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Introduction (version française)

Figure 1.1 – Nébuleuse d’Orion et différentes zones optiques. Source : https://esahubble.
org/news/heic0601

Le transfert radiatif décrit les interactions entre le rayonnement et le milieu dans
lequel il se propage. Il apparaît dans une grande gamme d’applications physiques, de
l’astrophysique à la médecine. Dans de nombreuses situations astrophysiques, le rayon-
nement est un processus important qui interagit avec le gaz environnant, par exemple
dans les atmosphères d’(exo)planètes [Thomas and Stamnes, 2002], dans les étoiles
massives [Kuiper et al., 2010 ; Mignon-Risse et al., 2020], les régions H ii (Spitzer 1978
et fig. 1.1), jusqu’à la réionisation cosmique [Stiavelli, 2009]. La figure 1.1 montre la né-
buleuse d’Orion en couleurs visibles. Au centre, une étoile massive émet de la lumière.
Les photons les plus énergisants ionisent la région environnante, la région H ii. Les
photons moins énergisants traversent cette zone sans interaction et dissocient les mo-
lécules de dihydrogène dans la région de photodissociation (Photodissociation Region,
PDR) extérieure. L’expansion du gaz chaud dans la région H ii comprime la PDR ; les
échanges d’énergie entre le rayonnement et la matière affectent l’hydrodynamique du
système.

L’hydrodynamique radiative est le cas particulier où le rayonnement interagit avec
un fluide. La lumière peut être absorbée, ce qui va chauffer le fluide. Du rayonnement
peut également être émis par le fluide ou par une autre source. Le rayonnement peut être
diffusé, ce qui va changer sa direction de propagation et éventuellement sa fréquence
[Mihalas and Mihalas, 1984].

La distance parcourue par les photons avant d’être absorbés ou diffusés est modulée
par l’opacité du milieu environnant. D’une part, le milieu peut être optiquement épais,
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le rayonnement et l’hydrodynamique sont fortement couplés. D’autre part, le milieu
peut être optiquement mince, la lumière et le fluide n’interagissent pas.

La théorie décrivant l’interaction entre le rayonnement et la matière a été forma-
lisée par Chandrasekhar [1960]. L’intensité spécifique obéit à une équation intégro-
différentielle, qui ne peut pas être résolue analytiquement dans la plupart des cas.

Comme les expériences et les observations, les simulations numériques peuvent amé-
liorer la compréhension du système physique simulé. Parfois, les expériences ne peuvent
pas être réalisées, car elles seraient trop dangereuses (accident), trop longues (climato-
logie), inatteignables (astrophysique) ou interdites (essais nucléaires). Les simulations
numériques peuvent aussi être plus simples : par exemple, il est plus facile de réaliser
des simulations en mécanique des fluides plutôt que des expériences en soufflerie.

Une étape supplémentaire est nécessaire, pour passer du modèle continu à une solu-
tion approchée. C’est la discrétisation de l’équation, pour obtenir un schéma numérique.
Nous présentons brièvement quelques méthodes parmi les nombreuses techniques qui
existent pour résoudre l’équation du transfert radiatif, ainsi que leurs limitations.

Le tracé de rayons résout le problème en suivant la propagation de rayons à travers
le fluide [Wise and Abel, 2011]. Bien que cette méthode soit très précise, elle est très
coûteuse quand elle est couplée à un code d’hydrodynamique. Le nombre de degrés de
liberté est proportionnel au nombre de cellules spatiales multiplié par le nombre de
sources de rayonnement.

En utilisant la méthode de Monte-Carlo, nous suivons la propagation de paquets de
photons et leurs interactions avec le fluide [Roth and Kasen, 2014]. Elle est basée sur
un processus stochastique, rendant la méthode précise, mais difficile à coupler avec un
code d’hydrodynamique basé sur une grille. Quand le nombre de paquets de photons
devient trop petit dans une région, un bruit numérique peut apparaître et polluer les
résultats de la simulation, rendant la méthode inutilisable pour étudier les problèmes
de stabilité d’interface.

Une autre approximation largement utilisée est la méthode des moments de l’inten-
sité spécifique (en moyennant sur les directions de propagation des photons, Levermore
1984). Dans cette thèse, nous considérons les trois premiers moments de l’intensité spé-
cifique : l’énergie radiative Er, le flux radiatif Fr et la pression radiative Pr. Une relation
de fermeture est nécessaire pour exprimer la pression radiative en fonction de l’énergie
radiative et du flux radiatif. Celle utilisée est le modèle M1 [Levermore, 1984 ; Dubroca
and Feugeas, 1999] pour ses bonnes propriétés dans les milieux optiquement épais et
optiquement minces, ainsi que le compromis entre temps de calcul et précision. Remar-
quons que l’énergie radiative est positive Er ą 0 et que le flux réduit vérifie ||Fr||

cEr
ď 1,

où c est la vitesse de la lumière. L’énergie radiative ne peut pas être transportée plus
vite que la vitesse de la lumière.

Le modèle M1 est un système hyperbolique, il peut être discrétisé avec la méthode
des volumes finis. Tous les schémas numériques présentés dans cette thèse sont inspirés
des schémas numériques développés pour les équations d’Euler compressibles. Cepen-
dant, les spécificités du transfert radiatif et du modèle M1 complexifient les schémas.

On peut montrer que, dans la limite des longues échelles de temps et des hautes opa-
cités (milieu optiquement épais), le modèle M1 dégénère vers une équation de diffusion.
Un schéma qui préserve le régime asymptotique capture ce comportement.

Un solveur explicite pour le transfert radiatif serait restreint par une condition de
Courant-Friedrichs-Lewy (CFL), limité par la vitesse de la lumière. On obtiendrait un
pas de temps très petit devant celui de l’hydrodynamique, qui est limité par la vitesse
du son du fluide. Plusieurs méthodes ont été développées pour contourner ce problème.
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Nous avons choisi d’utiliser un solveur implicite [González et al., 2007]. La temporalité
du transfert radiatif est préservée, ce qui n’est pas le cas avec l’approximation de la
vitesse de la lumière réduite (Reduced Speed of Light Approximation, RSLA, Gnedin
and Abel 2001).

Notre but est de développer un schéma numérique avec ces trois propriétés :
— le schéma doit préserver le régime asymptotique pour capturer le comportement

en temps long et à haute opacité ;
— la discrétisation en temps doit être implicite, pour éviter que le pas de temps

ne soit limité par la vitesse de la lumière ;
— la solution doit être admissible, c’est-à-dire les états admissibles Er ą 0 et

||Fr||
cEr

ď 1 doivent être préservés. Ceci est nécessaire pour des raisons physiques
et numériques.

De nombreuses heures de calcul peuvent être nécessaires pour étudier les problèmes
astrophysiques. L’usage d’outils pour le calcul haute performance (High Performance
Computing, HPC) est nécessaire. Ils permettent de réduire le coût de calcul et d’aug-
menter la taille du problème à résoudre. Plusieurs processeurs traitent différentes par-
ties d’un programme ou différentes données : des problèmes plus grands peuvent être
résolus plus vite.

Au cours des dernières décennies, différentes technologies ont émergé, telles que
les processeurs multi-coeurs et les GPUs. Ceci soulève le problème de portabilité de
performance. Un code peut être optimisé pour une architecture spécifique et l’exécu-
ter sur une autre architecture donnera lieu à de mauvaises performances. Certaines
bibliothèques, comme Kokkos, proposent des solutions.

Les solveurs implicites peuvent nécessiter la résolution de grands systèmes linéaires.
Cela peut représenter la majorité du temps de calcul. Heureusement, l’algèbre linéaire
pour le calcul haute performance a été étudiée au fil des années. Comme les systèmes
linéaires que nous devons résoudre sont grands et creux, les méthodes directes sont
inutilisables. Des solveurs itératifs préconditionnés ont été développés pour contourner
ce problème [Saad, 2003]. La plupart de ces méthodes nécessitent de stocker la matrice.
Dans cette thèse, nous utilisons la bibliothèque Trilinos [Heroux et al., 2005] car elle
nous permet d’utiliser différentes architectures telles que les processeurs multi-coeurs
et les GPUs. Elle fournit, entre autres, des préconditionneurs multigrille algébrique
(Algebraic Multigrid, AMG). D’autres méthodes, qui ne nécessitent pas le stockage
de la matrice, existent également. C’est notamment le cas des méthodes multigrille
géométrique (Geometric Multigrid, GMG) qui ont été développées pour la résolution
de systèmes, linéaires ou non linéaires, venant de la discrétisation d’équations différen-
tielles [Briggs et al., 2000].

Cette thèse se concentre sur le développement et l’implémentation de schémas nu-
mériques pour l’hydrodynamique radiative, et non sur leurs applications à l’astrophy-
sique.

1.1 Description des travaux

1.1.1 Transfert radiatif
Le premier chapitre est dédié à la présentation du modèle utilisé pour décrire le

transfert radiatif. Nous établissons d’abord l’équation du transfert radiatif en effectuant
un bilan d’énergie. Elle décrit l’évolution de l’intensité spécifique.
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Cette équation peut être coûteuse à résoudre numériquement quand le transfert
radiatif est couplé avec l’hydrodynamique. Pour réduire le temps de calcul, nous utili-
sons un modèle aux moments, où l’intensité spécifique est moyennée selon la direction
de propagation et la fréquence des photons. Ceci mène à la résolution d’un système
hyperbolique impliquant l’énergie radiative, le flux radiatif et la pression radiative.
Ce modèle nécessite de spécifier une relation de fermeture. Celle que nous utilisons
est le modèle M1. La pression radiative est exprimée comme une fonction de l’énergie
radiative et du flux radiatif en maximisant l’entropie radiative.

Ce modèle a le bon comportement dans les limites de transport et de diffusion.
Nous explorons le système dans cette limite de diffusion, c’est-à-dire dans la limite des
grandes opacités et des longues échelles de temps.

Pour des applications physiques, le modèle doit prendre en compte les échanges
d’énergie entre le rayonnement et l’hydrodynamique. Nous modélisons ce phénomène en
ajoutant des termes non conservatifs. Ces termes dépendent de l’opacité, nous explorons
encore une fois le comportement du modèle dans la limite de diffusion, lorsque le
couplage à l’hydrodynamique est pris en compte.

1.1.2 Un premier solveur préservant le régime asymptotique
Dans ce chapitre, nous présentons un premier schéma numérique, implicite et qui

préserve le régime asymptotique. Il est basé sur un solveur HLL, les flux numériques
sont corrigés pour capturer le régime asymptotique. Nous proposons également une
modification équilibre (well-balanced) des termes sources pour atteindre un régime sta-
tionnaire constant avec un saut d’opacité.

En utilisant un solveur implicite, il faut résoudre un système non linéaire. Nous
utilisons la méthode de Newton-Raphson et les systèmes linéaires sont résolus grâce à
la bibliothèque Trilinos.

La résolution du problème d’hydrodynamique radiative est scindée en trois étapes.
La première est la mise à jour des quantités hydrodynamiques. La deuxième est la
mise à jour des quantités radiatives. La troisième est l’addition des termes sources de
couplage.

Nous réalisons des tests standards, dans les limites de transport et de diffusion,
incluant des tests purement radiatifs et des tests d’hydrodynamique radiative. Nous
étudions également la propagation d’un front d’ionisation dans un cœur dense pré-
stellaire massif, et nous montrons que le front d’ionisation est stable, même en présence
de mouvements convectifs déstabilisants.

1.1.3 Un schéma tout-régime préservant le régime asympto-
tique

Inspirés par les schémas numériques pour l’hydrodynamique [Chalons et al., 2016],
nous proposons dans ce chapitre un second schéma numérique basé sur un solveur
tout-régime. Le modèle M1 est d’abord réécrit sous une forme similaire à celle des
équations d’Euler. Les phénomènes de transport et de diffusion sont séparés en deux
sous-systèmes. Nous utilisons les flux numériques donnés par Buet and Despres [2008]
pour discrétiser le système de diffusion. Nous utilisons un schéma décentré amont pour
discrétiser l’étape de transport tout en assurant une mise à jour conservative.

Cependant, ceci conduit à un schéma de stencil 2, avec deux étapes. Nous proposons
également un schéma tout-régime avec une seule étape.
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Ces deux schémas (deux étapes et une étape) préservent le régime asymptotique
si nous utilisons les flux donnés par Buet and Despres [2008]. Ces flux prennent en
compte les termes sources. Nous montrons également que ces schémas sont entropiques
et préservent les états admissibles, Er ą 0 et ||Fr||

cEr
ď 1.

Les tests numériques standards montrent le bon comportement des schémas dans
les limites de transport et de diffusion.

1.1.4 Méthode de Jacobi non linéaire et multigrille géomé-
trique

Dans ce chapitre, nous présentons une étape supplémentaire vers le développement
d’un schéma implicite qui préserve le régime asymptotique et les états admissibles.
Nous discrétisons le modèle M1 avec un solveur HLL implicite sans terme source. Au
lieu de résoudre le système non linéaire avec la méthode de Newton-Raphson, nous
utilisons la méthode de Jacobi présentée par Pichard [2016]. Nous montrons que la
solution construite avec ce processus itératif préserve les états admissibles.

Cependant, cette méthode peut converger lentement quand la résolution augmente.
Pour s’attaquer à ce problème, nous utilisons un algorithme de multigrille géométrique
[Briggs et al., 2000]. Le problème est résolu sur une grille plus grossière, où la méthode
de Jacobi converge plus vite. Nous introduisons un pseudo-temps [Kifonidis and Müller,
2012] pour préserver les états admissibles.

Les premiers tests numériques dans le régime de transport montrent l’efficacité de
la méthode.

1.1.5 Calcul haute performance et algèbre linéaire
Le schéma développé dans le chapitre 2 nécessite de résoudre de grands systèmes

linéaires creux et mal conditionnés. Nous utilisons la bibliothèque Trilinos. Nous
présentons les différents paquets que nous utilisons et nous montrons comment ils nous
permettent d’utiliser différentes architectures, comme les processeurs multi-coeurs et
les GPUs. Nous montrons également des résultats de performance et nous discutons
l’impact du préconditionneur sur une application physique.

1.2 Publications et communications
Les travaux présentés dans cette thèse ont conduit aux publications et communi-

cations orales suivantes :
— H. Bloch, P. Tremblin, M. González, T. Padioleau, and E. Audit, A high-

performance and portable asymptotic preserving radiation hydrodynamics code
with the M1 model, A&A, 646:A123, 2021.

— P. Tremblin, H. Bloch, M. González, E. Audit, S. Fromang, T. Padioleau, P.
Kestener, and S. Kokh, Radiative Rayleigh-Taylor Instability and the structure
of clouds in planetary atmospheres, accepté, A&A.

— Contributions orales :
— Juin 2021 : Congrès de la SMAI 2021, La Grande Motte, France ;
— Mai 2021 : Séminaire invité, Centre de Mathématiques Appliquées, École

Polytechnique, Palaiseau, France
— Décembre 2020 : Congrès d’Analyse Numérique pour les Jeunes, en ligne ;
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— Janvier 2020 : Radiation Hydrodynamics : Implementation and Application,
Royal Astronomical Society Special Discussion Session, London, Royaume-
Uni ;

— Mai 2019 : International Workshop on Simulating Interactiong Particles,
Bordeaux, France.

— Posters :
— Juin 2019 : Workshop Numerical Methods for Multiscale Models arising in

Physics and Biology, Nantes, France ;
— Mai 2019 : Congrès de la SMAI 2019, Guidel, France.

De plus, les travaux présentés dans les chapitres 3 et 4 font l’objet d’articles en prépa-
ration.
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Figure 1.2 – Orion nebula and different optical zones. Source: https://esahubble.org/
news/heic0601

Radiative transfer describes the interactions between the radiation and the sur-
rounding medium. It appears in a wild range of physical situations, from astrophysics,
up to medicine. In many astrophysical situations, radiation is an important process that
interacts with the surrounding gas, e.g., in (exo) planet’s atmospheres (e.g., Thomas
and Stamnes 2002), massive stars (e.g., Kuiper et al. 2010; Mignon-Risse et al. 2020),
H ii regions (e.g., Spitzer 1978 and fig. 1.2), up to the cosmic reionization (e.g., Stiavelli
2009). Figure 1.2 shows the Orion nebula in visible colors. In the middle, a massive
star emits light. Photons with the highest energy ionize the surrounding zone, the H ii
region. Less energetic photons travel across this area without interaction and dissociate
dihydrogen molecules in the outer photodissociation region (PDR). The expanding hot
gas in the H ii region compresses the PDR; energy exchanges between light and matter
affect the hydrodynamics of the system.

Radiation hydrodynamics is the special case where the radiation interacts with a
fluid. Light can be absorbed, thus heating the fluid. The radiation could also be
emitted by the fluid or by another source. Radiation could be scattered, this will
change its direction and perhaps its frequency [Mihalas and Mihalas, 1984].

The distance traveled by the photons before being absorbed or scattered is shaped
by the opacity of the surrounding medium. On one hand, the medium can be optically
thick, the radiation and the hydrodynamics are strongly coupled. On the other hand,
the medium can be optically thin, the light and the fluid do not interact with each
other.
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The theory describing the interaction between radiation and matter was formalized
by Chandrasekhar [1960]. The specific intensity obeys an integro-differential equation,
which cannot be solved analytically in most cases.

As experiments and observations, numerical simulations can improve the under-
standing of the simulated physical system. Sometimes, experiments cannot be per-
formed, should they be too dangerous (crash), too long (climatology), unreachable
(astrophysics), or forbidden (nuclear test). Numerical simulations can also be simpler:
for example, it is easier to perform fluid simulations instead of experiments in a wind
tunnel.

Another step is required, to go from the continuous model to an approximate solu-
tion. It is the discretization of the equation, to obtain a numerical scheme. Let us now
briefly present some methods and their limitations, among the numerous techniques
that exist to solve the radiative transfer equation.

Ray tracing solves the problem by following the propagation of beams through the
fluid (e.g., Wise and Abel 2011). Although this method is very precise, it is highly
costly when coupled to hydrodynamics codes. The number of degrees of freedom scales
with the number of spatial cells multiplied by the number of radiation sources.

Using a Monte-Carlo method, we follow the propagation of “photon energy packets”
and their interactions with the fluid (e.g., Roth and Kasen 2014). It is based on a
stochastic process, making this method accurate, but difficult to couple with a grid
based hydrodynamics code. When the number of photon packets becomes too small
in a region, a numerical noise can arise and pollute the simulation results, making the
method unusable to study interface stability problems.

Another widely used approximation is moment models [Levermore, 1984] of the
specific intensity (by averaging over the direction of propagation of photons). In this
thesis, we consider the three first moments of the specific intensity: the radiative energy
Er, the radiative flux Fr, and the radiative pressure Pr. A closure relation is needed to
express the radiative pressure as a function of the radiative energy and the radiative
flux. The one we use is the M1 model [Levermore, 1984; Dubroca and Feugeas, 1999]
for its good properties in both optically thick and thin media and the compromise
between computational cost and precision. Let us notice that the radiative energy is
positive Er ą 0 and the reduced flux verifies ||Fr||

cEr
ď 1, where c is the speed of light. It

ensures that the radiative energy cannot be transported faster than the speed of light.
The M1 model is a hyperbolic system, it can be discretized with a finite volume

method. All numerical schemes presented in this thesis are inspired by numerical
schemes developed for the compressible Euler equations. However, the specific features
of the radiative transfer and the M1 model increase the complexity of the schemes.

One can show that, in the limit of long timescale and high opacity (optically thick
medium), the M1 model degenerates towards a diffusion equation. An asymptotic
preserving scheme captures this behavior.

An explicit solver for the radiative transfer would be restricted by a Courant-
Friedrichs-Lewy (CFL) condition, limited by the speed of light. This will result in
a very low time step compared to the hydrodynamics one, which is limited by the
speed of sound of the fluid. Several methods have been developed to get around this
problem. The one we have chosen is a time-implicit solver (e.g., González et al. 2007).
The temporality of the radiative transfer will be preserved, which is not the case with
the reduced speed of light approximation (RSLA, e.g, Gnedin and Abel 2001).

We aim at building a numerical scheme with these three properties:
— the scheme should be asymptotic preserving to capture the behavior in long

11



Introduction (english version)

timescale and high opacity;
— the discretization in time should be implicit, to avoid a time step restricted by

the speed of light;
— the solution should be admissible, i.e., the admissible states Er ą 0 and ||Fr||

cEr
ď 1

should be preserved. This is needed for both physical and numerical reasons.
To study astrophysical problems, many computational hours can be needed. This

requires the use of High Performance Computing (HPC) tools. It allows reducing the
computational cost and increasing the size of the problems to be solved. Multiple
processing units handle different parts of the same program or data simultaneously:
bigger problems can be solved faster.

In the last decades, different architectures have emerged, such as multi-cores, many-
cores, and GP-GPUs. This raises the problem of performance portability. A code can
be optimized for a specific architecture and running it on a different architecture will
result in bad performance. Some libraries, such as Kokkos, address this issue.

Implicit solvers can require solving large linear systems. It can represent most of
the computational time. Fortunately, linear algebra for HPC has been investigated over
the years. Because the linear system we will have to solve is large and sparse, direct
methods are out of reach. Iterative solvers with preconditioners have been developed
to tackle this issue (e.g., Saad 2003). Most of these methods require storing the matrix.
In this work, we use the library Trilinos [Heroux et al., 2005] because it allows us
to target different architectures, such as multi-core, many-core, and GP-GPUs. It
provides, among others, Algebraic Multigrid (AMG) preconditioners. Other methods
that do not require to store the matrix also exist. For example, Geometric Multigrid
(GMG) methods have been developed to solve linear and nonlinear systems arising
from the discretization of differential equations (e.g., Briggs et al. 2000).

This thesis focuses on the development and the implementation of numerical schemes
for radiation hydrodynamics, not their application to astrophysics.

1.4 Description of the work

1.4.1 Radiative transfer
The first chapter is dedicated to the presentation of the model used to describe the

radiative transfer. We first derive the radiative transfer equation by computing the
energy balance. It describes the evolution of the specific intensity.

This equation can be costly to solve numerically when the radiative transfer is
coupled with the hydrodynamics. To reduce the computational cost, we use a moment
method, in which the specific intensity is averaged over the direction of propagation
and the frequency of the photons. This leads to solving a hyperbolic system involving
radiative energy, radiative flux, and radiative pressure. This model requires specifying
a closure relation. The one we use is the M1 model. We express the radiative pressure
as a function of the radiative energy and radiative flux by maximizing the radiative
entropy.

This model has the correct behavior in both free-streaming and diffusive limits. We
look at this system in the diffusive limit, i.e., large opacity and long timescale.

For physical applications, the model has to take into account the exchange of energy
between the radiation and the hydrodynamics. We model this phenomenon by adding
nonconservative terms. These terms depend on the opacity, we investigate again the
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behavior of the model in the diffusive limit, when the coupling to the hydrodynamics
is taken into account.

1.4.2 A first asymptotic preserving solver
In this chapter, we present a first numerical scheme, time-implicit, and asymptotic

preserving. It is based on an HLL solver, numerical fluxes are corrected to capture the
asymptotic behavior. We also suggest a well-balanced modification of the source terms
to reach a constant steady state with a jump of opacity.

Using a time-implicit solver, a nonlinear system has to be solved. It is done with the
Newton-Raphson method and linear systems are solved using the library Trilinos.

The resolution of the radiation hydrodynamics problem is split into three steps.
The first one is the update of the hydrodynamics quantities. The second one is the
update of the radiative quantities. The third one is the addition of coupling source
terms.

We perform standard tests in both free-streaming and diffusive limits, including
purely radiative tests and radiation hydrodynamics ones. We also study the propa-
gation of an ionization front in a massive pre-stellar dense core, and we show that
the ionization front is strongly stable against perturbations even with destabilizing
convective motions.

1.4.3 An all-regime-like asymptotic preserving scheme
Inspired by numerical schemes for hydrodynamics [Chalons et al., 2016], we propose

in this chapter a second numerical scheme based on an all-regime solver. The M1
model is first written in a form similar to the Euler equations. Diffusion and transport
phenomena are then split into two subsystems. We use numerical fluxes given by Buet
and Despres [2008] to discretize the diffusion system. We use an upwind scheme to
discretize the transport step while ensuring a conservative update.

However, this leads to a scheme of stencil 2, with two steps. We also propose an
all-regime scheme with only one step.

Both schemes (two steps and one step) are asymptotic preserving if we use numerical
fluxes given by Buet and Despres [2008]. These fluxes take into account source terms.
We also show that these schemes are entropic and preserve the admissible states, Er ą 0
and ||Fr||

cEr
ď 1.

Standard numerical tests show the good behavior of the schemes in both free-
streaming and diffusive limits.

1.4.4 Nonlinear Jacobi method and geometric multigrid
In this chapter, we present an additional step towards the development of an asymp-

totic preserving and time-implicit solver that preserves the admissible states. We dis-
cretize the M1 model with a time-implicit HLL solver without source terms. Instead
of solving the nonlinear system with the Newton-Raphson method, we use the Jacobi
method presented in Pichard [2016]. We show that the solution built with this iterative
process preserves the admissible states.

However, this method can be slow to converge when the resolution increases. To
tackle this issue, we use a geometric multigrid algorithm [Briggs et al., 2000]. The
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problem is solved on a coarser grid, where the Jacobi method converges faster. Intro-
ducing a pseudo-time [Kifonidis and Müller, 2012] allows us to preserve the admissible
states.

First numerical tests in the free-streaming regime show the efficiency of the method.

1.4.5 High performance computing and linear algebra
The scheme developed in chapter 2 requires solving large sparse ill-conditioner linear

systems. We use the library Trilinos to do it. We present the different packages we
used and we show how they allow us to target different architectures, such as multi-
cores, many-cores, and GP-GPUs. We also show some performance results and we
discuss the impact of the preconditioner on a physical application.

1.5 Publications and communications
The work presented in this thesis led to the following publications and oral com-

munications:
— H. Bloch, P. Tremblin, M. González, T. Padioleau, and E. Audit, A high-

performance and portable asymptotic preserving radiation hydrodynamics code
with the M1 model, A&A, 646:A123, 2021.

— P. Tremblin, H. Bloch, M. González, E. Audit, S. Fromang, T. Padioleau, P.
Kestener, and S. Kokh, Radiative Rayleigh-Taylor Instability and the structure
of clouds in planetary atmospheres, accepted, A&A.

— Oral contributions:
— June 2021: Congrès de la SMAI 2021, La Grande Motte, France;
— May 2021: Séminaire invité, Centre de Mathématiques Appliquées, École

Polytechnique, Palaiseau, France
— December 2020: Congrès d’Analyse Numérique pour les Jeunes, online;
— January 2020: Radiation Hydrodynamics: Implementation and Application,

Royal Astronomical Society Special Discussion Session, London, UK;
— May 2019: International Workshop on Simulating Interactiong Particles,

Bordeaux, France.
— Posters:

— June 2019: Workshop Numerical Methods for Multiscale Models arising in
Physics and Biology, Nantes, France;

— May 2019: Congrès de la SMAI 2019, Guidel, France.
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CHAPTER 1. RADIATIVE TRANSFER

Sections 1.4, 1.5 and 1.C are the adaptation of an article published in Astron-
omy&Astrophysics, see Bloch et al. 2021.

This chapter is dedicated to the presentation of radiative transfer equation (sec-
tion 1.1). The quantity of interest is the specific intensity, which describes the rate of
radiative transfer of energy, at a point x and time t. It is used in the study of processes
involving propagation of radiation and its interaction with the surrounding medium. It
relies on classical electromagnetic radiation, whereas it is conceptually different from
the description of Maxwell electromagnetic fields.

Due to the high number of degrees of freedom (i.e., the time, the position, the direc-
tion of propagation, and the frequency of photons), only a few problems can be solved
analytically [Chandrasekhar, 1960] and, if coupled with hydrodynamics, direct simu-
lations are out of reach for modern computers. Different models have been developed
to reduce the computational cost. We will focus on the moment models [Levermore,
1984] in section 1.2: the specific intensity is averaged over the direction of propaga-
tion of photons. It presents several advantages: the computational cost is lower than
other methods such as Monte-Carlo method and, mostly, it is easy to couple it with
a grid-based hydrodynamics code. Furthermore, we derive a specific closure relation,
the M1 model, by maximizing the radiative entropy (section 1.3). This closure relation
allows us to treat accurately both free-streaming and diffusive regimes. In particular,
we investigate the diffusive limit in section 1.4. Finally, we enhance this model for a
moving fluid in section 1.5 to derive the radiation hydrodynamics equations.

1.1 Radiative transfer equation
In the vacuum, photons propagate in a straight line at velocity cΩ, where c is the

speed of light and Ω is the direction of propagation of photons. At a time t, a photon
is determined by its position x, its direction of propagation Ω, and its frequency ν.

To derive the radiative transfer equation, we follow Chandrasekhar [1960]. Let
us define the specific intensity I such that the flux of radiative energy Φ crossing an
oriented elementary surface dS around the point x in the elementary solid angle dΩ
around the direction Ω with frequency in rν, ν ` dνs, at time t, is

Φ px, t,Ω, νq “ I px, t,Ω, νqΩ ¨ dSdΩdν. (1.1)

Figure 1.1 summarizes the notations.
Let us now derive the radiative transfer equation by computing the energy balance

in an elementary volume dV with curvilinear length dl (see fig. 1.2). We recall that
the radiation can be absorbed by the surrounding gas. Photons could also be emitted

ˆ
x dS

Ω

dΩ

Figure 1.1 – Geometry used to define the specific intensity.
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x
ˆ

x ` dlˆ
Ω

dΩ

Ω
dΩ

Ω1

dΩ1

Figure 1.2 – Elementary volume in which the energy balance is computed.

by the gas or by another source. Photons could be scattered, which will change their
direction of propagation and perhaps their frequency. Let us now focus on each of
these phenomena.

We first investigate absorption. We consider the flux of radiative energy propagating
in an absorbing medium. A part dΦa of the radiative energy is absorbed:

dΦa px ` dl, t,Ω, νq “ ´σa
νΦ px, t,Ω, νq dl, (1.2)

with σa
ν the absorption coefficient. Its inverse, 1

σa
ν
, is the absorption mean free path.

We now look at thermal emission. A part

dΦe px ` dl, t,Ω, νq “ ηνΩ ¨ dSdΩdνdl, (1.3)

with ην the emission coefficient, is emitted by the surrounding matter. From Chan-
drasekhar [1960], at local thermodynamic equilibrium (LTE),

ην “ σa
νB pν, Tgq “ σa

ν

2hν3

c

1

exp
´

hν
kbTg

¯

´ 1
, (1.4)

where B is the black body specific intensity, h is the Planck constant, kb is the Boltz-
mann constant and Tg is the temperature of the matter. From now on, we always
assume LTE. At global thermodynamic equilibrium, Φ does not depend on x, there-
fore

0 “
BΦ

Bl
“ dΦe ` dΦa, (1.5)

which leads to
I px, t,Ω, νq “ B pν, Tgq . (1.6)

We will recover eq. 1.6 in section 1.B.
Finally, let us consider scattering. On one hand, part of the energy propagating

initially in the direction Ω is scattered into a different direction Ω1. This will decrease
the flux of radiative energy in the direction Ω. By writing σs

ν the scattering coefficient,
the energy lost by scattering is

´ σs
νΦ px, t,Ω, νq dl. (1.7)

The scattering mean free path is 1
σs
ν
.

On the other hand, energy propagating initially in a direction Ω1, different from
Ω, can be scattered and then is propagated in the direction Ω. This will increase
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CHAPTER 1. RADIATIVE TRANSFER

the flux of radiative energy in the direction Ω. Let us introduce the phase function
pν px,Ω,Ω1

q which represents the part of the flux of radiative energy that is scattered
from the direction Ω1 into the direction Ω at the point x. Then, the gain is

σs
ν

ż

S2

pν px,Ω,Ω1
qΦ px, t,Ω1, νq dΩ1dl. (1.8)

If the medium is homogeneous, which we assume from now on, then pν does not depend
on the position x. Furthermore, we assume that pν depends only on the angle between
Ω and Ω1. Therefore, we write pν pΩ ¨ Ω1

q. With our choice of normalization, we have
ż

S2

pν pΩ ¨ Ω1
q dΩ “ 1, (1.9)

but other choices are possible.
The difference of energy in the elementary volume between the moment t and the

moment t ` dt is then

pI px ` dl, t ` dt,Ω, νq ´ I px, t,Ω, νqqΩ ¨ dSdΩdν

“ ´ pσa
ν ` σs

νq I px, t,Ω, νqΩ ¨ dSdΩdνdl

`σa
νB pν, TgqΩ ¨ dSdΩdνdl

`σs
ν

ż

S2

pν pΩ ¨ Ω1
q I px, t,Ω1, νq dΩ1Ω ¨ dSdΩdνdl.

(1.10)

Let us notice that dt “ dl
c
. Then, using a Taylor expansion at first order with dl that

goes to 0, one has

I px ` dl, t ` dt,Ω, νq “ I px, t,Ω, νq ` dl

ˆ

BI

Bl
`

1

c

BI

Bt

˙

px, t,Ω, νq ` opdlq. (1.11)

Furthermore, BI
Bl

“ Ω ¨ ∇I and
ˆ

1

c
Bt ` Ω ¨ ∇

˙

I px, t,Ω, νq “ ´ pσa
ν ` σs

νq I px, t,Ω, νq ` σa
νB pν, Tgq

` σs
ν

ż

S2

pν pΩ ¨ Ω1
q I px, t,Ω1, νq dΩ1.

(1.12)

Equation 1.12 is an integro-differential equation that describes the transport of the
specific intensity. One can notice the analogy between eq. 1.12 and the Boltzmann
equation that describes the statistical behavior of a thermodynamic system out of
equilibrium.

Two main regimes can arise, depending on the mean free path of photons compared
to the characteristic length of the system, written L [Mihalas and Mihalas, 1984]. On
one hand, in the diffusive limit, the medium is optically thick (mean free path of
photons much smaller than the characteristic length, 1

σa
ν`σs

ν
! L), the radiation and

the matter strongly interact with each other. On the other hand, in the free-streaming
regime, the radiation does not affect the gas, and the medium is optically thin (mean
free path of photons greater than the characteristic length, 1

σa
ν`σs

ν
" L).

Because solving eq. 1.12 within the scope of radiation hydrodynamics will be costly,
we present now the moment method used in this work.
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1.2 Moment model
One can consider only the moment of order 0 (the radiative energy), leading to the

flux-limited diffusion (FLD) approximation [Levermore and Pomraning, 1981]. Because
this model considers only the moment of order 0, its computational cost is quite low,
but it is very diffusive in the free-streaming regime. To tackle this issue, one can use a
two-moment model (radiative energy and radiative flux), with the M1 closure relation
[Dubroca and Feugeas, 1999]. However, this method can suffer from artifacts when
multiple beams cross in the free-streaming regime [González, 2006]. One can solve this
issue by using a three-moment model (radiative energy, radiative flux, and radiative
pressure) with the M2 closure relation [Pichard et al., 2016]. However, because of
the increase of unknowns, the computational cost also increases. In this work, we
have chosen to use the two-moment model with the M1 closure relation because the
computational cost remains affordable, and we do not encounter in our applications
the problem of beams crossing in the free-streaming regime.

We limit ourselves to gray radiative transfer, but the following can be generalized
to multigroup radiative transfer (e.g., Turpault 2005).

Let us consider the three first moments of the specific intensity: the gray radiative
energy Er, the gray radiative flux Fr and the gray radiative pressure Pr defined as

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

Er “
1

c

ż 8

0

ż

S2

I px, t,Ω, νq dΩdν

Fr “

ż 8

0

ż

S2

I px, t,Ω, νqΩdΩdν

Pr “
1

c

ż 8

0

ż

S2

I px, t,Ω, νqΩ b ΩdΩdν.

(1.13)

Let us notice that

||Fr|| ď

ż 8

0

ż

S2

I px, t,Ω, νq
loooooomoooooon

ě0

||Ω||
loomoon

“1

dΩdν “ cEr. (1.14)

This condition rewrites f ď 1, where f “ ||f || “
||Fr||
cEr

is the reduced flux. It ensures
that the radiative energy cannot be transported faster than the speed of light.

The mean over solid angles and frequency of eq. 1.12 and its product by Ω give the
following system:

$

’

&

’

%

BtEr ` ∇ ¨ Fr “ cσa
`

arT
4
g ´ Er

˘

BtFr ` c2∇ ¨ Pr “ ´cσsFr.

(1.15a)

(1.15b)
The computation of the source terms is made explicit in section 1.A. σa and σs are

weighted means of σa
ν and σs

ν respectively. More details can be found in section 1.A
and González [2006].

The fluid and the radiation exchange energy and momentum through emission and
absorption. To ensure the conservation of the total energy when the hydrodynamics is
frozen, the energy exchange term is given by

BtpρcvTgq “ ´cσa
`

arT
4
g ´ Er

˘

. (1.16)

ρcvTg is the gas internal energy, with ρ the density of the fluid and cv the heat capacity,
defined by cv “

kb
µmHpγ´1q

for a perfect gas, where µ is the mean molecular weight, mH

is the mass of hydrogen and γ is the adiabatic index of the gas.
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In the following section, we specify the closure relation, which is a way to express
Pr as a function of Er and Fr.

1.3 Closure relation
We have chosen here to use the M1 closure relation for its good properties. To

derive it, Levermore [1984] applies a Lorentz transform to an isotropic distribution of
photons. The same relation can also be obtained by maximizing the radiative entropy
[Dubroca and Feugeas, 1999; Buet and Despres, 2004]. We present the latter because
some results will be used in chapter 3.

We only give here the main idea of the derivation of the model, detailed computa-
tions can be found in section 1.B.

From Buet and Despres [2004], we first define the gray radiative entropy as

Sr “ ´
2kb
c3

ż 8

0

ż

S2

ν2
pn log n ´ pn ` 1q log pn ` 1qq dΩdν, (1.17)

where n “ c2

2h
I
ν3

is the photon occupation number at the frequency ν. At a given time
t, in a unit volume centered in x of volume d3x, there is

ş8

0

ş

S2 n px, t,Ω, νq dΩdνd3x
photons. Sr is the entropy of a photon gas. The derivation of eq. 1.17 relies on Gibbs
statistical mechanics (e.g., ter Haar 1995) and is beyond the scope of this work.

Sr is the physical entropy, it reaches a maximum. One can also define the math-
ematical entropy, with the opposite sign (e.g., Dubroca and Feugeas 1999). In that
case, the radiative entropy reaches a minimum.

One can show that the radiative entropy Sr is a strictly concave function of the
specific intensity I. We write n̄ the occupation number that maximizes the radiative
entropy. Using the Lagrange multiplier method (e.g., Boyd et al. 2004), there exists θr
and β such that

n̄ “
1

exp
´

hν
kbθr

`

1 ´
β¨Ω
c

˘

¯

´ 1
. (1.18)

θr is homogeneous to a temperature, and we have θr ě 0. Let us emphasize that θr
is not the gas temperature Tg. Similarly, one can show that β is homogeneous to a
velocity and β “ ||β|| ď c. Let us notice that if β “ 0, then I pn̄q is the black body
specific intensity at temperature θr.

After computation (see section 1.B), one has
$

’

’

’
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’

’
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&
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’
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’

’

’

’

%

Er “ c4
3c2 ` β2

3 pc2 ´ β2q
3arθ

4
r

Fr “
4

3

c6arθ
4
r

pc2 ´ β2q
3β

“ pq ` Erqβ

Pr “
β b Fr

c2
` qI

“

ˆ

1 ´ χ

2
I `

3χ ´ 1

2
n b n

˙

Er,

(1.19)

with q “
c2´β2

3c2`β2Er, I the identity matrix, and n “
f
f

is a unit vector aligned with the
radiative flux and χ “

3`4f2

5`2
a

4´3f2
is the Eddington factor [Levermore, 1984].
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Using eq. 1.19 to express Pr as a function of Er and Fr is the closure relation of
the M1 model. It preserves both free-streaming and diffusive limits. On one hand, if
f “ 1, then Pr “ Ern b n, only the transport regime remains. On the other hand, if
f “ 0, the model in the diffusive regime simplifies into the P1 model, with Pr “ 1

3
ErI.

The radiative pressure tensor becomes diagonal and isotropic. We will look into the
diffusion limit more precisely in section 1.4.

Finally, one can also show that the maximum radiative entropy obeys the following
hyperbolic equation

BtSr ` ∇ ¨ pβSrq “
cσa

θr

`

arT
4
g ´ Er

˘

`
σs

cθr
β ¨ Fr. (1.20)

This equation will be used in chapter 3. It allows us to prove that the numerical scheme
developed there preserves the admissible states Er ą 0 and f ď 1.

1.4 Diffusive limit
Let us now focus on the diffusive regime with the hydrodynamics frozen, i.e., the

limit of large opacity and long timescale. From Audit et al. [2002], when the grid does
not sample the mean free path of the photons, the numerical solution is dominated by
the numerical diffusion. In order to understand this phenomena, we explore here the
diffusive limit at the continuous level. Computations done here will lead to the devel-
opment of so-called asymptotic preserving schemes in chapters 2 and 3. These schemes
will capture the behavior described in the section, independently of the resolution.

Following Berthon and Turpault [2011], we introduce a rescaling parameter ε to
write the time (resp. the opacity) as t̃ “ εt (resp. σ̃a “ εσa and σ̃s “ εσs). The
radiative energy, the radiative flux, and the gas temperature are expanded with ε, e.g.,
Er “ Er,0 ` εEr,1 ` O pε2q. System 1.15 and eq. 1.16 become

$

’

’

&

’

’

%

ε2B
rtEr ` ε∇ ¨ Fr “ c rσa

`

arT
4
g ´ Er

˘

ε2B
rtFr ` εc2∇ ¨ Pr “ ´c rσsFr

ε2B
rt pρcvTgq “ ´c rσa

`

arT
4
g ´ Er

˘

.

(1.21a)
(1.21b)
(1.21c)

By expanding eqs. 1.21a and 1.21b at order 0, we have
#

Er,0 “ arT
4
g,0

Fr,0 “ 0.
(1.22)

Because Fr,0 “ 0, let us consider the P1 closure relation instead of the M1 closure
relation. We use Pr “ 1

3
ErI instead of eq. 1.19. This model is known to have the correct

behavior only in the diffusive regime. It does not capture properly the free-streaming
regime and should be used carefully. However, we use it here for its simplicity.

Expanding eq. 1.21b at order 1 leads to

Fr,1 “ ´
c

3 rσs
∇Er,0. (1.23)

Finally, expanding the sum of eqs. 1.21a and 1.21c at order 2 gives

B
rt pEr,0 ` ρcvTg,0q ´ ∇

ˆ

c

3 rσs
∇Er,0

˙

“ 0. (1.24)
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In the diffusive limit, the total energy Er ` ρcvTg at order 0 obeys the diffusion
equation given by eq. 1.24. Chapters 2 and 3 present our design of two asymptotic
preserving schemes, that is, numerical schemes that will degenerate to the discretization
of eq. 1.24 in the diffusive regime.

In this section, we only have considered the case where the hydrodynamics is frozen.
In the next one, we present the radiation hydrodynamics equations, which take into
account the evolution of the fluid.

1.5 Radiation hydrodynamics
We now consider the radiation hydrodynamics equations. The fluid evolution is

described by the Euler equations expressing conservation of mass, balance of momen-
tum, and balance of energy. Because the hydrodynamics is no longer frozen and both
photons and the gas are moving, we have to evaluate the quantities in the laboratory
frame or the comoving frame, which is moving with the fluid. On one hand, using the
comoving frame introduces non-conservative terms in the left-hand side of the equa-
tions. On the other hand, the hyperbolic part of the system remains simple in the
laboratory frame, but some source terms have to be incorporated to describe the inter-
actions between the matter and the radiation. We have chosen the second approach.
These source terms characterize the momentum and energy exchanges between the
fluid and the radiation:

$

’
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’
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’

’

%

Btρ ` ∇ ¨ pρuq “ 0

Btpρuq ` ∇ ¨ pρu b u ` pIq “ Fext `
σs

c
Fr ´

1

c
SFrpuq

BtpρEq ` ∇ ¨ ppρE ` pquq “ Fext ¨ u ´ cσa
`

arT
4
g ´ Er

˘

´ SErpuq

BtEr ` ∇ ¨ Fr “ cσa
`

arT
4
g ´ Er

˘

` SErpuq

BtFr ` c2∇ ¨ Pr “ ´cσsFr ` cSFrpuq,

(1.25a)

(1.25b)

(1.25c)
(1.25d)
(1.25e)

where u is the material velocity, p is the pressure of the fluid, ρE “ ρe ` 1
2
ρu2 is the

density of total matter energy with e the specific internal energy. Fext is the external
force, for example gravitation, self-gravitation or Lorentz force. The terms SErpuq and
SFrpuq depend on the velocity u. Using eq. 29 and eq. 31 from Lowrie et al. [1999],
we have

$

’

&

’

%

SErpuq “
2σa ´ σs

c
u ¨ Fr `

σs

c
Eru ¨ u `

σs

c
u ¨ pu ¨ Prq

SFrpuq “ σsu ¨ Pr ` σaarT
4
gu `

2σa

c2
u ¨ pu ¨ Frq ` pσs

´ σa
qEru,

(1.26)

at first order in u
c
. To close the system, we also add the equation of state of an ideal

gas: p “ ρepγ ´ 1q.
An asymptotic development for the radiation hydrodynamics case is presented in

section 1.C.
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1.A Computation of source terms
The mean over solid angles and frequency of eq. 1.12 and its product by Ω give the

following system:
$

&

%

BtEr ` ∇ ¨ Fr “ SE

1

c
BtFr ` c∇ ¨ Pr “ SF,

(1.27)

where
$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

SE “ ´

ż 8

0

ż

S2

pσa
ν ` σs

νq I px, t,Ω, νq dΩdν `

ż 8

0

ż

S2

σa
νB pν, Tgq dΩdν

`

ż 8

0

ż

S2

ˆ

σs
ν

ż

S2

pν pΩ ¨ Ω1
q I px, t,Ω1, νq dΩ1

˙

dΩdν

SF “ ´

ż 8

0

ż

S2

pσa
ν ` σs

νq I px, t,Ω, νqΩdΩdν `

ż 8

0

ż

S2

σa
νB pν, TgqΩdΩdν

`

ż 8

0

ż

S2

ˆ

σs
ν

ż

S2

pν pΩ ¨ Ω1
q I px, t,Ω1, νq dΩ1

˙

ΩdΩdν

(1.28)

are the source terms. We now make them explicit.
Let us consider first the term for the radiative energy equation. We compute each

term individually.
First,

ż 8

0

ż

S2

σs
ν

ż

S2

pν pΩ ¨ Ω1
q I px, t,Ω1, νq dΩ1dΩdν

“

ż 8

0

σs
ν

ż

S2

ˆ
ż

S2

pν pΩ ¨ Ω1
q dΩ

˙

loooooooooooomoooooooooooon

“1,@Ω1

I px, t,Ω1, νq dΩ1dν

“

ż 8

0

ż

S2

σs
νI px, t,Ω, νq dΩdν.

(1.29)

Therefore,

´

ż 8

0

ż

S2

pσa
ν ` σs

νq I px, t,Ω, νq dΩdν `

ż 8

0

ż

S2

ˆ

σs
ν

ż

S2

pν pΩ ¨ Ω1
q I px, t,Ω1, νq dΩ1

˙

dΩdν

“ ´

ż 8

0

ż

S2

σa
νI px, t,Ω, νq dΩdν

“ ´σEcEr,
(1.30)
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where σE is the mean over frequency of σa
ν weighted by the radiative energy. Second,

ż 8

0

ż

S2

σa
νB pν, Tgq dΩdν “

2h

c2

ż 8

0

ż

S2

σa
ν

ν3

exp
´

hν
kbTg

¯

´ 1
dΩdν. (1.31)

Using the change of variable r “ hν
kbTg

,

ż 8

0

ż

S2

σa
νB pν, Tgq dΩdν “

2k4
b

c2h3
T 4
g

ż

S2

dΩ

ż 8

0

σa
νprq

r3

exp prq ´ 1
dr. (1.32)

ş

S2 dΩ is the area of the unit sphere, therefore
ş

S2 dΩ “ 4π. Using Bose-Einstein
function, one has

ż 8

0

r3

exp prq ´ 1
dr “ ζp4qΓp4q “

π4

15
, (1.33)

where ζ is the Riemann zeta function and Γ is the gamma function. Finally,

SE “ σP
8π5k4

b

15h3c2
T 4
g ´ σEcEr

“ c
`

σParT
4
g ´ σEEr

˘

,
(1.34)

where σP is the mean over frequency of σa
ν weighted by the Planck function and ar “

8π5k4b
15c3h3 is the Stefan-Boltzmann constant.

Likewise, we compute each term of SF. First,
ż 8

0

ż

S2

pσa
ν ` σs

νq I px, t,Ω, νqΩdΩdν “ pσF ` σRqFr, (1.35)

where σF (resp. σR) is the mean over frequency of σa
ν (resp. σs

ν) weighted by the
radiative flux. Second,

ż 8

0

ż

S2

ż

S2

pν pΩ ¨ ΩqΩdΩI px, t,Ω, νq dΩ1dν “ σRgFr, (1.36)

with g the first moment of the phase function. Third, because B depends only on the
temperature and the frequency, it is isotropic and

ż

S2

B pΩ, ν, TgqΩdΩ “ 0. (1.37)

Finally,
SF “ ´ pσF ` p1 ´ gqσRqFr. (1.38)

The means of opacity σE, σP, σF and σR can be connected with Rosseland and
Planck mean opacities. See González [2006] for more details. In the following, we
always make the approximation σE “ σP and we write σE “ σP “ σa. Furthermore,
we note σs “ σF ` p1 ´ gqσR to write eq. 1.27 as

#

BtEr ` ∇ ¨ Fr “ cσa
`

arT
4
g ´ Er

˘

BtFr ` c2∇ ¨ Pr “ ´cσsFr.
(1.39)
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1.B Maximization of radiative entropy

1.B.1 Radiative entropy
Let us recall that we have defined the radiative entropy as

Sr “ ´
2kb
c3

ż 8

0

ż

S2

ν2
pn log n ´ pn ` 1q log pn ` 1qq px, t,Ω, νq dΩdν. (1.40)

We also define the entropy flux as

Qr “ ´
2kb
c2

ż 8

0

ż

S2

ν2
pn log n ´ pn ` 1q log pn ` 1qq px, t,Ω, νqΩdΩdν. (1.41)

Let us first compute the equation of evolution for the radiative entropy. From now
on, we assume that eq. 1.12 has a solution smooth enough. This hypothesis allows us
to compute the derivatives without further justification. Then, because n “ c2

2h
I
ν3

,

BtSr “ ´
2kb
c3

ż 8

0

ż

S2

ν2
Bt pn log n ´ pn ` 1q log pn ` 1qq px, t,Ω, νq dΩdν

“ ´
2kb
c3

ż 8

0

ż

S2

ν2 log

ˆ

n

n ` 1

˙

px, t,Ω, νq Btn px, t,Ω, νq dΩdν

“ ´
kb
ch

ż 8

0

ż

S2

1

ν
log

ˆ

n

n ` 1

˙

px, t,Ω, νq BtI px, t,Ω, νq dΩdν.

(1.42)

Likewise, one can show that

∇ ¨ Qr “ ´
kb
h

ż 8

0

ż

S2

1

ν
log

ˆ

n

n ` 1

˙

px, t,Ω, νqΩ ¨ ∇I px, t,Ω, νq dΩdν. (1.43)

Therefore,

BtSr ` ∇ ¨ Qr “ ´
kb
h

ż 8

0

ż

S2

1

ν
log

ˆ

n

n ` 1

˙

px, t,Ω, νq

ˆ

1

c
BtI ` Ω ¨ ∇I

˙

px, t,Ω, νq dΩdν

“
kb
h

ż 8

0

ż

S2

1

ν
log

ˆ

n

n ` 1

˙

px, t,Ω, νq pσa
ν ` σs

νq I px, t,Ω, νq dΩdν

´
kb
h

ż 8

0

ż

S2

1

ν
log

ˆ

n

n ` 1

˙

px, t,Ω, νqσa
νB pν, Tgq dΩdν

´
kb
h

ż 8

0

ż

S2

1

ν
log

ˆ

n

n ` 1

˙

px, t,Ω, νqσs
ν

ż

S2

pν pΩ ¨ Ω1
q I px, t,Ω1, νq dΩ1dΩdν.

(1.44)
The radiative entropy obeys a hyperbolic equation. The source terms will be made
explicit in section 1.B.4.

1.B.2 Maximization of entropy
Let us now compute n̄ that maximizes the radiative entropy. We first show that

the radiative entropy Sr is a strictly concave as a function of the specific intensity I.
Let us recall that a function is strictly concave if and only if its second derivative is
strictly negative.
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After some computations similar to what has been done in the previous section,
one can show that

$

’

’

&

’

’

%

BSr

BI
“ ´

kb
ch

ż 8

0

ż

S2

1

ν
log

ˆ

n

n ` 1

˙

px, t,Ω, νq dΩdν

B2Sr

BI2
“ ´

ckb
2h2

ż 8

0

ż

S2

1

ν4

1

pn pn ` 1qq px, t,Ω, νq
dΩdν.

(1.45)

The second equation shows that Sr is strictly concave. Because maxSr pnq “ ´min p´Sr pnqq,
computing the maximum of radiative entropy leads to solve the convex optimization
problem ´min p´Sr pnqq under the constraints ´Er pnq ď 0 and ||Fr pnq||´cEr pnq ď 0.

Using the Karush-Kuhn-Tucker (KKT) conditions (e.g., Boyd et al. 2004), there
exists λ1 ě 0 and λ2 ě 0 such that

BSr

Bn
pn̄q ´ λ1

BEr

Bn
pn̄q ` λ2

ˆ

B ||Fr||
Bn

pn̄q ´ c
BEr

Bn
pn̄q

˙

“ 0. (1.46)

Let us introduce two variables, θr P R and β P R3 defined as
$

’

’

&

’

’

%

θr “
1

λ1 ` cλ2

β “ c2θrλ2
Fr pn̄q

||Fr pn̄q||
.

(1.47)

θr is obviously non-negative and homogeneous to a temperature. Some easy computa-
tions show that β is homogeneous to a velocity and β “ ||β|| ď c:

λ1 ě 0

ô β “
c2λ2

λ1 ` cλ2

ď
c2λ2

cλ2

“ c.
(1.48)

Equation 1.46 rewrites
BSr

Bn
pn̄q ´

1

θr

BEr

Bn
pn̄q `

β

c2θr
¨

BFr

Bn
pn̄q “ 0. (1.49)

Using eq. 1.45 and the definition of the radiation energy and the radiative flux, one
has

0 “ ´

ż 8

0

ż

S2

ˆ

kb
chν

log

ˆ

n̄

n̄ ` 1

˙

px, t,Ω, νq `
1

cθr
´

β ¨ Ω

c2θr

˙

dΩdν. (1.50)

Because Sr is strictly concave, it reaches exactly one maximum. Therefore, if we find
one n̄ that verifies eq. 1.50, it will maximize the radiative entropy. n̄ such that

kb
chν

log

ˆ

n̄

n̄ ` 1

˙

`
1

cθr
´

β ¨ Ω

c2θr
“ 0, (1.51)

verifies eq. 1.50 and therefore maximizes Sr. Equation 1.51 leads to

n̄ “
1

exp
´

hν
kbθr

`

1 ´
β¨Ω
c

˘

¯

´ 1
. (1.52)

n̄ given by eq. 1.52 maximizes the radiative entropy Sr.
At global thermodynamic equilibrium, β “ 0 and the specific intensity given by

eq. 1.52 is the black body specific intensity (eq. 1.6), by identifying θr with the gas
temperature, Tg.
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z

y

x

ˆpr, θ, ϕq

r

θ

ϕ

Figure 1.3 – Spherical coordinates.

1.B.3 M1 closure relation
To derive Pr as a function of Er and Fr, we express the three moments of the specific

intensity as functions of θr and β.

1.B.3.1 Radiative energy

Let us start with the radiative energy. Using I “ 2hν3n̄
c2

“ 2h
c2

ν3

exp
`

´ ν
α

p1`A¨Ωq
˘

´1
with

α “
kbθr
h

and A “ ´
β
c
, one has

Er “
2h

c3

ż 8

0

ż

S2

ν3

exp
`

´ ν
α

p1 ` A ¨ Ωq
˘

´ 1
dΩdν. (1.53)

Using the change of variable r “ ´ ν
α

p1 ` A ¨ Ωq, one has

Er “
2hα4

c3

ż 8

0

r3

exp prq ´ 1
dr

ż

S2

1

p1 ` A ¨ Ωq
4dΩ. (1.54)

The integral over the frequency has already been made explicit in section 1.A. Let us
now focus on the integral over the unit sphere. We choose a reference frame such that
the z-axis is parallel to the vector A and θ is the angle between A and Ω (see fig. 1.3).
Therefore,

A ¨ Ω “ A ||Ω||
loomoon

“1

cos θ, (1.55)

with A “ ||A||. Furthermore, we write the units vector ex, ey and ez. In particular,
ez “ A

A
.

We can now compute the integral over the unit sphere:
ż

S2

1

p1 ` A ¨ Ωq
4dΩ “

ż 2π

0

dϕ

ż π

0

sin θ

p1 ` A cos θq
4dθ “

4π p3 ` A2q

3 p1 ´ A2q
3 . (1.56)

Finally,

Er “ c4
3c2 ` β2

3 pc2 ´ β2q
3arθ

4
r . (1.57)

1.B.3.2 Radiative flux

Likewise, one can compute Fr:

Fr “
2h

c2

ż 8

0

ż

S2

ν3

exp
`

´ ν
α

p1 ` A ¨ Ωq
˘

´ 1
ΩdΩdν

“
2hα4

c2
π4

15

ż

S2

Ω

p1 ` A ¨ Ωq
4dΩ.

(1.58)

30



CHAPTER 1. RADIATIVE TRANSFER

Again, let us focus on the integral over the sphere. Using spherical coordinates, we can
write

Ω “

¨

˝

sin θ cosϕ
sin θ sinϕ

cos θ

˛

‚ . (1.59)

Therefore, the x-coordinate of
ş

S2
Ω

p1`A¨Ωq
4dΩ is

ż 2π

0

cosϕdϕ

ż π

0

sin2 θ

p1 ` A cos θq
4dθ “ 0. (1.60)

Likewise, the y-coordinate of the integral is also 0. The z-coordinate is
ż 2π

0

dϕ

ż π

0

cos θ sin θ

p1 ` A cos θq
4dθ “ ´16π

A

3 p1 ´ A2q
3 . (1.61)

Finally,

Fr “ ´
π4

15

2hα4

c2
16π

A

3 p1 ´ A2q
3ez

“
4

3

c6arθ
4
r

pc2 ´ β2q
3β

“ pq ` Erqβ,

(1.62)

with q “
c2´β2

3c2`β2Er “
1´χ
2
Er, where χ is the Eddington factor, defined by χ “

3`4f2

5`2
a

4´3f2
.

The last expression for Fr will be used in chapter 3.
Equations 1.57 and 1.62 are equivalent to

β “
c

f

3χ ´ 1

2
f

θr “
2

f

´

´1 `
a

4 ´ 3f 2
¯

1
4

b

f 2 ´ 2 `
a

4 ´ 3f 2

ˆ

Er

ar

˙
1
4

.

(1.63)

Finally, using I “ hν3n
c2

and eq. 1.52, the distribution of photons associated to the M1
model is

2hν3

c2
1

exp
´

hν
kbθr

´

1 ´
2´

a

4´3f2

f2 f ¨ Ω
¯¯ . (1.64)

1.B.3.3 Radiative pressure

Finally,

Pr “
2h

c3

ż 8

0

ż

S2

ν3

exp
`

´ ν
α

p1 ` A ¨ Ωq
˘

´ 1
Ω b ΩdΩdν

“
2hα4

c3
π4

15

ż

S2

Ω b Ω

p1 ` A ¨ Ωq
4dΩ.

(1.65)

As before, we focus on the integral over the unit sphere. Ω b Ω is a symmetric 3 ˆ 3
matrix and, using eq. 1.59, we have

Ω b Ω “

¨

˝

sin2 θ cos2 ϕ sin2 θ cosϕ sinϕ sin θ cos θ cosϕ
sin2 θ cosϕ sinϕ sin2 θ sin2 ϕ sin θ cos θ sinϕ
sin θ cos θ cosϕ sin θ cos θ cosϕ cos2 θ

˛

‚ . (1.66)
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Because Pr is a tensor, we write its components Pi,j
r for i, j P tx, y, zu. With this

notation, Px,y
r “ Py,x

r “ Px,z
r “ Pz,x

r “ Py,z
r “ Pz,y

r “ 0. One can easily compute
individually the non-zero coefficients:

Px,x
r “ Py,y

r “
2hα4

c3
π4

15

4π

3 p1 ´ A2q
2

Pz,z
r “

2hα4

c3
π4

15

4π p1 ` 3A2q

3 p1 ´ A2q
3 “

2hα4

c3
π4

15

ˆ

4π

3 p1 ´ A2q
2 `

4π ˆ 4A2

3 p1 ´ A2q
3

˙

.

(1.67)

Therefore,

Pr “
c4arθ

4
r

3 pc2 ´ β2q
2 pex b ex ` ey b ey ` ez b ezq `

4c4arθ
4
rβ

2

3 pc2 ´ β2q
3ez b ez

“
c4arθ

4
r

3 pc2 ´ β2q
2 I `

4c4arθ
4
rβ

2

3 pc2 ´ β2q
3ez b ez.

(1.68)

Nevertheless,

ez “
A

A
“ ´

β

β
“ ´

3c2 ` β2

4cβ
f . (1.69)

Finally,

Pr “

ˆ

c2 ´ β2

3c2 ` β2
I `

3c2 ` β2

4c2
f b f

˙

Er

“
β b Fr

c2
` qI.

(1.70)

One can also check that eq. 1.70 is equivalent to Pr “ DEr, where D is the Eddington
tensor, defined by D “

1´χ
2
I `

3χ´1
2

n b n, with n “
f
f

a unit vector aligned with the
radiative flux [Levermore, 1984].

1.B.4 Back to the radiative entropy
In the previous section, we have expressed the moments of the specific intensity

as functions of θr and β. Following Buet and Despres [2004, Appendix B], we do the
same for the maximum of radiative entropy. Using eq. 1.17, the maximum of entropy
is given by

Sr “ ´
2kb
c3

ż 8

0

ż

S2

ν2
pn̄ log n̄ ´ pn̄ ` 1q log pn̄ ` 1qq dΩdν. (1.71)

Using the change of variable r “ ´ ν
α

p1 ` Ω ¨ Aq,

Sr “ ´
8πk4

bθ
3
r c

h3 pc2 ´ β2q
2

ż

S2

1

p1 ` Ω ¨ Aq
3dΩ

ż 8

0

r2 pm logm ´ pm ` 1q log pm ` 1qq dr,

(1.72)
where m “ 1

expprq´1
. We introduce a function h such that

hpαq “

ż 8

0

r2 pMα logMα ´ pMα ` 1q log pMα ` 1qq dr, (1.73)

with Mα “ 1
exp

`

r
α

˘

´1
to write

Sr “ ´
8πk4

bθ
3
r c

h3 pc2 ´ β2q
2hp1q. (1.74)
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We now have to compute hpαq. Let us notice that Mα

Mα`1
“ exp

`

ξ
α

˘

. We then have

h1
pαq “ ´α2

ż 8

0

ξ3 exp pξq

pexp pξq ´ 1q
dξ. (1.75)

By integrating by parts, we recognize the Bose-Einstein function:

h1
pαq “ ´α2

ż 8

0

4ξ3

exp pξq ´ 1
dξ “ ´

4π4α2

15
. (1.76)

Because the entropy is defined up to a constant, integrating this equation leads to

hpαq “ ´
4π4α3

45
. (1.77)

Finally,

Sr “
4c4arθ

3
r

3 pc2 ´ β2q
2 . (1.78)

Likewise, we compute the entropy flux, defined by eq. 1.41:

Qr “ ´
2kb
c2

ż 8

0

ż

S2

ν2Ω pn̄ log n̄ ´ pn̄ ` 1q log pn̄ ` 1qq dΩdν

“ ´
2k4

bθ
3
r

c2h3
gp1q

ż

S2

Ω

p1 ` Ω ¨ Aq
3dΩ

“
4c4arθ

3
r

3 pc2 ´ β2q
2β

“ Srβ.

(1.79)

Equation 1.44 simplifies into

BtSr ` ∇ ¨ pSrβq “
kb
h

ż 8

0

ż

S2

1

ν
log

ˆ

n

n ` 1

˙

pσa
ν ` σs

νq I px, t,Ω, νq dΩdν

´
kb
h

ż 8

0

ż

S2

1

ν
log

ˆ

n

n ` 1

˙

σa
νB pν, Tgq dΩdν

´
kb
h

ż 8

0

ż

S2

1

ν
log

ˆ

n

n ` 1

˙

σs
ν

ż

S2

pν pΩ ¨ Ω1
q I px, t,Ω1, νq dΩ1dΩdν.

(1.80)
We can now specify the source term of eq. 1.80. Let us recall that kb

hν
log

`

n̄
n̄`1

˘

“
β¨Ω
cθr

´ 1
θr

. Therefore,

BtSr ` ∇ ¨ pSrβq “

ż 8

0

ż

S2

ˆ

β ¨ Ω

cθr
´

1

θr

˙

pσa
ν ` σs

νq I px, t,Ω, νq dΩdν

´

ż 8

0

ż

S2

ˆ

β ¨ Ω

cθr
´

1

θr

˙

σa
νB pν, Tgq dΩdν

´

ż 8

0

ż

S2

ˆ

β ¨ Ω

cθr
´

1

θr

˙

σs
ν

ż

S2

pν pΩ ¨ Ω1
q I px, t,Ω1, νq dΩ1dΩdν.

(1.81)
Because θr and β do not depend on Ω and ν, we recognize computations done in
section 1.A and

BtSr ` ∇ ¨ pSrβq “ ´
β ¨ SF

cθr
`

SE

θr

“
cσa

θr

`

arT
4
g ´ Er

˘

`
σs

cθr
β ¨ Fr.

(1.82)
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1.C Diffusive limit for radiation hydrodynamics
As in section 1.4, we consider the diffusive limit with the P1 closure relation, but

with hydrodynamics. We introduce a rescaling parameter ε to write the time (resp.
the opacity) as t̃ “ εt (resp. σ̃a “ εσa and σ̃s “ εσs). Because the velocity of the fluid
is smaller than the speed of light (u

c
! 1), we also rescale it as ũ “ u

ε
. Let us focus on

the equations describing the evolution of the radiative variables:
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

ε2B
rtEr ` ε∇ ¨ Fr “ c rσa

`

arT
4
g ´ Er

˘

` ε
2 rσa ´ rσs

c
ru ¨ Fr ` ε2

4

3

rσs

c
Erru ¨ ru

ε2B
rtFr ` ε

c2

3
∇Er “ ´ rσscFr ` εc

ˆ

4

3
rσs ´ rσa

˙

ruEr

` εc rσa
ruarT

4
g ` ε2

2 rσa

c
ru ¨ pru ¨ Frq.

(1.83a)

(1.83b)

By expanding eqs. 1.83a and 1.83b at order 0, we have
#

Er,0 “ arT
4
g,0

Fr,0 “ 0.
(1.84)

Expanding eq. 1.83b at order 1 leads to

Fr,1 “ ´
c

3 rσs
∇Er,0 `

4

3
Er,0Ău0. (1.85)

Finally, looking at the radiative energy and the gas internal energy at order 2,
source terms cancel each other, only the divergence of the radiative flux at order 1
remains, and we have

B
rt pρcvTg,0 ` Er,0q ´ ∇ ¨

ˆ

c

3 rσs
∇Er,0

˙

“ ´
4

3
∇ pEr,0Ău0q . (1.86)

One can also look at eq. 1.83a at order 2. Expanding eq. 1.83a at order 2 gives

B
rtEr,0 ´ ∇

ˆ

c

3 rσs
∇Er,0

˙

“ c rσa
`

6arT
2
g,0T

2
g,1 ` 4arT

3
g,0Tg,2 ´ Er,0

˘

´
4

3
∇ ¨ pEr,0Ău0q

´
2σa ´ σs

3σs
Ău0 ¨ ∇Er,0 ` 2

4

3

σa

c
Er,0Ău0

2.

(1.87)
We recover Eq. 43 of Krumholz et al. [2007]. The term c rσa

`

6arT
2
g,0T

2
g,1 ` 4arT

3
g,0Tg,2 ´ Er,2

˘

is the development at second order of the term κ0p4πB ´ cEq. Because we do not ne-
glect any terms O

`

ũ
c

˘

, some coefficients are slightly different. Krumholz et al. [2007]
discuss the importance of the term 4

3

Ăσa

c
Er,0Ău0

2. It is interpreted as a “relativistic work”,
as opposed to the term of “diffusion work”, Ău0 ¨ ∇Er,0. Therefore, it is important for
non-equilibrium non-uniform dynamic diffusion problem, whereas it is not important
for static diffusion problems.
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CHAPTER 2. A FIRST ASYMPTOTIC PRESERVING SOLVER

This chapter is the adaptation of an article published in Astronomy&Astrophysics,
see Bloch et al. 2021.

Even though the M1 model is accurate in both free-streaming and diffusive regimes
at the continuous level, numerical schemes also need to properly capture both limits.
Several approaches have been developed. For example, Berthon and Turpault [2011]
presented a scheme based on an HLL solver with source terms modified with a free
parameter. Following this idea, we propose a new so-called asymptotic preserving
scheme, also based on an HLL solver. Nevertheless, to obtain a simpler solver, we have
chosen another parameter to recover the asymptotic behavior, in the diffusive limit.
Furthermore, our integration of source terms is different. In many physical applications
(e.g., clouds), optically thick regions are found next to optically thin zones. We propose
a well-balanced modification of the source term, which allows us to accurately reach
steady states in the presence of sharp transitions.

This chapter is organized as follows. We go through our new numerical scheme,
well-balanced and asymptotic preserving in the diffusive limit in section 2.1. In sec-
tion 2.2, we present some numerical test cases to show the importance of the asymptotic
preserving and well-balanced properties. We also present a physical application about
the stability of the ionization front in an H ii region in a massive pre-stellar dense core.
Finally, we reach our conclusion and discuss the limitations of the scheme in section 2.3.

2.1 Numerical scheme and algorithm

2.1.1 Radiation transport in a static fluid

Let us first introduce some notations: we note ∆x the step along the x-direction.
∆t is the time interval between the current time tn and tn`1. We write xi the center
of the cell i and xi` 1

2
the interface between the cell i and the cell i ` 1. We use the

notation un
i to represent the averaged quantity associated with the field u at time tn

in the cell i (finite volume). Finally, we note un
i` 1

2

to represent the quantity associated
with the field u at time tn and at the interface between cells i and i ` 1.

The development of the numerical scheme is presented only in the one-dimensional
case, but its extension to higher dimensions is straightforward. To ease notations, we
drop the indices r for all radiative variables.

The time step given by the CFL condition is much smaller for radiation than for
hydrodynamics. Indeed, for the radiation, it is limited by the speed of light, whereas
it is limited by the speed of sound of the fluid for the hydrodynamics. Because we are
interested in radiation hydrodynamics, we will consider a long timescale for the radia-
tive transfer. Therefore, we use a time-implicit integration for the radiative transfer.
A similar development can be done with a semi-implicit solver: source terms remain
implicit, but the hyperbolic part is time-explicit.

2.1.1.1 Hyperbolic system

Following González et al. [2007], we discretize the hyperbolic part of eq. 1.15 using
a first-order Godunov type solver [Toro, 2009]. From Berthon and Turpault [2011], we
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also introduce an extra parameter α which will be specified in section 2.1.1.3:
$
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’

’

’

’

&

’

’

’

’

’

%

En`1
i “ En

i ´
∆t

∆x

´

αi` 1
2
F˚

i` 1
2

´ αi´ 1
2
F˚

i´ 1
2

¯

` cσa
i∆t

´

ar
`

T n`1
i

˘4
´ En`1

i

¯

F n`1
i “ F n

i ´
∆t

∆x

´

P˚

i` 1
2

´ P˚

i´ 1
2

¯

´ c∆ttσsFru
n`1
i

ρcvT
n`1
i “ ρcvT

n
i ´ cσa

i∆t
´

ar
`

T n`1
i

˘4
´ En`1

i

¯

,

(2.1)

where F˚

i` 1
2

and P˚

i` 1
2

are the numerical fluxes given by

F˚

i` 1
2

“

λ`

i` 1
2

F n`1
i ´ λ´

i` 1
2

F n`1
i`1

λ`

i` 1
2

´ λ´

i` 1
2

`

λ`

i` 1
2

λ´

i` 1
2

λ`

i` 1
2

´ λ´

i` 1
2

`

En`1
i`1 ´ En`1

i

˘

P˚

i` 1
2

“c2
λ`

i` 1
2

P n`1
i ´ λ´

i` 1
2

P n`1
i`1

λ`

i` 1
2

´ λ´

i` 1
2

`

λ`

i` 1
2

λ´

i` 1
2

λ`

i` 1
2

´ λ´

i` 1
2

`

F n`1
i`1 ´ F n`1

i

˘

,

(2.2)

with λ`

i` 1
2

“ max p0, λmaxq and λ´

i` 1
2

“ min p0, λminq, where λmax and λmin are the
eigenvalues of eq. 1.15. From Berthon et al. [2007], we have

λmax,min “ c

¨

˝

fx
ξ

˘

?
2
b

pξ ´ 1qpξ ` 2qp2pξ ´ 1qpξ ` 2q ` 3f 2
y q

?
3ξpξ ` 2q

˛

‚ , (2.3)

with ξ “
a

4 ´ 3f 2. See Fig. 1 of González et al. [2007] for more details about the
structure of the eigenvalues. tσsFru

n`1
i is a well-chosen discretization of the term σsFr

in the cell i and at time tn`1, and is specified in the next section.

2.1.1.2 Well-balanced modification of the source term

From Berthon et al. [2015], a well-balanced scheme catches the correct steady
regime. The steady state, if it exists, is given by

$

’

&

’

%

Er “ arT
4
g

∇ ¨ Fr “ 0

c∇ ¨ Pr “ ´σsFr.

(2.4a)
(2.4b)
(2.4c)

Equation 2.4c is discretized by c
2

´

p∇ ¨ P q
n`1
i` 1

2
´ p∇ ¨ P q

n`1
i´ 1

2

¯

“ ´tσsF u
n`1
i , with p∇ ¨ P q

n`1
i` 1

2
“

Pn`1
i`1 ´Pn`1

i

∆x
. An obvious choice for tσsF uni is

tσsF u
n`1
i “ σs

iF
n`1
i . (2.5)

However, using this formulation, eq. 2.4c is discretized as

´
c

2

´

p∇ ¨ P q
n`1
i` 1

2
` p∇ ¨ P q

n`1
i´ 1

2

¯

“ σs
iF

n`1
i . (2.6)

The radiative flux remains cell-centered and is equal to the divergence of radiative
pressure, defined at the interfaces of the cells. This can create some spurious flux
at the interface when looking for a steady state with a constant flux in the box (see
section 2.2.2). Inspired by well-balanced schemes for hydrodynamics (e.g., Padioleau

37



CHAPTER 2. A FIRST ASYMPTOTIC PRESERVING SOLVER

et al. 2019) which preserve the hydrostatic balance between the pressure forces and
the gravitational force (and the similarity of this balance with the balance between
radiative pressure and radiative flux source term in eq. 2.4c), we choose to use an
average of a face discretization of the radiative flux source term:

tσsF u
n`1
i “

1

2

´

σs
i` 1

2
F n`1
i` 1

2

` σs
i´ 1

2
F n`1
i´ 1

2

¯

, (2.7)

with
$

’

&

’

%

σs
i` 1

2
“

1

2

`

σs
i ` σs

i`1

˘

F n`1
i` 1

2

“
1

2

`

F n`1
i ` F n`1

i`1

˘

.
(2.8)

One way to interpret this equation is to remember that

tσsF u
n`1
i “

1

∆x

ż x
i` 1

2

x
i´ 1

2

σs
pxqF

`

tn`1, x
˘

dx. (2.9)

Equation 2.5 is obtained with the rectangle rule for numerical integration of eq. 2.9:

tσsF u
n`1
i “

xi` 1
2

´ xi´ 1
2

∆x

ˆ

σs

ˆ

xi´ 1
2

` xi` 1
2

2

˙

F

ˆ

tn`1,
xi´ 1

2
` xi` 1

2

2

˙˙

“ σs
pxiqF ptn`1, xiq

“ σs
iF

n`1
i ,

(2.10)

whereas eq. 2.7 is given by the trapezoidal rule:

tσsF u
n`1
i “

xi` 1
2

´ xi´ 1
2

2∆x

´

σs
´

xi´ 1
2

¯

F
´

tn`1, xi´ 1
2

¯

` σs
´

xi` 1
2

¯

F
´

tn`1, xi` 1
2

¯¯

“
1

2

ˆ

σs
i´ 1

2
F n`1
i´ 1

2

` σsi `
1

2
F n`1
i` 1

2

˙

.

(2.11)
To have

σs
i` 1

2
F n`1
i` 1

2

“ ´c
P n`1
i`1 ´ P n`1

i

∆x
(2.12)

in the whole domain, we also impose it as boundary condition:

σs
1
2
F n`1

1
2

“ ´c
P n`1
1 ´ P n`1

0

∆x
, (2.13)

where P n`1
0 is the radiative pressure given by the boundary condition. In that way,

the radiative flux is centered at the interfaces of the cells, as well as the divergence of
radiative pressure. A von Neumann stability analysis of the modified scheme is done in
section 2.A, which shows that this discretization for the source terms is unconditionally
stable.

2.1.1.3 Asymptotic preserving scheme

Now that the choice for tσsF u
n`1
i is determined, we still have to specify our choice

for αi` 1
2

in eq. 2.1. αi` 1
2

“ 1 corresponds to a classic HLL scheme. However, the
solution given by an asymptotic preserving scheme has to approximate the solution
of eq. 1.24 as soon as the asymptotic regime is reached, i.e., large opacity and long
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timescale. Unfortunately, a standard HLL scheme does not have this property (see
section 2.2.1). To tackle this issue and get an asymptotic preserving scheme, we choose

αi` 1
2

“
1

1 ´ 3σs
i` 1

2

∆x
´

1 ´ f 2
i` 1

2

¯ λ`

i` 1
2

λ´

i` 1
2

c
´

λ`

i` 1
2

´ λ´

i` 1
2

¯

, (2.14)

with fi` 1
2

“ 1
2

`

fn
i ` fn

i`1

˘

. The derivation of eq. 2.14 is done in section 2.B. Other
choices can be done, which leads to other schemes, with other properties. For example,
the choice done by Berthon and Turpault [2011] leads to a solver more difficult to write,
but that benefits from the known properties of an approximate Riemann solver. If
σi` 1

2
∆x goes to 0, αi` 1

2
goes to 1, and we recover a standard HLL scheme. Considering

the diffusive limit, we prove that the scheme is asymptotic preserving in section 2.B.
We show that
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c

3∆x

`

En`1
i`1,0 ´ En`1

i,0

˘

En`1
i,0 ` ρcvT

n`1
i,0 “ En

i,0 ` ρcvT
n
i,0 `

c∆t

3∆x2

˜

En`1
i`1,0 ´ En`1

i,0

σs
i` 1

2

´
En`1

i,0 ´ En`1
i´1,0

σs
i´ 1

2

¸

,

(2.15)
which is a standard discretization of eqs. 1.22 to 1.24.

Unfortunately, we cannot prove that this scheme will preserve the admissible states
f ă 1 and, indeed, numerical experiments with this scheme have shown that we can get
f ą 1 when we are close to the free-streaming regime. In these situations, depending
on the test case, we can either enforce f ă 1 (section 2.2.6) or come back to a centered
discretization of the source term (section 2.2.4). Furthermore, the development of the
asymptotic preserving scheme with the well-balanced modification of the source term
is only done in the case of a static fluid. Using the asymptotic correction eq. 2.14 is
only the first step to have an asymptotic preserving scheme in the case of a moving
fluid (see section 2.3.2).

2.1.2 Coupling to hydrodynamics
Following González et al. [2007], the resolution of the whole system 1.25 describing

radiation hydrodynamics is split into three steps:
1. update of the hydrodynamics quantities (eqs. 1.25a to 1.25c without the terms of

energy and momentum exchange) using the well-balanced and all-regime solver
developed in Padioleau et al. [2019];

2. update of the radiative quantities and gas temperature (eqs. 1.15 and 1.16) us-
ing the solver developed in section 2.1.1. During this step, the hydrodynamics
quantities are frozen;

3. addition of source terms SErpuq and SFrpuq. For simplicity, all source terms
which depend on the velocity are treated explicitly. The term σs

c
Fr in eqs. 1.25b

and 1.25e is discretized using the well-balanced scheme proposed in section 2.1.1.2.
All the other terms remain cell-centered.

This splitting allows reducing the number of equations solved implicitly, making the
method more efficient.

39



CHAPTER 2. A FIRST ASYMPTOTIC PRESERVING SOLVER

2.1.3 Algorithm for nonlinear implicit solver
2.1.3.1 Newton-Raphson method and linear solver

Because of the Eddington tensor, the eigenvalues in the numerical fluxes, and the
arT

4
g factor, the system is nonlinear. It is solved using a Newton-Raphson method. At

each iteration, we have to solve a linear system. Because the system is large (p2` dqN
unknowns, where d is the number of dimensions and N the total number of cells) and
sparse, it cannot be solved using a direct method. Because of the numerical fluxes,
the matrix is not symmetric, and we use the biconjugate gradient stabilized method
[Van der Vorst, 1992].

2.1.3.2 Preconditioner

Using large time steps for the radiative transfer, the matrix is ill-conditioned and
iterative methods might not converge. One way to deal with this issue is to use a
preconditioner. Instead of solving the original linear system Ax “ b, we solve the right
preconditioned system AK´1Kx “ b via solving AK´1y “ b to compute y and then
Kx “ y. As long as the matrix K is invertible, this gives the same solution as the
original system. If K is well-chosen, the condition number of the matrix AK´1 is lower
than A’s one. Preconditioners used here are presented in section 5.1.

In the next section, we use several numerical tests to show that the scheme devel-
oped in section 2.1 is well suited for the study of radiation hydrodynamics problems.

2.2 Numerical results
The implementation of the scheme developed in section 2.1 has been done in the

code ARK-RT 1, a fork of the code ARK developed in Padioleau et al. [2019]. The
hydrodynamics and gravity part of the solver is similar to ARK and is solved with
a well-balanced and all-regime solver. More details about ARK-RT can be found in
chapter 5.

We performed a series of verification tests to validate different properties of the
scheme: the asymptotic correction with a Marshak wave, the well-balanced property
to reach a steady state with a jump of opacity, the properties of the M1 model with a
beam test and a shadow test, and the coupling to the hydrodynamics with radiative
shocks. We also present a physical application about the stability of the ionization
front in an H ii region in a massive pre-stellar dense core. To ease notations, we define

the radiative temperature as Tr “

´

Er

ar

¯
1
4 .

2.2.1 Marshak wave
From Mihalas and Mihalas [1984], a Marshak wave is the propagation of hot radia-

tion into a cold medium. We consider a one-dimensional case in the diffusive limit, to
test the asymptotic preserving scheme developed in section 2.1.1.3.

The length of the computational domain is 1 cm; it is discretized with 400 points.
Initially, the medium is at equilibrium with the radiation: T0 “ Tr “ 300 K, the initial
radiative flux is Fr “ 0. We consider a perfect gas with γ “ 5

3
. The hydrodynamics

is frozen. The density is constant, such that ρcv “ 1 J K´1 cm´3, the opacity is also

1. https://gitlab.erc-atmo.eu/erc-atmo/ark-rt/tree/v1.0.0
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Figure 2.1 – Marshak wave simulation. This figure shows a snapshot of the gas temperature at
time tf “ 2 ˆ 10´4 s, with and without the asymptotic correction and the reference solution.
Spatial resolution is 400 points and the opacity is σ “ 10 000 cm´1.

constant, with σa “ σs “ σ “ 10 000 cm´1, therefore σ∆x “ 25. At time t “ 0, a
source is lit at the left boundary with Tr “ 1 000 K.

The results are shown in fig. 2.1 at time tf “ 2 ˆ 10´4 s. We compare different
solutions: a reference solution, the solution given by our asymptotic preserving scheme,
and the solution given by a standard scheme. The reference solution is given by a
standard discretization of eq. 1.24. The relative L2 error between the reference solution
and the solution with αi` 1

2
given by eq. 2.14 is 1.1%, whereas with the standard HLL

scheme the relative L2 error is 84%. Using the asymptotic correction, we recover the
correct behavior in the asymptotic limit.

2.2.2 Steady state with a jump of opacity
In the previous case, the opacity is constant, we now consider a test with a jump

of opacity, still in the one-dimensional case. We use this test to highlight the need for
the well-balanced modification of the source term.

The length of the computational domain is 1 cm; it is discretized with 100 points.
Initially, the medium is at equilibrium with the radiation: T0 “ Tr “ 300 K, the initial
radiative flux is Fr “ 0. The opacity σa “ σs “ σ is now a function of space:

σpxq “

#

10 000 cm´1 if x ă 0.5,

0 if x ą 0.5.
(2.16)

At time t “ 0, a source is lit at the left boundary with Tr “ 1 000 K.
Figure 2.2 shows the radiative flux at time tf “ 10´3 s. From eq. 2.4b, when

the steady state is reached, we expect the radiative flux to be constant in the box.
Using a standard discretization of the source term, such as eq. 2.5, a spurious peak
located at the discontinuity of opacity is observed (orange curve). The value taken
by the radiative flux is more than 20 times the expected value. This seems to be
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Figure 2.2 – Simulation of a steady state with a jump of opacity. The opacity is piecewise
constant, a jump is located at x “ 0.5 cm (gray line). This figure shows a snapshot of the
radiative flux at time tf “ 10´3 s.

caused by a numerical instability. This can result in f ą 1 during the iterations of our
Newton-Raphson implicit scheme, which is not physically admissible. However, using
the well-balanced modification of the source term proposed by eq. 2.7 (blue curve), the
spurious peak does not appear anymore and the constant steady state is reached.

Using the standard discretization of the source term eq. 2.5, one can show that the
numerical scheme is unconditionally stable, in that the error between the numerical
solution and the exact solution goes to 0 as ∆x and ∆t go to 0. The spurious peak seems
to be due to a lack of precision in the integration of the source term. Using eq. 2.7,
the source term is defined at the interfaces of the cells and balances the divergence of
radiative pressure, also defined at the interfaces.

2.2.3 Beam
We now perform the same two-dimensional test as in González et al. [2007]; Richling

et al. [2001]. The domain r´1, 1sˆr´1, 1s is discretized with 128ˆ128 cells. The initial
temperature is T0 “ Tr “ 300 K, the initial radiative flux is Fr “ 0, the opacity is
σa “ σs “ 0. At time t “ 0, a beam with Tg “ Tr “ 1 000 K is introduced with an
angle of 45˝. The beam is located at x “ ´1 and y P r´0.875,´0.75s. Because we are
in the free-streaming regime, the propagation of the photons has to be followed, we
cannot use large time steps. For performance reasons, we use the semi-implicit scheme.

Because there is no opacity, the beam propagates in the vacuum, and we expect
it to cross the box without dispersion. The direction of the beam is not along the
mesh axis; we use this test to quantify the numerical diffusion. Figure 2.3 shows the
radiative energy at steady state. The eigenvalues in eq. 2.2 can either be fixed to
˘c or computed using eq. 2.3. Because there is no opacity, the asymptotic correction
nor the well-balanced source term affect the result, and we recover the same result as
in González et al. [2007]. Figure 2.4 shows the horizontal cut at the middle height.
The beam introduced at the boundary is sampled over 8 cells. Ideally, without any
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Figure 2.3 – Beam simulation. The figure shows the radiative energy. The eigenvalues are
fixed to ˘c (left panel) or calculated with eq. 2.3 (right panel).
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Figure 2.4 – Beam simulation. The figure shows a horizontal cut in fig. 2.3 at the middle
height.
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Figure 2.5 – Shadow simulation. Snapshots of the radiative temperature at time tf “ 10´10 s
with different closure relations: P1 model (upper panel), M1 model with fixed eigenvalues
(middle panel) and M1 model with computed eigenvalues (lower panel).

numerical diffusion, we would expect the width of the beam to stay exactly 8 cells.
With the computed eigenvalues, we can keep the numerical diffusion under control.
Using fixed eigenvalues, the width of the beam at middle height is approximately 30
cells, whereas it is only 24 cells with calculated eigenvalues.

The main difference in this test between ARK-RT and HERACLES [González et al.,
2007] is the computation of the eigenvalues. We use the exact eigenvalues given by
eq. 2.3 from Berthon et al. [2007], whereas in González et al. [2007], to save computa-
tional time, the eigenvalues are computed once at the beginning of the simulation and
then interpolated. However, this approximation does not impact the result.

2.2.4 Shadow
Let us now consider a two-dimensional test with source terms. Following González

et al. [2007]; Hayes and Norman [2003], we consider a shadow test. The computational
domain is a cylinder of length L “ 1 cm and radius R “ 0.12 cm. It is discretized
with 280 ˆ 80 cells. A spheroid clump is located at the center of the box, on the
symmetric axis: pzc, rcq “ p0.5, 0q. The extension of the clump is pz0, r0q “ p0.1, 0.06q.
Initially, the medium is at equilibrium with the radiation, with T0 “ Tr “ 290 K. We
consider a homogeneous gas, with ρ0 “ 1 g cm´3, except for the clump with density
ρ1 “ 100ρ0. The boundary of the clump is smoothed: ρpr, zq “ ρ0 `

ρ1´ρ0
1`exp∆

with

∆ “ 10

ˆ

´

z´zc
z0

¯2

`

´

r´rc
r0

¯2

´ 1

˙

. The opacity in the medium is σa “ σs “ σ “

σ0

´

T
T0

¯´3.5 ´

ρ
ρ0

¯2

with σ0 “ 0.1 cm´1. At time t “ 0, a source is lit at the left
boundary with Tr “ 1 740 K and the reduced flux is set to f “ 1. Because f is
close to 1 in the free-streaming regime, we encounter f ą 1 in the simulation. To
tackle this issue, we use the non-well-balanced scheme: the radiative flux source term
is discretized using eq. 2.5. Because we are in the free-streaming regime, we cannot
use large time steps. For performance reasons, we use the semi-implicit scheme. To
recover the same result as in González et al. [2007], we use λ`

i` 1
2

“ maxp0.1 ˆ c, λmaxq

and λ´

i` 1
2

“ minp´0.1 ˆ c, λminq, where λmax and λmin are given by eq. 2.3.
Figure 2.5 shows the radiative temperature at the final time tf “ 10´10 s with

different closure relations: the P1 model, the M1 model with fixed eigenvalues, and the
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Figure 2.6 – Shadow simulation. The figure shows the radial profiles of the radiative temper-
ature at time tf “ 10´10 s with different closure relations: P1 model, M1 model with fixed
eigenvalues and M1 model with computed eigenvalues.

M1 model with computed eigenvalues. Because of the high opacity in the clump, the
light does not cross it and we expect the shadow behind it to remain stable.

As in González et al. [2007]; Hayes and Norman [2003], we plot the radial profile
of the radiative temperature at the right boundary (fig. 2.6). Using the P1 model, the
radiative pressure is isotropic, therefore the photons go around the obstacle immedi-
ately, heating the whole domain. Using the M1 closure relation, the shadow is better
preserved, the temperature behind the obstacle remains at its initial value, 290 K.
Because we are not in the diffusion regime outside of the clump and the light has not
crossed the obstacle, the asymptotic correction has no impact on the result. Because
the boundary of the clump is smoothed, the transition between the optically thick and
thin medium is less sharp than in section 2.2.2 and the well-balanced modification of
the source term is not necessary.

2.2.5 Radiative shocks
Now that we have verified the properties of our scheme with the hydrodynamics

frozen, we perform numerical tests to validate the coupling with hydrodynamics. We
consider radiative shocks: the gas and the radiation exchange energy and momentum.
Following González et al. [2007]; Hayes and Norman [2003]; Ensman [1994], we consider
a one-dimensional homogeneous medium, with ρ “ 7.78 ˆ 10´10 g cm´3 and σa “ σs “

σ “ 3.1 ˆ 10´10 cm´1. We consider a perfect gas with an adiabatic coefficient γ “ 7
5

and a mean molecular weight µ “ 1. The length of the domain is 7 ˆ 1010 cm. It is
discretized with 400 cells. The initial temperature at the left boundary is set to 10 K
and is increased by 0.25 K per cell. Initially, the radiation is at equilibrium with the
gas. The left boundary condition is reflective, the initial velocity of the fluid is set to
u0. According to the value of u0, the shock will be subcritical or supercritical. See
González et al. [2007] for more details. To compare our results with González et al.
[2007]; Hayes and Norman [2003]; Ensman [1994], we plot the temperature as a function
of xi “ x ´ u0t.
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Figure 2.7 – Subcritical shock simulation. The figure shows snapshots of gas temperature,
radiative temperature, and reduced flux at different times: 1.7 ˆ 104 s, 2.8 ˆ 104 s, and
3.8 ˆ 104 s.

2.2.5.1 Subcritical shock

We first consider a subcritical shock, the initial velocity is set to u0 “ ´6 km s´1.
Figure 2.7 shows the gas temperature, the radiative temperature, and the reduced
flux at three different times: 1.7 ˆ 104 s, 2.8 ˆ 104 s, and 3.8 ˆ 104 s. As expected,
the gas and the radiation are not at equilibrium, before nor after the shock. The gas
temperature reaches 1 135 K, as in González et al. [2007], whereas it is only 850 K in
Ensman [1994].

2.2.5.2 Supercritical shock

We consider now a supercritical shock, where the initial velocity is set to u0 “

´20 km s´1. Figure 2.8 shows the gas temperature, the radiative temperature, and
the reduced flux at three different times: 4 ˆ 103 s, 7.5 ˆ 103 s, and 1.3 ˆ 104 s. As in
González et al. [2007], the radiative temperature is the same as the matter temperature
on both sides of the shock. The gas and the radiation are therefore at equilibrium.
The radiative precursor is larger than the subcritical shock’s radiative precursor, as
intended, and the temperature reaches 5 000 K, as in Ensman [1994]. We also recover
the Zel’dovich spike.

We recover the expected results with both subcritical and supercritical shocks,
therefore our code is well-suited to study radiation hydrodynamics problems.

2.2.6 Expansion of H ii region

Now that we have confirmed the good behavior of the numerical scheme with both
the asymptotic preserving and the well-balanced properties, we can apply it to a phys-
ical situation: the propagation of the ionization front in a massive pre-stellar dense
core.
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Figure 2.8 – Supercritical shock simulation. The figure shows snapshots of gas tempera-
ture, radiative temperature, and reduced flux at different times: 4 ˆ 103 s, 7.5 ˆ 103 s, and
1.3 ˆ 104 s.

2.2.6.1 Model

We consider the early stage of the development of an H ii region in a massive pre-
stellar dense core [Churchwell, 2002]. We focus on a region of the dense core at about
100 AU from the massive young stellar object (YSO). This region has been heated by
the YSO during the pre-main sequence phase, i.e., the early stage of the development
of the massive star. The temperature reached at this location by infrared heating is of
the order of 1 000 K and the transport of energy in this region can be dominated by
convection. We have inferred the convective state of this region by computing thermal
and adiabatic gradients based on observations of Herpin et al. 2009 (Fig. 7). High-
energy photons emitted by the YSO when entering the main sequence will start to
ionize the surrounding gas. This will trigger the propagation of an ionization front in
a convective medium, and we are interested in the stability of such a front perturbed
by the pre-existing convective motions.

The interaction of the ionizing photons with the gas is described by eq. 1.25. The
only photons able to ionize the gas are emitted by the YSO, i.e., there is no local source
of ionizing photons. Following Tremblin [2012], we need to modify this model to take
into account photo-chemistry and thermal balance. We define the fraction of ionization
X “ nH`{nH where nH “ nH` ` nH0 , nH` is the number of ionized atoms and nH0 is
the number of cold atoms. The evolution of the number of ionized atoms is just the
number of incoming photons that interact with the gas minus the number of ionized
atoms that recombine (on the spot approximation, see Lesaffre 2002). Therefore,

BtpρXq ` ∇ ¨ pρXuq “ σγFγnHp1 ´ Xq ´ mHβX
2n2

H , (2.17)

where Fγ is the number of incoming photons per unit of surface and time, σγ is the av-
erage cross-section at the temperature of the star, and β gives the recombination rate:
β “ 2 ˆ 10´10

`

T
1 K

˘´0.75
cm3 s´1 with T the temperature of thermodynamic equilib-

rium [Black, 1981].
The thermal balance is the difference between the heating rate and the cooling

rate. The extra energy of the absorbed photons is converted into kinetic energy of
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electrons. It is the only source of heating during the ionization, hence the heating rate
is given by p1 ´ XqnHFγσγeγ. In this simplified model, the equilibrium temperature
is obtained from the balance between the heating from the ionization and the cooling
from the recombination. We do not consider any other effects, such as metal cooling.
Therefore, we take eγ “ 1 eV [Lesaffre, 2002] to recover the observed temperature
around 1 000 K. From Tremblin [2012], the cooling rate is given by βX2n2

HkbT {pγ´1q.
We also add a term of Newtonian forcing BtTg “

Tg´Tforcing
τforcing

to trigger convection. Tforcing
is the equilibrium temperature profile, depending on space, and τforcing is the relaxation
timescale. The gas temperature will relax toward the equilibrium temperature profile
Tforcing.

By writing cEr “ Fγeγ, ρ “ nHmH and σa “ σs “ σ “ σγnH , we finally have to
solve the following system:

$

’

’
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’

%

Btρ ` ∇ ¨ pρuq “ 0

Btpρuq ` ∇ ¨ pρu b u ` pIq “ ρg `
σp1 ´ Xq

c
Fr

BtpρEq ` ∇ ¨ ppρE ` pquq “ ρg ¨ u ` cσp1 ´ XqEr

´ β
ρ2X2

m2
H

kbTg

γ ´ 1
´ ρcv

Tg ´ Tforcing

τforcing

BtEr ` ∇ ¨ Fr “ ´cσp1 ´ XqEr

BtFr ` ∇ ¨ Pr “ ´cσp1 ´ XqFr

BtpρXq ` ∇ ¨ pρXuq “
σp1 ´ XqcErmH

eγ
´

βρ2X2

mH

.

(2.18)

In this test, we will use the M1 solver with the asymptotic correction presented in
section 2.1.1.3, but we do not use the well-balanced discretization of the source term
because of stability issues that will be discussed in section 2.3.1.

2.2.6.2 Setup

We consider a square domain with a side 5 AU long. We use a setup similar to
Padioleau et al. [2019] for compressible convection simulations. The temperature is set
at the top and the bottom of the box at 500 K and 1 000 K, respectively. The initial
temperature is a linear interpolation between the top and the bottom of the box. It is
also the forcing temperature profile Tforcing. We take τforcing “ 107 s. These parameters
are chosen to trigger the initial convective motions. We also set the pressure at the
bottom: 10−3 dyn cm−2 [Herpin et al., 2009]. The density and the pressure are linked
by the ideal gas law: p “

ρkbTg

mHµ
, where µ is the mean molecular weight. The non-ionized

medium is made of hydrogen, with µ1 “ 1. When the medium is fully ionized, it is
made of atomic nucleus and electrons, so twice as many particles for the same mass.
Because the distribution of nucleus and electrons is homogeneous, the mean molecular
weight is µ2 “ 0.5. When the medium is partially ionized, we take µ as the mean of the
previous values balanced by the fraction of ionization, i.e., µ “ p1 ´ Xqµ1 ` Xµ2. The
density is initialized with the recursive formula pi`1 ´ pi “ 1

2
pρi ` ρi`1q g∆z, which is

the discrete version of the hydrostatic balance ∇p “ ´ρg.
We impose Neumann boundary conditions for the temperature. The pressure and

density are imposed by an extrapolation of the hydrostatic balance. Because the hydro-
dynamics solver is well-balanced for the gravity, this configuration will remain static,
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Figure 2.9 – Evolution of the position of the ionization front as a function of time, with and
without the initial velocity perturbation.

even if the initial condition is unstable. The hydrostatic equilibrium is destabilized
with a velocity mode perturbation of the form

$

’

’

&

’

’

%

upx, yq “ 2 ¨ 10´4cs sin

ˆ

2π
x ´ xmid

Lx

˙

sin

ˆ

π
y ´ ymid

Ly

˙

vpx, yq “ 2 ¨ 10´4cs cos

ˆ

2π
x ´ xmid

Lx

˙

cos

ˆ

π
y ´ ymid

Ly

˙

,

(2.19)

with cs the speed of sound, xmid “ ymid “ 2.5 AU and Lx “ Ly “ 5 AU. Without any
interaction with the ionizing photons, the convective motions are stationary.

The opacity is set to σ “
σγρ

mH
with σγ “ 6 ˆ 10´18 cm2 [Lesaffre, 2002]. The

radiative energy and flux are set to 0 and the medium is not ionized (X “ 0). We
initialize the hydrodynamics variables with the steady state described previously. At
time t “ 0, the bottom boundary of the region is ionized: the reduced flux is set to 1
and the radiative energy is set to F˚eγ

c
with F˚ “ 3 ˆ 1017 cm´2 s´1 in the boundary.

The boundary conditions for the hydrodynamics variables remain unchanged.

2.2.6.3 Results

As the initial condition is such that Er is close to 0, this can easily create some
spurious values such that f ą 1. This is clearly a numerical artifact induced by the
very low value of the radiative energy in regions where no ionizing photons are present.
Even with a centered discretization of the radiative flux source term and without the
asymptotic correction, we still encounter f ą 1 during the simulation. Because of this
problem, we impose f “ 1 in the computation of the Eddington tensor in the cells
where f ą 1.

Figure 2.9 shows the evolution of the position of the ionization front as a function
of time. With and without the initial convective rolls, the position of the ionization
front oscillates around an equilibrium position, between 0.3 AU and 0.4 AU. The
oscillations around the equilibrium are expected and have been observed with simpler
models [Tremblin et al., 2012].
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Figure 2.10 – Snapshots of the fraction of ionization and the velocity field at the final time
tf “ 1010 s without the initial velocity perturbation (left panel) and with it (right panel).

Figure 2.10 shows the ionization front at the final time tf “ 1010 s. With and
without the initial convective rolls, a numerical noise appears as a consequence of the
long timescales. Because of the numerical noise, some lack of symmetry can appear.
The fraction of ionization, which is always between 0 and 1, reaches values between
10−12 and 10−6. The effect of the preconditioner and the MPI domain decomposition
is discussed in section 5.2.3. However, the numerical noise does not affect the position
of the ionization front.

The stability of the ionization front is an issue that has been discussed for a long
time in the literature [Mizuta et al., 2005]. For example, 3D simulations of the ex-
pansion of a spherical ionization front in 3D Cartesian grids have shown instabilities
either on the axis of the grid or in the diagonal depending on the numerical scheme
(see Bisbas et al. 2015, fig. A3). The dependence of the instability on the grid cast
doubts about a possible physical regime. Our test case shows that even with convective
motions of large amplitude, the ionization front remains stable.

2.3 Discussion and conclusion

2.3.1 Well-balanced discretization of the source term

In section 2.1.1.2 we have proposed a well-balanced discretization of the source
term on the radiative flux equation. This discretization allows us to properly capture
the steady state with constant flux and with a discontinuity of opacity. However, this
discretization can lead to spurious oscillations in the radiative flux, a problem that we
have encountered in the test case for the expansion of H ii regions. Although we have
changed the discretization of the source term to achieve a well-balanced property, our
integration of the hyperbolic part on the source term is still split into two steps. Such
a splitting strategy might be unstable if the source term is not taken into account in
the hyperbolic part. A possible solution to this problem would be to incorporate the
source term in a Lagrange-projection-like scheme such as Buet and Despres [2008].

50



CHAPTER 2. A FIRST ASYMPTOTIC PRESERVING SOLVER

2.3.2 Asymptotic limit for radiation hydrodynamics
In section 2.1.1.3, we have presented an asymptotic correction which allows us to

capture the asymptotic behavior, whereas the solution given by a standard scheme
is dominated by numerical diffusion. The asymptotic correction uses the numerical
diffusion to recover the physical one in a static fluid. Nevertheless, this scheme does
not capture the asymptotic regime in a moving fluid, as presented in section 1.C. Most
of the schemes proposed in the literature do not preserve this asymptotic regime (e.g.,
Berthon and Turpault 2011; González et al. 2007). The diffusive regime depends on
the material velocity; our scheme cannot reach it. A possible solution would be to
limit the numerical diffusion with a correction similar to a low Mach correction, as in
Chalons et al. [2016], in conjunction with a cell-centered discretization of the source
term, as proposed by the Lagrange-projection scheme of Buet and Despres [2008]. This
Lagrange-projection-like strategy is explored in chapter 3 to treat both the asymptotic
preserving and well-balanced issues.
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2.A Von Neumann stability analysis for the well-
balanced modification of the source term

For simplicity, we split eq. 1.15b into a pure hyperbolic problem BtFr ` c2∇ ¨Pr “ 0
and a source problem BtFr “ ´cσsFr. We focus on the one-dimensional source problem,
with periodic boundary conditions on the domain r0, T s ˆ r0, 1s with T the final time.
The following can easily be extended to an arbitrary space interval. Because we use
periodic boundary conditions, we can apply the von Neumann stability analysis (see
e.g., Anderson 1995), based on the decomposition of the numerical solution into Fourier
series. Let us recall that, using the well-balanced modification of the source term
(eq. 2.7), the source problem is discretized as

F n`1
j ` rj´ 1

2
F n`1
j´1 `

´

rj´ 1
2

` rj` 1
2

¯

F n`1
j ` rj` 1

2
F n`1
j`1 “ F n

j , (2.20)

with rj` 1
2

“
cσs

j` 1
2

∆t

4
. We define the function F n, piecewise constant, such that

F n
pxq “

#

F n
j if xj´ 1

2
ă x ă xj` 1

2

0 otherwise.
(2.21)

This function is then extended to R by periodicity. F n can now be expanded in a
Fourier series:

F n
pxq “

ÿ

kPZ

F̂ n
pkqe2ikπx, (2.22)

with
F̂ n

pkq “

ż 1

0

F n
pxqe´2ikπxdx. (2.23)

We can define the 2-norm of the function F n:

||F n||2 “

ˆ
ż 1

0

pF n
pxqq

2 dx

˙

1
2

“

˜

ÿ

kPZ

∣∣∣F̂ n
pkq

∣∣∣2¸ 1
2

“

˜

J
ÿ

j“1

∆x
`

F n
j

˘2

¸
1
2

. (2.24)
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We apply the Fourier transform to eq. 2.20:

F̂ n`1
pkq

´

1 ` rj´ 1
2
e´2ikπ∆x

` rj´ 1
2

` rj` 1
2

` rj` 1
2
e2ikπ∆x

¯

“ F̂ n
pkq. (2.25)

We define the amplification factor Apkq as

Apkq “
1

1 ` rj´ 1
2
e´2ikπ∆x ` rj´ 1

2
` rj` 1

2
` rj` 1

2
e2ikπ∆x

, (2.26)

and we have then F̂ n`1pkq “ ApkqF̂ npkq. By induction, we have F̂ npkq “ pApkqq
n F̂ 0pkq.

The coefficient F̂ npkq remains bounded if and only if |Apkq| ď 1. In this case, for all
k P Z,

∣∣∣F̂ n`1pkq

∣∣∣ ď

∣∣∣F̂ npkq

∣∣∣. Therefore, ||F n`1||2 ď ||F n||2 ď ||F 0||2 and the scheme is
unconditionally stable. We now have to prove that |Apkq| ď 1:

1

|Apkq|2
“

´

1 ` rj´ 1
2

` rj` 1
2

¯2

` r2
j´ 1

2
` r2

j` 1
2

` 2rj´ 1
2
rj` 1

2
cosp4kπ∆xq

` 2rj´ 1
2

´

1 ` rj´ 1
2

` rj` 1
2

¯

cosp2kπ∆xq ` 2rj` 1
2

´

1 ` rj´ 1
2

` rj` 1
2

¯

cosp2kπ∆xq

“

¨

˚

˝

1 ` rj´ 1
2

p1 ´ cosp2kπ∆xqq
looooooooooooomooooooooooooon

ě0

` rj` 1
2

p1 ´ cosp2kπ∆xqq
looooooooooooomooooooooooooon

ě0

˛

‹

‚

2

`

´

rj´ 1
2
sinp2kπ∆xq ´ rj` 1

2
sinp2kπ∆xq

¯2

looooooooooooooooooooooooomooooooooooooooooooooooooon

ě0

ě 1.
(2.27)

Since 1
|Apkq|2 ě 1, we have |Apkq| ď 1.

2.B Numerical scheme in the diffusive limit
We consider the numerical scheme developed in section 2.1.1.3 in the asymptotic

regime, with σs
i` 1

2

∆x Ñ 8. Following section 1.4, we introduce the rescaling parameter

ε to write the time (resp. the opacity) as Ă∆t “ ε∆t (resp. rσa “ εσa and rσs “ εσs).
Using the P1 closure relation, we have λ`

i` 1
2

“ ´λ´

i` 1
2

“ c?
3

and

ε2En`1
i “ ε2En

i ´
Ă∆t

∆x

´

εαi` 1
2
F˚

i` 1
2

´ εαi´ 1
2
F˚

i´ 1
2

¯

` cĂ∆t rσa
i

´

ar
`

T n`1
i

˘4
´ En`1

i

¯

(2.28a)

ε2F n`1
i “ ε2F n

i ´
Ă∆t

∆x

´

εP˚

i` 1
2

´ εP˚

i´ 1
2

¯

´
cĂ∆t

2

´

rσs
i` 1

2
F n`1
i` 1

2

` rσs
i´ 1

2
F n`1
i´ 1

2

¯

(2.28b)

ε2ρcvT
n`1
i “ ε2ρcvT

n
i ´ cĂ∆t rσa

i

´

ar
`

T n`1
i

˘4
´ En`1

i

¯

. (2.28c)

Radiative variables are expanded, e.g., En
i “ En

i,0`εEn
i,1`O pε2q. Expanding eqs. 2.28a

and 2.28b at order 0 leads to
#

En`1
i,0 “ ar

`

T n`1
i,0

˘4

F n`1
i,0 “ 0.

(2.29)
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At first order for eq. 2.28b, we have

rσs
i` 1

2
F n`1
i` 1

2
,1

` rσs
i´ 1

2
F n`1
i´ 1

2
,1

“ ´
c

3

En`1
i`1,0 ´ En`1

i´1,0

∆x
`

F n`1
i`1,0 ´ 2F n`1

i,0 ` F n`1
i´1,0

?
3∆x

loooooooooooooomoooooooooooooon

“0

. (2.30)

Using the boundary condition given by eq. 2.13, we have

rσs
i` 1

2
F n`1
i` 1

2

“ ´
c

3∆x

`

En`1
i`1,0 ´ En`1

i,0

˘

(2.31)

in the whole domain.
Now, we consider the sum of eqs. 2.28a and 2.28c expanded at second order. If

αi` 1
2

“ 1, we have

ε2
`

En`1
i,0 ` ρcvT

n`1
i,0

˘

“ ε2
`

En
i,0 ` ρcvT

n
i,0

˘

` ε
Ă∆t

∆x

c

2
?
3

´

αi` 1
2

`

En`1
i`1,0 ´ En`1

i,0

˘

´ αi´ 1
2

`

En`1
i,0 ´ En`1

i´1,0

˘

¯

´ ε2
Ă∆t

2∆x
αi` 1

2

ˆ

F n`1
i`1,1 ` F n`1

i,1 ´
c

?
3

`

En`1
i`1,1 ´ En`1

i,1

˘

˙

` ε2
Ă∆t

2∆x
αi´ 1

2

ˆ

F n`1
i,1 ` F n`1

i´1,1 ´
c

?
3

`

En`1
i,1 ´ En`1

i´1,1

˘

˙

,

(2.32)
whereas the asymptotic development of a standard discretization of eq. 1.24 would be

ε2
`

En`1
i,0 ` ρcvT

n`1
i,0

˘

“ ε2
`

En
i,0 ` ρcvT

n
i,0

˘

`ε
c

3

∆t

∆x2

˜

En`1
i`1,0 ´ En`1

i,0

σs
i` 1

2

´
En`1

i,0 ´ En`1
i´1,0

σs
i´ 1

2

¸

.

(2.33)
So, we are looking for αi` 1

2
such that the term of order 1 in eq. 2.32 becomes a term of

order 2 with the expected coefficient of diffusion c
3σs

i` 1
2

and the term of order 2 becomes

a term of order 3 and therefore negligible. In other words, we want the asymptotic
development of αi` 1

2
to be 2ε?

3σs

i` 1
2

∆x
. One way to achieve this is to take

αi` 1
2

“
1

1 `
?
3σs

i` 1
2

∆x
2

. (2.34)

However, in the general case, we do not have λ`

i` 1
2

“ ´λ´

i` 1
2

“ c?
3
. We can then replace

eq. 2.34 by

αi` 1
2

“
1

1 ´ 3σs
i` 1

2

∆x
λ`

i` 1
2

λ´

i` 1
2

c
´

λ`

i` 1
2

´ λ´

i` 1
2

¯

. (2.35)

Unfortunately, in numerical tests with σs∆x close to 1, the condition f ă 1 is not
preserved. Because f is close to 1 in this case, we write

αi` 1
2

“
1

1 ´ 3σs
i` 1

2

∆x
´

1 ´ f 2
i` 1

2

¯ λ`

i` 1
2

λ´

i` 1
2

c
´

λ`

i` 1
2

´ λ´

i` 1
2

¯

. (2.36)
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We use fi` 1
2

“ 1
2

`

fn
i ` fn

i`1

˘

because numerical experiments have shown good results
using this form. In the diffusion regime, because F n`1

i,0 “ 0, we recover eq. 2.35.
Now that we have the form of αi` 1

2
, we can check that the proposed scheme is

asymptotic preserving. We have

αi` 1
2

“
2ε

?
3 rσs

i` 1
2
∆x

` O
`

ε2
˘

. (2.37)

Therefore,

αi` 1
2
F˚

i` 1
2

“ ´ε
c

3 rσs
i` 1

2

En`1
i`1,0 ´ En`1

i,0

∆x
` O

`

ε2
˘

. (2.38)

We finally have

En`1
i,0 ` ρcvT

n`1
i,0 “ En

i,0 ` ρcvT
n
i,0 `

cĂ∆t

3∆x2

˜

En`1
i`1,0 ´ En`1

i,0

rσs
i` 1

2

´
En`1

i,0 ´ En`1
i´1,0

rσs
i´ 1

2

¸

. (2.39)

Equations 2.29, 2.31 and 2.39 are standard discretization of eqs. 1.22 to 1.24, so this
scheme is asymptotic preserving.
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CHAPTER 3. AN ALL-REGIME-LIKE ASYMPTOTIC PRESERVING SCHEME

The numerical scheme we have shown in the previous chapter does not preserve
the admissible states Er ą 0 and f ď 1. We present in this chapter the development
of another numerical scheme that preserves these admissible states, as well as the
asymptotic preserving property. This scheme being inspired by all-regime schemes
for compressible hydrodynamics, we also call it “all-regime scheme”. We derive it
using a time-explicit integration. A possible extension for a time-implicit solver is
presented in chapter 4. For the sake of simplicity, we only consider the case where
the hydrodynamics is frozen. The coupling to hydrodynamics could be done as in
section 2.1.2.

This chapter is organized as follows. We present our numerical scheme in section 3.1.
Buet and Despres [2008] have derived a Lagrange-projection scheme for the M1 model.
Inspired by Chalons et al. [2016], we adapt this scheme with a “diffusion-transport”
splitting. Because this leads to a scheme of stencil 2, we also present an all-regime
scheme of stencil 1. In section 3.2, we present some numerical test cases to show the
good properties of our solvers. Finally, we reach our conclusion in section 3.3 and we
discuss the limits of the schemes.

3.1 Numerical scheme
We use the same notations as in chapter 2: we note ∆x the step along the x-

direction. ∆t is the time interval between the current time tn and tn`1. We write xi

the center of the cell i and xi` 1
2

the interface between the cell i and the cell i ` 1. We
use the notation un

i to represent the averaged quantity associated with the field u at
time tn in the cell i (finite volume). Finally, we note un

i` 1
2

to represent the quantity
associated with the field u at time tn and at the interface between cells i and i ` 1.

Because we use a time-explicit scheme, the time step ∆t is restricted by a CFL
condition. For the sake of simplicity, we always use ∆t ă ∆x

c
in the numerical tests.

For physical reasons, the fastest phenomena occur at the speed of light, therefore we
use this velocity to restrict the time step, even though slower phenomena could allow
us to use a larger time step.

3.1.1 Rewriting the M1 model
In this chapter, we adapt a scheme developed for hydrodynamics to the M1 model.

We first rephrase our model to have the same form as the Euler equation. Following
Buet and Despres [2008], we introduce a variable % P R that obeys the transport
equation

Bt% ` ∇ ¨ p%βq “ 0, (3.1)
with β already defined in section 1.B.2, given by

β “
1

f

3χ ´ 1

2

Fr

Er

. (3.2)

Despite the resemblance with the mass conservation equation of Euler equations, % is
not the density of the fluid ρ. However, it will play a similar role in the derivation of
the scheme.

In chapter 1, we have shown that
$

&

%

Fr “ pq ` Erqβ

Pr “
β b Fr

c2
` qI,

(3.3)
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with q “
c2´β2

3c2`β2Er, where β “ ||β||. Let us notice that β is a velocity and q is a
pressure.

Let us introduce an specific energy e and a specific flux v such that
#

Er “ %e

Fr “ %v.
(3.4)

Despite the notation, v is not a velocity. Because of the similarly with Euler equations,
we use the same vocabulary as hydrodynamics: we call % a density. Let us notice that
the admissible states Er ą 0 and ||Fr||

cEr
ď 1 are equivalent to % ą 0, e ą 0 and ||v||

ce
ď 1.

Let us first consider the case without source terms, with σa “ σs “ 0. Using
eqs. 3.1, 3.3 and 3.4, the M1 model (eq. 1.15) can be written as

$

’

&

’

%

Bt% ` ∇ ¨ p%βq “ 0

Bt p%vq ` ∇ ¨ p%v b βq ` c2∇q “ 0

Bt p%eq ` ∇ ¨ p%eβ ` qβq “ 0.

(3.5)

Equation 3.5 has the same form as the Euler equations. The main difference is the link
between the momentum %v and the velocity β: in the hydrodynamics case, it is linear
(the momentum is ρu and the velocity is u), whereas it is not linear for the M1 model
(eq. 3.2). Let us now focus on the discretization of eq. 3.5.

3.1.2 Diffusion-transport splitting
Following Chalons et al. [2016], we use a splitting strategy to solve eq. 3.5. In the

hydrodynamics case, the Euler system is split into an acoustic step and a transport
step. Here, we split eq. 3.5 into a diffusion step and a transport step. The choice of
the terms “diffusion” and “transport” will be explained later. Transport phenomena
of the form β ¨ ∇ are separated from the other terms. We first solve the diffusion step

$

’

&

’

%

Bt% ` %∇ ¨ β “ 0

Bt p%vq ` %v∇ ¨ β ` c2∇q “ 0

Bt p%eq ` %e∇ ¨ β ` ∇ ¨ pqβq “ 0,

(3.6)

followed by the transport step
$

’

&

’

%

Bt% ` β ¨ ∇% “ 0

Bt p%vq ` β ¨ ∇ p%vq “ 0

Bt p%eq ` β ¨ ∇ p%eq “ 0.

(3.7)

On one hand, in the diffusive limit, we have Fr “ 0 at first order. Because Fr and β
are colinear and Er ` q ‰ 0, we also have β “ 0 at first order. Therefore, the variables
are not impacted by the transport step at first order. Furthermore, one can show that
q “ Er

3
at first order, which is equivalent to the P1 closure relation. Let us notice

the source terms play an important role in the diffusive limit, as shown in section 1.4,
therefore, the analysis done here is not whole. Recovering the diffusion equation eq. 1.24
brings into play velocity β at order 1. More details about the integration of source
terms can be found in section 3.1.6.

On the other hand, in the transport regime, β “ cn, where n is a unit vector aligned
with the radiative flux, and q “ 0. The diffusion step simplifies into Btϑ ` cϑ∇ ¨ n “ 0
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for ϑ P t%, %v, %eu. In particular, if n is constant, all variables remain constant during
the diffusion step. They are then transported at velocity c by the transport step.

Using eq. 3.6, one can deduce the equation of evolution of velocity β and pressure
q:

$

’

’

&

’

’

%

Btβ ´
c2 ´ β2

3c2 ´ β2
β∇ ¨ β `

c2 ´ β2

4q
∇q ´

c2 ´ β2

2q p3c2 ´ β2q
β pβ ¨ ∇qq “ 0

Btq `
4c2q

3c2 ´ β2
∇ ¨ β ´

c2 ´ β2

3c2 ´ β2
β ¨ ∇q “ 0.

(3.8)

Detailed computations are done in section 3.A.
Let us now study the eigenstructure of eqs. 3.6 and 3.7. For the sake of simplicity,

we focus on the one-dimensional case. We write λ´, λ0 and λ` the eigenvalues of the
M1 model, with λ´ ď λ0 ď λ`. From González et al. [2007],

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

λ´
“ c

nxχ
1 ´

a

χ12 ` 4χ ´ 4χ1f

2

λ0
“ c2

3χ ´ 1

2

Er

Fr

λ`
“ c

nxχ
1 `

a

χ12 ` 4χ ´ 4χ1f

2
,

(3.9)

where nx is the x-coordinate of n “
f
f

and χ1 “
dχ
df

. The eigenvalues for the transport
system (eq. 3.7) are βx “ λ0, with multiplicity 3. Let us now focus on the acoustic
step (eq. 3.6). Equation 3.8 is introduced to ease computations. Equations 3.6 and 3.8
involve five eigenvalues: λ´ ´ λ0, 0, λ` ´ λ0, the multiplicity of the eigenvalue 0 is 3.
The fields associated with 0 (resp. λ˘ ´ λ0) are linearly degenerate (resp. genuinely
nonlinear). See section 3.B for more details. Both diffusion and transport systems are
hyperbolic.

We now focus on the resolution of each system in the one-dimensional case. The
extension to higher dimensions is straightforward.

3.1.3 Diffusion step
From now on, because we consider only the one-dimensional case, we slightly change

our notations: β (resp. v) is no longer the norm of the vector β (resp. v), but it is the
x-coordinate of the vector.

Let us first write the diffusion system (eq. 3.6) using Lagrangian variables pτ, v, eq,
where τ “ 1

%
. We introduce a mass variable dm “ % ptn, xq dx where the time is frozen

at instant tn. Equation 3.6 becomes
$

’

&

’

%

Btτ ´ Bmβ “ 0

Btv ` c2Bmq “ 0

Bte ` Bm pqβq “ 0,

(3.10)

which is discretized as
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

rτi “ τni `
∆t

∆mi

´

β˚

i` 1
2

´ β˚

i´ 1
2

¯

rvi “ vni ´ c2
∆t

∆mi

´

q˚

i` 1
2

´ q˚

i´ 1
2

¯

rei “ eni ´
∆t

∆mi

´

q˚

i` 1
2
β˚

i` 1
2

´ q˚

i´ 1
2
β˚

i´ 1
2

¯

.

(3.11)
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Numerical fluxes β˚ and q˚ will be specified later.
The update of the conservative variables p%, %v, %eq can be written as

$

’

’

’

’

&

’

’

’

’

%

rLir%i “ %ni

rLi
Ąp%vqi “ p%vq

n
i ´ c2

∆t

∆x

´

q˚

i` 1
2

´ q˚

i´ 1
2

¯

rLi
Ąp%eqi “ p%eq

n
i ´

∆t

∆x

´

q˚

i` 1
2
β˚

i` 1
2

´ q˚

i´ 1
2
β˚

i´ 1
2

¯

,

(3.12)

where rLi “ 1 ` ∆t
∆x

´

β˚

i` 1
2

´ β˚

i´ 1
2

¯

.
The last point needed for the resolution of the diffusion step to be complete is the

choice of the numerical fluxes β˚

i` 1
2

and q˚

i` 1
2

. We have chosen to use the fluxes given
by Buet and Despres [2008]:

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

β˚

i` 1
2

“

%ni e
n
i

3c2`
`

βn
i

˘2βn
i `

%ni`1e
n
i`1

3c2`

´

βn
i`1

¯2βn
i`1

%ni e
n
i

3c2`
`

βn
i

˘2 `
%ni`1e

n
i`1

3c2`

´

βn
i`1

¯2

`

?
3

4c

qni ´ qni`1

%ni e
n
i

3c2`
`

βn
i

˘2 `
%ni`1e

n
i`1

3c2`

´

βn
i`1

¯2

q˚

i` 1
2

“

3c2`
`

βn
i

˘2

%ni e
n
i

qni `
3c2`

´

βn
i`1

¯2

%ni`1e
n
i`1

qni`1

3c2`
`

βn
i

˘2

%ni e
n
i

`
3c2`

´

βn
i`1

¯2

%ni`1e
n
i`1

`
4c
?
3

βn
i ´ βn

i`1

3c2`
`

βn
i

˘2

%ni e
n
i

`
3c2`

´

βn
i`1

¯2

%ni`1e
n
i`1

.

(3.13)

The derivation of eq. 3.13 is done in section 3.C. Buet and Despres [2008] show that
these numerical fluxes preserve the admissible states, i.e., rei ą 0 and |rvi|

crei
ď 1 (see

section 3.D).
Other choices for β˚ and q˚ can be done. Riemann invariants for the diffusion step

(eq. 3.10) could be used. It has been explored with S.Bulteau:
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

β˚

i` 1
2

“
pqni q

?
3
4

b

pc ` βn
i q

`

c ` βn
i`1

˘

´
`

qni`1

˘

?
3
4

b

pc ´ βn
i q

`

c ´ βn
i`1

˘

pqni q

?
3
4

b

pc ` βn
i q

`

c ` βn
i`1

˘

`
`

qni`1

˘

?
3
4

b

pc ´ βn
i q

`

c ´ βn
i`1

˘

q˚

i` 1
2

“
a

qni q
n
i`1

˜

`

c ´ βn
i`1

˘

pc ` βn
i q

`

c ` βn
i`1

˘

pc ´ βn
i q

¸
1?
3

.

(3.14)

First numerical experiments have shown results similar to those obtained with eq. 3.13,
but with a higher computational cost.

Finally, Buet and Despres [2008] show that the solution
´

rEi, rF i

¯

is independent of
the initial value of the density %ni .

3.1.4 Transport step
The scheme proposed by Buet and Despres [2008] uses a Lagrange-remap solver. As

our all-regime solver, it is split into two steps. The first one, the Lagrangian step, has
the same form as our diffusion step. The fields evolve using the Lagrangian formalism.
The mesh is distorted to follow the matter. This new mesh is then projected onto
the original mesh during the remap step. This approach, although robust, might be
difficult to implement in the multi-dimensional case. Inspired by Chalons et al. [2016],
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we propose here to replace the remap step by the resolution of the transport step eq. 3.7.
The mesh is not changed during the resolution of the diffusion step, therefore solving
the transport step is easier than computing the remap step of the Lagrange-remap
solver.

Following Padioleau et al. [2019], the transport system (eq. 3.7) can be written

Btϑ ` Bx pϑβq ´ ϑBxβ “ 0, (3.15)

for ϑ P t%, %v, %eu. We discretize it as

ϑn`1
i “ rϑi ´

∆t

∆x

´

rϑi` 1
2
β˚

i` 1
2

´ rϑi´ 1
2
β˚

i´ 1
2

¯

` rϑi
∆t

∆x

´

β˚

i` 1
2

´ β˚

i´ 1
2

¯

. (3.16)

The term defined at the interface rϑi` 1
2

is defined by the upwind choice with respect to
the velocity β˚

i` 1
2

:

rϑi` 1
2

“

$

&

%

rϑi if β˚

i` 1
2

ě 0

rϑi`1 if β˚

i` 1
2

ď 0.
(3.17)

Using eq. 3.12, the update of the conservative quantities is then

wn`1
i “ wn

i ´
∆t

∆x
pF˚

p rwi, rwi`1q ´ F˚
p rwi´1, rwiqq , (3.18)

where w “ p%, F,Eq
T and

F˚

¨

˝

¨

˝

%L
FL

EL

˛

‚ ,

¨

˝

%R
FR

ER

˛

‚

˛

‚ “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

¨

˝

%Lβ
˚

FLβ
˚ ` c2q˚

ELβ
˚ ` q˚β˚

˛

‚ if β˚
ě 0,

¨

˝

%Rβ
˚

FRβ
˚ ` c2q˚

ERβ
˚ ` q˚β˚

˛

‚ if β˚
ď 0,

(3.19)

This choice of discretization allows the total update to be conservative. Further-
more, because the transport step is simply the transport of the quantities updated by
the diffusion step, all properties preserved by the diffusion step are also preserved by
the transport step. In particular, the transport step preserves the admissible states

en`1
i ą 0 and

∣∣∣vn`1
i

∣∣∣
cen`1

i

ď 1, as well as the asymptotic preserving property. For the same
reason, the solution at time tn`1 is also independent of the value of the density at time
tn. Therefore, in numerical tests, we set % to 1 in each cell at the beginning of each
time step.

3.1.5 Scheme of stencil 1
When looking at the total update using this diffusion-transport splitting, from time

tn to tn`1, the resulting scheme is of stencil 2. Looking at eq. 3.18, the update of ϑn`1
i

involves, among others, rϑi˘1, which is computed thanks to ϑn
i , ϑn

i˘1 and ϑn
i˘2. To tackle

this issue, eq. 3.17 can be replaced by

rϑi` 1
2

“

#

ϑn
i if β˚

i` 1
2

ě 0

ϑn
i`1 if β˚

i` 1
2

ď 0.
(3.20)
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Equation 3.18 becomes

wn`1
i “ wn

i ´
∆t

∆x

`

F˚
`

wn
i ,w

n
i`1

˘

´ F˚
`

wn
i´1,w

n
i

˘˘

, (3.21)

which is indeed a scheme of stencil 1. This scheme can also be derived as an approximate
Riemann solver. It is done in section 3.E.

We show in section 3.D that the admissible states Er ą 0 and |Fr|
cEr

ď 1 are preserved.
Looking at eqs. 3.19 and 3.21, the update of En`1

i and F n`1
i does not depend on %. In

the numerical tests, we set it to 1 in the whole domain, at the beginning of each time
step.

3.1.6 Source terms
Now that we have presented two schemes for the hyperbolic part of the M1 model,

let us consider the addition of the source terms. We aim at designing an asymptotic
preserving and well-balanced scheme, i.e., it should capture the diffusive limit eq. 1.24
and the correct steady state, as explained in section 2.1.1.2.

As in section 2.1.1, we use a splitting strategy to treat the source terms. Once
we have obtained an intermediate solution En`1

i , F n`1
i with the scheme described in

sections 3.1.3 and 3.1.4 or with the one presented in section 3.1.5, we still have to solve
$

’

&

’

%

BtE “ cσa
`

arT
4

´ E
˘

BtF “ ´cσsF

Bt pρcvT q “ ´cσa
`

arT
4

´ E
˘

,

(3.22)

with initial condition En`1
i , F n`1

i , T n
i . To avoid restricting the time step, we use an

implicit integration to solve this system, as done in section 2.1.1. This leads to a
semi-implicit scheme.

As Buet and Despres [2008], we focus on the radiative flux source term. In sec-
tion 2.1.1.2, we use an average of a face discretization of this source term. σsF is
discretized in space as 1

2

´

σs
i` 1

2

Fi` 1
2

` σs
i´ 1

2

Fi´ 1
2

¯

, with
$

’

&

’

%

σs
i` 1

2
“

1

2

`

σs
i ` σs

i`1

˘

F n`1
i` 1

2

“
1

2

`

F n`1
i ` F n`1

i`1

˘

.
(3.23)

This leads to solve a linear system and might not preserve the admissible states. Be-
cause β and F are colinear, Buet and Despres [2008] suggest using a discretization
proportional to β˚

i` 1
2

` β˚

i´ 1
2

. However, this requires the resolution of a nonlinear sys-
tem. An algorithm to solve the nonlinear system arising from the discretization of the
M1 model while preserving the admissible states is presented in chapter 4. Because of
the issues raised here, we will use a cell-centered discretization for the radiative flux
source term, while being aware of its limitations.

To write eq. 3.13, we first wrote in section 3.C some jump relations:
$

’

’

’

&

’

’

’

%

´

q˚

i` 1
2

´ qni

¯

`
4c
?
3

En
i

3c2 ` pβn
i q

2

´

β˚

i` 1
2

´ βn
i

¯

“ 0

´

q˚

i` 1
2

´ qni`1

¯

´
4c
?
3

En
i`1

3c2 `
`

βn
i`1

˘2

´

β˚

i` 1
2

´ βn
i`1

¯

“ 0.
(3.24)
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One can check that eq. 3.13 is indeed the solution of this system.
To develop an asymptotic preserving scheme, Buet and Despres [2008] replaced

eq. 3.24 with
$

’

’

’

’

&

’

’

’

’

%

´

q˚

i` 1
2

´ qni

¯

`
4c
?
3

En
i

3c2 ` pβn
i q

2

´

β˚

i` 1
2

´ βn
i

¯

“ ´

σs
i` 1

2

∆x

2c
F n
i

´

q˚

i` 1
2

´ qni`1

¯

´
4c
?
3

En
i`1

3c2 `
`

βn
i`1

˘2

´

β˚

i` 1
2

´ βn
i`1

¯

“

σs
i` 1

2

∆x

2c
F n
i`1,

(3.25)

whose solution is
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

β˚

i` 1
2

“

%ni e
n
i

3c2`
`

βn
i

˘2βn
i `

%ni`1e
n
i`1

3c2`

´

βn
i`1

¯2βn
i`1

%ni e
n
i

3c2`
`

βn
i

˘2 `
%ni`1e

n
i`1

3c2`

´

βn
i`1

¯2

`

?
3

4c

ˆ

qni ´
σs

i` 1
2

∆x

2c
%ni v

n
i

˙

´

ˆ

qni`1 `
σs

i` 1
2

∆x

2c
%ni`1v

n
i`1

˙

%ni e
n
i

3c2`
`

βn
i

˘2 `
%ni`1e

n
i`1

3c2`

´

βn
i`1

¯2

q˚

i` 1
2

“

3c2`
`

βn
i

˘2

%ni e
n
i

ˆ

qni ´
σs

i` 1
2

∆x

2c
%ni v

n
i

˙

`
3c2`

´

βn
i`1

¯2

%ni`1e
n
i`1

ˆ

qni`1 `
σs

i` 1
2

∆x

2c
%ni`1v

n
i`1

˙

3c2`
`

βn
i

˘2

%ni e
n
i

`
3c2`

´

βn
i`1

¯2

%ni`1e
n
i`1

`
4c
?
3

βn
i ´ βn

i`1

3c2`
`

βn
i

˘2

%ni e
n
i

`
3c2`

´

βn
i`1

¯2

%ni`1e
n
i`1

.

(3.26)
We show in section 3.F that, using eq. 3.26 instead of eq. 3.13, the two schemes devel-
oped previously are asymptotic preserving. We also verify this property numerically
in section 3.2.2.

3.2 Numerical results
We perform a series of verification tests to validate different properties of the two

schemes developed in section 3.1. We compare them with a standard HLL solver.
Furthermore, we refer to the scheme presented in sections 3.1.3 and 3.1.4 as the “split
scheme” and to the solver presented in section 3.1.5 as the “unsplit scheme”.

We first verify that both schemes are conservative, especially the split scheme, with
a two-dimensional Riemann problem. We then look at numerical diffusion with a beam
test. We also show some performance results. Afterward, we explore the asymptotic
preserving property with a Marshak wave. Next, we study the well-balanced behavior
by reaching a steady state with a jump of opacity. Finally, we highlight all these
properties with a shadow test.

3.2.1 Numerical results without source terms
3.2.1.1 2D Riemann problem

Let us first consider the test described in Blachère and Turpault [2016]. It is
a 2D Riemann problem with four states. The domain r0, 1s ˆ r0, 1s is discretized
with 256 ˆ 256 cells. There is no opacity: σa “ σs “ 0. The initial temperature is
T0 “ Tr “ 1 000 K and the radiative flux is set to p1 ´ 10´8q cErF̂ , where F̂ is a unit
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Figure 3.1 – Initial condition for 2D Riemann problem.

Scheme Computational time (s)
HLL with computed eigenvalues 44

HLL with fixed eigenvalues 26
Split 79

Unsplit 36

Table 3.1 – Computational time with the HLL solver, with computed and fixed eigenvalues
(eq. 2.2), the split scheme and the unsplit scheme.

vector, piecewise constant. The domain is cut into four states. In each region, the
direction of the radiative flux is constant, see fig. 3.1.

Figure 3.2 shows the radiative energy (figs. 3.2a, 3.2c and 3.2e) and the reduced
flux (figs. 3.2b, 3.2d and 3.2f) at the final time 2 ˆ 10−11 s. Solutions are obtained
with a standard HLL solver (figs. 3.2a and 3.2b), the split scheme (figs. 3.2c and 3.2d)
and the unsplit scheme (figs. 3.2e and 3.2f). As shown by figs. 3.2b, 3.2d and 3.2f, the
reduced flux stays close to 1 during the simulation. Even for a very stiff problem, our
all-regime schemes can preserve the admissible states Er ą 0 and f ď 1, as shown in
section 3.D.

Figure 3.3 shows the evolution of the relative error between the expected total
radiative energy and the one actually computed in the box at each step. For this
test, we use periodic boundary conditions, so no energy should enter or leave the box,
therefore, the error should remain at machine precision. Here, it oscillates around
the value 10´12. This shows that even with the split scheme, the total energy is
conserved. Indeed, the choice of discretization for the transport step allows us to have
a conservative scheme. The split scheme being conservative relies on, among others,
the fact that we use the same β˚ for the discretization of both diffusion and transport
steps.

3.2.1.2 Beam

We perform the same test as in section 2.2.3, but we do not discuss the properties
of the HLL solver, we use it here as a reference. It is the same test as in González et al.
[2007]; Richling et al. [2001]. It is the propagation of a beam in the free-streaming
regime, with σa “ σs “ 0. The domain r´1, 1s ˆ r´1, 1s is discretized with 128 ˆ 128
cells. The initial temperature is T0 “ Tr “ 300 K and the initial radiative flux is
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Figure 3.2 – Snapshots of radiative energy and reduced flux at final time tf “ 2 ˆ 10´11 s
with the HLL solver, the split scheme and the unsplit scheme.
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Figure 3.3 – Evolution of the relative error on radiative energy as a function of time. With
periodic boundary conditions, the radiative energy is conserved at machine precision.
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Figure 3.4 – Beam simulation. The figure shows a horizontal cut at the middle height with
different solvers: HLL with computed and fixed eigenvalues (see eq. 2.2), split and unsplit
solvers.
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Fr “ 0. At time t “ 0, a beam with Tg “ Tr “ 1 000 K is introduced with an angle of
45˝ at x “ ´1 and y P r´0.875,´0.75s.

Because there is no opacity, the beam propagates in the vacuum, and we expect it
to cross the box without dispersion. The direction of the beam is not along the mesh
axis; we use this test to quantify the numerical diffusion. We compare both split and
unsplit solvers with a standard HLL solver. The eigenvalues used in the HLL solver
can be fixed to ˘c or computed (see eq. 2.2). The impact of this choice has already
been discussed in section 2.2.3.

Figure 3.4 shows a horizontal cut at the middle height once the steady state is
reached. Using the HLL solver, the full width at half maximum is 22 (resp. 29) cells
with computed (resp. fixed) eigenvalues. With both split and unsplit schemes, it is 26
cells.

Table 3.1 shows the computational time needed to reach the steady state with
the different solvers: HLL with fixed and computed eigenvalues, and both split and
unsplit schemes. Using fixed eigenvalues for the HLL solver allows us to save 40% of the
computational time compared to using computed eigenvalues. To reduce computational
time with computed eigenvalues, González et al. [2007] suggest tabulating them. They
are computed once at the beginning of the simulation and the value needed is then
interpolated. The split scheme requires solving two steps, the diffusion step followed
by the transport step, hence the increase of 80% of computational cost compared to the
HLL solver with computed eigenvalues. The unsplit scheme, which does not require
solving these two steps, allows a decrease of 20% of the computational time compared
to the HLL solver with computed eigenvalues and an increase of 40% compared to the
HLL solver with fixed eigenvalues.

Overall, the unsplit scheme seems to be a good compromise between numerical
diffusion and computational cost.

3.2.2 Numerical results with source terms
3.2.2.1 Marshak wave

Now that we have confirmed the good behavior of our schemes when there is no
opacity, let us consider a one-dimensional Marshak wave, in the diffusive limit, to test
their asymptotic behavior. We perform a test similar to section 2.2.1. Because we use
time-explicit integration here, we cannot reach easily the same final time, therefore, we
change some numerical values.

The interval r0, 1s is discretized with 100 points. Initially, the medium is at equi-
librium with the radiation: T0 “ Tr “ 5.87 ˆ 108 K, the radiative flux is Fr “ 0,
the opacity is constant, with σa “ σs “ 9 900 m´1, such that σs∆x “ 100 and
ρcv “ 1.53 J K´1 m´3. At time t “ 0, a source is lit at the left boundary with
Tr “ 5.87 ˆ 109 K.

The results are shown in fig. 3.5 at time tf “ 3 ˆ 10´10 s. We compare different
solutions: a reference solution, given by a standard discretization of the diffusion equa-
tion 1.24, a standard HLL scheme, the split and unsplit schemes. We also discuss the
impact of the source terms in the numerical fluxes β˚ and q˚.

As shown in chapter 2, the solution obtained with the HLL solver is dominated by
the numerical diffusion and does not capture the asymptotic behavior, the relative L2

error between this solution and the reference solution is around 192%. Using eq. 3.13,
without source terms in the numerical fluxes, leads to a relative L2 error of 194%
between the solutions obtained with both split and unsplit solvers and the reference
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Figure 3.5 – Marshak wave simulation. This figure shows a snapshot of the gas temperature at
time tf “ 3 ˆ 10´10 s, with a reference solution and different solvers: a standard HLL scheme,
the split and unsplit schemes, with and without the modification to take into account the
source terms in β˚ and q˚.

solution. These solutions are also dominated by numerical diffusion. To tackle this
issue, pressure terms in the numerical fluxes are modified to take into account the
source terms, as shown by eq. 3.26. With this choice, the relative L2 error drops to
12.8% and 14.4% for the split and unsplit solvers, respectively. We recover numerically
the result shown in section 3.F.

3.2.2.2 Steady state with a jump of opacity

In the previous cases, the opacity was constant; let us now consider a test with a
jump of opacity, in the one-dimensional case, as done in section 2.2.2. We use this test
to discuss the well-balanced behavior of the schemes.

The length of the computational domain is 1 cm, it is discretized with 100 cells.
Initially, the medium is at equilibrium with the radiation: T0 “ Tr “ 300 K, the initial
radiative flux is Fr “ 0 and ρcv “ 1 J K´1 cm´3. The opacity is now a function of
space: σa pxq “ σs pxq “ σ pxq, with

σ pxq “

#

50 cm´1 if x ă 0.5,

0 if x ą 0.5.
(3.27)

At time t “ 0, a source is lit at the left boundary, with Tr “ 5 000 K.
Figure 3.6 shows the radiative flux at time tf “ 10´6 s, once the steady state is

reached. From section 2.1.1.2, when the steady state is reached, we expect the radiative
flux to be constant in the box. Using a standard HLL scheme, the value reached in
the second half of the box is 50% more than the expected value. As discussed in
section 2.2.2, this is due to a lack of precision in the numerical integration of the
source terms and can be tackled by using higher order integration of the source terms,
which leads to an interface-centered discretization.
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Figure 3.6 – Simulation of a steady state with a jump of opacity. The opacity is piecewise
constant, a jump is located at x “ 0.5 m (gray line). This figure shows a snapshot of the
radiative flux at time tf “ 10´6 s, with a standard HLL solver, and both the split and unsplit
solvers.

Using both split and unsplit solvers, when the numerical fluxes do not take into
account the source terms (eq. 3.13), the radiative flux in the second half of the box
is also 50% more than the expected value. However, using eq. 3.26, the error is much
smaller. We only observe the same spurious peak located at the discontinuity of opacity
as in section 2.2.2. Because we still use a splitting strategy to treat implicitly the
source terms, this can be improved, either by using β˚ to compute the source terms, as
suggested by Buet and Despres [2008], or by using a discretization at the interfaces of
the cells, as done in section 2.1.1.2. Both choices would require solving a (non)linear
system while preserving the admissible states. An algorithm able to do that is explored
in chapter 4.

3.2.2.3 Shadow test

Finally, let us consider the same two-dimensional test as in section 2.2.4. Again,
we do not discuss the properties of the HLL solver, nor the M1 model, but we compare
the results obtained with our all-regime scheme to those obtained with the HLL solver.
Following González et al. [2007]; Hayes and Norman [2003], we consider a shadow test.
The computational domain is a cylinder of length L “ 1 cm and radius R “ 0.12 cm.
It is discretized with 280 ˆ 80 cells. A spheroid clump is located at the center of
the box, on the symmetric axis: pzc, rcq “ p0.5, 0q. The extension of the clump is
pz0, r0q “ p0.1, 0.06q. We consider a homogeneous gas, with ρ0 “ 1 g cm´3, expect
for the clump with density ρ1 “ 100ρ0. The boundary of the clump is smoothed:

ρ pz, rq “ ρ0 `
ρ1´ρ0

1`expp∆q
, with ∆ “ 10

ˆ

´

z´zc
z0

¯2

`

´

r´rc
r0

¯2

´ 1

˙

. The opacity of the

medium is σa “ σs “ σ0

´

T
T0

¯´3.5 ´

ρ
ρ0

¯2

, with σ0 “ 0.1 cm´1. Initially, the medium
is at equilibrium with the radiation, with T0 “ Tr “ 290 K. At time t “ 0, a source
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Figure 3.7 – Shadow simulation, showing snapshots of radiative temperature at time tf “

6 ˆ 10´11 s with different solvers: HLL, split solver and unsplit solver.
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Figure 3.8 – Shadow simulation, showing the radial profiles of the radiative temperature at
time tf “ 6 ˆ 10´11 s with different solves.
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is lit at the left boundary with Tr “ 1 740 K and the reduced flux, aligned with the
cylinder, is set to f “ 1.

Figure 3.7 shows the radiative temperature at the final time tf “ 6 ˆ 10´11 s with
different solvers: a classical HLL scheme, the split and unsplit schemes. Because of
the high opacity in the clump, the light does not cross it, and we expect the shadow
behind it to remain stable.

To compare our results with González et al. [2007]; Hayes and Norman [2003],
fig. 3.8 shows the radial profile of radiative temperature at the right boundary. Using
both split and unsplit solvers, the shadow is better preserved than using the HLL
solver. The solution obtained with these all-regime solvers does not overheat, unlike
the one obtained with the HLL solver (see the discussion about the modification of the
eigenvalues in section 2.2.4). As discussed in the previous tests, both split and unsplit
solvers perform similarly. This all-regime strategy allows keeping numerical diffusion
under control, at least when the radiation propagates along the mesh axis.

3.3 Discussion and conclusion
In this chapter, we have presented two numerical schemes. The first one is based

on a diffusion-transport splitting, similar to the acoustic-transport splitting for Euler
equations. However, this leads to a scheme of stencil two, with a high computational
cost. The second one is an approximate Riemann solver and relies on a relaxation.
Both solvers perform well on classical test cases. Nevertheless, they present some
limitations.

3.3.1 Well-balanced discretization of the source terms

Numerical fluxes proposed by Buet and Despres [2008] take into account the source
terms and are designed to capture correctly the asymptotic regime. For performance
reasons, the source terms are still taken into the center of the cells. As shown in
chapter 2, this does not lead to a well-balanced modification of the source terms. It
would require computing the source terms at the interfaces of the cells, which calls for
the resolution of a linear or nonlinear system, depending on the choice of discretization.
However, with source terms taken into account in the numerical fluxes, the steady state
with a constant radiative flux in the presence of a discontinuity of opacity is better
captured than without source terms in the fluxes.

3.3.2 Time implicit integration

In order to study astrophysical problems, coupling to hydrodynamics is essential.
Because of the difference between the timescale of the propagation of the fluid and
the photons, solving the radiative transfer requires a time implicit solver. Buet and
Despres [2008] show that the schemes proposed in this chapter preserve the admissible
states Er ą 0 and f ď 1. Using a Newton-Raphson algorithm to solve the nonlinear
system coming from a time-implicit discretization with large time steps might not
preserve these admissible states [Buet and Despres, 2006]. In chapter 4, we explore
another strategy to solve this nonlinear system while still preserving the admissible
states, based on the work of Pichard [2016].
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3.A Equation of evolution for pressure and velocity
in the diffusion step

We derive the equations of evolution for the velocity and the pressure. Let us
begin with the pressure q. From chapter 1, we have q “

c2´β2

3c2`β2Er “
1´χ
2
Er, where

χ “
3`4f2

5`2
a

4´3f2
is the Eddington factor. Because f “ Fr

cEr
, one has

Btq “
Bq

BEr

BtEr ` ∇Frq ¨ BtFr, (3.28)

where ∇Frq “

´

Bq
BFx

r
, Bq

BF y
r
, Bq

BF z
r

¯T

and Fr “ pF x
r , F

y
r , F

z
r q

T . Let us now compute each
term individually:

Bq

BEr

“ ´
Er

2

Bχ

BEr

`
1 ´ χ

2
. (3.29)

Because
Bχ

BEr

“
Bf 2

BEr

dχ

df 2
“ ´

p3c2 ` β2q f 2

p3c2 ´ β2qEr

, (3.30)

one has
Bq

BEr

“
c2 ` β2

3c2 ´ β2
. (3.31)

Likewise, one can show that

Bq

BF x
r

“ ´
F x
r

2c2Er

3c2 ` β2

3c2 ´ β2
“ ´

2βx

3c2 ´ β2
, (3.32)

with β “ pβx, βy, βzq
T . Similar computations can be done for the x and y coordinates.

Therefore,
∇Frq “ ´

2

3c2 ´ β2
β. (3.33)

BtEr and BtFr are given by the diffusion system (eq. 3.6). Therefore,

Btq `
4c2q

3c2 ´ β2
∇ ¨ β ´

c2 ´ β2

3c2 ´ β2
β ¨ ∇q “ 0. (3.34)
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Using the fact that Fr “ pEr ` qqβ, one has

Btβ “ Bt

ˆ

Fr

Er ` q

˙

. (3.35)

By mean of the chain rule derivative, eqs. 3.6 and 3.34, one can show that

Btβ ´
c2 ´ β2

3c2 ´ β2
β∇ ¨ β `

c2 ´ β2

4q
∇q ´

c2 ´ β2

2q p3c2 ´ β2q
β pβ ¨ ∇qq “ 0. (3.36)

3.B Eigenstructure of the diffusion system
For the sake of simplicity, we focus on the one-dimensional case. We recall that the

eigenvalues of the M1 model are given by [González et al., 2007]:
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

λ´
“ c

nxχ
1 ´

a

χ12 ` 4χ ´ 4χ1f

2

λ0
“ c2

3χ ´ 1

2

Er

Fr

λ`
“ c

nxχ
1 `

a

χ12 ` 4χ ´ 4χ1f

2
,

(3.37)

where nx is the x-coordinate of n “
f
f

and χ1 “
dχ
df

“
2f

a

4´3f2
.

Let us write eqs. 3.6 and 3.8 as

BtU ` A pUq BxU “ 0, (3.38)

with U “ p%, %v, %e, β, qq
T and

A pUq “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 0 % 0
0 0 0 %v c2

0 0 0 4c2q
c2´β2 β

0 0 0 ´
c2´β2

3c2´β2β
3
4q

`

c2´β2
˘2

3c2´β2

0 0 0 4c2q
3c2´β2 ´

c2´β2

3c2´β2β

˛

‹

‹

‹

‹

‹

‹

‚

. (3.39)

0 is eigenvalue with multiplicity 3. Let us write Λ˘ the two remaining eigenvalues.
They are the eigenvalues of the 2 ˆ 2 matrix

B pUq “

˜

´
c2´β2

3c2´β2β
3
4q

`

c2´β2
˘2

3c2´β2

4c2q
3c2´β2 ´

c2´β2

3c2´β2β

¸

. (3.40)

Its characteristic polynomial is Λ2 ´
2β

`

c2´β2
˘

3c2´β2 Λ´
c2´β

3c2´β2 “ 0. Its roots are Λ˘ “
c2´β2

β˘
?
3c

.
Using, for example, the symbolic computation Python library SymPy [Meurer et al.,
2017], one can check that Λ˘ “ λ˘ ´ λ0.

The three eigenvectors associated to the eigenvalue 0 are p1, 0, 0, 0, 0q
T , p0, 1, 0, 0, 0q

T

and p0, 0, 1, 0, 0q
T . The field associated to the stationary wave is linearly degenerated.

One can check that R` (resp. R´) is an eigenvector associated to the eigenvalue Λ`

(resp. Λ´), with
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R`
“

¨

˚

˚

˚

˚

˚

˚

˚

˝

?
3%

`?
3c´β

˘

4cq

´
c
`

c´
?
3β

˘`?
3c´β

˘

c2´β2
`?

3c´β
˘`

3c2´β2
˘

`?
3c`β

˘

pc2´β2q

´

?
3

`

c2´β2
˘

4cq

1

˛

‹

‹

‹

‹

‹

‹

‹

‚

, R´
“

¨

˚

˚

˚

˚

˚

˚

˚

˝

?
3%

`?
3c`β

˘

4cq
c
`

c`
?
3β

˘`?
3c`β

˘

c2´β2
`?

3c`β
˘`

3c2´β2
˘

`?
3c´β

˘

pc2´β2q
?
3

`

c2´β2
˘

4cq

1

˛

‹

‹

‹

‹

‹

‹

‹

‚

. (3.41)

The fields associated to Λ˘ are genuinely nonlinear under the condition |β| ă c.
If all the waves were linearly degenerated, the Riemann problem could be solved

exactly. Here, we use the result of Buet and Despres [2008].

3.C Derivation of β˚ and q˚

For the sake of simplicity, we focus on the one-dimensional case. We do not present
the extension to higher dimensions. Equations 3.6 and 3.8 become

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

Bt% ` %Bxβ “ 0

Bt p%vq ` %vBxβ ` c2Bxq “ 0

Bt p%eq ` p%e ` qq Bxβ ` βBxq “ 0,

Btβ ´
c2 ´ β2

3c2 ´ β2
βBxβ `

3

4q

pc2 ´ β2q
2

3c2 ´ β2
Bxq “ 0

Btq `
4c2q

3c2 ´ β2
Bxβ ´

c2 ´ β2

3c2 ´ β2
βBxq “ 0.

(3.42)

Let us recall from section 3.B that the eigenvalues of eq. 3.42 are 0 with multiplicity
3 and Λ˘ “

c2´β2

β˘
?
3c

with multiplicity 1. After some algebra, one can show that the two
last equations from eq. 3.42 rewrite

$

’

’

’

&

’

’

’

%

Btβ `
Λ` ` Λ´

2
Bxβ `

?
3 pc2 ´ β2q

4cq

Λ` ´ Λ´

2
Bxq “ 0

Btq `
4cq

?
3 pc2 ´ β2q

Λ` ´ Λ´

2
Bxβ `

Λ` ` Λ´

2
Bxq “ 0.

(3.43)

3.C.1 Relaxed set of equations
We now follow Bouchut et al. [2010]. Let us first introduce a relaxation parameter

λ. We also introduce an approximation of the velocity b « β, pressure Π « q, and
eigenvalues l˘ « Λ˘. Finally, we introduce a coefficient a which is an approximation
of 4cq

?
3pc2´β2q

. We use these approximations in the flux terms:
$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

Bt% ` %Bxb “ 0

Bt p%vq ` %vBxb ` c2BxΠ “ 0

Bt p%eq ` p%e ` Πq Bxb ` bBxΠ “ 0

Btb `
l` ` l´

2
Bxb `

l` ´ l´

2a
BxΠ “ λ pb ´ βq

BtΠ `
a pl` ´ l´q

2
Bxb `

l` ` l´

2
BxΠ “ λ pΠ ´ qq .

(3.44)
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We add the corresponding evolution equations to the system:
$

’

’

’

&

’

’

’

%

Btl
`

“ λ
`

l` ´ Λ`
˘

Btl
´

“ λ
`

l´ ´ Λ´
˘

Bta “ λ

ˆ

a ´
4cq

?
3 pc2 ´ β2q

˙

.

(3.45)

We formally recover eq. 3.42 when λ Ñ 8. We mimic this behavior by setting λ to 0
in eq. 3.45. More details about this relaxation method can be found in section 3.E.1.
We aim at building an exact solver for eqs. 3.44 and 3.45. This solver will be an
approximate solver for eq. 3.42.

3.C.2 Eigenstructure
Let us now study the eigenstructure of eqs. 3.44 and 3.45. We write W “ p%, %v, %e, b,Π, l`, l´, aq

T ,
then eqs. 3.44 and 3.45 can be written in the matrix form

BtW ` M pW q BxW “ 0, (3.46)

where

M pW q “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 0 % 0 0 0 0
0 0 0 %v c2 0 0 0
0 0 0 %e ` Π b 0 0 0

0 0 0 l``l´

2
l`´l´

2a
0 0 0

0 0 0
a

`

l`´l´
˘

2
l``l´

2
0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (3.47)

After some algebra, the eigenvalues of M are 0 with multiplicity 6 and l˘ with mul-
tiplicity 1. Let us notice that the eigenvalues of eqs. 3.44 and 3.45 are equal to the
eigenvalues of the diffusion step whenever l˘ “ Λ˘. The eigenvectors associated with
the eigenvalue 0 are

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1
0
0
0
0
0
0
0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0
1
0
0
0
0
0
0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0
0
1
0
0
0
0
0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0
0
0
0
0
1
0
0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0
0
0
0
0
0
1
0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0
0
0
0
0
0
0
1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (3.48)

ĚR`
“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

%
al`

1
l`

`

%v
a

` c2
˘

1
l`

`

%e`Π
a

` b
˘

1
a

1
0
0
0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

and ĚR´
“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

%
al´

1
l´

`

%v
a

´ c2
˘

1
l´

`

%e`Π
a

´ b
˘

1
a

´1
0
0
0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(3.49)

are the eigenvectors associated with the eigenvalues l˘.
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x

x
t

“ 0

pβL, qL, aLq pβR, qR, aRq

Λ´

Λ`

pβ˚, q˚, a˚
Lq pβ˚, q˚, a˚

Rq

Figure 3.9 – Solution of the Riemann problem for b, Π, and a.

3.C.3 Riemann invariants for a hyperbolic system
Let us recall some notions defined by Bouchut [2004]. We consider a hyperbolic

system of the form
BtU ` A pUq BxU “ 0, (3.50)

where U P Rd and A is a d ˆ d matrix. Because the system is hyperbolic, A has
d real eigenvalues, λj, and d independent eigenvectors, Rj “

´

R
p1q

j , ¨ ¨ ¨ , R
pdq

j

¯T

, for
j “ 1, ¨ ¨ ¨ , d.

A weak j-Riemann invariant is a scalar function w pUq constant along the charac-
teristic curves. In particular, from eq. 2.123 in Toro [2009],

dU pkq

R
pkq

j

(3.51)

is constant across the wave λj, for all k “ 1, ¨ ¨ ¨ , d. For example, if d “ 2, U “
`

U p1q, U p2q
˘T , R1 “

´

R
p1q

1 , R
p2q

1

¯T

and R2 “

´

R
p1q

2 , R
p2q

2

¯T

. Then,

dU p1q

R
p1q

1

“
dU p2q

R
p2q

1

(3.52)

across the wave λ1, and
dU p1q

R
p1q

2

“
dU p2q

R
p2q

2

(3.53)

across the wave λ2.
A strong j-Riemann invariant is a scalar function w pUq characterized by

Btw pUq ` λj pUq Bxw pUq “ 0. (3.54)

Bouchut [2004] shows that w pUq is a strong j-Riemann invariant if and only if w pUq

is a weak k-Riemann invariant, for k “ 1, ¨ ¨ ¨ , j ´ 1, j ` 1, ¨ ¨ ¨ , d.

3.C.4 Riemann invariants for the relaxed system
Figure 3.9 shows the wave structure for the system made of eqs. 3.44 and 3.45. We

consider only one intermediate state for the velocity b˚ and the pressure Π˚, and two
intermediate states for a, a˚

L and a˚
R.

Using eqs. 3.49 and 3.51, we have

adb “ dΠ (3.55)
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across the wave l´. From the last equation of eq. 3.45, a is a strong Riemann invariant
associated with the central wave. Therefore, a is a weak Riemann invariant associated
with both waves l´ and l`. Then, a˚

L “ aL and a˚
R “ aR. After integration, eq. 3.55

becomes
4c
?
3

ΠL

c2 ´ b2L
pbL ´ b˚

q ` pΠL ´ Π˚
q “ 0. (3.56)

Similar computations across the wave l` give

4c
?
3

ΠR

c2 ´ b2R
pbR ´ b˚

q ´ pΠR ´ Π˚
q “ 0. (3.57)

Equations 3.56 and 3.57 result in an exact solver for the relaxed system made of eqs. 3.44
and 3.45. We obtain an approximate solver for the original system, eq. 3.42. Using
q “

c2´β2

3c2`β2E, we recover the same jump relations as Buet and Despres [2008] (see also
eq. 3.24). One can show that β˚ and q˚ given by eq. 3.13 are the solution of the system
made of eqs. 3.56 and 3.57.

3.D Admissible states
Let us focus on the case without source terms. We follow Buet and Despres [2008].

To prove that the schemes developed in the chapter preserve the admissible states, we
first prove that they are entropic. As done for the radiative energy and the radiative
flux, let us introduce a specific entropy s such that Sr “ %s.

3.D.1 Diffusion step
Using eq. 1.49, we have

θptq
dSr

dt
ptq ´

dEr

dt
ptq `

βptq

c2
dFr

dt
ptq “ 0. (3.58)

Because dSr

dt
ptq “

dp%sq

dt
ptq and τ “ 1

%
, eq. 3.58 becomes

θptq
ds

dt
ptq “

de

dt
ptq ´

βptq

c2
dv

dt
ptq `

ˆ

θptqSrptq ´ Erptq `
βptq

c2
Frptq

˙

dτ

dt
ptq. (3.59)

Let us recall some results obtained in section 1.B:
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Er “ c4
3c2 ` β2

3 pc2 ´ β2q
3arθ

4

Fr “
4

3

c6arθ
4

pc2 ´ β2q
3β

Sr “
4c4arθ

3

3 pc2 ´ β2q
2 .

(3.60)

Using eq. 3.60 and q “
c2´β2

3c2`β2Er, eq. 3.59 becomes

θptq
ds

dt
ptq “

de

dt
ptq ´

βptq

c2
dv

dt
ptq ` qptq

dτ

dt
ptq. (3.61)
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Let us also recall eq. 1.82:
BtSr ` Bx pβSrq ě 0, (3.62)

with equality for smooth functions. This equation can be split into the diffusion step
BtSr ` SrBxβ ě 0, (3.63)

followed by the transport step
BtSr ` βBxSr ě 0. (3.64)

Using Sr “ %s and the first equation of eq. 3.6, eq. 3.63 rewrites
Bts ě 0. (3.65)

Following Buet and Despres [2008], let us now prove that the entropy s is non
decreasing in the semi-discrete case for the diffusion step. The semi-discrete diffusion
step is

$

’

’

’

’

’

&

’

’

’

’

’

%

∆mi
dτi
dt

ptq “ β˚

i` 1
2
ptq ´ β˚

i´ 1
2
ptq

∆mi
dvi
dt

ptq “ ´c2
´

q˚

i` 1
2
ptq ´ q˚

i´ 1
2
ptq

¯

∆mi
dei
dt

ptq “ ´

´

q˚

i` 1
2
ptqβ˚

i` 1
2
ptq ´ q˚

i´ 1
2
ptqβ˚

i´ 1
2
ptq

¯

.

(3.66)

Using eq. 3.66 in eq. 3.61, and after some algebra, we have

∆miθiptq
dsi
dt

ptq “

´

´q˚

i` 1
2
ptqβ˚

i` 1
2
ptq ` βiptqq

˚

i` 1
2
ptq ` qiptqβ

˚

i` 1
2
ptq ´ qiptqβiptq

¯

´

´

´q˚

i´ 1
2
ptqβ˚

i´ 1
2
ptq ` βiptqq

˚

i´ 1
2
ptq ` qiptqβ

˚

i´ 1
2
ptq ´ qiptqβiptq

¯

“

´

q˚

i` 1
2
ptq ´ qiptq

¯ ´

βiptq ´ β˚

i` 1
2
ptq

¯

´

´

q˚

i´ 1
2
ptq ´ qiptq

¯ ´

βiptq ´ β˚

i´ 1
2
ptq

¯

.

(3.67)
From the jump relations eq. 3.24, one can show that q˚

i` 1
2

ptq ´ qiptq and βiptq ´ β˚

i` 1
2

ptq

have the same sign, while q˚

i´ 1
2

ptq ´ qiptq and βiptq ´ β˚

i´ 1
2

ptq have the opposite sign.
One can deduce that ∆miθiptq

dsi
dt

ptq is non negative. Because ∆mi and θiptq are non
negative, one has dsi

dt
ptq ě 0 and the semi-discrete scheme for the diffusion step is

entropic.
Let us notice that, because Fr “ pEr ` qq β and q “

c2´β2

3c2`β2Er, then |Fr|
cEr

“ 4c
3c2`β2 |β|.

One can show that |Fr|
cEr

ď 1 if and only if |β| ď c or |β| ě 3c. For physical reasons, we
only consider the case |β| ď c.

From eq. 3.60, one can show that

Sr “
4

3
ca

1
4
r

ˆ

3

3c2 ` β2

˙
3
4

`

c2 ´ β2
˘

1
4 E

3
4
r . (3.68)

We assume that |βi| ă c at initial time t “ 0. Then, sipt “ 0q ą 0. Because s is
non-decreasing, siptq ą 0 for all t. This leads to

E
3
4
i

`

c2 ´ β2
i

˘
1
4 ą 0. (3.69)

If Ei ą 0, then |βi| ă c.
Buet and Despres [2008] show that∣∣∣β˚

i` 1
2

∣∣∣ ď c, (3.70)

under the Courant-Friedrichs-Lewy (CFL) condition ∆t ď ∆x
2c

for the diffusion step.
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3.D.2 Transport step
We consider now the transport step. We define rβ˚s

˘
“

β˚˘|β˚|
2

. If β˚ ě 0, then
rβ˚s

`
“ β˚ and rβ˚s

´
“ 0. On the contrary, if β˚ ď 0, then rβ˚s

`
“ 0 and rβ˚s

´
“ β˚.

With this notation, ϑi` 1
2
β˚

i` 1
2

“ ϑi

”

β˚

i` 1
2

ı`

` ϑi`1

”

β˚

i` 1
2

ı´

, for ϑ P t%, F,Eu. After
some algebra, eq. 3.16 becomes

ϑn`1
i “

ˆ

1 `
∆t

∆x

”

β˚

i` 1
2

ı´

´
∆t

∆x

”

β˚

i´ 1
2

ı`
˙

ϑiptq´
∆t

∆x

”

β˚

i` 1
2

ı´

ϑi`1ptq`
∆t

∆x

”

β˚

i´ 1
2

ı`

ϑi´1ptq.

(3.71)

3.D.3 Split scheme
Let us consider the complete split scheme, the diffusion step followed by the trans-

port step. Equation 3.71 becomes

ϑn`1
i “

ˆ

1 `
∆t

∆x

”

β˚

i` 1
2

ı´

´
∆t

∆x

”

β˚

i´ 1
2

ı`
˙

rϑi ´
∆t

∆x

”

β˚

i` 1
2

ı´
rϑi`1 `

∆t

∆x

”

β˚

i´ 1
2

ı`
rϑi´1.

(3.72)
Under the CFL condition eq. 3.70, ϑn`1

i is a convex combination of rϑi´1, rϑi and rϑi`1.
Similar computations can be done for the entropy, with inequality in eq. 3.72. By
doing the same computations as for the diffusion step, we show that En`1

i ą 0 and∣∣βn`1
i

∣∣ ď c.

3.D.4 Unsplit scheme
The unsplit scheme can be seen as the average of two steps:

ϑn`1
i “

1

2

`

ϑD
i ` ϑT

i

˘

, (3.73)

with ϑD
i given by the diffusion step and

ϑT
i “ ϑn

i ´
∆t

∆x

´

β˚

i` 1
2
ϑn
i` 1

2
´ β˚

i´ 1
2
ϑn
i´ 1

2

¯

, (3.74)

for ϑ P t%, F,Eu.
Using eq. 3.71, we have

%Ti “

ˆ

1 `
∆t

∆x

”

β˚

i` 1
2

ı´

´
∆t

∆x

”

β˚

i´ 1
2

ı`
˙

%ni ´
∆t

∆x

”

β˚

i` 1
2

ı´

%ni`1 `
∆t

∆x

”

β˚

i´ 1
2

ı`

%ni´1.

(3.75)
Under the CFL condition eq. 3.70, %n`1

i is a convex combination of %ni´1, %ni and %ni`1.
Therefore, %Ti ě 0.

For ϑ̄ P tv, eu, we have

ϑ̄T
i “

`

%ϑ̄
˘T

i

%Ti

“
%ni
%Ti

ˆ

1 `
∆t

∆x

”

β˚

i` 1
2

ı`

´
∆t

∆x

”

β˚

i´ 1
2

ı´
˙

ϑ̄n
i ´

%ni`1

%Ti

∆t

∆x

”

β˚

i` 1
2

ı´

ϑ̄n
i`1 `

%ni´1

%Ti

∆t

∆x

”

β˚

i´ 1
2

ı`

ϑ̄n
i´1

“
α0
i

%Ti
ϑ̄n
i `

α`
i

%Ti
ϑ̄n
i`1 `

α´
i

%Ti
ϑ̄n
i´1.

(3.76)
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After some algebra, one can show that α0
i ě 0, α`

i ě 0, α´
i ě 0 and α0

i `α`
i `α´

i “ %Ti .
ϑ̄T
i is a convex combination of ϑ̄n in the neighbor cells. Similar computations can be

done for the entropy, therefore sTi ě 0 and ST
i “ %Ti s

T
i ě 0. We can conclude as done

in section 3.D.3 because Sn`1
i “ 1

2

`

SD
i ` ST

i

˘

ě 0.

3.E Derivation of the unsplit scheme
The goal of this section is to build an approximate Riemann solver for eq. 3.5. For

the sake of simplicity, we focus on the one-dimensional case, but it can be extended to
higher dimensions without any difficulty.

3.E.1 Relaxed set of equations
Let us introduce an approximation of the density r « %, velocity b « β, radiative

flux µ « %v, energy ϕ « %e and pressure Π « q and a relaxation parameter λ in the
flux terms:

$

’

&

’

%

Bt% ` Bx prbq “ 0

Bt p%vq ` Bx pbµq ` c2BxΠ “ 0

Bt p%eq ` Bx pϕbq ` Bx pΠbq “ 0.

(3.77)

We add the corresponding evolution equations to the system:

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

Btr ` bBxr “ λ pr ´ %q

Btµ ` bBxµ “ λ pµ ´ %vq

Btϕ ` bBxϕ “ λ pϕ ´ %eq

Btb ´
c2 ´ b2

3c2 ´ b2
bBxb `

3

4Π

pc2 ´ b2q
2

3c2 ´ b
BxΠ “ λ pb ´ βq

BtΠ `
4c2Π

3c2 ´ b2
Bxb ´

c2 ´ b2

3c2 ´ b2
bBxΠ “ λ pΠ ´ qq .

(3.78)

The relaxed system is an approximation of the original system, which can be recovered
in the limit λ Ñ 8. We solve it using an operator splitting technique. We first solve
Bt

rϑ “ λ
´

rϑ ´ ϑ
¯

for
´

ϑ, rϑ
¯

P tp%, rq , p%v, µq , p%e, ϕq , pβ, bq , pq,Πqu, followed by the
transport system without source terms, with λ “ 0. We end up with the following
system:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Bt% ` bBxr ` rBxb “ 0

Bt p%vq ` bBxµ ` µBxb ` c2BxΠ “ 0

Bt p%eq ` bBxϕ ` pϕ ` Πq Bxb ` bBxΠ “ 0

Btr ` bBxr “ 0

Btµ ` bBxµ “ 0

Btϕ ` bBxϕ “ 0

Btb ´
c2 ´ b2

3c2 ´ b2
bBxb `

3

4Π

pc2 ´ b2q
2

3c2 ´ b
BxΠ “ 0

BtΠ `
4c2Π

3c2 ´ b2
Bxb ´

c2 ´ b2

3c2 ´ b2
bBxΠ “ 0.

(3.79)
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3.E.2 Eigenstructure
Let us now study the eigenstructure of eq. 3.79. We write ĂW “ p%, %v, %e, r, µ, ϕ, b,Πq

T ,
then eq. 3.79 can be written in the matrix form

Bt ĂW ` rM
´

ĂW
¯

Bx ĂW “ 0, (3.80)

where

rM
´

ĂW
¯

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 0 b 0 0 r 0
0 0 0 0 b 0 µ c2

0 0 0 0 0 b ϕ ` Π b
0 0 0 b 0 0 0 0
0 0 0 0 b 0 0 0
0 0 0 0 0 b 0 0

0 0 0 0 0 0 ´ c2´b2

3c2´b2
b 3

4Π

`

c2´b2
˘2

3c2´b2

0 0 0 0 0 0 4c2Π
3c2´b2

´ c2´b2

3c2´b2
b

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (3.81)

Using similar computations as in section 3.B, the eigenvalues of rM are 0 with mul-
tiplicity 3, b with multiplicity 3, rΛ` and rΛ´, with rΛ˘ “ c2´b2

b˘
?
3c

. The three eigenvectors
associated with the eigenvalue 0 are

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1
0
0
0
0
0
0
0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0
1
0
0
0
0
0
0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0
0
1
0
0
0
0
0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (3.82)

The field associated with the stationary wave is linearly degenerated. The three eigen-
vectors associated with the eigenvalue b are

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1
0
0
1
0
0
0
0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0
1
0
0
1
0
0
0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0
0
1
0
0
1
0
0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (3.83)

The field is also linearly degenerated. Finally, rR
`

and rR
´

are the eigenvectors associ-
ated with the eigenvalues rΛ` and rΛ´ respectively, with

rR
`

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

?
3r

`?
3c´b

˘

4cΠ

´
c
`

c´
?
3b

˘`?
3c´b

˘

c2´b
`?

3c´b
˘`

3c2´b2
˘

`?
3c`b

˘

pc2´b2q

0
0
0

´

?
3

`

c2´b2
˘

4cΠ

1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, rR
´

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

?
3r

`?
3c`b

˘

4cΠ
c
`

c`
?
3b

˘`?
3c`b

˘

c2´b2
`?

3c`b
˘`

3c2´b2
˘

`?
3c´b

˘

pc2´b2q

0
0
0

?
3

`

c2´b2
˘

4cΠ

1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (3.84)
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The field is genuinely nonlinear.

3.E.3 Jump conditions

Let us now write the jump conditions to solve the Riemann problem associated with
eq. 3.79. From eq. 3.77, we only need the variables r, µ, ϕ, b and Π in an intermediate
state to update the variables of interest %, %v and %e. We are not interested in the
update of the relaxed variables r, µ, ϕ, b, and Π. The intermediate state for b and Π
will be given by Buet and Despres [2008], therefore we focus on the intermediate state
for r, ϕ and µ.

We introduce the artificial density variable Θ to rewrite eq. 3.79 in conservative
variables:

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

Bt% ` Bx pbrq “ 0

Bt p%vq ` Bx pbµq ` c2BxΠ “ 0

Bt p%eq ` Bx pbϕq ` Bx pbΠq “ 0

Bt pΘrq ` Bx pΘbrq “ 0

Bt pΘµq ` Bx pΘbµq “ 0

Bt pΘϕq ` Bx pΘbϕq “ 0

BtΘ ` Bx pbΘq “ 0.

(3.85)

The corresponding Rankine-Hugoniot jump condition for a discontinuity of speed D
are

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

´D r%s ` rrbs “ 0

´D r%vs ` rbµs ` c2 rΠs “ 0

´D r%es ` rbϕs ` rbΠs “ 0

´D rΘrs ` rΘbrs “ 0

´D rΘµs ` rΘbµs “ 0

´D rΘϕs ` rΘbϕs “ 0

´D rΘs ` rbΘs “ 0,

(3.86)

where r¨s is the difference from either side of the discontinuity. We introduce the
following quantify:

m “ Θ pb ´ Dq , (3.87)

to write the jump condition as

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

´D r%s ` rrbs “ 0

´D r%vs ` rbµs ` c2 rΠs “ 0

´D r%es ` rbϕs ` rbΠs “ 0

m rrs “ 0

m rµs “ 0

m rϕs “ 0

rms “ 0.

(3.88)

We now have to consider several cases:
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1. If D “ 0, then eq. 3.88 becomes
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

rbrs “ 0

rbµs ` c2 rΠs “ 0

rbϕs ` rbΠs “ 0

m rrs “ 0

m rµs “ 0

m rϕs “ 0

rms “ 0,

(3.89)

which leads to
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

b rrs “ 0

b rµs ` c2 rΠs “ 0

b rϕs ` b rΠs “ 0

m rrs “ 0

m rµs “ 0

m rϕs “ 0

rms “ 0.

(3.90)

1.a. If D “ 0 and b “ 0, then we have m “ 0 and rrs P R, rµs P R, rϕs P R.
1.b. If D “ 0 and b ‰ 0, then rrs “ 0, rµs “ 0, rϕs “ 0.

2. If D ‰ 0,
2.a. We first assume that rbs “ 0. Then eq. 3.88 becomes

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

´D r%s ` b rrs “ 0

´D r%vs ` b rµs ` c2 rΠs “ 0

´D r%es ` b rϕs ` b rΠs “ 0

m rrs “ 0

m rµs “ 0

m rϕs “ 0

pb ´ Dq rΘs “ 0.

(3.91)

2.a.i. If D ‰ 0, rbs “ 0 and D “ b, then m “ 0 and rrs P R, rµs P R, rϕs P R.
2.a.ii. If D ‰ 0, rbs “ 0 and D ‰ b, then rrs “ 0, rµs “ 0, rϕs “ 0.

2.b. If D ‰ 0 and rbs ‰ 0, we have to consider two cases:
2.b.i. If D ‰ 0, rbs ‰ 0 and b ‰ D, then m ‰ 0 and rrs “ 0, rµs “ 0, rϕs “ 0.
2.b.ii. If D ‰ 0, rbs ‰ 0 and b “ D, then m “ 0 and rrs P R, rµs P R, rϕs P R

Table 3.2 summarizes the different cases.

3.E.4 Riemann problem solution
Let us consider a piecewise initial data defined by

$

&

%

prL, µL, ϕL, bL,ΠLq
T if x

t
ă rΛ´,

prR, µR, ϕR, bR,ΠRq
T if x

t
ą rΛ`.

(3.92)
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Value of D and b rrs , rµs , rϕs Wave
D “ 0, b “ 0 P R Contact wave
D “ 0, b ‰ 0 “ 0 -

D ‰ 0, rbs “ 0, D “ b P R Contact wave
D ‰ 0, rbs “ 0, D ‰ b “ 0 -
D ‰ 0, rbs ‰ 0, D ‰ b “ 0 -
D ‰ 0, rbs ‰ 0, D “ b P R Shock wave

Table 3.2 – Summary of the different cases, according to the value of D and b.

x

x
t

“ 0

pbL,ΠLq pbR,ΠRq

D “ rΛ´

D “ rΛ`

pb˚,Π˚q

Figure 3.10 – Solution of the Riemann problem for b and Π.

x

x
t

“ 0

pbL,ΠLq prL, µL, ϕLq pbR,ΠRq prR, µR, ϕRq

D “ rΛ´

D “ rΛ`

pb˚,Π˚qpbL,ΠLq

D “ bL

prR, µR, ϕRq prR, µR, ϕRq

Figure 3.11 – Solution of the Riemann problem for b, Π, r, µ, ϕ with D “ bL.

x

x
t

“ 0

pbL,ΠLq prL, µL, ϕLq pbR,ΠRq prR, µR, ϕRq

D “ rΛ´

D “ rΛ`

pb˚,Π˚q pb˚,Π˚q

D “ b˚

prL, µL, ϕLq prR, µR, ϕRq

Figure 3.12 – Solution of the Riemann problem for b, Π, r, µ, ϕ with D “ b˚ ă 0.
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x

x
t

“ 0

pbL,ΠLq prL, µL, ϕLq pbR,ΠRq prR, µR, ϕRq

D “ rΛ´

D “ rΛ`

pb˚,Π˚q pb˚,Π˚q

D “ b˚

prL, µL, ϕLq prR, µR, ϕRq

Figure 3.13 – Solution of the Riemann problem for b, Π, r, µ, ϕ with D “ b˚ ą 0.

x

x
t

“ 0

pbL,ΠLq prL, µL, ϕLq pbR,ΠRq prR, µR, ϕRq

D “ rΛ´

D “ rΛ`

pb˚,Π˚q pbR,ΠRq

D “ bR

prL, µL, ϕLqprL, µL, ϕLq

Figure 3.14 – Solution of the Riemann problem for b, Π, r, µ, ϕ with D “ bR.

We now build an approximate Riemann solver for eq. 3.79. We are looking for a
function composed of three states separated by discontinuities as follows (see fig. 3.10):

$

’

’

’

’

&

’

’

’

’

%

prL, µL, ϕL, bL,ΠLq
T if x

t
ă rΛ´,

pr˚, µ˚, ϕ˚, b˚,Π˚
q
T if rΛ´

ă
x

t
ă rΛ`,

prR, µR, ϕR, bR,ΠRq
T if x

t
ą rΛ`.

(3.93)

The computation of b˚ and Π˚ is independent of the other variables. We take b˚ and
Π˚ given by eq. 3.26, but other choices can be done. Let us now show the different
possible wave patterns. Then, we distinguish the different cases corresponding to the
localization of the wave D “ b:

— D “ bL: we take pr˚, µ˚, ϕ˚q
T

“ prR, µR, ϕRq
T , see fig. 3.11.

— D “ b˚: we take

pr˚, µ˚, ϕ˚
q
T

“

$

&

%

prL, µL, ϕLq
T if x

t
ă b˚,

prR, µR, ϕRq
T if x

t
ą b˚,

(3.94)

see figs. 3.12 and 3.13.
— D “ bR: we take pr˚, µ˚, ϕ˚q

T
“ prL, µL, ϕLq

T , see fig. 3.14.

3.E.5 Riemann flux computation
From the wave pattern shown previously, we can deduce the following algorithm

to compute the numerical fluxes F˚ on the density and radiative flux variables, % and
%v given by our relaxed system eq. 3.79. To do so, we evaluate the flux function from
eq. 3.5 on the state obtained on x

t
“ 0:
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1. Compute pb˚,Π˚q with eq. 3.26;

2. Compute the flux according to the sign of b˚:

F˚

¨

˝

¨

˝

%L
FL

EL

˛

‚ ,

¨

˝

%R
FR

ER

˛

‚

˛

‚ “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

¨

˝

%Lb
˚

FLb
˚ ` c2Π˚

ELb
˚ ` Π˚b˚

˛

‚ if b˚
ě 0

¨

˝

%Rb
˚

FRb
˚ ` c2Π˚

ERb
˚ ` Π˚b˚

˛

‚ if b˚
ď 0.

(3.95)

3.F Numerical schemes in the diffusive limit
As in section 2.B, we consider both numerical schemes developed in section 3.1

in the asymptotic regime, with σs
i` 1

2

∆x Ñ 8. Following section 1.4, we introduce the

rescaling parameter ε to write the time (resp. the opacity) as Ă∆t “ ε∆t (resp. rσa “ εσa

and rσs “ εσs). This leads to

ε%n`1
i “ ε%ni ´

Ă∆t

∆x

´

%m
i` 1

2
β˚

i` 1
2

´ %m
i´ 1

2
β˚

i´ 1
2

¯

(3.96a)

ε2F n`1
i “ ε2F n

i ´ ε
Ă∆t

∆x

´

Fm
i` 1

2
β˚

i` 1
2

` c2q˚

i` 1
2

´ Fm
i´ 1

2
β˚

i´ 1
2

´ c2q˚

i´ 1
2

¯

´ c rσs
i
Ă∆tF n`1

i (3.96b)

ε2En`1
i “ ε2En

i ´ ε
Ă∆t

∆x

´

Em
i` 1

2
β˚

i` 1
2

` q˚

i` 1
2
β˚

i` 1
2

´ Em
i´ 1

2
β˚

i´ 1
2

´ q˚

i´ 1
2
β˚

i´ 1
2

¯

` c rσa
i
Ă∆t

´

ar
`

T n`1
i

˘4
´ En`1

i

¯

(3.96c)

ε2ρcvT
n`1
i “ ε2ρcvT

n
i ´ c rσa

i
Ă∆t

´

ar
`

T n`1
i

˘4
´ En`1

i

¯

, (3.96d)

where ϑm
i` 1

2

is given by eq. 3.17 for the split scheme (ϑm
i` 1

2

“ rϑi` 1
2
) and by eq. 3.20 for

the unsplit scheme (ϑm
i` 1

2

“ ϑn
i` 1

2

), for ϑ P t%, F,Eu.
Variables are expanded, e.g., En

i “ En
i,0 ` εEn

i,1 ` O pε2q. Expanding eq. 3.96c or
eq. 3.96d at order 0 leads to

En`1
i,0 “ ar

`

T n`1
i,0

˘4
. (3.97)

Equation 3.96b at order 0 leads to

F n`1
i,0 “ 0. (3.98)

Because F n
i,0 “

`

En
i,0 ` qni,0

˘

βn
i,0 and E ` q ą 0, one has

βn
i,0 “ 0. (3.99)

At order 0 for eq. 3.96a, we have β˚

i` 1
2
,0

´ β˚

i´ 1
2
,0

“ 0 for all cells i. Therefore, β˚

i` 1
2
,0

“

C, where C is a constant that does not depend on i. With well-chosen boundary
conditions, we have β˚

0` 1
2
,0

“ 0, which leads to β˚

i` 1
2
,0

“ 0 for all cells i.
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Moreover,

0 “ β˚

i` 1
2
,0

“

?
3c

4

ˆ

qni,0 ´
Ăσs

i` 1
2

2c
F n
i,1

˙

´

ˆ

qni`1,0 `
Ăσs

i` 1
2

2c
F n
i`1,0

˙

En
i,0 ` En

i`1,0

ô
F n
i`1,1 ` F n

i,1

2
“ ´

c

rσs
i` 1

2

qni`1,0 ´ qni,0
∆x

.

(3.100)

Using eq. 3.99 in the definition of q, we have qni,0 “ 1
3
En

i,0 and

F n
i`1,1 ` F n

i,1

2
“ ´

c

3 rσs
i` 1

2

En
i`1,0 ´ En

i,0

∆x
. (3.101)

Let us now consider the sum of eq. 3.96c and eq. 3.96d. The term of order 1 is 0
because β˚

i` 1
2
,0

“ 0. We now look at the term of order 2 in the numerical fluxes. For
the same reason, it is

Em
i` 1

2
,0
β˚

i` 1
2
,1

` q˚

i` 1
2
,0
β˚

i` 1
2
,1

´ Em
i´ 1

2
,0
β˚

i´ 1
2
,1

´ q˚

i´ 1
2
,0
β˚

i´ 1
2
,1
. (3.102)

From now on, we assume that all functions are sufficiently smooth to write, for example,

En
i`1,0 “ En

i,0 ` ∆x
En

i`1,0 ´ En
i,0

∆x
“ En

i,0 ` O p∆xq . (3.103)

We can now look at the different terms involved in eq. 3.102. First,

β˚

i` 1
2
,1

“
En

i,0β
n
i,1 ` En

i`1,0β
n
i`1,1

En
i,0 ` En

i`1,0

´
3
?
3c

4

¨

˚

˚

˚

˚

˝

qni`1,1 ´ qni,1
En

i,0 ` En
i`1,0

loooooomoooooon

Op∆xq

´

rσs
i` 1

2
∆x

2c

F n
i`1,2 ´ F n

i,2

En
i,0 ` En

i`1,0
loooooomoooooon

Op∆xq

˛

‹

‹

‹

‹

‚

“ αiβ
n
i,1 ` p1 ´ αiq β

n
i`1,1 ` O p∆xq ,

(3.104)
with αi “

En
i,0

En
i,0`En

i`1,0
. Second,

q˚

i` 1
2
,0

“

qni,0
En

i,0
`

qni`1,0

En
i`1,0

1
En

i,0
` 1

En
i`1,0

`

rσs
i` 1

2
∆x

2c

Fn
i`1,1

En
i`1,0

´
Fn
i,1

En
i,0

1
En

i,0
` 1

En
i`1,0

“
En

i`1,0q
n
i,0 ` En

i,0q
n
i`1,0

En
i,0 ` En

i`1,0

` O p∆xq

“ p1 ´ αiq q
n
i,0 ` αiq

n
i`1,0 ` O p∆xq .

(3.105)

Using eqs. 3.104 and 3.105, one has

βn
i` 1

2
,1
qn
i` 1

2
,0

“ αiβ
n
i,1q

n
i,0 ` p1 ´ αiq β

n
i`1,1q

n
i`1,0 ` O p∆xq . (3.106)

Furthermore,

αi “
En

i,0

En
i,0 ` En

i`1,0

“
1

2
` O p∆xq , (3.107)
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which leads to
βn
i` 1

2
,1
qn
i` 1

2
,0

“
1

2
βn
i,1q

n
i,0 `

1

2
βn
i`1,1q

n
i`1,0. (3.108)

Likewise,

Em
i` 1

2
,0
βn
i` 1

2
,1

“ αiE
m
i` 1

2
,0
βn
i,1 ` p1 ´ αiqE

m
i` 1

2
,0
βn
i`1,1 ` O p∆xq

“
1

2
Em

i,0β
n
i,1 `

1

2
Em

i`1,0β
n
i`1,1 ` O p∆xq .

(3.109)

Finally,
´

Em
i` 1

2
,0

` qn
i` 1

2
,0

¯

βn
i` 1

2
,1

“
1

2

`

Em
i,0 ` qni,0

˘

βn
i,1 `

1

2

`

Em
i`1,0 ` qni`1,0

˘

βn
i`1,1 ` O p∆xq .

(3.110)
Using the unsplit scheme, we have Em

i “ En
i and eq. 3.110 becomes

´

Em
i` 1

2
,0

` qn
i` 1

2
,0

¯

βn
i` 1

2
,1

“
F n
i,1 ` F n

i`1,1

2
` O p∆xq , (3.111)

which leads to

En`1
i,0 ` ρcvT

n`1
i,0 “ En

i,0 ` ρcvT
n
i,0 `

cĂ∆t

3∆x2

˜

En
i`1,0 ´ En

i,0

rσs
i` 1

2

´
En

i,0 ´ En
i´1,0

rσs
i´ 1

2

¸

` O p∆xq .

(3.112)
Using the split scheme, we can write Em

i “ rEi “ En
i `O p∆tq and eq. 3.110 becomes

En`1
i,0 `ρcvT

n`1
i,0 “ En

i,0`ρcvT
n
i,0`

cĂ∆t

3∆x2

˜

En
i`1,0 ´ En

i,0

rσs
i` 1

2

´
En

i,0 ´ En
i´1,0

rσs
i´ 1

2

¸

`O p∆xq`O p∆tq .

(3.113)
Equations 3.112 and 3.113 are consistent with the diffusion equation eq. 1.24 because
O p∆xq and O p∆tq go to 0 as ∆x and ∆t go to 0. To summarize, eqs. 3.97, 3.98, 3.101,
3.112 and 3.113 are standard discretization of eqs. 1.22 to 1.24, so these schemes are
asymptotic preserving.

Unlike the scheme developed in chapter 2 or the one presented by Berthon and
Turpault [2011], we do not need to choose a parameter to recover the asymptotic
behavior.
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In chapter 2, we presented an asymptotic preserving scheme, with a well-balanced
modification of the source terms, that uses a time-implicit integration. Nevertheless, it
does not preserve the admissible states Er ą 0 and ||Fr|| ď cEr. To tackle this issue, we
presented in chapter 3 an asymptotic preserving scheme that preserves the admissible
states. For the sake of simplicity, we derived it using a time-explicit integration. This
chapter is an additional step towards the derivation of a time-implicit and asymptotic
preserving scheme that preserves the admissible states: we present an implicit solver
that preserves the admissible states. In this chapter, we consider a time-implicit HLL
solver, without source terms. Therefore, the asymptotic preserving and well-balanced
properties are not considered.

This chapter is organized as follows. We first present in section 4.1 a Jacobi method
to solve the nonlinear system arising from the discretization of the M1 model. Because
this method is iterative, its convergence rate can be improved thanks to multigrid
acceleration. We explore this technique in section 4.2. In section 4.3, we perform some
tests to validate both algorithms. We also show some performance results. Finally, we
reach our conclusion in section 4.4.

4.1 Nonlinear Jacobi method
We use notations similar to the previous chapters. We note h the step along the

x-direction. As previously, ∆t is the time interval between the current time tn and
tn`1. We write xi the center of the cell i. We use the notation un

i to represent the
averaged quantity associated with the field u at time tn in the cell i (finite volume).

4.1.1 Time-implicit HLL solver
Let us consider a time-implicit HLL solver for the M1 model without source terms.

For the sake of simplicity, we use fixed eigenvalues in the numerical fluxes (eq. 2.2).
This leads to solving the following nonlinear system:

$

’

’

&

’

’

%

En`1
i

ˆ

1 ` c
∆t

h

˙

´
∆t

2h

`

cEn`1
i`1 ´ F n`1

i`1

˘

´
∆t

2h

`

cEn`1
i´1 ` F n`1

i´1

˘

“ En
i

F n`1
i

ˆ

1 ` c
∆t

h

˙

´
c∆t

2h

`

F n`1
i`1 ´ cP n`1

i`1

˘

´
c∆t

2h

`

F n`1
i´1 ` cP n`1

i´1

˘

“ F n
i .

(4.1)

As done in chapter 2, eq. 4.1 can be solved using a Newton-Raphson method. However,
numerical tests, especially in the free-streaming regime, have shown that the admissible
states are not preserved when large time steps are used. A solution is therefore to reduce
the time step, but it leads to poor performances when the radiative transfer is coupled
to hydrodynamics. Buet and Despres [2006] show how the resolution of eq. 4.1 can be
reduced to the resolution of a linear system (by fixing the nonlinearity at time tn) and
why this approach does not preserve the admissible states either.

In the next section, we present another method to solve eq. 4.1 while preserving
the admissible states.

4.1.2 Jacobi method
Let us follow the work of Pichard [2016]. We first define the set of admissible states

S “ tpEr,Frq , Er ą 0, ||Fr|| ď cEru . (4.2)
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By writing v “ p¨ ¨ ¨ , Ei,F i, ¨ ¨ ¨ q
T

P SN , where N is the number of cells, eq. 4.1 rewrites

´ L
`

vn`1
i´1

˘

` D
`

vn`1
i

˘

´ R
`

vn`1
i`1

˘

“ vni . (4.3)

The operators L, D, and R contain the terms depending on
`

En`1
i´1 ,F

n`1
i´1

˘

,
`

En`1
i ,F n`1

i

˘

and
`

En`1
i`1 ,F

n`1
i`1

˘

respectively.
Equation 4.1 can also be seen as

A pvq “ f , (4.4)

where A is a nonlinear operator and f P SN is a known vector.
From Pichard [2016], we solve eq. 4.4 using algorithm 1.

Algorithm 1 Nonlinear Jacobi method
Initialization: vn`1,p0q “ vn

while
∣∣∣∣A `

vn`1,pkq
˘

´ f
∣∣∣∣ ą εJ do

for each cell i do

v
n`1,pk`1q

i “ D´1
´

fi ` L
´

v
n`1,pkq

i´1

¯

` R
´

v
n`1,pkq

i`1

¯¯

(4.5)

end for
k Ð k ` 1

end while
vn`1 “ vn`1,pkq

Let us notice that if A is a linear operator, algorithm 1 simplifies into the classical
Jacobi method for a tridiagonal matrix (see e.g., Saad 2003). Pichard [2016] also shows
that this algorithm converges to the unique solution vn`1 because the operator A is
contractant.

4.1.3 Preservation of the admissible states
We assume that vni P S, and we show that vn`1

i obtained with algorithm 1 is also
admissible, i.e., vn`1

i P S. Let us show that if vn`1,pkq P SN , then vn`1,pk`1q P SN .
Using Proposition 5.1 in Pichard [2016], one can show that L and R are stable, i.e.,

L pvq P S and R pvq P S if v P S.
Because fi “ vni , it is admissible and fi ` L pvi´1q ` R pvi`1q P S.
Finally, in this particular case, D “

`

1 ` c∆t
h

˘

I, where I is the identity matrix. So,
if v P S, then D´1 pvq “ 1

1`c∆t
h

v P S.

We have shown that D´1, L, and R are stable. Therefore, vn`1,pk`1q

i is admissible.
By induction, the proof is complete.

4.2 Geometric multigrid (GMG)

4.2.1 Convergence problematic
Even though the algorithm described in section 4.1 does not include the treatment

of source terms for the M1 model, it is the early development of a time-implicit solver
suitable for the study of astrophysical problems. Therefore, it is reasonable to investi-
gate its performances with academic problems. The one considered here is the beam
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Figure 4.1 – Evolution of the residual as a function of the number of iterations of Jacobi
method, with different resolutions.

Number of cells Cell-updates/s
129 ˆ 129 146
257 ˆ 257 76
513 ˆ 513 38

Table 4.1 – Number of cell-updates per second of Jacobi method, with different resolutions.

test already described in sections 2.2.3 and 3.2.1.2. It is the propagation of a beam
in the vacuum, therefore it is well-suited to test our solver, as there is no opacity. A
square two-dimensional domain is discretized with the same number of cells in both x
and y-directions. Because the solver is time-implicit, we set a time step ∆t such that
the steady state is reached with one iteration. This test is discussed more precisely in
section 4.3.1.

Figure 4.1 shows the evolution of the norm of the residual as a function of the
number of iterations of the Jacobi method, with different resolutions. As the resolution
increases, the number of iterations needed to reach the same residual also increases,
from 4 000 iterations with 129 ˆ 129 cells up to 15 000 iterations with 513 ˆ 513 cells.
As shown by table 4.1, performances decrease as the resolution increases, from around
150 cell-updates/s with 129 ˆ 129 cells down to 40 cell-updates/s with 513 ˆ 513 cells.

Indeed, Saad [2003] explains that the convergence rate decreases as the size of the
problem increases, resulting in a decrease in performance. For linear problems, classical
iterative methods are efficient to compute the high frequencies of the solution, but lack
efficiency to compute its low frequencies. However, the computation is easier on a
coarser grid with fewer unknowns. This observation has lead to the development of
the geometric multigrid technique. The initial guess for the Jacobi algorithm (or any
iterative method) is an interpolation of a solution computed on a coarser grid. This
method requires information about the geometry of the problem, unlike preconditioners
based on Krylov subspace. This additional information allows the multigrid method
to be very efficient, but it lacks generality. To tackle this issue, algebraic multigrid
methods have been developed, see section 5.1.5.
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We first present the geometric multigrid algorithm in the linear case (section 4.2.2).
Then, in section 4.2.3, we present its extension to the general nonlinear case, leading to
the Full Approximation Scheme (FAS). Finally, in section 4.2.4 we apply it to the M1
model, and we highlight the distinctive features of radiative transfer, i.e., the preser-
vation of the admissible states Er ą 0 and f ď 1.

4.2.2 Linear case
In this section, we present the main ideas of the geometric multigrid method. It

does not intend to be a full review of existing work, see e.g., Briggs et al. [2000]; Brandt
and Livne [2011].

We are interested in solving the linear system

Av “ f , (4.6)

with an iterative method, such as Jacobi [Saad, 2003], where A is an invertible matrix.
We assume that this system is obtained by the discretization of a PDE and therefore
depends on a step h. For example, let us consider the Poisson equation:

#

´∆u pxq “ f pxq for x P Ω,

u pxq “ 0 for x P BΩ,
(4.7)

where BΩ is the boundary of Ω. In the one-dimensional case, a finite difference dis-
cretization of eq. 4.7 leads to solving a linear system of the form given by eq. 4.6,
with

A “
1

h2

¨

˚

˚

˚

˚

˚

˝

2 ´1
´1 2 ´1

. . . . . . . . .
´1 2 ´1

´1 2

˛

‹

‹

‹

‹

‹

‚

and f “

¨

˚

˝

f px1q
...

f pxnq

˛

‹

‚

. (4.8)

As mentioned above, the initial guess used in the Jacobi algorithm is the interpo-
lation of a solution obtained on a coarser grid. This solution computed on the coarse
grid can be itself computed thanks to a solution obtained on a third grid, even coarser.
This process can be applied recursively until the last grid has only a few unknowns and
the problem could be solved with a direct method, which leads to the so-called “nested
iterations”. From Briggs et al. [2000], this requires the definition of two elements:

— a hierarchy of grids, completed with restriction and prolongation operators;
— a smoother to solve the system on a given mesh.
Our goal is to solve nonlinear systems coming from the discretization of the M1

model, then we will use the Jacobi method presented in section 4.1 as smoother.
Therefore, we also use a Jacobi method as smoother in the linear case, and we do
not investigate the impact of the smoother anymore. In the linear case, one can study
the eigenvalues and eigenvectors of A, as well as the iterative method to understand
how the smoother allows the quick decrease of the high frequencies of the error.

The hierarchy of grids is handled through recursiveness, we only need to describe
the method with two grids. The domain Ω is discretized with two Cartesian meshes:
the first one with step h, written Ωh and the second one with step 2h, written Ω2h. Ωh

contains 2d times more elements than Ω2h, where d is the dimension of the problem.
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Figure 4.2 – Two-grid cycle.
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1 1
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Figure 4.3 – Prolongation operator in the one-dimensional case. The blue arrow represents
the operator if ih is even and the red arrows represent the operator if ih is odd.
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Figure 4.4 – Prolongation operator in the two-dimensional case. The coarse mesh Ω2h is in
blue, the fine mesh Ωh is in red, the weight of the cells in the coarse mesh is in green. The
computed cell is colored.

Let us now define the restriction and prolongation operators used for inter-grid
operations. We write the prolongation operator Ph

2h : Ω2h Ñ Ωh and the restriction
operator R2h

h : Ωh Ñ Ω2h, see fig. 4.2.
We begin with the prolongation operator. We use full weighting operators [Strang,

2006]. Let us consider the one-dimensional case, with an odd number of cells in the
fine mesh. Indices ih even in the fine mesh are the same as i2h in the coarse mesh (see
fig. 4.3). Values corresponding to these cells in the coarse mesh are just moved in the
fine mesh. The other values in the fine mesh are obtained by linear interpolation. The
prolongation operator writes

`

Ph
2h

`

v2h
˘˘

ih
“

$

&

%

v2h
i2h if ih is even,

1

2

`

v2h
i2h ` v2h

i2h`1

˘

if ih is odd.
(4.9)

We present now the prolongation operator in the two-dimensional case. A cell ih, jh
in the fine mesh Ωh can be mapped directly into the cell i2h, j2h in the coarse mesh
Ω2h, with ih “ 2i2h and jh “ 2j2h. The value in a cell of the fine mesh is obtained by
the interpolation in one direction, followed by the interpolation in the other direction.
The interpolation in the x-direction gives

`

Ph
2h

`

v2h
˘˘

2i2h,2j2h
“ v2h

i2h,j2h and
`

Ph
2h

`

v2h
˘˘

2i2h`1,2j2h
“

1

2

`

v2h
i2h,j2h ` v2h

i2h`1,j2h

˘

.

(4.10)
The interpolation in the y-direction preserves these values and gives

`

Ph
2h

`

v2h
˘˘

2i2h,2j2h`1
“

1

2

`

v2h
i2h,j2h ` v2h

i2h,j2h`1

˘

. (4.11)

Finally, the last value is given by
`

Ph
2h

`

v2h
˘˘

2i2h`1,2j2h`1
“

1

4

`

v2h
i2h,j2h ` v2h

i`12h,j2h ` v2h
i2h,j2h`1 ` v2h

i2h`1,j2h`1

˘

(4.12)
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Figure 4.5 – Restriction operator. The coarse mesh Ω2h is in blue, the fine mesh Ωh is in red,
the weight of the cells in the fine mesh is in green. The computed cell is colored.

Using eqs. 4.10 to 4.12 leads to writing the prolongation operator as

`

Ph
2h

`

v2h
˘˘

ih,jh
“

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

v2h
i2h,j2h if ih is even and jh is even,

1

2

`

v2h
i2h,j2h ` v2h

i2h`1,j2h

˘

if ih is odd and jh is even,
1

2

`

v2h
i2h,j2h ` v2h

i2h,j`12h

˘

if ih is even and jh is odd,
1

4

`

v2h
i2h,j2h ` v2h

i`12h,j2h ` v2h
i2h,j2h`1 ` v2h

i2h`1,j2h`1

˘

if i2h is odd and j2h is odd.

(4.13)

See also fig. 4.4.
Let us now consider the restriction operator. We first consider the case where

the mesh is given by fig. 4.3. The prolongation operator can be made explicit, with
appropriate boundary conditions:

vh
“

`

Ph
2h

`

v2h
˘˘

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

vh
1

vh
2

vh
3

vh
4

vh
5

vh
6

vh
7

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

vh
2ˆ0`1

vh
2ˆ1

vh
2ˆ1`1

vh
2ˆ2

vh
2ˆ2`1

vh
2ˆ3

vh
2ˆ3`1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

“
1

2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0
2 0 0
1 1 0
0 2 0
0 1 1
0 0 2
0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˝

v2h
1

v2h
2

v2h
3

˛

‚ . (4.14)

Even though the prolongation operator is written as an operator, it is linear and can
therefore be seen as a matrix, Ph

2h. Apart the first and the last rows that handle of
boundary conditions, the sum of the coefficients in a row is 1. Values on the fine mesh
are convex combinations of values on the coarse mesh.

We take the restriction operator as the transpose of the prolongation operator:
R2h

h “ 1
2d

`

Ph
2h

˘T , where d is the dimension of the problem (d P t1, 2, 3u). Thanks to
the factor 1

2d
, values on the coarse mesh are also convex combinations of values on the

fine mesh. In the one one-dimensional case given by fig. 4.3, the restriction operator
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writes

v2h
“

`

R2h
h

`

v2h
˘˘

“

¨

˝

v2h
1

v2h
2

v2h
3

˛

‚ “
1

4

¨

˝

1 2 1 0 0 0 0
0 0 1 2 1 0 0
0 0 0 0 1 2 1

˛

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚
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vh
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vh
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˛

‹
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. (4.15)

In the general one-dimensional case, we have

`

R2h
h

`

vh
˘˘

i2h
“

1

4
vh
ih´1 `

1

2
vh
ih `

1

4
vh
ih`1. (4.16)

Numerical tests in section 4.3 are done in the two-dimensional case, we also make R2h
h

explicit with d “ 2 (see also fig. 4.5):

`

R2h
h

`

vh
˘˘

i2h,j2h
“

1

16
vh
ih´1,jh´1 `

1

8
vh
ih´1,jh `

1

16
vh
ih´1,jh`1

`
1

8
vh
ih,jh´1 `

1

4
vh
ih,jh `

1

8
vh
ih,jh`1

`
1

16
vh
ih`1,jh´1 `

1

8
vh
ih`1,jh `

1

16
vh
ih`1,jh`1.

(4.17)

Let us recall that we are interested in solving eq. 4.6 on the mesh Ωh. We then
rewrite it as

Ahvh
“ fh, (4.18)

to highlight the dependence on the mesh. To fix the notations, the discretization of
eq. 4.7 on the coarse mesh Ω2h leads to solving the following linear system:

A2hv2h
“ f 2h. (4.19)

Now that we have made explicit the restriction and prolongation operators used
with two grids, we write the two-grid algorithm (algorithm 2).

Algorithm 2 Two-grid algorithm
Pre-smoother: relax ν0 times Ahuh “ fh with initial guess vh on the fine mesh Ωh

Restrict the current solution v2h “ R2h
h

`

uh
˘

and the right-hand side f 2h
“ R2h

h

`

fh
˘

Solve A2hu2h “ f 2h with initial guess v2h on the coarse mesh Ω2h

Prolong the solution: v̄h “ Ph
2h

`

u2h
˘

Post-smoother: relax ν0 times Ahuh “ fh with initial guess v̄h on the fine mesh Ωh

This process can now be applied recursively until a mesh coarse enough is reached.
This leads to the so-called V-cycle algorithm. Figure 4.6 shows the mesh size with
different levels. Solving the linear system at a given level is less costly than the previous
level because the number of unknowns is reduced. However, numerical experiments
have shown that the best performances are obtained by performing a series of V-cycles.
The algorithm is made explicit by algorithm 3. At the coarsest level, a direct solver
could be used. In the case of radiative transfer, the development of a direct solver is
out of reach. Therefore, we will also use the Jacobi method as a coarse grid solver.
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Figure 4.6 – V-cycle with two to four levels. Circles represent the different meshes, black
lines represent the restriction and prolongation operators.

Algorithm 3 V-cycle
Choose a maximum number of levels Lmax

κ “ 0
while

∣∣∣∣∣∣Ahvh
pκq

´ fh
∣∣∣∣∣∣ ą ε do

vh
pκ`1q

“ V-cycle(0, vh
pκq

, fh, Lmax)
κ Ð κ ` 1

end while
function V-cycle(l, v2lh, f 2lh, Lmax)

Pre-smoother: relax νl times A2lhu2lh “ f 2lh with initial guess v2lh

Restrict the current solution v2l`1h “ R2l`1h
2lh

´

u2lh
¯

and the right-hand side

f 2l`1h
“ R2l`1h

2lh

´

f 2lh
¯

if l ` 1 “ Lmax then
Solve A2l`1hu2l`1h “ f 2l`1h with initial guess v2l`1h

else
Recursion: u2l`1h “V-cycle( l ` 1, v2l`1h, f 2l`1h, Lmax )

end if
Prolong the solution: v̄2lh “ P2lh

2l`1h

´

u2l`1h
¯

Post-smoother: relax νl times A2lhu2lh “ f 2lh with initial guess v̄2lh

return u2lh

end function
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Figure 4.7 – Evolution of the residual as a function of the number of V-cycle (algorithm 2),
with different values of Lmax.

Because we mimic this in the linear case, we do not investigate the effect of the coarse
grid solver.

Now that we have presented the algorithm, let us consider a simple test. We
solve eq. 4.7 in the two-dimensional case, with Ω “ r0, 1s ˆ r0, 1s and f px, yq “

8π2 sinp2πxq sinp2πyq. Equation 4.7 has an exact solution: ūpx, yq “ sinp2πxq sinp2πyq.
We discretize Ω with 129 ˆ 129 cells and apply algorithm 3. Figure 4.7 shows

the evolution of the residual
∣∣∣∣Ahvh ´ fh

∣∣∣∣ as a function of the number of V-cycles,
with different numbers of levels, Lmax. With Lmax “ 1, we recover the classical Jacobi
method. Apart from Lmax “ 1, the residual drops quickly, as Lmax increases, but it
reaches a plateau, around 10−1, depending on the value of Lmax. The same phenomena
have been observed with different resolutions.

Algorithm 4 Two-grid correction scheme
Pre-smoother: relax ν0 times Ahuh “ fh with initial guess vh on the fine mesh Ωh

Restrict the residual r2h “ R2h
h

`

fh
´ Ahuh

˘

Solve A2he2h “ r2h on the coarse grid with initial guess 0 on the coarse mesh Ω2h

Correct the fine grid approximation v̄h “ vh ` Ph
2h

`

e2h
˘

Post-smoother: relax ν0 times Ahuh “ fh with initial guess v̄h on the fine mesh Ωh

One can show that the presence of smooth modes in the error between the approx-
imate and exact solution ū can cause the relaxation to stall. The proof relies on the
study of the eigenvalues and eigenvectors of A, see e.g., Brandt and Livne 2011. As
shown by fig. 4.8, a smooth function on the fine mesh will be less smooth on the coarse
mesh. An iterative method as Jacobi will converge faster and will smooth the error
on the coarse mesh. This gives the idea of restrict and prolong the error between the
different meshes. If v is an approximate solution of eq. 4.6 and u is the exact solution,
let us define the error as e “ u´ v. It verifies Ae “ Au´Av “ f ´Av. By defining
the residual r “ f ´ Av, the error verifies the following equation:

Ae “ r. (4.20)
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Figure 4.8 – Restriction of a smooth function.
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Figure 4.9 – Evolution of the residual as a function of the number of V-cycle (algorithm 4),
with different values of Lmax.

We will solve the residual equation eq. 4.20 on the coarse mesh. Once the error is
computed, a new approximate solution can be computed: v`e. We replace algorithm 2
with algorithm 4, which leads to the so-called “correction scheme”.

Figure 4.9 shows the evolution of the norm of residual as a function of the number
of V-cycles, using the correction scheme. Unlike fig. 4.7, the residual drops quickly
to 0. It decreases faster as Lmax increases, as expected. When the residual is small
enough, around 10−4, all curves converge with the same slope. The low resolution at
the coarsest meshes is responsible for that.

We have first presented the algorithm without the error and the residual because
it would have been easier to adapt for radiative transfer. As shown in section 4.1.3,
if the initial guess and the right-hand side are admissible, then the solution obtained
with the Jacobi method is also admissible. The restriction and prolongation operators
used here (eqs. 4.13 and 4.17) are convex combinations of admissible states, therefore
the restricted and prolonged vectors are also admissible. Unfortunately, as shown here,
this method does not converge. Because the error and the residual are not admissible
in the general case, the algorithm has to be modified for the M1 model (section 4.2.4).
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4.2.3 General nonlinear case
Now that we have presented the multigrid method in the linear case, let us focus

on the nonlinear case. Instead of solving eq. 4.6, we solve

A pvq “ f , (4.21)

where A is a nonlinear operator. We suppose that we have an iterative method to solve
eq. 4.21, such as nonlinear Jacobi or Gauss-Seidel.

To mimic the linear case, we want to use the residual equation on the coarse mesh
to approximate the error on the fine mesh eh. Let us recall that the error is defined as
e “ u ´ v, where u is the exact solution of eq. 4.21 and v is an approximate solution.
We also define the residual as r “ f ´ A pvq. The residual equation eq. 4.20 is no
longer verified. The definition of the residual leads to

r “ f ´ A pvq

“ A puq ´ A pvq

“ A pv ` eq ´ A pvq .

(4.22)

We can now solve eq. 4.22 on the coarse mesh:

A2h
`

v2h
` e2h

˘

´ A2h
`

v2h
˘

“ r2h, (4.23)

where r2h “ R2h
h

`

rh
˘

“ R2h
h

`

fh
´ Ah

`

vh
˘˘

is an approximation of the residual on
the coarse mesh. Likewise, v2h “ R2h

h

`

vh
˘

. By writing u2h “ v2h ` e2h, the error can
be computed by solving

A2h
`

u2h
˘

“ A2h
`

v2h
˘

` r2h, (4.24)

whose right-hand side is known. Once u2h is computed by solving eq. 4.24, the new
approximate solution on the fine mesh can be computed:

vh
` Ph

2h

¨

˝u2h
´ v2h

loooomoooon

e2h

˛

‚ . (4.25)

This leads to the full approximation scheme (FAS) algorithm 5 [Briggs et al., 2000].

Algorithm 5 Two-grid full approximation scheme
Pre-smoother: relax ν0 times Ah

`

uh
˘

“ fh with initial guess vh on the fine mesh
Ωh

Restrict the residual r2h “ R2h
h

`

fh
´ Ah

`

uh
˘˘

and the current solution v2h “

R2h
h

`

uh
˘

Solve A2h
`

u2h
˘

“ r2h ` A2h
`

v2h
˘

with initial guess v2h on the coarse mesh Ω2h

Correct the approximation on the fine mesh: v̄h “ vh ` Ph
2h

`

u2h ´ v2h
˘

Post-smoother: relax ν0 times Ah
`

uh
˘

“ fh with initial guess v̄h on the fine mesh
Ωh

The solution of the problem solved on the coarse mesh is the full approximation u2h “

v2h ` e2h, and not the error e2h. Algorithm 5 is presented for only two meshes, but
it can easily be extended to a higher number of meshes using a V-cycle, as done in
section 4.2.2. If A is linear, one can show that algorithm 5 is equivalent to algorithm 4.
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4.2.4 Application to the HLL solver for the M1 model
Let us now apply algorithm 5 to the HLL solver for the M1 model, without source

terms. The operator A is the one described in section 4.1, and we use algorithm 1 as
smoother and coarse grid solver. The system to be solved on the coarse mesh is

A2h
`

u2h
˘

“ A2h
`

v2h
˘

` r2h. (4.26)

As shown in section 4.1.3, if the initial guess for v2h and the right-hand side A2h
`

v2h
˘

`

r2h are admissible, then the solution obtained with algorithm 1 is also admissible.
However, numerical experiments have shown that, in general, A2h

`

v2h
˘

` r2h is not
admissible, which leads to a non-admissible solution.

To tackle this issue, we follow Kifonidis and Müller [2012] and we introduce a
pseudo-time τ . Instead of solving eq. 4.26, we look for the steady state in pseudo-time
of the following equation:

du2h

dτ
` A2h

`

u2h
˘

“ A2h
`

v2h
˘

` r2h. (4.27)

When the steady state is reached, du2h

dτ
“ 0, and we recover eq. 4.26. Let us notice that

the pseudo-time τ is completely independent of the physical time step ∆t.
Equation 4.27 is a (nonlinear) system of ordinary differential equations in the vari-

able τ . We use notation similar to the physical time for the discretization in pseudo-
time. ∆τ is the interval between the current pseudo-time τm and τm`1. We choose ∆τ
such that u2h is admissible. Using the definition of the residual, the right-hand side of
eq. 4.27 becomes A2h

`

v2h
˘

` f 2h
´ R2h

h

`

Ah
`

vh
˘˘

. We want to solve eq. 4.27 with a
stable scheme, for all ∆τ . Therefore, we use a splitting strategy. For the scheme to be
stable, the left-hand side has to be taken implicitly. This leads to solving eq. 4.27 as

$

’

’

’

&

’

’

’

%

Ąu2h ´
`

u2h
˘m

∆τ
“ A2h

`

v2h
˘

` f 2h
´ R2h

h

`

Ah
`

vh
˘˘

`

u2h
˘m`1

´ Ąu2h

∆τ
` A2h

´

`

u2h
˘m`1

¯

“ 0.

(4.28)

The first equation in eq. 4.28 is explicit in pseudo-time. We can always choose a
value for ∆τ such that Ąu2h is admissible. Let us notice that the right-hand side is fixed
and the left-hand side is local to a cell.

The second equation in eq. 4.28 is implicit in pseudo-time. With arguments similar
to section 4.1.3,

`

u2h
˘m`1 is admissible as soon as Ąu2h is admissible.

Unfortunately, choosing ∆τ such that Ąu2h is admissible can result in small values
for ∆τ . To reduce the computational cost, we slightly change the algorithm. We do
not use the same pseudo-time step in all cells and for the implicit step. We choose
a pseudo-time step ∆τ im for the implicit step and we iterate the explicit step with
another pseudo-time step, local to each cell, until ∆τ im is reached. This results in
algorithm 6. We use this algorithm as smoother and coarse solver in algorithm 5.

The next question to be solved is how to choose ∆τ im. Numerical experiments have
shown that a large value for ∆τ im allows reducing the computational cost per V-cycle,
but can result in a very low decrease of the norm of the residual. To avoid such a result,
we use an adaptive pseudo-time step. When the norm of the residual decreases fast
enough, ∆τ im is increased. On the contrary, when the norm of the residual decreases
slowly, ∆τ im is decreased.
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Algorithm 6 Resolution at coarse level using pseudo-time
Choose ∆τ im

m “ 0
while the steady state is not reached do

for each cell i2h in the coarse grid do
τ ex
i2h

“ 0
K “ 0
´

Ąu2h
¯p0q

i2h
“

`

u2h
˘m

i2h

while τ ex
i2h

ă ∆τ im do
´

Ąu2h
¯pK`1q

i2h
“

´

Ąu2h
¯pKq

i2h
`∆τ ex

i2h

``

A2h
`

v2h
˘˘

i2h
` f 2h

i2h ´
`

R2h
h

`

Ah
`

vh
˘˘˘

i2h

˘

with ∆τ ex
i2h

such that
´

Ąu2h
¯pK`1q

i2h
is admissible

K Ð K ` 1
τ ex
i2h

Ð τ ex
i2h

` ∆τ ex
i2h

end while
Ąu2h

i2h “

´

Ąu2h
¯pKq

i2h

end for
Solve

`

u2h
˘m`1

` ∆τ imA2h
´

`

u2h
˘m`1

¯

“ Ąu2h with nonlinear Jacobi method
(algorithm 1)

m Ð m ` 1
end while

The update of the solution with the correction on the fine grid

vh “ vh
` Ph

2h

`

u2h
´ v2h

˘

(4.29)

can also result in non-admissible states. Let us introduce another pseudo-time τ to
compute the steady state of

dvh

dτ
` vh “ vh

` Ph
2h

`

u2h
´ v2h

˘

, (4.30)

instead of using eq. 4.29. We write ∆τ the interval between the current pseudo-time
τm and τm`1. We can now discretize eq. 4.30 with a time-implicit solver:

´

vh
¯m`1

´

´

vh
¯m

∆τ
`

´

vh
¯m`1

“ vh
` Ph

2h

`

u2h
´ v2h

˘

. (4.31)

We choose ∆τ such that

´

vh
¯m`1

“

´

vh
¯m

` ∆τ
`

vh ` Ph
2h

`

u2h ´ v2h
˘˘

1 ` ∆τ
(4.32)

is admissible. This process can be applied locally, only in the cells where it is needed.
The whole algorithm, including these modifications, is presented in section 4.A.
In the next section, we present numerical results to show the gain in computational

time.
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Figure 4.10 – Beam simulation. The figure shows a horizontal cut at the middle height
with the explicit solver, the implicit solver using Newton-Raphson method and the geometric
multigrid algorithm different values for Lmax.

4.3 Numerical results
We perform some verification tests to validate the performances of the algorithms

presented in sections 4.1 and 4.2. Because we developed them without source terms,
we focus on tests without opacity. We consider the same tests as in section 3.2.1.
We compare our results with those obtained with a time-explicit HLL solver and a
time-implicit HLL solver using a Newton-Raphson method (see section 2.1.3). We will
compare the performances with different time steps. We write ∆t “ CFLh

c
. For the

time-explicit solver, one should have CFL ď 1 to respect the Courant-Friedrichs-Lewy
(CFL) condition. The eigenvalues in the numerical fluxes (eq. 2.2) are fixed to ˘c.

We always use the same parameters for the geometric multigrid method. At the
finest level, the number of iterations for the pre- and post-smoothers is ν0 “ 3. When
using iterations in pseudo-time, the number of iterations in pseudo-time m is set to 3
and the number of iterations for the smoothers is νl “ 1, for l ‰ 0. The initial value for
∆τ im is 10−3. These parameters are chosen because they give reasonable performances
in most cases and can easily be used in physical problems.

4.3.1 Beam
We first consider the same test as in sections 2.2.3 and 3.2.1.2. It is the same test

as in González et al. [2007]; Richling et al. [2001]. We consider the propagation of a
beam in the free-streaming regime. The domain is r´1, 1sˆr´1, 1s and it is discretized
with the same number of cells in the x and y-directions. The initial temperature
is T0 “ Tr “ 300 K and the initial radiative flux is Fr “ 0. At time t “ 0, a
beam is introduced with Tg “ Tr “ 1 000 K with an angle of 45˝ at x “ ´1 and
y P r´0.875,´0.75s.

The domain is first discretized with 129ˆ 129 cells. Figure 4.10 shows a horizontal
cut at the middle height once the steady state is reached. With the Newton-Raphson
method, we are not able to reach large time steps. Indeed, we have to use a smaller
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Scheme Computational time (s)
Explicit 549

Newton-Raphson 26 356
GMG, Lmax “ 1 182
GMG, Lmax “ 2 154
GMG, Lmax “ 3 143
GMG, Lmax “ 4 68

Table 4.2 – Computation time to reach the steady state with the explicit solver, the implicit
solver using Newton-Raphson method and the geometric multigrid algorithm different values
for Lmax.

Lmax Computational time per V-cycle (s)
1 0.48
2 1.41
3 1.67
4 1.75

Table 4.3 – Computational time per V-cycle with different values of Lmax.

time step than the one required by the explicit scheme to preserve the admissible states.
Despite that, the solution obtained with the Newton-Raphson method is more diffusive
than the one obtained with the explicit scheme. It reaches only 89% of the maximum
value of radiative energy. On the contrary, solutions obtained with the Jacobi method
(Lmax “ 1) and with the geometric multigrid algorithm (Lmax “ 2) reach 96% of the
maximum of radiative energy, with a much larger time step (CFL “ 2 000).

Using the geometric multigrid method should reduce the computational cost. If we

reach a low residual such as
∣∣∣∣∣∣rh

pκq

∣∣∣∣∣∣∣∣∣∣∣∣rh
p0q

∣∣∣∣∣∣ “ 10´5, numerical experiments have shown that

there is no gain in computational cost. Therefore, we set it to 10−2 and we check some
properties of the scheme in section 4.3.2.

Table 4.2 shows the computational time needed to reach the steady state with
different methods: the explicit HLL solver, the implicit HLL solver using the Newton-
Raphson method to solve nonlinear solver and the geometric multigrid algorithm with
different values for Lmax. The resolution used is now 257ˆ257 cells. Using the explicit
solver and the Newton-Raphson method, the time step is restricted by the CFL con-
dition, whereas the steady state is reached with only one iteration using the geometric
multigrid method. With Lmax “ 1, we recover the Jacobi method and the steady state
is reached three times faster than using the explicit solver. Increasing the value of Lmax

leads again to a decrease in computational cost. The time needed to reach the steady
state with Lmax “ 1 is more than twice the time needed with Lmax “ 4.

As shown by table 4.3, when Lmax increases, the computational time per V-cycle
also increases, from 0.48 s with Lmax “ 1 to 1.75 s with Lmax “ 4. With Lmax ą 1,
the computational time per V-cycle is more than three times the computational time
per cycle with Lmax “ 1. However, the total computational time (table 4.2) decreases
when Lmax increases. As shown by fig. 4.11, the number of V-cycles to reach the same
residual decreases as Lmax increases, from 1 267 with Lmax “ 1 to 400 with Lmax “ 4.

Table 4.4 shows the memory consumption with the different methods. As described
in section 2.1.3, the Newton-Raphson method requires solving large sparse linear sys-
tems. For performance reasons, we store the matrix and its preconditioner. This leads
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Figure 4.11 – Evolution of the residual as a function of the number of V-cycle, with different
values for Lmax to reach the steady state for the beam problem.

Scheme Memory consumption (MB)
Explicit 25

Newton-Raphson 127
Lmax “ 1 63
Lmax “ 2 74
Lmax “ 3 77
Lmax “ 4 78

Table 4.4 – Memory consumption for the explicit solver, the implicit solver using Newton-
Raphson method and the geometric multigrid algorithm different values for Lmax.

110



CHAPTER 4. NONLINEAR JACOBI METHOD AND GEOMETRIC MULTIGRID

0 0.5 10

0.5

1

F̂ “

ˆ

1
0

˙

Ñ F̂ “

ˆ

0
´1

˙

Ó

F̂ “

ˆ

0
1

˙

Ò F̂ “

ˆ

´1
0

˙

Ð

Figure 4.12 – Initial condition for 2D Riemann problem.

to a higher memory footprint than the other methods, 127 MB instead of 25 MB for
the explicit solver. Furthermore, the choice of the preconditioner has an impact on
the memory consumption of the method. This is discussed in section 5.2. We use a
“matrix-free” approach for the Jacobi method, i.e., we do not store the operator A,
but we access it by computing A pvq. However, using the geometric multigrid algo-
rithm requires storing temporary values at coarse levels, hence the increase of memory
consumption with Lmax, from 63 MB with Lmax “ 1 to 78 MB with Lmax “ 4. As Lmax

increases, more values have to be stored, but each level is coarser than the previous one,
therefore fewer variables per additional level are needed. For example, with 257 ˆ 257
cells at the fine level and Lmax “ 4, there is only 32 ˆ 32 additional cells compared to
Lmax “ 3.

Performance results obtained here are obtained on small configurations: 257 ˆ 257
cells for a two-dimensional problem. One can expect a better speed-up in the three-
dimensional case.

4.3.2 2D Riemann problem
Let us now consider the same two-dimensional Riemann problem as in section 3.2.1.1

and Blachère and Turpault [2016]. The domain r0, 1sˆr0, 1s is discretized with 257ˆ257
cells. The initial temperature is T0 “ Tr “ 1 000 K. The domain is cut into four states,
in each of them the initial radiative flux is constant. It is set to p1 ´ 10´8q cErF̂ , with
F̂ given by fig. 4.12.

Using periodic boundary conditions, no energy should enter nor leave the box,
therefore, the total radiative energy should be conserved at machine precision. Fig-
ure 4.13 shows the evolution of the relative error between the expected total radiative
energy and the one actually computed in the box at each time step. Using both the
explicit solver and the Jacobi method, with the same time step ∆t, the relative error

oscillates around the value 10−12. For the Jacobi method, the residual
∣∣∣∣∣∣rh

pκq

∣∣∣∣∣∣∣∣∣∣∣∣rh
p0q

∣∣∣∣∣∣ is set to

5 ˆ 10−3. Even for a quite high value of residual, the scheme is conservative.
We only checked that the Jacobi method (Lmax “ 1) is conservative for performance

reasons. As shown by fig. 4.14, with a large time step (CFL “ 2 000), increasing the
value of Lmax does not help to reduce the number of V-cycle to reach the same residual.
When increasing the value of Lmax, the computational time per V-cycle increases,
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Figure 4.13 – Evolution of the relative error on radiative energy as a function of time. With
periodic boundary conditions, the radiative energy is conserved at machine precision.
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Figure 4.14 – Evolution of the residual as a function of the number of V-cycle, with different
values for Lmax for the two-dimensional Riemann problem.
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Figure 4.15 – Snapshots of radiative energy at final time tf “ 10´11 s with the explicit solver
and the Jacobi method with different residuals.

therefore the total computational time also increases, unlike the beam test. Because
we are in the free-streaming regime, the propagation of the photons has to be followed.
In sections 2.2.3 and 2.2.4, we did it by reducing the time step. Here, we still use a
large time step, but the Jacobi method needs lots of iterations to converge.

Figure 4.15 shows snapshots of radiative energy at the final time 10−11 s with
the explicit solver (fig. 4.15a) and Jacobi method with different residuals (figs. 4.15b
and 4.15c). Using the Jacobi method, we only need one time step to reach the same
final time as the explicit solver with more than 150 time steps. Because we use a larger
time step, the solution obtained with the Jacobi method is more diffusive than the one
obtained with the explicit solver. However, in this test, numerical diffusion increases
as the residual decreases.

As discussed in section 3.2.1.1, the reduced flux stays close to 1 during the simu-
lation. Overall, the methods presented in this chapter are stable, even for very stiff
problems. But it should be used carefully in physical problems that require following
the propagation of photons.
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4.4 Discussion and conclusion
In this chapter, we have first presented a Jacobi method to solve the nonlinear

system arising from the discretization of the M1 model without source terms with a
time-implicit HLL solver. The admissible states are preserved, even with large CFL
numbers. This method is iterative, the convergence rate decreases when the resolution
increases. To tackle this issue, we use a nonlinear geometric multigrid algorithm. The
Jacobi method first described is used as smoother and coarse grid solver. However,
this algorithm relies on the residual equation, which does not preserve the admissible
states. Instead of solving this equation, we introduce a pseudo-time, and we look for a
steady state in pseudo-time. Numerical experiments have shown the good performances
obtained with this algorithm.

4.4.1 Source terms
In order to study astrophysical problems, the integration of source terms is indis-

pensable. It needs to be done carefully, regarding the asymptotic preserving property
already discussed in chapters 2 and 3. The schemes developed in chapter 3 are asymp-
totic preserving and preserve the admissible states. The HLL solver used here could be
replaced by the all-regime schemes presented in chapter 3. This will change the nonlin-
ear operator A. It requires to choose carefully which terms are taken at iteration k and
k ` 1 in algorithm 1. The geometric multigrid algorithm presented in section 4.2 does
not rely on the form of the nonlinear operator, as long as the iterations of the Jacobi
method preserve the admissible states. Therefore, the geometric multigrid method can
be used to study astrophysical problems with opacity as soon as the Jacobi algorithm
is extended to the all-regime scheme.

4.4.2 Performances
Although performance results shown in section 4.3 are promising, some choices were

made and others were not explored. For example, only a V-cycle is used, but there exist
other possibilities: W-cycle, F-cycle,. . . The restriction and prolongation operators can
also have an impact on the performances.

Another well-known method to reduce the number of iterations performed by the
Jacobi method is to replace it with a Gauss-Seidel algorithm. Even though the tests
presented in section 4.3 are obtained with a sequential code, we aim at using a parallel
implementation to study astrophysical situations. In the linear case, the Jacobi method
is known to be easier to make parallel than the Gauss-Seidel method.
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4.A Overall algorithm
Algorithm 7 presents the whole algorithm to compute vn`1 with vn known. When

we presented the V-cycle in section 4.2.2, we used a recursive form. We present here a
version based on loops.

Algorithm 7 Overall algorithm
Choose a maximum number of levels Lmax

κ “ 0
fh

“ vn

vh
p0q

“ vn. From now on, the exponent is the mesh size, it is no longer the time
while

∣∣∣∣rpκq

∣∣∣∣ ą ε do
for l “ 0, ¨ ¨ ¨ , Lmax ´ 1 do

if l “ 0 then
Pre-smoother: solve Ah

´

uh
pκq

¯

“ fh with ν0 iterations of the nonlinear
Jacobi method (algorithm 1), with initial guess vh

pκq

Compute residual: rh
pκq “ fh

´ Ah
´

uh
pκq

¯

else
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Pre-smoother: compute steady state in pseudo-time of du2lh
pκq

dτ
`A2lh

´

u2lh
pκq

¯

“

A2lh
´

v2lh
pκq

¯

`r2lh
pκq

using algorithm 6, with νl iterations of the nonlinear Jacobi method
, with initial guess v2lh

pκq

Compute residual: r2lh
pκq “ A2lh

´

v2lh
pκq

¯

` r2lh
pκq

´ A2lh
´

u2lh
pκq

¯

end if
Restriction: v2l`1h

pκq
“ R2l`1h

2lh

´

v2lh
pκq

¯

and r2l`1h
pκq

“ R2l`1h
2lh

´

r2lh
pκq

¯

end for
Solver at coarsest level: compute steady state in pseudo-time of du2Lmaxh

pκq

dτ
`

A2Lmaxh
´

u2Lmaxh
pκq

¯

“ A2Lmaxh
´

v2Lmaxh
pκq

¯

` r2Lmaxh
pκq

using algorithm 6, with νLmax iter-
ations of the nonlinear Jacobi method , with initial guess v2Lmaxh

pκq

for l “ Lmax ´ 2, ¨ ¨ ¨ , 0 by step ´1 do
Prolongation: v2lh

pκq “ v2lh
pκq

` P2lh
2l`1h

´

u2l`1h
pκq

´ v2l`1h
pκq

¯

for each cell li in the grid at level l do
if

´

v2lh
pκq

¯

li
is not admissible then

use eq. 4.32 to update
´

v2lh
pκq

¯

li

end if
end for
if l “ 0 then

Post-smoother: solve Ah
´

uh
pκq

¯

“ fh with ν0 iterations of the nonlinear
Jacobi method (algorithm 1), with initial guess vh

pκq

else
Post-smoother: compute steady state in pseudo-time of du2lh

pκq

dτ
`A2lh

´

u2lh
pκq

¯

“

A2lh
´

v2lh
pκq

¯

`r2lh
pκq

using algorithm 6, with νl iterations of the nonlinear Jacobi method
, with initial guess v2lh

pκq

end if
end for
vh

pκq
“ uh

pκq

rpκq “ vn ´ Ah
´

vh
pκq

¯

if
∣∣∣∣∣∣rpκq

∣∣∣∣´∣∣∣∣rpκ´1q

∣∣∣∣∣∣∣∣∣∣rp0q

∣∣∣∣ ą εi then
∆τ im Ð 1.1∆τ im

end if
if

∣∣∣∣∣∣rpκq

∣∣∣∣´∣∣∣∣rpκ´1q

∣∣∣∣∣∣∣∣∣∣rp0q

∣∣∣∣ ă εd then
∆τ im Ð ∆τ im{2

end if
κ Ð κ ` 1

end while
vn`1 “ vh

pκq
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Sections 5.1 and 5.2 are the adaptation of an article published in Astronomy&As-
trophysics, see Bloch et al. 2021.

In the previous chapters, we presented numerical schemes to solve the M1 model
of radiative transfer. However, studying three-dimensional astrophysical problems re-
quires the use of High Performance Computing (HPC) tools, to reach large resolutions.

In this chapter, we focus on the scheme developed in chapter 2. Its implementation
has been done in the code ARK-RT 1, a fork of the code ARK developed in Padioleau
et al. [2019]. The hydrodynamics and gravity part of the solver is similar to ARK and
is solved explicitly with a well-balanced and all-regime solver. For the radiation part,
the scheme is implicit and a Newton-Raphson method is used to solve the nonlinear
system arising from the discretization of the M1 model. At each iteration, a large
sparse ill-conditioned linear system has to be solved. In order to do this, we use the
library Trilinos [Trilinos Project Team], especially its second generation of packages.

We first present this library in section 5.1. In section 5.2, we provide details of
some implementation features of ARK-RT. We also show some performance results
and we discuss the impact of preconditioners and domain decomposition on a physical
problem. Finally, we reach our conclusion in section 5.3.

5.1 Trilinos
The packages we used are Kokkos (section 5.1.1) for shared memory computation,

Tpetra (section 5.1.2) for distributed vectors and matrices, Belos (section 5.1.3)
for linear solvers, Ifpack2 (section 5.1.4) for classical preconditioners, and MueLu
(section 5.1.5) for the algebraic multigrid (AMG) preconditioner. We now detail each
of them. We only present the way we used Trilinos, it can be used for many others
applications. This work does not intend to be a full review of the capabilities of
Trilinos.

5.1.1 Kokkos
As new architectures have more and more cores, the distributed memory model is

not enough to take advantage of all the computational power available. Therefore, we
need to use a shared memory model inside the nodes. Furthermore, computational
nodes are more and more heterogeneous, for example, multi-cores, many-cores, or ac-
celerators such as GP-GPUs. Each architecture requires its own interface, such as
OpenMP or C++11 threads for multi-cores and many-cores processors and CUDA or
OpenACC for NVIDIA GPUs. This raises the problem of portability and performance
portability: many HPC codes are optimized for some specific architectures, so running
the code on a different architecture will result in bad performance.

The package Kokkos [Edwards et al., 2014] tackles this issue. The user has
a unique code that can be compiled with different shared memory models such as
OpenMP or CUDA. We call these programming models backends.

As CUDA programming model, Kokkos relies on a host/device abstraction. The
host dispatches the parallel work to the device. The device can be a GPU or a multi-
core CPU, for example.

1. https://gitlab.erc-atmo.eu/erc-atmo/ark-rt/tree/v1.0.0
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The memory space abstraction defines where data are stored. It can be on the
host (Kokkos::HostSpace) or on the device (e.g., Kokkos::CudaSpace for a GPU).
Kokkos provides multidimensional arrays, whose storage is optimized according to
the architecture. These arrays are called Kokkos::View.

The execution space specifies where a function is executed. The different possibili-
ties are

— on the host with a sequential execution (Kokkos::Serial),
— on the host using POSIX threads (Kokkos::Threads),
— on the host using OpenMP (Kokkos::OpenMP),
— on the device, if a GPU is used (Kokkos::Cuda).
Finally, the execution policy dictates how the function is executed. Kokkos pro-

vides three of them. Kokkos::parallel_for is a loop pattern. Each iteration executes
the body of the function. Kokkos gives access to an index, but there is no guarantee
about the order of the iterations. The second pattern is Kokkos::parallel_reduce
that implements a reduction. Each iteration produces a result, and they are accu-
mulated into a single value. The last pattern is Kokkos::parallel_scan, which is a
cumulative reduction. For example, if the reduction operation is a sum, all partial
sums are stored.

1 i n t main ( i n t argc , char ∗ argv [ ] )
2 {
3 // I n i t i a l i z e Kokkos
4 Kokkos : : i n i t i a l i z e ( argc , argv ) ;
5 // Dec lare a view with 3∗15 elements
6 Kokkos : : View <double ∗[3] > view ( " view_name " , 15) ;
7 // I n i t i a l i z e the view through a p a r a l l e l loop
8 Kokkos : : p a r a l l e l _ f o r ( " loop_name " , 15 ,
9 [=] ( const i n t i ) {

10 view ( i , 0) = i ;
11 view ( i , 1) = i ∗ i ;
12 view ( i , 2) = i ∗ i ∗ i ;
13 }) ;
14 // Shut down Kokkos
15 Kokkos : : f i n a l i z e ( ) ;
16 }

Listing 5.1 – Example of code using Kokkos: declaration and initialization of a Kokkos::View

Listing 5.1 is an example of code showing how to declare a Kokkos::View and how
to initialize it with a parallel loop.

5.1.2 Tpetra
The package Tpetra [Tpetra Project Team] handles distributed linear algebra

objects, such as sparse matrices and vectors. There are two levels of parallelism: the
Message Passing Interface (MPI) for distributed memory parallelism and a shared
memory programming model, handled through Kokkos (see section 5.1.1).

Tpetra relies on another package, Teuchos [Teuchos Project Team], that pro-
vides some tools common to all packages of Trilinos. The only class we mention
here is Teuchos::RCP<T>. This class provides smart pointers, with an automatic
garbage collector. The memory is managed automatically, the user does not deallocate
it manually.

Before presenting the different objects we used, let us briefly present the template
parameters used by Tpetra.

119



CHAPTER 5. HIGH PERFORMANCE COMPUTING AND LINEAR ALGEBRA

5.1.2.1 Template parameters

Trilinos is a general-purpose framework, the user has to specify several data types.
Therefore, most of the objects use template parameters, such as local_ordinal_type,
global_ordinal_type, scalar_type, and node_type.

The scalar_type is the type of values in the matrix or vectors. Common cases are
float or double. The choice of float or double has an impact on the performances
and the precision of the code.

Because Tpetra handles distributed objects, the rows of the matrix or vector are
distributed across the MPI processes. Each of them is associated with a unique global
index, whose type is global_ordinal_type. This type indicates the maximum size of
the object, for example, the maximal number of rows of the matrix. If we use int as
global_ordinal_type, the maximum number of rows in the matrix would 231 ´1, about
two billion. In the three-dimensional case, there is five variables per cell (two scalars,
the radiative energy and the gas temperature, and three components for the radiative
flux). We are then restricted to 7543 cells, so the total number of unknowns is less than
231 ´ 1. Therefore, Trilinos suggest using more than 64 bits integers. The default
type is long long.

Inside a MPI process, the row of the matrix or vector is also associated with a local
index. Its type is local_ordinal_type and is usually int.

The last type shared by Tpetra’s objects is the node_type. It specifies the shared
memory programming model, such as OpenMP or CUDA.

Most of the classes defined by Tpetra use template parameters. Let us consider
a matrix class, with the four template parameters presented previously. A class with
template parameters does not generate any code until all the parameters are specified.
Therefore, part of the code of Trilinos is compiled only when the application code
is compiled. Each file of the application code which uses a matrix has to include the
header file where the matrix class is declared. So, the matrix class will be compiled
several times, even if the same template parameters are used. This leads to a large
compilation time when the application code is built against Trilinos.

To tackle this issue, explicit template instantiation (ETI) is used. When Trilinos
is built, the template parameters are explicitly specified, and the classes are compiled.
This increases the compilation time of Trilinos, but significantly reduces the compi-
lation time of the application code.

1 us ing sca lar_type = double ;
2 us ing global_ordina l_type = long long ;
3 us ing loca l_ord ina l_type = i n t ;
4 us ing node_type = Kokkos : : Compat : : KokkosCudaWrapperNode ;

Listing 5.2 – Definition of template parameters used by Tpetra.

Listing 5.2 shows a way to simplify future code by defining template parameters
used by Tpetra. Let us notice that these types can also be defined using default values
when Trilinos is compiled with ETI (e.g. using scalar_type = Tpetra::MultiVector
<>::scalar_type;).

5.1.2.2 Map

Using Tpetra vocabulary, a map describes how data are distributed across the
MPI processes. Let us notice that, despite the name, it is not the same concept as
C++ Standard Template Library (STL) std::map, although there are some common
ideas.
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Let us consider a matrix with N rows, distributed across p processes. For the sake
of simplicity, let us assume that N is a multiple of p. Using Tpetra’s default behavior,
each process handles N

p
contiguous rows. This case is optimized by Tpetra, it should

provide the best performances.
1 us ing map_type = Tpetra : : Map<loca l_ordina l_type , g lobal_ordinal_type ,

node_type >;
2 // Create a communicator , such as MPI_COMM_WORLD
3 Teuchos : : RCP<const Teuchos : :Comm<int >> comm = Tpetra : : getDefaultComm () ;
4 // Local number o f e lements
5 const loca l_ord ina l_type numLocalElements = . . . ;
6 // Total number o f e lements
7 // Local number o f e lements ∗ number o f MPI p r o c e s s e s
8 const g lobal_ordina l_type numGlobalElements = numLocalElements ∗

comḿ >g e t S i z e ( ) ;
9 // Global i n d i c e s s t a r t at 0

10 const g lobal_ordina l_type indexBase = 0 ;
11 // Create the map
12 Teuchos : : RCP<const map_type> map = Teuchos : : rcp (new map_type

( numGlobalElements , indexBase , comm) ) ;

Listing 5.3 – Demonstration of the construction of a Tpetra::Map

From Tpetra documentation the constructor of a map must be called collectively,
i.e., all processes have to call it. Listing 5.3 shows how to build a map.

5.1.2.3 Multivector

A multivector is a set of distributed vectors. Their distribution across the MPI
processes is the same, i.e., they all have the same map. A multivector can contain only
one vector. Having a set of vectors can be useful, for example, to solve a linear system
with several right-hand sides, but the same matrix. Local to each MPI process, the
multivector can be seen as a view, in the sense given by Kokkos (section 5.1.1).

Let us briefly recall the algorithm to solve radiation hydrodynamics (section 2.1.2):
1. update of the hydrodynamics quantities;
2. update of the radiative quantities and gas temperature using the implicit solver

developed in section 2.1.1;
3. addition of source terms.

The first and the last steps do not require the use of whole library Trilinos, only
Kokkos and MPI are used. The code ARK implements only explicit solvers, it is
not coupled with Trilinos. Views used to store the hydrodynamics quantities and
views coming from a multivector have to interact. For performance reasons, it should
be done through a Kokkos::parallel_for, to avoid data transfers between the device
and the host. Listing 5.4 shows how it can be done.

1 us ing vec_type = Tpetra : : MultiVector<scalar_type , loca l_ordina l_type ,
g lobal_ordinal_type , node_type >;

2 // View conta in ing hydrodynamics q u a n t i t i e s
3 Kokkos : : View<double ∗ , Kokkos : : DefaultExecutionSpace> hydroData = . . . ;
4 // Create mu l t i v e c to r s conta in ing one vec to r
5 Teuchos : : RCP<vec_type> X = Teuchos : : rcp (new vec_type (map, 1) ) ;
6 Teuchos : : RCP<vec_type> B = Teuchos : : rcp (new vec_type (map, 1) ) ;
7 // Set i n i t i a l guess to 0
8 X́ >putSca lar ( 0 . ) ;
9 // I n i t i a l i z e RHS
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10 {
11 // Get the view in wr i t e mode
12 auto dataB = B́ >getLocalViewDevice ( Tpetra : : Access : : Overwr i teAl l ) ;
13 // Write data in the view
14 Kokkos : : p a r a l l e l _ f o r ( " I n i t i a l i z e B" , numLocalElements ,
15 [=] ( const i n t i ) {
16 dataB ( i , 0) = someFunction ( hydroData ( i ) ) ;
17 }) ;
18 }
19 // Do something to s o l v e AX = B
20 // Update hydrodynamics q u a n t i t i e s with the s o l u t i o n o f the l i n e a r system
21 {
22 // Get the view in read´only mode
23 auto dataX = X́ >getLocalViewDevice ( Tpetra : : Access : : ReadOnly ) ;
24 // Read data from the view
25 Kokkos : : p a r a l l e l _ f o r ( " Read X" , numLocalElements ,
26 [=] ( const i n t i ) {
27 hydroData ( i ) = someOtherFunction ( dataX ( i , 0) ) ;
28 }) ;
29 }

Listing 5.4 – Accessing data of a multivector from the device

5.1.2.4 CrsMatrix

Using the scheme presented in chapter 2, there are only a few nonzero elements per
row. Using a sparse matrix is essential to save both computational time and memory.
The storage of the matrix is done with a compressed sparse row (CSR) or compressed
row storage (CRS) format (see e.g., Buluç et al. 2009). The class Tpetra::CrsMatrix
implements such storage. The rows of the matrix are distributed across the MPI

processes. All the nonzero elements of a row are owned by the same process.
1 us ing graph_type = Tpetra : : CrsGraph<loca l_ordina l_type ,

g lobal_ordinal_type , node_type >;
2 us ing matrix_type = Tpetra : : CrsMatrix<scalar_type , loca l_ordina l_type ,

g lobal_ordinal_type , node_type >;
3 // Graph with at most three nonzero entry per row
4 Teuchos : : RCP<graph_type> G = Teuchos : : rcp (new graph_type (map, 3) ) ;
5 // Te l l the graph where are the nonzero e n t r i e s
6 // The loop i s s equen t i a l , but i t i s only done once
7 f o r ( loca l_ord ina l_type l o c a l I n d e x = 0 ; l o c a l I n d e x < numLocalElements ;

l o c a l I n d e x++)
8 {
9 // Ask the map the g l o b a l index correspond ing to the l o c a l index

10 const g lobal_ordina l_type g loba l Index =
maṕ >getGlobalElement ( l o c a l I n d e x ) ;

11 // Use g l o b a l index to bu i ld the graph
12 i f ( g l oba l Index == 0)
13 Ǵ >i n s e r t G l o b a l I n d i c e s ( g loba l Index , Teuchos : : tup l e ( g loba l Index ,

g loba l Index +1) ) ;
14 e l s e i f ( g l oba l Index == numGlobalElements ´1)
15 Ǵ >i n s e r t G l o b a l I n d i c e s ( g loba l Index , Teuchos : : tup l e ( g loba l Index ´1,

g loba l Index ) ) ;
16 e l s e
17 Ǵ >i n s e r t G l o b a l I n d i c e s ( g loba l Index , Teuchos : : tup l e ( g loba l Index ´1,

g loba l Index , g loba l Index +1) ) ;
18 }
19 // Te l l the graph we are done changing i t s s t r u c t u r e
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20 Ǵ >f i l l C o m p l e t e ( ) ;
21 // Use the graph to bu i ld the matrix
22 Teuchos : : RCP<matrix_type> A = Teuchos : : rcp ( new matrix_type (G) ) ;
23 // Te l l the matrix we are done changing i t s s t r u c t u r e
24 Á >f i l l C o m p l e t e ( ) ;

Listing 5.5 – Demonstration of the construction of a tridiagonal matrix with a static graph

In our application, the values of the matrix have to be updated at each iteration of
the Newton-Raphson method, but its graph (the localization of the nonzero elements in
the matrix) does not change. To obtain the best performances, Trilinos recommends
building first the graph and then the matrix. The structure of the matrix is not
allowed to change. The graph is distributed as the matrix, but values are not stored.
Listings 5.5 to 5.7 show how to build the matrix obtained with the discretization of
the Laplacian operator in the one-dimensional case. The matrix is

¨

˚

˚

˚

˚

˚

˝

2 ´1
´1 2 ´1

. . . . . . . . .
´1 2 ´1

´1 2

˛

‹

‹

‹

‹

‹

‚

. (5.1)

In particular, listing 5.5 shows how to build this tridiagonal matrix with such a graph.
1 // Te l l the matrix we are about to change i t s va lue s
2 Á >re sumeFi l l ( ) ;
3 // Update the c o e f f i c i e n t s
4 f o r ( loca l_ord ina l_type l o c a l I n d e x = 0 ; l o c a l I n d e x < numLocalElements ;
5 l o c a l I n d e x++)
6 {
7 // Ask the map the g l o b a l index correspond ing to the l o c a l index
8 const g lobal_ordina l_type g loba l Index =

maṕ >getGlobalElement ( l o c a l I n d e x ) ;
9 // Use g l o b a l index to ac c e s s the e lements o f the matrix

10 i f ( g l oba l Index == 0)
11 Á >rep laceGloba lVa lues ( g loba l Index , Teuchos : : tup l e ( g loba l Index ,

g loba l Index +1) , Teuchos : : tup l e ( 2 . , ´1.) ) ;
12 e l s e i f ( g l oba l Index == numGlobalElements ´1)
13 Á >rep laceGloba lVa lues ( g loba l Index , Teuchos : : tup l e ( g loba l Index ´1,

g loba l Index ) , Teuchos : : tup l e ( ´1. , 2 . ) ) ;
14 e l s e
15 Á >rep laceGloba lVa lues ( g loba l Index , Teuchos : : tup l e ( g loba l Index ´1,

g loba l Index , g loba l Index +1) , Teuchos : : tup l e ( ´1. , 2 . , ´1.) ) ;
16 }
17 // Te l l the matrix we are done changing i t s va lue s
18 Á >f i l l C o m p l e t e ( ) ;

Listing 5.6 – Updating the coefficients of the matrix from the host (non-parallel update)

Tpetra provides several methods to update the coefficients of the matrix. One of
them uses only global indices, which is the way recommended by Tpetra. Listing 5.6
shows how this can be done. However, this function can only be called from the host.
This has two main consequences. First, because all the rows of the matrix have to be
updated, we use a sequential loop over the rows of the matrix. Second, in the case
where we are using GP-GPUs, we have to update the matrix with data coming from the
device. Therefore, we have to transfer some data from the device to the host, update
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the matrix with these data, and then transfer the matrix from the host to the device,
this last step is done implicitly by Tpetra. This will increase the computational cost.

1 // Get the part o f the matrix l o c a l to the MPI proce s s
2 auto l o ca lMat r i x = Á >getLocalMatr ix ( ) ;
3 // Get the l o c a l map , which can be used from Kokkos ke rne l
4 auto localMap = maṕ >getLocalMap ( ) ;
5 // Use a p a r e l l e l loop to update the c o e f f i c i e n t s o f the matrix
6 Kokkos : : p a r a l l e l _ f o r ( " Update matrix c o e f f i c i e n t s " , numLocalElements ,
7 [=] ( const i n t l o c a l I n d e x ) {
8 // Ask the map the g l o b a l index correspond ing to the l o c a l index
9 const g lobal_ordina l_type g loba l Index =

localMap . getGlobalElement ( l o c a l I n d e x ) ;
10 i f ( g l oba l Index == 0)
11 {
12 // Te l l Tpetra which column ( s ) to update
13 l oca l_ord ina l_type c o l [ 2 ] ;
14 c o l [ 0 ] = l o c a l I n d e x ;
15 c o l [ 1 ] = l o c a l I n d e x +1;
16 // Te l l Tpetra which value ( s ) to s e t
17 sca lar_type va l [ 2 ] ;
18 va l [ 0 ] = 2 . ;
19 va l [ 1 ] = ´1.;
20 // Update the matrix
21 l o ca lMat r i x . r ep laceVa lue s ( l o ca l Index , co l , 2 , va l ) ;
22 }
23 e l s e i f ( g l oba l Index == numGlobalElements ´1)
24 {
25 // Te l l Tpetra which column ( s ) to update
26 l oca l_ord ina l_type c o l [ 2 ] ;
27 c o l [ 0 ] = loca l Index ´1;
28 c o l [ 1 ] = l o c a l I n d e x ;
29 // Te l l Tpetra which value ( s ) to s e t
30 sca lar_type va l [ 2 ] ;
31 va l [ 0 ] = ´1.;
32 va l [ 1 ] = 2 . ;
33 // Update the matrix
34 l o ca lMat r i x . r ep laceVa lue s ( l o ca l Index , co l , 2 , va l ) ;
35 }
36 e l s e
37 {
38 // Te l l Tpetra which column ( s ) to update
39 l oca l_ord ina l_type c o l [ 3 ] ;
40 c o l [ 0 ] = loca l Index ´1;
41 c o l [ 1 ] = l o c a l I n d e x ;
42 c o l [ 2 ] = l o c a l I n d e x +1;
43 // Te l l Tpetra which value ( s ) to s e t
44 sca lar_type va l [ 3 ] ;
45 va l [ 0 ] = ´1.;
46 va l [ 1 ] = 2 . ;
47 va l [ 2 ] = ´1.;
48 // Update the matrix
49 l o ca lMat r i x . r ep laceVa lue s ( l o ca l Index , co l , 3 , va l ) ;
50 }
51 }) ;

Listing 5.7 – Updating the coefficients of the matrix from the device (parallel update)

Another way is to use local indices. The package Kokkos Kernel, part of the
Kokkos ecosystem, provides several ways to update the coefficients of the matrix
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through a kernel. This allows the use of a parallel loop (via Kokkos::parallel_for)
and we avoid data transfers between the host and the device (see listing 5.7). For
performance reasons, we use local indices.

5.1.3 Belos
As discussed in section 2.1.3.1, the matrix of the linear system to be solved using

the scheme developed in chapter 2 is large, sparse, and not symmetric. We solve the
linear system with a biconjugate gradient stabilized (BiCGSTAB) method [Van der
Vorst, 1992]. The package Belos [Belos Project Team] provides an implementation
of this algorithm. Belos gives also access to other linear solvers we did not explore.
Listing 5.8 shows how to create the linear problem associated with AX=B and the
associated solver manager. It also shows how to solve the problem.

1 us ing op_type = Tpetra : : Operator<scalar_type , loca l_ordina l_type ,
g lobal_ordinal_type , node_type >;

2 us ing problem_type = Belos : : LinearProblem<scalar_type , vec_type ,
op_type >;

3 // Create , con f i gure , and return the s p e c i f i e d s o l v e r
4 Belos : : So lverFactory<scalar_type , vec_type , op_type> f a c t o r y ;
5 Teuchos : : RCP<Belos : : SolverManager<scalar_type , vec_type , op_type>>

s o l v e r = f a c t o r y . c r e a t e ( "BiCGSTAB" ) ;
6 // Linear system AX = B to be so lved , and i t s a s s o c i a t e d in fo rmat i ons
7 Teuchos : : RCP<problem_type> problem =
8 Teuchos : : rcp (new problem_type (A, X, B) ) ;
9 // I f needed , do something with a pre cond i t i onne r

10 // Prepare the problem to s o l v e the l i n e a r system
11 problem >́setProblem ( ) ;
12 // Te l l the s o l v e r what problem you want to s o l v e
13 so lve r >́setProblem ( problem ) ;
14 // Solve the l i n e a r system
15 // Belos : : ReturnType can take the va lue s Belos : : Converged or

Belos : : Unconverged
16 Belos : : ReturnType r e s u l t = so lve r >́s o l v e ( ) ;
17 // Get the number o f i t e r a t i o n s needed to s o l v e the system
18 const i n t numIters = so lve r >́getNumIters ( ) ;
19 // Get the achieved t o l e r a n c e reached by c a l l i n g s o l v e ( )
20 const sca lar_type achievedTol = so lve r >́achievedTol ( ) ;
21 // Do something to read the s o l u t i o n X, to change the va lue s o f the

matrix A and the r ight ´hand s i d e B
22 // Te l l the s o l v e r manager to prepare the s o l v e r f o r the next s o l v e
23 so lve r >́r e s e t ( Belos : : Problem ) ;
24 // Solve again the l i n e a r system
25 r e s u l t = so lve r >́s o l v e ( ) ;

Listing 5.8 – Demonstration of the construction of a Belos solver

5.1.4 Ifpack2
In theory, the BiCGSTAB algorithm converges with a finite number of iterations.

However, the convergence can be slow for physical applications. A similar phenomenon
has already been observed in section 4.2.1. Instead of using a geometric multigrid
method as in section 4.2, we use a preconditioning technique (see e.g., Saad 2003). The
linear system to be solved is modified into another system, with the same solution, but
easier to solve. Instead of solving Ax “ b, we solve the right preconditioned system
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AK´1Kx “ b via solving AK´1y “ b to compute y and then Kx “ y. As long as
the matrix K is invertible, this gives the same solution as the original system. If K is
well-chosen, the condition number of the matrix AK´1 is lower than A’s one.

The package Ifpack2 [Ifpack2 Project Team] provides classical preconditioners.
One of them, the Jacobi or diagonal preconditioner is given by

Kij “

#

Aij if i “ j

0 otherwise.
(5.2)

Ifpack2 also provides a relaxed incomplete LU factorization with level k fill (Ifpack2
::RILUK). Instead of solving Ax “ b, one can write A “ LU, where L is a lower
triangular matrix and U is an upper triangular matrix and then solve Ly “ b followed
by Ux “ y. However, even if A is sparse, L and U are not sparse in general. This
leads to a phenomenon called fill-in. Memory consumption can become a bottleneck.
Therefore, other matrices L and U can be used, such that A « LU. The product LU
is used as a preconditioner. For example, the nonzero elements of the new matrices L
and U can be the same as A, leading to the method ILU(0). A more accurate method,
but with a higher memory footprint is ILU(k), where the nonzero elements of L and U
are the same as Ak`1. All tests in section 5.2 are performed with the ILU(0) method.

Ifpack2 implements another incomplete factorization (Ifpack2::ILUT) where the
maximum number of entries to keep in each row of L and U is set according to the
number of nonzero elements of A in the same row. Entries smaller than a threshold
are dropped. See Saad [1994] for more details.

Finally, Ifpack2 gives access to an addition Schwarz domain decomposition method
(Ifpack2::AdditiveSchwarz). The problem is divided into smaller domains and the local
results are added to each other. Each domain corresponds exactly to one MPI process,
to avoid extra communications. More details can be found, for example in Prokopenko
et al. [2016].

1 us ing ifpack2_prec_type = I fpack2 : : Precond i t ioner <scalar_type ,
loca l_ordina l_type , g lobal_ordinal_type , node_type >;

2 // Create an in s t ance o f the precond i t i one r , here i t i s a d iagona l
p r e c o n d i t i o n e r

3 I fpack2 : : Factory f a c t o r y ;
4 Teuchos : : RCP<ifpack2_prec_type> K =

f a c t o r y . c reate <matrix_type >("DIAGONAL" , A) ;
5 // Set up the graph s t r u c t u r e o f the p r e c o n d i t i o n e r
6 Ḱ >i n i t i a l i z e ( ) ;
7 // Set up the numerica l va lue s in the p r e c o n d i t i o n e r
8 Ḱ >compute ( ) ;
9 // Use K as r i g h t p r e c o n d i t i o n e r f o r Belos l i n e a r problem

10 problem >́setRightPrec (K) ;
11 // Solve the l i n e a r system
12 so lve r >́s o l v e ( ) ;
13 // Do something to change the va lue s o f the matrix A and the r ight ´hand

s i d e B
14 // Compute again numerica l va lue s in the p r e c o n d i t i o n e r
15 Ḱ >compute ( ) ;
16 // Te l l the s o l v e r manager to prepare the s o l v e r f o r a next s o l v e
17 so lve r >́r e s e t ( Belos : : Problem ) ;
18 // Solve again the l i n e a r system
19 so lve r >́s o l v e ( ) ;

Listing 5.9 – Demonstration of the construction of an Ifpack2 preconditioner
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Listing 5.9 shows how to create a preconditioner using Ifpack2 and how it interacts
with Belos linear problem.

5.1.5 MueLu
The last package we present here is MueLu [Muelu Project Team]. We used it as

algebraic multigrid (AMG) preconditioner. The AMG methods were first developed as
linear solvers for symmetric positive definite matrices arising from the discretization
of scalar elliptic PDEs. For such a matrix, classical iterative methods are efficient
to compute the high frequencies of the solution, but lack efficiency to compute its low
frequencies. However, the computation is easier on a coarser grid with fewer unknowns.
We recover some ideas already developed in section 4.2. The idea of the multigrid
solver is to build a coarser grid, then solve the problem on this coarse grid and finally
interpolate the solution on the fine grid. We can then define a restriction operator
R which transfers vectors from the fine grid to the coarse grid and an interpolation
operator P used to return to the finer grid. P and R are non squared matrices. From
Saad [2003], here are the main steps of the method:

1. pre-smoothing: a few iterations of a simple method such as Jacobi or an incom-
plete factorization are performed, to get the value x̃;

2. the residual r̃ “ b ´ Ax̃ is projected over the coarse grid with the restriction
operator R, to get the residual equation RAPy “ Rr̃;

3. this equation is solved, possibly with a direct solver;
4. the solution y is interpolated over the fine grid with the interpolation operator

P and then x̄ “ x̃ ` Py;
5. post-smoothing: a few iterations of a simple method are again performed to get

the solution ˜̄x.
The solution ˜̄x is used as a preconditioner result. If the coarse grid has too many
unknowns to be solved directly, this process is applied recursively: the coarse grid
becomes the fine grid and a coarser grid is built. Therefore, we have a hierarchy of
grids. With a geometric multigrid solver, the restriction and interpolation operators are
determined by the mesh (see section 4.2), whereas, with an algebraic multigrid solver,
they are automatically generated, using data from the matrix. Algorithms provided by
Ifpack2 (see section 5.1.4) are used as smoothers. Listing 5.10 shows how to create a
preconditioner using MueLu and how it interacts with Belos linear problem.

1 us ing muelu_prec_type = MueLu : : TpetraOperator<scalar_type ,
loca l_ordina l_type , g lobal_ordinal_type , node_type >;

2 // Create a MueLu p r e c o n d i t i o n e r that can be used by Tpetra
3 Teuchos : : RCP<muelu_prec_type> K =

MueLu : : CreateTpetraPrecondit ioner <scalar_type , loca l_ordina l_type ,
g lobal_ordinal_type , node_type>(A) ;

4 // Use K as r i g h t p r e c o n d i t i o n e r f o r Belos l i n e a r problem
5 problem >́setRightPrec (K) ;
6 // Solve the l i n e a r system
7 so lve r >́s o l v e ( ) ;
8 // Do something to change the va lue s o f the matrix A and the r ight ´hand

s i d e B
9 // Update the p r e c o n d i t i o n e r

10 MueLu : : ReuseTpetraPrecondit ioner (A, ∗K) ;
11 // Te l l the s o l v e r manager to prepare the s o l v e r f o r a next s o l v e
12 so lve r >́r e s e t ( Belos : : Problem ) ;
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13 // Solve again the l i n e a r system
14 so lve r >́s o l v e ( ) ;

Listing 5.10 – Demonstration of the construction of a MueLu preconditioner

In the next section, we present some performance results obtained with the different
packages of Trilinos. Especially, we explore the impact of the different precondition-
ers.

5.2 Application to radiative transfer and perfor-
mance results

5.2.1 Implementation
For the hydrodynamics step, Kokkos is used as an independent library for shared

memory computation. Communications between the nodes are handled by the Message
Passing Interface (MPI) programming model through a regular domain decomposition.
Following Kestener [2017], inside each node, the domains are endowed with ghost
cells used to implement physical boundary conditions, but also to contain values from
neighbor domains. The code is organized with computational kernels, each kernel is a
C++ functor. See Padioleau et al. [2019] for more details.

The second step is the time-implicit solver for radiative transfer. The values of
the matrix and the right-hand side of the linear system have to be updated at each
iteration of the Newton-Raphson method. See section 5.1.2 for the different ways to
update the matrix and the right-hand side.

5.2.2 Performances
Thanks to Trilinos, we can use many preconditioners. Unfortunately, they do not

behave the same way when the size of the system increases. All tests are performed
on Poincare, our local cluster at Maison de la Simulation. Each node consists of two
Sandy Bridge E5-2670 @ 2.6 GHz (2 ˆ 8 cores, 32 Go RAM) processors. We use a
hybrid configuration MPI/OpenMP, with one MPI process per socket to avoid NUMA
effects.

We first performed a weak scaling test, where we consider a two-dimensional case
with periodic boundary conditions and a hot source located at the center of each do-
main. Each MPI process is getting a piece of the whole domain of 1 5002 cells, therefore
the size of the system increases with the number of MPI tasks. The resolution is close
to the one we are aiming for three-dimensional simulations. Figure 5.1 shows the mean
number of iterations for the linear solver to converge as a function of the number of
cells. For all preconditioners, the number of iterations remains constant, around 10
iterations for the AMG preconditioner, around 20 iterations for both incomplete fac-
torizations and the additive Schwarz domain decomposition and around 250 iterations
for the relaxation. Figure 5.2 shows the speed-up as a function of the number of MPI
processes. The speed-up reaches a plateau of 80% to 90% of maximum performance,
depending on the preconditioner.

Figures 5.3 and 5.4 shows the number of iterations and the speed-up as a function
of the number of MPI processes for a strong scaling test. We now consider a Marshak
wave propagation in the diffusive limit. The global resolution remains constant as the
number of processes increases. It is set to 2 0482 cells. Because the global resolution
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Figure 5.1 – Number of iterations in a weak scaling test. Each MPI process treats 1 5002

cells. We have tested different preconditioners: Jacobi with damping (Relaxation), alge-
braic multigrid (AMG), standard ILU(k) factorization (RILUK), variant of the standard ILU
factorization (ILUT) and additive Schwarz domain decomposition (Schwarz).
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Figure 5.2 – Speed-up as a function of the number of MPI processes in a weak scaling test.
Each MPI process treats 1 5002 cells. We have tested different preconditioners: Jacobi with
damping (Relaxation), algebraic multigrid (AMG), standard ILU(k) factorization (RILUK),
variant of the standard ILU factorization (ILUT) and additive Schwarz domain decomposition
(Schwarz).
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Figure 5.3 – Number of iterations in a strong scaling test. The global resolution is 2 0482

cells. We have tested different preconditioners: Jacobi with damping (Relaxation), alge-
braic multigrid (AMG), standard ILU(k) factorization (RILUK), variant of the standard ILU
factorization (ILUT) and additive Schwarz domain decomposition (Schwarz).
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Figure 5.4 – Speed-up as a function of the number of MPI processes in a strong scaling test.
The global resolution is 2 0482 cells. We have tested different preconditioners: Jacobi with
damping (Relaxation), algebraic multigrid (AMG), standard ILU(k) factorization (RILUK),
variant of the standard ILU factorization (ILUT) and additive Schwarz domain decomposition
(Schwarz).
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Scheme Number of Computational time Computational time
time steps OpenMP (s) CUDA (s)

Explicit 73 823 6 991 839
Implicit (non-parallel update) 1 60 93

Implicit (parallel update) 1 44 77

Table 5.1 – Computational time with both explicit and implicit solvers on CPU and GPU.
With the implicit solver, the matrix is updated in a parallel or a non-parallel way. The
implicit solver uses the AMG preconditioner.
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Figure 5.5 – Computational time for the implicit solver with different preconditioners (Ja-
cobi with damping (Relaxation), algebraic multigrid (AMG), ILU(k) factorization (RILUK),
slightly modified variant of ILU factorization (ILUT) and additive Schwarz domain decom-
position (Schwarz)) on different architectures (Sandy Bridge CPU and K80 NVIDIA GPU).
The resolution is 10002 cells.

is constant, one can expect the number of iterations to also remain constant when the
number of MPI processes increases. However, using the algebraic multigrid (orange
curve) and the incomplete factorizations (green curve), when four MPI processes or
more are used, the number of iterations is twice the number of iterations reached with
one or two MPI processes. Therefore, the computational time is the same using two
or four MPI processes. Furthermore, all tested preconditioners and the linear solver
requires several communications per iteration, which likely become the main cost when
the local resolution decreases.

Thanks to Kokkos, we can use exactly the same code on different architectures
like Sandy Bridge processors and NVIDIA GP-GPUs (e.g., K80). Unfortunately, the
memory required by the AMG preconditioner with a 1 5002 simulation is larger than
the memory available on a K80 GPU. For the next tests, we use a lower resolution of
1 0002 cells. Table 5.1 summarizes the computational time for a fixed problem with
different schemes and different architectures. As the explicit solver is restricted by a
CFL condition, it needs several thousands of time steps whereas the implicit solver only
needs a few time steps to reach the same final time. Updating the matrix in parallel
allows for a 25% reduction in computational time required. On CPU, the implicit
solver is around 160 times faster than the explicit solver, whereas, on GPU, it is only
11 times faster.
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Figure 5.6 – Memory consumption for the implicit solver with different preconditioners (Ja-
cobi with damping (Relaxation), algebraic multigrid (AMG), ILU(k) factorization (RILUK),
slightly modified variant of ILU factorization (ILUT) and additive Schwarz domain decom-
position (Schwarz)) on different architectures (Sandy Bridge CPU and K80 NVIDIA GPU).
The resolution is 10002 cells.

Figure 5.5 compares the computational time with different preconditioners, on both
CPU and GPU. Except for the implicit solver using the AMG preconditioner, all solvers
are faster on GPU than CPU, up to three times faster for the relaxation preconditioner.
Part of the AMG algorithm probably remains sequential. On CPU, the AMG precon-
ditioner is faster than the relaxation preconditioner. The other preconditioners are
slower, up to a factor 8 between the relaxation and the additive Schwarz domain de-
composition on GPU.

Figure 5.6 compares the memory consumption with different preconditioners. Using
GP-GPU, most of the data are located on the device, but Trilinos still allocates some
memory on the host, between 0.125 GB and 0.208 GB, unlike the explicit solver. Using
the relaxation as a preconditioner, the amount of memory allocated is lower than with
the other preconditioners (7.3 GB for the relaxation against 11.5 GB for the AMG).

Choosing a well-suited preconditioner can be challenging and problem dependent.
Once the preconditioner is chosen, it depends on many parameters. For example,
Trilinos allows the user to choose the damping factor ω for the relaxation method
or the smoother and the coarse solver for the AMG. Performances and stability can
largely depend on these choices. For example, the relaxation method seems to be well
suited for this problem with low computational time, and memory consumption, but
in many other test cases, the linear solver will not converge. The AMG preconditioner
performs well on CPU but is less efficient on GPU. Both incomplete factorizations and
the additive Schwarz domain decomposition are slightly less efficient than the AMG
preconditioner. Overall we have found the AMG preconditioner or relaxation method
are a good compromise between stability and performances.

The performances we obtained thanks to Kokkos and Trilinos are encouraging
for the study of astrophysical problems. The time step given by the hydrodynamics
can be written as CFL∆x

c
. Using a relaxation as a preconditioner, we need CFL ě 50

on CPU and CFL ě 100 on GPU to save computational time, whereas, using an
incomplete factorization, we need CFL ě 250 on CPU and CFL ě 1 000 on GPU.
We need a larger CFL number on GPU because the explicit solver is more efficient on
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(a) 4 ˆ 4 MPI processes, ILU(k) factorization.
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(b) 2 ˆ 2 MPI processes, ILU(k) factorization.
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(c) 4 ˆ 4 MPI processes, Schwarz domain decom-
position.
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(d) 2 ˆ 2 MPI processes, Schwarz domain decom-
position.

Figure 5.7 – Snapshots of the fraction of ionization and the velocity field at the final time
tf “ 1010 s without the initial velocity perturbation (left panel) and with it (right panel).
The physical domain is distributed across different numbers of MPI processes and different
preconditioners have been used. Figure 5.7a is the same figure as fig. 2.10.

GPU than CPU.

5.2.3 Effect of preconditioner and MPI domain decomposition
on the expansion of H ii region

In the test case described in section 2.2.6, some numerical noise appears, as a
consequence of the long timescales. Let us recall that a time-implicit scheme is used,
with large time steps for the radiative transfer. At each time step, the Newton-Raphson
method is used and, at each iteration of this algorithm, an ill-conditioned linear system
is solved, using an iterative process. This results in the appearance of some numerical
noise.

We have performed the simulation described previously, with different numbers of
MPI processes and different preconditioners. The physical domain is either distributed
over 4ˆ4 MPI processes (figs. 5.7a and 5.7c) or 2ˆ2 MPI processes (figs. 5.7b and 5.7d).
We have also tried two preconditioners which allowed us to reach the final time with
reasonable computational time: a standard ILU(k) factorization (figs. 5.7a and 5.7b)
and an additive Schwarz domain decomposition (figs. 5.7c and 5.7d).

Figure 5.7 shows snapshots of the fraction of ionization and the velocity field at the
final time tf “ 1010 s. The shape of the small structures produced by the numerical
noise varies with the number of MPI processes and the preconditioner. Furthermore,
the propagation of the ionization front creates some velocity that also depends on the
number of MPI processes and preconditioners. However, the position of the ionization
front is not affected by these parameters.

5.3 Discussion and conclusion
In this chapter, we explored some features of the library Trilinos for the resolution

of linear systems. We also studied their performances on different architectures, such
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as multi-cores and GPUs, thanks to the package Kokkos. Finally, we discussed the
impact of the choice of the preconditioner and the MPI domain decomposition on a
physical application.

5.3.1 Vectorization
We did not explore all the capabilities of Kokkos. In particular, Kokkos provides

tools for vectorization through hierarchical parallelism. Some CPUs can perform oper-
ations on multiple floating points with the same number of cycles as the scalar version.
Enabling vectorization through Kokkos should improve the performances [Padioleau,
2020].

5.3.2 Implementation of other numerical schemes
Numerical schemes developed in chapters 3 and 4 are only implemented in sequen-

tial codes. Parallelism in the code ARK, which implements an all-regime solver for
hydrodynamics, is handled through Kokkos and MPI. Because our all-regime scheme
(chapter 3) has the same structure as the scheme for hydrodynamics, its implementa-
tion in ARK should be easily done. However, we have not done it because we aim for
an implicit solver.

The Jacobi method, presented in section 4.1, can easily be made parallel. It could
also be done with Kokkos and MPI. However, the geometric multigrid algorithm
(section 4.2) raises the problem of load balancing when the coarser grids, with only a
few unknowns, are reached.
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Conclusion and perspectives

The goal of this thesis is to develop an asymptotic preserving implicit scheme for
the M1 model for radiative transfer. This scheme should also preserve the admissible
states, Er ą 0 and ||Fr||

cEr
ď 1.

In chapter 1, we have presented the radiative transfer equation. This model is
costly to solve numerically, we derive a two-moment model by averaging the specific
intensity over the direction of propagation and the frequency of the photons. We have
to specify a closure relation, to express the radiative pressure as a function of the
radiative energy and the radiative flux. We have chosen to use the M1 model for its
good properties in both optically thick and thin media. We compute the radiative
pressure by maximizing the radiative entropy. We also have investigated the behavior
of this model in the diffusive limit, with long timescale and large opacity. Finally, we
have presented the model used for radiation hydrodynamics, where the hydrodynamics
is no longer frozen.

In chapter 2, we have developed a first numerical scheme. This scheme is asymp-
totic preserving and time-implicit. It is based on a standard HLL scheme, numerical
fluxes are modified with an asymptotic correction that allows us to capture the correct
behavior in the diffusive limit. We also propose a well-balanced modification of the
source term, to capture the correct steady state with a discontinuity of opacity. The
nonlinear system arising from this discretization is solved using the Newton-Raphson
method. Using this numerical scheme, we study the stability of the ionization front
in a massive pre-stellar dense core in the presence of convection. However, numerical
experiments have shown that this scheme does not preserve the admissible states.

In chapter 3, we have derived a second numerical scheme, asymptotic preserving
and entropic. Because this scheme is entropic, we have shown that it preserves the
admissible states. It is based on a splitting of operator, first developed for compress-
ible hydrodynamics. We have rewritten the M1 model in a form similar to the Euler
equations. The first scheme we presented in this chapter is an adaptation of the work of
Chalons et al. [2016]. We have then modified this scheme to obtain an unsplit scheme,
with stencil 1. For both schemes, we have used the numerical fluxes proposed by Buet
and Despres [2008], developed for a Lagrange-remap method. These fluxes take into
account source terms and allow the scheme to be asymptotic preserving. For the sake
of simplicity, these two schemes are presented with a time-explicit integration.

In chapter 4, we have presented an algorithm to solve the nonlinear system arising
from a time-implicit HLL solver. We used the Jacobi method developed by Pichard
[2016]. It is an iterative process and each iteration results in an admissible state.
Nevertheless, it should be used carefully in the free-streaming regime. Increasing the
number of iterations can increase the numerical diffusion (see section 4.3.2). Further-
more, the Jacobi method can be slow to converge when the resolution increases. To
tackle this issue, we have used a nonlinear geometric multigrid algorithm [Briggs et al.,
2000]. To help the convergence on a fine grid, a coarser grid is built, and the problem is
solved on the coarse grid. This process can be applied recursively to solve the problem
on the coarse grid. The Jacobi method is used as a smoother and coarse grid solver.
The quantities moved between the different grids are the residual of the equation and
the error. These quantities are not admissible in most cases. Following Kifonidis and
Müller [2012], we introduce a pseudo-time at the coarse level and we use it to preserve
the admissible states.

Finally, in chapter 5, we have presented the library Trilinos, used for linear alge-
bra in a high performance computing context. We used it to solve the linear systems
involved in the scheme developed in chapter 2. The package Kokkos allows us to
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target different architectures, such as multi-cores, many-cores, and GP-GPUs. We
have discussed the performances obtained thanks to Kokkos and the different pre-
conditioners provided by Trilinos. We have also investigated the impact of the MPI
domain decomposition and the preconditioner on the stability of the ionization front
in a massive pre-stellar dense core.

Several perspectives arise from this work. To study astrophysical problems, an
implicit and asymptotic preserving scheme is required. It should also preserve the
admissible states. We have presented several schemes, each of them with two of these
three properties. Developing a scheme with all of these properties, using the schemes
presented in chapters 3 and 4, has not been done because of time constraints.

Such a scheme could be altered with a well-balanced modification of the source
terms to capture properly the steady state with a discontinuity of opacity. In chapter 2,
we have presented such a modification. For performance reasons, we did not take it
into account in the schemes presented in chapter 3.

So far, the schemes presented in chapters 3 and 4 are implemented in a sequential
C++ code. To study astrophysical problems, high performance computing is manda-
tory. We can achieve portability and performance portability with the library Kokkos.

Inspired by the resolution of the Poisson equation for self-gravity [Guillet and
Teyssier, 2011], the geometric multigrid algorithm could be extended in the context of
Adaptive Mesh Refinement (AMR), but is beyond the scope of this thesis.
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