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Introduction

General context
Photons, the quanta of the electromagnetic field, do not interactwith each other in vacuum.
In dielectric materials however, the situation is different, as photons are likely to couplewith
the electric charges inside the medium and, thus, to polarize it locally. As polarizedmatter
radiates light, a polarization field appears in response to the incoming electromagnetic one.
This response is nonlinear in most materials in the sense that their polarizabilities depend,
in a nonlinear manner, on the strength of the incoming light field. In practice nevertheless,
only lasers are sufficiently intense tomodify in such away the optical properties of amaterial.
That is why the beginning of the research in nonlinear optics is often considered to be the
discovery of second-harmonic generation byFranken and co-workers [1] (1961), shortly after
the first experimental demonstration of working laser by Maiman in 1960 [2]. Since then,
higher optical intensities are usable and a vast array of nonlinear effects have been explored,
with wide-ranging applications from optical frequency conversion [3] to light storage [4]
and quantum information processing [5].

Under specific conditions, the effective photon-photon interaction arising from the nonlinear
polarizability of certain materials (such as photorefractive crystals, thermo-optic liquids
or warm alkaline vapors for instance) makes light behave as a fluid. Indeed, the paraxial
propagation of a laser field in a Kerr medium− whose refractive index depends on the input
light intensity− is governed by the nonlinear Schrödinger equation. The later shares strong
similarities with the Gross-Pitaevskii equation, describing the dynamics of quantumfluids
such as atomic Bose-Einstein condensates (BECs), and can, thus, be reformulated into a set
of hydrodynamic equations. In this hydrodynamic analogy, the laser field can be regarded as
fluid of light whose density and velocity are respectively defined by the laser intensity and
its phase gradient. The first branding of a coherent light field as a photon fluid dates back to
the early nineties, where the time-evolution of the electromagnetic field in a laser cavitywas
reformulated into a Ginzburg-Landau equation [6,7]. In that latter case, the photon-photon
interaction was mediated through the nonlinear refractive index of the cavity gainmedium.
In the following decade, a seminal attempt to observe superfluid-like behaviours in these
cavity systems [8] has been followed by a series of theoretical articles by Chiao et al. [9,10].
Surprisingly, no other experiments were reported thereafter, possibly because large non-
linearities and high-Q factor cavities were hardly available at the time.
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Interestingly, modern research on quantum fluids of light has shifted towards the study of
exciton-polaritons in micro-cavities, thanks to progress in semi-conductor nano-structures
manufacturing. In these systems, the photon entering the mico-cavity strongly mixes with
electron/hole pairs (the excitons) in the bulk material. This leads to the creation ofmassive
interacting bosonic quasi-particles, known as exciton-polaritons. The optical nonlinearity
arises here from the Coulomb interaction between the excitons. The spatial confinement,
provided by the cavity,moreover assigns an non-zero effectivemass to photons. Remarkably,
the space-time evolution of the polaritons wave-function follows a similar dynamics to that
of interacting atomic BECs, but includes additional detrimental non-equilibrium features
arising from its intrinsic dissipative nature. After the observation of polaritonBECs [11–13]
the hydrodynamical aspects of polariton fluids gained a lot of interest because of the easy
experimental access theywere offering tomany-body physics. For instance, a series of works
on the superfluid aspects of these photon fluids has led to the experimental observation of
dissipationless flows around a defect [14,15]. The nucleation of quantized vortex/anti-vortex
pairs at the breakdown of superfluidity [16], as well as the generation of dark solitons past
an obstacle in the supersonic regime [17], have also been reported. All the previous cited
articles have been published by our group at LKBand co-workers in between 2009 and 2011.

However, exciton-polariton systems suffer from fundamental limitations. First, they require
continuous pumping due to dissipation and losses (light fatally leaks out of themicro-cavity)
which thusmakes the dynamics of polariton fluids intrinsically driven-dissipative. Moreover,
the effective photon-photon interaction strength is fully governed by the exciton-exciton one,
which is onlymarginally tunable. In order to overcome both these limitations, an alternative
approach based on cavityless systems can be used. As mentioned previously, the paraxial
propagation of a laser field inside a bulk nonlinearmaterial can be described as a fluid of light
evolving along the propagation direction as a normal fluid will do over time. These systems
are commonly referred to as propagating or paraxial photon fluids. After the observation by
Swartzlander et al. of quantized vortex pairs created by the instability of dark soliton stripes
in nonlinear liquids [18], the hydrodynamics features of paraxial fluids of light have been
extensively investigated theoretically. An exhaustive list of the works published in this field
can be find in the reviewbyCarusotto andCiuti [19]. Especially strong attentionwas revived
toward solitonic structures [20–23]. Surprisingly, few experimental studies have specifically
investigated the hydrodynamic features of light propagating in bulk nonlinearmediums and
most of them have been performed in the Fleischer’s group from 2007 to 2012. For instance,
the generation, the propagation as well as the interaction of optical dispersive shock-waves
has first been studied in photorefractive crystals by Jia et al. [24] andWan et al. [25] in 2007.
Wan and co-workers have also reported the spontaneous nucleation of quantized vortices in
the wake of an obstacle in a 2-dimensional geometry [26] and the tunneling of densitywaves
through a small potential barrier in the 1-dimensional case [27]. Their studies have laid the
groundwork for studying superfluid effects in paraxial photon fluids. Recently, there has been
a renewed interest in this field, with the observation of quantized vortices past an obstacle
in thermo-optics liquids [28] and the optomechanical demonstration of frictionless flows of
light in photorefractive crystals by Michel et al. [29].
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Motivations
This thesis aims at studying the hydrodynamical properties of paraxial photon fluids in hot
rubidium vapors. In this system, the nonlinear interaction between photons is provided by
the nonlinear polarization of the atomic ensemble when the light frequency is tuned close to
an atomic resonance. Hot rubidium vapors offer certain compelling advantages compared to
other platforms used so far to generate paraxial fluid of light (that is, photorefractive crystals
and thermo-optics liquids principally). First, the nonlinear interaction between photon is
easily tunable over several orders of magnitude in this systemby changing the vapor density
(which increases exponentiallywith the temperature) and/or the laser frequency. Moreover,
the vapor optical response is only weakly nonlocal, in contrast to thermo-optic liquidswhere
strong nonlocalities, arising from heat diffusion inside thematerial, have been reported [28].
Such nonlocalities make the observation of quantum phenomena difficult if not impossible.
We thus believe that alkaline vapors could be the first platform to lay the groundwork for
studying quantum effects in propagating photon fluids.

Despite the fact that many nonlinear optics experiments have been performed using warm
rubidium vapors (and,more generally, alkaline vapors), only few attention has been devoted
to studying the hydrodynamical aspect of the nonlinear propagation of laser beams inside
these systems. In addition, most of the experimental works on propagating photon fluids
reported so far focus mainly on studying strongly nonlinear effects, such as spatial solitons
or dispersive shock-waves. The amplitude of such nonlinear phenomena is large enough to
locally change the properties of the photon fluid. Conversely, only few studies consider the
linear aspect of the dynamics, that is, how small amplitude density waves travel onto the
fluid of light. Throughout this manuscript, I will explore phenomena lying on this borderline
between nonlinear hydrodynamics and standard nonlinear optics. Themain purpose of this
thesis is thus to further bridge the gap between this two disciplines, by drawing newparallels
between nonlinear optics and Bogoliubov formalism principally.

Thesis Summary
This thesismanuscript consists of three parts. The first one (chapters 2 and 3) is a theoretical
introduction to hot rubidiumvapors and paraxial photon fluids. The second part (chapter 4)
presents the tools andmethods used to create and characterize photon fluids in our platform.
The third part (chapters 4, 5 and 6) is mainly dedicating to presenting the experimental
results I obtained during my thesis.
Chapter 1 − The optical response of a warm rubidium vapor under a near resonance
laser-excitation is described using a two level model first and − at a later stage − a more
sophisticated 3-level scheme. Effects arising from the atomic motion (Doppler broadening,
transport induced nonlocality) are taken into account in this second description.
Chapter 2 − The theoretical ground work for studying propagating fluids of light is laid.
The analogy between the propagation of a laser beam in a Kerr medium and the evolution
of a fluid of light is discussed in detail. A particular intention is devoted to studying the
dynamics of small amplitude density modulations travelling onto the paraxial photon fluid.
In this perspective, the dispersion relation of these density waves is derived. The effects of
absorption and nonlocality on this dispersion are investigated.
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Chapter 3 − The tools andmethods used to generate and characterise propagating photon
fluids in hot rubidium vapors are introduced. An important part of this chapter is dedicated
to presenting the method used to measure the vapor nonlinear refractive index. The latter is
based on measuring the self-phase accumulated by a Gaussian beamduring its propagation
inside the vapor cell. We show that counting the ring appearing in its far-field intensity
distribution is enough to access the nonlinear refractive index.
Chapter 4 − A measurement of the dispersion relation of small amplitude density waves
is reported. This is achieved by measuring the group velocity of a small amplitude wave-
packet travelling onto the photon fluid. The dispersion relation exhibits a linear trend at low
excitationwave-vector, whose slope defines the velocity of sound in the paraxial photon fluid.
The way the sound velocity depends on the fluid density is studied and perfectly matches
theory without any fitting parameter. According to the Landau criterion for superfluidity,
demonstrating the existence of such a sonic regime in the dispersion relation is a key step
toward the observation of superfluid flow of light.
Chapter 5 − In order to probe the superfluidity of light, the way the fluid flows around a
localized obstacle (ie, a local change of refractive index) should be investigated. Chapter 5 is
dedicated to studying how such an obstacle can be optically generated in rubidiumvapors.
In the first section, the 2-laser optical scheme designed to that end is theoretically described,
using the dressed-state formalism. In the second section, we show that Bessel beams are
suitable to generate spatially localized, collimated obstacles. Using a spatial lightmodulator,
we demonstrate that the on-axis intensity of such beamcan be tailored so as to compensate
absorption locally.
Chapter 6− Preliminary results obtained by bringing all the previous ingredients together
are presented. Images of the near- and far-field scattering patterns generated bymaking the
fluid flow toward the all-optical obstacle are shown. The amount of light scattered by the
defect is measured in Fourier space as function of the photon fluid density and velocity.



Chapter 1

Atomic vapor

Photon-photon interactions in paraxial photon fluids arise from the light-matter coupling
in nonlinear optical materials. The strength of the nonlinear interaction between photon,
as well as the thickness of the nonlinear material, are key parameters in experimentswhich
need to be made as large as possible. Hot alkaline vapors constitute a sound choice because
they provide strong optical nonlinearities under a near-resonance laser excitation. Moreover,
spectroscopic cells filled with high quality alkaline vapors are easy to handle and also to
design according to our specific needs (isotopic concentration, cell length and shape, etc).
We chosemore specifically to work with rubidium vapors as an expertise in dealingwith this
atom has already been developed in the team for several years. The purpose of this chapter
is to introduce the theoretical framework describing the optical response of a rubidiumvapor
under a near resonance laser excitation. To this end, I firstmodel the rubidium level structure
with a two-level description, thatmainly helps introducing the basic concepts and notations.
This simplistic model is improved afterward, by taking into account the optical pumping
between the rubidium ground states. The effects of the high vapor temperatures on the
optical response are also investigated.
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6 CHAPTER 1. ATOMIC VAPOR

1.1 Atomic structure

Rubidium belongs to the alkali metal group of the periodic table and possesses therefore
one valence electron on its outermost shell. Two rubidium isotopes are present on Earth:
rubidium 85 (85Rb, 72%) and rubidium 87 (87Rb, 28%), which is slightly radioactive, with
a half-life time of 49 billion years (safe enough). Natural-abundance mixtures and isotopi-
cally pure vapors were used in the lab (more than 99% purity). In the experiments presented
in this manuscript, we optically addressed the rubidium D-lines exclusively, either or both
theD1 (52S1/2 → 52P1/2) and theD2 (52S1/2 → 52P3/2) component. The optical properties
of the rubidiumD-lines have been gathered in review by D.A. Steck [30,31] for rubidium85
and rubidium 87. In this first section, I will introduce the reader to the fine and hyperfine
structures of rubidium D1 and D2 lines, that basically determine the optical response of
the atomic vapor under a near-resonance laser excitation.

1.1.1 Fine structure − LS coupling

The doublet structure of the rubidium D-line arises from the coupling between the angular
orbital momentum L of the valence electron and its spin angular momentum S. The total
electron angular momentum J is then defined by: J = L + S; the associated quantum
number J lies in the range |L − S|≤J ≤L + S. In the ground state of rubidium, L = 0
and S = 1/2 so J = 1/2; in the first excited state, L = 1 and S = 1/2 so J = 1/2 or 3/2.
The fine coupling leads thus to the splitting of the first rubidium excited state into two
fine states (52P1/2 and 52P3/2) and gives, accordingly, a doublet structure to the D-line.
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Figure 1.1: 85Rb (left) and 87Rb (right) D-line hyperfine structure.
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1.1.2 Hyperfine structure − IJ coupling
We can go one step further by introducing the atomic hyperfine structure, which arises
from the coupling between the total electron angular momentum, J, and the nuclear spin
angular momentum, I. As before, the quantum number F , associated to the atomic angular
momentum F = J+ I, lies in between |J− I| and J + I. The nuclear spin differs from one
isotope to the other: I = 5/2 for 85Rband 3/2 for 87Rb. In the ground state, the total electron
angular momentum is 1/2 and F can therefore takes two different values: F = 2 or F = 3
for 85Rb and F = 1 or F = 2 for 87Rb. The ground state of both isotopes separates thus
into two hyperfine states. Moreover, it is straightforward to show that each of the excited
states 52P1/2 and 52P3/2 splits into two and four hyperfine states respectively. Let’s for
instance consider the case of 85Rb:

• For 52P1/2 (D1 line), F can take any integer values between I−J = 2 and I+J = 3.
The fine state 52P1/2 splits thus into 2 hyperfine states labeled by F = 2 and F = 3.

• For 52P3/2 (D2 line), F can take any integer values from I−J = 1 to I+J = 4 and
52P3/2 splits therefore into 4 hyperfine states labeled by F = 1, 2, 3, 4 respectively.

When no external magnetic field is applied, each of the hyperfine ground and excited states
are degenerate, as they contain 2F+1 magnetic sublevels each, labelled by the total angular
momentum projection mF . The schematic of the D-line hyperfine level structure for both
85Rb and 87Rb is depicted on figure 1.1. The transition frequencies are reported, as well as
the frequency difference between (i) the hyperfine ground states and (ii) the furthest apart
excited states for in each of the D-lines.

D

Figure 1.2: Line strengths C2
F
of the D-lines for 85Rb and 87Rb [32]
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1.1.3 Line strength: reduction of the dipole operator
The optical response of the vapor under a monochromatic laser excitation is a key feature
we need to characterize in order to accurately describe our experiments. This response is
linked to the polarizability (or the dielectric susceptibility) of the material, which strongly
depends on the dipole strength of the transition we optically address. In order to evaluate
the dipole strength associated to the transition between the ground and excited states∣∣Fg,mFg

〉
and |Fe,mFe〉, we must calculate the matrix element:〈

Fg,mFg

∣∣ d̂ |Fe,mFe〉 =
〈
Fg,mFg

∣∣ e r̂ |Fe,mFe〉 , (1.1)

where d̂ and r̂ are the dipole and position operators. In doing so, we should first factor out
the angular dependence and write the matrix element as a product of Wigner 3−j and
6−j symbols times a reduced matrix element. This procedure is called "reduction of the
dipole operator" [33] and reads as follows:〈

Fg,mFg

∣∣ e r̂q |Fe,mFe〉 = (−1)Fe−1+mFg (−1)Fe+Jg+1+I (−1)Je+Lg+1+S 〈Lg||e r̂||Le〉

×
√

2Fg + 1
√

(2Fe + 1)(2Jg + 1)
√

(2Je + 1)(2Lg + 1)

×
(
Fe 1 Fg
mFe q −mFg

) {
Jg Je 1
Fe Fg I

} {
Lg Le 1
Je Jg S

}
, (1.2)

where q labels the components of r̂ in the spherical basis; according to its usual definition,
q quantifies the integer change in the angular momentum projection during the transition.
The reduced dipole matrix element d = 〈Lg|| r̂||Le〉 involves only the quantum number L
and is therefore identical for both D lines. The round and curly brackets matrices in (1.2)
stand for the Wigner 3−j and 6−j symbols respectively. For linearly polarized light, q = 0
and the 3−j symbol is non-zero only when mFe = mFg . We can for instance express it as
a function of the transition wavelength λ and decay rate Γ of the D1 line. The decay rate
associated to the fine-structure transition Jg → Je reads as follows:

Γ = ω3

3πε0~c3
2Jg + 1
2Je + 1 |〈Jg||e r̂||Je〉|

2 , (1.3)

where the reduced matrix element 〈Jg||e r̂||Je〉 is related to the reduced dipole factor d by:

〈Jg||e r̂||Je〉 = (−1)Je+Lg+1+S
√

(2Je + 1)(2Lg + 1)
{
Lg Le 1
Je Jg S

}
× d. (1.4)

For the D1 line (where Jg = Je = 1/2) the relation above reduces to: 〈Jg||e r̂||Je〉 = d/
√

3.
Using (1.3) and rearranging:

d = 〈Lg||e r̂||Le〉 =

√
9 ε0 ~Γλ3

8π2 . (1.5)

A similar analysis leads to the same result for the D2 line. Using the tabulated values [30]
for the D-lines wavelengths and decay rates yields d = 5.182 e a0 and d = 5.177 e a0 for
the D1 and D2 lines respectively, a0 being the Bohr radius.
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The dipole matrix element in equation (1.2) reads finally:
〈
Fg,mFg

∣∣ er̂q |Fe,mFe〉 = cmF d,
where cmF is a geometrical factor that depends on the the initial and final hyperfine states
of the transition. Since no magnetic field is applied, every hyperfine state is degenerate
2Fg+1 times. The total strength fFeFg of the Fg → Fe hyperfine transition is thus obtained
by averaging over the strength of all the Zeeman transitions mFg → mFe in the hyperfine
manifold. We finally obtained that:

fFe
Fg

=
∑
mF

c2
mF

d2

2Fg + 1 =
C2
F
d2

2Fg + 1 , (1.6)

where C2
F

=
∑
mF

c2
mF

. The C2
F
coefficients have been calculated for linearly polarized light

and are reported in the table of figure 1.2 for both 85Rb and 87Rb.

It is worth mentioning however that the formula (1.6) is generally an approximation as it
amounts to neglecting optical pumping effects betweenZeeman sublevels, such as population
aligning and population trapping. In other words, we assume here that every Zeeman
transition mFg → mFe is cycling, which is obviously wrong as the excited state |Fe,mFe〉
may also decay toward |Fg,mFe±1〉 according to the selection rules.

• In the case of a cycling hyperfine transition for which Fe < Fg (the Fg = 1→ Fe = 0
transition of 87Rb for instance), the atoms get pumped into one of the dark states∣∣Fg,mFg = Fg

〉
or
∣∣Fg,mFg = −Fg

〉
(population trapping, fig. 1.3(a)) and remain there.

• When Fe and Fg are integers and fulfilled the condition Fe = Fg, the Zeeman sublevel
on the excited state right edge |Fe,mFe = Fe〉 (resp. left edge |Fe,mFe = −Fe〉)may
only decay toward the sublevels

∣∣Fg,mFg = Fg
〉
or
∣∣Fg,mFg = Fg − 1

〉
(resp. toward∣∣Fg,mFg = −Fg

〉
or
∣∣Fg,mFg = −Fg + 1

〉
). This asymmetry in the decay process forces

the atoms to accumulate in the sublevel mFg = 0 (population aligning, fig. 1.3(b)).

Figure 1.3: Optical pumping between Zeeman sublevels. The excitation laser is linearly
polarized and couples ground and excited sublevels sharing the same mF (red arrows).
The blue arrows represent all possible decay channels from Fe to Fg. (a) Sketch of the
population trapping process: atoms end up in the mFg = ±Fg dark states which are not
coupled by the excitation laser with any of the excited Zeeman sublevels. (b) Sketch of the
population aligning process: atoms are more likely to decay toward the mFg = 0.
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The Zeeman degeneracy can affect the atomic population in the steady-state and change,
consequently, the optical response of the rubidium vapor [34]. However, taking the whole
hyperfine structure plus the Zeeman degeneracy into account to describe the polarisation
of the vapor under a near-resonance laser excitation is far to be easy and not necessary in a
first instance to get a good insight about the physical process at play. Let’s then continue
with equation (1.6), bearing in mind the discussion above.

1.2 Two-level atoms
There is no two-level atom and rubidium is not one of them.

William D. Phillips

As Bill Phillips reminds us, the level structure of the rubidium D-lines is everything but
simple and it seems somewhat oversimplified to model it with a two-level system. However,
even-though the two-level atom model remains simplistic compared to the real complexity
of alkali atomic structures, I still want to introduce it in this section for mainly two reasons.
Firstly, this model can effectively describe the rubidium vapor under certain conditions
(I will come back to this point in detail in the next section) and, secondly, it enables to
present one by one, in a simplified context, all the theoretical tools we will need to cover
more complicated situations. I will in particular introduce the dielectric susceptibility χ
of the medium and study how it depends on the laser intensity, which is one of the key
feature for photon fluid experiments.

1.2.1 Is the two-level model relevant ?
Before getting into the details of the calculations, let’s try to assess the relevance of the
two-level model in describing rubidium atoms. In order to do so, we have first and foremost
to understand which atomic levels among those forming the fine and hyperfine structures
of the D-lines are involved in this two-level description.

i Hyperfine splitting

As you may have noticed looking at figure 1.1, there is more than 15 nm difference between
the wavelengths of the D1 and D2 transition lines. Therefore, when we optically address
one of theD-line, the contribution of the other one on the optical response of the rubidium
vapor is completely negligible. On figure 1.1, you can also see that the hyperfine ground
state splitting δ0 is almost 10 times larger than the characteristic excited state hyperfine
splitting δHF. Let’s focus for example on the D1 line of 85Rb for which δ0

2π ' 3.036 GHz,
δHF
2π ' 213 MHz and δ0/δHF ' 14.3 � 1. If the laser frequency ω is red-detuned with
respect to the Fg = 3→ Fe transition frequency ωD1 , the laser detuning ∆, defined by:

∆ = ω − ωD1 , (1.7)

is negative. In addition, if δ0 > |∆| � δHF, the laser couples much more efficiently Fg = 3
than Fg = 2 to the hyperfine excited states Fe = 2 and Fe = 3 of the D1 line. Moreover,
as |∆| � δHF, the laser field drives the D1 line off-resonantly: light/matter interaction
processes are dominated by Rayleigh scattering events involving the fine state 52P1/2 as a
whole, since the laser detuning is too large to probe its hyperfine level structure in detail.
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As things stand at the moment, if the conditions ∆ < 0 and δ0 > |∆| � δHF are fulfilled,
it seems actually reasonable to model the D1 line of 85Rb by a two-level atomic system
where the ground state |g〉 is the hyperfine level Fg = 3 of 52S1/2 and the excited state |e〉
the fine level 52P1/2. In practice, the previous conditions on the laser detuning are satisfied.

• In fluid of light experiments, the nonlinear interaction between photons has to be
repulsive, which imposes the laser frequency ω to be red-detuned with respect to the
resonance frequency (ie ∆ to be negative). As of now, you must take my word for it.
I will come back to this point in paragraph 1.2.3 i.

• If the laser comes closer to resonance, absorption increases and transmission through
the vapor highly decreases, according to theBeer-Lambert law. This effect is enhanced
if Doppler broadening is taken into account, as we will see in the next paragraph.
In experiments, we always keep a transmission above 70% (see paragraph 1.2.3 iii).

ii Doppler broadening

In hot vapors, atoms are constantly moving and do not contribute equally to the medium
optical response. If thermal motion causes an atom to move toward the incoming photons,
or in other words, if the scalar product k · v is negative (k and v being respectively the
laser wave-vector and the atom velocity), the laser frequency ωD in the moving frame of
this atom will be blue-shifted with respect to ω because of Doppler effect:

ωD = ω − k · v = ω − kz vz. (1.8)

The z-axis defines here the laser optical axis and vz stands for the component of v along z.
Different atom velocities result therefore in different Doppler shifts, the cumulative effect
of which is the line broadening. This resulting line profile is known as a Doppler profile.
The susceptibility χ, that characterizes the vapor optical response, must then be averaged
over the atomic velocity distribution along z, namely, the 1D Maxwell distribution:

P1D(v) =
√

m

2πkBT
exp

(
− mv2

z

2 kB T

)
, (1.9)

where m is the rubidium mass, kB the Boltzmann constant and T the vapor temperature.
Using the relation (1.8), P can be expressed a function of ω and ωD as follows:

P1D(ωD) =
√

m

2πkBT
exp

[
−
(
ω − ωD
∆ωD

)2
]
. (1.10)

The width ∆ωD of this Gaussian distribution is equal to k
√

2kBT/m. When T = 400 K,
the Doppler linewidth ΓD = ∆ωD/2π is about 350 MHz for the D1 line of 85Rb. This is
much larger than the natural linewidth Γ ' 2π×5.7 MHz of the D1 line. Even if the laser
is not at resonance with zero velocity atoms, fast moving ones can thus still absorb light,
because of Doppler effect. In order to minimize absorption, the laser detuning should be
large compared to ∆ωD. Moreover, you may have noticed that ΓD is of the same order
of magnitude as δHF. Doppler broadening will thus smooth the hyperfine structure of the
excited state in the absorption profile and, more generally, in the vapor dielectric response.
The two-level description of the rubidium D-lines seems then to be even more appropriate
to model the optical response of the atomic vapor.
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iii Conclusion

Let’s summarize. As long as the laser detuning is negative and satisfied δ0 > |∆| � δHF
(which also implies that |∆| � ∆ωD since δHF and ∆ωD are of the same order ofmagnitude
at T = 400 K by the way) the two-level model describes each of theD-lines quite accurately.
However, it is worth mentioning that effect such as ground state optical pumping are not
taken into account in this simple description of the rubidium level structure. If it is true
that the laser couples more efficiently one ground state than the other to the excited level,
the latter can still decay with equal probability toward both ground states, as the transition
is not cycling. This will lead to a population transfer between ground states that can greatly
impact the internal dynamics of rubidium atoms (see section 1.3). But for now, let’s further
investigate the features of the two-level model by deriving the optical Bloch equations.

1.2.2 Maxwell-Bloch equation for a closed two-level atom
Let us consider the interaction of a monochromatic electric field E(t) with a system of N
two-level atoms per unit volume. In what follows, |g〉 and |e〉 stand respectively for the
ground and the excited state in this two-level description, while ωeg denotes the resonant
transition frequency. We assume that the upper level |e〉 decays because of spontaneous
emission toward the ground state |g〉 at a rate Γ, and therefore that the lifetime of the |e〉
is given by τ = 1/Γ. This system is called closed since any population that leaves the
upper level necessarily enters the lower one.

The interaction between the laser field and the two-level atom is described by a Lindblad
master equation, commonly known as the optical Bloch equation [35, 36]:

dρ̂
dt = − i

~

[
Ĥ, ρ̂

]
+
∑
ν 6=0

(
Lν ρ̂L

†
ν −

1
2{LνL

†
ν , ρ̂}

)
, (1.11)

where ρ̂ and Ĥ are respectively the density matrix operator and the system Hamiltonian.
Both are Hermitian. The Lindblad operators Lν are quantum jump operators, describing a
random evolution of the system which suddenly changes under the environment influence
(at the time scale of the evolution).

The Hamiltonian Ĥ splits into a non-perturbative diagonal part Ĥ0 and a perturbative one
Ŵ that describes the light/matter interaction. The unperturbed Hamiltonian is given by:

Ĥ0 =
∑
i

Ei |i〉 〈i| = Eg |g〉 〈g|+ Ee |e〉 〈e| , (1.12)

where Ei is the energy associated to the i-th level. As energy is defined up to a constant,
we choose to set Eg to zero. Hence:

Ĥ0 = 0×|g〉 〈g|+ ~ωeg |e〉 〈e| = −~∆ |e〉 〈e|+ H̃0, (1.13)

where the laser detuning is still defined by ∆ = ω − ωeg and H̃0 = 0×|g〉 〈g|+ ~ω |e〉 〈e|.
The role plays by H̃0 is explained in the next paragraph. For now, just remember how Ĥ0
has been rewritten in order to make explicitly appear ∆ in the left hand side of (1.13).
Let’s now focus on the off-diagonal part Ŵ of the Hamiltonian Ĥ.
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i Dipole and rotating wave approximation

Under the so-called dipole approximation, the spatial variation of the electric field at
the atomic scale can be neglected. We can thus think of the atom as an electric dipole that
interacts with the laser electric field through Ŵ = −d̂·E(t). This interaction Hamiltonian
describes how the quantum dipole operator d̂ tends to align on the classical field E(t) to
minimize the atom plus field overall energy. The dipole operator reads as follows:

d̂ = d∗ |e〉 〈g|+ d |g〉 〈e| . (1.14)

Therefore, as E(t) = E0 cos(ωt) ξ (ξ being the laser field polarization unit vector):

Ŵ (t) = − 1
2
[(

d∗ |e〉 〈g|+ d |g〉 〈e|
)]
·
[
E0
(
eiωt + e−iωt

)
ξ
]

= − ~
2
(
Ω∗ |e〉 〈g|+ Ω |g〉 〈e|

)
×
(
eiωt + e−iωt

)
. (1.15)

The Rabi frequency Ω = E0 µge/~ measures the strength of the light-matter interaction.
For linearly polarized light, the dipole moment µge = 〈g| d̂·ξ |e〉 is given by: µge =

∑
Fe f

Fe
Fg

(Fe runs over the angular momentum of all the hyperfine levels composing the state |e〉).
The coefficients fFeFg are defined in (1.6). Embarrassingly, the interaction Hamiltonian in
equation (1.15) contains a explicit time dependence. The usual way for getting rid of it is
to place ourselves in the interaction representation with respect to H̃0, defined in (1.13).
Let Ũ stand for the interaction picture unitary evolution operator:

Ũ(t) = exp
(
−iH̃0/~

)
= |g〉 〈g|+ |e〉 〈e| e−iωt. (1.16)

The new Hamiltonian is: Ĥ = Ũ † Ĥ Ũ = Ĥ0 +Ũ † Ŵ (t) Ũ (because Ũ commutes with Ĥ0).
Applying this unitary transformation is like switching from a static frame to a rotating one
at ω in the complex plane (in which e−iωt "rotates" around the origin). The rotating frame
"unwinds" part of the evolution of the quantum state, which has at the end of the day a
simpler time dependence. The coupling operator in the interaction picture reads:

ŴI(t) = Ũ † Ŵ (t) Ũ = − ~
2
(
Ω∗ eiωt |e〉 〈g|+ Ω e−iωt |g〉 〈e|

)
×
(
eiωt + e−iωt

)
(1.17)

' − ~
2
(
Ω∗ |e〉 〈g|+ Ω |g〉 〈e|

)
. (1.18)

In equation (1.18), we get rid of the fast oscillating terms at ±2ω, that intuitively average
to zero in the Bloch equation (1.46). This approximation, the so-called Rotating Wave
Approximation (RWA), is used in a wide variety of contexts, from quantum optics [37]
to atomic physics [38]. In the interaction picture and using the RWA, the time dependence
of Ŵ cancels. By introducing ρ̂I = Ũ † ρ̂ Ũ , equation (1.11) becomes:

dρ̂I
dt = − i

~

[
ĤI , ρ̂I

]
+
∑
ν 6=0

(
L̃ν ρ̂I L̃

†
ν −

1
2{L̃ν L̃

†
ν , ρ̂I}

)
, (1.19)

with ĤI = 0 × |g〉 〈g| − ~∆ |e〉 〈e| + ŴI . A straightforwards calculation leads finally to
the following set of Bloch equations for the slowly varying density matrix elements ρij(t)
(I will drop out the I index in the following):
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dρgg
dt = Γ ρee + i

2 (Ω∗ ρeg − Ω ρge)

dρee
dt = − Γ ρee −

i

2 (Ω∗ ρeg − Ω ρge) (1.20)

dρeg
dt = − γ̃ ρeg + iΩ

2 (ρgg − ρee)

where γ̃ = γ − i∆. The real part of γ̃ is the dephasing rate of the atomic dipole moment:
the coherence ρeg is naturally damped over time, at a rate γ. This is usually caused by
fluctuations or inhomogeneities in the energy splitting between the two levels |g〉 and |e〉,
due to random fluctuations of the external electromagnetic fields or to Rb-Rb collisions.
Generally, one only takes into account collision-induced decoherence by adding a collision
dephasing decay rate γcol to γ so that γ = Γ/2+γcol. In equation (1.20), ρgg and ρee represent
the population of atoms in the ground and in the excited state respectively. The total
atomic population is conserved and thus ρgg + ρee = 1. One equation among (1.20) is not
required to solve the system, which can be rewritten as follows:

ρ̇ee − ρ̇gg = − Γ (ρee − ρgg + 1)− i (Ω∗ ρeg − Ω ρge) (1.21)

ρ̇eg = − γ̃ ρeg + iΩ
2 (ρgg − ρee) (1.22)

ii Steady-state solution

The steady-state solution of the optical Bloch equations is obtained by setting the time
derivatives to zero in (1.21) and (1.22). One can then derive two time-independent coupled
equations which are solved algebraically as follows:

ρee − ρgg = − γ2 + ∆2

∆2 + γ2 + γ Ω2/Γ (1.23)

ρeg = − Ω
2

∆− iγ
∆2 + γ2 + γ Ω2/Γ (1.24)

1.2.3 Atomic polarization and susceptibility
The dielectric response of the atomic ensemble to the laser field excitation is described by
the atomic polarization P(t) (ie the dipole moment per unit volume). The applied electric
field intuitively shifts electron cloud and atomic nucleus in opposite directions and thus
polarizes the atom along the laser field polarisation vector ξ. The atomic polarization P(t)
is related to the excitation field E(t) through the following formula:

P(t) = ε0χ [E0] E(t), (1.25)

where χ [E0] defines the atomic susceptibility (or the atomic polarizability), which basically
measures the ability of an atom to be polarized under the excitation field E(t).

The atomic polarization can also be derived as function of the off-diagonal element ρeg of
the density matrix ρ̂ (ie, the coherence between ground and excited states) as follows [32]:
P (t) = 2Nµge ρeg, where N is the atomic density. By identifying the foregoing expression
with equation (1.25), one finally finds that:
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χ = 2N
ε0E0

µge ρeg = α0(0)
ωeg/c

i−∆/γ

1+
(

∆
γ

)2
+
(
E0
Es

)2 . (1.26)

The linear line-center absorption coefficient:

α0(0) = ωeg
c

N

ε0~
|µge|2

γeg
, (1.27)

defines the absorption coefficient experienced by a weak enough (non-saturating) laser field
propagating at resonance inside the atomic vapor. The line-center saturation field strength
Es = ~

√
γ Γ/µeg is the value at which an on-resonance laser field makes the on-resonance

absorption coefficient α0(0) drop to half of its weak-field value (1.27).

The real and imaginary parts of the atomic polarizability χ show a standard dispersive and
Lorentzian lineshape, which is not surprising as they respectively give information about
the medium refractive index and absorption coefficient. They have been plotted in blue for
different values of Ω = E0 µge/~ in figures 1.4(a) and (b). As you may have seen, both lines
get broader when the Rabi frequency Ω rises up. This effect is known as power broadening.
We can also notice, from (1.26) and from figures 1.4(b), that the line center value of Im [χ]
− and consequently, of the absorption coefficient α = ωeg

c Im [χ] − decreases with respect
to its weak-field value as soon as Ω increases. This tendency of absorption to decrease
when intense optical fields are applied is known as saturation.
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Figure 1.4: Real (a) and imaginary parts (b) of the total (solid, dashed and dotted blue)
and third-order (solid black) dielectric susceptibilities. The total susceptibility has been
plotted for different Rabi frequencies Ω. Effects of power broadening and saturation on the
lineshapes are clearly visible in (a) and (b). The signs of χ and χ(3) are opposite since the
latter represents a saturation of the optical response. Plots obtained for the D1 line of
rubidium 87. Parameters: T = 400 K and N = 2.5 1013 atoms/cm3.
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i First- and third-order susceptibilities

As long as |E0/Es|2 � 1+(∆/γ)2, a power series expansion in E0/Es of equation (1.26)
can be performed. By retaining only the zeroth and second order terms:

χ ' α0(0)
ωeg/c

i−∆/γ
1+(∆/γ)2

(
1−

∣∣∣∣E0
Es

∣∣∣∣2 1
1+(∆/γ)2

)
. (1.28)

We finally equate the foregoing expression with the standard power series expansion:
χ = χ(1)+3

4χ
(3)|E0|2 in order to obtain analytical expressions for the first- and third-order

dielectric susceptibilities as follow:

χ(1) = α0(0)
ωeg/c

i−∆/γ
1+(∆/γ)2 (1.29)

χ(3) = − 4
3

1
|Es|2

α0(0)
ωeg/c

i−∆/γ[
1+(∆/γ)2

]2 (1.30)

The frequency dependence of the real and imaginary parts of χ(3) is illustrated in figure 1.4
(black lines). The signs of χ and χ(3) are opposite since χ(3) represents a saturation of the
vapor optical response. The real part of the third-order susceptibility plays a crucial role
in photon fluid experiments because it controls the strength of the nonlinear interaction
between photons, as we sill see later on, in the third chapter. Moreover, the sign of Re [χ(3) ]
defines if this interaction is attractive or repulsive. As we can see in 1.4(a), it changes sign
with the laser detuning, going from negative (∆ < 0) to positive values (∆ > 0). By tuning
the laser frequency, we are thus able to control the nature and the strength of the nonlinear
photon-photon interaction easily. In practice, we always red-detuned the laser frequency
form resonance however, in order to generate repulsive interaction between photons.

ii Intensity dependent refractive index: Kerr effect

The dielectric susceptibility χ is related to the dielectric permitivity εr by:

εr =
√

1 + χ '
√

1 + Re (χ) + i

2
Im (χ)√

1 + Re (χ)
. (1.31)

The expansion on the right-hand side is valid as long as the condition |χ| � 1 is fulfilled.
The real part of εr defines the medium refractive index: n =

√
1 + Re (χ). The absorption

coefficient is obtained by multiplying the imaginary part of εr by the laser wave-vector k0
in vacuum such that: α = k Im (χ) (k = k0/n is the laser wave-vector inside the medium).
In nonlinear optics, the total refractive index is commonly expressed as function of the
linear and nonlinear refractive indices n0 and n2 (using the fact that Re [χ(3) ]� Re [χ(1) ]):

n =
√

1 + Re
(
χ(1))︸ ︷︷ ︸

n0

+ 3
8Re

(
χ(3)

)
|E0|2︸ ︷︷ ︸

n2 I

= n0 + n2 I0, (1.32)

where I0 = 1
2ε0n0c|E0|2 and consequently n2 = 3

4
Re(χ(3))
ε0n0c

.
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The Rubidium vapor behaves as a third-order Kerr medium under near-resonance laser
excitation since the medium refractive index is intensity dependent. When an intense laser
beam propagates in such a medium, it induces a refractive index variation which is larger
at its center than at its periphery and accumulates therefore along its propagation a radially
dependent nonlinear phase. This self-induced phase modulation acts on the beam as a lens
would do, either by focusing (attractive interactions) or spreading (repulsive interactions)
the light within the material (depending on the sign of n2). By measuring this nonlinear
phase shift as function of intensity, we can thus access the nonlinear refractive index n2,
or equivalently, the third-order susceptibility χ(3) (see section 2.3).

iii Absorption versus non-linearity: how to optimize ?

Depending on what is the intended purpose of his experiment, one should optimize either
the nonlinear refractive index n2 or the nonlinear change of refractive index ∆n = n2 I.
At the single photon level, observing nonlinear effects requires for instance to optimize the
value of n2 in the limit I � Isat (Isat is the saturation intensity). Reversely, in fluid of light
experiments, a macroscopic number of photons is involved. In that case, we can either act
on the strength of the nonlinear interaction (namely, on n2) or on the laser intensity I to
scale up nonlinear effects. We also have tomake sure that the condition I/Isat � 1+(∆/γ)2

is fulfilled in order for the power series expansion (1.55) to be valid.

Experimentally, one might think that the best configuration is to set the laser frequency
close to resonance where the nonlinear refractive index n2 varies significantly. Nevertheless,
absorption increases when the laser detuning goes to zero, which results in a reduction of the
average field intensity inside the vapor cell, and thus, of the nonlinear change of refractive
index ∆n. In practice, we allow a minimum transmission of 70% and search for the largest
value of n2 (in absolute value) at this fixed transmission threshold. When γ�∆, equations
(1.29) and (1.30) yield respectively:

Im
[
χ(1)

]
= α0(0)
ωeg/c

(
γ

∆

)2
∝ N(T )

∆2 (1.33)

Re
[
χ(3)

]
= 1
|Es|2

4
3
α0(0)
ωeg/c

(
γ

∆

)3
∝ N(T )

∆3 (1.34)

whereN(T ) is the atomic density of the rubidium vapor at the temperatureT . If we neglect
the nonlinear absorption (scaling as 1/∆4), the fixed transmission condition requires Im[χ(1) ]
and thus the ratio N(T )/∆2 to be constant whatever the detuning; χ(3) is then proportional
to 1/∆ times this constant quantity. In order tomaximize the nonlinear refractive index at a
given transmission, we should therefore reduce the laser detuning, which consequently leads
to lower the vapor temperature (and thus the atomic density N) in order to keep the ratio
N(T )/∆2 constant. This procedure is obviously limited by our initial assumption, as the
detuning should remains much larger than both the excited state hyperfine splitting δHF
and the Doppler broadening ∆ωD.
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1.3 Open three-level atomic system
The two-level model developed in the previous section provides a good description of each
rubidiumD-line. In this model, the ground state |g〉 is defined by the upper hyperfine state
of the level 52S1/2 while the excited state |e〉 is defined by the fine level 52P1/2 (resp. 52P3/2)
of the D1 line (resp. of the D2 line). As mentioned previously, the two-level description is
valid as long as the laser detuning ∆ = ω−ωeg satisfies the following conditions: ∆ < 0 and
δ0 > |∆| � δHF, where δ0 and δHF are − let us recall it − the hyperfine ground and excited
state splitting. Nevertheless, there is nothing preventing the fine states 52P1/2 and 52P3/2
from decaying toward the lower hyperfine state of 52S1/2. In reality, the excited state |e〉
of the two-level description is therefore coupled to both the upper and lower hyperfine
states of 52S1/2. As the laser detuning needs to be negative, we mostly couple the upper
hyperfine ground state to the excited state and thus pump preferentially the atom in the
lower hyperfine ground state. This population transfer between ground states, known as
optical pumping, is not taken into account in the two-level description but will definitively
affect the optical response of the atomic vapor. We have therefore to extend the previous
description to a 3-level model in which both hyperfine ground states are involved.

1.3.1 Extension to three levels
The 3-level atomic systemdescribingmore precisely the rubidiumD-lines has been sketched
on figures 1.5 (a) and (b). The ground states |1〉 and |2〉 stand respectively for the lower
and upper hyperfine levels of 52S1/2. The laser detuning ∆ is defined with respect to the
|2〉 → |3〉 transition: ∆ = ω−ω32. If the laser detuning is much larger than the hyperfine
excited states splitting δHF and the Doppler width ∆ωD, we can safely forget about the
hyperfine structure of the excited levels 52P1/2 and hyperfine transitions allowed by the
selection rules between |2〉 and |3〉 is addressed by the laser field because of the large laser
detuning and Doppler broadening. As in the two level description, the state |3〉 in the 3-level
model is thus a meta excited state hiding the hyperfine complexity of 52P1/2 and 52P3/2.

(a) (b)

Figure 1.5: Three-level system with one (a) and two (b) coupling beam(s).
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In figure 1.5, two different situations are depicted:
(a) We assume the laser field couples mainly the states |2〉 and |3〉. As for the two-level

description, this assumption is correct if the laser detuning ∆ is negative and fulfills
(as usual now) the condition δ0 > |∆| � δHF.

(b) In that case, the laser field couples at the same time the ground states |1〉 and |2〉 to
the excited state |3〉. This description is more general because it allows to compute the
vapor optical response at every detuning (as long as |∆| remains large compared to
δHF and ΓD), by adding the susceptibilities arising from the coherences between levels
|1〉 and |3〉 on one hand, levels |2〉 and |3〉 on the other. This kind of lambda system is
widely used to model strong resonant-driving effects, such as the Electromagnetically
Induced Transparency (EIT) [39] or the Autler-Townes splitting [40].

I first focus on the situation sketched in figure 1.5(a), for which the optical Bloch equations
in the steady-state are analytically and easily solvable.

1.3.2 Transit and influx rates
If spontaneous emission is the only decay process entering the model, it is not difficult to
see that after a sufficiently long amount of time, all the atoms interacting with the laser
field are pumped into the uncoupled ground state |1〉. In the steady-state, the coherence
between levels |2〉 and |3〉 (and thus the dielectric polarizability χ) vanishes in that case.
In order to resolve this issue, we must take into account the finite spatial extension of the
laser beam as well as the time of flight of an atom across the beam transverse section.

In hot vapors, atoms are moving and therefore travel across the laser beam during a finite
amount of time, which depends on their position r0 and velocity v when they get inside it.
They are thus constantly entering and leaving the interaction area, defined by the beam
cross-section, at the transit rate Γt. Everything happens as if the 3-level system sketched
in figure 1.5 was connected to an external atomic reservoir with which it exchanges atoms.
This is basically why this model is referred to as "open 3-level system".

In any case, whether or not the atomic system is closed, the total population should be
conserved ie

∑
i ρii = 1. In other words, the rate at witch levels are filled should be equal to

the rate at which atoms return to the reservoir. We assume the atoms entering the beam
are either in state |1〉 or in state |2〉. The filling rates Γ(1)

t and Γ(2)
t of |1〉 and |2〉 are likely

to be unbalanced but must, in any event, fulfill the condition: Γ(1)
t + Γ(2)

t = Γt.

• If we consider that atoms enter the beam only once, they must be initially prepared in
a statistical mixture of the states |1〉 and |2〉, described by theBoltzmann statistics.
At T = 400 K, the ground states should be equally populated in average over the
atomic ensemble, since the thermal energy (in ~ units) kBT/~ ' 2π×50 THz is much
larger than δ0. However, both ground states are Zeeman degenerated as no magnetic
field is applied. Let gi = 2Fi + 1 be the degeneracy factor of state |i〉, Fi being the
magnitude of the total atomic angular momentum in |i〉 (i = 1 or 2). As F2 is always
bigger than F1 (for example, F1 = 2 and F2 = 3 in 85Rb), atoms are more likely to
enter the beam in state |2〉. The filling rates are therefore unbalanced and read:

Γ(i)
t = gi

g1 + g2
Γt = Gi Γt. (1.35)
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Figure 1.6: Left: sketch of the beam propagation inside the vapor cell. Right: beam cross-
section at a given position z on the optical axis. The time an atom takes to flight across the
laser beam depends on its position r0 and velocity v when it enters the interaction region.

• We can refine this model by considering the fraction β of atoms that return inside the
beam before loosing the internal state they have been prepared in before [41,42]. In our
collision-free model, atoms eventually interact with the cell walls and may return to
the interaction area in the same internal state. Paraffin-coating of the cell walls may
additionally conserved the atomic coherences and polarization, since the atom/wall
collisions are not phase-interrupting anymore in that case [43]. The laser pumps atoms
from state |2〉 to state |1〉; the ground state population diffusing outside the beam is
therefore likely to be unbalanced. The influx rates are not constant anymore then but
depend dynamically on the populations ρ11, ρ22 and ρ33:

Γ(1)
t =

[
(1− β)G1 + β

(
ρ11 + ρ33

2

)]
Γt, (1.36)

Γ(2)
t =

[
(1− β)G2 + β

(
ρ22 + ρ33

2

)]
Γt. (1.37)

The relation Γ(1)
t +Γ(2)

t = Γt ensures that the overall atomic population is conserved,
as expected. In the stationary-state, equations (1.36) and (1.37) can be understood
as follow. When β = 0, all the atoms have lost the memory of the state they have
been prepared in before returning inside the beam; (1.36) and (1.37) reduce to (1.35)
in that case. If β = 1 reversely, the fraction of atoms entering in |1〉 and |2〉 is given
by the population diffusing outside the beam in those states plus half the population
diffusing outside it in the excited state (atoms leaving the beam in |3〉 will eventually
decay toward |1〉 or |2〉 with equal probability before getting inside the beam again).
The weighting factor β can be computed in practice by solving the diffusion equation
that describes the atomic motion outside the beam, assuming a random distribution
of the time spent by the atoms outside the interaction region [44].

The influx rates defined in (1.36) and (1.37) will be used when the optical Bloch equations
for this open 3-level system are solved numerically. For the sake of simplicity, I will keep
considering that Γ(1)

t and Γ(1)
t are given by equation (1.35) in the calculations below.



1.3. OPEN THREE-LEVEL ATOMIC SYSTEM 21

Let’s now define a bit more precisely the transit rate Γt. An atom moving toward the beam
along a certain direction will travel a different distance to get across the interaction area
depending on the position r0 at which it enters. The mean distance d̄ is found by averaging
all possible paths through the black circle representing the laser cross section in 1.6 [34]:

d̄ = 2
ω0

∫ ω0
2

−ω0
2

√
ω2

0 − x2 dx = π

4 ω0, (1.38)

where w0 stands for the beam width at 1/e2. Of course, d̄ does not depend on the direction
along which the atoms move. The transit rate is finally obtained by averaging the quantity
v⊥/d̄ over the 2D Maxwell-Boltzmann velocity distribution:

P2D(v⊥) = 1
πu2 exp

[
−
(
v⊥
u

)2
]
, (1.39)

(u =
√

2kBT/m is the most probable atomic speed in the transverse plane) which yields:

Γt =
∫
v⊥

d̄
P2D(v⊥) dv⊥ = 2π

d̄

∫ ∞
0

v2
⊥ P2D(v⊥) dv⊥ = 2√

π

u

ω0
(1.40)
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Figure 1.7: (a) Transit rate Γt as function of the beam width (T = 400 K). The transit rate
has been normalized by the radiative decay rate Γ. For small beams (ω0 < 50 µm), they
are of the same order of magnitude. (b) Transit rate as function of the vapor temperature
for different beam widths. At room temperature and above, Γt only slightly varies with T .
Plots obtained for the D1 line of rubidium 87.
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The transit rate Γt, normalized by the radiative decay rate Γ, has been plotted as function
of the beam width ω0 and as function of the vapor temperature T on figures 1.7 (a) and (b)
respectively. As you may have seen, Γt only slightly changes with T at room temperature
and above. However, it strongly varies with the width of the laser beam; for ω0 = 25 µm,
Γt is almost a third of Γ. When Γt and Γ are of the same magnitude, the finite transit time
of the atoms across the beam starts making the spectral lines broader. This effect, which is
known in the literature as "transit time broadening" [34,45], can be understood using the
Heisenberg’s uncertainty principle: ∆τ ∆ε ' 1. The uncertainty ∆ε on the energy of an
excited state is affected not only by its spontaneous lifetime (∆t ' 1/Γ) but also by the
transit time (∆t ' 1/Γt). Thus, a decrease in the transit timewill lead to an increase in∆ε,
whichwillmanifest in turn as line broadening. This effect is known to limit the resolution of a
variety of spectroscopic applications, such as two-photon [46], and saturated absorption
[47] and photon-echo spectroscopy [48].

1.3.3 Optical Bloch equations in the interaction picture
In order to find an expression for the dielectric susceptibility χ of the open 3-level system
sketched on figure 1.5, we should go through the same calculation as for the two-level system
and derive the optical Bloch equations. I will not reproduce the details of this calculation
here but just remind the main steps.
The Hamiltonian Ĥ of the 3-level system splits into an non-perturbative diagonal part Ĥ0
(atomicHamiltonian), and a perturbative off-diagonal part Ŵ (atom/field coupling term).
• The atomic counterpart is defined by: Ĥ0 =

∑3
i=1Ei |i〉 〈i|, where Ei is the energy

associated to the i-th level. As energy is defined up to a constant, we choose to set
the energy of the lower state to zero (ie E1 = 0). Hence:

Ĥ0 = ~ω21 |2〉 〈2|+ ~ω31 |3〉 〈3|
= ~δ0 |2〉 〈2| − ~(∆− δ0) |3〉 〈3|+ 0×|1〉 〈1|+ 0×|2〉 〈2|+ ~ω |3〉 〈3|︸ ︷︷ ︸

H̃0

, (1.41)

Once again, wemake explicitly appear the laser detuning∆ = ω − ω32 by adding H̃0.
• In thedipole approximation, the atom/field interactionHamiltonian simply reads:
Ŵ = −d̂ ·E(t). Since only the |2〉 → |3〉 transition is optically addressed in 1.5 (a),
the dipole operator can be expressed as follows:d = d∗23 |3〉 〈2|+d23 |2〉 〈3|. Therefore,
as E(t) = E0 cos(ωt)ξ (ξ being the laser polarization vector, as before):

Ŵ23(t) = −~
2
(
Ω∗23 |3〉 〈2|+ Ω23 |2〉 〈3|

)
×
(
eiωt + e−iωt

)
, (1.42)

where Ω23 = E0 µ23/~ is the Rabi frequency associated to the |2〉 → |3〉 transition.
Let’s remind that the dipole moment µ23 = 〈2| d̂ · ξ |3〉 is given by: µ23 =

∑
F3 f

F3
F2 .

In this formula, F3 runs over the magnitude of the total atomic angular momentum
in all the hyperfine levels of state |3〉. The coefficient fFeFg are defined in (1.6).

Within the interaction representation and using the rotating wave approximation,
the explicit time dependence in (1.42) vanishes. Indeed, if Ũ stands for the interaction
picture unitary evolution operator, then:

Ũ(t) = exp
(
−iH̃0/~

)
= |1〉 〈1|+ |2〉 〈2|+ |3〉 〈3| e−iωt, (1.43)
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and the coupling operator in the interaction picture reads:

Ŵ I
23 = Ũ † Ŵ23(t) Ũ = − ~

2
(
Ω∗23 e

iωt |3〉 〈2|+ Ω23 e
−iωt |2〉 〈3|

)
×
(
eiωt + e−iωt

)
(1.44)

' − ~
2
(
Ω∗23 |3〉 〈2|+ Ω23 |2〉 〈3|

)
. (1.45)

The fast oscillating terms at ±2ω in equation (1.44) are neglected as usual using the RWA.
The atomic Hamiltonian Ĥ0 commutes with Ũ(t); the total Hamiltonian in the interaction
picture is thus finally time independent. In this description, the Bloch equation is given by:

dρ̂I
dt = − i

~

[
ĤI , ρ̂I

]
+
∑
ν 6=0

(
L̃ν ρ̂I L̃

†
ν −

1
2{L̃ν L̃

†
ν , ρ̂I}

)
, (1.46)

where ρ̂I = Ũ † ρ̂ Ũ and ĤI = ~δ0 |2〉 〈2| − ~(∆− δ0) |3〉 〈3|+ Ŵ I
23. The Lindblad operators

L̄ν are defined in subsection 1.2.2. A straightforwards but tedious calculation leads finally
to the following set of Bloch equations for the slowly varying density matrix elements ρij(t)
(I drop out the I index in the following):

dρ11
dt = − Γt ρ11 + Γ

2 ρ33 + Γ(1)
t

dρ22
dt = − Γt ρ22 + Γ

2 ρ33 + i

2 (Ω∗23 ρ32 − Ω23 ρ23) + Γ(2)
t

dρ33
dt = − (Γt + Γ) ρ33 −

i

2 (Ω∗23 ρ32 − Ω23 ρ23) (1.47)

dρ32
dt = − γ̃32 ρ32 + iΩ23

2 (ρ22 − ρ33)

dρ23
dt = − γ̃∗32 ρ23 −

iΩ∗23
2 (ρ22 − ρ33)

where γ̃32 = γ32−i∆ and γ32 = Γ/2+Γt. As you can see, the transit rateΓt enters now in the
optical Bloch equations. Moreover, it appears explicitly in the coherence decay rate γ32,
which defines the |2〉 → |3〉 transition linewidth. The finite transit time of atoms across
the laser beam induces therefore a broadening of the transition line, as mentioned before.
The Bloch equations (1.47) can be solved together using a 4th-order Runge-Kutta method.
The numerical results are shown on figure 1.8 (a) for the D1 line of 87Rb. The beam width
at 1/e2 is ω0 = 500 µm. The laser is 2 GHz red-detuned with respect to the |2〉 → |3〉
transition and the vapor temperature is set to 415 K.With these values for the parameters,
Γt/Γ ' 1.8%. The degeneracy weights G1 and G2 are respectively equal to 3/8 and 5/8;
therefore, Γ(1)

t /Γ ' 0.7% and Γ(2)
t /Γ ' 1.1%. The computation has been performed using

the influx rates defined by equation (1.35) (β = 0). The populations in states |1〉, |2〉 and
|3〉 have been plotted in green, purple and black respectively for two different laser power:
P = 1 mW (Ω/2π ' 30 MHz, dashed lines) and P = 0.5 W (Ω/2π ' 0.7 GHz, solid lines).
• At low power, the internal state dynamics is controlled by the influx and transit rates
exclusively. As Γ(2)

t > Γ(1)
t , ρ22 increases at the expense of ρ11. In the steady-state,

the proportion of atoms in |1〉 and |2〉 is directly given by the unbalanced degeneracy
weights G1 and G2. During the transient regime, the population in the excited state
is almost zero. The laser power is too weak to populate |3〉 as well as to pump atoms
from state |2〉 to state |1〉. The lowpower situation has been sketched on figure 1.8 (b).
Populations in |1〉 and |2〉 has been represented by disks of different radii.
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Figure 1.8: (a) Time evolution of the populations in states |1〉, |2〉 and |3〉 for two different
laser powers: P = 1 mW (dotted lines) and P = 500 mW (solid lines). At low laser power,
this evolution is mainly driven by the filling and transit rates. As Γ(2)

t > Γ(1)
t , ρ22 increases

while ρ11 decreases. In the stationary-state, ρeq
11 = G1 and ρeq

22 = G2. At high laser power,
optical pumping from state |2〉 to state |1〉 overcomes this filling unbalance. Rabi flopping
between states |2〉 to |3〉 makes the populations ρ22 and ρ33 oscillate over time in that case.
Both situations are depicted on figures (b) and (c). Parameters in the text.

• At high power, the internal state dynamics is controlled by the laser field and by the
influx and transit rates simultaneously. The laser field strongly drives the |2〉 → |3〉
transition even if the frequency is far red-detuned from resonance. As you can see,
Rabi oscillations appear between the populations of states |2〉 and |3〉. In the steady-
state, even if Γ(2)

t > Γ(1)
t , ρ11 remains larger than ρ22. Optical pumping from |2〉 to |1〉

overcomes the filling rates unbalance. Nevertheless, Γ(2)
t and Γ(1)

t , together with the
transit rate Γt, are still playing a crucial role. If the time of flight of atoms across the
laser beam was infinite, all the atoms would be pumped in |1〉 in the stationary-state.
The coherence between levels |2〉 and |3〉 (and thus the susceptibility), which depends
on the population difference ρ33−ρ22 (see equation (1.24)), would then drop to zero.
The filling and transit rates are thus essential in order for this model to describe
experimental observations. The high power case is sketched on 1.8 (c).

1.3.4 Steady-state solution of the Optical-Bloch equations

Looking at figure 1.8, we can observe that the 3-level system quickly converges toward a
steady-state in which populations as well as coherences do not evolve over time anymore.
By setting the time derivatives to zero in (1.47) and by using the conservation of the total
atomic population (

∑
i ρii = 1), one can recast the Bloch equations into the matrix form:



1.3. OPEN THREE-LEVEL ATOMIC SYSTEM 25


Γt + Γ

2
Γ
2 0 0

Γ
2 Γt + Γ

2 − iΩ∗
2

iΩ
2

iΩ
2 iΩ −γ̃ 0
− iΩ∗

2 iΩ∗ 0 −γ̃∗


︸ ︷︷ ︸

M


ρ11
ρ22
ρ32
ρ23


︸ ︷︷ ︸

ρ

=


−Γ

2 −G1 Γt
−Γ

2 −G2 Γt
iΩ
2
− iΩ∗

2


︸ ︷︷ ︸

X

. (1.48)

For the sake of simplicity, we define γ̃ = γ̃32 and Ω = Ω32. The steady-state is obtained by
inverting equation (1.48) as follows: ρeq = M−1 ·X, which yields the following results:

ρeq
11 = G1

F(∆,Ω)

[
1 +

(∆
γ

)2
+ 1 + b

2 b (1 + a)

(Ω
γ

)2
+ G2
G1

1− b
2 b (1 + a)

(Ω
γ

)2
]

(1.49)

ρeq
22 = G2

F(∆,Ω)

[
1 +

(∆
γ

)2
+ b

2 b (1 + a)

(Ω
γ

)2
]

(1.50)

ρeq
32 = G2

2

(Ω
γ

)
i−∆/γ
F(∆,Ω) (1.51)

The coefficients a and b basically measure the contribution of the natural and transit time
broadening in the linewidth γ: a = Γ/(2 γ) and b = Γt/γ. The function F is defined by:

F(∆,Ω) = 1 +
(∆
γ

)2
+ 1 + b

2 b (1 + a)

(Ω
γ

)2
. (1.52)

1.3.5 Dielectric susceptibility χ for the 3-level system
In the steady-state, the dielectric susceptibility χ of the 3-level system is related to the
coherence ρeq

32 between the states |2〉 and |3〉 (see equation (1.26)):

χ = 2N
ε0 E0

µ23 ρ
eq
32 = α0(0)

ω32/c

i−∆/γ

1 +
(

∆
γ

)2
+
(
E0
Es

)2 . (1.53)

As for the two-level system, we define the linear line-center absorption coefficient α0(0)
(that is, the linear absorption coefficient at resonance) by:

α0(0) = G2
ω32
c

N

ε0~
|µ23|2

γ
, (1.54)

as well as the line-center saturation field strength Es =
√

2 b (1+a)
1+b ~γ/µ23. Equation (1.53)

is identical in all respects to equation (1.26). This is an important result as it demonstrates
that the optical response of an open 3-level system under a red-detuned laser excitation
is comparable to the response of a two-level system. However, as mentioned several times
already, the linewidth γ = Γ/2+Γt is broadened by the finite transit time of atoms across
the beam in the open 3-level description. This effect is not describe by the over simplistic
2-level model. Moreover, the on-resonance saturation field strength Es also depends on
the transit rate Γt in the present case. The optical response of the rubidium vapor is thus
likely to change with the dimensions of the coupling beam.
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1.3.6 Linear and non-linear response
In order to derive an expression for the third-order dielectric polarizability, we should first
expand equation (1.53) as a power series in E0/Es. This expansion is correct as long as
|E0/Es|2 � 1 + (∆/γ)2 and read (at the second-order) as follows:

χ ' α0(0)
ω32/c

i−∆/γ
1 + (∆/γ)2

(
1−

∣∣∣∣E0
Es

∣∣∣∣2 1
1 + (∆/γ)2

)
. (1.55)

We now equate the foregoing expression with the usual expansion: χ=χ(1) + 3
4χ

(3)|E0|2
in order to obtain the first- and third-order dielectric susceptibilities :

χ(1) = α0(0)
ω32/c

i−∆/γ
1 + (∆/γ)2 , (1.56)

χ(3) = − 1
|Es|2

4
3
α0(0)
ω32/c

i−∆/γ[
1 + (∆/γ)2

]2 . (1.57)

Real and imaginary parts of the total (blue solid, dashed and dotted lines) and third-order
dielectric polarizabilities (black solid lines) have been plotted on figures 1.9 (a) and (b).
As in the two-level case, power broadening and saturation strongly affect the line shape
of the total susceptibility at resonance. As expected, the signs of χ and χ(3) are opposite.

The expansion (1.55) makes sense only if the condition |E0/Es|2 � 1+(∆/γ32)2 is fulfilled.
In experiments, the laser is typically 3 GHz red-detuned with respect to the resonance. For
a beam width of 500 µm, the transit rate is 2π × 91 kHz (Γt/γ ' 3%) atT = 415 K. If we
address the D2 line of a isotopically pure 87Rb vapor for example, Γ = 2π×6.07 MHz and
therefore, γ ' 2π × 3.13 MHz. The dipole moment of the |2〉 → |3〉 transition is given in
that case by: µ23 =

∑
Fe f

Fe
Fg =

√
1/18 + 5/18 + 7/9× d√

g2
' 2.44× e a0 (see formula (1.6)

and the table of figure 1.2). The saturation intensity Is = 1
2 ε0 c |Es|

2 is then of 1.5 W/m2.
With the foregoing values for the parameters, we find an off-resonance saturation intensity
Is(∆) = Is

[
1 + (∆/γ)2] around 1.6× 106 W/m2. This value basically sets an upper limit

on the laser intensity beyond which the expansion (1.55) starts to be invalid. It is worth
mentioning that this result strongly depends on the beam width obviously. Working with
smaller beams will indeed increase the off-resonance saturation intensity Is(∆). It will first
increase the line-center saturation intensity, scaling as Γ4

t ∝ 1/ω4
0 when ω0 goes to zero.

This effect is easily understandable. When the width decreases, the rate at which fresh
atoms enter the beam rises up accordingly. In other words, the average time of flight of
atoms across the beam becomes shorter and shorter. The laser field should then be more
intense in order to drive more efficiently the transition line over this shorter atom/field
interaction time 1/Γt. A second effect appearwhen decreasing the beamwidth, as it will also
increase the linewidth γ of the |2〉 → |3〉 transition. The atomic ensemble will thus get
more resonant with the laser excitation at fixed detuning, leading to a reduction in Is(∆).
This effect is appreciable when the natural transition linewidth Γ/2 and the transit rate
Γt are comparable, that is, when ω0 < 4u/

√
π Γ ' 4 µm at 400 K, which is much smaller

than the beam widths we standardly use experimentally. The off-resonance saturation
intensity and power Ps(∆) have been plotted on figure 1.9 (c) for different laser detunings.
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Figure 1.9: Real (a) and imaginary parts (b) of the total (solid, dashed and dotted blue)
and third-order (solid black) dielectric susceptibilities. Re [χ] and Im [χ] are plotted for
different values of the saturation parameter I/Is. Increasing I/Is makes the line broader,
as can be seen on fig.(b) (power broadening), and decreases the absorption (saturation).
(c) Off-resonance intensity (cyan) and power (black) as function of the beam width ω0 for
different laser detunings. (a)-(b): ω0 = 500 µm. (a)-(c): T = 415 K. Computation made
for the D2 line of an isotopically pure rubidium 87 vapor.

1.3.7 General case: open 3-level system with two coupling fields
So far, the laser field was only driving the |2〉 → |3〉 transition. Let’s now assume it also
drives the |1〉 → |3〉 transition, as sketched on figure 1.5(b). In that case, the steady-state
solution of the optical Bloch equations is found by solving the following matrix equation:

−Γt− Γ
2 −Γ

2 0 0 iΩ∗13
2 − iΩ13

2 0 0
−Γ

2 Γt+ Γ
2 0 0 0 0 iΩ∗23

2 − iΩ23
2

0 0 −γ̃21 0 iΩ∗23
2 0 0 − iΩ13

2
0 0 0 −γ̃∗21 0 − iΩ23

2
iΩ∗13

2 0
iΩ13

iΩ13
2

iΩ23
2 0 −γ̃31 0 0 0

−iΩ∗13 − iΩ∗13
2 0 − iΩ∗23

2 0 −γ̃∗31 0 0
iΩ23

2 iΩ23 0 iΩ13
2 0 0 −γ̃32 0

− iΩ∗23
2 −iΩ∗23 − iΩ∗13

2 0 0 0 0 −γ̃∗32





ρ11
ρ22

ρ21

ρ12

ρ31

ρ13

ρ32

ρ23


=



−Γ
2 −G1Γt
−Γ

2 −G2Γt
0
0

iΩ13
2

− iΩ∗13
2

iΩ23
2

− iΩ∗23
2


(1.58)

where γ̃21 = γ21 + iδ0, γ̃31 = γ31− i(∆−δ0) and γ̃32 = γ32− i∆. The decoherence rates are
defined by: γ21 = Γt, γ31 = Γ/2+Γt and γ32 = Γ/2+Γt. The linewidths of the |1〉 → |3〉 and
|2〉 → |3〉 transitions are equal since the probabilities for the excited state to decay toward
the upper and lower ground state are the same in ourmodel. This assumption is not perfectly
fulfilled because some of the hyperfine transitions between ground and excited states are
cycling (the Fg = 3→ Fe = 4 hyperfine transition in 85Rb for example).



28 CHAPTER 1. ATOMIC VAPOR

The stationary-state density matrix elements are obtained by inverting equation (1.58).
Nevertheless, populations and coherences cannot be easily expressed analytically anymore.
We cannot either use density matrix perturbation techniques, as both Rabi frequencies
Ω13 and Ω23 have the same magnitude. They are actually equal in this case, as µ13 = µ23.
However, since δHF � δ0, we can think about breaking down this problem into pieces and
see the situation sketched in fig. 1.5 (b) as a composition of two open 3-level systems with
one coupling field, driving either the |1〉 → |3〉 or the |2〉 → |3〉 transition. An approximate
steady-state solution can then be found using the set of equations (1.49), (1.50) and (1.51).
Within this approximation, the population in state |1〉 is given for instance by:

ρ11 ' ρ1�3
11 + ρ2�3

11 −G1, (1.59)

where ρi�3
11 stands for the steady-state population of level |1〉 when the laser only addresses

the |i〉 → |3〉 transition. Therefore, ρ2�3
11 is given by equation (1.49) and ρ1�3

11 is obtained by
(i) interchanging the indices "1" and "2" and (ii) by replacing ∆ by ∆−δ0 in equation (1.50).
The degeneracy weight G1 should be subtracted in order to take the filling of the ground
state |1〉 into account only once. The steady-state population in |2〉 can be approximate
in a similar way: ρ22 ' ρ1�3

22 +ρ2�3
22 −G2. We can also derive an approximate expression for

the coherences ρ31 and ρ32 using (1.51) (after replacing "1" by "2" and ∆ by ∆−δ0 for ρ31).
The ground states coherence ρ21 can then simply be expressed as: ρ21 = iΩ

2γ21
(ρ31 − ρ∗32).
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Figure 1.10: Comparison between the total susceptibilities computed from the 2-coupling
3-level model (black dashed line) and the numerical inversion of (1.58) (blue solid line).
(a) Low power (10 mW). (b) High power (100 mW). The discrepancy between the black
dashed and the blue solid lines starts being visible around ∆ = 0 and ∆ = δ0 ' 6.8 GHz.
If we consider that the field only addresses the |2〉 → |3〉 transition, we underestimate the
value of Re [χ] when the laser is highly red-detuned. The contribution of |1〉 → |3〉 toRe [χ]
is about 25% when ∆ = −2π×6 GHz for instance. Parameters in the text.

The real part of the dielectric susceptibility Re [χ], obtained either by numerical inversion
(blue solid line) or within the approximation above (black dashed lines), has been plotted
on figure 1.10 as function of ∆, for P=10 mW (fig.(a), Ω/2π ' 0.1 GHz) and P=100 mW
(fig.(b), Ω/2π ' 0.3 GHz). The laser drives the D1 line of 87Rb and its width is 500 µm.
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• As long as the coupling field is low enough to safely neglect optical pumping between
ground states, the agreement between the numerical inversion of equation (1.58) and
the theory is excellent, as can be seen on figure 1.10(a).
• When optical pumping comes into play, the model fails to reproduce exactly the
numerical results close to resonances (ie, when ∆ = 0 and ∆ = δ0 ' 2π×6.8 GHz).
However, for highly red-detuned laser frequencies (typically, when ∆/2π < −3 GHz),
the model describes perfectly well the vapor optical response. As you may have seen,
the contribution of the |1〉 → |3〉 transition line on the red-detuned optical response
(cyan dashed line) is not negligible; the relative error made on Re [χ] by considering
only one coupling field when ∆/2π = −6 GHz is almost 25% for instance.

The two coupling fields model is thus able to correctly predict the dielectric susceptibility
at those detunings even for strong driving, which is not the case of the one coupling field
and the simplistic two-level descriptions.

1.3.8 Ballistic transport of atoms
Contrary to what might sometimes be believed, hot alkaline vapors are dilute systems.
As long as the temperature of the atomic ensemble does no exceed 150 ◦C, the atomic
motion is mainly ballistic and Rb-Rb collisions can be neglected as a first approximation.
This ballistic transport affects the atom internal state because it forces the atom/field
interaction to happen on a finite time, as described above. In this section, I will introduce
other effects resulting from atomic motion −namely, Doppler broadening and transport-
induced nonlocal dielectric response− and describe how these effects impact the line shape.

i Doppler broadening

The atomic motion along the optical axis shifts the laser frequency in the translating frame
of a moving atom. This Doppler shift affects the transition linewidth (Doppler broadening)
by making fast atoms be resonant with a slightly detuned laser beam. In this subsection,
I will generalize equations (1.56) and (1.57) by taking Doppler broadening into account.
The calculation mainly follows the derivation made in [32].

Let’s first define the line shape factors f (1)
γ and f (3)

γ as follow:

f (1)
γ = 1

γ

i−∆/γ
1+(∆/γ)2 and f (3)

γ̄ = 1
γ

i−∆/γ[
1+(∆/γ)2

]2 , (1.60)

where γ = γ31 = γ32 = Γ/2 + Γt. The linear Doppler broadened susceptibility is obtained
by convolving χ(1)(∆j) with the 1D Maxwell Boltzmann velocity distribution P1D (1.9):

χ(1)
D (∆j) = α0(0)

ω3j/c
γ

∫ ∞
−∞

f (1)
γ (∆j − kv)P1D(v) dv︸ ︷︷ ︸

s(∆j)

, (1.61)

where the detuning ∆j is equal either to ∆ or to ∆−δ0 if the laser addresses the |2〉 → |3〉
or the |1〉 → |3〉 transition.
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The magnitude of the susceptibility χ(1)
D appears simply as a prefactor in equation (1.61).

For the sake of convenience, we define the complex function s which is proportional to χ(1)
D

but does not depend on the atomic transition considered. Let’s also define aj = ∆j/ku and
b = γ/ku (u =

√
2kBT/m is the most probable speed) and make the change of variable

v → x = v/u in the integral s. By separating the real and imaginary parts of f (1)
γ and

by using the convolution theorem, the Fourier transform of the function s reads finally:
S(ãj) =

(
FR
b (ãj) + F I

b (ãj)
)
P (ãj) where:

FR
b (ãj) = −

∫ ∞
−∞

1
b

t/b

1 + (t/b)2 e
−iãjt dt = i π sgn(ã) e−b|ãj |, (1.62)

F I
b (ãj) =

∫ ∞
−∞

1
b

1
1 + (t/b)2 e

−iãt dt = i π e−b|ã|, (1.63)

P (ãj) =
∫ ∞
−∞

gu(t) e−iãjt dt = e−(ã/2)2
. (1.64)

By taking the inverse Fourier transform of S and by rearranging, we finally find that:

χ(1)
D (∆j) = α0(0)

ω3j/c
b {Re [F (aj + ib)] + i Im [F (aj + ib)]} ,

= α0(0)
ω3j/c

(
γ

ku

){
Re
[
F

(∆j

ku
+ i

γ

ku

)]
+ i Im

[
F

(∆j

ku
+ i

γ

ku

)]}
, (1.65)

where F stands for the plasma dispersion function: F (z) = i
√
π e−z

2 Erfc(−iz) and Erfc
for the complex complementary error function. The absorption coefficient α = k Im(χ(1)

D )
has a Voigt-type profile arising from the convolution of the Lorentzian absorption profile
of an atom at rest and the Gaussian distribution P1D . By following the exact same steps,
we can also derive an expression for the real part of the Doppler broadened third-order
dielectric susceptibility. Introducing zj = aj+ib and using the relation F (−z∗) = −F (z)∗:

Re
[
χ

(3)
D (∆j)

]
= − i 1

|Es|2
4
3
α0(0)
ω32/c

b3

2a
[
zj F (zj) + z∗j F (−z∗j )

]
,

= 1
|Es|2

4
3
α0(0)
ω32/c

(
γ

ku

)2
(
γ

∆j

)
Im
[(∆j

ku
+ i

γ

ku

)
F

(∆j

ku
+ i

γ

ku

)]
(1.66)

For the sake of completeness, let me finally derive an expression for the total Doppler
broadened dielectric susceptibility χD:

χD(∆j) = α0(0)
ω3j/c

(
γ

ku

){
Re [F (aj + ibI)] + i

Im [F (aj + ibI)]√
1 + I/Is

}
, (1.67)

where bI = b
√

1 + I/Is. We recover the formula derived following the Lamb’smodel in [49],
where the effects of gain saturation by strong driving fields in a dilute two-level atomic
medium is investigated. The same equation has also been reported in [50]. In the latter,
the authors claim that the atomicmotion is not only accountable forDoppler broadening but
also for a ballistic transport induced nonlocal dielectric response. The next section describes
this effect in our configuration.
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ii Ballistic transport of excited atoms: nonlocal dielectric response

So far, I have implicitly assumed that the dielectric response of the atomic vapor was local,
or, in other words, that it only depends on the field strength or intensity at a given point
in space. This assumption is fulfilled as long as no intensity redistribution process makes
the susceptibility at r0 depend on the surrounding field strength at r0 +δr. In hot vapors,
intensity redistribution do occur through ballistic transport of excited atoms. Even if the
laser field is far detuned from resonance, fast moving atoms can still absorb photons
because of Doppler effect. Those photons, after being absorbed at r0, can therefore be
re-emitted at an other location in space, at r0 + v τ , where τ = 1/Γ is the lifetime of the
excited state. This picture is very simplistic but still gives an insight into the physics at
play in the transport-induced nonlocal dielectric response of hot vapors.

As mentioned in [49], the degree of nonlocality and the nature of the redistribution process
(ballistic, diffusive, ...) both depend on the characteristic length scales associated with
the transport of excited atoms. The first length scale is the mean free path ie the average
distance travelled by an atom before a Rb-Rb collision: lc = 1/(

√
2N σi�j), where σi�j is

the scattering cross section between two atoms, one in state |i〉 and the other in state |j〉.
The collisional cross-section between atoms in the ground state is σg�g = 2.5× 10−17 m2.
For collisions between an atom in the ground state and an other one in the excited state,
the cross-section is much larger since the collision process occurs via a long range dipole-
dipole interaction [51] and:

√
Tσg�e = 1.8 × 10−14 K

1
2m2. At T = 400 K, lg�gc ' 11

mm and lg�ec ' 32 µm; both are much larger than the ballistic transport length scale,
defined by lb = u τ ' 7.6 µm at 400 K. The transport of excited atoms is mainly ballistic
at 400 K and the nonlocal response of the material should then depend on u and τ .

The rate equation for the excited state population is given by the third equation in (1.47).
One can rewrite this equation as function of the total absorption coefficient α as follow:

dρ33
dt = − (Γ + Γt) ρ33 + Im (Ω∗23 ρ32) , (1.68)

= − (Γ + Γt) ρ33 + 1
2
ε0
~
|E|2 Im (χ32) ,

= − (Γ + Γt) ρ33 + I α(I)
~ω

, (1.69)

using the relations: χ32 = 2µ23
ε0E ρ32 and α= ω

n0c
Im (χ32). Equation (1.69) has been derived

using the 3-level description sketched in figure 1.5 (a) but is actually much more general
since it only involves the total decay rate γ̄ = Γ+Γt of the excited state and the local rate of
excitation Iα(I)/~ω. The same equation describes for instance the evolution of the excited
state population when both the |1〉 → |3〉 and the |2〉 → |3〉 transitions are simultaneously
driven by the laser field. In that case, α = k Im (χ31 + χ32). Working within the paraxial
approximation, I thus suppose that ρ33 only substantially varies in the transverse plane,
where r = xx̂+yŷ and v = vxx̂+vyŷ. One can then rewrite eq.(1.69) using the differential
formula d

dt = ∂
∂t + v ·∇⊥ (where ∇⊥ is the gradient operator in the (x̂, ŷ) plane):

∂ρ33
∂t

+ v ·∇⊥ρ33 + (Γ + Γt)︸ ︷︷ ︸
γ̄

ρ33 = I αD(I)
~ω

. (1.70)
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This equation can be solved with theGreen function formalism. Let’sGbγ̄ be the solution of:

∂ρ33
∂t

+ v ·∇⊥ρ33 + γ̄ ρ33 = δ(t) δ(r)P2D(v), (1.71)

where P2D stands for the 2D Maxwell-Boltzmann velocity distribution, as usual. Averaging
the Green function Gbγ̄ over P2D yields:

Ḡbγ̄(r, t) = 1
πu2 e

−γ t
[∫

R2
δ (r− v t) e−(v/u)2 dv

]
= 1

πu2
e−γ̄ t

t2
e−
( |r|
ut

)2
. (1.72)

One can then obtain the spatial distribution of the excited state population by convolving
the averaged Green function Ḡbγ̄ with the local rate of excitation IαD(I)/~ω of (1.69):

ρ33(r, t) = 1
~ω

∫ t

−∞
dt′
∫

R2
dr′ Ḡbγ̄(r−r′, t−t′)

{
I(r′, t′)α

[
I(r′, t′)

]}
(1.73)

Let’s assume the rate of excitation is constant over time and localized in space at r0 such
that I(r0, t) = δ(r0) I0. By making successively the substitutions t→ t+t0 and t→ ξ = r

u
1
t

(where r = |r−r0|), one can finally derive an expression for the spatial distribution of the
excited state population in the steady-sate:

ρ33(r) = I0 α(I0)
~ω

1
π u r

∫ ∞
0

e−γ̄r/uξe−ξ
2dξ, (1.74)

as well as the steady-state Green function and its spatial Fourier transform:Ḡ
b
γ̄(r−r0) = 1

π u r

∫∞
0 e−γ̄r/uξ e−ξ

2dξ,
F
[
Ḡbγ̄

]
(k) =

√
π
γ̄
e1/(k lb)

2

k lb
Erfc [1/(k lb)] .

(1.75)

The Green function Ḡbγ̄ is well normalized as γ̄
∫
Gbγ̄(r) dr = 1.

Ḡbγ̄ and F
[
Ḡbγ̄

]
have been plotted on figure 1.11 (a) as function of the scaled coordinates

r/lb and k lb respectively. As mentioned in [50], the ballistic response (blue curve) falls off
much more rapidly than the diffusive one (red curve) in real space. Diffusion is thus much
more efficient at spreading the intensity in the transverse plane than ballistic transport.
In order to complete the description of the transport-induced nonlocality, let’s derive an
expression for the nonlocal dielectric susceptibility which also takes Doppler broadening
into account. When the laser intensity varies spatially in the transverse plane, we can use
the Green function Ḡbγ̄ to write the steady-sate dielectric response as follow:

Re [χD(r)] = χ0

(
Re [F (a+ ib)] + γ̄

∫
R2
Gbγ̄(r−r0)×

{Re [F (a+ ibI(r0))]− Re [F (a+ ib)]} dr0

)
,

(1.76)

Im [χD(r)] = χ0

(
Im [F (a+ ib)] + γ̄

∫
R2
Gbγ̄(r−r0)×{

Im [F (a+ ibI(r0)) , ]√
1 + I(r0)/Is

− Im [F (a+ ib)]
}

dr0

)
,

(1.77)

where γ̄ = Γ/2 + Γt (which is the decoherence decay rate) and χ0 = α0(0)
ω32/c

γ̄
ku .
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Figure 1.11: (a) Ballistic (blue) and diffusive (red) response functions in k-space. Inset:
real space response functions, rescaled to be equal at r = l. (b) Transport length scales as
function of the vapor temperature T . The ballistic transport length scale lb (black line) re-
mains lower than the free mean path lg�ec for T < 155 C◦. The transport of excited atoms
is therefore mainly ballistic at T = 130 C◦. Figure reproduced from [50].

For high vapor temperatures (when T > 450 K), the transport of excited atoms is diffusive:
the free mean path lg�ec becomes smaller than lb, as can be seen on 1.11 (b). In that case,
the evolution of the excited state population is given by the following diffusion equation:

∂ρ33
∂t
−D∇2

⊥ρ33 + γ̄ ρ33 = I αD(I)
~ω

, (1.78)

where D is the diffusion constant. Following the exact same steps as before, we can derive
an expression for the steady-state diffusive Green function Gdγ̄ (and its Fourier transform):Ḡ

d
γ̄(r−r0) = 1

4πD
∫∞

0
1
t e
−γ̄t e−r

2/(4Dt) dt = 1
2πD K0

(
r√
Dτ

)
,

F
[
Ḡdγ̄

]
(k) = 1/

(
1 +Dτ k2) , (1.79)

where K0 is the zeroth-order modified Bessel function of the second kind. The same type
of response function has been used to describe the nonlocal dielectric response of thermo-
optic materials for example [28]. In order to compare the response functions for ballistic
and diffusive transport, Ḡdγ̄ and F

[
Ḡdγ̄

]
have also been plotted as function of r/ld and k ld

on figure 1.11 (a) (we simply assume here that
√
Dτ = lg�ec ).

The nonlocal dielectric response of materials under a laser excitation should be considered
in order to correctly describe the dynamics of a photon fluid. In [52] for instance, the effects
of nonlocality on the dispersion of density waves propagating on a fluid of light is reported.
The nonlocality plays also an important role in stabilizing nonlinear phenomena such as
transverse solitary waves [53] or the nonlinear propagation of more complex laser fields,
such as vortex (Laguerre) and dipole (Hermite) beams [50,54].





Chapter 2

Photon fluid in the 2D+1
propagating geometry

In the previous chapter, I have described in detail the response of a rubidiumvapor under a
near-resonance laser excitation. However, we have up to now put aside the question of how
such a laser field propagates through the vapor cell. This chapter is dedicated to discussing
the analogy between this nonlinear propagation and the evolution of a paraxial photon fluid.
I first introduce the concept of a fluid of light in the propagating geometry by deriving the
nonlinear Schrödinger equation. In this equation, the electric field of the laser beam can be
regarded as a fluid flowing in the plane perpendicular to the propagation axis, which plays
the role of a time axis in this hydrodynamical description of nonlinear optics. The study of
the propagation of small amplitude density waves travelling onto the photon fluid provides
crucial insights into this many body system. This chapter presents thus also the theoretical
framework required to describe the photon fluids elementary excitations, by introducing,
in particular, the Bogoliubov transformand the so-calledBogoliubov dispersion relation.

35
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2.1 Nonlinear Schrödinger equation in optics
A fluid of light refers to a weakly interacting gas of photons which is formed by a laser beam
propagating through an optical nonlinear medium. The mean-field dynamics of this many
body Bose gas follows a Nonlinear Shrödinger Equation (NLSE) [55, 56]. In this section,
I derive the NLSE using both the slowly varying envelope and the paraxial approximations.
The laser field E(r, t) is monochromatic and linearly polarized and propagates along z in
a Kerr nonlinear medium. Thosematerials exhibit an intensity-dependent refractive index,
which comes from a non-zero third-order dielectric susceptibility χ(3) . In chapter 1, we have
seen how to obtain such an intensity-dependent optical response in hot rubidium vapors,
by tuning the frequency of a laser field close to an atomic resonance. The following derivation
is general however, since it only requires a non-zero χ(3) and remains correct for other sorts
of Kerr medium, such as thermo-optic liquids [52] and photorefractive crystals [29].

2.1.1 Propagation equation in a non-linear medium
Starting from the Maxwell equations, we can show that the electric field E(r, t) evolves
according to the well-known nonlinear wave equation:

∇2E − 1
c2
∂2E

∂t2
= 1
ε0c2

∂2P

∂t2
, (2.1)

where c and ε0 are the speed of light and the dielectric permitivity in vacuum, respectively.
The polarization P describes the dielectric response of the material to the field excitation.
This response is not necessarily linear and tends generally to saturate with the applied field.
In nonlinear optics, the polarization is therefore usually expressed as a power series in the
field strength (when E is sufficiently weak):

P (r, t) = ε0χ [E(r, t)]E(r, t) (2.2)
= ε0χ(1) ·E(r, t)︸ ︷︷ ︸

P (1) (r,t)

+ ε0χ(2) :E(r, t)2︸ ︷︷ ︸
P (2) (r,t)

+ ε0χ(3) :E(r, t)3︸ ︷︷ ︸
P (3) (r,t)

+ . . . (2.3)

The (n+1)th-rank tensor χ(n) describes the nth-order susceptibility of the optical medium.
The dielectric response of the material is fully characterized by the set {χ(1) ,χ(2) ,χ(3) , ...}
of all the susceptibilities. The nth-order polarization P (n) is linked to the electric field E
by the following tensor product:

P (n)
j (r, t) = ε0

∑
i1...in

∫ ∞
−∞

χ(n)
j i1...in

(r−r1, . . . , r−rn; t−t1, . . . , t−tn)×

Ei1(r1, t1) . . . Ein(rm, tn) dr1 . . . dr1 dt1 . . . dtn
(2.4)

The indices i1 . . . in run over the three Cartesian components of the electric field E.

In practice, equation (2.4) can be highly simplified by considering:
• the physical properties of the optical medium (such as the material symmetries);
• the assumptions made regarding the laser field (polarization, monochromaticity).
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Rubidium vapors (and more broadly alkaline vapors) are for instance centro-symmetric
optical mediums. All the even-order nonlinear susceptibilities (χ(2) , χ(4) , χ(6) , ...) must
therefore vanish. Rubidium vapors are also isotropic materials for which the polarization
is aligned with the applied field E. As the laser field is linearly polarized (let’s say, alongx),
the polarization P must only have one non-zero component (along x). The tensor nature
of the nonlinear interaction can thus be left out. Moreover, if the dielectric response of the
material is local, we get rid of the integration over spatial coordinates. As we have seen
in the first chapter however, ballistic transport of atoms makes the dielectric response of
hot rubidium vapors intrinsically nonlocal. For the sake of simplicity, I will keep assuming
the medium is local here; the effects of nonlocality − on the dynamics of the photon fluid
elementary excitations, for instance − are discussed in section 2.4.2. The expression of the
nth-order polarization vector is drastically simplified as a result of the above discussion:

P (n)(r, t) = ε0

∫ ∞
−∞

χ(n)(t−t1, . . . , t−tn)× E(r, t1) . . . E(r, tn) dt1 . . . dtn. (2.5)

Rubidium vapors are dispersive optical mediums; the nonlinear response will therefore
depend on the laser frequency ω and the integration over temporal coordinates remains.
By neglecting polarization degrees of freedom, the monochromatic laser field simply reads:
E(r, t) = 1

2
[
E(r) eiωt + E∗(r) e−iωt

]
, where E is the complex envelope of the electric field.

Replacing E(r, t) in (2.5) by the foregoing expression and using equations (2.1) and (2.3)
yield the following stationary equation for E :

∇2E(r) + ω2

c2 [1 + χ(1)(ω)] E(r) = −3
4
ω2

c2 χ
(3)(ω) |E(r)|2 E(r). (2.6)

In equation (2.6), only the first- and third-order polarizations are taken into account while
higher order contributions (P (5) , P (7) ,...) are neglected. Moreover, we only keep in P (3)

the terms oscillating at +ω, since we only concern about nonlinear wave-mixing processes
conserving the input laser frequency. That is why the factor 3 appears on the left hand side of
equation (2.6), as (3

2) = 3 is the number of four-wave mixing mechanisms producing a 3rd-
order polarization oscillating at +ω [55]. So as to rewrite equation (2.6)more aesthetically,
one usually defines the linear dielectric permitivity of the material εr(ω) = 1 + χ(1)(ω):

∇2E(r) + k2
0 εr(ω) E(r) = −3

4
ω2

c2 χ
(3)(ω) |E(r)|2 E(r). (2.7)

where k0 = ω/c stands for the laser wave-vector in vacuum. Let’s also introduce the linear
refractive index n0(ω) =

√
Re [εr(ω)] and absorption coefficient α(ω) = k0 Im [εr(ω)] /n0.

2.1.2 Paraxial approximation for the slowly-varying field envelope
Equation (2.7) describes the evolution of the envelope of a monochromatic and linearly
polarized laser field inside a Kerr-type medium. This equation is general as no assumption
has been made on the envelope so far. In practice however, the wave propagation is often
limited to within a small angle from the optical axis, defined by the z-direction let’s say,
along which the beam propagates. In that case, the field amplitude E(r⊥, z) slowly varies
in the transverse plane (that is, on the plane perpendicular to the z-axis) and the so-called
paraxial approximation can be performed. The field envelope reads thus as follows:

E(r⊥, z) = E0(r⊥, z) eik(ω)z, (2.8)
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where E0(r⊥, z) is a slowly-varying function of z, or, in other words, a function varying on
a length scale much larger than the optical wavelength λ. The paraxial approximation is
valid as long as |∇2

⊥E0|/k2 ∼ |∂z E0| /k � 1, where k(ω) = n0 k0 is the laser wave-vector in
the nonlinear medium. When this condition is fulfilled, the second-order derivative ∂2

zE0
can be neglected in the equation describing the evolution of the slow-varying envelope E0,
which finally takes the form of a nonlinear Schrödinger equation (NLSE):

i ∂z E0(r⊥, z) =
[
− 1

2k∇
2
⊥ −

iα

2 −
3
8
k

n2
0
χ(3)(ω) |E0 (r⊥, z)|2

]
E0(r⊥, z), (2.9)

where ∇⊥ is the gradient with respect to the transverse spatial coordinates, r⊥ = (x, y).
For the sake of completeness, we can also take into account the effect of a local modulation
of the linear refractive index, δn, on the propagation of the slowly-varying field envelope.
Such a modulation can either act as a repulsive obstacle for the light beam (if δn is negative)
or as a wave-guide (if δn is positive). In our system, it can be optically generated by locally
driving another rubidium transition, using a second laser field tuned close to resonance.
This situation is extensively investigated in chapter 5. Including δn in the equation 2.9
is straightforward [56] and finally yields:

i ∂z E0(r⊥, z) =
[
− 1

2k∇
2
⊥ −

iα

2 − k
δn(r⊥, z)

n0
− 3

8
k

n2
0
χ(3)(ω) |E0 (r⊥, z)|2

]
E0(r⊥, z).

(2.10)

2.1.3 Comparison with the Gross-Pitaevskii equation
If linear absorption is negligible (α ' 0), that is, if the system is conservative, the NLSE is
mathematically analogous to theGross–Pitaevskii equation (GPE). This equation describes
for instance the space-time evolution of the macroscopic wave-function Ψ(r, t) of a dilute
atomic Bose-Einstein condensate (BEC) in the Hartree-Fock approximation:

i~ ∂t Ψ(r, t) =
[
− ~2

2m∇
2 + V(r) + g |Ψ(r, t)|2

]
Ψ(r, t), (2.11)

where ~ is the reduced Planck constant, m the boson mass, V an external potential and
g = 4π~2as/m the coupling constant, proportional to the s-wave scattering length as [57].

i Space-time mapping

As you may have noticed, equations (2.9) and (2.11) are indeed pretty similar. However,
while the GPE describes the evolution of the wave-function Ψ over the real time, the NLSE
describes how the electric field envelope E0 propagates in space, along the optical axis.
Therefore, the z-direction plays the role of an effective time τ in the NLSE so that every
transverse plane along the optical axis can be regarded as a snapshot of the nonlinear
"time evolution" of the laser beam inside the medium. This seemingly elementary space-
time mapping z ↔ τ = zn0/c has profound consequences when one tries to build from (2.9)
a fully quantum field theory [56,58]. Once the z-direction has beenmapped into a time axis,
the only difference remaining between the NLSE and the GPE lies in their dimensionality.
While the GPE describes the time evolution of the condensate wave-function in the three
dimensions of space (3D+1 geometry), the "time evolution" of E0 intrinsically involves only
two spatial dimensions defining the transverse plane (2D+1 geometry).
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ii Effective mass and coupling constant

In order to complete the analogy between NLSE and GPE, let’s derive an expression for
the mass and the coupling constant which characterize the weakly interacting photon gas
formed by the laser field inside the Kerr medium. We first define the normalized envelope:

E0(r⊥, z) = E0(r⊥, z)
/[∫

S
|E0(r⊥, z)|2 dr⊥

] 1
2 , (2.12)

whereS stands for the surface of themedium cross-section. The amplitude square of E0 is the
electric field density. By definition, its integral over S is one. The integral in equation (2.12)
is a conserved quantity, as it is proportional to the laser field input powerP0 whatever
the position z on the optical axis (as long as linear absorption is zero). Therefore, E0 can
be replaced by E0 in (2.9) and using the space-time mapping yields:

i~ ∂τ E0(r⊥, τ) =
[
− ~2

2(~k/c)∇
2
⊥ − ~ω δn(r⊥, z)− ~ω n2P0

∣∣∣E0 (r⊥, z)
∣∣∣2 ] E0(r⊥, z).

(2.13)
The nonlinear refractive index n2 is defined by: n2 = 2 ñ2/(c ε0 n0) with ñ2 = 3χ(3)/(8n0).
One can then readily identify the effective mass m and coupling constant g in (2.13):

m = ~ k/c and g = −~ω n2P0, (2.14)

where 2P0/(c ε0 n0)=
∫
S |E0(r⊥, z)|2 dr⊥. A focusing (resp. defocusing) Kerr nonlinearity,

for which n2 > 0 (resp. n2 < 0), can therefore be regarded in this analogy as an attractive
(resp. repulsive) photon-photon interaction, mediated by the atomic ensemble in our case.
The nonlinear refractive index n2 plays thus a crucial role in photon fluid physics since it
controls the strength and nature (either attractive or repulsive) of the effective interaction
between photons. Throughout my thesis, I only dealt with defocusing nonlinearities, which
make the photon gas stable against modulational instabilities [59,60]. Let’s finallymention
that the index modulation δn in (2.9) acts as an external potential on the paraxial photons:

V(r⊥) = −~ω δn(r⊥, z) (2.15)

which is either attractive (δn > 0) or repulsive (δn < 0) depending on the sign of δn(r⊥, z).
We can then think about trapping the photon gas in the (x, y) plane, in order to observe
the optical analog of breathers in 2-dimensional BECs [61] for example, or about studying
the dynamics of the interacting photon gas in disordered potentials.

It might be interesting to compare the typical values of the coupling constant obtained in
2-dimensional BECs and in interacting photon gas. To that end, we define Ng̃ = 2mg/~2

which is an adimensional quantity introduced usually in 2D BECs to evaluate the strength
of the nonlinear interactions. In that case,N stands for the number of bosons inside theBEC.
Regarding interacting photon gas, what makes sense is not the number of photons inside the
Kerr medium but rather the flux of photons, Φ = P0/~ω, through the cell entrance plane
(~ω being the energy of a single photon). When n2 = −5×10−11 m2/W and P0 = 500 mW
− which are typical experimental values −Ng̃ is equal to 3.2×103. In 2D atomic BECs, Ng̃
is of the same order of magnitude. It reaches 4×103 in [61] for instance. Tuning the value of
the product Ng̃ in 2D atomic BEC experiments requires to change the intensity I of the
laser beams confining the 2D condensate in the desired direction (since g̃ scales as I1/4 [61]).
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In photon gas experiments, we have control over both the flux of photons Φ, by tuning the
laser power P0, and over the nonlinear index of refractionn2, by tuning the laser frequencyω
in rubidium vapors for instance. It seems therefore that photon gas in propagating geometry
are versatile and highly tunable systems to investigate the optical counterpart of nonlinear
many-body phenomena arising in 2-dimensional BECs. Nevertheless, it is worthmentioning
that the nonlinear "time evolution" of the photon gas in this analogy is intrinsically lim-
ited by the length L of the Kerr medium. This may potentially prevent us from observing
nonlinear phenomena which establish on time-scales longer than Ln0/c.

iii Kinetic, interaction and potential energy

It might be useful to introduce the kinetic, the interaction and the potential energies of
the interacting photon gas, which are respectively defined as follows:

Ekin
[
E0
]

= ~2

4m

∫
S

∣∣∣∇⊥E0
∣∣∣2 dr⊥ (2.16)

Eint
[
E0
]

= g

4

∫
S

∣∣∣E0(r⊥)
∣∣∣4 dr⊥ (2.17)

Epot
[
E0
]

= 1
2

∫
S
V (r⊥)

∣∣∣E0
∣∣∣2 dr⊥ (2.18)

When the system is conservative (no loss, α = 0), the total energy Etot = Ekin+Eint+Epot
is conserved during the evolution. One retrieves the left hand side of equation (2.13) by
computing the functional derivative δEtot/δE0, as expected. In thismanuscript, I almost
exclusively study situations forwhichEint � Ekin. This latter condition defines the so-called
Thomas-Fermi or hydrodynamic regime [62], in which the envelope of the electric field
behaves as a 2-dimensional photon fluid in the transverse plane.

2.2 Hydrodynamic analogy
The analogy between NLSE and GPE indicates that it is somehow possible to describe a
laser beam propagating in a Kerr medium as a fluid of light flowing in the transverse plane.
In this section, I will explicitly transpose the NLSE into a set of hydrodynamic equations,
using the Madelung transform [63]. In addition to being highly aesthetic, the hydrodynamic
formulation of the NLSE provides an easy understanding about the optical counterparts
of a broad range of classical fluid phenomena, such as, for instance, the transition from
laminar to turbulent flow [64], undular bores [65] or Rayleigh-Taylor instabilities [66].

2.2.1 Madelung transform
TheMadelung transform enables one to express the electric field envelope E0 as function
of its non-normalized density ρ and phase Φ as follows:

E0(r⊥, z) =
√
ρ(r⊥, z) eiΦ(r⊥,z) (2.19)

The density ρ = |E0|2 is proportional to the laser intensity I0. Using (2.19), equation (2.9)
yields the following set of hydrodynamic equations for ρ and Φ:
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∂ρ

∂τ
+∇⊥ · (ρv) + α̃ρ = 0 (2.20)

c

n0k

∂Φ
∂τ

+ 1
2v

2 − c2

n2
0

(
n2
n0
ρ+ 1

2k2
∇2
⊥
√
ρ

√
ρ

)
= 0 (2.21)

where α̃ = α c/n0. The effective time is still defined by τ = z n0/c and the nonlinear index
of refraction by ñ2 = 3χ(3)/(8n0). As you may have noticed, equations (2.20) and (2.21)
look respectively like the continuity and Euler equations, describing how an incompressible
fluid of density ρ(r⊥, τ) locally flows in the plane (x, y) at a velocity v(r⊥, τ) = c

n0 k
∇⊥Φ.

• The continuity equation (2.20) refers to the non-conservation of themass so to speak,
because of linear losses. The fluid density decays exponentially during propagation,
as expected from the Beer-Lambert law: ρ(r⊥, τ) = ρ(r⊥, 0) exp(−α̃τ).
• The second term inside the bracket on the right hand-side of theEuler equation (2.21)
is the so-called quantum pressure [62] and does not have any counterpart in real fluids.
It opposes any stretching or contraction of the fluid over distance smaller than the
healing length ξ, defined in subsection 2.3.2. As long as the density is slowly varying
in the transverse plane, the quantum pressure can be neglected; reversely, it starts
dominating the dynamics in regions of rapidly changing density.

Seen from the hydrodynamic analogy perspective, the propagation geometry appears to
be a simple and straightforward implementation of a photon fluid. The initial fluid density
and its flow velocity can be easily tuned controlling the transverse intensity distribution
and the spatial phase profile of the incident laser beam at the medium entrance plane
(using a Spatial Light Modulator (SLM) for instance).

2.2.2 Speed of sound
In liquids, the sound consists of compression waves whose speed − the sound velocity cs−
depends on the fluid compressibility and density. According to the Newton-Laplace formula,
cs =

√
K/ρ [67],K being the bulkmodulus of the fluid. This quantitymeasures how resistant

to compression the liquid is. It is basically defined as the ratio of the infinitesimal pressure
increase to the resulting relative decrease of the volume. In otherwords, ifP stands for the
pressure inside the fluid, the bulkmodulusK reads: K = ρ ∂P/∂ρ. In paraxial photon fluids,
the repulsive interactions between photons create a local bulk pressure P = n2 c

2ρ2/(2n2
0).

This pressure is related− through theNewton-Laplace formula− to the speedof sound:

c2
s = ∂P

∂ρ
=
(
c

n0

)2 ∆n
n0

(2.22)

∆n = ñ2 ρ = n2 I0 being the nonlinear change of refractive index and I0 the laser intensity.
The fact that there is a well defined sound velocity in propagating photon fluids necessarily
implies that density modulations in those systembehave as sound-like collective excitations,
under certain conditions. Phonons in crystals also propagate at a given speed of sound cph,
independently of their wavelength Λ, as long as the latter is larger than the microscopic
details of the lattice. In other words, the group velocity vg(k) = ∂ωph/∂k does not depend
on the phonons wave-vector k = 2π/Λ at long wavelengths: vg(k) ' cph. This results in a
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linear dependence of the phonons frequency ωph(k) on the wave-vector k: ωph(k) ' cph k.
The same kind of linear dispersion relation at low wave-vectors is expected for density
waves in propagating photon fluids. In the next section, I will precisely derive a formula for
this dispersion relation − the so-calledBogoliubov dispersion relation − which indeed
scales linearly at low values of the wave-vector.

2.3 Bogoliubov dispersion in a lossless local medium
In most cases, even if the Madelung formulation of the NLSE is highly aesthetic and gives
a physical insight into the hydrodynamical nature of the dynamics, the coupled system of
equations (2.20) and (2.21) cannot be solved analytically. It is then of particular interest
to study how small density modulations propagate on top of an uniform background fluid.
In that case, the continuity and the Euler equations can be linearized. Using the so-called
Bogoliubov transform, I will show that density waves in propagating photon fluids obey
the well known Bogoliubov dispersion relation. The first clear experimental observation
of this dispersion in fluids of light is reported in the next chapter.

2.3.1 Derivation from the Euler’s equations
In the following section, equations (2.20) and (2.21) will be directly expressed as function
of the propagation distance z (while bearing in mind the mapping z ↔ τ):

∂ρ

∂z
+ 1
k
∇⊥ ·(ρ∇⊥Φ) + αρ = 0 (2.23)

∂Φ
∂z

+ 1
2k (∇⊥Φ)2 − kn2

n0
ρ− 1

2k
∇2
⊥
√
ρ

√
ρ

= 0 (2.24)

When small amplitude density waves propagate over an uniform background fluid at rest,
the density and phase of the overall system can be expressed as follows:

ρ(r⊥, z) = ρ0(z) + δρ(r⊥, z) (2.25)
Φ(r⊥, z) = Φ0(z)+δΦ(r⊥, z) (2.26)

where δρ� ρ0 and δΦ� Φ0 respectively. At the zeroth-order, equations (2.23) and (2.24)
simply reads: dρ0

dz − αρ0 (i) and dΦ0
dz = k0n2ρ0 (ii) (k0 is the laserwave-vector in vacuum).

The first equation (i) accounts for the exponential decay of the background density because
of linear losses: ρ0(z) = ρ0(0)e−αz. The second equation (ii) describes the evolution of the
phase accumulated by the background field envelope along propagation. In a Kerr medium,
the refractive index depends on the laser intensity. We thus expect the phase accumulated
by the background fluid at a distance z from the entrance plane to be equal to k0 ∆n z,
where ∆n = n2 ρ is the nonlinear change of refractive index. As ∆n depends here on the
propagation distance because of linear losses, the self-induced zeroth-order phase shift Φ0
is then finally given by: Φ0(z) = k0〈∆n(z′)〉z z, where 〈∆n(z′)〉z = 1

z

∫ z
0 ∆n(z′)dz′ is the

average of ∆n(z) over z. You might be surprised by the fact that there is no contribution
in Φ0 accounting for the linear phase accumulated by the laser beam along propagation.
Equation (2.8) provides an explanation for this: by introducing the slow-varying envelope,
we choose to describe the physics from the translating frame at c/n0 so to speak, in which
no linear phase is accumulated, by definition.
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At the first perturbation order in δρ and δΦ, equations (2.23) and (2.24) read:

∂δρ

∂z
+ ρ0

k
∇2
⊥δΦ + αδρ = 0 (2.27)

∂δΦ
∂z
− kn2

n0
δρ− 1

4k
∇2
⊥δρ

ρ0
= 0 (2.28)

Drawing on the second-quantization protocol of the Bose field operator one usually carries
out in dilute BECs [68], we rewrite δρ and δΦ as follows:

δρ(r⊥, z) =√ρ0

∫ dk⊥
(2π)2

[
a(k⊥)f+(k⊥, z)e−ik⊥·r⊥ + ā(k⊥)f∗+(k⊥, z)eik⊥·r⊥

]
(2.29)

δΦ(r⊥, z) = 1
2i√ρ0

∫ dk⊥
(2π)2

[
a(k⊥)f−(k⊥, z)e−ik⊥·r⊥ − ā(k⊥)f∗−(k⊥, z)eik⊥·r⊥

]
(2.30)

By reinstating the foregoing expressions of δρ and δΦ in (2.27) and (2.28), one finally obtains
a Bogoliubov-de Gennes matrix equation on the Fourier amplitudes f+ and f−:

i
∂

∂z

(
f+
f−

)
= −

[
i
α

2 +Hk⊥

](
f+
f−

)
, where Hk⊥ =

 0 −k2
⊥

2k
−k2
⊥

2k + 2k0∆n 0

 (2.31)

2.3.2 Dispersion relation
We first assume that α = 0. In this ideal lossless situation, thematrixHk⊥ is homogeneous.
The Fourier components f± of the density and phase fluctuations are therefore planewaves,
whose amplitude and longitudinal wave-vector depend on k⊥: f±(k⊥, z) = f±(k⊥)eiΩB(k⊥)z.
Equation (2.31) reduces finally to an eigenvalue equation whose solutions, the branches of
the Bogoliubovdispersion relationΩB(k⊥), are found by diagonalizing thematrixHk⊥ :

ΩB(k⊥)− k⊥ ·v = ±

√
−n2
n0

ρ0 k2
⊥ + k4

⊥
4k2 . (2.32)

For defocusing Kerr nonlinearity (n2 < 0), ΩB(k⊥) is a real function of k⊥, which stands for
the transverse wave-vector of the plane wave density modulation. The dispersion relation
links usually the wave frequency to the wave-vector. In propagating photon fluids however,
ΩB(k⊥) is an inverse length, since the system evolves along z and not over time as usual.
Similarly, the sound velocity cs, the background transverse speed v or the density wave
group velocity vg are measured in adimensional units, as they have the physical meaning
of propagation angles with respect to the z-axis. Nevertheless, ΩB(k⊥) can be regarded as
a frequency through the z ↔ τ mapping. The relation (2.32) describes then the response
frequency of the fluid of light to a small density fluctuation δρ whose wave-vector is k⊥.
The term k⊥ ·v describes the shift in this response frequency because of the Doppler effect,
when the background fluid is not at rest anymore.

When the wavelength of the modulation Λ = 2π/k⊥ is larger than the healing length:

ξ ≈ 1
kξ

= 1
k

√
n0
|∆n| , (2.33)
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the Bogoliubov dispersion relation is linear and density excitations propagate as collective
sound waves. This regime is entirely characterized by the speed of sound: cs =

√
−∆n/n0

which scales as the square root of the fluid density. Conversely, when Λ is smaller than ξ,
the dispersion relation becomes quadratic. Excitations have then a particle-like behaviour:
they propagate in the transverse plane as "massive" free particles. Nonlinear interactions
only affect in that case the effective time τ = Ln/c (L being the length of the medium)
over which those particles propagate − and therefore the dynamical phase accumulated −
by modifying the refractive index n = n0 +n2 I0. The Bogoliubov dispersion relation has
been plotted in black solid on figure 2.1 for a background fluid at rest (that is, for v = 0).
The transverse wave-vector has been scaled by kξ and ΩB by the inverse of the so-called
nonlinear length, defined by zNL = 1/k0|∆n| [69]. The red lines and the blue parabola
represent the asymptotic sound- and particle-like regimes respectively.

-6 -4 -2 0 2 4 6
0

1

2

3

4

5

Figure 2.1: Bogoliubov dispersion relation (black solid line) obtained for a fluid at rest.
The asymptotic sound- and particle-like regimes have been plotted in red and blue solid.
The transverse wave-vector has been scaled by kξ = 2π/ξ and ΩB by 1/zNL = 1/k0|∆n|.

2.3.3 Landau criterion for superfluidity
The Landau criterion for superfluidity states that below some critical flow velocity vc,
the background fluid cannot transfer kinetic energy by exciting densitywaves anymore [70].
Let’s look at equation (2.32) to understand what it is all about. Spontaneous emission of
elementary excitations (namely energy dissipation), can occur if and only if such a process
is energetically favorable. Emitting a density wave at k⊥ on a background fluid flowing
at v in the transverse plane costs an energy ΩB|v 6=0(k⊥) = k⊥ ·v+ΩB|v=0(k⊥). In order for
dissipation to be energetically favorable, this energy cost ΩB|v 6=0(k⊥) should be negative:

k⊥ ·v + ΩB|v=0(k⊥) < 0. (2.34)
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This condition is fulfilled only if k⊥ ·v < 0 and if ΩB|v=0(k⊥) < |v||k⊥|. In other words,
equation (2.34) is satisfied when density waves are emitted upstream and the fluid velocity
|v| exceeds the critical speed defined by:

vc = min
k⊥

{ΩB|v=0(k⊥)
|k⊥|

}
. (2.35)

For a particle-like dispersion for which ΩB|v=0(k⊥) ∝ k2
⊥, this second condition is fulfilled

for arbitrary small fluid velocities and density waves are created as soon as an obstacle is
dropped into the flow. Nevertheless, for a sound-like dispersion, equation (2.35) states that
excitation are emitted only if v > vc = cs. This is the Landau criterion for superfluidity:
the minimum flow velocity requires to excite a wave by scattering on an obstacle is cs;
below this limit, the kinetic energy of the fluid is too low to excite any density fluctuation.
In order to prove that photon fluids in the propagating geometry are likely to be superfluid,
we should thus first demonstrate the existence of such a critical velocity vc experimentally.
In chapter 4, we report the first observation of a sound-like regime in the dispersion relation
of density waves in paraxial photon fluids, which is enough to ensure the existence of vc,
according to the Landau criterion. It should thus be possible to observe superfluidity of light
using our platform. In this perspective, preliminary results will be discussed in chapter 6.

2.3.4 Derivation from the NLSE
For the sake of completeness, it has to be stressed that the Bogoliubov dispersion relation
can be derived directly by linearizing the NLSE, assuming E0(r⊥, z) = E0(z) + δE(r⊥, z).
One can use the Madelung transform once again to express the field envelope as:

E0(r⊥, z) =
√
ρ0(z) + δρ(r⊥, z) ei[Φ0(z)+δΦ(r⊥,z)], (2.36)

which leads at the first-order expansion in δρ and δΦ to the following expression for E0:

E0(r⊥, z) =
√
ρ0(z)eiΦ0(z)

︸ ︷︷ ︸
E0(z)

+
[

1
2
δρ(r⊥, z)√
ρ0(z)

+ i
√
ρ0(z) δΦ(r⊥, z)

]
eiΦ0(z)

︸ ︷︷ ︸
δE(r⊥,z)

. (2.37)

By reinstating equations (2.29) and (2.30) in the right-hand side of equation (2.37), one gets:

E0(r⊥, z) = E0(z) + eiΦ0(z)
∫ dk⊥

(2π)2

[
u(k⊥, z) b(k⊥) e−ik⊥·r⊥ + v̄(k⊥, z) b̄(k⊥) eik⊥·r⊥

]
,

(2.38)
where u = 1

2(f++f−) and v = 1
2(f+−f−) are the so-called Bogoliubov amplitudes which

obey the normalization condition |u|2− |v|2 = Re(f̄+f−) = 1, in the lossless case (α = 0).
In the lossy case (when α 6= 0), |uk⊥ |2−|vk⊥ |2 = N(k⊥, z), where N(k⊥, z) is a non-trivial
normalization function that depends onα [71]. The same transformationwas used in 1958 by
Nikolay Bogolyubov so as to find solutions of the BCS theory in homogeneous systems [72].
By replacing in the NLSE equation (2.9) E0 by its expression equation (2.38), one easily
obtains a coupled system of equations on the Bogoliubov amplitudes u and v:
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which can be simplified using the fact that E0 = √ρ0 e
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 . (2.41)

One finally retrieves the Bogoliubov dispersion relation (2.32) by diagonalizing Hk⊥ .

2.4 Bogoliubov dispersion in a lossy nonlocal medium
So far, we have derived the Bogoliubov dispersion relation in the ideal lossless case, even if
the derivations in subsections 2.3.1 and 2.3.4 take linear losses into account. In experiments,
linear absorption cannot be neglected usually. Moreover, as mentioned in paragraph 1.3.8,
photon-photon interactions in warm rubidium vapors are nonlocal because of the ballistic
transport of excited atoms. In the next section, the Bogoliubov dispersion relation (2.32)
is therefore generalized in order to take both these effects into account.

2.4.1 Lossy nonlinear medium (α 6= 0)
We first generalize the Bogoliubov dispersion relation (2.32) for a lossy localKerrmedium.
Suppose the absorption coefficient α is non-zero but sufficiently small tomake the evolution
of the field envelope E0 adiabatic along the z-axis. The eigenvectors of Hk⊥(z) defined in
equation (2.31) are then slowly-varying functions of z that strictly follow the variations of
the corresponding eigenvalues along z [71]. The adiabatic solutions of equation(2.31)may
thus be written as follow: f±(k⊥, z) = f̃±(k⊥, z)eiΩeff(k⊥)z where:

Ωeff(k⊥) = 〈ΩB(k⊥, z′)〉z, (2.42)

ΩB(k⊥, z) = i
α

2 +

√
−n2
n0

ρ0(z) k2
⊥ + k4

⊥
4k2 , (2.43)

f̃±(k⊥, z) ∝
(

k2
⊥/(2k)

ΩB(k⊥, z)− iα/2

)± 1
2

, (2.44)

for a background fluid at rest (v = 0). The density fluctuation amplitude exponentially
decays because of the linear absorption. The latter also affects the background densitywhich
decreases similarly along the z-axis, according to the Beer-Lambert law.The sound velocity
decreases consequently from one plane to the next since it depends on the square root of
the fluid density. Everything happens as if sound-waves were moving slower and slower as
"time" goes by. One can then define an effective sound velocity by averaging cs(z) over z:
cs,eff = 〈

√
−∆n(z′)/n0〉L = cs(0) zeff(α)/L, where zeff(α) = 2 [1− exp(−αL/2)] /α.
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In our experiments, the main effect of absorption is to multiply the sound velocity cs of the
lossless case by the scaling factor zeff(α)/L. It thusmainly changes the slope of the dispersion
in the sonic regime without affecting its shape in-depth. In otherwords, if the input intensity
I0 is multiplied by L/zeff(α), the curve of the effective dispersion relation Ωeff(k⊥) will
almost exactly translate on the curve of ΩB|α=0(k⊥), obtained for ∆n = n2 I0.

2.4.2 Lossy nonlinear medium with effective nonlocal interactions
In the previous paragraph, the dielectric response of the medium was supposed to be local.
The nonlinear change of refractive index ∆n at a given position r⊥ in the transverse plane
was thus only depending on the laser intensity at that point and not on the intensity nearby.
Let’s assume from now on that the medium optical response is nonlocal, which is by theway
the case in a wide variety of Kerr nonlinear mediums, such as hot alkaline vapors [50] but
also thermo-optic liquids [28]. The NLSE (2.9) reads then as follow:

i∂z E0(r, z) = −
[ 1

2k∇
2
⊥ + iα

2 + k
n2
n0

∫
S
G(r− r′)

∣∣E0(r′, z)
∣∣2 dr′

]
E0(r, z), (2.45)

where G is the nonlocal response function in real space. Equation (2.31) is still correct in
the nonlocal case if the fluid density ρ = |E0|2 is replaced by the integral in the right-hand
side of equation (2.45), which is the convolution of ρ0 with G. Let G̃bγ stand for theFourier
transform of the ballistic response function Ḡbγ in Rubidium vapors:

G̃bγ(k⊥) = F
[
Ḡbγ

]
(k⊥) =

√
π

γ

e1/(k⊥ lb)2

k⊥ lb
Erfc [1/(k⊥ lb)] . (2.46)

This expression has been derived in the first chapter (see paragraph 1.3.8 ii, equation (1.75)).
The ballistic transport length scale is defined by lb = u τ , where u =

√
2kBT/m stands for

the most probable speed of the atoms in the transverse plane (at the vapor temperatureT )
and Γ = Γ + Γt for the total decay rate of the excited state addressed by the laser field.
Using the convolution theorem, the dispersion relation (2.43) can be rewritten as follows:

ΩB(k⊥, z)− k⊥ ·v = i
α

2 +

√
− n2
n0

ρ0(z)
[
γ G̃bγ(k⊥)

]
k2
⊥ + k4

⊥
4k2 . (2.47)

As previously, the term k⊥ ·v describes the shift of the density wave frequency because of
Doppler effect when it propagates at k⊥ on top of a moving background. Equation (2.47)
is the most general expression for the Bogoliubov dispersion relation, taking into account
absorption and nonlocality at the same time. The dispersions obtained in local (green line)
and nonlocal (red line) Kerr medium have been plotted as function of k⊥/ξ on figure 2.2(a)
in the lossless case. The dashed black lines represent the sound-like and the particle-like
asymptotic regimes in the local case. The ballistic transport length scale lb is about 7.5µm
at T = 400 K. For clarity, the red curve has been plotted for ld = 100 µm in order to
clearly observe the effects of nonlocality on the dispersion.
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Figure 2.2: (a) Local (green) and nonlocal (red) Bogoliubov dispersion relations obtained
in the lossless case. Asymptotic behaviours are plotted in dashed black for the local case.
For high enough nonlocalities, an inflexion point appears (circle) and the critical velocity
starts being lower than cs. (b) Variation of vc/cs as function of lb/ξ for ballistic (black line)
and diffusive nonlocality (blue line). In the ballistic case, vc = cs as long as lb < 0.71 ξ,
while, in the diffusive one, vc = cs as long as lb < ξ/2 precisely [73]. (c) Critical velocity vc
as function of ∆n. The white dashed line plots the behaviour of cs for comparison.

The Landau criterion for superfluidity (see subsection 2.3.3) states that below a critical flow
velocity, the photon fluid cannot dissipate energy anymore by emitting density waves and
behaves thus as a superfluid in the transverse plane. In the local case, this critical velocity vc
is equal to the speed of sound cs. In the nonlocal case however, the situation is different.
For strong enough nonlocality, an inflexion point (black circle) appears on the nonlocal
dispersion curve. The speed of sound cs is still well defined as ΩB|v=0(k⊥) ' cs k⊥when
k⊥�kξ (indeed, G̃bγ(k⊥) ' 1/γ + O(k2

⊥) in that case). However, it is not anymore equal
to the critical speed, which is given by the slope of the tangent to the nonlocal dispersion
curve at the inflexion point now (black dashed-dotted line) and therefore, vc < cs. In order to
be superfluid, the photon fluid must flow toward any obstacle with a velocity lower than vc;
the nonlocality has thus reduced the range of velocities for which superfluid flows of light
can be observed. Let’s bemore quantitative. According to equation (2.35), the critical speed
is obtained by calculating the minimum of the phase velocity vph(k⊥) = ΩB|v=0(k⊥)/|k⊥|.
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On figure 2.2(b), the critical speed (normalized by the sound velocity cs) has been plotted
as function of lb/ξ in black solid. Two regimes can be identified:
(1) For weak enough nonlocalities, that is, when lb/ξ is lower than 0.71, the minimum of

vph is obtained for k⊥ = 0 and is still equal to the speed of sound cs. The nonlocality
slightly affects the shape of the dispersion relation but the "local" Landau criterion
for superfluidity remains valid.

(2) For higher nonlocalities (right side of the black dashed-dotted line), the critical speed
starts decreasing slowly when lb/ξ increases.

On figure 2.2(b), the critical speed obtained by considering a diffusive nonlocality has also
been plotted (blue solid line), for comparison. This is, for instance, the kind of nonlocality
encountered in thermo-optic liquids, where the heat diffusion inside the materialmakes the
optical response nonlocal [28]. By using a distributed loss model [73], we can show that the
Fourier transformof the response function is Lorentzian in that case: G̃dσ(k⊥) = 1/(1+σ2k2

⊥)
(σ is the range of the nonlocal interaction). This diffusive response function falls off much
more rapidly than the ballistic one in Fourier space (as mentioned in paragraph 1.3.8 ii).
Consequently, it is not surprising to observe that the critical speed decreasesmore slowly for
ballistic nonlocality than for diffusive one. Moreover, the threshold value at which vc starts
decreasing is higher in our case than for thermo-optic liquids, for which it lies atσ/ξ = 0.5
(blue dashed-dotted line). Much larger effects on the dispersion relation are thus expected
in fluids of light propagating in these systems than in rubidium vapors.

Let’s finally briefly comment the figure 2.2(c), where the critical velocity vc has been plotted
as function of the nonlinear change of refractive index ∆n = n2I0, for a ballistic nonlocality.
As you can see, it perfectly matches the speed of sound (white dashed line) when lb = 8µm.
In this case, when ∆n ranges from 0 to 1×10−4, the ratio lb/ξ varies from 0 to 0.64 and
remains below 0.71. In other words, at every value took by∆n on the graph of figure 2.2(c),
the critical speed is equal to the speed of sound when lb = 8µm. This is not anymore true
when lb = 40µm of 80µm, as lb/ξ varies then up to 3.2 and 6.4, respectively. In both cases,
there is thus a critical value of the nonlinear change of refractive index, ∆nc, at which an
inflexion point appears in the dispersion. Thereupon, we expect the critical speed to remain
lower than the speed of sound when further increasing ∆n. This is indeedwhatwe observe.





Chapter 3

Atomic medium characterization

In chapter 2, I have shown how the envelope of an intense laser field, propagating through a
Kerr-typemedium, can be regarded as a 2Dphoton fluid flowing into the plane perpendicular
to the optical axis. The main motivations of this work is to study experimentally some of
the hydrodynamical properties of those photon fluids in hot rubidium vapors. But before
showing the results we obtained in that respect, I would like to introduce the experimental
tools andmethods used to produce and characterise such paraxial fluids of light. I first give
some technical details about the glass cells containing the rubidium vapor and about the
home-made heating system designed to control its temperature. I then briefly present the
laser sources used to generate propagating photon fluids and, more generally, to address
the rubidium D-lines. In a second part, the measurements performed to access the vapor
temperature T , the atomic density N and the nonlinear refractive index n2 are presented.
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3.1 Experimental tools

3.1.1 Rubidium cells and oven design
The glass cells we use have all been manufactured by Triad Technology which provides high
purity reference cells for spectroscopic applications. They are cylindrical (1" diameter) and
closed on both sides by 1 mm thick anti-reflective coated windows at 780 and 795 nm.
The length of the cells ranges from 1 to 7.5 cm depending on the experiment we carry out.
In order to heat the rubidium vapor at high temperatures, the cells are disposed inside a
copper cylinder (5 mm thick, 10 cm long) which is enveloped by Kapton flexible heaters
(wattage: 5 or 10 W/in at 28 V) from Omega. The copper cylinder has a good thermal
inertia protecting the cell from fast temperature variations. The whole is placed into an
aluminum enclosure with flat 1 mm thick anti-reflective coated windows on both sides to
maintain optical access to the cell. The temperature is monitored by a sensor set close to
the cell tip (thermocouple). Setting up a feedback loop was not required, as the heating
system was efficient enough to stabilize the cell temperature at ±1◦C during experiments.
Let’s finally mention that about 6% of laser input power is lost in reflections on the cell and
enclosurewindows (8 interfaces), when the laser is highly detuned from the rubidiumD-lines.

Enclosure window

Cell tip

Figure 3.1: Heating system. A 7.5 cm long cell is placed inside 5 mm thick copper cylinder.
Flexible heaters are arranged all around and covered with several layers of aluminum foils
to reduce losses by thermal radiation and provide a better heating efficiency. The cell tip
(visible at the center of the picture) is about 80◦C.

The heating system is designed to prevent rubidium from condensing on the cell windows.
In the cell, part of rubidium is liquid and the rest is in vapour phase. Despite the fact that
condensation is very unlikely to happen at temperatures above the rubidium melting
point (Tm = 39.3◦C), small droplets can still form locally at the center of the cell windows,
where the glass temperature is lower. Things are getting worse then as a kind of avalanche
nucleation process leads the rubidium nearby to condense a well. If condensation appear
only on one window, increasing slightly the voltage applied across the heater rolled around
the window at issue is often sufficient to remove it. If it appears on bothwindows,we have
then to displace the cold point from their centers to the cell tip. As you can see on figure 3.1,
a 1.5 cm diameter hole has been drilled in the copper cylinder to let the cell tip be in contact
with the air inside the enclosure, which maintains it at a lower temperature. By doing so,
the rubidium will preferentially condenses inside of it and not on the windows anymore.
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Of course, the temperature recorded with the thermocouple (silver wire on the picture 3.1)
is not the absolute temperature of the rubidium vapor T . In order to estimate parameters
such as the atomic density N , the atoms average speed u or the transport length scales
(and thus to characterize the vapor optical response), the absolute temperature is required.
It can be extrapolated in practice by fitting the linear transmission spectrum, which is
Doppler broadened by the atomic motion in the cell, as we will see in subsection 3.2.2.

3.1.2 Laser sources
The transverse plane dynamics of nonlinear phenomena is controlled by the nonlinear change
of refractive index ∆n = n2 I0. In order for this dynamics to be conservative, linear losses
should be low, which is possible only when the laser frequency is detuned far off-resonance.
In that case, the nonlinear refractive index n2 is small as well, because it scales as 1/∆3

(∆ being the laser detuning), as discussed in the paragraph 1.2.3 iii. Moreover, being in the
hydrodynamical regime (defined in section 2.1.3 iii) requires large values of∆n and thus high
laser intensities. At the end of the day, generating paraxial photon fluids in rubidiumvapors
requires powerful CW laser sources which can be easily tuned on a wide range of frequencies
(several gigahertz) around the desired atomic resonance. Two kinds of sources satisfying
these conditions are used in the lab. The first is a continuous-wave Ti-Sapphire laser and
the second an amplified external-cavity diode laser. Both sources provide an output power
greater than 2 W and an easy control over the laser frequency, which can be widely tuned
around the rubidium D1 and D2 line. In this subsection, I will give some technical details
about these two sources, startingwith theTi-sapphire laser, which is the one I predominantly
used throughout my thesis.

i SolsTiS Ti-sapphire laser

SolsTiS is a tunable narrow linewidth continuous-wave Ti-Sapphire laser from M Squared.
It consists of a monolithic ring cavity in which a crystal of sapphire, doped with Ti3+ ions,
has been introduced. This crystal is pumped with a Verdi V10 manufactured by Coherent,
which is a 10 W frequency-doubled Nd:YVO4 laser. Because of the large gain bandwidth
of the crystal, lasing effect can be reached for a broad range ofwavelengths, extending from
670 to 990 nm. In order to ensure the single-frequency operation of the SolsTiS cavity,
hole burning effects in the gain medium must be removed. This is achieved in SolsTiS by
using the so-called bow tie cavity geometry, together with an optical isolator, which forces
the ring cavity to operate uni-directionally. This results in a traveling wave that ensures
a minimum of spatial-hole burning.

In order to tune the SolsTiS outputwavelength, amotorized birefringent filter (BRF) is used.
This filter introduces a wavelength dependent loss into the cavity. The wavelength tuning
is then performed by simply rotating the BRF, which provides a relatively rapid but coarse
frequency adjustment however. If a finer control over the wavelength is needed, the SolsTiS
intracavity Fabry–Pérot étalon can be used. The étalon introduces a spectral loss into the
cavity that is a much sharper function of frequency than the BRF. Thus, by electronically
adjusting the étalon spacing (that is, its tilt angle), the SolsTiS output wavelength may be
finely adjusted. In order to ensure the long-term single mode operation of the ring cavity,
an electronic servo locking of étalon is provided.
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Figure 3.2: Principle of the single-mode operation of the Ti-Sapphire laser. The gain of the
crystal is plotted in red as function of frequency. The laser frequency comb (black peaks)
represents all the longitudinal modes (LM) sustained by the ring cavity. The Lyot filter
(or birefringent filter, BRF) transmits only certain modes. The étalon, whose spacing is
electrically stabilized, finally selects a single longitudinal mode (SLM).

The servo locking of the étalon prevents the cavity from jumping from one longitudinal
mode to the other. However, this locking does not compensate for the long-term frequency
drifts of the cavity itself. In order to solve this issue, the SolsTiS cavity has been locked
on a high stability, high finesse reference cavity. This locking reduces the laser linewidth
to less than 50 KHz. Slaving the SolsTiS to this internal reference is performed by:
(1) directing a small fraction of its output power to the reference cavity;
(2) locking its output frequency to a reference cavity fringe, mounting one of the SolsTiS

cavity mirror on a fast piezo-electric transducer (PZT).
With the SolsTiS cavity slaved to the reference cavity, the laser output frequency can
then be scanned (or offset) by scanning (or adjusting) the reference cavity length itself
with a high degree of precision. Moreover, temperature-induced changes in the reference
cavity length are compensated, further enhancing the stability of the reference cavity and,
consequently, the stability of the SolsTiS output laser frequency. Nevertheless, it is worth
noting that this internal reference is not locked to an absolute reference, such as an atomic
absorption line. This might seem a bit surprising at first but as we always highly detuned
the laser frequency far off-resonance, the remaining drift in the Solstis frequency−which is
about 50 MHz/hr/◦C−does not have any influence in practice.Moreover, we continuously
monitor the laser frequency in experiments using a lambda-meter (either the WSB-10 from
High Finesse or the LW10 from Resolution Spectra). This enables us to reset (by hand)
the laser frequency as soon as it drifts too far from the initial desired value. Let’s finally
mention that the stability of the internal locking depends strongly on the injection of the
Verdi inside the SolsTiS cavity. When the alignment is optimized (at a given frequency),
the output power should be maximized (typically, P0 ' 3.2 W at 780 nm) as well as the
robustness of the SolsTiS internal locking system.
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ii Amplified external-cavity diode laser

Amplified external-cavity diode lasers is a compact, low cost and easy-to-handle alternative
to Dye or Ti-Sapphire laser ring systems. In this paragraph, I briefly present the different
blocks composing this other laser source, thatwe also used to generate paraxial photon fluids.

Diode laser. Diode lasers are semiconductor p-n junction devices inwhich lasing conditions
are created at the junction by pumping a diode with an electrical current. Forward electrical
bias across the laser diode causes the two species of charge carrier −holes and electrons−
to be "injected" from opposite sides of the p-n junction into the depletion region. This region,
devoid of any charge carriers, forms as a result of the difference in electrical potential between
n- and p-type semiconductors. By recombining, electron/hole pairs releases a photonwhose
energy is defined by the semiconductor band-gap. This process is spontaneous but can also
be stimulated by photons passing nearby. In order to enhance stimulated recombination of
electron/hole pairs, the gainmedium is surrounded by a cavity, as in every other laser system.
In the simplest diode laser design, an optical waveguide − trenched in the crystal surface −
confines the light to a relatively narrow line. The two ends of the crystal are cleaved to form
a Fabry–Pérot resonator. Light reflects back and forth inside the cavity and is amplified by
stimulated emission. Finally, if there ismore amplification than loss, the diode starts lasing.
The emission frequency of a diode laser can be fine-tuned by adjusting the current across the
p-n junction and its temperature. If the laser diode is tuned by adjusting the current at fixed
temperature, mode hops− ie jumps over largewavelength intervals−will occur after a short
continuous dependence of the wavelength on the current. These points ofmode instability
can be shifted by changing the p-n junction temperature. Most of the time nevertheless,
the desired wavelength can not be reached by adjusting only these two parameters.

External-cavity diode laser (ECDL). ECDL systems are tunable laser sources based on
double heterostructures diode lasers, whose operation principal is sketched on figure 3.3(a).
The light emitted from the front facet of the laser diode is collimated with a lens and hits a
reflection grating, aligned in the "Littrow" configuration [74], as illustrated on figure 3.3(b).
The first diffraction order is reflected and focused back into the laser diode. As this optical
feedback is much higher than the reflection from the diode front facet, the extended cavity,
formed by the diode rear facet (highly reflective) and the reflection grating, forces the diode
into single-frequency operation. Since the length of this extended cavity resonator is larger
than the diode one, ECDLs provide lower phase noise and smaller emission linewidth than
free-running laser diodes. Moreover, in this external-cavity configuration, the frequency of
the master oscillator (that is, of the laser diode) can be coarsely tuned over several tens of
nanometers by simply rotating the reflection grating.

Tapered amplifier (TA). A TA is an optical amplifier that is usually used to increase the
power of the laser field generated by the ECDL system. Its operation principle is as follows.
The diode output beam is injected into a ridge waveguide, which is only a fewmicronswide.
Thereafter, the light gets into the tapered region of the gain medium,whosewidth increases
towards the output facet of the TA (up to hundred of micrometers). This tapered structure
is required to prevent theTA frombeing damage by large intensities. Thewhole tapered area
is covered with an electrode for supplying the pump current (typically a couple of amperes),
whichmakes the device amplifying, just as in a conventional semiconductor optical amplifier.
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The anti-reflection coating on the TA facets prevents any laser emission without seeding
and ensures the single-mode operation of the amplifier. Because of its broad gain profile,
the TA operates in a wide frequency range (typically, from 775 nm to 800 nm) and delivers
a laser power greater than 2.5 W, which is sufficient for our applications.
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Figure 3.3: (a): Sketch of a double heterostructures diode laser source. A layer of a lowband-
gap material is sandwiched between two layers of a high band-gap material. Each of the
junctions between different band-gap materials is called a heterostructure, hence the name
double heterostructure (DH) laser. In that respect, the diode laser described in the textmay
be referred to as a homojunction laser. The active region of aDH laser, where free electrons
and holes exist simultaneously, is limited to within the thin middle layer. Consequently,
the amount of electron hole-pairs that contributes to amplification is much higher in DH
diode lasers than in homojunction ones. (b) Sketch of the Litrow configuration (from [75]).
The diode of figure (a) emits light that is collimated by a lens onto a diffracting grating.
The first diffraction order is sent back into the laser diode, which enables us to select a single
longitudinal cavitymode. Tuning the angle θ allows to coarsely change the laser frequency.
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3.2 Methods I − Absolute vapor temperature measurement
As we have seen in chapter 1, many parameters characterizing the rubidium vapor depend
on the absolute temperature T . It controls for instance the atoms velocity which impacts
the Doppler width, the filling and transit rates and the transport length scales. It also sets
the atomic density. Being able to accurately measure T is thus of paramount importance.
I start this section by introducing the Doppler-free saturated absorption spectroscopy.
This technique provides an accurate frequency reference used to measure T by fitting the
transmission spectrum of a low power beam, as we will see in a second step.

3.2.1 Saturated absorption spectroscopy

i Doppler-limited spectroscopy

Frequencies at which hyperfine transitions occur can all be seen as absolute and universal
frequency references. They can be used to calibrate frequency-measuring devices such as
lambdameters for instance. At millikelvin temperatures, Doppler broadening is inexistent.
In that case, the transmission profile of a weak probe passing through a cold rubidiumgas as
function of its frequency is a succession of dips. Each dip is related to a hyperfine transition.
By identifying them, one is able to:
(1) define an absolute frequency reference, by associating the minimum of one dip to

the corresponding tabulated hyperfine transition frequency.
(2) scale the frequency axis accurately, by associating the distance between two dips to

the difference in the transition frequencies to which they correspond.
The precision of this calibration is limited by the dips linewidth, which is typically of the
order of Γ ' 2π×6 MHz. However, the situation drastically changes at room temperature.
The width of the Maxwell-Boltzmann distribution is about 2π×300 MHz at T ' 20◦C,
ie of the order of the splittings between hyperfine excited states and much larger than Γ.
Because of theDoppler broadening, the dipswill thereforemergewith each other,making the
previous identification difficult if not impossible.Moreover, in cases where steps (1) and (2)
are still doable (when the laser frequency is tuned over the D1 line of 87Rb for instance,
forwhich the excited state splitting δHF ' 2π×815 MHz is larger than the Dopplerwidth)
the resolution on the frequency reference is then limited by the Doppler linewidth.

ii Doppler-free spectroscopy

In order to overcome the issue ofDoppler broadeningwithout cooling down the atomic vapor
to millikelvin temperatures, one usually resorts to saturated absorption spectroscopy [76]
which is based on a simple pump-probe experiment. A laser beam is sent through the vapor
to saturate the atomic transitions (pump) and reflects back onto a mirror. The counter-
propagating reflected beam (probe) is separated from the incoming one by a beam splitter.
As pump and probe address opposite velocity classes (since they counter-propagate inside
the rubidium cell), only atoms having a zero velocity projection on the optical axis are
resonant simultaneously with both lasers. In that case, the absorption of the probe beam
is reduced by the saturation induced by the pump. Transmission peaks appear then in the
transmission spectrum when the laser frequency matches one of the transition frequencies
between ground and hyperfine excited states. Those peaks are clearly visible in the spectra
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plotted on insets (a) and (c) of figure 3.4, obtained by scanning the laser frequency ω over
the rubidium D2 line. Four large dips are also clearly discernible.
• The 1st and 4th (from left to right) result from the overlap of the Doppler-broadened
absorption lines associated to transitions from the ground states Fg = 2 and Fg = 1
to the hyperfine states within the fine level 52P3/2 of rubidium 87 (see figure 3.4(a)).
The spacing between these two dips is therefore equal to the ground state hyperfine
splitting in rubidium 87 (δ0 ' 6.8 GHz).
• The 2nd and 3rd result from the overlap of the Doppler-broadened absorption lines

associated to transitions from the ground states Fg = 3 and Fg = 2 to the hyperfine
states within the fine level 52P3/2 of rubidium 85. The spacing between the dips is
thus the ground state hyperfine splitting in rubidium 85 (δ0 ' 3.0 GHz).

In the D2 line, three transitions are allowed between each ground state and the hyperfine
excited state manifold. Three saturated absorption peaks are thus expected in each of the
large dips of the transmission profiles. As you may have noticed, the saturated absorption
spectra show however a more complex structure: crossover resonance peaks appear exactly
in between each pair of transition peaks. By identifying each feature in these spectra and
by calculating the frequency spacing between two of them, one can then calibrate the
frequency axis with a much better accuracy than using Doppler-limited spectroscopy.
The resolution is now given by the width of the transmission peak, which is of the order
of the decoherence rate Γ/2 (or Γ for cycling transitions), when no other phenomenon than
spontaneous emission contributes to the linewidth (such as Rb-Rb collisions for example).
In figure 3.4, I choose the position of the Fg = 3→ Fe = 4 transition peak (2) of 85Rb as
origin for the x-axis. It is 1.13 GHz blue-detuned with respect to the Fg = 2 → Fe = 3
transition peak (1) of 87Rb, used to scale the frequency axis.

3.2.2 Vapor temperature and atomic density
As mentioned in 3.1.1, measuring the absorption of a low power probe beam propagating
through a rubidium cell is an accurate way of accessing the vapor absolute temperature T .
The absorption of a monochromatic laser field propagating along the z-direction across a
uniform density atomic vapour is given by the Beer-Lambert law [32]:

I(r, z) = I0(r) exp
{
−
∫ z

0
α
[
T, I(r, z′)

]
z′ dz′

}
' I0(r) exp [−α0(T ) z] (3.1)

where I(r, z) is the laser intensity after a propagation over z in themedium,α0 =k Im [χ(1) ]
the linear absorption coefficient and I0(r) the laser intensity in the cell entrance plane.
Equation (3.1) holds only if the intensity of the incoming field is sufficiently weak to ensure
that α is independent of I. In that case, the absorption profile can be easily fitted (T being
the only fitting parameter). A discussion on how weak the light has to be for this assump-
tion to be valid is given in [32]. In practice, the input light intensity has to be way smaller
than the on-resonance saturation intensity. The medium transmission is then defined by:
T = exp [−α0(T )L] (L being the length of the cell). In the 3-level system described in 2.3,
a good approximation of the dielectric susceptibilityχ(1) is obtained by summing the linear
susceptibilities associated to the |1〉 → |3〉 and the |2〉 → |3〉 transitions:χ(1) ' χ(1)

1�3 +χ(1)
2�3

(because I � Is). The expression of χ(1)
1�3 and χ

(1)
2�3 taking into account Doppler broadening

has been derived in section 2.3. Therefore, the theoreticalDoppler broadened transmission of
the medium is known and can be used to fit the experimental transmission spectra.
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Figure 3.4: (a) and (c): Saturated absorption spectra obtained using an isotopicmixture
of rubidium atoms (natural proportions), heated up at 50◦C to increase the atomic density
and the signal over noise ratio. As mentioned in the text, the Fg = 3→ Fe = 4 transition
peak (2) has been chosen as origin for the x-axis; the frequency scale has been calibrated
using the frequency spacing between peaks (2) and (1), the latter corresponding to the
Fg = 2 → Fe = 3 transition. (b) Transmission spectrumof an isotopically pure 85Rbvapor
heated up at 134◦C. The experimental profile (blue line) has been fitted to extract the
absolute vapor temperature (dashed line). The cell is 7.5 cm long.

The experimental transmission profile is obtained by sending on a photo-diode a low power
Gaussian beam which has propagated through the rubidium cell. The laser frequency is
scanned over 15GHz across the rubidium D2 line. At high temperatures, the transmission
profile looks like the blue solid curve on figure 3.4(b). As you may have noticed, the 85Rb
vapor is not truly isotopically pure. The last transmission dip on the right is created by a
small fraction (less than 1%) of 87Rb atoms, at resonance with the laser field when it gets
across the Fg = 1 → Fe transition of 87Rb. Similarly, the transmission dip on the right
gets broadened by the Fg = 2 → Fe transition of 87Rb. We have therefore to extend the
theoretical model to the case of an isotopic mixture of rubidium atoms in order to correctly
fit the transmission spectrum. We also need an accurate frequency reference, provided by
the saturated absorption spectrum of figures 3.4 (a) and (c). The best fit curve is shown in
black dashed on inset (b). From this fit, we extract both the vapor temperature and the
87Rb fraction, which is about 0.4 % in this cell. Once T is known, parameters such as the
atomic density N , can be evaluated.
The vapor pressure (for 298K < T < 550 K) is given by the following formula [77]:{

log10 (Pv) = 2.881 + 4.857− 4215
T (solid phase)

log10 (Pv) = 2.881 + 4.312− 4040
T (liquid phase)

(3.2)

where Pv stands for the vapor pressure (in Torr). The atomic density N is then obtained
straightaway using the ideal gas law:
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N = 133.323× Pv(T )
kB T

(3.3)

The factor 133.323 converts the vapour pressure from Torr to Pascal. Since both isotopes
are present in the cell, the number densities need to be calculated separately according
to their abundance. The vapor pressure Pv and the atomic density N (for an isotopically
pure rubidium vapor) are plotted on the figure below.
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Figure 3.5: Vapor pressure (a) and atomic density (b) as function of the temperature T .
The melting point of rubidium is 39.31◦C. The density is in atoms/m3.

3.3 Methods II − Nonlinear refractive index measurement

In propagating fluids of light, the strength of the photon-photon interaction is proportional
to the third-order susceptibility χ(3) or, equivalently, to the nonlinear refractive index n2.
This quantity plays therefore an important role in studying the photon fluid physics and
finding a convenient and precise method to measure it has been one of our main concerns
during my thesis. This issue is far from being fully solved and the technique Iwill present is
conjointly being improved by the next generation of PhD students and other teams from
the fluid of light community [78,79]. Surprisingly, only a few methods exist to measure the
nonlinear refractive index n2 and all require the medium to be sufficiently thin in order to
neglect the change in the beam shape along its propagation. The so-called z-scan technique
is surely the most well-known among them [80, 81]. In this subsection, I first elaborate on
this thin medium approximation and the constraints it imposes on the beamwidthmainly.
I then present in details the method we currently use in the lab to accurately measure n2.
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3.3.1 Thin medium approximation
When an intense Gaussian beam propagates inside a third-order Kerr medium, it induces
a spatially dependent refractive index variation within the material, larger at its center
than on its periphery, since n = n0 +n2 I(r, z). If n2 < 0 (resp. n2 > 0), the medium acts
therefore as a negative (resp. positive) lens and makes the laser beam diverge (resp. focus).
The thin medium approximation (TMA) consists in assuming self-effects do not affect
the shape and width of the Gaussian intensity profile. In order to be more quantitative,
let’s introduce the medium effective focal length defining the propagation length above
witch the TMA breaks down. Within the TMA, the intensity profile in the vicinity of the
beam center reads: I(r, z) ' I0

(
1− 2 r2/ω2

0
)
. In order for this expansion to be correct,

the beam should also be collimated over the length of the Kerr medium, which amounts to
neglecting the z-dependence in its width. The nonlinear self-induced phase accumulated
by the beam over its propagation is therefore given by: ΦNL(r, z) ' k n2

n0
I0
(
1− 2 r2/ω2

0
)
z.

By identifying this expression at z = L (ie, in the cell output plane) with the phase profile
of a Fresnel lens [82]: ΦFL(r) = 2π× r2/2fλ (f being the focal length), one can define the
medium effective focal length feff as follows:

feff = 1
2

zr
k (n2/n0) I0 L

= 1
2

zr
ΦNL(0, L) , (3.4)

where zr = πω2
0/λ is the Rayleigh length. We assume here the on-axis intensity I0 does not

depend on z (which is true for lossless mediums only). In lossy ones, it decays exponentially
over z and I0 should then be replaced by: 〈I0(z′)〉L = I0(0) [1− exp(−αL)] /αL in (3.4).
In any case, feff goes to infinity when n2 tends to zero: the nonlinearity is so weak that it
does not induce any lensing effect anymore. Reversely, when n2 increases, feff decreases.
In other words, the length scale over which self-effects start modifying the beam intensity
profile decreases, as expected. The TMA finally reduces to the set of assumptions below:

(i) L� zr and (ii) L� feff (3.5)

The first assumption (i) basically translates the fact that the beam should be collimated
over a distance greater than the cell length, so as to neglect diffraction. The second one (ii)
defines then an upper limit on the average self-phase accumulated at the beam center along
propagation:Φlim = zr/(2L), abovewhich theTMAbreaks down. For a 7.5 cm long cell and
a beam width of 500µm for instance, the self-phase should be much smaller than Φlim ' 2π
for theTMAto apply. BecauseΦlim scaleswith the beam cross-section, the best is to increase
ω0 to push it up. That is why ω0 is usually about 2 mmwhen we measure n2 in experiments.
Now that foundations have been laid, I will present the measurement method itself.

3.3.2 Far-field measurement
When a Gaussian beam passes through a Kerr medium, a concentric ring intensity pattern
forms in the far field. This phenomenon has aroused wide interest in the nonlinear optics
community since Callen and al. [83] observed the far-field annular intensity distribution of
a He-Ne laser beam passing through a nonlinear liquid CS2. Similar phenomena have been
observed in liquid crystals by Durbin and al. [84]. Recently, theoretical progress have been
made in understanding the linear relationship existing between the number of rings in far-
field and the on-axis nonlinear phase accumulated by the laser over its propagation inside
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a non-saturable Kerr medium [85]. Such a relation has been experimentally observed in
a colloidal solution of oil and gold nanoparticles [86]. It provides an easy way to measure
the nonlinear refractive index n2 of the material. This technique starts being used in the
fluid of light community [78,87] and have recently been extended to the case of anisotropic
nonlinear refractive indices in [79]. The following paragraph is a review on the theoretical
tools developed to describe the formation of this self-induced ring-shaped pattern in far-field.
A recent unpublished work by Nicolas Pavloff [88] is also discussed.

i Theoretical description of the self-defocusing case

Let’s consider that a Gaussian beam propagates along the z-axis through a self-defocusing
(n2 < 0) Kerr medium of thickness L. Let’s also suppose that the beam waist lies exactly
at the medium entrance plane (z = 0). Therefore, the radius R(z) of the beam wavefront
curvature is positive inside the medium (ie for z > 0). Both diffraction and self-defocusing
make the beam diverge in that case. Conversely, when the waist is set at the output plane,
they compete with each other, as the beam convergence will in some ways counterbalance
self-defocusing inside the nonlinear medium. This competition can dramaticallymodify the
far-field ring pattern [85]. In practice however, as long as the condition L� zr is fulfilled,
setting the waist at the input or the output plane does not change significantly the result.
The complex envelope of the laser electric field at the medium entrance plane reads:

Figure 3.6: Sketched of the experimental setup. A Gaussian beam propagates through a
Kerr medium (green slab). A lens at the exit plane focuses it. The far-field (Fourier space)
is magnified and imaged on a camera. An example of the ring-shaped pattern we observe is
shown on the right. Figure inspired from the N.Pavloff’s talk at QFLM (2018) [88]
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E(r, 0) = E0 exp
(
− r

2

w2
0

)
(3.6)

By propagating through the nonlinear medium, it accumulates an additional phase shift:

∆Φ(r) = 〈ΦNL(r, z′)〉L = k

n0

∫ L

0
∆n(r, z′) dz′, (3.7)

where ∆n(r, z) = n2 I(r, z) is the nonlinear change of refractive index. Within the TMA,
the Gaussian intensity profile of the laser beam is almost not modified along propagation.
The electric field envelope at the exit plane can thus be expressed as:

E(r, L) = E0 exp
(
−αL2

)
exp

(
− r

2

w2
0

)
exp(−iΦ(r)) , (3.8)

where α is, as usual, the linear absorption coefficient (nonlinear absorption is negligible).
The phase shift Φ(r) is defined by:

Φ(r) = kL+ kr2

2R(L) + ∆Φ(r) ' kL+ 〈ΦNL(0, z′)〉L exp
(
−2 r2/w2

0

)
. (3.9)

The Gaussian phase shift k r2/2R(L), arising from the wavefront curvature, is neglected as
we assume the beam is collimated along the cell (L� zr). The far-field intensity pattern
is obtained either by letting the beam evolve in free space (the intensity distribution can be
expressed using the Fraunhofer approximation of the Fresnel-Kirchhoff diffraction formula
in that case) or by imaging the focal plane of a converging lens. Weprefer this second option
in practice at it saves space on the optical table. The intensity distribution in k-space is
then given by the following equation:

I(k⊥) = (2π)2 I0(L)
∣∣∣∣∣
∫ ∞

0
J0 (k⊥r) exp

(
− r

2

ω2
0
− iΦ(r)

)
r dr

∣∣∣∣∣
2

. (3.10)

J0 standing for the zero-order Bessel function of the first kind and I0(L) = I0 exp(−αL).
Equation (3.10) can not bemore simplified and does not provide any insight into the physical
process underlying the rings pattern formation in far-field. Let’s try to push further our
understanding by studying the 1D case first, which is more intuitive.

(a) 1D case − Stationary phase approximation

I now suppose that the Gaussian beam is infinitely elongated in the y-direction, as sketched
on figure 3.7(a). The k-space electric field envelope is then given by:

E1D(kx) = E0(L)
∫ ∞
−∞

exp
(
−x

2

ω2
0

)
exp [i(kx x+ Φ(x))] dx (3.11)

where E0(L) = E0 exp(−αL/2− ikL). Let’s define Ψkx(x) = kx x−Φ(x). This quantity is
plotted as function of x/ω0 on figure 3.7 (b) for a given value of kx. The slope of the black
dashed line is kx ω0. As you may have noticed, Ψ has two extrema x1 and x2, both lying in
the x > 0 half-plane when kx is positive. When kx decreases, the slope of the dashed line
also do so and x1 progressively tends to zero while x2 goes to infinity.Using the stationary
phase approximation, we can rewrite the k-space electric field envelope (3.11) as follows:
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Figure 3.7: (a) Sketch of the 1D case. The beam is spatially elongated along the y-axis.
A cylindrical lens in the exit plane focuses it in the x-direction. (b) Variation of Ψkx as
function of x/ω0 for a given value of kx. In k-space, the electric field at kx is obtained by
summing the fields coming from the vicinity of the points having x1 or x2 as abscissa in
the cell exit plane. Figure inspired from the Nicolas Pavloff’s talk at QFLM (2018) [88]

E1D(kx) '
√

2π e−i k L
∑
α=1,2

E(xα, 0)√∣∣∣Ψ′′kx(xα)
∣∣∣ exp [−i (Ψkx(xα) + π σα/4)] , (3.12)

Ψ′′kx being the second derivative of Ψkx and σα the sign of Ψ′′kx at xα. This approach is valid
only if Ψkx has extrema, which is ensured solely when the slope of the black dashed line on
3.7(b) is smaller than the maximum of Φ′, that is, when: kx ω0 < 2 |〈ΦNL(0, z′)〉L| e−1/2.
The intensity distribution at kx in Fourier space seems therefore to result from a two-wave
interference process. According to the Fermat’s principle, the light rays coming fromapoint
of abscissa x in the cell exit plane propagate in straight lines along a direction defined
by the wave-vector k = kxex + kzez. The longitudinal component of k, kz, is given by:
kz =

√
k2

0 − k2
x (k0 being the in-air laser wave-vector). The transverse component, kx, is

related to the derivative of Φ through: kx(x) = +Φ′(x). The light rays whose transverse
wave-vector are equal to kx come therefore from the points in the cell exit plane for which
Ψ′kx(x) = 0. The preceding equation admits exactly two solutions, which are x1 and x2.
In theFourier space, the envelope of the electric field at kx is thus obtained by summing the
fields coming from the vicinity of the points x1 and x2 at the medium exit plane, which is
what equation (3.12) suggests indeed. We can push a bit further assuming the amplitudes
of the interfering waves are equal. By doing so, the intensity envelope of the interference
pattern will obviously be improperly described but not the oscillating trend, which only
depends on the phase terms Ψkx(x1)− π/4 and Ψkx(x2) + π/4. We thus obtained:

I1D(kx) ' C [1 + sin(∆Ψkx)] , (3.13)

where ∆Ψkx = Ψkx(x1)−Ψkx(x2) and C is a constant. Looking at 3.7(b), you can convince
yourself that Ψkx(x2) goes to zero and Ψkx(x1) to |〈ΦNL(0, z′)〉L| when kx tends toward zero.
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The phase difference ∆Ψkx is therefore equal to |〈ΦNL(0, z′)〉L| when kx = 0. At low input
intensity I0, the rubidium vapor behaves as a linear medium and the intensity profile in k-
space is uniformaccording to equation (3.13) (Gaussian in experiments). When I0 increases,
|〈ΦNL(0, z′)〉L| rises accordingly, and the on-axis intensity in Fourier space, I1D(0), reaches a
first maximum for |〈ΦNL(0, z′)〉L|= π/2 and then aminimum for |〈ΦNL(0, z′)〉L|= 3π/2, etc.
By extrapolating, the average on-axis nonlinear phase shift is equal to 2nπ + π/2 when
the k-space intensity distribution exhibits 2n maximums plus a bright fringe at the center
(that is, at kx = 0) and to (2n−1)π+π/2 when it has 2n maximums plus a dark fringe at
the center this time. Counting the "rings" in far-field (that is, in the 1D case, the pairs of
maximums having the same transverse wave-vector in absolute value) provides therefore a
way of measuring |〈ΦNL(0, z′)〉L| (and also n2, if I0 and α are known). Within the TMA,
the ring-counting procedure in 1D can finally be formulated as follows:
• when the far-field diffraction pattern is composed of n rings plus a bright central spot
(constructive interference at kx = 0), the nonlinear phase shift is 2nπ + π/2;
• when the far-field diffraction pattern is composed of n rings plus a dark central spot
(destructive interference at kx = 0), the nonlinear phase shift is (2n− 1)π + π/2;

(a) General 2D case

The stationary phase approximation can be generalized to the 2D case. The electric field
envelope in k-space can indeed be approximated by the following formula [89]:

E2D(k⊥) ' 2π e−i k L
∑
α

E(rα, 0)√
|det [Hk⊥(rα)]|

exp [−i (Ψk⊥(rα) + π σ[Hk⊥(rα)] /4)] , (3.14)

where k⊥ = kx ex + ky ey is the transverse wave-vector and rα the α-th position in the
medium output plane at which the gradient of Ψk⊥(r) = k⊥·r−Φ(r) is zero. We have also
introduced the Hessian matrix Hk⊥ associated to the function Ψk⊥:

Hk⊥(rα) =
(
∂xxΨk⊥ ∂xyΨk⊥
∂yxΨk⊥ ∂yyΨk⊥

)∣∣∣∣∣
r=rα

(3.15)

and the signature σ of Hk⊥ (which is the number of positive minus the number of negative
eigenvalues of Hk⊥). The phase Ψk⊥ has been plotted as function of the scaled coordinates
x/ω0 and y/ω0 on figure 3.8 for k⊥= kx ex. It can be shown that whatever the initial values
of kx and ky, one can always define new basis vectors eX and eY such that k⊥= kX eX .
Let’s consider, for the sake of simplicity, that k⊥= kx ex. This is what is done on figure 3.8.
As long as kx ω0 < 2 |〈ΦNL(0, z′)〉L| e−1/2, Ψk⊥ exhibits only one maximum at r1 and one
saddle point at r2, as can be seen on figure 3.8. As in the 1D case, the intensity distribution at
k⊥ in Fourier space results therefore from the interference of the waves coming from the
vicinity of r1 and r2 in the cell output plane. Moreover, it is straightforward to show that
∂xyΨk⊥ |rα = ∂yxΨk⊥ |rα = 0 and consequently that σ[Hk⊥(r1)] = −2 while σ[Hk⊥(r2)] = 0.
There is thus a constant dephasing of π/2 between the two waves interfering in far-field,
exactly like in the 1D case once more. This can be intuitively understood by looking at the
signs of the second-order derivatives at r1 and r2. In the vicinity of r1, ∂2

xΨk⊥ and ∂2
yΨk⊥

are negative which suggests that the light coming from there will tend to spread over the
(x, y) plane during the in-air propagation. Close to the saddle point, ∂2

xΨk⊥ is positivewhile
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Line Focus

Figure 3.8: Variation of Ψk⊥ in the transverse plane for k⊥= kx ex. The total electric field
at k⊥ in Fourier space is obtained by summing the fields coming from the vicinity of the
local maximum (at r1) and the saddle point (at r2). The light emitted at r2 accumulates
an additional π/2 phase shift since it passes through a line focus.

∂2
yΨk⊥ is negative. The light coming from the vicinity of r2 will thus simultaneously focus

along the x-axis and spread over the y-direction during propagation. In geometrical optics,
it is well known that light accumulates an additional phase − the so-called Gouy phase −
when it passes through a focus. This phase shift is equal to π/2 if light propagates from
−∞ to +∞ through a line focus and to π when it propagates from −∞ to +∞ through a
point-like one. The Gouy phase shift of any focused light arises from its transverse spatial
confinement which introduces, through the uncertainty principle, a spread in its transverse
momenta and hence a shift in the expectation value of its longitudinal wave-vector [90].
In the present case, the focus is a line (because r2 is a saddle-point). The light coming from
r2 accumulates thus an additional π/2 phase shift with respect to the light coming from r1,
as mentioned above. The same reasoning can be applied in 1D in order to explain theπ/2
dephasing in far-field between the waves emitted at x1 and x2 in the cell exit plane.

We can finally, as in 1D, approximate the k-space intensity distribution in the followingway:
I2D(k⊥) ' C [1 + sin(∆Ψk⊥)]. It is easy to see that ∆Ψk⊥ = |〈ΦNL(0, z′)〉L| when k⊥ = 0.
Consequently, the ring-counting procedure in 2D is the same as in 1D. Within the TMA,
it can be formulated as follows:
• when the-far field diffraction pattern is composed of n rings plus a bright central spot

(constructive interference at k⊥ = 0), the nonlinear phase shift is 2nπ + π/2;
• when the-far field diffraction pattern is composed of n rings plus a dark central spot
(destructive interference at k⊥ = 0), the nonlinear phase shift is (2n− 1)π + π/2;
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remark. It is worth mentioning that the counting procedure above is not the one usually
discussed in the literature. It is commonly accepted that |〈ΦNL(0, z′)〉L| is equal to 2nπ
when n rings plus a bright central spot are visible in far-field and to (2n− 1)π for n rings
plus a dark central spot [78,79]. The π/2 Gouy phase shift predicted by the theory seems
to be omitted in these works where the relationship between the number of rings and the
on-axis self-phase modulation has been inferred using numerical simulations.

ii Numerical simulation

Studying numerically the dynamics of the ring pattern formation requires to solve both
the linear (LSE) and the nonlinear (NLSE) Schrödinger equations, introduced in chapter 2.
In order to do so, we used the second-order split step method, which provides both good
accuracy and high performance speed. I will only discuss here simulations in the 1D case
(which are easier to perform), since the 2D situation is analogous.

We first look at the ring pattern formation in 1D by solving the z-evolution of the electric
field envelope (i) inside the nonlinear medium with the NLSE and (ii) outside, using either
the LSE to describe in detail the field evolution after the lens or a 1DFFT to directly access
its far-field intensity distribution (that is faster). On figure 3.9(a), the field intensity has
been plotted as function of z. The nonlinear medium is 2.5 cm long here. A converging lens
(white double-headed arrow, f = 5 cm) has been set a the medium output plane, at z = 0.
At that point, the laser beam starts focusing. As youmayhave noticed, interferences do not
only occur in the focal plane (white dashed line). We must thus be extremely careful when
we image the Fourier space on the camera, as a small mistake on the imaged plane position
can lead to misestimate the number of rings. An other possibility to get rid of this issue
is to let the beam propagates freely after the cell, as mentioned before. It suffices then to
image a plane far away from the medium exit plane.
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Figure 3.9: (a) Evolution of the intensity distribution along z. A lens (f = 5 cm) focuses
the beam at the nonlinear medium exit plane. Because of self-defocusing, the beamwaist is
not located in the focal plane (dotted line) anymore. (b-c)Comparison between simulations
(blue solid lines) and the predictions of equation (3.12) (black dashed lines) and (3.13)
(green solid lines). Parameters: ω0 =1mm, n2 =4 10−11 m2/W, I0 =107 W/m2 andα=0.
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Finally, we compare on figures 3.9 the far-field intensity profiles resulting from the numerical
simulations with the theoretical predictions of equations (3.12) and (3.13), for on-axis non-
linear phase shifts of 10π (b) and 15π (c). The intensity profile obtainedwith equation (3.12)
(black dashed line) exactlymatches the results of the numerical simulations (blue solid line),
when the stationary phase approach is valid, ie, as long as kx ω0 < 2 |〈ΦNL(0, z′)〉L| e−1/2.
More surprisingly, the approximate solution (3.13) (green solid line) properly reproduces
the oscillating trend of the far field interference pattern; to count the number of rings, it is
thus enough to count the maxima of sin(∆Ψ) when ∆Ψ varies from zero to 〈ΦNL(0, z′)〉L.
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Figure 3.10: Number of rings in far-field as function (a) of the input on-axis intensity I0
and (b) of the beam width ω0. Parameters: L = 2.5 cm, n2 = 4×10−11 m2/W and α = 0.

So far, the impact of the beam width on the ring pattern formation has been neglected, as I
always assumed the TMA was valid. Let’s now study the effect of self-defocusing on the
far-field diffraction pattern. The data points on figure 3.10(a) are the number of visible rings
in far-field, for various beamwidthsω0. The horizontal bars stand for the range of intensities
over which the number of rings, NRings, remains the same. The on-axis nonlinear phase shift
|〈ΦNL(0, z′)〉L| (= k0 n2 I0 L in the lossless case) has also been plotted (black dashed line)
in 2π units. For a 2.5 cm long cell and a beam width of ω0 = 5 mm (blue stars), the TMA
is valid as |〈ΦNL(0, z′)〉L| � Φlim ' 320×2π, whatever the value of the input intensity I0.
As you may have seen, the number of rings increases linearly with I0 in that case. However,
when ω0 decreases, the value of the input intensity at which new rings appears increases,
shifting the data points rightward. This shift moreover increases with I0, as if the number
of rings was saturating at high input intensities. This behaviour is expectedwhen theTMA
breaks down. In that case, we notice a spreading of the beam intensity in the transverse plane
because of self-defocusing. This effect is enhanced when the beam width decreases, as the
medium effective focal length feff scales asω2

0. The beam spreading results in a diminution of
the on-axis intensity during propagation. The relationship between I0 and |〈ΦNL(0, z′)〉L|
(and therefore, between I0 and the number of rings in far-field) is thus not linear anymore.
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In figure 3.10(b), the number of rings in far-field has been plotted as function of ω0 this time,
for different input intensities. It increases with ω0 until it saturates. The width at which
the number of rings starts being constant indicates the minimumbeamwidth required to
fulfill the thin medium conditions and correctlymeasuren2 using the ring-countingmethod.

iii Experimental results

In the experiments, we almost exclusively use the ring-counting technique to measure the
nonlinear refractive index n2 of the rubidium vapor. The data we got using this technique
are exploited further on to support the main results of my work in the following chapters.
Ring-counting curves will therefore sporadically appear in the remaining of thismanuscript.
I thus present here only few experimental data. On figure 3.11(a), an example of a ring-
counting curve is shown. The on-axis nonlinear phase shift 〈ΦNL(0, z′)〉L has been plotted
as function of the input intensity using the counting procedure of i(b) (blue points) and the
counting procedure described in [78,79] (red points). Blues points are shifted up from the
red ones by π/2. The uncertainty comes from our inability to accurately evaluate atwhich
intensity the central spot is the brightest or the darkest. Onfigure (b), the far-field patterns
associated to each points are shown. These data have been obtainedwith an isotopically pure
85Rb vapor. The cell was 7.5 cm long and the temperature about 125 ◦C. The beam width
was set to 825 µm. In order for the TMA to be valid, |〈ΦNL(0, z′)〉L| has to be smaller
than Φlim = 8×2π. This condition is not fulfilled at high intensity. Therefore, we expect
the number of rings in far-field (and thus |〈ΦNL(0, z′)〉L|) to saturates with I0 because of
self-defocusing, as shown on figure 3.10(a).
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Figure 3.11: (a): On-axis nonlinear phase shift as function of the input intensity, measured
using the counting method of paragraph 3.3.2 i(b) (blue points) and the one adopted
in [78,79] (red points). The data are fitted in both case using equation (3.16) to extract n2.
(b): Far-field patterns associated to the data points on the left. Parameters: L = 7.5 cm,
T ' 125 ◦C and ∆ ' 2π×3.1 GHz from the Fg = 3→ F ′ transition of 85Rb.
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Saturation. Rubidiumvapors are saturable nonlinearmediums.At high enought intensity,
higher order susceptibilities (χ(5) , χ(7) , ...) start contributing to the nonlinear response and
make the nonlinear change of refractive index saturating. That may also explain the trend
observed on figure 3.11. In order to take the effects of self-defocusing as well as of the atomic
saturation into account, we fit the data using the following model [78]:

∣∣〈ΦNL(0, z′)〉L
∣∣ = k0 n2 I0 L

1 + I0/Isat
(3.16)

where n2 and the saturation intensity Isat are fitting parameters.

Comparison between the two ring-counting procedures. By doing so, we find that
n2 = 2.1±0.1×10−10 m2/W and Isat ' 5.0×105 W/m2 using the counting procedure detailed
in section 3.3.2 i(b) (blue points) andn2 = 1.7±0.1×10−10 m2/W and Isat ' 8.3×105 W/m2

using the one of [78,79] (red points). The relative variation of the fitted value of the nonlinear
refractive index obtainedwith the two countingmethods is 20%. In this experiment, the laser
was 3GHz red-detuned from theFg = 3→ F ′ transition of 85Rb.The theoretical value of the
off-resonance saturation intensity Is(∆) is (with the parameters above) about 8×105 W/m2.
As you can see, this value matches almost exactly the fitted value of the saturation intensity
obtained using the counting procedure of [78,79]. This is in fact quite surprising because
1/Isat = 1/Is(∆)+1/Ieff , where Ieff is an effective saturation intensity describing the effec-
tive contribution of self-defocusing in the saturation of |〈ΦNL(0, z′)〉L|. In the present case,
self-defocusing plays a role for sure, as the TMA is not perfectly fulfilled. We thus expect a
value of Isat lower than Is(∆). In this sense, the value of Isat provided by our ring-counting
method seems therefore more reasonable.
Moreover, if we attribute an on-axis nonlinear phase shift of π to the far-field diffraction
pattern composed of one ring plus a dark central spot, as in [78,79], the related point (that is,
the circle of lowest intensity) does not lie on the fitted curve (red line). This observation is
actually quite systematic, as if the first ring in far field was obtained for a slightly too high
input intensity if we use the counting procedure described in [78, 79]. By shifting up the
red points by π/2, this issue seems to be solved, as the point of lowest intensity lies then
on the blue fitted curve. These two remarks make us think that the π/2 Gouy phase shift
should definitely be taken into account in the ring-counting method.

3.4 Methods III − Scanning phase interferometry
In photon fluid experiments, measuring the phase of the fluid at themediumoutput plane
provides useful information. It allows, for instance, to access the flowvelocity distribution of
the fluid after propagation, or also to highlight and study the formation and the dynamics
of phase singularities (quantized vortices, solitons, etc). Such a measurement can also be
used to retrieved the spatial variations of the nonlinear change of refractive index (and thus,
to extract n2) [91]. This possibility is further investigated by Murad Abuzarli, PhD student
in the group. This short section is devoted to presenting the phase shifting interferometry,
that is used in our experiments to retrieve the spatial phase distribution of the light at the
medium exit plane. This phase reconstruction procedure is a generalization of the standard
four-frame interferometric technique, described in [92].
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The experimental setup built in order to performed phase shifting interferometry is sketched
on figure 3.12 below. A laser beam comes out from the optical fiber and is magnified to the
desired size before entering aMach-Zehnder interferometer. A polarized beam splitter (PBS)
splits the incoming light beam into two parts, the reference and the fluid (which propagates
through the cell). The half-wave plate (λ/2) positioned in between the telescope and thePBS
enables us to control the amount of light sent in each arm. Reference and fluid recombine
in the 50/50 beam splitter (BS). The length of the reference arm is modulated by setting
one mirror on a piezo-actuated translation stage (referred to asPEM). The high tensionU(t)
applied across the piezo-actuator is depicted in the inset on the right. A function generator
produces a 0.2 Hz triangular signal amplified by a high voltage generator. Its amplitude δU
is increased gradually until the reference phase is exactly scanned over 2π. In order to
maximize the contrast of the interference pattern, one can tune the reference intensity by
turning the half wave plate on its path. The cell exit plane is finally imaged on the camera
using a second 4-f telescope (depicted with a bi-convex lens for clarity).

0 1

Figure 3.12: Experimental setup. A Mach-Zehnder interferometer is used so as to measure
the beam transverse phase profile in the cell exit plane. Left inset: high voltage triangular
signal making the PEM scan the phase of the reference beam. Right inset: example of an
interferogram obtained when the angle between the reference and the fluid is zero.

The intensity of the two-beam interference pattern at the exit plane can be described by:

In(r) = I(r, L) {1 + V (r) [cos (Φ(r)− θn)]} , (3.17)

where I(r, L) is the beam intensity at the medium output plane, V (r) the fringe visibility
and θn = 2π

N (n−1) (n being an integer in {1, ..., N}) an arbitrary reference phase which is
scanned over 2π under the PEM translation. Each of the In(r) portrays an interferogram
(see for instance the inset of fig. 3.12); the complete set of N interferograms is used to
reconstruct Φ(r). By using the angle difference identity, one can rewrite (3.17) as follows:

In(r) = I(r, L) {1 + V (r) cos [Φ(r)] cos(θn) + V (r) sin [Φ(r)] sin(θn)} (3.18)
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By multiplying the previous equation by (i) sin(θn) and (ii) cos(θn) before summing overn:

N∑
n=1
In(r) cos(θn) = I(r, L)

N∑
n=1
{cos(θn) + V (r) cos [Φ(r)] cos2(θn)+ ...

V (r) sin [Φ(r)] sin(θn) cos θn}
(3.19)

N∑
n=1
In(r) sin(θn) = I(r, L)

N∑
n=1
{sin(θn) + V (r) sin [Φ(r)] sin2(θn)+ ...

V (r) cos [Φ(r)] cos(θn) sin θn}
(3.20)

The first terms and the mixed terms on the right hand side of equations (3.19) and (3.22)
cancel because of the orthogonality of the trigonometric functions. We thus obtain that:

N∑
n=1

In(r) cos(θn) = N

2 I(r, L)V (r) cos [Φ(r)] (3.21)

N∑
n=1

In(r) sin(θn) = N

2 I(r, L)V (r) sin [Φ(r)] (3.22)

which provides an simple algorithm to process the N interferograms and calculate Φ(r):

tan [Φ(r)] =
(

N∑
n=1

In(r) sin(θn)
)/(

N∑
n=1

In(r) cos(θn)
)

(3.23)

In our experiments, the trigger of the camera acquisition is set on the high voltage signal.
The camera acquires a sequence of 40 images equally spaced in time on a rising ramp only
(to reduce hysteresis effects). An example of an interferogram is shown on figure 3.13(a).
The photon fluid is formed by a Gaussian beam whose width is 850µm. It accumulates an
additional phase shift ∆Φ = |〈ΦNL(0, z′)〉L| by propagating through a 2.5 cm long 85Rb cell.
The angle between the reference and the fluid is zero, explaining the concentric ring-shaped
pattern observed on figure 3.13(a). The corresponding spatial phase modulation retrieved
from equation (3.23) is shown on figure 3.13(b). Reconstructing in such away the nonlinear
phase shift ∆Φ is− knowing the vapor transmission− away ofmeasuringn2 accurately [91].
It is worth mentioning that reconstructing the phase profile of the fluid at the cell exit plane
using the phase shifting interferometry only requires to evaluate numerically equation 3.23,
unlike phase retrievalmethods using a single interferogram (that are based onFFTfiltering).
The scanning phase interferometry is consequently extremely robust and has no issue in
reconstructing phase maps full of singularities.
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Figure 3.13: (a) Example of an interferogramobtainedwith the setup sketched in figure 3.12.
The fluid of light is formed by a Gaussian beam whose width is 850µm. By propagating
through a 2.5 cm long vapor cell, this beam accumulates a nonlinear phase shift ∆Φ that
is greater at its center than on its periphery. When the angle between the reference and the
fluid is zero, a concentric ring-shaped pattern appears on the camera. (b)Reconstruction of
the fluid phase at the cell exit plane using the phase shifting interferometry.





Chapter 4

Dispersion of small amplitude
density waves on a photon fluid

As mentioned in chapter 2, measuring how small amplitude density waves propagating onto
a photon fluid disperse represents an essential step toward the observation of more striking
phenomena with this system, such as superfluidity. Although this dispersion has been well
characterized in atomic BEC experiments [93–96], direct measurements in paraxial photon
fluids was attempted [52] but remain elusive. I will start this fourth chapter by introducing
the method used so far to measure the dispersion relation in those systems, which consists
in measuring the phase velocity of density waves travelling onto the photon fluid. I will also
adapt the theoretical framework developed by Pierre-Élie Larré in [71] to correctly analyse
the experimental observations we made using this technique. In a second time, I will present
the method we have developed so as to more reliably retrieve the dispersion of densitywaves
in paraxial photon fluids. Our approach relies on the measurement of their group velocity.
The results of this second section have been published in: "Observation of the Bogoliubov
Dispersion in a Fluid of Light", Phys.Rev.Lett. 121, 183604 (2018) [87]

75
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4.1 Phase velocity measurement
The method used by Vocke et al. [52] to measure the dispersion relation of small amplitude
density waves in paraxial photon fluids relies on a pump/probe experiment that has been
initially proposed by Iacopo Carusotto in [56]. It basically consists in measuring the phase
velocity of a plane wave modulation travelling with the transverse wave-vector k⊥ onto a
fluid of light. The latter is obtained by sending a wide laser beam (the pump) through the
self-defocusing Kerr medium. The small amplitude plane wave modulation is created by
making interfere this pump beam with a wide and weak probe field, which propagates at
a small angle θi with respect to the optical axis. The resulting interference pattern can be
regarded as a densitywave travelling onto the photon fluid at k⊥, as soon as the beams enter
the nonlinear medium. From now on, I will suppose that the interference fringes are parallel
to the y-direction and thus that k⊥ = k0 sin (θi) ex. In what follows, I first introduce the
theoretical framework to describe this experimental configuration.

4.1.1 Theoretical description
The phase velocity vph(k⊥) of a plane wave propagating on top of a photon fluid is given by:

vph(k⊥) = ΩB(k⊥)/k⊥, (4.1)

where ΩB(k⊥) is the Bogoliubov dispersion introduced in chapter 2. As the speed of sound,
cs, scales as the square root of the fluid density ρ0 (that is, as the square root of the pump
intensity I0), the phase velocity should increase with ρ0. Therefore, the interference pattern
forming the plane wave should be shifted along the x-direction at themediumoutput plane
when the fluid density increases. By measuring in this plane, for different wave-vectors k⊥,
the spatial shift ∆S(k⊥) between the interference fringes at low and high fluid densities,
one should be able to retrieve the dispersion relation. The shift ∆S(k⊥) plays a crucial role
in what follows. In order to further familiarize yourselves with this quantity, let me present
a geometrical argument explaining qualitatively its origin.

i Geometric approach

In a linear medium of refractive index n0, the longitudinal wave-vector kz of the probe beam
is defined by kz =

√
k2 − k2

⊥. In the paraxial approximation (k⊥ � kz), this formula yields:
kz ' k−k2

⊥/2k = k+δkz, where δkz = −k2
⊥/2k. In a self-defocusing (∆n < 0)Kerrmedium,

δkz = −ΩB(k⊥). Indeed, the Bogoliubov dispersion ΩB(k⊥) describes the variation of the
longitudinal wave-vector of the probe field δE when it enters the Kerr medium supported by
the pump field E , with the transverse wave-vector k⊥.
Figure 4.1(a) shows thewave-vectors of the pumpand the probe. The black arrow represents
the pump wave-vector, that is equal to kez. Its head defines the origin of the (k⊥, δkz) plane.
The red and blue arrows are the probe wave-vectors in the linear and nonlinear mediums.
In the linear one, δkz = −k2

⊥/2k. This is the equation of the black dotted parabola onwhich
the head of the red arrow lies. In the nonlinearmedium, δkz = −ΩB(k⊥). The tip of the blue
arrow lies thus on the negative branch of the Bogoliubov dispersion relation (blue curve).
As you can see, the axial component of the probe wave-vector has been squeezed bymoving
from the linear to the nonlinear case. This has an impact on the interference pattern between
the pump and the probe beams.
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Figure 4.1: Qualitative explanation of the shift in the interference pattern as a result of the
shortening of the probe axial wave-vector in the nonlinear scenario. Figure (a) shows the
pump wave-vector (black arrow) as well as the probe one, in a linear (red arrow) and a non-
linear (blue arrow) medium. The photon fluid is a rest, which means that the pump evolves
along the optical axis. Therefore, its wave-vector does not have any transverse component.
The probe enters the medium with a non-zero transversewave-vector. In the linear scenario
figure (b), the magnitudes of thewave-vectors of pumpand probe are equal. The two beams,
propagating downward, create an interference pattern that is parallel to the vertical axis.
In the nonlinear scenario sketched on figure (c), the magnitude of the probe wave-vector is
smaller than the pump one, which thus tilts the interference fringes. By imaging a plane
perpendicular to the optical axis (dotted line), one obverses a shift of the interference pattern
when switching from the linear to the nonlinear situation.

Onfigures 4.1(b) and (c) two beams are propagating from top to bottom, inside a linear and
a nonlinear self-defocusing medium respectively. For the sake of clarity, the angle between
themhas been exaggerated. The pumppropagates along the optical axis (black dashed line).
Its wave-vector has been reported on both panels (black head arrow). The probe propagates
from left to right, as indicated by the red and blue head arrows, representing itswave-vector
in the linear and nonlinear cases respectively. The shortening of the axial component of the
probe wave-vector is shown by the small green head arrow on figure 4.1(c). It induces a tilt
of the interference fringes (that are vertical in the linear case), which in turn translates
into a shift ∆S of the interference pattern in a plane perpendicular to the optical axis.
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According to the definition of the shift, ∆S can be expressed as follows:

∆S(k⊥) = ∆Φ(k⊥)
k⊥

= ∆Φnl(k⊥)−∆Φl(k⊥)
k⊥

, (4.2)

where ∆Φl and ∆Φnl are the differences between the phases accumulated by the probe and
the pump beams, propagating inside a linear (l) and a nonlinear (nl) medium respectively.
Let Φ0,l(L) and Φ0,nl(L) stand for the phase of the pump at the exit plane of a linear and a
nonlinear medium of length L. Similarly, let Φl(k⊥, L) and Φnl(k⊥, L) be the phase of the
probe in the same conditions. The phase shifts ∆Φl and ∆Φnl can then be expressed as:
∆Φl(k⊥) = Φl(k⊥, L)− Φ0,l(L) and ∆Φnl(k⊥) = Φnl(k⊥, L)− Φ0,nl(L).

Some of the quantities defined previously are easy to express as function of the parameters.
For instance: Φ0,l(L) = k0n0L, where n0 is the linear refractive index of the medium, and:
Φl(k⊥, L) ' k0n0L

[
1 + sin2 (θr)/2

]
, θr being the angle of refraction of the probe beam at

the medium input facet. It is defined by the Snell law: sin(θi) = n0 sin(θr). It is interesting
to notice that the transverse component k⊥ of the probe k-vector is unchangedwhen the
probe goes though the air/medium interface. Indeed, using the Snell law, it appears that
the in-air transverse wave-vector k(i)

⊥ = k0 sin(θi) is equal to k(r)
⊥ = k0n0 sin(θr). Therefore,

∆Φl(k⊥) = 1
2k0n0L sin2(θr) = k2

⊥
2k L. (4.3)

A simple way to understand the relation (4.3) is to move into the frame translating at c/n0
along the optical axis. This is by the way what we do, in chapter 2, when we introduce the
slow-varying envelope E0 of the electric field amplitude E : E0(r⊥, z) = E(r⊥, z) exp(−ikz).
This formula can be regarded, in some ways, as a change of observation frame. Indeed,
using E0 instead of E is like describing the physics from the frame translating at the speed
c/n0 along z. In this frame, pump photons are at rest and probe photons behave as free-
particles of k-vector k⊥ and energy ~Ω = ~ c k2

⊥/(2n0k) (remembering the z ↔ tmapping).
Those particles exist during t = n0 L/c and accumulate the phase Ω t = k2

⊥ L/(2k) during
their lifetime. It seems then natural to suppose that the same applies in the nonlinear case,
namely, that ∆Φnl(k⊥) = ΩB(k⊥)L. This assumption has been made in [52] and leads to
the following expression for the shift:

∆S(k⊥) = k⊥
2k

√1 + |∆n|
n0

( 2k
k⊥

)2
− 1

L. (4.4)

This formula matches with the geometrical argument discussed above. By moving from
the linear to the nonlinear situation, the probe wave-vector is squeezed along the optical
axis by δk = ΩB(k⊥)− k2

⊥/2k. The phase shift ∆Φ is therefore given by ∆Φ = δk L and,
by using (4.2), we recover (4.4) (in absolute value). Equation (4.4) predicts that the shift
reaches an asymptotic value, cs L, when k⊥ � kξ, or in other words, the linear increase of
∆Φ with k⊥ when k⊥ � kξ. Conversely, ∆Φ should tend toward k0∆nL when k⊥ � kξ.
I remind you that kξ = k

√
∆n/n0 is the inverse of the healing length ξ.
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This last point seems quite natural. Indeed, in the particle-like regime, plane-wave density
modulations follow a quadratic dispersion as ΩB(k⊥) ≈ k0 ∆n+k2

⊥/(2 k). The offset stems
basically from the value the dispersion takes at the end of the sound-like regime, that is,
when k⊥=kξ. Because plane wave modulations propagating onto a low and a high density
background fluid behave both as massive particles as long as k⊥ � kξ, the phase difference
accumulated between them only comes from this offset and ∆Φ ≈ k0∆nL, as stated by the
formula above. However, the non-zero value of the shift for k⊥�kξ is not easy to understand.
We have fought long and hard to observe it experimentally−without any success−before
questioning the validity of equation (4.4).

When pump and probe get inside the nonlinear medium, they spontaneously generate an
idler beam, having the same frequency ω, which propagates at the conjugate k-vector−k⊥.
This third order nonlinear wave mixing process is known as degenerate four wave mixing.
Since the three beams involved in this mechanism have the same frequency, they will not
fulfill phase matching conditions, except when pump and probe are copropagating, that is,
when k⊥ = 0. The generation of the idler field in experiments is therefore due to the sudden
change in the nonlinearity at the medium input plane. But contrarily towhat is said in [52],
the idler beam is not suppressed shortly thereafter. Energy exchanges between probe and
idler beams (by means of the pump) continuously take place all along their propagation in
the nonlinear medium (probe and idler are plane waves and are thus spatially overlapping).
In order to derive a reliable formula linking ∆S to ΩB, we need to properly describe the
evolution of the probe field inside the nonlinear medium and thus to take the coupling
between the probe and the idler beams into account. We can as of now state that thismore
exhaustive approach will not change the behaviour of the shift when k⊥ � kξ, since in that
case degenerate for wave mixing processes are not phasematched at all and thus completely
inefficient in generating the idler field. At large k⊥, the impact of the idler on the propagation
of the probe can therefore be neglected and the formula (4.4) applies, asmentioned in [97].
However, we will see that this correction as drastic effect at low k⊥.

ii Full description using Bogoliubov theory

In the framework of Bogoliubov’s theory, the small plane-wave modulation spontaneously
excites a superposition of two Bogoliubov modes when it gets inside the nonlinear medium.
Those modes are counter-propagating, in the transverse plane, at ±vph = ±ΩB(k⊥)/k⊥.
In what follows, I will sometimes erroneously named these counter-propagating modes
"probe" and "idler". However, I must emphasize that probe and idler fields are technically
generated at the the nonlinear medium exit plane in this description. I will come back to
this point in a moment. For now, let’s derive, within the Bogoliubov’s formalism, an exact
expression for ∆Φnl and ∆S, taking linear absorption into account (ie α 6= 0). The in-air
slowly varying electric field envelope, right before themedium input plane, reads as follows:

E0(r⊥, z) = E0(z) + eiΦ0(z)
∫ dk⊥

(2π)2 a(k⊥, z) e−ik⊥·r⊥ . (4.5)

Let’s set the phase of the pump at z = 0− to zero. Let’s also assume that the field energy
is conserved thought the air/medium interface (perfect window anti-reflection coating).
The Fourier amplitudes a(k⊥, 0−) and a∗(−k⊥, 0−) are then related to the Bogoliubov
operators b(k⊥) and b∗(−k⊥) by:
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(
ak⊥(0−)
a∗−k⊥(0

−)

)
=
√
n0Mk⊥(0)

(
bk⊥
b∗−k⊥

)
whit Mk⊥(z) =

(
uk⊥(z) v∗k⊥(z)
vk⊥(z) u∗k⊥(z)

)
, (4.6)

where uk⊥(z) = ũk⊥(z) eiΩeffz and vk⊥(z) = ṽk⊥(z) eiΩeffz (Ωeff is defined in subsection 2.4.1).
One can derive a relation similar to (4.6) at the second air/medium interface, when z = L.
Combining both and setting |uk⊥ |2− |vk⊥ |2 = N(k⊥, z), we finally get a relation between
the input and output Fourier components of the electric field envelope:(

ak⊥(L+)
a∗−k⊥(L

+)

)
=
[
√
n0Mk⊥(L)

]
·
[
M−1

k⊥(0)
√
n0

](
ak⊥(0−)
a∗−k⊥(0

−)

)
(4.7)

= 1
N(k⊥, 0+)

(
Uk⊥ V ∗k⊥
Vk⊥ U∗k⊥

)(
ak⊥(0−)
a∗−k⊥(0

−)

)
. (4.8)

The normalization constant N(k⊥, 0+) is equal to one. Indeed, in the thin medium limit
(ie when L→ 0) the effect of linear absorption on the propagation of the beams is negligible
and the normalization condition reduces to the one of the lossless case |uk⊥ |2−|vk⊥ |2 = 1.
Right before the nonlinear medium entrance plane (z = 0−), the idler beam has still not
been generated. Therefore, the amplitude a∗−k⊥(0

−) is zero, which amounts to saying that
the idler is seeded by vacuum. The input-output relation (4.8) can easily be understood.
The probe spontaneously generates two counter-propagating Bogoliubov modes at ±k⊥
when it enters the medium. Bogoliubov modes are eigenstates of the nonlinear dynamics;
they consequently accumulate the phase ±ΩeffL before reaching the medium output plane.
At that point, each of the two counter-propagating Bogoliubov excitations spontaneously
turns into a superposition of probe and idler fields. The idler beam is thus only generated
at the medium output plane, as mentioned at the beginning of this derivation. Its k-space
amplitude is given by a∗−k⊥(L

+) = Vk⊥ ak⊥(0−), where the function Vk⊥ is defined by:

Vk⊥ = ũ∗k⊥(0) ṽk⊥(L)eiΩeffL − ṽk⊥(0) ũ∗k⊥(L) e−iΩ∗effL. (4.9)

The input-output relation (4.8) for the probe field reduces to: ak⊥(L+) = Uk⊥ ak⊥(0−), with:

Uk⊥ = ũk⊥(L) ũ∗k⊥(0) eiΩeffL − ṽ∗k⊥(L) ṽk⊥(0) e−iΩ∗effL. (4.10)

The phase accumulated by the probe while propagating in the medium is thus given by:

Φnl(k⊥, L+) = arg (Uk⊥) + Φ0,nl(L+), (4.11)

and, finally, ∆Φnl(k⊥) = arg (Uk⊥). When the phase matching conditions are not fulfilled,
that is, when k⊥ � kξ, the amplitude of the "idler" beam ismuch lower than the "probe" one
(vk⊥� uk⊥). The second term on the right hand side of (4.10) is negligible in that case and
arg (Uk⊥) ' Ωeff(k⊥). As you may have noticed, equation (4.11) reduces then to the relation
we have intuited before in order to derive the formula (4.4) which thus correctly describes
how the shift evolveswhen k⊥ � kξ. Butwhen quasi-phasematching conditions are fulfilled,
the argument of U depends in a complicated manner on the the amplitude and phase of the
Bogoliubov amplitudes u and v. By using the relations ũ = 1

2(f̃++f̃−) and ṽ = 1
2(f̃+−f̃−)

as well as the expression for the slow-varying Fourier components f̃±, defined in 2.4.1, one
can go through the tedious but straightforward computation of ∆Φnl in the general case.
At the end of the day:
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Figure 4.2: Plots of the nonlinear phase shift ∆Φnl (a) and of the shift ∆S (b) as function
of k⊥ and Λ = 2π/k⊥ respectively, for various values of the nonlinear refractive index ∆n.
(a): The nonlinear phase shift follows globally the curve k⊥�ΩB(k⊥)L (dotted lines) but
exhibits a stair-like structure, which is more and more pronounced as∆n = n2I0 increases.
Moreover, ∆Φnl tends toward a non-zero constantwhen k⊥ goes to zero (see formula (4.14)).
(b): This translates into a linear increase of the shift ∆S for large modulation wavelengths.
The oscillations on the right come for the stair-like structure of ∆Φnl. The black dashed-
dotted line shows, for comparison, the shift obtained from equation (4.4) when ∆n = 10−4.
It predicts a saturation of ∆S at large Λ = 2π/k⊥ which is not observed experimentally.
Inset of (a): idler intensity in k-space as function of k⊥ for ∆n = 10−4. The positions at
which is cancels (black arrows) are reported on the plot of ∆Φnl obtained at the same∆n
(black circles). They correspond to the points atwhich∆Φnl crosses the dispersion relation.

∆Φnl(k⊥) = arctan
[
k4
⊥ + 4 k2 Re [ΩB(k⊥, 0)] Re [ΩB(k⊥, L)]

2 k k2
⊥ {Re [ΩB(k⊥, 0)] + Re [ΩB(k⊥, L)]}

×tan {Re [Ωeff(k⊥, L)]L}
]

(4.12)
which, in the lossless case (α = 0), reads barely simpler:

∆Φnl(k⊥) = arctan
[
k4
⊥ + 4 k2 [ΩB(k⊥)]2

4 k k2
⊥ΩB(k⊥)

×tan {ΩB(k⊥)L}
]
. (4.13)

The formulas (4.12) and (4.13) cannot be easily inverted in order to express theBogoliubov
dispersion relation as function of the nonlinear phase shift ∆Φnl, or equivalently, as function
of the shift∆S using the relation (4.2). Measuring∆Φnl to retrieve the dispersion relation of
small amplitudes density waves seems therefore to be quite unsuitable. However, we can still
observe some non-trivial behaviour of the nonlinear phase shift when k⊥ � kξ. In that case,
∆Φnl tends toward a non-zero value:

∆Φnl(k⊥ ' 0) = arctan
{

2 k0 ∆n(0)L× 2
αL

1− exp (−αL/2)
1 + exp (−αL/2)

}
, (4.14)
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which is rather counter-intuitive from the linear optics perspective, in which we expect it to
simply go to zero. Indeed, if we consider naively that the effect of nonlinearity is to shift the
value of the refractive index n0 by ∆n = n2I0, there is no reason why ∆Φnl should not go to
zerowhen the pumpand the probe are parallel. Figure 4.2(a) shows the trend of the nonlinear
phase shift as function of k⊥ for different values of ∆n and for α = 0. The phase shift∆Φnl
tends toward a non-zero value when k⊥ goes to zero. This asymptotic limit quickly saturates
when ∆n increases, as suggested by equation (4.14). Moreover, the nonlinear phase shift
exhibits a stair-like structure, more visible at low k⊥, which follows globally the trend of
the curve k⊥� ΩB(k⊥)L (dotted lines). It becomesmore andmoremarked as∆n increases.
The plateaus in this stair-like structure exactly lie at the transverse wave-vectors at which
counter-propagating Bogoliubov modes interfere destructively in the exit plane, that is,
when k⊥ fulfills: ΩB(k⊥)L = nπ+π/2, n being a positive integer. Reversely, the inflection
points in between consecutive plateaus precisely mark the locations of the wave-vectors at
which Bogoliubov modes constructively interfere in the output plane. These interferences
occur when ΩB(k⊥)L = nπ (black circles). Figure 4.2(a) shows the evolution of the shift∆S
as function of the modulation wavelength Λ = 2π/k⊥, for the same values of∆n as before.
Because of the stair-like structure of ∆Φnl, the shift exhibits strong oscillationswhenΛ ' ξ.
The linear increase of ∆S with the modulation wavelength when Λ� ξ results from the
behaviour of ∆ΦNL when k⊥ � kξ. The slope of this linear trend is equal to the right hand
side of equation (4.14) times 1/2π. For comparison, the shift obtained using the model
proposed in [52] has been reported on the same graph (black dashed line), for∆n = 10−4.
As expected, both descriptions match in the particle-like regime (that is, for Λ� ξ) but
instead of a linear increase at high Λ, equation (4.4) predicts a saturation of∆S toward csL
(which has never been observed with our setup).

iii Quasi-particles interferences

As we have seen in the previous paragraph, the key features in the curves of∆Φnl and∆S
shown on figure 4.2 can be explained in terms of interferences between counter-propagating
Bogoliubov modes. A way of developing a better understanding about these quasi-particle
interferences is to move from a spatial to a temporal description of the dynamics, using the
z ↔ t mapping once again. In doing so, we can think about the Bogoliubov modes as a
quasi particle/antiparticle pair that is generated at τ = 0 (where τ is defined by τ = zn0/c).
The particle ("idler") evolves at −k⊥ over the positive time while the antiparticle ("probe")
evolves at k⊥ over the negative time (as if it was going back in the past). Indeed, in the frame
translating at c/n0 along the optical axis, probe photons seems to move backward, that is,
toward the negative z values, at a velocity cΩB(k⊥)/k. In the lossless case, particle and
antiparticle respectively accumulate a phase−ΩB(k⊥)L andΩB(k⊥)L during their lifetime.
As they are overlapping in the transverse plane (I assume they are plane-waves), they will
totally interfere (constructively or destructively) as soon as mod {2 ΩB(k⊥)L, π} = 0, or,
in other words, when ΩB(k⊥)L = nπ/2 (n being a positive integer).

It is interesting to notice that quasi-particle interferences leadmoreover to the cancellation
of the idler intensity in the Fourier space. From equation (4.8), one gets (when α = 0):
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I−k⊥(L+)
Ik⊥(0−) =

∣∣∣∣∣a−k⊥(L+)
ak⊥(0−)

∣∣∣∣∣
2

= |Vk⊥ |
2 = |2 ũk⊥ ṽk⊥ |

2 sin2 [ΩB(k⊥)L]

= (k0∆nL)2 sinc2 [ΩB(k⊥)L] , (4.15)

where sinc stands for the cardinal sine function. The idler intensity in Fourier space, I−k⊥ ,
is maximum at k⊥ = 0, when phase matching conditions are perfectly fulfilled. For k⊥�kξ,
the envelope |2 ũ ṽ|2 of the k-space intensity profile scales as 1/k4

⊥. This is understandable,
as the phase matching between pump and probe is getting worse when the probe transverse
wave-vector increases. In addition, one can show that: |Uk⊥ |2−|Vk⊥ |2 = 1 and, therefore,
that probe and idler intensities in k-space are related by: Ik⊥(L+) = Ik⊥(0−)+I−k⊥(L+).
Consequently, any variation in the idler intensity translates into a similar variation in the
probe intensity, Ik⊥ . Equation (4.15) also indicates that the idler intensity I−k⊥ in k-space
cancels at some specific values of k⊥ (located by the black arrows on the inset of figure 4.2(a)
for instance), at which ΩB(k⊥)L = nπ. At those wave-vectors, we thus expect an increase
in the contrast of the interference fringes at the medium exit plane, as both probe and idler
are in phase. This of course depends on the length of themedium.

Figure 4.3: Figure taken from D. Ferreira et al. [97]. The intensity of the total electric field
is shown as function of the transverse positionx and the propagation distance z (top view),
for k⊥ � kξ (a) and k⊥ � kξ (b) respectively. The contrast of the interference patterns is
modulated over z. We can complete the descriptionmade in [97] by noticing thatBogoliubov
modes destructively interferewhenΩB(k⊥)z = nπ+π/2 ,reducing consequently the contrast
of the interference fringes. On the contrary, when ΩB(k⊥)z = nπ, Bogoliubov modes
constructively interfere and the contrast is maximized.
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Solving numerically the nonlinear Schrödinger equation allows to compute the intensity of
the total electric field inside the nonlinear medium in any transverse plane along the z-axis.
In figure 4.3, we present a cut along thex-axis, for k⊥ � kξ (a) and k⊥ � kξ (b) respectively.
This figure is taken from [97] where the feasibility of measuring the Bogoliubov dispersion
ΩB for propagating photon fluids in nematic liquid crystals is theoretically investigated,
using the pump/probe technique described here. Onfigure 4.3, the background fluid density
has been subtracted. The contrast of the interference fringes in (a) and (b) is modulated
along the z-axis. When ΩB(k⊥)z = nπ, Bogoliubov modes constructively interfere and the
contrast is increased.Reversely, whenΩB(k⊥)z = nπ+π/2, Bogoliubovmodes destructively
interfere and the contrast is reduced. Moreover, I−k⊥ (and thus Ik⊥) increaseswhen the
transverse wave-vector decreases, explaining why the variations of the contrast are bigger
on figure (b) than on figure (a).

iv Nonlinear optics approach

I would like to conclude this paragraph mentioning that equation (4.15) can also directly
be derived using textbook nonlinear optics. Let Epu, Epr and Ei stand for the pump, the probe
and the idler electric field envelopes. By neglecting the dependence of the various fields on
the transverse spatial coordinates x and y, the equation driving the evolution of the idler
inside the nonlinear medium reads as follows (in the paraxial approximation) [55]:

i
∂Ei
∂z

= −kn2
n0

[Epu]2 E ∗pr exp(i∆k z), (4.16)

where kpu, kpr and ki are the pump, the probe and the idler axial wave-vectors respectively.
The wave-vector mismatch ∆k is equal to 2kpu− kpr − ki. Since kpr = ki = kpu−ΩB(k⊥)
(see for instance figure 4.1(a)), ∆k = 2ΩB(k⊥) in the present case. When ∆k = 0, that is,
when k⊥ = 0 (perfect phase matching), the idler maintains a fixed phase relation with
respect to the nonlinear polarization Pi = n2

n0
[Epu]2 E ∗pr exp(i∆k z) and is therefore able to

extract energy more efficiently from the incident waves. When ∆k 6= 0, the idler gets out
of phase with its driving polarization Pi and part of its power can flowback into the pump.
Let Ipr stand for the probe intensity. The idler intensity Ii at themedium exit plane is finally
obtained by integrating equation (4.16) from 0 to L:

Ii(∆k) ' Ipr (k0 ∆nL)2
∣∣∣∣∣ei∆k L − 1

∆k L

∣∣∣∣∣
2

= Ipr (k0 ∆nL)2 sinc2
[∆k L

2

]
. (4.17)

Equations (4.17) and (4.15) are strictly analogous. Bogoliubov’s theory and nonlinear optics
lead unsurprisingly to the same result but it is still interesting however to compare the
understanding each of these approaches provides about the same physical phenomenon.

v Discussion

As mentioned previously, measuring the shift ∆S is not necessarily themost suitableway to
retrieve the dispersion relation of density waves travelling onto propagating photon fluids.
There are at least two reasons for this, that I would like to discuss before ending this section.
The first is a technical limitation, that constrains the range of transverse k-vectors we can
explore in practice. The second is more fundamental and concerns our ability to extract the
dispersion relation of density waves from the shift, using equations (4.2) and (4.12).
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• In order to measure the shift, pump and probe beams have to overlap all along their
propagation inside the nonlinear medium. Therefore, probe and idler are also super-
imposed at the medium exit plane, which is annoying as we only want to observe the
interference pattern between pump and probe. Measuring the shift requires then to
filter out the −k⊥ component of the field in k-space, that is, the contribution from
the idler beam. In practice, the exit plane is imaged on camera using a 4f telescope
made of two lenses. The idler beam is therefore simply cut by positioning a mask in
the focal plane of the first of these lenses. As the pump undergoes self-defocusing by
propagating inside the nonlinear medium, its extension in k-space can be large enough
to cover the range of wave-vectors over which the Bogoliubov dispersion relation is
sound-like. Moreover, the mask should not cut a part of the pump beam in k-space,
at the risk of distorting the real space filtered image, which drastically limits the range
of usable transverse wave-vectors at the end of the day.

• As outlined above, the second and more fundamental issue of the shift measurement
concerns how the dispersion relation − which is a priori not know − is extracted from
the shift using equations (4.2) and (4.12). Once ∆S has been measured for various
transverse wave-vectors k⊥, the relation (4.12) has to be inverted assuming it applies
to the unknown dispersion Ω(k⊥). In doing so, we are not supposing directly that
Ω = ΩB, but however that equation (4.12), derivedwithin theBogoliubov framework,
is still valid replacing ΩB by Ω. Things go consequently round and round in circles.
It is absolutely essential to measure the dispersion relation of density waves using a
technique that does not require any knowledge about Bogoliubov theory but shows,
reversely, that this theory is appropriate to describe the dispersion relation Ω.

In section 4.2, I will introduce a new experimental technique that overcomes these issues.
Before that, I would like to present some results we obtained from the shift measurement.
In the following subsections, I start by describing the setup and howdata are post-processed,
before discussing the results and putting them into perspectivewith numerical simulations.
I conclude by briefly commenting the results obtained by Vocke et al. in [52].

4.1.2 Experimental setup and data processing
The experimental setup designed to measure the shift has been sketched on figure 4.4.
The continuous-wave laser field at 780 nm is provided by aTi:Sapphire cavity, pumpedwith
a 10 W frequency-doubled Nd:YVO4 laser. The output laser beam is sent onto the optical
table through a single-mode polarization-maintaining high power fiber. The power of the
outgoing beam is controlled using a half-waveplate (λ2 ) and a polarized beam splitter (PBS).
The beam is first magnified and then highly elongated in the x direction using a set of two
cylindrical lenses (f1 = 500 mm and f2 = 100 mm). This cylindrical telescope is slightly
misaligned in order to loosely focus the beam onto the medium input facet. In that plane,
the minor axis width ω0,y (at 1/e2) is around 500 µm and the major axis one,ω0,x, is larger
than 1 cm. The intensity profile is thus quasi uniform along the x-axis. Squeezing the beam
in the other direction is thus mostly a way to increase the intensity (and thus ∆n) along
this axis. The Rayleigh length associated to ω0,y is about 1 m which is much longer than
the length of the cell (L = 7.5 cm).We can thus safely consider the beamas being collimated
inside the nonlinear medium (as long as self-defocusing is negligible of course).
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Figure 4.4: Experimental setup. The laser beam goes out from the fiber and is (i)magnified
and (ii) elongated along the x-direction, before entering a Mach-Zehnder interferometer.
From there, the beam splits into a high and a lowpower part (referred to as pumpandprobe).
The piezo-electronically actuated mount of the mirrorM1 allows to finely tuned the angle
θi between them. Pump and probe recombine and form an interference pattern whose
fringes are parallel to the y direction. A 90:10 (R :T ) beam splitter separates once again the
beam in two parts after the Mach-Zehnder. The blue part is a low power reference while
the red one is highly powerful. They propagate one above the other inside the vapor cell.
The cell exit plane is imaged onto the camera with a 4f telescope. (a) and (b): output plane
at low and large angle θi between pump and probe. The shift ∆S between the lower and
the upper beam is clearly visible. The upper beam is broader because of self-defocusing.
(c) Image of the Fourier space, obtainedwith a infinity correctedmicroscope objective (MO).
Pump (k⊥ = 0), probe (k⊥ = k0 sin(θi)) and idler (k⊥ = −k0 sin(θi)), as well as the
sidebands they generate, are visible on this image.
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After having been shaped, the laser beam enters a Mach-Zehnder interferometer, which is
protected against air turbulences by a box made of Plexiglas. At that point, the beam splits
into a high power and a low power part (referred to as pump and probe in the section 4.1).
The probe reflects on the mirrorM1 that is hold in a piezo-actuated mount which in turn is
fixed on a translation-stage. Tuning the voltage across the piezo allows to finely control the
angle θi between pump and probe and thus the wavelength Λ = 2π/k⊥ of the densitywaves.
We make sure that the interference fringes that formwhen the beams recombine are parallel
to the y-axis. On the probe arm, an other combination of half waveplate and polarized
beam splitter controls the modulation depth (less than 5%). As soon as pump and probe
exit the Mach-Zehnder interferometer, a 90:10 (R :T ) beam splitter splits the recombined
laser beam into two parts. The blue part on figure 4.4 is a low power reference for which
the medium response is basically linear, while the red one is highly powerful and will thus
behave as an interacting photon fluid. Blue and red beams propagates one above the other
inside the vapor cell (the D-shaped mirror M2 only reflects the reference), as sketched on
the bottom right inset of figure 4.4. The cell exit plane is imaged onto a CMOS camera,
with a 4f imaging system made of two lenses of focal length f3 = 200mmand f4 = 300mm.
By flipping on the beam path a microscope objective (MO), we can image the focal plane
of the first lens in this 4f system (inset (c) of 4.4) and thus precisely positioned the mask
(razor blade) that filters out the idler beam.

In order to accurately measure the shift ∆S, we need to precisely align the reference beam
with respect to the high power one. The alignment procedure is as follow:

(1) We first make sure that both background beams (probe off) roughly propagate with
the same transverse wave-vector and are correctly positioned one above the other.

(2) We then switch the probe beam on. The next step is to align the interference fringes of
the lower and upper interference patterns. We start by removing the vapor cell and
make sure that bright fringes on the bottom face bright fringes on the top.Of course,
by doing so, the optical axis of the lower and upper beams are not parallel anymore.
We should then switch to k-space, bring back the backgrounds to the initial position
(k⊥ = 0) and repeat this procedure iteratively (beam walking). Wefinally check that
for every transverse wave-vector k⊥ the interference fringes remain aligned before
putting the cell back on the beams path.

Images obtained in the cell output plane are shown on the insets (a) and (b) of figure 4.4.
The contrast of the interference pattern (ie the modulation depth) has been increased for
the sake of clarity. The shift between the interference fringes is clearly visible for low (a)
and high k⊥ (b). As you may have seen, the fringes on the upper interference pattern slightly
bend toward the propagation direction of the density modulation (that is, from right to left).
As the intensity profile of the upper beam along the vertical axis is Gaussian, the nonlinear
phase shift the probe accumulates by propagating over it depends on y. The sound velocity
is higher along the upper beam major axis than slightly above or below. Sound-waveswill
consequently propagate faster along this axis than along the beam edges, which as a result
locally bends the fringes. In order to avoid error in the data analysis, we therefore only
average the intensity profile over 30 pixels on both sides of the backgrounds major axis
(ie in between the white dotted line on figure 4.5). This is themaximal range forwhich fringe
bending has negligible effects on the shift we measure.
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Figure 4.5: Data analysis. The background subtraction reveals the small amplitude density
modulations that are propagating onto a low (a) and a high power background fluid (b).
The blue and red data points in (c) are obtained by integrating the intensity in between the
white dashed lines in (a) and (b) respectively. In order to clean the profiles, we first filter
out the high frequencies noise (dashed lines) and then remove the intensity envelopes of the
interference fringes (solid lines). The shift ∆S is finally computed by measuring the nearest
peak-to-peak distance between the solid lines in average (black arrow).

The data analysis requires several post-processing steps that must be carefully performed.
We start first by removing the background intensity distribution to keep only the density
modulation on top of it, using the camera software directly. This was not a clever choice,
as the background substraction function of this software is not only performing an image
substraction but sets, in addition, all the negative intensities to zero, as you can see by
looking at figure 4.5(c). We then integrate the intensity in between thewhite dashed lines on
the interference patterns of figures 4.5(a) and (b), which are obtained respectively at low
and high background fluid powers. The resulting profiles have been plotted on figure 4.5(c)
(blue and red points). The high frequency noise is filtered out inFourier space (dashed lines)
and the interference fringes envelopes are removed to obtain the blue and red solid curves,
using a Cubic spline interpolation method. The shift is finally computed by averaging the
distance between the maximums of the blue and red solid lines (black arrows) over several
interference fringes. The experimental results obtainedwith the setup sketched on figure 4.4
and the data analysis above are presented in the next subsection.
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4.1.3 Experimental results and numerical simulations

i Comparison between experimental data and theory

The results we obtained with the shift experiment has been gathered together on figure 4.6.
All the beams are propagating through a 7.5 cm cell filled with an isotopically pure vapor
of rubidium 85, heated up at 130 ◦C. The laser frequency is 2.6 GHz red-detuned from the
Fg = 3→ F ′ transition of the 85Rb D2 line. At these temperature and detuning, the vapor
transmission is about 60%. Figure (a) shows the shift measured at low background density
(grey diamonds) as function of the modulation wavelength Λ. The pump powerPf is about
120 mW and the reference one around 10 mW. The probe power was small enough for the
modulation depth to be less than 5%. The blue line is obtained by fitting the data using
equations (4.12) and (4.2). The fit provides the value of the nonlinear refractive index change:
〈∆n(z′)〉L = 1.3×10−6. As you can see on figure 4.6(a), the agreementwith theory is excellent
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Figure 4.6: Shift experiment. (a): Shift ∆S as function of the modulation wavelengthΛ for
a fluid power of 120 mW. The experimental data (grey diamonds) are in good agreement
with the theory (blue line) for 〈∆n(z′)〉L = 1.3×10−6. For comparison, the shift obtained
using equation (4.4) has also been plotted (black dashed-dotted line). The latter predicts
a saturation of ∆S at large modulation wavelengths, which is not observed experimentally.
(b): Same as before for a fluid power of 480 mW this time. The theoretical curve does not
match anymore with the data in the particle-like regime. (c): By fitting the shift with a line
in the sound-like regime, the slope as of the linear trend can be measure as function of the
fluid power Pf . We then check that δn, defined in equation (4.14), linearly scaleswithPf .
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and the shift ∆S increases linearly with the modulation wavelength, when it is larger than
the healing length ξ ' 300 µm. This is an important result as it shows that the shift does not
tend toward a finite value at large Λ, unlike what it is claimed in [52]. The shift computed
with themodel proposed in [52]− equation (4.4)− has also been plotted for comparison on
the same graph (black dashed dotted line). The discrepancy between thismodel and the data
is clearly visible in the regime where Λ� ξ. On figure 4.6(b), an example of datameasured
at higher background densities (Pf = 480 mW) is shown as function of Λ. As you can see,
∆S still linearly increaseswith themodulationwavelength,when it is larger than 0.5mm.

The linear trend at large Λ is theoretically described by the following equation:

∆S(Λ) ' arctan
[
2 k0 ∆n(0)L× 2

αL

1− exp (−αL/2)
1 + exp (−αL/2)

] Λ
2π , (4.18)

derived from the formula (4.14). Knowing the absorption coefficient (α ' 7m−1), we can fit
the linear trend of the shift at large Λ (cyan diamonds), taking the errorbars into account.
This provides the value of the nonlinear change of refractive index in the input plane∆n(0).
We then plot the theoretical shift obtained for this specific value of∆n(0) (blue solid line).
As you can see, the experimental data a smallΛ (grey diamonds) are not in good agreement
with the theoreticalmodel at high fluid densities (figure 4.6(b)). I will discuss this point later.
Nevertheless, we can still measure how the slope of the linear trend, as, evolves with Pf .
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Figure 4.7: (a): Shift ∆S as function of the modulation wavelength Λ, for different vapor
transmissions t. Simulations and theory match as long as the variation of the fluid density
along z remains adiabatic (t > 0.5). Absorption seems to smooth the oscillations of the
shift but it only reduces the average nonlinear refractive index change 〈∆n(z′)〉L actually.
(b):∆S as function ofΛ for various backgroundwidthswy. The amplitude of the oscillations
decreases with wy. This behaviour is expected as self-defocusing ismore likely to spread out
the intensity of the background fluid in the transverse plane (and thus to reduce 〈∆n(z′)〉L)
when wy decreases. (c): ∆S as function of Λ for different nonlocal transport length scales.
The oscillations are smoothed by nonlocality. However, for decent values of lb, this effect is
totally negligible. The inset of figure (c) shows the nonlocal response function in k-space.
Parameters: ∆n(0) = 1.0×10−5 and L = 7.5 cm.
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We already know that the nonlinear refractive index increases linearlywith the fluid density
and, consequently, with the pump power. We can thus invert equation (4.18) as follows:

∆n(0) = 1
4
α

k0

1 + exp (−αL/2)
1− exp (−αL/2) tan[2π as(Pf )] , (4.19)

and check that it is the case, plotting ∆n(0) as function of Pf . By doing so, we obtain the
blue points on figure 4.6(c). As expected, the relationship between ∆n(0) and Pf is linear
indicating that the slope of the linear trend at largeΛ correctly scaleswith the fluid density.

ii Discrepancy at low modulation wave-vectors

As mentioned previously, the agreement between data and theory at low Λ on figure 4.6(b)
is not good. Actually, we never managed to observe experimentally the oscillations of the
shift ∆S predicted by the theory at low Λ, when the fluid density is large enough. Moreover,
our data does not even match the geometrical relationship between shift and modulation
wavelength in the particle-like regime:∆S(Λ) = k0∆nΛ/2π. This issue either comes froman
uncontrolled systematic error in performing the experiment or from some physical process
that is not taken into account in the theory yet. In order to test this second hypothesis,
we numerically solve the NLSE in 2D using a second order split step method. The effect of
linear absorption, self-defocusing and nonlocality on the shift are investigated. The results of
the numerical simulations are grouped together on figure 4.7. They all have been performed
using the same set of parameters. The background intensity, I0, is set to 2.5×105 W/m2

and the nonlinear index of refraction, n2, to 4×10−11 m2/W. The nonlinear change of
refractive index is thus equal to 1.0×10−5 in the lossless case. The background fluid is also
infinitely elongated in the x-direction. On figure (a), ∆S has been plotted as function of the
modulation wavelength for different cell transmissions t = exp(−αL). The coloured points
stem from numerical simulations whereas the theoretical curves are plotted in black solid.
The agreement between simulations and theory is excellent as long as the variation along z
of the fluid density because of absorption remains adiabatic [71]. Absorption seems to
smooth the shift oscillations, but actually, it only reduces the average change of refractive
index 〈∆n(z′)〉L. In other words, if the input intensity ismultiplied by [1− exp(−αL)] /αL,
α being for instance the absorption coefficient corresponding to a cell transmission of 10%,
the blue stars on figure (a)will almost exactly translate onto the green circles, forwhich t=1.
Absorption is thus not the cause of the discrepancy observed on figure 4.4(b). Figure 4.7(b)
shows the effect of the pump width ω0,y on the shift. We clearly observe a reduction in
the amplitude of the shift oscillations when w0,y decreases. This is due to the fact that the
effective focal length feff of the nonlinear medium shortens in that case. Self-defocusing is
then more likely to spread the background intensity in the transverse plane. This results in
a diminution of the intensity along the pump major axis during propagation,which reduces
〈∆n(z′)〉L once again. The inset of figure 4.7(b) shows the ratios Rω = ω0,y(0)/ω0,y(L) and
RI = I0(0)/I0(L) as function of the input width ω0,y(0). Unsurprisingly, Rω and RI tend
toward one when zeff � L. Reversely, when ω0,y(0) decreases, Rω starts decreasing as well
and RI consequently rises up. For ω0,y(0) ≈ 500 µm (experimental width), self-defocusing
has definitely an effect but it does not smooth out the shift oscillations as on figure 4.4(b).
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Figure 4.7(c) shows the effects of nonlocality on the shift. As on figures 4.7(a) and 4.7(b),
∆S has been plotted as function of Λ, for various nonlocal ballistic length scales ld this time.
The coloured points stem for numerical simulations. The formula (4.12) has been generalized
using the nonlocal dispersion relation (2.46) to take into account the ballistic transport of
excited atoms in ourmodel. The theoretical predictions are plotted in black solid on figure (c)
and match perfectly the simulations. As you may have noticed, nonlocality does not affect
the value of 〈∆n(z′)〉L, because the way the shift increases at large Λ remains unchanged
whatever the value of ld. The changes induced by nonlocality are thereforemore structural.
However, nonlocality only significantly modifies the shift for values of the ballistic transport
length scalemuch bigger than the one expected at 130 ◦C (which is about 7.5µm, see 1.3.8 ii).
Consequently, it cannot either be liable for the discrepancy observed in figure 4.4(b).

So far, we do not have a clear understanding about why the shift is not matching the theory
in the particle-like regime for some data sets. We checked experimentally if the issue was
coming from the alignment procedure detailed in subsection 4.1.2 by measuring the shift
in the exact same way as in experiments without the rubidium cell. In that case,∆S is zero
whatever the angle between pump and probe, as expected. The shift measurement is also
extremely sensitive to the phase of the pump and probe beams in the cell entrance plane.
Indeed, the pump phase gradient at z = 0 defines the initial velocity distribution of the
photon fluid in the transverse plane. The latter starts thus flowing as soon as the phase of the
pump beam is not uniform in the entrance plane. If the photon fluid flows along thex-axis,
the phase velocity of the density waves (and therefore the shift) will certainly be modified
by Doppler effect. Such a flow may come from the poor collimation of the background beam
in thex-direction for instance. An other possibility is that the rubidium cell was not perfectly
aligned on the optical axis, defined by the pump wave-vector. If the input window forms an
angle 0 < β � 1 with the x-axis, the background beam progressively enters the nonlinear
medium from left to right and its left end (atwhich the intensity falls to I0/e

2) propagates
over 2ω0,x tan(β) before the right end gets inside the cell. From themedium perspective,
it is as if the reference and photon fluid backgrounds had a non-zero transverse wave-vector
kpu = k0 sin(β)ex′ , ie a non-zero transverse speed v = sin(β)ex′ , when they enter the cell
(with ex′ = cos(β)ex+sin(β)ez). The probe imprints in that case a density modulation on
a moving photon fluid, which can slightly affects the shift.

iii Comments on the results of Vocke et al.

The shift measurement has first been performed by Vocke et al. in [52], following a proposal
by Carusotto [56]. The setup they use is almost identical to the one sketched on figure 4.4.
Vocke et al. report in [52] a saturation of the shift ∆S at large modulationwavelengths and
fit their data using equation (4.4). From this fit, they retrieve the dispersion relation on
one hand and measure parameters such as the nonlinear change of refractive index ∆n
and the diffusive transport length scale σ on the other. The latter defines the range of the
nonlocal interaction between photons in the thermo-optic liquid they use as Kerr medium.
In [52], Vocke et al. claim that interferences between counter-propagatingBogoliubovmodes
are suppressed by simply cutting in k-space the idler field.Moreover, they use this argument
to derive equation (4.4) in their article, on which all their data analysis is based. It is worth
mentioning however that this reasoning is wrong as it amounts to saying that the idler and
the Bogoliubov mode travelling at −k⊥ are the same physical object. Indeed, by deriving
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carefully the input-output relation (4.8), we show that the idler field results from themixing
in the output plane of both the Bogoliubov modes moving at +k⊥ and −k⊥. Cutting the
idler in k-spacewill thus not totally suppress the interference occurring between thesemodes
in the cell exit plane. Consequently, as mentioned in [97], the model derived by Vocke et al.
to retrieve the dispersion relation from the shift measurement is incomplete. We therefore
tried to fit their data with the model developed in 4.1.1 ii following the work of Larré [71].
Nevertheless, the saturation of the shift ∆S observed by Vocke et al. at large modulation
wavelength cannot anymore be explained using this full theoretical description, even by
including huge diffusive nonlocality. It should consequently come from an uncontrolled
error in performing the experiments. Such a saturation can for instance be observed when
the idler beam is not perfectly suppressed in k-space, which is more likely to happen in the
large Λ (ie low k⊥) regime. In that case, part of the idler interfere with the pump which
counterbalance the shift ∆S along +ex by slightly shifting the interference fringes in the
opposite direction, that is, along −ex. This leads to an effective saturation of the shift and
might explain the behaviour observed in [52].
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4.2 Group velocity measurement
In the previous section, we saw that retrieving the dispersion of densitywaves travelling onto
paraxial photon fluids from the shift measurement relies on a complex numerical inversion.
This is mainly due to the fact that pump and probe have to be nearly plane-waves in this
approach and, consequently, that probe and idler spatially overlap and exchange energy all
along their propagation inside the Kerr medium. Butwhatwould happen if the probe beam,
instead of being a plane wave, was spatially localized in the nonlinearmedium input plane?
In other words, how will evolve a small amplitude Gaussianwave-packet propagating at the
transverse wave-vector k⊥ on top of an uniform photon fluid at rest? Inwhat follows, I first
theoretically investigate this situation and show that measuring the group velocity of such
a wave-packet is a way to access the dispersion relation of density waves, without having,
a priori, any knowledge about the Bogoliubov theory. I then present the results we obtained
using this new experimental configuration. This section reviews and completes the paper
we published in PRL: "Observation of the Bogoliubov Dispersion in a Fluid of Light" [87].
In what follows, I still suppose that the probe wave-vector is parallel to the x-direction.

4.2.1 Introduction

i Travelling of a wave packet onto a photon fluid

Let’s imagine that the probe beam is focused in the x-direction but still infinitely elongated
along the y-axis. In that case, we can safely forget about the y-direction and address the
problem as if it was 1-dimensional (1D+1 geometry). When it enters the nonlinearmedium,
the probe no longer excites planewave density fluctuations in that case but rather a spatially
localized wave-packet along the x-axis. The aim of this paragraph is to study how the latter
travels onto some paraxial photon fluids. Thewave-packet generated by the probe beamonto
the background fluid can be regarded as a superposition of several plane waves, eachwith
its own transverse wave-vector kx = k0 sin(θi)+δkx. The more localized the wave-packet is
in real space, the larger is its extension δkpr in k-space. In dispersive mediums, it is known
that a wave-packet, while moving at a constant speed (the group velocity vg), spreads during
its propagation. Every plane wave composing this wave-packet travels with its own velocity,
which causes this spreading along the x-axis. This is what would happen to the probe if it
propagates inside a linear medium. In that case, probe photons behave as free particles in the
transverse plane and follow a quadratic particle-like dispersion Ω(kx) = k2

x/2k0 − such as
the one plotted on figure 2.1− when we adopt an effective time description of the dynamics.
The phase velocity, which is defined by vph(kx) = Ω(kx)/kx, depends on kx and varies thus
in the wave-packet from one plane wave to an other. This explainswhy the probe undergoes
diffraction in linear mediums using the fluid of light terminology.

In nonlinear materials, the situation is different. The quadratic dispersion Ω is replaced by
the Bogoliubov dispersion relation ΩB. Therefore, in the sonic-regime (that is, for kx�kξ),
the phase velocity does not depend on kx. Consequently, all the plane waves composing the
Gaussian envelope of the probe beam travel at the same speed − the sound velocity cs−
in the transverse plane. This is true as long as k⊥+∆kx � kξ, where k⊥ = k0 sin(θi) stands
as usual for the probe transverse wave-vector. The wave-packet forming the probe beam
should therefore not spread along the x-direction in this regime.
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More surprisingly, the group velocity vg, which is defined by:

vg(k⊥) = dΩB

dk⊥
, (4.20)

is constant and equal to the sound velocity cs in that case. By probing the sound-like regime
of the Bogoliubov dispersion relation, the probe generates a wave-packet that travels at the
same speed along the x-axis, regardless of its angle of incidence θi in the entrance plane,
as long as k⊥= k0 sin(θi)�kξ. In otherwords, the position of thewave-packet in themedium
output plane plane remains unchanged while changing θi. This nonlinear refraction law,
counter-intuitive from the classical optics perspective, comes from the sound-like behaviour
of the Bogoliubov dispersion relation at low transverse wave-vectors.

ii Fundamentals of the group velocity measurement

In the previous paragraph, I did not mention the presence of the idler beam, which is still
generated at the medium entrance plane, where the effective photon-photon interaction
experiences a quench.Two counter-propagatingwave-packets are therefore spontaneously
created at the cell input facet (at z = 0), when the small Gaussian perturbation forming
the probe beam onto the photon fluid, that is not an eigenstate of the nonlinear dynamics,
enters the medium. They then travel with the speedv = ±vg(k⊥) ex in the transverse plane.
Measuring the distance d(k⊥) between these two wave-packets at the propagation distance
z provides thus a direct access to the group velocity vg. At the cell exit plane, this distance
is given by d(k⊥) = 2Lvg(k⊥). We then retrieve the dispersion relation Ω(k⊥) by scanning
themodulationwave-vector − ie by tuning the angle θi between the pumpand the probe−
and integrating the group velocity from 0 to k⊥ as follows: Ω(k⊥) =

∫ k⊥
0 vg(q) dq.

The fundamentals of this group velocity measurement is sketched on figure 4.8. The pump
(red) is a wide and intense Gaussian beam. It generates a quasi-uniformphoton fluid at rest
when it goes inside the cell. The probe (orange) is elongated in the y-direction in order to
only sound the fluid along the x-axis, as previously mentioned. In this direction, the probe
width ω0,x is way smaller than the pump one. When it goes inside the nonlinear medium,
the probe beam excites two counter-propagating Bogoliubov wave-packets. In the first case
(ie for k⊥ = 0), the two density modulations acquire a non-zero transverse speed even if
the probe transverse velocity is zero initially. Because of its k-extension, the probe excites
a set of plane waves, whose wave-vectors kx range from−δkpr to δkpr, in the sonic regime of
theBogoliubov dispersion relation. Each of these planewaves generates in the cell input facet
two counter-propagating Bogoliubov modes travelling at the sound velocity cs. This process
takes place all along the x-axis and results in the creation of two wave-packets, that move
rightward and leftward at cs. As the efficiency of such wave-mixing mechanisms depends on
the phase-matching conditions, the high k-vector components of the probe envelope do not
efficiently generate Bogoliubov modes, which induces an asymmetry in thewave-packets at
large propagation distances. As long as k⊥� kξ, or, in otherwords, as long as the probe angle
θi remains inside the cone of aperture cs, the probe excites in a similar way a collection of
modes in the sonic part of the dispersion that are all going to move at the speed of sound
in the transverse plane. In this regime, we do not expect the wave-packets to spread during
their propagation and the distance d between them in the exit plane should remain the same
(d = 2 cs L). Reversely, when k⊥ � kξ, the excitations behave as single-particles and move
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along the x-axis at± vg(k⊥) ex. The distance betweenwave-packets centers should therefore
increases linearly with the probewave-vector k⊥. Indeed, in the particle-like regime (that is,
when k⊥ � kξ), the Bogoliubov dispersion is parabolic and vg(k⊥) = k⊥/k0. We recover
then the standard refraction law of linear optics.

Figure 4.8: Sketch of the group velocitymeasurement. The pump (red) is awide and intense
Gaussian beam forming the photon fluid at rest (normal incidence). The probe (orange) has a
way smaller width than the pump in the x-direction. Both beams have the same frequency.
The probe excites two counter-propagating Bogoliubov wave-packets in the input plane.
As long as the the probe angle θi lies inside the cone of aperture cs (that is, for k⊥ � kξ)
the excitations behave as collective phonons and move at ±cs ex in the transverse plane.
Reversely, when θi > cs (k⊥ � kξ), the excitations behave as single particles propagating
at ± vg(k⊥) ex along the x-axis. On the right panel, the probe beam intensity is higher than
the idler one because phase match conditions are not fulfilled in that case. In situations
where the conjugate beam is not visible in the exit plane, we simply measure the distance
d/2 between the positions of the probe in the input and output planes.

iii Advantages and validity criterion

Measuring the group velocity as function of the probe transverse wave-vector is a suitable
way to access the dispersion relation Ω(k⊥) of density waves onto paraxial photon fluids.
Indeed, this technique does not require any knowledge about the dispersion a priori and
relies only on the relationship relating Ω to the group velocity vg. Normally, Ω should be
equal to the Bogoliubov dispersion relation ΩB. But this is not anymore a requirement as it
was for the shift experiment, in the sense that the dispersion Ω can still be retrieve from the
group velocity measurement otherwise. Thismethod overcomes therefore themain issue of
retrieving the dispersion from the shift ∆S. Moreover, since "probe" and "idler" are spatially
separated in the cell exit plane using this new pump/probe configuration, the idler beam
does not need to be filtered in Fourier space anymore. The group velocity − and thus the
dispersion relation Ω − can then be measured whatever the probe transverse wave-vector,
even in the very low-k⊥ regime in which pump, probe and idler overlap in k-space.
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We already know, from the shift experiment, that interactions between counter-propagating
wave-packets inside the medium can make the relationship between d and vg more complex.
If the probe width, ω0,x, is small enough and the nonlinear change of refractive index,∆n,
sufficiently large, we can expect the Bogoliubov wave-packets to overlap (and thus interact)
only at the beginning of their propagation inside the nonlinearmedium. Once they leave this
interaction zone, they propagate independently one with respect to the other (as shown on
figure 4.9(a) for instance). In that case, we can suppose that the interaction between the
wave-packets only slightly affects their positions in the cell exit plane, and thus, the distance
d separating them. In order for this assumption to be correct, we make sure that d is at least
twice larger than the probe width in the output plane; the two Gaussian wave-packets are
then fully separated after propagation. Moreover, we want the probe to be collimated along
the nonlinear medium (which is 7.5 cm long in experiments). This sets thus a lower bound
on the probe width ω0,x: ω0,x>

√
λzr/π ≈ 150 µm (when the Rayleigh length zr is 10 cm).

This constraint on the probe collimation translates directly into a constraint on its k-space
extension δkpr ≈ 2/ω0,x, that should be small compared to kξ as we want the probe to sound
"locally" (in k-space) the dispersion relation. At low wave-vectors k⊥, the group velocity is
equal to the sound velocity and the constraint on the distance d finally rewrites as follows:
∆n > n0 (ω0,x/L)2 ≈ 4 10−6. Thus, for a 7.5 cm long vapor cell, a probe width of 150µm
and a nonlinear change of refractive index greater than 4 10−6, we can safely consider that
d(k⊥) = 2vg(k⊥)L and use the group velocity measurement to access the dispersion.

4.2.2 Theoretical description
The density modulation δρ generated by the probe on top of the background fluid can be
theoretically described using theBogoliubov formalism.The amplitude δE of the probe field,
at the medium entrance plane, reads as follows:

δE(r⊥, 0−) = δE0 exp
[
− (x/ω0,x)2 − (y/ω0,y)2

]
e−ik⊥· r⊥ , (4.21)

where ω0,x and ω0,y stand respectively for the widths of the probe along the x- and y-axes.
For the sake of simplicity, we assume ω0,x and ω0,y do not depend on z, which amounts to
saying that the probe is collimated in both the x and y directions. The in-air amplitude of
the total electric field right before the medium input plane can then be expressed as follows:

E(r⊥, 0−) = E0(0−) + eiΦ0(0−)
∫ dδk⊥

(2π)2 δẼ(k⊥+ δk⊥) e−iδk⊥· r⊥ , (4.22)

where δẼ is the Fourier transform of the probe field amplitude δE . The densitymodulation,
created by the probe onto the photon fluid, is given by the formula (see subsection 2.3.4):
δρ(r⊥, z) = 2

√
ρ0(z) Re

[
δE(r⊥, z)e−iΦ0(z)

]
. Using the input-output relation (4.8), we find

the following expression for this density modulation δρ:

δρ(r⊥, z) = 1
2

∫ dδk⊥
(2π)2

[(
aδk⊥(L+) + a∗−δk⊥(L+)

)
e−iδk⊥·r⊥ + c.c.

]
= 1

2

∫ dδk⊥
(2π)2

[(
Uδk⊥ + Vδk⊥

)
δρ̃(k⊥+ δk⊥) + . . .(

U∗δk⊥ + V ∗δk⊥

)
δρ̃(−k⊥+ δk⊥)

]
e−iδk⊥·r⊥ ,

(4.23)
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where ρ̃(k⊥) = 2√ρ0 δẼ(k⊥). The foregoing expression is hard to compute. Let’s then go
one step further by assuming δρ does not dependmuch on the y coordinate. This assumption
is fulfilled experimentally by sending a elliptical probe beam elongated along the y-direction
such that ω0,x � ω0,y. In that case, we can address the problem as if it was 1-dimensional.
Let’s also neglect the linear losses (α = 0) and consider, in a first instance, that the angle of
incidence of the probe beam is zero (k⊥ = 0). The modulation density reads then:

δρk⊥=0(x, z) =
∫ ∞
−∞

dkx
2π cos (ΩB(kx)L) δρ̃(kx, 0−) e−ikxx (4.24)

Equation (4.24) is derived by B.B. Baizakov et al. in [98], where the dispersive properties
of matter waves propagating onto one- and two-components Bose-Einstein condensates are
theoretically investigated. In this paper, the integral on the left hand side of equation (4.24)
is computed using the stationary phase approximation (for x > csL):

δρk⊥=0(x, L+) '
δρ̃
(
k, 0−

)
√

2πL
∣∣∣d2f
dk2
x

∣∣∣
k

cos
[
Fk(x)L− π

4

]
eiΦ0(L+), (4.25)

where Fkx(x) = kx x/L−ΩB(kx) and k̄ stands for the transverse wave-vector at which the
stationary phase condition dF/dkx = 0 is fulfilled. So far, we did notmake any assumption
regarding the k-space extension of the probe beam. If it is highly focused onto the medium
input plane, it will excite counter-propagatingBogoliubovmodes both in the sound-like and
in the particle-like regimes of the Bogoliubov dispersion relation.Asmodes having different
wave-vectors propagate at slightly different group-velocities (even deep in the sonic regime),
they start interfering after a sufficiently long propagation distance. These interferences are
described by the cosine term on the right hand side of (4.25). The resulting oscillations in
the transverse intensity distribution make the propagation of small density wave-packets
onto photon fluids look like dispersive shocks. It is worth noting that there are significant
differences between these two phenomena, the first one being a purely dispersive effect
while the second is highly non-perturbative and makes the nonlinearity play a crucial role.
Nevertheless, when the k-extension of the probe beam is such that δkpr � kξ, interferences
between travelling modes start affecting the density profile for propagation distances
longer than the length L = 7.5 cm of themedium. In that case, the cosine in the right-hand
side of equation (4.24) contributes to the integral only when kx is small, that is, when the
Bogoliubov dispersion relation is linear, so that:

δρk⊥=0(x, L+) =
∫ ∞
−∞

dkx
4π δρ̃(kx, 0−)

[
e−ikx(x−csL) + e−ikx(x+csL)

]
' 1

2δρ0

[
exp

{(
−(x− csL)2

ω0x2

)}
+ exp

{(
−(x+ csL)2

ω0x2

)}]
, (4.26)

where δρ0 = 2√ρ0 δE0. At the air/medium interface, the Gaussian perturbation induced
by the probe beam splits into two wave-packets which propagate in opposite direction at cs.
This result provides therefore an easy way to measure the sound velocity and how it evolves
with the photon fluid density ρ0.When k⊥ is non-zero but still fulfills the condition k⊥ � kξ,
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we expect the preceding result to hold. The centers of the counter-propagatingwave-packets
should still lie at d = 2 csL one from the other because the excitation wave-vector remains
inside the sound-like regime in that case, where the group velocity vg is not k-dependant.
However, the amplitude of the "probe" envelope (that is, of the envelope of the wave-packet
propagating along +ex) must then be greater than the "idler" one, because phasematching
conditions are not perfectly fulfilled. Reversely, when k⊥ starts being much larger than kξ,
equation (4.23) can be drastically simplified by noticing that |uk⊥|'1 and |vk⊥|'(kξ/k⊥)2.
Therefore, Uk⊥ + Vk⊥ ' exp [iΩB(k⊥)L] and using the stationary phase method yields:

δρk⊥�kξ(x, L
+) = δρ0 exp

{(
−(x− vg(k⊥)L)2

ω0x2

)}
cos [k⊥x+ ΩB(k⊥)L]. (4.27)

In that case, only the probe beam remains in the output plane. The Gaussian envelope is
centered around vg(k⊥)L ' sin(θr)L, what is expected from the Snell law of linear optics.
The only remaining effect of nonlinearity on the particle-like dynamics of the probe in the
transverse plane is the Kerr-type phase term k0 ∆nL it accumulates during its propagation.
Indeed, this phase shift appears in the cosine functionwhenΩB is expanded for k⊥� kξ.

remark When α is non-zero, the results above are still correct if the group-velocity vg(k⊥)
in the lossless case is replaced by its average over the propagation distance 〈vg(k⊥, z)〉z.
The sound velocity cs in equation (4.26) should then also be replaced by cs,eff , defined in
subsection 2.4.1. The densitymodulation decays exponentially in that case along the z-axis
and the right-hand side of (4.26) and (4.27) must therefore be multiplied by exp(−αz).

4.2.3 Numerical simulations
In order to illustratemore explicitly how theBogoliubovwave-packets evolve in themedium,
I numerically solved the NLSE to compute the intensity of the total electric field in any plane
along the z-axis. To that end, I used a second-order split step algorithm for one transverse
spatial dimension only (1D+1 geometry), as the probe is supposed to be infinitely elongated
in the y-direction. The probe waist is located in the cell input plane (z = 0) and its width,
ω0,x, is equal to 150 µm. On the 2D maps shown on figure 4.9, the uniform density ρ0 of
the background fluid is subtracted. The z-evolution of the counter-propagatingBogoliubov
wave-packets is shown for k⊥ ≈ 0 (sonic regime) and for k⊥ � kξ (particle-like regime) on
figures 4.9(a2) and (b2) respectively. In either case, the red arrow indicates the direction of
incidence of the incoming probe field. Figure 4.9(a2) illustrates the nonlinear refraction law.
Even if the probe has no transverse speed, it gives rise to a pair of counter-propagating
wave-packets moving along the x-axis at ± cs. Of course, the total transverse momentum
is conserved and equal to zero in that case, because the amplitudes of the wave-packets
travelling upward and downward are the same.
As you may have noticed, the wave-packets spatially overlap during a certain "time" before
coming apart (at z ≈ 2 cm here) on figure 4.9(a2). This can be explained looking at the
energy carried by the density modulation. Because the probe has no transverse speed in the
entrance plane, it only brings some additional interaction energy into the system. Part of it
turns into kinetic energy, which sets the wave-packets in motion. The distance over which
this energy transfer occurs turns out to be the distance at which the wave-packets separate.
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Figure 4.9: 1Dnumerical simulation. (a2) and (b2): Propagation of aweakGaussian density
modulation onto an uniform background fluid (top view), in the sound-like (θi ≈ 0 rad)
and in the particle-like regime (θi = 5mrad). The background density has been subtracted
in both cases. In (a2), the modulation created by the probe onto the photon fluid splits into
two counter-propagating wave-packets (even if the probe transverse speed is zero initially).
In the output plane, they are separated by d = 2csL. In (b2), the probe propagates as inside
a linear medium. Phase matching between pump and probe gets worse when θi increases,
explaining why the amplitude of the wave-packet travelling at k⊥ = −k0 sin(θi) is lower.
(a1) and (b1): Interaction energy δFint (blue line) and kinetic energy δFkin (black line) of the
density modulation as function of z (normalized by its total energy δFtot = δFint +δFkin).
δFint and δFkin reach a stationary regime when the wave-packets on figures (a2) and (b2)
are fully separated. (c) Envelope of the intensity profile in the exit plane as function of k⊥.
In the sound-like regime (ie on the left side of the white line). the distance separating the
wave-packets remains constantwhile it increases linearlywith k⊥ in the particle-like regime.
Parameters: λ = 780 nm, ∆n = 1.3 10−5, ω(x)

pr = 150 µm and α = 0 (lossless case).
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Let δFint and δFkin stand for the interaction and kinetic energies of the densitymodulation.
At any position on the z-axis, δFint is obtained by subtracting the interaction energy of the
background fluid Fint [E0] from the total interaction energyFint [E ], whereFint is defined by:
Fint[E ] = k

4
n2
n0

∫
S |E(r⊥)|4dr⊥. Similarly, δFkin = Fkin[E ]−Fkin[E0] = 1

4 k
∫
S |∇⊥δE|2 dr⊥.

Figures 4.9(a1) and (b1) show the z-evolution of δFint (blue line) and δFkin (black line),
when the probe field enters the medium with the same incidence as on figures (a2) and (b2).
Energies are normalized on both graphs by the total free energy δFtot = δFint+Fkin of the
densitymodulation.As youmayhave seen, δFkin is almost zero on figure 4.9(a1)when z = 0.
The small offset results from the non-zero transverse speed of the high kx-components of
the probe field, giving a small but non-zero initial kinetic energy to the densitymodulation.
Then, δFkin increases while δFint decreases until both of them reach a stationary regime,
which occurs, indeed, when the wave-packets stop overlapping on figure 4.9(b1).
Let’s now focus on figures 4.9(b1) and (b2), where the probe field sounds the particle-like
regime of the Bogoliubov dispersion relation this time. As you can see on figure 4.9(b2),
the wave-packet travelling upward (idler) is barely visible, as the phasematching conditions
between pump and probe are not fulfilled anymore. Moreover, interference fringes appear as
the fringe spacing Λ = 2π/k⊥ is smaller than the probewidthω0,x in that case. By looking at
figure 4.9(b1), we see that the kinetic energy brought by the probe in non-zero anymore and,
as in the case where k⊥ ≈ 0, δFint andFkin stop varying along z as soon as thewave-packets
are spatially separated. Scanning the angle θi from 0 (a2) to 5mrad (b2) allows to plot the
envelope of the intensity profile at the medium exit plane (ie, at z = L) as function of k⊥.
This has been done on figure 4.9(c). As you can see, the distance between thewave-packets in
the exit plane does not depend much on k⊥ in the sound-like regime (that is, on the left side
of the white solid line). Reversely, it increases when the probe starts reaching the particle-
like regime of the dispersion relation. We can also notice the spreading of the wave-packets
over the x-axis for high values of k⊥. The theoretical distance d/2 between the input plane
position of the probe beam (x = 0) and the output plane position of the downward-moving
wave-packet has been plotted in black dashed. As you can see, the agreement between
theory and simulation is excellent. Figure 4.9(c) exactly illustrateswhat is the purpose of the
experiments: measuring the distance d between thewave-packets at z = L as function of k⊥.
In the following subsection, I present the experimental setup I designed and built to this end.

4.2.4 Experimental setup and data processing
The experimental setup is shown on figure 4.10. As in the shift experiment, the continuous-
wave laser beam at 780 nm is produced by a Ti-Sapphire laser source (see subsection 2.1.2)
and sent on the optical table using a single-mode polarization-maintaining high power fiber.
The outgoing beam is magnified before entering a Mach-Zehnder interferometer, protected
from air-turbulences by a box. From there, the beam splits into a high power pump (red)
and a low power probe (blue). The pump is expanded twice before being loosely focused into
the nonlinear medium using a set of two cylindrical lenses. The resulting beam is elongated
in the x-direction; its widths along the x- and y-axes are 3.2 mm and 300µm respectively.
The pump intensity (and thus the background fluid density) is then almost uniformalongx.
The Rayleigh length zr,y associated to the pump width along y is 37 cm, which is five time
longer than the length of the nonlinear medium (L = 7.5 cm). Consequently, we can safely
suppose that the pump beam is collimated (when self-defocusing is negligible obviously).
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Figure 4.10: Experimental setup. The laser beam goes out from the fiber and is magnified
before going inside a Mach-Zehnder interferometer. A PBS splits the beam into two parts,
the pump (red) and the probe (blue). The pump is magnified one more time and spatially
elongated along y-direction using a set of two cylindrical lenses. The probe is focused along
the x-axis onto the cell entrance plane with a cylindrical lens of focal length f = 1m. The
probe is therefore elongated in a direction perpendicular to the pump, as sketched on
the inset (b). The piezo-electronically actuated mount of the mirror M1 allows to finely
tuned the angle θi between pumpand probe. The cell output plane is imaged onto the
camera with a 4f telescope. The inset (c) shows an example of a background-subtracted
image obtained for θi ≈ 0 rad and the related integrated profile (blue line). On the latter,
two well separated wave-packets are clearly visible.
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The probe beam is directly focused with a cylindrical lens onto themedium entrance plane.
It is elliptically elongated along y, that is, in a direction perpendicular to the pump beam.
This cross-configuration, sketched on figure 4.10(b), allows to only probe the fluid along
the x-axis, where the intensity (and thus∆n) has been made higher by focusing the pump.
At the probe waist, ω0,x = 180±10µm and ω0,y = 1.7 mm. The value of the minor width,
ω0,x, is chosen in order for the wave-packets to properly separate at the medium exit plane.
For ω0,x ' 180µm, the probe is also collimated along x inside themedium (as zr,x'13 cm).
Before recombining with the pump, the probe reflects onto themirrorM1. The latter is hold
in a piezo-actuated mount which allows to finely tune the angle θi. The depth of the density
fluctuation is adjustable too by turning the half wave-plate before thePBS on the probe arm.
In experiments, it represents less than 5% of the background fluid density. Pumpand probe
propagate then inside a 7.5 cm long cell, filledwith an isotopically pure vapor of rubidium85.
The cell is heated up to 150 ◦C with the homemade oven described on subsection 2.1.1.
The Kerr nonlinearity is obtained by red-detuning the laser frequency from theFg = 3 � Fe
transition frequency (∆ = −2π×6 GHz). The vapor transmission is then about 70%.

The cell exit plane is imaged onto a CMOS camera using a 4f imaging systemmade of two
lenses of focal length 150 mm and 500 mm respectively. The magnification factor has been
measured and is about 3.4. A microscope objective can be flipped onto the beampath so as
to image the focal plane of the first lens and measure the probe transversewave-vector k⊥.
Images of the pump alone (background), of the probe alone and of the k-space (without cell)
are captured at every angle θi. Moreover, as we only care about the envelope of the wave-
packets in the exit plane, the relative phase between pump and probe is scanned over 2π.
To that end, we mount the mirrorM2 onto a piezo-actuated translation stage. By ramping
up the high voltage applied across the piezo (see inset (a)), we modulate the length of the
pump path in the Mach-Zehnder, and consequently the relative phase between the beams.
40 images are captured during a phase ramp.We subtract the background from each of them
before integrating the resulting intensity distribution over 100 pixels around the x-axis.
We finally retrieve the wave-packets envelope by summing − in absolute value − all the 40
intensity profiles we obtained after integration. The distance d between the wave-packets
is measured by performing a 1D two-Gaussian fit of the intensity envelope, as long as the
idler beam is visible in the exit plane. Otherwise, d is directly measure from the distance
between the input and output positions of the probe beam.

4.2.5 Experimental results
In this subsection, I present the experimental results I obtained with the setup and the data
analysis described above. I first show the dispersion relation retrieved from the group velocity
measurement in a low-density photon fluid.At high densities, a discrepancy appears between
the measure group velocity and the theoretical expectation. I show that nonlocality could
have explained it if the values of the nonlocal ballistic transport length scale, ld, a which
notable disturbances on the group velocity arisewere not so unrealistic. I finally demonstrate
that this discrepancy is the experimental signature of quasi-particle interferences, that is,
of interferences between the two counter-propagating Bogoliubov wave-packets.
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i Dispersion relation in a low-density photon fluid

The experimental group velocity and dispersion relation are plotted as function of k⊥ on
figures 4.11(a) and (b) (blue circles). The pump power is 175 mW, which corresponds to a
nonlinear change of refractive index ∆n(0) of 3.9×10−6 in the input plane. Onfigure 4.11(a),
two regimes are clearly distinguishable. The group velocity is constant at low wave-vectors
while it linearly increases at larger ones. The transition between these regimes occurs when
k⊥ ' 1.8×104 m−1. This value is slightly greater than kξ, which is about 1.6×104 m−1.
The theoretical group velocity, obtained for ∆n(0) = 3.9×10−6 and for 70% transmission,
has been plotted on black dashed.As you can see, it perfectly predicts the value towardwhich
the measured group velocity tends when k⊥ goes to zero. Nevertheless, the plateau observed
experimentally at low k⊥ ismuch longer than expected. Moreover, an offset between the data
and themodel is clearly visible at large k⊥. By taking nonlocality into account, which arises
in hot vapors because of the ballistic transport of fast moving excited atoms,we obtain the
black solid line on figure 4.11(a). When T = 150 ◦C, the nonlocal ballistic length scale, lb,
is about 8µm. It does not sound like much but it is enough to make the nonlocal model
better describe the asymptotic trend of the data at large k⊥. However, nonlocality does
not explain why the plateau at low k⊥ is longer than theoretically expected.
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Figure 4.11: (a):Group velocity vg as function of the transversewave-vector k⊥ = k0 sin(θi).
The blue circles represent the experimental data obtained for a fluid power Pf = 175 mW.
The theoretical model is plotted in black solid. It takes into account the nonlocal response
of the vapor, due to the ballistic transport of fast moving excited atoms. For comparison,
the group velocity predicted by the local theory is plotted in black dashed on the same graph.
The dashed lines highlight the asymptotic behaviours of the group velocity, which remains
constant in the sonic regime (cyan) and linearly increase in the particle-like regime (red).
(b) shows the dispersion relation obtained after integration of the group velocity in (a).
It exhibits a linear increase at low k⊥ characterized by the sound velocity cs,eff .
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Integrating the data on figure 4.11(a) yields the dispersion relation plotted on figure 4.11(a).
As you can see, it linearly increases for k⊥ < 1.8×104 m−1. This is an important result as
it proves that small amplitude density waves behave like collective phonons for low enough
excitation wave-vectors. This sound-like regime is fully characterized by the speed of sound,
cs,eff = 〈cs(z′)〉L'2.0mrad.Moreover, the linear increase of the dispersion relation at low k⊥
guarantees that light propagating through rubidium vapors can be superfluid, as suggested
by R.Chio two decades ago [9]. Indeed, according to the Landau criterion for superfluidity,
the speed of sound cs,eff defines a critical speed belowwhich the photon fluid cannot dissipate
energy anymore by emitting sound-like excitations (see subsection 2.3.3). In order to further
investigate the sound-like regime of the dispersion, we set the probe wave-vector to zero.
In that case, the wave-packets in the cell exit plane are separated by 2cs,effL; we can then
measure how the sound velocity increaseswith the background intensity. The data are shown
on figure 4.12(a). The red circles and the grey diamonds are the results obtained from two
measurements performed successively, at the same laser detuning and vapor temperature.
As you may have seen, the theoretical prediction (black line) matches the data prettywell,
indicating that cs,eff scales with the square-root of the background fluid density, as expected.
It is worth mentioning that the nonlinear refractive index n2 is measured independently
(using the ring counting technique of subsection 2.3.2), which sets the only parameter in the
theoretical model. The results from the ring counting measurement are shown on figure (b).
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Figure 4.12: (a): Speed of sound cs as function of the pump intensity I0. The red circles and
the grey diamonds represent two sets of data taken successively at the same laser detuning
and vapor temperature. The sound velocity increaseswith the square root of I0, as expected.
The theoretical prediction (black line) matches the data pretty well. No free-parameter
is needed because the nonlinear refractive index n2 has been measured independently,
using the ring counting technique of subsection 2.3.2. The uncertainty on cs (green area)
derives from the uncertainty on n2. (b): Ring-counting measurement. The self-phaseΦNL
accumulated by a Gaussian beam propagating through the cell is measured as function of
the beam intensity. The nonlinear refractive index is obtained by fitting the datawith a line.
We find n2 = 3.3± 0.2×10−11 m2/W.
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ii Discrepancy at high fluid densities

The data shown on figures 4.11(a) and (b) have been obtained at low background densities.
Aside from the fact that the plateau at low k⊥ is longer than expected on figure 4.11(a),
the experimental observations match well with the prediction of the Bogoliubov’s theory
in that case. Nevertheless, the situation is more complicated at high background densities.
Figure 4.13(a) shows the group velocitiesmeasured as function of k⊥ for various fluid powers.
The data plotted on figure 4.11(a) have been reported on this graph (circles). As you can see,
the data points form a dip when the fluid power Pf is equal to 350 or 525mW. Its location
(kdip ' 1.8×104 m−1) does not depend much on the background power and roughlymatch
the end of the plateau formed by the data points, at low k⊥, when Pf = 175mW. Moreover,
the depth of the dip increases withPf while its bottom remains at the same height (2mrad).
As on figure 4.11(a) the theoretical group velocities in local (black dashed line) as well as in
nonlocal mediums (black solid line) have been plotted as function of k⊥ for Pf = 525mW.
As you can see, both models correctly predicts the value of the measured group velocity
when k⊥ goes to zero. This is why the measured sound velocity still matches the theory on
figure 4.12(a). However, neither the local nor nonlocal description is able to explain the dip.
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Figure 4.13: (a): vg as function of k⊥ for different fluid powersPf . The experimental data
shown on figure 4.11 have been reported on this graph (red circles). When Pf is equal to
350 or 525 mW, the data exhibit a dip, whose location does not seem to depend much on
the fluid power (that is, on ∆n). The depth of this dip increases with Pf while its bottom
remains at the same height. The black dashed and solid lines are the theoretical predictions
in local and nonlocal mediums respectively, for Pf = 525 mW. Taking nonlocality into
account allows to better describe the asymptotic trend of the experimental data at high k⊥.
However, it does not explain why the dip appears. Surprisingly, the theory still match the
data when k⊥ tends to zero. (b): Ring-counting measurement. The value of n2 used in (a)
to plot the theoretical predictions is measured experimentally using the ring-counting
technique of subsection 2.3.2; we find n2 = 3.1± 0.2×10−11 m2/W.
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Figure 4.14: Envelope of the intensity profile along x in the output plane as function of k⊥
for different ballistic transport length scales ld. The realistic situation is shown on the left.
On figures (b) and (c), the minimum distance between the wave-packet is not anymore
obtained at k⊥ = 0 but for a wave-vector slightly larger than kξ (white line). This distance
decreases when ld increases. Nonlocality could therefore have explained the dip observed
on figure 4.13. However, the values of ld atwitch this effect significantly impacts the distance
between the wave-packets are very large. The theoretical predictions are plotted in black
solid and black dashed. Parameters: ∆n = 1.0×10−5, L = 7.5 cm and α = 0.

At first, we thought it was due to nonlocality, as it is known tomodify the dispersion relation
(and the group velocity) in away that could have explained its appearance on figure 4.13(a).
The effects of diffusive nonlocality on the dispersion are investigated in [52] for instance.
The envelope of the intensity profile along x in the cell output plane has been plotted as
function of k⊥ on figure 4.14, for different values of the ballistic transport length scale ld.
Indeed, the distance between the wave-packets (which is proportional to the group velocity)
does not continuously increase with k⊥ on figures (b) and (c) but rather exhibits aminimum
located at a wave-vector slightly bigger than kξ (white line). This feature starts appearing
as soon as nonlocality is strong enough to create an inflexion point in the dispersion relation
(see figure 2.2) and is more and more pronounced as ld increases. However, the values of ld
at which nonlocal effects induce a dip comparable to what is observed on figure 4.13(a) are
completely unrealistic. At T = 150 ◦C, the nonlocal ballistic length scale is around 8µm.
For such a value, nonlocality only generates a plateau at low k⊥, as can be seen on figures
4.13(a) (black line) and 4.14(a), and allows to better describe the asymptotic trend of the
data points at high k⊥, as already mentioned in the previous paragraph.

The causes beyond the emergence of the dip at high background densities on figure 4.13(a) lie
thus elsewhere. In the next paragraph, we investigate the possibility that the dip may arise
fromdestructive interferences between the counter-propagating Bogoliubov wave-packets.
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Figure 4.15: Envelope of the intensity profile along x in the output plane as function of k⊥,
for a probewidthw0,x of 150µm(a) and 450µm(b) respectively. In figure (a), the envelopes
of the wave-packets are fully separated in the cell exit plane. This is not anymore the case
on figure (b). Interference between the upward- and downward-movingwave-packets occurs
in that case. Depending on the probe wave-vector, the envelope of the density modulation
exhibits two distinct peaks (destructive interference) or just one (constructive interference).
Figure (c) shows the intensity at x = 0 in the exit plane as function of k⊥ forw0,x = 450µm.
It oscillates in a similar way as cos [2ΩB(k⊥L] (black solid line), that describes the beating
between two counter-propagatingBogoliubovmodes at k⊥. The amplitude of the oscillations
is damped because the overlap between the wave-packets decreases with k⊥. Parameters:
∆n = 1.0×10−5, L = 7.5 cm and α = 0.
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iii Quasi-particle interferences: experimental evidence

So far, we have supposed that thewave-packetswere spatially separated in the cell exit plane,
or, in other words, that the criterion of paragraph 4.2.1 iii was fulfilled. If this is not the
case anymore, we expect interferences between counter-propagatingwave-packets to occur.
This is indeed what we observe on figure 4.15(b), where the width of the probe beam ω0,x
at the entrance plane is 450 µm, three times larger than on figure (a).On these two figures,
the envelope of the intensity profile along x in the output plane is plotted as function of k⊥.
While the wave-packets on figure (a) are fully separated after propagation (whatever k⊥),
they overlap at low wave-vectors on figure (b) and interfere therefore one with each other.
Figure (c) shows a cut of the 2D map (b) along the horizontal axis (x = 0). As you can see,
the intensity I(x = 0) (blue line) oscillates in a similar way as the function cos [2ΩB(k⊥)L]
(black line), describing the beating between two counter-propagating Bogoliubovmodes at
±k⊥ in the transverse plane. The overlap between the two wave-packets decreaseswith k⊥,
explaining thus why the oscillations of the blue curve are damped along the horizontal axis.
When interferences are destructive, the wave-packets are well separated and the 1D two-
Gaussian fit, used to extract the output spacing between them, gives the expected value for d.
Reversely, when interferences are constructive, the intensity in between the wave-packets
strongly increases, which can induce an error in the estimation of dby the fitting procedure.

So as to check if quasi-particle interferences are observable in experiments, I have plotted on
figure 4.16 the experimental envelope of the intensity profile (measured in the cell exit plane)
as function of k⊥. The 2D intensity distributions shown on the maps (a), (c), (d) and (e)
are obtained by interpolating the experimental data, using a spline interpolation method.
Let’s first compare the maps (a) and (b). The latter shows the results we obtain by solving
numerically theNLSE in 2D for the same parameters as in (a):Pf = 350mW,ω0,x = 180µm
and ω0,y = 300 µm. We also take absorption into account in simulation. As you can see,
the maps (a) and (b) look pretty similar. A destructive interference between the counter-
propagatingwave-packets occurs at k⊥ ' 1.6×104 m−1 on both figures. This exactlymatches
the dip location on figure 4.13(a). Moreover, the positions of the wave-packets provided by
the two-Gaussian fit onmap (b) (black dashed lines) deviate from the theoretical predictions
(black solid lines) when k⊥ gets closer to 1.6×104 m−1. More precisely, the distance between
the wave-packets is under-estimated by the fitting procedurewhen a destructive interference
occurs at low k⊥. This is mainly why a dip appears in the data shown on figure 4.13(a).

We can go further by comparing the wave-vectors at which interferences occur in simulation
and in experiments. The stripe at the bottom of figure (b) shows the Laplacian∇2 I(x, k⊥)
of the intensity distribution plotted above it, from −0.2 to 0.2 mm. The peaks lying along
this stripe locate the destructive interferences while the dips locate the constructive ones.
On figure (d), the 2D map (a) as well as the stripe of figure (b) have been plotted together.
As you can see, the wave-vectors at which interferences occur in the simulation almost
correspond to the wave-vectors at which they are observed in experiments.We can compare
in a similar manner the results of the simulation with the experimental data obtained for
Pf = 175 mW (c) and Pf = 525 mW (e) respectively. On figure (c), the simulations predict
exactly the wave-vectors at which interferences occur experimentally. The agreement is less
convincing on figure (e) but the simulations still predict pretty well the locations of the
first destructive and the first constructive interferences.
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Figure 4.16: Quasi-particle interferences. On figure (a), the envelope of the intensity profile
in the cell exit plane is shown as function of k⊥, for a fluid power of 350mW. (b)We compare
these experimental data to simulation, solving the NLSE in 2D for the same beam widths
and powers as in experiments. The theoretical positions of the wave-packets centers are
plotted in black solid on figure (b). The black dashed lines are the positions provided by the
two-Gaussian fit. The latter slightly under-estimates the spacing between thewave-packets
when the destructive interference occurs. This is why a dip appears in the data of figure 4.13.
The stripe at the bottom of figure (b) shows the Laplacian ∇2 I(x, k⊥) of the intensity
distribution plotted above (from−0.2 to 0.2mm). The peaks and the dips on this stripe
respectively locate the constructive and destructive interferences visible on the 2Dmap (b).
On figures (c), (d) and (e), thewave-vectors atwhich interferences occur in simulation and
in experiments are compared forPf = 175mW(c),Pf = 350mW(d) andPf = 525 mW(e).
The 2D maps are experimental data while the strips on each figure represent the variation
of ∇2 I(x, k⊥) from−0.2 to 0.2mm, obtained by simulation.



Chapter 5

Optically induced potential in a
fluid of light

In chapter 2, the nonlinear Schrödinger equation describing the dynamics of a photon fluid
in propagating geometry has been derived. In its most general form, this equation involves
an effective potential that can either trap (ie guide) or deflect the light depending on its sign.
Such a potential in photon fluids is created by a local modification of the refractive index.
Inducing, in a controlled manner, local changes in the refractive index might then open up
newpossibilities in studying paraxial photon fluids.We can for instance think about trapping
transversely the light in potentials of any shape. The photon fluid will then behave like a
trapped 2-dimensional Bose-Einstein condensate, which can be interesting to investigate
optical analog of many-body phenomena arising in those systems. We can also think about
studying to what extent the interaction between photons affects the localization of light in
random potentials [99]. Generating a defect on the paraxial photon fluid flow (by means of
a localized negative refractive index modulation) is also a way of probing superfluidity in
our systems, by measuring either the cancellation of the drag force on this defect [29,100],
or the amount of light it scatters at the normal/superfluid transition. This latter point is
what motivates us in finding a way of controlling the refractive index felt by a fluid of light.
In this chapter, I report an all-optical method to achieve this end, which requires to address
at the same time the D1 and the D2 lines of rubidium. I thus first extend the theoretical
description of chapter 1 to the case of a 4-level N-type system. I therefore strongly encourage
you to read chapter 1 before, as most of the notations and concepts I use here have already
been introduced in the latter. In a second part, I discuss how we generate local defects in
the experiments, using quasi Bessel beams; some results of this second section have been
published in: "Attenuation-free non-diffracting Bessel beams", Optics Express, Vol. 27,
Issue 21, pp. 30067-30080 (2019) [101].
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5.1 Modified dielectric response in a N-type atomic system
As we have seen in chapter 1, alkaline vapors are versatile platforms to study nonlinear
optics phenomena since the sign and amplitude of the third-order dielectric susceptibility
χ(3) are easily tunable changing the laser frequency. So far however, we have only slightly
exploited the resources offered by the rubidiumfine and hyperfine structures.Onfigure 5.1,
the sketch of the 3-level system introduced in chapter 1 has been replicated. In this model,
a single coupling field addresses one of the rubidium D-lines.

(a) (b)

Figure 5.1: Sketch of the 3-level system described in chapter 1. The levels |1〉 and |2〉 stand
for the two hyperfine ground states of the D-lines while |3〉 stands either for the fine level
52P1/2 (D1 line) or for 52P3/2 (D2 line). A single laser field (red arrows) couples the ground
states to the excited state. It is detuned from the |2〉 → |3〉 transition by∆. On figure (a),
we assume it only addresses the |2〉 → |3〉. Reversely, this single laser field couples both
ground states to the excited states on figure (b).

If we send a second laser field on the |1〉 → |3〉 transition for instance, we can then locally
control the atomic coherence between states |1〉 and |2〉 and therefore the strength of the
nonlinear susceptibility induced by the first beam on the |2〉 → |3〉 transition. This kind of
"lambda" (Λ) configuration provides the basic framework for studying phenomena such as
Electromagnetically Induced Transparency (EIT) [39]. In the past years, highly enhanced
self-Kerr and cross-Kerr nonlinearity [102] have been experimentally measured by taking
advantage of the atomic resources in three-level EIT systems. However, in all the schemes
that involve two laser fields driving simultaneously the same D-line, interaction between
those fields is likely to occur through four-wave-mixing or stimulated Raman processes.
The strength of this interaction strongly depends on the beams wave-vectors, that defines
the phase-matching condition of the wave-mixing processes. Thismight thus be a constraint
which we do not want to concern ourselves about. In order to locally tune the linear and
nonlinear dielectric susceptibilities induced by one of the two lasers inside the vapor cell,
we can also think about addressing simultaneously bothD-lines. In that case, wave-mixing
is not likely to occur anymore because the beams frequencies are very different from one
another (see figure 1.1). Such a configuration has been depicted on figure 5.2. Levels |1〉
and |2〉 still stand for the lower and upper hyperfine states of 52S1/2.
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• On figure 5.2(a), |3〉 and |4〉 are the fine states 52P1/2 (D1 line) and 52P3/2 (D2 line).
In this 4-level model, we assume that the hyperfine structure of each of these states
can be neglected, which amounts to saying that the lasers detunings ∆d and ∆f are
large compared to the typical hyperfine splitting in 52P1/2 (δD1 ' 213MHz for 85Rb)
and in 52P3/2 (δD2 ' 361 MHz for 85Rb) respectively. The meaning of the indices
"d" and "f" will be explained latter in this section.

• The splitting δD1 between the two upper states of the D1 line is actually significant.
As you may have seen, it is almost twice the value of δD2 . In figure 5.2(b), we thus fully
describe the D1 line, |3〉 and |4〉 standing in that case for the upper and lower hyper-
fine states of 52P1/2 and δ34 = δD1 . I still neglect the hyperfine structure of 52P3/2
(which is represented by the fifth level in this 5-level system).

(a) (b)

Figure 5.2: Four (a) and five-level system (b) in a double N-type configuration.

As we will see later on, driving strongly the D1 line with the "red" laser (λd ' 796 nm)
induces a modulation of the ground state populations, which in turn affects the dielectric
susceptibility induced by the "blue" laser (λf ' 780 nm), as χ depends on the population
difference between ground and excited states. In other words, the red laser locally tunes
the refractive index seen by the blue one, according to its intensity distribution in the
transverse plane. This refractive index modulation δn behaves as a repulsive (δn < 0) or
an attractive (δn > 0) potential for the blue laser, depending on its sign. The areas where
δn < 0 act thus as light-induced wave-guides for the blue laser. "Light guiding light" effects
have been widely studied in a great variety of physical systems [18,103,104] including hot
rubidium vapors. Truscott et al. [104] have demonstrated for instance the guiding of a
probe beam, detuned to the red side of theD2 line, by a powerful Laguerre-Gaussian beam
addressing the D1 line. Reversely, areas where δn < 0 act as impenetrable obstacles on
which the blue light scatters. In this section, I will mainly focus on this second case and
provide a theoretical description of the refractive index change felt by the blue laser when
the red one strongly drives theD1 line. The analytical calculations below are done using the
4-level model of figure 5.2 (a) only. I will sometimes compare the results we obtain with
those provided by numerical simulations of the 5-level system sketched on figure 5.2(b).
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5.1.1 Transit and influx rates
In the 4-level system sketched on figure 5.2(a), the excited states |3〉 and |4〉 are likely to decay
radiatively toward the ground states at the ratesΓ1 ' 2π×5.75MHzandΓ2 ' 2π×6.07MHz
respectively. As already mentioned in chapter 1, atoms enter and leave the beams at the
transit rate Γt; every state can thus decay toward the atomic reservoir at the same rateΓt.
We assume that atoms enter the interacting area either in the ground state |1〉 or in |2〉.

Let us consider the situation depicted on figure 5.3. Two laser fields copropagate inside
the rubidium vapor along the same optical axis. The small red disk on figure 5.3(b) stands
for the transverse cross-section of the red laser in figure 5.2. Inside this region, both beams
overlap and the atoms internal state is driven by the 4-levelmodel sketched on figure 5.3(a).
Outside this disk, only the blue beam in figure 5.2 remains and the atoms internal state is
driven by the 3-level model of figure 5.1(b). Henceforward, this second beamwill be referred
to as the fluid ("f") or probe beam, as it will be used in experiments to create a photon fluid
and probe hydrodynamical features like superfluidity. The small beam lying inside the probe
will be referred to as the defect ("d") or pump beam, since it locally changes the refractive
index experienced by the probe and acts, therefore, as a obstacle into the photon fluid flow.
In our experiment, the probewidth ismuch larger than the pumpone: typically,ω0,d =40µm
and ω0,f = 500 µm. All the atoms reaching the defect have thus approximately travelled a
distance∆ω = ω0,f −ω0,d across the probe. The average time of flight is tf ' ∆ω/u ' 1.6µs
at 400 K. Atoms interact then with the probe beam during 1.6 µs only, which is, generally
speaking of course, short compare to preparation time τ0.

Figure 5.3: Beams configuration in the 4-level N-type system of figure 5.2. Pump (red)
and probe (orange) are copropagating along the z axis. In experiments, we typically set
the beam widths ω0,d and ω0,f to 40 µm and 500 µm respectively.
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This parameter τ0 measures the time an atom needs in order to be prepared in the steady-
state by the laser field. It depends on a large set of parameters, including the temperatureT ,
the probe detuning ∆f = ωf−ω24 and the Rabi frequencies Ω14 and Ω24. The fraction β of
atoms prepared in the steady-state for such a set of parameters can be evaluated following
the approach developed in [41]. The probability P(t) to reach the equilibrium after a time t
is given by: P(t) = 1− e−t/τ0 . The preparation time τ0 is found in practice by computing
the real parts of the eigenvalues of the Bloch matrix M in equation (1.58); τ0 is finally
defined as the inverse of the smallest of these real parts. In other words, τ0 evaluates the
duration of the transient regime associated to the slowest eigenstate to reach equilibrium.
A way of roughly describing the situation would therefore be to consider that a fraction
β = P(tf ) of atoms is effectively prepared in the steady-state while the remaining ones
enter the defect area in their initial state, without interacting at all with the probe field.
Moreover, if we assume that the atoms are − before entering the probe − in a mixture
of states |1〉 and |2〉 described by the Boltzmann statistics, the influx rates Γ(1)

t,d and Γ(2)
t,d

of the 4-level N-type model on figure 5.2(a) are given by the following formula:

Γ(1)
t,d =

[
(1− β)G1 + β

(
ρ in

11 + ρ in
44
2

)]
Γt,d, (5.1)

Γ(2)
t,d =

[
(1− β)G2 + β

(
ρ in

22 + ρ in
44
2

)]
Γt,d. (5.2)

In equations (5.1) and (5.2), ρ in
ii stands for the proportion of atoms prepared by the

probe laser in state |i〉 before they reach the defect area. The degeneracy weight Gi is still
defined by: Gi = gi/(g1 +g2) (gi being the degeneracy factor of state |i〉). The transit rate
Γt,d is equal to 2u/

√
π ω0,f as usual. The fraction β = P(tf ) has been plotted as function

of the probe power and detuning on figure 5.4 for T = 400 K. At this temperature and
for ω0,d = 40 µm, the transit rate Γt,d is about 6.4 MHz (ie Γt,d/ΓD1 ' 18%).
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Figure 5.4: Fraction β = P(tf ) of atoms prepared in the steady-state when they reach the
defect beam as function of ∆f (a) and Pf (b). At fixed fluid power, P(tf ) increases by
getting closer to resonance. Similarly, it increases at fixed detuning with the fluid power.
Parameters: w0,f = 500 µm, w0,d = 40 µm and T = 400 K.
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• At high power and small detuning (ie when Ω14,Ω24 � ∆f ), the probe field quickly
drives the atomic internal state to the steady-state. Atoms are therefore almost all
prepared by the probe in that case and β ' 1, as can be seen on figures 5.4(a) and (b).

• Reversely, if Ω14,Ω24 � ∆f , there are only few atoms prepared by the probe beam.
The other ones reach thus preferentially the defect in state |2〉, since G1 < G2.

5.1.2 Optical-Bloch equations and steady-state solution
Within the interaction picture and under the dipole and rotating wave approximations,
one can derive the Bloch equations associated to the 4-level system sketched on 5.2 (a),
using the semiclassical approach detailed in the first chapter. At the end of the day:

dρ11
dt = −Γt,d ρ11 + ΓD1

2 ρ33 + ΓD2
2 ρ44 + i

2 (Ω∗d ρ31 − Ωd ρ13) + i
2

(
Ω∗f ρ41 − Ωf ρ14

)
+ Γ(1)

t,d
dρ22
dt = −Γt,d ρ22 + ΓD1

2 ρ33 + ΓD2
2 ρ44 + i

2 (Ω∗d ρ32 − Ωd ρ23) + i
2

(
Ω∗f ρ42 − Ωf ρ24

)
+ Γ(2)

t,d
dρ33
dt = − (Γt,d + ΓD1) ρ33 − i

2 (Ω∗d ρ31 − Ωd ρ13)− i
2 (Ω∗d ρd − Ω23 ρ23)

dρ44
dt = − (Γt,d + ΓD2) ρ44 − i

2

(
Ω∗f ρ41 − Ωf ρ14

)
− i

2

(
Ω∗f ρ42 − Ωf ρ24

)
dρ21
dt = −γ̃21 ρ21 + i

2 Ω∗d ρ31 − i
2 Ωd ρ23 + i

2 Ω∗f ρ41 − i
2 Ωf ρ24

dρ31
dt = −γ̃31 ρ31 + i

2 Ωd ρ21 − i
2 Ωf ρ34 + i

2 Ωd (ρ11 − ρ33)
dρ32
dt = −γ̃32 ρ32 + i

2 Ωd ρ12 − i
2 Ωf ρ34 + i

2 Ωd (ρ22 − ρ33)
dρ41
dt = −γ̃41 ρ41 + i

2 Ωf ρ21 − i
2 Ωd ρ43 + i

2 Ωf (ρ11 − ρ44)
dρ42
dt = −γ̃42 ρ42 + i

2 Ωf ρ12 − i
2 Ωd ρ43 + i

2 Ωf (ρ22 − ρ44)
dρ43
dt = −γ̃43 ρ43 + i

2 Ωf ρ13 + i
2 Ωf ρ23 − i

2 Ω∗d ρ41 − i
2 Ω∗d ρ42

(5.3)

Equations (5.3), together with the closure relation: Tr (ρ̂) = 1, constitute a close set of
Bloch equations. As the dipole moment µ13 and µ23 are equal − see for instance (1.6) −
Ω13 =Ω23 =Ωd. Similarly, Ω14 =Ω24 =Ωf . The Rabi frequencies Ωd and Ωf are defined by
Ωd = Ed µd/~ and Ωf = Ef µf/~, where Ed = 1

2

(
Ed eikdz + cc

)
and Ef = 1

2

(
Ef eikf z + cc

)
,

Ed,f , kd,f and ωd,f being respectively the complex envelopes, the wave vectors and the
frequencies of the defect and probe beams. We also define the quantities γ̃21 = γ21 + iδ0,
γ̃31 = γ31 − i(∆d − δ0), γ̃32 = γ32 − i∆d, γ̃41 = γ41 − i(∆f − δ0), γ̃43 = γ43 − i∆f and
γ̃42 = γ42 − i(∆f −∆f ) for the sake of clarity. The coherence decay rates are given by:
γij = 1

2(Γi+Γj)+γcol, where Γi is the decay rate of state |i〉 (for instance, Γ3 = Γt,d+ΓD1)
and γcol the collision-induced decoherence rate. Finally, ∆d = ωd−ω23 and ∆f = ωf−ω24
are the defect and probe detunings with respect to the |2〉→|3〉 and |2〉→|4〉 transitions.

The 4-level system reaches the steady-state after a given time of evolution. At that point,
the first order time derivatives are zero in (5.3). We should not expect to get a compact
expression for the solution of the resulting matrix equation in that case. One of the options
left to us consist in solving the steady-state Bloch equations iteratively, assuming that the
driving of theD1 line by the defect is much more efficient than the driving of theD2 line by
the probe, or in other words, that Ωf � Ωd. This kind of perturbative approach has been
used in [105] to find the steady-state solution of a N-type model in an EIT configuration:
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two intense laser fields (namely, the coupling and switching fields) address respectively the
|2〉 → |3〉 and |2〉 → |4〉 transitions, while a less powerful one probes the |1〉 → |3〉 transition.
In our case, the assumption Ωf � Ωd is not necessarily fulfilled, as the probe laser (that is,
the fluid) is far detuned from resonance, which allows to increase its intensity (and thusΩf )
while remaining below the saturation threshold Is(∆f ). However, the linear variation δn(1)

of the refractive index felt by the probe beambetween inside and outside the defect area does
not depend on the probe strength, by definition. Therefore, the first order expansion in Ωf

of the stationary Bloch equations provides an exact expression for δn(1) whether or not the
condition Ωf � Ωd is fulfilled. Following this comment, I thus derive in the next section
the expression of δn(1) and study how it varies as function of ∆d, ∆f and Ωd. In parallel,
I present the results obtained with the dressed-state formalism, which is not only aesthetic
but provides a physical understanding about how the optical defect is generated.

5.1.3 Linear variation of the refractive index at the defect position

i Perturbative approach

LetM stands for the steady-state Bloch matrix. The steady-state matrix equation can then
be decomposed as follows: M ρ = (M0 +Mf )ρ = 0, where M0 and Mf are respectively
the Ωf -independent and -dependent parts of M . Since we assume Ωf � Ωd, the density
matrix elements can be obtained iteratively as ρij = ρ(1)

ij +ρ(2)
ij +ρ(3)

ij + ... and the nth step
of the expansion is given by:

M0 ρ(n) = −Mf ρ(n−1) (5.4)

The zeroth order equation reads: M0 ρ(0) = 0. It basically describes the steady-state of the
4-level system sketched on figure 5.2(a) when the probe (blue arrows) has been switched off.
In that case, the 4-level system reduces to a 3-level one and the zeroth-order equation
above is the same as (1.58) when Ω13 = Ω23 = Ωd. Using the results of chapter 1, one can
thus compute the zeroth order density matrix elements. The last three equations in (5.3)
can then be solved together in the steady-state. The resulting matrix equation reads:

−γ̃41 0 − i
2 Ωd

0 −γ̃42 − i
2 Ωd

− i
2 Ω∗d − i

2 Ω∗d −γ̃43



ρ(1)

41
ρ(1)

42
ρ(1)

43

 = − iΩf

2


ρ(0)

11 + ρ(0)
21

ρ(0)
22 + ρ(0)

12
ρ(0)

13 + ρ(0)
23

 , (5.5)

and can be inverted in order to obtain ρ(1)
41 , ρ

(1)
42 and ρ(1)

43 as follows:

ρ(1)
41 = Ωf

γ̃42 Ωd

(
ρ(0)

13 + ρ(0)
23

)
+ i

[(
|Ωd|2 + γ̃42γ̃43

) (
ρ(0)

11 + ρ(0)
21

)
− |Ωd|2

(
ρ(0)

22 + ρ(0)
12

)]
γ̃41 |Ωd|2 + γ̃42 |Ωd|2 + 4 γ̃41γ̃42γ̃43

,

(5.6)

ρ(1)
42 = Ωf

γ̃41 Ωd

(
ρ(0)

13 + ρ(0)
23

)
+ i

[(
|Ωd|2 + γ̃41γ̃43

) (
ρ(0)

22 + ρ(0)
12

)
− |Ωd|2

(
ρ(0)

11 + ρ(0)
21

)]
γ̃41 |Ωd|2 + γ̃42 |Ωd|2 + 4 γ̃41γ̃42γ̃43

,

(5.7)

ρ(1)
43 = Ωf

γ̃41 Ω∗d
(
ρ(0)

22 + ρ(0)
12

)
+ γ̃42 Ω∗d

(
ρ(0)

11 + ρ(0)
21

)
+ i γ̃41γ̃41

(
ρ(0)

13 + ρ(0)
23

)
γ̃41 |Ωd|2 + γ̃42 |Ωd|2 + 4 γ̃41γ̃42γ̃43

. (5.8)
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Inside the defect area, the linear response of the vapor to the probe field is characterized by
the linear dielectric susceptibility χ(1)

f,in = 2N
ε0Ef

(
µ14 ρ

(1)
41 + µ24 ρ

(1)
42

)
. The linear variation of

the refractive index felt by the probe between inside and outside the defect is thus given by:

δn(1) = n(1)
in − n

(1)
out '

1
2 Re

[
χ(1)
f,in − χ(1)

f,out

]
(5.9)

where n(1)
in and n(1)

out are the linear refractive indices seen by the probe inside and outside the
defect area respectively. The real part of the susceptibility χ(1)

f,in is plotted on figure 5.5(a)
as function of ∆d and ∆f , and the linear index modulation δn(1) on 5.5(c) as function of∆d,
at a fixed probe detuning ∆f = −2π×2 GHz and for different defect powers. The simulations
have been performed for w0,d = 50 µm, w0,f = 0.5 mm and T = 415 K. Doppler broadening
has been taken into account.
As you can see, the spectrum of χ(1)

f,in is relatively complex. Let’s analyse it step by step.
When the defect beam is highly red-detuned it does not drive the |2〉 → |3〉 transition very
efficiently and even less the |1〉 → |3〉 transition. In that case, cutting the 2Dmap along some
vertical line will make the resulting profile look like the plot on figure 1.10(a). Nevertheless,
on figure 1.10(a), the centers of the |1〉 → |4〉 and the |2〉 → |4〉 transition lines lie exactly
at the transition frequencies ω14 and ω24. On figure 5.5(a), even when the defect beam is
highly red-detuned, the lines centers are slightly blue-shifted from the transition frequencies
(black dotted lines). This light-shift can be seen as the AC analog of the Stark-effect [106],
that shifts the spectral line of atoms andmoleculeswhen submitted to constant electric field.
It increases as Ω2

d/4|∆d| at large detunings. Here, Ωd ' 2π×4.3GHz, which explains why at
tens of gigahertz detunings, the light-shift is still clearly visible. When∆d = −2π×10GHz
for instance, it is about 2π×470 MHz. The defect beam is intense enough to off-resonantly
drive the rubidium D1 line.
This is also reflected in the amplitude of the spectral lines. On figure 1.10(a), the amplitude
of Re [χ] close to ∆f = 0 is larger than close to ∆f = δ0 (where δ0 is the hyperfine splitting
between ground states), because atoms are more likely to get inside the beam in state |2〉,
which ismore degenerated. As the Rabi frequency of the probe is small (Ωf ' 2π×4.3MHz),
atoms will predominantly reach the defect area in state |2〉. But as soon as they get inside,
theywill be pumped by the defect beam, from state |2〉 to state |1〉 for instance when it is
moderately red-detuned. This is why the amplitude of the real part of χ(1)

f,in is higher close
to ∆f = δ0 than to ∆f = 0 in that case.
So far, we have only discussed what happens when the defect beam is far from resonance.
When it drives |1〉 → |3〉 (resp. the |2〉 → |3〉) resonantly, the |1〉 → |4〉 (resp. |2〉 → |4〉)
transition line splits into two. This effect is known as the Autler-Town splitting [40] and is
qualitatively understood as follows. By driving resonantly the |1〉 → |3〉 (resp. |2〉 → |3〉)
transition line, the defect quickly modulates the ground state population ρ(0)

11 (resp. ρ(0)
22 ),

which oscillates at the Rabi frequency Ωd. The linear absorption of the probe beam on the
|1〉 → |4〉 (resp. |2〉 → |4〉) transition is thus also modulated at Ωd, creating sidebands on
the probe absorption spectrum, the Autler-Town lines, visible on the absorption profile of
figure 5.5(b) where the fluid frequency is scanned for ∆d = 0. The same features can be
observed on figure 5.5(a), as real and imaginary parts of the susceptibility are related to
each other through the Kramers-Kronig relations. In the following paragraph, I will show
how to precisely describe the Autler-Town splitting as well as the level anti-crossing visible
on figure 5.5(a) using the dressed-sate formalism.
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Figure 5.5: (a) Real part of χ(1)
f,in . The |1〉 → |4〉 and |2〉 → |4〉 spectral lines split into two

when the defect beam is at resonance with |1〉 → |3〉 (∆d = δ0) and |2〉 → |3〉 (∆d = 0)
respectively (Autler-Town effect). The energy shifts ~δa, ~δb and ~δc of the dressed states
|a, n〉, |b, n〉 and |c, n〉 have been plotted (black lines) as function of the defect detuning.
(b) Imaginary part ofχ(1)

f,in as function of ∆f (for ∆d = 0). TheAutler-Town (AT) sidebands
of the |2〉 → |4〉 transition are clearly visible on the left. The absorption peak on the right
starts being blue-shifted from ∆f = δ0 (' 6.8 GHz here, since we deal with rubidium 87).
(c) Linear index modulation for different defect powers Pd. Parameters: w0,d = 50 µm,
w0,f = 500 µm and T = 415 K. In (a-c), Pf = 10 µW. In (a-b), Pd = 200 mW.

ii Dressed-state formalism

The analytical expressions of the first-order density matrix elements allow us to calculate
the weak probe field response for arbitrary values of the parameters and provides a detailed
description of how this response is modified by the defect field. Nevertheless, the algebraic
complexity of equations (5.6), (5.7) and (5.8) prevents us from getting a simple physical
insight into the behaviour of χ(1)

f,in . An alternative approach is the so-called dressed-state
formalism, which is particularly convenient for describing the photon-atom interaction in
the strong coupling limit. Since detailed descriptions of the dressed-state theory can be
found elsewhere [107–109], I will limit myself to applying it to the current situation.

The coupling between theD1 line and the defect beam can be modeled by a 3-level system,
interacting with a quasi-resonant laser field, whose Hamiltonian is: Ĥ = ĤF + ĤA + ĤI.
ĤF, ĤA and ĤI are the atomic, the field and the interaction parts of Ĥ respectively [110]:

ĤF = ~ωd â†dâd
ĤA = ~ω21 |2〉 〈2|+ ~ω31 |3〉 〈3|
ĤI = ~Ω∗d

2 âd |3〉 〈1|+
~Ωd

2 â†d |1〉 〈3|+
~Ω∗d

2 âd |3〉 〈2|+
~Ωd

2 â†d |2〉 〈3| ,
(5.10)

where âd and â†d are the annihilation and creation operators of a photon in the defect beam.
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We set the ground state energy to 0. Let’s |i, n〉 be the eigenstate of the uncoupled atom
plus field Hamiltonian, where i labels the atomic state while n stands for the number of
photons in the defect field. Under the quasi-resonance condition, the levels |1, n〉, |2, n〉 and
|3, n− 1〉 become a quasi-degenerate triplet ξn; the energy levels of the uncoupled atomplus
field system split thus into such triplets, consecutively separated by the photon energy ~ωd.
The interaction Hamiltonian introduces couplings between states lying in the same triplet.
In the basis {|1, n〉 , |2, n〉 , |3, n− 1〉}, Ĥ is given by:

Ĥn = Ĥ − n ~ω 1 =

 0 0 ~Ωd
2

0 ~δ0
~Ωd

2
~Ω∗d

2
~Ω∗d

2 ~(δ0−∆d)

 , (5.11)

where 1 stands for the 3×3 identity matrix. The three dressed states of ξn − |a, n〉, |b, n〉
and |c, n〉 − and their energies − ~δa, ~δb and ~δc − are obtained by diagonalizing the
Hamiltonian Ĥn in equation (5.11). As long as Ωd 6= 0, the matrix on the right-hand side
of (5.11) has rank 3, whatever the value of ∆d. The dressed states are thus always given by
a linear superposition of all the unperturbed states |1, n〉, |2, n〉 and |3, n− 1〉 in the triplet.
The fourth level in the dressed-state representation is simply given by |4, n〉 as it is not
coupled to the defect field. When the probe frequency is tuned over the whole D2 line,
transitions from |1, n〉 or |2, n〉 to |4, n〉 occur. Moreover, the eigenstates of Ĥn contain all
|1, n〉 and |2, n〉. In the dressed-state picture, there are therefore three allowed transitions
between the excited state |4, n〉 and the dressed states of the nth multiplicity. That is why
three peaks are visible on the absorption spectrum of figure 5.5(b). The shifts ~δi = ~δ0−Ei
of the dressed-state energies from the unperturbed energy of state |2〉, ~δ0, have been plotted
as function of ∆d (in h units) on figure 5.5(a) (black lines). The dressed-state formalism
correctly predicts the splitting and the level anti-crossing observed in figure 5.5(a).

5.1.4 Total variation of the refractive index at the defect position
The definition of the refractive index modulation seen by the probe beam at the defect
position can be extended to take nonlinear contributions into account. The total variation
of refractive index between inside and outside the defect beam cross-section is given by:

δn = nin − nout '
1
2 Re

[
χf,in − χf,out

]
. (5.12)

The susceptibilities χf,in and χf,out are obtained by solving numerically the steady-state
matrix equations for the 4- and the 3-levelmodels respectively. The resulting refractive index
modulation δn is plotted as function of ∆d and ∆f on figures 5.6(a) and (b), with (b) and
without (a) Doppler broadening. These results are compared − on figure 5.6(c) and (d)−
to the index change we get by solving the 5-level N-type model of figure 5.2(b) (describing
more accurately the D1line), with (d) andwithout (c)Doppler-broadening. As you can see,
the latter smooths out the discrepancy between the 4- and 5-level results, indicating that the
4-level model is sufficient to describe the physics at play. As for the linear indexmodulation,
the sign and the strength of δn can be tuned changing the defect and the fluid frequencies.
A positive (resp. negative) δn will locally act as an attractive (resp. repulsive) potential
for the photon fluid. However, in order to ensure the robustness of the fluid of light against
modulational instabilities, the probe should be red-detuned from the |2〉 → |4〉 transition
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(n2 is negative in that case). We are therefore only interested in the region where ∆f < 0
on the 2D maps 5.6(c) and (d), magnified on figures 5.6(e) and (f).
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Figure 5.6: Total refractive index variation at the defect position. (a)-(b): Results of the
calculations for the 4-level systemof figure 5.2(a). The black lines represent the energy shift
(in h units) of the the three dressed states composing the triplet ξn (see paragraph 5.1.3 ii).
(c)-(d) Results of the calculations for the 4-level systemof figure 5.2(b). The dresses-state
approach introduced in the previous paragraph is extended to describe the full hyperfine
structure of the D1 line. The black lines represent the energy shift (in h units) of the four
dressed states composing the quadruplet ξn in that case. The central ones are separated by
δ34 ' 815 MHz (for rubidium 87), when ∆d = δ0/2. On figures (e) and (f), we zoom in the
region where ∆f < 0 (since in our experiments,∆f must be negative to ensure thatn2 < 0).
At a given probe detuning (for instance ∆f = −2 GHz, black dotted line), tuning the defect
frequency enables us to generate either attractive (ie guiding) or repulsive potentials into
the photon fluid. Parameters: w0,d = 50 µm, w0,f = 500µm,Pd = 200mW,Pf = 50mW
and T = 415 K. Calculations performed for rubidium 87.

The inside susceptibility χf,in can also be computed by using the dressed-state formalism
introduced in the preceding section. This approach enables, for instance, to isolate in χf,in
the contribution of each dressed-state transition |i, n〉 → |4, n〉, which can help us getting
a deeper insight into the spectra of figure 5.6. In the next two paragraphs, I will therefore
digress a little bit and extend the dressed-state approach of subsection 5.1.3.
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i 4-level system in the dressed-state picture

As in subsection 5.1.3, let’s describe the coupling between the D1 line and the defect field
using the dressed-state formalism. Let’s then |a, n〉, |b, n〉 and |c, n〉 stand for the three
dressed states in the triplet ξn. As already mentioned previously, these states can always
be expressed as a linear superposition of all the unperturbed states in the multiplicity ξn:
|i, n〉 = αi |1, n〉 + βi |2, n〉 + γi |3, n− 1〉 (i lies in {a, b, c}), with |αi|2 + |βi|2 + |γi|2 = 1
(normalization). The coefficientsαi,βi and γi are obtained by diagonalizing Ĥn in eq. (5.11).
Using the normalization of |1, n〉 and the closure relation

∑
i |i, n〉 〈i, n| = 1, it is straight-

forward to show that
∑
i |αi|2 = 1. Similarly,

∑
i |βi|2 =

∑
i |γi|2 =1. The decay rate from

the state |4, n〉 to the dressed state |i, n〉 is given by Γi = 1
2 (|αi|2+|βi|2) Γ2 and

∑
i Γi = Γ2.

The ground states |1, n〉 and |2, n〉 both appear in the expansion of the dressed states on
the unperturbed basis of ξn. These two states are constantly filled by fresh atoms entering
the defect area. Every dressed state in the triplet is therefore associated to a filling rate
Γ(i)
t defined by: Γ(i)

t = 1
2 |αi|

2 Γ(1)
t,d + 1

2 |βi|
2 Γ(2)

t,d, and here again
∑
i Γ(i)

t = Γt,d.
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Figure 5.7: (a) Dressed-state model. The decay rates Ki,j couple the dressed states |a〉, |b〉
and |c〉 together. The blue arrows stand, as usual, for the transit filling and decay rates.
The energy of the dressed state |i〉 is shifted with respect to the unperturbed energy of |2〉
(green horizontal line) by ~δi. I assume the probe beam couples each dressed state to the
unperturbed excited state |4〉 independently (the total optical response is then the sum of
the responses of all the |i〉 → |4〉 transition lines). The dipole moment µ4i (and thus Ωi4)
depends on which transition is addressed by the probe field. (b)Variation of the amplitudes
|αi|2, |βi|2 and |γi|2 for |a〉 (top), |b〉 (middle) and |c〉 (bottom).
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For the sake of correctness, we must also take the decay rate of dressed states into account.
The unperturbed excited state |3, n−1〉 ends up decaying toward level |1, n〉 or level |2, n〉
and releases at that time one photon in the defect field. Since |i, n〉 contains |1, n〉, |2, n〉
and |3, n−1〉 (whatever i), this decay process happens not only in between dressed states
but also within the states themselves. We therefore introduce Kij = 1

2 |γi|
2 (|αj |2+|βj |2

)
Γ1

(i and j lie inside {a, b, c}), which is the decay rate from |i, n〉 to |j, n〉; |γi|2 and |αi|2+|βi|2
are respectively the probability for |i, n〉 of being in the excited state |3, n−1〉 or in one of
the ground states |1, n〉 or |2, n〉. The total decay rate Ki of |i, n〉 is thus finally given by:
Ki=

∑
j Ki,j = |γi|2 Γ1 and, once again,

∑
iKi=Γ1.

For the sake of clarity, all the notations introduced before have been gathered on figure 5.7.
In the dressed-state picture, |a, n〉, |b, n〉 and |c, n〉 can be regarded as ground states for
the excited level |4, n〉. As already mentioned, the energies of the dressed states are shifted
from the unperturbed energy of level |2, n〉 (sketched by the green line on figure 5.7(a))
by ~δa, ~δb and ~δc respectively. Figure 5.7(b) shows the variations of |αi|2, |βi|2 and |γi|2
with ∆d (at Ωd = 2π×4.3 GHz) for |a〉 (top), |b〉 (middle) and |c〉 (bottom).

remark. The decay rate between two states is proportional to the square of the dipole
matrix element between these states. Being an odd operator, the dipole moment d̂ cannot
change the number of photons in the defect field and must therefore couple ξn to adjacent
multiplicities ξn±1 [107]. Consequently, the dressed state |i, n〉 in ξn cannot decay toward
the other states in this multiplicity (as I have supposed above) but toward those in ξn−1.
For a complete and rigorous treatment of spontaneous emission in a dressed-atom system,
the reader may refer to [107,109]. However, our description still provides very good results,
that are in excellent agreement with those obtained by directly solving equation (5.3) in
the steady-state, as we will see later on.

ii Optical Bloch equations in the dressed-state picture

Let’s now derive the Bloch equations associated to the 4-level dressed-state system sketched
on figure 5.7(a). The fluid detuning is still defined by: ∆f = ωf − ω24, where ω24 is the
frequency of the unperturbed |2〉 → |4〉 transition. The laser detuning should then be set
to −δi in order to drive resonantly the transition from |i, n〉 to |4, n〉. The dipole moment
associated to this transition is obtained by evaluating the dipole matrix element between
|i, n〉 and |4, n〉: µi4 = | 〈i, n| d̂ |4, n〉 | = |αi + βi|µf . The Rabi frequency depends thus
on the transition addressed by the probe field. For the sake of simplicity, I will supposed
from now on that the transitions are probed one by one by the probe beam as depicted in
figure 5.7(a). The total optical response is thus obtained by summing the response of each
individual transition. When the probe addresses the |c, n〉 → |4, n〉 transition for instance,
the Optical Bloch equations read:

dρaa
dt = − (Γt,d +Kab +Kac) ρaa +Kba ρbb +Kca ρcc + Γa ρ44 + Γ(a)

t
dρbb
dt = Kab ρaa − (Γt,d +Kba +Kbc) ρbb +Kcb ρcc + Γb ρ44 + Γ(b)

t
dρcc
dt = Kac ρaa +Kbc ρbb − (Γt,d +Kca +Kcb) ρcc + Γc ρ44 + Γ(c)

t + i
2 (Ω∗c4 ρ4c − Ωc4 ρc4)

dρ44
dt = − (Γt,d + ΓD2) ρ44 − i

2 (Ω∗c4 ρ4c − Ωc4 ρc4)
dρ4c
dt = i

2Ωc4 (ρcc − ρ44)− γ̃4c ρ4c
(5.13)
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where γ̃4c = (Γ2 +Kc)/2 + Γt,d− i(∆f − δc). Since the fluid couples only |c, n〉 and |4, n〉,
the dielectric susceptibility χc4 = 2N

ε0Ef µc4 ρ4c is similar to the susceptibility of an atomic
two-level system. We also know, by looking at the real part of γ̃4c, that the decoherence
rate of the |c, n〉 → |4, n〉 transition (that is, the linewidth) is given by (Γ2 +Kc)/2 + Γt,d.
The coherence ρ4c is obtained by solving the steady-state matrix equation below, derived
from the Bloch equations above by setting the time derivatives to zero:



Taa−(Γt,d+Ka) Tba Tca 0 0
Tab Tbb−(Γt,d+Kb) Tcb 0 0
Tac Tbc Tcc−(Γt,d+Kc)

iΩ∗c4
2 − iΩc4

2
iΩc4

2
iΩc4

2 iΩc4 −γ̃4c 0
iΩ∗c4

2
iΩ∗c4

2 iΩ∗c4 0 −γ̃∗4c





ρaa

ρbb

ρcc

ρ4c

ρc4


= −



Γ(a)
t +Γa

Γ(b)
t +Γb

Γ(c)
t +Γc
− iΩc4

2
iΩ∗c4

2


(5.14)

where Tij = Kij − Γj (for i and j in {a, b, c}). Moreover, if we suppose that Γ1 = Γ2 = Γ
(which is a reasonable assumption as Γ1/Γ2 ' 0.95), thematrix T becomes symmetric since:
Tij ' −1

2
(
|αi|2 + |βi|2

) (
|αj |2 + |βj |2

)
Γ. In that case, χc4 reads as follows:

χc4 = 2N
ε0Ef

µc4 ρ4c '
α4c(0)
ω4c/c

i− 2
(∆f−δc
γc+γ4

)
1 + 4

(∆f−δc
γc+γ4

)2 +
(Ef
Es

)2 , (5.15)

where α4c(0) is the linear line-center absorption coefficient and Es the line-center saturation
field strength, which is defined by:

Es = ~
µc4

√
γc + γ4

[
γaγbγc − (Taaγbγc + Tbbγaγc + Tccγaγb)
2γaγb + (Tbc − 2Tbb) γa + (Tac − 2Taa) γb

]1/2
. (5.16)

In equations (5.15) and (5.16), the total decay rates γa, γb, γc and γ4 of the dressed-states
|a, n〉, |b, n〉, |c, n〉 and |4, n〉 have been introduced. For i lying in {a, b, c}, γi = Ki + Γt,d
whereas γ4 = Γ + Γt,d. The off-resonance saturation intensity can finally be expressed as:
Is(∆f ) = Is(0) [1 + 4 (∆f − δc)2/(γc + γ4)2 ] where Is(0) = 1

2ε0c|Es|
2. The dressed-state

formalism provides therefore a value for the linewidth as well as for the saturation intensity
of the |c, n〉 → |4, n〉 transition. At fixed defect power Pd and detuning ∆d, equation (5.15)
predicts then how the |c, n〉 → |4, n〉 transition line saturates and broadens increasing the
fluid power, which is far from being obvious looking at the steady-sate solution of 5.3.
One can similarly derive equations for χa4 and χb4. The total susceptibility χf,in inside the
defect cross-section is finally given by: χf,in =

∑
i χi4. The imaginary part of χf,in has been

plotted on figure 5.8 as function of ∆f , by using the dressed state approach (blue curve)
and by directly solving the steady-sate matrix equation derived from 5.3 (dashed line).
The defect detuning was set to zero and we use for the computation the same parameters
as in figure 5.6. The agreement between both descriptions is excellent.
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5.1.5 Saturation of δn
In photon fluid experiments, we constantly need to change the fluid power Pf in order to
tune the nonlinear change of refractive index ∆n = n2 I0 and access different flow regimes
(superfluid, supercritical, etc). In the present situation, acting on the fluid power does not
only modify the fluid properties but also the defect strength in two different ways:
• A change in the fluid power will first impact the preparation rates by either increasing
or decreasing the number of atoms prepared in the steady-state.
• Increasing the fluid power can also make the refractive index modulation δn quickly

saturate and results consequently in a reduction of the defect strength.
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Figure 5.8: Comparison between the dressed-state approach and the numerical inversion
of the steady-state matrix equation derived from 5.3. Parameters are the same as for 5.6.

.

Both these effects contribute to modify the defect amplitude when the fluid power changes,
which is not desirable in photon fluid experiments where the aim is rather to study how
a fluid of light flows in a fixed potential landscape δn(r⊥) as function of ∆n in particular.
Therefore, the question is: can we change the fluid power while keeping the defect depth
(or height, depending on the sign of δn) almost constant? In order to answer this question,
we have plotted on figure 5.9(a)-(e) the evolution of δn as function of∆d andPf , for different
values of Pd. In all these plots, the probe detuning is fixed to ∆f = −2π×3 GHz which is
closed to the experimental value. The temperature is 415 K and the widths of the beams
are, as usual, ω0,d = 50 µm and ω0,f = 500 µm. Let’s first focus on 5.9(b). This figure is
obtained for a relatively low defect power, since Pd = 10 mW (that is, Ωd ' 2π× 1 GHz)
in that case. The probe power Pf varies in eight steps from 25 (blue) to 200 mW (purple).
There are two notable features in this plot. First, a dip, at ∆d = 0 and second, a peak,
located at ∆d = δ0 (black dashed line). When ∆d ' 0, atoms are pumped from state |2〉 to
state |1〉 by the defect beam. The probe beam, red-detuned from the |2〉 → |4〉 transition,
interacts therefore with a lower density of atoms in state |2〉 inside than outside the defect
cross-section, hence the negative δn. Reversely, when ∆d ' δ0, atoms are pumped from
state |1〉 to state |2〉, which induces a positive δn this time. Setting the defect detuning
to zero will thus locally generate a repulsive potential in the photon fluid (δn < 0) while
setting it at δ0 will create an attractive (guiding) potential. As you can notice, δn does not
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vary much with the fluid power. The potential height (or depth) will then remains almost
constant increasing Pf , which is precisely what we desire. Figure 5.9(c)-(e) shows the same
as 5.9(b) for higher defect powers (respectively 50, 100 and 200 mW). On 5.9(c) and (d),
the dip and the peak of 5.9(b) are broader but still visible. A new feature, indicated by the
black arrow, that was barely discernible on 5.9(b), starts developing as Pd increases, and
move from left to right. This local variation of δn arises when ∆d satisfies δc(∆d, Pd) = ∆f .
When this condition is fulfilled, the defect beam brings the |c, n〉 → |4, n〉 transition at
resonance with the probe field, by shifting the energy of the dressed state |c, n〉 in such a
way that the probe detuning ∆f is compensated (see figure 5.7(a)). When Pd increases,
the Autler-Town splitting between the two dressed states |b, n〉 and |c, n〉 becomes larger.
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Figure 5.9: (a) shows the evolution of δn as function of the defect detuning ∆d when
the fluid power increases gradually. The saturation by the probe of the |c, n〉 → |4, n〉
transition makes δn strongly depend on Pf , close to ∆d ' −2π×1 GHz. (b)-(e) show the
same as in (a): δn has been plotted as function of ∆d for different fluid powers, ranging
from 25 (blue) to 200 mW (magenta). The black arrow indicates the contribution of the
|c, n〉 → |4, n〉 transition line, when it is resonantly driven by the probe field. Parameters:
w0,d = 50 µm, w0,f = 500 µm and T = 415 K. Results obtained for a 87Rb vapor.

.

In other words, the energy shift δc(∆d,Pd), increases with Pd. Therefore, the point atwhich
the horizontal line defined by∆f = −2π×3 GHz crosses δc on figure 5.5(a) shifts to the right,
explaining why the detuning at which δc(∆d,Pd) = ∆f is blue-shifted when Pd increases.
Moreover, the contribution of the |c, n〉 → |4, n〉 transition line to the inside susceptibility
χf,in seems to get larger and larger when the defect power steps up. WhenPd = 200mW(e),
we might be tempted to set the defect detuning where the dip is the deepest. Nevertheless,
at this detuning (∆d ' −2π×1 GHz), the index modulation δn varies pretty fast with the
probe power: from Pf = 25 mW (blue) to Pf = 200 mW (magenta), δn decreases by half,
because of the saturation of the |c, n〉 → |4, n〉 transition. Figure 5.9(a) shows this effect
more in detail, for the same parameters as in 5.9(e). Let’s summarize all that has been said.
If we look for generating a repulsive potential in the photon fluid, we can either:
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(1) drive resonantly the |2〉 → |3〉 transition with the defect field while keeping its power
sufficiently low in order to neglect the contribution of the |c, n〉 → |4, n〉 transition,
as in figures 5.9(b) and (c). In that case, the physical mechanism underlying the
variation of refractive index at the defect position is optical pumping from |2〉 to |1〉.
This configuration has the benefit of reducing the variations of δnwith the fluid power.
However, as the |2〉 → |3〉 transition is not totally saturated in that case, absorption
of the defect beam along propagation is expected.

(2) completely saturate the D1 line and use the large contribution of the |c, n〉 → |4, n〉
transition when it is resonantly driven by the probe field, that is, when ∆d satisfies
the condition δc(∆d, Pd) = ∆f , as in figure 5.9(e). In that case, variation in the fluid
power is not suitable as it will also change the height of the potential. Nevertheless,
low absorption and self-effects (focusing, defocusing) on the defect field are expected
since the D1 line is highly saturated this time.

5.1.6 Other routes ?
As mentioned in the introduction of this section, several other routes have been investigated
to generate local changes of refractive index in rubidium vapors. We should first mention
the work of Truscott et al. [104], in which the guiding of a probe beam in a donuts-shaped
all-optical wave-guide is demonstrated. Truscott and co-workers used the optical pumping
between the D-lines ground states of rubidium to generate their wave-guide, just aswe do.
Their scheme has been analysed in theworks ofKapoor et al. [111] andAndersen et al. [112],
where the optical Bloch equations of the 5-level system on figure 5.2 are solved numerically.
In this section, we improve their theoretical description using the dressed-state formalism.

More recently, all-optical wave-guiding has been reported inwarmatomic vapors by driving
aRaman transition off-resonantly [113]. This technique can be used to enhance the efficiency
of nonlinear processes at very low light intensities [114]. Other schemes taking advantage
of the coherences between the atomic levels can be used to induce refractive index changes.
Image guiding as for instance be reported using electromagnetically induced transparency
(EIT) in a lambda and double lambda systems [115]. Following thework of Sheng et al. [105],
Silva and co-workers have investigated the possibility of observing superfluid flows of light
in a four-level N-type atomic system [116]. Three lasers are involved in this scheme, referred
to as the probe, the control and the switching fields in [116]. The probe and the control drive
the |1〉 → |3〉 and |2〉 → |3〉 transitions respectively (EIT configuration)while the switching
field adresses the |2〉 → |4〉 transition. The level schematic is the same as on figure 5.2(a).
The fluid of light is formed by the probe beam here. The possibilities offered by this system
are manifold, as it simultaneously allows to control the strength of the nonlinear interaction
experienced by the probe and to imprint refractive index changes using the switching field.
This configuration represents thus a versatile alternative to optical pumping schemes.
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5.2 Optical defect shaping with a Spatial Light Modulator
In the previous section, we have seen how to induce a potential on the photon fluid forming
the probe beam (tuned to theD2 line), by driving theD1 line with an intense and spatially
localized defect field. Up to now, we have put aside the problem of propagation inside the
rubidium cell. We only studied the refractive index modulation created over the transverse
plane at a given position z on the optical axis. At this position, the defect cross-section as
well as the powers of the beams are fixed. Reality is more complex, as we should ideally
maintain the potential height (or depth) all along the propagation inside the cell, in order
for this potential to be "stationary" with respect to the effective time τ = zn0/c. We must
therefore face issues such as the defect beam absorption − thatwillmake the local index
modulation δn vary along z − or its collimation over the whole propagation inside the
rubidium cell. The question is thus: what are the experimental requirements to fulfill,
regarding the probe and the defect beams, in order for the potential to be "stationary"?
I will answer this question from a theoretical point of view first, before explaining in a
second step how these requirements are implemented in our experiments.

5.2.1 Experimental requirements
Our primary goal is to locally generate a potential in the photon fluid (that is, an obstacle)
in order to study how the fluidwill flow around. In the ideal case, this obstacle should remain
unchanged over the propagation, as mentioned above. This basically suggests two things.
First, the defect beam creating the obstacle has to be collimated. In other words, the defect
cross-section should only slightly changes with the propagation distance. Second, the defect
power has to remain (almost) constant along z, that is, the absorption of the defect beam
should be negligible or somehow compensated over the propagation. Moreover, as we saw
in the previous section, increasing the fluid power may also reduce the obstacle amplitude.
For the sake of simplicity, I will suppose that the fluid frequency is sufficiently red-detuned
from the |2〉 → |4〉 transition, so that the fluid transmission thought the cell is above 70%.
For example, let’s consider a 1 mm diameter beam propagating inside a 2.5 cm cell, filled
with a pure vapor of rubidium87. In that case, the beam transmission at 415 K ranges from
83% (Pf = 1 µW) to 89% (Pf = 0.5 W), when the laser frequency is 3 GHz red-detuned
from the |2〉 → |4〉 transition. In such situations, we can neglect the dependence of δn onPf .
Let’s therefore focus on the crux of the issue: the defect beam collimation and absorption.

i Defect beam collimation

The first thing that comes to mind is to focus a Gaussian beam inside the cell to generate
the obstacle. The Rayleigh length zr = πω2

0,d/λd defines, in that case, the typical distance
over which the defect beam is collimated. More precisely, it is the distance from the waist
at which the beam radius increases by a factor

√
2 (in intensity). If we want to collimate

the defect over 2.5 cm (which is the length of the cell we use in experiments), the minimum
width ω0,lim we can reach is about

√
λL/π ' 80 µm. Using the value of the nonlinear index

of refraction n2 reported in 2.3.2 iii (n2 ' 2.1×10−10 m2/W), a 2mmdiameter probe beam
of 200 mW induces an on-axis nonlinear change of refractive index ∆n of nearly 2.6×10−5.
The healing length ξ ∼ 1/k

√
∆n is then about 25 µm, which is less than a third of ω0,lim.
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As we shall see in chapter 6, probing the superfluidity requires a defect that is comparable
in size to ξ. Focusing a Gaussian beam inside the cell to generate the obstacle is therefore
not suitable for our application. Instead, one can think about using non-diffracting beams
such as Airy (parabolic) [117] or zero-order Bessel beams. The latter have been introduced
by Durnin et al. [118] and result from the interference of an infinite number of planewaves
whose relative wave-vectors constitute the generating lines of the so-called Bessel cone.
The radial intensity distribution of zero-order Bessel beams is described by the zero-order
Bessel function of the first kind: a high intensity central peak is surrounded by an infinite
number of concentric rings of decreasing intensity. Although perfect Bessel beams are only
mathematical objects (as they will carry an infinite energy otherwise), spatially limited
(or quasi-) Bessel beams can be realized experimentally. Those beams have found various
applications− in optical trapping [119,120], lasermachining [121], nonlinear optics [122,123]
and imaging [124,125] for instance− as their central cores stay collimated on a distance that
is orders of magnitude longer than the Rayleigh length zr. The diffraction-free feature of
zeroth-order Bessel beamsmake themattractive for our application. They have already been
used in [29] to produce non-diffracting obstacle in superfluid light.
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Figure 5.10: Real part of χd,in as function of ∆d for different defect powers, which varies in
twenty steps from 5 (blue) to 100 mW (magenta). Left: Pf = 10 mW. When the probe is at
resonance with the |c, n〉 → |4, n〉 transition (that is, when ∆d satisfies δc(∆d,Pd) = ∆f ),
it slightly affects the inside susceptibility χd,in, creating peaks in the spectra of Re [χd,in]
(black arrows). These peaks move from left to right when Pd increases. The inset shows
the variation of Re [χd,in] with ∆d and ∆f . Right: Pf = 200 mW. The peaks are still
visible but broader (because of the power broadening of the |c, n〉 → |4, n〉 transition line).
There are points on both graphs at which Re [χd,in] does not depend much on the defect
power Pd; they are located at ∆d = 0, ∆d = δ0/2 and ∆d = δ0. At these detunings, self-
effects on the defect beam are expected to be small. The parameters are: w0,d = 25 µm,
w0,f = 500 µm, T = 415 K and ∆f = −2π×3 GHz. Results obtained for a 87Rb vapor.

.
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However, Bessel beams− such as Gaussian ones− are sensitive to self-effects. For instance,
a radial broadening (resp. compression) of the Bessel beam central peak is expected along
its propagation in self-defocusing (resp. self-focusing) mediums [126]. This is problematic
as it means that the width ω0,d of the defect beam will change along z. In order to know the
defect detunings at which self-effects are the weakest, the real part of the susceptibilityχd,in
has been plotted on figure 5.10 as function of ∆d for different defect and probe powers.
This quantity characterizes the optical response of the rubidium vapor to the defect field.
It also defines the refractive index felt by the defect: nd = 1+ 1

2Re [χd,in]. When the latter
does not depend much on the defect intensity, self-effects are expected to be small. Indeed,
self-focusing or -defocusing arise when the refractive index depends on the beam intensity.
Figure 5.10 shows the spectra ofRe [χd,in] at various defect powers, ranging fromPd = 5mW
(blue) to Pd = 100 mW (magenta), for Pf = 10 mW (left) as well as Pf = 200mW(right).
The simulation has been performed for ω0,d = 25 µm (comparable to ξ), ω0,f = 500 µm
and T = 415 K, as usual. At low defect power, the |1〉 → |3〉 and |2〉 → |3〉 transition lines
are both discernible (as in figure 1.10), but not anymore at high power, where the D1 line is
completely saturated. As you may have noticed, there are values of ∆d for which Re [χd,in]
does not evolve much with the defect power. They are located at ∆d = 0, ∆d ' δ0/2 and
∆d = δ0 respectively. The fact that Re [χd,in] (and, by extension, nd) does not depend on
Pd at ∆d = 0 is particularly interesting, since the best obstacle − at low defect power −
is precisely obtained at this detuning (see figure 5.9(b) for example). Apart from the specific
values of ∆d mentioned above, it seems hard tomakend not dependent onPd. One can think
about over-saturating the D1 line with the defect, that is, making the on-axis Bessel beam
intensity order of magnitude bigger than the saturation intensity. Thatway, theBessel core
will roughly speaking see an an uniform refractive index at positions for which the light
intensity is higher than the saturation intensity. This is of course a very simplified picture.
As far as I know, there is no reference in the literature studying the impact of saturation
on the propagation of Bessel beams. In practice, we do saturate the vapor and it does not
seem to really affect the beam shape (in the cell output plane at least). Moreover, we have
noticed that the best collimation is obtained when the defect is several hundreds of mega-
hertz blue-detuned from the |2〉 → |4〉 transition. In that case, the variation in the width of
the Bessel central peak is less than 10% between the input and the output plane of the cell.

ii Defect beam absorption

Another issue to face is the absorption of the defect light inside the vapor cell. Since the
defect is tuned almost resonantly to the D1 line, strong absorption is expected, at least at
small defect powers. This is indeed what we can see on figure 5.11, where the transmission
t = exp(−αdL) has been plotted as function of∆d, for defect powers ranging from 5mW
(blue) to 100 mW (magenta). On the left, Pf = 10 mW while on the right, Pf = 200 mW.
The vapor cell is 2.5 cm long here. The other parameters are the same as for figure 5.10.
The absorption coefficient αd is defined by: αd = kd Im [χd,in], where kd is the wave-vector
of the defect field. As you can see, absorption is not negligible for ∆d = 0 and ∆d = δ0 at
low defect powers (and can be even stronger decreasing Pd below 5 mW). If we choose
not to fully saturate the D1 line, in order to only take benefit of optical pumping between
ground states to generate the obstacle (as for example in 5.9(b) and (c)), we should then
somehow compensated the defect absorption over propagation. A method − based on the
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on-axis shaping of the Bessel beam intensity profile − is presented to this end in the next
subsection. Reversely, if we choose to work in the saturating regime, that is, a high defect
powers, absorption is not anymore an issue, since transmission rapidly grows above 90%.
I would like to conclude this paragraph explaining the origin of the small amplitude peaks
you may have noticed on the transmission spectra (on the slope of the left transmission dip).
This small "transparency window" is opened by the probe fieldwhen it resonantly drives the
|c, n〉 → |4, n〉 transition (that is, when ∆d fulfills δc(∆d,Pd) = ∆f ). That is why the peaks
position moves to the right when Pd steps up (see 5.1.5). The width of the peaks increases
with the fluid power (because of the power broadening of the |c, n〉 → |4, n〉 transition line).
The same features are also visible on the spectra of figure 5.10 (black arrows).
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Figure 5.11: Transmission of the defect beam through a 2.5 cm long cell as function of ∆d,
for different defect powers. Pd increases in twenty steps from5 (blue) to 100mW(magenta).
Left: Pf = 10 mW. Right: Pf = 200 mW. The same peaks as in figure 5.10 are visible on
both graphs. By driving resonantly the |c, n〉 → |4, n〉 transition when δc(∆d,Pd) = ∆f ,
the probe opens a small transparency windows for the defect field. At high defect power,
the saturation of the D1 line leads to transmissions above 90%. In that case, we can safely
neglect the absorption of the defect beam. However, at low defect power, absorption is not
negligible anymore and should somehow be compensated (see next subsection for details).
The parameters used here are the same as for figure 5.10.

.
5.2.2 Absorption-compensated Bessel Beam
As we have seen in the previous subsection, absorption of low power defect beams prevents
the obstacle amplitude from being constant along the propagation inside the vapor cell.
We therefore started asking ourselves if it was somehow possible to compensate absorption
− at least along the optical axis − by shaping the Bessel beam on-axis intensity profile.
This questioning goes well beyond the framework of obstacle generation in photon fluids,
since absorption (or diffusion) is the main limitation in a wide range of optical applications.
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In bio imaging for instance, light-sheet microscopy − which allows selective illumination of
tissues and fast 3D imaging of live organisms at the cellular scale [127]− is until now limited
by the field of view, that is, the penetration depth of the illuminating beam inside the sample.
Tissues are highly diffusive opticalmediums. Imaging through is therefore a challenging task.
Selective plane illumination microscopy could thus also benefit from the development of
attenuation-resistantBessel beams, thatwould have a significantly better penetration depth.
In the literature, the generation of such beams with exponential intensity axicons [128] and
with computer generated holograms [129] has been reported. In both cases, theBessel beam
on-axis intensity is tailored so as to exponentially increase over the optical axis and exactly
counterbalance the exponential decay exp(−αz) of the Beer-Lambert law. The coefficientα
is the linear attenuation coefficient, describing either diffusion or absorption losses inside the
optical medium. In [129], the attenuation-resistant light field (referred to as "frozenwaves")
results from the superposition of equal frequency Bessel beams, generated by modulating
only the amplitude of an incident plane-wave, using a Spatial Light Modulator (or SLM).
In this subsection, I present amore versatilemethod, based on both the phase and amplitude
shaping of an incident Gaussian beam [130,131]. It allows compensating attenuation up to
α = 200 m−1 − whatever the loss mechanism− by using real space shapingwith a reflective
phase-only SLM. However, it is worth noting that this techniques works for compensating
linear attenuation only. We therefore assume α does not depend on the beam intensity.
In the following paragraphs, I will first present the theoretical background on which the
method is based, before showing the results we obtained using absorbing (rubidium vapor)
and diffusive (aqueousmilk suspension) opticalmediums. The content of this subsection has
been published in "Attenuation-free non-diffracting Bessel beams", Optics Express, Vol. 27,
Issue 21, pp. 30067-30080 (2019) [101].

i Shaping Bessel beams on-axis intensity

At a given position z0 on the optical axis (from now on, z0 = 0), the electric field envelope
E(x, y, z0 = 0) of the laser beam is related to its spatial spectrum S(kx, ky, z0 = 0) through:

E(x, y, 0) =
∫ ∞
−∞

∫ ∞
−∞
S(kx, ky, 0) exp[−i(kxx+ kyy)] dkx dky. (5.17)

For a radially symmetric laser beam, equation 5.17 can be rewritten as follows [131]:

E(r, 0) = 1
2π

∫ ∞
0
S(k⊥, 0) J0(rk⊥) k⊥ dk⊥, (5.18)

where J0 is the zero-order Bessel function of the first kind, r the transverse radial coordinate
and k⊥ =

√
k2
x + k2

y the transverse wave-vector. The spatial spectrumS(k⊥, 0) is theHankel
transform of the electric field envelope E(r, 0). As mentioned in [132], equation 5.18 shows
that a radially symmetric field can be regarded as a superposition of zero-orderBessel fields.
Each of these Bessel components propagates without diffracting [118] as J0(rk⊥) exp[ikzz],
where kz =

√
k2

0 − k2
⊥ is the longitudinal wave-vector of a givenBesselmode. Consequently,

the on-axis electric field at position z, E(r = 0, z), can be obtained from (5.18) as:

E(r = 0, z) = 1
π

∫ ∞
0
S
(√

k2
0 − k2

z , z = 0
)

exp[ikzz] kz dkz. (5.19)
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In Fourier space, the spatial spectrum of an ideal zero-order Bessel beam is a ring of radius
k⊥ = k0 sin(θ). Therefore, the light rays that describe the beampropagation are distributed
over a cone of angle θ. This angle sets the spot size, that is, the full width at half-maximum
(FWHM) of the central peak in the transverse intensity profile. It is equal to 2.27/k0 sin(θ)
for an ideal zero-order Bessel beam.Each of themodes coming in the spectral decomposition
equation (5.18) propagates in free-space with a slightly different longitudinal wave-vector
kz = k0 cos(θ), as can be seen in (5.19). They thus merge with different cone angles and
at distinct positions along the optical axis. The on-axis electric field results then from the
interference arising between these individual modes. If one wants to design a Bessel beam
with a given on-axis intensity profile I(z) = |E(r = 0, z)|2 along the optical axis, the spatial
spectrum S must be engineered according to the following formula :

S(k⊥, z0 = 0)= 1
kz

∫ ∞
0

√
I(z) exp [i(kz0 − kz)z] dz. (5.20)

The spectrum S is centered around the longitudinal wave-vector of the target Bessel beam
kz0 = k0 cos(θ0). This formula gives a physical insight about the engineering process that
will be used to compensate attenuation along the z-axis. The initial electric field E(r, z0 = 0)
that will produce a Bessel beam with a cone angle θ0 and an on-axis intensity profile I(z)
can be evaluated using equations (5.18) and (5.20). In the following paragraph, we briefly
describe how to generate the target beam, by shaping in real-space the phase and amplitude
of a Gaussian beam with a Spatial Light Modulator (SLM). Fourier space shaping may
also be considered [132]. Nevertheless, in that case, only the incident light distributed over
the thin ring forming the intensity distribution of the Bessel beam in Fourier space is used.
A large part of the light in the incident Gaussian beam will thus be filtered out by the SLM.
Much higher efficiency can then be obtained using real space shaping technique.

(a) Phase and amplitude shaping with a phase-only SLM

We define z0 = 0 to be the position of the SLM chip on the optical axis. By discretizing the
electric field according to the SLM matrix (Nx×Ny), the target electric field E(i, j, z = 0+)
(right after the SLM) can be decomposed in amplitude A(i, j) and phase Φ(i, j), where
0 ≤ i ≤ Nx and 0 ≤ j ≤ Ny are the pixel coordinates. As suggested by Davis et al. [133],
locally reducing the phase wrapping contrast allows for a modulation of the light scattered
in the first diffraction order, with a single hologram. We apply this method using a phase-
only SLM. The expression of the SLM phase mask Ψ can always by written as follows:

Ψ(i, j) =M(i, j) mod [F(i, j) + Φg(i, j), 2π] . (5.21)

The function F contains the phase information of the target electric field and Φg stands for
the grating phase ramp, used to separate the different diffraction orders in Fourier space.
The total phase, F+Φg, is wrapped by the modulo operation. The diffraction efficiency is
locally tuned by the modulation functionM (0 ≤M(i, j) ≤ 1). The complex amplitude of
the field diffracted in the first order can be expressed as follows [130,131]:

E1(i, j, z = 0+) = Ain(i, j) sinc [πM(i, j)− π] exp [i (F(i, j) + πM(i, j))] , (5.22)

where Ain is the amplitude of the incident laser beam on the SLM. By identifying E1 with
the target electric field, one can obtain the functions F andM solving the system:
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M(i, j) = 1 + 1
π

sinc−1
( A(i, j)
Ain(i, j)

)
, (5.23)

F(i, j) = Φ(i, j)− πM(i, j). (5.24)

The inverse sinc function (sinc−1) is defined on [−π, 0] here. Computing this function at
each points of the hologram is usually demanding (Nx×Ny operations). However, if both
the incident and the first order diffracted beams are radially symmetric, we only need to
determine the radial profile of themodulation function. For beams centered on the SLMchip,
equation (5.23) can be simplified such that:

m(i) = 1 + 1
π

sinc−1
(
A(i,Ny/2)
Ain(i,Ny/2)

)
, (5.25)

where i is an integer running from 0 to Nx/2 (we assume Nx ≥ Ny here). The modulation
matrixM can be fully reconstructed fromm using a circular interpolation, which requires
computing the inverse sinc function for Nx/2 points only instead of Nx×Ny. In practice,
we start by cleaning-up the incident laser beam, that is, by filtering out in Fourier space its
high transverse wave-vector components thanks to a small pinhole aperture. The incident
Gaussian beam is radially symmetric in the SLMplane afterwards (ωx,y ' 3.3± 0.1mm).

(b) Target on-axis intensity profile

In principle, arbitrary on-axis intensity profiles can be generated using the method above.
In this paragraph, I introduce the target profile I(z) we use to maintain the central peak
intensity constant along the propagation in a uniform and linear lossymedium. LetL andα
stand respectively for the propagation length and the linear attenuation coefficient of the
optical medium. According to the Beer-Lambert’s law, the transmittance t of the medium
decays exponentially with the propagation distance: t = exp(−αz). Therefore, the on-axis
intensity should exponentially increase along the z-axis, such that I(z)∼exp(αz), in order to
compensate for losses. We ramp the on-axis intensity up (from 0 to I(z1) = I0), until the
entrance plane position z1, before making it exponentially increase over the distance L.
We then bring it back to zero smoothly. The full on-axis target profile we designed can
finally be described by the following equation:

I(z) =



I0
[

sin(C1z/z1)
sin(C1)

]2
if 0 ≤ z ≤ z1

I0 exp [α(z − z1)] if z1 ≤ z ≤ z2

Imax sin2
[
C2 + (π2 − C2) z−z2z3−z2

]
if z2 ≤ z ≤ z3

Imax sin2
[
π
2

(
1− z−z3

z4−z3

)]
if z3 ≤ z ≤ z4.

(5.26)

For all the measurements we performed, we set z1G
2 = 1.5 cm, z2G

2 = z1G
2 + L and

z4G
2 = 3 z1G

2 +L, where G = 0.5 stands for the telescope demagnification factor which
optically conjugates the SLM chip and the plane z = 0. The constants C1 and C2 as well as
z3 are chosen in order to make the profile continuous and differentiable (see [101] for details).
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In what follows, the target profile has been normalized to 1 dividing I(z) by the maximum
intensity Imax = I0 [1 + exp(αL)]. The spatial spectrumassociated to I(z) has been derived
analytically in [101] using equation (5.20). As all the parts composing the target profile can
be expressed either by an exponential rising function or a sine square function, computing the
spatial spectra associated to the generic functions I i�jexp(z) = I exp [α(z − zi))] as well as
I i�jsin (z) = I sin2

(
a z−zi
zj−zi + b

)
is enough. The derivation of the related spectra S i�jsin andS i�jexp

is a bit laborious but straightforward; we only give the final result here:

S i�jsin =
√
I l

kz

[
a

cos(a)− cos(a+ b)
a2 − (δkl)2 − iδk sin(a) e iδkzi − sin(a+ b) e iδkzj

a2 − (δkl)2

]
, (5.27)

S i�jexp =−
√
I 2
kz

e iδkzi − exp (αl/2) e iδkzj
α+ 2iδk , (5.28)

with l = zj−zi and δk = kz0−kz. We obtain the spectrumadding the spectral contributions
coming from the different parts of the profile: S = S0�1

sin +S1�2
exp +S2�3

sin +S3�4
sin . The target

electric field is finally derived by computing the inverseHankel transformofS with (5.18).

(c) Compensating for the refractive index stretching

When the linear refractive index n0 of the medium is not equal to one − as it has implicitly
been assumed in the preceding paragraphs − the targetBessel beamwill undergo refraction
at the medium entrance and output planes. From the Snell’s refraction law, one finds that:
sin(θi) = n0 sin(θr), where θi and θr stand respectively for the incident and refractive cone
angles of a given Bessel mode. By introducing the transverse spatial wave-vector, that is,
k⊥ = n0k0 sin(θ), we easily show that k(i)

⊥ = k
(r)
⊥ . Therefore, according to equation (5.18),

the transverse shape of the targetBessel beam is notmodified by successive refractions [134].
Nevertheless, the cone angle does change, as soon as theBessel beam enters themedium.

If n0 > 1, the inner cone angle θr is smaller than the external one and the Bessel beam
will cover a distance longer than in air. This stretching of the beam inside themediumwill
necessarily reduce the compensation coefficient by a factorn0. So as to counteract this effect,
we constrict the exponentially rising part of the target on-axis intensity profile beforehand
by a factor n0 (as suggested in [129]). In other words, we replace L byL/n0 andα byαn0 in
the second line of equation (5.26). By doing so, the stretching of the beam will compensate
exactly the exponential attenuation in themedium, as sketched on figure 5.12. Indeed, using
equation(5.20) and the change of variable z → z̃ = n0(z−z1), one can derive the spectrum
S1�2

exp associated to the exponential rising part of the on-axis profile (between z1 and z2):

S1�2
exp =

√
I0
e i(kz0−kz) z1

n0 kz

∫ L

0
exp (αz̃/2) e i(kz0−kz)z̃/n0 dz̃

= − i

n0 kz

√
I0 e

i(kz0−kz) z1

(kz − kz0)/n0 + iα2

(
1− e−i[(kz−kz0)/n0+iα2 ]L) . (5.29)

The on-axis electric field E(r = 0, z) is related to the spectrum S by the Fourier transform
of equation (5.19). Using (5.29) and (5.19) and the change of variable k̄z = (kz − kz0)/n,
we can derive the on-axis electric field E1�2

exp (r = 0, z) associated to S1�2
exp :
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Figure 5.12: Numerical simulation of the longitudinal refractive index stretching of the on-
axis target profile. When the medium refractive index n0 is not equal to one, the calculated
profile must be stretched by n0 to compensate for refraction. Blue, red and grey circles are
obtained by solving numerically the evolution of the Bessel beam in air (blue), in a lossless
(red) as well as in a lossy material (grey) of refractive index n0 = 1.33. The simulation data
obtained for n0 6= 1 can be deduced from the data obtained for n0 = 1 by stretching the
z-axis by a factor n0 between z1 and z2. We adjust the exponentially growing section of
the target on-axis profile (blue dotted line) such that the stretched Bessel beam ends up
compensating for the good attenuation coefficient α. When losses are taken into account,
the on-axis intensity remains constant all along the propagation inside the medium.

E1�2
exp (r = 0, δz) =

√
I0 e

i kz0(z1+δz/n0)×

−i
π

∫ ∞
0

1− e−i[kz+i α/2]L

kz + i α/2
e ikzδz dkz

 . (5.30)

As z lies in the interval [z1, z2] and z2 = z1 + L/n0, δz = n0(z − z1) varies from 0 to L.
The phase Φl = kz0 (z1 + δz/n0) is the phase accumulated by the Bessel beam along its
propagation from z1 to z2. Since the medium is supposed to be linear, this contribution is
the only one we expect. The term inside the brackets in equation (5.30) should then be real.
Let’s divide the integral in two parts, I1 and I2, as follows:

I1(δz) = −i
π

∫ ∞
0

kz − i α/2
k

2
z + (α/2)2 e

ikzδz dkz (5.31)

I2(δz) = i

π
exp (αL/2)

∫ ∞
0

kz − i α/2
k

2
z + (α/2)2 e

−ikz(L−δz) dkz. (5.32)
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From equations (5.31) and (5.32), we can derive the real parts of I1 and I2: Re (I1) = 0
and Re (I2) = exp (αδz/2). The on-axis electric field E1�2

exp (r = 0, δz) is finally given by:

E1,2 (r = 0, δz) =
√
I0 e

i kz0(z1+δz/n0) × [Re (I1) + Re (I2)]
= −

√
I0 e

i kz0(z1+δz/n0) exp (αδz/2) . (5.33)

and exponentially increases, as required, over the propagation distance δz in the medium.
By replacing L with L/n0 and α with αn0 in the expression of the target on-axis intensity
profile equation (5.26), we therefore manage to counterbalance the refractive stretching of
the Bessel beam and compensate for the good attenuation coefficient α.

ii Experimental setup

The experimental setup I built to generate attenuation-resistant Bessel beams has been
depicted on figure 5.13. The continuous-wave laser beamproduced by aTAPro laser system
is sent onto the optical table through a high power fiber. A polarized beam splitter (PBS),
preceded by a half wave-plate (λ/2), splits the outgoing beam in two parts. The low power
reflection is focused onto a photo-diode (PD) in order to monitor the stability of the fiber
output power. The transmitted part is magnified four times using a telescope formed by two
converging lenses of 50 and 200 mm focal lengths respectively. A small pinhole aperture is
positioned in the focal plane of the 50 mm focal lens in order to filter out the high transverse
wave-vector components of the Gaussian beam. After the telescope, the beamhas a diameter
of 6.6 mm and is perfectly radially symmetric. It reflects on the SLM chip, which is strictly
perpendicular to the optical axis. The SLM used for the experiment is a liquid crystal on
silicon phase-only modulator (LCOS), with an effective area of 1272× 1024 pixels and a
pitch of 12.5 µm. Because of the grating imprinted on the SLM, the first order diffracted
beam propagates at a small angle from the incidence axis. A succession of two telescopes
− formed respectively by the lenses L1 and L2 on one side (f1 = 750mmand f2 = 150mm)
and by L3 and L4 on the other (f1 = 100 mm and f2 = 250 mm) − conjugates the SLM
chip and the z = 0 plane with a demagnification factorG = 0.5. In between the telescopes,
a delay line as been set up in order to roughly position the starting of the exponential rising
section in the entrance plane of the cell. Another translation stage, on which the mirrors
M1 and M2 are mounted, allows the fine tuning of this positioning. The output plane of
the medium is imaged by a 4-f arrangement onto a microscope objective which is set up on
a computer controlled translation stage. By moving the objective along the optical axis,
one can monitor the Bessel beam evolution along z. The last lens on the beampath images
the plane we look at on the CMOS camera, positioned in the focal plane. Themagnification
factorG′ of thewhole imaging system is 13.6±0.1. An example of theBessel beam transverse
intensity distribution, captured close to the maximum of the target on axis profile (z = z3),
is shown on the inset (a) of figure 5.13. The hologram displayed on the SLM in order to
obtain this image is shown on the inset (b) (for zero grating). Let’s finally mention that
the choice of the lenses L1, L2, L3 and L4 (and thus, of the demagnification factor G)
is conditioned by the length of the lossy medium we deal with. For biological applications,
G should at least be divided by 10, as pointed out in the following paragraph.
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iii Experimental results

The first step toward the on-axis compensation of attenuation is to check that the transverse
and longitudinal intensity profiles of the experimentally measured Bessel beam (in air) fit
the target ones, obtained by simulations. We design the target beam in order to compensate
96% attenuation over a lossy, 7.5 cm long medium. The 2D maps shown on figure 5.14(a)
and the profiles of figures 5.14(b) and (c) are obtained by scanning slowly (v = 2 mm.s−1)
the microscope objective along the z-axis. Both the transverse (blue circles on figure (b))
and the longitudinal profiles (blue line on figure (c)) of the measured Bessel beam are in
excellent agreement with the target profiles (black dashed line). The latter are obtained by
numerically solving the evolution of the transverse electric field from z = 0 toLwith the
second order split-step method. We take as initial condition a field with the SLM imprinted
phase Ψ and the radially symmetric Gaussian envelope of the SLM input beam. In order to
accurately determine the central peak intensity along z − as presented in figure 5.14(c)−
we fit with a Gaussian profile the region delimited by the two white dashed lines on both
sides of the central peak (figure 5.14(a)), as illustrated on figure 5.14(b) (red solid line).
The width of the central peak, along the propagation, is found to be constant (at ±5%),
as shown on the inset of figure 5.14(b). This measurement demonstrates thatwe are able to
control the longitudinal intensity profile without altering the non-diffracting behavior of
the Bessel beam. More importantly, we observe, as required, an exponential increase of the
on-axis intensity along z. Nevertheless, small intensity oscillations can be observed at the
beginning of the measured on-axis profile on figure 5.14(c). They are basically due to high
longitudinal frequency truncation [131], as kz is upper bounded by the laserwave-vector k0.
The oscillation amplitude can be reduced further by increasing the Bessel cone angle θ0.

The lossy medium is then positioned on the beam path. Fitting the on-axis intensity profile
with the function (5.26) provides the position z2 where themediumoutput plane should set.
We then translates this position using the translation stage sketched on figure 5.13 until z2
matches the medium output plane position on the optical axis. This plane is imaged on the
camera using the imaging system described on figure 5.13. The 0.5mmdepth of field of the
imaging system and the standard deviation on the fit parameters translate into a ±1 mm
uncertainty on the medium output plane position. Three differentmedia (contained in three
different glass cells) have been used so as to determine if attenuation-resistantBessel beams
are capable of compensating attenuation along the optical axis. Two cells are filled with
isotopically pure rubidium vapors (the first (7.5 cm long), with 87Rb only, and the second
(2.5 cm long), with 85Rb only). The third one (2.5 cm long) contains a diffusive aqueous
suspension of milk. Rubidium cells are heated up to 140◦C. At this temperature, the atomic
density is large (na ' 2 to 5×1013 atoms/cm3). By tuning the laser frequency ν0 over the
rubidiumD2 for instance, we can change the transmission over several orders ofmagnitude,
without affecting significantly the refractive index of the vapor, which remains close one
(with±1% fluctuations). The transmission of thewater-milkmixture can be tuned changing
the milk concentration. Remaining under highly diluted condition, the medium refractive
index stays close to the water one nw ' 1.33. As explained above, we should balance in
this case the change of refracting index stretching the Bessel beam along the optical axis,
replacing beforehand in the target profile L and α with L/n and αn respectively.
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Figure 5.14: Experimental characterization of the reconstructed Bessel beam. The Bessel
cone angle θ0 was set to (1/G)× 8.5 mrad, where G = 0.5 is the overall demagnification
factor of the telescopes {L1, L2} and {L3, L4}. The 2D map on figure (a) is obtained by
scanning slowly (v = 2 mm.s−1) the microscope objective along the z axis and capturing
a frame every second. The white dotted lines on both sides of the central peak define the
regionwhere theGaussian fit is performed.The transverse and longitudinal intensity profiles
of the reconstructed Bessel beam have been plotted respectively on the figures (b) and (c),
in the absence of lossy material. (b): Blue dots are experimental data obtained by cutting
at z = 8.5 cm the 2D map (a). The dashed line is the target profile calculated numerically
and the red solid line a Gaussian fit of the central peak, performed to extract its width.
Inset: Dots are the fitted peak diameter 2ω0 as function of z (blue along x an red along y).
The black dashed line is the calculated target peak diameter. Data shows a change of less
than 5% over the length of the medium (L = 7.5 cm), confirming the non-diffractive nature
of the attenuation-resistant Bessel beam in the transverse plane. (c): The blue line is a cut
of the 2Dmap (a) along the z-axis. Itmatches perfectlywith the calculated on-axis intensity
profile (black dashed line) in the region where it increases exponentially (shaded area).
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We design the target profile in order to compensate attenuation over 7.5 cm long materials,
whatever the length of the cell we use. The overall Bessel beam power is reduced to keep
the input peak intensity I0 lower than the rubidium on-resonance saturation intensity Is
(Is ' 2.5 mW/cm2 for linearly polarized light). We finally measure the peak intensity in the
entrance plane (without cell) and in the output plane (with cell) in order to evaluate the
on-axis transmission trough the lossy medium. To do so, we perform the fit on five different
images of the central Bessel spot with a 2D-Gaussian function. The measured transmission
is shown on figure 5.15. The blue stars and the orange circles represent the experimental data
obtainedwith the 2.5 cmand the 7.5 cm long vapor cells respectively. The grey diamonds are
the data we get using the water-milk mixture. The 4% reflectively of the cell windows has
been taken into account. The black dashed line represents a perfect on-axis compensation
(that is, an on-axis transmission of one). Most of the experimental points lie slightly under it.
This small discrepancy comes from the input plane intensitymeasurements rather than from
the output plane ones. Indeed, the on-axis intensity is oscillating in themedium input plane
(as you can see for instance on figure 5.14(c)). Moreover, the relative position of the cell
output plane with respect to z2 (and thus of the input planewith respect to z1) is knownwith
a precision of±1 mm. This two factors together induce an uncertainty on the input intensity
measurements that is reported on figure 5.15 (errorbars). The two red lines represent the
transmission of a non-saturating collimated beam (computed using the Beer-Lambert law)
through a 2.5 cm and a 7.5 cm long lossymaterial respectively.
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Figure 5.15: Measure of the on-axis transmission t of the Bessel beam as a function of the
attenuation coefficientα. Data obtained with the rubidium vapors have been plotted in
blue stars (87Rb) and orange circles (85Rb). Data obtained with the water-milk mixture
have been plotted in grey diamonds. The two red lines show the transmission expected from
the Beer-Lambert law through a 2.5 cm and a 7.5 cm long lossymaterial
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iv Applications and limitations

In previous experiments, compensations of 10% and 30% attenuation have been achieved,
using attenuation-resistant frozen waves and exicon (that is, exponential intensity axicon)
respectively. In comparison, the method we developed allows compensation of attenuation
coefficients up to 200 m−1 (which is equivalent to a transmission of 5×10−3 through a 2.5 cm
long lossy material). This is a crucial advantage for light-sheet microscopy for instance,
since the diffusive coefficients of biological tissues commonly observed with this technique
range typically from 50 to 200 cm−1 [135, 136]. Indeed, using the same target profile as
for the last orange circle on figure 5.15 (for which α ' 200 m−1) and reducing the overall
demagnification factorG by a factor 10will constrict the length of the generatedBessel beam
by a factor 100 (as it scaleswithG2). Therefore, the latterwill compensate for an attenuation
coefficient 100 times bigger than the target one (that is, for α = 200 cm−1), over a distance
which is nowL/100 = 250µm.For such values of the attenuation coefficient, the penetration
depth of our attenuation-resistantBessel beam is therefore expected to bemore than 100µm
longer than the best value reported in the literature so far [136], which would constitute
an improvement of almost 170% of the current field of view inside highly diffusive samples.

Nevertheless, the non-diffracting feature of Bessel beams comes at the cost of the presence
of high-energy side lobes, that are known to degrade the imaging contrast of fluorescence
light sheet microscopy by inducing photo-bleaching [137]. For ideal zero-order Bessel beams,
the intensity of the first ring surrounding the central spot is about 17% of the peak intensity.
This can also be an issue in photon fluid experiments. If we use a Bessel beam as a defect,
whether or not it compensates for attenuation, the rings around the central peak will also
generate a change of refractive index. This creates, at the end of the day, a complex potential
landscape for the photon fluid, that is not acting anymore as a spatially localized obstacle.
We should thus think about a way to cancel the Bessel beam side lobes while preserving,
at least, its non-diffracting feature. Following the work of G. Di Dominico et al. in [138],
I will present in the next subsection a method based on the generation of "droplet beams",
which are formed by making interfere two Bessel beams with specific cone angles θ1 and θ2.
For some values of the ratio θ2/θ1, the intensity of the side lobes is significantly reduced.
Obviously, droplet beams do not allow to compensate attenuation along the optical axis.
Keeping the amplitude of the obstacle constant requires therefore to saturate the rubidium
vapor with the droplet beam all along the optical axis.

5.2.3 Droplet beam

i Optimizing the side lobe cancellation

As mentioned previously, diffraction-free droplet beams are generated in practice bymaking
interfere a set of plane-waves whose wave-vectors lie on two different co-axial cones of angles
θ1 and θ2 respectively. For some specific values of the ratio θ2/θ1, droplet beams exhibit
significantly lower side lobes than simple zero-order Bessel beams, as a result of the selective
destructive interference between the two Bessel fields forming a droplet. In order to find
theoretically the ratio θ2/θ1 providing the minimum amount of power distributed over the
droplet side-lobes, we can start by considering the generic expression describing the in-air
electric field E(r, z, θ) of a zero-order quasi Bessel beam of cone angle θ [118]:
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E(r, z, θ) = E0
ω0(0)
ω0(z) J0
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]}
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(5.34)

In formula (5.34),J0 is the zero-orderBessel function of the first kind, r the radial coordinate
and kr(θ) = k sin(θ) the Bessel beam transverse wave-vector. We have also introduced the
width ω0(z) = ω0(0)

√
1 + (z/zr)2 of the Gaussian envelope along the z-axis (z = 0being the

position of the waist and zr = πω2
0(0)/λ the Rayleigh length), the radius of curvature of

the beamwavefront:R(z) = z [1 + (zr/z)2 ] aswell as theGouy phase shift:Φg = atan(z/zr).
The electric field of the droplet beam is then given by: Ed(r, z) = E1(r, z, θ1) + E2(r, z, θ2)
and the total power distributed over its side-lobes, at z = 0, by:

Pd,sl = 2π
∫ ∞
rmin
|E1(r, 0, θ1) + E2(r, 0, θ2)|2 rdr, (5.35)

where rmin is the radial distance associated to the first minimum in the intensity pattern.
In [138], the authors compare the amount of power Pd,sl in the side-lobes of a droplet beam
with the power Pb,sl in the side-lobes of a Bessel Gauss beam, having the same on-axis
intensity. They compute, for different values of θ2/θ1, the ratio Pd,sl/Pb,sl at the waist
position z = 0. In our case, we are more interested in the ratio between the droplet peak
intensity I0 and the intensity I1 of the first side lobe, as we look for the value of θ2/θ1 for
which it cancels. This ratio is plotted as function of θ2/θ1 on figure 5.16(a) (black line),
for z = 0, where the droplet on-axis intensity is maximal.

As you can see, it exhibits a minimum close to θ2/θ1 = 0.4. One might then be tempted to
choose this value for θ2/θ1 in experiments. However, the ratio between I0 and the intensity
Imax of the brightest droplet side-lobe (blue line) exhibits, at θ2/θ1 = 0.4, a localmaximum.
We thus compromise, setting θ2/θ1 close to 0.5 (black arrow) in practice.

On the same graph, the axial FWHM of theDroplet beam,FWHMd, has also been reported.
It is normalized by twice theRayleigh length zr(ω0,d) = πω2

0,d/λ, that is, by the axial FWHM
of a focused Gaussian beam having a waist equal to the radial widthω0,d of the droplet peak.
As you can see, FWHMd increases faster and faster with θ2/θ1, until it reaches a maximum
for θ2/θ1 = 1 (that is, when the droplet becomes a quasi Bessel beamwith a cone angle θ1).
This behaviour can be intuitively understood as follows. The interference between the two
co-axial Bessel fields forming the droplet beam modulates periodically its on-axis intensity.
When θ2/θ1 decreases, the difference between the longitudinal wave-vectors of these two
fields increases and makes therefore the axial extend of the droplet (ie FWHMd) smaller.
For θ2/θ1 = 0.5, FWHMd/ (2zr(ω0,d)) ' 2. Consequently, even if the axial FWHM of the
droplet is smaller than for Bessel beams, it remains twice larger than the Gaussian one.
This is of crucial importance. Apart frombeing perfectly collimated, unlikeGaussian beams,
droplet beams allows to create much smaller defects, for a given cell length L, than their
Gaussian homologs. In order to compare more visually the in-air propagation of aGaussian,
a droplet and a Bessel beams − having the same transverse width ω0,d in the plane z = 0−
the theoretical intensity distributions of these three fields in the xz plane (top view) have
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Figure 5.16: (a) Blue curve: plot of the ratio between the droplet peak intensity I0 and the
intensity of the brightest side-lobe Imax as function of θ2/θ1. Black dashed line: plot of the
ratio between I0 and the intensity of the first side lobe I1. Both curves are obtained for z=0.
The axial FWHM of the droplet beam, FWHMd, is plotted on the same graph (cyan curve)
as function of θ2/θ1. It is normalized by the axial FWHMof aGaussian beamhaving awaist
equal to the droplet radial width ω0,d, ie, by twice the Rayleigh length zr(ω0,d) = πω2

0,d/λ.
The black arrow on figure (a) indicates the value we have chosen for the cone angles ratio
in experiments (θ2/θ1 ' 0.5). Figures (b) and (c) show the transverse intensity profile and
the in-air propagation (top view, xz plane) of a Gaussian, a droplet (θ2/θ1 = 0.5) and a
Bessel-Gauss beam. They all have the same transversewidth in the z = 0plane (' 25µm).
The intensities of the droplet first and second side-lobes have been reduced by 72% and 85%
respectively with respect to the Bessel ones. On the right of figure (c), the phase masks
displayed on the SLM in order to generate the droplet and the Bessel beams are shown.
Parameters: for the droplet and Bessel beams, the width of the Gaussian envelope in (5.34)
is G×3.3 mm and G×θ1 = 0.008 rad, where G = 2/3 is the overall demagnification factor of
the telescopes conjugating the SLMchip and the cell input plane. Figure inspired from [138].



5.2. OPTICAL DEFECT SHAPING WITH A SPATIAL LIGHT MODULATOR 145

been plotted on figure 5.16(c). The quasi Bessel beam exhibits an invariant transverse profile
along the propagation axis. Nevertheless, half of the energy it carries is distributed over its
side lobes [138]. In contrast, the Droplet maintains an extended (but limited) depth of focus
−which is twice longer than for the Gaussian beam−but provides a significantly enhanced
energy confinement across the central peak. This is confirmed by figure 5.16(b), onwhich the
radial profiles (at z = 0) of the three beams of figure 5.16(b) have been plotted. The amount
of light in the first and second side-lobes is respectively 72% and 85% lower for the droplet
than for the Bessel beam. Moreover, the intensity Imax of the brightest droplet ring is less
than 6% of the peak intensity I0, and, within a circle of 120 µm radius around the central
peak, the intensity does not exceed 4% of I0. All this suggests that droplets beams are
good candidates to generate localized and collimated defects in photon fluid experiments.

ii Experimental results

The experimental setup we use to generate droplet beams is the same as the one sketched
on figure 5.13. Only the focal lengths of the various lenses in 5.13 change. The overall
demagnification factor of the telescopes conjugating the SLM chip and the cell entrance
plane is now G = 2/3, while the magnification factor of the imaging system is 10.8± 0.2.
The width of the input Gaussian beam diffracting on the SLM grating is still about 3.3mm.
In contrast with what is done in [138], the droplet is obtained by shaping the phase of this
Gaussian beam in real space directly. An example of grating displayed on the SLMto this
end is shown on the right of figure 5.16(c). It is simply obtained by wrapping the phase of:
exp [ikr(θ1)·r] + exp [ikr(θ2)·r] (kr(θ)·r being the phase shift provided by an axicon to
create a quasi Bessel beam with a cone angle θ). By moving the microscope objective along
the z-axis (see figure 5.13), we can image the plane in which the droplet peak intensity is
the highest (that is, the plane z = 0). Figure 5.17 shows the radial intensity distribution
we measure in that case for different cone angles θ1. The data (purple circles) are obtained
by radially averaging the 2D map on the top right corner of each graph. The radial profiles
on figures 5.17(a) and (b) are obtained for G×θ1 = 8.0 mrad and G×θ1 = 5.0 mrad.
In both cases, the ratio θ2/θ1 is equal to 0.52. The target (theoretical) profiles have been
plotted on both graphs in black solid. As you can see, the agreement between the expected
and the measured radial intensity distributions is excellent. The side-lobes are correctly
cancelled as required. The radial width, ω0,d, of the droplet peak when G×θ1 = 8.0mrad
is 25 µm and 38 µm for G×θ1 = 5.0 mrad. In this last case, the longitudinal extent of the
droplet beam is around 22 mm (against 8.4 mm when G×θ1 = 8.0 mrad, see figure 5.16(c)).
This fits well with the length of the vapor cell we use in experiments, which is 2.5 cm long.
Therefore, we choose the droplet beam beam obtained for G×θ1 = 5.0 mrad to generate
the obstacle in our photon fluids. It results indeed from the best balancewe found between a
small droplet radial width, a good side-lobes cancellation and a long droplet axial extent.
This last point is actually what seriously restricts the choice of the parameters θ1 and θ2/θ1.
Increasing the axial FWHM of the droplet by decreasing θ1 comes at the cost of an increase
in the beam radial width. Similarly, increasing it by raising up the ratio θ2/θ1 comes at
the cost of an increase in the first droplet side-lobe intensity I1, which is not suitable to
produce a localized obstacle.
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Figure 5.17: Comparison between the droplet target andmeasured radial intensity profiles.
(a): G×θ1 = 8.0 mrad and (b): G×θ1 = 5.0 mrad. In both cases, we have set θ2/θ1 = 0.52.
For G×θ1 = 8.0 mrad, the radial width of the Droplet peak is 25 µm. It is 38 µm when
G× θ1 = 5.0 mrad. The data (purple circles) are obtained by radially averaging the
2D intensity distributions plotted on the top right corner of each graph. These two images
have been captured by translating the microscope objective of figure 5.13 along the optical
axis until the droplet peak intensity was maximized. The overall magnification factor of
the imaging system is equal to 10.8± 0.2.



Chapter 6

Outlook - Probing superfluidity

In chapter 4, the measurement of the dispersion relation of density waves travelling onto
paraxial photon fluids in warm rubidium vapor has been reported. I have shown that this
dispersion relation exhibits a linear trend at low excitation wave-vectors. In other words,
density waves travelling onto the photon fluid with those wave-vectors behave as collective
phonons in the transverse plane, whose velocity is given by the speed of sound cs =

√
n2 I0.

According to the Landau criterion for superfluidity, presented in subsection 2.3.3, cs defines
a critical speed vc below which the photon fluid cannot theoretically dissipate energy by
emitting sound-like excitations. In other words, a fluid of light moving toward an obstacle
much smaller than the healing length ξ at a velocity lower than cs should flow around it
without scattering. In chapter 5, we sawhow to generate such on obstacle in the photon fluid
by locally changing the refractive index it experiences using non-diffracting droplet beams.
Therefore, all the ingredients are there to observe in our system frictionless flows of light
around an all-optical obstacle. In this section, I first give a short historical overview about
superfluidity. I then briefly review the various theoretical methods proposed to probe it in
paraxial photon fluids and comment recent results obtained byMichel et al. in [29]. I finally
present some preliminary results I obtained using our platform.
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6.1 Introduction and historical perspective
Superfluidity, that is, the ability of a fluid tomovewithout any friction, is without any doubt
one of the most striking phenomenon observed in many-body physics. It was first observed
in 1934 in liquid helium-4 [139] and has given rise since then to a huge amount of theoretical
and experimental studies, as with liquid helium-3 [140] or ultra-cold atomic vapors [141].
In those systems, superfluidity (as Bose-Einstein condensation) manifests itself when the
bosons forming the quantumfluid are cooled downbelow some critical temperature atwhich
it undergoes a transition fromnormal to superfluid.At very low temperatures, theDeBroglie
wavelengths of atoms is of the order of the inter-atomic spacing. This delocalization allows
to describe the fluid with a single macroscopic wave-function, which plays the role of an
order parameter in the Ginzburg-Landau theory of phase transitions [62]. The dynamics of
the weakly interacting bosons can then be described − in the mean field approximation−
by the Gross-Pitaevskii equation (named after E. P.Gross andL. P. Pitaevskii) which drives
the space-time evolution of the order parameter. As we saw in chapter 2, this equation is
analogous to the nonlinear Schrödinger equation. Photon fluids share consequently strong
similarities with atomic Bose Einstein condensates or superfluid helium. The possibility to
observe superfluid motion of light was initially suggested by Y. Pommeau and S. Rica [142]
and further investigated by Chiao et al. [9] in Kerrmediums embedded in optical cavities.
Experimental observations of superfluid flows of light were reported few years later in
exciton-polariton condensates [14,15]. Recently, the first clear evidence of superfluidity in
cavityless systems has been reported by Michel et al. in [29]. A brief review of their work is
presented in subsection 6.2.2.

As mentioned earlier, the most common way of probing superfluidity in photon fluids is to
introduce a spatially localized defect into the flowand look at the perturbations it generates.
In exciton-polariton experiments, defects of different sizes and shapes appear naturally in
the growth process of microcavity samples. In paraxial fluids of light, the obstacle has to be
created by changing locally the refractive index of the nonlinearmaterial either by using an
other light source [29], or by directly installing a piece of dielectric inside themedium [28].
Depending on the relative value between the flow velocity and the speed of sound, various
nonlinear hydrodynamical phenomena can be observed. At low velocity, the flow remains
practically unaffected by the obstacle [15], which is the hallmark signature of superfluidity.
When the flow speed matches the critical velocity, quantized vortices start being nucleated,
as reported in excitons-polariton [16, 143] and in cavityless systems [28]. These vortices are
topological phase singularities characterized by a quantized circulation. They appear right
after the breakdown of superfluidity. At high velocity, theCherenkov emission of Bogoliubov
waves as well as the generation of dark solitons have been observed [17,144]. Nevertheless,
in most of the experimental studies cited above, quantitative measurements probing the
fluid/superfluid threshold are missing. It would be interesting, for instance, to measure
the effects of the defect diameter and height on the critical speed. This requires however
to develop a robust technique to measure the flow velocity v at which the transition from
normal to superfluid occurs. In the following section, I thus briefly review themethods used
so far to characterise this threshold.
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6.2 Flow of light around an all-optical defect
As mentioned before, probing superfluidity in paraxial photon fluids requires to generate a
local variation of refractive index − acting as an obstacle − all along the Kerr medium and
to study how the fluid flows around. The purpose of this section is to provide a short overview
of the various flow regimes we can observe in that case by tuning the parameters, namely,
the flowvelocity, the fluid density and the defectwidth and height. A complete description of
the variety of phenomena observed past an obstacle in photon fluids can be found in [19,56].
Throughout all this chapter, the probe names the beam forming the photon fluid.

6.2.1 Theory and simulations
Throughout this subsection, I consider that the fluid of light is formed by awide and intense
Gaussian probe propagating (in the transverse plane) toward a spatially localized obstacle,
located at r⊥ = 0. This obstacle is generated by a Gaussian-shaped modulation δn of the
refractive index of the form:

δn = δn(0) exp [− (r⊥/ω0,d)2 ] . (6.1)

I suppose that the on-axis change of refractive index does not depend on the propagation
distance z inside the medium. This condition is fulfilled experimentally if the droplet beam
forming the defect saturates the rubidium vapor across the entire cell. The z-evolution of
the probe field envelope E0 can be described using the nonlinear Schrödinger equation (2.9).
From the hydrodynamical perspective, it is as if the probe beam was flowing toward the
defect at a velocity v = k⊥/k0 (wherek⊥ = k0 sin θiex is the probe transverse wave-vector).
In order to illustrate the various flow regimes of the photon fluid in this configuration, I solve
the NLSE using a second-order split step method. The intensity distribution of the probe
beam at the medium output plane is shown on figure 6.1, for different sets of parameters.
The series of images (a1)-(a4) are obtained at high probe power, while the series (b1)-(b4)
show the results of the simulation at low probe power, that is, in the quasi-linear regime.
On all these figures, the background fluid flows rightward. Its density has been subtracted.
The probe creates a nonlinear refractive index change of 2.0×10−5 that yields a healing length
of about 30µm and a speed of sound cs of 4.5 mrad. The obstacle is located at r⊥ = 0
(white circle). Its widthω0,d is equal to the healing length ξ and δn(0) = 25×∆n.

Let’s first focus on the series (b1)-(b4). On figure (b1), the photon fluid is at rest (v = 0).
The concentric rings visible on this image are spherical waves emitted from the defect in the
medium entrance plane. We could observe the formation of a similar pattern by throwing a
stone in standing water. As you can notice, spherical waves are not anymore centered on the
defect location on figures (b2), (b3) and (b4). The flow velocity is non-zero on these images
and steps up from left to right. Spherical waves are therefore dragged rightwardwith the flow
in that case. At non-zero fluid velocities, we also observe the formation of well contrasted
fringes upstream from the obstacle. This is due to interferences between the incoming
fluid and the light back-scattered by the defect.
On figure (a1), the photon fluid is at rest but its density is much higher than on figure (b1).
Spherical waves are also emitted in that case. However, they travel in the transverse plane at
a speed greater than or equal to the sound velocity cs. This explainswhy a region of uniform
intensity surrounds the defect on figure (a1). This is also clearly visible on the inset profile,
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showing a cut of the intensity distribution along the x-axis. On figure (a1), the flowvelocity
is sub-critical (v < vc). In that case, the fluid flows around the obstaclewithout any friction.
In other words, the incident light is not scattered by the obstacle in that case. The absence of
interference fringes upstream from the defect as compared to the linear case (see figure (b2))
is a hallmark signature of superfluid flow of light.
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Figure 6.1: Near-field scattering patterns at high (a) and low (b) background densities for
v/cs = 0 (1), v/cs = 0.4 (2), v/cs = 0.75 (3) and v/cs = 3.0 (4). The images (a2)-(a4) show
some of the most significant examples of the intensity distribution in the exit plane. On all
the images (except (a1) and (b1) where the fluid is at rest), the flow goes rightward. (a2):
Superfluid regime. The photon fluid moves toward the obstacle (white dotted circle) at
a speed lower than the critical velocity and flows aroundwithout any friction. This results in
a cancellation of the interference fringes upstream from the obstacle. Those fringes are,
reversely, well contrasted in the linear regime (figure (b2)). (a2): Breakdown of superfluidity.
A pair of quantized vortices is visible downstream from the obstacle. The amount of light
back-scattered by the defect remains much lower than in the linear case (see figure (b2)).
(a3): Highly turbulent regime. The flow is super-critical (ie v > vc). ACherenkov cone of
aperture sin(θ) = cs/v forms downstream from the obstacle in that case. On the contrary,
in the linear regime (figure (b3)), the fringes resulting from the interference of the incident
and scattered light exhibit a standard parabolic shape. Inside the Cherenkov cone, pairs of
oblique solitons are emitted downstream from the obstacle and end up breaking in quantized
vortex/anti-vortex pairs. Parameters: The width of the background beam is 2.0mmand
its on-axis intensity is If = 2.0×105 W/m2. The nonlinear refractive index n2 is equal to
1.0×10−10 m2/W, and thus, ∆n = 2.0×10−5. Consequently, ξ ' 30µmand cs ' 4.5mrad.
Finally, we set ω0,d = ξ and δn(0) = 25×∆n. The nonlinear medium is 7.5 cm long.
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On figure (a3), the speed of the flow matches the critical speed. Apair of quantized vortices
(blue spots) is nucleated downstreamand starts being dragged by the flow. The image (a3) is
therefore obtained right before the breakdown of superfluidity. As you may have noticed,
the flow velocity at which this occurs is not equal to but slightly lower than cs (v/cs = 0.75).
This effect has been reported in [145]: in the vicinity of an extended defect (ie, when ξ . ω0,d)
the local flow velocity becomes super-critical close to the obstacle, even in the case where
the flow is sub-critical (ie v < cs) far away from it. This is due to the local bending of the
streamlines around the extended defect, which locallymodifies the flowvelocity of the fluid.
We consequently expect the critical speed to depend on the fluid velocity as well as on the
defect width. This dependence is illustrated on figure 6.2, where the phase diagramobtained
by scanning v and ω0,d has been sketched. The critical speed vc(v, ω0,d), represented by the
thick black line, separates the superfluid phase (I) to the regime where quantized vortices
are generated (II). By increasing continuously the defect size at fixed flow velocity (red line,
v/cs = 0.75), we can thus probe the transition from phase (I) to phase (II).
Figure (a4) illustrates the strongly turbulent regime observed at high flow speeds. Two trains
of oblique solitons are formed past the obstacle. They end up breaking in pairs of quantized
vorticeswith opposite vorticities. We can also notice the cone-shaped structure of the fringes
arising from the interference of the incoming and scattered light downstream from the defect.
This effect can be interpreted as a result of Cherenkov radiations of Bogoliubov excitations
by the obstacle [56] (hence the name of "Cherenkov cone"). The cone angle is related to the
sound velocity by the formula: sin(θ) = cs/v. On figure (b4), the intensity distribution in the
exit plane obtained at lowbackground density is plotted for the same flowvelocity as on (a4).
In that case, the interference fringes exhibit a standard parabolic shape.

6.2.2 Probing the superfluid phase transition
The ways of tracking superfluidity in photon fluids are manifold. In this subsection, I review
some of the experimental methods developed so far for this purpose.
• The detection of quantized vortices in the wake of an obstacle is commonly considered
as a hallmark signature of superfluidity. This is themethod I use to numerically probe
the transition fromphase (I) to phase (II) in figure 6.2. The observation of such vortices
has been reported in exciton-polariton systems [16,143] andmore recently in paraxial
photon fluids [28]. The dimension of vortices is of the order of the healing length [28],
which is typically few tens of microns in our experiment. Therefore, using standard
spatial phase interferometry is enough to locate vortices in our system, which makes
photon fluids a promising toolbox for studying vortex nucleation in superfluid light.
• Aswe saw in the previous section, the elastic scattering on the defect at lowbackground
densities is no longer expected to occur at high densities (when v < vc), because the
light becomes superfluid. Therefore, at the superfluid transition, the amount of light
scattered by the defect should sharply drop. This can either be measured in real space
(see subsection 6.2.3) or in Fourier space, by measuring the power distributed over the
so-called Rayleigh ring. Amo et al. have experimentally demonstrated the collapse of
this scattering ring at the normal/superfluid threshold in [15]. In the subsection 6.3.2,
examples of Rayleigh rings generated by the scattering of the photon fluid on our
all-optical defect are shown (see for instance figure 6.7(a)).
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Figure 6.2: Phase diagram obtained by scanning the flow speed v and the defectwidthω0,d.
This diagram splits into three different regions: I, II and III. The first one (I) corresponds to
the superfluid phase alone, the second one (II) to the regime where quantized vortices are
nucleated onto the superfluid and the third one (III) to the supersonic and turbulent regime.
By scanning the defect width a fixed background density and flow velocity, we can probe
the transition from phase I to II (red line). Indeed,whenω0,d/ξ = 0.2 (green-framed image),
the fluid flows around the defect without neither scattering nor emitting vortices, which is
not the case at larger defect width (cyan- and blue-framed images). Reversely, we can fixed
the defect size and scan the flow velocity (blue solid line). In that case, both the transitions
I/II and II/III are probed. This is what has been done on figures 6.1(a1)-(a4) for instance.
The simulation parameters are the same as for figures 6.1.

• In quantum fluids, the normal/superfluid transition is usually observed through the
drop of the drag force exerted by the quantumfluid on amovable obstacle [146–149].
Following theoretical works studying the cancellation of the drag force in superfluid
exciton-polariton condensates [150–153], Larré et al.have recently proposed a concrete
way of measuring it in propagating photon fluids [100]. As mentioned in their paper,
the propagating geometry offers the possibility of using movable and/or deformable
obstacles by directly immersing a piece of dielectric (a rod) in the nonlinearmaterial.
The local variation of the fluid density around the dielectric generates a force on the
obstacle which, by moving backward, induces a spatial variation of the liquid pressure.
The joint action of both these effects results in a total force per unit area acting on the
defect that is proportional to the upstream/downstream variation of the fluid density.
Larré et al. predicts that this force linearly increases with the background density in
the normal regime before suddenly dropping to zero when reaching the superfluid one.
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However, installing a piece of dielectric inside a nonlinearmedium is a challenging task
in practice. In subsection 6.3.3, I briefly present away of doing it in rubidiumvapors.
An alternative is to generate the defect optically − as we do using droplet beams −
and try tomeasure the optical analog of the drag force cancellation bymeasuring either
the upstream/downstream variation in the intensity, I+−I−, or directly the defect
displacement in the output plane of the medium. This is what Michel et al. have done
experimentally; they report in [29] the first clear evidence of superfluid flow of light
in the paraxial geometry. The following subsection is a review of their work.

6.2.3 Comments on the results of Michel et al.
As mentioned previously, Michel et al. report in [29] two distinct experimental evidences
of the normal/superfluid transition occurring in their propagating fluid of light. They use a
1 cm long photo-refractive crystal (SBN:61) as Kerr medium in their experiment. The defect
is generated by saturating the crystal with an intense Bessel beam whose central core radius
is about 6µm. The on-axis refractive index depletion δn(0) it creates is equal to−2.2×10−4.
The photon fluid is formed by aGaussian probewhosewidth is 270µm. The fluid intensity,
If , can be tuned from 0 to 350 mW/cm2 and the flowvelocity, v, from 0 to±1.3×10−2 mrad.

Figure 6.3: Results obtained byMichel et al. in [29]. Figures (a-e): Local intensity difference
I+−I− measured at the exit plane of the photo-refractive crystal they use in experiments
as function of v/cs, for different values of the fluid intensity If . The basicmeasurement idea
is illustrated on the inset of figure (e). The original image is cropped around the obstacle
and the intensity is averaged over two regions of space, downstream (I−) and upstream (I+)
from the defect. At low background densities (figures (a) and (b)), I+−I− starts increasing
from v/cs = 0 while at high densities (figures (c) to (e)), a plateau forms at lowflow speeds,
which ends when v matches the critical speed vc. This is a clear signature of superfluidity.
Michel et al. go further by probing the transverse displacement 〈X〉 of the obstacle induced
by the local variations in the intensity of the background fluid for the same input conditions
as for figures (a) to (g). The results are shown on figures (f) to (j). While the defect starts
being dragged with the flow from v/cs = 0 on (f) and (g), its position remains unchanged at
low flow velocities on (h) and (i). This constitutes a hallmark signature of the cancellation
of the drag force exerted by the fluid on the obstacle at the normal/superfluid transition.
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When the fluid power ismaximum,∆n is about 1×10−4 which yields ξ ' 6.2µm.Therefore,
the defect is always smaller than or equal to ξ in the experiment carried out byMichel et al.

Figure 6.3, taken from [29], shows the results they obtained using the configuration above.
On figures (a-e), the intensity variation I+−I− at the crystal exit plane is plotted as function
of v/cs for various probe intensities. At low background densities (see figures (a) and (b)),
I+−I− increases from v/cs = 0. In other words, as soon as the flow velocity is non-zero,
the obstacle starts being dragged by the fluid. On the contrary, at high background densities,
(see figures (c), (d) and (e)), a plateau at I+−I− = 0 clearly forms at low flow velocities,
which indicates that the drag force exerted by the fluid on the obstacle vanishes in that case.
This demonstrates that light is superfluid deep in the subsonic regime. Asmentioned in [29],
the curves obtained at different intensities do not fall on a single universal curve, although the
flow velocity is normalized on each graph by the related speed of sound. This is expected,
as changing the probe intensity affects both the healing length and the relative strength of
the obstacle with respect to the nonlinear change of refractive index, ie the ratio δn(0)/∆n.
This index matching effect may explain why the maximal amount of scattered light on
figure (e) is much lower than on figures (a)-(d). When Pf = 349 mW, ∆n is of the order of
1.0×10−4 which yields δn(0)/∆n ' 2. The defect then only induces a perturbative potential.
This is why it is barely visible at high fluid power on the image 2(c) of [29]. Nevertheless,
index matching can not explain the plateau observed on figures (a)-(e) that really constitute
a clear signature of superfluidity.

In order to go further, Michel et al. have measured the position 〈X〉 of the obstacle at the
crystal exit plane, as function of v/cs still, for the same probe intensities as on figures (a-e).
The method used to that end is described in details in the supplementary materials of [29].
I thus only comment the experimental results obtained with this second technique, that are
shown on figures (f-j). As you may have noticed, the position of the defect at the exit plane
starts drifting from v/cs = 0 at low background densities, on figures (g) and (h). Reversely,
it remains constant at low flow velocities on figures (h) and (i), where the density is higher.
Nevertheless, the defect displacement does not cancel exactly in that case, even deep in the
subsonic regime. This surprising effect is not explained in text. However, the results are still
in good agreement with those in figures (a-e). For example, the critical speeds in (c) and (d)
correspond fairly well to the ones measured in (h) and (i). It would have been interesting to
see if the motion of the defect in real space leads additionally to a drift of the ring-shaped
far-field intensity distribution of the Bessel beam forming the obstacle. If it is the case,
this could have provided a easier way of probing the normal/superfluid transition.

6.3 Preliminary results
In this section, I present the preliminary results we obtained recently using droplet beams to
generate an all-optical defect into our photon fluid. I first describe the experimental setup
before showing images of the scattering patternswe observe both in real and inFourier space.
In this latter case, we measure the amount of light scattered into theRayleigh ring at various
flow velocities and show that it quickly dropswith the fluid intensity passing some threshold.
However, the reasons underlying this phenomenon are still not clear. It could arise from
superfluidity as well as from the reduction of the obstacle strength at high fluid intensities
because of saturation. The results shown in this section should thus be viewedwith caution.
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6.3.1 Experimental setup and settings
The experimental setup is sketched on figure 6.4. The way the defect beam (blue) is created
is described in subsection 5.2.3. I will therefore not comment the blue path here. For details,
please refer to figure 5.13. The probe (red) is a continuous-wave laser beam produced by
the Ti-Sapphire laser source of subsection 2.1.2. It is sent onto the optical table through a
single-mode polarization-maintaining fiber. The power of the outgoing beam can be tuned
turning the half wave-plate facing the fiber output. The probe beam ismagnified four times,
reflects onto the mirror M3 (hold in a piezo-actuated mirror mount) and gets inside the
Mach-Zehnder interferometer afterwards. The latter is, as usual, protected against air flows
by a boxmade of Plexiglas (which greatly enhances the interferometer stability). A small part
of the probe beam is transmitted by thePBSwhile the remaining high power part is reflected
toward the cell. The transmitted beam (referred to as the reference from now on) provides
the reference we need to retrieve the phase of the probe beam at the medium output plane.
It reflects onto a mirror mounted on a piezo-actuated translation stage (PEM). Scanning
the high tension applied across the piezo allows to modulate the length of the reference arm
and thus to scan over 2π the relative phase between probe and reference. The probe and the
defect beams enter together inside the 2.5 cm cell, filled with a pure vapor of rubidium85.
In this configuration, they are co-propagating. The photon fluid generated by the probe
flows toward the defect at a velocity v = k⊥/k0, where k⊥ = k0 sin(θi)ex stands for the
probe transverse wave-vector. In this experiment, the z-axis is defined by the propagation
direction of the defect beam. The piezo-actuated mount of M3 allows to finely tune the
angle θi between probe and defect. The cell exit plane is imaged onto the CMOS camera
using the imaging system described in subsection 5.2.3. The overall magnification factor
is G = 10.8± 0.2. A dichroic bandpass filter (DF) − whose center wavelength is 780nm−
filters out the defect beam,which addresses the rubidiumD1 line (λd ' 795nm). In thisway,
only the scattering pattern created by the obstacle onto the photon fluid is captured.

At the time atwhich preliminary datawere acquired, a clear understanding of themechanism
underlying the generation of the refractive indexmodulation in the photon fluidwasmissing.
We thus chose the laser detunings in order to fulfill certain basic conditions. We first want
the defect to be collimated inside the cell. We then look for a detuning ∆d at which the
variation of the droplet width between the input and output planes does not exceed 10%.
We also want the height of the repulsive potential δn to be as large as possible of course.
In experiments, the vapor temperature is about 140◦Cand the probe is 2.0GHz red-detuned
from the F = 3→ F ′ transition of the 85Rb D2 line. In that case, we empirically find that
the best was to blue-detuned the defect beam from the Fg = 3→ Fe = 3 transition of the
85RbD1 line by 400-500 MHz. Iwould like tomention here that an isotopically pure vapor of
rubidium 87 ismore suitable to perform this experiment. Indeed, the vaporwe used contains
a small but non-zero fraction of 87Rb atoms, which are almost at resonance with the probe
beam when it is 2.0 GHz red detuned from the F = 3→ F ′ transition of the 85Rb D2 line.
This is clearly visible on figure 2.3(b) for instance. Even if the fraction of 87Rbatoms is small,
the transmission of the laser beam is greatly reduced when it gets closer to the F = 2→ F ′

transition of the 87Rb D2 line. In addition to increasing the absorption of the probe beam,
87Rbatoms also affect the refractive index it feels. Using a vapor of rubidium87would solve
this issue, as red-detuning the probe from the F = 2→ F ′ transition of the 87Rb D2 line
will not bring it at resonance with any transition of 85Rb.
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Figure 6.4: Experimental setup. The paths of the defect and the probe beams are sketched
in blue and red respectively. The way the defect beam is generated by shaping, in real space,
the phase of a wide Gaussian beam with a phase-only SLM is described in subsection 5.2.3.
The resulting droplet beam has an axial extent of almost 2.5 cm and a widthω0,d of 40µm.
Its propagation direction in the cell defines the optical axis. The probe beam is magnified
before entering the Mach-Zehnder interferometer. At that point, it splits into a low power
(reference) and a high power parts. The low power beam provides the reference we need to
retrieve the phase of the photon fluid at themediumoutput plane (using the scanning phase
interferometry introduced in paragraph 2.3.3 i). The high power one enters with the defect
inside the cell. The angle θi between these beams− that is, the speed atwhich the fluid flows
toward the obstacle − can be finely tuned using the piezo-actuatedmount of themirrorM3.
The diffraction patterns observed on figure 6.5 are obtained by imaging the cell exit plane
with the imaging system described in subsection 5.2.3. By removing the objective from the
beam path, we are able to image the k-space and observe the diffraction rings shown on
figures 6.6 and 6.7(a). The rings of the droplet beam are barely visible on those images as
it is filtered out by the bandpass dichroic filter (DF).
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6.3.2 Real-space scattering pattern
All the results I present in this subsection have been obtained by generating obstacleswith
the droplet beam whose transverse profile is shown on figure 5.17(b). The resulting repulsive
potential is Gaussian and its width a bit larger than 40µm. Themaximumon-axis intensity
reachable in experiments using this droplet beam is about 1.3×107 W/m2. Only 10% of the
beam overall power is distributed over the droplet central core. This explainswhywe cannot
easily reach higher on-axis intensity experimentally. However, this is enough to saturate the
rubidium vapor across the entire cell. The probe beam is much larger than the droplet core
(ω0,f ' 0.9mm) in order for the fluid density to be nearly uniform in the vicinity of the defect.
Images of the near-field diffraction patterns observed, at low fluid density (linear regime),
by imaging the cell exit plane onto the camera are shown on figure 6.5.
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Figure 6.5: Near-field scattering patterns at low background density ρ0. The droplet beam
generates a negative Gaussian index modulation (δn < 0), whosewidthω0,d is about 40µm.
The resulting potential is repulsive explainingwhy a dark spot is visible at the positionwhere
the defect lies (red dotted circle). (a): The photon fluid is at rest (v = 0). A spherical wave
is created as soon as probe and defect enter the cell and propagate away from the defect.
(b)-(h): The photon fluid is flowing rightward. The flow velocity steps up from one image
to the next. On figure (d), interference fringes upstream from the obstacle start appearing.
Light is scattered backward by the repulsive defect and interfereswith the incoming fluid.
On (g) and (h), the contrast of the fringes before the obstacle decreases. The kinetic energy of
the photon fluid is large compared to the height of the potential and light just go through
without being back-scattered [154]. We can finally notice that the spherical wave visible on
figure (a) is dragged with the flow and drifts rightward.
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Figure 6.5(a) shows the image obtained when the photon fluid is at rest (no transverse flow).
The obstacle is located at r⊥ = 0 (red dotted circle). As the potential is repulsive (δn < 0),
the fluid is pushed away from the defect, thereby creating the dark central spot on the image.
A spherical wave is emitted in the cell input plane and travels radially onto the photon fluid.
On figure (a), the benefit of using droplet beams to generate the obstacle is clearly visible.
While standard quasi Bessel-Gauss beams induce a concentric succession of ring-shaped
refractive index modulations in the fluid (as can been seen on figure 2(a) of [29] for example),
droplet beams only create one main index depletion, since the power distributed over the
external rings is drastically reduced, because of interferences. From figure (b) to figure (h),
the flow velocity of the photon fluid progressively steps up and interference fringes start thus
developing upstream from the obstacle. As in simulations of figure 6.1, the spherical wave
is dragged rightward by the photon fluid. We can also notice that the contrast of the fringes
in figures (g) and (e) is lower than at smaller flow velocities. At such high speeds, the kinetic
energy of the fluid is certainly larger than the potential barrier formed by the obstacle and
photons start thus tunneling through. This tunneling effect, theoretically described in [154],
have been studied experimentally by Wan et al. [26] in 1Dphoton fluids.

6.3.3 Far-field diffraction pattern

We also investigate the far-field diffraction pattern formed by the scattering of the fluid on
the obstacle. Images of the Rayleigh rings observed in k-space at different probe powers and
flow velocities are shown on figure 6.6. On the upper series of images (a), v = 18mrad,while
on the lower one, v = 23 mrad. The origin of the kx- and ky-axes lies at the center of the
droplet rings (see figure 6.7(a)). The full images have been cropped in order to show only the
back scattering part of the Rayleigh ring. Its radius is equal to the transverse wave-vector
of the probe beamk⊥=k0 sin(θi)ex, explainingwhy it is larger on the series (a) than on (b).
As you may have seen, the amount of light distributed over the half ring first increaseswith
the probe power Pf , reaches a maximum and then decreases when further stepping upPf .
We also notice a decrease in the radius of the scattering ring fromfigures (a1) to (a6) that is
observed in simulations too. Indeed,when cs rises toward the flowvelocity, simulations show
that the Rayleigh ring is deformed and develops a corner at k⊥. This corner consequently
squeezes the ring in the ky direction (see [56] for details).
We can finally mentioned the fact that the amount of light back-scattered by the defect is
lower at large flowvelocities (b) than at small ones (a). This is certainly due to the previously
mentioned tunnelling effect. We can go further by quantitatively measuring the power Ps
distributed over the half scattering ring as function of the fluid power Pf . The results are
presented on figure 6.7(b), for different flowvelocities. Figure 6.7(a) shows theRayleight ring
observed in k-space when v = 23 mrad and Pf = 1 mW. The fluid saturates the image on
the left. The droplet rings, centered at k⊥ = 0, are also visible. We can check that the ratio
between the radius of the droplet outer and inner rings is 0.52 as expected. Thewhite frame
enclosing the right-hand part of the scattering ring delineates the areawhere the intensity
is integrated. The points on figure 6.7(b) arise from this integration at various probe powers.
The resulting curves are in agreement with the qualitative observationsmade on figure 6.6.
Indeed, whatever the flow velocity, the power of the back-scattered light increases withPf ,
reaches a maximum value at some critical fluid power Pf,crit before quickly dropping to zero.
It is tempting to attribute this collapse of back- scattering to superfluidity. Nevertheless,
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crucial information aremissing, such as the value of the sound velocity cs, which prevents us
from concluding with certainty. Moreover, we did not capture the near-field images related
to the data points on figure 6.7(b). We are thus unable to tell if the obstacle is still visible
in the cell output plane when Ps is decreasing.
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Figure 6.6: Diffraction patterns observed in far-field (k-space) at different fluid powersPf ,
for v = 18 mrad (a) and v = 23 mrad (b). The kx/ky-axes origin-point lies at the center of
the droplet rings. The probe is located at kx = −k0v and is thus not visible on the images.
The exposure is the same for the upper (a) and lower series (b). The scattering of the fluid
on the defect is responsible for the apparition of a ring-shaped structure in far field whose
radius is defined by the norm of the probe transverse wave-vector. On series (a) and (b),
the power distributed over the scattering ring increases first with Pf , reaches a threshold
and then decreases. Amore quantitative analysis can be found on figure 6.7(b). On series (a),
the radius of the ring seems to decreasewithPf . A similar behaviour is reported in [56].

Otherwise, it would mean that the strength of the obstacle δn(0) becomes comparable to the
nonlinear change of refractive index ∆n(r⊥) surrounding the defect at high probe powers.
In that case, the decrease in the back-scattering would be due to the matching between the
refractive indices inside and outside the obstacle cross-section. This should not be confused
with superfluidity, which causes the suppression of back-scattering evenwhen δn(0) � ∆n,
as mentioned previously when discussing the results of Michel et al. [29]. On figure 6.1(b)
for instance, superfluidity is observed despite the fact that δn(0)/∆n = 25.
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It is also worth mentioning that if the drop of Ps is due to superfluidity, the flowvelocity v
should then match the critical speed vc when Pf = Pf,crit. Aswe dealwith extended defect,
we expect vc to be lower than cs. Therefore, the sound velocity should, at least, be equal to
the flow velocity. This requires ∆n > v2 ∼ 4×10−4. Even if the probe is close to resonance,
reaching such high values of∆n is unrealistic regarding the available power (Pf < 1W).
Moreover, we can observe that the critical powerPf,crit atwhichPs starts dropping slightly
decreases when stepping up the flowvelocity. This is not expected if we attribute the collapse
of back-scattering to superfluidity. Scanning the probe power as in figure 6.7(b) affects both
the sound velocity and the healing length. In the phase diagram of figure 6.2, such a scan of
the fluid density − at fixed defect size ω0,d and flow velocity v − is like following leftward
the curve of equation y(x) = kω0,dv/x (where k is the probe wave-vector). For the values of
the flow velocity considered here, kω0,dv ranges from 5.8 to 7.4. We thus expect the curves
x�y1(x), x�y2(x) andx�y3(x) (related to v1 = 18mrad, v2 = 20mrad and v3 = 23mrad)
to cross the thick black curve of the phase diagramalmost at the same abscissax. Therefore,
v1
cs,1
' v2

cs,2
' v3

cs,3
. Since v1 < v2 < v3, the preceding equation requires that cs,1 > cs,2 > cs,3.

As the sound velocity scales with the square root of the fluid density, we should consequently
observe that Pf,crit increases with the flow velocity. This is not what wemeasured however.
For all the reasons mentioned above, superfluidity is certainly not the cause of the collapse
of back-scattering on figure 6.7(b), which is more likely to arise from indexmatching effect.
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Figure 6.7: (a): Scattering ring observed in far-field for v = 23 mrad and forPf = 1.0mW.
The two rings forming the intensity distribution of the droplet beam in k-space are visible.
By integrating the intensity within the white frame, we can measure the amount of light
back-scattered by the obstacle as function of the fluid power Pf . The results are shown on
figure (b) for different flow velocities v. When Pf increases, the power Ps distributed over
the right half of the diffraction ring first increases, reaches a maximum and then decreases.
The critical fluid power Pf,crit − at which Ps starts dropping − slightly decreases when the
flow velocity steps up. This behaviour is not expected if we suppose that the drop in the
back-scattering power is due to superfluidity.
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6.4 Future works
Rigorously probing the superfluidity of light in rubidium vapors by studying the scattering
of the photon fluid on an all-optical defect requires to complete quite a fewpreliminary steps.
We should first of all characterize the change of refractive index δn induced by the droplet
beam in the fluid of light (for different sets of parameters) and compare the results with the
theory developed in the preceding chapter. For this purpose, we can for instance set to zero
the probe transverse wave-vector and measure the phase accumulated by the photon fluid in
the vicinity of the obstacle (using the scanning phase interferometry of subsection 2.3.3 i).
One of the most crucial point consists in precisely characterizing the effects of the probe on
the defect strength. Once this is done, we can start studying the scattering of the fluid of light
on the obstacle. The first step is to investigate in details the physics of the transient regime,
that is, the emission of spherical waves in the cell input plane. We can for examplemeasure
the velocity at which those waves propagate in the transverse plane. This could provide a
convenient way of accessing the speed of sound in situ.
The last but not least challenge is to probe superfluidity itself bymeasuring simultaneously
the scattering patterns in real and in k-space. To that end, the best is to scan the probe
transverse wave-vector while keeping its power constant. By measuring the phase of the
photon fluid at the cell output plane, we can also think about observing and studying the
spontaneous nucleation of quantized vortices in the wake of the defect. Thiswould complete
the study of superfluidity in our system.

As mentioned in subsection 6.2.2, we also currently investigate the possibility of probing
optomechanically the normal/superfluid transition in hot rubidium vapors. Following the
theoretical proposal by Larré et al. [100], we plan to install a nanofiber in a vacuumchamber
filledwith a pure vapor of rubidium. A sketch of the experimental setup has been depicted on
figure 6.8(a) (top view). The laser beam enters theKerrmedium from the left and propagates
at a small angle with respect to the z-axis. The nanofiber is mechanically clamped to the
entrancewindow.We assume it is aligned along the z-axis when the laser is off. Because of the
radiation pressure, the nanofiber should bend when switching the laser on. We expect this
bending to increase with the laser intensity until reaching the normal/superfluid threshold.
At that point, Larré et al. predict a fast drop in the fiber deflection ζ, which returns to its
initial position. In practice, the fiber is hold on both ends. Indeed, it seems difficult if not
impossible to cut a nanofiber keeping it straight as it spontaneously tends towind onto itself.
Numerical simulations predicting the deflection ζ at the center of the nanofiber (in vaccum)
has been performed by Maxime Joos in [155] using the Mie scattering theory. In its work,
Maxime Joos considers a laser beamhaving a normal incidence onto a 10mm long nanofiber.
With the available laser resources, we can expect in that case a displacement ranging from
0.1 to 1µm, depending on the laser polarization and on the diameter of the nanofiber used
in experiments. In fine, however, we would like to make the laser propagates at a small angle
with respect to the nanofiber. We expect the displacement ζ to be much lower in that case.
We are thus currently looking for away of increasing themomentum transferred by the laser
to the fiber. A possibility would be to deposit some metallic reflective coating on its surface.
In any event, we must also be able to accurately measure the nanometric deflection of the
nanofiber at its center. This is done using an optical rulerwhose principle is explained below.
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A gold nanoparticle is dropped onto the fiber and positioned inside a standing-wave created
by reflecting a green laser on a mirror, as shown on figures 6.8 (b) and (c). The nanoparticle
scatters part of the light coming from the standing-wave into the nanofiber.As the amount of
scattered light depends on the nanoparticle position in the standing-wave, we can retrieve
the deflection of the fiber by simply measuring its output power using a photo-diode (PD).
This method, developed by Maxime Joos [155] and further improved by Chengjie Ding,
allows to measure the position of the nanoparticle with an accuracy of ±20 nm (figure (d)).

(a) (b)

(d)(c)

Figure 6.8: Optomechanical signature of superfluidity. (a): Sketch of the experimental setup
proposed by Larré et al. in [100]. The left end of the obstacle is clamped to the cell entrance
window and its right end is free to move. Initially, the obstacle is aligned along the z-axis.
When the laser is switched on, the obstacle bends under the radiation pressure. The position
ζ(x, Lz) of the right tip increases with the fluid intensity If before dropping to zero when
passing through the normal/superfluid transition. (b) and (c): Displacementmeasurement.
A gold nanoparticle is dropped onto a nanofiber (obstacle). A standing-wave is created by
reflecting a laser beam on a mirror. The nanoparticle diffusesmore or less light into the fiber
depending on its position inside this standing-wave. By collecting the scattered light with
a photo-diode (PD), we can measure ζ(x, Lz) with an accuracy of ±20 nm (see figure (d)).
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General conclusion
The primary purpose of this thesis was to study some of the hydrodynamic properties of a
propagating photon fluid in hot rubidiumvapors.While photons are not interacting particles
in vacuum, they are inside the rubidium vapor, when the laser is tuned close to an atomic
resonance. This interaction between photons, mediates by the atomic ensemble, makes the
laser beam behaveS as a fluid flowing in the plane perpendicular to the optical axis when it
propagates through the vapor. The dynamics of this fluid of light is driven by the nonlinear
Schrödinger equation, which shares strong similarities with the Gross–Pitaevskii equation.
The latter describes the space-time evolution of atomic Bose-Einstein condensates in the
mean-field approximation. Those systems exhibit in particular the ability of flowingwithout
experiencing any friction, that is, without dissipating energy. Our desire to observe such
superfluid flowof light in our systemhas driven the entirework presented in thismanuscript.

The strength of the photon-photon interaction in Kerr mediums is characterized by the
material nonlinear refractive indexn2. This quantity thus plays a crucial role in experiments.
In rubidium vapors, repulsive interactions between photons are obtained by red-detuning
some laser beam from one of theD-lines. In chapter 1, we first describe the optical response
of the rubidium vapor under this near-resonance laser excitation with a two-level model.
This simplistic description is improved afterwards by taking into account optical pumping
between theD-line ground states as well as the finite transit time of atoms across the beam.
Using this extended model, we derive a general expression for the dielectric susceptibility.
In order to further refine our theoretical description, Doppler broadening and nonlocality,
arising from the ballistic transport of excited atoms in hot vapors, have also been included.

Chapter 2 beginswith the derivation of the nonlinear Schrödinger equation. The connection
with the Gross Pitaevskii equation is established and discussed in details. We then focus on
describing the dynamics of small amplitude density waves travelling onto the photon fluid.
Using the Bogoliubov transform, we show that those waves obey the so-called Bogoliubov
dispersion relation, which exhibits two different regimes. It first starts by linearly increasing
at low excitation wave-vectors, where density waves behave as collective phonons travelling
all at the same speed (the sound velocity), before developing a quadratic trend, characteristic
of a particle-like dispersion. According to the Landau criterion for superfluidity, showing the
existence of the sound velocity would guarantee the observation of superfluid flows of light
in our system. I consequently dedicate an important part of my time to measuring the
dispersion relation of density fluctuations. The results are shown in chapter 4.

In chapter 3, the tools and the methods used to generate the photon fluid on one hand and
characterise it on the other are introduced. We start by presenting the rubidium cell and
its heating system before describing the laser sources. An important part of this chapter is
dedicated to presenting two techniques we used to access the nonlinear refractive indexn2.
Both are based on measuring the self-phase accumulated by a wide Gaussian beam during
its propagation inside the vapor cell. The first one consists in counting the number of rings
appearing in the far-field intensity distribution of the beam. The correct counting procedure,
taking into account the Gouy phase shift, is described in both the 1Dand 2D cases. To do so,
we have extended the approach followed by Nicolas Pavloff in an unpublished work of 2018.
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The second method consists in measuring the spatial variations of the nonlinear phase shift
accumulated by the beam using the scanning phase interferometry. We show additionally,
using numerical simulations, that both techniques are accurate as long as the thin medium
approximation is fulfilled. This is the case as long as the characteristic propagation length
over which self-defocusing starts affecting the beam shape is longer than the cell.

In chapter 4, the dispersion relation of small amplitude density fluctuations travelling onto
the fluid of light is measured. Following the work of Vocke et al. [52], we first try tomeasure
the difference in the phase velocity between two plane waves propagating on top of low and
high density background fluids. At the medium output plan, this results in a shift between
the crests of these twowaves, that depends on their wavelength. We show that the theoretical
description of Vocke et al. is incomplete as they do not account for the propagation of the
conjugate beam in the cell, which is spontaneously generated (because of four-wavemixing)
in the input plane. Following the work of Larré et al. [71], we derive an exact formula to
calculate the shift using the Bogoliubov formalism. This formula depends on the dispersion
relation of density waves but the latter can only be retrieved from the shift at the expense of
a complex numerical inversion. We thus claim that this method is not suitable to measure
the dispersion relation of density waves. We still however demonstrate that the shift is not
saturating at large modulation wavelength−both experimentally and numerically−which
contradicts the results of Vocke et al. In order to access the dispersion, we propose a new
experimental scheme based onmeasuring the group velocity of a smallGaussianwave-packet
travelling onto the photon fluid. Beside the fact that this technique overcomes all the main
limitations of the shift measurement, it also provides a much deeper understanding about
the physics at play. By probing the sound-like regime of the dispersion, the wave-packet
splits into a pair of counter-propagating Bogoliubov wave-trains in the cell entrance plane,
which both travel at the speed of sound. Reversely, when probing the particle-like regime,
the wave-packet behaves as a free particle moving at a velocity that increases linearly with
its wave-vector. This nonlinear refraction law is theoretically described using theBogoliubov
formalism and illustrated by performing numerical simulations. The experimental results
are in excellent agreement with theory at low background density, when transport-induced
nonlocality is taken into account. The dispersion relation retrieved using the group velocity
measurement exhibits a linear increase at low excitationwave-vectorswhich is characterised
by the sound velocity. The way the later depends on the fluid density is investigated and
exactlymatches theorywithout any fitting parameter. At the end of chapter 4, we also report
the observation of quasi-particle interferences occurring between the counter-propagating
Bogoliubov wave-packets at the cell exit plane.

Demonstrating the existence of a sonic regime in the dispersion relation is a key requirement
for the observation of superfluidity. In order to go one step further, the way the fluid flows
around a localized obstacle should be investigated. In chapter 5, themethod used to generate
such an obstacle in our system is described. In photon fluids, any local change of refractive
index acts as a defect into the flow. In rubidium vapors, localized refractive index changes
can be induced by red-detuning the fluid from one of the D-line while strongly driving the
other with an intense defect field. This situation is first theoretically investigated using a
open 4-level N-type atomic model. The optical Bloch equations are derived and solved using
first a perturbative approach and then the dressed-state formalism. This second method
helps us getting a deeper insight into the process underlying the generation of the obstacle
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into the fluid of light. We show that the strength and the sign of the potential induced by the
defect field can be tuned by changing its power and/or its frequency. We also alert the reader
to the fact that varying the power of the fluid surrounding the defect also affects its strength.
The second section of chapter 5 is dedicated to presenting themethods used in experiments
to produce the defect beam.The later should ideally fulfill certain requirements such as being
collimated and keeping the same strength across the full cell. Its diameter should also be
comparable to the healing length − which is typically of the order of few tens ofmicrons.
We chose to use Bessel beams whose diffraction-free features enable to generate collimated
defects of appropriate size all along the cell. Moreover, we show that designing the on-axis
intensity profile of Bessel beam enables to compensate linear absorption during propagation.
This technique, that is based on the real space shaping of aGaussian beamwith a phase-only
spatial light modulator, finds a wide variety of applications, in bio-imaging in particular,
where the huge absorption and diffusion coefficients of living tissues make the illumination
of such samples challenging. Nevertheless, generating obstacles with attenuation-resistant
Bessel beams (or standard quasi-Bessel beams) is not the most suitable option as the rings
surrounding the Bessel central core are intense enough to also change the refractive index.
In experiments, we prefer instead using droplet beams, which results from the interference
between two co-propagating co-axial Bessel beams having different cone angles. They offer
the benefit of being perfectly collimated while reducing the power distributed over the rings
compared to standard quasi-Bessel beams.

In chapter 6, we finally present some preliminary results obtained by bringing all the previous
ingredients together. Images of the near-field and far-field scattering patterns generated by
making the fluid flow toward the defect are shown. So far, we did not observe clear signature
of superfluidity, but effects such as the collapse of the Rayleigh ring in k-space should be
further investigated and may provide the experimental evidence we look for.
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Future works
Propagating photon fluids in nonlinear mediums are a versatile and highly tunable platform
to study the rich physics of quantum fluids. However, those systems are intrinsically limited
by the length of the nonlinear medium, that fixes, once and for all, the "time" over which
they are evolving. Beside the fact that long mediums are often required to make this time of
evolution as large as possible, probing the dynamics of the photon fluid is really challenging,
as we can only image in practice the medium exit plane. One possible way of overcoming
this issue is to measure the full electric field (intensity plus phase) at the output plane of a
short cell, by using a shearing interferometric camera [156] for example. We can then tailor
the input field to make it match the output one, shaping its intensity and/or phase using a
digital micro-mirror device and a SLM. This re-injection strategy [157] would provide away
of extending the evolution "time" (by performingmany loops)while resolving the "temporal"
dynamics of the photon fluid (using a short cell for instance). However, the role played by
the air/medium interfaces in this time-loop needs to be further investigated.

The control over the photon fluid temporal evolution can be further improved by adding
confinement in the transverse direction. This can be done bymodifying the refractive index
experienced by the fluid as shown in chapter 5. By using ring-shaped confining beam,we can
for instance create a light-induced wave-guide inside the vapor cell and trap the photon fluid
in the resulting harmonic potential. In these circumstances, the system is scale-invariant and
a new type of 2Dbreathers, recently discovered in [61],may be observed. Optically-induced
potentials are also promising tools to study the interplay between localization features and
superfluidity. Illuminating the rubidium cell with an amorphous speckle light [158] is a way
of creating "stationary" disordered potential landscapes into the photon fluid, that are nec-
essary to investigate the competition between localization and superfluid transport [99].
Using the "light guiding light" strategy also provides a way of implementing evaporative
cooling of photon fluids [159], which is a key requirement for accelerating and thus observing
Bose-Einstein condensation of light.

An important frontier in fluid of light research is to go beyondmean field and observe purely
quantum phenomena. Because light propagating in atomic vapors is awell controlled system
which has already proved to be an excellent source of quantum correlated beams [41,160],
we believe that it could be the first platform to lay the groundwork for studying quantum
effects in propagating photon fluids. One step in this direction would be to observe the
optical analogue of the dynamical Casimir effect [58]. This can be achieved using the same
experimental configuration as in section 4.2, but without stimulating the emission of the
Bogoliubov modes this time. In that case, because of the sudden jump of the photon-photon
interaction in the cell entrance plane, pairs of quantum-correlated Bogoliubov excitations
are spontaneously emitted in that plane, seeded by vacuum. The main challenge is now to
find a technique to measure the correlations between these excitations, using certainly some
sophisticated homodyne detection scheme.
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