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Abstract

Over the last decades, the quantity of data related to coastal risk has greatly

increased with the installation of numerous monitoring networks. In this era of

big data, the use of statistical learning methods (SLM) in the development of

local predictive models becomes more legitimate and justified. The objective

of this thesis is to demonstrate how SLM can contribute to the improvement

of coastal risk assessment tools and to the development of an early warning

system which aims to reduce coastal flooding risk.

Three methodologies have been developed and tested on real study sites.

The first methodology aims to improve the local wave forecast made by spec-

tral wave model with machine learning methods and data from monitoring

networks. We showed that data assimilation with machine learning meth-

ods improve significantly the forecast of wave parameters especially the wave

height and period. The second methodology concerns the creation of storm

impact databases. Even though these databases are essential for the disas-

ter risk reduction process they are rare and sparse. We therefore proposed a

methodology based on a deep learning method (convolutional neural networks)

to generate automatically qualitative storm impact data from images provided

by video monitoring stations installed on the coast. The last methodology is

about the development of a storm impact model with a statistical method

(bayesian network) based exclusively on data acquired with diverse monitor-

ing networks. With this methodology we were able to predict qualitatively the

storm impact on our study site, the Grande Plage of Biarritz.

Keywords: Coastal flooding; Coastal risk; Deep learning; Early warning

system; Machine learning; Monitoring network; Statistical learning methods.



Résumé

Au cours des dernières décennies, la quantité de données relatives aux

risques côtiers a fortement augmenté avec l’installation de nombreux réseaux

de surveillance. Dans cette ère de big data, l’utilisation de méthodes

d’apprentissage statistique dans le développement de modèles prédictifs

locaux devient de plus en plus légitime et justifiée. L’objectif de cette thèse

est de démontrer comment les méthodes d’apprentissage statistique peuvent

contribuer à l’amélioration des outils d’évaluation des risques côtiers et au

développement d’un système d’alerte précoce qui vise à réduire le risque

d’inondation côtière.

Trois méthodologies ont été développées et testées sur différent sites

d’étude. La première méthodologie vise à améliorer les prévisions locales

de vagues faites par un modèle spectral de vagues avec des méthodes

d’apprentissage automatique et des données provenant de réseaux de surveil-

lance. Nous avons montré que l’assimilation de données avec des méthodes

d’apprentissage automatique améliore de manière significative la prévision

des paramètres des vagues, en particulier la hauteur et la période des vagues.

La deuxième méthodologie concerne la création de bases de données sur

l’impact des tempêtes. Bien que ces bases de données soient essentielles

dans le processus de réduction des risques de catastrophes, elles sont rares

et peu nombreuses. Nous avons donc proposé une méthodologie basée sur

une méthode d’apprentissage profond (réseaux de neurones convolutifs) pour

générer automatiquement des données qualitatives sur l’impact des tempêtes

à partir d’images fournies par des stations de surveillance vidéo installées sur

les côtes. La dernière méthodologie concerne le développement d’un modèle

d’impact de tempêtes avec une méthode statistique (réseau bayésien) basée

exclusivement sur des données acquises avec divers réseaux de surveillance.

Grâce à cette méthodologie, nous avons pu prédire de manière qualitative

l’impact de tempêtes sur notre site d’étude, la Grande Plage de Biarritz.



Mots-clés: Apprentissage automatique; Apprentissage profond; Inonda-

tions côtières; Méthodes d’apprentissage statistique; Réseau de surveillance;

Risque côtier; Système d’alerte précoce.
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1. Introduction

1.1 General context

Coastal areas have always been attractive habitats for human communities

because of the abundant resources and valuable services provided by the di-

verse ecosystems associated with these areas (Barbier et al., 2011; Mehvar

et al., 2018) and their strategic positioning at the interface between land and

sea which offers access points to marine trade and transport. Over the last

decades, the coastal zones have known an active urbanization (Seto et al., 2011)

and population growth. Nowadays, the population density in coastal areas is

significantly higher than in inland areas (Neumann et al., 2015). At world

level, the coastal areas represent only 4% of the earth’s total land area (Bar-

bier, 2013), whereas they host 30% of the World’s population (MEa, 2005).

The same phenomenon is observed for Europe (Figure 1.1) where it is esti-

mated that one third of the population live within 500 meters of the European

seas or Oceans (European Commission, 2012).

The coastal zones also play a major role in the economy of human commu-

nities. As evoked earlier, their strategic positioning enables the construction of

ports which are essential for international trade and transport. However, most

of the economic value of these areas comes from the resources and services

provided by the ecosystems present in these areas (Barbier et al., 2011). The

main valuable services are tourism, recreation and storm protection services

(Mehvar et al., 2018). In Europe, one third of the gross domestic product is

produced within 500 meters of European seas and the economic value of these

areas has been estimated between 500 and 1,000 billion Euros (European Com-

mission, 2012).
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Figure 1.1: Map representing the population density for Europe in 2018. This

map was reprinted from ec.europa.eu/eurostat.

1.2 Coastal risk

Coastal areas are exposed to different types of natural hazards such as storm

waves, flood and erosion that can pose significant risks to assets and commu-

nities installed in these areas. According to the terminology of the United

Nations relating to disaster risk reduction (UNGA, 2016), a risk is referred to

the potential loss of life, injury, or destroyed or damaged assets which could

occur to a system, society or a community in a specific period of time, deter-

mined probabilistically as a function of hazard, exposure, vulnerability (Figure

2



1.2).

Figure 1.2: The concept of risk.

In environmental studies, hazard usually refers to a phenomenon with

given intensity and frequency that may cause loss of life, property damage or

economic disruption (non exhaustive list). In the case of coastal areas, the

hazards are mainly natural hazards such as storm waves, coastal flooding or

erosion. Two categories of hazards can be distinguished: rapid onset hazard

that occurs at a time scale of days to weeks and slow onset hazard that occurs

at a time scale of decades to centuries (Hill et al., 2020). Exposure alludes

to the communities, the properties or other human assets which are subject

to potential losses because of their location in hazard-prone areas (UNGA,

2016). Finally, vulnerability corresponds to the physical, social, economic

and environmental factors associated with these exposed communities, prop-

erties or other human assets which increase their susceptibility to the impact

of hazards.

1.2.1 Coastal flooding

In this thesis, a particular attention is paid to coastal flooding occurring on

highly urbanized cities. This type of hazard falls in the class of rapid onset

hazards. A flood is a general and temporary inundation of normally dry land

areas. It is considered as coastal flooding when coastal processes such as

tide, waves and storm surge are involved (Yang and Liu, 2020). This hazard

3



occurs during extreme water-level events when the total water level exceeds

the elevation of a defense infrastructure. It can cause severe damages on assets

or buildings located behind the defense infrastructures (Figure 1.3).

Figure 1.3: Coastal flooding on the Grande Plage de Biarritz during the Chris-

tine storm (04/03/2014). Image reproduced from www.rtl.fr.

The total water level is a combination of several components, namely the

astronomical tide, the storm surge and the wave runup (Figure 1.4).
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Figure 1.4: Different components of total water level. Reprinted from Vitousek

et al. (2017).

Astronomical tide

The astronomical tide is one of the major components of the total water

level. Tides are the rising and falling of the surface of the ocean caused by the

combined gravitational attraction of the sun and the moon. In some regions,

the tide level will determine whether or not there will be a flooding. For

instance, it has been shown that coastal floodings occurred most of the times

during high tides in the central part of the bay of Biscay (Breilh et al., 2014).

Spring tides can also be an aggravating factor in coastal flooding. Twice a

lunar month, the Earth, sun, and moon are nearly in alignment (full moon

and new moon) which results in the so-called spring tides that are tides with

slightly larger tidal range. A storm event occurring during a high spring tide

is more likely to cause severe floods.

Storm surge

A sea surge corresponds to the difference between the observed sea level

and the astronomical tidal level (Pirazzoli, 2000). This difference is the result

of the interactions between the sea and several forcings such as the atmospheric

5



pressure, the winds or the waves. Atmospheric pressure has a significant effect

on the surge level. This phenomenon is known as inverse barometric effect.

It has been estimated that a decrease of 1 hPa in atmospheric pressure leads

to an elevation of 1 cm in total water level (Harris, 1963). Winds can also

move water masses toward the coast and lead to increased surge level. In

shallow coastal areas, winds have generally stronger effect on sea surge than

atmospheric pressure (Arnaud and Bertin, 2014). Finally, it has been proven

that sea state can influence significantly the surge level (Bertin et al., 2015).

During a storm, the extreme conditions (low pressure, high winds and large

waves) lead to a significant surge which is qualified as storm surge.

Wind waves induced components

By breaking on the shore, waves have a direct effect on the total water

level. This effect is named “wave runup” and is defined as the maximum

vertical extent of wave uprush on a beach or structure above the still water

level. The wave runup is the sum of two components: “wave setup” which

is a nearly static component and “swash” which is a dynamic component at

the wave scale. Wave setup is the increase in mean water level above the

stillwater level due to momentum transfer to the water column by waves that

are breaking or otherwise dissipating their energy. The swash corresponds to

the vertical elevation of the lens of water that washes up on the beach after a

wave has broken. The swash dynamics is controlled by incident waves (period

smaller than 20s) and infragravity waves (period ranging between 30 and 300s)

(Stockdon et al., 2006). The contribution of each component varies with the

beach type in such a way that swash in dissipative beaches is dominated by

infragravity waves, and in reflective beaches by incident waves (Plant and

Stockdon, 2015).

During a storm event, wave height and period are generally larger than

average. This can cause a significant elevation of the total water level because

wave height and period are positively correlated with wave runup (Diwedar,

2016). It has been shown that the contribution of waves to the total water
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level is more important than the contribution of winds in zones where the con-

tinental shelf is reduced (Kennedy et al., 2012). Waves can also interact with

other components of the total water level. Several authors have demonstrated

that waves can influence the storm surge (Nicolle et al., 2009; Bertin et al.,

2012, 2015). Indeed, the sea state can enhance the wind friction, inducing the

movement of larger bodies of water toward the coast which results in larger

storm surge.

1.2.2 Coastal flooding and global change

The risk related to coastal flooding is expected to increase significantly in

the future. On one hand, global warming will have an impact on all the

components of the total water level which are responsible for coastal flooding.

Since the beginning of the last century, the global mean sea level has been

rising at an accelerated rate (Chen et al., 2017) and is expected to keep rising

during the next decades, reaching an increase of 50 cm (RCP 4.5) to 80 cm

(RCP 8.5) by the end of the century (Kopp et al., 2014; Mengel et al., 2016).

The sea level rise and the global warming will induce changes in the amplitudes

and phases of tides (Idier et al., 2017; Pickering et al., 2017). Even though

an increase in storminess in the north Atlantic for the future decades is still

debatable (Bengtsson et al., 2009; Feser et al., 2015), wind waves (Perez et al.,

2015) and storm surges (Marcos et al., 2011; Little et al., 2015) will be affected

by global warming. These changes, especially in mean sea level, will result in

more frequent and intense coastal floodings (Vitousek et al., 2017; Vousdoukas

et al., 2018b; Taherkhani et al., 2020).

On the other hand, the stakes on coastal areas will keep growing. More

people will be exposed to coastal flooding as the populations in these zones are

expected to increase significantly in the future decades (Neumann et al., 2015).

Urban areas will keep developing in coastal zones to welcome the growing pop-

ulations resulting in more assets, buildings and infrastructures to protect from

coastal flooding. In the study of Vousdoukas et al. (2018a), it has been esti-
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mated that the current expected annual number of people exposed to coastal

flooding of 102 000 will reach 1.52-3.65 million by the end of the century for

Europe depending on the scenario considered. Concerning the current ex-

pected annual damage for Europe, the authors found an increase by two to

three orders of magnitude by the end of the century if nothing is done (from

1.25 billion to 93-961 billion euros depending on the scenario used).

1.3 Reducing coastal risk

Given the current flooding risk and its future increase in coastal areas, efficient

disaster management is needed to identify, assess or reduce the risks of disaster.

Generally, the process of Disaster risk reduction (DRR) is represented as a

cycle (Figure 1.5) with 4 steps: response, recovery, prevention, preparedness.

Figure 1.5: Disaster reduction cycle. Reprinted from Yang and Liu (2020)

The response corresponds to the actions and measures taken directly be-

fore, during or immediately after a disaster in order to save lives, reduce health

impacts, ensure public safety (UNGA, 2016). The recovery is the step occur-

ring in the post-disaster phase, and corresponds to the restoring of the eco-

nomic, social, environmental assets (non exhaustive list) affected by this haz-

ard. Prevention and preparedness steps occur during the pre-disaster phase.
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The prevention step corresponds to all the activities and measures taken to

avoid existing and new disaster risks. Finally, the preparedness step repre-

sents the knowledge and capacities developed by governments, communities

to effectively anticipate, respond to the impacts of likely, imminent or current

disasters (UNGA, 2016).

Among all the measures employed during the disaster management process,

we can distinguish two families with different aims: mitigation or preparedness.

The measures aiming to mitigate directly the impact of a coastal hazard are

often structural measures that correspond to engineering constructions. The

measures aiming to prepare and prevent a disaster are often nonstructural

measures such as actions, legislation or warning systems (Meyer et al., 2012).

Our interest lies in these measures as they are more proactive, relatively cost

effective and require a short time to implement.

1.3.1 Preparedness

The measures aiming for preparedness focus on two key factors which are the

knowledge about the hazards and the ability to predict in advance such events

to give an early warning to the communities.

Coastal monitoring networks

The most efficient way to build knowledge about hazards is to install per-

manent monitoring systems. Over the last decades, numerous coastal mon-

itoring systems have been installed along the coasts in order to study the

processes that are responsible for coastal flooding. These systems are gen-

erally regrouped into networks to provide continuous and sustainable data.

Along the french coasts, we find the RONIN network operated by SHOM that

regroups tidal gauges which are measuring the total water level, the CAN-

DHIS network operated by CEREMA constituted by numerous offshore di-

rectional wave buoys which record the wave characteristics and a network

of weather stations operated by Metéo-France. There are also remote sens-

ing systems such as video monitoring station or satellites. Video monitoring
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systems are installed on the beach to study coastal processes such as beach

morphology changes, wave runup, and coastal currents (Splinter et al., 2018;

Buscombe and Carini, 2019). Examples of networks for video monitoring sys-

tems are euskoos (https://www.kostasystem.com/fr/) for the Basque coast,

WebCAT (https://secoora.org/web-cameras/) for the east coast of USA or

the coastal imaging network of the water research laboratory of New South

Wales (http://ci.wrl.unsw.edu.au/) for australian coasts. Satellites are em-

ployed to perform various tasks such as mapping ocean currents (Klemas,

2012), estimating wave parameters (Shao et al., 2016; He et al., 2006) and also

monitoring meteorological conditions (Kidd et al., 2009). During disaster or

post-disaster phase, remote systems can assess the impact of the hazard which

can be precious for building Early warning system (EWS) (Klemas, 2009).

Data collected from monitoring systems are essential for the preparedness as

they are used as input for statistical learning models or EWS (Valchev et al.,

2014; Van Dongeren et al., 2018). They are also used as ground truth to

calibrate and validate numerical wind wave models (Lavidas and Venugopal,

2018).

Predictive models and Early warning systems

To complement coastal monitoring systems, the development of accurate

predictive models and Early warning system (EWS) are crucial measures for

the preparedness step. According to UNGA (2016), an EWS designate a sys-

tem including four interrelated key elements: (1) disaster risk knowledge based

on the systematic collection of data and disaster risk assessments; (2) moni-

toring, analysis and forecasting of the hazards and possible consequences; (3)

dissemination and communication of timely accurate warnings and associated

information on likelihood and impact; and (4) preparedness at all levels to re-

spond to the warnings received. The development of EWS is considered as the

most cost-effective measure, as EWS save both lives and properties (Rogers

and Tsirkunov, 2011).

Various methods can be used inside an EWS to forecast the characteris-
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tics of a hazard or predict its impact. These methods can be divided into 2

main groups: physics-based methods (numerical modeling) and data-driven

methods (statistical learning). Physic-based models are representations of

physical processes in mathematical terms. They are usually composed by one

or more governing equations that are based on theory and fundamental knowl-

edge. Because these equations are often impossible to solve or because initial

or boundary conditions are not known (Larson, 2005), numerical modeling

techniques are usually employed to approximate solutions. On the opposite,

data-driven approaches are based on the analysis of the data about a specific

system. They aim to find relationships between the system variables (input

and output) without explicit knowledge of the physical behavior of the system

(Solomatine and Ostfeld, 2008).

This thesis focuses on the data-driven methods which are getting more at-

tention over the last decade because of the increasing amount of data collected

by the monitoring networks and the rapid development of data science.

1.4 Statistical learning methods

Statistical learning is one of the data-driven approaches. It is a field combining

machine learning and statistics, it regroups tools and methods for modeling,

predicting and understanding complex data. SLM aim to solve different type

of learning problems such as unsupervised learning which aims to find the

structure of the data or supervised learning which aims to map data to a

desired output. The latter is our main focus because it has applications in

predictive modeling. Over the past year, the field of statistical learning has

gained increasing interest and attention as can be seen from the Figure 1.6.
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Figure 1.6: Normalized measure of the interest made by Google Trends for

different terms related to statistical learning. Measures are represented in

grey lines and moving average over 6 months are represented in red lines.

Calculation of the normalized measure is detailed here: https://support.

google.com/trends/answer/4365533?hl=en.

Our interest will lie upon the use of three categories of SLM namely ma-

chine learning, deep learning and statistical methods in coastal risk analysis.

Machine learning methods are algorithms that learn pattern from pre-defined

data features in order to make the most accurate predictions for new data.

The features extraction in machine learning is a manual process that requires

domain knowledge. Although they are considered as black box models, they

are widely employed due to their prediction accuracy (Burkart and Huber,

2021). Deep learning is sub-class of machine learning methods based on deep

artificial neural networks which are algorithms inspired by the structure and
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function of the brain. Deep learning methods aim to discover the mapping

from data features to the target variable but also discover which features to

extract from data contrary to machine learning methods. Deep learning meth-

ods generally require a large amount of data and computational power to train.

Finally, statistical methods are methods based on statistic, they can be used

as predictive models but they are more oriented toward the understanding of

the data and the study of relationships between variables.

1.4.1 Machine learning

In coastal risk analysis, machine learning methods are commonly employed due

to their predictive ability. They are employed to perform short-term forecast

of coastal processes responsible for coastal flooding or to improve forecast of

the same processes made by process-based numerical models.

Concerning these two applications, we observed in the literature a pref-

erence for Shallow neural networks (SNN) as a machine learning algorithm.

Indeed, they are used as off-the-self method in numerous works. SNN designate

a class of feed-forward Artificial neural networks (ANN). They are generally

simple ANN with three layers of nodes: an input layer, one hidden layer and an

output layer. They have been employed to obtain short-term forecast of wave

parameters, storm surge and tide level (Table 1.1). The explanatory variables

(input) are mainly measurements obtained from monitoring networks (buoy,

weather stations, tide gauge) or predictions made by numerical wave models.

They have also been employed to improve the predictions made by numeri-

cal wind wave models with a data assimilation procedure called error prediction

method (Babovic et al., 2001; Makarynskyy et al., 2005; Moeini et al., 2012;

Deshmukh et al., 2016; Londhe et al., 2016). In this case, the explanatory

variables are wave parameters simulated by the wind wave model and mete-

orological variables and the response variable are the deviations of the wind

wave model. In Londhe et al. (2016), this data assimilation method with SNN

led to a significant improvement of significant wave height forecast, with the
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correction of the underestimation (no remaining bias after the assimilation)

and RMSE in average 50 % lower.

Table 1.1: Scientific works using SNN in the predictive modeling of tide, waves

and storm surge.

Modeled parameter References

Tide

Lee (2004), Makarynskyy et al. (2004),

Makarynska and Makarynskyy (2008),

Granata and Di Nunno (2021)

Wave height

Deo et al. (2001), Tsai et al. (2002),

Makarynskyy (2005), Mandal and Prabaharan (2006),

Browne et al. (2007)

Storm surge level

Lee (2006), Tseng et al. (2007),

You and Seo (2009), Hashemi et al. (2016),

Bezuglov et al. (2016), Kim et al. (2018),

Lee et al. (2018), Quintana et al. (2021)

Despite the popularity of SNN, other machine learning methods have been

employed to predict coastal processes responsible for coastal flooding. In the

literature, significant wave height has been predicted by support vector ma-

chines (Elgohary et al., 2017; Berbić et al., 2017), regression trees (Etemad-

Shahidi and Mahjoobi, 2009) and random forest (Mafi and Amirinia, 2017).

The storm surge has been also predicted by different algorithms such as sup-

port vector machines (Hashemi et al., 2016), regression trees and random forest

(Granata and Di Nunno, 2021). Over the last decades, an increasing number

of works have been comparing the SNN with other machine learning methods

proving that this method is not the best for all problems. In Granata and

Di Nunno (2021), they showed that regression trees outperforms SNN in most
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of the case for the tide forecast. Same observation was made on the prediction

of significant wave height (Etemad-Shahidi and Mahjoobi, 2009).

1.4.2 Deep learning

With the increasing amount of data and computational power, deep learning

methods such as recurrent neural networks have been increasingly used over

the last years in the predictive modeling of coastal processes. Recurrent neural

networks are deep neural networks specialized in the sequences and time series

prediction (Bengio et al., 2017). This type of networks have been used suc-

cessfully to accurately predict time series of significant wave height (Mandal

and Prabaharan, 2006; Sadeghifar et al., 2017; Savitha et al., 2017; Alqushaibi

et al., 2021) or to predict storm surge level (Di Nunno et al., 2021; Quintana

et al., 2021). More recently, they have been used to improve the predictions

of a numerical wind wave model by integrating both the local data and the

temporality in the errors of the numerical wind wave model (Zhang et al.,

2021).

Convolutional neural networks (CNN) which are deep neural networks spe-

cialized in images analysis are also more and more employed to analyze the

large quantity of images created by the video monitoring stations located on

the shore. However, there are only few applications of CNN based on the im-

ages of the video monitoring stations such as the estimation of the nearshore

bathymetry (Benshila et al., 2020) or wave-tracking (Kim et al., 2020). So far,

they do not have a direct application for the analysis of coastal risk.

1.4.3 Statistical methods

In the study of coastal risks, statistical methods are used for their ability to

bring understanding about the data and to study the relationships between

variables. Among the statistical methods, Bayesian networks (BN), a class of

probabilistic graphical models, are appreciated methods in coastal risk model-

ing. Their low computational cost, their ability to represent complex systems
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by integrating different sources of data and their intuitive representation are

non negligible advantages compared to other modeling approaches such as

numerical process based models.

Most of the applications of BN in coastal engineering domain concern the

translation of forcing variables (e.g. wave, weather and tide conditions) into

impact and damages on the shore during storm events. For instance, they

have been employed to predict coastal cliff erosion (Hapke and Plant, 2010),

shoreline retreat (Beuzen et al., 2018), dune retreat and erosion (Palmsten

et al., 2014; den Heijer et al., 2012) and barrier island response (Plant and

Stockdon, 2012; Wilson et al., 2015) resulting from coastal storms. They are

also used as surrogates of process-based models. In Poelhekke et al. (2016)

and Plomaritis et al. (2018), BN are trained using output data from many pre-

computed process-based model simulations. Once trained, the networks can

be conditioned with forecast of the hydraulic boundary conditions to obtain

instantaneously forecast of onshore hazards. By avoiding the computation time

associated with process based models, bayesian networks are a great assets for

operational EWS.

1.4.4 Advantages and limitations of SLM

The main advantage of SLM over process-based models is the computation

time. The training time for such methods is usually in the order of minutes

(or hours for deep learning) and the predictions made by these methods are

instantaneous compared to numerical process-based models. In addition, SLM

are relatively simple to use and with enough data they can achieve similar or

even higher performances than numerical wind wave models for site-specific

wave parameters (Browne et al., 2007; Savitha et al., 2017).

The main limitation of these methods is that their performances depend

directly on the quantity and quality of the data. Deployment of these models

are only possible in sites equipped with monitoring systems. In the future, data

availability will not be as much as a problem. Indeed, monitoring networks
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are expected to be more dense as new technological advances will improve

sensors and their connectivity, and as the cost of the components will decrease

(Marcelli et al., 2021). In this future context, the use of statistical methods

adapted to big data will be necessary (Xu et al., 2019).

1.5 Problematic and objectives of the thesis

Considering that coastal flooding risk is expected to increase in the next

decades and that SLM offers a promising potential in an era of big data,

this thesis aims to answer the following question:

How SLM can contribute to the improvement of coastal risk as-

sessment tools and to the development of an EWS which aims to

reduce coastal flooding risk ?

This problematic is broken down into 3 sub-questions that will be investi-

gated in this thesis:

• How to improve, with SLM, the local forecast of spectral wave mod-

els that are known to underestimate wave parameters during extreme

events?

• Can we employ SLM to constitute storm impact databases that are rare

and not routinely collected but are essential in the disaster risk reduction

process?

• Can we fully develop an accurate predictive model linking offshore hy-

draulic boundary conditions into onshore hazards based on data collected

from monitoring network and SLM?

1.6 Outline of the thesis

The presentation of the research carried out in this thesis is organized in 4

chapters each dedicated to a specific scientific issue linked to the application
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of SLM to the study of coastal flooding and its prediction (Figure 1.7).

Chapter 1
Gain local understanding 

with SLM

Chapter 2
Improve wave forecast with SLM

 and local observations

Chapter 3
Creation of storm impact database 

based on video monitoring 
and deep learning

Chapter 4
Bayesian networks to model storm 

Impact based on observational data 
and SLM

Local knowledge and
Supervised models

Data assimilation on
wave data

Storm impact 
database

Figure 1.7: Connection between the chapters of this thesis.

The first chapter acts as an introduction on SLM and their applications

in the study of coastal processes. The objective of this chapter is to demon-

strate the interest of using these methods by highlighting the fact that they

can provide knowledge about a coastal process at a local scale. Local knowl-

edge is essential in the development of an EWS. This statement is especially

true if the EWS is built with a statistical learning method such as bayesian

networks, which is the case in this thesis. This chapter is organized in three

parts, each presenting a different application of SLM in the study of coastal

processes. Two of them concern supervised learning with the modeling of two

coastal processes related to coastal flooding: storm surge level and wave runup

on the beach. The last application of SLM concerns unsupervised learning and

shows how to characterize local wave climate with clustering method.

In the second chapter of this thesis, we demonstrate the ability of SLM

to improve local wave predictions made by numerical wind wave models. The
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accuracy of the data used in the development of the EWS is crucial to have re-

liable warnings. However, it has been shown that numerical wind wave models

have a tendency to underestimate certain wave parameters during stormy con-

ditions. We present alternatives SLM (random forest and gradient boosting

trees) to neural networks which are traditionally used in the literature to per-

form data assimilation. We demonstrate that these methods, that have never

been used for this task, leads to better improvements than neural networks in

addition to providing explicability with the predictive power of the variables.

This chapter is constituted by an article published in Applied Ocean Research.

The third chapter demonstrates that SLM, especially deep learning

methods, can be used to create automatically a storm impact database with

images from video monitoring networks. Building a bayesian network that

can be employed in EWS to predict coastal flooding requires a lot of data. It

needs data about the coastal processes that are responsible for coastal flood-

ing (tide, waves, storm surge, meteorological conditions) but it also needs data

about the impact of coastal flooding. Unlike data about the coastal processes,

data about the impact of coastal flooding are rare and sparse. Convolutional

neural networks, which are deep learning methods, are used to classify the

video monitoring images into three storm impact regimes which are categories

of coastal flooding risk. Once trained, these networks can predict the storm

impact regimes of newly created timestacks, generating an incremental storm

impact database. This chapter is composed by an article published in Remote

Sensing.

The fourth chapter shows that SLM can be employed to predict coastal

flooding risk. This chapter regroups the models and data acquired through

the previous chapters and assemble them in a Bayesian network that can be

employed in a EWS to predict coastal flooding risk (Figure 1.7). In this

chapter, we evaluate the predictive performance of a BN exclusively based on

observational data from diverse monitoring networks. In addition, we propose

a methodology based on SLM to extend the storm impact and atmospheric
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surge data that are limited for the study site of Biarritz. A second BN is

trained on the extended database and its performances are compared with

the first BN to see the gain of performances associated with the extension of

the database. This chapter is constituted by an article in preparation for a

submission to Natural Hazards.

Finally, we conclude this thesis by answering the main research question,

summarizing the scientific contributions associated with this thesis and dis-

cussing the potential perspectives.
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2. Gain local understanding with

SLM

2.1 Introduction

The objective of this chapter is to demonstrate the interest of SLM in the

modeling of coastal processes by showing that they can provide knowledge

about these processes or the study site. This chapter presents three examples

where SLM were employed to model two different processes which are storm

surge, wave runup on the beach and to characterize wave climate.

In the first part of the chapter, we show how to model storm surge level

with several environmental variables related to the tide, the winds and the

waves. Different methods are tested to find the best predictive model and

variable importance analysis is performed on the best model to learn which

variable is the most predictive for the study site. The insights brought by the

variable importance analysis are discussed with the characteristics of the site

and what is known in the literature.

The second part of this chapter is about the modeling of wave runup on

the beach depending on the characteristics of the offshore waves. This part is

quite similar to the first part of chapter one in terms of methodology, however,

an additional statistical method is tested which is the generalized additive

model. This method has the advantage to better illustrate the relationships

between the variable of interest and the covariates (variables used to make the

predictions).

The last part of this chapter aims to characterize the wave climate at

Anglet’s buoy location by studying the relationships between the local wave
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characteristics observed at the buoy and the synoptic weather (sea level pres-

sure) over the North Atlantic ocean. Contrary to the two other parts of this

chapter, the characterization of the wave climate is an unsupervised task and

other statistical learning methods must be employed such as dimensionality

reduction (PCA) or clustering methods (Self Organizing Maps).

2.2 Sea surge modeling

Storm surges play a major role during coastal floodings, it is therefore essential

for coastal researchers and stakeholders to have predictive models for this

phenomenon. Numerical modeling is commonly employed for storm surge

modeling. For a general review on this subject the reader is referred to the

review of Flather (2000) and for examples of operational models to the works of

Lionello et al. (2006) or Souza et al. (2013). Over the last few years, statistical

learning models (especially shallow neural networks) have been employed to

model the storm surge (Bezuglov et al., 2016; Hashemi et al., 2016; Lee et al.,

2018). These models have the advantage to be less computationally expensive

than process-based numerical models but they requires large observational

dataset to be trained.

In this first part, we aim to train a statistical learning model to predict

precisely sea surge level at Socoa tide gauge (South west of France), while

learning about the local phenomenon by studying variable importance. Vari-

able importance is a measure of the predictive power of a variable in a model.

It can be used to sort variables from most to least predictive, allowing one

to have more insights on the problem and to perform feature selection when

there are too many variables. This model can be potentially used to predict

operationally local storm surge and the insights brought by the variable im-

portance analysis can be included in the development of an EWS based on

Bayesian networks (BN).
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2.2.1 Data

Figure 2.1: Map showing the locations of the directional wave buoy (1), the

meteorological station of Biarritz (2) and the tide gauge of Socoa (3).

Storm surge data are obtained by subtracting the astronomical tide mod-

eled by harmonic analysis from the total water level collected by the tide gauge

of Socoa (Figure 2.1). This method is fully described in Appendix A. The data

range from 2011 to nowadays with a hourly time step (Figure 2.2) and contain

missing data for the period 2016-2019 due to dysfunctions of the Socoa tide

gauge.

Meteorological data, including average wind speed above 10 meters, wind

direction and atmospheric pressure are furnished by the French national me-

teorological service MeteoFrance. The data were collected hourly by the me-

teorological station of the Biarritz airport, located only a few kilometers from

the study site (Figure 2.1). It covers the period ranging from 2013-01-01 to

2020-03-23.

Direct measurements of wave parameters are furnished by the National

Center for Archiving Swell Measurements (L’her et al., 1999). They were

made by a directional wave rider buoy (DWR MKIII) operated by the Center

for Studies and Expertise on Risks, Environment, Mobility, and Urban and

Country Planning (CEREMA) and the University of Pau and Pays de l’Adour
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Figure 2.2: Atmospheric surge level extracted from the water level of Socoa

tide gauge.

(UPPA). The buoy is located a few miles off the Basque Coast (Figure 2.1)

at 50 meters water depth. Since its deployment in 2009, this buoy has been

recording significant wave height Hs, peak period Tp, direction at peak θp and

other wave parameters every 30 minutes.

By assembling the storm surge, the meteorological data and the wave mea-

surements we obtain a dataset of 37401 hourly observations ranging from 2013-

01-01 to 2017-01-01. Because temporal effects are not taken into account in

the modeling of storm surge, the data are divided randomly into two sets :

the training set containing 75% of the data and the testing set containing the

remaining 25%. The explanatory variables are normalized (mean of 0 and

standard deviation of 1) to facilitate the training of the algorithms.

2.2.2 Methodology

Supervised learning methods

Over the last few years, the use of Shallow neural networks (SNN) has been

democratized for the modeling of water level related to the atmospheric surge,
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few examples are presented in Table 2.1. The explanatory variables (Input)

are mostly local meteorological conditions and storm characteristics (strength,

location, etc...).

Table 2.1: Examples of atmospheric surge modeling with SNN in the literature.

Authors Year Type of neural networks Input Output

Lee 2006 SNN

For one location at time t:

-Pressure

-Wind velocity

-Wind direction

-Harmonic Analysis tidal level

Sea level for one

location at time t

Tseng et al. 2007 SNN

-Typhon characteristics

-Distance to station

-Local wind direction

-Local pressure

-Local wind speed

-Local astronomical tide

Sometimes they used these variables

at time t or t -1h .

Storm surge deviation

(in meters) at time t+1h

Lee 2008 SNN

For one location at time t:

-Pressure

-Wind velocity

-Wind direction

-Harmonic Analysis tidal level

Sea level for one location

at time t+1h or t+3h or t+6h.

Kim et al. 2018 SNN

-Longitude

-Latitude

-Central pressure

-Moving speed of the storm

-heading direction

-Radius of exponential scale pressure

Normalized surge level

Lee et al. 2018 Generalized regression neural network
-Difference in pressure

-Maximum wind speed
Storm surge level

Most authors take into account the temporal effect for the modeling of the

atmospheric surge level and therefore use SNN as the ”off-the-shelf” method.

In this work, we do not take into account the temporal effects. It is why we are

comparing several methods to find the most appropriate one for our problem.

We tested usual supervised learning algorithms:

• Linear model

• Shallow neural networks
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• Random forests

• Gradient boosting trees

The reader is referred to Hastie et al. (2009) for details on neural networks,

random forest and gradient boosting trees. The algorithms all have the same

explanatory variables to predict the storm surge level: the astronomical tide

level (harmonic analysis), the local meteorological conditions (average wind

speed and direction above 10 meters, atmospheric pressure) and the sea state

characteristics (significant wave height, peak wave period and wave direction).

The best statistical learning model is the one which obtains the best perfor-

mances (lowest root mean squared errors) on the test set.

Bayesian optimization for hyperparameter tuning

For complex learning algorithms such as random forest, gradient boosting trees

and neural networks, hyperparameter values must be optimized. Hyperparam-

eters are parameters whose values are specified by the user before the training

process begins, they affect the structure of a learning algorithm and how well

it trains. They have a non negligible impact on the final results.

In this work, Bayesian optimization is employed to select the optimal hy-

perparameter values. Bayesian optimization is an iterative algorithm that aims

to minimize an objective function, in our case the root mean squared errors

(RMSE). First, it builds a probability model (Gaussian process) of the objec-

tive function. Then it uses this surrogate model to select the most promising

values of hyperparameters to evaluate. Once the promising combination of

values have been evaluated, the probability model is updated and searched

again for the most promising combination. This process is repeated several

times. This method is employed because it is very efficient for tuning hyper-

parameter values and it usually requires less iterations than other methods

such as grid or random search (Bergstra et al., 2011). In depth details of this

method are given in the works of Snoek et al. (2012); Marchant and Ramos

(2012) and Shahriari et al. (2015).
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To tune the hyperparameter values of our models, bayesian optimization

is coupled with a 5-fold cross validation on the the training set. The objective

function to minimize for the Bayesian optimization method is the average out-

of-sample RMSE. The Bayesian optimization for our data is performed using

the R package Tidymodels. This package allows for the training and tuning of

several models simultaneously. To find optimal hyperparameters values for the

different models (random forest, gradient boosting trees and neural networks),

random combinations of hyperparameter values are first evaluated to serve

as search base for the bayesian method (5 in this study), then an acquisition

function (upper confidence bound) is used to find the next combination values

to evaluate (this step is repeated 15 times).

Permutation Feature Importance

There is a lot of methods to compute variable importance depending on the

type of model used. A complete review about these methods is presented in

the work of (Wei et al., 2015). Permutation Feature Importance is one of the

methods used to measure variable importance and is the one used in this work.

This method was first described for random forest by Breiman (2001) and was

later adapted to other models by Fisher et al. (2019).

This method consists in shuffling the values of a variable (process called

permutation) and measuring the increase in the model’s prediction errors as-

sociated with these permutations. A variable is considered as important if the

permutations cause an increase in the model errors. This increase of model

errors means that the model relied strongly on this given variable. On the con-

trary, a variable is considered as an unimportant variable if the permutations

do not increase the model errors.

Permutation feature importance is implemented in numerous R package.

This method is usually implemented by default in the packages specialized

for random forest and gradient boosting trees. The model agnostic version of

Fisher et al. (2019) used in this work comes from the R package vip.
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2.2.3 Results

The table 2.2 shows the RMSE and MAE computed on the test data for the

different models. From this table we can see that the performances of the

different learning algorithms are quite close. Random forest shows slightly

lower RMSE and MAE. The results obtained for our site are consistent with

the literature. For example, Lee (2006), who performed a similar analysis with

neural networks on several Taiwanese stations, found RMSE values between

5.39 and 9 cm.

Table 2.2: MAE and RMSE (in cm) computed on the test data for the different

models.

Linear model Random Forest Gradient boosting trees Neural Networks

RMSE 6.61 5.73 6.54 6.56

MAE 4.86 4.09 4.78 4.81

The importance of the variables for random forest is displayed in figure 2.3.

The variable with highest predictive power is the atmospheric pressure. This

is expected as the atmospheric pressure influences significantly the surge level

(Harris, 1963). The second, third and fourth most important variables are

related to wave characteristics. In coastal areas with a reduced continental

shelf (such as our site), it has been proven that the wind effect is limited

(hence its low predictive power) and the contribution of both the atmospheric

pressure and the waves is higher (Kennedy et al., 2012; Chaumillon et al.,

2017).

2.2.4 Discussion

The main limitation of the SLM is the quantity of data. Training models with

more data results in models that are able to generalize better from a higher

amount of information and therefore results in better performances on unseen

data. This is especially true as we are modeling sea surge which can become
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Figure 2.3: Permutation importance of variables used in Random Forest to

predict storm surge level

extreme events (storm surges). Due to the extreme nature of certain events,

the SLM need even more data to model correctly both the average sea surges

and the storm surges.

With its promising performances, this model could be used in operational

settings to forecast sea surge by using wave and meteorological forecast as

explanatory variables. However, this is not recommended as this model has

been trained with observational data and not on forecast data that might

contain potential bias. The best solution for an operational forecast model

should be to train the model with wave and meteorological forecast data in

order to take into account the potential bias of the forecast models.

In the future, this work could be extended by adding explanatory variables

containing temporal aspect. This could be the values of atmospheric pressure

at previous time steps. In this framework, artificial neural networks could

perform better as they are known to handle efficiently time series. Other input

variables could be also used to improve the modeling such as the meteorological

or wave data at different locations near the site.
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2.2.5 Conclusion

We trained statistical learning models to predict the sea surge for the site of

Socoa using several explanatory variables including meteorological conditions,

sea state characteristics and tide level. By comparing the performances of

these models on the test set, we defined random forest as the best model for

this site with RMSE value of 5.73 cm.

The importance of the variables for random forest were computed with the

permutation method. The variable importance analysis gave us insights about

the local sea surge and the order of importance corresponded to the character-

istics of the site and to what was found in the literature in similar sites. The

knowledge acquired during this analysis can be helpful in the development of

an EWS based on BN.
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2.3 Runup elevation on the beach

Coastal floodings originate from the interaction of several processes which all

influence the total water level. Among these processes, there are the tide,

the meteorological conditions and also the waves. The contribution of the

waves to the total water level is called wave runup and corresponds to the

maximum onshore elevation reached by a wave, relative to the wave-averaged

shoreline position (Flanders Marine Institute, 2021). Wave characteristics are

available through observations (buoy) or numerical modeling. However, the

wave characteristics only gives a broad idea of the runup on the beach. To

transform offshore wave characteristics into runup elevation on the beach, two

modeling approaches can be employed: numerical modeling or data-driven

approaches.

There are various numerical models that solve hydrodynamic equations to

estimate runup elevation on the beach. More details on these different models

can be found in the work of Fiedler et al. (2018). Runup on the beach can

also be modeled using empirical formula or statistical models estimated with

local data. Many empirical formulas have been developed over the year, a

complete review is given in the work of da Silva et al. (2020). A non negligible

advantage for the data-driven methods is in the computational aspect, where

the computational effort and time are lower than those of numerical modeling

methods.

Measurements of the wave runup were performed on the study site of Biar-

ritz (South west of France). By comparing the estimations obtained by the

formula of Stockdon et al. (2006) (the most used empirical formula) with the

measurements, large estimation errors were found, highlighting the fact that

this empirical formula was not adapted to this site. An empirical formula

based on a linear model was developed by the SIAME researchers. This sec-

ond formula yielded runup estimation much closer to the observations (Figure

2.4).
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Figure 2.4: Measured runup on the beach versus the runup predicted by Stock-

don formula and the local formula computed for the GPB.

In this second part of the first chapter, we aim to extend the work made

the Grande Plage of Biarritz. We want to train a statistical learning model

that yields better runup predictions than the empirical formula developed on

the Grande Plage de Biarritz, while learning about the local phenomenon.

2.3.1 Study site

The Grande Plage de Biarritz (GPB) is an urbanized beach located in the

South Ouest of France. This beach has a high socio-economic value due to

its location near the city center, its historical heritage and its tourist appeal

(Morichon et al., 2018). Stakes on this beach are high: infrastructures are

located behind a sea promenade in the upper part of the beach. This embayed

beach is 1.2 kilometers long and is delimited by two rocky outcrops. It is a

intermediate-reflective with a steep slope (8 to 9%) in the upper part of the

beach and a slight slope (1,5%) in the lower part of the beach. Finally, it is

a mesotidal beach with a spring tidal range of 4.5 meters (Morichon et al.,

2018).
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2.3.2 Data

Runup measurements

In the framework of the MAREA project, runup was measured on the Grande

Plage de Biarritz by the SIAME (Applied sciences in mechanics and electrical

engineering) laboratory. The measurement of wave runup were obtained using

the video monitoring station installed on the Grande Plage de Biarritz. This

video monitoring station consists in 4 cameras, controlled by the open source

software SIRENA (Nieto et al., 2010). The pixel intensities were sampled

along two transects (Figure 2.5) at 1Hz during 14 min to produce timestack

images.

Figure 2.5: Transects monitored on the Grande Plage de Biarritz and example

of associated timestack. The red line in the timestack represents the position

of the seawall.

Standard transformations from image to world coordinates (image orthorec-

tification) were employed. Then, Otsu’s thresholding method was applied to

the collected timestack images to obtain time series of the cross-shore position

of the waterline. This semi-automatic extraction method has already been

employed to extract waterline in timestack images (Vousdoukas et al., 2012)

and aims to separate pixels into two classes based on their intensities. The

obtained cross-shore coordinates were transformed into elevations using the

topographic information collected with a NRTK GNSS at low tide during the
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14 days of field surveys. These 14 days of fields survey are spread between the

4th December 2017 and the 24th January 2019. During these 14 days, runup

R and the slope of the beach (β) were measured every 15 minutes.

Wave parameters

The wave parameters such as significant wave height Hs, peak period Tp, wave

directional spreading (disp) and direction at peak θp are recorded by a direc-

tional wave rider buoy (DWR MKIII) operated by the Center for Studies and

Expertise on Risks, Environment, Mobility, and Urban and Country Planning

(CEREMA) and the University of Pau and Pays de l’Adour (UPPA). The buoy

is located a few miles off GBP at 50 meters water depth. Since its deployment

in 2009, this buoy has been recording wave parameters every 30 minutes. By

joining the runup measurements and the waves characteristics we obtain a

dataset of 220 observations. Due to the small number of observations and the

temporal discontinuity of the data, we do not consider the temporal aspect in

the modeling step presented in the next section.

2.3.3 Methodology

Statistical learning methods

We compare several statistical learning methods with different characteris-

tics: linear models, generalized additive models (GAM) and random forest.

Linear models are the simplest method and will serve to determine baseline

performance. Random forest are ensemble learning methods which rely on

weak learners (classification and regression trees) to make a prediction. For

more details concerning random forest, the reader is referred to the works of

Breiman (2001) and Friedman (2001).

Generalized additive models are generalized linear models where the re-

sponse variable (Yi) depends linearly on a sum of smooth functions of covari-

ates (Hastie and Tibshirani, 1990). The general notation is given below:
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g(µi) = Aiθ +

j∑

1

fj(xji)

where g(.) is a link function, µi = E(Yi) and Yi EF (µi, φ) with EF (µi, φ)

denoting an exponential family with mean µi and scale parameter φ. Ai is a

row of the model matrix for any parametric model component (intercept) and

θ the corresponding parameter vector. Finally, fj are smooth functions of the

covariates xj. By using smooth functions to represent the dependence between

covariates and response variable, this model has a great flexibility. However,

choices must be made especially about the type of smooth functions used and

their associated smoothness. An extended review on the smooth functions can

be found in Wood (2017). The visualization of the smooth functions associated

with each covariates is really informative and can bring insight on the response

variable. In the same spirit of the previous section, the permutation feature

importance can be computed with the vip package.

Fitting the models

The different models tested are presented in Table 2.3. The linear models are

fitted with the lm function in base R, GAM models are fitted with the mgcv

package and the random forest with the ranger package.

Table 2.3: Characteristics of the different statistical learning models

Method used Response variable Covariates Hyperparameters

Linear models Runup Hs, Tp, disp, θ and β None

Linear models Runup Log transformed Hs, Tp, disp, θ and β None

GAM Runup Splines for Hs, Tp, disp, θ but not for β

Default smooth functions (thin plates)

Additional penalty term in the smoothness

selection procedure with select = TRUE in

mgcv package.

Random forest Runup Hs, Tp, disp, θ and β Default values (number of trees = 500)

To assess in a objective manner the performances of the formulas, GAMs

and random forest we perform a repeated (10 repetitions) of a 10 fold cross-
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validation. The RMSE reported in the results section are the average of the

out-of-sample RMSE.

2.3.4 Results

Comparison of the models

The averages of the out-of-sample RMSE are presented in the Figure 2.6. The

model with the highest RMSE is the simplest model: the linear model with no

transformation of the covariates. It is followed by the linear model with the

log transformed variable, then the GAM. The lowest RMSE is obtained by the

random forest. This observed order was expected as more complex algorithms

are more able to learn complex patterns and therefore yield better results.

Figure 2.6: RMSE and associated standard error obtained for the 10 repeated

10-fold cross validation for different statistical learning methods.

The permutation feature importance is computed for the best algorithm

(random forest) fitted on all data and is shown in Figure 2.7. It is clear that

the significant wave height has the most predictive power for this model. It is
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followed by the wave period, the slope of the beach and the wave directional

spreading. The least predictive variable is the wave direction.

Figure 2.7: Permutation importance computed for the random forest model.

GAM

Even though GAM is not the best model, we decide to present a detailed analy-

sis of this method because the visualization of the smooth functions associated

with each covariates can bring valuable insights on the response variable. The

detailed analysis is based on the GAM model fitted on all the data.

Basic model checking plots are presented in Figure 2.8 and show nothing

problematic. The QQ-Plot is very close to a straight line which suggest that

the distributional assumption is reasonable. The histogram of the residuals

seems approximately close to normality. The residuals vs the linear predictor

plot suggest a very slight increase of the variance as the mean increase.

Figure 2.9 shows the smoothing functions for the GAM model. For the sig-

nificant wave height Hs the smoothing function is not monotonic. It increases

as the value of Hs increases, however above 3.8 meters, the function starts to

decrease. This observation is not logical as higher wave should lead to larger

runup elevation on the beach. This could be due to the lack of observations

during these conditions (high waves).
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Figure 2.8: Basic model checking plots for GAM fitted on the data. The

upper left panel represent a QQ-plot of the residuals while the upper right

panel represent the residuals vs the linear predictor. The lower left panel is

an histogram of the residuals and the lower right is a plot of the fitted values

against the residuals.

The smoothing function of Tp is monotonic and positive. This is expected

as waves with larger period lead to increased runup on the beach. On the con-

trary, the smoothing function of the wave directional dispersion is monotonic

negative meaning that waves with lower directional dispersion lead to larger

value of Runup. Finally, the slope of the beach seems to have a slight positive

influence on the Runup elevation and the wave direction does not seem to be

a good predictor as it was excluded by the regularization.

The variable importance computed by the feature permutation method is

shown in Figure 2.10. Such as the random forest, the most predictive variable

is Hs. The second most predictive variable is wave directional dispersion, it is
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Figure 2.9: Spline functions estimated by the GAM model.

followed by the wave period at peak and finally the slope at the beach.

Figure 2.10: Permutation importance computed for the GAM model.
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Predictions on buoy data

To get an idea of the predictions of our models (linear model with log trans-

formation, GAM and random forest), we decided to predict the runup on the

beach for each observation at the wave buoy. Because the slope of the beach is

not available for each observation it has been removed from the models. The

predictions of the models (fitted on the whole dataset of the measurement

campaign) plotted against Hs are presented in Figure 2.11.

Figure 2.11: Plot of the runup predictions made with the buoy data against

Hs. The red dots are the data collected during the measurement campaign

and served as training data.

From this figure we can see that GAM does not seem to generalize well
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for unseen data. Indeed, some predictions of the runup are negative and the

runup elevation seems to decrease as the significant wave height increases. The

predictions seems more reasonable for the linear model or the random forest.

2.3.5 Discussion

In this section we will discuss the advantages and downsides of statistical

learning methods in the modeling of the runup.

Statistical models are a lot less computationally demanding than process

based model such as Xbeach for run modeling. In addition, the statistical

models are also easier to train and calibrate than the process based models and

they provide tailored prediction for one site. They can bring valuable insights

by analyzing the predictive power of each covariates used in the model. By

using the GAM, the influence of each covariate can be visualized and analyzed.

Unlike process based methods, the statistical methods do not rely on phys-

ical processes. Consequently, they need a large amount of data to take into

account such processes and this constitutes their main limitations. In predic-

tive usage, a SLM trained on a short dataset will encounter numerous events

outside the distribution the training data and the associated predictions will

be erroneous. This is the case for the GAM model where it predicts negative

runup during unseen conditions.

One solution could be to collect more data, however, in the case of runup

modeling on the GPB it does not appear as the best solution. Indeed, to

improve the models presented in this work, data collected during energetic

events (large Hs and Tp) are needed. Such events could be dangerous for the

operators measuring data. The cost of measurements campaigns can also be

a hindrance.

A potential solution for the lack of data could be to switch to Bayesian

framework in order to integrate prior knowledge of the physical process and

to estimate uncertainties. When there are unseen conditions, the model will

rely more on the prior knowledge than in data leading to more parsimonious
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predictions.

2.3.6 Conclusion

We compared the performances of linear models, random forest and generalized

additive model to find the best predictive model for the runup elevation on

the Grande Plage of Biarritz. This comparison was made with a repeated

10-fold cross validation to assess objectively the performance of these methods

on unseen data despite the low number of observations.

The results and variable importance were analyzed for two models: random

forest and GAM. Random forest yielded the best predictions with a RMSE

of 19.3 cm. The variable importance analysis showed that the variables with

the most predictive power were the significant wave height and wave period

at peak. For the GAM model, the RMSE was slightly larger (20.5 cm). Even

though it was not the best predictive model, GAM gave valuable insights with

the visualization of the effect of each covariate on the prediction (Smooth

functions). In addition,the importance variable analysis for this model was

slightly different as the two most predictive variables were the significant wave

height and the wave directional spreading.

For the wave runup prediction, SLM are a great alternatives to empirical

formulas or numerical modeling. By learning directly from the observations

they provide “tailored” predictions for one site. In addition, they can provide

valuable insights by studying the predictive power of the covariates or by

looking at the relationships (smooth functions) between the covariates and

the response variable in case of generalized additive models.
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2.4 Wave Climate Characterization with sta-

tistical downscaling

Waves play a major role in many coastal processes ranging from sediment

transport process to coastal flooding process. The influence of the waves on

sediment transport and erosion processes is discussed in the work of Munk

and Traylor (1947) or Masselink et al. (2014). Waves also have an impact on

the coastal flooding process. This has been demonstrated in the first part of

this chapter where wave characteristics showed a great predictive power for a

storm surge model and also in the work of Bertin et al. (2015) where it has

been proven that the waves increased significantly the storm surge level during

Xynthia and Joachim storm events.

Deep knowledge about sea state characteristics and its seasonality is there-

fore essential not only for coastal management but also for safety at sea and

on the coast. The wave climate can be characterized by analyzing wave data

which can originate from two sources: observations (wave buoy, satellites) or

modeled data (numerical models).

In the framework of the MICROPOLIT project, a preliminary work has

been done to characterize the wave climate on the study site of Anglet (Callens,

2017)1. The wave data at the location of the buoy of Anglet come from

a simulation covering the period from 1949 to 2014 with the spectral wave

model WWII (Roland et al., 2012). Temporal decomposition was performed

to extract the trend and seasonality of Hs and extreme value analysis was

performed to investigate the potential value of extreme Hs and their return

period. For Hs a slight increase was observed over the years and a strong

seasonality was highlighted with larger waves during the winter.

In this last part of chapter 1, we aim to characterize more precisely the wave

climate at the Anglet’s buoy location by studying the relationships between

1Interactive web application presenting the work: https://aureliencallens.

shinyapps.io/application/
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the wave characteristics observed at the buoy and the synoptic weather over

the North Atlantic ocean. To reach this objective, we employ the statistical

downscaling method which tries to find statistical relationship between a local

predictand (wave characteristics observed at the buoy) and a regional scale

predictor (SLP field) which has been categorized into different weather types

to facilitate the analysis.

2.4.1 Data

Sea level pressure

Sea level pressure data were provided by the research data archive of Colorado
2. They come from two reanalysis:

• CFSR (Climate Forecast System Reanalysis) from 1979 to 2010 with 6

hour time-step with 0.5 ◦ resolution (Saha et al., 2010).

• CFSv2 (Climate Forecast System Version 2) from 2010 to 2020 with 6

hour time-step with 1 ◦ resolution (Saha et al., 2011).

The spatial points of the first reanalysis have been sampled to correspond

to the spatial points of the second reanalysis which has a coarser resolution.

The spatial domain of the data was restricted to North Atlantic: from 20 ◦N

to 60◦N and from 70 ◦E to 20◦W with a spatial resolution of 1◦. In land points

(red points in Figure 2.12) are not considered for this work as they show a

greater variability in atmospheric pressure (Camus et al., 2014).

Wave characteristics

The wave parameters such as significant wave height Hs, peak period Tp, di-

rection at peak θp are recorded by a directional wave rider buoy (DWR MKIII)

operated by the Center for Studies and Expertise on Risks, Environment, Mo-

bility, and Urban and Country Planning (CEREMA) and the University of

2website https://rda.ucar.edu
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Figure 2.12: Spatial distribution of seal level pressure data with resolution of

1 ◦

Pau and Pays de l’Adour (UPPA). The buoy is located a few miles off the

Basque Coast at 50 meters water depth. Since its deployment in 2009, this

buoy has been recording wave parameters every 30 minutes.

2.4.2 Statistical downscaling

The statistical downscaling method aims to find statistical relationship be-

tween local predictands (wave characteristics) and regional-scale predictors

such as sea level pressure and sea level pressure gradient (Camus et al., 2014).

This method relies on a weather pattern approach: it uses several data min-

ing techniques such as dimensionality reduction and clustering to simplify the

atmospheric pressure data into weather types, then it finds statistical relation-

ship between wave characteristics and each weather type. This method allows

for the study of seasonal and inter-annual variability of the sea state (Camus

et al., 2014). The simplified methodology is as follows:

1. Processing of the SLP data
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• Computation of the squared SLP gradient

• PCA to reduce dimensionality of the SLP and SLP gradient data

• Clustering into different weather types (WT)

2. Analysis of statistical relationships between weather type and sea state

3. Forecast of the sea state by using the statistical relationships found pre-

viously

Computation of the SLP gradient

The first step of this method is to prepare the regional scale predictors: sea

level pressure (SLP) and the squared gradient of SLP (SLPG). The gradient of

SLP is important for this analysis as it is a better representation of the winds

responsible for the wave generating process (Wang and Swail, 2006). SLP and

SLPG are preferred over wind variables because global models are known to

better represent sea level pressure than winds variables (Caires et al., 2006).

The squared gradient is computed for each point from the values of the

four nearest grid points using the weights proportional to the inverse of the

distance (Espejo et al., 2014). It is the sum of the squared zonal and squared

meridional SLP gradients, which is proportional to wind energy (Wang and

Swail, 2006).

Temporal averaging

The temporal range and the region of the predictor are really important when

predicting local predictand. The generation time of the wave in the Atlantic

Ocean must be taken into account. For north Atlantic Ocean, it is less than 5

days (Hegermiller et al., 2017). The ESTELA method (Pérez et al., 2014) can

be used to determine the number of days to take into account. This method

allows one to know the region of wave generation and the temporal range

needed for the predictor. In this work, we choose to average the SLP and
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SPLG data over 3 days (current day and 2 previous days) such as the work of

Camus et al. (2014); Espejo et al. (2014).

Dimensionality reduction

The SLP and SPLG data for each point averaged over 3 days for the period

1970-2020 are stored in a 15065 × 5026 matrix. The dimensionality of this

dataset must be reduced for the next step which is the clustering with Self

organizing maps (SOM). A PCA is applied on this data to reduce the dimen-

sionality while conserving a large proportion of the variability of the data.

Only the n first components of the data representing 99% of the variability of

the data is kept.

Clustering into weather regimes with SOM

The clustering with Self organizing maps (SOM) is done on the data projected

on the n first components. SOM are a type of neural networks that rely on

competitive learning. This algorithm aims to create a map of the data based

on an iterative process involving neurons connected together by a grid. For one

observation, the closest neuron is designated as the best match unit (BMU).

The coordinates of the BMU are then shifted toward the observation point at a

designated rate (learning rate). The neighboring neurons of the BMU are also

slightly shifted toward the observation. This process is repeated several times

for all the observations of the training set. After the training process, the grid

of neurons are approximating the data distribution and new observations can

be assigned to a neuron (best matching unit) which can act as a clustering.

To cluster the projected data, other methods can be employed such as

k-means algorithm (KMA) or maximum dissimilarity algorithm (MDA). A

complete comparison of the three algorithm are presented in the work of (Ca-

mus et al., 2011). In this work, SOM was chosen over the two other algo-

rithms as it is the best technique to graphically characterize the multidimen-

sional wave climate (Camus et al., 2011). By projecting the classification on
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a two bi-dimensional lattice with proximity information (similar groups are

closer), this method allows the visualization of patterns in multidimensional

data which simplify the analysis of such data.

The clustering with SOM algorithm is performed with the R package ko-

honen.

2.4.3 Results

Weather types with SOM clustering

PCA was performed to reduce the dimensionality of the data before the clus-

tering. Among all the components, the first 26 were kept for the clustering

step. These 26 components explains 99% of the total variance of the original

data. The data projected on the first 26 components of the PCA are mapped

on a 10 × 10 rectangular grid by the SOM algorithm. A sensitivity analysis

based on the total within-cluster sum of square (wss) was performed to select

the number of cluster. The number of 100 clusters (10 × 10) was chosen as it

showed great performance in term of wss and as this number was large enough

to capture a wide range of atmospheric situations.

The mean SLP fields of the 100 weather types obtained by the SOM algo-

rithm are displayed in Figure 2.13. From this figure, we can see that similar

weather types are closer on the bidimensional lattice. On the upper-left cor-

ner, the majority of weather types display high-pressure systems in the Atlantic

Ocean. On the contrary, on the lower-left corner the weather types mostly dis-

play intense low-pressure systems. These weather types can be identified as the

two mains circulation pattern in the North Atlantic Ocean: North Atlantic os-

cillation (NAO) and the east Atlantic oscillation (EA). The former circulation

pattern (NAO) is characterized by the presence of both a low-pressure system

located over Iceland and a high-pressure pattern located around the Azores

area (Mellado-Cano et al., 2019). This circulation pattern is represented in

the upper part of the lower-left corner in the lattice. The latter circulation

pattern (EA) is characterized by the presence of a low-pressure system in the
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south of Iceland and west of Ireland (Mellado-Cano et al., 2019). The weather

types presenting this pattern are located in the lower part of the lower-left cor-

ner of the lattice. On the right side, the weather types in the middle display

high-pressure system while weathers type on the upper and lower corner show

low-pressure systems (not as intense as the left side).

Figure 2.13: Weather types obtained by the self organizing map method. Blue

color represents zones of low pressure and red color zone of high pressure.
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Figure 2.14: Observed frequencies of the different weather types for the period

1969-2019

The observed frequencies of each weather type (WT) computed for all

the period is presented in Figure 2.14. The most represented weather types

for the whole period are the weather types 28 and 56. Both of these weather

types present a high-pressure system on the Azores islands. This high-pressure

system is commonly known as Azores high and is semi permanent. It influences

significantly the weather and climatic patterns of the north Atlantic Ocean.

The seasonal variability can also be analyzed using the weather types. The

observed frequencies computed by season are presented in Figure 2.15. Sum-

mer season shows the less variability with the majority of WT located in the

upper part of the lattice corresponding to WT with high pressure systems or

with homogeneous pressure field with average pressure value of 1013hPa. On

the contrary, the other seasons show large variability. In winter and autumn

seasons, the WT with intense low pressure system are much more frequent

comparing to spring season.
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(a) Summer (b) Spring

(c) Winter (d) Autumn

Figure 2.15: Observed frequencies of the different weather types depending on

the seasons.

Relating weather types to sea state

The wave climate can be characterized by looking at the distribution of the

wave parameters (Hs, Tp, θ) depending on the WT. Figure 2.16 shows the

bivariate graphs of Hs and Tp for each WT. The distribution of Hs and Tp

change significantly between WT. The highest values for both parameters are

commonly found in WT displaying low-pressure system whereas the lowest

values are found in system presenting strong high-pressure system or homo-

geneous pressure field. Unlike the significant wave height, the wave direction

(θ) do not vary between weather types. For all the observations, this variable

do not vary a lot: 75% of the observations have a direction contained in the
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following interval: [296.6, 312.6]. The Figure 2.17 shows the histogram of θ

and bivariate graphs of Hs depending on θ for the most represented weather

types (WT28 and 56).

(a)

(b)

Figure 2.17: (a) Histogram of the wave direction for all the observations and

(b) Bivariate graphs of significant wave height (Hs) and wave direction (θ) for

the most common weather types.
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Most frequent WT in summer

(WT24) Most frequent WT in winter (WT50)

Figure 2.18: Comparison of the most frequent weather types for summer and

winter

Figure 2.18 compares the most frequent weather types for summer and

winter in terms of wave characteristics. The WT 24 display a high-pressure
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system located on Europe while the WT 50 display a low pressure system

located on England. There are significant differences in wave characteristics

between these two WT. Indeed, the WT 50 (most frequent in winter season)

display higher values and variability for significant wave heights. On the con-

trary, the WT 24 display higher values and variability for peak wave period.

There is also a small difference in wave direction between these two WT: the

mean wave direction is northwest for WT 24 and west-northwest for WT 50.

2.4.4 Discussion

The work presented in this short article is mainly exploratory and was aimed to

characterize the wave climate and its seasonality at the Anglet’s buoy location.

However, the characterization of wave climate at one location is only one of the

possibilities offered by the statistical downscaling method. Many extensions

of this work can be considered as this method can be employed to:

• reconstitute the wave spectrum daily (Espejo et al., 2014) or monthly

(Camus et al., 2014)

• perform wave climate projections by using SLP fields from different cli-

mate change scenarios (Camus et al., 2014; Perez et al., 2015)

• perform extreme value analysis for wave parameter depending on each

weather type (Camus et al., 2016; Rueda et al., 2016)

When we use this method, we make 3 important hypothesis (Camus et al.,

2014):

• Variability of the local variable should be explained by the statistical

connection

• Changes in the mean climate should lie within the range of its natural

variability
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• The relationships should be stationary.

A main limitation of statistical downscaling method lies in the fact that

these hypothesis might not hold true in a context of global change (Camus

et al., 2014). Indeed, extreme events that did not occur in the past may occur

in the future and such events would lie outside the range of the past variability.

Moreover, global change may influence the statistical relationships observed

in the past. It is worth noting that data availability is also a limitation for

the statistical downscaling method. This method need a lot of data to see as

much different events as possible. A site with low data availability can display

large inhomogeneities when using this method (Rueda et al., 2019).

2.4.5 Conclusion

The statistical downscaling method based on weather types allowed us to bet-

ter understand the relationships between the synoptic weather in the North

Atlantic Ocean and the wave characteristics observed at Anglet’s buoy.

We showed that among the 100 weather types, some of them are represen-

tative of the mains circulation patterns in the North Atlantic Ocean such as

the North Atlantic Oscillation (NAO) or the East Atlantic Oscillation (EA).

By studying the seasonal probabilities of occurrence of each WT, we high-

lighted large differences between seasons in terms of WT and variability. We

also demonstrated that the distributions of Hs and Tp differ significantly be-

tween weather types. We observed that WT with low-pressure systems, more

frequent in winter, are generally characterized by waves with larger Hs and

Tp in comparison with WT with high-pressure systems or homogeneous SLP

fields which are more frequent in summer.

For the disaster risk reduction (DRR) process, statistical downscaling method

is an interesting tool for coastal researchers or stakeholders because it gives a

better understanding of the wave characteristics and their variability at one lo-

cation. As stated in the discussion section, the statistical downscaling method

in this work is used only to characterize the wave climate. However, it can
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be extended to perform wave climate projections or extreme value analysis

which can bring insights respectively on the evolution of the future risk and

on climate variability of extreme events.
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2.5 Conclusion

This chapter showed the interest of using SLM to model processes involved in

coastal flooding. Indeed, in the first two applications of this chapter, we showed

that they can predict new observations accurately when the new data is in the

range of the training data (interpolation) and that they can provide knowledge

about these processes or the study site with variable importance analysis.

In the last application of this chapter, we demonstrated that knowledge can

also be acquired with unsupervised learning methods (PCA, SOM). These

methods can be employed to detect patterns from big data and to gather

similar observations into groups which is particularly useful in wave climate

characterization.

Among the three examples of statistical modeling presented in this chapter,

only the storm surge modeling can be considered for operational use in an

EWS. Indeed, the statistical models trained to predict wave runup were not

reliable for energetic conditions (storm events) due to a lack of data. Statistical

downscaling could be used to predict wave characteristics depending on the

synoptic weather type. However the wave characteristics can be more easily

and accurately simulated with a spectral wave model.
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3. Improve wave forecast at a spe-

cific location with ensemble

methods and local observations

3.1 Introduction

In this chapter, we show that SLM, especially ensemble methods (random

forest and gradient boosting trees) can be employed to improve significantly

the spectral wave model predictions at a specific location. In the literature,

numerous methods combining statistical models and process-based models

have already been proposed to improve the numerical wave model predictions

(Babovic et al., 2001; Makarynskyy et al., 2005; Moeini et al., 2012; Deshmukh

et al., 2016; Londhe et al., 2016). However, they all have in common to use

shallow neural networks as off-the-shelves method to perform data assimila-

tion. Unlike previous works on this subject, we compare the performances of

neural networks with ensemble methods that have never been used for this

task. In addition, a special attention is given to hyperparameter tuning. Hy-

perparameters are parameters associated to machine learning algorithms that

must be chosen before the training. These parameters influence greatly the fi-

nal performance as they control the structure or the learning of the algorithm.

In the literature, not a lot of importance is given to hyperparameter tuning

and usually only a few combinations of hyperparameters are tested with grid

search method. In this work, bayesian optimization, an automatic method, is

employed to find the optimal hyperparameters. Finally, the potential benefits

of data assimilation are investigated in a real case scenario: the computation
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of wave run-up on the Grande Plage of Biarritz.

Scientific output:

This work resulted in the publication of an article (presented below) and

two communications.

Publication:

• Callens, A., Morichon, D., Abadie, S., Delpey, M., & Liquet, B. (2020).

Using Random forest and Gradient boosting trees to improve wave fore-

cast at a specific location. Applied Ocean Research, 104, 102339.

Communications:

• ”Using Random forest and Gradient boosting trees to improve wave fore-

cast at a specific location”, JDS 2021: 52èmes Journées de Statistique

de la Société Française de Statistique (SFdS), Online conference (June

2021).

• ”Improving numerical wave models with machine learning algorithms”,

Statistical Modelling in Ecology and Environmental Data Workshop,

Anglet (September 2019).

3.2 Article: Using Random forest and Gradi-

ent boosting trees to improve wave fore-

cast at a specific location

62



Using Random forest and Gradient boosting trees to
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Abstract

The main objective is to present alternative algorithms to neural networks
when improving sea state forecast by numerical models considering main spec-
tral bulk parameters at a specific location, namely significant wave height, peak
wave period and peak wave direction. The two alternatives are random forest
and gradient boosting trees. To our knowledge, they have never been used for
error prediction method. Therefore, their performances are compared with the
performances of the usual choice in the literature: neural networks. We showed
that the RMSE of the variables updated with gradient boosting trees and random
forest are respectively 20 and 10% lower than the RMSE obtained with neural
networks. A secondary objective is to show how to tune the hyperparameter
values of machine learning algorithms with Bayesian Optimization. This step
is essential when using machine learning algorithms and can improve the results
significantly. Indeed, after a fine hyperparameter tuning with Bayesian optimiza-
tion, gradient boosting trees yielded RMSE values in average 8% to 11% lower
for the correction of significant wave height and peak wave period. Lastly, the
potential benefits of such corrections in real life application are investigated by
computing the extreme wave run-up (R2%) at the study site (Biarritz, France) us-
ing the data corrected by the different algorithms. Here again, the corrections
made by random forest and gradient boosting trees provide better results than
the corrections made by neural networks.

Keywords: Artificial neural networks, Data assimilation, Error prediction,
Gradient boosting trees, Random forest, Wave forecasting.

Preprint submitted to Elsevier November 2019
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1. Introduction

Nowadays, numerical wave models are routinely used to forecast wind gen-
erated waves. Although they provide satisfactory predictions at a regional scale
and during mean wave conditions, it has been shown that they are less accurate
for forecasting at a specific location (Londhe et al., 2016) and have a tendency to
underestimate wave height during energetic wave conditions. This underestima-
tion has been observed in different state-of-the-art wave models: see the work of
Arnoux et al. (2018) for Wind Wave Model II (WWMII) and WAVEWATCH–III
(WW3) ; Rakha et al. (2007) for WAve Model (WAM) and Moeini et al. (2012)
for the Simulating WAves Nearshore model (SWAN). The errors in wave predic-
tions are mainly due to inaccuracies in the wind input that forces the model. The
winds used as forcing are numerically simulated and are known to underestimate
high wind speeds (Moeini et al., 2012). This results in the underestimation of
wave parameters by numerical wave models. Simplifying assumptions, approx-
imations employed in the modeling process, discretization of the domain and a
potentially wrong parametrization of the model can also be sources of inaccura-
cies in wave model predictions (Babovic et al., 2001, 2005).

When observation data are available, data assimilation can be used to im-
prove the predictions made by numerical models. There are 4 main categories of
data assimilation procedures (Refsgaard, 1997; Babovic et al., 2001): updating
the input parameters, updating the state variables, updating the model parameters
and finally updating the output parameters. The last procedure is called ”Error
prediction” method and is the most suitable approach to improve model predic-
tions of different output variables at a specific location (Babovic et al., 2005).
This procedure presents several advantages comparing to the other data assimi-
lation procedures. First, it covers inaccuracies coming from all sources because
it improves directly output variables. In addition, it can use a combination of
external variables such as meteorological or wind data to increase the accuracy
of the predictions. Lastly, it is easy to implement because it consists in only
three steps and does not require multiple runs of numerical wave model. First,
the deviations between the modeled values and measured values are computed.
Then, machine learning algorithms are used to forecast these deviations. Finally
the deviations predicted by the algorithms are incorporated to the predictions of
the numerical model for the next time steps, resulting in a more accurate wave
forecast.

This method has been successfully applied on hindcast data (Makarynskyy

∗Corresponding author
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et al., 2005; Deshmukh et al., 2016) and has even been implemented in real
time setting in the works of Babovic et al. (2001) and Londhe et al. (2016).
To our knowledge, only artificial neural networks have been tested to forecast
the errors in the data assimilation. However, according to the so-called “No
Free Lunch” theorem, there is no single model that works best for all problems
(Wolpert, 2002). It is therefore necessary to try multiple models and find the
one that works best for our particular problem. The performance of artificial
neural networks must be compared with other algorithms in the data assimilation
task. Random forest and gradient boosting trees are strong candidates for this
comparison. Indeed, these two methods are known for their performance and
unlike neural networks, they also provide valuable information by computing
the predictive power of each variable used as input. The predictive power or
variable importance refers to how much a model relies on that variable to make
accurate predictions. A variable with high predictive power means that its values
have a significant impact on the prediction values. By contrast, a variable with
low predictive power have a limited impact on the prediction values and it can
be substracted from the model to make it simpler and faster.

To explore the performance of random forest and gradient boosting trees, we
use as a test case the Basque coast (South west of France). Every winter, the
basque coast faces numerous coastal flooding events. To prevent and mitigate
the risk of flooding, wave forecast are used to compute the extreme run-up values
either by using parametric models such as the formula of Stockdon et al. (2006)
or process based models such as Xbeach (Vousdoukas et al., 2012; de Santiago
et al., 2017). In both cases, the accuracy of this forecast is of utmost importance
as the issuing of the early warning depends on it, especially during energetic
wave climate where coastal flooding risk is the highest. In this study, we employ
the error prediction method with the different machine learning algorithms and
use local meteorological conditions and measured wave parameters from a local
buoy to improve the wave forecast. Lastly, we investigate the potential benefits
of using such corrections in the computation of extreme run-up values.

This study aims to present two alternatives (random forest and gradient boost-
ing trees) to neural networks by comparing their performances when improv-
ing regional numerical models. A secondary objective is to show how to tune
the hyperparameter values of machine learning algorithms with Bayesian Opti-
mization. In machine learning, a hyperparameter is a parameter whose value is
specified by the user before the learning process begins, it will affect how well
a model trains and therefore it will have a non negligible impact on the final
results. Bayesian optimization is an efficient hyperparameter optimization algo-
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rithm and it is widely used to optimize the results of any given machine learning
method.

Lastly, we investigate if the error prediction method makes a difference in
a real application such as the computation of extreme run-up for the beach of
Biarritz. Section 2 will introduce the study area, the data and all the statistical
methods used. Results will be presented and discussed in Section 3. Finally,
Section 4 will cover the conclusion.

2. Data and Methods

2.1. Study site and Data
The Basque coast is a 150 km long rocky coast facing the Bay of Biscay

(Figure 1). Every winter, it is battered by numerous storm events. This results
in frequent and sometimes intense coastal flooding which can severely damage
seafront infrastructures. The city of Biarritz is particularly affected as the build-
ings and infrastructures are located right behind a sea wall that is located at the
top of the beach. The damages associated with coastal flooding are costly for
nearshore cities which try to prevent and mitigate the risks by developing early
warning systems. Such systems rely on the knowledge of the sea state and its
forecast.

Figure 1: Map showing the location of the study site. The red dots show of the locations of the
directional wave buoy (1), the meteorological station (2) and the beach called ”Grande Plage de
Biarritz” (3).
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This work focuses on the forecast improvement of three wave integrated pa-
rameters which describe the sea state in this area: the significant wave height
(HS ), the peak period (Tp) and the peak wave direction (θp). Direct measure-
ments of these parameters are obtained from the National Center for Archiving
Swell Measurements (L’her et al., 1999). They were made by a directional wave
rider buoy (DWR MKIII) operated by the Centre for Studies and Expertise on
Risks, Environment, Mobility, and Urban and Country Planning (CEREMA) and
the University of Pau and Pays de l’Adour (UPPA). The buoy is located a few
miles off the Basque Coast (Figure 1) at 50 meters water depth. Since its deploy-
ment in 2009, this buoy have been recording the parameters of interest every 30
minutes. The measuring range of this buoy is [-20m; 20m] for heave motion,
[1.6s; 30s] for wave period and [0◦; 360◦] for wave direction. It has a resolution
of 1 cm in heave motion and a directional resolution of 1.5◦. To be consistent
with the numerical wave data and meteorological data, a 1 hour time step was
adopted for the buoy data.

The three parameters simulated at the buoy coordinates by the Meteo-France
WAM model were provided by the Copernicus Marine Environment Monitor-
ing Service. This reanalysis (”ibi reanalysis wav 005 006”) covers the period
2007-2019 with a hourly time-step. The MFWAM model is derived from the
third generation wave model WAM (Group, 1988). It is forced by wind fields ob-
tained from a regional numerical weather prediction model (AROME). A more
complete description of the MFWAM model can be found in Lefèvre and Aouf
(2012).

Meteorological data, including average wind speed above 10 meters, wind
direction and atmospheric pressure were furnished by the French national me-
teorological service MeteoFrance. The data were collected hourly by the me-
teorological station of the Biarritz airport, located only a few kilometers from
the study site (Figure 1). It covers the period ranging from 2013-01-01 to 2018-
12-31. By assembling the wave buoy data, the wind wave parameters and the
meteorological data we obtain a dataset of 41439 hourly observations ranging
from 2013-01-01 to 2018-12-31.

In this work, we are improving the wave forecast by correcting the systematic
errors of the wind wave model. Therefore, we are not considering any temporal
effects while improving HS , Tp and θp. The dataset was randomly divided into 2
parts: the training part containing 70% of the observations (n = 28797) and the
testing part containing the remaining 30% (n = 12342).

2.2. Error prediction method
The error prediction method consists in three steps:
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• Step 1: Deviations between model predictions and measured values are
computed:

Emodel = Xmeasured − Xmodeled,

where Emodel is the error of the model, Xmeasured is the measured value of an
output variable provided by the wave buoy and Xmodeled is the value of the
same variable computed by the wave model.

• Step 2: Emodel is predicted with an appropriate supervised machine learning
algorithm.

• Step 3: The predicted error is added to the prediction of the wave model
to obtain an updated numerical prediction:

Xupdated = Xmodeled + Epredicted,

where Xupdated is the updated prediction of wave model and Epredicted is the
predicted error given by the supervised learning method.

This method is repeated separately for each output variable to improve (Hs,
Tp, θp). The performance of this data assimilation method relies on two things:
the quantity of data and the machine learning algorithm used. Since the machine
learning algorithm are generally more suited to interpolate rather than extrap-
olate, the available data for learning process should cover as much as possible
the range of all the probable events in the study area. Concerning the learning
method, only neural networks have been used for the step (2) of the error pre-
diction method to our knowledge(Makarynskyy et al., 2005; Moeini et al., 2012;
Londhe et al., 2016). Because we want to compare the performance between
different machine learning algorithms, we use random forest and gradient boost-
ing trees. All the tested algorithms use the same input variables to improve the
model accuracy: the three wave parameters (HS , Tp, θp) given by the numerical
model, the atmospheric pressure, the wind direction and speed.

2.3. Neural networks
Artificial neural networks have been extensively used in the domain of wave

modelling (Deo et al., 2001; Makarynskyy et al., 2002; Makarynskyy, 2005;
Mandal and Prabaharan, 2006) or wave parameters assimilation (Makarynskyy
et al., 2005; Moeini et al., 2012; Londhe et al., 2016). It is why technical details
will be avoided in this study and only the general concepts will be presented. The
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readers can find more details and information on the working of neural networks
in Liang and Bose (1996) or Friedman et al. (2001).

The most common class of neural networks is the multilayer perceptron. The
neurons in this network are organized in three layers: the input layer that receive
the input variables, the output layer that performs the final predictions and be-
tween these two layers there is the hidden layer. Neurons in the hidden layer
transmit the signal to the output layer by transforming the weighted sum of the
neurons present in the input layer with a non linear function called activation
function. The weights between each neuron of the network are adjusted through
the iterative process of backpropagation to minimize the error between the vari-
able we want to predict and the variable predicted by the network (output layer).

As other machine learning methods, hyperparameters need to be specified
before the training of neural networks. Some hyperparameters control the net-
work architecture (number of neurons, layers, activation function used, etc...)
while others control the training process (learning rate, bacth size, number of
epochs, etc...). Hyperparameters must be tuned carefully in order to achieve
optimal results with neural networks.

2.4. Tree based algorithms
Unlike neural networks, random forest and gradient boosting have never been

used in the error prediction method. They are state-of-the-art ensemble learning
techniques for classification and regression tasks. An ensemble learning tech-
nique commonly refers to a method that combines the predictions from multiple
machine learning algorithms, called base learners, to produce more accurate pre-
dictions.

Random forest is an algorithm that builds many decision trees in parallel.
These trees are the base learners for random forest and they have the following
characteristics:

• Each tree is built using a different bootstrap sample of the data-set. This
mechanism is called bagging.

• At each node, a given number (hereafter ”mtry”) of variables are randomly
sampled as candidates at each split. The best split point is then selected
within this random set of variables. This process is called feature sampling.
The value ”mtry” is fixed before growing the forest.

• Unlike the classification and regression trees of Breiman et al. (1984), the
trees in random forest are fully grown (no pruning step).
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Bagging and feature sampling are the core principles of random forest. They
are two randomizing mechanisms which ensure that the trees are independent
and are less correlated with each other. The final prediction of a random forest is
obtained by averaging the results of all the independent trees in case of regression
or using the majority rule in case of classification.

The most important hyperparameters in random forest are the number of trees
and ”mtry”: the number of variables randomly sampled as candidates at each
split when building the trees.

Gradient boosting is an algorithm that trains many weak learners sequentially
to provide a more accurate estimate of the response variable. A weak learner is a
machine learning model that perform slightly better than chance. In case of gra-
dient boosting trees, the weak learners are shallow decision trees. Each new tree
added to the ensemble model (combination of all the previous trees) minimizes
the loss function associated with the ensemble model. The loss function depends
on the type of the task performed and can be chosen by the user. For regres-
sion, the standard choice is the squared loss. By adding sequentially trees that
minimize the loss function (i.e. follow the gradient of the overall loss function),
the overall prediction error decreases. Technical details about gradient boosting
trees can be found in (Friedman, 2001).

Many hyperparameters have to be tuned for gradient boosting trees, some of
them control the gradient boosting process, such as the learning rate, the number
of trees to be used whereas others regulate the construction process of the trees:
minimal node size, sample of the dataset to be used, maximum depth.

2.5. Hyperparameter tuning
Hyperparameters influence significantly the training of the machine learning

algorithms and therefore the quality of their predictions. The objective of hyper-
parameter tuning is to find the values of hyperparameters that yield the lowest
error (RMSE in our case) for unseen data. Two types of methods exist to find the
optimal values of hyperparameters: uninformed or informed.

In uninformed methods, many combinations of hyperparameter values are
tested one after the other and the best combination is the one that yields the
lowest error on unseen data. The values of hyperparameters are either sampled
randomly (random search) or sampled along a grid (grid search). In both cases,
each combination tested are independent from another. With grid and random
search, it is not guaranteed to find the optimal set of hyperparameters and it
usually requires a lot of iterations (combinations tested).

In informed methods, the results obtained by the past combinations are used
to choose the next combination to evaluate. Bayesian optimization algorithm
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is an informed method that aims to minimize an objective function, in our case
the errors of the machine learning algorithms on unseen data. First, it builds
a probability model (Gaussian process) of the objective function. Then it uses
this surrogate model to select the most promising values of hyperparameters to
evaluate. Once the promising combination of values have been evaluated, the
probability model is updated and searched again for the most promising combi-
nation. This process is repeated several times. This method is employed in this
article because it is very efficient for tuning hyperparameter values and it usually
requires less iterations than uninformed methods (Bergstra et al., 2011). In-depth
details of this method are given in the works of Snoek et al. (2012); Marchant
and Ramos (2012) and Shahriari et al. (2015).

2.6. Training the algorithms
The machine learning algorithms described above are trained to predict the

deviations of Hs, Tp or θp (one model for each variable), using 6 input variables:
the three wave parameters (HS , Tp, θp) given by the numerical model, the atmo-
spheric pressure, the wind direction and speed.

The neural networks are built and trained with the R package keras. The
input variables are centered and scaled to improve the result of neural networks
and the weights are updated with the adam optimization algorithm (Kingma and
Ba, 2014). Random forest and gradient boosting model are fitted in R using
respectively the ranger package which provide fast implementation of Random
Forests (suited for high dimensional data) and the xgboost package which is
an efficient R implementation of the gradient boosting framework from Chen
and Guestrin (2016). The input variables are not centered or scaled before the
training of random forest and gradient forest because it does not influence the
training of these algorithms.

The training is done twice: once with the default values of the hyperparame-
ters in the R packages and once with the optimal values found with the Bayesian
optimization method.

The best hyperparameter values are found by the means of Bayesian opti-
mization method coupled with a 5-fold cross validation in the training dataset.
That is, the training data are split into five equal-sized partitions and a machine
learning model is recursively built on four partitions (80% of the training data)
with a given hyperparameter combination. A performance metric, in our case
the root mean square error is assessed on the remaining partition (20% of the
training data). The resulting five performance metrics are averaged to provide an
estimated out-of-sample performance of the respective hyperparameter combina-
tion. The objective function to minimize for the Bayesian optimization method is
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Table 1: Statistical metrics for the three variables of interest before the hyperparameter tuning.
”Ann” stands for artificial neural networks, ”Rf” for random forest and ”Gb” for gradient boost-
ing tree.

Hs Tp θp

Numerical
model

Ann
Corr.

Rf
Corr.

Gb
Corr.

Numerical
model

Ann
Corr.

Rf
Corr.

Gb
Corr.

Numerical
model

Ann
Corr.

Rf
Corr.

Gb
Corr.

Computed with all data
Biais -0.201 0.005 -0.002 -0.004 0.712 0.002 -0.026 0.005 -0.249 0.698 0.976 0.765
RMSE 0.399 0.306 0.248 0.267 1.839 1.603 1.282 1.388 13.803 12.391 9.749 10.645
SI 0.166 0.148 0.120 0.129 0.153 0.145 0.116 0.125 0.045 0.041 0.032 0.035
Cor 0.954 0.962 0.975 0.972 0.78 0.804 0.880 0.857 0.330 0.366 0.455 0.386

Computed with data where Hs > 3m
Biais -0.536 -0.156 -0.124 -0.126 0.683 -0.026 -0.090 -0.041 1.925 -0.561 0.052 0.046
RMSE 0.766 0.515 0.420 0.433 1.348 1.083 0.956 1.022 7.351 5.769 4.449 4.931
SI 0.133 0.120 0.098 0.101 0.089 0.083 0.073 0.078 0.024 0.019 0.015 0.016
Cor 0.818 0.857 0.902 0.898 0.832 0.850 0.886 0.869 0.589 0.604 0.790 0.726

the average out-of-sample performance value. The Bayesian optimization for our
data is performed using the R package RBayesianOptimization. First, random
combinations of hyperparameter values are evaluated to serve as search base for
the informed method (5 in this study), then an acquisition function (upper confi-
dence bound) is used to find the next combination values to evaluate (this step is
repeated 25 times).

3. Results and Discussion

3.1. Model comparison
To assess the accuracy of the numerical model and the proposed corrections,

several metrics are computed including the root mean square error (RMSE), the
correlation coefficient, the bias and the scatter index (SI). The bias represents the
average error between the observed and modeled data and allows one to detect
under or over estimation of the value of one parameter. The scatter index is a
measure of the error normalized by the observation values. It is a standard metric
for wave model inter-comparison (Londhe et al., 2016). More details about the
computation of these two metrics can be found in the work of Mentaschi et al.
(2013). The metrics are computed twice: once with the whole test data and once
with a subset of the test data where Hs > 3m because the underestimation of Hs

is known to become larger above this height (Arnoux et al., 2018).
Table 1 presents the metrics obtained with no assimilation (numerical model)

and after a preliminary data assimilation with the three machine learning algo-
rithms. The term ”preliminary” refers to the lack of hyperparameter tuning. The
learning has been done using the default hyperparameter values given in table 2.
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For significant wave height, the numerical model shows a negative bias. This
indicates that the MFWAM model has a tendency to underestimate Hs such as
other wind wave models (Moeini et al., 2012; Arnoux et al., 2018). The negative
bias increases as the value of Hs becomes larger (Hs > 3m), meaning that Hs is
more likely to be underestimated during energetic events. For the peak period,
the numerical model shows a positive bias. When Hs > 3m, the bias and the
RMSE for this parameter are smaller. The predictions of Tp are therefore better
during energetic conditions. For wave direction, a small bias is observed in av-
erage and is greater when the waves are larger. The large difference in RMSE
computed with data where Hs > 3m and with all data is explained by the distri-
bution of the wave direction according to the wave height. When the significant
wave height is below 2 meters, the wave direction at the buoy is more variable
(Figure S1, supplementary material) and the spectral wave model has more dif-
ficulties to predict correctly the direction. This can be confirmed by looking at
the θp errors of the numerical model: we see that they are larger and occur more
often when Hs < 2m (Figure S2, supplementary material). A potential expla-
nation of this phenomenon could be that below 2 meters, the sea state is more
likely to be influenced by local wind conditions which are difficult to reproduce
by the spectral wave model (Rascle and Ardhuin, 2013). When the significant
wave height is above 2 meters, the wave directions are a lot less variable and the
predictions of the spectral wave model are more accurate.

When we look at the metrics computed with all data, we see that the correc-
tion made by the three machine learning algorithms removes the bias and greatly
reduces the RMSE and the scatter index for Hs and Tp. For θp, the mean bias
is slightly larger after data assimilation for all algorithms. The correction of the
machine learning algorithm could be less efficient for θp due to the high vari-
ability of the observed deviations they try to model (see the explanation in the
paragraph above). However, lower value of RMSE and scatter index and larger
correlation coefficients still indicate that the corrected data are closer to the ob-
served values at the buoy.

For the metrics computed with data where Hs > 3m, the correction does not
remove the bias for Hs and Tp but reduces it greatly. For the wave direction, the
updated parameters are closer to the reality. Indeed, bias and RMSE obtained by
the corrections are smaller than the numerical model and the correlation coeffi-
cients are larger for corrected data.

For this preliminary assimilation, random forest yields the best results for
all the parameters. It reduces the RMSE values computed with all test data by
37.7%, 30% and 29% respectively for Hs, Tp and θp. Gradient boosting trees is
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Table 2: Default values, ranges and selected value of hyperparameters for the machine learning
algorithms

Machine learning
algorithms Hyperparameters Default value Range searched

Selected value
for Hs

Selected value
for Tp

Selected value
for Dir

Neural networks
No. of units
in hidden layer 13 (2 × h + 1) {1-40} 26 20 40

Activation function sigmoid {relu,sigmoid,tanh} sigmoid sigmoid relu
Learning rate 0.001 {0.0001-0.1} 0.021 0.016 0.005
Epochs 30 {10,30,50,100,150} 50 100 150
Batch size 32 {16,32,64,128} 32 64 64

Gradient Boosting Number of trees 100 {100-2000} 560 1150 1990
trees Learning rate 0.3 {0.0001-0.3} 0.072 0.028 0.069

Max depth 6 {1-20} 14 20 20
Minimal node size 1 {1-15} 7 1 1
Subsample 1 {0.5-1} 0.57 0.82 0.79
Col sample 1 {0.5-1} 0.99 0.85 0.9

Random forest Number of trees 500 {100,200,500,800,1000} 1000 1000 1000
Mtry 2 (

√
h) {2-6} 2 2 2

Note: h corresponds to the number of input variables (6 in our case).

close second and decreases the RMSE values by 33%, 24.5% and 22.8%. Finally,
data assimilation with neural networks decreases the RMSE of Hs, Tp and θp by
23%, 12.8% and 10.2%.

As stated earlier, the performance of machine learning algorithms might de-
pend on the choice of the hyperparameter values. The Bayesian optimization
was therefore performed and optimal values were selected (Table 2). The se-
lected hyperparameter values are quite different from the default values. Indeed,
for neural networks, the best results were obtained with more epochs and more
neurons in the hidden layer. For random forest, only the number of trees seems
to have some effect on the results and models with a large number of trees per-
forms better. Finally, for gradient boosting trees, models with a large number of
trees and a small learning rate are preferred.

Metrics calculated with data corrected by the tuned machine learning algo-
rithms are presented in Table 3. Overall, tuning the hyperparameter values has
improved the results of all the algorithms. However, the degree of improvement
differs depending on the algorithm. We observe the smallest improvements for
random forest where the RMSE of every parameters seems to decrease by less
than 1% in average. For neural networks, tuning hyperparameter values has a
more significant effect by reducing the RMSE by 2 to 3% in average. The largest
effect of tuning the hyperparameters are observed with gradient boosting trees.
The RMSE is 8 to 11% lower for every parameter. The only exception is θp com-
puted with all data where we have a small increase (2%) of RMSE. In general, the
mean bias for Hs, Tp and θp remains the same before and after hyperparameter
tuning expect for the bias of Hs computed when Hs > 3m which is significantly
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Table 3: Statistical metrics for the three variables of interest after the hyperparameter tun-
ing.”Ann” stands for artificial neural networks, ”Rf” for random forest and ”Gb” for gradient
boosting tree.

Hs Tp θp

Numerical
model

Ann
Corr.

Rf
Corr.

Gb
Corr.

Numerical
model

Ann
Corr.

Rf
Corr.

Gb
Corr.

Numerical
model

Ann
Corr.

Rf
Corr.

Gb
Corr.

Computed with all data
Biais -0.201 0.026 -0.002 -0.001 0.712 0.007 -0.022 0.003 -0.249 0.790 0.979 0.714
RMSE 0.399 0.300 0.246 0.240 1.839 1.553 1.269 1.231 13.803 12.07 9.646 9.501
SI 0.166 0.144 0.118 0.116 0.153 0.140 0.114 0.111 0.045 0.04 0.032 0.031
Cor 0.954 0.964 0.976 0.977 0.78 .817 0.882 0.889 0.330 0.36 0.461 0.421

Computed with data where Hs > 3m
Biais -0.536 -0.117 -0.120 -0.099 0.683 0.032 -0.084 -0.051 1.925 -1.114 0.062 0.056
RMSE 0.766 0.495 0.417 0.404 1.348 1.064 0.950 0.943 7.351 5.820 4.412 4.365
SI 0.133 0.117 0.097 0.095 0.089 0.081 0.072 0.072 0.024 0.019 0.015 0.015
Cor 0.818 0.861 0.903 0.908 0.832 0.856 0.888 0.889 0.589 0.609 0.793 0.793

lower after the tuning.
For this dataset, gradient boosting algorithm shows the best performances

for all parameters. Assimilation with this algorithm decreases the RMSE values
computed with all test data by 39.8% for Hs, 33% for Tp and 31% for θp. For
Hs and θp, the reduction are even lower for the RMSE values computed with
Hs > 3m: 47% for the significant wave height and 40% for wave direction. The
performances of random forest for Hs, Tp and θp are slightly better than the re-
sults obtained before tuning the hyperparameters: respectively 38.3%, 30.9%,
30.1%. The performances are also better for neural networks after hyperparam-
eter tuning: it decreases the RMSE values by 24.8% for Hs, 15.5% for Tp and
12.5% for θp. The differences in efficiency between neural networks and en-
semble learning techniques could be explained by the architecture chosen for the
neural networks. Indeed, this work shows the results for multilayer perceptrons
with only one hidden layer which is the typical choice in the literature (Londhe
et al., 2016; Moeini et al., 2012). By choosing an architecture with more hidden
layers, the networks might be able to model more complex phenomena and bring
a better improvement for the three wave parameters.

The distribution of the errors after the different corrections are presented in
the figure 2. For all wave parameters, the distributions of the errors after a cor-
rection have narrowed and are now more centered in zero. The differences in
performance between algorithms are confirmed with these violin plots. Indeed,
when the correction is made with random forest or gradient boosting trees, the
distributions of the errors are more narrow than the distributions of the errors ob-
tained with neural networks. The difference in efficiency between random forest
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and gradient boosting trees is not distinguishable graphically. It is expected as
the metrics of the two algorithms only differ by a few percents. For Hs and Tp,
the corrections have also removed the bias observed for numerical model. The
large errors of θp for the numerical model (Figure 2) are observed when Hs < 2m
and are not corrected by the machine learning algorithms. Figures showing the
observed values versus the corrected values are available in the supplementary
material for the three wave parameters.

3.2. Predictive power of the input variables
In addition to their performance, random forest and gradient boosting algo-

rithms can provide a measure of importance for each variable used as input. This
importance indicates the predictive power of the variable. It can be used to sort
variable from most to least predictive, allowing one to have more insight on the
problem and to perform feature selection when there are too many input vari-
ables. The figure 3 shows the importance measure of each variable computed
by the random forest depending on the parameter to improve. For Hs and Tp,
the most important variables are the value of Hs and Tp modeled by the wind
wave model. It is different for the direction where the most important variables
are the value of θp and Hs given by the model. The predictive power of local
meteorological variables is quite low, suggesting that local and instantaneous
meteorological variables does not bring valuable information in the assimilation
process. The wind wave formation process is not instantaneous and occurs in
large regional scale, therefore using meteorological variables from the past (sev-
eral days before) and from different locations (located in the ocean) could lead
to a better predictive power which means better updated wave predictions.

3.3. Example of application
To investigate the potential effect of the different corrections in a real case

scenario, the extreme wave run-up R2% at the Grande Plage de Biarritz has been
computed for the test period with the Stockdon formula (Stockdon et al., 2006)
which uses Hs and Tp and the beach slope as parameters. The beach slope is
fixed to 8% according to the work of Morichon et al. (2018). Using the extreme
wave run-up calculated with the buoy data as reference, the metrics presented
previously have been computed for the numerical model and the different cor-
rections (Table 4). From this table, it is evident that the data corrected with
machine learning algorithms provide wave run up values that are closer to the
”real” values with lower RMSE, Scatter index and greater correlation coeffi-
cient. Although the bias remains, the correction made by the gradient boosting
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Figure 2: Distribution of the errors computed between values observed at the buoy and values
corrected or not with the different machine learning algorithms. ”Num” stands for numerical
model (no correction), ”Ann” for artificial neural networks, ”Rf” for random forest and ”Gb” for
gradient boosting trees. The horizontal lines in the red boxplots represent from top to bottom:
the third quartile, the median and the first quartile.

77



Figure 3: Variable importance for the correction of the three wave integrated parameters.
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Table 4: Statistical metrics of the R2% calculated with Stockdon’s formula. These results are
obtained by taking the R2% computed with buoy data as reference. ”Ann” stands for artificial
neural networks, ”Rf” for random forest and ”Gb” for gradient boosting tree.

Numerical
model

Ann
Corrected

Rf
Corrected

Gb
Corrected

Computed with all data
Biais 0.003 0.019 0.002 0.003
RMSE 0.223 0.209 0.175 0.172
SI 0.145 0.136 0.114 0.112
Cor 0.943 0.950 0.965 0.966

Computed with data where Hs > 3m
Biais -0.042 -0.030 -0.054 -0.042
RMSE 0.313 0.282 0.248 0.242
SI 0.119 0.108 0.093 0.092
Cor 0.854 0.862 0.897 0.901

tree algorithm decreases the RMSE of the extreme wave run-up by 22% (for all
data and data where Hs > 3m). Random forest shows almost the same reduction
of RMSE values: 21.5% for all data and 20.7% for data where Hs > 3m. The
correction obtained by neural networks is less efficient: it reduces the RMSE
computed with all data and data where Hs > 3m by 6.2 and 9.9% respectively.

4. Conclusion

In this work, random forest and gradient boosting trees were employed for
the first time in the error prediction method. These ensemble learning techniques
based on decision trees performed better than neural networks for improving the
wave forecast of the Basque Coast. The correction made by gradient boosting
trees yielded the best results for all the wave parameters: it reduced the RMSE
values by nearly 40% for Hs, 33% for Tp and 31% for θp. The reduction of
RMSE values for random forest was only a few percents lower than gradient
boosting trees. The corrections made by neural networks were significant but
yielded reductions in RMSE not as high as the two ensemble learning techniques:
24.8% for Hs, 15.5% for Tp and 12.5% for θp.

As expected, tuning the hyperparameters of the machine learning algorithms
had a positive effect on the final results. However, the effect of the tuning differed
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depending on the algorithms. Indeed, random forest was less affected as it only
reduced the RMSE values by 1% in average. The tuning had more effect on
neural networks reducing the RMSE values by 2 to 3%. Gradient boosting tree
algorithm was the most affected by hyperparameter tuning as the results were
improved by 8 to 11% in average. One of the main advantage of random forest
over gradient boosting trees is that it doesn’t need this tuning step in order to
yield great results. This is not negligible as hyperparameter tuning step can be
time consuming and computationally demanding depending on the complexity
of the search (number of hyperparameters).

Contrary to neural networks, Random forest and Gradient boosting trees pro-
vided valuable insights by giving the predictive power of each input variable.
The predictive power of variable brings interpretability to the model and can
give a better understanding of the variable we try to predict. For example, we
know that the significant wave height modelled by the numerical wave model
was the most important variable in the correction of the three parameters. In
cases where there are a lot of input variables, knowing their associated predic-
tive power helps developing more parsimonious models by keeping the pertinent
variables and subtracting the less informative ones from the model.

The error prediction method has proven to be useful in improving wave fore-
cast. This had an impact in a real life application by improving the accuracy
of the extreme run-up computed at the Grande Plage de Biarritz. Here again
the corrections brought by random forest and gradient boosting tree were better
than the correction made by neural networks. The decrease in RMSE values was
around 22% for the two ensemble techniques and 6.2% for the neural networks.
Even though the differences in performance might not appear significant, it can
make a difference when using these corrections in an early warning system. It is
especially true when dealing with storm events where Hs and Tp are large.

The differences between machine learning algorithms observed in this article
are specific to Biarritz site. The results might differ for another study site. There-
fore, we can only advise to test and compare several machine learning algorithms
to find the optimal one associated with the site of interest.

Finally, the assimilation made in this study did not account for the temporal
aspect in the errors of the numerical model, it only corrected systematic errors
of the wave model. In the future, this work could be extended by adding in-
put variables containing temporal aspect. This could be the values of a modeled
parameter at previous time steps such as the work of Londhe et al. (2016). In
this framework, neural networks could perform better as they are known to han-
dle efficiently time series. Other input variables could be also used to improve
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the wave forecast such as the meteorological data from the past or at different
locations. Because the success of the error prediction method depends on the
quantity of data, it would be also interesting to perform a sensitivity analysis on
the quantity of data used in the training process. This could give us some in-
sights on the minimal quantity of data required to obtain a desirable assimilation
procedure.
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boosting trees to improve wave forecast at a specific location
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Distribution of θp measured at the buoy.

Figure 1: Wave direction vs significant wave height. Both parameters are measured at the buoy of Anglet.
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Errors of the numerical model for θp depending on significant wave height measured at the
buoy.

Figure 2: Errors of the numerical model for wave direction vs significant wave height at the buoy of Anglet.
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Observed data vs data corrected with different machine learning algorithms

Figure 3: Hs values observed at the buoy vs Hs values corrected with different machine learning algorithms
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Figure 4: Tp values observed at the buoy vs Tp values corrected with different machine learning algorithms
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Figure 5: θp values observed at the buoy vs θp values corrected with different machine learning algorithms
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3.3 Conclusion

In this chapter, we showed that SLM can be employed to improve significantly

the predictions of numerical wave models at a specific location. We also proved

the importance of comparing different SLM and choosing the optimal hyper-

parameters in order to obtain the best results. With at least several years

of wave buoy data, this method can be easily implemented to improve the

predictions of numerical wave models in an EWS.

The methodology presented in this chapter only corrects the systematic

errors of the numerical model at a specific location. This work could be there-

fore extended by including temporality in the error prediction method. To

that end, errors of previous time steps could be included in the explanatory

variable or methods specialized in time series prediction such as recurrent

neural networks (RNN) could be employed in the same spirit as Zhang et al.

(2021). In this work, they demonstrate that RNN can be used to improve the

predictions of a numerical wind wave model by integrating both the local data

and the temporality in the errors of the numerical wind wave model. Their

proposed methodology with RNN led to a better accuracy than the error pre-

diction method performed with usual machine learning algorithms. The work

presented in this chapter could also be extended by correcting the whole wave

field (multiple locations) predicted by the numerical model.
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4. Automatic creation of storm

impact database based on video

monitoring and convolutional

neural networks

4.1 Introduction

The objective of this chapter is to demonstrate that SLM can be employed to

create automatically a storm impact database with images from video mon-

itoring networks. Data about the impact of a hazard is usually the limiting

factor when building a data-driven model translating tide, wave and meteoro-

logical conditions into impact on the shore. Unlike data about the tide, wave

or meteorological conditions, data about storm impact are rare, sparse and

mostly come from archives or insurances data. So far, no methods exist to

collect routinely storm impact data. We propose to use Convolutional neural

networks (CNN), which are deep learning methods, to classify the video mon-

itoring images into three storm impact regimes which are categories of coastal

flooding risk. Several CNN architectures and methods to deal with class im-

balance are tested on two sites (Biarritz and Zarautz) to find the best practices

for this classification task. Transfer learning is also investigated to facilitate

the transferability of this method to new sites. Once trained, the CNN can

predict the storm impact regimes of newly created timestacks, generating an

incremental storm impact database.

Scientific output:
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This work resulted in the publication of an article (presented below) and

in a communication:

Publication:

• Callens, A., Morichon, D., Liria, P., Epelde, I., & Liquet, B. (2021). Au-

tomatic Creation of Storm Impact Database Based on Video Monitoring

and Convolutional Neural Networks. Remote Sensing, 13(10), 1933.

Communication:

• ”Automatic Creation of Storm Impact Database Based on Video Mon-

itoring and Convolutional Neural Networks”, Online seminar for the

Probability and Statistics research team of the LMAP (July 2021).

4.2 Article: Automatic creation of storm im-

pact database based on video monitoring

and convolutional neural networks
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Abstract: Data about storm impacts are essential for the disaster risk reduction process, but unlike
data about storm characteristics, they are not routinely collected. In this paper, we demonstrate the
high potential of convolutional neural networks to automatically constitute storm impact database
using timestacks images provided by coastal video monitoring stations. Several convolutional neural
network architectures and methods to deal with class imbalance were tested on two sites (Biarritz
and Zarautz) to find the best practices for this classification task. This study shows that convolutional
neural networks are well adapted for the classification of timestacks images into storm impact
regimes. Overall, the most complex and deepest architectures yield better results. Indeed, the best
performances are obtained with the VGG16 architecture for both sites with F-scores of 0.866 for
Biarritz and 0.858 for Zarautz. For the class imbalance problem, the method of oversampling shows
best classification accuracy with F-scores on average 30% higher than the ones obtained with cost
sensitive learning. The transferability of the learning method between sites is also investigated and
shows conclusive results. This study highlights the high potential of convolutional neural networks
to enhance the value of coastal video monitoring data that are routinely recorded on many coastal
sites. Furthermore, it shows that this type of deep neural network can significantly contribute to
the setting up of risk databases necessary for the determination of storm risk indicators and, more
broadly, for the optimization of risk-mitigation measures.

Keywords: convolutional neural networks; storm impact database; transfer learning; video
monitoring

1. Introduction

Databases containing information on past storm characteristics and their impacts on
the coast are essential for the disaster-risk-reduction process. They enable scientists and
coastal stakeholders to better understand the storm hazard in a specific area, to identify
potential trends, and most importantly to assess coastal risks (present or future) through
their use in the development and validation of early warning systems [1,2].

In these databases, storm impact is mostly represented as a qualitative variable with
different categories. The different categories of storm impact are called “regimes” and are
defined according to the Sallenger’s scale [3]. This scale was originally derived to classify
storm impact intensity based on the relation between wave-induced maximum water level
and topographic elevations of the different sections of a natural beach. Recently, this
approach has been extended to the estimation of storm impact intensity at an engineered
beach backed by a seawall [4].

Due to the extreme and episodic nature of storms, databases covering a long period
of time are necessary. Observed data about storm characteristics such as tide, wave, and
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Due to the extreme and episodic nature of storms, databases covering a long period
of time are necessary. Observed data about storm characteristics such as tide, wave, and
wind are abundant and have been collected routinely for decades. In addition, numerous
reanalyses and hindcasts are available for these variables. On the contrary, data on storm
impacts are more sparse and mostly come from archives [5–7] or insurance data [8,9]. A
few examples of storm impact databases are: the RISC-KIT database, which contains storm
impact information for nine study sites in Europe [10]; the SurgeWatch database [5] for the
UK; and a database for the Basque coast [7]. Even though archives and insurance provide
information, there are some limitations including the heterogeneity, the incompleteness of
the data sources, and the consequent amount of work needed [7]. A solution to routinely
create a storm impact database could be to use images provided by coastal monitoring
stations that are now widely used worldwide to survey and study coastal processes.

In recent decades, video monitoring systems have proven to be valuable assets in the
study of the coastal zone due to their cost-efficiency and their ability to provide a continuous
stream of data including intense storm conditions. Video monitoring systems are generally
composed of one or several cameras operated by a monitoring software such as Argus [11],
HORUS, Kosta (www.kostasystem.com, accessed on may 2021) or Sirena [12]. The reader
is referred to the work of Nieto et al. [12] for a comparison of the cited monitoring systems.
These systems generate different types of images that can be applied to study coastal
processes such as beach morphology changes, wave runup, and coastal currents [13,14].
Among the different types of images generated by the video monitoring system, timestacks
images represent the time-varying pixel intensities along a particular cross-shore transect in
the camera’s field of view. They are used to perform wave runup parametrization [15–17],
wave breaking detection [18], or intertidal topography [19] and also to estimate wave
characteristics [20,21], sea level [22], and bathymetry [23,24]. Timestacks images have also
been employed in the study of storm impact. In the work of Thuan et al. [25], they quantify
the impact of two typhoons on the longshore-averaged shoreline changes based on the
analysis of a series of timestacks images. To our knowledge, timestacks have not been
used to directly measure storm impact regimes as defined previously. Image processing
techniques are usually employed to transform the information contained in the images into
quantitative measurements (runup elevation, wave height, shoreline). In this article, we
propose extracting storm impact regimes (qualitative data) directly from the timestacks.

The storm impact regimes can be extracted from timestacks using two methodologies.
The first methodology can be qualified as deterministic; it relies on image processing
techniques and consists of two steps. First, the water line position is found by segmenting
the image. The storm impact regime is then deduced by comparing the position of the
waterline with the position of the defense infrastructure in the timestack. Different methods
can be used to extract the waterline from timestacks images [26,27]. For example, Otsu’s
method [26] divides the pixels into two groups depending on their intensity values. It
is not always robust and depends on the quality and lighting of the images. Most of
the time, it requires rigorous and tedious human verification and correction [16]. The
second methodology, presented in this article, relies on deep learning with convolutional
neural networks (CNNs). CNNs are a class of deep neural networks, specializing in
imagery analysis, that perform well on specific problems such as image classification and
segmentation. First, timestack images are classified into storm impact regimes by human
operators. Then, the CNN is trained to classify timestacks into storm impact regimes using
the annotated dataset. During the training process, the CNN learns to simultaneously
classify the images and which features to detect in order to achieve the best classification
accuracy. Once the neural network has learned on the training dataset, it can be used to
routinely analyze the timestacks produced by the video monitoring system and therefore
create incrementally a qualitative storm impact database. This second methodology, based
on a self-learning algorithm (CNN), allows for more automation compared to the first
methodology because it does not require site-specific calibration [17].
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has already been employed in coastal engineering domain [14,29] and usually results in
faster training and better accuracy. In the case of storm impact recognition, where images
of extreme storm impact regimes are rare by nature, this method can significantly improve
the performances of CNNs. Moreover, it is reasonable to think that knowledge acquired
at one site can be used to improve the performances on another site. This could be a
non-negligible asset for the application of the method to a new site.

This paper aims to demonstrate the high potential of CNN methods to constitute a
storm impact database using timestacks images provided by coastal video monitoring
stations. Different methods are tested using images collected at two study sites. The best
practice and the transferability of knowledge gained at one site to another are studied. In
the following sections, the study sites and the video dataset are first described. The main
features of the CNN implementation procedure are then shown in Section 3. Results and
transferability of the CNN between the study sites are presented in Section 4 and discussed
in Section 5. The main results are finally presented in the conclusion, Section 6.

2. Study Sites and Data

In this study, the storm impact intensity is classified into three storm impact regimes
(Figure 1) derived from the Sallenger’s scale [3]. The following three categories have been
adapted for the timestack images:

• Swash regime: all the waves in the timestack are confined to the beach;
• Collision regime: at least one wave in the timestack collides with the bottom of the

seawall ;
• Overwash regime: at least one wave in the timestack completely overtops the seawall.

(a) (b) (c)
Figure 1. The three categories of storm impact regimes estimates from timestack images. y-axis represents
the time in seconds, x-axis represent the pixel index (cropped images), and red lines represent the sea
wall bottom and top positions. (a) Swash regime. (b) Collision regime. (c) Overwash regime.

The CNNs were trained on timestacks images collected by video monitoring stations
operating on two sites along the basque coast (Figure 2), namely the Grande Plage of
Biarritz (GPB), and the Zarautz beach (ZB). The use of two sets of data acquired from
sites with different geological and morphological characteristics and distinct responses to
oceanic forcing makes it possible to assess objectively the ability of CNN to detect storm
impact regimes.
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Figure 2. Map showing the locations of the two study sites.

2.1. Grande Plage de Biarritz
2.1.1. Site Characteristics

The Grande Plage of Biarritz (GPB) is an urban embayed beach that is 1.2 km long,
located on the southern Aquitanian coast of France (Figure 2). It has a high socio-economic
importance for the city of Biarritz due to its tourist appeal, its historical heritage, and
its location near the city center. In terms of characteristics, the GPB is an intermediate-
reflective beach with typically a steep foreshore slope of 8–9% and a gentle nearshore
slope of 2–3% [30]. It is a mesotidal beach with 4.5 m spring tidal range around a mean
water level of 2.64 m. This narrow beach is backed by a seawall with an alongshore
elevation varying between 7 and 8 m. This seawall serves as defense infrastructure for back
beach buildings.

The beach is predominantly exposed to waves coming from the WNW direction. The
offshore wave climate is moderately to highly energetic. The annual average significant
wave height and peak period are, respectively, Hs = 1.5 m and Tp = 10 s [30]. In this region,
an event is qualified as a storm event when Hs and Tp are, respectively, greater than 3.5 m
and 13.8 s. Such events correspond to 7.24% of the offshore wave climate [31] and are
responsible for several overwash events each year.

This site has been equipped with a coastal video monitoring station since 2017. The
station includes 4 cameras with different lenses to ensure the coverage of the entire beach
with a sufficient spatial resolution. The cameras are operated by the open source software
SIRENA [12]. For this site, one transect is monitored by the camera pointing to the beach
and seawall location (transect Stack-Id01 in Figure 3). The timestack images correspond
to pixel intensities recorded along this transect over 14 min with a sampling frequency of
1Hz. Among the 70,000 images of this database, only 8172 images were kept to be part
of the ground truth dataset. Indeed, the timestacks generated in summer months were
excluded as the human activities negatively affect the quality of the images. The images
where the tide level was below 2.8 m were excluded as they corresponded to timestacks
images without visible swash.

2.1.2. Timestack Image Preprocessing

The ground truth dataset was built by labeling the 8172 images. There are two methods
to annotate the images: by hand or in a semi-automatic way. The annotation by hand is
the most straightforward but also the most time-consuming method. The semi-automatic
method consists of two steps. First, the position of the waterline is extracted automatically
by segmenting the image using Otsu’s thresholding method [16]. Then, the storm impact
regime is identified by comparing the position of the waterline with the one of the defense
infrastructure. This method is faster than the annotation by hand; however, it still requires
an operator because it is not always robust and highly depends on the lightning conditions
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of the image. To employ this method, the position of the defense infrastructure in the image
must be known. This is the case for the Grande Plage de Biarritz; therefore, semi-automatic
annotation was performed.

After verification and correction by an operator, the result of the annotation was
7907/211/54 (Swash/Collision/Overwash). The classes are highly imbalanced, and this
could have some effect on the classification accuracy of the CNN. Methods to deal with
this problem are presented below. Before the training process, the images were resized to
fit to the input dimensions of the CNNs tested in this study (224 × 224).

(a) (b)
Figure 3. (a) Satellite view of the site of Biarritz from Google Earth with red lines representing the transects on the site.
(b) Transect on the Grande Plage de Biarritz.

2.2. Zarautz
2.2.1. Site Characteristics

The beach of Zarautz is an embayed beach of 2.3 km long located on the Basque coast
(northern Spain) in the SE Bay of Biscay, approximately 70 km southwest of GPB. The
beach, facing north (345 degrees), can be divided into two parts (Figure 4): 30% of the beach
in the eastern part presents a large and well-preserved dune system, with a maximum
height of approximately 10 m above the minimum astronomic tide. The remaining 70% is
an engineered urban beach, backed by a concrete seawall and the village of Zarautz.

In terms of characteristics, the beach of Zarautz is an intermediate-dissipative [32]
and mesotidal beach with a 4 m spring tidal range. It is composed of fine–medium sand
with a mean slope of around 2%. The annual average significant wave height and peak
period are, respectively, 1 m and 9 s. Like the GPB, the beach of Zarautz is also exposed
to highly energetic waves and storms coming from the WNW and NW directions. The
seawall backing 70% of the beach has an along-shore elevation varying between 6.5 m
in the western part and 8 m in the center of the beach. This seawall serves as a defense
infrastructure for the buildings near the beach, and overtopping events are common at
high tide during winter storms.

A video monitoring station, like the one used on the GPB site was installed in 2010.
The station has 4 cameras of 1.4 Megapixels. Two of the cameras are equipped with
12 mm lens and have a panoramic view, and another 2 equipped with 25 mm lens cover
with more resolution the mean high and low tide coastline positions. For the Zarautz
dataset, 4 transects are monitored by the camera covering the supra-tidal beach with
higher resolution (Figure 4). The transects are perpendicular to the seawall and are named
corresponding to the elevation of the seawall in the point of intersection (i.e., transect 65
corresponds to the part of the seawall with 6.5 m elevation).
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(a) (b)

Figure 4. (a) Satellite view of the site of Zarautz from Google Earth, with the red point representing the location of the video
monitoring station. (b) Positions of the transects on the site of Zarautz.

2.2.2. Timestacks Images Preprocessing

Images from the site of Zarautz were annotated by hand. This method of annotation
was preferred over semi-automatic annotation because: (i) the position of the seawall
varied between timestack images, making the semi-automatic method more laborious, and
(ii) the presence of strong winds and gust negatively impacted the quality of certain images,
making the semi automatic method less robust. A simple web application was developed
to facilitate the annotation for the operator and is accessible in a public GitHub repository
(link in Data Availability Statement section). After classification by hand, the result of
the annotation was 19,596/2776/162 (Swash/Collision/Overwash). Like the images of
Biarritz, images of Zarautz present class imbalance, and they were resized to fit to the input
dimensions of the CNNs before the training.

3. Convolutional Neural Networks
3.1. General Concept

CNNs are a type of neural networks widely used to perform tasks related to imagery
analysis such as image segmentation, classification, or object detection. For classification
problems, a CNN takes as input images with three channels (RGB), from which they output
probabilities of belonging to specified categories, in our case storm impact regimes. Like a
classical neural network, a CNN is a stacking of neurons that are organized in different
layers. The structure of a CNN can be divided into two parts. The first part contains mostly
convolutional and pooling layers and aims to learn specific features that help to classify
the images correctly. The second part contains fully connected layers and the output layer.
It uses the specific features extracted in the first part to output probabilities of belonging to
specified categories.

In the feature extraction part, the convolutional layers detect features inside an image.
They convolve their input with one or more filters, which results in one or more feature
maps (one for each filter). The feature maps represent the activation of a specific filter at
every spatial position of the input image. During the learning process, the network will
learn filters that activate when they see specific visual features that help to correctly classify
the training images. Usually, convolutional layers are stacked inside a CNN. The early
layers detect simple features such as edges, whereas the deeper layers can detect more
complex features.

Pooling layers are commonly found between convolutional layers. These layers also
rely on convolutional operations and aim to reduce the dimensionality of the feature maps
in order to increase the learning speed of the network and to control the overfitting of the
CNN. If a CNN is overfitted, it would indicate that the network has learned exactly the
characteristics of the training images and cannot generalize to new data. By stacking several
convolutional and pooling layers inside a CNN, the complexity of the extracted information
increases as we go deeper in the network with more feature maps with smaller dimensions.
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The output of these specific layers serves as input to the second part of the network,
which aims to classify the image into the correct category. In the classification part, neurons
are organized in layers and are connected to the previous layers through weights (hence
the name fully connected layers). To prevent overfitting, drop-out regularization can
be applied on these layers. This method randomly ignores neurons during the training
process, making the network learn more sparse and robust representation of the data.
Finally, the output layer estimates the probabilities of belonging to the specified categories
for the input image with a “softmax” activation function.

The CNNs are trained with backpropagation in the same manner as classical neural
networks: the weights in the convolutional and fully connected layers are updated itera-
tively to minimize the errors between the prediction of the network and the ground truth.
The ground truth dataset for such a network is made by annotating images. Details on the
annotation of the timestacks can be found in the “Study Sites” section. Only the general
ideas about CNN have been presented above; for a detailed description on CNN and their
training, the reader is referred to the work of Bengio et al. [33].

There are many CNN architectures, each with different complexity and characteristics.
In order to keep the computation time reasonable, it was decided to limit the comparison
of performances between four architectures of increasing depth and complexity:

• A custom architecture inspired by the work of LeCun et al. [34] adapted for bigger
images. The architecture is presented in the appendix (Table A1).

• AlexNet [35], which won the ImageNet challenge in 2012. Its architecture contains
more convolutional layers and dense layers (Table A2). The number of filters is also
larger than that of the custom architecture.

• VGG16 [36], which is a very deep CNN that uses 13 convolutional layers and three
dense layers (Table A3).

• Inception v3, an improved version of the GoogleNet from Szegedy et al. [37] which
won the ILSVRC in 2014. It relies on inception modules, which perform convolutions
with filters of multiple size and concatenate their results (Table A4). In addition, the
convolution operation with filters of large size inside an inception module are made
by using 1 × n filters to reduce computational cost. This results in deeper networks
with significantly fewer parameters to learn.

3.2. Training the CNN
3.2.1. Data Processing

The datasets of both sites were divided into training, validation and testing sets
containing, respectively, 65%, 15%, and 20% of the data (common proportions in the
literature). Stratified random sampling was used to ensure that each part contains the same
class proportions. The training set is used to fit the CNN. The validation set is used to
stop the training for the CNN (early stopping). At last, the test part is used to evaluate the
performance of the neural network on unseen data (not used in the training step).

During the training, each training image is seen multiple times by the CNN. This can
be a problem as the network can learn exactly the characteristics of the training images
and might not generalize to new data. To avoid this problem, called overfitting, data
augmentation is employed during the training of the CNN. This method consists in making
small changes to images in the training set before feeding them to the CNN. By generating
modified images, this method artificially increases the number of images in the minority
classes and makes the models more robust to overfitting.

The following changes were made:

• Random vertical flip: new timestack with inverted time;
• Random shift in the RGB image color to decrease the dependence on lighting conditions;
• Normalization of pixel values to 0–1 for faster training
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3.2.2. Class Imbalance Problem

The datasets from both sites suffer from the class imbalance problem. Indeed, the
distributions of storm impact regimes are highly imbalanced. For the Biarritz site, 96.8% of
the images display swash regimes, 2.6% collision regimes, and 1% of overwash regimes.
For Zarautz, 87% of the images are swash regimes, 12% collision regimes, and 1% overwash
regimes. This class imbalance problem was expected as we are studying rare events.

It has been proven that class imbalance can negatively affect the performances of
machine learning models in classification tasks [38]. Methods to deal with this problem
are well known [38–40] and can be divided into two categories: data-level methods and
classifier-level methods.

The data-level methods aim to modify the class distribution in order to reduce the
imbalance ratio between classes. The most popular methods in this category are oversam-
pling and undersampling. Oversampling consists in replicating random samples from
minority classes until the imbalance problem is removed. In contrast, undersampling
consists in removing random samples from the majority class until the balance between
classes is reached.

The classifier-level methods aim to modify the training or the output of the machine
learning algorithm. They include cost-sensitive learning, which is a method that gives more
weights during learning to examples belonging to minority classes, and the thresholding
method, which adjusts the output probabilities by taking into account the prior class
probabilities [39].

3.2.3. Transfer Learning

For complex and deep CNN, it is common to use transfer learning to speed up the
learning process and to improve performances. Transfer learning methods consist in using
knowledge gained on a specific task to solve a different task. There are different methods
of transfer learning for CNN; for an exhaustive listing, readers are referred to the work of
Pan and Yang [28]. The method used in this article is “pre-training”. It consists of using
the weights of a CNN trained on a first task as initialization weights for a second CNN
that will perform on a second task. The efficiency of pre-training was tested by using the
pre-trained weights of VGG16 and Inceptionv3 on the ImageNet dataset, which is one of
the largest labeled image dataset [41]. Then, transfer learning was performed between sites
to see if the knowledge gained on one site is beneficial for the learning on the second site.

3.2.4. Application to the Datasets

The workflow for this study is presented in Figure 5. For each site, the four CNNs with
different architectures were fitted without and with the two methods related to the class
imbalance problem: oversampling and cost-sensitive learning (class weights). Transfer
learning was used on the more complex architectures (VGG16, Inceptionv3) and only for
the best performing method to cope with class imbalance. Data augmentation was used
during the training of all the CNNs.

The networks were trained on a laptop equipped with a GPU (Quadro RTX 4000)
using Keras (tensorflow GPU 1.12.0/Keras 2.3.1/Python 3.6.1), an open-source python
library designed for building and training neural networks. The scripts used in this article
are available on a public GitHub repository (link in Data Availability Statement section).
The optimizer used is Mini-Batch gradient descent algorithm with batch size of 32 and a
learning rate of 0.001 that decays by a factor of 2 every 10 epochs. The training is stopped at
100 epochs or earlier when the value of the validation loss does not decrease over 10 epochs
(early stopping).
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Selecting best model
based on F1 score

computed on test set

- Precision, Recall and
F1 score

- Which CNN arch?
- For deeper arch:
pre-training or not?

- Data augmentation
- Cost-sensitive learning?

- Resizing
- Oversampling ?

Assessing performances

Training

CNN
Data processing

Figure 5. Workflow for this study. Items inside the boxes that are highlighted in red represent the
choices tested in this study, whereas the items in black are the methods applied in every cases.

3.3. CNN Accuracy Assessment

To compare the performance of the different networks, the F1-score is computed with
the following formula:

F1 =
Precision × Recall
Precision + Recall

where
Precision =

True positives
True positives + False positives

and
Recall =

True positives
True positives + False negatives

.

The precision, recall, and F1-score are computed for each storm impact regime and are
averaged in order to have one global metric for each CNN. The F1-score varies between 0
and 1, with 1 representing the best value. Unlike the global accuracy (number of correct
predictions divided by the total number of predictions), the F1 metric is not biased when
data present a class imbalance.

4. Results

The results are organized into four subsections. Firstly, the performances of the
different combinations of CNN architectures, methods to cope with class imbalance, and
transfer learning are compared. Secondly, the prediction errors of the best CNN for each
site are investigated. Thirdly, we present results related to transferability between sites.
Finally, a sensitivity analysis is presented for the site of Zarautz.

4.1. CNN Performances
4.1.1. Architectures

Table 1 regroups the training time, number of epochs, and also the performance
metrics (accuracy, recall, F1-score) for different CNN architectures, methods to cope with
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class imbalance, and with or without pre-training with ImageNet dataset for both sites. For
both sites and for every methods used to cope with class imbalance (or not), CNNs with
deeper and more complex architectures yielded better results (higher values of precision,
recall, and F1-score). Indeed, these kind of architectures tend to learn more complex features
that lead to better performance in harder tasks. The downside of these networks is the
training time, which is significantly higher than simpler and shallower models.

Table 1. CNN performances for both sites. Best models are in bold font.

(a) Biarritz

CNN Training
Time (min) Epochs Time per

Epoch (s) Precision Recall F1-Score

Baseline
Custom CNN 16.1 100 9.7 / 0.333 0.328
AlexNet 17.2 100 10.3 / 0.333 0.328
VGG16 81.4 89 54.9 / 0.481 0.476
Inception v3 40.0 69 34.8 0.721 0.714 0.713

Class weights
Custom CNN 4.6 28 9.9 / 0.603 0.474
AlexNet 3.8 21 10.9 0.568 0.777 0.609
VGG16 43.4 46 56.6 0.574 0.832 0.645
Inception v3 23.2 39 35.8 0.563 0.798 0.631

Oversampling
Custom CNN 10.6 26 24.6 0.642 0.880 0.718
AlexNet 11.8 27 26.1 0.716 0.885 0.777
VGG16 69.6 28 149.1 0.783 0.851 0.813
VGG16 Transfer 49.9 20 149.6 0.869 0.865 0.866
Inception v3 59.6 38 94.1 0.679 0.767 0.717
Inception v3 Transfer 34.5 21 98.6 0.777 0.786 0.780

(b) Zarautz

CNN Training
Time (min) Epochs Time per

Epoch (s) Precision Recall F1-Score

Baseline
Custom CNN 22.5 49 27.5 / 0.637 0.616
AlexNet 24.0 48 30.0 / 0.628 0.616
VGG16 202.1 72 168.4 / 0.635 0.617
Inception v3 108.7 64 101.9 / 0.630 0.614

Class weights
Custom CNN 11.6 26 26.7 0.666 0.846 0.720
AlexNet 22.7 45 30.3 0.671 0.817 0.716
VGG16 81.9 30 163.7 0.680 0.844 0.732
Inception v3 89.3 53 101.1 0.654 0.838 0.710

Oversampling
Custom CNN 38.7 36 64.5 0.769 0.804 0.783
AlexNet 22.6 19 71.3 0.756 0.797 0.775
VGG16 146.6 22 399.8 0.775 0.812 0.792
VGG16 Transfer 86.5 13 399.1 0.897 0.834 0.858
Inception v3 97.7 24 244.2 0.777 0.801 0.784
Inception v3 Transfer 65.3 16 245.0 0.869 0.835 0.849

4.1.2. Class Imbalance

Without coping with class imbalance problem, CNNs tend to predict all the images
as the majority class, resulting in poor classification results. Between the two methods
tested, oversampling seems to perform better, with F1-scores on average 30% better than
the ones obtained with cost-sensitive learning (class weights). The superior performance
of oversampling method on this dataset might be due to the fact that the CNNs see more
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images during training in the oversampling method than in the cost sensitive learning
method, resulting in better classification accuracy.

4.1.3. Pre-Training

Finally, models using pre-trained weights (transfer learning) train faster (fewer epochs)
and yield better classification results than models trained from scratch. Indeed, the
F1-scores obtained with the pre-trained models are, respectively, 6 to 8% higher for the
VGG16 and Inceptionv3 models. Even though the images from the ImageNet dataset have
different characteristics than the timestack images that are being classified, the pre-trained
weights might contain knowledge about general features that are helpful to better classify
the timestacks.

4.1.4. Best Models

For GPB, the best model is the pre-trained VGG16 with an F1-score of 0.866. The pre-
trained Inception model trains faster but shows a lower F1-score (0.780). For the Zarautz
site, the best model is also the pre-trained VGG16 with an F1-score of 0.858, but this time
the performance of the pre-trained Inception v3 model was very close with an F1-score
of 0.849.

4.2. Investigating the Errors

The confusion matrices on the test sets are presented in Table 2. In general, the
minority classes tended to have higher error rate. This is expected as minority classes
contain fewer examples than majority classes.

Table 2. Confusion matrices obtained by the best models for both sites.

(a) Biarritz (best model: OV VGG16 Transfer)

Predicted
Swash Collision Overwash

Observed
Swash 1576 7 0
Collision 4 34 2
Overwash 1 2 9

(b) Zarautz (best model: OV VGG16 Transfer)

Predicted
Swash Collision Overwash

Observed
Swash 4265 40 0
Collision 13 617 8
Overwash 0 25 30

The prediction errors made by the CNN were manually inspected to gain an under-
standing of common error types. Prediction errors made on the GPB test set are presented
in Figure 6 and in the appendix (Table A5). Among the 16 errors made on the test set,
five errors came from human misclassification, five errors may have been caused by the
presence of specific features such as vertical lines usually associated with collision regimes,
two errors were made on images that were displayed in between category of storm impact
regimes. The remaining errors correspond to images that were hard to classify, where light-
ing and meteorological conditions were poor. The misclassification errors were corrected
for the test and validation sets, and the best network was trained once again, resulting in
slightly lower results but this time without human misclassification error (Table 3).
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Table 3. Classification results after correcting the misclassification in the test and validation sets.

CNN Time (min) Epochs Time per Epoch (s) Precision Recall F1 Score

Biarritz
Best model before corr. 49.9 20 149.6 0.869 0.865 0.866
Best model after corr. 60 24 150 0.895 0.833 0.860
Zarautz
Best model before corr. 86.5 13 399.1 0.897 0.834 0.858
Best model after corr. 88.5 13 408.5 0.917 0.859 0.883

Figure 6. Prediction errors on the test set of Biarritz by the best CNN. The storm impact regime predicted is written under
each timestack, and the ground truth is written in parentheses. The probabilities of belonging predicted by the CNN are
represented on the right side of each timestack (red = prediction made by CNN, blue = ground truth). The red line in the
timestack represents the position of the seawall.

The errors made on the Zarautz dataset were also analyzed (Table A6). A large number
of errors were made on images that were in between the categories of storm impact regimes:
either the images displayed a swash regime, which was very close to the collision regime,
or the images displayed a regime impact, with one small overtopping of the wall. Some
misclassification errors were made. The rest of the errors may have come from lighting
conditions (large horizontal band, lighter in the images). The misclassification errors were
corrected for the test and validation, and the best network was trained once again, resulting
in a slightly better result for this site (Table 3).
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4.3. Transferability between Sites

The interest in transfer learning for CNN training has been highlighted in Section 4.1.3.
The models using pre-trained weights from ImageNet trained faster (fewer epochs) and
yielded better classification results. In this section, we investigate if the knowledge acquired
on one site (CNN weights) could be transferred to another site with pre-training. Pre-
training is the most common way to transfer knowledge between tasks. It consists in using
the weights of a neural network trained on one site as initialization weights for the training
on the second site. The weights of the best CNN for each site are used for the pre-training
of a CNN on the other site. The performances of these CNN are presented in Table 4.

Table 4. Performances of CNN learning from scratch, pre-trained with ImageNet, or pre-trained with
the other site for Biarritz and Zarautz. “OV” stands for oversampling.

CNN Time (min) Epochs Time per
Epoch (s) Precision Recall F1-Score

Biarritz
VGG16 (OV) 69.6 28 149.1 0.783 0.851 0.813
VGG16 (OV) Pretraining with
ImageNet 49.9 20 149.6 0.869 0.865 0.866

VGG16 (OV) Pretraining with
Zarautz data 47 19 148.4 0.826 0.832 0.823

Zarautz
VGG16 (OV) 81.9 30 163.7 0.680 0.844 0.732
VGG16 (OV) Pretraining with
ImageNet 86.5 13 399.1 0.897 0.834 0.858

VGG16 (OV) Pretraining with
Biarritz data 92 14 394.2 0.909 0.867 0.885

The weights of the best model on Zarautz data (VGG16 transfer) were used as initial-
ization weights for the training on Biarritz data. This resulted in classification results better
than the learning from scratch with a higher precision and F1-score (Table 4). However,
the values of precision, recall, and F1-score obtained with pre-training on Zarautz data
remained slightly lower than the ones obtained with pre-training on ImageNet data.

Pre-training method was also applied on Zarautz data, where the weights of the best
model on the Biarritz site were used as initialization weights. The classification results were
better than learning from scratch and learning with pre-trained weights from ImageNet
with higher F1-score (Table 4).

4.4. Sensitivity Analysis

A sensitivity analysis was performed on the dataset of Zarautz to highlight the effect
of the size of the training images dataset on the classification accuracy. The dataset of
Zarautz was divided into three smaller datasets. Each of these datasets was divided into
the training/validation/test sets with the proportions described in Section 3.2.1. Finally, a
CNN model was trained on each smaller datasets (VGG16 with transfer learning ImageNet
and oversampling).

The averaged F1-metric for these three models was 0.805. This value is slightly lower
than the one obtained with the full dataset, which is 0.858 (Table 1). These results confirm
what was already known in the literature: CNN performances tend to increase with the
training set size [42].

5. Discussion

Even though we showed the strong potential of CNN to automatically generate storm
impact regime database, the proposed methodology can be improved in several ways.
More attention could be paid to the choice of CNN architectures and hyperparameters.
Other CNN architectures need to be tested, especially recent architectures such as ResNet,
MobileNet, or Xception. They could perform better than the architectures presented in
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this work. For instance, the ResNet architecture contains skip connections between layers,
which allows the training of much deeper and performant networks. Hyperparameters
are parameters whose values are specified by the user before the training process begins;
they affect the structure of a CNN and how well it trains. They have a non negligible
impact on the final results. Several optimization algorithms such as Bayesian optimization
could be employed to select the optimal hyperparameters [43], which has not been done in
this study.

In addition to hyperparameter tuning, other methods of data augmentation could be
used to improve the performances of the CNN. The analysis of prediction errors can help
in the choice of other data augmentation methods. In our case, many errors were related to
lighting conditions; it would be wise to test various data augmentation methods affecting
the lighting or brightness of the images. This could make the CNN more robust to lighting
conditions and therefore improve its performances.

It is worth noting that the performances of a CNN model implemented at a given site
are expected to increase with time as more timestacks are collected by the video monitoring
system. With more training images, the minority classes will contain more images, and this
will lead to less classification errors for these classes. Moreover, if enough timestacks are
collected, intermediate storm impact regime classes could be created. These classes could
reduce the errors on the images displaying impact regimes not corresponding to the three
regimes presented in this work.

One very interesting feature of CNNs models is their transferability. We showed that
using the knowledge acquired from another site can lead to improved classification results
when using pre-training (especially for Zarautz site). The weights of the best CNNs for
both sites are available in a GitHub repository (link in Data Availability Statement section)
and could be used as initialization weights for a CNN applied to a new site. The only
requirement is to annotate timestacks from the new site, which will serve as training data.

Despite the promising performance, this methodology has some limitations, mainly
related to the image annotation, an obligatory step for CNN training. The first limitation of
this method is the lack of knowledge about its sensitivity. We showed for the site of Zarautz
that CNNs yield lower performances when trained on a smaller training set. However, we
do not know the minimum number of timestacks to annotate for a new site in order to have
satisfactory accuracy. A sensitivity analysis should be performed to find this minimum
threshold and to make some recommendations on the use of this method in the case of new
sites with a small number of timestacks.

The second limitation of this method is the annotation process itself, which is tedious
and time-consuming. An alternative solution could be to use the domain-adaptation
approach presented in the work of Ganin and Lempitsky [44]. They propose a specific
CNN architecture that can be trained simultaneously on a large number of labeled data
from a source domain (one site) and unlabeled data from a target domain (new site). At
the end of the training, the CNN is able to classify correctly images from both sites even
though only images from one site have been labeled.

Finally, the performances of the proposed method must be compared objectively
with human-level performance and other methodologies. Assessing the human-level
performance on this task is essential and would give precious insights into how to improve
further the CNN performances [45]. For example, a CNN performance lower than the
human-level performance could indicate the presence of a bias, which can be avoided
by using deeper models or by training more slowly and for longer. It would be of great
interest to compare this methodology based on CNNs with methodologies based only on
traditional imagery analysis. As stated in the introduction, a possible methodology could be
to first extract the waterline position using Otsu’s segmentation [16,26] or using the radon
transform [27] and then compare its position with the position of defense infrastructure
to define the storm impact. Another methodology could be based on the analysis of pixel
intensity such as the works of Simarro et al. [46] and Andriolo et al. [47]. The methodologies
based on simple image processing algorithms could have some advantages over CNNs.
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Indeed, they would not require the building and training of a CNN structure, which is
time-consuming, and the whole decisional process is known to be contrary to CNN, which
can be considered as a “black box”. However, these methodologies would need to be
adapted for each site by indicating the position of the defense infrastructure, which is not
needed with CNN. In addition, the simple image processing algorithms could be more
affected by the erratic brightness of the timestacks than CNNs, which are trained with data
augmentation.

This work is a first step in the analysis of storm impact with video monitoring. Numer-
ous extensions can be envisaged, particularly on the type of information extracted and the
type of image analyzed. Indeed, the CNN could be used to count the number of collision or
overwash events in one timestack. This technique could be also extended to analyze other
types of images produced by video monitoring systems such as oblique and/or rectified
images. Finally, it can be employed to analyze images from already existing cameras
such as surfcam [48,49]. This could constitute a low-cost monitoring method with a large
spatial coverage for the qualitative study of storm impact. Many questions arose with this
work, especially about the minimum number of images to annotate to have satisfactory
accuracy or the lack of comparison with the current method or human level performance.
More questions will arise during the operational implementation and use of the CNNs
concerning the verification of predictions, the prediction error handling, or how often we
need to re-train the neural networks with the newly classified images.

6. Conclusions

In this paper, we presented an innovative methodology based on convolutional neural
networks and coastal imagery that could be used to collect storm impact data routinely. We
described the methodologies associated with CNNs, including the annotation of the dataset,
the training of the networks, or transfer learning. We also introduced the problem of class
imbalance, which is due to the extreme nature of the storm impact regimes, and we pro-
posed and compared different solutions such as oversampling or cost-sensitive learning.

The proposed methodology was tested on two sites: Biarritz and Zarautz. We showed
that convolutional neural networks are well adapted for the classification of timestacks
into storm impact regimes. Overall, we found that more complex and deeper architectures
yielded better results. Best performances were achieved with the VGG16 architecture for
both sites with F-scores of 0.866 for the site of Biarritz and 0.858 for the site Zarautz. For the
class imbalance problem, the method of oversampling showed better classification accuracy
than the cost-sensitive learning method, with F-scores on average 30% higher. Finally, we
showed that the method can be easily applied to a new site with optimal efficiency using
transfer learning. Indeed, training a CNN using pre-trained weights (ImageNet or weights
of another site) resulted in better accuracy than training a CNN from scratch (F-scores on
average 6 to 8% higher).

With convolutional neural networks, we can take full advantage of the large number
of data produced by video monitoring systems. We showed that they are able to transform
images into usable qualitative data about storm impact. Even if the data are not continuous
(only day time and winter months), this method could be, without a doubt, a real asset in
the future for coastal researchers and stakeholders by routinely collecting storm impact
data, which are rare at present. These data are essential in the disaster risk reduction
chain, and they have many uses. They can serve as validation data for impact models
or early warning systems based on numerical modeling. They can also be used to train
early warning system based on Bayesian networks [50,51]. Finally, statistical analysis
can be performed to find relationships between observed storm impact regimes and local
conditions such as wave characteristics, tide, or meteorological conditions.
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Appendix A. CNN Architectures

Appendix A.1. Custom CNN

Table A1. Architecture of the “custom” CNN.

Layer (Type) Output Shape Param

Block1 Conv (Conv2D) (None, 111, 111, 32) 896
Block1 Pool (MaxPooling2D) (None, 55, 55, 32) 0
Block2 Conv2d (Conv2D) (None, 53, 53, 64) 18,496
Block2 Pool (MaxPooling2D) (None, 26, 26, 64) 0
Block3 Conv2d (Conv2D) (None, 24, 24, 128) 73,856
Block4 Pool (MaxPooling2D) (None, 12, 12, 128) 0
Block5 Conv2d (Conv2D) (None, 10, 10, 256) 295,168
Block5 Pool (MaxPooling2D) (None, 5, 5, 256) 0
Flatten (Flatten) (None, 6400) 0
Dense1 (Dense) (None, 512) 3,277,312
Dropout1 (Dropout) (None, 512) 0
Dense2 (Dense) (None, 256) 131,328
Dropout2 (Dropout) (None, 256) 0
Dense3 (Dense) (None, 128) 32,896
Dropout3 (Dropout) (None, 128) 0
Output (Dense) (None, 3) 387

• Total params: 3,830,339
• Trainable params: 3,830,339
• Non-trainable params: 0
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Appendix A.2. AlexNet

Table A2. Architecture of the AlexNet.

Layer (Type) Output Shape Param

Block1 Conv (Conv2D) (None, 54, 54, 96) 34,944
Block1 Pool (MaxPooling2D) (None, 27, 27, 96) 0
Block2 Conv (Conv2D) (None, 17, 17, 256) 2,973,952
Block2 Pool (MaxPooling2D) (None, 8, 8, 256) 0
Block3 Conv (Conv2D) (None, 6, 6, 384) 885,120
Block3 Conv (Conv2D) (None, 4, 4, 384) 1,327,488
Block4 Conv (Conv2D) (None, 2, 2, 256) 884,992
Block4 Pool (MaxPooling2D) (None, 1, 1, 256) 0
Flatten (Flatten) (None, 256) 0
Dense1 (Dense) (None, 4096) 1,052,672
Dropout1 (Dropout) (None, 4096) 0
Dense2 (Dense) (None, 4096) 16,781,312
Dropout2 (Dropout) (None, 4096) 0
Output (Dense) (None, 3) 12,291

• Total params: 23,952,771
• Trainable params: 23,952,771
• Non-trainable params: 0

Appendix A.3. VGG16

Table A3. Architecture of the CNN used based on VGG16.

Layer (Type) Output Shape Param

Input (Input Layer) (None, 224, 224, 3) 0
Block1 Conv1 (Conv2D) (None, 224, 224, 64) 1792
Block1 Conv2 (Conv2D) (None, 224, 224, 64) 36,928
Block1 Pool (MaxPooling2D) (None, 112, 112, 64) 0
Block2 conv1 (Conv2D) (None, 112, 112, 128) 73,856
Block2 Conv2 (Conv2D) (None, 112, 112, 128) 147,584
Block2 Pool (MaxPooling2D) (None, 56, 56, 128) 0
Block3 Conv1 (Conv2D) (None, 56, 56, 256) 295,168
Block3 Conv2 (Conv2D) (None, 56, 56, 256) 590,080
Block3 Conv3 (Conv2D) (None, 56, 56, 256) 590,080
Block3 Pool (MaxPooling2D) (None, 28, 28, 256) 0
Block4 Conv1 (Conv2D) (None, 28, 28, 512) 1,180,160
Block4 Conv2 (Conv2D) (None, 28, 28, 512) 2,359,808
Block4 Conv3 (Conv2D) (None, 28, 28, 512) 2,359,808
Block4 Pool (MaxPooling2D) (None, 14, 14, 512) 0
Block5 Conv1 (Conv2D) (None, 14, 14, 512) 2,359,808
Block5 Conv2 (Conv2D) (None, 14, 14, 512) 2,359,808
Block5 Conv3 (Conv2D) (None, 14, 14, 512) 2,359,808
Block5 Pool (MaxPooling2D) (None, 7, 7, 512) 0
Flatten (Flatten) (None, 2048) 0
Dense1 (Dense) (None, 512) 262,656
Dropout1 (Dropout) (None, 512) 0
Output (Dense) (None, 3) 1539
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• Total params: 14,978,883
• Trainable params: 14,978,883
• Non-trainable params: 0

Appendix A.4. Inception v3

Table A4. Architecture of the CNN used based on Inception v3.

Layer (Type) Output Shape Param

Inceptionv3 (Model) (None, 2048) 21,802,784
Flatten (Flatten) (None, 2048) 0
Dense1 (Dense) (None, 512) 1,049,088
Dropout1 (Dropout) (None, 512) 0
Output (Dense) (None, 3) 1539

The inception model was imported with Keras with the following function:
keras.applications.InceptionV3().

The architecture is not displayed due to readability; the reader is referred to the
original work of Szegedy et al. [37] for more details.

• Total params: 22,853,411
• Trainable params: 22,818,979
• Non-trainable params: 34,432

Appendix B. Investigating the Errors

Table A5. Errors explanation for Biarritz data. “Misclass.” stands for misclassification during
annotation, “Splash” corresponds to an intermediate storm regime between impact and overwash,
“Vertical” corresponds to the presences of vertical features of runup.

Test

Splash Lighting Misclass. Hard to classify Vertical
2 1 5 3 5

Validation

Splash Misclass. Sand bags ? Splash Hard to classify Vertical
1 2 1 2 2 4

Table A6. Errors explanation for Zarautz data. “Misclass.” stands for misclassification during
annotation, “Splash” corresponds to an intermediate storm regime between impact and overwash,
“Vertical” corresponds to the presences of vertical features of runup. Finally, “SI” corresponds to an
intermediate storm regime between swash and impact that was very close to the sea wall but did
not impact.

Test

Hard to classify Lighting Misclass. SI SI + Light Splash Vertical
10 30 7 22 2 14 1

Validation

Hard to classify Lighting Misclass. SI SI + Light Sandbag ? Splash
5 27 3 26 2 4 4
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4.3 Conclusion

This chapter showed the ability of deep learning methods, in particular Con-

volutional neural networks (CNN) to create automatically a storm impact

database with images from video monitoring stations. We demonstrated that

deeper CNN architectures associated with oversampling method yielded best

classification results for two study sites which are Biarritz and Zarautz. This

methodology is easily transferable on new sites by using the pre-trained weights

of other sites. Even though the database constituted by this methodology is

only qualitative, it can already be used to train or validate statistical models

aiming to predict storm impact. In the future, CNN could be essential assets

as the monitoring networks are expected to be more dense with new techno-

logical advances and lower cost of the components (Xu et al., 2019; Marcelli

et al., 2021).

Many extensions of this work can be envisaged. As of now, this method-

ology only extracts maximum storm impact regime for a timestack image re-

suming 15 minutes of video. A lot of information about coastal flooding are

therefore not taken into account such as the number of collision or overwash

events, or the time when they happen. One possible extension of this work

could be to detect and count each collision/overwash in each timestack, leading

to better risk characterization.
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5. Bayesian networks to model

storm impact using data from

both monitoring networks and

statistical learning methods

5.1 Introduction

In this chapter, we develop a storm impact model for the Grande Plage de

Biarritz based on Bayesian networks (BN). In the literature, most of the ap-

plications of BN in storm impact modeling are relying on process-based mod-

eling to constitute the training database for the BN. Unlike previous works on

this subject, we only use observational data collected by diverse monitoring

networks (tide gauge, wave buoy, weather station) as training database. Be-

cause observations of storm impact and atmospheric surge are limited, we also

present and test a methodology based on SLM to extend the dataset. This

methodology is based on cross validation and aims to select the SLM with

the best generalizing ability. In total, two BNs are trained in this chapter,

one exclusively on the observational data and one with both observational and

predicted data. Their performances are compared by predicting on the same

events.

Scientific output:

This work resulted in a communication during an international conference:

• ”Developing a Bayesian network to predict coastal flooding on the Grande
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Plage de Biarritz based on observational data and statistical models.”,

XVII International Symposium on Oceanography of the Bay of Biscay

(ISOBAY 17), Online conference (June 2021).

This work is in preparation for submission to Natural Hazards journal.

5.2 Article: Bayesian networks to model storm

impact using data from both monitoring

networks and statistical learning methods
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Abstract
Bayesian networks (BNs) are probabilistic graphical models that are increas-

ingly used to translate hydraulic boundary conditions during storm events into
onshore hazard. However, comprehensive databases representative of the ex-
treme and episodic nature of storms are needed to train the BNs. Such databases
do not exist for many sites and many BNs are trained on data generated by
process-based model. To our knowledge, BNs have not been trained exclusively
on observational data in coastal engineering domain.

This study aims to explore the performance of a BN exclusively based on ob-
servational data in coastal flooding prediction. To this end, we use as a test case
the Grande Plage of Biarritz (South west of France). The BN is trained using
data from several monitoring networks located near the study site. Because ob-
servational data about storm impact regime and atmospheric surge are limited, a
second aim of this work is to propose a methodology based on statistical learning
methods to extend the data about these variables. This methodology aims to se-
lect the statistical learning method with the best generalizing ability with a cross
validation. Two BNs are trained, one exclusively on the observational data and
one with both observational and predicted data. To compare the two networks,
their performances are evaluated on the same events.

We demonstrated that it was possible to predict coastal flooding risk in a
qualitative manner with a BN based only on observational data with a F1-score of
0.628. However, the predictive skill of this network is questionable for the most
intense storm impact regimes which are impact and overwash regime. Storm
impact and atmospheric surge data were both extended by random forest method
which is the method that showed the best generalizing ability in the two cross
validation. This extension of the database led to a better BN in terms of predictive
skill, with precision, recall and F1-score in average 20% higher than the BN
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trained only on observational data.

Keywords: Bayesian networks, Coastal flooding, Observational data, Statistical
learning methods.

1. Introduction

The frequency and intensity of coastal flooding is expected to increase in
the future due to sea level rise and the continuous development of coastal areas
(Vousdoukas et al., 2018; Taherkhani et al., 2020). The development of early
warning systems (EWS) is therefore mandatory to mitigate the risk related to
coastal flooding events. A crucial step in an operational EWS is the translation
of the hydraulic boundary conditions into onshore hazard. This translation is
performed most of the time by phase-resolving wave models. This type of wave
models is employed to describe the free surface elevation at the scale of single
waves. They have the ability to represent complex processes such as wave set-
up, re-circulation, and infra-gravity waves as a result of the free surface evolution
(Roeber et al., 2019). However, these models require a fine resolution to perform
well and are therefore computationally expensive. This complicates their use in
EWS which requires fast predictions. Recently, more attention have been given
to bayesian networks (BNs) for the development of the storm impact model.

BNs are a class of probabilistic graphical models which allow for an intuitive
representation of a set of random variables and their conditional dependencies
(Pearl, 1988; Scutari and Denis, 2014). They can learn causal effect from obser-
vational data, represent complex systems with intuitive graphical structure and
include uncertainty. For these reasons, applications of BNs have multiplied re-
cently in various domains spanning from ecology (McCann et al., 2006; Landuyt
et al., 2013) to coastal engineering (Poelhekke et al., 2016; Jäger et al., 2018;
Beuzen et al., 2018).

In coastal engineering, BNs are appreciated methods due to their low com-
putational cost and their ability to represent complex systems by integrating dif-
ferent sources of data. Their intuitive representation is also a non negligible
advantage compared to other modeling approaches (e.g. process-based models)
as it facilitates the communication between scientists and stakeholders in man-
agement applications (Henriksen et al., 2007). Most of the applications of BNs
in coastal engineering domain concern the translation of forcing variables (e.g.
wave, weather and tide conditions) into impact and damages on the shore during
storm events. Indeed, they have been employed to predict coastal cliff erosion
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(Hapke and Plant, 2010), shoreline retreat (Beuzen et al., 2018), dune retreat and
erosion (Palmsten et al., 2014; den Heijer et al., 2012) and barrier island response
(Plant and Stockdon, 2012; Wilson et al., 2015; Poelhekke et al., 2016) resulting
from coastal storms.

A challenge in the development of BNs for storm impact modeling is related
to the training database. The training database must be comprehensive and cover
a long time period in order to be representative of the extreme and episodic na-
ture of storms. However, such databases do not exist for many coastal sites,
therefore, previous applications of BNs rely on process-based modeling to ei-
ther simulate the forcing parameters or to translate the forcing conditions into
impact on the shore using a numerical model to simulate nearshore waves trans-
formation and their impact at the coast. For instance, Poelhekke et al. (2016) and
Plomaritis et al. (2018) create synthetic storm events by using copula statistical
method fitted on the limited observations of offshore hydrodynamic parameters.
The impact of these synthetic events are then simulated using the nearshore wave
propagation model Xbeach (Roelvink et al., 2010). The BNs are then trained to
link the characteristics of the synthetic storm events to their simulated impact.
Lately, with the increasing amount of data collected by diverse monitoring net-
works, observational data are being incorporated in the training data of the BNs.
In Beuzen et al. (2018), the BN is trained on 10 years of storm wave data simu-
lated by process-based models (spectral wind wave model) and also on shoreline
retreat data derived from a coastal imaging station.

To our knowledge, BNs have not been trained exclusively on observational
data in coastal engineering domain. This study aims to explore the performance
of a BN exclusively based on observational data in coastal flooding prediction.
To this end, we use as a test case the Grande Plage of Biarritz (South west of
France). Every winter, this embayed beach faces numerous storm events which
often result in coastal flooding. To prevent and mitigate the risk of flooding,
a BN is developed using data from several monitoring networks located near
the study site. Forcing parameters are collected by a directional wave buoy, a
tide gauge and a weather station. Data about storm impact on the beach are
determined from the video monitoring station installed on the site, following the
methodology presented in Callens et al. (2021).

Due to the recent installation of the video monitoring system (in 2017), the
storm impact data is limited. It is why we propose a methodology based on
machine learning methods to extend the database. The potential gain of perfor-
mance with the extension of the database is investigated by building two different
BNs: one only using observational data and the other based on both observational
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data and data predicted by the ML algorithms. Their performances are compared
by testing their accuracy on the same events. Section 2 will introduce the study
area, section 3 will introduce the theory behind bayesian networks and the data
used to train them. Results will be presented and discussed in Section 4. Finally,
Section 5 will cover the conclusion.

2. Study site

The Grande Plage of Biarritz (GPB) is an urban embayed beach of 1,2 km
long located on the southern Aquitanian coast of France (Figure 1). It has a high
socio-economic importance for the city of Biarritz due to its tourist appeal, its
historical heritage and its location near the city center. In terms of characteristics,
the GPB is an intermediate-reflective beach with typically a steep foreshore slope
of 8 − 9% and a gentle nearshore slope of 2 − 3%. It is a mesotidal beach with
4.5 m spring tidal range around a mean water level of 2.64 m. This narrow beach
is backed by a seawall with an alongshore elevation varying between 7 and 8m.
This seawall serves as defense infrastructure for back beach buildings.

Figure 1: Map showing the location of the study site. The red dots show of the locations of
the directional wave buoy (1), the weather station (2), the tide gauge (3) and the beach called
”Grande Plage de Biarritz” where a video monitoring station is installed (4).

The beach is predominantly exposed to wave coming from the WNW direc-
tion. The annual average significant wave height and peak period are respectively
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Hs = 1.5m and Tp = 10s. Storms in the region are considered as those in Hs
and Tp are respectively greater than 3.5 m and 13.8 s. Such events correspond to
7.24% of the offshore wave climate (Abadie et al., 2006) and are responsible for
several coastal flooding events each year.

This site is equipped with a coastal video monitoring station since 2017. The
station includes 4 cameras with different lens to ensure the coverage of the entire
beach with a sufficient spatial resolution. The cameras are operated by the open
source software SIRENA (Nieto et al., 2010).

3. Methodology

3.1. Bayesian networks
In this section, we give a general overview of the theory behind BNs. The

reader is referred to Pearl (1988); Scutari and Denis (2014) for in-depth details
and examples of applications of BNs .

A bayesian network represents a set of random variables X = {X1, ..., Xn} and
their dependencies via a directed acyclic graph (Pearl, 1988). In this directed
acyclic graph (DAG), each variable is represented as a node. The nodes can
be connected together by arcs that represent potential dependence between the
variables. This arc is directed depending the direction of the influence from
parent to child node. In a BN, the arcs must not form a cycle, hence the name of
directed acyclic graph.

A fundamental property of the BN is that the global distribution of the set of
random variables can be economically factorized through the chain rule (Jäger
et al., 2018):

P(X1, ..., Xn) =

n∏

i=1

P(Xi|pa(Xi)), (1)

with pa(Xi) denoting the parent nodes of Xi and P(Xi|pa(Xi)) specified by
the conditional probability tables (CPTs), or the probability tables (PTs) when
the nodes do not have parents. In discrete bayesian networks, the variables are
discretized into states, in this case, the CPTs and PTs quantify the probability of
a node being in its particular states.

Given an evidence, the BN can update the states of all the nodes connected
to this evidence. This update relies on Bayes’ rule:

p(Ri|O j) =
p(O j|Ri)p(Ri)

P(O j)
(2)
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where p(Ri|O j) is the updated or conditional probability of the response Ri

given O j a set of observations/evidences, p(Ri) is the probability of response Ri

happening, p(O j) represents the probability of the observations O j.

The structure, the CPTs and PTs of a BN can be learned from a dataset. In
this work, the structure of the BNs and their parameters are learned with the
academic version of GeNIe Modeler software from BayesFusion (http://www.
bayesfusion.com/). In this software, the structure of the BNs is learned using
Bayesian Search which is a score-based algorithm (BayesFusion, 2017). This
learning algorithm is based on hill-climbing and uses the out-of-sample classifi-
cation accuracy (computed with 5-fold cross validation) as the scoring function
to find the optimal graph. For parameters estimation (learning CPTs and PTs
from the data), GeNIe Modeler uses the EM algorithm (Dempster et al., 1977).

3.2. Data sources
Table 1 summarizes the characteristics of the data available for the study site.

The majority of the variables has an hourly frequency. However this is not the
case for the buoy measurements and the storm impact regime variable. Each data
source is described more precisely below.

Table 1: Table summarizing all the data available for the site of Biarritz.

Data source Variables Period covered Frequency

Wave buoy
Measured wave characteristics:
Hs, Tp, θp

11/2009-04/2020 30 minutes

Reanalysis and forecast
wave models improved

Simulated wave characteristics:
Hs, Tp, θp

01/1993-05/2021 Hourly

Weather station
Meteorological conditions:
Atm. Pressure, Wind speed and direction 01/1993-11/2020 Hourly

Tide gauge
Astronomical tide predicted
with harmonical analysis. 01/1993-05/2021 Hourly

Tide gauge Atm. Surge extracted from measurements 05/2011-06/2020 Hourly
Video monitoring station Storm impact regime extracted from images 03/2017-03/2021 15 minutes

3.2.1. Wave data
We are interested only in the three wave integrated parameters that play a

major role in coastal flooding: the significant wave height (Hs), the peak period
(Tp) and the peak wave direction (θp).

Measured data
Direct measurements of these parameters are obtained from the National

Center for Archiving Swell Measurements (L’her et al., 1999). They were made
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by a directional wave rider buoy (DWR MKIII) operated by the Centre for Stud-
ies and Expertise on Risks, Environment, Mobility, and Urban and Country Plan-
ning (CEREMA). The buoy is located a few miles off the Basque Coast (Figure
1) at 50 meters water depth. Since its deployment in 2009, this buoy have been
recording the parameters of interest every 30 minutes.

Reanalysis data improved with error prediction method
The wave parameters are also simulated at the buoy coordinates using two

hindcast sea-states database computed with the spectral wave model MFWAM
developed by MeteoFrance (Lefèvre and Aouf, 2012), each covering two distinct
period between 1993 and 2021:

• ”IBI MULTIYEAR WAV 005 006”. This reanalysis covers the period
1993-2019 with a hourly time-step. It is forced by the ERA 5 reanaly-
sis wind data from ECMWF.

• ”IBI ANALYSIS FORECAST WAV 005 005” covers the period 2020-2021.
It is forced with the ECMWF hourly wind data (forecast).

The spectral wave models are known to underestimate wave characteristics
during energetic conditions (Rakha et al., 2007; Moeini et al., 2012; Arnoux
et al., 2018). When measured data are available, it is common to perform data
assimilation to improve the values of the wave parameters. The error prediction
method presented in Callens et al. (2020) is therefore applied to both models in
order to improve the predicted wave parameters. The performances before and
after the data assimilation on both reanalysis are shown in appendix (Tables A1
and A2).

3.2.2. Tide data
The water level data come from the tide gauge located a few kilometers south

of the study site (Figure 1) and were provided by the french Naval Hydrographic
and Oceanographic Service (SHOM). The data range from 2011 to nowadays
with a hourly time step. In addition to provide the data, the SHOM also docu-
mented each dysfunction of the tide gauge. This allowed for the proper removal
of aberrant data. From tide data measurements, the astronomical tide was es-
timated with harmonic analysis performed by the R package TideHarmonics.
The atmospheric surge was calculated by subtracting the astronomical tide to the
measured water level.
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3.2.3. Meteorological data
Meteorological data, including average wind speed above 10 meters, wind

direction and atmospheric pressure were furnished by the French national mete-
orological service MeteoFrance. The data were collected hourly by the meteo-
rological station of the Biarritz airport, located only a few kilometers from the
study site (Figure 1). It covers a period ranging from 1993-01-01 to 2020-10-31.

3.2.4. Storm impact data
The storm impact regimes for the study site of Biarritz have been extracted

from timestack images created by the video monitoring system of the Grande
Plage of Biarritz (Figure 1). They are extracted with convolutional neural net-
works (CNN) following the methodology presented in Callens et al. (2021). In
this method, each timestack image is classified into 3 storm impact regimes rep-
resenting increasing categories of coastal flooding risk:

• Swash regime: all the waves are confined to the beach

• Impact regime: at least one wave collides with the bottom of the seawall

• Overwash regime: at least one wave completely overtops the seawall

The storm impact data ranges from 2017-03-23 to 2021-03-28. It contains
9550 swash regimes, 220 impact regimes and 54 overwash regimes.

3.3. Statistical models for database extension
Data about storm impact and atmospheric surge cover a shorter period com-

pared to the other variables. In order to extend the data of these two variables,
statistical learning methods (SLMs) are trained on the available data and em-
ployed to predict the occurrences where observations are missing.

For each variable, the performances of several SLMs are compared through
a 5-fold cross validation on the available data. The aim of this comparison is
to find the method with the best generalization performance. The hyperparame-
ters of these methods are calibrated with bayesian optimization with the aim to
maximize the generalization performance. For each variable, the model (and as-
sociated hyperparameters) showing the best generalization performance is used
to predict the data when observations are not available. The cross validation and
hyperparameter search is performed with the R package Tidymodels. Once the
best predictive model is found, it is trained on all the available data and can be
employed to predict data on the period of interest.
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Concerning the atmospheric surge model, the explanatory variables are: the
astronomical tide, the meteorological conditions (atmospheric pressure, wind
speed and direction) and wave characteristics improved by the data assimilation
method (Hs, Tp, θp). Three statistical learning methods are compared: gradient
boosting trees, random forest and shallow neural networks.

For storm impact model, the explanatory variables are the astronomical tide,
the wave characteristics improved by the data assimilation method (Hs, Tp, θp)
and the atmospheric surge. Once again, three SLMs are compared through cross
validation: gradient boosting trees, random forest and multinomial models.

3.4. Training the BNs
In order to assess the gain of performance with the extension of the database

with statistical learning methods, we have to build two bayesian networks: one
only based on observation data (Figure 2a) and the other based on observation
and predicted data (Figure 2b).

The observational database is built by gathering the wave characteristics at
the buoy, the observed atmospheric surge and astronomical tide extracted from
the tide gauge, the weather conditions and the storm impact extracted from video
monitoring network (Figure 2a). In total, we have 6358 observations with 6166
swash events, 151 impact and 41 overwash events. The test set is built with
random stratified sampling and represents 20% of the observations (1234 swash,
31 impact and 9 overwash). The training set contains 4932 swash events, 120
impact and 32 overwash events.

The database extended with statistical learning methods is built by gathering
the wave characteristics from the improved wave predictions, the astronomical
tide extracted from the tide gauge, the weather conditions, the atmospheric surge
and storm impact data (Figure 2b). For the the atmospheric surge and storm
impact data, predictions of the statistical learning methods are included when
observations are not available. The events of the test set are removed from the
extended database to ensure an objective performance evaluation. The training
set contains 237479 swash events, 860 impact and 292 overwash events.

Before training the bayesian networks, all the variables are discretized. Be-
cause the methods available to automatically discretize variables often find mean-
ingless or questionable thresholds (Chen et al., 2012), the discretization of the
variables in this study is based on expert judgment and visible thresholds ob-
served in the data. The discretization thresholds for each parameter can be found
in appendix (Table A5).
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Figure 2: Diagrams of the development of the bayesian networks based on observation data (a)
and on observation and predicted data (b).

In addition, partial undersampling is performed on both training set to min-
imize the imbalance ratio between class. Partial undersampling consists in ran-
domly sampling a percentage of the observations belonging to the majority class.
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It is an effective method to deal with the negative effect of class imbalance on
the training of statistical learning methods (Japkowicz and Stephen, 2002). For
the observational training set, only 20% of the swash events are kept resulting
in 86.7% swash events, 10.5% of impact events and 2.8% overwash events. For
the training set containing both observational and predicted data, only 2.5% of
the swash events are kept to match the class distribution of the first training set
(83.8% swash, 12.1% of impact and 4.1% overwash).

3.5. Evaluating the BNs
The descriptive and predictive skill of both BNs are evaluated. The descrip-

tive skill corresponds to the predictive performance of the BN on the training
set while the predictive skill corresponds to the predictive performance on un-
seen data (test set). The performances are evaluated with F1-score, precision and
recall:

F1 =
Precision × Recall
Precision + Recall

where
Precision =

True positives
True positives + False positives

and
Recall =

True positives
True positives + False negatives

.

These metrics are computed for each storm impact regime and are averaged
in order to have one global metric for each BN. The F1-score varies between 0
and 1, with 1 representing the best value. Unlike the global accuracy (number of
correct predictions divided by the total number of predictions), the F1 metric is
not biased when data present a class imbalance.

4. Results

4.1. Statistical models to extend the database
Atmospheric surge model
The performances of random forest, gradient boosting trees and neural net-

works are presented in Table 2. The optimal hyperparameters found for these
algorithms are shown in appendix (Table A3).Random forest shows the best per-
formance for atmospheric surge modeling with a mean RMSE of 0.0565. This
method is followed by gradient boosting trees and neural networks.
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Table 2: Out of sample performances and optimal hyperparameters for the different models for
the prediction of atmospheric surge. Results from 5-fold cross validation.

RMSE SE RMSE

Random forest 0.0565 0.0004
Gradient boosting trees 0.0605 0.0004
Shallow neural networks 0.1094 0.0007

Random forest with the optimal hyperparameters is trained on the totality
of the atmospheric surge observations (2011-2020) and then used to predict the
period 1993-2011 that does not have observations for atmospheric surge.

Storm impact model
The performances of the three SLMs for storm impact prediction are pre-

sented in Table 3. The optimal hyperparameters found for these algorithms are
shown in appendix (Table A4) Kappa metric was used to compare the perfor-
mances of the SLMs. This metric measures the degree of agreement between
the true values and the predicted values by a classifier and has the advantage to
not being affected by class imbalance. A value of 1 represents a perfect agree-
ment between predictions and true values whereas 0 represents chance agree-
ment. Here again, random forest showed the best generalization performance
with a kappa metric of 0.68.

Table 3: Out of sample performances and optimal hyperparameters for the different models for
the storm impact model. Results from 5-fold cross validation

Kappa SE Kappa

Random forest 0.6788 0.0265
Gradient boosting trees 0.5648 0.0226
Multinomial model 0.4734 0.0153

Random forest with its optimal hyperparameters is trained on all the storm
impact data available (2017-2021). To have an idea about the descriptive per-
formance of this model, it has been used to predict on the training set. The
confusion matrix between the predictions of the model and the real observations
of storm impact is presented in Table 4. The predictions of this model are not
perfect and some events are under- or overestimated. However, a majority of
the events, including events from the minority classes (impact and overwash) are
well classified.
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Table 4: Performance of the best model (Random forest) on the training set

Swash Impact Overwash
Swash 8143 19 1
Impact 69 131 3

Overwash 4 11 39

The model is then used to predict storm impact hourly on the period without
observations (1993-2016). For the period 1993-2016, this model has predicted
232547 Swash events, 741 Impact events and 260 Overwash events.

4.2. Bayesian network
4.2.1. Structure learning

Figure 3 shows the BN structures for the two datasets found by the Bayesian
search implemented by GeNIe Modeler. This score-based method aim to find the
structure that maximizes the out-of-sample classification accuracy while taking
into account a list of forbidden arcs. For this study, we forbid all the arcs that are
not logical in a physical point of view: storm impact regime can not influence
any of the variables, atmospheric surge can not influence any of the variables
expect storm impact regime, the waves parameters can not influence the weather
conditions and finally the astronomical tide can not be influenced by any of the
variables.

Both BNs are similar in terms of structure. Indeed, the storm impact variable
is influenced by the tide and the significant wave height in both networks. This is
coherent with the literature as the tide and waves are known to play a significant
role in coastal flooding (Yang and Liu, 2020). In the network (b), two other
variables seem to influence the storm impact regime: wind and wave direction.
About the contribution of these two variables, no references have been found, the
dependencies between these variable and the storm impact must have been kept
for a question of prediction accuracy. Concerning atmospheric surge, both BN
found atmospheric pressure and significant wave height as influencing variables.
This is also coherent with the literature as the storm surge is the results of the
interaction between atmospheric pressure (Harris, 1963), wave characteristics
(Bertin et al., 2015) and wind conditions (Arnaud and Bertin, 2014).
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Figure 3: Bayesian network structures found for (a) the dataset based on observational data and
(b) the dataset based on both observational and predicted data.
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4.2.2. Evaluation of the performances
Once the structure and the parameters of the BNs are learned, we can perform

the predictions. To that end, the networks are conditioned with the observations
of explanatory variables and they output the probabilities of belonging to the dif-
ferent storm impact regimes. For a set of observations, the predicted storm im-
pact regime is the one with the highest probability of belonging. Table 5 presents
the descriptive and predictive performances of the BNs. In both cases, the second
BN, built on observational and predicted data, shows better performances than
the first BN built only on observational data. In the descriptive case, the second
BN has better precision and recall resulting in a F1-score 21.5% higher than the
first BN. The confusion matrices of both networks are presented in appendix (
Table A6).

Table 5: Descriptive and predictive performances of the two BNs.

Descriptive performance (training set)

Precision Recall F1-score
BN based on obs. data 0.743 0.709 0.72
BN based on obs.
and pred data 0.871 0.88 0.875

Predictive performance (test set)

Precision Recall F1-score
BN based on obs. data 0.594 0.673 0.628
BN based on obs.
and pred data 0.63 0.789 0.691

Concerning the predictive performance, the precision of both BN are nearly
similar, however the recall is higher for the second BN which results in a F1-
score 10% higher for the second BN. Confusion matrices computed on the test
set are presented in Table 6. In general, the minority classes (Impact and Over-
wash) tend to have higher error rate for both BNs. This is expected as minority
classes are more difficult to represent as they contain fewer examples than ma-
jority classes. It is worth noting that even if the second BN have better predictive
performance it still has false positives and false negatives (underestimation or
overestimation) for the Impact and Overwash class. This can be problematic for
a potential use in an operational EWS.
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Table 6: Confusion matrices on the test set (predictive accuracy) obtained by both Bayesian
networks.

(a) BN based on observational data

Predicted
Swash Impact Overwash

Observed
Swash 1209 24 1
Impact 10 15 6
Overwash 3 1 5

(b) BN based on observational and predicted data

Predicted
Swash Impact Overwash

Observed
Swash 1205 23 6
Impact 10 19 2
Overwash 0 2 7

5. Discussion

In this section we reflect on a number of aspects related to the advantages
and limitations of (i) the prediction of coastal flooding risk with BN based on
observational data and (ii) the extension of the database with SLMs.

The main advantage of training BNs exclusively on observational data is that
we avoid potential biases related to data generated by process-based models.
Indeed, process-based models are not perfect and bias might come from differ-
ent sources: simplifying assumptions, errors in input data, discretization of the
domain (Babovic et al., 2001, 2005). This is especially true for spectral wave
models which are known to underestimate wave parameters during storm events
(Rakha et al., 2007; Moeini et al., 2012; Arnoux et al., 2018). However by using
exclusively observational data, we depend on the precision and data availability
of the diverse monitoring systems.

The BN based only on observational data is able to predict coastal flood-
ing risk in a qualitative manner. However, the predictive accuracy of this BN is
questionable especially for the minority regimes (impact and overwash) which
are the most interesting regimes in terms of coastal flooding prediction. This
result was expected as we try to predict extreme events with a database cover-
ing only 4 years. For an implementation in a EWS, the predictive accuracy of
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the BN should be further investigated. More attention could be given to prob-
abilities of belonging for each regime instead of studying only the most likely
regime. In addition, sensitivity analysis on decision thresholds could be per-
formed to minimize the number of false positives and negatives for impact and
overwash regimes. This step is essential for operational implementation as false
positives could lead to the unnecessary implementation of costly mitigation mea-
sures such as the installation of sandbag protection while false negatives could
lead to significant damages with the absence of mitigation measures.

Concerning the extension of database with SLMs, it led to better results in
terms of metrics, nevertheless the BN trained with the extended database still
presents false positives and negatives for overwash regime which can be prob-
lematic for the use of this BN in an operational EWS. Here again, sensitivity
analysis on decision thresholds must be done to minimize the number false pos-
itives and negatives. The only pitfall of the extension of the database by SLMs
concerns the storm impact model. Even though this model has been chosen
due to its generalization performance, it has not been validated yet on historical
events. Therefore, we do not know the performance of this model in the his-
torical reconstitution of the storm impact variable. The validation of this model
could be performed with databases made from press or insurance archives such
as the database proposed by Abadie et al. (2018).

The main limitation of the proposed methodology is related to the storm im-
pact data which are too limited. The proposed extension of the database by SLMs
only allows a better representation of the historical events. However, a good pre-
dictive model should be able to predict unseen storm events. The observations
should be completed by synthetic events and their modeled impact by process-
based in the same spirit as Poelhekke et al. (2016). Databases from archives and
insurance could be also integrated in the bayesian networks (Abadie et al., 2018)
to complete the storm impact data. Another limitation is the inherent assump-
tion of time invariance of the coastal flooding process. Indeed, by not taking
into account the change in the site morphology, we consider that the conditions
leading to coastal flooding do not differ over time. A last limitation lies in the
fact that this model do not predict the coastal flooding risk on the entirety of the
Grande Plage of Biarritz but only on the transect used to create the timestacks
from which the qualitative storm impact data is extracted.

6. Conclusion

The aim of this study was to assess the performance in coastal flooding pre-
diction of a BN exclusively based on data measured by diverse monitoring net-
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works. Because observational data about storm impact regime and atmospheric
surge were limited, we proposed a methodology based on statistical learning
methods to extend the data about these variables. This methodology was based
on cross validation and aimed to select the statistical learning method and associ-
ated hyperparameters with the best generalizing ability. Two BNs were trained,
one exclusively on the observational data and one with both observational and
predicted data. To compare the two networks, their performances were evaluated
on the same events.

We demonstrated that it is possible to predict coastal flooding risk in a qual-
itative manner with a BN based only on observational data with a F1-score of
0.628. However, the predictive skill of this network is questionable for the most
intense storm impact regimes which are impact and overwash regime. Storm im-
pact and atmospheric surge data were both extended by random forest method
which is the method that showed the best generalizing ability in the two cross
validation. The extension of the database led to a better BN in term of predic-
tive skill, with precision, recall and F1-score in average 20% higher than the BN
trained only on observational data.

Even though the predictive skill of the two BNs on the most likely class is
not perfect, they can be without a doubt great tools in the prediction of coastal
risk. For an operational implementation, it would be more interesting to look
at the probabilities of belonging instead of looking at the most likely regime. In
addition, a sensitivity analysis could be performed on these probabilities to select
tailored decision thresholds for the study site. In any case, the observational
data should be completed with synthetic events and their impact simulated with
process-based model in order to predict potential unseen events.
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Babovic, V., Caňizares, R., Jensen, H.R., Klinting, A., 2001. Neural networks as routine for error
updating of numerical models. Journal of Hydraulic Engineering 127, 181–193.

Babovic, V., Sannasiraj, S.A., Chan, E.S., 2005. Error correction of a predictive ocean wave
model using local model approximation. Journal of Marine Systems 53, 1–17.

BayesFusion, L., 2017. Genie modeler. User Manual. Available online: https://support. bayesfu-
sion. com/docs/(accessed on 21 October 2019) .

Bertin, X., Li, K., Roland, A., Bidlot, J.R., 2015. The contribution of short-waves in storm
surges: Two case studies in the Bay of Biscay. Continental Shelf Research 96, 1–15.

Beuzen, T., Splinter, K.D., Marshall, L.A., Turner, I.L., Harley, M.D., Palmsten, M.L., 2018.
Bayesian Networks in coastal engineering: Distinguishing descriptive and predictive applica-
tions. Coastal Engineering 135, 16–30.

Callens, A., Morichon, D., Abadie, S., Delpey, M., Liquet, B., 2020. Using random forest
and gradient boosting trees to improve wave forecast at a specific location. Applied Ocean
Research 104, 102339.

Callens, A., Morichon, D., Liria, P., Epelde, I., Liquet, B., 2021. Automatic creation of storm im-
pact database based on video monitoring and convolutional neural networks. Remote Sensing
13, 1933.

Chen, W.B., Liu, W.C., Hsu, M.H., 2012. Predicting typhoon-induced storm surge tide with a
two-dimensional hydrodynamic model and artificial neural network model. Natural Hazards
and Earth System Sciences 12, 3799–3809. doi:10.5194/nhess-12-3799-2012.

Dempster, A.P., Laird, N.M., Rubin, D.B., 1977. Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society: Series B (Methodological) 39,
1–22.

Hapke, C., Plant, N., 2010. Predicting coastal cliff erosion using a bayesian probabilistic model.
Marine geology 278, 140–149.

Harris, D.L., 1963. Characteristics of the Hurricane Storm Surge. Department of Commerce,
Weather Bureau.

den Heijer, C.K., Knipping, D.T., Plant, N.G., de Vries, J.S.v.T., Baart, F., van Gelder, P.H., 2012.
Impact assessment of extreme storm events using a bayesian network. Coastal Engineering
Proceedings , 4–4.

Henriksen, H.J., Rasmussen, P., Brandt, G., Von Buelow, D., Jensen, F.V., 2007. Public par-
ticipation modelling using bayesian networks in management of groundwater contamination.
Environmental Modelling & Software 22, 1101–1113.
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Appendix A. Improvement of the numerical wave model predictions

Such as the methodology of Callens et al. (2020), we tested random forest
and gradient boosting tree to improve the numerical wave model predictions.
With 5-fold cross validation on the data, we perform hyperparameter tuning and
we choose the best generalizing model for each parameter.

Appendix A.1. Reanalysis 1993-2020
For this data assimilation task, random forest was the best generalizing algo-

rithm for each of the 3 wave parameters. The metrics with and without the error
prediction method are given in the table below. They are computed on all data
and on data where there are stormy conditions (Hs above 3 meters) because the
wave model is known to greatly underestimate wave parameters in these condi-
tions.

Table A1: Metrics computed for MFWAM model (a) and after the data assimilation method with
random forest (b) on the reanalysis covering the period 1993-2019. Bias, RMSE and correlation
coefficient are computed using buoy data as reference.

(a)

Metrics Hs Tp Dir

Bias 0.007 0.893 -0.225
RMSE 0.272 2.262 14.784
Cor. 0.969 0.721 0.313

Hs > 3 meters

Bias -0.173 0.746 1.567
RMSE 0.474 1.407 7.559
Cor. 0.888 0.859 0.676

(b)

Metrics Hs Tp Dir

Bias 0.001 -0.002 0
RMSE 0.103 0.539 3.597
Cor. 0.997 0.975 0.954

Hs > 3 meters

Bias -0.02 -0.01 -0.01
RMSE 0.159 0.321 1.836
Cor. 0.978 0.981 0.941

Appendix A.2. Reanalysis 2020-2021
For this data assimilation task, random forest was the best generalizing algo-

rithm for each of the 3 wave parameters. The metrics with and without the error
prediction method are given in the table below. They are computed on all data
and on data where there are stormy conditions (Hs above 3 meters) because the
wave model is known to greatly underestimate wave parameters in these condi-
tions.
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Table A2: Metrics computed for MFWAM model (a) and after the data assimilation method with
random forest (b) on the reanalysis covering the period 2020-2021. Bias, RMSE and correlation
coefficient are computed using buoy data as reference.

(a)

Metrics Hs Tp Dir

Bias 0.047 0.705 0.588
RMSE 0.261 2.172 10.576
Cor. 0.981 0.659 0.594

Hs > 3 meters

Bias -0.129 0.503 1.643
RMSE 0.365 0.906 6.263
Cor. 0.902 0.911 0.553

(b)

Metrics Hs Tp Dir

Bias 0.001 -0.002 0.017
RMSE 0.103 0.535 3.544
Cor. 0.997 0.975 0.956

Hs > 3 meters

Bias -0.02 -0.012 -0.015
RMSE 0.16 0.32 1.847
Cor. 0.978 0.981 0.939

Appendix B. Extending the database

Appendix B.1. Atmospheric model

Table A3: Optimal hyperparameters found with the 5-fold cross validation.

Optimal hyperparameters

Random forest Ntrees = 500, mtry = 5
Gradient boosting trees Ntrees = 446, mtry = 6, lr = 0.011
Shallow neural networks Hidden units = 19, dropout = 0.232

Ntrees represents the number of trees, mtry represents the number of fea-
ture selected when forming each split in a single tree, lr designates the learning
rate, hidden units corresponds to the number of neurons in the hidden layers and
dropout represents the drop out rate of the neurons in the hidden layer.
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Appendix B.2. Storm impact model

Table A4: Optimal hyperparameters found with the 5-fold cross validation.

Optimal hyperparameters

Random forest Ntrees = 263, mtry = 3
Gradient boosting trees Ntrees = 428, mtry = 3, lr = 0.038
Multinomial model Penalty= 2.05e-10

Ntrees represents the number of trees, mtry represents the number of fea-
ture selected when forming each split in a single tree, lr designates the learning
rate, Penalty corresponds to the penalty of the multinomial model fitted by the R
package glmnet.

Appendix C. Training the bayesian networks

Appendix C.1. Discretization of the variables

Table A5: Discretization thresholds chosen for the explanatory variables.

Variables
Number
of class Ranges for class Metric

Significant wave
height 5 [0,1.5]; [1.5,3]; [3,4.5]; [4.5,6]; [6,10] m

Wave period
at peak 5 [0,7]; [7,9]; [9,12]; [12,15]; [15,22] s

Wave direction 3 [0,300]; [300,305]; [305,360] degree
Tide 6 [0,2]; [2,3]; [3,3.5]; [3.5,4]; [4,4.5]; [4.5,6] m
Atm. pressure 4 [960,985]; [985,1000]; [1000, 1018]; [1018, 1035] hPa
Wind speed 3 [0,6]; [6,12]; [12,24] m/s
Wind direction 3 [0,135]; [135,215]; [215,360] degree
Atm. surge 3 [-0.6 , -0.15]; [-0.15, 0.15]; [0.15, 0.7] m
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Appendix C.2. Confusion matrix on the training set

Table A6: Confusion matrices on the training set (descriptive accuracy) obtained by both
Bayesian networks.

(a) BN based on observational data

Predicted
Swash Impact Overwash

Observed
Swash 963 22 1
Impact 42 63 15
Overwash 10 2 20

(b) BN based on observational and predicted data

Predicted
Swash Impact Overwash

Observed
Swash 5883 47 6
Impact 59 728 73
Overwash 2 56 234

140



5.3 Conclusion

In this chapter, we showed that BN can predict coastal flooding in a qualitative

manner using exclusively observational data collected by diverse monitoring

networks. We also demonstrated that the extension of the database by SLM

leads to better predictive performance at the expense of more false positives

for “overwash” regime.

Before implementing the presented BN in an operational EWS, further

investigations must be made. A sensitivity analysis on the probabilities of be-

longing must be performed to select tailored decision thresholds for the study

site. Concerning the extension of the database with SLM, the performance of

the storm impact model must be investigated. The presented storm impact

models could be extended to incorporate the temporal dynamic of coastal

flooding by using Dynamic bayesian networks (DBN) which are BN includ-

ing the concept of time. Finally, an interesting work could be to compare

the performances of a storm impact model based on BN or DBN with the

performances of a storm impact model based on process-based models.
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6. Conclusion

This thesis proposed innovative methodologies based on SLM which contribute

to the improvement of coastal risk assessment tools and to the development

of an early warning system which aims to reduce coastal flooding risk.

Firstly, we employed SLM to model two coastal processes involved in

coastal flooding namely: atmospheric surge and wave runup. We showed that

supervised models can be used to predict accurately the coastal processes (in

the training data variability) and that knowledge can be acquired by perform-

ing variable importance analysis on these models. We also highlighted the

ability of unsupervised learning methods to detect groups and patterns from

big data, which helped in the characterization of the local sea state and its

seasonality. Predictive models and knowledge about coastal processes at a

local scale are essential in the development of EWS and consequently in the

DRR process.

Secondly, we proposed a methodology based on SLM to improve the fore-

cast of process-based models that are commonly used in operational settings.

We focused more particularly on the improvement of the wave forecast made

by spectral wave model which are known to underestimate wave parameters

during storm events. With local data and a data assimilation method based

on SLM, we were able to improve significantly the forecast of wave parameters

during stormy conditions. By improving the wave forecast, this methodology

contributes to the improvement of the EWS predictions. This improvement

is all the more important because the risk of coastal flooding is at its highest

during storm events.

Thirdly, we proposed a new methodology based on deep learning methods

to collect storm impact data routinely. We employed Convolutional neural

networks (CNN) to classify images from the video monitoring station into
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storm impact regimes which are categories of coastal flooding risk. Once the

CNN are trained, they can be employed to classify the newly created images

and therefore generate incrementally a storm impact database. Storm impact

databases are crucial in the DRR process as they are used to develop and

validate storm impact model or EWS.

Finally, we developed a predictive model translating offshore hydraulic

boundary conditions into onshore hazards with SLM. This storm impact model,

based on BN, was trained using only observational data collected by different

monitoring networks and was able to predict qualitatively the storm impact. In

addition, we showed that SLM can be employed to extend the database which

can results in a BN with better predictive skill. This storm impact model can

be included in an EWS to complement current storm impact model. It has

the advantages to avoid the computation time and the potential bias related

to the process-based models commonly used.

Scientific contributions

The objective of this research work was to propose innovative solutions to the

different scientific issues discussed in each chapter.

The first chapter acted as an ”introduction” about the use of SLM in

the study of coastal processes. The aim of this chapter was to highlight the

ability of SLM to provide better knowledge and understanding about coastal

processes at a local scale. Our contribution is related to the fact that we

employed methodologies that have never been applied to our study site. In

the previous applications of SLM for the modeling of coastal processes, the

prediction accuracy was the main focus and little attention was given on the

explicability of the SLM. This is why, we also decided to deal with the expli-

cability of the models by performing variable importance analysis.

The second chapter focused on the underestimation of wave parameters

by spectral wave model during storm events. This problem is well known in
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literature and many solutions have been already proposed, including the data

assimilation method we employed. However, shallow neural networks were

the off-the-shelves SLM in all the previous works using the error prediction

method. In addition, little attention was given to hyperparameter tuning in

these works. Consequently, we proposed to use ensemble methods (random

forest and gradient boosting trees) as alternatives to the neural networks and

we performed hyperparameter tuning with Bayesian optimization. With this

work, we proved the importance of comparing different statistical learning

methods and choosing the optimal hyperparameters in order to obtain the

best results.

The third chapter concerned the generation of storm impact databases.

These databases are essential in the DRR process because they are used to

train storm impact models or to validate EWS. However, these databases are

rare, sparse and mostly come from archives or insurances data. Therefore, we

proposed a methodology to collect routinely data about storm impact. This

innovative methodology is based on convolutional neural networks (CNN) and

images created by video monitoring stations. It aims to classify the images

into different storm impact regimes which are categories of coastal flooding

risk. To find the best practices for this classification task, we compared sev-

eral CNN architectures and methods to cope with class imbalance which is a

problem related to the extreme nature of storms. We also investigated on the

transferability of this method by looking at “pretraining”. We showed that

a CNN pretrained on a study site can lead to better classification results in

fewer epochs for a new study site. Therefore, we shared our pretrained CNN

and code with the community to facilitate the application of this methodology

to new sites.

The last chapter was about the development of a storm impact model

with bayesian network based exclusively on data acquired with diverse mon-

itoring networks. Even though BNs have been employed extensively in the

development of storm impact models, they all rely on process-based models or

empirical formula to generate the training data. This can be problematic as
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process-based models and empirical formula are not perfect and can be biased.

This chapter aimed to address this problem by building a storm impact model

for coastal flooding prediction with a BN exclusively on observational data.

In addition, we proposed and tested a methodology based on SLM to extend

the storm impact data as they were limited for our study site.

Finally, a great emphasis was placed on the dissemination and reproducibil-

ity of our scientific work. We developed functions in the R package rlm-

DataDriven related to an article published at the beginning of this thesis

(Appendix B). In this article, we present a robust estimation procedure for

auto-regressive models with heterogeneity (Callens et al., 2020). Concerning

the improvement of the wave forecast, the code and a short tutorial were made

available on a GitHub repository (Link to the tutorial). For the generation of

the storm impact database, the code, the weights of the CNN and even the

code of the shiny application developed to annotate the timestacks were made

available on Github repositories (Link for code and weights of CNN, Link for

the application).

Perspectives

This research work opens up a number of perspectives that we have men-

tioned on different occasions in this manuscript. We extend on some of these

perspectives below.

Extreme nature of storm

The main limitation encountered in this thesis is related to the extreme nature

of storms. Extreme events are rare by definition and even if the monitoring

networks have been recording for years or decades, we always have a limited

number of observations of these events. This is a problem in the training

of SLM as the storm events, the events of interest, are under-represented in

the training dataset. Methods to deal with class imbalance were employed
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in this thesis (chapter 3 and 5) to obtain satisfactory results. However, we

saw the limitations of these methods in chapter 5, where we have only a few

observations of storm events. It would be interesting to extend the work of this

chapter by combining the observational database with a synthetic database

created in the same spirit as proposed by Poelhekke et al. (2016) which we

have exploited in Morichon et al. (2018) for the Grande Plage Biarritz. In the

study of Poelhekke et al. (2016), they employed a statistical method (copula),

which capture the dependencies between the storm characteristic variables, to

simulate synthetic storm events. The impact of these storm events were then

simulated by a process-based model. This methodology combining a statistical

method and a process-based model could be the solution to improve the storm

impact model presented in last chapter. In any case, this limitation highlights

the need to maintain existing monitoring networks and to install new ones in

order to train better statistical learning models for the prediction of coastal

risks.

Temporal aspect

In this research work, the temporal aspect has not been treated. It could be

interesting to integrate this temporal aspect particularly in the improvement

of wave forecast made by spectral wave model. Indeed, it is reasonable to

think that the errors of the spectral wave model are temporally correlated.

To include this temporal aspect, we could use errors of the previous time step

as explanatory variables and we could also employ SLM that are adapted for

time series modeling such as recurrent neural networks (Zhang et al., 2021)

or random forest adapted to time series (Goehry et al., 2021). The temporal

aspect could also be included in the storm impact model by employing dynamic

bayesian networks which are bayesian networks including the concept of time

(Murphy and Russell, 2002).
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Operational implementation of the methods

So far, none of the proposed methods in this thesis has yet been implemented

in an operational context. Therefore, the operational implementation of these

methods is the logical continuation of this thesis. During this step, numerous

interrogations will emerge. The first interrogation is about the frequency of

“retraining” of the SLM. Because the monitoring networks keep collecting new

data, it is legitimate to know the frequency at which the SLM need to be “re-

trained” to include the information of the newly collected data. This frequency

will surely be different for each method proposed in this thesis. Concerning the

generation of the storm impact database with CNN, the new timestacks will

need to be labeled in order to “retrain” the CNN. To facilitate and even avoid

the tedious labeling step of the new timestacks, a special attention could be

given to semi-supervised learning which aim to jointly learn from labeled and

unlabeled samples (Baur et al., 2017). Concerning the storm impact model,

a sensitivity analysis on the probabilities of belonging must be performed to

select optimal decision thresholds. This sensitivity analysis is crucial for oper-

ational implementation as it aims to minimize the false positives for the storm

impact regimes representing the highest risk.
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Callens, A. (2017). Analyse des forçages physiques et climatiques influant sur

le transport des micropolluants dans l’estuaire de l’Adour. Master Thesis,
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A. Extracting storm surge data

with harmonic analysis

The observed storm surge is obtained by subtracting the astronomical tide

from the measured water level of a tide gauge. The astronomical tide has

been studied for a long time and many methods allow for the prediction of the

tide level. Harmonical analysis is the most commonly used method and the

one presented below. This method aims to represent the tidal water level as a

sum of basic harmonic constituents.

Data

The water level data from the tide gauge located in Socoa (city in the south

west of France) were provided by the french Naval Hydrographic and Oceano-

graphic Service (SHOM). The data range from 2011 to nowadays with a hourly

time step. In addition to provide the data, the SHOM also documented each

dysfunction of the tide gauge. This allowed for the proper removal of aberrant

data. The final data are presented in the Figure A.1.

To assess the accuracy of the harmonic model on unseen data, the dataset

has been divided in two part : the training set corresponding to 80% of the

data and ranging from 2011-04-26 to 2016-10-03 and the test set correspond-

ing to the remaining 20% and ranging from 2016-10-04 to 2020-06-12. It is

worth noting that the period 2016-2020 contains a lot of missing data due to

a dysfunction of the tide gauge (Figure A.1).
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Figure A.1: Tide data from the Socoa tide gauge.

Method

Harmonic analysis is the most common method to model astronomical tide

with water level from tide gauge. In this method, the tidal level is modeled as

a sum of harmonical constituents, the majority of which being related to the

gravitational forces of the Moon and Sun (Nicolle, 2006).

At time t, the tide level can be written as :

h(t) = Z0 +
n∑

i=1

[Aicos(vit+ φi)], (A.1)

where Z0 corresponds to the mean water level, Ai, vi, φi to the amplitude,

the frequency and the phase of the wave respectively. Finally, n corresponds

to the number of constituents chosen.

The unknown parameters Ai and φi can be estimated with the least square

method for each constituent. An implementation of this method in R code is

available in the package TideHarmonics. For the harmonic analysis method,

the number of harmonic constituents must be chosen: a higher number means

a better accuracy. Because we want the most accurate model, we chose to

estimate the coefficient of the first 114 harmonic constituents which is the
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maximum number implemented in the R package TideHarmonics.

Table A.1: Tide level prediction with artificial neural networks in the literature

Authors Year Type of neural networks Input Output

Tsai and Lee 1999 Multilayer Perceptron

-Past sea level observations

-Past error of prediction

Both from t-1h to t-2h

Sea level at time (t)

Huang et al. 2003 Multilayer Perceptron
Past sea level observations

from t-1h to t-4h
Sea level at time (t)

Lee 2004 Multilayer Perceptron
Main Tidal constistuants

(from 4 to 7) at time (t)
Tidal level at time (t)

Makarynskyy et al. 2004 Multilayer Perceptron

Past sea level observations

from t-1h to

-12/24/36/48/60/70h

Sea level forecast

from t+1h to t+24h

Makarynska and Makarynskyy 2008 Multilayer Perceptron
Past sea level observations

from t-1h to t-120h

Sea level forecast

from t+1h to t+120h

Neural networks could have also been used to model the tide level. Gener-

ally, they use as input the past observations of sea level and they forecast the

sea level for the next time steps. Some of them forecast the sea level related

to the tide up to 5 days in advance. Few examples are presented in table A.1.

Tide harmonic method was chosen over neural networks for the modelling

of the tide level because once the model is fitted, past observations are not

needed to make a prediction unlike neural networks. This is convenient as the

data from Socoa tide gauge contains a lot of missing data.

Results and discussion

The estimated amplitudes and phases for the 10 first harmonic components of

Socoa are presented in the table A.2. The 2 harmonic components with the

highest amplitudes are M2 and S2 which are semi-diurnal components. This

indicates that the type of the tide in the area of Socoa is semi-diurnal (Nicolle,

2006).

Once all the harmonic amplitudes and phases are estimated, they can be
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Table A.2: Amplitude and phase of the first 10 harmonics estimated with the

TideHarmonics package

Harmonic components Amplitude Phase

M2 1.337 291.5

S2 0.468 306.1

N2 0.283 281.9

K2 0.132 301.6

O1 0.071 69.7

K1 0.063 157.4

nu2 0.053 281.9

mu2 0.050 268.8

2N2 0.041 270.6

Sa 0.040 208.9

used to predict the astronomical tide (without the meteorological effect). The

root mean square error (RMSE) computed on the test data is 10.4 centimetres.

This result is consistent with the literature, for example Makarynskyy et al.

(2004) obtained RMSE values between 8 and 15 centimetres for different neural

networks architectures. An example of one month forecast with the harmonic

analysis method is showed in the Figure A.2.

For the modelling of the tidal water level, there will always be some dis-

crepancies between the predicted and the measured values at the tide gauge.

Indeed, the tide gauge measures the total water level which is composed by the

addition of the astronomical tidal level and the water level which is induced

by the meteorological conditions. The low pressure and high winds during a

storm lead to an increase in water level which is called ”storm surge”.

Observed storm surge can be extracted by subtracting the modelled astro-

nomical tide from the measured water level of the tide gauge. The storm surge

obtained for Socoa tide gauge is presented Figure A.3. Such as the tide data,

169



Figure A.2: Water level measured and modelled for the month of May 2020.

the storm surge data range from 2011 to nowadays with a hourly time step

and contains missing data for the period 2016-2020.

Figure A.3: Atmospheric surge level extracted from the water level of Socoa

tide gauge.

Conclusion

Harmonical analysis was used to model the tide with the water level data

from the tide gauge data of Socoa. It was found that the type of the tide in
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this area was semi-diurnal. In addition, this method allowed us to compute

the observed storm surge for the site of Socoa by subtracting the modelled

astronomical tide from the water level observed at the tide gauge.

171



B. Robust estimation procedure

for autoregressive models with

heterogeneity

This appendix section presents the accepted version of the article. The final

publication is available at https://link.springer.com/article/10.1007/s10666-

020-09730-w
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Laboratoire de Mathématiques et de leurs Applications de Pau, Université de Pau et des
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Robust estimation procedure for autoregressive models with heterogeneity 2

troduce a new estimation procedure which adapts the weighted M-estimation
to environmental time series data, while selecting optimal value for the tun-
ing parameter present in the M-estimation. We compare the efficiency of our
procedure on simulated data to other usual regression methods. Our esti-
mation procedure outperforms the other methods providing estimates with
lower variance and mean squared errors. Finally we illustrate the proposed
method using an air quality dataset from Beijing. This method has been
implemented in the R package RlmDataDriven.

Keywords Heteroscedasticy · Model selection · Robust estimation ·
Temporal correlations

1 Introduction

In environmental modelling, pure homoscedasticity is uncommon. For exam-
ple, residuals of hydrological [8], or air pollution models [26] are usually het-
eroscedastic. Ignoring this problem and performing an ordinary least squares
regression would result in regression parameters with biased covariance ma-
trix and hence would lead to erroneous inference.

One method to deal with this biased covariance matrix is to use the
White’s estimator [25] which provides a heteroscedasticity consistent covari-
ance matrix. In case of a time series, the Newey-West estimator [17] can
provide heteroscedasticity and an autocorrelation-consistent covariance ma-
trix. Both of these methods account for heteroscedasticity but do not give
information on the variability of the data generation process.

Another approach to cope with heteroscedasticity is to perform a weighted
analysis, where the assumed underlying model is:

yi = xTi β + σiεi,

with yi the observed response, xi the associated covariates, β the vector con-
taining the parameters to be estimated, εi the independently and identically
distributed error terms with mean 0 and unknown symmetric distribution
function and σi the term accounting for heteroscedasticity. Usually, a para-
metric function is assumed for this term [1, 4, 7, 9]. It can be a power function
of the mean as proposed by Box et al. [3]: σi = φ|xTi β|γ or some functions of
the covariates. Parameters in the variance function are not known and have
to be estimated by maximum likelihood method.

Estimation of parameters in models exhibiting heterogeneous variance is
performed by an iterative procedure. A preliminary estimate of mean param-
eters is obtained by the least squares method. Residuals of this model are
then used to estimate variance parameters. Finally, a weighted least squares
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method is performed with the estimated variance as weight. Unlike White
and Newey-West methods, modeling heterogeneous variance enables one to
get better estimates for the mean parameters and also to gain information
on the variability of the data generation process [7, 9].

Such as least squares method, the estimation method for heteroscedastic
models has a low breakdown point of 1/n, meaning that only one outlier in
the observed response can have a large effect on the estimation of the mean
parameters [20, 23, 27]. The estimation of the variance parameter is also
affected as maximum likelihood methods are very sensitive to outliers [9, 21].

In practice, outliers are prevalent in environmental dataset. They can be
found in both response variable and covariates but, in this work, our interest
lies only in outliers that are present in the response variable. In the presence
of outliers, robust methods must be applied. They aim to produce reliable
estimates that are not seriously affected by outliers, extreme values or small
deviations from model assumptions [13].

When both heteroscedasticity and outliers are present in regression anal-
ysis, one can use the method described by Carroll et al. [4]. This itera-
tive method allows one to robustly estimate mean and variance parame-
ters. For the mean parameters, they perform a weighted M-estimation with
variance as weight. M-estimation is a robust method which consists in min-
imizing a loss function that is slowly varying for abnormal residuals instead
of squared residuals [24]. This loss function is controlled by a tuning pa-
rameter c which “regulates the amount of robustness” [11]. For the variance,
they assume a parametric function and robustly estimate its parameters with
high-breakdown point estimators. A limitation of this method is that errors
must be independently and identically distributed, which is not the case when
regression is performed on temporal data.

In this article, we propose an estimation procedure which adapts the
weighted M-estimation method of Carroll et al. [4] to time series by taking
into account temporal correlations, and, chooses the value of the tuning con-
stant by minimizing the variance of the estimators such as the work of Wang
et al. [23, 24]. We perform numerical studies to compare the proposed method
with other usual regression methods. Finally, we illustrate our methodology
with a dataset on fine particle matter pollution (PM2.5) in the city of Beijing.
This dataset is particularly interesting for two reasons. First, variability of
PM2.5 concentration is not likely to be constant. Second, largest concentra-
tions, which are related to increased coal consumption during cold days, may
have a significant impact on the estimation of regression parameters.
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2 Method

2.1 The regression model

Let y = (y1, y2, ... , yn)T be the observed response measured over n equivalent
time periods and xi = (xi1, ... , xik)

T be the set of k associated predictors
(xi1 is equal to 1 if intercept is considered as a predictor). We assume data
are generated from the following heteroscedastic linear model :

yi = xTi β + σiεi, (1)

in which β is the vector collecting the parameters to be estimated, εi are
the error terms following an autoregressive process of order p (AR(p)) which
takes into account temporal correlations, and

σi = φg(xTi β, γ),

where g(·) is a known function of the mean (xTβ) with unknown parameter
vector γ, and unknown dispersion parameter φ. Several choices for σi are
possible, few examples are :

∗ σi = φ(1 + |xTi β|)γ or σi = φ|xTi β|γ proposed by Box et al. [3],

∗ σi = φeγx
T
i β proposed by Bickel et al. [2].

2.2 Estimation of the parameters

For given or estimated value σ̂i, the robust M-estimation for β minimizes :

n∑

i=1

ρ

(
yi − xTi β

σ̂i

)
,

where ρ is a loss function that is slowly varying for abnormal residuals (out-
liers). The most known is Huber’s loss function :

ρ(u) =

{
1
2
u2 if |u| ≤ c
c|u| − 1

2
c2 if |u| > c

. (2)

Here, c is a tuning parameter chosen between 0 and 3, which controls the
degree of robustness. Default value for Huber’s function is 1.345 to ensure
95% asymptotic relative efficiency when data are normally distributed. More
examples of loss functions can be found in Wang et al. [23].

Taking derivatives of (2) leads to the following estimating equation of β:
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U(β) =
n∑

i=1

(
xi
σ̂i

)
ψ

(
yi − xTi β

σ̂i

)
= 0,

where ψ(x) = min{c,max{x,−c}} is the derivative of Huber’s loss func-
tion.

To solve this estimating function, one can rewrite U(β) as :

U(β) =
n∑

i=1

xiWiri = 0,

where Wi = ψ(ri)/ri are weighting terms, and ri = (yi − xTi β)/σ̂i are the
Pearson residuals. Now, for a given weight Wi, the robust estimator of β can
be obtained by the following formula :

β̂ = {
n∑

i=1

xiWix
T
i }−1{

n∑

i=1

xiWiyi}. (3)

An iterative approach is needed as Wi is a function of β and σ. This
approach is derived from the pseudolikelihood approach and consists in fix-
ing alternatively parameters of the variance (γ and φ) and the regression
parameters (β).

The variance parameters are also robustly estimated and are given by :

– A high breakdown estimator for γ :

n∑

i=1

χ
(
yi − xTi β̂
φ̂g(xTi β̂, γ)

)
g′(xTi β̂, γ)

g(xTi β̂, γ)
= 0, (4)

where χ(·) is a bounded function. Croux [6] and Bianco et al. [1] used
χ(x) = min(x2/c21, 1) − 0.5 with c1 = 1.041 to obtain a 50% breakdown
estimator of γ under the normality assumption.

– The MAD estimator for the dispersion parameter :

φ̂ = Median
{ |yi − xTi β̂|
g(xTi β̂, γ̂)

}
/0.6745. (5)

Wang et al. [24] showed that under some regularity conditions, the ro-
bust estimator β̂ obtained by the iterative procedure is Fisher consistent.
Moreover, when n→∞ the covariance matrix is given by [4, 10, 11] :
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var(β̂) = K2 [1/(n− k)]
∑n
i=1 ψ(ri)

2

[(1/n)
∑n
i=1 ψ

′(ri)]2
×

n∑

i=1

{σ̂2
i (x

T
i xi)

−1},

where ri = (yi − xTi β̂)/σ̂i, and

K = 1 +
p

n

var(ψ′(ri))

(Eψ′(ri))2
.

with p the number of unknown parameters.

2.3 A data-dependent tuning constant

The tuning parameter c associated with the loss function regulates the amount
of robustness in the estimation. When observations are normally distributed
and without outliers, optimal value of this parameter should be c = +∞.
On the other hand, for heavy tailed distributions, optimal value should be
around or smaller than 1. The value of the tuning parameter should be chosen
carefully since robustness comes at the price of efficiency. Indeed, a smaller
value than needed, would result in considering more usual observations as
outliers and would lead to a loss of efficiency in the estimation of the regres-
sion parameters.

As in Wang et al. [23], we define the best tuning constant as the one which
minimizes the variance of the regression parameters. Therefore we propose
to repeat the estimating procedure with different values of c between 0 and
3 for the Huber’s function [23] and choose the one which minimizes the sum
of the estimated variances of the regression parameters.

2.4 Accounting for temporal correlations

So far we have only considered the independent model, we now need to
incorporate the autoregressive process of order p present in the error terms.
We write εi as

∑p
j=1(αjεi−j) + ξi where ξi are independent errors and we

rewrite the model (1) as :

yi = xTi β +
p∑

j=1

αjσiεi−j + σiξi.

Because the εi are unobserved, we propose to use the Pearson residuals
from the initial model (1), say, ε̂i, and we now have the following linear model
with roughly independent errors,
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yi = xTi β +
p∑

j=1

αjσ̂iε̂i−j + ηi,

where (σ̂iε̂i−1, σ̂iε̂i−2, ..., σ̂iε̂i−j,) are the augmented additional covariates
including p lagged residuals, and (β, α1, ..., αp) are the new parameters to be
estimated including p lag parameters, σ̂i is an estimate of σi. In the iterative
procedure to be described below, this σ̂i will be estimated from the variance
function using the previous parameter estimates for (φ, γ, β). Here, ηi repre-
sents the resulting error which should be close to σiξi. We fit this augmented
model with the optimal value of the tuning parameter to obtain the final
estimate of β.

In the application section, we will demonstrate how we choose the order
p of the autoregressive process.

2.5 The estimation procedure

The complete estimation procedure is summarized in the following algorithm
:

1. Obtain an initial robust estimate β̂0 assuming a constant variance g(xTβ, γ) =
1 and using M-estimation with the default value of c (rlm function).

2. By fixing β̂ = β̂0, the robust variance parameters (φ̂, γ̂) are estimated
with (4) and (5) respectively.

3. By fixing the variance parameters equal to their robust estimates, we
update β̂ with (3).

4. To find the best tuning parameter, the steps 2-3 are repeated for a range
of c values between 0 and 3. The best tuning constant is the one which
minimizes the sum of the estimated variance of the regression parameters.

5. The model is fitted using the best value of the tuning constant (ĉ) from
the steps 2-3. Then, temporal correlations are added by following the
procedure described previously.

3 Numerical studies

In this section, we investigate the performance of our procedure. We com-
pare mean bias and mean square errors of the estimates obtained by dif-
ferent methods such as least squares (lm function in R), generalized least
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squares method (gls function from the nlme package),M-estimation with
c = 1.345 (rlm function from the MASS package), the weighted M-estimation
(whm function from rlmDataDriven package) with c = 1.345 and our data-
driven method (rlmDD het function from rlmDataDriven package).

For one simulation, we generate a multivariate normal dataset (n = 500)
using the model (1). In our case, xTi β = β0 + β1xi1 where we fix the value of
β0 and β1 to 10 and xi1 comes from a uniform distribution on (0, 1). For σi,
we test two functions: the power function σi = |xTi β|γ with γ = 0.2 and the
exponential function σi = eγ|x

T
i β| with γ = 0.01. For the term εi, we consider

two cases: (i) an autoregressive process of order 1 with α = 0.5 and (ii) an
autoregressive process of order 2 with α1 = 0.5, α2 = 0.2. These processes
can be written as follows: εi =

∑p
j=1 αjεi−j + ξi where ξi are independent and

normally distributed errors following a standard normal distribution N(0, 1).
In order to add outliers, the data is randomly contaminated by adding a
value sampled from a uniform distribution on (0, 10). Several contamination
rates are considered: λ = 0%, 5%, 10%.

Table 1 shows the means and the standard errors of the estimate bias
computed accross all the simulations for the exponential function. The results
obtained with the power function are included in the online supplementary
material (Table S-1).

For both variance functions, average value of the data-dependent tun-
ing constant decreases as contamination rate increases. This tuning constant
has the expected behaviour: as the proportion of outliers becomes larger,
more values should be considered as outliers therefore the tuning constant is
smaller.

The bias and associated standard errors both increase with the proportion
of outliers. However it is less important for robust methods, especially for the
proposed method. Indeed, when data are contaminated, the method yields
estimators with lower mean bias and associated standard errors.

This method also provides estimates with lowest MSE in all the cases
when contamination is present. Differences in efficiency with the other meth-
ods augment with the contamination rate, reaching MSE values fives fold
lower than the ones obtained by non robust methods (Figure 1). The same
figure for the power variance function is available in the supplementary ma-
terial (Figure S-1).
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4 Application to Air Quality Data

4.1 Context of the application

We apply the proposed robust procedure to analyse fine particle matter
(PM2.5) concentrations from the US embassy situated in Beijing, China. Such
as other China’s mega cities, Beijing has been suffering from chronic air pol-
lution [5]. The main constituents of this pollution are suspended particle mat-
ters under 2.5 µm of diameter, widely known as PM2.5 [15]. Concentration
of PM2.5 is highly variable and depends on sources of emission, secondary
chemical generation processes and meteorological conditions. According to
numerous studies [15, 18, 28], these suspended particles affect climate, visi-
bility and human health in many ways.

Given the severity of the pollution and the potential hazardous effects,
China’s State Council aimed to reduce the PM2.5 pollution by at least 25%
for the period 2012-2017. Our objectives are (i) to show the efficiency of our
procedure on a real dataset compared to a conventional estimation method
(least squares method), (ii) to analyze the potential effect of the decision of
China’s State Council on the concentration of PM2.5. Our method is highly
desirable in this case study since the variance of PM2.5 concentrations is not
likely to be homogeneous [26] and outliers may be present.

4.2 Regression analysis

The hourly data come from a previous study lead by Liang et al . [15] (Figure
2). PM2.5 concentrations were taken at the US Embassy of Beijing and me-
teorological measurements at the Beijing Capital Airport. Both time series
covers the period from 1 January 2010 to 31 December 2014.

To evaluate changes in PM2.5 concentration after the decision of China’s
State Council, we created two new variables : Policy and Time Policy. Both
variables take the value 0 before 2012, however Policy take the value 1 after
2012 to detect any shifts in the intercept and Policy Time take the value of
the time lapsed in days after 2012 to test and quantify the trend after that
decision.

We modelled PM2.5 concentration as a linear combination of the following
covariates : dew point (◦C), temperature (◦C), atmospheric pression (hPa),
combined wind direction (3 factors), cumulated wind speed (m/s), cumu-
lated hour of snow (mm), cumulated hour of rain (mm), Time policy, Pol-
icy and seasonal patterns with sin and cos functions for the 3,2 years and
6,4,3 months cycles. To perform the regression analysis, the following numer-
ical covariates have been standardized: dew point, temperature, atmospheric
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pression, cumulated wind speed, cumulated hour of snow, cumulated hour of
rain.

The response variable PM2.5 is a concentration; therefore a transformation
was needed in order to avoid predictions lower than zero with the regression
analysis. Two transformations were tested on the dataset: square-root and
logarithm transformation (Figure 2). For both transformations, mean squared
and mean absolute errors were computed after re-transformating fitted values
in original scale. Althougth logarithm transformation is the classical trans-
formation for air quality data, we chose the square root transformation as it
yielded slightly lower errors (Supporting information, Table S-3).

The model is fitted with least squares method by the lm function from
R statistical software [19]. The residuals vs. fitted value plot (Figure 3) indi-
cates the presence of heteroscedasticity with larger residuals as fitted values
increase. This heteroscedasticity does not lead to biased estimators but to
estimators with biased covariance matrix. This could result in underestima-
tion of standard errors, erroneous Z-values and therefore erroneous hypoth-
esis tests. The normal probability plot in Figure 3 reveals that distribution
of residuals is skewed, indicating the presence of outliers which may have
influenced the estimation of regression parameters. Moreover, temporal cor-
relations in the residuals have been found using the ACF and pACF plots.

In this present case, our method is highly desirable as we have the presence
of heteroscedasticity, temporal correlations and outliers.

4.3 Robust regression analysis with the proposed method

We fitted the same regression model to the data with the proposed method.
This method has been implemented in a R function: rlmDD het, available in
the package RlmDataDriven. The R code for the presented analysis can be
found in the supporting information file.

In the literature, we did not find previous papers or indications on how
to model variance of PM2.5 concentration, consequently, we used common
variance functions for the analysis such as power or exponential functions.
Hereafter, we present the result obtained by considering σi = φeγ|x

T β|.
First, our method chooses best tuning constant by testing a range of val-

ues for the tuning parameter between 0 and 3. As stated earlier, the best
value of c will be the value that minimizes the sum of the variance of the
regression parameters. For the PM2.5 data, optimal value of the tuning pa-
rameter is found around 1.5.

Then, we use ACF and pACF plots of the robustified residuals to deter-
mine the order of the autoregressive process. The robustified residuals are
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defined as ψ((yi − xTi β̂)/σ̂i). Two significant lags are found in the pACF
plot, therefore, we consider that p = 2 and we add two lagged terms to the
regression model. The lagged terms are:

α1σ̂iε̂i−1 + α2σ̂iε̂i−2 + η,

where σ̂iε̂i−1, σ̂iε̂i−2 are lagged terms built from the initial model estimated
with the best tuning constant (ĉ = 1.5) and η is the assumed independent
error term. The term ε̂ corresponds to Pearson residuals of the initial model
and σ̂ is the estimated variance function.

The normal probability plot (Figure 3) of the residuals clearly illustrates
that our robust procedure has taken care of outliers successfully. The residuals
vs. fitted values plot (Figure 3) seems to indicate that heteroscedasticity has
been lowered.

The results of both methods are listed in Table 2. In this table, the covari-
ance matrix of the regression parameters obtained by least squares method
has been estimated with the NeweyWest function (sandwich package) which
gives a heteroscedasticity and autocorrelation consistent estimation of the co-
variance. This estimation was necessary to obtain corrected standard errors
as the residuals exhibited heteroscedasticity and temporal correlations.

Our estimation method drastically reduced the variance of the parame-
ters. It is worth noting that the covariates Policy and Time policy are not
significantly different from 0 in the least squares method contrary to our ro-
bust method. Years after 2011 are characterized by an positive shift in the
intercept. However, coefficient of the variable Time policy is slightly negative.
After one year, this coefficient outweights the positive shift in the intercept,
meaning that the PM2.5 concentration decreases slightly compared to years
before 2012.

Finally, we can see in the Table 2 that lagged terms are significant. This
indicates that the two previous terms contribute significantly to the output
and were, therefore, necessary to consider.

5 Discussion

This method is data-dependent by the optimal choice of the tuning con-
stant and it incorporates temporal correlations by adding lagged terms in
the covariates. The numerical study showed that this procedure outperforms
the other usual regression methods when data are contaminated by provid-
ing more precise estimates for the mean parameters. In the application with
the PM2.5 concentration dataset, we proved that our method results in es-
timates with significantly lower variance compared to the ones obtained by
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least squares estimation, leading to better hypothesis testing. This method
is well suited for environmental dataset due to the frequent presence of het-
erogeneity and outliers. Hyslop et al. [12] utilized Thiel-Sen robust regres-
sion to evaluate long-term trends in aerosol concentrations via the historical
PM2.5 element measurements. Van Donkelaar et al. [22] used a geographically
weighted regression (GWR) statistical model to represent bias of fine PM2.5
concentrations over North America . Knibbs et al. [14] utilized the land-use
regression (LUR) to estimate PM2.5 at continental scale and explained the
most spatial variability in PM2.5 in Australia . These three methods did
not consider the heterogeneity and autoregressive errors. In the future, the
proposed method could be generalized to these three models. Furthermore,
the proposed method could be extended to model time-series of counts by
using a link function such as the generalized linear model [16]. Concerning
the variance, it would be helpful to consider more flexible approaches for the
estimation of the parameters and to provide guidance for choosing the most
appropriate variance function for a dataset.

Supplementary Material

Online supplementary material includes :

– Table S-1 : Mean bias from true parameters and standard errors of the
estimators obtained by several regression methods for the case of the power
variance function.

– Table S-2 : Number of non convergence removed for the calculation of the
mean bias and standard deviation for the simulation study.

– Table S-3 : Mean Absolute Error and Root mean squared error for different
transformations of PM2.5 and different models.

– Figure S-1 : Mean square errors of the estimated parameters obtained by
several regression methods for the power variance function.

– Page 5 : Information on the dataset with downloading link and indications
on the different steps to tidy the dataset before analyzing it.

– The R script used to obtain the results in the application section.
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Table 1 Mean bias and associated standard errors of the estimated parameters
obtained by several regression methods for the exponential variance function. Re-
sults based on 500 replications.

σi = eγ|x
T
i β|, γ = 0.02 , AR(1), α = 0.5

λ = 0% λ = 5% λ = 10%

β̂0 β̂1 β̂0 β̂1 β̂0 β̂1

Least square 0.02(0.01) -0.02(0.01) -0.72(0.01) 2.42(0.01) -1.32(0.01) 4.62(0.02)
M-estimation 0.02(0.01) -0.02(0.01) -0.04(0.01) 0.12(0.01) -0.22(0.01) 0.74(0.01)
Generalized least square 0.02(0.01) -0.02(0.01) -0.21(0.01) 1.09(0.01) -0.32(0.01) 1.9(0.02)
Weighted M-estimation 0.02(0.01) -0.02(0.01) 0.1(0.01) -0.38(0.01) 0.13(0.01) -0.51(0.01)
Proposed method 0.02(0.01) -0.02(0.01) -0.01(0.01) -0.18(0.01) -0.08(0.01) -0.07(0.02)
c̄ 2.11 0.93 0.74

σi = eγ|x
T
i β|, γ = 0.02 , AR(2), α1 = 0.5, α2 = 0.2

λ = 0% λ = 5% λ = 10%

β̂0 β̂1 β̂0 β̂1 β̂0 β̂1

Least square -0.01(0.01) -0.02(0.01) -0.69(0.01) 2.37(0.01) -1.26(0.01) 4.53(0.02)
M-estimation -0.01(0.01) -0.02(0.01) -0.04(0.01) 0.12(0.01) -0.23(0.01) 0.76(0.02)
Generalized least square -0.01(0.01) -0.02(0.01) -0.22(0.01) 1.18(0.02) -0.36(0.01) 2.11(0.02)
Weighted M-estimation -0.01(0.01) -0.02(0.01) 0.1(0.01) -0.4(0.01) 0.12(0.01) -0.51(0.02)
Proposed method -0.01(0.01) -0.02(0.01) -0.06(0.01) -0.17(0.01) -0.15(0.01) -0.07(0.02)
c̄ 2.11 0.91 0.72
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Fig. 1 Mean square errors of the estimated parameters obtained by several regres-
sion methods for the exponential variance function (log-scale). Results based on
500 replications. Gls corresponds to generalized least squares, Lm to least squares,
RlmDDh to the proposed method, Rlm to M-estimation and Whm to weighted
M-estimation.
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Fig. 2 Time series of the PM2.5 concentration with different transformation. The
first panel shows the raw data, the second and last ones show the square-root and
logarithm transformation respectively.
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Fig. 3 Regression diagnostic plots for the least squares model (upper panel) and
the proposed method (lower panel). In the residuals vs fitted values plot for the
method, 6 residuals lie outside the plot area.
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Table 2 Parameter estimates (β), their standard errors and z-values for the least
squares and proposed method. The critical region of the significance test is of the
full model |z| > 1.96.

Least squares method
Proposed method with ĉ = 1.5 and

σ̂i = 1.03e0.131|xiβ̂|

Estimate Std.Error Z-value Estimate Std.Error Z-value

Intercept 9.378 0.157 59.765 8.784 0.018 493.763
Dew point 3.214 0.122 26.446 2.953 0.011 268.731
Temperature -3.978 0.148 -26.845 -3.416 0.013 -260.880
Pressure -0.882 0.149 -5.909 -0.877 0.011 -77.211
Cbwd NE -1.455 0.104 -13.952 -1.117 0.021 -52.428
Cbwd NW -1.716 0.099 -17.284 -1.400 0.018 -77.689
Cbwd SE 0.512 0.081 6.306 0.666 0.019 35.685
Iws -0.577 0.058 -9.888 -0.410 0.005 -89.071
Is -0.086 0.054 -1.575 -0.027 0.008 -3.475
Ir -0.453 0.039 -11.677 -0.380 0.004 -88.028
Policy 0.362 0.343 1.058 0.222 0.023 9.464
Time Policy −7× 10−4 5× 10−4 -1.373 −6.10−4 3× 10−5 -18.052
Cos 3 years cycle -0.340 0.157 -2.164 -0.238 0.010 -22.878
Sin 3 years cycle 0.547 0.174 3.155 0.509 0.010 48.993
Cos 2 years cycle 0.206 0.133 1.549 0.345 0.008 43.472
Sin 2 years cycle 0.084 0.123 0.683 0.104 0.009 11.361
Cos 6 months cycle -0.342 0.123 -2.776 -0.355 0.008 -42.542
Sin 6 months cycle -0.365 0.119 -3.069 -0.425 0.008 -51.631
Cos 4 months cycle -0.184 0.120 -1.539 -0.038 0.008 -4.722
Sin 4 months cycle -0.035 0.121 -0.287 -0.084 0.008 -10.509
Cos 3 months cycle 0.032 0.120 0.263 0.047 0.008 5.947
Sin 3 months cycle 0.025 0.119 0.212 -0.005 0.008 -0.651
lag1 / / / 0.746 0.005 162.733
lag2 / / / 0.102 0.004 23.260
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