Je Tiens À Remercier Professeur

Professeur Fabien Lehuédé

Olivier Péton

Commençons par une définition traduite de Savelsbergh and Van Woensel (2016) 1 : " La logistique urbaine consiste à trouver des moyens efficaces et efficients de transporter des marchandises dans les zones urbaines tout en tenant compte des effets négatifs sur la congestion, la sécurité et l'environnement.

"

Cette thèse s'inscrit dans le vaste courant de travaux en recherche opérationnelle qui définis sent des modèles et des méthodes pour améliorer le transport des marchandises sous de nom breux aspects. L'objectif de ce travail est de donner aux praticiens et aux universitaires un aperçu de politiques de distributions urbaines possibles, d'algorithmes d'optimisation pour ces dernières, et les simulations réalisées par ces algorithmes. Dans le cadre du projet OPUSS, nous avons travaillé en étroite collaboration avec la chaire de gestion logistique de la Gutenberg School of Management and Economics (Mayence, Allemagne), spécialisée dans les méthodes exactes pour les problèmes d'optimisation combinatoire. Nous nous concentrons sur les déci sions opérationnelles de routage pour les petits commerces et les services privés dans les zones urbaines. En d'autres termes, nous cherchons à concevoir une planification quotidienne efficace pour les conducteurs, afin de remplir des tâches données à satisfaire dans une zone restreinte. A titre d'exemples, présentons brièvement quelques problèmes standards que nous allons étendre, recombiner et résoudre dans cette thèse :

) cherche à trouver les itinéraires les moins coûteux afin de distribuer un ensemble donné de colis avec une flotte données de véhicules.

-Le problème de tournées de véhicules avec fenêtre de temps (Vehicle Routing Problem with Time Windows, VRPTW, Savelsbergh (1985)) est un extension du VRP où chaque client ne peut être servi que pendant une période prédéfinie, appelée fenêtre de temps.

-Le problème de tournées de véhicules avec trajets multiples (MultiTrip Vehicle Routing Problem, MTVRP, Fleischmann (1990)) est une relaxation du VRP dans laquelle chaque véhicule est autorisé à effectuer plusieurs tournées successives dans la journée.

-Le problème de tournées de véhicules avec flux inverses (Vehicle Routing Problem with Backhauls, VRPB, [START_REF] Gélinas | A new branch ing strategy for time constrained routing problems with application to backhauling[END_REF]) est une extension du VRP où certaines marchan dises doivent être livrées et d'autres marchandises collectées.

-Le problème de tournées de véhicules généralisé (Generalized Vehicle Routing Problem, GVRP, [START_REF] Ghiani | An efficient transformation of the generalized vehicle routing problem[END_REF]) est une autre extension du VRP où les clients peuvent être servis à différents endroits.

-Le problème de tournées de véhicules à deux échelons (2Echelon Vehicles Routing Prob lem, 2EVRP, Crainic et al. (2009)) considère également la livraison de marchandises à moindre coût, mais via la coopération de deux flottes de véhicules. C'estàdire qu'une flotte de camions achemine d'abord les marchandises du dépôt, situé en périphérie, vers de petites plateformes logistiques proches du centreville, appelées satellites. Les colis sont ensuite livrés aux clients par de petits véhicules depuis les satellites.

Pour combiner de manière efficace et réaliste ces caractéristiques, il est important de coor donner les opérations des différents véhicules. Ainsi, des contraintes de synchronisation appa raissent dans les modèles. Celles que nous traitons dans cette thèse sont nommées contraintes de ressource intertour par [START_REF] Hempsch | Vehicle Routing Problems with InterTour Resource Constraints[END_REF] ou contraintes de synchronisation de ressources par Drexl (2012) 2 qui les définies tels que : " La consommation totale d'une ressource par tous les véhicules doit être in férieure ou égale à une limite spécifiée.

"

Au cours de cette thèse, nous définissons deux nouveaux problèmes d'optimisation. Tout d'abord, le problème de tournées de véhicules avec options de livraisons (Vehicle Routing Problem with Delivery Options, VRPDO, Dumez et al. (2021a) ; Tilk et al. (2020)) : il s'agit d'une extension du GVRPTW dans lequel chaque client propose quelques lieux de livraison possibles avec une fenêtre temporelle, correspondant aux lieux qu'il visitera dans la journée. Certains peuvent être des lieux de livraison partagés, comme des magasins ou des consignes, avec une capacité limitée partagée par tous les livreurs. Ensuite, le problème de tournées de véhicules à deux échelons avec trajets multiples, capacités aux satellites et flux inverses (2Echelon MultiTrip Vehicle Routing Problem with Capacitated Satellites and Reverse Flow, 2EMTVRPCSRF, [START_REF] Dumez | A matheuristic for a 2echelonvehicle routing problem with satellite capacities and reverse flows[END_REF]) : il intègre le VRPTW et le VRPB dans le système logistique du 2EVRP tout en considérant des satellites de capacité limitée. Ainsi, les véhicules des deux échelons doivent être synchronisés dans le temps et dans l'espace pour traiter les marchandises à livrer et à collecter, tout en veillant à ce que la quantité de marchandises en attente de transfert entre les deux échelons à un satellite ne dépasse jamais sa capacité.

Pour résoudre ces problèmes, nous utilisons des méthodes approchées, tandis que l'équipe de recherche de Mayence s'est concentrée sur les méthodes exactes. Glover and Kochenberger (2003) 3 définissent les metaheuristiques par : " Des méthodes de résolution qui orchestrent des procédures d'amélioration locale et des stratégies de niveau supérieur pour créer un processus capable d'échapper aux optima locaux et d'effectuer une recherche robuste d'un espace de solution.

"

De plus, dans le cadre d'une collaboration entre nos deux équipes, nous nous sommes in téressés de près aux matheurisitiques. Cette idée est décrite dans [START_REF] Fischetti | Matheuristics[END_REF] 4de la manière suivante: " On peut insister sur l'approche de la programmation mathématique et essayer d'obtenir des résultats de plus en plus satisfaisants en améliorant le modèle et en enrichissant le solveur de fonctionnalités spécialisées. On peut aussi oublier la pro grammation mathématique et recourir à des heuristiques adhoc qui ne sont pas basées sur le modèle de programmation mathématique. Dans ce dernier cas, le mod èle mathématique est complètement ignoré ou simplement utilisé pour illustrer les caractéristiques du problème [...] Une troisième approche est cependant possible, qui consiste à utiliser le solveur comme outil de base dans le cadre heuristique. Cette hybridation de la programmation mathématique avec des métaheuristiques conduit à l'approche matheuristique.

"

Nous utilisons la métaheuristique de recherche à voisinage large (Large Neighborhood Search, LNS). Son idée est d'améliorer itérativement la solution courante en la ruinant (c'està dire en enlevant une partie) et en la réparant (c'estàdire en réinsérant les clients enlevées à un endroit adéquat). Ce processus est répété jusqu'à ce qu'un critère d'arrêt soit satisfait (générale ment une limite de temps). Pour clarifier la position de notre travail, présentons un bref historique de LNS pour les problèmes de routage :

1. Shaw (1998) a initialement proposé LNS dans un contexte de programmation par con traintes pour résoudre le VRP. Dans cette première version, les solutions étaient réparées par un branchandbound utilisant un solveur de programmation par contraintes.

2. [START_REF] Schrimpf | Record Breaking Optimization Results Using the Ruin and Recreate Principle[END_REF] a développé indépendamment une méthode proche sous le nom de ruiner et recréer (ruin and recreate) pour le VRPTW. Mais cette fois, les solutions étaient réparées par une méthode heuristique.

3. [START_REF] Pisinger | A general heuristic for vehicle routing problems[END_REF]; Ropke and Pisinger (2006a,b) ont popularisé LNS en pro posant une méthode unifiée pour divers problèmes de routage (dont le VRPTW et le VRPB). En effet, Ropke and Pisinger (2006a) a maintenant été cité 1514 fois 5 ! Cette nou velle version détruit et répare les solutions avec diverses heuristiques choisies de manière probabiliste en fonction de leurs performances passées. Ainsi, la méthode proposée est appelée recherche à voisinage large adaptative (Adaptive Large Neighborhood Search, ALNS).

4. Au cours des années suivantes, la méthode (A)LNS a été développée pour résoudre des problèmes variés et plus complexes [START_REF] Pisinger | Large Neighborhood Search[END_REF]. Par exemple, pour le 2EVRP, [START_REF] Vera | An adap tive large neighborhood search heuristic for TwoEchelon Vehicle Routing Problems aris ing in city logistics[END_REF] ont développé plusieurs heuristiques travaillant sur différents aspects des solutions et [START_REF] Grangier | A lns and branchandcheck approach for a vrp with crossdocking and ressource synchronization[END_REF] ont développé davantage les hy bridations avec les solveurs de programmation mathématique.

5. A partir de ces nombreuses études, [START_REF] Santini | A comparison of acceptance crite ria for the adaptive large neighbourhood search metaheuristic[END_REF] et [START_REF] Turkeš | Metaanalysis of metaheuris tics: Quantifying the effect of adaptiveness in adaptive large neighborhood search[END_REF] ont réalisé des métaanalyses sur des composants spécifiques de l'ALNS, respectivement le critère d'acceptation et la couche adaptative. Ces études montrent que ce domaine de recherche commence à mûrir autour des connaissances structurées, comme l'espère [START_REF] Sörensen | A History of Metaheuristics[END_REF].

6. [START_REF] Christiaens | Slack Induction by String Removals for Vehicle Routing Problems[END_REF] ont récemment proposé de réduire la méthode LNS à des composants plus simples. Ainsi, ils n'utilisent que quelques heuristiques de répa ration simples et suppriment peu clients des solutions lors de chaque itération. Cela les conduit à une méthode capable d'effectuer un très grand nombre d'itérations très rapides.

Le premier axe de notre contribution méthodologique concerne la configuration de LNS. En effet, lors de notre revue de la littérature, de nombreuses heuristiques de destruction et de réparation nous ont semblé pertinentes. Nous avons conçu un protocole expérimental rigoureux basé sur des tests statistiques pour évaluer les redondances et les complémentarités entre les heuristiques. Ceci nous a permis de décider d'une configuration restreinte et efficace de LNS. Par ailleurs, au cours de ces nombreuses expériences, nous avons remarqué que, comme sug géré par [START_REF] Christiaens | Slack Induction by String Removals for Vehicle Routing Problems[END_REF], des destructions limitées et une reconstruction rapide conduisent à de bons résultats. Par conséquent, nous proposons une configuration LNS 5. Selon Google scholar le 13/04/2021 qui combine des destructions de petite et de grande taille. L'algorithme SLNS (Small and Large Neighborhood Search) ainsi développé s'est avéré être un algorithme performant sur quatre problèmes généralisés de routage de véhicules avec fenêtres de temps.

Le deuxième axe de notre contribution méthodologique concerne l'orchestration de LNS avec des composants exacts, créant ainsi des matheuristiques. Des couches adaptatives ont été développées pour décider du moment où il faut utiliser ces outils. En effet, ces outils peuvent améliorer significativement les résultats de LNS. En revanche, ils peuvent être trop lents à des moments où LNS aurait obtenu de meilleurs résultats, tel que des phases d'intensification inten sive rapide. Au cours de cette thèse, nous avons développé des méthodes entrant dans chaque classe de la classification des matheuristiques de Archetti and Speranza (2014) :

Approches basées sur la génération de colonnes : un modèle basé sur les routes a été écrit pour le VRPDO et est résolu régulièrement par un solveur afin de recombiner les routes pro duites par LNS au cours de ses itérations.

Improvement heuristics : une approche de programmation dynamique a été adoptée pour améliorer les routes prometteuses produites par LNS pour le VRPDO. Nous avons adapté le voisinage de BalasSimonetti [START_REF] Balas | New classes of efficiently solvable generalized Traveling Salesman Problems[END_REF].

Approches de décomposition : la méthode développée pour résoudre le 2EMTVRPCSRF est basée sur une décomposition en trois sousproblèmes. Cette méthode alterne entre le tra vail sur le premier échelon avec SLNS, le travail sur le second échelon avec SLNS, et la résolution d'un modèle pour recombiner les deux échelons.

La présentation des deux nouveaux problèmes et des deux contributions méthodologiques est organisée comme suit : Chapitre 1 il introduit le problème de tournées de véhicules avec options de livraison (VRPDO, Dumez et al. (2021a); Tilk et al. (2020)) ainsi que la recherche par petits et grands voisi nages (SLNS) développée pour le résoudre. Nous questionnons rigoureusement l'impact de chaque composant.

Chapitre 2 il présente l'hybridation du SLNS avec des solveurs MIP et la programmation dy namique pour résoudre une variété de problèmes généralisés de tournées de véhicules avec fenêtres temporelles. L'utilité de chaque outil et les règles pour les orchestrer sont longue ment étudiées dans le contexte de quatre variantes de problème de tournées de véhicules généralisé.

Chapitre 3 il présente le problème de tournées de véhicules à deux échelons avec trajets multi ples, capacités sur les satellites et flux inverses (2EMTVRPCSRF, [START_REF] Dumez | A matheuristic for a 2echelonvehicle routing problem with satellite capacities and reverse flows[END_REF])

et la méthode de décomposition développée pour le résoudre. Cette méthode alterne entre le travail sur chaque échelon avec SLNS et la résolution d'un modèle mathématique par un solveur pour recombiner les deux échelons. Ainsi, ce chapitre réutilise les développe ments précédents pour résoudre un problème complexe.

Les deux premiers chapitres sont basés sur les articles Dumez et al. (2021a) et [START_REF] Dumez | Hybridiz ing Large Neighborhood Search and Exact Methods for Generalized Vehicle Routing Prob lems with Time Windows[END_REF] publiés dans Transportation Research part B et EURO Journal in Transportation and Logistics. Ces résultats ont été présentés dans les conférences suivantes : [START_REF] Dumez | A Large Neighborhood Search approach to integrate delivery options in last mile delivery[END_REF], Dumez et al. (2019a), Péton et al. (2019), [START_REF] Dumez | Large Neighborhood Search with set partitioning and dynamic programming for the VRP with Delivery Options[END_REF], [START_REF] Dumez | Renforcements de la recherche à voisinage large pour les problèmes de tournées de véhicules généralisés[END_REF]. Le dernier chapitre est basé sur l'article [START_REF] Dumez | A matheuristic for a 2echelonvehicle routing problem with satellite capacities and reverse flows[END_REF], qui sera soumis prochainement à une revue internationale.

INTRODUCTION

Let us start with a definition from [START_REF] Savelsbergh | 50th Anniversary Invited Article-City Lo gistics: Challenges and Opportunities[END_REF]:

" City Logistic is about finding efficient and effective ways to transport goods in urban areas while taking into account the negative effects on congestion, safety, and environment.

"

This thesis is part of the broad stream of studies in operations research which are defining models and methods to improve the transportation of goods over many aspects. The goal of this work is to give practitioners and academics an overview of possible urban distribution policies, optimisation algorithms for these, and simulations performed by these algorithms. In the frame of the OPUSS project, we worked in tight collaboration with the chair of logistics management of the Gutenberg School of Management and Economics (Mainz, Germany) which is specialized in exact methods for combinatorial optimization problems. We focus on the operational routing decisions for small shops and private services in urban areas. That is to say, we seek to find efficient daytoday routes and planning for drivers in order to fulfill given tasks to perform in a restricted zone. As examples, let us briefly present a few standard problems that we extend, recombine and solve in this thesis:

-The Vehicle Routing Problem (VRP, [START_REF] Dantzig | The Truck Dispatching Problem[END_REF]) seeks to find the least cost routes in order to distribute a given set of parcels with a given fleet of vehicles -The Vehicle Routing Problem with Time Windows (VRPTW, [START_REF] Savelsbergh | Local search in routing problems with time windows[END_REF]) is a ex tention of the VRP where each customer can be served solely during a predefined period, called time window.

-The MultiTrip Vehicle Routing Problem (MTVRP, [START_REF] Fleischmann | The vehicle routing problem with multiple use of the vehi cles[END_REF]) is a relaxation of the VRP in which each vehicle is allowed to performed multiple successive tours during the day.

-The Vehicle Routing Problem with Backhauls (VRPB, [START_REF] Gélinas | A new branch ing strategy for time constrained routing problems with application to backhauling[END_REF]) is an exten sion of the VRP where some goods have to be delivered in addition to some goods to be collected.

-The Generalized Vehicle Routing Problem (GVRP, [START_REF] Ghiani | An efficient transformation of the generalized vehicle routing problem[END_REF]) is another extension of the VRP where the customers can be served at different places, to be chosen Introduction by the delivery company.

-The 2Echelon Vehicle Routing Problem (2EVRP, Crainic et al. (2009)) also considers the leastcost delivery of goods, but via the cooperation between two fleets of vehicles. That is to say, a fleet of trucks first bring goods from the depot located in the outskirts to small logistic platforms near the city center, called satellites. The parcels are then delivered to the customers by small vehicles from the satellites.

In order to combine these features in an efficient and realistic way, it is important to coordi nate the operations of the different vehicles. Therefore, synchronization constraints arise in the models. Those we treat in this thesis are named intertour resource constraint by [START_REF] Hempsch | Vehicle Routing Problems with InterTour Resource Constraints[END_REF] and as resources synchronization constraint by [START_REF] Drexl | Synchronization in Vehicle Routing-A Survey of VRPs with Mul tiple Synchronization Constraints[END_REF], which propose the following definition :

" The total consumption of a specified resource by all vehicles must be less than or equal to a specified limit.

"

We define two new problems during this thesis. First, the Vehicle Routing Problem with Delivery Options (VRPDO, Dumez et al. (2021a) ; Tilk et al. (2020)): it is a refinement of the GVRPTW in which each customer gives several possible locations for delivering its order along with a time windows, corresponding to places he/she will visit during the day. Some can be shared delivery locations, such as shops or lockers, with a limited capacity to be used by all deliverymen. Second, the 2Echelon MultiTrip Vehicle Routing Problem with Capacitated Satellites and Reverse Flow (2EMTVRPCSRF, [START_REF] Dumez | A matheuristic for a 2echelonvehicle routing problem with satellite capacities and reverse flows[END_REF]): it integrates the VRPTW and the VRPB in the 2EVRP logistic system while considering satellites of limited capacity. Thus, the vehicles of the two echelons must be synchronised in time and space to handle the goods to be delivered and collected, while integrating that the quantity of goods waiting to be transferred between the two echelons at a satellite never exceeds its capacity.

To solve these problems we use approximate methods while the Mainz's research team focus on exact methods. Glover and Kochenberger (2003) defines a metaheuristic such as:

Introduction " One can insist on the mathematical programming (MP) approach and try to ob tain better and better results by improving the model and by enhancing the solver by specialized features. Or one can forget about MP and resort to adhoc heuristics not based on the MP model. In this latter case, the MP model is completely disregarded or just used for illustrating the problem characteristics [...] A third approach is how ever possible that consists in using the MP solver as a basic tool within the heuristic framework. This hybridization of MP with metaheuristics leads to the matheuristic approach.

"

We use the Large Neighborhood Search (LNS) metaheuristic. Its idea is to iteratively improve the current solution by ruining it (i.e. removing a part of it) and repairing it (i.e reinserting the removed customers at appropriated places). This process is repeated until a stopping criterion (usually a time limit). To clarify the position of this work, let us present a brief history of LNS for routing problems:

1. [START_REF] Shaw | Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems[END_REF] initially proposed LNS in a constraint programming context to solve the VRP. In this first version, the solutions were repaired by a branchandbound using a constraint programming solver.

2. [START_REF] Schrimpf | Record Breaking Optimization Results Using the Ruin and Recreate Principle[END_REF] independently developed a very similar method under the name ruin and recreate for the VRPTW. But this time the solutions were repaired by one heuristic method.

3. [START_REF] Pisinger | A general heuristic for vehicle routing problems[END_REF]; Ropke and Pisinger (2006a,b) popularized LNS by proposing an unified method for various routing problems (including the VRPTW and the VRPB). Indeed Ropke and Pisinger (2006a) is now cited 1514 times 7 ! This new version destroys and repairs the solutions with various heuristics chosen probabilistically based on their past performance. This method is called Adaptive Large Neighborhood Search (ALNS).

4. During the following years, (A)LNS was further developed to solve various and more complex problems [START_REF] Pisinger | Large Neighborhood Search[END_REF]. For example, for 2EVRPs, Hemmelmayr et al. (2012) developed various heuristics working on different aspects of the solutions and [START_REF] Grangier | A lns and branchandcheck approach for a vrp with crossdocking and ressource synchronization[END_REF] integrated time windows and further developed the hybridizations with MIP solvers. Introduction 6. [START_REF] Christiaens | Slack Induction by String Removals for Vehicle Routing Problems[END_REF] recently proposed to narrow down the LNS method to simpler components. Thus, they use only a few simple repair heuristics and remove only a few customers from the solutions during each iteration. This leads them to a method capable of performing a tremendous number of very fast iterations. The suggested philos ophy for LNS proved to be very competitive on the VRP and the VRPTW.

The first axis of our methodological contribution is about the configuration of LNS. Indeed, during our literature review many ruin and recreate heuristics seemed relevant. We designed a rigorous experimental protocol based on statistical tests to evaluate redundancies and com plementarities between heuristics. This allowed us to decide on a restricted and efficient con figuration of LNS. Besides, during these many experiments, we noticed that, as suggested by [START_REF] Christiaens | Slack Induction by String Removals for Vehicle Routing Problems[END_REF], limited destructions and fast reconstruction lead to good results. As a result, we propose a LNS configuration that combines small and large destruction sizes. The resulting developed Small and Large Neighborhood Search (SLNS) proved to be a state of art algorithm on four generalized vehicle routing problems with time windows.

The second axis of our methodological contribution is about the orchestration of LNS with exact components, thus creating matheuristics. Adaptive layers were developed to decide on when to use these tools. Indeed, these tools can significantly improve the results on LNS. On the other hand, they may be too slow at times when LNS would have performed better on its own, ushc as during fast intensification phases. In the course of this thesis we developed methods falling into each class of Archetti and Speranza (2014)

matheuristics classification:

Column generationbased approaches a routebased model is written for the VRPDO to be solved regularly by a MIP solver in order to recombines routes produced by LNS in the course of its iterations.

Improvement heuristics a dynamic programming approach is taken to improve promising routes produced by LNS for the VRPDO. Namely, we adapt the BalasSimonetti neighborhood [START_REF] Balas | New classes of efficiently solvable generalized Traveling Salesman Problems[END_REF](Balas,). et al. (2021a)) ; Tilk et al. (2020)) together with the Small and Large Neighborhood Search (SLNS) developed to solve it. We rigorously question the impact of each component of the developed method and the impact of the proposed parameters.

Chapter 2 presents the hybridization of the aforementioned SLNS with a columngeneration based approach and dynamic programming to solve a variety of Generalized Vehicle Rout ing Problems with Time Windows. The usefulness of each tool and the rules to orchestrate them is extensively studied in the context of four variants of the GVRPTW.

Chapter 3 presents the 2Echelon MultiTrip Vehicle Routing Problem with Capacitated Satel lites and Reverse Flow (2EMTVRPCSRF, [START_REF] Dumez | A matheuristic for a 2echelonvehicle routing problem with satellite capacities and reverse flows[END_REF]) and the decomposition method developed to solve it. This method alternates between working on the each echelon with SLNS and solving a MIP with a commercial solver to recombine the two echelons. Thus, this chapter reuses the previous developments to solve a complex problem.

The first two chapters are a streamlines and updated versions of the articles Dumez et al. (2021a) and [START_REF] Dumez | Hybridiz ing Large Neighborhood Search and Exact Methods for Generalized Vehicle Routing Prob lems with Time Windows[END_REF] published in Transportation Research part B and Euro Jour nal in Transportation and Logistics. These results were presented in the following conferences: [START_REF] Dumez | A Large Neighborhood Search approach to integrate delivery options in last mile delivery[END_REF], Dumez et al. (2019a), Péton et al. (2019), [START_REF] Dumez | Large Neighborhood Search with set partitioning and dynamic programming for the VRP with Delivery Options[END_REF], [START_REF] Dumez | Renforcements de la recherche à voisinage large pour les problèmes de tournées de véhicules généralisés[END_REF]. The last chapter is based on the article [START_REF] Dumez | A matheuristic for a 2echelonvehicle routing problem with satellite capacities and reverse flows[END_REF], which is to be sub mitted soon to an international journal.

Chapter 1

LARGE NEIGHBORHOOD SEARCH HEURISTICS FOR THE VEHICLE ROUTING PROBLEM WITH DELIVERY OPTIONS

Introduction

The revenue of online stores in France was 92.6 billion euros in 2018, after an average growth of 13% per year during the last four years (Moyou, 2019). With this growth of ecommerce, an increasing number of parcels have to be delivered each day. Consequently, several possibilities have been developed so that distribution can be faster and cheaper. According to [START_REF] Morganti | The impact of ecommerce on final deliveries: alternative parcel delivery services in France and Germany[END_REF], in 2012, 90% of the French and German population were within 10 minutes of a locker or a pickup point (often shops or post offices), and the number of such locations grew by 33% between 2008 and 2012. Furthermore, trunk deliveries were recently tested on an industrial scale [START_REF] Mcfarland | Amazon now delivers to the trunk of your car[END_REF].

The customer is generally required to choose one delivery location. Nevertheless, people move around during the day, for example, to go to work or take children to school. This is the major cause of noshow in attended deliveries. According to [START_REF] Allen | Analysis of the parcels market and parcel carriers' operations in the UK[END_REF], in the UK, 14% of all deliveries fail. In 2014, in the UK, the cost of these failed deliveries has been estimated at £771 million. Consequently, it is very likely that a purchaser would like to choose between several delivery options depending on the time of delivery.

The objective of carriers is to deliver all their parcels at a minimum cost. They also want to maintain a good quality of service, but the time window width has a great impact on delivery costs. Nevertheless, they are essential because 80% of the parcels delivered in the UK do not fit into the letterbox [START_REF] Allen | Analysis of the parcels market and parcel carriers' operations in the UK[END_REF] and nobody likes to wait all afternoon at home for a parcel [START_REF] Agatz | Time slot manage ment in attended home delivery[END_REF]. Accordingly, new strategies are developed to increase the number of successful deliveries [START_REF] Alexandre | The delivery problem: Opti mizing hit rates in ecommerce deliveries[END_REF]. This chapter discusses the Vehicle Routing Problem with Delivery Options (VRPDO). It is an extension of both the Vehicle Routing Problem with Time Windows (VRPTW, [START_REF] Savelsbergh | Local search in routing problems with time windows[END_REF]) and the Generalized Vehicle Routing Problem (GVRP, [START_REF] Ghiani | An efficient transformation of the generalized vehicle routing problem[END_REF]). In the VRPDO, each customer can choose to have a package delivered through several delivery options. For example, a given parcel can be delivered at office during work hours, at home in the evening or in a locker at any time.

From the standpoint of the carrier, these delivery options can be of two natures. They can take place in individual delivery locations, like a home or a car trunk. Only one customer can be delivered in that location. Otherwise, deliveries can take place at shared delivery locations (SDL), like lockers or pickup points. In this case, several parcels can be left at the same location, while possibly satisfying some capacity constraints.

The contribution of this chapter is twofold. First, from the managerial point of view, a 1.1. Introduction new variant of the Vehicle Routing Problem (VRP) is introduced: the VRPDO combines deliv ery options to reduce delivery costs while guaranteeing a higher quality of service. From the methodological point of view, a Large Neighborhood Search (LNS) metaheuristics that embeds many recent and new ideas is proposed. This LNS includes many operators from the literature. We compare them rigorously to determine an efficient and nonredundant configuration. We introduce a new LNS framework which combines small and large destructions: the Small and Large Neighborhood Search (SLNS). We show that this framework is particularly efficient to escape local optima in case of complex constraints such as the synchronization constraints of the VRPDO.

This chapter is structured as follows: In Section 1.2, the VRPDO is described and a mathe matical model is proposed. Section 1.3 exposes the literature on related problems. Section 1.4 details the first LNS developed to solve the VRPDO. In addition, our methodology to configure the algorithm is explained. Section 1.5 present the SLNS. Finally, sections 1.6 and 1.7 develops experiments, first to validate the method and second to draw managerial insights from randomly generated instances of the VRPDO.

Problem settings

The VRPDO is an operational optimization problem defined on a short time horizon, typ ically one day. In this problem, each customer can choose several delivery options. In the fol lowing, for the sake of conciseness, we will refer to them only as options.

An option is a tuple associated with a unique customer, composed of a location, a preference level and a service duration, as follows:

-A location has a geographical address and a time window during which goods can be de livered. For each location, a fixed preparation time represents the time needed to park a vehicle and access the delivery point. Two types of locations are considered: individual delivery locations and shared delivery locations (SDLs). An individual delivery location is typically a personal address. Only one option can be associated with this location. It generally has a tight time window. An SDL is typically a pickup point or a locker. Several options can be associated with this location. An SDL can be given a capacity, which is defined as the maximum number of packages which can be delivered at this location dur ing the time horizon. For the sake of conciseness, SDLs and individual delivery locations may be called "shared locations" and "individual locations", respectively.

-The preference level of an option is an integer in {1, ..., p}, p being the number of pref erence levels. 1 is the value associated with the customer's preferred option and p corre sponds to the least preferred option.

-The service duration of an option represents the time needed to deliver the customer's package after accessing the location.

Let us consider a homogeneous fleet of vehicles starting from a given depot and returning to this depot within the time period. Travel time and routing costs between each pair of locations are assumed to be known.

The Vehicle Routing Problem with Delivery Options

The VRPDO consists in designing a route for each vehicle, serving each customer with one of his/her options, and satisfying the SDL capacities and minimal service level constraints. For each level p ∈ {1, ..., p -1}, the service level SL p of a solution is defined as the percentage of customers served with an option of level at most p. A minimal service level β p has to be achieved for each level p ∈ {1, ..., p -1}.

Similarly to many vehicle routing problems, the objective function is the minimization of the number of vehicles and the sum of routing costs, in lexicographical order. Note that each customer's order has to be delivered by a single truck (i.e. split deliveries are not allowed).

When a customer orders a parcel, he/she chooses multiple options, sorted by preference level. In the VRPDO, the time windows relate to the delivery of parcels by vehicles. At individual locations, these time windows are selected by customers. At SDLs, they correspond to an interval of time during which the corresponding facilities can be accessed by vehicles. Thus, it is assumed that all options delivered at SDLs have the same time windows. In practice, once a customer's order is delivered at an SDL or a remote location (i.e. car's trunk), the customer is notified ; he/she can collect the package at any time after being notified, including on the next days. Hence, once an order is delivered at an SDL, it is considered to occupy a part of the SDL capacity until the end of the period. There might be several policies to manage uncollected parcels, but this question is out of the scope of the present study. Thus, we simply assume that the capacity of an SDL is a priori adjusted before solving the VRPDO, according to the parcels remaining at this location.

To illustrate the definition of the VRPDO, Figure 1.1 shows the options from the customer perspective. Figure 1.1 shows the example of a customer with 3 delivery options. Delivery at home between 7 p.m. and 9 p.m. is the preferred option, then delivery in a locker between 1 p.m. and 5 p.m., then a delivery in the trunk of his/her car between 9 a.m. and 6 p.m. Figure 1.2 presents the options from the carrier perspective. The individual options of each customer are represented by a group of icons of identical colors. SDLs are represented by black icons (locker 🔒, store/postal office 🏤. Each customer is represented by a number and its options are surrounded by a line of the same color as the icons. The carrier has to serve all customers via exactly one option. This amounts to define a set of routes that start from the carrier's depot (represented by the truck icon ⛟) and visit exactly one option inside a colored line.

Like in the Generalized Vehicle Routing Problem (GVRP, [START_REF] Ghiani | An efficient transformation of the generalized vehicle routing problem[END_REF]), the set of options is composed of subsets, for each customer. Vehicles must visit exactly one option in each subset. In the GVRP, subsets of options form a partition of the set of locations. In the VRPDO, the subsets of options form a cover of the set of locations. This is because options 2012)) is an instance of the VRPDO without shared locations and a single preference level. Hence, the VRPDO can be seen as a generalization of the GVRPTW. Figure 1.3 represents a solution to the VRPDO instance introduced in Figure 1.2, with only one route. An option that takes place in an individual location is depicted by a circle including the customer's identity and the location. This is the case of customer 2, who is delivered at office rather than at home, thus avoiding a big detour. A shared location is depicted by a rectangle that includes the locations and identifies the delivered customers. For example, customers 1 and 3 are delivered at SDL I.

⛟ 1 🏡 2 🏢 2 🏡 3 🏡 3 🏢 4 🚗 4 🏡 4 🚗 5 🏡 5 🏢 6 🏡 I 🔒 | 1 3 Ⅱ 🔒 | 5 6 Ⅲ 🏤 Figure 1.3 -Example of a route in the VRPDO
The time spent by a vehicle at a location is equal to the preparation time of the location plus the service duration of the visited options. The preparation time of a location corresponds to the time to find a parking place. Hence, it is counted only once, regardless of the number of parcels delivered. The service duration of an option corresponds to the time to deliver the parcel or to put it in a box.

Figure 1.4 represents a solution to the VRPTW for the same instance, using home delivery only.

We assume that a parcel always occupies one box in a locker, no matter its size. Indeed, a locker is a rack of automatic boxes so there is at most one parcel per box, as long as it fits. Hence, the capacity of the shared locations, generally expressed as a number of boxes, can equivalently be expressed as a number of parcels. Due to uncertainty on when customers will pick up their parcels, it is assumed that each box can be used only once per day. On the contrary, it is realistic to consider that some shared locations (e.g. post offices) have unbinding capacity.

The assignment of parcels to boxes is not taken into account in the VRPDO, but it would be possible to consider different sizes of boxes by duplicating options.

Figure 1.5 illustrates the capacity constraints induced by shared locations for the example described in Figure 1.3. Not all shared locations must be visited. On the contrary, they can be visited by different vehicles. Considering the quality of the service, Figure 1.6 represents an example with a service level constraint requiring that at least β 1 = 50% of the customers are served with their preferred options and that at least β 2 = 75% of the customers are served with options of level 1 or 2. In the example, 50% of the customers are served with their preferred option (SL 1) and 83% of the customers are served with an option of level 1 or 2 (SL 2), so that the service level constraints are satisfied.

The constraints related to SDL capacity and service level constraints can be seen as resource constraints involving all the vehicles. They fall under the category of synchronized resources defined by [START_REF] Drexl | Synchronization in Vehicle Routing-A Survey of VRPs with Mul tiple Synchronization Constraints[END_REF] as: "At any point in time, the total utilization or consumption of a specified resource by all vehicles must be less than or equal to a specified limit".

The Vehicle Routing Problem with Delivery Options

SL 1 : 50% ⩾ β 1 SL 2 : 83% ⩾ β 2 4 😊 6 😊 5 😊 2 😐 1 😐 3 😞 Level 1 Level 2 Level 3 β 1 = 50% β 2 = 75%
Figure 1.6 -Service level measured with respect to a set of selected options

Mathematical model

Let N be the set of customers and O the set of options. The options of customer c ∈ N , denoted by O c ⊂ O, are specific to that customer only. Thus,

∪ c∈N O c = O and ∀c, c ′ ∈ N : c ̸ = c ′ ⇒ O c ∩ O c ′ = ∅.
Let L denote the set of locations and O l ⊂ O be the subset of options that take place at location l ∈ L.

The VRPDO is modeled on an optionbased complete graph G = (V, A). The set of vertices, denoted by V = O ∪ {0, 0 ′ }, contains one vertex for each option plus the starting depot 0 and the ending depot 0 ′ . The routes are defined on the optionbased graph G. A route is a sequence of options belonging to distinct customers. Consequently, when multiple deliveries are made in a shared location, it is represented by several vertices of V . Figure 1.7 is the representation of the route from of Figure 1.3. The travel time on arc (i, j) ∈ A is denoted by t i,j . It includes the preparation time at the location of option j if the two locations are distinct. The cost of traveling on arc (i, j) is denoted by c i,j . The service duration s i at vertex i ∈ V represents the time necessary to visit the option associated with this vertex. It is assumed to be null at depot vertices 0 and 0 ′ . Each option i ∈ O is associated with the time window [a i , b i] of its location. Moreover, it is assumed that a 0 = a 0 ′ = 0 and that b 0 and b 0 ′ correspond to the end of the working day.

1 I 🔒 3 I 🔒 2 🏢 5 Ⅱ 🔒 6 Ⅱ 🔒 4🏡 ⛟ ⛟
Let p be the number of preference levels. For a preference level p ∈ {1, ..., p}, β p is the minimal percentage of customers that can be served with an option of level p or lower. By definition β P = 100% and ∀p ∈ {1, ..., p -1} : β p ⩽ β p+1 .

Partie , Chapter 1 -Large Neighborhood Search heuristics for the Vehicle Routing Problem with Delivery Options

Let C l be the capacity of location l ∈ L, expressed as a number of parcels. Each option o ∈ O is associated with a preference level p o and a demand q o which is equal to the demand of its associated customer. The set of vehicle is denoted by K. It is assumed that the fleet is homogeneous and the capacity of vehicles is denoted by Q.

Model 1 describes the VRPDO. x k i,j is a binary variable that indicates if the vehicle k ∈ K uses arc (i, j) ∈ A. y o is a binary variable that states whether option o ∈ O is visited. h k i is the service time of vehicle k ∈ K at vertex i ∈ V .
The first objective function (1.a) minimizes the number of vehicles. The second objective function (1.b) minimizes the routing costs. Constraints (1.c) state that exactly one option must be selected for each customer. Constraints (1.d) represent the satisfaction of vehicle capacity. Recalling that the capacity of SDLs is expressed as a number of parcels, independently of their size, constraints (1.e) state that the number of options delivered at location l ∈ L cannot exceed its capacity C l . Constraints (1.f) model the satisfaction of preference levels. For each preference level p ∈ {1, ..., p}, at least β p % of the total number of customers must be served with an option of level p or better. Constraints (1.g) state that an option can be used only if it is visited by one vehicle. The remaining constraints are the classical VRPTW constraints [START_REF] Desaulniers | Chapter 5: The Vehicle Routing Problem with Time Windows[END_REF]: Constraints (1.h) ensure that a vehicle that leaves the depot returns it at the end of its route, Constraints (1.i) ensure the continuity of the routes, Constraints (1.j) compute the service time and Constraints (1.k) ensure the respect of the time windows. M is an arbitrarily large positive value.

Model 1: optionbased model

lex -min(z 1 , z 2) s.t. z 1 = ∑ j∈V x k 0,j (1.a) z 2 = ∑ k∈{1,...,K} ∑ (i,j)∈A c i,j x k i,j (1.b) ∑ o∈Oc y o = 1 ∀c ∈ N (1.c) ∑ o∈O ∑ (i,o)∈A x k i,o q o ⩽ Q ∀k ∈ K (1.d) ∑ o∈O l y o ⩽ C l ∀l ∈ L (1.e) ∑ o∈O|po⩽p y o ⩾ β p × |N | ∀p ∈ {1, ..., p -1} (1.f)
∑ (i,o)∈A ∑ k∈K x k i,o ⩾ y o ∀o ∈ O (1.g) ∑ j∈V x k 0,j = ∑ i∈V x k i,0 ′ ∀k ∈ K (1.h) ∑ (i,j)∈A x k i,j - ∑ (j,i)∈A x k j,i = 0 ∀k ∈ K, ∀j ∈ O (1.i) h k i -h k j + t i,j + s i ⩽ M.(1 -x k i,j) ∀k ∈ K, ∀(i, j) ∈ A (1.j) a i ⩽ h k i ⩽ b i ∀k ∈ K, ∀i ∈ V (1.k) x k i,j ∈ {0, 1} ∀k ∈ K, ∀(i, j) ∈ A y o ∈ {0, 1} ∀o ∈ O h k i ⩾ 0 ∀k ∈ K, ∀i ∈ V Partie , Chapter

State of the art

The VRPDO is a VRPTW with multiple delivery options and synchronized resources. This section is organized according to these three aspects: VRPTW, delivery options and resource synchronization. In addition, some closely related problems are laid out.

VRPTW

Since the introduction of the VRPTW by [START_REF] Savelsbergh | Local search in routing problems with time windows[END_REF], a plethora of papers have been published on this subject. We refer to Bräysy and Gendreau (2005a,b) for a review of the applicable literature and to [START_REF] Vidal | A hybrid ge netic algorithm with adaptive diversity management for a large class of vehicle routing problems with timewindows[END_REF] for the latest advances. Many LNS heuristics have been used to solve problems related to the VRPTW. They will be briefly discussed in Section 1.4.

Delivery options

In the VRPDO, customer requests can be satisfied at various locations. This characteristic is shared by the Generalized Vehicle Routing Problem with Time Windows (GVRPTW, [START_REF] Moccia | An incremental tabu search heuristic for the generalized vehicle routing problem with time windows[END_REF]). The GVRPTW is a specific case of the VRPDO without shared locations and with a single preference level. The literature on the GVRPTW is very scarce. We refer to [START_REF] Bektaş | Formulations and BranchandCut Algorithms for the Generalized Vehicle Routing Problem[END_REF] and [START_REF] Afsar | Exact and heuristic algorithms for solving the generalized vehicle routing problem with flexible fleet size[END_REF] for details on the GVRP, and to [START_REF] Moccia | An incremental tabu search heuristic for the generalized vehicle routing problem with time windows[END_REF] for details of the GVRPTW. [START_REF] Moccia | An incremental tabu search heuristic for the generalized vehicle routing problem with time windows[END_REF] proposed a tabu search able to tackle instances with 120 clusters within few minutes. Yuan et al. (2020a) and Yuan et al. (2020b) developed models and a branchandcut algorithm for the GTSPTW (a single vehicle GVRPTW) that can solve instances with 30 clusters. This method is extended in [START_REF] Yuan | Modèles et Algorithmes pour les Problèmes de Livraison du Dernier Kilomètre avec Plusieurs Options d'Expédition[END_REF] and [START_REF] Yuan | A column generation based heuristic for the generalized vehicle routing problem with time windows[END_REF] for the GVRPTW as a heuristicbased branchandcut. This method provides high quality solutions on instances with up to 120 customers in a few hundred seconds.

The Vehicle Routing Problem with Multiple Time Windows (VRPMTW, Favaretto et al. (2007)) can be seen as a special case of the VRPDO and of the GVRPTW, where all options of a customer take place at the same location and their time windows are disjointed. For more detail, see [START_REF] Tricoire | Heuristics for the multiperiod orienteering problem with multiple time windows[END_REF], [START_REF] Belhaiza | A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with multiple time windows[END_REF] and [START_REF] Hoogeboom | Efficient Neighborhood Evaluations for the Vehicle Routing Problem with Multiple Time Windows[END_REF].

In addition to the GVRP, some classes of vehicle routing problems include choices in the locations to visit. The goal of these problems is to select locations to visit and find routes be tween these locations, such that requirements are met at minimum cost or such that profit is maximized. This category of problem includes the Team Orienteering Problem (TOP), the VRP with profit (Archetti et al., 2014; Vansteenwegen et al., 2011), the Traveling Purchaser Problem (TPP, [START_REF] Bernardino | Metaheuristics based on decision hierarchies for the traveling purchaser problem[END_REF] ; Gendreau et al. (2016)), and the Covering Tour Problem (CTP, Kammoun et al. (2017)). For the interested reader, Yuan (2019) broadly discuss non Hamiltonian routing problems.

Among the heuristics that have been proposed to solve VRP with choices in locations or time windows, most of the authors include a perturbation component in their method. For variants of the TOP, [START_REF] Hu | An iterative threecomponent heuristic for the team orienteering problem with time windows[END_REF] developed a simulated annealing heuristic using ruinandrecreate perturbations and a set partitioning formulation, [START_REF] Souffriau | The Multiconstraint Team Orienteering Problem with Multiple Time Windows[END_REF] Besides, some papers propose using dynamic programming. In the context of a multiperiod TOP with multiple time windows, [START_REF] Tricoire | Heuristics for the multiperiod orienteering problem with multiple time windows[END_REF] used dynamic programming to choose which time window should be used in a given route. [START_REF] Moccia | An incremental tabu search heuristic for the generalized vehicle routing problem with time windows[END_REF] solved a GVRPTW; when a customer is inserted in a route, the options for the other customers of this route can be changed through dynamic programming. [START_REF] Vargas | A Selector OperatorBased Adaptive Large Neighborhood Search for the Covering Tour Problem[END_REF] solved the CTP with an ALNS algorithm that uses dynamic programming to decompose a giant tour into routes. [START_REF] Drexl | Synchronization in Vehicle Routing-A Survey of VRPs with Mul tiple Synchronization Constraints[END_REF] underlined that [START_REF] Hempsch | Vehicle Routing Problems with InterTour Resource Constraints[END_REF] was almost the only paper consid ering synchronized resources. Few other heuristics have been proposed since then. In [START_REF] Hempsch | Vehicle Routing Problems with InterTour Resource Constraints[END_REF], [START_REF] Grangier | A matheuristic based on large neighborhood search for the vehicle routing prob lem with crossdocking[END_REF][START_REF] Froger | A Matheuristic for the Electric Vehicle Routing Problem with Capacitated Charging Stations[END_REF], the resources are only temporarily used during a limited period of time, before becoming available again. For example, in [START_REF] Grangier | A matheuristic based on large neighborhood search for the vehicle routing prob lem with crossdocking[END_REF], a truck uses a dock at a satellite facility only during the loading and unloading operations.

Resource synchronization

In the VRPDO, the synchronized resources are permanently used during the whole time horizon. Thus, it is only necessary to count the number of parcels in each locker and the number of visited options of each preference level to check the satisfaction of the synchronized resource constraints. [START_REF] Souffriau | The Multiconstraint Team Orienteering Problem with Multiple Time Windows[END_REF] defined a variant of the TOP applied to tour planning for tourists. It is MTW). The routes represent the different days of the trip. The synchronized resource constraints represent the budget and the maximal number of monuments of each type that can be visited. These resources are considered in a local search with a label on the locations. These labels are updated at each modification of the schedule. To get good solutions even with these resources, their algorithm relies on perturbations through a combination of GRASP with ILS. Besides, local search moves are chosen with a score. It is a function of the increase in the objective function, time shift, and resource consumption.

Closely related problems

Now that the three components of the VRPDO have been described, let us focus on very close problems. [START_REF] Reyes | Vehicle routing with roaming de livery locations[END_REF] defined the VRP with Roaming Delivery Locations (VRPRDL). This problem involves delivering parcels into the trunks of cars, which move according to known schedules. In the VRPRDL, there are no synchronized resources, the time windows of a cus tomer are disjointed and cars do not move faster than the delivery truck. This problem is solved with an LNS heuristic. Classical operators are adapted and dynamic programming is used to reoptimize routes by selecting better options without changing the customer sequence in the route. The combination with home delivery is considered in a variant called VRP with Home and Roaming Delivery Locations (VRPHRDL). It is defined by [START_REF] Ozbaygin | A branchand price algorithm for the vehicle routing problem with roaming delivery locations[END_REF] and solved to optimality by a BranchandPrice (B&P) algorithm for instances with up to 60 customers. All these instances have been solved by (Yuan, 2019; Yuan et al., 2021) which present better results for larger instances. Note that these two solution approaches can also be used to solve instances of the GVRPTW. [START_REF] Sitek | Capacitated vehicle routing problem with pickup and al ternative delivery (CVRPPAD): model and implementation using hybrid approach[END_REF] defined the Capacitated VRP with Pickup and Alternative Deliv ery (CVRPPAD). This paper considers multiple options for each parcel to be delivered. Lockers and post offices are modeled with limited capacities. Customer preferences are modeled with a penalty on the objective function if a nondesired option is used. No time windows are consid ered. Their method relies on a preprocessing phase done by constraint programming. A heuristic then groups parcels together before assigning them to a route. [START_REF] Zhou | A MultiDepot TwoEchelon Vehicle Routing Problem with Delivery Options Arising in the Last Mile Distribution[END_REF] defined the MultiDepot TwoEchelon Vehicle Routing Problem with Delivery Options (MD2EVRPDO). In this paper, a parcel can either be delivered at the customer's home or to a selected pickup facility. Shared locations are incapacitated and customer preferences are modeled through penalties in the objective function. Time windows are not considered. This problem is solved with a multipopulation genetic algorithm that embeds an adhoc local search.

Since the publication of the presentation of the VRPDO in Dumez et al. (2021a) and [START_REF] Tilk | The Lastmile Vehicle Routing Problem with Delivery Options[END_REF] the interest of the research community about the utilization of lockers for parcel delivery has increased, and a few paper were published on the topic. [START_REF] Mancini | A combined multistart random constructive heuristic and set partitioning based formulation for the vehicle routing problem with time dependent travel times[END_REF] defined the Vehicle Routing Problem with Private and Shared Delivery Locations (VRPPSDL). The VRPPSDL seeks to deliver the parcels of each customer either at home (under time windows constraint) or through a locker (with compensation cost). In addition, lockers have a capacity expressed as the number of customer that can possibly be delivered here. A fixandoptimize method was developed to solve the VRPPSDL with an arc based MIP model of the problem. Instances were solved with up to 75 customers and 5 lockers with a total capacity of 80. [START_REF] Grabenschweiger | The vehicle routing problem with heterogeneous locker boxes[END_REF] defined the Vehicle Routing Problem with Heterogeneous Locker Boxes (VRPHLB). This problem assumes that parcels to be delivered and locker boxes fall under size categories such that the demand of each customer can fit inside one or more locker boxes. The VRPHLB seeks to deliver the parcels of each customer either at home (under time windows constraint) or through a locker (with compensation cost). But lockers have a limited size expressed as a number of boxes of each size. Their method integrates an ALNS heuristic to decide on the routing and binpacking tailored heuristics to decide on the assignment of parcels to lockers or home delivery. They solved the instances of [START_REF] Mancini | A combined multistart random constructive heuristic and set partitioning based formulation for the vehicle routing problem with time dependent travel times[END_REF], and instances with up to 75 customers, 5 locker stations, and 3 sizes of parcels matching with the 3 sizes of locker boxes. They showed that the cost of taking into account the packing of parcels into locker boxes is only of 1.3%. [START_REF] Buzzega | Last mile deliveries with lockers: formulations and algorithms[END_REF] defined the Vehicle Routing Problem with Lockers and Time Windows (VRPLTW). This problem considers that locker are subject to fixed opening cost and capacity expressed as the number of customer that can be delivered here. Multiple mathematical formulations are detailed, and a branchandcut is developed. Instances with up 100 customers and 10 lockers of size 5 were proposed, but only instances with up to 40 customers and 4 lockers were consistently solved. the reference to the study, Column 3 is the name of the solved problem, Column 4 is the name of the solution method. Column 5 indicates whether the considered synchronized resources are renewable, contrary to synchronized resources used during the full time period. The last column briefly describes the core idea of the solution methods to manage the synchronized resource constraints.

Synthesis

Tables 1.2 presents a nonexhaustive lists of scientific contribution related to the VRPDO, in the sense that they are vehicle routing problems with time windows in which not all vertex have to be visited. The first columns groups studies according to the class of the problem solved. Column 2 is the reference to the study, Column 3 is the name of the solved problem, Column 4 is the name of the solution method. The last column briefly describes the core idea of the solution methods to manage the alternative options.

Large Neighborhood Search for the VRPDO

Algorithm 1 presents the main steps of the Large Neighborhood Search (LNS) heuristic. The main loop of the iterative process is from lines (2) to [START_REF] Anderluh | Synchronizing vans and cargo bikes in a city distribution network[END_REF]. In Line (4) to select a recreate operator σ + from a set Σ + of operators. The same process is used in Line (5), a ruin operator σ - is randomly selected from a set Σ -of operators. Each operator has a given constant probability of being selected. In Line (6), the size Φ of the destruction is randomly chosen in a given inter val [δ, ∆]. The destruction size is the percentage of customers to be removed from the current solution.

The selected operators are applied to the current solution s ′ in Line (7). First, Φ% of the customers are removed from the solution with the chosen ruin operator σ -. These customers are placed in the socalled request bank. Second, the customers from the request bank are inserted in the solution by the recreate operator σ + . In Line (8), an acceptance criterion is used to decide whether the new solution becomes the current solution for the next LNS iteration. The accep tance criterion, and the penalization the customers in the request bank, is presented in Section 1.4.4.

The VRPDO has two lexicographic objectives: (1) to minimize the number of vehicles, and (2) to minimize the routing costs (described by the objective function 1.b). Similarly to Ropke and Pisinger (2006a), Algorithm 1 is run twice, with half of the time budget for each part. During the first phase, the number of vehicles is decreased by removing the smallest route from the solu tion each time a feasible solution is found (the customers are placed in the request bank). During the second phase, the routing costs are minimized, using the minimum number of vehicles found in a feasible solution obtained during the first phase. The configuration of our algorithm does not change between the two phases.

Ruin operators

Ruin operators use different rules to remove customers from the solutions. Upon removal, customers are placed in the request bank of the solution.

We divide ruin operators from the literature into two categories: local ruin operators and large ruin operators. A local ruin operator deletes customers so that even if few customers are deleted, it is likely that the solution will be improved on reconstruction. On the contrary, a large ruin operator requires that more customers be deleted. Indeed, with a large ruin operator, if too few customers are removed, it is likely that they will be reinserted in the same position.

In the literature, large ruin operators are typically used with large destruction sizes. Whereas 36

s ′ ← σ + (σ -(s ′ , Φ)) 8:
if s ′ meets the acceptance criterion then 9:

s ← s ′ 10:

end if 11: end while 12: return the best feasible solution found the local ruin operators are from papers favoring speed of reconstruction with low destruction size but a larger number of iterations.

In the following, operators identified with [S] are the ones selected during the configuration study presented in Section 1.4.3. On the contrary, the discarded ones are indicated with [D].

Local ruin operators

The local ruin operators implemented from the literature are:

[S] Distancerelated removal (Ropke and Pisinger, 2006b) : removes customers that are close to each other with respect to the Euclidean distance.

[D] Node neighborhood removal [START_REF] Demir | An adaptive large neighborhood search heuris tic for the PollutionRouting Problem[END_REF]: removes customers that are close to each other with respect to the infinity norm.

[D] Proximity removal [START_REF] Prescottgagnon | A branchandpricebased large neighborhood search algorithm for the vehicle routing problem with time windows[END_REF]: removes customers that are close both from a spatial and a temporal point of view, according to a parameterless formula. This is an extension of Shaw removal [START_REF] Shaw | Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems[END_REF].

[S] (Split) String removal [START_REF] Christiaens | Slack Induction by String Removals for Vehicle Routing Problems[END_REF]: removes sequences of cus tomers in the routes of the current solution, either conserving, or not, a substring in the middle.

Large ruin operators

The large ruin operators implemented from the literature are:

Partie , Chapter 1 -Large Neighborhood Search heuristics for the Vehicle Routing Problem with Delivery Options

[S] Random removal (Ropke and Pisinger, 2006b): randomly removes customers.

[D] Demandrelated removal [START_REF] Demir | An adaptive large neighborhood search heuris tic for the PollutionRouting Problem[END_REF]: removes customers that have demands of similar size.

[S] Timerelated removal [START_REF] Pisinger | A general heuristic for vehicle routing problems[END_REF]: removes customers that are delivered at approximately the same time.

[S] Zone removal [START_REF] Demir | An adaptive large neighborhood search heuris tic for the PollutionRouting Problem[END_REF]: randomly removes customers into predefined fixed rectangular zones.

[S] Cluster removal [START_REF] Pisinger | A general heuristic for vehicle routing problems[END_REF]: removes customers that are served by the same route in the current solution. A route is randomly selected and the Kruskal's algo rithm is run on the arcs of this route until two clusters remain. All the customers in one of them, randomly chosen, are removed.

[S] Route removal [START_REF] Nagata | A powerful route minimization heuristic for the vehicle rout ing problem with time windows[END_REF]: removes all the customers of a route.

[D] Distance worst removal (Ropke and Pisinger, 2006a): iteratively removes the customer with the highest individual service cost. The individual service cost of a customer is the cost of the arcs that enter and exit the location where the given customer is served in the current solution, minus the cost of going directly from the previous location on the route to the next one. If it is a shared location, this cost is divided by the number of customers served at this location on the same route.

[D] Time worst removal [START_REF] Demir | An adaptive large neighborhood search heuris tic for the PollutionRouting Problem[END_REF]: removes the customers that cause the largest time loss.

[D] Neighborhood removal [START_REF] Demir | An adaptive large neighborhood search heuris tic for the PollutionRouting Problem[END_REF]: first, the cost of each route divided by the number of customers served by this route is computed. The customers are then removed sequentially by decreasing order of the difference between their individual service cost and the average service cost of their route.

[D] Nodepair history removal [START_REF] Pisinger | A general heuristic for vehicle routing problems[END_REF]: memorizes the cost of the best solution that uses each arc. The operator removes the nodes that are reached via arcs with the largest score.

[S] Historical knowledge node removal [START_REF] Demir | An adaptive large neighborhood search heuris tic for the PollutionRouting Problem[END_REF]: this history removal memorizes the lowest individual service cost of each customer. The operator removes the customers with the largest difference between their current individual service cost and their lowest individual service cost. It can be see as a historybiased worst removal.

Large Neighborhood Search for the VRPDO

Ruin operators for the VRPTW can be adapted to the VRPDO in two ways: optionbased or customerbased. An optionbased operator only takes in account the options that are cur rently visited to serve the customers. A customerbased operator takes all the options into ac count. Let us describe an example with distancerelated removal. The distance between two customers in distance optionbased related removal is the distance between the options that are currently visited to serve these customers. On the contrary, in distance customerbased related removal, it is the minimal distance between any two options of these customers. That is to say, the optionbased version will remove customers that are currently served in close locations and the customerbased one will delete customers that are potentially served in close locations.

VRPDO specific ruin operators

The new ruin operators specifically developed for the VRPDO are:

[D] Preferenceoriented random removal: randomly selects customers and deletes them with a probability based on the preference level of the options currently visited to serve them. The probability of deleting a selected customer, currently served with option o, is (1 /P+1-po) 3 . When there are three preference levels, the probability of deleting a customer served with an option of level 3, 2 and 1 is 1.0, 0.125 and 0.04, respectively.

[S] SDLoriented random removal (Shared Delivery Locationoriented random removal): randomly selects customers in the solution. If the selected customer is delivered at an individual location, the probability of being deleted is only 10%. Otherwise, if customers are delivered at a shared location, they are always deleted.

[D] Random SDL removal: randomly selects a shared delivery location and removes all the customers delivered at this location.

[D] SDLrelated removal: selects a shared delivery location and randomly deletes customers that have an option at this location.

[D] SDLworst removal: a distance worst removal where the detour cost is fully assigned to all the customers served at the shared delivery locations. The detour cost is not divided by the number of customers served at this location.

All these adhoc ruin operators are large ruin operators. With the exception of the SDL related removal, they are all optionbased.

Partie , Chapter 1 -Large Neighborhood Search heuristics for the Vehicle Routing Problem with Delivery Options

Recreate operators

Most recreate operators follow the best insertion principle: any given customer is inserted at the position that minimizes the increase of routing costs. To compute the best insertion of customer c in route r, we try to insert all customer options in all positions of route r. Only feasible insertions are performed by the algorithm. Hence, a solution always satisfies the vehicle capacity constraints, time windows, shared location capacities, and service level constraints. The only form of infeasibility considered in LNS is the fact that not all the customers are served, i.e the request bank can be nonempty.

The forward time slacks [START_REF] Martin | The Vehicle Routing Problem with Time Windows: Minimizing Route Duration[END_REF] of all routes are stored in order to evaluate insertions in constant time with respect to time windows. The usage of each shared location and of each preference level is stored. Hence, testing the validity of insertions with respect to synchronized resources is done in constant time. When an insertion is performed, the forward time slacks of the corresponding route are updated in linear time with respect to the length of the route. The update of capacity usage is done in constant time.

Recreate operators from the literature

The LNS recreate operators from the literature can be divided into two categories: list heuristics and others. Most of the traditional LNS repair operators rely on the evaluation of the insertion cost of each customer in the request bank at each position in the solution. Typically, the insertion of each customer, in the request bank, into each route is evaluated once at the beginning. After each modification, the insertion of the remaining customers in the modified route is then reevaluated. In their recent revisited version of LNS, Christiaens and Vanden Berghe (2020) use exclusively list heuristics. For each insertions, list heuristics first select a customer in the request bank according to some criterion and second, evaluate the insertion cost of the selected customer in the solution routes. Accordingly, list heuristics are often more naive but faster and easier to implement.

The list heuristics implemented from the literature are:

[S] Random order best insertions [START_REF] Christiaens | Slack Induction by String Removals for Vehicle Routing Problems[END_REF]: sequentially inserts the customers in the request bank at their best insertion position in a random order.

[D] Oldest first best insertions [START_REF] Christiaens | Slack Induction by String Removals for Vehicle Routing Problems[END_REF]: sequentially inserts the customers in the request bank at their best insertion position in nonincreasing order of the number of iterations since the last time the considered customer was served.

[S] Largest first best insertions [START_REF] Christiaens | Slack Induction by String Removals for Vehicle Routing Problems[END_REF]: sequentially inserts the customers in the request bank at their best insertion position in nonincreasing order of their demand.

[D] Farthest first best insertions [START_REF] Christiaens | Slack Induction by String Removals for Vehicle Routing Problems[END_REF]: sequentially inserts the customers in the request bank at their best insertion position in nonincreasing order of distance to the depot.

[D] Closest first best insertions [START_REF] Christiaens | Slack Induction by String Removals for Vehicle Routing Problems[END_REF]: sequentially inserts the customers in the request bank at their best insertion position in increasing order of their distance to the depot.

The other operators implemented from the literature are:

[D] Best temporal insertions [START_REF] Demir | An adaptive large neighborhood search heuris tic for the PollutionRouting Problem[END_REF]: inserts the customers so that the loss of time is minimal. The loss of time is defined as the waiting time at the inserted option plus the waiting time at the next option on the route. Customers can be processed either in random order or by decreasing order of demand, respectively.

[D] Greedy best insertion (Ropke and Pisinger, 2006a): iteratively computes the cheapest in sertion for each customer and inserts the customers that have the lowest insertion cost.

[S] kregret (Ropke and Pisinger, 2006a): iteratively computes the best insertion cost on each route for each customer and inserts the one that has the largest difference between its best insertion cost and next (k -1) route's best insertion costs.

[S] Ejection search [START_REF] Nagata | A powerful route minimization heuristic for the vehicle rout ing problem with time windows[END_REF]: first, all the customers in the request bank are placed in a FIFO structure. The customers from this structure are inserted into the solution by allowing some customers from the solution to be removed and put in the queue. As in [START_REF] Curtois | Large neighbour hood search with adaptive guided ejection search for the pickup and delivery problem with time windows[END_REF] the procedure is heuristically sped up. First, to insert one customer, at most two customers can be removed from the solution. Second, insertions are tested with an increasing number of removed customers. If a feasible insertion is found, insertions with more removals will not be tested. Third, when customers must be removed to insert a customer, the insertion that removes the customers with the smallest score is chosen. The score of a customer is the number of times where no feasible insertion was found for this customer during all the calls to ejection search. Finally, the number of iterations of ejection search, at each call, is limited to five times the initial size of the request bank.

VRPDO specific recreate operators

The operators specifically developed for the VRPDO are:

Partie , Chapter 1 -Large Neighborhood Search heuristics for the Vehicle Routing Problem with Delivery Options

[S] Preferred best insertion: this operator is an adaption of the classical best insertion operator. The only difference is that the insertion costs are modified in a lexicographical manner: the cost of all insertion positions with all delivery options are calculated, then these insertions costs are lexicographically sorted by considering the preference levels p o first and the insertion costs second.

[D] Preference regret: the best insertion is computed for each customer and for each preference level. Let C i p be the cost of the best insertion of a customer i with an option of level p or lower. The preference regret score of customer i is

P -1 ∑ p=1 (C i P -C i p)
. Customers are always inserted at their cheapest position and the customer with the largest regret is inserted first.

[D] Normalized best insertion: the normalized insertion cost of a customer at a given location is the cost of the insertion divided by the capacity of the location. Normalized best inser tion is a greedy best insertion that uses an normalized insertion cost to select the insertion possibility for each customer and select the first customer to insert.

[S] SDLregret (Shared Delivery Location regret): customers are inserted at their cheapest insertion in nonincreasing order of regret. In this version, the regret of a customer is the difference between the insertion cost when all options are allowed and its insertion cost when only individual locations are authorized. For example, let us consider the partial solution represented in Figure 1.8 (same instance as in Figure 1.3). Customers 5 and 6 are not served. Both can be delivered at locker II, like customer 4. But this locker only has a capacity of two, as in Figure 1.5. For both customers 5 and 6, the cheapest insertion is in this locker, with a cost of 0. Figures 1.9 and 1.10 show the cheapest insertion of customers 5 and 6 without considering shared locations. Hence, SDLregret for customer 6 is higher than that of customer 5. In this case, the SDLregret will select customer 6 first and insert him/her in the locker.

Operator selection

As described in sections 1.4.1 and 1.4.2, a number of operators have been implemented. Because it does not seem useful to keep them all, we searched for a configuration of LNS with fewer operators. In this section, we define a configuration as a subset of ruin operators and a subset of recreate operators.

A statistical study was performed to choose a configuration from the 20 ruin operators and the 15 recreate operators that were implemented. Tests were performed on a representative set of

1.4. Large Neighborhood Search for the VRPDO ⛟ 1 🏡 2 🏢 2 🏡 3 🏡 3 🏢 4 🚗 4 🏡 4 🚗 5 🏡 5 🏢 6 🏡 I 🔒 | 1 3 Ⅱ 🔒 | 4 Ⅲ 🏤 Figure 1.8 -Example of a partial solution ⛟ 1 🏡 2 🏢 2 🏡 3 🏡 3 🏢 4 🚗 4 🏡 4 🚗 5 🏡 5 🏢 6 🏡 I 🔒 | 1 3 Ⅱ 🔒 | 4
Ⅲ 🏤 Figure 1.9 -Insertion of the brown (6) customer without lockers randomly generated VRPDO instances. To determine whether one configuration is significantly different from another, the Wilcoxon pairwise test [START_REF] Wilcoxon | Individual Comparisons by Ranking Methods[END_REF] was used with a threshold of 5%. This test compares two populations of results. In our case, it compares the results obtained by two configurations on each instance of a set of VRPDO instances. This methodology is inspired from [START_REF] Stützle | Heuristic optimization[END_REF]. Note that the automatic configuration package IRACE [START_REF] Lópezibáñez | The irace package: Iterated racing for automatic algorithm configuration[END_REF] was also used, but it did not converge after several days of computation. This statistical study is decomposed in two phases: (1) a study of the impact of each class of operators; (2) a study of the impact of each individual operator.

To study classes of operators, the reference configurations are: the full configuration with all the operators, and a minimal configuration with as few operators as possible. All the operators of each class are removed from the full configuration and added to the minimal configuration. All these "subconfigurations" were tested on all instances of the test set and compared. This first phase determines whether the considered operators are redundant with other operators of the full configuration, and whether they improve the results of the minimal configuration.

Based on the previous results, we build an intermediate configuration. The operators from this configuration are changed one by one. If a given operator was used, then it is deactivated, otherwise it is added to the configuration. All these alternative configurations are compared with the intermediate configuration. It determines if the assessed operator significantly improves the results, or if it is redundant with used operators.

The results of the operators are summarized in Tables 1.3 and1

Acceptance Criterion

In line 8 of Algorithm 1, the acceptance criterion determines whether the newly generated solution should be accepted as the current solution at the next iteration. Ropke and Pisinger (2006b) used the Metropolis criterion from Simulated Annealing (Kirk patrick et al., 1983). To deal with partial solutions, a modified cost was proposed in [START_REF] Pisinger | A general heuristic for vehicle routing problems[END_REF]. The modified cost of Equation (1.1) penalizes the unserved customers with factor β. In this formula, B is the request bank of the current solution, cost is its routing cost (described by 1.b) and N is the set of customers.

modified cost = cost × (1 + β. |B| |N|) (1.1)
Santini et al. (2018) conducted a comprehensive study on the acceptance criteria for the LNS metaheuristic. In their conclusion about the CVRP, they advocated for the recordtorecord [START_REF] Dueck | New optimization heuristics: The great deluge algorithm and the recordtorecord travel[END_REF]. With this criterion, the solution is accepted if its modified cost is less than T % larger than the modified cost of the best known solution. Furthermore, they propose decreasing the acceptance threshold T during the algorithm. T decreases linearly between its initial value at the beginning and 0, when the time limit is reached. They conclude that the best values of T and β depend of the type and size of instance.

Our implementation uses the recordtorecord criterion with modified cost (1.1). To avoid tuning parameters and get a reliable acceptance criterion, a simple adaptive procedure is pro posed.

Our experiments empirically show that LNS performs well if the ratio of accepted solutions is between 4% and 14%. T and β are changed so as to maintain the ratio of accepted solutions in this target. The ratio of accepted solutions is periodically evaluated. If the ratio of accepted solutions is less than 4%, T is multiplied by 1.5 and β is divided by 1.5. On the contrary, if it is larger than 14%, T is divided by 1.5 and β is multiplied by 1.5.

Parameters tunning

In our LNS, the probability of selecting each operator is constant throughout the algorithm. Indeed, [START_REF] Turkeš | Metaanalysis of metaheuris tics: Quantifying the effect of adaptiveness in adaptive large neighborhood search[END_REF] reviewed the LNS literature and conclude that the adaptive fea ture has, at best, a very little positive impact. This observation was confirmed for our case by preliminary experiments.

In the proposed implementation, all ruin operators are equiprobable. The probability of se lecting each recreate operator is inversely proportional to its average running time. Furthermore, [START_REF] Christiaens | Slack Induction by String Removals for Vehicle Routing Problems[END_REF] propose to perform a huge number of small and fast it erations in LNS in order to compensate the lack of local search in this metaheuristic. We added this functionality as a special case: if a list heuristic is selected, there is a high probability ϕ that the destruction size will be small (between δ mini and ∆ mini percent of the customer) and that the ruin operator will be local, i.e string removal, split string removal or distancerelated customer removal. The probability of each operator, δ, ∆, δ mini , ∆ mini and ϕ was tuned according to the recommendations of IRACE (LópezIbáñez et al., 2016).

Christiaens and Vanden Berghe (2020) introduced the "blink" principle for recreate opera tors. It randomly ignores certain insertions with a given probability during the computation of the best insertion. In the proposed implementation, this feature did not prove to have a signif icant impact. It introduces diversification through randomization. Nevertheless, this principle has been applied to the ruin operators; for each removal evaluated there is a given probability of simply ignoring it.

To summarize, on the one hand, the list heuristics and the small destructions favor a high number of iterations. On the other hand, using regret heuristics and ejection search tends to reduce the number of iterations. As observed by [START_REF] Christiaens | Slack Induction by String Removals for Vehicle Routing Problems[END_REF], the small destruction and list heuristic can compensate for a lack of local search. Furthermore, the numerous iterations coupled with blink provide a good exploration of the search space in the CVRP. To deal with time windows, we observe that it is worthwhile to perform larger destruction and to take some time to anticipate constraint violation, like Ropke and Pisinger (2006a) and [START_REF] Demir | An adaptive large neighborhood search heuris tic for the PollutionRouting Problem[END_REF].

Our LNS always works in two phases: In the first phase, it reduces the number of routes, and in the second phase, it minimizes the routing cost using the established number of routes. The first phase is either stopped when half of the time budget has been used, or sooner when a feasible solution with the given number of routes has been found.

To conclude this section, we indicate the values of the parameters used for LNS (tuned with the help of IRACE) :

-The probability of selecting each ruin operator is the same for all operators. The proba bility to blink a deletion possibility is 30%.

-The probability of selecting a recreate operator is inversely proportional to its running time. -The destruction size and removal operator selection rule is different for the list heuristics and the other recreate operators. In general the destruction size is between δ = 10% and ∆ = 20% of the number of customers. For the list heuristic there is a 30% probability of performing a classical destruction (using any ruin operator) and a ϕ = 70% probability of performing a small, local destruction. That is to say, only between δ small = 1% and ∆ small = 10% of customers are removed, and a local removal operator (distancerelated removal, (split) string removal) is used. For large instances, the destruction sizes are limited to 20 and 80 customers respectively.

-The initial values of the recordtorecord acceptance criteria are T = 0.18 and β = 9. These values are adjusted every 4500 iterations by a factor of 1.5.

LNS with small destruction

LNS with small destruction

After many rounds of tests the LNS presented in Section 1.4 was improved. In this section we will focus on a better orchestration of small and large destruction phases. This LNS framework is used in [START_REF] Dumez | Hybridiz ing Large Neighborhood Search and Exact Methods for Generalized Vehicle Routing Prob lems with Time Windows[END_REF].

The utilization of the LNS framework presented in the previous section mostly relies on the ideas presented in Ropke and Pisinger (2006a), [START_REF] Demir | An adaptive large neighborhood search heuris tic for the PollutionRouting Problem[END_REF], and [START_REF] Christiaens | Slack Induction by String Removals for Vehicle Routing Problems[END_REF]. The modification of the framework presented in this section are inspired from [START_REF] Vera | An adap tive large neighborhood search heuristic for TwoEchelon Vehicle Routing Problems aris ing in city logistics[END_REF]. They proposed an LNS heuristic for the twoechelons vehicles routing problem. In their method, most of the iterations focuses on the routing at the second echelon, and the first echelon is modified only if the solution was not improved during the last iterations.

Algorithm

We can now present the synopsis of the proposed LNS heuristic in Algorithm 2: Small and Large Neighborhood Search (SLNS). In this pseudo code, s is the current solution, s * is the best found solution, and s ′ is a copy of the current solution to be modified. Moreover, Σ + is the set of repair operators, Σ -the set of destroy operators, and Σ -| local ⊂ Σ -is the set of local destroy operators (see Section 1.4.3). The variable iter counts the number of iterations since the last new best solution was found or the last large destroy was performed.

The algorithm is initialized by setting iter to zero (Line (2)). The main loop is given by the Lines (3) to (24). In each iteration, either a local or large destruction operator is selected depending on the value of iter and the input parameter ω: If iter < ω, the iteration counter is increased, the current solution is copied and a small destruction using a local destroy operator in 6) to (9)). Otherwise, the counter iter is reset, the bestfound solution is copied and a large destruction is performed, i.e., the destroy operator is randomly selected in Σ -and the destruction size is chosen at random in [δ large , ∆ large] (Lines (11) to (14)). A repair operator is randomly selected in σ + ∈ Σ + (Line (4)). Then, the combination of the selected operators, σ -and σ + , is applied to solution s ′ in Line (16).

σ -∈ Σ -| local with destruction size in [δ small , ∆ small] is performed (Lines (
The new solution becomes the current solution in Line (17) if its modified cost is smaller than the current or a large destruction was performed. In Line (20), the bestfound solution may be updated and the counter iter is reset accordingly.

s ′ ← σ + (σ -(s ′ , Φ)) 17: if f ′ (s ′) < f ′ (s) or iter = 0 then 18: s ← s ′ 19: end if 20: if f (s ′) < f (s *) and B s ′ = ∅ then 21: s * ← s ′ 22:
iter ← 0 23:

end if 24: end while 25: return s * In many applications, the strength of LNS relies on its speed. [START_REF] Pisinger | A general heuristic for vehicle routing problems[END_REF] reports that their ALNS takes 146 seconds, on average, for performing 50,000 iterations on the Solomon instances for the VRPTW with 100 customers. With the same time budget, on the same instances, SLNS performs 7.4 million iterations on average, i.e., approximately 150 times more iterations with a CPU that is only 1.91 times faster per thread according to (PassMarkSoftware, 2020).

Like SISR (Slack Induction by String Removals) proposed by Christiaens and Van den Berghe (2020), SLNS perform a tremendous number of fast iterations to locally improve the solutions. But experiments showed that SISR lacks of exploration to be competitive on the VRPDO. On the contrary the previously presented LNS is a lot more focused on diversifica tion, similarly to the ALNS of Ropke and Pisinger (2006a). But such configurations of LNS significantly suffer from increase in size of instances.

Algorithm 2 uses both the intensification capabilities of SISR and the explorations ones of Algorithm 1. Thus, SLNS is both efficient and able to reach high quality solutions, allowing it to be competitive on large VRPDO instances as we will see in Section 1.6.

Parameters tunning

In SLNS, the acceptance criterion is a threshold acceptance [START_REF] Dueck | Threshold accepting: A general purpose optimization algo rithm appearing superior to simulated annealing[END_REF]) with a constant temperature of 0: if the new solution improves the current one, it is accepted. In addition, solutions produced by a large destruction are always accepted. In order to manage solutions with nonempty request bank we still compare the solutions with the modified cost 1.1. We set a constant penalization factor β = 20 in Equation 1.1.

SLNS use the same operators as LNS with the same constant probability (see Section 1.4.5). Moreover, we set the size of the small destruction interval to

[δ small , ∆ small] = [0.01|N |, 0.1|N |] and the size of the large destruction interval to [δ large , ∆ large] = [0.1|N |, 0.3|N |].
For large in stances, the destruction sizes are limited to 20 and 80 customers respectively. Finally, The num ber of iterations between two large destructions is set to ω = 10|N | 1.5 . For example, ω =10 000 iterations with 100 customers and 80 000 with 400 customers.

Partie , Chapter 1 -Large Neighborhood Search heuristics for the Vehicle Routing Problem with Delivery Options

Experiments on LNS

In this section, we compare the two proposed solution frameworks on the VRPTW bench mark instances and on the newly generated VRPDO instances.

The methods are coded in C++ and is compiled with g++ 5.4.0. Experiments on the VRPDO instances were performed using Linux, Ubuntu 16.04 LTS, running on an Intel Xeon X5650 @ 2.57 GHz. Experiments on the VRPTW instances were performed using Linux, Ubuntu 20.04.2 LTS, running on an Intel Xeon Gold 6230 @ 2.10GHz.

Results on the vehicle routing problem with time windows

The LNS (Algorithm 1) and SLNS (Algorithm 2) were evaluated on 176 benchmark in stances of the VRPTW, proposed by [START_REF] Solomon | Time Window Constrained Routing and Schedul ing Problems[END_REF] (100 customers) and Gehring and Homberger (1999) (200 and 400 customers). Instances of type R are composed of randomly located customers. Instances of type C are composed of clustered customers. In stances of type RC are a mix of random and clustered customers. Each type of instance includes two groups, in which routes visit a few customers and many customers, respectively. Tables 1.5, 1.6 and1.7 present the results for instances with 100, 200 and 400 customers, respectively. In each table, the results found by LNS and SLNS are compared with those obtained by the ALNS of [START_REF] Pisinger | A general heuristic for vehicle routing problems[END_REF] and by the state of the art Hybrid Genetic Algorithm with Adaptive Diversity Management (HGSADC) of [START_REF] Vidal | A hybrid ge netic algorithm with adaptive diversity management for a large class of vehicle routing problems with timewindows[END_REF]. The parameters of our methods, tuned for the VRPDO, were not changed for the VRPTW. Detailed results are available in Appendix A.2.

Each line represents the average result for one type of instance. Instance groups are listed in column 1. Columns 2, 3 represent the average number of routes in the solution of the ALNS and the average cost, over all instances of each group (only the best result out of 5 runs is considered). Columns 4,5,and 6,7 and 8,9 give the same information for HGSADC, LNS, and SLNS respectively. The last lines give the total over all instances for each algorithm considered, and the time budget allocated to each algorithm, respectively. Figure 1.11 shows the relative gap, in percentage, between the best known solutions and the best solutions found by LNS and SLNS out of 5 runs. For some instances, solutions with the optimal number of vehicles were not found during the first phase of LNS, thus, so lutions may have a travel distance lower than the optimal one with the lowest number of vehicles.

These experiments show that, although it has been tailored for the VRPDO, LNS and SLNS competes with stateoftheart algorithms on instances with up to 200 customers. On larger in stances SLNS remains fairly close to optimal solution, but the performances of LNS severely deteriorates. Indeed, in this chapter we solely focus on nonhybrid LNS, while the regular res olution of a set partitioning problem to recombine routes greatly improve the performances of LNS on the VRPTW. We refer the interested reader to the results published in Dumez et al. (2021a)

Results on the vehicle routing problem with delivery options

VRPDO instances were randomly generated. Three types of instances were generated: U, V and UBC. For each type, instances with 50, 100, 200 and 400 customers were generated.

All the delivery locations were randomly generated in a 50 × 50 square. The depot is located at the bottom lefthand corner. Euclidean distances are considered. A unit of distance costs 1 and takes a unit of time to be crossed. A time horizon of 12 hours, i.e. 720 time units, is considered.

In the U and UBC instances, each customer has between 1 and 3 options, with an average of 2 options per customer. In the V instance, each customer has 1 or 2 options, with an average of 1.5 options per customer.

In the U and V instances, the capacities are tight, both for the vehicles and the lockers. A locker can accept between 3 and 5 parcels, and vehicle capacity is such that a route can serve around 10 customers. In the UBC instances (U with Big Capacity), the vehicle capacity is such that a route can serve around 25 customers. Furthermore, there are five times fewer lockers and their capacity is five times larger.

The time window of individual locations can be either: the morning ([0; 360]), the afternoon ([360; 720]), random in the morning (i.e [a i , b i] such that 0 ⩽ a i ⩽ 240 and b i = a i + 120), random in the afternoon (i.e [a i , b i] such that 360 ⩽ a i ⩽ 600 and b i = a i + 120) or random in the whole day (i.e [a i , b i] such that 0 ⩽ a i ⩽ 480 and b i = a i + 240). The time window of a shared location can be either: random in the day (i.e [a i , b i] such that 0 ⩽ a i ⩽ 240 and b i = a i + 480) or the full day ([0; 720]).

By default, all these tests were conducted with a service level of 80% -90%, i.e. at least 80% of the customers are served with their preferred option and at least 90% of the customers are served with an option of level 1 or 2. The characteristics of instance classes are summarized in Table 1.8. For each size and each class, 10 instances were generated, leading to a total of 120 instances. All the instances are available upon request. Table 1.9 summarize the results of different LNS heuristics on the VRPDO instances. To asses the performance the proposed configurations of LNS, we compare them to known config urations of the metaheuristic: ALNS we configured our program as close as possible to the method presented in [START_REF] Pisinger | A general heuristic for vehicle routing problems[END_REF] for the VRPTW. With our implementation, the average relative deviation between the best solutions found out of five runs and the best known solutions of the VRPTW is of 1.31% on the Solomon instances with 100 customers. Pisinger and Ropke SISR we configured our program as close as possible to the method presented in Christiaens and Vanden Berghe (2020) for the VRPTW. With our implementation, the average relative deviation between the best solutions found out of five runs and the best known solutions of the VRPTW is of 1.08% on the Solomon instances with 100 customers. [START_REF] Christiaens | Slack Induction by String Removals for Vehicle Routing Problems[END_REF] do not report results on the 100 customers instances, but report a relative diaviation to the optimum on the 200 customers instances of 0.25% with 11 minutes of time budget.

LNS we configured our method as described in Section 1.4.

SLNS we configured our method as described in Section 1.5.

Each line represents a group of instances. The type of instance, the number of customers, the number of delivery locations and the number of options are specified in columns 1, 2, 3 and 4, respectively. For each configuration we depict the total number of vehicles and the total routing cost on all the considered instances. The best solution out of five runs is taken into account.

The computing time is indicated by Column 13.

Overall the VRPDO instances, SLNS clearly provides the best results. On average, it im proves the results of ALNS by 4.9%, those of SISR by 8.3%, and those of LNS by 10%. ALNS, SISR, and LNS are able to find acceptable solution on instances with 100 customers, with an av erage relative deviations to the solutions of SLNS of 1.8%, 0.6%, and 0.2% respectively. On the contrary, these LNS configurations are significantly outperformed on 400 customers instances, with a average relative deviations to the solutions of SLNS of 9.4%, 23.4%, and 28.5% respec tively.

ALNS

Managerial insights on the VRPDO

In this section we present managerial insights on the VRPDO about the impact of the delivery options on the routing costs and on the quality of service. Note that these results are those pub lished in Dumez et al. (2021a), obtained by the standard LNS combined with a SPP (presented in Chapter 2).

Economic impact of delivery options

To quantify the impact of delivery options, the solution of the VRPDO instances are com pared to those of their VRPTW counterpart. To transform a VRPDO instance into a VRPTW instance, we consider only the home option of each customer. No preference level is taken into account. In the VRPDO instances, home delivery options are assumed to be the preferred indi vidual locations. In the case of customers that only have a locker option, a random location is added as a home location.

The total number of vehicles and the routing cost for each instance class are depicted in Each line represents the average results over the 10 instances of each group. The first col umn indicates the type of instance and the second column the number of customers. Columns 3 and 4 indicate the total number of vehicles and the sum of routing costs over the instances of 58 1.7. Managerial insights on the VRPDO the group when only home delivery is considered. Columns 5 and 6 indicate the total number of vehicles and the total routing cost over the instances of the group when all options are consid ered. Column 7 is the relative savings on the routing costs obtained by using delivery options. Considering delivery options leads to a cost reduction of 29.2%, on average. Furthermore, on the UBC instances, with large lockers, the savings are even larger. The number of routes is not reduced, because it is determined by the binding vehicles' capacities.

The use of SDLs is detailed in the last two columns, which detail the percentage of customers delivered at SDLs and the average fill rate of SDLs, respectively. These results indicate that the value of the gap in column 7 is related to the use of the shared locations. It is noticeable that a larger part of customers are delivered at SDLs in UBC instances with big capacities. But the last column shows that SDLs are not saturated. This suggests that alternative individual locations play a non negligible role in the gap between the VRPTW and the VRPDO.

Additionally, looking at the actual service levels on a representative set of solutions, we observe that the percentage of customers served with their option of level 1 (resp. level 2) is very close to the thresholds of 80% and 90%. The service level constraints in the model are often binding.

Delivery options are compatible with tight time windows

We performed a sensitivity analysis by modifying the width of individual locations time windows. Considering a time window [a i , b i] at location i ∈ L, the modified time window is still centered at time (a i + b i)/2 but its width is reduced by a factor α as shown in formula (1.2).

[a ′ i , b ′ i] = [a i + b i 2 - b i -a i 2α ; a i + b i 2 + b i -a i 2α] . (1.2)
The same experiments as in Table 1.10 were conducted with these tighter time windows. Figure 1.12 represents the routing costs of the solutions of the VRPTW (red line) and the VRPDO (blue line), respectively, when the width of time windows at individual locations varies.

The xaxis represent the width of time windows and the yaxis shows the routing costs The time windows width was set by applying a factor α going from 1 and 10 in equation (1.2), leading to time window width between 20 and 180 minutes. Note that some instances become infeasible when the time windows are too tight. Thus, not all instances are taken into account in this figure. The main conclusion of this figure is that the cost of both the VRPTW and the VRPDO increase when time windows are tightened, but this increase is only 10% in the case of the VRPDO. Similar managerial insights were also reported in [START_REF] Buzzega | Last mile deliveries with lockers: formulations and algorithms[END_REF] With large time windows, each route can deliver many customers, so that the bottleneck is the capacity of truck. This is the solutions of both the VRPTW and the VRPDO use 598 vehicles. With very tight time window, the number of vehicles needed in the VRPTW grows dramatically, while it increases from 598 to 604 for the VRPDO. The main conclusion is that considering delivery options and SDLs makes it possible to serve customers at individual delivery locations with very narrow time windows, at the cost of minor increase of the vehicle fleet and very reasonable cost increase.

To illustrate this property, let us consider instance U_100_1, with 100 customers, small trucks, and many small lockers. When the widths of original time windows are divided by 10, the number of vehicles remains the same, with an average fill rate of 90%. The routing costs increase by only 2.8%. A first explanation is that the number of customers served at an SDL is 65 and 66, respectively, and these locations are not impacted by the time window reduction. A second explanation is that 14 customers are delivered at another location and in another time window in both cases. Finally, note that the general service level constraints are binding in the two scenarios.

Delivery options and service level constraints

In order to quantify the impact of service level constraints, different values of parameters β 1 and β 2 were tested. Table 1.11 presents sum of the routing cost of all VRPDO instances, with respect to the required service level. Columns 3, 4 and 5 correspond to solutions i which the ratio of customers served with their preferred option (β 1) is at least 70, 80 and 90, respectively. Lines 3 to 6 correspond to the solutions where the ration of customers delivered with options 1 or 2 (β 2) is equal to at least 80, 90, 95 and 100, respectively. % of customers served with option 1 (β In most solutions of Table 1.11, the total number of vehicles used is 866. Sometimes, one additional vehicle is necessary ; in these cases, the routing costs are followed by a *. The cell corresponding to (β 1 , β 2) = (90, 80) is left empty because the corresponding values of β 1 and β 2 are incompatible. The cell of (β 1 , β 2) = (90, 100) is left empty because some instances are infeasible with such restrictive parameters.

This table shows that the service level can be greatly improved with no major increase of the routing costs. Moreover, the service level has very limited impact on the fleet size. The impact of β 2 seems to be rather limited. Indeed, the average cost increase when β 2 varies from 80 to Partie , Chapter 1 -Large Neighborhood Search heuristics for the Vehicle Routing Problem with Delivery Options

Conclusion

In this chapter, we proposed a new extension of the VRPTW allowing multiple delivery options for each customer. The Vehicle Routing Problem with Delivery Options (VRPDO) in cludes the use of shared delivery locations, such as lockers, and takes into account customer preferences. In addition, the model is general enough to include new modes of delivery, such as trunk delivery. The VRPDO is theoretically challenging because it introduces synchronized re sources and a new structure of the search space, due to the presence of several delivery locations for each customer.

The numerical experiments show that VRPDO can save considerable amounts of money compared with VRPTW. Moreover, for a small cost increase, very high quality of service can be achieved, especially with respect to the time window width.

To solve this problem we developed a LNS metaheuristic based on small destructions: Small and Large Neighborhood Search (SLNS). After implementing a large number of ruin and recre ate operators, a comprehensive tuning process resulted in the selection of a few relevant opera tors. The experiments show that combining local impact fast operators and global impact slower operators is an efficient strategy. A key success factor of the underlying SLNS is the tremendous number of iterations that can be performed thanks to the small destroy moves, while the search is diversified by larger destroy moves if necessary. A comparison with previously developed LNS metaheuristics on the VRPDO show that this combination of small and large destruction provides much better results, especially for large instances.

Introduction

In this chapter, we present a matheuristic based on SLNS which is used to solve several vehicle routing problem with time windows and delivery options, generalizing the generalized vehicle routing problem with time windows (GVRPTW, [START_REF] Moccia | An incremental tabu search heuristic for the generalized vehicle routing problem with time windows[END_REF].

The most general considered problem is the vehicle routing problem with delivery options (VRPDO). It extends the GVRPTW by servicelevel constraints defined by the customers' pref erences for options and by location capacities that must be respected. It also generalizes other problems such as the vehicle routing problem with roaming delivery locations (VRPRDL, [START_REF] Reyes | Vehicle routing with roaming de livery locations[END_REF] in which options result from deliveries to a customer's car trunk, and the vehicle routing problem with multiple time windows (VRPMTW, Favaretto et al., 2007) in which all options of a customer refer to the same physical location but have disjoint time windows.

The contribution of this work is the design of two exact components and their integration in SLNS. The result is a powerfull matheuristic that offers good performances on all GVRPTW variants mentionned above. First, a setpartitioning problem (SPP) is solved periodically to com bine previously found routes into new solutions. Second, the BalasSimonetti (BS, [START_REF] Balas | Linear Time DynamicProgramming Algorithms for New Classes of Restricted TSPs: A Computational Study[END_REF] neighborhood is adapted to further improve already good solutions. The BS neighborhood is an exponentiallysized neighborhood in which a best improving solution can be found by solving a shortestpath problem in a layered graph. The two components are optional, giving rise to four different configurations of the matheuristic.

The experimentation with the two exact components complementing SLNS follows the gen eral trend towards hybridization and matheuristics for difficult VRP variants. For example, [START_REF] Tellez | The fleet size and mix dialaride problem with reconfigurable vehicle capacity[END_REF] solve a setpartitioning problem in an LNS for a timeconsistent dialaride problem, Toffolo et al. (2019) use the BS neighborhood in a structural decomposition approach for the capacitated vehicle routing problem, and Yuan et al. (2021) combine a routebased model with dynamic programming and local searches for the GVRPTW. Our idea behind the two ex act components in SLNS is that delivery options require a 'global view' on the search space, because the usefulness of an option is observable only when it is combined with suitable other options. Thus, simple local modifications of a solution alone will typically not show the useful ness of an option. What is required is larger modifications that result from several simultaneous changes in the assignment of customer requests to routes, the selection of possible options, and the routing, i.e., sequence in which deliveries are performed.

In an exhaustive computational study, we evaluate the four configurations of our matheuris tic on several benchmark instances of the GVRPTW, VRPRDL, VRPMTW, and VRPDO. On all benchmark sets, at least one configuration of the matheuristic, often several, or even all config urations are competitive with the previous stateoftheart methods. For the GVRPTW, the four configurations of our matheuristic work almost equally well: compared to the state of the art, they find equivalent or slightly improving results with less computational effort. For the VRPMTV, the comparision with the literature is even tighter: only two variants of our matheuristic out perform the ALNS competitor improving gaps only marginally. Compared to a recent exact branchpriceandcut algorithm for the VRPDL and VRPHDL, our best matheuristic configu ration finds all known optimal solutions except one and provides new bestknown solutions for all instances that were not solved to proven optimality. Finally, significant improvements are provided for the VRPDO.

One might argue that a single matheuristic instead of four different matheuristic config urations would be preferable. However, as another contribution of our work, we will clearly work out characteristics of GVRPTW variants and matheuristic components that either fit well together or are cumbersome.

The remainder of this chapter is organized as follows. Section 2.2 formally defines the GVRPTW variants. We describe the two exact components, i.e., the SPP formulation and the BS neighborhood in sections 2.3 and 2.4 respectively. Section 2.5 presents the computational experiments and their results. Final conclusions are drawn in Section 2.6.

Partie , Chapter 2 -Hybrid Large Neighborhood Search heuristics for generalized vehicle routing problems

Generalized vehicle routing problems variants

In this section, we formally introduce the considered problem variants. We start with a re minder of the notations used for the VRPDO, introduced in Chapter 1, because it is the most general variant. Afterwards, GVRPTW, VRPRDL and VRPMTW are briefly described and it is explained how they can be modeled as special cases of the VRPDO. We also discuss of the previous paper considering these problems to which we will compare our method.

Vehicle Routing Problem with Delivery Options

The VRPDO is the problem of selecting delivery options, exactly one for each customer, and determining a costminimal set of feasible routes that serve the selected delivery options while respecting locationcapacity and servicelevel constraints.

Let N be the set of customers, L be the set of locations, and P = {1, 2, . . . , p} be the priority levels. A delivery option is a triple composed of a customer, location, and priority level.

l ∈ L. Let L m = {l ∈ L : |O l | > 1}
be the set of shared delivery locations. Shared locations l ∈ L m have a limited capacity C l in terms of the number of shipments that can be delivered there. Moreover, we assume that at all locations l ∈ L have an associated time window [a l , b l] that describes the time period in which deliveries can be performed.

A fleet of K homogeneous vehicles with capacity Q is housed at the depot location l 0 ∈ L. For each pair of locations l and l ′ ∈ L, the travel time t ll ′ and the travel cost c ll ′ are given.

Servicelevel constraints are modeled with numbers β p ∈ [0, 1] for p ∈ P . The value β p is the minimum percentage of options of service level not greater than p that must be chosen.

A route r = (0, o 1 , ..., o h , 0) is as sequence of options in which the artificial options o 0 = 0 and o h+1 = 0 represent the visit of the depot location ℓ 0 at the start and end of the route, respectively. The demand served by route r is q(r) = ∑ h j=1 q no j , so that r is capacityfeasible if q(r) ≤ Q holds. A route is timewindow feasible if there exists a sched ule (T 0 , T 1 , ..., T h , T h+1) ∈ R h+2 which complies with the option service times, travel times, and time windows, i.e., if

T j-1 + t ℓo j-1 ,ℓo j + s o j-1 ≤ T j for all 1 ≤ j ≤ h + 1 (assuming s o 0 = 0) and [T j , T j + s o j] ⊆ [a ℓo j , b ℓo j] for all 0 ≤ j ≤ h + 1.
A route r is feasible if it fulfills both capacity and timewindow constraints. The cost of a route is the sum of the travel cost between the consecutively visited locations, i.e., c r = ∑ h+1 j=1 c ℓo j-1 ,ℓo j . A solution S to VRPDO is a set of feasible routes that selects exactly one option per customer. Let O(S) be the set of options selected in the solution S. Then, the requirement that S selects exactly one option per request translates into |O(S)∩O n | = 1 for all n ∈ N . The solution fulfills the location capacity constraints if |O(S) ∩ O l | ≤ C l for all l ∈ L m . It fulfills the servicelevel constraints if, for all p ∈ P :

|{o ∈ O(S) : p o ≤ p}| ≥ β p |N | ⇔ |{o ∈ O(S) : p o > p}| ≤ (1 -β p)|N | (2.1)

Generalized Vehicle Routing Problem with Time Windows

The GVRPTW [START_REF] Moccia | An incremental tabu search heuristic for the generalized vehicle routing problem with time windows[END_REF]) is a direct generalization of the vehicle routing problem with time windows (VRPTW, Desaulniers et al., 2014; Savelsbergh, 1985), in which customers have to be served at one of their potential delivery locations respecting the corresponding time window. Each potential delivery location defines a delivery option for the customer. Thus, the GVRPTW can be modeled and solved as a VRPDO without synchronized resources. [START_REF] Moccia | An incremental tabu search heuristic for the generalized vehicle routing problem with time windows[END_REF] first designed a heuristic solution of the GVRPTW. They propose an incremental tabu search using a dynamicprogramming component that allows changing cus tomers' locations when inserting a customer in a route. The tabu search provides solutions for instances with up to 120 customers in a few hundred seconds. In addition, these instances were recently solved by [START_REF] Yuan | A column generation based heuristic for the generalized vehicle routing problem with time windows[END_REF] with a columngeneration based heuristic. On average, the cost of the solutions was reduced by 0.17%, by 10 new best solutions out of the 20 instances, with a computing time nearly divided by 2 (by taking into account the difference of processors). The method presented by [START_REF] Ozbaygin | A branchand price algorithm for the vehicle routing problem with roaming delivery locations[END_REF] could deal with these instances, but they do not present results.

Vehicle Routing Problem with (Home and) Roaming Delivery Loca tions

The VRPRDL, introduced by [START_REF] Reyes | Vehicle routing with roaming de livery locations[END_REF], specifically models the delivery to the trunk of cars. Customers must specify where they plan to be during the planning horizon, thereby defining different delivery options. The VRPRDL can be seen as a special case of the GVRPTW Partie , Chapter 2 -Hybrid Large Neighborhood Search heuristics for generalized vehicle routing problems with nonoverlapping time windows for the delivery options of each customer [START_REF] Ozbaygin | A branchand price algorithm for the vehicle routing problem with roaming delivery locations[END_REF].

The VRPHRDL is an extension of the VRPRDL with an additional socalled home option for each customer [START_REF] Ozbaygin | A branchand price algorithm for the vehicle routing problem with roaming delivery locations[END_REF]. This additional delivery option has a nonconstraining time window, e.g., identical to the planning horizon. Both problems are special cases of the GVRPTW and can, therefore, be modeled and solved as VRPDO without synchronized re sources. [START_REF] Reyes | Vehicle routing with roaming de livery locations[END_REF] propose a variable neighborhood search to solve the VRPRDL. It em beds a dynamic programming algorithm to optimize the travel distance of a given customer sequence. [START_REF] Ozbaygin | A branchand price algorithm for the vehicle routing problem with roaming delivery locations[END_REF] develop a branchandprice algorithm to solve the VRPRDL and VRPHRDL with up to 120 customers. [START_REF] Yuan | Modèles et Algorithmes pour les Problèmes de Livraison du Dernier Kilomètre avec Plusieurs Options d'Expédition[END_REF] [START_REF] Yuan | A column generation based heuristic for the generalized vehicle routing problem with time windows[END_REF] propose a heuristic based branchandprice that solves instances with up to 120 customers, and find better results than [START_REF] Ozbaygin | A branchand price algorithm for the vehicle routing problem with roaming delivery locations[END_REF] for 19 instances. In addition, [START_REF] Lombard | Vehicle Routing Problem with Roaming Delivery Locations and Stochastic Travel Times (VRPRDLS)[END_REF] solve smaller instances of a stochastic VRPRDL.

Vehicle Routing Problem with Multiple Time Windows

The VRPMTW was introduced by [START_REF] Favaretto | Ant colony system for a VRP with multiple time windows and multiple visits[END_REF] as an extension of the VRPTW where each customer can have multiple time windows. If one considers each time window as a different option, the VRPMTW is a special case of the VRPDO. All delivery locations of a customer are at the same physical place. Options of two customers, however, always refer to different physical places.

The objective of the VRPMTW is either minimizing the travel distance or travel duration (total travel, service, and waiting time). In both cases, a fixed cost per route is included in the objective function. [START_REF] Belhaiza | A new Hybrid Genetic Variable Neighborhood search heuristic for the Vehicle Routing Problem with Multiple Time Win dows[END_REF] propose a hybrid variable neighborhood tabu search and a set of bench mark instances with 100 customers. A revised version of the approach was described in [START_REF] Belhaiza | A new Hybrid Genetic Variable Neighborhood search heuristic for the Vehicle Routing Problem with Multiple Time Win dows[END_REF] as a hybrid genetic variable neighborhood search. [START_REF] Larsen | Fast delta evaluation for the Vehicle Routing Problem with Multiple Time Windows[END_REF] solve the VRPMTW with an adaptive LNS with a problemtailored insertion procedure. They gener alize the forward time slack procedure of [START_REF] Martin | The Vehicle Routing Problem with Time Windows: Minimizing Route Duration[END_REF] to take into account all the time windows of the visited customers. Thus, the time windows used to visit the customers of a route can be changed to insert a new customer in this route. [START_REF] Hoogeboom | Efficient Neighborhood Evaluations for the Vehicle Routing Problem with Multiple Time Windows[END_REF] describe an adaptive variable neighborhood search relying on a generalization of the forward time slacks for the VRPMTW with durationminimization objective.

Set Partioning Problem

The utilization of the Set Partitioning Problem (SPP) to solve vehicle routing problems was first introduced by [START_REF] Foster | An Integer Programming Approach to the Vehicle Scheduling Problem[END_REF]. It is nowadays widely used in columngeneration approaches for many variants of the VRP [START_REF] Toth | The Vehicle Routing Problem[END_REF]. It can also be used to recombine routes that are produced by a heuristic. The SPP is used as a postoptimization technique (Gschwind and Drexl, 2019; Mancini, 2017; Rochat and Taillard, 1995), as well as inside hybrid heuris tics (Mendoza and Villegas, 2013; Parragh and Schmid, 2013; PrescottGagnon et al., 2009; Subramanian et al., 2013a; Tellez et al., 2018).

Let R be a set of feasible routes.

s.t. ∑ r∈R ∑ o∈On α o r λ r = 1 ∀n ∈ N (2.b) ∑ r∈R ∑ o∈O l α o r λ r ⩽ C l ∀l ∈ L m (2.c) ∑ r∈R ∑ o∈O:po>p α o r λ r ⩽ (1 -β p)|N | ∀p ∈ P \ {p} (2.d) ∑ r∈R λ r ⩽ K (2.e) λ r ∈ {0, 1} ∀r ∈ R
The objective (2.a) minimizes the total cost of the solution, i.e., the sum of the cost of the routes used. The setpartitioning constraints (2.b) state that each customer must be served ex actly once. The capacity constraints for shared locations are given by (2.c) and the servicelevel constraints by (2.d). The fleetsize constraint (2.e) sets the upper bound K on the number of routes used in the solution. Finally, the variable domains are given.

For solving the model with a MIP solver, it is known that typically setcovering formulations have shorter computation times than the respective setpartitioning formulations [START_REF] Mahir | An Ant ColonyBased Matheuristic Approach for Solving a Class of Vehicle Routing Problems[END_REF]. If the travel times and costs fulfill the triangle inequality (always true for the benchmarks of Section 2.5), the partitioning constraints can be replaced by covering constraints, i.e., ≥ 1 instead of = 1 in (2.b). In a setcovering solution, more than one option may be used Partie , Chapter 2 -Hybrid Large Neighborhood Search heuristics for generalized vehicle routing problems to serve a customer. A simple greedy procedure can quickly repair and improve solutions which overcover some customers. Note that the repaired solutions automatically respect the location capacity and servicelevel constraints.

To further reduce the solution times, we extend the formulation by introducing binary vari ables y o that indicate if option o ∈ O is selected. We prioritize branching on these variables in the MIP solver. The new y variables are coupled with the route variables via the following constraint

∑ r∈R α o r λ r = y o ∀o ∈ O. (2.f)
To integrate the SPP solving into SLNS, we extend the procedure of Tellez et al. (2018) used in their LNSSPP for the fleet size and mix dialaride problem with reconfigurable vehicle capacity: Initially, the SPP is solved every 1000 iterations. If the solver fails to prove optimality twice in a row the time between two calls is reduced by a quarter.

In the scope of SLNS, R is the pool of routes. This datastructure stores the routes of the solutions generated by SLNS, whether or not they are accepted. We use the size |R| to decide on when to solve Model 2 with the MIP solver, and the pool R is emptied after each call to the SPP component. More precisely, it is solved when R contains at least max(100, 38000 -180|N |) different routes. This threshold size is increased by 60% if the solver has proven optimality twice in a row. Conversely, it is reduced by the same factor if the solver has failed to prove optimality twice in a row. In addition, it is solved only if the cost of the bestknown solution has improved by less than 1% over the last 5ω iterations (i.e. five times the number of iterations without improvement before performing a large destruction, see Section 1.5). Besides, during the experiments to tune these parameters, we noticed that it is more efficient to decide on when to use the SPP based on the size of R rather than based on the number of iteration during which R was filled. [START_REF] Balas | New classes of efficiently solvable generalized Traveling Salesman Problems[END_REF] proposed and analyzed a family of largescale neighborhoods that, for the asym metric traveling salesman problem (ATSP), can be searched efficiently (in linear time in the size of the Hamiltonian path). The neighborhoods N k BS are parameterized by an integer k ≥ 2 and Balas and Simonetti (2001) used them within a localsearch algorithm for the ATSP and the ATSP with time windows.

BalasSimonetti neighborhood

We very briefly summarize the BalasSimonetti neighborhood for the ATSP: Given an TSP Hamiltonian path x = (x 0 , x 1 , . . . , x n , x n+1) the neighborhood N k BS (x), for a given value k ≥ 2, consists of all tours x ′ = (x 0 , x π(1) , . . . , x π(n) , x n+1), where π is a permutation of {1, . . . , n} that fulfills the following conditions: For any two indices i, j ∈ {1, . . . , n} with i + k ≤ j, the inequality π(i) < π(j) holds. It means that if a vertex x i precedes a vertex x j by at least k positions in the given path x, then x i must also precede x j in the neighbor x ′ . For a given value of the parameter k, a best neighbor

x ′ ∈ N k BS (x) can be determined in O(k 2 2 k-2 n
) by solving a shortestpath problem in an auxiliary network [START_REF] Balas | New classes of efficiently solvable generalized Traveling Salesman Problems[END_REF], i.e., for a fixed value of the parameter k the neighborhood exploration is linear in n.

An example of an auxiliary network is depicted in Figure 2.1 for k = 3 and n = 5. The graph consist of layers (depicted from left to right in the figure) that correspond to the positions in the Hamiltonian path. The vertices at each layer can be ordered into rows that are associated with an offset value α. In the following, the vertices of the auxiliary network are called states. Thus, each state in the auxiliary network is associated with the vertex x j+α where j is the layer of the state and α the value associated with the state. Arcs exclusively go from states of a layer j to states of the subsequent layer j + 1. The general structure of the auxiliary network is described in several works, e.g., [START_REF] Balas | Linear Time DynamicProgramming Algorithms for New Classes of Restricted TSPs: A Computational Study[END_REF] and several subsequent articles (Hintsch and Irnich, 2018; Irnich, 2008b; Tilk and Irnich, 2017).

Every sourcesink path, from 0 to n+1, in the auxiliary network corresponds to a neighbor x ′ . For example, the green sequence of states at the top row in Figure 2.1 corresponds to x ′ = x = (0, 1,2,3,4,5,6). The red sequence of states corresponds to the neighbor x ′ = (0, 2, 3, 1, 5, 4, 6), i.e., a Hamiltonian path that respects the precedence constraint with respect to the initial tour x and the given parameter k = 3.

The structure of the auxiliary network, i.e., states and connecting arcs, depends only on k and n, but not on the given path x. The only difference between two auxiliary networks is the cost of the arcs that must be set to the distance between the considered customers. Consequently, if the BS neighborhood must be explored multiple times, the auxiliary network can be kept. Moreover, Partie , Chapter 2 -Hybrid Large Neighborhood Search heuristics for generalized vehicle routing problems Adaptions. Next, we explain how to adapt the BalasSimonetti neighborhood such that it can be used for all GVRPTW variants, including the VRPDO with the interroute synchronization constraints imposed by location capacities and servicelevel requirements.

α = 0 α = 1 α = -1 α = 2 α = 1 α = -1 α = 0 α = -2
First, we generalize the auxiliary network such that it can deal with options. Contrary to the TSP, in the VRPDO, a delivery request n can be served using the different delivery options O n . Hence, meta states encompass sets of states that represent all options of the respective customer, as shown in Figure 2.2. All states for options of a customer are linked to all states for options of the subsequent customer.

L i = (i, C i , T i , Q i , (R p i) p∈P , (H l i) l∈L
) represents a partial path from the depot 0 to a state i in the auxiliary network. Recall that a state i represents an option and therefore a delivery request n i , a location l i , a priority level p i , and a service time s i are associated. The components of the label L i are (i) last state i of the partial path, (ii) the accumulated routing cost C i , (iii) the earliest arrival time T i at the location associated with i, (iv) the accumulated demand (=load) Q i in the vehicle, (v) the number H l i of shipments for each shared delivery location (for all l ∈ L m), and (vi) the number R p i of options o with priority p o greater than p served along the partial path (for all p ∈ P \ {p}).

The initial partial path in the auxiliary network starts from the depot 0 and the label L 0 = (0, 0, a l 0 , 0, 0, 0). The labelsetting algorithm extends labels along the arcs of the aux iliary network. Extending a label

L i = (i, C i , T i , Q i , (R p) p∈P \{p} i , (H l) l∈L m i) along an arc (i, j) results in the label L j = (j, C j , T j , Q j , (R p) p∈P \{p} j , (H l) l∈L m j
) defined by:

C j = C i + c l i l j Q j = Q i + q n j T j = max{a l j , T i + t l i l j + s i } H l j =      H l i + 1, if l j = l H l i , otherwise for all l ∈ L R p j =      R p i + 1, if p j > p R p i , otherwise for all p ∈ P \ {p}
The extension is feasible, if the following constraints the required slack in the locationcapacity and servicelevel constraints.

Q j ≤ Q T j ≤ b j H l j ≤ C l -Hl , for all l ∈ L m R p j ≤ (1 -β p)|N | -
The presented adaptation let us use the BalasSimonetti neighborhood on the TSPDO, but not on the VRPDO. We consider three different use cases for the BS component with multiple routes:

(1) the local optimization of a single route (2) the local optimization of a giant route that aggregates all routes of the solution (3) the simultaneous local optimization each pairs of routes In case of a single route r ∈ s taken from a current solution s, the parameters Hl and Rp for p ∈ P \ {p} can be set to the resource consumptions of all other routes r ′ ∈ s \ {r}.

In the giant route case, all routes of a given solution s need to be joined as in (Irnich, 2008a) and [START_REF] Hintsch | Large multiple neighborhood search for the clustered vehiclerouting problem[END_REF]. The parameters Hl and Rp are set to 0. On arcs (0, 0) joining two different routes, the resources T and Q are reset to a l 0 and 0, respectively. In contrast, the resources H and R are kept at their current value enabling that the interroute synchronization constraints are incorporated correctly.

In case of pairs (r 1 , r 2) of routes, the two routes are joined leading to a partial giant route. The parameters Hl and Rp are then set to the resource consumptions of all other routes r ′ ∈ s \ {r 1 , r 2 }. Note that the BS neighborhood here also allows moving the depot vertices (in the middle) so that the route length of r 1 and r 2 can change.

Since all resource extensions are nondecreasing and resource consumptions are bounded from above, we can apply standard ≤dominance [START_REF] Irnich | A Unified Modeling and Solution Framework for Vehicle Routing and Lo cal SearchBased Metaheuristics[END_REF]. Obviously, resource H and R are obsolete in the GVRPTW, VRPRDL, VRPHRDL, and VRPMTW. However, due to a possi bly large number of capacitated shared delivery locations and preference levels in the VRPDO, the dominance relation can become rather weak in this variant.

We have conducted some preliminary experiments that have shown that the routepairing version is the most effective (note that it includes the single route optimization). Solving the SPPRC for the giant route is excessively timeconsuming, even on small instances and for small BS parameters k ≥ 2. We therefore use the BS component only for all pairs of routes in the following.

Acceleration Techniques.

As computing time is essential, we devise six different acceleration techniques, two exact (they do not change the output of the labeling algorithm) and four heuristic acceleration methods (they may hinder the labeling algorithm to compute an optimal solution of the SPPRC).

On the exact side, we first use a bidirectional labeling algorithm [START_REF] Righini | Symmetry helps: Bounded bidirectional dynamic pro gramming for the elementary shortest path problem with resource constraints[END_REF]. Note that backward extension and merging of labels follows standard rules (Irnich, 2008a).

Second, when pairing routes, we solve an SPPRC on every pair of routes in the solution, i.e., each route will be used in several combinations. Therefore, some of the labels computed at the beginning of the forward and backward labeling are identical for pairs that share a common route and must be computed only once.

On the heuristic side, we first restrict the labeling to a limited discrepancy search [START_REF] Feillet | New Refinements for the Solution of Vehicle Routing Problems with Branch and Price[END_REF]. Therein, we limit the number of customers that can change their delivery option. The consequence is that all customer requests can still be permuted but only a limited number of the currently used options can be replaced by an alternative option of the respective request. In our experiments, we limit the number of customers that can change their delivery option to 3.

Second, we use a heuristic bounding strategy that discards labels if their cost is larger than some threshold value. The threshold value is computed as the difference between the best known cost and the sum of the best individual service cost of each nonserved customer. For each so lution computed in the course of the new LNS, we compute a customerspecific service cost of each customer and update the best one if necessary: If a customer is served in an individual delivery location, its customerspecific service cost is the mean of the costs of the ingoing and outgoing arcs used to access it. If a customer is served in a shared delivery location, the cost of the ingoing and outgoing arcs is divided by two times the number of customers served at this location by this route.

Third, a significant number of the resources of a label is dedicated to the capacity consump tion of shared delivery locations, which results in a relatively weak dominance. To strengthen the dominance, we ignore some of the shared delivery locations in the dominance test. To de cide which shared delivery locations are ignored, the cost of the best solution that completely utilizes the capacity of a location is recorded in the LNS. We ignore those locations used only in solutions with a cost that is more than 10 % higher than the cost of the current bestfound solution.

Fourth, routes are sequences of options and multiple options taking place at the same shared delivery location can be swapped without changing the cost of the solution. We break these symmetries by maintaining the order of the currently chosen options of the same shared delivery locations.

Both exact components are only applied if the cost of the bestknown solution has improved by less than 1% over the last 5ω iterations. Moreover, a good solutionqualitytotime compro Partie , Chapter 2 -Hybrid Large Neighborhood Search heuristics for generalized vehicle routing problems mise is a small value of k = 5. With this value the BS component is applied exclusively to solutions that serve all customers (i.e with an empty request bank B s) and with a cost smaller than 1.01 times of the cost of the bestknown solution. These parameters were obtained from preliminary experiments.

To summarize, let us present Algorithm 3 which is the outline of SLNS with the two exact components. It differs from Algorithm 2 by the following instructions: Line (16) applies the BalasSimonetti neighborhood on the current solution if it is promising.

Line (19)

saves the routes of the current solution in the pool R. Line (28) applies the SPP to recombine the routes of R and improve solution s.

SLNS+SPP+BS with both SPP and BS

In this section, we report the results of computational experiments that were conducted on GVRPTW, VRPRDL, VRPHRDL, VRPMTW, and VRPDO benchmarks with the four configurations of the matheuristic. The algorithms have been coded in C++ and compiled into 64bit singlethread code with g++ 5.4.0. All experiments were performed using Linux, Ubuntu 16.04 LTS, running on an Intel Xeon X5650 @ 2.57 GHz. We use IBM Ilog CPLEX 12.8.0 (IBM, 2018) to solve the SPP and activate the options branch_up_first and emphasis_on_hidden_feasible_solutions.

A comparison with algorithms from the literature on standard benchmark sets for the GVRPTW, VRPRDL, VRPHRDL, VRPMTW, and VRPDO is conducted in Sections 2.5.1 to 2.5.4, respectively. A synthesis of numerical results is proposed in Section 2.5.5. Finally, Section 2.5.6 presents additional experimental results. Our results on the VRP(H)RDL and the GVRPTW are compared to those recently published in [START_REF] Yuan | A column generation based heuristic for the generalized vehicle routing problem with time windows[END_REF], furthermore, the scaling capabilities of our method are evaluated on 400 customers VRPDO instances.

The tables presented in the following sections provide the following information:

Results for the GVRPTW

We compare all four configurations of SLNS with the Iterative Tabu Search (ITS) of [START_REF] Moccia | An incremental tabu search heuristic for the generalized vehicle routing problem with time windows[END_REF] on their benchmark containing instances with up to 120 customers. These instances are named i-n-v min -v max where n is the number of customers, v min the minimum, and v max the maximum number of options per customer. [START_REF] Moccia | An incremental tabu search heuristic for the generalized vehicle routing problem with time windows[END_REF] consider the single objective of routingcost minimization. For a fair comparison, we bound the number of available vehicles to the value reported in their work. [START_REF] Moccia | An incremental tabu search heuristic for the generalized vehicle routing problem with time windows[END_REF] performed their computational experiments on an Intel Core Duo @ 1.83 GHz and limited their algorithm to 10 5 iterations taking a total computation time of 8,105 seconds. In our matheuristic, we allocate a quota for the computation time for each instance ac cording to the number of customers. In total, the SLNS consume 524 seconds for all 20 bench mark instances. According to PassMarkSoftware (2020), on single thread benchmarks, their processor is 2.18 times slower than ours. It means that, on average, the SLNS is configured to run approximately 7 times faster than the ITS. The results are presented in Table 2.1. Note that [START_REF] Moccia | An incremental tabu search heuristic for the generalized vehicle routing problem with time windows[END_REF] does not indicate whether their results are the best results out of several runs. For the four SLNS configurations, the best solution out of five runs is taken into account. The best solution values are marked in bold.

All four SLNS configurations outperform the results of the ITS. The most best known solu tion (BKS) are found with SLNS and SLNS+SPP+BS. Regarding the routing cost, SLNS+SPP performs best and improves the results of ITS by 0.39 % on average with a maximum improve ment of 2.44 %. Moreover, SLNS+SPP provides an equivalent or better solution than ITS on 15 of the 20 instances. However, all four configurations of SLNS perform rather similarly on the GVRPTW benchmark. In total, we provide 14 new bestknown solutions. Detailed instanceby instance results can be found in Appendix A.3.

Results for the VRPRDL and VRPHRDL

We next compare the four SLNS configurations with the exact branchpriceandcut (BPC) algorithm of [START_REF] Tilk | The Lastmile Vehicle Routing Problem with Delivery Options[END_REF] on a benchmark set originally proposed by [START_REF] Reyes | Vehicle routing with roaming de livery locations[END_REF]. As suggested by [START_REF] Ozbaygin | A branchand price algorithm for the vehicle routing problem with roaming delivery locations[END_REF], the instances should be modified such that the triangle inequality for travel cost and travel times holds. The modified benchmark that we also use con sists of 120 randomly generated instances with a size ranging from 15 to 120 delivery requests, with a maximum of 6 options per request. The benchmark set is divided into 60 VRPRDL and 60 VRPHRDL instances.

Note that we cannot fairly compare with the variable neighborhood search of [START_REF] Reyes | Vehicle routing with roaming de livery locations[END_REF], because we only have access to the modified instances provided by [START_REF] Ozbaygin | A branchand price algorithm for the vehicle routing problem with roaming delivery locations[END_REF]. Since the BPC of [START_REF] Tilk | The Lastmile Vehicle Routing Problem with Delivery Options[END_REF] minimizes routing costs, we only focus on routing cost minimization. To this end, we bound the number of vehicles by the number of routes given in their solutions.

The time budget for the four configurations of the SLNS is now set to 60 seconds for in stances with up to 60 customers, and 300 seconds for the 120customer instances. This is again a rather small computation time compared to the 2 hour and 6 hour time limit used in [START_REF] Tilk | The Lastmile Vehicle Routing Problem with Delivery Options[END_REF].

Aggregated results for the VRPRDL and the VRPHRDL are shown in Tables 2.2 and 2.3, respectively. Each line refers to a group of instances with identical number |N | of customers. The BPC algorithm solves all 60 VRPRDL instances and 53 of 60 VRPHRDL instances benchmark set to proven optimality. The entry marked with ‡ indicates that bestknown solution values have been used here, because optimality could not be proven by the BPC algorithm for seven instances in this group. Again, the best solution values are marked in bold.

Comparing the four matheuristic configurations, SLNS+SPP performs best on both prob lem variants. For the VRPRDL, all optimal solutions could be found, while for the three other configurations the results are between 0.01 % and 0.04 % worse than the optimal solutions. Re garding the VRPHRDL, the four configurations improve the cost over the nonoptimal solutions provided in [START_REF] Tilk | The Lastmile Vehicle Routing Problem with Delivery Options[END_REF]. SLNS+SPP contributes with the largest improvement 0.36 % on average. Moreover, SLNS+SPP finds all but two known optimal solution values and the gap is 2.2 % for the instance group with 120 customers that contains all instances with unknown opti mal solutions. Moreover, seven new bestknown solutions have been obtained. Detailed results can be found in Appendix A.

Results for the VRPMTW

We compare the SLNS configurations with the ALNS of [START_REF] Larsen | Fast delta evaluation for the Vehicle Routing Problem with Multiple Time Windows[END_REF] on the adapted Solomon benchmark instances for the VRPMTW provided by [START_REF] Belhaiza | A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with multiple time windows[END_REF]. The algorithm of Belhaiza et al. minimizes the sum of the total routing cost and cost of the vehicles used. Since vehicle costs are fairly large (between 200 and 1000), we run Algorithm 2 twice, first to minimize the number of vehicles (which is then bounded), and second to minimize the routing cost, similarly to Ropke and Pisinger (2006a). The first phase tries to decrease the number of vehicles by removing the smallest route from the solution each time a feasible solution is found.

We report the best solution found out of 10 runs with an overall time budget of 600 seconds for both phases per instance. Larsen and Pacino (2019) used the same time limit and number of runs. Moreover, they performed their computational experiments on an Intel Core i74790K @ 4.00GHz, which is 2.02 times faster than our processor (see PassMarkSoftware, 2020). Comparing all five algorithms, the ALNS produces solutions with more vehicles than our SLNS configurations, which is caused by the different performance in the group cm 1. Regarding the overallcost objective, results over all five algorithms are rather similar (total differences are below 0.2 %). SLNS+SPP+BS performs best, it improves the results of the ALNS by 0.11 % and provides the most bestknown solutions. Over the 48 instances, 23 new best solutions are found by (at least) one of the four SLNS configurations. Note that the gap improvement is relatively small due to the large fixed cost for the utilization of vehicles.

Results for the VRPDO

For the VRPDO, we test the SLNS configurations on the instances described in Section 1.6. The required service levels are given by β 1 = 80 % and β 2 = 90 %. The time budget is set to 300 seconds for 100customers instances and 2 000 seconds for 200customers instances.

Recall that the VRPDO has a hierarchical objective. Thus, Algorithm 2 is run twice, first to minimize the number of vehicles, and second to minimize the routing cost.

Table 2.5 presents the aggregated results. Each line refers to a group of instances with iden tical number of customers and options. Columns 3 and 4 indicate the total number of vehicles and the total cost of the best solutions found out of five runs of SLNS. For each of its variant we indicate the total cost and the average gap to the cost of the solutions of SLNS. ‡ indicates that one route less was needed. Detailed results can be found in Appendix A. Among the SLNS configurations, SLNS+SPP produces the best results with the smallest routing costs. Moreover, SLNS+SPP is the only configuration that is able to find a solution with one less vehicle on instance V_200_3. For all other instances the minimum number of vehicles is Partie , Chapter 2 -Hybrid Large Neighborhood Search heuristics for generalized vehicle routing problems identical over all configurations. SLNS+SPP improves the results compared to SLNS by 0.34% on average and by up to 1.51% on the U instances with 200 customers. It finds the bestknown solution on 35 of the 60 instances.

Configuration SLNS+SPP+BS performs very similarly to SLNS+SPP. It finds two more bestknown solution and the solution quality is less than 0.5 % worse. Moreover, the detailed results of Appendix A.1 show that configuration SLNS+SPP+BS exclusively finds new best solutions for 14 instances.

Comparison of matheuristic configurations

To summarize the results for the four GVRPTW variants, we group all instances according to different criteria to further assess the performance of the matheuristic configurations. To this end, we report the gap to the bestknown solution value and the number of bestknown solutions found. To determine the bestknown solution value, we include our own results from the previous tables. Formally, the gap (in percent) is computed as 100 • (U B -BKS)/BKS, where BKS is the bestknown solution value from the literature, now including our results and U B is the best solution value found by the algorithm considered.

For the VRPDO, we consider only instances for which all four configurations achieve a solu tion with the same number of vehicles. As a consequence, the instance V_200_3 is disregarded. We group the instances according to the VRP variant, the number of customers per route in the BKS, and the number of options per customer.

Table 2.6 shows aggregated results regarding the performance per group: The first column indicates the category used for grouping the instances, the second column gives the value defin ing the group, and the third column shows the number of instances in that group. The next four columns report the average gap and the last four columns report the number of bestknown so lutions found. In each line, the smallest average gap and the largest number of BKSs found are highlighted in bold. Regarding the different problem variants, all configurations except SLNS+BS perform rather similarly on the instances for the GVRPTW, VRPRDL, and VRPHRDL. For VRPMTW instances, SLNS+SPP+BS is clearly the best configuration, and for the VRPDO instances, SLNS+SPP is the best. In particular, regarding '# BKS', the two configurations with the SPP component outperform their counterparts without SPP component on the VRPMTW and VR PDO.

The rather bad performance of the BS component on VRPDO instances can be attributed to the additional synchronizations constraints only present in this variant. These constraints imply that a larger set of resources has to be taken into account in the labelsetting algorithm. As a result, the practical difficulty of the SPPRC increases substantially, making the BS component too timeconsuming relative to the improvements obtained with BS.

When instances are grouped according to route length, we can clearly see that the two exact components (i.e., SLNS+SPP+BS) are beneficial for the route lengths between 6 and 20 cus tomers. There is nearly no difference between configurations for routes with 6 or less customers, while the exact components worsen the results for more than 20 customers.

When grouped according to the number of options per request, it seems that gaps decrease when the number of options per customer rises. However, this trend is not clearcut.

To summarize, configuration SLNS+BS performs worst, while both configurations SLNS+SPP and SLNS+SPP+BS are very competitive. The former produces the best gaps, while the latter provides the most BKS. Both configurations are also complementing each other well, because the overlap between the 169 and 173 BKS (see last two columns of Table 2.6) is only 145 instances. We can also conclude that the BS component is only beneficial in combination with the SPP component.

We are able to support the above interpretations with the help of performance profiles [START_REF] Elizabeth | Benchmarking optimization software with performance profiles[END_REF]. Performance profiles allow the comparison of a set A of algorithms which are all applied to the same benchmark set. We use the four configurations A = {SLN S, SLN S + BS, SLN S + SP P, SLN S + SP P + BS} as the algorithms to compare. The performance profile ρ

A : [1, ∞) → [0, 1] of configuration A ∈ A is a distribution function of the ratio z A /z best
, where z A is the solution value of configuration A and z best = min A∈A z A . In other words, the value ρ A (τ) is the fraction of instances for which algorithm A finds a solution within a factor of τ > 1 of the cost of the considered solution relative to the cost of the best solution found by all algorithms in A. In particular, ρ A (1) is the proportion of instances for which A has found the best solution among all matheuristic configurations. We first compare performance profiles for all instances with those for groups of instances 2.6). Figure 2.3 contains four performance profiles. Note that the group [0, 6), i.e., with a very small number of average customers per route, has been omitted, since all but one configurations always find the BKS. The comparison of the profiles reveals:

-SLNS+BS is inferior to all other configurations in all groups.

-Comparing SLNS+SPP and SLNS+SPP+BS, we can state that the BalasSimonetti neigh borhood is only providing a small advantage for the group [6, 10) with rather short routes.

In the group [10, 20), the configuration SLNS+SPP+BS using BS neighborhood is com plementary to the configuration SLNS+SPP (note the overlapping profiles).

Partie , Chapter 2 -Hybrid Large Neighborhood Search heuristics for generalized vehicle routing problems

-The longer the routes, the more obvious and pronounced is the difference between SLNS and SLNS+BS as well as between SLNS+SPP and SLNS+SPP+BS.

-For the groups [6, 10) and [10, 20), it is evident that the setpartitioning component in SLNS+SPP is indispensable to reach the highquality solutions.

We also pointed out that the performance of the BS component strongly depends on the number of resources to be included in the SPPRC. Recall that additional resources are needed in the VRPDO to count the number of shipments delivered to every shared location and for counting priorities. Hence, a deterioration of the BS component in the VRPDO can be expected when compared to the other GVRPTW variants. -Differences between SLNS and SLNS+BS as well as between SLNS+SPP and SLNS+SPP+BS are small for nonVRPDO instances but substantial in the VRPDO case.

-The profiles of SLNS+SPP and SLNS+SPP+BS are almost identical for nonVRPDO instances (Figure 2.4a). This is in line with the observation that the two configurations are complementing each other. As observed for the VRPMTW, the BS component in SLNS+SPP+BS can even lead to a superior performance.

Computational Experiments

-The comparison between Figure 2.4a and 2.4b shows that all configurations perform infe rior on VRPDO instances. This is a strong indication that this GVRPTW variant is more 'difficult'.

-For values of τ very close to 1, i.e., for finding highquality solutions, the BS component is generally useful.

-Also here the setpartitioning component is indispensable to reach the highquality solu tions, in particular for the VRPDO.

Additional experiments

In addition to the results published in [START_REF] Dumez | Hybridiz ing Large Neighborhood Search and Exact Methods for Generalized Vehicle Routing Prob lems with Time Windows[END_REF], we would like to present some latest results.

They were performed on Ubuntu 20.04 LTS running on an Intel Xeon Gold 6230 CPU @ 2.10GHz with IBM Ilog CPLEX 20.1. The computing time was scaled down by a factor 1.7 according to PassMarkSoftware (2020).

VRPRDL and VRPHRDL

Very recently, [START_REF] Yuan | A column generation based heuristic for the generalized vehicle routing problem with time windows[END_REF] also solved these VRP(H)RDL instances with an heuris tic method. These solutions have a fleet size corresponding to the number of vehicles used in [START_REF] Ozbaygin | A branchand price algorithm for the vehicle routing problem with roaming delivery locations[END_REF]. We compare the solutions of these two studies with those of SLNS+SPP with the same number of routes. Aggregated results are presented in Table 2.7 for the VRPRDL and in Table 2.8 for the VRPHRDL. Each line corresponds to an instance group specified by the first column. The second column indicates the number of instances in the group and the third column, the number of customers. Columns 4 and 5 detail the results provided by [START_REF] Ozbaygin | A branchand price algorithm for the vehicle routing problem with roaming delivery locations[END_REF]: the total number of routes and the total cost of their solutions. Columns 6 and 7 show the results of the ColumnGeneration Based Heuristic (CGBH, Yuan (2019); Yuan et al. (2021)): the total cost of their solutions and the total computing time. Columns 6 and 7 give the same information for our SLNS+SPP.

First of all, let us underline that the results of the CGBH and those of SLNS+SPP are ex tremely close. Over all the instances of both problems, the largest relative deviation in the cost of the solutions from both algorithms is of 0.81%. On average, the deviation between our method results and those of Yuan et al. (2021) is 0.01% on the VRPRDL, and 0.02% on the VRPHRDL. Thus, both are improving the results of [START_REF] Ozbaygin | A branchand price algorithm for the vehicle routing problem with roaming delivery locations[END_REF].

Partie , Chapter 2 -Hybrid Large Neighborhood Search heuristics for generalized vehicle routing problems

Second, about the computing time, CGBH is faster on smaller instances but SLNS+SPP is faster on the larger ones. Nonetheless, for these experiments, we used a processor 1.4 faster than their (PassMarkSoftware, 2020).

BCP

GVRPTW

In addition to results on the VRP(H)RDL, [START_REF] Yuan | A column generation based heuristic for the generalized vehicle routing problem with time windows[END_REF] also present results on the GVRPTW instances of [START_REF] Moccia | An incremental tabu search heuristic for the generalized vehicle routing problem with time windows[END_REF]. Their method, CGHB, slightly reduces the average cost of the solutions and significantly reduces the computing time compared to the results of [START_REF] Moccia | An incremental tabu search heuristic for the generalized vehicle routing problem with time windows[END_REF].

Table 2.9 details the best results obtained out of five runs by SLNS+SPP, compared with the results of CGHB. Note that the authors did not indicate whether their results are the best results out of several runs. For each instance, the cost of the solution and the computing time (in second) are reported for each of the two methods.

The two methods provide very similar results on this dataset. Indeed, the average gap be tween the cost of the solutions is only 0.06%. However, the computing time of SLNS+SPP is, in average, 3.5 times smaller, with a processor 1.4 faster than theirs (PassMarkSoftware, 2020

Large VRPDO instances

Likewise, since the submission of the previously presented results, we ran experiments on VRPDO instances with 400 customers. Table 2.10 presents the aggregated results of each variant of the developed method on these large instances. The best solutions out of five runs with 3500 seconds of time budget were taken Partie , Chapter 2 -Hybrid Large Neighborhood Search heuristics for generalized vehicle routing problems into account. Each line correspond to an instance type. For each configuration of SLNS the table shows the total number of vehicles and the total cost of the solutions of each type.

Overall the SPP improves the results of SLNS by 1.1%, while the BalasSimonetti worsen them by 2.4%, and the conjunction of the two worsen the results by 0.6%.

The tendencies observed on the other instances are confirmed, and even amplified, on these larger instances. That is to say, SLNS provides good results overall. SLNS+SPP is able to slightly improve the results. And SLNS+SPP+BS is able to find better solutions on some very specific instances (it obtains a unique best solution on 2 instances). However, on average, the dynamic programming component is too time consuming on these large instances.

SLNS

Conclusions

In this chapter, we presented a SLNSbased matheuristic that can cope with GVRPTW vari ants, in particular also with the most general and more involved VRPDO. The matheuristic has an adaptive layer that controls the use of two (optional) exact components. The BalasSimonetti neighborhood allows an improvement of solutions when the standard SLNS process stalls. The Set Partionning Problem component utilizes a MIP solver to selects routes from a larger pool of potential routes. The second component uses BS neighborhood that we adapt for the use in a multiple vehicle context with capacity, time window, and interroute constraints. Both compo nents are, compared to a single SLNS iteration, very timeconsuming. Hence, the adaptive layer very carefully controls how often and when the exact components are invoked.

The primary focus of our research is the evaluation of the adaptive layer as well as the two exact components. We compare four different configurations of the new matheuristic (SLNS, SLNS+BS, SLNS+SPP, and SLNS+SPP+BS, i.e., with and without SPP and BS components) among each other and with stateoftheart algorithms for the GVRPTW, VRPRDL, VRPHRDL, VRPMTW, and VRPDO. The experiments are conducted on standard benchmarks for these problems and lead to the following insights:

-The two configurations with the SPP component outperform their counterparts without SPP component regarding average gaps to bestknown solutions (BKS) and the number of BKS computed (Table 2.6).

-The configuration with the BS component alone (SLNS+BS) is inferior. In particu lar, for the VRPDO, the presence of many interroute constraints that must be handled within the BS neighborhood exploration makes the BS component too timeconsuming (see Section 2.5.4). However, when combined with SPP the resulting configuration SLNS+SPP+BS is competitive.

-The practical difficulty of the VRPDO is well reflected in the results delivered by all matheuristic configurations. Average gaps of 0.73 % for the VRPDO are much bigger than gaps for the other GVRPTW variants which fall below 0.25 % (Table 2.6).

-Compared to stateoftheart metaheuristics from the literature, the new matheuristic is much faster (factor 7 for the GVRPTW; factor 2 for the VRPMTW, see Sections 2.5.1 and 2.5.3).

-For the VRPRDL (VRPHRDL), the comparison against a recent exact branchpriceand cut algorithm shows that configuration SLNS+SPP finds all (all except one) known op timal solutions in a fraction of the computation time available for the exact algorithm. In addition, all configurations together provide new bestknown solutions for all instances that were not solved to proven optimality by the branchpriceandcut algorithm (Section 2.5.2).

Thus, SLNS is an efficient method for generalized vehicle routing problems with time win dows. Hybridizing it with the SPP enhances its performances by a few percent, especially on hard instances. Finally, the BalasSimonetti can further improve these results, but only on in stances with short routes.

Furthermore, to be efficient on large instances, it is needed to speedup the BalasSimonetti neighborhood for problems with synchronized resources. We can think about the pulse algorithm (Lozano and Medaglia, 2013). In addition, the computing time of all the configurations also suggests to reduce the number of evaluated insertion positions for each customer, like proposed by [START_REF] Toth | The Granular Tabu Search and Its Application to the VehicleRouting Problem[END_REF].

Introduction

In more and more cities, governmental regulations restrict the number and type of vehicles allowed to access city centers because of the intense innercity traffic, narrow streets, and the lack of adequate parking spaces [START_REF] Muñuzuri | Estimating the extra costs imposed on delivery vehicles using access time windows in a city[END_REF]. Coordinated urban deliveries can be part of the solution. We consider modern innercity distributions systems that rely on a multi echelon structure to reduce the nuisances associated with freight transportation in urban areas while supporting their economic and social development [START_REF] Gabriel Crainic | Models for Evaluating and Planning City Logistics Systems[END_REF].

One of the most common designs for handling and reducing the large number of freight vehicles going into cities, often delivering small quantities per stop, is to consolidate this frag mented volume at urban distribution centers (UDCs) located in cities outskirts [START_REF] Savelsbergh | 50th Anniversary Invited Article-City Lo gistics: Challenges and Opportunities[END_REF]. In the twoechelon vehicle routing problem (2EVRP), customers are supplied from the UDC through intermediary satellites. Firstechelon vehicles transport goods from the UDC to satellites, at which secondechelon vehicles collect the goods and deliver them to the customers. The flow of goods must respect operation and load synchronization constraints (following the taxonomy of Drexl, 2012), i.e., one must decide on the assignment of each customer's demand to a satellite and ensure that incoming and outgoing quantities at each satellite coincide.

We have identified three extensions of the basic 2EVRP as highly relevant. These are: (i) the integration of reverse flows, (ii) the consideration of several timing aspects (including time windows and the possibility to perform multiple trips with the same vehicle), and (iii) satellite capacities. We elaborate their importance in the following.

The goal to reduce traffic, pollution, and noise in city centers certainly requires a holistic view on the logistics system including goods transportation into as well as out of the city. [START_REF] Bektaş | From managing urban freight to smart city logistics networks[END_REF] pointed out that handling forward, reverse, and transiting flows is a key activity within urban areas. In some fields of application, the consideration of forward and reverse flows is therefore almost imperative. Examples include beveragedelivery services [START_REF] Bruck | Nonelementary formulations for single vehicle routing problems with pickups and deliveries[END_REF] and package and urban courier services [START_REF] Wong | Vehicle routing for small package delivery and pickup services[END_REF], where reverse quantities of some customers can easily exceed their forward quantities.

Typical fleets on the second echelon comprise small trucks (vans, Sprinters) as well as lo cally emissionfree vehicles such as battery electric vehicles (BEV, Desaulniers et al., 2016; Schneider et al., 2014) and cargo bikes [START_REF] Elbert | Urban consolidation and cargo bikes: a simulation study[END_REF]. These vehicles typically have a much smaller capacity than the trucks used on the first echelon. As a result, second echelon routes are relatively short so that a vehicle can be cleared and replenished several times. With a limited fleet, the associated problem is therefore a MultiTrip VRP [START_REF] Paradiso | An exact solution framework for multitrip vehiclerouting problems with time windows[END_REF], stress its relevance for city logistics and lastmile delivery). Moreover, when distances between UDC and satellites are short, multiple trips of the firstechelon vehicles are also possible (see, e.g., [START_REF] Nolz | Twoechelon distribution with a single capacitated city hub[END_REF].

In their review, [START_REF] Cuda | A survey on twoechelon routing problems[END_REF] highlight the steadily increasing number of publications on the 2EVRP. They conclude that mostly, basic versions of the 2EVRP have been studied and that many practical issues, in particular temporal interdependencies are still to be further investigated both in heuristic and exact approaches. Temporal interdependencies may refer to the requirement that:

(1) either firstechelon and secondechelon vehicles have to meet at the satellite in order to transfer loads (no storage, exact operation synchronization as defined by Drexl, 2012)

(2) or satellite visits of firstechelon vehicles can precede those of secondechelon vehicles (storage at satellites, operation synchronization with precedences, see also [START_REF] Drexl | Synchronization in Vehicle Routing-A Survey of VRPs with Mul tiple Synchronization Constraints[END_REF].

Furthermore, satellite capacities impose resource synchronization constraints [START_REF] Drexl | Synchronization in Vehicle Routing-A Survey of VRPs with Mul tiple Synchronization Constraints[END_REF].

For case (1), [START_REF] Grangier | An adaptive large neighborhood search for the twoechelon multipletrip vehicle routing problem with satellite synchronization[END_REF] introduce the twoechelon multipletrip vehicle rout ing problem with satellite synchronization (2EMTVRPSS) which extends the basic variant by customer time windows and multiple trips on the second echelon. In their variant, there are no storage possibilities at the satellites. For case (2), it is obvious that modeling and solving prob lems with satellite capacities is much more involved. Only very few works cover this aspect (see literature review in Section 3.2).

In response to this research gap, we aim at modeling and solving 2EVRP with timewindows with a specific focus on incorporating the processes at the satellites in combination with the requirement to handle both forward and reverse flows (goods and returns). Overall, we extend the 2EMTVRPSS of [START_REF] Grangier | An adaptive large neighborhood search for the twoechelon multipletrip vehicle routing problem with satellite synchronization[END_REF] by three aspects:

-First, customers can have a pickup demand introducing reverse flows into the twoechelon system. As a consequence, secondechelon vehicles need to simultaneously deliver goods and collect pickup goods at customers within their specified time window. The pickup demand must be transported to a satellite and from this satellite to the UDC by a first echelon vehicle.

-Second, also firstechelon vehicles are allowed to perform multiple trips during the plan ning horizon.

-Third, satellites allow a temporary storage of goods, but they feature a limited capacity in terms of goods that can be stored at a time. The most prevalent situation is probably that goods to be delivered (forward) and pickedup (reverse) are stored together, thus, they share and compete for the satellite capacity.

We introduce the TwoEchelon MultipleTrip Vehicle Routing Problem with Capacitated Satellites and Reverse Flows (2EMTVRPCSRF) that addresses all three extensions together.

The 2EMTVRPCSRF models the time and quantity dependencies at capacitated satellites in a more precise manner than previous works. It is, therefore, obvious that for 2EMTVRPCSRF instances of realistic size, the only viable solution approach is heuristic.

To solve the 2EMTVRPCSRF, we propose an iterative algorithm that partially decom poses the problem into three different subproblems. For two of them, we present two Large Neighborhood Search (LNS) algorithms, each of them optimizing one echelon while parts of the other echelon are fixed. With one subproblem per echelon, the method takes advantage of the effectiveness of LNS to solve MultiTrip Vehicle Routing Problem with Reverse Flow and to integrate synchronization constraint with the other echelon. For the third subproblem, an enhanced version of the pathbased formulation is used to recombine trips found in both LNS algorithms. This way, the method also takes advantage of the MIPbased approach to recombine trips generated by the two LNSs, while having a global view on satellitecapacity constraints as well as the spatial and time synchronization between first and second echelon.

On randomly generated instances with 100 customers and 4 satellites of medium capacity, we find that the overhead cost of considering the satellites capacity is of 6.5%, which is worth considering in regard of the meter square prices in large cities. In addition, on those instances, we computed that integrating forward and reverse flow reduces the routing costs by up to 40%.

The remainder of the paper is structured as follows. Section 3.2 reviews the 2EVRP lit erature focusing on those variants with reverse flows, timing aspects including multiple trips, and satellite capacities. In Section 3.3, we formally introduce the 2EMTVRPCSRF, detail fea sibility conditions, and present a tripbased formulation. Section 3.4 presents the matheuristic algorithm. Computational results and managerial insights are presented in Section 3.5, before final conclusions are drawn in Section 3.6.

Literature

The basic 2EVRP implicitly assumes that all transfers between the first and second eche lon happen in separate periods and are therefore always operable, e.g., assuming a fixed cutoff period during which all transfers are performed so that all first(second)echelon vehicles must arrive (depart) before (after) that period. Hence, operation synchronization is pure spatial in the basic version (see [START_REF] Drexl | Synchronization in Vehicle Routing-A Survey of VRPs with Mul tiple Synchronization Constraints[END_REF]. The first study on the 2EVRP was conducted by [START_REF] Gonzalezfeliu | The twoechelon ca pacitated vehicle routing problem[END_REF] who introduced the problem into the literature. They proposed a commodityflow model and a branchandcut (BC) algorithm that was tested on instances with up to 50 customers and 4 satellites. The 2EVRP was surveyed by [START_REF] Cuda | A survey on twoechelon routing problems[END_REF]. More recent successful solu tion approaches are exact (Marques et al., 2020b; Perboli et al., 2018) and heuristic (Amarouche et al., 2018; Breunig et al., 2016; Wang et al., 2017).

The standard assumption is that customers are served by a single visit so that demands are not split on the second echelon. However, splitting customer demands on the first echelon is an option.

Reverse flows

The integration of forward and reverse flows in a twoechelon distribution system was pre sented as an important challenge Crainic et al. (2012). [START_REF] Onder Belgin | Twoechelon vehicle routing problem with simultaneous pickup and delivery: Mathematical model and heuristic approach[END_REF] were the first to solve a 2EVRP variant with forward and reverse flows so that a customer can have both a delivery and pickup demand. The vehicle routing problem at the second echelon is one with simultaneous deliveries and pickups (Subramanian et al., 2013b). Additionally, Belgin et al. model satellite capacity as the maximum total demand that can be served by the satellite during the planning horizon (we also use the term total demand in the following to refer to delivery plus pickup demand). The problem is solved heuristically by combining Variable Neighborhood Descent (VND, [START_REF] Hansen | Variable neighbour hood search: methods and applications[END_REF] and local search. Additionally, they present a twoindex model and computationally evaluate the effect of additional valid inequalities on lower bounds. Tests were conducted on a new instance set comprising up to 50 customers and 5 satellites. [START_REF] Gabriel Crainic | Models for Evaluating and Planning City Logistics Systems[END_REF] were the first to consider timing aspects in 2EVRP. The authors discuss customer time windows and multiple trips on both echelons among other features of a general Partie , Chapter 3 -An Iterative TwoStage Heuristic for the 2Echelon MultiTrip Vehicle Routing Problem with Capacitated Satellites and Reverse Flows twotier city logistic systems. The work also presents several modeling ideas and describes pos sible heuristics without computational testing. [START_REF] Grangier | An adaptive large neighborhood search for the twoechelon multipletrip vehicle routing problem with satellite synchronization[END_REF] introduced the 2EMTVRPSS which features customer time windows and multiple trips in the second echelon. They present a LNS algorithm with a fast and sophis ticated feasibility check. Computational experiments were conducted on instances with up to 8 satellites and 100 customers derived from the VRPTW benchmark instances of [START_REF] Solomon | Time Window Constrained Routing and Schedul ing Problems[END_REF]. [START_REF] Anderluh | Synchronizing vans and cargo bikes in a city distribution network[END_REF] extend the 2EMTVRPSS by allowing the firstechelon vehicle to serve some customers. A twophase greedy randomized adaptive search procedure with path relinking is applied to solve the extended 2EMTVRPSS. Computational tests were conducted on instances with up to 125 customers and 18 satellites. [START_REF] Dellaert | Branch andprice-based algorithms for the twoechelon vehicle routing problem with time windows[END_REF] suggest a twopath formulation for the singletrip multidepot 2EVRP with time windows and exact synchronization (2EVRPTW). They assume that the entire de mand delivered by a secondechelon vehicle must be provided by a single firstechelon trip. A branchandprice (BP) algorithm that enumerates configurations of firstechelon trips is a key component. The BP algorithm is capable to exactly solve some instances with up to 100 customers and 5 satellites within the 3hour time limit. [START_REF] Mhamedi | A branchprice andcut algorithm for the twoechelon vehicle routing problem with time windows[END_REF] developed a so phisticated branchpriceandcut (BPC) algorithm for the 2EVRPTW. The algorithm performs well on the instances generated by [START_REF] Dellaert | Branch andprice-based algorithms for the twoechelon vehicle routing problem with time windows[END_REF], computing 41 new optimal solutions in the 3hour time limit. Independently, Marques et al. (2020a) present BPC algorithms to solve the 2EMTVRPSS and 2EVRPTW. They reported new optimal solutions for 9 of the 2EMTVRP SS instances and 54 of the 2EVRPTW instances.

Time windows and multiple trips

The practical relevance of timing aspects has led to the introduction of several other 2E VRP variants covering new technologies and realworld features such as electric vehicles [START_REF] Jie | The twoechelon capacitated electric ve hicle routing problem with battery swapping stations: Formulation and efficient methodology[END_REF], cargo bikes with swap containers [START_REF] Mühlbauer | A parallelised large neighbourhood search heuristic for the asymmetric twoechelon vehicle routing problem with swap contain ers for cargobicycles[END_REF], and multiple commodities provided by different UDCs [START_REF] Dellaert | A multicommodity twoechelon capacitated vehicle routing problem with time windows: Model formulations and solution approach[END_REF]. Recently, [START_REF] Anderluh | Impact of travel time uncertainties on the solution cost of a twoechelon vehicle routing problem with synchro nization[END_REF] analyzed and discussed the impact of stochastic travel times on costs.

Satellite capacity

Two approaches for modelling the satellite capacities are common in the literature. In the first approach, an upper bound on the number of secondechelon vehicles leaving the satellite is imposed (first suggested by [START_REF] Gabriel Crainic | Models for Evaluating and Planning City Logistics Systems[END_REF] and very recently employed by [START_REF] Mühlbauer | A parallelised large neighbourhood search heuristic for the asymmetric twoechelon vehicle routing problem with swap contain ers for cargobicycles[END_REF]). The second approach limits the total demand that can be served by a satellite (in the unidemand case, this means limiting the number of served customers, see, e.g., Belgin et al., 2018; Breunig et al., 2016. Both approaches have in common that they do not consider the dynamics over the planning horizon, i.e., available or residual capacities depending on the goods entering and leaving the satellite over time.

To the best of our knowledge, only three works use a more detailed timedependent capac ity model. Li et al. (2018) study a 2EVRP with customer time windows, a given assignment of customers to satellites, and realtime transshipment capacities. The realtime transshipment capacities describe the currently available capacity of the satellite defined as the difference be tween the maximum capacity and the quantity of goods currently waiting at a satellite to get pickedup by a secondechelon vehicle. Additionally, the problem features split deliveries on the first echelon and multiple trips on the second echelon. A MIP formulation is provided and a twostage heuristic based on variable neighborhood search (VNS, Hansen et al., 2009) is pro posed. Smallscale instances with up to 3 satellites and 5 customers per satellite were solved to optimality with a MIP solver within a 4hours time limit. The twostage heuristic has been tested on 99 larger instances with up to 30 satellites and 30 customers per satellite. [START_REF] Li | The twoechelon city logis tics system with onstreet satellites[END_REF] slightly extend the problem by varying the maximum transshipment capacity for each time period.

Recently, [START_REF] Nolz | Twoechelon distribution with a single capacitated city hub[END_REF] considered a twoechelon distribution with a single capacitated satellite, customer time windows, and multiple trips on both echelons. They propose a new MIP model and a threephase heuristic method which uses populationbased metaheuristics and integer programs. Nolz et al. evaluate their methods on instances with up to 81 customers generated from realworld data from the city of Vienna.

More generally, a time dependent satellite capacity involves synchronizing routes on shared renewable capacitated resources at facilities. To our knowledge, this type of problem has re ceived little attention in the literature, most resource constrained routing and scheduling prob lems coming from the sharing of particular vehicles or personnel with different skills that need to be routed to perform different tasks (CastilloSalazar et al., 2016; Fikar and Hirsch, 2017; Paraskevopoulos et al., 2017). Several cases are related to loading or unloading unary ressources in forestry [START_REF] Hachemi | A hybrid constraint program ming approach to the logtruck scheduling problem[END_REF], 2013), construction [START_REF] Schmid | A hybrid solution approach for readymixed concrete delivery[END_REF] or public work [START_REF] Grimault | An adaptive large neighborhood search for the full truckload pickup and delivery problem with resource synchronization[END_REF]. In [START_REF] Grangier | The vehicle routing problem with crossdocking and resource constraints[END_REF], a constraint limit the number of dock that can be used simultaneously in the VRP with crossdocking. [START_REF] Froger | A Matheuristic for the Electric Vehicle Routing Problem with Capacitated Charging Stations[END_REF] integrate a limited number of chargers at charging stations in electric VRPs. In the two later contributions, each vehicle consumes one unit of the resource capacity for a given time when it uses it. But to our knowledge, no paper investigate a synchronization constraint on a renewable resource that is expressed on a transferred quantity, in particular in a problem with forward and reverse flows.

Partie , Chapter 3 -An Iterative TwoStage Heuristic for the 2Echelon MultiTrip Vehicle Routing Problem with Capacitated Satellites and Reverse Flows

The 2Echelon MultiTrip Vehicle Routing Problem with

Capacitated Satellites and Reverse Flow

We define the 2EMTVRPCSRF by formally describing customers, satellites, fleet, trips, routes, and then satellite capacities. The three latter aspects require a detailed explanation pro vided in Sections 3.3.1,3.3.2 and 3.3.3. An integer (linear) programming (IP) model is then presented in Section 3.3.4. Let N denote the set of customers, where each customer i ∈ N has a delivery (=forward or linehaul) demand q fw i and a pickup (=reverse or backhaul) demand q rv i . Both demands have to be fulfilled by a single visit of a secondechelon vehicle. For the visit of customer i ∈ N , a vehicle may wait at the customer before actually providing service, which must start within the timewindow

[a i , b i].
Let S denote the set of satellites. We assume that satellites s ∈ S are available over the entire planning horizon T = {0, . . . , t}, i.e., spanning the time window [a s , b s] = [0, t]. Moreover, each satellite s ∈ S has a limited capacity C sat s and a constant processing time p s for transferring goods from one echelon to the other. How the capacity and processing time have to be interpreted is detailed in Section 3.3.3.

A homogeneous fleet F 1 of firstechelon vehicles is stationed at the UDC o 1 . Likewise, a homogeneous fleet F 2 of secondechelon vehicles is hosted at the secondechelon depot o 2 . All vehicles must start and end their routes at their depots o 1 and o 2 , respectively. They are allowed to perform multiple trips in between. Each first(second)echelon vehicle has a capacity of Q 1 (Q 2) that has to be shared by forward and reverse demands when transported together.

The objective of the 2EMTVRPCSRF is to find costminimal sets of feasible firstechelon and secondechelon trips (formally defined in Section 3. (F3) The forward flow of goods is conserved at each satellite s ∈ S and each point in time t ∈ T, i.e., the forward flow that has reached satellite s by firstechelon trips until time tp s is at least as large as the forward demands leaving satellite s on secondechelon trips until time t.

(F4) Likewise, the reverse flow of goods is conserved at each satellite s ∈ S and each point in time t ∈ T, i.e., the collected demands reaching satellite s on secondechelon trips arriving until time t is at least as large as the reverse flow that has left from the satellite s by firstechelon trips starting until time t + p s .

(F5) The capacities of all satellites are never exceeded, i.e., at any point in time, the quantity of goods stored or processed at a satellite is not larger than the satellites capacity.

Note that flow conservation via (F3) and (F4) allows a customer's demand (either forward or reverse demand) to be split on the firstechelon using two or more trips (with possibly different vehicles), but that this demand cannot be split on the second echelon.

Trips

Next, we define feasible trips and routes in both echelons with the help of two directed graphs. For the first echelon, let

G 1 = (V 1 , A 1) be the complete digraph with vertex set V 1 = S ∪ {o 1 } and arc set A 1 . Each arc (i, j) ∈ A 1 is associated with a nonnegative travel time t 1 ij
and a nonnegative travel cost c 1 ij . A firstechelon trip h = (P, T, L) consists of a closed directed walk P = (i 0 , i 1 , . . . , i n , i n+1) with i 0 = i n+1 = o 1 and i 1 , . . . , i n ∈ S, a time schedule T = (T 0 , T 1 , . . . , T n , T n+1) ∈ T n+2 , and a loading plan

((L f w 1 , L rv 1), . . . , (L f w n , L rv n)) ∈ ([0, Q 1] ∩ Z) 2×n
. The attribute T k ∈ T models the start of the service/operation at vertex i k for k ∈ {0, 1, . . . , n + 1}.

Each pair (i k , T k) of vertex and visit time is called FirstEchelon Visit (FEV). Note that mul tiple FEVs at the same satellite are allowed within a walk, including consecutive operations hap pening at the same satellite at different times (these loops may model consecutive appointments at the satellite, for example). Finally, the attributes L f w k and L rv k are the quantities droppedoff and collected, respectively, at satellite i k for 1 ≤ k ≤ n.

A firstechelon trip h = (P, T, L) is feasible if the following three conditions hold:

(Tr1) all vertices are visited within the planning horizon:

T k ∈ [0, t max]
for all k ∈ {0, 1, . . . , n + 1}, (Tr2) the time schedule is consistent with respect to travel and processing times: Tr3) and the load at each vertex is less than the capacity of a firstlevel truck:

T k + t 1 i k ,i k+1 + p i k ≤ T k+1 for all k ∈ {0, 1, . . . ,
n ∑ k=l+1 L fw k + l ∑ k=1 L rv k ≤ Q 1 for all l ∈ {0, 1, . . . , n},
where we assume a processing time p o 1 = 0 for the UDC. The cost c 1 h of the firstechelon trip h is given by

∑ n k=0 c 1 i k ,i k+1 .
Similarly, let G 2 = (V 2 , A 2) be the simple and complete digraph with vertex set V 2 = S ∪ N ∪ {o 2 } and arc set A 2 . Each arc (i, j) ∈ A 2 is associated with a nonnegative travel time t 2 ij and a nonnegative travel cost c 2 ij . A secondechelon trip h = (P, T) comprises a (closed or open) walk P = (i 0 , i 1 , . . . , i n , i n+1) in G 2 with i 0 , i n+1 ∈ S ∪ {o 2 } and i 1 , . . . , i n ∈ N , and a time schedule

(T 0 , . . . , T n+1) ∈ T n+2 .
The secondechelon trip h = (P, T) is feasible if the following five conditions hold: (Tr4) the vertices are visited within their time windows:

T k ∈ [a i k , b i k]
for all k ∈ {0, 1, . . . n + 1}, (Tr5) the time schedule respects travel times: 1,. . . ,n},(Tr6) the vehicle capacity is respected at each vertex on the trip: 2,. . . ,n},and (Tr8) if i n+1 = o 2 , then q rv i k = 0 must hold for all k ∈ {1, 2, . . . , n}.

T k + t 2 i k ,i k+1 ≤ T k+1 for all k ∈ {0,
n ∑ k=l+1 q fw i k + l ∑ k=1 q rv i k ≤ Q 2 for all l ∈ {0, 1, . . . n}, (Tr7
) if i 0 = o 2 , then q fw i k = 0 must hold for all k ∈ {1,
The latter two conditions (Tr7) and (Tr8) impose that trips that start (end) at the depot o 2 can not serve customers that have a positive delivery (reverse) demand. The cost c 2 h of the second echelon trip h is given by c 2 h = ∑ n k=0 c 2 i k ,i k+1 . Note that secondechelon vehicles and trips can start and end at different satellites. In par ticular, secondechelon trips that do not visit any customers are allowed (i.e., n = 0). These 104

The 2Echelon MultiTrip Vehicle Routing Problem with Capacitated Satellites and Reverse Flow

transfer trips model that a vehicle can change the starting satellite for its next trip. In addition, service times at customers are integrated into travelling times.

Routes

A first(second)echelon route R is a sequence (h 1 , . . . , h m) of m ≥ 1 feasible first(second) echelon trips h j . We denote the walks by P j = (i j0 , i j1 , . . . , i j,n j , i j,n j +1) and the time schedules by T j = (T j0 , T j1 , . . . , T j,n j , T j,n j +1) for j ∈ {1, 2, . . . , m}.

A firstechelon route is feasible if (R1) two consecutive trips h j and h j+1 do not overlap in time:

T j,n j +1 ≤ T j+1,0
for all j ∈ {1, . . . , m -1}.

A secondechelon route is feasible if the following three conditions hold:

(R2) it starts and end at the secondechelon depot:

o 2 = i 1,0 = i m,nm+1 ,
(R3) consecutive trips share identical end and start satellites:

i j,n j +1 = i j+1,0 ∈ S for all j ∈ {1, 2, . . . , m -1}, (R4) consecutive trips do not overlap in time:

T j,n j +1 + p i j,n j +1 ≤ T j+1,0 for all j ∈ {1, 2, . . . , m -1}.

In particular, the processing time p i j,n j +1 in (R4) for i j,n j +1 ∈ S ∪ {o 2 } can be used to model a necessary time period needed to clear and load a secondechelon vehicle.

Flow conservation and satellite capacity

In this section, we show how to check whether a given set of feasible firstechelon and secondechelon routes, including the quantities dropped off and collected by them over time, respect the forward and reverse flows and whether the quantities stored at a satellite exceed the satellite capacity. This shows how the feasibility conditions (F3)-(F5) can be tested.

For that purpose, we denote by Ω 1 the set of all feasible firstechelon trips and by Ω 2 the set of all feasible secondechelon trips. We introduce additional attributes for a firstechelon trip h = (P, T) ∈ Ω 1 :

-the quantity dropped off by the trip h at satellite s ∈ S at time t ∈ T:

γ fw h,s,t =    L fw k , there exists an index k ∈ {1, 2, . . . , n} with i k = s and T k = t 0, otherwise,
-the quantity that trip h collects at satellite s ∈ S at time t ∈ T:

γ rv h,s,t =    L rv k , there exists an index k ∈ {1, 2, . . . , n} with i k = s and T k = t 0,
otherwise.

Similarly, we define for a secondechelon trip h = (P, T, L) ∈ Ω 2 :

-the quantity that trip h collects from satellite s ∈ S at time t ∈ T:

γ fw h,s,t =    ∑ n k=1 q fw i k , i 0 = s and T 0 = t 0, otherwise,
-the quantity that trip h drops off at satellite s ∈ S at time t ∈ T:

γ rv h,s,t =    ∑ n k=1 q rv i k , i n+1 = s and T n+1 = t 0,
otherwise.

We also define the load profile of satellite s ∈ S: Λ s t is the quantity processed and stored at satellite s at time t ∈ T.

Before, we formalize the feasibility conditions (F3)-(F5) (see constraints (3.e)-(3.g) of the MIP model presented in the next section), we explain them with the help of an example.

Example 1 Figure 3.1 shows a solution for an instance of the 2EMTVRPCSRF with two satel lites, eight customers, one firstechelon vehicle, and two secondechelon vehicles. Forward and reverse demands of each customer are depicted next to the corresponding vertex. We assume that the customers have nonrestricting time windows and that travel times and travel costs coincide (depicted on the arcs). Moreover, the capacity of both satellites is C sat s = 10 and the processing time is p s = 1.

The firstechelon route performs two trips (in blue), while the two secondechelon routes perform four (in orange) and three trips (in green), respectively. Table 3.1 shows a feasible

The 2Echelon MultiTrip Vehicle Routing Problem with Capacitated Satellites and Reverse Flow

time schedule and loading plan for the three routes.

o 1 o 2 s 1 s 2 1 2 f w 2 1 f w , 3 rv 3 2 f w
trip index j 1 2 vertex i k o 1 s 1 s 2 o 1 o 1 s 1 o 1 schedule T k 0 3 6 9 9 14 18 quantity γ fw hj ,i k ,T k -10 0 - - 0 - γ rv hj ,i k ,T k - 0 5 - - 9 - secondechelon route (h ′ 1 , h ′ 2 , h ′ 3) j 1 2 3 vertex i k o 2 s 1 s 1 3 4 s 1 s 1 5 o 2 schedule T k 0 2 4 6 7 8 9 12 14 quantity γ fw h ′ j ,i k ,T k 0 - 2 --- 5 - - γ rv h ′ j ,i k ,T k - 0 ---2 - - 0 secondechelon route (h ′′ 1 , h ′′ 2 , h ′′ 3 , h ′′ 4) j 1 2 3 4 vertex i k o 2 6 7 s 2 s 2 8 s 1 s 1 1 2 s 1 s 1 o 2 schedule T k 0 1 2 3
4 5 9 10 11 12 13 14 17 quantity γ fw Note that there must be at least p s = 1 time units between two consecutive secondlevel trips. On a FEV, a firstechelon vehicle must stay at least p s = 1 time units at a satellite, however, there is no dedicated time span between consecutive firstechelon trips at o 1 . To fulfill the feasibility conditions (F3)-(F5), waiting is mandatory at three visits due to interdependencies: Trip h ′ 2 has to wait for 1 time unit before starting at satellite s 1 , because there is no forward demand ready before time 4, i.e., when the droppedoff forward demand of trip h 1 has been processed. The corresponding entries are marked in blue. Similarly, trip h f 2 has to wait for 2 time units at s 1 , because it has to collect the reverse demand dropped off by trip h 2 3 at time 13, which is ready for collection at time 14 (red entries). Last, trip h ′′ 2 must wait for 2 time units before unloading at s 1 , because there is no free capacity to store its reverse demand. Indeed, the trip has to wait for trip h ′ 3 to free up capacity at s 1 (green entries). Figure 3.2a shows that these waiting times are necessary to ensure feasibility regarding flows and capacities. The figure visualizes the load profile of satellite s 1 . Forward quantities are depicted in red and reverse quantities in blue. Striped areas indicate that the quantities are transferred to the satellite but not processed so that they are not yet ready to be collected. Pro cessed goods are solid. All quantities resulting from firstechelon operations are depicted with arrows on the top of the diagram and all secondechelon operations at the bottom. Regarding the three waiting times, we can see from the figure that: -There is no forward quantity ready to collect at the satellite before time 4.

h ′′ j ,i k ,T k 0 --- 0 -- 3 - - - 0 - γ rv h ′′ j ,i k ,T k ---5 --4 - - - 3 - 0
-The 9 units of reverse demand collected at time 14 cannot be collected earlier, since the last 3 units droppedoff are not ready at an earlier point in time.

-The 4 units of reverse demand dropped off at time 9 cannot be dropped off earlier due to the satellite capacity.

Conditions (F3)-(F5) are fulfilled, because for each point in time the stored quantity is not greater than the satellites capacity (C sat = 10, see Figure 3.2b) and because both the available forward quantities and available reverse quantities are nonnegative (see figures 3.2c and 3.2d respectively).

Tripbased formulation

The integer programming (IP) model of the 2EMTVRPCSRF presented next serves two purposes: First, it precisely defines the 2EMTVRPCSRF. Second, the matheuristic explained in Section 3.4 uses a restricted and refined version of the IP as one of its components.

The IP can be characterized as a tripbased formulation. Clearly, both sets Ω 1 (feasible first echelon trips) and Ω 2 (feasible secondechelon trips) are finite but typically extremely large, because trips are defined as combinations of a walk, time schedule, and loading plan (in case of the firstechelon trips). For the IP model, we describe a firstechelon trip h = (P, T, L) ∈ Ω 1 with the additional attribute β h,t ∈ {0, 1}, which indicates whether trip h takes place during time t ∈ T, or not:

β h,t =    1, if T 0 ≤ t ≤ T n+1 0, otherwise.
In a similar manner, a secondechelon trip h = (P, T) has the additional attribute α h,i ∈ {0, 1}, which indicates whether trip h visits customer i ∈ N , or not:

α h,i =    1, there exists an index k ∈ {1, 2, . . . , n} with i k = i 0, otherwise.
Additionally, it is convenient to define two subsets of secondechelon trips for satellites s ∈ S at times t ∈ T:

Ω 2+ s,t = {h ∈ Ω 2 : T 0 = t and i 0 = s} and Ω 2- s,t = {h ∈ Ω 2 : T n+1 = t and i n+1 = s} Ω 2+ s,t (Ω 2- s,t
) are those secondechelon trips that leave from (arrive at) satellite s at time t. The IP that we present next comprises two types of variables: the integer variables x 1 h for h ∈ Ω 1 count the number of times that trip h is performed (note that two or more firstechelon vehicles can perform an identical trip), and the binary variables x 2 h indicate whether trip h ∈ Ω 2 is performed, or not.

Model 3: Integrated two echelons model min

∑ h∈Ω 1 c 1 h x 1 h + ∑ h∈Ω 2 c 2 h x 2 h s.t. ∑ h∈Ω 2 α h,i x 2 h = 1 ∀i ∈ N (3.a) ∑ h∈Ω 1 β h,t x 1 h ≤ |F 1 | ∀t ∈ T (3.b) ∑ t∈T ∑ h∈Ω 2+ o 2 ,t x 2 h = ∑ t∈T ∑ h∈Ω 2- o 2 ,t x 2 h = |F 2 | (3.c) 110

The 2Echelon MultiTrip Vehicle Routing Problem with Capacitated Satellites and Reverse Flow

∑ t ′ ≤t-ps ∑ h∈Ω 2- s,t ′ x 2 h - ∑ t ′ ≤t ∑ h∈Ω 2+ s,t ′ x 2 h ≥ 0 ∀s ∈ S, t ∈ T (3.d) ∑ t ′ ≤t-ps ∑ h∈Ω 1 γ fw h,s,t ′ x 1 h - ∑ t ′ ≤t ∑ h∈Ω 2+ s,t ′ γ fw h,s,t ′ x 2 h ≥ 0 ∀s ∈ S, t ∈ T (3.e) ∑ t ′ ≥t+ps ∑ h∈Ω 1 γ rv h,s,t ′ x 1 h - ∑ t ′ ≥t ∑ h∈Ω 2- s,t ′ γ rv h,s,t ′ x 2 h ≥ 0 ∀s ∈ S, t ∈ T (3.f) ∑ t ′ ≤t ∑ h∈Ω 1 γ fw h,s,t ′ x 1 h - ∑ t ′ ≤t ∑ h∈Ω 2+ s,t ′ γ fw h,s,t ′ x 2 h + ∑ t ′ >t ∑ h∈Ω 1 γ rv h,s,t ′ x 1 h - ∑ t ′ >t ∑ h∈Ω 2- s,t ′ γ rv h,s,t ′ x 2 h ≤ C sat s ∀s ∈ S, t ∈ T (3.g) x 1 h ∈ N 0 ∀h ∈ Ω 1 x 2 h ∈ {0, 1} ∀h ∈ Ω 2
The objective minimizes the routing costs of the chosen firstechelon and secondechelon trips. Constraints (3.a) enforce that every customer is served by a secondechelon trip, i.e., con dition (F1). Constraints (3.b) and (3.c) are the fleetsize constraints, i.e., condition (F2). Con straints (3.d) guarantee feasible combinations of secondlevel trips, i.e., they ensure for every satellite and point in time that the number of secondechelon trips that have already left a satellite can never exceed the number of secondechelon trips that have arrived and are ready to leave again. The coupling between the first and second echelon is enforced via constraints (3.e)-(3.g). Forward flow conservation, i.e., condition (F3) is guaranteed by constraints (3.e), and reverse flow conservation, i.e., condition (F4) by constraints (3.f). The satellite capacity constraints (3.g) limit the quantity of goods that can simultaneously be stored at each satellite, see condition (F5). Note that the third and fourth terms consider quantitys that will be collected by firstechelon vehicles in the future and are not yet droppedoff at the satellite by secondechelon vehicles, respectively. The domains of the trip variables are defined by the lasts constraints.

For the flow conservation, i.e., constraints (3.e) and (3.f), it is always feasible to increase the quantities that firstechelon trips drop off and collect at satellites. By doing so, more flexibility is granted to schedule secondechelon trips. However, increasing firstechelon quantities may violate the satellite capacity constraints (3.g). We will exploit these observations in Section 3.4.3 when solving the model with a proper subset of all feasible trips. A restricted and refined model will allow the increase of firstechelon quantities and granting more flexibility to the second echelon, while the resulting surplus at the first echelon does not burden the satellite capacity constraints.

Partie , Chapter 3 -An Iterative TwoStage Heuristic for the 2Echelon MultiTrip Vehicle Routing Problem with Capacitated Satellites and Reverse Flows

Solution method

This section presents the matheuristic that we designed to solve the 2EMTVRPCSRF. It follows the fixandoptimize paradigm [START_REF] Helber | A fixandoptimize approach for the multilevel capac itated lot sizing problem[END_REF] with the fundamental idea that the 2EMTVRPCSRF can be decomposed in different ways, where parts of the solution are fixed while the remainder is exactly or heuristically optimized.

An overview of the decomposition that we use is provided in Table 3.2. The first subproblem, denoted by SP1, optimizes the firstechelon while the second is fixed. Contrarily, the second subproblem, denoted by SP2, optimizes the second echelon while the first is partly fixed. We refer to the two LNS algorithms that solve the two subproblems as LNS 1 and LNS 2 , respectively. In addition, a MIP solver is used with a refined version of formulation 3 restricted to trip pools generated by the two LNS algorithms.

SP1 Input: solution (x 1 , x 2) firstechelon trips [⋆] • walks [⋆] • schedules [⋆] • loading plans [⋆] firstechelon routes [⋆] secondechelon trips [fixed] • walks [fixed] • schedules [fixed] secondechelon routes [fixed] Solution method: LNS 1 Output: solution (x ′ 1 , x ′ 2) trips H 2 ⋆: Modifies SP2 Input: solution (x 1 , x 2) firstechelon trips [+] • walks [fixed] • schedules [fixed] • loading plans [⋆] firstechelon routes [+] secondechelon trips [⋆] • walks [⋆] • schedules [⋆] secondechelon routes [⋆] Solution method: LNS 2 Output: solution (x ′ 1 , x ′ 2) trips H 1 ⋆: Modifies +: Partly modifies MIP Input: Ω1 , Ω2 firstechelon trips [⋆, set of] • walks [fixed] • schedules [fixed] • loading plans [fixed] firstechelon routes [impl. result] secondechelon trips [⋆, set of] • walks [fixed] • schedules [fixed] secondechelon routes [impl. result]

Solution method:

MIP solver

Output: solution (x ′ 1 , x ′ 2)
⋆: Selects a solution from sets of trips Table 3.2 -Overview of the decomposition used in the matheuristic (Algorithm 4).

Algorithm 4 shows how the three subproblems and corresponding solution methods interact in the matheuristic that we call Iterative TwoStage Heuristic (ITSH).

ITSH starts with an initial solution x = (x 1 , x 2) and empty trip pools Ω1 and Ω2 (Steps (1) and (2)). The current solution is improved by repeating the main loop (Steps (4)-(14)) until the given time limit Γ tot is reached. In each iteration, SP2 is optimized first with LNS 2 (Step (4)), and all generated secondechelon trips are added to Ω2 (Step (5)). Next, SP1 is optimized with LNS 1 (Step (6)) and all generated firstechelons trips are added to Ω1 (Step (7)). When both LNS 1 and LNS 2 fail to improve the best found solution and the MIP execution conditions (defined in Section 3.4.3) are satisfied, the refined version of formulation 3 is solved with trips sets H 1 and H 2 (Step (11)). To keep the size of the MIP reasonable, the trip pools are reinitialized every time a new best solution is found and after each call to the MIP solver (Step (9), described also in Section 3.4.3).

Algorithm 4:

Iterative TwoStage Heuristic (ITSH)

1: (x 1 , x 2) ← initialization 2: Ω1 ← ∅, Ω2 ← ∅ 3: while time limit Γ tot not exceeded do 4: (x 1 , x 2 , H 2) ← LNS 2 (x 1 , x 2) 5: Ω2 ← Ω2 ∪ H 2 6: (x 1 , x 2 , H 1) ← LNS 1 (x 1 , x 2) 7: Ω1 ← Ω1 ∪ H 1 8:
if the best solution has been improved then 9:

(Ω1 , Ω2) ← reinitialize(Ω1 , Ω2) 10:
else if the MIP execution conditions are satisfied then 11:

(x 1 , x 2) ← MIP(Ω1 , Ω2) 12: (Ω1 , Ω2) ← reinitialize(Ω1 , Ω2) 13:
end if 14: end while 15: return (x 1 , x 2) ← the best found feasible solution Details follow in the remainder of this longer section, which is structured as follows: Sec tion 3.4.1 elaborates on the two LNS algorithms. As the feasibility check used in LNS is of high importance for the efficiency of the overall matheuristic, we present its details separately in Section 3.4.2. The MIP component, its parameters, execution conditions, how it communi cates with the LNS, and the update of the trip pools is described in Section 3.4.3. For the sake of brevity, details about LNS are presented in Appendix B.1, the computation of an initial solution is detailed in Appendix B.1.5, and the refined MIP Model can be found in Appendix B.2.

LNS algorithms

In the LNS metaheuristic, first proposed by [START_REF] Shaw | Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems[END_REF] in a constraint programming con text, the current solution is iteratively destroyed and subsequently repaired until a stopping cri terion is reached. LNS algorithms have been shown to be successful in optimizing routes and trips, in particular for VRP variants that only comprise standard resource constraints such as route length, capacity, and timewindow constraints [START_REF] Pisinger | Large Neighborhood Search[END_REF]. Even more complicated interroute constraints (an overview is provided in Irnich et al., 2014, Section 1.3.5) can be integrated easily as long as the removal of a customer is always feasible and an efficient feasibility test for the insertion of customers is available (see, e.g., [START_REF] Grangier | An adaptive large neighborhood search for the twoechelon multipletrip vehicle routing problem with satellite synchronization[END_REF].

Our LNS algorithms switches between large destruction steps and small destruction steps. Small destruction steps are performed in most iterations to locally and quickly improve solutions [START_REF] Christiaens | Slack Induction by String Removals for Vehicle Routing Problems[END_REF]. If the best solution has not been improved for several iterations, a large destruction step is performed (diversification). This smallandlarge strategy has been proved highly successful on variants of the generalized vehicle routing problem with time windows [START_REF] Dumez | Hybridiz ing Large Neighborhood Search and Exact Methods for Generalized Vehicle Routing Prob lems with Time Windows[END_REF]. A short synopsis of the types of operators used in our LNS algorithms is provided in Table 3.3, where for each type of operator we indicate whether it is used in LNS 1 and LNS 2 and who first introduced it. Additional information on the LNS algorithms is provided in Appendix B.1 including pseudo code, details of the destroy and repair operators, and the acceptance criterion.

Solving subproblem SP1

The firstechelon subproblem SP1 consists in defining routes for the firstechelon vehicles such that each fixed secondechelon trip can be supplied with its forward demands, and such that its reverse demand is transported to the UDC. To model these demands, we introduce the concept of FirstEchelon Demands (FEDs). More precisely, let h = (P, T) be a secondechelon trip starting at time t from a satellite s 1 and ending at time t ′ at a satellite s 2 . For each customer i in this trip with a forward demand q fw i >0, we define a forward FED τ fw i = (q fw i , tp s 1 , s 1). It indicates that the quantity q fw i needs to be dropped off by a firstechelon vehicle at satellite s 1 not later than time tp s 1 (called the FED due date). Similarly, for each customer i in the trip with a pickup demand q rv i >0, we define a reverse FED τ rv i = (q rv i , t ′ + p s 2 , s 2). It indicates that the quantity q rv i needs to be collected by a firstechelon vehicle at satellite s 2 not earlier than time t ′ + p s 2 (called the FED release date). Now, the LNS assign FEDs to FEVs to represent the demand loaded and unloaded in the FEV, i.e., the assigned FEDs define the load plan. Note that this modeling approach implies that the demand of one customer cannot be split over several FEVs in SP1 and SP2.

Example 2 (cont'ed from Example 1) Trip h ′′

3 starts at satellite s 1 at time 10, serves customers 1 with demands q fw 1 = 2 and q rv 1 = 0 and customer 2 with demands q fw 2 = 1 and q rv 2 = 3, and ends at time 13 at the same satellite. In this case, we create three FEDs for this trip: τ fw 1 = (2, 9, s 1), τ fw 2 = (1, 9, s 1), and τ rv 2 = (3, 14, s 1) (recall that the processing time is p s 1 = 1, which explains the time offset). The FEDs τ fw 1 and τ fw 2 are assigned to the FEV (s

1 ,3) in trip h 1 . The FED τ rv 2 is served in the FEV (s 1 , 14) of trip h 2 .
Accordingly, SP1 consists of defining FEVs at satellites, the multitrip routes of the first echelon vehicles that serve these visits and the assignments of FEDs to FEVs. In this problem, the firstechelon vehicles capacities as well as the satellites capacities, the FEDs due dates, and release dates must be respected. The objective is to minimize the sum of traveling costs. Hence, SP1 belong to the class of resource constrained routing and scheduling problems (Paraskevopou los et al., 2017) with timewindows, multiple trips, and mixed backhauls.

LNS 1 To solve SP1, the destroy operators in LNS 1 remove FEDs from the solution. After wards, FEVs without any assigned FED are also removed. The repair operators assign unserved FEDs to FEVs, possibly creating additional FEVs in firstechelon routes. We consider three types of insertions for a FED τ at satellite s:

-Insertion in an existing visit assigns τ to an existing FEV at satellite s.

Partie , Chapter 3 -An Iterative TwoStage Heuristic for the 2Echelon MultiTrip Vehicle Routing Problem with Capacitated Satellites and Reverse Flows

-Insertion in a new visit in an existing trip creates a new FEV to the satellite s in an existing trip and assigns τ to this FEV.

-Insertion in a new trip creates a new trip starting and ending at the UDC and performing a FEV at satellite s inbetween. The FED τ is assigned to this FEV.

For each insertion type, all possible insertion positions are evaluated in LNS 1 according to the evaluation process described in Section 3.4.2.

Solving subproblem SP2

The secondechelon subproblem optimizes the routing of the secondechelon vehicles given a (partly) fixed firstechelon. More precisely, we presume the FEVs are fixed, but the satellite and the release (due) date of an FED can be changed. Consequently, it is possible to change the assignment of FEDs to FEVs.

Accordingly, SP2 consists of designing the secondechelon trips and routes, as well as the as signment of FEDs to (fixed) FEVs. The secondechelon routes must respect the secondechelon vehicles capacities and the customers' timewindows, while minimizing the sum of travelling costs. The FED assignments must respect the firstechelon vehicles capacities. Finally, the re sulting schedule must respect the satellites capacities and the precedence constraints related to transfers. Hence, SP2 belong to the class of Resource Constrained Routing and Scheduling Problems [START_REF] Paraskevopoulos | Resource constrained routing and scheduling: Review and research prospects[END_REF] with time windows, multiple trips, multiple depots and mixed backhauls.

LNS 2 In all LNS 2 destroy operators, when a customer is removed from a secondechelon route, its FEDs are also removed from their FEVs. Conversely, in repair operators, an insertion consists in inserting a customer i in a secondechelon route, update the forward FED τ fw i and the reverse FED τ rv i accordingly (date and satellite), assign τ fw i to an appropriate FEV at the origin satellite of the trip, and assign τ rv i to an appropriate FEV at the destination satellite of the trip. LNS 2 employs three types of insertions for a customer i into a secondechelon route:

-Insertion in an existing trip: inserts the customer vertex i between two vertices of an existing trip.

-Insertion in a new trip: creates a new trip in a route, inserting its origin satellite, customer i and its destination satellite.

-Splittrip insertions [START_REF] Grangier | An adaptive large neighborhood search for the twoechelon multipletrip vehicle routing problem with satellite synchronization[END_REF]: splits an existing trip by simultaneously in serting customer i into an existing trip and adding a visit to a satellite s between any two consecutive vertices in this trip. Hence, for each customer insertion position, this opera tors seeks the best splitting position. The forward FEDs associated with customers served before s as well as the reverse FEDs associated with customers served after s needs to be changed and possibly reassigned to FEVs.

For the three insertion types, all possible insertion positions are evaluated according the feasibility check process explained in Section 3.4.2. This feasibility process also determines how FEDs are assigned to FEVs.

Insertion evaluation

In both LNS, a repair operator considers all insertion positions for a given FED/customer. Consequently, LNS relies on a large number of insertions and thus, an efficient feasibility eval uation is required. All insertions are first evaluated in terms of cost and a simple necessary feasibility condition is checked. Afterwards, all remaining insertion possibilities are ranked in nondecreasing order of their cost before the more elaborate feasibility tests are performed. Con sidering the complexity of the integrated scheduling and routing problem, the feasibility evalu ation procedure is based on heuristic tests. This type of approach was also used in [START_REF] Masson | The dialaride problem with transfers[END_REF] to improve the performance of an exact feasibility test in the dialaride problem with transfers. On the VRP with crossdocking and resource constraints, [START_REF] Grangier | The vehicle routing problem with crossdocking and resource constraints[END_REF] show that a heuristic feasibility test can offer a better compromise than a complete test using constraint programming, allowing for more iterations of the matheuristic in the same time.

In LNS 2 , customers are inserted into routes, but, in addition, the generated FED must be assigned to FEV, and the assignment of other FED may be changed. To better apprehend the algorithms used to test insertions, we present a representation of the solutions as a precedence graph with resource profiles in Section 3.4.2. This representation of the solution is incrementally modified to evaluate the insertions, and is also modified accordingly with the modification of the considered solution.

In this section, we illustrate the feasibility process with the following example: We consider one firstechelon vehicle k 1 of capacity 4 and two secondechelon vehicles (k 2 and k 3) of capacity 2. The satellite has capacity 3, it is the depot for the secondechelon vehicles. Customers 1 -, 2 -, 3 -, 5 -have a forward demand of one unit and customer 4 + has a pickup demand of one unit. For the sake of simplicity, we assume that customers have no time window, that the travel time between each pair of locations as well as the satellite service duration are equal to one time unit, and that customers' service duration is zero. The length of the planning horizon t is 9 time units.

1 f w 2 - 1 f w 3 - 1 f w 4 + 1 rv 5 - 1 f w
In the incomplete solution of Figure 3.3, k 1 performs two backandforth trips between the depot and the satellite. It dropsoff the demands of customers 1 -, 2 -, and 5 -during its first visit at the satellite. Vehicle k 2 serves customers 1 -and 2 -during its first trip and customer 5 -during its second trip. Vehicle k 3 serves customers 4 -during its only trip. This customer's reverse demand is collected at s by the second visit of k 1 . Customer 3 -is not served. Table 3.4 details the time schedule of the solution presented in Figure 3. Vehicle This section details the mechanism of the evaluation of customer insertion in an incomplete solution. Section 3.4.2 presents a representation of the solutions with a precedence graph. In Section 3.4.2, we propose a necessary condition and two sufficient conditions for the feasibility of an insertion.

k 1 o s o o s o Vehicle k 2 s 1 -2 -s s 5 -s Vehicle k 3 s 4 + s Satellite load 0 3 1 2 0 Table 3.

Precedence graph and load profile

Let us consider an incomplete solution x, with a set of routes Θ x and a set of trips

Ω x = Ω 1 x ∪ Ω 2
x for the first and second echelon, respectively. The precedence graph G x P = (V x P , A x P) associated with x models all precedence relationships between transportation activities and lo gistic operations that take place at satellites. In addition, let us define the resources profiles Λ s t and Ξ r t monitoring for each time t ∈ T the quantity of goods stored into each satellite s ∈ S and in each vehicle r ∈ Θ, respectively. The load profile of the satellite was introduced in Figure 3.2.

The vertex set V x P contains: a vertex O representing the start of the time horizon, a vertex O ′ representing the end of the time horizon, vertices {i ∈ P h |h ∈ Ω x } representing each vertex in the walks performed by both echelons vehicles, vertices {τ f w i |i ∈ N : q fw i > 0} modeling forward FEDs, and vertices {τ rv i |i ∈ N : q rv i > 0} modeling reverse FEDs. Let us denote by T v , the time, to be determined, of the beginning of the operation associated with each vertex v ∈ V x P . In addition, a time window [a v , b v] is associated with each vertex v ∈ V x P . It is equal to the time window of the location where the considered activity takes place. Besides, we define

[a O , b O] = [0, 0] and [a O ′ , b O ′] = [t, t]
. The time T τ at which a FED is served is equal to the service time of the FEV to which it is assigned.

The arcs (v, v ′) of the set A x P model precedence constraints between T v and T v ′ with a weight W v,v ′ . This set consists of the following arcs:

-{(O, v)|v ∈ V x P }: the arcs from vertex O to any vertex v ∈ V x P , each associated with a weight W O,v = 0. -{(v, O ′)|v ∈ V x P }: the arcs from any vertex v ∈ V x P to O ′ , each associated with a weight W v,O ′ = 0. -{(i l , i l+1)|i l , i l+1 ∈ P h , h ∈ Ω 1
x }: the arcs associated with every arc of each firstechelon trip h ∈ Ω 1

x . An arc (i l , i l+1) is associated with a weight

W i l ,i l+1 = t 1 i l ,i l+1 + p i l .
-

{(i l , i l+1)|i l , i l+1 ∈ P h , h ∈ Ω 2
x }: the arcs associated with every arc of each second echelon trip h ∈ Ω 2

x . An arc (i l , i l+1) is associated with a weight W i l ,i l+1 = t 2 i l ,i l+1 .)|(h l , h l+1) ∈ r, r ∈ Θ x }: the arcs between any successive trip of a route, associated with a weight

W i h l n+1 ,i h l+1 0 = p i h l n+1 . -{(τ f w i , i h 0)|i ∈ N : q fw i > 0 ∧ i ∈ P h }:
the arcs associated with each forward demand, from the dropoff at the satellite of the corresponding FED to the departure of the second echelon vehicle serving the customer, with a weight

W τ f w i ,i h 0 = p i h 0 .
-

{(i h n+1 , τ rv i)|i ∈ N : q rv i > 0∧i ∈ P h }:
the arcs associated with each reverse demand, from the arrival at the satellite of the secondechelon trip serving the corresponding customer, to the vertex representing the collection of this FED by a firstechelon vehicle, with a weight

W i h n+1 ,τ rv i = p i h n+1 .
Finally, the operations modeled by the vertices v ∈ V x P impact the resources profiles Λ and Ξ at the time T v as follows:

-A vertex D r,h modeling the departure of the secondechelon vehicle r for the trip h from the satellite s decreases Λ s by ∑ i∈h q fw i and increases Ξ r by the same quantity.

-A vertex E r,h modeling the arrival of the secondechelon vehicle r at the satellite s after the trip h increases Λ s by ∑ i∈h q rv i and increases Ξ r by the same quantity.

-A vertex i modeling the service at customer i by the secondechelon vehicles r increases Ξ r by q rv i and decreases it by q fw i .

-A vertex D r,h modeling the departure from the depot of the firstechelon vehicle r for the trip h set Ξ r to

∑ i∈h L fw i .
-A vertex E r,h modeling the arrival of the firstechelon vehicle r at the depot after the trip h reset Ξ r to 0.

-A vertex V i modeling the i th FEV to a satellite during the trip h of the firstechelon route r increases Ξ r by L rv i and decreases Ξ r by L f w i .

-A vertex τ f w i modeling a forward FED at the satellite s increases Λ s by q fw i .

-A vertex τ rv i modeling a reverse FED at the satellite s decreases Λ s by q rv i .

Table 3.5 summarize the vertices of the precedence graph G x P , with their time windows and their impact on the resources profiles Λ s t and Ξ r t . 120

Solution method

Name Set Time Windows Impact on ressources

D r,h {i h 0 |h ∈ Ω 2 x } [0, t] decreases Λ s and increases Ξ r by ∑ i∈h q fw i E r,h {i h l+1 |h ∈ Ω 2 x } [0, t] increases Λ s and increases Ξ r by ∑ i∈h q rv i i {i ∈ h\{i h 0 , i h l+1 }|h ∈ Ω 2 x } [a i , b i]
increases Ξ r by q rv i and decreases it by

q fw i D r,h {i h 0 |h ∈ Ω 1 x } [0, t] sets Ξ r to ∑ i∈h L fw i E r,h {i h l+1 |h ∈ Ω 1 x } [0, t] resets Ξ r to 0 V i {i ∈ h\{i h 0 , i h l+1 }|h ∈ Ω 1 x } [0, t] increases Ξ r by L rv i and decreases Ξ r by L f w i τ f w i {q fw i > 0|i ∈ h : h ∈ Ω 2 x } [0, t] increases Λ s by q fw i τ rv i {q rv i > 0|i ∈ h : h ∈ Ω 2 x } [0, t]
decreases Λ s by q rv i Table 3.5 -Vertices of the precedence graph

The following proposition establishes the relationship between a solution x and its associated precedence graph G x P .

Proposition 1 The solution x, without split at the first echelon, is feasible with respect to con straints F1F5, Tr1Tr8, R1R4 if and only if, for every vertex v ∈ V x P , one can find a time T v such that:

-for each arc (v, v ′) ∈ A x P , T v + W v,v ′ ≤ T v ′ , -the time windows are respected: v ∈ V x P : T v ∈ [a v , b v],
-the load profile of every firstechelon vehicle is compatible with its capacity: ∀t ∈ T, ∀r ∈ θ 1

x : Ξ r t ≤ Q 1 , -the load profile of every secondechelon vehicle is compatible with its capacity: ∀t ∈ T, ∀r ∈ θ 2

x : Ξ r t ≤ Q 2 , -the load profile of every satellite is compatible with its capacity: ∀t ∈ T, ∀s ∈ S : Λ s t ≤ C sat s .

Example 4 Figure 3.7 depicts the precedence graph of the solution presented in Figure 3.3.

For the sake of clarity, we did not print the vertices O and O ′ . Vertices 1 to 5 represents the customers, along with their demand type denoted by "+" or "". Vertices of the form D i,j represents the departure of the j th trip of the i th vehicle. Vertices of the form E i,j represent the arrival of the j th trip of the i th vehicle. Finally, V 1 and V 2 are visits to the satellite by the first echelon vehicle k 1 , τ f w i , with i ∈ {1, 2, 3, 5} represents the dropoff of forward FEDs at the satellite by k 1 and τ rv We define the precedence graph with fixed assignments G x P F of the solution x as its prece dence graph G x P with additional arcs preventing modification of the order of events taking place at each satellite. That is to say each FED is assigned to its FEV, and arcs with a weight 0 are added between consecutive vertices taking place at the same location (

D 1,1 E 1,1 D 1,2 E 1,2 V 1 V 2 τ f w 1 τ f w 2 τ f w 5 τ rv 4 UCC trips starts & ends 1 st echelon FEVs & FEDs 2 nd echelon trips starts & ends Customers D 2,1 E 2,1 D 2,2 E 2,2 1 - 2 - 5 - D 3,1 4 + E 3,1
{(k, k ′)|T k < T k ′ ∧ i k = i k ′ ∈ S : k ∈ h, k ′ ∈ h ′ : h, h ′ ∈ Ω x }).

Insertions tests

Sequence of necessary and sufficient conditions Figure 3.5 summarizes how the necessary condition and the sufficient conditions are called. For a given FED/customer, the condition NC1 checks the capacity of the vehicle performing the considered trip and a necessary condition for the timing feasibility without synchronization. All insertions that do not satisfy NC1 are rejected. The remaining insertions are sorted in nondecreasing cost order. Their feasibility is tested in this order and the procedure stops as soon as one insertion is proven feasible. The considered insertion is first tested with SC1. This condition tests whether the insertion can be performed without modifing the assignment of FEDs to FEVs. If SC1 is unsuccessful, the considered in sertion is tested with SC2. This heuristic condition evaluates the same insertion by rescheduling routes and changing the FEDs assignment. The insertion passes if either SC1 or SC2 are positive, otherwise, it is rejected. Some vertices of the precedence graph may be fixed in time, while others can be rescheduled: In LNS 1 the fixed vertices are the start of the time horizon, the end of the time horizon, the departure and arrivals of secondechelon trips, and the customer service vertices. In LNS 2 the fixed vertices are the start of the time horizon, the end of the time horizon, and the FEV vertices.

Necessary feasibility condition

The necessary condition, denoted NC1, is based on forward time slacks [START_REF] Martin | The Vehicle Routing Problem with Time Windows: Minimizing Route Duration[END_REF]. A preprocessing step calculates the earliest service time and the latest service time of each vertex of each route, each route being considered independently of the other routes. In LNS 1 , the time window of FEVs are defined as the intersection of their assigned FEDs' time windows. This time schedule depends solely on the time windows, the travelling times and service durations on the route as well as the start and end of the time hori zon. For a vertex, routeEST denotes the earliest service time and routeLST denotes the latest service time. If the considered insertion violates the routeLST when starting from the route EST, then the insertion is rejected. In addition, NC1 checks the vehicle capacity. Thus, NC1 can be evaluated in constant time, after a preprocessing in O(|A x P |).

Insertion without reassignment

The first sufficient condition, SC1, is composed of two parts: a constant time filter and a heuristic test. SC1 evaluates whether the considered inser tion can be performed without changing the assignment of FEDs to FEVs and without changing the order of the operations taking place at each satellite.

The filter is a generalization of the forward time slack in the precedence graph with fixed assignments G x F P used in SC1. This method is formalized in [START_REF] Masson | Efficient feasibility testing for request insertion in the pickup and delivery problem with transfers[END_REF] for the pickup anddelivery problem with transfers and extended to the 2EVRP in [START_REF] Grangier | An adaptive large neighborhood search for the twoechelon multipletrip vehicle routing problem with satellite synchronization[END_REF] to take into account the synchronization between multiple vehicles. The algorithm of [START_REF] Martin | The Vehicle Routing Problem with Time Windows: Minimizing Route Duration[END_REF] is extended by propagating the earliest service time of a vertex to all its successors in G x F P and its latest service time to all its predecessors in G x F P . The calculated service times are called solution earliest service time (solutionEST) and solution latest service time (solution LST). The filter evaluates whether performing the considered insertion respects the solution LST when starting from the solutionEST. If it is not the case, then SC1 fails for the considered insertion.

If the test filter is positive, the insertion is temporarily performed in the precedence graph

G x P .
In SP2, an inserted forward FED is assigned to the latest possible (w.r.t the starting time of the trip) FEV with sufficient capacity, and an inserted backward FED is assigned to the earliest possible (w.r.t the ending time of the trip) FEV with sufficient capacity. If no such FEV could be found or if the assignment does not respect the satellite capacity, SC1 fails. In the successful case, the PERT procedure [START_REF] Miller | Schedule, cost, and profit control with PERT: A comprehensive guide for program management[END_REF] Insertion with reassignments The second sufficient condition, denoted SC2, heuristically performs the considered insertion while allowing modification of the order of operations at satel lites and modification of the FEDs assignment to FEVs.

D 1,1 E 1,1 D 1,2 E 1,2 V 1 V 2 τ f w 3 τ f w 1 τ f w 2 τ f
1 - 2 - E 2,1 D 2,2 5 - E 2,2 D 3,1 3 -4 + E 3,1
The evaluated insertion is first performed in the precedence graph, like in SC1 but without checking the vehicles and satellite capacities. The inserted vertex is scheduled as early as possi ble after its predecessor in the route, and this service time is propagated to its successors in the route. This may break some synchronizations between echelons, which need to to be repaired, integrating some possible change in FEDs assignments to FEVs.

To reschedule the solution, SC2 relies on the doublejustification [START_REF] Wiest | Some properties of schedules for large projects with limited resources[END_REF]. This pro cedure is a twophase algorithm shown to be very efficient to improve solutions of resource constraint project scheduling problems [START_REF] Valls | Justification and RCPSP: A technique that pays[END_REF]. Starting from an existing schedule, the first phase iteratively schedules all vertices as late as possible by decreasing order of their current service time in the solution. The second phase iteratively reschedules all vertices as early as possible in non decreasing order of their new service time. For a more detailed and ped Partie , Chapter 3 -An Iterative TwoStage Heuristic for the 2Echelon MultiTrip Vehicle Routing Problem with Capacitated Satellites and Reverse Flows agogical presentation of the double justification procedure, we refer to [START_REF] Wiest | Some properties of schedules for large projects with limited resources[END_REF]. During these processes, all constraints are checked and we do not allow their violations to be increased.

The double justification is applied to try to repair the schedule of every vertex of G x P . When rescheduling forward/reverse FEDs at the same FEV, they are considered in an arbitrary order, but linehaul FEDs are postponed first (as late as possible phase) and reverse FEDs are moved as early as possible first. In this process, FEDs can be reassigned to FEVs as follows:

-in the as late as possible scheduling of a forward FED τ f w i : the FED τ f w i is assigned to the latest FEV that serves the satellite earlier than the due date of τ f w i and that is served by a firstechelon vehicle with sufficient remaining capacity.

-in the as late as possible scheduling of a reverse FED τ rv i : the FEVs of the satellite of τ rv i are considered in nondecreasing order of service time, starting from the current time of τ rv i . The capacity of the associated firstechelon vehicles are evaluated. The procedure stops if the minimum remaining capacity of the satellite until the next FEV is lower than q rv i . Then, τ rv i is assigned to the latest evaluated FEV with enough capacity. -in the as early as possible scheduling of a forward FED τ f w i : the FEVs of the satellite of τ f w i are considered in nonincreasing order of service time, starting from the current time of τ f w i . The capacity of the associated firstechelon vehicles are evaluated. The procedure stops if the minimum remaining capacity of the satellite until the next FEV is lower than q f w i . Then, τ f w i is assigned to the earliest evaluated FEV with enough capacity.

-in the as early as possible scheduling of a reverse FED τ rv i : the FED τ rv i is assigned to the earliest FEV that serves its satellite later than the release date of τ rv i and that is served by a vehicle with sufficient remaining capacity. SC2 succeeds if the double justification succeeds in finding a schedule that respects the prece dence constraints, time windows and capacities of the problem. The theoretical complexity of SC2 is also O(|A x P |), but it is considerably slower than SC1 in practice.

Example 6 Table 3.7 presents the time schedule of Table 3.6 after the first phase (right alignment) of the doublejustification. In this as late as possible schedule, the starting time of the second trip of k 2 is postponed from 6 to 7 and the forward FED of customer 5 -is moved from the first visit to the second visit of k 1 . In addition, the staring time of the first trip of k 2 is postponed from 2 to 3. The trip of vehicle k 3 cannot be shifted. In this step, the satellite load becomes feasible due to the transfer of the FED of customer 5 -to the second visit of k 1 . The precedence graph of this solution is represented by Figure 3.8 Table 3.8 presents the time schedule of Table 3.7 after the second phase (leftalignment) of the doublejustification. Compared to the as late as possible schedule, the first trip of k 1 starts at 2 instead of 3. Thus, this solution is both feasible and scheduled as early as possible. time 0 1 2 3 4 5 6 7 8 9

D 1,1 E 1,1 D 1,2 E 1,2 V 1 V 2 τ f w 1 τ f w 2 τ f w 3 τ rv 4 τ f w 5 UCC trips starts & ends 1 st echelon FEVs & FEDs 2 nd echelon trips starts & ends Customers D 2,1 1 -2 - E 2,1 D 2,2 5 - E 2,2 D 3,1 3 - 4 + E 3,1
Vehicle

k 1 o s o o s o Vehicle k 2 s 1 -2 -s s 5 -s Vehicle k 3 s 3 -4 + s
Satellite load 0 3 0 1 1 0

Mixed integer program (MIP)

The MIP component of ITSH is called in Algorithm 4, line 11, to assemble trips generated in different iterations of LNS 1 and LNS 2 . It is also able to provide a solution where some cus tomer orders are split at the first echelon. The solved MIP is a modified version of Model 3 (see Section 3.3) in which the sets of all possible trips Ω 1 and Ω 2 are replaced by smaller subsets , the trip pools, Ω1 and Ω2 .

In this section, we present how the MIP interacts with the LNS components: First, we de scribe the MIP execution conditions that determine when the MIP is solved and more generally the general policy that is used to keep the pools sizes reasonable. Second, we introduce the refined MIP which is solved, allowing some constraints violations penalized in the objective function to allow for infeasible solutions to be explored and improve the solver performance. Third, we introduce how the trip pools are filled and filtered. Finally, we describe how the MIP solution is fedback into the ITSH framework as a current solution for the next LNS iterations. MIP execution strategy A common challenge in the hybridization of a VRP metaheuristic with a MIP component that assemble trips, is the management of the pools of trips. Indeed, if trip pools Ω1 and Ω2 contain too many trips, the MIP solver takes too long to improve the best known solution or spends a lot of time proving optimality. Conversely, if the pools are too small, the solver fails to find an interesting set of trips that can be recombined to form a feasible solution. To handle this difficulty, ITSH uses: a MIP time limit, an adaptive MIP execution conditions, and a pool reinitialization policy.

MIP time limit:

The solver is given a limited time budget, denoted by Γ MIP , each time the MIP is solved. Γ MIP depends on the size of the instance (given in Section 3.5.2). Preliminary experiments have highlighted that solving the MIP is much harder when a solution serving all customers has not been found yet. Thus, the value of Γ MIP is increased by 10 seconds for each unserved customer at the second echelon and by 5 seconds for each unserved FED at the first echelon in the current bestknown solution. This additional time budget helps the solver, and more generally, ITSH, to find feasible solutions.

MIP execution conditions:

The MIP is executed every η ITSH iterations, when the LNS 2 -LNS 1 sequence failed to improve the best known feasible solution. Initially, η = 1 and it is adjusted after each MIP execution depending on the solver result:

η is increased by 1 if the MIP solution is proven optimal within the time limit, or if the best known feasible solution is improved on two successive MIP executions. 128

Solution method

η is decreased by 1 if the solver fails to solve the root node before the time limit or fails to improve the bestknown feasible solution twice in a row. In addition, secondechelon trip copies will not be created during the next call the MIP component.

Pool reinitialization policy: A pool reinitialization consists in clearing the trips pools Ω1 and Ω2 , keeping only the trips of the best known solution. In ITSH, this is done: (i) at the end of the LNS 2 -LNS 1 sequence on one ITSH iteration, if the best known feasible solution has been improved, (ii) every time the MIP is solved.

Restricted and refined MIP Restricting the trip sets in Model 3 to Ω1 and Ω2 has several consequences: First, the restricted model can be infeasible. To ensure the computation of a partial solution, we introduce auxiliary variables σ i for not serving customers i. The auxiliary variables are penalized in the refined model's objective function with a high penalty cost M .

Second, in model Model 3, in a firstechelon trip, the quantities dropped off or collected at each FEV of the trip is given. Hence, a firstechelon trip that drop off or collect more than the forward/reverse demand of the second echelon may not be used in a solution if its load planning generates some satellite capacity violation. To enable firstechelon trips to be used in a solution even if their load planning exceeds the actual demand from the second echelon, we introduce the auxiliary variables u, which models the surplus at the first echelon. More precisely, the variable u fw s,t (u rv s,t) decreases the quantity of goods droppedoff (collected) by firstechelon vehicles visiting the satellite s at time t in the reformulated flowconservation (3.e) ((3.f)) and satellitecapacity constraints (3.g).

Third, in model 3, fleet size, flow conservation and satellite capacity constraints (3.b), (3.c)-(3.g) have to be defined for all possible points in time t ∈ T. In the restricted and refined MIP, we reduce the number of these constraints by defining them only for times that correspond to trip ends or trip starts in Ω1 and Ω2 .

Fourth, to speedup the early branching phases, for each satellite s ∈ S, we introduce the binary variable ζ s to decide whether the satellite s can be used or not. The solver is configured to branch first on these variables. An additional constraint enforces that if ζ s is set to 0, then no firstechelon trip visiting satellite s, and no secondechelon trips starting or ending at s, can be selected.

All technical details including the complete revised formulation, precise definition of vari ables, constraints, and index sets are elaborated in Appendix B.2.

Partie , Chapter 3 -An Iterative TwoStage Heuristic for the 2Echelon MultiTrip Vehicle Routing Problem with Capacitated Satellites and Reverse Flows

Pool accumulation and update All trips generated in the course of the LNS algorithms are added to the trip pools Ω1 and Ω2 (Line 23 of Algorithm 5 in Appendix B.1). In the course of the LNS, four time schedules are computed for each trip: routeEST, routeLST, solutionEST, and solutionLST. To enable a synchronization with trips generated on various LNS iterations, we create trip variables with identical walks but differences time schedules. For each firstechelon trip and each secondechelon trip in the pool, we generate a trip variable with the solutionEST schedule. For a secondechelon trip in the pool, we create additionally a trip variable with route EST time schedule and a trip with the routeLST time schedule, each with probability 50 %.

We also modify the load plan of all firstechelon trips to grant more flexibility. More pre cisely, we build load plans that fulfill

∑ n k=1 L fw k = ∑ n k=1 L rv k = Q 1 .
The missing forward and reverse quantity to reach the vehicle capacity is computed and evenly distributed among all visited satellites such that the vehicle capacity is never exceeded. Note that the load plan of a firstechelon trip always remains feasible if we increase the droppedoff amount at the first visited satellite and the collected amount at the last visited satellite to meet the condition

∑ n k=1 L fw k = ∑ n k=1 L rv k = Q 1 .
However, it is not always possible to evenly distribute the missing loads and remain feasible. Thus, if it is impossible to increase evenly, the remaining quantities are put on the first/last visits.

Communication of a MIP solution to the LNS Communicating the solution of the refined MIP to both LNS algorithms amounts to perform the following tasks:

(1) Assemble the chosen trips into routes: this is done by solving a simple assignment problem: assigning trip starts to trip ends, with an artificial route start vertex and artificial route end vertex.

(2) Correct the quantities droppedoff and collected at each stop of the chosen firstechelon trips: the value of the auxiliary uvariables is subtracted from the quantities droppedoff or collected by firstechelon trips at their corresponding F EV . In case a uvariable impacts several FEVs, the surplus quantity is iteratively removed from the FEDs, in the limit of the quantities they dropoff/collect, in arbitrary order.

(3) Assign FEDs to FEVs: a generalized assignment problem is solved with the MIP solver to assign the FEDs to the quantities dropped off and collected at each FEV . If it exists no com plete feasible assignment, we assign as many FEDs at possible and customers correspond ing to unassigned FEDs are removed and placed in the request bank. If this (incomplete) assignment violates satellite capacity constraints, we iteratively remove pairs of FEDs and customers until feasibility is restored. Removed customers are stored in the request bank.

Computational results

In this section, we report the results of computational experiments. Section 3.5.1 describes the new instances that we have generated. The LNS and MIP components are evaluated in Sec tion 3.5.2. In Section 3.5.3, we compare our algorithm on 2EVRPTW instances of Marques et al. (2020a). Finally, sensitivity analyses that provide managerial insights are conducted in Section 3.5.4.

The algorithm is coded in C++ and compiled with g++ 5.4.0. We use IBM Ilog CPLEX 20.1.0 (IBM, 2018) as the MIP solver. Options 'branch up first' and 'emphasize finding high quality feasible solutions earlier' of CPLEX are used. The experiments were performed on a PC running Linux, Ubuntu 20.04.2 LTS, equipped with an Intel Xeon Gold 6230 @ 2.10GHz. A single thread is used by our code and CPLEX. On the 2EVRPTW, distances were round up to two digits, and on the 2EMTVRPCSRF, distances were round up to zero digits (i.e. integer).

Instances

As there are no 2EMTVRPCSRF instances (with reverse flow, satellite capacities, and multiple firstechelon trips), we have generated new ones with the following properties:

-The instances have a Euclidean representation over a [0, 100] × [0, 100] grid. Customers are placed randomly with a uniform distribution on the grid, while the UDC is always located at (50, 100). The secondechelon depot and all satellites are randomly placed in -Customers have either only forward demand, only reverse demand, or both, with probabil ity 50%, 25%, and 25%, respectively. This demand is uniformly drawn from {1, 2, 3, 4}.

The first(second)echelon vehicle capacity is set to 75 (10).

We systematically vary the following parameters to obtain 36 instance groups:

-The number of customers is either 50 or 100.

-50customer instances have a fleet of 1 (5) first(second)echelon vehicle(s), and 100 customer instances have a fleet of 2 (10) first(second)echelon vehicles. -For all satellites, the satellite capacity is set to the same value C sat ∈ {20, 25, 35, 50, 70, 500}. Since 500 is an upper bound for the total demand, this value represents uncapacitated satellites, i.e., C sat = ∞. This gives 2 × 3 × 6 = 36 groups of instances. We generate ten instances per group resulting in 360 2EMTVRPCSRF instances that are available at https: //logistik.bwl.uni-mainz.de/research/benchmarks/.

Component Evaluation

First, we evaluate different configurations of the MIP component. We limit the test instance set to the 60 instances with a tight satellite capacity of C sat = 25 (recall that 25 is one third of the capacity of a firstechelon and 2.5 times the capacity of a secondechelon vehicle). Most of these instances are feasible, but the determination of a feasible solution is nontrivial. The overall time limit is 700(2000) seconds for 50(100)customer instances and the MIP solver has a time budget Γ MIP = 60(150) seconds in each iteration. We compare the performance of the complete configuration (ITSH) as presented in Section 3.4.3 with the following restricted configurations:

-noMIP: the MIP is not used.

-noAdaptTime: the time budget of the MIP is not dynamically adapted, it is always set to Γ MIP .

-noVARu: the additional variables u are not used. Nonetheless, variables σ, used for the penalization of unserved customers, are necessary during early stages.

-noSplit: the MIP decomposition allows the split of customers' demand over different FEVs. Here, these splitsolutions of the MIP are considered infeasible.

Table 3.9 presents the results, where for each instance, the best solution found out of 5 runs is taken into account. Each line corresponds to a group of instances defined by the number |N | of customers and number |S| of satellites. For each configuration, the entry #f describes the number of instances for which a feasible solution has been computed with the configuration. For each of the aforementioned feasible solution, we compare their cost to the cost of the respective best solutions found by ITSH. While ITSH provides the reference solutions (average costs are presented in column 'cost'), the average percentage gap to the ITSH solution, computed as 100 The complete configuration ITSH computes feasible solutions for 59 of the 60 instances, which is better than any restricted configuration.

• (z conf -z IT SH)/z
The solutions computed with ITSH are better than the solutions computed with any other configuration. The MIP appears as an essential components of ITSH, more particularly with the adaptive time budget (average gap of approximately 2.7% over all instances). Moreover, the additional variables improve the quality of the solutions compared to noMIP. Last, the split of customers' demand seems to have only a small impact on the solution quality. It was to be expected since the largest gain from the split delivery VRP, compared to the VRP, occurs when the customer demands are larger than half of the vehicle capacity [START_REF] Archetti | The Split Delivery Vehicle Routing Problem: A Survey[END_REF], while, in our case, customers demand are much smaller than firstechelon vehicle capacity. Second, we evaluate the impact of the multilevel feasibility checking strategy for the secondechelon LNS presented in Section 3.4.2. Recall that only LNS 1 uses both tests SC1 and SC2 (LNS 1 uses only SC1). Figure 3.9 visualizes how potential insertions are filtered by the insertion feasibility check. We considered an instance with 50 customers, two satellites, and satellite capacity 25. The execution of the ITSH includes more than 17 millions insertions at tempts. Most infeasible insertions (>16 millions) are detected by NC1 and directly rejected. The subsequent sort of the insertions further reduces the number of calls to SC1 from 1.42 million to 654k. Then, SC1 identifies approximately half (29k) of the feasible insertions that are performed. Finally, the very timeconsuming SC2 identifies the other half (27k). -When SC1 is deactivated in LNS 2 , the average cost of a solution increases by 1.8%. The impact on cost is even more striking given that approximately 90% of the computation time is consumed by the MIP solver and not the LNS 2 . A single evaluation of SC2 takes approximately 450 times more time than an evaluation of SC1. Hence, SC1 is a very powerful speedup procedure to to fastly detect feasible insertions without reassignment.

-When SC2 is deactivated in LNS 2 , many feasible insertions remain undetected, because all undecided insertions after SC1 are rejected. As a result, not a single feasible solution at all is determined with ITSH. The solution process is stuck producing only new solutions similar to the initial infeasible solution. Recall that SC1 assumes that the order of oper ations taking place at each satellite cannot change. In particular, without SC2 and only SC1, the order of secondechelon arrivals and departure is fixed relative to the current firstechelon visits, which is highly constrains the insertion of vertices into alternative positions.

Comparison on 2EMTVRPTW benchmark

We compare configuration ITSH with stateoftheart algorithms for the 2EVRPTW. Grang ier et al. (2016) modified and extended instances from the wellknown benchmark set of Solomon by placing the UDC to the coordinate (50,150) and adding eight additional satellites. Vertex 0 represents the secondechelon depot. Customer time windows are shifted to account for firstechelon and satellite processes. Recently, Marques et al. (2020a) extended this benchmark set by creating smaller instances with 25, 50, and 75 customers. They consider only the first customers in the respective 100customer instance. The smaller instances have between 4 and 6 satellites.

We can directly compare our method with the results of the branchpriceandcut (BPC) algorithm of Marques et al. (2020a), who minimize the total cost including a fixed cost per vehicle of 50 [START_REF] Morganti | The impact of ecommerce on final deliveries: alternative parcel delivery services in France and Germany[END_REF] per first(second)echelon vehicle. For a fair comparison, we only consider the instances for which Marques et al. report a feasible solution value, because we use their number of vehicles as our fleetsize limit. The two numbers x/y in columns headed '#' are the number y of instances considered and the number x of new best solutions computed with ITSH (if no feasible solution was provided by the BPC algorithm, the cells are left blank). Our algorithm has a fixed time budget Γ tot (in seconds) controlled by the number |N | of customers (see entries Γ tot in the second line of the table's header; associated CPLEX time limits Γ MIP are set to 2, 10, 40, and 60 seconds, respectively). In contrast, run times of the BPC algorithm are unpredictable, and average times (in seconds) are presented in columns 'BPC time'. Moreover, the table shows the average gaps ('Gaps'; in percent) between the best solutions found by our algorithm (five independent runs per instance) and the best solutions found by Marques et al. (2020a). Detailed instancebyinstance results can be found in Appendix C.1.

ITSH delivers feasible solutions to all instances for which the BPC algorithm also computes feasible solutions. Moreover, ITSH finds nine new best solutions for the benchmark set (leading to a negative gap in the group rc100 with |N | = 100). We further interpret the results in the Partie , Chapter 3 -An Iterative TwoStage Heuristic for the 2Echelon MultiTrip Vehicle Routing Problem with Capacitated Satellites and Reverse Flows following way. Instances with more customers, wider time windows and longer routes (series 2) are more difficult for the BPC. As a heuristic and in comparison to the BPC algorithm, ITSH can better provide good feasible solutions so that average gaps are even decreasing for instances with more customers. However, some larger gaps (up to 6.41% for a 25customer instance in group rc200) show that ITSH can still fail to reach some optimal solution values computed by the BPC (in several hours of computation time).

Sensitivity analyses

The consideration of capacitated satellites and reverse flows in the twoechelon system are in the focus of this work. We now study their impact on costs in sensitivity analyses. All results are based on the best solution computed with the complete ITSH configuration in five independent runs for each instance.

Cost of satellites capacity Figure 3.10 depicts the impact of satellites capacity. In both sub figures (for 50 and 100customer instances), the horizontal axis represents the capacity of the satellites and the vertical axis represents the average increase in cost (in percent) compared to the respective uncapacitated instance with C sat = ∞. The figures show three plots with the result for 2, 4, and 8 satellites, respectively. To put these results in perspective, the average total forward demand is of 188 and the average total reverse demand is of 124 on the instances with 100 customers. Detailed results can be found in Section C.2 of the Appendix. As expected, the average cost increase declines with larger satellite capacities. The fewer satellites are available, the smaller the cost difference (with the exception that 4 and 8 satellites make nearly no difference for 50customer instances). In comparison, the cost increase is larger for 100customer than for 50customer instances, which can be explained by the fact that the ca pacity of a satellite is constant in contrast to the doubled total demand. Note that we disregarded some instances with two satellites and a capacity of 20 and 25, because no feasible solutions could be found due to the (overly) restrictive capacity.

The convex shape of the curves indicates that the benefit from additional capacity units is strongly decreasing: For the 100customer instances, the five units more for extending the capac ity from 20 to 25 have a much higher impact (8.08%) than the 20unit increase from capacity 50 to 70 (1.96%). Moreover, the difference between satellite capacity 70 and uncapacitated satel lites becomes negligible (0.32%).

Doubling the capacity leads to a much larger cost decrease than doubling the number of satellites. Nevertheless, a small number and size of satellites can be a reasonable design given the outstanding prices of space in some cities (e.g., £14355/m 2 /year in London, [START_REF] Furmanik | How much does retail space cost? realla[END_REF].

Gain of simultaneously handling forward and reverse flows

To evaluate the gain that re sults from the integration (i) of forward and reverse flows, we create two distinct instances with only the forward demands and the reverse reverse demands, respectively. We denote by c i the cost of a best solution found by ITSH for the original instances and by c f w , and c rv the cost found for the new instances with only forward or reverse demands. In Table 3.11, Columns 3 to 8 present the average gain of the integrated approach, computed as (c f w + c rvc i)/c i , grouped by the number of customers and satellites as well as satellite capacity. Note that the compari son is biased, since we assumed that both forward flow and reverse flow can use the complete satellites capacity when forward and reverse are managed independently.

On the opposite, Column 9 evaluates the gain from the integration by considering that the integrated problem can use the full satellite capacity (50) while each subinstance can use only part of the capacity. Since the total forward demand is larger than the total reverse demand, we decided that forward instances use satellites of capacity 35 while reverse instances use satellite of capacity 25. The gain from the integration tends to increase with the total space provided by all satellites and the total quantity of goods to carry. It increases from 11% with two small satellites for 100 customers, to 43% with 8 large satellites for 100 customers. On one hand, the gain consistently increases with the satellite capacity. On the other hand, the gain tends to increase with the number of satellites, but this trend is not consistent for the 50customer instances and |S| = 4 or 8. We can only explain this with the fact that the instances with eight satellites are much more difficult for ITSH compared to those with only four satellites. The point is that, for instances with |S| = 8, not all satellite have to be used. Furthermore, gains presented in columns 3 to 8 assume that both forward flow and backward flow can use the satellites entirely when they are managed independently. This would result in clearly unrealistic solutions in practice. Thus, in Column 9, we evaluate the gain from the integration if each type of flow could use only a part of the satellites capacity . The gain from the integration then rises to 43% if 8 satellites are used for 100 customers.

Insights on instances

To better apprehend the previous tables, this section focuses on the time spent by goods at the satellites. We compute the average time between the arrival of a FED at a satellite and the departure of its associated secondechelon vehicle (or the opposite for a backward demand). This time includes the service duration at the satellite (15 units out of a planning horizon of 600 units). Table 3.12 shows the average time spent by goods at the satellites, in instances with 100 customers, with respect to the number of satellites and their capacity. Infeasible instances are not taken into account. In general, the waiting time of goods at satellites increases with the satellites capacity or the number of satellites, the impact of the number of satellites being significantly greater with tighter satellites capacities.

Finally, figures 3.11a and 3.11b show the quantity of goods stored at each satellite over time with a satellite capacity of 25 and 500, respectively. In the following, the first instance is called the tight capacity 2EMTVRPCSRF, while the second is called the uncapacitated 2E MTVRPCSRF. Each curve corresponds to a satellite, the colors are the same in the two figures.

In addition, timeseries at the top indicate which type of vehicle operates at each satellite: a square for a firstechelon visit, a triangle for a secondechelon vehicle arrival, and a pentagon for a secondechelon vehicle departure. This comes from the best solutions found for an instance of class B with 100 customers. In this instance, the total forward demand is of 188 and the total backward demand is of 138. Because both solutions use four satellites, the average quantity of goods passing by each satellite is of 81.5. Both solutions are using approximately the same number of trips: 3 and 4 firstechelon trips with 10 and 12 firstechelon visits, and 39 and 40 secondechelon trips. But when the satellite capacity is tight, all trips must be synchronized accurately to avoid exceeding these capacities. Indeed, the average time spend by goods at satellite in the tight capacity 2EMTVRPCSRF is

The cost of the tightcapacity 2EMTVRPCSRF solution represented by

Conclusion

Twoechelon distribution systems are often introduced as the cornerstone of city logistics. In this paper, we study major functionalities that are generally ignored in most operations research algorithms for this type of system: forward and reverse flows, multiple vehicle trips and storage capacities at satellites. We introduce the 2Echelon MultiTrip Vehicle Routing Problem with Capacitated Satellites and Reverse Flows (2EMTVRPCSRF), which models how these new features can be integrated in an optimization problem.

To solve this problem, we designed a decompositionbased matheuristic: Iterative TwoStage Heuristic (ITSH). ITSH uses LNS to improve the routes at both echelons, taken separately, and a solver to solve a MIP model which recombines trips generated for the two echelons on distinct LNS iterations. To efficiently test the feasibility of insertions in a partial solution of the problem, the LNSs rely on incremental implementation of algorithms inspired from the scheduling litera ture: the PERT algorithm and the doublejustification. The MIP is formulated and adapted such that it is able to recombine many trips generated by the LNS algorithms in a reasonable amount of time. Both types of methods have been integrated using adaptive mechanisms so that ITSH adequately shares its solving time between the search for efficient new trips and the combination of existing trips.

To evaluate ITSH on the 2EMTVRPCSRF, we generated instances with up to 100 cus tomers and 8 satellites 1 . In our experiments we find that:

-ITSH provides good results on instances of the 2EMTVRPTW in a comparison to the exact algorithm of [START_REF] Marques | Twoechelon vehicle routing problems in city logistics: Approaches based on exact methods of mathematical optimization[END_REF].

-The combination of the heuristic and exact components is a key success factor of the algorithm.

-The routing costs are very sensitive to the satellite capacity. On 100 customers instances with two satellites, moving from a large capacity of 70 to a tight capacity of 20 generates a 30% cost increase on average and feasibility issues.

-Doubling the capacity of well located satellites leads to a much larger routing cost decrease than doubling the number of satellites.

-Integrating forward and backward flow can generate considerable savings (at least 40% on average for 100 customer instances and infinite satellite capacities). This saving goes decreasing with the satellites capacities and the number of satellites but always remains significant.

Given the complexity of the 2EMTVRPCSRF, there are clearly many avenues to explore in order to improve its resolution, whether exact or heuristic. In particular, the feasibility problem related to the satellite capacity with forward and backward flows is a complex scheduling prob lem. For future studies, different backhauling policies could be compared at the second echelon and customers service at the first echelon could be integrated to model more practices evolving on the field [START_REF] Nolz | Twoechelon distribution with a single capacitated city hub[END_REF]. The utilization of multiple delivery options per customer was explored in Chapter 1. The Vehicle Routing Problem with Delivery Option (VRPDO) integrates the delivery in private and shared locations while taking into account customer's time windows and preferences, as well as the capacity of shared delivery locations. Experiments performed on randomly generated instances suggest that this can reduce the routing cost by 30% and improve the quality of service compared to the singleoption per customer usual policy.

Applicative contributions and perspectives

In Chapter 3, we defined the 2Echelons MultiTrip Vehicle Routing Problem with Capaci tated Satellites and Reverse Flows (2EMTVRPCSRF). This problem integrates the collection and the delivery of goods in a twoechelon system with limited capacity satellites. Experiments performed on randomly generated instances with medium size satellites suggest that the inte gration of the linehaul and backhaul flows in this context lead to a 43% decrease of the routing costs.

The VRPDO and the 2EMTVRPCSRF could be firstly combined to further reduce the costs and take advantage of the many opportunities arising in cities. This integration could then be further strengthened by using multimodality. That is to say, we could use different types of vehicles at the second echelon, from cargobikes to light electric vans through sidewalk drones or walking trips. It would also be possible to associate the firstechelon vehicles with scheduled lines networks accessing the city center, such as public transport or waterways. Such a complete integration of city modalities would be beneficial for both the delivery company and the residents. In addition, it would be very challenging to consider time dependency and robustness to improve the realizability of such a system. We began Chapter 1 with a rigorous comparison of many operators developed over the first year of the thesis for LNS heuristics. We studied their impact on the quality of the final solution as well as the redundancy between them in order to propose an efficient set of operators. After many rounds of tests, we developed a configuration of LNS orchestrating small and large destructions: SLNS. This framework mostly performs small and local destructions allowing for fast repair. Many of these iterations can be quickly performed to successively improve parts of the solution. In addition, large destructions are performed for exploration if the solution was not improved by the preceding iterations. This new configuration of LNS was proven to be very efficient on the VRPDO compared to previously developed configurations of LNS.

Methodological contributions and perspectives

In Chapter 2 we studied the hybridization of SLNS with exact methods: a Set Partitioning Problem (SPP) solved by a MILP solver, and the BalasSimonetti neighborhood used with dy namic programming. First, we worked on the utilization of a SPP formulation of the VRPDO to recombine routes generated by SLNS. To get the best of this method, we developed an adaptive criterion to decide on when to call the solver. It is based on past performance of SLNS and those of the solver during the run. Second, we tried to improve solutions with dynamic programming by adapting the BalasSimonetti (BS) neighborhood to the VRPDO. As for the SPP, we designed an adaptive layer to decide on when to use this technology. The strengths and weaknesses of each component of the newly developed SLNS+SPP+BS were then evaluated on multiple general ized vehicle routing problems with time windows. We concluded that SLNS was already very efficient on its own, that SPP could improve its results on hard instances, and that BS could also be useful on some specific instances.

To solve the 2EMTVRPCSRF, we developed the Iterative TwoStages Heuristic (ITSH). This method iteratively improves the secondechelon routes, the firstechelon routes, and recombines them. The first two subproblems are solved by SLNS heuristics and the re combination phase is ensured by the solving of a tripbased MIP model. Thus, ITSH relies on the tools we previously developed. In addition, to take into account the synchronization between the two echelons and the satellites capacity in SLNS, we had to integrate algorithms from the Resource Constraint Project Scheduling Problem (RCPSP) literature. Indeed, the insertion feasibility tests are based on the PERT algorithm and the doublejustification principle.

Several ideas developed during this thesis could not be fully investigated. We conclude this manuscript by enumerating these research avenues:

-Exact reconstruction with MillerTuckerZemlin (MTZ) MIP models: during my stay at Mainz, we explored the possibility of a MIPbased recreate heuristic for the SLNS de veloped for the VRPDO. This operator was intended to repair the solution by solving an MTZbased model of the VRPDO. Unfortunately, the time required by CPLEX to find a better solution increases nonlinearly with respect to the destruction size. Thus, we did not succeed in making it more profitable than list recreate operators even for promising solutions. Nonetheless, the question of exact LNS operators is still to be explored.

-Improvement of solutions via dynamic programming through giant tour representation: during our study on the BalasSimonetti neighborhood for the VRPDO, we tried to use it on a giant tour representation of the solutions. Thus, the dynamic programming was able to choose the delivery option for all the customers. But it proved to be too computationally requiring to be efficient. Nonetheless, we still believe that it can be a promising idea by using advanced techniques from the split literature.

-Acceptance criterion limiting solution copy: the spirit of SLNS is to greatly decrease the time spent in repairing solutions in order to perform more iterations. However, at the beginning of each iteration, the time spent to copy the solution remains constant compared to an LNS with larger destructions. Thus, the proportion of the time budget spent in copies gets significant in SLNS. We tried to develop an acceptance criterion to limit the number of solution copies, but we did not come up with something effective both limiting the copy and providing enough intensification. Consequently, the question of a method to limit the time spent in solution copy remains unsolved.

-Granular insertion schemes: when we were working on improving LNS for the VRPDO in order to tackle larger instances, we tried to limit the number of insertion evaluations.

The developed LNS was modified in a granular sense. That is to say, for each customer to be inserted, only the insertions next to precomputed nearby locations were evaluated. But this component was not easy to tune for the VRPDO. Besides, this functionality was introduced in the code much too late to be efficiently implemented. Consequently, the preliminary results were not conclusive, but we still believe that such an idea could be improving for some problems.

-Improving the main loop in ITSH: in the decomposition method developed for the 2E MTVRPCSRF, the method always solves the secondechelon, the first one, and possi bly the MIP. We think that it can be of some use to dynamically adapt the speed of the communication between the first two subproblems to better balance intensification and diversification. We could think of a localsearch droplike procedure that would remove firstechelon visits or even satellites from the solution, quickly solve the secondechelon and the firstechelon, in order to generate a diversity of routes for the MIP.

-Adapting the cuts for the 2EVRPTW of [START_REF] Marques | An improved branchcutandprice algorithm for the twoechelon capacitated vehi cle routing problem[END_REF] to the 2EMTVRPCSRF: in his thesis some new cuts for the 2EVRPTW proved to be very effective. It could signif icantly improve the performance of the MIP in our decomposition method to adapt them to the 2EMTVRPCSRF.

-Exactly build the first echelon in the MIP for the 2EMTVRPCSRF: in our decomposition method there are often a small number of firstechelon visits at satellites. However, when there are too many visits, the LNSs has difficulties to delete some. Thus, we thought about using an MTZbased formulation to construct the firstechelon in the MIP, instead of using a column basedmodel.

-Dynamic definition of the FED in ITSH: in our 2EMTVRPCSRF results we observe a correlation intertwining the gap between the cost of the solution with and without split at the first echelon and the gap between the cost of the bestfound solution and the average cost. An interpretation is that the former gap indicates a difficult instance. The capacity of our method to deal with this form of complexity could be improved by allowing the LNS for the firstechelon to use split delivery in a restricted way. We thought about defining FED with wisely chosen splits of some demand so that LNS could be used to improve the solutions with splits computed by the MIP.

As I started this manuscript with a citation of a leading scientist of the VRP community, I would like to do the same for ending it, with this feeling expressed in Laporte (2009): " There is, however, a sense that several of the most successful metaheuristics are overengineered and one should now attempt to produce simple and more flexible algorithms capable of handling a larger variety of constraints, even if this were to translate into a small loss in accuracy.

"

Indeed, the development of a stateoftheart method for the generalized vehicle routing problems based on easytoimplement list heuristics goes in this direction. Likewise, the pro posed hybridizations for SLNS are based on simple adaptive layers and can be performed by existing software. But, on the contrary, facing the complexity of the 2EMTVRPCSRF, we de veloped a complex method, thus, improving it through simplifications is a major research area to interest companies in integrating our algorithms for city logistics optimization. if i = ω then 25:

A.1 Detailed results on the VRPDO instances

x ← x ′ 26:

i ← 0 27:

else if f ′ (x ′) < (1 + ϵ) • f ′ (x *) then 28:
x ← x ′ 29:

i ← i + 1 if f ′ (x ′) < f ′ (x *) then 32:

x * ← x ′ 33:

i ← 0 34:

end if 35: end while 36: return x * vehicles at the same satellite. This penalty is used to mitigate some unrealistic solutions in which firstechelon vehicles use some satellites as waiting stations where they have repeated visits.

B.1.4 LNS parameters

The numeric parameters for both LNS 1 and LNS 2 are summarized in Table B The other parameters are as follows:

-Penalty for successive visits at satellite by the firstechelon vehicles: 1.

-All the recreate operators are equiprobable in LNS 1 and LNS 2 . All the local destroy opera tors are equiprobable in LNS 1 and LNS 2 . All the large destroy operators are equiprobable in LNS 1 and LNS 2 . During a large destruction, there is 20% chance of taking a local de stroy operator.

B.1.5 Initial solution

During the first iteration of ITSH (Algorithm 4), SP2 is solved first by LNS 2 (line 4). Thus, no routing of the firstechelon vehicles has been build yet. For each satellite, 4 singletrip routes are created. These trips are round trips from the depot to the satellite, evenly scheduled over the time horizon. This procedure is repeated F 1 times for each satellite. Thus, the initial dummy firstechelon solution uses far too many vehicles. In this way, the secondechelon can rely on nearly unlimited supply of the satellite by the firstechelon but still needs to consolidate its demand on given visits.

To initialize the secondechelon routes using the dummy firstechelon, each customer de mand is assigned to its nearest satellite. Then, secondechelon vehicles are assigned to satellites such that the proportion of vehicles assigned to a satellite is proportional to the proportion of customers demands assigned to it. Each secondechelon vehicle route is initialized by: an empty trip from the secondlevel depot to its assigned satellite, an empty trip starting and ending at this satellite and finally, an empty trip from its satellite back to the depot. The customers are inserted in this empty secondechelon solution by the first call to a repair operator.

The supproblem SP1 is solved with LNS 1 for the first time at Line 6. The firstechelon routes are initialized with an empty trip from the depot to the depot. The first call to a repair operator initializes the trips.

During the subsequent iteration of Algorithm 4, the current solution (x 1 , x 2) is passed on to be improved. The firstechelon routes x 1 will be used by LNS 2 and the secondechelon routes x 2 will be translated in FED in LNS 1 . Each algorithm starting from the routes of x 2 and x 1 respectively.

B.2 Details about the modified model of the 2EMTVRP

CSRF used in ITSH

The refined Model use the following additional variables: σ i ≥ 0 : Penaltyvariable for notserving customer i. u fw s,t ≥ 0 : Surplus amount that is not dropped off at satellite s at time t by firstechelon trips. u rv s,t ≥ 0 : Surplus amount that is not collected at satellite s at time t by firstechelon trips. ζ s ∈ {0, 1} : State if satellite s is utilized or not.

Let Ω1 be the set of the computed firstechelon trips and let Ω2 be the set of all created secondechelon trips. We introduce the following sets of time periods to reduce the number of constraints:

1. T 1,st := {t ∈ T : ∃h = (P, T, L) ∈ Ω1 with s 0 = s and T 0 = t}, the time periods at which a firstechelon vehicle starts from the CDC. ≤constraint for a time period t is considered dominated if the ≤constraint for time period t + 1 is tighter, i.e., the lefthand side contains more positive and/or less negative terms. Similarly, a ≥constraint is tighter if the lefthand side contains less positive and/or more negative terms. For example, in constraints (3.e) for satellite s, it suffices to consider only those points in time, at which a secondechelon vehicle starts a trip to deliver customers. The objective integrate to the one of Model 3, the new penalty variables with BigM co efficients for unserved customer identified with σ variables. Constraints (4.a) states that a cus tomer is either served by a secondechelon trip or the penalty has to be paid, through the σ variables. Fleetsize Constraints (4.b)-(4.d) are identical to Formulation 3 except for the use of sets Ω1 and Ω2 . Constraints (4.e)(4.g) are the same flow balancing and capacity equations as in Model 3, with the subtraction the new variables u to manage the surplus quantities. Con straints (4.h) and (4.i) limit the variables u to the quantity droppedoff (collected) at satellite s at time t by firstechelon trips. In addition, the constraints (4.j) allow trips to visit a satellite only if the satellite is utilized, according to the new ζ variables. Finally, the variable domains are given.

Résumé :

Dans cette thèse, nous nous intéressons aux problématiques soulevées par l'optimisation des tournées de véhicules pour la livraison en milieu urbain. Nous nous sommes attachés à la problématique des ressources synchronisées. Le contexte urbain impose des contraintes sur l'espace utilisable. Dans les modèles théoriques développés, cela se traduit par des contraintes de ressources communes à tous les véhicules.

Le premier problème que nous avons développé traite de la livraison de colis avec fenêtres horaire en considérant de multiples options de livraison pour chaque commande. La synchronisation de ressources vient de la prise en compte d'un niveau de service global ainsi que de la capacité de lieux de livraison partagé, tels que des consignes. Le second problème traité vise à optimiser la collecte et la livraison de colis via un système logistique à deux échelons. Les ressources synchronisées sont alors la capacité de stockage des entrepôts intermédiaires, appelé satellites.

Pour résoudre ces problèmes, nous avons développé des méthodes de recherche à voisinage large basé sur de petites destructions. Nous avons aussi étudié leur hybridation avec la résolution de modèles MIP et de la programmation dynamique. Ainsi, nos méthodes sont catégorisées comme matheuristiques.

Title: Matheuristic approaches for solving transport optimization problems in urban logistics

Keywords: city logistics, vehicle routing, matheuristic, large neighborhood search, ressources synchronizations Abstract: In this thesis, we are interested in the problems raised by the optimization of vehicle routing for delivery in urban areas. We pay close attention to problems with synchronized resources. Indeed, the urban context imposes hard constraints on the usable space. In the theoretical models developed, this translates into resource constraints common to all vehicles.

The first problem deals with the delivery of parcels with time windows while considering multiple delivery options for each order. The synchronization of resources between vehicles comes from the consideration of the global quality of service according to the cus-tomers' preferences as well as the capacity of shared delivery locations, such as lockers. The second problem addresses the optimization of the collection and delivery of parcels via a two-echelon logistics system. The synchronized resources between all vehicles are then the limited storage capacity of intermediate warehouses, called satellites.

To solve these problems, we develope a large neighborhood search methods based on small destructions. We also study their hybridization with MIP models and dynamic programming. Thus, our methods are categorized as matheuristics.

Partie , Chapter 1 -Figure 1 . 2 -

 112 Figure 1.1 -Example of a customer's preferences in the VRPDO

Partie , Chapter 1 -Figure 1 . 4 -

 114 Figure 1.4 -Example of a route in the VRPTW, with home delivery only

Figure 1 .

 1 Figure 1.5 -Capacity at shared delivery locations (SDL)

Figure 1 . 7 -

 17 Figure 1.7 -Representation of the route from Figure 1.3 on Graph G

Figure 1 . 11 -

 111 Figure 1.11 -Relative deviation between the results of the LNS or SLNS and the best known solution, on various VRPTW instances

Partie , Chapter 1 -Figure 1 .

 11 Figure 1.12 -Impact on time windows on the routing costs

Figure 1 .

 1 Figure 1.13 represents the number of vehicles used in the solution of the VRPTW (red line) and the VRPDO (blue line), respectively, when the width of time windows at individual locations varies between 20 and 180 minutes.

Figure 1 .

 1 Figure 1.13 -Impact of time windows on the fleet size

 Formally, let O ⊂ N × L × P be the set of delivery options. For an option o ∈ O, we write n o ∈ N for its customer/delivery request, l o ∈ L for its location, and p o ∈ P for its priority level. Additionally, each option o has a service time s o . A request n ∈ N is characterized by a demand q n . The request is served by choosing one of the options O n = {(n o , l o , p o) ∈ O : n o = n}. We define O l = {(n o , l o , p o) ∈ O : l o = l} as the set of options belonging to location

 For each route r ∈ R and each option o ∈ O, the binary parameter α o r takes value 1 if the option o ∈ O is served by the route r ∈ R, and 0 otherwise. The model uses binary variables λ r for r ∈ R that indicate if route r is used in the solution: Model 2: routebased model min ∑ r∈R c r λ r (2.a)

Figure 2 . 1 -

 21 Figure 2.1 -Example of the auxiliary network for k = 3 and n = 5

Figure 2 . 2 -

 22 Figure 2.2 -A sequence of customers in the auxiliary network for the ATSP and its generalization to delivery options in the GVRPTW

 Instance(s): Name of the benchmark instance (group) #: Number of instances in the group |N |: Number of customer requests #veh: Upper bound computed/set on the number of vehicle/the fleet size Σveh: Sum of the number of vehicles over the group of instances Cost: Overall cost of the best obtained solution ΣCost: same, summed over the group of instances #Best: Number of instances for which an algorithm has found a bestknown solution GAP: gap between the best solution value found by our algorithm (U B) and the one from the literature (Sol) -computed as 100 • (U B -Sol)/Sol ∅Gap: Average GAP over the respective instance group

Figure 2 . 3 -

 23 Figure 2.3 -Performance profile of the four variants, grouped by average route length

Figure 2 . 4 -

 24 Figure 2.4 -Performance profiles of the solution value relative to the best found solution grouped by GVRPTW variant

 3.1) such that the following constraints hold: (F1) All customers are visited exactly once by exactly one secondechelon trip. (F2) The set of first(second)echelon trips can be combined to at most |F 1 | (|F 2 |) feasible first(second)echelon routes.

Figure 3 . 1 -

 31 Figure 3.1 -2EMTVRPCSRF solution used in Example 1

Firstechelon operations h 1 Figure 3 . 2 -

 132 Figure 3.2 -Load profiles of the satellite in Example 1

Example 3 Figure 3 .

 33 3 represents an incomplete solution for a simple problem with one depot o, one satellite s and 5 customers.

Partie , Chapter 3 -

 3 An Iterative TwoStage Heuristic for the 2Echelon MultiTrip Vehicle Routing Problem with Capacitated Satellites and Reverse Flows

Figure 3 . 3 -

 33 Figure 3.3 -Example for the insertion of customer 3 -in and incomplete solution

 3. Each column corresponds to one unit of time in the planning horizon specified by the first line. The next three lines describe the vehicles routes and schedules. The last line indicates the load profile of satellite s.

4 -

 4 Time schedule of the solution ofFigure 3.3

4

 4 represents the collection of the reverse FED of customer 4 by k 1 . The arcs 121 Partie , Chapter 3 -An Iterative TwoStage Heuristic for the 2Echelon MultiTrip Vehicle Routing Problem with Capacitated Satellites and Reverse Flows

Figure 3 . 4 -

 34 Figure 3.4 -Precedence graph of the solution of Figure 3.3

Figure 3 . 5 -

 35 Figure 3.5 -Sequence of necessary and sufficient conditions in LNS feasibility tests.

Figure 3

 3 Figure 3.6 -Example: routing of a complete solution.

Figure 3 .

 3 Figure 3.7 -Precedence graph of the solution of Figure 3.6 with the time schedule of Table3.6.

Figure 3 . 8 -

 38 Figure 3.8 -Precedence graph of the solution of Figure 3.6

[

 20, 80] ×[20, 80] with a pairwise minimum distance of 20. Times (in minutes) and dis tances (=routing costs) are computed as rounded up Euclidean distances.-The planning horizon is T = {0, 1, . . . , 600}. Customer time windows are assigned with equal probability: early [0, 300], late [300, 600], or twohours during the day as [60 + 120ψ, 180 + 120ψ] with ψ ∈ {0, 1, 2, 3}. The customer service time is 5 minutes, and all satellites have a service time of 15 minutes.

Figure 3 .

 3 Figure 3.9 -Example of the usage of the feasibility tests

Figure 3 .

 3 Figure 3.10 -Average cost increase (in percent) compared to the respective instance with no satellite capacity restrictions.

 Figure 3.11a is 3321: 570 for the first echelon and 2751 for the secondechelon. The cost of the uncapacitated 2EMTVRPCSRF solution represented by Figure 3.11b is 2694: 474 for the first echelon and 2220 for the secondechelon. The secondechelon fleet has 10 vehicles. They are all used in the constrained case and only 7 vehicles are used in the uncapacitated 2EMTVRPCSRF.

Figure 3 . 11 -

 311 Figure 3.11 -Satellite usage over time

Figure 4 .

 4 Figure 4.1 illustrates the managerial contributions and perspectives of this thesis: multiple delivery options, 2echelon system with capacitated satellites, and multimodality.The utilization of multiple delivery options per customer was explored in Chapter 1. The Vehicle Routing Problem with Delivery Option (VRPDO) integrates the delivery in private and shared locations while taking into account customer's time windows and preferences, as well as the capacity of shared delivery locations. Experiments performed on randomly generated instances suggest that this can reduce the routing cost by 30% and improve the quality of service compared to the singleoption per customer usual policy.In Chapter 3, we defined the 2Echelons MultiTrip Vehicle Routing Problem with Capaci tated Satellites and Reverse Flows (2EMTVRPCSRF). This problem integrates the collection and the delivery of goods in a twoechelon system with limited capacity satellites. Experiments performed on randomly generated instances with medium size satellites suggest that the inte gration of the linehaul and backhaul flows in this context lead to a 43% decrease of the routing costs.The VRPDO and the 2EMTVRPCSRF could be firstly combined to further reduce the costs and take advantage of the many opportunities arising in cities. This integration could then be further strengthened by using multimodality. That is to say, we could use different types of vehicles at the second echelon, from cargobikes to light electric vans through sidewalk drones or walking trips. It would also be possible to associate the firstechelon vehicles with scheduled lines networks accessing the city center, such as public transport or waterways. Such a complete integration of city modalities would be beneficial for both the delivery company and the residents. In addition, it would be very challenging to consider time dependency and robustness to improve the realizability of such a system.

Figure 4 . 1 -

 41 Figure 4.1 -Integration and perspectives of the managerial contributions 1

Figure 4 .

 4 Figure 4.2 presents the methodological contributions and perspectives of this thesis: Small and Large Neighborhood Search (SLNS), and Iterative TwoStage Heuristic (ITSH).

2 .

 2 T 1,vis s := {t ∈ T : ∃h = (P, T, L) ∈ Ω1 with s = i k ∈ P and T i k = t}, the time periods at which a firstechelon vehicle visits a satellite s.

3 .

 3 T 2,st s := {t ∈ T : H Ω2 + s,t ̸ = ∅}, the time periods at which a secondechelon vehicle starts at satellite s.

̸

 = ∅}, the time periods at which a secondechelon vehicle ends at satellite s. Moreover, we remove constraints (3.b)-(3.g) for those time periods which are dominated. A

Titre:

 Approches matheuristiques pour la résolution de problèmes d'optimisation des transports en logistique urbaine Mot clés : logistique urbaine, tournée de véhicules, matheuristique, recherche à voisinage large, ressources synchronisées

 1 -Large Neighborhood Search heuristics for the Vehicle Routing Problem with Delivery Options

 combined the Greedy Randomized Adaptive Search Procedure (GRASP) with an Iterated Local Search (ILS) and Tri coire et al. (2010) used a Variable neighborhood Search (VNS) metaheuristic. For variants of the CTP, Allahyari et al. (2015) combined GRASP with ILS, Takada et al. (2015) used ILS, Vargas et al. (2015) worked with an Adaptive Large neighborhood Search (ALNS) and Kammoun et al. (2017) proposed a VNS.

 Partie , Chapter 1 -Large Neighborhood Search heuristics for the Vehicle Routing Problem with Delivery Options called the Multiconstraint Team Orienteering Problem with Multiple Time Windows (MCTOP

Table 1 .

 1 1 summarizes the presented vehicles routing problems with resources synchroniza tion. The first columns groups studies according to the class of the problem solved. Column 2 is Partie , Chapter 1 -Large Neighborhood Search heuristics for the Vehicle Routing Problem with Delivery Options

Table

 .4. Operators marked with ++ are considered essential. Operators marked with + slightly improve the results. Operators marked 1.4. Large Neighborhood Search for the VRPDO with are useless or redundant with already kept operators, and adding them does not improve the results. The selected operators are those rated ++ and + .

		Optionbased operators	Customerbased operators
	Random removals	preferenceoriented random removal + SDLoriented random removal random SDL removal	+ random option removal
		distancerelated option removal	+ distancerelated customer removal
	Related	node neighborhood removal	+ zone removal
	removals	timerelated option removal	+ timerelated customer removal
		++ (split) string removal	proximity customer removal
		++ cluster removal	demandrelated removal
		+ route removal	SDLrelated removal
		distance worst removal	
	Worst	time worst removal	
	removals	neighborhood removal	
		SDL worst removal	
	History	nodepair history removal	++ historical knowledge node removal
	removals		
		Table 1.3 -Overview of configuration experiments for ruin operators

 Partie , Chapter 1 -Large Neighborhood Search heuristics for the Vehicle Routing Problem with Delivery Options

	Algorithm 2: SLNS
	1: s : initial solution
	2: iter = 0
	3: while the time budget is not reached do
	4:	randomly select a recreate operator σ + ∈ Σ +
	5:	if iter < ω then
	6:	s ′ ← s
	7:	iter ← iter + 1
	10:	else
	11:	

8: randomly select a local ruin operator σ -∈ Σ -| local 9: randomly select a destruction size Φ ∈ [δ small , ∆ small] s ′ ← s * 12: iter = 0 13: randomly select a ruin operator σ -∈ Σ - 14: randomly select a destruction size Φ ∈ [δ large , ∆ large] 15: end if 16:

Table 1

 1 . .75 37.60 7 170.47 37.60 7 987.74 37.70 7 236.68 C2 11.90 3 874.58 11.60 3 952.95 11.80 4 031.95 11.90 3 922.44 R1 36.40 8 420.52 36.40 8 402.57 36.40 10 165.36 36.40 8 571.28 R2 8.00 6 213.48 8.00 6 152.92 8.00 6 317.79 8.00 6 308.28 RC1 36.00 7 940.65 36.00 7 907.14 36.00 9 317.89 36.10 8 072.79 RC2 8.60 5 269.09 8.50 5 215.21 8.60 5 370.30 8.60 5 354.11

		ALNS	HGSADC		LNS	SLNS
	Instance ∅veh	∅cost ∅veh	∅cost ∅veh	∅cost ∅veh	∅cost
	C1	10.00	828.38 10.00	828.38 10.00	828.38 10.00	828.38
	C2	3.00	589.86 3.00	589.86 3.00	589.86	3.00	589.86
	R1	11.92 1 212.39 11.92 1 210.69 11.92 1 221.97 12.00 1 209.04
	R2	2.73	957.72 2.73	951.51	2.73	957.19	2.73	957.41
	RC1	11.50 1 385.78 11.50 1 384.17 11.63 1 374.77 11.75 1 367.10
	RC2	3.25 1 123.49 3.25 1 119.24 3.25 1 131.04	3.25 1 131.78
	Total	405	57 332	405	57 196	406	57 413	408	57 205
	Time (s)		150		160		100		
		Table 1.5 -Solomon VRPTW instances with 100 customers	
		ALNS	HGSADC		LNS	SLNS
	Instance ∅veh	∅cost ∅veh	∅cost ∅veh	∅cost ∅veh	∅cost
	C1	18.90 2 718.77 18.90 2 718.41 18.90 2 748.24 18.90 2 723.98
	C2	6.00 1 831.59 6.00 1 831.59 6.00 1 834.29 6.00 1 831.76
	R1	18.20 3 615.69 18.20 3 613.16 18.20 3 788.85 18.20 3 662.15
	R2	4.00 2 937.67 4.00 2 929.41 4.00 2 962.08 4.00 2 960.04
	RC1	18.00 3 192.56 18.00 3 180.48 18.00 3 338.69 18.00 3 221.54
	RC2	4.30 2 559.32 4.30 2 536.20 4.30 2 580.04 4.30 2 581.79
	Total	694 168 556	694 168 092	694 172 521	694 169 812
	Time (s)	3 180		504		500		

.6 -Homberger VRPTW instances with 200 customers Partie , Chapter 1 -Large Neighborhood Search heuristics for the Vehicle Routing Problem with

Table 1 .

 1

7 -Homberger VRPTW instances with 400 customers

Table 1 .

 1 Large Neighborhood Search heuristics for the Vehicle Routing Problem with Delivery Options

	Instance	Capacity	Avg. number	Time windows width
	type		of options per	Individual	Shared
			customer	locations	Locations
	U	medium	2	2 to 6 hours 8 to 12 hours
	UBC	big	2	2 to 6 hours 8 to 12 hours
	V	medium	1.5	2 to 6 hours 8 to 12 hours

Partie , Chapter 1 -8 -Classes of VRPDO instances (2007) report a deviation to the optimum of 0.25% on these instances, with 146 seconds of time budget.

Table 1 .

 1 9 -Results of different methods on the VRPDO instances Partie , Chapter 1 -Large Neighborhood Search heuristics for the Vehicle Routing Problem with Delivery Options

	SISR	LNS	SLNS

Table 1 .

 1 10.

			VRPTW	VRPDO
							Gap	%	SDL
	Type |N |	Σveh	Σcost	Σveh	Σcost	(%) SDL fill rate
		50	54 5 504.07	54 3 864.48	29.8 58%	67%
	U	100	105 8 662.22	105 6 502.99	24.9 58%	67%
		200	205 16 223.30	205 13 641.13	15.9 60%	67%
		50	20 5 253.71	20 2 293.53	56.3 67%	71%
	UBC	100	40 7 052.06	40 3 608.39	48.8 68% 67 %
		200	80 10 681.93	80 6 384.29	40.2 66%	64%
		50	54 5 192.10	54 3 742.59	27.9 57%	72%
	V	100	104 9 877.77	104 7 089.06	28.2 56%	79%
		200	205 18 945.38	205 14 781.23	22.0 54%	78%
	Total		867 87 392.53	867 61 907.68	29.2

Table 1 .

 1 10 -Economic impact of delivery options

Table 1 .

 1

	1)

[START_REF] Anderluh | Synchronizing vans and cargo bikes in a city distribution network[END_REF]

-Impact of service level on the routing costs

Algorithm 3 :

 3 Small and Large Neighborhood Search with Set Partitioning Problem and BalasSimonetti neighborhood Partie , Chapter 2 -Hybrid Large Neighborhood Search heuristics for generalized vehicle routing problemsIn the following, we evaluate four configurations of Algorithm 3:

	1: s : initial solution 2: iter = 0, R ← ∅ 3: while the time budget is not reached do 4: randomly select a recreate operator σ + ∈ Σ + 5: if iter < ω then 6: s ′ ← s 7: randomly select a local ruin operator σ 9: else 10: iter = 0 11: s ′ ← s * 12: randomly select a ruin operator σ -∈ Σ -13: randomly select a destruction size Φ ∈ [δ large , ∆ large] 14: end if 15: s 17: improve s ′ with the BalasSimonetti neighborhood 18: end if 19: add routes of s ′ to pool R 20: iter ← iter + 1 21: if f 22: s ← s ′ 23: end if 24: if f (s 25: s * ← s ′ 26: iter ← 0 27: end if 28: if a sufficient number of routes is generated then 29: improve s with the SPP and route set R 30: R ← ∅ 31: end if 32: end while Lines (16), (19), and (28) deactivated SLNS+BS with only the BS component Lines (19), and (28) deactivated 33: return s SLNS without any exact component SLNS+SPP with only the SPP component Line (16) deactivated

-∈ Σ -| local 8: randomly select a destruction size Φ ∈ [δ small , ∆ small] ′ ← σ + (σ -(s ′ , Φ)) 16: if f (s ′) < (1 + ϵ)f (s *) and s ′ is feasible then ′ (s ′) < f ′ (s) or iter = ω then ′) < f (s *) and B s ′ = ∅ then *

Table 2 .

 2 1 -Results for the GVRPTW benchmark of[START_REF] Moccia | An incremental tabu search heuristic for the generalized vehicle routing problem with time windows[END_REF] Partie , Chapter 2 -Hybrid Large Neighborhood Search heuristics for generalized vehicle routing problems

Table 2 .

 2 4. 2 -Results for the VRPRDL benchmark of[START_REF] Ozbaygin | A branchand price algorithm for the vehicle routing problem with roaming delivery locations[END_REF]

				BCP	SLNS	SLNS+BS	SLNS+SPP	SLNS+SPP+BS
	Instances	# |N | Σveh	Σcost	Σcost ∅Gap	Σcost ∅Gap	Σcost ∅Gap	Σcost ∅Gap
	15 5	15	24	6 072	6 072 0.00	6 072 0.00	6 072 0.00	072	0.00
	610 5	20	27	6 848	6 848 0.00	6 848 0.00	6 848 0.00	848	0.00
	1120 10 30	68	18 595 18 595 0.00 18 595 0.00 18 595 0.00 595	0.00
	2130 10 60	129	37 213 37 213 0.00 37 213 0.00 37 213 0.00 213	0.00
	3140 10 120	189	53 738	53 759 0.04	53 876 0.22	53 738 0.00 761	0.04
	4150_v1 10 40	94	29 838 29 838 0.00	29 842 0.02	29 838 0.00 838	0.00
	4150_v2 10 40	74	21 863 21 863 0.00 21 863 0.00 21 863 0.00 863	0.00
	Total	60		605 174 167 174 188 0.01 174 309 0.04 174 167 0.00 190	0.01
	# Best				60	59	55	60	59
					BCP	SLNS	SLNS+BS	SLNS+SPP	SLNS+SPP+BS
	Instances	# |N | Σveh	ΣCost	ΣCost ∅Gap	ΣCost ∅Gap	ΣCost ∅Gap	ΣCost ∅Gap
	1-5	5 15	19	5 450	5 450 0.00	5 450 0.00	5 450 0.00	450	0.00
	6-10	5 20	20	5 604	5 604 0.00	5 604 0.00	5 604 0.00	604	0.00
	11-20	10 30	52	15 128 15 128 0.00 15 128 0.00	15 128 0.00	128	0.00
	21-30	10 60	83	26 800 26 800 0.00 26 800 0.00	26 800 0.00	800	0.00
	31-40	10 120	128 38 107 ‡	37 263 2.12 37 349 1.89 37 234 2.20	232 2.22
	41-50_v1 10 40	87	27 996 27 996 0.00 27 996 0.00	27 996 0.00	996	0.00
	41-50_v2 10 40	67	20 958 20 958 0.00 20 962 0.02 20 962 0.02 029	0.36
	Total	60		456 140 043 139 199 0.35 139 289 0.31 139 174 0.36 239 0.31
					53	57	54	58	56

Table 2 .

 2 3 -Results for the VRPHRDL benchmark of Ozbaygin et al. (2017) Partie , Chapter 2 -Hybrid Large Neighborhood Search heuristics for generalized vehicle routing problems

Table 2 .

 2 4 -Results for the VRPMTW benchmark of[START_REF] Belhaiza | A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with multiple time windows[END_REF]

					SLNS configurations	
				ALNS		SLNS	SLNS+BS	SLNS+SPP	SLNS+SPP+BS
	Group # Σveh	ΣCost Σveh	ΣCost Σveh	ΣCost Σveh	ΣCost Σveh	ΣCost
						∅Gap		∅Gap	∅Gap	∅Gap
	rm 1	8	73 21 831.5	73 21 849.0	73 21 830.8	73 21 817.6	73 21 825.3
						0.08		0.01	0.06	0.03
	rm 2	8	16 21 477.3	16 21 489.3	16 21 486.8	16 21 500.4	16 21 499.3
						0.05		0.04	0.11	0.10
	cm 1	8	86 25 821.1	84 25 754.3	83 25 750.5	83 25 609.3	83 25 550.6
						0.30		0.29	0.85	1.08
	cm 2	8	37 33 249.9	37 33 265.4	37 33 319.6	37 33 279.0	37 33 245.0
						0.05		0.20	0.09	0.02
	rcm 1	8	82 25 747.4	82 25 805.2	82 25 815.7	82 25 801.7	82 25 806.3
						0.23		0.26	0.21	0.23
	rcm 2	8	16 21 854.0	16 21 865.0	16 21 881.1	16 21 881.1	16 21 878.4
						0.05		0.13	0.12	0.11
	Total	48	310 149 981.2	308 150 028.1	307 150 084.6	307 149 889.1	307 149 804.9
						0.03		0.06	0.06	0.11
	# Best			18		17		16	20	24

Table 2 .

 2 4 shows aggregated results for the six groups of instances (R=random, C=clustered, or RC=partly random, partly clustered; series 1 and 2 with tight and wide time windows, respectively). Detailed results per instance are presented in Appendix A.5.

Table 2 .

 2 5 -Results for the VRPDO benchmark ofDumez et al. (2021a)

	1.

Table 2 .

 2 6 -Comparison of the four matheuristic configurations Partie , Chapter 2 -Hybrid Large Neighborhood Search heuristics for generalized vehicle routing problems

	Results grouped by	#	% Gap

Table 2 .

 2

	CGBH	SLNS+SPP

8 -Comparison to Yuan et al. (2021) on the VRPHRDL

).

		CGHB	SLNS+SPP
	Instance	Cost	Time	Cost Time
	i0300408	3 498	8.74	3 497
	i0300812	2 796	15.37	2 796
	i0400408	3 811	6.46	3 811
	i0400812	3 768	7.80	3 768
	i0500408	5 439	10.08	5 447
	i0500812	4 054	12.35	4 034
	i0600408	5 908	49.10	5 926
	i0600812	4 303	26.26	4 303
	i0700408	6 228	24.78	6 246
	i0700812	4 694	45.27	4 644
	i0800408	7 420	179.33	7 394
	i0800812	5 613	43.65	5 661
	i0900408	7 108	328.34	7 182
	i0900812	5 893	307.66	5 869
	i1000408	7 339	85.78	7 308
	i1000812	6 788	419.38	6 546
	i1100408	8 618	128.12	8 687
	i1100812	6 343	120.46	6 487
	i1200408	8 455	190.67	8 357
	i1200812	6 772	151.67	6 829
	Total	114 848 2 194.66 114 792
	Table 2.9 -Comparison to Yuan et al. (2021) on the GVRPTW

 Partie , Chapter 3 -An Iterative TwoStage Heuristic for the 2Echelon MultiTrip Vehicle Routing Problem with Capacitated Satellites and Reverse Flows

	(

n},

Table 3 .

 3 An Iterative TwoStage Heuristic for the 2Echelon MultiTrip Vehicle Routing Problem with Capacitated Satellites and Reverse Flows

1 -Time schedule and loading plan of the routes in Example 1 107 Partie , Chapter 3 -

Table 3 .

 3 3 -Destroy and Repair Operators

 Partie , Chapter 3 -An Iterative TwoStage Heuristic for the 2Echelon MultiTrip Vehicle Routing Problem with Capacitated Satellites and Reverse Flows

	-{(i h l n+1 , i	h l+1 0

 is applied to the fixed precedence graph G x F P of the resulting solution to compute new time values T v . SC1 succeeds if the resulting time schedule respects all time windows. Indeed, the satellite capacity was evaluated in the first step of the condition, and the sequence of operations at satellites are maintained by G x F P structure in the second step. Hence, the capacity of each satellite is necessarily verified. SC1 has a theoretical complexity of O(|A x P |). Figure3.6 depicts the solution of Figure3.3 after inserting customer 3 -in the trip of vehicle k 3 . The solutionEST of the departure of k 3 is 1, and the solutionLST of vertex 4 + is 4. Consequently, a 1 time unit detour to visit customer 3 -does not violate these forward time slack and the filter included in SC1 passes. Customer 3 -has a forward demand of 1, thus its forward FED must be assigned to a FEV. The latest possible FEV is the first visit at time 1, and vehicle k 1 has enough remaining capacity. But this assignment does not respect the satellite capacity, and SC1 fails to find a feasible schedule for this insertion. This is illustrated byFigure 3.7 which presents the time schedule of this solution if the forward FED of customer 3 -is inserted into the first FEV according to SC1 procedure. Table3.6 details the time schedule and satellite load profile that is obtained by the PERT procedure on this graph. The storage capacity of 3 of satellite s is exceeded at time 1.

	Example 5 o	1 -	s	2 -	3 -
		5 -			4 +

Table 3 .

 3 . 7 -As late as possible time schedule of the solution ofFigure 3.6

	time 0 1 2	3	4	5 6 7	8 9
	Vehicle k 1	o s o			o s o
	Vehicle k 2		s 1 -2 -s s 5 -s
	Vehicle k 3	s 3 -4 +	s
	Satellite load 0 3 2	0		1 1 0

Table 3 .

 3 8 -Time schedule of the solution of Figure 3.6 Partie , Chapter 3 -An Iterative TwoStage Heuristic for the 2Echelon MultiTrip Vehicle Routing Problem with Capacitated Satellites and Reverse Flows

 Partie , Chapter 3 -An Iterative TwoStage Heuristic for the 2Echelon MultiTrip Vehicle Routing Problem with Capacitated Satellites and Reverse Flows-The number of satellites is 2, 4, or 8.

 IT SH , is presented in columns 'Gap' for all three alternative configurations.

				ITSH	noMIP noAdaptTime noVARu	noSplit
	|N |	|S| #inst #f	cost #f Gap #f	Gap #f	Gap #f Gap
	50	2	10 10 1 965.0 8 2.01 10	0.65 9 -1.03 10 0.71
		4	10 10 1 725.7	9 2.36 10	0.65 10	2.36 10 0.83
		8	10 10 1 663.1 10 2.54 10	0.35 10	1.24 10 0.09
	Total		30 30 1 784.6 27 2.33 30	0.55 29	0.92 30 0.55
	100	2	10 9 3 402.1 6 3.23 8	3.66 6	2.54 9 0.14
		4	10 10 3 021.8	9 2.22	9	0.63 10	0.91 10 0.33
		8	10 10 2 572.0 10 3.94 10	-0.21 10	1.66 10 0.03
	Total		30 29 2 984.7 25 3.15 27	1.30 26	1.61 29 0.17
			Table 3.9 -Comparison of different MIP configurations

 Partie , Chapter 3 -An Iterative TwoStage Heuristic for the 2Echelon MultiTrip Vehicle Routing Problem with Capacitated Satellites and Reverse Flows

									feasible
								29k	27k
	insertions	17.67M	NC1	1.42M	sort	654k	SC1	625k	SC2
						16.25M	766k		598k
									rejected

Table 3 .

 3 10 summarizes the comparison with the exact BPC algorithm proposed in Marques et al. (2020a) with a 10hour time limit.

			|N | = 25		|N | = 50		|N | = 75		|N | = 100
			Γ tot = 30		Γ tot = 120		Γ tot = 500		Γ tot = 800
			BPC		BPC		BPC		BPC
	Group	# time Gap	# time Gap	#	time Gap	#	time	Gap
	c100	0/9	23 0.50	0/9	161 0.29	3/8	9 621 1.01	0/7 16 503	1.91
	r100	0/12	62 0.15 0/12	882 1.13 2/10 27 049 0.97	0/3 19 970	0.41
	rc100	0/8	10 0.55	0/8	89 1.10	0/7 23 168 1.07	3/4 36 092 -0.75
	c200	0/8	585 0.39	1/8 8 294 2.41	0/4	7 809 2.35	0/1 15 935	0.44
	r200	0/8 5 169 3.34	0/1 1 714 0.07				
	rc200	0/8	356 5.16	0/6 7 847 2.12				
	All	0/53	942 1.54 1/44 2 907 1.30 5/29 18 932 1.19 3/15 22 382	0.80

Table 3 .

 3 10 -Performance on the 2EVRPTW instances compared to the BPC algorithm of Mar ques et al. (2020a).

Table 3 .

 3 Partie , Chapter 3 -An Iterative TwoStage Heuristic for the 2Echelon MultiTrip Vehicle Routing Problem with Capacitated Satellites and Reverse Flows 11 -Average gain resulting from simultaneously handling forward and reverse flows.

					Satellite capacity C sat		
	|N |	|S|	20	25	35	50	70	∞ 50 → 35 + 25
	50	2	23.55% 27.99% 33.08% 35.74% 36.89% 37.33%	36.11%
		4	30.80% 34.07% 35.85% 36.50% 37.45% 37.83%	37.16%
		8	31.50% 33.12% 35.09% 36.08% 36.21% 36.59%	36.57%
	Total		29.55% 31.73% 34.67% 36.11% 36.85% 37.25%	36.61%
	100	2	11.27% 22.75% 31.04% 37.55% 39.74% 40.38%	39.96%
		4	22.47% 27.02% 32.98% 36.05% 39.00% 39.13%	38.14%
		8	33.74% 37.16% 39.53% 42.19% 42.95% 43.24%	43.63%
	Total		25.30% 29.19% 34.52% 38.60% 40.56% 40.92%	40.58%

Table 3 .

 3 12 -Average time spent by the goods at satellites

			Satellite capacity C sat	
	# satellites	20	25	35	50	70	∞
	2	38.5 44.3 58.3 85.0 116.5 135.2
	4	53.9 70.6 89.7 101.0 126.1 128.8
	8	67.0 82.1 95.0 114.8 117.6 118.1
	All	56.1 66.4 81.0 100.3 120.1 127.4

Table A .

 A 2 -Detailed results on the VRPDO instances with 200 customers in seconds

	Instance	LNS		SLNS		SLNS+BS	SLNS+SPP	SLNS+SPP+BS
		Route	Cost Route	Cost Route	Cost Route	Cost Route	Cost
	U_400_1	41 1 895.00	41 1 943.08	41 1 971.02	41 1 877.14	1 920.64
	U_400_2	41 3 182.56	41 3 125.90	41 3 242.58	41 3 067.01	3 136.19
	U_400_3	41 2 240.91	41 2 245.68	41 2 294.83	41 2 205.32	2 251.91
	U_400_4	40 1 827.88	40 1 822.91	40 1 867.62	40 1 783.72	1 801.16
	U_400_5	40 2 219.25	40 2 256.24	40 2 277.34	40 2 218.57	2 227.34
	U_400_6	40 2 006.75	40 2 001.19	40 2 084.98	40 1 967.86	1 993.56
	Instance U_400_7	LNS 41 2 608.05	SLNS 41 2 545.98	SLNS+BS 41 2 605.71	SLNS+SPP 41 2 483.67	SLNS+SPP+BS 2 549.34
	U_400_8	41 1 949.08	41 1 972.34	41 1 994.32	41 1 940.24	1 976.39
	U_400_9	Route 40 2 703.21 Cost Route 40 2 682.11 Cost Route 40 2 715.64 Cost Route 40 2 645.95 Cost Route	Cost 2 768.49
	U_100_1 U_400_10	11 482.07 41 2 188.59	11 481.82 41 2 241.12	11 482.77 41 2 280.78	11 481.82 41 2 169.11	11 479.97 2 231.91
	U_100_2 V_400_1 U_100_3 V_400_2 U_100_4 V_400_3 U_100_5 V_400_4 U_100_6 V_400_5 V_400_6	10 682.81 41 2 504.80 11 629.93 41 2 728.18 10 594.53 40 1 898.97 10 673.31 40 1 919.80 10 598.61 41 1 743.08 40 2 824.44	10 690.49 41 2 517.53 11 638.34 41 2 725.34 10 612.78 40 1 884.05 10 680.54 40 1 924.06 10 592.42 41 1 748.98 40 2 777.59	10 703.56 41 2 556.16 11 637.30 41 2 729.75 10 614.97 40 1 939.59 10 701.20 40 1 962.68 10 601.70 41 1 776.06 40 2 820.20	10 672.93 41 2 499.38 11 631.51 41 2 709.91 10 607.13 40 1 862.73 10 673.31 40 1 891.02 10 598.61 41 1 731.56 40 2 745.29	2 516.62 10 691.13 2 719.09 11 630.02 1 862.73 10 609.72 1 903.72 10 673.31 1 746.66 10 598.61 2 772.18
	U_100_7 V_400_7	11 747.26 41 2 066.69	11 747.05 41 2 074.31	11 749.35 41 2 098.70	11 763.74 41 2 067.62	11 763.64 2 051.71
	U_100_8 U_100_9 U_100_10 V_100_1 V_100_2 V_100_3 V_100_4 V_100_5 V_100_6 V_100_7 V_100_8 V_100_9 V_100_10 V_200_9 V_200_10 UBC_200_1 UBC_200_2 UBC_200_3 UBC_200_4 UBC_200_5 UBC_200_6 UBC_200_7 UBC_200_8 UBC_200_9 V_400_8 V_400_9 V_400_10 UBC_400_1 20 1 624.73 11 844.42 10 677.69 11 572.75 11 647.57 10 863.15 10 696.71 10 593.82 10 768.99 11 597.29 11 702.18 11 744.85 10 786.05 10 606.26 20 1 499.91 11 856.52 10 683.95 11 574.63 11 654.42 10 857.68 10 707.80 10 597.02 10 778.42 11 599.46 11 705.06 11 749.42 10 811.91 10 616.88 20 1 489.01 11 852.73 10 693.10 11 575.64 11 647.57 10 855.53 10 700.69 10 596.84 10 790.63 11 599.28 11 703.77 11 747.44 10 805.64 10 623.24 20 1 491.97 11 843.29 10 680.25 11 575.62 11 647.57 10 851.12 10 686.65 10 594.61 10 771.77 11 597.29 11 707.93 11 750.10 10 804.28 10 615.31 20 1 636.77 20 1 652.39 20 1 623.12 20 1 387.98 20 1 397.51 20 1 411.97 20 1 390.87 8 586.28 8 570.26 8 573.34 8 572.46 8 516.30 8 491.97 8 508.50 8 491.52 8 808.03 8 781.20 8 801.10 8 783.61 8 628.91 8 647.94 8 669.28 8 639.34 8 639.55 8 616.84 8 619.18 8 620.45 8 637.66 8 620.04 8 644.27 8 620.75 8 616.77 8 589.95 8 592.14 8 590.60 8 637.51 8 613.41 8 620.69 8 608.58 8 538.78 8 525.49 8 559.02 8 537.65 41 1 901.45 41 1 934.74 41 1 948.57 41 1 881.84 40 2 303.40 40 2 322.51 40 2 359.74 40 2 298.65 40 2 665.05 40 2 645.68 40 2 692.97 40 2 654.08 16 1 042.41 16 976.29 16 1 017.37 16 1 001.78 UBC_400_2 16 1 226.77 16 1 149.60 16 1 194.05 16 1 141.70 UBC_400_3 15 1 430.09 15 1 160.43 15 1 215.95 15 1 122.51 UBC_400_4 16 1 264.99 16 1 153.68 16 1 198.04 16 1 162.55 UBC_400_5 16 1 077.65 16 1 004.50 16 1 064.95 16 1 035.19 UBC_400_6 15 1 576.22 15 1 283.89 15 1 338.55 15 1 283.39 UBC_400_7 15 1 104.06 15 981.88 15 1 046.79 15 987.64 UBC_400_8 16 1 280.05 16 1 199.68 16 1 243.71 16 1 188.97 UBC_400_9 16 1 243.39 16 1 148.06 16 1 154.68 16 1 142.94 10 605.62 20 1 479.69 11 845.89 10 682.76 11 573.20 11 647.57 10 848.57 10 706.33 10 594.61 10 802.72 11 597.29 11 703.34 11 745.35 10 800.96 1 486.38 1 623.93 1 381.51 590.56 493.49 802.84 647.17 633.66 627.20 607.54 642.49 525.66 1 908.00 2 324.23 2 665.31 1 009.93 1 163.04 1 158.75 1 193.29 1 058.48 1 329.49 1 026.01 1 231.85 1 162.20 UBC_200_10 8 650.15 8 605.71 8 640.04 8 607.07 661.72 UBC_400_10 15 1 550.53 15 1 165.35 15 1 282.90 15 1 221.59 1 296.37

Table A .

 A 3 -Detailed results on the VRPDO instances with 400 customers in seconds

	Instance C121 C122 C123 C124 C125 C126 C127 C141 C142 18 3 560.410 Instance LNS SLNS Route Cost Route Cost 20 2 704.570 20 2 704.570 18 2 944.350 18 2 960.380 18 2 761.630 18 2 720.570 18 2 715.100 18 2 643.310 20 2 702.050 20 2 702.050 20 2 701.040 20 2 701.040 20 2 701.040 20 2 701.040 Instance LNS Route Cost Route R121 20 4 930.290 20 4 803.860 SLNS Cost R122 18 4 210.250 18 4 104.080 R123 LNS SLNS Route Cost Route Cost 40 7 152.060 40 7 152.060 36 9 190.420 37 7 337.870 C143 36 8 214.670 36 7 170.080 C144 36 8 328.280 36 6 848.330 C145 40 7 164.680 40 7 152.060 C146 40 7 154.620 40 7 153.450 C147 39 7 622.700 39 7 561.490 C148 37 8 065.370 37 7 680.290 C149 36 8 765.160 36 7 320.370 A.3
	C128	19 2 783.260	19 2 775.480
	C129	18 2 745.530	18 2 687.830
	C1210	18 2 723.810	18 2 643.550
	C221	6 1 931.440	6 1 931.440
	C222	6 1 863.160	6 1 863.160
	C223	6 1 779.200	6 1 775.080
	C224	6 1 715.990	6 1 703.430
	C225	6 1 878.850	6 1 878.850
	C226	6 1 857.830	6 1 857.350
	C227	6 1 849.460	6 1 849.460
	C228	6 1 826.210	6 1 820.530
	C229	6 1 832.590	6 1 830.050
	C2210	6 1 808.210	6 1 808.210

Detailed results on the GVRPTW instances

	Instance		SLNS	SLNS+BS	SLNS+SPP SLNS+SPP+BS
			Route Cost Route Cost Route Cost Route	Cost Time (s)
	Instance instance_0triangle instance_1triangle	SLNS	SLNS+BS 901 4 5 1 286 4 5 1 286 901 SLNS+SPP SLNS+SPP+BS 4 901 4 901 5 1 286 5 1 286
	Route Cost Route Cost Route Cost Route instance_2triangle 4 991 4 991 4 991	4	Cost Time (s) 991
	i0300408 instance_3triangle instance_4triangle		4 3 497 5 1 062 6 1 832	4 3 497 5 1 062 6 1 832	4 3 497 5 1 062 6 1 832	5 1 062 4 3 497 6 1 832
	i0300812 instance_5triangle		4 2 796 5 1 294	4 2 796 5 1 294	4 2 796 5 1 294	4 2 796 5 1 294
	i0400408 instance_6triangle		6 3 811 4 1 155	6 3 811 4 1 155	6 3 811 4 1 155	6 3 811 4 1 155
	i0400812 instance_7triangle i0500408 instance_8triangle instance_9triangle		6 3 768 6 1 455 8 5 447 5 1 260 7 1 684	6 3 768 6 1 455 8 5 447 5 1 260 7 1 684	6 3 768 6 1 455 8 5 439 5 1 260 7 1 684	6 1 455 6 3 768 5 1 260 8 5 447 7 1 684
	i0500812 instance_10triangle	8 4 034 7 1 922	8 4 034 7 1 922	8 4 034 7 1 922	8 4 034 7 1 922
	i0600408 instance_11triangle	8 5 908 8 2 324	8 5 926 8 2 324	8 5 919 8 2 324	8 5 926 8 2 324
	i0600812 instance_12triangle i0700408 10 6 246 8 4 303 6 1 747 instance_13triangle 6 1 273 i0700812 10 4 644 instance_14triangle 6 1 694 instance_15triangle 7 1 938	8 4 303 6 1 747 10 6 246 6 1 273 10 4 644 6 1 694 7 1 938	8 4 303 6 1 747 10 6 224 6 1 273 10 4 644 6 1 694 7 1 938	6 1 747 8 4 332 6 1 273 10 6 246 6 1 694 10 4 644 7 1 938
	i0800408 instance_16triangle 12 7 390 8 1 965	12 7 394 8 1 965	12 7 394 8 1 965	12 7 394 8 1 965
	i0800812 instance_17triangle 12 5 686 7 1 827	12 5 661 7 1 827	12 5 692 7 1 827	12 5 661 7 1 827
	i0900408 instance_18triangle 11 7 187 7 2 083 i0900812 11 5 903 instance_19triangle 6 1 822 instance_20triangle 13 3 761	11 7 182 7 2 083 11 5 869 6 1 822 13 3 761	11 7 187 7 2 083 11 5 830 6 1 822 13 3 761	7 2 083 11 7 215 6 1 822 11 5 808 13 3 761
	i1000408 instance_21triangle 14 7 308 10 2 828	14 7 349 10 2 828	14 7 295 10 2 828	14 7 295 10 2 828
	i1000812 instance_22triangle 14 6 546 16 4 440	14 6 546 16 4 440	14 6 585 16 4 440	14 6 606 16 4 440
	i1100408 instance_23triangle 16 8 696 11 3 378 i1100812 16 6 249 instance_24triangle 11 3 161 i1200408 15 8 344 instance_25triangle 16 4 536 instance_26triangle 10 2 865	16 8 720 11 3 378 16 6 487 11 3 161 15 8 357 16 4 536 10 2 865	16 8 711 11 3 378 16 6 338 11 3 161 15 8 344 16 4 536 10 2 865	11 3 378 16 8 687 11 3 161 16 6 310 16 4 536 15 8 344 10 2 865
	i1200812 instance_27triangle 15 6 829 14 4 173	15 6 829 14 4 173	15 6 774 14 4 173	15 6 774 14 4 173
	instance_28triangle	14 3 964	14 3 964	14 3 964	14 3 964
	Table A.7 -Detailed results on the GVRPTW instances of Moccia et al. (2012) with their number instance_29triangle 14 4 107 14 4 107 14 4 107 14 4 107
	of vehicles instance_30triangle	17 4 935	17 4 935	17 4 935	17 4 935
	instance_31triangle	18 5 258	18 5 267	18 5 258	18 5 258
	instance_32triangle	18 5 061	18 5 061	18 5 061	18 5 061
	instance_33triangle	17 5 218	17 5 220	17 5 218	17 5 218
	instance_34triangle	20 5 498	20 5 498	20 5 498	20 5 521
	instance_35triangle	22 6 498	22 6 621	22 6 498	22 6 498
	instance_36triangle	17 4 830	17 4 830	17 4 830	17 4 830
	instance_37triangle	22 5 604	22 5 604	22 5 604	22 5 604
	instance_38triangle	21 5 841	21 5 841	21 5 841	21 5 841
	instance_39triangle	17 5 016	17 4 999	17 4 995	17 4 995

Table A .

 A 9 -Detailed results on the VRPRDL instances of[START_REF] Reyes | Vehicle routing with roaming de livery locations[END_REF] with the number of vehicles ofTilk et al.

	instance_31triangle	13 3 885	13 3 885	13 3 885	13 3 885
	instance_32triangle	13 3 554	13 3 588	13 3 543	13 3 557
	instance_33triangle	12 3 767	12 3 783	12.2 3 784	12 3 751
	instance_34triangle	11 3 184	11 3 185	11 3 184	11 3 175
	instance_35triangle	15 4 287	15 4 379	15 4 273	15 4 303
	instance_36triangle	10 3 225	10.5 3 370	10 3 217	10 3 217
	instance_37triangle	14 3 935	14 3 939	14 3 936	14 3 937
	instance_38triangle	15 4 300	15 4 335	15 4 300	15 4 300
	instance_39triangle	13 3 556	13 3 557	13 3 550	13 3 556
		(2020)			

Table A .

 A 10 -Detailed results on the VRPHRDL instances of[START_REF] Reyes | Vehicle routing with roaming de livery locations[END_REF] with the number of vehicles of[START_REF] Tilk | The Lastmile Vehicle Routing Problem with Delivery Options[END_REF]

	Instance	VRPRDL	VRPHRDL
		Route Cost Route Cost Time (s)
	instance_0triangle	4 901	3 773
	instance_1triangle	5 1286	4 1065
	instance_2triangle	4 991	3 988
	instance_3triangle	5 1062	3 914
	instance_4triangle	6 1832	6 1710
	instance_5triangle	5 1294	4 1099
	instance_6triangle	4 1155	3 996
	instance_7triangle	6 1455	5 1346
	instance_8triangle	5 1260	4 997
	instance_9triangle	8 1684	4 1166
	instance_10triangle	7 1922	5 1587
	instance_11triangle	8 2324	6 1808
	instance_12triangle	6 1747	6 1563
	instance_13triangle	6 1273	4 1058
	instance_14triangle	6 1694	5 1347
	instance_15triangle	7 1938	5 1517
	instance_16triangle	8 1965	5 1445
	instance_17triangle	7 1827	5 1627
	instance_18triangle	7 2083	5 1461
	instance_19triangle	6 1822	6 1715
	instance_20triangle	13 3761	8 2580
	instance_21triangle	10 2828	7 2206
	instance_22triangle	16 4440	10 3363
	instance_23triangle	11 3378	8 2569
	instance_24triangle	11 3161	8 2378
	instance_25triangle	16 4536	9 2845
	instance_26triangle	10 2865	8 2518
	instance_27triangle	14 4173	8 2758
	instance_28triangle	14 3964	9 2892
	instance_29triangle	14 4107	8 2691
	instance_30triangle	18 4935	14 3666
	instance_31triangle	19 5258	13 3885
	instance_32triangle	18 5061	13 3543
	instance_33triangle	17 5218	13 3694
	instance_34triangle	20 5498	11 3184
	instance_35triangle	22 6498	15 4273
	instance_36triangle	17 4830	11 3217
	instance_37triangle	21 5604	14 3935
	instance_38triangle	24 5841	15 4300
	instance_39triangle	19 4995	13 3537

Table A .

 A 12 -Detailed results of SLNS+SPP on the VRPRDL and VRPHRDL instances of[START_REF] Reyes | Vehicle routing with roaming de livery locations[END_REF] with the number of vehicles of[START_REF] Ozbaygin | A branchand price algorithm for the vehicle routing problem with roaming delivery locations[END_REF] Following a small destruction, the new solution x ′ is accepted as the new current solution x (line (27)) only if it is not ϵ% worse than the best solution x * . At lines (31)-(33), the value of x * is updated and the counter i is set to the value 0 when a new best solution is found. LNS with large and small destruction 1: x, x * : initial solution 2: pool of trips H ← ∅ 3: i ← 0 4: cycle ← 0 5: i ′ ← 0 6: while cycle < ζ and i ′ < ζ ′ do

	Algorithm 5: 7: randomly select a repair operator σ + ∈ Σ +
	8:	if i < ω then
	9:	x ′ ← x
	10: randomly select a destroy operator σ 12: else
	13:	
	16:	cycle ← cycle + 1
	17:	i ′ ← i ′ + 1
	18:	end if
	19:	
	20:	if x ′ is feasible then
	21:	i ′ ← 0
	22:	end if
	23:	

-∈ Σ -| local 11: randomly select a destruction size Φ ∈ [δ small , ∆ small] x ′ ← x * 14: randomly select a destroy operator σ -∈ Σ - 15: randomly select a destruction size Φ ∈ [δ large , ∆ large] x ′ ← σ + (σ -(x ′ , Φ))

store the trips of x ′ into the pool H 24:

 .1. The values of these parameters were obtained from preliminary experiments on 2EMTVRPCSRF and 2EVRP instances.

	Parameter	Notation	LNS 1	LNS 2
	Large destruction frequency	ω	9|N | 0.75 9|N | 1.0
	Number of large destructions	ζ	30	5
	Number of large destructions without improvement ζ ′	5	1
	Minimal size of a small destructions	δ small	1%	1%
	Maximal size of a small destructions	∆ small	15%	10%
	Minimal size of a large destructions	δ large	20%	10%
	Maximal size of a large destructions	∆ large	100%	30%
	Penalty for unserved FED/customer	β	10	25
	Range of acceptance	ϵ	2%	2%
	Table B.1 -LNS parameters		

Traduction de l'anglais vers le français

Traduction de l'anglais vers le français

Traduction de l'anglais vers le français

From "The Lord of the Rings: The Return of the King"(Jackson et al.,

2003)

(with β 1 = 70) is only 2.8%, whereas the cost increase when β 1 varies from 70 to 90 (with β 2 = 90) is 9.5%.

These instances will be made available to the scientific community for further research

Designed by Quentin Le Gouvello De La Porte using assets distributed by http://thenounproject.com under Creative Commons license created by RROOK, mohkamil, jeff, GreenHill, Jony, indra anis, Teuku Syahrizal

Chapter 2

HYBRID LARGE NEIGHBORHOOD SEARCH HEURISTICS FOR GENERALIZED VEHICLE ROUTING PROBLEMS

of 81, while it is of 44 in the uncapacitated case.

Let us consider how goods are spread over satellites in these solutions: In the tight capacity 2EMTVRPCSRF, the quantity of goods processed by each satellite is: 82, 127, 68, 49. In the uncapacitated 2EMTVRPCSRF, the quantity of goods processed by each satellite is: 52, 154, 72, 48. With a tight capacity, the goods have to be spread over satellites because the best satellite location is overloaded. The goods are better spread in time to take account of the tight capacity. Indeed, the quantity of goods arriving at satellites during each block of 100 time units in the tight capacity 2EMTVRPCSRF solution are: 70, 68, 41, 104, 38, 9. In the uncapacitated case, these values are: 135,24,72,46,17,36. The standard deviations of these two sequences are 32 and 43, respectively, showing a significantly higher dispersion in the uncapacitated 2EMTVRPCSRF.

CONCLUSION AND PERSPECTIVES

In this thesis we proposed theoretical models for routing problems in city logistics, inte grating synchronized resources to take into account the tight constraints induced by the urban environment.

We first proposed the Vehicle Routing Problem with Delivery Options (VRPDO) to integrate alternative delivery modes. Second, we proposed the 2Echelon MultipleTrip Vehicle Routing Problem with Capacitated Satellite and Reverse Flow (2EMTVRPCSRF). This problem inte grates linehaul and backhauls in a 2echelon system where satellites have limited storage capac ity. To solve these problems, we developed a Large Neighborhood Search framework based on small and fast iterations: the Small and Large Neighborhood Search (SLNS). Furthermore, we hybridized this framework with MIP solved by commercial solvers and dynamic programming, thus showing that matheuristics are relevant for vehicle routing problems with synchronized resources. In this section, we detail the Large Neighborhood Search heuristics LNS 1 and LNS 2 . They are both based on Algorithm 5, but present slight differences in the LNS operators and parame ters.

My thesis

B.1.1 LNS Algorithm

The algorithm starts from an initial solution x, obtained as described in Section B.1.5. x * denotes the best solution found ; it is returned at the end of the algorithm. The pool H stores the trips of the considered echelon. The index i counts the number of iterations performed since the bestfound solution x * was improved or since the last large destruction happened. We denote by Σ + the set of repair operators and by Σ -the set of destroy operators. Σ -| local denotes the set of local destroy operators, i.e operators used for small destructions. The operators used for each echelon are presented later. Line (6) shows the LNS stopping criterion. We call a cycle a sequence of iterations with small destruction followed by an iteration with large destruction. LNS stops after a predefined number ζ of such cycles. In addition, we also stop the algorithm if no feasible solution (serving all customers/FEDs) were found after ζ ′ cycles. We set ζ ′ << ζ in order to speedup the interactions between the two LNS to find a feasible solution during the earlier stages.

On each iteration, a repair operator is randomly selected in Σ + (line (7)). A small destruction is performed on a copy of the current solution (line (9)). Then a local destroy operator is selected in Σ -| local and the destruction size is randomly selected in [δ small , ∆ small]. The selected operators, σ -and σ + , are then applied to the solution x ′ at line (19).

A large destruction is performed if i = ω at line (8). This happens if the bestfound solution has not been improved for ω successive iterations with small destruction. In this case, the destroy operator is randomly selected in Σ -and the destruction size in [δ large , ∆ large], at lines (14) and (15) respectively. We assume that δ large > δ small and that ∆ large > ∆ small . In addition, a large destruction starts from the bestfound solution x * . The new solution x ′ is then produced at line (19). Note that, after a large destruction, the produced solution is unreservedly accepted as the new current solution x on line (24).

At line (23), the trips of the newly generated solution are added to the pool of trips H.

B.1.2 Operators

Below, we list all LNS operators used by the LNS algorithm. The symbols [1], [2] and [1,2] identify the operators used only to solve SP1 SP2or both subproblems, respectively. In the list below, the LNS operators listed with [1,2] are used to solve both SP1 and SP2, .

The local destroy operators are: [1,2] (Split) String removal [START_REF] Christiaens | Slack Induction by String Removals for Vehicle Routing Problems[END_REF]: removes sequences of FEDs/customers in different routes of the considered solution. We also implement the Split String Removal version of this operator, which conserve a substring of vertices in the middle of considered string to be removed. [1,2] Satellite removal: for each satellite, we call satellite schedule the list of vertices taking place at this satellite ordered in nondecreasing date T . This operator removes sequences of operations in the satellite schedules of the considered solution, either conserving, or not, a substring of operations in the middle of the string to be removed. In SP2 if a FED is removed, the associate customer is removed from its secondechelon trip. This operator is equivalent to the (split) string removal on satellite schedules.

[2] Distance related removal (Ropke and Pisinger, 2006b): removes customers that are close to each other with respect to the Euclidean distance.

[2] FEV removal: randomly selects a firstechelon FEV to a satellite and removes it aswellas all the FEDs assigned to this visit. [2] Cluster removal [START_REF] Pisinger | A general heuristic for vehicle routing problems[END_REF]: removes customers that are served by the same trip in the considered solution. A trip is randomly selected and the Kruskal's al gorithm is run on the arcs of this trip until two clusters remain. One cluster is randomly chosen and all its customers are removed from the solution.

The large destroy operators are: [2] Random removal (Ropke and Pisinger, 2006b): randomly removes customers.

[1] Random visit removal: randomly selects FEVs at satellites and remove them. It is equiv alent to random removal applied to FEVs.

[1] Worst visit removal (derived from worst removal, Ropke and Pisinger (2006a)): iteratively remove the FEV which removal decreases the objective function the most.

[2] Historical knowledge node removal [START_REF] Demir | An adaptive large neighborhood search heuris tic for the PollutionRouting Problem[END_REF]: for this removal, the minimum cost of each customer is recorded over all past LNS iterations. The cost of a customer in a solution x is the difference f (x)f (x ′), where x ′ is x without the service of the consid ered customer. The operator iteratively removes the customers with the largest difference between their current cost and their lowest cost. It can be seen as a historybiased worst removal. [1,2] Trip removal and Route removal [START_REF] Nagata | A powerful route minimization heuristic for the vehicle rout ing problem with time windows[END_REF]: remove all the FEDs/customers and visits of a randomly selected trip/route.

Following [START_REF] Christiaens | Slack Induction by String Removals for Vehicle Routing Problems[END_REF], the used repair operators are all lists heuristics. In these operators, unserved FEDs/customers are first sorted according to one of the following simple rules and then inserted one by one with the procedure described in Section 3.4.2. At each iteration, one rule is selected at random with the same selection probability for each rule. [1,2] Random order: the FEDs/customers are not sorted before insertion. [1,2] Largest first: FEDs/customers are sorted in nonincreasing order of total demand quantity. [2] Farthest first: customers are sorted in nonincreasing order of distance to their nearest satellite.

[2] Closest first: customers are sorted in nondecreasing order of distance to their nearest satellite. [1,2] Earliest first: FEDs/customers are sorted in nondecreasing order of readydate or opening of timewindow. [1,2] Latest first: FEDs/customers are sorted in nonincreasing order of duedate or time window end. [1,2] Narrow first: FEDs/customers are sorted in nondecreasing order of timewindow width.

B.1.3 Acceptance criterion

We use the recordtorecord acceptance criterion, we use the modified cost proposed in [START_REF] Pisinger | A general heuristic for vehicle routing problems[END_REF]:

where z(x) is the objective function as defined in Model 3,B(x) is the number of unserved customers and FEDs, and β a penalty factor. In addition, in LNS 1 , we replace z(x) by z ′ (x). This modified objective function is equal to z(x) plus a penalty for successive visits of firstechelon