
HAL Id: tel-03394466
https://theses.hal.science/tel-03394466

Submitted on 22 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Convex and online optimization : applications to
scheduling and selection problems

Victor Verdugo

To cite this version:
Victor Verdugo. Convex and online optimization : applications to scheduling and selection problems.
Data Structures and Algorithms [cs.DS]. Université Paris sciences et lettres; Universidad de Chile,
2018. English. �NNT : 2018PSLEE079�. �tel-03394466�

https://theses.hal.science/tel-03394466
https://hal.archives-ouvertes.fr

COMPOSITION DU JURY :  

M. Jose Correa
Universidad de Chile, Directeur de thèse

M. Christoph Dürr  
Sorbonne Université, Rapporteur

M. Samuel Fiorini
Université libre de Bruxelles, Rapporteur et
membre du jury

M. Rida Laraki 
Université Paris Dauphine, Membre du jury

Mme. Claire Mathieu
École normale supérieure et Collège de
France, Directrice de thèse

Mme. Nicole Megow
Universität Bremen, Membre du jury

M. Tobias Mömke
Universität Bremen, Membre du jury

Mme. Alantha Newman
Université Grenoble Alpes, Membre du jury

M. Fernando Ordóñez
Universidad de Chile, Membre du jury

Soutenue par Victor Verdugo
le 13 Juin 2018  
h 

THÈSE DE DOCTORAT  

de l’Université de recherche Paris Sciences et Lettres 
PSL Research University
 

Préparée dans le cadre d’une cotutelle entre
École normale supérieure et l’Universidad de Chile

Dirigée par
Jose Correa et Claire Mathieu  

Ecole doctorale n°386  
École Doctorale de Sciences Mathématiques de Paris Centre

 

Spécialité Informatique

Convex and Online Optimization:  
Applications to Scheduling and Selection Problems

Optimisation convexe et en ligne: applications aux problèmes
de planification et de sélection

Acknowledgments

First of all, I’m really grateful to my advisors, Claire Mathieu and Jose Correa, for all
your support, guidance and patience, for those inspiring conversations about research
and life. I’ve learned a lot from you these years about how to do research, and I’m
sure I will keep learning from you in the future. Thank you!

I thank Christoph Dürr and Samuel Fiorini for carefully reviewing this work, and
your helpful comments. I also thank to Rida Laraki, Nicole Megow, Tobias Mömke,
Alantha Newman and Fernando Ordoñez for being part of the jury.

I had the chance to share with two very inspiring group of people, at Talgo ENS
and the Acgo UChile. I thank Éric Colin de Verdiére, Hang Zhou, Zenthao Li and
Vincent Cohen-Addad for all those conversations about research and french. Many
thanks to Frederik Mallmann-Trenn, for all the nice moments and also for being a great
collaborator. I learned a lot about randomness and algorithms working together.

I thank Bastian Bahamondes, Carlos Bonet, Antoine Hochart, Ruben Hoeksma,
Tim Oosterwijk, Kevin Schewior, Marc Schröder, Andreas Tönnis and Andreas Wiese
for the really nice research environment, the nice conversations at lunch or coffee, and
also for our research meetings at Pepperland. Thanks to my office mates Andres Cristi,
Patricio Foncea, Dana Pizarro and Raimundo Saona for all the inspiring conversations
and collaboration. Thanks to Fábio Botler, for the friendship and advice, for the
patience to understand my basic portuguese, and for sharing your knowledge about
graph theory with me. I also thank the great people at the DSI, specially to Andrea
Canales, Alvaro Brunel, Carlos Casorrán, Javier Ledezma and Dana Pizarro. Thank
you all!

I thank Varun Kanade for all the advice and support, for your collaboration and for
sharing your insight and knowledge in theoretical computer science. I thank Monaldo
Mastrolilli for hosting me in IDSIA twice, where I also worked with Adam Kurpisz, for
sharing all your expertise and knowledge about convex hierarchies. I thank Alberto
Marchetti-Spaccamela for hosting me in Sapienza, to work on real time scheduling. I
thank Jannik Matuschke for hosting me in Tor Vergata, and also in TU Munich, I really
enjoyed and learned a lot from our research meetings about flows and combinatorial
problems. I thank Tobias Mömke for hosting me at Max Planck Institute, to work on
the traveling salesman problem.

I thank Jose Soto for guiding me through online selection problems, for sharing all
your expertise in combinatorial optimization, and also for your advice and support.

I thank José Verschae for the support over these years, since I started my master

i

thesis. For sharing your knowledge on approximation and online problems, and for
the motivation to work and learn together about algebra and optimization. We still
have a lot to learn!

I thank Mario Bravo, Roberto Cominetti and Cristóbal Guzmán for all the great
conversations about math, research and teaching.

Thanks to Fernanda Melis and Linda Valdés for all your help.
My special thanks to Victor Bucarey, for being such a great friend, for all the

support over these years, for our conversations about life, football, music and research;
Muchas gracias tocayo! Also my special thanks to Sebastián Reyes Riffo, for all the
support and friendship, for hosting me every recent time I’ve been in Paris, and for
sharing this great experience that is living far from home.

Thanks to all the amazing people and friends, Nacho, Nico, Niko, Mati, Javi,
Geraldine, Joce, Felipe S., Maŕıa Angélica, Daniel, Karl, Vito, Camila, Seba H., Seba
Z., Alvaro, Felipe G., sorry if I forgot someone!

Finally, thanks to my parents, Victor and Marta, to my brother Bastián, my
sister Estefańıa and my niece Pascuala, you have been always a tremendous support.
Muchas gracias por todo!

Contents

I Convex Optimization: Applications to Scheduling 11

1 Introduction 13
1.1 The Configuration Linear Program . 14
1.2 Convex Hierarchies . 15
1.3 Lower bounds . 17
1.4 Upper bound . 18

2 The hard instances 21
2.1 Integrality gap for clp: Proof of Theorem 1(i) 23

3 Sherali-Adams (SA) Hierarchy 25
3.1 Machine Decomposition Lemma . 26
3.2 Integrality gap for SA: Proof of Theorem 1(ii) 29

4 Lovász-Schrijver (LS+) Hierarchy 33
4.1 Integrality gap of LS+: Proof of Theorem 1(iii) 34
4.2 The protection matrices are PSD . 36

5 Break symmetries to approximate 41
5.1 Group invariant sets . 41
5.2 Symmetry breaking inequalities . 42
5.3 The Lasserre/SoS (Las) Hierarchy . 45
5.4 Balanced partitionings . 46
5.5 An approximation scheme for Scheduling 47
5.6 Proof of Theorem 6 . 49

II Online Optimization: Selection Problems 57

6 Introduction 59
6.1 Ordinal MSP versus Utility MSP . 60
6.2 Our results and techniques . 61
6.3 Organization . 64
6.4 Preliminaries . 65
6.5 Measures of competitiveness: Ordinal MSP 67

iii

7 Protect to be competitive 71

8 Matroids with small forbidden sets 75
8.1 Transversal matroids and Gammoids 75
8.2 Matroidal Graph Packings . 79
8.3 Graphic and Hypergraphic Matroids 82
8.4 Column Sparse Representable Matroids 84
8.5 Laminar Matroids and Semiplanar Gammoids 86

9 Algorithm for Uniform Matroids 97

10 Algorithms for general matroids 101
10.1 Ordinal/Probability: Proof of Theorem 9 102
10.2 Comparison between ordinal measures 107

General Introduction

The difficulty of solving a combinatorial optimization problem comes in many different
ways. Sometimes, the input is totally available but the number of possible solutions
is so large that looking for a good one requires a lot of effort. In other situations
the problem is the opposite: Finding a good solution is not hard but the input is
only partially revealed. Over the years, techniques have been developed in different
contexts that help to attack the situations above. Nevertheless, they are usually very
adapted to the particular problem at hand, or the instances that are to be solved. Are
there unified approaches to find good solutions in these many situations?

Figure 1: Dantzig, Fulkerson and Johnson in 1954, introduced the cutting planes
approach to find a tour passing through Washington DC and the other states. Since
then, it is a unifying and successful tool for tackling large scale problems.

Input is known, problems are hard! In practical situations, usually the instances
and restrictions over the search space are complicated, and a first step is to simplify
reality and model it. For the last part, a tool that is widely used nowadays and
that has become a unifying approach is linear programming. The goal is to find a

1

way in which the solutions of the combinatorial problem can be mapped to solutions
satisfying some linear inequalities, and their performance is measured using a linear
objective. Once a model has been found, the second step is to solve the linear program.
Since the introduction of the simplex method by Dantzig in 1947 [29], obtaining a
solution became practical in many contexts, and it was used intensively those years
in operations research and economics, to mention a few. This development coincided
with the growing of the practical necessities of finding good solutions to large problems,
and with a progressive advance in the computational technologies. Today, there is an
extremely rich body of methods for solving linear programs very accurately, with a
reasonable computational cost, and very fast. It is now part of the toolbox in machine
learning, combinatorial optimization, economics and decision making in general.

x1

x2

Figure 2: By introducing a Chvatal-Gomory cut, one improves the integrality gap by
removing basic feasible solutions that are fractional. The constraint x2 Æ 4 is valid
for every integer feasible solution.

So when the question of solving a linear program is well understood, one goes back
to the first step: The model. The picture becomes less clear at this point because
the way a model is constructed depends heavily on the point of view adopted by who
designed it. That is, very different models can answer the same question, but what is
more important, they have direct implications over the second step: Solving. Whereas
model A can be solved rapidly, model B can exhibit a poor performance in terms of
accuracy and solving time. The situation turns down to be more dramatic when the
search space is restricted to integer values, that is integer programming. In general,
solving an integer program is an NP-hard problem, so the classic and very successful
approach is to relax the search space and look for a fractional solution. How much
do we lose in this step? We quantify this in the so-called integrality gap, that is, the
ratio between the best integral solution and the best fractional solution.

At the moment of suggesting a model there are two important aspects to consider:

Contents Contents

The size and the integrality gap. The first question can be measured easily, but the
second aspect is far from being easy to estimate. The ideal model is one of reasonable
size and very good integrality gap, but in most of the cases one of them should be
resigned to attain the other. Many methods have been suggested the last decades to
improve the integrality gap of a model and one of the most popular is the cutting planes
approach, from the seminal work of Dantzig, Fulkerson and Johnson [28]. There, one
looks for better integrality gaps by introducing new constraints that are valid for every
integer solution. Chvátal in 1973 [27] showed a particular way of constructing these
constraints that eventually provide a full description of the convex hull of the integer
solutions. Many state-of-the-art solvers already include these methods at the moment
of solving an integer program.

2x1 + 2x2 Ø 1,

x2
1 = x1,

x2
2 = x2.

2x1 + 2y{1,2} Ø x1,

2x2 + 2y{1,2} Ø x2,

2x2 ≠ 2y{1,2} Ø 1 ≠ x1,

2x1 ≠ 2y{1,2} Ø 1 ≠ x2,

x1 + x2 ≠ y{1,2} Æ 1,

min{x1, x2} Ø y{1,2},

x1, x2, y{1,2} Ø 0.

x1

x2

Figure 3: The set {(x1, x2) œ {0, 1}2 : 2x1 + 2x2 Ø 1} can be relaxed using linear pro-
gramming. This region K0 includes fractional basic feasible solutions such as (1/2, 0)
and (0, 1/2). By adding new variables simulating the possible products between the
variables and introducing new constraints, one obtains a larger program, but is easy to
solve. Furthermore, the projection K1 over the original space it is strictly contained
in K0. This approach was introduced by Sherali & Adams [95]. By combining the
first, third and fifth constraint at the right one can show that 2x1 + 5x2/3 Ø 1 holds,
which cuts the point (0, 1/2).

Another way to gradually improve the integrality gap is the lift & project approach.
The idea is to introduce many new variables in order to be able of including more
complicated constraints that are valid for every integer solution. One obtains a pro-
gram in a higher dimensional space, and then goes back by projecting to the variable

3

space of the original program. By doing this it is possible to simulate non-linear con-
straints, at the cost of incrementing the size. Eventually, by repeating this step many
times it is possible to reach the convex hull of the integer solutions. The programs
obtained from these methods are also based on semidefinite programming, which is a
generalization of the linear case and can be solved efficiently. Recently these methods
have attracted a lot of interest in the theoretical computer science community, since
it provides a candidate for unifying many of the existing optimal algorithms. We refer
to the survey of Barak and Steurer for an overview and some open problems [14].

Both of these methods are guaranteed to improve the integrality gap, but due to
computational limitations it is not possible to apply them for many steps. Therefore,
the key question is: How fast the integrality gap decreases? We try to answer this
question in Part I in the particular case of a scheduling problem, which is among the
most fundamental and studied combinatorial problems.

Problems are easy, input is unknown! In contrast to before, there are many combi-
natorial problems that are relatively simple to solve, but the difficulty relies on the
availability of input data. This can be really problematic especially when decisions
have to be made over time. We then say that the input is revealed online.

Consider the following situation. A logistics company needs to hire a data scientist
to develop new technologies in their operations area. Some candidates are shortlisted
to be interviewed, but due to time constraints, the time windows between them are
not so short. Assuming that when an offer is made the interviewing process is finished,
the question is: Who to offer? This is an online selection problem.

sample size

probability

10030 40

1
e

Figure 4: There are a 100 candidates. The decision maker interviews s candidates
without making any offer, this is the sampling phase. After the sampling phase, the
decision maker selects the best candidate seen so far. With probability ¥ ≠ s

100
ln

1

s
100

2

the selected candidate is the best among the hundred. This probability is maximized
at s = 37 ¥ 100/e.

Sometimes at the moment of revealing an element it is also revealed a weight or
reward, but more often the decision maker ranks the elements seen so far. The second

Contents Contents

ingredient is the order in which the elements are revealed. When the order is chosen
uniformly at random, the problem is widely known as the secretary problem. It is
neither clear when the problem was stated for the first time nor who solved it. The
problem appeared in the February 1960 column of Scientific American, but Cayley and
even Kepler already thought about similar questions. It was Lindley [75] in 1961 who
seems to be the first in publishing a solution in a scientific journal but posteriorly the
results were extended and studied profoundly in the optimization community, optimal
control, probability and in the last decade, algorithms.

The key algorithmic question is then how to construct simple and provably good
stopping rules. Observe that under full knowledge, which is the offline setting, the
optimal solution is just to pick the best element. If the selection constraints are more
complicated, say, selecting at most three instead of only one, the offline problem is still
very simple. In fact, one can see that if the selection is restricted to what is known as
matroid, the optimal solution for the offline setting is given by the greedy algorithm.
The Kruskal algorithm for finding minimum spanning trees is just an implementation
of the greedy algorithm for a very particular matroid.

The answer to the hiring problem is the following: Interview about the 37% of the
candidates without making any offer, and then make an offer to best candidate seen
so far. With probability close to 0.37 the decision maker will pick the best candidate
among every. The ratio between the best we could have done offline versus what we
do online is called the competitiveness of the algorithm. Then the question is the
following: Is it possible to find simple algorithms with good competitiveness for the
selection problem, under combinatorial constraints, that guarantee every element in
the optimal solution to be picked with good probability? We study this question in
Part II, when the selection is restricted to matroid constraints.

Contributions of this Thesis

In the first part of this thesis we study the problem of scheduling identical machines to
minimize the makespan. In the scheduling literature it is usually referred as PÎCmax.
This problem has been studied extensively from an algorithmic point of view. In
particular, a polynomial time approximation scheme1 exists for this problem, which
is based on rounding the instance to decrease the combinatorics and then running a
dynamic program. The question we try to answer is the following:

Q1: Is it possible to match the best approximation factors by applying lift &
project methods over a known relaxation to reduce the integrality gap?

We show that applying these methods over the natural linear program relaxations
for this problem does not help to reduce the integrality gap. More specifically, the

1For every Á > 0, there is an algorithm that computes a solution with cost at most (1 + Á)opt,
where opt is the cost of the optimal solution in a minimization problem. The running time of the
algorithm is polynomial in the input size.

5

problem is modeled as an assignment problem for which its integrality gap is known
to be 2. We answer the question negatively.

A1(≠): Even if we apply lift & project to construct linear or semidefinite programs
of exponential size, the integrality gap is not less than 1.0009.

We remark that the constant in the lower bound has not been optimized, and probably
can be improved, but it is good enough for the exposition of the result. This answer,
although informative, it is a bit unsatisfactory since we know this problem is easy
from an approximation point of view. A very particular feature of the case when the
machines are identical is that the relaxations we obtain are all symmetric respect to
the action of a group: If we permute machines, we obtain other feasible schedule with
the same makespan. In practice and also in theory, this is known to be harmful at
the moment of optimizing. Then, the approach we consider is the following. Before
applying lift & project, we break the machine symmetries of the ground linear program
by introducing constraints. We show that in this case we are able to reduce the
integrality gap, and matching the best known approximation factors.

A1(+): If we apply lift & project after breaking machine symmetries, we can
obtain relaxations of polynomial size and with integrality gap arbitrarily close to
one.

In the second part of this thesis we study the secretary problem when the selection
is constrained to a matroid. Usually, the problem is studied under the existence of a
weight associated to every element, and the performance of an algorithm is measured
in terms of the expected weight of the algorithm selection. For many matroid fam-
ilies there are algorithms with constant competitiveness, but it remains as an open
question whether the same can be attained for any matroid. We introduce a notion
of competitiveness that does not assume the existence of weights, but rather assumes
the ability to rank the elements seen so far at every time step. The secretary problem
was originally stated in this framework, but most of the subsequent work focused
on the weighted version. Our goal is to maximize the probability for which any ele-
ment in the optimal solution is selected by the algorithm, that is a stronger notion of
competitiveness.

Q2: Can we design algorithms with good competitiveness for the secretary prob-
lem for this stronger notion?

We answer this question positively for many matroid families, by showing algorithms
that match or beat the best known competitiveness in the weaker weighted notion.
Furthermore, we develop a general framework for designing algorithms with constant
probability competitiveness. We also design algorithms for general matroids in the
the stronger notion.

A2: There is a general framework that yields O(1) probability competitiveness
for many matroid families.

Contents Contents

The first chapter of each Part I and II provide a deeper introduction and a formal
exposition of the results obtained.

7

Publications of the Author

[1] José Correa, Patricio Foncea, Dana Pizarro, and Victor Verdugo. From pricing
to prophets, and back! Submitted, 2017.

[2] José Soto, Abner Turkieltaub and Victor Verdugo. Strong Algorithms for
the Ordinal Matroid Secretary Problem. In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018.

[3] Sanjoy Baruah, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela and Victor
Verdugo. A scheduling model inspired by control theory. In Proceedings of
the 25th International Conference on Real-Time Networks and Systems, RTNS
2017.

[4] Varun Kanade, Frederik Mallmann-Trenn and Victor Verdugo. How Large Is
Your Graph? 31st International Symposium on Distributed Computing, DISC
2017.

[5] Frederik Mallmann-Trenn, Claire Mathieu and Victor Verdugo. Skyline Com-
putation with Noisy Comparisons. CoRR, abs/1710.02058, 2017.

[6] José Correa, Victor Verdugo and José Verschae. Splitting versus setup trade-
offs for scheduling to minimize weighted completion time. Operations Research
Letters, 2016.

[7] Adam Kurpisz, Monaldo Mastrolilli, Claire Mathieu, Tobias Mömke, Victor
Verdugo and Andreas Wiese. Semidefinite and Linear Programming Integral-
ity Gaps for Scheduling Identical Machines. Mathematical Programming. A
preliminary version appeared in Integer Programming and Combinatorial Opti-
mization, IPCO 2016.

[8] José Correa, Alberto Marchetti-Spaccamela, Jannik Matuschke, Leen Stougie,
Ola Svensson, Victor Verdugo and José Verschae. Strong LP formulations for
scheduling splittable jobs on unrelated machines. Mathematical Programming,
2015. A preliminary version appeared in Integer Programming and Combinato-
rial Optimization, IPCO 2014.

[9] Frans Schalekamp, René Sitters, Suzanne van der Ster, Leen Stougie, Victor
Verdugo and Anke van Zuylen. Split scheduling with uniform setup times.
Journal of Scheduling, 2015.

9

Part I

Convex Optimization: Applications
to Scheduling

11

Chapter 1

Introduction

Machine scheduling is a classical family of problems in combinatorial optimization.
In this paper we study the problem of scheduling a set J of n jobs on a set M of
identical machines to minimize the makespan, i. e., the maximum completion time of
a job, where each job j œ J has a processing time (or size) pj. A job cannot be
preempted nor migrated to a different machine, and every job is released at time zero.
This problem admits a polynomial-time approximation scheme (PTAS) [3,4,50,51,60],
which is the best possible approximation result, unless P = NP, since the problem
is strongly NP-hard [45]. However, there is no known algorithm based on convex
relaxations that meets the results.

pj

makespan

machine 1

machine 2

machine 3

Time

Figure 1.1: Example of a schedule on three identical machines.

A straightforward way to model the problem with a integer program is given by
assignment linear program which has a variable xij for each combination of a machine
i œ M and a job j œ J , modeling whether job j is assigned to machine i. Every
job has to be scheduled in exactly one machine. Instead of considering the makespan
value as a variable that should be minimized, we guess its value T and we require
that

q

jœJ xijpj Æ T for each machine i œ M . Therefore, the relaxation of this integer

13

program, denoted by [assign(T)], is given by

ÿ

iœM

xij = 1 for all j œ J,

ÿ

jœJ

xijpj Æ T for all i œ M,

xij Ø 0 for all i œ M, for all j œ J.

1.1 The Configuration Linear Program

The assignment LP is dominated by the configuration linear program, or configuration
LP for short, which is, to the best of our knowledge, the strongest relaxation for
the problem studied in the literature [100]. Given a value T > 0, a configuration
corresponds to a multiset of processing times such that its total sum does not exceed
T , i. e., it is a feasible assignment for a machine when the makespan is equal to T .
The multiplicity function m(p, C) indicates the number of times that the processing
time p appears in the multiset C. The load of a configuration C is just the total
processing time, that is,

q

pœ{pj :jœJ} m(p, C) · p. Given T , let C denote the set of all
feasible configurations, that is, with load at most T . Observe that the definition in
terms of multisets makes sense since we are working in a setting of identical machines.

For each combination of a machine i œ M and a configuration C œ C, the con-
figuration LP has a variable yiC that models whether machine i is scheduled with
jobs according to configuration C. Letting np denote the number of jobs in J with
processing time p, we can write the linear program relaxation, clp(T), given by

ÿ

CœC

yiC = 1 for all i œ M , (1.1)

ÿ

iœM

ÿ

CœC

m(p, C)yiC = np for all p œ {pj : j œ J}, (1.2)

yiC Ø 0 for all i œ M, for all C œ C. (1.3)

We remark that in another common definition [100], a configuration is a subset, not
of processing times but of jobs. We can solve that linear program to an arbitrary
accuracy in polynomial time [100] and similarly our linear program above.

3 3 1 4

T = 13

Figure 1.2: Machine scheduled according to a configuration C with makespan T = 13,
with m(3, C) = 2, m(1, C) = 1 and m(4, C) = 1. The load of the configuration is
2 · 3 + 1 · 1 + 1 · 4 = 11.

1.2. Convex Hierarchies Chapter 1

Integrality gap. Recall the configuration LP, clp(T), does not have an objective func-
tion and instead we seek to determine the smallest value T for which it is feasible. In
this context, given an integer program that models the problem of scheduling identical
machines and with T a fixed value of the makespan, we say that K(T) is a convex
relaxation if it is a convex set that contains every integer feasible solution. We define
the integrality gap to be the value supIœI Cmax(I)/T ú(I) over all scheduling instances
I, where Cmax(I) is the optimal makespan of the scheduling instance I and T ú(I) is
the minimum value T such that K(T) is feasible.

With the additional constraint that T Ø maxjœJ pj, the assignment LP relaxation
has an integrality gap of 2. This can be shown using the analysis of the list scheduling
algorithm, see e. g., [102]. On the other hand, a lower bound of 2 ≠ 1/|M | can be
easily shown for an instance with |M | + 1 jobs of unit size. Naturally, the integrality
gap of the configuration LP is as well upper bounded by 2, since it dominates the
assignment LP. One of the first results we show is that the configuration LP has an
the integrality gap which is at least 1.0009 (Chapter 2). For the more general unrelated
machines scheduling problem, the formulation where configurations are jobs sets has
an integrality gap equal to 2 [100].

1.2 Convex Hierarchies

An interesting question is whether other convex relaxations have better integrality
gaps. Convex hierarchies, parameterized by a number of levels, rounds or steps, are
systematic approaches to gradually tightening the ground relaxation, at the cost of
increased running time in solving the relaxation. As a consequence, they are good
candidates for designing approximation algorithms based on rounding a solution ob-
tained from these relaxations. Given a polytope K ™ [0, 1]n, all these approaches
produce a family of convex relaxations K1, K2, . . . , Kn satisfying that

K = K0 ´ K1 ´ K2 ´ · · · ´ Kn≠1 ´ Kn = conv(K fl {0, 1}n).

Popular among these methods are the Sherali-Adams (SA) hierarchy [95] (Chap-
ter 3) the Lovász-Schrijver hierarchy (LS) and its semidefinite (LS+) counterpart [78],
(Chapter 4) and the Lasserre/Sum-Of-Squares (Las) hierarchy [72, 88] (Chapter 5),
which is the strongest of the three. The level r relaxations are known to be solvable
in time nO(r), where n is the number of variables, provided some assumptions over
the ground polytope. In particular, when r is constant, the complexity of solving the
relaxation becomes polynomial on the program size. This is relevant when looking for
an approximation algorithm based on this relaxation. For a comparison between them
and their algorithmic implications we refer to [26,73,89]. In some settings, for exam-
ple the Independent Set problem in sparse graphs [12], a hierarchy obtained from SA
strenghtened with semidefinite constraints at the first level has also been considered.

15

K

K1

K2

Figure 1.3: Two tightenings of a polytope using the hierarchy.

Positive results. For many problems the approximation factors of the best known
algorithms match the integrality gap after performing a constant number of rounds of
these hierarchies. For example, Alekhnovich, Arora and Tourlakis [2] show that one
round of LS+ yields the Goemans-Williamson [48] relaxation for Max-Cut, and the
third level of LS+ is at least as strong as the ARV relaxation for Sparsest-Cut [6]. In
both cases, the base relaxation over which the hierarchy is applied corresponds to the
metric defining linear program. Also for Max-Cut, Fernandez de la Vega and Math-
ieu [30] prove that the integrality gap of the SA hierarchy drops to 1 + Á after f(1/Á)
rounds for dense graphs. For general constraint satisfaction problems (CSP) in its
approximation version, Chan et al. [86] show that polynomial-sized linear programs
are as powerful as programs arising from constant rounds of SA. In that sense, this
hierarchy captures the best integrality gaps obtained by linear programming in CSP’s
like Max-Cut and Max-3-Sat. For the Knapsack problem, Chlamtac, Friggstad, and
Georgiou [25] show that 1/Á3 levels of LS+ yield an integrality gap of 1 + Á and prove
that it is possible to approximate Set-Cover using the linear relaxations of LS when
the objective function is lifted into the constraints. In the scheduling context, for
minimizing the makespan on two machines in the setting of unit size jobs and prece-
dence constraints, Svensson solves the problem optimally with only one level of the
linear LS hierarchy (published in [89, Section 3.1], personal communication between
Svensson and the author of [89]). Furthermore, for a constant number of machines,
Levey and Rothvoss give a (1 + Á)-approximation algorithm using (log(n))Θ(log log n)

rounds of SA hierarchy [74]. For minimizing weighted completion time on unrelated
machines, one round of LS+ leads to the current best approximation algorithm [13].
Thus, hierarchies are a strong tool for approximation algorithms.

Negative results. Nevertheless, there are known limitations on these hierarchies. Lower
bounds on the integrality gap of LS+ are known for Independent Set [37], Vertex Cover
[5, 23, 46, 93], Max-3-Sat and Hypergraph Vertex Cover [2], and k-Sat [21]. For the
Max-Cut problem, there are lower bounds for the SA [30] and LS+ [93]. For the Min-

1.3. Lower bounds Chapter 1

Sum scheduling problem (i. e., scheduling with job dependent cost functions on one
machine) the integrality gap is unbounded even after O(

Ô
n) rounds of Lasserre [69].

In particular, that holds for the problem of minimizing the number of tardy jobs even
though that problem is solvable in polynomial time, thus SDP hierarchies sometimes
fail to reduce the integrality gap even on easy problems.

1.3 Lower bounds

One of the questions we try to answer in this work is the following: Is it possible to
obtain a polynomial time (1 + ‘)-approximation algorithm based on directly applying
the SA or the LS+ hierarchy over the configuration LP? This would match the best
known polynomial time approximation factor known. We answer this question in the
negative. We prove that even after Ω(n) rounds of SA or LS+ to the configuration
LP, where n is the number of jobs in the instance, the integrality gap of the resulting
relaxation is still at least 1 + 1/1023. Since the configuration LP dominates the
assignment LP, our result also holds if we apply Ω(n) rounds of SA or LS+ to the
assignment LP.

Theorem 1. Consider the problem of scheduling identical machines to minimize the
makespan, PÎCmax. For each n œ N there exists an instance with n jobs such that:

(i) the configuration LP has an integrality gap of at least 1024/1023.

(ii) after applying r = Ω(n) rounds of the SA hierarchy to the configuration LP the
obtained relaxation has an integrality gap of at least 1024/1023.

(iii) after applying r = Ω(n) rounds of the LS+ hierarchy to the configuration LP the
obtained relaxation has an integrality gap of at least 1024/1023.1

Therefore, the SA and the LS+ hierarchies do not yield the best possible approx-
imation algorithms when applied over the configuration LP. Namely, suppose there
exists r œ N such that the r level of the SA hierarchy has an integrality gap of at
most 1+Á, with Á < 1/1023. In particular, that holds as well for the hard instances of
Theorem 1 and r = Ω(n). We remark that for the hierarchies studied in Theorem 1,
a number of rounds equal to the number of variables in clp(T) suffice to bring the
integrality gap down to exactly one, although this number is in general exponentially
large in the input size. Nevertheless, we also prove in Chapter 3 that a number of
rounds equal to number of machines suffices to reduce the integrality gap to one, when
the SA hierarchy is applied over the configuration LP. This comes as a consequence
of a stronger decomposition lemma, that relies on the structure of the configuration
linear program.

1In general, the SA and LS+ hierarchies are incomparable, so (iii) does not follow directly from
(ii). The linear counterpart of Lovász-Schrijver, the LS hierarchy, is weaker than SA and therefore
the result follows in that case from (ii).

17

We prove Theorem 1 by defining a family of instances {Ik}kœN constructed from
the Petersen graph (see Figure 2.3). The size of instance Ik, given by the number of
machines and jobs, is Θ(k) and the number of jobs is Θ(k) as well. In Chapter 2 we
provide an explicit construction of the hard instances and we prove that the configu-
ration LP is feasible for T = 1023 while the integral optimum has a makespan of at
least 1024. In Chapter 3, we show for each instance Ik that we can define a fractional
solution that is feasible for the polytope obtained by applying Ω(k) rounds of SA to
the configuration LP parametrized by T = 1023. Finally, in Chapter 4 we prove the
same for the semidefinite relaxations obtained with the LS+ hierarchy, and we study
the matrices arising in the lower bound proof.

1.4 Upper bound

The assignment and configuration LP’s have in common the fact that we can permute
the machines, and the solutions obtained remain feasible. The sets satisfying this
property are said to be invariant under the action of some permutation group. In the
case of these polytopes, the symmetric group of size equal to the number of machines
is acting over the feasible solutions. The same holds for the relaxations obtained from
applying SA and LS+ over the configuration LP. This is a key fact when reducing
the dimensionality of the matrices certifying the feasible solutions in Chapter 4. The
results shown in Theorem 1 suggest that symmetric relaxations do not seem to be good
candidates for obtaining small integrality gaps for the scheduling problem. Therefore,
the question we study is the following: Is it possible to obtain a polynomial sized linear
or semidefinite relaxation with an integrality gap of (1 + Á) that is not invariant for
the machine symmetries? This time, we provide a positive answer. Below we state,
informally, the main theorem which is proven in Chapter 5.

Theorem 2. For every Á > 0, there exists a non-machine symmetric polynomial sized
semidefinite relaxation with an integrality gap of at most (1 + Á), for the problem of
scheduling to minimize the makespan.

The theorem is based on introducing a formulation that breaks the symmetries in
the assignment LP by adding new constraints. They enforce a very particular struc-
ture over any feasible solution of the formulation that should respect a lexicographic
order over the machine configurations induced by any feasible integer solution. On
top of the relaxation obtained from adding the aforementioned constraints, we apply
the Lasserre/SoS hierarchy. In Chapter 5 we provide a full proof of the theorem, and
also a direct application of it: A polynomial time approximation scheme based on
solving the semidefinite relaxation.

Practice. The presence of symmetries in the formulations is known to be harmful and
the literature about how to deal with them is large. Most of them focus on how to
add constraints that break the symmetries, or how to modify the divide and conquer
branching techniques in order to avoid unnecessary computations by approaches such

1.4. Upper bound Chapter 1

as perturbation of the numeric values defining the program and variables fixing [80,
81, 84]. Particular interest have attracted partitioning problems such as scheduling,
packing, coloring and clustering. One way of removing the symmetries of a formulation
is to consider decompositions such as Dantzig-Wolfe, where all the structure of a
partition is hidden and the goal is to find how many times such a structure appears
on a solution. In fact, the configuration LP can be seen as an intermediate step
between the assignment LP and its Dantzig-Wolfe decomposition. This approach has
proven to be successful in practice for many situations including the above mentioned
problems in transportation, routing and coloring [16,31,83,99].

x1

x2

x1

x2

Figure 1.4: The polytope in R
2 at the left is invariant under the action of permuting

variables, that is, every time (x1, x2) is feasible, then (x2, x1) is also feasible.

Extended formulations. Similar results to Theorem 1 can be found in the context
of extended formulations, that is, a convex set on a higher dimensional space that
coincides with the original one when projected to the initial variables space. Remark-
able are the results of Yannakakis [103] that neither the matching polytope nor the
TSP polytope have symmetric linear extended formulation of subexponential size. Re-
cently, this results were extended also for non symmetric linear extended formulations
by Fiorini et al. [42] in the case of TSP and by Rothvoss [90] for matching. The same
negative result follows if one consider semidefinite formulations, since Braun et al. [19]
showed that any symmetric semidefinite program for matching has exponential size.
They also show that every symmetric relaxation of polynomial size nk for asymmetric
TSP is not stronger than an O(k) level Lasserre/SoS relaxation.

Symmetry breaking constraints. The way we obtain improvements in the gap at Theo-
rem 2 is by adding constraints on top of the initial symmetric relaxation, which is the
assignment polytope in this case, in order to obtain a program that is not invariant.
The result would also follow if we consider initially the configuration LP, since one
can show that the Lasserre/SoS hierarchy over the assignment LP at certain level is
stronger than the configuration LP, provided some assumptions over the instances.
The idea behind all these approaches is to remove parts of the feasible region that
provide no extra information in terms of objective value and solution structure. De-

19

pending on the problem and the particular group action, different sets of symmetry
breaking inequalities have been considered. For partitioning problems there are ways
of enforcing an order over the solutions and then guaranteeing that only one solu-
tion per orbit is considered [43, 44, 59]. Following the same lines, in the particular
case of scheduling there is a way of ensuring that exactly one representative per orbit
is selected by intersecting the original partitioning polytope with the so called or-
bitope [61]. They provide a linear description of the orbitope that is of exponential
size, but it can be separated efficiently. For an extensive treatment we refer to the
excellent survey of Margot [82].

Relaxation for the

minimum makespan

scheduling problem

Configuration

Linear Program

Hard instances for which

the configuration LP has an

integrality gap of at least

1 + 1/1023 (Chapter 2)

From the Petersen graph

to Scheduling instances

Instances remain hard

for SA (Chapter 3)

Instances remain hard

for the semidefinite

LS+ (Chapter 4)

Block-symmetric matrices

and dimensionality reduction

Break symmetries in the

assignment LP and apply

Lasserre/SoS (Chapter 5)

Lexicographic schedules

over machine configurations

Figure 1.5: Organization of Part I.

Chapter 2

The hard instances

In this chapter we show that the configuration LP described by constraints (1.1) and
(1.2) has an integrality gap of at least 1024/1023. To this end, for each k œ N we
define an instance Ik that is inspired by the Petersen graph G = (V, E) (see Figure 2.1)
with vertex set V = {0, 1, . . . , 9}. We first have to introduce a family of multigraphs
obtained from G.

For each k œ N, we construct a multigraph Gk = (V, Ek) with vertex set equal
to V and the set of edges Ek is defined as follows: For each edge {u, v} œ E of the
Petersen graph G, we have a multiset E({u, v}) with k copies of the edge {u, v}. The
set Ek is just the multiset obtained from the union of all these multisets, that is,
Ek = fi{u,v}œEE({u, v}). In particular we have that G1 = G, the Petersen graph.

0

1

23

4

5

6

78

9

0

1

23

4

5

6

78

9

Figure 2.1: On the left, the Petersen graph G1. On the right, the mutigraph G3

obtained from considering 3 copies of each edge in the Petersen graph.

The scheduling instances. In the instance Ik we have a job je for every e œ Ek, which
is the set of edges in the multigraph Gk. Thus Ik has 15k jobs. Let e œ Ek be such
that e œ E({u, v}), that is, e is an edge between nodes u and v. The processing time
of je is pje

= 2u + 2v. We define the set of machines for Ik to be [3k] = {1, . . . , 3k}.
Observe that every subset of edges F ™ Ek induces a multiset CF of job-sizes as

follows: For every {u, v} œ E and p = 2u + 2v, we have m(p, CF) = |F fl E({u, v})|.
In words, for every possible processing time, we check how many copies of the corre-
sponding edge in G are in F , and this number is the multiplicity of the processing time

21

in the multiset CF . If the load of CF is at most T , we say that CF is the configuration
induced by F . We remark that this mapping is not injective, since different subsets
of edges may induce the same processing times multiplicities and therefore the same
configuration.

0

1

23

4

5

6

78

9

Figure 2.2: The edges in purple induce the configuration {20 + 24, 20 + 24, 24 + 29, 29 +
26, 23 +28} and the orange edges induce the configuration {20 +24, 24 +23, 23 +28, 29 +
27, 22 + 21}. The first has a load of 1402 and the second has a load of 951.

Matching configurations. The Petersen graph G has exactly six perfect matchings
—1, . . . , —6. We have that the sum of the job sizes in a perfect matching —¸ is

ÿ

eœ—¸

pje
=

9
ÿ

u=0

2u deg—¸
(u) = 1023,

since deg—¸
(u) = 1 for every node u œ V . Therefore, —¸ induces a configuration C¸

with load 1023 in the following way: C¸ = {2u + 2v : {u, v} œ —¸}, that is, for every
edge e œ —¸ we have in C¸ one copy of a job with processing time pje

defined as above.
The configurations set C— = {C1, . . . , C6} are called matching configurations.

It can be checked easily that is not possible to find a partition of the edges in
the Petersen graph such that every part is a perfect matching, i. e., there is no 1-
factorization of the Petersen graph. This property is a key ingredient for proving the
lower bounds on the integrality gaps of the different relaxations we consider for the
scheduling problem. We extend the definition of 1-factorization to multigraphs in the
natural way. In the following lemma we show an infinite sequence of multigraphs in
{Gk}kœN for which there is no 1-factorization.

2.1. Integrality gap for clp: Proof of Theorem 1(i) Chapter 2

0

1

23

4
5

6

78

9

0

1

23

4
5

6

78

9

0

1

23

4
5

6

78

9

0

1

23

4
5

6

78

9

0

1

23

4
5

6

78

9

0

1

23

4

5

6

78

9

Figure 2.3: The Petersen graph and its six perfect matchings (coloured edges). Ob-
serve that the blue matchings are isomorphic.

Lemma 1. For every odd k œ N, there is no 1-factorization of the multigraph Gk.

Proof. Let —6 be the perfect matching of the Petersen graph consisting of the five
edges {0, 5}, {1, 6}, {2, 7}, {3, 8} and {4, 9}, called spokes (last matching at Figure
2.3). Suppose there exists a 1-factorization of Gk, and let Ê6 be the number of times
that the perfect matching —6 appears in the 1-factorization. In particular, the size of
the 1-factorization is 3k, since there are 15k edges in Gk and every perfect matching
has exactly 5 edges.

Each spoke, which appears in exactly one other perfect matching in {—1, . . . , —5},
must be contained in exactly k perfect matchings of the 1-factorization. Therefore, for
all j œ [5], the perfect matching —j appears k ≠ Ê6 times in the 1-factorization. Thus,
in total the size of the 1-factorization is 5(k ≠ Ê6) + Ê6 = 5k ≠ 4Ê6. However, that
sum equals 3k, and so Ê6 = k/2. Since k is odd and Ê6 an integer, the contradiction
follows.

2.1 Integrality gap for clp: Proof of Theorem 1(i)

In this section we prove that the integrality gap of the configuration LP is at least
1024/1023. In fact, we prove a stronger statement: For every k œ N, the gap of the
configuration LP at instance Ik is at least 1024/1023. Given Ik, we proceed in two
steps: We first prove that the configuration LP with T = 1023 is feasible for Ik, and
secondly we prove that the makespan of Ik is at least 1024.

Lemma 2. For every k œ N, the configuration linear program for T = 1023 is feasible
at instance Ik.

Proof. We define a fractional solution that is supported only by matching configura-
tions: For every machine i œ [3k] and each ¸ œ {1, 2, . . . , 6} we set yiC¸

= 1/6. For

23

every machine i œ [3k] and every configuration C œ C \ C— we set yiC = 0. The set of
machine constraints (1.1) at clp(T) is clearly satisfied, since for every i œ [3k] we have

ÿ

CœC

yiC =
6

ÿ

¸=1

yiC¸
= 6 · 1/6 = 1.

For the set of job-size constraints (1.2), recall that for every e = {u, v} œ E and p =
2u + 2v, in Ik we have that np = k. The Petersen graph is such that there are exactly
two perfect matchings —

p
1 , —

p
2 containing e, and therefore m(p, Cp

1) = m(p, Cp
2) = 1,

where Cp
1 and Cp

2 are the matching configurations induced by —
p
1 and —

p
2 , respectively.

Thus, we get

3k
ÿ

i=1

ÿ

CœC

m(p, C)yiC =
3k
ÿ

i=1

(yiCp
1

+ yiCp
2
) = 3k · (1/6 + 1/6) = k,

and so y is feasible.

Lemma 3. For every odd k œ N, the optimal makespan for Ik is at least 1024.

Proof. We first show that the optimal makespan is at least 1023. The total size of the
jobs in the instance is equal to

ÿ

eœEk

pje
=

9
ÿ

u=0

2u degGk
(u) = 1023 · 3k,

since degGk
(u) = 3k for every u œ {0, . . . , 9}. There are 3k machines, so if we had a

schedule with makespan strictly less than 1023 it would imply that the total load is
strictly less than 3k ·1023, which is a contradiction. In particular, the optimal integral
makespan for Ik is at least 1023.

Suppose that the optimal makespan is equal to 1023. By the argument above, it
implies that every machine is scheduled with a configuration of load equal to 1023.
Let C be a configuration with load equal to 1023, and let F ™ Ek such that C is the
configuration induced by F .

Claim 4. The set F is a perfect matching in Gk.

In particular, C is a matching configuration. Since every job has to be assigned to
some machine, the schedule is induced by a partition of the edges in Ek where every
part is a perfect matching, i. e., a 1-factorization of Gk. However, this is not possible,
since by Lemma 1 there is no 1-factorization of Gk when k is odd. Therefore, we have
a contradiction and we conclude that the optimal makespan is at least 1024.

Proof of Claim 4 in Lemma 3. The load of configuration C is

1023 =
9

ÿ

u=0

2u degF (u) = degF (0) + 2
9

ÿ

u=1

2u≠1 degF (u).

In particular, the last equality implies that degF (0) is odd. By induction on u it
must be that for every u œ {0, . . . , 9}, degF (u) is odd. Since the sum does not exceed
1023 =

q9
u=0 2u, it follows that degF (u) = 1 for every u œ {0, . . . , 9} and so F is a

perfect matching in Gk.

Chapter 3

Sherali-Adams (SA) Hierarchy

Convex hierarchies provide a way of obtaining gradually stronger relaxations for an
integer program. In order to design approximation algorithms based on them it is
crucial to understand how fast the gap decreases. In this chapter we study relaxations
obtained from the Sherali-Adams (SA) hierarchy over the configuration LP, and we
prove that the hard instances shown in Chapter 2 remain hard even after a linear
number of rounds of the SA hierarchy.

The SA hierarchy is based on linear programming and basically works by adding
new variables and constraints to a linear program in a higher dimensional space and
then projecting back to the original variables space. We introduce the relaxations
obtained by applying the hierarchy over the configuration LP in a self-contained way,
that is equivalent to the approach in the original work of Sherali & Adams [95]. We
revisit and/or introduce the necessary properties for our purposes.

In the configuration LP, clp(T), the variables set is M ◊ C. The level r Sherali-
Adams relaxation, SAr(clp(T)), is a polytope in [0, 1]Pr+1(M◊C) where Pr+1(M ◊ C) =
{A ™ M ◊ C : |A| Æ r + 1}. It is defined by the following set of constraints:

ÿ

CœC

yHfi{(i,C)} = yH for all i œ M , for all H œ Pr(M ◊ C), (3.1)

ÿ

iœM

ÿ

CœC

m(p, C)yHfi{(i,C)} = npyH for all p œ {pj : j œ J}, for all H œ Pr(M ◊ C),

(3.2)

yH Ø 0 for all H œ Pr+1(M ◊ C), (3.3)

yÿ = 1. (3.4)

We denote by SAr
proj(clp(T)) the projection in R

M◊C of the polytope above. The
properties summarized in the lemma below are common to most of the hierarchies
considered in the literature. For the sake of completeness, we show a self-contained
proof in the context of the configuration LP.

Lemma 5. Let r œ N. For every scheduling instance and every T > 0, the following
holds:

(i) clp(T) fl {0, 1}M◊C ™ SAr
proj(clp(T)).

25

(ii) SAr+1
proj(clp(T)) ™ SAr

proj(clp(T)).

(iii) Let y œ SAr(clp(T)). If K œ Pr+1(M ◊ C) and H ™ K, then yK Æ yH .

The first property shows that SA provides relaxations of the integer solutions of
the configuration LP. The second property guarantees that at every step we obtain a
relaxation at least as strong than the previous one. Finally, the third property reveals
some consistency on the relaxation values. In order to gain intuition, it is useful to
think off the value yK as the probability that every variable in K is set to one.

Proof of Lemma 5. Consider a scheduling instance and T > 0.

(i) Let z œ clp(T) fl {0, 1}M◊C. For every non-empty H œ Pr+1(M ◊ C) we set
yH =

r

(i,C)œH ziC , and yÿ = 1. Clearly, the set of constraints in (3.3) and (3.4)
are satisfied. Fix a set H œ Pr+1(M ◊ C). For every i œ M we have that

ÿ

CœC

yHfi{(i,C)} ≠ yH = yH

A

ÿ

CœC

ziC ≠ 1

B

.

Since z œ clp(T) it follows that
q

CœC ziC ≠ 1 = 0 and therefore the machine
constraints in (3.1) are all satisfied. Analogously, for every p œ {pj : j œ J},

ÿ

iœM

ÿ

CœC

m(p, C)yHfi{(i,C)} ≠ npyH = yH

A

ÿ

iœM

ÿ

CœC

m(p, C)ziC ≠ np

B

,

and since z œ clp(T) we have
q

iœM

q

CœC m(p, C)ziC ≠ np = 0. Therefore, the
job-size constraints (3.2) are satisfied.

(ii) Let y œ SAr+1(clp(T)). By definition of the relaxation at level r + 1, y satisfies
every constraint at level r and therefore the restriction of y to Pr+1(M ◊ C) is
feasible for SAr(clp(T)). Since every singleton in M ◊C belongs to Pr+1(M ◊C),
the lemma follows.

(iii) It is enough to prove it when K = H fi {(i, R)} for some machine i œ M and
some configuration R œ C. Since y Ø 0, the machine constraints (3.1) imply that

yH =
ÿ

CœC

yHfi{(i,C)} Ø yHfi{(i,R)} = yK .

3.1 Machine Decomposition Lemma

Given a polytope, the minimum number of rounds that are necessary to guarantee the
convergence to the convex hull of the integer solutions is known as rank of the hierarchy
[7, 21, 24, 73]. In general, the rank of a polytope in [0, 1]E in the Sherali-Adams
hierarchy is upper bounded by |E| (see e. g. [95]). In this case, |E| = |M ◊ C| = m|C|,
which is exponentially large on the input size. Instead we get an upper bound on the
rank of the configuration LP which is linear in the input size.

3.1. Machine Decomposition Lemma Chapter 3

Theorem 3. For every scheduling instance with m machines and every T > 0,

SAm
proj(clp(T)) = conv

1

clp(T) fl {0, 1}M◊C
2

.

The theorem above is a direct consequence of a lemma we state next. It relies
heavily on the structure of the configuration LP. It can also be proved in terms of the
stronger Lasserre/SoS hierarchy by means of the Decomposition Theorem [62], but
we show that the relaxations obtained from the Sherali-Adams hierarchy are strong
enough to get the desired bound on the rank.

Lemma 6. Let r œ N and S ™ M be a subset of machines with r Ø |S|. Then,

SAr
proj(clp(T)) ™ conv

1

SA
r≠|S|
proj (clp(T)) fl {0, 1}S◊C

2

.

In words, the lemma says that we can decompose a solution at level r into a convex
combination of solutions at level r ≠ |S| and all of them are integral at the variables
for the machines in S. When the number of machines is fixed, i. e., not part of the
input, we obtain the following direct corollary from Theorem 6.

Corollary 7. Consider the problem of scheduling identical machines to minimize the
makespan with a fixed number of machines equal to m. Then, the m = O(1) level of
the SA hierarchy over the configuration LP has an integrality gap equal to 1.

Proof of Theorem 3. The convexity of the set SAm
proj(clp(T)) and Lemma 5(i) imply

that SAm
proj(clp(T)) ´ conv

3

clp(T) fl {0, 1}M◊C

4

. The other inclusion comes from

applying Lemma 6 with S = M and r = m.

Given r œ N, we prove Lemma 6 by induction on the cardinality of S. Before
proceeding with the proof we need to introduce a technical lemma about the relax-
ations obtained from Sherali-Adams over the configuration LP. Let y œ SAr(clp(T))
and consider a single machine i œ M . If y{(i,C)} œ (0, 1) for some configuration C, we
say that y is fractional at machine i, otherwise we say that y is integral at machine i.
For every C œ C such that y{(i,C)} œ (0, 1), consider the vector defined by

y(i, C)H =
yHfi{(i,C)}

y{(i,C)}

for every H œ Pr(M◊C). Observe that constraints (3.1) guarantee that
q

CœC y{(i,C)} =
1. Furthermore,

y =
ÿ

CœC:
y{(i,C)}œ(0,1)

y{(i,C)}y(i, C),

and therefore y is a convex combination of the vectors in {y(i, C) : C œ C, y{(i,C)} œ
(0, 1)}. The vector y(i, C) is said to be the conditioning of y at (i, C). The following
lemma is the key for the inductive step.

27

Lemma 8. Suppose that y is fractional at machine i œ M . Then, for every C œ C
such that y{(i,C)} œ (0, 1), we have y(i, C) œ SAr≠1(clp(T)) and y(i, C) is integral at
machine i.

Proof. Observe that y(i, C){(i,C)} = y{(i,C)}fi{(i,C)}/y{(i,C)} = 1. The feasibility of
y(i, C) in clp(T) implies that y(i, C) is integral at machine i.

Now we have to verify that y(i, C) satisfies the constraint at the level r ≠ 1. Let
H œ Pr≠1(M ◊ C) and consider a machine ¸ œ M . We have that |H fi {(i, C)}| Æ r,
so from the feasibility of y at level r we obtain that

ÿ

RœC

y(i, C)Hfi{(¸,R)} =
1

y{(i,C)}

ÿ

RœC

yHfi{(¸,R)}fi{(i,C)} =
yHfi{(i,C)}

y{(i,C)}

= y(i, C)H ,

and thus the machine constraints (3.1) are satisfied. Consider a job size p œ {pj : j œ
J}. Analogously as before, from the feasibility of y at level r we have that

ÿ

¸œM

ÿ

RœC

m(p, R)y(i, C)Hfi{(¸,R)} =
1

y{(i,C)}

ÿ

¸œM

ÿ

RœC

m(p, R)yHfi{(¸,R)}fi{(i,C)}

= np

yHfi{(i,C)}

y{(i,C)}

= npy(i, C)H ,

and then the job-size constraints (3.2) are satisfied. The non-negativity of y(i, C) is
clear and y(i, C)ÿ = yÿfi{(i,C)}/y{(i,C)} = 1. That finishes the proof.

In particular, this implies Lemma 6 when S = {i} and since it does not depend
on i, it holds true for every S ™ M of cardinality one. Observe that if y was integral
at machine i then the lemma follows by the nested property at Lemma 5(ii). Another
important property of the conditioning is the following: If the vector y was integral
at some machine ¸, then after conditioning the vector obtained remains integral at
machine ¸. To check this, suppose that y{(¸,S)} = 1. It is enough to check that
y(i, C){(¸,R)} = 0 for every R ”= S, since the machine constraints (3.1) imply then
y(i, C){(¸,S)} = 1. By Lemma 5(iii), we have that

y(i, C){(¸,R)} =
y{(¸,R)}fi{(i,C)}

y{(i,C)}

Æ y{(¸,R)}

y{(i,C)}

= 0.

Proof of Lemma 6. In the following assume r Ø 2. Let S ™ M of cardinality at least
2 and y œ SAr(clp(T)). Consider the set S̃ = S \ {¸} for some ¸ œ S. By induction,

there exists a family of vectors {y◊}◊œΘ ™ SAr≠|S̃|(clp(T)) = SAr≠|S|+1(clp(T)) such
that y can obtained as a convex combination of them, and for every ◊ œ Θ the vector
y◊ is integral at every machine in S̃.

In the following we prove that for every ◊ œ Θ, the vector y◊ restricted to
Pr≠|S|+1(M ◊C) can be obtained as a convex combination of vectors in SAr≠|S|(clp(T))
and they are all integral at every machine in S̃ fi {¸} = S. For that end we make use
of our technical Lemma 8. As explained before, if y◊ is integral at machine ¸ then we
are done. Suppose then that y◊ is fractional at machine ¸ and consider the family of

3.2. Integrality gap for SA: Proof of Theorem 1(ii) Chapter 3

vectors {y◊(¸, C) : C œ C, y◊
{(¸,C)} œ (0, 1)} as defined before. By Lemma 8, they are

all in SA(r≠|S|+1)≠1(clp(T)) = SAr≠|S|(clp(T)) and they are all integral at machine ¸.
Since the vector y◊ was integral at S̃, the vectors obtained from conditioning remain
integral there and therefore they are all integral at S, which concludes the proof.

3.2 Integrality gap for SA: Proof of Theorem 1(ii)

We show that for the family of instances {Ik}kœN defined in Section 2.1, if we apply
O(k) rounds of the Sherali-Adams hierachy to the configuration LP for T = 1023, then
the resulting relaxation is feasible. Thus, after Ω(k) rounds of SA the configuration
LP still has an integrality gap of at least 1024/1023 for an instance with Θ(k) jobs
and machines.

We can observe that the configuration LP computes a set of edges in a complete
bipartite graph with vertex sets M and C. The edges are selected such that each node
in M is incident to at most one selected edge. More specifically, consider the complete
directed bipartite graph with vertex sets M and C, which is identified with M ◊ C.
We say that F ™ M ◊ C is an M-matching if |{C œ C : (i, C) œ F}| = degF (i) Æ 1.
We say that i œ M is incident to F if degF (i) = 1. The notation extends if the
configurations set is not C but a subset of it.

M C
y œ clp(T)

Figure 3.1: Feasible schedule given by an integral solution of the configuration LP.
Example with five machines, three of them in the same configuration. The degree of
every machine node is exactly one, as specified by the constraints (1.1).

In the following we consider the family of instances {Ik : k œ N, k is odd} as in
Section 2.1 and T = 1023. For any set S, let P(S) be the power set of S. We define

29

a solution to SAr(clp(T)) for T = 1023. To this end, we need to provide a value yA

for each set A œ Pr+1(M ◊ C). These values are given by the following function: Let
„ : P(M ◊ C—) æ R be such that

„(A) =
1

(3k)|A|

Ÿ

jœ[6]

(k/2)degA(Cj)

if A is an M -matching, and zero otherwise, where (x)0 = 1 and (x)a = x(x≠1) · · · (x≠
a + 1) if a Ø 1 is integer positive. This is called the lower factorial function. To
get some understanding about how the „ works, it could be useful to think on a
probabilistic interpretation that is formalized in the lemma below: Suppose we know
that a set A is chosen (i.e., we condition on this), then the conditional probability
that a pair (i, Cj) is chosen equals (k/2 ≠ degA(Cj))/(3k ≠ |A|) when A fi {(i, Cj)} is
an M -matching.

Lemma 9. Let A ™ M ◊ C— be an M-matching of size at most 3k ≠ 1. If i œ M is
not incident to A, then for every j œ [6],

„(A fi {(i, Cj)}) = „(A)
k/2 ≠ degA(Cj)

3k ≠ |A|
.

Proof. Given that i is not incident to A, we have |Afi{(i, Cj)}| = |A|+1. Furthermore,
for ¸ ”= j we have that degAfi{(i,Cj)}(C¸) = degA(C¸) and degAfi{(i,Cj)}(Cj) = degA(Cj)+
1.

We are ready now to define our solution to SAr(clp(T)). It is the vector y„ œ
R

Pr+1(M◊C) defined such that y„
A = „(A) if A is an M -matching in M ◊ C—, and zero

otherwise.

Lemma 10. For every odd k, y„ is a feasible solution in SAr(clp(T)) for the instance
Ik when r = Âk/2Ê and T = 1023.

We note that in the proof above, the projection of y„ onto the space of the configu-
ration LP is exactly the fractional solution from Lemma 2. The proof of Theorem 1(ii)
now follows directly from the lemma above.

Proof of Theorem 1(ii). Let k be such that n = 15k + ¸ where k is the greatest odd
integer such that 15k Æ n. The theorem follows by considering the instance Ik as
defined before, T = 1023 and r = Âk/2Ê.

Proof of Lemma 10. The non-negativity follows by checking that the lower factorial
in the definition of „ remains non-negative for r = Âk/2Ê. It is also clear from the
definition that y„

ÿ = „(ÿ) = 1.
We next prove that y„ satisfies the machine constraints (3.1) in SAr(clp). If i is

a machine incident to H, then all terms in the left-hand summation are 0 except for

3.2. Integrality gap for SA: Proof of Theorem 1(ii) Chapter 3

the unique pair (i, C) that belongs to H, so the sum equals y„
H . If i is not incident to

H, then by Lemma 9 we have

ÿ

CœC

y„
Hfi{(i,C)} =

„(H)

3k ≠ |H|

6
ÿ

j=1

(k/2 ≠ degH(Cj)) = „(H) = y„
H ,

since 6 · k/2 = 3k and
q6

j=1 degH(Cj) = |H|. Finally we prove that y„ satisfies the set
of constraints (3.2) for every processing time. Fix p and H. Since y„ is supported by
six configurations, we have

ÿ

iœM

ÿ

CœC

m(p, C)y„
Hfi{(i,C)} =

ÿ

iœM

6
ÿ

j=1

m(p, Cj)„(H fi {(i, Cj)}).

There are exactly two configurations Cp
1 , Cp

2 œ C— such that m(p, Cp
1) = m(p, Cp

2) = 1,
and for the others it is zero, so

6
ÿ

j=1

m(p, Cj)„(H fi {(i, Cj)}) = „(H fi {(i, Cp
1)}) + „(H fi {(i, Cp

2)}).

Let fiM(H) = {i œ M : degH(i) = 1} be the subset of machines incident to H. We
split the sum over i œ M into two parts, i œ fiM(H) and i /œ fiM(H). For the first
part,

ÿ

iœfiM (H)

(„(H fi {(i, Cp
1)}) + „(H fi {(i, Cp

2)})) = „(H)(degH(Cp
1) + degH(Cp

2))

since „(H fi {(i, Cp
1)}) is either „(H) or 0 depending on whether (i, Cp

1) œ H, and the
same holds for Cp

2 . For the second part, using Lemma 9 we have that for ¸ œ {1, 2},

ÿ

i/œfiM (H)

„(H fi {(i, Cp
¸)}) =

„(H)

3k ≠ |H|

ÿ

i/œfiM (H)

(k/2 ≠ degH(Cp
¸))

= „(H)(k/2 ≠ degH(Cp
¸)),

since |H \ fiM(H)| = 3k ≠ |H|. Thanks to cancellations, we get precisely what we
want,

ÿ

iœM

ÿ

CœC

m(p, C)y„
Hfi{(i,C)} =

ÿ

¸œ{1,2}

„(H)(degH(Cp
¸) + k/2 ≠ degH(Cp

¸))

= k · „(H) = npy„
H .

31

Chapter 4

Lovász-Schrijver (LS+) Hierarchy

In contrast to the last chapter, we introduce the Lovász-Schrijver hierarchy in a general
context. This is due to the simplicity behind the construction of the relaxations. In
what follows, if y = (a, x) œ R ◊ R

d, we denote yÿ = a and yi = xi for all i œ [d].
Consider the operator N+ on the family of convex cones in R◊R

d defined as follows.
Let R ™ R ◊ R

d be a convex cone. Then, y œ N+(R) if and only if there exists a
symmetric matrix Y ™ R

(d+1)◊(d+1) such that

(i) y = Y eÿ = diag(Y),

(ii) for all i œ [d], Y ei, Y (eÿ ≠ ei) œ R,

(iii) Y is positive semidefinite,

where ei denotes the vector with a one in the i-th entry and zero elsewhere. A matrix
Y satisfying the conditions above is sometimes called in the literature the protection
matrix of y. The following property comes directly from the definition of the operator.

Proposition 11. Let R be a convex cone. Then, N+(R) is a convex cone and
N+(R) ™ R.

Proof. Let y, z œ N+(R) and ⁄, µ œ R+. It is enough to show that ⁄y + µz œ N+(R).
Let Y and Z be protection matrices for y and z respectively. Then, ⁄Y + µZ is a
protection matrix for ⁄y + µz. Conditions (i) and (ii) come from the linearity of diag
and the matrix product. Since the set of symmetric positive semidefinite matrices is
a convex cone, the condition (iii) follows as well.

Now we prove the second property. Let y œ N+(R). In particular, Y e1, Y (eÿ≠e1) œ
R. Since R is a convex cone, it follows that Y e1 + Y (eÿ ≠ e1) = Y eÿ = y by condition
(i), and therefore y œ R.

Given a polytope P ™ [0, 1]d, let Q = {(a, x) œ R+◊P : x/a œ P} ™ R+◊R
d be the

lifted convex cone of P . The level r relaxation of the LS+ hierarchy, N r
+(Q) ™ R◊R

d, is
defined recursively as follows: N0

+(Q) = Q and N r
+(Q) = N+(N r≠1

+ (Q)). Proposition
11 guarantees the recursive definition is well defined ant it defines a nested family.
Furthermore, the family is guaranteed to converge to the cone spanned by the integer
vectors at Q at level d [78, Theorem 1.4].

33

4.1 Integrality gap of LS+: Proof of Theorem 1(iii)

To prove the integrality gap for LS+ we follow an inductive argument. We start from
the configuration LP, clp(T), and we denote by Qk the lifted convex cone of clp(T)
for instance Ik and T = 1023. For simplicity, we sometimes use the notation iC for
the ordered pair (i, C), as it is usually done for directed graphs.

Let A be an M -matching in M ◊C—, as defined in Section 3.2. The partial schedule
y(A) œ R

M◊C is the vector such that for every i œ M and j œ {1, 2, . . . , 6}, y(A)iCj
=

„(A fi {(i, Cj)})/„(A), and zero otherwise. Below is the key Lemma that implies the
main theorem. We postpone its proof to the end of the next section.

Lemma 12. Let k be an odd integer and r Æ Âk/2Ê. Then, for every M-matching A
of cardinality Âk/2Ê ≠ r in M ◊ C—, we have y(A) œ N r

+(Qk).

Proof of Theorem 1(iii). Let k be such that n = 15k + ¸ where k is the greatest odd
integer such that 15k Æ n. Consider instance Ik defined in Section 2.1, T = 1023 and
r = Âk/2Ê. By Lemma 31, for A = ÿ we obtain y(ÿ) œ N r

+(Qk).

C2

C1

C1machine 1

machine 2

machine 3

machine 4

...

machine 9

Figure 4.1: Consider the instance I3, with nine machines. It is shown the partial
schedule given by the M -matching {(1, C1), (2, C1), (3, C2)}; the machines in {4, . . . , 9}
are fractional.

In the following we provide two lemmas that describe structural properties of every
partial schedule. The first of them justifies the intuition behind their name: If A is an
M -matching, the corresponding partial schedule is integral for every machine incident
to A. Therefore, all these machines are scheduled integrally and the whole solution
can be seen as partial schedule for the instance.

Lemma 13. Let A be an M-matching in M ◊ C—. Then, y(A) is integral for every
machine incident to A.

Proof. If C /œ C— then y(A)iC = 0 by definition. If (i, Cj) œ A then y(A)iCj
=

„(A fi {(i, Cj)})/„(A) = „(A)/„(A) = 1. For ¸ œ [6] \ {j}, the set A fi {(i, C¸)} is not
an M -matching and thus y(A)iC¸

= 0.

4.1. Integrality gap of LS+: Proof of Theorem 1(iii) Chapter 4

The second lemma below provides the base case for the induction in the proof
of Lemma 31 and complements the lemma above: The partial schedules are indeed
feasible solutions for the configuration LP.

Lemma 14. Let A be an M-matching in M ◊ C— of cardinality at most Âk/2Ê. Then,
y(A) œ clp(T).

Proof. We note that y(A)iC = y„
Afi{(i,C)}/y„

A, and then the feasibility of y(A) in clp(T)

is implied by the feasibility of y„ in SAr(clp(T)), for r = Âk/2Ê.

The protection matrices. Given A an M -matching of M ◊C— and the respective partial
schedule y(A), let Y (A) be the real symmetric matrix with rows and columns indexed
in {ÿ} fi (M ◊ C), such that its principal submatrix indexed by {ÿ} fi (M ◊ C—) equals

A

1 y(A)€

y(A) Z(A)

B

,

where Z(A)iCj ,¸Ch
= „(Afi{(i, Cj), (¸, Ch)})/„(A). All the other entries of the matrix

Y (A) are equal to zero. The matrix Y (A) provides the protection matrix we need in
the proof of the key Lemma. Condition (i) in the definition of the protection matrix
is guaranteed by construction. To check that condition (ii) is satisfied we require the
following lemma.

Lemma 15. Let A be an M-matching in M ◊ C— and i a non-incident machine to
A. Then,

q6
j=1 Y (A)eiCj

= Y (A)eÿ.

Finally, condition (iii) is the more technical condition to be checked. It requires
the use of algebraic tools and a series of operations to reduce the dimensionality of
the problem. We postpone the proof of Theorem 4 to Section 4.2. We then prove
Lemma 15 and posteriorly we are ready to prove the key Lemma.

Theorem 4. For every M-matching A in M ◊ C— such that |A| Æ Âk/2Ê, the matrix
Y (A) is positive semidefinite.

Proof of Lemma 15. Let S be the index of a row of Y (A). If S /œ {ÿ}fi (M ◊C—) then
that row is identically zero, so the equality is satisfied. Otherwise,

e€
S

6
ÿ

j=1

Y (A)eiCj
=

1

„(A)

6
ÿ

j=1

„(A fi {(i, Cj)} fi S).

If A fi S is not an M -matching then „(A fi S fi {i, Cj}) = 0 for all i and j œ [6], and
e€

S Y (A)eÿ = „(A fi S) = 0, so the equality is satisfied. If A fi S is an M -matching,
then

1

„(A)

6
ÿ

j=1

„(A fi {(i, Cj)} fi S) =
„(A fi S)

„(A)

6
ÿ

j=1

„(A fi S fi {(i, Cj)})

„(A fi S)

= e€
S Y (A)eÿ

6
ÿ

j=1

y„
AfiSfi{(i,Cj)}

y„
AfiS

= e€
S Y (A)eÿ,

35

since y„ is a feasible solution for the SA hierarchy and threfore the summation above
is equal to 1 due to the machine constraints (3.1).

Proof of Lemma 31. We proceed by induction in r. For r = 0 this is implied by
Lemma 14, so now suppose that it holds for r = t. Let y(A) be a partial schedule
of A of cardinality Âk/2Ê ≠ t ≠ 1. We prove that the matrix Y (A) is a protection
matrix for y(A). It is symmetric by definition, and Y (A)eÿ = (1, diag(Y (A))) =
(1, y(A)), so condition (i) is satisfied. Thanks to Theorem 4 the matrix Y (A) is
positive semidefinite, that is condition (iii).

It remains to check that condition (ii) is fulfilled. Let (i, C) be such that y(A)iC œ
(0, 1). In particular, by Lemma 13 we have (i, C) /œ A and C œ C—. We claim that
Y (A)eiC/y(A)iC is equal to (1, y(Afi{(i, C)})). If S indexes a row not in M ◊C— then
the respective entry in both vectors is zero, so the equality is satisfied. Otherwise,

e€
S Y (A)eiC

y(A)iC

=
„(A fi {(i, C)} fi S)

„(A fi {(i, C)})
= y(A fi {(i, C)})S.

The cardinality of the M -matching A fi {(i, C)} is equal to |A| + 1 = Âk/2Ê ≠ t, and
therefore by induction we have that Y (A)eiC/y(A)iC = (1, y(Afi{(i, C)})) œ N t

+(Qk).
Now we prove that the vectors Y (A)(eÿ ≠ eiC)/(1 ≠ y(A)iC) are feasible for N t

+(Qk).
By Lemma 15 we have that for every ¸ œ {1, 2, . . . , 6},

Y (A)(eÿ ≠ eiC¸
)

1 ≠ y(A)iC¸

=
ÿ

jœ[6]\{¸}

A

y(A)iCj
q

jœ[6]\{¸} y(A)iCj

B

y(A fi {(i, Cj)}),

and then Y (A)(eÿ≠eiC¸
)/(1≠y(A)iC¸

) is a convex combination of the partial schedules
{y(A fi {(i, Cj)}) : j œ [6] \ {¸}} µ N t

+(Qk), concluding the induction.

4.2 The protection matrices are PSD

In this section we provide a full proof of Theorem 4. To prove that Y (A) is a positive
semidefinite matrix we perform several transformations of the original matrix that
preserve the property of being positive semidefinite or not. We start with a short
summary of the proof.

Proof scheme. First, we remove all those zero columns and rows. Then, Y (A) is
positive semidefinite if and only if its principal submatrix indexed by {ÿ} fi (M ◊
C—) is positive semidefinite. We construct the matrix Cov(A) by taking the Schur’s
Complement of Y (A) with respect to the entry (ÿ, ÿ).

The resulting matrix is positive semidefinite if and only if Y (A) is positive semidef-
inite. After removing null rows and columns in Cov(A) we obtain a new matrix,
Cov+(A), which can be written using tensor products as I ¢ Q + (J ≠ I) ¢ W , with
Q, W œ R

6◊6, W = –Q for some – œ (≠1, 0) and I, J being the identity and the all-
ones matrix, respectively. By applying a lemma about block matrices in [49], Y (A) is
positive semidefinite if and only if W is positive semidefinite.

4.2. The protection matrices are PSD Chapter 4

Finally, the matrix W is equal to Du ≠ uu€ for some u œ R
6 and Du is a diagonal

matrix such that diag(Du) = u. By applying Jensen’s inequality it follows that W is
positive semidefinite.

Take the Schur’s

Complement of (ÿ, ÿ)
Remove all the zero

rows and columns

Use the block sym-

metry to reduce

dimensionality

Figure 4.2: Proof scheme: The protection matrices are positive semidefinite.

We now continue with the full argument. The first basic operation we can perform
over the matrix is to remove null rows and columns. In the case of our protection
matrices, there are many rows and columns that are equal to zero by construction.

Lemma 16. A symmetric matrix X œ R
E◊E is positive semidefinite if and only if

the principal submatrix of non-null columns and rows is positive semidefinite.

Proof. Let X̃ œ R
F ◊F be the matrix obtained by removing the null rows and columns

of x. Then, z€Xz =
q

i,jœE Xijzizj =
q

i,jœF Xijzizj = z€
F X̃zF , where zF œ R

F is
the restriction of Z to the variables in F . It follows that z€Xz Ø 0 if and only if
z€

F X̃zF Ø 0.

Therefore, in order to prove that a matrix is positive semidefinite we can remove in
advance those null rows and columns. In the following lemma we describe a reduction
based on a congruent transformation of a matrix known as Schur’s complement. Given
the symmetric matrix

X =

A

N B
B€ C

B

with N invertible, the Schur’s complement of N in X is the matrix S = C ≠B€N≠1B.

Lemma 17. If N is positive definite, then X is positive semidefinite if and only if S
is positive semidefinite.

A proof of this fact can be found in [54, Theorem 7.7.9 on page 496]. We apply
the two previous transformations to Y (A) as described in the following lemma.

Lemma 18. Let A be an M-matching in M ◊ C—. Then, the matrix Y (A) is positive
semidefinite if and only if Z(A) ≠ y(A)y(A)€ is positive semidefinite.

Proof. Thanks to Lemma 16 the matrix Y (A) is positive semidefinite if and only if
its principal submatrix indexed by {ÿ} fi (M ◊ C—) is positive semidefinite, since every
other row and column are zero. The Schur’s complement of the entry Y (A)ÿ,ÿ = 1
corresponds to Z(A)≠y(A)y(A)€. A direct application of Lemma 17 implies that Y (A)
is positive semidefinite if and only if Z(A) ≠ y(A)y(A)€ is positive semidefinite.

37

Further removals. We denote by Cov(A) the matrix Z(A)≠y(A)y(A)€, the covariance
matrix of y(A). In the proof of Lemma 18 we removed first all those null rows and
columns in Y (A). In fact, in the new matrix Cov(A) there are null rows and columns
that can be removed of the matrix, so we can perform this operation again. Recall that
fiM(A) is the set of machines incident to A, and let Cov+(A) be the principal submatrix
of Cov(A) obtained by removing every row and column indexed by E(fiM(A)) =
{(i, Cj) : i œ fiM(A), j œ {1, 2, . . . , 6}}.

Lemma 19. Let A be an M-matching in M ◊C—. Then, Y (A) is positive semidefinite
if and only if Cov+(A) is positive semidefinite.

Proof. We prove that for every (i, Cj) œ E(fiM(A)), Cov(A)eiCj
= 0. By expanding,

e€
¸Ck

Cov(A)eiCj
=

1

„(A)
„(A fi {(¸, Ck), (i, Cj)}) ≠ y(A)iCj

y(A)¸Ck
.

By Lemma 13, if i is a machine incident to A we have y(A)iCj
= 1{(i,Cj)œA}, and by

the definition of the function „ we have that it is supported over M -matchings only.
Then, „(A fi {(¸, Ck), (i, Cj)}) = „(A fi (¸, Ck)})1{(i,Cj)œA}, and

e€
¸Ck

Cov(A)eiCj
=

A

1

„(A)
„(A fi {(¸, Ck)}) ≠ y(A)¸Ck

B

1{(i,Cj)œA} = 0,

because of the definition of the partial schedule y(A). The Lemma follows by a direct
application of Lemma 16.

Note that if machine i is not incident to A, the values {y(A)iCj
: j œ [6]} do not

depend on the machine, but only on A. This motivates the definition of the vector
‹(A) œ R

6 such that

‹(A)j =
k/2 ≠ degA(Cj)

3k ≠ |A|
,

for every j œ {1, 2, . . . , 6}. If y(A) is a partial schedule, for every machine incident to
A the entries yiCj

are in {0, 1}, which is in total 3|A| entries. This is why Cov+(A) has
a very particular structure: If we order the rows and columns according to machines,
a block structure appears. To properly define this we require some notation. Let
U œ R

p◊q and T œ R
r◊s. Then, the tensor product between U and T , U ¢ T , is the

matrix
Q

c

c

a

U11T . . . U1qT
...

. . .
...

Up1T . . . UpqT

R

d

d

b

œ R
pr◊qs.

Proposition 20. Let A, B, C, D four matrices such that the products AC and BD
are well defined. Then, the following holds:

(i) (A ¢ B)(C ¢ D) = AC ¢ BD.

(ii) (A ¢ B)€ = A€ ¢ B€.

4.2. The protection matrices are PSD Chapter 4

A proof of (i) can be found at [53, Lemma 4.2.10 on page 244] and (ii) is direct
from the definition. The fractional part of y(A) corresponds to 1 ¢ ‹(A), where 1 is
the vector in R

3k≠|A| with every entry equal to 1. Furthermore, the value Z(A)iCj ,¸C¸
=

“(A)j¸ is independent of the machines when i, ¸ are not incident to A,

“(A)j¸ =

Y

_

_

_

_

_

_

]

_

_

_

_

_

_

[

(k/2 ≠ degA(j))(k/2 ≠ degA(¸))

(3k ≠ |A|)(3k ≠ |A| ≠ 1)
if j ”= ¸,

(k/2 ≠ degA(j))(k/2 ≠ degA(j) ≠ 1)

(3k ≠ |A|)(3k ≠ |A| ≠ 1)
if j = ¸.

Then, we can fully express the matrix Cov+(A) in terms of tensor products involving
“(A) and ‹(A)

I ¢ D‹(A) + (J ≠ I) ¢ “(A) ≠ (1 ¢ ‹(A))(1 ¢ ‹(A))€, (4.1)

where I is the 3k ≠ |A| dimensional identity matrix, J is the 3k ≠ |A| dimensional
all-ones matrix and D‹(A) œ R

6◊6 is such that D‹(A)jj = ‹(A)j for j œ {1, . . . , 6},
and D‹(A)jh = 0 when j ”= h. The key consequence is that we can reduce the task of
proving that Y (A) is positive semidefinite to prove the same for matrices of constant
dimension.

Block matrices. We say that a matrix X œ R
rn◊rn belongs to the (r, n)-block symmetry

set, Symn
r , if there exist matrices D, E œ R

r◊r such that X = I ¢ D + (J ≠ I) ¢ E.
For example, when n = 3,

X =

Q

c

a

D E E
E D E
E E D

R

d

b .

The following lemma characterizes the set of positive semidefinite matrices in Symn
r .

Lemma 21 ([49]). Let X = I ¢ D + (J ≠ I) ¢ E œ Symn
r . Then, X is positive

semidefinite if and only if i) D ≠ E is positive semidefinite and ii) D + (n ≠ 1)E is
positive semidefinite.

As a consequence, we reduce the dimensionality of the problem to r. In particular,
Cov+(A) belongs to Sym

3k≠|A|
6 and therefore the task now is to check that two matrices

of constant dimension are positive semidefinite.

Lemma 22. For every M-matching A in M ◊ C—, the covariance matrix Cov+(A)

belongs to Sym
3k≠|A|
6 and it is equal to

I ¢ ∆(A) ≠ (J ≠ I) ¢ 1

3k ≠ |A| ≠ 1
∆(A),

where ∆(A) = D‹(A) ≠ ‹(A)‹(A)€.

39

Proof. We check first that Cov(A)+ œ Sym
3k≠|A|
6 . By Proposition 20, we have

(1 ¢ ‹(A))(1 ¢ ‹(A))€ = (1 ¢ ‹(A))
1

1€ ¢ ‹(A)€
2

= J ¢ ‹(A)‹(A)€.

Replacing this in the expression in 4.1 we get

Cov+(A) = I ¢ D‹(A) + (J ≠ I) ¢ “(A) ≠ J ¢ ‹(A)‹(A)€

= I ¢
1

D‹(A) ≠ ‹(A)‹(A)€
2

+ (J ≠ I) ¢
1

“(A) ≠ ‹(A)‹(A)€
2

= I ¢ ∆(A) + (J ≠ I) ¢
1

“(A) ≠ ‹(A)‹(A)€
2

,

so it remains to check that “(A) ≠ ‹(A)‹(A)€ = ≠1/(3k ≠ |A| ≠ 1) · ∆(A). Consider
two configurations Cj ”= C¸. Then, the non-diagonal entry (j, ¸) is equal to

“(A)j¸ ≠ ‹(A)j‹(A)¸ =
(k/2 ≠ degA(j))(k/2 ≠ degA(¸))

(3k ≠ |A|)(3k ≠ |A| ≠ 1)
≠ ‹(A)j‹(A)¸

=

A

3k ≠ |A|

3k ≠ |A| ≠ 1
≠ 1

B

‹(A)j‹(A)¸ = ≠ 1

3k ≠ |A| ≠ 1
∆(A)j¸.

For a diagonal element, we have

“(A)jj ≠ ‹(A)2
j =

(k/2 ≠ degA(j))(k/2 ≠ degA(j) ≠ 1)

(3k ≠ |A|)(3k ≠ |A| ≠ 1)
≠ ‹(A)2

j

=
3k ≠ |A|

3k ≠ |A| ≠ 1

A

‹(A)2
j ≠ 1

3k ≠ |A|
‹(A)j

B

≠ ‹(A)2
j

= ≠ 1

3k ≠ |A| ≠ 1
(‹(A)j ≠ ‹(A)2

j) = ≠ 1

3k ≠ |A| ≠ 1
∆(A)jj.

In addition with Lemma 21 we have the ingredients to prove that Cov+(A) is a
positive semidefinite matrix when |A| Æ Âk/2Ê.

Proof of Theorem 4. By Lemma 22, Cov+(A) œ Sym
3k≠|A|
6 and then we can apply

Lemma 21. Therefore, the matrix Cov+(A) is positive semidefinite if and only if i)

∆(A) ≠ 1
3k≠|A|≠1

∆(A) = 3k≠|A|
3k≠|A|≠1

∆(A) is positive semidefinite, and ii) ∆(A) ≠ (3k ≠
|A| ≠ 1) · 1

3k≠|A|≠1
∆(A) = 0 is positive semidefinite. The last condition is trivially

satisfied, and then Cov+(A) is positive semidefinite if and only if ∆(A) is positive
semidefinite. Given any vector x œ R

6, we have

x€
∆(A)x =

6
ÿ

j=1

‹(A)jx
2
j ≠

Q

a

6
ÿ

j=1

‹(A)jxj

R

b

2

.

The vector ‹(A) œ R
6 is non-negative if |A| Æ Âk/2Ê. As it satisfies that Î‹(A)Î1 = 1,

by applying Jensen’s inequality with the function „(w) = w2 the latter expression is
non-negative for every x œ R

6. Then, Cov+(A) is positive semidefinite, and thanks to
Lemma 19 we conclude that Y (A) is positive semidefinite.

Chapter 5

Break symmetries to approximate

A natural source of symmetry in our problem comes from the fact that the machines
are identical: Given a schedule, we obtain other schedules with the same makespan
by permuting the assignment over the machines. A second source of symmetry in the
problem arises from permuting jobs with the same processing time.

The symmetric nature of the combinatorial problem does not directly imply that
a formulation is symmetric, but most of the time the natural formulations reflect the
symmetries as well. This is the case for the two formulations considered so far in this
work, the assignment LP and the configuration LP. In what follows we introduce the
necessary algebraic tools for this chapter and formalize all these notions.

5.1 Group invariant sets

Given a set of variables D, we denote by GL(RD) the set of invertible matrices in
R

D◊D. For a group G, we say that Φ : G æ GL(RD) is a matrix representation over
R

D if Φ is a G-homomorphism, that is, for every g, h œ G we have Φ(g)Φ(h) = Φ(gh).
A polytope K ™ R

D is said to be G-invariant if for every g œ G and x œ K,
Φ(g)x œ K. We say that G induces an action over K, by the function fl : G ◊ K æ K
such that fl(g, x) = Φ(g)x.

A group of particular interest is the symmetric group of order d, denoted by Sd. It
corresponds to the set of permutations over {1, . . . , d} and the composition as product.
This group has a matrix representation P over Rd given by the permutation matrices:
For every ¸, k œ {1, . . . , d}, let P (‡)¸k = 1 if and only if ‡(¸) = k.

Q

c

c

c

c

c

c

a

0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

R

d

d

d

d

d

d

b

Figure 5.1: Permutation matrix of ‡ = (12)(34)(5).

41

It is not hard to check that for every scheduling instance and every T > 0, the
assignment polytope is Sm-invariant, where the set of machines is M = {1, . . . , m}.
In this case, the variables are indexed by the set M ◊ J and the representation of Sm

over R
M◊J is constructed as follows: Given ‡ œ Sm, define Φ(‡) = P (‡) ¢ I, where

I is the identity matrix in R
J◊J . The fact that Φ is a matrix representation follows

using the properties in Proposition 20: For every ‡, fi œ Sm,

Φ(‡)Φ(fi) = (P (‡) ¢ I)(P (fi) ¢ I) = P (‡)P (fi) ¢ I2 = P (‡fi) ¢ I = Φ(‡fi).

Let ‡ œ Sm and x œ assign(T). For every j œ J , we have
ÿ

iœM

(Φ(‡)x)ij =
ÿ

iœM

x‡(i)j =
ÿ

iœM

xij = 1,

since ‡ is a permutation of M . Therefore, every job constraint remains the same when
permuting machines. Now given i œ {1, . . . , m}, we have

ÿ

jœJ

(Φ(‡)x)ijpj =
ÿ

jœJ

x‡(i)jpj Æ T,

since the last corresponds to the machine constraint for ‡(i). Observe that having
every right hand side in the machine constraint equal to T is relevant to check the
invariance. If we had different machine availabilities then is not clear that the program
remains invariant using the same representation. Then we should allow the group to
act also over the coefficients in the linear functions defining the polytope.

1

2

3

1

2

3

Figure 5.2: Schedule of an instance with three machines and five jobs. Effect of the
permutation ‡ = (13) in the solution.

We can also observe that Sm is acting over the configuration LP. The representation
of the permutation group is constructed in a very similar way, as well as checking that
clp(T) is Sm-invariant. Scheduling identical machines belongs to a larger class of
partitioning problems. The common feature of all these problems is to have a set of
elements that are to be partitioned in subsets, each of them meeting some constraints.
In this case, we look for a partition of the jobs, where every part satisfies a packing
constraint.

5.2 Symmetry breaking inequalities

Recall that in the configuration LP we look for an assignment of machines to the set of
configurations C. For example, in the hard instances obtained from the Petersen graph

5.2. Symmetry breaking inequalities Chapter 5

in Chapter 2 (see Figure 2.1) the number of configurations for T = 1023 is equal to six,
so every feasible schedule should have many machines scheduled according to the same
configuration. In what follows, we introduce a set of constraints that guarantee every
integer solution in the polytope to obey a specific order on the configurations over the
machines. Recall that the set of machine is the set M = {1, . . . , m}. Therefore, if we
knew that a machine ¸ is scheduled according to a given configuration C, it should
be that every machine smaller (larger) than ¸ is scheduled respecting the order on
the configurations set. This is a way of breaking the machine symmetries since we are
restricting the set of possible assignments.

We need some notation before introducing the symmetry breaking constraints.
Suppose we have a partitioning J of the job set J into s parts, J = {J1, . . . , Js}.
In principle, the partition is arbitrary. An example of such a partition is given in
the following way. Suppose the job sizes are ordered from largest to smallest, that is
p1 > p2 > · · · > ps where s = |{pj : j œ J}| is the number of different job sizes. Then,
we could define the partition such that Jq = {j œ J : pj = pq} for every q œ [s], and
we call it the job-sizes partition.

In this context, a configuration C is a multiset of elements in {1, . . . , s}. Recall
that for every q œ {1, . . . , s}, the multiplicity of q in C, m(q, C), is the number of
times that pq appears repeated in C. For example, if s = 3 and C = {1, 1, 1, 2},
we have m(1, C) = 3, m(2, C) = 1 and m(3, C) = 0. We denote by C the set of all
configurations. Observe that it coincides with the configuration notion introduced in
Chapter 1 if we consider the job-sizes partition.

We say that a configuration C is lexicographically larger than S, and we denote
C >lex S, if there exists q œ [s] such that m(¸, C) = m(¸, S) for all ¸ < q and m(q, C) >
m(q, S). Following the example with s = 3, the configuration C = {1, 1, 1, 2, 2} is
lexicographically larger than S = {1, 1, 1, 2, 3} since m(1, C) = m(1, S) = 3 and
m(2, C) = 2 > m(2, S) = 1.

Given a positive integer number B, consider the polytope assign(B, T) given by

assign(T) fl
m≠1
‹

i=1

Y

]

[

x œ R
M◊J :

s
ÿ

q=1

Bs≠q
ÿ

jœJq

1

xij ≠ x(i+1)j

2

Ø 0

Z

^

\

.

Sometimes, to avoid confusion we use the notation assign(J, B, T) to emphasize that
we are considering the polytope for the jobs set J . We also remark that the symmetry
breaking constraints depend on the partitioning of J . Given a subset of jobs K µ J
such that

q

jœK pj Æ T , we denote by conf(K) the configuration such that for every
q œ {1, . . . , s}, m(q, conf(K)) = |KflJq|. We then say that conf(K) is the configuration
induced by K and we denote by C the set of all possible configurations induced in this
way. Observe that >lex defines a total order over C.

In the following we show that for sufficiently large, but polynomially sized B, every
integer solution in the polytope obeys the lexicographic order on configurations over
the machines. More specifically, given a feasible integer solution x œ assign(T), for
every machine i œ M let Ci(x) œ C be the configuration defined by the number of
jobs for each possible part that are scheduled in i according to x, that is, for every
q œ {1, . . . , s}, m(q, Ci(x)) =

q

jœJq
xij.

43

Theorem 5. There exists B = O(|J |2) such that for every integer solution x œ
assign(B, T), Ci(x) Ølex Ci+1(x) for every machine i œ M \ {m}.

In general, the polytope above is not Sm-invariant, but it is a valid formulation
for the problem of finding a schedule with makespan at most T . More specifically, we
show that if there is a schedule with makespan at most T , then there is an integer
solution in assign(B, T).

Lemma 23. Suppose there is an integer solution in assign(T). Then, there exists
B = O(|J |2) for which there is an integer solution in assign(B, T).

We prove the theorem statements above by introducing an intermediate result
connecting the lexicographic order over the configurations and the symmetry breaking
constraints shown above. Given B œ N, let LB : C æ R be the function such that for
every configuration C œ C,

LB(C) =
s

ÿ

q=1

Bs≠qm(q, C).

Recall that the lexicographic order over the configurations induces a total order over
C. We show that exists a polynomially sized value of B for which LB is a strictly
increasing function, that is, if C <lex S then LB(C) < LB(S). Using this result we
then prove Theorem 5.

Lemma 24. Let B > 2s maxqœ[s] |Jq|. Then, LB is strictly increasing.

Proof of Theorem 5. Fix a machine i œ M \ {m}. Since x is an integer solution in
assign(B, T), we have Ci(x), Ci+1(x) œ C. The symmetry breaking constraints implies
that

0 Æ
s

ÿ

q=1

Bs≠q (m(q, Ci(x)) ≠ m(q, Ci+1(x))) = LB(Ci(x)) ≠ LB(Ci+1(x)).

Applying Lemma 24 for B = 1 + 2s maxqœ[s] |Jq| = O(|J |2) it holds that LB is strictly
increasing and therefore Ci(x) Ølex Ci+1(x).

Proof of Lemma 23. Consider an integer solution x œ assign(T). Since the lexico-
graphic relation defines a total order over C, there exists a permutation ‡ œ Sm such
that C‡(i)(x) Ølex C‡(i+1)(x) for every i œ M \ {m}. Consider the new schedule x̃
obtained by permuting the solution according to ‡, that is, x̃ij = x‡(i)j for every
(i, j) œ M ◊ J . Then, for every i œ M \ {m} it follows that

s
ÿ

q=1

Bs≠q
ÿ

jœJq

1

x̃ij ≠ x̃(i+1)j

2

=
s

ÿ

q=1

Bs≠q
1

m(q, C‡(i)(x)) ≠ m(q, C‡(i+1)(x))
2

= LB(C‡(i)(x)) ≠ LB(C‡(i+1)(x)) Ø 0,

where the last inequality holds by Lemma 24. We conclude that x̃ œ assign(B, T).

5.3. The Lasserre/SoS (Las) Hierarchy Chapter 5

We recall that having B of polynomial input size is relevant at the moment of solv-
ing the linear program assign(B, T). In particular, the input size is O(|J |2 · log(Bs)) =
O(poly(|J |)), and so in can be solved in time O(poly(|J |)) using, for example, the
Karmakar algorithm or the Ellipsoid method [94, Chapter 15]. In what follows, we
use a superscript over the configurations to indicate its lexicographic order, that is,
C1 > C2 > C3 > · · · > C |C|.

Proof of Lemma 24. Consider two configurations C, S œ C such that C >lex S. Let q̃
be the smallest in {1, . . . , s} integer such that the multiplicities of the configurations
are different, that is, m(¸, C) = m(¸, S) for every ¸ < q̃. For the sake of contradiction
suppose that m(q̃, C) < m(q̃, S). In particular, every term up to max{0, q̃ ≠ 1} in
the summation defining LB(C) ≠ LB(S) is equal to zero. By upper bounding the
summation from min{s, q̃ + 1} we obtain that

s
ÿ

q=min{s,q̃+1}

Bs≠q (m(q, C) ≠ m(q, S)) Æ
s

ÿ

q=min{s,q̃+1}

Bs≠q (|m(q, C)| + |m(q, S)|)

Æ
s

ÿ

q=min{s,q̃+1}

Bs≠q · 2|Jq|

<

A

2s max
qœ[s]

|Jq|

B

Bs≠q̃≠1 Æ B · Bs≠q̃≠1,

and since m(q̃, S) ≠ m(q̃, C) Ø 1 it follows that

s
ÿ

q=q̃

Bs≠q (m(q, C) ≠ m(q, S)) < Bs≠q̃ + Bs≠q̃ (m(q̃, C) ≠ m(q̃, S))

< Bs≠q̃ (1 + m(q̃, C) ≠ m(q̃, S)) < 0,

yielding to the contradiction.

5.3 The Lasserre/SoS (Las) Hierarchy

The Lasserre/SoS hierarchy is the strongest lift & project operator among the ones
considered in this work, that is Sherali-Adams (SA) and Lóvasz-Schrijver (LS+). Be-
fore introducing the relaxations obtained from the hierarchy, we require some nota-
tion about moment matrices, that play a role in what follows. Then we introduce
the hierarchy in a self-contained way. Given a set E be a set and r œ N, recall
that Pr(E) = {A ™ E : |A| Æ r}. For a vector z œ R

P2r(E), the r-moment matrix,
Mr(z) œ R

Pr(E)◊Pr(E), is such that for every U, V œ Pr(E), Mr(z)U,V = zUfiV . Observe
that this matrix is symmetric. We consider an operation ı called the shift product
between a vector z œ R

Pr(E) and a vector a œ R
P1(E) such that for all U œ Pr(E),

(a ı z)U =
ÿ

eœE

aexUfi{e} ≠ aÿxU ,

45

recalling that ae = a{e} for simplicity when e is a singleton. Given a scheduling
instance and T > 0, for every i œ M let packi œ R

P1(M◊J) be such that packi
ÿ = T ,

packi
¸j = ≠pj if ¸ = i and zero otherwise. Similarly, for every i œ M \ {m} let

breaki œ R
P1(M◊J) be such that

breaki
¸j =

Y

_

_

]

_

_

[

Bs≠q if ¸ = i and j œ Jq, for all q œ {1, . . . , s},

≠Bs≠q if ¸ = i + 1 and j œ Jq, for all q œ {1, . . . , s},

0 otherwise.

The level r Lasserre/SoS relaxation, Lasr(assign(B, T)), is an SDP in [0, 1]P2r+2(M◊J),

ÿ

iœM

xIfi{(i,j)} ≠ xI = 0 for all j œ J, for all I œ P2r+1(M ◊ J), (5.1)

Mr(packi ı x) ≤ 0 for all i œ M, (5.2)

Mr(breaki ı x) ≤ 0 for all i œ M \ {m}, (5.3)

Mr+1(x) ≤ 0, (5.4)

xÿ = 1. (5.5)

5.4 Balanced partitionings

Observe that Las0(assign(B, T)) is at least as strong as assign(B, T). In this section
we study the integrality gap of the SDP relaxations obtained from the Lasserre/SoS
hierarchy. More specifically, we show that after a small number of rounds that depends
on the configurations set C, and therefore on the partitioning J , the integrality gap
can be arbitrarily close to one. Recall that whereas the total number of jobs can
be large, the number of configurations could be small and therefore we obtain better
bounds. We say a partitioning J is –-balanced, with – Ø 1, if for every K, H ™ J
such that conf(K) = conf(H),

ÿ

jœK

pj Æ –
ÿ

jœH

pj.

Other parameter that plays a key role is the maximum number of jobs that can be
scheduled in the same machine with makespan at most T , that is,

⁄ = max

Y

]

[

|K| :
ÿ

jœK

pj Æ T

Z

^

\

.

For example, if we knew that pj Ø T/3 for every j œ J , then ⁄ Æ 3. The following
is the main result of this chapter: Given a balanced partitioning of J and its induced
configurations C, there is a level of the hierarchy for which its feasibility implies the
existence of an integral solution with a makespan close to T . Provided that B is
chosen accordingly to Lemma 5, it gives us a schedule respecting the lexicographic
order of configurations over the machines.

5.5. An approximation scheme for Scheduling Chapter 5

Theorem 6. Consider a scheduling instance, T > 0 and an –-balanced partition-
ing of the set J . Suppose the ⁄|C| = ·(C) level of the Lasserre/SoS hierarchy over
assign(B, T) is feasible, that is,

Las·(C)(assign(B, T)) ”= ÿ.

Then, there exists a schedule, xlex œ assign(B, –T)fl{0, 1}M◊J , that is, with makespan
at most –T . Furthermore, it can be found in time |J |O(·(C)).

The value ·(C) = ⁄|C| can be improved, but this is good enough for this exposition.
If we go back to the hard instances shown in Chapter 2, we observe that for T = 1023
there is a constant number of configurations for all the instances {Ik}kœN if we consider
the job-sizes partition, since there are only 15 different job sizes. Furthermore, since
the smallest job size in the instances is 33, we have that ⁄ Æ 1023/33 = 31. Recall
that for T = 1023 there is no feasible schedule for the instance and the job-sizes
partition is 1-balanced. Therefore, for every k œ N, there is an O(1) level Lasserre
relaxation for T = 1023 which is equal to the empty set.

An important observation is that we assume the number of machines m to be
greater than ·(C), since otherwise the theorem follows by a direct application of
Theorem 3 in Chapter 3. The proof of this theorem follows in a slightly similar way
to that of the Machine Decomposition Lemma (see Chapter 3, Lemma 6). There,
the argument was based on an induction over the number of machines that are to be
integral. We leave the full proof of Theorem 6 to Section 5.6, and in the following
section we show how to obtain a polynomial time approximation scheme as corollary
of the main theorem.

5.5 An approximation scheme for Scheduling

An idea that has been frequently exploited for designing approximation schemes in
scheduling and packing problems is to split the instances into long jobs and short jobs.
Then, each sub-instance is solved or approximated by using suitable techniques, and
merged afterwards in order to provide a solution for the original problem. Rounding
the numeric values of the instances plays a key role in this approaches since it allows to
reduce the underlying combinatorics. In particular, it allows exhaustive enumeration
in some cases.

We provide an approximation scheme that uses the idea of splitting the instance
into long and short jobs, but we do not round the numeric values. In what follows,
given Á > 0, we say that a job j œ J is long if pj Ø ÁT , and it is short otherwise. The
subset of long jobs is denoted by Jlong and the short jobs are Jshort = J \ Jlong. We
consider a partitioning that simulates the rounding by grouping jobs with a similar
processing time. More specifically, for every q œ {1, . . . , (1 ≠ Á)/Á2}, let

Jq =
;

j œ Jlong :
3

1

Á
+ q

4

Á2T > pj Ø
3

1

Á
+ q ≠ 1

4

Á2T
<

,

47

and we call this the Á-partitioning of the long jobs. We show next that this partitioning
is arbitrarily close to being 1-balanced, and therefore we can try to schedule long jobs
using the main theorem.

Lemma 25. For every Á > 0, the Á-partitioning is (1 + Á)-balanced.

Proof. Consider K, H ™ J such that conf(K) = conf(H) = C for the Á-partitioning J .
In particular, for every q œ {1, . . . , |J |} we have that |K fl Jq| = m(q, C) = |H fl Jq|,
and so there exists a bijection Ïq : K fl Jq æ H fl Jq. Furthermore, for any pair of
jobs j, ¸ œ Jq it holds

pj

p¸

Æ
1

1
Á

+ q
2

Á2T
1

1
Á

+ q ≠ 1
2

Á2T
Æ

1
Á

+ 1
1
Á

= 1 + Á,

since the function (1
Á

+ q)/(1
Á

+ q ≠ 1) is strictly decreasing in [1, +Œ). Therefore,
for every q œ {1, . . . , |J |} it holds that

q

jœKflJq
pj Æ (1 + Á)

q

jœKflJq
pÏq(j) = (1 +

Á)
q

jœHflJq
pj, and we conclude that

ÿ

jœK

pj =
|J |
ÿ

q=1

ÿ

jœKflJq

pj Æ (1 + Á)
|J |
ÿ

q=1

ÿ

jœHflJq

pj = (1 + Á)
ÿ

jœH

pj.

Given Á > 0, consider assign(B, T) obtained from the partitioning above and B
chosen according to Lemma 24. Then, using a binary search like procedure we look
for the smallest T such that the level ·(C) relaxation of the Lasserre/SoS hierarchy
is feasible for the long jobs. Invoking Theorem 6 we then obtain a schedule for
the long jobs. The short jobs are scheduled then using the classic list scheduling
algorithm [102].

Algorithm 1

Input: A scheduling instance and T Ø 1/m
q

jœJ pj.
Output: A schedule with makespan at most (1 + Á)T if there exists a schedule for

Jlong with makespan at most T ; infeasible otherwise.
1: For all (i, j) œ M ◊ J , initialize xij Ω 0.
2: Consider the (Á/2)-partitioning of Jlong and B = 1 + 42≠Á

Á2 |Jlong|.

3: if Las·(C)(assign(Jlong, B, T)) ”= ÿ then
4: construct the Lex-schedule xlex of Jlong; for all (i, j) œ M ◊ Jlong, xij Ω xlex

ij .
5: while Jshort ”= ÿ do
6: Pick k œ Jshort, and let i œ M such that i œ argmin{¸ œ M :

q

jœJ pjx¸j},
7: update xik Ω 1 and Jshort Ω Jshort \ {k}.

8: Return x.
9: else return infeasible.

Theorem 7. If Las·(C)(assign(Jlong, B, T)) ”= ÿ, then Algorithm 2 returns a schedule
with makespan at most (1 + Á)T .

5.6. Proof of Theorem 6 Chapter 5

Proof. Thanks to Theorem 6, if Las·(C)(assign(Jlong, B, T)) ”= ÿ, then xlex is an integral
schedule for Jlong with makespan at most T . In this case, jobs in Jshort are assigned
according to the list scheduling algorithm, for which we include the analysis only
for completeness. Let k œ Jshort and let i œ M such that xik = 1. Since T >
1/m

q

jœJ\{k} pj, it follows that T >
q

jœJ pjxij since this value is minimized at i œ M .
Therefore, the load of machine i after scheduling job k is upper bounded by

pk +
ÿ

jœJ :xij=1

pj <
Á

2
T +

3

1 +
Á

2

4

T = (1 + Á)T.

The approximation scheme works as follows. We perform a binary search procedure
to find the smallest integer value of T such that Las·(C)(assign(B, T)) ”= ÿ. To do
this it is enough to consider the lower bound 1/m

q

jœJ pj on the optimal makespan,
and the upper bound Á1/m

q

jœJ pjË + maxjœJ pj. For such value of T , thanks to
Theorem 7 we obtain a schedule with makespan at most (1 + Á)T . In particular,
Las·(C)(assign(Jlong, B, Cmax)) ”= ÿ and therefore the makespan of this schedule is at
most (1 + Á)T Æ (1 + Á)Cmax.

Regarding the running time, observe that the smallest job size in Jlong is (Á/2)T ,
so we have ⁄ Æ 2/Á. The size of C can also be upper bounded by (1 + 2/Á)4/Á2

, since
not more than 2/Á jobs can be allocated to single machine and the size of the partition
is less than 4/Á2. Since the running time of the algorithm is dominated by finding
a feasible solution at level ·(C) < 2

Á
(1 + 2

Á
)4Á≠2

of the Lasserre/SoS relaxation, the
algorithm runs in polynomial time.

5.6 Proof of Theorem 6

Preliminaries. Before proceeding with the proof we need to introduce some proper-
ties that are satisfied by the relaxations obtained from the Lasserre/SoS hierarchy.
Similarly to the SA and LS+ hierarchies, we also have convergence in this case to the
integer hull. In the following, we show a structural lemma that shows this property
as a corollary, but more crucially, a property that in general is not satisfied by weaker
hierarchies, known as the Decomposition Theorem [62]. We make an exposition that
is self-contained and we include the proof of these results in the context of the as-
signment polytope. The following properties are very simple and they will be useful
throughout the section.

Proposition 26. Let x œ Lasr(assign(B, T)). Then, the following holds:

i) For every I œ Pr+1(M ◊ J), xI œ [0, 1].

ii) If L œ Pr+1(M ◊ J) and I ™ L, then xL Æ xI .

Proof. To check i) it is enough to consider the principal submatrix of Mr+1(x) given
by the entries ÿ and I. Since it is positive semidefinite as well, the determinant is
non-negative, that is xI(1 ≠ xI) Ø 0 and then xI œ [0, 1]. To check ii) it is enough

49

to consider the principal submatrix of Mr+1(x) given by the entries I and L. This is
positive semidefinite, and so its determinant is non-negative. Since xIfiL = xL it holds
that xL(xI ≠ xL) Ø 0, thus xL Æ xI .

Given x œ Lasr(assign(B, T)), the extension of x, ext(x), is the vector with entries
in P(M ◊ J) such that ext(x)I = 0 if |I| > 2r + 2 and ext(x)I = xI otherwise. Given
a machine i œ M and a subset of jobs K ™ J , let x(i, K) be a vector with entries in
P2(r≠|K|)+2(M ◊ J) such that

x(i, K)I =
ÿ

H™J :K™H

(≠1)|H\K|ext(x)Ifi({i}◊H),

for every I œ P2(r≠|K|)+2(M ◊ J). The following property is usually called the Möbius
inversion in the moment matrices literature, or inclusion-exclusion in the probability
context.

Lemma 27. Let x œ Lasr(assign(B, T)) and i œ M . Then, x =
q

K™J x(i, K).

Proof. Let I œ P2r+2(M ◊J). By substituting, parameterizing in H\K and reordering
the summation it follows that

ÿ

K™J

x(i, K)I =
ÿ

K™J

ÿ

H™J :K™H

(≠1)|H\K|ext(x)Ifi({i}◊H)

=
ÿ

H™J

ÿ

R™J :R™H

(≠1)|R|ext(x)Ifi({i}◊H)

=
ÿ

H™J

ext(x)Ifi({i}◊H)

ÿ

R™J :R™H

(≠1)|R|.

Observe that if H ”= ÿ, then the last term of the summation is equal to zero. Therefore,
the summation above is equal to ext(x)Ifi({i}◊ÿ) = xI .

An important observation is that the equality above says that xÿ =
q

K™J x(i, K)ÿ

and xÿ = 1, therefore

x =
ÿ

K™J

x(i, K) =
ÿ

K™J :x(i,K)ÿ>0

x(i, K)ÿ ·

A

x(i, K)

x(i, K)ÿ

B

,

so x is a convex combination of the vectors {xC(i, K) : K ™ J and x(i, K)ÿ > 0} where
xC(i, K) = x(i, K)/x(i, K)ÿ. An important observation is that the vector xC(i, K) is
integral for machine i: If j œ K, it follows that

x(i, K)ij =
ÿ

H™J :K™H

(≠1)|H\K|ext(x){(i,j)}fi({i}◊H)

=
ÿ

H™J :K™H

(≠1)|H\K|ext(x)ÿfi({i}◊H) = x(i, K)ÿ,

5.6. Proof of Theorem 6 Chapter 5

and therefore xC(i, K)ij = 1. Now, given j /œ K, we split the summation between
those sets that contain K fi {j} and those that do not. Therefore,

x(i, K)ij =
ÿ

H™J :K™H

(≠1)|H\K|ext(x){(i,j)}fi({i}◊H)

=
ÿ

H™J\{j}:K™H

((≠1)|H\K| + (≠1)|H\K|+1)ext(x){i}◊(Hfi{j}) = 0.

In the following we state the Decomposition Theorem [62] adapted to our purposes,
which is a structural property of the Lasserre/SoS hierarchy that makes it stronger
than others. We include its proof for the sake of completeness, although it follows the
same lines than [62] and it could be skipped.

Theorem 8. Let x œ Lasr(assign(B, T)) for some r Ø ⁄. Then, for every machine
i œ M and K ™ J such that x(i, K)ÿ > 0, we have xC(i, K) œ Lasr≠⁄(assign(B, T)).
Furthermore, xC(i, K)ij = 1 for every j œ K and zero otherwise.

Proof of Theorem 8. It remains to show that xC(i, K) œ Lasr≠⁄(assign(B, T)). In
fact, we show a stronger result: For every i œ M and K ™ J , if x(i, K)ÿ > 0 then
xC(i, K) œ Lasr≠|K|(assign(B, T)). In particular, the constraints (5.2) at level r = 0
imply that K induces a configuration, Ci(xC(i, K)) œ C, and therefore |K| Æ ⁄.

The constraint (5.5) is clearly satisfied. We now check that constraint (5.4) is
satisfied, that is, Mr≠|K|+1(xC(i, K)) ≤ 0. Since Mr+1(x) ≤ 0, there exist a family of
vectors {–I : I œ Pr+1(M ◊ J)} such that for every U, V œ Pr+1(M ◊ J), xUfiV =
È–U , –V Í. Consider the vector –C(i, K) with entries in Pr≠|K|+1(M ◊ J) such that

–C(i, K)I =
1

Ò

x(i, K)ÿ

ÿ

H™J :K™H

(≠1)|H\K|–Ifi({i}◊H).

We show that for every U, V œ Pr≠|K|+1, xC(i, K)UfiV = È–C(i, K)U , –C(i, K)V Í and
that implies constraint (5.4) is satisfied.

x(i, K)ÿ · È–C(i, K)U , –C(i, K)V Í
=

ÿ

H™J :K™H

ÿ

G™J :K™G

(≠1)|H\K|+|G\K|È–Ufi({i}◊H), –V fi({i}◊G)Í

=
ÿ

H™J :K™H

(≠1)|H\K|
ÿ

G™J :K™G

(≠1)|G\K|xUfiV fi({i}◊H)fi({i}◊G).

Observe that |U | Æ r ≠ |K| + 1 and |V | Æ r ≠ |K| + 1, and therefore every term in
the summation above is well defined. Consider H ”= K and and element h œ H \ K.
Then, the second summation is equal to

ÿ

G™J :Kfi{h}™G

((≠1)|G\K| + (≠1)|G\K|+1)xUfiV fi({i}◊H)fiG = 0,

and therefore in the summation above it only remains the term for H = K, that is,
ÿ

G:K™G

(≠1)|G\K|xUfiV fi({i}◊K)fi({i}◊G)

=
ÿ

G:K™G

(≠1)|G\K|xUfiV fi({i}◊G) = x(i, K)UfiV ,

51

since GfiK = G. To check the constraints (5.1), we have that given I œ P2r+1(M ◊J),
ÿ

¸œM

x(i, K)Ifi{(¸,j)} =
ÿ

¸œM

ÿ

H™J :K™H

(≠1)|H\K|ext(x)Ifi{(¸,j)}fi({i}◊H)

=
ÿ

H™J :K™H

(≠1)|H\K|
ÿ

¸œM

ext(x)Ifi{(¸,j)}fi({i}◊H)

=
ÿ

H™J :K™H

(≠1)|H\K|ext(x)Ifi({i}◊H) = x(i, K)I ,

since ext(x) satisfies the constraint (5.5) for I as well. Finally, it remains to check
constraints (5.2) and (5.3). Let fl be any vector in {packi, breaki : i œ M \ {m}} fi
{packm}. Since Mr(fl ı x) ≤ 0, there exists a family of vectors {—I : I œ Pr(M ◊ J)}
such that for every U, V œ Pr(M ◊ J), (fl ı x)UfiV = È—U , —V Í. Let —C(i, K) be the
vector with entries in Pr≠|K|(M ◊ J) such that

—C(i, K)I =
1

Ò

x(i, K)ÿ

ÿ

H™J :K™H

(≠1)|H\K|—Ifi({i}◊H).

We show next that for every U, V œ Pr≠|K|, (flıxC(i, K))UfiV = È—C(i, K)U , —C(i, K)V Í
and that implies constraint (5.4) is satisfied. First, observe that

x(i, K)ÿ · È—C(i, K)U , —C(i, K)V Í
=

ÿ

H:K™H

(≠1)|H\K|
ÿ

G:K™G

(≠1)|G\K|(fl ı x)UfiV fi({i}◊H)fi({i}◊G).

We have that |U | Æ r ≠ |K| and |V | Æ r ≠ |K|, and therefore every term in the
summation above is well defined. As we showed before, in the summation above it
only remains the term for H = K. Therefore,

ÿ

G:K™G

(≠1)|G\K|(fl ı x)UfiV fi({i}◊(KfiG)) =
ÿ

G:K™G

(≠1)|G\K|(fl ı x)UfiV fi({i}◊G)

= (fl ı x(i, K))UfiV ,

and we conclude using that fl ı x(i, K) = x(i, K)ÿ · (fl ı xC(i, K)).

Other relevant property is that if the vector x was integral at some machine, then
it remains integral for a vector in the convex combination of the decomposition.

Proposition 28. Suppose that x œ Lasr(assign(B, T)) with r Ø ⁄, and it is integral
at machine h. Let K ™ J with xC(i, K)ÿ > 0. Then, xC(i, K)hj = xhj œ {0, 1} for all
j œ J .

Proof. Let j œ J such that xhj = 0. Observe every term in the summation defining
xC(i, K)hj contains {(h, j)}, and then by Proposition 26 they are all zero. It follows
that xC(i, K)hj = 0. On the other hand, if xhj = 1, since

q

¸œM x¸j = 1 it follows that
x¸j = for every ¸ ”= h. By using the argument above and since xC(i, K) œ assign(B, T)
by Theorem 8, it follows that xC(i, K)¸j = 0 for every ¸ ”= h and therefore xC(i, K)hj =
1 ≠ q

¸œM xC(i, K)¸j = 1.

5.6. Proof of Theorem 6 Chapter 5

Constructing the schedule. The proof of Theorem 6 follows in a constructive way. We
iteratively call the Decomposition Theorem 8 and obtain, in that way, many machines
that are integral. If we start from a high enough level of the hierarchy, we get at the
end a solution that is feasible for assign(B, T), and therefore, the configurations of
the integral machines have to obey the lexicographic order. We then show how to
extend the schedule to the rest of the machines using those configurations and prove
this schedule to be feasible.

The algorithm consist of two phases. In Phase 1, we use the solution obtained
from high enough level of the hierarchy to find the last machine which is fractionally
scheduled according to configuration C1 using the Decomposition Theorem, and pick
such a vector obtained from the convex combination. We then proceed by finding the
last machine scheduled fractionally according to C2, and so on. We end up with a
solution that is integral for all these machines, and it respects the lexicographic order
over the configurations. In Phase 2, we construct the schedule for the rest of the
machines and jobs that have not been assigned yet. We call the schedule obtained
in this way the lexicographic schedule, xlex. Below we provide the pseudocode of the
construction, and then we prove it outputs a feasible schedule.

Algorithm 2

Input: A solution x œ Las·(C)(assign(B, T)).
Output: A schedule xlex with makespan at most T .

1: For all (i, j) œ M ◊ J , initialize xlex
ij Ω 0, ¸ Ω 0 and y0 Ω x.

2: Û Phase 1: Inducing integrality of certain machines.
3: for ¸ = 1 to |C| do
4: Let M ¸ = {i œ M : exists K ™ J with y¸(i, K)ÿ > 0 and conf(K) = C¸}.
5: if M ¸ ”= ÿ then
6: let i¸ = max M ¸ and K¸ ™ J such that conf(K¸) = C¸ and y¸(i¸, K¸)ÿ > 0,
7: for every j œ K¸ let xlex

i¸j Ω 1,

8: y¸+1 Ω y¸
C(i¸, K¸).

9: else i¸ = Œ
10: Reset ¸ Ω 1, i0 = 0.
11: Û Phase 2: Extending the above solution greedily.
12: for ¸ = 1 to |C| do
13: if i¸ < Œ then
14: for max{iq : 0 Æ q < ¸, iq < Œ} < i < i¸ do
15: let Ki ™ J \ {j œ J : exists i œ M with xlex

ij = 1} where conf(Ki) = C¸;
16: for every j œ Ki, let xlex

ij Ω 1.

17: Return xlex.

Lemma 29. Let x œ Lasr(assign(B, T)) for r Ø ⁄, and i, h œ M with i < h. Suppose
that x is integral for machine h. Then, for every I such that x(i, I)ÿ > 0, we have
conf(I) Ølex Ch(x).

Proof. Let I ™ J with xC(i, I)ÿ > 0. By Theorem 8 we have that xC(i, I) œ
53

assign(B, T), xC(i, I)ij œ {0, 1} for all j œ J and conf(I) = Ci(xC(i, I)). In par-
ticular, from the symmetry breaking constraints it follows that LB(Ci(xC(i, I))) Ø
LB(Ch(x)), since by Proposition 28 the vector xC(i, I) remains integral at h and in
the same configuration than x. The function LB is strictly increasing, and therefore
conf(I) = Ci(xC(i, I)) Ølex Ch(x).

Observe that it is guaranteed by the algorithm that machine m is integral at the
end of Phase 1. In the following, we prove that at the end of every iteration of Phase
1, the machines between other two that have been induced to be integral by using the
decomposition are all fractionally scheduled according to the same configuration. In
particular, it guarantees that the greedy approach of Phase 2 works.

Lemma 30. Let ¸ œ {1, . . . , |C|}. For every i œ M such that i¸ = max{iq : 0 Æ q <
¸, iq < Œ} < i Æ i¸ and every q œ {1, . . . , s},

q

jœJq
y¸

ij = m(q, C¸).

Proof. Let i œ M be a machine such that i¸ < i Æ i¸. By Lemma 29, for every K ™ J
such that y¸(i, K)ÿ > 0 it holds that conf(K) Ølex C¸, but we show next that they are
all equalities. Suppose there exists K ™ J such that Ct = conf(K) >lex C¸ for some
t < ¸. That would imply that i Æ it < Œ, contradicting that i¸ < i. By Lemma 27,
for every q œ {1, . . . , s} it holds that

ÿ

jœJq

y¸
ij =

ÿ

jœJq

ÿ

K™J :y¸(i,K)ÿ>0

y¸(i, K)ÿ · yC(i, K)ij

=
ÿ

K™J :y¸(i,K)ÿ>0

y¸(i, K)ÿ

ÿ

jœJq

yC(i, K)ij

=
ÿ

K™J :y¸(i,K)ÿ>0

y¸(i, K)ÿ · m(q, C¸) = y¸
ÿ · m(q, C¸) = m(q, C¸).

Proof of Theorem 6. For every ¸ œ {1, . . . , |C|}, let N ¸ = {i œ M : i¸ < i < i¸}.
Observe that some of these sets could be equal to the ÿ. Thanks to Lemma 30, at the
end of Phase 1 we obtain a solution y|C| satisfying every constraint of assign(B, T), it

is integral for every machine in M \ fi|C|
¸=1N

¸ and every machine in N ¸ is fractionally
scheduled according to configuration C¸, for all ¸ œ {1, . . . , |C|}. We now see how we
construct a schedule with makespan at most – · T for the jobs that have not been
scheduled in Phase 1, and using only the machines in M̃ = fi|C|

¸=1N
¸.

Left J̃ be all the jobs that have not been scheduled in Phase 1. Consider the
bipartite graph with nodes given by the jobs J̃ on one side, and the other side are
the set of nodes R = M̃ ◊ {1, . . . , s}. There is an edge between j œ J̃ and (i, q) œ R

if y
|C|
ij > 0 and j œ Jq. We consider a transportation problem where the offer of

every node in J̃ is exactly 1, and the demand of a node (i, q) is equal to m(q, C¸) if
i œ N ¸. By construction the total offer equals to total demand and y|C| is a fractional
solution to this problem. Therefore, since this is a feasible transportation problem,
the integrality of the flow formulation implies that exists an integral solution and a
way of implementing Phase 2.

5.6. Proof of Theorem 6 Chapter 5

Given ¸ œ {1, . . . , |C|} with i¸ < Œ, in Phase 2 we have that every machine i œ N ¸

is such that conf(Ki) = C¸ = conf(K), where Ki are the jobs scheduled to i in xlex,
and K the jobs scheduled to i¸. The partitioning of the jobs is –-balanced, so we have
that

ÿ

jœJ

pjx
lex
ij =

ÿ

jœKi

pj Æ –
ÿ

jœK

pj = –
ÿ

jœJ

pjx
lex
i¸j Æ –T,

since the load at machine i¸ is guaranteed to be at most T thanks to Phase 1. That
concludes the proof.

55

Part II

Online Optimization: Selection
Problems

57

Chapter 6

Introduction

In the classical secretary problem (see, e.g., [41] for a survey) an employer wants to
select exactly one out of n secretaries arriving in random order. After each arrival,
the employer learns the relative merits of the new candidate (i.e., he can compare
the candidate with previous ones but no numerical quantity is revealed), and must
reject or accept immediately. Lindley [75] and Dynkin [35] show that the strategy of
sampling 1/e ¥ 0.37 fraction of the candidates and then selecting the first record has a
probability of at least 1/e ¥ 0.37 of selecting the best candidate and that no algorithm
can beat this constant. During the last decade, generalizations of this problem have
attracted the attention of researchers, specially due to applications in online auctions
and online mechanism design.

Arguably one the most natural extension is the generalized secretary problem
by Babaioff et al. [11]. In their setting, a set R of candidates of known size is pre-
sented to an algorithm on uniform random order. On arrival, each element r reveals
its hidden weight w(r) and the algorithm must irrevocably decide whether to select
it or not while preserving the independence of the set of selected elements on a given
independence system1 (R, I). The objective is to maximize the total weight of the
selected independent set. Mainly motivated by applications and by the richness of
their structural properties, Babaioff et al. focuses on the case in which (R, I) is a
matroid, 2, where this problem takes the name of Matroid Secretary Problem (MSP).
In the following, an – utility-competitive algorithm is one that returns an independent
set whose expected weight is at least 1/– times the weight of an optimum independent
set.

Babaioff et al. posts the well-known, and still open, Matroid Secretary Conjecture
which in its weak form states that there must be a constant competitive algorithm
for the MSP on any matroid, and on its strong form, claims that the constant is e.
They also provide a Threshold Price Algorithm (TPA) achieving an O(log fl) utility-
competitive ratio on matroids of rank fl. Better algorithms have improved this ratio

1An independence system is a pair (R, I) where R is finite, and I is a nonempty family of subsets
of R that is closed under inclusion. The sets in I are called independent sets.

2A matroid is an independence system (R, I) satisfying the next augmentation property: whenever
X, Y œ I, and |X| < |Y |, there must be an element r œ Y \ X such that X + r œ I.

59

to O(
Ô

log fl) by Chakraborty and Lachish [22] and later to the current best ratio of
O(log log fl) by Lachish [70] and independently by Feldman et al. [39].

The generalized secretary problem has also been studied on non-matroidal systems
such as knapsack [10], online matchings on graphs and hypergraphs [32,64,68] and LP
packings [65]. Babaioff et al. [11] show that for general independence systems every
algorithm on n elements must be Ω(log n/ log log n) utility-competitive and Rubinstein
[91] provides an O(log n log fl) competitive algorithm. Many works consider alternative
objective functions, such as minimum sum of ranks [1], time discounted variants [9],
convex costs under knapsack type restrictions [15] and submodular objectives [17,38,
40]. Another rich line of research focuses on relaxing the random order condition and
the power of the adversary setting the weights. There are O(1) competitive algorithms
for the MSP on the random order and assignment model [96], on the adversarial order
random assignment model [87, 96] and on the free order model [56]. Non-uniform
arrival orders have also been considered [63]. Related to this line of research is the
design of order-oblivious algorithms, which can sample a constant fraction of the
elements but afterwards, the arrival order may be arbitrary; and results related to
prophet inequality settings on which the weight of each element is a random variable
with known distribution but the arrival order is adversarial, see [8, 34,67,92].

6.1 Ordinal MSP versus Utility MSP

A common requirement for the mentioned algorithms for the MSP on general matroids
is that they require to use numerical weights: they all treat elements with similar
weights more or less equivalently. In contrast, in the definition of the classical secretary
problem, the decisions made by an algorithm only rely on the ordinal preferences
between candidates. This is a very natural condition as for many applications it is
difficult to determine (for instance, via an interview) a numerical weight representing
each candidate, but it is often simple to compare any two of them. For this reason we
restrict our study to the ordinal MSP in which the decision maker can only compare
seen elements. This is, it can check which element is higher in an underlying hidden
total order º. In particular, the algorithm cannot really compute the weight of a set.

However, matroids have the following extremely nice feature: it is possible to find
a maximum weight independent set using only ordinal information by greedily con-
structing an independent set using the order º. The set OPT found this way is the
unique lexicographically3 maximum independent of the matroid. So it is quite natural
to ask what can be done without numerical weights in the secretary setting. In order
to measure the performance of an algorithm we introduce three notions of compet-
itiveness for the ordinal MSP. We say that an algorithm is – ordinal-competitive if
for every nonnegative weight function compatible with the total order, the expected
weight of the output independent set ALG is at least 1/– the weight of OPT. It
is – intersection-competitive if the expected fraction of elements in OPT that is in-

3A set A = {a1, . . . , ak} ™ R is lexicographically larger than a set B = {b1, . . . , bk} ™ R of the
same size, with respect to the order º on A fi B if ai º bi for the first i on which ai and bi differ.

6.2. Our results and techniques Chapter 6

cluded into ALG is at least 1/–, and it is – probability-competitive if for every element
r œ OPT, the probability that r is included into ALG is at least 1/–. It is not hard
to see that any – ordinal-competitive algorithm is also – competitive in the classi-
cal (utility) sense and also that any – probability-competitive algorithm is also –

competitive in every other setting. All the mentioned algorithms [11, 22, 39, 70] for
the standard or utility MSP do not work in the ordinal model, and so the existence
of an –-utility competitive algorithm does not imply the existence of an – probabil-
ity/intersection/ordinal competitive algorithm. To the authors’ knowledge the only
known algorithms for ordinal MSP on general matroids (apart from the trivial O(fl)
probability-competitive that selects the top independent singleton using a classical
secretary algorithm) are Bateni et al.’s O(log2 fl) ordinal-competitive algorithm [17]
(which also works for submodular objective functions) and Soto’s variant of TPA [96]
which is O(log fl) ordinal-competitive.

Hoefer and Kodric [52] study the ordinal secretary problem obtaining constant
ordinal-competitive algorithms for bipartite matching, general packing LP and inde-
pendent sets with bounded local independence number. They also show that Feldman
and Zenklusen’s reduction [40] from submodular to linear MSP works in the ordinal
model.

MSP on specific matroids. An extensive amount of work has been done on the last
decade on the MSP on specific matroid classes including unitary [18, 20, 35, 47, 75],
uniform [10,66], transversal [11, 32,68], graphic [9, 11, 68], cographic [96], regular and
MFMC [33], k-column sparse [96] and laminar matroids [55,56,79]. Even though the
algorithms are stated for the utility MSP, many of the proofs work directly on either
the ordinal MSP under ordinal or even probability competitiveness. We include in
Table 6.1 a summary of all known results together with the improved bounds obtained
in this paper.

6.2 Our results and techniques

We first formalize our new competitiveness notions for ordinal MSP and study their
interrelations. We say that a performance notion is stronger than another if any algo-
rithm that is – competitive for the former is also – competitive for the latter. Under
this definition, we show that probability is stronger than ordinal and intersection, and
that ordinal is stronger than utility.

We first focus on developing a powerful technique to define strong algorithms for
the MSP on many classes of matroids. Informally (see the exact definition in Chapter
7), we say that an algorithm has forbidden set of size k if it samples without selecting
s ≥ Bin(n, p) elements and the following condition holds. Suppose that an element rú

of OPT arrives in a position t > s and let Rt be the set of elements that arrived on or
before time t. For each time step i between s + 1 and t ≠ 1 there is a random set Fi of
at most k forbidden elements such that if for every i, the element arriving at time i is
not forbidden (i ”œ Fi) then rú is sure to be selected. The following is the key lemma

61

Matroid Class Previous guarantees New algorithms
(u,o,p competitive) p-approx ref. forb.

Transversal o: 16 [32], 8 [68], e [64] e Alg. 3 1

µ exch. gammoids u: O(µ2) [68], eµ [64] µµ/(µ≠1) Alg. 4 µ
(type of hypermatching)

Matching matroids - 4 Alg. 5 2

µ exch. matroid packings - µµ/(µ≠1) Alg. 5 µ

Graphic o: 16 [11], 3e [9], 2e [68] 4 Alg, 6 2

Hypergraphic - 4 Alg, 6 2

k-sparse matroids o: ke [96] kk/(k≠1) Alg. 7 k

k-framed matroids - kk/(k≠1) Alg. 7 k

Semiplanar gammoids - 44/3 Alg. 8 4

Laminar o: 177.77 [55] 3
Ô

3 ¥ 5.196 Alg. 9 3

o: 3
Ô

3e ¥ 14.12 [56]
p: 9.6 [79]

Uniform U(n, fl) p: e [10] 1 + O(

log fl/fl) Alg. 10 -
o: 1 + O(

1/fl)

Cographic p: 3e [96] - - -

Regular, MFMC o: 9e [33] - - -

Table 6.1: State-of-the-art competitive ratios for all known matroid classes, including our
results.

that shows why algorithms with small forbidden sets are useful for the MSP.

Lemma 31 (Key Lemma). By setting the right sampling probability p = p(k), every
algorithm with forbidden sets of size k is –(k) probability-competitive, where

(p(k), –(k)) =

Y

]

[

(1/e, e) if k = 1,

(k≠ 1
k≠1 , k

k
k≠1) if k Ø 2.

Obtaining algorithms with small forbidden sets is simple for many matroid classes.
In fact, it is easy to see that the variant of the standard classical secretary algorithm
which samples s ≥ Bin(n, p) elements and then selects the first element better than
the best sampled element, has forbidden sets of size 1. Suppose that the maximum
element rú arrives at time t > s and denote by x the second best element among those
that have arrived up to time t. If x does not arrive at any time between s + 1 and
t ≠ 1 then for sure, x will be used as threshold and thus rú will be selected. In the
above notation, all forbidden sets Fi are equal to the singleton {x}. Using the key
lemma, by setting p = 1/e, this algorithm is e competitive.

We provide new algorithms that beat the state of the art guarantees for transver-
sal, graphic, k-sparse and laminar matroids. We also provide new algorithms for
other classes of matroids such as matching matroids, certain matroidal graph pack-
ings (which generalize matching matroids), hypergraphic matroids, k-framed matroids
(which generalize k-sparse matroids), semiplanar gammoids and low exchangeability

6.2. Our results and techniques Chapter 6

gammoids. As an interesting side result, we revisit Kleinberg’s 1 + O(fl≠1/2) ordinal-
competitive algorithm. We show that its probability-competitiveness is bounded away
from 1 and propose an algorithm that achieves a probability-competitive ratio of

1 + O(
Ò

log fl/fl). Our new results for specific classes of matroids are summarized in
Table 6.1, which, for completeness includes all matroid classes ever studied on the
MSP, even those for which we couldn’t improve the state of the art. In the references
within the table u, o and p stand for utility, ordinal and probability competitiveness
respectively.

Kesselheim et al.’s algorithm for online bipartite matching [64] uses a technique
very similar to that in the previous lemma to compute the expected weight contribu-
tion of the k-th arriving vertex, which is enough to prove asymptotically e + O(1/n)
utility-competitiveness for online bipartite matchings. In fact, for transversal ma-
troids, this yields to an e + O(1/n) ordinal-competitive algorithm. But their analysis
does not imply any guarantee on the probability notion. In the next section we show
by using a different analysis, that their algorithm has forbidden sets of size 1 and so
it is actually e probability-competitive (always, not just asymptotically).

We obtain as well results for the ordinal MSP on general matroids. For the weak
intersection notion one can show that exists a ln(2/e) intersection-competitive algo-
rithm for the MSP using a greedy variant. More interestingly, we show that in the
ordinal notion we can match the factor attained for the weaker utility variant. For
the stronger probability notion we do not attain the same competitiveness ratio.

Theorem 9. There exist an O(log log fl) ordinal-competitive algorithm and an O(log fl)
probability competitive algorithm for the MSP.

Even though Theorem 17 is attained by a very simple algorithm, we note that
standard ideas such as thresholding do not work for the intersection notion since ele-
ments outside OPT that are higher than actual elements from OPT do not contribute
to the objective. The algorithms mentioned in Theorem 9 are based on the recent
O(log log fl) utility-competitive algorithm by Feldman et al. [39]. Their algorithm
samples a fraction of the elements so as to classify most of the non-sampled ones into
h = O(log fl) weight classes consisting off elements whose weights are off by at most
a factor of 2. They implement a clever random strategy to group consecutive weight
classes together into buckets, each one containing roughly the same random number of
weight classes. On each bucket they define a single random matroid with the property
that if one picks an independent set from each one of these matroids, their union is
independent in the original one. Their algorithm then selects a greedy independent
set on each bucket matroid and outputs their union. Due to the random bucketing,
the expected number of elements selected on each weight class is at least Ω(1/ log h)
times the number of elements that OPT selects from the same class. This means that
the global algorithm is actually O(log h) = O(log log fl) utility-competitive.

In the ordinal setting we cannot implement this idea in the same way, since basi-
cally we do not have any weights. However, we can still partition the elements of the
matroid into ordered layers. The idea is to select a collection of thresholds obtained
from the optimum of a sample, and use them as separators to induce the layers. This

63

motivates the definition of the Layered-MSP (see Section 10.1). For both ordinal and
probability competitiveness we provide a reduction from the Layered-MSP to the or-
dinal MSP. For the ordinal notion, we select as thresholds a geometrically decreasing
(in value order) subset of the sample optimum, so we can partition the matroid into
h = O(log fl) layers. For the probability notion we use all the elements of the sample
optimum as thresholds. The crucial result in this part is that our reduction allows
to go from any g(h) competitive algorithm for the Layered-MSP to a g(O(1 + log h))
ordinal-competitive algorithm, and to a g(O(h)) probability-competitive algorithm.
In particular, by applying Feldman et al.’s algorithm, interpreting these layers as
weight classes, we get an O(log log fl) ordinal-competitive algorithm and an O(log fl)
probability-competitive algorithm for the original matroid.

6.3 Organization

In Section 6.4 we recall some definitions, fix some notation and formally describe the
performance guarantees for the ordinal MSP, studying their relations. In Chapter 7
we prove our key lemma for algorithms with small forbidden sets. We then in Chapter
8 show how devise simple algorithms for all the matroid classes mentioned using the
forbidden sets technique. The competitiveness ratios are summarized in Table 6.1. In
Chapter 9 we show an asymptotically 1 probability-competitive algorithm for uniform
matroids. Finally, in Chapter 10 we describe our new algorithms for general matroids
by proving Theorem 9 and we study the relations between the different competitiveness
notions.

General framework

for probability-

competitiveness (Chapter 7)

Forbidden sets:

Backward analysis

Applications of the frame-

work for different matroid

families (Chapter 8)

Finding small forbidden sets

Asymptotically 1 probability-

competitiveness for uniform

matroids (Chapter 9)

Kleinberg’s algorithm

Algorithms for general

MSP (Chapter 10)

Layered matroids and

Feldman et al.’s algorithm

Figure 6.1: Organization of Part II.

6.4. Preliminaries Chapter 6

6.4 Preliminaries

Recall that given a ground set R, a matroid (R, I) is an ordered pair where I ™ P(R)
is non-empty and it satisfies the following two conditions:

(M1) if I œ I and I Õ ™ I, then I Õ œ I,

(M2) if I1 and I2 are in I and |I1| < |I2|, then there is an element e œ I2 \ I1 such
that I1 fi {e} œ I.

Every family satisfying condition (M1) is called an independence system. The con-
dition (M2) is known as the augmentation axiom. A set in I that is a maximal
independent set for the inclusion is called a base. To make notation lighter, we use +
and ≠ for the union and difference of a set with a single element respectively. That
is, Q + r ≠ e = (Q fi {r}) \ {e}. By the augmentation axiom is clear that every base
has the same cardinality and this number is called the rank of a matroid. There is an
stronger statement than (M2) which is called the strong basis exchange: For every pair
of bases X, Y œ I and for all x œ X \Y , there exist y œ Y \X such that X ≠x+y œ I
and Y ≠ y + x œ I. That is, there exists a way of swaping x with an element y that
preserves the independence of both sets.

Example 1. Given a set R and k œ N, such that |R| Ø k, consider I = {F ™ R :
|R| Æ k}, that is, every subset of cardinality at most k. This is called the k-uniform
matroid of R and its bases are the subsets of R with cardinality exactly equal to k.

Example 2. Given a graph G = (V, E), consider I to be the set of all subsets of edges
X ™ E such that (V, X) is a forest. The pair (E, I) is called the graphic matroid of
G, and its bases are the maximal forests in G. In particular, when G is connected,
the bases are the subsets of edges forming a spanning tree of G.

Example 3. Given a matrix A œ R
L◊R, consider I to be the set of subsets X ™ R such

that the columns indexed by X are linearly independent in R
L. The pair (R, I) is

called the linear matroid of A. In particular, every graphic matroid can be represented
by considering the linear matroid obtained from the adjacency matrix of G. We will
go back later in this part to this notion of matroid representation.

The matroids we consider are ordered, i. e., there is a. strict total order º over the
ground set R = {r1, . . . , rn} and we denote it by M = (R, I, º). We call º the value
order and say that r1 is the highest valued element, r2 is the second one, and so on,
then r1 º r2 º · · · º rn. The elements of I are ordered according to the lexicographic
order induced by º.

There are many combinatorial problems that can be modeled as an ordered ma-
troid, and the following is a classic example. Given a graph G, suppose we have a total
order over the edges and we look for the lexicographically maximum spanning tree.
This problem can be solved by running the greedy Kruskal’s algorithm. Usually the

65

problem is posed considering weights over the edges instead of an order. In that case,
one looks for a spanning tree of maximum weight, which is not necessarily unique.
We say that a nonnegative weight function w : E æ R+ is compatible with the value
order if the following holds: For every i, j œ [n], if ri º rj then w(ri) Ø w(rj).

· · ·

r1 º r2 º r3 º r4 · · · rm≠1 º rm

Figure 6.2: The optimal lexicographic base (red elements) can be found by the greedy
algorithm feeded with elements from highest to smallest in the order. An element is
selected as long as it preserves the independence.

In terms of matroids, the problem above is to find the lexicographically optimum
base of the graphic matroid of G, and naturally, the same question can be formulated
for a general matroid. The greedy algorithm solves this problem: From the highest to
smallest element, select an element and add it to the current solution if this union is
an independent set. By matroid properties, for every subset Q ™ R, there is a unique
lexicographically optimum base OPT(Q) obtained by applying the greedy algorithm
in the order º, over the set Q. Note that for every compatible weight function the
set OPT = OPT(E) is a maximum weight independent set. We reserve the use of
superscripts k œ N on a set Q to denote the subset of the highest min{k, |Q|} valued
elements of Q. In particular Rk and OPTk denote the set of the top k elements of the
matroid and of OPT respectively. We also reserve n and fl to denote the number of
elements of R and its rank respectively.

The definition of rank extends for subsets of R, that is, the rank of Q ™ R is
the cardinality of its bases, fl(Q) = max{|I| : I œ I, I ™ Q}, and the span of Q
is span(Q) = {r œ R : fl(Q + r) = fl(Q)}. In matroids, OPT has the property of
improving any subset in the following sense.

Lemma 32. Let Q ™ R. Then, OPT fl Q ™ OPT(Q).

Proof of Lemma 32. Let r = rk be an element of OPTflQ. Since rk is selected by the
Greedy algorithm we have that r ”œ span(Rk≠1). But then r ”œ span(Rk≠1 fl Q) and
so it is also selected by the Greedy algorithm applied only on the set Q. Therefore,
r œ OPT(Q).

In the (utility/ordinal) MSP, the elements of a (nonnegatively weighted/ordered
matroid) are presented in uniform random order to an online algorithm that does not
know a priori the (weights/value order) of unrevealed elements. At any moment, the
algorithm can (view the weight of/compare in the total order) any pair of revealed
element. When a new element r is presented, the algorithm must decide whether to
add r to the solution and this decision is permanent. The algorithm must guarantee

6.5. Measures of competitiveness: Ordinal MSP Chapter 6

that the set of selected elements is at all times independent4 in the matroid. The
objective of the algorithm is to return a set ALG as close as OPT as possible according
to certain competitiveness metric.

Recall that the algorithm considered for the MSP have access to the elements in an
online and uniformly at random fashion. We denote by r1 the first element arriving, r2

the second, and so on. In general, Rt = {r1, r2, . . . , rt} is the set of elements arriving
up to time t.

6.5 Measures of competitiveness: Ordinal MSP

Recall that an algorithm for the utility MSP returning a set ALG is – Ø 1 utility-
competitive if

E[w(ALG)] Ø w(OPT)/–. (6.1)

We introduce three measures of competitiveness for the ordinal MSP. Recall that the
algorithm only learns ordinal information about the elements but it cannot access
numerical weights. In this sense, they are closer to the classical secretary problem
than the utility variant (for a discussion about this aspect in the original secretary
problem, see [41]).

Since the weight function remains completely hidden for the algorithm, the first
measure of competitiveness we consider is the following. An algorithm is – ordinal-
competitive if for every weight function w compatible with the value order, condition
(6.1) holds. An equivalent characterization of competitiveness is obtained by the
following lemma.

Lemma 33. An algorithm is – Ø 1 ordinal-competitive if and only if for every k œ [n],

E|ALG fl Rk| Ø |OPT fl Rk|/–. (6.2)

Proof. Consider an – ordinal-competitive algorithm returning a set ALG and let k œ
[n]. Define the weight function w(r) = 1 if r œ Rk and zero otherwise, which is
compatible with the value order. Then, E[|ALG fl Rk|] = E[w(ALG)] Ø 1

–
w(OPT) =

1
–
|OPT fl Rk|. Now suppose that (6.2) holds. Then, for any compatible function w,

and defining w(rn+1) := 0,

E[w(ALG)] =
n

ÿ

k=1

(w(rk) ≠ w(rk+1)) · E[|ALG fl Rk|]

Ø
n

ÿ

k=1

(w(rk) ≠ w(rk+1)) ·
1

–
|OPT fl Rk| =

1

–
w(OPT).

4For particular classes of matroids, we may assume that M is known beforehand by the algorithm,
or alternatively that it is discovered by the algorithm via an independence oracle that allows it to
test any subset of revealed elements. In any case, it is a standard assumption that the algorithm at
least know the number of elements n in the matroid.

67

In the second measure we consider, we want to make sure that every element of
the optimum is part of the output with large probability. We say that an algorithm
is – Ø 1 probability-competitive if for every e œ OPT,

Pr(e œ ALG) Ø 1/–. (6.3)

Finally, in the third measure we want to maximize the number of elements in the
optimum that the algorithm outputs. We say an algorithm is – Ø 1 intersection-
competitive if

E[|OPT fl ALG|] Ø |OPT|/–. (6.4)

Relation between variants. The ordinal and probability measures are in fact stronger
than the standard utility notion. That is, any – ordinal/probability-competitive al-
gorithm yields to an – utility-competitive algorithm. Furthermore, the probability is
the strongest of them all.

Lemma 34. If an algorithm is – ordinal-competitive then it is – utility-competitive.
If an algorithm is – probability-competitive then it is also – ordinal, utility and
intersection-competitive.

Proof of Lemma 34. If an algorithm is – ordinal-competitive then by definition it is
– utility-competitive. Now consider an – probability-competitive algorithm returning
a set ALG. For any k œ [n], we have E[|ALG fl Rk|] Ø E[|ALG fl OPT fl Rk|] =
q

rœOPTflRk Pr(r œ ALG) Ø |OPTflRk|
–

. which means that the algorithm is – ordinal-
competitive, and therefore, it is also – utility-competitive. To see that the algorithm
is also – intersection-competitive we note that

E[|ALG fl OPT|] =
ÿ

eœOPT

Pr(e œ ALG) Ø |OPT|

–
.

Probability Ordinal Utility

Intersection

Figure 6.3: The probability notion is the strongest. The intersection notion is incom-
parable to the ordinal one.

We provide in Chapter 10 a comparison between the different competitiveness mea-
sures. An algorithm for the utility variant, which recall is able to use the elements’
weights, may not be adapted to the ordinal MSP, since in this model it can not use any
weight information. In other words, the existence of an – utility-competitive for a ma-
troid (or matroid class) does not imply the existence of an –-competitive algorithm for
any of the other three measures. It is worth noting that the intersection-competitive

6.5. Measures of competitiveness: Ordinal MSP Chapter 6

measure is incomparable with the other measures. It is not hard to find fixed fami-
lies of instances for which a given algorithm is almost 1 intersection-competitive but
has unbounded utility/ordinal/probability-competitiveness. There are also examples
achieving almost 1 ordinal-competitiveness but unbounded intersection-competitive
ratio.

69

Chapter 7

Protect to be competitive

In this chapter we introduce and describe a technique we call forbidden sets, that
allows us to analyze algorithms for the ordinal MSP. Thanks to this technique we
devise algorithms for many matroid classes previously studied in the context of MSP
and to other matroids that have not been studied in this context. Furthermore,
our results improve upon the best known competitive ratios for almost all studied
matroid classes, and we study them in details in Chapter 8. Recall that |R| = n, and
for t œ [n], rt is the random element arriving at time t, and Rt is the random set of
elements arriving at or before time t.

Definition 35. An algorithm has forbidden sets of size k if it has the following
properties.

1. (Correctness) The algorithm returns an independent set ALG.
2. (Sampling property) It chooses a sample size s at random from Bin(n, p) for

some fixed sampling probability p, and it does not accept any element from the
first s arriving ones.

3. (k-forbidden property) For every triple (X, Y, rú) with Y ™ R, rú œ OPT(Y)
and X ™ Y ≠ rú, one can define a set F(X, Y, rú) ™ X of at most k forbidden
elements of X such that the following condition holds. Let t Ø s + 1 be a fixed
time. If rt œ OPT(Rt) and for every j œ {s + 1, . . . , t ≠ 1}, rj ”œ F(Rj, Rt, rt)
then rt is selected by the algorithm.

To better understand the k-forbidden property suppose that a fixed element rú œ
OPT arrives at step t Ø s + 1, that is rt = rú. Note that the set Rt≠1 of elements
arriving before rt is a random subset of size t ≠ 1 of R ≠ rt, and no matter the choice
of Rt≠1, rú is always part of OPT(Rt) = OPT(Rt≠1 + rt). Inductively, for j = t ≠ 1
down to j = 1, once Rj is specified, rj is a uniform random element of Rj, and Rj≠1

is defined as Rj ≠ rj. Moreover, this choice is independent of the previous random
experiments (i.e., the choices of {rj+1, . . . , rt≠1, Rt≠1}). The k-forbidden property (3.)
says that if for every j œ {s + 1, . . . , t ≠ 1} element rj is not a forbidden element
in F(Rj, Rt, rt) then rú is guaranteed to be selected by the algorithm. Designing
algorithms with small forbidden sets is the key to achieve constant competitiveness as
our key Lemma (that we restate below) shows.

71

Lemma 36 (Key Lemma). By setting the right sampling probability p = p(k), every
algorithm with forbidden sets of size k is –(k) probability-competitive, where

(p(k), –(k)) =

Y

]

[

(1/e, e) if k = 1,

(k≠ 1
k≠1 , k

k
k≠1) if k Ø 2.

Proof. Fix an element rú from OPT and condition on the realization of s ≥ Bin(n, p),
on the time t on which rú = rt arrives and on the set Y = Rt – rt of the first t elements
arriving. Abbreviate Pt(·) = Pr(·|rt = rú, Rt = Y, s). By Lemma 32, rú œ OPT(Rt)
and by the k-forbidden property,

Pt(r
ú œ ALG) Ø Pt (For all j œ {s + 1, . . . , t ≠ 1}, rj œ Rj \ F(Rj, Y, rú))

=
t≠1
Ÿ

j=s+1

Pr(rj œ Rj \ F(Rj, Y, rú)) Ø
t≠1
Ÿ

j=s+1

A

j ≠ k

j

B

+

,

where x+ = max{0, x}. The equality above holds because of the independence of the
random experiments defining iteratively rt≠1, rt≠2, down to rs+1 as mentioned before
the statement of this lemma. By removing the initial conditioning we get

Pr(rú œ ALG) Ø Es≥Bin(n,p)
1

n

n
ÿ

t=s+1

t≠1
Ÿ

j=s+1

A

1 ≠ k

j

B

+

. (7.1)

To compute the right hand side we use the following auxiliary process. Suppose
that n people participate in a game. Each player x arrives at a time ·(x) chosen
uniformly at random from the interval [0, 1]. Each person arriving after time p selects
a subset of k partners from the set of people arriving before them, without knowing
their actual arrival times (if less than k people have arrived before her, then all of
them are chosen as partners). A player wins if she arrives after time p and every one
of her partners arrived before time p. Since the arrival times are equally distributed
and the event that two people arrive at the same time has zero probability the arrival
order is uniform among all possible permutations. Furthermore, the number of people
arriving before time p distributes as Bin(n, p). Using these facts, the probability that
a given person x wins is exactly the right hand side of (7.1). But we can also compute
this probability using its arrival time ·(x) as

⁄ 1

p
Pr(all partners of x arrived before time p | ·(x) = ·) d· Ø

⁄ 1

p
(p/·)kd·,

which holds since the arrival time of each partner of x is a uniform random variable
in [0, ·], and conditioned on · , each partner arrives before time p with probability
p/· . Since x may have less than k partners, we don’t necessarily have equality. We
conclude that for every rú œ OPT,

Pr(rú œ ALG) Ø
⁄ 1

p
(p/·)kd· =

Y

_

]

_

[

≠p ln(p), if k = 1,

p ≠ pk

k ≠ 1
, if k Ø 2.

Chapter 7

By optimizing the value of p as a function of k, we obtain that the probability of
rú œ ALG is 1/–(k), with –(k) as in the statement of the lemma and the probability
achieving it is p = p(k).

The idea of analyzing an algorithm as a series of stochastically independent ex-
periments which defines the reverse arrival sequence appears very early in the history
of the secretary problem. One can prove that the algorithm for the classical secretary
problem, that samples s ≥ Bin(n, p(1)) elements and then selects the first element
better than all the sampled ones, is e probability-competitive. In fact, it has forbid-
den sets of size 1. In our notation, for each (X, Y, rú) with rú the maximum element
of Y and X ™ Y ≠ rú, define the forbidden set F(X, Y, rú) as the singleton OPT(X).
The 1-forbidden condition states that if the element rt arriving at time t is a record,
that is, rt œ OPT(Rt), and if for every time j œ {s + 1, . . . , t ≠ 1}, rj ”œ OPT(Rj) (i.e.,
the j-th arriving element is not a record), then rt will be chosen by the algorithm.
Since all forbidden sets have size at most 1, setting the sampling probability to be
p(1) = 1/e guarantees the probability-competitive ratio of –(1) = e.

edcba

321

Figure 7.1: Given a bipartite graph, in the transversal matroid a set of nodes on the
bottom side is independent if there exists a matching covering them. The thick edges
{{a, 3}, {b, 1}, {c, 2}} form a matching providing a witness for {a, b, c}.

Independence witness. It turns out that for many matroid classes there is a combi-
natorial object that acts as certificate for testing independence. That is, a set X is
independent on a given matroid if and only if each element r œ X can be mapped to
an object (e.g., an edge covering r, a path ending in r, a subgraph covering r, etc.) r̃
such that the set X̃ = {r̃ : r œ X} satisfies a combinatorial property (e.g., a matching
covering X, a collection of edge/node disjoint paths connecting X with some source,
a collection of disjoint subgraphs covering X). We call X̃ a witness for the indepen-
dence of X. A set X may have multiple witnesses, but we will always assume that
there is a canonical witness, witness(X), that can be computed by the algorithm and
furthermore, the choice of the witness cannot depend on the set of elements seen so
far nor on its arrival order. The fact that the witnesses do not depend on the arrival
order makes them amenable to the analysis by the reverse arrival sequence analysis
above, which in turn, will help us to devise algorithms with constant-size forbidden
sets.

73

Chapter 8

Matroids with small forbidden sets

In this chapter we show how to apply the forbidden sets technique to devise algorithms
for different matroid families. The goal is to find algorithms having small forbidden
sets. In particular, if an algorithm has constant size forbidden sets then this imme-
diately implies that it is O(1) probability-competitive. We show this in many cases,
such as transversal, graphic and laminar matroids. Other matroid families are con-
sidered, and we obtain probability-competitive algorithms for all of them, beating the
best known ratios even for the weaker utility variant.

8.1 Transversal matroids and Gammoids

Let G = (L fi R, F) be a bipartite graph with independent set L and R, where the
elements of R are called the terminals of G. The transversal matroid T [G] associated
to G is the matroid with ground set R whose independent sets are those X ™ R that
can be covered by a matching in G. We call G the transversal presentation of T [G].

edcba

321 L

R

Figure 8.1: Presentation of a transversal matroid with terminals R = {a, b, c, d, e}.
The sets {a, b, c} and {a, d, e} are bases.

Let G = (V, E) be a digraph and two subsets S, R ™ V called sources and terminals
respectively, not necessarily disjoint. The gammoid, Γ(G, S, R), is the matroid over

75

R, where X ™ R is independent if X is linked to S, that is, if there are node-disjoint
directed paths from S and ending on each element of X. We say that (G, S, R) is the
gammoid presentation of the matroid. Note that transversal matroids can be seen as
gammoids by declaring all the non-terminals as sources and directing the arcs in the
transversal presentation from sources to terminals.

In the Transversal MSP, a transversal presentation G for an unknown ordered
matroid M = T [G] is either revealed at the beginning of the process, or it is re-
vealed online in the following way. Initially, the algorithm only knows the number of
terminals. The terminals in R arrive in random order and whenever r œ R arrives,
it reveals its ordinal value information and the set of its neighbors in G, which is
a subset of L. In the gammoid MSP, a gammoid presentation (G, S, R) for an un-
known gammoid is either revealed at the beginning or it is revealed online as elements
from R arrive: When a terminal r œ R arrives, all possible S-r paths are revealed.
At that time, the algorithm has access to the subgraph Gt ™ G only containing the
arcs belonging to every possible S-Rt path and can test whether a vertex is in S or not.

Exchangeability parameter for gammoids. Let us define a parameter to control the
competitiveness of our algorithm for the gammoid MSP. Let X be an independent set
and let Q be a path linking a terminal r œ R \ X outside X to S. The exchangeability
µ of the presentation (G, S, R) is the maximum number of paths that Q intersects in
a collection of S-X paths. The intuition behind is the following: in order to include Q
into the collection of paths while keeping disjointness we have to remove or exchange
at least µ paths from the collection. For instance, if we define the diameter d of the
gammoid presentation as the maximum number of nodes in any source-terminal path,
then µ is at most d. If furthermore the terminals are sinks, that is out-degree 0, then
µ is at most d ≠ 1, since paths ending at different terminals cannot intersect on a
terminal.

Remark 37. This is the case for transversal matroids: their diameter in the gam-
moid presentation is 2 and their exchangeability is 1. For our results, we assume the
algorithm also knows an upper bound µ for the exchangeability parameter, and in this
case we call the problem µ-gammoid MSP or bounded exchangeability gammoid MSP.

Most of the known algorithms for transversal MSP [11, 32, 68] work with ordi-
nal information. The best algorithm so far, by Kesselheim et al. [64] achieves an
asymptotically optimal utility-competitive ratio of e + O(1/n) for the more general
(non-matroidal) vertex-at-a-time bipartite online matching problem, in which edges
incident to the same arriving vertex may have different weights and the objective is
to select a matching of maximum total weight. For the specific case of transversal
matroid this algorithm can be implemented in the ordinal model, meaning that is
e + O(1/n) ordinal-competitive. Interestingly, for the broader bipartite matchings
case, Kesselheim’s algorithm does not work in the ordinal model, but the previous
algorithm by Korula and Pál [68] does, achieving 8 ordinal-competitiveness. A recent

8.1. Transversal matroids and Gammoids Chapter 8

result by Hoefer and Kodric [52] improves this factor to 2e ordinal-competiive for bi-
partite matchings.

a b c d e

1

2 3 S

R

Figure 8.2: Presentation of a gammoid with terminals R = {a, b, c, d, e} and sources
S = {1, 2, 3}. The sets {a, b, e} and {a, b, d} are bases. The diameter of this gammoid
presentation is 4, then the exchangeability µ is at most 3.

The µ-gammoid MSP problem is a special case of the (non-matroidal) hypergraph
vertex-at-a-time matching (HVM) with edges of size at most µ + 1 studied by Ko-
rula and Pál [68] and later by Kesselheim et al.’s [64] online hypermatching problem
(see the discussion in those papers for precise definitions). They achieve O(µ2) and
eµ utility-competitiveness respectively. Below we propose an algorithm for the µ-
gammoid MSP that has forbidden sets of size µ. Provided we know µ upfront we get an
–(µ) probability-competitive algorithm. Note that for µ Ø 2, –(µ) = µ1+1/(µ≠1) < eµ,
so our guarantee strictly improves on that of previous algorithms for HVM and hy-
permatching, on the special case of µ-gammoids.

Our algorithms. We use the convention that for every vertex v covered by some
matching M , M(v) denotes the vertex matched with v in M . Furthermore, for every
independent set X ™ R, we select canonically a witness matching MX := witness(X)
that covers X. In the case of gammoids, for any set P of node-disjoint paths linking
some set X to S, and for every v œ X, P(v) denotes the unique path in P linking v
to S. We also say that P covers a vertex u if u is in the union of the vertices of all
paths in P . Furthermore, for every independent set X ™ R, we canonically select a
fixed collection of node-disjoint S-X directed paths PX := witness(X) linking X to

77

S, and we assume that this choice does not depend on the entire graph but only on
the minimum subgraph containing all arcs in every S-X path. We also recall that
on step i, Ri = {r1, . . . , ri} denotes the set of revealed terminals and Gi denotes the
subgraph of the presentation currently revealed.

Algorithm 3 for transversal matroids.

Input: Presentation of a transversal matroid T [G] whose terminals arrive in random order.
ÛM and ALG are the currently chosen matching and terminal vertices respectively.

1: ALG Ω ÿ, s Ω Bin(n, p), M Ω ÿ
2: for i = s + 1 to n do
3: if ri œ OPT(Ri) and ¸i := MOPT(Ri)(ri) is not covered by M then
4: ALG Ω ALG + ri, M Ω M fi {¸iri}

5: Return ALG.

Algorithm 4 for µ-bounded gammoids.

Input: Presentation of a gammoid Γ := Γ(G, S, R) whose terminals arrive in random order.
ÛP and ALG are the currently chosen collection of node-disjoint paths and terminals
selected respectively.

1: ALG Ω ÿ, s Ω Bin(n, p), P Ω ÿ.
2: for i = s + 1 to n do
3: if ri œ OPT(Ri) and no vertex in the path POPT(Ri)(ri) is covered by P then
4: ALG Ω ALG + ri, P Ω P fi {POPT(Ri)(ri)}

5: Return ALG.

The algorithms above can compute OPT(Ri) without knowing the terminal weights,
by just using the greedy algorithm. This requires that one is able to check indepen-
dence algorithmically in each case. Indeed, for the transversal MSP algorithm, a
set X ™ Ri is independent if and only if the maximum cardinality matching on
Gi[NG(X) fi X] has size |X|. In the case of gammoids, one can check if X ™ Ri is
independent, by a standard reduction to a flow problem on Gi.

Theorem 10. Algorithm 4 has forbidden sets of size equal to the exchangeability µ
of the gammoid presentation. If µ is known, we can set p = p(µ) to get an –(µ) =
µ1+1/(µ≠1) probability-competitive algorithm.

Proof. By construction, the set P contains node-disjoint paths covering ALG at every
time step, hence the algorithm is correct. The sampling condition is also satisfied
by design. Let rú œ OPT(Y) where Y is a fixed set of terminals of size t Ø s + 1,
and suppose that Rt = Y and rt = rú. Note that rt is selected by the algorithm if
all vertices in the path POPT(Rt)(rt) are not covered by the collection P prior to that
iteration. In other words, by defining the forbidden sets to be

F(X, Y, rú) = {v œ OPT(X) : POPT(X)(v) intersects POPT(Y)(r
ú)},

8.2. Matroidal Graph Packings Chapter 8

the element rt is selected if rj ”œ F(Rj, Rt, rt) for all j œ {s + 1, . . . , t ≠ 1}. By
definition, each forbidden set has size at most µ.

Algorithm 3 is essentially Algorithm 4 applied over the gammoid presentation of
the transversal matroid T [G]. Together with Remark 37, it follows the result for the
transversal MSP.

Theorem 11. Algorithm 3 has forbidden sets of size 1, and therefore, by choosing
p = 1/e, it is an (optimal) e probability-competitive for transversal matroids.

We remark that every constant utility-competitive algorithm so far known for
transversal MSP requires to learn a bipartite presentation online. It is an open problem
to find constant competitive algorithms for transversal matroids that only access the
matroid via an independence oracle.

8.2 Matroidal Graph Packings

Let H be a finite set of graphs. An H-packing of a host graph G = (V, E) is a collection
Q = {Hi}i=1...k of node-disjoint subgraphs of G such that each H œ Q is isomorphic to
some graph in H. A vertex in G is said to be covered by Q if it belongs to some graph
of Q. Let R ™ V be a set of vertices called terminals and consider the independence
system M(R, G, H) over R whose independent sets are all X ™ R for which there
is an H-packing covering X in G. We say that H is matroidal if M(V (G), G, H)
defines a matroid for every graph G. Note that in this case, if M(R, G, H) is the
restriction of M(V (G), G, H) to a subset R, then it is also a matroid. We call every
such M(R, G, H) a graph packing matroid.

a

b

cd

e

f

g

hi

j

Figure 8.3: The Petersen graph (V, E). In the matching matroid M(V, G, {K2}), the
set {a, g, d} is independent since it is covered by the matching {{a, g}, {g, b}, {c, d}}.

79

Matroidal families. For an extensive treatment see Loebl and Poljak [76], Janata [58]
and the references therein. In the following examples, Kn denotes the complete graph
on n vertices and Sn denotes the star with n legs. If H = {K1} then M(V, G, H) is
the free matroid over V where all sets are independent. If H = {K2} then M(V, G, H)
is the matching matroid of G, whose independent sets are all vertex sets that can be
covered by a matching. If for some k the family H = {S1, S2, . . . , Sk} is a sequential
set of stars, then M(V, G, H) is matroidal. It is, in fact, the matroid union of many
matching matroids. The family M(V, G, H) is also matroidal if H = {K2, H} where
H is either a factor-critical graph or a 1-propeller.1 For most known matroidal classes
there are polynomial time algorithms available to check independence. This is the
case for all classes above. Observe that transversal matroids are instances of matching
matroids restricted to one side of the bipartition of the host graph.

As we did for gammoids, we also define an exchangeability parameter µ to control
the competitiveness of our algorithm. Consider an H-packing Q of G, and a subgraph
H ™ G from the class H covering a terminal r œ R that is not covered by Q. The
exchangeability µ of M(R, G, H) is the maximum number of terminals over all such
Q and H that would become uncovered if we removed all graphs from Q that intersect
H, namely,

µ := max

Y

]

[

ÿ

HÕœQ : V (H)flV (HÕ) ”=ÿ

|V (H Õ) fl R| : H covers a terminal not covered by Q

Z

^

\

.

This parameter may be complicated to compute but there is a simple upper bound:
let h be the maximum number of vertices of a graph from H. Then the worst possible
situation occurs when Q contains only graphs of size h, and H is also a graph of size h
intersecting every graph in Q on exactly one vertex (different from r). In this case, all
graphs from Q must be removed, so the number of newly uncovered vertices becomes
h · (h ≠ 1). This means that µ Æ h(h ≠ 1).

In the H-Packing MSP, the algorithm receives a collection H of graphs. A host
graph G = (V, E) with terminals R ™ V is either revealed at the beginning or it is
revealed online as elements from R arrive: when a terminal r œ R arrives, all possible
edges that belong to a graph H ™ G with r œ V (H) with H œ H (via isomorphism)
are revealed. More precisely, let Rt denote the set of terminals revealed up to time t.
At that time the algorithm has access to the subgraph Gt ™ G induced by all vertices
belonging to every possible subgraph H ™ G, with H œ H that intersects Rt. The
algorithm can also test whether a vertex is a terminal or not. We also assume that
an upper bound µ for the exchangeability parameter is available, and in this case we
call the problem bounded H-packing MSP. Analogously to previous sections, for every
independent X we select a canonical packing QX := witness(X) that does not depend
on the arrival order.

In the description of the algorithm we use the convention that for every H-packing
Q of a set X, and for every v œ V covered by Q, Q(v) denotes the unique graph in Q

1A factor-critical graph is one such that H ≠ x admits a perfect matching for all x œ V (H). A
1-propeller is a graph having a leaf r, and a vertex c such that for every x œ V (H) ≠ c, H ≠ x admits
a perfect matching.

8.2. Matroidal Graph Packings Chapter 8

covering v. We also recall that on step i, Ri = {r1, . . . , ri} denotes the set of revealed
terminals and Gi denotes the subgraph of the presentation currently revealed.

Algorithm 5 for µ bounded H-packing matroids.

Input: A matroidal family H and a host graph G = (V, E) whose terminals R ™ V arrive
in random order.

Û Q and ALG are the currently chosen H-packing and terminals selected respectively.
1: ALG Ω ÿ, s Ω Bin(n, p), Q Ω ÿ.
2: for i = s + 1 to n do
3: if ri œ OPT(Ri) and ri is already covered by Q. then
4: ALG Ω ALG + ri.
5: else if ri œ OPT(Ri) and Q fi {QOPT(Ri)(ri)} is an H-packing. then
6: ALG Ω ALG + ri, Q Ω Q fi {QOPT(Ri)(ri)}.

7: Return ALG.

The algorithm can compute OPT(Ri) without knowing the terminal weights, by
applying the greedy algorithm for M(R, G, H).

Theorem 12. Algorithm 5 has forbidden sets of size equal to the exchangeability µ
of the H-presentation. If µ is known beforehand, we can set p = p(µ) to obtain
an –(µ) = µ1+1/(µ≠1) probability-competitive algorithm for µ-bounded graph packing
matroids.

Proof. Correctness and the sampling condition for forbidden sets are satisfied by de-
sign. Now let rú œ OPT(Y) where Y is a fixed set of terminals of size t Ø s + 1, and
suppose that Rt = Y and rt = rú. Terminal rt is selected by the algorithm if either
Q already covers it on arrival, or if all vertices in the graph QOPT(Rt)(rt) were not
covered by graphs in Q prior to that iteration. In any case by defining as forbidden
sets

F(X, Y, rú) = {v œ OPT(X) : V (QOPT(X)(v)) intersects V (QOPT(Y)(r
ú)) \ {rú}},

we have that rt is selected if rj ”œ F(Rj, Rt, rt) for all j œ {s + 1, . . . , t ≠ 1}. By
definition, each forbidden set has size at most µ.

We remark that the competitiveness achievable by an algorithm heavily depends
on the way the matroid is presented. For instance, consider a matching matroid
M with host graph G = (V, E). Note that the exchangeability of this matroid is
µ Æ 2(2 ≠ 1) = 2. If the graph is presented online then we can use the previous
algorithm to obtain an –(2) = 4 probability-competitive algorithm. If on the other
hand the graph is presented upfront, then we can use the fact that every matching
matroid is transversal [36] to construct a transversal presentation of M and then
apply our e probability-competitive algorithm using that presentation.

81

8.3 Graphic and Hypergraphic Matroids

The graphic matroid M[G] = (R, I) associated to a graph G = (V, R) is the one whose
independent sets are all the subsets of edges X ™ R such that (V, X) is a forest. The
hypergraphic matroid M[G] associated to a hypergraph G = (V, R), whose edges may
be incident to any number of vertices, is the matroid over R whose independent sets
X ™ R are those, for which one can canonically choose for every r œ X an edge
denoted by edge(r, X) = u(r)v(r) in KV = (V,

1

V
2

2

) with both endpoints in r in such

a way that all edge(r, X), for r œ X are different, and the collection edge(X) =
{edge(r, X) : r œ X} is a forest [77]. If all the edges of the hypergraph have size 1 or
2 we are back in the graphic case.

One can check that the hypergraphic matroid M[G] = (R, I) is the matroid

induced from the graphic matroid M[KV] via the bipartite graph (R fi
1

V
2

2

, Ẽ) with

ef œ Ẽ if f ™ e. In other words, X is independent in the hypergraphic matroid M[G]
if edge(X) is independent in the graphic matroid M[KV]. Moreover, if G is already
a graph, edge(X) = X and edge(r, X) = r for all r œ X.

a

c

d

b

e

f

g

h

i

j

k a

c

d

b

e

f

g

h

i

j

k

Figure 8.4: Canonical orientation (at the right) of the forest at the left.

In the graphic MSP/hypergraphic MSP we assume that the underlying graph or
hypergraph G of a matroid M[G] is either revealed at the beginning or revealed online
in the natural way: we learn edges as they arrive. Let X ™ R be an independent set.
By orienting each connected component of the forest edge(X) from an arbitrary root,
we obtain a canonical orientation arc(X) of edge(X) (for convenience, we denote by
arc(e, X) the oriented version of edge(e, X)) with indegree deg≠

arc(X)(v) Æ 1 for every
vertex v. The converse is almost true in the following sense. If A is a set of arcs
(maybe including loops) such that deg≠

A(v) Æ 1 for every vertex then the underlying
graph is not necessarily a forest in KV , but a pseudoforest: every connected compo-
nent contains at most 1 cycle, which is directed. In fact, the edge sets of pseudoforest
of a given graph J are exactly the independent set of the so called bicircular matroid
of J . This matroid is transversal with presentation H, where V (H) = V (J) fi E(J)
and ve œ E(H) if and only if e is incident to v. This is the starting point for our
algorithm for graphic matroids.

The algorithm. The plan is to only consider edges that belong to the current optimum.
Furthermore, if we select an edge, then we orient it and include it into an arc set A
with the property that each vertex has maximum in-degree 1. Instead of using a

8.3. Graphic and Hypergraphic Matroids Chapter 8

random orientation (as in the algorithms by Korula and Pál [68] or Soto [96]), at
every step we use the canonical orientation of the current optimum forest. In order
to avoid closing a cycle we also impose that an arc (u, v) can not be added to A if
deg≠

A(u) = 1 or deg≠
A(v) = 1. The same algorithm works on hypergraphic matroids

if we replace each independent set X on the hypergraphic matroid by its associated
forest edge(X). We also recall that on step i, Ri = {r1, . . . , ri} denotes the set of
revealed edges. The algorithm is fully described below.

Algorithm 6 for graphic or hypergraphic matroids.

Input: A hypergraphic matroid M[G] with underlying hypergraph G = (V, R), whose edges
arrive in random order.

Û ALG and A are the currently selected independent set and the orientation of its
associated forest.

1: ALG Ω ÿ, s Ω Bin(n, p), A Ω ÿ.
2: for i = s + 1 to n do
3: if ri œ OPT(Ri) then
4: Let ai = (ui, vi) be the canonical orientation of edge(ri, OPT(Ri)).
5: if deg≠

A(ui) = 0 = deg≠
A(vi) then

6: ALG Ω ALG + ri, A Ω A + ai

7: Return ALG.

Theorem 13. Algorithm 6 has forbidden sets of size 2. By setting p = p(2) = 1/2,
we get an –(2) = 4 probability-competitive algorithm for both graphic and hypergraphic
matroids.

Proof. We first prove that the edge set Â obtained from A by removing its orientation
is acyclic. Suppose by contradiction that at the end of some step i, A contains for the
first time a set C such that its unoriented version Ĉ is an undirected cycle. Since this is
the first time a cycle appears, ri must be selected and ai = (ui, vi) must be contained in
C. Since ai is included in A, we know that after its inclusion, deg≠

A(vi) = deg≠
C(vi) = 1

(before its inclusion, the indegree of vi was 0) and that deg≠
A(ui) = deg≠

C(ui) = 0. But
since Ĉ is a cycle the outdegree of ui is deg+

C(ui) = 2 ≠ deg≠
C(ui) = 2. But then, there

must be another vertex x in C with indegree 2. This cannot happen because at every
moment the indegree of each vertex is at most 1.

The proof above guarantees correctness of the algorithm: for the graphic case,
we have Â = ALG and for the hypergraphic case, each edge ri of ALG is mapped
to edge(ri, OPT(Ri)) œ Â which form a forest. In both cases we conclude ALG is
independent.

Since the sampling condition is satisfied by design, we only need to prove the
2-forbidden condition. Let rú œ OPT(Y) where Y is an arbitrary set of t Ø s + 1
edges, and suppose that Rt = Y and rt = rú. The algorithm would then define an
arc at = (ut, vt) and will proceed to add rt to ALG provided that no arc aj = (uj, vj)
considered before has head vj equal to ut or vt. In other words, by defining

F(X, Y, rú) =
Ó

f œ OPT(X) : arc(f,OPT(X)) is not oriented
towards any endpoint of edge(rú,OPT(Y))

Ô

83

then rt is selected if rj ”œ F(Rj, Rt, rt) for all j œ {s + 1, . . . , t ≠ 1}. Moreover,
since each arc set arc(OPT(X)) = {arc(f, OPT(X)) : f œ OPT(X)} has maximum
indegree 1, there are at most 2 arcs in arc(OPT(X)) oriented towards an endpoint of
edge(rú, OPT(Y)). So each forbidden set has size at most 2.

8.4 Column Sparse Representable Matroids

An interesting way to generalize graphic matroids is via their matrix representation.
We say that a matroid M is represented by a m ◊ n matrix M with coefficients in
a field F if we can bijectively map the elements of its ground set to the columns of
M in such a way that the independent sets of M are in correspondence with the sets
of columns that are linearly independent in F

m. Graphic matroids are representable
by their adjacency matrix interpreted in GF (2). In fact they can be represented in
any field. Matroids that have this property are called regular. Note that each graphic
matroid is representable by a very sparse matroid: each column has only 2 non-zero
elements.

Following [96] we say that a matroid is k column sparse representable if it admits
a representation whose columns have at most k nonzero entries each. These matroids
include many known classes such as graphic matroids (k = 2), rigidity matroids
[101] on dimension d (k = 2d) and more generally matroids arising from rigidity
theory from d-uniform hypergraphs. These matroids are called (k, ¸)-sparse matroids
(where 0 Æ ¸ Æ kd ≠ 1), and they are, using our notation, kd column sparse [97].
Interesting cases include generic bar-joint framework rigidity in the plane [71], which
are characterized by (2, 3)-sparse matroids in dimension d = 2 (they are 4 column
sparse) and generic body-bar framework rigidity in R

d which are characterized by

(
1

d+1
2

2

,
1

d+1
2

2

)-sparse matroids [98] (they are d
1

d+1
2

2

column sparse).

S

W

W

W

W

U

{a,b} {a,c} {a,d} {b,c} {b,d} {c,d}

a 1 1 1 0 0 0
b 1 0 0 1 1 0

c 0 1 0 1 0 1

d 0 0 1 0 1 1

T

X

X

X

X

V

a

b

c d

Figure 8.5: Representation of the graphic matroid in the graph K4. The columns
representing the tree {{a, b}, {a, c}, {c, d}} are linearly independent.

Let M be a matroid with k sparse representation M and let X be an indepen-
dent set of columns. It is easy to show (see e.g., [96]) that we can select one nonzero
coordinate from each column in X such that no two selected entries lie on the same

8.4. Column Sparse Representable Matroids Chapter 8

row. In other words, each independent set in M is also independent in the transversal
matroid whose bipartite representations has as color classes the rows and columns
of M and where a column i is connected to a row j if entry Mij is nonzero. Even
though the converse is not true, we can use the intuition obtained from graphic ma-
troids to extend the algorithm to k column sparse representable matroids with only
few changes. Instead of doing that, we are going to further generalize this class of
matroids in a different direction.

Multiframed matroids. A matroid M is called a frame matroid [104] if it can be
extended to a second matroid MÕ (i.e. M is a restriction of MÕ) which possesses
a frame B, that is, a base such that every element of M is spanned by at most 2
elements of B. For instance, take a graphic matroid M[G] and consider the graph

H =
3

V (G) + v0, E(G) fi {v0v : v œ V (G)}
4

where v0 is a new vertex. Then, M[H] is an extension of M[G] containing the star
centered at v0 as basis B := ”H(v0) = {v0v : v œ V (G)}. Since every edge uv in G
is spanned by the set {v0u, v0v} of (at most) 2 elements, we conclude that B is a
frame for M[G]. We define a new class of matroids, called multiframed or k-framed
matroids, in a natural way. A matroid M = (R, I) is a k-framed matroid if it admits
an extension MB = (RÕ, I) having a k-frame B, i.e., a base such that each element
of M is spanned by at most k elements of B. Without loss of generality we assume
that B fl R = ÿ (by adding parallel elements) and RÕ = B fi R. In other words, MB

is obtained by adjoining the k-frame B to the original matroid M. Observe that if
M is represented by a k column sparse matrix M , then the matrix [I|M] obtained
by adjoining an identity (in the field F) represents an extension MB of M where
the columns of I form a base B such that each column in M is spanned by at most
k elements from B (exactly those elements associated to the k nonzero rows of the
column). This means that k-framed matroids generalize k column sparse matroids.
This generalization is strict since there are frame matroids that are non-representable.

We define the k-framed MSP as the variant of the MSP in which the k-framed
matroid M, and its extension MB is either fully known beforehand or we simply
have access to B and an independence oracle for MB (in the case of k column sparse
matroid it is enough to receive the columns of the representation in an online fashion).

We need some notation. For every r in the ground set R, we define the set
C(B, r) = {y œ B : B + r ≠ y is independent} which is also the minimal subset of
B spanning r. It is easy to see that C(B, r) + r is the unique circuit in B + r, often
called the fundamental circuit of r with respect to the base B in MB. Define also
for each y œ B, the set K(B, y) = {r œ R : B + r ≠ y is independent}. It is easy to
see that K(B, y) + y is the unique cocircuit inside R + y in the matroid MB, often
called the fundamental cocircuit of y with respect to the base B. Observe that by
definition, r œ K(B, y) if and only if y œ C(B, r). Furthermore, by definition of
k-framed matroids, C(B, r) has at most k elements. Before presenting the algorithm
we need the following result.

85

Lemma 38. Let X be an independent set of a k-framed matroid M with k-frame B.
There is a (canonical) injection fiX : X æ B such that B + x ≠ fiX(x) is independent
for all x œ X.

Proof. Extend X to a base X Õ of MÕ. By the strong basis exchange axiom there is a
bijection fi : X Õ æ B such that B + x ≠ fi(x) is a base for all x œ X Õ. The restriction
of fi to X yields the desired injection.

Algorithm 7 for k-framed matroids.

Input: A k-frame matroid M, with independence oracle access to MB and to B. The
elements of M arrive in random order.

Û ALG is the set currently selected and BÕ is the set of elements of the frame B that
have been marked.

1: ALG Ω ÿ, s Ω Bin(n, p), BÕ Ω ÿ.
2: for i = s + 1 to n do
3: if ri œ OPT(Ri) and C(B, ri) fl BÕ = ÿ then
4: ALG Ω ALG + ri, BÕ Ω BÕ + fiOP T (Ri)(ri)

5: Return ALG.

Theorem 14. Algorithm 7 has forbidden sets of size k. By setting p = p(k), we get
an –(k) probability-competitive algorithm for k-framed matroids.

Proof. Suppose that the algorithm is not correct, and let Z = {ri(1), ri(2), . . . , ri(¸)}
be a circuit in ALG with s + 1 Æ i(1) Æ i(2) Æ · · · Æ i(¸). When ri(1) arrived, y :=
fiOPT(Ri(1))(ri(1)) œ C(B, ri(1)) was marked. Furthermore, our algorithm guarantees
that for every element ri œ ALG with i > i(1), y ”œ C(B, ri). In particular, y œ
C(B, ri(j)) if and only if j = 1, or equivalently, K(B, y)flZ = {ri(1)}. But this implies
that the circuit Z and the cocircuit K := K(B, y) + y intersect only in one element,
which cannot happen in a matroid. Therefore, the algorithm is correct.

Since the sampling condition is satisfied by design, we only need to prove the
k-forbidden condition. Let rú œ OPT(Y) where Y is an arbitrary set of t Ø s + 1
elements, and suppose that Rt = Y and rt = rú. The algorithm accepts rú if and only if
no element of C(B, rt) was marked before. Let y œ C(B, rt) be an arbitrary element.
A sufficient condition for y not being marked at step j is that fiOPT(Rj)(rj) ”= y.
Therefore, if we define the forbidden sets

F(X, Y, rú) = {f œ OPT(X) : fiOPT(X)(f) œ C(B, rú)}

it is clear that rt is selected if rj ”œ F(Rj, Rt, rú) for all j œ {s+1, . . . , t≠1}. Moreover,
since fiOPT(X) is injective we conclude that |F(X, Y, rú)| Æ |C(B, rú)| Æ k.

8.5 Laminar Matroids and Semiplanar Gammoids

In this section we define special classes of gammoids amenable for our techniques.
An arc-capacitated gammoid (ACG) M[N] is defined by a directed network N =

8.5. Laminar Matroids and Semiplanar Gammoids Chapter 8

(G, o, R, c) where G = (V, E) is a digraph, o œ V is a single source, R ™ V \ {o} is a
collection of terminals and c : E æ Z

+ is a strictly positive integer capacity function
on the arcs of G. The ground set of M[N] is R and every set J ™ R is independent if
and only if there exist an o-R flow on N satisfying the capacity constraints on the arcs
and where each j œ J receives one unit of flow. Without loss of generality we assume
that every terminal is reachable from o via a directed path. It is easy to see that
ACGs are equivalent to gammoids without loops, but they are more closely related to
transportation or distribution applications.

A semiplanar gammoid is an ACG whose digraph G admits a semiplanar drawing,
which is a planar drawing where all terminals are on the x-axis, the source node is
on the positive y-axis, and the rest of the graph (arcs and nodes) are strictly above
the x-axis, in a way that they do not touch the infinite ray starting upwards from the
source node. It is easy to see that G admits a semiplanar drawing if and only if it
is planar and all the terminals and the source are contained in the same face (which
could be a cycle, a tree or more generally, a pseudoforest).

Laminar Matroids. An important example of semiplanar gammoids are laminar ma-
troids. A collection L of non-empty subsets of a finite set of terminals R is called
laminar if for every L, H œ L, L fl H œ {L, H, ÿ}. The laminar matroid M[R, L, c],
where L is a laminar family over R and c : L æ Z

+ is a positive integer capacity
function on the sets of L, is the matroid with ground set R and whose independent
sets are those X ™ R for which the number of elements that X contains in any set
of the laminar family does not exceed its capacity, i.e. |X fl L| Æ c(L). Observe
that, since c is positive, every singleton is independent. Furthermore, without loss of
generality we assume that R œ L (with c(R) equal to the rank of the matroid) and
that all singletons are in L (with c({r}) = 1 for each r œ R). Adding those sets does
not destroy laminarity.

b c d ea f g h

Figure 8.6: Laminar family.

The Hasse diagram of the containment order of L forms a tree T Õ where every set
in L is a child of the smallest set in L that strictly contains it. Note that the leaves
of T Õ are in bijection with the terminals, and that the root (unique maximum) vR

represents R. Consider the directed graph G obtained by adding an auxiliary vertex
o to T Õ connected to vR and orienting the tree away from o. If we put o on the upper
semiaxis, draw G with all arcs pointing downwards, and assign capacities to each arc
equal to the capacity of the laminar set associated to the arc’s head, then we obtain
a semiplanar representation of M[R, L, c]. Furthermore, the terminals in R appear in

87

the x-axis in the left-to-right order induced by the drawing of the tree.

Semiplanar drawings and neighbours. In what follows we fix a semiplanar drawing
G of a semiplanar gammoid M[N]. We identify R with the set [n] by labeling the
terminals from left to right as they appear in the x-axis. For convenience in the rest
of the presentation, we add to G two auxiliary nodes on the x-axis, 0 and n+1, where
0 is located to the left of 1, and n + 1 is located to the right of n, together with the
arcs o0 and o(n + 1). Observe that by our assumptions on the drawing, it is possible
to add those arcs without destroying semiplanarity.

For any set J ™ [n] and any y œ J fi {0, n + 1}, we denote by LeftJ(y) the closest
element to y in J fi{0} that is located strictly to its left (understanding LeftJ(0) = 0).
Similarly, we denote by RightJ(y) the first element in J fi {n + 1} located to the right
of y (understanding RightJ(n + 1) = n + 1). For y œ [n] \ J , we call LeftJ+y(y) and
RightJ+y(y) its left and right neighbors in J (note that they maybe equal to 0 or n+1
and thus are not necessarily elements of J).

Ancestors, tree-order and representatives. In the future we will map each terminal
outside an independent set J to one or more of its neighbors in J . For the case in
which G is a tree (i.e., for laminar matroids) we want to consistently assign each
element to just one of them. We do this as follows. For every pair of nodes x, y in G,
let xGy be the unique undirected x-y path in G. We say that x is an ancestor of y
(and y is a descendant of x) if oGy contains oGx; in that case we denote x ˆ y (and
y ı x). Note that (V, ı) is a partial order, and in fact, it is a join-semilattice where
x ‚ y is the lowest common ancestor of x and y. Note that by our drawing choice, for
any i œ [j, jÕ] ™ [0, n + 1] we have i ı j ‚ jÕ. In particular, if [j, jÕ] ™ [k, kÕ] ™ [0, n + 1]
then j ‚ jÕ ı k ‚ kÕ.

For every nonempty set J ™ [n], and for every terminal y œ [n], we define its
representantive fiJ(y) in J such that

fiJ(y) =

Y

_

_

]

_

_

[

y if y œ J ,

LeftJ+y(y) if y œ [n] \ J and y ‚ LeftJ+y(y) @ y ‚ RightJ+y(y),

RightJ+y(y) if y œ [n] \ J and y ‚ LeftJ+y(y) ˆ y ‚ RightJ+y(y).

This element is well defined since for all y œ [n] \ J , both y ‚ LeftJ+y(y) and
y ‚ RightJ+y(y) belong to oGy and so one is an ancestor of the other. Observe
that fiJ(y) is never equal to 0 (because then o = 0 ‚ y @ RightJ+y(y) ‚ y which is a
contradiction as o is the root), nor n+1 (because then o = (n+1)‚y ı LeftJ+y(y)‚y ı
vR @ o). In particular, fiJ(y) œ {LeftJ+y(y), y, RightJ+y(y)} fl J . A graphical way
to understand the definition of the representative of an element y outside J is the
following: let j and jÕ be the left and right neighbors of y in J respectively and call
oGj and oGjÕ the left and right paths respectively. The representative of y is its left
neighbor (respectively, its right neighbor) if and only if by starting from y and walking
up on G against its orientation, the first path hit is the left path (respectively the
right path). In case of a tie, the representative is the right neighbor (see Figure 8.7).

8.5. Laminar Matroids and Semiplanar Gammoids Chapter 8

1 1513 14876540 18112 3 169 10 12 17

22

3

2

4

2 2

3

5

Figure 8.7: Semiplanar drawing of a laminar matroid with ground set [17]. Nonunit arc
capacities are shown. Below we show the partition (fiJ(j))jœJ induced by the independent
set J = {3, 5, 10, 13, 15}.

We claim also that for every j œ J , the set of elements to its right having j as
representative is an interval of the form [j, k] with k < RightJ(j). Indeed, this is true
if RightJ(j) = n + 1. Suppose now that jÕ := RightJ(j) Æ n, and that the claim
does not hold. Then, there must be two consecutive terminals i, i + 1 œ [j, jÕ] with
fiJ(i + 1) = j and fiJ(i) = jÕ. But then, we get the following contradiction:

(i + 1) ‚ jÕ ı i ‚ jÕ ı i ‚ j ı (i + 1) ‚ j @ (i + 1) ‚ jÕ

where the first inequality holds since [i+1, jÕ] ™ [i, jÕ], the second, by the definition of
fiJ(i), the third since [j, i] ™ [j, i + 1] and the fourth by definition of fiJ(i + 1). Since
every element in (j, jÕ) either has j or jÕ as representative, we conclude, in fact, that
the entire set fi≠1

J (j) of elements with j as representative is an interval of terminals
enclosing j but strictly contained in [LeftJ(j), RightJ(j)]. In other words (fiJ(j))jœJ

is a partition of [n] into |J | intervals.

The algorithms. In what follows we describe our algorithms for semiplanar gammoids
and laminar matroids. Apart from some special case occurring when the sample is
empty, our algorithms are extremely simple. Each one computes the optimal solution
OPT(Rs) of the sample and leave their elements unmarked. When a terminal ri that is
part of the current optimum arrives, it checks if the (closest neighbors / representative)
of ri in OPT(Rs) (are / is) unmarked. If so, it marks (them / it) and selects ri as
part of the solution.

89

Algorithm 8 for semiplanar gammoids.

Input: An semiplanar gammoid with a fixed semiplanar drawing
1: ALG Ω ÿ, s Ω Bin(n, p),
2: if s = 0 then
3: ALG Ω {r1}
4: else B Ω ÿ.
5: for i = s + 1 to n do
6: if ri œ OPT(Ri), LeftOPT(Rs)+ri

(ri) ”œ B and RightOPT(Rs)+ri
(ri) ”œ B then

7: ALG Ω ALG + ri, and
B Ω B fi {LeftOPT(Rs)+ri

(ri), RightOPT(Rs)+ri
(ri)}

8: Return ALG.

Algorithm 9 for laminar matroids.

Input: A laminar matroid with a fixed semiplanar drawing
1: ALG Ω ÿ, s Ω Bin(n, p),
2: if s = 0 then
3: ALG Ω {r1}
4: else B Ω ÿ.
5: for i = s + 1 to n do
6: if ri œ OPT(Ri) and fiOPT(Rs)(ri) ”œ B then
7: ALG Ω ALG + ri, and

B Ω B fi {fiOPT(Rs)(ri)}.

8: Return ALG.

Theorem 15. Algorithm 8 has forbidden sets of size 4. By setting p = p(4) =
3

Ò

1/4 we get an –(4) = 44/3 ¥ 6.3496 probability-competitive algorithm for semiplanar
ACGs.

The previous result applied to laminar matroids already beat the best guarantees
known for that class (9.6 [79] and 3

Ô
3e [56, 57]). But we can do better for laminar

matroids since for those, there is a unique path from the source to each terminal.

Theorem 16. Algorithm 9 has forbidden sets of size 3. By setting p = p(3) =
Ò

1/3

we get an –(3) = 3
Ô

3 probability-competitive algorithm for laminar matroids.

We observe that this algorithm is very similar to the 3
Ô

3e competitive algorithm
of Jaillet et al. [56, 57]. Note that the partition of the terminals given by fiOPT(Rs)

induces a unitary partition matroid P Õ. After the sample, Algorithm 9 simply selects
on each part, the first arriving element that is part of the current optimum. It can
be shown that the partition matroid P Õ we define is the same as the one defined
in [57, Section 3.2]. The main algorithmic difference is that in [57], the authors use
the algorithm for the classic secretary problem to select one terminal on each part
that has constant probability of being the largest element. Instead, we select the first

8.5. Laminar Matroids and Semiplanar Gammoids Chapter 8

arriving element on each part that is part of the optimum at the time of arrival. This
small change makes the competitive ratio of our algorithm e times smaller than theirs,
but the analysis is more involved. To prove Theorems 15 and 16 we need to develop
some extra tools.

For every nonempty independent set J ™ [n] in the semiplanar gammoid M[N] we
chose an arbitrary but fixed integral o-J flow fJ satisfying the arc capacity constraints
and saturating J . Define the unit capacity network N1(J) = (G1(J), o, R, 1), where
G1(J) is obtained from G by splitting each arc uv with fJ(uv) Ø 2 into fJ(uv) parallel
arcs (we keep all arcs uv with fJ(uv) œ {0, 1}, we also keep the arcs o0 and o(n + 1)).
We do this in such a way that G1(J) is still semiplanar. The matroid M[N1(J)] is
the unit capacity semiplanar gammoid associated to J .

Observe that every path in G1(J) corresponds canonically to an unsplitted path
in G going through the same nodes. Furthermore, every arc-disjoint collection P of
o-R paths in G1(J) can be regarded, by unsplitting parallel arcs, as an o-R flow f on
G such that each arc e œ E(G), satisfies f(e) Æ fJ(e) Æ c(e). Therefore, we have the
following important lemma.

Lemma 39. Any independent set in M[N1(J)] is also independent in the original
matroid M[N].

We say that two paths P and Q in the drawing of a graph cross if P enters Q on
the left, shares zero or more arcs with Q and then exits Q on the right, or viceversa.
A collection of paths is mutually noncrossing if no pair of them cross.2 The o-J
flow fJ in the network N can be mapped to an o-J flow f 1

J in N1(J) in a natural
way. By applying flow-decomposition on f 1

J we get a collection {P k}kœJ of arc-disjoint
paths. Define also P 0 and P n+1 as the paths consisting of a single arc o0 and o(n+1)
respectively. By a standard planar uncrossing argument, we can assume that all paths
in {P k}kœJfi{0,n+1} are mutually noncrossing (but they can still share internal nodes,
in fact all paths P k with k œ J contain o and vR, see Figure 8.8). For j œ J + 0, call
jÕ = RightJ+0(j) and define the collection of arcs Aj ™ E(G1(J)) as those that are
drawn in the closed planar region Rj bounded by P j, P jÕ

and the x-axis. Since paths
{P k}kœJfi{0,n+1} form a topological star whose tips are in the x-axis we conclude that
{Rk}kœJ+0 is a division of the region bounded by P 0, P n+1 and the x-axis, and thus
{Ak}kœJ+0 is a covering of all arcs in G1(J). In fact, if 1 Æ jÕ ”= n + 1, then every arc
of P jÕ

belongs to pieces Aj and AjÕ

, while each arc in G1(J) \ {P k}kœJ belongs to a
single piece of the covering. Furthermore, the only terminals contained in region Rj

are those in [j, jÕ].

Lemma 40. Let y œ [n] \ J , and j = LeftJ+y(y), jÕ = RightJ+y y be its neighbors
in J . Then there is a directed o-y path DJ(y) in G1(J) whose arc set is completely

2An alternative way to understand this definition is to imagine that in the drawing nodes and
arcs have positive area (they are circles and thick lines). A drawing of a path is any continuous non-
self-intersecting curve drawn inside the union of all circles and thick lines associated to the nodes
and arcs of P visiting them in the correct order. A collection of paths are mutually noncrossing if
we can find drawings such that no pair of them intersects. Note that two noncrossing paths can still
share arcs and nodes.

91

1 12116540 1492 3 137 8 10

3

2

1 12116540 1492 3 137 8 10

Figure 8.8: On the left, a flow fJ associated to the independent set J = {1, 4, 6, 11} on
a semiplanar gammoid M[N] with ground set R = [13] (0 and 14 are auxiliary nodes). On
the right, M[N1(J)] and the partition of the drawing into regions R0, R1, R4, R6 and R11

induced by the paths {P j}jœJfi{0,14}. The regions R0, R4 and R11 are shaded.

8.5. Laminar Matroids and Semiplanar Gammoids Chapter 8

contained in Aj. Furthermore, DJ(y) can be chosen so that it arcs-intersects at most
one path P̄ in (P k)kœJ . In the semiplanar case, P̄ must be one of P j and P jÕ

, and in
the laminar case, P̄ = P fiJ (¸).

Proof. Note that y œ [j, jÕ] is in the planar region Rj. Since y is reachable from o in
G, there is a path Q from o to y in G1(J). Let v be the last vertex in Q contained in
the vertices of P j and P jÕ

(v maybe in one or both paths), say v is in P̄ œ {P j, P jÕ

}.
By concatenating the initial piece of P̄ from o to v and the final piece of Q from v to
y we get a path DJ(y) that is completely contained in Aj and that intersects the arcs
of at most one path in {Pj, PjÕ}.

Consider the same situation in the laminar case. All arcs in P j, P jÕ

and Q are
splitted versions of arcs in oGj, oGjÕ and oGy respectively. The vertex v defined
above satisfies v = y ‚ j ‚ jÕ. If y ‚ j @ y ‚ jÕ then v = y ‚ j, fiJ(y) = j and we can
construct DJ(y) avoiding all arcs in P jÕ

by selecting P̄ = P j in the previous argument.
Analogously, if y ‚ jÕ ı y ‚ j then v = y ‚ jÕ, fiJ(y) = jÕ, and we can choose DJ(¸) to
avoid P j by setting P̄ = P jÕ

.

Lemma 41. Let J ™ [n] be a nonempty independent set in M[N] and I ™ [n] \ J .
Consider the following properties.

(P1) For every x, y œ I with x ”= y,

{LeftJ+x(x), RightJ+x(x)} fl {LeftJ+y(y), RightJ+y(y)} = ÿ.

(P2) M[N] is laminar and for every x, y œ I, fiJ(x) ”= fiJ(y).

If either (P1) or (P2) holds then I is independent in M[N1(J)]

Proof. Suppose that (P1) is satisfied. Then for every pair of distinct x, y œ I, the
paths DJ(x) and DJ(y) constructed in Lemma 40 must lie on non-consecutive (and
hence disjoint) regions in {Rk}kœJ+0. Therefore the paths {DJ(z)}zœI are mutually
arc-disjoint from which we conclude that I is an independent set in M[N1(J)].

Suppose now that (P2) is satisfied. Let x < y be distinct terminals in I. We claim
that the paths DJ(x) and DJ(y) are arc disjoint. If x and y belong to different regions
then the only possibility for them to share an arc is that x is in Rj, y œ RjÕ with jÕ =
RightJ(j), and both share arcs in P jÕ

. But then, by Lemma 40, fiJ(x) = fiJ(y) = jÕ

which is a contradiction.
If x and y are in the same region Rj, then x, y œ [j, jÕ] with j = LeftJ+x(x) =

LeftJ+y(y) and jÕ = RightJ+x(x) = RightJ+y(y) œ J + (n + 1). Since the function fiJ

partitions [n] into intervals and x < y, we must have fiJ(x) = j, fiJ(y) = jÕ. Suppose
now that DJ(x) and DJ(y) had an arc a in common and let w be its head. Since DJ(x)
and DJ(y) are split versions of oGx and oGy we get that w ˆ x‚y. Since w and x‚j
are both in oGx, one is an ancestor of the other. Note that w cannot be an ancestor of
x ‚ j since above the latter DJ(x) coincides with P j which is arc-disjoint from DJ(y)
by Lemma 40 (and a is a common arc). It follows that x ‚ j A w ˆ x ‚ y ˆ y, and
thus, x ‚ j ˆ y ‚ j. But since fiJ(y) = jÕ we have y ‚ j ˆ y ‚ jÕ and we conclude that

93

x ‚ j ˆ y ‚ jÕ ˆ jÕ. From the last expression we get x ‚ j ˆ x ‚ jÕ which contradicts
the fact that fiJ(x) = j.

We have thus shown that all paths (DJ(z))zœI are arc-disjoint, thence I is inde-
pendent in M[N1(J)].

Now we are ready to define the forbidden sets of sizes at most 4 and 3 respectively
for Algorithms 8 and 9. For (X, rú) with rú œ [n], X ™ [n] \ {rú} define the set
F4(X, rú) given by

{LeftX(LeftX+rú(rú)), LeftX+rú(rú), RightX+rú(rú), RightX(RightX+rú(rú))},

and I4(X, rú) = [LeftX(LeftX+rú(rú)), RightX(RightX+rú(rú))]. The set F4(X, rú) con-
tains the 2 closest terminals to the left of rú in X and the 2 closest terminals to its
right. I4(X, rú) is the enclosing interval containing F4(X, rú). Similarly, for the case
of laminar matroids, define

F3(X, rú) = {LeftX(fiX(rú)), fiX(rú), RightX(fiX(rú))}

I3(X, rú) = [LeftX(fiX(rú)), RightX(fiX(rú))].

where F3(X, rú) consists of the representative of rú in X and its two neighbors, and
I3(X, rú) is its enclosing interval. We need one last technical lemma to analize the
algorithms performance.

Lemma 42. Let X and rú as above, and let x œ X.

(a) If x œ F4(X, rú) then I4(X, rú) ™ I4(X ≠ x, rú).

(b) If x ”œ F4(X, rú) then F4(X, rú) = F4(X ≠ x, rú) and I4(X, rú) = I4(X ≠ x, rú).

If the matroid is laminar, the following properties also hold

(c) If x œ F3(X, rú) then I3(X, rú) ™ I3(X ≠ x, rú).

(d) If x ”œ F3(X, rú) then F3(X, rú) = F3(X ≠ x, rú) and I3(X, rú) = I3(X ≠ x, rú).

Proof of Lemma 42.

Part (a): Let F4(X, rú) = {a, b, c, d} from left to right (note that near the borders
we could have a = b or c = d), in particular a Æ b Æ rú Æ c Æ d. Denote by
a≠ = LeftX(a) and d+ = RightX(d).

(i) If x œ {a, b} then F4(X ≠ x, rú) = (F4(X, rú) ≠ x) + a≠ and so I4(X, rú) =
[a, d] ™ [a≠, d] = I4(X ≠ x, rú).

(ii) If x œ {c, d} then F4(X ≠ x, rú) = (F4(X, rú) ≠ x) + d+ and so I4(X, rú) =
[a, d] ™ [a, d+] = I4(X ≠ x, rú).

8.5. Laminar Matroids and Semiplanar Gammoids Chapter 8

Part (b): Direct.
For parts (c) and (d) let F3(X, rú) = {a, b, c} from left to right (in particular

b = fiX(rú), note that we could be in the cases a = b = 0 or b = c = n + 1). Denote
by a≠ = LeftX(a) and c+ = RightX(c).
Part (c): We have many possibilities to analyze.

(i) If x = b, then the closest neighbors of rú in X ≠ x are a and c. In particular
fiX≠x(rú) is either a or c. In both cases, I3(X, rú) = [a, c] ™ I3(X ≠ x, rú).

(ii) If x = a ”= b and rú œ [b, c], then b and c are still the closest neighbors of rú

in X ≠ x, and in particular, the representative in X ≠ x is the same as that in
X, i.e., fiX≠x(rú) = b. Note that since we removed a, LeftX≠x(b) = a≠ and so,
I3(X, rú) = [a, c] ™ [a≠, c] = I3(X ≠ x, rú)

(iii) The case x = c ”= b and rú œ [a, b] is analogous to the previous one

(iv) If x = a ”= b, and rú œ [a, b], then the closest neighbors of rú in X ≠ x are a≠

and b. We have that rú ‚ b ı rú ‚ a ı rú ‚ a≠ where the first inequality holds
since fiX(rú) = b and the second one since [a, r] ™ [a≠, rú]. We conclude that
fiX≠x(rú) = b. In particular I3(X, rú) = [a, c] ™ [a≠, c] = I3(X ≠ x, rú).

(v) If x = c ”= b and rú œ [b, c] then the closest neighbors of rú in X ≠ x are b and
c+. We have that rú ‚ b @ rú ‚ c ı rú ‚ c+ where the first inequality holds
since fiX(rú) = b and the second holds since [rú, c] ™ [rú, c+]. We conclude that
fiX≠x(rú) = b. In particular I3(X, rú) = [a, c] ™ [a, c+] = I3(X ≠ x, rú).

Part (d): Since x ”œ F3(X, rú) the neighbors of rú in X ≠x are the same as those in X,
it follows that fiX≠x(rú) = fiX(rú) = b, LeftX≠x(b) = a, RightX≠x(b) = c. Therefore
F3(X ≠ x, rú) = F3(X, rú) and I3(X ≠ x, rú) = I3(X, rú).

Now we are ready to prove the guarantees for Algorithms 8 and 9.

Proofs of Theorems 15 and 16. For both algorithms, if s = 0 then |ALG| = 1 and
so it is independent. In the following assume that s Ø 1. Line 6 in the algorithms
guarantees that the set ALG satisfies the conditions of Lemma 41, hence ALG is
independent in M[N1(J)], and by Lemma 39, ALG is independent in the original
matroid. This proves correctness. Since the sampling condition holds by construc-
tion, we only need to check the forbidden property. For the rest of the proof, define
F(X, rú) = Fi(X, rú), I(X, rú) = Ii(X, rú) where i = 4 on the semiplanar case, and
i = 3 for the laminar case. We will show that the sets F(X, Y, rú) := F(X, rú) fl [n]
are forbidden sets of size at most 4 for Algorithm 8 and of size 3 for Algorithm 9.

Let rú œ OPT(Y) where Y is an arbitrary set of t Ø s + 1 elements, and suppose
that Rt = Y and rt = rú. Assume now that the condition

for every i œ {s + 1, . . . , t ≠ 1}, ri ”œ F(OPT(Ri), rt), (ı)

95

holds. We have to show that rt = rú is chosen by the algorithm.

Claim. The intervals I(OPT(Ri), rú) are non-decreasing in i, namely, for all i Æ t≠2,

I(OPT(Ri), rú) ™ I(OPT(Ri+1), rú).

Indeed, let i Æ t ≠ 2. If OPT(Ri) = OPT(Ri+1) then the claim is trivial, so assume
otherwise. In particular, we have ri+1 œ OPT(Ri+1) \ OPT(Ri). To simplify notation,
let A = OPT(Ri+1) and AÕ = A ≠ ri+1. By condition (ı), ri+1 ”œ F(A, rú), and then
by Lemma 42 using X = A,

F(A, rú) = F(AÕ, rú) and I(A, rú) = I(AÕ, rú). (8.1)

By the matroid exchange axiom we have two cases: either OPT(Ri) = AÕ or
OPT(Ri) = AÕ + r̃ for some r̃ ”= ri+1. In the first case we have by (8.1) that
I(OPT(Ri), rú) = I(AÕ, rú) = I(A, rú) = I(OPT(Ri+1), rú), which ends the proof,
and so we focus on the the second case. If r̃ œ F(AÕ + r̃, r), then by (8.1) and Lemma
42 applied to X = AÕ + r̃, we have I(OPT(Ri), rú) = I(AÕ + r̃, rú) ™ I(AÕ, rú) =
I(A, rú) = I(OPT(Ri+1), rú). On the other hand, if r̃ ”œ F(AÕ + r̃, r), then, again
by Lemma 42 and and (8.1) we have I(OPT(Ri), rú) = I(AÕ + r̃, rú) = I(AÕ, rú) =
I(A, rú) = I(OPT(Ri+1), rú). This concludes the proof of the claim.

We show how to finish the proof using the claim. Suppose that ri is selected by
the algorithm for some i œ {s + 1, . . . , t ≠ 1}. By (ı) and the claim we deduce that
ri ”œ I(OPT(Ri), rú) ´ I(OPT(Rs), rú). In particular ri is far away from rú:

(a) In the semiplanar case, there are at least 2 terminals of the set OPT(Rs) be-
tween rú and ri. In particular, {LeftOPT(Rs)+ri

(ri), RightOPT(Rs)+ri
(ri)} and

{LeftOPT(Rs)+rú(rú), RightOPT(Rs)+rú(rú)} do not intersect and so, at iteration
i, neither LeftOPT(Rs)+rú(rú) nor RightOPT(Rs)+rú(rú) are added into B.

(b) In the laminar case, there is at least one terminal of the set OPT(Rs) between
fiOPT(Rs)(r

ú) and ri. In particular, fiOPT(Rs)(ri) ”= fiOPT(Rs)(r
ú), and so, at itera-

tion i, fiOPT(Rs)(r
ú) is not added into B.

Since the statements above are satisfied for every i Æ t ≠ 1, we conclude that at
time t, rt = rú satisfies the conditions in line 6 of the algorithms, and so it is selected.
This concludes the proof that Algorithms 8 and 9 have forbidden sets of sizes 4 and
3 respectively.

Chapter 9

Algorithm for Uniform Matroids

We devise a variant of Kleinberg’s algorithm [66] for uniform matroids whose proba-
bility competitiveness tends to 1 as the rank fl goes to infinity. Kleinberg’s algorithm
is better described when both the rank fl = 2k and the number of elements n = 2N

are powers of 2. It was originally presented in a recursive manner, but it is illustrative
to describe it without using recursion.

Kleinberg’s algorithm. For every i œ N, let Ii be the interval of the first n/2i elements.
Then the intervals Jk := Ik, Jk≠1 := Ik≠1 \Ik, . . . , J1 := I1 \I2 and J0 = I0 \I1 partition
the ground set R. The algorithm treats each interval in {J0, J1, . . . , Jk} separately.
For 0 Æ i Æ k ≠ 1, it selects at most bi = fl/2i+1 elements from Ji and at most one ele-
ment from Jk, so that in total at most fl elements are selected. The way the algorithm
selects an element or not is determined by a threshold for each interval. Namely, it
selects the first arriving element from Jk and for i œ {0, 1, . . . , k ≠ 1}, the algorithm
uses as threshold in the interval Ji the (fl/2i)-th highest element seen strictly before
the interval, i.e., the (fl/2i)-th element of Ii+1. It selects every element better than
this threshold until the budget bi of the interval is depleted, ignoring all the elements
arriving later in this interval.

The probability-ratio of Kleinberg’s algorithm is at least 4/3. Kleinberg [66] shows that

the previous algorithm is guaranteed to obtain an expected fraction 1≠O(
Ò

1/fl) of the

optimum weight, which in our notation means to be 1/(1 ≠ O(
Ò

1/fl)) = 1 + O(
Ò

1/fl)
utility-competitive. This guarantee also holds for the ordinal notion since the al-
gorithm does not need weights. However, as we show next, its probability com-
petitiveness is bounded away from 1. Since J0 and I1 have the same cardinality,
with probability tending to 1/4 as fl goes to infinity, we simultaneously have that
|I1 fl Rfl≠1| < |J0 fl Rfl≠1| and rfl œ J0. Given that, the threshold for J0, which is the
fl/2-th element of I1, will be attained by an element of Rfl≠1 which is strictly better
than rfl. Thus, rfl will not be selected. Therefore, the algorithm selects rfl (which is
in OPT) with probability at most 1 ≠ 1/4 = 3/4.

97

An asymptotically 1 probability-competitive algorithm. The next algorithm is a simple
modification of Kleinberg’s, which we write in a continuous setting. Every element
is associated with a uniform random variable with support [0, 1). It is useful for this
part to imagine [0, 1) as a time interval, and identify the realization of the uniform
random variable as the arrival time of the element. For each j œ N, let Ij be the
interval [0, 2≠j) and Jj = [2≠j≠1, 2≠j) to be its second half. The sequence {Jj}jœN

partitions the interval [0, 1). For convenience, let Kj = [2≠j≠1, 2≠j≠1(2 ≠ 4Áj)) be the
left (1 ≠ 4Áj) fraction of the interval Jj, for some parameter Áj, depending on fl, to be
chosen later.

Algorithm 10 for uniform matroids.

Input: A uniform matroid U(n, fl) with ground set R and rank fl.
1: Get a sample of size n, independently and uniformly at random from [0, 1). Sort

it from smallest to largest as t1 < t2 < · · · < tn. Thus ti is interpreted as the
arrival time of ri.

2: ALG Ω ÿ
3: for i = 1 to n do
4: Compute the index j such that ti œ Jj = [2≠j≠1, 2≠j).
5: Compute the threshold fj equal to the Á(1

2
)j+1(1 + Áj)flË-th highest element in

Ri with arrival time in Ij+1 = [0, 2≠j≠1).
6: if less than (1

2
)j+1fl elements with arrival in Jj have been selected and ri º fj

then
7: ALG Ω ALG + ri

8: Return ALG.

0 · · · 0.25 0.5 1
I0

I1 J0

I2 J1

I3 J2

...

Figure 9.1: Definition of the sets Ij and Jj

Theorem 43. Algorithm 10 is 1 + O(
Ò

log fl/fl) probability-competitive.

By going from utility to probability we incur in a factor of
Ô

log fl on the error prob-
ability. It remains open whether we can achieve Kleinberg’s utility-competitiveness of

1 + O(
Ò

1/fl) for the stronger probability notion.

Chapter 9

Proof of Theorem 43. Since the algorithm selects at most (1/2)j+1fl elements from
interval Jj, in total at most

q

jœN(1/2)j+1fl = fl elements are included into ALG.
Therefore, the algorithm is correct. Since the matroid is uniform of rank fl, the
optimal base is OPT = {r1, r2, . . . , rfl}. Let rú = rk œ OPT, for some k œ {1, . . . , fl}.
In what follows, let j be an integer such that 0 Æ j Æ Â1

2
log(fl/96)Ê := jú and let

Áj =
Ò

12 · 2j ln fl/fl. We first find a lower bound on the probability that rú is selected,
given that its arrival time is in Jj.

For each ri œ R ≠ rú, let X
(j)
i and Y

(j)
i be the indicator variables that the arrival

time of ri is in Ij+1 and Kj respectively. Let ‡(fj) be the global ranking of the
computed threshold fj, that is, r‡(fj) = fj. Consider the following three events,

ÿ

iœ[fl+1]\{k}

X
(j)
i <

(1 + Áj)

2j+1
fl,

ÿ

iœ

ËÏ

1+Áj

1≠Áj
fl

Ì

+1

È

\{k}

X
(j)
i Ø 1 + Áj

2j+1
fl,

ÿ

iœ

ËÏ

1+Áj

1≠Áj
fl

Ì

+1

È

\{k}

Y
(j)

i <
1

2j+1
fl,

that we call U1, U2 and U3 respectively. Consider a fourth event, U4, that is tk œ Kj

where tk is the arrival time of rk. We claim that provided tk œ Jj, the intersection of
these four events guarantees that rú is selected by the algorithm. Conditional on the
event that tk œ Jj, event U1 fl U2 implies that fl + 1 < ‡(fj) Æ Á(1 + Áj)fl/(1 ≠ Áj)Ë + 1
and rú º fj. Event U2 fl U3 implies that the number of elements strictly higher than
the threshold fj and arriving on interval Kj is strictly less than (1

2
)j+1fl. In particular,

this implies that the algorithm has not selected enough elements in the interval Jj.
Therefore, conditional on the event that tk œ Jj, the event U1 fl U2 fl U3 fl U4 implies
that rú œ ALG. Calling Ui to the negation of event Ui, by union bound and noting
that events from 1 to 3 are independent of the arrival time of rú = rk, we have
Pr(rk ”œ ALG | tk œ Jj) Æ q4

i=1 Pr(Ui | tk œ Jj) = Pr(U1) + Pr(U2) + Pr(U3) + 4Áj.

The random variables {X
(j)
i }iœ[n]\{k} are independently and identically Bernoulli

distributed of parameter equal to the length of Ij+1, that is 2≠j≠1. Similarly, the ran-

dom variables {Y
(j)

i }iœ[n]\{k} are independently and identically Bernoulli distributed
of parameter equal to the length of Kj that is (1 ≠ 4Áj)2

≠j≠1. In the following we
upper bound the probabilities in the sum above by using the Chernoff bound [85, p.
64-66, Theorems 4.4 and 4.5], then

Pr(U1) Æ exp
3

≠Á2
j

3
2≠j≠1fl

4

= exp
3

≠12 · 2j ln fl

3fl
2≠j≠1fl

4

= exp
3

≠2 ln fl

4

Æ 1

fl
.

Let µX and µY be the expected sums of the random variables X
(j)
i , and respectively

Y
(j)

i , for i œ
ËÏ

1+Áj

1≠Áj
fl

Ì

+ 1
È

\ {k}. We have µX =
Ï

1+Áj

1≠Áj
fl

Ì 1

1
2

2j+1 Ø 1+Áj

1≠Áj
· fl

2j+1 . The

choice of j guarantees that 1/fl < ‘j < 1/8, and therefore

µY =

G

1 + Áj

1 ≠ Áj

fl

H

1 ≠ 4Áj

2j+1
Æ

A

1 + Áj

1 ≠ Áj

+ Áj

B

fl ·
1 ≠ 4Áj

2j+1

Æ (1 ≠ 4Áj)(1 + 2Áj)

1 ≠ Áj

fl

2j+1
Æ 1

1 + Áj

·
fl

2j+1
,

99

where in the last inequality we used that Áj < 1/8. By Chernoff bound on events U2

and U3, we obtain

Pr(U2) Æ Pr

A

ÿ

i

X
(j)
i < µX(1 ≠ Áj)

B

Æ exp
3

≠Á2
j

2
µX

4

Æ exp
3

≠12 · 2j ln fl

2fl
·

1 + Áj

1 ≠ Áj

·
fl

2j+1

4

Æ 1

fl
,

Pr(U3) Æ Pr

A

ÿ

i

Y
(j)

i Ø µY (1 + Áj)

B

Æ exp
3

≠Á2
j

3
µY

4

Æ exp
3

≠12 · 2j ln fl

3fl
·

1 + Áj

1 ≠ Áj

·
(1 ≠ 4Áj)fl

2j+1

4

Æ 1

fl
.

Putting all together, it follows that

Pr(rk ”œ ALG) =
ÿ

j>jú

Pr(rk ”œ ALG|tk œ Jj)
1

2j+1
+

jú

ÿ

j=0

Pr(rk ”œ ALG|tk œ Jj)
1

2j+1

Æ
ÿ

j>jú

1

2j+1
+

ÿ

jØ0

A

3

fl
+ 4Áj

B

1

2j+1
=

1

2jú+1
+

A

3

fl
+ 4

Û

12 ln fl

fl

ÿ

jØ0

2j/2

2j+1

B

,

which is O
1Ò

1
fl

+ 1
fl

+
Ò

log fl

fl

2

= O
1Ò

log fl

fl

2

. Then, the algorithm is (1≠O(
Ò

log fl

fl
))≠1 =

(1 + O(
Ò

log fl/fl)) probability-competitive.

Chapter 10

Algorithms for general matroids

In this section we provide algorithms for general matroids in the different competitive-
ness notions we consider in this work. We first show an O(1)-intersection competitive
algorithm and then we proceed with ordinal/probability notions. Our algorithm for
the intersection notion works as follows. We first sample s elements, where s is cho-
sen appropriately later. After that, we select an element as long as it is part of the
optimum of the subset of elements seen so far, and it preserves the independence of
the current solution. Recall that we denote by Ri = {r1, r2, . . . , ri} the first i elements
seen by the algorithm.

Algorithm 11 Improving Greedy

Input: Matroid M(R, I) in random order r1, r2, . . . , rn, and a fixed integer s œ
{1, . . . n}.

1: ALG Ω ÿ
2: for i = s + 1 to n do
3: if ri œ OPT(Ri) and ALG + ri œ I then
4: ALG Ω ALG + ri.

5: Return ALG.

Theorem 17. Algorithm 11 is ln(e/2) intersection-competitive for the general MSP.

The idea of only considering elements that belong to the current optimum is not
new. Ma et al. [79] consider an algorithm that after sampling a fraction of the elements,
selects an element as long as it belongs to the current offline optimum, and they prove
this to be 9.6 utility-competitive (and the analysis holds for probability as well) for
laminar matroids. The same algorithm was suggested by Babaioff et al. [11], and they
showed how this algorithm fails to be even constant utility-competitive. In contrast,
we show this algorithm to be O(1) intersection-competitive.

Lemma 44. Let B = {ri : ri œ OPT(Ri), i œ {s + 1, . . . , n}}. Then E[|B|] =
(Hn ≠ Hs)fl, where Hj denotes the j-th harmonic number.

101

Proof. For every i œ [n] if we condition the set Ri to be some fixed set F œ
1

R
i

2

, we
have

Pr(ri œ OPT(Ri)|Ri = F) = Pr(ri œ OPT(F)) Æ fl

i
.

Therefore, by linearity of expectation we conclude that

E[|B|] =
n

ÿ

i=s+1

Pr(ri œ OPT(Ri)) Æ
n

ÿ

i=s+1

fl

i
= (Hn ≠ Hs)fl.

Proof of Theorem 17. We study the competitiveness of the algorithm when the sample
size is s, and then we optimize over this value to conclude the theorem. For any random
ordering, |ALG| = fl(R \ Rs) Ø fl(OPT \ Rs) = |OPT \ Rs|. Therefore,

E[|ALG fl OPT|] Ø E[|ALG|] + E[|OPT \ Rs|] ≠ E[|ALG fi (OPT \ Rs)|]

Ø 2E[|OPT \ Rs|] ≠ E[|ALG fi (OPT \ Rs)|].

Furthermore, ALG fi (OPT \ Rs) ™ B, where B is the set defined in Lemma 44. Since
the elements arrive in uniform random order, for r œ OPT we have that Pr(r /œ Rs) =
(n ≠ s)/n = 1 ≠ s/n. Therefore, the right hand side of the previous inequality is at
least

2E[|OPT \ Rs|] ≠ E[|B|] = 2
3

1 ≠ s

n

4

fl ≠ (Hn ≠ Hs)fl

Ø
3

2 ≠ 2s

n
≠

⁄ n

s

1

x
dx

4

fl =
3

2 ≠ 2s

n
+ ln(s/n)

4

fl.

This quantity is maximized in s = n/2. So, by assuming n even (which can be done
by adding an extra dummy element if n is odd), and setting the algorithm for s = n/2,
we obtain

E[|ALG fl OPT|] Ø fl(1 ≠ ln(2)) = |OPT|/ ln(e/2).

The same holds if we modify the algorithm by choosing a random sample size of
expected value n/2, that is, s ≥ Bin(n, 1/2).

10.1 Ordinal/Probability: Proof of Theorem 9

We introduce a variant of the MSP that helps us to leverage existing algorithms for
the utility version of the MSP, in order to get competitive algorithms for the ordinal
and probability variants. We need a concept similar to the aided sample-based MSP
introduced by Feldman et al . [39].

In the Layered-MSP the input is a tuple (M, F, C, º) where M = (R, I, º) is a
totally ordered matroid, C = {c1, c2, . . . , ck} is a finite set with C fl R = ÿ, º is a
total order over R fi C with c1 º c2 º · · · º ck, and F is a random subset of R in
which every element is present with probability 1/2. The set C defines a partition
of R in the following way. We call C0 = {r œ R : r º c1} the highest layer and

10.1. Ordinal/Probability: Proof of Theorem 9 Chapter 10

Ck = {r œ R : ck º r} the lowest layer. For j œ {1, . . . , k ≠1}, the j-th layer is the set
Cj = {r œ R : cj º r º cj+1}. By construction, the layers {C0, C1, . . . , Ck} induced
by C form a partition of R. In the following we call a tuple (M, F, C, º) a layered
matroid.

An algorithm for the Layered-MSP first sees F but is unable to select any of its
elements. The rest of the elements of M arrive in uniform random order. At time step
t, the algorithm can get the full value order in Rt by using only ordinal information,
it can use an independence oracle to test any subset of Rt and it can also check
membership of any element to each layer induced by C. We say that an algorithm
for the Layered-MSP is –-competitive if it returns an independent set ALG œ I, and
for each j œ {0, 1, . . . , |C|}, E[|ALG fl Cj|] Ø 1

–
|OPT fl Cj|, where the expectation is

taken both over the distribution of F and the internal algorithm randomness.

Theorem 45 (Feldman et al., [39, Corollary 4.1]). There exists an 8Álog(|C|+1)+1Ë-
competitive algorithm for the Layered-MSP.

For the sake of completeness we include the mentioned algorithm for Layered-MSP
of Feldman et al. We remark that the algorithm was introduced in the context of the
utility version. Nevertheless, the result above follows in the absence of weights.

Algorithm 12 (Feldman et al. [39]) for Layered-MSP

Input: A layered matroid (M, F, C, º)
1: Let · be a uniformly at random number from {0, 1, . . . , Álog(|C| + 1)Ë}.
2: Let ∆ be a uniformly at random number from {0, 1, . . . , 2· ≠ 1}.

3: Let B = {B1, B2, . . . , BÁ(∆+|C|)/2· Ë} where Bi =
tmin{|C|,2· i≠∆}

j=max{0,2· (i≠1)≠∆+1} Cj.
4: With probability 1/2, set H = odd(|C|) or even(|C|) otherwise.
5: For each i œ H let Ti Ω ÿ.
6: for each element in r œ R \ F do
7: Let i be such that r œ Bi.
8: if i œ H and r œ Ni and Ti + r œ Ii then
9: Ti Ω Ti + r.

10: Return ALG = fiiœHTi.

About the algorithm of Feldman et al. We denote by odd(k) and even(k) the odd and
even numbers, respectively, in the set {0, 1, . . . , k}. The set Ii is the independent sets
family of a matroid Mi = (Ni, Ii) defined as follows. Let BØi = fijœ{i,...,Á(∆+|C|)/2· Ë}Bj.
The matroid M1 is obtained from M by contracting 1 F flBØ2 and then restricting2 to
B1. For i > 1, Mi is obtained from M by contracting F fl BØi+1 and then restricting
it to Bi fl span(F fl BØi≠1).

1The contraction of M = (R, I) by Q, M/Q, has ground set R ≠ Q and a set I is independent if
fl(I fi Q) ≠ fl(Q) = |I|.

2The restriction of M = (R, I) to Q, M|Q, has ground set Q and a set I is independent if I œ I
and I ™ Q.

103

From Layered-MSP to ordinal MSP. The main result of this section corresponds to
the lemma below, which is a reduction between the ordinal MSP and the version
introduced in this section, the Layered MSP. In particular, it allows us to design
ordinal/probability-competitive algorithms as long as we have a competitive algorithm
for the Layered MSP. Theorem 9 follows directly using this lemma, and the rest of
this section is devoted to prove the lemma.

Lemma 46. Suppose there exists a g(|C|)-competitive algorithm for the Layered-MSP,
where g is a non-decreasing function. Then,

(i) there exists an O(g(1 + log fl)) ordinal-competitive algorithm for the MSP, and

(ii) there exists an O(g(1 + fl)) probability-competitive algorithm for the MSP.

Proof of Theorem 9. We observe that g(x) = 8Álog(x + 1) + 1Ë is non-decreasing, so
we can apply Lemma 46 using Algorithm 12 and Theorem 45.

In the following, let Alayer be a g(|C|)-competitive algorithm for the layered-MSP.
Our algorithm for Lemma 46 (i), depicted as Algorithm 13, first gets a sample from R
with expected size n/2, and constructs a partition C using the optimum of the sample.
By sampling a set F over the remaining elements it feeds Alayer with a layered matroid.

Algorithm 13 O(g(1 + log fl)) ordinal-competitive algorithm

Input: Matroid M(R, I, º) in random order r1, r2, . . . , rn.
1: Let s ≥ Bin(n, 1/2) and compute OPT(Rs) = {s(1), . . . , s(¸)}, where s(1) º

s(2) º · · · º s(¸).
2: Let C = {s(1), s(2), s(4), . . . , s(2k≠1)}, where k = Âlog ¸Ê + 1.
3: Let t ≥ Bin(n ≠ s, 1/2) and let F = {rs+1, . . . , rs+t} be the next t elements from

R \ Rs.
4: Return ALG = Alayer(M|R\Rs

, F, C, º).

Proof of Lemma 46 (i). Let OPT = {f(1), . . . , f(fl)} be such that f(1) º f(2) º
· · · º f(fl). Consider the function T : N æ N given by T (0) = 0, T (i) = |{r œ
R : r º f(i)}| if i œ [1, fl] and T (i) = n if i > fl. In particular, for i œ [1, fl], T (i) is
the number of elements in M that are at least as high as the i-th element of OPT,
so f(i) = rT (i). Observe that for all k such that T (i) Æ k < T (i + 1) we have
|OPT fl Rk| = i. In the following we study the expected number of elements from Rk

that the algorithm selects, so we can conclude using Lemma 33. If T (0) Æ k < T (1)
it holds E[|ALG fl Rk|] = 0 = |OPT fl Rk|, so this case is done.

Let k œ N be such that T (1) Æ k < T (8). Let f be the highest non-loop element
in the value order with f(1) º f . With probability at least 1/4, it holds that f(1) œ
R \ Rs and f œ Rs. In this case, f œ OPT(Rs), since f(1) = s(1), and the only
non-loop element of C0 is f(1). Thus, C0 = {f(1)} = OPT(R \ Rs) fl C0. Therefore,

Pr(C0 = {f(1)}) Ø Pr(f(1) œ R \ Rs, f œ Rs) Ø 1/4.

10.1. Ordinal/Probability: Proof of Theorem 9 Chapter 10

Since g is non-decreasing and |C| Æ 1+log ¸ Æ 1+log fl, Algorithm Alayer is g(1+log fl)-
competitive. Furthermore, the event C0 = {f(1)} depends only on steps 1 and 2 of
the algorithm before executing Alayer. It follows that

Pr(f(1) œ ALG) Ø 1

4
Pr(f(1) œ ALG|C0 = {f(1)}) =

1

4
E[|ALG fl C0| | C0 = {f(1)}]

Ø 1

4g(1 + log fl)
E[|OPT(R \ Rs) fl C0| |C0 = {f(1)}] =

1

4g(1 + log fl)
.

Since |OPT fl Rk| Æ 8, we conclude in this case that

E[|ALG fl Rk|] Ø Pr(f(1) œ ALG) Ø 1

4g(1 + log fl)
Ø 1

32g(1 + log fl)
|OPT fl Rk|.

Let j Ø 3 and k be such that T (2j) Æ k < T (2j+1). We denote q = 2j≠3. Let
Aj be the event where |{f(1), . . . , f(2q)} fl R \ Rs| Ø q and Bj is the event where
|{f(2q + 1), . . . , f(6q)} fl Rs| Ø 2q. We have that Pr(Aj fl Bj) Ø 1/4, since in our
algorithm the probability for an element to be sampled equals the probability of not
being sampled. Observe that any subset of elements strictly better than f(t) has rank
at most t ≠ 1, and therefore f(2q) ≤ s(2q). If Bj holds, then s(2j≠2) = s(2q) ≤ f(6q).
Since f(6q) ≤ f(8q) = f(2j), it follows that

j≠3
€

i=0

Ci ™ {r œ R \ Rs : r ≤ f(2j)} = RT (2j) fl R \ Rs.

This implies that

E[|ALG fl Rk|] Ø 1

4
E

5

|ALG fl RT (2j)|
-

-

-

-

Aj fl Bj

6

Ø 1

4
E

5-

-

-

-

ALG fl
j≠3
€

i=0

Ci

-

-

-

-

-

-

-

-

Aj fl Bj

6

.

Furthermore, if Aj holds, then

-

-

-

-

OPT(R \ Rs) fl
j≠3
€

i=0

Ci

-

-

-

-

= |{f œ OPT fl R \ Rs : f ≤ s(2q)}|

Ø |{f œ OPT fl R \ Rs : f ≤ f(2q)}| Ø q.

Since g is non-decreasing and |C| Æ 1+log ¸ Æ 1+log fl, Algorithm Alayer is g(1+log fl)-
competitive. Since events Aj and Bj depend only on the sampling at line 1 of the
algorithm (before executing Alayer) and by using linearity of the expectation and the
observation above we have that

1

4
E

5-

-

-

-

ALG fl
j≠3
€

i=0

Ci

-

-

-

-

-

-

-

-

Aj fl Bj

6

Ø 1

4g(1 + log fl)
E

5-

-

-

-

OPT(R \ Rs) fl
j≠3
€

i=0

Ci

-

-

-

-

-

-

-

-

Aj fl Bj

6

Ø 1

4g(1 + log fl)
q Ø 1

64g(1 + log fl)
|OPT fl Rk|,

where the last inequality holds since |OPT fl Rk| Æ 2j+1 = 16q. By using Lemma 33
we conclude that the algorithm is O(g(1 + log fl)) ordinal-competitive.

105

Algorithm 14 O(g(1 + fl)) probability-competitive algorithm

Input: Matroid M(R, I, º) in random order r1, r2, . . . , rn.
1: Let s ≥ Bin(n, 1/2) and compute OPT(Rs) = {s(1), . . . , s(¸)}, where s(1) º

s(2) º · · · º s(¸).
2: Let t ≥ Bin(n ≠ s, 1/2) and let F = {rs+1, . . . , rs+t} be the next t elements from

R \ Rs.
3: Return ALG = Alayer(M|R+

s
, F fl R+

s , OPT(Rs), º), where R+
s = {r œ R \ Rs : r œ

OPT(Rs + r)}.

To prove Lemma 46 (ii), consider Algorithm 14 depicted above. Before the analysis,
it will be useful to consider the next process. Let (Xt)tœN be a sequence of Bernoulli
independent random variables such that Pr(Xt = 0) = Pr(Xt = 1) = 1/2 for every
t œ N. We create two sets V, W ™ R iteratively using the following procedure.

Algorithm 15 Coupling procedure

Input: Matroid M(R, I, º).
1: Initialize V Ω ÿ, W Ω ÿ and ◊ Ω 0.
2: for i = 1 to n do
3: if ri œ OPT(V + ri) then
4: ◊ Ω ◊ + 1 and Y◊ = Xi.
5: if Y◊ = 0 then
6: V Ω V + ri

7: else W Ω W + ri.

The value ◊ represents a counter on the elements that improve over the current set
V . When the counter is updated, we say that the element considered on that iteration
is assigned coin Y◊.

Lemma 47. (V, W) has the same distribution as (OPT(Rs), R+
s) in Algorithm 14.

Proof. Let (Vi, Wi)
n
i=1 be the states of the coupling process at the end of each iteration.

Let Z = {ri : Xi = 0}. Observe that Z and the sample Rs of Algorithm 14 have the
same distribution. Since the coupling procedure checks from highest to lowest element,
it follows that Vi = OPT(ZflRi) for every i œ {1, . . . , n}, and therefore Vn = OPT(Z).
To conclude the lemma it suffices to check that Wn = {r œ R \ Z : r œ OPT(Z + r)}.
In fact, it can be proven by induction that

Wi = {r œ Ri \ Z : r œ OPT(Vi + r)}

for every i œ {1, . . . , n}, and the lemma follows, since Rn = R and Vn = OPT(Z).

Proof of Lemma 46 (ii). Thanks to Lemma 47 we assume that (OPT(Rs), R+
s) is gen-

erated by the process described in Algorithm 15. In what follows, fix f(j) = rT (j) œ
OPT. We know that at step T (j) of the coupling procedure, f(j) œ OPT(Rs + f(j))
no matter the trajectory of (Xi)iœN. Let ◊ be such that rT (j) is assigned coin Y◊,

10.2. Comparison between ordinal measures Chapter 10

that is, Y◊ = XT (j). Then, with probability at least 1/8, the event E defined as
Y◊≠1 = Y◊+1 = 0 and Y◊ = 1, holds. If E happens, let s(h) be the element of OPT(Rs)
who was assigned coin Y◊≠1. In particular, the element s(h + 1) is assigned coin Y◊+1.
Thus,

Ch = {r œ R+
s : s(h) º r º s(h + 1)} = {f(j)} = OPT(R+

s) fl Ch.

Therefore by using that the occurrence of E is decided before executing Alayer which
is g(1 + ¸) Æ g(1 + fl) competitive, we get that

Pr(f(j) œ ALG) Ø 1

8
Pr(f(j) œ ALG|E)

=
1

8
E[|ALG fl Ch||E] Ø 1

8g(1 + fl)
E[|OPT(R+

s) fl Ch||E] =
1

8g(1 + fl)
,

and we conclude that Algorithm 14 is O(g(1 + fl)) probability-competitive.

10.2 Comparison between ordinal measures

In this section we discuss about some incomparability results for the competitiveness
measures previously introduced. We show that an algorithm that is utility-competitive
is not necessarily competitive for the rest of the measures. In particular, we provide
an instance where the O(log fl) utility-competitive algorithm by Babaioff, Immorlica
and Kleinberg [11] has a poor competitiveness for the other three. Regarding the
notions of the ordinal MSP, we show that the intersection and the ordinal measures
are incomparable. More specifically, we show the existence of an algorithm and an
instance where it is arbitrarily close to 1 intersection-competitive, but have an un-
bounded ordinal/probability-competitiveness. And on the other hand, we also show
the existence of an algorithm and an instance where it is arbitrarily close to 1 ordinal-
competitive, but has an unbounded intersection/probability-competitiveness. Recall
that probability is the strongest in the sense that it implies competitiveness for all the
other measures considered (see Lemma 34).

In the utility variant, the weight w(r) of an element is revealed to the algorithm
when arrived. Suppose for simplicity that the rank fl of the matroid is known3 and that
the weights the algorithm sees are all different. In the above mentioned algorithm,
called by the authors the Threshold Price Algorithm (TPA), it is taken a sample Rs of
s ≥ Bin(n, 1/2) elements4 and it records the top weight wú of a non-loop5 element seen
in Rs. It chooses uniformly at random a number · in the set {0, 1, 2, . . . , Álog2 flË}, and
then it selects greedily any non-sampled element whose weight is at least T = wú/2· .

Theorem 48 (Babaioff et al. [11]). The algorithm TPA is O(log fl) utility-competitive.

3This assumption can be removed by using standard arguments; we can set fl equal to twice the
rank of the sampled part.

4The original analysis uses half of n, but the analysis gets simpler if one uses Bin(n, 1/2) since
one can assume that each element is in the sample with probability 1/2 independent of the rest.

5A loop in a matroid is an element that belongs to no basis.

107

We show in this section that TPA is Ω(fl)-competitive in the intersection, ordinal
and probability measures. We first revisit the proof by [11] for the O(log fl) utility-
competitiveness of TPA.

Proof of Theorem 48. Let OPT = {f(1), . . . , f(fl)} be the optimal base such that
w1 > w2 > · · · > wfl, where wi = w(f(i)) for each i œ {1, . . . , fl}. Suppose that
f(1) /œ Rs. Then, if the second non-loop element of the matroid is sampled and if
· = 0, the element f(1) will be selected in the second phase of TPA. Hence Pr(f(1) œ
ALG) Ø 1/4 · 1/(Álog flË + 1) = Ω(1/ log fl).

Let B = {i œ {2, . . . , fl} : wi Ø w1/fl}, and let Ei be the event where f(1) œ Rs

and wi/2 < T Æ wi. For each i œ B, we have log(w1/wi) < log fl and therefore
Pr(Ei) = 1/2 · Pr(· = Álog(w1/wi)Ë) = Ω(1/ log fl). The random order assumption
implies that in expectation (i ≠ 1)/2 Ø i/4 elements in {f(2), . . . , f(i)} are non-
sampled, hence the expected rank of the matroid restricted to non-sampled elements
of weight at least wi = w(f(i)) is Ω(i). Therefore, given i œ B and conditioned on
Ei, the algorithm selects Ω(i) elements of value at least wi/2. It follows that for each
i œ B,

E[|ALG fl {r : w(r) Ø wi/2}|] Ø Pr(Ei)E[|ALG fl {r : w(r) Ø wi/2}||Ei] = Ω

A

i

log fl

B

.

In addition, observe that the elements in OPT \ {f(i) : i œ B fi {1}} have total
weight less than w1(fl ≠ |B| ≠ 1)/fl < w1, and therefore 2

q

iœBfi{1} wi Ø w(OPT).
Putting all together, we have that the expected weight of the output is

E[w(ALG)] Ø 1

2

fl
ÿ

i=1

(wi ≠ wi+1)E[|ALG fl {r : w(r) Ø wi/2}|]

= Ω

A

1

log fl

B

ÿ

iœBfi{1}

(wi ≠ wi+1) · i

= Ω

A

1

log fl

B

ÿ

iœBfi{1}

wi = Ω

A

1

log fl

B

w(OPT).

We study in the following the competitiveness of TPA for the ordinal measures.
Since probability is the strongest (Lemma 34), it is enough to check that TPA is Ω(fl)
ordinal and intersection competitive. Let R = {r1, . . . , rn} with n = 2fl3. Consider the
laminar family {Rn/2, R}, where Rn/2 = {r1, . . . , rn/2}, and take the laminar matroid
(R, I) where a set I œ I is independent if |I fl Rn/2| Æ 1 and |I| Æ fl. In particular,
the matroid rank is fl. Given Á > 0, the weights are given by w(ri) = 8 ≠ Ái for
i œ {1, . . . n/2}, and w(ri) = 7 ≠ Ái for i œ {n/2 + 1, . . . , n}.

Observe that the optimal basis is given by OPT = {r1, rn/2+1, . . . , rn/2+fl≠1}. If we
run TPA on this instance, with probability p = 1 ≠ 2≠n/2 the top weight wú in the
sample is from Rn/2, and thus, 7 < wú < 8. Let E be this event. No matter the value
of T , the algorithm always select at most fl elements in the non-sampled part, and

10.2. Comparison between ordinal measures Chapter 10

therefore

E[|ALG fl OPT|] = (1 ≠ 2≠n/2)E[|ALG fl OPT||E] + 2≠n/2
E[|ALG fl OPT||E]

Æ E[|ALG fl OPT||E] + fl · 2≠fl3 Æ E[|ALG fl OPT||E] + 1.

Conditional on E , we have that either T > 7 or T < 4. In the first case, TPA will
select at most one element, which would come from Rn/2, and so |ALG fl OPT| Æ 1.
Otherwise, if T < 4, the algorithm will select at most one element from Rn/2 and
at most the first fl non-sampled elements from R \ Rn/2. The expected number of
elements in {rn/2+1, . . . , rn/2+fl≠1} appearing in {rs+1, . . . , rs+fl}, that is the first fl ele-
ments appearing after the sample, is (fl≠1)fl/n < 1. It follows that E[|ALGflOPT||E]
is upper bounded by 2, and therefore E[|ALG fl OPT|] Æ 3. The discussion above
implies as well that E[|ALG fl Rn/2+fl≠1|] Æ 3, and then TPA is Ω(fl) intersection and
ordinal competitive. The conclusion for the ordinal case follows by using the charac-
terization for ordinal competitiveness in Lemma 33.

Ordinal and intersection notions. We show in the following that there is no competi-
tiveness dominance between the intersection and the ordinal notions. Let m and M be
two positive integers. Consider R = {r1, r2, . . . , r(M+1)m} and let L be the partition
of R given by

L =
m
€

i=1

{{ri}} fi
M
€

j=1

{{rjm+1, . . . , r(j+1)m}}.

In particular, we consider the partition matroid Mm,M = (R, I) where I œ I if
|I fl L| Æ 1 for every L œ L. The matroid rank is m + M . The algorithm we choose
is greedy: we initialize ALG Ω ÿ, and when an element r arrives it is selected if
ALG + r œ I.

Proposition 49. Suppose M Ø m2. Then, the greedy algorithm over instance Mm,M

is (1 + 1/m) ordinal-competitive and Ω(m) intersection-competitive.

In fact, the ordinal competitiveness holds no matter what the value of M is. We
adjust the value of M in order to get a poor competitiveness for the intersection
notion.

Proof of Proposition 49. The optimal base of Mm,M is the highest element of each
part in L, that is,

OPT = {r1, r2, . . . , rm} fi {rjm+1 : j œ {1, . . . , M}}.

In particular, we have

|OPT fl Rk| =

Y

]

[

k if k œ {1, . . . , m},

m + j if k œ {jm + 1, . . . , (j + 1)m} and j œ {1, . . . , M}.

Observe that an element r œ Q, with Q œ L, is selected by the algorithm if and
only if r is the first element of Q that arrives. Therefore, Pr(ri œ ALG) = 1 if

109

i œ {1, . . . , m} and Pr(ri œ ALG) = 1/m if i œ {m + 1, . . . , (m + 1)m}. It follows that
E[|ALG fl Rk|] = k if k œ {1, . . . , m}. If k > m, then

E[|ALG fl Rk|] =
m

ÿ

i=1

Pr(ri œ ALG) +
k

ÿ

i=m+1

Pr(ri œ ALG) = m +
1

m
(k ≠ m).

Thus, when k œ {1, . . . , m}, we have |OPT fl Rk|/E[|ALG fl Rk|] = 1. Suppose
k = jm + r with j Ø 1 and 0 Æ r Æ m. Then,

|OPT fl Rk|

E[|ALG fl Rk|]
=

m + j

m + 1
m

(k ≠ m)

= 1 +
m ≠ r

m2 + mj + r ≠ m
Æ 1 +

1

m + j ≠ 1
Æ 1

m
,

and thus the greedy algorithm is (1+1/m) ordinal-competitive for Mm,M . In the first
inequality we used that „(x) = (m ≠ x)/(m2 + mj + x ≠ m) is a decreasing function
in the interval [0, m]. Observe that the competitiveness result holds no matter the
value of M . It remains to study the intersection competitiveness. By the observations
above, we have that

|OPT|

E[|ALG fl OPT|]
=

m + M

m + 1
m

· M
Ø m + m2

m + m
Ø m

2
,

and so the algorithm is at least Ω(m) intersection-competitive.

Although not mentioned explicitly in the proof, since Pr(ri œ ALG) = 1/m for
i > m it follows that the algorithm is m probability competitive for Mm,M , and
for every M . In the following we construct an instance for which the intersection
competitiveness is close to 1, but the ordinal competitiveness is poor. Let m be a
positive integer and R = {r1, . . . , r2m≠1}. Consider the partition L given by

L =
Ó

{r1, . . . , rm}, {rm+1}, {rm+2}, . . . , {r2m≠1}
Ô

.

Let Nm = (R, I) be the partition matroid where I œ I if |I fl L| Æ 1 for every L œ L.
The matroid rank is m.

Proposition 50. The greedy algorithm over instance Nm is (1 + 1/m) intersection-
competitive and Ω(m) ordinal-competitive.

Proof. An element r œ Q, with Q œ L, is selected by the algorithm if and only if r is
the first element of Q that arrives. Therefore, Pr(ri œ ALG) = 1/m if i œ {1, . . . , m}
and Pr(ri œ ALG) = 1 if i œ {m+1, . . . , 2m≠1}. Since OPT = {r1, rm+1, . . . , r2m≠1},

|OPT fl R1|

E[|ALG fl R1|]
=

1

Pr(r1 œ ALG)
= m,

hence the algorithm is Ω(m) ordinal-competitive. Finally, we have

|OPT|

E|ALG fl OPT|
=

m

1/m + m ≠ 1
Æ 1 +

1

m
,

and so the greedy algorithm is (1 + 1/m) intersection-competitive over Nm.

Concluding Remarks

In this thesis we studied applications to scheduling and online selection problem
through general frameworks. For scheduling, we considered relaxations obtained from
performing lift & project steps. We proved that if we apply these techniques directly
over the assignment formulations known for the problem, then they fail to reduce
the integrality gap even when the size of the relaxations is exponentially large on
the input size. All the relaxations above mentioned are symmetric with respect to
machine permutations, so we go back one step in our approach, and before applying
lift & project we break the machine symmetries. It turns out that in this way we get
arbitrarily close to one integrality gaps, and the relaxations are of polynomial size.
We summarize below the main message of this part.

Lift & project methods are powerful tools for obtaining relaxations with good
integrality gaps, but they have be applied to the right model. Symmetries are
harmful, so, we suggest an operator that break symmetires, lift & project.

We believe that understanding the interaction between the action of a group over a
formulation and its effect at the moment of using hierarchies should be understood
better. In particular, it opens the way to combine techniques that look for symmetries
in a formulation (they are not always evidently present as in the scheduling problem),
break them and then strengthening the model.

In the second part of the thesis we considered the matroid secretary problem
under a strong notion of competitiveness. We provide a general tool that allows to
obtain O(1) competitiveness for many matroid families. Furthermore, we obtained
probability competitiveness for general matroids, and in a weaker notion we matched
the best known for the classic weighted secretary problem.

We develop a framework to analize algorithms by studying the size of the forbidden
sets and the competitiveness attained is a function of this parameter. The smaller
the size of the forbidden sets, the better the competitiveness.

In particular, the existence of an algorithm with forbidden sets of size one for every
matroid would prove the strong MSP conjecture. It is an interesting question whether
this approach can be applied to obtain good competitive ratios in non-matroidal set-
tings. In our analysis we require an optimality condition that is necessary for matroids,
but we do not know if it is sufficient.

111

Bibliography

[1] M. Ajtai, N. Megiddo, and O. Waarts. Improved Algorithms and Analysis for
Secretary Problems and Generalizations. SIAM Journal on Discrete Mathemat-
ics, 14(1):1–27, 2001.

[2] M. Alekhnovich, S. Arora, and I. Tourlakis. Towards strong nonapproximability
results in the Lovász-Schrijver hierarchy. In STOC, pages 294–303, 2005.

[3] N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid. Approximation schemes for
scheduling. In SODA, pages 493–500, 1997.

[4] N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid. Approximation schemes for
scheduling on parallel machines. Journal of Scheduling, 1(1):55–66, 1998.

[5] S. Arora, B. Bollobás, L. Lovász, and I. Tourlakis. Proving integrality gaps
without knowing the linear program. Theory of Computing, 2:19–51, 2006.

[6] S. Arora, S. Rao, and U. Vazirani. Expander flows, geometric embeddings and
graph partitioning. Journal of the ACM, 56(2):5, 2009.

[7] A. Atserias and E. Maneva. Sherali–adams relaxations and indistinguishability
in counting logics. SIAM Journal on Computing, (1):112–137, 2013.

[8] P. D. Azar, R. Kleinberg, and S. M. Weinberg. Prophet inequalities with limited
information. In Proc. of SODA 2014, pages 1358–1377, 2014.

[9] M. Babaioff, M. Dinitz, A. Gupta, N. Immorlica, and K. Talwar. Secretary
Problems: Weights and Discounts. In Proc. of SODA 2009, pages 1245–1254,
2009.

[10] M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg. A knapsack secretary
problem with applications. In Proc. of APPROX-RANDOM 2007, volume 4627
of LNCS, pages 16–28, 2007.

[11] M. Babaioff, N. Immorlica, and R. Kleinberg. Matroids, secretary problems,
and online mechanisms. In Proc. of SODA 2007, pages 434–443, 2007.

[12] N. Bansal. Approximating independent sets in sparse graphs. In SODA, pages
1–8, 2015.

113

[13] N. Bansal, A. Srinivasan, and O. Svensson. Lift-and-round to improve weighted
completion time on unrelated machines. CoRR, abs/1511.07826, 2015.

[14] B. Barak and D. Steurer. Sum-of-squares proofs and the quest toward optimal
algorithms. arXiv preprint arXiv:1404.5236, 2014.

[15] S. Barman, S. Umboh, S. Chawla, and D. L. Malec. Secretary problems with
convex costs. In Proc. of ICALP 2012, volume 7391 of LNCS, pages 75–87,
2012.

[16] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. Savelsbergh, and P. H.
Vance. Branch-and-price: Column generation for solving huge integer programs.
Operations research, 46(3):316–329, 1998.

[17] M. Bateni, M. Hajiaghayi, and M. Zadimoghaddam. Submodular secretary
problem and extensions. ACM Transactions on Algorithms, 9(4):1–23, 2013.

[18] M. Beckmann. Dynamic programming and the secretary problem. Computers
& Mathematics with Applications, 19(11):25–28, 1990.

[19] G. Braun, J. Brown-Cohen, A. Huq, S. Pokutta, P. Raghavendra, A. Roy,
B. Weitz, and D. Zink. The matching problem has no small symmetric sdp.
Mathematical Programming, 165(2):643–662, 2017.

[20] F. T. Bruss. Sum the odds to one and stop. The Annals of Probability,
28(3):1384–1391, 2000.

[21] J. Buresh-Oppenheim, N. Galesi, S. Hoory, A. Magen, and T. Pitassi. Rank
bounds and integrality gaps for cutting planes procedures. Theory of Computing,
2:65–90, 2006.

[22] S. Chakraborty and O. Lachish. Improved Competitive Ratio for the Matroid
Secretary Problem. In Proc. of SODA 2012, pages 1702–1712, 2012.

[23] M. Charikar. On semidefinite programming relaxations for graph coloring and
vertex cover. In SODA, pages 616–620, 2002.

[24] K. H. Cheung. Computation of the lasserre ranks of some polytopes. Mathe-
matics of Operations Research, (1):88–94, 2007.

[25] E. Chlamtac, Z. Friggstad, and K. Georgiou. Lift-and-project methods for set
cover and knapsack. In Algorithms and Data Structures, pages 256–267. 2013.

[26] E. Chlamtac and M. Tulsiani. Convex relaxations and integrality gaps. In
Handbook on semidefinite, conic and polynomial optimization, pages 139–169.
Springer, 2012.

[27] V. Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems.
Discrete mathematics, pages 305–337, 1973.

Bibliography Bibliography

[28] G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale traveling-
salesman problem. Journal of the operations research society of America,
2(4):393–410, 1954.

[29] G. B. Dantzig. Origins of the simplex method. ACM, 1990.

[30] W. F. de la Vega and C. Mathieu. Linear programming relaxations of maxcut.
In SODA, pages 53–61, 2007.

[31] M. Desrochers and F. Soumis. A column generation approach to the urban
transit crew scheduling problem. Transportation Science, 23(1):1–13, 1989.

[32] N. B. Dimitrov and C. G. Plaxton. Competitive Weighted Matching in Transver-
sal Matroids. Algorithmica, 62(1-2):333–348, 2012.

[33] M. Dinitz and G. Kortsarz. Matroid Secretary for Regular and Decomposable
Matroids. SIAM Journal on Computing, 43(5):1807–1830, 2014.

[34] P. Dütting and R. Kleinberg. Polymatroid prophet inequalities. In Proc. of ESA
2015, volume 9294 of LNCS, pages 437–449, 2015.

[35] E. B. Dynkin. The optimum choice of the instant for stopping a Markov process.
Soviet Math. Dokl, 4:627–629, 1963.

[36] J. Edmonds and D. Fulkerson. Transversals and matroid partition. Journal
of Research of the National Bureau of Standards Section B Mathematics and
Mathematical Physics, 69B(3):147–153, 1965.

[37] U. Feige and R. Krauthgamer. The probable value of the Lovász–Schrijver relax-
ations for maximum independent set. SIAM Journal on Computing, 32:345–370,
2003.

[38] M. Feldman, J. Naor, and R. Schwartz. Improved competitive ratios for submod-
ular secretary problems (extended abstract). In APPROX-RANDOM, volume
6845 of LNCS, pages 218–229, 2011.

[39] M. Feldman, O. Svensson, and R. Zenklusen. A Simple O (log log(rank)) -
Competitive Algorithm for the Matroid Secretary Problem. In Proc. of SODA
2015, pages 1189–1201, 2015.

[40] M. Feldman and R. Zenklusen. The submodular secretary problem goes linear.
In Proc. of FOCS 2015, pages 486–505, 2015.

[41] T. S. Ferguson. Who Solved the Secretary Problem? Statistical Science,
4(3):282–289, 1989.

115

[42] S. Fiorini, S. Massar, S. Pokutta, H. R. Tiwary, and R. De Wolf. Linear vs.
semidefinite extended formulations: exponential separation and strong lower
bounds. In Proceedings of the forty-fourth annual ACM symposium on Theory
of computing, pages 95–106. ACM, 2012.

[43] P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and T. Walsh.
Symmetry in matrix models. In Proceedings of SymCon, volume 1. Citeseer,
2001.

[44] P. Flener, A. M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and
T. Walsh. Breaking row and column symmetries in matrix models. In In-
ternational Conference on Principles and Practice of Constraint Programming,
pages 462–477. Springer, 2002.

[45] M. Garey and D. Johnson. “Strong” NP-completeness results: motivation, ex-
amples, and implications. Journal of the ACM, 25:499–508, 1978.

[46] K. Georgiou, A. Magen, T. Pitassi, and I. Tourlakis. Integrality gaps of 2-
o(1) for vertex cover SDPs in the Lovász–Schrijver hierarchy. SIAM Journal on
Computing, 39:3553–3570, 2010.

[47] J. P. Gilbert and F. Mosteller. Recognizing the Maximum of a Sequence. Journal
of the American Statistical Association, 61(313):35, 1966.

[48] M. Goemans and D. Williamson. Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. Journal
of the ACM, 42:1115–1145, 1995.

[49] N. Gvozdenovic and M. Laurent. The operator Â for the chromatic number of
a graph. SIAM Journal on Optimization, 19:572–591, 2008.

[50] D. Hochbaum. Approximation algorithms for NP-hard problems. PWS Publish-
ing Co., 1996.

[51] D. Hochbaum and D. Shmoys. Using dual approximation algorithms for schedul-
ing problems theoretical and practical results. Journal of the ACM, 34:144–162,
1987.

[52] M. Hoefer and B. Kodric. Combinatorial Secretary Problems with Ordinal In-
formation. In I. Chatzigiannakis, P. Indyk, F. Kuhn, and A. Muscholl, edi-
tors, Proc. of ICALP 2017, volume 80 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 133:1–133:14, Dagstuhl, Germany, 2017. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[53] R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge University
Press, 1994.

Bibliography Bibliography

[54] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge university press,
2012.

[55] S. Im and Y. Wang. Secretary Problems: Laminar Matroid and Interval Schedul-
ing. In Proc. of SODA 2011, pages 1265–1274, 2011.

[56] P. Jaillet, J. A. Soto, and R. Zenklusen. Advances on Matroid Secretary Prob-
lems: Free Order Model and Laminar Case. In Proc. of IPCO 2013, volume
7801 of LNCS, pages 254–265, 2013.

[57] P. Jaillet, J. A. Soto, and R. Zenklusen. Advances on Matroid Secretary Prob-
lems: Free Order Model and Laminar Case (Full version). http://arxiv.org/

abs/1207.1333v2, 2014.

[58] M. Janata. Matroids induced by packing subgraphs. SIAM J. Discrete Math.,
18(3):525–541, 2005.

[59] R. Jans. Solving lot-sizing problems on parallel identical machines using
symmetry-breaking constraints. INFORMS Journal on Computing, 21(1):123–
136, 2009.

[60] K. Jansen. An eptas for scheduling jobs on uniform processors: using an milp
relaxation with a constant number of integral variables. SIAM Journal on Dis-
crete Mathematics, 24(2):457–485, 2010.

[61] V. Kaibel and M. Pfetsch. Packing and partitioning orbitopes. Mathematical
Programming, 114(1):1–36, 2008.

[62] A. Karlin, C. Mathieu, and C. Nguyen. Integrality gaps of linear and semi-
definite programming relaxations for knapsack. In IPCO, pages 301–314. 2011.

[63] T. Kesselheim, R. Kleinberg, and R. Niazadeh. Secretary Problems with Non-
Uniform Arrival Order. In Proc. of STOC 2015, pages 879–888, 2015.

[64] T. Kesselheim, K. Radke, A. Tönnis, and B. Vöcking. An Optimal Online
Algorithm for Weighted Bipartite Matching and Extensions to Combinatorial
Auctions. In Proc. of ESA 2013, volume 8125 of LNCS, pages 589–600, 2013.

[65] T. Kesselheim, K. Radke, A. Tönnis, and B. Vöcking. Primal beats dual on
online packing LPs in the random-order model. In Proc. of STOC 2014, pages
303–312, 2014.

[66] R. Kleinberg. A Multiple-Choice Secretary Algorithm with Applications to On-
line Auctions. In Proc. of SODA 2005, pages 630–631, 2005.

[67] R. Kleinberg and S. M. Weinberg. Matroid prophet inequalities. In Proc. of
STOC 2012, pages 123–136, 2012.

117

[68] N. Korula and M. Pál. Algorithms for Secretary Problems on Graphs and
Hypergraphs. In Proc. of ICALP 2009, volume 5556 of LNCS, pages 508–520,
2009.

[69] A. Kurpisz, S. Leppänen, and M. Mastrolilli. A Lasserre lower bound for the
min-sum single machine scheduling problem. In Algorithms–ESA 2015, pages
853–864. 2015.

[70] O. Lachish. O(log log Rank) Competitive Ratio for the Matroid Secretary Prob-
lem. In Proc. of FOCS, pages 326–335, 2014.

[71] G. Laman. On graphs and rigidity of plane skeletal structures. Journal of
Engineering Mathematics, 4(4):331–340, 1970.

[72] J. Lasserre. Global optimization with polynomials and the problem of moments.
SIAM Journal on Optimization, 11:796–817, 2001.

[73] M. Laurent. A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre
relaxations for 0-1 programming. Mathematics of Operations Research, 28:470–
496, 2003.

[74] E. Levey and T. Rothvoss. A Lasserre-based (1+Á)-approximation for Pm|pj =
1, prec|Cmax. CoRR, abs/1509.07808, 2015.

[75] D. V. Lindley. Dynamic Programming and Decision Theory. Applied Statistics,
10(1):39–51, 1961.

[76] M. Loebl and S. Poljak. On matroids induced by packing subgraphs. Journal
of Combinatorial Theory, Series B, 44(3):338–354, 1988.

[77] M. Loréa. Hypergraphes et matröıdes. Cahiers Centre Etud. Rech. Oper, 17:289–
291, 1975.

[78] L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0-1 opti-
mization. SIAM Journal on Optimization, 1:166–190, 1991.

[79] T. Ma, B. Tang, and Y. Wang. The Simulated Greedy Algorithm for Sev-
eral Submodular Matroid Secretary Problems. Theory of Computing Systems,
58(4):681–706, 2016.

[80] F. Margot. Exploiting orbits in symmetric ilp. Mathematical Programming,
98(1-3):3–21, 2003.

[81] F. Margot. Symmetric ilp: Coloring and small integers. Discrete Optimization,
4(1):40–62, 2007.

[82] F. Margot. Symmetry in integer linear programming. In 50 Years of Integer
Programming 1958-2008, pages 647–686. Springer, 2010.

Bibliography Bibliography

[83] A. Mehrotra and M. A. Trick. A column generation approach for graph coloring.
informs Journal on Computing, 8(4):344–354, 1996.

[84] I. Méndez-Dı́az and P. Zabala. A branch-and-cut algorithm for graph coloring.
Discrete Applied Mathematics, 154(5):826–847, 2006.

[85] M. Mitzenmacher and E. Upfal. Probability and computing: Randomized algo-
rithms and probabilistic analysis. Cambridge University Press, 2005.

[86] S. C. On, J. Lee, P. Raghavendra, and D. Steurer. Approximate constraint
satisfaction requires large lp relaxations. In FOCS, pages 350–359. IEEE, 2013.

[87] S. Oveis Gharan and J. Vondrák. On Variants of the Matroid Secretary Problem.
Algorithmica, 67(4):472–497, 2013.

[88] P. Parrilo. Semidefinite programming relaxations for semialgebraic problems.
Mathematical programming, 96:293–320, 2003.

[89] T. Rothvoß. The lasserre hierarchy in approximation algorithms. Lecture notes
for the MAPSP, 2013.

[90] T. Rothvoß. The matching polytope has exponential extension complexity. Jour-
nal of the ACM (JACM), 64(6):41, 2017.

[91] A. Rubinstein. Beyond matroids: secretary problem and prophet inequality with
general constraints. In Proc. of STOC 2016, pages 324–332, 2016.

[92] A. Rubinstein and S. Singla. Combinatorial prophet inequalities. In Proc. of
SODA 2017, pages 1671–1687. SIAM, 2017.

[93] G. Schoenebeck, L. Trevisan, and M. Tulsiani. Tight integrality gaps for Lovász-
Schrijver LP relaxations of vertex cover and max cut. In Proceedings of the
thirty-ninth annual ACM symposium on Theory of computing, pages 302–310,
2007.

[94] A. Schrijver. Theory of linear and integer programming. John Wiley & Sons,
1998.

[95] H. Sherali and W. Adams. A hierarchy of relaxations between the continuous
and convex hull representations for zero-one programming problems. SIAM
Journal on Discrete Mathematics, 3:411–430, 1990.

[96] J. A. Soto. Matroid Secretary Problem in the Random-Assignment Model. SIAM
Journal on Computing, 42(1):178–211, 2013.

[97] I. Streinu and L. Theran. Natural realizations of sparsity matroids. Ars Math-
ematica Contemporanea, 4(1):141–151, 2011.

119

[98] T. S. Tay. Rigidity of multi-graphs. I. Linking rigid bodies in n-space. Journal
of Combinatorial Theory, Series B, 36(1):95–112, 1984.

[99] P. H. Vance, C. Barnhart, E. L. Johnson, and G. L. Nemhauser. Solving binary
cutting stock problems by column generation and branch-and-bound. Compu-
tational optimization and applications, 3(2):111–130, 1994.

[100] J. Verschae and A. Wiese. On the configuration-LP for scheduling on unrelated
machines. Journal of Scheduling, 17:371–383, 2014.

[101] W. Whiteley. Some matroids from discrete applied geometry. Contemporary
Mathematics, 197:171–311, 1996.

[102] D. Williamson and D. Shmoys. The design of approximation algorithms. Cam-
bridge University Press, 2011.

[103] M. Yannakakis. Expressing combinatorial optimization problems by linear pro-
grams. Journal of Computer and System Sciences, 43(3):441–466, 1991.

[104] T. Zaslavsky. Frame Matroids and Biased Graphs. European Journal of Com-
binatorics, 15(3):303–307, 1994.

Résumé

L'optimisation convexe a été un outil puissant

pour concevoir des algorithmes. Dans la

pratique est largement utilisé dans des

domaines tels que la recherche opérationnelle

et l'apprentissage automatique, mais aussi

dans de nombreux problèmes combinatoires

fondamentaux, ils cèdent aux algorithmes

d'approximations les mieux connues

fournissant des garanties inconditionnelles sur

la qualité de la solution. Dans la première

partie de ce travail, nous étudions l'effet de la

construction de relaxations convexes sur un

problème d'emballage, basé sur l'application de

méthodes de levage et de projet. Nous

montrons une faiblesse de ces relaxations

lorsqu'elles sont obtenues à partir des

formulations naturelles de ce problème, en

montrant l'impossibilité de réduire l'écart même

lorsque ces relaxations sont très importantes.

Nous fournissons un moyen de combiner des

procédures de rupture de symétrie et des

méthodes de levage et de projet pour obtenir

des écarts arbitraires.

Dans la deuxième partie de cette thèse, nous

étudions les problèmes de sélection en ligne,

c'est-à-dire que les éléments arrivent dans le

temps et nous devons en sélectionner certains

irrévocablement pour répondre à certaines

contraintes combinatoires, mais aussi pour

maximiser la qualité de la sélection.

Habituellement, cette qualité est mesurée en

termes de poids, mais nous considérons une

variante plus forte dans laquelle les poids ne

sont pas nécessairement connus en raison de

la disponibilité de l'information. Au lieu de cela,

tant que nous pouvons classer les éléments,

nous pouvons fournir un cadre général pour

obtenir des algorithmes d'approximation avec

de bons ratios compétitifs dans de nombreux

contextes.

 

Mots Clés

Programmation linéaire, Programmation semi-

définie, Ordonnancement, Selection en ligne,

Algorithmes d’approximation.

Abstract

Convex optimization has been a powerful tool

for designing algorithms. In practice is a widely

used in areas such as operations research and

machine learning, but also in many

fundamental combinatorial problems they yield

to the best know approximations algorithms

providing unconditional guarantees over the

solution quality. In the first part of this work we

study the effect of constructing convex

relaxations to a packing problem, based on

applying lift & project methods. We exhibit a

weakness of this relaxations when they are

obtained from the natural formulations of this

problem, by showing the impossibility of

reducing the gap even when this relaxations

are very large. We provide a way of combining

symmetry breaking procedures and lift & project

methods to obtain arbitrarily good gaps.

In the second part of this thesis we study online

selection problems, that is, elements arrive

over time and we have to select some of them,

irrevocably, in order to meet some

combinatorial constraints, but also trying to

maximize the quality of the selection. Usually

this quality in measured in terms of weight, but

we consider a stronger variant in which weights

are not necessarily known because of

information availability. Instead, as long as we

can rank the elements, we can provide a

general framework to obtain approximation

algorithms with good competitive ratios in many

contexts.

 

Keywords

Linear Programming, Semidefinite

programming, Scheduling, Online Selection,

Approximation algorithms.

	I Convex Optimization: Applications to Scheduling
	Introduction
	The Configuration Linear Program
	Convex Hierarchies
	Lower bounds
	Upper bound

	The hard instances
	Integrality gap for clp: Proof of Theorem 1(i)

	Sherali-Adams (SA) Hierarchy
	Machine Decomposition Lemma
	Integrality gap for SA: Proof of Theorem 1(ii)

	Lovász-Schrijver (LS+) Hierarchy
	Integrality gap of LS+: Proof of Theorem 1(iii)
	The protection matrices are PSD

	Break symmetries to approximate
	Group invariant sets
	Symmetry breaking inequalities
	The Lasserre/SoS (Las) Hierarchy
	Balanced partitionings
	An approximation scheme for Scheduling
	Proof of Theorem 6

	II Online Optimization: Selection Problems
	Introduction
	Ordinal MSP versus Utility MSP
	Our results and techniques
	Organization
	Preliminaries
	Measures of competitiveness: Ordinal MSP

	Protect to be competitive
	Matroids with small forbidden sets
	Transversal matroids and Gammoids
	Matroidal Graph Packings
	Graphic and Hypergraphic Matroids
	Column Sparse Representable Matroids
	Laminar Matroids and Semiplanar Gammoids

	Algorithm for Uniform Matroids
	Algorithms for general matroids
	Ordinal/Probability: Proof of Theorem 9
	Comparison between ordinal measures

