
THÈSE DE DOCTORAT DE

L’ÉCOLE NATIONALE SUPERIEURE MINES-TELECOM ATLANTIQUE
BRETAGNE PAYS DE LA LOIRE -IMT ATLANTIQUE

ÉCOLE DOCTORALE N° 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

David ESPINEL SARMIENTO

Distributing connectivity management in Cloud-Edge infrastruc-
tures using SDN-based approaches

Thèse présentée et soutenue à IMT Atlantique - Campus de Nantes, le 07 septembre 2021
Unité de recherche : LS2N
Thèse N° : 2021IMTA0250

Rapporteurs avant soutenance :

Vania MARANGOZOVA-MARTIN Professeure (HdR) - Université Grenoble-Alpes
Stefano SECCI Professeur (HdR) - CNAM

Composition du Jury :
Président : Thomas LEDOUX Professeur (HdR) - IMT Atlantique
Examinateurs : Vania MARANGOZOVA-MARTIN Professeure (HdR) - Université Grenoble-Alpes

Stefano SECCI Professeur (HdR) - CNAM
Isabelle CHRISMENT Professeure (HdR) - Université de Lorraine
Lucas NUSSBAUM Professeur associé - INRIA
Abdelhadi CHARI Ingénieur chercheur - ORANGE

Dir. de thèse : Adrien LEBRE Professeur (HdR) - IMT Atlantique

The art of victory is learned in defeat.

SIMON BOLIVAR

ACKNOWLEDGMENTS

I would first like to thank my thesis advisor, Adrien Lebre, who always pushed me to
give my best in all situations. Thanks for all your questions and your invaluable support
and assistance all along with this thesis. I could not imagine a better advisor than you.

Also, I want to thank my academic tutor, Lucas Nussbaum, for his valuable guidance
during my thesis. My sincere thanks to my enterprise advisor, Abdelhadi Chari, for all
his cooperation.

Otherwise, I wish also to thank jury members, Vania Marangozova-Martin and Stefano
Secci for having accepted to be rapporteurs of this thesis, Thomas Ledoux for having
accepted being the jury president, and Isabelle Chrisment for her presence as examiner.

I would also like to thank Maria Luisa Guerra Feliz de Vargas, NAVI team manager,
for allowing me to do a thesis at Orange Labs. I would like to acknowledge my colleagues
from the NAVI team, for their professionalism and expertise.

Throughout the thesis, I have received a great deal of assistance without which nothing
would have been possible. A special thanks to my former colleague, Ali Sanhaji, who
assisted me more than once with his technical expertise and suggestions every time I had
problems. Thanks for all the gym recommendations and all the dissertations at coffee
time.

I would like to thank the STACK team, for the warm welcome during my time at
Nantes and every event, we did together. I thank all the professors and fellow students
with whom I was able to exchange points of view and ideas. I would particularly like
to single out Marie Delavergne, I want to thank you for all your assistance and patience
while helping me in the development of my experiments. Thanks also to Ronan-Alexandre
Cherreau and Mathieu Simonin without which understanding Grid’5000 would have been
a nightmare.

I want also to thank all the colleagues, Ph.D. fellows, and interns that I have crossed
in this time at Orange. Thanks to Pierre-Léo Begay, Sylvain Barthomeuf, Pierre Mahé,
Anas El Ankouri, Flavio Sampaio, Gael Simon, Rémi Rigal, Minqi Wang, and Tanguy
Lé Gléau. Thanks to the colleagues of Cyclo Detente Ploulec’h with whom I shared the
passion for cycling. Thanks for all the rides and amazing views of Britany.

Despite the distance, I would like to thank my parents, Alvaro and Lucia, and my
grandmother, Nohora, for their constant support and understanding. Thanks to my broth-

iii

ers, Camilo and Ronald, for all the laughs and fights. Life wouldn’t have been the same
without you. How to forget my thanks to my faculty friends, Pedro Estupiñan, Christian
Jimenez, and Sebastian Valencia who have been there for me all these years.

Finally, my special thanks go to Deisy. For your neverending support, for all the talks,
for all the tears, for all the joys, for all the trips, for all the smiles. Because you have been
at my side in all situations with your unconditional love. This one is for you.

iv

ABSTRACT

The evolution of the cloud computing paradigm in the last decade has amplified the
access of on-demand services (economical attractive, easy-to-use manner, etc.). However,
the current model built upon a few large datacenters (DC) may not be suited to guarantee
the needs of new use cases, notably the boom of the Internet of Things (IoT). To better
respond to the new requirements (in terms of delay, traffic, etc.), compute and storage
resources should be deployed closer to the end-user. In the case of telecommunication
operators, the network Point of Presence (PoP), which they have always operated, can
be inexpensively extended to host these resources. The question is then how to manage
such a massively Distributed Cloud Infrastructure (DCI) to provide end-users the same
services that made the current cloud computing model so successful.

In this thesis realized in an industrial context with Orange Labs, we study the inter-
site connectivity management issue in DCIs leveraging the Software-Defined Network-
ing (SDN) principles. More in detail, we analyze the problems and limitations related to
centralized management, and then, we investigate the challenges related to distributed
connectivity management in DCIs.

We provide an analysis of major SDN controllers indicating whether they are able
or not to answer the DCI challenges in their respective contexts. Based on this detailed
study, which is a first contribution on its own, we propose the DIMINET solution, a service
in charge of providing on-demand connectivity for multiple sites. DIMINET leverages a
logically and physically distributed architecture where instances collaborate on-demand
and with minimal traffic exchange to provide inter-site connectivity management. The
lessons learned during this study allows us to propose the premises of a generalization in
order to be able to distribute in a non-intrusive manner any service in a DCI.

v

RÉSUMÉ EN FRANÇAIS

L’évolution du paradigme d’Informatique en nuage au cours de la dernière décen-
nie a permis de démocratiser les services à la demande de manière significative (plus
simple d’accès, économiquement attrayant, etc.). Cependant, le modèle actuel construit
autour de quelques centres de données de très grande taille ne permettra pas de répon-
dre aux besoins des nouveaux usages liés notamment à l’essor de l’Internet des Ob-
jets. Pour mieux répondre à ces nouvelles exigences (en termes de latence, volumétrie,
etc.), les ressources de calculs et de stockages doivent être déployées à proximité de
l’utilisateur. Dans le cas des opérateurs de télécommunications, les points de présence
réseau qu’ils opèrent depuis toujours peuvent être étendus à moindre cout pour héberger
ces ressources. La question devient alors : comment gérer une telle infrastructure native-
ment géo-distribuée (référencée dans le manuscrit sous l’acronyme DCI pour Distributed
Cloud Infrastructure) afin d’offrir aux utilisateurs finaux les même services qui ont fait le
succès du modèle actuel d’Informatique en nuage.

Dans cette thèse réalisée dans un contexte industriel avec Orange Labs, nous étudions
le problème de la gestion distribuée de la connectivité entre plusieurs sites d’une DCI et
proposons d’y répondre en utilisant les principes des réseaux définis par logiciel (connus
sous les termes "Software Defined Network"). De manière plus précise, nous rappelons les
problèmes et les limitations concernant la gestion centralisée, et ensuite, examinons les dé-
fis pour aller vers un modèle distribué, notamment pour les services liés à la virtualisation
réseaux.

Nous fournissons une analyse des principaux contrôleurs SDN distribués en indiquant
s’ils sont capables ou non de répondre aux défis des DCIs. Sur cette étude détaillé, qui
est une première contribution en soi, nous proposons la solution DIMINET, un service en
charge de fournir une connectivité à la demande entre plusieurs sites. DIMINET s’appuie
sur une architecture distribuée où les instances collaborent entre elles à la demande et avec
un échange de trafic minimal pour assurer la gestion de la connectivité. Les leçons apprises
durant cette étude nous permettent de proposer les prémisses d’une généralisation afin
de pouvoir ”distribuer” d’une manière non intrusive n’importe quels services en charge de
gérer une infrastructure géo-distribuée.

vii

RÉSUMÉ ETENDU

Depuis les quinze dernières années, le paradigme cloud computing a complètement
changé la manière dont nous accédons et utilisons les technologies de l’information. En
proposant un accès en libre-service aux ressources, services et applications disponibles en
ligne, les utilisateurs ont le pouvoir de payer à la demande pour ce qui est réellement
utilisé. En général, les services cloud sont réunis en trois catégories : SaaS qui fournit
des logiciels prêts à être utilisés, PaaS qui fournit des plateformes de développement, et
Iaas, qui fournit des ressources d’infrastructure telles que capacité de calcul, stockage sur
disque ou connectivité réseau.

Pour proposer les ressources d’infrastructure, nous faisons l’utilisation des technologies
de virtualisation, qui permettent de faire l’abstraction des objets physiques dans des objets
virtuels qui sont proposés à l’utilisateur, dont l’exemple le plus connu sont les machines
virtuelles (VMs) . Ces infrastructures virtualisées sont très importantes pour le cloud
computing, mais ajoutent une couche supplémentaire de complexité d’un point de vue
de la gestion. Pour centraliser le management ainsi que le monitoring, nous allons nous
appuyer sur des gestionnaires d’infrastructure virtualisé (VIM en anglais pour virtual
infrastructure managers), dont OpenStack est un des gestionnaires open-source le plus
populaire et utilisé pour le management des infrastructures cloud.

OpenStack est une plateforme composée par 29 services au total dont les trois les plus
importants correspondent aux trois types de virtualisation les plus connus : Nova pour le
compute, Cinder pour le stockage et Neutron pour le réseau. Ces services vont utiliser un
service commun d’authentification qui s’appelle Keystone. L’effort collectif d’OpenStack
se compose de plus de 10 millions de lignes de code en Python dont Orange est un
contributeur sur les aspects de la virtualisation réseau. Plus de détails du background de
cette thèse sont présentes dans le Chapitre 2.

Des gestionnaires, comme OpenStack, sont utilisés aujourd’hui dans l’industrie pour
gérer des infrastructures cloud tel que montré dans la Figure 1(a). Le schéma représente
l’infrastructure d’accès d’un opérateur des télécommunications comme Orange. Il y a
quelques grosses data centers depuis lesquels l’operateur va fournir des services cloud aux
utilisateurs à l’échelle d’un pays voir d’un continent. Ensuite, il existe une série de points
de présence (PoP) régionaux et locaux qui sert à interconnecter plusieurs réseaux d’accès
des utilisateurs. La popularité du cloud computing a permis la naissance des services et

ix

des applications comme l’internet des objets (IoT), le mobile edge computing (MEC), les
functions réseau virtualisés (NFV) ou le cloud gaming pour lesquelles le modèle tradi-
tionnel du cloud n’a pas été conçu. Aujourd’hui l’opérateur doit faire face aux exigences
de latence de l’ordre de la milliseconde, nous connaissons une explosion de trafic vers les
data centers et de plus en plus les utilisateurs sont concernés pour que leur données soient
stockés le plus proche d’eux.

Core network

ProcessingStorage

Data Center #2Data Center #1

Regional PoP

Local PoP Local PoP

ProcessingStorage

VIM VIM

(a) Infrastructure cloud traditionnelle

Core network

Data Center #2Data Center #1

Regional PoP

Local PoP Local PoP

ProcessingStorage ProcessingStorage

ProcessingStorage

ProcessingStorage

ProcessingStorage

(b) Infrastructure cloud distribué

Figure 1 – Evolution de l’infrastructure cloud vers le DCI.

En conséquence, il s’avère nécessaire de déployer des ressources cloud plus proches
de l’utilisateur tel que montré sur la Figure 1(b). Pour cela, nous pouvons profiter des
PoPs déjà existants dans l’infrastructure pour en déployer des ressources de calcul et
de stockage et créer une infrastructure composée par des centaines voir des milliers de
micro data centers. Cette infrastructure cloud distribuée (DCI) pourra mieux répondre
aux besoins et exigences des nouvelles applications.

Cette nouvelle infrastructure nous pose la question de comment effectuer son manage-
ment. Pour cette action, il y a deux techniques qui peuvent être utilisées : un management
centralisé similaire à celui du modèle traditionnel ou un management consistant à déployer
une instance d’un gestionnaire d’infrastructure par micro data center dans une approche
distribuée. La première approche consiste à manager la totalité de l’infrastructure comme
un seul data center. Dans cette approche, le gestionnaire doit faire face aux problèmes
connus des architectures centralisés (SPOF) ou encore les partitionnements réseau. La

x

deuxième solution peut mieux correspondre à la nature distribuée de l’infrastructure et
diminuer les risques associés à une architecture centralisée.

Pour fournir ce management distribué, une grande question s’est pose : comment in-
terconnecter et manager plusieurs gestionnaires d’infrastructure d’une manière distribuée
nativement ? Le problème avec les gestionnaires déjà utilisés dans l’industrie comme
OpenStack est qu’ils ont été conçus d’une manière centralisée et nativement il n’y a pas
de communication entre gestionnaires différents. L’objectif serait d’étendre les gestion-
naires pour permettre une collaboration native entre eux.

Cette manière de manager les gestionnaires doit être en mesure de garantir les pro-
priétés suivantes :

— Passage à l’échelle : Nous devons être en capacité de déployer autant des ges-
tionnaires que nécessaire pour l’infrastructure.

— Résilience : Tous les gestionnaires doivent pouvoir résister aux pannes et parti-
tionnement réseaux.

— Localité des données : Les données crées par un gestionnaire doivent rester aussi
locales que possible.

— Abstraction et automatisation : Permettre le déploiement des scénarios com-
plexes d’une manière simple pour l’utilisateur.

Dans cette thèse nous nous concentrerons plus particulièrement sur comment manager
et interconnecter des constructions réseau appartenant aux gestionnaires indépendants.
Puisque le réseau est le moyen de communication pour tous les autres objets comme les
machines virtuelles et le stockage, les réseaux virtuels jouent un rôle clé dans une infras-
tructure cloud distribuée. L’idée est d’être en mesure de proposer les mêmes ressources
réseau que nous connaissons dans le modèle traditionnel du cloud mais d’une manière
distribuée. Nous considérons particulièrement les quatre ressources suivantes :

— Routage de niveau 3 : Être capable de router du trafic entre des réseaux virtuels
appartenant aux gestionnaires indépendants.

— Extension du niveau 2 : Être capable d’avoir un réseau virtuel étendu sur
plusieurs gestionnaires indépendants.

— Politiques de filtrage de trafic et de qualité du service : Être capable de
dicter de règles de filtrage et de qualité pour le trafic acheminé entre des gestion-
naires indépendants.

— Service Function Chainning : Être en mesure de définir un chemin pour le trafic
notamment pour traverser des fonctions réseau virtualisés.

Pour être capables de fournir ces ressources réseau nous arrivons à la première con-
tribution de cette thèse qui est la définition des défis de management réseau pour une

xi

DCI. Nous avons choisi de diviser ces défis en deux catégories, ceux correspondant à
l’organisation de l’information réseau et ceux correspondant à l’implémentation technique
de ce management. L’intégralité du contexte de cette thèse se trouve dans le Chapitre 3.

— Partage de l’information réseau : Le premier défi concerne le partage d’information
réseau. Si nous prenons l’exemple d’un réseau virtuel partagé entre deux gestion-
naires, il faudrait penser comment partager les adresses IP. Une première manière
serait de communiquer entre les différents sites chaque fois qu’une IP est attribuée.
Ça permettra d’éviter les conflits, mais avec la conséquence d’une surcharge de
communication et de l’établissement d’une connaissance globale. Une deuxième
manière pourrait être de diviser la totalité des adresses disponibles entre les deux
sites dès la création de la ressource. Donc, nous devons analyser et comprendre les
différentes ressources réseau concernées pour savoir quelles sont les informations à
partager entre les gestionnaires. Cela nous permettra de proposer des stratégies de
partage de l’information spécifiquement définies pour chaque type de ressource.

— Identifier comment communiquer avec les sites distants : Le deuxième défi
concerne la portée d’une requête pour communiquer avec les sites distants. Comme
nous avions évoqué pour la propriété de localité des données, il est nécessaire que les
données créées par un gestionnaire restent aussi locales que possible. Si nous avons
un réseau virtuel qui existe seulement dans un site 1, ce n’est pas nécessaire pour
le site 2 de connaître les adresses IP et MAC de ce réseau distant. Si l’utilisateur
demande la création d’un réseau L2 entre ces deux sites, alors c’est là qu’il faudra
communiquer avec le site 2. Considérer la portée d’une requête est essentielle pour
éviter une surcharge dans la quantité de trafic demandé pour la synchronisation
d’une DCI. Le fait de contacter seulement les sites pertinents pour une requête
permettra de diminuer la surcharge de communication.

— Face aux déconnexions du réseau : Le troisième défi concerne la disponibilité
des gestionnaires en cas de panne ou déconnexion réseau. C’est-à-dire que chaque
gestionnaire isolé doit être en mesure de fournir ces services cloud localement.
Par ailleurs, les gestionnaires non affectés doivent pouvoir continuer à proposer les
ressources inter-sites.

— Interfaces standard automatisées et distribuées : Ce défi d’implémentation
technique concerne la définition des interfaces permettant de communiquer avec les
utilisateurs, mais permettant la communication entre gestionnaires. Ces interfaces
doivent être couplées entre elles pour permettre l’automatisation de la procédure
de communication entre les gestionnaires pour fournir les ressources réseau. Alors,
il est nécessaire de définir la liste des abstractions réseau qui seront proposées à

xii

l’utilisateur.
— Support et adaptation des technologies de mise en réseau : Le dernier

défi concerne le support et l’adaptation des technologies réseau. En complément de
l’information réseau partagé dans le premier défi, il est nécessaire aussi de partager
l’information concernant les mécanismes réseau permettant l’implémentation des
ressources dans l’infrastructure virtualisée. Bien qu’il y a plusieurs protocoles et
technologies réseau existant ils devront être adaptés au contexte DCI. Les gestion-
naires doivent être en mesure d’échanger d’une manière automatisée ces informa-
tions, car l’utilisateur ne doit pas être au courant de cet échange d’information.

Pour être en capacité de fournir les différents ressources réseau et de répondre aux
défis de management réseau dans une DCI, dans cette thèse nous nous sommes appuyés
sur le paradigme des réseaux défini par logiciel (SDN pour Software-Defined Network-
ing). En effet, ce paradigme peut nous donner des pistes pour la décentralisation des
fonctionnalités réseau dans les gestionnaires. Le SDN propose de programmer le contrôle
du réseau en faisant l’abstraction de l’infrastructure réseau pour des applications et des
services. SDN s’appuie sur la division entre le plan contrôle, chargé de manager le réseau
et les règles logiques d’acheminement de trafic et le plan de données, qui correspond à
l’infrastructure réseau qui applique les règles dictées par le plan de contrôle. Le plan de
contrôle se trouve dans une entité appelée contrôleur SDN. Cette entité peut se trouver
d’une manière distribue et pour en communiquer, les contrôleurs vont utiliser une interface
de communication appelée East-West.

Pour notre étude de l’état de l’art, nous avons choisi des propositions SDN décen-
tralisés académiques et open-source en les divisant en deux catégories : des contrôleurs
orientés vers le réseau traditionnel et les contrôleurs orientés vers le cloud. Nous avons
aussi étudié des solutions de distribution de management au sein des gestionnaires. L’étude
de ces différents propositions est disponible dans les Chapitres 5, 6 et 7. Tout d’abord
nous avons effectué une classification des propositions, selon leur modèle d’architecture,
selon de caractéristiques de leur implémentation comme la stratégie de coordination, les
protocoles de communication ou la base de données utilisée. Et, selon des propriétés
d’interopérabilité et de maturité comme les protocoles réseau supportés, le type de réseau
envisagé et le niveau de maturité. Comme nous avons pris OpenStack comme gestionnaire
d’infrastructure pour tous les potentiels développements, nous avons pris en compte la
compatibilité des solutions avec ce gestionnaire. Les détails de ces différents propriétés
se trouvent dans le Chapitre 4 de cette thèse. Avec l’étude de ces caractéristiques nous
avons effectué l’analyse de comment chaque contrôleur répondait aux défis réseau dans
un contexte DCI. Malheureusement, aucune solution était en mesure de répondre à la

xiii

Propositions
Organisation de l’information réseau Implémentation des ressources inter-site
Granularité
de l’info

Porté de
l’info

Disponibilité
de l’info

Interfaces
automatisés

Technologies
réseau

Solutions orientés vers le réseau
DISCO 3 3 3 3 7
D-SDN 3 ~ ? 7 7
ElastiCon ~ ? ? ~ 7
FlowBroker 7 7 3 7 7
HyperFlow 3 ~ ~ ~ 7
Kandoo 7 7 3 7 7
Orion 7 7 ? 7 7

Solutions orientés vers le Cloud
DragonFlow ~ ? ? ~ ~
ODL (Fed) 3 3 ~ 3 3
Onix ~ ? ? ~ ~
ONOS ~ ? ? ~ 3
Tungsten 7 7 ? 7 3

Solutions d’autre type
Kubernetes Federation 7 ~ 3 7 7
Kubrnetes Istio Multi-Cluster Service Mesh 3 3 ~ 7 7
OpenStack P2P external proxy-agents ~ ~ 3 3 7
OpenStack Tricircle ~ ? ? ~ ~

1 3Défi répondu.
2 ~ Défi partiellement répondu.
3 7Défi pas répondu.
4 ? Non défini.

Table 1 – Résume des solutions analysés.

totalité des défis DCI comme résumé dans le Chapitre 8. Malgré l’impossibilité de trouver
un candidat parfait, deux de ces contrôleurs répondaient à la plus grande quantité de défis
: DISCO et OpenDayLight.

Nous avons décidé d’utiliser les principes de ces contrôleurs dans DIMINET : un
module distribué pour le management des ressources réseau inter-site. L’explication de
DIMINET et des différents tests que nous avons effectué se trouvent dans les chapitres 9
et 10.

DIMINET propose une architecture complètement distribuée dans laquelle une in-
stance du module est déployée à côté du service réseau du gestionnaire d’infrastructure
tel que montré dans la Figure 2. Comme les modules sont indépendants entre eux, des
nouvelles instances de DIMINET peuvent joindre l’infrastructure sans affecter le com-
portement des autres. Nous avons aussi profité de l’idée de la communication East-West
des contrôleurs SDN pour permettre une communication horizontale entre les modules.
De cette manière les modules vont contacter les modules distants seulement quand cela
soit nécessaire pour la création d’une ressource inter-site.

Nous avons implémenté DIMINET comme un module déployable à côté de Neutron, le
service réseau d’OpenStack. De plus, en suivant le même pattern de Neutron et d’autres
services d’OpenStack, DIMINET a été codée en Python et les interfaces North et East-
West ont été construites comme des interfaces API REST. Un des éléments les plus impor-
tants de DIMINET est son cœur logique, chargé du management des ressources inter-site

xiv

Neutron DIMINET
instance

RegionOne/
Site 1

NeutronDIMINET
instance

RegionTwo/
Site 2

network_A

Instance
VM VM

Instance

network_C

Instance
VM VM

Instance

NeutronDIMINET
instance

RegionTwo/
Site 3

network_B

Instance
VM VM

Instance

Figure 2 – Architecture de DIMINET.

y compris l’utilisation de l’interface horizontal pour requêter les modules distants quand
cela s’avère nécessaire. Pour adresser le défi de granularité de l’information, nous avons
conçu des stratégies de partage d’information par type de ressource qui sont implémentés
dans le cœur logique. Pour cette première proposition de DIMINET nous avons conçu des
stratégies pour les ressources L3 routage et L2 extension que nous allons expliquer par la
suite.

La ressource de routage L3, permet de router du trafic entre des sous-réseaux appar-
tenant à des sites différents. Par conception, les sous-réseaux ne peuvent pas se chevaucher
entre eux. C’est-à-dire, l’espace d’adressage d’un sous-réseau doit être unique par rap-
port aux autres sous-réseaux qui sont routé. Cette validation doit être effectué lorsque la
ressource inter-site est crée entre plusieurs modules de DIMINET. En prennant compte
de ce besoin, notre stratégie de partage de l’information se déroule comme montré dans
la Figure 3 et comme expliqué par la suite :

1. L’utilisateur demande la création d’une ressource de type routage L3 entre le réseau
A du site 1 et le réseau B du site 2.

2. Le module du site 1 devient le master de la ressource.

3. Le master fait des requêtes pour avoir les informations des réseaux A et B.

4. Le master vérifie les préfixes réseau des réseaux A et B.

5. Le master envoie une requête aux module distants en demandant la création d’une
ressource inter-site de type routage L3.

xv

VIM
Net Service

DIMINET
instance

Site 1

VIM
Net Service

DIMINET
instance

Site 3

network_A

Instance
VM VM

Instance

network_C

Instance
VM VM

Instance

VIM
Net Service

DIMINET
instance

Site 2

network_B

Instance
VM VM

Instance

1

10.1.2.0/23

10.1.4.0/23

North interface

East-West interface

3

3

5

6

4

2 7

7

Figure 3 – Ressource de routage L3 : Stratégie de partage de l’information.

6. Une fois que tous les modules concernés ont créée la ressource, le master répond à
l’utilisateur que la ressource a été créée.

7. Les modules effectuent l’échange d’information des mécanismes de mise en réseau.

Pour maintenir la cohérence de l’information nous avons décidé d’utiliser un leader par
opération, mais pour éviter la complexité d’utiliser un algorithme de consensus dans un
contexte DCI, qui est une problematique en tant que telle, nous avons décidé d’utiliser un
master choisi d’une manière statique et c’est le module qui reçoit la requête qui devient le
master de cette ressource. Pour des modifications postérieures de la ressource, c’est que le
module master qui pourra faire des modifications, c’est-à-dire ajouter ou retirer des sites
de la ressource inter-site L3.

Ensuite, nous avons la ressource d’extension L2 qui donne la possibilité de connecter
au même réseau virtuel des VMS appartenant à des sites différents. Pour appartenir
au même réseau virtuel, les éléments attachés doivent avoir le même préfixe réseau et
doivent avoir des adresses MAC et IP uniques. Donc l’allocation des adresses MAC et
IP doivent être coordonnées entre les sites pertinents pour une requête. Dans le cas de
Neutron les adresses MAC sont créées selon un pattern du gestionnaire ce qui est facile à
changer entre les déploiements. Alors, nous devons effectuer la coordination des adresses

xvi

North interface

East-West interface

VIM
Net Service

DIMINET
instance

Site 1

VIM
Net Service

DIMINET
instance

Site 3

network_A

network_X

Instance
VM VM

Instance

VIM
Net Service

DIMINET
instance

Site 2

10.1.2.0/23

1

3 4

5

6

7

8

2 9

9

Figure 4 – Ressource d’extension L2 : Stratégie de partage de l’information.

IP. Dans DIMINET, nous avons pris l’approche d’étendre un réseau existant sur un site
vers d’autres sites comme montré dans la Figure 4 et expliqué par la suite :

1. L’utilisateur demande la création d’une ressource de type extension L2 pour que le
réseau A du site 1 soit étendu vers le site 2.

2. Le module du site 1 devient le master de la ressource.
3. Le master effectue la division des adresses IP disponibles dans le réseau et fait les

requêtes à son gestionnaire local pour effectuer les changements nécessaires.
4. Le master envoie une requête aux module distants en demandant la création d’une

ressource inter-site de type extension l2.
5. Chaque module distant demandé effectue des requêtes auprès de leurs gestionnaires

locaux pour créer les réseaux virtuels avec les paramètres fournis par le master.
6. Le master fait la mise à jour de sa liste de réseaux virtuels composant la ressource

inter-site de type l2 extension grâce à la réponse des modules distants.
7. Le master envoie la liste des réseaux composant la ressources à tous les modules

concernés.
8. Une fois que tous les modules concernés ont fait la mise à jour de la ressource, le

master répond à l’utilisateur que la ressource a été créée.

xvii

9. Les modules effectuent l’échange d’information des mécanismes de mise en réseau.

Concernant la dernière étape des deux stratégies à propos de l’échange d’information
des mécanismes de mise en réseau, comme DIMINET a été proposé pour être implémenté
à côté de neutron, nous n’avons pas implémenté l’échange d’information pour la connec-
tivité dans le plan de données en utilisant l’interface East-West. Nous avons plutôt profité
des technologies déjà existantes sur Neutron notamment le service plugin des intercon-
nexions qui utilise la technologie BGPVPN. En attribuant des identifiants connus comme
route target plusieurs sites peuvent échanger des informations des routes à l’aide du pro-
tocole BGP, une fois l’information de routage échangée le trafic du plan de données est
acheminé en utilisant des protocoles d’encapsulation. DIMINET automatise la création
de ces ressources dans tous les sites nécessaires pour une requête.

Cette thèse voulait contribuer avec des nouvelles approches pour la gestion distribuée
de la connectivité dans des infrastructures cloud edge. Pour cela nous avons étudié et
analysé la décentralisation du data center vers une infrastructure cloud distribuée com-
posée par une grande quantité de micro data centers et nous avons défini une liste des
défis à résoudre pour être en mesure de fournir les ressources réseau existants dans le mod-
èle cloud traditionnel. Nous nous sommes inspirés sur les principes des contrôleurs SDN
logiquement et physiquement distribués pour proposer DIMINET, un module capable
de manager des ressources réseau inter-site pour OpenStack. Malgré plusieurs problèmes
logiciels rencontrés pendant les tests, les résultats des expériences sont prometteuses.

xviii

TABLE OF CONTENTS

Abstract v

Résumé en Français vii

Résumé Etendu ix

List of acronyms xxiii

List of figures xxviii

List of tables xxix

Introduction 1
Research Questions and Contributions . 2
Thesis Organization . 3

I Background 5

2 Background on Cloud Infrastructures 7
2.1 Cloud computing . 7

2.1.1 Cloud Computing Characteristics . 8
2.1.2 Cloud Deployment Types . 8
2.1.3 Cloud Service Types . 9
2.1.4 Managing cloud virtualized infrastructures 11

2.1.4.1 OpenStack . 11
2.1.4.2 Kubernetes . 15

2.2 Software-Defined Networking . 16
2.2.1 SDN-based Cloud Networking . 18

2.2.1.1 OpenStack Neutron: Networking as a Service 18
2.2.1.2 Kubernetes Networking . 19

2.3 Summary . 20

xix

TABLE OF CONTENTS

3 Distributed Cloud Infrastructures: the context 21
3.1 Distributed Cloud Infrastructures . 21

3.1.1 DCI Distributed Management Characteristics 23
3.2 Why Revising Software Stacks Is Needed For DCIs 24
3.3 Networking Management Challenges in DCIs 25

3.3.1 Network Information’s Challenges 27
3.3.2 Technical challenges . 30

3.4 Summary . 31

II State Of The Art 33

4 Multi-instance solutions for DCI architectures: Properties 35
4.1 SDN Solutions for DCIs . 35
4.2 Architecture . 35
4.3 Leader-Based Operations . 37
4.4 Database Management System . 38
4.5 SDN Interoperability and Maturity . 39
4.6 Related Works in SDN . 41
4.7 Summary . 42

5 Network-oriented SDN controllers 44
5.1 DISCO . 44
5.2 D-SDN . 46
5.3 Elasticon . 47
5.4 Flowbroker . 49
5.5 HyperFlow . 51
5.6 Kandoo . 53
5.7 ORION . 54
5.8 Summary . 56

6 Cloud-oriented SDN controllers 58
6.1 DragonFlow . 58
6.2 OpenDayLight . 60
6.3 Onix . 62
6.4 ONOS . 64
6.5 Tungsten . 66
6.6 Summary . 67

xx

TABLE OF CONTENTS

7 Other decentralized propositions 69
7.1 OpenStack P2P External Proxy-Agents . 69
7.2 OpenStack Tricircle . 71
7.3 Kubernetes Federation . 73
7.4 Kubernetes Istio Multi-Cluster Service Mesh 75
7.5 Summary . 77

8 Multi-instance learned lessons and perspectives 79
8.1 Lessons Learned on Multi-instance Cloud Controllers 79
8.2 Summary . 82

III DCI networking: Going the distributed way 83

9 Distributing connectivity management with DIMINET 85
9.1 Leveraging Retained SDN Principles . 85
9.2 DIMINET’s Architecture Overview . 86
9.3 DIMINET’s Logic Core . 88

9.3.1 Resources Sharding Characteristics 88
9.3.1.1 L3 Routing Resource . 89
9.3.1.2 L2 Extension Resource . 90

9.3.2 Data Model . 92
9.4 Communication Interfaces . 95
9.5 Data Plane Traffic Exchange . 96
9.6 Summary . 99

10 Evaluation of DIMINET 102
10.1 DIMINET with OpenStack: PoC Validation 102

10.1.1 L3 Routing Resources . 102
10.1.2 L2 Extension Resources . 104

10.2 Grid’5000: Testbed and Setup . 105
10.3 Evaluation of Inter-Site Resources Deployment 106

10.3.1 Layer 3 Routing Resource . 107
10.3.2 Layer 2 Extension Resource . 109

10.4 Evaluation of Resiliency . 112
10.5 Evaluation of DIMINET Scalability . 113
10.6 Summary . 117

xxi

TABLE OF CONTENTS

IV Conclusions & Perspectives 119

Conclusions and Perspectives 121

List of publications 135

V Appendices 137

Bibliography 152

xxii

LIST OF ACRONYMS

AMQP Advanced Message Queuing Protocol
API Application Programming Interface
ARP Address Resolution Protocol
AS Autonomous System
AWS Amazon Web Services
BGP Border Gateway Protocol
BGPVPN Border Gateway Protocol based Virtual Private Network
CNF Cloud-native Network Function
CIDR Classless Inter Domain Routing
CIS Container Infrastructure Service
CISM Container Infrastructure Service Manager
CNI Container Network Interface
CORD Central Office Re-architected as a Datacenter
CRD Custom Resource Definition
CRDT Conflic-free Replicated Data Type
CRI Container Runtime Interface
CRUD Create Read Update Delete
D-SDN Decentralized SDN
DB DataBase
DC Datacenter
DBaaS Data Base as a Service
DCI Distributed Cloud Infrastructure
DISCO Distributed SDN Control Plane
DHCP Dynamic Host IP Protocol
DHT Distributed Hash Table
DIMINET Distributed Module for Inter-site Networking

xxiii

List of acronyms

DNS Domain Name System
eBPF extended Berkeley Packet Filter
Elasticon Elastic Controller
ER Entity Relationship
ETSI European Telecommunications Standard Institute
EVPN Ethernet Virtual Private Network
GBP Group Based Policy
GCP Google Cloud Platform
GUI Graphical User Interface
HA High Availability
IaaS Infrastructure as a Service
IBGP Internal Border Gateway Protocol
ICMP Internet Control Message Protocol
IPAM IP Address Management
IoT Internet of Things
IP Internet Protocol
IPVPN Internet Protocol Virtual Private Network
IT Information Technology
K8S Kubernetes
LISP Local ID Separation Protocol
L2 Layer 2
L2GW Layer 2 Gateway
L3 Layer 3
MAC Media Access Control
MANO Management and Orchestration
MC Main Controller
MEC Mobile Edge Computing
ML2 Modular Layer 2
MP-BGP Multi Protocol Border Gateway Protocol
MPLS Multi Protocol Label Switching

xxiv

List of acronyms

NAT Network Address Translation
NETCONF Network Configuration Protocol
NetVirt Network Virtualization Services
NFV Network Function Virtualization
NIB Network Information Base
NIC Network Interface Card
ODL OpenDayLight
ONOS Open Networking Operating System
OS Operating System
OSI Open System Interconnection
OVS Open Virtual Switch
OVSDB Open Virtual Switch DataBase
P2P Peer-to-Peer
PaaS Platform as a Service
PoC Proof-of-Concept
PoP Point of Presence
QoS Quality of Service
RAN Radio Access Network
RDBMS Relational Database Managing System
REST Representational State Transfer
RMS Resource Management System
RR Route Reflector
SaaS Software as a Service
SAL Service Adaptation Layer
SC Secondary Controller
SDN Software Defined Network
SNMP Simple Network Management Protocol
SONA Simplified Overlay Network Architecture
SFC Service Function Chaining
SPF Shortest Path First

xxv

List of acronyms

SPOF Single Point Of Failure

SQL Structured Query Language

TC Linux Traffic Control

TCP Transmission Control Protocol

Telco Telecommunication Operator

TRL Technological Readiness Level

URL Uniform Resource Locator

UUID Universally Unique Identifier

vCPU virtual CPU

VIM Virtual Infrastructure Manager

VLAN Virtual Local Area Network

VM Virtual Machine

VN Virtual Network

VNF Virtualized Network Function

vNIC virtual Network Interface Card

VPN Virtual Private Network

VPNaaS Virtual Private Network as a Service

vRAM virtual RAM

vRouter virtual Router

VTN Virtual Tenant Network

VXLAN Virtual Extensible Local Area Network

WAN Wide Area Network

WIM WAN Infrastructure Manager

WSGI Web Server Gateway Interface

XMPP Extensible Messaging and Presence Protocol

xxvi

LIST OF FIGURES

1 Evolution de l’infrastructure cloud vers le DCI. x
2 Architecture de DIMINET. xv
3 Ressource de routage L3 : Stratégie de partage de l’information. xvi
4 Ressource d’extension L2 : Stratégie de partage de l’information. xvii

2.1 Cloud Services types: Infrastructure as a Service (IaaS), Platform as a Ser-
vice (PaaS), & Software as a Service (SaaS) 10

2.2 OpenStack landscape . 12
2.3 OpenStack overview. 13
2.4 Kubernetes cluster components. 15
2.5 SDN general architecture . 17
2.6 Neutron deployment components. 19

3.1 Evolution of a cloud infrastructure towards a DCI. 22
3.2 DCI management techniques. 23
3.3 Network Information Challenge 2: Layer 2 extension request 28
3.4 Network Information Challenge 3: Operate in isolated mode. 29
3.5 Technical Challenge 1: automatized interfaces 30

4.1 SDN topologies . 36

5.1 DISCO SDN controller architecture . 45
5.2 D-SDN SDN controller architecture . 47
5.3 Elasticon SDN controller architecture . 48
5.4 FlowBroker SDN controller architecture . 50
5.5 HyperFlow SDN controller architecture . 51
5.6 Kandoo SDN controller architecture . 53
5.7 Orion SDN controller architecture . 55

6.1 DragonFlow SDN controller architecture . 59
6.2 OpenDayLight Federation NetVirt SDN controller architecture 61
6.3 Onix SDN controller architecture . 63
6.4 ONOS SDN controller architecture . 65

xxvii

LIST OF FIGURES

6.5 Tungsten SDN controller architecture . 67

7.1 P2P external proxy-agents architecture . 70
7.2 OpenStack Tricircle architecture . 72
7.3 Kubernetes Federation architecture . 74
7.4 Istio Multi-Cluster Service Mesh architecture 76

9.1 DIMINET overview. 87
9.2 DIMINET internal design. 88
9.3 DIMINET L3 Routing Resource. 90
9.4 DIMINET L2 Extension Resource. 92
9.5 DIMINET data model. 93
9.6 Neutron-to-Neutron Interconnection Plug-in. 97
9.7 Neutron BPG-VPN Plug-in. 99

10.1 DIMINET & OpenStack L3 traffic capture. 103
10.2 DIMINET & OpenStack L2 traffic capture. 104
10.3 DIMINET testbed setup . 106
10.4 L3 routing resource creation time. 107
10.5 L3 routing resources creation time comparison (seconds). 108
10.6 L2 extensions resource creation time . 110
10.7 L2 extension resources creation time comparison (seconds). 111
10.8 DIMINET Resiliency test . 112
10.9 DIMINET scalability tests. 114
10.10 Scalability time comparison tests. 115
10.11 Cassandra DataBase (DB) DHT example. 126
10.12 Cilium Multi-Cluster architecture . 128
10.13 General data model based on DIMINET. 131

A.1 DIMINET L3 routing Resource creation sequence diagram. 139
A.2 DIMINET L2 extension Resource creation sequence diagram. 140

C.1 DIMINET GUIs. 149

D.1 BPG Route Reflectors. 151
D.2 DIMINET & OpenStack with BPG Route Reflectors. 152

xxviii

LIST OF TABLES

1 Résume des solutions analysés. xiv

3.1 DCI Challenges summary . 26

5.1 Classification of surveyed network-oriented SDN solutions. 56
5.2 Challenges summary of network-oriented solutions. 57

6.1 Classification of surveyed cloud-oriented solutions. 68
6.2 Challenges summary of cloud-oriented solutions. 68

7.1 Classification of surveyed solutions. 78
7.2 Challenges summary of other solutions. 78

8.1 Classification of surveyed solutions. 80
8.2 Summary of the analyzed solutions. 81

9.1 DIMINET CRUD Operations . 95

xxix

INTRODUCTION

The cloud computing paradigm has redefined the way Information Technology (IT)
resources are managed and delivered. By proposing a series of on-demand services such as
PaaS, SaaS, and IaaS, users can avoid the, sometimes, prohibitive prices of on premises
hardware and software. Traditionally, a few large data centers are deployed to deliver these
services to users located in a large geographical zone. While this model is well-fitted to
provide traditional cloud services, it cannot guarantee the operational requirements of new
services such as Internet of Things (IoT), Mobile Edge Computing (MEC), Radio Access
Network (RAN), Network Function Virtualization (NFV) (i.e., delay constraints of the
order of a millisecond, geo-distributed fault tolerance, or the respect of legal requirements
for data). In consequence, cloud infrastructures should be adapted to take into account
these new services.

Since the backbone of Telecommunication Operators (Telcos) is already composed of
a series of regional and local Points of Presences (PoPs) used to interconnect access net-
works, they can be extended with additional servers to expand the cloud even closer to the
user. The proposals to manage such a Distributed Cloud Infrastructure (DCI) are based
either on a centralized approach or a federation of independent Virtual Infrastructure
Managers (VIMs). The former lies in operating a DCI as a traditional single data center
environment, the key difference being the Wide Area Network (WAN) found between the
control and the PoPs. The latter consists of deploying one VIM on each DCI site and fed-
erate them through a brokering approach to give the illusion of a single coherent system
promoted by ETSI NFV Management and Orchestration (MANO) framework [1]. This
federated approach could better fit the requirements and constraints of a DCI since each
site is independent and can continue to operate locally. However, the downside relates
to the fact that resource management systems do not provide any mechanism to deliver
inter-site services. In other words, VIMs have not been designed to peer with other in-
stances to establish inter-site services but rather in a pretty stand-alone way to manage
a single deployment.

This limitation has motivated the work presented in this manuscript. More precisely,
we address the management of DCIs in a collaborative way among independent instances
of resource managers.

To allow a seamless utilization of such architecture, a key point in this context is the

1

Introduction

networking connectivity among independent sites. Indeed, virtual network resources are
critical to allow other cloud resources to exchange traffic among them and to provide their
services to users. Since networking operations affect these resources (i.e., side effects), they
need to be carefully managed in DCIs. Technologies such as Software Defined Network
(SDN), which propose a decoupling among control and data plane [2], can be leveraged
to provide such networking operations among VIMs [3].

Research Questions and Contributions

Following the aforementioned scope, this thesis focuses on the distributed management
of DCIs with a particular focus on virtual network connectivity. The principal research
questions are the following:

• How to manage a distributed cloud infrastructure composed of several
independents instances/sites?. A simple, scalable, and efficient management
solution is needed to administrate and use such a DCI.

• How to provide connectivity for inter-site virtual networking resources?.
The same virtual networking abstractions already provided at the data center
should be proposed at the DCI level.

This thesis aims to explore and propose distributed approaches inspired by SDN so-
lutions to manage DCIs connectivity while assuring the scalability, resiliency, locality
awareness, and usability of the entire system.

The first contribution of this thesis is the identification of the challenges present
in DCI scenarios when trying to distribute services management, and more precisely the
connectivity one. The analysis of the challenges allows us to find the major fields where
further research and propositions can be done. This work led to a publication on the
national Conférence d’informatique en Parallélisme, Architecture et Système 2019.

Our second contribution is an extensive review of literature on distributed SDN
controllers. This review focuses on principle design aspects as well as the analysis of
whether the proposition can coop with the DCI challenges or not. The review finishes
by highlighting the benefits of some of the surveyed SDN controllers and how they can
contribute to a collaborative model for multi-site management. This contribution has been
published at the IEEE Communications Surveys & Tutorials journal 2021.

The third contribution concerns the design and implementation of a Distributed
Module for Inter-site Networking (DIMINET) leveraging a fully distributed architecture.
By leveraging the principles of the retained SDN controllers, the proposed architectural
model can provide on-demand inter-site networking resources among independent sites of

2

Introduction

a DCI. DIMINET’s proposition has been published at the 20th IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing. Moreover, the Proof-of-Concept
(PoC) of this contribution has been presented at the 2020 Open Infrastructure Summit.

Thesis Organization

This thesis is composed of 11 chapters gathered in four parts. The first part consists of
two chapters, it defines the background and context of this doctoral work and introduces
the first contribution. The second part is a state-of-the-art analysis composed of five
chapters detailing the second contribution. The third part is composed of two chapters and
introduces our third contribution. The fourth part is composed of one chapter concluding
this thesis and providing some insights about future research directions, specially by
providing a first step towards a generalization of our works. We underline that each part
starts with a brief preamble providing an outline of the chapters. The same is done in
each chapter, starting with a brief preamble, which gives an overview of the content, and
ending with a summary, which highlights the major elements to keep in mind.

3

Part I

Background

These two chapters allow the reader to understand the context of this doctoral
work.
— Chapter 2 covers the context of cloud infrastructures.
— Chapter 3 explains the evolution of cloud infrastructures towards DCI.

5

Chapter 2

BACKGROUND ON CLOUD

INFRASTRUCTURES

This chapter introduces the background of this doctoral work. It starts by describing
the characteristics of the cloud computing paradigm, with a special focus on network vir-
tualization. It also introduces the concepts of SDN giving insight on its functionality and
how it can be used for cloud computing networking management.

2.1 Cloud computing

Cloud computing [4, 5] can be easily accepted to be one of the most revolutionary IT
paradigm shift in the last 15 years. By proposing an on-demand access model to virtual
resources and services located at data center facilities, users pay for what they consume,
and they no longer need to buy all the necessary hardware and software. While it is
possible to find several cloud computing definitions provided in the literature, the most
used definition is given by the U.S. National Institute of Standard and Technology [6]:

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network ac-
cess to a shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction.

Definition of cloud computing by the NIST

The cloud computing model hides all the provisioning process of resources and ser-
vices to the user, facilitating its use, and allowing the emergence of new applications and
services.

7

Part I, Chapter 2 – Background on Cloud Infrastructures

2.1.1 Cloud Computing Characteristics

Because of its nature, cloud computing targets a large market with several use cases.
Generally speaking, the characteristics of the cloud computing model, also gathered by
the NIST, are the following:

— On-demand self-service: At any particular moment, a user can provision re-
sources using automated management systems without the need for human inter-
action with the cloud provider.

— Broad network access: The resources are delivered to the users over the Internet
and can be accessed by several heterogeneous means.

— Resource pooling: Resources are pooled together to serve multiple users at the
same time (a.k.a. multi-tenancy) [7]). These resources can be dynamically assigned
and reassigned accordingly to users’ demands. As a result of the pooled resources,
users are unaware of the location of the exact resources. However, users may specify
the location using high-level abstractions (e.g., zones, regions, countries).

— Rapid elasticity: Resources can be provisioned and released dynamically accord-
ing to the user demand, scaling up and down at any needed time.

— Measured service: Resources utilization by users can be measured, controlled,
and reported to provide transparency for users about their cloud consumption.

2.1.2 Cloud Deployment Types

Depending on the owner and the targeted users, clouds can be classified generally into
four categories [8]: public clouds, private clouds, hybrid clouds, and community clouds.

Public Cloud

Public or external clouds are the most common form of cloud computing, in which
cloud providers offer services to the general public in a pay-as-you-go manner. Some
key benefits of public clouds are on-demand scalability of resources, data availability,
uninterrupted services, and cost reduction. Top cloud providers such as Amazon, Google,
and Microsoft provide a globally deployed infrastructure to provide cloud services to users
over the entire world [9, 10, 11].

Besides the benefits of public clouds, we still find some issues related to data security
as well as concerning the data governance. Since users do not have a fine data granularity
control, they are unaware of where exactly data is stored or how it is backed up.

8

2.1. Cloud computing

Private Cloud

Private clouds are maintained by an organization to offer cloud services exclusively to
its members. They can be managed by the organization using on-premises equipment or
by a third-party. In the former, the private cloud is hosted within the organization infras-
tructure (a.k.a. on-site private cloud), meaning that the organization has full control over
the hardware and software components. In the latter, the private cloud is outsourced to a
hosting company (a.k.a. outsourced private cloud), which takes care of the management of
the infrastructure. This kind of cloud is well suited for organizations wanting to maintain
control over their data location such as governments or large private groups.

Community Cloud

Community clouds can be seen as private clouds maintained by two or more organi-
zations having similar concerns in terms of mission, security, requirements, or policy. As
in private clouds, they can be deployed using on-premise equipment in the organizations’
infrastructure, or by using a third-party provider. When compared to private clouds,
community clouds can be considered to be cheaper in terms of the cost since multiple
participants share the cloud.

Hybrid Cloud

A hybrid cloud is a composition of two or more cloud infrastructures (public, private,
or community) that remain independent but are bounded together through standardized
or proprietary technology that enables data and application portability. Hybrid clouds
can be useful for organizations looking to maintain critical data in their private cloud
while consenting less critical information to be stored in a public cloud.

2.1.3 Cloud Service Types

Cloud computing allows a broad range of services to be proposed to users. Services
can be essentially classified into three big categories [12] as represented in Figure 2.1.

Software as a Service (SaaS) : Services proposing already packaged and ready to
use software. Most of these are web-based applications usually accessible by using web
browsers. Some examples are Dropbox, Office 365, Google Mail, or Facebook.

9

Part I, Chapter 2 – Background on Cloud Infrastructures

Infrastructure

Platform

Application

Software as a
Service
(SaaS)

Platform as a
Service
(PaaS)

Infrastructure as a Service
(IaaS)

Compute (VMs, containers),storage, network

Dev platforms, runtimes, middlewares

Applications, web services, multimedia

Cloud
Service

Resources
layer

Examples

Figure 2.1 – Cloud Services types: IaaS, PaaS, & SaaS

Platform as a Service (PaaS) : Services proposing high-level software frameworks that
users can use to build and deploy applications using the tools and programming lan-
guages supported by the framework. Some examples are Google App Engine, OpenShift,
or Heroku which are PaaS systems for developing and managing web applications.

Infrastructure as a Service (IaaS) : Services proposing infrastructure resources such
as compute capacity, disk storage, or network connectivity for the user to deploy her
software on the provisioned resources. Some examples are Amazon Web Services (AWS),
or Google Cloud Platform (GCP). Because IaaS provides the infrastructure needed for
other services, PaaS and SaaS can be instantiated atop of IaaS, making it a key feature
to furnish cloud services.

To correctly propose IaaS services, cloud providers usually leverage virtualization tech-
nologies [13]. Virtualization abstracts physical resources such as processors, memory, disk,
or networks, into logical (a.k.a. virtual) resources which are then proposed to the users.
At the IaaS layer, the most important types of virtualization are the following [14]:

— Server virtualization: Virtualization technique allowing one physical server to ap-
pear as multiple servers. Historically, server virtualization has been done using
hypervisors, and more recently using lighter container-based technologies [15]. In
hypervisor-based virtualization (e.g., using KVM or VMWare), the physical server
is composed of multiple Virtual Machines (VMs), each one running its own Operating
System (OS) and possibly having dedicated resources on its own (e.g., mem-
ory or disk) that are presented in the form of virtual appliances such as virtual

10

2.1. Cloud computing

CPU (vCPU) or virtual RAM (vRAM). In container-based virtualization, the phys-
ical host kernel is shared among processes (a.k.a. containers) running on dedicated
resources such as CPU, memory, or disk.

— Storage virtualization: Virtualization technique allowing a physical storage unit to
be abstracted into several logical storage units such as disk drives or file systems.

— Network virtualization: Virtualization technique allowing a physical network to be
shared among isolated logical networks. Similarly to server virtualization, Network
Interface Cards (NICs) are also presented in the way of a virtual resource virtual
Network Interface Card (vNIC). Being the communication medium for server and
storage capabilities, network virtualization is critical to offer today’s cloud services.

2.1.4 Managing cloud virtualized infrastructures

Virtualized infrastructures are today essential for all cloud services. However, their use
implies adding an extra complexity from a management point of view.

To minimize this complexity from the user’s perspective and also to centralize the
control, management, and monitoring tasks, it is necessary to rely upon robust platforms
gathering these operations. Such tasks can be provided by a VIM, an entity responsible
for controlling and managing the compute, storage, and network resources according with
the European Telecommunications Standard Institute (ETSI) standards [16]. VIMs allow
to easily orchestrate the allocation and release of virtual resources, and the association
of virtual with physical resources, including resources’ optimization. Some examples of
VIMs are OpenStack [17], OpenNebula [18], and Eucalyptus [19].

In more recent times with the advent of container-based virtualisation, the ETSI has
proposed a new service that provides a runtime environment for one or more container
technologies a.k.a. Container Infrastructure Service (CIS) [20]. Some examples of CIS are
Kubernetes Kubernetes (K8S) [21], and Apache Mesos [22].

In the following, we introduce two concrete examples of these Resource Management
System (RMS): OpenStack as VIM and Kubernetes as CIS.

2.1.4.1 OpenStack

OpenStack is a VIM for IaaS platforms considered the de facto open-source platform
for operating cloud infrastructures. It allows controlling large pools of computing, storage,
and networking resources throughout a deployment, normally a data center. OpenStack
is composed of several services allowing the users to customize their deployments depend-
ing on the use case. All services are managed and provisioned through Representational

11

Part I, Chapter 2 – Background on Cloud Infrastructures

State Transfer (REST) Application Programming Interfaces (APIs) with common au-
thentication mechanisms and some shared services. Figure 2.2 shows how the OpenStack
landscape is composed of standard IaaS functionalities and additional components to
provide orchestration, fault management, or lifecycle management.

Figure 2.2 – OpenStack landscape ([17])

Among the main functionalities and corresponding to the main virtualization types
presented in 2.1.3 for IaaS, OpenStack proposes Nova [23], Cinder [24], and Neutron [25] as
main services to manage respectively server, storage, and network virtualization. Besides
these three services, it is noteworthy to mention Keystone [26], the OpenStack identity
service used to provide authentication and service discovery. Figure 2.3 shows an over-
all architecture of OpenStack with these four services which are also explained in the
following.

Nova

Nova is in charge of provisioning on-demand compute instances (a.k.a. virtual servers
or VMs). While its main functionality is to provision VMs, Nova can also do the provi-
sioning of bare-metal servers, and limited support for containers. It is one of the original
services provided in the first release of the OpenStack platform, and its functionality
could be compared with Amazon EC2 service. Internally, Nova is composed of several
components as shown in Figure 2.3(a) and as explained as follows:

— Nova API: Component that receives HTTP requests concerning the computing

12

2.1. Cloud computing

Figure 2.3 – OpenStack overview.

resources.
— Nova Compute: Component that manages communication with the hypervisor tech-

nologies allowing the creation of VMs. It is placed in the same machine as the
hypervisor which is called host.

— Nova Scheduler : Component that decides which host should be used to instantiate
a new VM request.

— Nova Conductor : Nova Conductor handles requests that need coordination such as
build or resize a VM.

— Database: Relational DB used to store Nova objects.
— Messaging queue: Used to route information between the internal components using

Remote Procedure Calls (RPC).

Cinder

Cinder is in charge of providing volumes (a.k.a. block storage) that Compute instances
can consume. It offers volumes as basic resources for block storage. Cinder is similar
to Amazon Elastic Block Storage (EBS) service. Figure 2.3(b) shows Cinder internal

13

Part I, Chapter 2 – Background on Cloud Infrastructures

composition:
— Cinder API: Component that receives HTTP requests concerning the storage re-

sources.
— Cinder Volume: Manage block storage devices.
— Cinder Scheduler : Component that decides which Cinder Volume should be used

to instantiate a new storage request.
— Database: Relational DB used to store Cinder objects.
— Messaging queue: Used to route information between the internal components using

Remote Procedure Calls (RPC).

Neutron

Neutron provides on-demand, scalable, and technology-agnostic networking resources,
it is generally used with Nova to provide VMs with networking capabilities. Neutron is
a modular and pluggable platform allowing multiple networking technologies to coexist
inside the same OpenStack deployment. The reference Neutron architecture as shown in
Figure 2.3(c) is composed of the following elements:

— Neutron API: Neutron’s REST API service exposes the OpenStack Networking
API to create and manage network objects, and passes tenant’s requests to a suite
of plug-ins for additional processing.

— Network plug-ins: Plug-ins process the networking requests accepted by Neutron
API.

— Network Agents: Agents implement the actual networking functionality closely as-
sociated with specific technologies and the corresponding Plug-ins.

— Database: Relational DB to store Neutron objects.
— Messaging queue: Used to route information between the internal components.

Keystone

Keystone provides API client authentication, service discovery, and multi-tenant au-
thorization by implementing the OpenStack Identity API. Keystone is organized as a set
of internal services exposed by an endpoint as shown in Figure 2.3(d):

— Keystone API: Keystone API exposes the different Keystone resources.
— Token service: Validates and manages tokens used for authenticating requests once

a user’s credentials have already been verified.
— Catalog service: Provides an endpoint registry used for endpoint discovery.
— Policy service: Define the access policies for resources of other OpenStack services.

14

2.1. Cloud computing

— Identity service: Provides authorization credential validation and data about users.

2.1.4.2 Kubernetes

Although OpenStack remains the de facto open-source solution to operate private
cloud platforms, it is noteworthy that the popularity of VMs as the main unit to exe-
cute workloads has been decreasing in favor of lighter technologies such as Docker-based
containers [27]. By promising low-overhead virtualization and improved performance, con-
tainers have become the new center of interest of DevOps [28], and consequently, a couple
of new frameworks in charge of managing the lifecycle of container-based applications
have been developed [29]. Released by Google in 2016, Kubernetes has become the de-
fault solution to manage containers on top of a distributed infrastructure. In addition to
help DevOps create, deploy, and destroy containers, K8S proposes several abstractions
that hide the complexity of the distributed infrastructure.

Figure 2.4 – Kubernetes cluster components.

Concretely, K8S divides a cluster into two parts: a set of worker machines called Nodes,
where containerized applications are executed, and a set of control plane machines called

15

Part I, Chapter 2 – Background on Cloud Infrastructures

the Master nodes, in charge of managing the aforementioned Nodes. Figure 2.4 depicts
the K8S default architecture. Each Node has an agent called kubelet that is in charge of
creating and configuring containers according to the Master orders, an agent called kube-
proxy that is used to define networking rules, and finally, a container runtime such as
Docker [30], Linux Containers [31], or any other implementation of Kubernetes Container
Runtime Interface (CRI) [32] to effectively start and execute containers. The Master is
composed of the API server, the scheduler that assigns workloads to Nodes, the controller
managers that maintain the expected state of the cluster using control loops, and etcd, a
key-value store used as Kubernetes backend.

K8S does not directly deal with containers but works at the granularity of Pods. A
Pod is a group of one or more containers with shared networking and storage resources,
and a specification defining how to run the workload (number of replicas, etc.).

In addition to basic operation on Pods (creation, deployment, etc.), K8S proposes sev-
eral abstractions (objects or resources in the K8S terminology) to hide the distribution
of the architecture. In other words, DevOps do not have to deal with low-level aspects of
the infrastructure but use K8S predefined objects. For instance, Volumes are storage units
accessible in a Pod wherever they are deployed. Similarly, Services are used to logically ab-
stract a group of Pods with a Domain Name System (DNS) name and a virtual Internet
Protocol (IP). Finally, a Namespace enables DevOps to isolate Pods within a cluster.
Additional objects have been built on top of these abstractions to offer supplementary
functionalities. For instance, ReplicaSet enables DevOps to define a specific number of
replicas for a Pod and let the K8S controller to maintain this number. Thanks to the mod-
ularity of K8S, more objects can be exposed by the API (for an up-to-date list please refer
to [33]). This philosophy of using predefined abstractions is a major change concerning
the OpenStack solution where DevOps should deal with a large number of infrastructure
details.

2.2 Software-Defined Networking

In the last decade, the management of virtualized cloud infrastructures has become a
hot topic in research. Indeed, every kind of virtualization has been studied to simplify con-
trol and management. Among the virtualization types, network virtualization can benefit
from one such emerging concept, the SDN paradigm. The Software-Defined Networking
paradigm offers the opportunity to program the control of the network and abstract the
underlying infrastructure for applications and network services [34]. It relies on the con-
trol and the data plane abstractions. The former corresponds to the programming and

16

2.2. Software-Defined Networking

managing of the network (i.e., it controls how the routing logic should work) The lat-
ter corresponds to the virtual or physical network infrastructure composed of switches,
routers, and other network equipment that are interconnected. These pieces of equipments
use the rules that have been defined by the control plane to determine how a packet should
be processed once it arrives at the device.

While the idea of control and data plane separation is present in IETF ForCES Work-
ing Group works [35] and even earlier with the concept of programmable and active
networks [36, 37], the work achieved in 2008 around OpenFlow [2] is considered as the
first appearance of Software Defined Networks in modern literature [38]. In this initial pro-
posal, the control plane is managed through a centralized software entity called the SDN
controller. To communicate with every forwarding device or lower-level components, the
controller uses standardized APIs called southbound interfaces. In addition to OpenFlow,
the most popular southbound APIs are Cisco’s OpFlex ones [39].

Figure 2.5 – SDN general architecture

Controllers also expose a northbound API, which allows communication among the
controller and the higher-level components like management solutions for automation and
orchestration. A generic SDN architecture with the aforementioned elements is presented
in Figure 2.5. Overall, an SDN controller abstracts the low-level operations for controlling

17

Part I, Chapter 2 – Background on Cloud Infrastructures

the hardware, allowing easy interaction with the control plane, as developers and users
can control and monitor the underlying network infrastructure [40].

2.2.1 SDN-based Cloud Networking

The SDN paradigm has been successfully applied for instance to provide central-
ized control of lower infrastructure layers of WANs (e.g., physical links or fabric routers
and switches) in several proposals [41, 42, 43], including the well-known Google B4 con-
troller [44], and commonly referred nowadays as Software Defined WAN [45]. In the cloud
computing area, SDN has also been applied in an approach commonly referred to as SDN-
based cloud computing [46]. To illustrate how the network resources are managed in a
cloud computing infrastructure using SDN technologies, in the following, we complete our
previous presentation of OpenStack and Kubernetes by discussing how they abstract the
network.

2.2.1.1 OpenStack Neutron: Networking as a Service

Neutron divides the networking constructions that it can manage as Core and extension
resources. Port, Network, and Subnetwork are the basic Core object abstractions offered
by Neutron. Each abstraction has the same functionality as its physical counterpart:
Network is an isolated Layer 2 (L2) segment, Subnetwork is a block of IPv4 or IPv6
addresses contained inside a Network, Port is a virtual switch connection point used to
attach elements like VMs to a virtual network. More extension network objects can be
defined and exposed extending the Neutron API. Some examples are Router, floating IP,
among others [47, 48, 49]. A more complete list of OpenStack networking objects can be
found in [50].

As aforementioned in 2.1.4.1, Neutron uses a series of Plug-ins to manage its abstrac-
tions. The Core objects are managed by a Core Plug-in (i.e., IP address management
and L2 connectivity for a Sub-Network), being the Modular Layer 2 (ML2) Plug-in the
default choice, while the extension resources are managed each one by a Service Plug-
in (i.e., Routing among Sub-Networks). Depending on the Plug-ins used, the deployment
will also have a series of Agents receiving messages and instructions from Plug-ins to do
the actual implementation of the networking capabilities. Figure 2.6 shows the relation
among all the different components of Neutron.

Agents configure the mechanisms allowing the networking constructions to commu-
nicate among them (e.g., a tunnel between two OpenvSwitches to communicate VMs
belonging to the same Subnetwork) or with the Internet (i.e., Network Address Transla-

18

2.2. Software-Defined Networking

Figure 2.6 – Neutron deployment components.

tion (NAT)) capabilities normally implemented by a Router to route traffic to the outside).
The most common agents are L2 (Layer 2 functions), Dynamic Host IP Protocol (DHCP),
and L3 (Routing functions) agents.

2.2.1.2 Kubernetes Networking

The way Kubernetes manages network resources differs from the OpenStack solution.
K8S does not propose means to virtualize and control multiple network segments but
rather exposes services that relieve DevOps from the burden of managing network low-
level aspects (e.g., IP assignments, traffic forwarding, load balancing, etc.).

From the network point of view, K8S has four types of communications: (i) Highly
coupled container-to-container, (ii) Pod-to-Pod, (iii) Pod-to-Service, and (iv) External-
to-Service.

Rather than imposing a single implementation and to leverage modularity, K8S sup-
ports its networking functionality through the Container Network Interface (CNI) [51],
an open-source project proposing a specification and libraries for writing plug-ins to con-
figure network interfaces on Linux containers. A CNI plug-in is responsible for inserting
a network interface into the container network, making necessary changes on the host,
assigning an IP address to the interface, and configuring routes for the traffic exchange.
For the IP and routes configurations, a second plug-in, called the IP Address Manage-
ment (IPAM) plug-in is used. Several CNI as well as IPAM plug-in implementations have

19

Part I, Chapter 2 – Background on Cloud Infrastructures

been proposed to abstract the network within a K8S cluster [52, 53, 54, 55, 56, 57, 58, 59].
It is noteworthy to mention that the split between the CNI plug-in and the IPAM module
provides more flexibility as it is possible to use a combination of two different solutions.

By default, the implementation of a plug-in should deliver the four types of communi-
cations with the following properties. Regarding Pod-to-Pod communications, a Pod on
a Node can communicate with all Pods on all Nodes without NAT communications. Re-
garding Pod-to-Service communications, the virtual IP associated with a Service needs to
be correctly translated and load-balanced to Pods registered to this Service (using tech-
nologies such as iptables or IP virtual servers [60]). Finally, for the External-to-Service
exchanges, the configuration of the different routes exposing Services should be achieved
(implementing the logic of the K8S NodePort, Load-Balancer or Ingress controller ob-
jects).

2.3 Summary

The cloud computing paradigm has changed the way online services and resources
are accessed and provided. Thanks to the different deployment and service types, cloud
computing can be used in a large range of scenarios, providing both, service providers
and users, with a flexible and efficient tool. In the case of IaaS, the use of several types of
virtualization technologies has provided a cheap and easy-to-use way to access virtualized
resources. As stated in Section 2.2.1, cloud networking virtualization is enhanced by SDN
technologies, allowing centralized control of the virtual networking objects with high-level
abstractions. The next chapter describes the evolution of cloud computing infrastructures
into distributed cloud computing infrastructures.

20

Chapter 3

DISTRIBUTED CLOUD

INFRASTRUCTURES: FROM THE DATA

CENTER TO THE EDGE

This chapter presents the challenges addressed in this thesis: DCIs and associated
networking management expectations. Moreover, it discusses the networking management
challenges in DCIs.

3.1 Distributed Cloud Infrastructures

As we asserted in Chapter 2, cloud computing has enabled the appearance of different
kinds of applications and services for a considerable range of use cases. However, in the last
years, new trends such as the IoT, the MEC, the cloud RAN, or the NFV present new and
heavy operational requirements (i.e., delay constraints of the order of a millisecond to ten
milliseconds, geo-distributed fault tolerance, or the respect of legal requirements for data
management), for which the traditional cloud infrastructure has not been designed [61].

As a consequence, VIMs or CISs such as OpenStack or Kubernetes need to be deployed
closer to the end users. In this way, the traditional cloud infrastructure composed of a
few large data centers will evolve to a massively DCI. This DCI will be formed not only
by the data centers but also by a high number of locations across the Telco’s network to
provide cloud services. While DCIs can be used for providing all cloud services, we focus
on IaaS functionalities in this manuscript. In the following, the term resource managers
will be employed in a generic way to talk indistinctly of software stacks providing resource
management such as VIMs (OpenStack) or CISs (Kubernetes).

Within the Telco’s infrastructure, such a DCI can use the regional and local PoP.
While traditionally used to interconnect different access networks, PoPs can be extended
with additional computing and storage capacity to be used as mini data centers for deliv-
ering IaaS capabilities. Figure 3.1 shows the evolution of traditional cloud infrastructures

21

Part I, Chapter 3 – Distributed Cloud Infrastructures

towards DCIs composed by several locations proposing IaaS capacities.

(a) Traditional cloud infrastructure (b) Distributed cloud infrastructure

Figure 3.1 – Evolution of a cloud infrastructure towards a DCI.

From a management perspective, resources management can leverage two techniques
in DCIs as depicted in Figure 3.2 [62]. The first one consists of administering the DCI
following a single "centralized" data center manner, with WAN between the resource man-
ager at the data center and the different PoPs. The second approach consists of deploying
one instance of the resource manager at each DCI site and federating them providing the
illusion of a single unified system as promoted by ETSI NFV MANO framework [1].

While a centralized approach could be easily extended to the entire DCI, it still presents
the well-known problems of having a bottleneck and a Single Point Of Failure (SPOF)
at the data center’s resource manager. This approach reveals a significant risk in network
disconnection: Since distant sites do not have complete autonomy, they will be unavailable
to process users’ requests in case of network disconnection. Therefore, isolated sites may
be inoperative, and the worst-case scenario will envision the entire failure of the system
to process requests if the resource manager’s location is unreachable.

On the other hand, the distributed approach may exceed the centralized one since each
site is independent and can continue to operate locally with its resource manager. More-
over, the distributed nature of the architecture can alleviate problems such as bottleneck
and SPOF. Because resource managers such as OpenStack or Kubernetes have not been
conceived natively to peer with other instances, several projects have been investigating

22

3.1. Distributed Cloud Infrastructures

(a) Centralized DCI management (b) Distributed DCI management

Figure 3.2 – DCI management techniques.

how it might be possible to deliver inter-site management [63, 64, 65]. These projects
aim at exposing multiple instances of the software stack as a single entity. Unfortunately,
these solutions have been designed around centralized architectures and face notable limi-
tations (e.g., scalability, network partitions, etc.). In other words, resource managers have
not been designed to peer with other instances to establish inter-site collaboration but
rather in a pretty stand-alone way to manage a single deployment. However, as defended
in this thesis, it is possible to extend resource managers with additional code pieces to
offer the same functionality but over multiple instances. In the following, we analyze the
characteristics of such a distributed management for DCIs.

3.1.1 DCI Distributed Management Characteristics

From a general management point of view, several studies have investigated how DCI
management can be delivered either through a bottom-up or a top-down approach [66].
A bottom-up collaboration aims at revising low-level resource managers’ mechanisms
to make them collaborative using, for instance, a shared DB between all the resource
managers [61, 66, 67]. A top-down design implements the collaboration by interacting
only with the resource managers’ API using a set of components acting as proxies for the
resource managers [68, 69, 63].

23

Part I, Chapter 3 – Distributed Cloud Infrastructures

Unfortunately, there are some major limitations concerning both approaches. In the
former, the use of shared DBs helps developers implement such inter-site operations. But
in addition to being intrusive and complex, reusing the code to use another DB is not
satisfying to deal with network partitioning. In the latter, while the high-level utilization
of APIs can lessen the burden for DevOps, some inter-site operations cannot accurately
work without revising existing resource managers code base [70]. Therefore, to overcome
the limitations of current solutions, we consider that a DCI resource manager should be
capable of guaranteeing the following properties:

Scalability Since new sites can be added to the architecture at any time, DCIs should
not be restricted by design to a certain amount of resource managers.

Resiliency All parts of a DCI should be able to survive network partitioning issues. In
other words, cloud service capabilities should be operational locally when a site is isolated
from the rest of the infrastructure.

Locality awareness Resource managers should have autonomy for local domain man-
agement. It implies that locally created data should remain local as much as possible and
only shared with other instances if needed, thus avoiding the maintenance of a global
knowledge.

Abstraction and automation The configuration and instantiation of inter-site resources
should be kept as simple as possible to allow the deployment and operation of complex
scenarios. The management of the involved implementations must be fully automatic and
transparent for the users.

3.2 Why Revising Software Stacks Is Needed For DCIs

Building such kind of DCI resource manager from scratch would be too expensive tech-
nically speaking, and does not take into account frameworks already used in production
environments. For this reason, open-source initiatives such as OpenStack with a massive
community behind it may be used to be extended and to allow collaboration among its
instances.

Among the required features that resource managers should offer in a DCI, the ca-
pacity to manage and interconnect virtual networking constructions belonging to several
independent sites is critical since other services’ resources, such as the compute or storage

24

3.3. Networking Management Challenges in DCIs

ones, communicates atop of the virtualized network. From an IaaS networking manage-
ment point of view, resource managers leveraging a distributed management should be
capable of providing the same resources already proposed when using a single cloud in-
frastructure. We consider, in particular, the following inter-site networking resources [71]:

— Routing function: being able to route traffic between a Virtual Network (VN) A
on site 1 and a VN B on site 2.

— Layer 2 network extension: being able to have a Layer 2 VN that spans several sites.
It is the ability to plug into the same VN, VMs instantiated at locations belonging
to different resource managers.

— Traffic filtering, policy, and QoS: being able to enforce traffic policies and Quality
of Service (QoS) rules for traffic between several sites.

— Service Chaining: Service Function Chaining (SFC) is the ability to specify a dif-
ferent path for traffic in replacement of the one provided by the Shortest Path
First (SPF) routing decisions. A user should be able to deploy a service chain
spanning several sites, having service VMs placed at different resource managers.

3.3 Networking Management Challenges in DCIs

As discussed in Section 3.1, the control of the network elements of a DCI infrastructure
should be performed in a distributed fashion (i.e., with multiple resource managers that
collaborate to deliver network capabilities across several sites) by leveraging as much as
possible existing resource managers. In the following, we analyze OpenStack’s multi-site
challenges, and we also provide this analysis for Kubernetes.

Multi-instance OpenStack challenges

In an OpenStack-based DCI (i.e., one OpenStack instance by PoP), inter-site network-
ing resources management will rely on the networking module, Neutron. Unfortunately,
the software architecture of Neutron does not allow collaborations between multiple in-
stances. For instance, the Neutron DB belongs to a single Neutron entity. As a conse-
quence, the resources created at one site can only be managed by that Neutron. A distant
Neutron cannot have knowledge nor access the objects present in a DB of another in-
stance. Because information of resources is not shared among Neutrons, the notion of a
virtual network spanning different resource managers does not exist today in the Neutron
DB. Further, operations like identifiers assignation, IP and Media Access Control (MAC)
addresses generation and allocation, DHCP services, and security group management are

25

Part I, Chapter 3 – Distributed Cloud Infrastructures

also handled internally at each Neutron instance. Such kind of constraints makes it im-
possible to manage Neutron resources in a distributed way.

Multi-instance Kubernetes Challenges

Like OpenStack, Kubernetes has been designed in a stand-alone manner: it exposes
a single cluster’s resources. Hence, being able to execute container-based applications
across multiple sites raises different questions in the Kubernetes ecosystem [72]. From the
network viewpoint, a K8S Multi-Cluster architecture should deliver means to provide the
communications detailed in Section 2.2.1.2. More precisely, since Container-to-Container
communication is limited at Pod’s scope, solutions for the other three communication
cases are required.

Independent from the software stack, decentralizing networking management brings
forth new challenges and questions. We can divide them into two categories: the ones
related to the organization of network information and the ones related to the technical
implementation. Table 3.1 summarizes these challenges. The "keywords" column is used
to introduce the name of the challenges used in the rest of the document. For each of the
challenges, we also expose examples in the context of IaaS networking resources.

Challenge Key words Summary
Network information’s challenges
Sharing networking

information
information granularity Propose good informa-

tion sharding strategies
Identifying how to
communicate with

remote sites

information scope Avoid heavy synchro-
nization by contacting
only the relevant sites

Facing network
disconnections

information availability Continue to operate in
cases of network parti-
tioning and be able to
recover

Technical challenges
Standard automatized

and distributed
interfaces

automatized interfaces Well-defined and
bridged vertical and
horizontal interfaces

Support and
adaptation of
networking
technologies

networking technologies Capacity to configure
different networking
technologies

Table 3.1 – DCI Challenges summary

26

3.3. Networking Management Challenges in DCIs

3.3.1 Network Information’s Challenges

Giving the illusion that multiple resource managers behave like a unique one, requires
information exchange. However, mitigating as much as possible data communications
while being as robust as possible (w.r.t network disconnection or partitioning issues)
requires considering several dimensions as discussed in the following.

Sharing networking information: (information granularity)

The first dimension to consider is the organization of the information related to the
network elements. For example, the provisioning of an IP network between two resource
managers will require sharing information related to the IPs allocated on each site. A first
approach may consist of sharing information between the two resource managers each
time an IP is assigned to one resource. This will prevent possible conflicts, but with an
additional overhead in terms of communications (the global knowledge base is updated
each time there is a modification). A second approach would be to split the range of
IP addresses with the same Classless Inter Domain Routing (CIDR) (or network prefix)
between the two sites at the network’s creation time. Thus, each site has a subset of the
IPs and can allocate them without communicating with other controllers. This prevents
facing IP conflicts even in the case of network partitioning issues without exchanging
information each time a new IP is allocated to a particular resource.

Therefore, understanding the different data structures manipulated will enable the
definition of different information sharding strategies between multiple resource managers
and identify each of their pros and cons. Additionally, other elements related to local
domain networking management that may be attached to a virtual network as local router
gateways, external gateways, DHCP ports, DNS servers, fixed host routes, or public fixed
IPs may not need to be shared with remote sites. Consequently, depending on the inter-site
service, the shared objects’ information’s granularity needs to be well specified to avoid
conflicts among the networking management entities. If, in any case, the joint management
of a networking construction is strictly required, the management entities should have the
necessary coordination mechanisms to provide some data consistency.

Identifying how to communicate with remote sites: (information scope)

The second dimension to consider is related to the scope of a request. Networking
information should stay as local as possible to privilege data locality. For instance, network
information like MAC/IP addresses of ports and identifiers of a network related to one
site does not need to be shared with the other sites that compose the DCI. Similarly,

27

Part I, Chapter 3 – Distributed Cloud Infrastructures

information associated with a Layer 2 network shared between two resource managers as
depicted in Figure 3.3 does not need to be shared with the third resource manager. The
extension of this Layer 2 network could be done later, only when it will be relevant to
extend this network to resource manager 3.

Figure 3.3 – Network Information Challenge 2: Layer 2 extension request

Considering each request’s scope is critical since sharing information across all resource
managers should be avoided due to heavy synchronization and communication needs. In
other words, contacting only the relevant sites for a request will mitigate the network
communication overhead, enhancing the limitations regarding scalability and network
disconnections.

The information-sharing protocol needs to be fast and reliable to avoid performance
penalties that could affect multi-site networking resources’ deployment.

Facing network disconnections (information availability)

Each resource manager should propose networking resources management even in the
case of network partitioning issues.

Two situations must be considered: (i) the inter-site network resource (for instance,
a Layer 2 network) deployed before the network disconnection and (ii) the provisioning
of a new inter-site network resource. In the first case, the isolation of a site (for instance
resource manager 2 in Figure 3.4) should not impact the inter-site network elements.
Hence, Resource manager 2 should still be able to assign IPs to VMs using the "local"
part of the inter-site Layer 2 network. Meanwhile, Resource manager 1 and Resource

28

3.3. Networking Management Challenges in DCIs

manager 3 should continue to manage inter-site traffic from/to the VMs deployed on this
same shared Layer 2 network.

In the second case, because the resource manager cannot reach other sites due to the
network partitioning issue, it is impossible to get information mandatory to finalize the
provisioning process. The first way to address such an issue is merely revoking such a
request. In this case, the information availability challenge is only partially addressed.
The second approach is to provide appropriate mechanisms in charge of finalizing the
provisioning request only locally (e.g., creating temporary resources). However, such an
approach implies integrating tools to recover from a network disconnection.

Figure 3.4 – Network Information Challenge 3: Operate in isolated mode.

Depending on how the resource has been created during the partitioning, the re-
synchronization procedure’s complexity may vary.

In the scenario mentioned above, the resource manager may provision a new VM in
Resource manager 2 using an IP address already granted to a VM in Resource manager 1
or that belongs to another CIDR. Once the network failure is restored, Resource manager 1
will face issues to forward traffic to Resource manager 2 either because of the overlapping
addresses or because there are two different CIDRs.

Inter-site connectivity management should be able to address such corner cases to
satisfy the availability property.

29

Part I, Chapter 3 – Distributed Cloud Infrastructures

3.3.2 Technical challenges regarding inter-site networking services

Once the challenges related to network information are analysed, it is necessary to
consider the dimension of the mechanisms allowing a deployment of distributed networking
services. Technical challenges are related to the technical issues presented when trying to
implement DCI networking services.

Standard automatized and distributed interfaces (automatized interfaces)

A first challenge is related to the definition of the vertical and horizontal interfaces to
allow the provisioning of inter-site resources from the end-users viewpoint and to make
the communication/collaboration between the different resource managers possible as
depicted in Figure 3.5.

Figure 3.5 – Technical Challenge 1: automatized interfaces

It means that the interface which faces the user (user-side or North-side) and the
interface which meets other networking services (resource manager-side or East-West-side)
have to be smoothly bridged among them. This integration needs to be done to provide the
necessary user abstraction and the automation of the resource manager communication
process. Consequently, this necessitates the specification and development of well-defined
North- and East-West-bound interfaces presenting to the user a list of abstractions of
multi-site networking operations. Thus, designing efficient interfaces for both North-bound
and East-West-bound communication is another problem to address in the case of inter-

30

3.4. Summary

site connectivity management tools.

Support and adaptation of networking technologies (networking technologies)

In addition to the initial networking information exchanges among resource managers
to provide inter-site connectivity (MAC/IP addresses, network identifiers, etc.), identi-
fying the implementation mechanism will be needed. Although there are many existing
networking protocols to implement, they will need adaptation in the DCI case. Because
the networking mechanisms’ configuration needs to be known by all the participant sites
in a requested inter-site service, the exchange of additional implementation information
will be required among the sites in an automatized way. This automation is essential be-
cause the user should not be aware of how these networking constructions are configured
at the low-level implementation. Since a DCI could scale up to hundreds of sites, manual
networking stitch techniques like [47][48] will be not enough.

Depending on the implementation, the solution needs to be able to do the reconfigu-
ration of networking services at two different levels:

— At the overlay level which implies the ability to configure virtual forwarding ele-
ments like GoBGP instances [73], OpenvSwitch switches[74] or Linux bridges[75]

— At the underlay level, which implies the ability to talk or communicate with some
physical equipment like the Edge site gateway. Since not all physical equipment is
OpenFlow-enabled, the possibility of using other protocols may be an advantage
when necessary to configure heterogeneous components or when internal routes
should be exposed to allow traffic forwarding at the data plane level.

Additionally, in the context of the challenge described in 3.3.1, the mechanisms used
for the implementation need to reconfigure themselves to re-establish the inter-site traffic
forwarding.

3.4 Summary

The popularity and characteristics of cloud computing have allowed the emergence of
new trends for which it was not designed. The advent of IoT, MEC, or NFV poses new
operational constraints that can be assured by deploying IaaS functionalities closer to the
user in Telco’s PoPs. By doing this, cloud computing is evolving towards a DCI that can
be managed using a distributed approach. Unfortunately, current software stacks have
been conceived following a stand-alone manner to operate a single location and do not
propose native collaboration tools.

31

Part I, Chapter 3 – Distributed Cloud Infrastructures

Among the expected features of resource managers for DCIs, the ability to manage
and interconnect virtual networking constructions belonging to independent resource man-
agers is critical to provide inter-site cloud services.

This chapter has introduced networking management challenges in DCIs, assembling
them into two main categories: network information and technological implementation.
Addressing the information granularity, information scope, and information availability
challenges will allow to define a management strategy leveraging distributed principles.
And complementary, addressing the automatized interfaces, and networking technologies
challenges will allow a correct implementation of such management strategy.

32

Part II

State Of The Art

This second part covers the study of propositions leveraging decentralized man-
agement models that may be of interest in the context of DCIs.
— Chapter 4 presents the definitions and properties needed to understand the

studied solutions.
— Chapter 5 discusses and surveys network-oriented SDN controllers.
— Chapter 6 presents and surveys cloud-oriented SDN controllers.
— Chapter 7 presents and surveys propositions that provide decentralization of

the resource manager (OpenStack and Kubernetes).
— Chapter 8 presents the insights gained from the different studies.

33

Chapter 4

MULTI-INSTANCE SOLUTIONS FOR DCI
ARCHITECTURES: PROPERTIES

SDN approaches could be used to gain insights for decentralizing resource managers net-
working functionalities as suggested in Section 2.2.1. This chapter presents to the reader
the principal properties of SDN propositions that we discuss in our state-of-the-art review.
These properties are used to detail the different solutions of the following chapters.

4.1 SDN Solutions for DCIs

Similar to the use of SDN paradigm in cloud computing, DCI management may also
benefit from it. The study and analysis of decentralized SDN principles may provide an
insight into how to address the DCI networking management challenges we presented in
Section 3.3 while taking into account the different characteristics of DCIs. In Chapters 5, 6,
and 7, we propose an extensive literature review on distributed SDN controllers to identify
and highlight their behavior when used in a DCI context. Besides SDN propositions, we
discuss some influential projects that we consider of interest to manage DCIs.

4.2 Architecture

The first point that distinguishes one SDN solution from another is the way controllers
are interconnected with each other [76, 77, 78, 79, 80]. Figure 4.1 presents the possible
connection topologies identified. In the following, we discuss the pros and cons of each
approach.

Centralized: Architecture presenting a single centralized controller with a global
view of the system. It is the simplest and easiest architecture to manage, but
at the same time, the less scalable/robust one due to the well-known problem of
centralized architectures (SPOF, bottlenecks, network partitioning, etc.).

35

Part II, Chapter 4 – Multi-instance solutions for DCI architectures: Properties

Figure 4.1 – SDN topologies

Hierarchical: Tree-type architecture composed of several layers of controllers. Most
solutions present a two-level tree consisting of local controllers and a "root" con-
troller. As the names indicate, local controllers handle local operations such as
intra-site routing. On the opposite, the "root" controller deals with all inter-site
events. While local controllers only have their local view and are not aware of other
local controllers’ existence, the root controller should maintain a global knowledge
of the infrastructure to communicate with local controllers each time it is manda-
tory. While this approach tackles the scalability challenge w.r.t. the centralized
architecture, it only increases the robustness partially as the root controller is still
a centralized point.

Distributed but logically centralized: Architecture where there is one controller
per site, managing both intra and inter-site operations. Each time a controller cre-
ates or updates a network resource, it broadcasts to all other controllers’ modifica-
tions. It enables controllers to maintain an up-to-date copy of the global knowledge,
thus acting as a single logical entity. This design stands close to the initial SDN
proposition [34] as several controllers share global network information to present
themselves as one single controller.

Fully distributed: Architecture similar to the previous one but without commu-

36

4.3. Leader-Based Operations

nicating all creations/modifications to other controllers. In this approach, locally-
created data remains in the instance where it has been created and shared with
other instances only when needed. In such a case, explicit communications be-
tween controllers are instantiated to exchange technical information to establish,
for example, inter-site services. This way of interconnecting controllers increases
the robustness w.r.t network disconnections as a network disconnection, or a node
failure only impacts a subpart of the infrastructure.

Hybrid: Two-layer architecture mixing the distributed and the hierarchical archi-
tectures. The control plane consists of several root controllers at the top layer.
Each root manages multiple local controllers who are in charge of their respective
sites. These root controllers are organized in a distributed fashion, gathering global
network state information among them.

Internal Communication Protocols

Depending on the selected topology, the communication between controllers occurs
either vertically (centralized and hierarchical) or horizontally (distributed). Those com-
munications can be handled through different manners like polling information from other
controllers periodically, using a publish/subscribe approach to send notifications automat-
ically, or through explicit communication protocols between controllers.

4.3 Leader-Based Operations

When implementing DCI network management, it is important to consider two kinds
of operations: leaderless vs. leader-based. Leaderless operations such as creating an only-
local network and its sub-networks are "simple" operations that should not lead to network
information inconsistencies [78] and thus do not require leadership mechanisms. On the
opposite, leader-based operations (i.e., the assignment of an IP in an inter-site network)
require a dedicated approach to avoid issues such as IP collisions. For those operations,
there should be a leader to take consistent decisions among all controllers. Leaderships
can be either given in two ways [81]: in a static manner to a controller (i.e., the root node
in a hierarchical approach) or by using consensus protocols. Consensus can be divided
in two general types: leaderless consensus (i.e., such as EPAXOS [82] or Alvin [83]), and
leader-based consensus (i.e., such as PAXOS [84] or RAFT [85]).

Leader-based consensus protocols such as the ones above are used for several tasks
such as leader election, group membership, cluster management, service discovery, re-
source/access management, consistent replication of the master nodes in services, among

37

Part II, Chapter 4 – Multi-instance solutions for DCI architectures: Properties

others [86]. Consensus typically involves multiple instances agreeing on values. Moreover,
consensus can be reached when most instances are available; as an illustration, a cluster
of five instances can continue to operate even if two nodes fail. However, applying con-
sensus protocols to a distributed SDN controller may present some problems. In RAFT,
for instance, network failures can seriously impact the performance of the protocol: in the
best case, the partitioning may reduce the average operation time of the protocol; in the
worst case, they render RAFT unable to reach consensus by failing to elect a consistent
leader [87].

To avoid the limitation imposed by a single leader election, leaderless consensus pro-
tocols allow multiple nodes to operate as a leader at-a-time [88]. This is achieved by
dividing conflicting and non-conflicting operations. Non-conflicting operations can be ex-
ecuted without synchronization, while for the conflicting ones, the nodes proposing the
process assume the leadership. The per-operation-leader then collects the dependencies
from remote nodes to compute the order among conflicting operations. However, as the
system size gets bigger, leaderless protocols may present scalability problems: In EPAXOS,
for instance, as the system size increases, more nodes could propose transactions gener-
ating conflicting operations between them. As a consequence of this possibility, there is a
higher probability of different nodes viewing different dependencies and proposing to be
the operation-leader. In such cases, the nodes will try to collect dependencies following
their own order while being in conflict with the order of other nodes. The time needed to
order conflicting operations will grow letting the system in a potential incoherent state,
thus, failing in delivering fast decisions.

4.4 Database Management System

As broadly discussed in Section 3.3.1, storing and sharing the state of the DCI network
service would be a key challenge. Studied SDN solutions rely either on relational Structured
Query Language (SQL) or NoSQL DBs.

SQL Databases

SQL DBs are based on the relational data model and are also known as Relational
Database Managing System (RDBMS). In most cases, they use Structured Query Lan-
guage for designing and manipulating data and are regularly deployed in a centralized
node [89]. Relational DBs can generally be vertically scalable, which means that their
performance could increase using more CPU or RAM. Some SQL DBs such as MySQL
Cluster [90] or VoltDB [91], a NewSQL DB, try to scale horizontally, generally sharding

38

4.5. SDN Interoperability and Maturity

data over multiple DB servers (a.k.a. "shared nothing" architecture [92]), but they still
present performance problems when scaling in infrastructures composed by a high number
of nodes [93].

NoSQL Databases

NoSQL DB is a general term that gathers several kinds of DBs that do not use the rela-
tional model. NoSQL DBs can be gathered in four main types [94]: document-based (i.e.,
MongoDB [95]), key-value pairs (i.e., Redis [96]), graph DBs (i.e., Neo4j [97]) or wide-
column stores (i.e., Apache Cassandra [98]). This kind of DBs can by nature scale hor-
izontally as the unstructured data scheme allows information sharding in different sites
as the opposite of Relational DBs. Such a model permits different entities to access data
simultaneously in a geographically distributed way [99, 100].

More generally, the DB management system would be an essential element of DCI
networking management. It could be used to share information between controllers and,
thus, eliminating the need for a complex communication protocol to provide coherence at
the application level.

4.5 SDN Interoperability and Maturity

SDN controllers should be capable to provide their capabilities in heterogeneous and
dynamic network environments. In this section, we discuss the capacities of configuring
different kinds of equipment and the supported networking protocols to accomplish con-
trollers’ tasks.

Network Types Targeted

The popularity of virtualization technologies leads to the abstraction of the physical
network (a.k.a. the underlay network) into multiple virtual ones (a.k.a. overlay networks).

— An underlay network: is a physical infrastructure deployed in one or several geo-
graphical sites. It comprises a series of active equipment like switches or routers
connected among them using Ethernet switching, Virtual Local Area Networks
(VLANs), routing functions, among other protocols. Due to the heterogeneity of
equipment and protocols, the Underlay network becomes complex and hard to
manage, affecting the different requirements that must be addressed like scalabil-
ity, robustness, and high bandwidth.

39

Part II, Chapter 4 – Multi-instance solutions for DCI architectures: Properties

— An overlay network: is a virtual network built on top of another network, normally
the underlying physical network, and connected by virtual or logical links. Overlay
networks help administrators tackle the scalability challenge of the underlay net-
work. For instance, overlay networks leverage encapsulation protocols like Virtual
Extensible Local Area Network (VXLAN) because of its scalability (VXLAN pro-
vides up to 16 million identifiers whereas VLAN is limited to 4096 identifiers).

Some SDN controllers may deal with only one level. The richer the operations offered by
controllers, the more difficult it would be to distribute the DCI networking management.

Supported Southbound Protocols

The reference SDN architecture exposes two kinds of interfaces: Northbound and
Southbound. Northbound interfaces reference the protocol communication between the
SDN controller and applications (e.g., automation or orchestration tools). Southbound
interfaces are used to allow the SDN controller to communicate with the network’s physi-
cal/virtual equipment. OpenFlow [101] is an industry-standard considered as the de-facto
southbound interface protocol. It allows entries to be added and removed to the switches
and potentially routers’ internal flow-table, so forwarding decisions are based on these
flows. In addition to OpenFlow, SDN controllers may use other protocols to configure net-
work components like Network Configuration Protocol (NETCONF), Local ID Separation
Protocol (LISP), Extensible Messaging and Presence Protocol (XMPP), Simple Network
Management Protocol (SNMP), Open Virtual Switch DataBase (OVSDB), Border Gate-
way Protocol (BGP), among others [34]. For example, BGP allows different Autonomous
System (AS) to exchange routing and reachability information between their routers.

More generally, as not all physical equipment is OpenFlow-enabled, the possibility to
use other protocols may be an advantage in some scenarios. When necessary to configure
heterogeneous components or when internal routes should be exposed to allow communi-
cation at the data plane level.

Technological Readiness Level

The Technological Readiness Level (TRL) is an indicator of a particular technology’s
maturity level. Due to the mechanisms’ complexity, it is crucial to consider the TRL
of technology to mitigate as much as possible development efforts. This measurement
provides a common understanding of technology status and establishes the inspected
SDN solutions’ state, as not all solutions have the same maturity degree. To this end, the
TRL proposed by the European Commission presented in [102] has been used to classify

40

4.6. Related Works in SDN

the different solutions we studied.

Additional Considerations: OpenStack Compatibility

Because of the industrial context of this doctoral work, we also consider to take the
example of an OpenStack-based system to explain how resource managers could use SDN
solutions in a multi-site deployment. Therefore, the capability to integrate with Neutron
is considered as an illustrative example. Indeed, some SDN controllers may be able to
integrate with Neutron to implement networking management or add additional func-
tionalities, consuming the Neutron core API or its extensions. Therefore, having a driver
to pass network information to the controller.

4.6 Related Works in SDN

Since SDN has been a hot topic for the last few years, several studies about SDN
characteristics, such as its decentralization, have already been published. In this section,
we underline the major ones. First, we discuss papers that discuss SDN technologies in
general. Second, we review SDN-based cloud activities.

In [80] the authors present a general survey on SDN technologies introducing a taxon-
omy based on two classifications: physical classification and logical classification. For every
one of the categories, multiple subcategories are presented and explained. Moreover, they
placed the surveyed SDN solutions accordingly to their architectural analysis. The work
finished by exposing a list of open questions such as scalability, reliability, consistency,
interoperability, and other challenges such as statistics collection and monitoring.

In [77], and [76], the authors focus on the scalability criteria. More precisely, the
work done by Karakus et al. [77] provided an analysis of the scalability issues of the
SDN control plane. The paper surveyed and summarized the SDN control plane scala-
bility’s characteristics and taxonomy through two different viewpoints: topology-related
and mechanisms-related. The topology-related analysis presents the relation between the
topology of architectures and some scalability issues related to them. The mechanism-
related point of view describes the relationship between different mechanisms (e.g., paral-
lelization optimization) and scalability issues. This work’s limitation is that the analysis
is done by only considering the throughput measured in the number of flows established
per second and the flow setup latency.

In [76], Yang et al. provided a scalability comparison among several different types of
SDN control plane architectures by doing simulations. To assign a degree of scalability,
the authors proposed to measure the flow setup capabilities and the statistics collection.

41

Part II, Chapter 4 – Multi-instance solutions for DCI architectures: Properties

Although these two articles compare several controller architectures, there is no analysis
nor mention of the DCI context and related challenges.

Among other available studies in traditional SDN technologies, the work presented
in [79], and [78] are probably the most interesting ones concerning DCI objectives. In
their article [79], Blial et al. give an overview of SDN architectures composed of multi-
ple controllers. The study emphasizes the distribution methods and the communication
systems used by several solutions to design and implement SDN solutions to manage tra-
ditional networks. Similarly, the survey [78] discusses some design choices of distributed
SDN control planes. It delivers a captivating analysis of the fundamental issues found
when trying to decentralize an SDN control plane. These cornerstone problems are scala-
bility, failure, consistency, and privacy. The paper analyses pros and cons of several design
choices based on the issues mentioned above. While these two studies provide meaningful
information for our analysis, they do not address the cloud computing viewpoint and the
DCI challenges.

In the field of SDN applied especially to cloud computing, the works of Azodolmolky
et al. [46, 103] provide information about the benefits and potential contributions of SDN
technologies applied for the management of cloud computing networking. While these
works represent a good entry point to analyze SDN-based cloud networking evolution, they
mostly analyzed the networking protocols and implementations (e.g., VLAN, VXLAN,
etc.) that may be used to provide networking federation among a few data centers. More
recently, Son et al. [104] presented a taxonomy of SDN-enabled cloud computing works as
well as a classification based on their objective (e.g., energy efficiency, performance, virtu-
alization, and security), the method scope (e.g., network-only, and joint network and host),
the targeted architecture (e.g., Intra-data center network (DCN), and Inter-DCN), the
application model (e.g., web application, map-reduce, and batch processing), the resource
configuration (e.g., homogeneous, and heterogeneous), and the evaluation method (e.g.,
simulation, and empirical). Datacenter power optimization, traffic engineering, network
virtualization, and security are also used to distinguish the studied solutions. Finally, the
paper provides a gap analysis of several aspects of SDN technologies in cloud computing
that have not been investigated yet. We can cite the question related to the extension of
cloud computing concepts to the network’s edge (i.e the DCI we envisioned).

4.7 Summary

The design principles of SDN controllers may vary the way they provide their network-
ing functionalities. In this chapter, we presented the definitions of properties necessary to

42

4.7. Summary

understand the analysis we discuss in the next chapters.
Although it would be valuable, reviewing all SDN controller solutions that have been

proposed [105, 106] is beyond the scope of our objective of delivering an appropriate
solution for inter-site network connectivity management. We limited our study to the
major state-of-the-art solutions and selected the best candidates that may fit DCIs. For
the sake of clarity, we present the solutions we studied into three categories:

— Network-oriented SDN (Chapter 5) solutions conceived to provide network pro-
grammability to traditional or virtualized network backbones. The controllers gath-
ered in this category do not provide SDN capabilities for cloud computing network-
ing environments.

— Cloud-oriented SDN (Chapter 6) solutions proposing an SDN way to manage
the networking services of cloud computing infrastructures (as explained in Sec-
tion 2.2.1). While some of the controllers gathered in this category have been ini-
tially designed to manage traditional networks, they propose extensions to provide
SDN features within the cloud networking services.

— Other propositions (Chapter 7) are considered to analyze how the DCI management
can be decentralized within resource managers.

For each selected proposal, we present a qualitative analysis and summarize their
characteristics and whether they address the DCI challenges.

43

Chapter 5

NETWORK-ORIENTED SDN
CONTROLLERS

This chapter discusses SDN solutions designed to provide network programmability
to traditional or virtualized network backbones. The seven network-oriented SDN solu-
tions we present are Distributed SDN Control Plane (DISCO) [107], Decentralized SDN
(D-SDN) [108], Elastic Controller (Elasticon) [109], FlowBroker [110], HyperFlow [111],
Kandoo [112], and Orion [113]. We analyse these solutions by considering the DCI chal-
lenges identified in Chapter 3. We use the key words Information granularity, In-
formation scope, Information availability, Automatized interfaces, and Net-
working technologies introduced at Table 3.1 to reference each one of the challenges.
A synthesis of the characteristics analysis and the DCI challenges analysis are proposed
at the end of the chapter and gathered at Table 5.1 and Table 5.2 respectively.

5.1 DISCO

DISCO [107] relies on the segregation of the infrastructure into distinct groups of
elements where each controller is in charge of one group using OpenFlow as a control
plane protocol. Each controller has an intra-domain (or intra-group) and a inter-domain
(or inter-group). The intra-domain part provides local operations like managing virtual
switches. The inter-domain part manages communication with other DISCO controllers to
make reservations, topology state modifications, or monitoring tasks. This architecture is
illustrated in Figure 5.1. For the communication between controllers, DISCO relies on an
Advanced Message Queuing Protocol (AMQP) message-oriented communication bus [114]
where every controller has at the same time an AMQP server and a client. The central
component of every controller is the DB where all intra- and inter-domain information is
stored. We underline that there is no specific information on how the DB works in the
article that presents the DISCO solution.

DISCO can be considered to have a fully distributed design because every local con-
troller stores information of its SDN domain only and establishes inter-domain commu-

44

5.1. DISCO

Figure 5.1 – DISCO SDN controller architecture (based on [107] © 2014 IEEE)

nication with other controllers to provide end-to-end connectivity only if needed. DISCO
controllers do not act as a centralized entity and instead work as independent entities
peering among them. It has leader-less coordination because of its logically distributed
condition (each controller is in charge of a subgroup, so there is no possible conflict).
DISCO’s evaluations have been performed on a proof of concept. For this reason, we
assigned a TRL of 3 to DISCO.

Addressing the DCI Challenges

— Information granularity: Addressed - due to the segregation of the infrastructure
into distinct groups.

— Information scope: Addressed - thanks to its per-group segregation. When an
inter-domain forwarding path is requested, DISCO controllers use the communica-
tion channel only to contact the relevant sites for the request. Thus, avoiding global
information sharing.

— Information availability: Addressed - in case of network disconnections, each
controller would be able to provide intra-domain forwarding. Besides, controllers
that can contact each other could continue to deliver inter-site forwarding. Finally,
a recovery mode is partially provided, given that disconnected sites only need to
contact the remote communication channels to retake the inter-domain traffic for-

45

Part II, Chapter 5 – Network-oriented SDN controllers

warding when the connectivity is reestablished. As aforementioned, we underline
that DISCO is conflict-less due to its implementation and the information that is
manipulated. It makes the recovery process relatively simple.

— Automatized interfaces: Addressed - thanks to the bridge presented among the
northbound and east-west interfaces to do inter-controller communication.

— Networking technologies: Not addressed since it does not integrate other net-
working technologies aside from OpenFlow.

5.2 D-SDN

D-SDN [108] distributes the SDN control into a hierarchy of controllers as shown in
Figure 5.2; i.e., Main Controllers (MCs) and Secondary Controller (SCs), using OpenFlow
as control plane protocol. Similar to DISCO, SDN devices are organized into groups
and assigned to one MC. One group is then divided into subgroups managed by one
SC (each SC requests one MC to control a subset of SDN devices). We underline that
the current proposition does not give sufficient details regarding how states are stored
within MC and SC. The proposal mainly discusses two protocols. The first one is related
to communications between SCs and MCs using D-SDN’s MC-SC protocol for control
delegation. The second one, entitled D-SDN’s SC-SC, has been developed to deal with
fail-over scenarios. The main idea is to have replicas of SCs to cope with network or node
failures.

As stated in the proposition, D-SDN has a hierarchical design: the MC could be seen as
a root controller and SCs as local controllers. It has leader-based coordination, with MC
being the natural leader in the hierarchy. As D-SDN is presented as a proof of concept,
we defined a TRL of 3.

Addressing the DCI Challenges

— Information granularity: Addressed - due to the segregation of the infrastructure
elements into distinct groups.

— Information scope: Not addressed - the MC gathers global knowledge, and the
communication between SC appear just for fault tolerance aspects.

— Information availability: Undefined - in case of disconnection, SCs controllers
can continue to provide forwarding within its local domain at first sight. However,
there is no information that specifies how the MC deals with such a disconnection.
Besides, the controller does not provide any recovery method as D-SDN does not
consider network partitioning issues.

46

5.3. Elasticon

SDN domain BSDN domain A

Control
Delegation

Main Controller (MC)

Secondary Controller (SC)
e.g., AP

Secondary Controller (SC)
e.g., GW

Control Delegation Control Delegation

Figure 5.2 – D-SDN SDN controller architecture (based on [108] © 2014 IEEE)

— Automatized interfaces: Not addressed - D-SDN proposes an interface for SC-
SC communication only for fault tolerance issues. Moreover, there is no information
regarding MC-MC communication patterns.

— Networking technologies: Not addressed - since it does not integrate any other
networking technologies nor the capacity to provide inter-group resources deploy-
ment.

5.3 Elasticon

Elasticon [109] is an SDN controller composed of a pool of controllers as shown in
Figure 5.3. The collection can be expanded or shrunk according to the size of the infras-
tructure to operate. Each controller within the pool is in charge of a subset of the SDN
domain using OpenFlow as control plane protocol. The elasticity of the collection varies
according to a load window that evolves. A centralized module triggers reconfigurations of
the pool like migrating switches among controllers or adding/removing a controller based
on the computed value.

While decisions are made centrally, it is noteworthy to mention that the controllers per-
form actions. To do so, each controller maintains a Transmission Control Protocol (TCP)

47

Part II, Chapter 5 – Network-oriented SDN controllers

Figure 5.3 – Elasticon SDN controller architecture (based on [109])

channel with every other one creating a full mesh. This protocol enables controllers to
coordinate themselves if need be. The states of Elasticon are shared through the Hazelcast
distributed data store [115], which can be accessed by all controllers. The use of a shared
back-end by the pool gives a physically distributed but logically centralized design. As
stated in Elasticon’s work, the solution has been implemented as a prototype. Thus, a
TRL of 3 has been assigned to it.

Addressing the DCI Challenges

— Information granularity: Partially addressed - Elasticon has been designed to
distribute the control of infrastructure over several controllers. If the Hazelcast data
store can be deployed across several sites, it is possible to envision distributing the
pool of controllers between the different sites. By accessing the same DB, controllers
will be able to add information to the DB and fetch the others’ knowledge to
establish inter-site connectivity. However, the consistency of the data store might
be another issue to deal with.

— Information scope: Undefined - it is linked to the DB capabilities (in this case,
to the way the Hazelcast data store shards the information across the different sites

48

5.4. Flowbroker

of the infrastructure). However, it is noteworthy to mention that most advanced
DB systems such as CockroachDB [116] only favor data-locality across several geo-
distributed sites partially.

— Information availability: Undefined - similarly to the last challenge, it is linked
to the way the DB services deal with network partitioning issues. In other words,
intra/inter-domain forwarding paths that have been previously established should
go on theoretically (network equipment has been already configured). Only the
recovery mechanism to the DB is unclear.

— Automatized interfaces: Partially addressed - because each controller already
has a TCP channel to communicate with the other controllers. However, this com-
munication channel is only used for coordination purposes.

— Networking technologies: Not addressed - since it only operates in OpenFlow-
based scenarios.

5.4 Flowbroker

FlowBroker [110] is a two-layers architecture using OpenFlow as control plane protocol.
It is composed of a series of broker agents and semi-autonomous controllers. The broker
agents are located at the higher layer. They are in charge of maintaining a global view
of the network by collecting SDN domain-specific network state information from the
semi-autonomous controllers deployed at the bottom layer. Semi-autonomous controllers
do not communicate among them, so they are not aware of other controllers’ existence in
the network. These controllers are only mindful of interfaces in the controlled switches,
thus, providing local-domain forwarding. By maintaining a global view, the broker agents
can define how semi-autonomous controllers should establish flows to enable inter-domain
path forwarding. FlowBroker architecture is presented in Figure 5.4.

FlowBroker presents a hierarchical design with broker agents acting as root controllers
and semi-autonomous domain controllers as local controllers. Although semi-autonomous
controllers can establish forwarding paths inside their domain, communication with the
broker agents is mandatory for inter-domain forwarding. Because of this reason, Flow-
Broker presents leader-based coordination, where brokers act as leaders. However, we
underline that there is no information describing how the information is shared between
the different brokers.

Regarding maturity, we assigned a TRL of 3 to FlowBroker because only a proof-of-
concept has been implemented.

49

Part II, Chapter 5 – Network-oriented SDN controllers

SDN domain C

SDN domain B

SDN domain A

SDN controller C

SDN controller B

SDN controller A

Broker 1 Broker 2

Flow Table
Update

Link State
Traffic
Metrics

Load Balancing
Forwarding
Rules

Link/Domain Metrics
Topology Updates

Updates global view Updates global view

Figure 5.4 – FlowBroker SDN controller architecture (based on [110])

Addressing the DCI Challenges

— Information granularity: Not addressed - the segregation into semi-autonomous
controllers enables the efficient sharding of the information per site. However, the
brokers’ global view information does not enable the validation of this challenge.

— Information scope: Not addressed - although the global view maintained by
each broker allows them to contact only the semi-autonomous controllers that are
involved in the inter-site creation, the result of each operation is forwarded to each
broker to maintain the global view up-to-date.

— Information availability: Addressed - as aforementioned, semi-autonomous con-
trollers can continue to provide local-domain forwarding without the need of the
brokers. In the hypothetical case of a network disconnection and the subsequent
reconnection, interconnected controllers can still forward the traffic among them.
They only need to contact brokers to request inter-site forwarding configuration.
Once the configuration of network equipment has been done, controllers do not
need to communicate with brokers. Regarding the loss of connectivity with bro-
kers, the recovery process is quite simple because the information shared between
all brokers and semi-autonomous controllers is conflict-less.

50

5.5. HyperFlow

— Automatized interfaces: Not addressed - because semi-autonomous controllers
do not have an east-west interface to communicate among them, but only com-
municate with brokers. Moreover, the way brokers exchange network knowledge to
gather global network view is not discussed.

— Networking technologies: Not addressed - since its use is only intended with
OpenFlow protocol.

5.5 HyperFlow

Hyperflow [111] is an SDN NOX-based[117] multi-controllers using OpenFlow as con-
trol plane protocol. The publish/subscribe message paradigm is used to allow controllers
to share global network state information and is implemented using WheelFS [118]. Each
controller subscribes to three channels: data channel, control channel, and its channel.
Events of local network domains that may be of general interest are published in the data
channel. In this way, information propagates to all controllers allowing them to build the
global view. Controller to controller communication is possible by publishing into the
target’s channel. Every controller publishes a heartbeat in the control channel to notify
about its presence on the network.

Figure 5.5 – HyperFlow SDN controller architecture (based on [111])

As all participant controllers share global networking information, the controller topol-
ogy presents a physically distributed but logically centralized design. Every controller

51

Part II, Chapter 5 – Network-oriented SDN controllers

manages its domain. In the case of network partitions, traffic forwarding can continue
inside each controller domain and between the controllers that can contact each other.
However, the dependency concerning WheelFS is not discussed. In other words, the be-
havior of a controller that cannot contact WheelFS is undefined. More generally, the
publish/subscribe paradigm enables Hyperflow to be leader-less. As this proposition has
been implemented as a proof-of-concept, a TRL of 3 has been assigned to HyperFlow.

Addressing the DCI Challenges

— Information granularity: Addressed - thanks to WheelFS, it is possible to deploy
one controller per site. Each one uses WheelsFS to share networking information
to create inter-domain forwarding paths.

— Information scope: Partially addressed - HyperFlow presents both a general
information data channel and the possibility to communicate directly to specific
controllers using their respective channel. Unfortunately, the paper does not clarify
whether the establishment of inter-site traffic forwarding is done by contacting the
relevant controllers or if, instead, the general channel is used. In the former case,
the exchange is efficient. In the latter, all controllers will share the information.

— Information availability: Partially addressed - in case of network partitioning,
every controller can continue to serve their local forwarding requests. Regarding
inter-forwarding, the dependency w.r.t. to WheelFS is unclear. Theoretically speak-
ing, inter-forwarding channels should survive disconnections (at least among the
controllers that can interact among them). Moreover, WheelFS provides a recov-
ery method to deal with network partitioning issues. Such a feature should enable
controllers to requests new inter-forwarding paths after disconnections without re-
quiring to implement specific recovery mechanisms. Similar to previous solutions,
this is possible because the information shared through WheelFS is conflict-less.

— Automatized interfaces: Partially addressed - since WheelFS is used as both
communication and storage utility among controllers. Thus, it is used as the east-
west interface. However, HyperFlow’s authors underlined that the main disadvan-
tage of the solution is the use of WheelsFS: WheelsFS can only deal with a small
number of events, leading to performance penalties in cases where it is used as a
general communication publish/subscribe tool among controllers.

— Networking technologies: Not addressed - since it does not integrate other net-
working technologies besides OpenFlow.

52

5.6. Kandoo

5.6 Kandoo

Kandoo [112] is a muti-controller SDN solution built around a hierarchy of controllers
using OpenFlow as control plane protocol. At the low level, local-domain controllers are
in charge of managing a set of SDN-enabled switches and processing local traffic demands.
At the high-level, the single root controller gathers network state information to deal with
inter-domain traffic among the local domains. This architecture is presented in Figure 5.6.
The Kandoo proposal authors claim that there are only a few inter-domain forwarding
requests and that a single root controller is large enough to deal with. Regarding the
local controllers, they do not know about the others’ existence, thus only communicating
with the root controller using a simple message channel to request the establishment of
inter-domain flows. Unfortunately, there is no sufficient information to understand how
this channel works and how the inter-domain flows are set up.

Figure 5.6 – Kandoo SDN controller architecture (based on [112])

By its two-level hierarchical design, Kandoo presents leader-based coordination (the
root controller being the architecture’s natural leader). As the solution had been imple-
mented as a proof-of-concept, a TRL of 3 has been assigned to Kandoo.

53

Part II, Chapter 5 – Network-oriented SDN controllers

Addressing the DCI Challenges

— Information granularity: Not addressed - the root controller is used to get in-
formation to do inter-domain traffic forwarding, thus gathering the global network
view.

— Information scope: Not addressed - similarly to the previous challenge, there is
no direct communication between controllers: the single root controller is aware of
all inter-domain requests.

— Information availability: Addressed - similarly to FlowBroker solution, the root
controller is only required to configure the inter-domain traffic. Once network equip-
ment has been set up, there is no need to communicate with the root controller.
The recovery process between local controllers and the root is simple: it consists
of just recontacting the root once the network connectivity reappears (similarly to
FlowBroker is conflict-less).

— Automatized interfaces: Not addressed - there is not an east-west interface to
communicate among local controllers.

— Networking technologies: Not addressed - since Kandoo does not implement
other protocols besides OpenFlow.

5.7 ORION

Orion [113] is presented as a hybrid SDN proposition using OpenFlow as control plane
protocol. The infrastructure is divided into domains that are then divided into areas.
Orion leverages area controllers and domain controllers. Area controllers are in charge of
managing a sub-set of SDN switches and establish intra-area routing. Domain controllers,
at the top layer, are in charge of synchronizing global abstracted network information
among all domain controllers and to establish inter-area routing paths for their managed
area controllers. This architecture is presented in Figure 5.7.

Synchronization of network states between domain controllers is done using a scalable
NoSQL DB. Moreover, a publish/subscribe mechanism is used to allow domain controllers
to demand the establishment of inter-area flows among them. Finally, it is noteworthy to
mention that area controllers are not aware of other area controllers’ existence and only
communicate with their respective domain controller. This communication is done via a
simple TCP channel.

Orion is the only solution that presents a hybrid design: each domain follows a two-
level hierarchy. Moreover, all domain controllers are arranged in a Peer-to-Peer (P2P) way,
using a NoSQL DB to share information. Unfortunately, there are no details regarding

54

5.7. ORION

Figure 5.7 – Orion SDN controller architecture (based on [113] © 2014 IEEE)

the NoSQL DB or coordination protocol among the domain controllers. Hence, it is not
clear whether Orion uses leader-based coordination in its P2P model. As the solution had
been implemented as a proof-of-concept, a TRL of 3 has been assigned to Orion.

Addressing the DCI Challenges

— Information granularity: Not addressed - although the infrastructure is divided
into domains (each domain controller maintains its view of the information), each
area controller should notify its domain controller about all changes that occur at
the low level.

— Information scope: Not addressed - first, area controllers cannot contact directly
other controllers to set up inter-site traffic forwarding, and second, we do not know
how information is shared between domain controllers (i.e., it is related to the DB
system, see Elasticon for instance).

— Information availability: Undefined - in case of network disconnections, area
controllers can continue to forward intra-domain traffic and inter-domain traffic on
paths that have been previously established. In other words, domain controllers are
used only for inter-domain path forwarding establishments. In the case of network

55

Part II, Chapter 5 – Network-oriented SDN controllers

Proposals

Model Implementation Interoperability & maturity Extra consideration
Centralized
(Single)

Controller
Designs

Distributed Designs Coordination
Strategy

Internal Com-
munication
Protocols

Database
man-
age-
ment
system

Network types
targeted

Southbound
Proto-
cols

Readiness
Level

OpenStack
compatibility

(Flat)
Logically
central-
ized

(Flat)
Logically

dis-
tributed

Hierarchical Hybrid
Leader-

based

Leader-

less

Among
local
nodes

With
higher
layers

Among
root
nodes

UnderlayOverlay

Solutions

DISCO X X AMQP - - ? X
OpenFlow

&
RSVP-like

PoC (TRL 3) 7

D-SDN X X
SC-SC
Protocol

MC-SC
Protocol - - X OpenFlow PoC (TRL 3) 7

ElastiCon X X
DB-in/
TCP

channel
- - NoSQL DB X OpenFlow PoC (TRL 3) 7

FlowBroker X X -
FlowBroker
control
channel

? ? X OpenFlow PoC (TRL 3) 7

HyperFlow X X WheelFS - - WheelFS X OpenFlow PoC (TRL 3) 7

Kandoo X X -
Simple
message
channel

- - X OpenFlow PoC (TRL 3) 7

Orion X ? ? Not needed TCP channel Pub/Sub NoSQL DB X OpenFlow PoC (TRL 3) 7

Table 5.1 – Classification of surveyed network-oriented SDN solutions.

disconnection, the area controller only needs to reconnect to its domain controller
when required and when the connection reappears. There is no need for a specific
recovery protocol because the information shared between area controllers and their
respective domain controller is conflict-less. Only the recovery mechanism related
to the DB used to share information among domain controllers is unclear.

— Automatized interfaces: Not addressed - because local controllers do not present
an east-west interface to communicate among them.

— Networking technologies: Not addressed - since it does not integrate other net-
working technologies aside from OpenFlow.

5.8 Summary

This chapter introduced seven SDN solutions conceived to operate traditional or virtu-
alized network backbones. We have detailed each proposition using the design principles
described in Chapter 4 as summarized in Table 5.1, and we have done an analysis to
indicate if the solutions are capable or not to fulfill the DCI networking management
challenges introduced in Chapter 3 completely. Most of the solutions rely on physically
distributed but logically centralized (i.e., Elasticon, Hyperflow) and hierarchical (i.e.,
D-SDN, FlowBroker, Kandoo) architectures designs. Only two solutions present other ar-
chitecture designs, such as the fully distributed (i.e., DISCO) or the hybrid ones (i.e.,
ORION). Using a distributed DB is the most common approach to store information and
communicate with distant instances. However, it is questionable whether this approach
can fully address the DCI management challenges in the case of network disconnections.
Among the propositions, only DISCO entirely relies on a P2P communication exchange
employing its east-west interface. Overall, none of the analyzed solutions can completely

56

5.8. Summary

Proposals
Organization of network information Inter-site networking resources implementation

Information
granularity

Information
scope

Information
availability

Automatized
interfaces

Networking
technologies

Network-oriented solutions
DISCO 3 3 3 3 7
D-SDN 3 ~ ? 7 7
ElastiCon ~ ? ? ~ 7
FlowBroker 7 7 3 7 7
HyperFlow 3 ~ ~ ~ 7
Kandoo 7 7 3 7 7
Orion 7 7 ? 7 7

1 3Challenge completely addressed.
2 ~ Challenge partially addressed.
3 7Challenge not addressed.
4 ? Undefined.

Table 5.2 – Challenges summary of network-oriented solutions.

coop with all of the DCI networking management challenges as summarized in Table 5.2.
The next chapter introduces the second part of this state-of-the-art overview, present-

ing a detailed analysis of the cloud-oriented SDN solutions.

57

Chapter 6

CLOUD-ORIENTED SDN CONTROLLERS

In this chapter we continue our state-of-the-art review by focusing on solutions designed
to provide SDN capabilities to cloud computing networking management. The five solutions
we present are DragonFlow [119], OpenDayLight (ODL) [120], Onix [121], Open Network-
ing Operating System (ONOS) [122], and Tungsten [123]. We analyse these solutions by
considering the DCI challenges identified in Chapter 3. We use the key words Informa-
tion granularity, Information scope, Information availability, Automatized
interfaces, and Networking technologies introduced at Table 3.1 to reference each
one of the challenges. Similar to the previous chapter, a synthesis of the characteristics
analysis and the DCI challenges analysis are given at the end of the chapter and gathered
at Table 6.1 and Table 6.2 respectively.

6.1 DragonFlow

DragonFlow [119] is an SDN controller for the OpenStack ecosystem, i.e., it imple-
ments the Neutron API and thus can replace the default Neutron implementation (see
Section 2.2.1.1). From the software architecture, DragonFlow relies on a centralized server
(i.e., the Neutron server) and local controllers deployed on each compute node of the in-
frastructure as illustrated in Figure 6.1. Each local controller manages a virtual switch,
providing switching, routing, and DHCP capabilities using entirely OpenFlow. A Dragon-
Flow ML2 mechanism driver and a DragonFlow service plug-in are activated in Neutron
Server to provide system network information to all local controllers. Communication
between the plug-ins at the Neutron server-side and local controllers is done via a plug-
gable distributed database (currently supporting OVSDB [124], RAMCloud [125], Cas-
sandra [126], and using ETCD [127] as default back-end).

Local controllers periodically fetch all network state information through this database
and update virtual switches, routes, etc., accordingly.

By maintaining a global knowledge of the network elements through its distributed
database, DragonFlow can be considered a distributed but logically centralized controller
(see Section 4.2) at first sight. However, there is a root controller (i.e., the Neutron

58

6.1. DragonFlow

Figure 6.1 – DragonFlow SDN controller architecture (based on [119])

server-side) in charge of the management layer (i.e., updating configuration states in
the distributed database) and local controllers that implement the control plane makes
DragonFlow more a hierarchical solution than a distributed one. In other words, for all
leader-based operations, the Neutron plug-in deployed at the server-side acts as the leader.
In conclusion, although DragonFlow is presented as a distributed SDN controller, its
design does not allow the management of a geo-distributed infrastructure (i.e. composed
of multiple SDN controllers).

From the maturity viewpoint and according to its activity, we believe DragonFlow has
reached a TRL 6. Initially supported by Huawei, the project is relatively inactive right
now, however.

Addressing the DCI Challenges

— Information granularity: Partially addressed - similarly to Elasticon, if the dis-
tributed database service can be deployed across several sites, we can envision an
infrastructure composed of several DragonFlow Neutron plug-ins. Each one will add
information to the database, and all local controllers will be capable of fetching the
necessary information to provide inter-site resources.

59

Part II, Chapter 6 – Cloud-oriented SDN controllers

— Information scope: Undefined - it is linked to the way the distributed database
system shards the information across the different sites of the infrastructure.

— Information availability: Undefined - similar to the last challenge and the Elasticon
solution, it is linked to the way the distributed database services deals with network
partitioning issues.

— Automatized interfaces: Partially addressed - DragonFlow controllers do not
present an east-west interface to communicate with remote sites. Instead, the dis-
tributed database is used as a communication tool.

— Networking technologies: Partially addressed - the controller incorporates the
adaptation and reconfiguration of networking services, but it lacks the heterogeneity
of networking protocols. For instance, currently, DragonFlow does not support BGP
dynamic routing [128].

6.2 OpenDayLight

OpenDayLight (ODL) [120] is a modular SDN platform supporting a wide range of
protocols such as OpenFlow, OVSDB, NETCONF, BGP, among others. Originally, ODL
has been developed as a centralized controller to merge legacy networks with SDN in
datacenters, but its modularity allows users to build their SDN controller to fit specific
needs [129]. The internal controller architecture comprises three layers: The southbound
interface, which enables communication with network devices. The Service Adaptation
Layer (SAL) adapts the southbound plug-ins’ functions to higher-level application/service
functions. Finally, the northbound interface provides the controller’s API to applications
or orchestration tools. Network states are stored through a tree structure using a dedicated
in-memory data store (i.e., developed for ODL). While the default implementation of
ODL can be used in cluster mode for redundancy and high availability, its modularity
introduces features aiming to enable different controller instances to peer among them
like the SDNi [130] or the more recent Federation [131] projects. ODL Federation service
facilitates the exchange of state information between multiple ODL instances. It relies on
AMQP to send and receive messages to/from other instances. A controller could be at
the same time producer and consumer.

The Federation project of ODL corresponds to a physical and logical distributed design
(each instance maintains its view of the system). Moreover, it has leader-less coordination
because there is flat on-demand communication between controllers, and no leader is
needed for these exchanges.

Concerning the OpenStack compatibility, the modularity of the controller allows multi-

60

6.2. OpenDayLight

ple projects to implement the Neutron API. For instance, ODL comes with the OpenStack
Neutron API application. This application provides the abstractions that are mandatory
for the implementation of the Neutron API inside the controller. Among those imple-
mentations, we found: Virtual Tenant Network (VTN), Group Based Policy (GBP), and
OVSDB-based Network Virtualization Services (NetVirt) [132]. Figure 6.2 shows the ar-
chitecture of ODL when using the Federation and NetVirt projects.

Figure 6.2 – OpenDayLight Federation NetVirt SDN controller architecture (based on [120]
© 2014 IEEE)

By leveraging the Federation and NetVirt projects, it is possible to create virtual
network resources spreading across several OpenStack instances. When the Federation
manager receives a request to create an inter-site resource between two OpenStack in-
stances, it realizes the interconnection at the ODL level (i.e., creating shadow elements,
etc.). Moreover, it performs the matching with the OpenStack Neutron resources on the
different sites. Although this enables the interconnection of multiple instances of Open-
Stack, it is noteworthy to mention that Neutron instances remain unconscious of the
information shared at the ODL level. In other words, there is not coordination mecha-
nism that will prevent overlapping information at the Neutron level. This is rather critical
as it may lead to consistency issues where an IP, for instance, can be allocated on each
site without triggering any notification.

Since ODL is a community leader and industry-supported framework presented in

61

Part II, Chapter 6 – Cloud-oriented SDN controllers

several industrial deployment and continuous development, a TRL of 9 has been assigned
to ODL [133].

Addressing the DCI Challenges

— Information granularity: Addressed - through the Federation project, it is pos-
sible to leverage several controllers to operate an infrastructure (each controller
maintains its own view) with the mechanisms to do information sharding.

— Information scope: Addressed - each controller can interact with another one by
using AMQP. In other words, there is not any information that is shared between
controllers unless requested by the user.

— Information availability: Partially addressed - in case of network disconnection,
ODL instances can satisfy local networking services (including the resource man-
ager ones). At the same time, the non-disconnected controllers can continue to
provide the inter-site resources. Since inter-site resources are proposed outside the
knowledge of the resource manager networking module, ODL assumes that there
are no conflicts between networking objects when establishing the resource. ODL
cannot provide a recovery method in case of incoherence since it is not the entity
in charge of the networking information management. This is an essential flaw for
the controller when it needs to recover from networking disconnections.

— Automatized interfaces: Addressed - thanks to the use of AMQP as east-west
interface among the controllers.

— Networking technologies: Addressed - ODL implements several networking tech-
nologies allowing to reconfigure each controller’s networking service.

6.3 Onix

Onix [121] is a multi-controller SDN platform. In other words, Onix presents several
building blocks to develop network services in charge of operating either overlay (using
OpenFlow by default) or underlay (using BGP if needed) networks.

Onix’s architecture consists of multiple controller instances that share information
through a data store called Network Information Base (NIB) as presented in Figure 6.3.
The infrastructure is divided into domains, each domain being managed by one instance.
Depending on durability and consistency, a network service may use a specific database
to implement the NIB module. If durability and strong consistency are required, the
instances should use a replicated transactional SQL database. Otherwise, it is possible to
use any NoSQL system.

62

6.3. Onix

SDN domain C

SDN domain B

SDN domain A

Eventually
Consistent
NoSQL DB

NoSQL DB
Coordination
(Zookeeper)

Import/export
agent

Import/export
agent

Fully
replicated
SQL DB

Import/export
agent

Eventually
Consistent
NoSQL DB

Eventually
Consistent
NoSQL DB

Replicated state machine

NoSQL DB
Coordination
(Zookeeper)

NoSQL DB
Coordination
(Zookeeper)

Fully
replicated
SQL DB

Fully
replicated
SQL DB

NIB

Figure 6.3 – Onix SDN controller architecture (based on [121])

Regarding coordination aspects, the system leverages ZooKeeper [134] to deal with
instance failures (using the Zookeeper Atomic Broadcast protocol for leader election).
The responsibility of the SDN equipment is then determined among the controllers.

Using multiple controllers, and a global network database, the Onix architecture cor-
responds to a physically distributed but logically centralized one.

As Onix was built as a basis for Nicira’s SDN products but was not a commercial
product, we assigned a TRL of 7.

Finally, the Onix platform integrates some applications, including the management of
multi-tenant virtualized DataCenters. This service allows creating tenant-specific Layer 2
networks establishing tunnels among the hypervisor hosting resource managers in one sin-
gle deployment. However, this module works in a stand-alone mode and does not interact
with the OpenStack Neutron service.

Addressing the DCI Challenges

— Information granularity: Partially addressed - similarly to solutions such as
Elasticon or DragonFlow, it is related to the database used to share the information
between the instances.

63

Part II, Chapter 6 – Cloud-oriented SDN controllers

— Information scope: Undefined - similarly to the previous challenge, it is related
to the database. In case of strong consistency, all instances should synchronize the
information. In the case of a NoSQL system, it depends on how the DB shards the
information across different instances.

— Information availability: Undefined - established inter-site resources can go on
and disconnected sites can continue to operate in isolated mode. The main issue
is related to the NIB that should provide the necessary consistency algorithms to
allow recovery in case of network disconnection.

— Automatized interfaces: Partially addressed - similarly to DragonFlow, the use
of distributed DBs to share information among instances can be seen as an east-west
interface allowing communication among controllers.

— Networking technologies: Partially addressed - the solution has been designed
to use several networking technologies and protocols. Although the initial Onix
proposition only supported OpenFlow, Onix design does not impose a particular
southbound protocol but rather the NIB’s use as an abstraction entity for network
elements.

6.4 ONOS

ONOS [122] is a modular and distributed SDN framework consisting of several network
applications build on top of Apache Karaf OSGi container [135]. It supports the use
of multiple control plane protocols like OpenFlow, NETCONF, among others. ONOS
has been created for overlay and underlay networks of service providers. Network states’
information is stored using the Atomix database [136], a NoSQL framework developed
for ONOS, which is also used for coordination tasks among controllers. Figure 6.4 shows
such a configuration of multiple ONOS controllers.

Similar to other proposals, the infrastructure is divided into domains with one con-
troller per domain. Considering the shared back end and the multiple controller instances,
ONOS presents a physically distributed but logically centralized design. As aforemen-
tioned, ONOS has a leader-based coordination approach, leveraging the Atomix DB (more
precisely, it uses the RAFT algorithm [85]). Considering that ONOS is one of the most
popular SDN open-source controllers and is used by several key actors in telecommunica-
tions [137], a TRL of 9 has been assigned to ONOS.

Finally, the modular design of ONOS allows the implementation of the Neutron API.
Concretely, there are three applications, which consume Neutron API and provide ML2
drivers and Services plug-ins: Simplified Overlay Network Architecture (SONA) [138],

64

6.4. ONOS

Figure 6.4 – ONOS SDN controller architecture (based on [122])

VTN , and Central Office Re-architected as a Datacenter (CORD) VTN [139]. Each ap-
plication has been designed with different targets [138, 139]. SONA provides an ML2
driver and an L3 service plug-in implementation. VTN provides service function chain-
ing capabilities. CORD VTN extends VTN with its interfaces for switching and routing
configuration [140].

Addressing the DCI Challenges

— Information granularity: Partially addressed - similarly to previous solutions
that are composed around several instances and a global shared database.

— Information scope: Undefined - it is linked to the way the Atomix database
system shards the information across the different instances.

— Information availability: Undefined - similarly to the previous challenge, it is
linked to the Atomix system.

— Automatized interfaces: Partially addressed - ONOS controllers use the Atomix
framework for coordination tasks among controllers and to communicate among
them.

— Networking technologies: Addressed - ONOS includes several networking tech-
nologies.

65

Part II, Chapter 6 – Cloud-oriented SDN controllers

6.5 Tungsten

Tungsten Fabric (previously known as Juniper’s Open-Contrail) [123] is the open-
source version of Juniper’s Contrail SDN controller, an industry leader for commercial
SDN solutions targeting overlay and underlay networks. Tungsten has two main compo-
nents: an SDN controller and a virtual router (vRouter). The SDN controller is composed
of three types of nodes, as shown in Figure 6.5:

— Configuration nodes are responsible for the management layer. They provide a
REST API [141] that can be used to configure the system or extract operational
status. Multiple nodes of this type can be deployed for High Availability (HA) pur-
poses. Note that configuration states are stored in Cassandra, a NoSQL database.

— Control nodes are in charge of implementing decisions made by the configuration
nodes. They receive configuration states from the configuration nodes using the
IF-MAP protocol and use Internal Border Gateway Protocol (IBGP) to exchange
routing information with other control nodes. They are also capable of exchanging
routes with gateway nodes using BGP.

— Analytic nodes are responsible for collecting, collating, and presenting analytic
information.

The virtual Router (vRouter) is a forwarding plane of a distributed router that runs in
a virtualized server’s hypervisor. It is responsible for installing the forwarding state into
the forwarding plane. It exchanges control states such as routes and receives low-level
configuration states from control nodes using XMPP.

Although there is no constraint on how the different nodes should be deployed, Tung-
sten architecture can be considered as a two-level hierarchical design. Configuration nodes
could be seen as root controllers and control nodes as local controllers (hence the config-
uration nodes can be viewed as the leaders). Given that the solution is used by several
of the most important actors in the industry and that anyone can test the code, a TRL
of 9 has been assigned to Tungsten. Tungsten integrates closely with Neutron consuming
its API. Since Tungsten supports a large set of networking services, it is configured as a
Core plug-in in Neutron.

Addressing the DCI Challenges

— Information granularity: Not addressed - although multiple configuration nodes
can share the network information through Cassandra, the internal design of Tung-
sten prevents the deployment of different configuration nodes across different sites.
An extension has been proposed to handle multi-region scenarios [142]. However,

66

6.6. Summary

Figure 6.5 – Tungsten SDN controller architecture (based on [123] © 2018 Tungsten Fabric)

the extension exposes a centralized entity to orchestrate remote controllers.
— Information scope: Not addressed - the configuration nodes share a global knowl-

edge base. One operation is visible by all configuration nodes.
— Information availability: Undefined - because Tungsten has been designed for a

single deployment, the impact of network disconnections between the configuration
and control nodes has not been discussed in detail. It is unclear what could happen
if a control node cannot interact with the site that hosts the configuration nodes
for a long period.

— Automatized interfaces: Not addressed - although control nodes can interact
with each other, there is no east-west interface to communicate among configuration
nodes of different Tungsten deployments.

— Networking technologies: Addressed - Tungsten incorporates several networking
technologies and can configure a different kind of network equipment.

6.6 Summary

This chapter introduced five SDN solutions conceived to provide management for cloud
computing IaaS networking. As in the previous chapter, we have provided an analysis for

67

Part II, Chapter 6 – Cloud-oriented SDN controllers

Proposals

Model Implementation Interoperability & maturity Extra consideration
Centralized
(Single)

Controller
Designs

Distributed Designs Coordination
Strategy

Internal Com-
munication
Protocols

Database
man-
age-
ment
system

Network types
targeted

Southbound
Proto-
cols

Readiness
Level

OpenStack
compatibility

(Flat)
Logically
central-
ized

(Flat)
Logically

dis-
tributed

Hierarchical Hybrid
Leader-

based

Leader-

less

Among
local
nodes

With
higher
layers

Among
root
nodes

UnderlayOverlay

Solutions

DragonFlow X X X DB-in DB-in DB-in
NoSQL
DB/
others

X OpenFlow Demonstrated
(TRL 6)

ODL (Fed) X X X AMQP - - In-memory X X
OpenFlow,
BGP &
others

Proven system
(TRL 9) X

Onix X X NoSQL DB ? -
SQL DB
NoSQL
DB

X X
OpenFlow

&
BGP

System prototype
(TRL 7) 7

ONOS X X DB-in - -
Atomix
(NoSQL

framework)
X X

OpenFlow,
NetConf&
others

Proven system
(TRL 9) X

Tungsten X X X BGP IFMAP DB-in NoSQL DB X X
XMPP,
BGP &
others

Proven system
(TRL 9) X

Table 6.1 – Classification of surveyed cloud-oriented solutions.

Proposals
Organization of network information Inter-site networking resources implementation
Information
granular-

ity

Information
scope

Information
availabil-

ity

Automatized
interfaces

Networking
technolo-

giesCloud-oriented solutions
DragonFlow ~ ? ? ~ ~
ODL (Fed) 3 3 ~ 3 3
Onix ~ ? ? ~ ~
ONOS ~ ? ? ~ 3
Tungsten 7 7 ? 7 3

1 3Challenge completely addressed.
2 ~ Challenge partially addressed.
3 7Challenge not addressed.
4 ? Undefined.

Table 6.2 – Challenges summary of cloud-oriented solutions.

each proposition detailing their design principles. We have assessed to indicate if the
solutions cannot fulfill the DCI networking management challenges.

Similar to the SDN solutions we presented in Chapter 5, most of the solutions rely on
physically distributed but logically centralized (i.e., ONIX, ONOS) and hierarchical (i.e.,
DragonFlow, Tungsten) architectures designs. ODL in Federation mode is the only solu-
tion proposing a fully distributed architecture leveraging a collaborative model among the
controller instances. Most of the solutions leverages the database, both as a storage and
communication tool, to synchronize and share information states across the controller’s
instances. Table 6.1 gives a synthesis of the characteristics analysis. Similar to the re-
sults of Chapter 5, none of the analyzed solutions can completely coop DCI networking
management challenges as summarized in Table 6.2.

The next chapter introduces the third part of this state-of-the-art overview, presenting
some projects we consider of interest in analyzing networking management decentraliza-
tion in DCIs.

68

Chapter 7

OTHER DECENTRALIZED PROPOSITIONS

In this chapter we finalize our state-of-the-art review by presenting solutions that pro-
vide decentralization of the resource managers. While not being purely SDN solutions, we
consider them of great relevance to analyze resource managers’ functionalities in DCIs.
Similar to the SDN propositions, we analyze whether or not these solutions can cater to
the DCI networking management challenges. The four solutions we present are OpenStack
P2P external proxy-agents [68], Tricircle [64], Kubernetes Federation [143], and Kuber-
netes Istio Multi-Cluster Service Mesh [144]. We analyse these solutions by considering
the DCI challenges identified in Chapter 3. We use the key words Information granu-
larity, Information scope, Information availability, Automatized interfaces,
and Networking technologies introduced at Table 3.1 to reference each one of the chal-
lenges. Similar to the previous chapter, a synthesis of the characteristics analysis and the
DCI challenges analysis are given at the end of the chapter and gathered at Table 7.1 and
Table 7.2 respectively.

7.1 OpenStack P2P External Proxy-Agents

The OpenStack P2P external proxy-agents proposes to abstract several instances of
OpenStack as a single instance exposed to the user. The idea is to associate an agent (a.k.a.
proxy-agent) with each instance of the resource manager whereby the user’s request is
received and processed. This proposal is not conceived to target the inter-site networking
connectivity, but at the place, to propose a broker-alike approach to massively scale-out
cloud infrastructures.

Every one of the agents implements three key functionalities. First, agents implement
the OpenStack services APIs to act as proxies for the users’ requests. Second, agents
implement an overlay management function used to maintain several overlay networks.
These networks allow agents to discover each other and identify the source agent of a
request. Finally, agents implement a state management function responsible for keeping
information about users and cloud resources.

From the user’s perspective, an agent is an entry point for the abstract P2P system,

69

Part II, Chapter 7 – Other decentralized propositions

and resource managers behind the agent are transparent. Each time the user requests one
of the agents, it may choose to forward the request to its associated resource manager
instance or may decide to deliver it to another agent (i.e., by using a series of filters) via
an agent-to-agent interface as depicted in Figure 7.1.

Figure 7.1 – P2P external proxy-agents architecture (based on [68] © 2017 IEEE)

Each agent maintains a list of the provisioned resources in a local database. This
list is build using the identifier created by the resource manager to indicate in which
instance the resource exists. While not implemented in the proof-of-concept, the model
allows the introduction of resources federation to interconnect heterogeneous resources
across independent cloud infrastructures. To maintain the overlay network among agents,
each agent keeps possession of a list of resource managers based on the CYCLON group
membership protocol [145]. The protocol allows maintaining a list of neighbor agents that
is exchanged periodically. Consequently, each agent is aware of only a small, continuously
changing set of other agents. Because the agents only process or forward users’ requests to
create resources in several resource managers, no coordination is needed. As a consequence,
it presents leader-less coordination.

Considering that peer-to-peer communication is used to communicate among the differ-

70

7.2. OpenStack Tricircle

ent agents, P2P proxy-agents presents a fully distributed architecture. Since this proposal
has been implemented as a PoC, we have assigned a TRL of 3.

Addressing the DCI Challenges

— Information granularity: Partially addressed - Similar to Kubefed (Section 7.3),
the segregation of information into each resource manager is proposed. However,
since the agents act as a system proxy, there is not management sharding strategies
proposed.

— Information scope: Partially addressed - while agents communicate only with
other agents for a request, the user does not provide the scope, but it rather depends
on the overlay management network. As a consequence, resources may be treated
by remote geographical agents.

— Information availability: Addressed - in case of network disconnection, each
resource manager and its agent are entirely independent of the others.

— Automatized interfaces: Addressed - the agents can communicate among them
using the agent-to-agent interface. We remember that this interface can only be
used to contact agents belonging to the overlay management network created with
CYCLON when a request is made.

— Networking technologies: Not addressed - Similar to Kubefed 7.3, the proxy-
agents use a broker-like approach. In consequence, no networking technology is
used.

7.2 OpenStack Tricircle

Tricircle is an OpenStack project that aims to provide network automation across
Neutrons in multi-region OpenStack deployments using a Central Neutron Service, several
Local Neutron Services, and a series of modified Neutron plug-ins. Tricircle can be used to
add more OpenStack instances into the Cloud for capacity expansion, to deploy geo-site
distributed applications for higher reliability and availability, for security considerations,
or to deploy NFV in sites closer to the user [64].

As we explained in Section 2.2.1.1, in a default multi OpenStack setup, each Region has
its OpenStack deployment, including its API endpoints, networks and compute resources,
message queues, and databases. Therefore, two independent Neutron deployments are
neither aware of the Agents belonging to the other one nor can use the message bus of
the remote Region.

To tackle down this problem, Tricircle presents a two-side solution as represented in

71

Part II, Chapter 7 – Other decentralized propositions

Figure 7.2 – OpenStack Tricircle architecture (based on [64])

Figure 7.2; a Tricircle service located at Central Neutron which is composed of an Admin
API, a Tricircle Central Neutron plug-in, a database, a service called XJob for receiving
and processing asynchronous requests, and a message bus. The second side is a Tricircle
Local Neutron Plugin that inherits from the ML2 plug-in and is located at every Local
Neutron.

Tricircle’s proposed architecture presents a hierarchical structure, being the Central
Neutron the natural leader. The principal drawback of these kinds of solutions is the
fragility exposed by the root or central element controlling the entire architecture. In this
case, the Central Neutron can experiment troubles that may turn the whole infrastructure
inaccessible. Thus, presenting the well-known problem of being a SPOF or bottleneck.
When a Local Neutron requests the Central Neutron to get a resource, information is
firstly stored in the Central Neutron’s database. Suppose a network disconnection affects
the link between that Local Neutron and the Central Neutron. In that case, the former
will not contact the data keeper and answer all requests with a message informing that
the requested resource does not exist even if this resource has been already deployed in
another Local Neutron.

While only using the Central Neutron API’s endpoint to manage and control network
constructions, the user can effectively deploy multi-site resources at the cost of not using
the multiple Local Neutron endpoints present in the entire deployment. As the Tricircle

72

7.3. Kubernetes Federation

Local plug-in is closely coupled with the Tricircle Central plug-in, the user cannot perform
local actions without affecting the data coherence managed at the central level. Addition-
ally, Local Neutrons are not aware of each other but only about the presence of Central
Neutron, turning the multi-region deployment into a single giant structure depending on
Central Neutron.

Huawei conceived Tricircle to propose networking automation for OpenStack. Unfor-
tunately, the project is no longer maintained and has not been deeply adopted by other
actors. As a consequence, we assigned a TRL of 6.

Addressing the DCI Challenges

— Information granularity: Not addressed - the segregation of information into
each instance of the resource manager is proposed. However, the Central Neutron
gathers global information since it is the only entry point to the system.

— Information scope: Partially addressed - while Tricircle proposes to only contact
the relevant Neutrons for a request, this is only done by the Central Neutron.

— Information availability: Partially addressed - Because Tricircle has been de-
signed following a hierarchical approach, network disconnections between Central
and Local Neutrons can render inoperative these last.

— Automatized interfaces: Not addressed - because Local Neutrons do not have
an east-west interface to communicate among them, but only receive requests from
the Central Neutron.

— Networking technologies: Addressed - Since it is an in-Neutron proposal, Tricir-
cle incorporates several networking technologies to provide inter-site connectivity.

7.3 Kubernetes Federation

Kubernetes Federation (a.k.a. Kubefed) is a project developed by the multi-cluster
working group of K8S, providing an easy-to-use way to manage multiple K8S clusters.
Kubefed does not target the inter-site networking connectivity but rather a global ap-
proach to deploying container-based applications across multi-sites through a standard
API. In other words, it does not leverage nor integrate SDN technologies but instead
proposes a broker-like approach to partially deal with the DCI challenges.

In detail, Kubefed relies on a two-layer architecture where a central cluster called host
cluster will propagate its application configuration to a series of independent clusters
called member clusters. To make this possible, the host leverages a federation API using
Custom Resource Definition (CRDs), an object provided by the vanilla Kubernetes that

73

Part II, Chapter 7 – Other decentralized propositions

allows DevOps to define their data types. These new federated objects are then used to
wrap basic objects. For example, FederatedService and FederatedDeployment objects are
abstractions to wrap the vanilla Service and Deployment objects.

Figure 7.3 – Kubernetes Federation architecture (based on [143])

When a FederatedService is created, Kubefed creates matching K8s Services in the
selected member clusters. To propagate the DNS records of each cluster, Kubefed gathers
all the locally generated DNS records in the host cluster and then pushes the registries
to each one of the concerning clusters. It implies that Services must be exposed using a
publicly available IP address. From the network point of view, Kubefed can only provide
cross-cluster Pod-to-Service and External-to-Service communications, relying on the pub-
lic routable IP addresses in both cases. Since it proposes management at the API level,
no coordination is possible at the low-level networking implementation. In consequence,
cross-cluster Pod-to-Pod communication is not offered. More generally, Kubefed has some
shortcomings for the DCI context. In addition to the host cluster’s limitation that is the
only entry point for federated resources (SPOF), there is no collaboration among the dif-
ferent K8s instances. In other words, there is no mechanism to propagate modifications
done on one particular K8s object to the other sites, even if this object has been created
through a federated abstraction.

As stated above, Kubefed has a hierarchical design being the host cluster the root

74

7.4. Kubernetes Istio Multi-Cluster Service Mesh

entity of the architecture. It has leader-based coordination, with the host cluster being
the natural leader in the hierarchy. As Kubefed is a recent proposal within the Kubernetes
community and is currently in alpha state, we assigned a TRL of 5.

Addressing the DCI Challenges

— Information granularity: Not addressed - the segregation of information into
each cluster enables the efficient sharding of the information per site. However, the
host cluster gathers global information on federated resources.

— Information scope: Partially addressed - while Kubefed only contacts the relevant
sites when deploying a federated resource, it is only executed by the host cluster.

— Information availability: Addressed - in case of network disconnection, each
cluster is entirely independent of the others, with the worst-case scenario being the
isolation of the host cluster. Since a federated resource is deployed on the concerned
clusters, the local resources’ information remains locally available.

— Automatized interfaces: Not addressed - because member clusters do not have
an east-west interface to communicate among them, but only receive requests from
the host cluster.

— Networking technologies: Not addressed - Kubefed relies on a broker-like ap-
proach. Consequently, no connectivity at the networking level is established among
the member clusters, and no networking technology is used.

7.4 Kubernetes Istio Multi-Cluster Service Mesh

Istio is an open-source implementation of a service mesh that provides traffic man-
agement, security, and monitoring. A service mesh is a complementary layer to the ap-
plication, and it is responsible for traffic management, policies, certificates, and service
security [146]. To provide this functionality, a service mesh introduces a set of network
proxies used to route requests among services. A central authority will then control over
the proxies to route traffic at the application layer (L7 of the Open System Interconnec-
tion (OSI) model). Hence, a service mesh follows a design pattern familiar to the SDN
principles [147].

From the architecture viewpoint, an Istio deployment is logically composed by a control
plane, which manages and configures the proxies and elements such as gateways to route
traffic, and a data plane, which is composed of a set of intelligent proxies (Envoy [148]).
Istio also proposes an Ingress Gateway object that acts as a load balancer at the mesh’s
edge receiving incoming or outgoing traffic.

75

Part II, Chapter 7 – Other decentralized propositions

Figure 7.4 – Istio Multi-Cluster Service Mesh architecture (based on [144])

The concept of service meshes may be extended to take account of multiple clusters.
The idea is then to have a logical service mesh composed of several clusters as proposed
in Istio Multi-cluster [149]. For this to be done, Services from remote clusters are created
locally via ServiceEntries, an Istio resource that is not proposed by vanilla Kubernetes.
The Istio Ingress Gateway is then used as an entry point for requests to the cluster’s
Services.

The Istio service mesh operates at the application layer. Offering its functionalities at
this level implies that Istio specific resource definitions need to be used in deployments.
Besides, considering all hops a request must go through from proxies to containers at each
Pod in a DCI context and all the ServiceEntry rules treatment and processing requests
on remote gateways could considerably add latency and potentially add a performance
overhead [150, 151].

Regarding the three communication types, since Istio is a service mesh-oriented solu-

76

7.5. Summary

tion, it can only provide cross-cluster Pod-to-Service and External-to-Service communica-
tions using the replication of ServiceEntries. In Pod-to-Service communication, Services
with private virtual IPs are reachable through the Istio Ingress gateways.

Istio Multi-cluster can be considered to have a fully distributed design but without
automatized communication among the clusters. As a consequence, it has leader-less co-
ordination. As we stated above, it is the user who has to define the replicated elements
by hand. Since several industry actors use Istio, a TRL of 9 has been assigned to it.

Addressing the DCI Challenges

— Information granularity: Addressed - due to the segregation of the infrastructure
in independent clusters while proposing strategies to share the information related
to external Services using the replication of remote Services as ServiceEntries.

— Information scope: Addressed - since Istio proposes the creation of ServiceEntries
to reference remote Services, only the relevant clusters are taking into account to
do the information exchange.

— Information availability: Partially addressed - in case of network disconnec-
tions clusters remain locally operative. However, considering that ServiceEntries
are replicated on demand, Istio does not provide mechanisms to ensure the consis-
tency between K8S Services and the information related to the ServiceEntries.

— Automatized interfaces: Not addressed - Istio does not implement an east-west
interface allowing cluster collaboration. Instead, the user is in charge of mirroring
the Istio configuration between the different clusters to deliver a Multi-Cluster
service mesh.

— Networking technologies: Not addressed - although the network routing logic is
implemented at the Envoy proxy and the Istio Ingress Gateway, Istio is independent
of the low-level network technology used by the cluster.

7.5 Summary

This chapter introduced four proposals conceived to decentralize resource managers’
functionalities to scale out in DCIs. Like the previous chapters, we have analyzed whether
they can or not answer the different DCI challenges.

As some of the proposed SDN solutions of chapters 5 and 6, Kubefed and Tricircle
leverage a hierarchical design with the corresponding limitations in terms of the SPOF
and bottleneck. On the other hand, the P2P proxy-agents proposes a fully distributed
architecture with collaborative agents. Unfortunately, it cannot provide networking con-

77

Part II, Chapter 7 – Other decentralized propositions

Proposals

Model Implementation Interoperability & maturity Extra consideration
Centralized
(Single)

Controller
Designs

Distributed Designs Coordination
Strategy

Internal Com-
munication
Protocols

Database
man-
age-
ment
system

Network types
targeted

Southbound
Proto-
cols

Readiness
Level

OpenStack
compatibility

(Flat)
Logically
central-
ized

(Flat)
Logically

dis-
tributed

Hierarchical Hybrid
Leader-

based

Leader-

less

Among
local
nodes

With
higher
layers

Among
root
nodes

UnderlayOverlay

Other solutions

P2P agents X X
A2A

interface - - SQL DB X - PoC (TRL 3) X

Tricircle X X - API - SQL DB X X - Demonstrated
(TRL 6) X

Kubefed X X - API - NoSQL
DB X -

Technology
validated (TRL

5)
7

Istio Multi X X API - - NoSQL
DB X - Proven System

(TRL 9) 7

Table 7.1 – Classification of surveyed solutions.

Proposals
Organization of network information Inter-site networking resources implementation
Information
granular-

ity

Information
scope

Information
availabil-

ity

Automatized
interfaces

Networking
technolo-

giesOther solutions
OpenStack P2P external proxy-agents ~ ~ 3 3 7
OpenStack Tricircle ~ ? ? ~ ~
Kubernetes Federation 7 ~ 3 7 7
Kubrnetes Istio Multi-Cluster Service Mesh 3 3 ~ 7 7

1 3Challenge completely addressed.
2 ~ Challenge partially addressed.
3 7Challenge not addressed.
4 ? Undefined.

Table 7.2 – Challenges summary of other solutions.

nectivity due to its proxy API approach where no configuration can be done at the low
level networking mechanisms. Unlike these three projects, Istio Multi-Cluster relies on a
federated design where the user has to do the interconnection by hand, and no automation
is proposed to communicate the Istio control planes. Table 7.1 summarizes the character-
istics analysis and Table 7.2 gathers the analysis of whether the propositions are able to
address the DCI challenges.

The next chapter summarizes the lessons learned from Chapters 5, 6, and 7.

78

Chapter 8

MULTI-INSTANCE LEARNED LESSONS

AND PERSPECTIVES

In this chapter, we present a summary of the state-of-the-art analysis, detailing the
most important design principles that may be used to provide DCI networking manage-
ment.

8.1 Lessons Learned on Multi-instance Cloud Controllers

As stated in Chapter 2, SDN-based cloud networking could be extended to propose dis-
tributed networking management for DCIs. To analyze the implications of this statement
deeply and accumulate insights about the distributed management, we have described six-
teen solutions leveraging distributed principles in the previous chapters. Twelve of these
proposals are SDN controllers, and the other four are in-resource managers solutions.

For each proposal, we present a qualitative analysis and summarize their characteristics
in multiple tables. We consolidate these tables at Table 8.1 and Table 8.2 respectively.

Solutions such as FlowBroker, D-SDN, Tungsten, Kandoo, Kubefed, and Tricircle use
a hierarchy of controllers/instances to gather networking states and maintain a global
view of the infrastructure. To avoid the root controller’s SPOF issue (see Section 4.2),
most of these systems propose to deploy multiple instances. By deploying as many root
controllers as local ones, it is possible to transform such a hierarchical architecture into
a distributed one and envision direct communication between each root controller when
needed. The pending issue is related to the global view of the system that needs to be
maintained by continuously exchanging messages among the root nodes (i.e., distributed
but logically centralized architecture).

To deal with such an issue, solutions such as Elasticon, HyperFlow, Orion, Dragon-
Flow, Onix, and ONOS, use a distributed DB, enabling controllers to maintain and share
global networking information easily. While it is one more step to fulfill the system’s
requirements, these systems’ efficiency depends on the DB system’s capabilities. Even
if dedicated systems have been designed for some of them (e.g., ONOS), they do not

79

Part II, Chapter 8 – Multi-instance learned lessons and perspectives

Table
8.1

–
C
lassification

ofsurveyed
solutions.

P
roposals

M
odel

Im
plem

entation
Interoperability

&
m
aturity

E
xtra

consideration
C
entralized
(Single)

C
ontroller
D
esigns

D
istributed

D
esigns

C
oordination
Strategy

InternalC
om

-
m
unication
P
rotocols

D
atabase
m
an-

age-
m
ent

system

N
etw

ork
types

targeted
Southbound
P
roto-
cols

R
eadiness
Level

O
penStack

com
patibility

(F
lat)

Logically
central-
ized

(F
lat)

Logically
dis-

tributed

H
ierarchical

H
ybrid

Leader-

based

Leader-

less

A
m
ong

local
nodes

W
ith

higher
layers

A
m
ong

root
nodes

U
nderlayO

verlay

N
etw

ork-oriented
solutions

D
ISC

O
X

X
A
M
Q
P

-
-

?
X

O
penF

low
&

R
SV

P
-like

P
oC

(T
R
L
3)

7

D
-SD

N
X

X
SC

-SC
P
rotocol

M
C
-SC

P
rotocol

-
-

X
O
penF

low
P
oC

(T
R
L
3)

7

E
lastiC

on
X

X
D
B
-in/

T
C
P

channel
-

-
N
oSQ

L
D
B

X
O
penF

low
P
oC

(T
R
L
3)

7

F
low

B
roker

X
X

-
F
low

B
roker

control
channel

?
?

X
O
penF

low
P
oC

(T
R
L
3)

7

H
yperF

low
X

X
W

heelF
S

-
-

W
heelF

S
X

O
penF

low
P
oC

(T
R
L
3)

7

K
andoo

X
X

-
Sim

ple
m
essage

channel
-

-
X

O
penF

low
P
oC

(T
R
L
3)

7

O
rion

X
?

?
N
ot

needed
T
C
P

channel
P
ub/Sub

N
oSQ

L
D
B

X
O
penF

low
P
oC

(T
R
L
3)

7

C
loud-oriented

solutions

D
ragonF

low
X

X
X

D
B
-in

D
B
-in

D
B
-in

N
oSQ

L
D
B
/

others
X

O
penF

low
D
em

onstrated
(T

R
L
6)

X

O
D
L
(Fed)

X
X

X
A
M
Q
P

-
-

In-m
em

ory
X

X
O
penF

low
,

B
G
P

&
others

P
roven

system
(T

R
L
9)

X

O
nix

X
X

N
oSQ

L
D
B

?
-

SQ
L
D
B

N
oSQ

L
D
B

X
X

O
penF

low
&

B
G
P

System
prototype

(T
R
L
7)

7

O
N
O
S

X
X

D
B
-in

-
-

A
tom

ix
(N

oSQ
L

fram
ew

ork)
X

X
O
penF

low
,

N
etC

onf&
others

P
roven

system
(T

R
L
9)

X

Tungsten
X

X
X

B
G
P

IF
M
A
P

D
B
-in

N
oSQ

L
D
B

X
X

X
M
P
P,

B
G
P

&
others

P
roven

system
(T

R
L
9)

X

O
ther

solutions

K
ubefed

X
X

-
A
P
I

-
N
oSQ

L
D
B

X
-

Technology
validated

(T
R
L

5)
7

Istio
M
ulti

X
X

A
P
I

-
-

N
oSQ

L
D
B

X
-

P
roven

System
(T

R
L
9)

7

P
2P

agents
X

X
A
2A

interface
-

-
SQ

L
D
B

X
-

P
oC

(T
R
L
3)

X

Tricircle
X

X
-

A
P
I

-
SQ

L
D
B

X
X

-
System

prototype
(T

R
L
7)

X

80

8.1. Lessons Learned on Multi-instance Cloud Controllers

Proposals
Organization of network information Inter-site networking resources implementation
Information
granular-

ity

Information
scope

Information
availabil-

ity

Automatized
interfaces

Networking
technolo-

giesNetwork-oriented solutions
DISCO 3 3 3 3 7
D-SDN 3 ~ ? 7 7
ElastiCon ~ ? ? ~ 7
FlowBroker 7 7 3 7 7
HyperFlow 3 ~ ~ ~ 7
Kandoo 7 7 3 7 7
Orion 7 7 ? 7 7

Cloud-oriented solutions
DragonFlow ~ ? ? ~ ~
ODL (Fed) 3 3 ~ 3 3
Onix ~ ? ? ~ ~
ONOS ~ ? ? ~ 3
Tungsten 7 7 ? 7 3

Other solutions
Kubernetes Federation 7 ~ 3 7 7
Kubrnetes Istio Multi-Cluster Service Mesh 3 3 ~ 7 7
OpenStack P2P external proxy-agents ~ ~ 3 3 7
OpenStack Tricircle ~ ? ? ~ ~

1 3Challenge completely addressed.
2 ~ Challenge partially addressed.
3 7Challenge not addressed.
4 ? Undefined.

Table 8.2 – Summary of the analyzed solutions.

cope with the requirements we defined in terms of data locality awareness or network
partitioning issues.

The remaining systems, i.e., DISCO, ODL, Istio Multi-Cluster, and P2P proxy-agents,
propose a fully distributed architecture (i.e., without the need for a global view). Istio
Multi-Cluster falls short due to its lack of horizontal automation. As we explained in
Section 7.4, the user must declare by hand the inter-site resources at each one of the
deployments. The OpenStack P2P proxy-agents solution also falls short because it does
not target the distributed networking management case, but rather, it is a massively
distributed proxy for scaling.

In the case of the DISCO and ODL controllers, DISCO respects the principle of locality
awareness and independence of every group composing the infrastructure. Each controller
manages its respective group and peers with another only when traffic needs to be routed
to it, thus sharing only service-concerning data and not necessarily global network infor-
mation. This way of orchestrating network devices is also well fitted in the case of network
partitions as an isolated DISCO controller will be capable of providing local domain ser-
vices. The flaw of DISCO is to provide networking services without the scope of the
resource manager (i.e., it delivers mainly domain-forwarding operations, which includes
only conflict-less exchanges). Offering the resource manager’s expected functions (such as
dynamic IP assignment) is prone to conflict and might be harder to implement in such an
architecture. We discussed this point for ODL, which has many similarities with DISCO
(data locality awareness, AMQP to communicate among controllers, etc.). Through the

81

Part II, Chapter 8 – Multi-instance learned lessons and perspectives

Federation and NetVirt projects, ODL offers premises of a DCI networking management
but at a level that does not enable it to solve conflicts. Leveraging the DISCO or ODL ar-
chitecture and investigating how to avoid conflicts is a prominent insight identified thanks
to this analysis.

As we outlined, the East-West interface proposed by DISCO and ODL provides some
references to design an efficient horizontal interface for inter-resource managers network-
ing modules communications. Although the analyzed solutions leveraged AMQP as tech-
nology to do the East-West interface implementation, other technologies such as REST
APIs could be used to provide synchronization and information exchanges among resource
managers.

If we consider the model proposed by DISCO and ODL, the use of independent and
local DBs implies managing consistency at the application level (i.e., between the different
controllers). It entails that the East-West interface should deliver additional calls to resolve
conflicts depending on the controllers’ inter-site service logic. Since neither DISCO nor
ODL proposes a way to manage conflicts at the East-West interface level, this remains an
open question, as already highlighted.

8.2 Summary

In this chapter, the analysis of retained lessons from multi-instances propositions has
been presented to gain insights about distributed networking management for DCIs.

Proposals leveraging hierarchical approaches still present the SPOF and bottleneck
issues, which cannot entirely address the DCI networking challenges. Solutions presenting
physically distributed but logically centralized designs usually depend on distributed DBs
to exchange information among the instances. This approach’s principal drawback relies
precisely on the used DB system, which may not guarantee the locality awareness property.
Even more, it may present flaws in the case of network partitioning. Solutions relying on
a fully distributed architecture respect the principle of locality awareness thanks to the
architecture’s nature. Moreover, independence among instances let the architecture to be
resilient enough against networking partitioning. The downside of this approach relates to
how the sharding strategies are conceived to avoid conflicts among the resource managers
and how collaboration is done to minimize the management information exchange.

Therefore, the following part of this work introduces our proposal to provide DCI
networking management leveraging the retained distributed principles.

82

Part III

DCI networking: Going the
distributed way

This third part introduces DIMINET, our proposal to provide inter-site net-
working connectivity for DCIs.
— Chapter 9 discusses essential design choices, and introduces our DIMINET

implementation for the OpenStack ecosystem. On account of the industrial
nature of this thesis, Orange has privileged OpenStack as the main techno-
logical choice for the developments in our work because of its maturity and
its use within the enterprise as VIM.

— Chapter 10 introduces DIMINET functionalities validation and large-scale
tests done using the test-bed Grid’5000.

83

Chapter 9

DISTRIBUTING CONNECTIVITY

MANAGEMENT WITH DIMINET

This chapter introduces the fundamentals of DIMINET, a distributed architecture that
aims to provide networking management for DCIs that leverages a distributed module for
inter-site networking resources management. In Orange’s interest to explore the Open-
Stack ecosystem, we have implemented DIMINET as a module deployed besides Neutron.
For this reason, we inform the reader that this chapter includes both, theorical and tech-
nical information about DIMINET. While DIMINET has been developed for OpenStack,
its abstractions can be used for other cloud services as we present in the conclusions. The
chapter is composed as follows. Firstly, an overview of DIMINET’s architecture is pre-
sented. After that, we detail DIMINET internals, explaining the chosen sharding strategies
for inter-site networking resources. The chapter then details DIMINET data model, along
with the communication interfaces. For the sake of clarity, we also introduce Neutron In-
terconnections and BGP-based VPN Service Plug-ins, the Neutron technologies used to
provide data plane connectivity among DCI sites. We have preferred to include some of
DIMINET technical details as appendices. Appendix A presents the sharding strategies im-
plementation, Appendix B includes the list of DIMINET API operations, and Appendix C
presents the installation guide of DIMINET with OpenStack.

9.1 Leveraging Retained SDN Principles

We saw in the previous chapter that distributed SDN principles adopted by controllers
such as DISCO and ODL are both well appropriated for the DCI context. Notably, they
address most of the DCI networking challenges and guarantee fundamental properties such
as locality awareness and resiliency against network partitions. The logical step is then to
leverage one of them to implement the inter-site networking connectivity management for
DCIs within a resource manager. Because of the industrial nature of this doctoral work,
one requirement is to use OpenStack as the resource manager for the inter-site connectivity
management development efforts. Therefore, the compatibility with OpenStack of these

85

Part III, Chapter 9 – Distributing connectivity management with DIMINET

two solutions becomes a fundamental criteria.
Unfortunately, the DISCO code is not publicly available, and as we described in Sec-

tion 5.1, DISCO’s evaluations were performed on a PoC and the controller does not
provide compatibility with OpenStack. On the other hand, ODL is one of the most ma-
ture SDN controllers in the industry with a large community supporting it, and with
already-built Neutron connectivity capabilities. However, as we explained in Section 6.2,
Neutron instances are unconscious about the information exchanged between controllers
due to the low-level interaction with ODL that does not allow the controllers to implement
coordination mechanisms to prevent coherence errors.

For these reasons, we decided to leverage these insights from SDN controllers by
proposing a distributed module for inter-site networking management called DIMINET.
DIMINET extends retained SDN principles of DISCO and ODL (i.e., fully distributed
architecture with East-West communication). On each site composing a DCI, a module
is deployed at the local site’s networking management service. This module can com-
municate with remote modules, on-demand, to provide virtual networking constructions
spanning several resource managers.

9.2 DIMINET’s Architecture Overview

This section gives an overview of DIMINET’s architecture. As shown in Figure 9.1,
DIMINET is fully decentralized: each DIMINET instance is deployed besides a local
resource manager networking service. This architecture guarantees DCI characteristics,
as explained as follows.

Scalability: New DIMINET instances representing remote sites can smoothly join the
deployment without affecting other instances’ normal behavior.

Resiliency: Because of the fully distributed architecture, DIMINET does not present the
centralized architecture limitations. This means that in the case of network partitions, as
every DIMINET instance and its respective resource manager are independent of the
others, they will continue to provide, at least, their cloud services locally.

Locality awareness: Because of its East-West communication between instances that
happens only on demand, DIMINET does not build a global knowledge but instead relies
on the collaboration among instances to share the necessary inter-site resource-related
information.

86

9.2. DIMINET’s Architecture Overview

Figure 9.1 – DIMINET overview.

Abstraction and automation: Thanks to its communication interfaces, DIMINET re-
alizes the creation and configuration of inter-site resources automatically without further
actions needed from the user besides the initial resource creation request.

Figure 9.2(a) depicts more in detail the internal architecture of a DIMINET instance.
Each instance comprises the Logic Core which implements the necessary strategies to
manage and deploy inter-site resources (explained in details at Section 9.3), and the com-
munication interfaces, one for end-users and one for collaboration with remote DIMINET
modules (explained in details at Section 9.4).

We implemented a first PoC of DIMINET as a module deployed beside the networking
service of OpenStack, Neutron, as depicted in Figure 9.2(b). This approach enabled us to
keep the collaboration code outside the Neutron one.

87

Part III, Chapter 9 – Distributing connectivity management with DIMINET

Each DIMINET module runs as a Web Server Gateway Interface (WSGI) server lis-
tening to users’ requests on port 7575. We have used Python’s Flask framework to build
up this implementation since it provides a similar code structure as the one proposed by
OpenStack code. Following OpenStack’s general approach, we decided to implement the
North and East-West interfaces as REST API interfaces to provide a server-level list of
operations to the users and the other modules. The Logic Core runs over the WSGI server
and uses a PostgreSQL DB to store the inter-site resources information.

Considering that DIMINET modules are arranged in a P2P manner, the join and leave
methods are essential to allow instances finding neighbors on the system. For practicality,
since we use OpenStack as resource manager we did not implement these methods in our
implementation. Instead, we rely on the Keystone service (users authentication, service
discovery, and authorization as explained in Section 2.1.4.1) to find out distant DIMINET
instances knowing that they are deployed in the same IP address as Neutron.

(a) DIMINET’s internal architecture (b) DIMINET implementation
besides OpenStack Neutron.

Figure 9.2 – DIMINET internal design.

9.3 DIMINET’s Logic Core

The core of DIMINET is the Logic Core, which is in charge of the actual management
and coordination of inter-site resources including, when required, communication with
other DIMINET instances and with the resource manager’s networking service.

9.3.1 Resources Sharding Characteristics

To effectively address both the information granularity and the availability challenges
detailed in Section 3.3.1, the information sharding strategy for each resource is defined in
the Logic Core. In the following, we present our sharding strategies for L3 routing (i.e.,

88

9.3. DIMINET’s Logic Core

being able to route traffic between a VN A on site 1 and a VN B on site 2) and L2
extension (i.e., being able to have a Layer 2 VN that spans several sites) resources (See
Section 3.2).

9.3.1.1 L3 Routing Resource

The inter-site Layer 3 routing resource is provided for traffic to be routed among
different subnetworks. By design, subnetworks should not overlap. That is, the range
of addresses in one subnetwork should be unique compared to all other subnetworks. If
two subnetworks overlap, when a router needs to send a packet to an IP address inside
that range of overlapped addresses, the router may forward the packet to the wrong
subnetwork. In this context, the subnetworks CIDRs must not overlap.

Let be {SN1, SN2, SN3, ..., SNn−1, SNn} a set of independent subnetworks deployed
on n resource managers sites which are requested to have an L3 routing resource among
them. The condition ⋂n

i=0 SN(CIDR)i = ∅ (the sets of subnetworks CIDRs have to be
disjoint sets) should be verified to accept the L3 routing request.

This verification should be done by the first instance that receives the L3 routing
resource creation request. Once the user provides the resources to interconnect in a Layer
3 routing resource and the sites where they belong, the first instance should proceed
to query the network information from every site listed in the user’s request to ensure
that the IP ranges are not overlapping among them. Once this condition is verified, the
process of information exchange is launched among the listed sites to allow the low-level
mechanism to do the virtualized traffic forwarding.

For example, suppose the user requests the DIMINET instance of resource manager
1 to instantiate a Layer 3 routing service among two networks A and B, belonging to
resource managers 2 and 3 respectively. In that case, this DIMINET instance will contact
the remote site to find the subnetwork CIDR related to the remote network, and of course,
it does the same search locally. Consider the IPv4 CIDRs 10.1.2.0/23 and 10.1.4.0/23 for
network A and B, respectively, as depicted in Figure 9.3. The DIMINET instance will
do the overlapping verification with the ranges [10.1.2.0-10.1.3.255] for 10.1.2.0/23 and
[10.1.4.0-10.1.5.255] for 10.1.4.0/23.

Thus, 10.1.2.0/23 ⋂ 10.1.4.255/23 = φ (the two subnetworks do not overlap). Since
the condifiton is verified, DIMINET instance 1 will send a resource creation request to
instance 2 with the information of the two resources and the type of resource (i.e., L3
routing in our example). Then, instance 1 proceeds to advertise its routing information
with instance 2.

When CIDRs overlap, DIMINET does not accept the request and notifies the user

89

Part III, Chapter 9 – Distributing connectivity management with DIMINET

Figure 9.3 – DIMINET L3 Routing Resource.
(1) Resource creation request. (2) Information exchange among DIMINET instances. (3) L3

Routing deployed.

that the resource cannot be provided due to overlapping subnetworks CIDRs.

9.3.1.2 L2 Extension Resource

The inter-site Layer 2 extension resource gives the possibility to plug into the same
virtual network, VMs belonging to different sites. To belong to the same virtual network,
hosts must have the same subnetwork prefix (CIDR) and do not have duplicate MAC or
IP addresses. Since every network exists as an independent network in each site, they can
each have their DHCP service for IP assignment. Thus, MAC and IP assignments have to
be coordinated among the requested sites for the L2 connectivity to be correctly provided.

In the proposed solution, two operations need to be considered over VNs: the join and
the extension. The join operation refers to combining multiple independent L2 resources
to create a single L2 resource. It implies that every independent L2 resource could have
already deployed VMs on it. Suppose the join operation is to be applied between two
resources. In that case, it will be potentially necessary for each resource manager to
change the IP addresses already allocated and thus, interrupting the services provided by

90

9.3. DIMINET’s Logic Core

those VMs, which is not desirable in operational environments.
On the other hand, the extension operation refers to expanding one of the L2 resource

into the other sites to create a single L2 resource. This implies that these remote resources
will be freshly created to make the initial request. Since this last operation does not impact
every segment’s behavior, we preferred to use it in our design.

For this reason, we have decided to propose the following approach:
— The instance receiving the initial L2 extension resource creation request assumes

the role of master for that particular resource.
— This master instance does a logical split of the local resource’s range of IP addresses

within the same CIDR between all the sites specified by the user among which an
L2 extension resource is to be created.

In this sense, the master instance will be in charge of providing the IP allocation
pools to the other instances composing the L2 extension resource, and thus, to do the
L2 extension. To avoid spending all the IP addresses from the first resource request, the
master instance delivers mid-sizes allocation pools to the other participants. If, in any
case, one of these instances needs more IP addresses or a new DIMINET instance joins to
compose the inter-site resource, the master will provide a new allocation pool. If the total
range of IP addresses are spent, the master will not accept new sites to join the inter-site
L2 extension resource.

With this approach, we will avoid the communication overhead of sharing the infor-
mation between the concerned resource managers each time an IP address is allocated to
each resource manager. At the same time, we will avoid only doing a CIDR allocation
pool static division at the resource creation time. This approach will allow the instances
to maintain a segment logic division while providing a more dynamic sharding strategy.

With our approach, if the user requests the DIMINET instance of resource manager
1 a Layer 2 extension resource to a site 2 as depicted in Figure 9.4, this DIMINET
instance should contact the instance of site 2 to verify that a subnetwork with the same
characteristics (e.g., CIDR) can be created. If so, the instance of site 2 should create
the corresponding subnetwork, and the instance of site 1 will take the role of master of
that specific L2 inter-site resource. This implies that this instance will decide how to do
the CIDR IP allocation pool among the participant sites for the request and to manage
further requests concerning the resource’s modification.

This information of the master instance and the allocated IP range will be sent through
the East-West interface to remote instances sharing this L2 inter-site resource. When re-
ceiving the L2 creation request, remote instances will store the resource information in the
local database (Further details in the next paragraph). They will then use the L2 exten-

91

Part III, Chapter 9 – Distributing connectivity management with DIMINET

Figure 9.4 – DIMINET L2 Extension Resource.
(1) Resource creation request. (2) Information exchange among DIMINET instances. (3) L2

extension deployed.

sion resource-related information dictated by the master instance to do the appropriate
changes in local networking constructions (i.e., change the local IP allocation pool). These
changes are also done in the master site to provide the logical division. Once this is done,
the instances proceed to exchange the necessary routing and data plane information to
allow VMs traffic to be forwarded among them.

The Logic Core has been implemented as a Python program running over the WSGI
server as explained in Section 9.2. Moreover, Appendix A explains how each one of the
sharding strategies (i.e., for the L3 routing and L2 extension resources) is implemented,
detailing the step by step processing of an inter-site resource creation request.

9.3.2 Data Model

The Logic Core stores inter-site resource information in a local database at each in-
stance. To relate the same inter-site resource stored in different locations, the Logic Core
generates a globally unique identifier that will identify the same resource either in Site
1 or Site N of the sites composing the resource. This global identifier will be created at
the DIMINET instance that receives the initial user vertical request and transmitted to
remote sites inside a East-West creation request. In this way, all sites will be capable of
referencing the same inter-site resource.

92

9.3. DIMINET’s Logic Core

We emphasize that there is a Master in charge of maintaining the consistency of the
related information for each inter-site Resource. The Master is defined as the DIMINET
module receiving the initial Resource creation request in our current model. The use
of a per-Resource Master enables DIMINET to deal with network partitions for inter-
site Resources straightforwardly: When an end-user request cannot be satisfied due to
network issues (i.e., either a remote site cannot be reached or reciprocally when a remote
site cannot interact with the Master), the request is revoked, and the user is notified of
the impossibility to serve the request.

Figure 9.5 shows the schema of the objects used by the Logic Core to represent an inter-
site resource using an Entity Relationship (ER) diagram with crow’s foot notation [152].

Figure 9.5 – DIMINET data model.

Resource: The main object of DIMINET. It represents an inter-site networking

93

Part III, Chapter 9 – Distributing connectivity management with DIMINET

resource. In our context, an inter-site Resource is a logical resource that exists
at several locations simultaneously and needs to be coordinated not to affect the
correct functionality of the networking constructions (See Section 3.3.1). A Resource
is related to a unique Parameter instance, a list of SubResources, and a list of local
Interconnections.

Parameter : As we already mentioned, since every proposed inter-site resource has
its own needs, it is necessary to store different information per Resource type. The
Parameter class is used to store Resource-related details to support the Logic Core’s
main functionalities. If, for instance, the Resource is of L2 extension type, it will
store the IP allocation pool assigned by the master instance.

SubResource: A SubResource represents a virtual networking object belonging to
a site’s resource manager (i.e., a network Universally Unique Identifier (UUID)).
The Resource class holds a list of SubResources (the local one and a series of remote
ones).

Interconnection: An Interconnection represents the mechanism enabling the inter-
connection for SubResources to contact or be contacted by remote resource man-
agers to forward/route virtualized traffic. Unlike SubResources objects, Interconnec-
tions are only stored locally. The Interconnection holds all the necessary technical
parameters to effectively implement the inter-site Resource. The parameters stored
will depend on the technical implementation to establish the inter-site Resource.

LMaster : To maintain the consistency among modules while trying to diminish the
burden of adding consensus protocols, DIMINET relies upon a per Resource-Master
mapping that allows reducing the risk of SPOF and bottlenecks. The class LMaster
is in charge of storing consistency-related information about the networking con-
structions. This class is instantiated only at a Resource master module (i.e., the
DIMINET module receiving the initial Resource creation request).

L2AllocationPool: An L2AllocationPool object stores information of IP allocation
pools provided by the Master module for the L2 network extension Resource. This
class is only instantiated at a Resource master module.

L3Cidr : An L3Cidr object stores information of the SubResources CIDRs composing
an L3 routing Resource. This class is only instantiated at a Resource master module.

94

9.4. Communication Interfaces

9.4 Communication Interfaces

In order to process end-users requests and allow communication among resource man-
agers, DIMINET relies on two distinct interfaces inspired from the DISCO and ODL SDN
controllers. The North interface and the East-West interface as depicted in Figure 9.1.
These two interfaces interact with the Logic Core to automatize the inter-site resource
provisioning.

The interfaces propose Create Read Update Delete (CRUD) operations on inter-site
resources. The CRUD actions of both interfaces and their explanation are summarized in
Table 9.1. Appendix B provides the entire list of DIMINET REST API operations.

North Interface
Operation Prefix Parameters Description
POST / Name

Type
SubResources

Create a new Resource

GET / Retrieve local informa-
tion of all Resources

GET /global_id Retrieve local infor-
mation of one Re-
source with identifier
global_id

PUT /global_id Name
SubResources

Modify a Resource
with identifier
global_id

DELETE /global_id Delete a Resource with
identifier global_id

East-West Interface
Operation Prefix Parameters Description
POST / Global_id

Name
Type
SubResources
Parameters
-Allocation pool
-Local CIDR
-IPv
-Master
-Master auth

East-West request to
create a Resource

GET / East-West request to
retrieve the list of Re-
sources

GET / Resource_CIDR
Resource_type
Global_ID
Verification_Type

East-West request to
retrieve a single Re-
source with identifier
global_id

UPDATE /global_id Name
SubResources
Type
Post create refresh

East-West request
to modify a Re-
source with identifier
global_id

DELETE /global_id East-West request to
delete a Resource with
identifier global_id

Table 9.1 – DIMINET CRUD Operations

95

Part III, Chapter 9 – Distributing connectivity management with DIMINET

North Interface

The north or vertical interface allows the user to request the establishment of inter-
site networking resources among several sites. This interface exposes an service-level list
of operations to enable the user to execute CRUD actions on inter-site resources.

East-West Interface

Once the DIMINET instance receives an inter-site resource provisioning request from
the user using the North interface, it initiates a communication with the requested remote
DIMINET instances using the East-West interface.

The exchanged information should be both the logical information to do the distributed
management of the networking constructions and the necessary low-level information
required for the implementation of the data plane.

As stated above, the exchange on the East-West interface occurs only among DIMINET
instances involved in each inter-site resource (i.e., no broadcast-like communication are
required in this interface). In other words, contacting only the relevant sites for a re-
quest will mitigate the network communication overhead and the limitations regarding
scalability and network disconnections.

9.5 Data Plane Traffic Exchange

In addition to the logical information on Resources, DIMINET instances need to ex-
change also the information related to the reachability of virtualized traffic connectivity
mechanisms to provide ultimately data plane connectivity.

At this point, two possibilities can be considered. The first one is to exchange this
information over the East-West interface and to proceed with the data plane intercon-
nection. By doing this, DIMINET instances will need to have the capacity to control
the low-level technological mechanisms to implement the forwarding logic (i.e., configure
virtual switches, add flows, create tunnels). The second possibility is to rely on already
existing technologies proposed by the local resource managers (e.g., in the OpenStack
case, Neutron’s service Plug-ins). In this case, DIMINET instances will need to interact
with the resource manager to implement these inter-site connectivity mechanisms.

As we proposed DIMINET to be deployed besides Neutron, we do not implement the
information exchange for the virtualized traffic connectivity over the East-West interface.
Instead, we rely on the Interconnection Service Plug-in [153] developed by Orange to
contribute to the OpenStack community.

96

9.5. Data Plane Traffic Exchange

The Interconnection Plug-in allows creating an "interconnection" resource that refer-
ences a local resource having the semantic informing that connectivity is desired with a
remote "interconnection" resource that references a remote resource as depicted in Fig-
ure 9.6. This Plug-in assumes that coherence is taken care of by the user (e.g., the user
chooses IP addresses consistently across the two sites). By itself, it does not provide any
kind of sharding logic, but rather a technical mechanism to interconnect two resources
belonging each one to a different OpenStack deployment. The process depicted in the
Figure 9.6 is composed of four main steps:

Figure 9.6 – Neutron-to-Neutron Interconnection Plug-in.

1. The user requests Neutron 1 to create an interconnection resource among network
A in local VIM1 and a remote resource network B in VIM2.

1bis. Neutron 1 checks that a symmetric interconnection exists on the remote Neutron
2 and will not proceed further until this becomes true.

2. The user request to Neutron 2 the creation of an interconnection resource among
network B in local VIM2 and a remote resource network A in VIM1. This object
is the symmetric interconnection resource.

2bis. Neutron 2 checks that a symmetric interconnection exists on the remote Neutron
1. Since this resource has been defined in step 1, it allocates the required network
identifiers (i.e., allowing the mechanism to be reached).

3. Both Neutron retrieve the network identifiers of the mechanisms used for the in-
terconnection.

97

Part III, Chapter 9 – Distributing connectivity management with DIMINET

4. The interconnections is configured and in active state.

The process described needs to be done for each pair of Interconnection objects. If the
user wants to connect N OpenStack sites, it will be necessary to do N API calls per site
by hand. In total, the user will be doing N ∗N API requests. DIMINET automatizes this
process thanks to the communication among modules: By doing an API Resource creation
request to a DIMINET instance, this module will communicate with all the requested sites
to create the Interconnections objects, reducing the total of API calls that the user has
to do from N ∗N to a single one.

The Interconnection Plug-in remains agnostic to the network technique that will be
finally used to realize the connectivity and data plane traffic exchange. It allows the
user to specify at each OpenStack configuration the possible techniques to use when
establishing and creating Interconnections. In its initial proposition, the Neutron Inter-
connection Plug-in leverages the use of Border Gateway Protocol based Virtual Private
Networks (BGPVPNs) [48] at both sides to create an overlay network connecting the two
local segments.

The BGPVPN Service Plug-in itself uses the well-known networking protocol BGP for
the establishment of Internet Protocol Virtual Private Network (IPVPN)/Ethernet Vir-
tual Private Network (EVPN) [154, 155]. In BGP-based Virtual Private Networks (VPNs),
a set of identifiers called Route Targets are associated with a VPN. Similarly to the pub-
lish/subscribe pattern, BGP-peers use an export and import list to let know the interest of
receiving updates about announced routes. Each site have a set of independent identifiers
called Route Target, a Multi Protocol Border Gateway Protocol (MP-BGP) extended com-
munity attribute that is attached to the network constructions and exchanged employing
a BGP implementation.

This exchange can be done at the underlay layer, using physical equipment, or at the
overlay level, using BGP software implementations such as GoBGP. A Route Target export
identifier is used for advertising the local routes of the VPN to the other BGP-peers. On
the other hand, a Route Target import identifier is used to import remote routes to the
VPN. For instance, Figure 9.7 shows net_A from VIM 1 and net_B from VIM 2 that
compose an Interconnection resource A and that belong to the same BGPVPN. Each
site will have the following information to exchange their BGP routes: site A will have
route-target-export 64512:4000 and route-target-import 64512:6000, while site B will have
route-target-export 64512:6000 and route-target-import 64512:4000.

When this information is exchanged among the BGP-peers, each one will share and
receive the routes associated with the respective route-target identifiers as mentioned
above. For instance, the BGP-peer of VIM 1 will share the routes associated with net_A

98

9.6. Summary

DHCP
Agent

dnsmasq

DHCP
Agent

dnsmasq

DHCP
Agent

dnsmasq

L2 Agent
OVS/Linux

Br

L2 Agent
OVS/Linux

Br

L2 Agent

OVS/Linux Br

L3 Agent

IP Tables

L3 Agent

IP Tables

L3 Agent

IP Tables

Message
Queue

RabbitMQ

DHCP Agent

dnsmasq

L3 Agent

IP Tables

TD MD

Neutron Server #1REST API
SERVICE

Neutron
Interco
Service
Plugin

Core
REST API

BGPVPN
REST API

INTERCO
REST API

Core
Plugin

Interface

Extension A
 Plugin

Interface

Extension B
 Plugin

Interface

Neutron
DB

ML2 Core
Plugin

BGPVPN
Service
Plugin

BaGPipe
extension

BagPipe
BGPVPN

Driver
L3 Agent

IP Tables

L3 Agent

IP Tables

L3 Agent

IP Tables

BaGPipe-
BGP
BGP

REST

BGP Peer BGP

TD MD

REST API
SERVICE

Core
REST API

BGPVPN
REST API

INTERCO
REST API

Core
Plugin

Interface

Extension A
 Plugin

Interface

Extension B
 Plugin

Interface

Neutron
DB

ML2 Core
Plugin

BGPVPN
Service
Plugin

BagPipe
BGPVPN

Driver

Message
Queue

RabbitMQ

DHCP
Agent

dnsmasq

DHCP
Agent

dnsmasq

DHCP
Agent

dnsmasq

DHCP Agent

dnsmasq

L3 Agent

IP Tables

L3 Agent

IP Tables

L3 Agent

IP Tables

BaGPipe-
BGP
BGP

BGP Peer BGP

L3 Agent

IP Tables

L3 Agent

IP Tables

L3 Agent

IP Tables

L3 Agent

IP Tables

L2 Agent
OVS/Linux

Br

L2 Agent
OVS/Linux

Br

L2 Agent

OVS/Linux Br

BaGPipe
extension

BGP

RESTNeutron Server #2

For associated net_A:
Export Targets 64512:4000
Import Targets 64512:6000

For associated net_B:
Export Targets 64512:6000
Import Targets 64512:4000

Interconnection A in RegionOne:
 local Neutron resource: net_A
 local parameters: 64512:4000
 remote Neutron resource: net_B
 remote region: RegionTwo
 remote parameters: 64512:6000

BGPVPN
Driver

Neutron
Interco
Service
Plugin

BGPVPN
Driver

Inter-site
Module

User-face
API

Module-face
API

Logic core

PostgreSQL

DIMINET instance 1

User-face
API

Module-face
API

Logic core

PostgreSQL

DIMINET instance 2

Figure 9.7 – Neutron BPG-VPN Plug-in.

providing a BGP UPDATE message with some information such as the route’s MAC and
IP addresses, route target, tunnel endpoint, and encapsulation type.

These routes are then shared at each site with Bagpipe BGP, a light implementation of
BGP used to establish BGP sessions. A bagpipe extension is deployed on compute nodes
and will receive the routes from Bagpipe BGP to populate the data plane accordingly.
Data plane traffic is exchanged using an overlay encapsulation, with VXLAN at the typical
choice for a virtual switch to virtual switch communication.

9.6 Summary

In this chapter, we have presented a distributed architectural design to provide inter-
site networking constructions management leveraging fully distributed modules deployed
at each resource manager of the DCI. DIMINET takes inspiration from distributed SDN
principles of DISCO and ODL controllers, such as the use of an East-West interface

99

Part III, Chapter 9 – Distributing connectivity management with DIMINET

for on-demand communication between modules to provide virtual networking construc-
tions spanning several resource managers. We have presented a fully automatized im-
plementation of DIMINET to provide inter-site networking resources management in an
OpenStack-based DCI. DIMINET modules run as WSGI servers deployed besides Neu-
tron instances to propose integrated networking management of networking connectivity.
By relying upon a collaboration of independent modules only on-demand, DIMINET ad-
dresses the limitations of hierarchical and logically centralized architectures in terms of
availability in the case of network partitions.

We also proposed per-Resource type sharding strategies (i.e. depending on whether
the Resource is an L3 routing or an L2 extension) to provide distributed management
and coherence at the application level (Appendix A presents the sharding strategies im-
plementation). Consequently, each DIMINET module has its own local database, and
all the communications with the user and other modules are done using the North and
East-West interfaces, implemented as REST API interfaces like other OpenStack ser-
vices (Appendix B provides the complete list of DIMINET REST API operations). To
avoid the overhead of adding consensus protocols to manage the coherence, we decided to
declare Master of the Resource the first DIMINET module receiving the user’s creation
request. DIMINET’s model still uses the notion of a static per Resource Master. However,
every DIMINET module can act as Master when contacted to create a Resource, reducing
the SPOF problem. A future work in this field could involve the possibility to change the
Master role among modules to avoid the static Master. Finally, Neutron Interconnections
and BGPVPN Plug-ins are leveraged to provide the data plane connectivity among sites
since this mechanism is already fully supported by OpenStack. Appendix C proposes a
guide to install DIMINET along with OpenStack.

DIMINET’s development effort involved more than 3000 lines of Python code without
counting the Graphical User Interface (GUI) HTML and javascript code. Its initial commit
dated from 1 July 2019 and has been in continuous modifications since then. DIMINET
proposal has been presented at the 2019 Journées Cloud, and more recently at the 2020
Open Infrastructure Summit where it has been shared with the OpenStack community.

Beyond the technological solution proposed for Orange, we believe DIMINET design
is abstract enough to understand the challenges related to cloud services distributed man-
agement. Indeed, the distributed nature of DIMINET allows guaranteeing the different
DCI properties (highlighted in Section 3.1.1) and at the same time addressing the DCI
networking information’s challenges (see Section 3.3):

Information granularity: DIMINET proposes to divide the DCI architecture into sev-
eral independent domains, each one managed by a DIMINET instance with its

100

9.6. Summary

local information. Moreover, DIMINET implements sharding strategies to provide
a distributed management of inter-site networking constructions, providing these
mechanisms depending on the network construction characteristics.

Information scope: To avoid heavy synchronization needs when maintaining global
knowledge, DIMINET only contacts the relevant neighbors on-demand to provide
inter-site Resources when requested by the user.

Information availability: Because DIMINET instances are intended to be deployed
besides independent resource managers, in case of network disconnections, these re-
source managers will provide local services without any problem. Non-disconnected
sites will still be able to use their DIMINET instances to provide inter-site Re-
sources. Furthermore, since DIMINET implements sharding strategies for inter-site
Resources on creation when connectivity is reestablished, there will be neither con-
flicts among DIMINET instances nor between resource managers.

Automatized interfaces: DIMINET proposes well-defined and fully-integrated REST
API interfaces to communicate with users and other modules. The Logic Core takes
charge of using these interfaces to completely fulfill a user’s request transparently.
In the case of the OpenStack-based implementation, the way DIMINET’s Resources
operations are exposed allows an easy understanding of the Resources since they are
similar to the resource definitions proposed at the Neutron API (see Section 2.2.1.1).

Networking technologies: While DIMINET by itself does not implement the low-level
networking mechanisms to forward inter-site traffic, it is fully coupled to Neutron,
which implements several networking technologies. While BGPVPN Neutron tech-
nologies are privileged to exchange data plane information among sites, it could be
possible to add support for other Neutron technologies.

The next chapter presents large-scale tests we did to assess the proposed architecture
and the DIMINET OpenStack implementation.

101

Chapter 10

EVALUATION OF DIMINET

This chapter presents a series of tests of DIMINET. First, we present a test of func-
tionalities in a laboratory environment. Then, in order to assess the proposed implemen-
tation of DIMINET, we present large-scale experiments we carried out using the french
testbed Grid’5000 1 to emulate a DCI deployment.

10.1 DIMINET with OpenStack: PoC Validation

This section presents a test of DIMINET’s implementation in a development environ-
ment. The purpose of this test is to verify that DIMINET modules correctly instantiate an
inter-site Resource, and then that the data plane is set up to allow VMs traffic exchange.

For the test, we use two Ubuntu 18.05 VMs each one with an installation of OpenStack
Stein; in the following, we refer to them as OpenStack A and OpenStack B. On both de-
ployments, a DIMINET module has been deployed beside Neutron (See Appendix C), and
an instance of GoBGP is used to connect the Bagpipe-BGP peers. For the tests detailled
in the following sections, we used the DIMINET’s GUI interface (See Appendix C).

10.1.1 L3 Routing Resources

In OpenStack A we use a network net_A with CIDR 20.0.0.0/24 and in OpenStack B
we use a network net_B with CIDR 30.0.0.0/24. Figure 10.1 shows the traffic captured
at site A with Wireshark to provide a graphical representation of the different kinds of
messages (i.e., DIMINET, OpenStack, and BGP) that are exchanged.

Figure 10.1(a) shows the traffic at the moment the DIMINET L3 routing Resource is
created at the second one with subsequent traffic to communicate with OpenStack (i.e.,
Keystone and Neutron) and the East-West requests (See Appendix A.1.1). The BGP
traffic corresponds to the Keep Alive messages exchanged among BGP peers. The user
receives a Resource successful creation message at the GUI at around second four. Since

1. Experiments were carried out using the Grid’5000 testbed, supported by a scientific interest group hosted
by Inria and including CNRS, RENATER, and several Universities as well as other organizations.

102

10.1. DIMINET with OpenStack: PoC Validation

(a) L3 routing: Logical information exchange phase

(b) L3 routing: Data plane forwarding phase.

Figure 10.1 – DIMINET & OpenStack L3 traffic capture.

we used DIMINET’s GUI to create the Resources, the DIMINET traffic of around second
thirteen is because of the GUI update to refresh the list of Resources.

In Figure 10.1(b) we proceed to create a VM using CirrOS at each site (i.e., net_A
and net_B) composing the L3 Resource. The first pike of BGP traffic corresponds to the
routes exchanged among BGP peers to announce the routes to reach the VMs. Then, it
is possible to observe the virtual DHCP traffic allocating an IP to the VM of site A. This
process is also done at site B for the second VM. Finally, when the two VMs are fully
active, we execute a ping (Internet Control Message Protocol (ICMP)) request among
the two VMs, represented with the great pike of ICMP traffic at around 350 seconds.
Since both VMs are CirrOS machines with minimal capabilities (ephemeral hard disk and

103

Part III, Chapter 10 – Evaluation of DIMINET

32MB RAM memory) they take a large amount of time to be booted up, VMs booted at
production environments require a lower booting time.

10.1.2 L2 Extension Resources

In OpenStack A we use a network net_A with CIDR 20.0.0.0/24 to be spanned to
OpenStack B. Similar to the previous experiment, Figure 10.2 shows the traffic captured
at site A with Wireshark to provide a graphical representation of the different kinds of
messages (e.g., DIMINET, OpenStack, and BGP) that are exchanged.

(a) L2 extension: Logical information exchange phase.

(b) L2 extension: Data plane forwarding phase.

Figure 10.2 – DIMINET & OpenStack L2 traffic capture.

Figure 10.2(a) shows the traffic in the moment the DIMINET L2 extension Resource
is created at second six with subsequent traffic to communicate with OpenStack (i.e.,
Keystone and Neutron) and the East-West requests. Finally, at the second eight, the
DIMINET Master module sends the East-West verification and creates and updates re-
quests. We can see the augmentation in the OpenStack traffic because of Neutrons’ pro-

104

10.2. Grid’5000: Testbed and Setup

cedure to update the state of the Interconnection objects. Similar to the L3 Resources,
the BGP traffic corresponds to the Keep Alive messages exchanged among BGP peers. At
this point, the user receives a Resource successful creation message. As in the previous
test, the DIMINET traffic of around second thirteen corresponds to the GUI refresh.

In Figure 10.2(b) we proceed to create a VM using CirrOS at each site belonging to
the Resource. The first pike of BGP traffic corresponds to the routes exchanged among
BGP peers to announce the routes to reach the VMs. Then, it is possible to observe the
virtual DHCP traffic for the allocation of an IP address to the VM of site A. This process
is also done for the VM at site B. While the L2 extension Resource provides connectivity
at the virtual link layer, for simplicity we execute a ping (ICMP which comprises an
Address Resolution Protocol (ARP) communication) request among the two VMs. This
ICMP request is started once the two VMs are fully active at around the second 225. In
this test, the VMs took less time to boot up compared to the test of the previous section.

The results of the test for both type of Resource, L3 routing and L2 extension, show
that once DIMINET modules A and B complete the exchange of logical information (i.e.,
the inter-site Resource is created at each local DB), and the proper data plane intercon-
nection mechanisms are set up, communication is effectively established among the VMs
located at different sites.

10.2 Grid’5000: Testbed and Setup

To better assess DIMINET capabilities, we conducted several experiments carried out
using the Grid’5000 testbed. In this section, we detail the testbed setup to emulate a
DCI. Figure 10.3 shows the experimental platform: each gray box which represents a
DCI site, corresponds to a physical machine of Grid’5000 with a DIMINET instance
and an OpenStack deployed atop of it. Grid’5000 provides the physical connectivity for
the machines, so our sites can communicate among them at the IP level. We have used
Linux Traffic Control (TC) to emulate the WAN links of a DCI among the sites. Each
of the OpenStack deployed uses the Stein release with the following networking services:
ML2 Open Virtual Switch (OVS) driver, Neutron Interconnection Plug-in, networking
BGPVPN Plug-in, and networking-bagpipe driver.

Since the Interconnection Service Plug-in also relies in the BGPVPN Service Plug-
in (See Section 9.5), it is necessary to either deploy a BGP peering overlay on top of the IP
WAN connectivity or have a BGP peering with WAN IP/Multi Protocol Label Switching
(MPLS) BGPVPN underlay routing instances. Because Grid’5000 does not allow the
user to interact with the physical routers (underlay BGP), we deployed the first scenario

105

Part III, Chapter 10 – Evaluation of DIMINET

RR

RR RR

DIMINET
Instance

OpenStack

Neutron

Site #1

DIMINET
Instance

OpenStack

Neutron

Site #N

DIMINET
Instance

OpenStack

Neutron

Site #2

...

DIMINET
Instance

OpenStack

Neutron

Site #5

...
DIMINET
Instance

OpenStack

Neutron

Site 4P

DIMINET
Instance

OpenStack

Neutron

Site #3

...

Figure 10.3 – DIMINET testbed setup

using GoBGP to provide the functionality of the BGP instances in each site. These BGP
instances are deployed on the same Grid’5000 machines used for the OpenStack and
DIMINET deployments. Moreover, we deployed some Route Reflector (RR) instances in
independent physical machines represented with white boxes (See Appendix D.1 for more
information about the RR).

For the deployment setup, we have used a modified version of Juice [156], a tool origi-
nally conceived to test the performance of several DBs with OpenStack using EnOSlib [157].
EnOSlib is a library to build experimental frameworks on multiple platforms including
Grid’5000. Our modified version of Juice entirely automatizes the deployment of the
OpenStack, DIMINET, and BGP instances (routers and RRs) using a series of Ansible
roles. Because of the continuous evolution of all the technologies used (i.e., new releases,
changes in code, fixed bugs, deprecated packages, etc.), Juice has been modified constantly
to maintain up-to-date the deployment.

10.3 Evaluation of Inter-Site Resources Deployment

Since DIMINET is intended to be used in a DCI environment, it is necessary to
verify if the time needed to instantiate an inter-site Resource stays constant when several
sites compose the Resource. This section presents the results of time measures taken for
L3 routing and L2 extension Resources creation. Since the data plane interconnection
performance depends on the number of instances (VMs) booted at every site, we do not

106

10.3. Evaluation of Inter-Site Resources Deployment

measure this time. Instead, we rely on former works on BGP performance proving the
benefits and disadvantages of BGPVPN routes exchanges [158, 159]. For this test, we
have deployed 21 sites in total, each RR is connected to 7 sites, and the BGP sessions
are pre-configured among the RR and their BGP instance clients at each site that can be
seen as a PoP gateway.

10.3.1 Layer 3 Routing Resource

For every experiment, a random instance has been chosen to receive the user request
and start the inter-site Layer 3 routing Resource creation. We have varied the quantity
of sites composing a Resource from 2 up to 21 in total (the size of the DCI for this
experiment) Figure 10.4 shows a graphical representation of the L3 routing Resources
mean creation time. We remind the reader that the steps implied in the implementation
of the Logic Core functionalities for L3 routing Resources are explained in Appendix A.1.1.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0

2

4

6

8

3.
50

06

3.
56

01
7

3.
61

32
4

3.
80

76

4.
08

03
2

4.
46

56
4

5.
02

49
1

5.
52

19
5

6.
01

20
4

6.
72

56
8

7.
38

78 8.
01

54
4

0 0 0 0 0 0 0 0

3.
14

93
1

3.
11

66
5

3.
28

90

3.
35

99
4

3.
58

28
9

3.
76

00
6

3.
82

72
7

3.
91

89
8

4.
22

14
7

4.
22

07
3

4.
34

87
1

4.
55

90
3

4.
55

98
2

4.
71

24
3

4.
87

44
7

5.
03

36
1

4.
96

19
9

5.
11

83
9

5.
23

47
4

5.
29

42
6

n

T
im

e

L3 routing I L3 routing II

Figure 10.4 – L3 routing resource creation time.

The blue bars (i.e., L3 routing I) represent the results of a first DIMINET implemen-
tation that executed all the East-West and Neutron API calls sequentially. Consequently,
L3 Resources ’s mean creation time augmented exponentially (the figure only shows the
results of this implementation up to 13 sites because of the augmentation). To dimin-

107

Part III, Chapter 10 – Evaluation of DIMINET

ish the time expended when doing the API calls sequentially, we modified DIMINET’s
Logic Core to execute all East-West and Neutron API calls in parallel as represented by
the black bars (i.e., L3 routing II). Since DIMINET architecture is fully distributed and
each resource manager is also independently from others, the interactions can be executed
in parallel because remote information can be provided without dependency among the
requests.

While we expected to find a constant pattern because of the East-West and Neutron
API requests done in parallel, there is an augmentation of around 121.472 milliseconds
per new site composing the Resource. To better understand the reason for this time
augmentation, in the following, we propose to compare the results of two random L3
routing Resource creation experiments; the first one for 3 sites, and the second one for 18
sites. For this analysis, we use the steps numbering provided in Appendix A.1.1.

1 2 3 4 5 6 7&8 9 total
0

1

2

3

4

5

0

0.
23

2

0.
25

2

0 0.
00

6

0.
55

9

1.
52

99

0

2.
57

8

0

0.
22

9 0.
62

9

0.
00

2

0.
01

9

1.
06

9

3.
02

5

0

4.
97

3

Steps

T
im

e

3 sites 18 sites

Step Description
1 User’s request

2 Information verif. &
Keystone request

3 SubResources verif.
4 CIDR verif.
5 Resource schema creation
6 Interconnections creation
7&8 East-West POST request
9 Answer to User

Figure 10.5 – L3 routing resources creation time comparison (seconds).

Figure 10.5 presents the time comparison among the 3 and 18 sites experiments. Step
3 (SubResources verification) is the first one to show a slight difference between the two
processes, passing from 0.252 seconds to 0.629 seconds, a 2.49 factor difference. The fol-
lowing difference is found at Step 6 (Neutron Interconnections creation), which changes
from 0.559 seconds to 1.069 seconds. Finally, in Steps 7&8 (East-West creation request),

108

10.3. Evaluation of Inter-Site Resources Deployment

the difference doubles from 1.529 seconds to 3.025 seconds.
These three steps have two common elements: the use of threads and the communi-

cation with Neutron API (the East-West communication implies that remote DIMINET
modules will locally communicate with their Neutron). For the former, due to the manner
the implementation applies threads (i.e., using Python’s threading and concurrent.futures
packages), they are executed with a time difference closely to 1.19 milliseconds, which rep-
resents a total time difference of around 29 milliseconds between the first and last threads
in the 18 sites experiment.

For the latter, and to deeply understand the time augmentation when communicat-
ing with Neutron, we analyse the local Neutron’s logging information. We found that
Interconnections creation randomly presents unexpected errors due to mishandling of the
Route Target identifiers necessary to create the BGPVPN connections when processing
concurrent API calls. Indeed, when these requests arrive, Neutron tries to allocate a
Route Target identifier to each Interconnection following an incremental loop. In some
cases, while the process is presumed to be thread-safe, the same Route Target is selected
for different Interconnections. When the process tries to write the Route Target identifier
in Neutron DB, an error is presented because the value is already stored in the DB. This
error impacts Steps 6, 7 & 8 as Interconnections are created at these steps.

While the Route Target error has been well identified and reported to the OpenStack
community (including the Orange Labs experts), this code is not a priority and the error
remains not addressed. As a consequence, we were not able to conduct new experiments.
It is noteworthy to mention that while this error impacts the steps demanding to request
Neutron API for Interconnections creation (i.e., Steps 6 and 7&8), it does not necessarily
affect the main functionality of DIMINET to provide the logical management for inter-site
Resources. Due to the nature of our implementation, such kinds of nested requests where
DIMINET depends on the execution of a third platform, in this case, OpenStack, are a
limiting point that cannot be controlled. Further works will be needed in order to fix the
Route Target assignment in Neutron and measure if a significant difference in these steps
is done to achieve L3 routing Resources constant creation time.

10.3.2 Layer 2 Extension Resource

Similar to the L3 routing Resources, for every experiment, a random instance has
been chosen to receive the user request and start the inter-site Layer 2 extension Resource
creation. The quantity of sites composing a Resource has also been varied from 2 up to
21 (i.e., the total size of our DCI). Figure 10.6 shows a graphical representation of the
L2 extension Resources mean creation time. We kindly remind the reader that the steps

109

Part III, Chapter 10 – Evaluation of DIMINET

implied in the implementation of the Logic Core functionalities for L2 extension Resources
are explained in Appendix A.1.2.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0

2

4

6

8

10

4.
37

53
7

4.
39

47
2

4.
50

82
9

4.
63

15

4.
91

35
9

5.
35

38
9

5.
87

70
3

6.
40

18
6

6.
85

66
1

7.
52

76
3

8.
20

63
3

8.
79

16
7

0 0 0 0 0 0 0 0

4.
75

04

4.
93

61
2

5.
26

55
9

5.
34

71
4

5.
71

75
8

5.
74

45
6

5.
90

34
4

6.
02

91
9

6.
28

19
9

6.
37

08
8

6.
49

04

6.
54

41
9

6.
69

61
2

6.
80

11
9

6.
87

88
2

6.
93

79

7.
00

46
6

7.
13

74
4

7.
19

55
2

7.
32

81
9

n

T
im

e

L2 extension I L2 extension II

Figure 10.6 – L2 extensions resource creation time

Following the same color guides that the last section, the blue bars (i.e., L2 extension I)
represent the results of the first DIMINET implementation that executed all the East-West
and Neutron API calls sequentially as explained in Section 10.3.1. The black bars (i.e.,
L2 extension II) represent the results of the DIMINET modification to run East-West
and Neutron API calls in parallel. Similar to the results of the experiments for L3 routing
Resources, the L2 extension Resources experiments do not follow a constant creation time
as we expected, but rather there is a slight augmentation of around 109.5 milliseconds per
new site composing the Resource. As we did in the last section to better understand the
time augmentation, in the following we propose to compare the results of two random L2
extension Resources experiments; the first one for 3 sites, and the second one for 18 sites.
Since the sharding strategy differs between L3 routing and L2 extension Resources (See
Section 9.3), this analysis uses the steps numbering provided in Appendix A.1.2.

Figure 10.7 presents the time comparison among the 3 and 18 sites experiments. Simi-
lar to the results for L3 routing Resources, the L2 extension type also presents a difference
among some of the steps involving parallel calls to remote modules and the local Neutron

110

10.3. Evaluation of Inter-Site Resources Deployment

1 2 3 4 5 6 7 8&9 10 11&12 13 total
0

1

2

3

4

5

6

7

0

0.
32

2

0.
05

4

0.
02

4

0.
00

2

0.
00

5 0.
45

8

1.
74

9

0.
52

6

1.
68

4

0

4.
82

4

0

0.
24

9

0.
08

5

0.
17

53

0.
00

32
7

0.
00

84 0.
46

5

2.
23

4

0.
79

2.
22

7

0

6.
29

8

Steps

T
im

e

3 sites 18 sites

Step Description
1 User’s request

2 Information verif. &
Keystone request

3 Local SubResource verif.
4 Resources with same CIDR

verif.
5 CIDR allocation pools split
6 Resource schema creation
7 Neutron DHCP changes
8&9 East-West POST request
10 SubResources update list & In-

terconnections creation
11&12 East-West PUT request
13 Answer to the user

Figure 10.7 – L2 extension resources creation time comparison (seconds).

API. Step 8&9 (East-West POST request) is the first one showing a slight augmenta-
tion, passing from 1.749 seconds to 2.234 seconds. Since L2 extensions require to create
networks at remote Neutrons that are referenced as SubResources, we see clearly that
the Neutron API takes more time to answer the totality of network and subnetworks
creations and DHCP updates nested in Step 8&9. Contrary to the L3 routing Resources,
Neutron Interconnections’ creation does not augment in the same manner at Step 10. For
this particular experiment, the error explained for BGPVPN Route Targets allocation
did not occur at the DIMINET module’s local Neutron. Then, in Steps 11&12 (East-
West PUT request), the time passes from 1.684 seconds to 2.227 seconds. We presume
that remote modules encountered the Route Target allocation error when requesting the
Interconnections creation at their local Neutron API.

Although the Route Target allocation error may interfere with the correct forward-
ing of data plane traffic, in cases where it is not present, the communication is perfectly
established among VMs. By fixing the faulty code for Route Targets assignment, nested
requests for Interconnections creation should not augment DIMINET Resources creation
time in the same manner as in the actual implementation. However, Python’s thread im-
plementation and Neutron’s code lack of optimization will continue to penalty the time

111

Part III, Chapter 10 – Evaluation of DIMINET

needed for steps involving parallel Neutron API calls. Even with the problems explained
above, we believe that this test allowed to do a first verification of DIMINET’s imple-
mentation for OpenStack, showing promising results in terms of time consumed to create
inter-site Resources.

10.4 Evaluation of Resiliency

The purpose of this test is to show the improved resiliency of a distributed architecture
against networking partitioning issues. To explain this, we have deployed an L2 extension
Resource with CIDR IPv4 11.0.0.0/24 depicted in Figure 10.8 (A) among sites A and B.
Once the Resource has been deployed, two VMs have also been deployed on each site.

DIMINET
Instance

OpenStack

Neutron

Site #A

DIMINET
Instance

OpenStack

Neutron

Site #B

Instance
VM

Instance
VM

network

Instance
VM

Instance
VM

(A)

DIMINET
Instance

OpenStack

Neutron

Site #A

DIMINET
Instance

OpenStack

Neutron

Site #B

Instance
VM

Instance
VM

network

Instance
VM

Instance
VM

(B)

Figure 10.8 – DIMINET Resiliency test: (A) Initial deployed service. (B) Inter-site service in
presence of networking partitioning.

Firstly, we have checked that the traffic was being carried at the intra-site level, this
is, between the VMs deployed in the same site. We also checked that the traffic was being
carried at the inter-site level. At this point, thanks to the different technologies used (i.e.,
BGPVPN routes exchanges and VXLAN tunnels among sites establishment), traffic was
correctly forwarded in both cases.

Secondly, we emulated a network disconnection using TC to introduce a network fault
in the link between the sites, as shown in Figure 10.8 (B). We decided to impact the
network by allowing the BGP routes exchanges. As a result, intra-site traffic continues to

112

10.5. Evaluation of DIMINET Scalability

be forwarded while inter-site traffic is only forwarded a little more until the local BGP
router finds its distant BGP peer is no longer reachable. At that point, the local BGP
router decides to withdraw the remote routes from its local deployment, impacting the
inter-site data plane traffic forwarding.

Because of the independence between the deployments and the logical division done
by DIMINET instance, we effectively arrived to instantiate new VMs during the network
failure. This corresponds to the behavior we expected since the OpenStack deployments
are completely independent among them.

Finally, when connectivity is reestablished, inter-site traffic takes some time to be
forwarded again between sites. This delay is because the BGP peers wait the configured
Keep Alive time to query the distant peer about its availability to reestablish the BGP
peering among them, thus, impacting the time needed to reestablish the traffic.

10.5 Evaluation of DIMINET Scalability

Since one of the announced characteristics of DIMINET is its scalability w.r.t. tra-
ditional cloud infrastructures, we conducted additional experiments to use up to 59
Grid’5000 sites and measure the mean Resource creation time. While this quantity is
far from representing a Telco’s DCI, it allows us to analyse if the different tasks inside
DIMINET’s Logic Core can continue to perform well when adding more sites to a request.
Since we are aware that the BGPVPN Route Target assignment random error can affect
the total time of a Resource creation, we have modified the Neutron Interconnection Route
Target allocation so this process continues to provide Interconnection objects but without
the allocation of Route Targets to them.

Similar to Section 10.3, for every experiment, a random instance has been chosen to
receive the user request and start the inter-site Resource creation. This process has been
done for both types of Resources, L3 routing and L2 extensions. Figure 10.9 shows a
graphical representation of L3 routing and L2 extension Resources mean creation time.
As expected and similar to the results of Section 10.3, there is a slight augmentation of
time per new site composing the Resource. It is noteworthy no mention that the mean
creation time has diminished in both cases and this can be explained because the Neutron
Interconnections Plug-in does not allocate Route Targets, thus, the allocation error should
not happen. However, there is still a time augmentation when comparing a few sites
against the total DCI size. Since we have disabled the Route Target allocation process,
it is possible to analyze in which steps DIMINET adds time to the creation request
processing. As we did in previous sections, in the following, we propose to compare the

113

Part III, Chapter 10 – Evaluation of DIMINET

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

0 2 4 6 8 10
3.36743
3.4929

3.38867
3.25694
3.31986
3.28753

3.45802
3.47064
3.48466
3.59398

3.76806
3.8859
3.90136
3.94584
3.86861
3.9172
4.0664
4.09112
4.08792
4.20508
4.1452

4.31937
4.10969

4.30956
4.43915
4.50532
4.45398
4.46432

4.80028
4.66448
4.74157

4.91067
4.83059

5.00575
5.23897
5.19723

5.03015
5.24057
5.37205
5.42026
5.47267
5.45231

5.74621
5.7652
5.75081

6.0325
6.05136
5.97227
6.03855
6.19463
6.30676
6.27955
6.31639

6.50912
6.50994
6.62059
6.67174

6.58934

4.78601
5.02677

4.8614
5.11253
5.09115

5.26389
5.32046
5.30277

5.51251
5.49739

5.68829
5.78909
5.89961
5.8986
5.91902

6.09049
6.29605

5.8295
6.01125

6.18893
6.09577

6.31679
6.17926

6.5566
6.30526

6.71612
6.53252
6.65264
6.70694

6.92781
6.77831
6.83487

7.06077
7.02693
7.1498
7.10663

7.34199
7.25213

7.43022
7.40646
7.47172
7.55152
7.70187
7.66161
7.73362
7.72293

7.96849
7.93198
8.03518
8.16241
8.15343
8.25191
8.21452

8.50061
8.44168
8.54384
8.54435

8.45673

n

Time

L3
routing

L2
extension

Figure
10.9

–
D
IM

IN
ET

scalability
tests.

114

10.5. Evaluation of DIMINET Scalability

results of two randoms Resource creation experiments, for both kinds of Resources, L3
routing and L2 extension.

1 2 3 4 5 6 7&8 9 total
0

2

4

6

0

0.
23

1

0.
32

3

0.
00

01

0.
00

6 0.
66

4

1.
78

1

0

3.
00

61

0

0.
24

2 0.
99

5

0.
01

3

0.
03

4

1.
14

7

3.
40

3

0

5.
83

4

Steps

T
im

e

3 sites 52 sites

Step Description
1 User’s request

2 Information verif. &
Keystone request

3 SubResources verif.
4 CIDR verif.
5 Resource schema creation
6 Interconnections creation
7&8 East-West POST request
9 Answer to User

(a) L3 routing resources creation time scalability comparison.

1 2 3 4 5 6 7 8&9 10 11&12 13 total
0

2

4

6

8

0

0.
32

2

0.
05

4

0.
02

4

0.
00

2

0.
00

5

0.
45

8

1.
74

9

0.
52

6

1.
68

4

0

4.
82

4

0

0.
46

3

0.
08

4

0.
21

7

0.
00

84
5

0.
01

6

0.
44

3

1.
99

7

1.
15

52

3.
39

2

0

7.
95

Steps

T
im

e

3 sites 50 sites

Step Description
1 User’s request

2 Information verif. &
Keystone request

3 Local SubResource verif.
4 Resources with same CIDR verif.
5 CIDR allocation pools split
6 Resource schema creation
7 Neutron DHCP changes
8&9 East-West POST request
10 SubResources update list & Intercon-

nections creation
11&12 East-West PUT request
13 Answer to the user

(b) L2 extension resources creation time scalability comparison.

Figure 10.10 – Scalability time comparison tests.

Figure 10.10 gathers a summary of the different steps for both L3 routing (3 sites
against 52 sites) and L2 extension (3 sites against 50 sites) Resources. As expected, in
both cases, the steps requiring to execute parallel tasks present some significant time
differences.

115

Part III, Chapter 10 – Evaluation of DIMINET

Figure 10.10(a) depicts the time comparison among the 3 and 52 sites experiments for
the L3 routing Resource. The first difference is found at Step 3 (SubResources verifica-
tion). When analyzing the details at DIMINET’s code, we found that this step implies
an authentication request against the local Keystone to found the endpoint of distant
Neutrons. The problem lies in the implementation: instead of doing a single authentica-
tion before the threads, each thread executes a Keystone request, potentially saturating
the Keystone endpoint and impacting all the other threads’ execution. The second differ-
ence is found at Step 6 (Interconnection creation). As we stated above, we did not use
the Route Target allocation to avoid the unexpected error (See Section 10.3.1). However,
there is still a time augmentation between the two experiments that cannot be simply
explained with the time difference when executing Python threads. We believe that this
difference is caused by our Neutron instance (i.e., a test DevStack version running on a
VM), which cannot optimally handle the parallel requests to create the Interconnection
objects. Finally, at Steps 7&8 (East-West POST request), the time consumed depends on
the contacted remote DIMINET instances. Since they also contact their local Neutron to
create Interconnections objects, the time augmentation may be due to Neutron.

Figure 10.10(b) depicts the time comparison among the 3 and 50 sites experiments for
the L2 extension Resource. Since the steps of the sharding strategy are different from the
L3 routing Resource, the time augmentation may have different origins as we already an-
alyzed in Section 10.3.2. Similar to previous results, Step 8&9 (East-West POST request)
is the first one showing a difference among the experiments. This augmentation is due to
remote Neutrons API answering the create network and subnetwork requests and doing
the DHCP modification. Step 10 (SubResources update list & Interconnections creation)
is the following presenting a time difference. In this step, the Interconnection objects are
created by Neutron API which, as stated above, cannot handle well several parallel re-
quests. Finally, Step 11&12 (East-West PUT request), also presents a time augmentation
due to the need of creating Interconnections objects at remote sites.

The analysis of the experiment’ results for both L3 routing and L2 extension Re-
sources has revealed some pieces of code in DIMINET’s implementation that need to be
refactored but also some problems at the OpenStack code. In general, DIMINET’s per-
formance (i.e., East-West and Neutron API calls) could be optimized by refactoring some
pieces of code to have a more constant creation time and allow its use in a real DCI with-
out the time augmentation presented in this experiment. Besides these implementation
problems, DIMINET is still capable to provide the logic to manage inter-site Resources
in a distributed fashion.

116

10.6. Summary

10.6 Summary

This chapter has presented a first test of DIMINET functionality with OpenStack in
a lab environment. Also, we have presented and detailed several test results of DIMINET
running in an OpenStack-based DCI using Grid’5000 testbed. While unfortunately, the
chosen Neutron technology to implement the data plane exchange and forwarding (BGPVPN
Service Plug-in) present some errors, both types of DIMINET Resources can be effectively
provided. Tests showed an augmentation of time consumed to execute creation requests,
mostly when needing to contact Neutron API.

The analysis of time consumption has allowed us to understand different problems
related to DIMINET’s implementation but also related to the way Neutron API treats
requests. While these problems are mostly technical and do not affect the logic behind
the principles of DIMINET, they, unfortunately, impact its utilization in an OpenStack-
based DCI. In consequence, while our large-scale experiments showed the possibility to
instantiate on-demand inter-site Resources, we were not able to show the communication
at the data plane level among the different sites composing a Resource. As stated in
Section 9.5, we do not implement the exchange information about the virtualized traffic
connectivity mechanisms over the East-West interface but instead, we preferred to rely
on Neutrons Service Plug-ins. While adding extra complexity to DIMINET, a possible
future work could be to implement this exchange over the East-West interface in order to
avoid the dependence with Neutron’s Interconnection and BGPVPN technologies.

An optimization of DIMINET’s code should be done in future works in order to test and
compare the results with the ones presented in this chapter. Besides, more development
is needed in Neutron to fix the BGPVPN Route Target allocation error, and, in general,
to optimize Neutron’s code to better answer parallel requests. Moreover, due to lack of
time, we did not execute additional experiments to continue the validation of DIMINET’s
implementation for OpenStack. Experiments measuring DIMINET’s behavior to modify
inter-site Resources on-demand adding or deleting new sites were the next ones to be
executed to better analyse all DIMINET capabilities.

117

Part IV

Conclusions & Perspectives

This fourth part concludes this doctoral work and gives four major perspectives
for future works.
— Perspective 1 discusses how DIMINET’s WRITE operation could be opti-

mized.
— Perspective 2 analyses the possible use of DBs as communication tool instead

of the proposed East-West interface.
— Perspective 3 presents Cilium, a project inside the Kubernetes ecosystem

with similar characteristics to DIMINET.
— Perspective 4 provides a fist generalization of DIMINET data model to con-

tribute to further research for other kinds of inter-service collaboration.

119

CONCLUSIONS AND PERSPECTIVES

Conclusions

The Cloud computing paradigm has completely shifted the way IT services are pro-
posed and accessed. This model has allowed the apparition of new use cases, each one
requiring guaranteeing different constraints. With operational needs such as low delay
and resiliency against networking failures, Telcos such as Orange have found an interest
in deploying resource managers such as OpenStack closer to the end-users in PoPs of
their backbone. Different actors are interested in answering how to manage such a DCI
while assuring scalability, resiliency, locality awareness, and abstractions. While the sim-
plest way is to use a centralized approach to control and manage the DCI, this method
presents several problems and is not well suited for guarantee all the DCI characteristics.

In this doctoral work, we have studied SDN-based approaches to provide distributed
management for DCIs focusing mostly on the virtualized networking aspect.

Chapter 2 described the basics of this thesis. It gives an overview of cloud services
and introduces the SDN paradigm, mainly focusing on the SDN-based cloud net-
working approach by giving an overview of OpenStack and Kubernetes, the most
popular VIM and CIS resource managers, and their networking aspects.

Chapter 3 described this work’s problem statement, introducing the evolution of
cloud infrastructures towards DCIs. We have explained the DCI characteristics,
and we have focused on the challenges that need to be addressed in order to pro-
vide distributed networking management in DCIs. These challenges were divided
into two categories, those related to network information management and those
associated with the technological implementation of such a management.

Chapter 4 detailed the different properties used to classify and analyze the reviewed
solutions of our state-of-the-art study on decentralized SDN solutions. We explained
key concepts such as the kind of architectures, the leader-based strategy, the inter-
nal communication protocols, the database management system, interoperability,
and the maturity level.

Chapter 5 presented seven network-oriented SDN controllers. DISCO, D-SDN, Elasticon,
FlowBroker, HyperFlow, Kandoo, and Orion are presented and classified following

121

Chapter 4’s properties. Then, we analyzed how each of these solutions may address
the DCI challenges.

Chapter 6 presented five cloud-oriented SDN controllers. DragonFlow, ODL, Onix,
ONOS, and Tungsten are analyzed and classified w.r.t. Chapter 4’s properties.
We also analyzed whether each solution is capable or not of addressing the DCI
challenges.

Chapter 7 presented four solutions that, while not being purely SDN solutions, we
consider essential to analyze. Kubernetes Federation, Kubernetes Istio Multi-Cluster,
OpenStack P2P external proxy-agents, and Tricircle were analyzed and studied to
classify them accordingly to Chapter 4’ properties. Then we explored how each so-
lution may address the DCI challenges. We underlined that this study is a scientific
contribution by itself. Such a state-of-the-art study was not available before this
work.

Chapter 8 presented the lessons retained from the state-of-the-art review. Solutions
such as DISCO and ODL, proposing a fully distributed architecture, presented
interesting insights on how to provide a distributed management. Although both
solutions cannot fully address the DCI challenges, they provided key ideas such
as using an East-West interface to communicate among controllers while having a
local DB at each controller. We have also presented several open questions such as
the standardization of East-West SDN interfaces, the use of new DB engines, the
implementation of new data plane technologies, the performance analysis of the
solutions, and the security in SDN technologies.

Chapter 9 introduced our proposal of a distributed architecture capable of providing
inter-site networking connectivity management based on DIMINET, a distributed
module capable of establishing communication using an SDN-inspired architecture
where independent modules communicate among them by using a horizontal inter-
face and local DBs. By proposing a per-resource sharding strategy, we have shown
the possibility to provide coherent resource management with minimal traffic ex-
change among the different sites composing a DCI. The chapter also introduced
DIMINET’s implementation for OpenStack Neutron. We also presented the details
inherent to the Neutron-to-Neutron Interconnection Plug-in, the Neutron’s net-
working mechanism chose to provide the data plane connectivity for the virtual
instances. By relying upon the BGPVPN technology, the Interconnection Plug-in
allows to effectively share routes among BGP peers and provide data forwarding
for VMs belonging to independent sites.

Chapter 10 introduced an assessment of the distributed architecture by presenting

122

a first demonstration of DIMINET in a small OpenStack-based scenario. The first
results showed that DIMINET effectively allows the creation of L2 extension and
L3 routing resources. Moreover, we showed that traffic is forwarded among the inde-
pendent sites by using the Neutron networking mechanisms. Then, to proceed with
further analysis of our module, we presented the tests executed using the Grid’5000
testbed to better asses DIMINET capabilities. The evaluation of inter-site resources
deployment showed a slight augmentation in time spent when DIMINET executes
its parallel requests due to some errors in the implementation for OpenStack. The
resiliency test showed the expected result of using a distributed architecture; if a
network partition is presented, each site continues to operate locally. Finally, we
presented the results of scalability tests where more Grid’5000 machines are used
to emulate the DCI. While the time consumption increased in the parallel requests,
DIMINET remained capable of instantiating the inter-site resources. Unfortunately,
the Neutron-to-Neutron Interconnection Plug-in presented an error that does not
allow the correct exchange of BGP routes among sites. Consequently, we were not
able to show a fully deployed and operational inter-site resource in our Grid’5000
tests emulating a DCI.

Perspectives

The studies, analysis, and developments carried out in this doctoral work tend to assess
the possibility of providing a distributed DCI network management by relying upon SDN
principles. We proposed DIMINET a distributed module relying upon two key elements:
a Logic Core implementing sharding strategies for providing resource management coher-
ence and on-demand communication exchanges among modules leveraging an East-West
interface from SDN controllers. The distributed approach presents itself as a good choice
to provide distributed DCI management as demonstrated in this thesis.

Because of the industrial nature of this thesis, we have proposed a first implementation
of DIMINET for the OpenStack ecosystem, more in detail, for the networking service Neu-
tron. While DIMINET tests allowed us to assess the architecture and analyze the creation
of inter-site resources, some technical errors in our implementation, and inside Neutron’s
code avoided a full assessment of DIMINET for the OpenStack ecosystem. While being
purely a technical issue, further works are needed in order to optimize DIMINET’s code
when doing parallel requests using the East-West interface. Besides, it will be necessary to
fix and debug some code in Neutron allowing a correct use of the Interconnection Service
Plug-in to provide the data plane connectivity for DIMINET. When these software mod-

123

ifications are done, DIMINET will be completely integrated with OpenStack and further
tests as the one presented in this thesis should be done. Ultimately, DIMINET could be
used in Orange network to provide connectivity management for the PoPs composing the
DCI.

Although it would have been valuable to continue our research around decentralized
DCI management using DIMINET’s architecture, there are still several subjects that
may be further studied and analyzed to contribute even more to the research of DCI
management. In the following, we present four major perspectives for future works.

Perspective 1: Improving DIMINET WRITE operations

Since DIMINET tries to diminish the quantity of exchanged messages among mod-
ules and given that we use a per-Resource Master mapping (i.e., avoiding the complexity
and overhead of using a consensus leader election), WRITE/creation requests are served
once for all. Therefore, unless an UPDATE/modification request is made to the Mas-
ter module, no further synchronization is done among the agents. As we have already
mentioned, the Master module will then act as the entry point to modify that specific Re-
source. Moreover, information related to the management of the Resource will be stored
at the Master module database. This way to ensure coherence presents some similar-
ities with the well-studied cache coherence protocols in shared-memory multiprocessor
systems, especially with directory-based coherence mechanisms. In directory-based proto-
cols, a directory keeps track of the status of all blocks of the cache. Among the stored cache
information, the directory includes which state the block is and which nodes share that
particular block. In this protocol, two kind of actions can be taken when a line is written,
the protocol either invalidates all copies of the line in others caches (a.k.a. invalidation-
on-write or write-invalidation), or it updates remote caches (a.k.a. update-on-write or
write-update) with the new value given to the line [160].

Similarly to cache functionalities, DIMINET local databases save a subset of a Resource
information locally. The Resource Master database acts similarly as the memory unit for
that particular Resource. Moreover, the Master module is used to track the sites composing
a Resource as in directory-based protocols. Another similarity is the use of a write-update
mechanism by the Master module to ensure that all sites composing the Resource are up
to date with the latest information of the Resource to provide the inter-site networking
connectivity. In the context of inter-site resources, a write-invalidation mechanism does
not make much sense because sites will not be able to provide the desired state of the
Resource requested with the WRITE operation. As a consequence, modules will only do
an invalidation of the local data, hence rendering the inter-site resource useless.

124

Besides these similarities, there are some differences in the way DIMINET treats
WRITE requests. Contrary to directory-based systems, DIMINET only permits further
modifications to the Resource by using the Master module. While the update acknowl-
edges are proposed in DIMINET, they are only done between the modules and the Master.
A general model could then greatly benefit from the write-on-update mechanism of cache-
coherence protocols by allowing every module to propose modifications to the Resource:
Instead of only using the Master module to execute updates on Resources, every module
composing the Resource should be able to perform WRITE operations on the Resource,
hence, gaining more dynamism for the entire system.

In the proposed model, the Master module still acts as the memory unit validating
the writing operations. Whether the writing module proposition is accepted or not by
the Master module will depend on the mechanism established to verify if the inter-site
Resource can be provided. In case that the Master module considers that the request
cannot be furnished, it should answer to the writing module announcing the impossibility
to advance further in the Resource provisioning. If multiple UPDATES are done for the
same Resource, the Master module should implement a fence for the Resource being
modified. Consequently, all writing modules proposing the modification will receive an
answer informing that the request cannot be served.

By introducing this change inspired in cache-coherence protocols, all modules belong-
ing to a Resource could modify the inter-site Resource, improving the potential bottleneck
problem of using a per-Resource Master mapping.

Perspective 2: Using DBs as communication tool

Concerning, DIMINET’s communication among modules, in DIMINET’s proposition
and in its generalization, we have leveraged the use of an East-West interface among mod-
ules to provide coordination among modules while maintaining local DBs. Nevertheless,
another approach could consist of leveraging distributed DBs. As we highlighted in Sec-
tion 8.1, solutions such as Elasticon, HyperFlow, Orion, DragonFlow, Onix, and ONOS,
use a distributed DB to share global networking information among controllers. While
this approach is useful as it is intended to avoid a single point of failures and bottlenecks
by logically splitting the DB, it does not respect data locality principles. Even more, it is
not resilient enough in case of network partitions.

To illustrate this point, one can consider the Cassandra DB [126]. Cassandra is based on
a Distributed Hash Table (DHT) principles to uniformly distribute states across multiple
locations based on the computed hash. It means that one specific controller’s states are
not necessarily stored in the same geographical area as the controller (e.g., a controller

125

in site A will have states stored in remote locations B, C, and so forth as depicted in
Figure 10.11). Thus, the principle of locality awareness is not respected as information
belonging to site A will be spread to other sites with no possibility to control the location.

Figure 10.11 – Cassandra DB DHT example.

Likewise, a distributed architecture that leverages Cassandra will not be resilient to
network isolation. It will be impossible for the local site to retrieve its states, which may
have been spread over non-reachable sites.

However, data-related approaches different from traditional SQL and NoSQL engines
can be relevant. In the last years, the concept of NewSQL has been gaining popularity
and notoriety as an approach mixing the advantages of both traditional SQL and NoSQL
systems. These kinds of engines search to propose the same scalability of NoSQL systems
while keeping the relational model of traditional SQL (i.e., maintaining the ACID guar-
antees) engines [161]. NewSQL engines generally try to leverage characteristics such as
different memory storage, modes of partitioning, and concurrency control to provide the
properties mentioned above.

Regarding performance, DB engines have used disk-oriented storage. However, today’s
NewSQL engines can profit from memory cost reduction and leverage memory-oriented
approaches. Using this approach, new engines can get better performance because slow
reads and writes to disk can be avoided [162]. Moreover, almost all systems used to scale
out splitting a DB into subsets, called partitions or shards.

Overall, NewSQL engines can be gathered in three main classes [163]: new architec-

126

tures, transparent sharding middlewares, and Databases-as-a-Service.

— New architectures: This group gathers engines build from scratch and that mostly
use a distributed shared-nothing architecture [92]. Most of them are also capable
of sending intra-query data directly between nodes rather than having to route
them to a central location. In this group we find solutions such as Clustrix [164],
CockRoachDB [116], Google Spanner [165] and its related solutions such as Google
F1 [166], VoltDB [91], or HyPer [167].

— Transparent sharding middleware: This group gathers engines that split a DB into
multiple shards that are stored across a cluster of single node instances. In this
sharding, each node runs the same DB management system. Each one has only a
portion of the overall DB, and data does not mean being accessed and updated in-
dependently by separate applications. A centralized middleware component routes
queries, coordinates transactions, and manages data placement, replication, and
partitioning across the nodes. In this group we find solutions such as AgilData
Scalable Cluster [168] or MariaDB MaxScale [169].

— Data Base as a Service (DBaaS): While there are already DBaaS propositions, there
are only a few NeWSQL DBaaS engines available. In this group we find solutions
such as Amazon Aurora [170] or ClearDB [171]. For instance, Amazon Aurora does
a decoupling between the engine storage and compute. In this sense, the network
becomes the constraint because all input and outputs (I/O) will be written over it.
To do this operation, Aurora relies upon a log-structured storage manager capable
of improving I/O parallelism [172].

To measure these new engines’ value in the DCI context, a DIMINET-like application
needs to be built on top of the selected solution. It will let to analyze each one’s pros and
cons and verify if they can satisfy the DCI requirements highlighted in Section 3.1.

On the other hand, solutions such AntidoteDB [173] or Riak [174] that have been
designed on top of Conflic-free Replicated Data Type (CRDT) [175] could be leveraged
to address the DCI challenges while respecting the principal characteristics of DCI ar-
chitectures such as data locality awareness. A CRDT is a data structure that can be
replicated across multiple nodes in a network. Each replica can be updated independently
and concurrently. It means that each replica will be locally accessible and ready to use in
case of network partitions. The richness of the CRDT structure rends possible to resolve
the inconsistency between multiple replicas eventually. However, CRDTs comes with two
significant limitations. First, it requires replicating the state of every site of the DCI in-
frastructure. Second, only elementary values can be structured as CRDT right now. For
instance, it is not sure that a CIDR can be modeled as a CRDT. If future research might

127

find solutions for these two problems, CRDT may represent a step forward to provide a
distributed solution while respecting the DCI properties.

Perspective 3: Cilium at Kubernetes: Decentralising K8S

As we have explained in several chapters, DIMINET has been implemented for the
OpenStack environment. In recent times, Cilium [55, 176], a proposition with similar
characteristics (i.e., distributed architecture, East-West communication, local DBs) has
emerged in the K8S environment. Cilium is a CNI Plug-in that implements the Kubernetes
networking API by leveraging the extended Berkeley Packet Filter (eBPF). eBPF is used
to forward data within the Linux kernel. It is an alternative to IP Tables, which delivers
better performance [177, 178]. In addition to the Cilium Plug-in, each K8s node executes
a Cilium agent. This agent is in charge of interacting with the CRI to set up networking
and security for containers running on the node. Finally, a key-value store, global to the
cluster, is used to share data between Cilium Agents deployed on different nodes.

eth0

CRI

Worker nodes

lxc-x

Kernel
space

eth1

lxc-x

kubelet

Pod Pod

Cilium

Cilium
Node
GW

Berkeley Packet
Filter

eth0

Cilium Agent
(DaemonSet)

etcd kube-api-server

kube-controllerkube-scheduler

Kubernetes master

cloud-controller

Cilium
Operator

Cilium
etcd

LoadBalancer/
NodePort

eth0

CRI

Worker nodes

lxc-x

Kernel
space

eth1

lxc-x

kubelet

Pod Pod

Cilium

Cilium
Node
GW

Berkeley Packet
Filter

eth0

Cilium Agent
(DaemonSet)

etcdkube-api-server

kube-controller kube-scheduler

Kubernetes master

cloud-controller

Cilium
Operator

Cilium
etcd

LoadBalancer/
NodePort

watch:
read-only

CNI CNI

Figure 10.12 – Cilium Multi-Cluster architecture

Cilium proposes a multi-cluster implementation called ClusterMesh. It provides Pod
IP routing among multiple Kubernetes clusters thanks to tunneling techniques through
eBPF (i.e., without dedicated proxies or gateways). Concretely, the Cilium key-value
store of each cluster must be exposed as a public Service. This enables Cilium agents
to collect information from all stores in order to create tunnels with all other clusters.
Moreover, Cilium allows the creation of a Global Service by creating at each cluster a
Service with an identical name and namespace. Figure 10.12 depicts a deployment using
Cilium ClusterMesh. An additional Cilium annotation defining the Service as global is

128

mandatory on each cluster. Cilium uses this annotation to automatically load-balance
requests throughout all Pods exposing the Service in the different clusters. Thanks to
its relation with K8S at the CNI level, Cilium effectively provides the required types of
communications for the K8S environment (See Section 3.3). However, the scalability of
such a model is questionable as ClusterMesh initiates a tunnel (e.g., VXLAN or Geneve)
between each worker nodes pair.

Because Cilium ClusterMesh requires connecting all clusters before deploying appli-
cations, agents create tunnels to all remote Nodes at the cluster setup. In this sense,
information is exchanged even before a user requires an inter-site resource to be deployed.
It is noteworthy to mention that the user still needs to deploy applications and Services
in each cluster to provide a Multi-Cluster Service.

Cilium proposes to expose the local database to remote clusters to exchange informa-
tion. The way this information is consumed by remote clusters could inspire more propo-
sitions leveraging the exposition of their databases as East-West interface among clusters.
While being developed in parallel from DIMINET, Cilium uses the distributed DB ap-
proach we did not use at DIMINET. Still, on-demand communication is not considered at
Cilium. In order to assess and compare the two propositions, a DIMINET implementation
for the K8S environment should be done to analyse the differences between the East-West
interfaces of both propositions.

Perspective 4: Towards a generalization of DIMINET for inter-service collab-
oration

As we have explained all along this doctoral work, our model to provide management
for a DCI is based on a distributed architecture where independent and autonomous
resource managers (Virtual Infrastructure Managers (VIMs) or Container Infrastructure
Services (CISs)) are deployed at every site of the DCI. Unfortunately, most cloud services
and applications were neither designed following distributed approaches (e.g., e-commerce,
web-services, stream processing, etc.) nor thinking about the edge, as we explained in
Section 3.3.1 for OpenStack and Kubernetes. Moreover, modifications to such software
stacks are tedious while not impossible [66, 179].

In the context of OpenStack, another cross collaboration needed could be found at
Nova (See Section 2.1.4.1). Let’s consider the capacity to manage several VMs through
different independent OpenStacks coherently: VMs may evolve independently from others,
but all the CRUD operations done to a VM at one Nova should impact all the other VMs
too. In consequence, a strategy to manage such kind of VM will be needed. While most
of the proposed DIMINET’ ideas have been conceived to allow distributed networking

129

resources management, as in the case of OpenStack Neutron, it has sense to consider that
these ideas may contribute to building a more general framework allowing other different
types of services to collaborate among them.

To provide cross-service collaboration for the virtualized networking resources man-
agement, DIMINET strongly relies upon two key characteristics: the communication ex-
changes that have to be done among instances, and the data model intended to store
information of inter-site Resources locally while providing coherence. Since an inter-site
Resource is composed by several independent local SubResources, DIMINET provides the
necessary logic to bound and interconnect them, assuring the coherence of the whole Re-
source. Thus, each site will manage the states of the Resource locally while following the
established logic. A presumption in this case is that no external modification rather than
DIMINET’ ones can be done to SubResources or Interconnections.

First of all, the logical notion of an inter-site Resource composed by a series of local
SubResources should remain the basic concept for a more general data model. Since the
communication is expected to be managed in the same way as DIMINET (i.e., using the
North and East-West interfaces), each database will be deployed per module. While the
Resource type may vary in function of the desired kind of resource, it does not affect
the relation among Resource and SubResources. Moreover, the Parameter class could
be expanded to add more properties related to the inter-site Resource. For instance,
DIMINET stores the CIDR of the local SubResource as a property in the Parameter class.
Each Resource is managed by a Master modules which instantiates the LMaster class.
Moreover, the LMaster sharding strategies are used to specify the management strategy
of Resources.

With respect to DIMINET data model, the changes we introduce as presented in
Figure 10.13 for a general inter-site cross collaboration data model are the following:

Resource: Main object which represents an inter-site resource. It is a logical resource
that exists at several locations simultaneously and needs to be coordinated to not
affect the correct functionality of the construction (i.e., cross collaboration). The
notion of Resource will depend on the cloud service to be distributed. A Resource
is composed of some Parameters, a list of SubResources, and a list of local DataIm-
plementation objects.

Parameter: Depending on the inter-site Resource to distribute, the Parameter class
could be expanded to add more properties related to the inter-site Resource. For
instance, DIMINET stores the CIDR of the local SubResource as a property in the
Parameter class.

SubResource: A SubResource represents a virtual object belonging to a site (e.g., a

130

Fi
gu

re
10

.1
3
–
G
en

er
al

da
ta

m
od

el
ba

se
d
on

D
IM

IN
ET

.

131

UUID). The Resource class holds a list of SubResources (the local one and a series
of remote ones). This list exists in every module instance composing a Resource.

DataImplementation: Initially, the Interconnexion class was defined to answer the
Challenge 3.3.2. In the networking context, it makes sense to define an entity al-
lowing the local SubResource to be reached from remote sites. In a more general
context, while reachability information could still be useful (e.g., A tunnel end-
point, a DNS name, ...), more information related to the technical implementation
may be present. In consequence, the Interconnexion class has been redefined to
become the DataImplementation class.

LMaster: The concept of a static per-Resource master was introduced as a way to
maintain coherence among the different sites composing the Resource. In the case
of DIMINET, depending on the Resource type (i.e., L2 extension or L3 routing),
different information is stored to assure this coherence. Hence, other inter-site Re-
sources specific information allowing the Master to maintain coherence can be easily
added. Furthermore, they can be gathered depending on the kind of Resource. For
example, Figure 10.13 gathers L2 extension, L3 routing, and QoS as Networking.

LMaster sharding strategy: Object allowing to declare the strategy to manage a
Resource. In the DIMINET’s case, it represent the L2AllocationPool and L3Cidr
classes. This class is only instantiated at a Resource master module.

While the East-West interface will allow communication with remote modules, its use
will strongly depend on the sharding strategy conceived for other kinds of Resources. We
remember that, for instance, DIMINET uses a different sequence flow for the L3 routing
and L2 extension Resources as presented in Appendix A.

Generally speaking, and as stated above, this data model could be used for other
cloud services needing collaboration. While we provide a first data model based on our
experience with DIMINET, it will need adaptation depending on the cloud service’s re-
sources. It will be interesting to analyze how this general model could be applied in the
K8S ecosystem to provide for example cross namespaces resources.

Summary

The works developed through this thesis have provided ideas and motivations for
two doctoral thesis at the Inria’s STACK around cloud services collaboration. Notably,
the proposition Cheops [180] emerges as a building block to generally approach cloud
services to the edge of the DCI, potentially including the contributions of DIMINET for

132

inter-service collaboration. We hope that these propositions and others conceived at these
thesis could use the ideas and insights we have provided all along this doctoral work.

133

LIST OF PUBLICATIONS

International Journals

— D. Espinel, A. Lebre, L. Nussbaum, and A. Chari, "Decentralized SDN Control
Plane for a Distributed Cloud-Edge Infrastructure: A Survey", IEEE Communica-
tions Surveys & Tutorials, 2021, doi.10.1109/COMST.2021.3050297.

International Conferences

— D. Espinel, A. Lebre, L. Nussbaum, and A. Chari, "Multi-site Connectivity for
Edge Infrastructures DIMINET:DIstributed Module for Inter-site NETworking",
20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Com-
puting, 2020, doi.10.1109/CCGrid49817.2020.00-81.

Workshops

— J. M. S. Vilchez and D. E. Sarmiento, "Fault Tolerance Comparison of ONOS
and OpenDaylight SDN Controllers," 2018 4th IEEE Conference on Network Soft-
warization and Workshops (NetSoft), Montreal, QC, Canada, 2018, pp. 277-282,
doi: 10.1109/NETSOFT.2018.8460099.

National Conferences

— D. Espinel, A. Lebre, L. Nussbaum, and A. Chari, "Distributing connectivity man-
agement in Cloud-Edge infrastructures: Challenges and approaches", Conférence
d’informatique en Parallélisme, Architecture et Système, 2019.

135

Part V

Appendices

137

Appendix A

DIMINET LOGIC CORE

IMPLEMENTATION

A.1 DIMINET Logic Core implementation

A.1.1 L3 Routing Resource Creation

As described in Section 9.3.1.1 for L3 routing Resources, the provisioning of this kind
of Resource has been implemented as depicted in Figure A.1:

1. The user issues a request to DIMINET A for the creation of an inter-site Resource
of type L3 routing among networks A, B, and C, of sites A, B, and C, respectively.

2. DIMINET instance A verifies if the user’s request contains all the necessary in-
formation and authenticates against Keystone to find the information of remote
deployments.

3. DIMINET instance A requests the remote sites B and C, and its local Neutron
about the network-related information to find out the subnetworks’ identifiers. In
our implementation, this is done in parallel because remote network information
can be provided without dependency among the requests.

4. Once DIMINET instance A finishes the query, it does the overlapping verification
locally.

5. Since the verification is good, DIMINET instance A proceeds to create the Re-
source schema at its local DB and all its related dependencies: It instantiates a
Parameter object which comprises a LMaster object because DIMINET A is the
Resource Master. Since the Resource is of L3 routing type, several L3Cidr objects
are created at LMaster to store the information related to SubResources’ CIDRs.
This process will allow the Master module to execute modifications on the Resource
when demanded.

6. DIMINET instance A proceeds to request Neutron API A to create the data plane
interconnection objects.

138

Figure A.1 – DIMINET L3 routing Resource creation sequence diagram.

7. Next, DIMINET instance A sends in parallel the create API request to remote
DIMINET instances of sites B and C. The East-West requests comprise information
such as the global_id (generated at the Logic Core), the SubResources list, and the
announcement that DIMINET instance A is the Resource Master. The instance
waits for remote answers to continue.

8. Remote DIMINETs create the Resource schema along with the Neutron data plane
interconnection objects.

9. Once all the remote instances answered the horizontal request, DIMINET instance
A proceeds to answer the original user request with a creation acknowledgement.

A.1.2 L2 Extension Resource Creation

As described in Section 9.3.1.2 for L2 extension Resources, the provisioning of this
kind of Resource has been implemented as depicted in Figure A.2:

139

Figure A.2 – DIMINET L2 extension Resource creation sequence diagram.

1. The user request to DIMINET A the creation of an inter-site Resource of type L2
extension for network A of site A to be extended to sites B and C.

2. DIMINET instance A verifies the user’s information and authenticates against Key-

140

stone to find the information of remote deployments.

3. DIMINET instance A requests its Neutron deployment about the information of
network A to gather all specific information such as the subnetwork CIDR.

4. DIMINET instance A requests sites B and C about Resources of type L2 extension
with the requested CIDR. This verification is done because distant sites may already
have an L2 extension Resource deployed with the demanded CIDR. In such a case,
it will be better to modify the Resource adding the site A rather than re-creating
a similar Resource.

5. Since the verification is satisfactory, DIMINET instance A proceeds to calculate
the IP allocation pools that will be assigned to sites B and C.

6. Similar as for L3 routing Resources, DIMINET instance A proceeds to create the
Resource schema at the DB and all its related dependencies: It instantiates a Param-
eter object which comprises a LMaster object because DIMINET A is the Resource
Master. Since the Resource is of L2 extension, several L2AllocPools objects are cre-
ated at LMaster to store the information related to the allocation pools conceived
to remote sites. This process will allow the Master module to execute modifications
on the Resource when demanded.

7. Since the allocation pools affectation is for all the sites composing the Resource,
DIMINET instance A does the necessary API calls to Neutron for changing the
DHCP parameters of network A.

8. Next, the instance sends in parallel the horizontal create API request to remote
DIMINET instances of sites B and C. The horizontal requests comprise information
such as the global_id (generated at the Logic Core), the SubResources list, and the
announcement that DIMINET instance A is the Resource Master. Moreover, the
allocation pool defined in step five is sent in this request. The instance waits for
remote answers to continue.

9. Remote DIMINETs create the Resource schema with the information provided by
the Master. Since the Resource is of L2 extension, DIMINET modules proceed
to request Neutron API the instantiation of a network and subnetwork with the
characteristics provided by the Master. These resources will act as the extension of
network A of site A. The answer to this request is accompanied with the UUID of
networks created at sites B and C.

10. Once all the remote instances answer the horizontal request, DIMINET instance
A proceeds to update the list of SubResources composing the Resource. With the

141

complete list of SubResources, the instance proceeds to call Neutron API to create
the data plane interconnection objects.

11. DIMINET instance A sends in parallel horizontal modification API request to re-
mote DIMINET instances of sites B and C in order to update their SubResource
list.

12. Remote modules update the SubResources list and call Neutron API to request the
creation of the data plane objects.

13. Once all the remote instances answered the horizontal request, DIMINET instance
A proceeds to answer the original user request.

142

Appendix B

DIMINET REST API OPERATIONS

B.1 DIMINET Communication Interfaces: REST API opera-
tions

This section details the proposed operations of DIMINET to end-users and among
DIMINET instances.

B.1.1 North Interface: User-to-Module Communication Exchanges

As stated in Section 9.4, DIMINET uses the vertical or North API interface to commu-
nicate with the user. Hence, the User-to-Module interactions occurs using this interface
whose list of possible actions is the following:
• GET /intersite-vertical: Request to retrieve the local list of all inter-site Resources.
• GET /intersite-vertical/{global_id}: Request to retrieve an inter-site Resource
using the global_id.
• POST /intersite-vertical: Request the creation of an inter-site Resource. For this
request, the user needs to provide the following items:
— Name: The name of the inter-site Resource.
— Type: The type of networking Resource (L2 network extension or L3 routing).
— SubResources: The list of SubResources/sites that will compose the inter-site

Resource. Depending on the Resource type, this list may vary. In the case of an
L3 routing Resource, the list is composed of the network constructions identifiers
and their sites that the user wants to be connected by a logical router. In the
case of an L2 extension Resource, the list is composed of a network construction
identifier and a list of sites where it will be spanned.

• PUT /intersite-vertical/{global_id}: Request the modification of an inter-site Re-
source using the global_id. The modification is proposed to add or delete Sub-
Resources/sites from the Resource. This operation can only be addressed to the
Resource’s Master module. Thus, the user can provide the following information:
— Name: An updated name for the Resource.

143

— SubResources: The updated list of SubResources/sites. The module will split
these list into the SubResources that will be maintained, those who will be
added, and those who will be deleted.

• DELETE /intersite-vertical/{global_id}: Request to delete an inter-site Resource
using the global_id. This operation can only be addressed to the Resource’s Master
module.

B.1.2 East-West Interface: Module-to-Module Interactions

As stated in Section 9.4, DIMINET uses the horizontal or East-West API interface to
communicate with other modules when needed. These requests are triggered within some
of the intersite-vertical interactions such as the POST, PUT, or DELETE requests and
are sent by a Master module. Module-to-Module interactions occur using this interface,
whose list of possible actions is the following:
• GET /intersite-horizontal: Request to retrieve a list of distant inter-site Resources
using filters to do verification. The filters that the Master module uses are the
following:
— Resource_CIDR: Filter used for L2 network extension Resources. It is used to

request if the user already has inter-site Resources with Resource_CIDR in
remote modules.

— Resource_type: Filter used for the Resource type.
— Global_ID: Filter used to verify if remote SubResources can be deleted in order

to delete an inter-site Resource of type L2 extension.
— Verification_type: Filter used to announce remote modules if the verification is

needed for a CREATE or a DELETE action.
• GET /intersite-horizontal/{global_id}: Request to retrieve a distant inter-site Re-
source using the global_id.
• POST /intersite-horizontal: Request the creation of a distant inter-site Resource.
For this request, the Master module provides the following data:
— Name: The name of the inter-site Resource.
— Global_id: An identifier generated by the Master module that will globally

identify the Resource.
— Type: The type of networking Resource accordingly with the user’s request.
— SubResources: The list of SubResources/sites that will compose the Resource.
— Parameters: A list of Parameters defined by the Master module to maintain

consistency. Among the Parameters, we found the followings:
— Allocation pool: Parameter used for L2 network extensions. It contains the

144

information concerning the allocation pool granted by the Master module.
— Local CIDR: Parameter used for L2 network extension affirming the CIDR

of the Resource. In the case of the L3 routing type, it is empty but locally
filled with the CIDR of the local SubResource.

— IPv: Parameter used to announce the IP version of a Resource (only IPv4
has been implemented.)

— Master : Parameter used to announce the identity of the Master module for
a particular Resource. In our implementation, this information corresponds
with the OpenStack Region’s name, where the Master module is deployed.

— Master auth: Parameter providing the authentication Uniform Resource Lo-
cator (URL) of the Master module. In our implementation, this information
corresponds with the URL of the OpenStack Region where the Master mod-
ule is deployed.

• PUT /intersite-horizontal/{global_id}: Request the modification of a distant inter-
site Resource using the global_id. For this request, the Master module provides the
following data:
— Name: An updated name for the Resource.
— SubResources: The updated list of SubResources/sites.
— Post create refresh: This condition is used to define if the PUT method’s be-

havior will be the default one or the one designed for the L2 network extension
Resource. Because of its nature, when provisioning an L2 network extension, the
Master module needs to send an updated list of the created SubResources to re-
mote modules. Therefore, this is done as an update of remote Resources. When
this condition is false, the default behavior to update a Resource is applied.

— Type: The type of networking Resource.
• DELETE /intersite-horizontal/{global_id}: Request the removal of a distant inter-
site Resource using the global_id.

145

Appendix C

DIMINET WITH OPENSTACK: USER

GUIDE

C.1 DIMINET with OpenStack: User Guide

DIMINET is a distributed/decentralized module for inter-site networking resources
capable to interconnect independent networking resources in an automatized and trans-
parent manner. Layer 2 network extensions and Layer 3 routing functions are two main
implementation tasks. This first proof-of-concept of the proposed solution has been im-
plemented besides the networking service of Openstack, Neutron.

While this project is independent of Neutron networking API service, it acts as an
plugin deployed on the same networking node of Neutron, such add-on service will be
very useful to manage and utilize independent geo-distributed networking resources for
services like network slicing.

This is an incremental effort based on OpenStack Networking services and its existing
APIs.

C.1.1 OpenStack requirements

To be able to use DIMINET, the OpenStack installation needs to have the bgpvpn and
interconnection Plug-ins activated at Neutron. The neutron.conf file should looks like:

[DEFAULT]
service_plugins=bgpvpn,interconnection

If using Devstack, the local.conf file should have the next lines:

146

enable_plugin networking-bgpvpn
https://git.openstack.org/openstack/networking-bgpvpn.git
stable/stein
enable_plugin networking-bagpipe
https://git.openstack.org/openstack/networking-bagpipe.git
stable/stein
enable_plugin neutron-interconnection
https://daespinel/neutron-inter.git stable/stein

NETWORKING_BGPVPN_DRIVER="BGPVPN:
BaGPipe:networking_bgpvpn.neutron.services.
service_drivers.bagpipe.bagpipe_v2.
BaGPipeBGPVPNDriver:default"

enable_service b-bgp
BAGPIPE_DATAPLANE_DRIVER_IPVPN=ovs
BAGPIPE_DATAPLANE_DRIVER_EVPN=ovs
BAGPIPE_BGP_PEERS=<BGP-PEER-IP>

[[post-config|$NEUTRON_CONF]]
[neutron_interconnection]
region_name = <REGION_NAME>
router_driver = bgpvpn
network_l3_driver = bgpvpn
network_l2_driver = bgpvpn
bgpvpn_rtnn = <RTT_LABELS>
username = neutron
password = secret
project = service
check_state_interval = 5

C.1.2 Installing DIMINET

Git clone this repository with the following command:

147

git clone https://github.com/daespinel/intersite.git
cd intersite

Create a virtual environment.

virtualenv -p python3 venv
source venv/bin/activate
pip install -U pip
pip install -r requirements.txt

C.1.3 Configuring DIMINET

Diminet require you to configure a simple configuration located in config/services.conf
file:

[DEFAULT]
#IP address of the Host where also the local Neutron
server is located
host = <HOST_IP>
#Region Name of the local region deployment in order to
authenticate to the local Keystone service
region_name = <REGION_NAME>
#User info to authenticate against Keystone
username = <USER_NAME>
password = <USER_PASSWORD>
project = <PROJECT_NAME>
#Keystone authentication URL
auth url = http://<AUTH_URL>/identity/v3

Finally, run the following script to build the DB:

python build_database.py

C.1.4 Deploying Inter-site resources with DIMINET example

Once the previous steps have been done, the DIMINET server is executed with the
following command:

148

python app.py

The user can access the <HOST_IP>:7575 url to access the GUI. As the server has
been implemented using Flask and Swagger frameworks, it proposes a documented API
in <HOST_IP>:7575/api/ui/ . Figure C.1 depicts DIMINET GUIs.

(a) DIMINET home GUI (b) DIMINET create resource GUI

Figure C.1 – DIMINET GUIs.

DIMINET proposes two types of Resources, each one requiring to provide different
information:

C.2 Layer 2 extension Resource

As it names indicates, this Resource provides an extension of a Layer 2 network (in
Neutron, a network object with its subnetwork) to be extended to remote sites. The user
needs to provide:

#Local region name with the Neutron network uuid that
will be extended:
e.g., "RegionOne,3b8360e6-e29a-4063-a8bc-7bbd0785d08b"
(the network has a CIDR 10.0.0.0/24)
<LOCAL_REGION_NAME>,<NEUTRON_NETWORK_UUID>
A list of remote sites where the network will be
extended
e.g., "RegionTwo","RegionThree","RegionFour"
<REMOTE_REGION_ONE>, <REMOTE_REGION_TWO>,
<REMOTE_REGION_THREE>

149

C.3 Layer 3 routing resource

This Resource provides a logical router among several existing and independent net-
work resources (i.e., networks and their subnetworks) deployed in different sites.

Local region name with the Neutron network uuid
e.g., "RegionOne,3b8360e6-e29a-4063-a8bc-7bbd0785d08b",
(the network has a CIDR 10.0.0.0/24)
"<LOCAL_REGION_NAME>,<NEUTRON_NETWORK_UUID>"
A list of remote sites where the
network will be extended # e.g.,
"RegionTwo,c58089b1-c083-4532-9d7d-85d531097a62",
"RegionThree,3feae7ca-e66c-4006-aced-5f3a819c91f6",
(the network has a CIDR 10.0.1.0/24)
"RegionFour,5861e31f-074d-4f0b-a091-de569e5108fa",
(the network has a CIDR 10.0.2.0/24)
"<REMOTE_REGION_ONE>,<NEUTRON_NETWORK_UUID>",
"<REMOTE_REGION_TWO>,<NEUTRON_NETWORK_UUID>",
"<REMOTE_REGION_THREE>,<NEUTRON_NETWORK_UUID>"

150

Appendix D

BGP SCALABILITY

D.1 BGP Scalability: The Route Reflector Method

In traditional BGP deployments, an AS with IBGP requires that all the IBGP peers
connect to each other in a full mesh. Such configuration requires that each BGP peers
maintain a session to every other peer. In large networks, maintaining a high number of
sessions may degrade the BGP instance performance.

To address this scalability issue, a method known as route reflection can be used
to alleviate the need for a full mesh connectivity among IBGP peers [181]. The route
reflection is an operation where a BGP speaker advertises an IBGP learned route to
another IBGP peer. The BGP speaker receives the name of Route Reflector (RR), and a
advertised route is said to be a reflected route.

RR 2RR 1

router A

router B

router C

router D

router E

router F

Cluster 1 Cluster 2

(RR 1 client)

(RR 1 client)

(RR 1 client)

(RR 2 client)

(RR 2 client)

(RR 2 client)

IBGP

IBGP

IBGP

IBGP

IBGP

IBGP

IBGP

(RR 2 non-client) (RR 1 non-client)

Figure D.1 – BPG Route Reflectors.

The peers of a RR are divided in two categories: client peers and non-client peers. The
RR reflects routes between these groups, and may reflect routes among client peers. The
set of client peers and the RR is called cluster. The non-client peer must be fully meshed
but the client peers need not be fully meshed. An AS may have several RRs. In such case,
each RR will be configured with other RRs as non-client peers (i.e., the RRs will be fully
meshed among them). The clients will be configured to maintain a IBGP session only
with the RR in their cluster. Figure D.1 depicts an example of such configuration with

151

clusters 1 and 2 each one with a RR establishing a session among them and with several
clients attached.

Figure D.2 presents a deployment of DIMINET and OpenStack including the use of
a RR among several BGP peers each one connected to a Neutron deployment. One non-
client session is present too to show the possibility of deploying more than one RR. As
stated above, when using such configuration, there is no need to establish a full mesh
among all the BGP peers but only to establish a session with the RR.

BGP Peer

BGP
Client
session

BGP Peer

Route
Reflector

BGP
Client
session

BGP Peer

BGP
Client
session

BGP Peer

BGP
Client
session

BGP
Non-Client
session

Neutron Server 1

Neutron
Interco
Service
Plugin

BGPVPN
Service
Plugin

Neutron Server 2

Neutron
Interco
Service
Plugin

BGPVPN
Service
Plugin

Neutron Server 3

Neutron
Interco
Service
Plugin

BGPVPN
Service
Plugin

Neutron Server 4

Neutron
Interco
Service
Plugin

BGPVPN
Service
Plugin

DIMINET
instance 1

DIMINET
instance 2

DIMINET
instance 3

DIMINET
instance 4

Figure D.2 – DIMINET & OpenStack with BPG Route Reflectors.

152

BIBLIOGRAPHY

[1] D. Sabella and A. Vaillant and P. Kuure and U. Rauschenbach and F. Giust, “Mobile-Edge Computing
architecture: The role of MEC in the Internet of Things,” IEEE Consumer Electronics Magazine, vol. 5,
no. 4, pp. 84–91, Oct 2016.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, JenniferRexford, S. Shenker, and
J. Turner, “OpenFlow: Enabling innovation in campus networks,” ACM SIGCOMM Computer Communi-
cations Review, 2008.

[3] ETSI, “Network Functions Virtualisation (NFV) Ecosystem, Report on SDN Usage in NFV Ar-
chitectural Framework,” https://www.etsi.org/deliver/etsi_gs/NFV-EVE/001_099/005/01.01.01_60/gs_
NFV-EVE005v010101p.pdf, European Telecommunications Standards Institute, Tech. Rep., 2015.

[4] Zhang, Qi and Cheng, Lu and Boutaba, R., “Cloud Computing: State-of-the-art and Research Challenges,”
Journal of Internet Services and Applications, vol. 1, pp. 7–18, 05 2010.

[5] T. Dillon, C. Wu, and E. Chang, “Cloud Computing: Issues and Challenges,” in 2010 24th IEEE Interna-
tional Conference on Advanced Information Networking and Applications, 2010, pp. 27–33.

[6] Mell, Peter M. and Grance, Timothy, “SP 800-145. The NIST Definition of Cloud Computing,” National
Institute of Standards & Technology, Gaithersburg, MD, USA, Tech. Rep., 2011.

[7] H. AlJahdali, A. Albatli, P. Garraghan, P. Townend, L. Lau, and J. Xu, “Multi-tenancy in Cloud Com-
puting,” in 2014 IEEE 8th International Symposium on Service Oriented System Engineering, 2014, pp.
344–351.

[8] Simmon, Eric, “Evaluation of Cloud Computing Services Based on NIST SP 800-145,” National Institute
of Standards & Technology, Gaithersburg, MD, USA, Tech. Rep., 2018.

[9] Microsoft Azure, “Azure Global Network,” https://azure.microsoft.com/en-ca/global-infrastructure/
global-network/, 2020, accessed: 06/2020.

[10] Google Cloud, “Google Cloud Locations,” https://cloud.google.com/cdn/docs/locations, 2020, accessed:
06/2020.

[11] AWS, “AWS global infrastructure,” https://aws.amazon.com/about-aws/global-infrastructure/?nc1=h_ls,
2020, accessed: 06/2020.

[12] C. N. Hoefer and G. Karagiannis, “Taxonomy of cloud computing services,” in 2010 IEEE Globecom Work-
shops, 2010, pp. 1345–1350.

[13] Y. Xing and Y. Zhan, “Virtualization and cloud computing,” in Future Wireless Networks and Information
Systems. Springer, 2012, pp. 305–312.

[14] Jamsa, Kris, Cloud computing: SaaS, PaaS, IaaS, virtualization, business models, mobile, security and more.
Jones & Bartlett Publishers, 2012.

153

https://www.etsi.org/deliver/etsi_gs/NFV-EVE/001_099/005/01.01.01_60/gs_NFV-EVE005v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-EVE/001_099/005/01.01.01_60/gs_NFV-EVE005v010101p.pdf
https://azure.microsoft.com/en-ca/global-infrastructure/global-network/
https://azure.microsoft.com/en-ca/global-infrastructure/global-network/
https://cloud.google.com/cdn/docs/locations
https://aws.amazon.com/about-aws/global-infrastructure/?nc1=h_ls

[15] A. Randal, “The ideal versus the real: Revisiting the history of virtual machines and containers,” ACM
Comput. Surv., vol. 53, no. 1, Feb. 2020. [Online]. Available: https://doi.org/10.1145/3365199

[16] ETSI, “Network Functions Virtualisation (NFV); Management and Orchestration ,” https:
//www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf,
European Telecommunications Standards Institute, Tech. Rep., 2014.

[17] The Open Infrastructure Foundation, “OpenStack,” https://www.openstack.org, 2020.

[18] OpenNebula Systems, “OpenNebula,” https://opennebula.io/, 2020.

[19] AppScale Systems, “Eucalyptus,” https://www.eucalyptus.cloud/, 2020.

[20] ETSI, “Network Functions Virtualisation (NFV) Release 3; Architecture; Report on the Enhancements
of the NFV architecture towards "Cloud-native" and "PaaS" ,” https://www.etsi.org/deliver/etsi_gr/
NFV-IFA/001_099/029/03.03.01_60/gr_NFV-IFA029v030301p.pdf, European Telecommunications Stan-
dards Institute, Tech. Rep., 2019.

[21] Linux Foundation, “Kubernetes,” https://kubernetes.io/docs/home/, 2020.

[22] The Apache Software Foundation, “Apache Mesos,” http://mesos.apache.org/, 2020.

[23] The Open Infrastructure Foundation, “OpenStack Nova Project,” https://docs.openstack.org/nova/latest/,
2020.

[24] ——, “OpenStack Cinder Project,” https://docs.openstack.org/cinder/latest/, 2020.

[25] ——, “Neutron - Openstack Networking Service,” https://docs.openstack.org/neutron/latest/, 2020.

[26] ——, “OpenStack Keystone Project,” https://docs.openstack.org/keystone/latest/, 2020.

[27] A. Randal, “The ideal versus the real: Revisiting the history of virtual machines and containers,” ACM
Comput. Surv., vol. 53, no. 1, Feb. 2020. [Online]. Available: https://doi.org/10.1145/3365199

[28] S. Singh and N. Singh, “Containers & Docker: Emerging roles & future of Cloud technology,” in 2016 2nd In-
ternational Conference on Applied and Theoretical Computing and Communication Technology (iCATccT),
01 2016, pp. 804–807.

[29] P. Sharma, L. Chaufournier, P. Shenoy, and Y. C. Tay, “Containers and Virtual Machines at
Scale: A Comparative Study,” in Proceedings of the 17th International Middleware Conference, ser.
Middleware ’16. New York, NY, USA: Association for Computing Machinery, 2016. [Online]. Available:
https://doi.org/10.1145/2988336.2988337

[30] Docker, “Docker,” https://www.docker.com/, 2020.

[31] Canonical, “Linux containers,” https://linuxcontainers.org/, 2020.

[32] Linux Foundation, “CRI: the Container Runtime Interface,” https://github.com/kubernetes/kubernetes/
blob/242a97307b34076d5d8f5bbeb154fa4d97c9ef1d/docs/devel/container-runtime-interface.md, 2016.

[33] ——, “Kubernetes API overview,” https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/,
2020.

154

https://doi.org/10.1145/3365199
https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
https://www.openstack.org
https://opennebula.io/
https://www.eucalyptus.cloud/
https://www.etsi.org/deliver/etsi_gr/NFV-IFA/001_099/029/03.03.01_60/gr_NFV-IFA029v030301p.pdf
https://www.etsi.org/deliver/etsi_gr/NFV-IFA/001_099/029/03.03.01_60/gr_NFV-IFA029v030301p.pdf
https://kubernetes.io/docs/home/
http://mesos.apache.org/
https://docs.openstack.org/nova/latest/
https://docs.openstack.org/cinder/latest/
https://docs.openstack.org/neutron/latest/
https://docs.openstack.org/keystone/latest/
https://doi.org/10.1145/3365199
https://doi.org/10.1145/2988336.2988337
https://www.docker.com/
https://linuxcontainers.org/
https://github.com/kubernetes/kubernetes/blob/242a97307b34076d5d8f5bbeb154fa4d97c9ef1d/docs/devel/container-runtime-interface.md
https://github.com/kubernetes/kubernetes/blob/242a97307b34076d5d8f5bbeb154fa4d97c9ef1d/docs/devel/container-runtime-interface.md
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/

[34] S. Subramanian and S. Voruganti, Software-Defined Networking (SDN) with OpenStack. Packt, 2016.

[35] L. Yang, R. Dantu, T. Anderson, and R. Gopal, “Forwarding and Control Element Separation (ForCES)
Framework,” https://tools.ietf.org/html/rfc3746, RFC Editor, RFC 3746, April 2004.

[36] J. E. van der Merwe, S. Rooney, L. Leslie, and S. Crosby, “The tempest-a practical framework for network
programmability,” IEEE Network, vol. 12, no. 3, pp. 20–28, 1998.

[37] D. Tennenhouse and D. Wetherall, “Toward an active network architecture,” Proceedings of SPIE - The
International Society for Optical Engineering, 03 1996.

[38] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn: an intellectual history of programmable net-
works,” ACM SIGCOMM Computer Communication Review, vol. 44, no. 2, pp. 87–98, 2014.

[39] Cisco, “OpFlex: An Open Policy Protocol White Paper,” Cisco, Tech. Rep., 2014.

[40] B. Medeiros, M. S. Jr., T. Melo, M. Torrez, F. Redigolo, E. Rodrigues, and D. Cristofoleti, Applying
Software-defined Networks to Cloud Computing. 33rd Brazilian Symposium on Computer Networks and
Distributed Systems, 2015.

[41] M. Mechtri, I. Houidi, W. Louati, and D. Zeghlache, “SDN for Inter Cloud Networking,” in Proceedings of
the 2013 IEEE SDN for Future Networks and Services, 2013, pp. 1–7.

[42] I. Petri, M. Zou, A. Reza-Zamani, J. Diaz-Montes, O. Rana, and M. Parashar, “Software Defined Networks
within a Cloud Federation,” in Proceedings of the 15th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, 2015, pp. 179–188.

[43] A. Sanhaji, P. Niger, P. Cadro, C. Ollivier, and A.-L. Beylot, “Congestion-based API for cloud and WAN
resource optimization,” 2016 IEEE NetSoft Conference and Workshops, 2016.

[44] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu,
J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat, “B4: Experience with a Globally-deployed Software Defined
Wan,” in Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, 2013, pp. 3–14.

[45] Z. Yang, Y. Cui, B. Li, Y. Liu, and Y. Xu, “Software-Defined Wide Area Network (SD-WAN): Architecture,
Advances and Opportunities,” 28th International Conference on Computer Communication and Networks,
2019.

[46] S. Azodolmolky, P. Wieder, and R. Yahyapour, “SDN-based Cloud Computing Networking,” ICTON 2013,
2013.

[47] OpenStack, “Neutron Networking-L2GW,” https://docs.openstack.org/networking-l2gw/latest/readme.
html, 2018.

[48] ——, “Neutron BGPVPN Interconnection,” https://docs.openstack.org/networking-bgpvpn/latest/, 2018.

[49] ——, “Neutron VPNaaS,” https://docs.openstack.org/neutron-vpnaas/latest/, 2019.

[50] OpenStack Foundation, “Networking API v2.0,” https://docs.openstack.org/api-ref/network/v2/, 2020.

[51] Cloud Native Computing Foundation, “Container Network Interface specification,” https://github.com/
containernetworking/cni/blob/master/SPEC.md, 2020.

155

https://tools.ietf.org/html/rfc3746
https://docs.openstack.org/networking-l2gw/latest/readme.html
https://docs.openstack.org/networking-l2gw/latest/readme.html
https://docs.openstack.org/networking-bgpvpn/latest/
https://docs.openstack.org/neutron-vpnaas/latest/
https://docs.openstack.org/api-ref/network/v2/
https://github.com/containernetworking/cni/blob/master/SPEC.md
https://github.com/containernetworking/cni/blob/master/SPEC.md

[52] Linux Foundation, “Kubernetes Network Plugins,” https://kubernetes.io/docs/concepts/
extend-kubernetes/compute-storage-net/network-plugins/, 2019.

[53] ——, “Cluster Networking: Kubernetes,” https://kubernetes.io/docs/concepts/cluster-administration/
networking/, 2019.

[54] Tigera, “Calico for Kubernetes,” https://docs.projectcalico.org/v2.0/getting-started/kubernetes/, 2020.

[55] Cilium, “Cilium,” https://cilium.io/, 2019.

[56] Cisco, “Contiv,” https://contiv.io/, 2019.

[57] CoreOS, “Flannel,” https://github.com/coreos/flannel, 2019.

[58] Weave-Works, “Weave Net,” https://www.weave.works/blog/weave-net-kubernetes-integration/, 2016.

[59] OpenStack, “OpenStack kuryr,” https://docs.openstack.org/kuryr-kubernetes/latest/, 2019.

[60] Jun Du and Haibin Xie and Wei Liang, “IPVS-Based In-Cluster Load Balancing Deep Dive,” https://
kubernetes.io/blog/2018/07/09/ipvs-based-in-cluster-load-balancing-deep-dive/, 2018.

[61] A. Bousselmi, J. F. Peltier, and A. Chari, “Towards a Massively Distributed IaaS Operating System: Compo-
sition and Evaluation of OpenStack,” IEEE Conference on Standards for Communications and Networking,
2016.

[62] OpenStack Foundation, “Edge Computing: Next Steps in Architecture, Design and Testing),” https://www.
openstack.org/use-cases/edge-computing/edge-computing-next-steps-in-architecture-design-and-testing/,
May 2020.

[63] OpenStack, “KingBird Project,” https://wiki.openstack.org/wiki/Kingbird, 2018.

[64] ——, “Tricircle Project,” https://wiki.openstack.org/wiki/Tricircle, 2018.

[65] ——, “OpenStack Trio2o,” https://wiki.openstack.org/wiki/Trio2o, 2019.

[66] A. Lebre, J. Pastor, A. Simonet, and F. Desprez, “Revising OpenStack to Operate Fog/Edge Computing
Infrastructures,” IEEE International Conference on Cloud Engineering, 2017.

[67] R.-A. Cherrueau, “A POC of OpenStack Keystone over CockroachDB,” https://beyondtheclouds.github.
io/blog/openstack/cockroachdb/2017/12/22/a-poc-of-openstack-keystone-over-cockroachdb.html, 2017.

[68] J. Soares, F. Wuhib, V. Yadhav, X. Han, and R. Joseph, “Re-designing Cloud Platforms for Massive Scale
using a P2P Architecture,” IEEE 9th International Conference on Cloud Computing Technology and Science,
2017.

[69] F. Brasileiro, G. Silva, F. Arajo, M. Nbrega, I. Silva, and G. Rocha, “Fogbow: A middleware for the federation
of iaas clouds,” 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, 2016.

[70] R.-A. Cherrueau, A. Lebre, D. Pertin, F. Wuhib, and J. M. Soares, “Edge Computing Resource Management
System: a Critical Building Block!” HotEdge, 2018.

[71] A. Chari, T. Morin, D. Sol, and K. Sevilla, “Approaches for on-demand multi-VIM infrastructure services
interconnection,” Orange Labs Networks, Tech. Rep., 2018.

156

https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://docs.projectcalico.org/v2.0/getting-started/kubernetes/
https://cilium.io/
https://contiv.io/
https://github.com/coreos/flannel
https://www.weave.works/blog/weave-net-kubernetes-integration/
https://docs.openstack.org/kuryr-kubernetes/latest/
https://kubernetes.io/blog/2018/07/09/ipvs-based-in-cluster-load-balancing-deep-dive/
https://kubernetes.io/blog/2018/07/09/ipvs-based-in-cluster-load-balancing-deep-dive/
https://www.openstack.org/use-cases/edge-computing/edge-computing-next-steps-in-architecture-design-and-testing/
https://www.openstack.org/use-cases/edge-computing/edge-computing-next-steps-in-architecture-design-and-testing/
https://wiki.openstack.org/wiki/Kingbird
https://wiki.openstack.org/wiki/Tricircle
https://wiki.openstack.org/wiki/Trio2o
https://beyondtheclouds.github.io/blog/openstack/cockroachdb/2017/12/22/a-poc-of-openstack-keystone-over-cockroachdb.html
https://beyondtheclouds.github.io/blog/openstack/cockroachdb/2017/12/22/a-poc-of-openstack-keystone-over-cockroachdb.html

[72] Andrew Jenkins, “To Multicluster, or Not to Multicluster: Inter-Cluster Communication,” https://www.
infoq.com/articles/kubernetes-multicluster-comms/, 2019.

[73] OSRG, “GoBGP,” https://osrg.github.io/gobgp/, 2018.

[74] Linux Foundation, “OpenvSwitch,” https://www.openvswitch.org/, 2018.

[75] ——, “Linux Bridges,” https://wiki.linuxfoundation.org/networking/bridge, 2018.

[76] H. Yang, J. Ivey, and G. F. Riley, “Scalability Comparison of SDN Control Plane Architectures Based on
Simulations,” International Performance Computing and Communications Conference, 2017.

[77] M. Karakus and A. Durresi, “A survey: Control plane scalability issues and approaches in Software-Defined
Networking (SDN),” Computer Networks 112, 2016.

[78] Y. E. Oktian, S. Lee, H. Lee, and J. Lam, “Distributed SDN controller system: A survey on design choice,”
Computer Networks 121, 2017.

[79] O. Blial, M. B. Mamoun, and R. Benaini, “An Overview on SDN Architectures with Multiple Controllers,”
Hindawi, 2016.

[80] F. Bannour, S. Souihi, and A. Mellouk, “Distributed SDN Control: Survey, Taxonomy and Challenges,”
IEEE Communications Surveys & Tutorials, 2018.

[81] Z. Li, Z. Duan, and W. Ren, “Designing Fully Distributed Consensus Protocols for Linear Multi-agent
Systems with Directed Graphs,” IEEE Transactions on Automatic Control 60, 2014.

[82] Moraru, Iulian and Andersen, David and Kaminsky, Michael, “There is more consensus in egalitarian
parliaments,” in SOSP 2013 - Proceedings of the 24th ACM Symposium on Operating Systems Principles,
11 2013, pp. 358–372.

[83] Turcu, Alex and Peluso, Sebastiano and Palmieri, Roberto and Ravindran, Binoy, “Be General and Don’t
Give Up Consistency in Geo-Replicated Transactional Systems,” in 2014 International Conference on Prin-
ciples of Distributed Systems (OPODIS), 12 2014, pp. 33–48.

[84] L. Lamport, “The Part-Time Parliament,” ACM Transactions on Computer Systems 16, 1998.

[85] D. Ongaro and J. Ousterhout, “In Search of an Understandable Consensus Algorithm,” USENIX Annual
Technical Conference, 2014.

[86] A. Ailijiang, A. Charapko, and M. Demirbas, “Consensus in the Cloud: Paxos Systems Demystified,” 25th
International Conference on Computer Communication and Networks, 2016.

[87] Y. Zhang, E. Ramadan, H. Mekky, and Z.-L. Zhang, “When Raft Meets SDN: How to Elect a Leader and
Reach Consensus in an Unruly Network,” Proceedings of the First Asia-Pacific Workshop on Networking,
2017.

[88] Palmieri, Roberto, “Leaderless Consensus: The State of the Art,” in 2016 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), 05 2016, pp. 1307–1310.

[89] S. Binani, A. Gutti, and S. Upadhyay, “Sql vs. nosql vs. newsql- a comparative study,” Communications on
Applied Electronics, vol. 6, pp. 43–46, 10 2016.

157

https://www.infoq.com/articles/kubernetes-multicluster-comms/
https://www.infoq.com/articles/kubernetes-multicluster-comms/
https://osrg.github.io/gobgp/
https://www.openvswitch.org/
https://wiki.linuxfoundation.org/networking/bridge

[90] M. Ronstrom and L. Thalmann, “Mysql cluster architecture overview,” MySQL Technical White Paper,
vol. 8, 2004.

[91] L. VoltDB, “Voltdb technical overview,” Whitepaper, 2010.

[92] M. Stonebraker, “The case for shared nothing,” IEEE Database Eng. Bull., vol. 9, pp. 4–9, 1985.

[93] R. Cattell, “Scalable sql and nosql data stores,” SIGMOD Rec., vol. 39, no. 4, p. 12–27, May 2011.
[Online]. Available: https://doi.org/10.1145/1978915.1978919

[94] Khasawneh, Tariq and Alsahlee, Mahmoud and Safia, Ali, “Sql, newsql, and nosql databases: A comparative
survey,” in 2020 11th International Conference on Information and Communication Systems (ICICS), 04
2020, pp. 013–021.

[95] K. Banker, MongoDB in action. Manning Publications Co., 2011.

[96] M. Paksula, “Persisting objects in redis key-value database, white paper,” 2010.

[97] J. Webber, “A programmatic introduction to Neo4j,” in Proceedings of the 3rd Annual Conference on
Systems, Programming, and Applications: Software for Humanity, 10 2012, pp. 217–218.

[98] A. Lakshman and P. Malik, “Cassandra — a decentralized structured storage system,” Operating Systems
Review, vol. 44, pp. 35–40, 04 2010.

[99] A. Davoudian, L. Chen, and M. Liu, “A survey on nosql stores,” ACM Comput. Surv., vol. 51, no. 2, Apr.
2018. [Online]. Available: https://doi.org/10.1145/3158661

[100] M. Stonebraker, “Sql databases v. nosql databases,” Commun. ACM, vol. 53, pp. 10–11, 04 2010.

[101] Open Networking Foundation, “OpenFlow Switch Specifications,” Open Networking Foundation, Tech.
Rep., 2015.

[102] European Commission, “Horizon work programme 2020,” https://ec.europa.eu/research/participants/data/
ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf, 2014.

[103] S. Azodolmolky, P. Wieder, and R. Yahyapour, “Cloud Computing Networking: Challenges and Opportu-
nities for Innovations,” IEEE Communications Magazine, 2013.

[104] J. SON and R. BUYYA, “A Taxonomy of SDN-enabled Cloud Computing,” ACM Computing Surveys, 2017.

[105] SDXCentral, “SDN Controller Comparison Part 1: SDN Controller Vendors (SDN Controller Companies),”
https://www.sdxcentral.com/sdn/definitions/sdn-controllers/sdn-controllers-comprehensive-list/.

[106] ——, “SDN Controller Comparison Part 2: Open Source SDN Controllers,” https://www.sdxcentral.com/
sdn/definitions/sdn-controllers/open-source-sdn-controllers/.

[107] K. Phemius, M. Bouet, and J. Leguay, “DISCO: Distributed Multi-domain SDN Controllers,” Network
Operations and Management Symposium, 2014.

[108] M. Santos, B. Nunes, K. Obraczka, and T. Turletti, “Decentralizing SDN’s Control Plane,” IEEE Conference
on Local Computer Networks, 2014.

158

https://doi.org/10.1145/1978915.1978919
https://doi.org/10.1145/3158661
https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
https://www.sdxcentral.com/sdn/definitions/sdn-controllers/sdn-controllers-comprehensive-list/
https://www.sdxcentral.com/sdn/definitions/sdn-controllers/open-source-sdn-controllers/
https://www.sdxcentral.com/sdn/definitions/sdn-controllers/open-source-sdn-controllers/

[109] A. Dixit, F. Hao, S. Mukherjee, Lakshman, and R. K. t, “Towards an Elastic Distributed SDN Controller,”
Proceedings of the second ACM SIGCOMM workshop on Hot topics in software defined networking, 2013.

[110] D. Marconett and S. Yoo, “FlowBroker: A Software-Defined Network Controller Architecture for Multi-
Domain Brokering and Reputation,” Journal of Network System Management, 2015.

[111] A. Tootoonchian and Y. Ganjali, “HyperFlow: A Distributed Control Plane for OpenFlow,” IEEE Proceed-
ings of the 2010 internet network management conference on Research on enterprise networking, 2010.

[112] S. Yeganeh and Y. Ganjali, “Kandoo: A Framework for Efficient and Scalable Offloading of Control Appli-
cations,” Proceedings of the first ACM SIGCOMM workshop on Hot topics in software defined networking,
2012.

[113] Y. Fu, J. Bi, K. Gao, Z. Chen, J. Wu, and B. Hao, “Orion: A Hybrid Hierarchical Control Plane of Software-
Defined Networking for Large-Scale Networks,” IEEE 22nd International Conference on Network Protocols,
2014.

[114] S. Vinoski, “Advanced message queuing protocol,” IEEE Internet Computing, vol. 10, no. 6, pp. 87–89,
2006.

[115] “Hazelcast Project,” https://hazelcast.org/.

[116] CockRoachLab, “CockRoachDB,” https://www.cockroachlabs.com/product/, 2018.

[117] Nicira Networks, “NOX Network Control Platform,” https://github.com/noxrepo/nox, 2009.

[118] J. Stribling, Y. Sovran, I. Zhang, X. Pretzer, J. Li, F. Kaashoek, and R. Morris, “Flexible, Wide-Area
Storage for Distributed Systems with WheelFS,” 6th USENIX Symposium on Networked Systems Design
and Implementation, 2009.

[119] OpenStack, “DragonFlow : Distributed implementation of Neutron within a large DC,” https://wiki.
openstack.org/wiki/Dragonflow, 2015.

[120] J. Medved, A. Tkacik, R. Varga, and K. Gray, “OpenDaylight: Towards a Model-Driven SDN Controller
Architecture,” IEEE WoWMoM, 2014.

[121] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue,
T. Hama, and S. Shenker, “Onix: A Distributed Control Platform for Large-scale Production Networks,”
OSDI, 2012.

[122] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, B. O’Connor, P. Radoslavov,
W. Snow, and G. Parulkar, “ONOS: Towards an Open, Distributed SDN OS,” Proceedings of the third ACM
SIGCOMM workshop on Hot topics in software defined networking, 2014.

[123] Juniper, “Contrail Architecture,” 2015.

[124] Linux Foundation, “The Open vSwitch Database,” http://docs.openvswitch.org/en/latest/ref/ovsdb.7/,
2013.

[125] J. Ousterhout, M. Rosenblum, S. Rumble, R. Stutsman, S. Yang, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee,
B. Montazeri, D. Ongaro, S. Park, and H. Qin, “The RAMCloud Storage System,” ACM Transactions on
Computer Systems, vol. 33, pp. 1–55, 08 2015.

159

https://hazelcast.org/
https://www.cockroachlabs.com/product/
https://github.com/noxrepo/nox
https://wiki.openstack.org/wiki/Dragonflow
https://wiki.openstack.org/wiki/Dragonflow
http://docs.openvswitch.org/en/latest/ref/ovsdb.7/

[126] Apache Software Foundation, “Apache Cassandra,” http://cassandra.apache.org/, 2016.

[127] Cloud Native Computing Foundation, “etcd,” http://etcd.io/, 2016.

[128] OpenStack, “DragonFlow : BGP dynamic routing,” https://docs.openstack.org/dragonflow/latest/specs/
bgp_dynamic_routing.html, 2018.

[129] The New Stack, “OpenDaylight is One of the Best Controllers for OpenStack,” https://thenewstack.io/
opendaylight-is-one-of-the-best-controllers-for-openstack-heres-how-to-implement-it/, 2015.

[130] OpenDayLight, “OpenDaylight SDNi Application,” https://wiki.opendaylight.org/view/ODL-SDNi_App:
Main, 2014.

[131] ——, “OpenDaylight Federation Application,” https://wiki.opendaylight.org/view/Federation:Main, 2016.

[132] ——, “OpenDaylight NetVirt Application,” https://wiki.opendaylight.org/display/ODL/NetVirt, 2020.

[133] ——, “User stories OpenDaylight,” https://www.opendaylight.org/use-cases-and-users/user-stories, 2018.

[134] Apache Software Foundation, “ZooKeeper: A Distributed Coordination Service for Distributed Applica-
tions,” https://zookeeper.apache.org/doc/r3.4.13/zookeeperOver.html, 2008.

[135] ——, “Apache Karaf,” https://karaf.apache.org/, 2010.

[136] Open Networking Foundation, “Atomix,” https://atomix.io/docs/latest/user-manual/introduction/
what-is-atomix/, 2019.

[137] ONOS, “ONOS - Community,” https://www.opennetworking.org/onos/, 2020.

[138] ——, “SONA architecture ONOS,” https://wiki.onosproject.org/display/ONOS/SONA+Architecture,
2018.

[139] ——, “CORD VTN ONOS,” https://wiki.onosproject.org/display/ONOS/CORD+VTN, 2018.

[140] ——, “ONOS - OpenStack (Neutron) Integration,” https://groups.google.com/a/onosproject.org/forum/
?oldui=1#!msg/onos-discuss/NIS-m-mpp3E/dO1wHCeSAwAJ;context-place=forum/onos-discuss, 2017.

[141] R. Fielding, Chapter 5: Representational State Transfer (REST). Architectural Styles and the Design of
Network-based Software Architectures(Dissertation). UNIVERSITY OF CALIFORNIA, 2000.

[142] Juniper, “Contrail Global Controller,” https://www.juniper.net/documentation/en_US/contrail3.2/
topics/concept/global-controller-vnc.html, 2016.

[143] SIG Multicluster, “Kubernetes Cluster Federation,” https://github.com/kubernetes-sigs/kubefed, 2020.

[144] Istio, “Multicluster Deployments ,” https://istio.io/v1.2/docs/concepts/multicluster-deployments/, 2020.

[145] S. Voulgaris, D. Gavidia, and M. V. Steen, “Cyclon: Inexpensive membership management for unstructured
p2p overlays,” Journal of Network and Systems Management, vol. 13, pp. 197–217, 2005.

[146] Istio, “Istio: What is a service mesh?” https://istio.io/latest/docs/concepts/what-is-istio/
#what-is-a-service-mesh, 2020.

160

http://cassandra.apache.org/
http://etcd.io/
https://docs.openstack.org/dragonflow/latest/specs/bgp_dynamic_routing.html
https://docs.openstack.org/dragonflow/latest/specs/bgp_dynamic_routing.html
https://thenewstack.io/opendaylight-is-one-of-the-best-controllers-for-openstack-heres-how-to-implement-it/
https://thenewstack.io/opendaylight-is-one-of-the-best-controllers-for-openstack-heres-how-to-implement-it/
https://wiki.opendaylight.org/view/ODL-SDNi_App:Main
https://wiki.opendaylight.org/view/ODL-SDNi_App:Main
https://wiki.opendaylight.org/view/Federation:Main
https://wiki.opendaylight.org/display/ODL/NetVirt
https://www.opendaylight.org/use-cases-and-users/user-stories
https://zookeeper.apache.org/doc/r3.4.13/zookeeperOver.html
https://karaf.apache.org/
https://atomix.io/docs/latest/user-manual/introduction/what-is-atomix/
https://atomix.io/docs/latest/user-manual/introduction/what-is-atomix/
https://www.opennetworking.org/onos/
https://wiki.onosproject.org/display/ONOS/SONA+Architecture
https://wiki.onosproject.org/display/ONOS/CORD+VTN
https://groups.google.com/a/onosproject.org/forum/?oldui=1#!msg/onos-discuss/NIS-m-mpp3E/dO1wHCeSAwAJ;context-place=forum/onos-discuss
https://groups.google.com/a/onosproject.org/forum/?oldui=1#!msg/onos-discuss/NIS-m-mpp3E/dO1wHCeSAwAJ;context-place=forum/onos-discuss
https://www.juniper.net/documentation/en_US/contrail3.2/topics/concept/global-controller-vnc.html
https://www.juniper.net/documentation/en_US/contrail3.2/topics/concept/global-controller-vnc.html
https://github.com/kubernetes-sigs/kubefed
https://istio.io/v1.2/docs/concepts/multicluster-deployments/
https://istio.io/latest/docs/concepts/what-is-istio/#what-is-a-service-mesh
https://istio.io/latest/docs/concepts/what-is-istio/#what-is-a-service-mesh

[147] G. Antichi and G. Rétvári, “Full-Stack SDN: The Next Big Challenge?” in Proceedings of the Symposium
on SDN Research, ser. SOSR ’20. New York, NY, USA: Association for Computing Machinery, 2020, p.
48–54. [Online]. Available: https://doi.org/10.1145/3373360.3380834

[148] Envoy Project, “Envoy,” https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy, 2020.

[149] Istio, “Istio Replicated Control Planes,” https://istio.io/latest/docs/setup/install/multicluster/gateways/,
2020.

[150] Venkat Srinivasan, “Connecting multiple Kubernetes Clusters on vSphere with Istio Service Mesh,” https://
medium.com/faun/connecting-multiple-kubernetes-clusters-on-vsphere-with-istio-service-mesh-a017a0dd9b2e,
2020.

[151] Istio, “Istio Performance and Scalability,” https://istio.io/latest/docs/ops/deployment/
performance-and-scalability/, 2020.

[152] G. Everest, “Basic data structure models explained with a common example.” 10 1976.

[153] OpenStack, “Neutron-Neutron Interconnections,” https://specs.openstack.org/openstack/neutron-specs/
specs/rocky/neutron-inter.html, 2018.

[154] E. Rosen and Y. Rekhter, “BGP/MPLS IP Virtual Private Networks (VPNs),” Internet Requests for
Comments, RFC Editor, RFC 4364, February 2006. [Online]. Available: https://tools.ietf.org/html/rfc4364

[155] A. Sajassi, R. Aggarwal, N. Bitar, A. Isaac, J. Uttaro, J. Drake, and W. Henderickx, “ BGP MPLS-Based
Ethernet VPN,” Internet Requests for Comments, RFC Editor, RFC 7432, February 2015. [Online].
Available: https://tools.ietf.org/html/rfc7432

[156] M. Delavergne, “Juice(modified version),” https://github.com/daespinel/juice, 2019.

[157] R.-A. Cherrueau and M. Simonin, “EnOSlib,” https://github.com/BeyondTheClouds/enoslib, 2017.

[158] F. Palmieri, “VPN scalability over high performance backbones evaluating MPLS VPN against traditional
approaches,” Proceedings of the Eighth IEEE International Symposium on Computers and Communication,
2003.

[159] J. Mai and J. Du, “BGP performance analysis for large scale VPN,” 2013 IEEE Third International Con-
ference on Information Science and Technology, 2013.

[160] Heinrich, Mark Andrew, “The Performance and Scalability of Distributed Shared-Memory Cache Coherence
Protocols,” Ph.D. dissertation, Stanford University, Stanford, CA, USA, 1999, aAI9924431.

[161] M. Aslett, “How will the database incumbents respond to NoSQL and NewSQL? ,” https://www.cs.cmu.
edu/~pavlo/courses/fall2013/static/papers/aslett-newsql.pdf, 451 Group, Tech. Rep., April 2011.

[162] S. Harizopoulos, D. Abadi, S. Madden, and M. Stonebraker, “Oltp through the looking glass, and what we
found there,” in Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data,
01 2008, pp. 981–992.

[163] A. Pavlo and M. Aslett, “What’s really new with newsql?” SIGMOD Rec., vol. 45, no. 2, p. 45–55, Sep.
2016. [Online]. Available: https://doi.org/10.1145/3003665.3003674

161

https://doi.org/10.1145/3373360.3380834
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://istio.io/latest/docs/setup/install/multicluster/gateways/
https://medium.com/faun/connecting-multiple-kubernetes-clusters-on-vsphere-with-istio-service-mesh-a017a0dd9b2e
https://medium.com/faun/connecting-multiple-kubernetes-clusters-on-vsphere-with-istio-service-mesh-a017a0dd9b2e
https://istio.io/latest/docs/ops/deployment/performance-and-scalability/
https://istio.io/latest/docs/ops/deployment/performance-and-scalability/
https://specs.openstack.org/openstack/neutron-specs/specs/rocky/neutron-inter.html
https://specs.openstack.org/openstack/neutron-specs/specs/rocky/neutron-inter.html
https://tools.ietf.org/html/rfc4364
https://tools.ietf.org/html/rfc7432
https://github.com/daespinel/juice
https://github.com/BeyondTheClouds/enoslib
https://www.cs.cmu.edu/~pavlo/courses/fall2013/static/papers/aslett-newsql.pdf
https://www.cs.cmu.edu/~pavlo/courses/fall2013/static/papers/aslett-newsql.pdf
https://doi.org/10.1145/3003665.3003674

[164] MariaDB, “A NEW APPROACH TO SCALE-OUT RDBMS,” https://mariadb.com/wp-content/uploads/
2018/10/Whitepaper-ANewApproachtoScaleOutRDBMS.pdf, Oct 2018, (Accessed: 06/2020-).

[165] J. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan,
and D. Woodford, “Spanner: Google’s globally distributed database,” ACM Transactions on Computer
Systems (TOCS), vol. 31, 08 2013.

[166] J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey, E. Rollins, M. Oancea, K. Littlefield, D. Men-
estrina, S. Ellner, J. Cieslewicz, I. Rae, T. Stancescu, and H. Apte, “F1: A distributed sql database that
scales,” in VLDB, 2013.

[167] A. Kemper and T. Neumann, “Hyper: A hybrid oltp olap main memory database system based on virtual
memory snapshots,” in 2011 IEEE 27th International Conference on Data Engineering, 2011, pp. 195–206.

[168] AgilData, “AgilData Scalable Cluster for MySQL,” https://www.agildate.com/product/, 2020.

[169] MariaDB, “MariaDB MaxScale,” https://mariadb.com/resources/datasheets/mariadb-maxscale/, 2019.

[170] Amazon, “Amazon Aurora,” https://aws.amazon.com/rds/aurora/, 2019.

[171] Navisite, “ClearDB,” https://www.cleardb.com/, 2019.

[172] A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam, K. Gupta, R. Mittal, S. Krishnamurthy, S. Maurice,
T. Kharatishvili, and X. Bao, “Amazon aurora: Design considerations for high throughput cloud-native
relational databases,” in Proceedings of the 2017 ACM International Conference on Management of Data,
ser. SIGMOD ’17. New York, NY, USA: Association for Computing Machinery, 2017, p. 1041–1052.
[Online]. Available: https://doi.org/10.1145/3035918.3056101

[173] INRIA, “AntidoteDB,” https://www.antidotedb.eu/, 2017.

[174] Riak, “Riak database,” https://riak.com/, 2019.

[175] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirsk, “Conflict-Free Replicated Data Types,” in Stabiliza-
tion, Safety, and Security of Distributed Systems, vol. 6976. Springer, 2011.

[176] Cilium, “Cilium Cluster Mesh,” https://docs.cilium.io/en/v1.8/gettingstarted/clustermesh/, 2020.

[177] S. McCanne and V. Jacobson, “The bsd packet filter: A new architecture for user-level packet capture.”

[178] Jonathan Corbet, “Extending extended BPF,” https://lwn.net/Articles/603983/, 2014.

[179] G. Tato, M. Bertier, E. Rivière, and C. Tedeschi, “Sharelatex on the edge: Evaluation of the hybrid
core/edge deployment of a microservices-based application,” in Proceedings of the 3rd Workshop on
Middleware for Edge Clouds & Cloudlets, ser. MECC’18. New York, NY, USA: Association for Computing
Machinery, 2018, p. 8–15. [Online]. Available: https://doi.org/10.1145/3286685.3286687

[180] Marie Delavergne and Ronan-Alexandre Cherrueau and Adrien Lebre, “Geo-Distribute Cloud Application
at the Edge,” International European Conference on Parallel and Distributed Computing, 2021.

[181] E. Chen, T. J. Bates, and R. Chandra, “BGP Route Reflection: An Alternative to Full Mesh Internal BGP
(IBGP),” RFC 4456, Apr. 2006. [Online]. Available: https://rfc-editor.org/rfc/rfc4456.txt

162

https://mariadb.com/wp-content/uploads/2018/10/Whitepaper-ANewApproachtoScaleOutRDBMS.pdf
https://mariadb.com/wp-content/uploads/2018/10/Whitepaper-ANewApproachtoScaleOutRDBMS.pdf
https://www.agildate.com/product/
https://mariadb.com/resources/datasheets/mariadb-maxscale/
https://aws.amazon.com/rds/aurora/
https://www.cleardb.com/
https://doi.org/10.1145/3035918.3056101
https://www.antidotedb.eu/
https://riak.com/
https://docs.cilium.io/en/v1.8/gettingstarted/clustermesh/
https://lwn.net/Articles/603983/
https://doi.org/10.1145/3286685.3286687
https://rfc-editor.org/rfc/rfc4456.txt

Titre : Gestion distribuée d’un service de connectivité pour une infrastructures Cloud-Edge à partir des ap-
proches SDN

Mot clés : Infrastructure géo-distribué, réseau, automatisation, IaaS, Software Defined Network

Résumé : L’évolution du paradigme d’Informatique
en nuage au cours de la dernière décennie a per-
mis de démocratiser les services à la demande de
manière significative (plus simple d’accès, économi-
quement attrayant, etc.). Cependant, le modèle actuel
construit autour de quelques centres de données de
très grande taille ne permettra pas de répondre aux
besoins des nouveaux usages liés notamment à l’es-
sor de l’Internet des Objets. Pour mieux répondre à
ces nouvelles exigences (en termes de latence, vo-
lumétrie, etc.), les ressources de calculs et de sto-
ckages doivent être déployées à proximité de l’utili-
sateur. Dans le cas des opérateurs de télécommuni-
cations, les points de présence réseau qu’ils opèrent
depuis toujours peuvent être étendus à moindre cout
pour héberger ces ressources. La question devient
alors : comment gérer une telle infrastructure nati-
vement géo-distribuée (référencée dans le manus-
crit sous l’acronyme DCI pour Distributed Cloud Infra-
structure) afin d’offrir aux utilisateurs finaux les même
services qui ont fait le succès du modèle actuel d’Infor-
matique en nuage. Dans cette thèse réalisée dans un
contexte industriel avec Orange Labs, nous étudions
le problème de la gestion distribuée de la connecti-

vité entre plusieurs sites d’une DCI et proposons d’y
répondre en utilisant les principes des réseaux défi-
nis par logiciel (connus sous les termes "Software De-
fined Network"). De manière plus précise, nous rap-
pelons les problèmes et les limitations concernant la
gestion centralisée, et ensuite, examinons les défis
pour aller vers un modèle distribué, notamment pour
les services liés à la virtualisation réseaux. Nous four-
nissons une analyse des principaux contrôleurs SDN
distribués en indiquant s’ils sont capables ou non de
répondre aux défis des DCIs. Sur cette étude détaillé,
qui est une première contribution en soi, nous pro-
posons la solution DIMINET, un service en charge
de fournir une connectivité à la demande entre plu-
sieurs sites. DIMINET s’appuie sur une architecture
distribuée où les instances collaborent entre elles à la
demande et avec un échange de trafic minimal pour
assurer la gestion de la connectivité. Les leçons ap-
prises durant cette étude nous permettent de propo-
ser les prémisses d’une généralisation afin de pou-
voir ”distribuer” d’une manière non intrusive n’importe
quels services en charge de gérer une infrastructure
géo-distribuée.

Title: Distributing connectivity management in Cloud-Edge infrastructures using SDN-based approaches

Keywords: Geo-distributed infrastructure, networking, automation, IaaS, Software-Defined Network

Abstract: The evolution of the cloud computing
paradigm in the last decade has amplified the ac-
cess of on-demand services (economical attractive,
easy-to-use manner, etc.). However, the current model
built upon a few large datacenters (DC) may not be
suited to guarantee the needs of new use cases, no-
tably the boom of the Internet of Things (IoT). To
better respond to the new requirements (in terms of
delay, traffic, etc.), compute and storage resources
should be deployed closer to the end-user. In the case
of telecommunication operators, the network Point
of Presence (PoP), which they have always oper-
ated, can be inexpensively extended to host these re-
sources. The question is then how to manage such
a massively Distributed Cloud Infrastructure (DCI) to
provide end-users the same services that made the
current cloud computing model so successful. In this
thesis realized in an industrial context with Orange
Labs, we study the inter-site connectivity manage-

ment issue in DCIs leveraging the Software-Defined
Networking (SDN) principles. More in detail, we an-
alyze the problems and limitations related to central-
ized management, and then, we investigate the chal-
lenges related to distributed connectivity management
in DCIs. We provide an analysis of major SDN con-
trollers indicating whether they are able or not to an-
swer the DCI challenges in their respective contexts.
Based on this detailed study, which is a first con-
tribution on its own, we propose the DIMINET solu-
tion, a service in charge of providing on-demand con-
nectivity for multiple sites. DIMINET leverages a logi-
cally and physically distributed architecture where in-
stances collaborate on-demand and with minimal traf-
fic exchange to provide inter-site connectivity manage-
ment. The lessons learned during this study allows us
to propose the premises of a generalization in order
to be able to distribute in a non-intrusive manner any
service in a DCI.

	Abstract
	Résumé en Français
	Résumé Etendu
	List of acronyms
	List of figures
	List of tables
	Introduction
	Research Questions and Contributions
	Thesis Organization

	I Background
	Background on Cloud Infrastructures
	Cloud computing
	Cloud Computing Characteristics
	Cloud Deployment Types
	Cloud Service Types
	Managing cloud virtualized infrastructures

	Software-Defined Networking
	SDN-based Cloud Networking

	Summary

	Distributed Cloud Infrastructures: the context
	Distributed Cloud Infrastructures
	DCI Distributed Management Characteristics

	Why Revising Software Stacks Is Needed For DCIs
	Networking Management Challenges in DCIs
	Network Information's Challenges
	Technical challenges

	Summary

	II State Of The Art
	Multi-instance solutions for DCI architectures: Properties
	SDN Solutions for DCIs
	Architecture
	Leader-Based Operations
	Database Management System
	SDN Interoperability and Maturity
	Related Works in SDN
	Summary

	Network-oriented SDN controllers
	DISCO
	D-SDN
	Elasticon
	Flowbroker
	HyperFlow
	Kandoo
	ORION
	Summary

	Cloud-oriented SDN controllers
	DragonFlow
	OpenDayLight
	Onix
	ONOS
	Tungsten
	Summary

	Other decentralized propositions
	OpenStack P2P External Proxy-Agents
	OpenStack Tricircle
	Kubernetes Federation
	Kubernetes Istio Multi-Cluster Service Mesh
	Summary

	Multi-instance learned lessons and perspectives
	Lessons Learned on Multi-instance Cloud Controllers
	Summary

	III DCI networking: Going the distributed way
	Distributing connectivity management with DIMINET
	Leveraging Retained SDN Principles
	DIMINET's Architecture Overview
	DIMINET's Logic Core
	Resources Sharding Characteristics
	Data Model

	Communication Interfaces
	Data Plane Traffic Exchange
	Summary

	Evaluation of DIMINET
	DIMINET with OpenStack: PoC Validation
	L3 Routing Resources
	L2 Extension Resources

	Grid'5000: Testbed and Setup
	Evaluation of Inter-Site Resources Deployment
	Layer 3 Routing Resource
	Layer 2 Extension Resource

	Evaluation of Resiliency
	Evaluation of DIMINET Scalability
	Summary

	IV Conclusions & Perspectives
	Conclusions and Perspectives
	List of publications
	V Appendices
	DIMINET Logic Core implementation
	DIMINET Logic Core implementation
	L3 Routing Resource Creation
	L2 Extension Resource Creation

	DIMINET REST API Operations
	DIMINET Communication Interfaces: REST API operations
	North Interface: User-to-Module Communication Exchanges
	East-West Interface: Module-to-Module Interactions

	DIMINET with OpenStack: User Guide
	DIMINET with OpenStack: User Guide
	OpenStack requirements
	Installing DIMINET
	Installing DIMINET
	Configuring DIMINET
	Configuring DIMINET
	Deploying Inter-site resources with DIMINET example

	Deploying Inter-site resources with DIMINET example
	Layer 2 extension Resource
	Layer 3 routing resource
	BGP Scalability
	BGP Scalability: The Route Reflector Method

	Bibliography

