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Introduction Thesis description

Thesis description

Drug discovery is a very expensive process consisting of multiple phases. Computer simulations
provide an opportunity to scale and speed up its early stages by performing the initial screening
of drug candidates and modeling their interactions with the target receptors. Such modeling is
generally performed with molecular docking methods. Three-dimensional (3D) models of the drug
candidates are superposed with 3D receptor models by specific algorithms that are able to estimate
the binding free energy change and detect the best configuration of the molecular complex. The
binding free energy can be approximately evaluated with the so-called scoring functions. This
thesis presents the development and assessment of several protein-ligand scoring functions with the

associated docking and screening protocols.

Main contributions and the thesis outline

Research carried out in the scope of this thesis resulted in the development of three novel scoring
functions described in Part [[I, namely Convex-PL, Convex-PL-R, and KORP-PL. From a practical
point of view, the thesis author has participated in several docking challenges described in Part [IT]]
that resulted in publications containing various docking protocols evaluation. The developed scoring

functions are available at https://team.inria.fr/nano-d/software/.

1. Part [[] contains the thesis description and an overview of the current state of the art in the
structure-based prediction of protein-ligand interactions. It also describes the methods used

to obtain structural and kinetic data.

2. Part [T Chapter [2] describes the development of Convex-PL — a knowledge-based pairwise
distance-dependent scoring function for protein-ligand interactions, which is deduced by solv-
ing a quadratic optimization problem. Our motivation for its development was to prove that
a knowledge-based scoring function can be derived by solving a classification convex optimiza-
tion problem and also to demonstrate that the non-native ligand poses for the classification
can be obtained with rigid constant-RMSD transformations of the native ones. Convex-PL

is validated on several benchmarks and integrated into AutoDock Vina.

3. Part [II| Chapter 3| describes the development of Convex-PL® — a machine learning-based
scoring function that incorporates additional solvent and entropic terms. It demonstrates
better affinity prediction and virtual screening performance if compared to Convex-PL. We
developed Convex-PL to address the problem of a general scoring functions’ preference of
bigger protein-ligand interfaces, that partially happens due to insufficient consideration of

the interactions with the solvent and mistreating the entropic contributions.

4. Part [[I] Chapter [4] describes the development of KORP-PL — the first coarse-grained
orientation-dependent knowledge-based scoring function for protein-ligand interactions.
KORP-PL is based on the sidechain-free representation of a receptor and full-atom ligand
representation. It was validated on several benchmarks and has proved a high virtual

screening performance.


https://team.inria.fr/nano-d/software/
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. Part Chapter [5] describes the participation in the pose prediction stage of D3R Grand

Challenge 2. After the end of the Challenge, we have compared multiple docking protocols to

understand the role of the receptor flexibility, and the choice of the docking input structures.

Part [[TI] Chapter [6] describes the participation in CAPRI round 41 that was focused on the
docking of four oligosaccharide ligands. In this round we did scoring of docking poses with a

combination of Convex-PL and protein conservation scores provided by our collaborators.

Part [IT]] Chapter [7] describes the participation in a cathepsin S sub-challenge of D3R Grand
Challenge 3. In the pose prediction stage, we did not succeed to obtain near-native predic-
tions for the majority of the ligands with our fully structure-based protocol. In the affinity
prediction stage, we restricted the pose sampling with simplistic ligand-based constraints that

produced more successful results.

Part [IT]] Chapter [§] describes the participation in the beta-secretase 1 sub-challenge of D3R
Grand Challenge 4. The majority of the target ligands were macrocycles. In the first part of
the pose prediction stage we suffered from an unnatural sampling of the macrocycles. After
the analysis and improvement of the protocol, we obtained subangstrom results that were

ranked 4th out of 70 in the second part of the pose prediction stage.

Part summarizes the results of the thesis.

This thesis contains purely computational research. It involved C4++ and python programming,

application of classical machine learning algorithms and convex optimization, and usage of bioin-

formatics software.

The thesis contributions were reported in 4 publications listed below and in the Conclusions), one

more publication is in preparation.

1.

Kadukova M., Grudinin S.. Convex-PL: a novel knowledge-based potential for protein-ligand
interactions deduced from structural databases using convex optimization. J. Comp. Aid.
Mol. Des.. 2017

. Kadukova M., Grudinin S.. Docking of small molecules to farnesoid X receptors using

AutoDock Vina with the Convex-PL potential: lessons learned from D3R Grand Challenge
2. J. Comp. Aid. Mol. Des.. 2018

Kadukova M., Chupin V., Grudinin S.. Docking rigid macrocycles using Convex-PL,
AutoDock Vina, and RDKit in the D3R Grand Challenge 4. J. Comp. Aid. Mol. Des.. 2020

Kadukova M., dos Santos Machado K., Chacén P., Grudinin S.. KORP-PL: a coarse-grained

knowledge-based scoring function for protein-ligand interactions. Bioinformatics. 2020

. Kadukova M., Chupin V., Grudinin S.. Convex-PLf — Revisiting affinity predictions and

virtual screening using physics-informed machine learning. In preparation
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Chapter 1. An overview of the protein-ligand interactions prediction techniques

This chapter contains a brief overview of experimental methods for protein-ligand structures and
binding constants determination and an overview of those for protein-ligand interactions predic-
tion. The latter can be generally classified into the ligand-based and structure-based methods.
Ligand-based techniques mostly rely on ligand chemistry and are closely related to cheminformat-
ics. Structure-based approaches utilize 3D structures of the protein-ligand complexes. In this

chapter, I will focus presumably on the structure-based methods.

1.1 Binding thermodynamics and kinetics

Protein-ligand binding is a thermodynamic event that can be described with notions of statistical
thermodynamics. The free energy of formation of a single complex in a solution can be written
as [1, 2]

AG = pt = pP =, (1.1)

where 4 is a chemical potential, PL, P, and L correspond to the protein-ligand complex, and
unbound protein and ligand molecules. According to Gilson [2], the energy change of adding one
protein molecule to a solution, or the protein chemical potential, in a canonical ensemble can be

expressed as

872 U(rp)+W(rp)
pp = —RTanC]?VP’L”VS = —RTIn (g/e_ oo dTP> , (1.2)
Np,Ng P

where R is the ideal gas constant, 7" is the temperature, Q n,41,n¢ is a canonical partition function
of Np + 1 protein and Ng solvent molecules, Cp is the protein concentration, rp are the internal
protein coordinates, U(rp) and W (rp) are the potential and solvation energies. Here, solvation

energy is equal to

fe*BAU(TP:TS)e*BU(TS)drS

W (rp) = RT1
(rp) n [ e BUCs)drg

(1.3)

where AU (rp,rg) corresponds to the protein-solvent interactions, and the integral is taken over
the solvent coordinates. After expressing the chemical potentials for the ligand molecule and the
complex, the free energy of binding can be written as
U(rpr)+Wi(rpy,)
LCPCL fef Pk drpr,

AG = —RTIn
872 Cpr, (f e_U(Tp);;V(Tp)dTP> (f e_U(TL);;V(TL)dTL)

(1.4)

To derive the relation between the binding free energy and the protein-ligand concentrations ratio

we must consider two relations. On the one hand, at equilibrium AG = 0, and thus

_Ulpp)+W(rpp)
CPL . 1 fe RT d’l“pL (1 5)
- 2 U(rp)+W(rp) U(rp)+W(rp) : :
CPCL 8 (fei PRT P dT‘p) (fei LRT L er>
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On the other hand, under the one-molar standard concentration C° the standard free energy of

binding
Ulrpr)+W(rpr)
° ¢ Je” RT drpr
AG” = —-RTIn | 5wy U)W () (1.6)
(fe RT drp) (fe RT er)
A combination of these two equations yields the desired relation:
CprC° _ace
K = = RT 1.7
b= e, ¢ T (L.7)

where Kj is the protein-ligand binding constant.
After some manipulations [I], the standard binding free energy can be also expressed as

AG® = (UTE) —(UT) = (U") + (WFE) — (WF) — (W) = TASZ,, 1ig, (1.8)

where the P superscript refers to the interactions with the protein, L - with the ligand, (U) and
(W) are the averaged potential and solvation energies, respectively, and AScoyfig is the entropy
change related to protein and ligand motions upon complex formation. It is widely discussed that
the AG° quantity is actually rather small in comparison with the separate terms of Eq. that
may counterbalance each other [3, [4] 5], however, this strongly depends on the way of these terms

are computed [3].

1.2 Experimental methods to determine binding constants and protein-ligand

structures

1.2.1 Binding constants

The binding constant K can be obtained from the experiments, or assays [6l [7, [8,[9]. Very often
they are designed to measure some parameter, from which the relation between the concentrations
of the protein, ligand, and complex can be deduced. For example, fluorescence polarization [10]
of a ligand labeled with a fluorescent group changes with respect to its bound or unbound state.
This allows to directly measure the rate of bound /unbound compounds. Binding to a chromophore-
containing molecule, such as a protein with a heme co-factor or a tryptophan in the binding pocket,
perturbs the UV /visible light absorbance spectrum of the chromophore. The differences between
spectra can be measured with ultraviolet—visible absorption spectroscopy. In another spectroscopy-
based method, surface plasmon resonance (SPR) [I1], proteins are fixed on a metal surface. Ligand
molecules are then injected to the solution. When they bind the immobilized proteins, the resonance
of the sensitive surface plasmons change, thus changing the refraction of the surface that can be
measured with an optical detector. After a while, ligands are washed out with a clean solution.
From the resulting time-dependent curve of the SPR response, one can obtain the reaction rate
constants and use them to compute the binding affinity. Separation of molecules in an electric
field or with centrifugation may also provide information on binding kinetics. Another example of
binding constants estimation is the isothermal titration calorimetry (ITC) [12] that can be used

to determine an association constant. This method measures the reaction heat as the energy
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that a thermostat should spend to maintain a constant temperature of the solution. Fitting the
experimental data into a functional relation between the heat and molecule’s concentration yields
the association constant, stoichiometry, and the binding enthalpy change.

Binding data is often deposited in form of Ky, K;, and IC50 constants. The dissociation constant
K, is inversely related to the association constant, or the binding constant Kj. Thus the binding

free energy can be expressed as a value, proportional to the logarithm of a dissociation constant.

The inhibition constant K is analogous to K, but is defined solely for enzymes and their inhibitors.
I1C50 is also related to enzymes and corresponds to the inhibitor concentration that inhibits a
given biological process by 50%. IC50 values are known to be dependent on the conditions of the
experiment, especially if inhibition was competitive. For this case, Cheng-Prusoff equation can be
used to convert IC50 to K; [13].

Although there exist a lot of different approaches for binding constant determination, all of them
can be subject to uncertainties [6]. Some methods are very condition-dependent and comparison
of their results is rigorous only inside one assay. During the experiment, molecules may become
damaged, aggregate into droplets or stick to the walls of the vessel. Such changes would influence
the concentrations and the parameters used to analyze the experimental data. Assays that require
immobilization and labeling may influence the binding free energy value since they change the
molecules’ entropy. Kinetic equations should be carefully chosen if a protein is known to have

several binding sites.

1.2.2 Structural data

3D structures of macromolecules can be obtained with several experimental techniques with differ-
ent resolutions and structure preparation requirements. These include X-ray diffraction [14] [15] [16],
nuclear magnetic resonance (NMR) [17], cryogenic electron microscopy (Cryo-EM), small angle X-
ray and neutron scattering (SAXS and SANS). Small angle scattering is currently unable to provide
atomic resolution with trustworthy coordinates, especially for the small ligands, and is presumably
used to study shapes and motions of proteins. Until recently, Cryo-EM suffered from similar low
resolution problems. However, nowadays single-particle Cryo-EM is extensively evolving and starts
being able to provide atomic resolution structures [I8], 19].

X-ray diffraction is the most common method to obtain a molecular structure with atomic resolu-
tion. For example, almost 90% of protein structures deposited in the Protein Data Bank (PDB) [20]
were determined with X-ray crystallography. X-ray waves diffract on the crystallographic planes of
a protein crystal as on a 3D diffraction grating and thus form a diffraction pattern. The locations
and intensities of the spots in the pattern represent the lattice parameters and the amplitudes
of diffracted waves. The diffraction spots, generated by scattered waves, are interconnected with
crystal electron densities by a Fourier transform. However, these densities can not be calculated
directly from the spot’s amplitudes, as the information about the phases is lost. This leads to
the so-called phase problem. One of the most common approaches to solve the phase problem is
molecular replacement (MR). If there exists a structure similar to the target protein, it can be su-

perposed with the target cell and used for the phases computation. After the initial guess on phases
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is obtained, the model is iteratively refined in specific software packages to better fit the electron
density maps. The refinement process often requires manual intervention of the crystallographer,
and relies on the knowledge-based stereochemical restraints. Ligand coordinates are usually iden-
tified after the preliminary refinement of the model is done. Unfortunately for the protein-ligand
binding studies, ligand coordinates contain errors more often than the protein coordinates do [21].
To partially address this problem, the structural biology community has developed specific tools
for ligand reliability evaluation on the basis of its electron density map [22] 23| 24]. There also
exist initiatives for protein structure re-refinement, such as PDB-REDO [25].

One of the biggest limits of X-ray crystallography application is the protein crystallization. Prior to
the diffraction step, protein molecules should be expressed in cells, purified, mixed with the ligandr'_-]
and crystallized. Each of these steps may require a long and non-trivial search of specific conditions.
Even if crystallization was successful, crystallized state and inter-molecular contacts that it causes
are rather unnatural for a protein and may lead to the conformational shifts of its structure. Some
macromolecules cannot be easily crystallized with classical methods. For example, crystallization
of membrane proteins is hindered by their instability and often results in small crystalls that are
unsuitable for classical X-ray crystallography. However, their structures can be determined with
serial femtosecond crystallography based on the usage of X-ray free electron lasers [26].

Another popular method of atomic-level structure determination is multi-dimensional NMR [17]
spectroscopy. Nuclei resonance frequencies depend on their adjacent functional groups. These small
differences from the standard frequencies are called chemical shifts and can be used to determine
the local environment of nuclei. In addition, nuclear Overhauser effect is used to obtain distance
constraints between atoms. Unlike X-ray diffraction, NMR spectroscopy does not require crystal-
lization and is able to catch the dynamics of a molecule. However, it is in general more expensive
than X-ray crystallography and is restricted by the size of the protein, although several techniques

were introduced to overcome this limit [27].

1.2.3 Important databases

Data obtained from the numerous assays and structural experiments is deposited and organized
in specific databases. The most important archive of protein structures is the Protein Data Bank,
which was founded in 1971 and is currently maintained by the Worldwide Protein Data Bank
(wwPDB). wwPDB consists of four organizations located in USA, Europe, and Japan, namely
RCSB PDB, PDBe, PDBj, and the NMR data bank BMRB. Each of them is a public database
synchronized with each other. Small molecule crystallographic data is collected and maintained
by the Cambridge Structural Database. However, the full access to its annotations and the pos-
sibility of data parsing is restricted by a subscription model. As an alternative, an open-access
Crystallography Open Database [28] was founded in 2004.

CHEMBL [29] is one of the biggest databases storing the protein-ligand assay data. It contains
and curates data from scientific publications, other public databases, and datasets shared by both
non-profit and commercial organizations. Besides binding assays, it contains functional, toxicity,
physicochemical, and other assays, as well as calculated properties of ligands. CHEMBL maintain-

ers provide a python-based web interface for the database parsing [30]. BindingDB [31] specializes

!Proteins can be mixed with ligands before crystallization, or soaked in the ligand solution after crystallization
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in binding assays and tries to include more details about the experimental conditions. It contains
data from literature and public databases. PubChem BioAssay [32] contains assay data deposited
by users and organizations.

In this work I am heavily relying on the PDBBind database [33] that stores both structural and
binding information and was primarily created for the development of scoring functions. Starting
from 2004, its maintainers collected structural data and annotated it with information on binding
constants. Their workflow for the database compilation starts with the Protein Data Bank parsing.
For a suitable complex, its primary reference indicated with the deposited structure is then checked
for the binding data. If no binding data was found, PDBBind maintainers search this information
in other publications related to the protein. When a binding affinity record is found, it is examined
by two persons to minimize the human error. The current version of PDBBind, i.e. version 2019,
contains 17 679 annotated protein-ligand complexes. One more database containing both structural
and binding data is Binding MOAD [34]. Its system of annotations is more flexible that the one of
PDBBIind. For example, if a complex has several ligands and co-factors and the binding constant
is measured for only one of these small molecules, PDBBind keeps only the ligand with the known
binding constant. On the contrary, binding MOAD keeps all the small molecules present in the
structure since they can be important for binding, and labels each of them with respect to the

presence or absence of the binding data.

1.3 Structure-based prediction of protein-ligand interactions

Molecular docking methods can efficiently predict the binding energy and the correct 3D configu-
ration of a protein-ligand complex. Generally speaking, molecular docking involves two algorithms.
The first one is required to sample the possible configurations of the complex. The second one is
designed to score these configurations and guide the sampling algorithm. The scoring is usually
carried out with the so-called scoring functions that can also be applied at the very last step of
docking for final re-scoring of the generated configurations. If the number of complexes of interest
is relatively small, docking can be performed with accurate and rather slow methods that do not
involve scoring functions. This can be molecular dynamics-based sampling in combination with
thermodynamic integration for rigorous binding free energy prediction [35, [36, 37]. However, such
methods are hardly applicable in computationally expensive tasks such as virtual screening, raising

the demand for efficient sampling and scoring algorithms.

1.3.1 Scoring functions

A considerable number of scoring functions have been developed in the protein-ligand community
throughout the past years. They are sometimes classified into four categories, although such classi-
fication is not very rigorous [38]. Knowledge-based potentials employ an assumption that statistical
analysis of the protein-ligand complex structures’ geometry may uncover the differences between
native and non-native binding poses [39, [40], 4T], 42| [43] 44, 45| [46], 47, [48, 49]. Typically, these
potentials are given as a sum of pairwise terms that are derived from the inverse Boltzmann statis-
tical distributions of distances (or, generally, geometric features) between atoms of protein-ligand
complexes. They can be, however, augmented with terms that are calibrated using additional

data [50, 51l (2, 47, 53], or derived in a different way if compared with classical statistical po-
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tentials [54) 55]. In addition to the knowledge-based potentials that are most often derived in a
statistical and unsupervised manner, a lot of scoring functions are based on other principles.
Physics-based scoring functions [56, 57, 58, 59, [60) [61] rely on direct simulations of the possible
physical effects of protein-ligand interactions and are often related to force-fields, whose develop-
ment requires very careful calibration. Empirical scoring functions [62], [63], [64), [65] (66l 67, 68, (69,
70, [71), (72, [73, [74, 53] were initially a linear combination of several terms that represent energy
contributions of possible interactions at the protein-ligand interface. They are usually trained to
fit binding constants obtained from experiments, and thus strongly depend on the quality of the
experimental data. Many of them also utilize the force-fields for the computation of individual
terms. The terms of empirical scoring functions may include the typical Lennard-Jones potential,
terms for solvation and lipophilic effects, ligand features such as the number of rotatable bonds,
orientation-based terms accounting for hydrogen bonding, or for the interactions with metals, terms
for the ligand intramolecular energy, specific constraints and many others. One of the interesting
examples of specific terms are the protein conservation scores [75]. Surprisingly enough, the clas-
sical empirical scoring functions such as AutoDock Vina and its modifications, while being more
or less physically interpretable, still achieve stable state-of-the-art results in both pose and affinity
predictions and are widely used.

The so-called machine learning-based scoring functions [76, 77, [78, 79, 80 [81], [82], 183 [84] are in some
sense an extension of empirical scoring functions. They are also often trained to fit the binding
constants, but usually rely on a bigger number of descriptors of different nature, and are based on
non-linear machine learning models. Starting from 2015, a number of 3D deep learning architectures
designed to either predict binding poses [85] [86], or fit the binding constants and classify binding
and non-binding compounds appeared [87, 88,189, [90]. The most recent architectures employ diverse
training sets and objectives, and are able to predict both poses and affinities, as the classical all-
purpose scoring functions do [91]. Although some of the recent machine-learning scoring functions
often demonstrate high performance in affinity prediction and virtual screening, they are also
subject to a number of flaws. While classical statistical potentials tend to be biased towards the
number of contacts between the two molecules, learning on a relatively small number of available
high-quality binding constants introduces biases towards experimental affinities. Very complex
models, especially those from deep learning, may also introduce overfitting. For example, some
recent architectures demonstrate excellent results on the DUD-E virtual screening benchmark if
they are trained on a part of it. However, their performance is rather average if they are trained on
other data sources [92]. These problems can be in principle solved by, for example, augmentation
of the training set [93].

A conceptual difference between some of the recent ML-based scoring functions and more classical,
all-purpose, scoring functions is in the understanding of the prediction task, as shown in Figure|l.1
Classical scoring functions, including some of those obtained with non-linear ML methods, are
trained to predict energy, or a score that would be proportional to it, independently of the method
and objective, with which the scoring function was trained. In contrast, some recent ML-based
scoring functions are designed to provide the output, directly required by the task. For example,
the multi-task scoring function by Ashtawy and Mahapatra [81] outputs three separate values for
the pose, affinity and activity. The model developed by Kandemir and colleagues [86] computes
a probability that a binding pose is a good one. Although the output values of these networks
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could be trained to mimic energy, it is not needed in practice, at least because the models are less
interpretable and the relation to energy would not make sense. This approach was not previously

common for structure-based methods, unlike for the ligand-based ones.

Task Pose prediction Affinity prediction Virtual screening

& Vokei@r® uﬁ\\\:\:{@
@ A Ve @ S ,;::’T»:Qé)

A,

Find the correct 3D pose Predict energy or affin- What ligands bind a pro-

for the known ligand ity, rank by affinity tein and what do not
Q;I)Ié;zzscid Classification, ranking, Regression, ranking Classification, positive
quality scoring unlabeled classification,
ranking
Energy-based  Best pose — the lowest Energy prediction Ligand binds — energy
approach energy is low

Figure 1.1: Machine learning-based and physics-based view on the classical scoring functions’ tasks.

1.3.2 Solvent and entropic contributions, and the bias towards bigger ligands

As it was already mentioned in Eq[I.§ of Section the binding Gibbs free energy can be written
as [2), 1]

AG = (UTF) = (UT) = (U") + (W) = (WT) — (W) = TAS o i, (1.10)

where the P superscript refers to the interactions with the protein, L - with the ligand, (U) and (W)
are the averaged potential and solvation energies, respectively, and ASc,, ;4 is the entropy change
related to protein and ligand motions upon complex formation. However, many of the approaches
would make very crude approximations of the entropic term and interactions with the solvent in the
above equation. This causes the known flaw of many knowledge-based scoring functions preventing
them from being used in screening tests. More precisely, many of them have a strong bias toward
bigger and tighter protein-ligand interfaces. Conformations of a ligand inside a binding pocket that
have a higher number of interactions with the protein, even weak ones, will often be preferred over
the native ligand pose. However, in reality, some parts of the binding site and the ligand exposed
to the solvent could be more favourable compared to the corresponding protein-ligand contacts.

The preference of larger interfaces can be illustrated by the publicly available results of scoring
functions evaluation on the virtual screening test of CASF-2013 [94] and CASF-2016 [95] bench-
marks shown in Figure (a). Here one can see that the majority of the assessed scoring functions
prefer binding with non-native ligands (decoys) with, on average, up to twice bigger buried solvent-
accessible surface area (SASA) values than a native ligand has. Figure (a) shows that, in fact,
for some scoring functions this trend is even stronger if the total number of atoms is used in-
stead of the SASA, buried upon binding. Notably, AutoDock Vina [70] and AutoDock Vina-based
AvinaRF20 [80] scoring functions do not suffer from this bias that much. This can be explained

by the way AutoDock Vina scales its binding energies by the number of ligand’s rotatable bonds.
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Figure 1.2: Statistics for the CASF 2013 and 2016 benchmarks. (a)-(b) The purple line represents the average
values of buried SASAs and numbers of atoms computed for ligands that natively bind target proteins and
should have been predicted as the most affine binders!!!. The green boxes correspond to decoys that were
top-ranked by scoring functions assessed on the virtual screening test from the CASF benchmarks 2013 and
2016. The scoring functions are sorted by the ability to predict the highest affinity binder in the 5% of the
top-ranked decoys. SASA values were computed with PyMOL’s[96] get_area() function with dot_solvent set
to 3.

(I Or be among the most affine binders in several cases when the target protein was known to bind ligands
with higher affinity but without co-crystal structure.

Interestingly, the AutoDock Vina scoring function was in some sense inspired by the X-Score scor-
ing function and has similar terms. GlideScore-XP [68] also does not express any considerable bias
toward the overall ligand molecule size neither. This is probably owing to its solvation term and
the correct penalization of contacts between polar and hydrophobic groups.

Many other empirical [70, [66, 63], [72, 82] and some knowledge-based [51, 52), 53] scoring functions
circumvent these problems by including additional entropic and solvation terms in their expres-
sions. A classical approximation of ligand conformational entropy is the number of torsions or
atoms involved in rotatable bonds [70, [52] [53] [66, 63]. Some scoring functions also include rigid-
body contributions approximated with a logarithm of the ligand mass [53, [63], even though this
approximation, as well as the involvement of the mass-dependent rigid-body entropy itself, is ar-
guable [I, 97, O8]. Basic implicit representations of solvation include interaction terms proportional
to the SASA [99, [52] B(], or solvent-accessible volume difference upon binding [100, 10T, 102, [61].
Some algorithms utilize SASA in more sophisticated ways, such as calibration using the octanol-
water partition coefficients alongside with separate hydrogen bonds description aiming at a better
hydrophobic effects representation [103, [104], or integrating the surface curvature factor of the
molecules over the solvent-accessible surface area [105]. Another way to compute solvation energy
change with an implicit solvent model is to use the 3D-RISM [106], Poisson-Boltzmann, and gener-
alized Born methods [2, 107, 108, [109]. They are, however, much more computationally demanding.
Explicit solvent representation for molecular docking purposes [82] requires either high-quality X-
ray structures with the hydration shell resolved or the hydration shell sampling performed by
dedicated algorithms and molecular dynamics-based pipelines [110), TTT], 112, 113]. Although these

approaches look quite intuitive and generally improve the docking quality, they are mainly used

11
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to predict the water sites for individual targets, which may require manual intervention, making
it hard to apply them on a larger scale. However, this problem can be solved using statistical
potentials for water molecules prediction derived from the crystallographic structures [114] [115].

Despite the variety of possible estimations of entropic and solvation terms, Figure implies that

some of these strategies are yet not sufficient.

1.3.3 Other components of the small molecules docking pipeline
Structure preparation

A good scoring function is crucial for correct predictions, but the docking success depends on
multiple steps of the pipeline. In particular, accurate predictions require proper input structures.
Receptor structures of interest can be found in a crystallographic database, mutated from homol-
ogous structures, or modeled from sequence. If a proper fully-homologous structure was found
in the Protein Data Bank, structure preparation can be rather simplistic and, dependent on the
docking algorithm, include hydrogens, partial charges and atomic types assignment. More com-
plex structure preparation may involve water molecule sites prediction, modeling the gaps in the
receptor’s structure, minimization using a force-field, sampling of an ensemble of binding pocket
conformations, etc. An important stage of the receptor preparation is the detection of the binding
pocket. In some cases, binding pocket can be simply found by visual inspection of a receptor or
from the comparison with known homologous structures, co-crystallized with ligands. However,
in absence of homologous structures, this becomes quite challenging for proteins that do not have
notable exposed cavities or those with vast binding sites located on the protein surface. Specific
tools were developed for the binding site detection [116, 117]. In the worst scenario, docking can
be inefficiently done to a set of binding regions defined to cover the whole protein structure, with
subsequent clustering and selection of the best poses from the ensemble. In some cases, Normal
Mode Analysis or molecular dynamics can be applied to open the pocket [118].

3D ligand structures are usually generated from the 2D interpretation with specific software, which
is generally based on an optimized conformational sampling and an optional subsequent force-field
based local optimization [119, 120} 121}, 122]. Conformational sampling may extensively rely on
knowledge-based information, such as pre-generated 3D fragment libraries and other constraints
and heuristics, especially for ring conformations and torsion angles prediction [123], 124], 122, [125|
119] [126], 127, 120]. Some methods are based on the distance geometry computations [128] [129]
that optimize a structure to fulfill a set of geometric inequalities for the bond lengths and thus
utilize simplistic constraints for bond length and valence angle values. Overall, proper 3D ligand
coordinates generation is extremely important, as many docking methods sample ligand conforma-
tions in only torsional coordinates. Thus, even small errors in local geometry may influence the
docking performance. In this thesis, I was initially using OpenBabe]E] and then switched to RDKit’s
ETKDGv2. Both methods sometimes produced structures with local geometry different from the

native co-crystal conformations.

2The version of gen3d function that was most likely developed prior to [126].
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Pose sampling

A great variety of methods for the protein-ligand docking and pose sampling have been proposed
in the recent 30 years [I17, [130]. Here I will briefly list the principles that many of the classical
structure-based approaches follow.

Some docking tools, especially the earliest ones, consider both ligand and receptor to be rigid. This
requires generation of an ensemble of multiple ligand conformers, which are rotated and translated
in the binding pocket, to find their best position. [130]. The search of an ideal ligand position can be
then done with respect to the shape complementarity as in the earliest version of DOCK [131], with
exhaustive-search methods [73], or even those accelerated with the fast Fourier transform [132], [133],
brought from the protein-protein docking. Otherwise, ligand conformational states are explored
inside the protein binding pocket. This can be achieved by very diverse stochastic optimization and
search techniques, such as Monte Carlo methods [67, 134, [70] that can be biased by a priory known
probability distribution [I135], various genetic algorithms [136, [65] 137, 138, 139], swarm intelligence-
based methods [140], or a combination of several optimization methods applied sequentially [72].
Some methods take an advantage of combining fast rigid-body docking of an internally generated
library of the conformers with subsequent flexible fine-tuning of the best conformations [134]. The
conformational search is most often done in the space of torsional coordinates of a ligand only.
However, ICM [I41] and Rosetta [I142] are based on the search in the complete set of internal
coordinates, i.e. bond lengths, bond angles, and dihedral angles. One more approach is the so-
called incremental construction [143, [144], where a ligand is placed inside a pocket fragment by
fragment. To speed-up the conformational search, many docking tools rely on the scoring function
values precomputed on grids that can be then interpolated, or lookup tables. In this thesis I am
using AutoDock Vina [70], as it is open-source and provides fast docking with minimal required
structure preparation that can be easily automatized.

Here I have mentioned only a small portion of the existing approaches for molecular docking. In
addition to the unrestricted sampling in a binding box, drug discovery often requires docking with
search space restrictions, such as fragment-based [145], template-based, and covalent docking [146].
A number of specific tools have been developed for these purposes, and some of the above-mentioned
methods have extensions to address such tasks. Docking can also be performed with molecular
dynamics approaches that are not covered in this short overview.

While ligand sampling is a more or less solved problem, receptor flexibility remains a challenge [147),
14§]. Sidechain conformations can be sampled simultaneously with the ligand conformational space
exploration [I38], but in many cases this increases the complexity [I139] drastically. A popular
approach is docking into an ensemble of the pre-sampled configurations of the binding pocket. If
the exploration of the receptor conformations is optimized as a part of the docking process, this
approach is called Multiple Receptor Conformation docking [149] 148], or the 4D-docking [I50].
The conformations of a pocket can be explored prior to the docking with a molecular dynamics
simulation, rotamer sampling, or more specific tools. One more strategy is to sample the sidechain
positions for several rigid ligand conformations [134, [I51] that can be done to resolve clashes between
the molecules with a minimal number of sidechain rotations [I52]. Nontheless, the problem of

predicting huge backbone shifts, especially simultaneously with ligand docking, is still unsolved.
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Post-processing

Some scoring functions cannot be used inside the sampling process because of