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《 Ne jamais dire jamais, il y a toujours quelque chose à tenter. 》 

 

         -Le film ‘Les Choristes’        
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I 
 

Abstract 
 

Ni-based alloys are widely used in various engineering applications, such as oil and gas, nuclear power 

plant and chemical process, due to their excellent corrosion resistance and good mechanical properties 

at elevated temperature. To extend the sustainability and the versatility of Ni-based alloys, 

development of new grades or improvement of the existing ones is still ongoing. To carry out the alloy 

design, the study on the role of alloying elements on nickel-based alloys properties and corrosion 

resistance remains the best scientific approach. Within this framework, the main objective of this 

thesis is to develop a methodology based on electrochemical characterization and analysis for 

understanding the role of the alloying elements on the corrosion behavior and on the passive film 

properties of Ni-based alloys. The proposed methodology relies on successive electrochemical 

impedance spectroscopy measurements and advanced analyses of the impedance data, to follow the 

evolution of the passive film properties grown on different binary (Ni-Cr) and ternary (Ni-Cr-Fe) alloys 

at different potentials. The obtained impedance diagrams were interpreted with enhanced graphical 

method and fitted with Power-Law Model for giving physical meanings to passive film. This 

experimental procedure provides supplementary data from conventional polarization curves, such as 

evolution of the passive film thickness and resistivity profiles through the film. 

 

In this work, the role of alloying elements, especially chromium and iron, on the passive film properties 

and reactivity is studied. Understanding how alloying elements act on the passive film nature, structure 

and properties will provide some guidelines to engineers and scientists for designing or choosing the 

more adapted alloys. Finally, the proposed experimental method is also applied on certain commercial 

alloys. Their responses are compared with that of the closest binary and ternary alloys to evidence the 

discriminating factors that control the passive behavior. 

 

Key words: Ni-based alloys; Passivation; Electrochemical Impedance Spectroscopy 
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Résumé 
 

Les alliages base nickel sont largement utilisés dans divers domaines d’application, tels que le pétrole 

et le gaz, le nucléaire et la chimie, grâce à leur excellente résistance à la corrosion et leurs bonnes 

propriétés mécaniques à haute température. Dans le but de prolonger la durée de vie de certains 

composants stratégiques, de nombreuses études sur l’influence des éléments d'alliage sur les 

propriétés et la résistance à la corrosion des alliages base nickel ont été réalisées ou sont toujours en 

cours. Dans ce cadre, l'objectif principal de cette thèse est de développer une méthodologie basée sur 

la caractérisation et l'analyse électrochimique permettant de comprendre l’effet des éléments 

d'alliage sur les propriétés du film passif des alliages base nickel. La méthodologie proposée se base 

sur des mesures successives de spectroscopie d'impédance électrochimique et sur une analyse 

approfondie des diagrammes d’impédance, permettant de suivre l'évolution des propriétés du film 

passif formé sur différents alliages binaires (Ni-Cr) et ternaires (Ni-Cr-Fe) à différents potentiels. Les 

diagrammes d’impédance obtenus ont été interprétés avec une méthode graphique avancée et ajustés 

par le modèle en loi de puissance fournissant ainsi des informations caractéristiques du film passif. 

Cette méthodologie permet ainsi de déterminer et d’obtenir des informations complémentaires aux 

traditionnelles courbes de polarisation, telles que l’évolution de l’épaisseur du film et des profils de 

résistivité au travers de son épaisseur. Cette méthodologie a aussi été appliquée à des alliages 

commerciaux. Leurs réponses ont été comparées à celles obtenues pour les alliages binaires ou 

tertiaires dont les compositions sont les plus proches afin de mettre en évidence quels sont les 

paramètres microstructuraux ou chimiques les plus discriminants. 

 

Dans ce travail, le rôle des éléments d'alliage, en particulier le chrome et le fer, sur les propriétés et la 

réactivité du film passif a été étudié. Comprendre comment les éléments d'alliage agissent sur la 

nature, la structure et les propriétés du film passif fournira quelques lignes directrices aux ingénieurs 

et scientifiques pour la conception ou le choix des alliages les plus adaptés.  

 

Mots clés:  Alliages à base de Nickel; Passivation; Spectroscopie d'Impédance Electrochimique 
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General introduction 
 

Nowadays, Nickel-based alloys are the best candidates for structural and high values applications, such 

as energy, chemical and food processing etc. Sometimes Nickel-based alloys are even the only choice 

under the circumstance where is not for the stainless steel or other specific alloys. It is important to 

understand why such interest. 

 

The face-centered cubic (fcc) structure of nickel makes it a ductile metal. However, nickel has a capacity 

to provide a high strength for its alloys with excellent corrosion resistance that could operate at 

1000°C, resulting in a wide possible development of different Nickel-based alloys. Moreover, alloying 

of nickel with other elements, like chromium, aluminum, and molybdenum etc., greatly broadens its 

use in engineering applications. Figure Intro.1 displays the relationship between the alloying elements 

added to the Ni matrix and the obtained corrosion properties. It also mentions the commonly known 

alloy grades according to the main addition elements. 

 

Figure Intro. 1 Compositional and property linkages for nickel alloys [1]. 

In the first place, typical nickel 200 (min Ni 99% wt.) is used in massive applications. For example, food 

and chemical processing equipment, electrical and electronic parts, aerospace components, caustic 

handling equipment etc. [2]. With copper adding, forming Alloy 400, Alloy R-405 etc. which are 

resistant to reducing acids and seawater. The Cupronickels could be obtained with a further addition 

of copper. If the molybdenum was added into nickel, Alloy B (like Alloy B-2, Alloy B-3 etc.) could be 

formed. The series of Alloy B is a binary alloy of nickel and molybdenum. It was found that this alloy 

has an excellent corrosion resistance to reducing acids and halogens (like Cl- and Br-). The third base 

for the Nickel-based alloy branch is Alloy 600, namely Ni15Cr8Fe (mass weight). With addition of 15% 

wt. Cr, the corrosion resistance at high temperature could be strengthen. From this Ni-Cr alloys family, 

five ways of alloy design could be proposed on purpose. Firstly, for the economical reasons, more irons 

are added. Maintaining a good corrosion resistance, Alloy 800, Alloy 800H and Alloy 802 are formed. 

In fact, Alloy 800 is no longer the Nickel-based alloy but could be considered Iron-based alloy. Since 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI050/these.pdf 
© [Z. Zhang], [2021], INSA Lyon, tous droits réservés



 XII  
 

the maximum iron content in the alloy reaches at 39.5 % wt., while that for nickel is just 35 % wt.  In 

the base of Alloy 800, with extra addition of molybdenum or copper, Alloy 825, Alloy G-3, Alloy G-30 

were designed for a special utilization in medium containing chloride. With much more addition of 

iron, the stainless steels are obtained. Secondly, with increase of chromium and addition of aluminum, 

there would be Alloy 601, Alloy 617 for high temperature applications. Thirdly, with the chromium 

content increases from 14% wt. to 30% wt., Alloy 690 is made to resist to oxidizing acid and to prevent 

Stress Corrosion Cracking (SCC). When the addition of chromium reaches up to 50 % wt., 50Ni50Cr is 

often used for fuel ash resistance. Fourthly, the Alloy 625, Alloy C-276 etc. have an increase of 

chromium and molybdenum, in comparison with Alloy 600. Those kinds of alloys are used in the acid 

environment with chloride ions. Finally, the mechanical properties of alloys are strengthened by adding 

titanium and aluminum. Alloy X-750 is formed. The superalloys could be formed with different 

elements, like cobalt, zirconium, tungsten etc. These last alloys are interesting because they provide 

tunable mechanical properties and good corrosion resistance even at high temperatures and in harsh 

environments. 

 

With this short context, it is obvious that alloying nickel with other elements is the main way to make 

Nickel-based alloys with enhanced corrosion resistance or mechanical properties. Chromium is one of 

the most important alloying elements which tends to form a stable passive film on the surface of alloys 

preventing a degradation of the alloy. However, the corrosion resistance or the properties of passive 

film do not increase linearly with the chromium content in the alloys. In addition, an exceeded 

chromium in the alloy which might influence other properties, like mechanical properties, or 

manufacturability of alloys. Consequently, other elements could be added to promote the mechanical 

properties, the production process or the welding ability. Therefore, the study of the role of alloying 

elements on Nickel-based alloys properties and corrosion resistance is always ongoing, for new alloy 

designing and service life prolonging. 

 

In this framework, the present study will focus on the passive behavior of Ni-based alloys and consider 

the role of alloying elements (specifically chromium and iron) on the passive film properties and 

reactivity. Consequently, the main objective of this work is to understand the role of the alloying 

elements on the passive film properties of Ni-based alloys. For that it was opportunity to develop a 

methodology based on electrochemical characterization and analysis. The proposed methodology is 

using successive electrochemical impedance spectroscopy measurements to follow the evolution of 

the passive film properties grown on different binary (Ni-Cr) and ternary (Ni-Cr-Fe) alloys at different 

potentials. The analysis of the impedance diagrams obtained are based on recent advanced data 

analysis (as described in Chapter II) and completed with microstructural characterization and X-ray 

Photoelectron Spectroscopy. Understanding how these alloying elements act on the passive film 

nature, structure and properties will give some guidelines to engineer and scientist for designing or 

choosing the more adapted alloys. 

 

The thesis is composed of six chapters: 

 

Chapter I presents a bibliographical introduction of the definition of passivity, the thermodynamics 

and kinetics of passivation, and the mechanisms of nucleation, growth and breakdown of passive film. 
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It is followed by the description of the most known models often used for passivation or oxidation 

study and prediction of passivity formation and breakdown. 

 

Chapter II is devoted to the description of the different characterization techniques employed in this 

work. It includes the technique for microstructural observation, surface analysis and electrochemical 

analyses. The principal theoretical approach for impedance diagram analysis will also be presented in 

this chapter. 

 

Chapter III is mainly focused on the development of methodology for analysis of passive film with the 

successive impedance measurements. Different experimental parameters, including dwell times, step 

sizes, scanning direction and the electrolyte aeration, were studied. Then passivation behavior of a Ni-

Cr model alloy in various solution with different pH values was studied using this method with validated 

and optimized parameters. It reveals that this experimental procedure provides supplementary data, 

such as the evolution of the passive film thickness, resistivity profiles through the film, in comparison 

with conventional polarization curves. 

 

Chapter IV is dedicated to the study of the role alloying elements on the passivation behavior of Ni-Cr 

based alloy on both passivation and secondary passivation domain. The role of the alloying elements 

on the process of the secondary passivation and especially on the chemical composition of the passive 

film was discussed. The result shows that the dissolution is increasing with higher Cr content in 

secondary oxidation domain and this phenomenon can be hindered by the addition of Fe. 

 

Chapter V shows the results of the application of method on commercial alloys, namely GILPHY 80, 

Inconel 600 and Inconel 625. One the one hand, the comparison of corrosion behavior of the alloys 

with the same chemical compositions was made. On the other hand, the cause of different corrosion 

behavior between model alloys and commercial alloys was discussed. It is found that the structure 

might have huge influence on passivation behavior when the composition of alloys is the same. 

 

To conclude, All the significant results of this work will be summarized. Also, some perspectives and 

future works are proposed in last chapter.  
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Chapter 1 Bibliographical review 
 

Chapter I firstly presents a bibliographical introduction of passivation: its definition and the 

mechanisms related to the nucleation, growth and breakdown. Then, a short review of the most 

commonly known models used for describing the passive state is introduced and discussed regarding 

the experimental technics.  

 

1.1 The passivity and passive film 
 

Faraday firstly reported the passivation phenomenon in his iron-in-nitric acid experiment in 1836. In 

this experiment, an iron bar corrodes concomitantly with the evolution of H2 in dilute nitric acid 

solution, while there is no reaction apparently observed in concentrated nitric acid [3]. Then, it is also 

evidenced that when there is anodic polarization applied on the metal in acid or neutral solution, the 

dissolution could be much limited. The presence of the oxidant or the polarization on the electrode in 

positive direction may promote that the metal surface reaches from an unstable state to a stable state. 

The phenomenon is called the passivation, the corrosion-resistant state is called passive state [4]. 

Passivity of metals or alloys is considered to be a key role in their use, since passive films formed on 

their surface give excellent protection against corrosion [5]. Generally, passive films have a duplex or 

bilayer chemical structure. The inner layer is mainly oxide, while the outer layer is hydrated composed 

by hydroxides or oxi-hydroxides, as shown in Fig.1. 1. 

 

Fig.1. 1 Representation for the bilayer structure of passive films [6]. 

Whatever the passive material considered, the passive films present common particularities [7]. Firstly, 

the passive films are generally very thin. Their thickness can vary from nanometers to micrometers, 

relying on the materials, the electrolyte and other film forming conditions. The thickness of passive 

films formed on transitions metals, like Fe, Cr, Ni, Co and Mo, is less than 10 nm (Fig.1. 2 (a)), while 

that formed on non-transitions and valve metals, such as Al, Ti, Zn, Cd, Cu, Mg and Pb, could be much 

thicker. Some examples of a passive film grown on steel and an anodic film on aluminum are presented 

in Fig.1. 2 (b). Secondly, the passive films should exhibit relatively low ionic conductivity, preventing 

the migration of ions (cations or anions) through the passive film and the transfer of cations in the 

electrolyte. Their electronic conductivity is also limited as they are oxides. Actually, the passive films 

are mainly made up of metallic oxides or hydroxides which are envisaged to possess semi-conductive 

properties or to behave as insulator. The oxides in passive films are often non-ideal or non-

stoichiometric. The deviation from ideal oxide or stochiometric oxide could come from the structure 

of the passive layer, polycrystalline or amorphous, or may result from the overall factors involved in 
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the film forming conditions (substrate chemical composition, physicochemical conditions…). The non- 

stoichiometry of the oxides corresponds to the presence of defects which act like dopants, inducing an 

additional charge into the oxide. An increase of defects, from the point of view of semi-conductivity, 

modifies the conductivity of the passive layer. For example, a positively charged oxygen vacancy or an 

interstitial cation within the oxide lattice could lead to an excess of electrons carried by the adjacent 

ions. This doping corresponds to n-type semiconductors, such as the passive film on Fe [8] and W [9], 

with a very high donor concentration. Conversely, a cation vacancy leads to a local deficit of electrons, 

causing extra electron holes. It results in as p-type semiconductors, like passive film on Ni [10] and Cr 

[11] etc., with acceptor concentration. Therefore, greater number of defects is, the more conductive 

the oxides are. In most of the studies, the densities of the majority charge carriers are of the order of 

1020 - 1021 cm3 suggesting that passive films are highly disordered semiconductors. Those electronic 

properties are expected to be crucially important in understanding the protective characters against 

corrosion of passive layer [12]. Hence, the study of the semi-conductivity of passive metals makes it 

possible to apprehend not only their ability to conduct current, but also their structure, as well as 

certain intrinsic properties, such as predominate sort of defect and defects densities etc.  [13]. Thirdly, 

the passive films have also very low chemical solubility, and are stable under a wide potential range. 

Finally, the passive films generally have certain mechanical properties to resist to scratching, abrasion, 

deformation... 

                                  

                                        (a)                                                                                                         (b) 

Fig.1. 2 (a) HAADF-STEM images of ASTM A416 steel following 24 hours immersion in simulated pore 
solution [14] and (b) SEM side view image of porous anodized aluminum oxide film [15]. 

Going further, different metals present different passivation ability. By considering their fundamental 

properties, P. Marcus [16] classified some metallic elements into two categories, namely passivation 

promoters and dissolution moderators. Since the combination of metal with O2- or OH- occurs after the 

breakdown of metal-metal (M-M) bond, the metallic elements that provide a strong metal-oxygen (M-

O) or (M-OH) bond energy are passivity promoters. While the dissolution moderators must have a high 

metal-metal (M-M) bond energy to avoid the formation of the metal-oxygen (M-O) or (M-OH) bond. 

The classification of two types of metallic elements is show in Fig.1. 3. It is worth mentioning that this 

classification is not only interesting for pure material but also for designing alloys. 
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Fig.1. 3 Classification of passivity promoters and dissolution moderators based on the synergy between 
the heat of adsorption of oxygen and the strength of metal-metal bonds [16]. 

Passivity promoters and dissolution moderators are separated by the relationship between the heat 

of adsorption of oxygen (∆𝐻𝑎𝑑𝑠) and metal-metal bond energy (휀𝑀−𝑀). It is clear that the metals in the 

upper left of the diagram (Cr, Al, and Ti), who exhibit an excellent combination ability of high heat of 

adsorption of oxygen and relatively lower metal-metal (M-M) bond strength, are ideal elements to 

promote the passivation. It is easy to break the metal-metal (M-M) bond and adsorb the oxygen (or 

OH), which is in favor of the nucleation of a passive film. On the contrary, another part in the diagram 

located in the upper right is for the dissolution moderators or blockers. The alloying elements in this 

area, like molybdenum, niobium, tantalum, display much higher heat of adsorption of oxygen (∆𝐻𝑎𝑑𝑠) 

and metal-metal bond energy (휀𝑀−𝑀) comparing with the elements of passivity promoters on the left.  

In other word, the metal-metal (M-M) bond of the dissolution moderators is much difficult to break. 

Moreover, it is also possible for the dissolution moderators to become passivity promoters, due to 

their high heat of adsorption of oxygen (∆𝐻𝑎𝑑𝑠). Lastly, it is interesting to mention that the elements 

of the lower left corner, such as iron, nickel, zinc and copper, are often used to be the base of alloys. 

 

1.2 The mechanism of passivation 
 

The dissolution-precipitation process is one of the possible mechanisms of formation of passive film. 

There are two steps involved, namely the dissolution of metal ions and the formation of the oxide on 

the metal surface. The two process could be concluded as (according to Fig 1.4 and 1.5 a divalent 

metallic cation is considered in the following equations): 

𝑀𝑚𝑒𝑡𝑎𝑙 → 𝑀𝑎𝑞
2+ + 2𝑒 (1.1) 

𝑀𝑎𝑞
2+ +𝐻2𝑂𝑎𝑞 → 𝑀𝑂(𝑜𝑥) + 2𝐻𝑎𝑞

+ (1.2) 
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Generally, the passive film is in some extent hydrated. In the nucleation stage, the passive film is 

completely hydrated. However, the film will become dehydrated and deprotonated once the 

precipitated film is growing on the metal surface. Especially, the inner face contacting with the metal 

is dehydrated because of the existence of high anodic electrical field [4]. The formation of passive film 
depends on the interfacial dynamic reactions, particularly anodic reactions that rely on the potential 

difference between metal and electrolyte, and also the pH value of electrolyte. The bipolar mechanism 

proposed by Sato [17] considering the process from active dissolution to the passive state is presented 

in Fig.1. 4. 

 

Fig.1. 4 The bipolar mechanism for metal passivation: (1) metal dissolution, (2) metal hydroxide 
precipitation, (3) formation of bipolar precipitates, (4) deprotonation and  (5) formation of double layer 
[17]. 

As depicted in Fig.1. 4, the first step of the passivation is dissolved metal ions combine with hydroxyl 

ions to form MOH+, assembling near the metal surface. The MOH+ will form metal hydroxide M(OH)2 

with a porous sol-gel structure, or salt precipitated film. Then, the non-aggressive oxyanions, like SO4
2-

, could be adsorbed on the solution side of the precipitated film. The outermost layer would convert 

from an anion-selective phase to a cation-selective phase, making the film become bipolarized, as 

presented in Fig. 1.4 (4). Finally, the precipitated film is modified as a metal dehydrated oxide film of 

MO or M2O3 with an outer hydrated layer M(OH)2 or M(OH)3. The outer hydroxide is supposed to be 

dissolved in acidic solution.  
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Fig.1. 5 Schematic representation of the film formation by metal ions dissolution (a) dissolved metal 
ions are captured to form the film (a’) bridging OH bonds between neighboring sites [18].  

Okamoto [18,19] proposed another model for explaining the effect of the potential and ageing for dry 

and wet corrosion conditions, as presented in the Fig.1. 5. First, the passive film generated in aqueous 

is assumed with a gel-like structure, containing bound water. The proton within the passive film will 

be ejected during the process of ageing or in presence of anodic polarization. After partial 

deprotonation, the dissolved metal ions form an intermediate MOH+, shown in the Fig.1. 5 (a). Then, 

since intermediate MOH+ is supposed to be captured by the neighboring water molecules, the surface 

of metal will be covered by solid film, which is illustrated in the Fig.1. 5 (a’). There are different 

connected bounds that could form between metallic ions and water, such as H2O-M-H2O, -HO-M-HO- 

and also -O-M-O-, considering the stage of deprotonation. In which, H2O-M-H2O structure is the most 

reactive part, while the least reactive part in the film is -O-M-O-. The final film composition will be 

reached after the successive deprotonations, according to the reactions: H2O → OH- + H+ and OH- → 

H+ + O2-. 

 

1.3 Thermodynamics and kinetics of passivation 
 

1.3.1 Thermodynamics of passivation: Pourbaix Diagrams 
 

Marcel Pourbaix has proposed to collect and represent the thermodynamic information for metal-

solvent system for different pH values as a function of potentials into a potential/pH diagram (also 

called Pourbaix diagram). Pourbaix diagram defines regions of pH and potential where the metal 

undergoes corrosion, is passivated or staying at a metallic state (immunity domain) [20]. The example 

of the Pourbaix diagram for iron in water is presented in Fig.1. 6. 
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(a)                                                                                          (b) 

Fig.1. 6 (a) Pourbaix diagram for iron at 25°C [21] and (b) Schematic Pourbaix diagram for iron 
illustrating the resolution of the Faraday paradox in the corrosion of iron in nitric acid [22]. 

First of all, when iron is in presence of water (deaerated or aerated), it reacts. Indeed, the metallic 

state is not thermodynamically stable with water and oxygen. In acidic or neutral solutions, the iron is 

corroded in the region as Fe2+ or Fe3+, as a function of the potential. Separately, corrosion will also 

happen in basic solutions by forming the complex anion HFeO2
-. In other cases, like with pH value 

between 8 and 14, the Fe2O3 and Fe3O4 iron oxides provide the passivity. 

 

Even though the Pourbaix diagram for iron indicates that iron is in the state of corrosion for pH lower 

than 8, it is experimentally found that there is a metastable passive state even for lower pH. This 

suggests that the existence of passive state is not only governed by thermodynamic considerations. 

Fig.1. 6 (b) presents the case of iron in nitric acid to illustrate that point (Faraday’s experiments). In the 

region where marked ‘dilute HNO3’, the iron is supposed to be at the state of Fe2+ due to weak oxidizing 

agent property of dilute HNO3, while the Fe3+ is assumed in ‘concentrated HNO3’ because of oxidizing 

property of concentrated HNO3. In this last case, NO3
- is reduced to HNO2 and this reaction is fast 

inducing the extension of the passivity region. It is then possible to form a metastable phase of Fe3O4, 

resulting in passivity. Moreover, Fe2O3 might evolve as an additional metastable phase of Fe3O4, if the 

potential is more positive. When the rate of formation or dissolution processes of metastable phase 

reaches an equilibrium, then a quasi-steady state can be achieved [22]. 
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Fig.1. 7 Pourbaix diagram for chromium at 25°C [23]. 

Another example is given in Fig.1. 7, presenting the Pourbaix diagram for chromium. On one hand, it 

is evident that the passivate state of Cr2O3 is thermodynamically stable only at pH values above pH 3–

5. However, it is experimentally proved that chromia may exist as a metastable state in highly acidic 

solutions, since chromium contained stainless steel is used in concentrated acid environment [24]. 

Consequently, the plotted region for the passivity of Cr2O3 under equilibrium conditions from Pourbaix 

diagram led to wrong conclusion for the use of chromium in acidic environment [23]. On the other 

hand, the Pourbaix diagram of chromium reveals that the chromium oxide is dissolve and out of 

stability with increased anodic potential (over 0.7 V vs. SHE). Hence, the chromium could be in state of 

corrosion as chromate ions, like CrO4
2-. The dissolution of passive film at anodic potentials is named 

transpassive dissolution and will be discussed later. 

 

Pourbaix diagrams are very useful tools for researchers and engineers. However, the Pourbaix 

diagrams exhibits limitations. One of these limitations remains in that they are often rigorously 

calculated for single elemental metals. In more complicated case as for alloys, Pourbaix diagrams can 

be superimposed onto each other in terms of different elements or determined from electrochemical 

polarization measurements [21]. However, the results of this superimposition are not always satisfying 

because the different kinetics of the reactions, preferential dissolution and the kinetics limitations are 

not taken into account.  

 

1.3.2 Kinetics of passivation 
 

As mentioned above, Pourbaix diagrams are helpful to find the corrosion behavior of various metals in 

many different systems. However, Pourbaix diagrams do not give any information about kinetics which 

are crucial to understand passivity. The passivity cannot be only determined from thermodynamic 

approaches. Furthermore, it is kinetic factors that define the passive state rather than thermodynamic 

equilibrium properties. Kinetic Stability Diagram (KSD) is developed to be alternative to the classical 
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Pourbaix diagrams, showing kinetic stability of passive state. A schematic KSD for a chromia oxide 

passive layer is illustrated in Fig.1. 8 [25]. 

 

Fig.1. 8 Primitive kinetic stability diagram for a hypothetical alloy with similar properties to Ni-Cr-Mo-
W-Fe alloys acidic solution with 6.256 m NaCl at 50°C. The passive state can exist only in the region 
indicated [25]. 

Fig.1. 8 could be divided into three parts. The top part is the transpassive state in increased anodic 

potential region, while the bottom part is the depassivated state at the most negative potentials for 

acidic solution. The passive film is stable between the depassivated and transpassive state. The 

boundary between the passive and depassivated states is defined by the pH or voltage, which is 

considered to be two independent variables. KSD indicates a passivated state at very low pH and within 

a wide range of potential while chromium is in state of corrosion at very acidic and cathodic potential 

range, according to Pourbaix diagrams of chromium in Fig.1. 7. In addition, KSD shown in Fig.1. 8 is 

used for predicting chromium oxide layer of alloy X (a hypothetical alloy with similar properties to Ni-

Cr-Mo-W-Fe alloys), and it is supposed to be employed for pure chromium but also for chromium-

containing alloys. Since a chromia passive layers can be expressed with a formula of Cr2+xO3−y, forming 

on many chromium-containing alloys such as stainless steels, Ni–Cr based alloys etc.  [25].  

 

However, even though KSDs are kinetic descriptions of the passive state, they do not provide kinetics 

information about the passive ability, behavior and steady state. Hence, to better understand the 

kinetics related to the passivation process, polarization curves are generally used to quantify the 

behaviors of metals under various conditions and determine the existence domain of passive state and 

the current density associated with the steady state passivity. Polarization curves for passive systems 

may show active/passive and/or passive/transpassive transitions, even secondary passivation domain 

and oxygen evolution. A schematic polarization curve is given in Fig.1. 9 below. 
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Fig.1. 9 State of a metal electrode (e.g.Cr, Fe) during voltammetric measurement [26]. 

From cathodic to anodic potential, the electrode begins to oxidize in active region associated with an 

increase of current. It corresponds generally to the first step of the passive film formation (Eq. 1.1). 

With a more anodic applied potential, the current starts to reduce, forming passive film (Eq. 1.2). 

During the passivation, the surface of electrode is covered progressively by the passive film according 

to the model proposed by Sato or Okamoto. When the current reaches its minimum value, the 

potential here is called Flade-potential. The passive film is completely covering the electrode. The 

passive domain is then defined by the length of the plateau with minimum current (in the order of 

magnitude of μA cm-2). If the electrode is a Ni-Cr based or Fe-Cr based alloy, the current will start to 

increase again when higher potentials is applied on its surface, and the electrode enters into the 

transpassivation region. The metal ions constituting the passive film will be oxidized to higher valences, 

which might cause change of film composition and/or the dissolution of film. It is hard to observe the 

potential thresholds between different reactions, since the corrosion current increases quickly in this 

region. After the transpassivation region, either the surface of electrode begins to passivate again (it 

will enter in secondary passivation region) or the dissolution still occurs. Finally, the oxygen evolution 

takes place and the current density of all the anodic reactions are added. In some cases, passive film is 

no more existing in this potential region according to the KSD. Fig.1. 10 evidences also that the passive 

ability of a material is closely related to the solution considered. 
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Fig.1. 10 Potentiostatic anodic polarization curves of cobalt in 1 h steady state in 0.15 M phosphate 
and 0.15 M borate solutions with acidic and basic pH values [4]. 

The shape of the polarization curves for a selected material is dependent on the experimental 

conditions. For example, as a function of the cathodic reaction, the active-passive transition is not 

always observed. Another example, the secondary passivation is not always detected and is closely 

related to the oxyanions nature or pH value [27,28].  

 

1.4 The breakdown of passivity 
 

As previously mentioned, even if the material is protected by a passive film, the protection can be lost 

with time or change of environment. The breakdown of a protective passive film can lead to the 

exposure of bare material surface to corrosive media and even accelerate dissolution of materials. 

Hence, the passivity breakdown is an important practical issue as well as a tricky scientific problem. 

The passivity can breakdown under some certain conditions. There are many reasons that may cause 

the chemical or electrochemical breakdown of passive film. 

 

1.4.1 Anodic dissolution 
 

As mentioned in the previous part, the transpassivation is activated at high anodic potential and linked 

to the anion presence and pH of the electrolyte. In this process, supplementary electrochemical 

reactions may take place and break the electrochemical equilibrium reached during the steady-state. 

The transpassive dissolution is the oxidation of the element in the passive film to a higher valence. 

These higher valence ions are generally more soluble or forming complex soluble ions. For example, 

the trivalent chromium in the passive film is oxidized to soluble hexavalent chromium in the 

transpassive potential range [20,29]: 

𝐶𝑟2𝑂3 + 4𝐻2𝑂 → 𝐶𝑟2𝑂7
2− + 8𝐻+ + 6𝑒−,   𝐸0 = 1.259 − 0.0788𝑝𝐻 + 0.0197 log(𝐻𝐶𝑟𝑂4

−) (1.3) 
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Consequently, the passive film is gradually dissolved into electrolyte in the transpassive potential 

range. Generally, the transpassive dissolution is more observable at substrate grain boundaries. In this 

potential range, the material is no more protected. 

 

1.4.2 Cathodic breakdown 
 

As shown in the KSD, at low potential, when system reaching the hydrogen evolution, it is also possible 

to weaken and modify the passive film.  Yet, this reaction is often observed at more negative potentials 

in presence of passive layer, due to overvoltage limitation. Hydrogen are generated from proton 

reduction. Protons could be discharged at interface between the electrolyte and passive film, and pass 

through the film to the metal surface by tunneling electrons or enlarging conductivity from weaken 

spots [30,31]. On the one hand, the solved hydrogen can weaken and reduce the oxide or make it 

dissolved into the electrolyte. On the other hand, the formation of hydrogen bubbles at the interface 

between oxide and metal can make the delamination of passive film. Furthermore, this process is 

generally associated with a local increase of pH value and current density.  

 

1.4.3 Localized corrosion 
 

If anodic and cathodic breakdowns could be considered electrochemical limitations of passive film 

existence, then localized corrosion is one of the most problematic issues regarding passivity 

breakdown. The passive films are susceptible to many kinds of localized corrosion, like pitting 

corrosion, crevice corrosion and intergranular corrosion etc. In the following part, the different 

mechanisms involved in localized corrosion are described. 

 

1.4.3.1 Pitting corrosion 

 

In some cases where there is the presence of aggressive ions in the electrolyte, like chloride, bromide, 

iodide or perchlorate ions, the passive film might breakdown and dissolve at exceeded critical potential 

value, because of the pitting corrosion. The aggressive ions might penetrate the passive film under 

high potential field by passing through the defects in the passive film. Once the film is locally destroyed, 

the dissolution from the bare metal happens. Pitting is a hazardous form of corrosion. Indeed, the 

nucleation and growth of pits is difficult to predict [32].  

 

The pitting susceptibility is influenced not only by the halides in electrolyte, but also by the chemistry 

of passive film which is related to the composition of alloys. For Ni-Cr alloy, it is reported that the 16 

wt.% Cr alloy was the most susceptible to metastable and stable pitting, whereas the alloy was almost 

unaffected by metastable or stable pitting when the chromium content increases up to 28 wt.% in the 

alloy [33]. Preferential interactions between Cl− and Ni2+ ions, which are incorporated in the passive 

film, are responsible for the increased pitting sensitivity. Hence, it is possible to evaluate the pitting 

susceptibility of the Ni-Cr alloys by measuring the ratio of chromium oxide and nickel oxide in the 

passive film. 
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In addition, the role of nanostructure of passive films is also considered for the passivity breakdown. 

The metastable pits of Ni (111) single-crystal surface in atomic scale were studied by Electrochemical 

Scanning tunneling microscopy (ECSTM). The STM topographic images of the metastable pits formed 

on passivated Ni (111) exposed to chloride were illustrated in Fig.1. 11. In Fig.1. 11 (a), local areas 

where the substrate has been attacked were observed, while Fig.1. 11 (b) shows a magnified image of 

the nucleation site of a single pit. 

  

Fig.1. 11 STM topographic images of the metastable pits formed on passivated Ni(111) in acidic 0.05 
M NaCl. The indicated crystallographic directions and marked the grain boundaries of the passive film  
are also reported [34]. 

The STM topographic images illustrate the formation of pits at the grain boundaries of the passive film. 

A representation of the pitting corrosion mechanism is shown in Fig.1. 12. 

 

Fig.1. 12 The effect of chlorides on the local breakdown of passivity driven by the potential drop at the 
oxide/electrolyte interface of an intergranular boundary of the barrier layer [35]. 
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Cl- ions tend to compete with OH- for adsorption on metals or alloys surface. The soluble complexes of 

Me–Cl- or MeO(H)–Cl- form, once Cl- are adsorbed on the oxide surface. As a result, the dissolution rate 

at local sites increases while the growth of passive film is hindered. It leads to a faster thinning of the 

passive layer and localized depassivation in the less resistive sites. After local passive film rupture, Cl- 

continues to compete with OH- for adsorption on surface site. It is easier for Cl- to adsorb on substrate 

depassivated surface, due to stronger electronegativity of Cl- than that of OH-. Consequently, 

repassivation of matrix becomes difficult because Cl- blocked the supply of OH- and pits may grow. 

 

1.4.3.2 Intergranular corrosion 

 

Intergranular corrosion is a form of corrosive attack that progresses preferentially at grain boundaries. 

In general, a significant material loss may not occur. To identify this type of corrosion, microstructure 

examination under a microscope is usually required. The attack of intergranular corrosion results from 

local differences in composition or grain boundary precipitation. For stainless steel or Ni-Cr alloys, 

intergranular chromium carbides precipitation is mainly responsible for intergranular corrosion. The 

precipitation of chromium carbides consumed neighboring chromium along the grain boundary, 

resulting in chromium depletion zone which may play a role in anode during corrosion process. While 

the core of the grain nearby or the carbide itself act as cathode. Consequently, chromium depletion 

regions will be attacked preferentially during corrosion. Moreover, the passive film grown on the 

chromium depleted zone do not exhibit the same properties than elsewhere resulting in a greater 

susceptibility to breakdown. Fig.1. 13 depicts the formation of the Cr depleted zone around the Cr 

carbides precipitates.  

 

Fig.1. 13 Representation of chromium carbide Cr23C6 precipitation and associated chromium depletion 
at the grain boundaries [36]. 

There are many factors that have influence on susceptibility to intergranular corrosion, carbides 

precipitation, grain to grain disorientation, grain boundaries chemical quality… Li et al. found that 

susceptibility to intergranular corrosion of a sensitized 316L stainless steel decreases as the grain size 

increased [37]. The observed surface obtained after a Double Loop Electrochemical Potentiokinetic 

Reactivation (DLEPR) test on 316L stainless steel with various grain sizes are displayed below. It is found 

that no intergranular corrosion is observed in the sample of 173 µm. Besides, precipitations are 

decreasing with increasing of average grain size. 

 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI050/these.pdf 
© [Z. Zhang], [2021], INSA Lyon, tous droits réservés



 14  
 

 

Fig.1. 14 Microstructures of sensitized at 650°C for 50 h 316L stainless steel with different grain sizes 
(a) 55 µm (b) 77 µm (c) 110 µm (d) 173 µm after the DLEPR test [37]. 

In addition, different microstructures will also affect susceptibility to intergranular corrosion. It 

reported that intergranular corrosion on austenitic stainless is much slower than that on ferritic 

stainless steel, due to slow kinetics of diffusion and precipitation [38]. 

 

Some solutions could be adopted to prevent or decrease the susceptibility of intergranular corrosion. 

For example,  it was found that intergranular corrosion could be reduced by decreasing carbon content 

to around 0.002 wt.% [38]. Also, addition of stabilizer elements, like Ti, can promote better 

intergranular corrosion resistance. Because precipitation of titanium carbides can reduce the 

formation of chromium carbides [39]. Moreover, performing heat treatment that can decrease the 

carbides precipitation and susceptibility of alloys to intergranular corrosion [40]. 

 

1.4.3.3 Crevice corrosion 

 

Crevice Corrosion is a localized corrosion occurring at gap or crevice between two joining surfaces. It 

can happen on metal-metal or metal-non-metal junctions. Crevice corrosion is generally initiated by a 

difference in composition between the occluded and the bulk solutions, especially in terms of O2 

concentration [41]. It results in an electrochemical concentration cell (differential aeration cell in the 

case of oxygen). A representation of crevice corrosion is given in Fig.1. 15. 

 

Fig.1. 15 Schematic of crevice corrosion [42]. 
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Besides, there are other considered factors that have important effects on crevice corrosion, including 

crevice type, composition of alloys, crevice geometry and solution, electrochemical reactions and mass 

transport process etc. The information in detail is show in Fig.1. 16.  

 

Fig.1. 16 Considered important factors for crevice corrosion [43]. 

 

Crevice corrosion is dangerous because even passivatable alloys used for mechanical joints in 

engineering structures could be rapidly destroyed due to crevice corrosion [44]. A great number of 

studies concerning crevice corrosion of stainless steels and nickel alloys were performed, especially 

the role of alloying elements [43,45,46]. It is known that Cr may enhance corrosion resistance of alloys 

under oxidizing conditions, while Mo is a beneficial alloying element for reducing conditions. It is found 

that Cr content is more responsible for limiting the crevice corrosion initiation, whereas Mo content 

will affect the corrosion damage within the occluded crevice. The corrosion propagates preferentially 

parallel to surface when there is high Mo content, while the corrosion will grow into the alloy if there 

was low Mo content in the alloy [43]. Among other alloying elements, W can impact initiation and 

repassivation crevice temperatures [46], and Cu has no obvious effect on crevice corrosion resistance 

[47]. 

 

1.4.4 Synergetic effect inducing passive film breakdown 
 

When the materials are exposed in a certain working environment, the passive film might breakdown 

because of aggressive species from the environment or mechanically assisted factor, and their 

synergetic interactions. 
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1.4.4.1 Stress Corrosion Cracking (SCC) 

 

The breakdown of passive film related to the SCC involves both mechanical and chemical contributions. 

Indeed, SCC occurs on a certain given working environment [48] : the concept of the multicomponent 

combination of material, environment and stress loading is displayed in Fig.1. 17. Note that SCC occurs 

in combined and synergistic interactions among environment, material and stress state, indicated by 

the common area of three circles. SCC study concerned with the link among the three essential factors, 

since SCC only occurs when three prerequisite conditions are satisfied simultaneously. SCC process will 

be affected once one of these factors is changed. 

 

Fig.1. 17 Environment-material- stress combining system and susceptible domain of SCC occurrence. 

Regards to the process of SCC, the schematic is shown in Fig.1. 18. SCC process consists of three parts, 

namely incubation period, crack initiation and crack propagation. 

 

Fig.1. 18 The four stages in the initiation and propagation of stress corrosion crack [21]. 

Crack initiation and propagation involve four steps as depicted in Fig.1. 18 (in which σ is the direction 

of applied stress). The first step is localized breakdown of the passive film due to mechanical damage 

or to chemical attack by aggressive ions. The second step concerns to the pit or defect formation after 

the rupture of passive film and without a repassivation process, followed by the third step related to 

initiation and growth of a stress-corrosion crack. Finally, the last step is more about the propagation 

of the crack that may provoke rupture of the material. The crack growth rate is strongly dependent on 

the applied stress intensity. Note that some systems do not tend to pit, such as titanium, but a SCC will 

nucleate from fatigue crack [21]. In SCC process, there is always a competition between dissolution 

and repassivation, and also between crack growth rate and repassivation. 
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Metallurgical variables, such as alloy composition [49], microstructure [50], grain size [51], and 

microchemistry [52] can have influence on SCC resistance. The strength of alloys can be controlled by 

composition and microstructure, and SCC susceptibility generally increases with increasing strength 

[53]. An example of the correlation between the SCC resistance and strength is given below. X70 steel 

becomes less resistant to SCC after water-quenching treatment with enhanced strength. Moreover, 

physicochemical conditions, including pH value, oxygen concentrations or temperature affects 

straightforwardly the SCC resistance [53]. 

 

 

Fig.1. 19 SCC resistance evolution trend with strength of pipeline steels [50]. 

 

1.4.4.2 Corrosion fatigue 

 

Generally, the fatigue failure happens after a large amount of cycles of loading. The fatigue failure is 

mainly owing to the critical crack which could not sustain the next cycle of mechanical load anymore 

[54]. Localized plastic deformation will cause fatigue crack during cyclic straining. The main question 

concerning to the fatigue corrosion is the fatigue crack initiation. In recent literature, crack incubation 

and crack formation are also used interchangeably to describe this process [54]. It is not like SCC that 

can be either intergranular or transgranular. In general, fatigue is transgranular unless it is coupled to 

SCC. Moreover, true corrosion fatigue must display the typical striations of fatigue, which could be 

ductile or brittle [55]. The comparison among corrosion fatigue and other modes of corrosion is shown 

in Fig.1. 20. The characteristic ductile or brittle striations are also displayed. Brittle striations form 

planes corresponding to single grains all together to the maximum tensile stress direction, while ductile 

striations present concentric circles departing from the initiation site [55]. 
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                                     (a)                                                                              (b) 

Fig.1. 20 Representation of (a) true corrosion fatigue comparing with other modes of environmental 
aggression and (b) difference between ductile (left) and brittle (right) striations [55]. 

 

1.4.4.3 Tribo-corrosion 

 

Tribo-corrosion is defined as the degradation of a material caused by simultaneous mechanical and 

chemical or electrochemical removal [56]. In general, when a passivatable metal or alloy is subjected 

to sliding wear in a corrosive environment, the surface will be scratched and the underneath material 

dissolves. In some cases, a new oxide film grows quickly and limits the dissolution. The degradation 

caused by tribo-corrosion is often expected occurring when mechanic and environment act 

synergistically. The local abrasion of the passive film, the corrosion products during abrasive action 

and the plastic deformation of the surface layer could be factors that accelerate or reduce the wear 

processes [56]. In Fig.1. 21(a), the passive material can generate passive layer on its surface. When the 

passive layer is removed by mechanical movement, bare material is exposed resulting in corrosion. 

Then a new passive film will grow again on the surface when the mechanical wear stops. Fig.1. 21(b) 

depicts the case of abrasion caused by corrosion products. In this case, solid corrosion products from 

mechanical wear in Fig.1. 21(a) was left on the surface. The debris are called ‘third body’, and they are 

considered to cause abrasions on bare material [57]. 

 

Fig.1. 21 Synergistic effect of corrosion on wear and vice versa. (a) Corrosion accelerated by friction. (b) 
Abrasion accelerated by corrosion products [57]. 
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To study tribo-corrosion, many mechanical parameters need to be taken into account, including sliding 

distance, sliding velocity, normal load and roughness of the counterpart. For example, the 

depassivation rate is critically affected by the sliding velocity and roughness of the counterpart [58]. 

An example is given in Fig.1. 22 below. The wear track formed on AISI430 steel against by rough and 

smooth counterpart is presented in Fig.1. 22. It is found that there are obvious scars on the surface of 

AISI430 after rubbing with rough alumina ball. Furthermore, there is plenty of debris particles left after 

the test. As described above, these third bodies will also have influence on depassivation of materials. 

By contrast, the surface of sample is much smoother and less debris particles remained after rubbing 

with smooth ball, showing in Fig.1. 22 (b). Besides, the microstructure of material [59], passive layer 

properties [60] and the electrolyte pH values [61] influence consequently the tribo-corrosion process. 

Moreover, the tribo-corrosion damaging process could also be time-dependent. With variation of pH, 

surface reactivity, film thickness and chemistry can be modified during the experiment, resulting in a 

modification of the wear behaviour [62]. 

 

         

Fig.1. 22 SEM images of wear track on AISI430 steel after rubbing against a rough (a) and a smooth (b) 
alumina counterpart with 10 N normal force in acidic solution. The sliding direction is indicated by 
arrows [58]. 

1.4.4.4 Microbiologically induced corrosion (MIC) 

 

In the environment where bacteria are present, the passivity could also be affected. The sulphate-
reducing bacteria (SRB) are considered as the main corrosive species involved in microbiologically 
induced corrosion (MIC) materials’ degradation [63]. With the increase number of bacteria prolifering, 
the interface between passive film and electrolyte is changed, resulting in inducing or accelerating the 
corrosion process [64]. Indeed, the bacteria will release metabolites when they are in contact with the 
surface. Furthermore, the structure and properties of the passive film could be also changed, with the 
influence of sulfidation from SRB [65]. A schematic of corrosion and biofilm formation process on X80 
steel in SRB inoculated seawater is shown below in Fig.1. 23. 
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Fig.1. 23 Representation of biofilm formation and corrosion process at (a)the early stage, (b)middle 
stage and (c) final stage of X80 steel in SRB inoculated seawater [66]. 

In the first stage depicted in Fig.1. 23 (a), the bacteria mainly float in the solution, and gradually form 

microbial colonies producing extracellular polymer substances (EPS) which are resistant to corrosive 

ions and inhibit the corrosion of X80 steel. Then, in the second step, uneven biofilm forms on the steel 

surface with quick proliferation of bacteria. Meanwhile, S2- reacts with Fe2+, and forming FeS which 

adheres to the surface of the substrate, resulting in a localized corrosion cell. When there is existence 

of Cl- in the solution, formation of pitting will be induced in the localized cell. In the last stage, SRB 

metabolites deposit on the steel surface, and a complete biofilm formed, which can inhibit uniform 

corrosion process in some extent. However, the biofilm is loose and porous. This heterogeneity can 

facilitate pit nucleation. 

 

1.5 The models to study passivation behavior 
 

In the previous part, the concept of passivity has been described. Thermodynamic and kinetic 

approaches were presented to define the existence of passive film. And finally, the nucleation, growth 

and breakdown mechanisms were displayed. However, to complete our understanding of the passivity, 

it is necessary to develop conjointly experimental procedures, data analysis and numerical modelling. 

Nowadays, the main purpose of passivation studies relies on a better understanding of both physical 

and chemical properties of passive films by various techniques. As mentioned before, passive films are 

generally very thin and not visible to naked eyes. They must be studied by special surface analytical 

techniques to characterize their composition, their thickness and their structure. X-ray photoelectron 

spectrometry (XPS) can provide the information about the elemental compositions and the detected 

oxidation state [67–69]. X-ray absorption spectroscopy (XAS) presents the information about metallic, 

oxides and hydroxides separately [70,71]. The secondary ion mass spectrometry (ToF-SIMS) could be 

used for the chemical profiling of thick layers and their chemical imaging [72–74]. The atomic force 

microscope (AFM) could be for the analysis of passive layer morphology at the nanometric scale 

[75,76]. While it is possible to employ the scanning tunneling microscopy (STM) to characterize 
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crystalline structure [77,78]. The electrochemical techniques contribute to characterize the resistance 

to corrosion but also evidence some physical properties of the passive layer as well as its reactivity. 

Linear sweep voltammetry (LSV) could be used to obtain the polarization curves [79,80], and 

electrochemical impedance spectroscopy (EIS) helps to determine the corrosion resistance and 

electronic/physical properties [81–83]. Mott–Schottky (M-S) is employed for determining their semi-

conductive properties [84,85]. With the help of characterization techniques for studying passive film, 

the relationships among compositions of passive film, passive state and even type of semi-conductivity 

and defects concentration could be postulated. The analyses of these experimental data can provide 

crucial information on the passive behavior of materials and the properties of passive film but are often 

limited by the experimental conditions (short durations tests, applied potential, scan rate…) and do 

not allow to predict long term behavior of a material (even more in a fluctuating environment). 

Consequently, it is necessary to develop models that allow to put into equations the different 

processes occurring during nucleation, growth, steady state and breakdown of passive film, to predict 

the behavior of passive material. In the following part, the most common model use to describe the 

passive state and behavior are briefly reported. 

 

1.5.1 High-Field Model (HFM) 
 

In the High Field Model, it was firstly assumed that there is a high electric field in the film acting as 

driving force for change carriers transport, and the potential drop across the oxide film [86]. N. Cabrera 

and N. F. Mott [87] proposed a hypothesis that a strong field exists in the oxide film, due to a potential 

difference between metal and adsorbed oxygen on its surface, which enables the metal ions to move 

through it.  A schematic diagram for the mechanisms is illustrated in Fig.1. 24. 

 

Fig.1. 24 Representation of the mechanisms by which ions leave a metal and pass through the oxide 
layer [87]. 

From their point of view, the formation of passive film at low temperature follows a logarithmic growth 

law,  

1 𝑋 =⁄ 𝐴 − 𝐵 ln 𝑡 (1.4) 

𝑋 being the thickness at time 𝑡.  

 

For sufficiently high temperatures, the films tend to be thicker, the oxidation will conform to the 

parabolic law, and expressed as: 
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𝑋2 = 2𝐴𝑡 (1.5) 

where 𝑋 is the thickness of film at a time 𝑡 after exposure to air and 𝐴 is a constant. 

Some assumptions were made to deduce the parabolic law: 

- Both metal and oxygen are soluble within the oxide. There is a local thermodynamic equilibrium at 

both interface metal/oxide and oxide/air. 

-The diffusion of metal or oxygen through the oxide layer under a concentration gradient which is 

proportional to 1 𝑋⁄ ; the rate of growth 𝑑𝑋/𝑑𝑡 is thus proportional to 1 𝑋⁄ , and integration gives the 

parabolic law. 

𝐴 = 2𝐷𝑒𝛺[𝑛𝑒(0) − 𝑛𝑒(𝑋)] (1.6) 

Where 𝐷𝑒 is the diffusion coefficient of the interstitial ions, 𝑛𝑒(0) is the concentration of metal atoms, 

𝑋 is the thickness and 𝑛𝑒(𝑋) is the concentration of dissolved metal at the oxide-air interface. 

 

According to the statements, electrons can pass the film easily, but ions can only penetrate it and 

migrate in the presence of a very strong electric field which supposed to be constant. 

 

1.5.2 The Point Defect Model of the passive state (PDM) 
 

The first generation Point Defect Model (PDM) was proposed by Digby D. Macdonald and his group in 

the early 1980s [88,89]. PDM is one of the main predictive models for passivation, it is used to describe 

the maintenance of passive film from growth to a steady state and even failure in the corrosive 

medium. 

 

From the PDM point of view, passive films are described as a bilayer structure, consisting of a compact 

inner oxide layer generated at the metal surface and a porous outer hydroxide layer between the 

primary passive layer and the solution as presented in Fig.1. 25. Most of the electrochemical reactions 

take place at the metal/primary passive film and primary passive film/upper layer film interfaces. 
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Fig.1. 25 Schematic of formation processes of bilayer passive films on surface of metal [90]. 

The PDM has been developed from the first to the third generation, the main assumptions of the three 

generations are listed below [88,89,91,92]: 

 

 The passive film is composed of the inner oxide (a barrier layer containing defects, cationic 

vacancies, anionic vacancies or even interstitial cations) and an outer layer without defect, 

resulting from the precipitation of cations on the surface. 

 

 The defects are generated and annihilated at the interface between the substrate and oxide 

film (barrier layer), or at the interface between the oxide film and the outer layer. The 

schematic reaction for the seven point-defect reactions occurring at the interfaces of the 

barrier layer is presented in Fig.1. 26. 

 

 The strength of the electric field is constant in the film and does not vary with the potential. 

Thus, the variation of potential in the film is linear with the distance. 

 

 The potential gradient is considered through the passive film. Moreover, the potential drop 

varies linearly with pH and applied voltage. 

 

 The thickness of oxide film also varies linearly with pH and applied voltage. 

 

 The current at steady state for n-type oxide film is independent of the applied voltage, while 

that for p-type oxide is exponentially dependent with the applied voltage. 
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 The outer layer of passive film also contributes to potential difference and passive current 

density. 

 

 The ohmic potential-drop (IR) is partially responsible for the potential difference which is the 

driving force for film growing. 

 

 

Fig.1. 26. Summarized PDM-II for the description of defect generation and annihilation at the interfaces 

of oxide layer and metal. 𝑉𝑀
𝑥′≡ cation vacancy, 𝑀𝑖

𝑥+≡ cation interstitial, 𝑉𝑚 ≡ vacancy in metal phase,  

𝑉𝑂
∙∙ ≡ oxygen (anion) vacancy, 𝑀𝛿+(aq) ≡ cation in outer layer/solution interface, 𝑀𝑀 ≡ cation in cation 

sublattice, 𝑂𝑂 ≡ oxide ion in anion site on the anion sublattice, 𝑀𝑂𝑥/2 ≡ stoichiometric barrier layer 

oxide.  

In Fig.1. 26, reactions 1-3 happen at the interface between the metal and the barrier layer, while 

reactions 4-7 occur at the interface between the barrier layer and the precipitated layer. In reaction 1, 

metal vacancies in the oxide are consumed at the interface between the metal and barrier film by the 

oxidation of the substrate. There are amounts of generated electrons that equal to the oxidation state 

in the oxide, corresponding to the charge of the metal vacancies (χ). These metal vacancies VM
x′ are 

produced at the interface between the outer layer and solution by the reaction 4 where the metal ions 

from oxide are ejected. The charge of the dissolved species(δ) at the interface between the outer layer 

and solution are produced. Consequently, (δ-χ) electrons are generated. The reaction 2 is concerning 

to the injection of metal interstitials at the interface between the metal and barrier film into the oxide 

network. The cations are injected into the interstitial site of oxide crystal, generating electrons. In 

parallel, like reaction 4, the reaction 5 reveals the process of the transfer of these interstitial ions from 

oxide film to outer layer. The growth process of barrier layer into the metal is concluded by the reaction 

3. During this process, oxygen vacancies 𝑉𝑂
∙∙ and electrons are generated. The oxygen vacancies are 

consumed at the interface between the barrier layer and electrolyte, as seen in reaction 6. Finally, the 

dissolution of passive film is demonstrated in reaction 7. The film dissolves at the interface between 

the barrier layer and the electrolyte. It is noting that reactions 1, 2, 4, 5 and 6 are conservative whereas 

reactions 3 and 7 are nonconservative. The conservative reactions concerning the transport and 

movement of ions within the passive film, while nonconservative reactions are to maintain finite 
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thickness of passive films. Reaction 3 is for the generation of film whereas reaction 7 results in the 

dissolution of passive film.  

 

There are over 30 kinetics, physics and diffusion parameters involved for modelling passive process 

with PDM [93]. It obviously increases the difficulties for modelling since each change of parameters 

could make the ideal fitting results far away from the experimental data. Nevertheless, the PDM has 

been successfully employed for the study of passive films formed on different materials such as iron 

[94], tungsten [95], zinc [96], titanium [97–100] and 316L stainless steel [101], and also different types 

of corrosion cases [88,102–106]. 

 

1.5.3 The Mixed Conduction Model (MCM) 
 

The Mixed Conduction Model (MCM) was developed for assessing quantitative information for the 

transport parameters of passive film, and it was mainly applied on studying electrochemical behavior 

of nickel and iron based alloys [107,108]. Also, this theory has been introduced to study the oxide film 

formed at high temperature [109,110]. The MCM takes basic concepts from the PDM, but there are a 

few other assumptions proposed, making it different from the PDM.  

 

The passive film is considered as a homogenous single-phase oxide, and hydroxide is excluded in the 

MCM. In the MCM, the transport of ionic species is influenced by the electric field strength. 

Furthermore, the MCM emphases on low potential field at room temperature, whereas the high 

potential field is used at high temperature. The MCM considers that the conductivity of the passive 

film is linearly dependent on the concentration of ionic defect. For general transport description, the 

Fromhold–Cook equation are employed instead of the Nernst–Planck equation. The simplified 

schematic system for the MCM is illustrated in Fig.1. 27 below:  

 

Fig.1. 27 The schematic reactions at interface between oxide film and metal and interface between 
oxide film and electrolyte [107].  
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At the interface between the metal and anodic oxide film, the annihilation of metal vacancies occurs 

concomitantly with the injection of interstitials metal ions and oxygen vacancies. The migration of 

defects is supposed to proceed in the anodic oxide film, with the assistance of high electrical field. At 

the interface between the oxide film and electrolyte, cation vacancies are generated from the ejection 

of metal ions from their positions in the oxide lattice in reaction (1.7.1). The dissolution of interstitials 

is presented in (1.7.2).  

𝑀𝑀
𝐼𝐼𝐼  

𝑘3
→ 𝑉𝑀

3− + 𝑀𝑎𝑞
3+ (1.7.1) 

𝑀𝑖
2+  

𝑘3,𝑖
→  𝑀𝑎𝑞

𝑥+ + (𝑥 − 2)𝑒− (1.7.2) 

The dissolution of the oxide film is illustrated in reaction (1.8) to keep the balance between the steady 

state of the oxide film and growth reaction. 

𝑀2𝑂3 + 6𝐻
+  
𝑘4
→ 𝑀𝑎𝑞

3+ + 3𝐻2𝑂 (1.8) 

 

1.5.4 The Generalized Model (GM) 
 

The GM was developed for modelling the oxide growth kinetics, considering the evolution of the 

interfacial potential drops during the oxide growth. It is worth mentioning that the parameters relative 

to the substrate composition and the limited growth because of the flux of oxygen vacancies through 

the film are considered in GM, in comparison with PDM. The generalized oxide growth model considers 

the non-stationary conditions of oxide growth, for example, potential drop evolution at the interface 

between the oxide and electrolyte, and evolution of the electric field within the film during oxide 

growth. Also, it includes all the reactions occurring at the interface between the metal and oxide film 

and the interface between oxide film and electrolyte. Finally, the balance between the oxide film 

growth and release of alloying elements into the solution is considered as well. The interfacial reaction 

scheme is presented in Fig.1. 28. 

 

Fig.1. 28 Schematic for reaction and transport processes at metal/oxide and oxide /electrolyte 
interfaces during the growth of the oxide layer [111]. 
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Several interfacial reactions are presented in the scheme. At the interface between the metal and 

oxide film, (a) Insertion of cations into a cation vacancy, (b) Formation of oxygen vacancies and (c) 

Insertion of cations into an interstitial site of the oxide. At the interface between the oxide film and 

electrolyte, (d) Cationic dissolution with creation of vacancies, (e) Formation of cation vacancies, (f) 

Dissolution of cations in interstitial position, (g) Growth of the oxide by reaction of an interstitial cation 

with H2O, (h) Insertion of oxygen by replacement of an oxygen vacancy and (i) Electrochemical 

dissolution of the oxide. 

 

Fig.1. 29 Change of the steady state when increasing the electrode potential [112]. 

Fig.1. 29  shows the principal hypothesis on the evolution of the potential drop across the oxide film. 

The electric field in the film is constant at steady state (in red), while that changes under non-steady 

transient state (non-steady, in blue) conditions. The potential drop will go back to its original place 

once steady state is reached again. During this process, the ions transport will be introduced with the 

increase of the electric field, resulting in the increase of the film thickness. In addition, the dissolution 

of oxide might occur at the interface between the film and electrolyte, leading to an increase in the 

electric field. As a result, the oxide thickness increases. The steady state will be achieved again when 

the dissolution rate of oxide equals to the formation rate at the considered electric field. 

 

1.5.5 Diffusion Poisson Coupled Model (DPCM) 

 

The Diffusion Poisson Coupled Model (DPCM) is the model developed, and aiming to modelling the 

corrosion behavior of iron based alloy for nuclear waste repository under anaerobic conditions in 

anoxic groundwater [113]. DPCM is similar to PDM and MCM except for the potential profile through 

the oxide. PDM and MCM consider that the potential linearly changed with the distance within the 

oxide whereas that for DPCM is calculated with the Poisson equation given below, and the potential 

profile is presented in Fig.1. 30. 

∇2∅ = −
𝐹

χχ0
∑𝑧𝑖𝑐𝑖 −

𝜌ℎ𝑙
χχ0𝑖

(1.9) 
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Where ∇2 is the Laplacian. χ and χ0 is corresponding to the dielectric constant of the oxide and the 

vacuum dielectric constant, respectively. 𝐹 is the Faraday constant. 𝑐𝑖 is the concentration profile of 

the charge carrier within the oxide and 𝑧𝑖  is its charge. 𝜌ℎ𝑙 is the net charge density of the lattice which 

is assumed to be homogeneous. 

 

Fig.1. 30 Potential profile in the solution/oxide layer/metal system from DPCM [113]. 

In the DPCM, the interfaces of the iron oxide layer are moving. They are denoted by the outer interface 

Xo(t) (oxide/solution) and the inner interface X1(t) (oxide/metal). There are three charge carriers taken 

into account within the oxide layer, they are electrons, cations (Fe3+) and oxygen vacancies (VO
∙∙). The 

boundary conditions for densities of these three charge carriers are linear convection–diffusion and 

coupled with a Poisson equation for the electrical potential. The boundary conditions for the Poisson 

equation considered that the metal and the solution could be charged because of their electronic and 

ionic properties and this accumulation of charges is described with the Gauss law. Moreover, these 

accumulations of charges depend on the voltage drop at the interface by the usual Helmholtz law 

which links the charge to the voltage drop through a capacitance. Finally, the evolutions of a dense 

oxide layer, corrosion rate etc. with pH value and time were obtained proving the efficiency of the 

model [114]. 

 

1.5.6 The Coupled Current Charge Compensation model (C4) 
 

The Coupled Current Charge Compensation (C4) model is developed for describing differentiated 

oxidation kinetics in zirconium based alloys [115]. The C4 model assumes that space charges are 

created by doping of zirconium oxide or by alloying elements, which creates oxygen anion vacancies 

in the oxide. The C4 model mainly based on the framework of Fromhold for describing mobility 

equation relating the fluxes to the electric field and charged species concentrations. The relation is 

defined in the equation (1.10) and schematic of the oxidation process of zirconium alloys is shown in 

Fig.1. 31. 

𝐽𝑠 = 𝑔(𝐸, 𝐶𝑠) (1.10) 

Where g is an integral function. 
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Fig.1. 31 Scheme of the discrete lattice and the effect of the built-in electric field on the potential energy 
diagram [115].  

The oxidation process can be conceptually divided into several steps, as presented in Fig.1. 31. Firstly, 

oxygen in the water molecule dissociates and is adsorbed onto the oxide layer surface (Fig.1. 31, 

reactions 1 and 2). Because of the defect concentration gradient, the oxygen anions diffuse either 

through the bulk of the oxide or along the oxide grain boundaries. When the oxygen anion reaches the 

oxide–metal interface, it reacts with Zr cations to form new oxide (Fig.1. 31, reactions 3 and 4). The 

formation of this new oxide releases electrons, which then migrate through the oxide to reduce the 

hydrogen ions at the cathodic site (Fig.1. 31, reaction 5) 

 

The C4 model proved that the effect of space charges is compensated by oxidized Nb3+ in solid solution, 

resulting in near parabolic oxidation kinetics. On the contrary, if there are no enough oxidized alloying 

elements presented in the oxide to compensate space charge, it was expected having sub-parabolic 

kinetics in the case of Zircaloy alloys. Moreover, the C4 model has also been successfully applied on 

oxidation and hydriding kinetics of Zr–0.5Nb and Zr–1.0Nb alloys for hydrogen pickup, which 

considered the proton migration energy closed to transition in oxidation kinetics [116]. 

 

1.5.7 Short conclusions on model for passive phenomenon 
 

From the first proposed passive film growth model of HFM to the three generation of PDM, and later 

MCM, DPCM and GM, even C4, the development of growth model for passive film has been conducted 

by international researchers and are still ongoing. In the first, HFM was fail to account steady-state and 

pH effect, but also complex alloys. Then both PDM and MCM are restricted to certain applications due 

to the free adjustable parameters electric field and outer layer polarizability [113]. Later, the DPCM 

was proposed to integrate Poisson equations for the electric potential. GM is the model dedicated for 

non-stationary system while other models consider quasi-steady-state. C4 is the model that takes into 

account the creation of space charge which is one of most important parameters for passive film 
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properties, but this model is only used on Zr alloy yet. For further development of models, more 

experimental data might be needed and the schematic for synergy between models, passivation 

mechanisms and experimental data could be displayed as below. 

 

Fig.1. 32 The flowchart for synergy relationship among models, mechanisms and data [117]. 

It is found that to model corrosion mechanism, the process of data gathering is important. The 

characterization techniques, like XRD, XPS, XANES and TEM etc., help to recognize valence states of 

ions, chemical compositions and structure of passive film. With the help of Mott-Schottky analysis, the 

carrier type of the semiconducting oxide as n-type or p-type is able to be found, and also defects or 

charges concentrations in the passive films can be calculated. As a result, this information is helpful for 

the model prediction. While electrochemical tests provide information about passive potential, passive 

state, passive current density, passivity break-down potential etc., which provides massive data for 

modelling. These data can be obtained from polarization curves. Moreover, it is possible to have 

kinetics parameters, like transfer coefficients and rate constants, from EIS measurements [118]. 

However, since EIS data is model-dependent, it is important to investigate the analysis EIS data by 

looking for analytical procedure that provide physical parameters. 

 

Numerical models tried to explain variation of the passive current density and thickness of the passive 

film with applied potential, pH and different ions in the solution, and it is supposed to be distinguished 

from the transient evolution [117]. Therefore, the experimental data, especially the evolution of 
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passive current density, thickness of passive film with applied potential or electrolyte condition, is 

helpful to identify the right models allowing model and data converging. 

 

1.6 Conclusion 
 

The present bibliographic review begins with the history and definition of passivity. Then, the common 

properties of passive films are listed. After that, possible mechanisms for formation of the passive film 

were presented, followed by thermodynamics and kinetics of passivation. At the end, the breakdown 

of passive film in different situations, such as anodic dissolution, cathodic breakdown because of 

hydrogen, localized corrosion, mechanical or biological effects etc. are presented. Moreover, some 

models are introduced briefly, including the High-Field Model (HFM), the Point Defect Model (PDM), 

the Mixed Conduction Model (MCM), the Generalized Model (GM), Diffusion Poisson Coupled Model 

(DPCM) and the Coupled Current Charge Compensation model (C4). Even though those models were 

firstly developed for different uses in specific situation, they provide various ideas for describing the 

oxidation kinetics or predicting lifespan of passive films. 

 

The main goal of researchers who work either on experimental or modelling on corrosion behavior of 

alloys, is to understand corrosion, to improve corrosion resistance, and enhance corrosion prevention 

or monitoring. They should consider the cost of maintenance, service life, replacement costs. However, 

better designing the composition of materials from the first step of design could be a first economic 

practice. Hence, to reach this goal, it is necessary to better understand the role of alloying elements 

content on corrosion behavior. Considering how could we better understand it, both experiments and 

modelling are needed. To be able to model passivation of alloys, plenty of information about passive 

films is required. For instance, the composition and structure of passive films, formation potential on 

passive state, type and concentrations of defects in the passive etc. Extracting more information about 

passive film by electrochemical methods, especially passive film structure or other physical properties, 

in order to collect and provide possible relevant data for numerical modelling is the main purpose of 

this thesis.  
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Chapter 2 Experimental details 
 

2.1 Introduction 
 

This chapter is devoted to the description of information about materials used in the experiments, the 

presentation of different electrochemical techniques employed for passive film studies and surface 

characterization technique for passive film composition analysis.  

 

2.2 The materials for experiment 
 

2.2.1 Composition of the materials 
 

The binary model alloys Ni-xCr (x= 16, 20, 24 and 28) were used to study the effect of chromium 

content on their passivation behavior. Furthermore, the ternary model alloys Ni-xCr-8Fe (x= 14, 22 and 

30) have been also employed to study the role of iron in passivation behavior, especially in secondary 

oxidation process. These model alloys were supplied by Sumitomo Metal Industries, Ltd, Japan, 

prepared by the method of hot-rolling plates. Then, homogenizing at 1230°C for 10 hours and solution 

annealed at 1180°C for 30 minutes, finally quenched with water. In parallel, the commercial alloys 

Inconel 600, 625 and GILPHY 80(Ni80Cr20) were also found to compare their passivation behavior with 

that of model alloys. In which, the alloy Inconel 600 is from the company Goodfellow, the alloy Inconel 

625 is the product of company ArcelorMittal, while GILPHY 80 is from Aperam Alloys Imphy. The 

chemical composition of all the materials was reported in Table 2. 1 below. 

Table 2. 1 Chemical composition (wt. %) of the different alloys. 

Materials C Si S Cr Mn Fe Mo Ti Nb+Ta Ni 

16Cr 0.006  <0.001 <0.001 15.7 0.049 0.015 - - - Bal. 
20Cr 0.008  0.009 <0.001 19.8 0.045 0.018 - - - Bal. 
24Cr 0.004  0.008 <0.001 23.8 0.047 0.027 - - - Bal. 
28Cr 0.006  0.006 <0.001 27.6 0.045 0.024 - - - Bal. 
14Cr8Fe <0.001  0.02 <0.001 14.7 0.05 7.81 - - - Bal. 
22Cr8Fe <0.001  0.02 0.001 21.6 0.05 7.84 - - - Bal. 
30Cr8Fe <0.001  0.02 0.001 29.4 0.05 7.85 - - - Bal. 
600 <0.15 0.5 <0.015 15.5 <1.0 7 - 0.2 - Bal. 
625 <0.05 <0.05 <0.01 20.6 <0.5 <5 8-10 0.4 3.15-4.15 Bal. 
G80 <0.15 1-1.6 - 20 <1 <1 - - - Bal. 

 

2.2.2 Preparation of the materials 
 

All the mirror polished specimens were followed the steps below for surface preparations: the samples 

were firstly ground with SiC papers from grit 80, successively through 180, 400, 800, 1200 and 2400 up 

to grit 4000, then followed by mirror polishing to 3 μm and 1 μm with diamond paste. The specimens 

were cleaned with deionized water in an ultrasonic bath for 5 minutes before each grinding and 

polishing step. Finally, they were cleaned in ethanol and dried with argon. The polished samples could 
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be used for electrochemical tests. While those for structure observation, the materials are needed to 

polished up to 0.03 μm with suspension SPM (colloidal silica), and then chemically etched for 90 

seconds in the mixed acid solution at room temperature.  The acid solution composes of acetic acid 

(C2H4O2), hydrochloric acid (HCL) and nitric acid (HNO3), with the volume ratio of 2:1:2, respectively. 

Etched coupons were subsequently ultrasonically cleaned in pure water and dried with argon flow. 

 

2.2.3 Structure characterizations 
 

The microstructures were observed with the optical microscopy of Olympus, the observed 

microstructure is presented in the Fig. 2. 1. 
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Fig. 2. 1 The microstructure of chemically etched samples: (a) Ni-16Cr, (b)Ni-20Cr, (c) Ni-24Cr, (d) Ni-
28Cr, (e) Ni-14Cr-8Fe, (f) Ni-22Cr-8Fe, (g)Ni-30Cr-8Fe, (h) Inconel 600, (i) Inconel 625 and (j) GILPHY 80  

The samples characterized in Fig. 2. 1  all exhibit a single austenite phase. Annealing twins are also 

characterized, indicating that the materials were deformed and then annealed. Scanning Electron 

Microscopy (SEM, ZEISS SUPRA 55VP) was employed in the study, to characterize the surface 

morphology of specimens with Secondary Electrons (SE=10 eV) after chemical etching. Energy 

Dispersive X-ray Spectroscopy (EDS, OXFORD system with X-Max 50 mm2 detector) was used to 

determine the compositions of etched samples. With regard to EDS analysis, no carbides were found 

in the model alloys. On the contrary, carbides Cr23C6 and TiN were found in the commercial Inconel 

600, while TiN/NbN were found as the precipitated phase in the commercial Inconel 625.  

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI050/these.pdf 
© [Z. Zhang], [2021], INSA Lyon, tous droits réservés



 36  
 

2.2.4 Calculation of grain size 
 

The average grain size was estimated with the reference from Lineal Intercept Procedure from ASTM-

E112 -96 (2004) [119].  The main idea of this method is that by using a certain length of straight line to 

cut through the grains. Then it is possible to calculate the average length of straight line through a 

grain, namely, the average grain size expressed as below: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑔𝑟𝑎𝑖𝑛 𝑠𝑖𝑧𝑒 =  
𝐿

𝑁
(2.1) 

where L is the length of straight line, and N corresponds to the total number of intercepted grain 

boundaries. It is noting that the number of grain boundary was focused for grain size calculation. The 

schematic description for the grain size measuring is shown in the Fig. 2. 2. 

 

Fig. 2. 2 The schematic description of Lineal Intercept Procedure for grain size. 

In Fig. 2. 2, the line in the horizontal direction crosses five grain boundaries, that is, four grains could 

be counted. In this situation, the line which crosses on twining caused by solution annealing process is 

not considered as one grain boundary. On the other hand, both ends of the line do not pass through 

the entire crystal grain, thus these two grains are not considered. Then, with the help from the 

software Image J, the length of the cross-section could be recorded, and the average grain size could 

be calculated from equation (2.1). The same measurement was performed three times in the 

horizontal direction and the vertical direction (presented in dashed line), respectively. Consequently, 

the presented average grain size for each sample is the average value of six measurements. The 

calculated grain size of different samples is listed in the Table 2. 2. 

Table 2. 2 Calculated grain size of different samples 

Materials Grain size/ µm 

16Cr 281±65 

20Cr 265±37 

24Cr 308±16 

28Cr 186±13 

14Cr8Fe 150±29 

22Cr8Fe 301±52 

30Cr8Fe 220±22 
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Inconel 600 16±2 

Inconel 625 29±5 

GILPHY 80 61±6 

 

It is found that the model alloys have generally much bigger grain size in comparison with the 

commercial alloys. 

 

2.3 Electrolyte for electrochemical measurements 
 

The solution of 0.05 M H3BO3 + 0.075 M Na2B4O7 10H2O (pH=9.2) was specifically selected for studying 

passive film because the solubility of the Cr-rich oxide is generally low, while the oxygen has a high 

solubility in the borate solution [120–122]. Other two aerated solutions of different pH were used for 

the electrochemical tests: 10 g/L Na2SO4 buffered with H2SO4 (pH=2), 0.01 M Na2SO4 (pH=5.8), and 

these solutions were selected to study the passive behavior in acidic, neutral, and basic solution. All 

the electrochemical measurements were performed at room temperature (22 ± 3°C). 

 

2.4 Electrochemical analysis  
 

2.4.1 Electrochemical test setup 
 

The conventional three-electrode cell was used for the electrochemical measurements. The schematic 

illustration of the experimental setup is presented in the Fig. 2. 3 below. 

 

Fig. 2. 3 The schematic illustration of the setup for the electrochemical test (with 50 mL electrolyte). 

The different alloys (exposure area = 0.56 cm2) were used as the working electrode. A large graphite 

rod was used as the counter electrode, and a saturated mercury sulfate electrode (MSE, E= +658 mV 

vs. SHE), from Radiometer analytical®, was used as the reference electrode. The electrochemical 

measurements were carried out with the Gamry Reference 600TM electrochemical potentiostat. 
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2.4.2 Open circuit potential (OCP) 
 

Open circuit potential (OCP) is the mixed potential where the anode current and the cathode current 

are equal. The working electrode’s potential is measured with respect to the electrode in reference. 

There are no current flows to or from it, or potential existing in the cell. It characterizes the nobility of 

the material. When the value of OCP become stable, the following electrochemical tests could be 

carried out. In general, OCP could provide preliminary information about the metal/passive film 

system. Its evolution evaluates the stationarity of the system. OCP monitoring indicates if the working 

electrode have reached a stationary state. This helps to decide the immersion time before launching 

impedance or other techniques. In this thesis, 24 hours of OCP was performed on each specimen to be 

sure that the passive film reaches its steady state.  

 

2.4.3 Linear sweep voltammetry (LSV) 
 

Linear sweep voltammetry measurement gives access to current-voltage curves. By applying linearly 

varied potential on the working electrode, starting from a given potential up to a cathode or anode 

final potential. The corresponding current densities are continuously recorded. In general, polarization 

curves are shown as the plots of log |i| vs. E, which is the basic kinetic law for the electrochemical 

reactions. Respecting certain conditions, it also provides a means of identifying important 

electrochemical parameters such that the corrosion current density, the Tafel slope as well as the 

diffusion coefficient of species taking place in electrochemical kinetics. In the experiments, the linear 

sweep voltammetry was performed from cathodic direction −0.2 V vs. EOCP to anodic 1.2 V vs. EOCP, with 

a scan rate of 0.5 mV/s.   

 

2.4.4 Electrochemical impedance spectroscopy (EIS)  
 

2.4.4.1 The theory of the electrochemical impedance 

 

The electrochemical impedance spectroscopy is a non-destructive measuring method, which is usually 

performed when the system is in the stationary state. A response of current could be observed after a 

weak sinusoidal electrical potential is imposed into a stationary system. The input potential could be 

written as 𝐸 = 𝐸0 + ∆𝐸 sin (𝜔𝑡), thus a sinusoidal current 𝐼 = 𝐼0 + ∆𝐼 sin (ωt − φ) is measured. The 

operation principal of EIS is shown in Fig. 2. 4 below. 
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Fig. 2. 4 The representation of the measured electrochemical impedance spectroscopy. 

∆𝐸 and ∆𝐼 represent the amplitudes of the signals, 𝐸0 and 𝐼0 are the stationary components, 𝜔 

corresponds to the pulse signal, and finally φ is the phase angle. Then, the impedance 𝑍(𝜔) 

corresponds to: 

𝑍(𝜔) =  
𝐸

𝐼
= |𝑍| 𝑒𝑥𝑝(𝑗𝜔) (2.2) 

The real part 𝑍′ and the imaginary part 𝑍′′ compromise the complex value of impedance 𝑍(𝜔), 

presented by the module |𝑍|and the phase φ : 

𝑍(𝜔) = 𝑍′(𝜔) + 𝑗𝑍′′(𝜔) (2.3) 

|𝑍| = √((𝑍′)2 + (𝑍′′)2) (2.4) 

𝜑 = 𝑡𝑎𝑛−1
𝑍′′

𝑍′
(2.5) 

The causality, the linearity and the stability must be satisfied for the measured system [123]. 

(a) The causality. There must be a causal relationship between the disturbance and the response within 

the system.  In other words, the output signal could be only from the input signal in the system, and 

other irrelevant signal must be ignored. 

(b) The linearity. The measured system must be a system with linear function: the output signal should 

be as the function of the input signal. 

(c) The stability. The system must be stable regarding with the input signal, that is to say, the system 

could get recovered when the disturbing signal stopped. The input disturbing signal would not change 

the structure of the system. 

 

The linearity is ensured by the use of a low amplitude signal, while the causality and stability are 

guaranteed by the former OCP monitoring before the impedance measurement. What’s more, with 

the help of Kramers—Kronig transforms, the electrochemical impedance data could be validated with 

reference to the condition of linearity and stability [124].  
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In the experiment, impedances performed at OCP measured in the frequency range of 10 kHz to 0.05 

Hz with 8 points per decade and a sine wave with 10 mV amplitude. While the impedances performed 

at other potentials measured the frequency range of 10 kHz to 0.1 Hz with 8 points per decade and a 

sine wave with 10 mV amplitude. 

 

2.4.4.2 Interpretation of the impedance diagrams for passive films 

 

In blocking system, constant-phase element (CPE) is often observed and used to fit impedance diagram 

which response follows CPE behavior. CPE parameters are considered to arise from a distribution of 

time-constants. The CPE impedance is expressed in terms of model parameters [125]: 

𝑍𝐶𝑃𝐸 =
1

(𝑗𝜔)𝛼𝑄
(2.6) 

Under the assumption that the dielectric constant is independent of position and permittivity along 

the film thickness is uniform, M. Orazem and B. Tribollet et al. [126,127] put forward Power-Law Model 

(PLM) for the passive film, assuming the conductivity through passive film following a normal power-

law distribution. This model was verified by both numerical simulations and experimental results. The 

resistivity distribution to follow a power-law as: 

𝜌

𝜌𝛿
= 𝜉−𝛾 (2.7) 

where 𝜉 =
𝛾
𝛿⁄  is the dimensionless position, 𝛾 is corresponding to the position through the film, 𝛿 is 

the thickness of passive film. 𝜌𝛿 represents the resistivity where 𝜉 = 1. 𝛾 is a positive constant about 

the resistivity variation. Then the resistivity at where 𝜉 = 0 is expressed as: 

𝜌

𝜌𝛿
= (
𝜌𝛿
𝜌0
+ (1 −

𝜌𝛿
𝜌0
) 𝜉𝛾)

−1

(2.8) 

Where 𝜌0 and 𝜌𝛿 are the resistivity at the interface between the metal or alloy and film, the interface 

between the film and the electrolyte, respectively. An example of power-law distribution of resistivity 

versus the dimensionless distance. 
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Fig. 2. 5 Normalized resistivity from the equation (2.8) as a function of dimensionless with γ as a 
parameter [128]. 

When the applied condition is under 𝜌0 ≫ 𝜌𝛿 and 𝑓 < (2𝜋𝜌0휀휀0)
−1, the equation could be expressed 

as: 

𝑍 = 𝑔(𝛾)
𝛿𝜌
𝛿

1
𝛾⁄

(𝜌0
−1 + 𝑗𝜔휀휀0)

(𝛾−1)
𝛾⁄

(2.9) 

where g is a function of  𝛾. If the form of CPE is applied on the equation (2.9): 

𝑍 =
1

𝑗𝜔𝛼𝑄
= 𝑔

𝛿𝜌
𝛿

1
𝛾⁄

𝑗𝜔휀휀0
(𝛾−1)

𝛾⁄
(2.10) 

In which, 

𝛼 =
𝛾 − 1

𝛾
(2.11) 

𝑔 = 1 + 2.88(1 − 𝛼)2.375 (2.12) 

Hence, the integrated expression of equation (2.9) can thus be written as follows [126]:  

𝑍(𝜔) = 𝑔
𝛿𝜌𝛿

1−𝛼

(𝜌0
−1 + 𝑗𝜔휀휀0)

𝛼
(2.13) 

the relationship among the CPE parameters Q and 𝛼, the thickness of passive film 𝛿, resistivity 𝜌𝛿 at 

the interface between passive film and the electrolyte and the dielectric constant 휀 of oxide could be 

concluded as: 

𝑄 =
(휀휀0)

𝛼

𝑔𝛿𝜌𝛿
1−𝛼

(2.14) 

Finally, the capacitance could be expressed as: 

𝐶𝑓𝑖𝑙𝑚,𝑃𝐿 = 𝑔𝑄(𝜌𝛿휀휀0)
1−𝛼 (2.15) 
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Or 

𝐶𝑓𝑖𝑙𝑚,𝑃𝐿 = (𝑔𝑄)
1
𝛼⁄ (𝛿𝜌𝛿)

(1−𝛼)
𝛼⁄ (2.16) 

The detailed interpretation process for impedance data with PLM is explained as following: firstly, the 

high-frequency part of an electrochemical impedance diagram obtained in the presence of a passive 

film is generally represented by a CPE [129]. The CPE parameters (α and Qeff) were determined using 

an enhanced graphical method [130]. The effective CPE exponent α was estimated from a modified 

phase angle-frequency Bode representation after estimation of the electrolyte resistance (Re,est):  

φ𝑎𝑑𝑗 = 𝑡𝑎𝑛
−1 (

𝑍′′

𝑍′ − 𝑅𝑒,𝑒𝑠𝑡
) (2.17) 

The electrolyte resistance (Re,est) could be estimated from the Nyquist impedance diagram, as 

presented in Fig. 2. 6. The value of electrolyte resistance is supposed to be the value of intersection 

between the Nyquist plots with real part.  
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Fig. 2. 6 Estimation of electrolyte resistance (Re,est). 

where φadj is the phase angle corrected by the electrolyte resistance from the Bode plot, shown in Fig. 

2. 7 (a) and Z’ and Z’’ are the real and imaginary part of the impedance, respectively. For α≠1, the CPE 

parameter α can be calculated using the following equation: 

φ𝑎𝑑𝑗(𝐻𝐹) = −90°𝛼 (2.18)                                                                                                                       

The effective coefficient of the CPE (Qeff) can be determined from Z’’ , with ω = 2πf: 

𝑄(𝜔) = sin (
𝛼𝜋

2
)
−1

𝑍′′𝜔𝛼
(2.19) 
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Fig. 2. 7 Estimation of α by corrected phase angle and effective coefficient of the CPE (Qeff). 

As the capacitance governs the impedance at very high frequency, the resistance behavior can be 

neglected. Thus, the complex capacitance representation emphasizes values at high frequency, 

enabling determination of the high-frequency limit of the real part of the complex capacitance [125]. 

The high-frequency-limit capacitance here is related to the dielectric field within the passive film [131]. 

Hence, the thickness of the passive film (δ) can be estimated from the capacitance from the complex 

representation (C∞).  

The complex representation (Cole-Cole representation) can be expressed as: 

𝐶∗ =
1

𝑗𝜔(𝑍−𝑅𝑒,𝑒𝑠𝑡)
(2.20)
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Fig. 2. 8 Estimation of thickness of passive film with infinite capacitance(C∞) from the complex 
representation. 

C∞ is the estimated limiting capacitance at high frequency from the complex capacitance 

representation. Thus, δ can be determined using the formula 

𝛿 = 0

𝐶∞
(2.21)                                                                                                                                                      
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where δ is the calculated thickness of the passive film, ε is the dielectric constant of the oxide (ε=12 

for Cr2O3) [132], and ε0 is the vacuum permittivity (8.85×10−14 F cm−1). The example of estimation for 

thickness of passive film from the complex representation is given in Fig. 2. 8. The calculated thickness 

of a passive film has shown good agreement with that determined using other techniques [133].  

Hence, thanks to the enhanced graphical representation, it was beneficial in determining four 

parameters used for fitting with the PLM (by reducing the number of unknown parameters). There are 

CPE relevant parameters α and Qeff, infinite capacitance C∞ and calculated thickness of passive film. 

Moreover, the resistivity at interface between passive film 𝜌𝛿 can be calculated to obtain calculated 

resistivity 𝜌𝛿,𝑐 from equation (2.14). 

 

To sum up, the theoretical approach and methodology are shown in Fig. 2. 9. 

 

Fig. 2. 9 Adopted theoretical approach and methodology. 

 

2.4.4.3 Electrical equivalent circuit 

 

The electrical equivalent circuit (EEC) of the overall model used to describe the oxidized 

metal/electrolyte interface is presented in Fig. 2. 10.  
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Fig. 2. 10 Electrical equivalent circuit (EEC) used to fit impedance diagrams. 

Re represents the resistance of the electrolyte. PLM is the element corresponding to equation (2.13) 

used to describe the passive film response to the anodic non-faradaic contribution. The passive film is 

considered a dielectric layer. The CPE behavior can be attributed to the normal distribution of 

resistivity throughout the passive film, adjusted by the PLM [129]. Cdl is the capacitance of the 

electrochemical double layer. Generally, Cdl is approximately on the order of 50 µF/cm2, causing an 

error of 5%–10% in the estimated value of the oxide capacitance [129]. However, in this study, Cdl was 

neglected during the entire fitting process. Rct is the charge-transfer resistance, which is attributed to 

the faradaic contribution. For the impedance data acquired from the cathodic domain to the beginning 

of the anodic domain (−0.1 to 0.1 V vs. EOCP), the contribution of the cathodic reaction has been 

considered within the charge-transfer resistance. For more anodic potentials, this resistance Rct can be 

considered infinite because the cathodic reaction becomes negligible. In the more anodic potential 

domain, the contribution of the faradaic branch can also be neglected for transport phenomena in the 

passive film. Within the impedance data obtained in this potential range, the charge-transfer 

resistance was removed from the equivalent circuit. Each impedance diagram was fitted using the non-

commercial software SIMAD developed at the LISE UMR 8235 CNRS, Sorbonne University, Paris.  

However, in basic borate electrolyte, when transpassivation or second oxidation occurs on the 

samples, the EEC proposed for fitting is no longer suitable for the studied system, since the process of 

dissolution and oxidation contains a lot of ions transports.  

  

2.5 Surface analysis – X-ray photoelectron spectroscopy (XPS) 
 

X-ray photoelectron spectroscopy (XPS) is a widely used technique for the investigation of the chemical 

composition of surfaces. The sample for analyzing is irradiated by the X-rays with a known energy, and 

then the energy of the emitted electrons is analyzed.  Generally, the X-rays used for XPS, their photons 

can interact with atoms in the sample surface, due to their limited penetrating power in solid (in order 

of 1 -10 micrometers), resulting in emitting electrons by the photoelectric effect. Consequently, limited 

electrons from sample surface will be detected.  The emission process for atoms is shown in Fig. 2. 11 

[134].  During the process of emission, not only will photoelectrons be emitted, but also the Auger 

electrons might be emitted, because of relaxation of the excited ions remaining after photoemission. 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI050/these.pdf 
© [Z. Zhang], [2021], INSA Lyon, tous droits réservés



 46  
 

In the process of Auger emission, an electron in the outer layer falls into the inner orbital vacancy, 

which emits a second electron carrying off the excess energy. Hence, there are two electrons generally 

emitted after photoionization process. They are a photoelectron and an Auger electron. The total 

kinetic energies of the emitted electrons cannot exceed the energy of the ionizing photons.  

 

Fig. 2. 11 The illustration of XPS emission process remade from [134]. 

The emitted photons energy is measured from the equation 2.22 below: 

                                                          
ℎ𝑣 =  𝐸𝑘 + 𝐸𝑏 + 𝜑𝑠𝑝𝑒𝑐𝑡𝑟𝑜 (2.22) 

where ℎ𝑣 is the energy of the X-ray photons being used, 𝐸𝑘 presents the kinetic energy of the electron 

as measured by the instrument, 𝐸𝑏 corresponds to the binding energy of the electron measured 

relative to the chemical potential, and 𝜑𝑠𝑝𝑒𝑐𝑡𝑟𝑜 is the spectrometer work function. It is possible to 

identify the surface composition, since the binding energy of the atomic orbital is specific for each 

element. Meanwhile, the binding energy could be calculated from the measured kinetic energy of the 

emitted electrons equation (2.22). Consequently, the amount of photo electrons could be measured 

as a function of their kinetic energy and obtained spectra.   

 

In the thesis, the chemical compositions of the passive films were characterized using XPS on a PHI 

Quantera SXM with monochromatic Al Kα (1486.6 eV). A take-off angle of 90° was used and was not 

changed during the experiments. Charge compensation was performed throughout the experiments 

using a dual-beam neutralizer, and the remaining charge was adjusted using the aliphatic carbon peak 

at 284.8 eV of adventitious carbon in the C1s region. For high-resolution spectra, a pass energy of 23 

eV was used. The obtained spectra were fitted with the software XPSPEAK41 and CASA XPS. Moreover, 

a Shirley background was applied for the specta. The spectra of XPS fitted with the method reported 

by Mark C. Biesinger et al. [135], especially for the chromium. Firstly, it is found that a series of single 

peaks to represent each different chemical species could cause the species being disordered. For 

instance, Cr(0) with the broadened peak shape for Cr(0) and Cr(OH)3 could lead to incorrectly 

attributing to Cr(VI) species [136]. Secondly, employing multiple peaks to represent the various Cr(III) 

peak for the multiplet structure could be resolved with updated instruments. Thirdly, considering the 

oxides in passive film are often poly-crystallinity or non-stoichiometric, it reasonable to consider that 

the oxide in passive film are multiplet structures. Fitting parameters for Cr 2p3/2 spectra are presented 

in Table 2. 3. The data in table are based on spectra taken from certain well-characterized standard 
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compounds. It is noting that chromium oxide shows multiplet structure whereas the hydroxide shows 

one peak.  

Table 2. 3 Cr 2p3/2 spectral fitting parameters: binding energy (eV), percentage of total area, FWHM 
value (eV) for each pass energy, and spectral component separation (eV) [135] 

 

 

The same method was employed for fitting nickel and its oxides and hydroxides. Here, the passive films 
were relative thicker and the information about oxides and hydroxides of nickel is more evident. The 
spectra were fitted with the data in Table 2. 4. The data presented for Ni metal, NiO and Ni(OH)2 in the 
Table 2. 4 derived from standard samples. 

Table 2. 4 Ni 2p3/2 spectral fitting parameters: binding energy (eV), percentage of total area, FWHM 
value (eV) for each pass energy, and spectral component separation (eV) [135] 
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2.6 Conclusion 
 

The materials and experimental details are presented in this chapter. The structures of alloys (both 

model and commercial alloys) were characterized and the grain sizes were calculated as well. The 

device and instrument to study electrochemical behavior were introduced. The electrochemical 

techniques including OCP monitoring, EIS and LSV were used in the thesis. In particular, the process of 

enhanced graphical method and theory of Power-Law Model (PLM) for abstracting parameters and 

fitting for impedance diagrams were explained in detail. Moreover, the XPS, as a supplementary 

method to analyze the compositions of passive films, were introduced as well. The Cr 2p3/2 and Ni 

2p3/2 spectral were fitted with the method developed by Mark C. Biesinger. 
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Chapter 3 The development of the methodology for passive film 

characterizations 
 

The main results in this chapter has been published in the journal of Electrochimica Acta, referenced 

as: 

 

Z. Zhang, B. Ter-Ovanessian, S. Marcelin, B. Normand, Investigation of the passive behavior of a Ni–Cr 

binary alloy using successive electrochemical impedance measurements, Electrochim. Acta. 353 (2020) 

136531. https://doi.org/10.1016/j.electacta.2020.136531. 

 

Regarding to the development of the methodology, more details were studied and discussed in this 

chapter. 

 

3.1 Introduction 
 

As stated by D.D. Macdonald in 1999 [22], passivity should be considered “the key to our metals-based 

civilization”. Today, research and development on passive materials continues to lead to scientific and 

technological improvements and improved material design in many industrial fields, including the 

energy, transport, and health sectors. Because passivity plays a crucial role in material applications, 

investigations of passive behavior remain topical issues in corrosion science. 

 

The long-term stability of passive materials, even sometimes in harsh environments, is mainly 

attributed to the growth of an extremely thin passive film (a few nanometers in thickness) protecting 

the metal. Observation of this passive film using conventional equipment is challenging, even using 

transmission electron microscopy (TEM). Moreover, this passive film is commonly considered a 

complex multilayer structure closely related to the material underneath as well as the physico-

chemistry of the environment. This complexity makes it difficult to attain a complete understanding of 

the passivity. Nevertheless, over the past few decades, several analytical methods and techniques have 

been developed to study passive films. Among surface analytical techniques, X-ray photoelectron 

spectroscopy (XPS), which provides semi-quantitative information on the chemical composition of 

passive films, is one of the most frequently used [137–139]. Several other analytical techniques are 

also often employed such as scanning tunneling microscopy (STM) [16,140,141] and ellipsometry [142–

144]. In addition to these methods, different sets of electrochemical techniques are used to determine 

the kinetic parameters related to the growth, steady state, and breakdown of the passive film and 

permit a ranking to be established and materials to be selected based on their passive behavior.  

 

The potentiodynamic polarization technique (potential sweep) — cyclic or not — is one of the most 

frequently used techniques for studying the electrochemical behavior of a passive material. From the 

resulting polarization curves, the ability to achieve passivity, the passive potential region, the passive 

current density, the potential of breakdown, and the relative stability of the passive film can all be 
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determined. Even though this data is necessary to study passive materials, this information remains 

insufficient to fully describe the passive film behavior and its resistance. The rate-determining step 

hinders the overall passivation analysis. Moreover, for a specific corrosion mode, the results are 

dependent on the scan rate. For example, it is commonly known that the determination of the pitting 

potential is very sensitive to the sweep rate [79]. Another point of vigilance is the evolution of the 

passive film with the sequence of experiments that are performed. Indeed, for certain materials, 

several days are required to attain stability or reach the steady state of the passive material/solution 

interface; consequently, the results obtained after only a few minutes of immersion in an electrolyte 

are not representative of the long-term passive system.  

 

To complete the analysis of a passive material/solution interface, electrochemical impedance 

spectroscopy (EIS) is a suitable complementary electrochemical technique that generally contributes 

to the description of the interface in terms of mechanisms and kinetics. Although EIS analysis is mainly 

performed at the open-circuit potential (OCP), it is not rare to use EIS at different applied potentials 

(selected from the polarization curves) to investigate the evolution of the passive film and determine 

physical parameters, kinetic constants, and migration/diffusion coefficients based on descriptive or 

predictive models of the evolution of the passive state. For example, the point defect model (PDM) 

[93,145,146] was developed to predict the growth and breakdown of passive films. In this model, EIS 

is used to explore the properties of passive films as a function of applied potential and pH [147,148] 

using various parameters, such as interfacial rate constants and the electrical field strength, as 

variables [145]. The mixed conduction model (MCM) [109,110,149] also uses EIS to emphasize the 

coupling between ionic and electronic defect structures in steady-state passive films and to predict the 

local conductivity within the film. In this model, the point-defect formation and transport are caused 

by the exponential evolution of the conductivity between the metal/film and film/solution interfaces. 

By considering a passive film to be a highly disordered semiconductor, the complementary Mott–

Schottky approach, the determination of the semiconductive properties of a semiconductor in the 

presence of an electrolyte, can be transposed to the study of passive films. The obtained properties, 

including the semiconductive type, flat band potential, and charge carrier densities, can provide 

information about the relation between the electronic properties and passive film growth, steady 

state, and susceptibility to breakdown. In the PDM, the point defects are the semiconductor charge 

carriers. Their evolution with the applied potential is a required input in the calculation. However, the 

main deviation of the results obtained using the Mott-Schottky approach results from the differential 

capacitance measurement during a scan of potential, generally at a single frequency. Recently, the use 

of multi-frequency measurements, which avoids the issue of frequency selection and dependency, has 

generated interest [12,150]. 

 

On the basis of these preliminary remarks and considering that EIS can provide more information about 

passivation phenomena, successive EIS measurements were used in the current work on a nickel-based 

alloy, known to be a passive material, from the cathodic to anodic domain, to obtain a traditional 

potentiodynamic polarization curve. This procedure was applied in an attempt to provide continuous 

information on the passive material/electrolyte interface during potential-step polarizations. In 

addition, the evolution of each physical parameter extracted from the impedance diagrams, for 

example the thickness and resistivity within the passive film, could be discussed [130,151–153].  

 

The chapter consists of two parts. The first part is devoted to validation of the methodology. In this 

part, the effects of experimental parameters on potentiostatic polarization curves, namely the dwell 

time at each potential step, the potential step size, the scan direction and the aeration of the solution, 
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were studied. The aim was to optimize the experiment, find a good compromise between time and 

accuracy, and ensure that the measurements were performed under steady-state conditions. The 

second part of the study is focused on the use of this technique, termed successive EIS (SEIS), to 

characterize the passive behavior of a binary model Ni–Cr alloy containing 20 wt.% Cr (Ni20Cr) in 

different electrolytic solutions using the optimized experimental parameters. 

 

3.2 Validation of the methodology 
 

As presented in chapter 2, the impedance diagrams were interpreted using the recent impedance 

interpretation approach [130,151–153] to highlight the behavior of the passive film during the overall 

polarization process. A preliminary investigation was performed to optimize the experimental 

parameters in accordance with a conventional polarization curve, ensuring that the conditions of 

stationarity of the interface phenomena were respected. First, the effect of dwell time at each step of 

potential was studied. The potential step size was fixed at 50 mV, and different polarization dwell times 

(30, 120, 600 s, and 7200 s) were tested. After that, two different step sizes (25 and 50 mV) were 

tested, with the dwell time fixed at 120 s. 

 

3.2.1 Influence of dwell time 
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Fig. 3. 1 Comparison of potentiodynamic polarization curve (straight line, 0.5 mV/s) and potentiostatic 
curves for Ni–20Cr alloy in solution pH=9.2 for different dwell times  

In Fig. 3. 1, the solid line corresponds to the potentiodynamic polarization curve, whereas each point 

of the dotted curves is the last value of the current density reached during potentiostatic polarization. 

The current density criterion (lower than 1×10−5 mA s−1) for the impedance measurements was 

considered as the steady-state condition for the different sets of experimental conditions. For all the 

curves, the corrosion potentials fell in the small range between −0.62 and −0.50 V vs. MSE. 

Characteristics of a passive material in a basic solution after 24 h of passive film growth are observed 

in all the curves: a cathodic branch, a slight increase in current density, a plateau, and a dissolution–
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repassivation–redissolution process in the potential range more positive than 0.0 V vs. MSE [27,28]. 

This finding indicates that all the curves characterized the same electrochemical reactions for 

substantially identical current densities. Comparison of the potentiodynamic and potentiostatic 

polarization curves revealed that the testing dwell time and step size did not result in any significant 

deviation. To confirm this conclusion, impedance diagrams obtained during the successive impedance 

measurements at four potential steps corresponding approximately to potentials of −0.50, −0.25, 0, 

and 0.25 V vs. MSE are presented, interpreted, and compared in Fig. 3. 2 (a1, b1, c1, d1). Meanwhile, 

evolution of current density as function of polarized dwell time is also presented in Fig. 3. 2 (a2, b2, c2, 

d2). 
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Fig. 3. 2 Nyquist diagrams (a1-d1) and current density vs. dwell time(a2-d2) for Ni–20Cr alloy obtained 
at different potentials for different dwell times in aerated 0.05 M H3BO3 + 0.075 M Na2B4O7 10H2O 
borate buffer solution (pH=9.2): a) near –0.50 V vs. MSE, b) near –0.25 V vs. MSE, c) near 0.0 V vs. MSE, 
and d) near 0.25 V vs. MSE. 

 

Fig. 3. 2 presents Nyquist plots obtained at different selected potential steps from successive EIS tests 

with different dwell times, as well as current density as function of polarized time. As observed in Fig. 

3. 2(a1)–(c1), the Nyquist diagrams were similar for each tested condition. A conventional truncated 

and depressed semicircle classically seen for a passive film/electrolyte interface was observed for all 

the samples. Whereas it is found that current density near –0.50 and –0.25 V vs. MSE arrives almost 

quasi-stationary steady state. At potential around 0 V vs. MSE, a longer polarization time is needed to 

be at this state due to beginning of dissolution of passive films.  There was more discrepancy between 

the Nyquist diagrams in Fig. 3. 2(d1) as a function of the tested parameters, most likely because of the 

significant increase of the current density near this potential. This state maybe changed by a longer 

polarization according to the record of current density evolution in Fig. 3. 2(d2). The dissolution–

repassivation–redissolution process occurring within this potential range is sensitive to small 

differences in potential. In any case, the impedance values remained of the same order of magnitude. 

The analyzed results from the impedance diagrams are listed in Table 3. 1. 
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3.2.2 Influence of the long term staying 
 

To discriminate the method between long term and short term staying, an experiment considering the 

dwell time of 7200 s (2 h) and the step size of 50 mV were performed, and the result is presented in 

Fig. 3. 3 below.   

 sweep
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Fig. 3. 3 Comparison potentiostatic curves for Ni–20Cr alloy in solution pH=9.2 of 0.05 M H3BO3 + 0.075 
M Na2B4O7 10H2O for short term (120 s) and long term (7200 s) dwell time. 

The potentiostatic polarization curve for the dwell time of 7200 s presents the corrosion potential of -

0.5 V vs. MSE, close to -0.54 V vs. MSE for the dwell time of 120 s. The experiment with the dwell time 

of 7200 s exhibits the current density with magnitude of 10-4 mA/cm2 at stable passivation domain 

while that for the experiment with dwell time of 120 s is about 10-3 mA/cm2. Hence, the sample with 

a longer dwell time exhibits lower current density since the surface of the sample was polarized longer 

at each potential. This result indicates that for shorter dwell time, the steady-state is not totally 

achieved, whereas for longer dwell time, the passive film is intrinsically modified due to the applied 

potential. On the other hand, it is also found that the secondary oxidation begins near 0 V vs. MSE for 

both samples, indicating that the longer dwell time would not change the potential for secondary 

oxidation occurrence and the current density within the secondary oxidation potential range. 

However, the critical potential for dissolution was detected at slightly different potential with longer 

dwell time. In addition, the longer dwell time seemed to decrease the current density at secondary 

repassivation domain as in the passivation domain. The Nyquist plots obtained at different four 

selected potentials for the two experimental conditions are compared in Fig. 3. 4(a)–(c). 
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Fig. 3. 4 Nyquist diagrams for Ni–20Cr alloy obtained at different potentials for dwell time of 120 s and 
7200 s in 0.05 M H3BO3 + 0.075 M Na2B4O7 10H2O borate buffer solution (pH=9.2): a) near –0.50 V vs. 
MSE, b) near –0.25 V vs. MSE, c) near 0.0 V vs. MSE, and d) near 0.25 V vs. MSE. 

The Nyquist diagrams obtained near -0.5 V vs. MSE in Fig. 3. 4(a) are very similar. On the contrary, the 

Nyquist plots for the sample with dwell time of 7200 s presents larger semicircle at other three 

potentials, comparing with the sample with shorter dwell time. It could be caused by the longer 

polarization allowing the achievement of the equilibrium in terms of charge migration and rates of the 

interface reactions at each potential or a densification of the passive layer. The fitted results for two 

samples are listed in Table 3. 1 and will be discussed later.
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3.2.3 Influence of step size 
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Fig. 3. 5 Comparison of potentiodynamic polarization curve (straight line, 0.5 mV/s) and potentiostatic 
curves for Ni20Cr alloy in solution pH=9.2 for different step sizes. 

Fig. 3. 5 presents potentiodynamic polarization curve and the potentiostatic polarization curve 

obtained from SEIS tests, with different potential step sizes. It is obvious that the dotted plots recording 

the potentiostatic polarization curves do not miss any information in comparison with 

potentiodynamic curve (line curve). For the static polarization curves performed with different step 

size, no significant difference is observed, indicating that no influence of step size on potentiostatic 

polarization curve affects the results. EIS diagrams performed on several potentials (-0.50, -0.25, 0 and 

0.25 V vs. MSE) with different step sizes are presented in Fig. 3. 6 (a)–(c).  
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Fig. 3. 6 Nyquist diagrams for Ni–20Cr alloy obtained at different potentials for different step sizes in 
aerated 0.05 M H3BO3 + 0.075 M Na2B4O7 10H2O borate buffer solution (pH=9.2): a) near –0.50 V vs. 
MSE, b) near –0.25 V vs. MSE, c) near 0.0 V vs. MSE, and d) near 0.25 V vs. MSE. 

As previously observed, A conventional truncated and depressed semicircle classically seen for a 

passive film/electrolyte interface was observed for all the samples. For the four tested potentials, the 

impedance diagrams obtained with both step sizes are very similar. 
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3.2.4 Inversed scanning direction 
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Fig. 3. 7 Comparison of potentiodynamic polarization curve (straight line, 0.5 mV/s) and potentiostatic 
curves from inverse direction for Ni20Cr alloy 0.05 M H3BO3 + 0.075 M Na2B4O7 10H2O borate buffer 
solution (pH=9.2). 

SEIS measurement could be compared with differential capacitance measurement commonly used to 

apply the Mott-Schottky analysis. In the latter, the validity of the Mott-Schottky approach required 

that the experiment must be performed quickly to limit the modification of the interface and maintain 

the reversibility of the reactions. For this reason, the results obtained have to be independent of the 

direction of the potential scan. With SEIS, this condition is not fulfilled. Indeed, Fig. 3. 7 compares 

Inverse scanning direction of the potentiostatic polarization curve obtained from the successive 

impedance test with the conventional polarization curve. It is obvious that the dotted plots related to 

potentiostatic polarization curves does not match with potentiodynamic curve. Since the successive 

impedance test started from the transpassive dissolution region, the passive film formed after 24 h at 

OCP was firstly modified and eventually removed, concomitantly with oxygen evolution reaction. With 

this reverse scanning to the cathodic potentials, the domain of dissolution occurred until the potential 

at 0 V vs MSE. The fluctuation around 0.2 V vs MSE could be explained as reduction of Cr6+ ions. After 

that, the stable passivation was obtained on the potential range of 0 V to -0.5 V vs MSE. The current 

density was then lower than for the potentiodynamic curve because the anodic film forming conditions 

affect the passive film structure. Consequently, the method used in this work is obviously dependent 

of the scan direction. Hence, all the presented results are only comparable with the scan direction from 

cathodic to anodic potentials. The evolution of the passive film parameters is considered according to 

the conventional scan direction generally used in polarization studies. 

 

3.2.5 Influence of the electrolyte aeration 
 

Another testing parameter could be the aeration of the electrolyte, as oxygen reduction may play a 

role on the passive behavior. The successive impedance measurements were performed on the sample 

in aerated or deaerated electrolyte, to understand the effect of oxygen on the methodology. For this 
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study, a dwell time of 120 s and a step size of 50 mV were selected. In addition, to remove the native 

passive film formed in the air, the sample was firstly cathodically polarized at -1.5 V vs. MSE for 15 

minutes, and then OCP monitoring was followed in deaerated electrolyte. The electrolyte was 

deaerated with N2 bubbling during all the measurement. The result is presented in Fig. 3. 8 below.  
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Fig. 3. 8 Comparison between potentiostatic curves for Ni20Cr alloy in deaerated and aerated 0.05 M 
H3BO3 + 0.075 M Na2B4O7 10H2O borate buffer solution (pH=9.2). 

Fig. 3. 8 presents potentiodynamic polarization curve and the potentiostatic polarization curve 

obtained from the successive impedance test, in deaerated and aerated borate buffer solution. It is 

obvious that the potentiostatic polarization curves performed in deaerated buffer solution has a 

negative potential shift, in comparison with other two performed in aerated solution.  In aerated 

solution, cathodic reduction reaction is mainly related with dissolved oxygen in the electrolyte [154] 

𝑂2 +𝐻2𝑂 + 4𝑒
− → 4𝑂𝐻− (3.1) 

Consequently, the main cathodic reaction is weakened because of lack of oxygen in the deaerated 

solution. By contrast, the anodic reaction was strengthened. Hence, a longer passivation plateau was 

observed. Moreover, the polarization curves obtained in both solutions presented the same 

information in the secondary oxidation domain. 
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Fig. 3. 9 Nyquist diagrams for Ni–20Cr alloy obtained at different potentials for step sizes of 50 mV and 
dwell time of 120 s, in aerated and deaerated 0.05 M H3BO3 + 0.075 M Na2B4O7 10H2O borate buffer 
solution (pH=9.2): a) near –0.50 V vs. MSE, b) near –0.25 V vs. MSE, c) near 0.0 V vs. MSE, and d) near 
0.25 V vs. MSE. 

Fig. 3. 9 presents Nyquist plots obtained at different selected potential steps in aerated and deaerated 

borate solution. As shown in Fig. 3. 9(a)–(c), the Nyquist diagrams were very similar for each potential, 

especially near -0.25 V vs. MSE. The difference is more significant at potential of 0.25 V vs MSE in Fig. 

3. 9 (d), which is related by the slight difference in the current density. Consequently, it is found that 

with or without dissolved oxygen in the electrolyte, the observed impedances follow the same trend 

as other process. Hence only the cathodic contribution is modified, but it does not affect 

electrochemical response when the potential reaches more anodic potential. The measured 

impedances are fitted and the results are presented in Table 3. 1. 
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Table 3. 1 Capacitance and thickness of passive film, corresponding parameters of CPE, and resistivity (ρδ) at the interface of the passive film and electrolyte 

Potential 

applied 

(V vs. 

MSE) 

Step size 

(mV) 

Dwell 

time 

(s) 

C∞

(μF/cm2) * 

α* Qeff (μF/cm2s1− α) 

* 

δ (nm) ** fδ (MHz) 

** 

ρδ,c  

(kΩcm) ** 

CPLM 

(μF/cm2) 

**  

Rct (kΩcm2) *** ρδ (kΩcm) *** 

 

 

-0.50  

50  

aerated 

deareated 

30  2.8 0.93 10 3.7 12 13 3.0 3.68×103 25 

120   3.3 0.92 12 3.2 12 13 3.2 2.30×103 26 

120 3.8 0.89 16 2.8 0.1 2530 3.8 - 2000 

600  3.5 0.94 10 3.0 1 162 3.5 1.82×103 28 

 7200 2.8 0.92 12 3.9 14 11 2.8 4.97×105 12 

25  120  3.9 0.93 11 2.7 1 107 3.9 2.85×103 89 

 

 

-0.25 

 

50  

aerated 

deareated 

30  3.0 0.89 16 3.1 0.1 363 2.9 - 410 

120   3.4 0.89 15 3.1 3 940 3.3 - 380 

120 4.1 0.88 18 2.6 0.1 1777 4.0 - 1549 

600   3.0 0.90 13 3.6 0.5 320 2.9 - 317 

 7200 2.8 0.91 13 3.8 10 15 2.8  14 

25  120  4.0 0.91 14 2.6 2 710 4.0 - 336 

 

 

0.0  

50 

aerated 

deareated 

30  4.1 0.83 46 2.5 0.3 523 4.1 - 826 

120   3.9 0.84 42 2.4 0.4 276 3.9 - 974 

120 5.5 0.82 50 1.9 0.1 2847 5.4 - 2709 

600   3.7 0.83 43 2.8 0.3 436 3.6 - 718 

 7200 3.4 0.87 28 3.1 2 87 3.4  86 

25  120  4.5 0.84 36 2.3 0.1 1667 4.5 - 1637 

 

 

0.25  

50  

aerated 

deareated 

30  10.5 0.86 79 1.7 0.2 14 7.5 - 27 

120   5.9 0.86 74 1.8 0.2 10 5.8 - 10 

120 10.2 0.85 130 1.1 7 21 10.5 - 24 

600   6.2 0.87 79 1.7 55 3 6.0 - 6 

 7200 5.6 0.84 193 1.9 1189 0.1 5.7  0.2 

25  120  8.1 0.85 109 1.3 5 23 8.2 - 16 
* From graphical method, ** From calculation equations (4, 8, 9, 10), *** From fitting 
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The parameters for interpreting the EIS diagrams are reported as a function of the experimental 

conditions in Table 3.1: C∞ is the capacitance obtained from the complex capacitance representation, 

δ is the calculated thickness of the passive film according to Eq. (2.21), the values of α and Qeff were 

determined from enhanced graphical representation, ρδ,c is the calculated resistivity according to Eq. 

(2.15), which was used to calculate the characteristic frequency using the following equation: 

𝑓𝛿 = 
1

2𝜋𝜌𝛿,𝑐 0
(3.2)                                                                                                      

Here, fδ is the characteristic frequency, indicating the limit of the frequency domain of validity of the 

PLM ([f0; fδ]). The fitted value of resistivity at the interface between the passive film and electrolyte, 

ρδ, is also reported and compared with the calculated value. Rct and CPLM are the charge-transfer 

resistance and calculated capacitance with PLM formula, respectively. Rct was only considered at the 

potential of −0.50 V vs. MSE for aerated conditions. Consistent with previous observations, even 

though the values of the EIS parameters were not identical, they were still of the same order of 

magnitude, in most of the experimental conditions. First, because the experiments were conducted 

using an overpotential relative to EOCP, it is possible that the potentials for each specimen were not 

exactly −0.50, −0.25, 0.0, and 0.25 V vs. MSE. In addition, the differences in the values is mainly 

included in the standard deviation of such tests. It is also worth mentioning that for some cases, the 

values of the fitted resistivity and the calculated one are different for the same experimental 

conditions. This difference is most likely linked to the sensitivity of ρδ, which is closely related to the 

determination of δ, α, and Qeff. Except for ρδ and ρδ,c, the step size and the short dwell durations did 

not appear to significantly affect the values of the EIS parameters.  

 

From the result of polarization curve obtained in the different conditions, it is obvious that the results 

in Fig. 3. 1,  Fig. 3. 2, Fig. 3. 5, Fig. 3. 6 are similar. For all the presented potentials, the deviations for α 

and Qeff were very narrow. At −0.50 and −0.25 V vs. MSE, the capacitance estimated from the complex 

capacitance representation and the calculated thickness of the passive films were quite close for the 

different experimental conditions. The capacitance was approximately 3 μFcm2, and the thickness of 

the passive film was approximately 3 nm. At the potential of 0.0 V vs. MSE, the estimated capacitance 

increased and the thickness of the passive film was reduced to less than 3 nm. Finally, at the potential 

of 0.25 V vs. MSE, the capacitances increased to higher than 5 μFcm2 and the calculated thicknesses of 

the passive films were below 2 nm. According to the polarization curves in Fig. 3. 1 and Fig. 3. 5, the 

potential of 0.0 V vs. MSE is the starting potential of the second oxidation process, which is consistent 

with an increasing capacitance and a decreasing thickness. For the last potential, no clear tendency 

could be extracted from the comparison of the capacitance and thickness under the different 

experimental conditions. 

 

In the case of long term (7200 s) polarization, the passive films formed at each potential are slightly 

thicker than for others conditions. In addition, the value of charge-transfer resistance for dwell time 

of 7200 s has two orders of magnitude more than others. By contrast, the values of resistivity ρδ formed 

at different potentials for dwell time of 7200 s are lower than that of others, indicating that the surface 

state and composition has been changed a lot due to polarization for long time in comparison with 

that of 120 s. However, further investigations have to be performed to better understand such 

evolutions. 
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Note that the impedance measured at -0.5 V vs. MSE in deaerated electrolyte was without considering 

resistance of charge transfer. Since the impedance measured here is far away from open circuit 

potential, charge transfer is neglectable. The values of thickness and α are relatively lower than that 

of in aerated electrolyte. The value of ρδ are very large for the passive film formed in the deaerated 

electrolyte. This finding indicates that ρδ is sensitive to the electrochemical reaction occurring at 

passive film/electrolyte interface. In addition, in the work of Chen et al. [155], Mott–Schottky 

measurement indicated that higher oxygen content in electrolyte would result in larger donor densities 

in passive film formed on 316L stainless steel. Consequently, the passive film formed in deareated 

solution has higher resistivity. 

 

In conclusion, the validity of the SEIS method was confirmed in this part: the reconstructed 

potentiostatic polarization curves and potentiodynamic polarization curves shown in Fig. 3. 1, Fig. 3. 5, 

Fig. 3. 7, Fig. 3. 8 and Fig. 3. 3 (In particular, Fig. 3. 1 and Fig. 3. 5) exhibit the same tendency, the same 

potential of transition, and similar current densities. Moreover, the impedance data do not show any 

significant dependence on the experimental conditions (dwell time and step size). The current 

densities measured using the potentiostatic method were close for each dwell time and lower than 

those measured using the potentiodynamic method, suggesting that steady state was reached. The 

results obtained with longer dwell time indicate that we must deal with pseudo-steady-state rather 

than steady-state for shorter dwell times. However, the impedance diagrams in the considered 

frequency range are reliable. Furthermore, during successive electrochemical impedance 

measurements, the high frequencies were principally investigated (100 kHz–0.1 Hz) because the 

capacitive behavior of a passive film mainly contributes at high frequencies. These results indicate that 

the basic prerequisites of compliance of linearity, stability, and causality necessary to perform EIS 

analysis were satisfied [123]. Finally, the overall testing time for each impedance measurement (100 

kHz–0.1 Hz) was ~2 min. As the dwell times and step sizes used in this study had no significant effect 

on the EIS results, a dwell time of 120 s and a step size of 50 mV were selected to minimize the duration 

of the experiment while maintaining the accuracy of the analysis. To facilitate also the measurement, 

the experiments were conducted in naturally aerated solution. 

 

3.3 Application of the method in different electrolytes 
 

3.3.1 Characterization of passive films at the OCP 
 

The previously validated method was used to study the electrochemical behavior of the Ni20Cr alloy 

in three different solutions: 10 g/L Na2SO4 acidified with H2SO4 (pH=2), 0.01 M Na2SO4 solution 

(pH=5.8), and 0.05 M H3BO3 + 0.075 M Na2B4O7 10H2O borate buffer solution (pH=9.2). 
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Fig. 3. 10 (a) Nyquist and (b) Bode diagrams obtained at the OCP for Ni–20Cr alloy in the three aerated 
solutions at pH=2, pH=5.8, and pH=9.2. 
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Table 3. 2 Capacitance and thickness of passive film, corresponding parameters of CPE, and resistivity 
at the interface of the passive film and electrolyte obtained at OCP. 

Parameters pH=2 pH=5.8 pH=9.2 

EOCP (V vs. MSE) −0.52 −0.48 −0.38 

C∞ (μF cm−2) 5.2 4.5 3.4 

α 0.94 0.95 0.92 

Qeff (μF cm−2s1−α) 12 11 12 

δ (nm) 2.0 2.3 3.1 

fδ (MHz) 1 4 3 

ρδ,c(kΩ cm) 166 41 48 

CPLM (μF cm−2)  5.1 4.5 3.1 

Rct (kΩ cm2) 3.57×103 3.60×103 2.34×103 

ρδ (kΩ cm) 124 39 17 

Re,est (Ω cm2) 104 789 131 

 

Initially, the samples were immersed for 24 h in the different solutions to allow the growth of the 

passive film and steady state to be reached. The Nyquist plots are presented in Fig. 3. 10, and the 

results obtained using the enhanced graphical method and fitting are presented in Table 3. 2. The 

electrochemical impedance diagrams for the three solutions were characterized by truncated and 

depressed semicircles. The values of the impedance at low frequencies were high, consistent with the 

presence of a passive film. With increasing pH of the electrolyte, C∞ decreased and the thickness 

increased. For both the acidic and near-neutral solution, the calculated capacitance from the complex 

representation was approximately 5 μFcm−2 and the estimated passive film thickness was 

approximately 2 nm. Notably, the passive film grown in the borate buffer solution had a smaller 

capacitance and higher thickness. For the CPE parameters (α and Qeff) estimated from the graphical 

representation, there was no significant differences among the values. The α values were higher than 

0.9. These results indicate the high homogeneity and capacitive behavior of the passive film formed at 

OCP in the three different solutions. The fitted value of ρδ decreased with increasing pH, suggesting 

modification of the outer layer of the passive film in terms of charge carrier density or hydroxide/oxide 

ratio. Except for the passive film grown in borate buffer solution, no obvious deviation between the 

fitted and calculated values of ρδ was observed. However, for the three experimental conditions, the 

calculated capacitance from the PLM was comparable to the value estimated from the graphical 

representation, validating the consistency of this approach. For the charge-transfer resistance (Rct), the 

values were of the same order of magnitude (106 Ωcm2), which is consistent with the existence of a 

protective passive layer [14]. 
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Fig. 3. 11 XPS spectra of (a) Cr 2p3/2, (b) Ni2p3/2, and (c) O 1s of the passive film formed on Ni–20Cr 
in solution with (1) pH=2, (2) pH=5.8, and (3) pH=9.2. 

XPS was employed to determine the compositions of the passive films. Fig. 3. 11 presents high-

resolution spectra of the Cr 2p3/2, Ni 2p3/2, and O 1s regions of the Ni–20Cr alloy passive film after 24 h 

of immersion in the different solutions.  

 

The Cr 2p3/2 spectra were fitted using the method presented by Biesinger et al. [135]. The Cr 2p3/2 

spectra were fitted with seven peaks, shown in Fig. 3. 11(a). The peaks at low binding energy at 

approximately 574.2 eV correspond to metallic Cr(0), and those at the higher bonding energy of 577.4 

eV can be assigned to chromium hydroxide Cr(OH)3. The remaining five peaks at bonding energies of 

575.7, 576.7, 577.5, 578.5, and 578.9 eV are attributed to chromium oxide Cr2O3.  

 

The 2p3/2 region of Ni was fitted according to data found in the literature [135]. The ones at the low 

binding energy of 852.6 eV, 856.3 eV and 858.7 can be attributed to Ni in the metallic state. There are 

five different peaks to account for nickel oxide NiO at 853.7 eV, 855.4 eV, 860.9 eV, 864.0 eV and 866.3 

eV. The last six peaks corresponded to hydroxide Ni(OH)2 locate at 854.9 eV, 855.7 eV, 857.7 eV, 860.5 
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eV, 861.5 eV and 866.5 eV, respectively. Ni metal is usually fitted with an asymmetric line shape 

because Ni metal conducts electrons [156]. 

 

The O 1s spectra were fitted with three components of oxide O2−, hydroxide OH−, and water H2O. The 

peak at 530.2 eV corresponds to O2−, which can be attributed to the metallic oxides in the passive film. 

However, the peaks at 531.8 and 533 eV correspond to OH− of metallic hydroxides and bonded 

water/adsorbed water or impurities on the surface of the sample [157,158]. 

 

The Cr2O3/Cr(OH)3 ratio in the acidic, neutral, and basic solutions was 2.5, 2.1, and 1.7, respectively. 

and the NiO/Ni(OH)2 ratio was 0.5, 0.6, and 0.2, respectively. Notably, the ratios of the Cr oxides 

formed in acidic and neutral solution were close; however, the ratio decreased in basic solution. This 

result indicates that the compositions of passive films formed in acidic and neutral solutions are closer, 

consisting of many more oxides than hydroxides. This finding could be confirmed by the ratio of 

O2−/OH− from the spectra. The O2−/OH− ratio of the passive film formed in acidic, neutral, and basic 

solutions was 0.34, 0.3, and 0.24, respectively. The evolution of the passive film with the pH of the 

solution observed in this study is consistent with that reported in other works using XPS or other 

analytical surface techniques [159,160]. 

 

3.3.2 Analysis of passive film properties from successive impedance diagrams 

 

 

Fig. 3. 12 Potentiodynamic polarization curves obtained at a scan rate of 0.5 mV/s (line) and from 
potentiostatic measurements (symbol) for Ni–20Cr alloy in the three aerated solutions with pH=2, 
pH=5.8, and pH=9.2. 

The measured potentiostatic polarization curves in the three solutions are presented in Fig. 3. 12 and 

the potentiodynamic curves are shown for comparison. As described before, the shape of the 

polarization curves obtained using the SEIS method were similar to those of the dynamic polarization 

curves, and the current densities were of the same order of magnitude. 
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In the three solutions, passive behavior was observed for both the potentiodynamic and potentiostatic 

polarization curves. The corrosion potentials increased in the positive direction with decreasing pH. In 

acidic solution, the corrosion potential was approximately −0.37 V vs. MSE, and the transpassive region 

began at 0.3 V vs. MSE. Similarly, for the neutral solution, the corrosion potential shifted to −0.52 V vs. 

MSE, and the passive–transpassive transition region was smoother and detected at 0.22 V vs. MSE. 

The curve obtained in basic solution had secondary oxidation peaks, as discussed before. The corrosion 

potential was approximately −0.65 V vs. MSE, and the secondary oxidation started at 0 V vs. MSE.  

 

According to the polarization curves, the analysis of the impedance diagrams using the PLM model was 

only applied in the potential domain of existence of the passive film. Thus, for the basic solution, the 

evolution of the resistivity in the potential range corresponding to secondary oxidation and the 

transpassive phenomenon are not discussed. Another EEC must be developed for this potential range. 

 

In the passive domain, each impedance diagram was analyzed using the enhanced graphical method 

and fitted with SIMAD according to the EEC presented in Chapter 2. The charge-transfer resistance was 

used to fit the first four potentials when the cathodic reaction was considered. However, as the charge-

transfer resistance tended to an infinite value, it is not taken into account. The evolution with applied 

potential of all the other parameters obtained by the analysis is reported in Fig. 3. 13.  
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Fig. 3. 13 Evolution of physical parameters: (a) calculated thickness of passive film, (b) CPE exponent α, 
(c) CPE parameter Qeff, (d) resistivity ρ0 (alloy/passive film interface), and (e) resistivity ρδ (passive 
film/electrolyte interface) for the Ni–20Cr alloy in the three aerated solutions with pH=2, pH=5.8, and 
pH=9.2. 

Fig. 3. 13 (a) shows the evolution of the thickness of the passive film with the applied potential. The 

passive film formed in borate buffer solution was the thickest, with those formed in the acidic and 

neutral solutions having similar thicknesses. This result can be attributed to the presence of a large 
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amount of hydroxide in the passive film at high pH [161]. The thickness of the passive film formed in 

acidic solution (pH=2) was stable and close to 1.7 nm up to the potential of 0.1 V vs. MSE. When the 

applied potential was over 0.1 V vs. MSE, the thickness decreased sharply to less than 1 nm. The 

thickness of the passive film formed in the neutral solution of 0.01 M Na2SO4 (pH=5.8) changed less 

when the potential reached more anodic values, maintaining a value between 1.5 and 2.0 nm in the 

potential range from −0.5 to 0 V vs. MSE. Beyond that range, for more anodic applied potentials, the 

thickness decreased. The calculated thickness of the passive film in borate buffer solution decreased 

from 3.2 nm at a potential near −0.6 V vs. MSE to 1.5 nm at a potential of 0.5 V vs. MSE. In all the cases, 

a decrease of the passive film thickness occurred before the sharp increase in current density related 

to the secondary oxidation of Cr. This finding indicates that the thickness of the passive film evolves 

even if the measured current density remains constant. The decrease of the thickness with increasing 

potential may be related to the semiconductor properties of Cr oxide grown on Ni–Cr alloys [12]. 

Effectively, as Cr oxide acts as a p-type semiconductor, the generation of cation vacancies promoted 

by the increase of potential results in a thinning effect of the passive layer. 

 

The evolution of the CPE parameters (α and Qeff) with potential is shown in Fig. 3. 13(b) and (c). Similar 

trends were observed for the evolution of α in acidic and neutral solution. In the range of potentials 

lower than −0.1 V vs. MSE, a plateau was observed. The value of α remained approximately 0.95 in the 

plateau region, indicating that the distribution within the passive film did not change with applied 

potential in this range. When the applied potential was more anodic than −0.1 V vs. MSE, α significantly 

decreased from 0.95 to 0.8 for potentials between −0.1 V vs. MSE and 0.50 V vs. MSE. This result 

indicates that continuous evolution of the passive film occurred during the polarization and occurred 

before the transpassive potential. In addition, the potential applied in the anodic direction over −0.1 V 

vs. MSE, Qeff, continuously increased with imposed anodic potential and exceeded 10−4 μFcm−2s1−α at 

0.50 V vs. MSE.. A similar result was observed for the borate buffer solution. The value of α remained 

stable at approximately 0.92 in the potential range [−0.6 V vs. MSE; −0.25 V vs. MSE], followed by a 

decrease to 0.85 at 0.05 V vs. MSE. In the potential range of secondary oxidation, the value of α 

increased again, reaching approximately 0.89 at 0.3 V vs. MSE, suggesting the formation of a new oxide 

layer at the surface. When the potential was nobler than 0.3 V vs. MSE, α decreased continuously. The 

variation of α indicates a change of the structure of the passive film with applied potential. The 

decrease of α generally indicates an increase of the dispersion of time constants related to surface 

heterogeneity or chemical composition distribution within the passive film [162]. It may also suggest 

the transition from a protective passive layer to a reactive surface at transpassive potentials. 

 

The evolution of the resistivity ρ0 at the interface between the Ni–Cr alloy and passive film with 

potential in the three electrolytes is shown in Fig. 3. 13 (d). In the potential range from −0.1 to 0.1 V 

vs. OCP, the impedances were fitted with the equivalent circuit considering the contribution of the 

charge-transfer resistance. There was no obvious change of resistivity ρ0 (interface between the Ni–Cr 

alloy and passive film) resulting from the cathodic reaction. With further increase of the applied 

potential, ρ0 decreased, reached a plateau, and finally decreased again. The evolution of ρ0 is closely 

related to the evolution of the current density (Fig. 3. 12), and the transition potentials are similar. The 

evolution of ρ0 suggests modification of the Ni–Cr/passive film interface by the presence of more point 

defects locally decreases the resistivity. This finding indicates that ρ0 and the measured current density 

are closely related to the transport of point defects and the electrochemical kinetic constants at this 

inner interface. 
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The evolution of the resistivity ρδ at the interface between the passive film and electrolyte with 

potential is shown in Fig. 3. 13 (e). The value of ρδ was fitted using the PLM and was drastically lower 

than ρ0. The ρδ value in the acidic solution was 106 Ω cm at approximately −0.49 V vs. MSE and remained 

steady until the applied potential reached 0.0 V vs. MSE. Then, ρδ increased to 107 Ω cm at a potential 

of 0.35 V vs. MSE. The evolution of ρδ in the neutral solution followed a similar trend to that in the 

acidic solution. The first fitted value of ρδ at −0.50 V vs. MSE was approximately 106 Ω cm, and the value 

remained almost stable up to −0.1 V vs. MSE. After that, ρδ increased with increasing potential. 

Conversely, a different trend was observed for the evolution of ρδ in the boric buffer solution. The first 

fitted value for ρδ at −0.60 V vs. MSE was approximately 105 Ω cm, which is smaller than that in the 

other two media. Then, upon further increase in the applied potential, ρδ continued increasing to 

approximately 106 Ω cm at a potential of 0.0 V vs. MSE. The value of ρδ in boric acid solution was lower 

than that in the acidic and neutral solutions. This difference was caused by the different chemical 

compositions of the passive film in solutions of different pH, as confirmed by the XPS results. The 

evolution of ρδ indicates continuous modification of the outer oxide layer with the applied potential, 

suggesting variation of the oxide/hydroxide ratio or densification of this outer layer. 

 

3.3.3 Evolution of resistivity profiles as a function of polarization and pH 
 

Using the values of α, ρ0, and ρδ, resistivity profiles throughout the passive film were constructed for 

each tested potential using Eq. (2.8). The calculated distributions of resistivity within the passive films 

grown in the different solutions are shown in Fig. 3. 14. A dimensional thickness and normalized 

resistivity were selected to highlight the common tendency of passive film variation with applied 

potential for all the tested solutions. 
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Fig. 3. 14 Normalized resistivity of passive film of Ni–20Cr alloy in solution of (a) pH=2, (b) pH=5.8, and 
(c) pH=9.2 from Eq. (4) as a function of dimensionless position with ξ as a parameter. 
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For all the cases, the resistivity distribution profile consisted of two separate parts. From the 

alloy/passive film interface, the first part consisted of a plateau with ρ equal to ρ0. The second part 

reflects power-law decay of the resistivity, reaching the passive film/solution interface resistivity ρδ. 

This dual distribution of the resistivity can be understood from the dual structure of the passive film 

with an inner dense oxide layer and an outer hydrated and hydroxide layer. As the value of ρ0 is high 

and close to the resistivity of the bulk oxide, the length of the plateau may be related to the size of the 

inner chromium oxide layer and the decay may be related to the modified oxide being affected near 

the electrolyte. It is also interesting that the resistivity distribution profile is similar to the transition 

layer model proposed by Sato [161]. In the transition layer model, the passivating film consists of an 

inner anhydrous oxide layer and an outer hydrous oxide layer. There is a critical extent of hydration 

that depends on the solution pH and decreases with decreasing concentration of OH− in the solution. 

In the acidic and neutral solutions (Fig. 3. 14(a) and (b)), the lengths of the plateau were quite similar, 

almost 50% of the total thickness of the passive layer. The distributions of the resistivity were also 

similar, indicating that the passive films that formed in the acidic and neutral solutions were similar. 

This finding is consistent with the XPS results showing that the compositions of the passive films 

formed in the acidic and neutral solutions were similar. The length of the plateau was shorter 

(approximately 25% of the total thickness) in Fig. 3. 14(c), indicating that the dense chromium oxide in 

the passive film formed in basic solution was thinner. This last result is consistent with the presence of 

more hydroxide in the passive film grown in the borate buffer solution. 

 

The evolution of the resistivity profiles was similar for the three tested solutions. The length of the 

plateau decreased with increasing applied potential. As ρδ increased with the applied potential, the 

resistivity decay was smoother at higher potential. These results suggest that during the anodic 

polarization, the passive film is modified in depth: the defectiveness of the inner oxide increases (ρ0 

decreases) as the thickness decreases, and ρδ of the outer layer of the passive film increases, suggesting 

its chemical modification in terms of the density of point defects or the chemistry. This last tendency 

is more noticeable for the passive film grown in the acidic and neutral solutions. Hence, increasing the 

applied potential appears to affect the charge-carrier transport and distribution throughout the 

passive film. This evolution is consistent with the following transpassive phenomenon that relies on a 

charge-transfer reaction that the passive film is no longer blocking as well as potential dissolution of 

the film. 

 

3.3.4 In-situ analysis of passive film behavior during polarization 
 

One of the most important findings of this work is that the passive film continuously evolves during 

the polarization test even if the polarization curves show a current density plateau. Another result is 

that regardless of the pH, the evolution of the passive film properties shows similar trends in the 

potential range of “passive behavior”. Fig. 3. 15 presents a schematic representation of the evolution 

of the different parameters measured and determined from the analysis of the impedance diagram for 

the passive film grown in borate buffer solution. The transitions indicated below (related to 

modification of the trend in the evolution of the parameters) were also observed for the other tested 

cases but shifted to less cathodic potentials as the solution pH decreased, which is consistent with the 

OCP shift. 
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Fig. 3. 15 Schematic representation of the evolution of the different parameters related to the film 
passive properties. 

The potential-step polarization curve reveals three potential domains: one corresponding to the 

increase of the current density from low current density at EOCP to the current density of the passive 

plateau, one corresponding to the passive plateau, and one corresponding to the transpassive 

phenomenon. As previously mentioned, the evolution of ρ0 is related to the evolution of the current 

density during polarization. This relation indicates that the metal/passive film interface evolves via the 

generation and transport of cation vacancies from the electrolyte/passive film interface. The 

electrochemical kinetic constants are linked to the annihilation of those vacancies. For the passive 

plateau, although the current density remains constant, α and ρδ change after remaining constant with 

the applied potential. This result indicates that the modifications of the structure of the passive film 

(thinning of the inner oxide layer) related to its chemical composition (change in oxide/hydroxide ratio) 

or its reactivity (increase of the point defect densities or mobilities or the balance of the 

electrochemical reaction kinetics) are promoted before the transpassive phenomenon but also before 

the thinning. Indeed, the thickness of the passive film decreases while the transpassive potential is not 

reached. This work demonstrates the evolving character of the passive film. Even if polarization curves 

indicate the steady-state character of the passive film in a potential range (passive plateau), its 

structure, chemistry, or properties differ significantly as a function of the potential. Such behavior is 

generally hidden in conventional potentiodynamic studies. It is also important to notice that by 

applying SEIS and the proposed analysis methodology to adjust the electrochemical impedance 

diagrams, the evolutions of the parameters α, ρ0, and ρδ clearly demonstrate that the PLM impedance 

is related to the anodic contribution of the current density and ionic species distribution and transport 

through the passive film. 
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3.4 Conclusion 
 

In this chapter, an electrochemical analysis method combining potentiostatic polarization with 

electrochemical impedance measurement at each potential step was used to successfully study the 

passive behavior of Ni–20Cr binary alloy. This method, termed successive electrochemical impedance 

spectroscopy (SEIS), was tested considering various experimental conditions, not only dwell times and 

step sizes, but the scanning direction and the electrolyte aeration. The effects of each parameter on 

the potentiostatic polarization curves and on impedance data were investigated, and the results were 

validated by comparison with more conventional potentiodynamic polarization curves. The results 

confirmed that the potentiostatic polarization curves were comparable to the potentiodynamic 

polarization curves (scan rate of 0.5 mV/s) and that the electrochemical impedance measurements 

were not significantly affected by the step size, shorter dwell times and aeration of the solution. Longer 

dwell times and scan direction affect suggestively the results by modifying deeply the passive film 

structure. The deviation between the potentiostatic and potentiodynamic curves increase when 

considering these parameters. 

 

In the second part of this chapter, the optimized method was applied for the study of passive films 

grown on a binary Ni–20Cr alloy in three solutions with different pH values. This method shows great 

potential for the study of film passivity owing to the interpretation of the impedance data through 

enhanced graphical representation and the power-law model allowing more parameters related to the 

passive film properties to be determined. Indeed, the application of SEIS provides a lot of information 

on the passive film properties and their evolution with the applied potential. For instance, the 

evolution of thickness of passive film decreases within passivation domain with anodic potential 

applied. Also, the resistivities of passive films formed in different solution are observed different, 

resulting from the different composition or structure of passive film. While the resistivities are 

observed increasing with anodic potential caused by dehydration. Using this proposed methodology, 

it is possible to explore the evolutionary nature of a passive film. Hence, as a complement to 

monitoring the evolution of the current density (measured at each potential step), the modification of 

the thickness, chemical composition, and reactivity can be assessed in situ using this original method. 
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Chapter 4 Role of alloying elements in passive and transpassive 

behavior  
 

The main results in this chapter has been published in Journal of the Electrochemical Society, 

referenced as: 

 

Z. Zhang, B. Ter-Ovanessian, S. Marcelin, J. Galipaud, B. Normand, Role of alloying elements in passive 

and transpassive behavior of Ni–Cr-based alloys in borate buffer solution. J. Electrochem. Soc. 

168(2020) 081503. https://doi.org/10.1149/1945-7111/ac1890 

 

 

4.1 Introduction 

 

Nickel-based alloys are widely used for critical applications because of their ability to form passive films 

in aqueous environments and protective oxides with controlled growth rates at high temperature. 

Moreover, they exhibit favorable and tunable mechanical properties. However, the design of novel 

nickel-based alloys remains a challenge given the complexity of the chemical and mechanical loadings 

potentially encountered in advanced applications, such as those in the nuclear and aerospace domains. 

 

The corrosion resistance of these alloys can be greatly improved through the addition of certain 
alloying elements such as Cr, which acts as a passivity promoter, supporting the nucleation of the oxide 
[16]. The Cr-rich layer within the passive film is considered the main corrosion-resistance feature of 
these alloys [163]. The oxide films on Ni–Cr binary alloys have generally been reported to consist of a 
main Cr oxide network mixed with a minor Ni oxide network or the insertion of a certain concentration 
of metal ions [164]. Moreover, a dual structure is generally considered to be formed by an inner oxide 
part and an outer hydroxide part consisting of both metallic elements [165]. Cr(III) is the main cation 
species in both layers, whereas Cr(VI) and Ni(II) are the minor species.  
 
 
The minimal concentration of Cr required for passivity in bulk Ni–Cr alloys has been determined to be 
8–11 at.% [166]. In acidic solution, the passivation potential is shifted to more negative values with 
increasing Cr content. The current densities in the active and passive potential ranges decrease with 
increasing Cr content [167]. However, a critical Cr concentration of 22–26 wt.% in bulk Ni–Cr alloys 
enables the diffusivity of charge species within the passive film to be tailored, maintaining a low 
steady-state current density and ensuring good resistance to the passivity breakdown process [12]. In 
chloride-containing solution, a similar Cr concentration provides good resistance to pitting corrosion, 
limiting the nucleation and growth of pits [168]. However, the potential range of passivity is affected 
by the Cr content. Indeed, the transpassive potential is generally lower for Ni–Cr alloys than for pure 
Ni which exhibits a transpassive region for potential located after thermodynamic water stability [165]. 
 
 
Transpassivation is characterized by a rapid dissolution of metal or alloy when the electrode potential 
becomes too positive [169]. The transpassive oxidation potential is thermodynamically controlled. It is 
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mainly dependent on the aqueous solution (essentially the pH). For Ni–Cr-based alloys, this 
thermodynamic phenomenon is linked to the redox potential of Cr(III) to Cr(VI) generally expressed as 
[165]: 

𝐶𝑟2𝑂3 + 10𝑂𝐻
− → 2𝐶𝑟𝑂4

2− + 5𝐻2𝑂 + 6𝑒
− (4.1) 

However, in basic solution, the transpassive dissolution rate can be limited by the formation of a new 
oxide film on the surface that contains chemical species in a higher valence state. This phenomenon is 
called secondary passivation [170]. Fig.4. 1, adapted from our previous study [171], presents the 
polarization curves obtained for a synthetic Ni–Cr binary alloy (with 20 wt.% Cr) immersed in 10 g/L 
Na2SO4 acidified with H2SO4 (pH=2) (red curve) and in 0.05M H3BO3 + 0.075 M Na2B4O7 10H2O (pH=9.2) 
(blue curve). In acidic solution, the alloy presents a higher corrosion potential and wide passive range 
and a transpassive process, whereas in borate buffer solution, the alloy exhibits a lower corrosion 
potential and a transpassivation–secondary passivation transition, as evidenced by the hump in 
current density after the passive domain. The secondary passivation is not always observed in 
polarization curves. Mishra et al. [27,28] showed that the occurrence and intensity of this phenomenon 
are closely related to the pH and oxyanion of the solution. They proved that the full process, including 
the apparent breakdown of the passive film followed by an anodic peak and a secondary passive 
region, occurs for Cr-containing Ni-based alloys for solutions with pH > 8.6, such as 
carbonate/bicarbonate or borate buffer solutions. They also reported that for Ni–Cr–Mo alloys, the 
apparent transpassive potential and anodic peak potential are independent of the chemical 
composition of the alloy. However, the current densities of the anodic peak and secondary passive 
plateau are affected by the solution and alloy chemistry. 
 

 

Fig.4. 1 Potentiodynamic polarization curves obtained for Ni–20Cr binary alloy in aerated acidic and 
buffer solutions (scan rate of 0.5 mV/s after 24 h of immersion). 

In the present work, the relation between the passive and transpassive behaviors and the chemical 

composition of synthetic Ni-based alloys will be addressed, focusing on the role of not only the Cr 

content but also the Fe content. Indeed, Fe is generally added as an alloying element in Ni-based alloys 

because it reduces the total cost of the material while improving the machinability and weldability. 

Even if Fe contributes to the passive film formation, the addition is not straightforwardly beneficial to 

the corrosion behavior of Ni-based alloys. For example, in acidic solution, adding 8 wt.% Fe to Ni–Cr 
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binary alloys increases the current density of the active peak and the passive plateau [172]. In acidic 

saline solution, the ternary Ni–Cr–Fe alloy was more sensitive to pitting corrosion than the binary Ni–

Cr alloy even though the thickness of the passive film was not remarkably changed and only minor 

amounts of Fe were detected [173]. In basic solution, Boudin et al. [174] confirmed that the passive 

film thickness was unchanged by the addition of Fe and that the oxidized Fe mainly appeared in the 

mid-part of the passive film. Moreover, the addition of Fe to Ni-based alloys has been shown to 

decrease the corrosion currents in the transpassive potential range [175]; however, this finding is not 

yet well understood. 

 

Considerable research has been conducted on the passivation of binary Ni–Cr and ternary Ni–Cr–Fe 

alloys [12,163,167,168,175]; however, the growth mechanism and the nature, composition, and 

structure of the passive films during polarization processes remain largely unexplored. Moreover, most 

prior investigations on the corrosion behavior of passive alloys have focused on the passive regime, 

with little attention paid to the transpassive phenomenon and the key parameters governing it. A 

relatively high potential is required to activate transpassive dissolution; nevertheless, certain service 

conditions (accidents, radiolysis,…) can shift the potential [176], resulting in transpassive dissolution 

and consequently shortening the service life of alloys. Moreover, Chiang et al. suspected that the 

susceptibility to stress corrosion cracking may be related to the active dissolution due to 

transpassivation [177]. Hence, preventing damage from transpassive dissolution is of considerable 

interest in the corrosion domain [178]. A better understanding of the passivation process and 

mechanism when the applied potentials change, even in the transpassive and secondary passivation 

regimes, could provide insight into the key factors of success for the design of new alloys. 

 

The aim of this chapter was to investigate the role of alloying elements in the passivation behavior of 

Ni–Cr-based model alloys under polarization over a wide potential range. Successive electrochemical 

impedance measurements were performed on various binary Ni–Cr and ternary Ni–Cr–Fe alloys in 

borate buffer solution. Thanks to recent advances in the analysis of electrochemical impedance 

spectra, successive electrochemical impedance measurements provide insight into the chemical 

processes occurring during passivation and polarization processes [179]. Using this approach, a better 

understanding of the effect of the alloy composition (Cr and Fe content) on the electrochemical 

behavior of Ni-based alloys from cathodic potential to the transpassive region was attained. In 

addition, the roles of the alloying elements in the secondary passivation process and especially in 

determining the chemical composition of the passive film were studied in detail using X-ray 

photoelectron spectroscopy (XPS).  

 

The results obtained from the successive electrochemical impedance measurements were 

intentionally separated into the study of the polarization curves and the investigation of the evolution 

of the electrochemical parameters determined through analysis of the impedance spectra. 
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4.2 Current density–potential curves 

 

Fig.4. 2 Potentiostatic polarization curve for (a) binary Ni–xCr alloys (x=16, 20, 24, 28 wt%) and pure 
Cr, (b) ternary Ni–xCr–8Fe alloys (x=14, 22, 30 wt%), obtained in aerated 0.05 M H3BO3 + 0.075 M 
Na2B4O7 10H2O borate buffer solution at pH=9.2. 

Fig.4. 2 (a) presents the polarization curves for the Ni–xCr alloys (x=16, 20, 24, 28) and pure Cr in 

aerated borate buffer solution obtained by step-by-step potentiostatic measurements. The reported 

current density is the average value of the last ten measurements for each potential step. For all the 

curves, the corrosion potential was close to −0.6 V vs. MSE. The shapes of the polarization curves of 

the Ni–xCr alloys with different Cr contents were similar, especially in the passive domain defined 

between −0.6 V and 0 V vs. MSE. For more anodic overvoltage, a hump in the current density related 

to the second oxidation and repassivation followed by a final increase of the current density was 

observed. Anodic current densities of the same order of magnitude were observed in the passive range 

regardless of the Cr content in the binary alloy. This result suggests that the passive behavior 

characterized in the borate buffer solution remains almost independent of the Cr content. However, 

the critical current density measured at 0.23 V vs. MSE for the Ni–16Cr, Ni–20Cr, Ni–24Cr, and Ni–28Cr 

alloys was 0.008, 0.03, 0.04, and 0.07 mA cm−2, respectively. Notably, for all the tested materials, the 

current-density peak increased with increasing Cr content; however, the current density 

corresponding to the second passivation plateau remained the same. For comparison, the polarization 

curve for pure Cr was obtained under the same conditions. Notably, no secondary passivation 

phenomenon was observed in this case. Only transpassive dissolution, indicated by the continuous 

increase of the current density for potentials higher than 0.20 V vs. MSE, was observed. Consequently, 

the second oxidation–repassivation transition was induced by the Ni matrix that plays a role in this 

potential domain, allowing the repassivation phenomenon [180]. It is worth mentioning that in this 

potential range, Ni remains in a passive state [104,181]. 

 

Similar polarization curves were obtained for the ternary Ni–xCr–8Fe alloys (x=14, 22, 30 wt%), as 

presented in Fig.4. 2 (b). The corrosion potentials for all the alloys were close to the value of −0.6 V vs. 

MSE of the binary alloys. Moreover, the current-density plateau for the ternary alloys had the same 

order of magnitude. With the addition of Fe, the corrosion tendency in the passive region was not 

changed. These findings suggest that the passive film grown in borate buffer solution behaved similarly 

for all the materials tested within the passive domain and that the barrier property of the passive film 

should be attributed to a similar inner layer. However, interestingly, the dissolution–repassivation 

peak for the Ni–14Cr–8Fe and Ni–22Cr–8Fe alloys was almost absent in the secondary passivation 

domain compared with that of the Ni–Cr binary alloys. For these two materials, a smooth evolution of 
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the current density was observed at 0.0 V vs. MSE before a plateau of 1 µA cm−2 was reached, indicating 

a slight evolution of the interface. In contrast, the dissolution–repassivation peak still existed for the 

Ni–30Cr–8Fe alloy, and the critical current density near 0.13 V vs. MSE was 7 µA cm−2. Thus, the 

addition of Fe has a beneficial role in the electrochemical behavior, limiting the current density in the 

transpassive potential domain, consistent with findings in the literature [175]. This effect is also 

suggested for the corrosion behavior of stainless steel [182,183]. 

 

4.3 XPS characterization 

 

 

Fig.4. 3 Main components of passive films formed on (a) Ni–16Cr alloy and (b) Ni–14Cr–8Fe alloys under 
different potentials in aerated 0.05 M H3BO3 + 0.075 M Na2B4O7 10H2O borate buffer solution 
(pH=9.2). 
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Table 4. 1 Ratio of oxide to hydroxide for the different metallic elements in passive films formed at 
different potentials 

MxOy/Mx’(OH)y’ −0.1 V vs. MSE 0.1 V vs. MSE 0.4 V vs. MSE 

For Cr in Ni–16Cr 1.36 1.31 0.75 
For Ni in Ni–16Cr 0.81 0.32 1.12 

Total oxide/hydroxide in Ni–16Cr 1.27 0.52 1 

For Cr in Ni–14Cr–8Fe 3.0 7.0 7.0 
For Ni in Ni–14Cr–8Fe 1.44 1.26 0.72 
For Fe in Ni–14Cr–8Fe 1.5 1.5 0.25 

Total oxide/hydroxide in Ni–14Cr68Fe 1.7 1.78 1.13 
 

To determine the representative effect of Fe addition on the passive and transpassive behavior, XPS 

was used to analyze the compositions of the passive films grown at three different potentials on binary 

Ni–16Cr and ternary Ni–14Cr–8Fe alloys. Indeed, the current density measured on Ni–16Cr revealed 

the presence of a secondary oxidation peak and secondary passivation, which were not observed for 

the Ni–14Cr–8Fe alloy (Fig.4. 2). The applied potentials were −0.1 V, 0.1 V, and 0.4 V vs. MSE, 

corresponding to the domains of passivation, transpassivation, and secondary passivation, 

respectively. The high-resolution spectra of Cr 2p3/2, Ni 2p3/2, O 1s, and Fe 2p3/2 regions of the 

passive films were analyzed. The fitted spectra and binding energies corresponding to the different 

chemical elements are presented in the Appendix Supplementary data. The main components of the 

passive films formed at different potentials on two samples are summarized in Fig.4. 3. Only 

information on the oxides and hydroxides was included, and that on the metallic components was 

excluded. In addition, Table 4. 1 reports the ratio of oxides to hydroxides for the different components 

in the passive films formed at different potentials.  

 

In Fig.4. 3 (a), at the applied potential of −0.1 V vs. OCP, Cr2O3 and Cr(OH)3 were detected for Cr and 

NiO and Ni(OH)2 were detected for Ni. For the three potentials, the passive films consisted of a mixed 

oxide–hydroxide layer. The total oxide/hydroxide ratio was close to 1.27 for −0.1 V vs. MSE, decreased 

to 0.52 at 0.1 V vs. MSE, and increased to 1 at 0.4 V vs. MSE, indicating that more hydroxide formed in 

the transpassivation process. For the last two potentials, the Cr2O3 signal was lower than that at −0.1 

V vs. MSE. The Ni hydroxide enrichment was only observed at 0.1 V vs. MSE, corresponding to the 

dissolution potential. A similar result has been reported in the literature [27,28]. At this potential, the 

oxide CrO3 was detected, confirming that Cr6+ is generated during polarization at this potential and 

partially remains within the film. At the potential of 0.4 V vs. MSE, the signal of the metallic state 

became more pronounced (see Appendix A), indicating that the layer was thin [184]. The passive film 

was thinner at high anodic potential, and there was less Cr in the film. 

 

XPS analysis of the ternary Ni–14Cr–8Fe alloy, shown in Fig.4. 3 (b), revealed that the chemical 

composition of the passive layer was more complex. The main oxide–hydroxide networks remained 

enriched in Cr, Ni, and Fe, contributing to the passive layer in both oxide and hydroxide forms and at 

different oxidation states. The contents of chromium oxide Cr2O3 and hydroxide Cr(OH)3 in the passive 

film at 0.4 V vs. MSE were lower than those at the other two potentials. It is worth mentioning that 

CrO3 was not detected in the passive film formed at the three potentials. Moreover, Ni hydroxide was 

the main component at 0.4 V vs. MSE. The overall contribution of Fe increased from −0.1 V vs. MSE to 

0.1 V vs. MSE. Additionally, Fe2O3 was not detected at 0.4 V vs. MSE, and a higher FeOOH content was 
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observed. These results indicate that the combination of Ni and Fe plays a significant role in the passive 

film behavior at high anodic potentials by modifying the oxide layer and limiting the dissolution of the 

material, especially forming hydroxides at 0.4 V vs. MSE, thus preserving the passivity. 

 

4.4 Evolution of EIS parameters determined graphically during anodic polarization 

  

 

Fig.4. 4 Evolution of CPE parameters α and Qeff with potential for (a) binary Ni–xCr alloys (x=16, 20, 
24, 28 wt%) and pure Cr, (b) ternary Ni–xCr–8Fe alloys (x=14, 22, 30 wt%) in 0.05 M H3BO3 + 0.075 M 
Na2B4O7 10H2O borate buffer solution (pH=9.2). 

The evolution of the graphically determined CPE exponent α with potential for the Ni–xCr alloys (x=16, 

20, 24, 28 wt%) and pure Cr is shown in Fig.4. 4 a1. Regardless of the chromium content, the α values 

were similar with the same evolution trend with the applied anodic potential. The CPE parameter 

remained stable at approximately 0.92 in the potential range between −0.6 V and −0.25 V vs. MSE, 

followed by a decrease to 0.85 at 0.05 V vs. MSE. In the potential range defined by the secondary 

oxidation for Ni–Cr alloys, α increased continuously, reaching approximately a plateau at 0.89 at 0.3 V 

vs. MSE for 16Cr and 0.83 for 28Cr. Finally, for more anodic potential, α decreased again. This evolution 

provides relevant indications about the reactivity of the Ni–xCr alloys. First, in the passive domain, the 

passive film was modified when the potential increased, even before the occurrence of the 

transpassive dissolution, suggesting a continuous alteration of the passive film to breakdown. Then, 

during the second oxidation, transpassive dissolution occurred and was followed by a novel oxide 

formation, limiting the current density. The CPE parameter α is linked with the dispersion of time 
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constants related to surface heterogeneity or chemical composition distribution within the passive 

film. During polarization, both contributions of the passive film structure and electrochemical reactions 

modify the dispersion of time constants and must be considered. In the potential domain related to 

second oxidation, α is dependent of the Cr content in the Ni–xCr alloys, suggesting that the structure 

or chemical composition of the oxide layer is different from that of the original passive film or that the 

transpassive dissolution kinetics is affected by the Cr content. For comparison, α for the pure Cr 

remained over 0.9 in this passive potential range but decreased all the time within the transpassive 

region. No increase of α was observed because no secondary passivation was detected during the 

measurement. The evolution of the second CPE parameter Qeff with potential for the Ni–xCr alloys and 

pure Cr presented in Fig.4. 4 b1 is consistent with a continuous evolution of the passive layer up to -

0.05 V vs. MSE, followed by a slightly different evolution within the second-oxidation domain. For pure 

Cr, this second trend was less observable, as no second passivation occurred. The final increase of Qeff 

is related to the complementary contribution of the double-layer capacitance associated with the 

reaction of water oxidation. 

 

When Fe was added to the binary Ni–Cr alloy to obtain the Ni–xCr–8Fe alloys (x=14, 22, and 30 wt.%), 

the CPE parameter α showed a similar trend regardless of the tested material (Fig.4. 4 a2). The value 

of α remained stable at approximately 0.92 in the potential range of −0.6 V to −0.25 V vs. MSE, followed 

by a decrease to 0.85 at -0.05 V vs. MSE. In the potential range of secondary oxidation, the value of α 

increased again, reaching approximately 0.89 at 0.3 V vs. MSE. When the potential was nobler than 0.3 

V vs. MSE, α decreased again. Similar to the observation for the binary Ni–Cr alloys, the value of Qeff 

for the Ni–xCr–8Fe alloys increased with applied potential (Fig.4. 4 b2). These results indicate that the 

evolution trends of α and Qeff are quite similar for binary and ternary alloys, whereas the polarization 

curves differ, especially in the domain of the second oxidation potential. However, the values of α in 

this potential domain were always higher for Ni–14Cr–8Fe and Ni–22Cr–8Fe than for the 30 wt.% Cr-

containing alloy, exhibiting a current-density peak. This finding suggests that Fe plays a role in the 

structure and chemistry of the oxide film within this potential range. When the Cr content was less 

than 30 wt.%, the dissolution of the passive film or the second oxidation kinetics of Cr was limited by 

the presence of Fe. Moreover, the higher value of α indicates that Fe contributes to a more 

homogenous oxide layer in the high potential region. 

 

Fig.4. 5 Evolution of calculated passive film thickness as a function of the applied potential for (a) Ni–
xCr alloys (x=16, 20, 24, 28 wt%) and pure Cr and (b) Ni–xCr–8Fe alloys (x=14, 22, 30 wt%) in 0.05 M 
H3BO3 + 0.075 M Na2B4O7 10H2O borate buffer solution (pH=9.2). 

-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
0

1

2

3

4

5

6

7

16 Cr

20 Cr

24 Cr

28 Cr

pure Cr

E / V vs. MSE

P
as

si
v
e 

fi
lm

 t
h
ic

k
n
es

s 
/ 

n
m

a

-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
0

1

2

3

4

5

6

7

b

P
as

si
v

e 
fi

lm
 t

h
ic

k
n

es
s 

/ 
n

m

E / V vs. MSE

14Cr8Fe

22Cr8Fe

30Cr8Fe

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI050/these.pdf 
© [Z. Zhang], [2021], INSA Lyon, tous droits réservés



 85  
 

The evolution of the evaluated passive film thicknesses with potential for the Ni–xCr alloys (x=16, 20, 

24, 28 wt.%) and pure Cr is shown in Fig.4. 5 (a). The deviation for the calculated thickness was 

approximately 9%. The deviation was calculated from the different estimations from the graphical 

determination for infinite capacitance. The evolutions of the passive film thicknesses for the four 

binary alloys show the same trend and can be separated into two parts. For the potentials below 0.0 

VMSE, there was no obvious change in thickness (a slight decrease). During polarization, the continuous 

increase of potential resulted in slight thinning of the passive films within the passive domain. The 

decrease of the thickness with applied anodic potential might be linked with the properties of the Cr 

oxide semiconductor grown on the Ni–Cr alloys [185]. Because the Cr oxide generally acts as a p-type 

semiconductor, the generation of cation vacancies was promoted during the polarization process. In 

the more anodic potential range (over 0.0 VMSE), the thickness decreased rapidly, which could be linked 

to the transpassive reaction. The thicknesses were in the range of 3–4 nm for potentials between the 

cathodic domain and 0 V vs. MSE, whereas that value for pure Cr was up to 6 nm. This result might 

have been caused by the presence of a larger amount of hydroxide in the passive film formed on pure 

Cr in basic solution [185] and the calculated thickness of the passive film for Ni–xCr alloys decreased 

to 1–1.5 nm at a potential of 0.5 V vs. MSE. 

 

Fig.4. 5 (b) shows the evolution of thickness of the passive films with the applied potential for the three 

ternary alloys. Interestingly, the passive films formed on the different Ni–xCr–Fe alloys were of similar 

thickness, which was close to that measured on the binary alloys. A similar result was also reported in 

the literature [186] and indicates that Fe is not the major element contributing to the passive layer. 

The calculated thickness of the passive films decreased from 3–3.5 nm at a potential near −0.6 V vs. 

MSE to approximately 2 nm at the potential of 0.5 V vs. MSE. The evolution of the passive layer 

thickness for the ternary alloys showed the same tendency as that of the binary alloys. The Fe oxide in 

the passive film is generally considered an n-type semiconductor [187,188]. As the evolution of the 

thickness trend was not changed by adding Fe, it can be considered that 8 wt.% Fe addition is not 

significant enough to change the semiconductor properties of the oxide on the Ni–xCr–Fe alloys. That 

is, the Fe oxide is incorporated in the Cr oxide network, which remains the main structure. 
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4.5 Resistivity profiles during anodic polarization 

 

 

 

Fig.4. 6 Distribution of resistivity within dimensionless thickness for (a) Ni–16Cr, (b) Ni–28Cr, and (c) 
Ni–14Cr–8Fe alloys in 0.05 M H3BO3 + 0.075 M Na2B4O7 10H2O borate buffer solution (pH=9.2). 
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The resistivities at the alloy/passive film interface (ρ0) and passive film/electrolyte interface (ρδ) were 

obtained by adjusting the impedance diagram using the PLM. The evolution of these parameters could 

be studied similar to the previously presented parameters or by using a plot of the resistivity 

distributions within the passive film as a function of the potential. For the sake of clarity, monitoring 

of the evolution of the resistivity profiles of the Ni–16Cr and Ni–28Cr alloys was selected to study the 

effect of Cr content on the passivation behavior of Ni–xCr alloys. In addition, the resistivity profiles of 

Ni–14Cr–8Fe are presented for comparison with those of Ni–16Cr to study the role of Fe in the 

passivation behavior. For the same reason, certain potentials were selected to highlight the trend. 

However, it is important to note that regardless of the Cr content, both limit resistivities, ρ0 and ρδ, 

follow the same tendency and the addition of Fe does not modify the trend of the evolution in the 

passive range. 

 

Fig.4. 6 shows the evolution of the resistivity distribution through the passive film for a selection of 

applied potentials for Ni–16Cr (Fig.4. 6 a), Ni–28Cr (Fig.4. 6 b), and Ni–14Cr–8Fe (Fig.4. 6 c). For the 

three presented cases, the resistivity distribution profiles consist of two segments. The first segment 

is a plateau, where the resistivity is equal to ρ0, starting from the alloy/passive film interface. The 

second segment corresponds to power-law decay of the resistivity, reaching the passive film/solution 

interface resistivity ρδ. This dual evolution of the resistivity can be linked with the dual structure of the 

passive film with an inner dense oxide layer and an outer hydrous layer. The length of the resistivity 

plateau can be considered the thickness of the inner dense chromium oxide, whereas the decay can 

be considered the electrolytic modified oxide–hydroxide. 

 

The resistivity distributions for Ni–16Cr (Fig.4. 6 (a)) and Ni–28Cr (Fig.4. 6 (b)) present similar evolution 

trends. Both binary alloys have similar plateau lengths (up to 0.20), indicating that the interfaces 

between the passive film and alloys are similar and that the thickness of the inner layer is not affected 

by the Cr content. With increasing potential up to −0.07 V vs. MSE, the length of the plateau decreases. 

There is a thinning effect of the inner layer even in the passive potential range. Concomitantly, ρ0 also 

evolves. It decreases when the potential increases up to −0.22 V vs. MSE. Then, between potentials of 

−0.22 V and −0.07 V vs. MSE (corresponding to the plateau in the polarization curve in Fig.4. 2 (a), the 

limit resistivity ρ0 remains stable. Finally, it decreases again close to the transpassivation potential. This 

evolution of ρ0 suggests that this parameter is closely related to the anodic electrochemical reaction. 

Conversely, for both binary alloys, the resistivity ρδ at the passive film/solution interface shows an 

increasing tendency with applied anodic potential. The evolution of the resistivity ρδ indicates a 

continuous modification of the outer layer with the applied potential, suggesting the likely variation of 

the oxide/hydroxide ratio or the densification of this outer layer. This behavior might be caused by the 

consumption of more defects, which are present at the interface between the passive film and 

electrolyte. Moreover, it is also worth noting that the shape of the resistivity decay is smoother within 

the stable passivation domain, suggesting that the passive film is modified in depth during the anodic 

polarization and that the transition of the inner–outer layer is smoother. These evolution trends did 

not change with increasing Cr content. 

 

In the resistivity profile of the ternary Ni–14Cr–8Fe alloy (Fig.4. 6 c), the length of the plateau (up to 

0.15) was shortened compared with that of the Ni–16Cr alloy (Fig.4. 6 a). Similarly, as for the Ni–16Cr 

alloy, the length of the plateau decreased with increasing applied anodic potential and decreasing 

resistivity ρ0 until the potential of 0.0 V vs. MSE. In addition, ρδ at the interface between the passive 
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film and electrolyte for the Ni–14Cr–8Fe alloy at the initial potential was 102 Ω cm, which is much lower 

than that of Ni–16Cr of 104 Ω cm. These findings suggest that Fe contributes to the outer layer of the 

passive film (likely in the hydroxide form) and acts as a defect, decreasing the local resistivity, but also 

that the presence of Fe plays a role in the passive film composition and structure by thinning the inner 

layer and inducing a more defective outer layer. However, the current density measured during 

polarization was similar, indicating that the inner layer acts as the barrier and that the electrochemical 

reaction at the metal/passive film interface is the limiting factor. Furthermore, ρδ for the Ni–14Cr–8Fe 

alloy reached a maximum of 105 Ω cm at the potential of 0.0 V vs. MSE, which is close to that obtained 

for the Ni–16Cr alloy. With increasing applied potential, the consumption of defects occurs at the 

interface between the passive film and electrolyte, as for binary alloys. Because the passivation region 

of Ni–14Cr–8Fe has a longer passivation potential range than that for the Ni–30Cr–8Fe or Ni–xCr binary 

alloys, the evolution of the resistivity and resistivity profiles could be monitored over a wider potential 

range. When the applied potential increased up to 0.35 V vs. MSE, ρ0 remained constant (slight 

increase), whereas the length of the plateau decreased again. Concomitantly, a rapid decrease in ρδ 

was observed, indicating another possible change of the composition of the passive film in this 

potential range, corresponding to the XPS results presented in Fig.4. 3. 

 

4.6 Role of the alloy composition on the passive and transpassive behaviors 

 

Fig.4. 7 Schematic representation of the evolution of the passive film on Ni–16Cr and Ni–14Cr–8Fe alloy 
during polarization (from cathodic to anodic domains). 

Fig.4. 7 presents schematic representations of the evolution of the passive film grown on Ni–16Cr and 

Ni–14Cr–8Fe with the applied potential. The representation takes into account the XPS results and the 

previous discussion on the parameters obtained by analyzing the impedance diagram during 
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polarization. A duplex representation of the passive film with inner oxide layer and outer hydroxide 

layer was selected, although it is important to mention that a transition model from a dense oxide to 

a completely hydrated outer layer would be more accurate. Here in the schematic representation, only 

global composition of passive film was considered according to XPS results, due to the complexity of 

further interpreting XPS spectra. Even though a duplex layer of passive film was characterized from 

electrochemical results. 

 

For Ni–16Cr, the passive film formed in the passive potential domain was composed of Cr oxide and 

hydroxide, with the contribution of Ni oxide and Ni hydroxide (Fig.4. 3 a). During polarization from OCP 

to transpassive potential, the thickness of the passive film remained almost stable and was not 

significantly affected. The thickness of the inner dense layer decreased, and the decay of resistivity 

through the passive film was smoother. These findings indicate that even if the inner dense layer is 

thinner, the oxide form in the passive film remains significant. The evolution of the resistivity profiles 

may be associated with the migration of cation vacancies and cations that progressively modify the 

inner and outer layers as the applied potential increases. The motion and release of Cr and Ni cations 

are both involved in governing the steady state. For Ni–14Cr–8Fe, the chemical composition of the 

passive layer is more complex. The contribution of Fe within the oxide–hydroxide network is non-

negligible. During polarization within the passive domain, the impedance parameters obtained for Ni–

14Cr–8Fe showed the same evolution as for Ni–16Cr, indicating similar evolution of the passive films. 

Moreover, if ρ0 is similar for both materials, ρδ is lowest for Ni–14Cr–8Fe, suggesting that the addition 

of Fe promotes the generation and accumulation of point defects in the outer layer. 

 

When the second oxidation occurs, the dissolution of Cr in the passive layer (according to eq. 4.1) is 

clearly evidenced for Ni–16Cr by the current density peak in the polarization curves (Fig.4. 2 a) and the 

presence of CrO3 in the passive film at 0.1 V vs. MSE. (Fig.4. 2 a). Note that the contribution of the Ni 

hydroxide also increases between the passive film grown at −0.1 V and 0.1 V vs. MSE. This evolution of 

chemistry within the passive film is correlated to a decrease of the passive film thickness (Fig.4. 5 a). 

These results suggest that Ni plays a crucial role in the modification of the passive film during the 

second oxidation. Indeed, for pure Cr, the thickness and α dramatically decrease, proving that the 

second oxidation of Cr governs the interface reactivity and causes the thinning of the passive layer. For 

binary alloys, the presence of Ni compensates the second oxidation of Cr due to the stability of the 

nickel oxide in this potential range and This effect is greater when the Ni content is higher. Analysis of 

the XPS data reveals a slight modification of the oxide layer between 0.1 and 0.4 V vs. MSE. Increases 

of the total oxide/hydroxide ratio and of the Ni(OH)2 contribution are observed. The presence of Ni, 

which remains passivated in this potential range, delays the dissolution and oxidation of Cr or Cr2O3 

from the alloy or passive film. This prevention effect is assisted by the presence of the underneath 

metal layer affected by the preferential oxidation of Cr during the passivation process and Ni 

enrichment. However, this second passivation was not sufficient to prevent degradation of the alloys: 

this layer was thin, the current density was rather high, and the metal grain boundaries were etched, 

suggesting that preferential diffusion and oxidation occurred there. 

 

For Ni–14Cr–8Fe, the transpassive behavior was different. First, no anodic peak appeared on the 

polarization curve (Fig.4. 2 b). Instead, a singularity followed by a plateau was observed. Moreover, at 

0.1 and 0.4 V vs. MSE, CrO3 was not detected by XPS in the passive film at these potentials. These 

findings indicate that the second oxidation of Cr is inhibited by the presence of Fe. Moreover, Palotta 
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et al. [189] suggested that if CrO3 is not detected by ex-situ XPS analysis, a redox reaction may arise 

within the passive film between Fe (II) and Cr(VI) when the polarization is performed (reaction 4.2).  

3𝐹𝑒(II)𝑓𝑖𝑙𝑚 + 𝐶𝑟(VI)𝑓𝑖𝑙𝑚 →  𝐶𝑟(III)𝑓𝑖𝑙𝑚+3𝐹𝑒(III)𝑓𝑖𝑙𝑚 (4.2) 

The XPS analysis also revealed some differences between the passive films grown at 0.1 and 0.4 V vs. 

MSE. The passive film grown at 0.4 V vs. MSE was depleted in Cr (oxide and hydroxide forms) but 

enriched in Ni hydroxide. These results suggest that Fe within the passive film plays a complementary 

role, hindering the second oxidation peak and limiting the dissolution of Cr in basic solution. Then, the 

8 wt.% Fe in the alloy may have a synergetic effect with Ni to limit the dissolution of the substrate and 

maintain a second passivation layer at potential higher than the Cr second oxidation potential. 

However, for Ni–30Cr–8Fe, the amount of Fe was not enough to prevent the anodic dissolution in the 

transpassive domain (Fig.4. 2 b), resulting in a critical current density of 7 µA cm−2, which is larger than 

the passive current density of 1 µA cm−2 on the Ni–14Cr–8Fe and Ni–22Cr–8Fe alloys. 

 

4.7 Conclusion 

 

The goal of this study was to highlight the role of the chemical composition of Ni-based alloys, 

essentially the Cr content and the addition of Fe, on their passive and transpassive behaviors in borate 

buffer solution. The electrochemical characterization was performed using successive impedance 

measurements over a wide potential range with the incorporation of recent advances in impedance 

diagram analysis. This innovative and in-situ approach enabled monitoring of the evolution of the 

electrochemical parameters, physical parameters, and XPS data to better understand the modification 

within the passive film during polarization. 

 

The polarization curves and parameters extracted from the impedance diagrams indicate that the Cr 

content in the alloy has no obvious effect on the passivation behavior of Ni–xCr in the passive potential 

domain. The normalized resistivity profiles showed the same duplex distribution and evolution despite 

the increased Cr content. However, the Cr content straightforwardly affects the electrochemical 

behavior of the alloys when transpassive dissolution occurs. A higher Cr content in the Ni–xCr alloys 

results in a higher current density peak in the transpassivation–second passivation processes. The Ni 

oxide or hydroxide could limit the oxidation of Cr to some extent.  

 

Similarly, the addition of 8 wt.% Fe can diminish the current density peak related to the secondary 

passivation in the polarization curves. However, the dissolution peak cannot be completely reduced 

when the Cr content is high. The presence of Fe within the passive film tends to limit the dissolution 

of the alloys at high anodic potential by maintaining a passive layer at the surface of the alloy. XPS 

analysis also revealed an enrichment of Ni hydroxide in the passive film composition, indicating a 

synergetic effect of Fe and Ni to compensate the secondary oxidation of Cr.  

 

With the help of successive impedance measurements and the power-law model, it was possible to 

obtain more information about passive films within the passivation domain, namely the evolution of 

the CPE parameters, thickness of the passive film, and resistivity profiles with applied potential. This 
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measurement method might also be employed for the study of commercial alloys or to design new 

alloys. 
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Chapter 5 Application of method on the commercial alloys 
 

5.1 Introduction 
 

This chapter is focused on the application of the methodology of successive impedance measurements 

on commercial Ni-based alloys. Since the commercial alloys are generally composed with more than 

three alloying elements and traces, the chemistry, structure, and behavior of passive films could differ 

from the model alloys. In addition, the different microstructure features, as carbides and precipitated 

phases or grain size, might also have influence on the corrosion behavior. Consequently, it is interesting 

to compare the passive film properties grown on commercial alloys with their model alloy counterparts 

in order to highlight the discriminating microstructural factors. The Ni based commercial alloys used in 

this chapter are GILPHY 80 (Ni80Cr20) compared with NiCr20, Inconel 600 (NiCr14Fe8) compared with 

NiCr16 and NiCr14Fe8, and Inconel 625 (NiCr20Mo8Nb) compared with NiCr20 and NiCr22Fe8, 

respectively. The composition and microstructure of the used commercial alloys have already been 

introduced in the Chapter 2. Note that this chapter presents an opening of the methodology presented 

previously and some complementary experiments are still required to confirm the proposed 

assumptions. 

 

5.2 GILPHY 80 (Ni80Cr20) 
 

GILPHY 80 is a Ni-Cr electrical-resistance alloy containing few amounts of Si (less than 1.6 %weight). 

This alloy has a low coefficient of resistance making it suitable for control resistors. Moreover, it 

exhibits a good high temperature stability and a well-adhering oxide scale even under cyclic conditions. 

GILPHY 80 is used for heating elements in domestic appliances and industrial equipment [190]. 

To compare the different corrosion behavior between model alloy NiCr20 and GILPHY 80, the 

successive impedance measurements were performed in the solutions of 0.05 M H3BO3 + 0.075 M 

Na2B4O7 10H2O (pH=9.2) and 10 g/L Na2SO4 with H2SO4 (pH=2).  
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Fig. 5. 1 Potentiostatic polarization curves of NiCr20 and GILPHY 80 in aerated solution of (a) 0.05 M 
H3BO3 + 0.075 M Na2B4O7 10H2O (pH=9.2) and (b) 10 g/L Na2SO4 with H2SO4 (pH=2) 
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Fig. 5. 1 (a) shows the potential-step polarization curves for NiCr20 and GILPHY 80 in aerated borate 

buffer solution. The polarization curves of NiCr20 and GILPHY 80 alloys show similar shapes. For the 

two curves, the corrosion potentials are very close. The corrosion potential of NiCr20 is -0.54 V vs. MSE 

whereas that of GILPHY 80 is -0.57 V vs. MSE. The same order of magnitude of anodic current densities 

is observed on the passivation range for both alloys. For the more anodic over-voltages, the second 

oxidation and repassivation are observed for both alloys. The measured critical current density at 0.23 

V vs. MSE is 0.03 mA cm-2 and 0.023 mA cm-2 for NiCr20 and GILPHY 80, respectively. In brief, the 

passive behavior of NiCr20 and GILPHY 80 is similar in terms of current density and potential domains. 

 

Potentiostatic polarization curves of NiCr20 and GILPHY 80 in acidic solution is presented in Fig. 5. 1 

(b), the corrosion potential for NiCr20 is approximately −0.36 V vs. MSE whereas that for GILPHY 80 is 

about −0.31 V vs. MSE. The transpassive region for both alloys begins at 0.3 V vs. MSE. The passive 

current density for NiCr20 and GILPHY 80 is about 8.08 × 10-4 mA cm-2 and 6.5 × 10-4 mA cm-2, 

respectively. 

 

Impedance diagrams obtained during the SEIS experiment were analyzed. The relevant parameters, 

such as CPE parameters (α and Qeff), thickness etc. and their evolutions are not presented in detail 

since there is no significant difference between both alloys (See details in Appendix C). This finding 

indicates the same tendency than the polarization curves suggesting that the passive films grown on 

NiCr20 and GILPHY 80 exhibit same properties and same behavior. 

 

Thus, for both test solution, the commercial alloy behaves like the model one. It suggests that:  

- As the average grain size of model alloy NiCr20 is 265 µm, whereas that of GILPHY 80 is 61 µm, the 

grain size does not affect the SEIS measurement. With another point of view, SEIS measurement is not 

sensitive to the grain size as it is an average measurement on the total exposed surface (which is 

superior to the grain size). 

- The low Si amount in GILPHY 80 alloy does not modify its passive behavior in the test solution of this 

study.  

 

5.3 Inconel 600 (NiCr14Fe8) 
 

Inconel 600 was often employed as SGs tubing materials in nuclear power plants is now gradually 

replaced by Inconel 690, due to better SCC resistance of Inconel 690 [191]. However, it is still widely 

used in a great number of industrial domains, like aerospace, chemical processing, heat treatment 

industry etc., because of its good resistance to oxidation at elevated temperature. Therefore, it is 

meaningful to study the passivation behavior of this material to better understand its corrosion 

resistance. The successive impedance measurements were employed on Inconel 600 in the solutions 

of 0.05 M H3BO3 + 0.075 M Na2B4O7 10H2O (pH=9.2) and of 10 g/L Na2SO4 with H2SO4 (pH=2). The 

results are compared with that of NiCr16 binary and NiCr14Fe8 ternary alloys. 
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5.3.1 Inconel 600 passivation behavior in borate buffer solution 
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Fig. 5. 2 Potentiostatic polarization curves of NiCr16, NiCr14Fe8 and Inconel 600 in aerated solution of 
0.05 M H3BO3 + 0.075 M Na2B4O7 10H2O (pH=9.2). 

The measured polarization curves for NiCr16, NiCr14Fe8 and Inconel 600 in aerated borate solution is 

presented in Fig. 5. 2. The curves for NiCr16 and Inconel 600 are quite similar, showing a passive 

domain and the transpassivation-secondary passivation transition. On the contrary, NiCr14Fe8 does 

not have this transition as discussed in Chapter 4. Nevertheless, the three samples present the same 

stable passivation domain. The corrosion potentials for the three samples are very close. The corrosion 

potential of NiCr16, NiCr14Fe8 and Inconel 600 are -0.54 V, -0.56 V and -0.54 V vs. MSE, respectively. 

The critical current densities for NiCr16 and Inconel 600 are 0.008 mA cm-2 at 0.24 V vs. MSE and 0.03 

mA cm-2 at 0.32 V vs. MSE, respectively. It is interesting to evidence that Inconel 600 behaves more 

likely to NiCr16 than NiCr14Fe8. Indeed, NiCr14Fe8 and Inconel 600 have totally different corrosion 

behavior in the secondary oxidation and repassivation domain, even though they have almost the 

same chemical compositions. Further analysis and characterizations have been done and are 

presented below. 
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Fig. 5. 3 Evolution of CPE parameters (a) α and (b) Qeff with potential for NiCr16, NiCr14Fe8 and Inconel 
600 in aerated solution of 0.05 M H3BO3 + 0.075 M Na2B4O7 10H2O (pH=9.2). 
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Fig. 5. 3 (a) shows the evolution of CPE exponent α with potential for NiCr16, NiCr14Fe8 and Inconel 

600 in aerated basic borate solution. Firstly, the value of α is very close for the three samples. The 

value of α keeps stable about 0.90-0.92 in the potential range between −0.6 V and −0.25 V vs. MSE. 

Then, the value of α decreases to 0.85 until 0.05 V vs MSE. After, α increases to reach approximately 

0.95 at 0.27 V vs. MSE for NiCr16, 0.9 at 0.35 V vs. MSE for NiCr14Fe8 and 0.89 at 0.34 V vs. MSE for 

Inconel 600. Finally, α decreases again in more anodic potential range. As shown on Fig. 5.3 (b), the 

evolution tendency of Qeff are quite close for the three samples. The evolution of the parameter Qeff 

with potential for three samples is consistent with a continuous evolution of the passive layer up to 

0.05 V vs MSE, followed by a slightly different evolution within the second oxidation domain, especially 

for Inconel 600. 

-0,75 -0,50 -0,25 0,00 0,25 0,50 0,75
0

1

2

3

4

5

NiCr16

NiCr14Fe8

Inconel 600

E / V vs MSE

T
h
ic

k
n
es

s 
/ 

n
m

 

Fig. 5. 4 Evolution of thickness of NiCr16, NiCr14Fe8 and Inconel 600 in aerated solution of 0.05 M 
H3BO3 + 0.075 M Na2B4O7 10H2O (pH=9.2). 

The evolution of thickness of passive films for NiCr16, NiCr14Fe8 and Inconel 600 in aerated solution 

of 0.05 M H3BO3 + 0.075 M Na2B4O7 10H2O with the applied potential is shown in Fig. 5. 4. The thickness 

of passive films formed on NiCr16, NiCr14Fe8 has a similar thickness about 3.5 nm, while that for 

Inconel 600 is about 2.5 nm at the beginning of the test. The calculated thickness of passive films for 

three samples keeps stable within the potential range of −0.6 V and 0 V vs. MSE. Then the thickness of 

passive film for NiCr14Fe8 and Inconel 600 reduces gradually up to the potential of 0.5 V vs. MSE. 

Meanwhile, the thickness of passive film for NiCr16 decreases sharply than the two other samples. It 

is evident that the decreasing tendency of thickness at higher potential could be hindered by the 

addition of iron, in spite of differently initial thickness.  
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Fig. 5. 5 Evolution of resistivity a) ρδ and b) ρ0 of NiCr16, NiCr14Fe8 and Inconel 600 in aerated solution 
of 0.05 M H3BO3 + 0.075 M Na2B4O7 10H2O (pH=9.2). 

Evolution of the fitted resistivities ρ0 and ρδ for NiCr16, NiCr14Fe8 and Inconel 600 are shown in Fig. 5. 

5 (a) and (b). Firstly, it is found in Fig. 5. 5 (a) that evolution of the fitted resistivities ρδ for three samples 

exhibits similar trend. The resistivities ρδ decreases in the potential domain lower than -0.47 V vs. MSE 

and increases up to the potential just before the secondary oxidation. The resistivities ρδ for NiCr16, 

NiCr14Fe8 and Inconel 600 are 104 Ω cm, 103 Ω cm and 105 Ω cm in the beginning. This value reaches 

up to 105 Ω cm, 104 Ω cm and 106 Ω cm, respectively. The evolution values of resistivity ρ0 of three 

alloys are very similar, resistivities ρ0 keep stable, decrease and stay stable again in stable passivation 

region (in Fig. 5. 5 (b)) with applied anodic potential. However, as mentioned before, the evolution of 

ρ0 for alloy NiCr14Fe8 is different with the two other alloys. 

 

To conclude, polarization curves and analysis of the impedance parameters indicate some counter-

intuitive results: 

- The electrochemical behavior of Inconel 600 is closer to the one of NiCr16 while its chemical 

composition is close to the one of NiCr14Fe8 as evidenced with the polarization curves and the 

evolution of ρ0. 

- The thickness of the passive film grown on Inconel 600 is thinner than for the two other alloys. 

- The resistivity ρδ of the passive film grown on Inconel 600 is higher than for the two other alloys. 

These specificities will be discussed later. 
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5.3.2 Inconel 600 passivation behavior in acidic solution 
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Fig. 5. 6 Potentiostatic polarization curves of NiCr16, NiCr14Fe8 and Inconel 600 in aerated solution of 
of 10 g/L Na2SO4 with H2SO4 (pH=2). 

The Fig. 5. 6 shows the polarization curves for NiCr16, NiCr14Fe8 and Inconel 600 in aerated acidic 

solution (pH=2). The curves for NiCr16 and Inconel 600 are quite similar, presenting an active/passive 

transition and a stable passivation plateau. By contrast, active-passive transition is not observed on 

NiCr14Fe8. The corrosion potentials of NiCr16, NiCr14Fe8 and Inconel 600 are -0.63 V, -0.18 V and -

0.64 V vs. MSE. The passivation current density for NiCr16 and NiCr14Fe8 is about 9 × 10-4 mA cm-2, 

the current density for Inconel 600 is a little bit higher. In addition, no secondary oxidation and 

passivation peak is observed on the sample in the acidic solution. It is found that the addition of iron 

in the Ni-Cr alloy could increase the corrosion potential. 
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Fig. 5. 7 Evolution of thickness of NiCr16, NiCr14Fe8 and Inconel 600 in aerated solution of 10 g/L 
Na2SO4 with H2SO4 (pH=2). 
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The evolution of thickness of passive films with the applied potential for NiCr16, NiCr14Fe8 and Inconel 

600 in aerated acidic solution is shown in Fig. 5. 7. Note that the values of thickness for NiCr16 and 

Inconel 600 are remarkably low for potentials lower than −0.4 V vs. MSE. It is caused by the active 

dissolution of these two alloys within this potential range, as seen in the polarization curves in Fig. 5. 

6. The thickness of passive films formed on NiCr16 and Inconel 600 has a similar thickness about 1.7 

nm at -0.4 V vs. MSE, increasing to 1.9 nm up to 0.2 V vs. MSE. The thickness for NiCr14Fe8 keeps about 

2.5 nm within the potential range between -0.27 V and 0.2 V vs. MSE, after that the thickness decreases 

with more anodic potential applied. This low thickness values confirms that the passive film in acidic 

solution is thinner and its stability is considered a metastable state, since there is lots of dissolution in 

less anodic potential and becomes stable passivated after anodic polarization.  
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Fig. 5. 8 Evolution of CPE parameters (a) α and (b) Qeff with potential for NiCr16, NiCr14Fe8 and Inconel 
600 in aerated solution of 10 g/L Na2SO4 with H2SO4 (pH=2). 

The evolution of CPE parameters of NiCr16, NiCr14Fe8 and Inconel 600 is presented in Fig. 5. 8. It is 

found that the values of α for NiCr16 and Inconel 600 decrease rapidly, which might be caused by the 

active-passive transition of the samples in the potential range lower than -0.5 V vs. MSE, seen in Fig. 

5. 6. Then, the values of α for these two samples increase with applied anodic potential of 0 vs. MSE 

and followed by a decrease. While the evolution of α for NiCr14Fe8 keeps stable to 0 vs. MSE and then 

drops. By contrast, the evolution of Qeff in Fig. 5. 8 (b) presents an opposite trend in comparison with 

that of α. The values of Qeff for NiCr16 and Inconel 600 increase and decrease and increase again. For 

NiCr14Fe8, the value of Qeff is stable in the first stage and then increases. 

 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI050/these.pdf 
© [Z. Zhang], [2021], INSA Lyon, tous droits réservés



 100  
 

-0,75 -0,50 -0,25 0,00 0,25 0,50 0,75

103

104

105

106

107

a

NiCr16

NiCr14Fe8

Inconel 600

r
d
/ 

W
cm

E / V vs MSE

-0,75 -0,50 -0,25 0,00 0,25 0,50 0,75
1011

1012

1013

1014

b

NiCr16

NiCr14Fe8

Inconel 600

E / V vs MSE

r
0
/ 

W
cm

 

Fig. 5. 9 Evolution of resistivity a) ρδ and b) ρ0 of NiCr16, NiCr14Fe8 and Inconel 600 in aerated solution 
of 10 g/L Na2SO4 with H2SO4 (pH=2). 

The evolution of limit resistivities of NiCr16, NiCr14Fe8 and Inconel 600 is presented in Fig. 5. 8. The 

PLM is not used to fit impedance of NiCr16 and Inconel 600 in the active dissolution region, since the 

stable passive film is not yet formed (or is disturbed). For NiCr16, the measurement of ρδ is scattered. 

Values are included between 105 and 106 Ω cm. The resistivity ρδ for NiCr14Fe8 is constant from the 

beginning up to 0 V vs. MSE, and then increases. The values of resistivity ρδ for NiCr16 and NiCr14Fe8 

are very close when the applied potential is greater than 0.15 V vs. MSE. For Inconel 600, the evolution 

of resistivity ρδ is not stable. In the first place, the value of ρδ is about 106 Ω cm (between -0.25V and -

0.15 V vs. MSE), then it is just about 103 Ω cm (at -0.1V - 0.05 V vs. MSE), and finally it increases with 

applied potential to over 104 Ω cm. The values of ρ0 for three samples are close, between 1012 Ω cm 

and 1013 Ω cm. ρ0 remains almost constant for Inconel 600 and NiCr16 alloy. 

 

Like in borate buffer solution, the passive behavior of Inconel 600 is similar to the one of alloy Ni16Cr 

in the case of acidic solution. Moreover, the values of the impedance parameters extracted on Inconel 

600 and Ni16Cr are in the same order of magnitude and follow the same trends with applied potential. 

Only ρδ differs. This last finding needs to be clarified. 

 

5.3.3 Discussion on the reactivity of Inconel 600 
 

Previous results indicate that the passive behavior of Inconel 600 is close to the one of NiCr16 alloy 

while its chemical composition is closer to the ternary alloy. This finding was observed in both 

solutions. To better understand that, the relationship between the microstructure and the properties 

needs to be developed. 
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Fig. 5. 10 SEM observation for surface microstructure of Inconel 600 after chemical etching and 
elemental analysis by EDS 

Fig. 5. 10 presents the micrographs of surface of Inconel 600 after chemical etching. The etching 

process has been described in Chapter 2. In addition, a local magnification image is attached with EDS 

analysis. The austenite microstructure could be observed clearly in the figure, in agreement with the 

optical micrograph presented in Chapter 2. The matrix grains are decorated by a series of small white 

precipitates. All along the grain boundary, they are assumed to be chromium carbides (Fe, Cr)23C6. 

Some of these white precipitates were also detected within the grain. Moreover, there are also black 

second precipitated phases observed in the micrograph. To confirm the speculation, a local 

magnification was performed with EDS analysis for knowing the composition. The result is shown in 

the left part. Different locations were analyzed with EDS in zoomed micrograph. The first one 

corresponds to the second phase with mostly O, Ti and N content. It could be confirmed that is TiN. 

The second location EDS analysis is one of the while particles, with 38.5 wt.% Cr, 36.6 wt.% O and 5 

wt.% C. Evidently, precipitations of chromium carbide are then evidenced in the micrograph. These 

carbides are oxidized after the chemical etching inducing the high amount of O detected. 

 

Thus, the existence of Cr23C6 chromium carbides along the grain boundary has been confirmed for the 

Inconel 600 after chemical etching. It is commonly admitted that this precipitation state, resulting from 

the thermomechanical past of the sample, induces a sensitized microstructural state. Indeed, during 

sensitization heat treatments, the precipitates bring chromium from the adjacent austenite and form 

the chromium carbide Cr23C6 resulting in the formation of chromium depleted zone. The schematic 

representation of the process is depicted in Fig. 5. 11 below.  
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Fig. 5. 11 Schematic representation of precipitation of chromium carbide M23C6 (M=Fe, Cr) at the grain 
boundaries [36] 

The formation of chromium depleted zone near the grain boundary acts as anode whereas grain will 

play a role of cathode. As a result, a localized breakdown in passivity might happen at the grain 

boundary causing intergranular corrosion and sometimes stress corrosion cracking. The profile of 

distribution of chromium concentration at the adjacent of grain boundary is illustrated in Fig. 5. 12. 

 

Fig. 5. 12 Distribution of chromium concentration around carbide at the adjacent of grain boundary 
[192] 

It was reported that the minimum chromium concentration reached in the austenite adjacent to the 

carbide, which in equilibrium with M23C6 is slightly lower than the bulk composition due to 

multicomponent diffusion effects, the dynamics of the solute fluxes towards the precipitates [192]. 

The evolution of chromium concentration depends mainly on the aging duration and temperature of 

producing process [193]. 

 

Regarding these microstructural features, it is quite comprehensible that the electrochemical behavior 

of Inconel 600 in acidic and buffer borate basic solution is compatible to NiCr16 binary model alloy 

rather than NiCr14Fe8 ternary model alloy. Due to the existence of enriched chromium carbides at 

grain boundaries in the case of Inconel 600, the concentration of Cr on the subsurface of the material 
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is non-uniform. On the one hand, the passive film formation and growth may differ from one place to 

another. Generally, it nucleates at the surface of the Cr-rich carbides and then spreads over the 

surface. This result may explain the fact that in the basic solution, the thickness of passive film formed 

on Inconel 600 is thinner in comparison with others (in Fig. 5. 4). The effect on the passive film growth 

results also on resistivity ρδ which is larger for Inconel 600 than other two samples, suggesting a thinner 

but less defective passive film. This phenomenon is less marked in acidic solution due to the active-

passive transition occurring during the SEIS. On the other hand, the presence of Cr-rich carbides plays 

also a role on active-passive transition (acidic solution) and transpassive-secondary passivation 

transition (basic solution) inhibiting in both cases the role of Fe. The larger dissolution peak occurred 

in secondary oxidation-repassivation region for Inconel 600 results from the dissolution of the enriched 

chromium zone. Indeed, as previously presented in Chapter 4, the critical current density of this latter 

transition is closely related to the Cr content. Fe may reduce this dissolution but its effect is limited for 

the highest Cr content. 

 

These results prove that the microstructure of the material (precipitation state) plays an important 

role on the passive behavior of the Ni-based alloys and that this role may hinder the effect of the 

alloying elements. It could be interesting to perform the SEIS measurement and analysis on the same 

material but with different heat treatments. This future work may allow to discriminate the role of the 

alloying elements from the microstructure. 

 

5.4 Inconel 625 (NiCr20Mo8Nb) 
 

Inconel 625 is widely employed in a great number of industries, like oil/gas fields [194], harsh molten-

salt environments [195,196] and supercritical water [197] for energy applications etc., due to its 

excellent strength and corrosion resistance at high temperatures. Moreover, Inconel 625 is one of the 

candidate materials for future and breakthrough applications, thanks to its good corrosion resistance. 

Hence, it is critical to study the corrosion resistance of this alloy. 

5.4.1 Inconel 625 passivation behavior in borate solution 
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Fig. 5. 13 Potentiostatic polarization curves of NiCr20, NiCr22Fe8 and Inconel 625 in aerated solution 
of 0.05 M H3BO3 + 0.075 M Na2B4O7 10H2O (pH=9.2). 
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Fig. 5. 13 exhibits the polarization curves for NiCr20, NiCr22Fe8 and Inconel 625 in aerated borate 

buffer solution with potentiostatic measurement. The corrosion potential of NiCr20 and Inconel 625 is 

equal to -0.56 V vs. MSE. The corrosion potential of NiCr22Fe8 is a little bit higher with -0.47 V vs. MSE. 

The anodic behaviour within stable passivation domain for the three samples is very similar. It is found 

that Inconel 625 presents also a second oxidation and repassivation transition like NiCr20, but the 

current density peak of Inconel 625 is smaller. The critical current density in secondary oxidation and 

passivation is 0.05 mA cm-2 at 0.23 V vs. MSE for NiCr20 and 0.005 mA cm-2 at 0.08 V vs. MSE for Inconel 

625. The addition of molybdenum does not hinder the secondary oxidation and passivation peak but 

limit a further dissolution of chromium.   
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Fig. 5. 14 Evolution of CPE parameters (a) α and (b) Qeff with potential for NiCr20, NiCr22Fe8 and Inconel 
625 in aerated solution of 0.05 M H3BO3 + 0.075 M Na2B4O7 10H2O (pH=9.2). 

The evolution of graphically determined CPE exponent α with potential for NiCr20, NiCr22Fe8 and 

Inconel 625 is shown in Fig. 5. 14. Evolution trend of α values for NiCr20 and Inconel 625 are very close. 

The values keep stable about 0.92 in the potential range between −0.6 V and −0.3 V vs. MSE, followed 

by a continuous decrease to 0.8 until 0.0 V vs. MSE. In the secondary oxidation potentials range α 

increases continuously to reach approximately 0.87 at 0.29 V vs. MSE. Finally, for potential higher than 

0.87 V vs MSE, α decreases again. As previously observed in Chapter 4, α follows the same trends but 

is always higher for NiCr22Fe8. Evolutions of Qeff with potential for NiCr20, NiCr22Fe8 and Inconel 625 

are illustrated in Fig. 5. 14(b). The values of Qeff for the three samples are close, increasing slowly with 

applied anodic potential up to 0.05 V vs MSE. In the potential range corresponding to the second 

oxidation, the evolution is different. For NiCr20 and NiCr22Fe8, the values of Qeff increase slowly, while 

the evolution of Qeff for Inconel 625 exhibit a hump.  
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Fig. 5. 15 Evolution of thickness of NiCr20, NiCr22Fe8 and Inconel 625 in aerated solution of 0.05 M 
H3BO3 + 0.075 M Na2B4O7 10H2O (pH=9.2). 

Fig. 5. 15 shows the evolution of thickness with potential for NiCr20, NiCr22Fe8 and Inconel 625. This 

evolution could be divided into two parts. The first part is the plateau where the thickness of passive 

film does not change with applied anodic potential, whereas the second part is a decrease in thickness. 

The thickness of passive film for NiCr20, NiCr22Fe8 and Inconel 625 keep at the value of 3.2 nm, 2.9 

nm and 3.5 nm respectively within the potential range between -0.66 V and -0.16 V vs. MSE. With more 

anodic potential applied, the thickness of passive film for NiCr20 decreases quickly to 1.7 nm at 0.42 V 

vs. MSE. With addition of 8% of iron, the tendency of thinning becomes less sharp to 1.9 nm at 0.48 V 

vs. MSE. Finally, with addition of 8% of molybdenum, the thickness of passive film for Inconel 625 

which decreases to 2.8 nm just at 0.14 V vs. MSE, then it increases to 3 nm at 0.3 V vs. MSE and finally 

it reduces to 2.5 nm at 0.44 V vs. MSE just before transpassivation. Note that it has been reported that 

the thickness of the passive film could be increased with the addition of Mo in alloys [198,199]. 

However, some researcher found that Mo has no remarkable effect on the film thickness [200–202]. 
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Fig. 5. 16 Evolution of resistivity a) ρδ and b) ρ0 of NiCr20, NiCr22Fe8 and Inconel 625 in aerated solution 
of 0.05 M H3BO3 + 0.075 M Na2B4O7 10H2O (pH=9.2). 
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Fig. 5. 16 (a) and (b) present the evolution of the fitted resistivities ρδ and ρ0 in basic solution for NiCr20, 

NiCr22Fe8 and Inconel 625. Obviously, evolution trends of the fitted resistivities ρδ for three samples 

are similar, especially between NiCr20 and Inconel 625. In the first place, the resistivity ρδ for NiCr20 

and Inconel 625 is about 4.4×104 Ω cm at -0.67 V vs. MSE. Then it decreases to about 2.7×104 Ω cm at 

-0.52 V vs. MSE. After it increases up to 2.4×106 Ω cm at 0 V vs. MSE just before the secondary 

oxidation. The resistivity ρδ for NiCr22Fe8 is always lower in comparison with other two alloys. It starts 

with 5.3×103 Ω cm at -0.58 V vs. MSE, and then reduces to 1.5×103 Ω cm at -0.46 V vs. MSE, finally 

increases to 1.5×105 Ω cm at 0 V vs. MSE. The evolution values of resistivity ρ0 of the three alloys are 

very similar in the passivation range. Resistivities ρ0 keep stable, decrease and stay stable again (in Fig. 

5. 16 (b)) with increasing applied potential.  

 

Hence, in borate buffer solution, Inconel 625 behaves like alloy NiCr20 which seems consistent with 

their Cr content and their similar ability to form the Cr-rich passive film. In the potential range related 

to the passive domain, the evolutions of the extracted parameters are more or less the same for those 

two alloys. However, in the secondary oxidation and secondary passivation domain, they behave 

differently. On the polarization curves, the value of the anodic peak is reduced for Inconel 625 and the 

second passivation takes place at lower potential than for NiCr20. This difference is also indicated by 

the evolutions of the thickness and Qeff within this potential range. Then, Mo may play a role in the 

second oxidation-second passivation process. 

5.4.2 Inconel 625 passivation behavior in acidic solution 
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Fig. 5. 17 Potentiostatic polarization curves of NiCr20, NiCr22Fe8 and Inconel 625 in aerated solution 
of 10 g/L Na2SO4 with H2SO4 (pH=2). 

The polarization curves for NiCr20, NiCr22Fe8 and Inconel 625 in aerated acidic solution with pH=2 are 

shown in Fig. 5. 17. Conversely to the basic solution tendency, Inconel 625 and NiCr22Fe8 alloy exhibit 

a different polarization curve in this solution from NiCr20 curve. The corrosion potentials for NiCr20, 

NiCr22Fe8 and Inconel 625 are -0.42 V, -0.14 V and -0.1 V vs. MSE, respectively. The passivation current 

density for NiCr20 is about 4.5 × 10-4 mA cm-2, the current density for NiCr22Fe8 and Inconel 625 is 

lower. The plateau in current density is less visible for NiCr22Fe8 and Inconel 625. These findings 

indicate that the passive state after the 24h of immersion is different for the three alloys. The corrosion 
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potential is shifted by the addition of Fe or Mo. For all the tested samples, neither active-passive 

transition or secondary oxidation and passivation are detected. 
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Fig. 5. 18 Evolution of thickness of NiCr20, NiCr22Fe8 and Inconel 625 in aerated solution of 10 g/L 
Na2SO4 with H2SO4 (pH=2). 

The evolution of the passive film thickness with potential in acidic solution for NiCr20, NiCr22Fe8 and 

Inconel 625 is shown in Fig. 5. 18. The thickness of passive film for NiCr20 is close to the value of 1.7 

nm within the potential range of -0.43 V – 0.11 V vs. MSE and then decreases down to 1.4 nm at 0.32 

V vs. MSE. For the case of NiCr22Fe8, the thickness keeps just constant between -0.16 V – 0 V vs. MSE 

with 2.5 nm and decreases down to 1.7 nm at the potential of 0.4 V vs. MSE. The thickness of passive 

film for Inconel 625 is close to the value of 2.1 nm in the potential range of -0.24 V and 0.2 V vs. MSE 

followed by the decrease of passive film to 1.8 nm at 0.36 V vs. MSE. It is found that the plateau of 

thickness within passivation range is shorter for NiCr22Fe8 comparing with the two other samples.  
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Fig. 5. 19 Evolution of CPE parameters (a) α and (b) Qeff with potential for NiCr20, NiCr22Fe8 and Inconel 
625 in aerated solution of 10 g/L Na2SO4 with H2SO4 (pH=2). 

Fig. 5. 19 shows the evolution of graphically determined CPE parameters (exponent α and Qeff) with 

potential for NiCr20, NiCr22Fe8 and Inconel 625 in acidic solution. In Fig. 5. 19 (a), the evolution trend 

of α for three alloys are very similar and the values are very close. The values keep stable about 0.95 

within the potential range where is negative than 0.05 V vs. MSE. This potential range is longer for 
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NiCr20 since its corrosion potential is more negative than other two samples. After 0.1 V vs MSE, α 

continuously decrease to 0.85 at 0.35 V vs. MSE. Evolutions of Qeff with potential for NiCr20, NiCr22Fe8 

and Inconel 625 are illustrated in Fig. 5. 19 (b). The values of Qeff for three samples are close, keeping 

stable with applied anodic potential up to 0.1 V vs MSE, followed by an increase of Qeff. 
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Fig. 5. 20 Evolution of resistivity a) ρδ  and b) ρ0 of NiCr20, NiCr22Fe8 and Inconel 625 in aerated solution 
of 10 g/L Na2SO4 with H2SO4 (pH=2). 

The evolution of the fitted resistivities ρδ and ρ0 in acidic solution for NiCr20, NiCr22Fe8 and Inconel 

625 is presented in Fig. 5. 20. It is obvious that the evolution of ρδ for the three different samples are 

different. The value of resistivities ρδ for NiCr20 is about 1.7×106 Ω cm within the potential range 

between -0.43 V and 0.02 V vs. MSE, and it increases up to 1.6×107 Ω cm at 0.32 V vs. MSE. In the case 

of NiCr22Fe8, the plateau of the resistivity ρδ is shorter and lower in comparison with that of NiCr20. 

The value keeps stable at 2.8×106 Ω cm, then it increases up to 1.3×107 Ω cm at 0.4 V vs. MSE. For 

Inconel 625, the value of resistivity ρδ is around 103 Ω cm in the beginning and it increases rapidly to 

2.1×106 Ω cm at 0.36 V vs. MSE. In the present case, it is found that the value of resistivity ρδ reduces 

by the addition of the 8% of iron or molybdenum into the Ni-Cr alloy. This result suggests that the 

passive film become less resistive at the interface between film and electrolyte. It might be caused by 

the introduction of defects (other metal ions) into chromium oxide or a modification of the 

oxide/hydroxide ratio at the interface between the passive film and electrolyte. However, this 

reduction of resistivity of passive film could be modified by increasing anodic potential and changing 

the migration rate of vacancies. However, the evolution of ρ0 for the three alloys are very similar, 

resistivities ρ0 keep stable, decrease and stay stable again (in Fig. 5. 20(b)) with applied anodic potential 

and according to the polarization curves. Hence, the addition of Fe or Mo does not affect significantly 

the metal/passive interface which may means that the Fe and Mo ions were more located in the outer 

layer of the passive film. 

 

To conclude, in acidic solution, the passive behavior of Ni-based alloys is modified by the addition of 

Mo. The corrosion potential is shifted to more anodic potential. Moreover, their contributions to the 

outer layer of the passive film modify the resistivity profiles through them. 
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5.4.3 Discussion on the reactivity of Inconel 625 
 

As for Inconel 600, a short study of the microstructure of Inconel 625 before starting the discussion 

may be required. 

 

Fig. 5. 21 SEM observation for surface microstructure of Inconel 625 after chemical etching and 
elemental analysis by EDS 

Fig. 5. 21 presents the SEM micrographs of Inconel 625 after chemical etching with EDS analysis 

attached. The grain boundaries are clearly visible in some parts of the image because the surface has 

been etched too much. On the surface of Inconel 625, a great number of small precipitates is observed. 

Furthermore, precipitations of over 2 µm diameters exists as well. To confirm the composition of the 

precipitates, a local magnification micrograph has been taken. It is presented on the right. It is found 

that the largest precipitate is niobium or titanium carbide, and a few chromium carbides are found as 

well. In the case of Inconel 625, the main carbides detected are Niobium or Titanium rich carbides. 

They cannot play the same role than Cr rich carbides in Inconel 600. Confirming this finding, Inconel 

625 presents different passive behavior than Inconel 600. 

 

In the basic borate buffer solution, Inconel 625 has the same passivation current density as model alloy 

NiCr20 and NiCr22Fe8, and exhibits a dissolution peak in secondary oxidation-repassivation potential 

region (shown in Fig. 5. 13). Moreover, Inconel 625 presents a quick repassivation behavior after 

transpassive dissolution. When it comes to the evolution of passive film thickness (Fig. 5. 15), unlike 

model alloys whose thickness decreases in the secondary potential range, the thickness of passive film 

grown on Inconel 625 has an increase in this potential range, despite it decreases in the beginning of 

dissolution. In terms of resistivity ρδ for Inconel 625, the resistivity ρδ evolution (Fig. 5. 16) is always in 

the same order of magnitude as other samples. In acidic solution, with addition of iron or molybdenum, 

the corrosion potential is increased to the stable passivation domain directly, seen in Fig. 5. 17. The 

thickness and CPE parameters are not modified with the presence of molybdenum. However, the 

resistivity ρδ for Inconel 625 is quite different from others with much lower order of magnitude, and a 

rapid increase with applied anodic potential. Hence, it is reasonable to assume that the molybdenum 

plays a critical role in the process of polarization on Inconel 625. However, that role may be different 
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as a function of the considered solution. In general, the role of molybdenum on corrosion resistance 

are considered whether mitigating passive film breakdown [200,203] or promoting passive film repair 

[191].  

 

The main difference of behavior is observed at the secondary oxidation-secondary passivation 

transition, it is interesting to understand the role of Mo during transpassive process. Considering its 

effect on the transpassive dissolution – repassivation process in basic solution, it is worth mentioning 

that the precipitation of molybdenum oxide appears at low pH condition and the solubility of Mo (VI) 

and MoO4
2- as function of pH value is presented in Fig. 5. 22 shown below [204]. 

 

Fig. 5. 22 Solubility of Mo(VI), MoO4
2−, as a function of pH value (calculation based on [MoO4

2−] of 1 
mol/L) [204] 

It is evident that [MoO4
2−] has a lower solubility in the condition of pH below 4, especially between 2 

and 3. The solubility increases gradually and [MoO4
2−] is almost totally soluble after pH=4. In low pH, 

the molybdenum could be in oxidation state of Mo (IV) in inner layer of passive film, with the reaction 

assumed below in equation (5.1):  

𝑀𝑜 + 2𝐻2𝑂 → 𝑀𝑜𝑂2 + 4𝐻
+ + 4𝑒− (5.1) 

With higher applied potential, molybdenum oxide might be oxidized to higher valence or in a soluble 

state. The equations are shown below: 

𝑀𝑜𝑂2 + 2𝐻2𝑂 → 𝑀𝑜𝑂4
2− + 4𝐻+ → 𝑀𝑜𝑂3 + 2𝐻2𝑂 (5.2) 
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Fig. 5. 23 Schematic representation of Inconel 625 in aerated solution of 0.05 M H3BO3 + 0.075 M 
Na2B4O7 10H2O (pH=9.2) during the polarization 

The graphical representation of passive film evolution on Inconel 625 in basic borate buffer solution is 

shown in Fig. 5. 23. At the beginning, when the anodic polarization is performed on the material, the 

composition could mostly be Cr2O3 at inner layer whereas Cr(OH)3 at outer layer. Considering the main 

role of chromium, nickel and other iron oxides or hydroxides are not presented in the diagram. After, 

in secondary oxidation region, Cr2O3 begins to dissolve, the metallic substrate begins to release cations 

into solution, accompanying with the dissolution of Cr3+, Cr6+, Ni2+ and Mo4+. Note that Mo4+ could be 

oxidized to Mo6+ at higher potential. However, the dissolved ions like Ni2+ will hydrate with H2O forming 

H+ when the released ions reach a certain concentration, resulting in a local pH value < 3.  

 

As discussed before in Fig. 5. 22, there might be a newly generated insoluble Mo (VI) film because of 

low local pH value. Hence, another protective oxide is formed again. As a result, the dissolution is 

inhibited, observing secondary repassivation from polarization curve.  

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI050/these.pdf 
© [Z. Zhang], [2021], INSA Lyon, tous droits réservés



 112  
 

 

Fig. 5. 24 Schematic representation of NiCr20 and Inconel 625 in aerated solution of aerated solution 
of 10 g/L Na2SO4 with H2SO4 (pH=2) during the polarization 

Fig. 5. 24 presents the graphical illustration of NiCr20 and Inconel 625 in aerated acidic solution. To 

simplify, the representation is only concerning chromium and molybdenum. In the case of NiCr20, the 

main compositions of passive film are Cr2O3 and Cr(OH)3. Cr2O3 is supposed to enrich the inner layer of 

passive film whereas Cr(OH)3 is concentrated in outer layer of passive film. The thickness of passive 

film is thin at higher potential from the testing result. Consequently, with anodic potential applied, the 

passive film formed on NiCr20 becomes thin but its resistivity is still high. 

 

In the case of Inconel 625 alloy, the existence of Mo on the Ni-Cr surface favors oxygen chemisorption 

over binary Ni-Cr alloys on most surface oxide sites and may form oxides, such as MoO2 or MoO3 within 

the passive films. Moreover, Mo form strong bonds with adsorbed oxygen by donating more charge 

than either Ni or Cr [205]. Consequently, more oxygens tend to react with Mo other than Cr, resulting 

in the formation of complex non-stochiometric chromium oxide. Consequently, besides the Cr2O3 and 

Cr(OH)3, there is also Mo (IV) exists in inner layer of passive film. The Mo (IV) is expressed as MoO2 

inside of passive film as non-continuous island, since it is suggested that molybdenum presents an 

inhomogeneous distribution and is enriched at local sites [206,207]. Moreover, MoO2 islands are 

supposed to be dispersed into the passive film and standing at alloy/passive interface. This may explain 

that the fitted resistivity ρ0 for Inconel 625 is the same as that of NiCr20. Otherwise, Mo likely become 

trapped as substitutional Mo4+ and Mo6+ cations in Ni2+ and Cr3+ oxides which may interact with 

negatively charged cation vacancies to reduce their mobility by electrostatic interactions [180]. Hence, 

the resistivity ρδ on Inconel 625 is much smaller in comparison with that of NiCr20 alloy. 

 

With anodic potential applied, the Mo (IV) tends to be oxidized to Mo (VI). Mo (VI) is expressed as 

MoO3 or as soluble Mo6+ here. Hence, there is less free doping cations as Mo4+ and Mo6+, resulting in 

the increase of resistivity ρδ of passive film on Inconel 625 while anodic potential is applied, despite of 
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thinner thickness. This assumption is in accordance with the XPS result that Mo(IV) in the Cr-rich inner 

layer becomes Mo(VI) enriched in the outer layer of the passive film during anodic polarization [206]. 

Thus, that might be the explanation to evolution of the resistivity of Inconel 625. 

 

5.5 Conclusion 
 

In this chapter, the successive impedance measurement was employed to study passivation behavior 

of commercial alloys: GILPHY 80, Inconel 600 and Inconel 625, respectively. They were compared with 

model alloys with close Cr content. It is found that: 

1. The commercial alloy GILPHY 80 has the same corrosion behavior as model alloy NiCr20 in both 

acidic and basic solution. This finding indicates that for low alloyed Ni-based alloys, SEIS 

measurements displays similar results whatever the grain size. 

 

2. Even though Inconel 600 has almost the same chemical composition as ternary model alloy 

NiCr14Fe8, the passivation behavior of Inconel 600 is more like alloy NiCr16 in basic and acidic 

solution. Microstructural characterization shows the precipitation of intergranular and 

intragranular chromium carbides, known to be detrimental for intergranular corrosion 

resistance. Hence, the presence of these carbides enriched in Cr affects the passivation 

behavior and limit the effect of Fe on the active-passive transition as well as the transpassive-

second passivation transition. In this case, SEIS measurement evidences the influence of the 

microstructure. 

 

3. When the electrochemical analysis was performed on Inconel 625, the passivation behavior of 

Inconel 625 was determined, and the role of molybdenum was considered. In this case, even 

if there is niobium and titanium carbides precipitation, the passivation behavior is more 

influenced by the molybdenum and its oxide/hydroxide forms rather than microstructural 

features. In basic solution, the existence of molybdenum could hinder a further dissolution of 

chromium oxide during transpassivation-second passivation transition. During the dissolution 

process, the ions like Ni2+ will be hydrated with H2O releasing H+, resulting in acidifying local 

pH.  Molybdenum could form Mo(VI) as an insoluble film in a local acidic environment with pH 

value less than 3. Consequently, the further dissolution is hindered. To more anodic potential, 

Mo is more likely to adsorb O atoms as it stabilizes the oxidation reaction. Moreover, the 

Mo(IV) would be oxidized to Mo(VI) and enrich the outer layer of passive film with applied 

anodic potential. These could explain why the resistivity of ρδ increase with applied potential. 

Hence, SEIS method proves that niobium and titanium carbides play a minor role on the 

passivation behavior whereas the Mo content acts significantly on the passive and transpassive 

behavior of alloy 625 in acidic and basic solutions. 

 

Therefore, it is evident that it is possible to better understand the passivation behavior of commercial 

alloys with successive impedance and relevant interpretation method (enhanced graphical method to 

extract CPE parameters and Power-Law Model to fit). The results obtained in this chapter prove that 

SEIS results may be correlated to different material factors. Consequently, when it concerns to the 

alloy designing, not only the optimized alloying element content or addition of different alloying 

elements needs to be considered, but also the microstructure of materials should be taken into 
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account to modify or improve passivation behavior. Therefore, the thermomechanical history of the 

alloy still has a crucial influence on its corrosion behavior. 
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Chapter 6 General conclusion and perspectives 
 

In this work, an electrochemical measuring method was developed to study passive films grown on Ni-

based alloys and evidence the role of the alloying elements on the passive and transpassive behavior 

of such alloys. Using successive electrochemical impedance spectroscopy (SEIS) measurement aims to 

obtain specific information and their evolution about the passive film features during polarization. 

With this method, the staircase polarization curve could be acquired, coupled with a series of 

impedance diagrams which provides data about the passive state which complement results obtain by 

conventional polarization curves. For the interpretation of impedance diagrams, the enhanced 

graphical method and Power-Low Model were employed. On the one hand, the enhanced graphical 

method helps to estimate electrolyte resistance, CPE parameters (α and Qeff) and infinite capacitance, 

which allow the calculation of the thickness of passive film. On the other hand, the Power-Law Model 

used to fit impedance diagrams provides physical parameters of passive film and their distributions, 

namely resistivity, including resistivity ρ0 at interface alloy/passive film and resistivity ρδ at interface 

passive film/electrolyte. Those recent advanced impedance diagrams analyses and their coupling 

improve significantly our knowledge of the reactivity of passive film during polarization. 

 

The first part of this work was dedicated to the validation of the methodology and some preliminary 

applications of the method. In this part, the proposed method was applied to characterize the passive 

film formed Ni–20Cr binary alloy in borate buffer solution of 0.05 M H3BO3 + 0.075 M Na2B4O7 10H2O 

(pH=9.2). To validate this method, various experimental conditions were tested, including dwell times 

at each potential (30 s, 120 s, 600 s and 3600 s) and step sizes (25 mV and 50 mV), but also inversed 

scanning direction or the effect of dissolved oxygen in the electrolyte. The results obtained with the 

different experimental conditions were compared with each other and with a conventional 

polarization curves (scan rate of 0.5 mV/s). The comparisons of the average value of the current density 

and data of the fitted impedance diagrams indicate that the experimental parameters don’t 

significantly affect the measurement, excepted the long term staying of 3600 s that exhibit different 

results from the polarization curve itself. A dwell time of 120 s and a step size of 50 mV were selected 

as optimized parameters to characterize passive film without unreasonably spending time. 

The method was then applied on same binary Ni–20Cr alloy but with two others solutions with 

different pH values: 10 g/L Na2SO4 with H2SO4 (pH=2) and 0.01 M Na2SO4 (pH=5.8). The results reveal 

that this method shows great potential for the study of film passivity and evidence the dependence of 

the passive behavior with the pH of the solution. Thanks to enhanced graphical representation and the 

Power-Law Model, more parameters related to the passive film properties were determined from 

impedance diagram and the evolutionary nature of a passive film could be explored with SEIS. Since 

the evolution of the current density (measured at each potential step), the modification of the 

thickness, chemical composition, and reactivity can be assessed in situ. Moreover, XPS was also 

employed to study the composition of passive film, helping to prove the results from impedance 

diagram interpretation. 

 

Then, the second part was devoted to the passive behaviors of Ni–xCr binary and Ni–xCr–8Fe ternary 

alloys. This part highlights the role of the chemical composition of Ni-based alloys, essentially the Cr 

content and the addition of Fe, on their passive and transpassive behaviors in borate buffer solution. 

The electrochemical behavior was characterized by SEIS. Furthermore, XPS were employed to better 
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understand the modification within the passive film during polarization. The results show that the Cr 

content has no obvious influence on the passivation behavior of Ni–xCr in passive potential domain. 

Despite of the increased Cr content in the alloy, the same duplex distribution and evolution was 

obtained from normalized resistivity profiles. However, the Cr content influences straightforwardly the 

secondary oxidation and repassivation processes. The increased Cr content might cause a higher 

current density peak in the transpassivation-second passivation process. Conversely, the second 

passivation current density was not dependent of the Cr content within the alloy and is mainly due to 

the high amount of Ni which is still passive at these potentials. Furthermore, an enrichment of Ni 

hydroxide in the passive film was also detected and might contribute to inhibit the secondary oxidation 

of Cr. Secondary oxidation peak could also be limited by the addition of 8 wt.% Fe, especially for low 

Cr content. Indeed, the presence of Fe could maintain the passive layer at the surface to limit the 

dissolution of Cr2O3 at high anodic potential. 

 

Finally, in the third part, the successive impedance measurement was employed to study passive 

behavior of commercial alloys, namely GILPHY 80, Inconel 600 and Inconel 625. The results were 

compared with that of model alloys regards to same Cr content as commercial one. Since commercial 

alloy GILPHY 80 presents the same corrosion behavior as model alloy NiCr20 in both acidic and basic 

solution, it is found that, for low alloyed materials, the measurement of the corrosion behavior is not 

dependent with the grain size. In the case of Inconel 625, the existence of molybdenum could hinder 

a further dissolution of chromium oxide in basic solution, since molybdenum could form Mo(VI) as a 

insoluble film in outer layer of passive film, due to a local acidic environment. Whereas the resistivity 

of passive film on Inconel 625 is very low in acidic solution, caused by the existence of Mo(IV) in the 

film. However, the proposed method demonstrate also that the microstructure may play a major role 

on passive and transpassive behavior. The passive behavior of Inconel 600 is far away from 

corresponding model alloy NiCr14Fe8, even though they have almost the same chemical composition. 

The SEIS results show that the resistivity of Inconel 600 is significantly different in comparison with 

other two samples. The existence of precipitation of chromium carbides and titanium carbides in 

Inconel 600 was confirmed by SEM and EDS characterizations. It is known that those Cr carbides at 

grain boundaries result in the formation of a depletion zone of chromium which is detrimental to 

intergranular corrosion resistance. The inhomogeneous distribution of chromium likely affects the 

passive and transpassive behavior, attenuating the positive effect of the Fe on the transpassive 

behavior. 

 

Even though this work already demonstrated the potentiality of the proposed method (SEIS and 

advance interpretation) to study passive film, there are some limitations on the use of this method. 

Firstly, the comparison between short term and long term staying indicates that this measurement is 

more dependent on dwell time and that the interpretation of the passive film characteristics has to be 

considered regarding conventional polarization curve and not steady-state studies. Indeed, the 

polarization curve has to be compared to conventional polarization curve and describes quasi-steady 

state or transient state rather than steady state. For studying achieved steady state, long term 

potentiostatic measurements are required and sometimes more samples and tests also. Consequently, 

this analyzing method should be considered as a complementary method from polarization curve. 

Secondly, it is about the sensitivity of this methodology. For example, it is difficult to discern the effect 

of chemistry or microstructure of samples. In the case of Ni20Cr and GILPHY80, the two samples 

showed almost the same electrochemical behavior, even if they have different grain size. However, 

when it comes to study on commercial alloys, not only chemistry but also microstructure need to be 
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considered. Nevertheless, it is not always easy to know which factor might be the most influential to 

electrochemical behavior. Consequently, it is still interesting to work with model alloy or model 

microstructure to evidence the role of each features on the passive and transpassive behavior. 

Furthermore, the presented method is adapted to study the passive behavior but is not sufficient for 

its understanding when complex alloys are considered. 

 

Regarding the perspectives, this work and the proposed methodology evidence the role of the solution 

pH, the composition of the alloy and its microstructure on the passive and transpassive behavior of 

some Ni-based alloys. However, there are still some work to do in terms of methodology and 

understanding of passivity and transpassivity of Ni-based alloys. In the first place, it is worth 

mentioning that an in-depth understanding of the mechanisms of active-passive transition and second 

oxidation-second passivation transition is required for designing of choosing alloys. For that, the 

proposed may be complemented by inductively coupled plasma atomic emission spectroscopy (ICP-

AES) and specific chromatography to determine the ions releasing and their speciation. Those 

techniques provide the concentration of the different cations within solution and their oxidation 

degree. Indeed, it is of prime interest to quantify the cations releasing but also to know exactly on 

which form there are in solution. Those results coupled with XPS measurements and the analysis of 

the current signal may provide some relevant information on the dissolution process during active and 

transpassive dissolution but also during passive film nucleation or growth. Secondly, the effect of other 

alloying elements on passivation of Ni-based alloys has not extensively been studied. It could be 

interesting to determine how other alloying elements affect electrochemical behavior of Ni-based 

alloys, especially in second oxidation-second passivation domain. Since other elements may hinder or 

accelerate the dissolution of Cr, the mechanism still remains under question. In another word, it could 

be very motivating for the corrosion field to better apprehend and classify the way of action on the 

passive behavior of the different alloying elements. Then, in the presented work, impedance diagrams 

were not fully adjusted within transpassive domain or during active-passive transition. Probably, some 

information is missing. It could be interesting to pay more attention on this impedance diagrams and 

on their interpretation to extract supplementary data. Finally, one of the possible extensions of the 

present work is the use of the methodology for oxide film study in different corrosive media. Indeed, 

as Ni-based alloys are generally used for high temperature applications, in-situ measurements, like in 

PWR environment, may provide information on the evolution of oxide film grown in high pressure and 

high temperature environment. 
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Appendix 
 

Appendix A. XPS analysis on Ni16Cr and Ni14Cr8Fe 
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Figure App. 1 XPS spectra of (a) Cr 2p3/2, (b) Ni2p3/2, and (c) O 1s of the passive film formed on Ni–
16Cr alloy at different potentials (vs MSE) staying for 12 h in 0.05 M H3BO3 + 0.075 M Na2B4O7 10H2O 
borate buffer solution (pH=9.2).  
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Figure App. 2 XPS spectra of (A) Cr 2p3/2, (B) Ni2p3/2, (C) O 1s and (D) Fe 2p3/2 of the passive film 
formed on Ni–14Cr–8Fe alloy at different potentials (vs MSE) staying for 12 h in 0.05 M H3BO3 + 0.075 
M Na2B4O7 10H2O borate buffer solution (pH=9.2).  

 

XPS was used for detecting the different composition of passive film at different potential ranges. 

Figure App. 1 and Figure App. 2 show high-resolution spectra of the Cr 2p3/2, Ni 2p3/2, O 1s and Fe 

2p3/2 regions of the passive film formed on Ni–16Cr and Ni–14Cr–8Fe alloy, separately. The binding 

energies corresponding to the different sorts of the chemical elements is summarized in Table App. 1. 
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Table App. 1 XPS binding energies Eb 

Cr2p3/2 

 
peak Cr(0) Cr2O3  

(1) 
Cr2O3  
(2) 

Cr2O3  
(3) 

Cr2O3 (4) Cr2O3 (5) 

 Eb/eV 574.2 575.7 576.7 577.5 578.5 578.9 

  Cr(OH)3 CrO3     

  577.3 579.6     

Ni2p3/2 

 
peak Ni(1) Ni(2) Ni(3)    

 Eb/eV 852.6 856.3 858.7    

  NiO(1) NiO(2) NiO(3) NiO(4) NiO(5)  

  853.7 855.4 860.9 864.0 866.3  

  Ni(OH)2(1) Ni(OH)2 (2) Ni(OH)2(3) Ni(OH)2(4) Ni(OH)2(5) Ni(OH)2(6) 

  854.9 855.7 857.7 860.5 861.5 866.5 

O 1s 
 

peak O2− OH−  
metallic 
hydroxides 

H2O 

bonded  
water 

   

 Eb/eV 530.2 531.8 533    

Fe2p3/2 peak Fe(0) Fe3O4 FeO Fe2O3 FeOOH  

 Eb/eV 706.7 708.2 709.4 710.9 711.8  

 

The Cr 2p3/2 spectra were fitted with data from the literature, the binding energy differences, FWHM 

and area ratio are fixed for each peak, more detail was introduced in Chapter 2. The metallic chromium 

Cr(0) peaks is assigned to the binding energy of 574.2 eV, and those for chromium hydroxide Cr(OH)3 

is found at the higher binding energy of 577.4 eV. The peaks for chromium oxide Cr2O3 are at binding 

energies of 575.7, 576.7, 577.5, 578.5, and 578.9 eV. The binding energy differences, FWHM and area 

ratio are fixed for each peak. The binding energy of 579.6 eV is attributed to CrO3. 

 

The 2p3/2 region of Ni was fitted according to the method introduced in Chapter 2. The ones at the low 

binding energy of 852.6 eV, 856.3 eV and 858.7 can be attributed to Ni in the metallic state. There are 

five different peaks to account for nickel oxide NiO at 853.7 eV, 855.4 eV, 860.9 eV, 864.0 eV and 866.3 

eV. The last six peaks corresponded to hydroxide Ni(OH)2 locate at 854.9 eV, 855.7 eV, 857.7 eV, 860.5 

eV, 861.5 eV and 866.5 eV, respectively. 
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The O 1s spectra were fitted with oxide O2−, hydroxide OH−, and water H2O, respectively. The peak at 

530.2 eV corresponds to O2−, which can be attributed to the metallic oxides in the passive film. 

However, the peaks at 531.8 and 533 eV correspond to OH− of metallic hydroxides and bonded 

water/adsorbed water or impurities on the surface of the sample. 

 

The Fe 2p3/2 spectra were fitted with metallic Fe, Fe3O4, FeO, Fe2O3 and FeOOH [141]. Note that the 

information of Auger NiLMM was measured on a NiCr sample and excluded from the signal of iron in the 

NiCrFe samples within the binding energy 706 and 712 eV. The binding energy at 706.7 eV corresponds 

to the metallic Fe(0). The peaks at about 708.2, 709.4 and 710.9 eV are assigned to the iron oxides of 

Fe3O4, FeO and Fe2O3, respectively. The peak at 711.8 eV could be contributed to FeOOH. 

 

This fitting procedure was employed on all the samples in this work, and allowed to extract ratios of 

different compounds on the samples surface. The accuracy of these measurements is estimated to a 

few percents. 
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Appendix B. XPS analysis on Ni16Cr during polarization test 
 

This appendix is a comparison of composition of passive films formed at three different potentials, 

corresponding to stable passivation range, secondary oxidation and secondary passivation, 

respectively. In order to know the difference between instantaneous (5 minutes) polarization and long-

term polarization (12 h) for composition of passive film. Consequently, it could be seen as a 

complementary test for the methodology of successive impedance measurement. 
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Figure App. 3 XPS spectra of (a) Cr 2p3/2, (b) Ni2p3/2, and (c) O 1s of the passive film formed on Ni–
16Cr alloy at different potentials (vs MSE) in 0.05 M H3BO3 + 0.075 M Na2B4O7 10H2O borate buffer 
solution (pH=9.2) during the poentiostatic polarization test.  

 

The XPS spectra of Cr 2p3/2, Ni2p3/2 and O 1s of the passive film formed on Ni–16Cr alloy at different 

potentials for 12 h is presented in Figure App. 3. The binding energies corresponding to the different 

sorts of the chemical elements can be found in Table App. 1. 

 

For the XPS spectra of Cr 2p3/2 of passive film formed for 12 h for each potential, the portion of Cr2O3, 

Cr(OH)3 and CrO3 at potential of -0.1 V vs MSE are 58%, 42% and 0, at potential of 0.1 V vs MSE are 

47%, 43% and 10%, and at potential of 0.4 V vs MSE are 40%, 57% and 3%. While for the XPS spectra 

of Cr 2p3/2 of passive film formed during potentiostatic polarization test, the portion of Cr2O3, Cr(OH)3 

and CrO3 at potential of -0.1 V vs MSE are 36%, 64% and 0, at potential of 0.1 V vs MSE are 52%, 43% 

and 5%, and at potential of 0.4 V vs MSE are 33%, 52% and 15%. It is obvious that with long term anodic 

potential applied on alloys in passivation domain, there are more chromium oxide because of 

dehydrate effect. Meanwhile, there are more CrO3 kept in the passive film at 0.4 V vs MSE during 

potentiostatic polarization test due to less polarization. 

  

For the XPS spectra of Ni 2p3/2 of passive film formed for 12 h for each potential, the portion of NiO, 

and Ni(OH)2 at potential of -0.1 V vs MSE are 55% and 45%, at potential of 0.1 V vs MSE are 24% and 

76%, and at potential of 0.4 V vs MSE are 57% and 47%. While for the XPS spectra of Ni 2p3/2 of passive 

film formed during potentiostatic polarization test, the portion of NiO, and Ni(OH)2 at potential of -0.1 

V vs MSE are 57% and 42%, at potential of 0.1 V vs MSE are 60% and 40%, and at potential of 0.4 V vs 
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MSE are 18% and 82%. It is found that the transformation of oxide to hydroxide because of long term 

polarization is less obvious. However, it is interesting to see that there is much more Ni(OH)2 formed 

in the first place of polarization. It could conclude that nickel hydroxide hinders a further dissolution 

of chromium and have transform to nickel oxide at secondary passivation domain. 

 

For the XPS spectra of O 1s, the change of O2- and OH- portion is almost in accordance with the fitted 

results from Cr 2p3/2 and Ni 2p3/2. 
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Appendix C. Evolution of interpreted parameters of GILPHY 80 
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Figure App. 4 Evolution of CPE parameters (a) α and (b) Qeff with potential for NiCr20 and GHILPHY 80 
in aerated solution of 0.05 M H3BO3 + 0.075 M Na2B4O7 10H2O (pH=9.2). 
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Figure App. 5 Evolution of thickness of NiCr20 and GILPHY 80 in aerated solution of 0.05 M H3BO3 + 
0.075 M Na2B4O7 10H2O (pH=9.2). 
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Figure App. 6 Evolution of resistivity a) ρ0 and b) ρδ of NiCr20 and GILPHY 80 in aerated solution of 
0.05 M H3BO3 + 0.075 M Na2B4O7 10H2O (pH=9.2). 

-0,75 -0,50 -0,25 0,00 0,25 0,50 0,75
0,0

0,5

1,0

1,5

2,0

2,5

3,0

 NiCr20

 GILPHY 80

E / V vs MSE

T
h

ic
k

n
es

s 
/ 

n
m

 

Figure App. 7 Evolution of thickness of NiCr20 and GILPHY 80 in aerated solution of 10 g/L Na2SO4 

with H2SO4 (pH=2). 
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Figure App. 8 Evolution of CPE parameters (a) α and (b) Qeff with potential for NiCr20 and GHILPHY in 
aerated solution of 10 g/L Na2SO4 with H2SO4 (pH=2). 
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Figure App. 9 Evolution of resistivity a) ρ0 and b) ρδ of NiCr20 and GILPHY 80 in aerated solution of 10 
g/L Na2SO4 with H2SO4 (pH=2). 
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méthodologie basée sur la caractérisation et l'analyse électrochimique permettant de comprendre l’effet des 
éléments d'alliage sur les propriétés du film passif des alliages base nickel. La méthodologie proposée se base sur 
des mesures successives de spectroscopie d'impédance électrochimique et sur une analyse approfondie des 
diagrammes d’impédance, permettant de suivre l'évolution des propriétés du film passif formé sur différents alliages 
binaires (Ni-Cr) et ternaires (Ni-Cr-Fe) à différents potentiels. Les diagrammes d’impédance obtenus ont été 
interprétés avec une méthode graphique avancée et ajustés par le modèle en loi de puissance fournissant ainsi des 
informations caractéristiques du film passif. Cette méthodologie permet ainsi de déterminer et d’obtenir des 
informations complémentaires aux traditionnelles courbes de polarisation, telles que l’évolution de l’épaisseur du film 
et des profils de résistivité au travers de son épaisseur. Cette méthodologie a aussi été appliquée à des alliages 
commerciaux. Leurs réponses ont été comparées à celles obtenues pour les alliages binaires ou tertiaires dont les 
compositions sont les plus proches afin de mettre en évidence quels sont les paramètres microstructuraux ou 
chimiques les plus discriminants. Dans ce travail, le rôle des éléments d'alliage, en particulier le chrome et le fer, sur 
les propriétés et la réactivité du film passif a été étudié. Comprendre comment les éléments d'alliage agissent sur la 
nature, la structure et les propriétés du film passif fournira quelques lignes directrices aux ingénieurs et scientifiques 
pour la conception ou le choix des alliages les plus adaptés. 
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