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INTRODUCTION

Context

Hardware accelerators of asymmetric cryptosystems with flexible utilization of resources
are proposed in this thesis. Asymmetric cryptography is used in various applications in
order to, among others, securily exchange a secret key, digitally sign documents or authen-
ticate for example, to a server. For instance, the transport layer security (TLS) protocol,
used notably in the hypertext transfer protocol secure (HTTPS), relies on asymmetric
cryptography for the server/client authentication during the TLS handshake. Asymmet-
ric cryptosystems are implemented in many devices used on a daily basis such as smart-
phones, personal computers, TV sets and smart cards. These devices have various security
requirements to protect the sensitive data they handle. The implementations of the cryp-
tosystems have to be secure and e�cient to protect the involved data and to avoid poor
performance of the devices.

Computations in current asymmetric cryptosystems involve large operands. For ex-
ample, operands in RSA [RSA78] are integers of more than 2000-bit size, and operands
in elliptic curve cryptography (ECC) [Mil85, Kob87] are finite field elements of more than
200-bit size. Therefore, an e�cient arithmetic suitable for large operands is needed.

The residue number system (RNS) [Val56, Gar59] is a nonpositional number system
wherein large operands are represented by their residues over a set (called base) of small
coprime moduli mi (a few dozens-bit size). Basic operations such as multiplication, ad-
dition and subtraction are independently performed on the small residues. Computations
on large operands are then replaced by parallel computations on small operands, leading
to faster basic operations. This independence also induces carry-free operations between
the moduli [ST67]. These advantages recently motivate uses of RNS in implementations
of asymmetric cryptosystems; see, for example [NMSK01, SFM+09, Gui10, BM14].

On the drawback side, position-related operations such as modular reductions (MRs),
divisions and comparisons are di�cult since the representation is nonpositional. Indeed,
the order of magnitude of operands is more di�cult to evaluate than in a positional
representation.

Numerous MRs have to be performed in current asymmetric cryptosystems owing to
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INTRODUCTION

the modular operations therein. For instance, the main operation in RSA is the modular
exponentiation. For ECC applications, the main operation is the elliptic curve scalar mul-
tiplication (ECSM), which itself is computed through numerous operations on finite field
elements. To reduce the cost of the RNS MR in [PP95], the base extension (BE) proposed
in [KKSS00] is used. The BE becomes an important operation in RNS implementations
of asymmetric cryptosystems because the cost of the RNS MR is substantially the cost of
the two BEs it comprises.

A channel is the hardware support of basic operations on small residues modulo an
element mi of the RNS base. In current RNS implementations of asymmetric cryptosys-
tems (see, for example [NMSK01, SFM+09, Gui10, BM14]), the number of used channels
is the number of moduli needed to represent the large operands. The quantity of hard-
ware resources used in implementations is then related to the size of the large operands
involved in the computations of asymmetric cryptosystems. The quantity of needed hard-
ware resources becomes a problem whenever it is greater than the one available on the
integrated circuit.

Most integrated circuits are primarily used for noncryptographic applications such
as signal processing. After taking into account the hardware resources for the primary
applications, the remaining hardware resources can be insu�cient to implement the de-
sired asymmetric cryptosystem. In such cases, the circuit designer is forced to choose
between lowering the performance of the primary applications and reducing the level of
security needed to protect the involved data. However, in many domains such as defense
or aerospace industries, this choice is not acceptable.

The lack of hardware resources (on an integrated circuit) to implement a desired
asymmetric cryptosystem can also occur over time. The recommended levels of security
for asymmetric cryptosystems increase over some time. This increase is usually followed
by an increase in the sizes of the large operands involved in computations of asymmetric
cryptosystems. For instance, the recommended minimal level of security for ECC applica-
tions grows recently from 80 bits to 128 bits, resulting in a growth of the minimal size of
finite field elements from 160 bits to 256 bits; see, for example [oST09, ndlsdsd11, oST13].
The increase in the sizes of the operands is translated into an increase in the quantity of
hardware resources needed for implementing the desired cryptosystem on the same device.

An integrated circuit (reconfigurable) on which is implemented an asymmetric cryp-
tosystem can lack hardware resources for a new implementation of the same cryptosystem
but with larger operands that guarantee a greater level of security. To maintain the per-
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formance of other applications and upgrade to a greater level of security, the designer
has to acquire a new integrated circuit larger than his/her previous one in use. For most
designers, this solution is not desirable owing to its financial cost.

Designing hardware accelerators for asymmetric cryptosystems with resource utiliza-
tion adaptable to the resources available on an integrated circuit is a solution to the
mentioned problem. We refer to such accelerators as flexible hardware accelerators. In
RNS implementations of asymmetric cryptosystems, such accelerators can be achieved
by using fewer channels than normally needed to perform computations on the large
operands. In this case, we refer to these fewer channels as physical channels (PCs) to
di�erenciate them from the in-number normally needed channels that we name virtual
channels (VCs).

The work presented in this thesis primarly targets ECC applications. However, some
of the contributions are also adaptable to other asymmetric cryptosystems such as RSA.

To evaluate our propositions and compare our solutions with the state-of-the-art ones
whenever the latter are existent, we implemented the propositions on field programmable
gate arrays (FPGAs) using high-level synthesis (HLS) tools. FPGAs are integrated cir-
cuits configurable after manufacture. Their reconfigurability and lower costs (in design
complexity and time, financial cost per unit 1) compared with ASICs 2 are reasons that
motivate their use for hardware implementations—generally, and particularly in the work
presented in this thesis—despite their lower performance (see, for example [ST12]). HLS
allows to use a high-level description (for example in C or C++) to automatically de-
scribe a register transfer level (RTL) design in a hardware description language (HDL).
Compared with HDLs, HLS facilitates fast configurations of FPGAs; more configuration
details are handled by the HLS tools.

Contributions

We have investigated two aspects of the BE. The choice of BE as our primary subject
of investigation is motivated by the fact that the BE is the most important operation in
the ECSM when targeting RNS implementations. One investigated aspect of the BE is its
speed. A new BE algorithm with a theoretical cost smaller than that of the state-of-the-art

1. According to [ST12], the manufacturing cost of FPGAs is paid o� by the numerous clients owing
to the large quantity in which they are usually produced. For ASICs2 to become profitable, they must
be produced in extremely large quantity because of the important cost in human resources, equipement,
design complexity and time they require.

2. ASICs stand for application specific integrated circuits.
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algorithm will ultimately result in performance improvements of RNS implementations of
the ECSM. The other invertigated aspect is the flexibility of the BE and the translation
of the latter to the ECSM. In RNS implementations of the ECSM, the BE is not only the
most important operation, but also the most complex one. Implementing a flexible BE is
therefore essential in implementing an RNS-flexible ECSM.

The first contribution of this thesis is a new BE algorithm [DBT19], named hierarchical
base extension (HBE). HBE relies on a hierarchical approach for computing the Chinese
remainder theorem (CRT). The approach comprises two phases. In the first phase, the
input residues are combined by pairs through computations of partial CRTs in the input
RNS base. In the second phase, the remaining of the CRT computation is proceeded on
the results of these partial CRTs in the output RNS base. The theoretical cost of the
HBE algorithm is smaller than that of the BE algorithm proposed in [KKSS00], named
KBE (in this thesis) and largely regarded as the state-of-the-art BE. This cost reduction
translates to a cost reduction of the RNS MR operation using HBE compared with the
one using KBE. To exploit the inherent parallelism of RNS well preserved in the cox-
rower architecture proposed in [KKSS00], the latter is adapted to support HBE. HLS
implementations on FPGA of the two algorithms for various finite field sizes and channel
widths show that HBE solutions are always faster and in nearly all cases smaller than
KBE ones. The area vs. time trade-o� is always in favor of HBE. As a consequence, similar
performance improvements are expected in ECSM implementations using HBE compared
with the ones using KBE; this expectation is verified in the next contribution.

[DBT19] L. Djath, K. Bigou and A. Tisserand. Hierarchical approach in RNS base ex-
tension for asymmetric cryptography. In 26th IEEE Symposium on Computer Arithmetic
(ARITH), pages 46–53. IEEE, 2019.
DOI: 10.1109/ARITH.2019.00016
Also available from https://hal.archives-ouvertes.fr/hal-02096353

The second contribution of this thesis is two RNS-flexible hardware accelerators for
the ECSM on FPGA. The BE operation, either HBE [DBT19] or KBE [KKSS00], is
demonstrated to be flexible. In other words, for a given size of finite field, each of the two
BEs can be implemented using a flexible quantity of hardware resources. An architecture
is derived for each of the flexible HBE and KBE. The number of PCs in each architecture
is flexible. The two BEs are implemented on FPGA with HLS for various numbers of
PCs ranging between the divisors of the number of VCs. Implementation solutions show
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that when the number of used PCs increases from q to kq with k > 1, the solution time
decreases with a factor less than k, regardless of the BE. This observation results from
the constancy of the number of wait cycles between pipelined loops independently of the
number of used PCs. The solutions with the best area vs. time trade-o�s are obtained
with implementations using a few PCs. HBE solutions remain faster with better area vs.
time trade-o�s than KBE ones.

The new flexible architectures are then used to implement two flexible ECSMs, one
using HBE [DBT19] and the other KBE [KKSS00]. These flexible ECSM implementations
use adaptable quantities of hardware resources. The used quantities of hardware resources
depend on the number of PCs chosen (at design time) for the RNS implementation of the
ECSMs. Similarly to the flexible BEs, our flexible ECSM solution time decreases with a
factor less than k when the number of used PCs increases from q to kq, regardless of the
BE in use. Again, implementations using a few PCs present the best solutions in area vs.
time trade-o�s. Also, the ECSM solutions using HBE are faster and present better area
vs. time trade-o�s than the ones using KBE. Last, though comparable in area vs. time
trade-o�s with the best implementation results from the literature, most of our flexible
ECSM solutions are much smaller. Therefore, our flexible ECSM solutions can be imple-
mented on integrated circuits with limited hardware resources. The proposed RNS-flexible
architectures can also be used to implement multi-level security hardware accelerators.
We plan to submit this contribution in the near future.

The last contribution of this thesis is an auxiliary project started in the early months
of the PhD. We studied how to e�ciently perform modular multiplications and accu-
mulations (typical operations in RNS implementations of asymmetric cryptosystems) on
FPGA using HLS tools. HLS favors fast explorations of di�erent parameters for various
implementation constraints (for example, loop unrolling). Parameters considered in our
study include the size and the shape (arbitrary, specific) of the moduli as well as the type
of series (with and without intermediate MR) for the modular operations. The report of
this study, presented in [DZBT19] in French, is put in Appendix A.

[DZBT19] L. Djath, T. Zijlstra, K. Bigou and A. Tisserand. Comparaison d’algorithmes
de réduction modulaire en HLS sur FPGA. In Conférence d’informatique en Parallélisme,
Architecture et Système - Compas’19, 2019.
Also available from https://hal.archives-ouvertes.fr/hal-02129095
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Outline

This thesis comprises three chapters. In the first chapter, we detail the context of this
thesis, namely ECC. The ECSM and computations involved in its computation are also
introduced. Besides ECC in the first chapter, we present the RNS and its inherent prop-
erties as well as a survey of BEs and RNS MRs. The first and the second contributions
of this thesis are respectively presented in the second and the third chapters.
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Chapter 1

STATE OF THE ART

1.1 Asymmetric Cryptography

1.1.1 Overview of Asymmetric Cryptography

Asymmetric cryptography is based on the idea of publicizing a key. In asymmetric cryp-
tography, each individual possesses two keys: a private key, and a public key usually
computed from the private one. The private key is known only by its owner while the
public key is revealed.

The safety of revealing the public key without giving information about the private key
is associated with the hardness of inverting one-way functions. A function f : x ‘æ f(x) is
one way if computing f(x) from x is easy while computing x from f(x) is hard. Easy means
computing f(x) from x can be performed in polynomial time. Hard means succeeding in
computing x from f(x) in polynomial time for all attempting probabilistic algorithms
is extremely unlikely. However, proving the hardness of inverting functions is di�cult in
itself. In practice, functions largely regarded as computationally di�cult to invert are
used. A practical way to view the hardness: If computing x from f(x) takes considerable
amount of time (say, hundreds of years) with the best known algorithms and a huge
computation power, then the function f is largely regarded as hard to invert.

In asymmetric cryptography, the hardness should only exists for an eavesdropper. An
authorized individual should be able to e�ciently compute x from f(x). This ability is
usually provided by a trap door that the authorized individual possesses. For instance,
the private key of the authorized individual is used as the trap door in an asymmetric
cryptosystem.

Applications of asymmetric cryptography include key exchange [DH76] and digital
signature [RSA78, Elg85]. Applications of asymmetric cryptography are used in many
practical contexts such as in establishing secure communications with an e-commerce
website or in authenticating to a server.

27



STATE OF THE ART

Di�e-Hellman key-exchange protocol and the RSA cryptosystem, two notable ad-
vancements in asymmetric cryptography, are presented in the following subsections. El-
liptic curve cryptography (ECC) is then described.

Di�e-Hellman Key-Exchange Protocol [DH76]

The safety of the Di�e-Hellman key-exchange protocol [DH76] is based on the assumption
that the discrete logarithm problem (DLP) in finite field is computationally di�cult for
well chosen parameters. The parameters to consider include, among others the size of the
field, and tailored properties against known attacks such as the Pohlig-Hellman attack
[PH78]. Current recommended sizes are a few thousands bits (say, 2048 or 3072 bits); see
for example [oST13].

Let p be a prime, g be a primitive element of the finite field Fp. The DLP can be
stated: Knowing n = g

x mod p, find x. The function

f : x ‘æ n = g
x mod p

can be viewed as a one-way function associated with the DLP.

Two individuals, Alice and Bob, want to share a common key over a network. The
Di�e-Hellman key-exchange protocol [DH76] is described in Algorithm 1. At the end of
the exchange Alice and Bob have a common secret key KAB = KBA since n

xA
B mod p =

n
xB
A mod p = g

xAxB mod p. An eavesdropper has to solve the DLP if he/she intends to
recover the secret operands xA or xB from nA or nB. Besides, computing the shared key
KAB from nA or nB without knowledge of respectively xB or xA involves solving the DLP.

Algorithm 1: Di�e-Hellman key-exchange protocol [DH76].
Input: p a prime, and g a primitive element of Fp

Output: Alice and Bob have a common key KAB = KBA = g
xAxB mod p

1 Alice chooses a random number xA œ Fp and keeps it secret
2 Alice computes nA = g

xA mod p and sends it to Bob
3 Bob chooses a random number xB œ Fp and keeps it secret
4 Bob computes nB = g

xB mod p and sends it to Alice
5 Alice receives nB and computes KAB = n

xA
B mod p

6 Bob receives nA and computes KBA = n
xB
A mod p
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RSA Cryptosystem [RSA78]

The RSA cryptosystem [RSA78] was the first published work allowing two individuals to
exchange a message over a network using a pair of keys (private and public). In RSA, the
safety of keeping secret the private key in spite of revealing the public key relies on the
considered di�culty of factoring large integers.

The problem of the factorization can be put: Knowing an integer n, factorize n. The
function

f : (p, q) ‘æ n = p ◊ q

can be viewed as a one-way function associated with the problem of the factorization.
Computing n is straightforward (through a multiplication algorithm) but computing p

and q from n requires considerably more e�ort. In practice, an attacker has to factorize
a number n of a few thousands bits. For example, the recommended sizes for the RSA
modulus n in [oST13] are 1024, 2048 and 3072 bits.

Alice wants to generate her private key (d, n) and her public key (e, n). The simplified
procedure is presented in Algorithm 2. For an eavesdropper, computing the decryption
key d from the encryption key e requires to factor n.

Bob wants to send a message (also called plaintext) m, 0 Æ m Æ n ≠ 1 to Alice.
Bob gets the public key (e, n) of Alice. The encryption and decryption procedures are
described in Algorithm 3.

At the end, Alice gets m since c
d mod n = (me)d mod n = m. An eavesdropper who

gets the ciphertext c has to solve the following problem: Find the eth root of c mod n.
This problem is also considered to be computationally di�cult. By assumption, the eaves-
dropper does not possess the decryption key d of Alice. Strictly speaking, an eavesdropper
able to solve one of the factorization problem and the eth root mod n problem can recover
the plaintext m.

Algorithm 2: Private- and public-key generation in RSA [RSA78].
Output: private key (d, n) and public key (e, n)

1 Alice chooses two random large primes p and q and computes n = pq

2 Alice chooses a random large integer d coprime with (p ≠ 1)(q ≠ 1)
3 Alice computes e, the inverse of d mod (p ≠ 1)(q ≠ 1)
4 Alice keeps (d, n) secret and publicizes (e, n)
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Algorithm 3: Encryption and decryption procedures in RSA [RSA78].
Input: Bob gets the public key (e, n) of Alice with the intention of sending her a

plaintext m

Output: Alice recovers m

1 Encryption
2 Bob computes c = m

e mod n and sends c to Alice
3 Decryption
4 Alice receives c and computes c

d mod n = m

1.1.2 Elliptic Curve Cryptography

Elliptic Curves

Part “Elliptic Curves” of the current subsection is a synthesis of basic concepts on elliptic
curves from [Hus04, CF06, Sil09] useful in the work presented in this thesis.

An elliptic curve is a nonsingular cubic curve along with a stated base point. In this
thesis the following simplified definition is considered, though restrictive on the charac-
teristic of the underlying field of the curve.

Definition 1 (Elliptic Curve). Let K be a field of characteristic ”= 2, 3. An elliptic
curve EK defined over K is the set of elements (x, y) œ K

2 satisfying the equation

EK : y
2 = x

3 + ax + b (1.1)

where a, b œ K are such that ≠16(4a
3 + 27b

2) ”= 0.

The quantity � = ≠16(4a
3 +27b

2) is the discriminant of Equation 1.1 and � ”= 0 conveys
the nonsingularity of the curve EK .

The elements of the elliptic curve EK are called points. Figure 1.1 depicts the points
of an elliptic curve defined over the finite fields F1021 and F16381.

Equation 1.1 is the short Weierstraß equation of an elliptic curve. The generalized
Weierstraß equation of an elliptic curve defined over a field of arbitrary characteristic can
be found in [Hus04, CF06, Sil09], and is presented in Appendix B.

Two points Q and Q
Õ of an elliptic curve EK can be added by drawing a line (QQ

Õ)
through them and taking the symmetric (in relation to the x-axis) of the third point of
intersection between the line (QQ

Õ) and the curve EK . The point addition of Q and Q
Õ is

denoted Q+Q
Õ. The addition of Q and Q is referred to as point doubling and denoted [2]Q.

The construction of the point [2]Q is similar to that of the point Q+Q
Õ, the tangent at Q
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EF1021 : y
2 = x

3
≠ 3x + 3. EF16381 : y

2 = x
3

≠ 3x + 3.

Figure 1.1 – Example of an elliptic curve defined over two finite fields.

to the curve replacing the line (QQ
Õ). Constructions of point addition and doubling are

illustrated on the curve ER : y
2 = x

3
≠ 3x + 3 in Figure 1.2.

Point addition Q+Q
Õ and point doubling [2]Q are also obtained through formulas

Y
_]

_[

xQ+QÕ = ⁄
2

≠ xQ ≠ xQÕ

yQ+QÕ = ⁄(xQ ≠ xQ+QÕ) ≠ yQ

and

Y
_]

_[

x[2]Q = µ
2

≠ 2xQ

y[2]Q = µ(xQ ≠ x[2]Q) ≠ yQ

(1.2)

where ⁄ = yQ ≠ yQÕ

xQ ≠ xQÕ
and µ =

3x
2
Q + a

2yQ
.

Formulas in Equation 1.2 include divisions (for the introduced values 1
⁄ and µ). In general,

divisions are di�cult to perform. A solution to avoid computing the inherent divisions
of Equation 1.2 is to homogenize the equation of the curve EK , that is, to express it in
projectives coordinates. By substituting x = X/Z and y = Y/Z into Equation 1.1 we
obtain

EK : Y
2
Z = X

3 + aXZ
2 + bZ

3
. (1.3)

Using projective coordinates to express the formulas in Equation 1.2 yields
Y
____]

____[

XQ+QÕ = BC

YQ+QÕ = A(XQZQÕB
2

≠ C) ≠ YQZQÕB
3

ZQ+QÕ = ZQZQÕB
3

and

Y
____]

____[

X[2]Q = 2FH

Y[2]Q = E(4G ≠ H) ≠ 8Y
2

QF
2

Z[2]Q = 8F
3

(1.4)

1. The values ⁄ and µ are the slopes of the line (QQÕ) and the tangent at Q to the curve EK respectively.
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Point addition on the curve
ER : y

2 = x
3

≠ 3x + 3.
Point doubling on the curve

ER : y
2 = x

3
≠ 3x + 3.

Figure 1.2 – Geometric description of point addition and point doubling.

where A = YQÕZQ ≠ YQZQÕ , B = XQÕZQ ≠ XQZQÕ , C = ZQZQÕA
2

≠ (XQÕZQ + XQZQÕ)B2;
E = 3X

2
Q + aZ

2
Q, F = YQZQ, G = XQY

2
QZQ, H = E

2
≠ 8G.

Besides projective coordinates, there exist other systems of coordinates wherein the
computation of the inherent divisions of Equation 1.2 can be avoided. The reader is
referred to [CF06] for a presentation of some of these systems of coordinates and the
formulas of point addition and doubling within them.

The point O = (0 : 1 : 0) is the base point (also called point at infinity) expressed in
projective coordinates.

Lemma 1 (Group Law on Elliptic Curve). Let EK be an elliptic curve defined over
a field K. The points of EK provided with the operation + is a group of neutral element
the point O.

A proof of Lemma 1 can be found in [Sil09].

Definition 2 (Elliptic Curve Scalar Multiplication). Let EK be an elliptic curve
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defined over a field K. The elliptic curve scalar multiplication (ECSM) is the function

f : (Z+\{0}) ◊ EK æ EK

(u, Q) ‘æ [u]Q = Q + Q + · · · + Q¸ ˚˙ ˝
u terms

.

Definition 2 of the ECSM is generalized to all u œ Z by writing

[u]Q =

Y
____]

____[

O if u = 0

Q + Q + · · · + Q if u > 0

(≠Q) + (≠Q) + · · · + (≠Q) otherwise,

where the point ≠Q is the symmetric of the point Q in relation to the x-axis.
In the following, ECC is presented through the lens of the elliptic curve discrete loga-

rithm problem (ECDLP).

Elliptic Curve Discrete Logarithm Problem

Let EFq be an elliptic curve defined over a finite field Fq, and Q a point of EFq of order v.
The ECDLP is stated: Knowing the point [u]Q of the curve EFq (and the point Q), find
the unique scalar u, 0 Æ u Æ v ≠ 1 by which the point Q is multiplied. The function

fQ : u ‘æ [u]Q

can be viewed as a one-way function associated with the ECDLP. Computing [u]Q from u

is easily performed using one of the various state-of-the-art algorithms (for example double
and add in [HMV04]) while computing u from [u]Q is di�cult for well-chosen parameters.
The involved parameters are the underlying finite field of the curve and the curve itself.

When choosing the underlying finite field Fq of the curve EFq the aim is to have a field
on which the arithmetic is e�cient while the curve still ensures a good level of security
(meaning the ECDLP should be hard to solve). Several types of fields (prime fields, fields
of prime characteristic, binary fields, etc.) have been studied and some fields have been
standardized; see, for example the ones in [ndlsdsd11] (from ANSSI 2) and in [oST13]

2. ANSSI stands for Agence nationale de la sécurité des systèmes d’information (France).
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(from NIST 3). The reader should bear in mind that regardless of the type of fields from
which is selected the underlying finite field Fq, the cardinality q of Fq should never be
small. The theorem of Hasse says that the cardinality ˘EFq of the curve is bounded as
follows:

q + 1 ≠ 2Ô
q Æ ˘EFq Æ q + 1 + 2Ô

q. (1.5)

If q is small, then ˘EFq is small. The consequence is that the ECDLP on such a curve EFq

can be solved through exhaustive search attack.
Choosing the curve is tricky and two types of attacks on the ECDLP have to be

considered when doing so. The first type consists of attacks on arbitrary curves such
as the Pohlig-Hellman attack [PH78] and the Pollard Rho method [Pol78]. The Pohlig-
Hellman attack is performed by computing u modulo each prime factor (raised to its
maximum power within the prime decomposition) of ˘EFq and recovering u through the
Chinese remainder theorem (CRT). The u-modulo-prime-factor step becomes easy if the
mentioned prime factors are small. Choosing the curve such that v, the order of the point
Q and hence a factor of ˘EFq , be a large prime prevents this attack. The Pollard rho
method can be viewed as a randomized equivalent of the baby-step giant-step method.
Despite its e�ectiveness, the Pollard Rho method still runs in exponential time.

The second type of attacks is about attacks on specific curves. Examples of these
attacks are the Menezes-Okamoto-Vanstone attack [MOV93] and the Frey-Rück attack
[FR94] which exploit the fact that, under some circumstances, the ECDLP can be reduced
to the DLP in some extension field Fql (of the underlying field Fq of the curve). The DLP
in the extension field can be solved if l is small. Examples of curves subject to these attacks
are supersingular curves and curves EFq of cardinality q ≠ 1. These attacks are prevented
by choosing the curves such that v is not a factor of q

l
≠1 for all small l. Menezes [Men01]

suggested that, when v > 2160, checking this condition for 1 Æ l Æ 20 is enough. Another
example of attacks on specific curve is the attack on curves EFp of cardinality p for which
authors of [Sem98] and [SA98] prove that the ECDLP can be solved in polynomial time.
This attack is prevented by ensuring the cardinality of the curve is not p when choosing
the curve.

The idea of ECC, proposed in [Mil85, Kob87], is to use asymmetric cryptographic
applications based on the ECDLP. The preference of the ECDLP to the DLP (in finite
field) is motivated by the fact that there is no known algorithm solving the ECDLP for
general cases in sub-exponential time, contrary to the DLP in finite field (for example,

3. NIST stands for National Institute of Standards and Technology (United States).
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the index calculus). An inherent consequence is that the cryptographic operands in ECC
are smaller than the ones in asymmetric cryptographic applications based on the DLP
for the same level of security. For example, the elliptic curve digital signature algorithm
(ECDSA 4) with public-key size of 256 bits is considered providing roughly the same level
of security (approximately 128 bits of security) as the digital signature algorithm (DSA 5)
with public-key size of at least 2048 bits; see [oST13] for recommendations on parameter
sizes for signature algorithms based on the DLP and the ECDLP.

Protocols of asymmetric cryptographic applications (key exchange, digital signature,
public-key encryption) based on the DLP are adaptable to elliptic curves. As an example,
Algorithm 4 describes the elliptic curve version (ECDH) [Mil85] of the Di�e-Hellman
key-exchange protocol presented in Subsection 1.1.1. An eavesdropper who gets [uA]Q or
[uB]Q has to solve the ECDLP to recover the (secret) scalars uA or uB. Moreover, solving
the ECDLP is a crucial part of forging the agreed key [uAuB]Q from [uA]Q or [uB]Q
without knowledge of uA or uB.

Algorithm 4: Elliptic curve version of the Di�e-Hellman key-exchange protocol
[Mil85].

Input: EFq is an elliptic curve defined over Fq, and Q a point of EFq of order v

Output: Alice and Bob have a common key
[uAuB]Q = [uA]([uB]Q) = [uB]([uA]Q) = [uBuA]Q

1 Alice chooses a random number uA, 0 Æ uA Æ v ≠ 1 and keeps it secret
2 Alice computes [uA]Q and sends it to Bob
3 Bob chooses a random number uB, 0 Æ uB Æ v ≠ 1 and keeps it secret
4 Bob computes [uB]Q and sends it to Alice
5 Alice receives [uB]Q and computes [uA]([uB]Q) = [uAuB]Q
6 Bob receives [uA]Q and computes [uB]([uA]Q) = [uBuA]Q

In the remaining of this thesis we assume the curve is defined over a prime field Fp.
Our assumption is motivated by the fact that in practice, curves over prime fields have
proven to be more resistant (to attacks) than curves defined over other fields. Among
others, curves defined over binary fields have been subject to attacks; see, for example
[GHS02b, GHS02a, Hes03, MTW04].

4. The ECDSA is based on the ECDLP.
5. The DSA is based on the DLP.
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Computations Involved in an ECSM

The ECSM results from several point doublings and additions (operations in EFq), which
in turn are obtained through operations in the finite field Fp. This hierarchical description
is presented in Figure 1.3.

+,�,⇥,�1

DBL, ADD

[u]Q

Computations in Fp

Computations in EFp

1

Figure 1.3 – Hierarchical description of computations involved in an ECSM.

There exist several algorithms in the literature to compute the ECSM. The elementary
double-and-add algorithm (see, for example [HMV04, p. 97]) is presented in Algorithm 5.
The double-and-add algorithm is an elliptic curve adaptation of the square-and-multiply
algorithm for exponentiation (for example x

5 = ((12
◊ x)2)2

◊ x). Other algorithms for
exponentiation such as the sliding window method have also been adapted to elliptic
curves. The reader is referred to [HMV04] for some of these algorithms.

Algorithm 6 presents the Montgomery ladder [Mon87] which was initially proposed
for curves of equations of the form by

2 = x
3 + ax

2 + x. Thanks to [BJ02, IT02], the use
of this algorithm has been extended to curves of equation in short Weierstraß form. The
use of Algorithm 6 presents two major advantages. First, the Y -coordinate (in projective

Algorithm 5: Double-and-add algorithm (see, for example [HMV04]).
Input: Q a point of the elliptic curve EFp

u an integer written in binary representation as us≠1us≠2...u0
Output: R = [u]Q

1 R Ω O

2 for i Ω s ≠ 1 to 0 do
3 R Ω [2]R
4 if ui = 1 then
5 R Ω R + Q

6 return R
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Algorithm 6: Montgomery ladder algorithm [Mon87].
Input: Q a point of the elliptic curve EFp

u an integer written in binary representation as us≠1us≠2...u0
Output: Q1 = [u]Q

1 Q1 Ω O; Q2 Ω Q

2 for i Ω s ≠ 1 to 0 do
3 if ui = 0 then
4 Q1 Ω [2]Q1; Q2 Ω Q1 + Q2
5 else
6 Q2 Ω [2]Q2; Q1 Ω Q1 + Q2

7 return Q1

system of coordinates) does not need to be computed during the ECSM. Therefore, the
cost of the algorithm is reduced. Note that the Y -coordinate can be recovered at the
end of the algorithm if necessary. Second, regardless of the bit of the scalar u, a point
doubling and a point addition are performed. In other words, the number, the type and
the order of operations are the same regardless of the value of the bit of u. This constancy
of the number, the type and the order of operations per bit of u constitutes an advantage
in terms of protection against some side-channel attacks such as simple power analysis
(SPA).

Point doublings and additions are computed through formulas elaborated depending
on the parameters of the curve (underlying field, curve equation) and the system of coor-
dinates in use. The reader is referred to [CF06] for some of these formulas. Regardless of
the chosen formulas, they involve operations in Fp. Therefore, using an e�cient arithmetic
in Fp is crucial in computing the ECSM.

In the work presented in this thesis, we choose to use the residue number system (RNS)
to perform operations in Fp because RNS provides several e�ciency advantages described
in Subsection 1.3.2. The hierarchical description of ECSM computations in Figure 1.3 is
extended by adding an extra layer at its basis; see Figure 1.4. The contributions of this
thesis reside in this extra layer about computations in Fp using RNS.

The existence of operations in Fp implies a need for e�cient modular reductions (MRs).
Some MR algorithms from the literature are presented before delving into RNS.
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+,�,⇥,(�1) mod mi (in RNS)

+,�,⇥,�1

DBL, ADD

[u]Q

Computations in Fp

Computations in EFp

1

Figure 1.4 – Hierarchical description of computations involved in an ECSM with RNS as
chosen number system.

1.2 Modular Reduction

Computations of point doublings and additions, useful in ECSM computations involve
numerous MRs since operands are in finite fields. For example, over a finite field Fp of
256-bit elements, one ECSM requires a few thousands mod p reductions. Therefore, it is
crucial to ensure MRs are e�cient. In this section some MR algorithms from the literature
are presented.

1.2.1 Montgomery Reduction

Montgomery [Mon85] introduces a MR algorithm that avoids computing the costly naive
division. The idea is to use an auxiliary number r by which the MR and the division are
straightforward. For example, in binary representation, mod 2l reduction and (integer)
division by 2l are respectively performed by selecting the l least significant bits (LSBs)
and by taking all the bits except these l LSBs of the considered numbers. The MR idea is
described in Algorithm 7. Note that the output of the algorithm on input x is xr

≠1 mod p

and not x mod p.
Besides its e�ciency, Algorithm 7 is consistent with multiplications and additions/sub-

tractions. Indeed,

xr
≠1

◊ x
Õ
r

≠1 = (xx
Õ
r

≠1)r≠1 mod p and xr
≠1 + x

Õ
r

≠1 = (x + x
Õ)r≠1 mod p.

In other words, there is a correspondence between the product and the sum/di�erence
of operands in the input space on one hand, and the product and the sum/di�erence
of operands in the output space on the other hand. Owing to this correspondence in
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Algorithm 7: Montgomery reduction algorithm [Mon85].
Input: x such that x < pr

Precomp.: p, r coprime with p such that r > p and r
≠1

< p

p
Õ such that p

Õ
< r and rr

≠1
≠ pp

Õ = 1
Output: y = xr

≠1 mod p < 2p

1 z Ω (x mod r)pÕ mod r

2 t Ω x + zp

3 y Ω t/r

addition to its e�ciency, Algorithm 7 is suitable for protocols of asymmetric cryptography
applications where numerous modular multiplications (MMs) and additions/subtractions
are needed, in particular for protocols of ECC applications. If successive MMs have to be
performed, for example in the case of a modular exponentiation or a progressive modular
accumulation of products, another way to exploit this correspondence is to repeatedly
input the products in the form (xr mod p)(xÕ

r mod p) instead of xx
Õ to Algorithm 7. The

repeated outputs will be of the form xx
Õ
r mod p, that is, in the same space as the input

factors. Hence, the change of space is avoided between successive MMs. In such cases,
the changes of spaces only happen before the start (x æ xr mod p) and after the end
(xr mod p æ x) of the successive MMs.

Another remark on Algorithm 7 is the range of its output: If x is inputted, the output
is xr

≠1 mod p < 2p. In successive MMs, an intermediate product x may grow in such a
way that x no longer verifies the input condition x < pr for the next run of Algorithm 7.
Usually, the auxiliary number r is adjusted beforehand to prevent this situation for hap-
pening. A typical example: Suppose a modular exponentiation on elements of Fp is being
performed using Algorithm 7 for the reduction, with p < r < 2p. During the modular
exponentiation, it may occur that an output y1 of Algorithm 7 is such that p < y1 < 2p.
In such a case and for an element y2 œ Fp, the product x = y1 ◊ y2 cannot be guaranteed
to be less than pr, which is the input condition of Algorithm 7. For our typical example,
taking (beforehand) r such that r > 2p ensures that this input condition remains true
during the whole modular exponentiation.

1.2.2 Barrett Reduction

Barrett [Bar86] proposes an algorithm to perform the modular reduction by approximating
the quotient of the integer division. Let p and x < p

2 be numbers. The aim is to compute
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x mod p. The quotient of the integer division Âx/pÊ is approximated by
E7

x

2w

8
p

Õ

2w

F

,

where p
Õ =

E
22w

p

F

. Since x mod p = x ≠ p

E
x

p

F

, the idea is to compute

x̃ = x ≠ p

E7
x

2w

8
p

Õ

2w

F

. (1.6)

The computed value x̃ < 3p [Bar86]. The value x mod p is recovered from x̃ through at
most two subtractions of p.

1.2.3 On Pseudo-Mersenne Numbers

Numbers of the form p = 2w
≠ c where 0 Æ c < 2w/2 are said to be pseudo-Mersenne, in

reference to Mersenne numbers (of the form p = 2w
≠ 1).

Reductions modulo pseudo-Mersenne numbers are e�ciently performed. The main
idea is to exploit the form of these numbers and use bit selection and multiplication by
a small constant to perform the reduction. Let x be a number of binary size 2w (say, the
product of two numbers of size w). Start by remarking that x can be written

x = x1 ◊ 2w + x0, (1.7)

where x0 and x1 are less than 2w. Note also that 2w
© c (mod p).

Therefore,
x mod p © x1c + x0 (mod p). (1.8)

The number x̌ = x1c + x0 is of at most 3n/2 bits and can be rewritten similarly to
Equation 1.7 into

x̌ = x̌1 ◊ 2w + x̌0. (1.9)

The binary size of x̌0 is w while that of x̌1 is at most w/2. From the congruence at
Equation 1.8 and the equality at Equation 1.9, is deduced

x mod p © x̌1c + x̌0 (mod p). (1.10)
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The number x̌1c+x̌0 is of at most n+1 bits. The possible last reduction modp is performed
by at most one subtraction of p.

In the general case where the target operations are in arbitrary fields, this algorithm
cannot be used for reductions in these fields.

1.3 Residue Number System

1.3.1 Overview of the Residue Number System

This subsection presents a simplified description of RNS, first proposed in [Val56, Gar59].
The reader interested in more details about RNS is referred to [ST67]. The concept of
congruence will be used throughout the remaining of this thesis, and therefore introduced
at the start.

Definition 3 (Congruence). Let m > 0 be an integer. Two integers x and y are con-
gruent modulo m if x ≠ y is a multiple of m. We write

x © y (mod m) (1.11)

and we say that y is the residue of x modulo m. The integer m is called the modulus.

This definition still holds when the modulus m < 0. In the remaining of this document
all the moduli are assumed positive for convenience.

The Residue Number System [Val56, Gar59]

In RNS, numbers are represented by their residues over a set M = {m1, . . . , mn} of
moduli mi. The moduli mi are selected pairwise coprime and the set M they compose is
called an RNS base.

Example 1. To represent the number 117 in the RNS base {5, 6, 7}, we compute the
residues of 117 modulo 5, 6 and 7 respectively.

117 © 2 (mod 5)

117 © 3 (mod 6)

117 © 5 (mod 7)

The tuple (2, 3, 5) is the RNS representation of the number 117 in the base {5, 6, 7}.
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In practice, the sizes of the moduli used for RNS implementations of ECC applications
are typical sizes of DSP slices or machines words, that is, in [10, 64] bits.

RNS can be viewed as a number system where large numbers (a few hundreds of bits)
are transformed into a set of small numbers (a few dozen bits). Computations on large
numbers are then replaced by computations on small numbers, the latter being usually
performed in parallel.

For RNS to be well defined as a number system it is crucial that the moduli mi

(elements of the RNS base) be pairwise coprime. By well defined we mean there is a one-
on-one correspondence between numbers in [0,

rn
i=1 mi ≠1] and their RNS representation.

Otherwise, some representations will not correspond to any number in [0,
rn

i=1 mi ≠ 1].
Moreover, in such case at least two (more precisely, gcd(m1, . . . , mn)) numbers will have
the same RNS representation.

Example 2. Let suppose in Example 1 that 5, 6, and 8 were chosen as moduli. These
moduli are not pairwise coprime since gcd(6, 8) = 2. The representation (1, 4, 3) does not
correspond to any number in [0, 239]. Besides, the numbers 117 and 237 have the same
representation (2, 3, 5).

We ease the notation of the congruence by writing

y = |x|m to say that x © y (mod m).

Definition 4. Let M = {m1, . . . , mn} be an RNS base. A number x is represented in
RNS according to the base M by the tuple

(xm1 , . . . , xmn),

where xmi = |x|mi for i = 1, . . . , n.

Whenever there is no ambiguity on the RNS base in which x is represented, the notation
of the RNS representation of x is further simplified by simply writing (x1, . . . , xn).

Arithmetic Operations in RNS

Let M = {m1, . . . , mn} be an RNS base and M = rn
i=1 mi. Let ù stands for any of

the operations ◊, + or ≠ with operands in RNS representation. Let x, y be two integers
represented in RNS according to the base M by (x1, . . . , xn) and (y1, . . . , yn) respectively.
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Let also assume the result of multiplication, addition and subtraction of x and y is less
than M . The RNS computation of the multiplication, addition and subtraction between
x and y is performed by

(x1, . . . , xn) ù (y1, . . . , yn) = (|x1 ù y1|m1 , . . . , |xn ù yn|mn). (1.12)

If y is coprime with M , then the notation ù is extended to include division and Equation 1.12
still holds.

Example 3. The numbers 117 and 68 are represented in RNS according to the base
{5, 6, 7} by (2, 3, 5) and (3, 2, 5) respectively. The number 185, sum of 117 and 68, is
represented by (|2 + 3|5, |3 + 2|6, |5 + 5|7) = (0, 5, 3).

Conversion from Positional Number System to RNS and Vice Versa

Knowing how to convert numbers from positional system to RNS and vice versa is justified
by the fact that the use of positional systems is widespread. For instance, most digital
systems use the weighted number system of radix 2. A case where the conversions become
handy is when one of two (or more) individuals in a network uses the RNS while the
other(s) a positional system. An RNS-to-positional or the reverse conversion has to be
performed for each exchange.

The conversion of a number from positional representation to RNS is performed by
computing the residues of this number over the moduli of the RNS base. The reader can
recognize this method in Example 1.

A number represented in RNS is converted into a positional system by using the
Chinese remainder theorem (CRT) presented in Theorem 2.

Theorem 2 (Chinese Remainder Theorem). Let m1, . . . , mn be n positive integers
that are pairwise coprime. The system of congruences

Y
________]

________[

x1 = |x|m1

x2 = |x|m2
...

xn = |x|mn

(1.13)

has a unique solution modulo M =
nŸ

i=1
mi.
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This solution is given by

x =
-----

nÿ

i=1
|xiMi

≠1
|miMi

-----
M

, (1.14)

where Mi = M

mi
for i = 1, . . . , n.

Theorem 2 about the CRT is proven in Appendix C.
The CRT is also used to perform base extensions, that is, conversions from one RNS

base to another; see Subsection 1.3.3.

1.3.2 RNS Inherent Properties and Complexity Measurement

RNS Inherent Properties

In RNS, the basic operations multiplication, addition and subtraction are held indepen-
dently on each modulus of the RNS base. This independence means the mentioned com-
putations are carry-free between the channels. Consequently, multiplications, additions
and subtractions can be performed in parallel.

RNS is a nonpositional representation system, that means, the value of a number does
not change if its residues in a given base are reordered di�erently. We emphasize that a
reordering of the residues, if done, must be followed by a similar reordering in the used
RNS base. For example, (2, 3, 5) in the RNS base {5, 6, 7} and (3, 2, 5) in the (same but
reordered) RNS base {6, 5, 7} represent the exact same number 117. However, in the RNS
base {5, 6, 7} the tuple (3, 2, 5) represents the number 68.

The major drawback of RNS is the di�culty to perform position-related operations
such as comparisons, divisions by integers not coprime with the range M of the RNS
base, and MRs. This di�culty results from that of evaluating the order of magnitude of
operands in nonpositional representation systems. For example, comparisons are di�cult
because we cannot just rely on the position of digits (as in a usual positional system) of
two (or more) integers in RNS to compare them. An alternative is to convert the to-be-
compared integers into a positional system such as mixed-radix system (MRS) before the
comparison. These conversions are costly as we see in Subsection 1.3.3.

Exact divisions by integers not coprime with M are also di�cult in RNS for the same
reason. Exact divisions by such integers might require to convert those integers to their
positional representation before performing the divisions. As mentioned, those conversions
are costly. Another way to perform divisions the reader might think of is to subtract
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the divisor iteratively. However this method requires a comparison per subtraction to
determine the end of the division process. As explained, the comparisons are di�cult.

Another di�cult operation in RNS is the mod p reduction, where p is a (large) integer
not coprime with the range M of the RNS base. Since operations in protocols of asymmet-
ric cryptographic applications are usually performed in rings or fields, the mod p reduction
is a crucial operation. Some ways to perform MRs from the literature are presented in
Section 1.2.

How Complexity is Measured?

Deciding on a complexity unit is always tricky, and even more when hardware aspects are
involved in addition to theoretical ones. It is critical to choose the metric of the input size
and define what the basic operations are. The input size is the number of residues, which
is the same as the number of moduli of the considered RNS base. The size itself of the
moduli is almost hidden in the complexity. In hardware implementations, it is common
to choose the size of the moduli such that the residues (operands of the various RNS
computations) fit in the multipliers embedded in the DSP slices 6.

We consider our basic operations to be modular multiplications, additions and sub-
tractions, the modulus being an element of the RNS base. For a historical interest, we
point out that Szabo and Tanaka [ST67, pp. 140–150] reported mixed-radix conversion
as a basic operation besides multiplication, addition and subtraction. The reason behind
including mixed-radix conversion is that the latter is used in sign-determination related
operations such as relative-magnitude determination. In most asymmetric cryptography
applications and particularly in ECC applications, we are not interested in sign determi-
nation.

Complexity-unit candidates for asymmetric cryptosystems in RNS are elementary
modular multiplication (EMM) and elementary modular addition (EMA). An EMM and
an EMA are respectively a modular multiplication and a modular addition/subtraction in
a channel. The EMM is more significant than the EMA within the cost of RNS computa-
tions because the elementary multiplication (without the modular reduction step) usually
costs more than the elementary addition while the modular reduction algorithm costs the
same in EMM as in EMA at worst. Besides, additions are usually performed by adder-
s/accumulators located next to the multipliers embedded in the DSP slices. Examples of
references where the complexity is expressed in terms of the number of EMMs include

6. DSP slices stand for digital signal processing slices.
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[KKSS00, BDK01, GLP+12, BT15].

1.3.3 Base Extension

A base extension (BE) is a conversion of a number x from its representation in an RNS
base M = {m1, . . . , mn} to its representation in another RNS base M

Õ = {m
Õ
1, . . . , m

Õ
nÕ}.

The notation BEMæMÕ(x) indicates the computation of the residues (xmÕ
1
, . . . , xmÕ

nÕ ) of a
number x in M

Õ, knowing the residues (xm1 , . . . , xmn) of x in M.
An intuitive approach would be to convert x from the RNS base M to its positional

representation using the CRT (formula given in Equation 1.14), then convert x from its
positional representation to the RNS base M

Õ. However, this approach is troublesome
owing to the variable sizes of the operands. Therefore, the conversion to positional repre-
sentation is usually avoided.

Base extensions (BEs) from the literature can be classified in two major types: the ones
that go through a representation in MRS, therefore requiring an RNS-to-MRS conversion,
and the others that use the CRT formula (without converting the number into a positional
representation). These two types of base extension are presented hereafter.

Base Extensions Requiring an RNS-to-MRS Conversion

Definition 5 (Mixed-radix system; from [ST67, pp. 41–47]). Let M = {m1, . . . , mn}

be a set of numbers not necessarily coprime. A number x is said to be represented in MRS
according to the radices mi if

x = xn

n≠1Ÿ

i=1
mi + xn≠1

n≠2Ÿ

i=1
mi + · · · + x2m1 + x1 (1.15)

The tuple (x1, . . . , xn) is the MRS representation of x in the MRS base M.

BEs using an RNS-to-MRS conversion comprise two parts: a conversion of x from the
RNS base M to the associated MRS base M, and a conversion of x from the MRS base
M to the RNS base M

Õ.
The earliest algorithm converting a number x from RNS to MRS appeared in [Val56]

according to [ST67, pp. 41–51], and in [Gar59]. Let M = {m1, . . . , mn} be an RNS base
(the moduli mi are coprime), and (x1, . . . , xn) be the RNS representation of x in M. Let
(x1, . . . , xn) denote the MRS representation of x in M. Their idea of the RNS-to-MRS
conversion (that is, (x1, . . . , xn) into (x1, . . . , xn)) is described hereafter.
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Let start with the MRS representation of x in M

x = xn

n≠1Ÿ

i=1
mi + xn≠1

n≠2Ÿ

i=1
mi + · · · + x3m1m2 + x2m1 + x1. (1.16)

By reducing modulo m1 the left and the right side of Equation 1.16 we obtain x1 = x1

(since x1 = |x|m1). Next, substracting x1 = x1 from each side of Equation 1.16 and
multiplying the consequent results by m1

≠1 yield

(x ≠ x1)m1
≠1 = xn

n≠1Ÿ

i=2
mi + xn≠1

n≠2Ÿ

i=2
mi + · · · + x3m2 + x2. (1.17)

By reducing the left and the right side of Equation 1.17 we obtain x2 = |(x ≠ x1)m1
≠1

|m2
.

This process is repeated until all the MRS digits xi of x are computed. Algorithm 8
summarizes the idea.

Algorithm 8: RNS-to-MRS conversion algorithm [Val56, Gar59].
Input: x1, . . . , xn

Output: x1, . . . , xn

1 Precomputations: |m
≠1
j |mi , for all i, 2 Æ i Æ n and j, 1 Æ j Æ i ≠ 1

2 x1 = x1
3 for i Ω 2 to n do
4 xi Ω xi

5 for j Ω 1 to i ≠ 1 do
6 xi Ω |(xi ≠ xj)m≠1

j |mi

The reader can remark that computations in Algorithm 8 are performed mod mi.
Therefore, the MRS possesses the advantage over other positional systems that the size
of the operands remains the same during the conversion from RNS.

The second part of the BE, namely the conversion of x from the MRS base M to the
RNS base M

Õ, is equivalent to computing, for all j = 1, . . . , n,
-----xn

n≠1Ÿ

i=1
mi + xn≠1

n≠2Ÿ

i=1
mi + · · · + x2m1 + x1

-----
mÕ

j

. (1.18)

At least two ways to perfom this conversion exist. One way is reported in [ST67, pp. 47–51]
where the authors exemplify the idea with one modulus of M

Õ. Let assume this modulus
is m

Õ
1. The idea of the conversion of x from M to {m

Õ
1} is to run Algorithm 8 on inputs
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xm1 , . . . , xmn , 0 (in {m1, . . . , mn}fi{m
Õ
1}) while maintaining the same bounds for the loop

of Algorithm 8, that is, i from 2 to n. The RNS digit xmÕ
1

is solution of an equation mod m
Õ
1

of the first degree as its only unknown variable; the other variables of the equation are
the digit in {m

Õ
1} outputted by the run of Algorithm 8 and some precomputations. This

method can be used to perform the conversion from M to M
Õ by one run of Algorithm 8

on inputs xm1 , . . . , xmn , 0, . . . , 0 (in {m1, . . . , mn}fi{m
Õ
1, . . . , m

Õ
n}) while the bounds of the

loop of Algorithm 8 are kept the same (i from 2 to n). Each RNS digit xmÕ
j

is solution of an
equation of the first degree mod m

Õ
j as its only unknown variable. However, this method

requires the number of simultaneously-running inputs to be equal to the sum of the sizes of
the two RNS bases M and M

Õ. When targeting hardware implementations, this method
leads to a used hardware resources twice the ones needed by the cox-rower architecture
[KKSS00] (see below in Part “Base Extension Using the CRT formula”) without a gain
in time.

Another way to perform the MRS-to-RNS conversion is to compute Equation 1.18
directly. For example, authors of [BKP09] proceed this way and prove that the computa-
tion at Equation 1.18 can be performed through shifts and additions/substractions if the
selected moduli mi and m

Õ
j are pseudo-Mersenne numbers 2w

≠c with c of small Hamming
weight. However, their method involves a lot of data dependencies between the channels,
and hence hinders the ability to exploit the inherent parallelism of RNS. In the work
presented in this thesis, we are interested in preserving as much as possible the inherent
parallelism of RNS. Therefore, the base architecture selected for this thesis is the cox-
rower [KKSS00] (see below in Part “Base Extension Using the CRT formula”) because it
exploits the inherent parallelism of RNS. In other words, the architectures implemented
in the work presented in this thesis are adaptations of the cox-rower architecture.

Overall, the presented BE using the RNS-to-MRS conversion costs n(3n + 1)
2 EMMs.

To summarize, the two notable properties of the BE using conversions through MRS
are the fact that the RNS-to-MRS conversion is sequential accross the moduli of M on
one hand, and either the need for twice the size of an RNS base in area or the involvement
of a lot of data dependencies on the other hand.

Base Extension Using the CRT Formula

Let M = {m1, . . . , mn} and M
Õ = {m

Õ
1, . . . , m

Õ
n} be two RNS bases, (xm1 , . . . , xmn) and

(xmÕ
1
, . . . , xmÕ

n
) the RNS representations of a number x in M and M

Õ respectively. We
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recall the CRT formula:
x =

-----

nÿ

i=1
|xmiMi

≠1
|miMi

-----
M

, (1.19)

where Mi = M

mi
for i = 1, . . . , n. From Definition 3 of congruence, there is an integer h

such that
x =

A
nÿ

i=1
|xmiMi

≠1
|miMi

B

≠ hM. (1.20)

The main idea of BEs using the CRT is to compute the integer h or its approximation
and use the obtained result in the computation of the various xmÕ

j
by reducing each side

of Equation 1.20 modulo m
Õ
j, for j = 1, . . . , n.

The earliest BE using the CRT is proposed in [SK89]. The idea is to add to M an
extra modulus mn+1 Ø n wherein h = |h|mn+1 is computed using the fact that h < n and

|h|mn+1 =
-----M

≠1
A

nÿ

i=1
|xmiMi

≠1
|miMi ≠ x

B-----
mn+1

. (1.21)

The integer h in Equation 1.20 can also be computed by approximation, in which case
there is no need for an extra modulus. Posch and Posch [PP93] provide an algorithm
which computes an approximation of

h =
E

nÿ

i=1

|xmiMi
≠1

|mi

mi

F

, (1.22)

and introduce for x the bound [0, (1 ≠ ‘max)M [ (where ‘max π 1) in order for the approx-
imation to be exact. Kawamura et al. [KKSS00] propose to compute

h̃ =
E

nÿ

i=1

trunc(|xmiMi
≠1

|mi)
2w

+ ‡

F

(1.23)

which is an approximation of h, w being the binary size of the moduli mi and ‡ a chosen
value to counteract the error in the approximation. The function trunc approximates
|xmiMi

≠1
|mi by its t most significant bits (MSB), t < w, the w ≠ t remaining bits put at 0.

Algorithm 9 describes their BE. Under conditions specified in Theorem 1 and Theorem 2
in [KKSS00], the value of h̃ computed in Algorithm 9 is respectively h on one hand, either
h or h ≠ 1 on the other hand. In the RNS MR algorithm from [PP95] where two BEs are
performed, these theorems help decide on the input value of ‡ to get the correct reduction
results.
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Algorithm 9: Base extension BEMæMÕ(x) [KKSS00].
Input: (xm1 , . . . , xmn), ‡

Precomp.: |M
≠1
i |mi , for all i, 1 Æ i Æ n

|Mi|mÕ
j , for all i, 1 Æ i Æ n and j, 1 Æ j Æ n

| ≠ M |mÕ
j , for all j, 1 Æ j Æ n

Output: (xmÕ1 , . . . , xmÕ
n)

1 for i Ω 1 to n parallel do

2 ‚xmi Ω

-----xmi ◊ |M
≠1
i |mi

-----
mi

3 for i Ω 1 to n do
4 ‡ Ω ‡ + trunc(‚xmi )

2w

5 hi Ω Â‡Ê

6 ‡ Ω ‡ ≠ hi

7 for j Ω 1 to n parallel do

8 xmÕ
j Ω

-----xmÕ
j + ‚xmi ◊ |Mi|mÕ

j + hi ◊ | ≠ M |mÕ
j

-----
mÕ

j

Algorithm 9 costs n
2 + n EMMs. Our count does not include the multiplications

hi ◊ | ≠ M |mÕ
j since they are selections between 0 or | ≠ M |mÕ

j (the bit hi being 0 or 1).
Operations from lines 4–6 are also not included in the cost because they are e�ciently per-
formed using the small accumulator on t bits (usually, t œ [4, 8]) called the cox [KKSS00].

The cox-rower architecture proposed in [KKSS00] and adapted to ECC in [Gui10] is
presented in Figure 1.5. Computations at line 2 of Algorithm 9 are performed in parallel
by the n rowers. The large multiplexer outputs the results of these computations by the
left and right buses. The right bus broadcasts these results to the various rowers which
now perform computations at line 8 of Algorithm 9 in parallel. The left bus transfers
the results of the computations at line 2 to the cox unit which performs computations
at lines 4–6 of Algorithm 9 and send their results to the various rowers where line 8 are
being performed.

BEs using the CRT possess the advantage over BEs using an RNS-to-MRS conversion
of finishing in n+1 steps while using n (or n+1 moduli for [SK89]) channels. The notable
advantage of Algorithm 9 is that the main computations, at lines 2 and 8, are performed
in parallel. Unlike in Algorithm 8, there is no carry from one modulus to another in
these crucial steps. Hence, Algorithm 9 exploits the inherent independence (in RNS) of
multiplication, addition and subtraction among the moduli.
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Figure 1.5 – The cox-rower architecture in [Gui10], adapted from [KKSS00].

1.3.4 RNS Modular Reduction

The importance of MRs at the field level is mentioned in Section 1.2. Moreover, RNS by
definition introduces MRs at another level, the various reductions mod mi. In this section
we present some algorithms from the literature that e�ciently perform the RNS MRs.

RNS Montgomery Reduction

The e�ciency of the Montgomery reduction presented in Algorithm 7 motivates Posch and
Posch [PP95] and later Kawamura et al. [KKSS00] to propose an RNS adapted version
of the algorithm. Their algorithm is presented in Algorithm 10. Let M and M

Õ be two
RNS bases such that each modulus of M

Õ is coprime with all moduli of M. Let also
assume x < MM

Õ (for example, the product of two numbers). It is important that x be
represented in the two bases because of its range.

Since the reduction mod M is easy in the RNS base M, the auxiliary number r for the
Montgomery reduction in RNS is chosen to be M (the RNS equivalent of the 2l for binary
representation). By saying reduction mod M is easy in the base M, we mean the residues
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Algorithm 10: RNS Montgomery reduction algorithm [PP95].
Input: xM, xMÕ

Precomp.: pMÕ , (≠p
≠1)M, (M≠1)MÕ

Output: sM and sMÕ where s = (xM
≠1) mod p

1 qM Ω xM ◊ (≠p
≠1)M

2 qMÕ Ω BEMæMÕ (qM)
3 rMÕ Ω xMÕ + qMÕ ◊ pMÕ

4 sMÕ Ω rMÕ ◊ (M≠1)MÕ

5 sM Ω BEMÕæM (sMÕ)

(in M) of a number remain unchanged when this number is taken modulo M . However,
the RNS division by M cannot be performed in base M because M as the product of
the various mi is not coprime with them, hence not invertible mod mi. The BE at line 2
allows to go from the base M to the base M

Õ wherein the RNS division by M can be
performed. This RNS division is only possible if the moduli of M

Õ are coprime with the
ones of M (this has been assumed). The second BE (line 5 of Algorithm 10) returns the
result of the division by M back to the base M. This BE is also necessary for having the
MR result in the two bases. Lines 1, 3 and 4 of Algorithm 10 are the RNS equivalents of
lines 1, 2 and 3 of Algorithm 7 respectively.

Algorithm 10 costs 2n
2 + 5n EMMs. This cost can be improved, for example by com-

bining some precomputations and reducing the number of times the input residues are
multiplied by these precomputations [GLP+12, Gui10]. Gandino et al. [GLP+12] improve
the cost to 2n

2 + 2n EMMs by further reorganizing some internal computations.

RNS Barrett Reduction

The RNS Barrett reduction idea [SS13] is to use RNS to compute

x̃ = x ≠ p

E7
x

2w

8
p

Õ

2w

F

. (1.24)

where x̃ < 3p [Bar86]. Equation 1.24 is the Equation 1.6 already mentioned in Sub-
section 1.2.2, the exact value x mod p being recoverable from x̃ through at most two
subtractions of p. The multiplications and subtraction in the formula at Equation 1.24 are
now performed in RNS, that is, modular multiplications and subtraction on RNS digits.
The operations of the type

7
x

2w

8
are replaced by a check of divisibility by 2w, a subtraction
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of a computed o�set value if divisibility is not possible, and a multiplication by the
precomputed inverse of 2w over the moduli of the RNS base besides an additional modulus.
In the overall complexity, these operations introduce a parameter that depends on the
number of cycles taken by a MM, making di�cult the comparison to other algorithms.
Nevertheless, the authors will later acknowledge in [SS14] (wherein an architecture to
support their algorithm is proposed) that the proposed algorithm require more EMMs
than RNS Montgomery reduction.

On Pseudo-Mersenne Numbers and RNS

In Subsection 1.2.3 we mention that the algorithm tailored for pseudo-Mersenne cannot
be used for reductions in arbitrary fields. However, moduli mi of the RNS base can be
chosen to be small pseudo-Mersenne numbers to speed the various computations mod mi,
regardless of the modular reduction algorithm used at the field level.

1.4 Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs) are used for many hardware implementations
of asymmetric cryptosystems in the literature. FPGAs are presented in this section as well
as some RNS implementations of asymmetric cryptosystems from the literature. High-
level synthesis (HLS), as the chosen tool in this thesis to assist in the implementation on
FPGAs, is also introduced.

1.4.1 Overview of FPGAs

Some of the material in this subsection is a synthesis of the introduction to FPGAs
from [ST12]. The used vocabulary is from Xilinx FPGAs because their 7-series devices
constitute our implementation target. Similar concepts are available for FPGAs from
other manufacturers under other names.

FPGAs are integrated circuits whose functionalities are programmable after manufac-
ture. The functionality of an FPGA is programmed with the design; the FPGA is said to
be configured. FPGAs are usually reconfigurable. They serve in many applications such
as signal processing, computer vision and hardware security.

An FPGA can be described as a matrix of configurable logic blocks (CLBs). The CLBs
usually comprise fast memories with low capacity called look-up tables (LUTs) combined
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Figure 1.6 – Simplified view of an FPGA.

with flip-flops (FFs) and a small multiplexer. A LUT allows to carry out combinatorial
functions such as 4-input bits or 6-input bits to 1-output bit functions depending on the
number of its inputs (4-input LUT or 6-input LUT respectively). A common view of a
CLB can be found in [ST12]. Interconnects are programmable and they link the CLBs to
each other as well as to other elements of the FPGA. Figure 1.6 presents a simplified view
of an FPGA.

Other elements such as block RAMs (BRAMs) for data storage, digital signal process-
ing (DSP) slices for arithmetic processing, digital clock manager (DCM) and input/output
(I/O) pins are usually present in the modern FPGAs. One of the most complex element
in modern FPGAs is probably the DSP slice which comprises a multiplier and an ac-
cumulator, and can perform elementary arithmetic functions. For example, in the Xilinx
7-series FPGAs used for our implementations, the DSP slice (DSP48E1) embeds a 18◊25
multiplier in 2’s complement and a 48-bit accumulator. Figure 1.7 presents the basic func-
tionalities of this DSP slice. It can perform operations of the form (A+D)◊B +C, where
A, D, B and C are respectively of size 30, 25, 18 and 48 bits. The reader is referred to
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7 Series DSP48E1 User Guide www.xilinx.com 9
UG479 (v1.10) March 27, 2018

Chapter 1

Overview

DSP48E1 Slice Overview
FPGAs are efficient for digital signal processing (DSP) applications because they can 
implement custom, fully parallel algorithms. DSP applications use many binary 
multipliers and accumulators that are best implemented in dedicated DSP slices. All 
7 series FPGAs have many dedicated, full-custom, low-power DSP slices, combining high 
speed with small size while retaining system design flexibility. The DSP slices enhance the 
speed and efficiency of many applications beyond digital signal processing, such as wide 
dynamic bus shifters, memory address generators, wide bus multiplexers, and 
memory-mapped I/O registers. The basic functionality of the DSP48E1 slice is shown in 
Figure 1-1. For complete details, refer to Figure 2-1 and Chapter 2, DSP48E1 Description 
and Specifics.

Some highlights of the DSP functionality include:

• 25 × 18 two’s-complement multiplier:

• Dynamic bypass

• 48-bit accumulator:

• Can be used as a synchronous up/down counter

• Power saving pre-adder:

• Optimizes symmetrical filter applications and reduces DSP slice requirements

X-Ref Target - Figure 1-1

Figure 1-1: Basic DSP48E1 Slice Functionality

UG479_c1_21_032111
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Figure 1.7 – Basic functionalities of the DSP slice in 7-series FPGAs from Xilinx (from
[Xil18a]).

the user guide [Xil18a] for more details about this DSP slice.

The implementation on FPGAs is commonly performed using computer-aided design
(CAD) tools and is described as follows. First, the functionality of the FPGA is im-
plemented in a hardware description language (HDL), allowing to describe the desired
architecture at a register-transfer level (RTL). It is also possible to describe the function-
ality of the FPGA in a high-level language such as C, C++ or SystemC. In this case,
an HLS tool is used to automatically generate the HDL description of the RTL from the
description in high-level language. In the work presented in this thesis, we describe the
functionality in C and use Vivado HLS 2019.2 from Xilinx as HLS tool. Second, the CAD
tool converts the HDL description of the RTL into a configuration stream, usually called
bitstream. Last, the generated bitstream is used to configure the various elements of the
FPGA, notably the CLBs, and the interconnects which will route the signal between the
CLBs, and between the CLBs and other elements of the FPGA.

FPGAs present numerous advantages, notably their (re)configurability, compared with
other integrated circuits such as application-specific integrated circuits (ASICs). Besides,
the financial cost per unit and the time to market of FPGAs are lower than the ones
of ASICs because ASIC designs usually require a large design team, complex and costly
tools, considerable design and manufacture time [ST12]. However, the FPGA performance
is lower (lower speed and more power consumption) than the ASIC one due mainly to
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the programmable interconnects (and their layout) which ensure FPGA configurations.
Still, FPGAs remain performant for applications they are used in. To summarize, FPGAs
provide good hardware performance in addition to being configurable.

1.4.2 Some RNS Implementations of Asymmetric Cryptosys-
tems on FPGA from the Literature

RNS implementations of asymmetric cryptosystems have gained interest in the two latest
decades. Table 1.1 presents some of these implementations on FPGA from the literature.
In references reported in Tabe 1.1, most authors implemented the core operation of the
cryptosystem, for example the modular exponentiation for RSA or the ECSM for ECC.
The ECSM solution by Bajard and Merkiche [BM14] is currently the fastest one among
RNS implementations of the ECSM over an underlying finite field of 256-bit elements.
However, several parameters have to be considered for a fair comparison of FPGA imple-
mentations, causing the comparison to be di�cult. An important parameter to consider
is the FPGA technology. The same code is likely to give better implementation results on
a recent FPGA than an older one (say, 10 or more years older FPGA). Besides, the area
metrics such as the number of DSPs cannot be directly compared if the multipliers embed-
ded in the DSPs do not handle the same input size. For example, DSPs embedding 9 ◊ 9
multipliers cannot be fairly compared in number to the ones embedding 18 ◊ 25 multi-
plier in 2’s complement. Also, the number of combinatorial functions implementable by
a 6-input LUT is greater than the one implementable by a 4-input LUT. Therefore, the
numbers of slices are di�cult to compare between two implementations using di�erent
technologies of FPGA (the slices comprise LUTs among other elements). We see in Chap-
ter 3 that we compare our implementation results with the ones from the literature for
FPGA technologies which are the closest to ours.

Another parameter to consider in the comparison is the chosen algorithm for com-
puting the core operation. For example, a sliding window (without any protection) is
likely to be faster than a double-and-add or a Montgomery ladder. For ECC, the type
of the underlying field (binary, prime, etc.) and if prime field, the form of the prime
(pseudo-Mersenne or arbitrary) are also parameters to consider. The protection of the
implementation, if any, is also to be considered in the comparison because there exists
an extra cost if the implementation is protected. In addition, the extra cost is dependent
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Table 1.1 – Some RNS implementations of asymmetric cryptosystems on FPGA from the
literature. The size(ı) is the operand size (for example the modulus size for RSA or the
size of the underlying field of the curve for ECC).

reference proc./journal FPGA cryptosystem size(ı)

[CNPQ03] MWSCAS Virtex 2 RSA 1024
[SKS06] MELECON Virtex 2 Pro ECC 160

[SFM+09] IEEE TCAS I Virtex E ECC 160, 192, 224, 256

[Gui10] CHES Stratix
Stratix II ECC 160, 192, 256, 384, 512

[CDF+11] CHES
Cyclone II

Stratix II & III
Virtex 6

Pairings 126, 128, 192

[YFCV12] Pairing Virtex 4
Virtex 6 Pairings 126, 128

[PITM13] DSD Spartan 3 RSA 1024

[ESJ+13] IEEE TVLSI
Virtex E

Virtex 2 Pro
Stratix II

ECC 160, 192, 224, 256

[BM14] CARDIS Kintex 7 ECC 256, 521

[FKSK15] CS2 Virtex 2
Virtex 5 ECC 192

[BEMP15] ARITH Virtex 5
Kintex 7

Lattice-based
cryptography 64, 128

[BT15] CHES
Spartan 6
Virtex 5
Kintex 7

ECC 192, 384, 512

on the type of protection (for example against SPA or DPA 7). Overall, comparison of
FPGA implementations of cryptosystems are tricky and the reported performance results
are insu�cient in themselves to make a fair comparison.

To close this subsection, we mention that many RNS implementations (for example
[NMSK01, Gui10, BM14, BT15]) are based on adaptations of the cox-rower architecture
by Kawamura et al. [KKSS00] because the latter exploits the inherent parallelism of RNS.
The architectures implemented in our contributions at Chapters 2 and 3 are also adapted
from the cox-rower.

7. DPA stands for di�erential power analysis.
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1.4.3 High-Level Synthesis

HLS allows to automatically generate a register-transfer level (RTL) design described in
a hardware description language (HDL) from a high-level description (usually in C, C++
or SystemC). The behavioral specification (for example the C code) and the implemen-
tation constraints (for example loop pipelining) are inputted to HLS which automatically
generates the HDL description of the RTL and outputs the performance estimations of
this desciption.

The main advantage of HLS is the reduction of the design time since HLS allows to
focus mainly on the functionality; the consequence is a gain in productivity for designers.
Besides, HLS favors fast explorations of the design space for di�erent parameters and
constraints. However, one should not expect HLS to automatically explore the design
space without any guidance and provide excellent results. Our experiments suggest that
the coding style of the high-level description has to be as close as possible to a behavioral
specification in HDL in order to guide HLS to achieve decent results compared with a
handwritten HDL description.

Figure 1.8 presents an excerpt of C code for HLS (as a toy example) to perform mul-
tiplications of arrays, element by element. There are 2N multiplications to be performed
and two channels are used. Each channel is the hardware support of N multiplications, and
the channels run in parallel. Each function describes a component. The component prod

allows to perform the 2N multiplications and calls the components mul0 and mul1 for this
purpose. Each of mul0 and mul1 is associated with a channel and performs one multipli-
cation between a precomputed multiplicand (stored internally) and an input multiplier.
The data types word and dword

8 represent unsigned integers of respective sizes 8 and 16
bits. The multiplicand and the multiplier are of data type word, and the output product
is of data type dword. Attention should be paid to cast the type of the multiplicand and
the multiplier to dword in the writing of the multiplication (lines 11 and 15). The reason
behind this need for casting is that in C programming, a product of two values of data

8. The types word and dword are not built-in data types of C programming and the sizes 8 and 16 bits
are specific to the example in Figure 1.8. The data types to use in an implementation have to be specified
by the designer regarding the size of the manipulated data and should not be limited to usual types and
related sizes of C programming (such as 16 or 32 bits for an int or an unsigned int depending on the
platform). For example, choosing the data type word to represent unsigned integers of size 17 bits allows
to fully exploit the 18 ◊ 25 multipliers in 2’s complement embedded in the DSP slices of Xilinx 7-series
FPGAs (asymmetric widths for DSP operands are not considered in this thesis). The product of two
numbers of data type word is a number of data type dword, the latter representing in this case unsigned
integers of size 34 bits.
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1 . void prod ( word x0 [N] , word x1 [N] , dword r e s0 [N] , dword r e s1 [N] ) {
2 . counter i ;
3 . for ( i =0; i<N; i ++){
4 . #pragma HLS PIPELINE
5 . mul0 ( i , x0 [ i ] , &re s0 [ i ] ) ;
6 . mul1 ( i , x1 [ i ] , &re s1 [ i ] ) ;
7 . }
8 . }

9 . void mul0 ( counter i , word x , dword � r ){
10 . word precomp [N] = {59 , 60 , 61 , 62 , 63} ;
11 . � r = ( ( dword ) (x ) ) � ( ( dword ) ( precomp [ i ] ) ) ;
12 . }
13 . void mul1 ( counter i , word x , dword � r ){
14 . word precomp [N] = {54 , 55 , 56 , 57 , 58} ;
15 . � r = ( ( dword ) (x ) ) � ( ( dword ) ( precomp [ i ] ) ) ;
16 . }

Figure 1.8 – Excerpt of C code for HLS to explain the multiplication of arrays elements
on two channels. Each of the components mul0 and mul1 is dedicated to a channel and
performs a multiplication of a value received as input by a precomputed value stored
internally. The description made in the component prod allows the components mul0 and
mul1 to run in parallel. #pragma HLS PIPELINE allows to pipeline the operations within
the loop of the component prod.

type word is a value of data type word. Last, the loop at line 3 is pipelined by adding the
adequate directive (line 4) to achieve a better throughput.

1.5 Conclusion

In this chapter, we presented ECC which is the context of this thesis. The ECSM, as
the core operation in protocols of ECC applications, has been described and examples of
state-of-the-art algorithms to compute it have been stated. We also described the RNS,
the number system we choose to perform the ECSM because of its exploitable inherent
advantages. The crucial operation BE has been presented. In particular, the state-of-
the-art BE proposed in [KKSS00] has been introduced, with which we compare the first
contribution of this thesis in the next chapter. We also introduced FPGAs as well as
HLS which we use to implement on FPGA our RNS solutions presented in the following
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chapters.
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Chapter 2

HIERARCHICAL BASE EXTENSION

Modular reductions (MRs) are an important part of computations of the elliptic curve
scalar multiplication (ECSM), the core operation in protocols of ECC applications. In
RNS implementations of the ECSM, the cost of an MR is substantially the cost of the
two base extensions (BE) composing it. Therefore, the BE is a crucial operation in RNS
implementations for ECC.

In this chapter, we present our BE [DBT19] which uses a hierarchical approach for
computing the CRT formula. The main idea is to combine two (three or four) residues
of a given number (the input of the BE) in one base to form super-residues, and then
proceed with the computation of the CRT formula on these super-residues in the other
base.

Much of the material presented in this chapter comes from [DBT19], a paper we
presented at ARITH-26 1 in June 2019. We draw the attention of the reader to the fact that
the implementations, that provide the results presented in this chapter, were perfomed
using Vivado HLS 2019.2, on the contrary to Vivado HLS 2017.4 for implementation
results in [DBT19]. The implementation codes and optimization files as well as the target
FPGA are exactly the same in this chapter as in [DBT19]. These re-implementations are
solely motivated by updating the results presented in [DBT19].

Additional notations used throughout the rest of the thesis are introduced in Section 2.1.
The BE by Kawamura et al. (KBE) [KKSS00], largely regarded as the state-of-the-art
BE, and its associated cox-rower architecture are detailed in Section 2.2. Then, we present
our hierarchical base extension (HBE) [DBT19] in Section 2.3, along with a comparison of
the theoretical cost of HBE with that of KBE. We also describe an architecture, adapted
from the cox-rower, to support HBE. In Section 2.4 the benefit from using HBE instead
of KBE in RNS modular multiplications is evaluated. Implementation results of HBE and
KBE are presented in Section 2.5. This chapter is concluded in Section 2.6.

1. ARITH-26 stands for 26th IEEE Symposium on Computer Arithmetic.
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2.1 Notations

RNS bases and residues (of a number) are represented in two dimensions. Two reasons
motivate the preference of the two-dimension notations to the common one-dimension
notations. We want to better exhibit the hierarchy of the computations toward the CRT
and show the intermediate results that we name super-residues.

• An RNS base M of n = r ◊ c moduli is written M =

Y
___]

___[

m1,1 . . . m1,c

... . . .
...

mr,1 . . . mr,c

Z
___̂

___\
.

Let i, j be integers such that 1 Æ i Æ r and 1 Æ j Æ c.

• M =
rŸ

i=1

cŸ

j=1
mi,j.

• Mi,j = M

mi,j
.

• M
(i) =

cŸ

j=1
mi,j. The M

(i), 1 Æ i Æ r, are called super-moduli.

• M (i) = M

M (i) .

• m
(i)
i,j = M

(i)

mi,j
.

• A number x is represented in the RNS base M by xM =

Q

ccca

xm1,1 . . . xm1,c

... . . .
...

xmr,1 . . . xmr,c

R

dddb,

where xmi,j = |x|mi,j
.

2.2 Kawamura Base Extension

In this section the BE proposed by Kawamura et al. [KKSS00] and mentioned in Subsec-
tion 1.3.3 is detailed using the two-dimension notations introduced in Section 2.1.

2.2.1 Overview of KBE

The Chinese remainder theorem (CRT) formula, mentioned in Theorem 2 (Chapter 1), is
recalled. Let M and M

Õ be two RNS bases, xM and xMÕ the RNS representations of a
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base M xm1,1 xm1,2 xm1,3 xm1,4 xmr,c�1 xmr,c

base M0 xm0
1,1

xm0
1,2

xm0
1,3

xm0
1,4

xm0
r,c�1

xm0
r,c

1

Figure 2.1 – Simplified description of KBE.

number x in M and M
Õ respectively. The number x is given by:

x =

------

rÿ

i=1

cÿ

j=1

---xmi,j M
≠1
i,j

---
mi,j

Mi,j

------
M

, (2.1)

=
Q

a
rÿ

i=1

cÿ

j=1

---xmi,j M
≠1
i,j

---
mi,j

Mi,j

R

b ≠ hM. (2.2)

Like most BEs based on the CRT, the idea of KBE is to compute the CRT formula
of Equation 2.2 in the base M

Õ. Figure 2.1 depicts a simplified description of the CRT
computation in KBE. The computation of the CRT is performed on all input residues
in each modulus of the output RNS base. In other words, for every output residue xmÕ

k,l

computed, all input residues xmi,j are multiplied by some precomputed values (not repre-
sented in Figure 2.1) and accumulated modulo the corresponding modulus of the output
RNS base. The main contribution of [KKSS00] is that the integer h in Equation 2.2 can
be approximated by the integer h̃ in Equation 2.3, and the term hM can be subtracted
iteratively from the results of the CRT in every modulus m

Õ
k,l of the output RNS base.

h̃ =

WWWU
rÿ

i=1

cÿ

j=1

trunc(|xmi,j M
≠1
i,j |mi,j )

2w
+ ‡

XXXV (2.3)
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2.2.2 KBE Algorithm

Description of KBE Algorithm Using a Two-Dimension Notation

Algorithm 11 is Algorithm 9 of KBE [KKSS00] (Subsection 1.3.3) rewritten using the two-
dimension notations presented in Section 2.1. Since r and c are chosen such that n = rc,
we replace loops bounded by n with nested loops bounded by r and c. The computations
performed within the various loops of Algorithm 9 remain unchanged in Algorithm 11;
the various indices are adjusted to take into account the two-dimension notations.

The term qr
i=1

qc
j=1 |xmi,j M

≠1
i,j |mi,j Mi,j of Equation 2.2 is computed at line 3 and

within line 11 of Algorithm 11. The correctness of xMÕ depends on the accuracy of h̃, the
approximation of h. The value of h̃ is computed in lines 6–8 of Algorithm 11; h̃ is the
sum of the bits hi,j computed at line 7. The function trunc approximates |xmi,j M

≠1
i,j |mi,j

by its t most significant bits (MSBs), t < w, the w ≠ t remaining bits set to 0. In
practice, the function trunc selects the t MSBs of |xmi,j M

≠1
i,j |mi,j and the denominator 2w

is replaced by 2t. Choosing t œ [4, 8] is usually su�cient for RNS implementations of ECC
applications.

Validation of KBE

Theorems 3 and 4, from [KKSS00], provide conditions that ensure the approximation h̃

(in Equation 2.3) is h or at worst h ≠ 1. Two values d and e are defined below before
presenting the theorems.

Definition 6 (from [KKSS00]). The values d and e are given by

d = max
1ÆiÆr, 1ÆjÆc

A
‚xmi,j ≠ trunc(‚xmi,j )

mi,j

B

and e = max
1ÆiÆr, 1ÆjÆc

32w
≠ mi,j

2w

4
.

Theorem 3 (from [KKSS00]). If 0 Æ rc(d + e) Æ ‡ < 1 and 0 Æ x < (1 ≠ ‡)M , then
h̃ = h.

Theorem 4 (from [KKSS00]). If ‡ = 0, 0 Æ rc(d + e) < 1 and 0 Æ x < M , then h̃ = h

or h̃ = h ≠ 1.

The approximation of ‚xmi,j and mi,j by respectively trunc(‚xmi,j ) and 2w introduces
an error upperly bounded by rc(d + e). From Theorem 3, the output of KBE is exact
if the base M is chosen such that rc(d + e) Æ ‡ < 1 and x < (1 ≠ ‡)M . In practice,
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Algorithm 11: Kawamura base extension BEMæMÕ(x) adapted from [KKSS00]
Input: xmi,j for all i, 1 Æ i Æ r and j, 1 Æ j Æ c; ‡ = 0 or 0.5
Precomp.: |M

≠1
i,j |mi,j , |Mi,j|mÕ

k,l
, | ≠ M |mÕ

k,l
,

for all i, 1 Æ i Æ r; j, 1 Æ j Æ c; k, 1 Æ k Æ r; l, 1 Æ l Æ c

Output: xmÕ
k,l

for all k, 1 Æ k Æ r and l, 1 Æ l Æ c

1 for i Ω 1 to r parallel do
2 for j Ω 1 to c parallel do

3 ‚xmi,j Ω

-----xmi,j ◊ |M
≠1
i,j |mi,j

-----
mi,j

4 for i Ω 1 to r do
5 for j Ω 1 to c do
6 ‡ Ω ‡ + trunc(‚xmi,j )

2w

7 hi,j Ω Â‡Ê

8 ‡ Ω ‡ ≠ hi,j

9 for k Ω 1 to r parallel do
10 for l Ω 1 to c parallel do

11 xmÕ
k,l

Ω

-----xmÕ
k,l

+ ‚xmi,j ◊ |Mi,j|mÕ
k,l

+ hi,j ◊ | ≠ M |mÕ
k,l

-----
mÕ

k,l

we use ‡ = 0.5. From Thorem 4, the output of KBE is xMÕ or (x + M)MÕ (that is, x or
x + M in the base M

Õ) if ‡ = 0, rc(d + e) < 1 and x < M . Two BEs are used in the
RNS Montgomery reduction algorithm [PP95, KKSS00]. The first of the two BEs can be
inexact because the correctness of the result mod p is not impacted. The second BE must
be exact for the result mod p to be correct. Therefore, it is common to choose RNS bases
such that conditions of Theorems 4 and 3 are respectively satisfied for the first and the
second BE.

Cost of KBE

Line 3 of Algorithm 11 is performed rc times. The cost of lines 6–8 is negligible because
these lines are e�ciently performed by a small accumulator on t bits (usually, t œ [4, 8]).
This accumulator is called the cox unit; see Subsection 2.2.3. Line 11 is performed r

2
c

2

times. In total, Algorithm 11 costs r
2
c

2 + rc EMMs, which is equal to the n
2 + n EMMs

for the cost of KBE [KKSS00] mentioned in the state of the art (Subsection 1.3.3).
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2.2.3 The Cox-Rower Architecture

Kawamura et al. [KKSS00] provide the cox-rower architecture to perform KBE. This
architecture (or its variant) has been used to e�ciently implement the RSA (for example
[NMSK01]) and the ECSM (for example, [Gui10, BM14]). Figure 2.2 presents a two-
dimension-notation version of the cox-rower in [Gui10], adapted from [KKSS00].

There is one rower per channel, dedicated to computations over one modulus per
RNS base. Each rower embeds a multiplier and an accumulator, and is able to perform
computations of the form g Ω (g +a◊b+f) mod mi,j or mod m

Õ
i,j, where the operands a,

b, f and g are of size the width w of the channels. All rowers run in parallel. The execution
of KBE using the cox-rower architecture is described as follows. The precomputations are
held in the memory. The multiplications in base M at line 3 of Algorithm 11 are performed
in the rowers. These multiplications are not represented in the simplified description of
KBE in Figure 2.1. The large multiplexer receives the results of these multiplications from

CTRL

rower 1,1

memory1,1

channel1,1

rower 1,2

memory1,2

channel1,2

rower r,c�1

memoryr,c�1

channelr,c�1

rower r,c

memoryr,c

channelr,c

cox

w

w

w

w

t

1

w

1

Figure 2.2 – The cox-rower architecture in [Gui10], adapted from [KKSS00].
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the rowers and outputs two buses (left and right). The right bus broadcasts the results
to the rowers in order to proceed with the computation of the CRT in base M

Õ (line 11
of Algorithm 11). This broadcast of each result to the various rowers corresponds to the
arrows in the simplifed description of KBE presented in Figure 2.1. The left bus transfers
the results (of the multiplications) to the cox unit which computes the bits hi,j (lines 6–8
of Algorithm 11). The cox then sends the bits hi,j (0 or 1) to the various rowers. Once
received in the rowers, these bits activate the subtraction of 0 or M in the rowers. These
subtractions correspond to adding hi,j ◊ | ≠ M |mÕ

k,l
(in line 11 of Algorithm 11).

2.3 Hierarchical Base Extension

In [DBT19] we proposed a hierarchical approach to perform the BE operation.
Hierarchical approaches are not new in RNS. For example, RNS can be used re-

cursively when inside-channel computations are performed in a small RNS base; see
[Yas92, HRdH+18]. The performance using this method is not improved significantly com-
pared with using traditional RNS methods. However, this method presents additional
properties related to protection against some physical attacks.

Authors of [SA99, Tom11] propose to use RNS bases of three or four moduli, where
some of these moduli are factorizable into smaller ones. They target signal processing
applications, wherein the used integers (of a few dozens of bits) are smaller than in asym-
metric cryptography applications. For this approach to lead to e�cient implementations
of asymmetric cryptosystems, the MR must be e�cient in the (sub)channels using these
moduli and their factorizations. Our proposed idea in [DBT19] is a hierarchical approach
for computing the BE (through a CRT computation and we target cryptographic appli-
cations) rather than an RNS hierarchical representation.

Hierarchical approaches with partial CRTs are proposed in [BLS03, vdH17] to improve
the performance of the CRT computation in an RNS-to-positional conversion. To our
knowledge, HBE [DBT19] is the first BE that uses a hierarchical approach for full RNS
computations.

2.3.1 Overview of HBE

The main idea of HBE can be described in two phases: First, we combine the input
residues per group of c (that is, per row) through computations of small and partial CRTs
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in the base M. The results of these partial-CRT computations are named super-residues.
These combinations are depicted with some simplifications in Figure 2.3 for c = 2. The
residues xmi,1 and xmi,2 (in blue) are combined into the super-residues ‚xM(i) (in blue). In
the second phase, we proceed with the computation of the CRT on these super-residues
in the base M

Õ. In Figure 2.3, this phase is simplified into the arrows going from the
super-residues ‚xM(i) (in blue) to the residues xmÕ

i,j
(in orange).

base M

xm1,1 xm1,2 xm2,1 xm2,2 xmr,1 xmr,2

base M0 xm0
1,1

xm0
1,2

xm0
2,1

xm0
2,2

xm0
r,1

xm0
r,2

bxM (1) bxM (2) bxM (r)

1

Figure 2.3 – Simplified description of HBE c = 2.

2.3.2 HBE Algorithm

Desription of the Algorithm

HBE is presented in Algorithm 12. Like KBE and generally BEs based on the CRT, HBE
computes the CRT formula of Equation 2.2 in the RNS base M

Õ. Lines 1–3 are the same
in Algorithm 12 as in Algorithm 11. Lines 4–7 correspond to the computation of partial
CRTs on each row, resulting in the super-residues ‚xM(i) (one super-residue per row). The
super-residues are not reduced at this step. Therefore, ‚xM(i) < cM

(i) for all i, 1 Æ i Æ r.
Lines 9–11 of Algorithm 12 of HBE are an adaptation of lines 6–8 of Algorithm 11

of KBE. This time, the values hi are of size 1 + Álog2 cË bits. Under conditions of
Theorems 3 and 4 initially specified for KBE, we prove that the approximation of h
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Algorithm 12: Hierarchical base extension BEMæMÕ(x) [DBT19]
Input: xmi,j for all i, 1 Æ i Æ r and j, 1 Æ j Æ c; ‡ = 0 or 0.5
Precomp.: |M

≠1
i,j |mi,j , |Mi,j|mÕ

k,l
, | ≠ M |mÕ

k,l
,

for all i, 1 Æ i Æ r; j, 1 Æ j Æ c; k, 1 Æ k Æ r; l, 1 Æ l Æ c

Output: xmÕ
k,l

for all k, 1 Æ k Æ r and l, 1 Æ l Æ c

1 for i Ω 1 to r parallel do
2 for j Ω 1 to c parallel do

3 ‚xmi,j Ω

-----xmi,j ◊ |M
≠1
i,j |mi,j

-----
mi,j

4 for i Ω 1 to r parallel do
5 ‚xM(i) Ω 0
6 for j Ω 1 to c do
7 ‚xM(i) Ω ‚xM(i) + ‚xmi,j ◊ m

(i)
i,j (without modular reduction)

8 for i Ω 1 to r do
9 ‡ Ω ‡ + trunc(‚x

M(i) )
2w◊c

10 hi Ω Â‡Ê

11 ‡ Ω ‡ ≠ hi

12 for k Ω 1 to r parallel do
13 for l Ω 1 to c parallel do
14 ‚xmÕ

k,l,i
Ω |‚xM(i) |mÕ

k,l

15 xmÕ
k,l

Ω

-----xmÕ
k,l

+ ‚xmÕ
k,l,i

◊

--- M (i)
---
mÕ

k,l
+ hi ◊ | ≠ M |mÕ

k,l

-----
mÕ

k,l

reaches the same result, that is, qn
i=1 hi = h or h ≠ 1. The proof is provided in the

part “Validation of HBE” below.
Lines 14 and 15 are the most costly lines of Algorithm 12 since they are performed

r
2
c times. The modular reduction ‚xM(i) mod m

Õ
k,l is performed at line 14. Line 15 of

Algorithm 12 corresponds to line 11 of Algorithm 11. Since the factors m
(i)
i,j are inserted

during the computation of the super-residues ‚xM(i) , multiplying the results of line 14 by
M (i) is su�cient to get the CRT computed at line 15.

To summarize, the input residues are combined per row through partial CRTs to get
the super-residues. Then the computation of the CRT in the output base is proceeded on
the super-residues with an approximation similar to that of KBE [KKSS00]. The main
computation (lines 14 and 15 of Algorithm 12) of HBE is performed r

2
c times while

that of KBE (line 11 of Algorithm 11) is perfomed r
2
c

2 times. However, HBE introduces
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w ◊ (c ≠ 1)w bit multiplications (line 7 of Algorithm 12) and reductions of cw + Álog2 cË

bits by w-bit integers (line 14 of Algorithm 12).
The first three lines of Algorithm 11 of KBE can be hidden in the computation of the

RNS MR from [PP95] by combining some precomputations of Algorithm 11 of KBE with
some of Algorithm 10 of the RNS MR; see [GLP+12, Gui10, KKSY18]. As a result, the
implementation of the RNS MR is made faster. Algorithm 12 of HBE is also compatible
with this optimization.

We choose c œ {2, 3, 4} small for RNS implementations of ECC applications to keep
the inherent parallelism of RNS as much as possible. The case c = 2 reveals some simpli-
fications, notably in the architecture; see Subsection 2.3.3.

Validation of HBE

The CRT formula is recalled.

x =
Q

a
rÿ

i=1

cÿ

j=1

---xmi,j M
≠1
i,j

---
mi,j

Mi,j

R

b ≠ hM. (2.4)

To validate HBE presented in Algorithm 12, we start by proving that the term in paren-
theses in Equation 2.4 is computed within the execution of Algorithm 12. We then discuss
the correctness of h approximated by computing the values hi in Algorithm 12.

The term in parentheses in Equation 2.4 is

sx =
rÿ

i=1

cÿ

j=1

---xmi,j M
≠1
i,j

---
mi,j

Mi,j

=
rÿ

i=1

cÿ

j=1
‚xmi,j Mi,j

=
rÿ

i=1

cÿ

j=1
‚xmi,j

M

mi,j
=

rÿ

i=1

cÿ

j=1
‚xmi,j

M
(i)

mi,j
◊

M

M (i)

=
rÿ

i=1

Q

a
cÿ

j=1
‚xmi,j m

(i)
i,j

R

b M (i)

=
rÿ

i=1
‚xM(i) ◊ M (i) (2.5)

The reader can recognize that Equation 2.5 is computed (mod m
Õ
k,l) at line 14 and the

70



2.3. HIERARCHICAL BASE EXTENSION

first two terms at line 15 of Algorithm 12.

Theorems 3 and 4 from [KKSS00] give an upper bound for the error made by approx-
imating h by h̃, using Algorithm 11 of KBE. Since trunc(‚xmi,j ) Æ ‚xmi,j and 2w

> mi,j

for all i, 1 Æ i Æ r and j, 1 Æ j Æ c, we obtain

rÿ

i=1

cÿ

j=1

trunc(‚xmi,j )
2w

<

rÿ

i=1

cÿ

j=1

‚xmi,j

mi,j
. (2.6)

Besides, from the proofs of Theorems 3 and 4 in [KKSS00],

rÿ

i=1

cÿ

j=1

‚xmi,j

mi,j
≠

rÿ

i=1

cÿ

j=1

trunc(‚xmi,j )
2w

< rc(d + e). (2.7)

Our discussion of the correctness of h for HBE with c œ {2, 3, 4} is built upon
Theorems 3 and 4 from [KKSS00] with respect to KBE. Clearly, if the base M is chosen
verifying Theorems 3 and 4 for KBE, then M can be used for HBE, c œ {2, 3, 4}.

Let assume m1,1 < m1,j for all j, 2 Æ j Æ c, and m1,j < mi,j for all i, 2 Æ i Æ r

and j, 1 Æ j Æ c. One can rearrange the moduli in the two-dimension notation of the
base M to get these inequalities.

With respect to Algorithm 12 of HBE, let the values d
Õ
M(i) , e

Õ
M(i) , d

Õ and e
Õ be defined

by

d
Õ
M(i) =

‚xM(i) ≠ trunc(‚xM(i))
M (i) , e

Õ
M(i) = 2cw

≠ M
(i)

2cw

and
d

Õ = max
1ÆiÆr

(dÕ
M(i)) , e

Õ = max
1ÆiÆr

(eÕ
M(i)) .

The function trunc now approximates ‚xM(i) (of cw+Álog2 cË bits) by its t+Álog2 cË MSBs,
the 2w≠t remaining bits set to 0. The super-modulus M

(i) is approximated by 2cw. To ease
the notation and improve the clarity of the argument, we assume c = 2—the arguments
for the cases c = 3, 4 being analogous to that of c = 2. From this assumption, the function
trunc approximates ‚xM(i) by its t + 1 MSBs, and the super-modulus M

(i) is approximated
by 22w. The introduced values d

Õ
M(i) , e

Õ
M(i) , d

Õ and e
Õ are rewritten

d
Õ
M(i) =

‚xM(i) ≠ trunc(‚xM(i))
M (i) , e

Õ
M(i) = 22w

≠ M
(i)

22w
(2.8)
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and
d

Õ =
‚xM(1) ≠ trunc(‚xM(1))

M (1) , e
Õ = 22w

≠ M
(1)

22w
. (2.9)

Remark 1 (On d and d
Õ values). The various ‚xmi,j and ‚xM(i) as well as their trun-

cated values cannot be predicted in the numerator of d in Definition 6 and that of d
Õ in

Equation 2.9. Therefore, we assume the upper bounds

d = 2w≠t
≠ 1

m1,1
, d

Õ = 22w≠t
≠ 1

M (1) . (2.10)

We want to prove that

rÿ

i=1

trunc(‚xM(i))
22w

<

rÿ

i=1

2ÿ

j=1

‚xmi,j

mi,j
(2.11)

and
rÿ

i=1

2ÿ

j=1

‚xmi,j

mi,j
≠

rÿ

i=1

trunc(‚xM(i))
22w

< 2r(d + e). (2.12)

For all i, 1 Æ i Æ r,

2ÿ

j=1

‚xmi,j

mi,j
=

‚xmi,1mi,2 + ‚xmi,2mi,1

mi,1mi,2
=

‚xM(i)

M (i) .

Since trunc(‚xM(i)) Æ ‚xM(i) and 22w
> M

(i), we obtain for all i, 1 Æ i Æ r,

trunc(‚xM(i))
22w

<

2ÿ

j=1

‚xmi,j

mi,j
,

and consequently
rÿ

i=1

trunc(‚xM(i))
22w

<

rÿ

i=1

2ÿ

j=1

‚xmi,j

mi,j
,

which is Equation 2.11.

Let us bound
rÿ

i=1

2ÿ

j=1

‚xmi,j

mi,j
≠

rÿ

i=1

trunc(‚xM(i))
22w

.

From Equation 2.8, we do have on one hand trunc(‚xM(i)) = ‚xM(i) ≠ M
(i)

◊ d
Õ
M(i) , and on

the other hand e
Õ
M(i) = 1≠

M
(i)

22w
, which implies 1≠e

Õ
M(i) = M

(i)

22w
, that is, 1

22w
=

1 ≠ e
Õ
M(i)

M (i) .
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We get

rÿ

i=1

trunc(‚xM(i))
22w

=
rÿ

i=1

1
‚xM(i) ≠ M

(i)
◊ d

Õ
M(i)

2
◊

1 ≠ e
Õ
M(i)

M (i)

=
rÿ

i=1

‚xM(i)

M (i) ≠

rÿ

i=1
e

Õ
M(i)

‚xM(i)

M (i) ≠

rÿ

i=1
(1 ≠ e

Õ
M(i)) d

Õ
M(i)

=
rÿ

i=1

‚xM(i)

M (i) ≠

rÿ

i=1
e

Õ
M(i)

‚xM(i)

M (i) ≠

rÿ

i=1

M
(i)

22w
d

Õ
M(i) . (2.13)

The terms at the right of the equal sign in Equation 2.13 verify

rÿ

i=1

‚xM(i)

M (i) =
rÿ

i=1

2ÿ

j=1

‚xmi,j

mi,j
;

rÿ

i=1
e

Õ
M(i)

‚xM(i)

M (i) < 2re
Õ because

‚xM(i)

M (i) < 2, and e
Õ
M(i) Æ e

Õ by definition;

rÿ

i=1

M
(i)

22w
d

Õ
M(i) < rd

Õ because M
(i)

22w
< 1, and d

Õ
M(i) Æ d

Õ by definition.

It follows from Equation 2.13 that

rÿ

i=1

trunc(‚xM(i))
22w

>

rÿ

i=1

2ÿ

j=1

‚xmi,j

mi,j
≠ 2re

Õ
≠ rd

Õ
,

that is,
rÿ

i=1

2ÿ

j=1

‚xmi,j

mi,j
≠

rÿ

i=1

trunc(‚xM(i))
22w

< 2re
Õ + rd

Õ
. (2.14)

Proving e
Õ + 2≠1

d
Õ
< e + d su�ces to get Equation 2.12 from Equation 2.14. We have

d ≠ 2≠1
d

Õ = 2w≠t
≠ 1

m1,1
≠

2≠1 (22w≠t
≠ 1)

M (1)

= m1,2 (2w≠t
≠ 1) ≠ 2≠1 (22w≠t

≠ 1)
M (1) (recall M

(1) = m1,1 ◊ m1,2) (2.15)
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and

e
Õ
≠ e = 22w

≠ M
(1)

22w
≠

2w
≠ m1,1
2w

(to get the value of e from Definition 6,
use the fact that ’ i, j, m1,1 Æ mi,j)

= 1 ≠
M

(1)

22w
≠

3
1 ≠

m1,1
2w

4
= m1,1

2w
≠

M
(1)

22w

= m1,1 ◊ 2w
≠ M

(1)

22w
= m1,1 (2w

≠ m1,2)
22w

= m1,1 ◊ Á1,2
22w

(2.16)

From Equations 2.15 and 2.16, we obtain

d ≠ 2≠1
d

eÕ ≠ e
= m1,2 (2w≠t

≠ 1) ≠ 2≠1 (22w≠t
≠ 1)

M (1) ◊
22w

m1,1 ◊ Á1,2

= m1,2 (2w≠t
≠ 1) ≠ 2≠1 (22w≠t

≠ 1)
m1,1 ◊ Á1,2

◊
22w

M (1) (2.17)

Lemma 5. If t <
w

2 ≠ 1 then m1,2 (2w≠t
≠ 1) ≠ 2≠1 (22w≠t

≠ 1)
m1,1 ◊ Á1,2

> 1.

Proof. The inequality m1,2 > m1,1 implies m1,2 Ø m1,1 + 1 and Á1,2 Æ Á1,1 ≠ 1, which leads
to

m1,2
1
2w≠t

≠ 1
2

≠ 2≠1
1
22w≠t

≠ 1
2

Ø (m1,1 + 1)
1
2w≠t

≠ 1
2

≠ 2≠1
1
22w≠t

≠ 1
2

and
m1,1 ◊ Á1,2 Æ m1,1 (Á1,1 ≠ 1) .

Subsequently,

m1,2 (2w≠t
≠ 1) ≠ 2≠1 (22w≠t

≠ 1)
m1,1 ◊ Á1,2

Ø
(m1,1 + 1) (2w≠t

≠ 1) ≠ 2≠1 (22w≠t
≠ 1)

m1,1 (Á1,1 ≠ 1) . (2.18)
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We have

(m1,1 + 1)(2w≠t
≠ 1) ≠ 2≠1(22w≠t

≠ 1) ≠ m1,1(Á1,1 ≠ 1)

= m1,1 ◊ 2w≠t + 2w≠t
≠ m1,1 ≠ 1 ≠ 22w≠t≠1 + 2≠1

≠ m1,1(Á1,1 ≠ 1)

= (m1,1 ◊ 2w≠t
≠ 22w≠t≠1) + (2w≠t + 2≠1) ≠ (m1,1 ◊ Á1,1 + 1). (2.19)

The first term at the right of the equal sign in Equation 2.19 verifies

m1,1 ◊ 2w≠t
≠ 22w≠t≠1

> 22w≠t≠1
≠ 2 3w

2 ≠t
. (2.20)

Indeed, Á1,1 < 2w
2 implies ≠Á1,1 > ≠2w

2 , which leads to m1,1 = 2w
≠ Á1,1 > 2w

≠ 2w
2 , and

subsequently

m1,1 ◊ 2w≠t
> 2w≠t

1
2w

≠ 2w
2

2
= 22w≠t

≠ 2 3w
2 ≠t

= 2 ◊ 22w≠t≠1
≠ 2 3w

2 ≠t
.

It follows that m1,1 ◊ 2w≠t
≠ 22w≠t≠1

> 22w≠t≠1
≠ 2 3w

2 ≠t.

The third term at the right of the equal sign in Equation 2.19 verifies

22w≠t≠1
≠ 2 3w

2 ≠t
> m1,1 ◊ Á1,1 + 1 = m1,1(Á1,1 + m

≠1
1,1). (2.21)

Indeed, 22w≠t≠1
≠ 2 3w

2 ≠t can be rewritten

22w≠t≠1
≠ 2 3w

2 ≠t = 2w
◊ 2w

2 ◊ 2≠t
1
2w

2 ≠1
≠ 1

2
, (2.22)

where the factors of the right of the equal sign verify inequalities detailed as follows.

• The factor 2w in Equation 2.22 verifies 2w
> m1,1.

• The factor 2w
2 in Equation 2.22 verifies 2w

2 > Á1,1 + m
≠1
1,1. This inequality comes

from 2w
2 Ø Á1,1 + 1 (since Á1,1 < 2w

2 ) and Á1,1 + 1 > Á1,1 + m
≠1
1,1 (since m

≠1
1,1 < 1, due

to the fact that the size w of m1,1 is in [10, 64], that is, m1,1 > 1).
• The factor 2≠t

1
2w

2 ≠1
≠ 1

2
in Equation 2.22 verifies 2≠t

1
2w

2 ≠1
≠ 1

2
Ø 1. Since

t <
w

2 ≠ 1, we have 2t
< 2w

2 ≠1, which implies 2t
Æ 2w

2 ≠1
≠ 1, and consequently

1 Æ 2≠t
1
2w

2 ≠1
≠ 1

2
.
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From Equations 2.20 and 2.21, we obtain

m1,1 ◊ 2w≠t
≠ 22w≠t≠1

> m1,1 ◊ Á1,1 + 1,

which implies
(m1,1 ◊ 2w≠t

≠ 22w≠t≠1) ≠ (m1,1 ◊ Á1,1 + 1) > 0.

It follows, a fortiori, that

(m1,1 ◊ 2w≠t
≠ 22w≠t≠1) + (2w≠t + 2≠1) ≠ (m1,1 ◊ Á1,1 + 1) > 0.

Considering Equation 2.19, we get

(m1,1 + 1)(2w≠t
≠ 1) ≠ 2≠1(22w≠t

≠ 1) ≠ m1,1(Á1,1 ≠ 1) > 0,

that is,
(m1,1 + 1) (2w≠t

≠ 1) ≠ 2≠1 (22w≠t
≠ 1)

m1,1 (Á1,1 ≠ 1) > 1.

From Equation 2.18 we then obtain

m1,2 (2w≠t
≠ 1) ≠ 2≠1 (22w≠t

≠ 1)
m1,1 ◊ Á1,2

> 1.

In practice, the condition t <
w

2 ≠ 1 of Lemma 5 is verified for RNS implementations
of asymmetric cryptosystems where w is usually in [10, 64]. For w Ø 11 we can always
find t in [4, 8] verifying this condition. For w = 10, it su�ces to take t = 3 to ensure this
condition. It follows from Lemma 5 that

m1,2 (2w≠t
≠ 1) ≠ 2≠1 (22w≠t

≠ 1)
m1,1 ◊ Á1,2

> 1.

Since 22w

M (1) > 1, Equation 2.17 then implies

d ≠ 2≠1
d

Õ

eÕ ≠ e
> 1.
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It follows that d ≠ 2≠1
d

Õ
> e

Õ
≠ e, that is,

e
Õ + 2≠1

d
Õ
< e + d (2.23)

We conclude from Equations 2.14 and 2.23 that

rÿ

i=1

2ÿ

j=1

‚xmi,j

mi,j
≠

rÿ

i=1

trunc(‚xM(i))
22w

< 2r(e + d), (2.24)

which is Equation 2.12.

Cost of HBE

Some operands at lines 7 and 14 of Algorithm 12 are of size greater than the width w

of the channels. At line 7, there is a product of w-bit and (c ≠ 1)w-bit integers as well
as an accumulation of cw-bit integers. The result of line 7, a (cw + Álog2 cË)-bit integer,
is reduced modulo a w bit integer at line 14. We introduce three additional notations to
represent the cost of these operations. Our goal is to compare the cost of these operations
to the usual metric, namely EMM. From there, we can fairly evaluate the HBE cost
against the KBE one.

• CMUL(w, w
Õ): cost of a multiplication of a w-bit integer by a w

Õ-bit integer.
• CADD(w, w

Õ): cost of an addition/subtraction of a w-bit integer to a w
Õ-bit integer.

• CMR(w, w
Õ): cost of a w-bit integer mod a w

Õ-bit integer reduction.

Similarly to Algorithm 11 of KBE, lines 1–3 of Algorithm 12 of HBE cost rc EMMs.
Lines 4–7 cost rc(CMUL(w, (c ≠ 1)w) + CADD(cw, cw)). As for the cost of lines 6–8
of Algorithm 11 of KBE, the cost of lines 9–11 of Algorithm 12 of HBE is not counted.
Indeed, the cost of these lines is negligible since the operations at these lines are performed
e�ciently by the cox unit, a small accumulator of t + Álog2 cË bits. Finally, lines 14
and 15 are operated r

2
c times. Line 14 costs r

2
c CMR(cw + Álog2 cË, w). Line 15 costs

r
2
c(EMM + 2CADD(w, w)).

Overall, Algorithm 12 of HBE costs

r
2
c (EMM + CMR(cw + Álog2 cË, w) + 2 CADD(w, w))

+ rc (EMM + CMUL(w, (c ≠ 1)w) + CADD(cw, cw)) . (2.25)
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Assuming c = 2, we obtain for the cost of HBE

2r
2 (EMM + CMR(2w + 1, w) + 2 CADD(w, w))

+ 2r (EMM + CMUL(w, w) + CADD(2w, 2w)) .

In DSP slices of modern FPGAs, additions are usually hidden in the pipeline computing
the multiplications. Therefore, we concentrate the cost on the modular multiplications,
similarly to most works in the literature. With this simplification, we obtain for the cost
of HBE

2r
2 (EMM + CMR(2w + 1, w)) + 2r (EMM + CMUL(w, w)) .

Overestimating a CMUL(w, w) to be equal to an EMM, we obtain that HBE (c = 2) costs

2r
2 EMM + 2r

2 CMR(2w + 1, w) + 4r EMM,

that is,
n

2

2 EMM + n
2

2 CMR(2w + 1, w) + 2n EMM. (2.26)

Recall that KBE costs
n

2 EMM + n EMM. (2.27)

The comparison of the HBE (c = 2) cost with the KBE one is made di�cult by the pres-
ence of the term n2

2 CMR(2w+1, w) in Equation 2.26. HBE (c = 2) may cost less than KBE
if CMR(2w + 1, w) π EMM. In order to compare a CMR(2w + 1, w) with an EMM, we
implemented the two operations on a Xilinx XCV7020 FPGA (using Vivado HLS 2019.2)
for various widths w of channels. The implementation results are reported in Table 2.1.
In most cases, an EMM costs about twice a CMR(2w + 1, w) in time and/or in area.
Therefore, we estimate EMM/4 Æ CMR(2w + 1, w) Æ EMM/2.

Estimating one EMM to be in {2, 3, 4} CMR(2w + 1, w), we evaluate the theoretical
cost ratio HBE (c = 2) / KBE of one BE for various numbers n of moduli. The result
of this evaluation is shown in Figure 2.4. The theoretical cost reduction of HBE (c = 2)
against KBE is up to 35% using these estimations.
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Table 2.1 – FPGA implementation results for CMR(2w + 1, w) and EMM operations on
a Xilinx XC7Z020 FPGA.

operations CMR(2w + 1, w) EMM
w (bits) 17 20 24 28 17 20 24 28
nb. slices 1 1 24 29 1 23 1 39
nb. DSPs 2 2 1 1 3 3 4 5
nb. cycles 1 1 2 2 2 2 2 3
time (ns) 2.2 2.2 9.3 9.5 10.3 7.8 7.8 18.7

Figure 2.4 – Theoretical cost ratio HBE/KBE of one BE for various estimations EM-
M/CMR(2w + 1, w) and numbers n of moduli.

2.3.3 A Cox-Rower Architecture Adapted for HBE

The cox-rower architecture [KKSS00], initially designed for KBE, has been adapted for
HBE to exploit its e�ciency. The adapted architecture for c = 2 is presented in Figure 2.5.

Algorithm 12 of HBE consists of three primary (groups of) loops. The first and the
third loops can be performed on the HBE architecture (Figure 2.5) as well as on the KBE
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CTRL

rower 1,1

memory1,1

channel1,1

rower 1,2

memory1,2

channel1,2
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memoryr,1
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rower r,2

memoryr,2

channelr,2

cox

w

w + 1 w + 1

w

2w

t+1

2

w

1

Figure 2.5 – Architecture of HBE c = 2.

one (the original cox-rower at Figure 2.2) since computations within these loops (except
those about the hi) run in parallel on the rc = n channels. If c > 2, the architecture
has to be adapted to support reductions of integers larger than 2w + 1 bits. The second
loop performs in parallel r = n/c accumulations of products. Therefore, the value of c

is inversely related to the quality of the parallelism. For c = 2, the lost in parallelism is
slight because r = n/2 accumulations of products are performed in parallel. The size of
the accumulator of the second loop is cw+Álog2 cË. For c = 2, the value of the accumulator
can be easily reduced in the third loop, with a reduction similar to the one performed in
the third loop of KBE algorithm.

The cox unit for HBE is now a small accumulator of size t + Álog2 cË bits, unlike
in the original cox-rower architecture for KBE [KKSS00] where the corresponding small
accumulator is of size t bits. For c = 2, the size of the small accumulator is t + 1. The
output hi of the cox is of 2-bit size in HBE c = 2. The value hi sent to the various
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rowers now activates the subtractions of 0, M , 2M and 3M in the rowers (line 15 of
Algorithm 12).

The behavior of the HBE c = 2 architecture is described as follows. The precom-
putations are held in the memory, as in the original cox-rower. The 2r multiplications
of lines 1–3 of Algorithm 12 are performed by the 2r rowers running in parallel. These
multiplications are not represented in the simplified description of HBE in Figure 2.3.
The super-residues are computed through 2r multiplications and additions, r operations
running in parallel at a time. This step corresponds to the arrows from xmi,1 and xmi,2 (in
blue) to ‚xM(i) (in blue) in the simplifed description of HBE c = 2 presented in Figure 2.3.
The super-residues are broadcasted to the channels to perform lines 14 and 15 of Algo-
rithm 12 of HBE. This broadcast is operated by the two right buses at the output of the
large multiplexer. We use two buses to be able to employ one of them to broadcast w-bit
results when necessary, for example the ‚xmi,j computed at line 3 of Algorithm 12. The
broadcast of the super-residues to the various rowers corresponds to the arrows from the
‚xM(i) (in blue) to all the xmÕ

i,j
in (orange) in the simplifed description of HBE c = 2 pre-

sented in Figure 2.3. The left bus at the output of the large multiplexer transfers the w+1
MSBs of the various super-residues to the cox unit. At its turn, the cox unit computes
the values hi and sends them to the various rowers to execute the subtractions at line 15
of Algorithm 12.

2.4 Application to RNS Modular Multiplications

The modular reduction (MR) is performed numerous times during an elliptic curve scalar
multiplication (ECSM). The cost of Algorithm 10 about the RNS MR from [PP95], is
mainly the cost of the two BEs comprised in the algorithm. Two KBEs cost 2n

2+2n EMMs
while the RNS MR costs 2n

2 + 5n EMMs. The cost of the RNS MR drops to 2n
2 + 2n

when optimizations of Gandino et al. [GLP+12] (combination of precomputations and
reordering of internal operations) are applied. One RNS modular multiplication (MM)
costs 2n

2 + 4n EMMs (2n EMMs for the multiplications in the two RNS bases and
2n

2 + 2n EMMs for the RNS MR). When KBE is replaced with HBE (c = 2) in the

RNS MM, the cost of the latter drops to 3n
2

2 + 6n and 5n
2

4 + 6n with the assumptions
1 EMM = 2 and 4 CMR(2w + 1, w) respectively.

Figure 2.6 depicts the theoretical cost ratio HBE/KBE for one RNS MM using opti-
mizations from [GLP+12]. The cost is presented for estimating 1 EMM to be in {2, 3, 4}
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Figure 2.6 – Theoretical cost ratio HBE/KBE of one RNS MM, with optimizations from
[GLP+12], for various estimations EMM/CMR(2w + 1, w) and numbers n of moduli.

CMR(2w + 1, w). For a typical example, if we target a finite field Fp of 256-bit elements
for ECC and use channels of 17-bit width (to fit into the hardwired integer multipliers
embedded in the Xilinx DSP slices; see Section 2.5), we need n = 16 moduli for each RNS
base. In such an example, HBE leads to a 17–27% gain in the theoretical cost of the RNS
MM compared with KBE.

The theoretical cost ratio HBE/KBE for one RNS MM using another approach for
ECC [BT15, BT16] is also evaluated. The proposed idea in [BT15], and generalized in
[BT16], is to use p with properties similar to pseudo-Mersenne and blend RNS with a
polynomial representation of small degree d. We refer to MM algorithms in [BT15] and
[BT16] as HPR d = 2 and HPR d = 4. Figures 2.7 and 2.8 depict theoretical cost ratios
HBE/KBE for one RNS MM using HPR d = 2 and HPR d = 4 respectively. Typically,
if n = 16, HBE leads to a theoretical cost gain from 8% to 17% in RNS MM with HPR
d = 2 compared with KBE. With HPR d = 4 and for n = 16 moduli, the cost gain of
HBE is up to 5%.
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Figure 2.7 – Theoretical cost ratio HBE/KBE of one RNS MM with HPR d = 2 [BT15]
for various estimations EMM/CMR(2w + 1, w) and numbers n of moduli.

Figure 2.8 – Theoretical cost ratio HBE/KBE of one RNS MM with HPR d = 4 [BT16]
for various estimations EMM/CMR(2w + 1, w) and numbers n of moduli.
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2.5 FPGA Implementation Results

We implemented Algorithm 12 of HBE (for c = 2) and Algorithm 11 of KBE [KKSS00]
on a XC7Z020 FPGA from Xilinx using Vivado HLS 2019.2. The same environment and
optimization e�ort (for example, loop pipelining) were used for the implementation of the
two BE algorithms to fairly compare them. The implementation of the two algorithms is
also motivated by the lack of results for standalone BE implementations in the literature.

We use high-level synthesis (HLS) to reduce the design time of the two BEs and
explore several implementation parameters such as the number and the width of the RNS
channels. However, we were unable to use HLS to allocate a memory per channel as
described in Figures 2.2 and 2.5 of KBE and HBE architectures respectively. A memory
containing all the precomputations and feeding all the channels has been used instead.
With this method, the parallelism of the channels is limited by the number of their
accesses per cycle to the memory. Nevertheless, this situation does not negate the fairness
of our comparison since the two BE implementations are both subject to the situation.
Allocating a memory per channel will improve the results of the two BE implementations.
For instance, in Chapter 3 where we were able to appropriately allocate a memory per
channel, the results of the BE implementations show significant improvements (see BE
results for Fp of 256-bit elements and channel width w of 17 bits in Table 2.2, and the BE
results for 16 physical channels (PCs) in Table 3.3—the FPGAs are both from the Xilinx
7-series family though being di�erent).

The RNS bases are selected for underlying finite fields Fp (of ECC) of 256- and 384-
bit elements. The number n of RNS channels is the smallest even integer such that
nw > log2 p (because c = 2 must divide n). The widths w of the RNS channels ex-
amined are 17, 20, 24 and 28 bits. The hardwired integer multipliers embedded in the
DSP slices in Xilinx FPGAs support 18 ◊ 18 and 18 ◊ 25 bit multiplications in 2’s com-
plement. The DSP slices are fully exploited with 17-bit operands for unsigned integers;
see [Xil19b, Xil18a]. In our implementations, we do not use asymmetric widths for the
DSP operands (for example, 17 ◊ 24 bits).

The implementation results are reported in Table 2.2. The “time” stands for the prod-
uct of the period and the number of cycles to compute the BE. The time, the numbers of
DSPs and slices of the two algorithms are plotted in Figure 2.9. HBE solutions are faster
and smaller than KBE solutions in most instances. For example, for Fp of 256-bit elements
and channels of 24-bit width, HBE is 20% faster, 19% smaller in DSPs and 6% smaller
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Table 2.2 – HLS implementation results on a XC7Z020 FPGA for HBE c = 2 (from
[DBT19]) and KBE (from [KKSS00]) algorithms for two widths of prime field elements
and four RNS channel widths w.

Fp width (bits) BE algo. KBE HBE KBE HBE KBE HBE KBE HBE
w (bits) 17 20 24 28

256

nb. slices 409 359 962 652 611 575 708 673
nb. DSPs 51 44 45 39 52 42 77 61

nb. BRAM 1 1 1 1 1 1 1 1
period (ns) 9.7 9.8 9.8 9.5 9.6 8.4 9.9 9.6
nb. cycles 98 91 88 83 89 81 77 71
time (ns) 950.6 891.8 862.4 788.5 854.4 680.4 762.3 681.6

384

nb. slices 458 468 1270 830 1041 994 903 1062
nb. DSPs 75 64 63 54 76 60 105 81

nb. BRAM 1 1 1 1 1 1 1 1
period (ns) 8.2 8.8 8.7 9.5 9.1 7.6 9.9 9.6
nb. cycles 165 143 140 122 163 132 103 93
time (ns) 1353.0 1258.4 1218.0 1159.0 1483.3 1003.2 1019.7 892.8

in slices than KBE. The gain in DSPs amounts to 21% for w = 28 bits, in which case the
reduction is 11% in computation time and 5% in slices. The only case where HBE costs
more than KBE for one of the resource metrics, specifically the number of slices, is for an
Fp of 384-bit elements and channels of 28-bit width. The lost in slices is 15%. However,
this lost in slices is balanced by a 23% gain in DSPs and a 12% gain in computation time,
leading to an area vs. time trade-o� again in favor of HBE.

2.6 Conclusion

In this chapter, we have presented the hierarchical base extension (HBE) [DBT19]. HBE
operates partial computations of small CRTs on the input residues to form super-residues
in the input RNS base, and proceed with the CRT on these super-residues in the output
RNS base. On the design of the RNS bases, HBE does not introduce additional constraints
compared with the state-of-the-art base extension (KBE) [KKSS00]. HBE shows a gain
of up to 35% in the theoretical cost compared with KBE.

We have also presented the architecture proposed to support HBE c = 2 [DBT19]
inpired by the cox-rower architecture for KBE [KKSS00]. The inherent parallelism of RNS
is maintained with a slightly deeper pipeline at the rower level. FPGA implementations
using HLS tools demonstrate that HBE solutions are faster (up to 20%), and in nearly
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Figure 2.9 – Comparison of the time, the numbers of DSPs and slices between HBE c = 2
(from [DBT19]) solutions and KBE (from [KKSS00]) ones.

all cases smaller (up to 23%) than KBE. The area vs. time trade-o� is always in favor of
HBE.
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In the next chapter flexible ECSMs using HBE (c = 2) and KBE are implemented and
their results compared.

Perpective

We intend to study other types of decompositions (for example, c = 3, 4) and design
architectures to support the inherent optimizations of these decompositions.
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Chapter 3

RNS-FLEXIBLE HARDWARE

ACCELERATORS FOR ECC

Elliptic curve cryptography (ECC) serves widely in digital communications where asym-
metric cryptography is needed. The elliptic curve scalar multiplication (ECSM) is the
core operation in protocols of ECC applications. Two bases of n moduli are needed in
RNS implementations of the ECSM. For each base, the number n of moduli is chosen
so that the range 1 of the base is greater than the size of the underlying finite field of
the curve. A virtual channel (VC) is associated with one modulus per RNS base. There-
fore, the RNS implementations of the ECSM require n VCs. Physical channels (PCs)
are hardware supports of the RNS computations. In current RNS implementations of the
ECSM, the used number q of PCs is equal to the number n of VCs; see, for example
[NMSK01, SFM+09, Gui10, BM14]. In other words, each PC is the hardware support of
RNS computations over one modulus per RNS base. RNS-flexible implementations of the
ECSM are proposed in this chapter. The flexibility is to say that the ECSM is implemented
using q PCs, q varying between all divisors of n.

In the literature of hardware implementations of ECC over prime fields, the term
flexibility embodies two meanings that are di�erent from the one given in this chapter.
The first meaning concerns hardware implementations able of supporting two di�erent
asymmetric cryptosystems such as ECC and RSA (for example [BBMO04]) or ECC and
hyperelliptic curve cryptography (HECC) (for example [BMPV06]). The second meaning
concerns hardware implementations of ECC with two or more underlying prime fields;
see, for example [OP01, AR14].

The meaning of the term flexibility in this chapter is di�erent from the ones mentioned
above and is put this way: For a given underlying prime field, the ECSM is implemented
using an adaptable (that is, flexible) quantity of hardware resources. The flexibility of
the hardware-resource quantity is achieved by using q PCs, where q is a divisor of n.

1. The range of an RNS base {m1, . . . , mn} is the number M =
rn

i=1 mi; see Section 1.3 about RNS.
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PC1,1 PC1,2 PC1,3 PC1,4

PC2,1 PC2,2 PC2,3 PC2,4

PC3,1 PC3,2 PC3,3 PC3,4

PC4,1 PC4,2 PC4,4 PC4,4

1

The q = 16 PCs run in parallel.

PCi,j VCi,j

1

One VC is mapped onto each PC.

Figure 3.1 – Decomposition of the numbers n of VCs and q of PCs in usual RNS imple-
mentations of the ECSM, that is, q = n. In this example, q = n = 16. Computations
related to one VC is performed on each PC.

PC1,1 PC1,2 PC1,3 PC1,4

1

The q = 4 PCs run in parallel.

PC1,j

VC1,j

VC2,j

VC3,j

VC4,j

1

n/q = 4 VCs are mapped onto each PC.

Figure 3.2 – Example of decomposition of the numbers n of VCs and q of PCs in RNS
implementations of the ECSM when q = 4 and n = 16. Computations related to n/q = 4
VCs are performed on each PC. At a time, each PC deals with one VC, and the 4 VCs
are processed one after another.

The number n of VCs does not change when using fewer PCs. That means n/q VCs
are mapped onto each PC. Let consider a typical example of a prime field of 256-bit
elements and two RNS bases of 16 moduli, each of size 17 bits. 16 VCs are needed to
cover the full size of the field. The ECSM can be implemented using q œ {1, 2, 4, 8, 16}

PCs. Figure 3.1 depicts the decomposition of the numbers of VCs and PCs in usual RNS
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implementations, that is, when 16 PCs are used. The two-dimension notations introduced
in Chapter 2 are used. The left figure shows the 16 PCs (in blue) running in parallel.
The right figure depicts one VC (in orange) mapped onto its PC. In Figure 3.2, we give
an example of decomposition of the numbers of VCs and PCs when 4 PCs are used for
the RNS implementation. The 4 PCs (in blue) run in parallel and are shown in the left
figure. The right figure shows 4 VCs (in orange) mapped onto their PC. Each PC runs
the computations related to its 4 VCs, one VC at a time and one after another.

The adaptability of the hardware-resource quantity used for the flexible ECSM im-
plementation makes the latter particularly suitable for integrated circuits with limited
hardware resources. Besides, the RNS flexibility of the ECSM implementation provides
circuit designers with several hardware resources vs. performance trade-o�s to choose
from.

This chapter is organized as follows. Additional notations are introduced in Section 3.1.
The flexibility of the BE by Kawamura et al. (KBE) [KKSS00] and the hierarchical base
extension (HBE) [DBT19] is shown in Sections 3.2 and 3.3 respectively. Then, the flexible
ECSM is presented in Section 3.4. The chapter is concluded in Section 3.5.

3.1 Notations and Definitions

Definitions and additional notations are introduced besides the two-dimension notations
presented in Chapter 2.

• The number n of VCs is equal to the number of moduli per RNS base. This number
is the same independently of the performed flexible implementation. Let us recall
that n = rc.

• The number of PCs used for a specific implementation of the BE or the ECSM is
denoted q, q being a divisor of the number n of VCs (hence q Æ n). The number q

of PCs varies with the performed flexible implementation.
• The term flexibility means an adaptable number q of PCs can be used to implement

a BE (either KBE or HBE) or an ECSM. If n is a perfect power, that is, n = s
a,

then our RNS implementation can be performed on q œ {1, s, s
2
, . . . , s

a
} PCs.
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3.2 Flexible Kawamura Base Extension

This section presents how we implemented the flexible KBE. We first show that Algori-
thm 11 of KBE [KKSS00] can be adapted to run on a flexible number q of PCs. Then,
the adaptation of the cox-rower architecture [KKSS00] to use q PCs is presented. FPGA
implementations using high-level synthesis (HLS) are presented at last.

3.2.1 Algorithmical Description of the Flexible KBE

Algorithm 13 describes the mapping of the rc VCs onto the q PCs from Algorithm 11
of KBE. Triple nested loops bounded by rc/q, q/c and c at lines 1–3 and 10–12 in
Algorithm 13 now replace the double nested loops bounded by r and c at lines 1–2
and 9–10 in Algorithm 11. The nested loops bounded by q/c and c at lines 2–3 and 11–12
of Algorithm 13 describe the q PCs running in parallel. The loops bounded by rc/q at
lines 1 and 10 describe the mapping of rc/q VCs onto each of the q PCs, one VC at a time.
The computations performed within the various loops of Algorithm 13 and Algorithm 11
are the same. Lines 5–9 of Algorithm 13 are exactly lines 4–8 of Algorithm 11 and cor-
respond to the computations performed by the cox unit. These lines are not a�ected by
the new description (q PCs are used instead of rc PCs) because the behavior of the cox
is independent of the number of PCs.

3.2.2 Architecture of the Flexible KBE

The architecture of the flexible KBE is adapted from the cox-rower architecture [KKSS00].
Figure 3.3 depicts the architecture of the flexible KBE for q = 4 PCs. Each memoryi,j

(i = 1, 2 and j = 1, 2 in our example) stores the precomputations corresponding to rc/q

VCs. An additional signal (not represented in Figure 3.3) indicates the running VC on the
PC at a time. There is one rower per PC, dedicated to computations over rc/q moduli
per RNS base, one at a time. The computations performed by the rowers are of the form
g Ω (g + a ◊ b + f) mod mi,j or mod m

Õ
i,j as in the original cox-rower, with the operands

a, b, f and g being of size the width w of the PCs. The arithmetic processing performed
by the rower is depicted in Figure 3.4. The first multiplier and adder allow to perform
g+a◊b+f , the value of g being added only when an accumulation is being performed (for
example line 13 of Algorithm 13). The remaining multipliers and adders allow to reduce
mod mi,j or mod m

Õ
i,j the result of g + a ◊ b + f using the reduction method specific to
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Algorithm 13: Flexible KBE BEMæMÕ(x) adapted from [KKSS00]. The func-
tion f(v, i) is given by f(v, i) = q

c (v ≠ 1) + i.
Input: xmi,j for all i, 1 Æ i Æ r and j, 1 Æ j Æ c; ‡ = 0 or 0.5
Precomp.: |M

≠1
i,j |mi,j , |Mi,j|mÕ

k,l
, | ≠ M |mÕ

k,l
, for all i, k, 1 Æ i, k Æ r

and j, l, 1 Æ j, l Æ c

Output: xmÕ
k,l

for all k, 1 Æ k Æ r and l, 1 Æ l Æ c

1 for v Ω 1 to rc/q do
2 for i Ω 1 to q/c parallel do
3 for j Ω 1 to c parallel do

4 ‚xmf(v,i),j
Ω

-----xmf(v,i),j
◊

---M≠1
f(v,i),j

---
mf(v,i),j

-----
mf(v,i),j

5 for i Ω 1 to r do
6 for j Ω 1 to c do
7 ‡ Ω ‡ + trunc(‚xmi,j )

2w

8 hi,j Ω Â‡Ê

9 ‡ Ω ‡ ≠ hi,j

10 for v Ω 1 to rc/q do
11 for k Ω 1 to q/c parallel do
12 for l Ω 1 to c parallel do
13

xmÕ
f(v,k),l

Ω

-----xmÕ
f(v,k),l

+ ‚xmi,j ◊ |Mi,j|mÕ
f(v,k),l

+ hi,j ◊ | ≠ M |mÕ
f(v,k),l

-----
mÕ

f(v,k),l

pseudo-Mersenne numbers described in Subsection 1.2.3.
The execution of KBE using the flexible architecture is described as follows. The rc

multiplications in base M at line 4 of Algorithm 13 are performed by the q rowers running
in parallel. Each rower is in charge of rc/q multiplications, one at a time. Similarly to the
original cox-rower, the large multiplexer receives the results of the multiplications from
the rowers and outputs two buses (left and right). The right bus broadcasts the results
inputted to the large multiplexer to the q rowers in order to proceed with the computation
of the CRT in base M

Õ, with q executions of line 13 (Algorithm 13) at a time. The left
bus transfers the results inputted to the large multiplexer to the cox unit which computes
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Figure 3.3 – The architecture for the flexible KBE (adapted from the cox-rower architec-
ture [KKSS00]): example with q = 4 PCs and c = 2.

the rc bits hi,j and sends them to the q rowers, q bits hi,j at a time, for subtraction of 0
or M .

3.2.3 FPGA Implementation Results

Implementation Environment

We implemented Algorithm 13 on a XCZU7EV-FFVC1156 FPGA from Xilinx using Vi-
vado HLS 2019.2. The finite field Fp is of 256-bit elements. The PCs are chosen to be
17-bit wide in order to fully exploit the DSP slices in Xilinx FPGAs. Let us recall that
the hardwired integer multipliers embedded in the DSP slices in Xilinx FPGAs support
18 ◊ 18 and 18 ◊ 25 bit multiplications in 2’s complement. Asymmetric widths for the
DSP operands are not supported in implementations leading to results presented in this
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Figure 3.4 – Structure of the arithmetic processing performed by a rower. The rower
performs the operation g Ω (g + a ◊ b + f) mod m, where m = 2w

≠ Á (with Á < 2w/2),
and a, b, f and g are of size w bits.

chapter, similarly to the ones in Chapter 2. Each RNS base needs 16 moduli to represent
the elements of Fp since the size of the moduli is the width of the PCs (17 bits). Algo-
rithm 13 was implemented for all q œ {1, 2, 4, 8, 16} PCs using the same environment and
optimization e�ort.

Utilization of Hardware Resources

The FPGA implementation results are reported in Table 3.1. The hardware resources
and the performance vary depending on the number of PCs used for the flexible KBE
implementation. The variations of hardware resources and performance in relation to the
increase of the number of PCs are presented in Figure 3.5. The base of comparison taken
in this figure is the implementation results for one PC. The numbers of DSPs and BRAMs
increase linearly with the number of PCs. In other words, an increase of the number of
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Table 3.1 – HLS implementation results on a XCZU7EV-FFVC1156 FPGA for the flexible
KBE (adapted from [KKSS00]) using q œ {1, 2, 4, 8, 16} PCs. Finite fields are of 256-bit
elements and the width of the PCs is 17 bits.

nb. PCs 1 2 4 8 16
nb. slices 107 162 223 341 623
nb. DSPs 3 6 12 24 48

nb. BRAMs 1 2 4 8 16
period (ns) 3.9 3.9 4.1 4.6 4.6
nb. cycles 280 153 88 56 37
time (ns) 1092 596.7 360.8 257.6 170.2

PCs from q to kq induces an increase with the same factor k in the numbers of DSPs
and BRAMs. For example, the KBE implementation with 4 PCs is performed using 12
DSPs, which is 4 ◊ 3 DSPs, the implementation with one PC using 3 DSPs. On the other
hand, the number of slices increases less than linearly with the number of PCs, that is,
the increase factor is less than k when the number of PCs is increased from q to kq. For
example, an increase of the number of PCs from q = 1 to q = 4 results in an increase factor
of only 2.1 in the number of slices (107 and 223 slices for q = 1 and 4 PCs respectively).

Number of Cycles and Time Analyses

Let consider the example of the first (group of) loop bounded by 16 (16 VCs corresponding
to the 16 moduli per base) in Algorithm 13. Each PC handles 16/q VCs (q PCs are used).
Figure 3.6 shows the number of cycles needed by a PC to perform all computations related
to the 16/q VCs it handles. For q = 2 and 4, each PC handles 8 and 4 VCs respectively,
and runs them one after another. These number of VCs are represented by the 8 columns
at the left and 4 columns at the right in Figure 3.6. The 6 boxes of each column symbolize
the number of cycles needed by a PC to perform all computations related to one VC. These
6 cycles are typical value of the pipeline depth for our implementation of the arithmetic
processing (performed by the rower) presented in Figure 3.4. The loop is pipelined. Hence,
at each cycle, the operations related to a new VC starts on the PC; this is symbolized
by the one-box height gap between the columns in each of the left and right figures (in
Figure 3.6).

For the left figure in Figure 3.6, after 8 cycles (from top to bottom), the computations
related to the 8 VCs on one PC have all started. We name these cycles operation cycles
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M#X +v+H2b
153 = 280 ÷ RX3
88 = 280 ÷ jXk
56 = 280 ÷ 8Xy
37 = 280 ÷ dXe

M#X bHB+2b
162 = 107 × RX8
223 = 107 × kXR
341 = 107 × jXk
623 = 107 × 8X3

M#X .aSb
6 = 3 × k
12 = 3 × 9
24 = 3 × 3
48 = 3 × Re

M#X "_�Jb
2 = 1 × k
4 = 1 × 9
8 = 1 × 3

16 = 1 × Re

iBK2 UMbV
596.7 = 1092 ÷ RX3
360.8 = 1092 ÷ jXy
257.6 = 1092 ÷ 9Xk

170.2 = 1092 ÷ eX9

1 S*
2 S*b
4 S*b
8 S*b
16 S*b

Figure 3.5 – Comparison of FPGA implementation results of the flexible KBE (adapted
from [KKSS00]) for q œ {1, 2, 4, 8, 16} PCs. Finite fields are of 256-bit elements and the
width of the PCs is 17 bits.

and their number OC. Therefore, OC = 8. The reader can see that at the right figure in
Figure 3.6, OC = 4. Additional cycles are needed by the PC to terminate all computations
on its ongoing VCs. These cycles are named wait cycles and their number is denoted WC.
In Figure 3.6, WC = 5 in the left and the right figures. This case is the worst scenario,
that is, the case where the next loop cannot start until all computations (related to all
the VCs) of the current loop are teminated. Ideally, we want WC = 0 because it leads
to the minimal value of the total number of cycles for the implementation. However, in
our HLS implementations, the achieved WC for the di�erent loops are always > 0 though
usually better than the worst case.

When the number of PCs increased from q to kq, the OC decreases with a factor k,
but the WC remains the same regardless of the number of PCs used. This constancy of
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OC = 8

WC = 5

mapping order of 8 VCs

onto their PC

cycles

1

One PC performs computations re-
lated to 8 VCs (case q = 2 PCs are
used for the implementation).

OC = 4

WC = 5

mapping order of 4 VCs

onto their PC

cycles

1

One PC performs computations re-
lated to 4 VCs (case q = 4 PCs are
used for the implementation).

Figure 3.6 – Example of numbers cycles used by one PC to perform all computations
related to the 16/q VCs it handles. The PC sequentially ‘uploads’ the 16/q VCs. Com-
putations on the same PC are pipelined. In this typical example of loops at lines 1–4 of
Algorithm 13, the computations related to the rc = 16 VCs are equally shared by the q

PCs in use. At the left figure, q = 2 PCs are used and each PC handles 8 VCs. At the
first cycle (top to bottom), computations related to the first VC start. At the next cycle,
computations related to the next VC start, and so on until computations related to all 8
VCs (mapped onto the PC) start. Meanwhile, it is possible that the PC has terminated
the computations related to the VCs that started earlier. Still, a few cycles are needed by
the PC to terminate the remaining computations related to its ongoing VCs, that is, to
empty out the pipeline. At the right figure, q = 4 PCs are used and each PC handles 4
VCs. The filling and emptying of the pipeline are similar to the ones at the left figure.

the WC prevents the implementations from achieving a reduction with a factor k in the
total number of cycles. Consequently, this number of cycles decreases less than linearly,
that is, the decrease factor is less than k when the number of PCs increases from q to kq.
For example, using q = 4 PCs instead of one PC decreases the number of cycles by a
factor of 3.2 (88 cycles for four PCs and 280 cycles for one PC).

The “time” is the product of the period and the number of cycles (to compute the
BE), similarly to Section 2.5. The periods achieved by the implementations on the various
numbers q of PCs are relatively close. Therefore, the less-than-linear decrease in the total
number of cycles (when the number of PCs increases linearly) results in a less-than-linear
decrease in the time.
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3.3 Flexible Hierarchical Base Extension

A description of how we implemented the flexible HBE is presented in this section, sim-
ilarly to Section 3.2 about the flexible KBE. In addition, the flexible HBE solutions are
compared with the flexible KBE ones.

3.3.1 Algorithmical Description of the Flexible HBE

Algorithm 14 presents the mapping of the rc VCs onto the q PCs from Algorithm 12
of HBE. Triple nested loops bounded by rc/q, q/c and c at lines 1–3 and 14–16 in
Algorithm 14 replace double nested loops bounded by r and c at lines 1–2 and 12–13
in Algorithm 12. Within these triple loops, the inner loops bounded by q/c and c at
lines 2–3 and 15–16 describe the q PCs running in parallel. The outer loops bounded by
rc/q at lines 1 and 14 describe the mapping of rc/q VCs on each PC, one VC at a time.
For the computation of the super-residues, double nested loops bounded by rc/q and q/c

at lines 5 and 6 of Algorithm 14 replace the single loop bounded by r at line 4 of Algo-
rithm 12. The super-residues are now computed by q/c parallel executions of lines 7–9 (of
Algorithm 14) at a time, rc/q times. Lines 10–13 of Algorithm 14 remain unchanged re-
garding lines 8–11 of Algorithm 12 because computations at these lines are not a�ected by
the change of the number of PCs from rc to q. Indeed, these computations are performed
by the cox unit which is independent of the number of used PCs, as in Algorithm 13 of
the flexible KBE.

3.3.2 Architecture of the Flexible HBE

The architecture of the flexible HBE is adapted from that of HBE (c = 2) (presented
in Subsection 2.3.3) to use q PCs, q being a divisor of rc. Each PC supports rc/q VCs.
Figure 3.7 depicts the architecture of the HBE for q = 4 PCs. The number of rowers
is reduced to the desired number q of PCs, one rower per PC. The computation of the
super-residues involves an accumulation without reduction; see lines 5–9 of Algorithm 14.
To be able to perform these accumulations, we split the arithmetic processing performed
by the rower of KBE (in Figure 3.4) into two parts: an upper and a lower part. The upper
part, depicted in Figure 3.8, performs the operation G Ω G + a ◊ b + f , that is, without
reduction. G is of size at most 2w + 1 bits; a, b and f are of size the width w of the PCs.
In addition to operations at lines 1–4, 10–16 and 18 in Algorithm 14 which are existent in
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Algorithm 14: Flexible HBE BEMæMÕ(x) adapted from [DBT19]. The function
f(v, i) is given by f(v, i) = q

c (v ≠ 1) + i.
Input: xmi,j for all i, 1 Æ i Æ r and j, 1 Æ j Æ c; ‡ = 0 or 0.5
Precomp.: |M

≠1
i,j |mi,j , |Mi,j|mÕ

k,l
, | ≠ M |mÕ

k,l
, for all i, k, 1 Æ i, k Æ r

and j, l, 1 Æ j, l Æ c

Output: xmÕ
k,l

for all k, 1 Æ k Æ r and l, 1 Æ l Æ c

1 for v Ω 1 to rc/q do
2 for i Ω 1 to q/c parallel do
3 for j Ω 1 to c parallel do

4 ‚xmf(v,i),j
Ω

-----xmf(v,i),j
◊

---M≠1
f(v,i),j

---
mf(v,i),j

-----
mf(v,i),j

5 for v Ω 1 to rc/q do
6 for i Ω 1 to q/c parallel do
7 ‚xM(f(v,i)) Ω 0
8 for j Ω 1 to c do
9 ‚xM(f(v,i)) Ω ‚xM(f(v,i)) + ‚xmf(v,i),j

◊ m
(f(v,i))
f(v,i),j

(without modular reduction)

10 for i Ω 1 to r do
11 ‡ Ω ‡ + trunc(‚x

M(i) )
2w◊c

12 hi Ω Â‡Ê

13 ‡ Ω ‡ ≠ hi

14 for v Ω 1 to rc/q do
15 for k Ω 1 to q/c parallel do
16 for l Ω 1 to c parallel do
17 ‚xmÕ

f(v,k),l,i
Ω |‚xM(i) |mÕ

f(v,k),l

18

xmÕ
f(v,k),l

Ω

-----xmÕ
f(v,k),l

+ ‚xmÕ
f(v,k),l,i

◊

--- M (i)
---
mÕ

f(v,k),l

+ hi ◊ | ≠ M |mÕ
f(v,k),l

-----
mÕ

f(v,k),l

Algorithm 13 of the flexible KBE, the upper part is able to perform the computation of
the super-residus. In our HLS implementations, the upper part is carried out by one DSP.
The lower part, depicted in Figure 3.9, performs the operation g Ω G mod m, where

100



3.3. FLEXIBLE HIERARCHICAL BASE EXTENSION

CTRL

rower 1,1

memory1,1

PC1,1

rower 1,2

memory1,2

PC1,2

rower 2,1

memory2,1

PC2,1

rower 2,2

memory2,2

PC2,2

cox

w

w + 1 w + 1

w

2w

t+1

2

w

1

Figure 3.7 – The flexible architecture for HBE (adapted from the HBE architecture in
[DBT19], itself inspired by the cox-rower architecture [KKSS00]): example with q = 4
PCs and c = 2.

m = 2w
≠ Á and G is of size at most 2w + 1 bits. At lines 4 and 18 of Algorithm 14,

the lower part is used after the upper part in order to perform the needed reduction. At
line 17, the lower part is used alone (without the upper part) since only the modular
reduction is needed at this line. At line 9 of Algorithm 14 where the super-residues are
computed, the lower part is not used to avoid performing a modular reduction. In our
HLS implementations, the lower part is carried out by one DSP at the expense of some
extra slices.

The behavior of the architecture of the flexible HBE is similar to that of HBE and
is described as follows. Line 4 of Algorithm 14 is performed on the q PCs, q parallel
computations at a time, rc/q times. Then, the super-residues are computed through the
rc multiplications and additions, q/c operations running in parallel at a time. The super-
residues are broadcasted to the rowers by the two right buses at the output of the large
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Figure 3.8 – Structure of the upper part of the arithmetic processing performed by a
rower in the flexible HBE (c = 2). The upper part of the rower performs the operation
G Ω G + a ◊ b + f , where a, b and f are of size w bits, and G of size at most 2w +1 bits.
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Figure 3.9 – Structure of the lower part of the arithmetic processing performed by a
rower in the flexible HBE (c = 2). The lower part of the rower performs the operation
g Ω G mod m, where m = 2w

≠ Á (with Á < 2w/2), g is of size w bits, and G of size at
most 2w + 1 bits.

multiplexer, similarly to the broadcast in HBE architecture (see Subsection 2.3.3). The
left bus sends the super-residues values to the cox unit which computes the values hi and
send them to the rowers for the subtractions at line 18 (0, M , 2M and 3M when c = 2).
The rc computations of lines 17 and 18 of Algorithm 14 are performed on the q PCs, q

parallel computations at a time, rc/q times.
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3.3.3 FPGA Implementation Results

Implementation Environment

The flexible HBE (c = 2) was implemented with the same environment and optimiza-
tion e�ort as the flexible KBE was (Subsection 3.2.3). The considered finite field Fp is
also of 256-bit elements and the PCs 17-bit wide. Algorithm 14 of the flexible HBE was
implemented using q œ {2, 4, 8, 16} PCs. Owing to the architecture of HBE, the number
of PCs needs to be greater or equal to c (the super-residues are formed by combining c

residues). Therefore, using one PC for the implementation of the flexible HBE (c = 2)
was not possible.

Utilization of Hardware Resources and Time

The FPGA implementation results are reported in Table 3.2. Figure 3.10 depicts the
evolution of the numbers of DSPs, BRAMs, slices and cycles, and the time. The base
of comparison is the implementation results obtained for q = 2 PCs (the flexible HBE
cannot be implemented for q = 1 PC). An increase in the number of PCs from q to kq

results in an increase of factor k in the numbers of DSPs and BRAMs. For example, HBE
solution with four PCs uses 8 DSPs and 4 BRAMs, which is twice the number of DSPs
and BRAMs used by HBE solution with two PCs (4 DSPs and 2 BRAMs). The number
of slices increases less than linearly in relation to the increase of the number of PCs.
Similarly to the flexible KBE and for the same reason (WC > 0; see Subsection 3.2.3),
the number of cycles of the flexible HBE solutions decreases less than linearly in relation
to the increase of the number of PCs. This less-than-linear decrease in the number of

Table 3.2 – HLS implementation results on a XCZU7EV-FFVC1156 FPGA for the flexi-
ble HBE (adapted from [DBT19]) using q œ {2, 4, 8, 16} PCs. Finite fields are of 256-bit
elements and the width of the PCs is 17 bits.

nb. PCs 2 4 8 16
nb. slices 179 289 526 609
nb. DSPs 4 8 16 32

nb. BRAMs 2 4 8 16
period (ns) 4.2 4.2 4.4 4.3
nb. cycles 103 67 49 36
time (ns) 432.6 281.4 215.6 154.8
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M#X +v+H2b
67 = 103 ÷ RX8
49 = 103 ÷ kXR
36 = 103 ÷ kXN

M#X bHB+2b
289 = 179 × RXe
526 = 179 × kXN
609 = 179 × jX9

M#X .aSb
8 = 4 × k
16 = 4 × 9
32 = 4 × 3

M#X "_�Jb
4 = 2 × k
8 = 2 × 9
16 = 2 × 3

iBK2 UMbV
281.4 = 432.6 ÷ RX8

215.6 = 432.6 ÷ kXy
154.8 = 432.6 ÷ kX3

2 S*b
4 S*b
8 S*b
16 S*b

Figure 3.10 – Comparison of FPGA implementation results of the flexible HBE (adapted
from [DBT19]) for q œ {2, 4, 8, 16} PCs. Finite fields are of 256-bit elements and the width
of the PCs is 17 bits.

cycles is translated into a less-than-linear decrease in the time. For example, the HBE
solution with four PCs is only 1.5 faster than the one with two PCs.

Comparison Flexible KBE vs. Flexible HBE

The comparison of the flexible HBE and KBE is reported in Table 3.3. The comparison
is performed for q œ {2, 4, 8, 16} PCs. No comparison is possible for q = 1 PC since no
implementation result is available for HBE (c = 2) on one PC. In Figure 3.11 are plotted
the time, the numbers of cycles, DSPs and slices.

The HBE solution is faster than the KBE one for all q œ {2, 4, 8, 16} PCs. For example,
for q = 4 PCs, the HBE solution is 22% faster than the KBE one. The gain in speed
reaches 28% for q = 2 PCs. For a given number q of PCs, the number of BRAMs is the
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Table 3.3 – Comparison of FPGA implementation results of the flexible HBE (adapted
from [DBT19]) with those of the flexible KBE (adapted from [KKSS00]) for various num-
ber of PCs. The flexible HBE is not implemented for one PC. Finite fields are of 256-bit
elements and the width of the PCs is 17 bits.

BE algos. KBE HBE KBE HBE KBE HBE KBE HBE KBE HBE
nb. PCs 1 2 4 8 16
nb. slices 107 - 162 179 223 289 341 526 623 609
nb. DSPs 3 - 6 4 12 8 24 16 48 32

nb. BRAMs 1 - 2 4 8 16
period (ns) 3.9 - 3.9 4.2 4.1 4.2 4.6 4.4 4.6 4.3
nb. cycles 280 - 153 103 88 67 56 49 37 36
time (ns) 1092 - 596.7 432.6 360.8 281.4 257.6 215.6 170.2 154.8

same for the two BEs. For all q œ {2, 4, 8, 16}, HBE is 33% smaller than KBE in DSPs.
However, in most cases, HBE solutions require more slices than KBE ones; this is due
to the fact that only one DSP is used in our HLS implementations of the lower part of
the arithmetic processing performed by the rower at Figure 3.9 (see Subsection 3.3.2).
For example, for q = 4 PCs, the HBE solution costs 23% more slices than the KBE
one. This extra cost in slices amounts to 35% for q = 8 PCs. Note also that for q = 16
PCs, the HBE solution is 2% smaller in slices besides being 33% smaller in DSPs and 9%
faster than the KBE one. Overall, the extra costs in slices of HBE solutions are well
compensated by the gains in DSPs. Besides, HBE solutions are faster than KBE ones for
all q œ {2, 4, 8, 16} PCs.

When increasing the number of PCs from q to kq, the decrease factor in the number
of cycles of HBE is smaller than that of KBE. For example, by using four PCs instead
of two (that is, double the number of PCs), the number of cycles of the HBE solution
is reduced by 35% while that of the KBE solution is reduced by 42%. This result is to
be expected since in Algorithm 14 of HBE an additional (group of) loop is introduced
(compared with KBE)—the loop for the computation of the super-residues—, resulting
in an augmentation of the total WC. The consequence is that the gain in time of HBE
compared with KBE decreases as the number of PCs increases. In other words, the fewer
PCs are used, the greater is the time gain of HBE solutions compared with KBE ones.
Nevertheless, HBE solutions remain faster than KBE ones for all considered numbers of
PCs.
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Figure 3.11 – Comparison of the time, the numbers of cycles, DSPs and slices between
the flexible HBE solutions and the flexible KBE ones for various numbers of PCs. HBE
is not implemented for one PC.

3.4 Flexible Elliptic Curve Scalar Multiplication

This section presents how we implemented the flexible ECSMs from the flexible BEs
presented in the two previous sections. First, the main steps between the ECSM and the
BE are described. Then, FPGA implementation results of the flexible ECSMs using KBE
and HBE are presented. The results of the two flexible ECSMs (with KBE and HBE) are
compared with each other, and with FPGA implementation results of the ECSM from
the literature.
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BE

mod p reduction

DBL, ADD
{(+,�,⇥) mod p}

[u]Q

1

Figure 3.12 – Hierarchical description of RNS computations of the ECSM. The ECSM
is computed from a few hundreds point doublings and additions. If Algorithm 15 of the
Mongomery ladder [Mon87] is used, each iteration of its loop requires two dozens basic
operations and a dozen RNS mod p reductions. Each mod p reduction is made of two BEs
and a few basic operations. The cost of the ECSM is mainly driven by that of the mod p

reduction, which is itself driven by that of the BEs.

3.4.1 Overview of the Flexible ECSM

Hierarchy of the ECSM

The RNS computation of the ECSM is performed through operations that are presented
in an hierarchical way in Figure 3.12. From top to bottom, the RNS computation of
the ECSM defined over Fp requires an ECSM algorithm, point addition and doubling
formulas, an e�cient RNS MR algorithm (for the mod p reduction), and a BE algorithm.

The chosen algorithm for computing the ECSM in this thesis is the Montgomery
ladder [Mon87], recalled in Algorithm 15. At each bit of the scalar, a point doubling and
addition are performed. In other words, the arithmetic operations at each iteration are the
same regardless of the value of the scalar bit. The constancy of the number of operations
is an advantage in terms of computation protection 2. There is an extra cost attached
to Montgomery ladder compared with other ECSM algorithms such as the double-and-
add algorithm. This extra cost is due to the fact that a point doubling and addition
are performed at each iteration. The number of point doublings and additions needed to
perform an ECSM depends on the bit size of the underlying finite field of the curve. In the
current standards (see, for example [ndlsdsd11, oST13]), a few hundreds point doublings

2. The computation protection is not su�cient for a complete secure implementation. Indeed, other
parameters of hardware implementations such as the number of control signals or the storage addresses of
iteration results have to be considered. For example, if the storage addresses of the results of an iteration
depend on the bit value of the scalar and no further step is taken, then the information leak is likely to
di�er depending on the bit value of the scalar.
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Algorithm 15: Montgomery ladder algorithm [Mon87]
Input: Q a point of the elliptic curve EFp

u an integer written in binary representation as us≠1us≠2...u0
Output: Q1 = [u]Q

1 Q1 Ω O; Q2 Ω Q

2 for i Ω s ≠ 1 to 0 do
3 if ui = 0 then
4 Q1 Ω [2]Q1; Q2 Ω Q1 + Q2
5 else
6 Q2 Ω [2]Q2; Q1 Ω Q1 + Q2

7 return Q1

Table 3.4 – Generalized Montgomery curve formulas to curves in short Weierstraß equation
[BJ02, IT02]. The formulas are in projective coordinates. The value xQ denotes the a�ne
x-coordinate of Q, the input point of Algorithm 15 about the Montgomery ladder.

Q1 + Q2 [2]Q1

XQ1+Q2 = ≠4bZQ1ZQ2(XQ1ZQ2 + XQ2ZQ1)
+(XQ1XQ2 ≠ aZQ1ZQ2)2

ZQ1+Q2 = xQ(XQ1ZQ2 ≠ XQ2ZQ1)2

X[2]Q1 = (XQ1
2

≠ aZQ1
2)2

≠ 8bXQ1ZQ1
3

Z[2]Q1 = 4ZQ1(XQ1
3 + aXQ1ZQ1

2 + bZQ1
3)

Table 3.5 – Steps to compute point addition and doubling formulas from [BJ02, IT02]
reported in Table 3.4.

Q1 + Q2 [2]Q1

R = XQ1ZQ2 + XQ2ZQ1 E = 2XQ1ZQ1

S = XQ1XQ2 F = XQ1
2

L = ZQ1ZQ2 G = ZQ1
2

D = RL H = ≠4bG

J = R
2

≠ 4SL I = aG

XQ1+Q2 = ≠4bD + (S ≠ aL)2
X[2]Q1 = EH + (F ≠ I)2

ZQ1+Q2 = xQJ Z[2]Q1 = 2E(F + I) ≠ GH

and additions are needed to perform an ECSM using the Montgomery ladder.
The formulas used for point addition and doubling in our ECSM implementations are

from [BJ02, IT02] (in projective coordinates) because they are applicable to arbitrary
curves in short Weierstraß equation. These formulas and the steps to compute them are
respectively reported in Tables 3.4 and 3.5. The reader can see from the computation
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Algorithm 16: RNS Montgomery reduction algorithm [PP95]
Input: xM, xMÕ

Precomp.: pMÕ , (≠p
≠1)M, (M≠1)MÕ

Output: sM and sMÕ where s = (xM
≠1) mod p

1 qM Ω xM ◊ (≠p
≠1)M

2 qMÕ Ω BEMæMÕ (qM)
3 rMÕ Ω xMÕ + qMÕ ◊ pMÕ

4 sMÕ Ω rMÕ ◊ (M≠1)MÕ

5 sM Ω BEMÕæM (sMÕ)

steps in Table 3.5 that each iteration of the loop of Algorithm 15 of the Montgomery
ladder is made of multiplications, additions and subtractions mod p (the operations are
performed in the underlying finite field Fp of the curve). The main cost of these operations
in RNS comes from the mod p reduction. Indeed, the cost of the RNS mod p reduction is
quadratic in EMMs while that of multiplications, additions and subtractions is linear in
EMMs; see Section 1.3.

We choose to perform the mod p reduction with the state-of-the-art algorithm from
Posch and Posch [PP95], recalled in Algorithm 16. This algorithm comprises two BEs (at
lines 2 and 5), and some multiplications and additions (at lines 1, 3 and 4). The cost of
Algorithm 16 comes mainly from the two BEs. Some precomputations of Algorithm 16 can
be combined with some of the BE algorithm in use, as have shown Gandino et al. [GLP+12]
and Guillermin [Gui10]. These combinations allow to reduce the number of multiplications
between the input residues and the precomputations. We use these optimizations in our
implementations.

In summary, the ECSM can be viewed as composed of BEs and basic operations
(multiplications, additions and subtractions) outside the BEs. Therefore, a flexible imple-
mentation of the ECSM is performed through flexible BEs and flexible basic operations.

Algorithmical Description

Since the ECSM is made of BEs and basic operations, an algorithmical description of the
flexible basic operations is provided in addition to the algorithmical descriptions of the
flexible BEs (KBE and HBE) presented in Subsections 3.2.1 and 3.3.1. Let x and y be
two large integers. Algorithm 17 describes the RNS computation in base M of s = x ù y

using q PCs, where the symbol ù stands for any of the basic operations—multiplication,
addition and subtraction. The inner loops bounded by q/c and c at lines 2 and 3 describe
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the q PCs running in parallel to compute the basic operation. The outer loop bounded
by rc/q at line 1 describes the mapping of rc/q VCs on each PC, one VC at a time.

Algorithm 17 is useful in computations of the formulas in Table 3.5 (without the
mod p reduction) and in computations of lines 1, 3 and 4 of Algorithm 16 (for the mod p

reduction). For RNS computations of basic operations in base M
Õ, the same algorithm is

used by replacing M with M
Õ.

Algorithm 17: Flexible basic operation in the RNS base M. The function f(v, i)
is given by f(v, i) = q

c (v ≠ 1) + i.
Input: xmi,j and ymi,j for all i, 1 Æ i Æ r and j, 1 Æ j Æ c

Output: smi,j for all i, 1 Æ i Æ r and j, 1 Æ j Æ c

1 for v Ω 1 to rc/q do
2 for i Ω 1 to q/c parallel do
3 for j Ω 1 to c parallel do
4 smf(v,i),j

=
---xmf(v,i),j

ù ymf(v,i),j

---
mf(v,i),j

Architecture

The architectures used for the flexible ECSMs are the ones at Figures 3.3 and 3.7 used for
the flexible KBE and HBE respectively, depending on the BE used in the flexible ECSM.
Additional precomputations related to the RNS MR (Algorithm 16) and the point dou-
bling and addition formulas (curve related values such as ≠a and ≠4b) in Table 3.5 are
stored in the memories. The arithmetic processing performed by the rower remains un-
changed: the one at Figure 3.4 if the flexible ECSM uses KBE, and the ones at Figures 3.8
and 3.9 if the flexible ECSM uses HBE. The basic-operation computations described in
Algorithm 17 are performed using the architecture corresponding to the chosen BE. If
KBE is used in the ECSM implementation, the basic operations (outside the BEs) are
performed by the architecture at Figure 3.3 with the rower performing the arithmetic
processing described in Figure 3.4. If HBE is used in the ECSM implementation, the
same basic operations are performed by the architecture at Figure 3.7 with the rower
performing the combination of the upper and the lower part of the arithmetic processing
depicted in Figures 3.8 and 3.9.
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On Flexible Multi-Level-Security ECSMs

Depending on its usage, an application may need two (or more) security levels. For exam-
ple, the application may need a lower security level for a frequent usage and a higher one
for a less frequent usage. In such a situation, two underlying finite fields (of the ECSM),
corresponding to the two desired security levels, are needed. The designer is forced to
choose between performing two implementations of the ECSMs over the two finite fields
(one ECSM per finite field) or one implementation of the ECSM over the largest finite field
(to ensure the highest security level by default). In the first case, the two implementations
use separate hardware resources, leading to a used quantity of hardware resources greater
than the one needed by each implementation. In the second case, the solution frequently
uses more time than normally needed (the lower security level is more frequently used by
the application). The flexible architectures at Figures 3.7 and 3.3 can be employed to im-
plement the two ECSMs (over the two finite fields) on the same hardware resources with
appropriate performance for each ECSM. The term “flexible multi-level-security ECSMs”
indicates two (or more) ECSMs over finite fields of di�erent sizes can be implemented
using the same hardware resources, and this quantity of hardware resources is flexible.

Let us consider the case of two finite fields Fp1 and Fp2 where p1 and p2 are two large
prime such that the bitsize of p2 is twice that of p1. If n VCs are needed for the flexible
ECSM over Fp1 , then 2n VCs can be used for the flexible ECSM over Fp2 (the same width of
VCs is considered for the ECSM implementations on Fp1 and Fp2). The same architecture
can be used to implement the flexible ECSMs over Fp1 and Fp2 by mapping respectively
n/q and 2n/q VCs onto each PC. An additional signal, that indicates which one of the
flexible ECSM over Fp1 or over Fp2 is being performed, has to be added to the architecture.
Mainly, the core of the architecture remains the same, that is, the arithmetic processing
performed by each rower is unchanged. For a given number of PCs, this constancy of the
architecture core would lead to the same number of DSPs used regardless of the underlying
finite field (Fp1 or Fp2) of the ECSM.

On the memory of each PC are stored the precomputations needed for the imple-
mentation of the ECSM over Fp1 and over Fp2 . If the two sets of precomputations per
memory (of each PC) can be stored in a single BRAM, then the solutions of the flexible
multi-level-security ECSMs would use the same area (in DSPs and BRAMs) as the solu-
tions of a “single” flexible ECSM (without targeting the multi-level-security aspect). This
situation is likely to occur since BRAMs in modern FPGAs have large storage capacities
which are usually underexploited in RNS implementations of asymmetric cryptosystems;
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see, for example Tables 3.6 and 3.8 for the occupancies of BRAMs in our flexible ECSM
implementations. Although using the same hardware resources (in DSPs and BRAMs),
the solutions of the flexible ECSMs over Fp1 and Fp2 would not present the same perfor-
mance. Indeed, the solution of the flexible ECSM over Fp2 would be slower since more
computations have to be performed per PC (twice VCs are mapped onto each PC).

The flexible multi-level-security ECSMs were not implemented. The FPGA implemen-
tation results presented in the next subsection only concern the flexible ECSMs over a
single finite field.

3.4.2 FPGA Implementation Results

We implemented the flexible ECSMs using the same environment as the flexible BEs.
The ECSMs using KBE and HBE are respectively called ECSM-KBE and ECSM-HBE.
Similarly to the flexible BEs, the considered finite field Fp is of 256-bit elements and the
PCs are 17-bit wide. Also, the flexible ECSM-KBE was implemented for q œ {1, 2, 4, 8, 16}

PCs and the flexible ECSM-HBE for q œ {2, 4, 8, 16} PCs. Similarly to the flexible HBE,
the flexible ECSM-HBE was not implemented for q = 1 PC owing to HBE architecture
(at least 2 PCs are required to implement HBE c = 2).

Flexible ECSM-KBE

FPGA implementation results of the flexible ECSM-KBE are reported in Table 3.6. The
hardware resources and the performance vary depending on the number of PCs used for
the implementation. The resource and performance variations in relation to the number
of PCs are depicted in Figure 3.13. These variations are similar to the ones observed for
the flexible KBE. The numbers of DSPs and BRAMs increase linearly with the number
of PCs, that is, they increase with a factor k when the number of PCs increases from q to
kq. On the other hand the number of slices increases less than linearly with the number
of PCs, that is, it increases with a factor less than k when the number of PCs increases
from q to kq. For example, using four PCs instead of one PC causes a 4 times increase in
the numbers of DSPs (12 instead of 3) and BRAMs (4 instead of 1) but only a 1.4 times
increase in the number of slices (4432 instead of 3120).

The variations of the number of cycles and the time are also similar to the ones observed
for the flexible KBE. The number of cycles and the time decrease less than linearly in
relation to the increase of the number of PCs. In other words, the number of cycles and
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Table 3.6 – HLS implementation results on a XCZU7EV-FFVC1156 FPGA for the ECSM-
KBE using q œ {1, 2, 4, 8, 16} PCs. Finite fields are of 256-bit elements and the PCs 17-bit
wide.

nb. PCs 1 2 4 8 16
nb. slices 3120 3317 4432 5841 13621
nb. DSPs 3 6 12 24 48

nb. BRAMs
(occupancy) 1 (38%) 2 (19%) 4 (10%) 8 (5%) 16 (3%)

period (ns) 4.4 4.5 4.7 4.9 5.1
nb. cycles 2541429 1376748 790575 481648 311713
time (ms) 11.2 6.2 3.7 2.4 1.6

the time decrease with a factor less than k when the number of PCs increases from q

to kq. As explained for the flexible KBE, the less-than-linear decrease in the number of
cycles results from the various WCs being > 0 in our HLS implementations (see Part
“Number of Cycles and Time analyses” in Subsection 3.2.3). Since the periods of the
implementation solutions (for the various numbers of PCs) are close, the less-than-linear
decrease in the number of cycles results in a less-than-linear decrease in the time. For
instance, when the number of PCs is increased from one to four, the time decreases by a
factor 3.0, from 11.2 ms to 3.7 ms.

One BRAM is allocated to each PC. Each BRAM contains precomputations related
to the rc/q VCs that are mapped onto the PC it is allocated to. The total number of
precomputations related to all the rc VCs does not vary with the number of PCs. The
precomputations are equally shared between the BRAMs of the PCs in a way that each
precomputation can be accessed locally, that is, by the rower of the same PC. The more
PCs are used, the lesser each BRAM is occupied. The occupancy of one BRAM is reported
in Table 3.6 for the various number of used PCs. These occupancies are the ceils of the
values computed by the formula

nb. stored bits
36000 bits ◊ 100. (3.1)

The denominator is the BRAM size in the Xilinx 7-series FPGAs, that is, 36 Kb [Xil19a,
p. 14] (two RAMs of 18 Kb each). The reader can see that the BRAMs are not fully
occupied regardless of the number of PCs.

Since the used hardware resources di�er depending on the number of PCs of the
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M#X +v+H2b
1376748 = 2541429 ÷ RX3
790575 = 2541429 ÷ jXk
481648 = 2541429 ÷ 8Xj
311713 = 2541429 ÷ 3Xk

M#X bHB+2b
3317 = 3120 × RXR
4432 = 3120 × RX9
5841 = 3120 × RXN

13621 = 3120 × 9X9
M#X .aSb
6 = 3 × k
12 = 3 × 9
24 = 3 × 3
48 = 3 × Re

M#X "_�Jb
2 = 1 × k
4 = 1 × 9
8 = 1 × 3

16 = 1 × Re

iBK2 UKbV
6.2 = 11.2 ÷ RX3
3.7 = 11.2 ÷ jXy
2.4 = 11.2 ÷ 9Xd

1.6 = 11.2 ÷ dXy

1 S*
2 S*b
4 S*b
8 S*b
16 S*b

Figure 3.13 – Comparison of FPGA implementation results of the flexible ECSM-KBE
for q œ {1, 2, 4, 8, 16} PCs. Finite fields are of 256-bit elements and the PCs 17-bit wide.

implementation, we introduce additional metrics to assess the obtained gain in time
when increasing hardware resources. These metrics are DSPs ◊ time, slices ◊ time
and BRAMs ◊ time, and they provide information about area vs. time trade-o�s. The
HLS implementation results according to these metrics are reported in Table 3.7. The
DSPs ◊ time and BRAMs ◊ time trade-o�s are the best (smallest) for q = 1 PC, and
increase with the number of PCs while the contrary is observed for the slices ◊ time
trade-o� (except for q = 16 PCs). Overall, the area vs. time trade-o�s are better when
a few PCs are used for the ECSM-KBE implementation. This result is to be expected
since the WCs being > 0 have lesser impact on the time when the flexible ECSM-KBE
implementation is performed on fewer PCs.

In summary, the used hardware resources increase with the number of PCs (linearly
for the DSPs and BRAMs and less than linearly for the slices). On the other hand, the
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Table 3.7 – HLS implementation results of the ECSM-KBE according to introduced met-
rics of area vs. time trade-o�s for q œ {1, 2, 4, 8, 16} PCs.

nb. PCs 1 2 4 8 16
DSPs ◊ time 33.6 37.2 44.4 57.6 76.8
slices ◊ time 34944 20565.4 16398.4 14018.4 21793.6

BRAMs ◊ time 11.2 12.4 14.8 19.2 25.6

time decreases less than linearly in relation to the increase of the number of PCs. This
less-than-linear decrease in the time is mainly due to the various WCs being > 0 in
the flexible ECSM-KBE implementations. As a result, ECSM-KBE implementations with
fewer PCs present the best area vs. time trade-o�s.

Flexible ECSM-HBE

FPGA implementation results of the flexible ECSM-HBE are reported in Table 3.8. Sim-
ilarly to the flexible ECSM-KBE, the hardware resources and the performance vary de-
pending on the number of PCs used for the implementation. Figure 3.14 depicts these
variations. Similarly to the flexible HBE, the comparison base of the variations is the im-
plementation results obtained for two PCs (ECSM-HBE implementation is not possible
for q = 1 PC). Again, the numbers of DSPs and BRAMs increase linearly with the number
of PCs while the number of slices increases less than linearly. For instance, using four PCs
instead of two PCs results in a 2 times increase in the numbers of DSPs (8 instead of 4)
and BRAMs (4 instead of 2) but only a 1.1 times increase in the number of slices (4851
instead of 4307).

Similarly to the flexible BEs and ECSM-KBE, the number of cycles and the time of
the flexible ECSM-HBE solutions decrease less than linearly in relation to the increase of
the number of PCs. The various WCs > 0 account for the less-than-linear decrease in the
number of cycles (see Part “Number of Cycles and Time analyses” in Subsection 3.2.3). At
its turn, the less-than-linear decrease in the number of cycles results in a less-than-linear
decrease in the time (the periods of the implementation solutions for the various numbers
of PCs are close). For example, when the number of PCs increases from two to four PCs,
the time decreases by a factor 1.4 (4.3 ms for two PCs and 3.0 ms for four PCs).

One BRAM is allocated to each PC, similarly to the flexible ECSM-KBE. The BRAM
of each PC contains precomputations related to the rc/q VCs mapped onto the PC. All

115



RNS-FLEXIBLE HARDWARE ACCELERATORS FOR ECC

Table 3.8 – HLS implementation results on a XCZU7EV-FFVC1156 FPGA for the ECSM-
HBE using q œ {2, 4, 8, 16} PCs. Finite fields are of 256-bit elements and the PCs 17-bit
wide.

nb. PCs 2 4 8 16
nb. slices 4307 4851 6145 14599
nb. DSPs 4 8 16 32

nb. BRAMs
(occupancy) 2 (14%) 4 (7%) 8 (4%) 16 (2%)

period (ns) 4.3 4.8 4.9 5.1
nb. cycles 1002615 637235 444325 305763
time (ms) 4.3 3.0 2.2 1.5

precomputations needed for the ECSM-HBE computation are equally shared between
the BRAMs, regardless of the number of PCs in use. The occupancy of one BRAM is
reported in Table 3.8 for the di�erent number of used PCs. The BRAM occupancy is
computed using the formula at Equation 3.1, similarly to the flexible ECSM-KBE. Again,
the BRAMs are also not fully occupied in the flexible ECSM-HBE implementation.

The flexible ECSM-HBE implementation results according to the introduced metrics
of area vs time trade-o�s are reported in Table 3.9. Similarly to the flexible ECSM-
KBE results, the flexible ECSM-HBE trade-o�s in DSPs ◊ time and BRAMs ◊ time are
better when implementations are performed on fewer PCs. The reverse is true for the
slices ◊ time trade-o�, except for q = 16 PCs. For q = 16 PCs, the HLS tool uses much
more LUTs, leading to much more slices and resulting in a much greater slices ◊ time
trade-o� (we recall that a slice is made of LUTs, FFs and other logic elements such as a
small multiplexer). Overall, the area vs. time trade-o�s are better when the ECSM-HBE is
implemented with fewer PCs. As for the flexible ECSM-KBE, this result is not surprising
since the WCs being > 0 have less impact on the time of on-few-PCs implementations
than on that of on-many-PCs implementations.

To summarize, when the number of PCs increases, the hardware resources also increase
(linearly in DSPs and BRAMs and less than linearly in slices) while the time decreases less
than linearly. The flexible ECSM-HBE solutions have their best area vs. time trade-o�s
when they are implemented using few PCs.
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M#X +v+H2b
637235 = 1002615 ÷ RXe
444325 = 1002615 ÷ kXj
305763 = 1002615 ÷ jXj

M#X bHB+2b
4851 = 4307 × RXR
6145 = 4307 × RX9

14599 = 4307 × jX9

M#X .aSb
8 = 4 × k
16 = 4 × 9
32 = 4 × 3

M#X "_�Jb
4 = 2 × k
8 = 2 × 9
16 = 2 × 3

iBK2 UKbV
3.0 = 4.3 ÷ RX9

2.2 = 4.3 ÷ kXy
1.5 = 4.3 ÷ kXN

2 S*b
4 S*b
8 S*b
16 S*b

Figure 3.14 – Comparison of FPGA implementation results of the flexible ECSM-HBE
for q œ {2, 4, 8, 16} PCs. Finite fields are of 256-bit elements and the PCs 17-bit wide.

Table 3.9 – HLS implementation results of the ECSM-HBE according to introduced met-
rics of area vs. time trade-o�s for q œ {2, 4, 8, 16} PCs.

nb. PCs 2 4 8 16
DSPs ◊ time 17.2 24 35.2 48
slices ◊ time 18520.1 14553 13519 21898.5

BRAMs ◊ time 8.6 12 17.6 24

Comparison Flexible ECSM-KBE vs. Flexible ECSM-HBE

In Table 3.10 flexible ECSM-KBE solutions and flexible ECSM-HBE ones, reported re-
spectively in Tables 3.6 and 3.8, are put together. The comparison of the flexible ECSMs
is performed for q œ {2, 4, 8, 16} PCs since the ECSM-HBE is not implemented using one
PC. In Figure 3.15 are plotted the time, the numbers of cycles, DSPs and slices.
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Table 3.10 – Comparison of flexible ECSM-HBE solutions with flexible ECSM-KBE ones
for the various numbers of PCs. ECSM-HBE is not implemented for one PC.

nb. PCs 1 2 4 8 16
BE algorithms KBE HBE KBE HBE KBE HBE KBE HBE KBE HBE

nb. slices 3120 - 3317 4307 4432 4851 5841 6145 13621 14599
nb. DSPs 3 - 6 4 12 8 24 16 48 32

nb. BRAMs 1 - 2 4 8 16
period (ns) 4.4 - 4.5 4.3 4.7 4.8 4.9 4.9 5.1 5.1
nb. cycles 2541429 - 1376748 1002615 790575 637235 481648 444325 311713 305763
time (ms) 11.2 - 6.2 4.3 3.7 3.0 2.4 2.2 1.6 1.5

ECSM-HBE solutions are faster than ECSM-KBE ones for all q œ {2, 4, 8, 16} PCs.
For example, the ECSM-HBE solution is 19% faster than the ECSM-KBE one for q = 4
PCs. For q = 2 PCs, the gain in time amounts to 31%. The number of used BRAMs
remains the same for ECSM-HBE and ECSM-KBE. Similarly to what has been observed
for the BEs, ECSM-HBE solutions are 33% smaller than ECSM-KBE ones in DSPs for
all q œ {2, 4, 8, 16} PCs. However, there is a small extra cost in slices for ECSM-HBE.
For example, ECSM-HBE costs 9% more slices than ECSM-KBE for q = 4 PCs. The
maximum extra cost in slices for ESCM-HBE solutions is 23%, reached for q = 2 PCs.
Globally, the extra costs in slices for ECSM-HBE solutions are overly compensated by
their gains in DSPs, in addition to ECSM-HBE solutions being faster than ECSM-KBE
ones for all q œ {2, 4, 8, 16} PCs. Consequently, the area vs. time trade-o�s are in favor of
the flexible ECSM-HBE for all q œ {2, 4, 8, 16} PCs.

Let us recall that the decrease factor in the number of cycles in HBE is smaller than the
one in KBE when the number of PCs increases from q to kq (see Part “Comparison Flexible
KBE vs. Flexible HBE” in Subsection 3.3.3). This result induces a decrease factor in the
number of cycles in ECSM-HBE solutions smaller than the one in ECSM-KBE solutions
when the number of PCs increases. For example, by using four PCs instead of two PCs,
the number of cycles of the ECSM-HBE solution is decreased by 36% while that of the
ECSM-KBE solution is decreased by 43%. Consequently, the gain in time of ECSM-HBE
solutions compared with ECSM-KBE ones decreases when the number of PCs increases.
In other words, the fewer the PCs, the greater the gain in time of ECSM-HBE solutions
compared with ECSM-KBE ones. Considering that the best area vs. time trade-o�s are
obtained for ECSM implementations using fewer PCs regardless of the chosen BE, this
result can also be put in this way: The better is the area vs. time trade-o� of the ECSM
for each BE, the faster are ECSM-HBE solutions compared with ECSM-KBE ones.
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Figure 3.15 – Comparison of the time, the numbers of cycles, DSPs and slices between
the flexible ECSM-HBE solutions and the flexible ECSM-KBE ones for various numbers
of PCs. ECSM-HBE is not implemented for one PC.

Comparison with Results from the Literature

Comparing implementations results of various works is always tricky because of the numer-
ous parameters that have to be considered. For the comparison to be relevant, parameters
have to be the same or close enough. These parameters include the ECSM algorithm as
well as the point doubling and addition formulas, the FPGA and its configuration tool.
In our case, for each to-be-compared-with result from the literature, the flexible ECSM-
KBE and ECSM-HBE should be implemented on the same FPGA with the same tool
using the same formulas in order to enable a fair comparison. This work is not possible in
the time frame allowed by the PhD grant. Besides, we choose to use HLS for our FPGA
implementations because it enhances fast configurations of FPGAs (by focusing almost
exclusively on the functionality), and numerous FPGA implementations are required in
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our demonstration of the RNS flexibility. The selected HLS tool is not compatible with
most of the FPGAs used in ECSM implementations from the literature. Therefore, we
select a few implementations results that we consider to be the most significant from the
literature and show that our results are comparable with them. The FPGA configurations
in all selected references were described using a hardware description language (HDL).
Configuring an FPGA using an HDL requires much more time than using HLS.

The papers from the literature chosen for the comparison are the following ones,
listed below in reverse chronological order. Our ECSM implementations target arbitrary
underlying prime field of the curve, similarly to all selected references except [GP08].

• The first paper by Bajard and Merkiche [BM14] is instructive for our comparison
because the authors use RNS for operations in the underlying finite field and they
choose the Montgomery ladder as the ECSM algorithm (the same as we do). The
main di�erence compared with our work comes from the architecture. The reduc-
tion algorithm chosen in their work to perform the mod mi in the various rowers is
the Montgomery reduction algorithm [Mon85]; this is to support their main contri-
bution: avoiding the constraints related to choosing pseudo-Mersenne for the RNS
base moduli. For example, there is not enough pseudo-Mersenne moduli of size 17
bits to form the two bases needed to perform modular operation in an underlying
finite field of 521-bit elements. Another advantage of using this paper in our com-
parison is that their implementation was performed on an FPGA from the Xilinx
7-series FPGAs, as ours. Their ECSM solution is the fastest among the ones using
RNS.

• In the second paper, Ma et al. [MLPJ13] do not use RNS, but usual positional
number system for operations in the underlying finite field. The ECSM is computed
using the window method with randomized jacobian coordinates, as proposed in
[Mö01]. The main advantage of using this method is that the ECSM is computed
with less iterations compared for example to a Montgomery ladder. Besides, the
number of point additions is considerably reduced depending on the chosen size of
the window. As far as we know, their solution is currently the fastest one for the
ECSM over arbitrary prime field reported in the literature.

• The contribution of Guillermin [Gui10] is also instructive in our comparison because
RNS is used for operations on the underlying finite field as well as the Montgomery
ladder for the ECSM. Besides, the overall core of the architecture in Figure 3.3 used
for the flexible ECSM-KBE implementation comes from this paper, itself adapted
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from the one in [KKSS00]. However, although the arithmetic operation of the rower
is the same in [Gui10] and this work, we were unable to manually place the registers
for pipeline stages (performed automatically by the HLS tool) as in their arithmetic
processing due to limitations of the current HLS tools. In addition, the author uses
the point addition and doubling formulas from [BDE13] whereas we use the ones
in [BJ02, IT02].

• The last paper is by Güneysu and Paar [GP08]. RNS is not used for operations
on the underlying finite field. Besides, the authors target NIST pseudo-Mersenne
prime fields and design their operators for this purpose; the mod p reductions
are then faster than in arbitrary prime fields. The ECSM was implemented using
the double-and-add algorithm. The double-and-add algorithm usually costs less
point additions than the Montgomery ladder. For fairly chosen scalars, the gain in
point additions is about half the bit size of the underlying finite field of the curve.
The authors also estimate the results if the window method were used. To keep
a fair comparison with real implementation results from the literature and ours,
this estimation is not reported in our comparison. The reported results are from
Tables 1 and 2 of [GP08].

Table 3.11 contains our ECSM implementation results and the ones in the mentioned
papers from the literature. Since the used hardware resources di�er from one implemen-
tation to another, the metrics slices ◊ time, DSPs ◊ time and BRAMs ◊ time are added.
The added metrics provide a close evaluation of the gain in time when using more area
or vice versa. The smaller the value, the better the area vs. time trade-o�. The symbol (ı)

in the frequency column of Table 3.11 indicates that the frequencies are the ceils of the
period inverses for our implementations, and the ceils of the frequencies for the results
from the literature.

The area and the area ◊ time trade-o�s of our ECSM solutions, the one in [BM14]
and the best one in [MLPJ13] at line 12 of Table 3.11 are plotted in Figure 3.16. We
choose to plot the results in these two references because their FPGA technologies are
the closests to ours. Since [BM14] and [MLPJ13] do not target flexible implementations,
their implementation results are plotted near ours for q = 16 PCs.

Our ECSM solutions for all q œ {1, 2, 4, 8} are smaller in DSPs and BRAMs than the
ones from [BM14] and [MLPJ13]. This result demonstrates the usefulness of our flexible
ESCM-KBE and ECSM-HBE. The gain in area is compensated by a lost in time, leading
to mixed results in area ◊ time trade-o�s. For example, our ECSM-HBE solutions for
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Table 3.11 – Comparison of our FPGA implementation results of the ECSM with the ones from the literature.

reference (FPGA) used BE if RNS slices DSPs BRAMs freq.(ı) (MHz) time (ms) slices ◊ time / DSPs ◊ time /
BRAMs ◊ time

ours
(XCZU7EV-FFVC1156)

KBE (1 PC) 3120 3 1 228 11.2 34944 / 33.6 / 11.2
KBE (2 PCs) 3317 6 2 223 6.2 20565.4 / 37.2 / 12.4
HBE (2 PCs) 4307 4 2 233 4.3 18520.1 / 17.2 / 8.6
KBE (4 PCs) 4432 12 4 213 3.7 16398.4 / 44.4 / 14.8
HBE (4 PCs) 4851 8 4 209 3.0 14553 / 24 / 12
KBE (8 PCs) 5841 24 8 205 2.4 14018.4 / 57.6 / 19.2
HBE (8 PCs) 6145 16 8 205 2.2 13519 / 35.2 / 17.6
KBE (16 PCs) 13621 48 16 197 1.6 21793.6 / 76.8 / 25.6
HBE (16 PCs) 14599 32 16 197 1.5 21898.5 / 48 / 24

[BM14] (Kintex-7) KBE 1630 46 16 282 0.612 997.56 / 28.152 / 9.792
[MLPJ13] (XC4VLX100-12FF1148) 4655 37 11 250 0.44 2048.2 / 16.28 / 4.84
[MLPJ13] (XC5LX110T-3FF1136) 1725 37 10 291 0.38 655.5 / 14.06 / 3.8

[Gui10] (EP1S60) KBE 16200 LE 125 0 91 1.17 18954 (LE·ms) / 146.25 / 0
[Gui10] (EP2S30) KBE 9177 ALM 96 0 158 0.68 6240.36 (ALM·ms) / 65.28 / 0

[GP08] (XC4VFX12-12) 1715 32 11 490 0.62 1063.3 / 19.84 / 6.82
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Figure 3.16 – Comparison of the area and area ◊ time trade-o�s of our ECSM implemen-
tations with the one in [BM14] and the best one in [MLPJ13]. ECSM implementations
from [BM14, MLPJ13], and generally from the literature, are not flexible.

q = 2 PCs are 39% better in DSPs ◊ time trade-o� than the ones in [BM14], but 18% not
as good as the ones in [MLPJ13] regarding the same metric. In BRAMs ◊ time trade-o�,
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our ECSM-HBE solutions for q = 2 PCs are 12% better than the ones in [BM14], but 55%
not as good as the ones in [MLPJ13]. Our ECSM solutions are larger in slices than the ones
in [BM14, MLPJ13], resulting in slices ◊ time trade-o�s in their favor. Nevertheless, our
ECSM-KBE and ECSM-HBE are flexible, and our best ECSM solutions are comparable
in area ◊ trade-o�s with the best ones from the literature, notably [BM14, MLPJ13].

The implementations results from [Gui10, GP08] are instructive but the comparison
with our results is di�cult. The FPGA used in our work is not from the same manufacturer
as the one used in [Gui10]. Therefore, any conclusion is di�cult to draw, for example from
the gain in DSPs ◊ time (their DSPs are smaller) or the loss in BRAMs ◊ time. It is also
hard to conclude from the results in [GP08] because they restrict the underlying finite
field Fp of the curve to be NIST prime fields where the mod p reduction is faster than
in arbitrary prime fields; the mod p reduction is costly (approximately two BEs) in our
implementations. Nevertheless, it seems safe to assume that the results from [Gui10, GP08]
are equivalent to the ones from [BM14, MLPJ13] with which we compared our results.

Overall, most of our ECSM solutions are smaller than the ones from the literature. The
comparison results are mixed in terms of area vs. time trade-o�s. Our best ECSM solutions
are comparable with the best ones from the literature, in addition to our implementations
being flexible.

3.5 Conclusion

The RNS flexibility of the BE has been proven in this chapter. We have demonstrated
that the BE operation can be implemented using a flexible number of PCs, leading to an
adaptable utilization of hardware resources. The flexible architectures allow to choose the
desired numbers of DSPs and BRAMs to be used for the implementation; their numbers
vary linearly with the number of PCs. HLS implementations of the flexible HBE [DBT19]
and KBE [KKSS00] provide several area vs. time trade-o�s for the comparison of the two
flexible BEs. HBE solutions are faster with better area vs. time trade-o�s in all comparable
cases.

We have also shown that the ECSM operation is flexible. The flexible ECSM can be
implemented using either the flexible HBE or the flexible KBE. With variations of the
numbers of DSPs and BRAMs similar to the ones of the flexible BEs, HLS implementations
of the flexible ECSM-HBE and ECSM-KBE also provide several area vs. time trade-o�s.
ECSM-HBE solutions are always faster and present better area vs. time trade-o�s than
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ECSM-KBE ones.
Although our ECSM solutions are slower than the best ones from the literature (most

of our solutions are smaller), our best solutions are comparable with the latter in terms
of area vs. trade-o�s. For example, our ECSM-HBE solutions are 39% smaller than re-
sults in [BM14] but 18% larger than results in [MLPJ13] in DSPs ◊ time. Our ECSM
implementations present the main advantage of being flexible compared with the ones
from the literature. Consequently, the ECSM can be implemented so that the quantity
of used hardware resources is adaptable and small. Therefore, such implementations can
be performed on integrated circuits with limited available hardware resources. Nearly all
our solutions are smaller than the ones from the literature, demonstrating the benefit of
the flexibility.
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The work presented in this thesis aims at designing RNS-flexible hardware accelerators
for the ECSM operation on FPGA using HLS. In Chapter 1 ECC as the context of this
thesis has been presented. We have also presented the ECSM which is the core opera-
tion in protocols of ECC applications. The computation of the ECSM over Fp involves
numerous multiplications, additions and subtractions in Fp, and hence numerous mod p

reductions. RNS has also been presented in Chapter 1 as well as its advantages such as
the independence of multiplications, additions and subtractions between the moduli of an
RNS base. Besides, the base extension (BE) has been described and its importance in the
RNS mod p reduction has been demonstrated.

Contributions

In Chapter 2 we presented our hierarchical base extension (HBE) proposed in [DBT19].
HBE proceeds by first computing super-residues which are results of partial CRTs on
the residues in the input RNS base. The continuation of the CRT is then carried out
on the super-residues in the output RNS base. Compared with the state-of-the-art base
extension (KBE) [KKSS00], no additional contraint is needed to form the RNS bases. The
theoretical gain introduced by HBE compared with KBE is up to 35%. We also proposed
an architecture for HBE [DBT19], adapted from the cox-rower [KKSS00]. Our architecture
preserves the inherent parallelism of RNS with a marginally deeper pipeline than the cox-
rower. FPGA implementations using HLS show that HBE solutions are always faster (up
to 20%), and in nearly all cases smaller (up to 23%) than KBE solutions. HBE solutions
present the best area vs. time trade-o� in all cases.

In Chapter 3 the flexible HBE and KBE are presented before showing how to use them
to obtain flexible ECSMs. We first demonstrated that HBE and KBE are flexible, that
is, they can be implemented using a flexible number of PCs. The architectures of HBE
[DBT19] and KBE [KKSS00] are adapted to support this flexibility. The flexibility of the
architectures allow us to select the desired numbers of DSPs and BRAMs to be used for
the BE implementation. FPGA implementations using HLS show that the flexible HBE
solutions are always faster (up to 28%) and 33% smaller in DSPs that the flexible KBE
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ones. Though most flexible HBE solutions are larger in slices (up to 35%) than the flexible
KBE ones, the area vs. time trade-o� is in favor of the flexible HBE solutions in all cases.

We showed how to derive flexible ECSMs from the flexible HBE and KBE in the rest
of Chapter 3. The derived flexible ECSM-HBE and ECSM-KBE can be implemented us-
ing the architectures described for the flexible HBE and KBE respectively. The hardware
resources of our flexible ECSMs are adaptable owing to the flexibility of the architectures,
similarly to the flexible BEs. FPGA implementations using HLS show that the flexible
ECSM-HBE solutions are always faster (up to 31%) and 33% smaller in DSPs than the
flexible ECSM-KBE ones. The flexible ECSM-HBE solutions are slightly larger in slices
(up to 23%) than the flexible ECSM-KBE ones. Similarly to the flexible BEs, the area
vs. time trade-o� is always in favor of the flexible ECSM-HBE solutions. For ECSM-HBE
solutions and ECSM-KBE ones, the best area vs. time trade-o�s are given by implemen-
tations with fewer PCs. Compared with the best FPGA implementation results from the
literature, nearly all our ECSM-HBE and ECSM-KBE solutions are smaller in DSPs and
BRAMs. Although our ECSM solutions are slower than the best ones from the literature
(most of our solutions are smaller), the area ◊ time trade-o�s of our best solutions are com-
parable with the latter. For instance, our ECSM-HBE solutions are 39% smaller than the
ECSM ones in [BM14] but 18% larger than the ECSM ones in [MLPJ13] in DSPs ◊ time.
The smallness and adaptability of area utilizations in our solutions, obtained thanks to
the flexibility, imply that ECSM-HBE and ECSM-KBE can be implemented on integrated
circuits with limited available hardware resources.

Perspectives

In Chapter 2 the super-residues in our HBE implementations are results of partial CRTs
on c = 2 input residues. The partial CRTs are also possible on other numbers c of input
residues. We plan to study the cases c = 3 and 4 and design optimized architectures for
HBE.

We mention in Chapter 3 (Subsection 3.4.1) that our flexible ECSM architectures can
be used to implement flexible multi-level-security ECSMs. For example, using the same
architecture, and hence the same numbers of DSPs and BRAMs, we could implement
ECSM-KBE and ECSM-HBE over two di�erent finite fields: one of 256-bit elements and
the other of 512-bit elements. The number of VCs to be mapped onto each PC for an
ECSM over the finite field of 512-bit elements would be twice the one for an ECSM over
the finite field of 256-bit elements. We also plan to study this aspect of the flexibility and
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how to optimize the architectures to support ECSMs over two or more finite fields.
The ECSM algorithm used in our flexible implementations is the Montgomery ladder

without any additional protections (for example against DPA). How will behave counter-
measures against various side-channel attacks in a context of flexible ECSM implementa-
tions is worth a study.
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Appendix A

COMPARAISON D’ALGORITHMES DE

RÉDUCTION MODULAIRE EN HLS SUR

FPGA

This appendix contains the unabridged contribution (in French) from [DZBT19].

Comparaison d’algorithmes de réduction modulaire en
HLS sur FPGA
Libey Djath1, Timo Zijlstra2, Karim Bigou1, et Arnaud Tisserand2

1,2Lab-STICC UMR 6285, 2CNRS, 1Univ. Bretagne Occidentale, Univ. Bretagne Sud

Résumé
Dans ce travail, nous comparons di�érents algorithmes de réduction modulaire implantés
en synthèse de haut niveau sur FPGA pour des applications de cryptographie asymétrique.
Nous étudions comment e�ectuer les réductions modulaires en fonction des tailles et
formes (particulières/quelconques) des moduli, du type et du nombre des autres opéra-
tions arithmétiques impliquées. Pour cela, nous développons une bibliothèque C, qui sera
distribuée sous licence libre, d’arithmétique modulaire pour la cryptographie asymétrique.

Mots-clés : arithmétique modulaire, conception en synthèse de haut niveau, explo-
ration d’architectures et d’algorithmes, circuit FPGA.

1. Introduction

Les implantations en cryptographie asymétrique nécessitent un support d’arithmétique
modulaire de plus en plus avancé. RSA utilise des carrés et multiplications modulo un
nombre de quelques milliers de bits. Les cryptosystèmes actuels nécessitent des séquences
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d’opérations plus complexes 1 mais sur de plus petites tailles : des centaines de bits pour les
courbes elliptiques (ECC) [HMV04] et hyper-elliptiques (HECC) [CF06] ; ou des dizaines
de bits pour la cryptographie post-quantique (PQC) sur des réseaux euclidiens (RE).
La représentation modulaire des nombres, ou RNS pour residue number system [Gar59,
ST67, Big14], amène un plus grand parallélisme interne permettant d’accélérer les calculs
comme dans RSA et ECC, mais il nécessite un niveau supplémentaire de réductions mod-
ulaires. RNS découpe les nombres en petits morceaux dans une base de moduli premiers
entre eux deux à deux notés mi. Les calculs s’e�ectuent sur les restes modulo les mi dans
un canal propre à chaque mi. Ces « petites » réductions modulo chaque mi s’ajoutent
aux réductions modulaires à un plus haut niveau sur les nombres complets (p. ex. le mod-
ulo p pour des éléments de GF(p)). Dans ce papier, nous nous intéressons seulement aux
réductions modulo les mi dans le cadre de l’utilisation de RNS.
Dans le cadre PQC, on utilise des petits corps finis (p. ex. éléments entre 13 et 23 bits)
mais pour des calculs sur des polynômes (p. ex. degrés entre 256 et 1024) et des petites
matrices (souvent de tailles 2 ◊ 2, 3 ◊ 3 , 4 ◊ 4).
Dans ce papier, nous nous intéressons uniquement aux réductions modulaires pour des
tailles de quelques dizaines de bits (pour les moduli de RNS et pour les petits corps utilisés
dans PQC-RE). Nous ne traitons pas des réductions pour des plus grands nombres comme
ceux utilisés pour RSA et ECC (ceci fera l’objet de travaux futurs).
Les outils actuels de synthèse de circuits n’o�rent pas de support très avancé pour la
réduction modulaire. Ainsi, nous développons une bibliothèque C dédiée à l’arithmétique
modulaire en cryptographie asymétrique utilisable en synthèse de haut niveau (HLS pour
high level synthesis). Elle sera distribuée sous licence libre une fois su�samment complétée,
validée et documentée.
Nous utilisons la HLS pour explorer de nombreux compromis entre les représentations des
nombres, les algorithmes de calcul et les architectures matérielles (ce qui est très coûteux
en synthèse VHDL ou Verilog). Pour un modulo quelconque (c.-à-d. avec une écriture
dense et sans structure comme 5101963 = (10011011101100110001011)2), on utilise prin-
cipalement les réductions de Montgomery [Mon85] et de Barrett [Bar84]. Pour RE, on
utilise plutôt un modulo spécifique avec une décomposition binaire très creuse (comme
8380417 = 223

≠ 213 + 1) car la réduction se simplifie beaucoup (voir p. ex. [Sol99]). En
RNS, on utilise souvent des moduli de la forme mi = 2w

± ci où w est la taille des mots
dans les canaux et les ci des petites constantes, denses, pour des questions de performances

1. Addition, soustraction, carré, multiplication, multiplication par des constantes, inversion.
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(voir p. ex. [Cra92]). Ici aussi, cela conduit à des réductions plus e�caces que pour des
moduli quelconques. En pratique, il y a un compromis entre la forme du modulo, ou des
moduli, et le nombre de telles valeurs utilisables.
Dans ce papier, nous présentons les résultats de notre bibliothèque pour la réduction
modulaire de petits nombres (c.-à-d. d’au plus quelques dizaines de bits, pour RNS ou
PQC-RE). Nous comparons expérimentalement l’impact des principaux algorithmes de
réduction pour di�érentes formes de moduli. Les principaux motifs de calcul de nos ap-
plications, utilisés dans ce papier, sont la somme réduite et la somme réduite de produits.
Nous évaluons comment se comportent les outils de HLS sur ces motifs de calcul et expéri-
mentons di�érentes techniques d’exploration pour di�érentes contraintes arithmétiques et
architecturales.

2. Définitions et notations

Pour la suite du papier, nous définissons et utilisons :
— m le modulo de taille w bits pouvant avoir plusieurs formes :

— MQ : modulo quelconque avec une écriture dense et sans structure particulière ;
— MSC : modulo spécifique à écriture binaire très creuse (p. ex. 3 bits non nuls

sur w) ;
— MSR : modulo spécifique pour RNS de forme 2w

± c (où c est petit, c < 2w/2) ;
— la réduction modulaire x mod m ou des opérations modulaires (x ù y) mod m avec

l’opération ù œ {±, ◊} ;
— le motif de calcul: une séquence d’opérations arithmétiques faisant intervenir des

réductions modulaires sur des vecteurs de taille N , les motifs étudiés ici sont:
— M1 : qN

i=1 xi mod m ;
— M2 : qN

i=1 xi ◊ yi mod m ;
— deux stratégies sont comparées pour la réduction de séquence d’opérations modu-

laires :
— RIS : Réduction Intermédiaire Systématique, p. ex.1qN

i=1 (xi ◊ yi mod m)
2

mod m ;
— RSF : Réduction Seulement à la Fin, p. ex.

1qN
i=1 xi ◊ yi

2
mod m ;

— l’opérande de la réduction modulaire peut avoir plusieurs tailles (p. ex. w,
w + Álog2 NË, 2w ou 2w + Álog2 NË bits dans nos applications) ;

— des données x et y de taille w bits pour les vecteurs des motifs ;
— TM le temps total de calcul (en ns) pour obtenir le résultat d’un motif.
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3. Bibliothèque développée

Nous souhaitons aider les concepteurs d’implantations matérielles en cryptographie asymé-
trique à explorer di�érents compromis algorithmes/représentations des nombres/architec-
tures de calcul. Dans ce papier, nous traitons uniquement de la réduction modulo m, un
entier d’au plus quelques dizaines de bits, et de son utilisation dans quelques motifs de
calcul typiques. Nous travaillons d’abord sur des m « petits » pour PQC et RNS, mais
nous compléterons notre bibliothèque pour des moduli plus grands dans l’avenir (p. ex.
éléments de GF(p) de quelques centaines de bits). La forme de m influençant beaucoup
les algorithmes et les performances, nous avons choisi de supporter :

— des moduli quelconques (MQ), des moduli spécifiques très creux (MSC) utilisés
pour PQC et des moduli spécifiques à RNS (MSR) ;

— les algorithmes de réduction de Montgomery [Mon85] et de Barrett [Bar84] pour
MQ, et des algorithmes spécifiques pour MSC et MSR [Cra92, Sol99].

Nous comparons nos résultats avec l’algorithme « natif » employé par Vivado HLS lors
de l’utilisation de l’opérateur % du langage C. Nos résultats montrent qu’il s’agit proba-
blement d’une division euclidienne itérative dont on conserve le reste final [EL03, EL94].
En tout, nous comparons 5 algorithmes de réduction modulaire di�érents dans le même
cadre.
Toutes nos implantations sont génériques pour des opérandes de taille w bits fixée à la
conception. Pour RNS et PQC, w est de quelques dizaines de bits au plus. La taille N

des vecteurs dans les motifs est aussi générique. Pour Barrett et Montgomery, il faut pré-
calculer à la conception des constantes internes (p. ex. un inverse modulaire qui dépend
de m et de w).
Nous définissons et utilisons des types de données spécifiques pour chaque taille nécessaire
et des macros de transtypage (cast) pour adapter correctement les tailles 2. Par exemple
pour M2 en version RSF (c.-à-d. réduction seulement à la fin), il faut pouvoir réduire
l’accumulation des N produits sur 2w + Álog2 NË bits. Pour ce motif, nous avons aussi
évalué une réduction intermédiaire systématique (RIS) à chaque itération.
La figure A.1 présente un extrait de code C de notre bibliothèque et un exemple de
code devant être produit par l’utilisateur. La partie haute de la figure est le code de la
réduction modulaire avec l’algorithme de Barrett de la bibliothèque. Les types comme
word et sumdword doivent être définis par l’utilisateur selon un « template » fourni avec

2. On rappelle que la sémantique du langage C est assez peu mathématique, p. ex. le produit de 2
mots est un mot de même taille que les opérandes.
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la bibliothèque. Par exemple, le type word est de taille de w bits (code pour w = 13 :
typedef uint13 word;), le type dword est de taille double pour les produits de deux
nombres de w bits (code pour w = 13 : typedef uint26 word;), le type sumdword est
pour les accumulateurs sur 2w + Álog2 NË bits, etc. L’utilisateur doit aussi définir des
macros de transtypage (cast) pour chacun des types définis. Par exemple, la macro W est
définie par #define W(x) ((word) (x)). Le template fournit la liste de l’ensemble des
macros à définir selon les usages. Toutes ces définitions spécifiques à l’application doivent
être codées par l’utilisateur en complétant le template parameters.h inclus en ligne 1. Ce
fichier définit aussi la constante N choisie pour les vecteurs.

La partie basse de la figure A.1 présente un exemple de code utilisateur pour e�ectuer le
motif M2 avec la stratégie RSF. L’utilisateur doit :

— tout d’abord inclure le fichier parameters.h en ligne 1 afin de « configurer » la
bibliothèque pour son application ;

— spécifier ses entrées (ici 2 tableaux de N données de taille w bits en word) et ses
sorties (ici la somme réduite donc aussi en word) en ligne 4 ;

— initialiser l’accumulateur avec la bonne taille en ligne 6 ;
— e�ectuer son calcul (ici la somme des produits selon la stratégie RSF, donc sans

réduction intermédiaire) en lignes 7 et 8 ;
— et enfin e�ectuer la réduction en appelant la fonction de réduction choisie (ici

barrett(res) en ligne 9).

L’utilisation est assez simple, puisqu’une fois les spécifications de l’application définies
(préparation du fichier parameters.h à partir d’un template fourni), il su�t de faire
quelques appels de fonctions, utiliser les bons types et éventuellement quelques casts pour
s’assurer de la bonne taille des données intermédiaires. Les étiquettes comme acc sur la
boucle d’accumulation en ligne 7 du code de la fonction m2_rsf sont utilisées pour spécifier
les cibles des directives d’optimisations particulières de l’outil HLS (pipeline, déroulage
de boucle, etc.).

Nos implantations ont été réalisées avec Vivado HLS 2017.4 [Xil18b] sur un FPGA Artix-7
(xc7a15) de Xilinx. Les résultats présentés ci-dessous ont comme contraintes : une taille
de modulo de w œ {13, 17, 23, 30} bits, une taille de vecteurs N œ {10, 20, 40, 100}, une
période d’horloge cible de 3 ns et un e�ort d’optimisation par défaut (moyen). Nous
avons aussi exploré l’impact de directives de pipeline et de déroulage de boucle de l’outil
(voir [Xil17]). Nous obtenons ainsi plus de 2400 résultats d’implantations di�érentes. Nous
présentons ci-dessous un sous-ensemble représentatif pour des raisons de place (d’autres
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Code (de la bibliothèque) pour la réduction modulaire avec l’algorithme de Barrett :
1 #include "parameters.h"
2 #include "arithmod_internal.h"
3

4 word barrett(sumdword x)
5 {
6 sumword x1 = SUM_W(x >> width);
7 sumword q = SUM_W((RSW(x1) * RSW(R_const)) >> (shift - width));
8 word x0 = W(x);
9 counter c = 0;

10 if (x0 > M) c = 2;
11 else if (x0 != 0) c = 1;
12 q = q + c;
13 sumdword z = SUM_DW(q) * SUM_DW(m);
14 signword res = x - z;
15 if (res < 0) res = res + M;
16 if (res < 0) res = res + M;
17 return W(res);
18 }

Code (utilisateur) pour le motif M2 RSF avec réduction de Barrett :
1 #include "parameters.h"
2 #include "arithmod.h"
3

4 word m2_rsf(word A[N], word B[N])
5 {
6 sumdword res=0;
7 acc: for(counter i=0; i<N; i++)
8 res += DW(A[i]) * DW(B[i]);
9 return barrett(res);

10 }

Figure A.1 – Extraits de codes C de notre bibliothèque (haut) et de son utilisation (bas).

résultats pour d’autres contraintes seront disponibles dans la documentation de la biblio-
thèque). Notre attention portera principalement sur le motif M2, car il est crucial pour
RNS et PQC.

4. Résultats d’implantation

4.1. Comparaison des di�érents algorithmes de réduction

Nous commençons par comparer les di�érents algorithmes de réduction modulaire (le %

de Vivado et nos implantations de Barrett, Montgomery, MSC et MSR) pour di�érentes
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tailles w de modulo dans le cas du motif M2 en version RSF avec N = 20. La figure A.2
présente les résultats pour le meilleur temps de calcul obtenu pour les di�érentes com-
binaisons de directives d’optimisations testées. Pour chaque métrique (temps, surface et
compromis surface ◊ temps), les résultats sont normalisés par rapport à la plus grande
valeur pour la métrique.
Nous observons que l’algorithme natif utilisé par l’outil HLS lors de l’appel de l’opérateur %

est bien moins performant que nos implantations des algorithmes de la littérature. Il
n’utilise pas de bloc DSP pour la réduction (uniquement pour l’accumulation des pro-
duits qN

i=1 xi ◊ yi), mais il nécessite de nombreux cycles de calcul. Il semble utiliser une
boucle avec un nombre d’itérations dépendant de la taille de l’opérande dans nos expéri-
mentations. Il présente donc peu d’intérêt pour nos applications cryptographiques car nos
implantations sont toutes bien meilleures.
Les meilleurs résultats obtenus sont clairement pour MSR et MSC. Ceci est parfaitement
logique puisque les algorithmes pour les moduli spécifiques utilisent des propriétés par-
ticulières permettant de simplifier les calculs (ce qui n’est pas possible pour des MQ).
Ainsi, pour des applications RNS, l’algorithme MSR est plus performant que Barrett et
Montgomery. Pour PQC, la même conclusion s’impose pour MSC.
Le nombre de cycles d’horloge de nos 4 implantations (Barrett, Montgomery, MSC et
MSR) sont proches (et souvent autour de 50% de moins que pour %). Les fréquences
obtenues sont proches de la contrainte imposée à l’outil.
Des résultats similaires sont obtenus pour les autres tailles N de vecteurs testées. Notre
bibliothèque permet à l’utilisateur d’utiliser le meilleur algorithme de réduction modulaire
en fonction du type de modulo utilisé dans son application. Dans le cas d’applications avec
des moduli spécifiques, l’utilisation des algorithmes MSC et MSR o�re de bien meilleurs
résultats. Dans le cas d’applications avec des moduli quelconques, notre bibliothèque
confirme que Montgomery est un peu meilleur que Barrett.
Dans la suite, nous ne donnerons plus les résultats pour l’algorithme de réduction natif
avec l’opérateur % car il est bien trop lent pour nos applications cryptographiques.

4.2. Impact des directives d’optimisation sur la boucle d’accumulation

Nous avons testé plusieurs directives d’optimisation sur la boucle d’accumulation: pipeline

correspond au cas où les N itérations sont pipelinées ; unrollk au cas où (N/k) itérations
sont e�ectuées sur k opérateurs en parallèle.
La table A.1 présente les résultats d’implantation du motif M2 RSF avec N = 20 pour
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Figure A.2 – Comparaison des di�érents algorithmes de réduction pour
w œ {13, 17, 23, 30} bits pour le motif M2 RSF avec N = 20.

la réduction spécifique de moduli MSR de taille w = 23 bits. Nous comparons di�érentes
directives de l’outil de synthèse HLS sur la boucle d’accumulation. La première ligne du
tableau présente comme référence les résultats sans aucune directive. Chaque produit de
la boucle d’accumulation requiert 2 blocs DSP car ils ont 2 opérandes de w = 23 bits,
ce qui est plus grand que la taille du multiplieur disponible dans un bloc DSP du FPGA
cible (voir [Xil18b, Xil18a]). La réduction finale requiert également 2 blocs DSP.
On remarque que les di�érentes implantations atteignent quasiment la période cible. En
pipelinant, on arrive à diviser par 3 le temps de calcul TM sans changer le nombre de
DSP utilisés. On peut encore réduire de 28 % et 40 % TM en déroulant avec un facteur 2
et 4 respectivement, au prix d’une augmentation du nombre de DSP utilisés. Au-delà
d’un facteur 4, on n’observe plus d’amélioration significative du temps, tout en payant le
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prix d’une augmentation du nombre de multiplieurs DSP utilisés. Ceci est très certaine-
ment dû au nombre croissant d’accès mémoires simultanés nécessaires à l’exploitation du
parallélisme.
Enfin, avec une métrique de coût global de type surface◊temps, nous observons que les
directives pipeline et pipeline + unroll2 se démarquent assez nettement des autres.
Un niveau de parallélisme modéré semble donc facilement exploitable dans le contexte de
notre bibliothèque. Pour pouvoir exploiter plus de parallélisme interne, il nous faudrait
probablement changer l’algorithme et la structure du code.

surface temps (ns, cycles) surface ◊ temps
directives slices DSP période cycles TM DSP ◊ TM slices ◊ TM
aucune 136 4 3.1 216 670 2680 91120

pipeline 142 4 3.2 64 205 820 29110
pipeline + unroll2 167 6 3.2 46 148 888 24716
pipeline + unroll4 228 10 3.3 37 123 1230 28044
pipeline + unroll10 526 22 3.1 39 121 2662 63646

Table A.1 – Impact des directives d’optimisation pour M2 RSF, MSR, w = 23 et N = 20.

4.3. Impact de la stratégie de réduction

Pour un motif nécessitant de nombreuses opérations modulo m, plusieurs stratégies de
réduction sont envisageables. Il est possible d’e�ectuer une réduction intermédiaire systé-
matique (RIS) à chaque itération ; pour M2 cela correspond au calcul :

A
Nÿ

i=1
(xi ◊ yi mod m)

B

mod m.

Il est possible d’e�ectuer une réduction seulement à la fin (RSF) ; pour M2 cela donne :

A
Nÿ

i=1
xi ◊ yi

B

mod m.

Dans la version RSF de motifs comme M1 et M2, l’accumulateur doit être plus large pour
absorber les retenues de la somme des résultats de chaque itération (avec Álog2 NË bits en
plus). Ceci engendre une réduction finale plus coûteuse car son opérande est plus large.
Nous avons implanté les stratégies RIS et RSF pour les motifs M1 et M2 et nos di�érents
algorithmes de réduction. La table A.2 présente une partie représentative de nos résultats.

139



COMPARAISON D’ALGORITHMES DE RÉDUCTION MODULAIRE EN HLS SUR FPGA

algorithme surface temps (ns, cycles) surface◊temps
motif et stratégie slices DSP période cycles TM DSP◊TM slices◊TM
M1 Montgomery RSF 122 5 2.6 31 81 405 9882

Barrett RSF 110 1 2.9 58 169 169 18502
MSC RSF 62 0 2.5 17 43 0 2635
MSR RSF 66 0 2.6 17 45 0 2970

M2 Montgomery RIS 194 12 2.6 60 156 1872 30264
Montgomery RSF 149 7 2.6 64 167 1165 24794

Barrett RIS 259 12 2.8 53 149 1781 38436
Barrett RSF 218 10 2.7 52 141 1404 30608

MSC RIS 403 4 2.7 55 149 594 59846
MSC RSF 261 4 2.7 47 127 508 33121
MSR RIS 146 8 2.6 31 81 645 11768
MSR RSF 167 6 3.2 46 148 884 24583

Table A.2 – Impact des stratégies de réduction pour w = 23 et N = 20.

Pour M1, nous donnons uniquement les résultats pour RSF car RIS est toujours bien
moins performant (le coût d’une itération de boucle, une addition, est bien trop faible
devant celui d’une réduction modulaire). Nous présentons les résultats de M1 RSF pour
montrer l’impact de l’itération (par rapport à M2).
Pour M2 avec Barrett et Montgomery, RSF est meilleur en compromis surface◊temps
(RIS peut être un tout petit plus rapide mais pour une surface plus importante).
Globalement RSF est souvent plus e�cace que RIS (pour les N et w testés). Mais il nous
reste à explorer ce qui se passe pour des N très grands et des w petits (comme c’est le
cas pour RE avec p. ex. w = 13 et N œ [256, 1024]).
D’autres stratégies intermédiaires sont envisageables, comme réduire de temps en temps
de petits accumulateurs partiels. Cela pourrait être intéressant pour des motifs où les
calculs dans chaque itération sont plus complexes qu’une seule opération.

4.4. Impact de la taille N des vecteurs

Enfin, nous analysons l’impact de la taille des vecteurs des motifs sur les performances
et les coûts. La figure A.3 présente quelques résultats représentatifs pour l’algorithme
de réduction MSR avec w = 23. Nous observons que pour les N testés, le compromis
surface◊temps est proche d’une fonction a�ne de N (résultat général à toutes nos im-
plantations). Cette croissance a�ne avec N permet d’e�ectuer des estimations à haut
niveau très simplement (avec une marge d’erreur raisonnable).
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Cependant, la figure A.3 suggère aussi un phénomène bien plus complexe à anticiper (du
moins dans l’état actuel de nos connaissances). Ceci est en lien avec les deux dernières
lignes de la table A.2 où le motif RIS est plus e�cace que RSF. On observe sur la figure A.3
que le temps de calcul et le nombre de cycles du RIS croissent moins vite que ceux de
RSF. Le même phénomène est observé pour les compromis surface◊temps, on peut donc
en déduire que le gain de RIS sur RSF se fait sur le coût de chaque itération de la
boucle d’accumulation. Cependant, d’un point de vue purement arithmétique, RIS calcule
s Ω (s + xi ◊ yi) mod m à chaque itération, contre s Ω (s + xi ◊ yi) pour RSF, donc RIS
e�ectue plus de calculs par itération. Nous voyons que l’outil arrive à mieux pipeliner les
itérations de RIS que celles de RSF dans certains cas. Il est clair qu’il nous reste du travail
pour mieux cerner quand et comment (modification de la structure du code) utiliser les
di�érentes directives d’optimisation de l’outil HLS.

5. Conclusion

Notre bibliothèque o�re un support, assez simple d’utilisation, d’algorithmes de réduction
modulaire avancés qui ne sont pas supportés nativement par les outils de HLS actuels.
Elle o�re aussi la possibilité de générer des circuits optimisés en temps et en surface pour
chaque type de modulo (de forme quelconque ou spécifique). Ceci est particulièrement
intéressant pour des applications en cryptographie asymétrique comme ECC en RNS ou
PQC.
Nous allons continuer le développement de notre bibliothèque et ajouter d’autres opéra-
tions, formes de moduli et motifs de calcul. Nous souhaitons aussi essayer d’autres outils
de HLS et fabricants/familles de FPGA.
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Figure A.3 – Impact de la taille N des vecteurs pour MSR avec w = 23.
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Appendix B

GENERALIZED WEIERSTRASS EQUATION

OF ELLIPTIC CURVES

Definition 7 (from [CF06]). An elliptic curve EK defined over a field K is given by the
Weierstraß equation

EK : y
2 + a1xy + a3y = x

3 + a2x
2 + a4x + a6 (B.1)

where a1, a2, a3, a4, a6 œ K and the values

b2 = a
2
1 + 4a2, b4 = a1a3 + 2a4

b6 = a
2
3 + 4a6 and b8 = a

2
1a6 ≠ a1a3a4 + 4a2a6 + a2a

2
3 ≠ a

2
4

are such that � = ≠b
2
2b8 ≠ 8b

3
4 ≠ 27b

2
6 + 9b2b4b6 ”= 0.
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Appendix C

PROOF OF THE CHINESE REMAINDER

THEOREM

In Theorem 2 we presented the Chinese remainder theorem (CRT). The CRT is widespread
and a proof of it can be found in most books about elementary number theory; see for
example [NZM91, Tat05, Bur11]. We prove the CRT in three steps:

• The system

(�)

Y
________]

________[

x1 = |x|m1

x2 = |x|m2

...

xn = |x|mn

(C.1)

has a solution.
For all i, 1 Æ i Æ n, let Ci be a number such that |CiMi|mi

= 1. The various Ci

exist because for all i, 1 Æ i Æ n, mi is coprime with Mi (since mi is coprime with
all mj, j ”= i and Mi = r

j ”=i mj). Let us define y = qn
i=1 xiCiMi. We do have

for all i, |xiCiMi|mi
= xi and

for all j ”= i, |xiCiMi|mj
= 0 because mj divides Mi.

Hence, for all i, y © xi (mod mi). The number y is a solution of (�).
• The solution of (�) is unique modulo M .

Let z be another solution of (�). By definition of z, for all i, |z|mi
= xi. Therefore,

for all i, |z|mi
= |y|mi

= xi because y is also a solution of (�). This equivalence
implies, for all i, |z ≠ y|mi

= 0 which is equivalent to, for all i, mi divides z ≠ y.
We deduce rn

i=1 mi divides z ≠ y, that is, M divides z ≠ y. We get |z|M = |y|M .
• The value given to x in Theorem 2 is the unique solution of (�) between 0

and M .

145



PROOF OF THE CHINESE REMAINDER THEOREM

The number x is one of the solutions of (�), by definition of (�). Therefore, x can
be written

x = |y|M =
-----

nÿ

i=1
xiCiMi

-----
M

owing to the uniqueness of the (�) solution modulo M

=
-----

nÿ

i=1
|xiCi|mi

Mi

-----
M

=
-----

nÿ

i=1

---xiM
≠1
i

---
mi

Mi

-----
M

by definition of Ci.
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Dans ce manuscrit de thèse, nous présentons des accélérateurs matériels pour la cryp-
tographie asymétrique avec une utilisation flexible de ressources matérielles. La cryp-
tographie asymétrique est implantée dans de nombreux appareils utilisés au quotidien,
comme par exemple les ordinateurs personnels et les téléphones intelligents. Elle sert no-
tamment à échanger des clés secrètes, à signer numériquement des documents, ou encore
à s’authentifier par exemple, auprès d’un serveur. Les opérandes dans les cryptosystèmes
actuels sont de très grands nombres : par exemple, quelques centaines de bits pour la
cryptographie basée sur les courbes elliptiques (ECC) [Mil85, Kob87] et quelques milliers
de bits pour RSA [RSA78]. Une arithmétique e�cace et adaptée aux grands nombres
est nécessaire afin d’éviter de trop faibles performances des appareils sur lesquels sont
implantés ces cryptosystèmes.

Le système modulaire de représentation des nombres (RNS) [Val56, Gar59] est un
système non positionnel dans lequel un grand nombre est représenté par ses restes mod-
ulo de petits nombres premiers entre eux deux à deux. L’ensemble de ces petits nombres
premiers entre eux constitue une base RNS. Les opérations élémentaires habituelles, à
savoir multiplication, addition et soustraction, sont e�ectuées entre les petits restes de
façon indépendante. Autrement dit, les opérations élémentaires entre de grands nombres
sont remplacées par des opérations entre de petits restes. De plus, ces opérations élémen-
taires peuvent être e�ectuées en parallèle. Il n’y a pas de propagation de retenues entre
les di�érents restes [ST67] à cause de l’indépendance des opérations élémentaires entre les
restes. E�ectuer des opérations élémentaires est donc très e�cace en RNS. Ces avantages
du RNS ont entraîné ces deux dernières décennies un gain d’intérêt de son usage dans
les implantations matérielles de la cryptographie asymétrique. En guise d’exemples, nous
citons les travaux [NMSK01, SFM+09, Gui10, BM14].

Le RNS présente un inconvénient majeur qui est la di�culté à e�ectuer des réduc-
tions modulaires (MR), des divisions et des comparaisons. Cette di�culté est due au
caractère non positionnel du RNS (l’ordre de grandeur des opérandes est plus di�cile
à déterminer que dans une représentation positionnelle “classique”). Pourtant, les MR
sont nombreuses dans les calculs des cryptosystèmes asymétriques actuels. Par exemple,
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l’opération de base de RSA est l’exponentiation modulaire. Pour ECC, l’opération de base
est la multiplication scalaire (ECSM), qui elle-même se calcule à partir de nombreuses
opérations dans des corps finis (ce qui necessite de nombreuses MR). L’extension de base
de Kawamura et al. (KBE) [KKSS00] est utilisée dans l’algorithme de MR de l’état de
l’art proposé dans [PP95] afin de réduire le coût de ce dernier. L’extension de base (BE)
devient une opération cruciale dans les implantations RNS parce que le coût de la MR
provient essentiellement du coût des deux BE qui la composent.

Les canaux sont les supports matériels des opérations élémentaires entre les restes mod-
ulo les éléments d’une base RNS. Les implantations RNS de la littérature (par exemple,
[NMSK01, SFM+09, Gui10, BM14]) utilisent autant de canaux que d’éléments d’une base
nécessaires à la représentation des grandes opérandes. Il en résulte une utilisation d’une
quantité de ressources matérielles correspondant à la taille des grandes opérandes. Cette
quantité requise constitue un problème dès lors qu’elle est supérieure à celle disponible
sur le circuit intégré qu’on veut utiliser. Cette situation peut se présenter lorsque le circuit
intégré choisi pour l’implantation du cryptosystème est très petit avec peu de ressources
matérielles ou lorsque plusieurs applications non cryptographiques coexistent avec des
applications cryptographiques sur un même circuit intégré. En e�et, la plupart des cir-
cuits intégrés sont principalement utilisés pour des applications non cryptographiques
comme par exemple le traitement de signal ou la vision par ordinateur. En tenant compte
des ressources matérielles utilisées par ces applications principales, le reste des ressources
matérielles sur le circuit intégré peut être insu�sant pour implanter le cryptosystème
souhaité.

Concevoir des accélérateurs matériels flexibles pour la cryptographie asymétrique per-
met de résoudre ce problème. Dans ce manuscrit, nous appelons accélérateurs matériels
flexibles des accélérateurs matériels dont l’utilisation de ressources matérielles est flexible,
c’est-à-dire qui peut être adaptée, pour une même taille des grandes opérandes. On peut
donc choisir la quantité de ressources matérielles à utiliser par une implantation d’un
cryptosystème asymétrique en fonction de celle disponible sur le circuit intégré. Dans les
implantations RNS, de tels accélérateurs peuvent être réalisés en les concevant de façon à
ce qu’ils utilisent un nombre de canaux plus petit que celui normalement nécessaire pour
les calculs sur les grandes opérandes. Nous appelons canaux physiques (PC) les canaux
e�ectivement utilisés, et notons q leur nombre. À chaque élément d’une base RNS, nous
associons un canal virtuel (VC). Le nombre n de VC est alors le nombre d’éléments
nécessaires pour représenter les grandes opérandes.
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Contributions

La première contribution de cette thèse est un nouvel algorithme de BE nommé hier-
archical base extension (HBE) [DBT19]. HBE utilise une approche hiérarchique dans le
calcul du théorème chinois des restes (CRT). Cette approche se décrit en deux phases.
Au cours de la première phase, les restes en entrée sont combinés par paires à l’aide de
CRT partiels e�ectués dans la base d’entrée. Lors de la seconde phase, la suite du calcul
du CRT est e�ectuée sur les résultats de ces CRT partiels dans la base de sortie. Le coût
théorique de HBE est jusqu’à 35% plus petit que celui de KBE [KKSS00], largement
considéré comme la BE de l’état de l’art.

De plus, nous avons proposé une architecture pour HBE [DBT19]. Cette architecture
est adaptée de l’architecture cox-rower de KBE [KKSS00]. Notre architecture préserve
le parallélisme naturel du RNS avec un pipeline légèrement plus profond au niveau des
rowers. HBE et KBE ont été implantés sur FPGA à l’aide d’outils de synthèse de haut
niveau (HLS). Ces implantations visent des tailles de corps typiques de celles utilisées
dans les applications de ECC et sont e�ectuées pour plusieurs tailles de canaux. Les
résultats de ces implantations montrent que HBE est dans tous les cas plus rapide que
KBE (jusqu’à 20%), et dans presque tous les cas plus petit (jusqu’à 23%) en surface. HBE
présente toujours le meilleur compromis surface/temps.

Deux accélérateurs matériels RNS flexibles de l’ECSM constituent la seconde contribu-
tion de cette thèse. Dans un premier temps, nous montrons que la BE peut être implantée
de façon flexible, et cela pour la BE de l’état de l’art (KBE) [KKSS00] et la notre (HBE)
[DBT19]. Les architectures flexibles sont dérivées des architectures de base des deux BE.
Le nombre q de PC dans chaque architecture flexible est adaptable, et q est choisi à
la conception parmi les diviseurs de n (le nombre de VC). Il en résulte que pour une
taille donnée de corps fini, la BE (HBE ou KBE) peut être implantée avec une quantité
flexible de ressources matérielles. Le concepteur peut donc choisir le nombre q de PC à
utiliser pour une implantation donnée en fonction de la quantité de ressources matérielles
dont il dispose sur son circuit intégré. La flexibilité permet d’obtenir plusieurs compromis
surface/temps pour l’implantation d’une même opération. HBE et KBE flexibles ont été
implantées sur FPGA à l’aide d’outils de HLS. Les résultats d’implantations montrent
qu’indépendamment de la BE, lorsque le nombre de PC passe de q à kq, les nombres de
DSP et BRAM croissent d’un facteur k. Par contre, le nombre de slices croît d’un facteur
plus petit que k. L’augmentation de la surface utilisée induit une diminution du temps,
qui décroît d’un facteur plus petit que k. En outre, les résultats de HBE flexible sont
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plus rapides (jusqu’à 28%) et 33% plus petits en DSP que ceux de KBE flexible, pour un
même nombre de PC utilisés. Par contre, les implantations de HBE flexible utilisent plus
de slices que celles de KBE flexible (jusqu’à 35%). Toutefois, le compromis surface/temps
est toujours en faveur des résultats de HBE flexible.

Dans un second temps, deux ECSM flexibles nommées ECSM-HBE et ECSM-KBE
flexibles sont implantées à partir des architectures flexibles des deux BE (HBE et KBE re-
spectivement). Comme pour les BE flexibles, les nombres de DSP et BRAM croissent d’un
facteur k lorsque le nombre de PC utilisés passe de q à kq. Aussi, les facteurs de croissance
du nombre de slices et de décroissance du temps sont plus petits que k. Les résultats de
comparaison des deux ECSM flexibles sont similaires à ceux des deux BE flexibles. Pour
un même nombre de PC utilisés, les résultats de ECSM-HBE flexible sont toujours plus
rapides (jusqu’à 31%) et 33% plus petits en DSP que ceux de ECSM-KBE flexible. Les ré-
sultats de ECSM-HBE flexible sont légèrement plus gros en slices (jusqu’à 23%) que ceux
de ECSM-KBE flexible. Comme pour les BE flexibles, les résultats de ECSM-HBE flexible
présentent les meilleurs compromis surface/temps. Quoiqu’en compromis surface/temps,
nos meilleurs résultats d’implantations sont comparables aux meilleurs résultats de la lit-
térature, la plupart de nos implantations présentent des nombres de DSP et de BRAM
bien plus petits. La possibilité d’implanter des ECSM sur des corps de base d’une même
taille en utilisant une surface plus petite et adaptable constitue l’apport majeur de la
flexibilité.

La troisième contribution de cette thèse est une étude auxiliaire au projet de thèse
et rapportée dans [DZBT19]. Le but est d’étudier les meilleures façons d’e�ectuer des
multiplications modulaires et accumulations sur FPGA à partir d’outils de HLS. Le sujet
d’étude est motivé par la présence de nombreuses multiplications modulaires et accumula-
tions dans les implantations RNS des cryptosystèmes asymétriques. Plusieurs paramètres
tels que la taille et la forme (générique, spécifique) des moduli ainsi que la stratégie de ré-
duction (réduction intermédiaire ou réduction seulement à la fin) sont étudiés. Nous avons
également étudié plusieurs contraintes d’implantation tels que le pipelining et l’unrolling
de boucles en fonction des paramètres.
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Titre : Accélérateurs matériels RNS flexibles pour la cryptographie asymétrique à haute sécu-
rité

Mot clés : arithmétique des ordinateurs, système modulaire de représentation des nombres,

flexibilité, implantation matérielle sur FPGA.

Résumé : Les implantations RNS de crypto-
systèmes asymétriques actuels utilisent des
ressources matérielles correspondant à la
taille des opérandes traitées. Dans cette
thèse, nous proposons une nouvelle ap-
proche dans l’implantation RNS de cryptosys-
tèmes asymétriques qui permet une utilisa-
tion flexible de ressources matérielles. Dans
un premier temps, un nouvel algorithme d’ex-
tension de base est présenté. Les extensions
de bases sont, de part leurs coûts, des opé-
rations critiques dans les implantations RNS.
Notre nouvel algorithme d’extension de base
utilise une approche hiérarchique dans le cal-
cul du théorème chinois des restes. Com-

paré à l’algorithme d’extension de base de
l’état de l’art, il présente un coût théorique
réduit, qui se traduit par un gain en surface
et en temps dans nos implantations HLS sur
FPGA. Ensuite, nous implantons les deux al-
gorithmes d’extension de base à partir de la
nouvelle approche d’implantation RNS. Enfin,
des multiplications scalaires utilisant chacune
des deux extensions de base sont implantées
avec la nouvelle approche. Nos implantations
HLS sur FPGA utilisent des ressources ma-
térielles en quantité flexible. De plus, quoique
comparables en compromis surface/temps à
ceux de l’état de l’art, la plupart de nos résul-
tats sont bien plus petits.
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Abstract: Asymmetric cryptosystems are im-
plemented in RNS using a quantity of hard-
ware resources corresponding to the size of
the cryptographic operands. In this thesis we
propose a new approach to perform RNS im-
plementations of asymmetric cryptosystems
that leads to a flexible utilization of hard-
ware resources. We start with describing a
new method to perform base extensions which
are crucial operations in RNS implementa-
tions of asymmetric cryptosystems. The pro-
posed base-extension method, based on a
hierarchical approach for computing the Chi-
nese remainder theorem, introduces a reduc-

tion of the theoretical cost. Our FPGA im-
plementations using HLS show an area and
time gain compared with the state-of-the-art
method. Then, we demonstrate the practical-
ity of our new RNS-implementation approach
on the two base-extension methods. Last, el-
liptic curve scalar multiplications based on the
two base-extension methods are implemented
using our RNS-implementation approach. Our
FPGA implementations use a flexible quan-
tity of hardware resources. Besides, although
comparable with state-of-the-art ones in area
vs. time trade-offs, most of our solutions are
much smaller.
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