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Prologue

How do billions of neurons cooperate to process information and mediate
cognitive function? An influential hypothesis is that groups of neurons can
synchronize within brief time windows to represent a cognitive entity or a
concept (Hebb 1949). These groups, called ‘cell assemblies’ are thought to
be the functional units of the brain. Recent advances in large-scale neuronal
recordings have permitted to investigate such synchronous activity within
single areas of the brain. Yet, the functional relevance of these ensembles
remains largely unexplored, especially within and among higher order brain
areas.

The Introduction of this thesis is structured in three parts and discusses the
background knowledge for my thesis research on cell assemblies.
Chapter 1 presents the historical evolution of the cell assembly concept.
Cell assemblies were first proposed in a representational framework by Hebb
(1949). In this view, the role of a cell assembly is to ‘code’ for an item, for
example, an apple. This motivated many studies in the sensory system. Their
goal was to find neurons that preferentially activated in response to specific
stimuli. Decades later, Buzsáki proposed that the functional relevance of syn-
chronous activation should be considered from the perspective of the internal
mechanisms of the brain itself, not that of the experimenter. For example,
downstream neurons could rely on temporally organized inputs to discharge.
This chapter also discusses the issues of cell assembly time scales, and how
brain rhythms could help to shape them. A brief section presents sequences
of cell assemblies, hypothetical ‘neural words’ that could underpin elaborated
cognitive processes. Finally, this chapter proposes a working definition of cell
assemblies applicable for the rest of this manuscript, that is: ensembles of cells
that are co-active in a brief temporal window.
Chapter 2 is dedicated to the numerous existing methods to identify cell
assemblies. This chapter covers elementary cross-correlation tools, model-
based techniques and unsupervised frameworks. A particular focus is set on
principal and independent component analyses. These methods form the basis
of my two research projects described in the Result section.
Chapter 3 exposes the neurophysiological mechanisms involved in memory
consolidation during sleep. In particular, this chapter describes ‘reactiva-
tions’, i.e., repeated activations of cell assemblies and ‘replay’, i.e., temporally
ordered sequences of neural activity, both of which occur in many brain regions.

The Results section of this manuscript presents the computational projects of
my PhD work, in collaboration with team members and under the supervision
of Michaël Zugaro and Sidney Wiener at the Collège de France.
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Chapter 4 consists of a manuscript currently under consideration at Na-
ture Communications. In this project, we aimed at investigating whether cell
assemblies existed within and among two high order brain areas. My con-
tribution was to demonstrate and characterize synchronous activity spanning
different parts of the prefrontal cortex and the striatum in freely behaving rats,
members of the cortico-basal ganglia loop. These distributed cell assemblies
exhibited behaviorally correlated activation in rats performing a set-shifting
task, and synchrony emerged when members shifted their phase relative to
ongoing brain rhythms.
Chapter 5 presents a manuscript in preparation for submission. The goal
of this project is to study the functional relevance of cell assemblies from the
perspective of a downstream neuron. To this end, we analyzed the neural
activity from hundreds of single units in the prefrontal-amygdalar networks
in rats during sleep. Our results suggest that the synchronous activity of cell
assemblies facilitate and amplify the discharge of downstream neurons, termed
‘readers’ of the assembly. Finally, the paper shows that the assembly-reader
communication changes with learning.

The General Discussion presents some general considerations and possible
perspectives for future work.
Chapter 6 is dedicated to discussing the main findings of Chapter 4. It also
addresses future data analyses aimed at further characterizing assembly-reader
relationship described in Chapter 5.
InChapter 7, I discuss some of the main limitations of the computing method
employed here to detect cell assemblies. Finally, I also suggest a possible
strategy for overcoming them.
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How do billions of neurons work together to process information and enable
cognitive functions? One strategy to try to answer this question, is to present
various stimuli such as a the sound of Chopin sonata, the scent of an orange,
a Degas painting of dancers, and record the responses of neurons in a brain.
However, in the early years of neuroscience, only one or few single neurons
could be examined at a time. Therefore, experimenters focused on finding
the relevant stimulus that induce reliable firing of single cells. Afterwards,
with technological advances increasing the number of neurons simultaneously
recorded, electrophysiologists suggested that: a single cell might not code
only for a single stimulus and conversely a stimulus may not be represented
by only a single cell. These considerations led to the popularization of the
cell assembly concept, first developed by Hebb (1949): groups of anatomically
interconnected neurons are the functional units of the brain that can represent
distinct objects, concepts or cognitive entities. The ‘representational concept’
of cell assemblies proposed by Hebb was recently challenged and refined by
Buzsáki (2010). To be functionally relevant, cell assemblies should provide
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1 How does information flow within the brain?

meaningful signals for downstream neurons or network mechanisms reading
the assembly activity, rather than simply being detectable by the experimenter
seeking the external stimulus best correlating with assembly activity. In this
chapter, I will first retrace the paradigm shift from the neuron doctrine to cell
assemblies. Subsequent sections are dedicated to time scales that define cell
assemblies but also sequences of assemblies: neural words.

1.1 From the neuron doctrine to cell assemblies

Popular in the 1970s, an extension to the neuron doctrine stated that a neuron
is not only the anatomical and functional unit of the nervous system but also
its perceptual unit (Barlow 1972). In this view, each neuron is a feature
detector of a specific stimulus, object, event. This assumption was based on
visual system studies, especially on frog retina ganglion cells ("fly detector
neurons", particularly active when a bug is moving; Barlow 1953), and later
in the cat visual cortex (Hubel & Wiesel 1962). Neurons that respond to the
orientation of a bar stimulus in a particular part of the visual field1 would
converge onto other cells in hierarchically superior structures to be combined
into more complex percepts (see Figure 1.1, a). This builds up a hierarchy
of coding that ultimately leads to cells at the top of the pyramid (ironically)
named "gnostic neuron" (Konorski 1967) or "grand-mother cells" (Lettvin
1967, Gross 2002). Grand-mother cells are hypothetical neurons that would
uniquely code for a highly complex stimulus, such as the concept of a person,
e.g. the face, the voice or the name of my grand mother. Interestingly, face
selective cells have been recorded in the highest level of the hierarchy of the
visual areas (i.e. in the inferior temporal cortex) of monkeys (Gross et al.
1969, Perrett et al. 1982, Desimone et al. 1984). For example, in the human
medial temporal lobe, neurons exhibit selective response to particular faces or
objects (Kreiman et al. 2000), such as the well known ‘Jennifer Aniston cell’
(Quiroga, Reddy, et al. 2005), particularly active when a patient was looking
at a picture of the actress2.

However, these neurons (celebrity cells or face selective cells in monkeys) typi-
cally respond to more than one or several stimulus. Even the popular Jennifer
Aniston neuron responded in a subsequent session also to Lisa Kudrow, one
of her co-stars in the show Friends. Theoretical work estimated that each cell
most probably responds to between 50 and 150 distinct percepts (Waydo et al.
2006). Similarly, in higher order areas such as the prefrontal cortex (PFC),
neurons exhibit complex and multi-modal tuning (see Eichenbaum 2018 for a
review). The fact that neurons are specifically activated by particular inputs
may not necessarily mean that this is their role in the circuit (Yuste 2015).
The mean by which a neuron encode a given information could be related to

1These neurons are located in the primary visual cortex V1 and are arranged in
columns, perpendicular to the surface of the cortex

2Interestingly, such cells are multi-modal, that is, a Jennifer Anniston cell may respond
to a picture of the actress but also to hearing her name (auditory stimuli; Quian Quiroga
et al. 2009)
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1.1 From the neuron doctrine to cell assemblies

Figure 1.1: a) Tuning of a neuron recorded in cat V1 (the first visual cortical area) to
the local orientations of moving visual stimulus(Hubel & Wiesel 1962). Note that this
neuron is more active when the bar is vertical. This information is further processed
along the ventral visual pathway. The neuronal representation in V1 is combined
into more complex patterns in higher areas (V1 to V4), and in the inferotemporal
cortex (the hierarchically highest purely visual area) neurons fire selectively to the
sight of faces (Gross et al. 1969, Perrett et al. 1982, Desimone et al. 1984). The
inferotemporal cortex (IT) has numerous connections to the medial temporal lobe
(which includes the hippocampus, HPC), in which neurons were found to respond
selectively to persons or objects, such as, in the example shown, the football player
Diego Maradona (Quiroga, Reddy, et al. 2005). b) Distributed representation of
concepts (e.g., TV show Friends actors) in the medial temporal lobe.
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1 How does information flow within the brain?

Figure 1.1: On the left is a hypothetical cell assembly encoding the concept ‘Jennifer
Aniston’ (group of neurons colored in green). Of these neurons, some also fired in re-
sponse to Lisa Kudrow (identified with an orange line contour), and some others fired
in response to Matt Leblanc (identified with a purple line contour). The activation of
the ‘Jennifer Aniston cell assembly’, for example, after seeing her picture, can then
trigger other associated concepts, such as Lisa Kudrow or Matt Leblanc, through
the firing of the neurons with an overlapping representation. Such partially overlap-
ping representation could be the basis of the encoding and learning of associations
and episodic memories. Note that this schematic example is an extrapolation pro-
posed by Quiroga 2012 following numerous studies from the Itzak Fried lab (Quiroga,
Reddy, et al. 2005, Quiroga, Kreiman, et al. 2008, Gelbard-Sagiv et al. 2008), in par-
ticular the Jennifer Aniston cell (Quiroga, Reddy, et al. 2005; which also fired for
Lisa Kudrow in subsequent session). Panel a) and b) are adapted from Quiroga 2012.

its firing or its lack of firing (rate code), to the exact time at which it fires
(temporal code), but also to whether or not it fires in synchrony with other
neurons (ensemble coding).

Perhaps one of the strongest arguments in favor of cell assembly coding is the
following: considering the millions of neurons existing in the medial temporal
lobe, how can the investigators be lucky enough to record a neuron that codes
for the face of a particular person (which happens to be represented in of the
30 pictures selected for the experiment)? It is more likely that coding for any
particular face is distributed across a large population of neurons. Distributed
encoding in the visual system is explained by the binding-theory: the different
features of a stimulus (edges, colour, motion, texture) are treated separately
by feature detector neurons in different visual areas, and then this informa-
tion is integrated when these neurons fire together so the representation of the
stimulus can emerge. In this view, there are no unique ‘grandmother cells’
or ‘Jennifer Aniston cells’ that could detect the unique collection of features
that characterize a person but rather a ‘Jennifer Aniston assembly’ combining
several features, (e.g. her voice, blond hair, blue eyes; Gross 2002, Quiroga,
Kreiman, et al. 2008; see also section 1.3 for an hypothetical mechanism of
binding). Notably, Quiroga 2012 suggested that related cognitive representa-
tions (e.g. actors casted in the same TV show, see Figure 1.1, b) could be
encoded by overlapping groups of cells. These groups are also referred to as
‘cell assemblies’. Cell assemblies are the central topic of this thesis, therefore,
before moving further, I will provide a working definition of what assemblies
are.

1.2 Conceptual definition of cell assemblies

The literature, employs many terms, such as ‘ensemble’, ‘population’, ‘group
of neurons’, ‘cell assemblies’ or even ‘states’, to describe the activity of a
certain number of neurons (ranging ‘from more than one’, to ‘all the neurons
we could record’), without explicitly defining what these terms actually refer
to. In this section, I will present the original conceptual definition of a cell
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1.2 Conceptual definition of cell assemblies

assembly, proposed by Hebb (1949), but also a more recent one proposed by
Buzsáki (2010), providing a framework for the scientific questions addressed
in the Result section 5.

1.2.1 Cell assemblies in a representational framework

The term ’cell assembly’ was first coined by Donald O. Hebb in 1949 in
his book the Organization of behavior where he proposed a paradigm shift:
cell assemblies rather than single cells are the functional units of the brain
(as opposed to the neuron doctrine, see 1.1). But what was the originally
proposed definition a cell assembly? A cell assembly is a group of physically
interconnected neurons. This theory is based on Hebb’s rule : "The general
idea is an old one, any two cells or systems of cells that are repeatedly active
at the same time will tend to become "associated", so that activity in one
facilitates activity in the other (Hebb 1949). Thus, mutual excitation of a
sufficient number of cells can activate them as a cell assembly. Their intercon-
nections would then be reinforced, so that subsequent excitation of a subset
of the assembly would reactivate the rest. Because of this plasticity and
high-interconnectivity, Hebb hypothesized that an assembly could maintain
its activity and manifest a reverberatory activity that would persist3, without
requiring any further input. The simplest examples of such processes are
closed loop systems, i.e. A triggers B, B triggers C and C leads back to A.
However, the best analogy to the network structure defined by Hebb, instead
of a ring or a loop is a closed solid cage-work or a 3D lattice with no regular
structure and with connections possible from any one cell (intersection) to
any other. In turn, the reverberatory activity of an assembly can serve as an
input to another assembly, thus resulting in ‘chains’, denominated as ‘phase
sequences’ by Hebb. He proposed that phase sequences are the neural sub-
strate of perception and internal complex cognitive processes such as thinking,
planning, or decision making (see Figure 1.2a).

However, Hebb defined assemblies in the context of study of the visual system
in particular within the ‘representational framework’ (i.e. finding the relevant
stimulus that elicit the activation of a single cell or an assembly, see examples
in the section 1.1 above). However, when studying complex cognitive function
such as thinking, emotion, or memory at higher hierarchical levels, it may be-
come difficult to find a relevant stimulus. Representation of external features
is only part of the story: Gelbard-Sagiv et al. (2008) found a stimulus, an
episode of The Simpsons, triggering activity of a subset of neurons in the hip-
pocampus and the entorhinal cortex. Interestingly, firing rate of these neurons
increased during free conscious recall, when the sensory stimuli was absent and
no external cues were provided. Thus, the firing pattern of neurons reflects not
only the physical nature of a stimulus, but also internal factors (even in pri-
mary sensory cortices; Kreiman et al. 2000). These considerations led Buzsáki
(2010) to refine the definition of cell assemblies, as activity patterns mean-

3at least transciently, Hebb theorized a time limit up to 500 ms
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1 How does information flow within the brain?

ingful for internal processing by the brain rather than for the experimenters
seeking the best stimulus associated with the cell assembly’s activation.

1.2.2 Cell assemblies in the framework of internal processing:
‘reader’ mechanisms

Buzsáki (2010) proposed a functional definition of cell assemblies, without in-
voking representations, while keeping some features of Hebb’s definition. He
suggested that cell assemblies are meaningful events for neuronal computation,
only from the point of view of a ‘reader’ mechanism and within a given tem-
poral frame. The reader observes, integrates and sends an action in response
to a particular input pattern (presumed cell assembly). In other words, cell
assemblies are defined by their predictable consequences on downstream read-
ers. Unlike Hebb’s proposition, members of an assembly are not necessarily
connected together, since only the generation of a coherent output is mean-
ingful in this framework. Which candidates can qualify as reader mechanism?
In Buzsáki’s view, readers may be a neuron, a group of neurons4, a motor
response such as a muscle contraction or even a machine interpreting neural
activity and producing an output. Hence, the time scales of assemblies could
range from milliseconds to several seconds. However, here we will consider cell
assemblies to exist on a brief timescale, from the perspective of readers that
are one or several downstream neurons. In the next section, I will present the
time scale of such cell assemblies and explain why these are relevant.

Box 1.1 Concepts related to cell assemblies

• Hopfield networks : inspired by Hebb’s rule and his definition of the
cell assembly, these networks can store externally presented patterns
through the modification of recurrent excitatory synapses (Hopfield
1982). In time, the reverberant excitatory activity of the Hopfield
network converges onto a stable state, an ‘attractor’, which matches
one of the original input. However, once an attractor is reached, the
network is locked there and can no longer evolve. This stationarity is
in opposition with the dynamical view of cell assemblies : they can
drop or recruit members over time, a fundamental property common
to Hebb’s and Buzsáki’s definitions.

• Synfire chains. These refer to models of feed-forward neurons with
many layers (Abeles 1982). Neurons in the same layer are not nec-
essarily connected together but at least one of them projects onto a
neuron in the target layer. This models sequences of cell assemblies,
propagating in cascade from one layer to an other.

4Resulting in a sequence of assembly activations, similar to Hebb’s phase sequences
(see Figure 1.2b).
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Figure 1.2: Conceptual definitions
of cell assemblies. a) Hebb’s rever-
berating cell assembly sequences (af-
ter Figure 10 of The Organization of
Behavior). Arrows represent tran-
sitions between individual assemblies
and numbers indicate the order of acti-
vation in the sequence. The direction of
activity flow across assemblies (edges)
is determined by the stronger synap-
tic strengths among assembly mem-
bers relative to other connections (not
shown). The same assembly can par-
ticipate in a sequence more than once
(e.g., pathway 1, 4 indicates recurring
transitions). No mechanism is postu-
lated to explain why activity does not
spread to all parts of the network and
reverberate forever. b) Cell assem-
blies in the framework of reader mech-
anisms (Buzsáki 2010). Cells firing
within the time integrating window of
a reader mechanism define an assembly
(irrespective of whether assembly mem-
bers are connected synaptically or not).
Readers a1, a2 and a3 may receive in-
puts from many neurons but respond
only to a combination of spiking neu-
rons (gray circles) to which they are
most strongly connected. Thus reader
a1 responds preferentially to cofiring
of neurons 1, 9, and 13 at t1 (bold
lines), even though it may be synapti-
cally innervated by other neurons neu-
rons (gray lines). The large scale reader
mechanism s (yellow) integrates over
a longer time period and, therefore,
can link together assemblies into "neu-
ral words" reading out a new quality
not present in the individual represen-
tations of a1, a2 and a3.
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1 How does information flow within the brain?

1.3 A question of time windows

The working definition of cell assemblies here is a set of upstream neurons
jointly firing in a given time window to be received by downstream neurons.
In this section, I will explain the role of cell assembly synchronous activations
in triggering an action potential of a downstream neuron and discuss the rele-
vant time scale5. I will particularly focus on a window of electrophysiological
interest: the 10-30 ms window corresponding to the membrane time constant
of several cells in the brain (Spruston & Johnston 1992; Koch et al. 1996), as
well as the time scale of plasticity mechanisms.

1.3.1 Coincidence detectors

What exactly causes a neuron to fire an action potential and which time scale
is relevant? A neuron fires when its input current exceeds a certain threshold.
Precisely, the threshold for action potential generation is the lowest at the ini-
tial segment of the axon, ‘the trigger zone’, since the density of Na+ channel
is high in this region6 (Figure 1.3a). However, the amplitude of a single exci-
tatory postsynaptic potential (EPSP) does not usually drive the cell to reach
this spiking threshold. Indeed, it is rather the summation of multiple synaptic
potentials, propagating from dendrites to the soma and the trigger zone (and
thus, undergoing severe attenuation, Segev & London 2000), that generates an
action potential7. Theoretical studies have shown that excitatory inputs from
multiple synapses arriving synchronously (e.g. from converging inputs from a
cell assembly activation) within a short window, the width of an EPSP, are
most effective in generating output spikes (Abeles 1982, König et al. 1996; see
Figure 1.3c). Such mechanisms are referred to as coincidence detection or spa-
tial summation, as opposed to temporal integration. In a temporal integration
mode, the efficacy of EPSP summation results from sequential activation of the
same input (Figure 1.3 b) whereas in a ‘coincidence detection’ mode, a neuron
fires action potentials whenever a sufficient number of presynaptic neurons are
precisely synchronously active. These two modes are not completely antago-
nistic: integrators are simply characterized by longer EPSPs. Thus, multiple
inputs from the same synapse can be integrated (but also asynchronous ac-
tivation of different inputs) while coincidence detectors by short ones, hence
spatially separated inputs are favored8 (Magee 2000). However, EPSP time

5Note that cell assemblies could have other downstream effects such as routing, gating
as well as shunting.

6Na+ channels are voltage-gated protein embedded in the membrane of a neuron. They
remain closed when the neuron membrane potential is close to the resting potential but
they can open when the potential increases (for instance, because of the current induced
by synaptic transmission). This causes more sodium ions to enter the cell which further
increases the membrane potential, and so on, eventually reaching the action potential
threshold. Following the action potential, Na+ channels becomes inactivated, Na+ ions
are transported back outside of the cell. The resting potential is then restored with K+
channels opening.

7Neural integration also occurs at dendrites which can affect the propagation of synap-
tic potential to the cell body.

8Because of refractory periods, one neuron, can spike only one or two times in a short
windows, say 20 ms.
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widths are difficult to measure in vivo and depend on multiple factors: the
morphology of the cell, the location of the synapses, and the time course of
the synaptic currents from the dendrites to the trigger zone.
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Figure 1.3: Neural integration. a) An excitatory synaptic potential originating
in the dendrites decreases with distance as it propagates passively to the soma. Nev-
ertheless, an action potential can be initiated at the trigger zone (the axon initial
segment) because the density of the Na+ channels in this region is high, and thus
the threshold is low. b) Temporal summation. In a cell with a short time constant
(20 ms) the first EPSP decays to the resting potential before the second EPSP is
triggered. EPSPs alone can not cause enough depolarization to trigger an action
potential. However, in a cell with a long time constant the first EPSP does not fully
decay by the time the second EPSP is triggered. Therefore, the depolarizing effects
of both potentials are additive, bringing the membrane potential above the threshold
and triggering an action potential. c) The summation of two potentials produced
by two proximal synaptic neurons results in enough depolarization to exceed thresh-
old, triggering an action potential, in a cell with short time constant (20 ms). d)
Distribution of membrane time constants for different type of neurons : amygdala ba-
solateral nucleus pyramidal neuron (BLA), Hippocampal CA1 pyramidal cell (HPC),
Neocortex pyramidal cell layer 2-3, Nucleus accumbens medium spiny neuron (STR).
Distributions first and third quartiles are indicated by boxplots, median by horizon-
tal black bars (BLA = 25 ms; HPC = 21,5 ms; Neocortex = 18 ms; STR = 17 ms).
Panels a,b and c are adapted from Kandel et al. 2000. Pannel d was produced with
data from Tripathy et al. 2015.
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1 How does information flow within the brain?

Experimental studies in anesthetized animals provided evidence for the exis-
tence of coincidence detectors, reporting a 6 to 8 ms integration window of
thalamic inputs in the somatosensory cortex (Roy & Alloway 2001) and in
the visual system (Alonso et al. 1996; Usrey et al. 2000). Also, the integration
time or EPSP width can be approximated by the measure of related parameters
such as the neuron membrane time constant. The membrane time constant
(τ) is the product of the resistance rm and capacitance cm of the membrane
(τ = rmcm) and represents the duration within which the membrane potential
decays to approximately 37% (= e−1) of the resting potential following an volt-
age step. Membrane time constants range from 5 to 100 ms depending on the
type of cell and/or the brain area (for an impressive database including time
constant measurements from 968 studies, see Tripathy et al. 2015). Typically,
the membrane time constants of neurons in the neocortex, the striatum as well
as in the amygdala, are ∼20 ms9 (between 10 and 30 ms, see Figure 1.3d, see
Box 1.2 for a brief description of these structures). Hence, cell assemblies time
scale in these brain structures should lie within these values (as we reported
in Result chapters 4 and 5, but see also Figure 1.5).

Box 1.2 Three brain structures of interest: the amydgala, the
medial prefrontal cortex and the striatum

In this manuscript, experimental and computational studies aimed at inves-
tigating neural communication within and among three brain structures:

• The amygdala is a heterogeneous group of ∼13 nuclei. The basal
and lateral nulcei called ‘cortical-like’, because, like the cortex, are
mainly composed of excitatory projection neurons (∼85%) with a
small percentage of local inhibitory interneurons (∼15%), and contain
cortical-like neurons with pyramidal and stellate morphologies. Con-
versely, the centromedial nuclei, on the other hand, are considered
striatal-like, because, like the striatum, they are composed almost ex-
clusively of inhibitory neurons, and the projecting cells resemble the
medium spiny neurons of the striatum. The amygdala is an emotional
and motivational processor, implicated notably in aversion and reward
processing (Pignatelli & Beyeler 2019). The amygdala also modulates
fear learning in other brain regions, like the hippocampus and cortical
areas (McGaugh 2004).

• The striatum (STR) is the main entry point of the basal ganglia.
The basal ganglia system has been attributed various functions such
as action selection, certain types of learning and memory as well as
motivated behavior. The STR integrates multiple inputs, in partic-
ular, from diverse cortical areas and these connections are function-
ally organized. The striatum can be divided into multiple anatomo-
functional subregions: dorsolateral, dorsomedial and the ventral stria-

9Note that these constants may vary depending on the synaptic background activity
(Koch et al. 1996, Destexhe et al. 2003)
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1.3 A question of time windows

tum (vSTR), also called nucleus accumbens, which is subdivided
into core and shell subregions. Striatal projection neurons are the
GABAergic medium spiny neurons (MSNs) and comprise in rodents
90-95% of the striatal neuronal population (Rymar et al., 2004). The
STR also contains GABAergic and cholinergic interneurons.

• The medial prefrontal cortex (mPFC) is implicated in a broad
range of cognitive functions related to attention, executive control and
working memory. As the other neocortical areas, the mPFC mostly
contains two types of neurons: glutamatergic pyramidal projection
neurons (PN) and GABAergic interneurons (IN) which represent re-
spectively 80% and 20% of the cortical neural population (DeFelipe
& Fariñas 1992). the mPFC is reciprocally connected with other sub-
cortical structures including the amygdala, the hippocampus, and the
striatum (Groenewegen et al. 1997).

1.3.2 Synaptic plasticity

Coincidental inputs from multiple pre-synaptic neurons (i.e. a cell assembly),
within 20 ms, facilitate the discharge of a neuron. In this section, we will see
that plasticity mechanisms occurs at similar time scales resulting in synap-
tic weight changes between one pre-synaptic neuron, e.g. a member of an
assembly, and a post-synaptic neuron; e.g. a downstream target10.
In The Organisation of Behavior, Hebb stated : "when an axon of cell A is
near enough to excite a cell B and repeatedly or persistently takes part in firing
it, some growth process or metabolic change takes place in one or both cells
such that its efficiency, as one of the cells firing B, is increased". This was
summarized by the well-known expression "neurons that fire together, wire
together" (Shatz 1992).

However, the first experimental proof of Hebb’s postulate came 30 years
later, with the discovery of long term potentiation by Bliss & Lømo (1973).
Their experiments were carried out in the rabbit hippocampus with tetanic
stimulation of efferent fibers from the perforant pathway that projects monosy-
naptically to the dentate gyrus. These high frequency train of stimuli caused
strong excitatory postsynaptic potentials in pyramidal cells of the dentate
gyrus(see Figure 1.4a). Hence the following postsynaptic responses to further
single stimulus pulses were enhanced. Since then, LTP has been observed in a
variety of neural structures such as visual (Artola & Singer 1987), somatosen-
sory (Bindman et al. 1988), motor (Iriki et al. 1989) and prefrontal cortical
areas (Hirsch & Crepel 1992), the amygdala (Clugnet & LeDoux 1990), the
nucleus accumbens (Pennartz, Ameerun, et al. 1993) and the midbrain reward
system (Liu et al. 2005). A decade later, the opposite effect was discovered in
cerebellum: a persistent decrease of synaptic efficacy resulting from another

10Plasticity mechanisms may as well occur between two members of an assembly if those
happen to be anatomically connected, but this not necessarily the case in the ‘reader’ view
of assemblies
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Figure 1.4: Plasticity mechanisms. a) Alterations in field EPSP (rising slope
normalized to baseline) over time, during LTP (100 Hz tetanic stimulation, 1 s,
baseline intensity) or after the induction of LTD (1 Hz stimulation, 15 min, baseline
intensity). The gray bar represents the duration of the stimulus (from Collingridge et
al. 2004). b) In STDP protocols, the synapse is either potentiated or depotentiated
according to the delay between the pre-and post-synaptic spikes (from Bi & Poo
2001).

type of stimulus timing, called long term depression (LTD, see Figure 1.4a; Ito
& Kano 1982). LTP can last more than a year and thus is capable of serving
as a mechanism for long-lasting storage of information (Abraham et al. 2002).

Yet, the powerful tetanic stimulations used in early experiments to trigger LTP
are much stronger than physiological conditions in vivo. Moreover, in these
protocols, the Hebbian pairing rule is not respected since the spiking of the
postsynaptic neurons is not controlled. Spiking-Timing-Dependant-Plasticity
(STDP) provides a framework to understand plasticity one postsynaptic spike
at a time. In 1997, Markram et al. and Magee & Johnston demonstrated that
LTD occurs if a postsynaptic action potential precedes presynaptic activity
by 20 to 100 ms while LTP occurs if the postsynaptic action potential follows
presynaptic activity by ∼20 ms (Figure 1.4b). Thus repeated co-activations
of multiple neurons within 20 ms can strengthen their reciprocal connections
and/or their connection with a common downstream target (with ∼20 ms
conduction delay). This provides a possible mechanism of structural changes
that are thought to support memory formation and consolidation.

1.4 Cell assemblies within the brain

While experimental evidence for cell pair synchronization is abundant, work
concerning cell assemblies (n≥3) is more rare. This is probably due to the
technical difficulties of recording hundreds of single units simultaneously. Still,
in the literature, cell assemblies have been reported in different brain region
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including the hippocampus (Harris et al. 2003; O’Neill, Senior, et al. 2008), the
prefrontal cortex (Fujisawa, Amarasingham, et al. 2008; Peyrache, Khamassi,
et al. 2009; Benchenane et al. 2010), the visual cortex (Dong et al. 2008; Martin
& von der Heydt 2015), the motor cortex (Riehle et al. 1997; Gulati, Won,
et al. 2015; Ramanathan et al. 2015), the somatosensory cortex (Deolindo et
al. 2018), as well as the olfactory cortex (Perez-Orive et al. 2002). However,
the time scale of synchrony may vary greatly from one study to another (see
Figure 1.5 and Table 2). Also, these time scales may exceeded the membrane
time constant of neurons from one to several orders of magnitude, especially
in the prefrontal cortex. It is difficult to imagine the functional synchrony
at such long time scales since they would not trigger spiking in downstream
neurons (discussed in Chapter 5). Note that in the ventral striatum and the
amygdala, none or very few studies have described cell assemblies.
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Figure 1.5: Time scales of assembly synchrony in the literature. Reported
time scale of co-activations (pairs, n=2; assembly, n>2) within 4 brain regions: the
amygdala (AMY), the hippocampus (HPC), the prefrontal cortex (PFC) and the
ventral striatum (vSTR) in different species (rodent, primate and cat). Data are
from Table 2.
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1 How does information flow within the brain?

Also, the vast majority of synchronous activity reports concerns cell assemblies
within a single structure. Yet, some cross-structural correlated pairs have been
found within the cortex but rarely between cortical and sub-cortical structures
( and nor at the level of the assembly). These considerations will be further
developed in Chapters 4 and 5.

Inhibition in cell assemblies. Since Hebb’s definition predicted synapses
strengthening between assembly members upon synchronous activation, most
studies focused on excitatory connections. However, cell assemblies, defined
as a group of co-active cells (in a relevant time window), could benefit from
inhibitory members:

• Interneurons may prevent interference by silencing local cells (Geisler
et al. 2007).

• Inhibitory projection neurons, such as medium spiny neurons in the
striatum, can disinhibit downstream targets through feed-forward mech-
anisms.

• The activity of interneurons may be informative of their inputs and this
could shed light on many pre-synaptic principal cells that are not sam-
pled in the recording. Hence, interneurons may be integrated into cell
assemblies, although not directly leading to synaptic strengthening, not
as ‘real’ members but as proxies for undetected principal cells (in addi-
tion to possibly being ‘real’ members too).

1.5 Synchronization of neural activity through brain
rhythms

We have seen the relevant time scales of assembly formation and discussed
their electrophysiological significance for brain processes. In this section I will
describe candidate mechanisms that organize and synchronize neural activity:
brain rhythms. More specifically, I will focus on gamma rhythms (∼30-90
Hz), that are oscillations with a half-cycle duration of ∼5-15 ms close to the
presumed assembly time scale, in the assumption of downstream coincidence
detectors.

1.5.1 Brain rhythms

Like many other complex, dynamical systems, neural networks oscillate
(Izhikevich 2007). Single neurons are natural oscillators, and the constant
flux of ions through their membranes contributes to intrinsic resonance and
oscillation of their membrane potential and therefore of their spiking activity
(Buzsáki & Wang 2012). Synchronization leads networks of densely intercon-
nected neurons to oscillate, generating those that are commonly called brain
rhythms. The first to report brain-produced oscillatory activity was Berger
(1929) while he was searching for potential telepathic phenomena. He suc-
ceeded in recording the human electroencephalogram (EEG) and observed for
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1.5 Synchronization of neural activity through brain rhythms

the first time large oscillatory electrical signals in the brain. The electric field
that can be measured with EEG electrodes on the scalp, but also with intracra-
nial electrodes closer to nerve cells in the extracellular medium (‘LFP’, Figure
1.6 and Method Box 1.3). LFP is mostly the resultant of the averaged sums
of excitatory and inhibitory post-synaptic potentials at the synaptic level11.
LFP oscillations are naturally segregated in different frequency bands that
have been associated to specific brain and behavioral states.

Box 1.3. Recording electrical signals in the brain

The current fluxes in the dendritic tree of each cell generate an electrical
potential and the electrical field recorded with an electrode in the vicin-
ity of a group of neurons is called LFP; also known as intra-cranial EEG).
LFP Therefore, the LFP is the average of the potentials generated by each
cell acting as a dipole (an antenna). However, despite its name, the LFP
also reflects the electrical field reaching the recording electrode after trav-
elling from further away neural sources through the brain tissue. This phe-
nomenon is called volume conduction and, as brain oscillations can travel
relatively large distances in the nervous tissue (especially slow waves), it
contribute significantly to the recorded LFP. Extracellular recordings, as
used in the experimental work described in this manuscript, record a sig-
nal composed by the LFP and the action potentials of the neurons in the
vicinity of the microelectrode a. See also Figure 1.6.

aDepending upon the impedance of the microelectrode, within a spheric volume
with a radius of ∼60-100µm (Buzsáki & Draguhn 2004)

Brain oscillations can span five orders of magnitude in frequency from approx-
imately 0.05 Hz to 500 Hz and play critical roles in network synchronization,
as we will see in the following paragraphs. These will focus on gamma oscil-
lations. Gamma frequencies may vary widely across species but typically the
gamma band is 30-90 Hz for mammalian12 and (10-30 Hz) for insects (Kay
2015). Gamma oscillations have been described in several areas such as: the
neocortex (Gray & Singer 1989; Singer & Gray 1995, Sirota, Montgomery,
et al. 2008; Popa, Spolidoro, et al. 2013), the enthorinal cortex (Chrobak &
Buzsáki 1998), the amygdala (Halgren et al. 1977), the hippocampus(Buzsáki,
Lai-Wo S., et al. 1983), the striatum (Berke et al. 2004; Tort, Kramer, et al.
2008), the olfactory bulb (Adrian 1942; Laurent & Davidowitz 1994) as well as
others. Many reviews are available on this topic: Engel, Fries, et al. 2001, Lau-
rent 2002; Fries 2005; Fries 2009; Wang 2010, Buzsáki & Wang 2012; Bosman,
Lansink, et al. 2014).

11However, other sources like Na+ and Ca2+ spikes, ionic fluxes through voltage- and
ligand-gated channels, and intrinsic membrane oscillation also participate

12Note that an important issue and possible caveat when detecting gamma oscillations is
to distinguish true gamma oscillation from an increase in gamma power caused by greater
spike activity (Ray & Maunsell 2011) and spike waveform spectral leakage (Schomburg
et al. 2014).
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Figure 1.6: Recording brain rhythms and neurons. a Different spatial scales
of recording of neural activity. From top to bottom: scalp electrodes and intracra-
nial electrodes on the brain surface record EEG signals (see Box 1.3). Intracerebral
electrodes record LFP signals, which are a spatially more precise version of the EEG
and the spiking activity of neurons nearby the electrode. Single electrodes cannot
always distinguish the spikes coming a nearby cell or another and record a signal
called Multi Unit Activity (MUA). Electrodes with multiple recording sites (like the
tetrode depicted in the zoom) record the same signal in parallel on different record-
ing sites but from slightly different distances. This affects the amplitude and the
waveform characteristics of the signal recorded by each channel, which form clusters
corresponding to the recorded cells (b). (c) Array of another type of multi-electrode,
the silicon probe. Each of these eight shanks has eight recording sites which recorded
the signal depicted in d (channels from the same probe have the same color). Note
how channels from the same shank record the same spikes but with different ampli-
tudes and shapes (adapted from Varela et al. 2001 and Buzsáki & Draguhn 2004).
See also Box 1.3.
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1.5 Synchronization of neural activity through brain rhythms

I will expand on three parallel line of research: the work of Singer & Gray and
coll., on the visual system and binding mechanisms, the work of Laurent and
coll., on the olfactory system and finally the work Buzsáki and coll., on the
temporal organization within the hippocampus by oscillations.

1.5.2 Generation of gamma oscillations

How are gamma oscillations generated? Two major models have been pro-
posed (for reviews, see Whittington et al. 2000, Tiesinga & Sejnowski 2009).
One model involves only reciprocally connected inhibitory neurons (I-I models)
whereas the other is based on reciprocally connected pools of excitatory and
inhibitory neurons (E-I models; see Figure 1.7a). In I-I models, gamma os-
cillations are generated by two pools of inhibitory neurons which reciprocally
inhibit them cells and in turn whill synchronize the E cells. In E-I mod-
els, it is the alternation of excitation and feedback inhibition that generates
gamma oscillation. Both models could co-exist whithin a single area. Thus
a key component of gamma generation is inhibition, mediated by local fast-
spiking interneurons. In the hippocampus, this role is thought to be carried
by parvalbumin-containing basket cells, as evidence from electrophysiological
recordings demonstrated a strong modulation (Buzsáki, Lai-Wo S., et al. 1983,
Csicsvari et al. 2003).

1.5.3 Gamma oscillations in the visual system as a feature
binding mechanism

Pioneering studies investigated the response of neurons in the primary visual
cortex of cats to different stimulus (Gray & Singer 1989, Engel, Kreiter, et al.
1991, Singer & Gray 1995). These neurons have receptive fields, i.e. they
respond to specific orientations of a visual stimulus (see Figure 1.1a) and
are organized in columns. Neurons within a column exhibit similar receptive
fields (Hubel & Wiesel 1962). In 1989, Gray & Singer demonstrated that
neurons in different columns, engaged in synchronous oscillatory activity
(in the range of 40 Hz) when presented to simultaneously moving stimulus,
across their respective field. However, when the stimuli were in different
directions, the synchronization was absent. These results suggested that the
cerebral cortex might exploit synchronous oscillatory activity in order to
bind these for further processing. This provided first experimental evidence
to support the ‘binding by synchrony theory’ (Singer & Gray 1995, Roskies
1999). This theory postulates that the different features of an object (e.g.
smell, color, texture, etc.) are treated by subsets of neurons in different
part of the cortex and are associated together in a whole to reconstruct the
object, through synchronizing oscillations (as I mentioned in 1.1). In further
studies, gamma synchronizations has been observed in more ecologically rele-
vant conditions, in monkeys freely viewing natural images (Brunet et al. 2013).
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Box 1.4. Coherence between two oscillations

The coherence measures the consistency of the phase relation between two
oscillations. Coherence ranges from 0 and 1 and corresponds to the spectral
analog of the cross-correlation function in the time domain. Its squared
value represents the amount of variance in one oscillation explained by the
other and vice-versa. The coherence is high when the two signals maintain
a constant phase relation (but not necessarily at a 0 lag). Note that the
coherence also measures correlations in amplitude. Unfortunately, it is not
possible to disentangle the contributions from amplitude and phase. To
overcome this caveat, other measures have been defined, such as the phase
locking value (Lachaux et al. 1999).
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Figure 1.7: Generation of gamma oscillations and the Communication
Through Coherence hypothesis. a) Two-models of generation of gamma os-
cillations. Left: Reciprocal connections between excitatory pyramidal neurons E and
inhibitory interneurons I produce an alternation of excitation and inhibition. Right:
Reciprocal connections between two pools of interneurons generate an oscillatory ex-
ert rhythmic inhibition on the adjacent population of pyramidal neurons E. Note that
these two kind of mechanisms may co-exist within the same brain area. Adapted from
Bosman, Lansink, et al. 2014. b) Schematic representation of three inter-connected
brain regions (A,B and C), each rhythmically active. Traces are local network states
and vertical ticks are spikes. A and B oscillate with "good phase relation", mean-
ing that the neurons of each region fire during excitable states of the other region.
In contrast, the phase relation between B and C is not suitable for communication.
Indeed the neural populations have an incoherent phase relationship and the action
potentials coming, for instance, from C arrive in B when neurons are inhibited there
with low probability to fire. Panel adapted from Womelsdorf et al. 2007.
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1.5 Synchronization of neural activity through brain rhythms

Gamma synchronization is not limited to cortical columns only. Several stud-
ies suggested a role of gamma oscillations in long-range synchronization of
different brain areas (Engel, Kreiter, et al. 1991, Roelfsema et al. 1997, Ro-
driguez et al. 1999, Buschman & Miller 2007, Gregoriou et al. 2009). Such
synchronization would be mediated by long-range inhibitory neurons (Buzsáki
& Draguhn 2004). In 2005, Fries formulated the Communication Through
Coherence (CTC) hypothesis to explain how gamma-band (or any band in
general) synchronization may affect neuronal processing (for a review and an
updated version, see Fries 2015). The CTC hypothesis suggests that effec-
tive communication between two oscillating neuronal populations depends, at
least in part, on their phase relation. If upstream and downstream oscilla-
tions become coherent such that the EPSPs of the upstream region arrive at
the downstream one during its phase of maximum excitability (trough of the
oscillation), communication between the two brain region is facilitated (Fig-
ure 1.7b, see also Box 1.4). Even though the CTC is a general hypothesis
applicable for any oscillation frequency bands, evidences have been provided
mostly within the gamma band in the visual system (Womelsdorf et al. 2007,
Bosman, Schoffelen, et al. 2012, Grothe et al. 2012, but see Benchenane et al.
2010, who reported prefrontal cell assemblies when the hippocampus and the
prefrontal cortex exhibited high coherence).

1.5.4 Gamma oscillations and coincidental detection in the
olfactory system

In the antennal lobe (AL) of insects, gamma oscillations (20-35 Hz) are
thought to organize neuronal responses to odors in projection neurons (Lau-
rent 2002). An elegant study from the Gilles Laurent’s lab showed that these
neurons activate synchronously within gamma cycles and project onto Kenyon
cells of the mushroom bodies. Kenyon cells then act as coincidence detectors,
that is, they spikes when the input (i.e. the projection neuron assembly), is
synchronized (Perez-Orive et al. 2002). In turn, Kenyon cell exhibit oscillatory
activity and their downstream target (β-lobe neurons) act as coincidence de-
tectors as well Cassenaer & Laurent 2007. Interestingly,Cassenaer & Laurent
reported spike-timing dependent plasticity between the Kenyon cells and the
β-lobe neurons, on a ± 25 ms timescale that is the half-cycle of the gamma
oscillation. Thus, if Kenyon cells discharge on average at a phase of π/2
(which corresponds to the delay conduction between the two neuronal popu-
lations), the population of β-lobe neurons will fire on average at the trough
of the oscillation. However, if a single β-lobe cell fires in advance (because it
received to much excitation), this cell will be depreciated Thus, the cell will
receive less excitation in the next cycle and will fire later in phase, toward the
trough of the oscillation. This work provided new insights on the interplay be-
tween rhythmic oscillations and plasticity mechanisms to shape cell assemblies.

The disruption of such oscillations in the honey bee AL (with picrotoxin dis-
abling GABA receptors) resulted in a performance impairment in an odor
discrimination paradigm coupled with conditioning. Bees failed to discrim-
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1 How does information flow within the brain?

inate between similar odors. Thus, gamma oscillations and cell assemblies
could play a role in encoding features and reduce the overlap between neu-
ral representation (Stopfer et al. 1997). In mice, deleting GABA receptors in
the olfactory bulb also disrupted gamma oscillation and these mice failed to
generalize among similar odors (Nusser et al. 2001).

1.5.5 Temporal organization by oscillations within the
hippocampus

Seminal work in the Buzsaki lab, led by K.D Harris, reported temporally
organized activity of CA1 hippocampal neurons at the trough of theta os-
cillations (∼ 8 Hz; Figure 1.8). The authors investigated the hypothesis
that firing of CA1 hippocampal neurons in rats is organized in time into cell
assemblies. Pyramidal cells in the hippocampus have place correlates (‘place
cells’; O’Keefe & Dostrovsky 1971), where they selectively fire when a rat is
located in a specific location of the environment. Hence, the instantaneous
firing probability of a place cell can be predicted from the spatial position of
the rat. Harris et al. hypothesized that within an assembly, cells should show
synchronous activation beyond that predicted by their common modulation
by sensory input (which, here, concerns spatial position). Using a Generalized
Linear Model (see 2.2.2 for methodological details), the authors demonstrated
that the prediction of place cell spiking was greater when considering the
activity of its peers, in addition to the location of the animal, compared to
a model taking only into account the location of the animal. Interestingly,
the prediction was optimal in 10-30 ms window, that is, the duration of slow
(30-50 Hz) and medium (50-90 Hz) gamma cycles (see Box 1.5. for further
details on gamma bands in the hippocampus) .

However, taking into account the velocity of the animal and theta modula-
tion, during spatial navigation, a recent study showed that the coordinated
activity observed in the hippocampus can be explained by the independent
coding of each cell (Chadwick et al. 2015). Hence, this contradicts Harris
et al. conclusion, and the hypothesis that synaptically coupled assemblies are
formed with members predicting each other’s activity beyond sensory inputs.
Yet, assuming that cell assemblies are meaningful from the perspective of
downstream reader, Harris et al.’s findings are still of importance, since they
highlight the fine time scale synchronization of hippocampal place cells within
the duration of a gamma cycle, at the trough of theta (even if this can be
explained by independent coding).

To conclude, gamma oscillations are ubiquitous and have been reported in
many brain areas. Evidence suggests that gamma oscillations organize local
activity of cell assemblies, but can also mediate long-range synchronization, as
theorized by the CTC hypothesis.
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Figure 1.8: Temporal organization of neural activity in the hippocampus.
Top: Raster plot of rat hippocampal pyramidal cells recorded during spatial explo-
ration in an open field, ordered to highlight their temporal organization into two cell
assemblies (A and B; right schematics). Synchronous activations of cell assemblies
are shaded in gray. Bottom: the Local Field Potential (LFP) recorded in the hip-
pocampal CA1 area displays theta oscillation. Vertical lines indicate troughs of theta
waves. Assemblies are thought to be organized in a time scale similar to the one
of gamma oscillations (10-30ms). Also, note that cell assemblies occur at a precise
phase of theta rhythm. Based on Harris et al. 2003.

Box 1.5. Gamma oscillations in the hippocampus

Gamma band definition may vary greatly in the literature, which might
complicate cross-referencing. Yet, for a few years now, a consensus seems
to have been established. The three gamma bands band were distinguished
by studying how they were modulated by a slower oscillation, theta ("cross-
frequency coupling", see also section 1.6 for a functional role of theta-gamma
coupling): slow gamma (30-50 Hz), medium gamma (50-90 Hz) and fast
gamma (90-140 Hz). Similar results have been obtained with source sepa-
ration by Independent Component Analysis (ICA, Schomburg et al. 2014).
Note that fast gamma is also referred to as epsilon (Freeman 2007), since
the mechanisms to generate the epsilon and gamma oscillations (slow and
medium) differ (Belluscio et al. 2012). Indeed, entorhinal and CA3 input
networks transmit slow and medium gamma whereas fast gamma oscilla-
tions are generated by local CA1 pyramidal cells and interneurons (Bragin
et al. 1995, Colgin et al. 2009, Lasztóczi & Klausberger 2016).
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1 How does information flow within the brain?

1.6 Longer time scale mechanisms to build neural words

Cell assemblies are presumed to be the functional units of the brain, the
building bricks of neural computation. Sequences of cell assemblies (‘neural
words’, Buzsáki) have been hypothesized to underlie complex cognitive pro-
cesses (Hebb 1949; Harris 2005; Buzsáki 2010). Such sequences may require
mechanisms operating at a longer time scale (Figure 1.2 b, reader s). In this
section, I will explain how nested oscillations could give rise to sequences of
assemblies and review experimental evidence of their existence.

1.6.1 Nested oscillations

Nested oscillations (or ‘cross-frequency coupling’) occur when a faster rhythm
is coupled to the phase of a slower rhythm13. Theoretical work by Lisman
& Idiart (1995) proposed that sequences of assemblies could emerge from
the successive gamma ( ‘fast-oscillation’) cycles nested within a single theta
(‘slow-oscillation’) cycle (see Figure 1.9a). The authors suggested a functional
role of such sequences in simultaneously maintaining several items in the
working memory (7±2, consistent with the ‘magic number’ of Miller 195614).
Many studies have reported cross-frequency phase-amplitude coupling between
gamma with theta (Buzsáki, Lai-Wo S., et al. 1983, Bragin et al. 1995,Canolty
et al. 2006, Sirota, Montgomery, et al. 2008, Colgin et al. 2009) but also slower
oscillations such as delta (Lakatos et al. 2005), alpha (Von Stein & Sarnthein
2000,Palva et al. 2005,Cohen et al. 2009), spindle (Peyrache, Battaglia, et al.
2011).

Experimental evidence supporting a role of oscillations in parsing neural words
were provided by a recent study. Using an unsupervised approach driven by
Independent Component Analysis (ICA, see 2.3 for methodological details),
Lopes-dos-Santos, van de Ven, et al. 2018 detected nested oscillations within
theta cycles. The authors identified spectral components (‘tSCs’, see Figure
1.9b) corresponding to the frequencies of beta, slow, medium and fast gamma
oscillations. Using Generalized Linear Models (GLMs)15, the strength of each
spectral component was successfully predicted from the spiking activity of
CA1 hippocampal principal cells within theta cycles. Interestingly spectral
components were associated with different principal cells (Figure 1.9c,d). Even
though authors did not investigate the precise temporal organization of cell
spiking within nested oscillations, these results suggests that distinguishable
neuronal ensembles correlate with nested oscillations in theta cycles (whether
these ensembles are cell assemblies or neural words).

13Slow oscillations can modulate fast ones in two ways: the amplitude of the fast os-
cillation is phase-locked to the slow oscillation (phase-amplitude coupling) or the phases
of the fast and the slow oscillations exhibit a constant relationship (phase-phase coupling;
for more detail on methodological caveats see Aru et al. 2015).

14In one of the best-known articles in psychology, Miller suggested that human adult
could store 5 to 9 items in their working memory, hence the ‘magic number’ 7±2

15See section 2.2.2 for methodological explanation on GLMs
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Figure 1.9: Nested oscillations within theta cycles. a) Gamma oscillations
are nested in theta cycle. Different assemblies (represented by letters) are active in
different gamma cycles. Neural words are formed by the sequences of cell assemblies
activations. The number of gamma cycles per theta cycle (4 to 8) is thought to
determine the span of working memory. Adapted from Lisman & Idiart 1995.
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Figure 1.9: b) Raw LFP spectrogram (top) along with the raw LFP and theta
signal of single-cycle examples drawn. tSC1 band corresponds to beta frequencies,
tSC2 to slow gamma, tSC3 to medium gamma and tSC4 to fast gamma. c) Example
weight vectors containing the contribution of each principal cell fitted to predict the
strength of a given tSC (with a GLM). The distribution of weights differ for each
tSC. d) Right: predictions (mean pm 95% confidence interval) obtained from the
GLMs fitted for the different tSCs. Note that GLM predictions were normalized by
their original value (i.e., GLMs predicting same tSC for which they were fitted), to
make performance loss across tSC models explicit. Pannels b-c are adapted from
Lopes-dos-Santos, van de Ven, et al. 2018.

1.6.2 Example of neural words

Experimental evidences of neural words have been found in the antenna lobe
of insects. Wehr & Laurent 1996 reported that different subsets of projection
neurons were active within consecutive gamma cycles after odor presentation
(Wehr & Laurent 1996). Interestingly, successive presentation of the same
odor elicited similar sequences whereas distinct odors generate unique neu-
ronal sequences of projection neurons (Mazor & Laurent 2005,Broome et al.
2006). Another example of externally generated neural words are the stereo-
typed sequencess of assemblies produced by the high vocal centre during bird
song. These sequences drive similar stereotyped patterned in downstream
structures, and in turn to motor neuron of the vocal organ (Hahnloser et al.
2002). These two examples promote the idea that external stimuli can elicit
sequences of cell assemblies, yet, experimental evidence from the Buzsaki lab
suggests that internal processes also generate sequences. In an elegant study,
Pastalkova et al. 2008, reported hippocampal sequences of activation during
maze navigation but also during a delay memory task, when rats were running
i wheel (i.e. while the sensory cues did not change, Figure 1.10). Interestingly,
the internally generated sequences in the wheel could actually predict upcom-
ing arm choice (rewarded as well as errors). The authors hypothesized that
the hippocampus can generate sequences of assemblies in two ways: under
the influence of sensory/external cues or by self-organized mechanisms (see
also Chapter 3 about reactivation and replay processes during a state with
very weak sensory inputs: sleep). Neural sequences have been observed in
other structures as well, including the prefrontal cortex (Fujisawa, Amaras-
ingham, et al. 2008), the parietal cortex (Harvey et al. 2012), or the striatum
(Akhlaghpour et al. 2016).
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Figure 1.10: Internally generated sequences during a working memory
task. Center: rats were trained to run in a wheel facing to the left during the
delay between runs in the maze (left or right trajectory). Dots are color-coded spikes
from simultaneously recorded neurons in hippocampal CA1. Color maps represent
normalized firing rate profiles of neurons during wheel running (left) and right trials
(right). Profiles are ordered by the latency of their peak during left trials. The
stereotyped sequences observed during the left trajectory are similar to the ones
internally generated during wheel running. Note that the left sequences differ from
the right ones. Adapted from Pastalkova et al. 2008 and Buzsáki 2010.

Conclusion

In attempt to ‘crack the neural code’, many of the pioneer works studied single
cell response to visual stimuli since at the time, recording simultaneously more
few cells was a tremendous achievement (Barlow 1953,Hubel & Wiesel 1962).
These studies and subsequent research established that some neurons in the
cortex were tuned to particular visual stimuli, even to faces in higher order
areas. In the past decades, recording simultaneously large numbers of neurons
in multiple brain regions was no longer beyond the bounds of possibility. It
became clear that one stimuli could evoke similar responses in several neurons,
thus multiple cells could work together to code an object for example. This
led to the resurgence of the ‘cell assembly’ idea, proposed by Hebb in 1949.
Groups of interconnected neurons would work together to combine features of
a stimuli and represent it. Chaining of such assemblies (‘phase sequences’) can
give rise to complex cognitive function such as thinking, planning or dreaming.
However, Buzsáki proposed a refinement: brains organize themselves and can
generate internal stereotyped spiking patterns rather. He proposed that cell
assemblies are groups of cells, not necessarily anatomically wired, that can
synchronize within a given window to generate an organized and coherent
input to downstream neurons or to other assemblies. Thus an assembly can
be viewed as synchronous inputs to coincidence detector neurons within a time
window the width of an EPSP or of the membrane time constant. These time
scales may vary between cell types or brain areas but typically range from
10 to 30 ms. This window is of particular significance, since it corresponds
to the time scale of plasticity phenomena but also to the period of a gamma
oscillation. Similar to Hebb’s phase sequences, Buzsaki suggested that longer-
timescale mechanisms (such as nested oscillations) group several assemblies
into sequences (‘neural words’), thus providing a neural syntax as the basis
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of elaborated cognitive processes. These two definitions of cell assemblies
(Hebb 1949 and Buzsáki 2010) are not completely antagonistic and both are
referred to in the literature 16. Here, cell assemblies are intended a group of
co-active cell in a meaningful time window. The next chapter is dedicated to
the numerous existing methods to identify such cell assemblies,

16Even though these two major works are cited, definition of cell assemblies are rarely
explicit in papers.
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Reference Brain area Timescale (ms) Method Species Pattern
(Pre)frontal Cortex

Vaadia et al. 1995 FC 5 JPTH Monkey Pairs
Sakurai & Takahashi 2006 PFC 1 Cross-correlogram Monkey Pairs
Baeg et al. 2007 PFC 50 Cross-correlation Rat Pairs
Euston et al. 2007 mPFC 40 EV-REV Rat Pairs
Fujisawa, Amarasingham, et al. 2008 mPFC 5 Cross-correlogram Rat Assembly
Sigala et al. 2008 FC 200 Pearson correlation Monkey Pairs
Tsujimoto 2008 PFC 75 JPTH Monkey Pairs
Burgos-Robles, Vidal-Gonzalez, et al. 2009 mPFC 100 Cross-correlogram Rat Pairs
Peyrache, Khamassi, et al. 2009 mPFC 100 PCA Rat Assembly
Benchenane et al. 2010 mPFC 30 PCA Rat Assembly
Pipa & Munk 2011 vPFC 3 Comparing coincidental detection to jitters Monkey assembly
Dejean et al. 2016 dmPFC 150 PCA Rat Assembly
Tavoni et al. 2017 mPFC 10 Ising model Rat Assembly
Deolindo et al. 2018 PFC 10 ICA Rat Assembly
Todorova & Zugaro 2019 mPFC 15 ICA Rat Assembly

Hippocampus
Wilson & McNaughton 1994 HPC 100 Cross-correlogram Rat Pairs
Kudrimoti et al. 1999 HPC 100 EV-REV Rat Pairs
Harris et al. 2003 HPC 20 GLM Rat Assembly.
O’Neill, Senior, et al. 2008 HPC 50 Cross-correlogram Rat Pairs
Kelemen & Fenton 2010 HPC 25 Cross-correlogram Rat Pairs
Malvache et al. 2016* HPC 200 Comparing coincidental detection to shuffle Mouse Assembly
van de Ven et al. 2016 HPC 25 ICA Mouse Assembly
Girardeau, Inema, et al. 2017 HPC 50 EV-REV Rat Pairs
Sjulson et al. 2018 HPC 25 PCA Rat Assembly.
Giri et al. 2019 HPC 250 EV-REV, ICA Rat Assembly
Trouche, Koren, et al. 2019 HPC 25 ICA Mouse Assembly.

Nucleus Accumbens
Pennartz, Lee, et al. 2004 vSTR 50 EV-REV Rat Pairs
Carrillo-Reid et al. 2008* STR 250 Pearson correlation + Monte-carlo Rat assembly
Lansink, Goltstein, Lankelma, Joosten, et al. 2008 vSTR 50 EV-REV Rat Pairs
Sjulson et al. 2018 vSTR 25 PCA Rat Assembly.
Trouche, Koren, et al. 2019 vSTR 25 ICA Mouse Assembly.

Auditory cortex
Decharms & Merzenich 1996 A1 25 Cross-correlogram Monkey Pairs
Bathellier et al. 2012* Auditory cortex 250 Pearson correlation Mouse assembly.
See et al. 2018 Auditory cortex 10 ICA Rat assembly

Motor cortex
Riehle et al. 1997 M1 5 Comparing coincidental detection to jitters Monkey assembly
Laubach, Wessberg, et al. 2000 M1 1 ICA Rat Assembly
Hoffman & Mcnaughton 2002 Motor cortex 50 EV Monkey Pairs
Gulati, Tsodikov, et al. 2014 M1 50 PCA Rat Assembly
Gulati, Won, et al. 2015 M1 50 PCA Rat Assembly
Ramanathan et al. 2015 M1 25 PCA Rat Assembly
Eckert et al. 2020 M1 50 PCA Rat Assembly

Somatosensory cortex
Hoffman & Mcnaughton 2002 Somatosensory cortex 50 EV Monkey Pairs
Deolindo et al. 2018 S1 10 ICA Rat Assembly

Amygdala
Quirk, Repa, et al. 1995 BLA 5 Cross-correlogram Rat Pairs
Paré & Collins 2000 LA 100 Cross-correlogram Cat Pairs
Girardeau, Inema, et al. 2017 BLA 50 EV-REV Rat Pairs
Zaki et al. 2019* BLA 30000 ICA Mouse Assembly

Associative cortices (other than prefrontal cortex)
Hoffman & Mcnaughton 2002 Parietal cortex 50 EV Monkey Pairs
Deolindo et al. 2018 Parietal cortex 10 ICA Rat Assembly
Chang, Esteves, et al. 2020 Retrosplenial cortex 250 Pearson correlation Mouse Assembly

Visual cortex
Martin & von der Heydt 2015 V1,V2 5 Cross-correlation Monkey Pairs
Dong et al. 2008 V1,V2, V1-V2 20 Cross-correlation Monkey pairs
Deolindo et al. 2018 V1 10 ICA Rat Assembly

Others
Tingley, Alexander, et al. 2015 Basal forebrain 50 GLM Rat Assembly.
Valdés et al. 2015 VTA 100 EV-REV Rat Pairs

Table 1: Synchrony time scale in the literature (1/2).
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Reference Brain area Timescale (ms) Method Species Pattern
Cross-structural

Nicolelis et al. 1995 Trigeminal sensory system 10 PCA Rat Assembly
Qin et al. 1997 HPC-parietal 100 Pearson correlation Rat Pairs
Hoffman & Mcnaughton 2002 Parietal-motor cortex 50 EV Monkey Pairs
Hoffman & Mcnaughton 2002 Somatosensory-motor cortex 50 EV Monkey Pairs
Hoffman & Mcnaughton 2002 Parietal-somatosensory cortex 50 EV Monkey Pairs
Lansink, Goltstein, Lankelma, McNaughton, et al. 2009 HPC-vSTR 50 EV-REV Rat Pairs
Girardeau, Inema, et al. 2017 BLA-HPC 50 EV-REV Rat Pairs
Tang, Shin, et al. 2017 HPC-PFC 100 ICA Rat Assembly

Table 2: Synchrony time scale in the literature (2/2). This table summa-
rizes the time scale of synchrony reported in many brain areas in the literature. The
fourth column described the methods used to detect co-activated cell pairs or cell
assemblies. These methods are further detailed in Chapters 2 and 3. *: authors used
calcium imaging, hence time scales are bigger. Brain area abbreviation: frontal
cortex (FC), prefrontal cortex (PFC), medial prefrontal cortex (mPFC), hippocam-
pus (HPC), striatum (STR), ventral striatum (vSTR), primary auditory cortex (A1),
primary motor cortex (M1), primary somatosensory cortex (S1), basolatral amyg-
dala (BLA), lateral amygdala (LA), primary visual cortex (V1), secondary visual
cortex (V2), ventral tegmental area (VTA). Methods abbreviation: joint-peri-
event-histogram (JPTH), explained variance (EV), reverse explained variance (REV),
principal component analysis (PCA), independent component analysis (ICA), Gen-
eral linearized model (GLM).
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Recent progress in large-scale recordings have permitted increases in the num-
bers of simultaneously recorded neurons, providing opportunities to identify
cell assemblies (Buzsáki & Draguhn 2004). Along with experimental advances,
numerous sophisticated computational methods have been developed, to track
down cell assemblies. Here I will review the most prominent statistical tools
in the literature as they evolved through the years: from elementary cross-
correlations to model-based techniques. This section focuses mainly on meth-
ods based on pairwise correlations, even though more recent techniques relies
on higher order correlation approaches which are more suited for identifying
sequential rather than synchronous activity.

2.1 Descriptive statistics of correlation

An elementary tool to study the correlation between spiking in two neurons
i and j is their cross-correlogram. To build this, for each spike emitted by
neuron i, the time latencies of spikes emitted by neuron j are determined and
counted. Cross-correlograms (CCG) are useful for estimating the time-lag
between the activity of two spiking cells. Moreover, the latencies of peaks in
cross-correlograms can be used to infer the number of synapses between each
neuron, assuming knowledge about spike conduction speeds and their vari-
ability. Sharp short latency peaks usually indicates mono-synaptic connection
whereas broader, longer latency peaks suggest multiple relays (Barthó et al.
2004; see Figure 2.1,a-b).

However cross-correlation histograms do not allow to distinguish correlations
due to a direct synaptic connection from independent coincidental correlations
with a third neuron, or driven by a common input with a conduction delay. In-
deed, interpretation of cross correlations often assumes stationarity of neuronal
activity. But in the brain many non-stationarities are present (e.g. current be-
havioral motivation, satiety states, oscillations of excitation/inhibition). For
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2 Methods to detect cell assemblies

example, neurons responding to the same stimulus, or firing at the same phase
of an oscillation will have inflated CCGs. To correct for non-stationnarities ,
one may use the joint-peristimulus time histogram (JPSTH; Figure 2.1c-d).
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Figure 2.1: Elementary tools for correlation analysis: CCG and JPSTH.
a,b) Cross-correlograms (CCGs) of simultaneously recorded neurons in neocortex. a)
CCG shows a sharp peak (duration = 2 ms), which reflects putative mono-synaptic
connections between cells. b) CCG shows a broader peak (duration = 20 ms), which
probably results from more complex network processes. Adapted from Harris 2005. c)
Observed JPSTH of a spike triplet. d) Corrected JPSTH of a spike triplet expressed
as the difference between the observed JPSTH and the shift predictor (obtained from
shuffled data). Boxes frame significant coincidences (50-182 ms, 64-173 ms, 72-154ms;
Fisher’s exact probability test; p<0.02). Modified from Nádasdy et al. 1999

JPSTH are useful to isolate correlation caused by a stimulus or an event from
true network organisation. They are an extension of single neuron peri-event
time histogram (PETH), that is, a neuron’s discharge probability across time
relative to event onsets. Each repetition of an event defines a trial. The
(k,l) element of the JPSTH matrix represents the number of trial the neuron
i fired in the kth time bin and neuron j fired in the lth. To eliminate cross-
correlation induced by stimulus, a shift predictor is computed similarly to the
JPSTH matrix after shuffling or shifting trial/event orders. Subtracting bin
by bin the shift predictor from the JPSTH, one obtains a corrected JPSTH.
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2.2 Model-based methods

Determining JPSTH significance can be difficult. Usually control matrices
are generated with the same procedure but on trial-shuffled data. Significant
values are expected to exceed 95th percent of the shuffled control popula-
tion. Reference events are not necessarily stimulus onset, Nádasdy et al. 1999
computed JPSTH between two cells while using spikes of a third cell as refer-
ence time/event (Figure 2.1,c-d). Thus, JPSTH can be a way to track down
temporal relationships of neuronal triplets. However JPSTH techniques suf-
fers from the same caveats as cross-correlation histograms (possible effects of
other non-stationnarities than the one corrected for, correlation induced by a
third/fourth neuron, etc.).
Searching for evidence of synaptic connections or correlation between pairs of
neurons (or triplets) was popular in earlier multi-electrode recordings. With
increasing numbers of simultaneously recorded neurons, the focus shifted to
detecting synchronous patterns at a larger scale.

2.2 Model-based methods

2.2.1 Maximum Entropy Models

Maximum entropy models (MEMs) were introduced to evaluate the occur-
rence probability of each possible spike pattern (doublets, triplets, etc.) given
the observed firing rates, pairwise correlations, and possibly higher-order mo-
ments of a population of recorded neurons. This kind of model describes the
correlation structure of the network activity without assumptions about its
mechanistic origin.
Briefly, spike trains are considered as a binary sequence of on/off states. In a
brief time window, the state of a given neuron i, σi, is either 1 or 0 (Figure
2.2a-b). Thus the network has Ω = 2N possible states, N being the number of
recorded cells. A maximum entropy model with no constraint would assume
that each of these states has an equal probability to be visited, i.e each neuron
has an equal probability to be silent or active at a given time, which is far
from reality. The network is supposed to be organized (with excitatory and
inhibitory connections) and does not wander among all these possible states.
One way to characterize the network organization is to build the distribution
of visited states P (σi). This distribution is fully described by all multivariate
moments N (i.e. the vector of average firing rates, the matrix of second order
correlation coefficients, the tensor of third order correlations, and so on...).
To estimate this distribution, the maximum entropy method derives a ’prob-
abilistic model’ of neural activity that matches correlation moments up to an
order but otherwise have as little structure as possible. Pioneering studies
chose to match only the mean activity of individual neurons and their pair-
wise correlations1, (Schneidman et al. 2006; Shlens et al. 2006; Tkacik et al.
2006; Tang, Jackson, et al. 2008). Such models are termed Ising models.
To build a model that has the least possible structure, one can maximize the
entropy of the distribution P (σi). The entropy of the distribution P (σi) is
the only consistent way to measure the degree of randomness in a probability

1Note that higher-order may also be used to constrain MEMs.
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distribution (Shannon 1948) and is defined as:

S = −
∑
{σi}

P (σi)log(P (σi)

With constraints of order 1 and 2, the solution of the MEM is mathematically
equivalent to the Boltzmann distribution for a set of Ising spins σi that are
subjected external magnetic fields hi and interact with one another through
couplings Jij (Mézard et al. 1987). Thus to maximize the entropy one need
to determine the parameters hi and Jij which would match individual firing
rates and pairwise cross-correlations.

Maximum Entropy Models have been been largely applied to investigate the
nature of neural correlations, especially in the retina (Schneidman et al. 2006,
Shlens et al. 2006, Ganmor et al. 2011, Tkačik, Granot-Atedgi, et al. 2013,
Tkačik, Marre, et al. 2014). Seminal work (Schneidman et al. 2006), used
MEMs to demonstrate that pairwise interactions are dominant compared
to higher order interactions in the vertebrate retina. They compared the
performance of an independent model, a MEMs constrained with order 1
(that is the average firing rate) versus an Ising model (constraints of order 1
and 2, i.e. average firing rate and pairwise correlation). Authors found out
that Ising models could predict the rates of commonly occurring 10-neuron
patterns much better than the independent model (Figure 2.2c).

The same year, also based on Ising models, the work of Shlens et al. 2006
demonstrated not only that high order (up to 10) firing patterns arise from
multiple pairwise interactions (Schneidman et al. 2006) but also that these high
order firing pattern could be predicted from pairwise correlations restricted to
anatomically adjacent parasol retinal ganglion cells (in the macaque monkey
retina). Since these high order firing patterns emerge from non-neighbouring
cells, it is likely they derive from propagation of the signal from pairs of
adjacent cells. Interestingly an MEM was recently applied to calcium imaging
recordings of hippocampal CA1 neurons in mice (Meshulam et al. 2017).
In line with the Schneidman et al. 2006 results in the retina, the authors
observed that the full probability distribution of spike patterns (thus includ-
ing high-order phenomena) was successfully described with inferences based
solely on average firing rate and pairwise correlation. Interestingly, this Ising
model yielded accurate predictions both for the activity of individual place
and non-place neurons in relation to the rest of the network. In another
recent study, coupling between neurons Jij was inferred from an Ising model
applied to recordings of PFC neurons in rats learning task. Tavoni et al. 2017
found that the coupling (a proxy for pairwise correlation strength) in a subset
of neuronal pairs was strengthened after learning, when comparing coupling
in pre versus post sleep. These results are in line with those of Peyrache,
Khamassi, et al. 2009, the original work which provided the data set for their
model2. Note that this method is rarely used to identify specific patterns but

2see also the following Chapter 3 about Reactivations
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Figure 2.2: Maximum Entropy
Models to study network ac-
tivity. a) Raster plot of the neu-
ronal responses of 40 retinal gan-
glion cells in the salamander to a
natural movie clip. Each dot repre-
sents the occurence of an action po-
tential. b) Discretization of popula-
tion spike trains into a binary pat-
tern is shown for the green boxed
area in a). For clarity, 10 out of
40 cells are shown. c) Rate of oc-
currence of each firing pattern pre-
dicted from the Ising model that
takes into account all pairwise cor-
relations is plotted against the mea-
sured rate (P2; red dots). Each
dot stands for one of the 210 =
1, 024 possible binary activity pat-
terns for 10 cells. Black line shows
equality. For comparison, predic-
tions from the independent model
are also plotted (P1; grey dots).
Two examples of highly erroneous
estimates of the actual pattern rate
by the independent model are high-
lighted. Adapted from Schneidman
et al. 2006.

rather to determine the order of correlation that can best account for the
observed patterns of activity.

One of the main drawbacks of these models is that maximizing the entropy
of a large number of neurons is computationally demanding due to the large
number of parameters to be determined (e.g. N2/2 = 1250 for an Ising model
with N=50 recorded neurons; parameters hi and Jij). Moreover assessing
the statistical significance of the detected patterns remains challenging and
can result in multiple testing issues. Note that classical MEM models do not
distinguish correlation induced by non-stationarities (e.g. the visual stimulus
in the case of retinal studies) from network-generated correlations (Tyrcha
et al. 2012). To isolate contributions from several variables, we can turn to
Generalized Linear Models.
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2.2.2 Generalized Linear Models

Generalized Linear Models (GLMs) can attribute the variability in a spike
train to several factors such as sensory input, spiking history, network syn-
chronous activation (peer prediction), etc. GLMs estimate the value ft of a
given variable (e.g. the firing rate of a neuron at time t) as a function of pre-
dictors, that is, a set of observed values. This predicted value ft is related to a
linear combination of the model parameters through a so-called link function
g. In the case of Poisson processes, the link function g is usually the exponen-
tial function. For example, to calculate peer prediction, one can estimate ft,
the intensity prediction function:

ft = g(
∑
α

stαwα)

where stα is the estimation the spike train of cell α spike train smoothed by
a Gaussian kernel (of width σ) stα = 1√

2πσ2

∑
τα
exp((t − τα)2/2σ2) and wα

are the prediction weights that are determined by maximizing the penalized
log-likelihood.

This method was notably used by Harris et al. 2003 to predict the firing of rat
hippocampal place cells (’targets’) during spatial navigation based on the loca-
tion of the animal and the spiking activity of the other recorded cells (’peers’)3.
Each peer was assigned a weight (wα in the above formula) which represents
its respective contribution in the prediction ft of the target cell. For example,
in Figure 2.3the prediction intensity increased when red color-coded peer cells
(high positive weights) were active. This coincided with the spiking of the tar-
get place cell. Conversely when blue color-coded peers (negative weights) were
active, the prediction intensity decreased and the target cell firing probability
was lower. Thus for each target, the distribution of GLM weights provide a
useful insight of peer contributions. However, this can not identify groups of
co-active cells directly. To do so, one would have, at least, to compare the
GLMs (i.e., wα distributions) obtained for each target cell and try to cluster
groups that can accurately predict each other (overlapping high weight cells).
Thus, while GLM can isolate correlations induced by stationarities (but only
those selected by the experimenter), it is not well suited for identifying cell
assemblies per se. To that end, one of the more popular technique relies on
Principal Component Analysis (PCA), which is also based on pairwise correla-
tions (that are considered to account for higher order correlation Schneidman
et al. 2006, Shlens et al. 2006, Meshulam et al. 2017).

3Scientific results of this study were discussed in 1.5.5. Here, the focus is only on the
GLM method
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Figure 2.3: Peer prediction in the hippocampus. a) Activity of a target place
cell (black, top), and a population of simultaneously recorded (peer) pyramidal cells
(below). Each peer cell is assigned a prediction weight, with activity of positively or
negatively weighted cells predicting increased or decreased probability of synchronous
target-cell spikes . b) Target-cell firing probability that is predicted from the animal’s
position (green), or from position and peer activity (orange). Adapted from Harris
et al. 2003.
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2.3 PCA based methods

2.3.1 Detecting co-activations

The main goal of principal component analysis (PCA) is to reduce the dimen-
sionality of a data set consisting of a large number of interrelated variables,
while retaining as much of the data set’s variation as possible. Here, the data
sets are simultaneously recorded spike trains. This is achieved by transform-
ing these to a new set of variables, the principal components (PCs), which
are orthogonal, and which are ordered so that the first few retain most of
the variation present in all of the original variables (Jolliffe 1986). PCA
can be done by eigen-decomposition of a correlation matrix, usually after
normalizing initial data. Using PCA to detect synchronous activity goes
back to Nicolelis et al. (1995), Chapin & Nicolelis (1999) but was extended
further by Peyrache, Khamassi, et al. 2009, Peyrache, Benchenane, et al. 2010.

First, the spike trains of n neurons are binned into B intervals to build a
n× B spike matrix S. The (i, t) element of S represents the number of spikes
emitted by the ith cell within the tth window. Then the spike matrix is z-scored
resulting in a matrix Q (see Figure 2.4; steps 1, 2 and 3):

Qi,t =
Si,t − µi

σi

where µt and σt are respectively the mean and the standard deviation of
the spike count of the itj neuron over time, i.e., µi = 1

B

∑B
t=1 Si,t and

σi = 1
B−1

√∑B
t=1(Si,t − µt)2. The cross-correlation matrix C is obtained by

computing :

Ci,j =
1

B

B∑
t=1

Qi,tQj, t =
1

n
QTQ

where Ci,j is the Pearson correlation coefficient between the ith and the jth

cell. Then, the eigenvalue decomposition of C is computed yielding in a set of
n orthogonal PCs pi and associated eigenvalues λi (ensured from the spectral
theorem, since C is real and symmetric).

C =

n∑
i=1

λTi pipi

where the outer product T pipi is the projection matrix onto the direction of
pi, and λi is the variance of the data along the same axis (Figure 2.4; steps
4, 5). To assess the number of significant PC’s (i.e. components that are
more likely to represent cell assemblies rather than correlation caused by ran-
dom fluctuations), Peyrache, Khamassi, et al. 2009 proposed the Marčenko &
Pastur distribution as a null hypothesis (Marčenko & Pastur 1967). Authors
demonstrated that the singular values (square root of the eigenvalue of the
correlation matrix) of large rectangular matrices (Nrows →∞, Ncolumn →∞
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and Ncolumn/Nrow ≥ 1) with statistically independent rows follow a probabil-
ity function ρ(λ):

ρ(λ) =
N

2πσ2B

√
(λmax − λ)(λ− λmin)

λ

where σ2 is the variance of the elements (σ2 =1 with z-scored normalization).
Thus, when neurons are uncorrelated, λ must vary between λmin andλmax,
i.e. the variance can not be larger than λmax. Hence PCs with eigenvalues
exceeding λmax are considered significant. However, the use of Marcenko
Pastur threshold under non-stationnarity (for example, correlation produced
by slower (co)variations compared to the chosen bin width) has been recently
criticized (Russo & Durstewitz 2017). One possible alternative is to shuffle
spike trains to create surrogate data and apply PCA once again. Repeating
this operation will yield a distribution of eigenvalues. A statistical threshold
can be derived from the 95th of this distribution. Despite the Russo & Durste-
witz issues, the surrogate data and Marcenko Pastur provides similar results
(see 4.4 in Result section). One of the main issues with PCA is that PCs are
orthogonal by construction but this not be necessarily be the case in the brain.
Moreover, when two assemblies concentrate the same amount of variance, PCA
may failed to distinguish them and the two corresponding PCs may rather be
a mixture of the two assemblies (Lopes-dos-Santos, Ribeiro, et al. 2013). Ad-
ditionally, assemblies with overlapping members will not be properly detected.

To address this issue, Lopes-dos-Santos, Ribeiro, et al. 2013 used Indepen-
dent Component Analysis (ICA) ensuing components selection with PCA (see
Figure 2.4; step 6). Traditionally, ICA is used to solve the blind source prob-
lem also known as the cocktail-party problem, where one tries to separate the
speech of several people talking simultaneously in a room. The Central Limit
theorem states that the sum of independent variables (e.g the sound record-
ing at the cocktail or PCs) is more Gaussian the variables them selves (each
individual person or each ’true’ assembly). Therefore to ’de-mix’ components,
ICA rotates PCs weights to maximizes measures of non-Gaussianity (kurtosis
or negentropy, see Hyvärinen & Oja 2000 for more details) in order to make
each component as independent as possible. It should be mentionnend that
ICA was first used for neural data by Laubach, Shuler, et al. 1999, Laubach,
Wessberg, et al. 2000 to detect synchronous activity in the motor cortex as rats
performed a reaction-time task. However, in these studies, ICA was applied
to too many components (with eigenvalues greater than 1) which can lead to
spurious results (Lopes-dos-Santos, Ribeiro, et al. 2013). It remains crucial
to apply ICA once and only once significant PCs have been identified (using
Marčenko & Pastur threshold or surrogate data). Note that results may vary
greatly with the choice of the bin duration. Therefore it is essential (but rare)
to investigate the stability of the detected components with regards to this
parameters (further discussed in Chapters 4 and 7). Note that the number of
significant independent components (ICs) is necessarily less than or equal to
the number of recorded neurons.
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2 Methods to detect cell assemblies

Figure 2.4: Cell assembly detection using PCA-ICA. 1) Raster plot of activity
of 35 PFC neurons. Spike trains are binned in 30 ms windows (vertical lines). 2)
Spike matrix for this data sample shows spike counts for each cell within each window.
3) Z-scored spike matrix. 4) Cross-correlation of the z-scored matrix for the entire
recording session (duration ∼2h). 5) Eigen decomposition of the cross-correlation
matrix. Above : Eigenvalues. The horizontal dashed line indicates the Marcenko-
Pastur threshold. The vertical grey line delimit the 4 sub-threshold eigenvalues.
Below : Eigenvectors appear in columns. 6) Independent Component Analysis.
Each column represents an Independent Component (IC). Height of lollipop indicates
weight of neurons. Weights exceeding Otsu’s threshold are colored in red. 7) For
each bin, activation strengths are calculated as the projection projection of population
vector from the z-scored matrix (delimited by white vertical lines in 3) onto the outer
product of IC1. 8) Activation strength of IC1 in the data sample of 1 and2. Note the
peak caped by a red dot that correspond to the computation from 7. Co-activation
of neuron 2,3 and 4 yield a peak in activation strength of IC1.
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2.3.2 Activation strength

One of the greatest advantages of PCA-based methods is the possibility to
track the dynamical activation strength of an identified independent compo-
nents over time (‘IC’; Figure 2.4; step 3, 7 and 8). First, the spike matrix
is generated and z-scored resulting in a matrix Z (time bins can differ from
the ones previously used for component detection). The outer product IcTi Ici
creates a template, for each significant component ICs. The diagonal of the
template matrix is set to 0 so that single neuron spiking does not contribute to
the activation strength. Activation strength of the ith component is computed
by projecting population vector at a given time z(t) (columns of the Z matrix)
onto the component template.

Ai(t) = z(t)T (IcTi Ici)z(t)

Thus the activation strength is high when multiple neurons with same-sign
high weights fire synchronously and increases when these synchronous neurons
fire more.

2.3.3 Interpreting PCA-ICA results

Usually the independent components are considered as proxies for cell assem-
blies (Peyrache, Khamassi, et al. 2009; Benchenane et al. 2010; van de Ven
et al. 2016; Trouche, Koren, et al. 2019). Primarily, high weight neurons are
thought to be part of the assembly. However PCA-ICA does not provide a
proper way to identify cell assembly members. Usually, an arbitrary threshold
is set (Z=2, van de Ven et al. 2016) or the n-th biggest weights are considered
only (Benchenane et al. 2010, n = 5). In the result section of this manuscript,
two different rules have been applied:

• a threshold of 1/
√
N , with N being the number of cells recorded. This

threshold represents the expected weight of neurons if they were all mem-
bers of one only massive assembly (criterion selected in Results 4).

• using Otsu’s method Otsu 1979, initially developed in image processing
to separate pixels into two classes, foreground and background. This
algorithm divides the data (here, weights of respective neurons) into
two classes while maximizing the inter-class variance. The goodness of
separation is quantified by Otsu’s metric, the ratio of the inter-class
variance and the total variance. When data are well separated well,
Otsu’s metric tends toward one, whereas a poor cut-off yield returns a
near-0 value (selected method in Chapter 5).

Thus interpreting PCA-ICA components might be difficult especially the
weight distribution is not bimodal. Interpreting activation strength signals
may also be problematic. Usually, peaks in activation strength are thought
to correspond to assembly expression. However, since activation strength
computation is based on the whole distribution of weights, activation strength
peaks might not correspond to co-activation of high weights neurons. Peaks
can also emerge from co-activation of low weights neurons or bursting of a
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low-spiking neuron4.

Despite these difficulties, PCA-ICA techniques remain a reference method to
detect co-activation pattern and are widely adopted by the scientific commu-
nity (Peyrache, Khamassi, et al. 2009; Benchenane et al. 2010; Lopes-dos-
Santos, Ribeiro, et al. 2013; Gulati, Tsodikov, et al. 2014; Gulati, Won, et al.
2015; Ramanathan et al. 2015; Dejean et al. 2016; van de Ven et al. 2016;
Rothschild et al. 2017; Deolindo et al. 2018; See et al. 2018; Sjulson et al.
2018; Giri et al. 2019; Todorova & Zugaro 2019; Trouche, Koren, et al. 2019;
Eckert et al. 2020).

2.4 Higher-order correlation

PCA and Ising models take into account correlations of order two. Even
though pairwise correlations are thought to account for higher order correla-
tions within the cortex (Schneidman et al. 2006), in recent years, several meth-
ods for the detection of higher-order correlation have been developed Grün et
al. 2008; Staude, Grün, et al. 2010; Staude, Rotter, et al. 2010; Picado-Muiño
et al. 2013, for a review see Quaglio, Rostami, et al. 2018). These methods are
usually computationally demanding and remain best suited to identify precise
spike sequences (Torre, Picado-Muiño, et al. 2013; Torre, Canova, et al. 2016;
Quaglio, Yegenoglu, et al. 2017; Russo & Durstewitz 2017, see also ‘Replay
methods’ in the next Chapter).

Conclusion

Historically, cross-correlation histograms and joint peri-stimulus histogram
were the two principal methods to investigate correlations between pairs or
triplets of neurons. Model-based methods have been recently developed to
study larger patterns. Interestingly, larger patterns (n>3) can be inferred
from pairwise correlation only, within the neocortex, but also within limbic
structures such as the hippocampus. Moreover, model-based methods such as
General Linearized Models can decompose the contributions of several factors
(sensory input, peer cells etc.), to better understand the spiking activity of ob-
served cells. However, to identify significant patterns of co-activation within
spike trains, perhaps one of the most appropriate and popular approach re-
main PCA-ICA methods. Based on pairwise correlation, these techniques can
detect independent components (proxies of cell assemblies), assess their activ-
ity over time, and are computationally less demanding than recently developed
unsupervised methods (which best suited for sequence identification).

4These issues are further discussed and illustrated in Figure 5.11, see Chapter 5.
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During sleep, repeated occurrences of stereotyped neural pattern such as syn-
chronous cell assembly activation (’reactivation’) or temporal sequences (’re-
play’) have been hypothesized to be neural bases of memory consolidation
(Buzsáki 1989). These reactivations are thought to help stabilize labile mem-
ories for long term-storage. This process would involve the coordination of a
fast encoding temporary store, in the hippocampus and a slow-learning long-
term store, in the neocortex (Marr 1971). Reactivations of cell assemblies have
been extensively studied in the hippocampus, but also in downstream cortical
and sub-cortical structures. Interestingly, reactivations are tightly associated
with hippocampal SPW-Rs and/or cortical rhythms. In this chapter, I will
first briefly describe sleep. Then, I will discuss seminal works on reactivation
and replay in the hippocampus. As evidence of hippocampal replay grew, so
did the methods for detecting it. These methods overlap with those reviewed
in the Chapter 2 Methods for cell assembly detection but are presented sepa-
rately here (see Boexes) because they were specifically developed to tackle the
issue of pattern reinstatement, which slightly differs from pattern detection.
In a recent review, Tingley & Peyrache (2020) stressed that discrepancies in
interpretations in the literature could be caused by the use of different meth-
ods andor parameters, and that the community would gain from standardizing
techniques or to apply common benchmarks. Finally, I will discuss how these
recent techniques facilitated the examination of reactivation in multiple areas,
often in concert with the hippocampus.
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3.1 What is sleep?

Sleep is defined as a natural and reversible state of reduced responsiveness to
external stimuli and relative inactivity, accompanied by a loss of reactivity to
the outside world (except possibly some auditory signals). It occurs at regular
intervals and, in mammals, sleep is homeostatically regulated (i.e. a loss or
delay of sleep results in subsequent prolonged sleep periods) (Rasch & Born
2013). Sleep probably occurs in all vertebrates, including birds, fishes, and
reptiles, and sleep-like states are similarly observed in invertebrates like flies,
bees, and cockroaches (Cirelli & Tononi 2008).

Sleep is not a singular entity but is rather composed of two physiologically
distinct states: rapid eye movement (REM), or paradoxical sleep, and non-
rapid eye movement sleep (nREM), which can be divided into 3 stages. These
states cyclically alternate during sleep even though nREM sleep is predominant
at the beginning of the night and REM sleep later (Figure 3.2a). Rodents do
not sleep in a single period like humans, but rather have several alternating
cycles of REM and nREM sleep (see Figure 3.2b).

W
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N2

N3

23.00 3.002.001.000.00 4.00 5.00 6.00 7.00

Slow wave sleep

Late sleep
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Fragemented sleep
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Figure 3.1: Sleep architecture. a) Example of a human hypnogram. Human sleep
is composed of alternating periods of nREM and REM sleep, with nREM subdivided
into a further 3 stages. nREM sleep occurs mostly during early sleep whereas REM
sleep becomes more frequent later. Adapted from Rasch & Born 2013. b) Example
of a rodent hypnogram (unpublished data from our lab). In rodents, sleep is more
fragmented and composed of alternating bouts of nREM, REM, and brief awakening.
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In the rodent literature (and more generally, the experimental animal litera-
ture), nREM sleep is referred to as Slow Wave Sleep (SWS), which in humans
represents the deepest stage of nREM sleep only (N3).1. In this manuscript,
the terms SWS and nREM will be used interchangeably to designate non-
REM sleep periods in rats.

SWS and REM sleep stages display highly dissimilar electrophysiological pat-
terns. In humans, these patterns, i.e. sleep rhythms, are best studied in the
neocortex since they can be recorded with scalp EEG electrodes. Using this
non-invasive technique, Loomis et al. 1935 shed light on different character-
istic patterns of sleep EEG. If local field potential (LFP) recordings of REM
sleep look very similar to those of the waking state, neocortical LFP during
slow-wave sleep drastically differs. The hallmark rhythms of neocortex during
SWS are (Figure 3.1 a):

• Slow oscillations: cortical cells spontaneously fluctuate between a de-
polarized state of sustained spiking activity, the UP state and a hyper-
polarized state favoring interruption of neuronal firing, the DOWN state
Steriade, Contreras, et al. 1993.

• Delta waves: positive deflections of the LFP in neocortical deep layers
accompanying transient (200-500 ms) firing cessation2. Delta waves are
thought to reflect UP-DOWN-UP transitions.

• Sleep spindles: thalamocortical waxing-and-waning oscillatory events
(10-15 Hz) (Steriade, McCormick, et al. 1993) which occur mostly in the
light stages of NREM sleep. Spindles are embedded in the cortical slow
oscillation, closely following delta waves (∼40% of events; Maingret et al.
2016), but can also occur in an isolated manner (Sirota & Buzsáki 2005;
Peyrache, Battaglia, et al. 2011).

Like in the cortex, during slow-wave sleep (but also quiet wakefulness, drowsi-
ness), LFP in the hippocampus is characterized by large-amplitude irregular
activity (LIA), with sporadically occurring transient deflection of the signal
called sharp waves (Buzsáki 1986). Sharp waves co-occur with brief (50-150
ms) and fast oscillations (∼200 ms), called ripples which originate in the
CA1 pyramidal layer (Buzsáki, Horváth, et al. 1992). These two events oc-
cur together as sharp-wave ripples (SPW-R; see Figure 3.1b)3. To this day,
hippocampal sharp wave-ripples remain the best described neurophysiological
correlate of reactivation and replay events.

1Even though a recent study in the mouse proposed a novel sleep scoring method to
characterize 3 stages of non REM sleep, similar to the human taxonomy (Lacroix et al.
2018)

2In a recent study from our lab, Todorova & Zugaro 2019 demonstrated that delta
waves are not complete silent but rather they represent isolated cortical computations
closely related to ongoing information processing underlying memory consolidation

3Sharp-wave ripples are also observed during offline waking states Foster & Wilson
2006
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Figure 3.2: Slow wave sleep brain rhythms and cell activity. a) Example
of simultaneous LFP (top) and extracellular recordings (bottom) in deep layers of
prefrontal cortex in the rat. Each row of rasters corresponds to a different neuron and
each tick represents a spike. Middle: intracellular recording of a layer V neocortical
neuron. The cells’ membrane potential drop during the DOWN-states, associated
with a positive wave at the LFP level (delta wave; red solid line) and absence of
neuronal activity. Unit activity resumes at the end of the delta wave (UP-state).
Note the spindle (green; dashed line) following the delta wave in the LFP signal. b)
Left: hippocampal LFP recorded in CA1 stratum pyramidale during sleep. Right:
depth profile of sharp-wave ripples (solid lines) superimposed on a current source
density map of the same events. Note the large sink in the stratum radiatum (sharp
wave, SPW) and the fast alternation between sinks (blue) and sources (red) in the
pyramidal layer (ripple). Adapted from Sullivan et al. 2014
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3.2 Reactivation and replay in the hippocampus

In 1989, Buzsaki proposed that hippocampal cell assemblies are reactivated
during ripples to transfer information to the neocortex (Buzsáki 1989). The
purpose of such repetitive activation would be to subsequently consolidate
memories via STDP mechanisms (since LTP involves much more intense ac-
tivity than the low firing rate hippocampal projection neurons). The same
year, Pavlides & Winson demonstrated that place cells active during behavior
fired at higher rates during subsequent sleep. Conversely, cells associated with
non-visited places did not show such changes.
Building on this work, Wilson & McNaughton (1994) recorded large ensem-
bles of individual hippocampal place cells and demonstrated that multiple cell
pairs which tended to fire together (100 ms) during experience were also syn-
chronous during post behavior sleep (‘POST’), but not during pre-behavior
sleep (‘PRE’), see Figure 3.3a. Reactivation was assessed by comparing the
average cross-correlation in post sleep for two different type of cell pairs: pairs
with overlapping fields versus pairs of non-overlapping ones. Interestingly, the
authors found that reactivation occurred especially during sharp wave ripples,
consistent with Buzsaki’s prediction.
Later on, Skaggs & McNaughton (1996) hypothesized that hippocampal se-
quences during behavior were replayed in the same temporal order later dur-
ing sleep. They examined the asymmetrical bias Bij of the cross-correlogram
between hippocampal place cells i and j :

Bij =

∫ ∆t

0

χij(t)dt−
∫ 0

−∆t

χij(t)dt

where ∆t = 200 ms. They observed that pairs that displayed strong temporal
ordering on the track exhibited the same asymmetrical bias during POST but
not during PRE sleep.
However, global changes in correlations could be caused by external modula-
tion such as oscillations or changes in neuromodulator concentrations without
changing the relative cross-correlation within the network. Moreover, the
measure of replay proposed by Skaggs & McNaughton implies arbitrarily
separating the cells into weak and strong correlated groups. Wilson & Mc-
Naughton partitioned the data into overlapping and non-overlapping place
cell groups which may also be arbitrary and can not be applied to structure
that does not have cells with proper fields.

To overcome these issues, a mathematical refinement, the explained vari-
ance method, was introduced by Kudrimoti et al. (1999, see Box 3.1). This
more elegant approach confirmed results from previous experiments, i.e., pair-
wise correlations are relatively more similar in POST and during awake state
(‘WAKE’) compared to PRE sleep and WAKE. Pattern reinstatement was
strongest during SPW-R and decayed within ∼30 minutes.
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3 Reactivation of cell assemblies in off-line states

Box 3.1. Explained and reverse explained variance (Kudrimoti
et al. 1999; Pennartz, Lee, et al. 2004)

The first steps of the explained variance method consist in computing the
cross-correlation matrix C, where Ci,j is the Pearson correlation coefficient
between the ith and the jth cell, for three different epochs: PRE sleep,
WAKE and POST sleep. The explained variance measure (EV) assesses
the relative similarity of C matrices in these periods. More precisely, the
explained variance quantifies how much of the variance in the element of C
in POST sleep can be explained by their variance in awake state given their
relative magnitude in PRE sleep:

EV = r2
wake,POST |PRE =

rwake,POST − rwake,PRE × rPOST,PRE√
(1− r2

wake,PRE)(1− r2
POST,PRE)

2

with rA,B being the correlation of matrices C computed during epochs A
and B. However Kudrimoti et al. 1999 compared EV to rwake,pre e.g the
correlation of C matrices during wake and pre instead of comparing the
EV to a proper control. This problem was solved by Pennartz, Lee, et al.
2004 who introduced the reverse explained variance (REV). By switching
pre and post epochs in the EV formula, REV captures the percentage of
pre sleep variance explained by awake state given their relative magnitude.
Reactivation is then assessed by a significance difference between EV and
REV. To date, explained variance remains one of the more popular method
to characterize pairwise reactivation (Kudrimoti et al. 1999; Hoffman &
Mcnaughton 2002; Pennartz, Lee, et al. 2004; Euston et al. 2007; Lansink,
Goltstein, Lankelma, Joosten, et al. 2008; Lansink, Goltstein, Lankelma,
McNaughton, et al. 2009; Girardeau, Inema, et al. 2017; Tang, Shin, et
al. 2017; Chang, Esteves, et al. 2020). Even though this method is more
rigorous than direct cross-correlation comparison, it has some limitations:

• The explained variance measure can not track the timing of reacti-
vations since it accounts for the total variance over a period of time.
Furthermore, the variance values depend on the time bin chosen. The
time bin parameter varies from one study to another, but this is rarely
varied systematically or discussed.

• Explained variance calculations take into account every possible pair-
wise correlation among neurons even though some correlations could
be due to chance.

To overcome the first limitation, other approaches are available such as
template matching (but best suited for patterns with a fine temporal re-
lationship such as sequences, Box 3.2) or reactivation strength techniques
(Box 3.4).

Rather than focusing solely on pairwise correlations, subsequent studies
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3.2 Reactivation and replay in the hippocampus

searched for a more quantitative estimate of neuronal reinstatement and tried
to detect entire sequences of activity (Nádasdy et al. 1999; Lee &Wilson 2002).
Nádasdy et al. 1999 relied on joint-peristimulus time histogram to identify se-
quences of triplets significantly occurring during WAKE and replayed at a
faster rate during SPW-R (see Chapter 2 for methodological details). Lee &
Wilson 2002 went further, using a combinatorial decoding method to identify
sequences of more than four neurons (Figure 3.3b-e). They demonstrated that
the probability of these long sequences (n > 4) to be replayed was higher
than for isolated doublets. Consistent with previous findings, authors found
out that replay happened at a faster time scale than encoding during behav-
ior. While all of these studies provided experimental evidence of replay during
nREM sleep, the pioneering work of Foster & Wilson 2006 demonstrated that
replay can also take place during the awake state, when the animal pauses in
its environment. Interestingly, sequences tended to be reversed with respect
to the order of the field order sequence ( ‘reverse replay’), contrasting to the
forward sequences documented during nREM sleep (see Box 3.2 for details on
the recent méthods to detect replay).

Box 3.2. Popular methods to detect replay

• Bayesian reconstruction: In recent studies, bayesian decoding
seems to be the preferred method to investigate sequential replay
(Johnson & Redish 2007; Davidson et al. 2009; Dragoi & Tonegawa
2011; Pfeiffer & Foster 2013; Grosmark & Buzsáki 2016; Drieu et al.
2018). Zhang et al. (1998) estimated the position x of the animal
given the average firing rate map fi(x) of N neurons and the spike
count ni of all cells in a given window.

P (x|n) = P (x)(

N∏
i=1

fi(x)ni)exp(−τ
N∑
i=1

fi(x))

where τ represents the window size of the discretized spike trains and
P (x) the probability for the animal to be at the position x (i.e. the
normalized occupancy map). Computing this probability of each bin
generates a reconstructed trajectory which is compared to the real one.
It should be noted that this techniques relies on the average firing rate
maps, i.e. a template. To assess the significance of detected replayed
events, data from a candidate event are shuffled and true replayed
event would be expected to appear less than 5% of the time.

• Unsupervised methods: A major limitation of bayesian decod-
ing is to extend it to brain activity where behavioral correlates (such
as spatial firing) are less precise (e.g, in brain structures other than
the hippocampus). Recently, to tackle this issue several unsupervised
methods were developed to identify sequences within data (see Gross-
berger et al. 2018; van der Meij & Voytek 2018; Mackevicius et al.
2019; Watanabe et al. 2019).
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Figure 3.3: Hippocampal reactivations and replay a) The first compelling
demonstration of experience-dependent reactivation of hippocampal activity. Dia-
gram of the co-activation matrix of 42 simultaneously recorded neurons (dots on the
circle). Lines indicate the small subset of all positive correlation (>0.2) between the
pairs, with color reflecting the magnitude of the correlation (red, high; green, low).
Bold lines indicate cell pairs that were correlated during waking activity (RUN) and
also correlated during either sleep before (PRE) or after (POST). These panels reveal
that most of the highly correlated pairs that appear during the run phase also appear
in the POST phase but are typically absent from the PRE phase. b) Average firing
rate of 10 hippocampal place cells ordered by their preferred position on a linear
track (30 trials; y-axis, cell number; x-axis, position on the track). Colored vertical
ticks indicate peak firing location for each cell. Responses for the respective laps
are stacked for each cell. Time axis below shows time within an average lap (total:
∼5 s). c-d) Replay of place cell sequences. Examples of compressed replay during
sleep. Note the faster time scale (∼20-fold compression). e) Replay coincides with
sharp-wave-ripple (SPW-R) events. Panel a) adapted from Wilson & McNaughton
1994, b-e) from Lee & Wilson 2002.

A causal role of hippocampal reactivation Two studies first investi-
gated the role of hippocampal ripples in memory consolidation, during nREM
sleep (Girardeau, Benchenane, et al. 2009; Ego-Stengel & Wilson 2009). With
closed-loop appartus authors disrupted hippocampal ripples — and therefore
the associated neuronal activity (putative replay) — following training on a
spatial task. This resulted in subsequent performance impairment, suggesting
a causal role of SPW-R in memory consolidation. The same protocol was used
to disrupt awake ripples during quiet wakefulness and yielded similar perfor-
mance impairment (Jadhav, Kemere, et al. 2012). Interestingly, disrupting the
reactivation of those cell assemblies that emerged in a novel environment dras-
tically altered the activity of the cell assembly during re-exposure (Gridchyn
et al. 2020). These findings led Gridchyn et al. to examine whether learning
impairment results from the disruption of SPW-Rs alone or from the specific
disruption of assembly firing patterns that presumably encode memory traces.
They found that the disruption of the reactivation of synchronous place cell
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3.2 Reactivation and replay in the hippocampus

patterns (∼20 ms) in CA1, with an optogenetic apparatus, led to impaired
recall of spatial goal memories represented by these place cells, without im-
pacting memory traces concerning other places. These results support the role
of reactivation and replay as neural mechanisms of memory consolidation.

Box 3.3. Template Matching (Louie & Wilson 2001)

This method detect spike train pattern similarities with a chosen template.
Usually templates correspond to sequential activation of neurons during
WAKE. To create a template, spike trains occurring during a particular
event (e.g., a trial) are binned resulting in a (n x B) matrix T, where n
is the number of recorded cells and B the number of bins. All events in
the recording session are similarly binned to generate (n x B) target spike
matrices S. S and T can be normalized (e.g. z-score, setting the norm of
each column to 1 etc.) before using the Pearson coefficient for matrices to
compare them.

Coef =

∑n
i=1

∑B
j=1(Tij− < T >)(Sij− < S >)√∑n

i=1

∑B
j=1(Tij− < T >)2

√∑n
i=1

∑B
j=1(Sij− < S >)2

where the means < S > and < T > are respectively calculated as < T >=
1
nB

∑n
i=1

∑B
j=1 Tij and < S >= 1

nB

∑n
i=1

∑B
j=1 Sij . Note that the sizes of

S and T are similar but the binning width can vary to examine temporal
compression and/or distension of behavioral sequences in sleep. However,
this method should be used carefully as it presents some pitfalls:

• Results are extremely sensitive to the normalization method selected.
Tatsuno et al. (2006) demonstrated that when normalizing columns of
the matrices using their euclidean norm (Louie & Wilson 2001), the
template matching measure was influenced by changes in mean firing
rate of neurons and not just the fine structure of spike timing. Using
z-scored matrices prevents this problem (Euston et al. 2007).

• Tatsuno et al. 2006 also reported that when comparing correlation
of target matrices with two templates from distinct epochs, for ex-
ample TPRE in PRE and TPOST in POST sleep, it is crucial that
target matrices remain the same. For example, one can not compare
the correlation of template TPRE matched with target in PRE only
versus TPOST with POST target only. Such partial calculation of
template-matching correlations, may lead to erroneous conclusions as
the correlations have been proven to fluctuate with firing rate changes
(De La Rocha et al. 2007).

• Since templates are based only on one instance, this measure can be
sensitive to noise.
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3 Reactivation of cell assemblies in off-line states

• Even if template matching can highlight temporal compression or dis-
tension, this method assumes that the temporal relations between
neurons is linear. For example, let us consider a template where neu-
rons A, B and C fire in sequence with similar inter-spike interval.
Then, the template correlation with a target will be high, only if the
initial order of discharge is preserved but also if the intervals of spik-
ing between A,B and C are equal (but note that this interval might
be shorter or longer compare to the template one, when investigating
compression or distension).

Replay in REM sleep? Evidence of reactivation during REM sleep is rare
and may results from the difficulty, in rodents, to collect enough data during
this stage, since it represents only 10% of total sleep. Even though Pavlides
& Winson (1989) observed an increase in firing rate of place cells during REM
sleep after exposure to an environment, Kudrimoti et al. (1999) showed that
the explained variance in the hippocampus is lower during REM than in SWS.
However, Louie & Wilson (2001), used template matching (see Box 3.2) to
demonstrate that temporally sequenced ensemble firing rate patterns reflecting
tens of seconds to minutes of behavioral experience are reproduced during
REM episodes at an equivalent timescale. Contrary to highly compressed
SWS reactivation, these sequences were reactivated at an equivalent timescale,
consistent with the similar LFP patterns observed during REM and awake.
Unfortunately, to the best of my knowledge, these results have never been
replicated in the hippocampus.

3.3 Extrahippocampal reactivations

Building on hippocampal research and methods, many studies addressed the
question whether reactivation and/or replay were more widespread in the
brain. Indeed, off-line reactivation might serve to strengthen synaptic con-
nections among hippocampal place cells, storing spatial representations, but
may also help coordinate consolidation in target structures. Especially, in light
of Marr’s two-stage model memory, coordinated reactivation between the hip-
pocampus and the neocortex could facilitate the gradual transfer of memories
for long-term storage. Hippocampal–neocortical interactions, however, are un-
likely to account for the entire spectrum of memory consolidation processes.
Consolidation of nondeclarative or procedural memories, may well involve sub-
cortical routes, including basal ganglia structures such as the amygdala or the
striatum (for reviews on extrahippocampal reactivation in concert with neo-
cortical and subcortical structures, see Todorova & Zugaro 2019 and Skelin
et al. 2019) .
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3.3 Extrahippocampal reactivations

3.3.1 Associative cortex reactivations

Associative cortices are involved in processing multimodal sensory informa-
tion and include the PFC, cingulate, retrosplenial, posterior parietal (PPC),
perirhinal and postrhinal cortices.

Parietal, cingulate and retrosplenial cortex. The dirst evidence of reac-
tivation in association cortices were provided by Qin et al. 1997 in the parietal
cortex. Hippocampo-parietal cell pairs were more correlated during sleep fol-
lowing track running compared to the sleep before. However, the temporal
order of the awake correlation between these two structures was not preserved
during sleep (although this remained present in correlation between neurons
within the structures). Recently, Wilber et al. 2017 observed that multi-unit
activity (i.e., all the undiscriminated spikes recorded from a single tetrode) in
the parietal cortex was reactivated in a compressed manner (four- to ten-fold)
following a spatial sequential memory task. Interestingly, reactivation was co-
ordinated with hippocampal replay onset, with a peak of parietal activity, 50
to 150 ms afterwards. Similarly, in the anterior cingulate cortex (ACC), the
majority of neurons are activated just before ripple onsets during sleep, but not
before awake state. A subset of neurons (17%) exhibits a peak of activation af-
ter sleep ripple onsets (Wang & Ikemoto 2016). Recently, pairs of retrosplenial
neurons were found to reactivate after sessions of virtual navigation on a lin-
ear treadmill populated with tactile landmarks (Chang, Esteves, et al. 2020).
Interestingly, another recent paper reported ripples in the retrosplenial cortex,
tightly coupled to hippocampal SPW-R, supporting the hypothesis that hip-
pocampal ripples can drive reactivations in associative cortices (Nitzan et al.
2020).
Even though hippocampal coordinated reactivation has been reported in the
PPC, the ACC and the retrosplenial cortex, the prefrontal cortex (PFC) is
the cortical structure most extensively studied in the context of hippocampo-
cortical communication.

Prefrontal cortex. THe PFC receives monosynaptic inputs from the ven-
tral hippocampus and is thought to play a role in long-term storage of memory
traces (Marr 1971, Squire 1992, Frankland & Bontempi 2005). Recently, Main-
gret et al. 2016, provided first evidence of a causal role of the hippocampo-
prefrontal dialog during sleep. With a closed-loop apparatus, artificially en-
hanced coupling of hippocampal ripples and delta waves resulted in better
memory recall performance during the following day. At the single unit level,
the first evidence of hippocampo-prefrontal coordination was provided by Sia-
pas & Wilson (1998) who observed a peak of activity of mPFC neurons up to
one second after SPW-R onset. Wierzynski et al. (2009) examined the tim-
ing of mPFC neurons firing relative to HPC neurons. They found out that
cross-covariance between single cells from the two structures was maximal in
[0 100ms] window (CA1 leading mPFC). Yet, when excluding SPW-R periods
from the analysis, the cross-covariance peak is diminished. The same year,
Peyrache, Khamassi, et al. 2009 reported cell assemblies within mPFC dur-
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3 Reactivation of cell assemblies in off-line states

ing a set-shifting task (see Box 3.4 for methodological détails). In subsequent
SWS sleep, cell assemblies displayed, on average, higher activation strength
compared to PRE sleep. Interestingly, activation strength peaked 40 ms after
HPC ripples (Figure 3.4b). Furthermore, cell assemblies that appeared during
response selection were reactivated prominently. This tight synchronization of
ripple onset and mPFC reactivation supports the hypothesis that ripples can
trigger reinstatement of neocortical assemblies in a process that would underlie
the reorganization and stabilization of neocortical memory traces (Frankland
& Bontempi 2005)4. Interestingly, similar to the hippocampus, replay of task-
related neuronal sequences in the mPFC was observed during sleep (Figure
3.4a; Euston et al. 2007). Sequences were also replayed at 6-7 times faster
than their sequence speed during behavior, in line with hippocampus com-
pressed replay.

Box 3.4. Reactivation strength

Another current technique for studying reactivation is reactivation strength.
This method assesses the similarity of co-firing at a given time during sleep
with correlation during WAKE.

Rsleep(t) = zTsleep(t)Pwakezsleep(t)

where zsleep(t) is the z-scored population vector and Pwake is a projector
that represents correlation during the WAKE epochs. In the simplest case
Pwake can be the correlation matrix (Girardeau, Inema, et al. 2017) even
though it takes into account noisy correlation (as in Kudrimoti et al. 1999).
In search for a better template, Peyrache, Khamassi, et al. 2009 used Princi-
pal Component Analysis (PCA) and Lopes-dos-Santos, Ribeiro, et al. 2013
used Independent Component Analysis (ICA) to extract meaningful correla-
tion from the spike matrix (for more details and discussion about activation
strength and PCA/ICA, see Chapter Methods for cell assembly detection
2).

3.3.2 Entorhinal cortex

In recent years, several studies investigated reactivation in the Medial Ento-
hinal Cortex (MEC), which project to the hippocampus. Conflicting results
have been reported regarding the coordination of hippocampal replay and the
activity of grid cells, neurons within the entorhinal cortex that exhibit grid-
like place correlation (Ólafsdóttir et al. 2016; O’Neill, Boccara, et al. 2017).
Ólafsdóttir et al. (2016) showed that grid cells in deep layer of the Medial

4 SPW-R modulation of mPFC neurons is also observed in awake offline state. Indeed,
∼35% of mPFC population exhibit excitatory or inhibitory modulation within 200 ms
window following SPW-R (Jadhav, Rothschild, et al. 2016). Interestingly, distinct pop-
ulation of mPFC neurons were modulated during awake SPW-R and sleep SPW-R, with
inhibited responses exhibited mostly during WAKE (Tang, Shin, et al. 2017). Moreover,
HPC-PFC reactivations were stronger during awake SPW-R compared to sleep and the
average activation strength of HPC-PFC cross structural assemblies was higher.
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Figure 3.4: Reactivation and replay in the prefrontal cortex. a) Cross corre-
lation between mPFC cell pairs formed during training are preserved during following
sleep, in a temporally compressed manner (each row is a cross-correlogram between
two mPFC cells shown as a heat map; adapted from Euston et al. 2007). Note that
only cell pairs showing a peak z score exceeding 11 during the task were included (∼5
to 15%of the total number of cell pairs). Red indicates the highest coincidence rate
and blue, the lowest. The time axis during sleep epochs is magnified. b) Cell assem-
blies reactivation strength in mPFC is increased during SPW-R events in sleep fol-
lowing training (purple) compared to sleep preceding training (gray) on a set-shifting
task. The peak correlation occurs 40 ms after the peak of the ripples, indicating that
SPW-Rs lead mPFC reactivations. Adapted from Peyrache, Khamassi, et al. 2009.

Entorhinal Cortex (MEC) are more active during forward replay events, with
a peak of activity at 10 ms. The positions encoded by grid cells lagged 11 ms
behind those of CA1. However, in recordings from the superficial layers of the
MEC, O’Neill, Boccara, et al. 2017 reported independent replay of hippocam-
pal and entorhinal neuronal sequences. Moreover, entorhinal replay was also
independent of ripple timing, which is quite surprising given that the superfi-
cial MEC is the main input area of the hippocampus. The authors suggested
that the EC could act independently in mnemonic processes rather than hav-
ing a subservient role to the hippocampus. Methodological caveats regarding
these two studies have been discussed in Trimper et al. 2017. One main issue
is that grid cells exhibit regularly spaced spatial receptive fields in all environ-
ments and, therefore, coordinated replay between place cells and grid cells may
be detected by chance. To account for these issues, recent studies relied on
continuous-attactor models to investigate MEC patterns during sleep (Trettel
et al. 2019; Gardner et al. 2019). Authors reported that in the superficial layer
of the MEC pairwise correlation of grid cells was preserved during nREM but
also REM sleep. However these entorhinal reactivations were not explained by
hippocampal theta oscillations nor by the replayed activity in the hippocam-
pal subregion CA1. Thus, the pattern of correlations likely originates within
the MEC superficial layers rather than being inherited, through feed-forward
projections, from circuitry in the hippocampus. Note that these recent studies
(Trettel et al. 2019; Gardner et al. 2019) are limited to superficial layers and
the field would benefit further investigation in the deep layer of the MEC,
given the reported methodological caveats of Ólafsdóttir et al. 2016.
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3.3.3 Sensory cortices

Aside from association cortices, coordinated replay have also been found in sen-
sory cortices. In the visual cortex, sequential activations of neurons recorded
in the deep layer of the primary visual cortex are reinstated during sleep,
as in the hippocampus (Ji & Wilson 2007; Figure 3.5a,b). Interestingly, the
replay of the same trajectories tended to occur at the same time in the hip-
pocampus and the visual cortex. However, even though the authors reported
a trend toward hippocampal replays leading those in the neocortex, they were
unable to definitively establish the direction of interaction. As opposed to
the prefrontal reactivation, authors suggested a bidirectional interaction, with
the visual cortex first biasing hippocampal activity, to establish context. In
turn, hippocampal replay would then bias the cortical activity towards cortical
matching replay. This result is in line with the findings of Sirota, Csicsvari,
et al. (2003), in the somatosensory cortex. On average neocortical population
activity preceded hippocampal discharges and ripples (50 to 100 ms) during
non-REM sleep. Similarly, in the Auditory Cortex (AC), Rothschild et al.
(2017) reported an increase in activity of a sub-population of neurons up to
200 ms prior to SPW-R onset. Moreover, the activity of auditory neurons could
predict hippocampal firing during the following ripple while the hippocampal
pattern during ripple predicted subsequent AC activity. Interestingly, audi-
tory stimulation could bias hippocampal replay up to 15 seconds following a
stimulation (see also Bendor & Wilson 2012, for similar results). Sensory cue
presentation during sleep in humans plays a causal role in memory-associated
reactivation. During slow-wave sleep, participants were re-exposed to the odors
(Rasch, Buchel, et al. 2007) or the sounds (Rudoy et al. 2009) they experienced
earlier during a memory task. This ’cueing’ significantly enhanced their recall
performance afterwards. Overall, neural activity in sensory cortices during
non-REM sleep tends to precede and potentially bias hippocampal SWRs and
reactivation events, although the communication is likely bidirectional.

3.3.4 Reactivation of emotional memories

Appetitive memories The ventral striatum (vSTR) receives strong input
from the hippocampal system and subiculum and is involved in motivational
behavior. Hence, Pennartz, Lee, et al. 2004 investigated whether reactiva-
tion in the ventral striatum exists and its potential coordination with the
hippocampus. They demonstrated that cell pairs in rats vSTR were reacti-
vated during slow-wave sleep and that ripple modulated neurons tended to be
more reactivated, following a track-running task. Interestingly, reward modu-
lated neurons were more reactivated in vSTR (Lansink, Goltstein, Lankelma,
Joosten, et al. 2008) and in the ventral tegmental area, another brain area
implicated in the reward circuits. (Valdés et al. 2015)5. In a follow-up study,
Lansink, Goltstein, Lankelma, McNaughton, et al. (2009) went further by
examining cross-structural reactivation of hippocampal and ventral striatal

5Even though in the ventral tegmental area, coordination with ripples is restricted to
quiet wakefulness and does not occur duirng nREM sleep per se (Gomperts et al. 2015)

56



3.3 Extrahippocampal reactivations

HC1
HC2
HC3
HC4
VS1
VS2
VS3

a Visual Cortex Hippocampus

Training Post-training sleep Training Post-training sleep

1 s 0.5 s 1 s 0.2 s

7

C
el

l 
nu

m
be

r

0

7

0

5

0

5

0

b

c

3s

HC1
HC2
HC3
HC4
VS1
VS2
VS3

Task

Hippocampus-Striatum

400 ms

SWS

Figure 3.5: Neural reactivations in concert with the hippocampus. a,b)
Sequential cell activity emerges both in the visual cortex and in the hippocampus
during behaviour. Top: example raster plots for a single trial. Bottom: average
firing rate for each cell over all trials, ordered according to their firing peak. During
subsequent sleep, sequence replays occur in both regions, sometimes in an inter-area
temporally correlated manner. Furthermore, in a few cases, joint reactivations rep-
resented the same experience. Adapted from Ji & Wilson 2007. c) Reactivation
of reward-related memories. Left: Example of the firing patterns of simultaneously
recorded hippocampal (HC1–HC4) and ventral striatal (VS1–VS3) cells during track
running. Each row in the black field represents one cell; its spikes are shown with
colored dots. Note that when the rat encounters a reward (labeled with the red ar-
row), some units of the hippocampus and the ventral striatum co-activate. Only cells
that exhibited a place field or a reward-related correlate are shown here. Right: Dur-
ing SWS, the LFP displays large irregular activity intermitted with SPW-R (filtered
trace [100–250 Hz]). Identified ripples are indicated with asterisks (*). Several units
that were activated during track running were reactivated within a short time period,
in concert with SPW-R. Note the different time scales at the left and right. Adapted
from Lansink, Goltstein, Lankelma, McNaughton, et al. 2009.
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neurons. Specifically, striatal reward cells and hippocampal place cells were
more likely to reactivate especially if the place field was located just before
the reward location. Reactivation occurred in the same order, mostly from
the hippocampus to the striatum and was compressed 10 times (from 500 ms
during track running to 50 ms in sleep, see Figure 3.5c). In order to test
the causality of place-reward reactivations, De Lavilléon et al. (2015) used a
closed-loop protocol in mice that paired the activity of one place cell with
stimulation of the medial forebrain bundle, known to elicit reward signals, in
particular via the VTA. Afterward, the mouse, upon awakening, tended to go
toward places associated with the artificial reward signal. This suggests that
the emotional valence of spatial representations can be updated throughout
memory consolidation during sleep

Aversive memories Aversive emotional processing during sleep has been
extensively studied in humans but less in rodents (for a review, see Trouche,
Pompili, et al. 2020). A major structure of interest is the basolateral amyg-
dala (BLA), notably involved in associating the emotional valence of a stimulus
(aversive or appetitive) with a sensory and/or contextual stimulus. Recently,
Girardeau, Inema, et al. 2017, demonstrated that neurons from the dorsal
hippocampus and the BLA are conjointly reactivated during sleep. The re-
activation decayed within hours. Moreover, BLA ripple-modulated neurons
tended to be more reactivated. Interestingly, the reactivation was stronger for
the joint patterns representing a threatening pathway (along which an air-puff
was delivered) compared to a safe one.
These results suggest that joint reactivations of hippocampal spatially tuned
neurons with neurons encoding positive or negative valence of stimuli (in the
striatum, the VTA or the amygdala) could potentially support memory con-
solidation in reinforcement learning paradigms.

3.4 Reactivation of procedural memory traces

Slow-wave sleep has also been directly implicated in the consolidation of mo-
tor skills, however the neural mechanisms underlying such processes remain
poorly understood, and evidence for reactivation in motor areas is scarce. Still,
the reactivation of task-related cell assemblies in the motor cortex during SWS
have been reported following neuroprosthetic learning (Gulati, Tsodikov, et al.
2014) and a food-pellet grasping task (Ramanathan et al. 2015, Eckert et al.
2020). Interestingly, sequences of activation of task-related neurons were sig-
nificantly replayed after learning sessions, but the best results were obtained
with large bin size template-matching, suggesting that synchronous activa-
tions rather than fine temporal ordering were more relevant (Ramanathan et
al. 2015). Cell assembly reactivations were tightly locked to spindles, in line
with prior studies, suggesting that spindles may mediate offline gains in motor
performance (Walker et al. 2002). Interestingly, late stage learning was not
associated with reactivation. Recently, Eckert et al. 2020 suggested that reac-
tivation would occur during post nREM sleep whereas "pre-activation", that
is an increased cell assembly activity prior to the task, would occur in REM.
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3.4 Reactivation of procedural memory traces

The authors found that coordinated reactivation in both sleep states was ben-
eficial for skill learning in two rats. Replay of neuronal sequences associated
with vocal bird song has also been observed during sleep in motor areas of the
zebra finch brain (Dave & Margoliash 2000). Even though, some evidence of
motor reactivation exists, the field would benefit from further investigations.

Conclusion

Sleep is crucial for certain types of memory consolidation. Respective sleep
stages have been suggested to play distinct roles in these processes. The reacti-
vation of synchronous activity and the replay of entire neuronal sequences have
been proposed as the neural basis for memory consolidation. Since the seminal
works from Pavlides & Winson 1989 and Wilson & McNaughton 1994, reac-
tivation and replay have extensively studied in the hippocampus and several
techniques have been developed (e.g. explained variance, template matching
etc.). These events can happen during quiet wakefulness, slow-wave sleep and
in forward and backward fashion (Foster & Wilson 2006). Importantly, re-
play events are tightly synchronized with sharp-wave ripples. Several studies
suggested that hippocampal replay and ripples orchestrate similar reactivation
in connected areas such as the prefrontal cortex (Peyrache, Khamassi, et al.
2009) for long-term memory storage or in the ventral striatum and the basolat-
eral amygdala for emotion-place associations (Lansink, Goltstein, Lankelma,
McNaughton, et al. 2009, Girardeau, Inema, et al. 2017). However, in sensory
cortices, it is difficult to establish a clear directionality pattern in hippocampal-
cortical communication. Reactivation may rather be bi-directional (Ji & Wil-
son 2007, Rothschild et al. 2017). Sensory cortices would first bias hippocam-
pal activity, to establish context, triggering associated hippocampal replay
which would then bias the cortical activity towards matching replay. Inter-
estingly, reactivation in the enthorinal cortex takes place, in SWS but also in
REM sleep, independently, despite their connections with the hippocampus
(Trettel et al. 2019; Gardner et al. 2019). Finally, a few studies have demon-
strated that similar mechanisms could take place in the motor cortex during
sleep following procedural learning, in conjunction with cortical spindles (Gu-
lati, Tsodikov, et al. 2014, Ramanathan et al. 2015, Eckert et al. 2020). Thus,
reaction of cell assemblies and replay of neural sequences are ubiquitous phe-
nomena within the brain and are presumed to be major neural mechanism
underpinning declarative and procedural memories.
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Abstract

Highly synchronous neuronal assembly activity is deemed essential for
sensory, motor, and integrative processes. These would require the co-
ordination of multiple brain areas, even though assemblies have typi-
cally been observed only in single structures. Here, for the first time,
we demonstrate distributed assembly activation in a cortical-subcortical
pathway. The assemblies spanned functionally distinct sub-regions of
rat medial prefrontal cortex and striatum at high synchrony (∼10 ms).
They emerged when members shifted their firing phase relative to ongo-
ing 4 Hz and theta, in association with high gamma oscillations. Weak
behavioral correlates dispersed among single neurons could coalesce into
potent assembly codes for impending choice, reward, or rule order. Thus,
cell assemblies are a more general coding mechanism than previously en-
visioned, linking distributed cortical and subcortical areas at high syn-
chrony.
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4.1 Introduction

Complex brain functions have long been proposed to be mediated by
the concerted action of groups of neurons (‘cell assemblies’, Hebb 1949;
Buzsáki 2010). Yet, experimental evidence for this remains scarce.
While coordinated neuronal firing has been reported in some corti-
cal areas (see, e.g., Harris et al. 2003, Uhlhaas et al. 2009; Peyrache,
Khamassi, et al. 2009), this has rarely been observed in subcortical areas
(Trouche, Koren, et al. 2019; Lansink, Goltstein, Lankelma, Joosten,
et al. 2008). Further, the reported time scales of coordination have
generally been one or two orders of magnitude above those required for
neuronal communication or plasticity mechanisms (e.g., post-synaptic
membrane time constants, Koch et al. 1996 or spike timing dependent
plasticity rules, Markram et al. 1997; Magee & Johnston 1997), chal-
lenging their functional relevance. Conversely, there is little evidence for
distributed synchrony, i.e., neuronal assemblies spanning multiple areas
and co-activated at a fast (10 ms) time scale (Deolindo et al. 2018)

A candidate system to study distributed synchrony in cortical-
subcortical areas is the cortico-striatal pathway. The convergence
and overlap from multiple cortical areas (Haber 2016) raises the ques-
tion of whether and how precisely cortical and striatal neurons can
be synchronized while integrating information across hierarchical and
functional territories (Alexander et al. 1986). Of particular interest
are the functionally distinct dorsal and ventral zones of the medial
prefrontal cortex (PFC) of rats, and their ventral and medial striatal
(STR) projection zones.

One potential mechanism for achieving precise temporal coordination
in distributed cell assemblies is phase locking to oscillations of brain
activity (Fries 2015). Indeed,previous studies have shown that neurons
are synchronized to regular rhythms in PFC(Benchenane et al. 2010;
Fujisawa & Buzsáki 2011) and in STR (DeCoteau et al. 2007;Van Der
Meer & Redish 2011), as well as synchrony between cortical and striatal
oscillations(Donnelly et al. 2014; von Nicolai et al. 2014; Catanese,
Carmichael, et al. 2016).

Here we demonstrate that groups of PFC and STR neurons fire syn-
chronously at high precision. Surprisingly, these cell assemblies inte-
grate neuronal activity from sub-regions of both PFC and STR which
have generally been considered functionally distinct. Assemblies emerged
as individual neurons shifted their preferred phase relative to ongoing
rhythms. They had robust behavioral correlates that appeared weakly
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or not at all in their members, and assemblies were reactivated during
sleep, indicating that they were endogenously generated, and not simply
driven by behavioral events.

4.2 Results

Cortical and subcortical neurons form cross-structural assemblies

We performed large-scale simultaneous recordings in medial PFC and
downstream medial and ventral STR neurons (Supp. Figure 4.7, Supp.
Table 1) of rats performing a task designed to engage these structures
(Ragozzino 2007, Floresco et al. 2006, Oualian & Gisquet-Verrier 2010,
Hart et al. 2014; Bissonette & Roesch 2015). To test for coordinated
activity between PFC and STR, we first performed a combined principal
and independent component analysis (PCA-ICA). This identified nu-
merous stereotyped spiking patterns spanning both structures at a time
scale consistent with cross-structural communication (Figure 4.1a,b;
Supp. Table 2). To quantify this time scale, we systematically varied
the time windows analyzed. Unexpectedly, most (70%) of these motifs
persisted for time windows as brief as 10 ms (Supp. Fig. 4.8), indicating
that they formed cell assemblies (Harris 2005).

Of the 74 detected assemblies (containing 2 to 16 members, mean=6.8
± 3.1 cells; see Supp. Table 2), approximately half were cortical-
subcortical, spanning both STR and PFC (‘STR + PFC’, n=32; e.g.,
Figure 4.1a, assemblies 1 and 3). While the remaining half were detected
in only a single structure (‘STR-only’, n=33; Figure 4.1a, assembly 4;
‘PFC-only’, n=9; Figure 4.1a, assembly 2), this generally occurred when
very few neurons (one or two) were recorded in the other structure
(Supp. Table 2), suggesting that most assemblies might in fact span
both structures.

Another unforeseen result was that in almost all sessions, assemblies
included neurons of functionally distinct sub-regions of both PFC and
STR (83% sessions for dorsomedial and ventral STR, Figure 4.1a, as-
sembly 4; 85% sessions for dPFC and vPFC, Figure 4.1a, assembly 2;
counted for sessions with >2 neurons in each structure).

To further investigate the synchrony of assembly members at a fine time
scale, we cross-correlated spikes of PFC-STR neuron pairs. Incidences of
STR spiking were significantly elevated in a [-15, 30] ms window around
PFC spikes (shaded gray area in Figure 4.1c, left).
The cross-correlograms were significantly asymmetric (median asymme-
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Figure 4.1: Assemblies of STR and PFC neurons.
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Figure 4.1: a) The four assemblies exceeding the Marčenko-Pastur threshold (cf.,
Supp. Fig. 4.8a) in a representative session. Assembly ‘members’ (red ‘lollipops’)
exceeded the ICA weight threshold (abs(1/

√
N): lateral edges of colored bars). In-

fralimbic and prelimbic cortex (IL and PL) are grouped together as ‘vPFC’ while
cingulate cortex (Cg1) is labelled ‘dPFC’. Core and shell zones of the nucleus accum-
bens are grouped together as ‘vSTR’. dmSTR is dorso-medial striatum. b) Examples
of assembly activations. Cells are identified by letters (re-ordered from panel a) to
highlight the respective assemblies. The dashed horizontal lines indicate the activa-
tion strength threshold. Color-code and identifying letters are the same as in panel
a. c) Cross-correlations of STR-PFC cell pairs from all cross-structural assemblies.
Top: Color raster plots ordered by the onset of the peak z-score value (3 ms bins).
Bottom: Averages of the above data (shaded area: p<0.05, Monte-Carlo bootstrap).
The bin width selected for assembly detection here was 30 ms (cf., Supp. Fig. 4.8e).
Left: All neuron pairs that were both members of the same assembly. Right: CCRs
of randomly selected pairs of neurons that were not members of the same assemblies.

try index = 0.1; Wilcoxon sign rank test p = 6.9e-27), consistent with
PFC neurons driving STR neurons during assembly activations. No sig-
nificant peak was detected in cross-correlations between pairs of PFC
and STR neurons that were not members of the same assemblies (Fig-
ure 4.1c, right; the non-significant bump at zero could be due to pairs
belonging to undetected assemblies).

Assemblies emerge as member neurons shift phase to align with
brain rhythms

Prefrontal assemblies form during bouts of synchronous theta oscilla-
tions in hippocampus and PFC (Benchenane et al. 2010), suggesting
distributed PFC-STR assemblies could also emerge from phase re-
alignment with ongoing rhythms (Fries 2015). In a T-maze task, two
principal bands dominated the LFPs (Figure 4.2a,b, right columns).
Consistent with synchronization of cells by oscillatory rhythms (Supp.
Fig. 4.9c), nearly half of the assemblies were phase locked to 4 Hz
(∼40%) or theta (∼50%) (Figure 4.2d,e; whether they included neurons
from only one or both structures, Supp. Table 3). Notably, oscillatory
power and coherence were significantly elevated on delimited segments
of the maze requiring distinct behaviors and cognitive processes (on the
central vs. return arms for 4 Hz or theta respectively; Figure 4.2a,b and
Supp. Fig. 4.9b). A Granger analysis revealed that PFC oscillations
led STR at both 4 Hz and theta (Figure 4.2c), again consistent with
the uni-directionality of monosynaptic PFC-STR projections (although,
alternatively, PFC and STR could receive common inputs). Note that
although analyses below refer to PFC oscillations, results were similar
with reference to STR oscillations (not shown).
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4.2 Results

Figure 4.2: e) Distribution of the mean phases for all assemblies significantly phase-
locked to PFC 4 Hz or theta oscillations. Arrowheads indicate the distribution means.
For assemblies phase locked to 4 Hz, Rayleigh test: mean angle m=0 rad, p=7.2e-06;
for theta, Rayleigh test: m=-1.3, p=1.3e-06. f) Proportions of principal and in-
terneuron members phase-locked during oscillation cycles with assembly activations
(IN) and those without (OUT) (binomial tests: 4 Hz p=1.0e-04 and 0.17; theta
p=9.7e-08 and 3.8e-03, respectively). g) Distributions of the mean phases of phase-
locked members IN (color) and OUT (gray). Arrowheads mark significant distribu-
tion means(Rayleigh test: p<0.05). h) Distribution of the differences between mean
phase angle of each assembly (at zero) and the mean for each individual phase-locked
member IN (color) and OUT(gray). Kuiper test (comparison of two circular distribu-
tions): 4 Hz p=0.001 and 1; theta p=0.002 and 1, respectively for principal neurons
and interneurons. See Supplementary Table 4 for detailed circular statistical results.

We predicted that assembly activations would be dynamically associated
with phase locking of individual members, and thus tested for this. For
both 4 Hz and theta, oscillatory cycles containing assembly activations
(‘IN’) were compared to all other cycles (‘OUT’). As predicted, sub-
stantially more assembly members were phase locked to 4 Hz and theta
during ‘IN’ cycles (Figure 4.2f; except for interneurons at 4 Hz). These
results were replicated in an independent analysis based on pairwise
phase consistency (Supp. Figure 4.9d). Furthermore, during IN cycles,
both STR and PFC principal neuron members were phase-locked to the
average preferred phase of the assemblies (compare Figs. 4.2e and g),
contrary to OUT cycles (Figure 4.2g). (Down-sampling the number of
data points to balance them across conditions yielded the same results;
not shown). Thus, on average principal neurons shifted their preferred
phase to the overall mean phase of assembly activation. We further
tested whether members shifted to the phase of their respective assem-
blies, even when taking into account variations in the latter’s preferred
phases. While this did occur for principal neurons of both STR and
PFC, for both 4 Hz and theta (Figure 4.2h), interneurons, on the other
hand, remained at the assemblies’ preferred phases during both IN
and OUT cycles (Figure 4.2h). This was not due to analyzing only
phase-locked members: the same result was observed using all assembly
members (Supp. Fig 4.9e). Overall, this suggests that entrainment of
principal neurons to a common preferred phase is crucial for assembly
formation.

Both 4 Hz and theta modulated gamma oscillations in STR (Figure
4.3a), which, in turn, could help govern precise synchrony among PFC
and STR neurons. Several frequency bands were modulated by 4 Hz
or theta oscillations (including ‘gamma-50’ at 40–70 Hz, and ‘beta’ at
15–35 Hz), but only ‘gamma-80’ (70-100 Hz) was modulated at a phase
near that of the assemblies, and thus was analyzed further (cf., Figures
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4.2e and 4.3a). Assembly activations were more frequent during gamma-
80 bursts (Figure 4.3c), and reciprocally, in cycles containing assembly
activations there were more gamma-80 bursts (and higher gamma-80
power, not shown; Friedman test, p<0.05).
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Figure 4.3: Gamma-80 oscillations and synchrony. a) Average PFC 4 Hz and
theta LFP modulation of higher frequency bands of PFC LFPs (n= 20 sessions).
b) Distributions and preferred angles of phase locking to PFC gamma-80 in all STR
and PFC principal neuron and interneuron members. Arrowheads indicate significant
mean angles (n.s.: not significant). c) Activation of assemblies is greater within than
outside of gamma-80 bursts (Wilcoxon signed-ranktest, p=0.043, n=74 assemblies).
d) Mean (traces) and SEM (shading) of PETHs of assembly activations triggered
at the onset of gamma-80 bursts for assemblies phase-locked to 4 Hz and/or theta
Hz (left; n=52), and others with no 4 Hz or theta phase-locking (right; n=22) (red:
during gamma bursts; gray: outside of gamma bursts; shaded vertical bar: p<0.05,
Monte-Carlo bootstrap). e) Summary of alignments of the respective phase relations
OUT vs. IN for 4 Hz and theta.

More precisely, 4 Hz and theta phase-locked assemblies were tightly
synchronized with gamma burst onsets (Figure 4.3d; Supp. Figure
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4.9a), but this was not the case for assemblies with no phase locking.
This is consistent with the hypothesis that gamma-80 onset facilitates
assembly member synchrony.

Gamma-80 phase-locking of PFC principal neuron members differed from
that of STR principal neuron members by a quarter of a cycle (corre-
sponding to 3 ms, Figure 4.3b), consistent with tight coupling, and on
the order of the time scale of the PFC to STR conduction time (Fino
et al. 2005). The timing of assembly activation relative to 4 Hz, theta
and gamma-80 is summarized in Fig. 4.3e.

Functional correlates in cortico-subcortical assemblies

Cell assemblies are expected to underlie some brain computation or
cognitive function, possibly beyond that of their individual members.
We thus investigated the functional correlates of the cross-structural
assemblies. In a flexible decision task (Figure 4.4a), 31% of the 74
assemblies were preferentially activated on limited segments of the maze
corresponding to different behavioral and cognitive aspects of the task
(Figure 4.4d-f, top row, 4.4g and 4.4j) such as decision-making and
reward approach. These spatial correlates were often modulated by
other behavioral factors, such as left vs right choice or rewarded vs
non-rewarded choice (see Figure 4.4j and Supp. Figure 4.10). The rats
alternated between two goal-directed tasks in a T-maze (Figure 4.4a).
First animals performed a visual discrimination task (VD1), then a spa-
tial discrimination (SD), and finally the visual task again (VD2; Figure
4.4b,c). Assemblies were selective for ‘task conditions’ (VD1, SD, VD2;
Figure 4.4e,f). Interestingly, more assemblies discriminated between
repetitions of the same task (VD1 vs VD2) than between different tasks
(SD vs VD1, or SD vs VD2; Figure 4.4e, f and i), and these were dis-
tinctly distributed on the maze (Figure 4.4h). This did not result from
linear drift in firing rate during the sessions, or behavioral parameters
such as reward arm choice, speed, or vicarious trial and error behavior
(see Methods 4.4, and Supp. Figures 4.11 and 4.12).

To assess whether behavioral correlates of assemblies merely derived from
those of their members, or whether more complex integration took place,
we first determined the selectivity of individual members. Substantial
numbers of individual STR and PFC neurons fired selectively for several
trial characteristics, including reward arm choice (left or right), reward
outcome (Figure 4.5e, Supp. Figure 4.10), and between task conditions
(Figure 4.5a-d, Supp. Figure 4.13).

71



4 Distributed cell assemblies spanning prefrontal cortex and striatum

 

1

23

S C T W R P E

d

0

2

4

6

S C T W R P E

f

0

1

2

S C T W R P E S C T W R P E

e

1

21

0

0.03

0.05

S C T W R P E

hg i

-0.5

0

0.5

1.5

1

0

2

4

6

0

1

2

-0.5

0

0.5

1.5

1

(57%)

T(15%)

T+R(5%)

T+S(7%)

S(9%)

S+R(4%)
R (3%)

non 
responsive

j

R R

W W

PP

EE

C

S

?

0

a b cVisual discrimination 
VD1 & VD2 

Spatial discrimination 
SD 

C
ho

ic
es

 

Trials 

VD1 VD2 SD 
Rat 205 (session 4) 

Rat 209 (session 3) "STR only" assembly Rat 209 (session 3) STR-PFC assembly Rat 209 (session 5) STR-PFC assembly 

M
ea

n 
as

se
m

bl
y 

st
re

ng
th

 
M

ea
n 

as
se

m
bl

y 
st

re
ng

th
 

T
ri

al
 #

0

1

2

3

A
ssem

bly strength
 (z-score) 

VD1 vs. VD2 VD1 vs. SD

In
ci

de
nc

e
A

ss
em

bl
y

#

Position on maze Position on maze 

PFC only 

STR-PFC
STR only 

 P
ro

po
rt

io
n 

of
 a

ss
em

bl
ie

s

** **

VD1 vs. SD
VD1 vs. VD2
SD vs. VD2
More than 1

0

0.05

0.1

VD1 

VD2 

SD 

VD1 

VD2 

SD 

VD1 

VD2 

SD 

20 40 60

VD1 

VD2
SD 

0

0.15

0.25

Figure 4.4: STR-PFC assembly activations are behaviorally selective. a)
In this completely automated T-maze, rats self-initiated trials by crossing a photo-
detector C near the beginning of the central arm to trigger visual cues on two TV
screens behind the reward arms (in pseudo-random sequence). Following correct
choices, a photo-detector W on the reward arm triggered release of a sweetened liquid
reward at a reward site R. S- trial start point; P- photo-detectors triggering cues off;
E- trial end point. b) In the VD task, the screens indicated the rewarded arm, while
in SD, the rat’s non-preferred arm (right or left) was rewarded, irrespective of the
cue screens. c) Behavioral responses during a representative session. Dots above
indicate rewarded trials. The upper and lower traces track performance for the SD
or VD contingencies. Color-shaded zones indicate criterion performance trials. The
rule was changed after criterion performance was reached.

72
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Figure 4.4: d,e,f) Example assembly activations on a linearized projection of the
maze. Top row: Mean (traces) and SEM (shading) of activation strengths over the
entire session.Significant deviations from baseline are marked by light gray shaded
rectangles (p<0.05, Monte-Carlo bootstrap). Middle row: z-scored assembly activa-
tion strengths for each trial during the three task conditions. Bottom row: Mean (±
SEM) assembly activation strengths in the respective task conditions. d) An assem-
bly active during reward arm selection but with no significant differences between task
conditions. e) A task-order selective assembly (shaded region indicates where activ-
ity was higher during VD1 than VD2). f) An assembly selective for the SD rule (vs.
VD1 and VD2). g) Distribution of assembly selectivity for maze segments (horizontal
bars; Monte Carlo bootstrap p<0.05). Bottom) Summary histogram. Incidence is
the fraction of assemblies selective for each spatial bin. h) Maze distribution of task
condition selectivity of assemblies.
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Figure 4.5: Behavioral correlates of STR and PFC neurons. a,b) Distribu-
tions of significant task condition differences of single neurons along the linearized
maze (cf., Supp. Fig. 4.13 for details). The horizontal dashed lines represent the
95% confidence limit for uniform data. c,d) Proportions of cells selective for each
task condition comparison (binomial tests: p=0.02, 0.13, 2.1e-4, and p=0.31, 0.79,
0.20, respectively for STR (n=295) and PFC (n=185). Upper right: Proportions of
cells (areas of circles) selective for single and multiple task condition comparisons. e)
Behavioral correlates (same abbreviations as Fig. 4.4j). f) Support vector machine
models trained on STR population activity successfully classify task conditions. The
SVM prediction accuracies (color-coded boxplots) are significantly higher than those
for randomized data sets (white boxplots to the left) (Wilcoxon signed-rank test:
VD1 vs SD; p =0.0027; VD2 vs SD, p=0.02; VD1 vs VD2,p=0.0008, n=16 sessions).
Each point represents one session.
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Among the three task condition comparisons, VD1 vs VD2 firing rate
differences were predominant, but only in STR neurons (Figure 4.5c,d).
Firing rate differences between task conditions had characteristic dis-
tributions on the maze (Figure 4.5a,b; corrected for linear drift, Supp
Fig. 4.11b), and a support vector machine model (SVM) trained on
STR neuronal activity reliably classified the ongoing task conditions,
including VD1 vs VD2 (Figure 4.5f; this was also found for PFC: Supp.
Figure 4.14). Not surprisingly, many of these behavioral correlates
mirrored those of assemblies (compare Figures 4.4 and 4.5; e.g. Figure
4.6b ‘reward’ and ‘spatial’; data summary in filled bars in Figure 4.6e).

To control that this overlapping selectivity between assemblies and
their members was not coincidental, behavioral correlates were ran-
domly re-assigned among simultaneously recorded cells (members and
non-members). The actual (‘real’) members shared selectivity with the
assembly significantly more often than the randomly assigned groups
(Figure 4.6e). On the other hand, members could be selective where
assemblies were not (e.g., Fig 4.6b, ‘Side’, ‘VD1 vs. VD2’), consistent
with our hypothesis that assemblies may not merely reflect the proper-
ties of their members.

Indeed, assemblies appeared to express behavioral correlates for which
none of their members showed significance (e.g., Fig 4.6b, ‘VD2 vs SD’).
We thus tested for a relationship between non-significant members and
their assembly’s behavioral correlate. We selected cell assemblies that
significantly discriminated between alternative trial characteristics (e.g.,
VD1 vs. VD2, rewarded vs. unrewarded choice, leftward vs. rightward
choice, or positions on the maze), and focused on their members that
did not. In order to investigate a possible ‘trend’ across these mem-
bers, we measured the difference in firing rates between the pairs of trial
characteristics. As a control, we also measured their differences in firing
rates at randomly selected locations on the maze. The resulting dis-
tributions (trends vs controls) were significantly different (Figure 4.6f;
Supp. Figure 4.15, confirming that mere trends for behavioral correlates
in individual neurons could be detected as significant events at the pop-
ulation level. This supports the hypothesis that cell assemblies can bring
forth behavioral correlates reflecting non-significant tendencies in their
individual members.
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Figure 4.6: Comparison of behavioral correlates of assemblies and their
members. a-d) Comparison of behavioral correlates of a representative assembly
(Ass) and its members (m).a) Lollipop plot of strengths of the members. Dashed lines
separate PFC and STR neurons in a, band c. b) Significant behavioral correlation of
the assembly and its members (Monte Carlo bootstrap, p<0.05). ‘Reward’ indicates
significant differences between rewarded and unrewarded trials. ‘Side’ indicates sig-
nificant differences between leftward and rightward choice trials. ‘Spatial’indicates
activation on certain maze segments (shown as z-score in c and d). c and d) Z-scored
differences in assembly activation rates and member firing rates (except z-score for
‘Spatial’).Color code scales range from -0.5 to 5 for assembly activations and -2 to
2 for members. e) Test for whether the same correlates in members and assemblies
is coincidental. Proportion of assemblies sharing the same selectivity as at least one
member, for the actual data (‘Real’) and for the random shuffles of weights among
the members (binomial test p<0.001). f) Testing for firing rate changes in non-
significantly correlated members for the same behavioral correlate of the assembly.
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4 Distributed cell assemblies spanning prefrontal cortex and striatum

Figure 4.6: Pooled distribution of the z-scored activity differences between the pairs
of trial characteristics of all behavioral correlates (e.g., leftward vs. rightward choices,
VD2 vs SD) vs. the z-scored distribution of differences for the same cells, but at
randomly selected locations (Wilcoxon signed rank test: p=6.3e-46). Positive z-scores
indicate that activity changes of members for the same comparison and in the same
direction as the assembly. g) Assembly activation rate was greater during post-task
(Post) than pre-task (Pre) sleep (Wilcoxon signed rank test: p=1.3e-04,n=59).

Cortico-subcortical assemblies can be internally generated

The above analyses indicate that synchronous activity among neurons
did not simply result from common inputs triggered by behavioral events
(for instance, the same sensory and motor processes triggered different
assembly activation rates in VD1 vs VD2). Yet, a more direct proof
would be to show that distributed assemblies also activate in the ab-
sence of behavioral events. We thus tested for endogenous assembly re-
activation during sleep. Not only did we find assembly reactivation, but
in addition PFC-STR assembly activity was significantly higher during
post-task sleep than during pre-task sleep (Figure 4.6 g). In individ-
ual assemblies, activation rates of 34% of the assemblies significantly
increased during post-task sleep relative to pre-task sleep, while they
decreased in only 7% (binomial comparison, p<0.05; see Supplementary
Table 2). Since reactivation of neural patterns of activity during sleep,
including from PFC and vSTR, has been linked with memory consolida-
tion (Maingret et al. 2016; Todorova & Zugaro 2019; Lansink, Goltstein,
Lankelma, Joosten, et al. 2008); this suggests that distributed assemblies
could participate in offline memory consolidation.

4.3 Discussion

Here we showed highly synchronous cortical-subcortical neuronal assem-
blies. Not only did these assemblies unexpectedly include members from
hierarchically distinct brain areas (cortex vs non-cortex), they also inte-
grated members from functionally diverse and reportedly distinct loops
in the cortico-striatal pathway. Assemblies emerged when spikes of prin-
cipal neurons shifted in phase relative to 4 Hz and theta, and were ac-
companied by increased gamma activity. Assembly activations were as-
sociated with specific behavioral components of a set-shifting task. In
many cases, assemblies amplified non-significant firing trends of individ-
ual members, bringing forth significant behavioral correlates. Finally,
assemblies were selectively reactivated during sleep after behavioral ses-
sions, indicating that they were independent of specific behavioral inputs
and that they could be involved in memory consolidation processes.
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4.3 Discussion

Distributed assemblies coordinate functionally distinct sub-regions
at a precise time scale

Distributed cell assemblies included members from PFC and STR, ex-
tending beyond previous observations of assemblies confined to PFC
(Peyrache, Khamassi, et al. 2009; Sakurai, Nakazono, et al. 2013) or
to rare reports of synchronous activation in STR (at the cell pair level:
Pennartz, Lee, et al. 2004; Lansink, Goltstein, Lankelma, Joosten, et al.
2008; at the assembly level: Trouche, Koren, et al. 2019). In such stud-
ies, the time bins ranged from 25 to 100 ms. However, for coincidence
detection in downstream readers (Buzsáki 2010), convergent inputs from
assemblies must be in brief time windows on the order of 8 ms (Roy &
Alloway 2001), consistent with our observations. This fine time scale
of distributed synchronization could support binding of information
processed by distinct brain areas (Engel, Fries, et al. 2001).

Here, assemblies bridged STR and PFC sub-regions with markedly
distinct functions ranging from associative learning to goal-directed
behavior (Alexander et al. 1986; Hart et al. 2014; Ito & Doya 2015;
Sierra-Mercado et al. 2011). The wealth of evidence indicating that
PFC and STR sub-regions execute distinct functional processes does
not preclude the possibility of precisely timed cooperation by these
‘complementary’, or even ‘competing’, structures. Membership in as-
semblies by neurons from functionally distinct prefrontal and striatal
subregions could be related to the overlapped interconnections among
these areas (Mailly et al. 2013; Haber 2016) or common inputs (e.g.,
from hippocampus, dopaminergic nuclei).

Interestingly, assemblies also included interneurons, which could con-
tribute either directly via both local and long-range projections, or
indirectly by silencing competing assemblies (Stark et al. 2015, Geisler
et al. 2007). Indeed, the PFC projection to STR medium spiny neurons
is a feed-forward loop going through parvalbumin fast spiking interneu-
rons.

Hebb (1949) postulated that strengthening of excitatory synaptic con-
nections among members would help give rise to cell assemblies. Because
the vast majority of striatal neurons are inhibitory and have sparse lo-
cal connectivity (Koos et al. 2004), it seems unlikely that cell assem-
blies could emerge only from local striatal circuit interactions. Instead,
consistent with the known anatomical projections (Mailly et al. 2013),
conduction delays (Fino et al. 2005), and computational simulations
(Humphries et al. 2009; Ponzi & Wickens 2012; Carrillo-Reid et al.

77



4 Distributed cell assemblies spanning prefrontal cortex and striatum

2008), timed prefrontal inputs could leverage synchronous striatal activ-
ity and/or oscillatory coherence with striatum for distributed assembly
activations. Our data are consistent with PFC monosynaptically driving
the STR during assembly activations since PFC and STR neurons fire
synchronously at time scales as brief as 10 ms. This is also consistent
with greater PFC to STR (than STR to PFC) results of the Granger
analysis, as well as the asymmetry of the cross-correlograms.

Brain rhythms may synchronize cortico-subcortical assemblies

The communication through coherence hypothesis (Fries 2015) postu-
lates that cross-structural communication is facilitated when their re-
spective local oscillations are synchronized, concentrating spike activity
into brief temporal windows. Here, several rhythms strongly modulated
the assembly activations as well as spike timing of their members. These
diverse rhythms could exert parallel, alternating and/or interacting
influences to orchestrate brain network activity. Furthermore, the high-
est amplitudes of 4 Hz and theta LFPs were at different locations on
the maze (choice point vs post-reward), and these are associated with
respectively different cognitive processes. Indeed, 4 Hz has been de-
scribed in coupling with amygdala, dopaminergic nuclei, and respiratory
coordinating signals (e.g., Fujisawa & Buzsáki 2011; Karalis et al. 2016;
Carmichael et al. 2017) while theta rhythms in PFC and STR could be
related to hippocampal theta (Tabuchi et al. 2000;Jones & Wilson 2005;
DeCoteau et al. 2007; Benchenane et al. 2010; Van Der Meer & Redish
2011). Moreover, during spatial exploration, theta rhythms synchronize
the hippocampus and the vSTR, whereas during lever presses, vSTR
is dominated by a transient low frequency rhythm from the PFC (e.g,
Gruber et al. 2009; see also Stenner et al. 2015). This is consistent with
diverse rhythms recruiting distributed assemblies in relation to ongoing
behavioral challenges. While some assemblies are synchronized by 4 Hz
and/or theta, others may well depend on other mechanisms, perhaps
involving other frequencies such as 20 Hz (Howe et al. 2011).

Several results here point to gamma-80 oscillations as a more precise
synchronizing influence. Indeed, gamma oscillations have been proposed
to shape the formation of cell assemblies (Gray & Singer 1989; Engel,
Fries, et al. 2001; Buzsáki 2010). The one-quarter cycle ( 3 ms) difference
of phase locking of STR and PFC spikes to gamma-80 is consistent with
the strong synchrony of the onset of gamma-80 bursts in PFC and vSTR
LFPs with PFC leading (Catanese, Carmichael, et al. 2016), although
the phase lag there averaged only 0.59 ms. While the origin of many
rhythms in STR and PFC remains unclear (Carmichael et al. 2017, Tort,
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Ponsel, et al. 2018), their modulation of single neurons provides evidence
that they are not simply volume conduction artifacts here.

Behavioral correlates of distributed cell assemblies

Previous work has shown rule selectivity in STR and PFC (Asaad et al.
1998; White & Wise 1999: Bissonette & Roesch 2015; Sleezer et al.
2016). In contrast with rule selective responses, assemblies, as well as
individual STR and PFC neurons, had different activation rates in the
same task (VD1 vs VD2), and these had a higher incidence than other
comparisons. This is consistent with previous PFC population analyses
revealing discrimination between repetitions of the same rule later in a
behavioral session (Guise & Shapiro 2017; Malagon-Vina et al. 2018).
This has been only rarely reported in single neurons in STR (Shibata
et al. 2001).

However, to our knowledge, this is the first report of behavioral corre-
lated activity of assemblies in a distributed cortical-subcortical network.
Previous studies of such correlates in single structure assemblies could
well represent only a part of more extensively distributed network activ-
ity. Indeed, when we observed assemblies limited to a single structure,
this generally occurred when there was weaker sampling of the other
structure. We propose that cross-structural assemblies are likely to be a
general mechanism that extends to other brain areas and networks, and
underlie other highly integrated representations.

4.4 Materials and methods

Animals and pretraining

Six male Long-Evans rats (from René Janvier, Genest-St-Isle, weight
350–400 g) were housed on a 12:12-h light-dark cycle, with experiments
performed during the day in facilities authorized by the Veterinary Ser-
vices of the city of Paris (n° B75-05-12). Rats were handled each work-
day in the experimental room. They were first familiarized with the
experimental environment by free exploration of the maze (foraging for
scattered pieces of chocolate puffed rice breakfast cereal) for at least
three days. When the pre-training and training began, animals were
partially water-restricted (10 min per day or more as required) to no
less than 85% of their free-feeding weight. All procedures were in accord
with local (autorisation d’expérimenter n°75-1328-R; Comité d’Ethique
pour l’Expérimentation Animal no. 59 dossier 2012-0007) and inter-
national (European Directive 2010/63/EU; US National Institutes of
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Health guidelines) standards and legal regulations regarding the use and
care of animals.

Surgery

Rats were allowed at least 2 days before surgery with ad libitum water
and no training. Rats were deeply anesthetized (xylazine, 20 mg/ml, 0.1
ml intramuscular; sodium pentobarbital, 40 mg per kg of body weight,
intraperitoneal, with a 5 mg supplement i.p. every hour as needed). The
head was placed in a Kopf stereotaxic instrument, the cranial surface was
prepared, jeweler’s screws were attached with dental cement reinforce-
ment, and trephination was performed. Then rats were implanted with
a custom-built microdrive holding 15 independently movable tetrodes
(groups of four twisted 13 µm tungsten wires, gold-plated to 200 kohm).
Usually eight tetrodes were placed in the ventral or dorso-medial STR
(AP 1.0-2.5 mm and ML 0.8–1.8 mm relative to bregma), and seven in
the medial prefrontal cortex (AP 2.5–3.4 mm and ML 0.3–0.9 mm). The
implant was secured to the skull screws with dental cement. Miniature
stainless steel screws were implanted above the cerebellum as reference
and ground electrodes. After surgery, rats were allowed to recover for at
least one week with ad libitum food and water, before any further train-
ing. The electrodes were then progressively lowered until they reached
their targets and then adjusted every day to optimize unit isolation and
recording quality.

The automated T-maze with return arms

See Figure 4.4a; cf. Catanese, Cerasti, et al. 2012; Wood et al. 2000. The
experimental chamber was a 3 m diameter cylindrical space, enclosed
by black curtains running from floor to ceiling and was lit by a ceiling
mounted light bulb. The maze was constructed from matte black painted
wood. Maze arms were 8 cm wide with 2 cm high borders. The central
arm was 1 m long and the reward arms were each 50 cm long. At the
junction of the return arms and the central arm was a return/start zone
measuring 35x38 cm. The maze was elevated 70 cm above the floor.
The experimental protocol was automated and paced by the rat. As
the rat spontaneously crossed a photodetector near the beginning of the
central arm (‘C’ in Fig. 4a), this triggered the display of visual cues
on two TV screens (80 cm diagonal; 76 cm above the floor) centered
behind the two reward sites. The visual cues were vertical bars (spatial
frequency of 0.13 cpd) projected on one screen and horizontal bars on the
other, or, in later experiments, to facilitate learning, simply one white
and one black screen. Following correct choices, a photodetector on the
reward arm (‘W’) triggered distribution of a saccharinated (0.25%, 30
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µl) water reward via a solenoid valve controlled by a CED Power1401
interface (Cambridge, UK) with our scripts. Cues remained on until the
rat crossed the photodetector at the middle of the return arm (‘P’).

Recording, data processing, and spike sorting

Brain signals were pre-amplified (unity-gain headstage, Noted Bt), am-
plified 500x (Neuralynx L8), acquired and digitized with two synchro-
nized Power1401 systems (CED, Cambridge, UK). To track the posi-
tion of the animal, two light–emitting diodes were fixed to the front
of the head-mounted microdrive. These were detected by an overhead
video camera (sampling rate 30 Hz). Off-line spike sorting was car-
ried out with Principal Component Analysis with NDManager for pre-
processing (Hazan et al. 2006, http://neurosuite.sourceforge.net), and a
semi-automatic cluster cutting procedure combining KlustaKwik (K.D.
Harris, http://klustakwik. sourceforge.net) and Klusters (L. Hazan,
http://neurosuite.sourceforge.net). LFPs were derived from wideband
signals that had been down-sampled to 1250 Hz on all channels.

Histology and electrode position verification

To confirm recording sites, electrolytic lesions (cathodal current injec-
tion: 30 µA for 30 s) were applied to each tetrode. Two days later, the
rats were administered a lethal dose of pentobarbital and were intracar-
dially perfused with saline (0.9%, wt/vol) followed by paraformaldehyde
solution (10%, wt/vol). Brain regions of interest were sliced into 40 µm
coronal sections and stained with cresyl violet. For 3 of the rats, prior to
implant surgery, electrode tips were dipped in fluorescent marking dyes
(Sigma-Aldrich). In those cases, half of the histology sections were set
aside for fluorescence microscopy observations. Electrode positions were
then reconstructed in 3D with the Neurolucida system on the basis of
lesion location and the depths the electrodes had been lowered. Only
data from electrodes with confirmed recording locations were further
analyzed.

Behavioral protocol

During the pre-training phase (10±3 days, mean±SD), the rats were
trained to follow forward paths on the T-maze. Backtracking was pre-
vented with manual placement of transparent Plexiglas barriers or a
pulley-driven barrier on the reward arms. Rats were trained on the T-
maze to acquire and alternate between the two tasks. Daily training
and recording sessions consisted of one or two blocks of 20-30 min (the
average time to perform one trial was 25±1.5 s). On average, post-
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surgery training and recording sessions for a given rat lasted about 90
days. In order to obtain liquid rewards, the rats had to visit the correct
arm according to the current rule. Visual cues were displayed on the two
screens in pseudorandom order: each screen did not display the same cue
more than four times successively. First, in the visual cue task (VD),
one cue indicated the rewarded arm, irrespective of whether it was to
the left or right (Figure 4.4a). Once the rat reached a criterion of a
minimum of 10 consecutive correct trials, or 80% correct choices for the
whole session, in the following session training commenced in the spatial
discrimination task (SD). In the SD task, reward was provided on only
one (right or left) arm, irrespective of the visual cue displays. This was
selected as their non-preferred arm, as determined during pre-training.
Once the rat reached the same criterion performance as above, the next
session started with retraining in a few more VD sessions. Rats were
then trained to flexibly switch between the two rules within the same
session. Since the rats had found the VD task more difficult (27±5 ses-
sions for VD versus 2.0±0.7 sessions for SD), the rule sequence of all
sessions required the rats to first reach criterion (eight consecutive cor-
rect trials) in VD (these high performance trials are called ‘VD1’). Then
the rule was changed to SD and the trials where the rat subsequently
performed at criterion level are called ‘SD’. Similarly, following the rule
change to VD, the next series of criterion performance trials is referred
to as ‘VD2’. Data from the twenty sessions with criterion level perfor-
mance in these three task conditions are presented here. There were no
significant differences in overall performance between the first and last
sessions (Wilcoxon signed-rank, n=6 rats, p=0.0625). No cue was pre-
sented for incorrect trials, and thus the rats learned by trial and error.
The current rule was signaled by the presence (SD task) or absence (VD
task) of a sound cue (repetition of the Microsoft Windows standard sys-
tem ‘Asterisk’ sound) by a loudspeaker in front of the T-maze. The tone
went on when the central arm photodetector was crossed and was turned
off when the return arm photodetector was crossed. Rule changes were
extra-dimensional, that is, between VD and SD. This protocol was de-
signed so that the sensory inputs and motor outputs remained virtually
the same in both tasks, permitting distinction of neural activity specific
to the cognitive demands of the respective tasks.

Sleep Detection

Each behavioral recording was preceded and followed by a rest/sleep
recording session in a terra cotta flowerpot lined with a towel. These
sessions lasted at least 10 min (2 of the 6 rats) or 1 hour (the other 4
rats). Sleep data were recorded in 10 of the sessions, when 58 of the
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assemblies were recorded (Supplementary Table 2). Sleep was detected
by low movement speed. Headstage LED signals were first smoothed and
periods when the speed did not exceed 0.05 m/s for a duration of at least
120 s (with a tolerance of two s when this velocity could be exceeded).

Data analyses

Data were analyzed using programs custom-written in Matlab (Statisti-
cal Toolbox; FMAToolbox, http://fmatoolbox.sourceforge.net).

Statistics

Statistics are reported as the median±25% confidence intervals oth-
erwise. Monte Carlo bootstrap analyses were done (detailed below).
For non-normal distributions, multiple comparisons were made with the
Kruskal-Wallis test (or, for paired data, the Friedman test), for post-hoc
tests, the (Bonferroni-corrected when necessary) Wilcoxon rank sum (or
signed rank) tests, and for proportion comparisons, the binomial test.

Cell assembly detection

Amethod based on principal and independent component analyses (PCA
and ICA) detected the co-activation of simultaneously recorded neurons
referred to as ‘assemblies’. First PCA was performed. The activity of
the neurons was binned into 30 ms time bins to build a spike matrix
S, where Sij represents the firing of neuron i in spatial bin j. The ma-
trix was z-scored, resulting in the Z matrix, where the i-th row of Z
represents the z-scored activity of neuron i over all spatial bins. We cal-
culated Q, the pairwise cell activity correlation matrix where N is the
total number of neurons. We then computed the eigenvalue decomposi-
tion of Q. Eigenvalues that exceeded the upper bounds of the Marcenko-
Pastur distribution were considered significant. However PCs are, by
definition, orthogonal, a constraint that is not necessarily respected in
the brain. To address this issue we carried out ICA on the major PCs
(Lopes-dos-Santos, Ribeiro, et al. 2013) using the fast independent com-
ponent analysis (fastICA) algorithm for MATLAB (H Gävert, J Hurri, J
Särelä, and A Hyvärinen, http://research.ics.aalto.fi/ica/fastica). This
ICA returned assemblies as vectors of N weights, corresponding to the
respective cell’s contributions. Since the signs of the output weights
are arbitrary, weights were inverted as necessary to render the highest
absolute weight positive. Components were normalized such that a com-
ponent with equal contribution from all N neurons recorded in a session
would be composed of N equal weights each with absolute value 1/

√
N .

Thus neurons with weights exceeding 1/
√
N are referred to as ‘assembly
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members’. The activation strength of each assembly within a given time
bin is computed by projecting the matrix Z (constructed with 30 ms
bins and a 10 ms sliding window) onto a template matrix obtained by
the matrix product of the component and its transpose. The diagonal
of the template matrix is set to zero so that single neuron spiking does
not contribute to the activation strength. Thus the activation strength
is high when multiple neurons with high weights fire synchronously and
increases when synchronous high weight neurons fire more. Assemblies
were considered to be active when their activation strength exceeded 5,
which corresponds to the median of the 99th quantile distribution of
activation strength.

Matching assemblies calculated with different bin widths

The PCA-ICA analyses of the data set were performed with bin widths
ranging from 10 to 150 ms. Assemblies detected at different time scales
were iteratively matched by selecting pairs with maximum correlations
(Spearman coefficient). First, we computed correlations between each
possible pair of assemblies computed with two different bin widths. The
pair with the highest coefficient was set aside and the procedure was
repeated with the remaining assemblies until all assemblies were paired.
When the number of assemblies was different from one time scale to
another, the remaining assemblies were left unmatched. Matched pairs
with significant Spearman coefficients were considered as ‘highly corre-
lated.’

Marčenko & Pastur threshold

Note that this threshold is derived from a random matrices theorem
and its use for selecting major principal components has been criticized
(Russo & Durstewitz 2017). We shuffled spike identity while preserv-
ing spike time stamps to create surrogate data and then ran PCA. This
procedure was repeated 1000 times to build a distribution of eigenval-
ues. The 95% quantile of this distribution was considered as an alter-
native threshold to Marčenko-Pastur. No significant differences were
found when comparing data from the Marčenko-Pastur threshold to the
present one derived from surrogate data (p = 0.77; Wilcoxon paired rank
test).

Asymmetry of the cross-correlations of STR-PFC cell pairs

We calculated an asymmetry index (inspired by Belluscio et al. 2012):
for each STR-PFC member pair, the normalized ratio of area under the
positive part of the crosscorrelogram curve (]0 ms, 30 ms]) over the area
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under the negative part ([-15 ms, 0 ms[). Thus when the index is positive,
there are more cross-correlated STR spikes after the PFC spike, while
when the ratio is negative, it is the opposite. A Wilcoxon sign rank test
determined whether the median of the distribution was greater than 0.

Local field potential (LFP) analyses

Power spectra were calculated with wavelet methods. The spectrogram
was also calculated with multi-taper Fourier methods. Since the results
were similar for the two methods, the wavelet method was retained.
These were performed over parts of or for the entire session, and then
averaged for each spatial bin. Since there is controversy about the ori-
gin of some STR LFP oscillations (Lalla et al. 2017; Carmichael et al.
2017), two types of signals were analyzed. ’Raw’ signals from a sin-
gle STR tetrode wire were referenced to the cerebellar skull screw. To
control for possible volume conduction and reference channel activity in
STR, ’locally referenced signals’ were derived from a single STR tetrode
wire, subtracting the average LFP recorded across the other tetrodes
there for 4 and 8 Hz analyses. However no major difference was ob-
served compared to raw signals, so the latter are reported. Since results
were similar with only one selected channel by area or with the average
of all recorded channels (data not shown), the former were used. Co-
herence calculations were based on a multi-taper Fourier analysis (Mitra
& Pesaran 1999) and performed with custom-written, MATLAB-based
programs. We used the MATLAB mtspecgramc function with a time
window of 2 s, a step size of 0.1 s and a bandwidth product of 3 with
5 tapers. Then the average coherence spectrum was computed for each
spatial bin of the maze.

Granger Causality Analysis

To determine whether PFC oscillations precede STR oscillations,
Granger causality was measured with the Fieldtrip toolbox (Oosten-
veld et al. 2011; http://fieldtriptoolbox.org). We used non-parametric
Granger causality based on Fourier transforms (Dhamala et al. 2008)
within windows of 1 s for frequencies from 1 to 20 Hz.

Spike-LFP analyses

To examine modulation of spiking activity by LFP oscillations first, in-
stantaneous signal power and phase were derived from the Hilbert trans-
form of the bandpass-filtered signal. We quantified phase consistency of
spikes relative to the LFP band with both the Rayleigh test of circular
uniformity and the unbiased pairwise phase consistency (PPC) devel-

85



4 Distributed cell assemblies spanning prefrontal cortex and striatum

oped by Vinck et al. 2012. For each unit and assembly, we first tested
for significant entrainment to the LFP at low frequencies: 4 Hz (from 2
to 6 Hz) and theta (from 6 to 12 Hz). To characterize phase locking in
neurons, we used two methods. With the Rayleigh test, a neuron or an
assembly was considered as phase locked if p<0.05 and kappa>0.1. This
criterion was chosen on the basis of k-means separation and confirmed
by eye. Moreover to take into account the non-uniformity of the signal
(cycle asymmetry) we use the correction of Siapas, Lubenov, et al. 2005.
Even though the main results did not change, we reported the corrected
data. In the second method (used for neurons only), PPC threshold was
determined from a jitter analysis: in data from each single unit, spikes
were randomly jittered within a time window equivalent to a single cycle
of the band under study. The actual values were considered significant if
they exceeded the 95th percentile of this distribution. Since the results
were similar between the two methods, the Rayleigh result is reported.

Comparison of phase-locking in members and assemblies

To determine whether STR and PFC members were phase-locked only
during assembly activations modulation was compared between cycles
containing assembly activations (‘IN’) and other cycles (‘OUT’). First
instantaneous signal power and unwrap phase were derived from the
Hilbert transform of the bandpass-filtered signal. Each individual cy-
cle (multiples of 2*pi) was determined. For each assembly, if the cycle
contained an activation, then it was ‘IN’, otherwise it was ‘OUT’. Then
phase locking was calculated individually for each member for ‘IN’ and
‘OUT’, as described above. However since there was slight variability in
the preferred phases among different assemblies, the difference between
the assembly’s preferred phases and the actual spike phases were calcu-
lated for each member of each assembly (and were calculated separately
for ‘IN’ and ‘OUT’. Then the Kuiper test compared the ‘IN’ and ‘OUT’
circular distributions. Note that power was not significantly different
in ‘IN’ vs ‘OUT’ cycles (Friedman test: p>0.05) for both 4 and 8 Hz.
Gamma burst detection. We detected transient gamma burst events in
both the STR and PFC LFPs. LFPs were first filtered in the high-
gamma band (70–110 Hz) using the MATLAB filtfilt function (4th order
Chebyshev filter). Instantaneous signal amplitude was obtained by tak-
ing the modulus of the Hilbert-transformed signal. Gamma events were
defined as when the amplitude envelope exceeded the 95th percentile
of the amplitude distribution and contained at least three gamma cy-
cles. Events separated by less than 1/2 cycle were merged. Cell activity
analyses. A k-means analysis distinguished putative PFC and STR in-
terneurons and principal cells based on spike waveform half-amplitude
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duration and trough-to-peak delay (Barthó et al. 2004). For STR neu-
rons, a firing rate criterion was also applied (Berke et al. 2004). The
STR units were classified as putative MSN projection neurons (83%) or
fast spiking interneurons (15%), leaving 2% unclassified. In the PFC
recordings, these two waveform parameters alone permitted classifica-
tion of 85% as projection neurons and 13% as interneurons, leaving 2%
unclassified. Further analyses focused on neurons with average firing
rates equal to or greater than 0.1 Hz.

Spatial distribution of neuron firing

The maze was linearized and divided into equal segments (bin size=4.5
cm). Then firing rate vectors over respective bins were computed using
a kernel based method. The firing rate was estimated at each bin x as:
f(x) =

∑
(nt∗K(|x−xt|)/

∑
(dt∗K(|x−xt|)), where nt is the number of

action potentials emitted in a given bin, dt is the amount of time spent
in the bin, and K is the smoothing Gaussian kernel function (4.5 cm).
The firing vector of each neuron was then z-transformed, and these were
averaged together to derive the population responses.

Monte Carlo bootstrap analyses

This method (Fujisawa, Amarasingham, et al. 2008) was selected since
it requires no assumptions about the underlying distribution of the data
and provides greater spatial resolution than comparable approaches. It
tested the statistical significance of the firing rate differences of individ-
ual neurons between VD1, VD2 and SD task conditions in the sessions
as well as the differences between right vs. left reward arm choice trials
and rewarded vs. non-rewarded trials. (Of course, SD trials could not be
compared for right vs. left choices.) Let us take as an example testing
for differences in firing rate between two series of trials when the rat per-
formed at criterion levels the VD task the first time vs. the SD task. For
each neuron, the average firing rate F was calculated at each bin x for
each condition and the difference was taken: D(x) = FSD(x)−FV D1(x).
To test the statistical significance of the rate differences D(x) with the
bootstrap procedure, the distribution of possible rate differences Dr(x)
is estimated by randomly permuting the identity of each trial into proxy
groups F ′SD(x) and FV D1(x). This process was repeated 5000 times
to obtain the distribution from the resampled data, Dr1(x),..., Drn(x).
With this shuffled dataset, the pointwise confidence limits (demarcat-
ing the upper and lower 2.5% of the distributions) were computed for
each bin x. To deal with multiple comparison issues, the method also
computes the global 5% bands. A maze zone (i.e., contiguous series of
spatial bins) is considered to have significant different firing only when
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D(x) crosses both the global and pointwise bands, and the zone extent
is determined only by the points where D(x) lies beyond the pointwise
band. To test for behavioral correlates in assemblies or neurons (task
condition, rewarded vs non-rewarded trials, etc) the Monte Carlo boot-
strap test had to be significant for at least one bin of the maze. This is
referred to as ‘selectivity’.

Slope correction

To correct for gradual upward or downward drifts in assembly activa-
tions (or neuron firing rates) over the course of the recording sessions, a
linear regression computed each assembly average activation (or neuron’s
average firing rate) for each trial as a function of trial number (excluding
the VD1, SD and VD2 criterion performance trials). The assembly with
significant regressions (Spearman correlation p<0.05, n=11 assemblies)
were discarded from further analysis. All neurons with significant drift
(Spearman correlation p<0.05, n=105 neurons) were corrected (rather
than discarded) by calculating the slope and subtracting the product of
the (trial number minus 1) and the slope from the rate for each trial for
the neuron

Support Vector Machine analysis

With the libSVM library (Chang & Lin 2011), support vector machines
(SVMs) with RBF kernel quantified how well STR or PFC population
activity distinguished between trials in different pairs of trial conditions,
namely VD1 vs SD, VD1 vs VD2, and VD2 vs SD. Each neuron’s firing
rate was averaged over each trial in a given task condition to obtain a
population vector of length N, with N corresponding to the number of
cells recorded during the session. Population vectors were z-scored in
order to prevent neurons with high firing rates from having excessive
influence on classification. Population vectors were then normalized by
setting their euclidean norm to 1. First, data were split in two balanced
set (e.g., 4 VD1 trials and 4 VD2 trials in each set). The first set was
used to find optimal SVM hyperparameters γ and C, with γ as the
exponent of a radial basis function kernel and C, the penalty parameter
of the error term. A grid of values between 0.01 and 30 was searched
to find (C, γ) values that optimized a leave-one-out cross validation
accuracy. The accuracy of the SVM, i.e., its ability to correctly predict
the epoch of the single left-out trial, was quantified. This procedure
was iterated on each possible permutation (n = 8) of the data set and
for each pair (C, γ). The parameters with the best averaged cross-
validation accuracy in each session were retained for subsequent analyses.
With the second data set, SVM were fit similarly using a leave-one-out
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cross validation procedure but with fixed hyper parameters (C, γ). To
build a null distribution of prediction accuracy, the population activity
vectors for each trial in each task condition were randomly assigned
to one of the task conditions being compared. SVMs were then re-
computed from these randomized data sets using again the first half of
the data set for setting hyper parameters and the second half to compute
SVM accuracies. This procedure was repeated 500 times. The actual
prediction accuracy distributions (from second set) were then compared
to the null distributions with the Wilcoxon rank-sum test.

Comparison of behavioral correlates of assemblies vs. their
members lacking significance for the correlate

The aim here was to determine if, when the assembly showed a behavioral
correlate, whether those members lacking significance for this correlate
(in the bootstrap analyses) nevertheless tended to show it. (Members
were excluded if their significant behavioral correlate was in bins over-
lapping with the same selectivity in the assembly.) For each member,
z-scores were computed for the difference between the member’s firing
rate for the two trial characteristics (e.g., VD1 vs. VD2, rewarded vs.
unrewarded, leftward vs. rightward choice). For spatially selective activ-
ity, the z-score was taken relative to the mean firing or activity rate. The
signs of values for the members were rectified to correspond to the sign
of the change of activation of the assembly. To provide a benchmark ran-
domized distribution, differences of z-scores were again computed, but
with activity of members at randomly selected locations on the maze
(maintaining the same number of bins as for the initial distribution).
Members were excluded if their significant behavioral correlate was in
bins overlapping with the same selectivity in the assembly. A Wilcoxon
signed rank test assessed if the differences between the median of the
surrogate distribution and the true distribution was different. This pro-
cedure was repeated for each behavioral correlate of the assembly.
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Figure 4.7: Recording sites Histologically identified locations of tetrode record-
ing sites projected onto atlas images of coronal sections (adapted from Paxinos &
Watson 2006). Each color corresponds to a different rat. Multiple tetrodes oriented
in two parasagittal rows recorded neuronal activity and local field potentials (LFPs)
at multiple sites in dorsomedial STR (dmS), vSTR (composed of nucleus accumbens
core and shell subregions, and PFC cingulate (Cg1), prelimbic (PL) and infralimbic
(IL) areas (cf., Supplementary Table 1).
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Figure 4.8: STR and PFC assemblies are maintained in bin widths ranging
from 150 to 10 ms. a) Eigenvalues of the assemblies from the recording session
of Figure 4.1. The horizontal line is the Marčenko-Pastur threshold. The assemblies
are numbered in order of decreasing eigenvalues. b,c,d) Top: Matched assemblies are
shown for different bin widths (same format as Figure 1a). Bottom: Spearman cor-
relation coefficients compare matched assemblies detected with indicated bin widths.
b,c) Examples of assemblies detected at all bin widths. d) An assembly not detected
at bin widths briefer than 50 ms. Assembly members shown in b, c and d were
recorded from at least 2 different tetrodes. e) Proportion of significantly correlated
assemblies (Spearman correlation; p<0.05) detected at the various bin widths relative
to those observed at 150 ms. ‘Other component’ refers to detected assemblies with
no significant matches with 150 ms assemblies with the Spearman correlation test.
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Figure 4.9: Assembly and member modulation by fast and slow oscilla-
tions. a) Representative example of activation of a 4 Hz phase-locked assembly at
the onset (vertical lines) of two gamma-80 bursts (stars). Top: Assembly activations
above threshold (dashed horizontal line) with members’ spikes (red rasters). Bottom:
PFC LFPs filtered for 4 Hz or gamma-80. b) Top: Mean PFC-STR coherence dis-
tribution on the maze for all sessions. Bottom: Coherence between PFC and STR
LFPs at 4 Hz and theta. Color-coded horizontal bars represent significant segments
(Monte Carlo bootstrap: p<0.05). Right panel) The average z-score of the frequency
distribution of PFC-STR coherence in the central arm for individual rats (gray) and
overall mean (black). c) Proportions of cells phase-locked to 4 Hz and theta bands of
PFC LFP (i.e., with PPC values exceeding the 95th percentile of shuffled distribu-
tions; data from all sessions). d) Comparison of IN vs. OUT phase-locking of the two
types of members to 4 Hz and theta (Friedman test: p=2.2e-06, 0.0022, 8.9e-10, and
4.6e-07 respectively). e) Distribution of the differences between mean phase angle of
the assembly (at zero) and each individual member IN or OUT for the two cell types.
Kuiper test (comparison of two circular distributions): 4 Hz p=0.001 and 1; theta
p=0.001 and 0.05, respectively. See Supplementary Table 4 for all details of circular
statistics.
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Figure 4.11: Correction for drift in firing rate over the course of the ses-
sion. a) Proportions of assemblies showing task condition selectivity after removing
assemblies with significant drift in activation rate over the course of the session. Bi-
nomial tests: p=0.016, 0.034, and 0.75 respectively. n=63 assemblies. b) Example
of drift correction for an example neuron. The blue trace indicates average firing
rate trial by trial. The regression bar for all (except criterion performance) trials
is in red. The corrected values are in green. The black traces correspond to firing
rates in criterion performance periods before (above) and after (below) correction.
Note that 21% of the neurons showed significant drift but, within the same session,
different neurons could have positive or negative regression slopes (not shown). c,d)
Proportions of cells showing task condition selectivity after slope correction. VD1 vs.
SD (cyan), VD1 vs. VD2 (violet) and SD vs. VD2 (salmon) (same format as Fig. 5).
Binomial tests: p=0.033, 0.006, 0.53 and p=0.24, 0.51, and 0.06 respectively. STR
(n=185 cells) and PFC (n=295 cells).
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Figure 4.12: Behavioral parameters were not significantly different be-
tween VD1, SD and VD2 task conditions. a) Proportion of left reward arm
choices during criterion performance for VD1 vs VD2 (Wilcoxon signed-rank test,
p=0.85, n=20 sessions) b) Proportion of trials with vicarious trial and error (VTE)
behavior. Top) Example of trajectories in two VTE trials (left) and two non-VTE
(‘ballistic’) trials (right). Bottom) Proportion of VTE trials for the respective epochs
for all sessions (Friedman test: p=0.32, n=20 sessions). Right) The proportion of
VTE for correct and error trials. Boxplots show the median, the 25th and 75th per-
centiles, and the extreme values. c) Comparison of average running speed along the
maze in the three task conditions for all sessions. Solid lines are means and shaded
areas are SEMs (p>0.05, Monte Carlo bootstrap).
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Figure 4.13: Zones with significant differences (Monte Carlo bootstrap, p<0.05) are
indicated by horizontal bars. b) Maze distributions of significant firing differences
for task condition comparisons in individual neurons, distinguishing their anatomical
locations (p<0.05, Monte Carlo bootstrap). Same format as Supp. Fig. 4.10. The
histograms below indicate the proportions of these cells for which the difference was
positive (grey) or negative (white) for the respective bins.
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Figure 4.14: PFC population coding predicts epochs. The distribution of
SVM prediction accuracy from PFC populations is significantly higher for all three
comparisons than for randomized (at the left of each pair) data sets (Wilcoxon signed-
rank tests; p=0.0386, 0.043, and 0.034, respectively, n=16 sessions). Boxplots show
median and the 25th and 75th percentiles. Each point represents one session.
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Figure 4.15: Non-significantly behaviorally correlated activity of members
resembles the behavioral correlates of their assemblies. a) As in Figure 4.6f,
comparisons of distribution of the z-scored activity differences between the pairs of
trial characteristics for the behavioral correlates (e.g., rewarded and non-rewarded
trials) vs. the z-scored distribution of differences for the same cells but at randomly
selected locations on the maze (Wilcoxon signed rank tests for first row, then second
row: p=1.2e-21, p=3.4e-8, p=1.1e-22, p=0.07, p=0.05 and p=1.3e-25 respectively).
b) Incidences of overlap of significant behavioral correlates between members and
assemblies (‘Real’; filled bars). In cases of no significant overlapping members, sub-
significant activity was examined (Figure 4.6d). Those non-significant members with
firing rate differences z-scored values exceeding 1.5 in positions overlapping with those
of the behavioral correlate of the assembly are indicated ‘subthreshold’ (white bars).
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Rat # sessions dPFC (Cg1) vPFC (PL+IL) all PFC dmSTR vSTR (core+shell) all STR
205 3 38 6 44 10 31 41
209 3 0 5 5 48 63 111
210 4 27 0 27 0 0 0
268 2 0 11 11 15 6 21
287 5 15 78 93 39 43 82
294 3 11 0 11 40 0 40
Total 20 91 100 191 152 143 295

# of rats 4 4 6 5 6 5

Table 1: Summary of total numbers of neurons recorded in the six rats.
Four sessions from rat 210 are not included for assembly analyses because only PFC
neurons were recorded. However this rat’s data was used for single unit and LFP
analyses.
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High Weights Behavior correlates Phase Locking Sleep
dPFC vPFC dmSTR vSTR Type all epochs Inter-epochs differences 4Hz 8Hz

Session 1 R205-20120902 2 1 4 10
Group 1 0 1 1 3 STR+PFC X X x x x
Group 2 2 0 0 4 STR+PFC x x x x x
Group 3 1 0 1 5 STR+PFC x x x x x
Session 2 R205-20120903 22 2 6 12
Group 4 0 0 0 5 STR-only x x x x nan
Group 5 9 0 0 0 PFC-only X x x x nan
Group 6 9 0 0 2 STR+PFC X x x x nan
Group 7 11 0 1 2 STR+PFC x x x X nan
Group 8 8 1 5 2 STR+PFC X x x x nan
Group 9 5 0 3 5 STR+PFC X x X x nan
Session 3 R205-20120904 14 3 0 9
Group 10 5 0 0 0 PFC-only x x X x X
Group 11 5 0 0 2 STR+PFC x x x x x
Group 12 7 1 0 2 PFC-only x x X x x
Session 4 R209-20121113 0 2 16 17
Group 13 0 0 6 0 STR-only x X X X x
Group 14 0 1 2 3 STR+PFC X X x X x
Group 15 0 0 2 5 STR-only x x x x x
Group 16 0 0 2 5 STR-only X X x X x
Group 17 0 1 5 3 STR+PFC X X x x x
Group 18 0 1 5 3 STR+PFC x x x x x
Session 5 R209-20121114 0 1 15 24
Group 19 0 0 3 3 STR-only X x x x X
Group 20 0 0 8 0 STR-only x x X X x
Group 21 0 0 4 3 STR-only X X x x x
Group 22 0 0 2 7 STR-only x x X x x
Group 23 0 1 6 7 STR+PFC x x X X x
Group 24 0 0 1 9 STR-only x x x x x
Session 6 R209-20121115 0 2 17 22
Group 25 0 0 4 3 STR-only X X x x nan
Group 26 0 0 0 5 STR-only x x x x nan
Group 27 0 0 6 1 STR-only x X X X nan
Group 28 0 0 3 5 STR-only X X x x nan
Group 29 0 0 2 6 STR-only X x x x nan
Group 30 0 0 2 8 STR-only x x x x nan
Group 31 0 0 6 7 STR-only x x x x nan
Session 7 R268-20140930 0 2 6 1
Group 32 0 0 4 0 STR-only x x X X nan
Group 33 0 0 3 0 STR-only x x X x nan
Session 8 R268-20141016 0 9 9 5
Group 34 0 0 6 0 STR-only x x X X x
Group 35 0 3 1 1 STR+PFC x x x X X
Group 36 0 4 5 0 STR+PFC x x x x X
Group 37 0 5 1 2 STR+PFC x x x x x
Session 9 R287-20150105 7 17 4 7
Group 38 0 0 3 0 STR-only x X X X X
Group 39 0 3 0 1 STR+PFC x x x X x
Group 40 1 3 0 0 PFC-only x x x X X
Group 41 4 3 0 3 STR+PFC x X x X x
Session 10 R287-20150107 1 18 6 8
Group 42 0 2 0 2 STR+PFC X x X X x
Group 43 1 3 0 0 PFC-only x x x x x
Group 44 0 4 2 0 STR+PFC x x X X X
Group 45 0 6 0 1 STR+PFC x X x x x
Group 46 0 0 4 5 STR-only x x x X x
Session 11 R287-20150113 4 10 7 5
Group 47 0 0 0 2 STR-only x X X X X
Group 48 0 0 4 0 STR-only x x X X x
Group 49 0 3 0 0 PFC-only x x x x X
Group 50 2 2 1 1 STR+PFC x x X x X
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High Weights Behavior correlates Phase Locking Sleep
dPFC vPFC dmSTR vSTR Type all epochs Inter-epochs differences 4Hz 8Hz

Session 12 R287-20150114 3 13 9 11
Group 51 0 0 0 2 STR-only x X x x x
Group 52 0 0 4 0 STR-only x x x x x
Group 53 0 0 0 2 STR-only x x x x X
Group 54 0 4 0 0 PFC-only x x x x X
Group 55 3 7 2 0 STR+PFC x X x x X
Group 56 2 3 1 3 STR+PFC x x x x X
Group 57 2 2 3 1 STR+PFC X x x x X
Session 13 R287-20150115 0 20 13 12
Group 58 0 0 0 4 STR-only x X X x X
Group 59 0 4 0 0 PFC-only x x x X x
Group 60 0 0 0 5 STR-only x X x x X
Group 61 0 0 7 0 STR-only x X X x X
Group 62 0 7 0 0 PFC-only x x x X X
Group 63 0 6 1 2 STR+PFC X x x x x
Group 64 0 6 4 2 STR+PFC X X X x X
Session 14 R294-20150313 5 0 10 0
Group 65 2 0 4 0 STR+PFC x x X x X
Group 66 4 0 2 0 STR+PFC x x x x X
Session 15 R294-20150317 5 0 18
Group 67 0 0 3 0 STR-only x x X x x
Group 68 0 0 3 0 STR-only x X x X X
Group 69 4 0 2 0 STR+PFC X X X x x
Group 70 1 0 4 0 STR+PFC x x x x x
Group 71 1 0 6 0 STR+PFC X x X x X
Session 16 R294-20150401 1 0 12 0
Group 72 0 0 2 0 STR-only X x nan nan x
Group 73 1 0 2 0 STR+PFC x x nan nan X
Group 74 0 0 6 0 STR-only x x nan nan x

Table 2: Summary of assembly recordings. In the row with session number,
values indicate total numbers of cells recorded by structure. In the rows with group
numbers, the values indicate the number of members by structure. Checkmarks
indicate that the behavioral correlate was significant for the assembly. X’s indicate
that they were not, and Nan’s indicate that the test could not be performed.

Count Behavioral correlates Phase Locking Sleepall epochs Inter-epochs differences 4Hz 8Hz
STR-only 33 8 15 13 11 8
PFC-only 8 1 1 1 3 5
STR+PFC 33 12 7 10 8 12
Total 74 21 23 24 22 25

Table 3: Summary of assembly modulation
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4 Distributed cell assemblies spanning prefrontal cortex and striatum

Figure 2.g Figure 3.a Figure 3.b
Principal neurons Interneurons

Assemblies Gamma-80 PFC STR PFC STR
Rayleigh test 4 Hz 8 Hz 4 Hz 8 Hz Gamma-80 Gamma-80 Gamma-80 Gamma-80
mean angle(rad) 0 -1.3 0.1 -0.3 -3.09 -2.01 -2.94 -0.31
p value 7.16E-006 1.31E-006 1.45E-007 1.21E-007 1.19E-012 1.30E-008 0.0774 0.151
Kappa 1.59 1.38 3.18 3.24 1.61 1.36 0.753 0.47
Resultant 0.621 0.567 0.824 0.827 0.625 0.562 0.411 0.228
n 28 39 20 20 63 53 15 36
Figure 2.g Principal neurons

PFC STR
4 Hz 8 Hz 4 Hz 8 Hz

Rayleigh test IN OUT IN OUT IN OUT IN OUT
mean angle(rad) -0.4 0 -1.5 -1.5 -0.6 1.1 -2 2.5
p value 0,00114 0.415 1.16E-012 0.000392 0.00892 0.0397 1.87E-005 0.717
Kappa 0,000178 0.274 1.66 0.758 0.926 0.747 0.781 0.13
Resultant 0,371 0.136 0.635 0.354 0.42 0.35 0.364 0.065
n 48 48 61 61 26 26 80 80

Interneurons
PFC STR

4 Hz 8 Hz 4 Hz 8 Hz
Rayleigh test IN OUT IN OUT IN OUT IN OUT
mean angle(rad) -0.1 0.2 -0.6 -0.5 -0.4 -0.1 -1 -0.9
p value 0.00323 0.00101 0.0348 0.888 1.18E-008 5.06E-005 2.52E-009 3.56E-005
Kappa 1.67 2.11 1.15 0 1.49 1.004 1.27 0.856
Resultant 0.756 0.814 0.544 0.106 0.596 0.449 0.537 0.394
n 9 9 11 11 47 47 64 64

Table 4: Values for circular statistical test results
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Abstract

Hebb (1949) proposed that cell assemblies are a fundamental functional
unit of the brain. With recent advances in large-scale neuronal record-
ings, ensembles of cells that repeatedly fire in synchrony within brief
time windows have been reported in multiple brain regions. Yet, the
functional relevance of these ensembles remains largely unexplored, es-
pecially in higher order brain areas. An influential hypothesis is that
the biological relevance of precisely timed co-activation is to more ef-
fectively trigger responses in downstream cells, termed ‘readers’ of the
cell assembly (Buzsáki 2010). In simultaneous recordings of hundreds of
neurons in the medial prefrontal cortex (mPFC) and amygdala (AMY),
we found assembly-reader pairs, where activation of an assembly was
followed by the firing of a reader cell. This response of the reader cell
was supra-linear, amplified by the synchrony of the firing of member
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5 ‘Reading cell’ assemblies in the cortico-amygdalar circuit

cells. Finally we found that the assembly-reader relationship changes
with learning. Our results are in line with a role of cell assemblies in
efficient cross-structural communication.

5.1 Introduction

An increasingly influential hypothesis in neuroscience posits that cell
assemblies are the computational unit of the brain, underlying com-
plex information encoding beyond the processing power of single cells
(Hebb 1949; Braitenberg 1978; Hopfield 1982; Pouget et al. 2000; Varela
et al. 2001; Harris 2005; Eichenbaum 2018). Techniques allowing the
simultaneous recordings of large numbers of neurons have resulted in an
increasing body of research tracking down the cell assembly dynamics
in multiple brain systems (Harris et al. 2003; Fujisawa, Amarasingham,
et al. 2008; Peyrache, Khamassi, et al. 2009; Benchenane et al. 2010;
Dejean et al. 2016). In addition to the classical perspective that the
function of cell assemblies is to represent information on the popula-
tion level (Hebb 1949; Barlow 1972), from a physiological perspective,
the key function of the coincident firing of cell assemblies may be to
trigger a downstream neuron (Buzsáki 2010). Such a downstream neu-
ron responding to the synchronous activations of an assembly can be
considered as observer-classifier-reader neuron, from hereon referred
to as ‘reader’. Yet while coincidence detectors have been described in
sensory systems (Alonso et al. 1996; Usrey et al. 2000; Roy & Alloway
2001), for the detection of convergent sensory information, evidence for
‘reader’ cells responding to cell assemblies representing more abstract
information in higher order brain areas is lacking.

Here we report single units responding to cell assemblies in the recip-
rocally connected (Vertes 2004; Hoover & Vertes 2007; Hübner et al.
2014; Adhikari et al. 2015; Reppucci & Petrovich 2016; Marek et al.
2018) cortico-amygdalar circuit in rats during sleep, when brain activity
is dominated by internal dynamics rather than responding to external
stimuli. We found neurons responding to cell assemblies in both struc-
tures. Their response to assemblies was supra-linear, indicating that the
synchronous activation of cell assemblies is an effective mechanism of
cross-structural communication. Finally, we show that reader responses
to assemblies can change after learning, supporting the hypothesis of a
role of cell assemblies in cognitive processes.

5.2 Results
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5.2 Results

Cell assemblies are ubiquitous in the brain

In order to study the communication between cell assemblies and down-
stream readers, we recorded simultaneously hundreds of single units in
the medial prefrontal cortex (mPFC) and the amygdala (AMY) during
slow-wave sleep (Figure 5.5; n = 4 rats; 6 sessions each) and we first
detected cell assemblies using a PCA-ICA algorithm (see Methods 5.4;
Supp. Figure 5.10 and 5.11; Lopes-dos-Santos, Ribeiro, et al. 2013).
As previously reported (Fujisawa, Amarasingham, et al. 2008; Peyrache,
Khamassi, et al. 2009; Benchenane et al. 2010; Dejean et al. 2016), pre-
frontal unit activity exhibited synchrony (Figure 5.1a) and we found
multiple cell assemblies in each sleep session (median = 18; Figure 5.1f).
Interestingly, we also observed similar coincidental firing in the amyg-
dala (Figure 5.1b,f). To further investigate the synchrony of assemblies,
we compared the cross-correlation between the units belonging to the
same assembly (‘co-member’ pairs) to the cross-correlation of neurons
that were never part of the same assembly (‘control’ pairs). Cells shar-
ing an assembly were significantly more correlated than control pairs
(Figure 5.1c-e). Moreover, the spiking activity of one member could be
accurately predicted from the activity of the other members, in 15 ms
windows, as shown in Figure 5.1g (‘peer prediction’, see Harris et al.
2003 and Methods 5.4). Thus, in both the prefrontal cortex and the
amygdala, neurons exhibited fine time scale synchrony consistent with
the idea that cell assemblies are ubiquitous in the brain.

‘Reader’ neurons responding to cell assemblies

We hypothesized that the activation of these cell assemblies would evoke
spiking responses in downstream brain regions receiving projections, as
per the ‘reader’ hypothesis. Indeed, we found 503 assembly-reader pairs
(Figure 5.2a,c,d), in which an amygdala reader unit significantly re-
sponded to activations of mPFC assemblies (p<0.05, Monte-Carlo boot-
strap). Similarly, we also investigated whether synchronous amygdalar
activity might trigger mPFC responses. This analysis revealed amyg-
dala assemblies consistently followed by mPFC ‘reader’ responses (n =
622, Figure 5.2b-f), reinforcing the hypothesis of assembly readers as
a general mechanism of cross-structural communication (see also Supp.
Figures 5.6 and 5.7).

Reader responses to cell assemblies are supra-linear

Our hypothesis was that the synchronous activation of a cell assembly
drives the response of the reader cell beyond what could be achieved by
activations of individual members. Indeed, we observed that the readers
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Figure 5.1: Cell assemblies are ubiquitous. a,b) Raster plots of prefrontal
(a) and amygdalar (b) units recorded during sleep. Colored ticks: neurons exhibiting
tight co-activations (yellow ovals). Gray ticks: other recorded units. c) Cross-
correlations of members of the same assemblies (z-scored). Pairs are ordered by the
timing of the peak z-scored correlation. Left: prefrontal assemblies. Right: amygdalar
assemblies. d) Cross-correlations of ‘control’ pairs, that is randomly selected pairs
of cells that were not members of the same assembly (left: in the prefrontal cortex;
right: in the amygdala). e) Average cross-correlation of c) and d). The correlation
between members of the same assembly is significantly higher than for control pairs
(p<0.05, Monte-Carlo bootstrap; shaded bars). f) Number of detected assemblies
per session. Left: in the prefrontal cortex, median = 18. Right: in the amygdala,
median = 9.5. The boxes indicate distribution quartiles and the horizontal bars, the
medians. Each individual colored dot represents one session. g) GLM prediction
gain of member activity from the other assembly members, compared to the prediction
from shuffled data. Left: prefrontal assemblies (p<0.001; Wilcoxon signed-rank test).
Right: amygdalar assemblies (p < 0.001 ; Wilcoxon signed-rank test)
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Figure 5.2: Readers of cell assemblies
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5 ‘Reading cell’ assemblies in the cortico-amygdalar circuit

Figure 5.2: a,b) Examples of significant neuron responses 10 to 30 ms after assembly
activation (a: AMY neurons, PFC assemblies; b: PFC neurons, AMY assemblies).
Top: cell assembly weights of members (colored circles) and non-members (black cir-
cles). Bottom left: mean ± s.e.m. of the ‘reader’ cell firing rate centered on assembly
activation. Shaded bars on top indicate significant responses (p<0.05: Monte-Carlo
bootstrap test; see Methods 5.4). Bottom right: assembly strength and associated
raster plots. Assembly member ticks appear in color during the assembly activation
and in gray outside. Blue: prefrontal spikes; red: amygdala spikes. Note the reader
response ∼ 20 ms after the assembly activation. c,e) Reader activity centered on
assembly activations for the significant assembly - reader pairs (pooled data). c) PFC
assembly - AMY reader. e) AMY assembly - PFC reader. d,f) Average reader ac-
tivity centered on assembly activations, over all significant pairs (colored line). Note
that reader responses peaked at 20 ms (dashed line). Gray: average ’reader’ activity
for non-significant pairs. d) PFC assembly - AMY reader. f) AMY assembly - PFC
reader.

were more likely to discharge when an increasing number of assembly
members were active together (see Figure 5.3a-c for PFC assemblies
and 5.3d-f for AMY assemblies). We then investigated whether this
increase derived from the linear summation of the responses to each
member. To test this, for each assembly activation, we computed the
expected linear reader response as the weighted sum of the responses
to all the active members taken individually (see Methods 5.4). The
observed reader responses exceeded this linear estimate ∼ 20 ms after
assembly activations, indicating that the reader response was driven by
the assembly synchrony (Figure 5.3g-j, for PFC assemblies; Figure 5.3k-
n, for AMY assemblies).

Learning-related changes in amygdalar assembly reading rate

We next investigated the behavioral relevance of cell assembly reading
and in particular whether it evolved with learning. To test this, animals
underwent a standard fear conditioning and extinction protocol known to
involve both the prefrontal cortex and the amygdala (Morgan & LeDoux
1995; Muller et al. 1997; Herry et al. 2008; Sierra-Mercado et al. 2011;
see Figure 5.4a and Methods 5.4; for more details on the behavioral pro-
tocol). We observed significant changes of prefrontal reader responses to
amygdalar assemblies in sleep following both fear conditioning and ex-
tinction in sleep after learning compared to sleep before (Figure 5.4b,c).
When we took into account possible network changes due to the passage
of time, the effect of fear conditioning, but not extinction, was signifi-
cantly greater than expected (Figure 5.4d-f).
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Figure 5.3: Reader responses are supra-linear. a-c) Example of an amygdalar
neuron response as a function of the number of simultaneously active PFC members.
d-f) Example of a prefrontal neuron response as a function of the number of simulta-
neously active AMY members. g,k) Colored: Increases in reader firing in the window
15 to 25 ms following assembly activation. In gray: estimated linear response (sum
of the reader responses to each active member individually, see Methods 5.4). Reader
responses to synchronous assembly activations significantly exceeded the linear re-
sponses. g) PFC assembly - AMY (p<0.001 ; Wilcoxon signed-rank test). k) AMY
assembly - PFC reader (p<0.001 ; Wilcoxon signed-rank test).
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5 ‘Reading cell’ assemblies in the cortico-amygdalar circuit

Figure 5.3: h,l) Normalized reader firing rate centered on assembly activation
(shaded area. mean +/- s.e.m.). Colored: observed; grey: estimated linear response.
Note that unlike the linear response, the observed response peaks at 20 ms (shaded
bars; p<0.05; Monter-Carlo Bootsrap). i,m) Difference of the responses in g and k,
respectively. j,n) Difference (shaded area. mean +/- s.e.m.) of the responses in h
and l, respectively.
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Figure 5.4: Learning-related changes in the assembly-reader relationship
a) Sleep sessions (duration: ∼2 hours) took place before and after each training ses-
sion (duration: ∼30 minutes). b,c) PFC reader absolute firing rate changes between
post and pre sleep (normalized relative to baseline), centered on AMY assembly ac-
tivations (shaded area: mean ± s.e.m.). The blue line highlights the interval where
the increase was significant (p<0.05, Monte-Carlo bootstrap test). d) Passage of
time analysis schema. Yellow segment: ’early pre sleep’ period; gray: ‘late pre sleep’;
green: ‘early post sleep’. Note that the same amount of time elapsed between early
and late pre sleep and between late pre sleep and early post sleep. e,f) Reader re-
sponse changes (in absolute value) ∼ 10-30 ms following assembly activations, in the
early vs late pre sleep (yellow) and late pre sleep vs early post sleep (green). Reader
rate changes were significantly higher when periods were separated by a fear condi-
tioning session (e: p<0.001 ; Wilcoxon signed-rank test) but not by an extinction
session (f: p=0.22).

In the other direction, amygdarar reader responses to prefrontal assem-
blies changed after learning, but we could not rule out that these were
caused by the mere passage of time (see Supp Fig. 5.8). Thus, assembly-
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reader coupling appeared to reorganize over time and in particular, pre-
frontal reader responses to amygdalar assemblies changed after fear con-
ditioning, which is consistent with a role of amygdala-prefrontal com-
munication in fear conditioning (Popa, Duvarci, et al. 2010; Senn et al.
2014; Burgos-Robles, Kimchi, et al. 2017; Klavir et al. 2017).

5.3 Discussion

This work was aimed at investigating whether cell assembly activity
evoked firing responses in downstream brain regions as predicted by
the assembly ‘reader’ hypothesis. We studied this in the prefrontal-
amygdalar system and found that neural activity in each structure neu-
ral activity was organized in brief timescale cell assemblies. Moreover,
specific downstream units or ‘readers’ increased their firing rates ∼10
to 30 ms following cell assembly activations, which is consistent with
the conduction delay between the two structures (Quirk, Likhtik, et al.
2003; Likhtik et al. 2005). The response increased with the number
of co-activated assembly members in a supra-linear fashion, indicating
that the synchrony of the active members amplified the ‘reader’ response.
Moreover, assembly-reader association re-organized with time and was
not invariant with learning, supporting the idea that this communication
mechanism is plastic and can be shaped by experience, following the ever
changing information encoded by neural populations.

Cell assemblies are ubiquitous

Cell assemblies have been reported in various brain regions: the hip-
pocampus (Harris et al. 2003), the prefrontal cortex (Fujisawa, Amaras-
ingham, et al. 2008; Peyrache, Khamassi, et al. 2009; Benchenane et al.
2010; Dejean et al. 2016) sensory cortices (Bathellier et al. 2012), motor
cortices (Riehle et al. 1997) as well as in the basal ganglia (Trouche,
Koren, et al. 2019). In the amygdala, previous work investigated the
cross-correlation of the firing of cell-pairs (Quirk, Repa, et al. 1995; Paré
& Collins 2000; Girardeau, Inema, et al. 2017). Here we report for the
first time, brief time scale synchrony within the amygdala (∼15 ms).
Hence, our result further corroborate the hypothesis that cell assemblies
are an ubiquituous brain phenomenon in line with the assumption of cell
assemblies as the functional unit of the brain.

Readers of cell assemblies

Theoretical work has suggested that neurons act as coincidence detec-
tors, that is, a ‘target’ would discharge when it receives inputs from mul-
tiple neurons (‘sources’) within a short time scale (Abeles 1982, Koch
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et al. 1996). Indeed, to reach the spiking threshold, a single excita-
tory post-synaptic potential is usually not sufficient. Integration time
in the prefrontal cortex and the amygdala are ∼20 ms (Tripathy et al.
2015). Within such brief window, ‘source’ neurons may spike only once
or twice. Thus, the target may likely discharge when multiple ‘source’
cells fire together, rather than when a single source bursts. Experimen-
tally, the mechanism of coincidence detection has been demonstrated in
brain slices, and in vivo in anaesthetized animals. it has been reported
in the auditory, visual, and somatosensory systems (Alonso et al. 1996;
Roy & Alloway 2001). However, cell assemblies have been proposed to
play a role in sophisticated cognitive functions such as learning, decision-
making, and cognitive processing (Fujisawa, Amarasingham, et al. 2008;
Benchenane et al. 2010; Ramanathan et al. 2015). Here, we provide
evidence for the role of cell assemblies in high order brain areas to dis-
charge ‘reader’ neurons in a downstream structure. This corroborates
the hypothesis that responding to cell assemblies might be the mecha-
nism by which information flow is achieved between brain areas (Buzsáki
2010).

Reader responses are supra-linear

Cell assemblies are believed to carry additional information beyond the
information relayed by each member individually. If a downstream neu-
ron specifically responds to the activation of a cell assembly, then its re-
sponses should be specifically evoked by the assembly as a whole rather
than reflect a summation of the responses to assembly members taken
individually. Previous work demonstrated supra-linear summation of
two coincidental input in the lateral geniculate nucleus in cats (Alonso
et al. 1996). Within the prefrontal cortex, Fujisawa, Amarasingham,
et al. 2008 reported that coincidental firing of more than one neuron
facilitated spike transmission, with supra-linear effect within 0 to 5 ms.
In contrast, spike occurrences of more than one neuron in time windows
≥10 ms showed only a linear additive effect on the cooperative ability of
presynaptic neurons to discharge a postsynaptic partner. Similarly, we
observed that reader responses were supra-linear.

Assembly-reader relationships are shaped by learning

The meaning of the information represented by a cell assembly is likely
to change in an ever changing environment, being shaped by experience.
Therefore downstream circuits may need to adapt their responses upon
assembly activation. One possibility is that the reactivation of specific
assemblies might strengthen their connections with a reader. During
sleep, reinstatment of learning related assemblies has been extensively
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documented in the hippocampus (Wilson & McNaughton 1994; Kudri-
moti et al. 1999; Nádasdy et al. 1999) but also in the prefrontal cortex
(Euston et al. 2007; Peyrache, Khamassi, et al. 2009). Moreover, a
recent study demonstrated that correlated pairs of neurons in the amyg-
dala emerge during fear conditioning training (Girardeau, Inema, et al.
2017). Here we show that cell assembly-reader relationship is not only
shaped by experience but also changes with the passage of time. This is
consistent with the evidence demonstrating a constant drift with time of
brain representations (Hasz & Redish 2020) and as a consequence down-
stream decoders likely change their responses accordingly. Moreover here
we also show that prefrontal readers of amygdalar cell assemblies evolve
with fear conditioning, beyond what can be accounted for by the mere
passage of time. Amygdala to mPFC communication has been shown to
underpin conditioned fear retention (Klavir et al. 2017), recall (Burgos-
Robles, Kimchi, et al. 2017), and consolidation (Popa, Duvarci, et al.
2010). Our results are in line with these findings. It is likely that other
learning paradigms would affect specifically the communication between
other structures in a specific direction like we found here for AMY-mPFC
communication. Finally, we suggest that reader mechanisms may be a
general process within the brain beyond this specific network.

5.4 Methods

Animals

Six male Long-Evans rats (350 – 400 g at the time of the surgery, 2-5
months old) were housed individually in monitored conditions (21°C and
45% humidity) and maintained on a 12h light- 12h dark cycle. In order
to avoid obesity, rats feeding was restricted to 13-16 g of rat chow per
day, with water available ad libitum. To habituate the rats to human ma-
nipulation they were handled each workday. All experiments conformed
to the approved protocols and regulations of the local ethics committee
(Comité d’Ethique en matière d’expérimentation animale Paris Centre
et Sud n°59), the French ministries of agriculture, and higher education
and research.

Surgery

Rats were deeply anesthetized using a ketamine-xylazine mixture (Imal-
gene and Rompun, 180 mg/kg and 10 mg/kg, respectively) and anes-
thesia was maintained with isoflurane (0.1-1.5% in oxygen). Analgesia
was assured by subcutaneous injection of buprenorphine (Buprecaire,
0.025 mg/kg) and meloxicam (Metacam, 3 mg/kg). We implanted the
animals bilaterally with a custom build microdrive with either 24, 32,

113



5 ‘Reading cell’ assemblies in the cortico-amygdalar circuit

or 42 bundles of independently movable twisted electrodes (12 µm tung-
sten wires twisted in groups of either 6 or 8 wires and gold-plated to
∼200 kΩ) 0.5mm above the target brain regions. Miniature stainless
steel screws (serving as electrical reference and ground) were implanted
above the cerebellum. During recovery from surgery (minimum 7 days),
the rats received antibiotical (Marbofloxacine, 2 mg/kg) and analgesic
(Meloxicam, 3 mg/kg) treatments via subcutaneous injections, and were
provided with food and water ad libitum. The recording electrodes were
then progressively lowered until they reached their targets and then ad-
justed to optimize yield and stability. Eletrode bundles dorsoventral
locations were estimated in vivo using microdriver screw turn counts.

Behavioral apparati

During the experiments, the rats were exposed to three different environ-
ments: 2 testing contexts (A and B), one plastic pot for sleep sessions.
The context A was a cubicle conditioning chamber (40 x 40 x 40 cm)
with gray plexiglass walls lined with ribbed black rubber sheets and a
floor composed of nineteen stainless steel rods (0.48 cm diameter with
1.6 cm spacing connected to a scrambled shock generator (ENV-414S,
Med Associates, USA). It was mildly scented daily with mint-perfumed
cleaning solution (Simple Green, Sunshine Makers). The context B was
a stadium-shaped PVC enclosure (30 cm of straight side and 15 cm of
radius) with a black wooden floor and walls lined with light brown pieces
of rope rug. It was mildly scented daily with a baking vanilla extract
solution. The sleeping pot was a cloth-lined plastic flowerpot (30 cm
upper diameter, 20 cm lower diameter, 25 cm high). A custom-made
electronic system presented the animals with two auditory CSs (80 dB,
20 s long, each composed of 1 Hz, 250 ms long pips of either white noise,
CS+, or 8 kHz pure tones, CS-).

Behavioral protocol

To balance the time spent in each context by the animals, every day
of the experimental protocol consisted of one 37 min (n=4 rats). When
introduced in the contexts the animals were either presented with the au-
ditory CSs (after a baseline period of 3 min, the animals were presented
to 16 CSs, 8 CS+ and 8 CS-, separated by random-duration inter-trial
intervals ranging between 120 and 240 s) or received no auditory stim-
uli (context exposure sessions). Each day of the protocol consisted of a
silent context exposure session in one context and a session with CS pre-
sentations in the other, except for the fear renewal test day where both
sessions had CS presentations. Before and after each session the animals
were left undisturbed for at least 2h in the sleeping pot to record sleep
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activity. Note that results from Figure 5.1, 5.2 and 5.3 were obtained
with data from the pre-training sleep session only whereas Figure 5.4
compares pre and post sleep sessions.
Habituation took place on days 1 and 2. On day 1, habituation to the
CSs took place in one context while on day, 2 in the other. On days 3
and 4, the animals were fear conditioned in the BOX where CS+ presen-
tations were coupled with foot shocks (1 s, 0.6 mA, co-terminating with
CS+ presentations). During habituation and fear conditioning CS+ and
CS- were presented in pseudorandom order (no more than 2 consecutive
presentations of the same-type CS). Extinction training began on day 5.
In the CYL, after the baseline, 4 CS- were presented followed by 8 CS+
and then 4 CS-. Extinction training was repeated every day until the
rat was seen sleeping during CS+ presentations.

Data acquisition and processing

An inertial measurement unit (IMU, custom made) recorded 3D angular
velocity and linear acceleration of the animals’ heads (sampled at 300
Hz). A red LED mounted on the headstage signalled the instantaneous
position of the animals sampled by overhead webcams (30 Hz). Animal
behavior was also recorded (50 Hz) by lateral video cameras in A and
B (acA25000, Basler). Brain activity was recorded using a 256-channel
digital data acquisition system (KJE-1001, Amplipex, Szeged, Hungary).
The signals were digitized with three or four 64-channel headstages (Am-
plipex HS2) and were sampled wideband at 20,000 Hz. Off-line spike
sorting of mPFC data was performed by a custom written Matlab pro-
gram (MathWorks, Natick, MA) implementing the Kilosort algorithm
(Pachitariu et al. 2016). AMY data was spike sorted with KlustaKwik
(K.D. Harris, http://klustakwik. sourceforge.net). Obtained clusters
were manually inspected to reject noise and to merge erroneously dis-
criminated units with Klusters (Hazan et al. 2006). Neurophysiological
and behavioral data were explored with NeuroScope (Hazan et al. 2006).
LFPs were derived from wideband signals by downsampling all channels
to 1,250 Hz.
At the end of the experiments, recording sites were marked with small
electrolytic lesions (∼20 µA for 20 seconds, one lesion per bundle). After
a delay of at least three days to permit glial scar, rats were deeply anes-
thetized with a lethal dose of pentobarbital, and intracardially perfused
with saline (0.9%) followed by paraformaldehyde (4%). Coronal slices
(35 µm) were stained with cresyl-violet and imaged with conventional
transmission light microscopy. Recording positions were reconstructed
comparing the images with the stereotactic diagrams in Paxinos and
Watson (2013).
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Slow-Wave Sleep Detection

Automatic detection of immobility was performed by applying a thresh-
old detection routine to the angular speed calculated from gyroscopic
data. When data from inertial sensors was not available, position data
was used instead. LFP data was visualized using Neuroscope (Hazan
et al. 2006) and channels with distinct spindles during sleep (mPFC)
and theta oscillations during exploration (HPC) were identified. All im-
mobility periods where the z-scored LFP signal filtered in the spindle
band (9-17 Hz) exceeded a k-means identified threshold (Supplementary
Figure 5.9a) were classified as SWS.

Data analysis and statistics

Data were analyzed in Matlab (MathWorks, Natick, MA), us-
ing Freely Moving Animal Toolbox (M.Zugaro and R.Todorova,
http://fmatoolbox.sourceforge.net) and custom written programs. De-
scriptive statistics are reported as median ± standard error of the
median.

Cell assembly detection

A unsupervised method based on principal and independent compo-
nent analyses (PCA; Peyrache, Khamassi, et al. 2009 and ICA; Lopes-
dos-Santos, Ribeiro, et al. 2013) detected the co-activation of simul-
taneously recorded neurons referred to as ‘assemblies’. First, spike
trains were binned into 15 ms bins an z-scored to generate a zscored
spike count matrix Z, where Zi,j represents the number of spike emit-
ted by the cell i during the time bin j. Then, we extracted assem-
blies with a two-step procedure. First, principal components (PCs)
were computed by eigen decomposition of the correlation of the ma-
trix Z. Principal components associated with eigenvalues exceeding the
upperbounds of the Marčenko-Pastur distribution were considered sig-
nificant (Marčenko & Pastur 1967). Then, we carried out ICA (us-
ing the fastICA algorithm, H Gävert,J Hurri, J Särelä, and A Hyväri-
nen, http://research.ics.aalto.fi/ica/fastica) on the spike train projec-
tions onto the subspace spanned by significant PCs. This yielded a set
of vectors Ic, of N weights, interpreted as cell assemblies, with weights
corresponding to the respective cell’s contributions to the assembly (N
being the number of recorded cells). Since the signs of the output weights
are arbitrary, weights were inverted as necessary to render the highest
absolute weight positive. Assembly weights were also normalized.
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Identification of cell assembly members

Members of cell assemblies, i.e. cells with the highest absolute weights
were identified using Otsu’s method (Otsu 1979). Initially developed for
image processing, this algorithm divides neuron absolute weights into
two groups while maximizing the inter-class variance (the upper group
being labeled as ’members’). The goodness of separation was quantified
with Otsu’s metric (between 0 and 1), that is the ratio of the inter-class
variance and the total variance.

Rejection of assemblies with negative weights

In theory, assemblies could be formed with both positive and negative
weight members (’mixed’ assemblies), representing two groups of anti-
correlated neurons that inhibit each other. However, the mixed assem-
blies we detected tended to be associated with weak eigenvalues and low
Otsu’s metric compared to assemblies with positive weights members
only (see Supp. Figure 5.10c). It is possible that these mixed assemblies
resulted from ICA’s failure to identify independent component from PCs
(see Lopes-dos-Santos, Ribeiro, et al. 2013). Thus, we chose to discard
’mixed-assemblies’ from further analysis.

Assembly activations

To study the reader responses to synchronous activations of assembly
members, we excluded the activity on non-member cells when computing
the activation strength of a given assembly (see Supp. Figure 5.11). For
each time bin, the assembly activation strength was computed as :

Ai(t) = z(t)T (IcTi Ici)z(t)

where Ici corresponds to the ith and z(t) to the population vector at
a given time i.e. columns of the Z matrix). Note that to compute
activation strength, the Z matrix was constructed with 15 ms bins and a
5 ms sliding window. The diagonal of the outer product IcTi Ici was set
to 0 so that single neuron spiking does not contribute to the activation
strength. Peaks of the activation strength were detected to identify the
precise moments when assembly members were co-firing. Assemblies
were considered to be active when their activation strength exceeded the
95th quantile distribution of their peak values.

Readers of cell assemblies

Reader responses to assembly activations were computed as follows. For
each reader cell i, spikes were counted in 2 s windows, centered on assem-
bly activation peaks and binned in 10 ms. Assembly-reader candidate
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pairs with the reader emitting fewer than 30 spikes around assembly
activations were discarded. Candidate assembly-reader pairs were pre-
selected for further analyses if the z-scored mean reader response ex-
ceeded 2 SDs in the 10-30 ms window following assembly activations;
this pre-selection step was required to reduce the computation demands
of the analysis below. For each candidate assembly-reader pair, its re-
sponse matrix was shuffled 200 times to create surrogate data. With this
shuffled dataset, the pointwise confidence limits (demarcating the upper
and lower 2.5% of the distributions) were computed for each time bin.
To account for possible multiple comparisons issues, global bands were
also constructed from the maximum and minimum distribution (upper
and lower 2.5%). Pairs of assembly-readers were retained for further
analysis if they met the following criteria:

1. The cross-correlation exhibited a significant increase in at least one
bin within 10-30 ms around assembly activation. To reach signifi-
cance, the cross-correlation values had to cross both the global and
the pointwise band. But note that the time zone extent was deter-
mined only by the bins where the cross-correlation lied beyond the
pointwise band.

2. Based on the assumption that reader should respond subsequent
to assembly activation, the mode of the mean cross-correlogram
should be positive (i.e. within ]0 1] second, here).

Peer prediction

Population coupling of assembly members was assessed by quantifying
to what extent the spike activity of one member could be predicted from
the spike activity of all other members ("peer prediction", Harris et al.
2003). First, spike trains were divided into two non-overlapping parti-
tions. Using one partition, for each member i of an assembly, a Gener-
alized Linear Model (GLM) was trained to predict its activity from the
matrix Si, containing the spike counts of all units members of the same
assembly as the predicted cell. The GLM was tested on the remaining
partition. This procedure was repeated two times, switching the training
and testing sets, resulting in a two-fold cross-validation. The quality of
the prediction was assessed by comparing the median prediction error
e to the median error eshuffled obtained by shuffling 50 times the pre-
dictions relative to the observed spike counts Si. The prediction gain g
was defined as g = 1− eshuffled/e ensemble activity rather than neuron
pairs (Rothschild et al. 2017).
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Supra-linearity of reader responses to assembly activations

To assess the supra-linearity of reader responses to assembly activation,
we computed an expected reader linear response based on individual
member activations. First, we computed the average response curve
of the reader to each of the member cells firing unsynchronously (not
within ∼ 15 ms of other members). Then, for each assembly activation,
the estimated linear response was the sum of these individual response
curves, weighted by the number of spikes emitted by each member around
the assembly activation [-15,15] ms.

Learning-related changes: time control

To ensure that learning related changes between pre and post sleep were
not merely caused by time, we compared significant assembly-reader
pairs detected in three different periods (see Figure 5.4 d). Period 1 and
2 were selected from pre sleep whereas the third period was from post
sleep, defined as meeting the following criteria:

1. The duration between the end of period 1 and the beginning of
period 2 was the same as between the end of period 2 and the
beginning of period 3.

2. The three periods contained the same amount of slow-wave sleep
(± 30%).

5.5 Supplementary Material
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Figure 5.6: Cross-correlation between all possible pairs of assembly-reader
a) Raster plot of the cross-correlation between prefrontal assemblies and amygdala
cells (z-scored; all 16888 pairwise possible combinations). b) Distribution of data
in a), normalized to baseline (between -500 and -450 ms). The yellow area indicates
an increase of reader rate around assembly activation. c and d) Same as a and b
but for amygdalar assemblies and prefrontal cells.
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Figure 5.7: Supplementary assembly-reader examples a, b) Respective ex-
amples of significant neuron response 10 to 30 ms after assembly activation onset (a:
AMY neurons, PFC assemblies; b: PFC neurons, AMY assemblies) Examples were
from different sleep session, prior to any behavioral training. Top: cell assemblies.
Weights represent each cell’s contribution to the assembly. Colored weights: assem-
bly members. Bottom left : ’reader’ cell firing rate centered on assembly activation.
Shaded bars on top indicate significant responses (p<0.05: Monte-Carlo bootstrap
test; see Methods 5.4). Bottom right: assembly strength and associated raster plots.
Assembly member ticks appear in color during the assembly activation and in gray
outside. Blue: prefrontal spikes; red: amygdala spikes. Note the reader response ∼
20 ms after the assembly activation.
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Figure 5.9: Slow wave sleep detection. a) Sleep threshold identification from
mPFC LFP. Distributions of the spindle power. For each rat the minimum between
the two peaks of the distributions was taken as the threshold for sleep detection during
periods of immobility. b) Example of sleep scoring for ∼ 1h30 of recording in the
flower pot. Top: Power of the prefrontal LFP signal filtered in the spindle band(9-17
Hz). Blue squares mark the episodes scored as SWS. Middle: Ratio between the theta
(6-9 Hz) and delta (0.5-4 Hz) power of the LFP from electrode in the HPC. Green
squares mark the episodes scored as REM. Bottom: Angular speed of the animal’s
head. Gray squares mark episodes of non-immobility.
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Figure 5.10: Mixed assemblies carry positive and negative weight members
a) Three examples of PFC assemblies. Weights represent each cell’s contribution to
the assembly. Colored weights indicate assembly members. Assemblies are order
by eigenvalue amplitude (that is 1, 28 and 38). Note that assembly 1 and 28 have
positive members (’uniform assembly’) only whereas the third assembly is composed
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members only. b) Comparison of eigenvalues for two types of assemblies: uniform
and mixed assembly. Eigenvalues of mixed assemblies are significantly smaller than
those of uniform assemblies. Thus mixed assemblies are less relevant than uniform
ones (p = 9.2e-29; Wilcoxon signed-rank test). Colored bars represent median and
error bars correspond to the standard error of the median; c) Comparison of Otu’s
metric for two types of assembly: uniform and mixed. Otsu’s metric is significantly
lower for mixed assemblies (p = 1.7e-30; Wilcoxon signed-rank test), suggesting that
the identification of members is less accurate for mixed components. d) Proportion
of units being part of assemblies, compared to the number of recorded neurons in a
session. The number of members in mixed assemblies is significantly higher compared
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Figure 5.11: Setting non-member weights to 0. a) Top: an exemple of a PFC
assembly. The weights represent each cell’s contribution to the assembly. Colored
weights indicate assembly members. Bottom: the same assembly but with non-
members weight set to 0. b and c) Top: Curves represent assembly activation
strength computed with regular weights (blue) and non-member weights set to zero
(red). Bottom: Raster plots of neurons ordered by absolute weights. The horizontal
dashed line separate members (green ticks) from non-members (grey ticks). Shaded
yellow rectangles indicate putative activations. b) All three members are active
resulting in a peak of activation strength, with both computation methods. c) Only
one member fires an action potential however a peak is detected with the regular
activation strength computation method. Note that there no peaks appear with the
other method (i.e. setting non-member weights to zero). d) Percentage of firing
member during assembly activation. When setting weights to 0, activation strength
peaks correspond to co-activations of a higher number of members.
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Number of neurons Number of assemblies
session PFC AMY PFC AMY

Rat392-20181028 68 38 12 3
Rat392-20181029 103 53 16 6
Rat392-20181030 82 51 14 9
Rat392-20181031 38 45 10 10
Rat392-20181101 39 41 10 6
Rat392-20181102 110 60 20 5
Rat386-20180917 250 131 37 18
Rat386-20180918 260 136 36 13
Rat386-20180919 217 135 33 16
Rat386-20180920 258 83 37 12
Rat386-20180921 291 136 40 11
Rat386-20180922 285 124 42 12
Rat399-20190402 155 36 26 5
Rat399-20190403 145 43 26 5
Rat399-20190404 141 42 25 6
Rat399-20190405 149 39 25 4
Rat399-20190406 141 47 26 5
Rat399-20190407 60 38 13 7
Rat401-20190605 12 11 3 3
Rat401-20190606 17 15 5 4
Rat401-20190607 13 16 3 4
Rat401-20190608 20 16 4 3
Rat401-20190609 23 10 5 2
Rat401-20190610 24 9 5 2

Table 1: Number of recorded neurons and cell assemblies
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While the experimental results of this thesis have been thoroughly dis-
cussed in their respective chapters, this section aims at reviewing our
key findings and addressing perspectives for future work.

6.1 Cross-structural coordination

In chapter Distributed cell assemblies spanning prefrontal cortex and
striatum 4, one of our main findings is the existence of cross-structural
assemblies. Cross-structural synchrony has been previously observed
between pairs of neurons (Qin et al. 1997; Hoffman & Mcnaughton
2002; Lansink, Goltstein, Lankelma, McNaughton, et al. 2009; Gi-
rardeau, Inema, et al. 2017). However, at the assembly level, evidence
of cross-structural synchrony remains scarce and mostly restricted to
the neocortex (Deolindo et al. 2018). Here, our results suggest that
within PFC-STR cross-structural assemblies, striatal neurons jointly
discharge ∼ 3ms subsequent to prefrontal synchronous activity (see the
asymmetry of the cross-correlation of PFC-STR member pairs in Figure
4.1c and the phase shift between STR and PFC spikes to gamma-80 in
Figure 4.3b). Hence it is possible that PFC-STR assemblies reflect the
responses of striatal cells (‘readers’) to prefrontal assembly activations.
Conversely, the conduction delay between the amygdala and the pre-
frontal cortex is longer, ∼ 20ms, and thus ideal for studying responses
to assemblies without temporal ambiguity.

Alternatively, PFC-STR assemblies could emerge through the common
input of a third structure, for example the hippocampus. Indeed,
both the striatum and the prefrontal cortex have been shown to co-
ordinate with the hippocampus during learning tasks (Lansink, Golt-
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stein, Lankelma, McNaughton, et al. 2009; HPC-STR pair correlation;
Benchenane et al. 2010; PFC spike-HPC field coherence; Sjulson et al.
2018; HPC and STR assembly coupling). Future work could investigate
temporal coordination of single units within the hippocampo-prefrontal-
striatal network during a similar behavioral task. Notably, it would be
interesting to determine whether PFC-STR assembly reactivations are
coupled to awake and/or sleep ripples.

6.2 Synchronization through oscillations

Oscillations are thought to organize neural network dynamics. They can
shape local cell assemblies but also mediate long-range synchronization
across distinct areas (Varela et al. 2001; Fries 2005), leading to the for-
mation of distributed cell assemblies. In particular, gamma oscillations
have been suggested to coordinate neural activity in the mammalian
visual cortex (Gray & Singer 1989; Engel, Fries, et al. 2001) and also in
insect olfactory bulbs (Wehr & Laurent 1996; Perez-Orive et al. 2002;
Mazor & Laurent 2005).

Here we reported a precise phase relationship of cell assemblies relative
to prefrontal rhythms, 4 Hz and theta. Assemblies emerged when spikes
of principal neurons shifted in phase, and were accompanied by increased
gamma activity. Interestingly, in the ventral palladium, a brain area
downstream to the ventral striatum, cell assemblies have been found
between ∼24 ms and 80 ms (average time scale = 50 ms), consistent
with the beta oscillation period (Tingley, Alexander, et al. 2015). Even
though we did not observe beta band in our recordings, beta rhythms
have been hypothesized to play a role in the coordination of activity
among spatially distributed brain regions (in addition to gamma oscil-
lations, Kopell et al. 2000; Bibbig et al. 2002). How these assemblies
in the ventral palladium relate to the prefrontal-striatal assemblies we
described, remains unclear.

Conversely, future work could focus on the role of oscillations in shap-
ing amygdalar cell assemblies. Also, one may investigate whether os-
cillations coordinate assembly and their downstream reader responses.
During awake states, converging evidence showed the amygdala and the
mPFC exhibited both theta and gamma synchrony, associated with fear
behavior control (Stujenske et al. 2014). Furthermore, some studies also
suggested that oscillatory coupling between these structures, particu-
larly during REM sleep, may be crucial for fear learning (Popa, Duvarci,
et al. 2010). As postulated by the Coherence Through Communication
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theory, such coordination may strengthen connections between cell as-
semblies and their output target.

6.3 The importance of time scale

In the literature, the time scale of cell assemblies varies greatly, from 1
ms to hundreds of milliseconds, especially in calcium imaging studies.
Here we proposed to investigate the formation of cell assemblies within
brief timescale close to the membrane time constant of hypothetical tar-
gets. We hypothesized that one role of cell assemblies is to produce a
coherent synchronous output. In the chapter Distributed cell assemblies
spanning prefrontal cortex and striatum 4, we investigated the stability
of the assemblies detected by PCA-ICA at multiple time scales. Sur-
prisingly, 70% of the detected components at 150 ms persisted at 10
ms (Figure 4.8). Hence, it is possible that some of the assemblies de-
tected in previous studies using larger time bins may have reflected brief
synchronous patterns. In the chapter ’Reading cell’ assemblies in the
cortico-amygdalar circuit 5, we did not study assembly variability re-
lated to the time scale. We directly selected a short time window (15
ms), in the range of the membrane time constant of both the amygdala
and the prefrontal cortex (see Tripathy et al. 2015; Figure 1.3). Future
work should investigate the precise timescales at which an assembly is
effective at triggering a downstream response, a parameter which may
depend on the biophysics of the downstream neuron.

6.4 Perspectives

While the results presented in Distributed cell assemblies spanning pre-
frontal cortex and striatum 4 are currently under consideration at Na-
ture Communcations, the project on assembly ‘readers’ in the prefrontal-
amygdala network is still ongoing work. The following section is dedi-
cated to the future questions we aim to address.

6.4.1 Characterizing mono-synaptic connections

First, we would like to identify putative mono-synaptic connections
within and between the prefrontal cortex and the amygdala. With this
information, we will investigate whether cell assembly members are con-
nected to their presumed targets (as shown in Figure 6.1a). Also, it
would be interesting to see if, within an assembly, members are recipro-
cally connected (in line with Hebb’s definition of a cell assembly).
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6.4.2 Further investigation of the reader response
supra-linearity

In Figure 5.3, we demonstrated that the response of reader neurons to
cell assembly activations exhibited supra-linear effects. This has been
previously reported within the prefrontal cortex (Fujisawa, Amarasing-
ham, et al. 2008) and the visual system (Alonso et al. 1996; see Figure
6.1b-f). However, one can argue that the supra-linearity might be biased
by the activity of unrecorded assembly members. For example, let us
consider the assembly ABC and the reader R. We noticed that the reader
response to ABC exceed the linear contribution of the individual mem-
bers A,B and C. However, if a neuron D, not recorded was also active
at the same time as ABC (thus the actual assembly was ABCD), the
response we observe might be simply explained by the linear summation
of A,B,C and D. While it is not possible to experimentally disprove this
possibility, short of exhaustively recording all the inputs of a target cell,
it is worth considering that the non-linearity is actually expected from
the biophysics of neurons, as detailed in the vast literature of coincidence
detection (Koch et al. 1996).

6.4.3 Extinction learning-related changes

Fear conditioning learning had clear effects on the coupling of amygdalar
assemblies and PFC readers. However, when investigating the opposite
direction (that is, PFC assemblies and neurons in the amygdala), the
changes in the assembly-reader responses were not higher than what
would be expected with the passage of time. In a parallel project on
the same data set (lead by MN Pompili and R Todorova), preliminary
analyses suggest distinct roles of cell assemblies in extinction consolida-
tion whether members are from the ventral part of the medial prefrontal
cortex or the dorsal one. Hence, we may detect cell assemblies (and
then hypothetical AMY readers) within these two sub-regions to fur-
ther study extinction related changes. Also, in the chapter ’Reading
cell’ assemblies in the cortico-amygdalar circuit 5, we focused on the
early extinction sessions (i.e. the two first days) but we might as well
investigate late extinction sessions.
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Figure 6.1: Coincidental firing of more facilitates spike transmission supra-
linearly. a) Representative cell assembly of eight putative pyramidal cells converging
on an interneuron (‘reader’), in rat prefrontal cortex. b) Spike transmission proba-
bility as a function of the number of coincident spikes among two or more neurons
within increasing time windows. Note the supra-linear facilitation below 5 ms inter-
vals. c,e) Cross correlations between a simple cell C in the primary visual cortex and
two geniculate cells A, B in cats. The cross-correlations show peaks displaced 2-3
ms to the right of zero which indicate that the simple cell C receives monosynaptic
inputs from each geniculate cell A, B (schematically represented by arrows). d,f)
The spike trains of neurons A and B were divided into two categories: those that
occurred within 1.0 ms of each other (A&B) and those of either neuron that did not
(A* and B*). The influence of the simultaneous spikes A&B (d) was compared to
that of the non-simultaneous spikes (f) by adding together the correlograms from A*
–> C and B* –> C. Note the supra-linear effect in d, compared to f. Pannels a-b
are adapted from Fujisawa, Amarasingham, et al. 2008, and pannels c-f from Alonso
et al. 1996.

135





7 On the limitation of Principal and
Independent Component Analysis to
detect cell assemblies

7.1 Identifying cell assembly members . . . . . . . . 137
7.2 The ‘mixed-component’ issue . . . . . . . . . . . 138
7.3 Assessing the strength of co-activations . . . . . 140
7.4 Cell assembly sizes . . . . . . . . . . . . . . . . . . 140

The results of this thesis mostly derived from the PCA-ICA computation
method used for cell assembly detection. This method extracted, with
a relatively low computation time, independent components, proxies of
cell assemblies.

7.1 Identifying cell assembly members

An independent component is a collection of weights that account for
the contribution of each cell within this putative assembly. A central
question is: how to identify members of cell assemblies, i.e. the cells
that significantly participate in the assemblies?

To this end, in a first attempt, we used Monte-Carlo simulations to
estimate the range of weights that could be obtain by chance for each
component. To test whether a neuron nj was a member of the assembly
A = [w1, w2, ...wN ], we shuffled the inter-spike intervals of nj , while
preserving the activity of all other units. Then assemblies A′ were de-
tected within these surrogate data. We expected to identify an assembly
A′i, with a weight distribution similar to A, except for the weight of
the cell w′j . Repeating this procedure 1000 times, we would obtain
a distribution of w′j to compare to the actual weight of the neuron j
in A, wj . However, in many cases, we were unable to reliably match
the assembly A with any surrogate assembly A′i. These cases were a
drawback in estimating the control distribution of weights of neuron j
in assembly i. We considered that if assembly i could not be retrived
without the activity of a neuron j, this may be evidence that neuron
j is indeed a member of assembly i. However, we sometimes failed to
retrieve a match for Ai even when shuffling the activity of neurons with

137



7 On the limitation of Principal and Independent Component Analysis to
detect cell assemblies

very small weights. We therefore moved on to using other method to
determine assembly membership.

In the chapter 4, we used the threshold 1/
√
N , with N being the number

of cells recorded. This threshold represents the expected weight of
neurons if all N units were members of one only massive assembly. This
threshold was necessary to discriminate cross-structural from single-
structure assemblies, investigate the phase-locking of members, relative
to ongoing rhythms, as well as quantify their behavior correlate.

In chapter 5 ‘Reading cell’ assemblies in the cortico-amygdalar circuit,
identifying members was critical to pinpoint exactly which co-active cells
could trigger a downstream neuron. To this end, we used a slighly more
stringent threshold, based on Otsu’s method to distinguish the fore-
ground from the background of gray-scaled pictures. This method pro-
vides a metric to quantify the goodness of the separation (between 0 and
1).

7.2 The ‘mixed-component’ issue

When searching for cell assembly members we noticed that some
components exhibited both positive and negative weight members1
(’mixed-component, see examples in Figure 5.10). In theory, these
mixed-components could represent two groups of synchronous neurons
that activate in alternation. This could be mediated by interneurons
within each group, inhibiting the other group.

However, similar ‘mixed-component’ were reported by Lopes-dos-Santos,
Ribeiro, et al. 2013, when dissecting the Principal Component Method
(Peyrache, Khamassi, et al. 2009, see Figure 7.1). In simulated data
sets, the authors found out that ‘mixed-components’ appeared when the
cell assemblies overlapped i.e., they share one or some of their members
. For example, using PCA to detect assemblies with neurons [#11, #12,
#13, #14] and [#14, #15, #16, #17] yielded a component with high
weights for neurons #11 to #18 and a ‘mixed-component’ with negative
weights for [#11, #12, #13] but positive for [#15, #16, #17] (see Figure
7.1b, middle and bottom components). The independent component
analysis is supposed to overcome this issue (as shown in Figure 7.1c).
We hypothesized that ICA may fail to disentangle assembly patterns
that concentrate weak amount of co-variance, hence associated we small

1Recall that the sign of weights is arbitrary and weights were inverted as necessary to
render the highest absolute weight positive.
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7.2 The ‘mixed-component’ issue

eigenvalues (see Figure5.10).

a b c

Figure 7.1: ’De-mixing’ principal components with independent compo-
nent analysis. a) Correlation matrix of a spike matrix with 20 neurons. Three
assemblies were present in a simulated network (light blue squares in the correlation
matrix). Assembly 1: neurons #11, #12, #13, #14; assembly 2: neurons #14, #15,
#16, #17; assembly 3: neurons #18, #19, #20). b,c) Assembly patterns estimated
by principal components (b) and by independent components (c). PCA accurately
detected assembly 1 but failed to distinguish the overlapping assembly 2 and 3 (both
include neuron #14). Note that the second principal component mixes both positive
and negative weights. Conversely, assembly patterns were better segregated with
ICA, i.e., each assembly pattern has large weights for its corresponding members.

Given that the eigenvalues of the mixed components were lower than av-
erage, perhaps one solution would be to increase the eigenvalue thresh-
old from Marčenko & Pastur. This threshold is used because it captures
well the distribution of eigenvalues of shuffled matrices, i.e. when no
assemblies are present (chapter 2; Peyrache, Benchenane, et al. 2010).
However, it is possible that the non-linearities due to some assemblies
present in the data might distort the distribution of eigenvalues to the
point where Marčenko & Pastur’s threshold is not a good threshold for
separating out assembly patters from noise (Russo & Durstewitz 2017).
However, increasing the threshold to using the Tracy-Widom correction
(Peyrache, Benchenane, et al. 2010) did not abolish mixed assemblies.
Therefore, while it is possible to consider mixed components as a symp-
tom of poor assembly separation, there doesn’t seem to be a trivial way
to avoid them apart from discarding them after detection. Indeed, de-
spite being different on average, the distributions of eigenvalues of mixed
and non-mixed components overlapped (data not shown), and therefore
no eigenvalue threshold could reliably separate between the two distri-
butions at the risk of also rejecting the majority of non-mixed compo-
nents.
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7 On the limitation of Principal and Independent Component Analysis to
detect cell assemblies

7.3 Assessing the strength of co-activations

To track over time the dynamic of assembly activity, we computed the
activation strength. While the greatest peaks of this measure can reliably
highlight high-weight cell co-activations (see the striking examples in the
raster plot 4.1, 5.1, 5.2 ), minor peaks can be caused by the fluctuations of
non -member cells, without any members firing (see Figure 5.11). Thus,
in Chapter ‘Reading’ cell assemblies in the cortico-amygdalar circuit
5, assembly activation strength was computed from the spiking activity
of members only. With this restriction, the activation strength peaks
reflected accurate member co-activations (n≥2).

7.4 Cell assembly sizes

We also observed that co-activations were composed of different combi-
nation of members. For example, if we consider an assembly composed
of ABCDEFGHI. Assembly activations could be any duet, (eg. AB, DI,
GH), triplet (e.g ABC, CDE, GHI) etc. Should these constellations of
different patterns be integrated in the same assembly? Typically, PCA-
ICA can detect cell assemblies as big as 20 neurons (in a session of 250
recorded neurons), however, simultaneous co-activations barely exceed
8 or 9 members. Let us recall that the number of assembly is also nec-
essarily lesser than the number of recorded neurons. Considering these
observations one can wonder, what reasonable cell assembly size can
we expect? How many assemblies are there? We hypothesized that each
individual member does not necessarily participate in every single assem-
bly activation but to what extent patterns of activation should overlap
to be considered from the same assembly? These questions remain open
to debate. To tackle these size issues, in our lab, we are currently de-
veloping an algorithm to detect patterns of simultaneous co-activations.
This method progressively adds neurons to each assembly, as long as two
criteria are fulfilled. For adding neuron X to the pair AB to make an
assembly ABX:

1. X needs to fire significantly more synchronously with the activa-
tions of AB than with the activity of A or B (both comparisons
need to be significant).

2. X needs to fire significantly more synchronously with the activa-
tions of AB than the multi-unit activity does (excluding A, B).
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7.4 Cell assembly sizes

Conclusion

Principal Component Analysis and Independent Component Analysis
are fast, accessible and popular methods to identify cell assemblies within
simultaneously recorded spike trains. While, this technique can accu-
rately detect strong co-activations in the first place, weak correlations
might yield more puzzling results. Hence, one might turn to alternative
solutions. In chapter 2 and 3, I discussed the numerous existing meth-
ods to detect synchronous activity within multiple spike trains (n>2).
Most of these techniques are usually computationally demanding and re-
main best suited to identify precise spike sequences. Since every method
comes with some drawbacks, the best option may be to use one’s fa-
vorite method while keeping in mind eventual caveats and last but least,
interpreting results with caution.
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How do billions of neurons cooperate to process information and mediate cognitive function 
such as learning, planning or memory? An influential hypothesis is that groups of neurons can 
synchronize within brief time windows to represent a cognitive entity or a concept (e.g. an 
apple, a sonata, the thought of my grand-mother, Hebb 1949). These groups, called 'cell 
assemblies' are thought to be the functional units of the brain. Recent advances in large-scale 
neuronal recordings enabled to investigate such synchronous activity within single areas of the 
brain. Yet, the functional relevance of these ensembles remains largely unexplored, especially 
in higher order brain areas. To address this question, we designed two research projects based 
on extracellular recordings in rats. 
First, we demonstrated and characterized synchronous activity spanning different parts of the 
prefrontal cortex and the striatum, constituting the cortico-basal ganglia loop. These 
distributed cell assemblies exhibited behaviorally correlated activation during a set-shifting 
task, and synchrony emerged when assembly members shifted their phase relative to ongoing 
brain rhythms. We propose that cross-structural assemblies are likely to be a general 
mechanism that can span across multiple brain area  and networks, therefore underlying 
highly integrated representations. 
Second, we analyzed the neural activity from hundreds of single units in the prefrontal-
amygdalar networks  during sleep to investigate the functional relevance of cell assemblies 
from the perspective of a downstream neuron. Our results suggest that the synchronous 
activity of cell assemblies facilitate and amplify the discharge of downstream neurons, termed 
‘readers’ of the assembly. Interestingly, we showed that the assembly-reader communication 
changes with learning.

Par quels moyens des milliards de neurones coopèrent et communiquent afin de sous-tendre 
des fonctions cognitives telles que la planification, l’apprentissage ou bien la mémoire? Selon 
l’hypothèse influente de Hebb (1949), de petits groupes de neurones se synchroniseraient, sur 
une courte échelle de temps, afin de représenter une entité ou bien un concept (par exemple, 
une pomme, une sonate ou bien le souvenir de ma grand-mère). Ces groupes de neurones, des 
'assemblées cellulaires', constitueraient ainsi les unités fonctionnelles du cerveau. De recents 
progrès techniques et expérimentaux ont permis de mettre en lumière l’existence de telles 
assemblées au sein de certaines régions cérébrales. Pourtant, le rôle et la pertinence 
fonctionnelle de ces ensembles restent largement inexplorés, en particulier dans les aires 
cérébrales qui sous-tendent des fonctions cognitivescomplexes. Pour étudier cette 
problématique, nous avons conçu deux projets de recherche à partir d’enregistrements 
éléctrophysiologiques extracellulaires chez le rat. 
Premièrement, nous avons démontré et caractérisé des assemblées cellulaires incluant des 
neurones de différentes parties du cortex préfrontal et du striatum. Le mécanisme de 
formation de telles assemblées implique un changement de phase de leurs membres, par 
rapport aux rythmes cérébraux du cortex préfrontal. Lors d’une tâche de flexibilité cognitive, 
ces assemblées cellulaires distribuées s’activent sélectivement selon le comportement de 
l’animal (par exemple, lors de la prise de décision). Pour conclure, il est très probable que de 
telles assemblées distribuées reflètent un mécanisme général par lequel des neurones issus de 
différentes régions et réseaux du cerveau sesynchronisent, pour sous-tendre des représentations 
intégrant de multiples informations.
Dans un second temps, nous avons analysé l'activité de centaines de neurones dans le réseau 
préfrontal-amygdalien,enregistrés lors du sommeil, afin d’étudier la pertinence fonctionnelle 
des assemblées cellulaires du point de vue d'unneurone post-synaptique. Nos résultats 
suggèrent que l'activité synchrone des assemblées cellulaires facilite et amplifie la décharge de 
neurones post-synaptiques, appelés lecteurs de l’assemblée. Enfin, nous avons montré que la 
communication entre une assemblée et son ou ses lecteurs change avec l’apprentissage.
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