été modélisées par des fonctions de probabilité 

exponentielles empiriques par rapport à la distance entre l'émetteur et le récepteur. Les fonctions de 

probabilité exponentielle des transmissions NLOS causées par le blocage des bâtiments à l'extérieur et le 

blocage du corps humain à l'intérieur sont expliquées mathématiquement avec la théorie de la géométrie 

stochastique. 

Le blocage étant l'un des problèmes critiques en bande millimétrique. La solution la plus pratique pour 

contourner ce problème est une combinaison de formation de faisceaux couplée à une technique 

d’apprentissage de faisceaux qui consiste à effectuer un balayage et rechercher le meilleur SNR.  

La formation de faisceaux est un filtre spatial adapté qui peut utiliser soit une architecture numérique 

soit une architecture analogique. Le choix de l’une ou l’autre se fera sur des critères d’énergie, de 

complexité ou de coût.   

1.5. Objectifs de la Thèse 

La formation de faisceau actuelle, complétement opérationnelle et efficace pour les communications 

très haut débit, n'est absolument pas adaptée à la localisation. En effet, la transmission NLOS, principale 

source d'erreur dans la détermination des coordonnées spatiales d’un objet, n’est pas identifiée dans la 

stratégie actuelle de formation de faisceau. Il est par conséquent impérieux de procéder, dans le cadre d’une 

nouvelle approche dans la formation des voies, à l'identification des composantes NLOS. C’est ce que nous 

proposons de faire dans ce mémoire.  

2. État des lieux 

2.1. NLOS Identification 

La distinction entre les composantes LOS et NLOS peut s’apparenter à un problème de reconnaissance 

de formes supervisée. L'identification NLOS est donc un processus qui consiste à comprendre les 
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caractéristiques physiques inhérentes aux différents modes de propagation, à modéliser mathématiquement 

ces caractéristiques, puis à décider, après analyse statistique, du type de mode de transmission.  

La différence physique naturelle entre les transmissions de type NLOS et de type LOS est liée au 

processus de diffusion. Les études actuelles sur l'identification des modes NLOS se sont principalement 

concentrées sur la technologie UWB principalement entre 3,1 GHz à 10,6 GHz. Contrairement au canal à 

ondes millimétriques, peu dense en termes de trajets multiples, les composantes multitrajets reçues sont ici 

nombreuses. Dans ce cas, si au moins une voie directe n'est pas obstruée, le scénario est défini comme un 

scénario LOS. Par conséquent, le travail cible de l'identification NLOS pour la transmission UWB actuelle 

consiste à distinguer, par la mesure, les stations LOS et NLOS, puis à identifier le scénario NLOS. Les 

travaux mentionnés ci-dessus utilisent généralement des différences statistiques dans les caractéristiques 

des canaux pour distinguer les situations LOS des situations NLOS. 

Le processus physique doit être modélisé mathématiquement. En raison de la forte diffraction et de la 

richesse des composantes multitrajets, les différences statistiques entre la transmission LOS et la 

transmission NLOS dans la bande UWB, se produisent principalement dans le domaine temporel plutôt que 

dans le domaine spatial. En raison de la diffusion, l'affaiblissement du signal issu du trajet NLOS est 

généralement beaucoup plus important que celui issu du trajet LOS. Des valeurs moyennes plus élevées, et 

donc biaisées, et une plus grande variance du retard moyen sont obtenus dans le cadre d’un scénario NLOS.  

Les mesures, extraites du modèle mathématique, permettent de définir, grâce à des algorithmes de 

décision statistique, une métrique qui détermine le type de transmission. L'identification NLOS utilise 

généralement trois types de métriques. Le premier type est la variance des portées estimées pour un 

ensemble de mesures qui peuvent être directement utilisées comme mesure pour identifier la transmission 

NLOS. Le deuxième type de métrique concerne les paramètres du modèle de canal ci-dessus, tels que TOA 

et AOA. Le troisième type de métrique est constitué des variables permettant de quantifier la forme de la 

PDF du CIR reçu.  

La décision statistique est considérée comme un problème de test d'hypothèse (type test de 

Kolmogorov-Smirnov). Pour l'identification NLOS, l'hypothèse nulle est la transmission LOS, et 

l'hypothèse alternative est la transmission NLOS. Dans les études rapportées, des méthodes paramétriques 

et non paramétriques sont utilisées pour distinguer les types de transmission. La méthode paramétrique 

typique, utilisée pour l'identification NLOS, est le rapport de maximum de vraisemblance (MLR, Maximum 

Likelihood Ratio), tandis que les méthodes non paramétriques utilisées sont la machine à vecteur supporté 

(SVM) et le réseau neuronal artificiel (ANN). La performance du test d'hypothèse est évaluée avec la 

probabilité d'erreur de type I et de type II. L'erreur de type I est le rejet d'une véritable hypothèse nulle 

(identifier LOS comme NLOS), tandis que l'erreur de type II est l'acceptation d'une fausse hypothèse 

alternative (reconnaître NLOS comme LOS). Les études actuelles montrent que les méthodes non 

paramétriques offrent de meilleures performances que les méthodes paramétriques. 

Les travaux actuels se concentrent principalement sur le CIR, dans le domaine temporel ou le CFR 

(Channel Frequency Response), dans le domaine fréquentiel. Cependant, l'effet des trajets multiples dans le 

canal millimétrique reste, en vertu de la grande directivité des antennes utilisées, assez faible, mais une 
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grande variabilité dans les distributions spatiales des transmissions est à souligner. En effet on peut, pour 

certaines directions, se trouver dans un scénario LOS et pour d’autres pas très éloignées des précédentes, 

dans un scénario NLOS. Les méthodes classiques d'identification basées sur des caractéristiques 

temporelles sont plus susceptibles d'échouer car les CIR en bande millimétrique avec des antennes 

directives contiennent moins de diversité de trajets multiples. Dans l'identification basée sur les directions 

d’arrivée ou de départ, la stratégie de balayage angulaire influence la façon dont on doit essayer de 

distinguer les composantes LOS des composantes NLOS. Comme dans la plupart des normes actuelles de 

60 GHz, telles que la norme IEEE 802.11ad, la formation analogique de faisceaux induit un codebook 

d'entraînement de faisceaux discrets, le trajet direct et le multitrajet ne doivent pas être reçus ensemble, 

mais plus probablement séparés (avec des codebooks différents, c'est-à-dire des configurations de faisceaux 

différentes). De plus, la Rx balayant l'espace selon un codebook discret, le faisceau proche du chemin direct 

pourrait sauter par-dessus le chemin LOS, rendant ainsi le chemin direct « invisible ». Dans ce cas, 

l'identification NLOS signifie identifier le cluster NLOS. Ainsi, la discrimination de l'amas LOS/NLOS est 

l’objectif visée dans la bande millimétrique. 

2.2. Méthodes de Regroupement 

L'objectif du regroupement est de découvrir les groupements naturels d'objets non étiquetés présentant 

des similitudes. K-means est une méthode de regroupement partiel largement utilisée qui vise à minimiser 

la somme des erreurs entre le centroïde et les éléments de toutes les grappes. Elle minimise la distance 

euclidienne moyenne entre les points de données d'un groupe et la moyenne du groupe, ce qui signifie que 

le but de K-means est de rechercher des minima globaux. Une version améliorée de K-means, 

K-Power-Means, est également utilisée dans les procédures standard de modélisation des canaux. Au cours 

du processus itératif, le K-Power-Means standard minimise la somme des distances pondérées en fonction 

de la puissance des points de paramètres par rapport au centroïde associé au point de paramètre. 

Le clustering de la K-means présente des faiblesses intrinsèques : tout d'abord, le nombre de clusters 

doit être supposé avant l'opération. Afin d'obtenir le nombre correct de grappes, la moyenne K doit être 

répétée plusieurs fois. Deuxièmement, une grappe initiale inappropriée conduira à un minimum local. Pour 

résoudre le problème d'initialisation, l'algorithme K-means++ a été introduit. Troisièmement, K-means 

traite toutes les caractéristiques de manière égale, quelle que soit la corrélation réelle entre les 

caractéristiques. Par conséquent, la forme physique de la grappe ne peut pas être préservée. Pour résoudre 

ce problème, le CIR doit être équipé d'une fonction exponentielle connue de l'homme. Cependant, une 

fonction prioriale détruit la nature non supervisée de la moyenne K.  

3. Regroupement Spatial 

3.1. Segmentation des Bassins Versants 

Contrairement aux paramètres des canaux discrets communs qui sont généralement répartis sur une 
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grille non uniforme, comme dans le domaine temporel ou angulaire, le PAS à intervalle angulaire égal est 

plus proche d'une image en niveaux de gris. Dans une image numérique en niveaux de gris, une image est 

une grille portant des informations d'intensité discrètes. L'intensité de puissance peut être considérée 

comme une valeur de gris continue. La puissance relativement élevée constitue un avant-plan lumineux en 

forme de grappe, tandis que la gamme de puissance inférieure sert d'arrière-plan sombre. Les cellules 

d'échantillonnage sont des pixels. Par analogie, le clustering du PAS peut en fait s'inspirer des méthodes de 

clustering dans le domaine du traitement de l'image. Dans le traitement de l'image, l'opération de 

regroupement est appelée segmentation, ce qui signifie un ensemble d'opérations divisant une image 

numérique en plusieurs segments. Contrairement aux méthodes de segmentation globale telles que Kmeans, 

la méthode de traitement d'image locale, la morphologie mathématique, peut éviter la faiblesse de négliger 

la corrélation entre les pixels voisins, préservant ainsi les caractéristiques de forme de chaque cluster. Les 

vallées peuvent être segmentées avec les minima centraux et autour des maxima locaux. C'est l'idée de la 

segmentation des bassins versants : la segmentation des bassins versants consiste à trouver les centres des 

minima locaux et les limites des maxima locaux des groupes. Elle peut être liée à un problème de barrage 

des bassins versants au niveau des maxima pour éviter d'inonder le bassin inférieur. Les domaines délimités 

par les bassins versants sont les segments cibles qui constituent le groupe pour le modèle de canal.  

3.2. PAS Simulé avec le Modèle de Canal de 60 GHz 

  

  

Figure 11 Résultat de la segmentation avec transformation du bassin versant avec une largeur de faisceau de (a) 5o; (b) 13o; (c) 

21o; (d) 29o 

Pour valider la faisabilité de la segmentation pour le PAS à 60 GHz avec la méthode des bassins 

versants, des simulations sont effectuées sur la base des données de puissance angulaire obtenues à partir 

du modèle de canal de l'IEEE 802.11ad dans le scénario de la conférence. La Figure 11 montre le résultat 

de la segmentation des bassins versants pour le PAS avec des largeurs de faisceau de 5o, 13o, 21o et 29o. Les 

(a) (b) 

(c) (d) 
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courbes fermées blanches sont les étiquettes des groupes d'avant-plan éclairés. Le domaine bleu foncé est le 

domaine de l'arrière-plan. Les étiquettes des clusters distinguent clairement les domaines d'avant-plan 

adjacents. La majeure partie de la puissance au premier plan est rassemblée en grappes, et l'arrière-plan 

avec une intensité de puissance hebdomadaire est clairement exclu des grappes.  

3.3. Regroupement pour le Canal 60 GHz par Bassin Versant 

Parce que la segmentation des bassins versants vise à résoudre le problème de la K-Power-Means, 

celle-ci est l'une des méthodes avec lesquelles nous devrions comparer notre approche. La comparaison 

montre que la transformation des bassins versants, qui reconstruit localement le champ de gradient, est plus 

appropriée que les techniques classiques telles que l'algorithme bien connu de K-mean pour extraire les 

grappes éclairées de l'arrière-plan sombre et séparer les grappes adjacentes dans le PAS. En outre, les 

simulations avec le modèle de canal IEEE 802.11ad ont montré que la segmentation des bassins versants 

préserve les formes des grappes. 

4. Identification Spatiale de la NLOS 

4.1. Mécanisme Physique d'Identification 

  

Figure 12 (a) Diffusion en champ proche et (b) Surface Equivalente Radar (SER) en champ lointain d'une onde TM incidente 

sur un mur en couches. 

Dans le modèle IEEE 802.11ad, les grappes les plus simples sont générées par deux structures 

typiques pour les scénarios d'intérieur, à savoir un mur en couches et une surface rugueuse. Pour clarifier 

davantage le mécanisme physique à l'intérieur des grappes, la diffusion est simulée avec une méthode de 

simulation électromagnétique pleine onde, la méthode du moment (MOM), pour résoudre la diffusion des 

deux structures géométriques particulières. Sur la base du résultat de la simulation avec la MOM, une 
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caractéristique physique pour l'identification de la NLOS avec des faisceaux étroits est évidente. La forme 

des amas angulaires dans la carte PAS 2D est un moyen efficace d'étudier les caractéristiques des 

comportements de diffusion dans la transmission LOS ou NLOS, comme le montre la Figure 12. La 

configuration de la puissance transmise est préservée en raison de l'absence d'objets diffusants dans la 

transmission LOS. Cela illustre la motivation de notre travail.  

4.2. Méthodes d'Identification 

Le groupe de transmission LOS peut être identifié conjointement dans les domaines du temps et de 

l'espace. Dans le domaine temporel, le premier pic du CIR LOS est beaucoup plus fort que les autres pics. 

Cependant, le deuxième pic dans le cluster NLOS CIR est beaucoup plus fort. En général, le CIR LOS 

fluctue plus faiblement que les CIR NLOS, ce qui implique que la forme des fonctions de densité de 

probabilité (PDF) de l'amas LOS serait typiquement plus étroite que la PDF des amas NLOS par exemple. 

Dans le domaine des fréquences, le comportement sélectif du canal peut être observé dans la CFR. La CFR 

de la LOS est plate, tandis que la CFR de la NLOS présente des fluctuations, comme le montre la Figure 

13. 

  

Figure 13 (a) CIR et (b) CFR des groupes LOS et NLOS de PAS générés par le modèle de canal IEEE 802.11ad. 

Les pics de la CIR peuvent être caractérisés par une kurtosis, tandis que la fluctuation de fréquence 

dans la CFR peut être identifiée avec la largeur de bande de cohérence. Contrairement aux mesures liées à 

la distance, telles que l'énergie totale reçue et le retard excessif, le moment standard est une caractéristique 

intrinsèque indépendante de l'emplacement Rx-Tx. Le kurtosis est le moment standard du quatrième ordre 

pour évaluer la PDF. Le kurtosis de CIR h(τ) est 
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Il s'agit du moment standard non biaisé d'ordre inférieur. Dans le domaine fréquentiel, si l'amas est en LOS, 

la fonction de transfert de fréquence est approximativement plate ; sinon, elle fluctuera sélectivement en 

fréquence en raison de la diffusion cohérente. La valeur moyenne éliminée par autocorrélation est pondérée 

par le niveau de puissance du signal reçu. La planéité du CFR H(f) dans le band B est évaluée par 

l’autocorrélation, après avoir supprimé la moyenne de H(f) : 
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Dans le domaine spatial angulaire, limité par la capacité de la stratégie d'entraînement du faisceau, 

l'échantillonnage spatial grossier et la sélectivité limitée des faisceaux d'antenne rendent difficile 

l'évaluation précise de la PDF spatiale. Comme alternative, la forme des grappes est une métrique physique 

pour identifier le faisceau NLOS. La matrice de kurtosis utilisée pour évaluer la forme de la PDF est 

également efficace pour décrire la forme des grappes spatiales. La symétrie pondérée est une caractéristique 

intéressante pour représenter la forme des grappes. Le rapport entre les valeurs propres minimales et 

maximales (analyse en composantes principales) de la matrice de co-kurtosis peut être utilisé pour 

caractériser la symétrie de l'aplatissement des grappes.  
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Où les éléments kij sont la co-kurtosis pondérée par rapport aux angles d'azimut et d'élévation. L'analyse en 

composantes principales est effectuée en calculant le rapport entre les valeurs propres minimales et 

maximales par la décomposition de la matrice de co-kurtosis. 

Dans notre travail, trois caractéristiques peuvent décrire un PAS, à savoir le rapport propre de la 

matrice de puissance R
 ̭

P, le rapport propre de la matrice de kurtosis temporelle R
 ̭

t et le rapport propre de la 

matrice d'autocorrélation de fréquence R
 ̭

f. Par conséquent, les caractéristiques construisent un point de 

données avec les trois rapports ou chaque groupe dans l'espace des paramètres. Comme la transmission 

LOS est bénéfique pour la localisation, elle est donc définie comme l'hypothèse nulle de la vérification de 

l'hypothèse, tandis que l'hypothèse alternative est la transmission NLOS. Le test MLR et l'ANN sont 

utilisés pour classer les points de données LOS et NLOS. 

4.3. Simulation Numérique 

Avec le modèle de canal de l'IEEE 802.11ad, la faisabilité de l'identification NLOS est testée. Comme 
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première étape de validation, la méthodologie d'identification NLOS est d'abord mise en œuvre directement 

sur les données discrètes obtenues par le modèle de canal de l'IEEE 802.11ad. Ensuite, dans un deuxième 

temps, le Rx PAS est obtenu en effectuant une convolution de la réponse angulaire du canal discret avec le 

diagramme d'antenne. L'identification NLOS est ensuite appliquée sur ces PAS. Selon le résultat de la 

simulation de quatre scénarios dans le Tableau 1. La structure spatio-temporelle est séparée en grappes 

spatiales et la description temporelle à l'intérieur des grappes, ce qui signifie que les variables spatiales et 

temporelles sont distantes. Après avoir calculé les caractéristiques dans la coordonnée temporelle ou 

fréquentielle, la matrice spatiale de chaque grappe est extraite. La distribution bêta est induite pour 

s'adapter aux données échantillonnées. Le MLR et l'ANN sont utilisés pour identifier le type de 

transmission. Les erreurs des différents scénarios et la méthode de classification sont distinctes. En général, 

le MLR fournit une erreur de type I beaucoup plus élevée que le type II. La performance de l'ANN est bien 

meilleure que celle de la MLR pour l'identification NLOS. 

Tableau 1 Probabilités d'erreur testées par MLR et ANN pour l'identification NLOS 

Erreur par canal 
Ratio Maximum de Vraisemblance Réseau Neuronal Artificiel 

R
 ̭

P R
 ̭

t R
 ̭

f R
 ̭

PR
 ̭

tR
 ̭

f (R
 ̭

P, R
 ̭

t, R
 ̭

f)  

CM-1 
Type I 0.3052 0.1408 0.2441 0.2113 0.0512 

Type II 0.0634 0.0685 0.0682 0.0668 0.0616 

CM-2 
Type I 0.2074 0.0691 0.2166 0.1567 0.0865 

Type II 0.1457 0.1172 0.1392 0.1305 0.0398 

CM-3 
Type I 0.1600 0.0550 0.1600 0.1550 0.0096 

Type II 0.0905 0.1007 0.0861 0.0871 0.0576 

CM-4 
Type I 0.1972 0.0394 0.1362 0.0640 0.0421 

Type II 0.0570 0.0693 0.0594 0.0583 0.0472 

4.4. Validation Expérimentale 

Tableau 2 Probabilités d'erreur testées par MLR et ANN avec des caractéristiques mesurées 

Erreur 
MLR ANN 

R
 ̭

P R
 ̭

t R
 ̭

f R
 ̭

PR
 ̭

tR
 ̭

f (R
 ̭

P, R
 ̭

t, R
 ̭

f) 

Type I 0.3713 0.3832 0.4371 0.3533 0.1548 

Type II 0.2892 0.2827 0.2885 0.2878 0.1627 

Pour vérifier l'efficacité de la méthode d'identification NLOS ci-dessus, une validation expérimentale 

est effectuée en laboratoire. La procédure de validation est similaire au flux de simulation. Le PAS mesuré 

est regroupé avec l'algorithme de bassin versant. Le rapport entre la valeur propre minimale et la valeur 

propre maximale de la matrice d'aplatissement de puissance, de la matrice d'aplatissement temporel et de la 

matrice d'aplatissement de fréquence est utilisé comme mesure d'identification. Les données mesurées sont 

équipées d'une distribution généralisée des valeurs extrêmes. Le test de Kolmogorov-Smirnov est utilisé 

pour tester la qualité de l'ajustement. Le type de transmission est identifié par MLR et ANN. Pour 

l'identification NLOS, la performance de l'ANN est également bien meilleure que celle du MLR, comme le 
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montre la Tableau 2. 

5. Conclusion 

La bande millimétrique est un excellent candidat pour la localisation en intérieur en raison de la large 
bande disponible. La transmission en mode NLOS reste l'une des sources d'erreurs les plus importantes 
dans ce type de localisation. Le phénomène de blocage ou l’écrantage provoquée, dans la bande 
millimétrique, par la très grande directivité des antennes est compensé par des solutions de type formation 
de faisceau. La connexion entre objets s’en trouve améliorée mais cela présente l’inconvénient d’aggraver, 
pour la localisation, les effets liés à ce type de transmission NLOS. La précision de localisation est par 
conséquent grandement dégradée. 

Pour résoudre cette difficulté, il faut être en mesure de se prononcer sur la présence, dans les signaux 
utiles, de la composante LOS et de mettre en place les stratégies pour réduire les effets des trajets NLOS. 

La structure spatio-temporelle d’un canal de transmission est exploitée à cette fin pour identifier sans 
ambiguïté la transmission LOS. En effet, on montre en considérant aussi bien les résultats simulation que 
les résultats de mesure, que la symétrie de la grappe est une caractéristique essentielle de la transmission 
LOS. Les différentes analyses de la matrice de puissance, temporelle et spatiale restent des approches 
efficaces pour évaluer la symétrie des grappes dans différentes dimensions. Dans le cadre de l'évaluation 
des erreurs de type I et II, la performance de l'identification de l'ANN est bien meilleure que celle du MLR.  


