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A B S T R A C T

Temporal and sequential data constitute a large part of data collected digitally.
Predicting future values of such data is an important and challenging task in
domains such as climatology, optimal control, or natural language processing.
Standard statistical methods are based on linear models and are often limited
to low dimensional data. We instead use deep learning methods that are more
capable of handling structured high dimensional data and leverage large quantities
of training examples.

In this thesis, we are interested in latent variable models. Contrary to autore-
gressive models that directly use past data to perform prediction, latent models
infer low dimensional vectorial representations of data on which prediction or im-
putation are performed. Latent vectorial spaces allow us to learn simple dynamic
models that are then able to generate high-dimensional and structured data.

In the first part, we propose a structured latent model for spatio-temporal data
forecasting. Given a set of spatial locations where data such as weather or traffic
are collected, we infer latent variables for each location and use spatial structure
in the dynamic functions. The model is also able to discover correlations between
series without prior spatial information.

In the second part, we focus on predicting data distributions, rather than point
estimates as done in the first part. To do so, we propose a latent model that
generates latent variables used to condition a generative model. We use text data
to evaluate our model on the task of diachronic language modeling.

In the last part, we propose a stochastic prediction model. This is a latent model
that uses the first values of sequences to generate several possible futures. Here,
the generative model is not conditioned to an epoch, like is the second part, but
to new sequences. We apply this model to the challenging task of stochastic video
prediction.
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1.1 Context

Artificial Intelligence (AI) aims at constructing autonomous systems that are
capable of reproducing human cognitive functions to solve high-level tasks. This
concept was born together with the introduction of computers several decades
ago and is gaining a rapidly growing interest. AI is a vast domain in computer
science, encompassing many sub-fields such as, but not limited to, knowledge
representation, reasoning, natural language processing, robotics, or multi-agent
systems.

Among them, Machine Learning (ML) and Deep Learning (DL) have gained a
rapidly growing interest: for instance, the number of participants at the NeurIPS
conference went from around one thousand in 2010 to over six thousand in 2019.
ML and DL methods leverage the overwhelming quantity of digital information
produced by human activity and natural phenomena monitoring, to learn decision
and regression models.

A large part of the tremendous quantity of digital data has a temporal com-
ponent. In this thesis, we propose methods to leverage it to build autonomous
systems and to improve our comprehension of environmental, societal, and human
dynamics.

1
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1.1.1 Temporal Data

Nearly all digital data samples have some form of temporal annotation. For
instance, digital photos or computer logs are marked with timestamps. And nearly
all textual documents come with at least some idea of their writing time, and often
with a precise year for documents from the last centuries. The temporal component
can also come from the semantics of data. People’s age or the production year of
cars are other examples of temporal information that can be leveraged to improve
models’ performances.

There are also classical time series, present in many domains such as ecology,
meteorology, biology, medicine, economics, traffic, and vision, collected by an
increasing number of sensors disseminated around and above the world. As an
example, NASA has currently more than 27 earth observation satellites in orbit 1.
Moreover, there are weather stations monitoring temperature, wind directions, or
atmospheric pressure. And with the democratization of video cameras, there are
500 hours of videos uploaded on youtube every minute in 2019

2.

1.1.2 Temporal Tasks

Most ML models rely on a vectorial representation of data (feature vectors) to
learn decision boundaries or regressors in feature spaces. The classic method
to extract a vector representation from a time series is by taking its frequency
spectrum through Fourier Transform. However, this method is not adapted for
online tasks such as prediction or filtering, as the sequential structure of time
series is lost.

Time series are often of varying size and sometimes sampled at different
temporal frequencies. And different temporal acquisition modalities gave rise to
different task categories and a vast spectrum of methods to solve them. We now
briefly present three categories of such temporal tasks: smoothing, filtering, and
prediction.

In smoothing tasks, complete sequences are available and are processed as a
whole. It encompasses tasks such as anomaly detection, time series modeling, or
data imputation. Classical ML methods include Bag of Words (BoW) and Dynamic
Time Wrapping (DTW) (Yazdi et al. 2018) that extract representations used as
inputs of classical ML models (K-Nearest Neighbours (KNN), Support Vector
Machine (SVM), Random Forests).

Filtering tasks correspond to online acquisition protocols. Data arrive in a
streaming fashion, one timestep at a time, and the goal is to infer some hidden
attributes of the new sample. This setting corresponds to tasks such as tracking,

1. https://en.wikipedia.org/wiki/List_of_Earth_observation_satellites
2. https://www.youtube.com/about/press/

https://en.wikipedia.org/wiki/List_of_Earth_observation_satellites
https://www.youtube.com/about/press/
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control, or navigation. Classical statistical models used to solve these tasks are
particle filters, Kalman filters, or Hidden Markov Model (HMM).

Lastly, prediction tasks consist of predicting future values given past ones.
Applications are in weather forecasting, stock market prediction, or video predic-
tion. Generally, a prediction task can be formulated from any temporal dataset.
Classical methods are autoregressive methods that learn linear mappings between
past and future samples.

In this thesis, we propose to explore DL and Representation Learning methods
to learn generic representations of temporal data, together with dynamic models
in a self-supervised manner. These representations can then be used for the
different problems presented previously, and offer a general way to approach
temporal tasks.

1.1.3 Deep Learning and Temporal Data

In the past decade, the DL paradigm emerged and showed previously unattained
performances on many ML tasks. While traditional ML algorithms are usually
trained on hand-crafted features, DL methods can learn meaningful represen-
tations directly from raw signals such as pixels, audio waves, or text. This
representation learning technique is now at the heart of numerous works, notably
image classification, language modeling, or reinforcement learning.

The first breakthrough in DL comes from the computer vision community
and the introduction of the Convolutional Neural Network (CNN) (LeCun et al.
1989). Leveraging millions of annotated images, and the computational power of
Graphical Processing Units (GPUs), Krizhevsky et al. 2012 won the 2012 ImageNet
classification challenge by a large margin. Following this achievement, researchers
are exploring the incorporation of deep representation learning in nearly all ML
tasks.

For temporal data, most DL models are built around Recurrent Neural Networks
(RNNs). They are flexible models that process temporal samples sequentially and
produce latent representation at each timestep. They can thus model sequences of
varying sizes and can be easily formalized for smoothing, filtering, and prediction
tasks. Moreover, their recurrent architecture allows them to model complex
conditional probability distributions. They are used for several sequential tasks
such as language modeling, speech recognition, or video prediction for instance.
We will detail some of them in Chapter 2.

RNNs are powerful and versatile but are not suited for every temporal task. One
of their main drawbacks is their tendency to overfit the training data, making
temporal extrapolation difficult. Another is that their architecture does not allow
them to handle data structure natively, such as the spatial structure of spatio-
temporal data.
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1.2 Contributions

1.2.1 Designing Spatio-Temporal Neural Networks

In Chapter 3, we study time series that exhibit spatial dependencies. This kind
of series is present in many domains such as meteorology, or traffic. Modeling
this kind of series raises several challenges. They are multivariate time series, with
usually a large number of series that present complex temporal dependencies
schemes. Moreover, these series often exhibit complex dynamics and are often
subject to noises. Answering these challenges leads to consider DL methods.

For this contribution, we introduced a general class of deep spatio-temporal
models for time series of spatial processes. They allow us to explicitly model
both spatial and temporal dependencies. We focus in this chapter on two tasks:
forecasting (prediction) and missing data imputation (smoothing). We propose
a model able to capture the dynamics and correlations in multiple series at the
spatial and temporal levels. Besides reporting a significant improvement over
traditional ML approaches, and more recent DL ones, we also show that the model
is able to discover relevant spatial relations between series.

This line of research led to a conference paper:

Ali Ziat*, Edouard Delasalles*, Ludovic Denoyer, and Patrick Gallinari (2017).
“Spatio-Temporal Neural Networks for Space-Time Series Forecasting and
Relations Discovery”. In: 2017 IEEE International Conference on Data Mining,
ICDM 2017, New Orleans, LA, USA, November 18-21, 2017, pp. 705–714,

and a journal extension:

Edouard Delasalles, Ali Ziat, Ludovic Denoyer, and Patrick Gallinari (2019c).
“Spatio-temporal neural networks for space-time data modeling and relation
discovery”. In: Knowledge and Information Systems 61.3, pp. 1241–1267.

1.2.2 Learning Dynamic Representation of Structured Data
Distributions

In the previous contribution, we learned deterministic representations and
dynamics. For each timestamp, a single point estimate of the future value of a
spatio-temporal time series is produced. However, real-world data often follow
stochastic generation processes. Hence, estimating the distribution of data points
at each timestep, and being able to predict the distribution’s evolution, is a
key-challenge for modeling data through time.

In Chapter 4, we propose to combine temporal representations learning and
generative probabilistic models. We applied our model to textual data. Language
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is affected over time by various shifts; the meaning of words can shift, new words
appear as other vanish, and yesterday topics are different from tomorrow’s ones
(Aitchison 2005).

This work led to a first publication, where we use global variables to model the
temporal dynamics of language:

Edouard Delasalles, Sylvain Lamprier, and Ludovic Denoyer (2019a). “Dy-
namic Neural Language Models”. In: Neural Information Processing - 26th
International Conference, ICONIP 2019, Sydney, NSW, Australia, December 12-15,
2019, Proceedings, Part III, pp. 282–294.

In a second publication, we also took into account the authors of documents. It
allowed us to learn dynamic representations of authors:

Edouard Delasalles, Sylvain Lamprier, and Ludovic Denoyer (2019b). “Learn-
ing Dynamic Author Representations with Temporal Language Models”. In:
2019 IEEE International Conference on Data Mining, ICDM 2019, Beijing, China,
November 8-11, 2019, pp. 120–129.

1.2.3 Stochastic Prediction

In the two first contributions, we were interested in modeling temporal data at
a large temporal scale, mainly at the year level. This led us to consider time as a
global attribute shared by all data samples. However, temporal phenomena also
occur at inferior time scales.

In our third contribution, presented in Chapter 5, we propose to model the
dynamics of local temporal events. To study this kind of event, we tackled the
problem of stochastic prediction of videos. In a video dataset, each sample lives in
its own temporal referential. However, all videos share similarities. For instance,
in a bouncing ball dataset, the gravity always affects the ball the same way. These
kinds of features common to all samples can be leverage by ML algorithms to
learn prediction models.

An interesting feature of natural videos is their inherent stochasticity. Even if
two samples share similar starting frames, the subsequent ones might be very
different. It is thus necessary and challenging for a prediction model to handle
this temporal stochasticity. More generally, it challenges the ability of a model to
capture visual and dynamic representations of the world.

While most state-of-the-art approaches are based on autoregressive models
built around RNNs, we propose a novel stochastic dynamic model that performs
prediction in a low-dimensional latent space. It is a residual dynamic model that
takes inspiration from recent advances relating to residual networks (K. He et al.
2016) and Ordinary Differential Equations (ODEs) (Chen et al. 2018).

This work led to a conference paper:
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Jean-Yves Franceschi*, Edouard Delasalles*, Mickaël Chen, Sylvain Lamprier,
and Patrick Gallinari (2020). “Stochastic Latent Residual Video Prediction”.
In: Proceedings of the 37th International Conference on Machine Learning, ICML
2020.
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In this thesis, we are interested in modeling data that evolve through time. As
described in the introduction, temporal data are involved in many different tasks:
sequence classification, sequence matching, anomaly detection, reinforcement
learning, etc... In this work, we focused on self-supervised tasks, where target
data are portions of source data, and not an external human-produced label that
is costly to acquire. As we will see, self-supervised tasks, like prediction, can have
direct applications, but they are also useful for downstream tasks. Indeed, they
are often used to extract high-level features than can then be used for downstream
classification tasks for instance.

In the first section of this related work, we will introduce our tasks and no-
tations, together with statistical and machine learning models for time series.

7
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Secondly, we will present Recurrent Neural Networks (RNNs) with their different
architectures and applications. Lastly, we will present deep variational approaches
for sequential data.

2.1 Time Series

Time series are present in many fields, for instance in medical-biology with
electroencephalograms or electrocardiograms, or climate with sea surface tem-
perature or wind speed for instance. Formally, we define a time series x as an
ordered set of real-valued vectors xt ∈ Rn: x = (x1, . . . , xT). In this thesis, we will
only consider time series sampled uniformly in time, such that the time elapsed
between two samples xt and xt+1 is always the same. Note that this is not always
the case. For instance, information diffusion processes often occur in continuous
time and happen in an asynchronous fashion (Saito et al. 2009).

There are many tasks associated with time series: classification, prediction,
imputation, indexation, segmentation, anomaly detection, etc... In this thesis,
we focus on two tasks: prediction and imputation. We describe two families of
methods to solve these tasks: autoregressive methods and state-space models.

2.1.1 Temporal Tasks

Prediction

Prediction tasks consist of predicting future values of sequences. The task in
itself as a lot of direct applications for instance in stock market prediction, or
weather forecasting, but also for other temporal tasks. For instance, model-based
reinforcement learning models have to predict future states of the world in order
to choose the best possible action.

In statistics, classical linear models are based on autoregressive and moving
average components, described in Section 2.1.2. Most assume linear and stationary
time dependencies with a noise component (Gooijer et al. 2006). In Machine
Learning (ML), non-linear extensions of these models based on Neural Networks
(NNs) were proposed as early as the nineties, opening the way to many other non-
linear models developed both in statistics and ML, like kernel methods (Müller
et al. 1999) for instance. In this thesis, we will investigate Deep Learning (DL)
approaches, based on RNN and dynamic latent models, described in the following
sections of this related work.
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Imputation

In imputation tasks, we do not have access to data points at every timestep. The
goal is to impute the values of those missing data. This task covers a wide area of
problems and situations.

A category of data particularly affected by missing value is spatio-temporal
data. This type of data is often acquired by networks of physical sensors. These
sensors are not always reliable, they can stop recording or transmitting data, or
data can be too noisy to provide useful information. Observations can also be
blurred or occulted by external factors. For instance, satellite imaging in the
visible domain is sensible to clouds that occult parts of the earth’s surface. When
needed, this information should be reconstructed using available data recorded at
different times and locations, or data coming from other types of sensors. Another
example that often occurs in traffic applications is when no signal is recorded at
some places because of the absence of vehicles equipped with sensors at these
places. This does not mean, of course, that traffic is absent. Hence, the values
should be inferred from data available at other places.

The structure of time series allows for many simple heuristics to work well
for the imputation task. The most simple one is the mean of previous and next
values, which assumes linear dependencies between values. Another strategy is
to fill the missing values with the last observed values, which assumes stationary
time series. In the case of multivariate time series, another strategy is to perform
knn-substitution, which consists of replacing missing values of a series by one of
the closest series, for a given metric.

Classical ML algorithms for missing values can be also applied for time series
imputation. The canonical approaches are based on the Expectation Maximization
(EM) algorithm and Matrix Factorization (MF) methods. Bańbura et al. 2014

proposed an adaptation of the EM algorithm for time series with missing data,
claiming good results for long consecutive missing values. And recently, several
adaptations of MF have been proposed for data completion in time series (Y. Song
et al. 2012; Shang et al. 2014; W. Shi et al. 2016). In this thesis, we will mostly
compare our work to RNN based methods, described in Section 2.2

2.1.2 Autoregressive Models

Autoregressive models learn a prediction function f that takes as inputs past
values of the series and predict the next one: xt+1 = f (xt−k, . . . , xt). Here, k
is called the order of the prediction model, which is the number of previous
timesteps on which depends the prediction. To learn this function, we have access
to a historic x = (x1, . . . , xT), on which we fit the function f . The challenge of
this task is to learn a prediction function that generalizes to future unseen values
xT+1, xT+2, . . . .
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Statistical forecasting models rely on strong assumptions to achieve this objec-
tive. The standard Autoregressive (AR) model assumes linear autocorrelation of
time series plus a stochastic process. The AR model of order p writes as follows:

xt =
p

∑
k=1
θkxt−k + b+ εt. (2.1)

Here, θk ∈ Rn×n and b ∈ Rn are the parameters of the model, and εt is white
noise.

The learning problem associated with this model can be formulated as a least-
squares regression problem as follows:

Θ∗, b∗ = arg min
Θ={θ1,...,θp},b

T−1

∑
t=p
||xt+1 −

p

∑
k=1
θkxt−k − b||22.

Since this is a classic convex least-squares regression problem, the parameters can
found analytically or learned by Stochastic Gradient Descent (SGD). Afterward,
prediction can be performed by recursively applying Equation 2.1. Since the
model is differentiable given its inputs, it is possible to parameterize it with
more complex functions, like NNs for instance. In this case, the objective function
becomes non-convex, and SGD is required to estimate the parameters.

The classical AR process depends linearly only on its past values, which pre-
vents it from modeling abrupt changes in the process. Indeed, a one-time large
disruption in the series behavior can affect the model infinitely far into the future.
To model these shocks more accurately, AR models are often used together with
Moving Average (MA) models to form the Autoregressive Moving Average (ARMA)
model.

In a MA model, the next value depends on the series mean, and on a linear
transformation of the last q error terms:

xt = µ +
q

∑
k=1
φkεt−k + εt

where φk are the parameters, εt are white noise error terms, and µ is the mean
of the series. In this model, since the next value depends directly on the past
innovations εt−k, a brutal shock only affects the model for the next q timesteps.

The ARMA model is the combination of two previously described models:

xt =
p

∑
k=1
θkxt−k +

q

∑
k=1
φkεt−k + εt + b.

It benefits from both the AR and MA properties, and the parameters can be
estimated by maximum likelihood.
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X(t-2) X(t-1) X(t) X(t+1)

Z(t-2) Z(t-1) Z(t) Z(t+1)

Figure 2.1 – The dynamic factor graph model from Mirowski et al. 2009. Latent
states are inferred together with a dynamic latent model by energy
minimization with gradient descent. Illustration taken from Mirowski
et al. 2009

The ARMA model has several extensions in the literature, with notably the
Autoregressive Integrated Moving Average (ARIMA) model. The model acts on
differenced series, instead of the values themselves. Differencing consists in
computing the differences between consecutive values of a time series. It means
that instead of considering the raw values xt, xt+1, xt+2, . . . , the model takes as
inputs the differences xt− xt−k, xt+1− xt−k+1, xt+2− xt−k+2, . . . . Differencing non-
stationary time series several times may yield a stationary representation of it, thus
enabling the use of ARMA. This is the case for seasonal time series for instance.
In this case, by applying differentiation with order k equal to the time series
seasonality length removes the seasonality, and the process becomes stationary.

2.1.3 Latent Variable Models

In autoregressive approaches, each predicted data point xt+1 has to be fed
back to the model in order to produce the next prediction xt+2. Hence, their
performance for long term prediction is tightly bounded to their capacity to
generate realistic data. Errors can accumulate quickly, and lead to computational
instabilities.

A different approach consists in learning a dynamic function in a latent space.
Such models decouple dynamics from the data generation process. The objective
of latent dynamic models is to infer a latent vectorial representation zt of data
points xt, that follow a dynamic model f : Rl → Rl such that zt+1 = f (zt).
Classical latent variables ML are State Space Models (SSMs) and Hidden Markov
Models (HMMs). In this thesis, we are interested in DL approaches, like the
Dynamic Factor Graph model from Mirowski et al. 2009.

They proposed a dynamic factor graph model, that learn to infer latent temporal
variables by energy minimization with gradient descent. A schematic view can be
seen in Figure 2.1. The energy to minimize has the form:

E(θ,φ, z) =
T

∑
t=1
||gφ(zt)− xt||22 + || fθ(zt−1)− zt||22.
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The latent states zt are hence constraint to be decoded into observations xt with
gφ, and also to be predictable by the dynamic model fθ. They also introduce a
smoothness penalty on latent variables, in order the regularize both the latent
states and the dynamic function:

R(z) =
T

∑
t=1

=
T

∑
t=1
||zt−1 − zt||22.

The algorithm was successfully applied to synthetic and real-world datasets,
notably to motion capture datasets.

This idea was extended in Ziat et al. 2016 for spatio-temporal time series.
Instead of learning a unique latent vector per timestep, they propose to learn
different latent vectors for different spatial locations. They have access to a binary
adjacency matrix A where Ai,j = 1 means that series are "close" in space. The
closeness is usually defined by a hand-tuned distance threshold between locations.
With this added spatial information, they propose to optimize the following loss:

E(θ,φ, z) =
N

∑
i=1

T

∑
t=1
||gφ(zi

t)− xi
t||22 +

N

∑
i=1

T

∑
t=1
|| fθ(zi

t−1)− zi
t||22

+
N

∑
i=1

1

∑
j=1

T

∑
t=1
Ai,j||zi

t − zj
t||

2
2.

The idea is to regularize the latent space by keeping series closed in the observed
space also closed in the latent space. They successfully applied the model road
traffic prediction and imputation.

2.2 Recurrent Neural Networks

Sequence modeling tasks have gained a lot of interest in the DL community,
and most of the works rely on some variation of Recurrent Neural Networks.
For instance, Che et al. 2016 use them for data imputation in health-care related
tasks, (X. Shi et al. 2015) for spatio-temporal modeling, or (Srivastava et al. 2015)
for video prediction. In this section, we present in detail the RNN and its main
implementation: the Long Short-Term Memory. We also present in more detail
the application of RNNs to language modeling. Langue modeling is one of the
tasks where RNNs show the best performances and is the application of one of
the chapters of this thesis. Moreover, it allows us to present some regularization
technics specific to RNNs.
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Figure 2.2 – Diagram of RNN. Their flexible design enables them to be used in
diverse configurations, allowing them to be used in many tasks where
sequences are involved. Illustration taken from http://karpathy.
github.io/2015/05/21/rnn-effectiveness/

2.2.1 Models and Architectures

Recurrent Neural Networks are a class of artificial neural networks designed
to handle sequential data. They process each element of a sequence one after
the other and maintain a hidden vectorial representation of the sequence at each
timestep. These internal representations act as memories of the previously seen
inputs and can be used as input for downstream tasks.

RNNs have been used for time series modeling in different contexts since the
early nineties (Connor et al. 1994). Recently, these models have witnessed im-
portant successes for several sequence modeling problems; their flexible design
allows them to model a large range of data, and solve various sequential tasks. For
instance, in Figure 2.2, we can see different configurations of RNNs for different
tasks. This led to breakthroughs in domains like speech recognition (Graves et al.
2005; Graves et al. 2013), Natural Language Processing (NLP) (Mikolov et al. 2010;
Mikolov et al. 2012; Sutskever et al. 2011; Cho et al. 2014), video prediction (X. Shi
et al. 2015; Y. Wang et al. 2017), and many others. They are also used as building
blocks in many applications, such as reinforcement learning (Wierstra et al. 2010),
sequential image generation (Gregor et al. 2015), or image captioning (Vinyals
et al. 2017).

We now give a formalization of the RNN. Classical tasks solved by RNNs often
involve the prediction of a target variable y = (y1, . . . , yT) with yt ∈ Rm. The
goal of an RNN is to maximize the log-likelihood of targets factorized as follows:

log pθ(y|x) =
T

∑
t=1

log pθ(yt|x1:t), (2.2)

where x1:t = x = (x1, . . . , xt) are the inputs of the model.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Figure 2.3 – The tanh function and its derivative on the interval [−3, 3]. We can
see that the derivative is close to 0 on both ends. This behavior is
referred as activation’s saturation that prevents gradient from flowing
through it.

To model the conditional distribution pθ(yt|x1:t), the RNN maintains a hidden
state ht ∈ Rd such that pθ(yt|x1:t) = pθ(yt|ht). This hidden state is updated with
each new xt+1 with a function fθ such that ht = fθ(xt,ht−1) and pθ(yt|ht) is
parameterized by a NN.

This yields a fully differentiable model, whose parameters θ can be learned
by gradient descent to maximize Equation 2.2, with a particular algorithm called
Backpropagation Through Time (BPTT) (Williams et al. 1995). This algorithm con-
sists of unfolding the RNN by successively processing the inputs xt and applying
Equation 2.3 with the same parameters θ, given an initial state h0. Gradients are
then backpropagated through the successive updates of ht, and accumulated in
order to update θ.

The most simple implementation of an RNN, often called vanilla RNN, consists
of linear transformations and hyperbolic tangent (tanh) activations:

ht = tanh(Wxxt +Whht−1 + bh). (2.3)

Here, Wx ∈ Rd×n and Wh ∈ Rd×d are weight matrices, and bh ∈ Rd is a bias. So
in this case, θ = {Wx,Wh, bh}.

While being simple and straightforward, this implementation has a notorious
flaw when learned with BPTT: exploding and vanishing gradients (Y. Bengio et al.
1994; Pascanu et al. 2013). Let us look at the derivation of the objective function L
with respect to Wx:

∂LT

∂Wh
=

T

∑
t=1

∂LT

∂ŷT

∂ŷT

∂hT

∂hT

∂ht

∂hT

∂Wh
,

where ŷT is the prediction of the Tth output by the model.
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Figure 2.4 – Architecture of an Long Short-Term Memory (LSTM) recurrent net-
work. The gating mechanisms prevent exploding and vanishing
gradient. Illustration taken from https://en.wikipedia.org/wiki/
Long_short-term_memory.

The issue comes from the ∂hT
∂ht

term that backpropagates the gradient through
time and that writes as:

∂hT

∂ht
=

T

∏
k=t

∂hk+1

∂hk
=

T

∏
k=t

(
1− tanh2(Wxxk+1 +Whhk + bh)

)
Wh.

We can see that the weight matrix Wh is multiplied T− t times by itself. Hence,
if at initialization its norm is high, the gradient will grow exponentially with
each timestep (exploding gradient), and if it is low, it will decrease exponentially
(vanishing gradient). Moreover, the tanh activation can also be problematic, as its
derivative falls quickly to 0 has its output is moving away from 0. This is depicted
in Figure 2.3, where we see that the tanh function is easily saturated.

These design issues are tackled by a more sophisticated implementation of
RNNs: the Long Short-Term Memory (LSTM) (Hochreiter et al. 1997). The update
rule of an LSTM writes as follows:

ft = σ(W f [ht−1, xt] + b f )

it = σ(Wz[ht−1, xt] + bz)

ot = σ(Wo[ht−1, xt] + bo)

ct = ft � ct−1 + it � σ(Wc[ht−1, xt] + bc)

ht = ot � σ(ct),

where [ht−1, xt] is the concatenation of vectors ht−1 and xt, � is the element-wise
multiplication between vectors, and σ is the sigmoid function. LSTMs have a
second state vector ct, the state of the LSTM, which is controlled by ht through
gating mechanisms. The LSTM is composed of three gates: the forget gate ft, the
input gate it, and the output gate ot. They are called gates because they control
the passage of information at certain points in the network. Indeed, since they are
activated by a sigmoid function, their values are in [0, 1], and when multiplied to

https://en.wikipedia.org/wiki/Long_short-term_memory
https://en.wikipedia.org/wiki/Long_short-term_memory
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the states, they let information pass if the value is close to 1, or block it if close
to 0. The forget gate can erase information from ct, the input gate controls the
information from the input that will affect ct, and the output gate controls the
information flow from ct to ht, which is also the output of the network. This
gated mechanism allows them to circumvent the gradient problems of vanilla
RNNs by breaking the sequential multiplicative dependency of the gradient.

2.2.2 Training RNNs for Sequence Generation

When training RNNs for sequence generation, inputs and outputs are in the
same domain. This raises the question of which input to provide to the RNN while
training, observed values, or generated values?

Strictly following the maximum likelihood formulation in Equation 2.2 yields
a straightforward answer: the observed values must be fed to the RNN. This
method is called Teacher Forcing, as the training algorithm, the "teacher", impose
the "right" inputs to the RNN. However, at test time, the RNN is fed with its own
outputs, which are not always perfect, and small predictions error can put the
RNN in a state unseen during training, leading to larger errors subsequently.

To circumvent this issue, S. Bengio et al. 2015 introduced a curriculum learning
approach. During training, when computing the next state ht = fθ(xt,ht−1), they
propose to replace the true value xt with a value generated by the RNN x̂t with a
probability ε, a hyper-parameter of the training algorithm. They also proposed
to schedule ε from 0 to 1 during training. At the beginning of training, when
the RNN has a random behavior, the true values are always fed as inputs, and as
training progresses, the RNN is fed more and more with its own outputs. They
applied this method to several generation tasks, like image captioning or speech
recognition with success. After that, Goyal et al. 2016 proposed the Professor
Forcing algorithm, which uses an adversarial algorithm (Goodfellow et al. 2014)
to force an RNN to behave in the same when presented with real data or its own
inputs.

In their work on conditional video generation, Chiappa et al. 2017 performed
a large experimental campaign on the scheduling procedure. They found out
that the proportion of teacher forcing employed during training led to a tradeoff
between short term and long term prediction. When training is dominated by
self-generated inputs, better long term predictions are achieved, but the resulting
samples are blurrier. On the other hand, when training is dominated by teacher
forcing, the model generates sharper short term predictions, but they deteriorate
quickly.
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2.2.3 RNN Variants

The LSTM architecture became very popular and is used in most works employ-
ing RNNs. But several other implementations were proposed in order to improve
or simplify the LSTM architecture.

GRU. The most notable one is the Gated Recurrent Unit (GRU) network (Cho
et al. 2014). It fuses some gates in the LSTM to reduce the number of learned
parameters, and to use only one state variable. The update rule for the state
variable writes as follows:

zt = σ(Wz[ht−1, xt] + bz)

rt = σ(Wr[ht−1, xt] + br)

ot = tanh(Wo[rt � ht−1, xt] + br)

ht = zt � ht−1 + (1− zt)� ot.

There is still a reset gate rt, but this time it is applied directly to the state variable
to compute the new state candidate ot. There is no more input gate, only an
update gate zt, that selects which units will be carried from the previous state,
and which will be updated.

IRNN. To further simplify the architecture, Q. V. Le et al. 2015 proposed the
Identity RNN. This IRNN is similar to the vanilla RNN, where the tanh activation
function is replaced by the Rectified Linear Unit (ReLU) activation function, which
is 0 when the input is negative, and the identity otherwise. They propose to
initialize the update weight matrix Wh as the identity matrix. Combined with
ReLU, this means that at the beginning of learning, positive units in ht are copied
to the next state, and negative ones are replaced by 0. Hence, this mechanism
emulates the update and forget gate of the LSTM, without learning supplementary
parameters. They obtain performances similar or superior to LSTMs on toy tasks,
language modeling, and speed recognition. However, because of the popularity of
LSTMs, the fact that IRNNs did not achieve any strong performance improvements
and where not extensively tested on large scale real-world datasets, it is LSTMs
that are still commonly used.

QRNN. Even if RNN architectures are efficient, they still need to process inputs
sequentially. It induces a heavy computation burden, especially when sequences
become longer, as the process cannot be parallelized. This is why Bradbury et al.
2017 proposed the Quasi-Recurrent Neural Network that relies on Convolutional
Neural Networks (CNNs) to improve the parallelization of RNNs.

The different gates and state candidates are computed independently across
time by convolution kernels. Hence, the selection of the kernel size affects directly
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the temporal range upon which the hidden state is computed. It thus controls the
trade-off between computation speed and memory length. The resulting gates
and state candidates are then pooled in time with gating function, like classical
LSTMs or GRUs. With this framework, authors were able to obtain competitive
performances on sentiment classification and language modeling tasks at 3 times
the training speed of a similar LSTM on average.

Very active research on RNNs, and particularly LSTMs, architectures led to a
large number of possible variants. It then became difficult to choose the right one
for a given task. In a large scale experimental campaign, Greff et al. 2017 tested
many variations of the LSTM architecture on several tasks and datasets. They
first report that no variant is globally better than the others and that the optimal
architecture depends on the specific task. They also show that the standard LSTM
obtains globally strong performances across all domains, limiting the impact of
the diverse variants.

To further study the performances of different RNN architectures, Collins et al.
2017 performed a comparative study of vanilla RNNs, GRUs, and LSTMs. They
showed that at a given parameter budget, all three architectures yield similar
performances. But they also note that LSTMs tend to converge faster.

All this body of work tends to legitimize the wild use of LSTMs as default
architecture to handle sequences in DL tasks.

2.2.4 RNN Based Architectures

RNNs are used as base build blocks in several larger architectures. We present
here three popular ones: the multi-layer RNN, the bidirectional RNN, and the
sequence to sequence (seq2seq) model.

Multi-Layer RNN

Like many DL architectures, RNNs can be stacked to form multi-layered RNNs.
Stacking RNNs yield more powerful models that are able to capture more complex
temporal dependencies, but are also more prone to overfitting and need to be
regularized carefully.

For instance, stacking two RNNs will yield an activation function of the form:h1
t = fθ1(xt,h1

t−1),
h2

t = fθ2(h1
t ,h2

t−1),

with h1
t the state of the first layer, h2

t the state of the second layer, and θ = {θ1, θ2}.
In multi-layer RNNs, it is the state of the last layer that is used as input of the final
softmax layer.
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Figure 2.5 – The seq2seq architecture. The encoder encodes the input sequence
into a vectorial representation that is used by the decoder to predict
the target sequence. The gating mechanisms prevent exploding and
vanishing gradient. Illustration taken from Cho et al. 2014.

Bidirectional RNN

In some applications, complete sequences must be encoded. It is particularly
the case in NLP, with tasks such as text classification (Howard et al. 2018), named
entity recognition (Lample et al. 2016), or part-of-speech tagging (P. Wang et al.
2015).

In such cases, encoding a sequence with a single RNN can be limiting. A solution
is to learn two RNNs at the same that parse the sequence in opposite directions.
This architecture is called a Bidirectional RNN (BiRNN). One RNN will parse the
sequence from left to right, and the other from right to left. To form outputs at
each timestep, their states are concatenated. It is also possible to have multi-layer
bidirectional RNN. In that case, the input of the next layer is the concatenation of
the state of the two RNNs from the last layer.

Sequence to Sequence and Attention

The seq2seq architecture was first proposed by Kalchbrenner et al. 2013 and Cho
et al. 2014 for neural machine translation. The model is composed of an encoder
RNN and a decoder RNN. In Cho et al. 2014, the encoder is a bidirectional RNN
that encodes a source sentence into a vectorial representation c. The decoder is an
RNN that takes as input c at each timestep in addition to the decoder input and
state. Figure 2.5 illustrates the architecture.

In a following work, Bahdanau et al. 2015 proposed to add to the seq2seq
architecture an attention mechanism. Instead of conditioning the decoder by the
same vector c at each timestep, they proposed to use a linear combination of the
encoder states weighted by factors that depend on the decoder current state. The
mechanism is illustrated in Figure 2.6.
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Figure 2.6 – The attention mechanism for the seq2seq model. The decoder is
conditioned at time t by a linear combination of the encoder states,
weighted by weights αt,i that depend on the decoder state st−1. Illus-
tration taken from Bahdanau et al. 2015.

Formally, let (h1,h2, . . . ,hT) be the vectorial states of the encoder and st−1 the
current vectorial state of the decoder. The objective is to compute the conditioning
vector ct that will be used in addition to st−1 to compute the next state st. This is
done as follows:

ct =
T

∑
i=1

αt,ihi.

And the weights αt,i are obtained as follows:

αt,i =
exp(et,i)

T
∑

k=1
exp(et,k)

,

where et,i = a(st−1,hi) is an attention vector computed by the attention function
a. The αt,i weights sum to 1 and the resulting conditioning vector ct can be viewed
as a soft selection of an input state. In the original paper (Bahdanau et al. 2015),
this selection mechanism was intended as a way to align the input and output
sentences that are from different languages that do not follow the same word
positioning rules.

It also helps the learning algorithm by allowing gradient flow between each
decoding and encoding states, preventing vanishing and exploding gradients. It
was not the case in the original seq2seq model, as gradients had to flow through
each output and input states sequentially.
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2.2.5 Application: Language Modeling

A direct application of RNNs, and more specifically LSTMs, is language modeling.
As an entire chapter of this thesis is dedicated to this task, we present here how
the LSTM is applied to language modeling.

Language models are at the heart of numerous works, notably in the text mining
and information retrieval communities. Tasks like automatic completion, dialog
systems, or automatic translation, are based on language models. Instead of
fine-grained semantical analysis, these statistical models aim at extracting word
occurrence distributions in different contexts.

Before RNNs, language models were based on unstructured n-grams models.
The first breakthrough in neural language modeling was from the C-Bow and
skip-gram algorithm proposed in Mikolov et al. 2013. Their algorithm learns word
representations by predicting word contexts, i.e. surrounding words in texts. The
resulting word representations were then used for many downstream tasks, but
often in an unstructured manner.

Language Modeling with RNNs. Meanwhile, RNNs were also used for language
modeling. The language modeling problem is easy to formalize in the RNN
framework. With x = {x1,x2, . . .xT} a text sequence composed of T tokens, the
likelihood of the sequence for an RNN with parameters θ writes as follows:

pθ(x) =
T

∏
t=1

pθ(xt|x1:t−1) =
T

∏
t=1

pθ(xt|ht),

where x0 is a token symbolizing the start of the sequence, and ht is the latent
state of the RNN. xt are discrete tokens, hence they cannot be directly fed into
the LSTM. Instead, we learn an embedding matrix U , which is a lookup table that
matches a token with a continuous vector. Since the outputs of the model are
discrete token, pθ(xt|ht) corresponds to a categorical distribution obtained by the
application of a softmax layer on top of the output of the RNN:

pθ(xt|ht) =
eht>vxt

∑
x∈V

eht>vx
,

where vx is a vector of learnable parameters corresponding to token x, and V is
the vocabulary.

In the last few years, several works proposed modifications of the LSTM ar-
chitecture to learn better language models (Merity et al. 2017; Zilly et al. 2016).
However, Merity et al. 2018b and Melis et al. 2018 concurrently show that a
vanilla LSTM, with careful tuning and a few regularization techniques, can achieve
state-of-the-art language modeling performances. We present here two important
regularization techniques, weight tying and dropout, and how they are adapted
for the task.
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Figure 2.7 – Variational dropout technique (Gal et al. 2016) (right) compared
to the standard technique (left). Each square represents an RNN
unit, with horizontal arrows representing time dependence (recurrent
connections). Vertical arrows represent the input and output to each
RNN unit. Coloured connections represent dropped-out inputs, with
different colours corresponding to different dropout masks. On the
left, all masks are different at each timestep. On the right, the same
masks are used at each timestep. Dashed lines correspond to standard
connections with no dropout. Illustration taken from Gal et al. 2016.

Weight Tying. A first regularization technique is weight tying (Inan et al. 2017):
sharing the weights between the word embeddings and the decoder matrices.
This means that for all word embedding ux ∈ U , ux = vx. Those matrices
are usually very large because they scale linearly with the number of individual
tokens. Hence, sharing these matrices reduce drastically the number of parameters
of the model.

Dropout. Dropout is one of the main neural network regularization techniques
(Hinton et al. 2012). The principle is to randomly mask a portion of layers’
activations, preventing co-adaptations of neurons. This encourages the network
to produce redundant outputs, but never identical. With this technique, larger
layers can be used without overfitting, globally enhancing results.

In RNNs, dropout can be applied at several spots in the network: on the em-
bedding matrix, between RNN layers, before the softmax layer. Gal et al. 2016

proposed an implementation of dropout specific to RNN: variational dropout, de-
picted in Figure 2.7. In this method, dropout masks are kept constant on the entire
sequence, offering a more theoretically grounded framework (Gal et al. 2015),
and better results on language modeling. In the same paper, they also propose
to apply dropout at the word level, by masking a portion of the conditioning
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tokens of the LSTM. This prevents the LSTM from learning hard assignments in the
presence of rare-words.

2.3 Other Deep Temporal Models

One of the principal challenges of sequential tasks is to handle long-term
dependencies. We present here models specifically designed to augment RNNs
memories.

2.3.1 Convolutional Neural Network

Convolutional Neural Networks are NNs designed to handle discrete signals
and in particular images. Vectorial time series can be seen as 1D signals, and
therefore 1D convolutions can be applied.

Let x, with xt ∈ Rn an input sequence of size T. A 1D-CNN is composed of a
kernel θ ∈ Rd×k×n, where d is the output dimension and k the kernel size. This
kernel is a tensor of learnable parameters that are used to compute the next state
ht as follows:

hi
t =

k

∑
j=1

< xt−j, θi,j >, (2.4)

where hi
t is the ith component of ht, and θi,j ∈ Rn is the vector a position (i, j)

in θ. By applying Equation 2.4 sequentially on the whole sequence, an output
representation is formed. Like other DL architectures, CNNs can be stacked on top
of each other to form deep neural networks. This formulation was first proposed
in X. Zhang et al. 2015 and applied to character-based text classification.

The principal advantage of this architecture is that all states ht at all times t can
be computed in parallel as they depend on their input only. However, the main
drawback is that the model can only look at the k last inputs to compute the state,
which prevents long-term reasoning.

2.3.2 Memory Network

One of the first attempts to extend the memory of RNNs was the Memory
Network (Sukhbaatar et al. 2015). While RNNs can theoretically retain information
at arbitrary long-range, in practice, they tend to have a relatively short memory,
and "forget" information after a few dozen of timesteps. That is why some
techniques like continuous cache pointers (Grave et al. 2017a), that biased the
output of trained language models toward words that appeared previously in the
text, work well. For instance, in the Wikipedia corpus, the word "jaguar" does not
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Figure 2.8 – The transformer network for language modeling. The blue ovals
are hidden stats. We can see that each hidden state is com-
puted by attending at all past states generated by the previous
layer. Illustration taken from https://ai.googleblog.com/2018/11/
open-sourcing-bert-state-of-art-pre.html

appear often in a random article. But if it appeared once, the current article is
probably about jaguars, and the word is more likely to appear again.

Researchers tried to equip RNNs with a separate memory. In the Memory
Network, the memory takes the form of a matrix where each row corresponds to a
piece of stored information. An RNN can "read" and "write" in this memory with an
attention mechanism (Bahdanau et al. 2015). This model obtained state-of-the-art
results on several language comprehension tasks

2.3.3 Transformer Network

Taking the attention mechanism to its limits, Vaswani et al. 2017 proposed an
attention-only model. While RNNs states are computed recursively by incorporat-
ing inputs one after the other, the transformer computes its state with an attention
mechanism on all previous inputs, see Figure 2.8. With this architecture, they
attain state-of-the-art results on the machine translation task.

Following this breakthrough, many researchers proposed extensions on the
model, primarily in the Natural Language Processing (NLP) community. Devlin
et al. 2019 proposed the BERT model, where they use a transformer to pre-train an
Language Model (LM) on variations of the self-supervised language modeling task.
By then fine-tuning the model on downstream tasks, they beat state-of-the-art
results on many NLP tasks like question answering or sentiment analysis. Several
adaptations and improvements were proposed, for instance in Radford et al. 2019

or Dai et al. 2019, or for other languages, like French (H. Le et al. 2019) for instance.

https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html
https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html
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Figure 2.9 – The WaveNet architecture. The dilated convolutional architecture
gives a large receptive field to the network while limiting the total
number of parameters and computations. Illustration taken from
Oord et al. 2016a

The success of the model in NLP inspired researchers in other domains where
data are sequential. A recent example is Weissenborn et al. 2019 that proposed a
spatio-temporal version of the transformer network for video prediction.

2.3.4 WaveNet

Another research direction on temporal models is based on CNNs. A particu-
larly successful contribution in this direction is the WaveNet (Oord et al. 2016a).
This model was designed to handle audio signals, that have the particularity of
containing simultaneously very high and very low frequencies. Audio sequences
are usually long, as a very high sampling frequency is required to produce high-
definition audio. It also means that models must cover a large period, in terms of
the number of timesteps, to account for very low frequencies.

To account for all these challenges, they proposed to use dilated convolutions,
as pictured in Figure 2.9. This kind of convolutional kernel has a stride equal to
the kernel size, reducing the number output feature vectors.

With notations of Equation 2.4, the update rule would be:

hi
t+1 =

k

∑
j=1

< xt−k∗(j−1), θi,j > .

By stacking such layers, high-level output vectors cover a large, but less dense,
temporal span, while lower cover a smaller, but denser, temporal span. Hence, the
architecture can work on a large range of frequencies, while keeping the number
of parameters reasonable. They were thus able to generate high-definition speech
and music.
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2.3.5 Physics Based Models

Physical processes represent a large part of temporal data. Physicists design
mathematical systems to infer unobserved states of such processes and predict
future values. These models are the fruit of long research history and have proven
their efficiency. That is why several DL researchers proposed deep dynamic models
guided by the physical and mathematical models, such as Bézenac et al. 2018 that
introduced a neural network derived from partial differential equations to predict
sea surface temperature.

Learning the parameters of differential equations based models with neural
networks is a recent research direction in DL (Y. Lu et al. 2018; Long et al. 2018). It
is based on the observation that Residual Neural Networks (ResNets) (K. He et al.
2016) can be seen as Euler discretization of continuous transformations. A ResNet
is a network composed of a succession of residual blocks. A residual block in a
neural network which outputs are added to its inputs, as follows:

ht+1 = ht + f (ht, θ),

where ht is the input at step t of the block and f the residual neural network with
parameters θ.

In standard deep dynamical models, the step size is fixed, and models are
discrete in time. But Chen et al. 2018 observed that if the step size is reduced,
the limit is a continuous dynamics that can be parameterized by an Ordinary
Differential Equation (ODE):

dh(t)
dt

= f (h(t), t, θ).

They thus proposed a framework for learning such networks with black-box dif-
ferential equation solver, producing ODE based neural models that are continuous
in time. They used it to learn continuous dynamics of physical processes like
Lorenz Attractor.

2.4 Sequential VAEs

Another family of dynamic sequential models is based on deep variational
methods. Rather than learning point representations ht, these generative models
learn to infer distributions of latent variables zt. The latent space is shaped
by a simple prior, typically a standard Gaussian, that is easy to sample from.
Modeling latent representations in a probabilistic manner allows the model to
capture uncertainties in the data. And temporal data often present uncertainties.
For instance, uncertainties in the future, or uncertainties on unobserved quantities
in complex systems like climate.
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2.4.1 The Variational Auto-Encoder

Let z ∈ Rd be the latent variable that generates observation x ∈ Rn. Inferring
latent continuous variables in a Bayesian framework is hard in the general case,
as the posterior distribution p(z|x) is often intractable. One way to circumvent
this issue is by approximating it by a so-called variational distribution q(z). The
goal is then to find the variational distribution that is the closest to p(z|x) by
minimizing their Kullback-Leibler Divergence (KLD), that writes as follows:

DKL
(
q(z)||p(z|x)

)
=
∫

q(z) log
q(z)

p(z|x) dz.

By Bayes’s rule, we can write:

DKL
(
q(z)||p(z|x)

)
=
∫

q(z)

[
log

q(z)
p(z, x)

+ log p(x)

]
dz

=
∫

q(z)
[
log q(z)− log p(z, x)

]
dz + log p(x).

In the last line, the marginal likelihood of the data p(x) appears. This quantity
depends only on the data. We can rearrange the equation as follows:

log p(x) = DKL
(
q(z)||p(z|x)

)
+ Eq(z)

[
log p(z, x)− log q(z)

]
= DKL

(
q(z)||p(z|x)

)
+ L(q).

As log p(x) does not vary with respect to q, maximizing L(q) leads to the min-
imization of DKL

(
q(z)||p(z|x)

)
, which is our primary goal. And since the KLD

is non-negative, L(q) is actually a lower bound of the marginal likelihood, or
evidence, of the data, called the Evidence Lower Bound (ELBO).

So, the goal of variational inference is to maximize

L(q) = Eq(z)
[
log p(z, x)− log q(z)

]
= Eq(z)

[
log p(x|z) + log p(z)− log q(z)

]
= Eq(z)

[
log p(x|z)

]
−Eq(z)

[
log q(z)− log p(z)

]
= Eq(z)

[
log p(x|z)

]
− DKL

(
q(z)||p(z)

)
.

In simple cases, the variational distribution can be computed with a coordinate
ascent algorithm. However, we are interested here in large datasets of high-
dimensional and structured data, such as images for example. Hence, to produce
qualitative samples, we use a NN for the likelihood pθ(x|z), where θ are the
parameters of the NN. Moreover, with large datasets, learning the parameters
of all the variational distribution q(z) for all data points becomes intractable.
A strategy is to perform amortized Variational Inference (VI) by learning a NN,
named a recognition network, to predict the parameter of the posterior given a
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x

zφ θ

Figure 2.10 – Variational Auto-Encoder (Kingma et al. 2014). The grey circle
represents latent variables and the white circle observed variables.
The panel represents the dataset ensemble Full lines represent the
generative model and dashed lines the inference model.

particular observation x: qφ(z|x), where φ are the parameters of the recognition
model. The corresponding graphical modeling is depicted in Figure 2.10, and the
ELBO that is maximized now writes as follows:

L(θ,φ) = Eqφ(z|x)
[
log pθ(x|z)

]
− DKL

(
qφ(z|x)||p(z)

)
. (2.5)

The challenge here is the to jointly learn the neural network parameters θ and
φ, who would give an expressive model, but cannot be learned by traditional EM
methods. The goal is then to learn the full model by gradient descent, but there is
an issue with the gradient of φ with respect to the ELBO. Indeed, the likelihood
term is an expectation over qφ(z|x) that has no closed-form since we use neural
networks. We hence have to estimate it empirically, which requires to sample
from qφ(z|x), breaking the gradient flow from the ELBO.

To do this, Kingma et al. 2014 and Rezende et al. 2014 concurrently proposed
a simple but efficient method: the reparametrization trick. By choosing q(z)
adequately, it is possible to reparametrize the sample function, allowing the
computation of an unbiased and low variance estimation of the gradient. In
practice, and in the rest of this manuscript, q(z) is a Gaussian distribution with a
diagonal covariance matrix. In this case, the reparameterized sampling procedure
z ∼ qφ(z|x) = N (z; µ(x), σ2(x)I), where µ(x) and σ(x) are the NNs forming the
recognition network qφ(z|x), is:

z = gφ(x, ε) = µ(x) + σ(x)� ε,

where ε ∼ N (0, I). With this reparametrization, the only stochastic component is
ε, which does not depend on φ, and can be viewed as an input of the model.

We just saw how to compute the likelihood term of the ELBO, and how to
compute the gradient on both φ and θ, and the only term left is the KLD between
the posterior and the prior. By making the prior Gaussian p(z) = N (µp, σ2

p I), it
is possible to derive a closed-form from this KLD:

DKL
(
q(z|x)||p(z)

)
= log

σp

σ(x)
+

σ2(x) + (µ2
p − µ2(x))

2σ2
p

− 1
2

.
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Figure 2.11 – Manifold learned on the Frey Faces dataset by a VAE in Kingma et al.
2014, where the latent space is in 2D. The four images in the corners
are real images, whose latent representations were inferred by the
recognition model. The resulting latent codes are then interpolated
on a grid, and the decoded images are displayed on the figure. We
can see that transitions in the latent space are smooth, indicating
that the latent space organizes the data semantically. Illustration
taken from Kingma et al. 2014.

We just described the full Variational Auto-Encoder (VAE). The model can be
viewed as a regularized auto-encoder, where qφ(z|x) is an encoder, and pθ(x|z)
a decoder. In this sense, the likelihood term in the ELBO can be seen as a re-
construction term and the KLD as a regularization term. Usually, auto-encoders
are regularized by adding an `2 norm on the network parameters, whereas here
it is the latent codes that are regularized. The KLD term pushes all variational
distribution to be close from the prior, while the likelihood term encourages good
reconstructions.

The VAE is one of the first contribution to the Bayesian Deep Learning sub-
field. It offers a principally Bayesian framework to design NNs. The VAE is
also a powerful generative model, as it is possible to generate samples from
the posterior and the prior. Moreover, it empirically appears that VAEs learn
a semantic latent space, as can be seen on the latent manifold visualization in
Figure 2.11. Further research in this direction tends to confirm this capacity of
the VAE to learn disentangled representations of data (Higgins et al. 2017), where
latent dimensions are independent of one another, which find applications speech
recognition (Hsu et al. 2017) for instance.

2.4.2 Autoregressive Models

The VAE framework was developed and extended in many ways, and in partic-
ular for sequential data, with applications such as sequence modeling, generation,
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Figure 2.12 – Stochastic Recurrent
Network (Bayer et al.
2014).
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Figure 2.13 – Variational Recur-
rent Neural Network
(Chung et al. 2015).

and prediction. When using RNNs for sequence generation, for instance, the
sampling process appends in the observation space, which can be a problem
if it is multi-modal and in high dimension. By instead using deep Variational
Inference (VI), the sampling process can be performed in a more controlled latent
space, at the cost of approximate likelihood maximization.

One of the first VAE extensions to sequential tasks was proposed by Bayer et al.
2014. They straightforwardly augment an RNN with random variables inferred by
deep VI, where qφ(z|x) is parameterized by a forward RNN. The graphical model
is pictured in Figure 2.12. In this model, the random states zt are independent in
time and are used to add stochasticity into a classical RNN. The resulting lower
bound is the same as in Equation 2.5. The method was used on multivariate time
series: polyphonic music and motion capture.

Afterward, Chung et al. 2015 modified the model by adding structure between
the latent stochastic states, as can be seen in Figure 2.13. This added temporal
structure allows the model to put more semantic information into the latent
space. Indeed, in Bayer et al. 2014, since the latent states are independent in time,
the same state can be sampled from pθ(zt) for radically different ht. The RNN
hence has the additional task of interpreting potentially identical latent state in a
different way depending on the current state ht.

In contrast, the generative model of Chung et al. 2015 is structured in time
through the RNN latent state: zt ∼ pθ(zt|ht−1). Hence, the latent state zt carries
temporal information, more easily interpretable by the RNN. The stronger decou-
pling between the temporal stochasticity, encapsulated in the latent space, and
the temporal dynamic, learned by the RNN, allows the model to obtain better
performances on the same tasks.
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Figure 2.14 – Deep Markov Model
(Krishnan et al. 2017).
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Figure 2.15 – Deep Variational
Bayes Filter (Karl et al.
2017).

2.4.3 State Space Models

RNNs are autoregressive models, which have the drawback of accumulating
errors when performing long term prediction, as described in Section 2.1.3. More-
over, RNNs are usually trained by taking real data as input. However, when
generating future data, they are fed with their own prediction, which can lead to
computational instabilities. Autoregressive models also come with high compu-
tational costs when used for high dimensional data, such as videos, since each
frame as to be re-encoded.

That is why several works explored SSMs learned with deep VI. Krishnan
et al. 2015; Krishnan et al. 2017 proposed a deep non-linear SSM using Deep
Neural Networks (DNNs) as recognition and dynamic model. The corresponding
graphical model is pictured in Figure 2.14. They propose to train the model with
the following ELBO:

L(θ,φ) =
T

∑
t=1

Eqφ(zt|x)
[
log pθ(xt|zt)

]
− DKL

(
qφ(z1|x)||pθ(z1)

)
−

T

∑
t=2

Eqφ(zt|x)

[
DKL

(
qφ(zt|x)||pθ(zt|zt−1)

)]
. (2.6)

The main difference between Equation 2.6 and the ELBO in Equation 2.5 is in the
third term. The KLD is now an expectation over the inferred previous latent state
zt−1. This allows parallel computation of the KLD terms in the sum but breaks the
temporal flow of gradient.

It follows that the design of the inference network qφ(zt|x) becomes crucial to
stabilize the model. In Krishnan et al. 2017 they explore several architectures and
show that designing qφ(zt|x) as a bidirectional RNNs on the entire input sequence
yield better performances.

The main drawback of this formulation is that the dynamics pθ(zt|zt−1) is only
learned with these KLD terms, and we saw there is no gradient flow through time.
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Figure 2.16 – Ground truth (top), reconstructions (middle), generative samples
(bottom) from identical initial latent states for the two bouncing
balls experiment. The red bar indicates the length of the training
sequences, showing that the model is able to extrapolate beyond the
length seen during training. Illustration taken from Karl et al. 2017.

Hence, the dynamics is learned independently on timestep pairs. Watter et al.
2015 mitigate this issue by retropopagating the likelihood through the dynamics
prior function. This adds a supplementary loss on the dynamics, but gradients
are still computed on timestep pairs. Also, the resulting loss is no longer a proper
lower bound.

Going further, Karl et al. 2017 proposed to learn a deterministic dynamics that
depend on random independent latent states, pictured in Figure 2.15. This yields
a deep SSM, learned with a proper ELBO, where gradients can flow through the
whole sequence thanks to the deterministic states zt while handling stochasticity
in the auxiliary random state yt. They hence were able to show state-of-the-art
long term stochastic prediction on toy video datasets, like bouncing balls and
pendulums, a sample of which can be seen in Figure 2.16.
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Chapter abstract

In this chapter, we are interested in spatio-temporal data, which are multi-
variate time series that are correlated spatially. Contrary to current deep
learning methods, like Recurrent Neural Networks (RNNs), that handle these
correlations implicitly, we propose a framework to explicitly model these rela-
tions. Our method shows superior results on prediction and imputation tasks
on several datasets. Experiments show the ability of the approach to extract
relevant spatial relations.

• Ali Ziat*, Edouard Delasalles*, Ludovic Denoyer, and Patrick Gallinari
(2017). “Spatio-Temporal Neural Networks for Space-Time Series Fore-
casting and Relations Discovery”. In: 2017 IEEE International Conference
on Data Mining, ICDM 2017, New Orleans, LA, USA, November 18-21, 2017,
pp. 705–714.
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• Edouard Delasalles, Ali Ziat, Ludovic Denoyer, and Patrick Gallinari
(2019c). “Spatio-temporal neural networks for space-time data modeling
and relation discovery”. In: Knowledge and Information Systems 61.3,
pp. 1241–1267.

3.1 Introduction

Time series exhibiting spatial dependencies are present in many domains in-
cluding ecology, meteorology, biology, medicine, economics, traffic, and vision.
The observations can come from multiple sources e.g. GPS, satellite imagery,
video cameras, etc. Several difficulties arise when modeling spatio-temporal data,
among them: 1) their size: sensors can cover very large space and temporal lags;
2) the complexity of the underlying generation process, which might be highly
non-linear; and 3) the inherent uncertainty of the measurements: sensors are not
perfect, and data points are frequently missing or noisy. Answering these chal-
lenges, i.e. reducing the spatial dimensionality, uncovering the underlying data
generation process, and modeling data uncertainty naturally leads to considering
latent dynamic models. This has been exploited both in statistics (Cressie et al.
2011) and in Machine Learning (ML) (Bahadori et al. 2014; Koppula et al. 2013).

Deep Learning (DL) has also developed a large range of dynamic models that
are able to capture meaningful features of the sequential data generation processes.
However, DL models for structured data are usually restricted to videos, such as
the Convolutional RNN (X. Shi et al. 2015; Srivastava et al. 2015) or video pixel
networks (Kalchbrenner et al. 2017), for instance. One of the first DL models for
graph data was proposed in Kipf et al. 2017, which is concurrent with this work.

We introduce a general class of deep spatio-temporal models for time series of
spatial processes. They allow us to explicitly model both spatial and temporal
dependencies. The model is designed to capture the dynamics and correlations
in multiple series at the spatial and temporal levels. This is a dynamical system
model with two components: one for capturing the spatio-temporal dynamics
of the process into latent states, and one for decoding these latent states into
actual series observations. The model is tested and compared to state-of-the-art
alternatives, including Recurrent Neural Networks (RNNs), on several datasets for
imputation and forecasting tasks. Tests were performed on time series coming
from various domains: health, traffic, meteorology, and oceanography. Besides
a quantitative evaluation on forecasting and imputation tasks, the ability of the
model to discover relevant spatial relations between series is also analyzed.

The chapter is organized as follows: the model is presented for the forecasting
task in sections 3.2 and 3.3 with its different variants, and for the imputation task
in section Section 3.4. The experiments are described in Section 3.5 for forecasting
(3.5.2), relations discovery (3.5.3) and imputation (3.5.4).
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3.2 The Spatio-Temporal Neural Network Model

3.2.1 Notations and Task

Spatio-temporal time series we consider are multivariate and can be high-
dimensional. We thus adopt formalism slightly different from the one described
in Section 2.1. We consider sets of n temporal series, with m dimensions and of
length T. Hence, m = 1 means that we consider n univariate series, while m > 1
corresponds to n multivariate series each with m components. X is the value
history of length T available for training. X is then a tensor in RT×n×m, such that
Xi

t ∈ Rm is an m-dimensional vector containing values of series i at time t. Xt
will denote the slice of X at time t, such that Xt ∈ Rn×m denotes the values of all
the series at time t.

We consider two tasks: forecasting and imputation. For simplicity, we first
present the forecasting model in a mono-relational setting. An extension to
multi-relational series where different relations between series are observed is
described in Section 3.2.4. We consider that the spatial organization of the sources
is captured through a matrix W ∈ Rn×n. Ideally, W would indicate the mutual
influence between sources. In practice, it might be a proximity or similarity
matrix between the sources: for geospatial problems, this might correspond to
the inverse of a physical distance - e.g. geodesic - between sources. For other
applications, this might be provided through local connections between sources
using a graph structure (e.g. adjacency matrix for connected roads in a traffic
prediction application or graph kernel on the web). Firstly, we make the hypothesis
that W is provided as a prior on the spatial relations between the series. An
extension where these relations are learned is presented in Section 3.3.

We then consider in the remainder of this section the problem of spatial time
series forecasting. We want to learn a model f : RT×n×m ×Rn×n → Rτ×n×m able
to predict τ timesteps into the future based on X and on their spatial dependency.

3.2.2 Modeling Time Series with Continuous Latent Factors

Let us first introduce the model in the simpler case of multiple time series
prediction, without considering spatial relations. The model has two components.

The first one captures the dynamic of the process and is expressed in a latent
space. Let Zt ∈ Rn×dz be the latent representation, or latent factors, of the series
at time t. The dynamical component writes Zt+1 = g(Zt). The second component
is a decoder which maps latent factors Zt onto a prediction of the actual series
values at t: X̃t = d(Zt), X̃t being the prediction computed at time t.
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Learning Problem. The objective is to learn the two mapping functions d and g
together with the latent factors Zt, directly from the observed series. We formalize
this learning problem with a bi-objective loss function that captures the dynamics
of the series in the latent space and the mapping from this latent space to the
observations. Let L(d, g, Z) be this objective function:

L(d, g, Z) =
1
T ∑

t
∆(d(Zt),Xt) + λ

1
T

T−1

∑
t=1
||Zt+1 − g(Zt)||2. (3.1)

The first term of the right-hand side of Equation 3.1 measures the ability of
the model to reconstruct the observed values Xt from the latent factor Zt. It is
based on loss function ∆ which measures the discrepancy between predictions
d(Zt) and ground truth Xt. The second term aims at capturing the dynamics of
the series in the latent space. This term forces the system to learn latent factors
Zt+1 that are as close as possible to g(Zt). The hyper-parameter λ is used here to
balance this constraint and is fixed by cross-validation. The solution d∗, g∗, Z∗ to
this problem is computed by minimizing L(d, g, Z):

d∗, g∗,Z∗ = arg min
d,g,Z
L(d, g,Z). (3.2)

Learning Algorithm. In the presented setting, functions d and g, described in
the next section, are differentiable parametric functions. Hence, the learning prob-
lem can be solved end-to-end with Stochastic Gradient Descent (SGD) techniques 1

directly from Equation 3.2. At each iteration, a time t is sampled, and Zt, Zt+1,
g, and d are updated according to the gradient of Equation 3.1. Training can
also be performed via mini-batch, resulting in a high learning speed-up when
using Graphical Processing Units (GPUs) which are the classical configuration for
running such methods. The details of the mini-batched learning algorithm can be
found in Algorithm 3.1.

Prediction. Once the model is learned, it can be used to predict future values
of the series as follows: the latent factors of any future state of the series are
computed using the g function, and the corresponding observations are predicted
by using d on these factors. Formally, let us denote Z̃τ the predicted latent factors
at time T + τ. The forecasting process computes Z̃τ by successively applying the
g function τ times on the learned vector ZT:

Z̃τ = g ◦ g ◦ ... ◦ g(ZT) = g(τ)(ZT),

and then computes the predicted outputs : X̃τ = d(Z̃τ)

1. In the experiments, we used the Nesterov’s Accelerated Gradient (NAG) method (Sutskever
et al. 2013).
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3.2.3 Modeling Spatio-Temporal Series

Algorithm 3.1 Learning algorithm with mini-batches

Inputs: Dataset Xt ∀t ∈ {1, ..., T}, number of iterations E, min-batch size B.
Parameters: decoder d, dynamics g, latent states Zt ∀t ∈ {1, ..., T}
for e = 1→ E do

grad← 0
for k = 1→ B do . Can be parallelized as iterations are independent.

Sample a series i and a timestep t uniformly
Compute Ẑi

t ← h(Zi
t−1Θ(0) +W iZt−1Θ(1))

Compute X̂i
t ← d(Zi

t)
Compute loss Le,k = ∆(X̂i

t, Xi
t) + λ||Zi

t − Ẑi
t||2

Accumulate gradient: grad← grad +∇Le,k
end for
Update parameters using gradient descent with grad

end for

Let us now introduce a spatial component in the model. We consider that each
series has its own latent representation at each timestep. Zt is thus a n× dz matrix
such that Zt,i ∈ Rdz is the latent factor of series i at time t, dz being the dimension
of the latent space. It is this spatial component that distinguishes the proposed
model from the classical RNN or the Dynamic Factor Graph from Mirowski et al.
2009 presented in Section 2.1.3. Indeed, in both those models, Zt is a single vector
common to all the series.

The spatial information is integrated into the dynamic component of the model
through a matrix W ∈ Rn×n

+ , with n the number of sources. The latent repre-
sentation of any series at time t + 1 depends on its own latent representation at
time t (intra-dependency) and on the latent representations of the other series at t
(inter-dependency) through the dynamic model g(Zt):

Zt+1 = g(Zt) = h(ZtΘ(0) +WZtΘ(1)),

where Θ(0) ∈ Rdz×dz and Θ(1) ∈ Rdz×dz are linear mappings, and h is a non-linear
function. In the experiments we set h = tanh but h could also be a more complex
parameterized function like a Multi-Layer Perceptron (MLP) for instance. The
resulting optimization problem over d, Z, Θ(0), and Θ(1) writes:

d∗,Z∗, Θ(0)∗, Θ(1)∗ = arg min
d,Z ,Θ(0) ,Θ(1)

1
T ∑

t
∆(d(Zt),Xt)

+ λ
1
T

T−1

∑
t=1
||Zt+1 − h(ZtΘ(0) +WZtΘ(1))||2.

(3.3)

Algorithm 3.1 details the mini-batched algorithm used to learned this model.
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Figure 3.1 – Architecture of the STNN model as described in Section 3.2.4
.

3.2.4 Modeling Different Types of Relations

The model in Section 3.2.3 considers that all the spatial relations are of the same
type (e.g. based on sources proximity). For many problems, we have to consider
different types of relations. For instance, when sensors correspond to physical
locations and the target is some meteorological variable, the relative orientation
or position of two sources may imply a different type of dependency between
the sources. The multi-relational framework generalizes the previous formulation
of the model and allows us to incorporate more abstract relations, like different
measures of proximity or similarity between sources. For instance, when sources
are spatially organized in a graph, it is possible to define graph kernels, each one
of them modeling a specific similarity. The following multi-relational formulation
is based on adjacency matrices, and can directly incorporate such graph kernels.

Each possible relation type is denoted r and is associated with a matrix W (r) ∈
Rn×n

+ . For now, and as before, we consider that the W (r) matrices are provided
as prior knowledge. Each type of relation r is associated with a transition matrix
Θ(r). This learned matrix captures the spatio-temporal relationship between the
series for this particular type of relation. The model dynamics writes:

Zt+1 = h(ZtΘ(0) + ∑
r∈R

W (r)ZtΘ(r)), (3.4)

where R is the set of all possible types of relations. The learning problem is
similar to Equation 3.3 with the argument of h replaced by the expression in
Equation 3.4. The corresponding model is illustrated in Figure 3.1. This dynamic
model aggregates the latent representations of the series for each type of relation
and then applies Θ(r) on this aggregate. Each Θ(r) is able to capture the dynamics
specific to relation (r).
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3.3 Capturing Spatio-Temporal Correlations

In the previous sections, we made the hypothesis that the spatial relational
structure and the strength of influence between series were provided as prior
information to the model through the W (r) matrices. We introduce below an
extension of the model where weights on these relations are learned. This model
is denoted STNN-R. We further show that this model can be easily extended to
learn both the relations and their weights directly from the data, without any
prior knowledge on the spatial structures. This extension is denoted STNN-D.

We first introduce the STNN-R extension. Let Γ(r) ∈ Rn×n be a matrix of
weights such that Γ(r)

i,j is the strength of the relation between series i and j in the
relation r. Let us extend the formulation in Equation 3.4 as follows:

Zt+1 = h(ZtΘ(0) + ∑
r∈R

(W (r) � Γ(r))ZtΘ(r)), (3.5)

where Γ(r) is a matrix to be learned, W (r) is a prior i.e a set of observed relations,
and � is the element-wise multiplication between two matrices. The learning
problem can now be written as:

d∗,Z∗, Θ∗, Γ∗ = arg min
d,Z ,Γ

1
T ∑

t
∆(d(Zt),Xt) + γ|Γ|

+ λ
1
T

T−1

∑
t=1
||Zt+1 − h( ∑

r∈(R)
(W (r) � Γ(r))ZtΘ(r))||2,

where |Γ(r)| is a l1 regularizing term that aims at sparsifying Γ(r). We thus add a
hyper-parameter γ to tune this regularization factor.

If no prior information is available, then simply removing the W (r)s from
equation Equation 3.5 leads to the following STNN-D model:

Zt+1 = h(ZtΘ(0) + ∑
r∈R

Γ(r)ZtΘ(r)),

where Γ(r) is no more constrained by W (r) so that it will represent both the
relational structure and the relation weights. Both models are learned with SGD, in
the same way as described in Section 3.2.2. The only difference is that a gradient
step on the Γ(r)s is added.

3.4 STNN for Data Imputation

We investigate here how the STNN model can be adapted for the data imputa-
tion problem.
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In the formulation of the data imputation task, in addition to the series values
X ∈ RT×n×m (with T the number of timesteps, n the number of series, and m the
dimensionality of the series), we also consider a missing data maskM ∈ {0, 1}T×n.
Mi

t is the binary mask on the series i at timestep t, and is equal to 1 when vector
Xi

t ∈ Rm is missing, and 0 if it is present. The goal is to minimize the prediction
error of missing data points.

As opposed to the forecasting task, we suppose that observations from every
timestep (past and future) are present, and missing data may appear at any
timestep. If Xi

t is a missing value for series i at time t, the prediction X̂i
t is

computed based on all the available X j
t′ for j ∈ {1, n} and t′ ∈ {1, T}.

The training objective for the imputation task writes:

L(d, g,Z) =
1

∑
t

∑
i
(1−Mi

t)
∑

t
∑

i
(1−Mi

t)∆(d(Zi
t), Xi

t) +
T−1

∑
t=1
||Zt+1 − g(Zt)||2.

In this expression, supervision comes from the available Xi
t, so that the Zi

t value
inferred for a missing Xi

t depends on all available observations X′jt . The second

term
T−1
∑

t=1
||Zt+1 − g(Zt)||2 acts as a regularizer for the Zi

t value associated to

a missing Xi
t. Intuitively, the Zi

t value for a missing observation should be
coherent with the neighboring latent states Z associated to observations X . For
example, if one supposes that Xt is missing while Xt−1 and Xt+1 are observed,
the term Zt is directly constrained by the two loss terms ||g(Zt)−Zt−1||2 and
||Zt − g(Zt−1)||. In the proposed method, since the model learns one latent state
for each series and each timestep, it learns these latent states over missing values
that could then be retrieved using the decoding function. Inference in this model
is straightforward: once learned, a missing value of series i at timestep t can be
computed as Xi

t = d(Zi
t).

3.5 Experiments

The following section contains experiments and results in different tasks and
settings 2. First, we present experiments on a synthetic dataset to demonstrate
some properties of the STNN model and its variants. We, then present results on
real-world datasets for the forecasting task, followed by a qualitative analysis of
the relation discovery capabilities of our model. Finally, we present results on the
data imputation task.

2. Code available at https://github.com/edouardelasalles/stnn
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Figure 3.2 – Visualisation of the heat data generated using Equation 3.6 on a
segment discretized in 41 points, for 200 timesteps.

3.5.1 Synthetic Experiments on Heat Diffusion

We begin by evaluating and analyzing the STNN model and its variants on a
heat diffusion simulation dataset. It is a simple problem whose characteristics,
in particular the spatio-temporal dependencies, are perfectly known. Hence, its
complexity can be controlled. We consider a 1-D segment where a heat source
is applied on its center. The diffusion of the heat is governed by the following
differential equation:

∂u
∂t

= a

(
∂2u
∂x2

)
,

where u is the heat value, a a diffusion constant, and x and t are respectively
space and time variables. This equation can be discretized in space and time by
the explicit Euler method as follows:

ui
t+1 = ui

t + a∆t

(
ui−1

t − 2ui
t + ui+1

t
∆x2

)
∀i ∈ 1, ..., n. (3.6)

We construct a dataset by simulating heat diffusion on a segment divided into
n = 41 points, that each corresponds to a series, through 200 timesteps. We
use the first 100 timesteps for training and the remaining 100 for the forecasting
evaluation. The adjacency matrix W we use for STNN and STNN-R is the one
connecting direct neighbors in the diffusion segment. The result dataset can be
visualized in Figure 3.2.

Figure 3.3a shows the Rooted Mean Square Error (RMSE) scores for prediction at
t + 1 to t + 100, and Figure 3.4 shows the predicted values and the ground truth.
As expected, the STNN-R model performs best. It has both a strong relational
prior (i.e only adjacent points interact with each other) and enough flexibility
to adjust the relation weights and well capture the spatio-temporal correlations.
STNN-D has no spatial prior, and fails to learn the dynamics of the process.

On the top right image in Figure 3.4, we can see that the errors made by the
STNN model are concentrated on the borders: the model over-estimates the heat
diffusion at these points. The border points are influenced only by points closer



42 spatio-temporal neural networks

0 20 40 60 80 100
prediction horizon (T+t)

0.000

0.005

0.010

0.015

0.020

0.025

rm
se

Forecasting
STNN
STNN-R
STNN-D

(a) Heat diffusion experiment
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(b) Modulated heat diffusion experiment

Figure 3.3 – Forecasting performances (RMSE) for the synthetic heat diffusion
experiments. Left: standard heat diffusion. Right: heat diffusion
with modulated diffusion constant. Datasets are simulated for 200
timesteps. Models are learned on the first 100 timesteps and forecast
the next 100 timesteps.

to the heat source, whereas other points have a "colder" and a "hotter" neighbor.
STNN learns to use both these points in its dynamic function. However, border
points are only linked to a single "hotter" point, and hence their heat values are
over-estimated. STNN-R, on the other hand, is able to adapt relation weights in
order to cope with this side effect. This is illustrated in the right image, second
row in Figure 3.4 where the absolute error on the borders is clearly lower for
STNN-R than for the other variants.

The relations weights learned by STNN-R (denoted by Γ in Equation 3.5) are
shown in Figure 3.5a. A pixel at position (i, j) on this image corresponds to
the weight that STNN-R puts on series j at time t for computing the latent
representation of series i at time t + 1. Higher values mean stronger influence of
series j in the update of series i. One can see that STNN-R learns asymmetrical
and low-value weights between points close to the borders (upper left and bottom
right pixels in Figure 3.5a), allowing it to prevent heat from accumulating too
quickly at borders. We also show in Figure 3.5b the relation weights discovered
by STNN-D. Similar to STNN-R, it learns low relation weights between points
near the edges. The horizontal and vertical axial symmetries in Figure 3.5b reflect
the symmetry of the dataset itself (Figure 3.4 top left image).

To further explore the adaptivity of STNN, we make the diffusion process more
complex. The diffusion constant a is replaced by a Radial Basis Function (RBF)
kernel positioned on the center of the diffusion segment:

ui
t+1 = ui

t + ai∆t

(
ui−1

t − 2ui
t + ui+1

t
∆x2

)
s.t. ai = a′K(|i− n− 1

2
|, n− 1

2
),



3.5 experiments 43

20 40 60 80 100
prediction horizon (T+t)

0

10

20

30

40

Ground truth

0.0

0.1

0.2

0.3

0.4

0.5

20 40 60 80 100
prediction horizon (T+t)

0

10

20

30

40

STNN forecast

0.0

0.1

0.2

0.3

0.4

0.5

20 40 60 80 100
prediction horizon (T+t)

0

10

20

30

40

STNN error

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

20 40 60 80 100
prediction horizon (T+t)

0

10

20

30

40

STNN-R forecast

0.0

0.1

0.2

0.3

0.4

0.5

20 40 60 80 100
prediction horizon (T+t)

0

10

20

30

40

STNN-R error

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

20 40 60 80 100
prediction horizon (T+t)

0

10

20

30

40

STNN-D forecast

0.0

0.1

0.2

0.3

0.4

0.5

20 40 60 80 100
prediction horizon (T+t)

0

10

20

30

40

STNN-D error

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

Figure 3.4 – One hundred timestep forecasting of heat diffusion by our three
different models.
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(a) STNN-R
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Figure 3.5 – Relation weights learned by STNN-R (left) and STNN-D (right).
STNN-R learns the same value for each relation, except on borders
where it puts lower weights to prevent over-estimation of heat diffu-
sion due to a border effects in the model.
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Figure 3.6 – One hundred timestep forecasting of modulated heat diffusion by
our three different models.
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Figure 3.7 – Relation weights learned by STNN-R (left) and STNN-D (right) on
modulated heat diffusion. Both model learn to put low weights on
borders to match the data. Once again, due to the symmetry of the
data, STNN-D learns symmetric weights.
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where K is a RBF kernel. This modification results in heat propagating faster in
the center, and slower as it reaches the borders.

Results are shown in Figure 3.3b. As expected, the performances of STNN
degrade significantly since the prior spatial information provided to the model
does not relate to the true process anymore. But thanks to their ability to adjust the
relations weights individually, STNN-R and STNN-D maintain good performances.
Figure 3.6 shows the predicted values. It is easy to see that STNN over-estimates
heat propagation speed. Figure 3.7 shows the learned relations: both STNN-R
and STNN-D put very low values on relations between points at the extremities
of the segment.

3.5.2 Spatio-Temporal Series Forecasting

For this first task, experiments are performed on a series of spatio-temporal
forecasting problems representative of different domains. We consider predictions
within a +5 horizon i.e. given a training series of size T, the evaluation of the
quality of the model will be made over T + 1 to T + 5 timesteps. The different
model hyper-parameters are selected using a time series cross-validation proce-
dure called rolling origin as in Taieb et al. 2014; Ganeshapillai et al. 2013. This
protocol makes use of a sliding window of size T′: on a series of length T, a
window of size T′ is shifted by a constant value k several times in order to create
a set of folds. The beginning of each fold is used for training and the remaining
for testing. T′ is fixed so that it is large enough to capture the main dynamics of
the different series. Each series was re-scaled between 0 and 1.

Models and Baselines

We performed experiments with the following models:
(i) Mean: a simple heuristic which predicts future values of a series as the mean
of its observed past values computed on the T′ training steps of each training
fold.
(ii) AR: a classical univariate Autoregressive (AR) model.
(iii) VAR-MLP: a Vectorial AR model where the predicted values of the series at
time t + 1 depend on the past values of all the series for a lag of size R. The
predictive model is a MLP with one hidden layer. Its performances were better
than a linear Vectorial AR model. Here again the hidden layer size and the lag R
were set by cross-validation
(iv) RNN-tanh: a vanilla RNN with one hidden layer of recurrent units and tanh
non-linearities. Note that this model has the potential to capture the spatial
dependencies since all the series are considered simultaneously, but it does not
model them explicitly.
(v) RNN-GRU: same as the RNN-tanh, but the recurrent unit is replaced with a
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Table 3.1 – Datasets statistics. n is the number of series, m is the dimension of
each series, timestep corresponds to the duration of one timestep and
#folds corresponds to the number of temporal folds used for testing.
For each fold, evaluation has been made on the next 5 values at
T + 1, T + 2, ..., T + 5. The relation columns specify the number of
different relation types used in the experiments i.e the number of W (r)

matrices used in each dataset.
Dataset n m nb relations timestep total length (T) training length (T′) #folds

Google Flu 29 1 1 weeks ≈ 10 years 2 years 50

GHO (25 datasets) 91 1 1 years 45 years 35 years 5

Wind 500 2 1 hours 30 days 10 days 20

PST 2520 1 8 months ≈ 33 years 10 years 15

Bejing 5000 1 1 15 min 1 week 2 days 20

Gated Recurrent Unit (GRU) 3. We have experimented with several architectures,
but using more than one layer of GRU units did not improve the performance, so
we used 1 layer in all the experiments.
(vi) Dynamic Factor Graph (DFG): the model proposed in Mirowski et al. 2009

and presented in Section 2.1.3 is the closest to ours but uses a joint vectorial latent
representation for all the series as in the RNNs, and does not explicitly model the
spatial relations between series.
(vii) STNN: our model, where g is the function described in Equation 3.4, h is the
tanh function, and d is a linear function. Note that other architectures for d and g
have been tested (e.g. MLP) without improving the quality of the prediction. The
λ value has been set by cross-validation.
(viii and ix) STNN-R and STNN-D.

To achieve the best possible results, we grid-searched hyper-parameters for
each model and baseline, and for each dataset. Hence, the results presented in
this section come from models optimized and fine-tuned independently across
all datasets. Each hyper-parameter is selected by cross-validation on a grid of
hyper-parameters values.

Datasets

The different forecasting problems and the corresponding datasets are described
below. The dataset characteristics are provided in Table 3.1.

• Disease spread forecasting: The Google Flu dataset contains for 29 coun-
tries, about ten years of weekly estimates of influenza activity computed by
aggregating Google search queries (see http://www.google.org/flutrends).

3. We also performed tests with Long Short-Term Memory (LSTM) and obtained similar results
as with GRU.

http://www.google.org/flutrends
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We extract binary relations between the countries, depending on whether or
not they share a border, as a prior W .

• Global Health Observatory (GHO): This dataset made available by the
Global Health Observatory (http://www.who.int/en/) provides the number
of deaths for several diseases. We picked 25 diseases corresponding to 25
different datasets, each one composed of 91 time series corresponding to 91
countries (see Table 3.1). Results are averages over all the datasets. As for
Google Flu, we extract binary relations W based on borders between the
countries.

• Geo-Spatial datasets: The goal is to predict the evolution of geophysical
phenomena measured on the surface of the Earth.
The Wind dataset (www.ncdc.noaa.gov/) consists of hourly summaries of me-
teorological data. We predict wind speed and orientation for approximately
500 land stations on U.S. locations. In this dataset, the relations correspond
to a clamped spatial proximity between the series. Given a selected threshold
value d, two sources are connected (wi,j = 1) if their distance is below d and
not connected (wi,j = 0) otherwise.
The Pacific Sea Temperature (PST) dataset is a grid (at a 2 by 2 degrees
resolution, corresponding to 2520 spatial locations) containing monthly sea
surface temperature on the Pacific for 399 consecutive months from January
1970 through March 2003. The goal is to predict future temperatures at dif-
ferent spatial locations. Data were obtained from the Climate Data Library at
Columbia University (http://iridl.ldeo.columbia.edu/). Since the series
are organized on a 2D grid, we extract 8 different relations: one for each
cardinal direction (north, north-west, west, etc...). For instance, the relation
north is associated with a binary adjacency matrix W (north) such that W(north)

i,j
is set to 1 if and only if source j is the pixel just above on the satellite image.

• Car Traffic Forecasting: The goal is to predict car traffic on a network of
streets or roads. We use the Beijing dataset presented in Yuan et al. 2010 and
Yuan et al. 2011 which consists of GPS trajectories for ∼ 10500 taxis during
a week, for a total of 17 million points corresponding to road segments in
Beijing. From this dataset, we extracted the traffic-volume aggregated on a
15 minutes window for 5000 road segments. The objective is to predict the
traffic at each segment. We connect two sources if they correspond to road
segments with a shared crossroads.

For all the datasets but PST, we defined the relational structure using a simple
adjacency matrix W .

http://www.who.int/en/
www.ncdc.noaa.gov/
http://iridl.ldeo.columbia.edu/
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Table 3.2 – Average RMSE for the different datasets computed for T+1, T+2,...,T+5.
Standard deviation was computed by re-training the models on differ-
ent seeds.

Models Google Flu GHO (averaged) Beijing Speed Direction PST

MEAN 0.175 0.335 0.201 0.191 0.225 0.258

AR 0.101± 0.004 0.299± 0.008 0.075± 0.003 0.082± 0.005 0.098± 0.016 0.150± 0.002

VAR-MLP 0.095± 0.004 0.291± 0.004 0.070± 0.002 0.071± 0.005 0.111± 0.140 0.132± 0.003

DFG 0.095± 0.008 0.288± 0.002 0.068± 0.005 0.070± 0.004 0.092± 0.006 0.990± 0.019

RNN-tanh 0.082± 0.008 0.287± 0.011 0.075± 0.006 0.064± 0.003 0.090± 0.005 0.141± 0.010

RNN-GRU 0.074± 0.007 0.268± 0.070 0.074± 0.002 0.059± 0.009 0.083± 0.005 0.104± 0.008

STNN 0.066± 0.006 0.261± 0.009 0.056± 0.003 0.047± 0.008 0.061± 0.008 0.095± 0.008

STNN-R 0.061± 0.008 0.261± 0.010 0.055± 0.004 0.047± 0.008 0.061± 0.008 0.080± 0.014
STNN-D 0.073± 0.007 0.288± 0.090 0.069± 0.010 0.059± 0.008 0.073± 0.008 0.109± 0.015

Ground Truth RNN-GRU STNN-R

Figure 3.8 – Prediction of wind speed over around 500 stations on the US terri-
tory.Prediction is shown at timestep T + 1 for RNN-GRU (center) and
STNN-R (right).

Ground Truth RNN-GRU STNN-R

Figure 3.9 – Example of a 3 months prediction of Pacific temperature. The
left column is the ground truth and the central and right columns
correspond respectively to RNN-GRU and STNN-R predictions at
horizon T + 1, T + 2 and T + 3 (top to bottom).
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(a) RMSE on the Google Flu dataset at
horizon T + 1 to T + 13
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Figure 3.10 – Quantitative study on the Google Flu dataset.

Results

A quantitative evaluation of the different models and the baselines, on the
different datasets, is provided in Table 3.2. All the results are average prediction
error for T + 1 to T + 5 predictions. The score function used is the Rooted Mean
Square Error (RMSE). A first observation is that STNN and STNN-R models,
which make use of prior spatial information, significantly outperform all the other
models on all the datasets. For example, on the challenging PST dataset, our
models increase by 23% the performance of the GRU-RNN baseline. The increase
is more important when the number of series is high (geo-spatial and traffic
datasets) than when it is small (disease datasets). In these experiments, STNN-D
is on par with RNN-GRU or better. The two models do not use prior information
on spatial proximity. Vectorial AR logically improves on mono-variable AR (not
shown here) and non-linear MLP-VAR improves on linear VAR.

Figure 3.8 and Figure 3.9 illustrate respectively the prediction of STNN-R and
RNN-GRU on the meteorology and the oceanography datasets along with the
ground truth. Clearly, on these datasets, STNN qualitatively performs much better
than RNNs by using explicit spatial information. STNN is able to predict fine
details corresponding to local interactions when RNN based models produce a
much more noisy prediction. These illustrations are representative of the general
behavior of the two models.

We also provide models performances at different prediction horizons T +
1, T + 2, . . . , T + 13 in Figure 3.10a for the Google Flu dataset. Results show that
STNN-R performs better than the other approaches for all the prediction horizons
and is thus able to better capture longer-term dependencies.

Figure 3.10b illustrates the RMSE of the STNN-R model when predicting at T + 1
on the Google Flu dataset for different values of λ. One can see that the best
performance is obtained for an average value of λ: low values corresponding
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Figure 3.11 – Illustrations of correlations Γ discovered by the STNN-D model
with the center pixel as reference, with γ in {0.01, 0.1, 1} ( from top
to bottom). We can see that the value of γ constrains the spatial
range of relations learned by STNN-D.

Figure 3.12 – Spatial correlation discovery with STNN-D on the Wind dataset.
The blue point is the reference, and the others represent the weight
learned by STNN-D with the reference. We can see that points
close to the reference are assigner higher weights compared to more
distant ones.

to weak temporal constraints do not allow the model to learn the dynamics of
the series and lead to overfitting, while high values degrade the performance of
STNN since not enough weight is put on the reconstruction loss.

3.5.3 Discovering the Spatial Correlations

In this subsection, we illustrate the ability of STNN to discover relevant spatial
correlations on different datasets. Figure 3.11 and Figure 3.12 illustrate the
values of Γ obtained by STNN-D where no structure (e.g. adjacency matrix W)
is provided to the model on the PST and Wind dataset respectively. Each pixel
corresponds to a particular time series and the figure shows the correlation Γi,j
discovered between each series j with a series i. The series i is roughly located
at the center of the picture in Figure 3.11, and is represented by a blue circle in
Figure 3.12. The darker a pixel is, the higher the absolute value of Γi,j is (note that
black pixels correspond to countries and not sea). Different levels of sparsity are
illustrated from low (up) to high (down). Even if the model does not have any
knowledge about the spatial organization of the series (no W matrix provided),
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Figure 3.13 – Spatial correlations extracted by the STNN-R model on the PST
dataset. The color of each pixel corresponds to the principal relation
extracted by the model.

it is able to re-discover this spatial organization by detecting strong correlations
between close series, and low ones for distant series.

Figure 3.13 illustrates the correlations discovered on the PST dataset. We used
as priors 8 types of relations corresponding to the 8 cardinal directions (South,
South-West, etc...). In this case, STNN-R learns weights (i.e Γ(r)) for each relation
based on the prior structure. For each series, we plot the direction with the highest
learned weight. The strongest direction for each series is illustrated by a specific
color in the figure. For instance, a dark blue pixel indicates that the stronger spatial
correlation learned for the corresponding series is the North-West direction. The
model extracts automatically relations corresponding to temperature propagation
directions in the pacific, providing relevant information about the spatio-temporal
dynamics of the system.

The model can be adapted to different situations. Figure 3.14 represents the
captured temporal evolution of the spatial relations on the PST dataset. For this
experiment, we have slightly changed the STNN-R model by making the Γ(r)

time-dependent according to:

Γ(r)
t,i = fr(Z

i
t),

with fr an MLP with a logistic activation function. This means that with this
modified model, the spatial relation weights depend on the current latent state of
the corresponding series and may evolve with time. This allows use to predict
dynamic relations. On Figure 3.14, the different plots correspond to successive
timesteps. The color represents the actual sea surface temperatures, and the
arrows represent the direction of the stronger relation weights Γ(r)

t among the
eight possible directions (N, NE, etc). One can see that the model captures coherent
dynamic spatial correlations such as global currents directions or rotating motions
that gradually evolve with time.
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Figure 3.14 – Dynamic spatio-temporal relations extracted from the PST dataset
on the training set on 3 consecutive timesteps. Colors represent
the actual sea surface temperature. Arrows represent the extracted
spatial relations that evolve through time.
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Figure 3.15 – The figure represents 10 time series over 50 timesteps, white squares
corresponding to observed values and black squares corresponding
to missing ones. These missing values have been generated from a
fully observed set of time series using a corruption schema where
pm = 0.2 and lm = 5 (see Figure 3.5.4).

3.5.4 Data Imputation

This section presents the experiments concerning data imputation. We first
introduce the experimental protocol, we briefly describe the baselines and then
detail and comment on our quantitative and qualitative results.

Experimental Protocol

As mentioned in section 3.4, we focus on the case where the information for
some or all of the series is missing at different timesteps. This setting is quite
general and covers different situations. For instance, missing values may affect
only some of the series at a given timestep, or all the series may be affected at the
same timesteps. Besides, the number of timesteps with missing values may be
extremely different from a problem to the other. For evaluating the models, one
needs a generic protocol. To provide a quantitative evaluation of the quality of
our model, we defined a protocol common to all the datasets. For a given dataset,
we remove a random subset of the data as detailed below.

We choose a missing rate pm - different values are used in the experiments -
which indicates the proportion of the series values that are going to be considered
as missing. For instance, pm = 0.2 means that 20% of the dataset values are con-
sidered as missing. We also choose a missing value length lm, which determines
the size of the missing chunks. For instance, if lm = 5, a missing data chunk is
composed of 5 consecutive timesteps in a given series. Figure 3.15 shows a sample
of a missing data mask M for 50 timesteps with 10 series, where pm = 0.2 and
lm = 5.

The training set contains all available observations (non-missing values - i.e.
white squares in Figure 3.15) while the test set contains the missing values (black
squares in Figure 3.15). In order to select hyper-parameters, we held out a
validation set from the training set. More specifically, during the validation phase,
we take out a proportion pm of the training set that we keep for evaluating hyper-
parameters, and train on the remaining 1− pm portion of the training set. Once
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Table 3.3 – RMSE for the imputation task on the different datasets. These results
where obtained for pm = 0.1 and lm = 5. (X means that the dataset is
too large for the available implementation)

Models Google Flu Beijing Wind PST

MEAN 1.08e−1 8.37e−2 2.28e−1 6.14e−2
LAST 6.96e−2 6.94e−2 1.51e−1 9.86e−2

Amelia II 7.98e−2 6.99e−2 1.87e−1 X
GRU 3.77e−2 5.25e−2 1.32e−1 1.04e−2
DFG 4.04e−2 5.26e−2 1.37e−1 7.77e−3

STNN 3.65e−2 4.85e−2 1.17e−1 2.59e−3
STNN-R 3.20e−2 4.52e−2 1.21e−1 2.76e−3
STNN-D 3.31e−2 4.60e−2 1.15e−1 3.78e−3

the hyper-parameters are selected, we train the model from scratch on the entire
training set and evaluate on the test set.

We evaluate our model on the following datasets GFlu, Wind, Beijing car traffic,
and PST. For the Wind dataset, we jointly consider the speed characteristic and the
direction characteristic in order to evaluate our model on a multi-variate setting.

Baselines

We compared our model to the following baselines:

• Mean: missing data are imputed with corresponding series’ average value.

• Last: missing data are imputed with the series’ last observed value.

• Amelia II (Honaker et al. 2011) : a statistical model for missing data impu-
tation based on a bootstrapped version of the Expectation Maximization (EM)
algorithm. For our experiments, we sample m values from the model, given
the observed variables, and take the mean of these samples.

• GRU: we used the "GRU-simple" baseline proposed by Che et al. 2016: for
a time series X , each missing value is replaced with the average value of
the series, giving a new series X̃ . At each timestep t, the GRU is fed with
the concatenation of X̃t and Mt, the missing value mask at timestep t. The
loss is a standard Mean Square Error (MSE), where the gradient for missing
values is not backpropagated.

• DFG: the DFG model Mirowski et al. 2009 also used in the prediction experi-
ments, and presented in Section 2.1.3.
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(a) Corruption length variation (b) Corruption proportion variation

Figure 3.16 – Evolution of our model and baselines score when the missing value
proportion and corruption length change. (Left) length of the oc-
culted chunks varies, while the corruption proportion stays at 10%.
(Right) missing proportion changes, while the corruption length
stays at 5 times-steps.

Note that Mean and Last are frequently used heuristics for handling missing val-
ues, GRU-simple and DFG are state-of-the-art latent dynamical models designed
for imputation in time series or sequences.

Quantitative Results

Table 3.3 presents the quantitative test results. The scores are the RMSE on the
missing test values. These results were obtained with pm = 0.1 and lm = 5. As
for the forecasting results, the STNN model and its variants perform consistently
better than the baselines. For the Google Flu dataset, STNN-R is 18% better than
the strongest baseline (GRU). On the Wind dataset, STNN-D achieves the best
results, performing 15% better than DFG. It is on the PST dataset that we obtain
the strongest results: STNN performs 3 times better than DFG. Amelia II baseline
fails to reach the performance of deep models (STNN, DFG, GRU) by a large
margin. This is due to its over-simplistic normal prior and the lack of spatial prior.

We also performed a quantitative study of the model robustness for different
levels of missing values by comparing "STNN-R", "DFG" and "GRU-simple".
Results are shown in Figure 3.16a where lm is varying with a fixed pm = 0.1, and
in Figure 3.16b where pm is varying with a fixed lm = 5. In Figure 3.16a one can
see that STNN-R performs better than the two baselines for all missing value
proportions (Figure 3.16b). Concerning the missing values length, for lengths
higher than 10 timesteps, DFG gets better results than STNN-R. Our model learns
one explicit latent factor per time series, and when too many consecutive values
are missing for one time series, the predicted latent factors tend to collapse. The
DFG model only learns one factor common to all the series and is then more
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Figure 3.17 – Complete timestep imputation visualization, where all values in the
test timesteps where missing during training. August and September
2002, shown with a pink border, are observed and used for training.
April to August 2002 included, shown with a green border, are not
observed during training and are used as a test set for imputation.

robust to this type of corruption: since in our setting, the missing values only
consider a subset of the series, DFG benefits from the other observed values at a
given timestep to better infer a correct latent factor.

Complete timestep Reconstruction

We also experiment with a configuration where, at a given timestep, the values
of all the series are missing simultaneously. This is a scenario that can happen,
for instance, on earth observation problems. For these experiments, we keep a
missing value ratio at 10% and a missing sequence length of 5 timesteps, with all
the values in any chunks of 5 timesteps completely occulted during training.

Figure 3.17 shows a sample of the data reconstructed by our models and
baselines on the Pacific surface temperature dataset from March to September
2002. March and September 2002 where observed (pink border on the figure) and
used for training, while observations from April to August 2002 where occulted
(green border on the figure) and used in the test set as missing values. Figure 3.17

shows that the GRU baseline performs worse than both STNN-R and DFG: the
predictions are not locally smooth. On this figure, the predictions from STNN-R
and DFG look very similar. In order to analyze better the differences, we also
plot the absolute error performed by the three models in Figure 3.18. The larger
error of GRU is again clearly visible on this figure, and it also clearly appears
that STNN-R imputations are of better quality than those of DFG which does not
model explicitly the spatial dependencies.
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Table 3.4 – Test results (RMSE) on the PST dataset with pm = 0.1 and lm = 5,
where all values of corrupted timestep are not seen during training.
These results come from the same experiment that yields the images
in Figure 3.17.

STNN-R DFG RNN

PST 2.21e−2 2.83e−2 3.25e−2

Figure 3.18 – Absolute error visualization for imputed data of Figure 3.17 i.e
absolute difference between reconstructed values and ground truth
values. The RMSE line corresponds to the RMSE computed only on
the 5 test timesteps (green background) indicated in the figure.

The RMSE printed above each column in Figure 3.18 is the RMSE of the 5

reconstructed timesteps for each model. This confirms the visual results: STNN-R
actually achieves a better performance on these 5 timesteps. We show in Table 3.4
the RMSE for all the dataset. We can see that STNN-R performs better on average
for all the missing chunks.

3.6 Conclusion

In this chapter, we introduced a new DL model for addressing multivariate
spatio-temporal time series modeling problems, with applications to forecasting
and imputation. We show that DL methods generally surpass existing statistical
models on several benchmarks. Our principal contribution was to explicitly model
spatial relations between series. We saw that this approach led to better prediction
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results: the model achieve good performances on a 5 timesteps forecasting horizon,
but predictions tend to converge to the mean series on longer horizons. This is
in part due to the stochasticity of the data, that is not modeled in the current
framework. Hence, handling this stochasticity is a key challenge in order to build
better prediction systems, that we will investigate in the two next chapters of
this thesis. Another limitation of the presented model is that the latent states
are inferred through gradient descent. This means that nearly all the training
procedure has to be performed again for inferring latent states on a new location,
for instance. In Chapter 5, we will present a prediction model where the latent
state inference procedure is amortized across different series with a Neural
Network (NN).
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Chapter abstract

In this chapter, we study the evolution of data generation processes through
time. In the previous chapter, we limited ourselves to deterministic modeling.
Here, we consider that data is generated at each timestep by a generation
process that evolves through time. We propose to learn such a dynamic
generative process on textual data. Text is of particular interest for this
problem for two reasons: 1) language models are at the heart of numerous
works, notably in the text mining and information retrieval communities; 2)
language evolves over time with trends and shifts in technological, political,
or cultural contexts. Temporal language modeling thus appears as a good
subject to study the temporal evolution of data generation processes. We
propose to tackle this problematic by augmenting a neural language model
with its temporal and author contexts. We first present a temporal model
where a global latent variable is structured in time by a learned non-linear
transition function. We then integrate authors into the model to capture
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language diffusion tendencies in author communities through time. Here, we
learn authors and temporal vector states that are able to leverage the latent
dependencies between the text contexts.

• Edouard Delasalles, Sylvain Lamprier, and Ludovic Denoyer (2019a). “Dy-
namic Neural Language Models”. In: Neural Information Processing - 26th
International Conference, ICONIP 2019, Sydney, NSW, Australia, December
12-15, 2019, Proceedings, Part III, pp. 282–294.

• Edouard Delasalles, Sylvain Lamprier, and Ludovic Denoyer (2019b).
“Learning Dynamic Author Representations with Temporal Language
Models”. In: 2019 IEEE International Conference on Data Mining, ICDM
2019, Beijing, China, November 8-11, 2019, pp. 120–129.

4.1 Introduction

In the previous chapter, we proposed a spatio-temporal neural model that
produces point estimates of different physical quantities. In this chapter, we are
interested in learning dynamic generation models, whose generation process
adapts in time. To do so, we propose to study a specific category of generative
models: language models for textual data.

We are interested in textual data because various shifts affect language: the
meaning of words can shift, new words appear as other vanish, and yesterday’s
topics are different from tomorrow’s. Moreover, textual documents often come
with publication dates, making it relatively easy to construct datasets. Finally, to
our knowledge, no proper neural language models taking into account publication
date were proposed yet.

Early works on language modeling focused on the unigram multinomial model
(F. Song et al. 1999), and recent works are shifting toward neural approaches, with
distributed representations of words (Y. Bengio et al. 2003; Mikolov et al. 2010).
Research on these deep Language Models (LMs) is very active (Vaswani et al. 2017;
Merity et al. 2018b; Bai et al. 2018; Melis et al. 2018; Merity et al. 2018a), with
applications in various text-related tasks such as speech recognition (Chiu et al.
2018), image captioning (Vinyals et al. 2017), or text generation (Fedus et al. 2018).
And more recently, this task gained even more interest in the Natural Language
Processing (NLP) community, as a mean to pre-train large multi-task networks
(Devlin et al. 2019; Howard et al. 2018; Peters et al. 2018).

To handle temporal evolution in written language, recent research mainly
focuses on learning distinct word embeddings per timestep (Hamilton et al. 2016;
Kim et al. 2014; Kulkarni et al. 2015) and smoothing them in time (Bamler et al.
2017; Yao et al. 2018; Montariol et al. 2019). Word embeddings are powerful
tools to capture and analyze semantic relations between word pairs (Mikolov
et al. 2013). However, learning different embeddings for each timestep leads to
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learning algorithms with high time and memory complexity, leading to several
approximations. For instance, Yao et al. 2018 use alternate optimization that
breaks the flow of gradient through time. The smoothing skip-gram approach
from Bamler et al. 2017 requires complex gradient estimations, that involve solving
tridiagonal linear systems which cannot be parallelized in time.

Moreover, very few works focus on the combined consideration of the writer
and the publication date of textual documents. It is in the domain of information
diffusion, which studies content transmissions in information networks (Saito et al.
2009), that most of the work on dynamic extraction and prediction of relationships
between authors through time has been proposed. However, almost all of the
proposed approaches focus on the study of the information spread in a binary
setting (infection or non-infection by a content emitted from one source in the
network). Now, it appears obvious that dynamics in author communities (inter-
author influences or patterns of reactions to some external stimuli) are not limited
to binary events, but are also reflected in more diffuse behaviors, and notably
on the way people communicate. Various works on topic modeling and their
temporal evolution exist (X. Wang et al. 2006; Kabán et al. 2002), but they do
not consider the multi-authors setting. Moreover, they are built on bag-of-words
representation, and thus cannot directly leverage the representation learning
power of deep LMs.

In this chapter, we study language evolution from a deep LM perspective.
The aim is to capture the language evolution through time via an end-to-end
framework, where a standard Recurrent Neural Network (RNN) is conditioned by a
latent representation of temporal drifts in language and/or authors. Incorporating
latent random variables in RNNs has already done for textual data (Q. V. Le et al.
2014; Serban et al. 2017; Zaheer et al. 2017a). However, no RNN LMs methods have
been proposed for the extraction of temporal or structural dynamics in language
and author communities. We first propose a state-based dynamic neural LM that
learns transitions between global states through time, rather than focusing on
distinct word embeddings. We then study language evolution dynamic in author
communities and propose a representation learning model of authors through
time. In both cases, we condition a deep LM with state vectors. We conducted
experiments on a scientific publications corpus, a news corpus, and a social
network corpus for several temporal tasks: modeling (all timesteps are visible),
imputation (random timesteps are hidden), and prediction (future timesteps are
hidden). Our methods consistently achieve state-of-the-art performances on all
tasks. Moreover, we performed quantitative and qualitative studies of the learned
latent representations and show that our model is able to learn meaningful
representations.
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4.2 History of Temporal Language Modeling

Language evolution was tackled more than fifteen years ago through the task
of topics evolution in textual documents. Notably, Kabán et al. 2002, with a
model based on Hidden Markov Models (HMMs), seek to visualize temporal
evolution in a textual stream. This approach falls in the general field of Topic
Detection and Tracking, where the idea is to identify and follow trending topics
in streams. The approach, which extends the temporal generative topographic
mapping of Bishop et al. 1997 for textual modeling, allows one to visualize the
thematic changes via trajectories on a two-dimensional grid. However, this kind
of work enables tracking of thematics text segmentation, but cannot be used for
language modeling. The non-markovian approach proposed in X. Wang et al.
2006 is restricted to bag-of-words representations but has a good ability to detect
the topics’ evolution over the observation period. Besides, various works studied
temporal vocabulary evolution - according to semantic graph transformations in
Kenter et al. 2015 -, or thematic shifts in author communities - according to the
dominant topics per timestep in Hall et al. 2008.

Closer to applications targeted in this paper, dynamic topic models (Blei et al.
2006) propose an Latent Dirichlet Allocation (LDA)-like modeling (Blei et al. 2003),
where the topic distributions and the distributions of words with respect to topics
evolve over time. The evolution between successive multinomial distributions
are driven by Brownian motions of their natural parameters, in a Kalman filters
fashion, and optimized via variational inference. However, these approaches
require manually setting the number of topics, and LMs are limited to simple
word occurrence distributions. It is not trivial to include models with long-
term dependencies, such as Long Short-Term Memories (LSTMs), in this context.
Moreover, contrary to ours, these approaches are usually constrained to specific
conjugate distributions for the inference of the latent variables of their evolution
model. Note the extensions of Blei et al. 2006 to a multi-scale temporal version
(Iwata et al. 2012) or a model with continuous-time dependencies (C. Wang et al.
2012). Besides, Gerrish et al. 2010 introduce the concept of influence between
documents, which could get closer to our objective but which is limited to analysis
tasks. Lastly, E. Wang et al. 2011 propose a temporal approach that considers
relationships between documents via a known graph of dependencies, which
leaves the scope of this study where we assume that such relational knowledge is
not available a priori.

After the introduction of the Word2Vec model (Mikolov et al. 2013), numer-
ous papers proposed derivations of the famous skip-gram algorithm for time
annotated corpora (Frermann et al. 2016). All these approaches attempt to ac-
quire a better understanding of language evolution by studying shifts in words
semantic through time. Among them, Eger et al. 2016 learn linear temporal
dependencies between word representations. Yao et al. 2018 learn diachronic
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word representations by matrix factorization with temporal alignment constraints.
Bamler et al. 2017 proposed a temporal probabilistic skip-gram model with a
diffusion prior. Rudolph et al. 2017a also propose a probabilistic framework that
uses exponential embeddings. Compared to HMM and LDA based approaches, the
skip-gram algorithm uses standard gradient descent and can be parallelized easily
to scale to massive corpora. The goal of these works is to learn some semantic
representations of words that can be used directly in various neural models. The
temporal dependencies are defined on word representations: each considered
timestep is associated with its own vocabulary representation forced to respect
various temporal constraints.

However, all these temporal word embedding approaches suffer from a major
drawback: complete sets of embeddings must be learned for each timestep. This
leads to learning algorithms with high time and memory complexity, requiring
several approximations, like alternate optimization that breaks gradient flow
through time in Yao et al. 2018, or gradient approximations in Bamler et al.
2017. A notable exception is Rosenfeld et al. 2018 which combine a static word
representation to a scalar timestep in a deep neural network that produces a
temporal embedding. It appears difficult to consider such kind of approach in a
multi-author setting, for which separated representations should be learned both
per timestep and per author. We can note the approach of Rudolph et al. 2017b
for grouped data, that proposed to reduce the number of parameters by sharing
context vectors between groups, but whose transposition to a multi-author setting
appears difficult (very high number of groups, doubled dependencies, temporal
evolution vs connected groups). Another limitation with this kind of approach
is that they do not allow end-to-end learning of LMs, and extending them for
outputting word probabilistic distributions is usually difficult.

An alternative to these various models is to leverage RNNs for language model-
ing. Compared to the skip-gram algorithm that uses a limited context window,
recurrent LMs operate on sequences of arbitrary length and can capture long-term
dependencies.

4.3 Preliminaries

This chapter is composed of two parts. In Section 4.4, we present a variational
recurrent language model with global latent variables for the temporal language
modeling task. In Section 4.5, we propose to learn dynamic author representations
with a recurrent language model.

For the two parts, we use the same notations described as follows. We consider
a corpus D of N text publications defined over a vocabulary of size V. Each
publication x is associated with a publication timestep t ∈ {1, . . . , T} and an
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author a ∈ A. A publication is a sequence of tokens x = {x1, x2, . . . , x|x|}. In both
parts, our objective is to propose a recurrent language model of the form:

P(x|a, t) =
|x|

∏
k=0

P(xk+1|x0:k, a, t),

where x0 is a special token to indicate the beginning of the document. Note that
authors are not taken into account in the first part.

All models and baselines are evaluated on the same three corpora:

- The Semantic Scholar (S2) (Ammar et al. 2018) corpus is composed of titles
from scientific papers published in machine learning conferences and journals
from 1985 to 2017, split by year (33 timesteps). We lower-cased the texts
and used the same WordPiece model as in Devlin et al. 2019 to tokenize the
corpus, which has around 30K tokens. The corpus is composed of 45K titles,
representing a total of 800K tokens with 1000 authors. The number of titles is
not uniformly distributed, and grows quasi-exponentially with time: the year
1985 contains around 100 documents while the year 2017 has around 5K.

- The New York Times (NYT) (Yao et al. 2018) corpus is composed of headlines
from the New York Times newspaper spanning from 1990 to 2015, also split
by years (26 timesteps). We also lower-cased the texts, but we use the NLTK
(Bird 2006) word tokenizer and replaced every number with a special N token.
Words appearing less than 5 times in the training set were discarded, giving a
vocabulary of around 6K tokens. The corpus contains 40K documents, 470K
tokens, and 500 authors. In this corpus, the documents are evenly distributed
in time.

- The Reddit corpus contains a sample of 3% of the social network’s posts
presented in Tan et al. 2015. It is composed of 100K posts sampled from
January 2006 to December 2013 split by quarters (32 timesteps). Words
appearing less than 5 times in the training set were discarded, giving a
vocabulary of around 13K tokens.

All models and baselines in this chapter have the recurrent language model
backbone. It is 2 layers AWD-LSTM (Merity et al. 2018b) with hidden units
and word embeddings of size 400. We use weight dropout, variational dropout,
embedding dropout. We also tie word embeddings and decoder weights (Inan
et al. 2017). We use the Adam optimizer (Kingma et al. 2015) with mini-batches of
size 64, a learning rate of 0.003, and default parameters. Hyper-parameters were
tuned by grid search on a dedicated validation set.
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4.4 Dynamic Recurrent Language Model

In this part, we propose a dynamic recurrent neural network for language
modeling in time annotated document corpora. The model is an State Space
Model (SSM) with one global latent state per timestep used to condition an
LSTM Language Model. Unlike most current methods that learn complete word
embedding matrices for each timestep, we only learn one embedding per word
which is augmented with a state of the SSM. The LSTM captures general language
dynamic and uses the temporal states to module its dynamics depending on
language bias specific to each timestep. We also learn a transition function
between states that enables the prediction of future states.

4.4.1 Model

Our goal is to extend classic recurrent language models with a dynamic com-
ponent to adapt it to language shifts through time. To that aim, we condition
an LSTM language model with temporal latent variables. We learn global latent
variables structured in time with a transition function learned jointly with the
LSTM. The latent variables are global because documents published at the same
timestep all share the same latent variable. This allows the LSTM to capture
language structures common to the entire dataset, while global latent variables
are able to factorize language elements specific to their timestep. A schematic
overview of the model is presented in Figure 4.1.

Let zt ∈ Rdz be the latent variable corresponding to timestep t. The sequence
probability of a document x published at timestep t is now computed as:

pθ(x|t) = pθ(x|zt) =
|x|

∏
k=0

pθ(xk+1|x0:k, zt).

Note that zt depends only on the timestep at which x has been published, and not
specifically on x itself. In our architecture, we concatenate zt to the embeddings
of each word xk as we have found it to work best empirically.

The latent states zt are Gaussian random variables structured in time via a
dynamic component taking the form of a Gaussian model. Its mean is a function
g of the previous state and its covariance is a learned diagonal matrix σ2:

zt+1|zt ∼ N (g(zt;w), σ2),

where w are the parameters of g. Learning a transition model helps to regularize
the inferred latent states, and allows us to predict future states. Moreover, it
gives us the possibility to estimate future states of the system, where data is not
available during training. The prior’s mean on the first timestep is a learned
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Figure 4.1 – Schematic representation of our dynamic recurrent language model.
The temporal variables zt are global and are used to condition an
LSTM. They are concatenated to the word embeddings (denoted by
U ) of each word in a document.

vector z0 acting as the initial conditions of the system. The joint distribution
factorizes as follows:

pθ,ψ(D, Z) =
N

∏
i=1

pθ(x(i)|zt(i))
T−1

∏
t=0

pψ(zt+1|zt), (4.1)

where t(i) is the publication timestep of document x(i) and ψ = (w, σ2, z0) are
the temporal parameters, and Z ∈ RT×dz is the matrix containing latent vectors zt.
pθ(x|z) is parameterized by an LSTM where the latent state z is concatenated to
every word embedding vectors.

4.4.2 Inference

Learning the generative model in Equation 4.1 requires to infer the latent
variables zt. In Bayesian inference, it is done by estimating their posterior
pθ,ψ(Z|D) =

pθ,ψ(D,Z)∫
pθ,ψ(D,Z)dZ . Unfortunately, the marginalization on Z requires

to compute an intractable normalizing integral. We, therefore, use Variational
Inference (VI) and consider a variational distribution qφ(Z) that factorizes across
all timesteps:

qφ(Z) =
T

∏
t=1

qt
φ(zt), (4.2)

where qt
φ are independent Gaussian distributions N (µt, σ2

t ) with diagonal covari-
ance matrices σ2

t , and φ is the total set of variational parameters.
This factorization is possible because recurrent language modeling is an au-

toregressive task (c.f. Section 4.3) that does not require an auto-encoding scheme.
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We are thus able to learn a model with fewer parameters while avoiding com-
mon pitfalls associated with variational text auto-encoders, e.g. Kullback-Leibler
Divergence (KLD) vanishing (Bowman et al. 2016).

A particularity of our approach is that we consider that several documents can
be published at the same timestep. So, to obtain an Evidence Lower Bound (ELBO)
L(θ,ψ,φ), we adapt the derivation in Krishnan et al. 2017 as follows:

log pθ,φ(D) = log
∫

Z
pψ(Z)

T

∏
t=1

pθ(Dt|zt)dZ

= log
∫

Z
qφ(Z)pψ(Z)

T
∏

t=1
pθ(Dt|zt)

qφ(Z)
dZ

≥
∫

Z
qφ(Z) log

pψ(Z)

T
∏

t=1
pθ(Dt|zt)

qφ(Z)

dZ

=
T

∑
t=1

∫
zt

qt
φ(zt) log pθ(Dt|zt)dzt +

∫
zt−1

qt−1
φ (zt−1) log

pψ(zt|zt−1)

qt
φ(zt)

dzt−1 dzt

=
T

∑
t=1

Eqt
φ(zt)

[
log pθ(Dt|zt)

]
−Eqt−1

φ (zt−1)

[
DKL(qt

φ(zt)‖pψ(zt|zt−1))
]

, (4.3)

where Dt is the set of all documents published at timestep t, and the inequality
is obtained thanks to the Jensen theorem on concave functions. This ELBO can be
classically optimized via stochastic gradient ascent using the re-parametrization
trick (Kingma et al. 2014; Rezende et al. 2014).

The posterior factorization presented in Equation 4.2 yields an ELBO that is also
factorized in time. We can see that in the KLD only two timesteps, t and t− 1,
are considered, meaning that the transition function pψ(zt|zt−1) is learned by
matching pairs of latent states distributions. This factorized ELBO simplifies the
training, has every term in Equation 4.3 can be computed in parallel.

Global temporal states coupled with variational distributions independent
in time offer several learning and computational advantages compared to the
deterministic dynamics learned by the STNN in Chapter 3. The two objective
functions have the same structure: a reconstruction term and a dynamic term. It
is the dynamic term that differentiates the two models. In the STNN objective
function (Equation 3.1), the dynamics term is a sum of quadratic errors between
inferred and predicted latent states. Errors on each timestep have the same cost,
and if an anomaly or a strong disruption appends in the data at a single timestep,
the learning algorithm is likely to modify the transition function, leading to a
potential impact on consecutive states.

In the proposed objective function (Equation 4.3), the dynamics is stochastic and
is learned with a KLD. This divergence function takes into account the variance
of the prior and posterior distributions. We chose to fix the prior variance to a
scalar σ2, which is a hyper-parameter of the model. With this setup, the learning
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algorithm can choose to ignore difficult transitions, at a cost depending on σ2.
Instead of changing the dynamics if a disruption occurs in the data, the learning
algorithm can simply increase the variance of the posterior at this timestep. This
allows the learning algorithm to adapt the stochastic dynamics according to the
regularity level of the data. This behavior can be controlled by tuning σ2. A
large σ2 will allow for great discrepancies between the dynamics and the inferred
variables, as the weight of the KLD in the ELBO will decrease. On the other hand,
small values of σ2 will make the objective function closer to Equation 3.1, as the
prior will become close to a Dirac function.

4.4.3 Experimental Settings

Models and Baselines

In our experiments, we compare the following models 1:

• A standard regularized LSTM. This baseline has no temporal component but
is currently the state-of-the-art in language modeling.

• The DiffTime model (DT) presented in Rosenfeld et al. 2018 is a deep model
that produces temporal word embeddings. They proposed to learn a single
set of word embedding which are modified according to a given timestep.
To adapt a word embedding to a particular timestep t, they learn non-linear
transformations that project the word embedding and the scalar timestep into
vectorial spaces of identical dimensions. The two resulting vectors are then
multiplied and projected into the word embedding space through a linear
mapping.

• The Dynamic Word Embeddings (DWE) model (Bamler et al. 2017) learns
Gaussian word embeddings with a probabilistic version of the skip-gram
algorithm. In this model, the latent variables are the word and context
embeddings matrices Ut and Vt which follow a generative model of the form:

p(Z, U, V) =
T−1

∏
t=0

p(Ut+1|Ut)p(Vt+1|Vt)
T

∏
t=1

L

∏
i,j=1

p(zij,t|ui,t, vj,t),

where zij,t is the number of times the word wj appears in the context of
the word wi, and L is the size of the vocabulary. In their work, the priors
p(Ut+1|Ut) and p(Vt+1|Vt) can be viewed as diffusion processes, imple-
mented as follows:

p(Ut+1|Ut) = N (Ut, σ2
t )N (0, σ2

0 ),

1. Code of the models available at https://github.com/edouardelasalles/drlm

https://github.com/edouardelasalles/drlm
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where σ2
t and σ2

0 are hyper-parameter governing the diffusion possess. From
this equation, we can see that the prior forces the word representation to
stay in the center of the space (second Gaussian), and also stay close to the
representation of the previous timestep. Here, deep VI is not used to learn a
generative model, but as a principled Bayesian framework to learn and align
word embeddings in time.

• The Dynamic Recurrent Language Model (DRLM) proposed in this paper
with learned transition function.

• The DRLM-Id model proposed in this paper, where the transition function is
replaced by the identity matrix so that zt+1 ∼ N (zt, σ2).

For comparison purposes, we adapted the temporal word embedding models
DT and DWE for language modeling, by replacing the skip-gram component with
an LSTM. More details can be found in Appendix A.

Temporal Settings

The two temporal tasks we are interested in in this thesis are prediction and
imputation.

For prediction, we take the first Tp timesteps to train the model. Timesteps
Tp + 1 to T, with T the total number of timesteps, are used for evaluation. For
DRLM, we use the transition model g to predict future states zt in time. For DT
and DWE we use the embeddings from the last training timestep Tp. Timestep
Tp + 1 is used for hyper-parameters tuning.

In this part of the manuscript, we do not tackle the typical imputation task,
but a variant permitted by the data at hand, that we called modeling. It consists
of randomly splitting the corpora into a training (60%), validation (10%), and
test (30%) sets for each timestep. It is a task simpler than imputation since we
have access to data at each timestep. This task intends to assess the benefit of
incorporating temporal information in traditional modeling tasks.

We evaluate the models on language modeling and downstream classification
tasks. For language modeling, the evaluation metric is the token level perplexity
on the respective test sets. We report the micro-perplexity and the macro temporal
perplexity. The micro-perplexity is the global token-level perplexity computed
indifferently across timesteps. It is the classical language modeling metric that we
use to primarily compare model performances, and in our case writes as follows:

Micro-Perplexity(D) = exp

 1
∑

x∈D
|x| ∑

x∈D
log pθ(x)

 ,

where pθ is the language model evaluated. For our model, we sample a zt ∼ qφ(zt)
for each document and use pθ(x|zt) for evaluating the perplexity.
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Figure 4.2 – Perplexity through time for prediction setting.

We also provide the macro perplexity, which is the token-level perplexity
computed on each timestep separately and then averaged:

Macro-Perplexity(D) = 1
T

T

∑
t=1

exp

 1
∑

x∈Dt

|x| ∑
x∈Dt

log pθ(x)

 .

Since this metric puts the same weight on each timestep, it is possible to see if
a model performs consistently across timesteps, even when documents are not
evenly distributed in time.

For classification, we report F1 scores for multi-label classification:

F1 =
2 · true positive

2 · true positive + false negative + false positive
,

and top1 scores for multi-class classification, which is the proportion of examples
on which the model ranks the valid target at the first position.

4.4.4 Results

Prediction

Figure 4.2 shows the evolution of perplexity for prediction. On the three corpora,
both DRLM-Id and DRLM beat all baselines. The standard LSTM always performs
better than the DWE and DT baselines that systematically overfit. This shows
that LSTMs language models are powerful, even without temporal components,
and conditioning them is not trivial. Results on Reddit (Figure 4.2c) tend to
confirm this observation: performances of LSTM, DRLM-Id, and DRLM are quasi-
equivalent, with a gain of 2 points of perplexity for DRLM compared to LSTM. It is
a corpus twice larger than the others, with longer sequences. Our analysis is that
with sufficient data, and due to the autoregressive nature of textual data, LSTM
manages to capture temporal biases implicitly, even without explicit temporal
prior.
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Algorithm 4.1 Recursive inference

Inputs: Documents Dt ∀t ∈ {Tp + 1, ..., T}, parameters θ, ψ, and φ learned on
Dt ∀t ∈ {1, ..., Tp}
Freezed parameters: θ, ψ, variational parameters of qt

φ(zt) for t ∈ {1, ..., Tp}
Parameters: variational parameters of qt

φ(zt) for t ∈ {Tp + 1, ..., T}
for t = Tp + 1→ T do

Optimize the variational parameters of qt
φ(zt) by gradient descent on

Eqt
φ(zt)

[
log pθ(Dt|zt)

]
−Eqt−1

φ (zt−1)

[
DKL(qt

φ(zt)‖pψ(zt|zt−1))
]

Freeze the variational parameters of qt
φ(zt).

end for

In the S2 corpus, we can see in Figure 4.2a that, while the perplexity of DRLM-Id
tends to converge to LSTM’s perplexity, DRLM presents consistent improvement
through time. On the NYT corpus, while DRLM-Id and DRLM have significant
performance gain compared to LSTM (more than 5 points), the difference between
the two models is small and vanishes with time. This is explained by the fact that
news headlines from NYT are mostly induced by external factors, while scientific
publications from S2 are influenced by one another through time.

Recursive Inference

We made the hypothesis that news headlines from NYT are generated mostly
by external factors, while scientific publications from S2 are influenced by one
another through time, which would explain the absence of performance gain of
DRLM compared to DRLM-Id on the NYT.

To validate this hypothesis, we recursively infer the latent states of DRLM.
We optimize the variational parameters of every zt for t > Tp by maximizing
Equation 4.3 according to data from Dt and states inferred from previous steps.
All other parameters remain unchanged. Specifically, we infer zt according to
Dt and zt−1. We then evaluate the resulting model at t + 1, and next, we infer
zt+1 according to Dt+1 and zt, evaluate at t + 2, and so on. Algorithm 4.1 details
the procedure. The same process is performed for the variational parameters of
DWE. This temporal task is similar in spirit to the filtering task mentioned in the
introduction of this thesis. The two resulting models are respectively referred to
as DRLM-F and DWE-F in Figure 4.3.

We first observe that the DWE baseline benefits a lot more from recursive
inference than DRLM. This is expected since it can adapt each word embedding
at each timestep, whereas DRLM-F only infers the distribution of a single vector
per timestep. This thus makes DWE-F a good baseline for assessing temporal
drift. DRLM-F improves performances on the last timesteps of NYT. It means
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Figure 4.3 – Perplexity through time with recursive inference. DRLM-F and DWE-
F are trained on Tp timesteps, and then their variational parameters
are recursively inferred on data at timestep Tp + τ and evaluated at
Tp + τ + 1. The LSTM baseline is displayed for comparison purposes.

that the recursive inference procedure is able to infer latent states that performed
better than the predicted ones. It also means that the LM is able to interpret
these new variables while being trained on different ones. This is not trivial,
given the difficulties of learning conditional language models Variational Auto-
Encoders (VAEs) with LSTMs (Bowman et al. 2016; Semeniuta et al. 2017; Yang et al.
2017).

On S2, recursive inference improves performances of DWE, which means that
the corpus presents a temporal drift. However, recursively inferred states yield
the same performances as predicted ones for DRLM, while on NYT we witness
a performance improvement. It can mean that DRLM predicted accurate latent
states since recursive inference does not improve results while using future data
not seen when performing prediction.

On Reddit, recursive inference does not improve the performances of any of
the models and baselines. We interpret that as a lack of temporal drift in the
corpus, since no additional data from the future is able to improve prediction
performances. Hence, we will not use this corpus in the rest of the manuscript.

To confirm these hypotheses, we plot in Figure 4.4 the latent trajectories of the
two components of z that vary the most through time for DRLM (first row) and
DRLM-Id (second row). For DRLM, the inferred points correspond to the means
of q(zt), and the prior points correspond to the means of p(zt|zt−1) for training
timesteps. The predicted points for test timesteps are obtained by recursively
applying the transition function g from the last training zt, and the filtered points
are those obtained by recursive inference. For DRLM-Id, we only report the
inferred points, as there is no transition function to apply (and the prior at each
timestep is the state inferred at the previous one).

By comparing the first and second row of Figure 4.4, we first observe that
learning a transition function allows the model to learn smoother latent states
in time compared to DRLM-Id. This confirms the relevance of our end-to-end
learning process, compared to an approach that would learn a transition function



4.4 dynamic recurrent language model 73

S2 NYT Reddit

DRLM

0 2 4

0.25

0.00

0.25

0.50

0.75

1985
1995

2005

2015infered
prior
filtered
predicted

(a)

1 0 1 2 3

5.0

4.5

4.0
1990

2000

2010

(b)

2.0 1.5 1.0 0.5 0.0 0.5
0.5

0.0

0.5

1.0
2006

2009

2011

2013

(c)

DRLM-Id

3 2 1
0.5

0.0

0.5

1.0
1985

1995

2005

2015

infered

(d)

1.0 0.5 0.0 0.5

0.2

0.0

0.2

0.4

0.6

1990

2000

2010

(e)

0.5 0.0 0.5
0.75

0.50

0.25

0.00

0.25

0.50

2006

2009

2011

(f)

Figure 4.4 – Latent trajectories of the two most varying components of zt for the
prediction task on the three datasets, for DRLM and DRLM-Id. Each
column corresponds to a different corpus. On the first line, latent
states are obtained with DRLM, and with DRLM-Id on the second
line.

from trajectories inferred by DRLM-Id a posteriori. DRLM automatically organizes
states in a smooth fashion, from which extrapolation is easier. On Figure 4.4a, we
see that the predicted latent states are very close to the filtered ones, confirming
the ability of the transition model to capture and predict global tendencies in
the data. On the NYT corpus (Figure 4.4b), we observe that the predicted latent
states diverge slightly from the filtered states, which is coherent with the gain in
perplexity observed in Figure 4.3b by DRLM-F. On the Reddit corpus, we see that
the filtered states are close in time, indicating a slow temporal drift. This is also
coherent with the perplexities observed in Figure 4.3c.

Modeling

Table 4.1 presents results for the modeling setup. As for prediction, temporal
word embeddings baselines also fail to beat the LSTM baseline. All perplexities
are lower since the task is easier, but our models DRLM and DRLM-Id keep their
perplexity gain over LSTM.

Text Classification Results

To further evaluate the representations learned by DRLM, we extract its word
embeddings augmented with temporal states and use them for text classification.
For the DT and DWE baselines, we learned temporal embeddings exactly as
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Table 4.1 – Modeling perplexity, where training and testing timesteps are the
same.

S2 NYT Reddit
Model micro macro micro macro micro macro

LSTM 62.8 66.2 109.9 110.4 116.7 123.0
DT 70.7 73.9 125.6 120.4 136.8 147.7
DWE 65.9 69.8 119.9 120.4 129.4 139.6
DRLM-Id 60.6 61.3 104.0 104.4 115.5 121.5
DRLM 60.2 61.2 103.5 103.9 114.7 120.4

Table 4.2 – Classification results, with temporal word embeddings for the prediction
configuration.

Task Prediction Modeling

Corpus
S2

(F1)
NYT

(top1)
Reddit
(top1)

S2

(F1)
NYT

(top1)
Reddit
(top1)

LSTM 0.19 35.1 32.0 0.22 41.4 44.0
DT 0.15 19.1 12.5 0.11 17.3 40.9
DWE 0.18 33.4 34.3 0.17 24.8 44.5
DRLM 0.21 41.2 38.0 0.23 44.8 45.2

described in their respective papers, contrary to previous tasks where we used our
LSTM LMs adaption of their model. For every classification task, we learn a linear
classifier that takes as inputs the average of the embeddings of each sequence,
following Grave et al. 2017b and Shen et al. 2018.

Labels are articles’ keywords for S2 (multi-label with 400 classes), articles’
sections for NYT (mono-label with 28 labels) and subreddits in which posts
were submitted for Reddit (mono-label with 60 labels). Classification results for
prediction and modeling settings are presented in Table 4.2. DRLM outperforms all
baselines. This shows that the representations it learns contain useful information
that can be used for downstream tasks such as classification.

Text Generation Through Time

We present here text samples generated by beam search with DRLM trained
with the modeling setting. We use starting word triplets that most often appear in
the S2 test set as a seed, and we change the latent state through time. Table 4.3
presents generated samples where the latent state evolves from 1985 to 2017. We
can see a smooth evolution in vocabulary. Around the 90s, we can see that the
language model evolves slowly, as the same sequences are generated 5 years apart
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Table 4.3 – Text sequences generated with DRLM conditioned on different
timesteps on the S2 corpus. The first three words are uses as seeds,
and the samples are generated by beam search with a beam size of 5.

a framework for...

1985 ...shape recovery from images
1995 ...shape recovery from images
2005 ...automatic evaluation of statistical machine translation
2015 ...unsupervised feature selection
2016 ...unsupervised learning of deep neural networks
2017 ...training deep convolutional neural networks

unsupervised learning of...

1985 ...hidden markov models
1995 ...gaussian graphical models
2005 ...named entity recognizers
2015 ...deep convolutional neural networks
2016 ...convolutional neural networks
2017 ...generative adversarial networks

a comparison of...

1985 ...smoothing techniques for statistical machine translation
1995 ...smoothing techniques for word sense disambiguation
2005 ...smoothing techniques for statistical machine translation
2015 ...convolutional neural networks for action recognition
2016 ...convolutional neural networks for action recognition
2017 ...convolutional neural networks for action recognition

in the first set of samples. And we see that the language model starts to evolve
quickly from 2015, where references to deep learning begin to appear. In the
second set, we even see a reference to Generative Adversarial Model (GAN) on the
2017 sample.

Discussion

In the first part of this chapter, we proposed a dynamic recurrent LM for
handling temporal drifts in language. Language evolution dynamics are captured
via a learned transition function producing trajectories of temporal states through
time. We also learned a transition function, which structures temporal states in
time. Experiments on three corpora with various sizes, time scales, and language
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levels, showed that our approach beats temporal embeddings baselines in various
settings and on downstream classification tasks.

In the proposed model, we learned global latent states by deep VI. We followed a
design similar to SSM, which led us to learn our dynamic function by minimizing
a KLD on state pairs. We saw in Section 4.4.2 that inferring and predicting
distributions rather than points has some learning advantages. Mainly, it allows
the learning algorithm to handle disruptions in the data without upsetting the
dynamics. However, the STNN and DRLM objectives have a common flow:
dynamics is learned by a loss function between latent state pairs only. It is then
hard for the model to learn a dynamics that is coherent on the entire length of the
temporal phenomenon, as gradients are backpropagated only between pairs of
consecutive timesteps.

In the next part, our objective is to incorporate authors in the framework to
learn dynamic author representations. This time, we chose to learn a deterministic
dynamic model, that allows gradient backpropagation throughout the whole
time-period. In this setting, since the latent states are point estimates, the LSTM
LM becomes the only source of stochasticity in the model.

4.5 Dynamic Author Representations

In this part, we learn latent representations of authors that evolve through time.
We learn latent vectors that represent features specific to textual expression modes
of the authors. In order to handle temporal drifts, we propose a dynamic model
that updates authors’ representations through time in the latent space.

4.5.1 Model

This method is also base on an LSTM network that we condition to an author a
and a timestep t through a latent vector ha,t. We consider that all the information
specific to the author a at time t is contained in this vector. The probability of a
document x written by a at time t for an LSTM with parameters θ is defined as
follows:

P(x|a, t) = Pθ(x|ha,t) =
|x|

∏
k=0

Pθ(xk+1|x0:k, ha,t).

An overview of our approach is pictured in Figure 4.5.
Depending on the way the condition ha,t is defined for a timestep t and an

author a, the model can greatly differ in the dynamics and dependencies it
captures.
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Figure 4.5 – A high-level view of our proposed dynamic language model for
an author a. ha,t are the conditioning vectors that evolve through
time with a dynamic function fφ. x are text publications at different
timesteps and Na,t is the number of texts published by author a at
timestep t. The panels surrounding each variable x highlight the fact
that several documents (Na,t) are modeled conditionally on the same
vector ha,t.

The general idea of the model is to produce a latent trajectory for each author.
A latent trajectory is a sequence of representation vectors ha,t that evolve in time
with a function fφ parameterized by φ. The general formulation is as follows:

ha,t = fφ(ha,0, ..., ha,t−1).

The formulation is fairly general, and several architectures can fit fφ.
The challenge of learning the ha,t vectors is twofold. First, they should capture

features specific to author a that do not change in time. For instance, in the case
of a scientific community, the scientific scope of an author (computer science,
physics, biology, etc...) usually does not change through the years. And second, it
should capture the variations in authors’ expression mode and topic evolution
through time. The writing style of an author may indeed change through time,
and its topics of interest may also change more or less drastically.

To facilitate the learning of static features, a latent vector ha is learned for each
author. These vectors are constant through time and used in various ways in our
model. It allows the dynamic function to focus only on variations across timesteps,
as described below.

We use a residual architecture for our dynamic function. We chose a Markovian
transition function, which only considers the previous representation ha,t−1, for the
induction of ha,t. It appears as a good trade-off between robustness and flexibility.
More powerful sequential models, such as RNNs that maintain a memory of the
past states, would be prone to overfitting. Indeed, the number of authors and
timesteps is usually small and lots of author-timestep pairs are missing. Having a
residual function in our dynamics allows us to learn smooth trajectories, as the
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Figure 4.6 – Detailed view of the proposed architecture. The initialization func-
tion gψ uses the static representation of author a to produce the first
latent vector ha,1. The residual function fφ is then recursively applied
in order to produce ha,t, which is used by the LSTM decoder to model
a text sequence x written by a at t.

magnitude and direction of the residue can be constrained easily by regularizing
φ with an `2 norm. This dynamic function writes as follows:

ha,t = ha,t−1 + fφ(ha,t−1, ha).

In this case, fφ is an Multi-Layer Perceptron (MLP) with Rectified Linear Unit
(ReLU) activations. In addition to the previous state, the static representation ha is
also given as input to the MLP in order to encourage different dynamics among
authors. Without it, two representations at the same position in the latent space
would have the same next state, and hence the same following dynamics. ha is
also used to compute the initial vector ha,1 through a specific MLP, gψ.

Finally, ha,t vectors are concatenated to the static author representations ha to
form the conditioning vectors that are fed to the LSTM decoder. The decoder is
able to capture general language structure, like syntax and grammar, and use the
conditioning vectors to adapt its internal dynamic to a specific author at a specific
timestep. A detailed view of the described architecture is pictured in Figure 4.5.1.

4.5.2 Experimental Setup

Model and Baselines

We compare the following models:

• LSTM: a classical LSTM decoder (no conditioning on the publication time or
the authors). We use this model to assess the gain in performances of our
model and other baselines.
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Author A
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Author C

Figure 4.7 – Illustration of our three tasks. A, B, and C are three authors, and
each column a timestep. Each circle represents the set of documents
(possibly empty) published by a given author at a given timestep.
Black circles are training data, grey circles test data, and white cir-
cle missing data. Validation data were omitted for simplification
purposes.

• LSTM-A: an LSTM decoder conditioned on authors embeddings. Only ha is
given as the start token of the LSTM decoder. This baseline allows us to assess
the performances of our temporal component.

• LSTM-iAT: an LSTM decoder conditioned on authors and time with vectors
ha,t that are free parameters to be learned (no dynamics and no constraints on
successive vectors). It is the most naive way to condition a language model
on authors and time.

• LSTM-AT: similar to LSTM-iAT, but where an `2 regularization between
consecutive vectors is applied during learning in order to structure the em-
bedding space. It is a robust baseline, but without a dynamical module to
predict representations.

• Ours 2: the model described in Section 4.5.1.

Evaluation and Tasks

Once again, we evaluate the proposed model on prediction and imputation
tasks. Since authors are now involved, the definition of the tasks slightly differs
from the previous part. A visual representation of the different temporal settings
is shown in Figure 4.7.

For prediction, we split the data in time relatively to each author, so that each
author a the same ration of publications in the different folds. Since every author

2. code available at https://github.com/edouardelasalles/dar

https://github.com/edouardelasalles/dar
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Table 4.4 – Perplexity on the Semantic Scholar corpus.

Modeling Imputation Prediction

Models micro macro micro macro micro macro

LSTM 53.8± 0.1 65.0± 0.4 57.4± 0.1 71.5± 0.2 80.7± 0.2 83.0± 0.5
LSTM-A 48.0± 0.1 56.8± 0.7 52.7± 0.1 63.9± 0.5 77.2± 0.3 77.8± 0.9
LSTM-iAT 54.3± 0.1 68.2± 0.8 61.3± 2.8 77.1± 4.7 83.7± 0.2 88.0± 0.9
LSTM-AT 47.7± 0.1 55.4± 0.2 52.3± 0.1 62.9± 0.3 77.2± 0.1 77.3± 1.3
Ours 46.7± 0.1 53.3± 0.2 51.2± 0.1 60.2± 0.2 74.3± 0.2 77.5± 1.2

Table 4.5 – Perplexity on the New York Times corpus.

Modeling Imputation Prediction

Models micro macro micro macro micro macro

LSTM 112.4± 0.2 112.9± 0.2 108.8± 0.1 109.4± 0.2 114.5± 0.2 110.1± 0.2
LSTM-A 100.1± 0.2 100.7± 0.2 100.7± 0.1 101.3± 0.2 113.1± 0.3 108.3± 0.3
LSTM-iAT 108.9± 0.3 110.0± 0.4 135.8± 0.6 136.6± 0.6 121.0± 0.6 115.9± 0.5
LSTM-AT 97.3± 0.1 97.9± 0.1 98.9± 0.2 99.5± 0.2 113.1± 0.2 108.3± 0.2
Ours 97.1± 0.1 97.7± 0.1 98.2± 0.3 98.7± 0.2 110.8± 0.4 106.5± 0.3

has not the same publication rate, the train set stops at different steps for different
authors, as depicted in Figure 4.7.

The modeling task, however, is constructed in the same way as in the previous
part: a random train/validation/test split between documents.

In this part, we add an imputation task. For this task, we hide all documents
published at randomly chosen timesteps for each author in the train set. For each
author, different timesteps are kept. This means that all documents written by
author a at time t are either in the train, validation, or test set.

LSTM-iAT and LSTM-AT baselines are not equipped to predict latent repre-
sentations. So, when evaluating documents published by author a at timesteps
t where no document was visible during training, the latent representation ha,t′

is used, with t′ < t the most recent timesteps where documents were present
during training. For our method, the dynamic function fφ is used to predict the
representation ha,t.

4.5.3 Results

Temporal Language Modeling

Table 4.4 shows the results on the S2 corpus, and Table 4.5 on NYT. The Reddit
Corpus is not included in this part since we saw in the previous section that it
contains nearly no temporal drift, and hence is less suited for this task. On all
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(e) NYT - Imputation
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Figure 4.8 – Perplexity gain w.r.t. the LSTM baseline through time for the S2 (top
row) and NYT (bottom row) corpora (higher is better). The LSTM-iAT
baseline is not displayed because it is often significantly worse than
the vanilla LSTM, as shown in Table 4.4 and Table 4.5. The black
vertical line on the predictions plots represents the point in time from
which no documents were seen in the training sets.

tasks and both corpora, our method is significantly better than all the baselines,
in micro and macro perplexity. As expected, taking into account authors in a
language model improves its performances. But incorporating time into the model
is not trivial. LSTM-iAT has consistently worse performances than the vanilla
LSTM, except on NYT modeling. Indeed, this baseline tends to overfit, as it has
no temporal regularization. In that case, each vector ha,t allows the model to
over-specialize itself on texts from the corresponding author a and time t.

On S2, LSTM-AT, the temporally regularized version of LSTM-iAT, beats LSTM-
A by a small margin (0.2 to 0.4 perplexity points), while our model consistently
beats it by 1 to 3 perplexity points, indicating that our dynamic function is more
efficient at regularizing the latent representation on this corpus. On NYT, our
method has performances similar to LSTM-AT on the modeling task and gains
0.7 points on the imputation task. On the more challenging prediction task, on
both S2 and NYT, our model beats LSTM-AT with the greatest perplexity gain
across all tasks. We also notice that on this task, LSTM-A and LSTM-AT have the
same performances on both corpora. This indicates that our dynamic module is
able to accurately predict future states, even at unseen timesteps.
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Table 4.6 – Ablation study of the dynamic function fφ. Results are in micro-
perplexity. Last raw correspond to our full model, as considered in
previous experiments.

S2 NYT

ResNet 47.8± 0.2 100.0± 0.2
+ AdaDyn 48.0± 0.5 97.9± 0.3
+ StatCond 46.9± 0.1 97.3± 0.2
+ AdaDyn + StatCond 46.7± 0.1 97.1± 0.1

To analyze more specifically the results through time, we show in Figure 4.8
the gain in perplexity over the vanilla LSTM through time. For modeling and
imputation on S2 (Figure 4.8a and Figure 4.8b), we can see that our method
has the highest gain on every timestep. The gain is more important on the first
timesteps, which contains far fewer documents than the last ones. It shows that
there is a temporal drift in the token distribution and that our model is able to
capture it more accurately than a more naive approach. For the same tasks on
NYT, we see that LSTM-AT results and ours are similar across timesteps, except
for the last ones, where our model maintains the same level of perplexity gain
while LSTM-AT tends to fall.

For the prediction task (Figure 4.8c and Figure 4.8f), we observe similar perfor-
mances for all models on both corpora. It can be explained by the low number of
documents for S2, and the difficulty of the task. On the last timesteps, however,
our model shows a clear gain over the baselines. On S2, the training set contains
no documents published at the 2 last timesteps, which is symbolized by the black
vertical line in the figure. The low variance and the significant performance gain
of our model on these two timesteps indicate that the dynamic module of our
model is able to extrapolate at unseen timesteps. On NYT, our model has better
results in the second half of the time period. The poor results of LSTM-AT on this
task are due in part to the fact that it does not have a dynamic component, like
our model. Instead, the last learned representation vector is used to condition the
LSTM on future timesteps. And since the presentations are learned independently
for each author at each timestep, strong regularization is required to prevent
overfitting when performing prediction.

Ablation Study

In Section 4.5.1, we proposed to use a static representation vector ha in our
model. This vector is used in two ways:

- Adaptive Dynamic (AdaDyn): as an input of the dynamic function to adapt
its behavior depending on the current author.
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Figure 4.9 – PCA of the latent trajectories ha,t for Semantic Scholar (S2) and New
York Times (NYT) with and without AdaDyn. Colors represent time:
dark at the first timestep to light as the last.

- Static Conditioning (StatCond): to conditioned the LSTM on the current author
independently of time. The objective is to relax ha,t to allow it to focus more
on temporal variations.

To assess the contribution of these two features into the final results, we performed
an ablation study where each feature combination is removed. The results are
shown in Table 4.6. For both corpora, it is the addition of the two features together
that yields the best results.

StatCond always increases the performances significantly, as it helps the dy-
namic module to focus on drifts since authors’ information that do not change in
time is not required to be carried by the dynamic representation through time.

On S2, contrary to NYT, the AdaDyn alone does not improve performances of
the base ResNet. It means that on this corpus the network does not need to learn
individual dynamics for each author, but only a global drift.

In the next section, we analyze the learned latent trajectories to confirm this
behavior.

Latent Trajectories Visualization

To gain a better understanding of our model behavior, we investigate the
temporal author representations learned by our model. All the visualizations in
this section were extracted from a model learned on the modeling task.

To visualize the latent trajectories, we performed Principal Component Analy-
sis (PCA) on the representations and pictured them in Figure 4.9. On NYT, we can
see that removing the AdaDyn component (Figure 4.9d) yields parallel trajectories,
that all of them drift together in time. On the other hand, with AdaDyn (Fig-
ure 4.9c), the dynamic function is free to learn a different dynamic for each author,
and we see that the representations drift together in time, but also relatively to
each other. On S2 on the other hand, with (Figure 4.9a) or without (Figure 4.9b)
AdaDyn, the latent trajectories move as one block. It illustrates the results of the
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Figure 4.10 – t-SNE visualization of the static representations ha on the S2 corpus.

ablation study, where we saw that AdaDyn did not improve the results over the
ResNet alone on this dataset.

Latent Space Analysis

Here, we provide a more detailed analysis of the latent representations learned
on the S2 corpus. Since we just saw that the latent trajectories in S2 do not vary
relatively to each other, we focus here on community-level phenomena.

We begin by plotting in Figure 4.10 a t-SNE visualization of the static vectors
ha. The labels in this visualization are obtained thanks to key-words associated to
each paper in the S2 dataset, that are interpreted as topics. We manually clustered
the labels into 6 general machine learning categories: Computer Vision (CV),
Natural Language Processing (NLP), WEB, Machine Learning (ML), Information
Retrieval (IR), and Reinforcement Learning (RL). We also put a category OTHER
for authors that do not fit in these categories. We label the authors with the most
represented category among their publications. We see on the figure that authors
from the CV and NLP communities are distinctly clustered. Next to the NLP
cluster, we notice a small IR cluster. Next to these two clusters are several authors
from the WEB community. RL authors have their own cluster on the right, though
less distinct from the others. And finally, the machine learning authors are spread
across all the space, which is expected because the category is very broad since
the corpus contains only machine learning papers. It indicates that our static
vectors capture semantic information about authors.

We further analyze the learned trajectories on S2 by examining cosine similarities
between authors in the latent space. We show in Figure 4.11 the average cosine
similarity between authors through time. First, we can see that all authors follow
the same trend. It was expected since we saw in Figure 4.9a that all authors
seem to follow the same dynamics. On the first timesteps, all representations



4.5 dynamic author representations 85

1985 1990 1995 2000 2005 2010 2015
year

0.00

0.20

0.40

0.60

0.80

co
sin

e 
sim

ila
rit

y

latent cosine similarity
keyword entropy 5.20

5.40

5.60

5.80

6.00

6.20

6.40

en
tro

py

Figure 4.11 – Evolution of latent vectors. Red lines correspond to the averaged
cosine similarity between authors in the latent space in the S2 corpus.
The blue dotted line is the entropy of keywords at each timestep.

are very similar, with a cosine similarity around 0.9. Since there are only a few
documents published at these timesteps, and because of the weight decay on
ha, all representations tend to regroup in the same place, preventing overfitting.
The average similarity then drops to 0, as the model learns to drive away each
representation to better fit them to each author. And then, after 2009, the average
similarities go up to and reach 0.5 on the last timestep. This sudden augmentation
in global similarity cannot be explained by the quantity of data, as the last 6
timesteps contain 50% of the documents in the corpus. Another hypothesis is that
global diversity among authors diminishes. To illustrate this, we plot the entropy
of articles’ keywords through time, that we interpret as the diversity of subjects
studied in the community. The entropy is plotted in blue in Figure 4.11, and we
can see that, symmetrically to the cosine similarities, the entropy of keywords
increases from 1985 to 2010 approximately, and then begins to drop. This drop of
entropy indicates that the diversity of topics also drops, and is translated by our
model in an augmentation of the average similarity between authors.

Data Samples

Here, we present samples generated by our model trained on Semantic Scholar
for the modeling task. Each sample is generated by beam search with a beam of
size 5 and is seeded with different word triplets that often appear in the corpus.

We conditioned the LSTM decoder of our model to authors randomly sampled,
at several timesteps. The samples are presented in Table 4.7. Each table from A to
D corresponds to a word triplet seed and each column from 1 to 3 to an author.
Note that authors are different between blocks, and the author of A1 is not the
author of B1.
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Table 4.7 – Samples generated from our model for different authors through time.
Text sequences are generated by feeding the first three words displayed
in bold at the top of each block. The samples were obtained by beam
search with a beam size of 5.

1 2 3

A semi - supervised...

1985 ...learning ...learning in the presence of noise ...learning of object categories
1990 ...learning with the em algorithm ...learning of linear models ...learning of object categories
1995 ...learning with a probabilistic model ...learning of probabilistic models ...image segmentation
2000 ...learning with kernels ...learning with gaussian processes ...segmentation of 3d objects
2005 ...learning with pairwise constraints ...learning for text classification ...segmentation of 3d human motion
2010 ...learning with pairwise constraints ...learning for text classification ...multi - view face recognition
2015 ...learning with deep neural networks ...multi - task learning ...convolutional neural networks
2016 ...learning with deep neural networks ...learning with deep neural networks ...convolutional neural networks
2017 ...learning with deep neural networks ...deep learning ...convolutional neural networks

B a study of...

1985 ...image segmentation ...knowledge compilation ...word sense disambiguation
1990 ...the fundamental matrix ...knowledge compilation ...word sense disambiguation
1995 ...multi - view stereo ...bayesian networks ...statistical machine translation
2000 ...image segmentation algorithms ...probabilistic logic programming ...statistical machine translation
2005 ...multi - view face recognition ...probabilistic models for relational learning ...statistical machine translation
2010 ...energy minimization algorithms ...probabilistic models for relational learning ...statistical machine translation

2015

...modern inference techniques for
structured prediction ...variational bayesian inference

...statistical machine
translation systems

2016

...modern inference techniques for
structured prediction ...variational bayesian inference ...neural machine translation systems

2017 ...deep convolutional neural networks ...variational bayesian inference ...neural machine translation systems

C real - time...

1985 ...visual tracking ...visual tracking ...visualization of the web
1990 ...visual tracking ...visual tracking ...multi - view stereo
1995 ...visual tracking ...visual tracking ...time - series classification
2000 ...multi - view clustering ...visual tracking ...time series classification
2005 ...collaborative filtering ...facial expression recognition ...time series classification
2010 ...bidding in display advertising ...visual tracking using deep learning ...time series classification
2015 ...bidding in display advertising ...visual tracking with deep neural networks ...time series forecasting
2016 ...bidding in display advertising ...facial expression recognition ...time series forecasting
2017 ...bidding in display advertising ...visual tracking with deep neural networks ...time series forecasting

D a framework for...

1985 ...learning to rank ...qualitative simulation ...learning to rank
1990 ...learning to rank ...multi - agent reinforcement learning ...learning to rank
1995 ...learning to rank ...multi - agent reinforcement learning ...learning to rank
2000 ...parsing natural language ...multi - agent reinforcement learning ...learning to rank
2005 ...parsing natural language ...multi - agent reinforcement learning ...learning to rank
2010 ...multi - task learning ...multi - target tracking ...learning to rank
2015 ...multi - task learning ...multi - target tracking ...learning to rank
2016 ...multi - task learning ...multi - target tracking ...learning to rank
2017 ...recurrent neural networks ...deep reinforcement learning ...learning to rank
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We first notice that samples are smooth in time in the text space. We also
see different speeds of variation between the different authors. For instance, the
samples D3 (bottom right) are always the same at each timestep, while the B1

samples vary rapidly. Generally, we can see that our model tends to generate titles
related to deep neural networks at the last timesteps of every author (recurrent
neural networks, deep reinforcement learning, deep convolutional neural
networks, etc...). It is consistent with the increase in average author similarity
found in Figure 4.11. We also see that samples for a particular author across time
tend to refer to the same sub-field (e.g. computer vision or natural language
processing), which is also consistent with dynamics observed in section 4.11.

Future Works

We present here some possible future works from an NLP point of view. A
first direction is toward explicitly discovering relationships between authors, by
incorporating our STNN framework. This would allow us to explicitly capture
relations between authors, and study their evolution through time. In this work,
we did not address the fact that new words appear at future timesteps. Handling
out-of-vocabulary words are of major concern in NLP, and predicting new words
is even more challenging. Ongoing works focus on learning to predict future
sub-words combinations using byte pair encoding (Sennrich et al. 2016). Recently,
a new kind of language model architecture based on transformer networks (Devlin
et al. 2019; Radford et al. 2019) achieved state-of-the-art results in various NLP
tasks. Integrating it and analyzing its effects in our framework is an interesting
and promising research direction.

4.6 Conclusion

In this chapter, we explored the incorporation of a temporal component into
different language models. We first proposed a dynamic recurrent language
model that handles temporal drifts in language. In this model, language evolu-
tion dynamic is captured in a latent space with global latent variables that are
constrained by a learned transition function. We then propose to also take into
account authors, since their individual modes of expression also change through
time.

For this last task, we propose a deterministic dynamic model that completely
define the latent trajectories of authors representation, compared to our first
model where the variationally inferred latent states were free to violate the learned
dynamics. However, by using a deterministic dynamics, we loose stochasticity,
which hurt performances on certain tasks. In the next chapter, we propose
a model that has both features: it is a stochastic model with a deterministic
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part. The stochastic aspect allows the model to generate diverse futures, and the
deterministic aspect allows gradient backpropagation through entire sequences.
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Chapter abstract
Temporal phenomena are often stochastic, which needs to be taken into account
to build better prediction models. In this chapter, we propose a stochastic
sequential generation model based on Variational Auto-Encoders (VAEs), and
applied it to video prediction. Contrary to previous chapters, we consider here
a temporal setup where we have several videos of fixed length sampled from the
same distribution. This allows us to propose to amortize the inference process
with a Neural Network (NN). The proposed model is based on residual updates
of a latent state and is motivated by discretization schemes of differential
equations. This first-order principle naturally models video dynamics and
allows us to build a simpler and more interpretable model compared to the
autoregressive state-of-the-art models. We achieve competitive results with
these models on 4 datasets with a lighter fully latent model.

89
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• Jean-Yves Franceschi*, Edouard Delasalles*, Mickaël Chen, Sylvain Lam-
prier, and Patrick Gallinari (2020). “Stochastic Latent Residual Video
Prediction”. In: Proceedings of the 37th International Conference on Machine
Learning, ICML 2020.

5.1 Introduction

In this chapter, we focus on the prediction task by tackling a challenging
component of temporal data: their temporal stochasticity. Indeed, in many real-
world time series, the same series can have different and diverse futures. This is
particularly the case in video data, that is our subject of study in this chapter.

Being able to predict the future of a video from a few conditioning frames in
a self-supervised manner has many applications in fields such as reinforcement
learning (Gregor et al. 2019) or robotics (Babaeizadeh et al. 2018). More generally,
it challenges the ability of a model to capture visual and dynamic representations
of the world. Video prediction has received a lot of attention from the computer
vision community. However, most proposed methods are deterministic, reducing
their ability to capture video dynamics, which are intrinsically stochastic (E.
Denton et al. 2018).

Most state-of-the-art approaches are based on image-autoregressive models
(E. Denton et al. 2018; Babaeizadeh et al. 2018), built around Recurrent Neural
Networks (RNNs). However, as mentioned in the related work of this thesis (c.f.
Section 2.4.3), performances of their temporal models innately depend on the ca-
pacity of their encoder and decoder, as each generated frame has to be re-encoded
in a latent space. Such autoregressive processes induce a high computational cost,
and strongly tie the frame synthesis and temporal models, which may hurt the
performance of the generation process and limit its applicability (Gregor et al.
2019; Rubanova et al. 2019).

An alternative approach consists in separating the latent dynamics from frame
synthesis process, which are independently decoded from the latent space. In
addition to removing the aforementioned link between frame synthesis and
temporal dynamics, this is computationally appealing when coupled with a low-
dimensional latent-space. Moreover, such models can be used to shape a complete
representation of the state of a system, e.g. for reinforcement learning applications
(Gregor et al. 2019), and more interpretable than autoregressive models (Rubanova
et al. 2019). Yet, these State Space Models (SSMs) are more difficult to train as
they require non-trivial latent state inference schemes (Krishnan et al. 2017) and a
careful design of the dynamic model (Karl et al. 2017). This leads most successful
SSMs to only be evaluated on small or artificial toy tasks.

In this chapter, we propose a novel stochastic dynamic model for the task
of video prediction, which successfully leverages structural and computational
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advantages of SSMs that operate on low-dimensional latent spaces. The dynamic
component determines the evolution through residual updates of the latent state,
conditioned on learned stochastic variables. This formulation allows us to im-
plement an efficient training strategy and process in an interpretable manner
complex high-dimensional data such as videos. This residual principle can be
linked to recent advances relating to residual networks and Ordinary Differential
Equations (ODEs) (Chen et al. 2018). This interpretation opens new perspectives
such as generating videos at different frame rates, as demonstrated in our ex-
periments. Overall, this approach outperforms current state-of-the-art models
on the task of stochastic video prediction, as demonstrated by comparisons with
competitive baselines on representative benchmarks.

5.2 Video Prediction in Computer Vision

In this chapter, we use the stochastic video prediction task as a proxy to study
stochastic generation processes. But since the task is tackled by many previous
works, we begin this chapter by referencing the principal body of work related to
this task.

Inspired by prior sequence generation models using RNNs, a number of video
prediction methods (Srivastava et al. 2015; Villegas et al. 2017; Wichers et al.
2018) rely on Long Short-Term Memories (LSTMs) (Hochreiter et al. 1997), or, like
Ranzato et al. 2014 and Jia et al. 2016, on derived networks such as ConvLSTMs
(X. Shi et al. 2015) taking advantage of Convolutional Neural Networks (CNNs).
Indeed, computer vision approaches are usually tailored to high-dimensional
video sequences and propose domain-specific techniques as they often use pixel-
level transformations and optical flow (X. Shi et al. 2015; Walker et al. 2015;
Finn et al. 2016; Jia et al. 2016; Vondrick et al. 2017; Liang et al. 2017; Liu et al.
2017; Lotter et al. 2017; C. Lu et al. 2017; Fan et al. 2019) that help to produce
high-quality predictions. Such predictions are, however, deterministic, thus
hurting their performance as they fail to generate sharp long-term video frames
(Babaeizadeh et al. 2018; E. Denton et al. 2018). Following Mathieu et al. 2016,
some works proposed to use an adversarial loss (Goodfellow et al. 2014) on their
model’s predictions to sharpen the generated frames (Vondrick et al. 2017; Liang
et al. 2017; C. Lu et al. 2017; Xu et al. 2018). Nonetheless, adversarial losses
are notoriously hard to train, and lead to mode collapse, preventing diversity of
generations.

Some approaches rely on exact likelihood maximization, using pixel-level au-
toregressive generation (Oord et al. 2016b; Kalchbrenner et al. 2017) or normalizing
flows through invertible transformations between the observation space and a
latent space (Kingma et al. 2018; Kumar et al. 2019). However, they require careful
design of complex temporal generation schemes manipulating high-dimensional
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data, thus inducing a prohibitive temporal generation cost. More efficient con-
tinuous models rely on Variational Auto-Encoders (VAEs) for the inference of
low-dimensional latent state variables. Except Xue et al. 2016 who learn a one-
frame-ahead VAE, they model sequence stochasticity by incorporating a random
latent variable per frame into a deterministic RNN-based image-autoregressive
model. Babaeizadeh et al. 2018 integrate stochastic variables into the ConvLSTM
architecture of Finn et al. 2016. Concurrently with J. He et al. 2018, E. Denton et al.
2018, with Castrejón et al. 2019 in a follow-up, use a prior LSTM conditioned on
previously generated frames in order to sample random variables that are fed to
a predictor LSTM. Finally, Lee et al. 2018 combine the ConvLSTM architecture
and this learned prior, adding an adversarial loss on the predicted videos to
sharpen them at the cost of a diversity drop. Concurrently to our work, Minderer
et al. 2019 propose to use the autoregressive VRNN model (Chung et al. 2015) on
learned image key-points instead of raw frames. While this change could mitigate
the aforementioned problems, the extent of such mitigation is unclear.

5.3 Model

We consider the task of stochastic video prediction, consisting of approaching,
given some conditioning video frames, the distribution of possible future frames
given this conditioning. To this end, we proposed a novel temporal latent residual
model. This model has two components: one for the dynamics and the other
for the content. For the former, one learns latent vectors and the transition
function that represent the complete dynamics of a video sequence. The state
vectors are stochastically updated by deterministically computing their next value
using auxiliary random variables, learned by Variational Inference (VI). The
content component of the model is used to model the specificities of video data.
For instance, backgrounds are often static, and should not be part of the latent
dynamics. The content component is a learned static content variable (E. L. Denton
et al. 2017; Li et al. 2018), computed from sampled subsets of frames at training
time to avoid any temporal leak in this static variable.

5.3.1 Latent Residual Dynamic Model

Let x1:T be a sequence of T video frames. We model their evolution by introduc-
ing latent variables y that are driven by a dynamic temporal model. Each frame
xt is then generated with a decoder from the corresponding latent state yt only,
making the dynamics independent from the decoding process.

We propose to model the transition function of the latent dynamic of y with a
stochastic residual network. State yt+1 is chosen to be deterministically dependent
on the previous state yt, conditionally to an auxiliary random variable zt+1. These
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Figure 5.1 – Proposed generative and inference models. Diamonds and circles
represent, respectively, deterministic and stochastic states.

auxiliary variables encapsulate the randomness of the video dynamics. They have
a learned factorized Gaussian prior that depends on the previous state only. The
model is depicted in Figure 5.1a, and defined as follows:

y1 ∼ N (0, I),
zt+1 ∼ N

(
µθ(yt), σθ(yt)I

)
,

yt+1 = yt + fθ(yt, zt+1),
xt ∼ G

(
gθ(yt)

)
,

(5.1)

where µθ, σθ, fθ, and gθ are neural networks, and G
(

gθ(yt)
)

is a probability
distribution parameterized by gθ(yt).

In our experiments, G is a normal distribution with fixed diagonal variance and
mean gθ(yt). Note that y1 is assumed to have a standard Gaussian prior, and, in
our VAE setting, will be inferred from conditioning frames for the prediction task,
as shown in Section 5.3.3.

The residual update rule takes inspiration in the Euler discretization scheme
of differential equations. The state of the system yt is updated by its first-
order movement, i.e., the residual fθ(yt, zt+1). Compared to a regular RNN,
this simple principle makes our temporal model lighter and more interpretable,
since trajectories can be computed and followed in a low-dimensional latent space.
Equation 5.1, however, differs from a discretized ODE because of the introduction
of the stochastic discrete-time variables z. Nonetheless, we propose to allow the
Euler step size ∆t to be smaller than 1, as a way to make the temporal model
closer to a continuous dynamics. The updated dynamics becomes, with 1

∆t ∈N

to synchronize the step size with the video frame rate:

yt+∆t = yt + ∆t · fθ
(

yt, zbtc+1

)
. (5.2)

For this formulation, the auxiliary variable zt is kept constant between two
integer timesteps. Note that a different ∆t can be used during training or testing.
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This allows our model to generate videos at an arbitrary frame rate since each
intermediate latent state can be decoded in the observation space. This ability
enables us to observe the quality of the learned dynamic as well as challenge its
ODE inspiration by testing its generalization to the continuous limit in Section 5.4.
In the following, we consider ∆t as a hyper-parameter. For the sake of clarity, we
present the model with ∆t = 1; generalizing to smaller ∆t being straightforward
as Figure 5.1a remains unchanged.

5.3.2 Content Variable

Some components of video sequences can be static, such as the background
or shapes of moving objects. They may not impact the dynamics; we, therefore,
model them separately, in the same spirit as E. L. Denton et al. 2017 and Li et al.
2018. We compute a content variable w that remains constant throughout the
whole generation process and is fed together with yt into the frame generator. It
enables the dynamical part of the model to focus only on movement, hence being
lighter and more stable. Moreover, it allows us to leverage architectural advances
in neural networks, such as skip connections (Ronneberger et al. 2015), to produce
more realistic frames.

This content variable is a deterministic function cψ of a fixed number k < T of

frames x(k)c :

x(k)c = xi1 , . . . , xik , w = cψ

(
x(k)c

)
= cψ

(
xi1 , . . . , xik

)
, xt ∼ G

(
gθ(yt, w)

)
,

where i1, . . . , ik represent temporal indices.
This content variable is not endowed with any probabilistic prior, contrary to the

dynamic variables y and z. Hence, the information it contains is not constrained in
the loss function (see Section 5.3.3), but only architecturally. To prevent temporal
information from leaking in w, we propose to uniformly sample these k frames
within x1:T during training. We also design cψ as a permutation-invariant function
(Zaheer et al. 2017b), which is done by using an Multi-Layer Perceptron (MLP) fed
with the sum of individual frame representations, similarly to Santoro et al. 2017.

This formalism allows us to use skip connections for modeling static back-
ground. Skip connections require symmetric encoder and decoder architectures
and add as input of each decoder layer the output of its symmetric encoder
layer. This design allows direct information flow from the conditioning frames
to the generated frames, and help to model static components of videos, like
backgrounds.

During testing, x(k)c are the last k conditioning frames (usually between 2 and
5). This allows the model to infer content variables with ground truth data closer
in time to the predicted one, and hence optimize prediction.
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Figure 5.2 – Model and inference architecture on a test sequence. The transparent
block on the left depicts the prior, and those on the right correspond
to the full inference performed at training time. hθ and gθ are deep
CNNs, and other named networks are MLPs.

This absence of prior and its architectural constraint allows w to contain as
much non-temporal information as possible while preventing it from containing
dynamic information. On the other hand, due to their strong standard Gaussian
priors, y and z are encouraged to discard any unnecessary information. Therefore,
y and z should only contain temporal information that could not be captured by
w.

Note that this content variable can be removed from our model, yielding a more
classical deep state-space model. An experiment in this setting is presented in
Appendix D.

5.3.3 Variational Inference and Architecture

Following the generative process depicted in Figure 5.1a, the conditional joint
probability of the full model, given a content variable w, can be written as:

p(x1:T , z2:T , y1:T | w) = p(y1)
T−1

∏
t=1

p(zt+1 | yt)p(yt+1 | yt, zt+1)
T

∏
t=1

p(xt | yt, w),

(5.3)
where p(yt+1 | yt, zt+1) = δ

(
yt + fθ(yt, zt+1)− yt+1

)
and δ is the Dirac delta func-

tion centered on 0. Thus, in order to optimize the likelihood of the observed videos
p(x1:T | w), we need to infer latent variables y1 and z2:T. This is done by deep VI
using the inference model parameterized by φ and shown in Figure 5.1b, which
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comes down to consider a variational distribution qZ,Y defined and factorized as
follows:

qZ,Y ,q(z2:T , y1:T | x1:T , w)

=q(y1 | x1:k)
T

∏
t=2

q(zt | x1:t)δ
(
yt−1 + fθ(yt−1, zt)− yt

)
.

(5.4)

This yields the following Evidence Lower Bound (ELBO), whose full derivation
is given in Appendix B:

log p(x1:T | w) ≥ E(z̃2:T ,ỹ1:T)∼qZ,Y

T

∑
t=1

log p(xt | ỹt, w)−DKL
(
q(y1 | x1:k)

∥∥ p(y1)
)

−E(z̃2:T ,ỹ1:T)∼qZ,Y

T

∑
t=2

DKL
(
q(zt | x1:t)

∥∥ p(zt | ỹt−1)
)
, L

(
x1:T; w, θ, φ

)
. (5.5)

The sum of Kullback-Leibler Divergence (KLD) expectations implies to consider
the full past sequence of inferred states for each timestep, due to the dependence
on conditionally deterministic variables y2:T. However, optimizing L

(
x1:T; w, θ, φ

)
with respect to model parameters θ and variational parameters φ can be done
efficiently by sampling a single full sequence of states from qZ,Y per example, and
computing gradients by backpropagation through all inferred variables, using
the reparametrization trick. We classically choose q(y1 | x1:k) and q(zt | x1:t) to be
factorized Gaussian, so that all KLDs can be computed analytically.

We include an `2 regularization term on residuals fθ to stabilizes the temporal
dynamics of the residual network, as noted by Behrmann et al. 2019 and Rousseau
et al. 2019. Given a set of videos X , the full optimization problem, where L is
defined as in Equation 5.5, is given as:

arg max
θ,φ,ψ

∑
x∈X

[
E

x(k)c
L
(

x1:T; cψ

(
x(k)c

)
, θ, φ

)
− λ ·E(z2:T ,y1:T)∼qZ,Y

T

∑
t=2

∥∥ fθ(yt−1, zt)
∥∥

2

]
.

Figure 5.2 depicts the full architecture of our temporal model, corresponding to
how the model is applied during testing. The first latent variables are inferred
with the conditioning frames and are then predicted with the dynamics model.
In contrast, during training, each frame of the input sequence is considered for
inference, which is done as follows.

Firstly, each frame xt is independently encoded into a vector-valued representa-
tion x̃t, with x̃t = hφ(xt). y1 is then inferred using an MLP on the first k encoded
frames x̃1:k. Each zt is inferred in a feed-forward fashion with an LSTM on the
encoded frames. Inferring z this way experimentally performs better than, e.g.,
inferring them from the whole sequence x1:T; we hypothesize that this follows
from the fact that this filtering scheme is closer to the prediction setting, where
the future is not available.
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At prediction time (right part of Figure 5.2), the prior network is used to generate
zt+1 from yt. Then, zt+1 and yt are used as input of the residual dynamics fθ to
predict the next state yt+1. Frame are synthesize with a decoder gθ that take as
input the states yt, which can be performed in parallel.

5.4 Experimental Setup

This section exposes the experimental results of our method on four standard
stochastic video prediction datasets. We compare our method with state-of-
the-art baselines on stochastic video prediction. Furthermore, we qualitatively
study the dynamics and latent space learned by our model. Training details
are described in Appendix C. Animated video samples are available at https:
//sites.google.com/view/srvp/, and code is available at https://github.com/
edouardelasalles/srvp.

5.4.1 Baselines

We compare our model against the following state-of-the-art models:

Stochastic Variational Video Prediction (SV2P)

Babaeizadeh et al. 2018 were the first to use the reparametrization trick and
KLD to learn stochastic video generation models. In essence, the generative model
is the same as in Bayer et al. 2014: an RNN with independent latent variables
added at each timestep (c.f. Section 2.4.2). But they replaced the RNN with
ConvLSTMs (X. Shi et al. 2015), more adapted for image processing, and proposed
a masking module for handling static backgrounds. The model suffers from the
same limitations in terms of dynamics as Bayer et al. 2014.

Stochastic Video Generation (SVG)

E. Denton et al. 2018 improved on that by learning a prior network, similarly to
Chung et al. 2015, tying random variables in time. They proposed to use different
LSTMs for the recognition module, prior network, and predictor network. They
also do not use ConvLSTMs but encode and decode frames in a low dimension
vectorial space with deep CNNs. The model obtained better results on a moving
robotic arm dataset.

Stochastic Adversarial Video Prediction (SAVP)

Lee et al. 2018 improved SV2P by adding a learned prior module, and an
additional Generative Adversarial Model (GAN) (Goodfellow et al. 2014) loss on

https://sites.google.com/view/srvp/
https://sites.google.com/view/srvp/
https://github.com/edouardelasalles/srvp
https://github.com/edouardelasalles/srvp
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the generated images. The added adversarial loss allows them to produce sharper
images, while the VAE component maintains diversity in their model.

Structured Variational RNN (StructVRNN)

(Minderer et al. 2019) proposed to extract keypoints from video frames us-
ing the unsupervised method of Jakab et al. 2018. They then learn a dynamic
variational model on these keypoints using the VRNN from Chung et al. 2015

(c.f. Section 2.4.2). The keypoint extractor and the VRNN dynamics are learned
independently.

All baseline results were obtained with pretrained models released by the
authors, except for Minderer et al. 2019, where we train their model using their
open-source code. Note that we use the same neural architecture as SVG for our
encoders and decoders in order to perform fair comparisons with this method,
which is the closest to ours among the state-of-the-art. Unless specified otherwise,
our model is tested with the same ∆t as in training (see Equation 5.2).

5.4.2 Datasets

We present experimental results on a simulated dataset and three real-world
datasets:

Stochastic Moving MNIST (SM-MNIST)

This dataset consists of one or two MNIST digits (LeCun et al. 1998) of size
28× 28 moving linearly within a 64× 64 frame and randomly bounce against its
border, sampling a new direction and velocity at each bounce (E. Denton et al.
2018). We use the same settings as E. Denton et al. 2018, train all models on 15
timesteps and condition them at test time on 5 frames. Note that we adapted the
dataset to sample more coherent bounces: the original dataset computes digit
trajectories that are dependent on the chosen framerate, unlike our corrected
version of the dataset. We consequently retrained SVG on this dataset, obtaining
comparable results as those originally presented by E. Denton et al. 2018. Test
data were produced by generating 5000 samples with a different digit for each
sequence coming from the MNIST test set.

KTH Action dataset (KTH)

This dataset is composed of real-world 64× 64 videos of 25 people performing
one of six actions (walking, jogging, running, boxing, handwaving, and handclap-
ping) in front of different backgrounds (Schüldt et al. 2004). Uncertainty lies in
the appearance of subjects, the action they perform, and how it is performed. The
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training set is formed with actions from 20 people, the remaining five being used
for testing. Training is performed by sampling sub-sequences of size 20 in the
train set. The test set is composed of 1000 randomly sampled sub-sequences of
size 40 among the videos with the 5 people never seen during training.

Human3.6M

This dataset is also made of videos of subjects performing various actions
(Ionescu et al. 2011; Ionescu et al. 2014). While there are more actions and details
to capture with less training subjects than in KTH, the video backgrounds are less
varied, and subjects always remain within the frames. We use the same settings
as Minderer et al. 2019, train all models on 16 timesteps, condition them at test
time on 8 frames, and predict 45 frames. Videos used in our experiment are
subsampled from the original videos at 6.25Hz, center-cropped from 1000× 1000
to 800× 800, and resized using the Lanczos of the Pillow library 1 filter to 64× 64.
Following Minderer et al. 2019, the training set is composed of videos of subjects
1, 5, 6, 7, and 8, and the testing set is made from subjects 9 and 11; videos showing
more than one action, marked by “ALL” in the dataset, are excluded. The test set
is composed of 1000 randomly sampled sub-sequences of size 40 from the testing
videos.

BAIR robot pushing dataset (BAIR)

This dataset contains 64× 64 videos of a Sawyer robotic arm pushing objects
on a tabletop (Ebert et al. 2017). It is highly stochastic as the arm can change its
direction at any moment. Training is performed on 12 frames and testing is done
with two conditioning frames on the provided test set, consisting of 256 sequences
of 30 frames.

5.4.3 Evaluating Stochastic Predictions

The stochastic nature and novelty of the task of stochastic video prediction
make it challenging to evaluate (Lee et al. 2018): since videos and models are
stochastic, comparing the ground truth and a predicted video is not adequate. We
thus adopt the common approach (E. Denton et al. 2018; Lee et al. 2018) consisting
of, for each test sequence, sampling from the tested model a given number (here,
100) of possible futures and reporting the best performing sample against the true
video. This method is not perfect but naturally evaluate two aspects of models:
their precision and their diversity. If a model has low precision, it will produce
blurry samples that will lead to poor scores. If the model is not diverse enough, it
will fail to produce the correct sequence since the number of attempts is limited

1. https://pillow.readthedocs.io/

https://pillow.readthedocs.io/
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Figure 5.3 – Conditioning frames and corresponding ground truth and best sam-
ples with respect to PSNR from SVG and our method for an example
of the SM-MNIST dataset.
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Figure 5.4 – Mean Peak Signal-to-Noise Ratio (PSNR) and Structured Similarity
(SSIM) scores with respect to t for all tested models on the SM-MNIST
dataset, with their 95%-confidence intervals. The intervals may be
not clearly visible has they are very tight (see Table 5.1). Vertical bars
mark the length of train sequences.

(here, 100). Hence to obtain a good score, models have to be sharp and diverse,
which are the features we want for a stochastic video prediction model.

We report this discrepancy for three commonly used metrics: PSNR (higher is
better), SSIM (higher is better), and Learned Perceptual Image Patch Similarity (LPIPS)
(lower is better) (R. Zhang et al. 2018). PSNR tends to promote blurry predictions,
as it is a pixel-level measure derived from the `2 distance, but greatly penalizes
errors in predicted positions of objects in the scenes. SSIM is a similarity metric
between image patches. LPIPS is a learned distance between activations of deep
CNNs trained on image classification tasks, which has been shown to better
correlate with human judgment on real images. While these three metrics are
computed frame-wise, the recently proposed Fréchet Video Distance (FVD) (lower
is better) (Unterthiner et al. 2018) aims at directly comparing the distribution of
predicted videos with the ground truth distribution through the representations
computed by a deep CNN trained on action recognition tasks. It has been shown,
independently from LPIPS, to better correlate with human judgment than PSNR
and SSIM. We treat all four metrics as complementary, as they capture different
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Table 5.1 – Numerical results (mean and 95%-confidence interval) for PSNR
and SSIM for tested methods on the two-digits Moving MMNIST
dataset. Bold scores indicate the best performing method and, where
appropriate, scores whose means lie in the confidence interval of the
best performing method.

Models
Stochastic Deterministic

PSNR SSIM PSNR SSIM

SVG 14.45± 0.06 0.7070± 0.0021 12.93± 0.05 0.6245± 0.0022

Ours 16.90± 0.09 0.7789± 0.0025 16.49± 0.06 0.7808± 0.0020
Ours - MLP 16.55± 0.09 0.7693± 0.0024 14.32± 0.06 0.6895± 0.0023

Ours - GRU 15.81± 0.08 0.7463± 0.0023 13.16± 0.05 0.6318± 0.0022

modalities. PSNR challenges the dynamics of the predicted videos, while SSIM
rather compares local frame patches but loses some dynamics information. LPIPS
and FVD both measure the realism of the predictions compared to the ground truth.
FVD considers videos as a whole, making it more capable of detecting temporal
inconsistencies. On the other hand, the frame-wise LPIPS metric penalizes more
the temporal drifts of videos, since it directly compares each predicted and ground
truth frame.

5.5 Results

5.5.1 Prediction

Stochastic Moving MNIST

Figure 5.4a shows quantitative results with two digits. Our model outperforms
SVG on both PSNR and SSIM; LPIPS and FVD are not reported as they are not relevant
for this synthetic task. Decoupling dynamics from image synthesis allows our
method to maintain temporal consistency despite high-uncertainty frames where
crossing digits become indistinguishable. For instance in Figure 5.3, the digits
shape changes after they cross in the SVG prediction, while our model predicts the
correct digits. To evaluate the predictive ability on a longer horizon, we perform
experiments on the classic deterministic version of the dataset (Srivastava et al.
2015). We show the results up to t + 95 in Figure 5.4b. We can see that our model
better captures the dynamics of the problem compared to SVG as its performance
decreases significantly less, even at a long-term horizon.

We also compare to two alternative versions of our model in Figure 5.4, where
the residual dynamic function is replaced by an MLP or a Gated Recurrent Unit
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Figure 5.5 – PSNR, SSIM, and LPIPS scores with respect to t for all tested models
on the KTH dataset.

Table 5.2 – Numerical results (mean and 95%-confidence interval, when relevant)
for PSNR, SSIM, LPIPS, and FVD for tested methods on the KTH dataset.
Bold scores indicate the best performing method for each metric and,
where appropriate, scores whose means lie in the confidence interval
of the best performing method.

Models PSNR SSIM LPIPS FVD

SV2P 28.18± 0.39 0.8141± 0.0068 0.2049± 0.0080 636± 1

SAVP 26.51± 0.36 0.7560± 0.0083 0.1120± 0.0058 374± 3

SVG-FP 26.99± 0.33 0.8291± 0.0074 0.1083± 0.0058 377± 6

Ours 29.69± 0.37 0.8697± 0.0057 0.0736± 0.0036 222± 3
Ours - GRU 29.13± 0.38 0.8590± 0.0060 0.0790± 0.0039 240± 5

Ours - MLP 29.49± 0.38 0.8626± 0.0061 0.0825± 0.0042 255± 4

(GRU) network. Our residual model outperforms both versions on the stochastic,
and especially on the deterministic version of the dataset, showing its intrinsic
advantage at modeling dynamics. Finally, on the deterministic version of Moving
MNIST, we compare to an alternative where auxiliary variables z are entirely
removed, resulting in a temporal model very close to the one presented in Chen et
al. 2018. The loss of performance of this alternative model is significant, especially
in SSIM, showing that our stochastic residual model offers a substantial advantage
even when used in a deterministic environment.

As SV2P and SAVP were not tested on this dataset (in particular, with no
pretrain model, code, or hyper-parameters), we only report scores for SVG as the
state-of-the-art model on SM-MNIST.

KTH

On this dataset, we substantially outperform on every considered baseline for
each metric, as shown in Figure 5.5 and Table 5.2. In some videos, the subject only
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Figure 5.6 – Conditioning frames and corresponding ground truth, best samples
from SVG, SAVP and our method, and worst and random samples
from our method, for an example of the KTH dataset. Samples are
chosen according to their LPIPS with respect to the ground truth. SVG
fails to make a person appear unlike SAVP and our model, which
better predicts the pose of the subject.

Table 5.3 – FVD scores for SVG and our method on KTH, trained either with
DCGAN or VGG encoders and decoders, with their 95%-confidence
intervals over five different samples from the models.

Dataset SVG - VGG SVG - DCGAN Ours - VGG Ours - DCGAN

FVD 377± 6 542± 6 220± 2 371± 3

appears after the conditioning frames, requiring the model to sample the moment
and location of the subject appearance, as well as its action. This critical case
is illustrated in Figure 5.6. There, SVG fails to even generate a moving person;
only SAVP and our model manage to do so, and our best sample is closer to
the subject’s poses compared to SAVP. Moreover, the worst sample of our model
demonstrates that it captures the diversity of the dataset by making a person
appear at different timesteps and speeds.

To further study the influence of the encoder and decoder architecture on SVG
and our model, we train both models with a lighter encoder/decoder architecture.
In the presented results, we used the same VGG16 architecture (Simonyan et al.
2015) as SVG. Here, we replace this architecture by the DCGAN architecture
(Radford et al. 2016) which has approximately three times fewer layers. The
results are presented in Figure 5.7 and Table 5.3.

Since DCGAN is a less powerful architecture than VGG, the results of each
method with VGG are expectedly better than those of the same method with



104 stochastic prediction of videos

10 15 20 25 30 35 40

t

17.5

20.0

22.5

25.0

27.5

30.0

32.5

35.0

P
S

N
R

SVG-FP - VGG

SVG-FP - DCGAN

Ours - VGG

Ours - DCGAN

10 15 20 25 30 35 40

t

0.70

0.75

0.80

0.85

0.90

0.95

S
S

IM

10 15 20 25 30 35 40

t

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

L
P

IP
S

Figure 5.7 – PSNR, SSIM, and LPIPS scores with respect to t on the KTH dataset
for SVG and our model with two choices of encoder and decoder
architecture for each: DCGAN and VGG.

DCGAN. Moreover, our model outperforms SVG for any fixed choice of encoder
and decoder architecture, which is coherent with Figure 5.5.

We observe, however, that the difference between a method using VGG and its
DCGAN counterpart differs depending on the model. Our model shows more
robustness to the choice of encoder and decoder architecture, as it loses much less
performance than SVG when switching to a less powerful architecture. This loss is
particularly pronounced with respect to PSNR, which is the metric that penalizes
most dynamics errors. This shows that reducing the capacity of the encoders and
decoders of SVG not only hurts its ability to produce realistic frames, as expected,
but also substantially lowers its ability to learn good dynamics. We assume that
this phenomenon is caused by the autoregressive nature of SVG, which makes it
dependent on the performance of its encoders and decoders. This supports our
motivation to propose a non-autoregressive model for stochastic video prediction.

Finally, Table 5.2 compares our method to its MLP and GRU alternative versions,
leading to two conclusions. Firstly, it confirms the structural advantage of residual
dynamics observed on Moving MNIST. Indeed, both MLP and GRU lose on all
metrics, and especially in terms of realism according to LPIPS and FVD. Secondly,
all three versions of our model (residual, MLP, GRU) outperform prior methods.
Therefore, this improvement is due to their common inference method, latent
nature, and content variable, strengthening again our motivation to propose a
non-autoregressive model.

Human3.6M

This dataset is similar to KTH, with more actions and details to capture and less
training subjects. However, the video backgrounds are less varied, and subjects
always remain within the frames.

As reported in Figure 5.9 and Table 5.4, our model significantly outperform
StructVRNN on all metrics, which is the state-of-the-art on this dataset and has
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Figure 5.8 – Conditioning frames and corresponding ground truth, best samples
from StructVRNN and our method, and worst and random samples
from our method, with respect to LPIPS, for a video of the Human3.6M
dataset. Our method better captures the dynamic of the subject and
produces less artefacts than in StructVRNN predictions.
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Figure 5.9 – PSNR and LPIPS scores with respect to t for all tested models on the
Human3.6M dataset.

Table 5.4 – Numerical results (mean and 95%-confidence interval, when rele-
vant) for PSNR, SSIM, and LPIPS for tested methods on the Human3.6M
dataset. Bold scores indicate the best performing method for each met-
ric and, where appropriate, scores whose means lie in the confidence
interval of the best performing method.

Models PSNR SSIM LPIPS FVD

StructVRNN 24.46± 0.22 0.8868± 0.0031 0.0557± 0.0019 556± 9

Ours 25.30± 0.25 0.9074± 0.0028 0.0509± 0.0019 416± 5

Ours - GRU 23.55± 0.26 0.8864± 0.0031 0.0691± 0.0024 582± 4

Ours - MLP 25.00± 0.26 0.9047± 0.0028 0.0529± 0.0019 1050± 20
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Figure 5.10 – PSNR, SSIM, and LPIPS scores with respect to t for all tested models
on the BAIR dataset.

Table 5.5 – Numerical results (mean and 95%-confidence interval, when relevant)
with respect to PSNR, SSIM, LPIPS, and FVD for tested methods on the
BAIR dataset. Bold scores indicate the best performing method for
each metric and, where appropriate, scores whose means lie in the
confidence interval of the best performing method.

Models PSNR SSIM LPIPS FVD

SV2P 20.39± 0.42 0.8169± 0.0110 0.0912± 0.0063 965± 17

SAVP 18.44± 0.40 0.7886± 0.0117 0.0634± 0.0048 152± 9
SVG 18.95± 0.41 0.8057± 0.0116 0.0609± 0.0046 255± 4

Ours 19.64± 0.45 0.8211± 0.0110 0.0610± 0.0048 198± 8

been shown to surpass both SAVP and SVG by Minderer et al. 2019. Figure 5.8
shows the dataset challenges; in particular, both methods do not capture well the
subject’s appearance. Nonetheless, our model better captures its movements and
produces more realistic frames.

Comparisons to the MLP and GRU versions demonstrate once again the advan-
tage of using residual dynamics. GRU obtains very low scores on all metrics,
which is coherent with similar results for SVG reported by Minderer et al. 2019.
While the MLP version remains close to the residual model on PSNR, LPIPS, and
SSIM, it is largely beaten by the latter in terms of FVD.

BAIR

On the BAIR dataset, we achieve similar or better results compared to state-of-
the-art models, as Figure 5.10 and Table 5.5 show. We obtain second-best PSNR
results behind SV2P, but the latter produces very blurry samples, as can be seen in
Figure 5.11, yielding prohibitive LPIPS and FVD scores. In contrast, we achieve the
highest SSIM overall, as well as state-of-the-art LPIPS and competitive FVD among
these models.
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Figure 5.11 – Conditioning frames and corresponding ground truth, best samples
from SV2P, SVG, SAVP, and our method, and worst and random
samples from our method, with respect to LPIPS, for a video of the
BAIR dataset.

5.5.2 Varying Frame Rate in Testing.

We challenge the ability of our model to use a different Euler step size than
the one used in training (see Equation 5.2). Figure 5.5 and Figure 5.10 include
corresponding results with a halved ∆t. Prediction performances remain stable
while generating twice as many frames. Our model is thus robust to the refinement
of the Euler approximation, showing the quality of the learned dynamics which is
close to continuous. This can be used to generate frames at a higher frame rate
than the training videos without supervision.

To further study the influence of the Euler step size, we tested our model on
varying values of ∆t. The results are presented in Table 5.6 for BAIR trained with
∆t = 1. It shows that, when refining the Euler approximation, our model can im-
prove its performance in a setting that is unseen during training. Results stabilize
when ∆t is small enough, showing that the model is close to the continuous limit.

Table 5.7 and Table 5.8 detail the numerical results of the same experiment
on KTH where our model is trained with, respectively, ∆t = 1 and ∆t = 1

2 ,
and tested with different values of ∆t. They show that if ∆t is chosen too high
when training (here, ∆t = 1), the model drops in performance when refining the
Euler approximation. We assume that this phenomenon arises because the Euler
approximation used in training is too rough, making the model adapt to a very
discretized dynamic that cannot be transferred to smaller Euler step sizes. When
training with smaller step size, (here, ∆t = 1

2), results in the training settings are
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Table 5.6 – Numerical results for PSNR, SSIM, and LPIPS on BAIR of our model
trained with ∆t = 1 and tested with different values of ∆t.

Step size ∆t PSNR SSIM LPIPS

∆t = 1 19.64± 0.45 0.8210± 0.0110 0.0612± 0.0048

∆t = 1
2 19.76± 0.44 0.8235± 0.0110 0.0597± 0.0047

∆t = 1
3 19.82± 0.45 0.8245± 0.0111 0.0593± 0.0048

∆t = 1
4 19.83± 0.46 0.8242± 0.0111 0.0593± 0.0049

∆t = 1
5 19.85± 0.46 0.8243± 0.0111 0.0591± 0.0048

Table 5.7 – Numerical resuls for PSNR, SSIM, and LPIPS on KTH of our model
trained with ∆t = 1 and tested with different values of ∆t.

Step size ∆t PSNR SSIM LPIPS

∆t = 1 29.76± 0.38 0.8681± 0.0057 0.0737± 0.0057

∆t = 1
2 29.05± 0.42 0.8539± 0.0066 0.0882± 0.0050

∆t = 1
3 29.05± 0.42 0.8509± 0.0069 0.0924± 0.0055

∆t = 1
4 28.98± 0.42 0.8496± 0.0069 0.0939± 0.0056

∆t = 1
5 28.95± 0.42 0.8490± 0.0070 0.0948± 0.0057

Table 5.8 – Numerical results for PSNR, SSIM, and LPIPS on KTH of our model
trained with ∆t = 1

2 and tested with different values of ∆t.

Step size ∆t PSNR SSIM LPIPS

∆t = 1 28.80± 0.41 0.8495± 0.0068 0.0994± 0.0057

∆t = 1
2 29.69± 0.37 0.8697± 0.0057 0.0736± 0.0036

∆t = 1
3 29.52± 0.38 0.8656± 0.0059 0.0777± 0.0041

∆t = 1
4 29.43± 0.39 0.8633± 0.0061 0.0790± 0.0042

∆t = 1
5 29.35± 0.39 0.8615± 0.0062 0.0810± 0.0045
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(a) Cropped KTH sample.

(b) Cropped Human3.6M sample.

(c) Cropped BAIR sample.

Figure 5.12 – Generation examples at doubled frame rate, using a halved ∆t
compared to training. Frames including a bottom red dashed bar
are intermediate frames.

equivalent while results obtained with a lower ∆t are now much closer, if not
equivalent, to the nominal ones.

Note that the loss of performance when using a higher ∆t in testing than in
training, like in Table 5.8, is expected as it corresponds to loosening the Euler
approximation compared to training. However, even in this challenging setting,
our model maintains state-of-the-art results, demonstrating the quality of the
learned dynamics as it can be discretized more finely if needed at the cost of a
reasonable drop in performance.

We also show in Figure 5.12 frames generated at a double and quadruple frame
rate on BAIR and KTH. Both figures show smooth intermediate generated frames.

5.5.3 Disentangling Dynamics and Content

Let us show that the proposed model actually separates content from dynamics
as discussed in Section 5.3.2. To this end, two sequences xs and xt are drawn from
test sets on Human3.6M and BAIR. While xs is used for extracting our content
variable ws, dynamic states yt are inferred with our model from xt. New frame
sequences x̂ are finally generated from the fusion of the content vector and the
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Figure 5.13 – Video (bottom right) generated from the dynamic latent state y
inferred with a video (top) and the content variable w computed
with the conditioning frames of another video (bottom left). The
generated video keeps the same background as the bottom left
frames, while the robotic arm moves accordingly to the top frames.

dynamics. This results in a content corresponding to the first sequence xs while
moving according to the dynamics of the second sequence xt, as observed in
Figure 5.13.

5.5.4 Interpolation of Dynamics

Our state-space structure allows us to learn semantic representations in yt. To
highlight this feature, we test whether two Moving MNIST trajectories can be
interpolated by linearly interpolating their inferred latent initial conditions. We
begin by generating two trajectories xs and xt of a single moving digit. We infer
their respective latent initial conditions ys

1 and yt
1. We then use our model to gen-

erate frame sequences from latent initial conditions linearly interpolated between
ys

1 and yt
1. If it learned a meaningful latent space, the resulting trajectories should

also be a smooth interpolation between the directions of reference trajectories xs

and xt, and this is what we observe in Figure 5.14.

5.6 Conclusion

In this chapter, we tackled the problem of stochasticity in time series prediction.
We study the particular case of video prediction, as it has a large impact on
other domains, mainly model based reinforcement learning. We introduce a novel
dynamic latent model which, unlike prior image-autoregressive models, decouples
frame synthesis and dynamics. This temporal model is based on residual updates
of a small latent state that is showed to perform better than RNN-based models.
We experimentally demonstrate the performance and advantages of the proposed
model, which outperforms prior state-of-the-art methods for stochastic video
prediction. This work is, to the best of our knowledge, the first to propose a latent
dynamic model scaling for video prediction. The proposed model is also novel
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Figure 5.14 – From left to right, xs, x̂s (reconstruction of xs by the VAE of our
model), results of the interpolation in the latent space between xs

and xt, x̂t and xt. Each trajectory is materialized in shades of grey in
the frames.

with respect to the recent line of work dealing with neural networks and ODEs
for temporal modeling; it is the first such residual model to scale to complex
stochastic data such as videos.

We believe that the general principles of our model (state-space, residual dy-
namic, static content variable) can be generally applied to other models as well.
Interesting future works include replacing the VRNN model of Minderer et al.
2019 by our dynamics in order to model the evolution of key-points or leveraging
the state-space nature of our model in model-based reinforcement learning.
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6.1 Summary of Contributions

In this thesis, we tackled different temporal problems with Deep Learning
(DL) techniques. The principal idea that guided this thesis was that abstracting
temporal components of data in a latent space allows one to learn more efficient
dynamic functions for imputation and prediction tasks. Our contributions can be
summarized in the following two points.

Latent Dynamics

Throughout all this thesis, the main objective was to capture dynamics of
complex phenomena relying principally on observed data and without expert
domain knowledge.

We began in Chapter 3 by following recent work on latent temporal models. We
inferred latent variables through gradient descent by designing a loss with two
objectives: achieving low data reconstruction error while maintaining temporal
coherence in the latent space with a dynamic function. Here, the temporal
coherence took the form of an `2 loss between predicted and inferred latent states.

In Chapter 4, we first followed the same design idea as the previous chapter, but
in a more principled bayesian framework. By using deep Variational Inference (VI),
we were able to infer distributions of latent states, instead of just point estimates.
In this model, the temporal alignment between inferred and predicted latent
states were optimized via Kullback-Leibler Divergence (KLD) instead of a `2 loss.
Modeling the variance of latent states allows the learning algorithm to find a
better equilibrium between data reconstruction and temporal consistency.

However, both models suffer from the total decoupling between the reconstruc-
tion loss and the temporal dynamics loss. Indeed, latent variables are inferred
independently at each timestep, and the temporal loss is optimized also indepen-

113
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dently for all latent state pairs. In this design, gradients directly backpropagate
only between timestep pairs, which makes earning coherent dynamic in the long
term difficult, specifically in the presence of multiple trajectories when considering
authors. To handle this more complex setting, we fell back to a deterministic
dynamic model easier to train.

Finally, in Chapter 5, we extended this deterministic design for stochastic
prediction. We once again use deep VI to infer initial states. We took inspira-
tion from recent advances relating residual networks and Ordinary Differential
Equations (ODEs), and proposed a stochastic residual function. We incorporated
stochastic variables into the deterministic residual functions, allowing us to main-
tain gradient flow through complete training sequences in a stochastic model.
This allowed us to achieve long term stable and diverse predictions.

Structured High-Dimensional Data

In this thesis, we study temporal problems on high-dimensional structured
data. In Chapter 3, we explicitly model spatial relations in spatio-temporal data.
We model the spatial relations by a weighted graph that represents the distances
between time series acquisition locations. Incorporating the adjacency matrix
directly in the dynamic function added strong spatial regularization in our model,
giving improved prediction and imputation performances compared to black box
deep neural network approaches.

In Chapter 4, we focus on textual data. Previously proposed temporal language
models focused on diachronic word embeddings learned by some variation of the
skip-gram model. However, this algorithm learns word embeddings with limited
context, which prevents it from achieving competitive performances on language
modeling and downstream tasks, like text classification. We instead proposed to
condition a deep recurrent language model by global temporal latent variables

Finally, in Chapter 5, we proposed a video prediction model. We showed
that it is possible to completely decouple the image generation process from the
dynamics by performing prediction exclusively in a latent space. This allows fast
prediction, and high level representation of videos, while keeping visual accuracy
of frame samples.

6.2 Perspectives for Future Work

We now discuss some research directions following this work.

Spatial Latent Structure

In our last contribution on video prediction, we abstract all the video dynamics
into a single latent vector per timestep. It was possible because the datasets we



6.2 perspectives for future work 115

used consisted of one subject moving coherently. However, when dealing with
more complex videos, relying only on one vector can be limiting.

For instance, in satellite imagery, each pixel represents the value of a physical
quantity that follows complex dynamics in time and space. Hence relying on
only one vectorial representation means that all the spatial dynamics has to be
performed black-boxed by the residual dynamics. This was not a problem on the
Stochastic Moving MNIST dataset for instance, since the spatial dynamics can be
abstracted to a single point moving linearly. However, on more complex datasets
like BAIR, we can already see the limits of the proposed model. Indeed, while the
robotic arm is sharp and moves realistically, it is not the case for the surrounding
small objects. When the robotic arm pushes such an object, we can see that the
model tends to blur the object, and do not manage to handle the more complex
spatial dynamics caused by the arm pushing the object (this is visible on the forth
"worst" sample on the project website 1).

So, to enable our model to capture complex spatial dynamics, we could use
the graph framework developed in Chapter 3. Combining the latent spatial
structure of the STNN model with the powerful dynamics of our video prediction
could allow us to tackle such datasets. A first step would be to restrict the
scope of study to gridded data like satellite images and more complex videos.
That would allow us to rely on convolution networks to perform neighborhood
operations. Moreover, scaling operations like downsampling are easy on grids,
which allows the reduction of the size of the observation space. Moving forward,
recent advances in deep neural networks for graph could help achieve a more
general model.

Temporal Latent Structure

In this work, we always considered a unique temporal structure. A direction
for future development is to consider hierarchical temporal structures.

Learning hierarchical temporal models can be used to perform temporal seg-
mentation, as in Chung et al. 2017. They use a controller Recurrent Neural Net-
work (RNN) that conditions a RNN Language Model (LM) through Reinforcement
Learning (RL). The controller network is not updated at each timestep, but only
when the LM outputs a specific token. This model can segment sentences in a
paragraph while being trained without supervision. This idea can be used with
our video prediction model for instance. On the Stochastic Moving MNIST dataset,
the idea would be to learn a controller network able to sample a direction, which
would be applied by another network until ideally the digit hits a wall. When that
appends, the controller would be asked to sample another valid direction. This
framework would segment the temporal dynamics into simple linear movements
that are more easily predictable.

1. https://sites.google.com/view/srvp/#h.p_QodL6OGdBAF9
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This idea can be pushed further to decompose temporal dynamics into different
movement orders. A network is responsible for the first order movement, that
is moving the object. A second for the second order, which would indicate to
the first network the direction to follow. And a third network for the third order,
that would handle acceleration change. In the case of Moving MNIST that would
correspond to the rebounds on walls. By decomposing movements this way,
the model would learn to temporally segment data when momentum change.
Moreover, it could be used to handle several objects together, since the latent
temporal dynamics is decomposed into simple operations, and requires fewer
latent dimensions.



B I B L I O G R A P H Y

Aitchison, Jean (2005). “Language change”. In: The Routledge Companion to Semiotics
and Linguistics, pp. 111–120 (cit. on p. 5).

Ammar, Waleed, Dirk Groeneveld, Chandra Bhagavatula, Iz Beltagy, Miles Craw-
ford, Doug Downey, Jason Dunkelberger, Ahmed Elgohary, Sergey Feldman,
Vu Ha, Rodney Kinney, Sebastian Kohlmeier, Kyle Lo, Tyler Murray, Hsu-
Han Ooi, Matthew E. Peters, Joanna Power, Sam Skjonsberg, Lucy Lu Wang,
Chris Wilhelm, Zheng Yuan, Madeleine van Zuylen, and Oren Etzioni (2018).
“Construction of the Literature Graph in Semantic Scholar”. In: Proceedings of
the 2018 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, NAACL-HLT 2018, New Orleans,
Louisiana, USA, June 1-6, 2018, Volume 3 (Industry Papers), pp. 84–91 (cit. on
p. 64).

Babaeizadeh, Mohammad, Chelsea Finn, Dumitru Erhan, Roy H. Campbell, and
Sergey Levine (2018). “Stochastic Variational Video Prediction”. In: 6th Interna-
tional Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings (cit. on pp. 90–92, 97).

Bahadori, Mohammad Taha, Qi Rose Yu, and Yan Liu (2014). “Fast Multivariate
Spatio-temporal Analysis via Low Rank Tensor Learning”. In: Advances in
Neural Information Processing Systems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pp. 3491–
3499 (cit. on p. 34).

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2015). “Neural Machine
Translation by Jointly Learning to Align and Translate”. In: 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings (cit. on pp. 19, 20, 24).

Bai, Shaojie, J. Zico Kolter, and Vladlen Koltun (2018). “An Empirical Evaluation
of Generic Convolutional and Recurrent Networks for Sequence Modeling”.
In: CoRR abs/1803.01271 (cit. on p. 60).

Bamler, Robert and Stephan Mandt (2017). “Dynamic Word Embeddings”. In:
Proceedings of the 34th International Conference on Machine Learning, ICML 2017,
Sydney, NSW, Australia, 6-11 August 2017, pp. 380–389 (cit. on pp. 60, 61, 63, 68,
137).
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A P P E N D I X

a Learning Dynamic Language Models and Author
Representations: Deriving Temporal Word Em-
bedding Methods for Recurrent Language Mod-
eling

We detail here how we adapt temporal word embeddings baselines to recurrent
language modeling for the experiment in Chapter 4. The baselines are Dynamic
Word Embeddings (DWE) Bamler et al. 2017, and DiffTime Rosenfeld et al. 2018.
For both methods, we get rid of the context embeddings and only keep word
embeddings U.

a.1 Dynamic Word Embeddings

In DWE Bamler et al. 2017, Gaussian word embeddings are learned at each
timestep with a temporal diffusion prior:

Ut+1|Ut ∼ N
(

Ut

1 + σ2
t /σ2

0
,

1
σ−2

t + σ−2
0

I

)
,

where σ2
0 and σ2

t are hyper-parameters of the model.
We derive their skip-gram algorithm for our setting by maximizing the following

approximate Evidence Lower Bound (ELBO):

LDWE (θ,φ) =
T

∑
t=1

Eqφ(Ut)

[
log pθ(Xt|Ut)

]
+ Eqφ(Ut)

[
log Eqφ(Ut−1)

[
p(Ut|Ut−1)

]]
−Eqφ(Ut)

[
log qφ(Ut)

]
,

(1)

where pθ is paramatrized by an Long Short-Term Memory (LSTM). qφ is a varia-
tional Gaussian distribution that factorizes as:

qφ(U) =
T

∏
t=1

qφ(Ut),

and φ are its parameters.
To learn this model, we sample a mini-batches M that contains text coming

from different training timesteps. We must hence rescale the ELBO in Equation 1.
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We do so by estimating the probability that a given word appears in a particular
mini-batch:

Lminibatch(θ,φ) =
|X|
|M|Eqφ(UM)

[
∑

x∈M
log pθ(x|UM)

]

+ ∑
u∈UM

1
(1− (1− νu)|M|)

T

∑
t=1

Eqφ(u)

[
log Eqφ(ut−1)

[
p(ut|ut−1)

]]
−Eqφ(ut)

[
log qφ(ut)

]
,

where UM are the embeddings of words in M, νu is the apparition frequency of
term whose embedding is u in X, and |X| (respectively |M|) is the number of
words in X (M). In this formulation, gradient computation does not require any
approximation, while allowing it to flow through all timesteps.

a.2 DiffTime

The adaptation of the DiffTime baseline Rosenfeld et al. 2018 is straightforward.
It learns a non-linear function d that outputs temporal word embeddings:

ut = d(u, t;φ)

where u is a learned word embedding, t is a scalar timestep, and φ are the
function’s parameters. We refer the reader to the complete paper for more details
on the implementation of d.

For recurrent language modeling adaptation, we simply learn jointly the word
embeddings U, the parameters φ of d and the parameters θ of an LSTM by
maximizing the following likelihood:

LDT (θ,φ, U) =
T

∏
t=1

∏
x∈Xt

|x|−1

∏
k=1

pθ(xk+1|ut
1:k).

b Stochastic Prediction of Videos: ELBO

We develop in this section the computations of the variational lower bound for
the stochastic video prediction model presented in Chapter 5.

Using the original variational lower bound of Kingma et al. 2014 in Equation 2:

log p(x1:T | w)

≥ E(z̃2:T ,ỹ1:T)∼qZ,Y
log p(x1:T | z̃2:T , ỹ1:T , w)− DKL

(
qZ,Y

∥∥ p(y1:T , z2:T | w)
)

(2)
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= E(z̃2:T ,ỹ1:T)∼qZ,Y
log p(x1:T | z̃2:T , ỹ1:T , rv)− DKL

(
q(y1, z2:T | x1:T)

∥∥ p(y1, z2:T)
)

(3)

= E(z̃2:T ,ỹ1:T)∼qZ,Y

T

∑
t=1

log p(xt | ỹt, w)− DKL
(
q(y1, z2:T | x1:T)

∥∥ p(y1, z2:T)
)
,

(4)

where:

• Equation 3 is given by the forward and inference models factorizing p and q
in Equation 5.3 and Equation 5.4 and illustrated by, respectively, Figure 5.1a
and Figure 5.1b:

• the z variables and y1 are independent from w with respect to p and q;

• the y2:T variables are deterministic functions of y1 and z2:T with respect to
p and q;

• Equation 4 results from the factorization of p(x1:T | y1:T , z1:T , w) in Equa-
tion 5.3.

From there, by using the integral formulation of DKL:

log p(x1:T | w)

≥ E(z̃2:T ,ỹ1:T)∼qZ,Y

T

∑
t=1

log p(xt | ỹt, w)

+
∫
· · ·

∫
y1,z2:T

q(y1, z2:T | x1:T) log
p(y1, z2:T)

q(y1, z2:T | x1:T)
dz2:T dy1

(5)

= E(z̃2:T ,ỹ1:T)∼qZ,Y

T

∑
t=1

log p(xt | ỹt, w)− DKL
(
q(y1 | x1:T)

∥∥ p(y1)
)

+ Eỹ1∼q(y1 | x1:T)

[∫
· · ·

∫
z2:T

q(z2:T | x1:T , ỹ1) log
p(z2:T | ỹ1)

q(z2:T | x1:T , ỹ1)
dz2:T

]
(6)

= E(z̃2:T ,ỹ1:T)∼qZ,Y

T

∑
t=1

log p(xt | ỹt, w)− DKL
(
q(y1 | x1:k)

∥∥ p(y1)
)

+ Eỹ1∼q(y1 | x1:k)

[∫
· · ·

∫
z2:T

q(z2:T | x1:T , ỹ1) log
p(z2:T | ỹ1)

q(z2:T | x1:T , ỹ1)
dz2:T

]
(7)
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= E(z̃2:T ,ỹ1:T)∼qZ,Y

T

∑
t=1

log p(xt | ỹt, w)− DKL
(
q(y1 | x1:k)

∥∥ p(y1)
)

+ Eỹ1∼q(y1 | x1:k)

[∫
· · ·

∫
z2:T

T

∏
t=2

q(zt | x1:t)
T

∑
t=2

log
p(zt | ỹ1, z2:t−1)

q(zt | x1:t)
dz2:T

]
(8)

= E(z̃2:T ,ỹ1:T)∼qZ,Y

T

∑
t=1

log p(xt | ỹt, w)− DKL
(
q(y1 | x1:k)

∥∥ p(y1)
)

−Eỹ1∼q(y1 | x1:k)
DKL

(
q(z2 | x1:t)

∥∥ p(z2 | ỹ1)
)

+ Eỹ1∼q(y1 | x1:k)
Ez̃2∼q(z2 | x1:2)[∫

· · ·
∫

z3:T

T

∏
t=3

q(zt | x1:t)
T

∑
t=3

log
p(zt | y1, z̃2:t−1)

q(zt | x1:t)
dz3:T

]
,

(9)

where:

• Equation 7 follows from the inference model of Equation 5.4, where y1 only
depends on x1:k;

• Equation 8 is obtained from the factorizations of Equation 5.3 and Equation 5.4.

By iterating Equation 9’s step on z3, . . . , rvT and factorizing all expectations, we
obtain:

log p(x1:T | w)

≥ E(z̃2:T ,ỹ1:T)∼qZ,Y

T

∑
t=1

log p(xt | ỹt, w)− DKL
(
q(y1 | x1:k)

∥∥ p(y1)
)

−Eỹ1∼q(y1 | xc)

(
Ez̃t∼q(zt | x1:t)

)T

t=2

T

∑
t=2

DKL
(
q(zt | x1:t)

∥∥ p(zt | ỹ1, z̃1:t−1)
)
,

(10)

and we finally retrieve Equation 5.5 by using the factorization of Equation 5.4:

log p(x1:T | w)

≥ E(z̃2:T ,ỹ1:T)∼qZ,Y

T

∑
t=1

log p(xt | ỹt, w)− DKL
(
q(y1 | x1:k)

∥∥ p(y1)
)

−E(z̃2:T ,ỹ1:T)∼qZ,Y

T

∑
t=2

DKL
(
q(zt | x1:t)

∥∥ p(zt | ỹt−1)
)
.

(11)
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c Stochastic Prediction of Videos: Training Details

c.1 Architecture

Encoder and decoder architecture. Both gθ and hφ are chosen to have different
architectures depending on the dataset. We used the same architectures as in E.
Denton et al. 2018: a DCGAN discriminator and generator architecture (Radford
et al. 2016) for Moving MNIST, and a VGG16 (Simonyan et al. 2015) architecture
(mirrored for hφ) for BAIR and KTH. In both cases, the output of hφ (i.e., x̃) is a
vector of size 128, and gθ and hφ weights are initialized using a centered normal
distribution with a standard deviation of 0.02.

For the Moving MNIST dataset, the content variable w is obtained directly
from x̃ and is thus a vector of size 128. For KTH, Human3.6M, and BAIR, we
supplement this vectorial variable with skip connections from all layers of the
encoder gθ that are then fed to the decoder hφ to handle complex backgrounds.
For Moving MNIST, the number of frames k used to compute the content variable
is 5; for KTH and Human3.6M, it is 3; for BAIR, it is 2.

LSTM architecture. The LSTM used for all datasets has a single layer of LSTM
cells with a hidden state size of 256.

MLP architecture. All Multi-Layer Perceptrons (MLPs) used in inference (with
parameters φ) have three linear layers with hidden size 256 and ReLU activations.
All MLPs used in the forward model (with parameters θ) have four linear layers
with hidden size 512 and ReLU activations. Weights of fθ, in particular, are
orthogonally initialized with a gain of 1.2 for KTH and Human3.6M, and 1.41
for the other datasets, while the other MLPs are initialized with default weight
initialization of PyTorch.

Sizes of latent variables. The sizes of the latent variables in our model are the
following: for Moving MNIST, y and z have size 20; for KTH, Human3.6M, and
BAIR, y and z have size 50.

Euler step size Models were trained with ∆t = 1 on SM-MNIST, and with
∆t = 1

2 on the others datasets.

c.2 Optimization

Loss function. All models are trained using the Adam optimizer (Kingma et al.
2015) with learning rate 3× 10−4, and decay rates β1 = 0.9 and β2 = 0.999. The
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batch size is chosen to be 128 for Moving MNIST, 100 for KTH and Human3.6M,
and 192 for BAIR. The regularization coefficient λ is always set to 1.

For the Moving MNIST dataset, we follow Higgins et al. 2017, and weight the
KL divergence terms on z (i.e., the sum of KL divergences in Equation 5.5) by
multiplying them by a factor β = 2.

Variance of the observation. The variance ν used in the observation probability
distribution G

(
gθ(y)

)
= N

(
gθ(y), νI

)
is chosen as follows:

• for Moving MNIST, ν = 1;

• for KTH and Human3.6M, ν = 4× 10−2;

• for BAIR, ν = 1
2 .

Number of optimization steps. The number of optimization steps is the fol-
lowing for the different datasets:

• Moving MNIST (stochastic): 1 000 000 steps, with additional 100 000 steps
where the learning rate is linearly decreased to 0;

• Moving MNIST (deterministic): 800 000 steps, with additional 100 000 steps
where the learning rate is linearly decreased to 0;

• KTH: 150 000 steps, with additional 50 000 steps where the learning rate is lin-
early decreased to 0, the final model being chosen among several checkpoints
as the one having the best evaluation PSNR (which differs from the test score
as we extract from the train set an evaluation set);

• Human3.6M: 325 000 steps, with additional 25 000 steps where the learning
rate is linearly decreased to 0, the final model being chosen in the manner as
KTH;

• BAIR: 1 000 000 steps, with additional 500 000 steps where the learning rate is
linearly decreased to 0.

The evaluation sets of KTH and Human3.6M are chosen by randomly selecting
5% of the training videos from the training set.

d Stochastic Prediction of Videos: Pendulum Ex-
periments

The Pendulum experiment is an addition to Chapter 5. We test the ability
of our stochastic video prediction model to model the dynamics of a common
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Table 1 – ELBO score for DVBF, KVAE and our model on the Pendulum dataset.
The bold score indicates the best performing method.

Score DVBF KVAE Ours

ELBO 798.56 807.02 806.12

dataset used in the literature of state-space models (Karl et al. 2017; Fraccaro et al.
2017), Pendulum (Karl et al. 2017). It consists of noisy observations of a dynamic
torque-controlled pendulum; it is stochastic as the information of this control is
not available. We test our model, without the content variable w, in the same
setting as DVBF (Karl et al. 2017) and KVAE (Fraccaro et al. 2017) and report the
corresponding ELBO scores in Table 1 The encoders and decoders for all methods
are MLPs.

Our model outperforms DVBF and is merely beaten by KVAE. This can be
explained by the nature of the KVAE model, whose sequential model is not
learned using a Variational Auto-Encoder (VAE) but a Kalman filter allowing exact
inference in the latent space. On the contrary, DVBF is learned, like our model, by
a sequential VAE, and is thus much closer to our model than KVAE. This result
then shows that the dynamic model that we chose in the context of sequential
VAEs is more adapted on this dataset than the one of DVBF, and achieve results
close to a method taking advantage of exact inference using adapted tools such as
Kalman filters.
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